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for Scene Graph Systems

Dirk Staneker Dirk Bartz Wolfgang Straßer

Abstract

Image space occlusion culling is an useful approach to reduce the rendering
load of large polygonal models. Like most large model techniques, it trades over-
head costs with the rendering costs of the possibly occluded geometry. Meanwhile,
modern graphics hardware supports occlusion culling. Unfortunately these hard-
ware extensions consume fillrate and latency costs.

In this paper, we propose a new technique for scene graph traversal optimized
for efficient use of occlusion queries. Our approach uses several Occupancy Maps
to organize the scene graph traversal. During traversal hierarchical occlusion
culling, view frustrum culling and rendering is performed.

The occlusion information is efficiently determined by asynchronous multiple
occlusion queries with hardware-supported query functionality. To avoid redun-
dant results, we arrange these multiple occlusion queries according to the infor-
mation of several Occupancy Maps. Our presented technique is conservative and
benefits from a partial depth order of the geometry.
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1 Introduction
The datasets for visualization are growing faster in size than the rendering speed of
modern graphics subsystems. Several techniques exist to solve this problem. Most
of them reduce the number of polygons, others use sampling techniques like ray trac-
ing [SPR+01] or point sampling [WFP+01]. To reduce the number of polygons, level-
of-detail [Gar99] or impostor techniques are also used. Another approach is occlusion
culling, which is in the focus of this paper, where hidden parts of a scene are detected
and excluded from the rendering process.

A serious drawback of occlusion culling is that it does not provide good perfor-
mance improvements for all polygonal models. In particular models with low occlu-
sion expose the overhead of occlusion queries which can result in a slow-down, if that
overhead exceeds the benefits of not rendered geometry. Another problem are the setup
costs for the occlusion queries, because of many state changes like disabling frame and
depth buffer writes. In [SBM03], we presented an approach to reduce the number of un-
necessary queries and how multiple queries can be implemented efficently for general
scene graph systems. A drawback of this approach is the lack of hierarchical occlusion
culling of subtrees in the scene graph.

In this paper, we introduce a new traversal technique, which significantly reduces
occlusion overhead, thus making the performance of occlusion culling approaches less
sensitive to the varying depth complexities of the various models, reduces the number
of state changes with multiple occlusion queries and performs hierarchical occlusion
culling of occluded subtrees of the scene graph. Note that the goal of our approach is to
achieve optimal performance for a varying set of models and viewing situations, even
if little or no occlusion or depth complexity is present, thus regular occlusion culling
would produce a slow down. Also we are only using the bounding box hierarchy of
the scene graph without precomputing special hierarchies or data structures. Temporal
coherence is almost not used to better support dynamic scenes, only the bounding box
hierarchy of the scene graph has to be up to date in each frame.

1.1 Related work
Cohen-Or et al. give a recent overview on the various occlusion culling tech-
niques [COCSD03]. While they can be classified in object space [CT96], and image
space techniques [GKM93, ZMHH97, BMH99], we are focusing on image space tech-
niques.

In particular image space techniques frequently use lower resolution framebuffer
representation to trace contributions, like a z-pyramid [GKM93], occlusion maps
[ZMHH97], or a virtual occlusion buffer [BMH99]. Meißner et al. [MBGS01] pro-
posed a visibility mask within the rasterization stage of the graphics hardware to save
internal rasterization bandwidth. In contrast to those hardware approaches, our soft-
ware technique aims at the reduction of unnecessary occlusion queries, helps to ar-
range multiple queries to avoid redundant queries, and furthermore helps to save state
changes.

Obviously, one of the fastest ways to utilize an occlusion query for geometry culling
for general scenes is by hardware support [BS99]. Several solutions are available, some
of them use core OpenGL functionality [BMH99, Sta03], others are using the his-
togram extension [KS01] to perform occlusion queries. Specific occlusion culling sup-
port is available as well, e.g. with the Hewlett-Packard VISUALIZE fx [SOG98] and
the nVIDIA Geforce3 and Geforce4 Ti [NVI02]. Both series of graphics subsystems
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support the OpenGL extension from Hewlett-Packard, GL HP occlusion test and
special extensions for multiple queries and measuring the amount of visible pixels.
Multiple occlusion queries are available as ARB extension in newer OpenGL versions,
these are used for the presented techniques in this paper.

