
Semigroups for flows in networks

DISSERTATION

der Fakultät für Mathematik und Physik
der Eberhard-Karls-Universität Tübingen
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Introduction

Networks have been studied since many years with motivations from and applications to
classical natural sciences. As typical examples we mentionfood-webs, electrical power
grids, cellular and metabolic networks, chemical processes, neural networks, telephone
call graphs, coauthorship and citation networks of scientists, financial networks, ecolog-
ical webs, – and, of course, the World-Wide Web. As S. H. Strogatz writes in his review
article [Str01]: “The study of networks pervades all of science, from neurobiology to
statistical physics.”

The main goal of these studies is in most cases to characterize network anatomy – that
is, to give an accurate and complete description of complex systems. In this direction
much progress has been made and we refer to standard books on graph theory [And91],
[Bol98], [KV02] etc., or to M.E.J. Newman [New03] for a survey on recent developments.
However, on p. 224 of [New03] he says:“The next logical step after developing models
of network structure, (...) is to look at the behavior of models of physical (or biological
or social) processes going on on those networks. Progress onthis front has been slower
than progress on understanding network structure.”

Clearly, in graph theory, many discrete or combinatorial interactions in networks have
been treated. In the monograph [Bol01] an overview is given on an already autonomous
discipline, the theory of random graphs which serves for modelling, e.g., gene networks,
ecosystems and the spread of infectious diseases or computer viruses. Other impor-
tant discrete processes traditionally studied in graph theory are Markov processes, see
e.g. [Rob03].

In this thesis, we are interested in so calleddynamical graphs. Here the edges do not
only link the vertices but also serve as a transmission mediaon which time- and space-
depending processes take place. Such problems have been first studied by G. Lumer
[Lum79, Lum80], who proved well-posedness of second-orderproblems on ramified
spaces. Later J. von Below (see [Bel85] – [BN96]), handled diffusion processes in net-
works modelled by polygons. F. Ali Mehmeti in [AMe89], [MR03] and other papers
investigated wave equations on different types of networks. S. Nicaise also contributed
to the study of elliptic operators on networks. We only cite [Nic88.1], [Nic88.2], and

vii



viii SEMIGROUPS FOR FLOWS IN NETWORKS

the monograph [MBN01] on this topic edited by these three authors. Recently, C. Cat-
taneo studied in [Cat97] and [Cat99] the spectrum of the Laplacian on networks, con-
necting it to the discrete Laplacian in graph theory. She used semigroup theory to prove
well-posedness of the problem. For aspects of numerical analysis and control theory of
dynamic elastic linked structures we refer to the monograph[LLS94].

However, there seems to be no systematic treatment of dynamic processes different from
second-order problems. The main goal of the present work is to propose an appropriate
functional analytic setting and to investigate lineartransport processesor flows in net-
works. To do this we use sophisticated semigroup and spectral theoretical methods and
refer to [EN00] and [Nag86] as main references. The results are mainly based on the
papers [KS04], [MS04] and the preprint [Sik04].

In Chapter 1 we give a short overview on important notations and results from graph
theory that will be used during the treatment of the functional analytic problem. We
model the network by adirected graphwhere a substance is flowing on the edges in the
given directions and redistributed in the vertices.

In Chapter 2 we discuss transport processes in networks withstatic ramification nodes.
More precisely, we require for all times in each vertex that the total incoming flow mass
equals the total outgoing flow mass (Kirchhoff law) and that the outgoing flow is dis-
tributed on the outgoing edges according to given proportions. We show that the corre-
sponding system of partial differential equations with appropriate boundary conditions
can be rewritten in the form of an abstract Cauchy problem on a(Banach) state space. We
prove well-posedness of the system by showing that the underlying operator generates a
strongly continuous semigroup(T (t))t≥0 which gives the solutions of our original sys-
tem. Using spectral theory and semigroup methods we will be able to describe precisely
the asymptotic behavior of(T (t))t≥0 – that is, of the process in the network. In fact, we
prove a dichotomy for the asymptotics of such flows based on a number theoretical condi-
tion on the flow velocities on the edges, see Definition 2.3.7.In one case, treated in§2.4,
the process converges uniformly towards a periodic flow whose period is determined by
the structure of the graph (see Theorems 2.4.8 and 2.4.11). In the other case, see§2.5 we
obtain that the flow always converges (in the strong operatortopology) to an equilibrium.
Most of these results are obtained in collaboration with M. Kramar and T. Mátrai (see
[KS04],[MS04]).

We then investigate in Chapter 3 transport processes, wherein the ramification nodes
a dynamiccondition is specified. More precisely, the velocity of the total outgoing flow
mass is prescribed as a (weighted) sum of incoming flow quantities plus a term depending
on the outgoing flow mass in the vertices. This second term canbe interpreted as a
feedback-controlof the outgoing flow velocities along “imaginary edges” in the graph
– that is, edges having endpoints in our original graph but not necessarily belonging to
the original edge set. To handle this problem we modify the semigroup approach to
delay differential equations developed by A. Bátkai and S.Piazzera in [BP04]. Again,
we can prove well-posedness by rewriting the problem in the form of an abstract Cauchy
problem and therefore obtain a semigroup determining the solutions. We then prove
that this semigroup has important regularity properties (see Theorems 3.3.2 and 3.3.4)
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implying the validity of the “Spectral Mapping Theorem”. Weshow in§3.4 that if the
semigroup is positive, the stability of the system depends on the spectral bound of the
so-calledadjacency matrix(see Definition 1.3.6) of the graph obtained by adding the
“imaginary edges” to the original graph, along those the feedback-control takes place
(see Corollary 3.4.6 and the interpretation below). Finally, we obtain in§3.5 that the
semigroup converges towards an equilibrium if the joint structure of the original and the
“imaginary” graph is strongly connected (see Theorem 3.5.3).

In the final Chapter 4 we discuss examples on thePetersenandHerschel graphfor the
situation studied in Chapter 2 and compute the convergence speed towards the periodic
flow. We also investigate how this depends on the distribution weights of the edges.

In this thesis, we suppose the reader to be familiar with large parts of semigroup and
spectral theory from [EN00]. Furthermore he needs some experience with the theory
of operator matrices from [CENN03] and Greiner’s approach to abstract boundary value
problems, developed in [Gre87].
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Chapter 1

Some graph theory

In this section we summarize some graph theoretical notionsthat we will use frequently.
Our terminology is common to graph theory, based mainly on the monograph [And91],
but see also [Big93], [Bol98], [CDS95], [God93], or [GR01].

§ 1.1 MAIN DEFINITIONS

DEFINITION 1.1.1 Let V = {v1, . . . , vn} andE = {e1, . . . , em} be two disjoint
(finite) sets andG a function fromE to V × V. The triplet(V,E, G) is called adirected
graph. The elements ofV are theverticesof the graph and the elements ofE its (directed)
edges(or arcs). HereG prescribes the two ordered endpoints of the edges and we say that
the edgeej connectsthe verticesvi andvp if G(ej) = (vi, vp). For the sake of simplicity,
a directed graph will be also denoted only byG. We call the graphGk a subgraphof G
induced by the set of verticesVk ⊂ V if it is obtained from the vertices inVk and all the
edges that connect them inG.

DEFINITION 1.1.2 In a directed graph, if the edgeej is associated with the vertex-
pair (vi, vp), vi is called thetail of ej andvp is called theheadof ej . The edgeej is called
a loop if its tail coincides with its head.

We restrict our investigations to the following type of graphs.

DEFINITION 1.1.3 A directed graph is calledsimpleif it contains no loops and no
multiple edges (that is, edges connecting the same vertices).

From now on we always assume thatG is a simple directed graph.

REMARK 1.1.4 In the subsequent part of the thesis we often use the notionnetwork.
By that we mean a directed graph on which a dynamical process takes place. Hence we
do not only consider the “static” structure of the graph but also some dynamics on it.

1



2 1. SOME GRAPH THEORY

§ 1.2 STRONGLY CONNECTED GRAPHS

First we have to introduce the definition of two important graph theoretical notions.

DEFINITION 1.2.1 A (directed) pathis a sequence of directed, adjoining edges in
G (that is, except the last edge, the head of every edge is the tail of the following edge).
It can be uniquely defined by a sequence of verticesvi1 , . . . , vil, such that

(
vik , vik+1

)
are

all edges inG for k = 1, . . . , l − 1. A (directed) cycleis a directed path defined by the
verticesvi1, . . . , vil such thatvil = vi1, andvi1, . . . , vil−1

are all different from each other.

We also can define thelengthof such paths/cycles as the number of their edges. Directed
paths/cycles are calledvertex-disjointif no two different paths/cycles among them contain
a common vertex.

In every directed graphG we can introduce a relationE on the setV of its vertices which
satisfies the following properties:viEvi for each elementvi ∈ V; for two distinct elements
vi andvp of V, viEvp if and only if bothvi can be reached fromvp andvp can be reached
from vi along directed paths inG.

Obviously,E is an equivalence relation.

DEFINITION 1.2.2 Let V1,V2, . . . be the partition of the setV of the vertices inG,
induced by the equivalence relationE we have introduced above. The subgraphs ofG
induced by the setsVk are called thestrongly connected componentsof G.

The following definition is natural.

DEFINITION 1.2.3 A directed graph is calledstrongly connectedif its vertices be-
long to one single strongly connected component – that is, for every two vertices in the
graph there are directed paths connecting them in both directions.

Hence, in strongly connected graphs we can find directed paths and directed cycles.

In networks, where the process on the edges is of high importance, we define a special
class of strongly connected components.

DEFINITION 1.2.4 In a network we call a subgraphGk of G an invariant strongly
connected componentif it is a strongly connected component, and there are no edges in
G having tail in and head outside ofGk.

§ 1.3 GRAPH MATRICES

We now introduce important matrices that can be associated to a directed graph (see
[And91, Chapter 3]). LetV = {v1, . . . , vn} be the set of the vertices,E = {e1, . . . , em} the
set of the edges of our simple directed graphG. We first begin with matrices describing
the connection between vertices and edges inG.

DEFINITION 1.3.1 Theoutgoing incidence matrixΦ− =
(
φ−

ij

)
n×m

of G is defined
by

φ−
ij :=

{
1, if the tail of ej is vi,
0, otherwise.

(1.1)
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Accordingly, we call the edgeej anoutgoing edge forvi if φ−
ij = 1 holds. Respectively,

we define theincoming incidence matrixΦ+ =
(
φ+

ij

)
n×m

by

φ+
ij :=

{
1, if the head ofej is vi,
0, otherwise,

(1.2)

and call the edgeej an incoming edge forvi if φ+
ij = 1 holds.

REMARK 1.3.2 The matrix

Φ = Φ+ − Φ−

is called theincidence matrixof the directed graphG.

We also need matrices having the same zero pattern as the incidence matrices.

DEFINITION 1.3.3 We define theweighted outgoing incidence matrixof the graph
G as

Φ−
w =

(
ω−

ij

)
n×m

(1.3)

with entries
0 ≤ ω−

ij ≤ 1

satisfying

ω−
ij = 0 ⇔ φ−

ij = 0, and
m∑

j=1

ω−
ij = 1 (1.4)

for all i = 1, . . . , n, j = 1, . . . , m.

The name “weighted” comes from the fact that in networks the entriesω−
ij will denote the

weights according that the flow mass is distributed to the outgoing edges in the vertices.
Condition (1.4) implying the row stochasticity ofΦ−

w will play an important role in our
studies.

REMARK 1.3.4 We have
Φ−
(
Φ−

w

)>
= 1, (1.5)

where1 denotes then× n identity matrix.

PROOF By a straightforward computation,

[
Φ−
(
Φ−

w

)>]
ip

=

m∑

j=1

φ−
ijω

−
pj.

If i 6= p, from the definition of the outgoing incedence matrix,φ−
ijω

−
pj = 0 for all j, hence[

Φ− (Φ−
w)

>
]

ip
= 0. If i = p then by condition (1.4),φ−

ijω
−
pj = ω−

pj, and so

[
Φ−
(
Φ−

w

)>]
ip

=
m∑

j=1

ω−
pj = 1.
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DEFINITION 1.3.5 Theweighted incoming incidence matrix

Φ+
w =

(
ω+

ij

)
n×m

(1.6)

is defined with entries
ω+

ij ≥ 0

satisfying
ω+

ij = 0 ⇔ φ+
ij = 0.

Note that in this case we do not require any extra conditions on the sum of the weights
ω+

ij .

The following class of graph matrices describes the connections between the vertices.

DEFINITION 1.3.6 The matrixA = (aip)n×n is called theadjacency matrixof G if

aip =

{
1, if there exists an edge with tailvi and headvp,
0, otherwise.

REMARK 1.3.7 An easy computation shows thatA can be obtained from the inci-
dence matrices as

A = Φ−
(
Φ+
)>
.

DEFINITION 1.3.8 We call a matrixweighted adjacency matrixof G if it has the
same zero pattern as the adjacency matrixA.

Let G be a network admitting a weighted adjacency matrixAw = (bip)n×n. Then the
entry bip can be regarded as the weight of the edge connectingvi andvp. Hence, it is
natural to match the weighted incidence matrices of the graph to the weighted adjacency
matrix. The next example will play an important role in our setting.

EXAMPLE 1.3.9 Let Ã be then× n matrix defined as
(
Ã

)
ip

=

{
ω+

ijω
−
pj, if the edgeej has its tail invp and its head invi,

0, otherwise.
(1.7)

Clearly, the matrixÃ is aweighted transposed adjacency matrixfor the graphG and

Ã = Φ+
w

(
Φ−

w

)>

holds.

We now cite a result from [And91, Theorem 3.2] that turns out to be very important for
the subsequent theory.

PROPOSITION 1.3.10 A directed graph is strongly connected if and only if its ad-
jacency matrix is irreducible.

As usual, a positive matrixD is calledirreducibleif there is no permutation of the canon-
ical basis such that in this basis the matrix has the form

D =

(
D1,1 0
D2,1 D2,2

)
.
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Hence, this property only depends on the zero pattern of the positive matrix. Therefore
in the above Proposition 1.3.10 we can substitute the adjacency matrix by any weighted
adjacency matrix.

We also need the adjacency matrix of theline graph(see [Bol98, Definition III.6.15]),
which is roughly the graph obtained fromG by exchanging the role of the vertices and
edges (maintaining the directions).

DEFINITION 1.3.11 Them × m adjacency matrixAL of the line graph ofG is
defined by

(AL)jl =

{
1, if the head ofej coincides with the tail ofel,
0, otherwise.

In general, we call a matrixweighted adjacency matrixof the line graph if it has the same
zero pattern asAL.

REMARK 1.3.12 An easy calculation shows that

AL =
(
Φ+
)>

Φ−. (1.8)

EXAMPLE 1.3.13 As an example for aweighted transposed adjacency matrixof the
line graph we can take

ÃL :=
(
Φ−

w

)>
Φ+

w . (1.9)

This will be needed in the proof of the well-posedness of our system in Theorem 2.1.5.

Finally, we cite the Sachs Theorem on the determinant of the weighted adjacency matrix
that will be used in Section§2.4. We first define a special type of subgraphs.

DEFINITION 1.3.14 A subgraphGL of G is calledlinear subgraphif it is a vertex
disjoint union of (directed) cycles.

Before stating the theorem we have to introduce some notations.

NOTATION 1.3.15 LetGL a linear subgraph ofG. We denote byc (GL) the number
of cycles inGL. Furthermore, ifAw is a weighted adjacency matrix ofG,W (GL) denotes
theweight of the linear subgraphGL, i.e., the product of the weights of the arcs (taken
from the corresponding entries ofAw) contained in that subgraph. LetLr be the set of
linear subgraphs ofG having exactlyr vertices.

THEOREM 1.3.16 [Sachs Theorem, Theorem 3.1 in [CDGT88]] LetAw be ann×
n weighted adjacency matrix of the directed graphG. Then

det (z1 − Aw) = zn + a1z
n−1 + · · ·+ an with

ar =
∑

GL∈Lr

(−1)c(GL)W (GL) , r = 1, . . . , n. (1.10)
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§ 1.4 GRAPH THEORY VERSUS FLOWS IN NETWORKS ?

In the following two chapters we will discuss several flow processes in networks. People
being familiar with graph theory certainly know of flows suchas treated, e.g., in the mono-
graphs [And91], [Bol98] or [Die00]. There, one can think of anetwork of roads (modelled
by directed edges) where goods are transported from asourceto asinkpoint. This “flow”
is limited by the transmission capabilities, i.e.,capacitiesof the arcs. The time consumed
by the transportation process (depending on the lengths of the road-sections and the speed
of the transporting vehicles) is disregarded. The main goalis to determine the maximal
quantity of goods displaceable from the source to the sink, and a corresponding itinerary
of the transportation with the quantity of goods nowhere exceeding the capacity limits.
The famous “max-flow min-cut” theorem of Ford and Fulkerson from 1962 states that
this maximum amount of flow is equal to the minimum of allcut capacities (that is, of
flow amounts being transportable out of vertex groups containing the source but not the
sink). For more recent results on this topic see e.g. [KV02, Mur03, Schr03].

In our setting, the flow can be modelled by anycontinuousmaterial distributed on the
directed edges of a network, and no capacities are needed. The material is transported
with given (space dependent) velocities and also absorption/inflow along the edges is
allowed. The whole transportation process – that is, the distribution of material in the
network – can be described at everycontinuous timemomentt ≥ 0 by space variable
functions on the (parameterized) edges. The question we areinterested in is how the
system behaves fort converging to+∞.



Chapter 2

Flows with static ramification nodes

The physical situation motivating our investigation in this chapter is the following. Con-
sider a network (e.g. a closed system of pipe lines or a circuit of wires) in which a sub-
stance is flowing with space depending speed. Along the edgesabsorption or creation of
mass may happen, but in each node (vertex) we assume conservation of mass in form of
a Kirchhoff law. In mathematical term we describe this system by the equations

(F )





∂

∂t
uj (t, s) = cj(s)

∂

∂s
uj (t, s) + qj(s) · uj(t, s), s ∈ (0, 1), t ≥ 0,

uj (0, s) = gj (s) , s ∈ (0, 1), (IC)

φ−
ijuj (t, 1) = ω−

ij

m∑

k=1

φ+
ikuk (t, 0) , t ≥ 0, (BC)

for i = 1, . . . , n, andj = 1, . . . , m.

The network is modelled by a simple, directed graphG having verticesv1, . . . , vn and
directed edges (arcs)e1, . . . , em. The arcs are parameterized by the interval[0, 1], contrary
to the direction of the flow. Therefore we use the notationej(1) for the tail andej(0) for
the head ofej .

The distribution of the material along an edgeej at timet ≥ 0 is described by the function
[0, 1] 3 s 7→ uj (t, s) for s ∈ [0, 1] . The functionscj(·) are the space dependent velocities
of the flow on each arcej, while the functionsqj(·) describe the absorption along the
edges. We arrange them into the diagonal matrices

C(s) :=




c1(s) 0
. . .

0 cm(s)


 , Q(s) :=




q1(s) 0
. . .

0 qm(s)


 . (2.1)

We also assume that the absorption functionsqj and velocitiescj are bounded, that is
belong toL∞[0, 1], and in addition thatcj(s) ≥ ε > 0 for almost everys ∈ [0, 1], for
eachj = 1, . . . , m and someε > 0.

