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Abstract 

ABSTRACT 
Human Cytochrome P450 2B6 (CYP2B6) belongs to the superfamily of Cytochrome P450 

enzymes which catalyze a vast variety of biotransformations, mainly oxidations, of numerous 

endogenous substrates and xenobiotics. Drugs predominantly metabolized by this enzyme 

include, among others, the anticancer prodrug cyclophosphamide, the narcotic propofol, the 

antidepressant bupropion, the antimalarial drug artemisinin and the reverse transcriptase 

inhibitor efavirenz. In several works, a high variability in hepatic expression of CYP2B6 has 

been observed, part of which can be attributed to induction phenomena similar to the rodent 

CYP2B genes. Additionally, CYP2B6 has been shown to be highly polymorphic in the coding 

region as well as in the promoter region, and certain nonsynonymous SNPs have been 

associated with altered hepatic expression or activity of the protein. 

 

In this work, the impact of promoter polymorphisms on transcription of the human CYP2B6 

gene was investigated. A comprehensive haplotype analysis was conducted using 2.3 kb of 

promoter sequence data and genotypes for all common nonsynonymous SNPs from 96 

individuals of Caucasian origin. Erroneous genotyping for the SNP c.1459C>T in exon 9 was 

observed with the PCR-RFLP assay described previously by Lang et al. (2001) resulting from 

a mutation in a primer binding site in intron 8, and an alternative assay was developed. The 

presence and frequency of the major haplotypes present among Caucasians was confirmed 

except for the CYP2B6*7 allele which was shown to be a potential artifact caused by faulty 

genotyping of the mutation c.1459C>T. For functional investigations of the promoter 

polymorphisms, HepG2-cells and primary rat and human hepatocytes were transfected with 

luciferase reporter gene constructs driven by 2033 bp of the most frequent promoter variants 

*1A, *1J, *1N and *22. The novel haplotype *22 (-1848C>A, -801G>T, -750T>C and 

-82T>C) showed three- to ninefold enhanced transcriptional activity compared to *1A 

representing the wild type in all transfected cells. Constructs containing single mutations 

surprisingly revealed -82T>C, predicted to disrupt a putative TATA box, to be alone 

responsible for this effect. In silico analysis and electrophoretic mobility shift assay 

demonstrated conversion of the putative TATA box into a functional C/EBP binding site. 

Analysis of transcriptional start sites by 5’-RLM-RACE and primer extension showed the 

mutant promoter to be transcribed from a start site located about 30 bp downstream of the 

wild type start site, consistent with the use of a noncanonical TATA box at -55 bp. For 
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Abstract 

genotyping the SNP -82T>C in a large human liverbank, a DHPLC assay was established. 

The subsequent phenotype-genotype correlation analysis showed that median CYP2B6 

mRNA expression and bupropion hydroxylase activity as a selective marker of CYP2B6 

catalytic activity were about twofold higher in livers genotyped -82TC as in those genotyped 

-82TT (20.4 vs. 9.8 a.u., p=0.007, and 201.8 vs. 106.7 pmol/mg*min, p=0.042, respectively). 

This promoter polymorphism thus contributes to CYP2B6 functional variability and 

represents a novel mechanism by which mutations can enhance transcription. The SNP 

-750T>C was also investigated as it was predicted to disrupt a putative HNF1 binding site. 

Although a reduction in affinity of HNF1 to the promoter was observed in electrophoretic 

mobility shift assay when the mutation was present, no significant differences in reporter gene 

assays or hepatic expression were seen in relation to this mutation. In contrast, the 

CYP2B6*6B allele containing this SNP was shown to result in significantly reduced 

expression in human liver samples at the mRNA, protein and activity level. Thus, median 

mRNA levels were 11.2 vs. 7.2 a.u. (p=0.017), median microsomal protein content was 14.2 

vs. 7.3 pmol 2B6/mg protein (p=0.008), and median bupropion hydroxylase activity was 

reduced from 121.2 to 79.9 pmol/mg*min (p=0.020) in non-carriers vs. carriers of the 

CYP2B6*6 allele. Furthermore, a detailed inter-species comparison of CYP2B promoters and 

transcriptional start sites provided novel insights into evolutionary relationships and 

constitutive regulation of this gene (Zukunft et al., 2005). 

 

Key words: CYP2B6, CYP2B6*22, CYP2B6*7, transcriptional start site, transcriptional 

regulation, C/EBP, HNF1 
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Zusammenfassung 

ZUSAMMENFASSUNG 
Das humane Cytochrom P450 2B6 (CYP2B6) gehört zu der Superfamilie der Cytochrom-

P450-Enzyme, die eine Vielfalt von Biotransformationen, vornehmlich Oxidationen, ver-

schiedenster körpereigener und -fremder Substrate katalysieren. Zu den Arzneistoffen, die fast 

ausschließlich von diesem Enzym metabolisiert werden, zählen unter anderem das Cytostati-

kum Cyclophosphamid, das Anästhetikum Propofol, das Antidepressivum Bupropion, das 

Antimalariamittel Artemisinin und der nichtnukleosidische Reverse-Transkriptase-Hemmer 

Efavirenz. In verschiedenen Arbeiten wurde eine hohe Variabilität der hepatischen Expression 

des CYP2B6 beobachtet, die teilweise seiner den CYP2 Genen der Nager analogen Induzier-

barkeit zugeschrieben werden kann. Darüber hinaus wurde gezeigt, dass CYP2B6 sowohl in 

der Promotorregion als auch im kodierenden Bereich hochpolymorph ist, und verschiedene zu 

einem Aminosäureaustausch führende Mutationen wurden mit einer veränderten Expression 

oder Aktivität des Proteins assoziiert. 

 

In dieser Arbeit wurde der Einfluss von Promotorpolymorphismen auf die Transkription des 

humanen CYP2B6-Gens untersucht. Sequenzierungsdaten von einem 2,3 kb umfassenden 

Bereich des Promotors sowie Genotypisierungsdaten für alle häufigen nichtsynonymen SNPs 

von 96 Kaukasiern wurden für eine umfassende Haplotypenanalyse verwendet. Fehlerhafte 

Genotypisierungen mit der von Lang et al. (2001) beschriebenen PCR-RFLP-Methode für die 

Mutation c.1459C>T wurden beobachtet, die sich auf eine Mutation in einer 

Primerbindestelle im Intron 8 zurückführen ließen, und eine alternative Methode wurde 

etabliert. Die Präsenz und Häufigkeiten der wichtigsten Haplotypen bei Kaukasiern konnten 

bis auf Ausnahme des Allels CYP2B6*7 bestätigt werden. Für dieses wurde gezeigt, dass es 

sich wahrscheinlich um ein durch fehlerhaftes Genotypisieren der Mutation c.1459C>T 

verursachtes Artefakt handelt. Für die funktionelle Untersuchung der 

Promotorpolymorphismen wurden HepG2-Zellen sowie aus Ratten und Menschen isolierte 

primäre Hepatozyten mit Reportergenkonstrukten transfiziert, von denen das Luziferasegen 

unter der Kontrolle von 2033 Basenpaaren der häufigsten Promotorvarianten *1A, *1J, *1N 

und *22 transkribiert wird. Der neu beschriebene Haplotyp *22 (-1848C>A, -801G>T, 

-750T>C und -82T>C) zeigte in allen transfizierten Zellen eine drei- bis neunfach erhöhte 

Transkriptionsaktivität im Vergleich zu *1A, das den Wildtyp repräsentiert. Überraschender-

weise konnte durch Reportergenkonstrukte mit einzelnen Mutationen der SNP -82T>C, der 
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eine mutmaßliche TATA-box zerstört, als die alleinige ursächliche Mutation identifiziert wer-

den. Computeranalysen und „electrophoretic mobility shift assay“ zeigten, dass die potentielle 

TATA-box in eine funktionelle C/EBP-Bindestelle umgewandelt wird. Transkriptionsstart-

analysen mittels „5’-RLM-RACE“ und „primer extension“ ergaben, dass beim mutierten 

Promotor die Transkription ungefähr 30 Basen stromabwärts der regulären Trans-

kriptionsstartstelle einsetzt, was auf die Verwendung einer nichtkanonischen TATA-Box bei 

-55 bp schließen ließ. Eine DHPLC-Methode zur Genotypisierung des SNPs -82T>C in einer 

umfangreichen humanen Leberbank wurde entwickelt. In der anschließenden Genotyp-Phä-

notypkorrelation erwies sich, dass die mediane CYP2B6 mRNA-Expression und die Bupropi-

onhydroxylaseaktivität als spezifische Nachweisreaktion für CYP2B6-Aktivität in Lebern mit 

Genotyp -82TC gegenüber denen mit Genotyp -82TT etwa zweifach erhöht waren (20,4 vs. 

9,8 a.u., p=0,007, und 201,8 vs. 106,7 pmol/mg*min, p=0,042). Folglich trägt dieser Promo-

torpolymorphismus zur funktionellen Variabilität des CYP2B6 bei und stellt einen neuartigen 

Mechanismus dar, wie eine Mutation die Transkription verstärken kann. Des weiteren wurd 

der SNP -750T>C untersucht, bei dessen Anwesenheit die Zerstörung einer mutmaßlichen 

HNF1-Bindestelle vorhergesagt wurde. Obwohl in Gegenwart der Mutation eine Ab-

schwächung der Promotoraffinität von HNF1 im „electrophoretic mobility shift assay“ be-

obachtet wurde, waren signifikante Unterschiede bezüglich dieser Mutation weder bei den 

Reportergenversuchen noch bei der hepatischen Expression zu sehen. Im Gegensatz dazu 

konnte für das Allel CYP2B6*6B, das diese Mutation enthält, eine verringerte Expression in 

humanen Leberproben auf mRNA-, Protein- und Aktivitätsebene beobachtet werden. So war 

bei Nichtträgern bzw. Trägern des CYP2B6*6-Allels die mediane mRNA-Expression 11,2 vs. 

7,2 a.u. (p=0,017), der mediane mikrosomale Proteingehalt betrug 14,2 vs. 7,3 pmol 2B6/mg 

Protein (p=0,008), und die mediane Bupropionhydroxylaseaktivität war von 121,2 auf 79,9 

pmol/mg*min (p=0,020) reduziert. Des weiteren wurde ein detaillierte Gegenüberstellung von 

CYP2B-Promotoren und Transkriptionsstartstellen verschiedener Spezies vorgenommen, die 

neue Einblicke in die evolutionäre Entwicklung und konstitutive Regulation dieses Gens ge-

währt. 
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Introduction 

I INTRODUCTION 

1. The Cytochrome P450 enzymes 

With more than 2500 genes described to date in different species from bacteria to human, the 

Cytochrome P450 (CYP) enzymes constitute one of the biggest gene families 

(http://drnelson.utmem.edu/CytochromeP450.html). Their name originated from early 

observations describing them as a pigment (P) with a spectral absorbance maximum at 450 

nm seen in the presence of a reducing agent and carbon monoxide (Klingenberg, 1958; 

Estabrook, 2003). This unique feature distinguishes them from most other hemoproteins, 

which display an absorption maximum at 420 nm under these conditions. The reason for this 

unusual behavior is the axial ligand of the prosthetic heme group in the active site. In most 

hemoproteins like hemoglobin, this ligand represents a nitrogen atom of a histidine residue, 

whereas in cytochrome P450 enzymes, a sulfur atom of a conserved cysteine residue takes 

this function.  

 

In eukaryotes, these proteins are embedded in the membrane of either the endoplasmatic re-

ticulum or the mitochondria by an amino-terminal membrane anchor. Their main function is 

to activate molecular oxygen to introduce hydroxyl groups into unreactive hydrocarbon chains 

and aromatic rings; these functional groups then facilitate conjugation reactions by UDP-glu-

curonosyltransferases or other phase II enzymes. The basic stoichiometry of a P450-catalyzed 

hydroxylation of a substrate S is represented by the following equation: 

 

 NADPH+H+ + O2 + SH → NADP+ + H2O + SOH 

 

The reduction equivalents provided by NADPH+H+ are transferred to the CYP enzyme by the 

membrane-bound enzyme Cytochrome P450 reductase (Figure 1). Cytochrome b5, a 17 kDa 

protein, is able to increase the activity of certain CYP-catalyzed reactions; however, the 

mechanism of this interaction still remains speculative (Schenkman and Jansson, 2003). In 

addition to hydroxylations, there are also examples of N-, S-, or O-dealkylations, N- or S-oxi-

dations, deaminations, dehalogenations, epoxidations and peroxidations catalyzed by CYP 

enzymes (Danielson, 2002).  
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Introduction 

 

Figure 1: Electron transfer from NADPH + H+ to Cytochrome P450 enzymes is cata-

lyzed by Cytochrome P450 reductase.  

 

As the tremendous genetic multiplicity of the cytochrome P450 enzymes became apparent, a 

standardized system of nomenclature has been established to name and assign individual 

genes into families and subfamilies. Thus, P450 sequences that display greater than 40% 

amino acid identity are placed into the same family, and sequences that are more than 55% 

identical are placed into the same subfamily (Nelson et al., 1996). In humans, the cytochrome 

P450 gene superfamily comprises 57 functional genes and 58 pseudogenes (Nelson et al., 

2004), based on the assembly of the human genome published in April 2003 (build 33). The 

numerous members of the families CYP1, CYP2 and CYP3, which account for over 70% of 

total hepatic CYP content (about 500 pmol/mg, Shimada et al., 1994), represent the most 

important enzymes of xenobiotic phase I metabolism (Table 1). They exhibit large and 

overlapping substrate specificity and metabolize many drugs currently in use as well as 

endogenous steroids, plant alkaloids, environmental toxins and carcinogens. 
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Family Functional 

genes 

Functions 

CYP1  3 Xenobiotic metabolism  

CYP2  16 Xenobiotic and steroid metabolism  

CYP3  4 Xenobiotic and steroid metabolism  

CYP4  12 Arachidonic acid and fatty acid metabolism  

CYP5  1 Thromboxane A2-synthase  

CYP7  2 7α-hydroxylase 

CYP8  2 Prostacyclin synthase (8A1) 

Bile acid biosynthesis (8B1) 

CYP11  3 Steroid biosynthesis  

CYP17  1 Steroid biosynthesis (17α-hydroxylase) 

CYP19  1 Steroid biosynthesis (aromatase) 

CYP20  1 Function unknown 

CYP21  1 Steroid biosynthesis  

CYP24  1 Vitamin D side-chain oxidation 

CYP26  3 Retinoic acid hydroxylase 

CYP27  3 Bile acid biosynthesis (27A1) 

Vitamin D3-1α-hydroxylase (27B1) 

CYP39  1 7α-hydroxylation of 24-OH-cholesterol  

CYP46  1 Cholesterol 24-hydroxylase  

CYP51  1 Cholesterol biosynthesis (lanosterol 14α-demethylase) 

Table 1: Human CYP families and their functions (adapted from D.R. Nelson’s 

Cytochrome P450 homepage http://drnelson.utmem.edu/CytochromeP450.html) 

2. CYP2B6 

2.1. Chromosomal localization and gene structure 

The family member CYP2B6 was first described in 1989 (Yamano et al., 1989) as the human 

orthologue to the phenobarbital-inducible CYP2B genes in rodents and mapped to 

chromosome 19. Two members of the CYP2B subfamily are present in the human genome: 

the functional CYP2B6 and the paralogous full-sized pseudogene CYP2B7P1 which is located 

approximately 50 kb upstream and arose from a tandem duplication. CYP2B7P1 displays 95% 
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similarity at the nucleotide level but contains a premature stop codon (CGA>TGA) due to the 

nonsense mutation c.1132C>T in exon 7. Numerous other members of the CYP2 family 

created by several inverted and tandem duplications surround these two genes which appear to 

have been inserted into the midst of the CYP2A18P locus (Hoffman et al., 2001) to create the 

complex CYP2ABFGST cluster (Figure 2). To date, this conglomerate is known to contain 

six functional genes and seven pseudogenes from six different CYP2 subfamilies (Nelson et 

al., 2004). 

 

 

Figure 2: Structure of the CYP2 gene cluster on chromosome 19. Dashed lines highlight 

the mirror-image arrangement established by an inverted duplication which was 

followed by further duplications within the CYP2A subfamily. The two CYP2B genes 

have been inserted into the CYP2A18 locus leading to the present arrangement 

(Hoffman et al., 2001). 

 

Similar to other members of the CYP2 family, CYP2B6 consists of nine exons (Figure 3) 

encoding a functional protein with 491 amino acids and a molecular weight of about 56 kDa. 

Remarkable features of the gene are a rather long 3’-UTR of 1.6 kb and an unusual long 

intron 1 (12.7 kb) that is also present in the CYP2B7P1 pseudogene. 

 

5' 3'1 2 3 4 5 6 7 8 9

Exon size (bp)  171                              163  150       161      176 142       188  142          182

Intron size (kb)                  12.7                  0.1     2.5       2.2  0.6       2.2     0.2      3.8           1.6
UTR           Intron 1                2        3          4        5         6      7         8            UTR

~27 kb

5' 3'1 2 3 4 5 6 7 8 9

Exon size (bp)  171                              163  150       161      176 142       188  142          182

Intron size (kb)                  12.7                  0.1     2.5       2.2  0.6       2.2     0.2      3.8           1.6
UTR           Intron 1                2        3          4        5         6      7         8            UTR

~27 kb  

Figure 3: Structure of the human CYP2B6 gene. Exons are shown as boxes with exon 

size in bp and intron size in kb. UTR: untranslated region. 
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2.2. Substrates 

Initially underestimated, the number of drugs recognized as CYP2B6 substrates has been 

constantly increasing and several clinically important substances are now known to be 

metabolized predominantly by this enzyme (Figure 4). These include the anticancer prodrug 

cyclophosphamide (Roy et al., 1999), the narcotic propofol (Court et al., 2001), the 

antidepressant bupropion which is now the most commonly used probe drug for CYP2B6 

(Faucette et al., 2000), the antimalarial drug artemisinin (Svensson and Ashton, 1999) and the 

reverse transcriptase inhibitor efavirenz (Ward et al., 2003). Numerous other substances are at 

least partially metabolized by this enzyme, and it is likely that more substrates will be 

identified in the future. 
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Figure 4: Examples of drugs predominantly metabolized by CYP2B6. 

2.3. Expression 

Early works suggested that hepatic expression of CYP2B6 might be low or even absent in the 

majority of individuals (Mimura et al., 1993; Shimada et al., 1994). Facilitated by the 

improvement of immunological detection techniques and the development of antibodies with 

high sensitivity and specificity for CYP2B6, subsequent studies demonstrated that the 

incidence and quantity of its expression is in fact much higher and accounts for 5% on 

average of total hepatic P450 content. In vitro studies using human liver microsomes 

 5



Introduction 

(summarized in Table 2) revealed an over 100-fold interindividual variability in hepatic 

CYP2B6 expression at the mRNA, protein and catalytic activity level (Code et al., 1997; 

Ekins et al., 1998; Stresser and Kupfer, 1999; Lang et al., 2001; Hesse et al., 2004). 

Accordingly, population studies demonstrated a broad interindividual variability of in vivo 

pharmacokinetic parameters of several CYP2B6 drug substrates, including cyclophosphamide 

(Yule et al., 1996), bupropion (Kirchheiner et al., 2003) and efavirenz (Csajka et al., 2003), 

which could be the cause for non-response or toxicity. CYP2B6 protein has also been 

described to be expressed at lower levels in extrahepatic tissues like kidney, intestine, and the 

respiratory tract (Gervot et al., 1999), brain (Miksys et al., 2003), skin (Janmohamed et al., 

2001) and leukocytes (Furukawa et al., 2004). 