2 OpenGL and Occlusion Culling

For occlusion culling, we use the above mentioned hardware supported technique
which is originally based on the HP Occlusion Flag. HP extended this technique for
multiple queries, which was adopted by nVIDIA in a similar way with the nVIDIA
Occlusion Query. It is driven through an OpenGL extension, which provides a special
occlusion mode, similar to the selection mode of OpenGL. For an occlusion test, the
test geometry (in our case a BB) is rendered in the test mode of the extension with
disabled color- and z-buffer writes to avoid actual modifications to the framebuffers. If
the test geometry is not occluded (at least one pixel of it triggered a z-buffer write), the
actual model geometry associated with the bounding volume is rendered.
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Figure 1: Latency for the occlusion query on an Intel P4@2400 MHz with a nVIDIA
Geforce4 Ti 4400 and on an Intel Pentium III@750 MHz with a HP VISUALIZE fx10
for different sizes of a test volume [SBM03].

The Occlusion Query-based tests associates two different costs; first it has to wait
for the completion of the pipeline flush (because of the disabling of depth and color
buffer writes and other state changes) and second it rasterizes the test geometry. Sever-
son [Sev99] associates the equivalent of approximately 190 triangles of 25 pixels each
with one query with the HP Flag. However, we found a strong correlation with the
z-buffer bandwidth (number of rasterized pixels of the test geometry) and the latency
required for an occlusion query (see Fig. 1). With enabled backface culling the query
is almost twice as fast as without, since backface culling only requires rasterization of
the front faces.

Note that different graphic subsystems show similar characteristics; we performed
the same benchmark on an Intel PIII@750 MHz with a HP VISUALIZE fx10 with the
HP Flag and on an Intel P4@2400MHz with a nVIDIA Geforce4 Ti4400 (see Fig. 1
from [SBM03]).

To reduce the latency of setup costs for an occlusion query, the HP visibility exten-
sion and the nVIDIA extension support multiple tests in one query. The visibility of
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Figure 2: Multiple query without (a) and with (b) possibly redundant results.

more than one bounding volume can be determined at the same time by such a multiple
query. For each tested bounding volume the visibility is returned. One major problem
of multiple queries is the selection of the bounding volumes, because there can be false
positive results if two bounding volumes test the same screen space region (see Fig-
ure 2.) The second volume, behind the first one, is tested against maybe not up-to-date
depth values, because the geometry of the first bounding volume is not yet rendered.
The Occupancy Map can be used to reduce such redundant tests and helps to arrange
the bounding volumes for multiple queries.

3 Occupancy Map

Figure 3: Left: Scene with low occlusion. Right: Occupancy Map for scene [SBM03].

Obviously, most of the front-most geometry will always be visible (if located in
the view-frustum). Hence, the respective occlusion queries will (almost) always return
a negative (not occluded) result. Unfortunately, the occlusion query itself is not for
free; software and hardware approaches associate significant latency and setup costs
with it. Estimates from various applications show that 5 to 10% of the geometry are
always not occluded, since they are in front of almost every other geometry [BMH99].
If the scene has only low occlusion but high polygonal complexity (see Fig. 3), the
costs of the unsuccessful queries can have a significant penalty. In our software-based
Occupancy Map approach [SBM03], we address this problem. It helps to reduce the
dependency of the efficiency of occlusion culling from specific datasets; datasets with
high occlusion will perform well as with ”standard” occlusion culling, while the latency
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and setup costs of unsuccessful queries in datasets with low occlusion will be saved by
the Occupancy Map. Furthermore, we are addressing the setup costs by using multiple
occlusion queries managed by an Occupancy Map.

