Versuche zur

Darstellung

und

Test

enantioselektiver

Hydrierkatalysatoren

Dissertation

der Fakultät für Chemie und Pharmazie der Eberhard-Karls-Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften

2005

vorgelegt von Armin Rau

Versuche zur

Darstellung

und

Test

enantioselektiver

Hydrierkatalysatoren

Dissertation

der Fakultät für Chemie und Pharmazie der Eberhard-Karls-Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften

2005

vorgelegt von Armin Rau

Tag der mündlichen Prüfung:

Dekan:

1. Berichterstatter:

2. Berichterstatter:

2005-09-16

Prof. Dr. Stefan Laufer Prof. Dr. Ulrich Nagel Prof. Dr. Hermann A. Mayer Die vorliegende Arbeit wurde am Institut für Anorganische Chemie der Eberhard-Karls-Universität Tübingen unter Leitung von Herrn Prof. Dr. Ulrich Nagel durchgeführt. Mein besonderer Dank gilt:

- Herrn Manfred Steimann für seine ständige Hilfsbereitschaft um die Lösung von alltäglichen und nichtalltäglichen Problemen,
- Frau Heike Dorn, Angelika Ehmann, Dr. Angelika Winter, Dr. Michaela Reginek, Herrn Dr. Klaus Eichele, Dominik Joosten f
 ür die NMR-Messungen,
- Frau Barbara Saller und Elke Niquet für die IR-Spektren,
- Herrn Bartholomä und Müller für die Massenspektren,
- Frau Roswita Conrad und Herrn Dr. Hans-Dieter Ebert für die Unterstützung bei der "in Württemberg erfundenen Bürokratie",
- Frau Eveline Wachendorfer für die breite Unterstützung bei organisatorischen Dingen der Lehre,
- Frau Elwine "Elli" Oster, der guten Seele aus dem 6. Stock und der anorganischen Anfängerpraktikas, für viele Hilfen und Unterhaltungen,
- Meinen Arbeitskollegen Herrn Manfred Steimann, Dr. Murat Ciftci, Dr. Dragan Stanojevic, Dr. Karl Jaser, Arne Siessegger und Claus Diez für das sehr gute und fruchtbare Arbeitsklima,
- Herrn Dr. Michael Henes, Dr. Stefan Fuchs, Dominik Joosten, Torben G\u00e4dt, Wolfgang Leis, Frau Victorija Joksimovic und Dr. Michaela Reginek f\u00fcr eine gute Zeit im Anorganischen Institut und der Lustwartei.

1 Inhaltsverzeichnis

1	Inhaltsv	/erzeichnis	i
2	Einleitu	ng	1
	2.1 Allg	jemeines	1
	2.1.1	Chiralität	1
	2.1.2	Entstehung der Chiralität	2
	2.2 Ziel	e dieser Arbeit	7
3	Allgeme	einer Teil	9
	3.1 Rhc	odium-Phosphit Katalysatoren	9
	3.1.1	Allgemeines	9
	3.1.2	Rhodium-Phosphor Komplexe in der Katalyse	9
	3.1.3	Halpern Katalysezyklus	9
	3.1.3.	.1 Katalysatorbildung und Solvens-Komplex	. 11
	3.1.3.	.2 Substratkoordination	. 12
	3.1.3.	.3 Oxidative Addition des Wasserstoffes	. 14
	3.1.3.	4 Der σ-Alkyl-Komplex	. 16
	3.1.3.	.5 Lösungsmittel	. 17
	3.1.3.	.6 Ligandenauswahl	. 17
	3.1.4	Darstellung	. 18
	3.1.4.	.1 Ligandendarstellung	. 18
	3.1.4.	.2 Kopplung mit dem Rh-Metall-Precursor	. 23
	3.1.5	Test der hergestellten Rhodium Katalysatoren	. 24
	3.1.5.	.1 Allgemeines	. 25
	3.1.5.	2 Ergebnisse mit dem Substrat: Acetophenon in MeOH	. 28
	3.1.5.	.3 Substrat: Acetamidozimtsäure	. 32
	3.1.5.	4 Substrat: Acetamidozimtsäure in 2-Propanol	. 34
	3.1.5.	.5 Substrat: Acetamidozimtsäure in verschiedenen Lösungsmitteln	. 34
	3.1.6	Auswertungen	. 35
	3.2 Rut	henium-Phosphit Katalysatoren	. 39
	3.2.1	Allgemeines	. 39
	3.2.2	Darstellung	. 46
	3.2.2.	.1 Ligandendarstellung	. 46
	3.2.2.	.2 Ru-Metall-Precursor	. 46
	3.2.2.	.3 Katalysatorvorstufe	. 48
	3.2.3	Test der hergestellten Ruthenium Katalysatoren	. 49

i

	3.2.3.	1 Substrat: Acetophenon	50
	3.2.3.	2 Substrat: α-Acetamidozimtsäure	53
	3.2.3.	3 Substrat: Acetamidozimtsäure in 2-Propanol	54
3.	.2.4	Auswertungen	55
3.3	Ver	gleich maximaler ee-Werte über alle getesteten Systeme	58
3.4	Carl	pen-Liganden für die asymmetrische Synthese	59
3.	.4.1	Allgemeines	59
3.	.4.2	Carbene in der Katalyse	61
3.	.4.3	Asymmetrische Katalyse	62
3.	.4.4	Darstellung	63
	3.4.4.	1 Imidazolsynthese	63
3.	.4.5	Modellverbindung für den Pyrrolidin backbone	66
4 E	xperim	enteller Teil	69
4.1	Allg	emeine Bemerkungen	69
4.	.1.1	Arbeitstechnik	69
4.	.1.2	Analysen	69
4.	.1.3	Ausgangsverbindungen	70
4.2	Bina	aphthylligand Komplexe	71
4.	.2.1	1,3,5-Trimethyl-2,5-cyclohexadien	71
4.	.2.2	Bi-[Mesityl-di-chloro-ruthenium(II)]	72
4.	.2.3	[h-Mesityl-dichloro-(pyridino)ruthenium(II)]	72
4.	.2.4	Bis-(Rhodiumchlorocyclooctadien)	73
4.	.2.5	(S)-(1,1'-Binaphthol-2,2'-dioxy)chlorphosphin	73
4.	.2.6	(R)-(1,1'-Binaphthol-2,2'-dioxy)chlorphosphin	74
4.	.2.7	(3S,4S)-3,4-Bis-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-a']-S-dinaphtha	lin-
		4-yloxy)-pyrrolidin-1-carbonsäure-tertbutylester	74
4.	.2.8	(3S,4S)-3,4-Bis-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-a']-R-dinaphtha	lin-
		4-yloxy)-pyrrolidin-1-carbonsäure-tertbutylester	75
4.	.2.9	(3S,4S)-3,4-Bis-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-a']-R-dinaphtha	lin-
		4-yloxy)-pyrrolidin-1-carbonsäure-tertbutylester-(1,5-cyclooctadien)-Rhodi	um-
		tetrafluoroborat	76
4.	.2.10	(3S,4S)-3,4-Bis-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-a']-S-	
		dinaphthalin-4-yloxy)-pyrrolidin-1-carbonsäure-tertbutylester-(1,5-	
		cyclooctadien)-rhodium-tetrafluoroborat	76
4.	.2.11	(3S,4S)-3,4-Bis-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-a']-S-	
		dinaphthalin-4-yloxy)-pyrrolidin-1-carbonsäure-tertbutylester-mesityl-	
		pyridino-ruthenium-di-chlorid	77

	4.2.12	(3S,4S)-3,4-Bis-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-a']-R-
		dinaphthalin-4-yloxy)-pyrrolidin-1-carbonsäure-tertbutylester-mesityl-
		pyridino-ruthenium-di-chlorid78
	4.2.13	Katalyse mit (3S,4S)-3,4-Bis-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-a']-
		R-dinaphthalin-4-yloxy)-pyrrolidin-1-carbonsäure-tertbutylester-mesityl-
		pyridino-ruthenium-di-chlorid und (3S,4S)-3,4-Bis-(3,5-dioxa-4-phospha-
		cyclohepta[2,1-a;3,4-a´]-S-dinaphthalin-4-yloxy)-pyrrolidin-1-carbonsäure-
		tertbutylester-mesityl-pyridino-ruthenium-di-chlorid
	4.2.13.1	Substrat Acetophenon78
	4.2.13.2	Substrat α -Acetamidozimtsäure
	4.2.14	Katalyse mit (3S,4S)-3-4-Bis-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-a']-
		R-Dinaphthalen-yloxy)-pyrrolidin-1-carbonsäuretertbutylester-(1,5-
		cyclooctadien)rhodium-tetrafluoroborat und (3S,4S)-3-4-Bis-(3,5-dioxa-4-
		phospha-cyclohepta[2,1-a;3,4-a']-S-Dinaphthalen-yloxy)-pyrrolidin-1-
		carbonsäuretertbutylester-(1,5-cyclooctadien)rhodium-tetrafluoroborat 80
	4.2.14.1	Substrat Acetophenon
	4.2.14.2	Substrat α -Acetamidozimtsäure
	4.2.15	Bestimmung des Umsatzes der Katalysen 81
	4.2.16	Enantiomerenbestimmung mittels Gaschromatographie
	4.2.16.1	Substrat Acetophenon
	4.2.16.2	Substrat α -Acetamidozimtsäure
	4.3 Carbe	nkomplex-Ligand Katalysatoren82
	4.3.1 N	-Isopropyl-N'-(4-(((isopropylamino)carbothioyl)amino)butyl)-thioharnstoff 82
	4.3.2 1	-Isopropyl-3-[4-(3-isopropyl-4,5-dimethyl-2-thioxo-2,3-dihydro-1H-imidazol-1-
	yl)butyl]-4,5-dimethyl-1,3-dihydro-2H-imidazole-2-thion
	4.3.3 1	,4-Di-(3'-Isopropyl-4',5'-dimethyl-4',5'-dihydroimidazol-2'-yliden)-butan 83
	4.4 Model	lverbindungen
	4.4.1 1	,2-Dibromcyclopentan
	4.4.2 1	,2-Dicyanocyclopentan
	4.4.3 N	-Benzyl-3,4-dicyano-pyrrolidin85
5	Zusamme	nfassung
6	Literaturve	erzeichnis
7	Anhang	
	7.1 Abkürz	zungsverzeichnis
	7.2 Abbild	ungsverzeichnis
	7.3 Tabell	enverzeichnis

2 Einleitung

2.1 Allgemeines

2.1.1 Chiralität

Die Chiralität ist für den wissenden und beobachtenden Menschen eine alltägliche Eigenschaft. Abgeleitet vom griechischen χειρ (Hand) wird die nicht zur Deckung bringende Eigenschaft, bei sonstiger Gleichheit, vieler Gegenstände zum Ausdruck gebracht. Beim Hände schütteln, Schuhe anziehen, beobachten von Kletterpflanzen und Schneckenhäusern, beim Anziehen von Schrauben, überall ist die Chiralität in unserer makroskopischen, direkten Umgebung gegenwärtig.

Im mikroskopisch chemischen Lebensraum wird die Chiralität für die Beschreibung von Molekülen verwendet.

Eingeführt, entdeckt, erklärt und beschrieben wurde dieser Effekt in der Chemie mittels asymmetrisch substituierten Kohlenstoffatomen. In einer achiralen Umgebung unterscheiden sich die beiden Enantiomere physikalisch nur in ihrer Wirkung auf polarisiertes Licht. In chiraler Umgebung weisen enantiomere Produkte häufig unterschiedliche Wirkungen und Reaktionseigenschaften auf. Biologische Vorgänge laufen sehr häufig in einer solchen chiralen Umgebung ab. Daher sind die Wirkungsweisen^[1] von Enantiomeren in einer großen Anzahl von Beispielen sehr unterschiedlich (Siehe Tabelle 1). Die Entwicklungs- und Entdeckungsmöglichkeiten sind längst noch nicht erschöpft.

2.1.2 Entstehung der Chiralität

Die Entstehung der biologisch relevanten Chiralität in der Evolution ist ein umstritten diskutiertes Thema^[2] und bis heute nicht abschließend geklärt. Seit Louis Pasteur die Weinsäure vor 150 Jahren trennte^[3], werden verschiedene Wege und Ideen diskutiert. Ob nun der göttliche Weg oder die wissenschaftlichen Betrachtungen bevorzugt werden, bleibt jedem Menschen selbst überlassen.

Name	Absolute Konfiguration	Biologische Wirkung
Asparagin	R	Süßer Geschmack
	S	Bitterer Geschmack
Deltamethrin	R,R,S	Potentes Insektizid
	S,S,R	Inaktiv
Ethambutol	R,R	Verursacht Blindheit
	S,S	Tuberkulostatisch
Ibuprofen	R	Antirheumatika
	S	150fach stärkere Wirkung
Limonen	R	Orangenaroma
	S	Zitronenaroma
Thalidomid	R	Nicht teratogen
	S	Extrem teratogen

Tabelle 1: Beispiele für die biologische Wirkung verschiedener Enantiomerenpaare

Die theoretischen Ansätze zur Erforschung des Ursprungs^[4-7], basierend auf physikalischen Grundlagen, warten noch auf ihre experimentelle Bestätigung. Meist ist die Dauer der Untersuchungen zu kurz um die Modelle

zu untermauern. Ein naturgetreues Modellsystem zur Selektion von L-Aminosäuren und D-Zuckern muss noch entwickelt werden^[8].

Louis Pasteurs Versuche, mittels Magnetfeldern, rotierenden Gefäßen und Zentrifugen Enantiomerenüberschüsse zu erzeugen, schlugen fehl^[9].

Emil Fischers weitere Untersuchungen beschrieben später die Übertragung von chiralen Informationen. Ein asymmetrisches Molekül übernimmt die Kontrolle zur Erzeugung optisch aktiver Produkte^[10;11]. Dieser Mechanismus wurde 1994 als Schlüssel-Schloß-Prinzip benannt^[12].

Diese Theorie erklärt zwar die Übertragung von Informationen, nicht aber die Entstehung sowie Anreicherung von L-Aminosäuren und D-Zuckern im Laufe der Evolution in Biomolekülen.

Bis 1957 ging man noch davon aus, dass die Natur auf atomarer Ebene symmetrisch ist und die Bevorzugung der L-Aminosäuren und D-Zucker eine zufällige Entwicklung sei. Im frühen Stadium der Evolution sollen die primitiven Lebensformen sowohl über D- als auch über L-Bausteine verfügt haben. Erst im Verlauf hat dann ein Enantiomer zu klaren Vorteilen in der Entwicklung geführt. Die anders bevorzugenden Lebensformen starben aus^[13]. In den 90er Jahren des letzten Jahrtausends wurde die effektivere stereoselektive Bildung von Oligonucleotiden und Polypeptid-a-Helices aus enantiomerenreinen Monomeren untersucht und bestätigt. Aufgrund der dortigen Erkenntnisse kann man davon ausgehen, dass die Homochiralität keinen biologischen Ursprung besitzt^[13;14]. Für die Oligomerisierung von Pyranosid-Nucleotiden ist von Eschenmoser et al. eine Geschwindigkeitsabnahme um 2 Größenordnungen festgestellt worden, wenn eine beliebige D-Einheit durch eine L-Konfigurierte ersetzt wird^[15]. Weitere Versuche zur zufälligen Bildung von Enantiomeren wurden von Agranat et al. und Havinga veröffentlicht. Die spontane Trennung von organischen, racemischen Verbindungen führt zu einem Gemisch enantiomerenreiner Kristalle^[14]. Weiterhin wurde die bevorzugte Kristallisation eines von zwei, sich in Lösung schnell ineinander umwandelnde Enantiomeren am Beispiel des Allylethylmethylphenylammoniumjodid gezeigt.^[16;17]. Die von

3

Bonner et al. bewiesene stereoselektive Adsorption eines Enantiomeren einer racemischen Verbindung auf Quarz könnte als der Ursprung der Homochiralität der Biosphäre gelten.^[18]. Da jedoch auf der Erde gleiche Anteile links- und rechtsdrehenden Quarzes vorhanden sind, kann dieser Mechanismus für die präbiotische Homochiralität nicht herangezogen werden^[19;20]. An dem 1969 in Australien eingeschlagenen Murchison-Meteoriten wurde ein signifikanter Enantiomerenüberschuss an L-Alanin entdeckt. Weiterhin wurden nicht natürliche a-alkylierte Aminosäuren entdeckt. Somit sind extraterrestrische Ursprünge als Ausgangspunkt der Überschussentwicklung von bioorganischen Molekülen denkbar^[21;22]. Es wird angenommen dass, in interstellaren Wolken, die durch circular polarisiertes Licht induzierte asymmetrische Photolyse große Mengen an optisch aktiven, organischen Molekülen erzeugt.

Zahlreiche Versuche, Chiralität durch physikalische Effekte zu erzeugen, führten bis heute nicht zum Erfolg^[2]. 1939 wurden von Radulescu et al. durch linear polarisiertes Licht in einem Magnetfeld niedrige optische Ausbeuten in asymmetrischen Synthesen erreicht. Die Ergebnisse waren jedoch nicht reproduzierbar^[23;24]. Die erzielten Drehwerte sind somit wohl durch zufällig entstandene Enantiomerenüberschüsse entstanden.

Circular polarisiertes Licht (CPL) sollte neben magnetischen Einflüssen in asymmetrischen Synthesen Enantiomerenüberschüsse erzeugen können. Dazu müssen die umzusetzenden Moleküle sichtbares oder ultraviolettes Licht absorbieren. Es lassen sich drei verschiedene Typen von enantioselektiven Umsetzungen unterscheiden, die durch CPL beeinflusst werden können.

Die erste Möglichkeit ist die selektive, resp. bevorzugte Zersetzung eines Enantiomeren. Die Anreicherung eines Kupfertartratenantiomers wurde durch Absorption im roten Spektralbereich erreicht^[25;26]. Für Campher wurden in den 70ern 20%, für *trans*-Bicyclo[4.3.0]-nonan-8-on Ende der 80er Jahre 30% Enantiomerenüberschuss erzielt^[27;28]. Der zweite Mechanismus, der sich durch CPL steuern lässt, ist die photochemische Überführung eines Enantiomeren in sein Pendant. Diese partielle photochemische Enantiomerentrennung wurde zuerst bei einer racemischen Chromoxalatlösung beobachtet. Durch das CPL wird nur ein Enantiomer angeregt. Der angeregte Zustand racemisiert, was eine Anreicherung des nicht anregbaren Enantiomeren zur Folge hat. Die Lösung wies im Laufe der Bestrahlung einen optischen Drehwert auf^[29-32]. Drittens lässt sich mittels CPL aus einem prochiralen Edukt die optisch aktive Verbindung generieren. Nach dem photochemischen Ringschluss eines Diarylethylens, im Beisein von Iod und der anschließenden Oxidation, ergeben sich die mit hohen Drehwerten versehenen Helicene^[33]. CPL regt dabei das cis-Alken in den niedrigst angeregten Zustand an. Dadurch ist die Rotationsbarriere um die Aryl-Ethylen-Bindung verringert und es wird nur eine geringe Energie benötigt damit die Reaktion stattfinden kann^[34].