 

Study Number 

of samples

mRNA 

[a.u.] 

Protein 

contenta

Enzyme activityb 

 

Code et al., 1997  17 n.d. 0.3 – 74 21 – 452c

Yang et al., 1998  26 n.d. 0 – 28 n.d. 

Ekins et al., 1998  19 n.d. 0.7 – 71 1.8 – 47.6d

Stresser and Kupfer, 1999  28 n.d. 2 – 82 n.d. 

Gervot et al., 1999  48 n.d. 0.4 – 8 n.d. 

Venkatakrishnan et al., 2000  12 n.d. 1.5 – 148 n.d. 

Lang et al., 2001  92 n.d. 0.5 – 96 Data not shown 

Lamba et al., 2003  60 1 – 12161 0 – 130 0 – 42.5d

Hesse et al., 2004  54 1 – 43 0.4 – 180 29 – 2626e

Table 2: Variability of CYP2B6 expression in human liver (n.d.: not determined; 
a[pmol/mg microsomal protein]; b[pmol/mg*min]; c7-EFC-O-deethylase activity; dS-

Mephenytoin N-demethylase activity; eBupropion-hydroxylase activity). 

2.4. Regulation 

Studies conducted by several laboratories in recent years have provided evidence that part of 

the hepatic CYP2B6 variability is due to its drug-inducible regulation via proximal and distal 

response elements termed phenobarbital-responsive enhancer module (PBREM) at -1.7 kb 

(Goodwin et al., 2001) and xenobiotic-responsive enhancer module (XREM) at -8.5 kb (Wang 

et al., 2003). As shown in Figure 5, these elements contain direct repeats of consensus half-
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sites for nuclear receptors (AGKTCA) separated by four nucleotides (DR4 motifs) which act 

as binding sites for heterodimers of NR1I2 (PXR) or NR1I3 (CAR) with NR2B1 (RXRα). 

Furthermore, a proximal 24-bp element termed okadaic acid responsive element (OARE) at 

-233 bp has recently been shown to be involved in CAR-mediated induction (Swales et al., 

2005). 

 

 
Figure 5: XREM and PBREM in the CYP2B6 promoter. Base “A” of the initiation 

codon ATG is designated as +1. 

Substances shown to induce CYP2B6 in human hepatocytes in vitro include carbamazepine, 

clotrimazole, phenobarbital, phenytoin, rifampicin and ritonavir (Faucette et al., 2004). 

Induction was also observed ex vivo in human liver samples in several studies: Consumers of 

carbamazepine (Wolbold et al., 2003, IKP148: L#35 and L#108; Stresser and Kupfer, 1999: 

H15), phenytoin (Hesse et al., 2004: LV32; Stresser and Kupfer, 1999: H51) and 

phenobarbital (Yamano et al., 1989: K14; Lamba et al., 2003: HL#650, HL#789) show 

strikingly elevated amounts of CYP2B6 protein in microsomes. However, in vivo induction 

studies for human CYP2B6 are rare. Ketter et al. (1995) reported induction of bupropion 

metabolism by carbamazepine, and it has been shown that phenytoin alters ifosfamide 

metabolism presumably by induction of CYP2B6 (Ducharme et al., 1997). 

 

Contrary to the inducible regulation, little is known about the constitutive regulation of 

CYP2B6 gene expression. To date, no systematic promoter analysis has been carried out and 

the transcriptional start site has not been determined. 
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2.5. Pharmacogenetics of CYP2B6 

Recent work from a number of laboratories focused on genetic variations as an additional 

source for interindividual variability in expression (Lang et al., 2001; Lamba et al., 2003; 

Hesse et al., 2004; Lang et al., 2004). CYP2B6 was found to be highly polymorphic within 

exons and introns as well as in its promoter region. Interestingly, none of the studies detected 

polymorphisms located in the PBREM or XREM suggesting an important role for these 

conserved regions. Furthermore, no nonsense mutations or gene deletions (which have been 

described, for example, in the CYP2D6 gene (Zanger et al., 2004)) have been observed so far; 

however, some newly discovered rare alleles carrying nonsynonymous SNPs were defined as 

phenotypic null alleles (Lang et al., 2004) as they were found to result in absent or 

nonfunctional proteins. Some of the common nonsynonymous polymorphisms, e.g. those of 

alleles CYP2B6*5 (R487C) and CYP2B6*6 (Q172H, K262R) were associated with decreased 

liver protein expression (Lang et al., 2001; Hesse et al., 2004) or changes in function 

(Ariyoshi et al., 2001; Jinno et al., 2003; Iwasaki et al., 2004). Indeed, recent clinical studies 

with efavirenz-treated HIV-1 patients demonstrated significantly elevated plasma levels of 

this CYP2B6 substrate in individuals homozygous for CYP2B6*6 (Tsuchiya et al., 2004; 

Haas et al., 2004; Rotger et al., 2005). In one case report, excessive drug levels in such an 

individual led to a severe psychosis which disappeared after dose reduction (Hasse et al., 

2005). Regarding the CYP2B6 promoter region, numerous polymorphisms that appear to be 

linked to the coding SNPs in a complex manner have already been described (Lamba et al., 

2003; Hesse et al., 2004); however, these have not been investigated mechanistically with 

respect to their potential impact on transcription of the CYP2B6 gene.  
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3. Aims of this study 

A) Haplotype analysis of CYP2B6 

A comprehensive genotype data set for the promoter and coding region should be used to 

determine CYP2B6 haplotypes in a Caucasian population and to identify linkage between 

exonic and promoter mutations. 

 

B) Functional characterization of promoter mutations 

Previous studies have already described promoter polymorphisms in the CYP2B6 gene; 

however, no direct attempts were made to investigate their functional relevance. In this 

work, the impact of promoter mutations on transcription should be examined. Reporter 

gene constructs containing different CYP2B6 promoter haplotypes as well as individual 

promoter SNPs should be generated and used in transfection experiments. 

 

C) Genotype-phenotype correlation 

A large collection of well characterized human liver samples was available to study 

CYP2B6 expression on the mRNA, protein and activity level. By analyzing these 

expression data in relation to certain SNPs or haplotypes, the effects of mutations on 

expression in vivo should be evaluated. 

 

D) Detection of deletion or duplication alleles of CYP2B6 

A TaqMan real-time PCR based gene copy number assay should be established to detect 

deletions or duplications of the CYP2B6 gene. Until now, such alleles have not been 

described yet, but it is possible that unequal crossing-over events with the neighboring 

pseudogene CYP2B7P1 gave rise to such recombinations, similar to the situation at the 

CYP2A6 and CYP2D6 loci where gene duplications and deletions have already been 

described (Rao et al., 2000; Zanger et al., 2004). 
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II MATERIALS AND METHODS 

1. DNA and liver samples 

Since 1999, a large collection (N>300) of human liver tissue samples and corresponding 

blood samples (also designated as “liverbank”) has been established at the Margarete Fischer-

Bosch-Institute of Clinical Pharmacology, Stuttgart (study code IKP148). The liver samples 

were obtained from non-tumorous tissue from individuals of Caucasian origin undergoing 

liver surgery for various reasons at the Humboldt University Berlin, Department of General, 

Visceral and Transplantation Surgery (Wolbold et al., 2003). The preparation of genomic 

DNA from corresponding blood samples and of liver microsomes had been described earlier 

(Lang et al., 2001). CYP2B6 protein was quantified by Western blotting with a monoclonal 

antibody from Gentest Corp. (Woburn, Massachusetts), and enzyme activity in human liver 

microsomes was detected with 50 µM bupropion as substrate as described (Lang et al., 2001; 

Richter et al., 2004). The study has been carried out in accordance with the Declaration of 

Helsinki and approved by the ethics committee of the Medical Faculties of the Charité, 

Humboldt-University Berlin, and written informed consent was obtained from each patient. 

2. PCR conditions 

If not noted otherwise, PCR reaction mixes were prepared as follows: 

Qiagen 10x PCR buffer 5.0 µl 
dNTP mix 2mM each 5.0 µl 
Forward primer 100µM 0.5 µl 
Reverse primer 100µM 0.5 µl 
Qiagen Taq polymerase (5 U/µl) 0.5 µl 
DNA x µl 
H2O to a total volume of 50.0 µl 
 
When genomic DNA was amplified, usually 50 ng were used. Reactions were run in a PTC-

200 thermal cycler (MJ Research, Watertown, Massachusetts). 

3. Sequencing of double-stranded DNA 

For sequencing PCR products or plasmids, the “Thermo Sequenase Fluorescent Labelled 

Primer Cycle Sequencing Kit with 7-Deaza-dGTP” from Amersham (Buckinghamshire, UK) 

was used. 5’-IRD800 labeled primers were purchased from MWG (Ebersberg, Germany). For 

 10 



Materials and Methods 

each sequencing reaction, a mix consisting of 10 µl purified PCR product or plasmid, 1 µl 

DMSO, 2 µl labeled primer (2 pmol/µl) and 13 µl H2O was prepared. 4.5 µl of this mix was 

added to 1.5 µl of the A, C, G and T reagent. Cycle sequencing conditions were as follows: 

 
95°C 2’00’’ 
95°C 15’’ 
57°C 30’’ 30x 
70°C 1’00’’ 
25°C forever 

}
 
After cycling, 6 µl formamide loading dye were added to each reaction of which 1 µl was 

loaded onto a 5% polyacrylamide gel. Electrophoresis and detection of the sequencing 

products was performed in a Li-Cor 4000 DNA sequencer (Li-Cor, Lincoln, Nebraska) with 

1x TBE as running buffer. 

 

Sequencing gel: 21 g Urea, 6 ml Long Ranger Gel solution (Cambrex, Rockland, Maine), 
5 ml 10x TBE, 500 µl DMSO, 50 µl TEMED, H2O ad 50 ml; after filtration, 
add 400 µl 10% APS 

10x TBE: 162.0 g Tris, 27.5 g boric acid, 9.3 g EDTA in 1000 ml H2O  

4. Genotyping assays 

4.1. SNP -2320T>C 

1.1 kb of the CYP2B6 promoter were amplified using the following primers: 

2B6(-3010)F 5’-GAA AGA GAC TGG CTG AAT GGA-3’ 

2B6(-1894)R 5’-TAT TGT TGC CAT CCC CAT TT-3’ 

The resulting fragment was expected to be CYP2B6-specific as similarity of the promoter 

regions between CYP2B6 and CYP2B7P1 does not extend beyond -2300 bp. 

Cycling conditions were as follows: 

 
95°C 5’00’’ 
95°C 30’’ 
58°C 30’’ 35x 
72°C 1’20’’ 
72°C 7’00’’ 

}
12°C forever 
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The products were purified using the Qiagen PCR purification kit, eluted in 80 µL Buffer EB 

and digested as follows: 

Roche 10x Buffer D 2.0 µl 
purified PCR product 8.0 µl 
EcoRV (10 U/µl) 1.0 µl 
H2O to a total volume of 20.0 µl 
 
Reactions were incubated at 37°C for two hours and visualized on 2% ethidium bromide-

stained agarose gels. EcoRV digestion of wild type DNA yielded fragments of 691 bp and 

426 bp, whereas the mutation -2320T>C prevented digestion and resulted in an uncleaved 

fragment of 1117 bp. 

4.2. SNP c.1459C>T 

Initially, the mutation c.1459C>T was genotyped with a PCR-RFLP assay described by Lang 

et al., 2001. Briefly, a PCR product with 1401 bp was digested with BglII resulting in two 

fragments of 1185 bp and 216 bp only in the presence of the mutation. As this method was 

suspected to yield incorrect results in certain cases, an alternative assay using a different 

forward primer was developed. 477 bp of the CYP2B6 gene containing exon 9 were amplified 

using the following primers (differences to CYP2B7P1 underlined): 

2B6(25238)F 5’-CAA ATC TGT TGC AGT GGA CAT TTG-3’ 

CYP2B6-9R 5’-TAA TTT TCG ATA ATC TCA CTC CTG C-3’ 

Cycling conditions were as follows: 

 
95°C 5’00’’ 
95°C 30’’ 
60°C 30’’ 35x 
72°C 1’00’’ 
72°C 7’00’’ 

}
12°C forever 
 
The products were purified using the Qiagen PCR purification kit, eluted in 40 µL Buffer EB 

and sequenced using the labeled primer seqCYP2B6-9F (5’-IRD800 TGA GAA TCA 

GTG GAA GCC ATA GA-3’) or digested as follows: 

 
Roche 10x Buffer M 2.0 µl 
purified PCR product 8.0 µl 
BglII (10 U/µl) 0.5 µl 
H2O to a total volume of 20.0 µl 
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Reactions were incubated at 37°C for two hours and visualized on 3% ethidium bromide-

stained Metaphor® agarose gels. The mutation c.1459C>T creates a restriction site for BglII 

that resulted in two fragments of 263 bp and 214 bp, whereas the wild type product remained 

uncut. 

4.3. SNP g.24322C>T 

794 bp of intron 8 of the CYP2B6 gene were amplified using the following primers 

(differences to CYP2B7P1 underlined): 

2B6(24062)F 5’-CTG GGT ATG CCA AAG GGA TG-3’ 

2B6(24855)R 5’-GCC TCC CAA AGT GGG ATT AC-3’ 

Cycling conditions were as follows: 

95°C 5’00’’ 
95°C 30’’ 
65°C 30’’ 30x 
72°C 1’00’’ 
72°C 7’00’’ 

}
12°C forever 
 
The products were purified using the Qiagen PCR purification kit, eluted in 40 µL Buffer EB 

and sequenced using the labeled primer seq2B6(24153) (5’-IRD800 AAC TCA CAC 

TTG ACA TGG CC-3’) or digested as follows: 

Roche 10x Buffer H 2.0 µl 
purified PCR product 8.0 µl 
HinfI (10 U/µl) 0.5 µl 
H2O to a total volume of 20.0 µl 
 
Reactions were incubated at 37°C for two hours and visualized on 2% ethidium bromide-

stained Metaphor® agarose gels. The wild type restriction fragments were 537 bp, 227 bp and 

30 bp, whereas the mutation g.24322C>T abolishes a HinfI site yielding products of 567 bp 

and 227 bp. 

4.4. SNP -82T>C (DHPLC assay) 

4.4.1. Principle of DHPLC 

DHPLC (denaturing high-performance liquid chromatography) identifies mutations based on 

detection of heteroduplex formation between mismatched nucleotides in PCR-amplified DNA 

(Figure 6). The duplexes are analyzed by ion-pair reversed-phase HPLC (IP-RP-HPLC). The 

mobile phase is composed of water, acetonitrile and the ion-pairing agent triethylammonium 
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acetate (TEAA), the stationary phase consists of a poly(styrene-divinylbenzene) copolymer 

which binds the DNA. A linear gradient of acetonitrile allows separation of fragments based 

on presence of heteroduplexes. Under partially denaturing temperatures, the heteroduplexes 

elute from the column earlier than the homoduplexes because of their reduced melting 

temperature. As the fragments elute, they are UV-detected at 260 nm. 

 

Figure 6: Principle of DHPLC. In the presence of a heterozygous mutation, homo- and 

heteroduplexes are formed during PCR. Under partially denaturing conditions, these 

can be separated by HPLC. 

4.4.2. Genotyping assay 

To identify carriers of the SNP -82T>C in our liverbank, a DHPLC genotyping assay was 

developed. A 287 bp fragment covering bases -275 to +12 of the CYP2B6 gene was amplified 

using the following primers (differences to CYP2B7P1 underlined): 

DH2B6(-275)F 5’-CAC ACA TTC ACT TGC TCA CC-3’ 

DH2B6(+12)R 5’-GCT GAG TTC CAT GGT CCT G-3’ 
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Cycling conditions were as follows: 

 
95°C 5’00’’ 
95°C 30’’ 
62°C 30’’ 35x 
72°C 30’’ 
72°C 7’00’’ 

}
12°C forever 
 
5 µl of the PCR products were injected into the WAVE system (Transgenomic, Omaha, 

Nebraska) without further purification. The method parameters are described in Table 3. 

 

Method name 2B6-82TC 

Oven temperature 61°C 

Run time 8.5 min 

Flow rate 0.9 ml/min 

Gradient Step Time %A %B 
Loading  0.0  51  49 
Start Gradient  0.5  46  54 
Stop Gradient  5.0  37  63 
Start Clean  5.1  0  100 
Stop Clean  5.6  0  100 
Start Equilibrate  5.7  51  49 
Stop Equilibrate  6.6  51  49 

 
Mobile phase A: 50 ml 2M TEAA, 250 µl acetonitrile, H2O to 1000 ml 
Mobile phase B: 50 ml 2M TEAA, 250 ml acetonitrile, H2O to 1000 ml 

Table 3: DHPLC conditions for genotyping the SNP -82T>C in the CYP2B6 gene. 

To detect homozygous carriers of the mutation, samples were mixed with an equimolar 

amount of wild type PCR product. To enable heteroduplex formation, mixed samples were 

denatured at 95°C for ten minutes and cooled down to room temperature at a rate of -1K/min. 

To generate a template for the wild type or mutant PCR product, the amplification product of 

a heterozygous carrier (L#110) was cloned into pCR4TOPO, and clones corresponding to the 

wild type or mutant allele were identified by sequencing. The resulting plasmids 

pCR4TOPOPCR18/3 (-82C) and /5 (-82T) were used to generate wild type or mutant PCR 

product. 
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5. Testing for deviation from Hardy-Weinberg Equilibrium 

In large enough randomly mating populations, genotypes for a biallelic SNP should distribute 

according to the Hardy-Weinberg principle (Hardy, 1908): 

AA:AB:BB = p2:2pq:q² 

where A and B represent the two alleles with their respective allele frequencies p and q=1-p. 

A goodness-of-fit χ² test with one degree of freedom was used to test for HWE by comparing 

the observed number of subjects for each genotype with the expected number of subjects 

assuming HWE. The χ² statistic was calculated as follows: 

χ²=Σ(observed-expected)²/expected 

and the corresponding p-value for the χ² distribution with one degree of freedom was given. 

6. Reconstruction of haplotypes 

Genotype data for ten promoter- and four exonic SNPs from 96 Caucasians were used to infer 

haplotypes using the program PHASE version 2.0.2 (Stephens et al., 2001). The exonic SNP 

c.777C>A was omitted from the analysis because it was not observed in this population. Runs 

were conducted five times to ensure model stability. Phase calls with a probability of >95% 

were considered unambiguous. Identified haplotypes were compared to alleles described by 

the CYP Allele Nomenclature Committee (http://www.imm.ki.se/CYPalleles/). Novel alleles 

were designated in concordance with the published inclusion criteria. 

