The Dot-Depth Hierarchy
v.
Iterated Block Products of DA

Bernd Borchert

WSI-2004-09

Universität Tübingen
Wilhelm-Schickard-Institut für Informatik
Arbeitsbereich Theoretische Informatik/Formale Sprachen
Sand 13
D-72076 Tübingen

borchert@informatik.uni-tuebingen.de

© WSI 2004
ISSN 0946-3852
The Dot-Depth Hierarchy v. Iterated Block Products of DA

Bernd Borchert
Universität Tübingen, Germany
email: borchert@informatik.uni-tuebingen.de

Abstract
Like the sequence of the classes of the dot-depth hierarchy the sequence of classes given by the n-fold iterated block product of DA has the class of starfree regular languages as its limit. It is shown that this DA-block-product hierarchy grows more slowly than the dot-depth hierarchy: in fact already Σ_2^L of the dot-depth hierarchy contains properness witnesses for all levels of the DA-block-product hierarchy.

1 Introduction
The dot-depth hierarchy is a way to classify the complexity of starfree regular languages: the lower a starfree language sits in the dot-depth hierarchy the less complex it is supposed to be. But there exist alternative ways to classify the starfree languages which are only partially comparable with the dot-depth hierarchy, for example the until/since depth from temporal logic [TW04].

Another classification of the starfree languages is considered here: the hierarchy given by the n-fold iterated block product of DA. DA is the set of monoids corresponding as syntactic monoids to the languages in Σ_2^L of the the dot-depth hierarchy, a very robust class with many characterizations [TT02].

The block product \Box is also coming from the algebraic side and is the two-sided version of the wreath product on finite monoids, resp. on classes of monoids, see [RT89, ST02, TW04]. In this paper, DA and block products of DA will be identified with their corresponding language classes.

It is easy to see that the iterated block product DA^{\Box^n} of DA, defined strongly bracketed as

$$DA^{\Box^n} := DA \Box (\ldots (DA \Box DA)),$$

is a subset of Δ_{n+1}^L of the dot-depth hierarchy, so the two hierarchies are in one direction comparable. It is also known that Δ_{n+1}^L contains languages from $DA^{\Box n}$ which are not in the full level DD_n^L of the dot-depth hierarchy – this fact can be interpreted in the way that some parts of the DA-block-product hierarchy are growing as fast as the dot-depth hierarchy. The main result of this note is that other parts of the DA-block-product hierarchy are growing slowly compared with the dot-depth hierarchy: it is shown that already Σ_2^L contains for every $n \geq 1$ witnesses of the properness of the inclusion $DA^{\Box n} \subset DA^{[n+1] \Box}$. A graphical summary of the results is sketched in Figure 2.
Figure 1: The dot-depth hierarchy

2 Preliminairies

The dot-depth of a starfree regular language counts the minimal nesting depth of concatenations (= “dot products”) one needs to represent the language by a starfree regular expression. There are two versions of the dot-depth hierarchy: the classical one by Cohen & Brzozowski [CH71] and the variant by Straubing and Thérien [St81, The81]. They only differ slightly, see [St94], i.e. the level $n + 1$ of one contains the level n of the other. We consider in this paper only the second version, and we will use a logical characterization of its levels [Tho82, PP86]. The dot-depth hierarchy consists for every $n \geq 0$ of the classes $\Sigma^n, \Pi^n, \text{DD}_n^n$, and Δ_n, each of which is formally a mapping from the sets of finite alphabets to a set of regular languages over this alphabet. The class Σ_n is, according to a characterization of Thomas [Tho82] and Perrin & Pin [PP86], the set of languages definable with a Σ_n alternation prefix in first-order logic on words with the signature $[\prec]$ plus a unary predicate for each letter of the respective alphabet, see [St94, PW97]. Π_n is the set of complements of languages in Σ_n, DD_n^n (usually called L_n) is the Boolean closure of Σ_n, and Δ_n is defined as $\Sigma_n \cap \Pi_n$. It holds the proper inclusions as depicted in Figure 1, see for example [St94, PW97].

