MIDDLE TO LATE EOCENE DINOFLAGELLATE CYSTS AND FUNGAL SPORES FROM THE EAST COAST OF THE MARACAIBO LAKE, VENEZUELA (BIOSTRATIGRAPHY, PALAEOECOLOGY AND TAXONOMY)

Dissertation
Zur Erlangung des Grades eines Doktors der Naturwissenschaften der Geowissenschaften Fakultät der Eberhard-Karls-Universität Tübingen

Vorgelegt von
Rafael A. Ramírez
aus Mérida -Venezuela

2004
Tag der mündliche prüfung: 20.12.2002
Dekan: Prof. Dr. Dr. h.c. Muharrem Satir
1. Berichterstatter: Prof. Dr. Hanspeter Luterbacher
2. Berichterstatter: Prof. Dr. Mosbrugger Volker
Abstract

Palynological investigation (dinoflagellate cysts and fungal remains) of 155 samples from the two subsurface sections and three outcrop of the Middle-Upper Eocene siliciclastic-carbonate platform facies of the Jarillal, Pauji and Caus formations of the Eastern Zulia yield a total of 60 species of dinoflagellate cysts, 42 species of fungal remains, freshwater protists and acritarchs, and numerous phytoclasts. Five new species of fungal remains are described.

By means of characteristic dinoflagellate cysts, four assemblages zones were defined which led to the stratigraphic division of the profiles.

Comparative research on the stratigraphic distribution of Middle Eocene dinoflagellates in different geographical areas not only confirmed the stratigraphic distribution but also extended their stratigraphic range. This extension applies mainly to the dinocysts *Polysphaeridium subtile* and *Areoligera senonensis*. Therefore, their significance as a stratigraphic marker is limited.

The composition of the terrestrial palynoflora (fungal remains) is indicated of a general warm and climatic humid conditions during the Middle-Upper Eocene.

A comparison of characteristic taxa demonstrates the significance of the dinocysts as environmental indicators. Fluctuations in the concentration of palynomorphs suggest that the dinocysts/sporomorphs ratio (pollen, spores and fungi) is controlled by ecological events. The numbers of sporomorphs, which progressively decreases from on-to offshore, is paralleled with increase of diversity of dinoflagellate spectrum.

Monospecific dinoflagellate associations document a shallow water environment in the Middle Eocene of sites Quebrada Palma and Quebrada Honda, probably correlated with a drastic decline of the sea level.

The possible influence of oceanic current systems is evident in the distribution pattern of the dinoflagellate associations.
Firstly, I would like to thank God who has allowed me to complete this dissertation.

I would like to thank specially the following persons and institutions:

I am indebted to Prof. Dr. Hanspeter Luterbacher, for his continuous advice, encouragement, constructive criticism, and support as well as for his hospitality and patience.

I am very grateful to all the members of the Geology Department of the University of Tübingen, for their help and friendship.

Petróleos de Venezuela S.A. for kindly releasing the samples used, some data basic and support for this research, particularly management of the Geology Technology.

Fundación Gran Mariscal de Ayacucho (Fundayacucho) and Fundación Simón Bolívar (Hamburg) provided the financial support for this study.

Dr. Wolfgang Wille is acknowledged for sharing with me his wide knowledge of all aspects of palynology.

Dr. Kalgutkar and Dr. Jansonius (Geological Survey of Canada) critically reviewed the chapter on the fungal remains.

Dr. Helenes (CICESE) and Dr. Bujak assisted me in the revision and critical commentaries on chapter on dinoflagellate cyst taxonomy.

I will always be thankful to my parents for enabling me to study and supporting me in many ways.

I want to acknowledge my friends and fellows countrymen Arles Pacheco, Karina Uzcategui and Carlos Dávila for their good companionship.

