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Abstract

Modelling bending energy in a consistent way is de-
cisive for the realistic simulation of cloth. With ex-
isting approaches characteristic behaviour like fold-
ing and buckling cannot be reproduced in a phys-
ically convincing way. We present a new method
based on a corotational formulation of subdivi-
sion finite elements. Due to the non-local nature
of the employed subdivision basis functions a C!-
continuous displacement field can be defined. It
is thus possible to use the governing equations of
thin shell analysis leading to a physically accurate
bending behaviour. Using a corotated strain ten-
sor allows the large displacement analysis of cloth
while retaining a linear system of equations. Hence,
known convergence properties and computational
efficiency are preserved.

1 Introduction

Physically-based modelling has become the de facto
standard in cloth simulation. For dynamically de-
formable surfaces, mass-spring systems continue to
be the most widely used simulation technique in
computer graphics. The popularity of this ap-
proach is due to the computational efficiency and
easy implementation. While these methods already
provide some parameters with physical interpre-
tation like spring stiffness or damping coefficient
they still incorporate important drawbacks when it
comes to accurately reproducing specific material
behaviours. Because of the inherent discretisation
dependence homogeneous materials cannot be sim-
ulated consistently. Moreover, modelling volume
conservation or transverse contraction is not possi-
ble without using further non-physical forces.

For authentic material mapping and hence re-
alistic and reliable draping behaviour of cloth, as
required e.g. by the textile community, one must
necessarily resort to continuum mechanics. Tech-
niques from this field are known to be computa-
tionally more expensive since they usually require
the numerical solution of partial differential equa-
tions systems. When the first methods based on
continuum mechanics were introduced to computer
graphics (see e.g. Terzopoulos [TPBF87]) this was
an essential disadvantage. However, with growing
computational power available these solutions al-

low simulation at interactive rates even on standard
PC hardware. The advantages offered by these
methods are manifold: material behaviour can be
reproduced accurately and independent from dis-
cretisation throughout a broad range of resolutions.
Since these approaches originate from engineering
sciences, tools and techniques from the thoroughly
studied field of computational mechanics can be ex-
ploited. Generally speaking, each continuum for-
mulation results in a set of partial differential equa-
tions (PDEs). Subsequently, this system has to
be discretised in space and time. The spatial dis-
cretisation is usually carried out by means of fi-
nite differences (FDM) or finite element methods
(FEM). FDMs are usually faster and easier to im-
plement but are essentially limited to rectangular
discretisations. With FEMs these complications do
not arise. While this approach is computationally
more expensive, according to Hauth [Hau04] an ef-
ficient implementation leaves only a factor roughly
between two and three. This, however, has to be
weighted against the increased precision and versa-
tility offered by the FEM in comparison to classi-
cal mass-spring systems. A competitive FEM im-
plementation for cloth simulation was recently pre-
sented by Etzmuss et al. [EKS03] who used a linear
plane-stress assumption in conjunction with a ro-
tation invariant strain formulation.

While there has been some effort spent on pre-
cisely reproducing the in-plane forces, few existing
models are concerned with an accurate and con-
sistent way of modelling bending energy. Never-
theless, the characteristic folding and buckling be-
haviour of cloth highly depends on bending prop-
erties. The reason for these difficulties is, how-
ever, not a lack of physical basis. From the field
of engineering, the thin plate equations are known
to be an adequate approach to this problem. Al-
though common to computer graphics from fair sur-
face design or variational modelling [WW98] they
have not yet been successfully applied to cloth sim-
ulation. This again is due to the fact that the
associated minimisation problem includes 4th or-
der derivatives with respect to the displacements.
A corresponding finite element approach therefore
requires a C'-continuous displacement field. The
main problem with this requirement is to guaran-
tee continuity across elements which usually neces-
sitates the use of additional variables (e.g. slopes).
Recently, Cirak et. al. [COS00] elegantly solved



this problem through the introduction of subdivi-
sion basis functions to finite element analysis. By
applying these techniques to cloth simulation we
obtain very fine detailed wrinkles as well as the
typical folds appearing on sleeves of garments (cf.
Figure 1). Hence, this is a promising way to incor-
porate the physical basis for bending models into
the framework of cloth simulation with finite ele-
ments.