7



8 2. FLOWS WITH STATIC RAMIFICATION NODES

The boundary conditions(BC) depend on the structure of the network and contain the
incidence matricesΦ+ andΦ− of the underlying graph, see (1.1) and (1.2). The entries
0 ≤ ω−

ij ≤ 1 of the weighted outgoing incidence matrix(defined in (1.3)) express the
proportion of the mass leaving the vertexvi into the edgeej .

Summing up forj = 1, ..., m the two sides of the equations in the boundary condition
(BC), we obtain using the condition (1.4) theKirchhoff law

m∑

j=1

φ−
ijuj (t, 1) =

m∑

j=1

φ+
ijuj (t, 0) , i = 1, . . . , n, (2.2)

i.e., in each vertex the total outgoing flow equals to the total incoming flow. This condition
requires that in every vertex there is at least one outgoing as well as at least one incoming
edge.

To treat our problem(F ) we rewrite it in the form of an abstract Cauchy problem and
prove its well-posedness using semigroup methods. For the basic notions and techniques
on semigroups we refer to [EN00]. We then investigate the spectral properties of the
generator of the solution semigroup. Finally, we give in§2.3–§2.5 an accurate description
for the asymptotic behavior of the solutions. This chapter is an updated version of results
obtained in collaboration with M. Kramar and T. Mátrai (see[KS04] and [MS04]).

§ 2.1 WELL -POSEDNESS OF THE PROBLEM

Our first aim is to write the equations(F ) in the form of an abstract Cauchy problem on
a Banach space (see [EN00, Definition II.6.1]). For this purpose we introduce thestate
spaceof L1-functions1 on the edges

X :=
(
L1[0, 1]

)m ∼=
(
L1[0, 1],Cm

)
, (2.3)

endowed with the norm

‖f‖ :=

m∑

j=1

‖fj‖L1[0,1] for f = (f1, . . . , fm) ∈ X.

Denoting byMqj
the multiplication operator with the functionqj , we define the operator

Aw :=




c1(s)
d

ds
+Mq1 0

. . .

0 cm(s)
d

ds
+Mqm


 (2.4)

with (dense) domain1

D (Aw) :=
{
f = (f1, . . . , fm) ∈

(
W 1,1 [0, 1]

)m
: f(1) ∈ ran(Φ−

w)>
}
.

1In the following, without further qualification, the point evaluation for functions inL1[0, 1] and the derivative of
functions inW 1,1[0, 1] are understood almost everywhere.
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Before proceeding we explain the conditionf(1) ∈ ran(Φ−
w)> appearing in the definition

of the domain ofAw. The nonzero elements in thei-th row of the matrixΦ−
w correspond

to the arcs with tailvi, and in each column ofΦ−
w there is exactly one nonzero entry.

Therefore, the condition

f(1) = (Φ−
w)>x for somex ∈ Cn (2.5)

implies for fixedj that
fj (1) = ω−

ijxi if ω−
ij 6= 0.

Note, that the indexi is uniquely defined byj and the conditionω−
ij 6= 0. If ω−

ik 6= 0 for
some otherk, 1 ≤ k ≤ m, then (2.5) implies

fk (1) = ω−
ikxi,

that is,
fj (1)

ω−
ij

=
fk (1)

ω−
ik

.

This means that the values off at the point1 on the arcs with the same tail are related by
the corresponding weights.

The boundary conditions(BC) will now be added using twoboundary operatorsL and
M (see [CENN03] where this terminology is explained and used in an abstract frame-
work). For that purpose we call

∂X := Cn (2.6)

theboundary space. In the physical interpretation, this is the space of flow mass in the
vertices. Then we define theoutgoing boundary operatorL : X → ∂X by

L := Φ− ⊗ δ1, D(L) :=
(
W 1,1 [0, 1]

)m
, (2.7)

whereδ1 is the point evaluation at 1, hence

Lf = Φ−f(1) for f ∈
(
W 1,1 [0, 1]

)m
.

REMARK 2.1.1 The operatorL is surjective fromD (Aw) to ∂X.

PROOF Observe thatD (Aw) contains all constant functionsf satisfying the bound-
ary condition (2.5), i.e.,f ≡ (Φ−

w)>x for somex ∈ ∂X. The statement now follows from
(1.5).

The incoming flow will be taken into account by theincoming boundary operatorM :
X → ∂X,

M := Φ+ ⊗ δ0, D(M) :=
(
W 1,1[0, 1]

)m
, (2.8)

whereδ0 is the point evaluation at0, hence

Mf = Φ+f(0) for f ∈
(
W 1,1 [0, 1]

)m
.

Observe that the equationLf = Mf expresses the Kirchhoff law (2.2) for each vertex.
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After these preparations we are ready to introduce the operator corresponding to problem
(F ) .

DEFINITION 2.1.2 On the Banach spaceX we define the operator(A,D(A)) as the
restriction of(Aw, D(Aw)) to ker(L−M), i.e.,

D (A) := {f ∈ D (Aw) : Lf = Mf} , (2.9)

Af := Awf.

By the definitions of the operatorsAw, L andM one can easily see that(BC) implies the
conditions in the domain ofA. Takingf ∈ D(A), we obtain by (2.5) that

f(1) =
(
Φ−

w

)>
x for somex ∈ Cn

and
Φ−f(1) = Φ+f(0).

By (1.5),
Φ−f(1) = x = Φ+f(0),

hence
f(1) =

(
Φ−

w

)>
x =

(
Φ−

w

)>
Φ+f(0)

implying (BC). Therefore the conditions in the domain ofA are in fact equivalent to
(BC). If we write u(t) = (u1(t), . . . , um(t)) = (u1(t, ·), . . . , um(t, ·)) ∈ (L1[0, 1])

m,
then the Cauchy problem

{
u̇ (t) = Au (t) , t ≥ 0,

u (0) = u0

(2.10)

with u0 = (gj)j=1,...,m is an abstract version of our original problem. By standard semi-
group theory (see [EN00, Theorem II.6.7]) this problem is well-posed if and only ifA
generates a strongly continuous semigroup(T (t))t≥0 onX. In this case, the solutions of
(2.10) have the formu(t) = T (t)u0 yielding solutions for(F ) asu (t, s) := (T (t)u0) (s)
for s ∈ [0, 1].

To show the generator property we will use the Phillips theorem as in [KS04, Lemma 2.4]
and recall from [Nag86, Section C-II.1] the definition of dispersive operators on Banach
lattices.

DEFINITION 2.1.3 An operatorA on a Banach latticeX is calleddispersiveif for
everyf ∈ D(A) one hasRe 〈Af, ψ〉 ≤ 0 for someψ ∈ X ′

+ such that‖ψ‖ ≤ 1 and
〈f, ψ〉 = ‖f+‖.
Clearly, our state spaceX = (L1[0, 1])

m as well as our boundary space∂X are Banach
lattices and, by physical reasons, we expect the solutions of (F ) corresponding to positive
initial valuesgj to remain positive for allt ≥ 0. In terms of semigroups this means that the
solution semigroup should be positive. We refer to [Nag86] for a systematic treatment,
but recall some basic notions in our concrete situation.

DEFINITION 2.1.4 LetX and∂X be the spaces defined in (2.3) and (2.6).



§ 2.1. WELL-POSEDNESS OF THE PROBLEM 11

1. We call a vectorx ∈ ∂X positiveand writex ≥ 0 if xi ≥ 0 for all coordinates
i = 1, . . . , n. We write x > 0 if x ≥ 0 and x 6= 0, i.e., x has at least one
nonzero coordinate. We callx strictly positiveand writex � 0 if xi > 0 for all i.
Analogously, we use the same terminology for matrices.

2. A functionf ∈ X is positiveand we writef ≥ 0 if f(s) ≥ 0 for almost alls ∈
[0, 1], andf > 0 if f ≥ 0 butf 6= 0 (understood almost everywhere). Furthermore,
the functionf is calledstrictly positiveand denoted byf � 0 if f(s) > 0 for
almost everys ∈ [0, 1].

3. An operatorT on the Banach latticeX is calledpositiveif 0 ≤ f ∈ X implies
0 ≤ Tf . A semigroup(T (t))t≥0 onX is positiveif the operatorsT (t) are positive
for all t ≥ 0.

Using the notion of dispersivity and Theorem C-II.1.2 from [Nag86], we can show that
the operatorA generates a semigroup ofpositiveoperators on the Banach latticeX.

THEOREM 2.1.5 The operator(A,D(A)) generates a positive strongly continuous
semigroup(T (t))t≥0 onX.

PROOF Our operatorA can be written as the sum

A =




c1(s)
d

ds
0

. . .

0 cm(s)
d

ds


+




Mq1 0
. . .

0 Mqm


 = Ac + Aq.

We show first thatAc generates a positiveC0-semigroup(T (t))t≥0. For this purpose we
introduce a new, but equivalent lattice norm onX defined as

‖f‖c :=
m∑

j=1

∫ 1

0

|fj(s)|
cj(s)

ds. (2.11)

It is clear that
min

1≤j≤m
‖cj‖∞ · ‖f‖c ≤ ‖f‖ ≤ max

1≤j≤m
‖cj‖∞ · ‖f‖c . (2.12)

We are going to prove that(Ac, D(A)) is dispersive on the Banach lattice(X, ‖·‖c). To
verify the required inequality in Definition 2.1.3, it is enough to consider only functions
contained inD(A) with values inR, because the operatorAc is real. To each real function
f = (fj)j=1,...,m ∈ D(A) we associateψ = (ψ)j=,...,m ∈ (L∞[0, 1])m = X ′ defined as

ψj (s) :=

{ 1
cj(s)

, if fj (s) > 0,

0, else.

Thenψ satisfies all the conditions in the Definition 2.1.3 for the new norm defined in
(2.11). Now it suffices to prove that

〈Acf, ψ〉 ≤ 0.
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From the definition ofAc andψ we obtain

〈Acf, ψ〉 =
m∑

k=1

∫ 1

0

ck(s)f
′
k(s)ψk(s)ds =

m∑

k=1

∫ 1

0

ck(s)f
′
k(s)

1

ck(s)
χ{fk>0}ds

=
〈
[f(1)]+ − [f(0)]+ , 1�m

〉
�m ,

where1�m denotes the constant1 vector inRm. Furthermore, forf ∈ D (A) we have
Lf = Mf andf (1) ∈ ran (Φ−

w)
> which implies

Φ−f (1) = Φ+f (0) ,

f (1) =
(
Φ−

w

)>
x

for somex ∈ ∂X = Cn. SinceΦ− (Φ−
w)

>
= 1 by (1.5), we have

Φ−
(
Φ−

w

)>
x = x = Φ+f (0)

and
f (1) =

(
Φ−

w

)>
x =

(
Φ−

w

)>
Φ+f (0) = ÃLf (0) .

HereÃL has entries
(
ÃL

)
jl

=

{
ω−

ij , if el(0) = vi = ej(1),
0, otherwise

and is positive column stochastic by (1.4). The matrixÃL is actually a weighted trans-
posed adjacency matrix of the line graph – see (1.9) – where wetakeΦ+

w = Φ+. Contin-
uing the above estimate and using the positivity ofÃL we obtain

〈Acf, ψ〉 =

〈[
ÃLf(0)

]+
− [f (0)]+ , 1�m

〉

�m

≤
〈
ÃL [f(0)]+ − [f (0)]+ , 1�m

〉
�m

=
〈
[f(0)]+ , Ã>

L1�m − 1�m

〉
�m

= 0

by the column stochasticity of̃AL. Hence the operator(Ac, D (A)) is dispersive on the
Banach lattice

(
(L1[0, 1])

m
, ‖·‖c

)
. Clearly,(Ac, D (A)) is closed and densely defined.

For the final step we use Corollary 2.2.15 below, which shows that resolvent setρ(Ac)
is not empty. Therefore we can use the Phillips theorem from [Nag86, Theorem C-
II.1.2] and obtain that(Ac, D (A)) generates a positive contraction semigroup(U(t))t≥0

on (X, ‖·‖c), hence it a positive bounded semigroup on(X, ‖·‖X).

By the assumptions onqj , Aq is a bounded real multiplication operator onX, hence it
generates a positive multiplication semigroup(S(t))t≥0 with ‖S(t)‖c ≤ eωt for someω >
0. Since(U(t))t≥0 is contractive for‖·‖c, we can apply theTrotter product formula(see
[EN00, Corollary III.5.8]) to the positive semigroups(U(t))t≥0 and(S(t))t≥0 obtaining

T (t)f = lim
n→∞

[U(t/n)S(t/n)]n f, f ∈ X.

This formula clearly defines again a positive semigroup(T (t))t≥0 satisfying the norm
estimate‖T (t)‖c ≤ eωt, t ≥ 0.
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Observe that in the special case when the velocities on the arcs are all constant and equal
and there is no absorption, we even obtain a semigroup of contractions for the original
norm.

COROLLARY 2.1.6 If cj ≡ c andqj ≡ 0 for all j = 1, . . . , m, then the semigroup
(T (t))t≥0 is contractive on(X, ‖·‖).

PROOF The estimate (2.12) and the contractivity ofT (t) for the norm‖·‖c implies

‖T (t)‖ ≤ maxj ‖cj‖∞
minj ‖cj‖∞

‖T (t)‖c ≤ 1,

and this is what we wanted to prove.

We state explicitly our first main result.

COROLLARY 2.1.7 The problem(F ) is well-posed.

§ 2.2 SPECTRAL PROPERTIES

In order to obtain qualitative properties of the solutions of (F ) , or of the semigroup gen-
erated byA, we now start with a careful analysis of the spectrum ofA. For that purpose
we use a perturbation method as proposed in [Nag97] and first consider the operator

A0 := Aw |ker L, D(A0) = {f ∈ D (Aw) : Lf = 0}. (2.13)

This means that we consider homogeneous boundary conditions where the right hand side
of (BC) is equal to zero. In fact, by (1.5), the domain ofA0 is simply

D (A0) =
{
f ∈

(
W 1,1 [0, 1]

)m
: f (1) = 0

}
.

To proceed, we will write the resolvent ofA0 explicitly using the following two notations.

DEFINITION 2.2.1 Takej = 1, . . . , m ands1, s2 ∈ [0, 1]. We set

τj(s1, s2) :=

∫ s2

s1

ds
cj(s)

(2.14)

and

ξj(s1, s2) :=

∫ s2

s1

qj(s)

cj(s)
ds. (2.15)

We denoteτ+ := max
1≤j≤m

τj(0, 1) andτ− := min
1≤j≤m

τj(0, 1).

I NTERPRETATION — The valueτj(s1, s2) is exactly the time needed to pass on the
edgeej from s1 to s2 moving with velocity cj(s) at every points ∈ [s1, s2], while
ξj(s1, s2) is the rate of the mass gain or loss on this journey resulting from the factor
qj(s). Note that our assumptions on the flow velocity and the absorption functions imply
that the integrals in (2.14) and (2.15) are finite.

With these notations, the resolvent ofA0 – which exists for everyλ ∈ C – can be com-
puted explicitly.
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L EMMA 2.2.2 For everyλ ∈ C and with the matricesC(s) andQ(s) defined in
(2.1), we have

(R(λ,A0)f) (s) =

∫ 1

s

ελ(s)ελ(σ)−1C(σ)−1f(σ)dσ, s ∈ [0, 1] , f ∈ X, (2.16)

where
ελ(s) := diag

(
e−ξj(0,s)+λτj(0,s)

)
j=1,...,m

, s ∈ [0, 1]. (2.17)

REMARK 2.2.3 The expressionελ(s)ελ(σ)−1 occurring in the resolvent is actually

ελ(s)ελ(σ)−1 = diag

(
e
� σ

s

qj (u)

cj (u)
du−λ

� σ

s
du

cj(u)

)

j=1,...,m

.

PROOF An easy calculation shows that

ε′λ(s) = ελ(s)(−Q(s) + λ)C(s)−1. (2.18)

Clearly, the function

[0, 1] 3 s 7→ g(s) :=

∫ 1

s

ελ(s)ελ(σ)−1C(σ)−1f(σ)dσ

is contained inD(A0). By applyingλ−A0 to it and using (2.18) we obtain

((λ− A0) g) (s) = λg(s) − C(s)g′(s) −Q(s)g(s)

= λg(s) − C(s)ε′λ(s)

∫ 1

s

ελ(σ)−1C(σ)−1f(σ)dσ

+ C(s)ελ(s)ελ(s)
−1C(s)−1f(s) −Q(s)g(s)

= λ

∫ 1

s

ελ(s)ελ(σ)−1C(σ)−1f(σ)dσ

− C(s)ελ(s) (−Q(s) + λ)C(s)−1

∫ 1

s

ελ(σ)−1C(σ)−1f(σ)dσ

+ f(s) −Q(s)

∫ 1

s

ελ(s)ελ(σ)−1C(σ)−1f(σ)dσ

= λ

∫ 1

s

ελ(s)ελ(σ)−1C(σ)−1f(σ)dσ

+ Q(s)

∫ 1

s

ελ(s)ελ(σ)−1C(σ)−1f(σ)dσ

− λ

∫ 1

s

ελ(s)ελ(σ)−1C(σ)−1f(σ)dσ

+ f(s) −Q(s)

∫ 1

s

ελ(s)ελ(σ)−1C(σ)−1f(σ)dσ = f(s),

using the fact that the diagonal matrices commute.
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For the other direction takef ∈ D (A0) and compute the formula (2.16) for(λ− A0) f .
∫ 1

s

ελ(s)ελ(σ)−1C(σ)−1 (λf −A0f) (σ)dσ

=

∫ 1

s

ελ(s)ελ(σ)−1C(σ)−1 (λf(σ) − C(σ)f ′(σ) −Q(σ)f(σ)) dσ

=

∫ 1

s

ελ(s)ελ(σ)−1ελ(σ)−1ε′λ(σ)f(σ)dσ −
∫ 1

s

ελ(s)ελ(σ)−1f ′(σ)dσ

= −ελ(s)
∫ 1

s

(
ελ(σ)−1

)′
f(σ)dσ − ελ(s)

∫ 1

s

ελ(σ)−1f ′(σ)dσ

= −ελ(s)
[
ελ(σ)−1f(σ

]σ=1

σ=s
= f(s),

where we used (2.18) andf(1) = 0. This completes the proof.

We also obtain thatA0 generates aC0-semigroup(T0(t))t≥0 onX which can be expressed
explicitly. From this formula we see that(T0(t))t≥0 is nilpotent.

L EMMA 2.2.4 Let j ∈ {1, . . . , m} fixed. With the notations of Definition 2.2.1, let
s̃(t) ∈ [0, 1] be the location where the flow moves to on the edgeej from the points during
timet ≤ τj(s, 1). Hence the functioñs ∈ C [0, τj(s, 1)] is defined byτj(s, s̃(t)) = t. Then
thejth coordinate of the semigroup(T0(t))t≥0 generated by(A0, D(A0)) is

(T0(t)f)j(s) =

{
eξj(s,s̃(t))fj(s̃(t)), if 0 ≤ t ≤ τj(s, 1),
0, otherwise.