The syntactical monoid M_L of a language L over alphabet A consists of the equivalence classes $[u]$ for $u \in A^*$ defined by the the equivalence relation

$$[u] = [v] \iff \forall w, z \in A^* : wuz \in L \iff wuz \in L.$$ (1)
The monoid operation can be defined by $[u][v] := [w]$, especially it holds for all words u, v, w, z from Σ^*:

$$
\text{if } [u] = [v] \text{ then } [wuz] = [wvz].
$$

(2)

A language is regular iff its syntactical monoid is finite, and it is starfree iff moreover there exists a number ω such for all $x \in A^*$ it holds

$$
[x^\omega] = [x^n x^n] \text{ for every } n \geq 0.
$$

(3)

The class of monoids DA, which naming letters stand for the algebraic notions “D-classes” and “aperiodic”, is the algebraic pendant of the language class Δ^2 from the dot-depth hierarchy, in the sense that a language A is in Δ^2 if and only if its syntactical monoid M_A is in DA, see for example [PW97, TT02]. By this correspondence, and because this paper tries to stay on the language side only, DA will stand for Δ^2 from now on. The following characterization of DA, which is very close to the algebraic definition of DA, see [TT02], will be used extensively.

Lemma 1 (DA) A language L over alphabet Σ belongs to DA iff for all words $x, y, z \in \Sigma^*$ it holds in M_L:

$$
[((xyz)^{\omega} y (xyz)^{\omega})] = [(xyz)^{\omega}].
$$

(4)

For the definition of the block product we also stay on the language side (besides a little dip into the syntactic monoid), see [TW04].

Definition 1 (block product) The block product $K \Box J$ of a language J over alphabet Σ and a language $K \in DA$ over alphabet $M_J \times \Sigma \times M_J$ (where M_J is the syntactic monoid of J) is the language over alphabet Σ consisting of all words $x = x_1 \cdots x_n$ in Σ^* such that the following word $\tau(x)$ is in K:

$$
\tau(x) := ([\varepsilon], x_1, [x_2 \cdots x_n]) ([x_1], x_2, [x_3 \cdots x_n]) \cdots ([x_1 \cdots x_{n-1}], x_n, [\varepsilon]).
$$

(5)

The block product $K \Box J$ of two classes of languages K and J is the set of block products $K \Box J$ such that $K \in K$ and $J \in J$.

The block product is in general not associative, see for example [ST02]. Therefore, we have two extrem cases (and many in between) concerning the bracketing: The strongly iterated block product of n languages K_n, \ldots, K_1 (we prefer them to be numbered from the right) is defined as

$$
K_n \Box (K_{n-1} \Box (\ldots (K_2 \Box K_1)\ldots))
$$

while the n-fold weakly iterated block product is defined as

$$
((\ldots (K_n \Box K_{n-1})\ldots) \Box K_2) \Box K_1.
$$

Let $DA^{\Box n}$ be the set of all n-fold strongly iterated block products of DA languages. It holds that every weakly iterated block product of DA languages is in $DA^{\Box n}$, see for example [ST02], likewise every other bracketing of an n-fold block product of DA languages results in a language contained
in $\text{DA}^{n[]}$, This justifies that we speak of $\text{DA}^{n[]}$ as the n-fold iterated block product of DA, without mentioning the strong bracketing.

The class DA and every block product expression built on it, like $\text{DA}^{n[]}$, is a variety of languages, i.e. it is closed under Boolean operations, under left and right quotients and under inverse homomorphic images, see [Pin86, ST02].

We state the following facts about the relation of $\text{DA}^{n[]}$ and the dot-depth hierarchy. They can be derived from results in the literature, the proofs below are only sketched.

Theorem 1 Let $n \geq 1$.
(a) $\text{DA}^{n[]} \subseteq \Delta_{n+1}^L$,
(b) $\text{DA}^{n[]}$ contains languages in $\Delta_{n+1}^L - \text{DD}_n^L$,
(c) $\bigcup_{n \geq 1} \text{DA}^{n[]} = \text{equal the class of starfree languages.}$

Proof. (a) For $n = 1$ this holds by definition. For the induction consider a language L in $\text{DA}^{(n+1)[]}$, i.e. $L = L_1 \sqcap L_0$ with $L_1 \in \text{DA}$ and $L_0 \in \text{DA}^{n[]}$. In order to get a Σ_{n+2} expression for L take the Σ_2 expression for L_0 and plug the Π_{n+1} expression for L_1, which exists by induction hypothesis, into it. The two \forall levels collapse and in total it is a Σ_{n+2} expression. In order to get a Π_{n+2} expression for L plug the Σ_{n+1} formula for L_1 into the Π_2 expression for L_0. This shows $L \in \Sigma_{n+2}^L \cap \Pi_{n+2}^L = \Delta_{n+2}^L$.