Figure 1: Different types of folds generated by
our method illustrated on a fabric cylinder. Left:
Catenary-shaped folds due to gravitational forces.
Middle: Diagonal folds resulting from torsional de-
formation at one end. Right: Buckling due to com-
pressive deformation.

2 Related Work

Cloth Simulation Throughout the last two
decades there has been a lot of interest in cloth
simulation and animation. A complete discussion
of the relevant work is, however, beyond the scope
of this paper and the reader is therefore referred
to the textbook by House and Breen [HB0O] or the
overview compiled by Ng and Grimsdale [NG96]
and Volino et al. [VCMTO05].

In the following, we classify the previous work
relevant to the presented approach into different
categories.

FEM Finite element methods have not seen
much attention in cloth simulation — at least not
in computer graphics. Most of the existing ap-
proaches are based on the geometrically exact thin
shell formulation presented by Simo et al. [SFR&9].
Eischen [EDC96] departs from the fully nonlin-
ear theory and applies it to cloth simulation us-
ing quadrilateral, curvilinear elements. A Newton-
Raphson procedure is used to solve the resulting
nonlinear equations. Because of the buckling be-
haviour of cloth which can lead to divergence in
the algorithm an adaptive arc-length control is
used. A different approach is taken by Etzmuss

et al. [EKS03] who presented a linear finite ele-
ment approach based on a plane-stress assumption.
Bending is treated separately from in-plane defor-
mation while a corotational strain formulation is
used to account for arbitrary rigid body transfor-
mations. The resulting equation system is solved
using an efficient implicit time integration scheme.
Cirak et al. [COS00] use the formulation of [SFR89]
to derive equilibrium equations. They introduce
a new kind of element based on subdivision ba-
sis functions. Unlike former FE formulations C!-
continuity is ensured through the nonlocal nature
of the element shape functions while retaining lin-
earity in displacements. The method was later ex-
tended to the finite deformation range using non-
linear theory [CO01, GCSO99]. This approach
which was originally intendend for static analysis
is, along with extensions to dynamical problems,
taken as a basis for this work.

Corotational Formulation The extraction of
the rotational part from the displacement field
used in [EKS03] was already treated by Mller et
al [MDM™'02] who used a warping heuristic. Using
the geometry in the deformed state, local frames
are computed per vertex and used to construct the
rotations. However, due to the inaccuracy of this
method occuring ghost forces have to be treated
separately. A more precise method was presented
by Hauth et al. [HS04] who used the polar decom-
position of the deformation gradient. While the
latter work proposes an interative solution for the
3D case, Etzmuss et al. use a direct approach for
the simpler 2D problem. In our approach, the rota-
tion field is extracted in a way similar to [EKS03],
allowing stable treatment of arbitrarily large rigid
body transformations.

Bending Models Most of the existing cloth
simulation techniques use an angular expression
to model bending energy or forces. Breen et
al. [BHW94] use the linear beam theory relating
bending moment to curvature. Curvature is ap-
proximated by fitting a circle to the three points
defined by two incident edges. A biphasic expres-
sion in terms of the enclosed angle is then used
for approximation. Volino et al. [VCMT95] use
a similar approach but rely on the dihedral angle
formed by two neighbouring triangles. Bridson et



al. [BMF03] identify an independent bending mode
that is required to not affect rigid body transfor-
mations and in-plane deformations. The directions
and relative magnitudes for a basic bending ele-
ment consisting of two neighbouring triangles are
thus derived. Grinspun et al. [GHT03] use a dis-
crete mean curvature approximation for a sound
definition of bending energy for flexible shell-like
objects. Because the gradient computation is in-
tricate the use of automatic differentiation is sug-
gested. Choi and Ko [CK02] propose a bending
model simultaneously accounting for compression
and buckling. Specific assumptions on the post-
buckling state and associated energy lead to the
derivation of bending forces.