Im Labor lässt sich CPL leicht herstellen, so dass die Ergebnisse interessante Perspektiven für die Synthese eröffnen. Als Ausgangspunkt für die Erklärung der Homochiralität der Biomoleküle und deren präevolutionären Entstehung muss erwähnt werden, dass nur eine sehr kleine Menge des auf die Erde treffenden Lichts circular polarisiert ist.

Eine andere Erklärung für die Entstehung der Homochiralität der Biomoleküle geht auf eine Entdeckung von Lee und Yang zurück^[35;36]. 1957 entdeckten sie beim radioaktiven Zerfall eine intrinsische Asymmetrie der ß-Strahlungsteilchen. (L)-Elektronen werden gegenüber den rechtsgängigen (R)-Elektronen bevorzugt gebildet. Quantenmechanische Berechnungen ergeben ebenfalls einen Energieunterschied zwischen den Enantiomeren, die Parity Violating Energy Difference^[37].

Ab-initio Berechnungen von Mason und Tranter zeigen, dass die aus der Paritätsverletzung resultierende Energiedifferenz zwischen Enantiomeren bei ca. 10⁻¹⁴ Jmol⁻¹ liegt und die L-Aminosäuren und D-Zucker energetisch günstiger liegen^[38]. Diese Energiedifferenz entspricht etwa einem ee-Wert von 10⁻¹⁵%.

Um diese Ursache als Basis zur Homochiralität der Biomoleküle sehen zu können, muss ein hochwirksamer Verstärkungsmechanismus hinzukommen. Für einen autokatalytischen Prozess, der dem von Kondepudi und Nelson beschriebenen Szenario gehorcht, würde ein See mit dem Volumen von 4 000 000 m³ 10⁴ Jahre zur Enantiomerenreinheit benötigen^[39-41].

Obwohl es noch keinen Beweis und keine schlüssige Erklärung für die Entstehung der Homochiralität der Biomoleküle gibt, können die Ergebnisse der hier beschriebenen Untersuchungen zur Synthese asymmetrischer Moleküle verwendet werden. Dies wird auch in fortschreitender Weise getan und mit zahlreichen Veröffentlichungen belegt.

Die asymmetrische Synthese, als eine Möglichkeit der Chiralitätserzeugung, hat in den letzten Jahren bemerkenswerte Fortschritte in den Ergebnissen und der Erhöhung der Zahl von Veröffentlichungen gemacht.

2.2 Ziele dieser Arbeit

- Synthese einer Modellverbindung, für die von Prof. Dr. Ulrich Nagel entwickelte Pyrrolidin-Stammverbindung, N-Benzyl-3,4-bis(diphenylphosphanyl)pyrrolidin, zum günstigeren und schnellen Test neuer Ligandsysteme für die enantioselektive Hydrierung.
- Produktion und Reproduktion von Rhodium und Ruthenium Phosphit-Katalysatoren.
- Test der hergestellten Phosphit-Katalysatoren auf ihre Enantioselektivität und Leistung.
- Synthese von Carben-Liganden für Übergangsmetall basierte Katalysatoren.

3 Allgemeiner Teil

3.1 Rhodium-Phosphit Katalysatoren

3.1.1 Allgemeines

Die Asymmetrische Katalyse liegt im Schnittbereich verschiedener Chemiedisziplinen beheimatet. Teile der Organischen Synthese, Strukturchemie, Katalysechemie, Anorganische- und Koordinationschemie, Physikalischen und Theoretischen Chemie sowie der Technischen Chemie, fließen dort direkt ein.

Zusätzlich ist die Asymmetrische Katalyse eine vierdimensionale Wissenschaft^[42]. Man benötigt ideale 3dimensionale Strukturelemente und die dazu passende Kinetik. Die heutigen, effizienten asymmetrischen Katalysatoren basieren auf den katalytischen Eigenschaften eines Metalls, kombiniert mit einem chiralen organischen Liganden. Meist wird auf die Metalle der Edelmetallgruppen zurückgegriffen, um effektive Ergebnisse zu erzielen.

3.1.2 Rhodium-Phosphor Komplexe in der Katalyse

Rhodium-Phosphor Komplexe haben nicht nur in der Arbeitsgruppe um Prof. Dr. Ulrich Nagel eine lange Tradition. Es gibt sehr viele Rhodium-Phosphan Komplexverbindungen, die die ideale Lösung für manchen Reaktionsschritt in asymmetrischen Hydrierungen darstellen. Sehr gute Umsätze bei hohen Enantioselektivitäten sind die Folge.

3.1.3 Halpern Katalysezyklus

Der weite Bereich der enantioselektiven Hydrierungen ist mechanistisch noch wenig erforscht. Die Einzelschritte sind isoliert voneinander häufig gut untersucht, wobei aber der Gesamtmechanismus dadurch noch nicht bewiesen ist. Die Einflüsse unterschiedlicher Ligandensysteme werden meist vernachlässigt. Häufig wird in Veröffentlichungen nur postuliert, dass eine Hydrierung nach einem bestimmten, schon aufgeklärten Mechanismus verläuft. Beispielhaft soll hier auf den von Halpern und Landis entwickelten und belegten Katalysezyklus zurückgegriffen werden, ohne dass ein Nachweis für meine Reaktionen geführt wird.

In den 80er Jahren konnten Halpern und Landis einen Katalysezyklus mit kationischen DIPAMP- und CHIRAPHOS-Rhodium-Komplexen vollständig belegen^[43-45]. Dieser Katalysezyklus basiert auf der enantioselektiven Hydrierung von a-Acetamidozimtsäure in Methanol und soll hier für den von mir verwandten Phosphit-Rhodium-Komplex als möglich angesehen werden.

Der Halpern-Zyklus besteht eigentlich aus zwei zueinander diastereomeren Katalysezyklen: dem "major manifold" und dem "minor manifold".

Abb. 1: DIPAMP und CHIRAPHOS

3.1.3.1 Katalysatorbildung und Solvens-Komplex

Die kationischen Bisphosphan-Rhodium-Komplexe werden üblicherweise als Katalysatoren bezeichnet. Die aktive Katalysatorspezies entsteht allerdings erst beim Solvatisieren. Die den Komplex stabilisierenden Liganden verlassen diesen und geben die Koordinationsstellen frei. Als häufiger, und auch von mir in einer Versuchsreihe verwendeter, stabilisierender Ligand wird Cyclooctadien eingesetzt. Das nicht koordinierende Anion bildet BF₄⁻.

Zu Beginn der Hydrierung wird COD zunächst zu Cycloocten hydriert. Die Affinität zu Rhodium nimmt in der Linie COD, a-Acetamidozimtsäure, Cycloocten ab. An die frei werdenden Koordinationsstellen lagern sich zwei Solvenzmoleküle an. Die sehr labile katalytisch aktive Katalysatorspezies ist gebildet.

Die Hydrierung des stabilisierenden Liganden kann zu einer Induktionsperiode führen. Im Falle eines 5-Ring-Rhodium-Phosphan-Komplexes ist die Reaktionsgeschwindigkeit der Induktionshydrierung deutlich höher als die Substrathydrierungsgeschwindigkeit. Eine Induktionsperiode sollte demnach nicht feststellbar sein. Bei 7-Ring Chelatkomplexen wurden so hohe Reaktionsgeschwindigkeiten der Substrathydrierung festgestellt, dass bei beendeter Reaktion noch nicht alle aktiven Katalysatormoleküle gebildet werden konnten^[46;47]. Die reale Reaktionsgeschwindigkeit am Katalysator wird in diesem Fall als zu niedrig beobachtet.

Soll der Katalysator in situ erzeugt werden, wird vom dimeren Rhodium-Chloro-Komplex ausgegangen und das Diphosphan im leichten Überschuss zugegeben. Dadurch wird verhindert, dass achirale Rhodiumverbindungen entstehen, die trotzdem katalytisch wirksam sind und den ee-Wert senken. Die katalytischen Eigenschaften werden weiterhin durch die generierten und in der Lösung vorliegenden Chloridionen beeinflusst. Es muss angestrebt werden, dass die Konzentration dieser Ionen ausreichend reduziert wird. Das kann entweder durch ausreichende Solvatisierung mit geeigneten Lösungsmittelmolekülen (z.B. durch MeOH) oder durch ausfällen mit AgBF₄ geschehen.

3.1.3.2 Substratkoordination

Nach der Bildung des aktiven Katalysators muss das Substrat im nächsten Schritt die koordinierten Lösungsmittelmoleküle verdrängen. Bei der η^2 , a-Acetamidozimtsäure koordiniert einerseits die Doppelbindung andererseits ein freies Elektronenpaar des Sauerstoffs der Acetamidogruppe. Damit entsteht ein stabiler 51/2-gliedriger Chelatring. Diese Stabilität wird verantwortlich dafür gemacht, dass die meist beobachtete Reaktionsordnung, in Bezug auf das Substrat, 0 ist. Der resultierende Katalysator-Substrat-Komplex hat in erster Näherung eine guadratisch planare Struktur. Resultierend daraus sind die beiden Flächen der Doppelbindung enantiotop. Es lassen sich zwei unterschiedliche Koordinationen des Substrats an das Rhodium unterscheiden. Ein Diastereomerengleichgewicht stellt sich ein, das durch ³¹P{¹H}-NMR-Spektroskopie nachgewiesen werden kann. Die Integration der Signale liefert die Diastereomerenverteilung.

Da Iridium die Substrate langsamer hydriert, werden dessen Komplexe häufig Struktur- und Kinetikaufklärung für die benutzt. Es existieren einige Kristallstrukturen Substratkomplexe Rhodiumder mit und Iridium-Bisphosphanen, die die im Halpern-Mechanismus vorgeschlagenen Strukturen bestätigen^[48-50]. Brown et al. veröffentlichten viele Arbeiten über die Bindungsverhältnisse verschiedener Substrate in Rhodium-Bisphosphan-Komplexen^[51-60].

Abb. 2: Halpern-Zyklus

3.1.3.3 Oxidative Addition des Wasserstoffes

Der erste irreversible Schritt im Katalysezyklus ist die oxidative Addition des Wasserstoffmoleküls an den Substratkomplex. Der Wasserstoff wird paarweise aus dem gleichen Molekül übertragen^[61] und gelangt laut Simulation und Rechnungen^[62;63] entlang einer Diagonalen, Phosphor-Rhodium-Olefin oder Phosphor-Rhodium-Sauerstoff der Amidogruppe, in den Substrat-Komplex. Dieser Schritt ist geschwindigkeitsbestimmend und entscheidet über die Enantioselektivität.

Während der oxidativen Addition wird das Wasserstoffmolekül aufgespalten. Es bildet sich der bis jetzt nur postulierte Dihydridokomplex^[61]. Bisher war es unmöglich, diesen Komplex mit den üblichen Analysemethoden, NMR, IR, Röntgenstrukturanalyse, aufzuklären. Bargon und Eisenberg berichten über Versuche, eine Verstärkung des NMR-Signals durch para-Wasserstoff erreichen zu wollen. Diese Methode führte bei Eisen- und Molybdän-Komplexen schon zum Erfolg^[64-69]. Nähert sich das Wasserstoffmolekül an den Komplex, so werden die Elektronen in das antibindende Molekülorbital des H₂-Moleküls geschoben. Dabei lockert sich fortschreitend die Molekülbindung bis es schließlich zum Bindungsbruch kommt. Je elektronenreicher das Metallatom ist, desto leichter wird das antibindende Molekülorbital besetzt. Die dazu Rhodiumzentralmetalls wird förderliche Basizität des entweder durch +I Substrate, zum Beispiel der Sauerstoff der Amidogruppe, oder durch elektronenreiche Phosphanliganden, wie sie zum Beispiel Burk mit Phospholanen erzeugte, erreicht^[70-75].

Die üblichen Tetra-Aryl-Bisphosphane sind dagegen elektronenarm, was den Einfluss des Metallions im Katalysator steigert.

Die Ringgröße der gebildeten Chelatringe übt einen Einfluss auf die Geschwindigkeit der oxidativen Addition derart aus, dass Siebenringchelate diesen Schritt wesentlich gegenüber Fünfringchelaten beschleunigen. Ist die oxidative Addition schneller als die folgende reduktive Eliminierung des

Produkts und zudem reversibel, dann ist der oben beschriebene Übergangszustand nicht mehr für die Enantioselektivität allein bestimmend. Da die Addition immer cis verläuft, wird einer der beiden Substituenten aus der Ebene gedreht. Der Dihydrido-Komplex stellt den höchsten Punkt auf der Potentialhyperfläche dar. Die irreversible oxidative Addition bzw. der damit verbundene energetisch unterschiedlich hoch liegende Übergangszustand ist der bestimmende Schritt für die Enantioselektivität. Nach Halpern ist der minore Substratkomplex derjenige, der zum Überschussenantiomeren führt. Damit ist das Diastereomerenverhältnis der Substratkomplexe nicht entscheidend für die Produktbildung. Es wird postuliert, dass der zum oktaedrischen Dihydrido-Komplex führende Übergangszustand spät auftritt, wodurch er nach dem Hammond'schen Postulat^[76] diesem Dihydrido-Komplex ähneln muss. Grundsätzlich ist jener Katalysator-Substrat-Komplex begünstigt, der sterisch am günstigsten dafür ausgebildet ist, den eintretenden Wasserstoff zu behindern. Dadurch läuft die oxidative Addition langsamer ab und die Enantiomerenverteilung ist zu diesem Zeitpunkt festgelegt. Die weiteren

Zwischenstufen können den Weg zu einem definierten Enantiomer nicht mehr beeinflussen.

Zur Betrachtung der Kinetik müssen auch verschiedene Druckbereiche unterschieden werden. Im Niederdruckbereich (<10 bar) verläuft die eigentliche Hydrierung langsam im Vergleich zur Assoziation und Dissoziation des Substrats. Es kann sich somit ein ungestörtes Gleichgewicht zwischen dem bevorzugten und benachteiligten Substratkomplex einstellen. Da die mindere Komponente erheblich schneller mit dem Wasserstoff reagiert, liefert sie das hauptsächlich anfallende Enantiomer.

Bei hohen Wasserstoffdrücken ist nur die Bildungsrate des Substratkomplexes von Bedeutung. Es reagiert nun, durch den erhöhten Druck, auch der vorherrschende Substratkomplex schneller. Das führt zu einem geringeren Enantiomerenüberschuss. Da die Reaktionsrate der Substratkoordination stärker temperaturabhängig ist als die Rate der Wasserstoffaddition, kann durch Erhöhung der Temperatur die Enantioselektivität gesteigert werden. Die Temperaturerhöhung kann auch dazu benutzt werden, um den negativen Einfluss der Druckerhöhung wieder auszugleichen.

3.1.3.4 Der s-Alkyl-Komplex

Die Umlagerung des Dihydridokomplexes in den σ -Alkylkomplex verläuft sehr schnell. In Katalysatoren mit den Liganden CHIRAPHOS und DIPAMP erfolgt die nachgelagerte, reduktive Eliminierung sofort. Thermodynamisch ist die Aktivierungsentropie dieser reduktiven Eliminierung negativ, der oxidativen Addition dagegen größer Null. Damit reichert sich der σ -Alkylkomplex bei tiefen Temperaturen an^[44]. Der Alkylligand nimmt dabei eine *cis*-Position gegenüber dem verbleibenden H-Atom ein. Die sechste Koordinationsstelle am Rh(III) wird von einem Solvensmolekül belegt. Im sehr gut untersuchten DIPAMP-Rhodium-Mechanismus Diastereomer konnte nur ein des σ-Alkylkomplexes nachgewiesen werden. Vermutlich besitzen die Paare eine sehr unterschiedliche Reaktivität bei der reduktiven Eliminierungsreaktion. Die bei dieser Problemstellung entscheidende Enantioselektivität wird, aufgrund der vorangegangenen Irreversibilität der Wasserstoffaddition, nicht beeinflusst.

In den meisten Fällen verläuft die reduktive Eliminierung ebenfalls irreversibel. Hierbei wird der größte Teil der Reaktionsenthalpie der katalytischen Hydrierung frei. Die freiwerdenden Valenzen des Rhodiums werden durch zwei Solvenzmoleküle besetzt, um im weiteren Verlauf des Katalysezyklusses wiederum durch Substratmoleküle verdrängt werden zu können. Der Katalysezyklus ist geschlossen.

3.1.3.5 Lösungsmittel

Für die enantioselektiven Hydrierungen mit kationischen Rhodium-Komplexen können grundsätzlich unterschiedliche Lösungsmittel verwendet werden. Die Koordinationsfähigkeit beeinflusst die Stabilität des Solvenskomplexes und somit die Bereitschaft zur reduktiven Eliminierung des Produkts einerseits und die Bildung des Substratkomplexes andererseits. Am Häufigsten werden für die a-Acetamidozimtsäure Alkohole verwendet. Hauptsächlich kommt hier Methanol zum Einsatz. Andere Lösungsmittel wie THF und Aceton erreichen jedoch ebenso gute Ergebnisse. Für DMF und Toluol sind erfahrungsgemäß langsamere Hydrierungen zu erwarten.

Für jede Kombination von Substrat zu verwendetem Katalysator ist eine Anpassung des Lösungsmittels zu suchen.

3.1.3.6 Ligandenauswahl

Ein Hauptteil der Forschungsintensität wird in die Synthese geeignet veränderter und damit optimierter Liganden investiert. Die Veränderung von Basizität und sterischem Anspruch sind hierbei Variationsmöglichkeiten im Katalyseprozess. Kleine basische Liganden beschleunigen die oxidative Addition des Wasserstoffs, verlangsamen aber gleichzeitig die reduktive Eliminierung des Produkts. Hier können schon kleine Variationen sehr große Wirkungsunterschiede ergeben.

Abb. 3: PYRPHOS

Die Hydriergeschwindigkeit von a-Acetamidozimtsäure mit dem Rhodium-PYRPHOS-Katalysator ist bis 100 bar dem Wasserstoffdruck proportional. **Hieraus** lässt sich ableiten. dass die oxidative Addition den geschwindigkeitsbestimmenden Schritt des Katalysezyklusses darstellt. Die Hydriergeschwindigkeitsänderung ist ebenfalls dem Wasserstoffdruck proportional, wenn die beiden äquatorialen Phenyl- durch Methylgruppen ersetzt werden. Dadurch lässt sich sogar eine erhöhte Gesamtgeschwindigkeit feststellen. Werden hingegen die beiden axialen Phenylgruppen durch Methylpendants ersetzt, erhöht sich die Gesamtgeschwindigkeit nur bis zu einem Druck von 2 bar. Darüber ist diese Größe druckunabhängig. Es wird die reduktive Eliminierung zum geschwindigkeitsbestimmenden Schritt^[77].

3.1.4 Darstellung

3.1.4.1 Ligandendarstellung^[78]

Bei den im Arbeitskreis Nagel langjährig verwendeten Liganden handelt es sich um das von Prof. Dr. Ulrich Nagel zum ersten Mal synthetisierte N-Benzyl-3,4bis(diphenyl-phosphanyl)-pyrrolidin^[79] und dessen Derivate mit dem Grundgerüst 3,4-Bisphosphanyl-pyrrolidin.

Im dargestellten Dinaphthylligand sind in direkter Phosphorumgebung drei Sauerstoffatome eingefügt worden. Daraus resultiert eine Erweiterung der Ringgröße mit dem Metallzentrum von 5 auf 7.