And last but not least Alexandra Kurzynski for her continuous help, encouragement and patience during the sunny and cloudy days of this research.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>1. INTRODUCTION AND OBJECTIVES</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Location of study area</td>
<td>1</td>
</tr>
<tr>
<td>2. REGIONAL GEOLOGICAL SETTING</td>
<td>5</td>
</tr>
<tr>
<td>2.1. Tectono-stratigraphy framework</td>
<td>5</td>
</tr>
<tr>
<td>2.2. Paleogene tectono-stratigraphic and depositional history in Eastern Zulia</td>
<td>6</td>
</tr>
<tr>
<td>2.3. Structural style of the Maracaibo Basin</td>
<td>7</td>
</tr>
<tr>
<td>2.4. Paleocene-Middle Eocene Stratigraphy of Eastern Zulia</td>
<td>8</td>
</tr>
<tr>
<td>3. BIOSTRATIGRAPHY</td>
<td>12</td>
</tr>
<tr>
<td>3.1. Introduction</td>
<td>12</td>
</tr>
<tr>
<td>3.2. Previous palynological studies in the Middle and Upper Eocene of the Eastern part of Lake Maracaibo</td>
<td>12</td>
</tr>
<tr>
<td>3.3. Problems of the dinoflagellate cyst zonation and provincialism</td>
<td>13</td>
</tr>
<tr>
<td>3.4. Results</td>
<td>15</td>
</tr>
<tr>
<td>3.4.1. Analytical procedures</td>
<td>15</td>
</tr>
<tr>
<td>3.4.2. Stratigraphic subdivision of the sections</td>
<td>15</td>
</tr>
<tr>
<td>3.4.2.1. Pica 1X Well</td>
<td>15</td>
</tr>
<tr>
<td>3.4.2.2. VL-37X Well</td>
<td>19</td>
</tr>
<tr>
<td>3.4.2.3. Quebrada Bijugal outcrop section</td>
<td>20</td>
</tr>
<tr>
<td>3.4.2.4. Quebrada Palma outcrop section</td>
<td>21</td>
</tr>
<tr>
<td>3.4.2.5. Quebrada Honda outcrop section</td>
<td>22</td>
</tr>
<tr>
<td>3.5. Palynological zonation</td>
<td>23</td>
</tr>
<tr>
<td>3.6. Palynostratigraphic correlation</td>
<td>26</td>
</tr>
<tr>
<td>3.7. Comparison of dinoflagellate cyst assemblages with those from others areas</td>
<td>26</td>
</tr>
<tr>
<td>4. PALYNOMORPHS ECOSTRATIGRAPHY AND PALEOECOLOGY</td>
<td>29</td>
</tr>
<tr>
<td>4.1. Data processing</td>
<td>29</td>
</tr>
<tr>
<td>4.2. Remarks on the ecology and paleoecology of dinoflagellate cysts</td>
<td>30</td>
</tr>
<tr>
<td>4.3. Ecology and paleoecology of fungal remains</td>
<td>31</td>
</tr>
<tr>
<td>4.4. Paleoecology in Middle to Upper Eocene in the studied sections</td>
<td>32</td>
</tr>
<tr>
<td>4.4.1. Pica-1X well</td>
<td>32</td>
</tr>
<tr>
<td>4.4.2. VL-37X well</td>
<td>32</td>
</tr>
<tr>
<td>4.4.3. Quebrada Bijugal outcrop section</td>
<td>34</td>
</tr>
<tr>
<td>4.4.4. Quebrada Palma outcrop section</td>
<td>35</td>
</tr>
<tr>
<td>4.4.5. Quebrada Honda outcrop section</td>
<td>36</td>
</tr>
</tbody>
</table>
5. MATERIAL AND METHODS 38
 5.1. Provenance of material 38
 5.2. Palynological processing 38
 5.2.1. Oxidation method 39
 5.2.2. Mounting 39
 5.2.3. Location of the slides 39
 5.3. Analytical Procedures 39
 5.4. Photography 39

6. SYSTEMATIC PALYNOLOGY 41
 6.1. Taxonomy of dinoflagellate cysts 41
 6.2. Taxonomy acritarchs, prasinophyte, algae and others 67
 6.3. Taxonomy fungal spores, mycelia and fructifications 17

7. GENERAL CONCLUSIONS 83

8. REFERENCES CITED 84

9. APPENDIX
List Text Figures

Chapter 1: Introduction and Objectives	Text-Figure 1: Map of Eastern Zulia showing the location of studied sections
Chapter 2: Regional Geological Setting	Text-Figure 2: Boreholes sections for Eastern Zulia. Stratigraphical thickness and position of samples
Chapter 3: Biostratigraphy	Text-Figure 3: Outcrop sections for Eastern Zulia. Stratigraphical thickness and position of samples
Chapter 4: Palynomorph ecostratigraphy and paleoecology	Text-Figure 16: Ranges and abundances of selected dinoflagellate cysts in the Eocene of Eastern Zulia.
Chapter 5: Materials and methods	Text-Figure 17: Correlation of Middle Eocene formations in Eastern Zulia, dated by Dinofalgellate and correlated with nannofossils zone