In this work, bending energy is modelled using
the sound physical formulation of thin shell equa-
tions. Instead of artificially separating bending
from membrane behaviour, deformation is treated
consistently.

2.1 Overview and Contributions

In this paper we present an approach to cloth sim-
ulation which models both membrane and bending
energy in a consistent way. The physical basis for
this method are the Kirchhoff-Love thin shell equa-
tions which essentially combine the theory of elastic
membranes with the Kirchhoff thin plate analysis.
The approach proposed by Cirak et al. is extended
to account for arbitrary rigid body transformations.
Through the use of a corotational strain formula-
tion this is achieved while preserving the linearity
of the approach and thus retaining the associated
advantages in convergence and computational effi-
ciency. In addition, we present a simple method
to incorporate various boundary conditions in the
context of an implicit numerical solver.

3 Physical and Mathematical
Modelling

In this section we will briefly describe the physi-
cal and mathematical background necessary for an
understanding of our method. Throughout the re-
mainder of this work Greek indices will take the
values 1 and 2, Latin indices range from 1 to 3 and
a comma denotes partial differentiation. Addition-
ally, the summation convention is assumed [Bar89).

3.1 Notions
chanics

from Continuum Me-

A deformable solid in its current state is described
by its configuration mapping

0: 0 —R3>, (1)
where Q C R? is its parameter domain. It is com-
mon to write this in terms of the rest state ¢ and
a displacement field u as

(2)

where in the latter equation we assumed that the
rest state mapping is simply the identity. Let
V1 - Vo be the scalar product of two elemental vec-
tors v; = p; — q in the rest state. Note that these
vectors are related to their counterparts in the cur-
rent configuration via

p=¢p+u=1id+u,

3)

A general deformation measure can now be derived
as the difference of scalar products in the rest and
current state:

(Vi) = p(Pi) — »(q) .

V1 -Vy — \_/1 . \_72 = \71 . (VQOTVQO - id)\?g. (4)
Using eq. (2) we can identifiy from eq. (4) the
symmetric Green strain tensor as

1
eq = i(V(pTVLp —id)

1
= 5(vuT + Vu + Vu ' Vu) . (5)
To investigate the internal forces related to a state
of strain inside a deformable solid we let II denote
its total energy

I=v+w (6)
with elastic strain energy U and potential energy
W due to applied forces. The strain energy is given
in terms of the displacement field u as

U= /Qa(u) co(u) d2 (7)

where ¢ is the symmetric Cauchy stress tensor
which is related to strain through a material law

o=Cle) . (8)



In stable elastic equilibrium situations the total en-
ergy must be at a minimum [ZT00]. Mathemati-
cally, this can be reformulated by setting the first
varitation of energy to zero, i.e. 6II = 0, which
yields the virtual work equation:

/gzée:C(s)dQ—/S)aufdQ
+/Q5upud§z:o, )

where the last term on the left hands side accounts
for inertial forces. This equation constitutes the
basis for the subsequent finite element discretisa-
tion.

3.2 Kirchhoff-Love Thin Shell Equa-
tions

We will now provide a quick glance at the
Kirchhoff-Love shell theory. For a detailed discus-
sion of the mechanics of thin shells the reader is
generally referred to [WT03, COS00, SFR&9]. If
no explicit reference is made, analogous formula-
tion of the following equations are assumed for the
initial configuration, too.

In the Kirchhoff-Love theory of thin shells the
configuration mapping (1) is expressed in terms of
the mid-surface parametrisation x(0', 62) (see Fig-
ure 2) as

p(0,6%,6°) =x(0',6%) + 0°a3(6",6%) ,  (10)
where 6% denote curvilinear coordinates and a® is
the director field normal to the surface. In analogy
to eq. (2) we write

x(01,60%) = %(6*,6%) +u(0',0%) .  (11)

From this, tangential surface basis vectors can be
defined as
(12)

a, = X,q -

Moreover, the covariant tangent base vectors are
given through differentiation of the configuration
mapping as

Ba = Pa = Aa + 03a3,a (13)
from which the surface metric tensor is derived as

Gij = 8i * ;- (14)

v @
1: A

g

Figure 2: The shell’s mid-surface in its reference,
initial, and current configuration.