(2.19)

PROOF If we write

(S0(t)f)j(s) =

{
eξj(s,s̃(t))fj(s̃(t)), if 0 ≤ t ≤ τj(s, 1),
0, otherwise,

(2.20)

we have to prove thatS0(t) = T0(t) for everyt ≥ 0. Observe thatξj(s, ·) is continuous
with ξj(s, s) = 0 for everys ∈ [0, 1]. Furthermore, by the continuity ofτj(s, ·),

s̃(0) = s and lim
t→0

s̃(t) = s. (2.21)

From these properties follows thatS0(0)f = f and(S0(t))t≥0 is strongly continuous in
t = 0.
Since

τj

(
s, ˜̃s(u)(t)

)
= τj(s, s̃(u)) + τj

(
s̃(u), ˜̃s(u)(t)

)
= u+ t = τj (s, s̃(u+ t)) ,

we have

˜̃s(u)(t) = s̃(u+ t).

So for0 ≤ u+ t ≤ τj(s, 1),

(S0(u+ t)f)j (s) = eξj(s,s̃(u+t))fj(s̃(u+ t)) =

= eξj(s,s̃(u))eξj(s̃(u), �̃s(u)(t))fj

(
˜̃s(u)(t)

)
= (S0(u) (S0(t)f))j (s),
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sinceu ≤ τj(s, 1) andt ≤ τj (s̃(u), 1). If u + t > τj(s, 1), then eitheru > τj(s, 1) or
t > τj (s̃(u), 1), hence(S0(u+ t)f)j (s) = (S0(u) (S0(t)f))j (s) = 0. In the same way
we can prove that

S0(u+ t) = S0(t)S0(u)

also holds. Thus(S0(t))t≥0 is aC0-semigroup onX. LetB0 denote its generator. We will
show thatB0 = A0 by proving that the resolvents of them coincide. By the well-known
formula for the resolvent of a generator (see [EN00, (1.14)]we have for everyf ∈ X,
s ∈ [0, 1] andj = 1, . . . , m,

(R(λ,B0)f)j (s) =

∫ ∞

0

e−λt (S0(t)f)j (s)dt =

∫ τj(s,1)

0

e−λteξj(s,s̃(t))fj (s̃(t)) dt.

From (2.16) and (2.17),

(R(λ,A0)f)j (s) =

∫ 1

s

e
� σ

s

qj (u)

cj (u)
du−λ

� σ

s
1

cj(u)
du 1

cj(σ)
fj (σ) dσ. (2.22)

In the last formula we want to substituteσ = s̃(t). Therefore we compute

s̃′(t) = lim
h→0

s̃(t+ h) − s̃(t)

h

= lim
h→0

[
1

s̃(t+ h) − s̃(t)

∫ s̃(t+h)

s̃(t)

1

cj(u)
du

]−1

= cj(s̃(t)),

where we used the continuity ofs̃(·). Hence, substituting the variableσ = s̃(t) in (2.22)
we have dσ = cj(s̃(t))dt = cj(σ)dt. From this and the definitions ofτj andξj we obtain

(R(λ,A0)f)j (s) =

∫ τj(s,1)

0

eξj(s,s̃(t))−λtfj (s̃(t)) dt = (R(λ,B0)f)j (s).

REMARK 2.2.5 In the case that all the velocities are constant,(T0(t))t≥0 is the
weighted translation semigroup

(T0(t)f)j(s) =

{
e
� t

0 qj(s+cjτ)dτfj(s+ cjt), s+ cjt ≤ 1,
0, otherwise.

(2.23)

PROOF From τj(s, s̃(t)) = t follows that in this casẽs(t) = s + cjt holds. Then
Lemma 2.2.4 implies the result.

In order to compute the spectrum of the generatorA we use operator matrix techniques
as developed by K.-J. Engel, R. Nagel, A. Rhandi (see [Eng99], [Nag97], [Rha97]). We
extendA to an operator on the product space

X := X × ∂X.

For that purpose we first define the operator matrix

A0 :=

(
Aw 0
−L 0

)
, D (A0) := D(Aw) × {0}n ,
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whose part on the closure of its domain

D (A0) = D(Aw) × {0}n = X × {0}n =: X0 (2.24)

can be identified with(A0, D(A0)).

Using ideas of Greiner [Gre87] we are able to compute the resolvent ofA0. For this we
need the so-calledDirichlet operator(see e.g. [CENN03]), characterized in the following
two lemmas.

L EMMA 2.2.6 The operatorL |ker(λ−Aw) is invertible for anyλ ∈ ρ(A0) = C. We
denote its inverse by

Dλ :=
(
L |ker(λ−Aw)

)−1
: ∂X → ker (λ− Aw) (2.25)

and call it the correspondingDirichlet operator.

PROOF Observe that the conditions of [Gre87, Lemma 1.2] are fulfilled (use Remark
2.1.1), henceL |ker(λ−Aw) is an isomorphism ofker (λ− Aw) onto∂X, and the statement
follows.

In order to determineDλ explicitly we use (2.17) and the notation

Eλ := ελ(1) = diag
(
e−ξj(0,1)+λτj (0,1)

)
j=1,...,m

= (2.26)

= diag

(
exp

(∫ 1

0

−qj(s) + λ

cj(s)
ds

))

j=1,...,m

.

L EMMA 2.2.7 The Dirichlet operatorDλ has the form

Dλ = ελE
−1
λ (Φ−

w)>, (2.27)

that is
(Dλx) (s) = ελ(s) ·

[
E−1

λ (Φ−
w)>
]
x for anyx ∈ ∂X, s ∈ [0, 1].

PROOF We setNλ := ελE
−1
λ (Φ−

w)> and obtain

LNλ = Φ−(Φ−
w)> = 1

by (1.5). We also need to show that

NλL |ker(λ−Aw)= Iker(λ−Aw).

Observe, that the kernel of the operatorλ− Aw is spanned by the vectors

f (s) =

(
e
� s

0

−qj (σ)+λ

cj (σ)
dσ ·
(
E−1

λ

)
jj
aj

)

j=1,...,m

for some(aj)j=1,...m ∈ Cm

satisfying (2.5). This means that

f (1) = (aj) = (Φ−
w)>x for somex ∈ ∂X,

i.e., by (2.17),
f = ελE

−1
λ (Φ−

w)>x = Nλx for somex ∈ ∂X.

Hence,
Lf = x andNλLf = Nλx = f,

which implies (2.27).
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A simple computation now yields a formula for the resolvent of A0. First we state a
lemma which can be found in [Gre87, Lemma 1.2].

L EMMA 2.2.8 For everyλ ∈ ρ (A0) = C we have

D(Aw) = ker (λ−Aw) ⊕D(A0). (2.28)

Furthermore, the corresponding projections inD (Aw) areDλL|D(Aw) ontoker (λ− Aw),
andR(λ,A0) (λ−Aw) ontoD(A0).

NOTATION 2.2.9 In the following, the identity operators on the spacesX resp.X
will be denoted byIX resp. byI.

PROPOSITION 2.2.10 For everyλ ∈ C, the resolvent ofA0 is given by

R (λ,A0) =

(
R (λ,A0) Dλ

0 0

)
. (2.29)

PROOF Forλ ∈ C we show that the operator matrix

Rλ :=

(
R (λ,A0) Dλ

0 0

)

defines the right inverse of(λ−A0, D(Aw) × {0}n) onX . We compute formally

(λ−A0) · Rλ =

(
λ− Aw 0
L λ

)
·
(
R (λ,A0) Dλ

0 0

)

=

(
(λ− A0)R (λ,A0) (λ−Aw)Dλ

LR (λ,A0) LDλ

)
.

From the definition (2.25) of the Dirichlet operator followsthat (λ−Aw)Dλ = 0 and
LDλ = 1. From the definition (2.13) ofA0 follows thatLR (λ,A0) = 0, hence

(λ−A0) · Rλ =

(
IX 0
0 1

)
= I.

To prove the left-inverse property we compute again formally

Rλ · (λ−A0) =

(
R (λ,A0) Dλ

0 0

)
·
(
λ−Aw 0
L λ

)
|D(Aw)×{0}n

=

(
R(λ,A0) (λ−Aw) +DλL|D(Aw) 0

0 0

)
.

By Lemma 2.2.8,

R(λ,A0) (λ− Aw) +DλL|D(Aw) = ID(Aw).

Using this we have
Rλ · (λ−A0) = ID(Aw)×{0}n ,

and this is what we wanted to prove.
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In the next step we add the operator matrix

B :=

(
0 0
M 0

)
, D (B) := D (M) × ∂X

toA0 and obtain an operator onX given by

D (A) := D (A0) = D (Aw) × {0}n ,

A := A0 + B =

(
Aw 0
M − L 0

)
. (2.30)

REMARK 2.2.11 The part of the operator matrixA in X0 (see (2.24)) is

D (A |X0) = D (A) × {0}n ,

A |X0 =

(
A 0
0 0

)
.

Hence it can be identified with the operatorA onX.

The extension of the operatorA to the operator matrixA helps to determine the spectrum
of A using a simple perturbation argument (see [CENN03] for a systematic exposition
of this approach). As a result,σ (A) can be determined by a “characteristic equation” in
∂X = Cn. This is based on the fact that for everyλ ∈ C, the productMDλ is well-defined
and yields an operator on∂X – that is an× n matrix.

PROPOSITION 2.2.12 Let A andA be the operators defined above onX andX ,
respectively. Then the following assertions hold.

1. For everyλ ∈ C we have

λ ∈ σ (A) ⇐⇒ λ ∈ σ (A) ⇐⇒ 1 ∈ σ (MDλ) .

2. For everyλ ∈ ρ (A) = ρ (A) the resolvents ofA andA are

R(λ,A) =
(
IX +Dλ (1 −MDλ)

−1M
)
R (λ,A0) (2.31)

and

R(λ,A) =

(
R(λ,A) Dλ (1 −MDλ)

−1

0 0

)
. (2.32)

PROOF Sinceλ ∈ ρ(A0) for everyλ ∈ C, we can decompose

λ−A = λ−A0 − B = (I − BR (λ,A0)) (λ−A0) . (2.33)

Observe thatλ − A is invertible if and only ifI − BR (λ,A0) is invertible, and in this
case its inverse is

R(λ,A) = R(λ,A0) (I − BR (λ,A0))
−1 .

By (2.29), we have

I − BR (λ,A0) =

(
IX 0

−MR (λ,A0) 1 −MDλ

)
. (2.34)
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It is easy to see that this operator matrix is invertible if and only if 1−MDλ is invertible,
and in this case

(I − BR (λ,A0))
−1 =

(
IX 0

(1 −MDλ)
−1MR (λ,A0) (1 −MDλ)

−1

)
.

Hence,λ ∈ σ(A) if and only if 1 ∈ σ(MDλ). From these identities we also obtain the
formula for the resolvent ofA:

R (λ,A) =

(
R (λ,A0) Dλ

0 0

)
·
(

IX 0

(1 −MDλ)
−1MR (λ,A0) (1 −MDλ)

−1

)

=

(
R (λ,A0) +Dλ (1 −MDλ)

−1MR (λ,A0) Dλ (1 −MDλ)
−1

0 0

)
.

Its upper-left part is obviously the resolvent ofA sinceA is the part ofA onX × {0}n.
From our computations follows the form given in (2.31). Thusthe assertions are proved.

We now state two consequences for the resolvents and the (point) spectrum ofA andA.

COROLLARY 2.2.13 The resolventsR (λ,A) andR (λ,A) are compact for allλ ∈
ρ(A).

PROOF Observe that the domain ofA is contained in(W 1,1[0, 1])
m that is compactly

imbedded inX. So, by [EN00, Proposition II.4.25], the operatorsR (λ,A) are compact.
Since the other entries ofR (λ,A) have finite range, the corresponding statement forA
follows from the form (2.32).

COROLLARY 2.2.14 For λ ∈ σ (A) and x ∈ ∂X the following properties are
equivalent.

(a) MDλx = x (b) DλM (Dλx) = Dλx

(c) ADλx = λDλx (d) A
(

Dλx
0

)
= λ

(
Dλx

0

)

PROOF From the above Corollary 2.2.13 follows that the operatorsA andA have
only point spectrum (see [EN00, Corollary IV.1.19]). Let now 0 6=

(
f
y

)
∈ D(A) be an

eigenvector ofA corresponding to the eigenvalueλ. Formula (2.30) obviously implies
that

(
f
y

)
is an eigenvector if and only ify = 0 andf ∈ D(A) is the appropriate eigenvector

of A, that is
Af = λf.

By Lemma 2.2.6, this is equivalent to the fact that

f = Dλx for somex ∈ ∂X

such that
Lf = Mf.

From this we obtain
Lf = LDλx = x = MDλx,
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hence the equivalence of(c) and(d) is proved and they imply(a). If

x = MDλx,

then
LDλx = x = MDλx,

thereforeDλx is an eigenfunction ofA corresponding toλ, hence(a) implies (c). Ap-
plyingDλ to both sides of(a) implies(b) and by applyingL to both sides of(b) follows
(a).

The operatorMDλ appearing in the characteristic equation is actually ann × n matrix
and will play an important role in the following. We write

Aλ := MDλ =
(
Φ+ ⊗ δ0

) (
ελE

−1
λ (Φ−

w)>
)

= Φ+E−1
λ (Φ−

w)>

having entries

(Aλ)ip =

{
ω−

pje
ξj(0,1)−λτj (0,1), if vi = ej (0) andvp = ej (1) ,

0, else,
(2.35)

where we used (2.26). It is aweighted (transposed) adjacency matrixof G, as defined in
Definition 1.3.8.
Let us investigate the matrixA0 using

∑m
j=1 ω

−
ij = 1. If ql ≤ 0 for all l, then by (2.15),

the column sums ofA0 are all less than or equal to1. Therefore in this case‖Aλ‖1 <
‖A0‖1 ≤ 1 for Reλ > 0, which implies the following.

COROLLARY 2.2.15 For everyλ ∈ C we have

λ ∈ σ (A) ⇐⇒ det (1 −Aλ) = 0. (2.36)

In particular, if ql ≤ 0 for all l, this implies

λ ∈ ρ(A) for Reλ > 0. (2.37)

COROLLARY 2.2.16 If cj ≡ c andqj ≡ 0 for j = 1, . . . , m, as in Corollary 2.1.6,
we have

Aλ = e−
λ
c Ã,

which is a scalar multiple of a weighted transposed adjacency matrixÃ given as

(Ã)ip :=

{
ω−

pj, if vi = ej (0) andvp = ej (1) ,
0, else.

(2.38)

In particular,

λ ∈ σ (A) ⇐⇒ e
λ
c ∈ σ

(
Ã

)
. (2.39)

REMARK 2.2.17 Clearly, this matrix is also obtained as

Ã = Φ+
(
Φ−

w

)>
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and is column stochastic by (1.4). It coincides with the weighted transposed adjacency
matrix (1.7) withΦ+

w = Φ+.

For the study of the asymptotic behavior of the semigroup generated byA we use the
spectral bound

q̃ := s (A) = sup {Reλ : λ ∈ σ(A)} (2.40)

of A. In the case of positive semigroups onLp-spaces this number characterizes the
exponential growth of the semigroup, see [EN00, Theorem VI.1.15]).

REMARK 2.2.18 For thegrowth bound

ω0 = inf
{
w ∈ R : ∃Mw ≥ 1 such that‖T (t)‖ ≤Mwe

wt for all t ≥ 0
}

of the semigroup we have
ω0 = q̃ ∈ σ(A), (2.41)

if q̃ > −∞.

This and more subtle spectral properties ofA and of(T (t))t≥0 will allow us to describe
the asymptotic behavior of the system.

§ 2.3 ASYMPTOTIC BEHAVIOR

To obtain results on the asymptotic behavior of the semigroup onX, we first restrict
ourselves to networks with strongly connected graphs (see Definition 1.2.3). It turns
out (see Lemma 2.3.2 below) that for such graphs our semigroup becomes irreducible.
This fundamental property of positive semigroups and its consequences are systematically
investigated in [Nag86, Chapter C-III.3] and we use the following characterization.

DEFINITION 2.3.1 A positive semigroup onL1(Ω, µ), µ a σ-finite measure, with
generatorA is irreducibleif for all λ > s(A) the resolventR(λ,A) maps positive nonzero
functions to strictly positive functions.

In the following we will see how the underlying graph structure can be related to this
property. By Proposition 1.3.10, the graphG is strongly connected if and only ifAλ from
(2.35) is irreducible for one/allλ ∈ R. Using this fact, we can relate the irreducibility of
our semigroup onX to the strong connectedness of the underlying graph.

L EMMA 2.3.2 Let the graphG be strongly connected. Then the semigroup(T (t))t≥0

is irreducible.

PROOF It suffices to show that forλ > q̃ andf > 0, the functionR(λ,A)f is strictly
positive. By (2.31) this means that for0 < f ∈ X

R (λ,A0) f +Dλ (1 −MDλ)
−1MR (λ,A0) f � 0. (2.42)

Take an arbitraryλ > q̃. First note that, due to (2.16),R (λ,A0) f ∈ X is strictly
positive everywhere except on the largest interval(1 − ε, 1] for which f |(1−ε,1]= 0.
Applying M to it we obtain a vectorRm 3 d � 0, see (2.8). Observe that under our
assumptions the matrixMDλ = Aλ is positive and irreducible. From the form (2.35) of
its entries follows by [Sch74, Corollary I.6.4] that its spectral radiusr (Aλ) is a strictly
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monotone decreasing function ofλ satisfyinglimλ→+∞ r (Aλ) = 0. The positivity yields
r (Aλ) ∈ σ (Aλ), see [Sch74, Proposition I.2.3] – thus, being a spectrum point, r (Aλ)
is also a continuous function of the entries ofAλ hence ofλ. Furthermore, by (2.41),
1 ∈ σ(Aq̃) and1 /∈ σ(Aλ) for λ > q̃. These facts imply that

r (Aq̃) = 1 > r (Aλ) for everyλ > q̃.

Now from [Sch74, Proposition I.6.2] follows that(1 − Aλ)
−1 is strictly positive forλ >

q̃. Hence(1 −MDλ)
−1 d � 0, and applyingDλ to it we obtain a vector of positive

multiples of exponential functions – which is also strictlypositive, see (2.27). Adding it
to the positive functionR (λ,A0) f, we finally obtain (2.42).

Using the irreducibility of the adjacency matrix, we can prove the following result on the
asymptotic behavior of(T (t))t≥0.

PROPOSITION 2.3.3 Assume thatG is strongly connected. Ifql ≤ 0 for all l =
1, . . . , m and there exists at least one indexj such thatqj 6= 0 (that isqj < 0 on a set of
positive measure), theñq < 0, hence the semigroup(T (t))t≥0 is uniformly exponentially
stable.

PROOF From Corollary 2.2.15 follows that̃q ≤ 0 holds, hence we only have to prove
that q̃ 6= 0. By (2.36) and (2.41) this means1 ∈ ρ(A0). Let A0,1 := A0 and letA0,2

be the weighted adjacency matrix forλ = 0 in the case when we replaceqj by 0. From
Proposition 1.3.10 follows that both matrices are irreducible. With the notation of [Sch74,
Chapter I], from the form (2.15) ofξj and from (2.35) follows that|A0,1| ≤ |A0,2|, and
there is at least one entry in the first matrix that is strictlyless than the same entry in the
second one. Using [Sch74, Corollary I.6.4] we obtain thatr (A0,1) < r (|A0,2|) . Since
r (|A0,2|) ≤ ‖A0,2‖1 ≤ 1, we have thatdet (1 −A0,1) 6= 0 and so1 ∈ ρ (A0).