Chapter 1: Introduction and Objectives
- **Text-Figure 1**: Map of Eastern Zulia showing the location of studied sections
- **Text-Figure 2**: Boreholes sections for Eastern Zulia. Stratigraphical thickness and position of samples
- **Text-Figure 3**: Outcrop sections for Eastern Zulia. Stratigraphical thickness and position of samples

Chapter 2: Regional Geological Setting
- **Text-Figure 4**: Paleogeographic map of the Paleocene
- **Text-Figure 5**: Paleogeographic map of the Late Paleocene-Early Eocene
- **Text-Figure 6**: Paleogeographic map of the Middle Eocene
- **Text-Figure 7**: Regional structural map showing distribution of normal and listric faults in relation to the foredeep and peripheral bulge
- **Text-Figure 8**: Stratigraphic chart of Eastern Zulia
- **Text-Figure 9**: Cross sections A Northwest-Southwest and B West-East

Chapter 3: Biostratigraphy
- **Text-Figure 10**: Stratigraphic ranges of selected Eocene dinoflagellate cysts taxa found in this study
- **Text-Figure 11**: Stratigraphic summary and biostratigraphical events recognized in the Pica-1X well
- **Text-Figure 12**: Stratigraphic summary and biostratigraphical events recognized in the VL-37X well
- **Text-Figure 13**: Stratigraphic summary and biostratigraphical events recognized in the Quebrada Bijugal section
- **Text-Figure 14**: Stratigraphic summary and biostratigraphical events recognized in the Quebrada Palma section
- **Text-Figure 15**: Stratigraphic summary and biostratigraphical events recognized in the Quebrada Honda section

Chapter 4: Palynomorph ecostratigraphy and paleoecology
- **Text-Figure 16**: Ranges and abundances of selected dinoflagellate cysts in the Eocene of Eastern Zulia.
- **Text-Figure 17**: Correlation of Middle Eocene formations in Eastern Zulia, dated by Dinofalgellate and correlated with nannofossils zone

Chapter 5: Materials and methods
- **Text-Figure 18**: Distribution relative percentages of marine and non-marine palynomorphs in the Pica-1X well.
- **Text-Figure 19**: Distribution percentages of generic associations typical of neritic to oceanic environments in the Pica-1X well.
- **Text-Figure 20**: Distribution relative percentages of marine and non-marine palynomorphs in the VL-37X well.
- **Text-Figure 21**: Distribution relative percentages of marine and non-marine palynomorphs in the Quebrada Bijugal outcrop section.
- **Text-Figure 22**: Distribution relative percentages of marine and non-marine palynomorphs in the Quebrada Palma outcrop section.
- **Text-Figure 23**: Distribution relative percentages of marine and non-marine palynomorphs in the Quebrada Honda outcrop section.

Text-Figure 24: Flow chart for processing of palynological samples
List Tables

Chapter 2 Regional Geological Setting

Table 1: Summary chart of the tectono-stratigraphic framework

Chapter 3 Biostratigraphy

Table 2: Dinoflagellate cysts chart distribution in samples from the Pica-1X section (Appendix B)
Table 3: Fungal remains chart distribution in samples from the Pica-1X section (Appendix B)
Table 4: Dinoflagellate cysts chart distribution in samples from the VL-37X section (Appendix B)
Table 5: Dinoflagellate cysts chart distribution in samples from the Quebrada Bijugal section (Appendix B)
Table 6: Dinoflagellate cysts chart distribution in samples from the Quebrada Palma section (Appendix B)
Table 7: Dinoflagellate cysts chart distribution in samples from the Quebrada Honda section (Appendix B)
Table 8: Summary of some Dinoflagellate-events found in the Eocene of Eastern Zulia and their correlation with calcareous nannofossils according to literature.

