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Abstract 
 Unter dem ABC-Effekt versteht man eine riesige Überhöhung am unteren Ende 
des Spektrums der invarianten Masse von zwei Pionen, die in der doppelt-pionischen 
Fusion zu gebundenen nuklearen Systemen entstehen. Dieses eigenartige Phänomen 
konnte seit seiner erstmaligen Beobachtung 1960 in Messungen der 3He-Ejektile in der 

Reaktion Xpd He3®  bisher nicht schlüssig erklärt werden. Ein Grund dafür ist, dass 
alle bisherigen Messungen zu diesem Effekt inklusive Messungen waren, d.h. lediglich 
mit Detektoren zum Nachweis des schweren Fragments durchgeführt wurden, was 
bedeutet, dass nicht die vollständige experimentell zugängliche Information erfasst 
wurde. 
 Daher wurden an CELSIUS/WASA erstmals vollständige exklusive 

Messungen dieser Reaktion bei einer Energie von GeV 895.0=pT  durchgeführt, bei der 

man das Maximum des ABC-Effekts erwartet. Damit wurden zum ersten Mal 
kinematisch vollständige Daten hinreichender Statistik und getrennt nach Kanälen 

neutraler und geladener Pionen, d.h. getrennt nach 003He pp®pd  u n d  
-+® ppHe3pd     gemessen. Als Nebenprodukt wurden auch Ergebnisse zur Drei-

Pionen-Produktion erhalten. 
 Die neuen Messdaten sind konsistent mit den früheren inklusiven Messungen. 
Sie liefern aber weit umfangreichere Detailinformationen, die alle früheren 
Erklärungsversuche ausschließen. Der jetzt zugängliche, kinematisch komplette 
Datensatz enthüllt, dass die Überhöhung bei niedrigen pp-Massen (ABC-Effekt) 

· nicht notwendigerweise mit einer Überhöhung bei großen  pp-Massen 
einhergeht, 

· immer mit der gleichzeitigen Anregung von zwei D-Resonanzen verbunden ist, 
· von skalar-isoskalarer Natur, d.h. ein s-Kanal-Phänomen ist, 
· eine Dynamik im Reaktionssystem erfordert, die bisher nicht betrachtet wurde. 

 
 Verschiedene mögliche Lösungen werden in dieser Arbeit diskutiert. Alle von 
ihnen erfordern eine starke Attraktion zwischen den beiden produzierten D-Teilchen – ein 
Punkt, der bisher weder in theoretischen noch experimentellen Arbeiten untersucht 
wurde. 
 Für die Analyse der Daten wurden neue leistungsfähige Methoden entwickelt, 
die auf den Techniken neuraler Netze basieren. Laufende wie auch mögliche zukünftige 
Anwendungen werden diskutiert. 
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Abstract 
 The ABC effect is a huge unexpected enhancement at twice the pion mass in 
the invariant mass spectrum of two pions, which are generated in double-pionic fusion to 
bound nuclear systems. This peculiar phenomenon has been missing a conclusive 
explanation all the time since it has been discovered 1960 in single-arm measurements of 
3He ejectiles in the reaction Xpd He3® . One reason for this failure has been that all 
measurements to this subject have been inclusive, i.e., lacking the full experimentally 
accessible information. Hence exclusive measurements were performed at 

CELSIUS/WASA at an energy of GeV 895.0=pT , where the ABC effect is expected to 

be strongest. For the first time exclusive data of solid statistics for both the 
003He pp®pd  and -+® ppHe3pd  reactions were obtained including also results for 

the three-pion production total cross-section. 
 The new data are consistent with the previous inclusive data. They provide, 
however, much more additional information, which rule out all previous explications of 
the ABC effect. The now available kinematically complete set of data reveals that the 
low ππ-mass enhancement (ABC-effect) 

· is not necessarily associated with a high ππ-mass enhancement, 
· is always connected with the simultaneous excitation of two ∆ resonances, 
· is of scalar-isoscalar nature, i.e. a σ-channel phenomenon, 
· requires dynamics in the reaction system, which has not been considered 

hitherto. 
Various possible solutions are discussed, however, all of them demand a high attraction 
in the DD  system — a point, which has never been touched so far in theoretical and 
experimental investigations. 
 For this data analysis new powerful methods based on neural nets have been 
developed. Their current and possible future applications are discussed. 
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There is a remarkably close parallel between the 

problems of the physicist and those of the 

cryptographer. The system on which a message is 

enciphered corresponds to the laws of the universe, the 

intercepted messages to the evidence available, the 

keys for a day or a message to important constants 

which have to be determined. The correspondence is 

very close, but the subject matter of cryptography is 

very easily dealt with by discrete machinery, physics 

not so easily. 

 

--Alan Turing 
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1 Introduction 
 Since the dawn of mankind, when a monkey jumped down from a tree 
becoming a human being, people have been trying to understand the laws of nature — 
moving a long way on the road of knowledge. We do not worry any longer about 
thunderstorms, we can create light brighter than the sun at noon and fly faster than any 
bird. We know why the sun is shining, why the wind is blowing and why the sky has a 
blue color. We even can sometimes initiate a rain, not by asking a god like ancient 
oracles, but by our will and technology. We tend to believe that we finally come close to 
a full understanding of the world around us and we need just another small step to 
succeed in a unified theory, which would be able to describe each process that ever 
happened in the Universe. However, since such a theory does not yet exist, we have to 
stick with its simplified version — the Standard Model. 
 The present model of everything like the mythological turtle is placed on three 
whales: General Relativity, Electroweak Theory and Quantum Chromodynamics (QCD). 
Each of these theories describes different forces: General relativity is responsible for the 
moving of stars and galaxies, i.e. phenomena related to gravity. The Electroweak Theory 
contains two parts: the Glashow-Weinberg-Salam theory for the weak force and 
Quantum Electrodynamics (QED) for the electro-magnetic interactions. QCD is the 
theory of the strong force. Having all these theories at hand we still have problems in 
describing phenomena in reality, not because theories are wrong, but just due to technical 
problems in applying them — aside from the many-body problem. This is especially true 
for phenomena driven by the strong force. Usually it is much simpler to create a model 
with a very restricted range of validity, like Chiral Perturbation Theory (CPT) or even 
use some phenomenological models. 
 But let us start from the roots of QCD. From the experiments of Rutherford we 
know that all matter around us resides basically in nuclei. After the work of Yukawa we 
realized that we need a force to have these nuclei bound and a particle to carry this force 

— the pion (or π-meson) with quantum numbers +-= 0pcJ . Soon, however, it was 
realized that just pions are not enough to bind even light nuclei, making the existence of 
heavier nuclei absolutely impossible. In order to eliminate the discrepancy between the 
theory and reality, one had to introduce an additional particle — the sigma meson, with 

the quantum numbers of the vacuum, ++= 0pcJ . That was a starting point for the long-
lasting thriller “Hunting for the σ meson”, the story, which is not yet over, so everybody 
can participate in it either as an actor or as a spectator. 
 The σ-meson is one of the most mysterious particles ever discussed in hadron 
physics. Many experiments claimed its observation, and at least as many claimed its 
absence. From time to time it was included into the Particle Data Group (PDG) booklet 
— the “Holy Bible” of a particle physics — and at other times it was removed from it as 
a heresy. 
 The mass of the σ-meson is one of the biggest “known-unknowns” (even the 
result of the world soccer championship can be predicted with a higher accuracy than the 
mass of the σ-meson). Just for comparison: the mass of the pion we know with a 

710- accuracy being 00035.057018.139 ±=±p
m MeV (PDG value). The mass of the 

σ-meson according to the PDG is 1200400 ¸=sm MeV, i.e. widely unknown. The same 

situation is found with regards to branching ratios and decay width — despite fifty years 
of history of the σ-meson. All information from PDG is “ππ decay — dominant; γγ decay 
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— seen”, i.e. just two phrases after half a century of enormous theoretical and 
experimental efforts. On the theoretical side presently most high-rated is the result of 
Leutwyler et al. [1], based on chiral dynamics and ππ phase shifts, that the σ-meson is the 
lowest QCD resonance, dynamically generated by ππ-rescattering with a mass 

)272441( im +=s  MeV. 

 Hence it is not a surprise that having the ability to measure the ππ production 
we decided to look it more carefully especially the two-pion production in 
nucleon-nucleona collisions leading to a bound nuclear system, where one may expect 
strong medium modifications of the unknown σ-meson properties and where the 
so-called ABC effect observed also nearly fifty years ago is still missing an explanation. 
 The following chapter will highlight the history of the ABC effect, in particular 
the experimental data collected so far on this topic and discuss several theoretical models 
claimed to explain this phenomenon at various times. 

1.1 Experimental results in the ABC field. 
 The mess with the ABC effect starts in 1960 with the work of Alexander 
Abashian, Norman E. Booth and Kenneth M. Crowe[2]. The observed effect in that paper 
was called “anomaly in meson production”. Only much later the whole class of such 
effects started to be called ABC effect according to the initials of authors of the fist 
paper. 
 The pioneering experiment was performed in Berkeley with a single arm 
magnetic spectrometer. The resulting measurements with proton beams of different 
energies and a deuteron gas target exhibited a very unexpected behavior: in the reaction 

Xpd +® He3 b an enhancement in the invariant mass spectrum of X right at the two-

pion threshold was observed, (Fig. 1—1). The experiment was performed at four beam 
energies: 624 MeV, 648 MeV, 695 MeV and 743 MeV. The effect was observed at all 
energies at roughly the same position. 
 

 
Fig. 1—1 First published figure about ABC effect [2]. The peak at very right position is 
single pion production. The solid and dashed lines are phase space with different 
normalization. The enhancement over phase space is called the ABC effect 

                                                                 
a The notation NN is reserved for the Neural Net, except for reaction equations 
b they measured only the momentum of 3He at one angle, but that is enough to 
reconstruct the mass of the state X at this angle 
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 In their 1963 paper [3] the same authors added some more information about 
the ABC effect: one more energy and one more angle. Qualitatively the effect did not 
change. Later on their experimental results were confirmed and supplemented by other 

groups: Birmingham[4] ( 1 9 6 9 )  Xpdppn specspec +® )()( a;  S a c l a y [5] ( 1 9 7 0 )  

Xpddp spec +® )( , Xdp +® He3 ; Saclay[6] (1973) 03 )(He mmpd +®+ ; Saclay[7] 

(1978) 0)(mmdpn +®+ ; Saclay [8] (1976) 04 )(He mmdd +®+ b. 

 All of these experiments have several features in common: all of them have 
been single arm measurements detecting only the heavy outgoing nuclear recoil, i.e. all 

measurements were inclusive with no possibility to distinguish between -+pp  and 
00pp  contributions or even 3π admixtures. All of these experiments were performed at 

roughly the same energy, 150-400 MeV above ππ threshold in the CMSc, at a few fixed 
angles. 
 The results are also similar: if the system X is electrically neutral and isoscalar, 
than there is an ABC effect (bump at 2π threshold), in all other cases no particular 
enhancement is observed. 
 Only very recently the first exclusive experiments [9][10] were performed, 
unfortunately at much lower energy — close to threshold — i.e. far away from the 
established ABC region. In addition, one experiment [9] had very low statistics, and the 

other one [10] measured only -+® ppHe3pd , which is not the best suited channel as 
we will see later. 
 Hence no exclusive measurements of solid statistics have been available so far 
in this field. That is why a series of experiments were performed now at 
CELSIUS/WASA, the results of which are described in this thesis.  
 

1.2 Theoretical status of the ABC effect 
 In the very first paper about ABC [2] it was suggested that the enhancement 
originates from a strong ππ interaction or even a meson state close to threshold. 

However, the derived isoscalar ππ scattering length of 4.2=sa  fm was larger by an 

order of magnitude than that known from other reactions. Lateron, in the seventies the 
idea was born that the excitation of two nucleons into their first excited state, the ∆(1232) 
resonance could be the reason for the ABC effect [11]. 
 Since in three-body systems all binary invariant masses are constrained by the 

relation constMMM =++ 2

31

2

23

2

12  f o r  given center of mass energy, this means that a 

resonance-like structure in 12M  may show up as a reflection of resonances in 23M  and 

31M  (two ∆s may lead to bumps in the ππ system). 

 In 1973 the first ∆∆ model [11] for the explanation of the ABC effect 
appeared. In their article [11] Risser and Shuster demonstrated that two multiplicative ∆ 
                                                                 
a They used proton beam and deuteron target. Only outgoing deuteron was measured, and 
the rest proton was assumed to be a spectator. 
b Here the reactions quoted as in the original papers: mm = X. mm mean that the mass of 
system X was reconstructed using missing mass technique. Symbol 0 mean that the 
charge of system X was 0. 
c CMS — Center of Mass System 
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propagators lead to a maximum contribution in the reaction cross section for the 
following two particular configurations if the two nucleons from the decay of the ∆s are 
bound in a nuclear final state: 

· the two pions are emitted in parallel from the decaying ∆∆ system, resulting in 
low ppM  values 

· the two pions are emitted in antiparallel from the decaying ∆∆ system, 
resulting in high ppM  values 

 

 
Fig. 1—2 Typical Feynman diagram for Delta-Delta models(left). ABC data [6] for the 

reaction dXnp ®  with some Delta-Delta calculations (right) [from Ref. 12]. Top scale 
is translation deuteron momentum to deuteron missing mass. 
 
 These two constellations triggered by excitation and decay of the ∆∆ system 
lead to two enhancements in the ππ invariant mass spectrum: one at low ππ invariant 
masses (pions move in parallel), and one at the high ππ invariant masses (pions move in 

antiparallel). At low energies, i.e. D< ms 2  the low-mass enhancement is somewhat 

preferred kinematically, at D> ms 2  the high-mass enhancement should dominate. At 

D» ms 2  both enhancements should be of comparable size. This behavior is further 

supported by the anisotropy of ∆ decay. Indeed the heavy-particle momentum spectra 

taken for the reactions dXnp ® , Xpd He3®  and Xdd He4®  all show a three-bump 
structure (Fig. 1—2), with the middle bump belonging to large ππ invariant masses. The 
bumps at small and large momentum both belong to small ppM  valuesa, the first being 

due to the heavy particle [deuteron] moving backward in the CMS, but forward in the lab 
system. The high momentum peak of the spectrum belongs to situations, where the heavy 
particle moves forward both in the CMS and lab systems. On top of Fig. 1—2 the scale 
for the invariant mass of the system X is given. Note the largely nonlinear scale, where 

the low ppM  region (left and right ends) appears compressed and the high ppM region 

(middleb) stretched. Accordingly, deviations from phase space appear overstated in the 
low-mass region and understated in the high-mass region. How these deviations from 

                                                                 
a Two pions move parallel 
b Two pions move antyparallel 
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phase space show up in the ppM  spectrum having a linear scale in ppM  will be 

demonstrated in Chapter 5. 
 If the measurements are inclusive, they can not really distinguish between 
two-pion production, three-pion production, and also other meson production as, e.g., η  
production, which all may contaminate the spectrum. In Ref. [12] it has been suspected 
that the central peak in the momentum spectrum could actually originate from three-pion 
and η  production, (Fig. 1—3). 
 

 
Fig. 1—3 Reaction decomposition of 0)(mmdnp +®  data from [12]. 
 
As already noted there, this would imply a serious problem for the interpretation of the 
ABC effect by the ∆∆ model. However all other publications, in particularly theoretical 
papers, disregarded this warning. As will be shown the first exclusive measurements to 
this topic, which have been carried out at CELSIUS-WASA and which are the subject of 
this work, reveal this middle structure not to be of ππ origin. Therefore the ∆∆ model 
interpretation believed to be the proper explanation of the ABC effect is at variance with 
the  t rue  ππ production data, as will be demonstrated in the following chapters.

Pd 



2 Experimental setup 
 This chapter briefly describes the place, where our experiment was performed 
as well as the techniques used. The description of the detector components can also be 
found in this chapter. 
 

2.1 The Theodor Svedberg Laboratory (TSL) 
 The experiment was performed at the national Swedish accelerator facility in 
Uppsala, the Theodor Svedberg Laboratory, Fig. 2—1. The Gustaf Werner cyclotron 
provides accelerated ion beams starting from protons up to xenon and can deliver them to 
different research areas, including CELSIUS storage ring, see Chapter2.2, where our 
experiment took place. 
 