Abb. 4: (3S,4S)-3-4-Bis-(3,5-dioxa-4-phospha-cyclohepta-[2,1-a;3,4-a']-R-Dinaphthalen-yloxy)-pyrrolidin-1-carbonsäure-tert.-butylester **a**

Abb. 5: (3S,4S)-3-4-Bis-(3,5-dioxa-4-phospha-cyclohepta-[2,1-a;3,4-a']-S-Dinaphthalen-yloxy)-pyrrolidin-1-carbonsäure-tert.-butylester **b**

Wenn die Ergebnisse aus dem Halpernzyklus gelten, wird die Hydriergeschwindigkeit dadurch erheblich gesteigert.

Die zu den Phosphanen, durch den Einbau der 3 Sauerstoffatome, veränderte Elektronenstruktur führt vermutlich zu schlechteren σ -Donoreigenschaften des Phosphoratoms im Komplex. Durch diese Sauerstoffatome sollte eine erhöhte Luftstabilität der Verbindung erreichbar sein.

Bezeichnung der Liganden	Nummer	Bezeichnung
		im Text
(3S,4S)-3-4-Bis-(3,5-dioxa-4-phospha-cyclohepta-		
[2,1-a;3,4-a']-R-Dinaphthalen-yloxy)-pyrrolidin-1-	6	а
carbonsäure-tertbutylester		
(3S,4S)-3-4-Bis-(3,5-dioxa-4-phospha-cyclohepta-		
[2,1-a;3,4-a']-S-Dinaphthalen-yloxy)-pyrrolidin-1-	7	b
carbonsäure-tertbutylester		

Tabelle 2: Bezeichnung der Liganden

Zur Darstellung der Liganden **a** und **b** wurde eine konvergente Synthese gewählt. Die Reaktionsschritte der beiden Enantiomere sind identisch. Daher wird in den folgenden Beschreibungen und Zeichnungen auf die Stereochemie verzichtet.

Der (3S,4S)-3,4-Dihydroxy-pyrrolidin-1-carbonsäure-ter.-butylester (Pyrrolidin-Zweig) **13** wurde von Knobl in einer früheren Arbeit dargestellt und hier verwendet. Die Darstellung des 4-Chloro-3,5-dioxa-4-phospha-cyclohepta-[2,1a;3,4-a']-R-dinaphthalin, beziehungsweise des 4-Chloro-3,5-dioxa-4-phosphacyclohepta-[2,1-a;3,4-a']-S-dinaphthalin (Binaphthol-Zweig) wurde getrennt durchgeführt und in einem weiteren Reaktionsschritt mit dem Pyrrolidin-Zweig zusammengeführt^[78].

Als Ausgangssubstanz zur Synthese des Pyrrolidin-Zweigs firmiert die im "chiral pool" erhältliche natürliche (R,R)-Weinsäure. Der streng stereoselektiv abgestimmte Syntheseweg wird nach einer Vorschrift von Prof. Dr. Ulrich Nagel beschritten. Damit werden zwei stereogene Zentren für den Liganden vorbereitet.

Abb. 6: Darstellung Pyrrolidin-Zweig

Im ersten Schritt wird die Weinsäure mit Hilfe von Benzylamin cyclisiert. Die folgende Reduktion des Dions wird mit in situ erzeugtem Diboran durchgeführt. Die im ersten Schritt entstandene Benzylgruppe wird durch Reduktion mit Wasserstoff an Palladium/Aktivkohle entfernt. Am Ende dieses Synthesezweigs wird der Stickstoff des Pyrrolidinringes mittels einer *tert.*-Butyloxycarbonyl-Gruppe (BOC) geschützt. Die BOC-Gruppe soll im weiteren Reaktionsverlauf erhalten bleiben und bei guten Erfolgen, in der homogenen Katalyse, eine Polymere- oder Festphasen-Anbindung des Katalysators erlauben.

Als Ausgangssubstanz für den Binaphtholzweig wird R/S-(1,1')-Binaphthalenyl-2,2'-diol verwendet. Mit Phosphortrichlorid im Überschuss wird unter HCI-Abspaltung das gewünschte 4-Chloro-3,5-dioxa-4-phospha-cyclohepta-[2,1-a;3,4-a']-R/S-dinaphthalin erhalten. Auf eine Aufreinigung des Produktes wird verzichtet. Die Verunreinigungen sind nach der Kopplung der Ligandkomponenten nicht mehr nachweisbar.

Abb. 7: Darstellung Binaphthol-Zweig

Im letzten Schritt der Ligandsynthese werden die beiden Zweige gekoppelt. Zur Lösung von 4-Chloro-3,5-dioxa-4-phospha-cyclohepta-[2,1-a;3,4-a']-R/Sdinaphthalin in THF wird der (3S,4S)-3,4-dihydroxy-pyrrolidin-1-carbonsäure*tert.*-butylester getropft. Die entstehende Salzsäure wird mit Triethylamin abgefangen. Das entstehende Triethylammoniumhydrochlorid wird abfiltriert und der Ligand einer säulenchromatographischen Reinigung unterzogen.

Abb. 8: Kopplung der Ligandbestandteile

3.1.4.2 Kopplung mit dem Rh-Metall-Precursor^[78]

Abb. 9: Bis-(Rhodiumchlorocyclooctadien)

Die Liganden **a** und **b** werden mit Bis-(Rhodium-chloro-COD) umgesetzt und liefern direkt die Rhodium-Chlorid-Vorstufenkomplexe. In einem zweiten Syntheseschritt werden durch Zugabe von Silbertetrafluoroborat die gewünschten und charakterisierbaren Komplexe **1a** und **1b** erhalten.

Bezeichnung der Rhodium-Komplexe	Bezeichnung
	im Text
(3S,4S)-3-4-Bis-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-	
a']-R-Dinaphthalen-yloxy)-pyrrolidin-1-carbonsäure-tert	1a
butylester-(1,5-cyclooctadien)rhodium-tetrafluoroborat	
(3S,4S)-3-4-Bis-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-	
a']-S-Dinaphthalen-yloxy)-pyrrolidin-1-carbonsäure-tert	1b
butylester-(1,5-cyclooctadien)rhodium-tetrafluoroborat	

Tabelle 3: Bezeichnung der Rhodium-Komplexe

Die Katalysator-Precursor wurden mit MS-FAB und NMR-Spektroskopie analysiert. Im Massenspektrum sind der M⁺-BF₄ und M⁺-BF₄-COD bei 1042 und 934 zu identifizieren. Im ¹H-NMR sind die Molekülkomponenten BOC, COD, Pyrrolidin und Binaphthyl nachzuweisen. Die ³¹P{¹H}-NMR Signale der freien

Liganden treten nicht mehr auf, sie sind zu 136,20 / 137,96 ppm und 138,42 / 138,99 ppm verschoben.

3.1.5 Test der hergestellten Rhodium Katalysatoren

Die dargestellten Katalysatoren **1a** und **1b** wurden an der Hydrierstation des Arbeitskreises im Batch-Betrieb mittels der prochiralen Standardsubstrate^[80;81] a-Acetamidozimtsäure und Acetophenon getestet.

Abb. 10: Schematischer Aufbau Hydrieranlage Nagel

3.1.5.1 Allgemeines

Die Hydrierstation des Arbeitskreises Nagel ermöglicht Hydrierungen bei konstantem Druck zwischen 1 und 80 bar. Die Temperatur lässt sich im Bereich von 10 bis 150 °C variieren. Der Autoklavendruck wird konstant gehalten und die Druckabnahme in einem Vorratsgefäß registriert. Die Messdatenerfassung sowie eine graphische Darstellung während der Messzeit erfolgt rechnergestützt.

Katalysatorprecursor, Substrat und Lösungsmittel werden unter Schutzgasatmosphäre in den Autoklaven eingebracht. Danach wird der Autoklav evakuiert und auf seine Versuchstemperatur thermostatisiert. Nachdem der Wasserstoff aufgegeben wurde, wird die Hydrierung mit Beginn der Rührtätigkeit im Reaktionsdruckbehälter gestartet.

Die Hydrierung gliedert sich in drei Bereiche:

Wartephase

Die Kurve der Druckabnahme im Vorratsgefäß zeigt einen nahezu waagerechten Verlauf. Der Wasserstoff diffundiert lediglich an der Oberfläche in die Lösung. Es ist nur eine minimale Reaktionstätigkeit zu erwarten.

Einrührphase

Mit Beginn der Rührtätigkeit geht Wasserstoff entsprechend seinem Druck und Löslichkeit in Lösung. Die Kurve zeigt einen nahezu senkrechten Druckabfall.

Abb. 11: Hydrierkurve

Hydrierphase

Während der Hydrierung nimmt der Wasserstoffdruck im Vorratsgefäß ab. Der experimentell gefundene Verlauf der graphischen Darstellung ist augenscheinlich nicht linear.

Es ist möglich, dass nach dem Einrühren eine weitere Wartephase oder Aktivierungszeit auftritt.

Die Reaktionen wurden beendet, wenn über längere Zeit kein Wasserstoffverbrauch mehr feststellbar war.
Die Geschwindigkeit der Hydrierung wird in der Zahl der Turnover verglichen. Sie gibt an, wieviel Katalysezyklen am Katalysatormolekül pro Stunde durchlaufen werden.

$$TOF = \frac{d[Substrat]}{dT} \cdot \frac{1}{[Katalysator]} \qquad \left[\frac{1}{h}\right]$$

Der Umsatz wird bei diesen Versuchsreihen mittels ¹H-NMR Spektroskopie bestimmt. Es werden die Integrale der acetylischen CH₃-Gruppen von a-Acetamidozimtsäure / N-Acetylphenylalanin zur Bestimmung herangezogen und dann mit der Hydrierdatenauswertung verglichen.

Für das Gemisch Acetophenon / Phenylethanol werden ebenso die Integrale der CH₃-Gruppe zur Auswertung herangezogen.

Einrührmenge an H₂, Reaktionsdauer, -beginn, -ende und TOF's ergeben sich aus den Rohdaten der Computeraufzeichnung mittels einer von Prof. Dr. Urlich Nagel programmierten MathCAD 8 Auswerteroutine.

Als ee-Wert wird der Überschuss eines Enantiomers in Prozent der Gesamtmenge bezeichnet. Ein ee-Wert von 100% entspricht somit einem reinen Enantiomer. 0% ee-Wert bezeichnet das Racemat.

Prozent $ee = \frac{|E_1 - E_2|}{|E_1 + |E_2|} \cdot 100$

3.1.5.2 Ergebnisse mit dem Substrat: Acetophenon in MeOH

Effiziente asymmetrische Katalysen benötigen hohe Turnoverzahlen bei gleichzeitig hohem Gesamtumsatz. Ebenfalls sind hohe ee-Werte wünschenswert.

Hydrierung von Acetophenon zu R- / S-Phenylethanol:

Abb. 12: Hydrierung von Acetophenon

Nr.	Kat.	Substr./Kat.	Т	Druck	Dauer	Ums	satz	ТО	ee
			[°C]	[bar]	[min]	PE [%] <i>'</i>	? -PE [%]	[h⁻¹]	[%]
1	1a	1100	30	60	720	6,96	12,29	6,38	6,16
2	1a	1055	60	60	300	11,4	15,26	24,05	8,60
3	1a	998	60	75	2100	97,3		27,75	3,92
4	1b	1014	60	60	7200	6,02	11,1	1,0	2,36
5	1b	1129	60	75	90	9,36	-	70,43	*nb
6	1b	984	80	60	960	8,10	10,35	6,35	9,74
7	1a	1193	100	60	600	3,43	57,02	68,00	7,14
8	1b	1109	100	60	60	4,12	-	2,67	4,68

Tabelle 4: Hydrierung von Acetophenon mit 1a und 1b

Abb. 13: Auswertung 1a u. 1b Acetophenon Temperatur gegen Umsatz

Abb. 14: Auswertung 1a u. 1b Acetophenon Temperatur gegen ee-Wert

Abb. 15: Auswertung 1a u. 1b Acetophenon H₂-Druck gegen ee-Wert

In dem untersuchten Rh-Katalysator-System ist festzustellen, dass bei der Hydrierung von Acetophenon zu Phenylethanol auch eine Ringhydrierung auftritt. Aus den Daten ist festzustellen, dass eine Temperaturerhöhung der Ausbeute des gewünschten Produktes, Phenylethanol, entgegenwirkt. Beim Katalysator **1a** erhöht sich jedoch die Gesamthydrierausbeute. Aus Abbildung 13 wäre eine Idealreaktionstemperatur von 60 °C (**1a**) und 80 °C (**1b**) zu erwarten.

Auch aus Abbildung 14 geht eine erhöhte Reaktionstemperatur als Idealzustand hervor. Wiederum bei 60 °C (**1a**) und 80 °C (**1b**) erlangt der Katalysator im betrachteten Zielparameter, dem ee-Wert, sein Maximum. Eine Druckerhöhung führt in der Isothermen zur Abnahme des Enantiomerenüberschusses.

Aus Abbildung 13 und 15 ist ebenfalls zu erkennen, dass die Katalysatoren auf eine Temperaturerhöhung bei isobaren Bedingungen unterschiedlich reagieren. Nicht nur die Ausbeute an Phenylethanol bei 100 °C liegt für das Katalysatorsystem **a** unterhalb der Ausbeute bei 30 °C, sondern auch der Enantiomerenüberschuß der Produkte ist um 17 % geringer.

Im Allgemeinen ist für die relevanten Zielgrößen zu bemerken, dass weder die Enantiomerenüberschüsse, noch die Ausbeuten überragende Ergebnisse zeigen.

3.1.5.3 Substrat: Acetamidozimtsäure

Hydrierung von a-Acetamidozimtsäure zu N-Acetylphenylalanin:

Abb. 16: Hydrierung von a-Acetamidozimtsäure

Nr.	Kat.	Substr./Kat.	Т	Druck	Dauer	Umsatz	ТО	ee
			[°C]	[bar]	[min]	[%]	[h ⁻¹]	[%]
9	1a	1086	30	5	93	61	427,6	3,52
10	1a	1043	30	25	5400	87	10,1	7,52
11	1a	985	30	50	2100	100	28,2	9,16
12	1a	1036	30	75	1200	100	51,8	7,02
13	1b	1023	30	5	9600	64,3	4,1	27,06
14	1b	1093	30	25	7200	100	9,1	31,70
15	1b	972	30	50	2700	100	21,6	30,26
16	1b	1032	30	75	2100	100	29,5	25,36

Tabelle 5: Hydrierung von α-Acetamidozimtsäure bei 30 °C mit 1a und 1b

Nr.	Kat.	Substr./Kat.	Т	Druck	Dauer	Umsatz	ТО	ee
			[°C]	[bar]	[min]	[%]	[h ⁻¹]	[%]
17	1a	1028	60	5	2400	34,2	8,8	2,56
18	1a	981	60	25	840	84,6	59,3	8,64
19	1a	1037	60	50	384	98,4	159,5	11,06
20	1a	1135	60	75	300	100	226,9	5,38
21	1b	1088	60	5	1500	33,0	14,4	21,36
22	1b	1037	60	25	1200	86,4	44,8	33,02
23	1b	1009	60	50	480	58,0	73,1	33,40
24	1b	989	60	75	540	100	109,9	36,24

Tabelle 6: Hydrierung von α -Acetamidozimtsäure bei 60 °C mit **1a** und **1b**

Nr.	Kat.	Substr./Kat.	Т	Druck	Dauer	Umsatz	ТО	ee
			[°C]	[bar]	[min]	[%]	[h ⁻¹]	[%]
25	1a	1136	80	5	720	32,1	30,4	5,14
26	1a	995	80	25	600	40,0	39,8	18,8
27	1a	1102	80	50	102	51,2	332,1	15,3
28	1a	1041	80	75	240	58,8	153,0	18,38
29	1b	1033	80	5	180	12,4	42,7	20,8
30	1b	1108	80	25	360	47,8	88,2	32,54
31	1b	1111	80	50	360	48,1	88,9	33,90
32	1b	1053	80	75	186	60,6	205,7	28,08

Tabelle 7: Hy	vdrieruna von	α-Acetamidozimtsäure	bei 80 °	C mit	1a u	nd '	1b
	yanorang von		501.00		10 0	i i G	

Nr.	Kat.	Substr./Kat.	Т	Druck	Dauer	Umsatz	ТО	ee
			[°C]	[bar]	[min]	[%]	[h ⁻¹]	[%]
33	1a	1033	30	50	3000	94,3	19,5	2,68
34	1a	1076	60	5	2100	88,7	27,3	18,48
35	1a	1057	60	50	240	100	264,3	26,24
36	1b	1104	60	25	960	96,2	66,4	47,54
37	1b	1023	60	50	240	100	255,6	56,84

3.1.5.4 Substrat: Acetamidozimtsäure in 2-Propanol

Tabelle 8: Hydrierung von α -Acetamidozimtsäure in 2-Propanol mit **1a** und **1b**

3.1.5.5 Substrat: Acetamidozimtsäure in verschiedenen Lösungsmitteln

Nr.	Kat.	Lösungs-	Substr./	Т	Druck	Dauer	Umsatz	ТО	ee
		mittel	Kat.	[°C]	[bar]	[min]	[%]	[h ⁻¹]	[%]
38	1a	DCM	1014	60	50	3600	84,56	14,29	7,05
39	1a	Ethanol	1026	30	25	3600	97,60	16,69	2,40
40	1b	Aceton	1003	30	5	6000	30,45	3,05	25,34

Tabelle 9: Hydrierung von α -Acetamidozimtsäure mit **1a** und **1b** in verschiedenen Lösungsmitteln

3.1.6 Auswertungen

Abb. 17: Auswertung 1a u. 1b a-Acetamidozimtsäure Temperatur gegen Umsatz

Auch bei der Hydrierung von a-Acetamidozimtsäure zeigen die Katalysatoren geringeren Umsatz mit erhöhter Temperatur. Der Einbruch nimmt oberhalb von 60 °C, abgesehen von den 5 bar Versuchsreihen, dramatisch zu. Wiederum, abgesehen von den 5 bar Versuchen, liegen die Ausbeuten bei 30 und 60 °C für alle Katalysator-Druck-Systeme fast stationär oberhalb 80%. Auch sind hier 100% Umsatz-Bedingungen möglich.

In Abbildung 20 ist, bis auf eine Ausnahme, ein paralleler Verlauf der diastereomeren Katalysatoren erkennbar. Die R- und S-Formen liefern bei der Druckerhöhung die gleichen Ausbeuten an N-Acetylphenylalanin. Auch hier lässt sich die Ausbeutenverminderung bei Temperaturerhöhung ableiten.

Abb. 18: Auswertung 1a u. 1b a-Acetamidozimtsäure Temperatur gegen ee-Wert

Abb. 19: Auswertung 1a u. 1b a-Acetamidozimtsäure H₂-Druck gegen ee-Wert

Abb. 20: Auswertung 1a u. 1b a-Acetamidozimtsäure H₂-Druck gegen Umsatz

Abb. 21: Auswertung 1a u. 1b a-Acetamidozimtsäure Lösungsmittel gegen ee-Wert

Aus Abbildung 18 lassen sich zwei unterschiedliche Leistungsbereiche im Bezug der Katalysatoren auf den ee-Wert erkennen. Der R-Katalysator liefert nur unterhalb der auszumachenden Grenzlinie von 20%ee Überschüsse. Die Temperaturerhöhung fördert mit dem R-Katalysator die Ausbeutenüberschüsse. Das S-Katalysatorsystem erreicht in jedem Fall ee-Werte oberhalb des R-Systems und der Grenzlinie bei 20%ee.