As noted in the previous section, the latency of an occlusion query depends on the
number of rasterized pixels of the bounding volume. In particular large, partially visible
bounding volumes will spend significant time in the rasterization stage of the graphics
accelerator. In order to reduce the associated costs, we try to avoid occlusion queries at
large using the Occupancy Map (Section 3.1). If we cannot avoid the occlusion query,
we attempt to reduce their latency by using multiple occlusion queries. As noted before,
they are difficult to use efficiently, due to redundant false positive queries [BSS+01]. In
Section 3.2, we avoid redundant queries by employing multiple Occupancy Maps. This
will also render the occlusion culling approach mostly independent of special heuristics
for particular scenes.

3.1 Visible Bounding Boxes in the Front

Figure 4: Request to the Occupancy Map; the dotted box is detected as visible, the
hatched one as possibly occluded. For the latter one, an occlusion query will fol-
low [SBM03].

BBs1 in screen space areas, which are not yet covered by geometry are always
visible, because there is no occluding geometry. To avoid queries of the respective
BBs, we are using an Occupancy Map (OM), which enables a fast reject of occlusion
queries in screen areas which are not yet covered by scene pixels. As soon as the Occu-
pancy Map detects that the target screen area is “empty”, it cancels the occlusion query
and initiates the rendering of the respective scene geometry. Note that the Occupancy
Map is conservative, since it is essentially storing the conservative lower resolution
coverage information of the framebuffer. However, it is not exact and will occasionally
initiate the rendering of geometry which would have been determined occluded by the
actual query. This is also due to the approximation of the scene entity BB by a screen
space AABB. Nevertheless, we found that with the used Occupancy Map size (see be-
low), this was not significant at all. See [SBM03] for a more detailed description and
results of the Occupancy Map within the Jupiter scene graph.

1Note that other bounding volumes [BKS01] work as well as standard BBs with the Occupancy Map.
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For a lookup in the Occupancy Map, we transform the screen space BB of the 3D
BB of the queried scene entity, and check if it overlaps with empty (unset) regions of
the Occupancy Map. If that is the case (dotted box in Fig. 4), the corresponding BB is
assumed visible and the occlusion query for this node is canceled. Note that for good
performance, the rendered scene entities should be partially organized front-to-back,
although it is not really mandatory.

3.2 Organization of Multiple Occlusion Queries
To further reduce the latency of an occlusion query, we are using multiple occlusion
queries. This method reduces setup costs, because state changes are solely necessary
before and after the multiple query. However, redundant queries (see Figure 2) have to
be avoided in order not to get false-positive results of geometry that is indeed occluded.
To reduce this problem, we are using an Occupancy Map for each multiple query. In
contrast to [SBM03] we present an approach for hierarchical occlusion culling with
multiple queries in this paper.

The first Occupancy Map in our architecture works like described in [SBM03].
If the screen space AABB completely overlaps with full (set) regions, the 3D BB is
potentially occluded and has to be tested with an occlusion query (OM test 0).

The Occupancy Maps organizing multiple queries have a slightly different meaning
compared with the Occupancy Map from the previous section. A set bit in such an
Occupancy Map means that this region is covered by a BB from the corresponding test
list. A BB is added to a multiple occlusion query, if at least one bit in the corresponding
Occupancy Map is not set in its respective screen region of the AABB. This means
that the AABB will test a region in screen-space, which is not yet covered by another
AABB from the respective test list. AABBs can overlap in screen-space, which could
result in redundant queries, but they never occlude each other. We have found that this
approximation is adequate to save redundant queries and to have many different BBs
in one multiple occlusion query. If all Occupancy Map bits covered by the AABB are
already set, the AABB is tested in a subsequent Occupancy Map. The AABB is always
rendered into the tested Occupancy Map to mark the corresponding screen space region
as used.

4 Scene Graph Traversal
Our culling approach is based on view-frustum and occlusion culling of the nodes in
the scene graph, which contains the hierarchically organized polygonal scene. While
the inner nodes of the scene only contain the bounding volume (we use here bounding
boxes, BBs) of their associated sub-tree, the leaf nodes contain the actual geometry and
their corresponding BBs.