Table 9: Percentages of dinocyst species in common between compared localities and Eastern Zulia

Chapter 4 Palynomorph ecostratigraphy and paleoecology

Table 10: Main groups of palynomorphs, their botanical affinity and general ecology.
Table 11: Generic associations typical of neritic to oceanic environments
INTRODUCTION – OBJECTIVES

Biostratigraphical and palaeoenvironmental analyses of the Eocene sediments from the East Coast of Lake Maracaibo are still mainly based on calcareous microfossils (foraminifers, nannofossils) and/or pollen and spores. Zonal schemes based on these groups of microfossils allow intrabasinal subdivisions and correlations, but their calibration with the international chronostratigraphic time scale is often somewhat problematic (Crux et al., 1997). This problem is common to several neotropical areas such as Brazil, Colombia and Venezuela (Jaramillo, 1999). Since many representatives of these microfossils are restricted to rather narrow facies realms, they are unsuitable for intrabasinal correlations between marginally marine and deeper marine deposits (Wilpshaar, 1995).

In order to overcome some of these restrictions, I have tried to use two groups of organic-walled microfossils, dinoflagellate cysts and fungal spores, in order to contribute to a better understanding of the stratigraphic correlations and palaeoenvironmental interpretations within the Eocene of the Eastern part of Lake Maracaibo.

Dinoflagellate cysts have been used successfully as stratigraphic tools, particularly in hydrocarbon exploration in many parts of the world (e.g. Williams, G. & Brideaux, W., 1975; Staplin, 1976; Norris, 1986; Powell, 1988; Bujak & Mudge, 1994; Mudge & Bujak, 1994, 1996; Helenes et al., 1998; Helenes & Somoza, 1999; Torrecelli & Biffi, 2001). They are not only very useful for interregional correlations and chronostratigraphy, but also for palaeoenvironmental determinations, such as the recognition of changes in sea level, sea surface temperature and productivity (e.g. Brinkhuis, 1988, 1992, 1994; Brinkhuis et al., 1998; Wilpshaar, 1995).

Due to the lack of published data, the biostratigraphical and palaeoenvironmental use of fungal spores is considerably less established (Elsik, 1978). However, in recent years, data on the diversity and on their value for environmental interpretations have increased rapidly (Kalgutkar & Sigler, 1995). They occur commonly associated with spores, pollen and algal remains, but they are generally better preserved and more resistant to destruction by oxidation.

I have tried to present an inventory of the dinoflagellate cysts and fungal spores of the Middle-Late Eocene Jarillal and Paují formations including their description, illustration, occurrence and a discussion of their stratigraphic and palaeoecologic significance. In addition, the palynofacies of the organic matter contained in the studied samples has been analysed.

The present study of the biostratigraphy, palynostratigraphy and sequence stratigraphy of the five Middle-Late Eocene sections of the east coast of Lake Maracaibo consists of:

- Identification of fossil dinoflagellate cysts and fungal spores.
- Biostratigraphic subdivision of the Middle-Late Eocene interval based on the occurrence, diversity and abundance of palynomorphs.
- Reconstruction of the palaeoenvironmental and palaeoclimatic conditions during the deposition of Jarillal and Paují formations.
- Comparison of the observed distribution of palynomorphs with that in other regions in order to integrate the regional subdivisions into the standard timescale.
- Integration of palynofacies and palaeoecology based on palynomorphs into a tentative sequence stratigraphic framework.
1.1 Location of study area

The area selected for the present study is located in northwestern Venezuela and covers approximately 9.648 Km² of the Eastern coast of the Maracaibo Lake. It is limited to the north by the Altagracia oil field, to the south by the La Ceiba field, the Mene Grande field to the east and the Ceuta field to the west. Traditionally, it is known as Zulia Oriental (see Text-Figure 1). Within this area, the study concentrates on the Middle to Late Eocene shales of the Jarillal and Paují formations, and the carbonates of the Caus Formation which occurs only locally (see Text-Figure 2 and 3).

Text-Figure 1. Map of Eastern Zulia showing the location of studied sections.
Text-Figure 2. Boreholes sections for Eastern Zulia. Stratigraphic and position of samples.
Text-Figure 3. Outcrop sections for Eastern Zulia. Stratigraphic and position of samples.
Regional Geological Setting

2.1 Tectono-stratigraphic framework

Several regional studies mainly by foreign and Venezuelan oil companies have described the geological history of the sedimentary basins of western Venezuela in terms of a regionally consistent tectono-stratigraphic framework. The evolution of these basins is intimately related with the plate-tectonic history of South-America.