(b) Consider for $n \geq 2$ two following languages D_n on alphabet $\{0, 1, \ldots, 2n - 2\}$, see [BL+04]: $D_2 = 0^*1\{0, 1, 2\}^*$, and for $n \geq 3 D_n$ consists of the words w such that the occurrences of the letters $2n - 3$ and $2n - 2$ in w are considered as markers, and w is in D_n iff the marker after the first factor between two such markers which is in D_{n-1} is $2n-1$. D_n is not only in Δ_n, as it is argued in [BL+04], but even in $\text{DA}^{(n-1)[]}$. And moreover (thanks to Klaus Wagner, Würzburg, for this hint), D_n can be shown to be not in DD_n^L by the result of [Tr02, BL+04] that $\text{Leaf}^{P}(D_n) = \Delta_n^P$, together with the oracle result separating the levels of PH and the relativizable result that PH collapses if BH collapses.

(c) Part (a) above verifies that each $\text{DA}^{n[]}$, and therefore the limit of this sequence, consists of starfree languages only. On the other hand every starfree language L is covered by some $\text{DA}^{n[]}$: let ϕ be a first order formula for L, which exists by the classical result starfree = first-order definable of McNaughton & Papert [MP71]. Then the quantifier depth (n.b.: not the quantifier alternation depth) of ϕ is such an n: each nested quantifier can be simulated by a $\text{DA} [] \ldots$ operation (actually, by a $\text{DD}_1^L \sqcap \ldots$ operation). q.e.d.

Note that by the results of Theorem 1 it still could be the case that for example $\text{DA}^{n[]} = \Delta_{n+1}^L$ for all $n \geq 1$, or that $\text{DA}^{n[]} = \text{a class in between } \Sigma_2^L \text{ and } \Delta_{n+1}^L$, or that a similar close relation to the dot-depth hierarchy holds. In the following section it is shown that this is not the case.

3 Σ_2^L is not contained in an iterated block product of DA

The following languages L_n, for $n \geq 2$, over alphabet $\Sigma_n := \{1, \ldots, n\}$ are from Σ_2^L and will be shown to be witnesses for the properness of the inclusion $\text{DA}^{(n-1)[]} \subset \text{DA}^{n[]}$.\[L_2 = \{1, 2\}^*11\{1, 2\}^*, \quad (6)\]
\[L_{n+1} := \Sigma^*_{n+1} L_n \Sigma^*_{n+1}. \]

(7)

where \(L_n \) is considered as a language over the larger alphabet \(\Sigma_{n+1} \). For example,

\[L_3 = \{1, 2, 3\}^*11\{1, 2\}^*11\{1, 2, 3\}^* \]

(because \(\{1, 2, 3\}^*\{1, 2\}^* = \{1, 2, 3\}^* \) etc.), and

\[L_4 = \{1, 2, 3, 4\}^*11\{1, 2\}^*11\{1, 2, 3\}^*11\{1, 2, 3, 4\}^*. \]

(With some fantasy the reader can see overlapping waves in these languages.) These examples show that \(L_n \) can also described as \(L_n = \Sigma^* M_n \Sigma^*_n \) where \(M_n \) is defined via the following recursion:

\[M_2 = 11, \]

(8)

\[M_n = M_{n-1} \Sigma^*_n M_{n-1}. \]

(9)

Theorem 2 (Main) For every \(n \geq 2 \) it holds: The language \(L_n \) is an element of \(\Sigma^*_2 \cap \text{DA}^{n\Box} \) but not of \(\text{DA}^{(n-1)\Box} \).

This theorem is the conjunction of the following Lemma 2, Corollary 1, and Lemma 6, which will be proven now, using more sub-lemma.