Because of (2.41), the behavior of the semigroup(T (t))t≥0 is governed by the constant
q̃: for q̃ > 0 the flow blows up, while for̃q < 0 it decays exponentially. To obtain a finer
description, we work with the rescaled semigroupT̃ (t) := e−q̃tT (t). In the following
lemma we summarize the properties of(T̃ (t))t≥0 which follow directly from those of
(T (t))t≥0.

L EMMA 2.3.4 The rescaled semigroup(T̃ (t))t≥0 is positive and strongly continuous
onX, and its generator̃A := A − q̃IX satisfiess(Ã) = 0 ∈ σ(Ã). Furthermore, if the
graph is strongly connected,(T̃ (t))t≥0 is irreducible.

We also obtain that this semigroup is bounded.

THEOREM 2.3.5 Assume that the graph is strongly connected. Then the semigroup
(T̃ (t))t≥0 is bounded onX.

PROOF From the Banach-Steinhaus theorem follows that it is enoughto prove that
for all g ∈ X, f ∈ X ′ there existsKg,f > 0 such that

|〈g, T̃ (t)′f〉| ≤ Kg,f , t ≥ 0, (2.43)

whereX ′ = L∞ ([0, 1],Cm) is the dual space ofX. Using the positivity and irreducibility
of the semigroup(T̃ (t))t≥0 and the compactness ofR(λ, Ã) (see Corollary 2.2.13) we
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obtain thats(Ã) = 0 is a first order pole of the resolvent. By [Nag86, PropositionC-
III.3.5] it admits a strictly positive eigenvectorh ∈ X ′ also forÃ′. From the form ofÃ
andÃ′ follows thath is an exponential function, hence we can assume thath ≥ 1. Since
Ã′h = 0, we have that̃T ′(t)h = h for all t ≥ 0, see [EN00, Proposition IV.2.18] and
[EN00, Theorem IV.3.7]. To prove (2.43), take an arbitraryf ∈ X ′. Then|f | ≤ ‖f‖∞ ·h.
From the positivity of the adjoint semigroup follows that

|T̃ (t)′f | ≤ T̃ (t)′|f | ≤ ‖f‖∞ · (T̃ (t)′h),

hence
‖T̃ (t)′f‖∞ ≤ ‖f‖∞ · ‖T̃ (t)′h‖∞ = ‖f‖∞ · ‖h‖∞ .

From this we obtain

|〈g, T̃ (t)′f〉| ≤ ‖g‖1 · ‖f‖∞ · ‖h‖∞ for all g ∈ X, f ∈ X ′,

where‖h‖∞ is fixed.

Having a bounded irreducible semigroup(T̃ (t))t≥0 with compact resolvent of its genera-
tor, we can use the theory developed in [EN00, Section V.2.C]and obtain the following
decomposition of the state spaceX.

PROPOSITION 2.3.6 Let the graph be strongly connected. Then the following prop-
erties hold for the rescaled semigroup.

1. There is a projectionQ : X → X, hence a decomposition

X = X1 ⊕X2

withX1 = ranQ,X2 = kerQ such that

X1 = lin
{
f ∈ D(Ã) : ∃α ∈ R : Ãf = iαf

}

and
X2 =

{
f ∈ X : T̃ (t)f → 0, t→ +∞

}
.

2. Moreover,X0 := ker Ã is one dimensional and is spanned by a strictly positive
eigenvector.

PROOF Since Ã has compact resolvent, the first statement is Corollary V.2.15 of
[EN00].
Using the fact that̃A has compact resolvent, we obtain by [EN00, Corollary IV.1.19] that
all the elements of the (point) spectrum ofÃ are poles of the resolventR(λ, Ã) with finite
algebraic multiplicity. Sinces(Ã) = 0 is an element of the spectrum (see (2.41)), the
irreducibility of the semigroup(T̃ (t))t≥0 implies by [Nag86, Proposition C-III.3.5] that0
is an algebraically simple pole and admits a strictly positive eigenvector for̃A, hence2.
holds.
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It turns out that the following properties of the velocitiesare decisive for the spectral
properties ofÃ and for the asymptotic behavior of(T̃ (t))t≥0.

DEFINITION 2.3.7 We say that(LD� ) [(LI� ) , resp.] holds if the numbers

{τj1(0, 1) + · · · + τjk
(0, 1) : ej1 , . . . , ejk

form a cycle inG}
are strongly linearly dependent[independent, resp.] overQ.

Here, we call a set of numbersstrongly linearly dependentoverQ if the quotient ofany
two elements is rational. If this does not hold, the set is (strongly) linearly independent.
Strong linear dependency immediately implies the next simple fact.

L EMMA 2.3.8 Assume(LD� ). Then there exists a real numberc such that

c
(
τj1(0, 1) + · · · + τjk

(0, 1)
)
∈ N

for all ej1 , . . . , ejk
that form a cycle inG.

We now state an important consequence of the condition(LI� ).

L EMMA 2.3.9 Assume(LI� ). Then for every fixedδ > 0 there existsρ ∈ R arbi-
trarily large such that

∣∣ρ
(
τj1(0, 1) + · · ·+ τjk

(0, 1)
)
− 2πl

∣∣ < δ (2.44)

for all ej1 , ej2, . . . , ejk
forming a cycle inG and for an appropriatel ∈ Z depending on

the cycle.

PROOF By simultaneous Diophantine approximation, see e.g. [Per60, Proposition V.
55], for any set of real numbersζ1, . . . , ζk containing at least one irrational number and
for anyε > 0, there existsq arbitrarily large such that

|q · ζν − lν | < ε (2.45)

for all ν = 1, . . . , k and for appropriatelν ∈ Z. Taking the quotients

τj1(0, 1) + · · · + τji
(0, 1)

τl1(0, 1) + · · · + τlk(0, 1)

for each pair of cycles{ej1 , . . . , eji
} and{el1 , . . . , elk}, by condition(LI� ) we find at

least one irrational number among them, say

ζ1 :=
τj1(0, 1) + · · · + τji

(0, 1)

τl1(0, 1) + · · · + τlk(0, 1)

for the cycles{ej1, . . . , eji
} and{el1 , . . . , elk}. Then define

ζν :=
τp1(0, 1) + · · ·+ τpν

(0, 1)

τl1(0, 1) + · · · + τlk(0, 1)

for all cyclesZν = {ep1 , . . . , epν
} , ν = 2, . . . , N in G. Let us fixδ > 0. The inequality

(2.45) forζ1, ζ2, . . . , ζN andε = δ
2π
> 0 implies that we can findq arbitrarily large such

that ∣∣∣∣
q

τl1(0, 1) + · · · + τlk(0, 1)

(
τp1(0, 1) + · · ·+ τpν

(0, 1)
)
− lν

∣∣∣∣ <
δ

2π

for every cycleZν = {ep1, . . . , epν
} , ν = 2, . . . , N and appropriate integerlν . Multiply-

ing both sides by2π we obtain the desired result.

In the sequel we will treat the above two alternatives separately.
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§ 2.4 THE (LDQ) CASE

Let us first investigate the characteristic equation (2.36)in the case when condition(LD� )
holds. Using the Sachs Theorem (see Theorem 1.3.16) and the form of the entries ofAλ

given in (2.35), we can easily prove the following.

PROPOSITION 2.4.1 The determinantdet (1 −Aλ) has the form

det (1 − Aλ) = 1 + a1 (λ) + · · ·+ an (λ) (2.46)

with

ar (λ) =
r∑

p=1

(−1)p
∑

k1+···+kp=r
Z1,...,Zp

p∏

j=1

(
wj · e−λ

�
el∈Zj

τl(0,1)
)
.

Here the second sum runs over all positive integersk1, . . . , kp having sumr such that
there exist vertex disjoint cyclesZ1, . . . , Zp in the graphG havingk1, . . . , kp vertices,
respectively. The numberswj are defined as

wj :=
∏

ek∈Zj

ω−
ik · eξk(0,1),

whereω−
ik 6= 0 is uniquely determined byek in the cycleZj.

PROOF We have to apply Theorem 1.3.16 in the casez = 1. To compute the coef-
ficientsar = ar (λ) from (1.10) we have to take the sum over setsGL containing vertex
disjoint unions of cycles such that the sum of the vertices inthese cycles is at mostr.
The weightW (GL) is the product of the entries ofAλ corresponding to the edges in the
cycles inGL, see (2.35).

In the case condition(LD� ) holds we even have a simpler form for this determinant
occurring in the characteristic equation. Let us fix a numberc obtained in Lemma 2.3.8.
We can take the greatest common divisor

l (c) := gcd
{
c
(
τj1(0, 1) + · · · + τjk

(0, 1)
)
; ej1, . . . , ejk

form a cycle inG
}

and observe that the fractionl(c)
c

does not depend on the special choice ofc. Therefore
the number

γ :=
l (c)

c
(2.47)

is well-defined. This leads to the following expression for the termsar (λ) in (2.46):

ar (λ) =
r∑

p=1

(−1)p
∑

k1+···+kp=r
Z1,...,Zp

p∏

j=1

wj ·
(
e−λγ

)lj (2.48)

with

lj :=
1

γ

∑

el∈Zj

τl(0, 1) ∈ N.
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Figure 2.1: The spectrum of̃A in the(LD� ) case

The form (2.48) implies thatdet (1 −Aλ) can be written as

det (1 −Aλ) = p
(
e−λγ

)
(2.49)

with a polynomialp. This immediately leads to the following result on the spectrum of
Ã.

PROPOSITION 2.4.2 Suppose that the condition(LD� ) is fulfilled. Then the eigen-
values ofA, hence that of̃A, lie on finitely many vertical lines.

PROOF By (2.36) and (2.49) the zeros ofp
(
e−λγ

)
are exactly the eigenvalues ofA,

hence the statement follows forA andÃ sinceσ(Ã) = σ (A) − q̃.

We are now able to relate the spectral properties of the generator to those of the semigroup
as already shown in [KS04, Proposition 3.8].

PROPOSITION 2.4.3 [Circular Spectral Mapping Theorem] Suppose that the con-
dition (LD� ) is satisfied. Then the semigroup(T̃ (t))t≥0 satisfies the so calledcircular
spectral mapping theorem, that is

Γ · etσ(Ã) = Γ · σ(T̃ (t)) \ {0} for everyt ≥ 0,

whereΓ denotes the unit circle.

The subsequent proof is based on a result of Greiner and Schwarz [GS91, Corollary 1.2]
and the following result on almost periodic functions (see [Cor68] and [Pit37]).

L EMMA 2.4.4 Let h be an analytic almost periodic function in the vertical strip
S(a,b) = {z ∈ C : a < Re z < b} and h (z) 6= 0. Then1/h (z) is analytic and almost
periodic in any stripS[a1,b1] ⊂ S(a,b). Moreover, ifh (z) =

∑∞
j=1 aje

zrj , rj ∈ R, then
1/h (z) =

∑∞
l=0 ble

zsl for suitablebl, sl ∈ R in any stripS[a1,b1].

We prove the statement for the original semigroup(T (t))t≥0. The result then follows by

σ(Ã) = σ(A) − q̃ andσ(T̃ (t)) = e−q̃tσ (T (t)).

PROOF The inclusion

Γ · etσ(A) ⊆ Γ · σ (T (t)) \ {0}



28 2. FLOWS WITH STATIC RAMIFICATION NODES

is the spectral inclusion theorem (see [EN00, Theorem IV.3.6]) that holds for allC0-
semigroups. Clearly, fort = 0 the opposite inclusion also holds. Ift > 0, we have
to prove that for the elementsµ ∈ ρ (A) for which the entire vertical lineReµ + iR is
contained inρ (A) , we also have

et(Re µ+i�) = Γ · etµ ⊆ ρ (T (t)) ∪ {0}.

In order to show this we use Greiner’s criterion from [GS91, Corollary 1.2]. Take an
elementetλ ∈ Γ · etµ. We then have to prove thatλ + i (2π/t) Z ⊆ ρ (A) and that the
sequence

SN :=
1

N

N−1∑

j=0

j∑

k=−j

R (λ + i (2π/t) k, A) , N ∈ N, (2.50)

is bounded inL (X). The first fact is obvious from the assumption. To prove the bound-
edness of(SN )N∈� , we use ideas from the proof of [GS91, Theorem 3.1]. By (2.27)and
(2.31), the resolvent ofA is

R (λ,A) = Dλ (1 −MDλ)
−1MR (λ,A0) +R (λ,A0) =

= ελE
−1
λ

(
Φ−

w

)>
(1 − Aλ)

−1MR (λ,A0) +R (λ,A0) .

For the sake of simplicity, we write

Rλ := R (λ,A0) ,

λk := λ+ i (2π/t) k.

So,SN has the form

SN =
1

N

N−1∑

j=0

j∑

k=−j

(
ελk
E−1

λk

(
Φ−

w

)>
(1 − Aλk

)−1MRλk
+Rλk

)
.

We can now estimate itsL1-norm by

‖SN‖1 ≤
∥∥∥∥∥

1

N

N−1∑

j=0

j∑

k=−j

ελk
E−1

λk

(
Φ−

w

)>
(1 −Aλk

)−1MRλk

∥∥∥∥∥
1

+

∥∥∥∥∥
1

N

N−1∑

j=0

j∑

k=−j

Rλk

∥∥∥∥∥
1

:= ‖UN‖1 + ‖VN‖1 .

For the estimate of the term‖VN‖1 observe first thatRλ is the resolvent of the generator
of a strongly continuous nilpotent semigroup(T0(t))t≥0, as we have seen in Lemma 2.2.4.
For any semigroup(T (t))t≥0 and its generatorA the formula

R (µ,A)
(
1 − e−µuT (u)

)
=

∫ u

0

e−µsT (s)ds for µ ∈ ρ(A), u ≥ 0,

holds. Take anyu > 0 such thatu > τj(0, 1) for all j. Then from Lemma 2.2.4 follows
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thatT0(u) = 0. Using the above formula we obtain that

VN =
1

N

N−1∑

j=0

j∑

k=−j

R (λ+ i(2π/t)k, A0)

=
1

N

N−1∑

j=0

j∑

k=−j

∫ u

0

e−i(2π/t)kse−λsT0(s)ds =

∫ u

0

σN(2πs/t)e−λsT0(s)ds

=
t

2π

∫ 2πu
t

0

σN(v)e
−λtv
2π T0(

tv

2π
)dv,

where

σN (v) =
1

N

N−1∑

j=0

j∑

k=−j

e−ivk for v ∈ R.

An elementary computation shows that

σN (v) =
1

N

1 − cosNv

1 − cos v
, (2.51)

henceσN is periodic with period2π, and

σN (v) ≥ 0 and
∫ 2π

0

σN (v) dv = 2π. (2.52)

Choosingu = l · t for an appropriate1 ≤ l ∈ N, it follows that

‖VN‖1 ≤ l · t · C
withC := sup

{∥∥e−λsT0(s)
∥∥ : 0 ≤ s ≤ u

}
. This estimate is independent ofN, hence we

only have to continue with‖UN‖1 .
According to Proposition 2.4.2, our assumption implies that the zeros of the analytic
functionh (λ) := det (1 − Aλ) lie on finitely many vertical lines, henceh (λ) 6= 0 on a
stripS(α,β) containingλ. In the case when(LD� ) holds,h(λ) has the form (2.49), hence
is a finite linear combination of exponential functions. Therefore we can apply Lemma
2.4.4 forh(λ), and using the well-known formula for the entries of the inverse matrix, we
have that forλ ∈ S(α,β)

(1 −Aλ)
−1 =

∞∑

l=0

Ble
λsl

for suitableBl ∈ Mn(R), sl ∈ R, and this series converges absolutely. Continuing the
estimate of‖UNf‖1, we obtain by using (2.8), (2.16), and (2.17)

‖UNf‖1 =

=

m∑

p=1

∫ 1

0

∣∣∣∣∣∣
1

N

N−1∑

j=0

j∑

k=−j

(
ελk

(s)E−1
λk

(
Φ−

w

)> ∞∑

l=0

Ble
λkslΦ+

∫ 1

0

ελk
(u)−1C(u)−1f (u) du

)

p

∣∣∣∣∣∣
ds

=
m∑

p=1

∫ 1

0

∣∣∣∣∣

∞∑

l=0

1

N

N−1∑

j=0

j∑

k=−j

eξp(s,1)+λk(sl−τp(s,1))

∫ 1

0

((
Φ−

w

)>
BlΦ

+ελk
(u)−1C(u)−1f (u)

)
p

du

∣∣∣∣∣ds.
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In order to proceed we introduce them×m matrix

Ψl :=
(
Φ−

w

)>
BlΦ

+ =
(
ψl

ij

)
m×m

and obtain for thep-th coordinate
∥∥∥(UNf)p

∥∥∥
1

=

=

∫ 1

0

∣∣∣∣∣

∞∑

l=0

1

N

N−1∑

j=0

j∑

k=−j

∫ 1

0

eξp(s,1)+λk(sl−τp(s,1))
m∑

h=1

ψl
p,he

ξh(0,u)−λkτh(0,u) 1

ch(u)
fh (u) du

∣∣∣∣∣ ds

=

∫ 1

0

∣∣∣∣∣

∞∑

l=0

m∑

h=1

ψl
p,he

ξp(s,1)+λk(sl−τp(s,1))

∫ 1

0

1

N

N−1∑

j=0

j∑

k=−j

1

ch(u)
eξh(0,u)−λkτh(0,u)fh (u) du

∣∣∣∣∣ ds

≤
∫ 1

0

∞∑

l=0

m∑

h=1

∣∣ψl
p,he

ξp(s,1)+λ(sl−τp(s,1))
∣∣×

×
∫ 1

0

∣∣∣∣
1

ch(u)
eξh(0,u)−λτh(0,u)σN

(
2π (τp(s, 1) − sl + τh(0, u))

t

)
fh (u) du

∣∣∣∣ds

≤
∞∑

l=0

m∑

h=1

∣∣cλ,pψ
l
p,he

λsl
∣∣
∫ 1

0

∣∣∣∣fh (u)
1

ch(u)
eξh(0,u)−λτh(0,u)

∣∣∣∣×

×
∫ 1

0

σN

(
2π (τp(s, 1) − sl + τh(0, u))

t

)
dsdu

with
cλ,p := max

s∈[0,1]
eξp(s,1)−λτp(s,1).

Using the above properties (2.51) and (2.52) of the functionσN(v), by an appropriate
variable substitution we obtain that

∥∥∥(UNf)p

∥∥∥
1

≤ Cλ,p · 2πkp,t ·
∞∑

l=0

m∑

h=1

∣∣ψl
p,he

λsl
∣∣ ‖f‖1

with kp,t ∈ N and

Cλ,p := cλ,p · max
1≤h≤m

{
sup

u∈[0,1]

∣∣∣∣
1

ch(u)
eξh(0,u)−λτh(0,u)

∣∣∣∣

}
.