 
Fig. 2—1 The cross section of the TSL. The cyclotron and CELSIUS laboratories are 
visible, placed underground (left). Setup of The CELSIUS storage ring (right) 
 

2.2 The CELSIUS accelerator and storage ring 
 The name CELSIUS originate from Cooling with Electrons and Storing Ions 
from Uppsala Synchro-cyclotron, Fig. 2—1. 
The magnets for the ring originally come from  the ICE experiment, CERN. The 
maximum kinetic energy available for protons is 1450 MeV, however it is possible to 
cool protons only up to an energy of 550 MeV. It is also possible to store heavier ions up 
to Ar with maximum energy of 470 MeV/A. We are only interested in protons and 
deuterons, because at CELSIUS energies it is not possible to get two-pion production 
with heavier projectiles. The highest achieved deuteron energy was 1015 MeV (June 
2005). To calculate the luminosity one needs two more numbers about CESLIUS — 

Circumference (81.8m) and typical number of stored particles (protons 11101´µ ; 

deuterons 10101´µ ). All other information can be found in Ref. [13]. 
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2.3 The pellet target 
 A crucial part of WASA[14] is the pellet target system. Since the main goal of 
the CELSIUS/WASA detector was measuring of rare decays of the η -meson, one had 
certain requirements to the detector and the target system: 

· The detector should cover  a solid angle of close to 4π 
· The density of a hydrogen/deuterium target should be as high as possible. 
· The background coming from the target system should be as small as possible. 

These three points rule out most of the target systems except for pellet target, Fig. 2—2. 
 The pellet target works in the following way: the gas (in our case hydrogen or 
deuterium) is liquidized; then in the pellet generator the jet out of this gas is created and 
brakes down into droplets by the acoustic excitation. The droplets are uniform in size and 
in spacing. After that the droplets freeze by evaporation in the droplet chamber, Fig. 2—
2, right. So in the vacuum chamber we have solid spheres of frozen gas with a size of 
25-35 mm, coming down with a frequency 5-12 kHz. More information about the pellet 
target can be found in [15]. 
 

 
Fig. 2—2 Left: schematic view of the target system; Right: photo of the droplet chamber 
 

2.4 The WASA detector 
 As mentioned in the preceding section, there have been several requirements 
for the WASA detector design. In addition to the three, which influenced the choice of  
pellet system, one can name: 

· measurement of the energy and the angles of all tracks 

· the ability to work with high luminosities (more than 1232 scm10 -- ) 
· low-Z detector material to reduce hadronic interactions of protons and to 

measure neutrons. 
· high-Z detector material to measure photons efficiently. 

 Some of these requirements contradict each other, so there had to be  a  
compromise solution. As a result of such compromises the WASA detector was 
constructed, Fig. 2—3: It consists of 3 parts: Forward Detector, Central Detector, Zero 
Degree detector. 
 The Forward Detector (FD) is optimized for measuring protons from the 

hpppp ®  reaction. It also has some efficiency for measuring neutrons. It provides 

energy and angular information for charged particles with good precision, and also some 
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angular information for neutrons. The first level trigger also relies on the FD, because it 
incorporates several layers of thin fast plastic scintillator detectors. The FD is also well 
suited for measuring charged target recoil particles and rescattered projectiles. It is also 
important for our case that it can trigger and detect 3He. As a drawback of such a solution 
the forward detector can not effectively detect photons. 
 

 
Fig. 2—3 The 3D and the cut  view of the WASA detector 
 
 The Central detector on the other hand is optimized to detect mesons and their 
decay products. That is why it also has to measure photons, as a consequence we have a 
large electromagnetic calorimeter. A magnetic field is also important to distinguish 
positively and negatively charged particles, that is why the solenoid is present. The 
individual detector components will be discussed in the following chapter. 
 

2.4.1 The Forward Detector (FD) 
 The Forward Detector as noted before is suited for precise measurements of 
charged particles. It covers the range of polar angles 3°< Q <18°. The angular resolution 
provided by the FPC (Forward Proportional Chamber), see Chapter2.4.1.2, can be better 
than °2.0 . The best energy resolution will be achieved, when particles stop in the FD, 

i.e., 4.0<T GeV for deuterons, 0.3 GeV for protons and 0.17 GeV for pions. For the 
particles which punch through the FD, the energy can also be reconstructed, but with 
larger errors. For protons with energy below 0.3 GeV the relative uncertainty is roughly 
constant and about 3% and rises linearly with higher energy reaching 20% at 1 GeV. For 
deuterons the relative energy error is roughly the same, but they are much more difficult 
to identify uniquely. 
 Unfortunately it is hardly possible to reconstruct the energy of punch-through 
pions, since already at 0.3 GeV they deposit an energy like minimum ionizing particles. 
The situation with electrons is even worse. 
For 3He and a particles the stopping power is 0.9 GeV, lower than the maximum 
available energy for these particles at CELSIUS. The most limiting factor in the case of 
3He appears to be not the highest but the lowest energy: 3He particles with energy below 
0.2 GeV stop before the FRH (Forward Range Hodoscop,  see Chapter2.4.1.4), that is 
why a precise energy determination is hardly possible for them. 
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2.4.1.1 The Forward Window Counter (FWC) 
 The FWC is the first layer of the forward detector. It consists of 12 plastic 
scintillator elements, each 5 mm thick, Fig. 2—4.  
 

 
Fig. 2—4 Schematic representation of the FWC. Left:  side view, right: front view. 
 
 All elements are inclined by approximately 10° with respect to the vertical 
position. This is in order to follow the window of the scattering chamber. The main 
purpose of FWC is to suppress the background coming from beam—beampipe 
interactions. It is also used in the first level trigger logic, because it is small and fast. In 
our case it was used in the trigger also for inducing a high threshold on deposited 
energies in order to separate 3He from protons and deuterons. 
 

2.4.1.2 The Forward Proportional Chamber (FPC) 
 The FPC[16],[14] (tracker) is used to determine the coordinates of charged 
tracks at a distance of 1100 mm downstream of the vertex position, Fig. 2—5.  
 

 
Fig. 2—5 Schematic view of one module of the FPC 
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 Initially four modules were built, but only two of them had been installed. At a 
later stage the third module was installed, too, and in the 3He runs, three modules were in 
use. According to the original design one module should measure the horizontal position, 
one the vertical one and two modules the positions along two diagonals. Each module 
consists of straws: 122 straws in one layer, each second layer straggled by the radius of a 
straw (4 mm) thus leaving no gaps in the sensitive area. The straws are cylindrical drift 
tubes made of aluminized Mylar foil with central sensitive resistive wire. Just by 
geometrical overlap one can reach an angular resolution of 0.2°. In addition it is possible 
to use drift times to improve the spatial resolution from 8 mm to 200 mm, and use of the 
resistive wire can help for position determination just from one module along without 
overlap with several other modules. This feature might be important at high energy high, 
luminosity runs for resolving tracks from different high multiplicity events for WASA at 
COSYa. 
 

2.4.1.3 The Forward Hodoscope (FHD) 
 The FHD [17],[18] (so called “Juelich hodoscope”, named after the place of 
manufacture), is one of the main components of FD, especially for the 3He analysis. 
 It consists of three layers, Fig. 2—6. The third one is pizza-like, segmented into 
48 elements. The first and second planes are Archimedean spirals consisting of 24 
elements each. All three layers are plastic scintillators 5 mm thick each. The FHD fully 
cover the circles with radius 580 mm, with inner hole of 48 mm diameter. 
 

 
Fig. 2—6 Design of the FHD. Two tracks pass the detector, each hits one element in each 
plane. Due to their different geometry (left and right Archimedean spirals as well as 
straight elements), it is possible to reconstruct the hit position by the intersection of all 3 
layers. 
 
 The FHD is a working horse of the WASA detector. It is used: 

· to distinguish charged and neutral particles in forward direction (neutrals do 
not give a signal in the thin plastic detector: for neutrons the probability to 
create a signal in FHD is about 0.5% on average — strongly depending on 
energy; the probability for photons is even lower). 

· as a first level trigger, to settle the charge multiplicity conditions. 
· for particle identification (particle ID) via dE—E techniques (in case of 3He at 

895 MeV beam energy it is the only possibility to select Helium). 

                                                                 
a Next generation experiment with upgraded WASA detector at COSY facility in Juelich, 
Germany. 
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· to use also coordinate information from FHD (q,f) for a smart Missing Mass 
trigger for the WASA at COSY program. 

Despite of all these nice features, some unpleasant effects appeared during the work with 
FHD: Since FHD was manufactured more than 10 years ago, the aging effects got 
meanwhile big and different for different elements; in addition the photo-multiplier 
response is not linear. These two deficiencies make the work with FHD presently much 
more difficult than it could be. 
 

2.4.1.4 The Forward Range Hodoscope (FRH) 
 The FRH, Fig. 2—7, is the largest and heaviest sensitive part of the forward 
detector.  
 It consists of four layers each 110 mm thick. Each layer incorporates 24 
elements (covering °=D 15f  per element, f b e i ng the azimuthal angle) and is 

constructed in such a manner that one FRH element covers 2 elements of FHD3. This is 
to simplify tracking at the trigger level. The main purpose of the FRH is a precise energy 
reconstruction, although it is also used for particle ID. The layered design allows to 
consider many ∆E-E combinations, which are important for complicated cases. Due to 
this design it is also possible to reconstruct the energy of a particle even if it undergoes 
hadronic interaction [19]. 
 

 
Fig. 2—7 Principal scheme of the FRH with all four layers. The diameter of the first and 
the last layer are given in mm. 
 

2.4.1.5 The Forward Range Intermediate Hodoscope 
(FRI) 

 The FRI [ 20] (sometimes wrongly named Forward Range Interleaving 
hodoscope) is placed between the third and fourth layer of the FRH. It consists of 32 bars 
of 5 mm thick plastic scintillator rotated by 90° with respect to each other and forming 
thus rectangular pixels, Fig. 2—8.  The widths of the bars are 60 mm for the outer region 
(10+10) and 30 mm close to the beam pipe (6 and 6 — narrow bars are spitted due to 
beam pipe). 
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Fig. 2—8 Scheme of the Forward Range Intermediate hodoscope. 
 
 The main purpose of the FRI is to measure the angle of neutrons by detecting 
the position of recoil protons. It also can improve the position information for charged 
tracks, and provide additional information for chance coincident separation, since it is 
extremely fast. At present the limiting factor for time resolution of FRI is the time 
resolution of TDCs. Unfortunately it was not included at trigger level, but it is proposed 
to do so for WASA at COSY. With better TDCs one can also think about Time Of Flight 
analysis at the base FWC—FRI, which is more than 1000 mm long. 
 

2.4.1.6 The Forward Veto Hodoscope (FVH) 
 The FVH [21] is the last but not the least part of the FD. It consists of 12 bars 
20 mm thick, 137 mm high and 1650 mm wide Fig. 2—9.  I t  is widely used to select 
punch-through particles at trigger level as well as for energy reconstruction. Due to the 
readout on both ends, one can determine both x a n d  y hit positions, improving the 
position of the track. 
 

 
Fig. 2—9 Schematic view of the Forward Veto Hodoscpoe, together with its support 
structure 
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2.4.2 The Central Detector (CD) 
 For the design of the CD there were hard requirements, which were difficult to 
fulfill. The main task is to measure both charged and neutral particles with high 
precision. To measure the charge one needs a magnetic field. The respective magnet can 
be placed before or behind the electromagnetic calorimeter. In the latter case the whole 
calorimeter is placed in the magnetic field, and therefore one can not use conventional 
photomultipliers, but photodiodes, like e.g., the CMS CERN collaboration. However the 
energy resolution of photodiodes is much worse than that of photomultipliers. So this 
solution was not acceptable. The other case is also not much better: if one places the 
magnet in front of the calorimeter, then one has much high-Z material in front — many 
photons will be converted before they would reach the calorimeter. An optimal solution 
was found for the WASA case — a thin wall superconducting solenoid. It allows on the 
one hand to place it before the electromagnetic calorimeter, and on the other hand it is 
thin, i.e. there is not so much material to convert photons. 
 The momentum of charged particles can be measured by a drift chamber (one 
can measure q,f at the vertex and the momentum by the curvature of the track in the 
magnetic field). Photons create clusters in the calorimeter and can thus be reconstructed 
(also q,f and Energy) as described in the following. 
 

2.4.2.1 The Mini Drift Chamber (MDC) 
 The MDC [22] is the first part of the CD. This cylindrical drift chamber 
consists of 17 layers of drift tubes (1738 tubes). It covers polar angles from 24° to 159°. 
The diameter of drift tubes varies: the first 5 layers have 4 mm; the next 6 layers have 
6 mm and the last 6 layers have a diameter of 8 mm. The tubes are made of Mylar foil 
coated with aluminum on the inner side. The layers are located at radii between 41 and 
203 mm. The tubes in nine layers are parallel to beam axis and in eight other skewed by a 
small angle (6°-9°) with respect to beam axis, Fig. 2—10. 
 The main purpose of the MDC is to provide vertex position, polar and azimuth 
angles at the vertex, as well as the momentum of charged particles. 
 

 
Fig. 2—10 Cut view of the MDC surrounded by the PS barrel (seen from the back side). 
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2.4.2.2 The Plastic Scintillator Barrel (PS) 
 The PS [22] is a cylindrical detector surrounding the MDC. It contains three 
independent parts: forward (PSF), central (PSC) and backward (PSB).Both PSF and PSB 
are divided into 48 straight sectors. The PSC is made of bars. Due to the pellet target 
tubes the top and the bottom bars are divided into two half’s, Fig. 2—11. 
 

 
Fig. 2—11 Plastic Scintillator barrel: left — forward part; middle — central; right — 
backward part 
 
 That is why the number of elements is not 48 but 50. The light from the PSC is 
read out from the back side (except for two elements). All three parts have been 
manufactured from the same 8 mm thick plastic scintillator. 
The main purpose of the PS is triggering (number of charged particles in CD). But it is 
also used for particle identification via dE-E and dE-P plots. Additionally it provide the 

time zero 0t  for the MDC. 

 

2.4.2.3 The Superconducting Solenoid (SCS) 
 The SCS is an ultra-thin walled superconducting solenoid. It is as thin as 0.18 
radiation lengths. The maximum available magnetic field is 1.3 T, but most of 
CELSIUS/WASA runs were performed with a magnetic field of 1 T. It has to be cooled 
down to 4.5° K by the helium refrigerator. The field is confined by the iron yoke, which 
provides magnetic field protection for the PMT’s of the Scintillating Electromagnetic 
Calorimeter. 
 

2.4.2.4 The Scintillating Electromagnetic Calorimeter 
(SE) 

 The most outer layer of the CD is the SE calorimeter [ 23].It has 3 parts: 
forward (SEF), central (SEC) and backward (SEB), Fig. 2—12. 
 In total it has 1012 Na doped CsI crystals. The crystals of each part are of 
different shape and size. 
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Fig. 2—12 The scheme of the Scintillating Electromagnetic calorimeter. From left to 
right: forward, central, backward parts — all marked by different colors. 
 
The main purpose of the SE is a precise energy determination for both charged and 
neutral particles, in particular for the latter ones, since for charged particles one can get a 
similar information from MDC. It is also used at the second level triggering, either to 
determine the number of clusters or for a total energy calculation. 
 

2.4.3 The Zero-degree detector 
 The Zero-degree detector is the smallest part of the CELSIUS/WASA detector 

setup. In our beam time it was used for tagging of 3He from the reaction hHe3®pd . 

Since the measurements were performed close to the h threshold, all 3He particles 
resulting from such a reaction emerge with angles below 2° in the lab frame and reach 
the ZD detector. 
 For the momentum selection one uses dipole magnets from the CELSIUS ring. 
Since 3He++ is much heavier and much slower compared to beam particles, it has a higher 
curvature in the magnetic field of dipoles, which allows to measure it in the germanium 

spectrometer. To increase the acceptance for hHe3®pd  tagging, one had to defocus 
the beam by quadrupoles. That is why the overall quality of the beam was a bit worse 
than it could have been. 
 A detailed description of the Zero-degree detector can be found in [24]. 
 

 
Fig. 2—13 The Zero-degree detector. 1 and 2 are germanium telescopes. 
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2.4.4 The Data Acquisition System (DAQ) and the 
Trigger system. 

 Since WASA is a very complicated detector, the data acquisition system is also 
complicated. One can find a detailed description in [25]. To get some impression of how 
it looks like one can examine Fig. 2—14 and Fig. 2—15. 
 

 
Fig. 2—14 Principal scheme of the Data Acquisition System 
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Fig. 2—15 Principal Scheme of the trigger system. 
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3 Analysis Tools 
 

3.1 Theoretical aspects of Neural Nets 
 Since quite a big part of the analysis is done via Neural Nets, the basic aspects 
as well as possible applications will be described in this chapter. 
 The study of Neural Nets started by the pioneering work of McCulloch and 
Pitts in 1940. Later on it was shown that any continuous function can be approximated 
arbitrarily close by Neural Net (universal approximation theorem). By translating from 
the mathematical language to a real one it means that any task can be solved by Neural 
Net with any desired accuracy. As usual, mathematicians proved that it is possible, but 
did not say anything on how to do it. Fortunately, since then a lot of works appeared on 
how to use it in reality. In this dissertation a possible way of applying it for Particle ID 
and Calibration purposes will be demonstrated. 
 