A **marked product of sub-alphabets** over an alphabet \(A \) is a regular expression

\[A_0 a_1 A_1 \ldots a_n A_n \]

with \(n \geq 0, a_0, \ldots, a_n \) “markers” = letters from \(A \), and \(A_0, \ldots, A_n \) sub-alphabets, i.e. subsets of \(A \). Example: \(\{0, 1, 2\}^*20^*2\{0, 1, 2\}^* \) expressing “there exists two 2’s with no 1’s between them”. It is easy to see that a language described by a marked product of sub-alphabets is in \(\Sigma^*_2 \), and in fact, by the results of Arfi [Ar87], \(\Sigma^*_2 \) equals the set of all finite unions of them.

Lemma 2 For every \(n \geq 2 \) it holds: The language \(L_n \) is an element of \(\Sigma^*_2 \).

Proof. Every \(L_n \) (for \(n \geq 2 \)) is by the representation \(\Sigma^*_n M_n \Sigma^*_n \) a marked product of sub-alphabets: \(M_2 = 10^*1 \) is a marked product of sub-alphabets with two outmost markers 1, and \(M_{n+1} = M_n \Sigma^*_n M_n \) keeps its two outmost markers 1. q.e.d.

Lemma 3 For every \(n \geq 1 \) it holds: Any language described by a marked product of sub-alphabets with at most \(2^n - 1 \) markers is in \(\text{DA}^{n\Box} \).

Proof. Induction start \(n = 1 \). A marked product \(A_0 a_1 A_1 \) is in \(\Sigma^*_2 \), see above. On the other hand, \(A_0 a_1 A_1 \) can be expressed by the following \(\Pi_2 \) expression “there exists a position carrying letter \(a_1 \), and all positions carry letters from \(A_0 \cup A_1 \cup \{a_1\} \), and it never occurs that a position has a letter from \(A_1 - (A_0 \cup \{a_1\}) \) and larger position has a letter from \(A_0 - (A_1 \cup \{a_1\}) \), and between every two positions with a letter from \(A_0 - (A_1 \cup \{a_1\}) \) and a letter from \(A_1 - (A_0 \cup \{a_1\}) \) there is a position in between carrying letter \(a_1 \)”. This shows that \(A_0 a_1 A_1 \) is in \(\Sigma^*_2 \cap \Pi_2^* = \Delta^*_2 \). Induction step for \(n \geq 2 \). Given a marked product \(L = A_0 a_1 A_1 \ldots a_m A_m \) over alphabet \(A \) with \(m \leq 2^n - 1 \), let \(a_k \) be the marker in the middle of the expression, i.e. \(k = m/2 \) if \(m \) is odd and \(k =
\[(m + 1)/2 \text{ if } m \text{ is even. Then } L = L_0 a_k L_1 \text{ with } L_0 = A_0 a_1 A_1 \ldots a_{k-1} A_{k-1} \text{ and } L_1 = A_k \ldots a_m A_m,\]
and both \(L_0\) and \(L_1\) are marked products of sub-alphabets with not more than \(2^{n-1} - 1\) markers. Therefore, the induction hypothesis applies to \(L_0\) and \(L_1\), i.e. both \(L_0\) and \(L_1\) are in \(\text{DA}^{(n-1)}\). Let \(P := L_0 \times L_1\) be their product language which is by the variety closure properties still an element of \(\text{DA}^{(n-1)}\). Let \(Q\) be the \(\Sigma^*_1\) language consisting of the union of the languages \(B^*(p, a_k, q)B^*\) on the alphabet \(B = M_P \times A \times M_P\) such that \(p\) stands for acceptance of \(L_0\) and \(q\) for acceptance of \(L_1\). The language \(Q \square P\) is by this representation from \(\text{DA}^{n\square}\) and equals \(L\). q.e.d.

Because \(L_n\) has \(2^{n-1}\) markers (the 1’s) we have the following corollary.

Corollary 1 For every \(n \geq 2\) it holds: \(L_n\) is in \(\text{DA}^{n\square}\).

It remains to prove that \(L_n\) is not in \(\text{DA}^{(n-1)\square}\). Assume that \(L_n\) equals a language \(K\) from \(\text{DA}^{(n-1)\square}\), i.e.

\[K := K_{n-1} \square (\ldots (K_2 \square K_1))\]

(10)

where each \(K_i\) is in \(\text{DA}\). We will specify two words \(u_n, v_n\) such that \(u_n \notin L_n\) and \(v_n \in L_n\) but \(u_n\) and \(v_n\) are indistinguishable by \(K\), i.e. \(u_n \in K \iff v_n \in K\).