Summing up forp = 1, ..., m and using the definition ofψl
p,h we obtain

‖UNf‖1 ≤ Cλ · 2π ·
∞∑

l=0

m∑

h=1

m∑

p=1

∣∣∣∣
((

Φ−
w

)>
BlΦ

+
)

p,h
eλsl

∣∣∣∣ ‖f‖1

≤ Cλ · 2π ·m
∞∑

l=0

∥∥∥
(
Φ−

w

)>
BlΦ

+
∥∥∥
∣∣eλsl

∣∣ ‖f‖1

≤ Cλ · 2π ·m
∥∥∥
(
Φ−

w

)>∥∥∥
∥∥Φ+

∥∥
(

∞∑

l=0

‖Bl‖
∣∣eλsl

∣∣
)
‖f‖1 ,
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Figure 2.2: Circular Spectral Mapping Theorem

with
Cλ := max

1≤p≤m
Cλ,pkp,t.

This completes the proof since the estimate is independent of N ∈ N.

The Circular Spectral Mapping Theorem and the above Lemma 2.4.2 imply that the spec-
trumσ(T̃ (t)) lies on finitely many circles, where the largest one is the unit circle Γ (see
Lemma 2.3.4). This immediately allows the following decomposition of hyperbolic type
of the semigroup.

PROPOSITION 2.4.5 Suppose that condition(LD� ) holds and the graph is strongly
connected. Then for the decomposition in Proposition 2.3.6.1 the following assertions are
true.

1. X1 andX2 are (closed)T̃ (t)-invariant subspaces.

2. The operatorsS(t) := T̃ (t) |X1 form a boundedC0-group onX1.

3. The semigroup
(
T̃ (t) |X2

)
t≥0

is uniformly exponentially stable, hence

‖T̃ (t) − S(t)‖X ≤Me−εt

for some constantsM ≥ 1, ε > 0.

PROOF Using Theorem 2.4.3, denote the second largest circle inσ(T̃ (t)) by Γ · e−t·η

with η > 0. Take anyδ > 0 such thatα := −η + δ < 0, then the spectrum of the
rescaled semigroup(T̃α(t)) := (e−αtT̃ (t)) does not intersect the unit circle. Hence we
can use [EN00, Theorem V.1.17] for(T̃α(t)) and obtain a decomposition that has the
desired properties for the original semigroup.

If the graph is strongly connected, our (rescaled) semigroup is irreducible (see Lemma
2.3.2). The Perron-Frobenius theory for positive irreducible semigroups (and the com-
pactness ofR(λ, Ã)) imply that

σ(Ã) ∩ iR = iαZ for someα ≥ 0,
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where eachiαk is a simple pole of the resolvent (see [EN00, Theorem VI.1.12] or [Nag86,
Section C-III]). In the following we want to identifyα. The statement (2.41) and the form
(2.49) of the characteristic equation (2.36) imply thatλ = q̃ is a zero ofp(e−λγ) =
det (1 −Aλ), therefore all the numbersλ = q̃ + i2π 1

γ
k, k ∈ Z, are also zeros of

det (1 −Aλ) – hence eigenvalues ofA. So we obtain

i2π
1

γ
Z ⊆ σb(Ã), (2.53)

whereσb(Ã) = σ(Ã) ∩ iR denotes the boundary spectrum ofÃ. Indeed, we show now
that equality holds in (2.53). For this purpose we need the following lemma.

L EMMA 2.4.6 LetB0 = (bi,p)
n
i,p=1 be a positive irreducible matrix having a strictly

positive vectorx satisfying
B0x = x.

LetB denote any matrix obtained fromB0 by multiplying each of its entries by a complex
number having absolute value 1, that is

(B)i,p = eiϑi,pbi,p.

Thendet(1 − B) = 0 if and only if

s∏

l=1

eiϑil,il+1 = 1

for every sequencei1, i2, . . . , is, is+1 = i1.

PROOF Observe first that by similarity transformation, we can assume x = 1 :=
(1, 1, . . . , 1), hence

B01 = 1. (2.54)

By definition, the determinant of anyn× n matrixD = (di,p)
n
i,p=1 can be written as

detD =
∑

π∈P

(−1)signπd1,π(1) · d2,π(2) · · · · · dn,π(n), (2.55)

whereP denotes the set of alln-permutations. Furthermore, any permutation defined as
π = {(1, π(1)), (2, π(2)), . . . , (n, π(n))} can be (unambiguously) written as a product
of disjoint cycles of the form(i1, i2), (i2, i3), . . . , (is, i1). The “if” part now follows by
applying (2.55) to the matrix1 − B and usingdet(1 − B0) = 0.
Suppose now thatdet(1−B) = 0, that is there existsy = (y1, . . . , yn) such thatBy = y.
Since|B| = B0 andB01 = 1, we can apply [Sch74, Proposition V.7.4] and obtain

B =



y1 0

. . .
0 yn


 · B0 ·



y1 0

. . .
0 yn




−1

. (2.56)

That means that
bi,pe

iϑi,p = bi,p
yi

yp
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for all i, p = 1, . . . , n. Computing

s∏

l=1

bil,il+1
eiϑil,il+1 =

s∏

l=1

bil,il+1

yl

yl+1

=
s∏

l=1

bil,il+1
,

we obtain
s∏

l=1

eiϑil,il+1 = 1

for every sequencei1, i2, . . . , is, is+1 = i1, and this is what we wanted to prove.

COROLLARY 2.4.7 Suppose that(LD� ) is satisfied and that the graph is strongly
connected. Then the boundary spectrumσb(Ã) is given by

σb(Ã) = i2π
1

γ
Z, (2.57)

whereγ is defined in(2.47).

PROOF By (2.53) we only have to prove that ifiβ ∈ σb(Ã), thenβ ∈ 2π
γ

Z. By the
characteristic equation (2.36) we have1 ∈ σ(Aq̃+iβ), and by (2.41),1 ∈ σ(Aq̃). Applying
the above Lemma 2.4.6 forB0 = Aq̃ andB = Aq̃+iβ, and using (2.35) this can happen
only if

s∏

l=1

eiβτjl
(0,1) = 1,

that is

β
s∑

l=1

τjl
(0, 1) = 2π · kZs

for somekZs
∈ Z

for all Zs = {ej1, . . . , ejs
} forming a cycle in the graph. Takingc from the definition

(2.47) ofγ we have

c · 2π

β
· kZs

= c ·
s∑

l=1

τjl
(0, 1) ∈ Z

for all cycleZs, hence

c · 2π

β
· gcd {kZs

: Zs cycle} = c · γ,

which implies the desired result.

Applying now the result of Nagel [Nag84, Theorem 4.3] generalized in [Nag86, C-IV,
Theorem 2.14] we obtain that under(LD� ) and the strong connectedness of the graph
the rescaled semigroup(T̃ (t))t≥0 behaves asymptotically as a periodic rotation group on
L1 (Γ) whereΓ is the unit circle.

THEOREM 2.4.8 Suppose that the condition(LD� ) holds and that the graphG is
strongly connected. Then the decompositionX = X1 ⊕ X2 from Proposition 2.4.5 has
the following additional properties.
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1. X1 is a closed sublattice ofX isomorphic toL1 (Γ).

2. The group(S(t))t≥0 is isomorphic to the rotation group onL1 (Γ) with period

τ = γ (2.58)

=
1

c
gcd

{
c
(
τj1(0, 1) + · · · + τjk

(0, 1)
)

: ej1 , . . . , ejk
form a cycle inG

}
,

wherec is any number such thatc (τj1(0, 1) + · · · + τjk
(0, 1)) ∈ N for all edges

ej1 , . . . , ejk
forming a cycle inG.

PROOF By Lemma 2.3.4, the semigroup(T̃ (t))t≥0 is irreducible, positive and by
Theorem 2.3.5 bounded. Sinces(Ã) = 0 and because of the compactness of the resolvent,
0 is a pole ofR(λ, Ã). By the above corollary, we also know that there are nonzero
spectral points on the imaginary axis. So, all the hypotheses of [Nag86, C-IV, Theorem
2.14] are fulfilled, and we obtain the statements 1. and the first half of 2.
By [Nag86, C-IV, Lemma 2.12 (c)] the periodτ equals2π

α
, whereα ∈ R is determined

by
σ(Ã) ∩ iR = iαZ.

Due to (2.57), formula (2.58) holds.

In less technical terms the above result can be expressed as follows.

COROLLARY 2.4.9 Under the assumptions of the above Theorem 2.4.8, the rescaled
semigroup(T̃ (t))t≥0 is asymptotically periodicwith period

τ =
1

c
gcd

{
c
(
τj1(0, 1) + · · ·+ τjk

(0, 1)
)

: ej1, . . . , ejk
form a cycle inG

}
,

wherec is any number such thatc
(
τj1(0, 1) + · · ·+ τjk

(0, 1)
)
∈ N for all ej1 , . . . , ejk

that
form a cycle inG.

REMARK 2.4.10 Observe that the period does not depend on the weights on the
edges.

We extend our description of the asymptotic behavior when(LD� ) holds to the case when
the underlying graph is not strongly connected. For the sakeof simplicity, we assume that
all qj = 0, implying that the adjacency matrixA0 is column stochastic, hence1 ∈ σ (A0)
and by (2.37),̃q = 0. Using invariant strongly connected components of our directed
graph, defined in Definition 1.2.4, we obtain the following result for the asymptotics.

THEOREM 2.4.11 Consider a flow in an arbitrary network modelled by the directed
graphG, and assume that(LD� ) holds andqj = 0, j = 1, . . . , m. Then the correspond-
ing rescaled semigroup behaves asymptotically as a direct sum of rotation groups. The
period of these rotation groups are given by the modificationof the formula(2.58) for
each invariant strongly connected component ofG.

PROOF By Proposition 2.4.5 we have a spectral decompositionX = X1 ⊕X2 of the
state space such that(S(t))t≥0 := (T̃ (t) |X1)t≥0 is a boundedC0-group and(T̃ (t) |X2)t≥0

is uniformly exponentially stable. By Proposition 2.3.6,

X1 = lin
{
f ∈ D(A) : ∃β ∈ R such thatÃf = iβf

}
.



§ 2.4. THE(LD�) CASE 35

Therefore, ift → +∞, the semigroup converges (exponentially) in norm to the bounded
group(S(t))t≥0 acting on the closed subspace generated by the eigenvectorsthat belong

to the imaginary (that is, the boundary) spectrum ofÃ. We want to prove that this limit is
isomorphic to a direct sum of rotation groups with the properperiods.
For this purpose we first characterize the spectral valuesiβ ∈ σ(Ã), β ∈ R. Taking into
account the characteristic equation (2.36), we have to investigate in which case

1 ∈ σ(Aiβ)

for someβ ∈ R holds.
Observe, that the positive matrixA0 is similar (via a permutationP of the canonical
basis) to a block-triangular matrix, i.e.,

P−1
A0P =




Q0
0 0 . . . 0

B0
1 Q0

1 . . . 0
. . . . . . . . . . . .
B0

q 0 . . . Q0
q


 , (2.59)

where the diagonal blocksQ0
1, . . . , Q

0
q are irreducible and if thek0 × k0 matrix Q0

0 is
non-empty, then at least oneB0

i is nonzero (see [Sch74, Proposition I.8.8]). This form
is unique up to permutations of the coordinates within each diagonal block and up to the
order ofQ0

1, . . . , Q
0
q. It is easy to see that, since the zero-patterns of the matricesAλ

coincide for everyλ, the same permutation matrixP yields an analogous block-form

P−1
AλP =




Qλ
0 0 . . . 0

Bλ
1 Qλ

1 . . . 0
. . . . . . . . . . . .
Bλ

q 0 . . . Qλ
q


 for everyλ ∈ C. (2.60)

We now renumber the vertices ofG such that the adjacency matricesAλ have the above
block-triangular form (2.60). Clearly, this does not change the spectral properties we
need. From the block-triangular form (2.60) follows that

σ (Aλ) =

q⋃

p=0

σ
(
Qλ

p

)
for everyλ ∈ C.

We will show that thek0 × k0 matricesQiβ
0 for β ∈ R do not contribute to the boundary

spectrum ofÃ. This means that ifAiβx = x, then the firstk0 coordinates ofx have to
be equal to0. Let us first investigate the caseβ = 0, hence we assumeA0x = x. To the
column stochastic matrixA0 we can apply [Sch74, Corollary of I.8.4] and obtain thatx
is contained in the direct sum of the minimalA0-invariant ideals inCn. By the proof of
[Sch74, Proposition I.8.8] this direct sum is exactly the direct sum of the ideals spanned
by the basis vectors that correspond to the blocksQ0

1, . . . , Q
0
q . Hence we obtain that the

first k0 coordinates ofx are0. It means that1 is not in the spectrum of the positive matrix
Q0

0. Furthermore, because of the column stochasticity ofA0, all the column sums ofQ0
0

are less than or equal to 1, hencer (Q0
0) ≤ 1. Since at least oneBi 6= 0, the Perron-

Frobenius theorem yields (see, e.g., [Sch74, Proposition I.2.3]) thatr (Q0
0) < 1. From the

form (2.35) of the entries ofAλ follows that
∣∣∣Qiβ

0

∣∣∣ = Q0
0 and using, e.g., the column-sum
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norm we obtain thatr
(
Qiβ

0

)
= r (Q0

0) < 1. Hence1 /∈ σ
(
Qiβ

0

)
for all β ∈ R and

therefore

1 ∈ σ (Aiβ) ⇐⇒ 1 ∈
q⋃

p=1

σ
(
Qiβ

p

)
. (2.61)

For eachp ∈ {1, . . . , q} , the irreducible blockQλ
p is the weighted (transposed) adjacency

matrix of a subgraphGp of G, which is by [And91, Theorem 3.2] strongly connected.
From the form (2.60) of the adjacency matrix of the whole graphG follows that that there
are no outgoing edges ofGp. HenceGp is an invariant strongly connected component,
see Definition 1.2.4. This implies that the subspaceXp ⊂ X of all functions having their
support on the edges ofGp is invariant under the semigroup(T̃ (t))t≥0. We can apply
Theorem 2.4.8 to the restricted positiveirreducible semigroup(T̃p(t))t≥0 := (T̃ (t) |Xp

)t≥0. Hence its generator̃Ap – which is the part of̃A in Xp – satisfies

σ(Ãp) ∩ iR = iαpZ for someαp ∈ R.

By (2.36) we obtain the equivalences

1 ∈ σ
(
Qiβ

p

)
⇐⇒ iβ ∈ σ(Ãp) ⇐⇒ β = αpk for somek ∈ Z (2.62)

for eachβ ∈ R. By Theorem 2.4.8 the semigroup(T̃p(t))t≥0 converges exponentially to
a rotation group on a subspaceXp

1 of Xp having the form

Xp
1 = lin

{
f ∈ D(Ãp) : Ãpf = iαpkf for somek ∈ Z

}
. (2.63)

The period of the rotation is given by the formula (2.58) for the cycles inGp. Since
Xp

1 ⊂ X1 for eachp, we conclude that

Y := X1
1 ⊕ · · · ⊕Xq

1 ⊆ X1.

We will show that equality holds, in this way proving that thesemigroup converges to a
direct sum of rotation groups with the appropriate periods.For this purpose it suffices to
show that if for someβ ∈ R andf 6= 0 we haveÃf = iβf, thenf ∈ Y. By Corollary
2.2.14 we know that

Ãf = iβf ⇐⇒ Aiβ(Lf) = Lf.

LetL(p) := Φ−
p ⊗ δ1, p = 0, . . . , q, whereΦ−

p denotes the matrix obtained from the rows
of Φ− belonging to the vertices that correspond to the blockQλ

p in the adjacency matrix.

Similarly, letD(p)
λ := ελE

−1
λ (Φ−

w,p)
> whereΦ−

w,p is obtained fromΦ−
w in the same way.

Sincer(Qiβ
0 ) < 1, clearly

L(0)f = 0.

Hence there existsp ∈ {1, . . . , q} such thatL(p)f 6= 0 and

Qiβ
p L

(p)f = L(p)f.

Again by Corollary 2.2.14, this is equivalent to the fact that the identity

Ãp

(
D

(p)
iβ L

(p)f
)

= iβ
(
D

(p)
iβ L

(p)f
)

(2.64)
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holds, henceβ = αpk for somek ∈ Z. Forp = 1, . . . , q we denote

kp :=

{
l, if β = αpl for somel ∈ Z,
0, otherwise.

A simple calculation shows that

f = DiβLf =

q∑

p=0

D
(p)
iβ L

(p)f =

q∑

p=1

D
(p)
iβ L

(p)f.

By (2.64),

Ãp

(
D

(p)
iβ L

(p)f
)

= iαpkp

(
D

(p)
iβ L

(p)f
)
,

and using (2.63) we obtain thatf ∈ Y .

§ 2.5 THE (LIQ) CASE

We have seen that condition(LD� ) yields periodic limit semigroups. As we will show
now, this condition is also necessary for the existence of such a nontrivial limit flow.
First we prove that under the condition(LI� ) the eigenvalue structure of̃A is completely
different from the(LD� ) case.

THEOREM 2.5.1 Suppose that(LI� ) holds and that the graphG is strongly con-
nected.

1. With the notations of Proposition 2.3.6 we haveX0 = X1. In particular,

σ(Ã) ∩ iR = {0}.

2. On the other hand,

sup
{

Reλ : λ ∈ σ(Ã), λ 6= 0
}

= 0.

PROOF Let iβ ∈ σ(Ã). This means, by the characteristic equation (2.36), that1 ∈
σ(Aq̃+iβ). Since1 ∈ σ(Aq̃), from Lemma 2.4.6 follows that this happens only if

s∏

l=1

eiβτjl
(0,1) = 1,

hence

β
s∑

l=1

τjl
(0, 1) = 2π · kZs

for somekZs
∈ Z

for all Zs = {ej1 , . . . , ejs
} forming a cycle in the graph. Ifβ 6= 0, this contradicts(LI� ).

We now prove the second statement by showing that for every “infinite” rectangle

Rε,K = {z ∈ C : −ε ≤ Re z ≤ ε, K ≤ Im z} (ε,K > 0)
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Figure 2.3: The spectrum of̃A in the(LI� ) case

we haveσ(Ã) ∩ Rε,K 6= ∅ (see Figure 2.3). Consider the holomorphic functionh(λ) :=
det (1 −Aλ). By (2.36),λ ∈ σ(Ã) if and only if h(λ) = 0. For every rectangleRε,K

we construct a rectangleR′⊂Rε,K such that the curveh(∂R′) goes around zero with the
multiplicity of the root0. This clearly proves the existence of a root ofh in R′, hence in
Rε,K.
Fix nowε,K > 0. From condition(LI� ) follows that also the set

{τj1(0, 1) + · · · + τjk
(0, 1) : ej1 , . . . , ejk

form vertex disjoint cycles inG}

is strongly linearly independent overQ. Hence, according to Lemma 2.3.9, for anyδ > 0
we can findρ > K such that

|ρ (τj1(0, 1) + · · ·+ τjk
(0, 1)) − 2πl| < δ (2.65)

for all ej1, ej2 , . . . , ejk
forming vertex disjoint cycles inG, and for an appropriatel ∈ Z

depending on the edge indices. As we have seen in (2.46), the functionh(z) is a sum of
terms of the form

cez(τj1
(0,1)+···+τjk

(0,1)),

whereej1, . . . , ejk
form vertex disjoint cycles inG. For−ε ≤ Re z ≤ ε we have
∣∣∣ce(z+iρ)(τj1

(0,1)+···+τjk
(0,1)) − cez(τj1

(0,1)+···+τjk
(0,1))

∣∣∣ ≤

≤ |c|eε(τj1
(0,1)+···+τjk

(0,1))
∣∣∣eiρ(τj1

(0,1)+···+τjk
(0,1)) − 1

∣∣∣ .