3.1.1 Neural Nets! Why and how. 
 Neural Networks, or Artificial Neural Networks have been motivated by the 
observation that the human brain computes in a different way compared to present day 
digital computers with von Neumann logic. The brain is a highly nonlinear and parallel 
computer. It can organize its constituents (neurons Fig. 3—1) in such a way that it allows 
to perform computational tasks many times faster than any existing digital computer. 
 

 
Fig. 3—1 Sketch of a real human neuron 
 
 In its most general form the neural net is a tool to model the way in which our 
brain performs some tasks. For our case the most important one is the following property 
of the neural net: it can learn an input-output mapping. 
 The artificial neuron, Fig. 3—2, is a primitive model of a real one, but it allows 
to design artificial neural nets and perform some computations. 
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Fig. 3—2 Most common view of an artificial neuron 
 

 In mathematical terms we may describe neurons as )(
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jx  are the inputs, jw are the weights of corresponding synapses and the f is the 

activation function and b plays the role of an offset. There are a lot of different possible 
activation functions described in the literature: step function, linear, sigmoid, hyperbolic 

tangents… In our case we use Sigmoida, i.e. 
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)( , see Fig. 3—3: 

 
Fig. 3—3 Sigmoid activation function 
 
 There are several architectures of neural nets. In this work we will use only 
Feed Forward neural nets, as shown in Fig. 3—4. 
 

 
Fig. 3—4 Typical view of a Feed Forward neural net 

                                                                 
a Since it is smooth, symmetric around 0 and finite, the NN based on such activation 
function can be taught easier as compared to many others. It also fits to our task. 
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 Feed forward means that a layer of neurons is connected only to the next layer 
of neurons. In such a design there are no loops and cycles. It is the simplest kind of NN, 
but for our case it is sufficient. 
 The topology (number of inputs, outputs and intermediate (hidden) layers) of a 
NN is designed for each task separately. The number of inputs and outputs are usually 
not a problem: put in all you have and get out what you want. But the decision about 
hidden layers is complicated. There is no prescription on how to choose the network 
topology, but there are some empirical rules which help sometimes: The number of 
hidden layers roughly corresponds to nonlinearities existent in your task — the more 
nonlinear the task, the more layers you need, but the more layers you take, the more 
difficult it is to train the NN. Basically with more than 3 layers most of the algorithms 
can not teach the NN reasonably well. The number of neurons in one layer is arbitrary, 
but usually it should not exceed the number of neurons in the previous layer more than 
twice plus one. Usually it works, although one of our NN does not obey such a rule. The 
reason for that will be described in Section3.2.3.1. 
 Another rule on how to try the appropriate number of neurons: not the number 
of neurons is essential, but the relations between layers, for example: odd-even-odd, or 
even-even-even. It is better to decide first which combination converges faster with few 
neurons (which is usually task dependent), and only then play with the number of 
neurons. 
 

3.2 Software packages 
 For the data analysis the CELSIUS/WASA Offline program [26] was used. It 
incorporates the full detector simulation (WMC — Wasa Monte Carlo) and track/event 
reconstruction routines (W4P — Wasa 4π) based on Fortran under Unix/Linux. 
 However the W4P package is used only for track finding and energy 
reconstruction, all later analysis is done by several C/C++ routines for the simplification 
of the analysis, and to make it faster. So after the W4P program all tracks as well as 
additional event information (event number, triggers, etc.) are stored in ntuples/ roota 
TTree’s for further processing. Unfortunately some features are not implemented in W4P 
code, so they are applied at later stages. 
 For Monte Carlo simulations, the standard ROOT Phase Space Generator was 
applied. All additional model corrections to Phase Space were done within ROOT 
framework. 
 

3.2.1 Ntuple Track Format (NTF). 
 The Ntuple Track Format was made to separate hit analysis and track 
processing from each day analysis. In this paradigm one should analyze events by W4P 
and store these tracks in track format (root TTree). Then later analysis can be started 
already from tracks and no longer from the detector information. So if you today analyze 

0ppppp ®  and tomorrow you want to analyze 00pppppp ® , then you can make it 
faster, because you will skip such time consuming parts as hit processing and track 

                                                                 
a root.cern.ch 
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finding. In addition you are always sure that the analysis is done with the same 
procedure, which is important, e.g., for deriving correct total cross-sections. 
 To see what type of analysis can be performed with this NTF one should look 
into its diagramatic description below. The idea of such a format is taken from the 
ALICE track format [27]. 
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 The number of tracks is variable. For forward tracks information from CD does 
not exist, for central ones the situation is opposite. Such reduced amount of information 
then allows all kind of high-level analysis. Due to its simplicity any analysis routines can 
be written by the programmer with knowledge of C/C++. It is also rather compact and 
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that is why the storage of data in such format is not very space consuming. The amount 
of required space varies from energy to energy: the higher the energy, the higher the 
multiplicity and the larger the event size. For the highest energies the average event size 
in the root file without zipping is 0.3kb/event. After further processing one adds 
additional branches to each track: mass M, kinetic energy kinE , momentum P  with 

MEE kin +=  and 4222 cMPE += . 

 

3.2.2 Event processing after W4P 
 Unfortunately, not everything is included in the W4P program. That is why one 
needs to make some corrections and recalculations afterwards. Some of them have a very 
simple reason: the particle ID by definition is not included in W4P, so all corrections, 
which can be performed only with known particle ID, are not yet carried out. 

3.2.3 Particle Identification 
 With WASA one can classify all possible tracks into four different track types:  
Forward Charged track: Charged particles going into the FD should give signals in the 
thin plastic scintillators (FWC FHD1-3). Additionally it is required to have a signal at 
least in the first layer of the FRH. 
Forward Neutral tracks: Neutral tracks (neutrons and photons) should not give a signal 
in thin plastics, but may create signals in the thick ones. 
Central Charged tracks: As in the forward part, central charged tracks should give a 
signal in thin plastic scintillators (PS). As a matter of fact they also should give a signal 
in the MDC, but since the MDC efficiency is about 75% only, some tracks may not have 
a MDC signal. 
Central Neutral tracks: Such tracks should not have a signal in MDC and PS, only in SE. 
 Let us consider the first type first. Actually all other particles are identified in a 
rather similar way. 
 

3.2.3.1 Forward Charged Particles 
 As we see from the description of the WASA detector Fig. 2—3 and particular 
its forward part description, Chapter2.4.1, there are only plastic scintillators available for 
the particle ID in the forward detector. Time of flight and momentum determinations via 
curvature in a magnetic field are not possible in the present design. So the only way to 
perform particle ID in the FD is via dE-dE plots, i.e. energy loss measurements in 
different layers of FD hodoscopes Fig. 3—5. But we have 11 layers of different plastic 

scintillators, which g i v e  n

nn

n CC -- 12  possible dE-dE plots ( i

jC  is the number of 

permutations from j by i). Since in our case n=11 we have 2024 plots. 
 The most common and simplest technique is to set boundaries (“bananas”) 
around each of such particle branches. In proton-proton runs we usually have 4 types of 
charged reaction products: e, π, p a n d  d. Each particle type needs upper and lower 
boundaries. Each boundary can be parameterized with 4 constants. So we have 

32424 =´´ constants per plot. Since calibration constants are not perfect, one needs to 
vary boundaries from run period to run period. Even if one does not use all 2024 dE-E 
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combinations, it is a tremendous amount of boring hand work. Hence at first a routine 
which finds such conditions automatically was developed, but it did not simplify things 
much. For example on some plots deuterons may look like deuterons, but on others like 
protons, because they easily may break up in the detector. In addition all the particles can 
undergo hadronic interactions, and deposit energies different from that expected by the 
Bethe-Bloch formula. 
 

 
 
Fig. 3—5 Typical dE-dE plot, here for the case FHD3 vs. FRH. The different bands 
marked by different colors are  ( from top to bottom) deuterons, protons, pions, 
electrons.(MC simulation) 
 
All these problems make the situation much more difficult, especially during the run 
period, when you need to judge immediately, whether the data collection is reasonably 
well within expectation. Hence it was decided to employ a neural net for that task, as a 
particularly reliable method  
 First we have to consider the topology. The number of inputs is not a problem: 
Energy deposition from all plastic forward layers (except of FRI and only yes/no signal 

from FVH) plus Q  angle. This means 10 inputs. The number of outputs is also not a 
problem: 4 — the probability to be deuteron, proton, pion, electrona. The number of 
hidden layers was chosen as one. Apparently it is enough. The final number of neurons in 
the hidden layer is chosen to be 525, Fig. 3—6. 
 

                                                                 
a At the time when it was decided to make such routine, pd or dd runs were not even 

considered. That is why 3He and 4He are not in the outputs. Fortunately they can be 

nicely separated even without neural net because of their double charge 
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Fig. 3—6 Neural  net for the particle identification of the forward going charged 
particles. 
 
 As one can see from the figure such a neural net does not obey a rule 
mentioned above. According to that rule the number of neurons in the intermediate layer 
should not exceed 21. 
 The reason for such deviation from the rule is following: the neural net was 
taught by the backpropagation of errors method. The number of teaching cycles (epochs) 
can be varied — the larger the number of epochs the lower the errors. But if the number 
of epochs gets too big, the network becomes overtaught and gives totally wrong results. 
However, the larger the NN, the more epochs one can train. So at some size an 
appropriate accuracy can be reached, before the NN becomes overtaught. 
 For this work the Neural Net package made by J.P. Ernenwein[28] was used. 
And the teaching was done using the MonteCarlo events. One should also mention 
despite the fact that the probability of each single particle to be a particle of certain type 
varies [0,1], the overall probability (sum of single probabilities) might exceed 1, or be 
smaller. It is clear that if one takes some “rubbish track”, then the probability to be a 
particle of any kind is 0, so the sum of all probabilities is also 0, and not 1. 
 As one of the results of the NN separation one can look at the Fig. 3—5. 
Different colors denote different particles according to NN. 
 

 
Fig. 3—7 NN probabilities: solid - probability of a deuteron to be identified as a 
deuteron; dashed — probability of a deuteron to be identified as a proton. 
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 From Fig. 3—7, which gives the probability for deuteron identification as an 
example, one can see that the NN mostly identified deuterons as deuterons. So if we set 
the following condition: the probability to be a deuteron should be more than 80% and 
probability to be any other particle should be less than 20%, than we would get 95% 
purity with 91% selection accuracy. Under that condition 9% of our particles would be 
unidentified, but among the identified ones there would be all deuterons with a 95% 
confidence level. By varying that condition one can vary the purity of the particle 
identifications (changing the efficiency at the same time). This is quite important for an 
estimation of systematics, which is hardly possible with the usual “banana cut” 
algorithm. 
 

3.2.3.2  Charged particles in Central Detector. 
 Following the procedure described in Chapter3.2.3.1 one can also construct a 
neural net for the particle ID in the central detector. Fortunately here we have only 3 
different layers — MDC, PS, SE. That is why it is not so important to have such a 
procedure for CD — separation can be easily done by hand. Nevertheless a NN was 
worked out for this case, too. As before there are 3 inputs, 325 neurons in the hidden 
layer and 4 outputs. The result can be seen on  Fig. 3—8 displaying data from the run 
mar05. 
 

 
Fig. 3—8 Momentum from MDC vs dE in SE. Different colors are different particle types 
according to NN: blue are protons, red are pions. 
 
 Pions and protons are separated reasonably well. But one can also see that this 
should not be a problem for separation by hand. 
 

3.2.3.3 Neutral particles in Forward Detector. 
 In the experiments at WASA we can have two kinds of neutral particlesa — 
photons and neutrons. The probability to measure neutrons can roughly be estimated as 
1% per centimeter of plastic material. The probability to measure photons in the FD was 
estimated by [29] as 30-50%, depending on energies and selection conditions. So both 
neutrons and photons have a probability of about 30% to interact with the FD and being 
                                                                 
a Neutrals are particles without hits in thin scintillators Chapter3.2.3. 
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selected as neutrals. On the one hand this is a rather small number, on the other hand one 
can think on how to separate such neutrals between each other. 
 Since photons create electromagnetic showers in the FD, whereas neutrons 
produce proton recoils, it should be possible to separate them by analyzing the dE plots. 
It was also done by NN, but was not tested so far, in contrast to the two previous cases 
(Charged FD and Charged CD). 
 

3.2.3.4 Neutral particles in Central Detector. 
 The dominant part of neutral particles in the CD is photons. Only a small part 
of neutrons can reach the CD at such large angles (>20°). And only a tiny fraction of 
them give a signal. It is not possible to distinguish them from photons by dE analysis. 
There was a successful attempt by M.Jacewicz to build a NN for such a type of 
separation based on cluster size/shape, but I am not aware of any applications, since 
reactions with neutrons in the CD are not of current interest of WASA collaboration. 
 

3.2.4 Angle correction for forward tracks 
 The angle of forward going particles is measured far from the vertex. Since 
part of the track lies in the magnetic field of the solenoid, one must correct for this effect. 
 In a uniform magnetic field charged particles travel along helices. For forward 
going particles part of the track, which lies in the magnetic field, will be a helix and 
another part will be a straight line. Let us assume that inside the solenoid the magnetic 
field is constant and uniform and outside it is exactly 0, Fig. 3—9. 
 

 
Fig. 3—9 Behavior of charged particles in the magnetic field. Two-pion production in pp 
collisions. Positively and negatively charged particles turn in different directions 
 
Under such assumptions one can easily derive the formulaa: 
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where f ¢  is the correction angle for the azimuthal angle in radians, z the charge of the 

particle in units of electron charge, B the magnetic field in Tesla, P the momentum of the 

                                                                 
a For full derivation see Appendix A 
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particle in GeV, Q  the polar angle and l the distance in the field, see Fig. 3—9, 
measured in meters. One can make a cross-check of this formula — if the magnetic field 
is zero, then the correction angle is zero, too. Finally the validity of this formula has been 

verified by analyzing the reaction +® pdpp  at MeV 400=pT . 

 

3.2.5 Angle correction for Central tracks 
 Usually the angular correction for charged tracks in CD is not needed, because 
MDC reconstructs angles at the vertex. However some times we can have a magnetic 
field together with the MDC being switched off. For such cases one may need a 
correction formula. Since for particles in CD the full track lies in the magnetic field, the 
formula will be slightly different. 
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where r is the inner radius of the magnet in meters; all other quantities are the same as 
above. 
 

3.2.6 Edep ® Ekin for forward going deuterons 
 There are corrections, which can not be done before the particle identification. 
Since we make the particle ID outside the W4P program, all related corrections have to 

be done outside, too. One of them is kindep EE ® , i.e., the reconstruction of the kinetic 

energy of a particle from the energy deposited in the detector, depE : due to quenching 

effects and dead, i.e., passive detector material, such corrections are different for 
different particles. Initially all particles are assumed to be protons, the appropriate 
correction is done already in W4P and stored in NTF. But for deuterons it needs to be 
redonea. 
 It turned out to be useful to parameterize particles stopped in different planes 
separately, in order to decrease the errors. One of the possible parameterizations is 
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Fig. 3—10 depkin EE /  vs .  depE  for deuterons. The Lower “banana” displays stopping 

particles, the upper ones are punch-throughs. The plot shows MC events for one 
particular angular bin. 
                                                                 
a For pions quenching corrections are tiny. 
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where depE  denotes the deposited energy in GeV and Q  is the polar angle in radians;1—

4 are calibration coefficients, different for different stopping layers of FRH. The 
following table gives the appropriate parameters for deuterons: 
 
Table 3.2.3.4-1 Calibration constants for deuterons in the FD. 

Stopping 
plane: 

1 2 3 4 Punch 
through 

A1 2.0323 0.4685 0.7688 9.1301   11.8193 

A2 -67.219 -15.990 -14.520 -45.440 -78.5049 

A3   0.2199 -1.5828 -1.9609 -0.7163   3.5886 

A4 -9.1901 -0.5497   0.2067 -2.9332 -15.445 

A5   1.3763 27.149   30.597   7.1107 1.96028 

A6 -120.31 -214.32 -156.12 -36.207 -12.2744 

A7 -0.9260 -1.4222 -2.6355 -17.243  

A8 -18.534 -12.996 -7.0474   37.461  
 
 The constants have been obtained by MC simulations and verified by data for 

the +® pdpp  reaction at MeV 640=pT . Since this is a binary reaction, we can 

reconstruct the energy of a deuteron by its known angle and compare it with our energy 

calculation. It agrees reasonably well — 0017.0»
-

calc

calcreconst

E

EE
 — about 4%FWHM for 

stopping deuterons. 
 