Define \(u_n\) and \(v_n\) for \(2 \leq n\) by induction:

\[u_2 = (21)^\omega\]

(11)

\[v_2 = (21)^\omega 1(21)^\omega\]

(12)

where \(\omega\) is the constant from Lemma 1 for \(K_1\). For \(n \geq 3\) define the abbreviation \(w_n\), and \(u_n, v_n\) the following way:

\[w_n = u_{n-1} n u_{n-1} v_{n-1}\]

(13)

\[u_n := \begin{array}{cccc}
\omega & w_n & w_n^\omega & w_n^\omega \\
I & II & III & IV
\end{array}\]

(14)

\[v_n := \begin{array}{cccc}
\omega & w_n & v_{n-1} & w_n^\omega \\
I & II & IIa & III
\end{array}\]

(15)

where \(\omega\) is the constant from Lemma 1 for \(K_{n-1}\) (no indexing of \(\omega\) necessary, it will be clear from context which one is meant).

We show that \(u_n \notin L_n\) and \(v_n \in L_n\) via the following stronger invariant.

Lemma 4 Consider a word \(g = g_1 \cdots g_m\) where each \(g_i\) is either \(u_n\) or \(v_n\). The factors of \(g\) which are elements of \(M_n\) are the following: exactly one such factor within each of the \(g_i\) for which \(g_i = v_n\).
Proof. For \(n = 2 \) the lemma can be checked easily. Let \(n \geq 3 \) and consider a word \(g \) from \(\{u_n, v_n\}^* \). Because \(M_n \) does not use the letter \(n \), a potential factor of \(g \) which is in \(M_n \) can only be found in the parts \(u_{n-1}v_{n-1}u_{n-1} \) and \(u_{n-1}v_{n-1}u_{n-1}v_{n-1}u_{n-1} \), the latter occurring within the \(v_n \)'s of \(g \). The parts \(u_{n-1}v_{n-1}u_{n-1} \) contain by induction hypothesis only one factor which is from \(M_{n-1} \). By \(M_n = M_{n-1} \Sigma_n^{-1} M_{n-1} \) we need two factors from \(M_{n-1} \) for a word in \(M_n \). Therefore, these parts \(u_{n-1}v_{n-1}u_{n-1} \) do not contain a factor from \(M_n \), what proves one part of Lemma 4 for this \(n \). The parts \(u_{n-1}v_{n-1}v_{n-1}u_{n-1} \) contain by induction hypothesis exactly 2 factors of a word from \(M_{n-1} \). Therefore these two factors together with the word in between build a factor belonging to \(M_n = M_{n-1} \Sigma_n^{-1} M_{n-1} \), and this is the only such factor. The parts \(u_{n-1}v_{n-1}v_{n-1}u_{n-1} \) are the parts corresponding to the the occurrences of \(v_n \) in \(g \). Therefore, Lemma 4 holds also for this \(n \). \textbf{q.e.d.}

Corollary 2 For every \(n \geq 2 \) it holds: \(u_n \notin L_n, v_n \in L_n \).

Proof. From Lemma 4 it follows that for \(g = g_1 = u_n \) there is no occurrence of a factor from \(M_n \), therefore \(u_n \) is not contained in \(L_n = \Sigma^* M_n \Sigma^* \), while for \(g = g_1 = v_n \) is there an (actually, exactly one) occurrence of a factor from \(M_n \), therefore \(v_n \) is contained in \(L_n = \Sigma^* M_n \Sigma^* \). \textbf{q.e.d.}

We will proof by induction the following crucial invariant.

Lemma 5 For \(n \geq 2 \) it holds in the syntactic monoid of \(K = K_{n-1} \sqcap \ldots (K_2 \sqcap K_1) \ldots \) the following:

\[
[v_n] = [u_n] = [u_n u_n] = [v_n v_n] = [u_n v_n] = [v_n u_n].
\] (16)

Proof. Induction start: In case \(n = 2 \) the block product \(K = K_1 \) is a single DA language. In order to verify the first of the equations in 16 note that \([v_2] = [(21)^\omega 1(21)^\omega] = [(21)^\omega 1(21)^\omega] = [u_2 u_2]\) by equation 4 in Lemma 1 setting \(x := 2, y := 1, z := \varepsilon \). Moreover, \([u_2] = [(21)^\omega] = [(21)^\omega 1(21)^\omega] = [u_2 u_2]\) by equation 3. The other equations follow immediately from these two by equation 2.