7. Construction of plasmids 

7.1. Reporter gene vectors pGL3-2B6(-1641) and pGL3-2B6(-2033) 

A 2.3 kb fragment of the CYP2B6 promoter region was amplified from genomic DNA of two 

genotyped Caucasians selected to carry one wild type and three variant alleles representing 

the most frequent mutations. To minimize the introduction of sequence errors by PCR, the 

Expand High Fidelity PCR system (Roche, Basel, Switzerland) was used with the following 

primers (differences to CYP2B7P1 underlined): 

                  --MluI-- 
2B6(-2253)F 5’-TAT GAA TGA GAA Cgc GTG ATA TTC ACT-3’ 
 
                    -BglII- 
2B6(+16)R 5’-GGA CGC TGA GTT agA Tct TCC TGG TCT G-3’ 
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Forward primer 2B6(-2253)F and reverse primer 2B6(+16)R were designed to contain 

mismatches (in lowercase) to create a MluI or a BglII site, respectively. Initially we attempted 

to prepare reporter gene constructs containing the entire amplified upstream sequence. For 

this purpose, the 2.3 kb fragment (Figure 7) was cloned into the pCR4-TOPO vector 

(Invitrogen, Carlsbad, CA). Four different plasmids corresponding to the four different alleles 

of the two individuals were obtained and designated as WT, A2, A3 and A4 (Table 4). The 

MluI/BglII fragment was then subcloned into the reporter gene vector pGL3-Basic (Promega, 

Madison, Wisconsin). However, after transformation and plasmid preparation, the desired 

products were not obtained despite several attempts indicating that they may be unstable or 

toxic for E. coli. 

 

Shortening the insert from the 5’-end was considered a technically feasible approach. The 

plasmid pGL3-Basic was digested with BglII and dephosphorylated to reduce religation. A 

compatible BamHI/BglII fragment was prepared from the pCR4-TOPO vectors and ligated 

into the vector yielding the pGL3-2B6(-1641) series. For the pGL3-2B6(-2033) series, pGL3-

Basic was sequentially digested with SmaI and BglII and a ScaI/BglII fragment from the 

pCR4-TOPO vectors was ligated into it. The resulting plasmids could be transformed and 

propagated in E. coli without difficulties. 

 

Plasmid designation 

pGL3-2B6(-2033)… 

Nucleotide changes 

(compared to genomic reference sequence) 

WT None 

A2 -1456T>C, -750T>C 

A3 -1848C>A, -801G>T, -750T>C, -82T>C 

A4 -1778A>G, -1186C>G, -750T>C 

-1848C>A -1848C>A 

-801G>T -801G>T 

-750T>C -750T>C 

-82T>C -82T>C 

Table 4: Vectors of the pGL3-2B6(-2033) series used in transfection assays 
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Figure 7: Construction of reporter gene plasmids for transfection assays. 
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Single mutations were introduced by in vitro mutagenesis into pGL3-2B6(-2033)WT using 

the QuikChange Mutagenesis Kit (Stratagene, La Jolla, California) and the following 

mutagenesis primers (mismatches underlined): 

2B6-82MTF  

5’-GGG GAA TGG ATG AAA TTT CAT AAC AGG GTG CAG AGG C-3’ 

2B6-82MTR  

5’-GCC TCT GCA CCC TGT TAT GAA ATT TCA TCC ATT CCC C-3’ 

2B6-750MTF 5’-ATC ACG CCC GGC TAA TTT TTG T-3’ 

2B6-750MTR 5’-ACA AAA ATT AGC CGG GCG TGA T-3’ 

2B6-801MTF 5’-GGT TCA AGT GAT TCT CTT TCC TCA GCC TCC CGA G-3’ 

2B6-801MTR 5’-CTC GGG AGG CTG AGG AAA GAG AAT CAC TTG AAC C-3’ 

2B6-1848MTF 5’-GTA AAG CAC TTC AAG CCT CCC CAT CG-3’ 

2B6-1848MTR 5’-CGA TGG GGA GGC TTG AAG TGC TTT AC-3’ 

7.2. Reporter gene vectors pGL3-2B6(-244)WT and -82T>C 

500 ng of plasmids pGL3-2B6(-2033)WT and A3 were digested with EcoRV and MluI at 

37°C for 90 minutes in a volume of 20 µl. The reactions were incubated at 65°C for 15 

minutes to inactivate the restriction enzymes followed by a fill-in of the overhangs using 

Klenow fragment. After gel electrophoresis on a 1% agarose gel, the 5 kb fragments were 

extracted using the Qiagen Gel extraction kit and self-ligated using T4 ligase. Reactions 

contained 8% PEG-6000 in a total volume of 20 µl and were incubated at room temperature 

for 60 minutes. 

7.3. Reporter gene vectors pGL3-2B6(-160)WT and -82T>C 

From the vectors pGL3-2B6(-2033)WT or A3, a 175 bp fragment was amplified using the 

following primers (mismatches in lowercase): 

             --BglII- 
2B6(11)R 5’-CTG AGT TAG ATC TTC CTG GTC TG-3’ 
 
    --MluI- 
2B6(-164)F 5’-AcG cgT GGG TTC CCT AAC AAC TT-3’ 
 
The products were purified by extraction with phenol:chloroform:isoamylalcohol (25:24:1) 

and subsequent ethanol precipitation, digested with BglII and MluI, and cloned into the pGL3-

Basic vector. After transformation and propagation of the plasmids, the inserts were 

sequenced using the standard primers RVprimer3 and GLprimer2. 
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7.4. Expression plasmids pBJ5HNF1α and pBJ5DCoH 

These expression plasmids (kindly provided by Professor Ronald N. Hines) contain the open 

reading frames for murine HNF1α (Kuo et al., 1990) and DCoH (Mendel et al., 1991), 

respectively, driven by the SRα promoter (Takebe et al., 1988). DCoH (dimerization cofactor 

of HNF1α) was shown to stabilize HNF1α dimers and enhance their transcriptional activity. It 

was predicted that these two proteins form heterotetramers consisting of two molecules of 

HNF1α and two molecules of DCoH (Mendel et al., 1991). Accordingly, the two expression 

plasmids were used in an equimolar mixture when cotransfected with reporter gene vectors. 

7.5. Expression plasmids pcDNA3-C/EBPβ and pcDNAmHNF1α 

For the “TnT T7 Quick Coupled Transcription/Translation System”, it is necessary to use 

templates with a T7 promoter. Therefore, the open reading frame of murine C/EBPβ 

contained in the plasmid MSV/EBPβ (Cao et al., 1991), provided by Dr. Oliver Burk, was cut 

out with EcoRI and XhoI and ligated into the multiple cloning site of pcDNA3.1+. Similarly, 

the open reading frame of murine HNF1α was cloned from the pBJ5HNF1α plasmid (Kuo et 

al., 1990), provided by Dr. Ron Hines, into pcDNA3.1+ using the restriction enzyme EcoRI. 

7.6. Expression plasmids pAC-LAP/LIP 

These plasmids were constructed and kindly provided by Dr. Ramiro Jover, Universitat de 

València, Spain. The intronless genes C/EBPβ-LAP and C/EBPβ-LIP were amplified from 

human genomic DNA and the PCR products were purified by agarose gel electrophoresis. 

After digestion with EcoRI and KpnI, the fragments were ligated into the adenoviral 

pAC/CMVpLpA plasmid (Gomez-Foix et al., 1992) previously digested with EcoRI and KpnI 

(Jover et al., 2002). These plasmids contain a CMV promoter and an SV40 polyadenylation 

site and are therefore suitable for expression in mammalian cells. 

8. Cell culture and transient transfection of different cell types 

8.1. HepG2 cells 

The hepatoma cell line HepG2 was cultured in 75 cm² polystyrene cell culture flasks 

(Corning, New York, #430720) in minimum essential medium supplemented with 10% fetal 

calf serum, 1% PenStrep and 1% L-Glutamine (Gibco, Carlsbad, California). The day before 

transfection, cells were seeded in Multiwell™ 24-well plates (BD Falcon #353047), with a 

density of approximately 150,000 cells per well and 0.5 ml medium. After transfection, 
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medium was changed daily. Transient transfections were carried out in triplicate using the 

effectene transfection reagent (Qiagen, Hilden, Germany) according to the manufacturer’s 

instructions. For normalization, 20 ng/well of the β-galactosidase expression plasmid pCMVβ 

(Clontech, Palo Alto, California) were cotransfected with 150 ng/well of the respective firefly 

luciferase reporter plasmid. 48 hours after transfection, medium was removed and cells were 

washed two times with 0.5 ml 1x PBS. After incubating 20 minutes with 150 µl/well Passive 

Lysis Buffer (Promega, #E1941), the cells were harvested and reporter activity was measured 

in the cell extract using the AutoLumat Plus luminometer (Berthold, Bad Wildbad, Germany). 

Firefly luciferase activity was assayed in 20 µl cell extract. After injection of 300 µl RIM+ 

buffer, luminescence was measured immediately for four seconds. β-galactosidase activity 

was assayed in 10 µl cell extract which was incubated with 100 µl β-Gal-Assay buffer for 30 

minutes. After injection of 300 µl β-Gal stop mix and a delay of seven seconds, luminescence 

was measured for five seconds. When additional expression plasmids were cotransfected, 30 

ng/well were used if not stated otherwise. 

 

RIM+ buffer: 50 µM luciferin, 2 mM ATP, 10 mM MgCl2, 27 µM CoA, 30 mM DTT 
in 25 mM Glycylglycine pH 7.8 

β-Gal-Assay buffer: 1.25 µg/ml Galacton (Applied Biosystems, Foster City, California), 
1 mM MgCl2 in 100 mM sodium phosphate buffer pH 8.0 

β-Gal stop mix:  2.5% (v/v) Emerald Enhancer (Applied Biosystems) in 0.2 M NaOH 

8.2. Primary human hepatocytes 

Primary human hepatocytes were kindly provided by Dr. Andreas Nüssler and Prof. Peter 

Neuhaus, Charité, Berlin. They were isolated as described (Dorko et al., 1994), plated in 

collagen-coated 6-well plates with a density of 750,000 cells per well and grown in 2 ml 

Williams E medium supplemented with 10% dialyzed fetal calf serum (Gibco), 1% PenStrep, 

32 U/l insulin, 1.4 µM hydrocortisone and 15 mM HEPES buffer. The day after plating, cells 

were shipped overnight. Upon arrival, cells were washed with 2 ml 1x PBS and supplied with 

fresh medium. On the next day, cells were transfected with the Effectene Transfection Kit 

(Qiagen) using 3.2 µl enhancer and 10 µl effectene per well. For normalization, 40 ng/well of 

the β-galactosidase expression plasmid pCMVβ were cotransfected with 360 ng/well of the 

respective firefly luciferase reporter plasmid. Medium was changed daily, with the first 

change seven hours after transfection. 48 hours after transfection, medium was removed and 

cells were washed two times with 2 ml 1x PBS. After removal of PBS, 200 µl Passive Lysis 

Buffer (Promega) was added and cells were transferred to a 1.5 ml reaction tube using a 
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sterile cell scraper. After 20 minutes incubation on a rocking plate, reaction tubes were 

centrifuged for five minutes at 20,800 rcf. Firefly luciferase and β-galactosidase activity were 

assayed as above, except that 20 µl and 40 µl of the cell extract were used, respectively. 

8.3. Primary rat hepatocytes 

Transfection experiments in primary rat hepatocytes were conducted by Dr. Karen Hirsch-

Ernst, Department of Toxicology, University of Göttingen. In brief, primary rat hepatocytes 

were isolated from adult male Wistar rats (180-220 g) by collagenase perfusion (Seglen, 

1976) and prepared for transfection in 6-well plates as described previously (Heder et al., 

2001). Transfections were carried out with the effectene transfection reagent (Promega). For 

normalization, 3 ng/well of the Renilla reniformis luciferase expression plasmid pRL-CMV 

(Promega) were cotransfected with 400 ng/well of the respective firefly luciferase reporter 

plasmid. Firefly and Renilla reniformis luciferase activities were sequentially determined in 

the same samples of primary rat hepatocyte lysates with the Dual luciferase assay kit 

(Promega). 

9. RNA ligase-mediated rapid amplification of 5’-cDNA ends 

To map transcriptional start sites of CYP2B6 or CYP2B6 promoter-driven luciferase 

transcripts, the GeneRacer Kit (Invitrogen) was used according to the manufacturer’s 

instructions. The GeneRacer technique is based on RNA ligase-mediated rapid amplification 

of cDNA ends (RLM-RACE) which involves selective ligation of an RNA oligonucleotide to 

the 5’-ends of decapped full-length mRNA using T4 RNA ligase and a PCR amplification 

step. The technique is described in detail in Figure 8.  

 

To map the transcriptional start site of CYP2B6, total RNA (1-2 µg) of two human livers was 

isolated as described (Wolbold et al., 2003) and 5’-RLM-RACE was performed according to 

the manufacturer’s instructions. 5’-cDNA ends were amplified using the following primers: 

GeneRacer 5’-Primer 5’-CGA ACT GGA GCA CGA GGA CAC TGA-3’ 

2B6cDNA(521)R 5’-GAT GGA GCA GAT GAT GTT GGC GGT AA-3’ 

Touchdown cycling conditions were: 

95°C 5’00’’ 
95°C 30’’ 
72°C 1’30’’ 
95°C 30’’ 
70°C 1’30’’ 

}5x 

}5x 
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95°C 30’
68°C 30’
72°C 1’00’
72°C 7’00’
12°C foreve
 

The sequence of 2B6cDNA(

was intentionally chosen to

pseudogene. Thus, it was 

simultaneously, as clones 

CYP2B6-derived clones by se

To map the transcription sta

5 µg of total RNA of trans

according to the manufactu

expression plasmid MSV/E

transcription, and cDNA end

GeneRacer 5’-Primer 5’

luci(350)R 5’

with the touchdown cycling c

95°C 5’00’
95°C 30’
72°C 1’30’
95°C 30’
70°C 1’30’
95°C 30’
65°C 30’
72°C 1’00’
72°C 7’00’
12°C forever
 
1 µl of the PCR product was 

GeneRacer 5’-NestedPrimer 

luci(220)R 

and cycling conditions 

95°C 
95°C 
65°C 
72°C 
72°C 
12°C 
 

 

’ 

’ 
’ 
’ 

}20x 
 

r 

521)R represents bases 521 to 546 of the CYP2B6 mRNA and 

 be identical to the corresponding region in the CYP2B7P1 

possible to analyze potentially present CYP2B7P1 transcripts 

obtained from these transcripts could be distinguished from 

quencing. 

rt of the CYP2B6 promoter-driven luciferase mRNA transcripts, 

fected HepG2 cells, isolated with the RNA Minikit (Qiagen) 

rer’s instructions, was used. Cells were cotransfected with the 

BPβ for murine C/EBPβ (Cao et al., 1991) to enhance 

s were amplified with nested PCR using the outer primers 

-CGA ACT GGA GCA CGA GGA CAC TGA-3’ and 

-CAC GGT AGG CTG CGA AAT GCC CAT A-3’ 

onditions 
’ 
’ 
’ 
’ 
’ 
’ 

}5x 

}5x 
’ 
’ 
’ 

}25x 
 

. 

used as template for nested PCR with inner primers 

5’-CGA ACT GGA GCA CGA GGA CAC TGA-3’ and 

5’-AGC TTC TGC CAA CCG AAC GGA CAT TT-3’ 

5’00’’ 
30’’ 
30’’ 20x 

1’00’’ 
7’00’’ 

}
forever. 
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GeneRacer: Analysis of cDNA ends 

 

Full-length mRNA m7G-p-p-p AAAAAAAA 

Truncated mRNA AAAAAAAA p

Non-mRNA p 

Truncated mRNA AAAAAAAA 

Non-mRNA 

CIP (Calf Intestinale Phosphatase) 

TAP (Tobacco acid pyrophosphatase) 

Full-length mRNA m7G-p-p-p AAAAAAAA 

5’ mRNA CAP polyA-tail  3’

5’ Decapped full-length mRNA  
AAAAAAAA p

T4 RNA Ligase
 
OH-p

 
AAAAAAAA 

GeneRacer RNA Oligo 

Reverse Transcriptase 
AAAAAAAA 

First-strand cDNA 

RNAse H 
GeneRacer 5’Primer 

Gene specific primer 

Cloning of PCR product 

 

Transformation and Sequencing 
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Figure 8: The GeneRacer method. 

1. Total RNA is treated with calf intestinal phosphatase to remove the 5’-

phosphates of truncated mRNA and non-mRNA. The 5’-7-methylguanosine cap 

structure of full-length mRNA is not affected. 

2. Dephosphorylated RNA is treated with tobacco acid pyrophosphatase to remove 

the 5’-cap structure from intact, full-length mRNA, leaving a 5’-phosphate. 

3. The GeneRacer RNA Oligo is ligated to the 5’-end of the decapped full-length 

mRNA using T4 RNA ligase. 

4. The ligated mRNA is reverse-transcribed using SuperScript II RT and random 

primers. 

5. Treatment with RNAse H leaves the first-strand cDNA which is amplified using 

PCR with the GeneRacer primers (binding to the Gene Racer Oligo) and gene 

specific primers binding to the gene of interest. 

6. The RACE-PCR products are purified and cloned into the pCR4-TOPO vector. 

7. The resulting clones are transformed and propagated in E. coli and sequenced 

using M13 standard primers. 

10. Primer extension analysis 

10.1. Primer labeling 

Primer 2B6cDNA(41)R (5’-CCT GTG AGG AGT GCA AGG AAG AGG-3’) was labeled 

with γ-[32P]-ATP, 185 TBq/mmol (Hartmann Analytic, Braunschweig, Germany) using the 

Primer Extension System – AMV Reverse Transcriptase (Promega) according to the 

manufacturer’s instructions. Salt and unincorporated nucleotides were removed by spin-

column chromatography using ProbeQuant G-50 Microcolumns (Amersham Biosciences, 

Piscataway, New Jersey).  

10.2. Primer hybridization and reverse transcription  

100 fmol of the labeled primer were added to 100 µg total liver RNA in a volume of 100 µl. 

Nucleic acids were precipitated by adding 10 µl of 3 M sodium acetate (pH 5.2) and 330 µl 

ethanol. After 2 hours at -80°C and centrifugation at 14,000 g for 30 minutes, the pellet was 

dried at room temperature for 20 minutes and dissolved in 6 µl H2O and 5 µl 2x AMV-RT 

buffer. The primer was then hybridized for 20 minutes at 58°C and the sample allowed to cool 

down at room temperature for 10 minutes. Reverse transcription was carried out at 42°C for 
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30 minutes according to the manufacturer’s instructions. Subsequently, 2 µg RNAse was 

added and incubated at 37°C for 15 minutes. After addition of 80 µl H2O, the cDNA was 

extracted with 100 µl phenol:chloroform:isoamylalcohol (25:24:1) and precipitated by adding 

10 µl of 3 M sodium acetate (pH 5.2) and 200 µl ethanol. After 2 hours at -80°C and 

centrifugation at 14,000 g for 30 minutes, the pellet was dried at room temperature for 

20 minutes and dissolved in 2 µl loading dye.  

10.3. Electrophoresis and detection 

The primer extension products were electrophoresed in a sequencing gel (see “ Sequencing of 

double-stranded DNA”) using a Hoefer SQ3 sequencer (Pharmacia Biotech) at 1500 V until 

the bromophenol marker reached the bottom of the gel. After drying, primer extension 

products were visualized using Fuji imaging plates MS 2325 and a BAS-1800II plate reader 

(Fuji, Kanagawa, Japan). As size standard, a 35S-labeled sequencing ladder generated with the 

SeqiTherm EXCEL II DNA Sequencing Kit (Epicentre, Madison, Wisconsin) using a plasmid 

containing the corresponding genomic fragment as template and the primer 2B6cDNA(41)R, 

was electrophoresed in parallel. 