3.2.7 Edep ® Ekin for forward going 3He particles 
 The effects of dead material and quenching are very strong for helium, since it 
is a heavy double-charged particle. It is also a question how well MC can describe such 
effects. Therefore it was decided to extract such parameters from real data. For our run 

period we have a very nice reference reaction, namely 03 Hep®pd . It covers even a 
larger dynamical range than two-pion production, therefore it is well suited for our 
purposes. But before one should correct for f  nonuniformities: since the calibration 

constants achieved are based on protons, high order nonuniformity parameters can be 
slightly wrong. On Fig. 3—11 on the left side, we see that the maximum energy 
deposition is different for different elements, which should not be true in reality.  
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Fig. 3—11 Energy deposited by the 3He particles in FRH1 v.s f  for half of the detector. 
Before (left) and after (right) corrections. (for more information see text) 
 
 Broad bands in Fig. 3—11 correspond to elements in the FWC, each of these 

elements in f contains two elements of the FRH1, clearly seen on the left. We can 

correct for a mismatch by a linear function: depdep EkE ×=¢  (see Fig. 3—11 (right) ). 

 If we make all of our elements respond in a similar way, we can make the 

kindep EE ® corrections. As described before we can do it based on single pion 

production. 
 

 
Fig. 3—12 Ekin vs Edep plot for 03Hep®pd  events together with the fit curve. 
 
 For this purpose the function 

3

1

2

11 07.1911270.0214.0 FRHFRHFRHkin EEEE ×-×+×-= , [GeV] 

is used for particles stopped in the first plane and 

2

3

1

2

11 07.1911270.0214.0 FRHFRHFRHFRHkin EEEEE +×-×+×-= , [GeV] for particles 

stopped in the second plane. At our energy ( MeV 895=pT ) helium particles do not 

penetrate further. 
 To check the result of such a correction we look on the missing mass of 3He in 

the 03 Hep®pd , Fig. 3—13, where the spectra before and after correction are compared.  

Also the gg invariant mass distribution is shown to compare the resolution. 
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Fig. 3—13 

He3MM  before corrections(top). 
He3MM  after correction (bottom). ggM  

(middle) 

ggM  

He3MM  

He3MM  
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3.2.8 Edep ® Ekin for charged pions in the CD 
 In principle one should determine the energy of charged particles in the central 
detector b y  using the momentum achieved from the MDC. But sometimes it may be 
necessary to know the energy of pions from the SE (if the MDC is not working, or there 
is no signal from the MDC). Then one has to apply corrections due to the substantial 
amount of dead material in front of the calorimeter (magnet, PS, MDC). Again one can 
get such corrections from MC simulations. In the case of positively charged pions one 
will get the following picture Fig. 3—14. 
 One can see that for pions with energy more than 70 MeV such corrections are 
small. The decrease of the correction spectra on the left and right sides tells us that the 
angular size of the magnet is smaller than the angular size of the central detector. If pions 
do not have to pass through the magnet material, than such corrections are negligible at 
all energies. 
 

 
Fig. 3—14 Corrections for dead material for charged pions in the central detector. 
 
 The quenching effects for pions are also tiny, so one can also neglect them. 
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3.3 Automatic calibration procedure with the 
neural net 

 Unfortunately this part was done much later than the whole analysis, otherwise 
it would have helped a lot. Nevertheless it makes sense to mention this work from both a 
methodological and an experimental point of view. It shows the achievable experimental 
resolution and the further way of simplifying the analysis. 
 The standard calibration procedure applied in this thesis is well described in 
[30]. It usually proceeds in the following way. Some “guru” sits in front of the computer 
and looks onto the dE-E plot for one special element. Then he/she selects some areas in 
that plot, the computer extracts the coordinates of these areas and makes a fit with “guru 
predefined function”. And this procedure is repeated for all 216 elements of the forward 
detector. There is an advantage of that procedure is that the “guru” can make the 
calibration extremely well, due to his or her h igh experience. But there are certain 
disadvantages: “gurus” are rare and during the experimental run they have a lot of much 
more important duties. The calibration is “guru” mood dependent — depending on the 
mood the “guru” can select areas more or less precisely. All elements will then be 
calibrated slightly differently, because a person can not do this 100% precise, and it is too 
many elements to be tied. Since all “gurus” are busy with other things, the calibration 
constants are updated once in half a year which is much too rare for extreme precision. 
Also the “guru” may not be interested in that run period paying less attention to 
calibration or it may be another “guru”. But this actually was a minor problem. There is a 
basic problem, which prevents such a type of calibration procedure to reach ultimately 
high precision: 

· Calibration is done on a statistical basis. Within some errors fit can draw a 
curve everywhere, but there is only one optimal place.  

· All elements in φ use the same fitting function, but the properties of elements 
could be very different, requiring thus different curves. 

· The properties of elements can change with time — hence the fitting function 
also should be changed and the calibration constants will be different; there 
will be several types of calibration constants, not compatible for different run 
periods. 

 Since this calibration quality is variable, all precise algorithms relying on it will 
fail or at least one would need to spend some time to verify them in a new calibration 
reality. As an example, one in principle needs to check “banana” boundaries in each run 
period, and not make it once and forever. 
 That is why there was a great desire to make a precise “guru”-independent 
calibration procedure providing stable repeatable results for each run period. The greatest 
wish was to make it on a event-by-event basis and take into account all disadvantages of 
the “guru’s” method mentioned above. 
 As a matter of fact such a procedure was written. It gives extremely nice results 
— much better than the present calibration, which is extremely important for the FHD, 
where the process of aging goes so far that it is barely usable. 
 So in this chapter such an automatic calibration procedure based on a neural net 
will be described. 
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3.3.1 Selection of the data for the calibration. 
 The selection of appropriate data is the first step in all calibration procedures. 
The best thing would be to use some software package, where one has access both to 
event track information and to hit information. Unfortunately it is not possible right now. 
So the CWlib package was chosen, because of its transparency for an external user. One 
can easily access all hit information in it. Also, in this step simple tracking is done, just 
by overlap of the elements. And the polar angle is calculated by overlap of FHD1-FHD2 
elements. That is why all “tracks” are required to have signals in all FHD planes and at 
least in FRH1. For simplicity only events with one charged particle in the FD were 
selected. The extracted hits information (ADC) and angle of “tracks” are written into root 
TTree (modern type of hbook ntuples). Starting from this step everybody can use this 
information, since it is standard. 
 The next step is to select desired events from the whole amount of one-track 
events. And this is the most difficult part in the calibration procedure. Since the elements 
are not yet calibrated, you do not see bananasa to select areas — to see ”bananas” you 
need some calibration constants — but if you have calibration constants, you do not need 
to calibrate. In addition the gain factor can be very different, so one does not know ad 
hoc what the range of ADC values will be. 
 This problem is solved in several steps: The FRH has much smaller 
nonuniformities and much less nonlinearities than the FHD. So it is a good idea to 
calibrate the FRH first. 
Step one: How to get nonuniformities for all elements of the FRH in a man independent 
way. 
Solution: First one selects punch-through particles (particles which pass through the 

whole forward detector). They are supposed to deposit 2 MeV per 2g/cm  — 
corresponding to minimum ionization. And if all of our elements would be uniform, then 
the energy deposition of such type of particles should be roughly constantb for all angles, 
but it is not, Fig. 3—15. Since it is just a single band, it can be easily fitted by computer 
and all elements in all 4 FRH planes can be corrected accordingly. 
 

 
Fig. 3—15 Nonuniformity. ADC vs. Theta for one element of FRH1 for minimum ionizing 
particles. 

                                                                 
a ∆E-E hyperbolas, called “bananas”. 
b The difference due to different thickness of material at different flight paths is below 
3% compared to nonuniformities which can reach 2500% 
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One can see in Fig. 3—16 that after such corrections one can see the particle bands much 
better than before. After such a correction has been carried out we can start to think about 
the selection of some point for calibration. 
 

 
Fig. 3—16 d E -dE plot, FRH1 vs. FRH2 for one element. Before nonuniformity 
corrections (left), and after step one(right) 
 
Step two: which events can we use for calibration? It is required that these points 
(regions occupied by events at dE-E plot) should be easy to find by computer and be gain 
independent. 
Solution: On Fig. 3—17 one can see several points, which can be used for calibration 
and can be found by the computer in a gain independent way. 
 

 
Fig. 3—17 Gain independent points for FRH1 calibration. 1) minimum ionizing; 2) 
stopped in FRH4 and depositing in FRH4 the same amount as minimum ionizing (MI); 3) 
stopped in FRH3 and deposited in FRH3 the same amount as MI; 4) stopped in FRH2 
and deposited in FRH2 the same amount as MI 5) Helium stopped in FRH2 and 
deposited in FRH2 the same amount as MI., see sketch at the left. 
 
 So we have now 5 solid points, which we can use for FRH1 calibration. 
Unfortunately all 3He particles stop either in the first or in the second plane, that is why 
the large distance between the 4th and 5th calibration points can not be covered. As a 

matter of fact there are too many points at small depE , so we can skip point number 2. 

Step three: How to prepare a training sample? 
Solution: The quality of the training sample is extremely important for neural nets. The 
question if you solve your task with the neural net or not, depends on the quality of the 
training sample at least to 70%. In our case we can not just put calibration points Fig. 3—
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17 into the neural net. We have to  inform the program, how our data behave between 
these points. To do so, we prepare a fit. For each of the points we know the value for 

ADC, Q , and expected deposited energy (from MC). So we produce a fit with the 
function: 
 

)()( 21 Q×= fADCfEdep , 

 

where 1f  and 2f  are third order polynomial functions. 

If we were satisfied with a “guru-like” calibration, then we could stop at this stage. But 

we want to do better. That is why we take a depE  fitted function and simulate events over 

the whole possible range of ADC and Q . And add this simulated example to the real 
selected points in proportion 1:1 — one simulated event per one real. This helps to avoid 
misunderstandings between programmer and neural net. 
Step four:  What topology to choose for such a neural net? 
Solution: We have several constraints on the topology of such a neural net. For sure we 

know how many inputs we want (2 — ADC, Q ) and how many outputs (1 — depE ), but 

how many hidden layers should we take, or how many neurons should be in such layers? 
Since we want to have the same topology for all our detector elements of all our 
detectors, we need to decide, what topology would be enough to calibrate the most 
complicated (in calibration) detector (FHD). By trial and error it was found that a 
topology with 3 hidden layers, Fig. 3—18, and 8:16:4 neurons works remarkably well. 
Step five: Training. 
Solution. It was found that it is enough to make only 500 training epochs to reach good 
results, which is very small. The training sample is about 10000 events per element (half 
of them are simulated), so it takes 15-20 minutes per element on a usual computer — 
very little compared to hundred thousands of events in training examples for the particle 
ID and thousand training epochs there (few weeks of training). The calibration is fast and 
easy and can be easily done in one night. 
 

 
Fig. 3—18 Topology of the Neural Net used for calibration. 
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Step 6: Calibration of the FHD. 
Solution. The calibration of the FHD essentially is the same as of the FRH1, but much 
more complicated even for straight elements: the nonuniformities can reach a factor of 20 
(if one would plot Fig. 3—15 for the FHD then for some elements the right side of the 
band can be 20 times higher than the left one.). The PMTs turn out to be highly nonlinear 
and the aging effect is enormous (after the transportation of the WASA detector to 
COSY, one of the elements was opened up — it was brown and full of cracks — far from 
the situation a usual plastic scintillator should look like.). All of these problems make the 
calibration of the FHD much more complicated, because every small error if magnified 
by nonuniformity can become huge. In fact nonuniformity parametersa vary from 1 to 30 
for different elements, in addition the functions of such nonuniform responses are 
different. The microcracks together with nonlinearities of PMT’s make nonuniformities 
energy dependent. So one can not use the trick like Step one for FRH1. 
The main task for the nonuniformities of FHD is to separate deuteron and proton 
“bananas”, that is why we take point number 5 from Fig. 3—17 to extract 
nonuniformities, which is roughly in the same energy region. 

Step seven — Get nonuniformity parameters for FHD like in Step one, but use He3 . 
Step eight: Select points of calibration. 
Solution: Since the functional behavior of the FHD is much more complicated we need 
more points for the calibration —7, Fig. 3—19. Since the FRH1 is already calibrated at 
this stage, selecting the range of points becomes easier here, which compensates the 
difficulty of separating the different bananas along the FHD axis. 
All later steps for all layers of FHD are exactly the same as for FRH1. 
 

 
Fig. 3—19 MC plot FHD3 vs. FRH1 with calibration points. From top to bottom: 3He , 
deuteron and proton bands. 
 
Step last: Results. 
The result of such a complicated procedure is shown in Fig. 3—20 which is similar to 
Fig. 3—19, but for real data. 
 

                                                                 
a Ratio between light output from a point close to photomultiplier to the farthest point of 
the element for the same source (in our case for minimum ionizing particles) 
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Fig. 3—20 d E —dE plot after NN calibration, all elements together. Left — FHD3 
(straight element); Right — FHD1 (curved element) 
 
 One can see that the real data look very similar to MC. And even for curved 
elements (FRH1, FRH2) one can see (or at least imagine) different “bananas”. To plot all 
elements together in one plot is to show the advantages of the NN calibration: since for 
conventional fitting the calibration of the position of “bananas” is not fixed within error, 
“bananas” from different elements have slightly different positions, at best distributed by 
Gaussians around the true value. Therefore if one plots all elements together, ambiguities 
smear the “good” calibration of each single element. 
 In contrast, the “bananas position” after the NN is really fixed. In reality, our 
present non NN calibration for FHD3 looks more like NN calibration of FHD1 (Fig. 4—3 
vs. Fig. 3—20), much worse compared to a NN calibration. 
 

3.4 Outlook 
 From the previous chapters one can see that usage of Neural Nets can simplify 
the analysis substantially. Since the WASA detector is presently getting updated, after its 
move to COSY, we may consider what we can improve by use of neural nets. There is 
one thing worth mentioning: Neural nets can be not only software implemented, but also 
in hardware. Actually hardware neural nets are much faster, so fast that they can be used 
at trigger level. So let us imagine the future system Fig. 3—21. 
 If we look at Fig. 3—21 then one can see several components. The first one 
(from the left) relates to the FHD — the system which can determine Q and f angles of 

the tracks, just by overlap of elements. For this one does not really need any complicated 
calculation, but only element numbers and some mapping. 
Then at the next step, by knowing Q  angle and ADC we can calculate the deposited 
energy for each element as described in Chapter3.3. To make this possible we should 
connect a small neural net to each element. After this stage we would know already quite 
a lot — angles of each track and deposited energies in each plane. But we can go further 
— as described in Chapter3.2.3 this is the complete information we need to make a 
particle ID. 
 So if we were to construct a hardware NN similar to Fig. 3—6, then already on 
trigger level we would know quite a lot. We can go even further — knowing the 
deposited energies and particle ID we can calculate the kinetic energy for each track. And 
if we came to this stage then we would know everything about our reaction, i.e., the four-
momentum vector for each particle. 
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Fig. 3—21 Sketch view of an ideal system based on neural nets. 
 
Then there are two possibilities: 

1. We can make a missing mass trigger, e.g. for η  tagging. In the hpppp ®  
reaction we usually have two protons in the FD, and usually all the rest (the 
decay products of η )  in the CD. If we construct a trigger condition — two 
charged particles going forward — then we have a high background from 
multi-pion production, so we need either to make a constraint on decay 
channels — which is unfavorable because we would have a trigger dependent 
efficiency in the decay branchings — or we apply a missing mass condition on 
two protons suppressing then multi-pion production without suppressing η ’s. 

2. Another possibility is to make a likelihood analysis based on neural nets as e.g. 
Fermilab does for the top quark reconstruction [ 31] .  O r  as it is done in 
MultiLayerPerceptron ROOT test example for Higgs selections [32]. 
For each given beam energy one can build a network which would provide the 
probability for a particular reaction for each single event. E.g. for each event 
one can get something like that: two-pion production with probability 1%, 
three-pion production with probability 10% and eta production with probability 
89%. 

 One can in principle combine the first and the second case. Actually the second 
case is much more profound, but difficult. But since experiments are always performed at 
very few different energies, it should not be a problem to build a neural network for 
extracting reactions. 
Actually even if it would not be realized at the trigger level, the NN can be realized in the 
offline analysis and can simplify a lot to make it much faster. 
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4 Analysis 
 In this chapter all steps will be described that were done to select, reconstruct, 

fit, and correct Xpd He3® reactions. For the analysis the March2005 data sample was 
chosen because of predictable trigger efficiency, large statistics and workable pellet and 
beam conditions. The analysis was done based on run numbers 42,43,44,45,46,52,53 — 

24 million events in total, which leads to 116268 XHe3 events. The trigger condition was 
favorable for performing an unbiased analysis with respect to charged and uncharged 
pion channels. It requires one hit in the FWC, one hit in FHD3 (overlapping with FWC) 
and one hit in the FRH1. In addition there was a high threshold on the FWC, in order to 

suppress other (proton or deuteron) events. Previous pd runs had additional threshold 

conditions for the FHD3 and a veto for the FRH2. Both these conditions appeared to be 
bad. The veto condition cuts some part of data (it implies that 3He should be below 
0.55 GeV); the threshold FHD3 condition suffers from the high nonuniformities in FHD. 
Hence the selected run period had optimal trigger conditions for 3He physics.  
All systems were working reasonably well with a beam cycle of 180 s, a flat top intensity 
of 50-150 s, an average beam current 1.5-2.1 mA and a solenoid magnetic field of 1 T. 