Induction step for \(n \geq 3 \) : Define \(J := K_{n-2} \sqcap \ldots (K_2 \sqcap K_1) \ldots \), this way \(K = K_{n-1} \sqcap J \). We go to the definition of the block product \(K_{n-1} \sqcap J \), and will analyze the words \(\tau(z u_n z') \) and \(\tau(z v_n z') \), see equation 5 in Definition 1. \(z \) and \(z' \) are two arbitrary words from \(\Sigma_n \), we need them later in order to show that from \([\tau(z u_n z')] = [\tau(z v_n z')] \) in the syntactic monoid of \(K_{n-1} \) it follows \([u_n] = [v_n]\) in the syntactic monoid of \(K_{n-1} \sqcap J \). Note that \(\tau(z u_n z') \) and \(\tau(z v_n z') \) are words on alphabet \(M_J \times \Sigma \times M_J \) which have the same length as \(z u_n z' \) and \(z v_n z' \), respectively, so we can keep the partition of the positions of \(u_n \) and \(v_n \) into the parts I to IV, as in equations 14 and 15, plus two parts 0 and V for the positions of \(z \) and \(z' \), respectively. We will show that there exist words \(p_0, p, x, y, s, s_0 \) over alphabet \(M_J \times \Sigma \times M_J \) such that \(\tau(z u_n z') \) and \(\tau(z v_n z') \) can be written the following way:

\[
\tau(z u_n z') = \tau(0 \ W_{n}^{w} \ W_{n}^{w} \ W_{n}^{w} \ W_{n}^{w} \ z') = p_0 \ p_0^{x} \ (xy)^{y} \ s \ s_0
\] (17)

\[
\tau(z v_n z') = \tau(0 \ W_{n}^{w} \ W_{n}^{w} \ v_{n}^{w} \ W_{n}^{w} \ W_{n}^{w} \ z') = p_0 \ p_0^{x} \ (xy)^{y} \ s \ s_0
\] (18)

To verify the above three equations 17 and 18 we have to show the following:
(a) \(\tau(zu_nz') \) and \(\tau(zw_nz') \) coincide on parts 0, I, II, III, IV and V.

(b) There exists a word \(h (= xy) \) such that the two restrictions of \(\tau(zu_nz') \) to parts II and III are of the form \(h^w \).

(c) This periodic pattern \(h \) from (b) has a suffix \(y \) which equals \(\tau(zw_nz') \) restricted to part IIa.

ad (a): We show that the words \(\tau(zu_nz') \) and \(\tau(zw_nz') \) coincide on parts 0, I, II, III, IV, and V: Let \(i \) be a position in part 0, I, or II of the words \(zu_nz' = b_1 \ldots b_m \) and \(zw_nz' = b'_1 \ldots b'_m. \) The two triples \(([b_1 \ldots b_i], [b_i \ldots b_m]) \) at position \(i \) of \(\tau(zu_nz') \) and \(([b'_1 \ldots b'_i], [b'_i \ldots b'_m]) \) at position \(i \) of \(\tau(zw_nz') \) will of course coincide on their left and middle component because \(zu_nz' \) and \(zw_nz' \) are identical up to that position. But moreover they also coincide on the right component of the triple: The two words \(b_{i+1} \ldots b_m \) and \(b'_{i+1} \ldots b'_m \) only differ by the extra factor \(v_{n-1} \) in \(b'_{i+1} \ldots b'_m \) from part IIa. But this \(v_{n-1} \) is immediately left to a \(u_{n-1} \) \((u_{n-1} \) is a prefix of part III), and by induction hypothesis we have \([v_{n-1}u_{n-1}] = [u_{n-1}] \) in the syntactic monoid of \(J \). Therefore, by equation 2, \([b_{i+1} \ldots b_m] = [b'_{i+1} \ldots b'_m], \) i.e. the third components of the two tripels are also equal. By symmetrical arguments and \([v_{n-1}v_{n-1}] = [v_{n-1}] \) by induction hypothesis we have that \(\tau(zu_nz') \) and \(\tau(zw_nz') \) also coincide on parts III, IV, and V.