11. Electrophoretic mobility shift assay (EMSA) 

This technique allows characterization of DNA-protein interactions in vitro. A double-

stranded, radioactively labeled oligonucleotide is incubated with nuclear cell extracts or in 

vitro translated protein. When an interaction occurs, the resulting DNA-protein complex 

shows decreased mobility in a native polyacrylamide gel causing an upward “shift” of the 

probe compared to the free DNA probe. 

11.1. Annealing and labeling of oligonucleotides 

In a 0.5 ml reaction tube, 10 µl of 10x Klenow buffer and 1 nmol of the respective sense and 

antisense oligonucleotides (Table 5) were diluted to a total volume of 200 µl. The tube was 

exposed to 95°C for ten minutes, then cooled down slowly to room temperature (-1 K/min) to 

allow annealing of the oligonucleotides. 10 pmol of the double-stranded oligonucleotide with 

4-nt extensions at both ends were labeled with Klenow fragment at the following conditions: 

50 mM NaCl, 50 mM Tris pH 7.5, 10 mM MgCl2, 200 µM dATP, dGTP and dTTP, 100 µM 

α-[32P]-dCTP and 2 U of Klenow fragment. Reactions were incubated at 37°C for one hour. 

Salt and unincorporated nucleotides were removed by spin-column chromatography using 
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ProbeQuant G-50 Microcolumns (Amersham Biosciences). The purified labeled probes were 

diluted with TE/100 to contain 50,000 cpm/µl. 

 

10x Klenow buffer: 500 mM NaCl, 100 mM MgCl2 in 500 mM Tris pH 7.5 

TE/100: 100 mM NaCl, 1 mM EDTA in 10 mM Tris pH 7.8 

 

Name Sequence (extensions in lowercase) Region in 

CYP2B6 promoter

2B6EMSA1 

sense/antisense 

gatccTGGATGAAATTTTATAACAGGGTGCa 

gatctGCACCCTGTTATAAAATTTCATCCAg 

-94 to -70 bp 

(WT) 

2B6EMSA2 

sense/antisense 

gatccTGGATGAAATTTCATAACAGGGTGCa 

gatctGCACCCTGTTATGAAATTTCATCCAg 

-94 to -70 bp 

(-82C) 

2B6EMSA3 

sense/antisense 

gatccCAGGGTCAGGATAAAAGGCCCAGTTa 

gatctAACTGGGCCTTTTATCCTGACCCTGg 

-64 to -40 bp 

2B6EMSA4 

sense/antisense 

gatccTACAGAGTGGGTAAAGGGATa 

gatctATCCCTTTACCCACTCTGTAg 

-215 to -196 bp 

2B6EMSA5 

sense/antisense 

gatccACTGGGTTGCCCAAGCAGGAa 

gatctTCCTGCTTGGGCAACCCAGTg 

-183 to -164 bp 

prHNF1WT 

sense/antisense 

gatccGCCCGGTTAATTTTTGTGTTa 

gatctAACACAAAAATTAACCGGGCg 

-757 to -737 bp 

(WT) 

prHNF1MT 

sense/antisense 

gatccGCCCGGCTAATTTTTGTGTTa 

gatctAACACAAAAATTAGCCGGGCg 

-757 to -737 bp 

(-750C) 

HNF1 apoE 

sense/antisense 

gatccTCTCTGAGAGAATCATTAACTTAATTTa 

gatctAAATTAAGTTAATGATTCTCTCAGAGAg 

N.A. 

C/EBP 

sense/antisense 

gatccTGCAGATTGCGCAATCTGCAa 

gatctTGCAGATTGCGCAATCTGCAg 

N.A. 

AN15 

AN16 

gatccTACGTTGTTATTTGTTTTTTTCGa 

gatctCGAAAAAAACAAATAACAACGTAg 

N.A. 

Table 5: Oligonucleotides for electrophoretic mobility shift assays. 

11.2. Preparation of nuclear cell extracts 

Nuclear cell extracts from HepG2 cells were prepared by the “mini-extraction” method, which 

was first described by Schreiber et al., 1989 and modified by Neurath et al., 1997. All steps 
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were performed on ice. Cells were washed twice with 1x PBS and transferred to a 1.5 ml 

reaction tube using a sterile cell scraper. After adding 1 ml of buffer A, cells were centrifuged 

at 750 g for five minutes and the supernatant was taken off. The cell pellet was resuspended in 

1 ml buffer A + 0.4% NP-40 and incubated on ice for 10 minutes. The cell lysate was 

centrifuged at 750 g for five minutes and the supernatant discarded. 200 µl buffer B was 

added to the pelleted cell nuclei, and the nucleus membranes lysed mechanically by stirring 

for 30 minutes with a magnetic follower (Roth, #0955, 2x5 mm). The lysate was centrifuged 

at 7,500 g for 15 minutes and the supernatant transferred to a new reaction tube. Protein 

concentration was determined using bicinchoninic acid as described (Smith et al., 1985). 

 

Buffer A: 10 mM HEPES pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM PMSF, 1 mM DTT 

Buffer B: 20 mM HEPES pH 7.9, 0.42 M NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM 
PMSF, 1 mM DTT 

PMSF and DTT were added freshly before use. 

11.3. In vitro translation 

The TnT T7 Quick Coupled Transcription/Translation System (Promega) was used for in 

vitro translation according to the manufacturer’s instructions. The TnT Quick master mix 

contains rabbit reticulocyte lysate combined with RNA polymerase, nucleotides, salts and a 

ribonuclease inhibitor, thus allowing transcription and translation to be performed in a single 

reaction. The generation of plasmid templates pcDNA3-C/EBPβ and pcDNAmHNF1α is 

described in Chapter 7.5. 

11.4. Incubation and electrophoresis conditions 

In vitro translated C/EBPβ or HNF1α (2 µl) was incubated at room temperature for 

15 minutes with 2 µg poly(dI-dC) and 5 pmol unlabeled competitor, when included, before 

adding 2 µl of labeled DNA and incubating for another 20 minutes at room temperature. 

Binding reactions contained 10 mM HEPES pH 7.8, 60 mM KCl, 0.2% NP-40, 6% glycerol 

and 2 mM DTT. A 5% polyacrylamide gel (16.5 x 22 x 0.1 cm) was casted as follows: 

 
30% Acrylamid/N- ,N’-Methylenbisacrylamid 37.5/1 5 ml 
10x TBE 1.5 ml 
TEMED 30 µl 
10% APS 300 µl 
H2O to a total volume of  30 ml 
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The binding reactions were loaded onto the gel which was subjected to electrophoresis at 

200 V for 60 minutes prior to sample loading. Electrophoresis was conducted for 1 to 2 hours 

at room temperature with 0.5x TBE as running buffer. When TBP was used in gel retardation 

assays, 50 ng protein were incubated with or without 5 pmol unlabeled competitor at 30°C for 

15 minutes prior to addition of 2 µl of the labeled DNA probe and further 30 minutes 

incubation at 30°C. Binding reactions contained 20 mM Tris pH 8.0, 10 mM MgCl2, 2 mM 

DTT, 80 mM KCl, 2% Ficoll and 0.1% NP-40. The binding reactions were loaded onto 4% 

polyacrylamide gels; gel and running buffer contained 4 mM MgCl2 and 0.01% NP-40. 

Running conditions were the same as above. After electrophoresis, gels were dried and 

radioactive probe visualized using Fuji imaging plates MS 2325 and a BAS-1800II plate 

reader (Fuji, Kanagawa, Japan). 

12. Quantitative real-time PCR 

12.1. Synthesis of cDNA 

Total RNA was prepared from liver tissue using either the RNeasy Midi Kit (Qiagen) or 

Trizol reagent (Invitrogen) with subsequent RNA clean-up using the RNeasy Mini Kit 

(Qiagen). For cDNA synthesis, the Multiscribe Reverse Transcriptase Kit (Applied 

Biosystems) was used. 520 ng of total RNA were adjusted to a volume of 10 µl, and the 

following reagents were added: 

10x TaqMan RT buffer 2.60 µl 
25 mM MgCl2 5.72 µl 
dNTP mix (2.5 mM each) 5.20 µl 
50 µM Random Hexamers 1.30 µl 
RNase inhibitor  0.52 µl 
 
The random hexamers were allowed to anneal at 25°C for 10 minutes. After addition of 

0.66 µl MultiScribe Reverse Transcriptase (50 U/µl), samples were incubated at 48°C for 

30 minutes and inactivated at 95°C for 5 minutes. The volume was adjusted to 65 µl with 

RNAse-free water to yield a final cDNA concentration of 8 ng/µl. 

12.2. Conditions for RT-PCR 

Quantitative real-time PCR was conducted in an ABI Prism 7500 system (Applied 

Biosystems) using 2x TaqMan universal PCR Master Mix (Applied Biosystems) in a total 

volume of 25 µl. The cycling conditions were as follows: 
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50°C 2’00’’ 
95°C 10’00’’ 
95°C 15’’ 
60°C 1’00’’ }40x 
 
Reactions were performed in duplicate and standards of known quantity were analyzed in 

every run to calculate a calibration curve for quantification. 

12.2.1. β-Actin 

For quantification of β-Actin, TaqMan pre-developed assay reagents were used (probe dye: 

VIC-MGB) with 800 pg cDNA as template. To generate a standard curve, serial 10-fold 

dilutions of pooled liver cDNA were analyzed over a range from 40 to 0.004 ng. 

12.2.2. CYP2B6 

For quantification of CYP2B6 mRNA, an amplicon of 89 basepairs spanning intron 4 was 

amplified using the primers (differences to CYP2B7P1 underlined) 

TQ-CYP2B6FOR 5’-GCT GAA CTT GTT CTA CCA GAC TTT TTC-3’ and 

TQ-CYP2B6REV 5’-GAA AGT ATT TCA AGA AGC CAG AGA AGA G-3’ 

and probe 

CYP2B6 MGB-probe 5’-FAM-TGT ATT CGG CCA GCT GT-MGBNFQ-3’ 

at concentrations of 400 nmol/l each and 40 ng cDNA as template. Specificity against 

CYP2B7P1 was confirmed using DNA plasmids of both genes as template. To generate a 

standard curve, serial 10-fold dilutions of a linearized plasmid containing the open reading 

frame of CYP2B6 (kindly provided by Dr. Oliver Burk) were analyzed over a range from 10-1 

to 10-7 ng. β-Actin was used as housekeeping gene to normalize CYP2B6 values, and the 

lowest normalized value was arbitrarily set to 1. 

13. Gene copy number determination of CYP2B6 

Real-time PCR can be used to quantify the number of copies of a given DNA sequence in a 

genome relative to a reference gene. In this work, a copy number assay specific for CYP2B6 

was developed to allow for rapid identification of so far unknown deletion or duplication 

alleles of CYP2B6. 

13.1. TaqMan real-time PCR conditions 

Primers and FAM-labeled probe for CYP2B6 were designed using the Primer Express 

software, version 1.5 (Applied Biosystems). They were chosen to be CYP2B6-specific 
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(differences to CYP2B7P1 underlined) and known polymorphic sites were avoided. 

Sequences were as follows: 

2B6(15748)F 5’-TGT ATT CGG CCA GGT CAG G-3’ 
2B6(15896)R 5’-CCT GAT TCT TCA CAT GTC TGC G-3’ 
2B6in4(15800) 5’-FAM-TGA ACA CCC AGA ACA CAC GAG AAA AGG A-TAMRA 
 

For albumin, primers and VIC-labeled probe were used as described previously by 

Schaeffeler et al., 2003. Primers were purchased from MWG, Ebersberg, Germany, and 

probes were obtained from Applied Biosystems. Sequences were as follows: 

alb ex12 for 5’-TGT TGC ATG AGA AAA CGC CA-3’ 
alb ex12 rev 5’-GTC GCC TGT TCA ACC AAG GAT-3’ 
alb ex12 probe 5’-VIC-AAG TGA CAG AGT CAC CAA ATG CTG CAC AG-TAMRA 
 
Real-time PCR was performed using the ABI Prism 7700 sequence detection system. 

Amplification reactions (25 µl) were carried out in duplicate as one-tube biplex assay with 

50 ng of template DNA, 2x TaqMan Universal PCR Master Mix buffer (Applied Biosystems), 

300 nM of each primer and 200 nM of each fluorogenic probe. Cycling conditions were: 

 
50°C 2’00’’ 
95°C 10’00’’ 
95°C 15’’ 
60°C 1’00’’ }40x 
 
Product sizes were 149 bp for CYP2B6 and 72 bp for albumin. In each assay, a standard 

curve was recorded and a no-DNA control included. 

13.2. Evaluation of specificity 

To evaluate the specificity of the assay with respect to amplification of CYP2B6 versus 

pseudogene CYP2B7P1, a PCR product was generated from genomic DNA using the primers 

 

2B6(15569)F 5’-TCT GTG TCC TTG ACC TGC TG-3’ and 

2B6(16080)R 5’-TCA TTC TCA TCA ACT CTG TCT CTC A-3’ 

 

which were selected to amplify both CYP2B genes simultaneously, and cloned into the pCR4-

TOPO vector. Two clones carrying the 512 bp-PCR product derived from either CYP2B6 or 

CYP2B7P1 were selected by digestion with StyI and sequenced. Serial tenfold dilutions of 

these two plasmids designated pCR4TOPO-PCR08-2B6 and -2B7 (10 ng/µl to 0.1 pg/µl) 

were used as template for real-time PCR. 
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13.3. Normalization and Quantification 

The human albumin gene (ALB) was validated as a suitable reference gene to account for 

variations in the amount of DNA template or different amplification efficiencies. ALB was 

quantified simultaneously in a biplex assay in the same tube, and each reaction was carried 

out in duplicate. Quantification was performed by the standard curve method. In each assay, 

standard curves were recorded using serial dilutions (33.3, 16.65, 8.33, 4.16 and 2.08 ng/µl 

corresponding to 10,000, 5,000, 2,500, 1,250 and 625 copies of genomic templates/µl) of the 

same calibrator DNA (genomic DNA from J. Zukunft). Gene copy numbers of test samples 

were interpolated based on standard curves calculated by linear regression and the assumption 

that calibrator and test samples had two normal copies of the ALB gene. The normalized 

haploid CYP2B6 gene copy number was defined as N=copy number (CYP2B6)/copy number 

(ALB). Assuming that the calibrator DNA possesses two normal copies of the CYP2B6 gene, a 

normal diploid test sample is thus expected to yield a ratio of N=1, as compared to N=0.5 for 

a haploid genotype and N=1.5 for a heterozygous gene duplication. 
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III RESULTS 

1. Sequencing of the CYP2B6 promoter region 

To generate a basis for investigating the role of promoter polymorphisms in CYP2B6 

expression, 2.3 kb of upstream sequence in 98 DNA samples from Caucasian liver donors 

previously studied for exonic polymorphisms and CYP2B6 expression were sequenced by Dr. 

Thomas Lang at EPIDAUROS Biotechnology AG, Bernried, Germany. As shown in Table 6, 

the most frequent SNPs in the promoter region were -750T>C (allele frequency 57%) and 

-1456T>C (26%). The polymorphisms -1778A>G and -1186C>G both occurred with a 

frequency of 9%, whereas the SNPs -1848C>A, -82T>C and the newly described SNP 

-801G>T were all found with a frequency of 3%. These frequencies are in good agreement 

with previously published data. All genotype distributions were in accordance with the 

Hardy-Weinberg-Equilibrium except for the SNP -591A>G. This deviation indicates that a 

heterozygous carrier might have been erroneously identified as a homozygous carrier of this 

mutation (L#68). 

SNP 
WT/

WT 

WT/

MT 

MT/

MT 

Allele frequency [%] 

and 95% C.I. 

HWE: χ² and 

p-value 

-1848C>A  92  6  0  3.1  (1.3 – 6.9) 0.10 (0.75) 

-1778A>G  82  15  1  8.7  (5.3 – 13.5) 0.11 (0.74) 

-1578C>A  97  1  0  0.5  (0.0 – 3.3) 0.003 (0.96) 

-1489G>A  97  1  0  0.5  (0.0 – 3.3) 0.003 (0.96) 

-1456T>C  53  40  5  25.5  (19.7 – 32.3) 0.54 (0.46) 

-1186C>G  82  15  1  8.7  (5.3 – 13.5) 0.11 (0.74) 

-801G>T  92  6  0  3.1  (1.3 – 6.9) 0.10 (0.75) 

-750T>C  14  57  27  56.6  (49.4 – 63.6) 3.32 (0.07) 

-591A>G  95  2  1  2.0  (0.8 – 5.1) 23.5 (<0.0001) 

-82T>C  92  6  0  3.1  (1.3 – 6.9) 0.10 (0.75) 

Table 6: Sequenced SNPs in the CYP2B6 promoter. The base 5’ to the initiation codon 

ATG was numbered -1. 
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2. Genotyping SNP -2320T>C by RFLP 

While the sequencing of the promoter was in progress, a paper describing the SNP -2320T>C 

was published (Lamba et al., 2003). As this polymorphism was not included in the sequenced 

fragment, a PCR-RFLP assay was developed to genotype this mutation. A 1.1 kb fragment of 

the CYP2B6 promoter was amplified and digested with EcoRV. The wild type product yielded 

two fragments with 691 bp and 426 bp, whereas the mutation -2320T>C prevented digestion 

and resulted in an uncleaved fragment of 1117 bp (Figure 9). 

 

Figure 9: PCR-RFLP assay for the SNP -2320T>C. EcoRV digestion of wild type 

product yielded fragments of 691 bp and 426 bp, whereas the mutation abolished this 

restriction site and prevented digestion. 

110 DNA samples from the liverbank were genotyped (Appendix, Table 10), and the allelic 

frequency of this SNP was calculated to be 30.5% (95% CI: 24.5% - 37.1%) which is in good 

accordance with previously published data (Lamba et al., 2003; Hesse et al., 2004). The 

genotype distribution (52, 49 and 9 for TT, TC and CC) did not deviate from Hardy-

Weinberg-Equilibrium (χ²=0.29, p=0.58). 

3. Genotyping SNP c.1459C>T by RFLP 

To be able to carry out a haplotype analysis including the promoter and the coding region, all 

samples that had been sequenced in the promoter had also been genotyped for the most 

common nonsynonymous SNPs c.64C>T, c.516G>T, c.777C>A, c.785A>G and c.1459C>T 

by Dr. Thomas Lang and Dr. Kathrin Klein, Institute of Clinical Pharmacology, Stuttgart. 

However, the distribution of genotypes for the exon 9 SNP c.1459C>T determined by the 

RFLP-Assay described by Lang et al. (2001) deviated significantly from the Hardy-

Weinberg-Equilibrium in the Caucasian population described in the publication (χ²=45, 

p<0.0001) as well as in the liverbank (χ²=14, p=0.0002) with an excess of homozygous 

carriers of the mutant allele (Table 7). 
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A: Lang et al., 2001 

Genotype observed expected 

c.1459CC  171  159.2 

c.1459CT  28  51.6 

c.1459TT  16  4.2 

Allele frequency: 14.0% 

HWE: χ²=45, p<0.0001 

 
 
B: Liverbank IKP148 

Genotype observed expected 

c.1459CC  86  81.7 

c.1459CT  15  23.6 

c.1459TT  6  1.7 

Allele frequency: 12.6% 

HWE: χ²=14, p=0.0002 

Table 7: Allele frequencies for the SNP c.1459C>T determined by the PCR-RFLP assay 

described by Lang et al. (2001) for (A) the Caucasian population described in the 

publication and (B) 107 Caucasians from the liverbank (IKP148). 