4.1 Kinematics of pd ® 3HeX reactions 
 Before starting the description of the analysis, even before starting 
measurements, one should understand how well one can measure these reactions. Since 
these reactions are based on a reliable 3He information, we are first of all interested in the 

kinematics of 3He in the reactions of interest here, i.e. 03Hep®pd , ppHe3 , pppHe3  

and hHe3 , as shown in Fig. 4—1 for the relation between He3  lab energy 
He3E  and lab 

angle 
He3Q . 

 
Fig. 4—1 Kinematics of 3He lab energy 

He3E  versus lab angle 
He3Q for the most 

probable 3He reactions at GeV 895.0=pT : 03 Hep  (top left), ppHe3  ( t o p  

right), pppHe3  (bottom left), hHe3  (bottom right) 
 
 Note that for 3-body reactions this relation gives an allowed region rather than 
a line as in the case of two-body reactions. The density of points in the continuum of the 
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allowed region depends on the dynamics of the reaction. For Fig. 4—1 pure phase space 

has been assumed. The Q-E  information from 3He is sufficient for obtaining mass and 

CMS angle of the system X in Xpd He3® reactions. 
 Looking at Fig. 4—2, which compares these kinematics with the FD 

acceptance, one can see that for 03Hep  we cover only a small part of the full phase 

space, for ppHe3  we cover about 80% and for pppHe3  we cover nearly 100%. Actually 
the situation is even better. According to [6] the ABC effect should be forward-backward 

symmetric in the CMS. In this case it would be sufficient to measure only 2/
He3 p<QCMS , 

i.e., a region, which we cover nearly completely. This allows making model independent 
efficiency and acceptance corrections. 
 

 
Fig. 4—2 The left plot is the overlap of the 4 plots from Fig. 4—1 (here red is single p 
production, green - pp, blue - ppp and yellow is h production). Dashed-dotted lines 
show the acceptance of the FD. Right: kinematics decomposition for 3He lab energy and 

lab angle (with CMS 4/p , 2/p  and 4/3p angles of 3He indicated by dotted lines) as 
well as XM  . Solid lines denote constM X =  in rainbow order — 0.0 Gev, 0.1GeV, 

0.2GeV, 0.3GeV, 0.4GeV, 0.5 GeV 
 

4.2 Selection of the pd ® 3HeX reactions 
 As mentioned in Chapter3.2.3 the analysis of these reactions was done prior to 
the recent development of the neural net. But due to their double charge 3He particles 
deposit a much larger energy per unit of length than single-charged particles do. And 
most of 3He particles stop in FRH1. So we have only one appropriate dE-E plot, namely 
FHD3-FRH1. 
 As one can see from Fig. 4—3 the 3He band is nicely separated from those for 
protons and deuterons. We also can see that the additional condition of accompanying 
pions cleans the spectrum substantially. Actually it is putting the cart before the horse, 
since we did not describe yet how to select pions, but it is good to see those plots next to 
each other for comparison. Pion selection will be described later. 
 Since the 3He ”banana” is well separated and there is practically no admixture 
from other bands, we can apply the conventional “banana” cut 
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)76.00.5exp()61.195.4exp( 113 FRHFRHFHD EEE ×--+×--> a without worrying about 

additional background. 
 

 
Fig. 4—3 Left: dE-E plot FHD3 vs. FRH1 (FRH1+FRH2) — both axis denote deposited 

energies. Right: the same plot but with requirements 00pp  or  -+pp  i n  the CD. The 
z-axis is logarithmic for both plots. One should also take into account that we take only 

He3  with deposited energy more than 0.1 GeV due to our 2/
He3 p<QCMS  cut, Section4.1 

 

 After selection of He3  we can make all energy corrections described in 

Chapter3.2.7 and immediately make a cut 2

HeHe 33 35.029.0 Q×+>kinE b which corresponds 

to the 2/
He3 p<QCMS  cut. The situation at this stage is depicted in Fig. 4—4. 

 

 
Fig. 4—4 Left: dE-E plot after He3  selection and application of corrections and cuts. 

Right: 2

He3MM  for the events shown in the left figure. Since the acceptance is close to 

100% and the efficiency is roughly constant., the spectrum is close to a final one. One 
can see well separated regions of single and double pion production 
 
 Another important figure, which already can provide some insight into the 

dynamics of the Xpd He3® reactions, is the Q-E  plot in Fig. 4—5, which is similar 
to Fig. 4—2, but now for real data. 
 

                                                                 
a Energies are in GeV 
b Energy is in GeV, angle is in radian 
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Fig. 4—5 3D and contour plots of lab angle lab

He3Q  versus lab energy lab

He3T  for particles 

measured in FD. The dash-dotted lines are for °°°°=Q 90 ,5.67 ,45 ,5.22
He3

lab . The dashed 

lines indicate the contours of missing masses 5.0 ,4.0 ,27.0 ,135.0
He3 =MM GeV (from 

Ref. [43]). 
 
 By comparing with Fig. 4—1, Fig. 4—2 and Fig. 4—4 one can clearly see the 
single pion production to be well separated from the two-pion production, which shows 
an impressive enhancement close to ππ threshold — the ABC effect. 
 Already at this very early stage of analysis we can plot figures, see Fig. 4—6, 
similar to (Fig. 1—1), from the literature [2], [3],[6]. 
 One can see that at this stage our data look compatible with previous 
measurements. Unfortunately nearly all previous experiments had to stop at this stage of 
analysis, lacking further experimental information. However, we can go on and select 

explicitly 00pp , -+pp  and 0p  channels and study all exclusive spectra. 
 

 
Fig. 4—6 He3  momentum spectrum for the angular bin °<Q<° 87

He3

lab (not corrected for 

detector efficiency). The data points represent the inclusively measured spectrum for 
comparison with Saclay data [6]. The shaded area normalized to touch the data as in [6] 
shows phase space passed through the simulated detector (GEANT), and reconstructed 
afterwards 
 

4.2.1 Single and double π0 selection. 
 Single and double 0p channels are selected in roughly the same way. Actually 

the requirement of the presence of He3  in the FD removes a lot of background. Since 
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0p  decays into two photons we need to ask for two neutral particles in the  C D , 

(Chapter3.2.3.4) in addition to the requirement of He3  particles in the FD in order to 

select the 03Hep®pd reaction. In reality we can have more than two photons, because 
we have a rather high photon background. Fortunately this background consists mostly of 
photons with little enegry. So usually we require not exactly two photons, but two or 
more photons. 
 In order to clean up our spectrum even more we can set the additional 

condition: 22

He

2 06.0)135.0GeV/()135.0GeV/( 3 <-+- MMM gg  meaning t h a t  ggM  

and 
He3MM  should be roughly the same and should not deviate too much from the 

expected value. After this selection we arrive at Fig. 4—7. 
 

 
Fig. 4—7 Invariant mass of two photons to select reaction 03Hep®pd  , fitted with a 

Gaussian (FWHM »  20MeV). 

 The selection of 00pp  events proceeds in the same way. First we require 

“good He3 ” particles and thereafter four and more photons in the CD. In addition one 

needs to combine 4 gammas into two 0p  correctly. To do this we use the circular 

requirement: min)135.0/()135.0/( 22

4321
=-+- GeVMGeVM gggg  for the proper 

combination. All in all there are three possible combinations. By calculating the 
expression above we choose the most appropriate one. In addition we require that for the 

best combination we should have 222 05.0)135.0/()135.0/(
4321

<-+- GeVMGeVM gggg  

in order to select 00pp  events cleanly, see Fig. 4—8. 
 

 
Fig. 4—8 

21ggM   vs. 
43ggM  for the best combinations of photons, according to 

description above. Tails are cut away by a circular cut. 
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4.2.2 π+π- selection. 
 The selection of charged particles in the CD is much more difficult than that 
for the neutrals. For neutrals the condition is simple — cluster in the SE. For charged 
particles there could be several different types of tracks: PS—SE; MDC—PS; MDC—
PS—SE. We can not require for all tracks to have a signal in all three layers (MDC—
PS—SE), because on the one hand, the efficiency of the MDC in the forward part of CD 
is small [22] due to its construction. And on the other hand, the particles, which fly to 
large angles, usually have a rather small energy — not enough to reach the SE. So if we 
would impose for all charge tracks a three-layer condition, then we would have a 
complicated angular-energy dependent efficiency. And it would not be easily possible to 
correct data in a model independent way. Even more importantly, the average single 
track efficiency of the MDC is about 75-80%. Asking for two charged tracks with a 
MDC signal reduces the event sample by a factor of two. That is why it was chosen to 
use any charged tracks among the three possibilities described above, but at least one 
track should have a signal in MDC to deduce the charge decomposition of pions. This 
gives an overall efficiency of about 94% ( 9375.025.025.01 =×-  — only events without 
MDC information for both tracks are rejected). Fortunately we do not need a particle 

identification for such a case, because if we have He3  in the forward detector and two 
charged particles in the central detector, than these could be only pions (actually they 

also could be electrons from 0p  Dalitz decay, but the cross section for single 0p  

production is an order of magnitude smaller than for -+pp  production, and the 

branching -+® eegp 0  is only 1.2%, which gives a contribution of such admixture at the 
sub per mill level). For verification, we can look at the P-E plot for charged particles 

after He3  selection shown in (Fig. 4—9). 
 

 
Fig. 4—9 Momentum from MDC versus energy deposited in the SE for charged particles 

(MDC-PS-SE) after He3  s e lection in FD. N egative momenta P are for negatively 
charged particles 
 
 One can compare Fig. 3—8 with Fig. 4—9. It is clear that protons, present in 
the first picture absolutely disappeared in the latter. One may wonder about the small 
asymmetry between positively and negatively charged pions in Fig. 4—9, but this 

difference comes from the fact that -p form pionic atoms when stopping. 
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4.3 Kinematical fit (Kfit) 
 The kinematical fit procedure is based on the Lagrange multipliers method 
introduced by Joseph-Louis-Lagrange in his “Théorie des Fonctions Analytiques” 
(1797). The application of the method for physics purposes can be found in [33]. Details 
of the algorithm which we use are described in [34]. So why do we need a kinematical fit 
at all? The reasons are uncertainties: all quantities which we measure (angles, energies) 
have uncertainties, but yet the derived kinematical quantities should obey energy and 
momentum conservation. Therefore we can vary a bit all our quantities within errors, to 
obey these laws, and thereby increase the accuracy of the data. Also background events 
can be further filtered out this way. 
 In order to use the kinematical fit, we need to settle the expected errors for each 
quantity. The absolute error is not that important, but the relations between different 
errors are. So if we would take real errors and increase them by factor of two — nothing 
will happen and the results of the kinematical fit would be roughly the same. But if we 
would increase only one error (for example only the error for the angles of pions), than 
we can get some weird results. 

 In our case we used the following errors: 15
He3 =DE  MeV (in principle the 

error should be energy dependent, but in our case we have a small range of He3  

energies, that is why the error is roughly constant.); %7/ =D gg EE ; %7/ 00 =D
pp

EE , 

bu t  the  error can not be less than 10 MeV, if it is less, it is set to 

10 MeV; %7/ =D ±± pp
EE , but not less than 15 MeV, the reason is described in 

Chapter3.2.8. The angular errors are as follows: °2.0 for forward going particles and 

°5 for particles in CD. 
 The Kfit routine implemented in the WASA software proceeds in an iterative 
way and stops, if the conservation laws are fulfilled within 0.5 MeV or if the fit has 

divergeda. As a result of the fit one has corrected values of energies and angles and 2c . 

So one needs to make a cut on 2c . In our case we accept all events with 22 <c b, which 

does not cut away too much: for -+® ppHe3pd  after all cuts but before Kfit we have 

5796 events, after KFit and the 2c  cut still 5532 events remain. For 003He pp®pd  we 
have 8209 events before and 6331 events after Kfit. The stronger suppression in the case 
of neutral pions comes from larger number of constrain, as described below. 

 We also use some trick for the case of 003He pp®pd : for -+® ppHe3pd  
one can make a kinematical fit with four overconstraints. For neutral pions we measure 
photons, so we have the two additional constraints that the photons must combine to 
neutral pions. However we did it in a slightly different way. First we fit the reaction 

                                                                 
a If Kfit is diverged that event is dropped out 
b Here 2c  determined in a slightly different manner: ( )22 )(å -=

i
i

i

in

i

out aa ec , where i is 

sum over all kinematical variables of all particles, ina  is the value of a variable before 

Kfit outa  is the value after KFit, and e is the error for this variable. 



 
 
54 

ggggHe3®pd  with 4 overconstraints, and then combined the gammas into the neutral 

pions and fit the 003He pp®pd  reaction again. 

4.4 Efficiency and acceptance corrections. 
 Finally data should be efficiency and acceptance corrected. Fortunately in our 
case these corrections are expected to be small, see Chapter4.1. They can be made in 
several different ways. The most usual one is sketched in Fig. 4—10. 
 In our case the data can be corrected in a model independent way due to the 
high phase space coverage in our experiment. For convenience we will use pure phase 
space as a model for correctionsa. 
 The other way is to use multidimensional corrections: a three-body unpolarized 
reaction has 4 independent variables. So instead of using one-dimensional histograms, 
Fig. 4—10, we can use a 4-dimensional histogram — each event in this case would be a 
point in four-dimensional spaceb. So our correction factors in this case would be 4-
dimensional functions. Both methods have advantages and disadvantages: 
One dimensional corrections: 

C Easy to do 
C Fully transparent 
C Fast 
D Can be model dependent in complicated cases 
D May not accommodate for correlated inefficiencies. 

Multidimensional corrections: 
C Corrections can be applied as weights on an event-by-event basis. 
C Results can be easily used outside the collaboration 
C Less model dependent. 
C Incorporates correlated inefficiencies. 
D Requires large MC statistics, basically (one dimensional statistics)4 . 
D Requires large data statistics — each 4-dimentional cell in histogram should be 

highly populated, overwise systematic uncertainties would be enormously high. 
D Too many edges — each edge (of a detector element or of a corrected cell) can 

not be well corrected. With a complicated detector like WASA the systematic 
error appear to be very high. 

 So one can see that the multidimensional correction algorithm is not applicable 
in our case. But we can make an intermediate method — 2-dimensional corrections, at 
least for some distributions, to show, that one and two dimensional corrections methods 
give the same results within uncertainties. 
 To make 2D corrections we will take Dalitz plots (2D histograms) and correct 
them in the spirit of the 1D method. Afterwards we can reduce the Dalitz plots to 1D 
histograms and compare them to the same 1D histograms, obtained by the 1D correction 
algorithm. This is demonstrated in Fig. 4—11.  
 

                                                                 
a If the data covers full acceptance range than any model is applicable, otherwise one 
should use model as close to data as possible. 
b The example of the multidimensional corrections will be shown later, not 4D, but only 
2D. 
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Fig. 4—10 Common method for efficiency and acceptance corrections. 
 

 
Fig. 4—11 Ambiguities with different correction algorithms. Upper left: Dalitz plot 

2
00pp

M  vs. 2

He 03 p
M  2D corrected. Lower left: projection of a Dalitz plot — 2

00pp
M . Upper 

right: the same as lower left, but achieved with 1D correction algorithm. Lower right: 
ratio between 1D corrected and 2D corrected histograms. 
 
 One can see that both methods agree very well within statistical errors. It 
means that systematical errors due to the chosen correction procedure are negligibly 
small. 
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5 Results 
 In this chapter the results of two-pion production will be discussed. Differential 
observables will be shown and compared to theoretical models. Possible explanations of 
different effects appearing in the data will be made at the end of this chapter. 
 

5.1 Total cross section. 
 The total cross-section can be obtained from: 
 

acceffLN -××= es intexp  

where expN is number of events after reconstruction; acceff -e  the efficiency and 

acceptance correction of data; σ is the total cross-section and intL  the integrated 

luminosity. acceffN -e/exp  would give us the expected number of events, if our detector 

would not have any holes, cover the whole phase space and detection and reconstruction 
efficiency would be unity. This part we can estimate rather easily for any reaction 
Chapter4.4. But on the other side of the expression we have the integrated luminosity, 
which is much more difficult to estimate: 
 

ò ××= dtLL eint . 