The geologic history comprises six supersequences (see Table 1) composed of small-scale depositional sequences and bounded by unconformities which can be recognised not only in Venezuela, but throughout sections and northern South America (Parnaud et al., 1995; BP & PDVSA, 1992).

<table>
<thead>
<tr>
<th>Super Sequence</th>
<th>Intervals</th>
<th>Events</th>
<th>Sequence Boundary/age in Ma</th>
</tr>
</thead>
<tbody>
<tr>
<td>E and F</td>
<td>Late Eocene to Middle Miocene</td>
<td>Compressional deformation of the foreland basin caused by the collision of the Panama Arc against the South-American craton. This episode is responsible for the separation of the Lake Maracaibo and Barinas basins.</td>
<td>SB-15.5</td>
</tr>
<tr>
<td>D</td>
<td>Late Paleocene to Middle Eocene</td>
<td>Collision and obduction of the Pacific Volcanic Arc with overriding by the South American Plate. Emplacement of the Lara Nappes generates a major Eocene foredeep basins.</td>
<td>SB-45</td>
</tr>
<tr>
<td>C</td>
<td>Late Cretaceous to Paleocene</td>
<td>Transitional phase. Collision of the Pacific Volcanic Arc with the South American Plate transforms the passive margin into an active orogenic belt.</td>
<td>SB-66</td>
</tr>
<tr>
<td>B</td>
<td>Cretaceous</td>
<td>Passive margin. Widespread anoxic conditions and high organic productivity (period) resulted in the widespread development of source rocks.</td>
<td>SB-98</td>
</tr>
<tr>
<td>A</td>
<td>Late Triassic to Jurassic</td>
<td>System of basins interpreted as extensional rift. The formation of this rift was a response to north-west/south-east crustal stretching and the initiation of the continental breakup between North and South America (BP & PDVSA, 1992)</td>
<td>SB-132</td>
</tr>
</tbody>
</table>

Table 1. Summary chart of the tectono-stratigraphic framework (mainly based on Parnaud et al., 1995)
2.2 Paleogene tectono-stratigraphic and depositional history in Eastern Zulia

The tectono-stratigraphic evolution of Eastern Zulia is intimately linked to the regional geological development of the Maracaibo Basin which contains sediments deposited from Jurassic to Holocene times (Lugo, 1991; Lugo & Mann, 1995).

Paleogeographical maps of the Maracaibo Basin based on the sequence stratigraphic and plate-tectonic interpretations have been produced by Higgs & Pindell (1994), Higgs et al. (1995), Parnaud et al. (1995), Ghosh et al. (1997).

The following summary of the paleogeographical development emphasizes the Paleogene (Paleocene-Middle Eocene) of Eastern Zulia, but considers also adjacent regions.

- **Early Paleocene**

The NW-SE orientation of the facies belts in the Cretaceous changes to NE-SW in the Early Paleocene. The Eastern Zulia is affected by the uplift of a fore bulge caused by the transpressive obduction of the eastward migrating Caribbean Arc. Uplift of the fore bulge is indicated by the shallowing upward trend within the bathyal shales of the Maastrichtian Colon Formation overlain by Early Paleocene shallow marine bioclastic limestones of the Guasare Formation. The open-marine muds and turbiditic sands of the Trujillo Formation accumulated northeast of the fore bulge (see Text-Figure 4).

Text-Figure 4. Palaeogeographic map of the Paleocene (Parnaud et al., 1995; Ghosh et al., 1997)

- **Late Paleocene**

The gradual southwestward migration of the fore bulge is responsible for the regional Guasare-Misoa unconformity in the the Lake Maracaibo region. The age of this unconformity on top of the Guasare Formation is Late Paleocene (Zone P3, Lorente, 1996).

During this time, the depocenter of the Trujillo Formation migrates transgressively towards Eastern Zulia. There, Burro Negro-Paujil Fault controls the distribution and thickness of the bathyal and shallow marine facies of this formation (Leon et al., 1995).

The emplacement of the Lara Nappes started north of the Lake Maracaibo. These nappes gradually propagate eastward and originate to a new foreland basins (Parnaud et al., 1995).