 

Five of the six individuals from the liverbank genotyped TT (L#8, 13, 52, 75 and 105) were 

also heterozygous carriers of the mutations c.516G>T and c.785A>G in exons 4 and 5. The 

RFLP of these five samples always showed a weak band of undigested PCR product (Figure 

10), and their sequencing chromatograms displayed a secondary peak of base C (Figure 11). 

In contrast, the sample L#23 genotyped TT which does not carry the mutations in exons 4 and 

5 displayed unequivocal results in the PCR-RFLP assay and in the sequencing chromatogram. 
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Figure 10: RFLP for the SNP c.1459C>T as described by Lang et al., 2001. A 1401 bp 

fragment containing exon 9 of CYP2B6 was amplified. The mutation creates a BglII site 

resulting in fragments of 1185 bp and 216 bp. Except L#85 (genotype CC), all samples 

were genotyped TT. In samples L#8, 52, 75 and 105 which are heterozygous for the exon 

4 mutation c.516G>T, a weak band of undigested PCR product was visible. 

  

 

Figure 11: Sequencing chromatogram of two PCR products from Figure 10. In the 

sample L#52 which is heterozygous for the exon 4 mutation c.516G>T, a secondary peak 

of base C is visible at base position c.1459 which is not seen in the sample L#23. 

The six samples genotyped c.1459TT were reanalyzed by an alternative PCR-RFLP assay in 

which a different forward primer was used for amplification of a 477 bp fragment (Figure 12). 
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The TT genotype was confirmed only for L#23, whereas the other five samples were 

genotyped CT. These results were also verified by sequencing the PCR fragment (data not 

shown). 

 

                 
Old genotype TT TT TT TT TT TT 
New genotype CT CT TT CT CT CT 

Figure 12: Alternative PCR-RFLP assay for the SNP c.1459C>T. The mutation creates a 

BglII site resulting in fragments of 263 bp and 214 bp. 

 

The dbSNP database (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=snp) gave a first 

hint for the reason of these conflicting results. Two SNPs (rs4802104 and rs7259965) were 

found to be located at the binding site of the primer CYP2B6-9F. Sequencing of this region 

(Figure 13) indeed demonstrated linkage of the SNP rs7259965 (g.24322C>T) with the SNP 

c.516G>T, as seen, for example, in samples L#45 and L#48 (Table 8). All five samples that 

were erroneously identified as homozygous carriers of the exon 9 mutation were shown to be 

heterozygous carriers of the intron 8 SNP g.24322C>T, indicating that impaired binding of 

the primer CYP2B6-9F caused wrong results in genotyping the SNP c.1459C>T. 

 

 

Figure 13: Sequencing chromatogram of a homozygous carrier of the intron 8 SNP 

g.24322C>T (dbSNP: rs7259965) 
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L# 8 13 23 39 45 48 50 52 59 63 75 91 93 97 105

Exon 4 
c.516G>T GT GT GG GG TT TT GT GT GT GG GT GG TT TT GT

Intron 8 
g.24322C>T CT CT CC CC TT TT CT CT CT CC CT CC TT TT CT

Exon 9 
c.1459C>T CT CT TT CT CC CC CC CT CC CT CT CT CC CC CT

Table 8: Genotyping results for the SNPs c.516G>T, g.24322C>T and c.1459C>T in 

selected samples. 

The sequencing results were confirmed in a PCR-RFLP assay for the intron 8 SNP 

g.24322C>T which abolishes a HinfI site (Figure 14). 

 

 

Figure 14: PCR-RFLP assay for the SNP g.24322C>T. HinfI digestion yielded fragments 

of 537 bp, 227 bp and 30 bp for the wild-type product and fragments of 567 and 30 bp in 

the presence of the mutation g.24322C>T. 

4. Haplotype structure of CYP2B6 

From 96 individuals, genotypic data was now available for nine promoter SNPs (obtained by 

sequencing and RFLP for the -2320T>C SNP) as well as for the most common SNPs in the 

coding region. Using the PHASE software (Stephens et al., 2001), eleven unambiguous 

haplotypes from 92 individuals were inferred (Figure 15). Four novel alleles could be defined 

including allele *22, which contained the four linked promoter polymorphisms -1848C>A, 

-801G>T, -750T>C and -82T>C, found at a frequency of 3%. One sample carrying this 

haplotype (L#110) was sequenced throughout all exons to exclude the presence of further 

unknown mutations. An allele similar to *4A but carrying in addition the common promoter 

SNPs -750T>C and -1456T>C was designated as *4D. An allele composed of the exon 9 SNP 

c.1459C>T and the mutation -591A>G was defined as *5C, whereas a further allele differing 

from *6A with regard to the presence of the -750T>C SNP was termed *6C. The most 
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common alleles in this Caucasian population were *1A (frequency 25%), *6B (22%) and *1H 

(20%). Ambiguous haplotype estimates (phase probability <0.95) occurred only in four 

individuals (L#18, 62, 68, 105). One of these (L#105) was the only carrier of the SNP 

-1578C>A. 

 

Allele -2320 -1848 -1778 -1456 -1186 -801 -750 -591 -82 c.64 c.516 c.785 c.1459 
Allele frequency 
[%] and 95% CI 

(N=184) 

*1A T C A T C G T A T C G A C 25.0 (19.1 – 32.0) 

*1H   C   C A T C G   C  A T C G A C 19.6 (14.3 – 26.2) 

*1J   C   C   G   T   G  G   C  A T C G A C 8.7 (5.2 – 14.0) 

*1N T C A   C   C G   C  A T C G A C 0.5 (0.0 – 3.5) 

*2A T C A T C G T A T   T   G A C 7.1 (4.0 – 12.1) 

*4D T C A   C   C G   C  A T C G   G   C 2.7 (1.0 – 6.6) 

*5A T C A T C G T A T C G A   T   9.2 (5.6 – 14.6) 

*5C T C A T C G T   G  T C G A   T   1.1 (0.2 – 4.3) 

*6B T C A   C   C G   C  A T C   T     G   C 22.3 (16.6 – 29.1) 

*6C T C A T C G   C  A T C   T     G   C 0.5 (0.0 – 3.5) 

*22 T   A   A T C   T     C  A   C  C G A C 3.3 (1.3 – 7.3) 

  

Figure 15: Alleles of CYP2B6. Bases are numbered according to the recommendations of 

the Nomenclature Working Group (Antonarakis and the Nomenclature Working 

Group, 1998). Alleles are designated according to the CYP Allele Nomenclature 

Committee (http://www.imm.ki.se/CYPalleles/). Names of novel alleles described in this 

study are printed white on black. 

5. Promoter activity in different cell lines 

HepG2 cells were transfected with different reporter gene constructs of the pGL3-2B6(-2033) 

series that contain the firefly luciferase gene driven by the CYP2B6 promoter (Figure 16A). In 

this hepatoma cell line, the wild type construct did not show transcriptional activity 

distinguishable from the pGL3-Basic vector (Figure 16B). In contrast, the construct pGL3-

2B6(-2033)A3 consistently showed a transcriptional activity ninefold higher than wild type, 

whereas the A2 and A4 constructs did not exhibit any detectable promoter activity. We then 

transfected HepG2 cells with constructs carrying the individual SNPs contained in A3 (Figure 

16C). The plasmid pGL3-2B6(-2033)-82T>C showed increased activity of the same 

magnitude as the A3 construct, whereas the other three SNPs did not alter promoter activity.  
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Figure 16: Transcriptional activity of the CYP2B6 promoter. (A) Firefly luciferase 

reporter gene plasmids carrying 2033 bp of the wild type (WT) CYP2B6 5’-flanking 

region or different combinations of mutations (A2, A3, A4) representing the haplotypes 

*1N, *22 and *1J of the CYP2B6 promoter were constructed as described in “Materials 

and Methods”. (B) HepG2 cells and primary rat and human hepatocytes were 

cotransfected with the various plasmids and a β-galactosidase control plasmid (HepG2, 

human hepatocytes) or a Renilla reniformis luciferase control plasmid (rat hepatocytes). 

β-galactosidase-normalized or R. reniformis luciferase-normalized firefly luciferase 

activity is shown in relation to the wild type construct which was set to 1.0 for each cell 

type. (C) Plasmids carrying the individual mutations of the pGL3-2B6(-2033)A3 

construct were generated by in vitro mutagenesis and analyzed as described under (B). 

The means and standard deviations of at least two independent experiments are shown; 

*p<0.05; **p<0.01 (ANOVA followed by Dunnett’s multiple comparison test). 

To confirm these findings in noncancerous cells, primary rat and human hepatocytes were 

transfected. The experiments in rat hepatocytes were conducted by Dr. Karen Hirsch-Ernst, 

Institute of Toxicology, Göttingen, and human hepatocytes were provided by Dr. Andreas 

Nüssler, Charité, Berlin. In contrast to HepG2 cells, basal promoter activity of the wild type 
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construct was about tenfold higher compared to pGL3-Basic in both species. The pGL3-

2B6(-2033)A3 construct again showed a significant increase in transcriptional activity as 

compared to the wild type, whereas the other constructs had unchanged activities (Figure 

16B). The increase in transcriptional activity of the A3-construct was about threefold, which 

is somewhat lower than in HepG2 cells. This difference is most likely due to the elevated 

basal activity of the wild type promoter compared to pGL3-Basic in primary hepatocytes. 

Similar to the analysis in HepG2 cells, only the single mutation -82T>C conferred enhanced 

transcriptional activity on the CYP2B6 promoter (Figure 16C). These results were reproduced 

in at least three independently performed transfections with different preparations of human 

hepatocytes. 

 

Primary hepatocytes were also transfected with the plasmid pGL3-2B6(-1641)WT, which 

contains only 1.6 kb of the promoter and lacks the PBREM of the CYP2B6 gene. In rat 

hepatocytes, promoter activity of this shorter construct dropped to 20% of the values obtained 

with the longer pGL3-2B6(-2033)WT plasmid (Figure 17). In human hepatocytes, however, 

this difference was not as pronounced; the shorter plasmid still maintained 80% of the 

transcriptional activity of pGL3-2B6(-2033)WT. This suggests an important role of the 

PBREM for constitutive CYP2B6 promoter activity in rat but not in human hepatocytes. 
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Figure 17: Reporter gene plasmids pGL3-2B6(-2033)WT and (-1641)WT were 

transfected into primary hepatocytes of rat and human. The activity of pGL3-

2B6(-2033)WT was set to 100%.  
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6. In silico analysis of the promoter 

The MatInspector Software was used to analyze the polymorphic regions of the novel 

CYP2B6*22 allele for transcription factor binding sites. The predicted alterations included the 

loss of a putative HNF-1 site at -750 bp and disruption of a C/EBP binding site at -801 bp 

(Figure 18). Remarkably, the mutation -82T>C was not only predicted to disrupt a consensus 

TATA box, but to simultaneously create a putative C/EBP binding site (Figure 18, bottom). 

As the transcriptional start site of the human CYP2B6 gene had not been determined so far, 

the significance of the loss of the putative TATA box was unclear. Interestingly, an additional 

noncanonical TATA box was detected at -55 bp (GATAAA). Furthermore, the proximal 

promoter was scanned for C/EBP binding sites using TESS (Transcription Element Search 

System, available at http://www.cbil.upenn.edu/tess/), which identified two additional 

putative C/EBP binding sites at -208 bp and -177 bp. 

 

 

...AAGCACTTCAMGCCTCCCCAT...-1858 -1838

ACTGCAC
ATF6

CcCCTC
MAZ

TCACGC
PAX6

...TGATTCTCTTKCCTCAGCCTC...-811 -791
TGASTCAGC
NF-E2p45
TTRCNNMA
C/EBP

STTTC
IRF2

...TGATTCTCTTKCCTCAGCCTC...-811 -791
TGASTCAGC
NF-E2p45
TTRCNNMA
C/EBP

STTTC
IRF2

...TCACGCCCGGYTAATTTTTGT...-760 -740
GGTTAATNNT
HNF1

...TCACGCCCGGYTAATTTTTGT...-760 -740
GGTTAATNNT
HNF1

...GATGAAATTTYATAACAGGGT...-92 -72
TATAA
TBP

TTATgcaa
DBP

TTRCNNMA
C/EBP

...GATGAAATTTYATAACAGGGT...-92 -72
TATAA
TBP

TTATgcaa
DBP

TTRCNNMA
C/EBP  
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Figure 18: Putative cis-elements in the 

CYP2B6 promoter affected by the *22 allele. 

The promoter region of CYP2B6 was 

analyzed using the MatInspector software 

(Quandt et al., 1995). Transcription factors 

with their consensus sequences are shown 

for the reference sequence (above) and the 

mutated sequence (below), with poly-

morphic sites in bold. PAX6, Pax-6 paired

domain binding site; ATF6, Activating 

transcription factor 6; MAZ, Myc 

associated zinc finger protein; C/EBP, 

CCAAT/enhancer binding protein; NF-

E2p45, Nuclear factor, erythroid-derived 2; 

IRF2, Interferon regulatory factor 2; HNF1, 

Hepatic nuclear factor 1; DBP, Albumin D-

box binding protein; TBP, TATA box 

binding protein. 
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7. Electrophoretic mobility shift assays 

7.1. C/EBP 

Murine C/EBPβ was synthesized in vitro using the TnT T7 System (Promega) with the 

plasmid pcDNA3-C/EBPβ as template. When this protein was incubated with the 32P-labeled 

oligonucleotide 2B6EMSA1 containing the TATA box at -82, no specific DNA-protein 

complex was observed (Figure 19, lane 2). However, in the presence of the mutation -82T>C 

(probe CATAA/2B6EMSA2), a shifted band of a specific DNA-protein complex was 

observed (lane 8), confirming that a functional C/EBP binding site had been created, as 

predicted in silico. In the presence of HepG2 nuclear extract, two specific complexes with 

different electrophoretic mobilities as compared to the complex with recombinant C/EBP 

were formed with mutant, but not with wild type probe. The reason for these differences is 

most likely related to the multiplicity of cellular C/EBP factors. 
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Figure 19: In vitro translated C/EBP or nuclear extract of HepG2 cells was incubated 

with labeled probes representing bases -94 to -70 of the CYP2B6 promoter (containing a 

putative TATA box) in absence or presence of the SNP -82T>C (probes TATA and 

CATA). Unlabeled oligonucleotides were added as cold competitor (CC), as indicated. 

For unspecific competition, a 25 bp double-stranded oligonucleotide without C/EBP 

binding sites (AN15/16) was used. Protein-DNA complexes of C/EBP are marked by an 

arrow. 
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Additionally, the putative C/EBP binding sites at -208 and -177 bp were examined with the 

labeled probes EMSA4 and EMSA5 (Figure 20). An interaction between C/EBPβ and DNA 

indicating the presence of a functional C/EBP cis-element was detected with probe EMSA5 

representing bases -183 to -164 of the CYP2B6 promoter, but not with probe EMSA4 

representing bases -215 to -196. 
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Figure 20: In vitro translated C/EBP was incubated with labeled probes representing 

putative C/EBP binding sites of the CYP2B6 promoter at -208 bp (EMSA4) or -177 bp 

(EMSA5). EMSA2 was used as a positive control. The sequence of probe C/EBP used for 

competition experiments was obtained from Santa Cruz Biotech. Protein-DNA 

complexes of C/EBP are marked by an arrow. CC: cold competitor. 

Specificity of this interaction was further proved by competition experiments (Figure 21): 

Only those unlabeled probes that represent C/EBP binding sites (C/EBP, EMSA2 and 

EMSA5) were able to fully displace the labeled probes EMSA2 or EMSA5 from the 

respective DNA-protein complexes, whereas probes lacking a C/EBP cis-element (EMSA1, 

EMSA4 and AN15/16) were not. 
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Figure 21: In vitro translated C/EBP was incubated with labeled probes EMSA2 and 

EMSA5 representing putative C/EBP binding sites. Unlabeled probes were added in 50-

fold excess for competition experiments (CC: cold competitor). Protein-DNA complexes 

of C/EBP are marked by an arrow.  

7.2.TATA-box binding protein (TBP) 

As the in silico promoter analysis suggested the presence of two putative TATA boxes, their 

respective abilities to bind TBP was determined. As evident from Figure 22, strong specific 

binding of TBP to the GATA motif was visible (oligonucleotide 2B6EMSA3) at -55 bp (lane 

10), whereas the TATA motif at -82 bp (oligonucleotide 2B6EMSA1) exhibited markedly 

weaker binding (lane 2). This interaction was even weaker in the presence of the mutation 

-82T>C (oligonucleotide 2B6EMSA2, lane 6). In addition, the TATA and CATA motifs were 

not able to fully compete the GATA-TBP complex even at 50-fold excess (lanes 12, 13). 

Thus, both the GATA and the TATA motifs were shown to bind TBP and may therefore be 

able to act as functional TATA boxes, although the affinity of TBP towards the GATA motif 

seemed to be higher. 
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Figure 22: Recombinant TBP was incubated with probes TATA and CATA 

representing bases -94 to -70 of the CYP2B6 promoter (containing a putative TATA box) 

in absence or presence of the SNP -82T>C as well as probe GATA (representing bases 

-64 to -40 of the CYP2B6 promoter containing a putative noncanonical TATA box). 

Unlabeled oligonucleotides were added as cold competitor (CC), as indicated. TBP-DNA 

complexes are marked by an arrow. 

7.3. HNF1 

Murine HNF1α was synthesized in vitro using the TnT T7 System (Promega) with the 

plasmid pcDNA3-mHNF1α as template. When this protein was incubated with a labeled 

oligonucleotide representing the HNF1 binding motif from the apoE promoter (Wade et al., 

1994), a strong specific binding that disappeared in the presence of excess of unlabeled DNA 

was visible (Figure 23), demonstrating the ability of the in vitro translated protein to bind 

DNA. Towards prHNF1WT (representing bases -757 to -737 of the CYP2B6 reference 

sequence), HNF1 exhibited weak binding which completely disappeared when the mutation 
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-750T>C was present (prHNF1MT). Neither prHNF1WT nor prHNF1MT were able to 

compete the binding of HNF1 to the apoE motif (lanes 4 and 5) in 50-fold excess.  
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Figure 23: In vitro translated HNF1α protein was incubated with a known HNF1 

element in the apoE promoter as positive control or oligonucleotides representing a 

putative HNF1 binding site in the CYP2B6 promoter containing the base -750T 

(prHNF1WT) or -750C (prHNF1MT). Unlabeled oligonucleotides were used as cold 

competitor (CC), WT=unlabeled prHNF1WT, MT=unlabeled prHNF1MT. 
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8. Transactivation of CYP2B6 promoter constructs 

8.1. Cotransfection of C/EBPβ 

As previous work by Jover et al. (1998) suggested a role of C/EBP in the regulation of 

CYP2B6, HepG2 cells were transfected with an expression plasmid for murine C/EBPβ and 

different reporter plasmids containing 2033, 1641 or 244 bp of the CYP2B6 promoter (Figure 

24). Transactivation of the reporter gene constructs was observed for all plasmids and 

decreased according to the length of the included promoter sequence from 67-fold for the 

pGL3-2B6(-2033)WT construct to 8-fold for the plasmid pGL3-2B6(-244)WT. This 

suggested the presence of multiple C/EBP binding sites in the proximal CYP2B6 promoter, as 

predicted by in silico analysis and electrophoretic mobility shift assays. 
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Figure 24: Transactivation of reporter gene plasmids by C/EBPβ. HepG2 cells were 

transfected with reporter gene plasmids containing the CYP2B6 promoter region and an 

expression plasmid for C/EBPβ. The transactivation of the respective plasmids is shown. 