By (2.65) and using that the exponential function is holomorphic onC, there exists̃C > 0
such that

∣∣∣eiρ(τj1
(0,1)+···+τjk

(0,1)) − 1
∣∣∣ =

∣∣∣eiρ(τj1
(0,1)+···+τjk

(0,1)) − ei2πl
∣∣∣ ≤ C̃ · δ

for every appropriate indicesj1, . . . , jk. So, there is a constantC for which

|h (z + iρ) − h (z)| < C · δ (2.66)



§ 2.5. THE(LI�) CASE 39

holds whenever−ε ≤ Re z ≤ ε.
Sinceσ(Ã) is discrete, one can find a rectangle

R′′⊂{−ε ≤ Re z ≤ ε}

such thatR′′ ∩ σ(Ã) = {0}. Since0 is a root ofh, the curveh(∂R′′) goes around zero
with the multiplicity of0. If δ is small enough, (2.66) forR′ := R′′ + iρ ⊂ Rε,K implies
that the curveh(∂R′) also goes around zero with the multiplicity of0, which completes
the proof.

In case(LI� ), not only the periodic limit but also the uniform convergence is lost. The
following theorem is the counterpart to Theorem 2.4.8.

THEOREM 2.5.2 Assume(LI� ) and that the graphG is strongly connected. Using
the notation of Proposition 2.3.6,̃T (t) converges strongly but not uniformly toPrX0 – the
projection toX0 – onX.

PROOF The strong convergence onX means that

‖T̃ (t)f − PrX0f‖X → 0 (2.67)

for everyf ∈ X. By Theorem 2.5.1.1, for the projectionQ of Proposition 2.3.6.1 we have
ranQ = X0, soQ = PrX0 which gives (2.67). By Theorem 2.5.1.2 this convergence can
not be uniform.





Chapter 3

Flows with dynamic ramification nodes

In this chapter we still consider flows in a network, but change the transmission process
in the nodes. Instead of conservation of mass as in Chapter 2,we assume that thevelocity
of the outgoing flow mass in the vertices is determined by the total incoming flow mass.
In addition, we take into consideration a control process ineach vertex, depending on the
outgoing flow mass in the other vertices. However, for the sake of simplicity, we assume
now that the flow velocities are constant on each edge and there is no absorption/inflow.
This problem can be described in the following way. On the edges we choose the same
transport equations (with adequate initial conditions) asin the previous chapter.

{
∂
∂t
uj (t, s) = cj

∂
∂s
uj (t, s) , s ∈ (0, 1) , t > 0,

uj (0, s) = fj (s) , s ∈ (0, 1) ,

wherefj ∈ L1 [0, 1] for j = 1, . . . , m.

The boundary conditions in the vertices contain again the distribution weights of the out-
going flow – that is, using the notationu(t, s) = (u1(t, s), . . . , um(t, s)),

u (t, 1) ∈ ran
(
Φ−

w

)>
, t ≥ 0,

whereΦ−
w =

(
ω−

ij

)
n×m

theweighted outgoing incidence matrixas defined in (1.3).
The new boundary condition

∂

∂t
Φ−u (t, 1) = Φ+

wu (t, 0)

means that the (sum of the) outgoing flowvelocities– and not the total outgoing flow
mass, as in(BC) in Chapter 2 – is given by the incoming flow mass in each vertexvi. We
assume that different edges have different effects on the outgoing velocities, therefore we
take a weighted sum of the incoming flow mass on the right-handside, using theweighted
incoming incidence matrixΦ+

w =
(
ω+

ij

)
n×m

defined in (1.6).

In the next step we add aboundary controlin the vertices. For this purpose we choose a
control spaceW and a linear control operatorC : W → ∂X = Cn. Then our boundary

41
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control problem becomes

∂

∂t
Φ−u (t, 1) = Φ+

wu (t, 0) + Cw(t).

In the final step we assume that the control functionw(·) is given by a feedback from the
values of the flow in the vertices. More precisely, we takew(t) = DΦ−u(t, 1). This leads
to the following system.

(DE)





∂
∂t
uj (t, s) = cj

∂
∂s
uj (t, s) , s ∈ (0, 1) , t > 0,

uj (0, s) = fj (s) , s ∈ (0, 1) ,

u (t, 1) ∈ ran(Φ−
w)

>
, t ≥ 0,

∂
∂t

Φ−u (t, 1) = Φ+
wu (t, 0) + BΦ−u (t, 1) , t ≥ 0, (BC)

Φ−u (0, 1) = x ∈ Cn,

whereB is ann× n matrix.

We can look at the boundary condition(BC) as adelay equationfor the process in the
tails of the edges, that is forΦ−u (t, 1). The time-derivative of this process – that is the
total outgoing flow velocities in the vertices – is determined by the outgoing flow mass
values atdifferentearlier times. This earlier moment depends on the flow velocities cj,
and can be computed for larget’s ast minus the time needed to pass from one endpoint
of the edge to the other. Hence, for the edgeej this yieldst − 1/cj. (If t is small, then
instead of the outgoing flow values, the flow mass on the edges at time 0 at placetcj is
taken into consideration). The total outgoing flow mass at these earlier times (resp., the
flow mass on the edges at placetcj) is the same as the mass at timet coming into the
heads of the edges, henceΦ+u (t, 0). Actually, instead of the simple sum of the incoming
flow masses we take a weighted sum of the incoming mass values on the edges written
asΦ+

wu (t, 0). It turns out that this approach leads to a systematic semigroup treatment of
the problem.

§ 3.1 WELL -POSEDNESS OF THE PROBLEM

We are going to use techniques as developed for partial differential equations with delay
by A. Bátkai and S. Piazzera in [BP04]. For this purpose we use again the space of
functions on the edges

X := L1 ([0, 1])m ∼= L1 ([0, 1],Cm) ,

and the (boundary) space of the values in the vertices

∂X := Cn.

The most significant difference to the situation in [BP04] isthat here∂X does not co-
incide with the “boundary” ofX, that is with C2m – but has (in most cases) smaller
dimension. As in (2.7), we introduce a “boundary operator”L : X → ∂X by

L := Φ− ⊗ δ1,
D (L) := W 1,1 ([0, 1],Cm) ,
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and the “delay operator”

M := Φ+
w ⊗ δ0

D (M) := W 1,1 ([0, 1] ,Cm),

in analogy to (2.8). Though we callM the “delay operator” as in [BP04], it does not act
on the “history function” (depending on time), but on the spatial distribution along the
edges. However, since the flow has finite velocity on every edge, the incoming flow is
always delayed with respect to the outgoing flow.

If we take the operator

Aw :=




c1
d
ds

0
. . .

0 cm
d
ds


 ,

D (Aw) :=
{
f ∈

(
W 1,1 [0, 1]

)m
: f (1) ∈ ran

(
Φ−

w

)>}
,

as in (2.4), then the problem(DE) can be written as an abstract Cauchy problem for the
operator

A :=

(
Aw 0
M B

)
, (3.1)

D (A) :=

{(
f

x

)
∈ D (Aw) × Cn : Lf = x

}

on the space
X := X × ∂X.

Indeed,(DE) is equivalent to

(ACP )





U ′(t) = AU(t), t ≥ 0,

U(0) =

(
f

x

)

in the sense of the following result, proved in [BP04, Corollary 3.1.4] and [BP04, Propo-
sition 3.1.8].

THEOREM 3.1.1 The system(DE) admits a solutionu with

1. u ∈ C1 ([0,+∞), X) and

2. u(t, ·) ∈W 1,1 ([0, 1],Cm) for all t ≥ 0

if and only if(ACP ) admits a continuously differentiable solutionU : R+ → X . In this
case

U(t) =

(
u(t, ·)

Φ−u(t, 1)

)
.

By standard semigroup theory (see [EN00, Section II.6]) follows that(ACP ) is well-
posed if and only if(A, D (A)) generates a strongly continuous semigroup onX . For the
well-posedness of(DE) we therefore show that the above operator (3.1) is a generator.
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In the spirit of Greiner’s approach to abstract boundary value problems (see also in
[CENN03], [KS04], [Nick04.1], [Nick04.2]), we first introduce the so-calledDirichlet
operator

Dλ :=
(
L |ker(λ−Aw)

)−1

from ∂X to ker (λ−Aw) (compare with (2.27)). In our situation this becomes

(Dλx) (s) = ελ (s) ·
((

Φ−
w

)>
x
)
, x ∈ ∂X, s ∈ [0, 1],

with

ελ (s) =




exp( λ
c1

(s− 1)) 0
. . .

0 exp( λ
cm

(s− 1))


 ,

corresponding to (2.17). Again we consider the restrictionof Aw to kerL, i.e.,

A0 := Aw |ker L∩D(Aw),

D (A0) := {f ∈ D (Aw) : Lf = 0} =
{
f ∈W 1,1 ([0, 1] ,Cm) : f(1) = 0

}
.

This operator(A0, D (A0)) generates the nilpotent left shift semigroup(T0 (t))t≥0 onX
defined by

(T0(t)f)j(s) =

{
fj(s+ cjt), s + cjt ≤ 1,
0, otherwise,

(3.2)

see (2.23). We also know that the resolvent ofA0 exists for everyλ ∈ C – as proved in
§2.2.
We now give a decomposition ofλ−A that turns out to be very useful. In the following
we denote by1 then× n identity matrix.

L EMMA 3.1.2 For anyλ ∈ C one has

λ−A = (3.3)(
IX 0

−MR (λ,A0) 1

)(
λ− A0 0

0 λ− B − Aλ

)(
IX −Dλ

0 1

)

with Aλ := MDλ ann× n matrix.

PROOF Let us denote the operator on the right-hand side of (3.3) byB and write

S :=

(
IX −Dλ

0 1

)
.

Then the condition
(

f
x

)
∈ D(B) is equivalent to the fact thatS

(
f
x

)
∈ D(A0) × Cn, which

means thatf − Dλx ∈ kerL ∩ D(Aw). This is again equivalent toLf = x, so to
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(
f
x

)
∈ D(A), hence the two domains coincide. Let

(
f
x

)
∈ D (A). Then

B
(
f

x

)
=

(
IX 0

−MR (λ,A0) 1

)(
λ− A0 0

0 λ−B − Aλ

)(
f −Dλx

x

)

=

(
IX 0

−MR (λ,A0) 1

)(
(λ−A0) (f −Dλx)

(λ−B − Aλ)x

)

=

(
(λ− A0) (f −Dλx)

−M (f −Dλx) + (λ−B − Aλ)x

)

=

(
(λ− Aw) f

−Mf + (λ−B)x

)
= (λ−A)

(
f

x

)
,

where in the last equality we usedDλx ∈ ker (λ− Aw). Now the proof is complete.

Using the above decomposition, we obtain the desired well-posedness for(ACP ), hence
for (DE).

THEOREM 3.1.3 The operator(A, D (A)) defined in(3.1) generates a strongly
continuous semigroup(T (t))t≥0 on the spaceX = X × ∂X. Hence, the system(DE) is
well-posed.

PROOF Again, we proceed as in [BP04, Theorem 3.3.1]. SinceB is bounded, using
the bounded perturbation theorem (see [EN00, Theorem III.1.3]) for the sum

A =

(
Aw 0
M 0

)
+

(
0 0
0 B

)
,

we may assume thatB = 0. From the decomposition (3.3),

A =

(
IX 0

−MA−1
0 1

)(
A0 0
0 A0

)(
IX −Dλ

0 1

)

with (
IX −Dλ

0 1

)

being an invertible operator with inverse
(
IX Dλ

0 1

)
.

By similarity, it is enough to prove that the operator

C =

(
IX −Dλ

0 1

)
A
(
IX Dλ

0 1

)

=

(
IX −Dλ

0 1

)(
IX 0

−MA−1
0 1

)(
A0 0
0 A0

)

with domainD(C) = D(A0) × ∂X is a generator.
To proceed we compute

(
IX −Dλ

0 1

)(
IX 0

−MA−1
0 1

)
=

(
IX +DλMA−1

0 −Dλ

−MA−1
0 1

)

:= I + D,
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where

D :=

(
DλMA−1

0 −Dλ

−MA−1
0 0

)
.

Using now thatM = Φ+
w ⊗δ0 : W 1,1 ([0, 1] ,Cm) → ∂X is a bounded operator, we obtain

thatMA−1
0 : X → ∂X is bounded, henceD is a bounded operator onX . So we have

C = (I + D)

(
A0 0
0 A0

)
. (3.4)

The matrix (
A0 0
0 A0

)

with domainD(C) = D(A0) × ∂X generates the strongly continuous semigroup

S(t) :=

(
T0(t) 0

0 etA0

)
, t ≥ 0.

We now use a multiplicative version of the Desch-Schappacher Perturbation Theorem
(see [EN00, Theorem III.3.1] and [EN00, Corollary III.3.4]) as stated in [BP04, Theorem
1.4.4] for the operatorC in (3.4). For this purpose we take

(
f1

f2

)
∈ Lp ([0, 1] ,X ) and

compute

∫ 1

0

S(1 − r)D
(
f1(r)

f2(r)

)
dr

=

∫ 1

0

(
T0(1 − r) 0

0 e(1−r)A0

)(
DλMA−1

0 −Dλ

−MA−1
0 0

)(
f1(r)

f2(r)

)
dr

=

∫ 1

0

(
T0(1 − r) 0

0 e(1−r)A0

)(
DλMA−1

0 f1(r) −Dλf2(r)

−MA−1
0 f1(r)

)
dr

=

(∫ 1

0
T0(1 − r)Dλ

[
MA−1

0 f1(r) − f2(r)
]

dr

−
∫ 1

0
e(1−r)A0MA−1

0 f1(r)dr

)
.

If we can show that the vector so obtained belongs toD(C), we have thatC – henceA –
is a generator by [BP04, Theorem 1.4.4]. Using the boundedness ofMA−1

0 : X → ∂X
we have

g := MA−1
0 f1 − f2 ∈ Lp ([0, 1] , ∂X) .

From (3.2) thejth coordinate can be computed as
[∫ 1

0

T0(1 − r)Dλg(r)dr

]

j

(·) = ω−
ij

∫ 1

·−1
cj

+1

e
λ
cj

(·−1+cj(1−r))
gi(r)dr

with ω−
ij 6= 0 uniquely defined byj. From this

([∫ 1

0

T0(1 − r)Dλg(r)dr

]

j

)

j=1,...,m

∈ D(A0).
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Clearly it follows that
∫ 1

0

S(1 − r)D
(
f1(r)

f2(r)

)
dr ∈ D(A0) × ∂X = D(C),

hence the proof is complete.

§ 3.2 SPECTRAL PROPERTIES

To prove asymptotic properties for the semigroup(T (t))t≥0 we now describe the spec-
trum of (A, D (A)) and determine its resolvent.

PROPOSITION 3.2.1 For λ ∈ C the following characteristic equation holds:

λ ∈ σ (A) ⇐⇒ λ ∈ σ (B + Aλ) .

Here,
Aλ = MDλ = Φ+

wελ (0)
(
Φ−

w

)>

is a weighted (transposed) adjacency matrix(see Definition 1.3.8) with entries

(Aλ)ip =

{
ω+

ije
− λ

cj ω−
pj, if vi = ej (0) andvp = ej (1) ,

0, otherwise.
(3.5)

Moreover, for anyλ ∈ ρ (A) the resolventR (λ,A) is given by

R (λ,A) =

(
[DλR (λ,B + Aλ)M + IX ]R (λ,A0) DλR (λ,B + Aλ)
R (λ,B + Aλ)MR (λ,A0) R (λ,B + Aλ)

)
. (3.6)

PROOF We follow [BP04, Proposition 3.2.1]. To compute the resolvent inλ, we have
to find for

(
g
y

)
∈ X a unique

(
f
x

)
∈ D (A) such that

(λ−A)

(
f

x

)
=

(
λf −Awf

−Mf + (λ− B)x

)
=

(
g

y

)
.

Using Lemma 2.2.8 and(λ−Aw) f = g we obtain that

f = DλLf +R (λ,A0) g = Dλx+R (λ,A0) g, (3.7)

sinceLf = x. Thereforex has to satisfy the equation

(λ− B −Aλ) x = MR (λ,A0) g + y,

whereAλ = MDλ = Φ+
wελ (0) (Φ−

w)
>. Furthermore, ifR (λ,B + Aλ) exists, from this

follows
x = R (λ,B + Aλ)MR (λ,A0) g +R (λ,B + Aλ) y. (3.8)

Using this and (3.7) we obtain

f = DλR (λ,B + Aλ)MR (λ,A0) g +DλR (λ,B + Aλ) y +R (λ,A0) g. (3.9)

Equalities (3.8) and (3.9) now imply (3.6) and

λ ∈ ρ (A) ⇐⇒ λ ∈ ρ (B + Aλ) ,

which is equivalent to the desired characteristic equation.
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From this form of the resolvent we obtain the following property.

REMARK 3.2.2 For anyλ ∈ ρ (A) , the resolventR (λ,A) is compact.

PROOF It is enough to prove that the entries of the operator matrix (3.6) are compact
operators. In the second row this is clear since the entries have range inCn. In the first row,
the second entry also has finite dimensional range containedin the span of exponential
functions. The first entry is the sum of an operator with finitedimensional range and
the resolvent of an operator having domain contained inW 1,1 ([0, 1] ,Cm) – hence being
compact by [EN00, II.4.30 (4)].

COROLLARY 3.2.3 The operator(A, D (A)) has only point spectrum.

SinceB andAλ are matrices, we can reformulate the abovecharacteristic equationas

λ ∈ Pσ (A) = σ (A) ⇐⇒ det (λ−B − Aλ) = 0. (3.10)

In the next section we will prove useful qualitative properties for the semigroup that lead
to a finer description of the spectrum ofA, particularly to a spectral decomposition. Using
the regularity of the semigroup, we will obtain a corresponding spectral decomposition
of the semigroup.

§ 3.3 ASYMPTOTIC BEHAVIOR

In order to study the qualitative (and, in particular, asymptotic) behavior of the solutions
of (DE), we first prove a regularity property of the solution semigroup. We show that this
semigroup is eventually differentiable, that is, the orbits t 7→ T (t)

(
f
x

)
are differentiable

for t large enough for every
(

f
x

)
∈ X (see [EN00, Definition II.4.13]). For this purpose

we first show how the first coordinate ofT (t)
(

f
x

)
can be obtained from the second one.

L EMMA 3.3.1 Denoting byπ1 andπ2, resp., the projections fromX to X and to
∂X, resp., we have

[
π1T (t)

(
f

x

)]

j

(r) =

{ [
(Φ−

w)
>
π2T (t− 1−r

cj
)
(

f
x

)]
j
, if 1 − tcj ≤ r ≤ 1,

fj(r + tcj), if 0 ≤ r < 1 − tcj ,

for j = 1, . . . , m, and almost allr.