All our measurements are performed in OpenSG, a scene graph-based toolkit for
the interactive visualization of large polygonal models [OF00]. OpenSG PLUS has
occlusion culling functionality [Sta02, Sta03, SBS04]. In this paper, we describe an
enhanced technique for scene graph traversal to benefit efficiently from hardware oc-
clusion queries. In [SBM03] in contrast, we used Jupiter [HP98, BSS+01] for our tests
and measurements.
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4.1 OpenSG Scene Graph
In OpenSG, models are represented as scene graphs which describe a hierarchical or-
ganization of the objects of the model. The scene graph consists of a variety of nodes,
describing the partition of the model into objects and groups of objects. Important for
rendering are the geometry nodes, containing geometry as leafs in the scene graph.
Occlusion culling is done with the bounding boxes of the nodes, which are used in the
hardware occlusion queries. We implemented a new OpenSG RenderAction with our
new traversal and culling techniques.

4.2 Traversal Scheme
The scene traversal performs an interleaved culling and rendering step. Starting with
the root node, it takes the bounding volume of the node and performs a view-frustum
culling test. If the node (actually its bounding volume) is determined inside the view-
frustum, its child nodes are added to the front-to-back sorted list of current nodes.
Otherwise, the whole sub-tree is skipped. To avoid redundant occlusion queries, a
front-to-back sorted traversal of the scene graph is used. The closest corner of the
node’s BB to a given viewpoint is used for this sorting.

In the first stage, we use the Occupancy Map to find the visible nodes in front of
the scene [SBM02]:

add root node to priority queue;

while(priority queue not empty){
node = get first node from priority queue;

if(node is outside view frustum){
cull node;

}else{

if(node is visible in occupancy map){
if(node is geometry){
render node and assign node to occupancy map;

}else{
add children front-to-back to priority queue;

}
}else
add node to pending list;

}
}

Nodes, with a BB that is visible in the Occupancy Map, are assumed visible in the
scene, since there is no rendered geometry up to now which could cover the region,
see [SBM03]. If such a node is a geometry node, it is rendered and the Occupancy
Map is updated by its screen space BB. Nodes, whose BB is covered in the Occupancy
Map are added to the pending list. These nodes are probably occluded and therefore
tested with occlusion queries in the next stage of the traversal scheme.

In the second stage, multiple occlusion queries are performed on the nodes of the
scene graph. To avoid false positive results, an Occupancy Map is used to distribute
the occlusion tests in different screen space regions:
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n = 0;
while(pending list not empty && n<max_tests){
add nodes from pending list to priority queue;
clear occupancy map;

while(priority queue not empty){
node = get first node from priority queue;
if(node is outside view frustum){
cull node;

}else{
if(node is visible in occupancy map){
add node to test list;
assign node to occupancy map;

}else
add node to pending list;

}
}

perform multiple occlusion query with test list;

for(each visible node){
if(node is geometry)
render node;

else
add children to pending list;

}

n++;
}

In contrast to [SBM03], we use also the BBs of the inner nodes of the scene graph
and not only the BBs of the geometry nodes of the leafs. This leads to a hierarchical ap-
proach, since complete subgraphs can be culled, if the BB of the subgraph is occluded.
The main problem is that we need a more enhanced organisation of the traversal and
culling approach. Children of visible inner nodes have to be traversed further and tested
for occlusion. Two priority queues (test list and pending list) are used to organize the
traversal and multiple occlusion queries. The priority queues are working in a double-
buffered manner. In [SBM03], a fixed number of Occupancy Maps is used, while we
are using only one Occupancy Map in this approach, which is cleared after each multi-
ple occlusion query. To reduce the maximum number of occlusion queries given by the
Occupancy Map, we only use n times the Occupancy Map. After n we perform multi-
ple occlusion queries for all remaining nodes. n is calculated from frame to frame, so
there is some limited use of temporal coherence: nframe+1 = 7/10 · mframe, where
m is the number of all (organized by Occupancy Map+ remaining queries) multiple
occlusion queries. Note that in case of drastic movement, which invalids temporal co-
herence, the method is still conservative, due to the occlusion queries of the last stage,
only the efficiency might be reduced.