- **Early Eocene**

The Misoa Formation conformably overlies the Paleocene-Early Eocene Trujillo Formation, however, west of the Burro Negro-Paujil Fault, Leon et al. (1995) recognized a major regional unconformity on seismic lines that separates the “neritic” Trujillo Formation from the Misoa Formation.

The flexure of the shelf leads to a second transgressive phase which starts with the deposition of the stacked Misoa “C” sandstone (see Text-Figure 5).

During the Early Eocene, the deep marine facies of the Trujillo Formation persist in the northern part of Eastern Zulia.

The sedimentation of the Misoa Formation culminates with the high-stand systems tract of the deltaic lower Misoa “B” (Parnaud et al., 1995).

- **Middle Eocene**

During the Early Eocene and at the beginning of the Middle Eocene (see Text-Figure 6), an extensional regime is predominant perpendicular to the compressional regime which persisted. This extension a regime leads to the development of the Orocué Foredeep (Colombia) as well as to the formation of an important depocenter in Eastern Zulia as result of the emplacement of Lara Nappes (Melendez et al., 1996).
In this depocenter, the shallow marine shelf sediments of the upper Misoa “B” are overlain by the bathyal shales of the Pauji Formation (Parnaud et al., 1995). Even if an extensional style is predominant, a compressive phase in the central and Eastern part of the Lake Maracaibo Basin coincides with unconformity SB-44 (“base B-6” within the lake) which separates the lower Misoa “B” from the upper Misoa “B” (Leon et al., 1996; Melendez et al., 1996). SB-44 is the main intra-Eocene unconformity.

The start of the inversion in the Middle Eocene is related to the final phase of the emplacement of the Lara Nappes (Leon et al., 1996). Toward the end of the late Middle Eocene, uplift of the local graben due to inversion reaches its maximum at end of the sedimentation of the Pauji Formation and prior to the deposition of the Mene Grande Formation and its equivalent, the “Piedras Blancas” in the Burro Negro Graben. In the entire area corresponding to northwestern Venezuela and two different tectonic provinces can be recognized: the Lake Maracaibo Basin Province and the Falcon Basin Province separated by the Burro Negro-Pauji Fault and Valera Fault (see Text-Figure 7).

The post-Eocene led to a deformation and partial inversion of the basin removing parts of the Eocene sequence, particularly the Upper Eocene, in most parts of the basin (Melendez et al., 1996).

2.3 Structural style of the Maracaibo Basin

The different phases of deformation which affected the Lake Maracaibo Basin and particularly Eastern Zulia resulted in a complex polyphase tectonic history reflected by different structural styles (De Toni et al., 1994; Leon et al., 1996). However, structural styles are not well imaged on seismic lines and not clearly seen in the field. They underwent partial erosion during Late Eocene to Miocene, in particular by Late Eocene-Oligocene distensive and transtensive events (BP & PDVSA, 1992).

The Lake Maracaibo Basin and Eastern Zulia are characterised by a series of structural alignments which are predominantly NNW-SSE oriented (Text-Figure 7). They are related to the orientation deformation front of the Lara Nappes. Three structural provinces can be recognised (Melendez et al., 1996; Parnaud et al., 1994):
1. A foredeep in Eastern Zulia and the northEastern Lake Maracaibo Basin.

2. Reactivation of a NW-SE directed peripheral bulge in the central part of the Maracaibo Basin with local, the development of normal (NNE dipping) and listric faults towards the borders of the graben.

3. Reactivation of the extensional (Paleocene-Early Eocene) and the transpressional-transtensional (Middle Eocene-Late Eocene) regimes reactivated the pre-existing main fault systems (e.g. Pueblo Viejo and Burro Negro-Paujil faults).

In the Lake Maracaibo Basin and Eastern Zulia, a large number of structures again experienced inversion due to compression.

Compression led to reactivation of normal faults and resulted in deformation of the Tertiary sediment cover which became detached from its basement.

In Eastern Zulia, the major tectonic structure alignment is the NE-SW oriented Burro Negro-Paujil Fault. In its southern part the fault progressively bends eastward and joins the Valera Fault. From the late Middle Eocene to the Oligocene, these two faults separate Eastern Zulia in two tectonic provinces: the Falcon Basin and the Lake Maracaibo Basin (Leon et al., 1996).