In Abbilduna 19 ist der ähnliche Verlauf zu erkennen. Die Grenzausbeutenüberschusslinie liegt wiederum bei 20%ee. Das R-Katalysatorsystem liegt immer unterhalb, die S-Systeme oberhalb dieses Wertes.

Aus Abbildung 18 und 21 ist der Gewinn an Enantiomerenüberschuss zu erkennen, wenn man von der reinen Wasserstoffhydrierung auf die Transferhydrierung oder eine Mischform mittels *iso*-Propanol wechselt.

Der Wechsel der Koordinationseigenschaften des Lösungsmittels bringt bei Methanol-Aceton und Methanol-DCM leichte Verluste.

Abschließend für dieses System ist wiederum festzustellen, dass es bessere Katalysatorsysteme für die Hydrierung der a-Acetamidozimtsäure in den betrachteten Zielparametern gibt.

3.2 Ruthenium-Phosphit Katalysatoren

3.2.1 Allgemeines

Hydrierungen von polaren Doppelbindungen und deren asymmetrischen Pendants sind Schlüsselreaktionen in der Feinchemikalien- und Pharmazeutischen-Synthese. Nicht zuletzt durch die Nobelpreisforschung von Noyori et al. im großen (chemisch-)öffentlichen Interesse gelandet. Aldehyde und Ketone liefern Alkohole, prochirale Reagenzien ihre chiralen Produkte.

Homogene Ruthenium-Katalysatoren sind seit 40 Jahren bekannt^[82;83] und weisen hervorragende Reaktivitäten und Selektivitäten auf. Speziell für die Reduktion von polaren Bindungen scheinen sie geeignet zu sein.

Ruthenium-Komplexe mit Aminliganden sind aktiver als andere Metallkomplexe für die Wasserstoffhydrierung von Ketonen^[84;85].

Oft resultieren aus den hohen Aktivitäten der Katalysatoren auch hohe Enantioselektivitäten von prochiralen Edukten^[86;87].

Es lassen sich 2 Reaktionstypen unterscheiden. Die Transferhydrierung (2), üblicherweise mit sekundären Alkoholen als Wasserstoff-Donor (D), und die Hydrierung mit gasförmigem Wasserstoff (1).

Abb. 22: Wasserstoff und Transferhydrierung

<u>Klassische Mechanismen</u> beschreiben die homogene Übergangsmetallkatalyse mit den Reaktanten am Zentralmetall. Vorausgegangen sein muss die Dissoziation eines schwächer gebundenen Liganden. Meist wird die freie Koordinationsstelle temporär von einem Solvensmolekül besetzt und danach durch ein Hydrid wiederum verdrängt.

Abb. 23: Ruthenium-Hydrid Bildung

In einem ersten Schritt (I) koordiniert das Wasserstoffmolekül als ein η^2 -Ligand ans Ruthenium^[88-91]. Dann folgt die heterolytische Spaltung (II) des H₂-Moleküls. Es ergibt sich der Ru-Hydrid-Komplex und eine protonierte, weil vorher zugesetzte, Base^[92-94]. Die Base kann auch einer der vorher verdrängten Liganden sein. Je nach Reaktionsbedingungen^[86] kann eine weitere Möglichkeit darin bestehen, dass einer der Metalliganden protoniert wird (III). Erfolgt eine oxidative Addition (IV) des Wasserstoffs ans Ru(II), ergibt sich der Komplex $Ru(IV)H_2L_5$.

Der Katalysemechanismus:

Im ersten Schritt lagert sich ein Substratmolekül an die koordinativ einfach ungesättigte Ru(II)hydrid-Spezies an (I). Es ergibt sich der Komplex 35.

Durch die Koordination des Substrats aktiviert das Metallzentrum das Carbonyl-C-Atom. In einem zweiten Schritt (II) wandert ein *cis*-ständiges Hydrid ans Carbonyl-C.

Noyori et al. beobachtete, dass diese Umlagerung eine hohe Aktivierungsbarriere haben kann. Grund ist die drastische Geometrieveränderung, die nötig ist, um die Interaktion der Ru-H Bindung und der p-Bindung des Carbonyls einzugehen^[87].

Abb. 24: Allgemeiner Katalysezyklus für Ru-Verbindungen

Durch die Hydridwanderung ergibt sich eine erneut ungesättigte Rutheniumspezies. An diese kann sich wiederum Wasserstoff koordinativ anlagern.

Der Komplex 37 kann auf zwei Weisen weiterreagieren, die sich experimentell selten unterscheiden lassen.

Auf dem Weg (IV) ergibt die Protonierung des Substrates das Produkt 39 und hinterlässt die Ausgangs-Ru-Hydrid-Spezies 34. Der Katalysezyklus kann von Neuem beginnen.

Eine oxidative Addition (V) des Wasserstoffs ans Ru(II)-Zentrum ergibt eine dihydridische Ru(IV)-Spezies. Die Eliminierung des Produktes 39 ergibt dann regenerativ den aktiven Katalysator.

Für katalytische Reaktionen, bei denen dieser Mechanismus vorgeschlagen wird, sind folgende Gemeinsamkeiten festzustellen. Sie benötigen alle relativ hohe Temperaturen (50 bis >100 °C) und hohe Wasserstoffdrücke (50 bar). Die Katalysator / Substratverhältnisse sind üblicherweise klein und es werden keine Zusätze zur Reaktion benötigt.

Sind elektronenziehende Gruppierungen am Ruthenium, reagieren die Verbindungen mit Ketonen erst ab Temperaturen oberhalb von 100 °C mit ausreichenden Aktivitäten und trotzdem nicht vollständig.

Die Substratkoordination (I) und Hydridverschiebung (II) sind üblicherweise sehr schnell und können nicht als Zwischenstufen isoliert oder beobachtet werden.

Der Schritt III ist meist der als den Turnover limitierende Schritt zu bestimmen^[86].

Transferhydrierung:

Der Meerwein-Ponndorf-Verley Mechanismus der Reduktion mit Aluminiumisopropylat hat eine Parallele in der Ruthenium katalysierten Transferhydrierung. Das Substrat und der Wasserstoffdonor koordinieren ans Metall. Danach wandert das Hydrid, ohne Ausbildung eines Ru-H Komplexes, direkt vom Donor zum Substrat.

Abb. 25: Meerwein-Pondorf-Verley Mechanismus

Der in Abbildung 26 abgebildete Mechanismus stellt den üblicherweise prognostizierten Ablauf dar und ist von Noyori et al. und Gladiali et al. vorgeschlagen worden^[95;96].

Abb. 26: Mechanismus der Ruthenium-Transfer-Hydrierung

Auf der rechten Seite des Katalysezyklusses stehen die gleichen Schritte wie in Abbildung 24 der "Kernkatalyse". Es wird ein Hydrido-Komplex mit einer freien Koordinationsstelle benötigt (45). Das Substrat koordiniert im Schritt (I) an den Komplex. In einem zweiten Schritt (II) wandert das *cis*-ständige Hydrid an die Betaposition des Substrates. Das Wasserstofftransfer-Reagenz setzt in einem dritten Schritt das koordinierte Alkoxid durch Protonierung frei und koordiniert nun selbst am Metallzentrum. Über eine ß-Hydrideliminierung überträgt der Donor nun ein Hydrid an die freie Koordinationsstelle. Im letzten Schritt des Zyklusses wird das oxidierte Donor-Reagenz eliminiert. Zurück bleibt die Ausgangs Ruthenium-Hydrid Spezies 45. Der Zyklus kann von Neuem beginnen.

Hydrierung in der äußeren Koordinationssphäre:

Die nichtklassische Variante der von Noyori aufgeklärten Reduktion polarer Bindungen findet in der äußeren Koordinationssphäre statt. Hierzu muss mindestens ein vorhandener Ligand entsprechend designed sein, um eine elektrophile Aktivierung der Carbonylgruppe zu erreichen. Typischerweise liefert das Elektrophil, der im Aktivierungsschritt verdrängte Ligand, dem Substrat ein Proton (E = H). Dieser Schritt kann direkt nach der Hydridübertragung geschehen.

Abb. 27: Nichtklassische Hydrierung in der äußeren Koordinationssphäre

Die Hydrierungen in der äußeren Koordinationssphäre laufen erfahrungsgemäß unter milderen Bedingungen (20 - 60 °C) ab, als die direkt am Metallzentrum^[86].

Das Benennen der Mechanismen ist in vielen Fällen völlig beliebig, denn es ist im Allgemeinen schwierig, die Alternativen zu widerlegen.

Im Falle des Ru-Phosphit-Katalysators ist der Mechanismus noch ungeklärt, darum ziehe ich hier die Parallele zu den charakterisierten Systemen oben.

3.2.2 Darstellung

3.2.2.1 Ligandendarstellung

Die verwendeten Liganden **a** und **b** für das Ruthenium-Katalysator-Zentrum werden wie in 2.1.4.1 dargestellt.

3.2.2.2 Ru-Metall-Precursor

Die im nächsten Schritt benötigten Diene wurden durch Birch Reduktion mit Lithium bei -50 °C hergestellt^[97;98].

Abb. 28: Birch Reduktion

Das Bi-[Mesitylen-di-chloro-ruthenium(II)] wird in Methanol innerhalb von 4 h dargestellt. Das vakuumgetrocknete RuCl₃*3H₂O wird mit den Reduktionsmitteln, dem passende Dien und Methanol, zusammen am Rückfluss gekocht. Aus der Mutterlauge fällt das gewünschte Produkt direkt aus und kann ohne weitere Aufreinigung weiterverwendet werden. Versuche zur Darstellung nach den Vorschlägen von Zelonka et al., Arthur et al. und Bennett, et al. in Ethanol blieben erfolglos^[97;99;100]. Es entstanden schwarze unlösliche Produkte. Diese waren in keinem Lösungsmittel wieder aufnehmbar und daher nicht zu charakterisieren. Die Vermutung liegt nahe, dass es sich um metallisches Ruthenium handelt. Die Variation in zahlreich abgestuften Reaktionsführungen erfolgte mit Ölbadtemperaturen von 25 bis 120 °C und Reaktionsdauern von 15 min bis 2 Wochen.

Erst die Verminderung der Reduktionsstärke des Lösungsmittels durch den Wechsel von Ethanol zu Methanol brachte das gewünschte Produkt.

Das durch Reduktion von Ruthenium(III)chlorid mit 1,3,5-Trimethyl-cyclohexadien erhaltene Rutheniumdimer Bi-[Mesityl-di-chloro-ruthenium(II)] wird mit Pyridin monomerisiert^[100;101].

Abb. 29: Ruthenium Precursor

3.2.2.3 Katalysatorvorstufe

Durch die Umsetzung von [η -Mesityl-dichloro-(pyridino)ruthenium(II)] mit **a** / **b** ergibt sich **2a** und **2b**.

Bezeichnung der Ruthenium-Komplexe	Bezeichnung
	im Text
(3S,4S)-3,4-Bis-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-	
a']-R-dinaphthalin-4-yloxy)-pyrrolidin-1-carbonsäure-tert	2a
butylester-mesityl-pyridino-ruthenium-di-chlorid	
(3S,4S)-3,4-Bis-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-	
a']-S-dinaphthalin-4-yloxy)-pyrrolidin-1-carbonsäure-tert	2b
butylester-mesityl-pyridino-ruthenium-di-chlorid	

Tabelle 10: Bezeichnung der Ruthenium-Komplexe

Abb. 30: Ruthenium Katalysator Vorstufen

Der Umsatz zu den Ruthenium-Precursor **2a** und **2b** wurde mittels ³¹P{¹H}-NMR kontrolliert. Die Signale der freien Liganden 144,07 / 146,03 ppm und 137,72 / 142,25 ppm sind nach der Reaktion komplett auf 135,88 / 151,99 ppm und 137,18 / 151,88 ppm verschoben.

3.2.3 Test der hergestellten Ruthenium Katalysatoren

Die Katalysatoren^[101] **2a** und **2b** werden wiederum im Batch-Betrieb an der Hydrieranlage des Arbeitskreises getestet.

Katalysatorprecursor, Substrat und Lösungsmittel werden unter Schutzgasatmosphäre in den Autoklaven eingebracht. Aktiviert wird das System mit HBF₄. Danach wird der Autoklav evakuiert und auf seine Versuchstemperatur thermostatisiert. Nachdem der Wasserstoff aufgegeben wurde, wird die Hydrierung mit Beginn der Rührtätigkeit im Reaktionsdruckbehälter gestartet.

3.2.3.1 Substrat: Acetophenon

Hydrierung von Acetophenon zu R- / S-Phenylethanol

It. Abb. 12 in Abschnitt 3.1.5.2:

Nr.	Kat.	Substr./Kat.	Т	Druck	Dauer	Ums	satz	ТО	ee
			[°C]	[bar]	[min]	PE [%] 3	?-PE [%]	[h ⁻¹]	[%]
41	2a	1606	30	5	5700	0,00	0,00	-	-
42	2a	1606	30	10	3000	0,00	2,24	0,54	*nb
43	2a	649	30	60	120	0,00	1,89	6,13	*nb
44	2b	758	60	5	3000	0,00	0,00	-	-
45	2b	1027	60	75	2520	4,40	1,74	1,08	8,10
46	2a	1057	80	60	3600	1,39	82,18	14,44	2,26
47	2a	594	80	60	1200	17,42	68,77	20,43	*nb
48	2a	1121	80	75	1080	1,58	43,17	26,89	5,68
49	2b	723	80	60	3600	6,17	9,89	1,43	*nb
50	2b	1019	80	60	4800	4,63	50,63	6,45	10,50
51	2b	1120	80	75	4800	5,46	5,23	0,76	0,04
52	2a	1081	100	60	2400	17,02	29,22	7,88	4,38
53	2b	1103	100	60	4800	23,00	13,87	3,17	5,48

Tabelle 11: Hydrierung von Acetophenon mit 2a und 2b

na: nicht auswertbar nb: nicht bestimmbar

Abb. 31: Auswertung 2a u. 2b Acetophenon Temperatur gegen Umsatz

Abb. 32: Auswertung 2a u. 2b Acetophenon Temperatur gegen ee-Wert

Abb. 33: Auswertung **2a** u. **2b** Acetophenon H₂-Druck gegen ee-Wert

Im untersuchten Ruthenium-Katalysator-System ist ebenfalls eine Ringhydrierung für Acetophenon festzustellen. Im Gegensatz zum Rhodium-Katalysator-System nimmt hier bei erhöhter Temperatur die Ausbeute an gewünschtem Produkt zu und die Ringhydrierungsneigung ab. Eine Erhöhung des Druckes auf 75 bar bei 80 °C ergibt keine Ausbeutenerhöhung für das gewünschte Produkt: Phenylethanol.

Für Zielparameter ee-Wert weisen die beiden den Diastereomeren unterschiedliches Verhalten auf. In der isothermen Druckvariation und der Temperaturvariation isobaren ergeben sich gegenläufige R-Ruthenium-Katalysator Enantiomerenüberschüsse. Der erhöht seine S-Ruthenium-Komplex Ausbeuten. der verliert seinen Enantiomerenüberschuss.

Auch in diesem getesteten System sind weder die Ausbeuten an Phenylethanol noch die Enantiomerenüberschüsse in herausragenden Bereichen.

3.2.3.2 Substrat: a-Acetamidozimtsäure

Hydrierung von a-Acetamidozimtsäure zu N-Acetylphenylalanin verläuft It. Abb. 16 in Abschnitt 3.1.5.3:

Nr.	Kat.	Substr./Kat.	Т	Druck	Dauer	Umsatz	то	ee
			[°C]	[bar]	[min]	[%]	[h ⁻¹]	[%]
54	2a	1024	30	5	300	8,2	16,8	5,28
55	2a	1016	30	25	-	-	-	-
56	2a	1197	30	60	*nb	2	*na	27,64
57	2a	1061	30	75	*nb	1,8	*na	17,54
58	2b	1158	30	5	*nb	1,6	*na	11,66
59	2b	1084	30	25	*nb	0,9	*na	3,14
60	2b	1039	30	60	*nb	1,1	*na	5,0
61	2b	990	30	75	600	5,25	5,5	10,74

Tabelle 12: Hydrierung von α-Acetamidozimtsäure bei 30 °C mit **2a** und **2b**

Nr.	Kat.	Substr./Kat.	Т	Druck	Dauer	Umsatz	ТО	ee
			[°C]	[bar]	[min]	[%]	[h ⁻¹]	[%]
62	2a	1076	60	5	*nb	5,1	*na	6,98
63	2a	982	60	25	2700	12,5	2,7	8,94
64	2a	1010	60	60	150	10,4	42,0	14,6
65	2a	1046	60	75	4800	76,84	11,12	15,34
66	2b	998	60	5	3000	2,4	0,48	5,48
67	2b	1235	60	25	3900	6,9	1,3	0,56
68	2b	1089	60	60	1500	12,5	5,4	8,96
69	2b	1030	60	75	7200	9	0,8	0,66

Tabelle 13: Hydrierung von α-Acetamidozimtsäure bei 60 °C mit **2a** und **2b**

Nr.	Kat.	Substr./Kat.	Т	Druck	Dauer	Umsatz	ТО	ee
			[°C]	[bar]	[min]	[%]	[h ⁻¹]	[%]
70	2a	1060	80	5	300	25,7	54,4	0,86
71	2a	1017	80	25	180	36,9	125,1	5,76
72	2a	1022	80	60	1200	56,0	28,6	11,4
73	2a	998	80	75	300	23,0	46,3	28,62
74	2b	1043	80	5	*nb	*nb	*na	11,50
75	2b	1022	80	25	600	1,5	1,53	10,96
76	2b	976	80	60	150	4,1	16,0	8,26
77	2b	1079	80	75	120	44,0	237,3	28,36

Tabelle 14: Hydrierung von α -Acetamidozimtsäure bei 80 °C mit **2a** und **2b**

Nr.	Kat.	Substr./Kat.	Т	Druck	Dauer	Umsatz	ТО	ee
			[°C]	[bar]	[min]	[%]	[h ⁻¹]	[%]
78	2a	1039	115	5	9600	52,40	3,40	3,28
79	2b	526	115	3	960	5,05	3,79	63,24
80	2b	1007	115	5	6000	51,85	6,01	7,94

Tabelle 15: Hydrierung von α -Acetamidozimtsäure bei 115°C mit **2a** und **2b**

3.2.3.3 Substrat: Acetamidozimtsäure in 2-Propanol

Nr.	Kat.	Substr./Kat.	Т	Druck	Dauer	Umsatz	ТО	ee
			[°C]	[bar]	[min]	[%]	[h ⁻¹]	[%]
81	2a	1031	60	50	720	6,2	5,3	20,24
82	2b	1059	60	50	4200	34,19	5,17	18,32

Tabelle 16: Hydrierung von α -Acetamidozimtsäure in 2-Propanol mit **2a** und **2b**

na: nicht auswertbar nb: nicht bestimmbar

3.2.4 Auswertungen

Abb. 34: Auswertung 2a u. 2b a-Acetamidozimtsäure Temperatur gegen Umsatz

Abb. 35: Auswertung 2a u. 2b a-Acetamidozimtsäure Temperatur gegen ee-Wert

Abb. 36: Auswertung 2a u. 2b a-Acetamidozimtsäure H2-Druck gegen ee-Wert

Abb. 37: Auswertung 2a u. 2b a-Acetamidozimtsäure H₂-Druck gegen Umsatz

Die Abbildung 34 zeigt auch hier ein unterschiedliches Verhalten der diastereomeren Katalysatoren. Für das R-System ist mit steigender Temperatur eine Umsatzsteigerung zu erkennen. Einen Ausreißer stellt die 70 bar Kurve dar. Für das S-Isomer ergibt sich die Idealtemperatur bei maximalem Umsatz für 60 °C. Auch hier reißt die 75 bar Kurve aus, die einen Anstieg über den Temperaturbereich aufweist.