To confirm the hypothesis that the transcription factor C/EBP is involved in the increased 

promoter activity caused by the mutation -82T>C, an expression vector for C/EBPβ-LIP was 

cotransfected in human hepatocytes with reporter plasmids containing 2033, 245 or 160 bases 

of the CYP2B6 promoter. As C/EBPβ-LIP lacks the activation domain of C/EBPβ-LAP but 

still possesses the DNA binding and dimerization domain (Jover et al., 2002), it was expected 

to behave as a dominant-negative transcriptional agonist against endogenous C/EBP. As seen 
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in Figure 25, the basal activity of the plasmids pGL3-2B6(-245)WT and (-160)WT were four- 

and sixfold lower than pGL3-2B6(-2033)WT, and in all constructs, the mutation -82T>C 

increased activity about threefold. Surprisingly, cotransfection of the presumably dominant-

negative expression vector pAC-LIP resulted in an approximately threefold increase in 

transcriptional activity in all constructs indicating the presence of either residual 

transactivating activity or unspecific effects caused by the DNA binding of C/EBPβ-LIP. 

When the expression vector pAC-LAP encoding for C/EBPβ-LAP was cotransfected with the 

pGL3-2B6(-160) vectors, a 40-fold transactivation was observed (data not shown) suggesting 

the presence of C/EBP binding sites even within this short section of the promoter. 
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Figure 25: Cotransfection of the expression vector pAC-LIP encoding C/EBPβ-LIP 

which lacks the transactivation domain of C/EBPβ-LAP. The values and the means of 

duplicates of a single experiment are shown. 
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8.2. Cotransfection of HNF1α 

As in silico analysis revealed a putative HNF1 binding site around -750 bp which was also 

suggested by other authors (Lamba et al., 2003; Hesse et al., 2004), expression plasmids for 

murine HNF1α and the dimerization cofactor DCoH were cotransfected with pGL3-

2B6(-2033)WT and -750T>C, respectively. No transactivation of the reporter gene plasmids 

was observed in HepG2 cells, as their β-galactosidase normalized luciferase activities 

remained below the values of the control vector pGL3-Basic (Figure 26). 
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Figure 26: HepG2 cells were transfected with pGL3-2B6(-2033)WT or -750T>C and 

expression plasmids for HNF1α and DCoH. Data are presented as means + S.D. of 

triplicates in a single experiment. 
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9. Analysis of transcriptional start sites by 5’-RACE 

9.1. CYP2B6 transcripts in human liver RNA 

To investigate whether the two putative TATA boxes are involved in transcription, analysis of 

the transcriptional start site was performed using 5'-RLM-RACE and human liver RNA of 

two persons with different genotypes at -82 bp (Figure 27). From both persons, 24 clones 

were prepared and sequenced. Of those, 18 (L#64) and 14 (L#78) were derived from 5’-full-

length transcripts of CYP2B6 mRNA; the remaining plasmids represented either splicing 

variants of CYP2B6 or unspecific products. 

 

tgaaatttYa taacagggtg cagaggcagg gtcaggataa aaggcccagt tggaggctgc agcagggtgc agggcagtca gaccaggacc ATG

L#64: *1A/*1A

L#78: *1A/*22

tgaaatttYa taacagggtg cagaggcagg gtcaggataa aaggcccagt tggaggctgc agcagggtgc agggcagtca gaccaggacc ATGtgaaatttYa taacagggtg cagaggcagg gtcaggataa aaggcccagt tggaggctgc agcagggtgc agggcagtca gaccaggacc ATG

L#64: *1A/*1A

L#78: *1A/*22
 

Figure 27: The TSS of CYP2B6 was determined in cDNA of two human livers with 

different genotype using 5’-RLM-RACE. The length of the arrows corresponds to the 

number of clones representing the respective TSS. 

We found two different transcriptional start regions of the CYP2B6 gene around -54 bp and 

-20 bp. The usage of these sites appeared to be strongly dependent on genotype: for the 

individual with the wild type promoter (upper arrows), 13 out of 18 transcripts originated 

from -57 to -51 bp. Additional minor transcriptional start sites were mapped to -81 bp, -30 bp 

and -22 bp. In contrast, 11 out of 14 analyzed transcripts of the *1A/*22 individual started 

between -22 bp and -15 bp (lower arrows), whereas only two clones were derived from 

transcripts using the transcriptional start site at -52 bp. 

In addition, we also found a transcript of the recently described splice variant SV4 (Lamba et 

al., 2003) that contained the cryptic exon 3A, as well as a transcript of a new splice variant 

that used an alternate acceptor site in exon 4 without including the cryptic exon 3A. The 

resulting transcript contained a 32 bp deletion leading to a frameshift and a predicted 

premature stop codon in exon 5 (Figure 28). In RNA of both livers, no transcripts of the 

pseudogene CYP2B7P1 were found among the 34 clones analyzed.  
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Figure 28: Alternative splicing products of CYP2B6 found in this study. 

9.2. Luciferase transcripts in transfected HepG2 cells 

To exclude the possibility that other factors than genotype including gender, age or drug 

exposure were responsible for the differential use of the two transcriptional start sites, we also 

analyzed luciferase transcripts driven by 2.0 kb of the CYP2B6 promoter in transfected 

HepG2 cells. In cells transfected with pGL3-2B6(-2033)WT, the major transcriptional start 

site was mapped to a region from -57 bp to -49 bp, which was used by 16 of 21 analyzed 

clones (Figure 29, upper arrows). The remaining five clones were derived from transcripts 

utilizing a transcriptional start site at -43 bp which was not used in human liver RNA except 

by the splice variant SV4 in L#78. In contrast, when pGL3-2B6(-2033)A3 was transfected, 

shorter transcripts with a transcriptional start site at -24 bp dominated (14 of 24 clones, Figure 

29, lower arrows), whereas transcriptional start sites at -54 bp and -53 bp were found in only 

four clones. Also here, six transcripts originated from a transcriptional start site at -43 bp. 

This result confirmed the pivotal role of the promoter genotype in determining the 

transcriptional start site of CYP2B6. 

tgaaatttYa taacagggtg cagaggcagg gtcaggataa aaggcccagt tggaggctgc agcagggtgc agggcagtca gaccaggacc ATG

pGL3-2B6(-2033)WT

pGL3-2B6(-2033)A3

tgaaatttYa taacagggtg cagaggcagg gtcaggataa aaggcccagt tggaggctgc agcagggtgc agggcagtca gaccaggacc ATGtgaaatttYa taacagggtg cagaggcagg gtcaggataa aaggcccagt tggaggctgc agcagggtgc agggcagtca gaccaggacc ATG

pGL3-2B6(-2033)WT

pGL3-2B6(-2033)A3

Figure 29: HepG2 cells were transfected with two reporter gene constructs reflecting the 

two different alleles CYP2B6*1A and *22. The TSS of the transcribed luciferase gene 

driven by 2033 bp of the CYP2B6 promoter was mapped and displayed as in Figure 27. 
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10. Analysis of transcriptional start sites by primer extension 

To validate the results obtained in the 5’-RLM-RACE experiments, primer extension analyses 

were performed with ~100 µg total RNA of the liver samples L#64 and L#78 (Figure 30). In 

the sample L#64, transcriptional start sites were localized around -53 bp, which were not seen 

in the liver genotyped -82TC (L#78). In this sample, two other transcriptional start sites at -22 

and -20 bp were clearly recognized. These results demonstrate excellent agreement between 

the two methods applied for analysis of transcriptional start sites. 

Figure 30: Primer extension analyses. Primer extension was performed with ~100 µg 

total liver RNA of two individuals with different genotypes at -82 bp and a 32P-labeled 

primer located 41 bp downstream from the translation initiation site. The corresponding 

genomic fragment was sequenced using the same primer. Primer extension products are 

marked by arrows, and the corresponding transcriptional start sites (TSS) in the 

sequence are marked by +. 
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11. CYP2B6 mRNA expression in human liver samples 

In a panel of 97 RNA samples from the liverbank, CYP2B6 mRNA expression was measured 

by quantitative real-time PCR. For normalization, β-actin was used as housekeeping gene to 

account for differences in RNA quality and cDNA synthesis, and the lowest value (L#48) was 

arbitrarily set to 1 (Appendix, Table 11). Median CYP2B6 mRNA expression was 9.8 a.u. 

with a range from 1 to 105 a.u. (Figure 31). This result is in good agreement with the 43-fold 

interindividual variability found by Hesse et al. (2004), but much lower than the >3000-fold 

variation described by Lamba et al. (2003). The highest and fourth highest values were 

measured in two individuals taking carbamazepine (indicated by arrows), underlining the 

ability of this drug to induce CYP2B6 expression in vivo. The correlation between CYP2B6 

mRNA and apoprotein levels was relatively poor (rS=0.4127, p<0.0001), an observation that 

was also described by Hesse et al. (2004). No difference in median mRNA expression was 

found between males and females (10.24 vs. 9.75 a.u.). 
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Figure 31: Correlation between CYP2B6 mRNA content and apoprotein expression. 

Two individuals known to have taken the CYP-inducing antiepileptic carbamazepine 

are marked by arrows. The spearman correlation coefficient is given. 
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12. Genotype-phenotype correlations 

12.1. Genotyping SNP -82T>C by DHPLC 

Of the approximately 300 samples of the liverbank, 98 had been sequenced in the promoter 

region, and only six of those were heterozygous for the SNP -82T>C. To increase the group 

size for a subsequent genotype-phenotype analysis, the remaining DNA samples of the 

liverbank were genotyped for this SNP by a DHPLC assay. When the mutation was present, 

formation of heteroduplexes occurred and additional peaks appeared in the chromatogram 

(Figure 32). 182 additional samples were analyzed; six of those were heterozygous carriers of 

the mutation (Appendix, Table 9). No homozygous carrier of the mutation was identified. The 

allele frequency in the entire liverbank (182 + 98 samples) was therefore calculated to be 

2.1% (95% CI: 1.2% -3.8%). 

 

Figure 32: DHPLC chromatograms of L#114 (-82TT) and L#113 (-82TC). In the 

chromatogram of the heterozygous sample (bottom), additional peaks appear due to 

formation of heteroduplexes. 
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12.2. Promoter polymorphism -82T>C 

To investigate whether the promoter genotype has functional consequences in vivo, CYP2B6 

mRNA and apoprotein expression as well as enzyme activity were analyzed in the liverbank. 

Patients with known severe liver diseases (viral hepatitis, cirrhosis) or alcohol abuse as well 

as two individuals known to be induced by treatment with carbamazepine (Ketter et al., 1995) 

were excluded from this investigation. As shown in Figure 33, median CYP2B6 mRNA 

expression in livers genotyped -82TC was more than doubled compared to those genotyped 

-82TT (20.4 vs. 9.8 a.u., p=0.007). Similarly, the median apoprotein content in livers with 

genotype -82TC was 66% higher compared to those genotyped -82TT (17.6 vs. 10.6 pmol/mg 

microsomal protein), although this difference did not reach statistical significance. However, 

the median CYP2B6 bupropion hydroxylase activity in microsomes of livers genotyped 

-82TC again was almost twofold higher than in those with genotype -82TT (201.8 vs. 106.7 

pmol/mg*min, p=0.042). Unfortunately, no -82CC homozygotes could so far be identified. 

 

Figure 33: CYP2B6 mRNA expression in total liver RNA and apoprotein expression as 

well as bupropion hydroxylase activity as a selective marker for CYP2B6 catalytic 

activity in human liver microsomes were measured as described in “Materials and 

Methods”. Median values in samples genotyped -82TT were compared to those with 

genotype -82TC. Data are presented as quartiles, and the group size is given in the 

respective boxplot. Statistical significance is indicated (**p<0.01, *p<0.05; Mann-

Whitney U-test). 
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12.3. Promoter polymorphism -750T>C 

In livers with genotype -82TT, we also investigated a possible influence of the -750T>C 

polymorphism, which disrupts a putative HNF1 binding site and which had previously been 

reported to be associated with decreased expression and enzyme activity (Lamba et al., 2003). 

A trend for decreased median CYP2B6 protein content and activity dependent on the -750 

genotype could indeed be confirmed (Figure 34). Thus, genotypes -750TT, TC and CC had 

17.3, 10.6 and 7.3 pmol of CYP2B6 apoprotein per mg of microsomal protein, respectively, 

and 119.6, 107.9 and 76.6 pmol/mg*min bupropion hydroxylase activity, respectively. These 

differences were however not statistically significant. Furthermore, this trend was not seen in 

mRNA expression which was 9.1, 11.2 and 8.3 a.u. for -750TT, TC and CC groups.  
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Figure 34: CYP2B6 hepatic expression and activity in relation to -750 genotype in livers 

with genotype -82TT. Data are presented as in Figure 33. 

12.4. The CYP2B6*6 allele 

The -750T>C polymorphism has been shown to be a component of several haplotypes (Figure 

15), e.g. CYP2B6*1H or *6B. These haplotypes could therefore be more informative than the 

SNP alone because it is not known whether the SNP -750T>C or other linked mutations in the 

promoter or coding region influence expression. The CYP2B6*6 allele has already been 

shown to decrease expression of CYP2B6 and to result in slower elimination of its substrate 

efavirenz (Tsuchiya et al., 2004; Haas et al., 2004). Indeed, significant differences between 

non-carriers and carriers of this allele were observed in our population (Figure 35): mRNA 

expression was reduced from 11.2 to 7.2 a.u. (p=0.017), and apoprotein expression was 

almost halved (14.2 vs. 7.3 pmol/mg microsomal protein, p=0.008). Accordingly, catalytic 

activity in human liver microsomes was reduced from 121.2 to 79.9 pmol/mg*min (p=0.020). 
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Figure 35: CYP2B6 hepatic expression and activity in relation to the number of *6 

alleles. Data are presented as in Figure 33. Statistical significance is indicated (**p<0.01, 

*p<0.05; Mann-Whitney U-test). 

13. Comparison of CYP2B promoters between different species 

Nine different promoters of four different species (Mus musculus, Rattus norvegicus, Pan 

troglodytes and Homo sapiens) were extracted from the UCSC genome browser (available at 

http://www.genome.ucsc.edu/) and aligned up to -95 bp (Figure 36). Except for Cyp2b9, all 

promoters analyzed contain a C at the position corresponding to -82T in human CYP2B6. The 

transcriptional start sites in several rodent genes (CYP2B2, CYP2B3, Cyp2b9, Cyp2b10 and 

Cyp2b19) were mapped at around -25 bp (Hoffmann et al., 1992; Jean et al., 1994; Lakso et 

al., 1991; Honkakoski et al., 1996; Suzuki et al., 2002), similar to the transcriptional start site 

of the CYP2B6*22 allele, whereas major transcriptional start sites of CYP2B6*1A were found 

at -53 and -54 bp (this study). 

 

 

Figure 36: Alignment of CYP2B promoters in different species. Bases are numbered 

relative to the translation start ATG of CYP2B6. Available transcriptional start sites of 
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CYP2B genes are printed white on black (Hoffmann et al., 1992; Jean et al., 1994; Lakso 

et al., 1991; Honkakoski et al., 1996; Suzuki et al., 2002). Putative C/EBP binding sites, 

TATA boxes and the translational start sites are shaded in dark grey. The orthologue to 

human CYP2B6 in chimpanzee was designated CYP2Bch. 

14. Gene copy number of CYP2B6 

14.1. Specificity of the assay for CYP2B6 versus CYP2B7P1 

To evaluate the specificity of the gene copy number assay regarding amplification of 

CYP2B7P1, plasmids containing the amplified region of CYP2B6 and CYP2B7P1 were used 

as templates for TaqMan real-time PCR. Amounts of template DNA ranged from 50,000 to 

0.5 pg per reaction. As seen in Figure 37, the Ct-values for similar template amounts of the 

two constructs differ about 25. Assuming an amplification efficacy of 90%, the specificity of 

the assay for CYP2B6 versus CYP2B7P1 equals 1.925≈10,000,000 : 1. 
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Figure 37: The specificity of the gene copy number assay for CYP2B6 against CYP2B7P1 

was evaluated using plasmids containing the respective genomic regions as template. 
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14.2. Generation of standard curves 

In each PCR assay, a standard curve was generated using 5 µl of serial dilutions (33.3, 16.65, 

8.33, 4.16 and 2.08 ng/µl) of the same calibrator DNA corresponding to 50,000, 25,000, 

12,500, 6,250 and 3,125 copies of genomic template. Figure 38 shows an example of two 

standard curves for the CYP2B6 and the ALB gene, which had been chosen as an internal 

reference gene, run in a single-tube biplex assay. The difference of the Ct-values between 

each twofold dilution step equals approximately one. 

 

 

Figure 38: Standard curves for CYP2B6 and albumin determined in a single-tube biplex 

assay. Serial two-fold dilutions of genomic DNA corresponding to 50,000 to 3,125 copies 

were used as template. 
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14.3. Copy number determination in a panel of DNA samples 

30 DNA samples from the liverbank (IKP148) with low or high CYP2B6 expression were 

selected to be tested for CYP2B6 gene deletions or duplications. Also, 94 additional randomly 

chosen samples were screened. Samples were assayed up to five times using a TaqMan real-

time PCR-based gene copy number assay. The mean normalized haploid CYP2B6 copy 

number was 0.9059 with a standard deviation of 0.1202 (Figure 39). The three lowest values 

were 0.6996 (L#129), 0.6418 (L#133) and 0.5519 (L#116), and the remaining values ranged 

from 0.7512 to 1.250. 
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Figure 39: The gene copy number of CYP2B6 in 124 DNA samples was determined as 

described in “Materials and Methods”. The normalized haploid gene copy number of 

CYP2B6 is given. 
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IV DISCUSSION 

1. Influence of promoter polymorphisms on CYP2B6 expression 

Hepatic expression of CYP2B6 is highly variable and may depend on many exogenous and 

endogenous factors including drug exposure, diet, sex, age, and various physiologic and 

genetic factors. In this work, the contribution of common promoter variants to this variability 

was investigated by using reporter gene assays and studies in human liver samples and it was 

found that the mutation -82T>C is associated with significantly increased expression and 

function of CYP2B6 even in heterozygous carriers. Although two previous studies have 

addressed the potential impact of CYP2B6 promoter variants, they used only descriptive 

methods to relate haplotypes to liver expression and activity, and no direct attempts were 

made to investigate their functional relevance (Lamba et al., 2003; Hesse et al., 2004). This 

study is based on a comprehensive haplotype analysis using 2.3 kb of promoter sequence data 

and genotypes for all common nonsynonymous SNPs from 96 individuals of Caucasian origin 

(49 males/47 females). One novel SNP (-801G>T) as well as four novel alleles (*4D, *5C, 

*6C and *22) were identified and the presence and frequency of the major haplotypes present 

among Caucasians was confirmed. The three variant alleles *1J, *1N and *22 were selected to 

be represented by reporter gene constructs because they comprised the promoter SNPs with 

frequencies over 3%. When the plasmids pGL3-2B6(-2033)WT, A2, A3 and A4 were 

transfected into three liver cell types (HepG2, primary rat and human hepatocytes), only the 

A3 construct showed increased transcriptional activity (Figure 16). In HepG2 cells, 

transcriptional activity of the wild type construct was not distinguishable from empty control 

vector pGL3-Basic, consistent with the fact that these cells do not express endogenous 

CYP2B6 (Gervot et al., 1999). Although we can not exclude the possibility that individual 

SNPs of the constructs with unchanged activity (A2 and A4) may have an effect on 

transcription, these would be expected to be functionally compensatory in their allelic 

combinations.  