Following eq. (5) this leads to the definition of the
Green strain

1 _
e = (955 = 9i) = @iy + 0’6, (15)
where « and 3 are membrane and bending strains,
respectively. In the Kirchhoff-Love theory, the di-
rector ag is assumed to stay normal to the surface,

straight and unstretched:

ae — a] X ag
3_‘31X32‘ '

(16)
Consequently, we have azg = aq3 = 0. The strains
then simplify to

1 _
Qog = i(aa -ag —a, -ag)

604/3 = (E_la,ﬁ -ag — Aq g3 33) .

Departing from a, = X, + u, and neglect-
ing nonlinear terms, this can be recast to an ex-
pression which is linear in displacements [COS00,
eq.(21),(22)]. Resultant membrane and bending
stresses follow as

ov

ov
mP = ,
aﬁa,@’

nh=_——
aaag ’

(17)

where U is the strain energy density. The particular
form of ¥ depends on the material law used. In
this work we used a linear isotropic stress-strain
relationship which leads to

o=Ce, (18)
where C can be written in terms of the Lam coeffi-
cients A and p as Cijrt = Adij0k + 210051



3.3 Strain measures

Introducing the deformation gradient F' as

99
eq. (5) can be alternatively written in the form

1

¢ = 5(FTF —id) (19)

(see [BW97]). Via polar decomposition F' can be

split into a rotational part R and a pure deforma-

tion U as F' = RU. From this, it can be seen that

€% is invariant under rotations since
FTF=UTRTRU =UTU (20)

due to the orthogonality of R. The linearisation of

the Green strain tensor € yields the Cauchy strain
tensor

1

eC = §(VUT + Vu). (21)
This tensor is linear in displacements but not ro-
tationally invariant any more. However, if the ro-
tation field R is known, the corotational strain for-
mulation can be used and we obtain the rotated
linear strain tensor:

£CR(p) = CR(RT ), (22)
How to determine this rotation field is crucial for

our calculation and will therefore be detailed in sec-
tion 4.3.

4 Subdivision-Based Finite

Elements

This section explains how to construct the
subdivision-based finite element solution of the vir-
tual work equation (9). Although well known to
computer graphics, the concept of subdivision is
briefly recapitulated before we proceed to the ac-
tual discretisation. The extraction of rotations
from the displacement field is detailed subsequently
and finally, the incorporation of boundary condi-
tions is discussed.

4.1 Subdivision Surfaces

Subdivision is a process for constructing smooth
limit surfaces through successive refinement of an
initial control mesh. Basically, this procedure con-
sists of two steps: first, the geometry is refined
through introduction of new nodes and second, new
nodal positions are computed. For a discussion of
the diversity of subdivision schemes the reader is re-
ferred to [ZS00] for an overview. Here, we limit our
attention to Loop’s subdivision scheme which was
also used by Cirak et al [COS00]. Loop’s scheme
is approximating, i.e. the nodes of the mesh at
a coarser level are not contained in meshes at finer
levels. However, besides the usual C'-continuity in-
herent to subdivision surfaces the curvature is Lo-
or square integrable [RS00] — a feature not offered
by interpolating schemes. Because of this property,
the subdivision basis functions can be used as shape
functions for the FE solution of the thin shell equa-
tions. In each step of this subdivision method, the
positions of newly inserted nodes as well as those of
old nodes are computed through a linear combina-
tion of vertices from the coarse mesh determined by
the so called subdivision mask. In the case of Loop

b,

Figure 3: Subdivision masks: a) Edge mask to de-
termine new vertex. b) Mask for vertex with va-
lence N.