Aus Abbildung 37 ergeben sich die Bedingungen für Umsätze oberhalb von 20%, mit der maximalen Ausbeute von 76,8 % beim Reaktionssystem mit R-Katalysator und einer Temperatur von 60 °C. Der R-Katalysator **2a** zeigt akzeptable Umsätze (>20 %) ab 60 °C und 70 bar, oder bei 80 °C schon ab einem Druck von 5 bar. Für den S-Katalysator **2b** wird die 20 %-Marke nur für 80 °C Reaktionstemperatur und 75 bar Wasserstoffdruck überschritten.

Die Auftragungen in den Abbildungen 35 und 36 zeigen ein uneinheitliches Verhalten der Katalysatoren bei Variation von Druck und Temperatur. Anders als bei den Rhodium-Systemen kann hier kein eindeutiger Verlauf und keine Teilung der Leistungsfähigkeit in der Produktion von Enantiomerenüberschüssen fixiert werden. Es ist zu beobachten, dass beide Katalysatoren (**2a** und **2b**) bei 80 °C und 75 bar Reaktionsdruck die gleichen ee-Werte von 28,x% liefern. Der Katalysator **2a** kann diesen Wert bei 30 °C und 60 bar Reaktionsdruck mit ee = 27,6% fast erreichen.

3.3 Vergleich maximaler ee-Werte über alle getesteten Systeme

Die eigentlich erhoffte Zielkomponentenmaximierung in den Enantiomerenüberschüssen der Produkte ist in keinem Fall gegenüber schon veröffentlichten Katalysatoren gelungen^[77;79;102].

Nr.	Kat.	Substrat	Lösungs-	Druck	Т	ee
			mittel	[bar]	[°C]	[%]
31	1b	a-Acetamidozimtsäure	MeOH	50	80	33,9
37	1b	a-Acetamidozimtsäure	i-Prop	50	60	56,8
79	2b	a-Acetamidozimtsäure	MeOH	3	115	63,2
50	2b	Acetophenon	MeOH	60	80	10,5

Tabelle 17: Vergleich aller getesteter Systeme

Die erhöhte Katalysatorstabilität geht auf Kosten der Aktivität und Selektivität. Akzeptable Umsatzergebnisse werden erst ab einer Reaktionstemperatur von 60 °C erzielt. Die in einem frühen Stadium der Forschungsarbeit erzielten Ergebnisse der Hydrierung 79 waren im Folgenden nicht zu übertreffen.

Für Acetophenon sind die maximal erreichten Enantiomerenüberschüsse nicht ausreichend. Die bei der a-Acetamidozimtsäure erreichten Ergebnisse sind akzeptabel, aber nicht herausragend.

3.4 Carben-Liganden für die asymmetrische Synthese

3.4.1 Allgemeines

Die etablierte Klasse der Organophosphanliganden wird seit einigen Jahren durch N-Heterocyclische-Carbene (NHC) in der metallorganisch katalysierten Synthese ergänzt. Diese Carbenklasse geht mit diversen Hauptgruppenelementen^[103] sowie fast jedem Übergangsmetall koordinative Bindungen ein. Die Oxidationsstufe der Übergangsmetalle spielt hierbei eine untergeordnete Rolle. Die häufig auftretende stabilisierende und aktivierende Wirkung der Carbene auf Metallzentren und die fortlaufend neu entwickelten Formen führen zu einem Ersetzungskanibalismus der etablierten Phosphanligand-Katalysatoren durch meist leistungsfähigere Carben-Katalysatoren.

N-Heterocyclische-Carbene sind seit den Berichten von Öfele im Jahre 1968^[104] bekannt. Die freien Liganden sind von Arduengo et al. hergestellt und 1991 beschrieben worden^[105].

Damit waren die Carbene jedermann zugänglich und wurden Gegenstand einer größer werdenden Forschergemeinde. Inzwischen sind eine Vielzahl stabiler, "in Flaschen abfüllbarer", Carbene bekannt. Erste Produkte sind sogar im Chemikalienhandel verfügbar.

Bei den von uns hergestellten Ylidenen (Abb. 42) handelt es sich um nucleophile Singulettcarbene, die bezüglich der Koordinationschemie den elektronenreichen Organophosphanen PR₃ eine große Ähnlichkeit aufweisen sollten^[106-108].

Abb. 38: Imidazol-Carben und Deguphos

Die Bindungstheorie und spektroskopische Untersuchungen^[109] haben für die N-Heterocyclischen-Carbene einen ausgeprägten σ-Donorcharakter und geringe Rückbindungsanteile ergeben. Damit entsprechen die Bindungen denen der Organophosphane. So lassen sich die klassischen 2e-Liganden Amine, Ether oder Phosphane in der Metallkoordinationssphäre durch N-Heterocyclische-Carbene substituieren.^[110-115].

Der Ring weist laut Ladungsdichtestudien und Additionsreaktionen von Herrmann kaum π -Aromatizität auf^[110;116]. Die Bindungslängen sind experimentell^[117] länger als in Organophosphan-Metall-Komplexen. Die hieraus ableitbaren geringen π -Bindungsanteile bestätigen die Annahme, dass NHC's gute σ -Donoren und schlechte π -Akzeptorliganden sind.

Jenseits der Katalyse sind die ersten Flüssigkristalle auf Basis von NHC-Pd-Komplexen veröffentlicht worden^[118]. Diese Verbindungsklasse könnte aufgrund der thermischen Stabilität bis zu ihren isotropen Temperaturen für die Materialwissenschaften ein lohnendes Feld werden.

3.4.2 Carbene in der Katalyse

In den Jahren 1996 ff wurden erste Berichte zu katalytisch relevanten NHC-Metallkomplexen veröffentlicht.^[111-115;119;120]

Katalytische Daten wurden seit 1995^[121] gesammelt und veröffentlicht.

Die üblichen Anforderungen zur Optimierung von Katalysatorsystemen

- Hohe thermische und hydrolytische Beständigkeit
- Lagerfähigkeit, Oxidationsstabilität
- Leichte Zugänglichkeit
- Geringer Ligandenüberschuß bei der Synthese
- Wasserlöslichkeit für Interphasenkatalysen
- Immobilisierung
- Chirale Modifizierungsmöglichkeiten

scheinen mit den NHC-Carbenkomplexsystem basierten neuen Strukturprinzipien erreichbar zu sein^[121;122]. Durch Variation der Ligandensphäre kann das System den gestellten Anforderungen angepasst werden.

eingesetzte Erfolgreich NHC-Katalysatorsysteme sind für folgende Reaktionstypen bekannt^[109]: Heck- und Suzuki-Kupplungen, Arylaminierungen, α-Arylierung von Amiden, Hydrosilylierungen, Olefinmethathesen, Olefin-Kreuzmetathesen, Sonogashira-Kupplungen, Grignard-Kreuzkupplungen, Stilleder CH-Aktivierung, Hydroformylierungen Kupplungen, bei und Hydrierungsreaktionen.

Für die industriell relevante Funktionalisierung von Olefinen wird bis dato von Rhodium(I)-NHC's ausgegangen^[123-126]. Durch die Möglichkeit, wasserlöslicher NHC-Metall Komplexe^[127] in der Interphasenkatalyse einzusetzen, sind weitere Verbesserungen denkbar.

Für Ruthenium(II)-Katalysatoren wurden bei der Alkenhydrierung inzwischen ebenfalls gute Umsätze mit der Substitution von Phosphanliganden durch NHC's erreicht^[128]. Die Bedingungen sind jedoch, wie für Ruthenium(II)-Katalysatoren üblich, sehr rigide. Es mussten bei Lee und Smith 100 °C mit 4 bar H₂-Druck aufgewendet werden.

3.4.3 Asymmetrische Katalyse

Der Einsatz von N-Heterocyclischen-Carbenliganden in der asymmetrischen Katalyse ist ein noch wenig veröffentlichtes Gebiet. Die Zahl der Erfolgsmeldungen ist gering^[129-131]. Die optischen Ausbeuten sind fast durchgängig verbesserungsbedürftig.

Die Möglichkeiten asymmetrische Induktionszentren im Liganden zu fixieren sind so zahlreich wie bei Phosphanliganden. Zusätzlich können in NHC's auch direkt im Heterozyklus asymmetrisch substituierte Ringatome erzeugt werden.

Die Immobilisierung von NHC's sollte möglich sein, um so Zweiphasenkatalysen durchführen zu können. Vielversprechende Ergebnisse liefern die Erkenntnisse von Wang^[132] und Schwarz^[133], die bei Ihren Versuchen ein überaus geringes Leaching beobachteten.
3.4.4 Darstellung

Die meisten Darstellungsreaktionen der Imidazolcarbene laufen über Salzmetathesen oder Eliminierungsreaktionen ab. Die am Häufigsten dargestellten NHC's basieren heutzutage auf Imidazolin-2-ylidenen. Andere publizierte Varianten gehen von Triazol abgeleiteten Systemen aus^[134].

Abb. 39: Imidazolyliden und Triazolyliden

3.4.4.1 Imidazolsynthese

Das leicht zugängliche, vom Imidazol abgeleitete, Carben ist über das Thioharnstoffderivat N-Isopropyl-N'-(4-)((isopropylamino)carbothioyl)amino)butyl)-thioharnstoff aus 1,4-Diaminobutan und Isopropyl-*iso*-thiocyanat in einer Einstufen-Eintopfsynthese hergestellt worden.

Abb. 40: Darstellung Thioharnstoffderivat

Die Ringbildung zum gewünschten cyclischen Thioharnstoffderivat erfolgt mit 3-Hydroxy-2-butanon innerhalb von 12 h in Hexanol.

Abb. 41: Ringschluß

Der Schwefel wird aus dem cyclischen Thioharnstoffderivat mit Kalium in THF in einem Temperaturprofil von 0°C bis 25 °C entfernt^[135]. Das freie Carben soll luft- und hydrolysestabil sein. Der Nachweis steht noch aus.

Abb. 42: Carbenbildung

Die massenspektroskopischen Untersuchungen von **67** und **69** ergeben die erwarteten Molekülpeaks bei 291,2 m/z und 394,2 m/z. Für das C2 im cyclischen Thioharnstoffderivat feht im ¹³C{¹H}-NMR der Peak bei erwarteten 160+ ppm. Auch nach der Behandlung mit Kalium ist im isolierbaren Produkt mit CDCl₃ kein Carbenkohlenstoffatom zu finden. Allerdings sind bei der weiteren Umsetzung mit Rhodium-COD-Cl₂ und Palladiumacetat die nach Mata et al.^[149] erwarteten Resonanzen um 180 ppm zu finden.

3.4.5 Modellverbindung für den Pyrrolidin backbone

1,2-Bis-(diaminomethyl)-cyclopentan soll im weiteren Verlauf der Forschung als Diaminkomponente für die Carbensynthese aus 3.4.4.1 verwendet werden. Ziel ist die Verwendung des Cyclopentyl-backbones anstatt des Pyrrolidingrundkörpers in verschiedenen Katalysatoren zu ermöglichen. Es wird erwartet, dass sich dieser Weg weniger zeitaufwendig, billiger und leichter gestaltet und sich auf diese Weise homogene Katalysatoren besser testen lassen.

Abb. 43: Modellverbindung für den Pyrrolidin-backbone

Dazu wird in einem ersten Schritt Cyclopenten bromiert^[136-138]. Anschließend erfolgt die Kettenverlängerung durch die Substitution des Broms mittels Natriumcyanid nach einer abgewandelten Vorschrift von Prof. Dr. Ulrich Nagel. Im letzten Schritt dieses Syntheseteilwegs wird die Cyanidgruppierung dann mittels Raney-Nickel zum Amin hydriert.

Das Dicyanocyclopentan liess sich trotz erheblicher Anstrengungen nicht in ausreichender Menge isolieren. Die Variationen von Reaktionsdauer, -temperaturen, -temperaturprogrammen, Zusätzen und Lösungsmittel auf der Basis diverser Veröffentlichungen^[139-141] sind in folgender Tabelle dargestellt.

Lösungs- mittel	Temp. 1	RK Dauer 1	Temp. 2	RK Dauer 2	Zusätze
DMSO	120	48	-	-	-
DMSO	RT	1	100	24	
-	RT	24	100	48	-
DCM	RT	24	60	8	-
DMF	RT	1,5	160	24	CuCN
DMF	RT	24	100	24	CuCN
DMF	RT	24	100	48	-
Toluol	RT	24	100	48	-
DMSO/DCM	RT	1	100	24	-

Tabelle 18: Versuchsreihe zur Cyanidierung

Bei den Untersuchungen der Rückstände und Destillate traten mehrere Fraktionen auf, die über die charakteristische Cyanid IR-Bande bei 2240 cm⁻¹ verfügten.

Eine weitere Charakterisierung zur Bestimmung und eindeutigen Identifizierung eines reinen Produktes mittels NMR- und Massen-Spektroskopie gelang nicht. Die NMR-Spektren wiesen keine verwertbaren / erkennbaren Signale auf. Da der Weg, das Pyrrolidinrückgrat nicht sofort bei der Entwicklung neuer Verbindungen ins Spiel zu bringen, nicht funktionierte, wurde die Herstellung der Diaminokomponente (78) erwogen.

Abb. 44: Pyrrolidin-backbone zum Diamin über Kettenverlängerung

Das in früheren Arbeiten hergestellte N-Benzyl-3,4-di-((methylsulfonyl)oxy)pyrrolidin wurde mit Natriumcyanid in DMSO umgesetzt. Die anschließende Etherextraktion ergibt das Dicyanorohprodukt.

Nach einer Reinigung über Kieselgel zeigt das ¹³C-NMR-Spektrum nur noch Resonanzen, die dem Produkt zugeordnet werden können. Im ¹H-NMR-Spektrum sind allerdings noch deutliche Verunreinigungen zu erkennen. Mit weiteren Methoden wurde das Dicyanopyrrolidinderivat noch nicht untersucht.

Das rotbraune Öl wurde direkt als Rohprodukt zu Hydrierversuchen herangezogen. Eine anschließende Aufreinigung und Charakterisierung des gewünschten Diamins gelang aber in der zur Verfügung stehenden Zeit nicht mehr.

4 Experimenteller Teil

4.1 Allgemeine Bemerkungen

4.1.1 Arbeitstechnik

Alle Arbeitsschritte erfolgten, wenn nicht anders angegeben, unter Argonatmosphäre (4.8) in Schlenkrohrtechnik, absolutierten Lösungsmitteln und Raumtemperatur. Die verwendeten Lösungsmittel wurden nach den üblichen Methoden getrocknet und waren schutzgasgesättigt^[142-144].

4.1.2 Analysen

Für die Analysen wurden folgende Geräte verwendet:

¹**H-NMR-Spektren:** Bruker AC 250 (150,13 MHz), interner Standard Lösungsmittelsignal.

¹³C{¹H}-NMR-Spektren: Bruker AC 250 (62,905 MHz), interner Standard Lösungsmittelsignal.

³¹P{¹H}-NMR-Spektren: Bruker AC 250 (101,26 MHz), externer Standard 85% ige H_3PO_4 .

IR-Spektren: Bruker IFS 48 mit Computer Aspect 1000.

Enantiomerenanalytik: GC: Chrompack, Modell 438A. Detektor: FID variabel, Split Injektor variabel,

Für Substrat Acetamidozimtsäure: Splitverhältnis 1:80; Trägergas: Wasserstoff; Kapillarsäule: Macherey-Nagel Permabond L-Chirasil-Val[®] (50 m, 0,25 mm Ø). Datenerfassung und Auswertung mit Software der Fa. Kontron, Datasystem 450-MT2.

Für Substrat Acetophenon: Splitverhältnis 1:100; Trägergas: Wasserstoff; Kapillarsäule: Macherey-Nagel FS-Lipodex E (50 m, 0,25 mm Ø). Datenerfassung und Auswertung mit Software der Fa. Kontron, Datasystem 450-MT2.

4.1.3 Ausgangsverbindungen

Bezugsquellen der Chemikalien:

Fluka: DC-Platten, 3-Hydroxy-2-butanon, R(+)-1,1'-Bi(2-naphthol), S(-)-1,1'-Bi(2-naphthol), 1,4-Diaminobutan, Brom, Cyclopenten, HBF₄-Lösung 50% in H₂O.

Merck: Ruthenium-(III)-chlorid Hydrat, NaOH p.a. ACS, *tert*.-Butylmethylether, Methanol p.a., Pyridin, Mesitylen, Benzol, Phosphor(III)-chlorid, Acetonitril.

Aldrich: Isopropylisothiocyanat.

BASF: Ammoniak.

Acros: 1,5-Cyclooctadien.

Riedel de Haen: Acetophenon, Nickel-Aluminium Legierung, Kupfer(I)-cyanid, Kalium.

Chemikalienausgabe des Instituts (CZI): Lithium, Natriumcyanid sowie die üblichen Lösungsmittel und Standardchemikalien.

Im Arbeitskreis vorrätige Verbindung: a-Acetamidozimtsäure.

Deionisiertes Wasser für Hydrierungen: Milipore, Milli-Q PLUS 185, QPAK[®]2 Säule.

Wasserstoff: Whatman Hydrogen Gernerator mit Pd-Rohr als Kathode und NaOH (Merck p.a. ACS; <0,0002% K),Millipore Wasser.

Literaturverbindungen: [Rh(COD)₂]BF₄^[145-147].

4.2 Binaphthylligand Komplexe

4.2.1 1,3,5-Trimethyl-2,5-cyclohexadien^[97]

2,17 g (314 mmol) Lithium werden unter Argon vorgelegt und 140 ml Ammoniak bei -70 °C einkondensiert. Ein Gemisch aus 11 ml (8,0 mmol) Mesitylen, 20 ml tert.-Butanol und 22 ml THF_{abs} wird langsam zugegeben. Die Reaktionslösung wird 2 h bei -55 °C gerührt. Danach werden vorsichtig 19 ml MeOH und 19 ml H₂O bei -70 °C zugegeben. Die Lösung wird während der MeOH Zugabe weiß und friert später ein. Am Folgetag wird langsam bis auf Raumtemperatur erwärmt. 3 mal wird mit 30 ml Diethylether ausgeschüttelt und die vereinigten Etherphasen über Natriumsulfat getrocknet. Das Dien wird bei Normaldruck mit einem Siedepunkt von 145 °C abdestilliert.