 

In this expression L is the luminosity ( r×= IL ; I is the beam current, ρ is the target 

density). And e is the parameter which should account for all imperfections of the 
measurements: the beam is bunched, so sometimes we do not have beam in the target 
region. Sometimes we have beam but no target. In addition we have some dead time in 
our data acquisition system and some trigger inefficiencies. So in our case 
 

triggerDAQettbeam eeeee ×××= arg  

Each of these parameters varies in time, even the beam current in our case varies from 
1.2 up to 2.1 mA. So the calculation of integrated luminosity by this method is next to 
impossible in the case of CELSIUS. 
 Fortunately there is another way to obtain the total cross-section. Let us call 

acceffcorr NN -= e/exp  and look at the ratio of that number of expected reconstructed events 

for two different reactions, which are measured with same triggers simultaneously such 

as single and double 0p  production in pd collisions leading to He3 : 
 

)He(

)He(

)He(

)He(
3

03

3

03

pps

ps

pp

p

®

®
=

®

®

pd

pd

pdN

pdN

corr

corr  

For these two reactions the beam is the same, the target is the same the DAQ is the same 
and even the trigger is exactly the same. So all inefficiencies cancel out. In case of 

003He pp®pd we could even have a wrong GEANT description of our detector and it 
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also would cancel. And since we have a reaction to normalize to, we better do it this way, 
thus reducing our systematic error substantially. 

The cross section of 03Hep®pd  is known from Saclay measurements [35], see Fig. 
5—1 . 
 

 
Fig. 5—1  Saclay data for 03Hep®pd  [35]. a) He3  angular distribution in the CMS 
at 2.83 GeV/c beam momentum; b) same distribution at 3.5 GeV/c beam momentum; c) 
cross-section at 180°. as a function of s, the center of mass energy squared. The shaded 
bar area shows our energy with corresponding errors. 
 

 One can see that the angular distribution for °>Q 90*

He3 is flat. Unfortunately 

the errors in cross-sections are large. In addition the data point at 2GeV  11»s is outside 
the trend and it is not clear, whether it is due to an error in the experiment or due to 
dynamics at the h threshold, which is right at this point. By comparison with the angular 

distribution obtained in our analysis of the 03 Hep  channel, see Fig. 5—2, we can derive 
the absolute cross-section. 
 

 
Fig. 5—2 He3  angular distribution in CMS system for the 03Hep®pd reaction. The 

shaded area represents phase space. 
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 Note that in our case we had a proton beam, whereas Saclay had a deuteron 
beam, that is why in the CMS we have different directions of the z-axis. So Fig. 5—1 and 

Fig. 5—2 are just mirrored. Adopting µb/sr 100/ =Wdds  for 0cos >Q  from the Saclay 

data for the 03 Hep  channel our data yield the following total cross-sections for the ππ 

channels: µb )3(8.2)He( 003 =® pps pd  and for µb )5(1.5)He( 3 =® -+pps pd . 
 The main part of the uncertainty in our results does not originate from 
statistics, but from systematics — we know the single pion cross-section only by 
interpolation and can not compare the angular distributions at exactly our energy. 
Hopefully new results from COSY on this reaction should come soon, and this would 
improve the uncertainty in our analysis. 
 There is yet another way to estimate the cross-section of our reaction: the 

cross-section for hHe3®pd  is known for this energy with very high precision due to 
searches of eta-mesic nuclei. And in parallel to our reaction also the measurements of 

hHe3®pd  were performed. Unfortunately it is very difficult to normalize our cross-
section reliably to this reaction. Since η  tagging includes the Zero-Degree spectrometer, 
Chapter2.4.3, one should also include the optics of magnets into the estimations of 
inefficiencies, which is difficult. In addition since we are here very close to threshold the 
cross section varies strongly with energy and the energy of the beam changes slightly 
even during the cycle. But at least we may check the consistency of our results. To 
perform such a type of analysis, we have to select η ’s. The easiest way is by selecting the 

ggh ®  branch. The η  is produced just at threshold, so it is nearly at rest in the CMS. 
Therefore the photons are coplanar both in  the CMS and lab frames. In addition the 
energy of photons is very high, so it is not a problem to select those events.  
 

 
Fig. 5—3 Selection of ggh ®  events. Invariant mass of two photons after selection. 
 
 In order to obtain a clean spectrum of ggh ®  events we applied the following 

cuts: 1.3)( 21 >Ù ggf  [rad] (planarity cut); GeV 4.0
21

>+ gg EE ; 5.21.2 << ggd  [rad] 

(opening angle cut). Such cuts do not reduce the η  statistics but remove background. The 

acceptance for ggh ®  is 85%. Together with the known hHe3®pd  cross-section of 

µb 409.0 , and the branching ggh ®  of 39.43% [36], this brings us to roughly the same 
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order of magnitude for the ππ cross-sections: bm 10  fo r  00pp instead o f  µb 8.2 from 

previous method. 
 

5.2 Invariant mass distributions. 
 In this section the experimental results for the distributions of invariant masses 

are presented for both the 003He pp®pd and the -+® ppHe3pd  reactions. They are 
discussed first with respect to pure phase space distributions. The discussion about the 
pertinent deviations from phase space and their implications about the nature of the ABC 
effect will be presented in Chapter 6. 
 For an (unpolarized) three-body reaction there are only 4 independent 
observables with 3 invariant mass distributions. For the particular case of neutral pions 

there are only two, because we can not distinguish between first and second 0p . First let 
us ask, what a difference could we expect between neutral and charged pions? In the 
initial system we have a proton and a deuteron. The isospin of the deuteron is 0, that of a 
proton is ½. So the isospin of the initial system is ½. In the final system we always have 
3He and the double pion system. The isospin of each single pion is 1. So the system of 
two pions can be in isospin 0, 1, 2 states. Since pions are identical bosons in their isospin 

space, their wave function must be symmetric, i.e. 1)1( +=- ++ ISL , with orbital 
momentum L between two pions, spin S of the pion pair (S=0, since pions have no spin) 
and isospin I of the pion pair (I = 0,1,2). This implies that for pions only odd-odd or 
even-even I-L combinations are allowed. In addition, due to the identity of the pions in 

the 00pp  channel L = 1 and in consequence also I = 1 i s  not allowed in this case, 

therefore I = 0 or 2. For the -+pp  channel L = 1 is allowed, hence also I = 1. 

 Summarizing, we see that in case of 003He pp®pd  with the initial isospin ½ 

the 00pp  system can be only in an I = 0 state. And in case of -+® ppHe3pd  the 
-+pp  system can be in I = 0,1 states. However in the latter case this is combined with 

L = 1. Hence the isovector part of the -+pp
M  distribution must be proportional to 

2k (where k is the momentum in the pp - system)a, so it has to be 0 at threshold and to 
rise towards higher invariant masses. Since the isovector ππ channel thus carries the 
quantum numbers of the ρ meson, this channel may be dominated by ρ excitation in the 
appropriate mass region. 
 Since the charged pions are heavier than the neutral ones, the threshold values 

2791.0min =-+pp
M  GeV and 26995.0min

00 =
pp

M  GeV differ by nearly 10 MeV. So we expect 

a different behavior of the 00pp
M  and -+pp

M  distributions near thresholds due to the 

pion mass difference, and at high invariant masses due to the I=1 contribution in the 

                                                                 
a One can decompose amplitude into partial waves: l

l kA µ . Since cross-section is equal 

to amplitude squared, then in case of L=1 2kµs  
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-+pp  channel. For the isoscalar part the isospin relations give 

0

00

0 )(2)( ==

-+ = II ppspps a. 

 In  the 
pHe3M spectra we expect to see a strong ∆ excitation, if the early 

explanations of the ABC effect [11],[38],[39] are correct. For a pure ∆ excitation and 
isospin conservation the +pHe3M  and -pHe3M  spectra should look exactly the same. If the 

-+pp  production proceeds partly via a *N resonance decaying through ∆, then +pHe3M  

should be more excited compared to -pHe3M  due to different isospin coefficients for ++D  

and 0D  excitationsb. One should remember that 0r can not be produced in ∆∆, due to 

spin-isospin selection rules, but only through *N , most probable through )1520(*N . 

 Fig. 5—4 shows the Dalitz plots of 2
00pp

M  versus 2

He 03 p
M  and 2

-+pp
M  versus 

2

He3 ±p
M  respectively (both 2

He3 +p
M  and 2

He3 -p
M  are filled into one histogram for better 

comparison with the 00pp  case). 
 

 
Fig. 5—4 Dalitz plots for the systems 003He pp  (left) and -+ppHe3 (right). 
 
In both cases we see a strong enhancement at small ππ masses, which is particularly 

pronounced in the 00pp case. Fig. 5—5 displays the measured 00pp
M  a n d  03 Hep

M  

differential distributions in comparison with pure phase space predictions. 
 In 03 Hep

M  we see a strong ∆ excitation at D+ mmN2 (right part of Fig. 5—5). 

On the left part of Fig. 5—5 one can clearly see the ABC effect as a large (relative) 
enhancement close to the ππ threshold. One can also see that at high invariant masses the 

00pp
M  distribution behaves like phase space. 

 

                                                                 
a +--+ +-=== pppppp 3131310|0 00

3II ; squaring this expression 

results in 0000

0 3
1

3
2 pppppppps += -+-+

=I , so 03
2

==-+ Iss
pp

, 03
1

00 == Iss
pp

  

b For example 9
))1440((

))1440((
0*

*

=
D®

D®
+

-++

ps

ps

N

N
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Fig. 5—5 Differential cross-section in dependence of 00pp

M  (left) and 03 Hep
M  (right) for 

the reaction 003He pp®pd . Shaded areas represent phase space distributions, in the 
left histogram phase space is normalized to touch the data, in the right one to equal the 
integral cross-section 
 

 As in the 00pp  case also the -+pp  channel exhibits a strong ∆ excitation in 

the 
pHe3M  spectrum, see Fig. 5—6. In detail the ∆ excitations in +pHe3M  and -pHe3M  

appear to be slightly different, which could indicate some small *N (1520) contribution 

as discussed above. The -+pp
M  spectrum looks also slightly different from the 00pp

M  

spectrum — the ABC bump appears to be considerably smaller and there is an additional 
(relative) enhancement at high invariant masses. If we plot both invariant mass 

distributions on top of each other (reducing the -+pp  cross-section by factor of two, the 
isospin factor for the isoscalar part), (Fig. 5—7), then the  
 

 
Fig. 5—6  Differential cross-section in dependence of -+pp

M  (left) and 
pHe3M  (right). 

+pHe3M  is marked by pluses, and -pHe3M  by inversed triangles. Shaded areas represent 

phase space distributions. 
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bulk part of both distributions agrees quite well, exhibiting the main contribution to be 

isoscalar. The differences at high -+pp
M can be associated to an I = 1 contribution 

yielding bI msss
pppppp

 6.02)1( 00 »-== -+-+ . 

 This value depends strongly on the relative normalization of -+pp  and 
00pp channels. According for their uncertainties (see Chapter 5.1) we could have an 

isovector contribution as large as bm 1  in support of the findings in the inclusive 
measurements [6]. An alternative estimate of the isovector contribution will be given in 
Chapter 6.1.8. 

 
Fig. 5—7 Distributions of -+pp

M  (open symbols) and 00pp
M  (filled symbols) shown at 

the top of the figure. The -+pp  cross-section has been reduced by a factor of two. 
Bottom: extraction of the I=1 contribution, assuming that the difference at high invariant 
masses is due to I=1 contamination. The dashed line represents a possible ρ 
contribution, parameterized by an appropriate Breit-Wigner functiona 

5.3 Angular distributions. 
 Here we restrict the discussion to the most interesting angular distributions 
shown in the Fig. 5—8. Further angular distributions are given in the appendix chapter 
11. 

                                                                 

a 

4
)(

1
2

2 r
rpp

G
+-

µ

MM

A , where GeV 77.0=rM and GeV 15.0=Gr  



 
 

63 

 Fig. 5—8 displays the angular distributions for ppd , the opening angle between 

the momentum vectors of the two pions, for the angle of the total momentum of ππ 

system cmscms

He3Q-=Qpp  — all in the overall center of mass system — and for pp

pQ , the pion 

angular distribution in the ππ subsystem (Jackson frame), which is shown both for the 
full mass region (circles) and for GeV 34.0<ppM (squares). 

 
Fig. 5—8 Angular distributions for ppd , the opening angle between the momentum 

vectors of the two pions, for the angle of the total momentum of ππ system cmscms

He3Q-=Qpp  

— all in the overall center of mass system — and for pp
pQ , the pion angular distribution 

in the ππ subsystem (Jackson frame). For the latter the data are plotted also with the 
constraint GeV 34.0<ppM . Top: 003He pp®pd , bottom: -+® ppHe3pd . Shaded 

area is phase space. 
 
 For the discussion of the angular distributions we go through Fig. 5—8 step by 
step. In the first column, where ppd  distributions are plotted, we see a strong spike at 

small relative angles. This relates to the spike (see Fig. 5—7) at small ππ invariant 
masses, since low invariant masses belong to ππ pairs with small relative momentum. 
Such pairs must move essentially in parallel both in the lab system and in the overall 
CMS thus having a small opening angle 0®ppd , as indeed is borne out in our data for 

ppd . This is fully supported by the distributions of the azimuthal angle difference ppfD  

of the two pions, which also peaks at 0®D ppf (see Appendix 11.2). The next column 

exhibits the cms

ppQ  distributions, which are the mirrored CMSHe3 angular distributions. 

They show a behavior consistent with previous inclusive ABC measurements [6]. Most 
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interesting is the third column, the pp

pQ  distribution, i.e. the pion angular distributions in 

the ππ subsystem. Here the coordinate system is chosen such that the z axis coincides 

with the beam axis. So pp

pQ  is the angle between pion momenta in the ππ rest frame and 

the beam axis. This is the socalled Jackson reference system. It is appropriate for a study 
of the contributions of the partial waves in the particular subsystem [37]. Let us first look 
on the circle symbols in the figure, representing the full unconstrained angular 
distributions. They look very much like containing some p-wave admixture. But since p-

wave is not allowed in the 00pp  system, it implies that we have a s-d wave interference, 

which behaves exactly the same waya. However if we consider the pp

pQ  angular 

distribution belonging to just the ABC region (squares in Fig. 5—8), then it is flat, which 
means that the ABC effect is of scalar nature. As we derived before it also can be only 
isoscalar. So we have the important result that the ABC is a scalar-isoscalar effect. This 

feature is even better visible, if pp

pQ  is plotted as a function of the invariant mass, Fig. 

5—9. 
 

 
Fig. 5—9  Lego plot of 2

00pp
M  versus pp

pQcos  with respect to the beam axis. The vertical 

scale is in arbitrary units. 
 
Clearly at high invariant masses the angular distribution is not flat, it is flattening out, 
however, towards lower invariant masses. 
 
 

                                                                 
a DS AAA +µ  — amplitude of the reaction. Since constAS µ  a n d  pp

pQµ 2cosDA , 
pp

p

pp

p Q+Q××+µ 4222 coscos2 constconstA . The second is the interference term. 

Compare to pp

pQµ 22 cosPA  one can find that the functional behavior is exactly the same. 
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6 Discussion:  
“Towards the nature of the ABC effect”. 

 In this section different models will be discussed and presented. It will be 
attempted to get an explanation of the ABC effect and relate it to other systems. First the 
usual ∆∆ model — as introduced originally by [11] and used by many other authors 
[38],[39] in more sophisticated treatments — will be discussed (see Chapter6.1.1). The 
invalidity of such models as well as possible ways of improvement will be shown. As a 
first step into a more detailed description, one can consider the inclusion of Fermi-motion 
inside the nucleus (Chapter6.1.2), which however does not improve the description with 
the conventional ∆∆ model. For a better description several different ideas are suggested 
from the naive bound ∆∆ model (Chapter6.1.3) up to a more complicated ∆∆-FSI model, 
considered to be the correct description of the ABC effect (Chapter6.1.4). It will be 
shown, that the ∆∆-FSI model can explain not only differential observables of 

ppHe3®pd  data at our energy, but also gives the correct dependence of the total cross-

section (Chapter6.1.5) as well as differential observables of ppdpn ®  reaction at 

GeV 037.1=pT . Moreover it reproduces inclusive spectra for HeX4®dd  reactions 

(Chapter6.1.9). Finally some other less probable explanations will be mentioned 
(Chapter6.1.7). 