2. Pleiotropic effects of SNP -82T>C 

The considerably increased transcription rate of the A3-construct representing the *22 allele 

was entirely attributable to the TATA box disrupting SNP -82T>C. This result seemed 

initially quite surprising, because known TATA box polymorphisms appear to decrease 
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transcription rate, as seen for example in the UGT1A1*28 or CYP2A6*9 alleles (Bosma et al., 

1995; Pitarque et al., 2001). Our detailed promoter analysis revealed an unusual and unique 

scenario that appears to take place when -82T is changed into -82C (Figure 40): The TATA 

box at -82 bp is predominantly used for transcription of the wild type CYP2B6 gene, as shown 

by mapping the transcriptional start sites at around -54 bp using two independent methods 

(Figure 27, Figure 30). As indicated by electrophoretic mobility shift assay, the mutation 

-82T>C seems to decrease binding of TBP while simultaneously increasing affinity for 

C/EBP. The enhanced binding of C/EBP would then promote usage of the alternative 

noncanonical TATA box at -55 bp, generating shorter transcripts initiated from transcriptional 

start sites around -20 bp in both transfected cells and human liver (Figure 27, Figure 29). The 

observation that the shorter transcripts originating from the mutant promoter by far dominate 

over the longer wild type transcripts in liver RNA of a heterozygous individual as well as the 

increased mRNA expression in carriers of the -82T>C mutation strongly support the higher 

transcription rate of the *22 allele also in vivo. 
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Figure 40: Model of the mechanism of the -82T>C polymorphism. The SNP -82T>C 

converts the TATA box used by the human gene at -82 bp to a functional C/EBP binding 

site. Bound C/EBP supports binding of TBP to the alternative noncanonical TATA box 

at -55 bp, resulting in enhanced transcription from a transcriptional start site further 

downstream. 

3. CYP2B6*22: a gain-of-function allele 

Using a collection of human liver samples, an impact of the mutation -82T>C on phenotype 

could be clearly demonstrated (Figure 33). Median hepatic CYP2B6 mRNA expression was 

more than doubled in heterozygous carriers of the -82T>C mutation compared to -82TT 

individuals (20.4 vs. 9.8 a.u., p=0.007); accordingly, median apoprotein content was 66% 

higher (17.6 vs. 10.6 pmol/mg microsomal protein). The increased promoter activity even 
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became manifest in median bupropion hydroxylase activity as a selective marker of human 

CYP2B6 catalytic activity (Faucette et al., 2000), which was also nearly doubled in the -82TC 

group (201.8 vs. 106.7 pmol/mg*min, p=0.042). However, a considerable variability within 

the TT and TC groups suggests the involvement of other factors than the -82 polymorphism. 

These could be either induction phenomena or additional genetic factors, as only 

heterozygous carriers of the mutation could be included in this study. Indeed, the lowest 

mRNA expression and enzyme activity in the -82TC group was found in a carrier of the *5 

allele which had been shown to result in decreased expression (Lang et al., 2001). 

Nonetheless, these data demonstrate a close concordance between the in vitro reporter gene 

experiments and hepatic expression in vivo and characterize the novel CYP2B6*22 allele as a 

gain-of-function allele. Promoter mutations that increase transcriptional activity have already 

been described, for example the UGT1A9*22 allele (Yamanaka et al., 2004) or a C>G 

polymorphism in the CYP7B1 promoter (Jakobsson et al., 2004). However, no TATA box 

mutations resulting in enhanced transcription or relocation of the transcriptional start site have 

been described so far. The clinical significance of this allele as well as its occurrence in other 

populations should be further investigated as it may result in a CYP2B6 "ultrarapid 

metabolizer" phenotype. In the case of CYP2D6, the well characterized and clinically relevant 

ultrarapid metabolizer phenotype results from a heterozygous gene duplication which 

increases gene dose by just 50% (Ingelman-Sundberg, 1999). Clinical implications of 

CYP2B6*22 may include, for example, enhanced bioactivation of cyclophosphamide, 

shortened duration of action of propofol, and treatment failure in HIV therapy with efavirenz. 

4. Inter-species comparison of CYP2B promoters 

The comparison of different mammalian CYP2B promoters and transcriptional start sites 

(Figure 36) further supports the model presented in Figure 40 and reveals further insights into 

evolutionary relationships. Except for Cyp2b9, all promoters analyzed contain a C at the 

position corresponding to -82T in human CYP2B6, and in the rat CYP2B1 promoter, this 

region was indeed characterized as a functional C/EBP site (Park and Kemper, 1996). The 

transcriptional start sites in several rodent genes (CYP2B2, CYP2B3, Cyp2b9, Cyp2b10 and 

Cyp2b19) were mapped at around -25 bp (Hoffmann et al., 1992; Jean et al., 1994; Lakso et 

al., 1991; Honkakoski et al., 1996; Suzuki et al., 2002), indicating usage of the respective 

noncanonical TATA boxes at -55 bp similar to the human CYP2B6*22 allele. According to 

this analysis, the mouse Cyp2b9 gene would however be expected to use the TATA box at -82 

bp and initiate transcription around -54 bp. That this is not the case suggests that the C/EBP 
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site of this gene is conserved despite its -82T genotype. Apparently, -82T is compatible with 

C/EBP binding in the murine but not in the human sequence context, which shows an 

additional sequence difference at -83 bp. Interestingly, the murine -83G is compatible with the 

C/EBP consensus sequence, whereas the human -83T is not. Remarkably, even in chimpanzee 

and in the paralogous pseudogene CYP2B7P1 the -82C is found, suggesting that the 

disruption of the putative C/EBP binding site occurred after the speciation of Homo and Pan 

and after the duplication of the CYP2B gene in human on the CYP2 gene cluster on 

chromosome 19 (Hoffman et al., 2001). This would indicate that the -82C may represent the 

ancestral state. From an evolutionary point of view, it may be speculated that a high 

constitutive activity may have been disadvantageous due to the known promutagen-activating 

properties of CYP2B6 (Code et al., 1997). It remains unclear why the human GATA motif at 

-55 bp does not act as a functional TATA box in the absence of the mutation -82T>C, albeit 

exhibiting much stronger binding to TBP than the TATA motif at -82 bp in electrophoretic 

mobility shift assay. Probably the flanking sequences of the GATA motif at -55 bp are not as 

suitable for binding other members of the Polymerase II complex as those in the TATA box at 

-82 bp and therefore require stabilization by C/EBP to be functional. 

5. Extension of the CYP2B6*22 allele into the CYP2A6 locus 

A haplotype-phenotype association study was conducted for the CYP2A6 gene by Haberl et 

al. at EPIDAUROS AG, Bernried, Germany. In this study, five of six samples heterozygous 

for a certain CYP2A6 haplotype cluster (haplotypes 10,14,15, and 24), and only these, were 

also carriers of the CYP2B6*22 allele (Haberl et al., submitted). This suggests strong linkage 

of these two haplotypes and the existence of a haplotype block that extends over 150 kb from 

the 5’-region of CYP2B6 into exon 9 of CYP2A6 (Figure 2). A similar example has been 

described at the UGT1 locus on chromosome 2 where the frequent co-occurrence of the 

alleles UGT1A1*28, 1A6*2 and 1A7*7 (haplotype II) in Caucasians and Egyptians (Kohle et 

al., 2003) defined a haplotype block with a range of at least 90 kb. 

6. Expression of the pseudogene CYP2B7P1 

Pseudogenes are complete or partial copies of genes that are unable to code for functional 

polypeptides, and in the human genome, already 20,000 pseudogenes have been identified 

(Torrents et al., 2003). Recent works have described the expression of the pseudogene 

CYP2D7 mRNA in liver (Endrizzi et al., 2002) and the presence of a functional variant of this 

pseudogene in certain individuals (Pai et al., 2004). Another publication revealed an 
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important role of an expressed pseudogene in regulation of mRNA stability of its homologous 

coding gene (Hirotsune et al., 2003). Therefore it would be also interesting to know whether 

the pseudogene CYP2B7P1 is expressed in liver. When determining the transcriptional start 

site of CYP2B6 in liver with the GeneRacer Kit (Chapters II.9. and III.9.), the primer for the 

amplification of CYP2B6 5’-cDNA ends was designed to be 100% identical with the 

corresponding region of the CYP2B7P1 cDNA, allowing transcripts of this gene to be 

analyzed simultaneously. From 34 clones sequenced, none was derived from a CYP2B7P1 

transcript, supporting the notion that this pseudogene plays a minor role in the liver 

transcriptome. Of course this method does not measure CYP2B7P1 expression in a 

quantitative manner, and there is evidence in the literature that this pseudogene is indeed 

expressed in liver, as shown by isolation of a CYP2B7P1-derived cDNA clone from human 

liver RNA (Yamano et al., 1989). In lung, CYP2B7P1 seems to be even the dominant isoform 

(Gervot et al., 1999; Czerwinski et al., 1994). It would be interesting to know how the two 

human CYP2B genes are regulated in this tissue-specific manner. 

7. The putative HNF1 binding site at -750 bp 

As previous work suggested an impact of the common SNP -750T>C (which was predicted to 

disrupt a putative HNF1 binding site) on CYP2B6 expression (Lamba et al., 2003; Hesse et 

al., 2004), the influence of this polymorphism on phenotype was also investigated. For 

individuals genotyped -82TT, a trend for lower CYP2B6 enzyme activity and protein 

expression was observed dependent on the mutation -750T>C, although not statistically 

significant (Figure 34). Per contra, a decrease in mRNA levels in relation to -750 genotype 

was not observed. As the SNP -750T>C is a component of several haplotypes (*1H, *6B etc.), 

it is possible that not this particular SNP itself but one of the alleles that include this mutation 

alter expression. Indeed, when comparing carriers and non-carriers of the *6 allele which 

includes the -750T>C mutation (Figure 35), significant differences at all three levels of 

expression were observed. This shows that in certain cases haplotypes can be more 

informative than SNPs, in particular when a mutation is part of different haplotypes. 

 

Further experiments were conducted to determine a possible role for HNF1 in the regulation 

of CYP2B6. In electrophoretic mobility shift assay, a weak binding of in vitro translated 

murine HNF1α to the promoter region around -750 bp was visible, which disappeared in the 

presence of the mutation -750T>C. In contrast, no difference between wild type promoter and 

the construct carrying this single mutation was observed in our reporter gene experiments 
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(Figure 16), neither in primary hepatocytes that are likely to express HNF1 nor in 

cotransfection experiments with expression plasmids for murine HNF1α and DCoH (Figure 

26). It is unlikely that sequence differences between murine and human HNF1α are the reason 

for the lack of transactivation, as the protein sequences are 100% identical in the DNA 

binding domain (data not shown), but there are other possible explanations for these 

ambiguous results. First, the structural requirements of HNF1 activation might not be met in 

the reporter gene assays due to the lack of chromatin or insufficient coverage of the required 

DNA region by the reporter gene plasmids. Second, the absence of essential cofactors or the 

presence of inhibitory factors could prevent transactivation by HNF1. Another reason might 

be that the affinity of HNF1 to the cis-element is not high enough to generate considerable 

transactivation. In any case, these results can not definitely rule out an involvement of HNF1 

in CYP2B6 transcription, and further studies would be necessary to fully elucidate the 

relevance of this transcription factor and the -750T>C polymorphism for the regulation of 

CYP2B6. 

8. Constitutive regulation of CYP2B6 by C/EBP 

Previous work suggested an important role of C/EBP in the regulation of CYP2B6, as 

reexpression of C/EBP in HepG2 cells by stable transfection induces expression of CYP2B6 

(Jover et al., 1998). In this work, it could be shown that CYP2B6 promoter constructs of 

different sizes are transactivated by cotransfection of C/EBPβ (Figure 24). The extent of the 

transactivation gradually increased with increasing length of the included promoter fragment, 

suggesting the presence of multiple C/EBP binding sites in the promoter. As 245 bp of the 

CYP2B6 promoter were sufficient to observe transactivation by C/EBPβ in reporter gene 

assays, this particular region was further investigated. Two binding sites were predicted by in 

silico analysis, and for one of these at -177 bp, binding of C/EBP could indeed be confirmed 

by electrophoretic mobility shift assay. Interestingly, a higher score denoting higher similarity 

to the consensus sequence was assigned to the putative site at -208 bp, which did not bind 

C/EBP in electrophoretic mobility shift assay. This shows that even for well characterized 

transcription factors like the C/EBP family, in silico prediction still fails to deliver reliable 

results, and experimental verification remains mandatory. To eliminate the putative C/EBP 

binding site in pGL3-2B6(-244) at -177 bp, a reporter plasmid containing only 160 bp of the 

promoter was generated. This construct was not expected to be transactivated by C/EBP 

unless the mutation -82T>C creates a C/EBP binding site; however, both plasmids pGL3-

2B6(-160)WT and -82C were transactivated by C/EBPβ to the same extent (data not shown) 
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suggesting the presence of another C/EBP binding site in the proximal region close to the 

TATA box at -82. 

9. Transactivation by C/EBPβ-LIP 

C/EBPβ-LIP represents an isoform of human C/EBPβ that is able to bind DNA and to form 

dimers with other C/EBP isoforms, but lacks the amino-terminal activation domain (Jover et 

al., 2002). Therefore, it was expected to act as a transcriptional antagonist of endogenous 

C/EBPβ-LAP (the “full-length” form) or C/EBPα when transfected into human hepatocytes. 

However, when cotransfected with reporter gene plasmids containing the CYP2B6 promoter, 

the transcriptional activity of these constructs was unexpectedly increased in human 

hepatocytes by C/EBPβ-LIP, albeit to a much lesser extent than by C/EBPβ-LAP. This 

unanticipated activating effect of C/EBPβ-LIP was also observed with CYP3A4 promoter 

constructs in HeLa cells (R. Jover, personal communication). These findings might be 

explained by a residual transactivating activity of C/EBPβ-LIP, although this has not been 

reported previously. There is also the possibility that DNA-bound LIP improves accessibility 

for other transcription factors to the promoter. Third, the dimerization or DNA binding 

domain of C/EBPβ-LIP could be able to recruit other transactivating factors when bound to 

DNA. These transcription factors would then increase transcriptional activity independent of 

the activating domain of C/EBPβ. 

10. Detection of a genotyping error by HWE testing 

As shown previously, deviation from Hardy-Weinberg equilibrium of a genotype distribution 

can be indicative for genotyping errors (Hosking et al., 2004), which in turn can give rise to 

false positive results in association studies (Xu et al., 2002). In the course of this work, 

erroneous genotyping of the SNP c.1459C>T in exon 9 of the CYP2B6 gene by the PCR-

RFLP assay described by Lang et al. (2001) was suspected as the observed genotype 

distribution strongly deviated from HWE. Six individuals of the liverbank genotyped 

c.1459TT were reanalyzed using an alternative PCR-RFLP assay described in this work. The 

TT genotype was confirmed for only one sample, whereas the other five were genotyped CT. 

The reason for the erroneous genotyping was further analyzed. It could be shown by 

sequencing and PCR-RFLP that the binding site for primer CYP2B6-9F in intron 8 is 

polymorphic due to the contained SNP g.24322C>T (dbSNP: rs7259965) which was 

furthermore shown to be linked to the CYP2B6*6 allele. This resulted in ambiguous 

genotyping in samples with genotype CYP2B6*5/*6 (Figure 41): Amplification of the exon 9 
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wild type product derived from the *6 allele was less efficient due to impaired binding of the 

forward primer. Therefore, the wild type product was underrepresented in the PCR product 

mixture, as amplification of the mutated exon 9 on the *5 allele was not affected. The 

subsequent analysis of the PCR product thus showed pseudohomozygosity for c.1459T, both 

in the RFLP and in the sequencing chromatogram. 

Exon 4 Exon 5 Exon 9Exon 9

Exon 4 Exon 5Exon 4 Exon 5 Exon 9Exon 9

516G>T 24322C>T785A>G

1459C>T

*6

*5

 

Figure 41: False genotyping of the exon 9 SNP c.1459C>T in individuals with genotype 

CYP2B6*5/*6 is caused by impaired binding of primer CYP2B6-9F on the *6 allele. 

Preferential amplification of the mutated exon 9 product from the *5 allele results in 

pseudohomozygosity for the mutation c.1459C>T. 

 

These findings emphasize the usefulness of Hardy-Weinberg equilibrium testing when 

assessing the plausibility of genotyping results in randomly selected populations. Also, the 

database of single nucleotide polymorphisms (dbSNP, http://www.ncbi.nlm.nih.gov/SNP/) 

can serve as a helpful tool to avoid polymorphic sites in primer design. In dbSNP build 122, 

the mean spacing of SNPs was 360 bases, therefore, assuming a mean primer length of 25 bp, 

about 7% (25/360) of chosen primers can be expected to bind to polymorphic sites in the 

genome. This could be avoided by checking the dbSNP database and redesign primers that 

would bind to polymorphic sites. 

11. CYP2B6*7: An artifact? 

The CYP2B6*7 allele was first described in 2001 by Lang et al. In this study, 215 Caucasian 

individuals were genotyped for several exonic mutations by PCR-RFLP, including the exon 9 

SNP c.1459C>T. As shown above, the method used yields incorrect results in *5/*6 

individuals, erroneously assigning them a TT genotype instead of CT. In 215 individuals, the 

http://www.ncbi.nlm.nih.gov/SNP/
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c.1459TT genotype was only observed either alone (3 individuals, *5/*5) or in combination 

with the heterozygous mutations c.516G>T and c.785A>G of the CYP2B6*6 allele (13 

individuals, assigned genotype: *5/*7). It is likely that the latter samples were actually 

heterozygous for c.1459C>T, defining their genotype as *5/*6 instead of *5/*7. The fact that 

no sample was genotyped *5/*6 further favors this hypothesis as the expected number of such 

individuals in this study would have been 12 (=2*p(*6)*p(*5)*N). Furthermore, the analysis 

of cDNA from a putative carrier of the CYP2B6*7 allele assumed homozygosity for c.1459TT 

and did not further test for the presence of this mutation in those cDNA clones carrying the 

mutations c.516G>T and c.785A>G. There have been other population studies determining 

frequencies for CYP2B6 alleles (Hiratsuka et al., 2002; Kirchheiner et al., 2003; Lamba et al., 

2003; Xie et al., 2003; Jacob et al., 2004), and even a long-PCR-based method has been 

established to directly detect the *7 allele (Futatsugawa et al., 2004). However, none of these 

works except one (Hesse et al., 2004) could unambiguously identify a carrier of the 

CYP2B6*7 allele. But, as Hesse et al. used the same primers as Lang et al. for amplification 

of exon 9, the single individual identified as carrier of the alleles *5/*7 was most likely in fact 

carrier of *5/*6. Taken together, these facts indicate that the allele CYP2B6*7 is an artifact 

caused by faulty genotyping of the SNP c.1459C>T in *5/*6 individuals. 