PROOF If
(

f
x

)
∈ D(A), thenT (t)

(
f
x

)
defines a classical solution for(ACP ), and,

by Theorem 3.1.1, the functionπ1T (t)
(

f
x

)
is a solution for(DE) with Lπ1T (t)

(
f
x

)
=

π2T (t)
(

f
x

)
. It is easy to check that given formula forπ1T (t)

(
f
x

)
satisfies these require-

ments. Heuristically this means that
[
π1T (t)

(
f
x

)]
j
(r) is the distribution of flow mass on

the edgesej at pointr. If 1−tcj ≤ r ≤ 1 that ist ≥ 1−r
cj

, this flow mass is equal to the flow

mass that has been at the tail ofej at timet− 1−r
cj

. This is exactly the expression in the first

part of the above formula, where we have used the conditionπ1T (t)
(

f
x

)
(1) ∈ ran (Φ−

w)
>.

If 0 ≤ r < 1 − tcj , that ist < 1−r
cj

, the flow mass at pointr is equal to the initial flow
mass atr + tcj .
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If
(

f
x

)
/∈ D(A), we can choose a sequence

(
fn

xn

)
n∈�

⊂ D(A) with
(

fn

xn

)
→
(

f
x

)
asn →

+∞. From this follows for everyj = 1, . . . , m that
[
π1T (t)

(
fn

xn

)]

j [0,1−tcj)

= [fn]j |[0,1−tcj)→ [f ]j |[0,1−tcj), asn→ +∞.

We have

lim
n→∞

T (t)

(
fn

xn

)
= T (t)

(
f

x

)
, (3.11)

hence, by the continuity ofπ1,
[
π1T (t)

(
f

x

)]

j [0,1−tcj)

= [f ]j |[0,1−tcj) .

Since the convergence in (3.11) is uniform fort in compact intervals, and sinceπ2 is
continuous, we obtain

[(
Φ−

w

)>
π2T (t− 1 − r

cj
)

(
fn

xn

)]

j

→
[(

Φ−
w

)>
π2T (t− 1 − r

cj
)

(
f

x

)]

j

uniformly for r ∈ [1 − tcj , 1]. This implies that
[
π1T (t)

(
fn

xn

)]

j

|[1−tcj ,1]→
[(

Φ−
w

)>
π2T (t− 1 − ·

cj
)

(
f

x

)]

j

|[1−tcj ,1]

uniformly, hence inL1-norm on[1 − tcj, 1]. However, by (3.11) this limit is equal to
[
π1T (t)

(
f

x

)]

j

|[1−tcj ,1],

and this completes the proof.

We can now prove the differentiability of the semigroup.

THEOREM 3.3.2 The semigroup(T (t))t≥0 generated by(A, D(A)) is differentiable
for t > 2c with c = 1

minj cj
.

PROOF We have to prove the differentiability of the orbitst 7→ T (t)
(

f
x

)
for t > 2c

and every
(

f
x

)
∈ X . For this purpose fix a vector

(
f
x

)
∈ X . We will show that both

coordinates ofT (t)
(

f
x

)
are differentiable fort > 2c. The formula

T (t)

(
f

x

)
=

(
f

x

)
+ A

∫ t

0

T (s)

(
f

x

)
ds (3.12)

holds for anyC0-semigroup, see [EN00, Lemma II.1.9]. From the form (3.1) ofA we
obtain, applyingπ2 to both sides of (3.12),

π2T (t)

(
f

x

)
= x+ B

∫ t

0

π2T (r)

(
f

x

)
dr +M

∫ t

0

π1T (r)

(
f

x

)
dr.
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Denoting

v(t) := π2T (t)

(
f

x

)
,

this becomes

v(t) = x+ B

∫ t

0

v(r)dr +M

∫ t

0

π1T (r)

(
f

x

)
dr.

If t > c, then for everyj = 1, . . . , m ands ∈ [0, 1] the relation1 − tcj < s ≤ 1 holds.
Using Lemma 3.3.1, we obtain

v(t) = v(c) + B

∫ t

c

v(r)dr +M

∫ t

c

([(
Φ−

w

)>
v

(
r − 1 − ·

cj

)]

j

)

j=1,...,m

dr

= v(c) + B

∫ t

c

v(r)dr + Φ+
w

∫ t

c

([(
Φ−

w

)>
v

(
r − 1

cj

)]

j

)

j=1,...,m

dr.

This formula and the continuity ofR+ 3 t 7→ v(t) ∈ ∂X imply that the map(c,+∞) 3
t 7→ v(t) is even continuously differentiable. Hence, the statementholds forπ2T (t)

(
f
x

)
.

For the first coordinate we apply Lemma 3.3.1 again and obtain

w(t) := π1T (t)

(
f

x

)
=

([(
Φ−

w

)>
v

(
t− 1 − ·

cj

)]

j

)

j=1,...,m

for t > c.

Observe that for everys ∈ [0, 1], the function(2c,+∞) 3 t 7→ w(t)(s) is continuously
differentiable. We denote its derivative by

ẇ(t)(s) :=
d

dt
w(t)(s).

We have to show that the vector-valued function(2c,+∞) 3 t 7→ w(t) ∈ (L1[0, 1])
m is

differentiable. Lett ∈ (2c,+∞) be fixed and take a sequencehn ↓ 0. Then
∣∣∣∣
w(t+ hn)(s) − w(t)(s)

hn
− ẇ(t)(s)

∣∣∣∣→ 0 for everys ∈ [0, 1]. (3.13)

Clearly,

ẇ(t)(s) =

([(
Φ−

w

)>
v̇

(
t− 1 − s

cj

)]

j

)

j=1,...,m

, (3.14)

and this function is continuous int (and ins), becauset − 1−s
cj

> t − c > c. Thus, for
everys ∈ [0, 1] there exist0 ≤ ϑn,j(s) ≤ hn, j = 1, . . . , m, such that

[
w(t+ hn)(s) − w(t)(s)

hn

]

j

= [ẇ(t+ ϑn,j(s))(s)]j .

Rewriting (3.13), we obtain
∣∣∣[ẇ(t+ ϑn,j(s))(s)]j − [ẇ(t)(s)]j

∣∣∣→ 0 for everys ∈ [0, 1],
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j = 1, . . . , m. To apply the Lebesgue dominated convergence theorem, observe that from
(3.14),

∣∣∣[ẇ(t+ ϑn,j(s))(s)]j − [ẇ(t)(s)]j

∣∣∣ ≤ 2 sup
r∈[t−c,t+1]

∣∣∣∣
[(

Φ−
w

)>
v̇(r)

]
j

∣∣∣∣ for everys ∈ [0, 1],

if n is large enough. We therefore obtain that
∥∥∥∥∥

[
w(t+ hn) − w(t)

hn

− d

dt
w(t)

]

j

∥∥∥∥∥
L1[0,1]

→ 0,

j = 1, . . . , m, and this is what we wanted to prove.

As a consequence we have norm continuity of the semigroup forlarget. It can be found
in many books on semigroup theory, but in our main reference it is only an exercise, see
[EN00, Exercise II.4.21(1)]. Therefore we give a short proof.

COROLLARY 3.3.3 The semigroup(T (t))t≥0 is eventually norm continuous.

PROOF We will show thatt → T (t) ∈ L(X ) is norm continuous fort > 2c. Since
for every x ∈ X the function(2c,+∞) 3 t → T (t)x is differentiable, we have that
T (t)x ∈ D (A) , t > 2c, that isD (AT (t)) = X , t > 2c. The operatorsAT (t) are
closed, so by the closed graph theorem we have that they are also bounded onX for
t > 2c. Let nowt > 2c be fixed and taketn ↓ t. Then

‖T (tn) − T (t)‖L(X ) = sup
‖x‖≤1

‖T (tn) x − T (t)x‖X

= sup
‖x‖≤1

∥∥∥∥
∫ tn

t

AT (s)x ds

∥∥∥∥
X

= sup
‖x‖≤1

∥∥∥∥
∫ tn

t

T (s− t)AT (t)x ds

∥∥∥∥
X

≤ sup
‖x‖≤1

‖AT (t)x‖X · sup
s∈[0,1]

‖T (s)‖L(X ) · |tn − t|

= K · |tn − t| ,

if n is large enough. From this we obtain the statement.

We even obtain that the operators of the semigroup are compact for larget.

THEOREM 3.3.4 The semigroup(T (t))t≥0 in eventually compact.

PROOF SinceR (λ,A) is compact by Remark 3.2.2 andt 7→ T (t) is norm continu-
ous fort > 2c = 2 1

minj cj
by the above theorem, we obtain from [EN00, Lemma II.4.28]

thatT (t) is compact fort > 2c.

As a first consequence of the above result we observe that the Spectral Mapping Theorem
from [EN00, Theorem IV.3.10] holds, hence the spectral bound and the growth bound of
the semigroup coincide.
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Figure 3.1: The spectrum ofA

PROPOSITION 3.3.5 For the semigroup(T (t))t≥0 we have

σ (T (t)) \ {0} = etσ(A), t ≥ 0,

and
s (A) = ω0 (T ) .

In particular, the semigroup is uniformly exponentially stable (ω0 (T ) < 0) if and only if
the following implication holds:

λx− Bx− Aλx = 0 for some0 6= x ∈ Cn ⇒ Reλ < 0.

PROOF The first equalities follow by the eventually norm continuity of the semi-
group, see [EN00, Theorem IV.3.10] and [EN00, Corollary IV.3.11]. The second state-
ment follows from the characteristic equation (3.10) and the fact that the spectrum of
the generator of an eventually norm continuous semigroup isbounded on halfplanes
{λ : Reλ ≥ b} (cf. [EN00, Theorem II.4.18]).

From the eventually compactness of the semigroup we obtain first a spectral decomposi-
tion for the generator.

PROPOSITION 3.3.6 For the spectrum ofA the decomposition

σ (A) = ΣU ∪ ΣC ∪ ΣS

into closed subsets holds with

ΣU := σ (A) ∩ {λ ∈ C : Reλ > 0} ,
ΣC := σ (A) ∩ iR,

ΣS := σ (A) ∩ {λ ∈ C : Reλ < 0} .

Here,ΣU andΣC are finite. Furthermore, all spectral points are eigenvalues with finite
dimensional spectral projections.
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Figure 3.2: The spectrum ofT (t)

PROOF The statement is (i) and (ii) of [EN00, Corollary V.3.2].

Using the spectral mapping theorem from Proposition 3.3.5 this yields a corresponding
decomposition of the spectrum ofT (t).

COROLLARY 3.3.7 For the spectrum of the semigroup operators the decomposition

σ(T (t)) = σU(t) ∪ σC(t) ∪ σS(t)

holds with

|σU (t)| > 1,

|σS(t)| < 1,

|σC(t)| = 1

for all t ≥ 0.

Finally, this spectral decomposition implies a decomposition of the semigroup with the
following asymptotic properties.

PROPOSITION 3.3.8 There exist subspacesXS,XU andXC which are invariant un-
der the semigroup such thatX = XS ⊕ XU ⊕XC , dim XC <∞, dim XU <∞, and

• the semigroupTS (t) = T (t) |XS
is uniformly exponentially stable,

• the semigroupTU (t) = T (t) |XU
is invertible and the semigroup

(
T −1

U (t)
)

is
uniformly exponentially stable,

• the semigroupTC (t) = T (t) |XC
is a polynomially bounded group, hence has

growth bound0 in both time directions.

PROOF Using [EN00, Corollary V.3.2(iii)] we obtain the statement.
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§ 3.4 POSITIVITY

By the physical interpretation of our system as a flow of certain substance the semigroup
should be positive. As in Chapter 2 this fact will then have important consequences for the
asymptotic behavior. We investigate this aspect in our situation. We first cite from [EN00,
Theorem VI.1.8] the basic characterization for operators generating positive semigroups
(see Definition 2.1.4).

PROPOSITION 3.4.1 Let(A,D(A)) be the generator of a strongly continuous semi-
group on a Banach latticeX.

(i) The semigroup is positive if and only if the resolventR (λ,A) is a positive operator
for all λ large enough.

(ii) In the finite dimensional case, the semigroup is positive if and only if the matrixA
is real and positive off-diagonal.

Based on the above criteria we can characterize the positivity of our semigroup.

THEOREM 3.4.2 If B ∈ Mn (C) is real and positive off-diagonal, then the semi-
group(T (t))t≥0 generated by(A, D (A)) is positive.

PROOF We will use Proposition 3.4.1 and show thatR (λ,A) is positive forλ large
enough. For this purpose we have to prove that the entries of the operator matrix (see
(3.6))

R (λ,A) =

(
[DλR (λ,B + Aλ)M + IX ]R (λ,A0) DλR (λ,B + Aλ)
R (λ,B + Aλ)MR (λ,A0) R (λ,B + Aλ)

)

are all positive for largeλ. As can be seen from the form (2.16) ofR (λ,A0),

(R(λ,A0)f) (s) =

∫ 1

s

ελ(s)ελ(σ)−1C(σ)−1f(σ)dσ, s ∈ [0, 1] , f ∈ X,

it is positive for every realλ. Observe that the operatorM = Φ+
w ⊗ δ0 is positive because

Φ+
w is a positive matrix. HenceMR (λ,A0) is also positive for realλ.

Under the above assumptions,B generates a positive (matrix)semigroup, henceR (λ,B)
is positive forλ large enough. Using the equality

λ− B −Aλ = (1 −AλR (λ,B)) (λ− B)

and the Neumann series

R (λ,B + Aλ) = R (λ,B)
∞∑

n=0

(AλR (λ,B))n ,

by Aλ ≥ 0 we obtain thatR (λ,B + Aλ) is also positive for largeλ. Combining all
these facts with the positivity ofDλ = ελ (Φ−

w)
>, we have that all the entries of (3.6) are

positive for largeλ.
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Combining the positivity and the eventually norm continuity of the semigroup(T (t))t≥0,
we obtain that the generatorA has a dominant eigenvalue (see [EN00, Theorem VI.1.10]).
More precisely, the following holds.

PROPOSITION 3.4.3 If B be is real and positive off-diagonal, then there existsε >
0 such that

σ (A) = {s (A)} ∪ {λ ∈ σ (A) : Reλ ≤ s (A) − ε} .

In order to determine the dominant eigenvalues (A) we first state an important property
of the spectral bound function

s(λ) := s (B + Aλ) ,

which can be found in [BP04, Proposition 6.2.5].

L EMMA 3.4.4 Let B be real and positive off-diagonal. Then the spectral bound
functionR 3 λ 7→ s(λ) is decreasing and continuous.

PROPOSITION 3.4.5 Let B ∈ Mn (C) be real and positive off-diagonal. Then
s (A) is the unique real solution of the characteristic equation

λ = s (λ) (3.15)

and for the spectral bounds (A) the following equivalences hold:

s (λ) S λ⇐⇒ s (A) S λ.

PROOF From the assumption follows thatB, hence(A, D(A)) generate positive
semigroups, see Theorem 3.4.2. Clearlyσ (B) 6= ∅, hence−∞ < s(B) ≤ s(λ) for
all λ ∈ R by the positivity ofAλ, and using that for positive matrices the spectral bound
equals the spectral radius. By the above Lemma 3.4.4 the equation (3.15) has a unique
solutionλ0. SinceB + Aλ generates a positive semigroup, we can again use [EN00,
Theorem VI.1.10] and obtainλ0 = s (λ0) ∈ σ (B + Aλ0), henceλ0 ∈ σ (A) by (3.10).
However, for allµ > λ0, using Lemma 3.4.4, we have

µ > λ0 = s (λ0) ≥ s (µ) ,

henceµ /∈ σ (B + Aµ) and soµ ∈ ρ (A) by (3.10). Thereforeλ0 = s (A). The estimates
ons (A) follow from these considerations.

From Proposition 3.3.5 and 3.4.5 we obtain a simple necessary and sufficient condition
for the uniform exponential stability of the semigroup.

COROLLARY 3.4.6 If B ∈ Mn (C) is real and positive off-diagonal, then the
semigroup(T (t))t≥0 is uniformly exponentially stable if and only if the spectral bound
s (B + A0) < 0.

I NTERPRETATION — The above characterization of uniform exponential stability de-
pends on the spectral bound ofB+A0. HereA0 is the usual (weighted) adjacency matrix
of our graph. The matrixB can be interpreted as the (weighted) adjacency matrix of an
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“imaginary” graph, whose vertices belong to the original graph but the edges do not. Its
(directed) edges are those along which we control the outgoing flow velocities, depending
on the outgoing flow mass in the vertices. This control happens in every time moment
immediately. Hence we can say that on these “imaginary edges” the information passes
with infinite velocity. Observe that from Proposition 3.4.5follows that

s (A) < 0 ⇐⇒ s (B + A0) < 0,

s (A) > 0 ⇐⇒ s (B + A0) > 0

ands (A) = 0 ⇐⇒ s (B + A0) = 0,

that is only thejoint structure of the original graph and the “imaginary graph” determines
the asymptotic behavior of the system. That means, we can change “real” edges to “imag-
inary” edges and vice versa without changing the stability of the whole system. In other
words:

“Stability is independent of the velocity of transportation.”

In the case in whichB is a (real) diagonal matrix – i.e., in each vertex, the effectof
the outgoing flow mass on its velocity is independent of the other vertices –,B always
generates a positive semigroup and we obtain the following simple criteria.

COROLLARY 3.4.7 If B ∈ Mn (C) is diagonal andB ≤ −α · 1 with α > s (A0) ,
then the semigroup is uniformly exponentially stable.

PROOF Under the assumptionsB + A0 ≤ −α · 1 + A0, hence, using positivity,
s (B + A0) ≤ s (−α · 1 + A0) < 0. By Corollary 3.4.6 we obtain uniform exponential
stability for (T (t))t≥0.

§ 3.5 IRREDUCIBILITY

In this section we always assume thatB ∈ Mn (C) is real and positive off-diagonal,
hence the semigroup(T (t))t≥0 is positive. We are now going to investigate when our
semigroup becomesirreducible (see Definition 2.3.1). In this cases (A) is an alge-
braically simple pole of the resolvent of the generatorA, admitting a one dimensional
spectral projectionP , and we can describe precisely the asymptotic behavior of(T (t))t≥0.

PROPOSITION 3.5.1 If the matrixB + A0 is irreducible, then(T (t))t≥0 is irre-
ducible onX .

PROOF From Proposition 3.4.5 follows thatλ > s (A) holds if and only ifλ >
s (B + Aλ) . Since the zero patterns ofB+A0 andB+Aλ coincide for everyλ ∈ C, the
assumptions imply thatB+Aλ is irreducible for everyλ ∈ R. Using [Sch74, Proposition
I.6.2] we obtain that forλ > s (A) the matrixR (λ,B + Aλ) is strictly positive. Take
now a vectorL1 ([0, 1],Cm) × Cn 3

(
f
x

)
� 0, and investigateR (λ,A)

(
f
x

)
using

R (λ,A) =

(
[DλR (λ,B + Aλ)M + IX ]R (λ,A0) DλR (λ,B + Aλ)
R (λ,B + Aλ)MR (λ,A0) R (λ,B + Aλ)

)
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from (3.6). In the second coordinate we obtain

R (λ,B + Aλ)MR (λ,A0) f +R (λ,B + Aλ) x,

where the second term is strictly positive by the above consideration. From the form of
R (λ,A0) follows that the functionR (λ,A0) f is strictly positive except on the largest
interval(1 − ε, 1] for whichf |(1−ε,1]= 0. ApplyingM = Φ+

w ⊗δ0 to it we obtain a vector
y of positive numbers, henceR (λ,B + Aλ) y yields a strictly positive vector. For the
first coordinate we have

DλR (λ,B + Aλ)Mf +R (λ,A0) f +DλR (λ,B + Aλ) x.