6.1.1  The traditional ∆∆ model 
The basic ingredients for a ∆∆ excitation as treated in many theoretical papers 
[11],[12],[38],[39] are given by 
 

spacephaseNN  ))cos(31())cos(31( 22

2

11

121 ×Q+×Q+×D×Dµ p

p

p

ps   (1) 

where p

p

NQ  is the angle of the pion in the nucleon-pion subsystem, with respect to the 

beam-axis as the z-axis. Here and later we use c=1 (speed of light), so it will be skipped 
for convenience in formulas, so all variables like M, P, G are in GeV. The symbol ∆ in 
the above equation represents the Breit-Wigner term with an energy-dependent width for 
the ∆ excitation: 

( ) 22222

2 /

G×+-

G
=D

DD MMM

P

N

N

p

p

p       (2) 

with GeV 23.1=DM , p

p

NP denoting the momentum of the pion in the nucleon-pion 

subsystem, and 
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with 74.0=g  and c/GeV  3.6=R , see [11], i.e. GeV 110.0)( =G DM . 

 This ansatz leads to the ppM  distribution shown in Fig. 6—1 by the solid line. 

Compared to a phase space distribution a (relative) enhancement is seen both at small 
and large ππ masses. As demonstrated in Ref.[11] — and reiterated in many publications 
of the ∆∆ calculations [see e.g. [12]] — the two enhancements arise from the term 21DD  
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in eq.1, which is at maximum for the two cases, where the two pions emerging from the 

decay of the two ∆’s move either parallel or antiparallel to each other i.e. 0®d  or π. 
This is valid, however, only under the condition that the two nucleons emerging from the 
∆ decay have no (significant) relative motion — as is the case, when they are captured in 
a final nuclear bound state. 
 

 
Fig. 6—1 ppM  distribution: solid line is the result of ∆∆ calculations according to eq.1 

the shaded area denotes phase space normalized to touch the solid line. 
 
 This scenario immediately translates into one with regard to the relative motion 
of the two ∆. As we see from Fig. 6—2 there is a clear correlation between ππ invariant 
mass and ∆∆ relative momentum, DDq . And the low-mass enhancement corresponds to a 

∆∆ pair with minimum relative momentum, whereas the high-mass enhancement 
corresponds to a ∆∆ with maximum relative motion. 
 By comparing Fig. 6—1 and Fig. 5—5, one sees that this ∆∆ model is far from 
a realistic description of the data — the first bump should be much higher and the second 
one should be absent. 
In order to make a calculation close to observations w e  have to enhance ∆∆ 
configurations with small relative momentum and simultaneously suppress ∆∆ 
configurations with large relative momentum. 
 

 
Fig. 6—2 Distribution of the invariant mass ppM with respect of the relative momentum 

DDq  of the two ∆ in the CMS, as obtained by simulating the eq.1, at GeV 895.0=pT . 
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 This may be achieved by requiring a bound or quasi-bound state in the ∆∆ 
system (Chapters 6.1.3, 6.1.4). Indeed, the ∆∆ interaction is thought to be attractive [40], 
and even bound ∆∆ states have been predicted [41]. Before continuing with the 
discussion of bound ∆∆ states, we first want to improve the model further by including 
the Fermi motion of the nucleons in 3He. So far it was tacitly assumed that 3/

He3PPN = . 

 

6.1.2 Fermi momentum of a nucleon inside nuclei. 
 To incorporate the Fermi motion into the simulation we apply a trick. After 
simulation of an event by a MC program based on TGenPhaseSpace package from 
ROOT [32] we have only the momentum of 3He as an observable, but for the improved 
calculation we need the momentum of each of the nucleons. To this end we need to 
assign a Fermi momentum. Since the sum of all 3 Fermi momenta must be 0, we need to 
simulate the momentum of only two nucleons, the momentum of third nucleon can then 

be calculated using the condition above. For each nucleon we have to simulate Q , f  and 

p. The variable f  should be evenly distributed in the interval [0, p2 ], Q  should be 

distributed like the cos functiona, i.e. the Qcos  distribution should be flat in the interval 
[-1,1], and the absolute value of the momentum p should follow the momentum 
distribution in nuclei. For simplicity we can use the probability function, 
 

2

2222

22

))((

)(
)( ú

û

ù
ê
ë

é

++

-×
µÃ

kpp

kp
p

b

b
     (4) 

 

based on the Hulthen wave function [42], with GeV/c 26.0=k , GeV/c 0456.0=b . 

These coefficients are best suited for the deuteron. If we calculate the Fermi-motion for 
reaction ppdpn ®  we use exactly this probability distribution. For 3He one should use 

different function: 
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where GeV/c 17.00 =p ; this assumes the wave function of 3He to be a Gaussian with 

width 2/0p=s  in momentum space, corresponding to a size of 3He in coordinate space 

of fm
p

r 0.23
0

2 ==
h

. However eq.5 assumes the distribution to be the same for all 

nucleons which might not always be the case. If we want to simulate the reaction 

ppHe3®DD® Npd , then two nucleons participating i n  the ∆ formation would be 
distributed deuteron-like in their rest frame, and the third nucleon would be distributed as 
given by the 3He in 3He rest frame. So the most probable configuration for this case will 
b e  a  deuteron + nucleon partition. This is in spirit of the formfactor used in the 

                                                                 
a This is true for s-wave nucleons i.e. for A£4, which we consider. 



 
 
68 

description of the transfer reactions, giving the overlap of the deuteron + nucleon 
configuration with the 3He wavefunction [3]. 
 It is difficult to get the momentum distribution for such configuration 
analytically. However, we can easily simulate it, and the result is very close to eq.5 with 

GeV/c 12.00 =p  

 In the figure below one can see all distributions: e q . 4, eq.5 w i t h  

GeV/c 17.00 =p  and GeV/c 12.00 =p  as well as the simulated d+N configuration of 
3He. 
 

 
Fig. 6—3 Probability distributions for the momentum of nucleons inside nuclei. The 

dashed curve corresponds to a Gaussian wave function with GeV 17.00 =p . The solid 

line represents the Hulthen wave function. The solid histogram gives the simulated 

momentum distribution for the d+N configuration inside 3He. The dotted line shows the 

eq.5 ansatz with GeV 12.00 =p . 
 
 Since the momentum distribution for the d+N configuration inside the 3He can 

be well fitted with eq.5 using a slightly different parameter ( GeV/c 12.00 =p  instead of 

GeV/c 17.00 =p ), we will r ather use this analytical expression then simulate such 

configuration for each event, which is time consuming. 

 In order to get a random x according to some probability function )(xf  in the 

range ],[ 21 xx , one should make the following operations. In the range ],[ 21 xx  the 

function )(xf  reaches a minimum value 1y and a maximum value 2y . First we create a 

pair of randoms ],[ 21 xxx Î  and ],[ 21 yyy Î and then make the following comparison: 

if yxf >)( , then this value of x is accepted, otherwise the procedure is repeated. 

 The results of introducing the Fermi motion will be shown in the next Chapter, 
together with model calculations. 

6.1.3 Bound ∆∆ system. 
 To build a ∆∆ model, which is able to adequately describe the data, we should 

take the usual ∆∆ model, from eq.1 include Fermi motion, eq.5 with GeV/c 12.00 =p , 

for a more realistic description, and multiply it with a formfactor, for the binding of the 
two ∆s. As formfactor we choose a monopole type formfactor: 
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where DDq is the relative momentum between two ∆ in the CMSa. The coefficients 0q and 

a are fitted for the best reproduction of the data, Fig. 6—4. The coefficient 0q  represents 

the size of the ∆∆ bound object. The second coefficient just says that not all ∆s are 
bound. So finally the formula for the bound ∆∆ model would be: 
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where PS denotes phase space here and with the optimized parameters GeV 2.0=a  and 

GeV/c 09.00 =q . The latter is correlated with the size of the bound ∆∆ by 

fm 2.3
2

6

0

2 »=
q

c
r

h
, i.e. a size similar to that of the loosely bound deuteron. 

 The result of such a calculation is shown in Fig. 6—4. It should be mentioned 
that one can vary the optimization parameters in quite a broad range GeV/c ]2.1,7.0[0 Îq  

with roughly the same result. 
 

 
Fig. 6—4 Invariant mass of 00pp . Data and bound DD  calculations. The solid line gives 
a calculation including Fermi motion, dashed line – without Fermi motion, but with the 
same fit parameters ( GeV 2.0=a  and GeV/c 09.00 =q ). 

                                                                 
a By including the Fermi-motion we know the momentum of each nucleon on a event by 
event basis. So knowing the momentum of nucleons and pions we can calculate the 4-
momentum of ∆’s, providing us access to such variables like DDq  and DM  
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 One can see that the ansatz eq.7 describes the data reasonably well. The effect 
of Fermi motion makes the peak at small invariant mass broader, as is obvious from the 
discussion at the end of Chapter 6.1.1. We note in passing that one can also fit the data 
points without the requirement of Fermi motion. To do so one would need to assume a 
higher 0q  parameter, equivalent to a smaller radius of the ∆∆ molecule. Saying that we 

have no Fermi motion, we entirely assume that the probability function for the 

momentum distribution inside the 3He i s  a  d -function. Taking the Gaussian 
parameterization of the Fermi motion, one has to assume a smaller 0q  to fit the data with 

the same accuracy. The higher the allowed Fermi motion, the better should the binding of 
∆∆ be to satisfy our data, which looks reasonable. It means that in the free case the ∆∆ 
binding would need to be much stronger to give the same invariant mass distribution as 
in the 3He case. 
 Here and lateron we will always tacitly assume a d+N type Fermi motion. It 
should be mentioned that the bound ∆∆ ansatz describes also the other distributions 
reasonably well. On the figure below (Fig. 6—5) one can see the calculations of this 
model together with the data from Fig. 5—8. These calibrations are published in Ref. 
[43] together with the data. 

 
Fig. 6—5 Angular distributions for ppd , the opening angle between the momentum 

vectors of the two pions, for the angle of the total momentum of ππ system cmscms

He3Q-=Qpp  

— all in the overall center of mass system — and for pp
pQ , the pion angular distribution 

in the ππ subsystem (Jackson frame) For the latter the data are plotted also with the 

constraint GeV 34.0<ppM  (squares). Top: 003He pp®pd , bottom: -+® ppHe3pd  

The shaded area is phase space. The dashed green line is the calculation of the ∆∆ 

model. The solid blue line is the results of the bound ∆∆ anzatz (from Ref. [43]). 
 
 More differential distributions and their comparison to the bound ∆∆ ansatz are 
shown in the Appendix. 
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6.1.4 ∆∆ FSI 
 By looking at formula eq.7 one can observe that it strongly resembles a final 
state interaction [44]. So one can make a more general statement, namely that we just 
have a final state interaction (FSI) between the two ∆’s. In case of nucleon-nucleon 
scattering we can deduce from the known scattering length that there is an attraction both 
in the isospin 0 and 1 channels and that there exists a bound nucleon-nucleon state in the 
isospin 0 channel (deuteron).  
 Following the original FSI papers of Migdal and Watson [44] for the NN case 
we parameterize the ∆∆ FSI in the form 
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here sa is the scattering length, R characterizes the size of the vertex region and 0r  is the 

effective range. DDp here denotes to the ∆ momentum in the ∆∆ subsystem, i.e. 

DDDD = qp
2

1 . 

 The formula depends very weakly on 0r , so we fix it at 2 fm, a reasonable 

value close to the one used in the NN case. In this way we reduce the 3 parameter fit to a 
2 parametric function and fit our data, Fig. 6—6. 
 The scattering length sa  affects the width of the peak in the ppM  spectrum 

whereas R influences the ratio between the peak and the shoulder. The plotted curve was 

obtained with the following fit values. fm 10/fm 16 +-=sa and fm 1.1=R . The value 

fm 10=sa says that ∆∆ is bound. If fm 16-=sa  then ∆∆ is in the continuum. With our 

experiment we can not distinguish the sign of the scattering length. To do so we would 
need a polarized ∆ beam and a polarized ∆ target, which is impossible. A more careful 
consideration shows that we are actually sensitive only to the absolute value of a 

scattering length: sa . 

 

 
Fig. 6—6 Experimental invariant mass distribution of the 00pp  channel in comparison 
with  ∆∆ FSI calculations (dashed line) and phase space (shaded area). 
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Since in the case of absorption the scattering length is a complex quantity, where the real 
part corresponds to attraction/repulsion in the scattering channel and the imaginary part 

to the absorption, it might well be that in our case the main contribution to sa  comes 

from absorption into ppNN and NN systems. 
 This can lead to misinterpretation in the case of non-observing the nucleon 
system: Let’s assume that we have a scalar-isoscalar ππ system with relatively small 
invariant mass and rather large common momentum traveling through the nuclear 
medium. An experimentalist who would measure only ππ at the end of the medium will 
observe a huge ππ attraction — which is absent in vacuum. Hence one could come to the 
conclusion of strong medium modifications of the σ meson. By observing the full system 
it might become obvious that such an induced attraction actually results from ∆∆ 
rescattering and attraction in the ∆∆ system. 
 

6.1.5 Energy dependence of the total cross section. 
 In addition to the differential distributions one can s tudy  the  energy 
dependence of the total cross-section. Monte-Carlo technique provides us with such a 
possibility by usage of the “Fermi phase space” option. Whereas phase space gives a 
cross section steadily increasing with s, we expect from the ∆∆ ansatz to obtain some 
resonance-like structure with the maximum around the ∆∆ mass (plus the mass of 
“spectator” nucleons in the final nucleus) and a width in the order of the ∆ width. Indeed, 
this is borne out by the ∆ calculations as demonstrated in Fig. 6—7. 
 

 

Fig. 6—7 Left: Total cross-section as a function of the total CMS energy s  

(Mandelstam “ s”) for the 003He pp®pd  process, solid - ∆∆ model; dashed - bound 
∆∆/∆∆ FSI model, dotted - phase space. All curves are normalized to have the same 

cross-section at GeV 156.3=s . Right: data from Ref. [6] at °=Q 180
He3

CMS   for the low-

mass ππ enhancement relative to phase space ( “ ABC peak”) and calculation for the 
bound ∆∆ ansatz. 
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 The energy dependence of the cross-section for the ”ABC peak” (low mass ππ 

enhancement relative to phase space) was measured inclusively at °=Q 180
He3

CMS  at Saclay 

[6]. The data indeed show the expected resonance-like behavior, Fig. 6—7. 
 One can see from Fig. 6—7 that the total cross-sections obtained from the ∆∆ 
and the bound ∆∆ ansatz behave similar, but the cross-section in the bound ∆∆ case starts 
to decrease somewhat earlier. Though the bound ∆∆ calculations describe the Saclay data 

for the “ABC peak” cross section at °=Q 180
He3

CMS  quite well, they obviously overestimate 

the cross section at high s .This is not unexpected, since at high energies the total 
cross-section should also be suppressed by the formfactor of the 3He, which is not yet 
included in our ansatz.  
 Close to threshold the cross-section of the ∆∆ excitation gets very small, see 
Fig. 6—8. 

 

Fig. 6—8 Total cross section as a function of the total CMS energy s  (Mandelstam 

“s”) for the 003He pp®pd  process. The solid dot is the data from our measurement, 
the triangle denotes the PROMICE/WASA [9] data point, the square is the upper limit 
deduced from the COSY-MOMO [10] data. Solid - ∆∆ model; dashed - bound ∆∆ model, 
dotted - phase space. See text for details. 
 
In the figure above one can see 3 data points, from left to right — PROMICE/WASA, 
COSY-MOMO and CELSIUS-WASA (our measurement). The first and third points 

were direct measurements of the 003He pp®pd  process, but not the MOMO result. 

From Ref. [10] one can deduce the total cross-section for the -+® ppHe3pd  process at 

MeV 546=pT  to be µb 3.1)He( 3 =® -+pps pd . Assuming that the isovector ( I = 1 ) 

contribution is 0a, we would deduce the 

µb 65.02/)He()He( 3003 =®=® -+ppspps pdpd . This is an upper limit for the 

003He pp®pd  cross section at that energy ( GeV 156.3=s ). Since the 00pp  system 

i s  1 0  MeV lighter than the -+pp  system, the relevant energy is, however, 

GeV 149.3=s  as indicated in Fig. 6—8 by the arrow. 
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 The phase space curve at Fig. 6—8 is normalized to the PROMICE/WASA [9] 
point, since we know that close to threshold everything should be according to phase 
space, because only s-waves are involved. The ∆∆-FSI calculations is normalized to our 
data point, because at our energy this process is dominant and the ∆∆ model is 
normalized to give the same results at threshold as the bound ∆∆ calculation (both ∆∆ 
models should be tiny at threshold). 
 From our ∆∆-FSI ansatz for the ABC effect (dashed curve) we see that in both 
the PROMICE/WASA and the MOMO cases the contribution from the ABC effect to the 
total cross-section is negligibly small (per mille to percent level). So two-pion production 
close to threshold is dominated by other processes, and that is why the ABC peak should 
not be visible in their case — exactly as it was observed, see [9],[10]. 
 