C₉H₁₄ (122,11 g/mol) Ausbeute: 3,5 g (mmol, 36 %)

¹H-NMR (CDCl₃): δ = 0,92 (d, 3 H, CH₃), 1,59 (s, 3 H, 2 CH₃), 2,31-2,34 (m, 2 H, CH₂), 2,57-2,71 (m, 1 H, CH-CH₃), 5,22-5,23 (d, 2 H, CH). ¹³C{¹H}-NMR (CDCl₃): δ = 21,1 (s, CH₃), 23,0 (s, CH₃), 32,2 (s, CH₂-CH₃), 35,8 (s, CH₂), 125,1 (s, CH), 130,0 (s, C-CH₃).

4.2.2 Bi-[Mesityl-di-chloro-ruthenium(II)]^[100]

160 mg (0,613 mmol) RuCl₃*3 H₂O werden in 100 ml MeOH gelöst, 1,2 ml (8,3 mmol) 1,3,5-Trimethyl-2,5-cyclohexadien, 0,5 ml (3,5 mmol) Mesitylen zugegeben und für 5 h bei 95 °C am Rückfluss gekocht. Beim Abkühlen auf Raumtemperatur fällt ein oranges Produkt aus. Am Folgetag wird die Mutterlauge auf 1/3 eingeengt und über eine P3 Fritte filtriert. Der Niederschlag wird mit wenig Methanol gewaschen.

C₁₈H₂₄Cl₄Ru₂ (584,33 g/mol) Ausbeute: 155 mg (0,27 mmol, 44 %)

¹H-NMR (DMSO): δ= 2,12 (s, 18 H, CH₃), 5,44 (s, 6 H, CH).

4.2.3 [h-Mesityl-dichloro-(pyridino)ruthenium(II)]^[100]

160 mg (0,40 mmol) Ruthenium-Dimer aus 3.2.2 werden unter Argon mit 10 ml Pyridin bei Raumtemperatur mehrere Tage gerührt. Der Rückstand wird am Vakuum bei 30 °C zur Trockene eingeengt. Es wird mit wenig MeOH und Diethylether gewaschen.

C₁₄H₁₇Cl₂NRu (371,27 g/mol) Ausbeute: 97 mg (0,26 mmol, 65 %)

¹H-NMR (Lömi): δ= 1,97 (s, 9 H, CH₃), 4,83 (s, 3 H, CH), 7,20-7,27 (m, 2 H, Py), 7,62-7,70 (m, 1 H, Py), 8,97-8,99 (m, 2 H, Py).
¹³C{¹H}-NMR (CDCl₃): δ= 19,1 (s, CH₃), 102,7 (s, Py), 124,9 (s, C-CH₃), 137,7 (s, Py), 150,0 (s, CH), 155,6 (s, Py).

4.2.4 Bis-(Rhodiumchlorocyclooctadien)

5 g (18,98 mmol) Rhodiumchlorid mit 3 mol Kristallwasser werden in 100 ml Ethanol gelöst, mit 10 ml (81,34 mmol) 1,5-Cyclooctadien versetzt und über Nacht am Rückfluss gekocht. Das Produkt wird abfiltriert und mit EtOH und Et₂O gewaschen, Dann am Vakuum bei RT getrocknet.

C₁₆H₂₄Rh₂Cl₂ (493,08 g/mol) Ausbeute: 5,6 g (15,2 mmol, 60 %)

4.2.5 (S)-(1,1'-Binaphthol-2,2'-dioxy)chlorphosphin

Eine Mischung aus 3,5 g (S)-2,2'-Dihydroxy-1,1'-binaphthol (12 mmol) und 25 g Phosphortrichlorid wird über Nacht unter Argon und Rühren zum Sieden erhitzt. Das überschüssige Phosphortrichlorid wird unter vermindertem Druck abdestilliert. Die letzten Spuren von Phosphortrichlorid werden durch dreimalige azeotrope Destillation mit Toluol (25 ml) entfernt. Der Rückstand wird mit Benzol gefriergetrocknet. Das Produkt enthält noch Binaphthol, wird aber ohne weitere Reinigung weiterverwendet.

C₂₀H₁₂ClO₂P (350,73 g/mol) Ausbeute: 4,4 g (100 %)

³¹P{¹H}-NMR (CDCl₃): δ = 179,48 (s).

4.2.6 (R)-(1,1'-Binaphthol-2,2'-dioxy)chlorphosphin

Eine Mischung aus 3,5 g (R)-2,2'-Dihydroxy-1,1'-binaphthol (12 mmol) und 25 g Phosphortrichlorid wird analog zur Darstellung von (S)-(1,1'-Binaphthol-2,2'-dioxy)chlorphosphin umgesetzt.

C₂₀H₁₂ClO₂P (350,73 g/mol) Ausbeute: 4,4 g (100 %)

³¹P{¹H}-NMR (CDCl₃): δ= 179,46 (s).

4.2.7 (3S,4S)-3,4-Bis-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-a']-Sdinaphthalin-4-yloxy)-pyrrolidin-1-carbonsäure-*tert*.-butylester

1,29 g 1-Boc-3,4-dihydroxypyrrolidin (6,35 mmol) wird in 10 ml THF im Wärme-Ultraschallbad vollständig und gelöst. Zu dieser Lösung werden 5,13 g Triethylamin (50,8 mmol) unter starkem Rühren gegeben. Die homogene Mischung wird in einen Tropftrichter überführt und langsam bei Raumtemperatur zu 4,3 g (S)-(1,1'-Binaphthol-2,2'-dioxy)chlorphosphin (12,7 mmol), in 10 ml THF gelöst, getropft.

Die Reaktionsmischung wird 48 h gerührt. Danach wird das Triethylammoniumhydrochlorid über einer P4-Fritte von der Lösung abgetrennt und zweimal mit Diethylether gewaschen.

Das Produkt wird mit Säulenchromatographie (60 mesh Kieselgel, Essigsäureethylester : Toluol = 10 : 90) gereinigt.

C₄₉H₃₉NO₈P₂ (831,78 g/mol) Ausbeute: 4,1 g (78 %)

¹H-NMR (CDCl₃): δ= 1,40 (s, 9H, Boc), 3.41-3.51 (m, 4H, Pyrrolidinring-H),
 4.51 (m, 2H, Pyrrolidinring-COH), 7.06-7.91 (m, 24H, Binaphthyl).
 ³¹P{¹H}-NMR (CDCl₃): δ= 144.07 (s), 146.03 (s).

4.2.8 (3S,4S)-3,4-Bis-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-a']-Rdinaphthalin-4-yloxy)-pyrrolidin-1-carbonsäure-*tert*.-butylester

1,29 g 1-Boc-3,4-dihydroxypyrrolidin (6,35 mmol) wird in 10 ml THF im Wärmevollständig dieser und Ultraschallbad gelöst. Zu Lösung werden 5,13 g Triethylamin (50,8 mmol) unter starkem Rühren gegeben. Die homogene einen Tropftrichter überführt Mischung wird in und langsam bei 4,3 g (R)-(1,1'-Binaphthol-2,2'-dioxy)chlorphosphin Raumtemperatur zu (12,7 mmol), in 10 ml THF gelöst, getropft.

Die Reaktionsmischung wird 48 h gerührt. Danach wird das Triethylammoniumhydrochlorid über einer P4-Fritte von der Lösung abgetrennt und zweimal mit Diethylether gewaschen.

Das Produkt wird mit Säulenchromatographie (60 mesh Kieselgel, Essigsäureethylester : Toluol = 10 : 90) gereinigt.

C₄₉H₃₉NO₈P₂ (831,78 g/mol) Ausbeute: 2,91 g (69,2 %)

¹H-NMR (CDCl₃): δ= 1,36 (s, 9H, Boc),

3.38-3.51 (m, 4H, Pyrrolidinring-H), 4.54 (m, 2H, Pyrrolidinring-COH),

7.06-7.91 (m, 24H, Binaphthyl).

³¹P{¹H}-NMR (CDCl₃): δ= 137.72 (s), 142.25 (s).

4.2.9 (3S,4S)-3,4-Bis-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-a']-Rdinaphthalin-4-yloxy)-pyrrolidin-1-carbonsäure-*tert*.-butylester-(1,5cyclooctadien)-rhodium-tetrafluoroborat

0,81 g (1 mmol) (3S,4S)-3,4-Bis-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-a']-R-dinaphthalin-4-yloxy)-pyrrolidin-1-carbonsäure-*tert*.-butylester werden in 100 ml DCM gelöst. Zu der Lösung werden 0,25 g (0,5 mmol) Bis-(Rhodiumchlorocyclooctadien) gegeben. Die Lösung wird 15 min bei Raumtemperatur gerührt. Nach dieser Zeit werden 0,21 g (1 mmol) Silbertetrafluoroborat, gelöst in 5 ml Toluol, zugegeben.

C₅₇H₅₁BF₄NO₈P₂Rh (1129,67 g/mol) Ausbeute: 1,02 g (0,9 mmol, 90 %)

¹H-NMR (CDCl₃): δ= 1,30 (s, 9 H, BOC), 2,28-2,29 (m, 8 H, CH₂-COD),

3,17 (m, 4 H, Pyrrolidinring), 4,58 (m, 4 H, CH-COD),

7,22 (m, 24 H, Binaphthyl).

³¹P{¹H}-NMR (CDCl₃): δ= 136,20 (d, J_{RhP}=248,08),

137,96 (d, J_{RhP}=248,08).

MS(FAB) m/z: 1042,0 [M⁺-BF₄], 934,0 [M⁺-BF₄-COD].

4.2.10 (3S,4S)-3,4-Bis-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-a']-S-dinaphthalin-4-yloxy)-pyrrolidin-1-carbonsäure-*tert*.-butylester-(1,5-cyclooctadien)-rhodium-tetrafluoroborat

0,81 g (1 mmol) (3S,4S)-3,4-Bis-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-a']-R-dinaphthalin-4-yloxy)-pyrrolidin-1-carbonsäure-*tert*.-butylester werden in 100 ml DCM gelöst. Zu der Lösung werden 0,25 g (0,5 mmol) Bis-(Rhodiumchlorocyclooctadien) gegeben. Die Lösung wird 15 min bei Raumtemperatur gerührt. Nach dieser Zeit werden 0,21 g (1 mmol) Silbertetrafluoroborat, gelöst in 5 ml Toluol, zugegeben. C₅₇H₅₁BF₄NO₈P₂Rh (1129,67 g/mol) Ausbeute: 1,02 g (0,9 mmol, 90 %)

¹H-NMR (CDCl₃): δ = 1,31 (s, 9 H, BOC), 2,27-2,28 (m, 8 H, CH₂-COD), 3,17 (m, 4 H, Pyrrolidinring), 4,57 (m, 4 H, CH-COD), 7,22 (m, 24 H, Binaphthyl). ³¹P{¹H}-NMR (CDCl₃): δ = 138,42 (d, J_{RhP}=249,1), 138,99 (d, J_{RhP}=249,1). MS(FAB) m/z: 1042,0 [M⁺-BF₄], 933,9 [M⁺-BF₄-COD].

4.2.11 (3S,4S)-3,4-Bis-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-a']-S-dinaphthalin-4-yloxy)-pyrrolidin-1-carbonsäure-*tert*.-butylestermesityl-pyridino-ruthenium-di-chlorid

0,1625 g (0,195 mmol) (3S,4S)-3,4-Bis-(3,5-dioxa-4-phospha-cyclohepta-[2,1-a;3,4-a']-S-dinaphthalin-4-yloxy)-pyrrolidin-1-carbonsäure-*tert*.-butylester und 0,078 g (0,195 mmol) η -Mesityl-dichloro-(pyridino)ruthenium(II) werden in 10 ml Dichlormethan gelöst und 24 h bei Raumtemperatur gerührt. Aus der dunkelroten Lösung fällt ein ebensolches Produkt aus.

Das Dichlormethan wird abgezogen und darauffolgend innerhalb von 5 Tagen in DCM / Hexan umkristallisiert.

C₆₃H₅₆Cl₂N₂O₈P₂Ru (1203,05 g/mol) Ausbeute: 0,185 g (79 %)

³¹P{¹H}-NMR (CDCl₃): δ= 135,88 (d, J_{RuP} =122.5), 151.99 (d, J_{RuP} =132.6).

4.2.12 (3S,4S)-3,4-Bis-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-a']-R-dinaphthalin-4-yloxy)-pyrrolidin-1-carbonsäure-*tert*.-butylestermesityl-pyridino-ruthenium-di-chlorid

Die Darstellung erfolgt analog zu (3S,4S)-3,4-Bis-(3,5-dioxa-4-phosphacyclohepta[2,1-a;3,4-a']-S-dinaphthalin-4-yloxy)-pyrrolidin-1-carbonsäure-*tert*.butylester-(mesityl-pyridino)ruthenium-di-chlorid. Es wurde nicht umkristallisiert.

C₆₃H₅₆Cl₂N₂O₈P₂Ru (1203,05 g/mol) Ausbeute: 0,175 g (75 %)

³¹P{¹H}-NMR (CDCI₃): δ = 137.18 (d, J_{RuP}=104.0), 151.88 (s).

4.2.13 Katalyse mit (3S,4S)-3,4-Bis-(3,5-dioxa-4-phosphacyclohepta[2,1-a;3,4-a´]-R-dinaphthalin-4-yloxy)-pyrrolidin-1carbonsäure-tert.-butylester-mesityl-pyridino-ruthenium-di-chlorid und (3S,4S)-3,4-Bis-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-a´]-Sdinaphthalin-4-yloxy)-pyrrolidin-1-carbonsäure-*tert*.-butylestermesityl-pyridino-ruthenium-di-chlorid

4.2.13.1 Substrat Acetophenon

Der Autoklav wird evakuiert und mit Argon befüllt. 0,5 ml (4,29 mmol) Acetophenon, 0,8 mg (4,1 μ mol) AgBF₄, und 4,81 mg (4 μ mol) des entsprechenden Ruthenium-Katalysators werden unter Argongegenstrom in den Autoklav überführt. Nach Zugabe von 35 ml entgastem Methanol wird der Autoklav verschlossen. Nun wird unter Rühren fünf Mal evakuiert, um den gesamten Gasraum mit dem Lösungsmitteldampf zu füllen. Der Autoklav wird nun an die Hydrierapparatur angeschlossen und ausreichend temperiert. Nachdem der Wasserstoff aufgepresst und die Datenaufnahme begonnen wurde, wird die Hydrierung mit dem Einschalten des Rührers gestartet.

Nach beendeter Reaktion wird über eine G2-Fritte filtriert und das Lösungsmittel abgezogen.

4.2.13.2 Substrat a-Acetamidozimtsäure

Der Autoklav wird evakuiert und mit Argon befüllt. 1,00 g (4,1 mmol) α -Acetamidozimtsäure und 4,81 mg (4 µmol) des entsprechenden Ruthenium-Katalysators werden unter Argongegenstrom in den Autoklav überführt. Nach Zugabe von 35 ml entgastem Methanol und 0,05 ml (285 µmol) HBF₄-Lösung (50 %ig in H₂O) wird der Autoklav verschlossen. Nun wird unter Rühren fünf Mal evakuiert, um den gesamten Gasraum mit dem Lösungsmitteldampf zu füllen. Der Autoklav wird nun an die Hydrierapparatur angeschlossen und ausreichend temperiert. Nachdem der Wasserstoff aufgepresst und die Datenaufnahme begonnen wurde, wird die Hydrierung mit dem Einschalten des Rührers gestartet.

Nach beendeter Reaktion wird über eine G2-Fritte filtriert und das Lösungsmittel abgezogen.

4.2.14 Katalyse mit (3S,4S)-3-4-Bis-(3,5-dioxa-4-phosphacyclohepta[2,1-a;3,4-a']-R-Dinaphthalen-yloxy)-pyrrolidin-1carbonsäure-*tert*.-butylester-(1,5-cyclooctadien)rhodiumtetrafluoroborat und (3S,4S)-3-4-Bis-(3,5-dioxa-4-phosphacyclohepta[2,1-a;3,4-a']-S-Dinaphthalen-yloxy)-pyrrolidin-1carbonsäure-*tert*.-butylester-(1,5-cyclooctadien)rhodiumtetrafluoroborat ^[78]

4.2.14.1 Substrat Acetophenon

Der Autoklav wird evakuiert und mit Argon befüllt. 0,5 ml (4,29 mmol) Acetophenon und 4,52 mg (4 µmol) des entsprechenden Rhodium-Katalysators werden unter Argongegenstrom in den Autoklav überführt. Nach Zugabe von 35 ml entgastem Methanol wird der Autoklav verschlossen. Nun wird unter Rühren fünf Mal evakuiert, um den gesamten Gasraum mit dem Lösungsmitteldampf zu füllen. Der Autoklav wird nun an die Hydrierapparatur angeschlossen und ausreichend temperiert. Nachdem der Wasserstoff aufgepresst und die Datenaufnahme begonnen wurde, wird die Hydrierung mit dem Einschalten des Rührers gestartet.

Nach beendeter Reaktion wird über eine G2-Fritte filtriert und das Lösungsmittel abgezogen.

4.2.14.2 Substrat a-Acetamidozimtsäure

Der Autoklav wird evakuiert und mit Argon befüllt. 1,00 g (4,1 mmol) α -Acetamidozimtsäure und 4,52 mg (4 μ mol) des entsprechenden Rhodium-Katalysators werden unter Argongegenstrom in den Autoklav überführt. Nach Zugabe von 35 ml entgastem Methanol wird der Autoklav verschlossen. Nun wird unter Rühren fünf Mal evakuiert, um den gesamten Gasraum mit dem Lösungsmitteldampf zu füllen. Der Autoklav wird nun an die Hydrierapparatur angeschlossen und ausreichend temperiert. Nachdem der Wasserstoff aufgepresst und die Datenaufnahme begonnen wurde, wird die Hydrierung mit dem Einschalten des Rührers gestartet.

Nach beendeter Reaktion wird über eine G2-Fritte filtriert und das Lösungsmittel abgezogen.

4.2.15 Bestimmung des Umsatzes der Katalysen

Eine Auswerteroutine unter MathCAD 8 (Autor: Prof. Dr. Ulrich Nagel) ermittelt den Wasserstoffverbrauch und Turnover der Reaktion. Der Umsatz wird durch Integration der CH₃-Signale der Acetylgruppe aus der ¹H-NMR spektroskopischen Untersuchung der Reaktionslösung ermittelt.

4.2.16 Enantiomerenbestimmung mittels Gaschromatographie

4.2.16.1 Substrat Acetophenon

Nach der Probenentnahme für das ¹H-NMR wird das Hydrierprodukt in Et₂O gelöst und über eine kleine Kieselgel-Säule gereinigt. Der Ether wird erneut abgezogen und die Probe mit Et₂O, auf 1:15, verdünnt der gaschromatographischen Trennung der Enantiomere unterzogen.

4.2.16.2 Substrat a-Acetamidozimtsäure

Nach der Probenentnahme für das ¹H-NMR wird das Hydrierprodukt mit ca. 5 ml einer 2%-igen Acetylchlorid / Methanol-Lösung versetzt und über Nacht gerührt. Nun wird wiederum das Lösungsmittel bis zur Trockene abgezogen und das Phenylalanin mit 10 ml *tert*.-Butylmethylether aufgenommen. Nachdem über Nacht sich der Phenylalanin-Methylester gelöst hat, wird von dieser Lösung 1 ml entnommen und mit 10 ml *tert*.-Butylmethylether verdünnt. Diese Lösung wird dann direkt für die GC-Analyse verwendet.