subdivision only the immediate neighbours (i.e. the
1-ring) of a vertex have influence on this computa-
tion which gives rise to efficient implementation.
The corresponding vertex masks for computing the
new positions are shown in Figure 3. The subdivi-
sion process can be considered as a linear operator
and consequently be written in matrix form. It is
therefore possible to directly derive properties like
derivatives of the limit surface using an Eigenanal-
ysis of the subdivision matrix. This yields simple
expressions that can be computed efficiently (see
Figure 4). Besides the evaluation at the nodes these
quantities can also be determined at the interior of
the triangulation. The key observation is that in
regular settings (i.e. when the involved vertices all
have valence 6) Loop’s scheme leads to generalised
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Figure 4: a): Limit mask for a vertex of valence N.
b) and c¢): Masks for associated tangent vectors.

quartic box splines. In this case surface porperties
in one triangle (or patch) are completely defined
through the 12 nodal values in the 1-neighbourhood
(see Figure 5) and the associated box spline basis
functions NV;. For instance, if we denote by 8¢ the

=

Figure 5: Left:1-neighbourhood of a regular patch
consisting of 12 nodes. Middle: Irregular patch
with one vertex of valence 5. Right: After a sin-
gle local sudivision step the barycenter (depicted in
red) lies again in a regular neighbourhood.

local patch coordinates, the limit surface can be
expressed as

x(0',62) ZN (6',6%)x;
where x; are the nodal positions of the underlying
mesh. In the same way, the displacement field in-

terpolation is obtained from the nodal values. Ad-
ditionally, differential quantities can be determined

as
ZNM (0", 6%)x

If the patch has an 1rregular vertex the box spline
assumption no longer holds and thus interior pa-
rameter points cannot be evaluated. However, since
a subdivision step does not alter the properties of
the limit surface, we can simply apply further sub-
division steps until the point of interest lies inside
a regular patch. We point out that for the fol-
lowing finite element scheme only quantities at the
barycenter of the triangles are needed for integral
evaluation. Furthermore, if we require that in the
initial mesh there is at most one irregular vertex per
triangle, one subdivision step is always sufficient

(23)

«(04,0%) = (24)

because, thereafter, the barycenter of the irregu-
lar patch lies in a regular subpatch (see Figure 5).
This process of subdivision and evaluation of the
newly generated patch can again be expressed as a
sequence of matrix multiplications. Though suffi-
cient for this case, the presented method could be
extended to quantity evaluation at arbitrary pa-
rameter values using the technique proposed by
Stam [Sta99].

With this powerful interpolation scheme at hand
we can now proceed to the actual finite element
discretisation.

4.2 Spatial Discretisation

The spatial discretisation of the underlying
PDE has been described in detail by Cirak et
al. [COS00]. For completeness, we simply men-
tion the relevant formulae and refer the interested
reader to the original work.

With the definition of the membrane and bend-
ing strains and assuming a linear elastic material
(eq. (18)) the internal energy from eq. (9) can be
rewritten as

/Q S C(e)dS =

/Q (6a"Hpo + 68THLB) d,  (25)

where H,,, and H; are matrices corresponding to
the membrane and bending part of the material
law. Due to the linear strain interpolation, we have

N
a0, 0%) = ZMi(Gl,Qz)ui,

ZB (0',0%)u

for matrices M; and B; relating nodal displace-
ments u; to membrane and bending strain. This
gives rise to a formulation of the complete system
in the classical form of

B0, 0%) =

Ku=f (26)

with vectors of nodal displacement u and forces
f. The stiffness matrix K can be assembled in the



usual element-wise fashion

K;; = Z/Q (M7H,,M, + BTH,B;,) dQ
=> K.