ad (b): Let \(i \) be a position in the \(j \)-th factor \(w_n \) \((1 \leq j \leq \omega) \) of part II of \(zu_nz' \). Then the triple of \(\tau(zu_nz') \) at that position \(i \) has the form

\[
([w_n^j w_n^{j-1} f], a,[g w_n^{\omega-j} w_n^\omega z'])
\]

where \(f \) and \(g \) are the prefix and the suffix of the factor \(w_n \) left and right of that position \(i \), respectively, i.e. \(f ag = w_n \). Note that by equation 3 it holds \([w_n^j w_n^{j-1} f] = [w_n^\omega] \) in the syntactic monoid of \(J \), so we can by equation 2 rewrite the left component as \([w_n^\omega f] \). Likewise (now via adding \(w_n^{j-1} \) instead of dropping it) the right component can be rewritten as \([g w_n^{\omega-j} w_n^\omega z'] \). This way we have at the position \(i \) in the \(j \)-th factor \(w_n \) of part II of \(\tau(zu_nz') \) the triple

\[
([w_n^\omega f], a,[g w_n^{\omega-j} w_n^\omega z']).
\]

But this is exactly the same triple as the triple at the \(i \)-th position of the first factor \(w_n \) in part II of \(\tau(zu_nz') \). By setting \(h \) to be the suffix of length \(|w_n| \) of part II of \(\tau(z' w_n z) \) we get the desired property (b) for part II. By symmetrical arguments (b) also holds for part III.

ad (c): Consider a position \(i \) in part IIa, i.e. \(v_n = b_1 \cdots b_{i-1} b_i b_{i+1} \cdots b_m \). The triple at the \(i \)-th position in part IIa of \(\tau(zw_nz') \) will be

\[
([w_n^\omega w_n^{\omega-1} u_{n-1} v_{n-1} b_1 \cdots b_{i-1}], [b_{i+1} \cdots b_m u_{n-1} v_{n-1} w_n^{1-w_n} w_n^\omega]),
\]

By induction hypothesis it holds \([u_{n-1} v_{n-1}] = [v_{n-1}] \) in the syntactic monoid of \(J \), therefore the first component the factor \(u_{n-1} v_{n-1} \) left of \(b_1 \) can be rewritten by \(u_{n-1} \), and likewise in the third component the factor \(u_{n-1} \) right of \(b_m \) can be rewritten by \(v_{n-1} u_{n-1} \), as this is indicated by the underlinings in the triples above and below. This way the above triple equals

\[
([w_n^\omega w_n^{\omega-1} u_{n-1} v_{n-1} b_1 \cdots b_{i-1}], [b_{i+1} \cdots b_m v_{n-1} u_{n-1} v_{n-1} w_n^{1-w_n} w_n^\omega z']).
\]

But this is exactly the triple which one gets by looking at the \(i \)-th position in the suffix \(v_{n-1} \) of part II of the word \(\tau(zv_nz') \).
We have shown (a), (b), and (c), i.e. $\tau(zu_n z')$ and $\tau(zv_n z')$ can be written in the form of equations 17
and 18. This gives the following equation 19 in the syntactic monoid of K_{n-1}:

$$\tau(zu_n z') = \left[\begin{array}{cccccc}
0 & p & (xy)^\omega & (xy)^\omega & s & s_0 \\
 & & & & & \\
0 & I & I & I & IIa & III \\
\end{array} \right]$$

(19)

The middle equation symbol above holds by the following equality in the syntactic monoid of K_{n-1}
which is a case of equation 4 (no renaming of the variables x, y necessary, $z := \varepsilon$):

$$[\begin{array}{cc}
II & III \\
\end{array} (xy)^\omega (xy)^\omega] = [\begin{array}{cc}
II & III \\
\end{array} (xy)^\omega (xy)^\omega]$$

(20)

We have shown $[\tau(zu_n z')] = [\tau(zv_n z')]$ in the syntactic monoid of K_{n-1} for all words $z, z' \in \Sigma_n^*$. From this it follows $\tau(zu_n z') \in K_{n-1} \iff \tau(zv_n z') \in K_{n-1}$ for all $z, z' \in \Sigma_n^*$. This means, by the
definition of block product: $zu_n z' \in K_{n-1} \square J \iff zv_n z' \in K_{n-1} \square J$ for all $z, z' \in \Sigma_n^*$. By the
definition of the elements of the syntactic monoid we have the equality

$$[u_n] = [v_n]$$

(21)

in the syntactic monoid of $K_{n-1} \square J$.