4.3 Carbenkomplex-Ligand Katalysatoren

4.3.1 N-IsopropyI-N'-(4-(((isopropylamino)carbothioyI)amino)butyI)thioharnstoff

5,0 ml (50 mmol) 1,4-Diaminobutan und 11,75 ml (110 mmol) Isopropyl-isothiocyanat werden in 750 ml Dichlormethan bei Raumtemperatur für 24 h gerührt. Das Produkt wird mittels einer Schutzgasfritte P3 abgetrennt sowie mit 50 ml DCM gewaschen. Es wird am Vakuum getrocknet. Reinheitskontrolle über DC mit Fluoreszenzindikator auf Kieselgel 60 A, Laufmittel Ethylacetat.

C₁₂H₂₆N₄S₂ (290,49 g/mol) Ausbeute: 12,98 g (45 mmol, 89 %)

¹H-NMR (DMSO): δ= 1,08,-1,05 (d, 12 H, Me), 1,43 (s, 4 H, CH₂),

3,35 (s, 4 H, CH₂), 4,19 (s, 2 H, iPr-CH), 7,11-1,19 (t, 4 H, NH).

¹³C{¹H}-NMR (DMSO): δ= 20,92 (s, CH₃), 26,7 (s, CH₂),

40,7 (s, CH₂), 43,38 (s, CH), 181,02 (s, CS). MS(FAB) m/z: 291,2 [M+H]⁺.

4.3.2 1-IsopropyI-3-[4-(3-isopropyI-4,5-dimethyI-2-thioxo-2,3-dihydro-1Himidazol-1-yl)butyI]-4,5-dimethyI-1,3-dihydro-2H-imidazole-2-thion

10 g (34 mmol) N-Isopropyl-N'-(4-(((isopropylamino)carbothioyl)amino)butyl)thioharnstoff werden mit 6,1 g (69 mmol) 3-Hydroxy-2-butanon in 100 ml 1-Hexanol für 12 h am Rückfluß gekocht. Das Lösungsmittel wird am Vakuum entfernt, der Rückstand mit H₂O und Et₂O gewaschen. Umkristallisiert wird in EtOH / H₂O (1:1). C₂₀H₃₄ N₄S₂ (394,22 g/mol)

Ausbeute: 5,1 g (13 mmol, 38 %)

¹H-NMR (CDCl₃): δ= 1,37 (d, 12 H, CH₃-CH), 1,73 (d, 4 H, CH₂), 2,13 (s, 12 H, CH₃), 3,99 (s, 4 H, CH₂).
¹³C{¹H}-NMR (CDCl₃): δ= 8,9 (s, CH₃), 20,4 (s, CH₃-CH), 25,6 (s, CH₂), 44,3 (s, CH), 48,7 (s, CH₂), 120,3 (s, C-CH₃).
MS(FAB) m/z: 394,2 [M⁺].

4.3.3 1,4-Di-(3'-Isopropyl-4',5'-dimethyl-4',5'-dihydroimidazol-2'-yliden)butan

1 g (2,5 mmol) 1,4-Di-(3'-Isopropyl-4',5'-dimethyl-4',5'-dihydro-imidazol-2'thionyl)-butan wird mit 30 ml THF bei 0°C vorgelegt und mit 0,5 g (12 mmol) Kalium versetzt. Danach wird 4 h am Rückfluss gekocht, drei Wochen bei RT gerührt und abfiltriert. Es wird am Vakuum getrocknet.

C₂₀H₃₄N₄ (330,31 g/mol) Ausbeute: mg (mmol, %)

¹H-NMR (CDCl₃): δ= 1,37 (d, 12 H, CH₃-CH, J=6,96), 1,73 (d, 4 H, CH₂), 2,10 (s, 6 H, CH₃), 2,13 (s, 6H, CH₃), 3,40 (s, 4H, CH₂), 3,99 (s, 2H, CH).
¹³C{¹H}-NMR (CDCl₃): δ= 8,8 (s, CH₃), 20,4 (s, CH₃-CH), 25,7 (s, CH₂), 44,3 (s, CH), 48,8 (s, CH₂), 120,4 (s, C-CH₃).
MS(FAB) m/z: 331,2 [M⁺], 192,9 [M-C₈H₁₃N₂], 184 [M-2^xi-Propyl-4^xCH₃]. Das Produkt wird in Acetonitril mit Rh-COD-Cl₂ und Pd(II)-acetat weiter umgesetzt. Es wird 3 Tage bei RT gerührt. Danach wird für 6 h auf 50 °C erhitzt und weitere 5 Tage bei RT gerührt. Über eine G4 Fritte filtriert und NMR spektroskopisch untersucht.

4.4 Modellverbindungen

4.4.1 1,2-Dibromcyclopentan

20 ml (226 mmol) Cyclopenten werden unter Eiskühlung in 60 ml CHCl₃ vorgelegt. 11,7 ml (227 mmol) Brom, in 20 ml CHCl₃, werden möglichst schnell unter ständigem Rühren zugetropft. Die Geschwindigkeit wird so gewählt, dass die Bromfarbe augenblicklich verschwindet. Nach beendeter Zugabe wird 12 h bei RT gerührt. Das farblose 1,2-Dibromcyclopentan wird destilliert.

C₅H₈Br₂ (227,93 g/mol) Ausbeute: 31 g (135,6 mmol, 60 %)

¹H-NMR (CDCl₃): δ = 1,95-2,14 (d, 4 H), 2,60-2,62 (d, 4 H), 4,55 (s, 2 H). ¹³C{¹H}-NMR (CDCl₃): δ = 21,6 (s), 34,3-34,6 (d), 57,7 (s).

4.4.2 1,2-Dicyanocyclopentan

8 ml (63 mmol) 1,2-Dibromcyclopentan wird in DMSO für 48 h bei 120 °C mit 10 g (204 mmol) NaCN gerührt. Die Lösung färbt sich augenblicklich dunkel. Die Isolierung wurde durch Destillation, flüssig-flüssig Extraktion und Säulenchromatographie mit Kieselgel versucht. Reaktionsdauern, Lösungsmittel, Zusätze und Temperaturen wurden laut Tabelle 14 variiert. Es war kein Produkt isolierbar.

C₇H₈N₂ (120,15 g/mol)

IR: 2240 cm⁻¹ (CN).

4.4.3 N-Benzyl-3,4-dicyano-pyrrolidin

2,1 g (6 mmol) N-Benzyl-3,4-di-((methylsulfonyl)oxy)-pyrrolidin werden mit 2,98 g (60 mmol) NaCN in 40 ml DMSO für 48 h bei 120 °C gerührt. Am Rotationsverdampfer wird das DMSO entfernt. Es folgt eine drei Tage dauernde Extraktion mit Et_2O im Soxhletextraktor. Im letzten Schritt wird mit einer Kugelrohrdestillation das rotbraune Öl erhalten. Getrocknet wird bei RT und 5*10⁻² bar. Gereinigt wird über Kieselgel 60 mit Aceton als Laufmittel. Die vollständige Aufreinigung und eindeutige Charakterisierung des Produktes ist noch nicht abgeschlossen.

C₁₃H₁₃N₃ (211,26 g/mol) Ausbeute: 0,38 g (1,8 mmol, 30 %)

¹H-NMR (CDCl₃): δ= 2,7-2,8 (m, 2 H, Pyr-CH₂), 2,9-3,0 (m, 2 H, Pyr-CH), 3,2-3,3 (m, 2 H, Pyr-CH₂), 3,6 (d, 2 H, CH₂), 7,1-7,2 (m, 5 H, Ph).
¹³C{¹H}-NMR (CDCl₃): δ= 30,8 (s, CH-CN), 31,8 (s, CH-CN), 55,9 (s, Pyr-CH₂), 57,9 (s, Benzyl-CH₂), 117,7 (s, CN), 118,9 (s, CN), 127,4 (s, Ph), 128,3 (s, Ph), 136,7 (s, Ph).

5 Zusammenfassung

Die katalytische Hydrierung polarer Doppelbindungen ist eine häufig eingesetzte Reaktion in der Feinchemikalien- und Pharmazeutischen-Produktion. Im großen Interesse steht hierbei die asymmetrische Variante zur Erlangung möglichst eines Enantiomeren ohne die Abtrennung des anderen in einem weiteren Reaktionsschritt durchführen zu müssen. Dadurch, dass für jedes Herstellungsproblem nicht nur neue ideale Reaktionsbedingungen gefunden werden müssen, sondern auch neue Ligandensysteme neue Ergebnisse und Möglichkeiten auftun, kann nicht unbedacht auf die herausragenden Diamin-dichloro-bisphosphin Komplexe in der Noyori Reihe zurückgegriffen werden. Es wollen in Sachen Haltbarkeit, Stabilität und Handlingsmöglichkeiten noch weitere Systeme entwickelt werden. In diesem Gedankengang ist die Erhöhung der Luftstabilität und damit stark vereinfachter Lager- und Handlingmöglichkeiten eine sich aufdrängende Problemstellung.

In unserem Fall sollte diese Verbesserung durch die Veränderung der Phosphinliganden zu Phosphitsystemen erreicht werden.

Die Darstellung der Rhodiumverbindungen gestaltete sich deutlich leichter als die Rutheniumsysteme. In ihren Handlingeigenschaften sind alle vier Katalysatoren als äußerst gutmütig einzustufen. Die Katalyseprobenpräparation wurde ohne weitere Sicherheitsmaßnahmen an der Laborluft durchgeführt.

Die (3S,4S)-3,4-Bis-(3,5-dioxa-4-phospha-cyclohepta-[2,1-a;3,4-a']-S-dinaphthalin-4-yloxy)-pyrrolidin-1-carbonsäure-*tert.*-butylester haben gegenüber den (3S,4S)-3,4-Bis-(3,5-dioxa-4-phospha-cyclohepta-[2,1-a;3,4-a']-R-dinaphthalin-4-yloxy)-pyrrolidin-1-carbonsäure-*tert.*-butylestern als Liganden für

Rhodium und Ruthenium jeweils deutlich schlechtere Ergebnisse erzielt. Für die Substrate a-Acetamidozimtsäure und das als von jeher problematisch

anzusehende Acetophenon haben immer die S-Dinaphthalinderivate die höheren Enantiomerenüberschüsse als Hauptzielparameter, in der asymmetrischen Hydrierung, geliefert. Die in einem frühen Stadium der Forschungsarbeit erreichten 63,2%ee Wert wurden im Folgenden mit keiner Parameterzusammenstellung mehr erreicht oder übertroffen.

Im zweiten und dritten Teil meiner Arbeit sollte die vor einiger Zeit von den Professoren Nagel und Kuhn geborene Idee, Carbene in der asymmetrischen Katalyse einzusetzen, begonnen werden. Diese in den frühen Jahren ihrer Erforschung als Laborkuriositäten^[123;148] beschriebenen Verbindungen sind heutzutage Gegenstand erheblicher Forschungsaktivitäten. Auch sind die ersten Katalysatoren in der Katalyse eingesetzt, dank auch der Erfolge zur Herstellung luft- und hydrolysebeständiger Carbene. Die NHC's scheinen das Mittel der Wahl für redoxabhängige Katalysezyklen zu werden.

Der hergestellte chelatisierende Carbenligand lässt sich nach der Syntheseoptimierung zwar zeitaufwendig, aber in einfacher Weise herstellen.

Die Umsetzung auf Palladium und Rhodium wird gerade entwickelt und wartet noch auf entsprechend aussagefähige Daten.

Die 4 CH₂-Gruppen umfassende Verbindung zwischen dem Imidazol-dicarbenliganden **71**, durch ein starres Pyrolidinrückgrat **78** zu ersetzen scheint durch die letzten Ergebnisse meiner Forschungstätigkeiten wieder in greifbare Nähe gerückt zu werden. Eine Darstellung und Reinigung der Dicyanoverbindung scheint möglich zu sein.

An dieser Stelle werden unter der Leitung von Professor Nagel in der Folge weitere Ideen umgesetzt.

6 Literaturverzeichnis

- [1.] H. Beyer, W. Walter, *Lehrbuch der Organischen Chemie*, 23. Auflage ed. S. Hirzel Verlag, Stuttgart, Leipzig **1998**, p. 126ff.
- [2.] B. L. Feringa, R. A. van Delden, *Angew.Chem.* **1999**, *111* 3624-3645.
- [3.] L. Pasteur, *Comp.Rend.Paris* **1848**, *26* 535-538.
- [4.] S. F. Mason, *Nature* **1984**, *311* 19-23.
- [5.] W. A. Bonner, *Top.Stereochem.* **1988**, *18* 1-96.
- [6.] G. Wald, N.Y.Acad.Sci. 1957, 49 352-368.
- [7.] W. E. Elias, J.Chem.Educ. **1972**, 49 448-454.
- [8.] M. T. Reetz, A. Zonta, K. Schimossek, K. Liebeton, K.-E. Jaeger, Angew.Chem. 1997, 109 2961-2963.
- [9.] L. Pasteur, Bull.Soc.chim.Fr. 1884, 41 215-221.
- [10.] E. Fischer, Ber.Dtsch.Chem.Ges. 1890, 232611-2624.
- [11.] E. Fischer, *Ber.Dtsch.Chem.Ges.* **1894**, 27 2985-2993.
- [12.] The Lock and Key Principle (Hrsg.: J.-P.Behr), Wiley, New York 1994.
- [13.] W. A. Bonner, *Chem.Ind.* **1992**, 640-644.
- [14.] F. A. Avetisov, V. I. Goldanskii, *Biosystems* 1991, 25141-149.
- [15.] M. Bolli, R. Micura, A. Eschenmoser, *Chem.Biol.* **1997**, *4* 309-320.
- [16.] E. Havinga, Chem. Weekbl. 1941, 38 642-644.
- [17.] E. Havinga, *Biochim.Biophys.Acta* **1954**, *13* 171-174.
- [18.] W. A. Bonner, P. R. Kavasmaneck, J.Org.Chem. 1976, 41 2225-2226.
- [19.] D. K. Kondepudi, R. Kaufman, N. Singh, *Science* **1990**, *250* 975-976.
- [20.] D. K. Kondepudi, K. L. Bullock, J. A. Digits, J. K. Hall, J. M. Miller, *J.Am.chem.Soc.* **1993**, *115* 10211-10216.
- [21.] J. R. Cronin, S. Pizzarello, Science 1997, 275 951-955.
- [22.] M. H. Engel, S. A. Macko, J. A. Silfer, *Nature* **1990**, *348* 47-49.
- [23.] H. Pracejus, Fortschr.Chem.Forsch. 1967, 8493-553.
- [24.] D. Radulescu, V. Moga, Bull.Soc.Chim.Rom. 1939, 1 18-24.
- [25.] A. Byk, Z.Phys.Chem. 1904, 49 641-687.

- [26.] A. Cotton, Ann.Chim.Phys. **1896**, 8 347-432.
- [27.] G. Balavoine, A. Moradpour, H. B. Kagan, J.Am.Chem.Soc. 1974, 96 5152-5158.
- [28.] H. B. Kagan, J. C. Fiaud, *Top.Stereochem.* **1988**, *18* 249-330.
- [29.] Y. Inoue, 92 **1992**, 770.
- [30.] B. Nordén, Acta Chem. Scand. 1970, 24 349-351.
- [31.] K. L. Stevenson, J. F. Verdieck, J.Am.Chem.Soc. 1968, 90 2974-2975.
- [32.] K. L. Stevenson, J. F. Verdieck, *Mol.Photochem.* **1969**, *1* 271-288.
- [33.] A. Moradpour, J. F. Nicoud, G. Balavoine, H. B. Kagan, G. Tsoucaris, *J.Am.Chem.Soc.* **1971**, *93* 2353-2354.
- [34.] W. J. Bernstein, M. Calvin, O. Buchardt, *J.Am.Chem.Soc.* **1973**, *95* 527-532.
- [35.] R. A. Hegstrom, D. K. Kondepudi, Sci.Am. 1990, 262(1) 98-105.
- [36.] T. D. Lee, C. N. Yang, *Phys.Rev.* **1956**, *102* 290-291.
- [37.] H. Buschmann, R. Thede, D. Heller, Angew. Chem. 2000, 112 4197-4200.
- [38.] S. F. Mason, G. E. Tranter, *J.Chem.Soc.Chem.Commun.* **1983**, 117-119.
- [39.] D. K. Kondepudi, G. W. Nelson, *Nature* **1985**, *314* 438-441.
- [40.] D. K. Kondepudi, G. W. Nelson, *Physica A* **1984**, *125* 465-496.
- [41.] D. K. Kondepudi, G. W. Nelson, *Phys.Lett.A* **1984**, *106* 203-206.
- [42.] R. Noyori, in Asymmetric Catalysis in Organic Synthesis, Wiley, New York **1994**.
- [43.] J. Halpern, Science **1982**, 217 401-407.
- [44.] J. Halpern, *Asymmetric Synthesis* **1985**, 541-69.
- [45.] C. R. Landis, J. Halpern, J.Am.Chem.Soc. 1987, 109 1746-1754.
- [46.] D. Heller, K. Kortus, R. Selke, *Liebigs Ann.* **1995**, 575-581.
- [47.] D. Heller, S. Born, W. Baumann, R. Selke, *Chem.Ber.* **1996**, *129* 85-89.
- [48.] N. W. Alcock, J. M. Brown, P. J. Maddox, J.Chem.Soc.Chem.Commun. 1986, 1532-1534.
- [49.] B. McCullock, J. Halpern, M. R. Thompson, C. R. Landis, *Organometallics* **1990**, *9* 1392-1395.
- [50.] J. S. Giovannetti, C. M. Kelly, C. R. Landis, J.Am. Chem. Soc. 1993, 115 4040-4057.
- [51.] J. A. Ramsden, T. D. Claridge, J. M. Brown, *J.Chem.Soc.Chem.Commun.* **1995**, 2469-2471.