6.1.6 Comparison with the basic ππ production 
process 

 One can find a lot of similarities between the basic pppppp ®  production 

and ppHe3®pd . Indeed in the pppppp ®  case close to threshold the data exhibit a 
phase space like behavior in the ππ invariant mass with some shift towards high invariant 
masses compared to phase space — the higher the excitation energy the stronger the shift 
[57],[58]. Such behavior occurs up to GeV 0.1=beamT ( GeV 177.0=Q , Q is the 

excitation energy) and can be well described by the )1440(*N  Roper resonance 
excitation and its subsequent decay into Nσ or ∆π, [45][46][47], or alternatively by chiral 

dynamics [48]. At energies higher than 1 GeV ( GeV 177.0>Q ) the behavior of the data 
changes drastically, demonstrating now a dominant ∆∆ excitation, but again without the 
expected [39][47]double hump structure in the ppM  spectrum, however, again with a 

low-mass enhancement in 00pp
M [58]. 

 A similar picture we can derive from existing ppHe3®pd data: close to 

threshold — 477.0=beamT  GeV ( 032.0=Q  GeV), Ref [9], PROMICE/WASA — the 

data show reasonable agreement with phase space. If we go further — 

546.0=beamT  GeV ( 070.0=Q  GeV), Ref [10], MOMO — the data show a substantial 

shift towards high invariant masses as compared to phase space. And if we go even 

higher — 624.0>beamT  GeV ( 120.0>Q  GeV) [3], Berkeley — then the ABC effect 

(∆∆) starts to appear, becoming clearly visible at 745.0³beamT  GeV ( 190.0³Q  GeV) 

[6], Saclay. I.e., we notice a close correspondence between pppppp ®  a n d  

ppHe3®pd : in both cases the ∆∆ excitation (without the expected double hump 

structure) appears at roughly 170.0=Q  GeV i.e. 0.1=beamT  GeV for the pppppp ®  

and 720.0=beamT  GeV for the ppHe3®pd  reaction, respectively. Extrapolating to the 

app®dd  case one should expect the appearance of the DD  excitation (ABC effect) at 

92.0=beamT  GeV and becoming clearly pronounced at 97.0=beamT  GeV with the 

maximum strength around 15.1=beamT  GeV — as actually has been observed in the 

corresponding inclusive measurements at Saclay [49]. 
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6.1.7 Medium modifications 
 Though the ∆∆ concept provides a very good description of our measurements, 
we give here a short discussion of alternative concepts to explain the ABC effect. Since 
we have seen that the produced ππ pairs are scalar-isoscalar, it appears possible to 
associate the ABC effect with medium modifications of the σ meson. In fact the σ meson 
is expected to be modified in medium strongly [50][51] due to partial restoration of the 
chiral symmetry. 

In this concept the mass of the σ meson is modified according to ÷
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where sm  is the free mass of the σ meson; ρ is the density of the nuclear medium and 

0r is the saturation density 3

0 mnucleons/f 17.0  =r . 
22

pp

ps
a

fm
N=  with Nps  being the 

pion-nucleon σ-tem ( 50»Nps  MeV) and pf  the pion decay constant. Results from Ref. 

[51] for such considerations are shown in Fig. 6—9  
 

 
Fig. 6—9 Results for the imaginary part of the sigma-meson propagator in the medium. 
Solid line - vacuum case. Rest – calculation for normal nuclear density with different a 
parameters[50]. 
 
 As one can see, medium modifications also can lead to an enhancement at 
threshold (since one can directly relate the )Im( sD  to the ppM ). However, they are not 

directly associated with ∆ excitations as we observe in our measurements. Alternatively 
Roca et al. [52] obtain qualitatively similar results by ∆-hole excitations of the medium. 
So the question is whether such medium modifications of the s-meson, which lead to an 
enhancement just at threshold, describe a physics phenomenon different from the ∆∆ 
model, or whether it is just a different description of the same phenomenon. 
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6.1.8 Contribution of the three-pion production in 
the inclusive spectra. 

 With a quantitative description of two-pion production at hand we can try to 
understand also quantitatively the inclusive 3He momentum spectrum in Fig. 4—6 and 

extract the contribution from p3 production at our energy GeV 895.0=pT . In Chapter 

6.1.3 we have presented the description of the isoscalar part of two-pion cross-section. 

To simulate its isovector part, which we need for -+pp  production, we assume ρ 
production in this channel, which carries the quantum numbers of the ρ-meson, i.e. we 

assume 

4
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rpp
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I , where 77.0=rM  GeV; 15.0=Gr  GeVa (see 

also Fig. 5—7). Then we can fit the relative contributions from the isoscalar and the 

isovector parts for the best reproduction of the -+pp  spectrum, Fig. 6—10. 

 The best solution of the fit g i v e s  µb 6.4)( 0 ==

-+

Ipps  a n d  

µb 2.1)( 1 ==

-+

Ipps ;  w i th  µb 8.2)( 0

00 ==Ipps . As described before, according to 

isospin symmetry 0

00

0 )(2)( ==

-+ ×= II ppspps . Since the 00pp  cross-section is much 

more reliable in its absolute normalization, we assume that µb 6.58.22)( 0 =×==

-+

Ipps . 

From this it follows that µb 5.1)( 1 ==

-+

Ipps , and µb 1.7)( =-+

totpps . 

 

 
Fig. 6—10 Left: 00pp  invariant mass distribution; solid line is the calculation of the 

bound ∆∆ model. Right: -+pp  invariant mass distribution; dashed line - ρ meson 
contribution; dotted line - bound  ∆∆ model calculation; solid line - sum of both 
contributions. The relative height of the curves is chosen for the best fit of the spectra. 
 
 Having fixed the isoscalar and isovector parts of ππ production we simulate the 
inclusive 3He spectrum. By a fit to the data, see Fig. 6—11, a 3π cross-section of 

µb 5.0)3( =ps  is obtained. 

                                                                 
a A more general approach with p-wave, which leads to a linear rise in the 

-+pp
M spectrum, gives a very similar description. 
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Fig. 6—11 3He momentum spectrum for the angular bin  °<Q<° 87

He3

lab (as it was 

measured/simulated, not corrected for detector efficiency). The data points represent the 
inclusively measured spectrum. Most right peak is single pion production. The dotted line 
gives the description for the two-pion production. The dashed histogram shows the phase 
space description for the p3 production. The solid line represents the sum. 
 
 One can see that the sum line at Fig. 6—11 still deviates somewhat from the 
data. This disagreement comes from the fact that at Fig. 6—10 the model calculation 
gives a slightly smaller width of the ABC peak. Taking into account the uncertainties in 
the different model assumptions one can estimate the 3π cross-section to be in the range 

µb 3.13.0 ¸ . 
 

6.1.9 ∆∆ FSI-model for other nuclear systems. 
Since the ∆∆-FSI model describes our data amazingly well, we can try to extend it to 
other nuclear systems, different reactions and energies. 

The simplest case is the Xdd a®  reaction below the h threshold and particularly 

app®dd . Here the isospin I=0 is the only possible configuration for the ππ system, 
meaning that contributions from the ρ meson should be exactly zeroa. The available data 
are inclusive measurements by Saclay[8] at 0°. The measurement at the maximum of the 

ABC effect is that at 084.1=dT GeV. In Fig. 6—12 the data from Saclay [ 8] are 

compared to our calculations in the ∆∆-FSI model. One can see that the model describes 
the data very well, underestimating them only at high invariant masses, exactly at the 
place where the 3π production should contribute. It means that for the app®dd  

reaction the model also works. Here the difference to the calculations for ppHe3®pd  
(Chapter6.1.4) is tiny — only the mass of projectile is changed from proton to deuteron 
and mass of 3He is changed into mass of 4He. The Fermi-motion is assumed to be the 
same for 3He and 4He, which is in agreement with the fact that the radii of both nuclei are 
very similar. 
 

                                                                 
a It is still possible to have ρ meson contribution due to isospin symmetry violating terms 
and due to ρ-ω mixing, but such contributions should exhibit themselves at the per mille 
level. 
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Fig. 6—12 Momentum distribution of a particles at 0° for the Xdd a®  reaction at 
Td=1.084 GeV. The solid line shows the ∆∆-FSI model calculations, normalized to the 
peak cross-section. The dotted line represents phase space, normalized to touch the data 
in the minimum, the dashed line shows the 3π contribution normalized arbitrarily. The 
nonlinear scale in the bottom of the figure shows the translation of the a momentum into 
the invariant mass of system X. 
 

 We may test our model further and even more crucially by exclusive 

measurements of the most basic reaction leading to bound nuclear states, which is the 

reaction 00ppdpn ® . First preliminary data for it at 895.0=pT  GeV are available now 

from the ongoing PhD work [56] in our group. The excitation energy is slightly lower 

compared to our 003 He pp®pd  measurement but still in the ABC region. 
 

 
Fig. 6—13 Preliminary data for the invariant mass of 2π from 00ppdpn ®  
reaction[56] compared to the prediction of the ∆∆-FSI model (solid), ∆∆ model (dashed)  
and phase space (shaded). 
 
The model describes the data again very well without adjustment of any parameters 
demonstrating thus its validity for a large variety of energies and systems. 
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7 Summary 
 The f irst exclusive measurements of 003 He pp®pd  a n d  -+® ppHe3pd  
reaction channels in the ABC energy range were performed and analyzed. The exclusive 
data reveals the ABC effect to be 

· a low-mass ππ phenomenon not necessarily associated with a high-mass one, 

· particularly pronounced in the 00pp  channel, 
· associated with ∆∆ production and 
· of pure scalar-isoscalar nature. 

Despite the fact that current measurements are consistent with the previous inclusive 
ones, the additional exclusive information turns out to be crucial for the understanding of 
double-pionic fusion processes. It has been shown that the conventional ∆∆ explanation 
can no longer survive the data test. The new experimental information points to a very 
strong ∆∆ interaction — parameterized here as quasi-bound state condition or more 
general as ∆∆ FSI — for which no information is available from other sources and which 
so far has not been considered in theoretical investigations of the NN system and its 
excitations. The angular distribution, together with isospin decomposition shows that the 
effect is scalar-isoscalar in nature. There is a small of I=1 contribution in the 

-+® ppHe3pd  reaction consistent with ρ-meson excitation. 
 Another possibility of an explanation of the ABC effect are nuclear medium 

effects[50], observed before also in XA ppp ® ,[53][54] and XA ppg ® ,[55]. However 
this explanation lacks the simultaneous ∆∆ excitation. 

 The model of ∆∆ FSI can describe also 00ppdpn ®  quantitatively [56] 
without changes of parameters or any additional assumptions. The same holds for the 
descriptions of the inclusive Saclay data [8] on Xdd a® . 
 Predictions for the energy dependence of the total cross sections also agree 
quite well with the measurements. Based on this model one can understand the full set of 
existing two-pion data on bound nuclear systems. 
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8 Other reactions 
 Several other reactions have been analyzed during the course of this PhD work, 
but since they are outside the ABC topic they were not mentioned in the main part of the 
thesis: 

-+® pppppp  at =pT 895,1000,1100,1300,1360 MeV [57],[58]. 

ggpppp ®  a t  =pT 1200 and 1360 MeV. Here an observed spike at the two-pion 

threshold is of particular interest [59],[60]. 
0pp +® dpp  at =pT 1100 MeV [58]. 

Results from these reactions were presented at several conferences, and published in 
conference proceedings [57—60]. Further publications are foreseen.  
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9 Outlook 
 Despite the obvious success in the explanation of the existing data about the 
ABC effect there remains a number of issues to be done for a complete understanding of 
the strong enhancement observed at low ππ masses. This includes the energy dependence 
of the ABC cross-section as well as its nuclear dependence, i.e. exclusive measurements 
not only with proton beam and deuteron target, but also with heavier projectiles and 
targets. In addition the use of polarized beams will be very helpful in order to disentangle 
different partial wave contributions. Many of these projects can be performed at COSY 
with the upgraded WASA detector. However, some better understanding we can get 

already now, by analyzing ppdpn ®  and app®dd , reactions from the collected 

CELSIUS-WASA data sample. Hopefully in a few years from now we will understand 
the ABC effect in all its details and learn possibly about the behavior of the σ meson in 
the nuclear medium. The study of double-pionic fusion appears by an ideal doorway 
situation for the understanding of a possible chiral restoration in the medium. 
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11 Appendix 
 In this chapter the following notation is used: c.m. — center of mass system; 
lab. – laboratory system; the upper indexes always correspond to a subsystem, if indexes 
are absent then it is silently assumed to be the center of mass system; ppQ  — angle of ππ 

system in center of mass system relative to z (beam axis); pp

pQ  — angle of pion in ππ 

subsystem relative to z (Jackson frame); pp

pQ
)

 — angle of pion in ππ subsystem relative 

to ππ momentum direction (Helicity frame). M is invariant mass. ppd  is the opening 

angle between pions, fD  is the planarity angle. 
 Shaded area is phase space, dashed line is ∆∆ model calculation. Dots are 
experimental efficiency and acceptance corrected data. 
 

 
Fig. 11—1 The definition of the different scattering angles in the subsystem of particles, 
here for two particles in overall center of mass system. For simplification, the figure 
shows a non-relativistic construction. 
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11.1  3Heπ0π0 differential cross-sections 

 
 
Fig. 11—1 Differential distributions. Shaded area is phase space. Dashed line is the 
bound ∆∆ model calculations. 
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Fig. 11—2  Differential distributions. Notation is described above. 
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Fig. 11—3 Differential distributions. Notation is described above. 
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Fig. 11—4Differential distributions. Notation is described above. 
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11.2 3Heπ+π- differential cross-sections 

 
Fig. 11—5 Differential distributions. Notation is described above. 
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Fig. 11—6 Differential distributions. Notation is described above. 
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Fig. 11—7 Differential distributions. Notation is described above. 
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Fig. 11—8 Differential distributions. Notation is described above. 
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Fig. 11—9 Differential distributions. Notation is described above. 
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12 Appendix A 
 Here the derivation of the angular corrections for the Forward and Central 
detector will be done (begin in Chapters 3.2.4, 3.2.5). 
 The flight paths of charged particles in the solenoidal magnetic field of the 
WASA detector look as follows. 
 

 
Fig. 12—1 The flight path of charged particles in magnetic field. Left: longitudinally cut 
figure. Right: transverse projection for a single track. 
 
Let us first consider the case, when a charged particle moves in forward direction. Here 
only a part of the track lies in the magnetic field. In simplest approximation we can 
assume that inside the solenoid we have a homogeneous magnetic field B and outside the 
solenoid the magnetic field is 0. First we decompose the momentum of the charged 
particle p into two components: longitudinal (pl) and transversal (pt). The longitudinal 
component says how long particle will stay in the magnetic field lvlt /= . Here l is the 

length of a field from the interaction point, t i s  the time and v l is the longitudinal 
component of the velocity. The transversal component directly corresponds to changes in 

the azimuthal angle. According to [36] equation (28.40) RBzpt ×××= 3.0 , there z is the 

charge of the particle in the units of the electron charge, B is magnetic field in tesla and R 
is the curvature of the track in transversal plane. 
 Let us call the length of the arc at Fig. 12—1, right as a. Then this length can 

be calculated as Q×=×=×=×= tgl
v

v
l

v

l
vtva

l

t

l

tt , where Q is the polar angle. As one can 

see from the picture the changes in the φ angle is exactly equal to the angle a. Knowing 
the length of arc a and the curvature R we can calculate this angle: 

Q×

×××
=

Q×Q×

×××Q×
=

××
×

Q×
==

cos

3.0

cossin

3.0sin3.0

1 p

lBz

p

Bzl

p

Bztgl

R

a

t

a . 

 For the case of central going particles, the situation is slightly different, since 
the full track lies in the magnetic field, and the time inside the field is determined not by 
the variable l, but related to the radius r of the magnet. Geometrically one can build a 
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triangle, based on Fig. 12—1 with two sides of length R, the angle a in between and with 

the third side being of length r. So ÷÷
ø

ö
çç
è

æ

Q××

×××
×-=×-=

sin2

3.0
cosa2)

2
cos(a2

p

Bzr
R

r ppa . 

 
The variables are exactly the same as before. 
 In these formulas we know all the variables. In principle it is possible to take l 
and r from documentation, but it is much easier to take it from data or MC: for example 

from reaction +® pdpp  at small energies, where the angular corrections for deuteron 

are large. We took it from MC 0953.0=l  [m] and verify with data below. 
 

 
Fig. 12—2 Planarity of particles in FD from +® pdpp  reaction. Left: before angular 
corrections. Right: after. 
 
In the ideal case the planarity in a binary reaction should be p. Due to resolution it is not 
a d-function but a Gaussian. One clearly sees that the angular correction improves the 
data a lot. 
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