This shows that the first equation in Lemma 5 holds. Now we show the second equation $[u_n u_n] = [u_n]$. Let z, z' be again some words from Σ_n^*. Let τ again be the function in equation 5 in the definition
of block product. It holds for $\tau(zu_n u_n z')$ the following:

$$\tau(zu_n u_n z') = \tau(z u_n^{\omega_1} u_n^{\omega_2} u_n^{\omega_3} u_n^{z'} = \left[\begin{array}{cccccc}
0 & p & (xy)^{3\omega} & (xy)^{3\omega} & s & s_0 \\
 & & \phantom{(xy)^{3\omega}} & \phantom{(xy)^{3\omega}} & & \\
0 & I & I & I & I & IVa \\
\end{array} \right]$$

(22)

The first equality is the definition of u_n, the second equality holds by the same argumentation like for claim (a) above. In the syntactic monoid of K_{n-1} it holds by equation 3 $[(xy)^{3\omega}] = [(xy)^{\omega}]$. Therefore, and by equations 22 and 17 together with equation 2, it holds in the syntactic monoid of K_{n-1}:

$$\tau(zu_n u_n z') = \left[\begin{array}{cccccc}
0 & p & (xy)^{3\omega} & (xy)^{3\omega} & s & s_0 \\
 & & \phantom{(xy)^{3\omega}} & \phantom{(xy)^{3\omega}} & & \\
0 & I & I & I & I & IVa \\
\end{array} \right]$$

(23)

From $[\tau(zu_n u_n z')] = [\tau(zu_n z')]$ in the syntactic monoid of K_{n-1} for all $z, z' \in \Sigma_n^*$ we can like above conclude that in the syntactic monoid of $K_{n-1} \square J$ it holds:

$$[u_n u_n] = [u_n]$$

(24)

We have shown $[u_n] = [v_n]$ and $[u_n] = [u_n u_n]$ in the syntactic monoid of $K_{n-1} \square J$. The other equations follow immediately from these two by equation 2. q.e.d.

Lemma 6 For every $n \geq 2$ it holds: L_n is not an element of $DA^{(n-1)\Box}$.

9
Proof. Let $n \geq 2$ and consider L_n as a language over alphabet Σ_n. Assume that L_n is in $\text{DA}^{(n-1)\Box}$. Then there exist $n-1$ languages K_{n-1}, \ldots, K_1 all of them from DA such that for $K = K_{n-1} \Box (\ldots (K_2 \Box K_1) \ldots)$ it holds $L_n = K$. By Corollary 2, $u_n \in L_n$ and $v_n \notin L_n$. But on the other hand, by Lemma 4, it holds $[u_n] = [v_n]$ in the syntactic monoid of K, from which it follows $u_n \in K \iff v_n \in K$, i.e., u_n and v_n are indistinguishable in K. Therefore, L_n cannot be equal to K. It follows that L_n cannot be from $\text{DA}^{(n-1)\Box}$. q.e.d.

From Theorems 1 and 2 we can conclude:

Corollary 3 Let $n \geq 1$ and $k \geq 2$. If $n < k$ then each of the four classes Σ^L_k, Π^L_k, DD^L_k, and Δ^L_{k+1} contains $\text{DA}^{n\Box}$ properly. If $n \geq k$ then each of these four classes is incomparable with $\text{DA}^{n\Box}$.

Figure 2 gives a visual summary of the results in Theorems 1 and 2, and Corollary 3.

4 Open Questions and Acknowledgements

A problem left open is whether the weakly and the strongly bracketed n-fold iterated block product of DA coincide. Another interesting question is whether the class $\text{DA} \Box \text{DA}$ or at least $(\text{DA} \Box \text{DA}) \cap \Sigma^L_2$ is decidable. By the results of Arfi [Ar87] the latter question can be reduced to the decidability of the following computational problem: Given a marked product $A_0a_1A_1\ldots a_nA_n$ of sub-alphabets, does it belong to $\text{DA} \Box \text{DA}$?

The author is grateful to Pascal Tesson for many discussions on the subject.

References

Figure 2: Σ_2^L v. iterated block products of DA.

$DA = \Delta_2^L$