We point out that due to the compact support of
the shape functions, only a finite number of ele-
ments have a non-zero contribution to K;;. This
leads to a sparse matrix system for which efficient
solvers are available. Moreover, the integrals in eq.
(27) can be evaluated using numerical quadrature.
Although more accurate schemes are possible, we
follow Cirak et al. and use a one-point quadra-
ture rule at the center of the triangles. As they
are, the above equations are only valid on regu-
lar patches. However, as mentioned above, in ir-
regular settings one subdivision step is sufficient
for evaluations at the barycenters. For a patch
with irregular vertex of valence N let S denote the
((N +12) x (N 4 6))-matrix of the subdivision op-
erator which transforms the IV + 6 vertices of the
original patch to the corresponding N + 12 vertices
of the subdivided patch (see [COS00]). Further, let
P be the (12 x (N + 12)) matrix of the projection
operator extracting the 12 vertices corresponding
to the central regular subpatch (Figure 5, right).
Then we can write

(27)

Kj; = /Q [sTpT (MTH,,M; + BTH,B;) PS| d

and thus simply include the conceptual subdivision
step into the stiffness matrix.

For dynamical reasons inertial as well as viscous
forces have to be included which leads to the second
order ODE

A, +Du, + Ku=f, (28)
where A is the diagonal nodal mass matrix obtained
via mass lumping and D is the viscosity matrix. We
use a viscous tensor proportional to the elasticity
tensor, D = vC, which is derived from a Kelvin-
Voigt material model [HGS03]. For the numerical
solution, eq. (28) is transformed into a set of cou-
pled first order ODEs. The implicit time integra-
tion is then carried out using a conjugate gradient

scheme with the nodal velocities as primary un-
knowns (see e.g. [EKS03]).

4.3 Corotational Formulation

Provided the deformations stay small throughout
the simulation they can be approximated using a
linear displacement formulation. While this is a
reasonable assumption for the in-plane deformation
(i.e. stretching and shearing) of cloth, any practi-
cal application will most likely lead to large bend-
ing deformations and rigid body transformations,
including rotation. Since the Cauchy strain is not
rotationally invariant, one has to extract the rota-
tions from the displacement field as already men-
tioned in eq. (22). This paragraph describes this
process using a polar decomposition of the defor-
mation gradient F'.

With the definition of the configuration mapping
(10) the deformation gradient can be written as

_Op Oy

“og 00

®g' = [as + a3 4| 8" +a3 g’

where g° are the contravariant basis vectors which
are related to their covariant counterparts via g -
g; = 0;; (see [WT03]). In this form, the deforma-
tion gradient is a (3 x 3)-tensor and its polar decom-
position would necessitate the use of an iterative
scheme [HS04]. In our case, we want to further ex-
ploit the inherent two-dimensionality of the prob-
lem. The assumed kinematic restrictions on the
shell (i.e. that the director remains straight, nor-
mal and unstretched) effectively render the decom-
position problem two-dimensional since we have for
the resulting stretch tensor

Ui U O
U= |U;2 U 0 (29)
0 0 1

From eq. (20) we can thus deduce that only the
(2 x 3)-submatrix F will be relevant for the compu-
tation of U2. We therefore compute the principal
stretches in the 2D subspace and find the rotation
R which transforms the element from the initial
(flat) configuration to its current position by
R=FU', (30)
where U is the upper (2 x 2) submatrix of U.

In the presented approach, the deformation gra-
dient is not constant over an element and thus, the-
oretically, rotations might be different for each ver-
tex. However, we found that using the rotation



obtained for the barycenter of the patch for all the
vertices involved was sufficient in all of our tests.
Only in the case of very inhomogeneous deforma-
tion this might lead to noticeabe approximation er-
rors which, again, did not appear in practice.