- [52.] J. M. Brown, P. A. Chaloner, *Tetrahedron Lett.* **1978**, *21* 1877-1880.
- [53.] J. M. Brown, P. A. Chaloner, J.Chem.Soc.Chem.Commun. 1979, 613-615.
- [54.] J. M. Brown, P. A. Chaloner, *J.Am.Chem.Soc.* **1980**, *10*2 3040-3048.
- [55.] J. M. Brown, B. A. Murrer, *Tetrahedron Lett.* **1980**, *21* 581-584.
- [56.] J. M. Brown, L. Pasteur, J.Org.Chem. 1982, 47 2722-2730.
- [57.] J. M. Brown, B. A. Murrer, J.Chem.Soc., Perkin Trans. Il **1982**, 489-497.
- [58.] J. M. Brown, P. A. Chaloner, G. A. Morris, J.Chem.Soc.Chem.Commun. 1983, 320.
- [59.] J. M. Brown, I. Cutting, A. P. James, Bull.Soc.chim.Fr. 1988, 2 211-217.
- [60.] J. M. Brown, D. Parker, J.Chem.Soc.Chem.Commun. 1996, 342.
- [61.] K. Woelk, J. Bargon, Z. Phys. Chem. 1993, 182 155-165.
- [62.] J. M. Brown, P. L. Evans, *Tetrahedron* **1988**, *44* 4905-4916.
- [63.] B. Bosnich, *Pure Appl.Chem.* **1990**, *62* 1131-1134.
- [64.] R. Eisenberg, J.Chin.Chem.Soc. 1995, 42 471-481.
- [65.] J. Bargon, J. Kandels, K. Woelk, Z. Phys. Chem. 1993, 180 65-93.
- [66.] P. Kating, A. Wandelt, R. Selke, J. Bargon, J.Phys.Chem. 1993, 9713313-13317.
- [67.] A. Harthun, J. Bargon, R. Selke, *Tetrahedron Lett.* **1994**, 35 7755-7758.
- [68.] A. Harthun, J. Barkemeyer, R. Selke, J. Bargon, *Tetrahedron Lett.* **1995**, *3*6 7423-7426.
- [69.] A. Harthun, R. Kadyrov, R. Selke, J. Bargon, Angew. Chem. 1997, 109 1155-1156.
- [70.] M. J. Burk, J. R. Lee, J. P. Martinez, *J.Am.Chem.Soc.* **1994**, *116* 10847-10848.
- [71.] M. J. Burk, J. E. Feaster, W. A. Nugent, R. L. Harlow, J.Am.Chem.Soc. 1993, 115 10125-10138.
- [72.] M. J. Burk, J. E. Feaster, J.Am.Chem.Soc. 1992, 114 6266-6267.
- [73.] M. J. Burk, J. E. Feaster, R. L. Harlow, *Tetrahedron Asymmetry* **1991**, *2* 569-592.
- [74.] M. J. Burk, *J.Am.Chem.Soc.* **1991**, *113* 8518-8519.
- [75.] M. J. Burk, J. E. Feaster, R. L. Harlow, Organometallics **1990**, 9 2653-2655.
- [76.] G. S. Hammond, J.Am.Chem.Soc. 1955, 77 334.
- [77.] U. Nagel, B. Rieger, Organometallics **1989**, 8 1534-1538.
- [78.] Knobl, Stefan, Eberhard-Karls-Universität Tübingen, **2001**.

- [79.] Nagel, U., Ludwig-Maximilians-Universität München, **1987**.
- [80.] H. Brunner, Top.Stereochem. 1988, 18 129.
- [81.] K. E. Koenig, Asymmetric Synthesis 1985, 5.
- [82.] D. Evans, J. A. Osborn, F. H. Jardine, G. Wilkinson, *Nature* **1965**, *208* 1203.
- [83.] J. Halpern, J. F. Harrod, B. R. James, J.Am. Chem. Soc. 1966, 88 5150.
- [84.] F. Fache, E. Schulz, M. L. Tommasino, M. Lemaire, *Chem. Rev.* 2000, 100 2159.
- [85.] R. Noyori, Angew.Chem.Int.Ed.Engl. 2002, 41 2008.
- [86.] S. E. Clapham, A. Hadzovic, R. H. Morris, *Coordination Chemistry Reviews* **2004**, *248* 2201-2237.
- [87.] R. Noyori, T. Ohkuma, Angew.Chem.Int.Ed.Engl. 2001, 40 40.
- [88.] G. J. Kubas, *Metal Dihydrogen and Sigma-Bond Complexes*, Kluwer Academic Publishers/Plenum Press, New York **2001**.
- [89.] M. A. Esteruelas, I. A. Oro, *Chem. Rev.* **1998**, *98* 577.
- [90.] P. G. Jessop, R. H. Morris, *Coord.Chem.Rev.* **1992**, *121* 155.
- [91.] D. M. Heinekey, W. J. J. Oldham, *Chem. Rev.* **1993**, *9*3 913.
- [92.] B. R. James, Adv. Organomet. Chem. 1979, 17 319.
- [93.] P. J. Brothers, Prog. Inorg. Chem. 1981, 281.
- [94.] R. H. Morris, *Can.J.Chem.* **1996**, *74* 1907.
- [95.] M. Yamakawa, H. Ito, R. Noyori, *J.Am.chem.Soc.* **2000**, *122* 1466.
- [96.] S. Gladiali, G. Mestroni, *Transit.Met.Org.Synth.* **1998**, 2 97.
- [97.] M. A. Bennett, A. K. Smith, J.Chem.Soc.Dalton Trans. 1974, 233-241.
- [98.] A. P. Krapcho, A. A. Bothner-By, *J.Am.Chem.Soc.* **1959**, *81* 3658.
- [99.] R. A. Zelonka, M. C. Baird, *Can.J.Chem.* **1972**, *50* 3063.
- [100.] T. Arthur, T. A. Stephenson, Journal of Organometallic Chemistry 1981, 208 369-387.
- [101.] Rau, Armin, Eberhard-Karls Universität, 2001.
- [102.] H. Yamamoto, K. Futatsugi, *Angew.Chem.* **2005**, *117* 1958-1977.
- [103.] Kuhn, Norbert and Al-Sheikh, Ahmed. 2,3-Dihydroimidazol-2-ylidenes and their main group element chemistry. 2005. Ref Type: Unpublished Work
- [104.] K. Öfele, Journal of Organometallic Chemistry 1968, 12 42.
- [105.] A. J. Arduengo, R. L. Harlow, M. Kline, J.Am.Chem.Soc. 1991, 113 361.

- [106.] W. A. Herrmann, D. Mihalios, K. Öfele, P. Kiprof, F. Belmedjahed, *Chem.Ber.* **1992**, 125 1795.
- [107.] K. Öfele, W. A. Herrmann, D. Mihalios, M. Elison, E. Herdtweck, W. Scherer, J. Mink, *Journal of Organometallic Chemistry* **1993**, *459* 177.
- [108.] W. A. Herrmann, K. Öfele, M. Elison, F. E. Kühn, P. W. Roesky, *Journal of Organometallic Chemistry* **1994**, *480* C7.
- [109.] W. A. Herrmann, Angew. Chem. 2002, 114 1342-1363.
- [110.] W. A. Herrmann, P. W. Roesky, M. Elison, G. R. J. Artus, K. Öfele, *Organometallics* **1995**, *14* 1085.
- [111.] W. A. Herrmann, C. Köcher, L. J. Gooßen, G. R. J. Artus, Chem. Eur. J. 1996, 2 772.
- [112.] W. A. Herrmann, J. Fischer, K. Öfele, G. R. J. Artus, *Journal of Organometallic Chemistry* **1997**, *530* 259.
- [113.] W. A. Herrmann, G. Gerstberger, M. Spiegler, Organometallics 1997, 16 2209.
- [114.] C. Köcher, W. A. Herrmann, Journal of Organometallic Chemistry 1997, 532 261.
- [115.] W. A. Herrmann, L. J. Gooßen, G. R. J. Artus, C. Köcher, Organometallics **1997**, *16* 2472.
- [116.] M. Tafipolsky, W. Scherer, K. Öfele, G. R. J. Artus, W. A. Herrmann, G. S. McGrady, *J.Am.Chem.Soc.* **2002**.
- [117.] Weskamp, T., TU München, 1999.
- [118.] C. K. Lee, J. C. C. Chen, K. M. Lee, C. W. Liu, I. J. B. Lin, *Chem.Mater.* **1999**, *11* 1237.
- [119.] W. A. Herrmann, F. C. Munck, G. R. J. Artus, O. Runte, R. Anwander, *Organometallics* **1997**, *16* 682.
- [120.] W. A. Herrmann, G. M. Lobmaier, M. Elison, *Journal of Organometallic Chemistry* **2005**, *520* 231.
- [121.] W. A. Herrmann, M. Elison, J. Fischer, C. Köcher, G. R. J. Artus, *Angew.Chem.* **1995**, *107* 2602.
- [122.] E. Peris, J. A. Loch, J. Mata, R. H. Crabtree, *Chem.Eur.J.* **2001**, 201.
- [123.] W. A. Herrmann, C. Köcher, Angew.Chem. 1997, 109 2256-2282.
- [124.] L. Jafarpour, S. P. Nolan, Adv. Organomet. Chem. 2001, 46 181.
- [125.] D. Bourissou, O. Guerret, F. P. Gabbai, G. Bertrand, Chem. Rev. 2000, 100 39.
- [126.] W. A. Herrmann, L. J. Gooßen, M. Spiegler, Organometallics 1998, 17 2162.
- [127.] W. A. Herrmann, L. J. Gooßen, M. Spiegler, *Journal of Organometallic Chemistry* **1997**, *547* 357.

- [128.] H. M. Lee, D. C. Smith, Z. He, E. D. Stevens, C. S. Yi, S. P. Nolan, Organometallics 2001, 20794.
- [129.] D. Enders, H. Gielen, Journal of Organometallic Chemistry 2001, 70 617-618.
- [130.] M. T. Powell, D.-R. Hou, M. C. Perry, X. Cui, K. Burgess, J.Am.Chem.Soc. 2001, 123 8878.
- [131.] J. Pytkowicz, S. Roland, P. Mangeney, *Tetrahedron Asymmetry* **2001**, *12* 2087.
- [132.] H. M. J. Wang, I. J. B. Lin, Organometallics 1998, 17 972.
- [133.] J. Schwarz, V. P. W. Böhm, M. G. Gardiner, M. Grosche, W. A. Herrmann, W. Hieringer, G. Raudaschl-Sieber, *Chem.Eur.J.* **2000**, *6* 1773.
- [134.] M. Regitz, Angew.Chem.Int.Ed.Engl. 1996, 35725.
- [135.] N. Kuhn, T. Kratz, Synthesis 1993, 561-562.
- [136.] A. R. Katritzky, J. M. Lloyd, J.Chem.Soc., Perkin Trans. 1982, 2347-2352.
- [137.] S. Winstein, R. M. Roberts, J.Am.Chem.Soc. 1953, 75 2297-2300.
- [138.] Organikum, 16 ed. **1986,** p. 255.
- [139.] Rieke, Milligan, J.Org.Chem. 1983, 48 2949-2953.
- [140.] H. Kwart, J. Jr. Ford, J.Org.Chem. 1959, 24 2060-2061.
- [141.] K. Mlyano, T. Matsumoto, *Tetrahedron Lett.* **1974**, *16* 1545-1548.
- [142.] Trocknen im Labor, Merck, Darmstadt 1990.
- [143.] Autorenkollektiv, *Organikum*, 20. Auflage ed. Johann Ambrosium Barth Verlag, Heidelberg, Leipzig **1996**, p. 685ff.
- [144.] D. D. Perrin, W. L. F. Armarego, D. R. Perrin, *Purification of Laboratory Chemicals*, 2nd Edition ed. Pergamon Press, New York **1980**.
- [145.] G. Brauer, *Handbuch der präparativen anorganischen Chemie*, Enke Verlag, Stuttgart **1981**, p. 1896.
- [146.] R. R. Schrock, J. A. Osborn, J.Am.Chem.Soc. 1971, 93 3089.
- [147.] Schwarze, Universität Rostock, **1995**.
- [148.] P. S. Skell, S. R. Sandler, *J.Am.Chem.Soc.* **1958**, *80* 2024.
- [149.] J.A. Mata, A.R. Chianese, J.R. Miecznikowski, M. Poyatos, E. Peris, J.W. Faller, R.H. Crabtree, *Organometallics.* **2004**, *23* 1253.

7 Anhang

7.1 Abkürzungsverzeichnis

AAZ	a-Acetamidozimtsäure
Abb	Abbildung
BOC	tertButyloxycarbonyl-Rest
bzw.	beziehungsweise
COD	1,5-Cyclooctadien
CPL	Circular polarisiertes Licht
δ	Chemische Verschiebung
d	Duplett
D, L	Konfiguration nach Fischer-Projektion
DC	Dünnschichtchromatographie
DCM	Dichlormethan
DMF	N,N-Dimethylformamid
E	Konzentration eines Enantiomer
ee	Enantiomerenüberschuss (enantiomeric excess)
FAB	Fast atom bombardement
FID	Flammenionisationsdetektor
FT-IR	Fouriertransformations-Infrarotspektroskopie
GC	Gaschromatographie
h	Stunden
i-Prop	2-Propanol
IR	Infrarotsprektroskopie
J	Kopplungskonstante
λ	Wellenlänge

m	Multiplett
М	Molare Masse
M ⁺	Molekülpeak (Massenspektroskopie)
Me	Methylgruppe
min	Minute
m/z	Masse zu Ladungs-Verhältnis
ν	Schwingungsfrequenz (IR)
na	Datenaufnahme nicht auswertbar
nb	Umsatz nicht bestimmbar
NHC	N-Heterocyclische-Carbene
NMR	Nuclear Magnetic Resonance
PE	Phenylethanol
Ph	Phenylgruppe
PPh_3	Triphenylphosphan
ppm	parts per million
PVED	Parity Violating Energy Difference
R, S	Absolute Konfiguration nach Cahn-Ingold-Prelog
[Rh]	Rhodium-Komplex
[Ru]	Ruthenium-Komplex
RK	Reaktion, Reaktions-
S	Singulett
t	Triplett
Т	Dauer der Hydrierung
tert.	tertiär
THF	Tetrahydrofuran
ТО	Turnover-Zahl
TOF	Turnoverfrequenz

7.2 Abbildungsverzeichnis

Abb.	1: DIPAMP und CHIRAPHOS	10
Abb.	2: Halpern-Zyklus	13
Abb.	3: PYRPHOS	18
Abb.	4: (3S,4S)-3-4-Bis-(3,5-dioxa-4-phospha-cyclohepta-[2,1-a;3,4-a']-R-Dinaphthalen-	
	yloxy)-pyrrolidin-1-carbonsäure-tertbutylester	19
Abb.	5: (3S,4S)-3-4-Bis-(3,5-dioxa-4-phospha-cyclohepta-[2,1-a;3,4-a']-S-Dinaphthalen-ylov	(y)-
	pyrrolidin-1-carbonsäure-tertbutylester	19
Abb.	6: Darstellung Pyrrolidin-Zweig	21
Abb.	7: Darstellung Binaphthol-Zweig	22
Abb.	8: Kopplung der Ligandbestandteile	22
Abb.	9: Bis-(Rhodiumchlorocyclooctadien)	23
Abb.	10: Schematischer Aufbau Hydrieranlage Nagel	24
Abb.	11: Hydrierkurve	26
Abb.	12: Hydrierung von Acetophenon	28
Abb.	13: Auswertung 1a u. 1b Acetophenon Temperatur gegen Umsatz	29
Abb.	14: Auswertung 1a u. 1b Acetophenon Temperatur gegen ee-Wert	30
Abb.	15: Auswertung 1a u. 1b Acetophenon H ₂ -Druck gegen ee-Wert	31
Abb.	16: Hydrierung von a-Acetamidozimtsäure	32
Abb.	17: Auswertung 1a u. 1b a-Acetamidozimtsäure Temperatur gegen Umsatz	35
Abb.	18: Auswertung 1a u. 1b a-Acetamidozimtsäure Temperatur gegen ee-Wert	36
Abb.	19: Auswertung 1a u. 1b a-Acetamidozimtsäure H ₂ -Druck gegen ee-Wert	36
Abb.	20: Auswertung 1a u. 1b a-Acetamidozimtsäure H ₂ -Druck gegen Umsatz	37
Abb.	21: Auswertung 1a u. 1b a-Acetamidozimtsäure Lösungsmittel gegen ee-Wert	37
Abb.	22: Wasserstoff und Transferhydrierung	39
Abb.	23: Ruthenium-Hydrid Bildung	40
Abb.	24: Allgemeiner Katalysezyklus für Ru-Verbindungen	41
Abb.	25: Meerwein-Pondorf-Verley Mechanismus	43
Abb.	26: Mechanismus der Ruthenium-Transfer-Hydrierung	44
Abb.	27: Nichtklassische Hydrierung in der äußeren Koordinationssphäre	45
Abb.	28: Birch Reduktion	46
Abb.	29: Ruthenium Precursor	47
Abb.	30: Ruthenium Katalysator Vorstufen	48
Abb.	31: Auswertung 2a u. 2b Acetophenon Temperatur gegen Umsatz	51

Abb.	32: Auswertung 2a u. 2b Acetophenon Temperatur gegen ee-Wert	51
Abb.	33: Auswertung 2a u. 2b Acetophenon H ₂ -Druck gegen ee-Wert	52
Abb.	34: Auswertung 2a u. 2b a-Acetamidozimtsäure Temperatur gegen Umsatz	55
Abb.	35: Auswertung 2a u. 2b a-Acetamidozimtsäure Temperatur gegen ee-Wert	56
Abb.	36: Auswertung 2a u. 2b a-Acetamidozimtsäure H ₂ -Druck gegen ee-Wert	56
Abb.	37: Auswertung 2a u. 2b a-Acetamidozimtsäure H ₂ -Druck gegen Umsatz	57
Abb.	38: Imidazol-Carben und Deguphos	60
Abb.	39: Imidazolyliden und Triazolyliden	63
Abb.	40: Darstellung Thioharnstoffderivat	63
Abb.	41: Ringschluß	64
Abb.	42: Carbenbildung	65
Abb.	43: Modellverbindung für den Pyrrolidin-backbone	66
Abb.	44: Pyrrolidin-backbone zum Diamin über Kettenverlängerung	68

7.3 Tabellenverzeichnis

Tabelle 1: Beispiele für die biologische Wirkung verschiedener Enantiomerenpaare	2
Tabelle 2: Bezeichnung der Liganden	20
Tabelle 3: Bezeichnung der Rhodium-Komplexe	23
Tabelle 4: Hydrierung von Acetophenon mit 1a und 1b	28
Tabelle 5: Hydrierung von α -Acetamidozimtsäure bei 30 °C mit 1a und 1b	32
Tabelle 6: Hydrierung von α -Acetamidozimtsäure bei 60 °C mit 1a und 1b	33
Tabelle 7: Hydrierung von α -Acetamidozimtsäure bei 80 °C mit 1a und 1b	33
Tabelle 8: Hydrierung von α -Acetamidozimtsäure in 2-Propanol mit 1a und 1b	34
Tabelle 9: Hydrierung von α -Acetamidozimtsäure mit 1a und 1b in verschiedenen	
Lösungsmitteln	34
Tabelle 10: Bezeichnung der Ruthenium-Komplexe	48
Tabelle 11: Hydrierung von Acetophenon mit 2a und 2b	50
Tabelle 12: Hydrierung von α -Acetamidozimtsäure bei 30 °C mit 2a und 2b	53
Tabelle 13: Hydrierung von α -Acetamidozimtsäure bei 60 °C mit 2a und 2b	53
Tabelle 14: Hydrierung von α -Acetamidozimtsäure bei 80 °C mit 2a und 2b	54
Tabelle 15: Hydrierung von α -Acetamidozimtsäure bei 115°C mit 2a und 2b	54
Tabelle 16: Hydrierung von α -Acetamidozimtsäure in 2-Propanol mit 2a und 2b	54
Tabelle 17: Vergleich aller getesteter Systeme	58
Tabelle 18: Versuchsreihe zur Cyanidierung	67

Meine akademische Ausbildung verdanke ich:

K. Albert, D. Christen, H-D. Ebert, H. Eckstein, H-J. Egelhaaf, W. Göpel,
G. Häfelinger, H. Hagenmaier, M. Hanack, D. Hoffmann, G. Jung, D. Krug,
N. Kuhn, E. Lindner, M. E. Maier, H. A. Mayer, H.-J. Meyer, U. Nagel,
W. Nakel, H. Oberhammer, D. Oelkrug, G. Reinhardt, V. Schurig, E. Schweda,
F. F. Seelig, H. Stegmann, J. Strähle, W. Voelter, U. Weimar, L. Wesemann,
W. Wischert, K-P. Zeller, C. Ziegler.