To avoid too many occlusion queries given by the Occupancy Map in the backstage
of the scene, we perform brute force multiple occlusion queries on the remaining nodes,
since BBs in the back are often occluded:

9



while(pending list not empty){
perform multiple occlusion query with pending list;
clear pending list;

for(each visible node){
if(node is geometry)
render node;

else
add children to pending list;

}

n++;
}

max_tests = 7/10 * n;

5 Results

Number of polygons
BoomBox 644 268
Formula One 746 827
Cotton Picker 10 610 166
City Model 64 898 464

Table 1: Test models.

Framerates [fps]
a) only vfc b) occlusion culling c) multiple queries

BoomBox 22.1 31.1 (+41%) 42.9 (+94%, +38%)
Formula One 27.7 33.7 (+22%) 41.9 (+51%, +24%)
Cotton Picker 8.8 17.9 (+103%) 20.6 (+135%, +15%)
City Model 0.5 19.9 (+3880%) 20.7 (+4040%, +4%)

Table 2: Resulting average framerates and corresponding speed-ups for the test models.

To evaluate the performance of the multiple occlusion queries, organized by the
Occupancy Maps, we used an Intel P4@2400 MHz with a nVIDIA Geforce FX5600XT
and the models listed in Table 1. We rendered a camera path for each model at a
resolution of 800 × 600 and 32 Bit color depth. The occlusion culling was done with
the nVIDIA occlusion query extension.

The Boom Box, the Formula One car and the Cotton Picker (see Figure 9a/c) are
MCAD models. The City model (see Figure 9d) is an artificial city with some Formula
One cars in the streets and has the highest complexity of the four models with very
high depth complexity. We did not optimize the scene graph for occlusion culling or
traversal.
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Figure 5: Boom Box frame rates and rendered polygons.
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Figure 6: Formula One frame rates and rendered polygons.
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Figure 7: City frame rates and rendered polygons.

We rendered different camera paths for each model. In some frames, we zoomed
into the scene and parts of the scene outside of the view frustum were culled. Our mea-
surements are performed a) only with view frustum culling, b) with a single occlusion
query for each node in the scene graph (without using an Occupancy Map), c) with
multiple occlusion queries organized by Occupancy Maps.

With occlusion culling, we achieved average framerates between 17.9 fps (Cotton
Picker) and 33.7 fps (Formula One) for the different models (see Table 2.) With the new
traversal scheme with Occupancy Maps and multiple occlusion queries we improved
these results to 20.6 fps (Cotton Picker) and 42.9 fps (Boom Box). The best speed-ups
were achieved with multiple occlusion queries in scenes with lower depth complex-
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Figure 8: Cotton Picker frame rates and polygons.

ity, because of the trade-off between rendering and occlusion query state changes. In
scenes with very high depth complexity, the occlusion queries dominate and with very
low depth complexity the rendering dominates.

In Figures 5−−8 the frame- and renderrates (how many polygons are rednered) are
given. In scenes with higher depth complexity, the speed-up is not high, because most
of the costs are the fillrate for the occlusion tests and the scene graph traversal in the
(occluded) backstage of the scene, which is similar with or without multiple queries.

6 Conclusions
In this paper we presented an algorithm for hierarchical occlusion culling with multiple
occlusion queries in hardware. The algorithm uses a screen space approximation of the
bounding boxes in the scene graph to arrange bounding volumes for occlusion queries
during traversal of the scene graph. Only a few queries are necessary to get the visibility
information of the scene graph nodes. We achieved a rendering speed-up of up to
38% compared to the traditional occlusion test in each node. The algorithm requires
no special scene organization and no preprocessing, also it does not utilize temporal
coherence and can be implemented with almost every hierarchical scene representation.

6.1 Future work
Besides the use for occlusion culling, screen space AABB of the Occupancy
Map lookup gives information of the screen size for the bounding box. This can be
used for level-of-detail selection or screen size culling.

No temporal coherence is used in the presented approach, but could be used to
further speed up the construction and organization of the traversal and culling.

Another obvious improvment is to render the geometry nodes in a state sorted fash-
ion to further reduce the number of state changes during rendering. This can be easy
implemented in the presented traversal scheme.
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7 Datasets
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Figure 9: Used datasets: (a) Boom Box; (b) Cotton Picker; (c) Formula One; (d) City
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