4.4 Boundary Conditions

The evaluation of integrals (appearing in equation
(27)) for elements on the border of the domain re-
quires special versions of the subdivision rules. To
avoid the treatment of these special cases Cirak
et al. suggest the use of a method proposed by
Schweitzer [Sch96] which consists in introducing
a layer of artificial vertices around the boundary.
The positions of these vertices are calculated from
their original neighbours such that the application
of the normal subdivision rules effectively repro-
duces the behaviour of the border rules. When im-
posing boundary conditions, i.e. constraints on the
boundary nodes, the artificial vertices have to be
taken into account. The case of a fixed bound-
ary with rotations allowed (simply supported) is
depicted in Figure 6 (for an in depth discussion
of boundary conditions see [GT04]). In this case

U,= U+ U, u,

Figure 6: Connectivity of an artificial vertex wuy
around the boundary (shown in red). The displace-
ment of uy is determined by its local neighbours. In
the example, the border is fixed while allowing ro-
tations.

the displacements of both the artificial and the ac-
tual boundary vertices are constrained. However,
the difference between these two vertex types is
that the constraints of the boundary vertices are
fizxed while those imposed on the artificial vertices
are linearly dependent on the input variables and
thus vary when the latter change, too. Now, if the
equation system arising from (28) is to be solved
using an iterative scheme like the conjugate gradi-
ent method, this interdependence between the in-
put variables actually hinders the convergence and
might even lead to divergence. Fortunately, this
inconvenience can be circumvented through elimi-
nation of the boundary vertices from the equation

system. Clearly, simply erasing the correspond-
ing rows and columns from the system matrix K
would not be sufficient since the boundary condi-
tions would thus be violated. The right choice is
to distribute the columns corresponding to the ar-
tificial vertices to the columns associated with the
original nodes. This is carried out through elemen-
tal matrix transformations, i.e. additions and sub-
tractions of columns, that are guaranteed to neither
change the solution of the system nor its behaviour.
Through these manipulations, the resulting matrix
is no more symmetric and has to be symmetrized
by applying the same transformations to its rows.
Once these adjustments have been made the sys-
tem matrix can be projected onto the actual solu-
tion space determined by the displacements of the
original vertices.

5 Results

In this section we present results obtained from
our corotational subdivision-based finite element
method for cloth simulation. In all of the exam-
ples, the visual quality resulting from the consistent
bending model presented above can be seen. Fig-
ure 7 shows an example common for cloth simula-
tion: a piece of cloth is fixed in space at two corners
which have rotational degrees of freedom. It swings

Figure 7: Snapshots from swinging cloth.
freely and exhibits folds due to both weight and
inertial forces which correspond to the fixation at
both ends of the cloth. Besides the usual dynamic
test cases we additionally chose fabric cylinders as
basic testing primitives. This is because cylindri-
cal shapes are frequently encountered with clothes,
e.g. the sleeves of a sweater can be reasonably ap-
proximated in this way. Thus, we have a method
to investigate the quality of our approach with re-
spect to static buckling and folding situations. We
believe that the capability of modelling these kinds
of features is decisive for any cloth simulation tech-
nique and we invite the reader to consider the re-
sults produced by our method (see Figure 1,8,9,11).



In addition to these basic experiments we validate
our method through the application to standard
clothes like a sweater or a pair of trousers.

In the first example, a fabric cylinder is sub-
jected to gravitational loading and shows the ex-
pected catenary-shaped folds (see Figure 1, left).
The cylinder is then wrung, showing distinct di-
agonal folds (Figure 1, middle) and finally com-
pressed, neglecting forces due to gravitation (Fig-
ure 1, right). The specific folds expected in this sit-
uation are clearly reproduced by our method and
we claim that very similar behaviour can be ob-
served with real fabrics, such as the sleeves of a
sweater. The geometric model used in this exam-
ple consists of 900 faces and is, compared to the
detail of the results, relatively coarse for standard
cloth simulation.

The global shape of the results obtained from
our simulation is undoubtably due to the consis-
tent way of modelling bending energy. Using the
Loop subdivision basis functions, it is possible to
capture the deformation behaviour also at a more
global scale while conventional methods are inher-
ently limited to the bending interaction between
single triangles or edges. If fine discretisations are
used, the latter approaches can possibly account
for small detailed wrinkles but often lack globally
convincing appearance. The relative discretisation
independency of our method can also be seen in
Figure 8 where we have chosen different material
parameters for fabric thickness and stretch resis-
tance. It is interesting to note, that the number

Figure 8: Front view of twisted fabric cylinders
made of different materials. Left: a thin, middle: a
ten times thicker material. Right: as in the middle
but with a ten times stronger stretch resistance. In
all of the examples, the same mesh was used.

of diagonal folds appearing in consequence to the
torsional deformation does obviously only depend
on material parameters and not on the discreti-
sation, since we used the same mesh in all three
cases. In fact, this behaviour is not accidental but
derives from the buckling properties of cylindrical

shells [AP04].