As before, we have thatR (λ,B + Aλ)Mf andR (λ,B + Aλ) x are strictly positive
vectors of numbers. Using the strict positivity of exponential functions and the positivity
of (Φ−

w)
>
, we obtain thatDλ = ελ (Φ−

w)
> is strictly positive, hence the first and third

terms are vectors of (everywhere) strictly positive functions. The second term is again
positive, hence the sum yields a strictly positive vector ofL1[0, 1]-functions.

The irreducibility ofB+A0 can again be related to the strong connectedness of the graph
G, see Proposition 1.3.10. IfG is already strongly connected, thenA0 is irreducible,
hence for any positive off-diagonalB, the matrixB+A0 is irreducible and the assumption
in the above theorem is satisfied. If the graph is not stronglyconnected, we can describe
the irreducibility ofB + A0 in the following way. Let us assume thatB has positive
entriesbip > 0 for index pairs(ip) such that adding edges toG pointing fromvp to vi we
obtain a strongly connected graph. In this caseB+A0 becomes irreducible, and we again
have the result above. The condition on the entries ofB means that the outgoing flow is
controlled along such “imaginary” edges that make the graphstrongly connected. Hence,
here also only thejoint structure of the “real” and the “imaginary” graph determines the
irreducibility.

COROLLARY 3.5.2 Assume that after adding edges toG from vp to vi where the
corresponding entry ofB = (bip)n×n is different from0, the graphG becomes strongly
connected. Then the semigroup(T (t))t≥0 is irreducible onX .
The following result on the asymptotics of the semigroup nowfollows from the general
theory of positive semigroups (see [Nag86, Chapter C-IV] and [EN00, Section V.3]).

THEOREM 3.5.3 Under the conditions of Corollary 3.5.2 there exists a strictly pos-
itive one-dimensional projectionP = µ ⊗ y, µ ∈ X ′ with Px = µ(x) · y for all x ∈ X ,
such that

lim
t→+∞

∥∥e−s(A)tT (t) −P
∥∥ = 0.

If s (A) = 0 (e.g.B = −s (A0) · 1), then(T (t))t≥0 converges to the projectionP.

PROOF By Proposition 3.4.3 we know that the spectral bounds (A) is a dominant
eigenvalue ofA. Using the irreducibility and [Nag86, Proposition C-III.3.5], s (A) is a
first-order pole of the resolvent and the corresponding residue has the formP = µ ⊗ y,
whereµ and y are strictly positive eigenvectors ofA′ andA, respectively. By [EN00,
Corollary V.3.3] we now have the desired result.

The property above is calledbalanced exponential growth(or asynchronous exponential
growth) and plays an important role in applications, e.g., to population equations (see
[DBW02]).





Chapter 4

Examples

1As a first concrete example we investigate an orientation of the well-known Petersen
graph. On this graph we consider the process described by thesystem(F ) (see Chapter
2) with constant velocities (normalized to1) and no absorption – that is,cj ≡ 1 andqj ≡ 0
on all edges.

v

v4

5

v1

v
2

v3

v6

v
7

v8

v9v10

Figure 4.1: An oriented Petersen graph

By Theorem 2.4.8, the system is asymptotically periodic with period equal togcd{cycle
lengths}, hence in our case equal to1. We are now interested in the velocity of the

1Computations made with Maple

59
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convergence, that is the (optimal) value ofε in Proposition 2.4.5 for which

‖T2(t)‖ ≤M · e−εt.

More precisely we investigate howε is related to the weights on the edges. From the
characteristic equation (2.39) and the Circular Spectral Mapping Theorem 2.4.3 follows
that

ε = − log r, (4.1)

wherer is the second largest absolute value – that is, the largest absolute value different
from 1 – of the spectral points of̃A in (2.38).

1. To start we choose identical outgoing flow mass proportions for each ramification
node. Then the weighted adjacency matrix is

Ã1 :=




0 0 0 0 0.5 0 0 0 0 0
0.5 0 0 0 0 0 0 0.5 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0.5 0 0 0 0 0 0 0.5
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0.5 0 0 0.5 0 0

0.5 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0.5
0 0 0.5 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0




.

Its eigenvalues are (approx.):

1.0,

0.35944 + 0.81346i, 0.35944 − 0.81346i,

−0.57462 + 0.6659i, −0.57462 − 0.6659i,

0.2135 + 0.5791i, 0.2135 − 0.5791i,

−0.6478 + 0.16971i, −0.6478 − 0.16971i,

0.29897.

The corresponding absolute values (different from 1) are:

r1 =
√

0.359442 + 0.813462 = 0.88933

r2 =
√

0.574622 + 0.66592 = 0.87955,

r3 =
√

0.21352 + 0.57912 = 0.6172,

r4 =
√

0.64782 + 0.169712 = 0.66966.

Hence, in this caseε ≈ − ln
√

0.359442 + 0.813462 ≈ − ln 0.88933 ≈ 0.11728.

2. We now change the proportions in the vertexv1 such that80% part of the mass
flows into the “inner part” of the graph, hence to the vertexv7, i.e.,
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Ã2 :=




0 0 0 0 0.5 0 0 0 0 0
0.2 0 0 0 0 0 0 0.5 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0.5 0 0 0 0 0 0 0.5
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0.5 0 0 0.5 0 0

0.8 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0.5
0 0 0.5 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0




.

Computing the greatest non-1 absolute value of the spectrum points we have

r1 =
√

0.355052 + 0.831632 = 0.90425.

Hence, in this case the convergence speed is smaller.

3. We next require that more flow mass fromv1 remains in the “outer part” of the
graph, e.g., only20% of the flows goes into the vertexv7, hence

Ã3 :=




0 0 0 0 0.5 0 0 0 0 0
0.8 0 0 0 0 0 0 0.5 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0.5 0 0 0 0 0 0 0.5
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0.5 0 0 0.5 0 0

0.2 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0.5
0 0 0.5 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0




.

Since there is an eigenvalue with modulusr1 =
√

0.582242 + 0.674692 = 0.89118,
the convergence speed is again smaller than in case1 but greater than in the previous
case.

4. We now set equal outgoing flow proportions in the “outer part” of the graph, and
change the weights inv8 in the following way.

Ã4 :=




0 0 0 0 0.5 0 0 0 0 0
0.5 0 0 0 0 0 0 0.2 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0.5 0 0 0 0 0 0 0.5
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0.5 0 0 0.8 0 0

0.5 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0.5
0 0 0.5 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0




.
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Here the absolute valuer3 =
√

0.353752 + 0.852312 = 0.92281 of the 3d eigen-
value is greater than any absolute value in the first example –, the convergence
speed will be smaller than in the case of equal proportions.

5. In the next step we change the proportions forv8 in the opposite direction and obtain

Ã5 :=




0 0 0 0 0.5 0 0 0 0 0
0.5 0 0 0 0 0 0 0.8 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0.5 0 0 0 0 0 0 0.5
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0.5 0 0 0.2 0 0

0.5 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0.5
0 0 0.5 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0




.

Since the modulus of the first spectral point isr1 =
√

0.538922 + 0.711542 =
0.89259, the convergence speed is smaller than in the first case, but it is greater
than in case 4.

6. We now investigate in general how the weight inv1 as parameter effects the con-
vergence speed to the periodic semigroup. Let

Ã6 :=




0 0 0 0 0.5 0 0 0 0 0
a 0 0 0 0 0 0 0.5 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0.5 0 0 0 0 0 0 0.5
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0.5 0 0 0.5 0 0

1 − a 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0.5
0 0 0.5 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0




for 0 < a < 1. The characteristic polynomial becomesp(z) = z10 − 0.5z5 −
0.375z4 − 0.0625(1 + a) · z2 − 0.0625z + 0.0625a. Clearly,z1 = 1 is a root of
p(z). Dividing p(z) by z−1 yields a polynomialp1(z) whose root with the greatest
absolute value – depending ona – is the valuer occuring in (4.1). Actually,r is
the greatest absolute value of the roots of the polynomialp̃1(z) = 16z9 + 16z8 +
16z7 + 16z6 + 16z5 + 8z4 + 2z3 + 2z2 + (1 − a) z − a. Figure 4.2 shows howr
depends ona.

The value ofr has a minimum at approximatelya = 0.6085±0.0003, which means
that in this case the convergence speed is maximal.
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Figure 4.2:r = e−ε (ε: convergence speed) depending on the weight inv1

7. We now take equal outgoing flow proportions inv1 and investigate the effect of
different proportions in an “inner” vertex.

Ã7 :=




0 0 0 0 0.5 0 0 0 0 0
0.5 0 0 0 0 0 0 a 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0.5 0 0 0 0 0 0 0.5
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0.5 0 0 1 − a 0 0

0.5 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0.5
0 0 0.5 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0




.

We obtain a relationship as shown on Figure 4.3 between the parametera and the
second greatest absolute value of the spectral pointsr.

The maximal convergence speed is attained ata ≈ 0.56295 ± 0.00006.

We now investigate an orientation of the Herschel graph, seeFigure 4.4.

On this graph we again consider the process described by the system(F ) (see Chapter 2)
with constant velocities (normalized to1) and no absorption – that is,cj ≡ 1 andqj ≡ 0
on all edges.
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Figure 4.3:r = e−ε (ε: convergence speed) depending on the weight inv8

By Theorem 2.4.8, the system is asymptotically periodic with period equal togcd {cycle
lengths}, hence in our case equal to2. We are again interested in the velocity of the
convergence, that is the (optimal) value ofε in Proposition 2.4.5 for which

‖T2(t)‖ ≤M · e−εt.

1. We set at the vertexv1 outgoing weightsa resp.1 − a into the vertexv5 resp.v9.
Then the weighted adjacency matrix becomes

Ã1 :=




0 1 0 1 0 0 0 0 0 0 0
0 0 0.5 0 0 0.5 0 0 0 0 0
0 0 0 0 0 0 0.5 0 0 0 0.5
0 0 0.5 0 0 0 0 0 0 0.5 0
a 0 0 0 0 0 0 0.5 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0.5 0 0 0 0 0
0 0 0 0 0 0 0.5 0 0 0 0.5

1 − a 0 0 0 0 0 0 0.5 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0.5 0




with 0 < a < 1. Computing the characteristic polynomial, we obtainp(z) =
z11 − 0.75z7 − 0.25z5 – hence, it does not depend on the weights inv1. As a
consequence, the eigenvalues and the convergence speed arealso independent ofa.
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Figure 4.4: An oriented Herschel graph

For the eigenvalues we obtain−1, 1, 0 and approximately0, 707107i,−0, 707107i.
Hence, the convergence speed is

ε ≈ − log 0, 707107 ≈ 0.346574.

2. If we now require equal distribution weights inv1 and change them in the vertexv8,
we obtain as adjacency matrix

Ã2 :=




0 1 0 1 0 0 0 0 0 0 0
0 0 0.5 0 0 0.5 0 0 0 0 0
0 0 0 0 0 0 0.5 0 0 0 0.5
0 0 0.5 0 0 0 0 0 0 0.5 0

0.5 0 0 0 0 0 0 a 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0.5 0 0 0 0 0
0 0 0 0 0 0 0.5 0 0 0 0.5

0.5 0 0 0 0 0 0 1 − a 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0.5 0




.
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Surprisingly, the characteristic polynomial – hence also the eigenvalues – is the
same as in the previous case. Therefore the convergence speed again does not
depend on the distribution weights and it has the same value as before.

3. We now change the weights in the vertexv7 and obtain

Ã3 :=




0 1 0 1 0 0 0 0 0 0 0
0 0 0.5 0 0 0.5 0 0 0 0 0
0 0 0 0 0 0 a 0 0 0 0.5
0 0 0.5 0 0 0 0 0 0 0.5 0

0.5 0 0 0 0 0 0 0.5 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0.5 0 0 0 0 0
0 0 0 0 0 0 1 − a 0 0 0 0.5

0.5 0 0 0 0 0 0 0.5 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0.5 0




.

The eigenvalues are:0 with multiplicity 5, further1 and−1 with multiplicity 1, and

z1,2 = ±1

2

√
−2 +

√
2 − 4a,

z3,4 = ±1

2

√
−2 −

√
2 − 4a.

Figure 4.5:|z1,2| depending ona
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Figures 4.5 and 4.6 illustrate how|z1,2| resp.|z3,4| depend on the parametera.

We are interested in the root with the largest absolute valuedifferent from1. If
0 < a ≤ 0.5, then|z3,4| ≥ |z1,2| and if0.5 ≤ a < 1, then the absolute values ofz1,2

andz3,4 all coincide. It is easy to see that fora = 0.5 the minimum of the (second)
largest absolute value, that is|z3,4|, is attained and is equal tor = 1

2

√
2. Hence, the

convergence speed is

ε = − log
1

2

√
2 ≈ 0.34657.

Figure 4.6:|z3,4| depending ona

Final remark. A systematic analysis of the dependence of the convergence speed
on the weights of the graph edges is, at this stage, not in sight.
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[Per60] O. Perron,Irrationalzahlen, Walter de Gruyter & Co., Berlin, 1960.



72 BIBLIOGRAPHY

[Pit37] H. R. Pitt,A theorem on absolutely convergent trigonometrical series,
J. Math. Phys.16 (1937), 191–195.

[Rha97] A. Rhandi,Extrapolation methods to solve non-autonomous retarded
partial differential equations, Studia Math.126(1997), 219–233.

[Rob03] P. Robert,Stochastic networks and queues, Translated from the 2000
French edition, Springer-Verlag, Berlin, 2003.

[Sch74] H. H. Schaefer,Banach Lattices and Positive Operators, Grundlehren
Math. Wiss., vol.215, Springer-Verlag, New York-Heidelberg, 1974.

[Schr03] A. Schrijver,Combinatorial Optimization. Polyhedra and Efficiency. Vol.
C, Springer-Verlag, Berlin, 2003.

[Sik04] E. Sikolya,Flows in networks with dynamic ramification nodes, preprint.

[Str01] S. H. Strogatz,Exploring complex networks, Nature410 (2001), 268–
276.



Appendix A

Zusammenfassung in deutscher Sprache

Das Ziel der vorliegenden Arbeit ist, lineare Transportprozesse (oder Flüsse) in Netz-
werken zu untersuchen. Zu diesem Zweck stellen wir den funktionalanalytischen Rahmen
auf und benutzen halbgruppen- und spektraltheoretische Methoden. Die Hauptresultate
stammen aus den Artikeln [KS04], [MS04] und dem Preprint [Sik04].

Im ersten Kapitel geben wir eine kurzëUbersicht über die wichtigsten Notationen und
Sätze aus der Graphentheorie, die zur Behandlung des funktionalanalytischen Modells
nötig sind. Wir modellieren das Netzwerk durch einen gerichteten Graphen, auf dessen
Kanten eine Substanz in die angegebenen Richtungen fliesst und in den Ecken neu verteilt
wird.

Im zweiten Kapitel betrachten wir Transportprozesse in Netzwerken mit statischen Ver-
zweigungsknoten. Das bedeutet, dass wir in jedem Zeitpunktin den Ecken Bedingungen
für die Menge der Flussmasse vorschreiben. Insbesondere verlangen wir, dass die gesam-
te einkommende gleich der gesamten ausgehenden Flussmasseist (Kirchhoffsche Regeln)
und dass die ausgehende Flussmasse in die ausgehenden Kanten nach angegebenen Pro-
portionen weiterfliesst. Wir zeigen, dass das zugehörige System von partiellen Differen-
tialgleichungen und entsprechenden Randbedingungen als ein abstraktes Cauchy Problem
auf einem Banachraum umgeschrieben werden kann. Wir zeigendie Wohlgestelltheit
dadurch, dass der unterliegende Operator eine starkstetige Halbgruppeerzeugt, die die
Lösungen für das originelle System angibt. Mit Hilfe von spektral- und halbgruppentheo-
retischen Methoden können wir präzise das asymptotischeVerhalten von der Halbgruppe
– d.h., von dem Prozess in dem Netzwerk – beschreiben. In der Qualität der Asymptotik
zeigt sich eine Dichotomie, abhängig davon ob eine zahlentheoretische Bedingung für
die Flussgeschwindigkeiten auf den Kanten – siehe Definition 2.3.7 – besteht oder nicht.
Den ersten Fall untersuchen wir in§2.4, und hier konvergiert der Prozess gleichmässig
gegen einen periodischen Fluss, dessen Periode von der Graphenstruktur bestimmt ist,
siehe Theoreme 2.4.8 und 2.4.11. Im zweiten Fall – betrachtet in §2.5 – konvergiert der
Fluss in der starken Operatortopologie gegen ein Gleichgewicht.

Wir untersuchen dann im Kapitel 3 Transportprozesse, bei denen in den Verzweigungs-
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knoten dynamische Bedingungen vorgeschrieben sind. Das heisst, die Geschwindigkeit
der gesamten ausgehenden Flussmasse ist bestimmt als eine gewichtete Summe von ein-
kommenden Flussmengen plus ein Term, der von den ausgehenden Flussmasswerten in
den Ecken abhängt. Der zweite Term kann auch als eineFeedback-Kontrolleder ausge-
henden Flussgeschwindigkeiten interpretiert werden, wo sich die Kontrolle entlang “ima-
ginären Kanten” abspielt, deren Endpunkte Ecken in dem originellen Graphen sind, die
aber nicht unbedingt zu der originellen Kantenmenge gehören. Zur Behandlung dieses
Problems benutzen wir einen entsprechend modifizierten halbgruppentheoretischen An-
satz für retardierte Differentialgleichungen, der in [BP04] entwickelt wurde. Wir können
die Wohlgestelltheit wieder dadurch beweisen, dass wir dasProblem in die Form ei-
nes abstrakten Cauchy Problems umschreiben und so eine starkstetige Halbgruppe be-
kommen, die die Lösungen angibt. Wir zeigen, dass diese Halbgruppe wichtige Regu-
laritätseigenschaften hat (siehe Theoreme 3.3.2 und 3.3.4), die den “Spektralen Abbil-
dungssatz” implizieren. Bei der Untersuchung der Asymptotik stellt sich in§3.4 heraus,
dass wenn die Halbgruppe positiv ist, deren Stabilität an der Negativität der Spektral-
schranke der sog.Adjazenzmatrix(siehe Definition 1.3.6) von einem Graphen liegt. Die-
ser Graph entsteht dadurch, dass wir zu dem originellen Graphen die “imaginären Kan-
ten” addieren, entlang denen die Feedback-Kontrolle wirkt(siehe Corollary 3.4.6 und die
nachfolgende Interpretation). In dem Fall von Irreduzibilität (§3.5) konvergiert die Halb-
gruppe gegen ein Gleichgewicht, wenn die gemeinsame Struktur des originellen und des
“imaginären” Graphen stark zusammenhängend ist (siehe Theorem 3.5.3).

Im letzten Kapitel erörtern wir Beispiele für die Situation von Kapitel 2 auf demPeter-
senundHerschel Graph, und wir berechnen die Konvergenzgeschwindigkeit gegen den
periodischen Fluss. Wir untersuchen auch, wie diese von denGewichten auf den Kanten
abhängt.
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