12. Possible deletions of CYP2B6 

Using a TaqMan real-time PCR based assay, the gene copy numbers of CYP2B6 and albumin 

as reference gene were determined in 124 DNA samples. The mean normalized haploid 

CYP2B6 gene copy number was 0.9059, somewhat lower than the expected value of 1.0. This 

indicates that amplification efficiency of the CYP2B6 fragment might be lower or more 

dependent on DNA quality than that for albumin. The standard deviation of 0.12 is 

comparable to that obtained by Schaeffeler et al., 2003, who assessed gene copy number of 

CYP2D6. When taking out the three lowest values, numbers ranged from 0.75 to 1.25, also 

similar to the distribution seen in the group with two gene copies of CYP2D6 in the 

publication of Schaeffeler et al. There was no evidence for gene duplications, as the highest 

haploid gene copy number was 1.25, but three values were reproducibly lower than 0.75 

suggesting the presence of only one gene copy of CYP2B6 in these samples. These findings 

need however to be confirmed using alternative methods like Southern blotting or long PCR. 
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V APPENDIX 

1. Genotyping results for the SNP -82T>C in the CYP2B6 gene 

 
L# -82  
112 TT 
113 TC 
114 TT 
115 TT 
116 TT 
117 TT 
118 TT 
119 not done 
120 TT 
121 TT 
122 TT 
123 TT 
124 not done 
125 TT 
126 TT 
127 TT 
128 TT 
129 TT 
130 TT 
131 TT 
132 TT 
133 TT 
134 TT 
135 TT 
136 TT 
137 TT 
138 TT 
139 TT 
140 TC 
141 TC 
142 TT 
143 TT 
144 TT 
145 TT 
146 TT 
147 TT 
148 TT 
149 TT 
150 TT 
151 TT 

L# -82  
152 TT 
153 TT 
154 TT 
155 TT 
156 TT 
157 TT 
158 TT 
159 TT 
160 TT 
161 TT 
162 TT 
163 TT 
164 TT 
165 TT 
166 TT 
167 TT 
168 TT 
169 TT 
170 TT 
171 TT 
172 TT 
173 TT 
174 TT 
175 TT 
176 TT 
177 TT 
178 TT 
179 TT 
180 TT 
181 TT 
182 TT 
183 not done 
184 TT 
185 TT 
186 TT 
187 TT 
188 TT 
189 TT 
190 TT 
191 not done 

L# -82  
192 TT 
193 TT 
194 TT 
195 TT 
196 TT 
197 TT 
198 TT 
199 TT 
200 TT 
201 TT 
202 TT 
203 TT 
204 TT 
205 TT 
206 TT 
207 TT 
208 TT 
209 TT 
210 TT 
211 TT 
212 TT 
213 TC 
214 TT 
215 TT 
216 TT 
217 TT 
218 not done 
219 TT 
220 TT 
221 TT 
222 TT 
223 TT 
224 TT 
225 TT 
226 TT 
227 TT 
228 not done 
229 TT 
230 TT 
231 TT 

L# -82  
232 TT 
233 TT 
234 TT 
235 TT 
236 TT 
237 TT 
238 TT 
239 TT 
240 TT 
241 TT 
242 TT 
243 TT 
244 TT 
245 TT 
246 TT 
247 TT 
248 TT 
249 TT 
250 TT 
251 TT 
252 TT 
253 TT 
254 not done 
255 TT 
256 TT 
257 TT 
258 TT 
259 TT 
260 TT 
261 TT 
262 TT 
263 TT 
264 TC 
265 TT 
266 TT 
267 TT 
268 TT 
269 TT 
270 TT 
271 TT 
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L# -82  
272 TT 
273 TT 
274 TT 
275 TT 
276 TT 
277 TT 
278 TT 
279 TT 

L# -82  
280 TT 
281 TT 
282 TT 
283 TT 
284 TT 
285 TT 
286 TT 
287 TC 

L# -82  
288 TT 
289 TT 
290 TT 
291 TT 
292 TT 
293 TT 
294 TT 
295 TT 

L# -82  
296 TT 
297 TT 
298 TT 
299 TT 
300 TT 

 

Table 9: DHPLC genotyping results for SNP -82T>C 
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2. Genotyping results for the SNP -2320T>C in the CYP2B6 gene 

 
L# -2320  
1 TT 
2 TT 
3 TT 
4 TC 
5 not done 
6 TC 
7 TC 
8 TT 
9 TT 
10 TT 
11 TT 
12 TC 
13 TT 
14 TC 
15 TC 
16 TT 
17 TC 
18 TC 
19 TT 
20 TT 
21 TC 
22 TC 
23 TT 
24 TT 
25 TT 
26 TC 
27 TC 
28 TC 

L# -2320  
29 CC 
30 TC 
31 TT 
32 TT 
33 TT 
34 TT 
35 TT 
36 TC 
37 TT 
38 TT 
39 TT 
40 CC 
41 CC 
42 TC 
43 TC 
44 TC 
45 TT 
46 TC 
47 TC 
48 TT 
49 TT 
50 TT 
51 TC 
52 TT 
53 TC 
54 TC 
55 TT 
56 TC 

L# -2320  
57 TT 
58 TC 
59 TT 
60 TC 
61 TT 
62 TC 
63 TT 
64 TT 
65 TC 
66 TC 
67 CC 
68 TC 
69 TC 
70 TC 
71 not done 
72 TT 
73 TC 
74 TC 
75 TT 
76 TC 
77 TT 
78 TT 
79 TT 
80 TC 
81 TT 
82 TT 
83 TC 
84 TC 

L# -2320  
85 TC 
86 TT 
87 CC 
88 TT 
89 TT 
90 TT 
91 TT 
92 TC 
93 TT 
94 TC 
95 CC 
96 TT 
97 TT 
98 TC 
99 TT 
100 TC 
101 TC 
102 TT 
103 TC 
104 TC 
105 TT 
106 CC 
107 CC 
108 TT 
109 TC 
110 TC 
111 CC 
112 TC 

 

Table 10: RFLP genotyping results for SNP -2320T>C.  
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3. Results of quantitative real-time PCR 

 

L# CYP2B6 
mRNA 

CYP2B6 
mRNA 

rel to L#110 
β-actin 

CYP2B6 
mRNA 

normalized to 
β-actin 

CYP2B6 mRNA 
normalized to 

β-actin 
rel to L#48 

1     
2 4.33E-04 25.471 469.52 9.222E-07 7.027 
3 1.75E-04 10.294 55.54 3.151E-06 24.010 
4 1.48E-03 87.059 1161.24 1.274E-06 9.712 
5 9.47E-04 55.706 644.16 1.470E-06 11.202 
6 1.38E-04 8.118 105.48 1.308E-06 9.969 
7 4.69E-04 27.588 287.42 1.632E-06 12.434 
8 5.62E-04 33.059 592.35 9.488E-07 7.230 
9      

10      
11      
12 1.11E-03 65.294 800.87 1.386E-06 10.561 
13 4.47E-04 26.294 296.19 1.509E-06 11.500 
14 5.59E-04 32.882 339.45 1.647E-06 12.548 
15 5.34E-04 31.412 291.43 1.832E-06 13.962 
16 5.21E-04 30.647 257.86 2.020E-06 15.396 
17 8.19E-05 4.818 69.41 1.180E-06 8.991 
18 5.32E-04 31.294 196.47 2.708E-06 20.633 
19 1.21E-03 71.176 332.93 3.634E-06 27.694 
20 3.28E-04 19.294 486.48 6.742E-07 5.138 
21 2.15E-04 12.647 167.21 1.286E-06 9.798 
22 3.95E-04 23.235 851.49 4.639E-07 3.535 
23 5.09E-04 29.941 425.46 1.196E-06 9.116 
24 3.23E-04 19.000 467.76 6.905E-07 5.262 
25 2.44E-04 14.353 821.32 2.971E-07 2.264 
26 1.41E-04 8.294 276.04 5.108E-07 3.892 
27 1.02E-03 60.000 234.96 4.341E-06 33.080 
28 4.75E-04 27.941 246.14 1.930E-06 14.705 
29 2.25E-03 132.353 627.13 3.588E-06 27.339 
30 9.93E-04 58.412 415.31 2.391E-06 18.219 
31 1.69E-04 9.941 316.60 5.338E-07 4.068 
32 7.55E-04 44.412 587.75 1.285E-06 9.788 
33 6.09E-04 35.824 344.20 1.769E-06 13.482 
34 4.81E-04 28.294 537.31 8.952E-07 6.821 
35 7.15E-03 420.588 1187.30 6.022E-06 45.888 
36 6.02E-05 3.541 113.45 5.306E-07 4.043 
37 5.34E-05 3.141 103.86 5.142E-07 3.918 
38 2.54E-04 14.941 378.87 6.704E-07 5.109 
39 5.30E-04 31.176 962.79 5.505E-07 4.195 
40      
41 1.22E-03 71.765 968.33 1.260E-06 9.600 
42      
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L# CYP2B6 
mRNA 

CYP2B6 
mRNA 

rel to L#110 
β-actin 

CYP2B6 
mRNA 

normalized to 
β-actin 

CYP2B6 mRNA 
normalized to 

β-actin 
rel to L#48 

43 3.81E-04 22.412 191.94 1.985E-06 15.126 
44      
45      
46 2.23E-04 13.118 351.41 6.346E-07 4.836 
47 4.19E-04 24.647 201.14 2.083E-06 15.873 
48 6.96E-05 4.094 530.35 1.312E-07 1.000 
49 6.79E-03 399.412 791.34 8.580E-06 65.382 
50 2.24E-04 13.176 356.69 6.280E-07 4.785 
51 1.13E-04 6.647 128.07 8.823E-07 6.723 
52 6.09E-04 35.824 550.65 1.106E-06 8.427 
53 2.65E-04 15.588 249.34 1.063E-06 8.099 
54 1.16E-03 68.235 421.85 2.750E-06 20.953 
55 1.59E-04 9.353 74.61 2.131E-06 16.239 
56 6.04E-04 35.529 238.80 2.529E-06 19.273 
57 7.19E-04 42.294 409.37 1.756E-06 13.383 
58      
59 9.56E-04 56.235 761.02 1.256E-06 9.572 
60      
61      
62 1.14E-04 6.706 82.65 1.379E-06 10.510 
63 1.56E-04 9.176 168.82 9.241E-07 7.041 
64 7.65E-04 45.000 142.44 5.371E-06 40.924 
65 3.39E-04 19.941 126.10 2.688E-06 20.485 
66      
67 3.25E-04 19.118 208.65 1.558E-06 11.869 
68 1.31E-04 7.706 705.90 1.856E-07 1.414 
69 4.85E-04 28.529 300.83 1.612E-06 12.285 
70 4.12E-04 24.235 153.41 2.686E-06 20.464 
71      
72 1.11E-03 65.294 407.02 2.727E-06 20.781 
73 9.28E-05 5.459 127.36 7.286E-07 5.552 
74      
75 1.02E-03 60.000 432.95 2.356E-06 17.952 
76 7.09E-04 41.706 1145.06 6.192E-07 4.718 
77 3.07E-04 18.059 565.66 5.427E-07 4.136 
78 1.24E-03 72.941 483.75 2.563E-06 19.532 
79 3.23E-04 19.000 1208.65 2.672E-07 2.036 
80 5.73E-04 33.706 645.59 8.876E-07 6.763 
81 2.20E-04 12.941 387.93 5.671E-07 4.321 
82 7.50E-04 44.118 365.15 2.054E-06 15.651 
83 7.16E-04 42.118 351.42 2.037E-06 15.525 
84 4.42E-04 26.000 581.00 7.608E-07 5.797 
85 6.50E-04 38.235 583.18 1.115E-06 8.493 
86 2.43E-04 14.294 106.34 2.285E-06 17.413 
87 1.28E-04 7.529 72.61 1.763E-06 13.433 
88 3.63E-04 21.353 349.27 1.039E-06 7.920 
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L# CYP2B6 
mRNA 

CYP2B6 
mRNA 

rel to L#110 
β-actin 

CYP2B6 
mRNA 

normalized to 
β-actin 

CYP2B6 mRNA 
normalized to 

β-actin 
rel to L#48 

89 1.26E-04 7.412 103.67 1.215E-06 9.261 
90 9.39E-05 5.524 123.27 7.617E-07 5.804 
91 1.54E-04 9.059 238.18 6.466E-07 4.927 
92      
93 1.02E-04 6.000 165.32 6.170E-07 4.701 
94      
95 1.01E-03 59.412 1192.03 8.473E-07 6.456 
96      
97 8.44E-04 49.647 3027.85 2.787E-07 2.124 
98      
99 4.10E-04 24.118 669.97 6.120E-07 4.663 

100 3.55E-05 2.088 6.09 5.829E-06 44.419 
101 3.27E-05 1.924 22.22 1.472E-06 11.214 
102      
103 2.53E-04 14.882 197.21 1.283E-06 9.776 
104 1.32E-04 7.765 83.42 1.582E-06 12.057 
105 1.72E-04 10.118 88.24 1.949E-06 14.853 
106 3.89E-04 22.882 773.54 5.029E-07 3.832 
107      
108 1.34E-04 7.882 9.71 1.380E-05 105.157 
109 8.20E-05 4.824 75.50 1.086E-06 8.276 
110 1.70E-05 1.000 29.96 5.674E-07 4.324 
111      
112 1.81E-04 10.647 521.41 3.471E-07 2.645 
113 3.00E-05 1.765 11.37 2.639E-06 20.105 
140 2.79E-04 16.412 61.18 4.560E-06 34.749 
141 1.19E-04 7.000 25.03 4.754E-06 36.228 
213 2.47E-04 14.529 98.30 2.513E-06 19.147 
264 2.42E-04 14.235 42.75 5.661E-06 43.135 
287 1.41E-04 8.294 14.63 9.638E-06 73.439 

 

Table 11: Results of quantitative real-time PCR 
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4. Oligonucleotides used in this work 

Oligonucleotide Sequence (5’ – 3’) 

 

Genotyping -2320T>C 

2B6(-3010)F GAA AGA GAC TGG CTG AAT GGA 

2B6(-1894)R TAT TGT TGC CAT CCC CAT TT 

 

Genotyping c.1459C>T 

2B6(25238)F CAA ATC TGT TGC AGT GGA CAT TTG 

CYP2B6-9R TAA TTT TCG ATA ATC TCA CTC CTG C 

seqCYP2B6-9F IRD800-TGA GAA TCA GTG GAA GCC ATA GA 

 

Genotyping g.24322C>T 

2B6(24062)F CTG GGT ATG CCA AAG GGA TG 

2B6(24855)R GCC TCC CAA AGT GGG ATT AC 

seq2B6(24153) IRD800-AAC TCA CAC TTG ACA TGG CC 

 

DHPLC 

DH2B6(-275)F CAC ACA TTC ACT TGC TCA CC 

DH2B6(+12)R GCT GAG TTC CAT GGT CCT G 

 

Cloning 

2B6(-2253)F TAT GAA TGA GAA CGC GTG ATA TTC ACT 

2B6(-164)F ACG CGT GGG TTC CCT AAC AAC TT 

2B6(11)R CTG AGT TAG ATC TTC CTG GTC TG 

2B6(+16)R GGA CGC TGA GTT AGA TCT TCC TGG TCT 

2B6(15569)F TCT GTG TCC TTG ACC TGC TG 

2B6(16080)R TCA TTC TCA TCA ACT CTG TCT CTC A 

 

In vitro mutagenesis 

2B6-82MTF GGG GAA TGG ATG AAA TTT CAT AAC AGG GTG CAG AGG C 
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Oligonucleotide Sequence (5’ – 3’) 

2B6-82MTR GCC TCT GCA CCC TGT TAT GAA ATT TCA TCC ATT CCC C 

2B6-750MTF ATC ACG CCC GGC TAA TTT TTG T 

2B6-750MTR ACA AAA ATT AGC CGG GCG TGA T 

2B6-801MTF GGT TCA AGT GAT TCT CTT TCC TCA GCC TCC CGA G 

2B6-801MTR CTC GGG AGG CTG AGG AAA GAG AAT CAC TTG AAC C 

2B6-1848MTF GTA AAG CAC TTC AAG CCT CCC CAT CG 

2B6-1848MTR CGA TGG GGA GGC TTG AAG TGC TTT AC 

 

5’-RACE & Primer extension 

2B6cDNA(521)R GAT GGA GCA GAT GAT GTT GGC GGT AA 

luci(220)R AGC TTC TGC CAA CCG AAC GGA CAT TT 

luci(350)R CAC GGT AGG CTG CGA AAT GCC CAT A 

2B6cDNA(41)R CCT GTG AGG AGT GCA AGG AAG AGG 

 

EMSA (as=antisense) 

2B6EMSA1 sense GAT CCT GGA TGA AAT TTT ATA ACA GGG TGC A 

2B6EMSA1 as GAT CTG CAC CCT GTT ATA AAA TTT CAT CCA G 

2B6EMSA2 sense GAT CCT GGA TGA AAT TTC ATA ACA GGG TGC A 

2B6EMSA2 as GAT CTG CAC CCT GTT ATG AAA TTT CAT CCA G 

2B6EMSA3 sense GAT CCC AGG GTC AGG ATA AAA GGC CCA GTT A 

2B6EMSA3 as GAT CTA ACT GGG CCT TTT ATC CTG ACC CTG G 

2B6EMSA4 sense GAT CCT ACA GAG TGG GTA AAG GGA TA 

2B6EMSA4 as GAT CTA TCC CTT TAC CCA CTC TGT AG 

2B6EMSA5 sense GAT CCA CTG GGT TGC CCA AGC AGG AA 

2B6EMSA5 as GAT CTT CCT GCT TGG GCA ACC CAG TG 

prHNF1WT sense GAT CCG CCC GGT TAA TTT TTG TGT TA 

prHNF1WT as GAT CTA ACA CAA AAA TTA ACC GGG CG 

prHNF1MT sense GAT CCG CCC GGC TAA TTT TTG TGT TA 

prHNF1MT as GAT CTA ACA CAA AAA TTA GCC GGG CG 

HNF1 apoE sense GAT CCT CTC TGA GAG AAT CAT TAA CTT AAT TTA 

HNF1 apoE as GAT CTA AAT TAA GTT AAT GAT TCT CTC AGA GAG 

C/EBP sense GAT CCT GCA GAT TGC GCA ATC TGC AA 
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Oligonucleotide Sequence (5’ – 3’) 

C/EBP as GAT CTT GCA GAT TGC GCA ATC TGC AG 

AN15  GAT CCT ACG TTG TTA TTT GTT TTT TTC GA 

AN16 GAT CTC GAA AAA AAC AAA TAA CAA CGT AG 

 

Quantitative RT-PCR 

TQ-CYP2B6FOR GCT GAA CTT GTT CTA CCA GAC TTT TTC 

TQ-CYP2B6REV GAA AGT ATT TCA AGA AGC CAG AGA AGA G 

CYP2B6 MGB-probe FAM-TGT ATT CGG CCA GCT GT-MGBNFQ 

 

Copy number assay 

2B6(15748)F TGT ATT CGG CCA GGT CAG G 

2B6(15896)R CCT GAT TCT TCA CAT GTC TGC G 

2B6in4(15800) FAM-TGA ACA CCC AGA ACA CAC GAG AAA AGG A-TAMRA 

alb ex12 for TGT TGC ATG AGA AAA CGC CA 

alb ex12 rev GTC GCC TGT TCA ACC AAG GAT 

alb ex12 probe VIC-AAG TGA CAG AGT CAC CAA ATG CTG CAC AG-TAMRA 

 

Table 12: Oligonucleotides used in this study 
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