In Figures 9 and 11 some snapshots from ani-
mations we produced with our method are shown.
Figure 11 depicts the axial compression of a cylin-
der while 9 shows a cylinder subjected to torsional
deformation. In both examples, one can clearly no-
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Figure 9: Torsional deformation of a cylinder.
tice the forming of folds starting with fine wrinkles
which merge into bigger folds.

Figure 10: Fabric cylinders under gravitational
loading with different material parameters. Right:
Mesh used in computation.

Using different material parameters for the un-
derlying elastic properties of the deformable objects
consistently yields different deformation behaviour
(see Figure 10). Compare for example the buck-
led shape shown in Figure 1 where we used mate-
rial parameters corresponding to cotton-like cloth
(E ~ 5000N/m?) and the results depicted in Fig-
ure 11, where parameters leading to a behaviour
similar to thin flexible metal were used (A = 10°).
In the second part we verified our approach with

Figure 11: Sequence taken from an animation of
axial compression of a cylinder

common garments suchs as a sweater or a pair of
trousers. The trousers and the sweater consist of
1600, resp. 1000 vertices. Both are fixed at the
ends of the extremities and are subjected to grav-
ity (see Figure 12). Here, naturally appearing folds



Figure 12: Sweater under gravitational loading,
Top left: view from above and Bottom left: bot-
tom view. Right: a pair of trousers pinned at the
legs is hanging vertically.

and wrinkles are obtained and catenary folds as
well as buckling patterns can be observed. Despite
the rather coarse discretisation of the meshes used
in this example detailed features and, at the same
time, convincing global appearance can be repro-
duced without any need for post-processing or non-
physical intervention.

6 Conclusion and Future

Work

We have proposed a method for consistently mod-
elling membrane and bending energies arising in the
simulation of thin, flexible objects such as cloth.
With the advent of subdivision-based finite ele-
ments, cloth simulation can now be founded on the
physically sound basis of the thin shell equations. A
novel achievement of the presented work is the com-
bination of this new paradigm with a corotational
strain formulation allowing for a completely lin-
ear system which, in turn, leads to efficient imple-
mentation. The presented examples clearly demon-
strate the advantages of our method above previous
approaches: when phenomena highly dependent on
bending properties are encountered, like e.g. the
buckling of fabric, usual methods fail without fur-
ther non-physical intervention while our approach
shows the expected behaviour. Furthermore, com-
mon post-processing steps can be integrated in a
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very elegant way, if desired. Since the employed
subdivision basis leads to smooth limit surfaces,
the geometry can be locally evaluated and refined
to the desired degree.

A limitation of the presented method which is,
in fact, inherent to all applications based on ap-
proximating subdivision schemes is that the limit
surface does not interpolate the vertices of the con-
trol mesh. Nevertheless, it may be doubted that the
approximation of cloth as a piecewise linear surface
is more sensible.

We believe that our method has strong argu-
ments when it comes to trading accuracy for com-
putational efficiency: while current computation
times are certainly beyond the interactive range
the physical fidelity and versatility offered by this
method can be of great interest to anyone wishing
to reproduce fabric behaviour in an accurate way.

To be really competitive with existing precise so-
lutions a robust collision and interference detection
scheme for subdivision surfaces is indispensable for
future work (cf. [GS01]). A closer investigation of
our solution combined with different material types
is interesting, too. Finally, the application of multi-
resolution numerics is almost an obvious extension
(cf. [GTS02]) which motivates expectations on a
boost in computational efficiency.
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