2.4 Paleocene-Middle Eocene Stratigraphy of Eastern Zulia

The Paleocene-Eocene formations in Eastern Zulia are bounded by major local and regional unconformities. The facies of these formations are predominantly deltaic (Misoa Formation), nearshore shallow-marine (Caus Formation) and bathyal (Pauji, Jarillal and Mene Grande formations).

All stratigraphic units show a northward increase in thickness (Text-Figure 7 and 10), since the northEastern margin of the Lake Maracaibo Basin underwent strong subsidence caused by the emplacement of the Lara Nappes (Melendez et al., 1996; Pilloud et al, 1996; Parnaud et al., 1995).

Text-Figure 7. Regional structural map showing distribution of normal and listrics fault in relation to the foredeep and peripheral bulge (Pestman et al., 1994; Melendez et al., 1996)

In addition, sedimentation is controlled by north-northeast striking fault systems of recurring synsedimentary normal faults that were possibly controlled by strike-slip motions (Meyer, 1996).

The chronostratigraphy of the Paleogene formations in Eastern Zulia is summarized in Text-Figures 8.

The Paleocene-Eocene in Eastern Zulia is divided from bottom to top into the following units (see Text-Figure 9):

- **Trujillo Formation** (Hodson, F., 1926)

In the northEastern part of the Lake Maracaibo Basin, the Trujillo Formation is represented by turbiditic deposits (Brondijk, 1967; Ghosh & Zambrano, 1996; Zambrano, Melendez & Ghosh, 1996) which correspond to a prograding lowstand wedge. The predominantly sandy and shaly deposits accumulated in a bathyal environment. In the basal part of the formation, blocks of redeposited platform limestones occur (Brondijk, 1967; Canache, Crux & Gamarra, 1995).
Text-Figure 8. Stratigraphic chart of Eastern Zulia (western part; Leon et al., 1996)

Text-Figure 9. Cross sections: A Northwest-Southwest and B West-East (Parnaud et al., 1994)
The Trujillo Formation is dated as Early Eocene, but it probably covers the time span from Paleocene to Middle Eocene (L.E.V., 1999). Canache, Crux & Gamarra, (1995) dated this unit as Paleocene to Middle Eocene based on foraminifera from the platform limestones of the “Quebrada Totuche Section”. They suggest that the Paleocene limestones have been redposited during the Early to Middle Eocene based on the occurrence of larger foraminifera: *(Ranikothalia* sp. Paleocene, *Discocyclina* sp. Paleocene-Eocene, *Discocyclina* cf. grimsdalei Paleocene-Middle Eocene), the planktonic foraminifera *(Globigerina* cf. *triloculinoides* Paleocene) and nannofossils *(Coccolithus cavus* Paleocene-Eocene).

Misoa Formation (Garner, H., 1926)

The Misoa Formation is a thick deltaic complex of consolidated clastic sediments. Predominant lithologies are sands and siltstones intercalated shales and some limestone beds. Depositional environments vary from coastal plain in the southwest and south to shallow-marine to the north and northeast (Pestman et al., 1994; Ghosh et al., 1997).

According to L.E.V.(1999), the age of the formation is Early to Middle Eocene based on palynological studies by Colmenares (1988). Colmenares identified *Echitriporites trianguliformis*, *Retibrevitricolpites triangulatus* and *Psilatricolporites crassus* which correspond to the palynological Zone 20 *(Bombacacidites soleaformis* Zone) of Muller et al. (1987). However, recent chronostratigraphic charts of the Maracaibo Basin (Pestman et al., 1994; Lugo & Mann, 1995; Parnaud et al., 1995) show significant differences in the age and duration of accumulation of the Misoa Formation.

Based on planktonic foraminifera, Pittelli (1991) dated marine sediments from more distal parts of the Misoa Formation as Early Eocene to Middle Eocene (Zones P9-P13).

Caus Formation (Liddle, R., 1928)

The Caus Formation occurs at the base of the Pauji Formation in the southwest of Lake Maracaibo. This unit is the first manifestation of marine facies in the Middle Eocene transgressive sequence (Gonzalez de Juana et al., 1980). The Caus Formation is conformably overlain by the Pauji Formation. The contact with the underlying Misoa Formation is conformable and transitional. This unit consists of carbonates, silty shales, siltstones and sandstones accumulated in an inner-shelf depositional environment (Higgs & Pindell, 1994).

Since the Caus Formation is overlying the Early-Middle Eocene Misoa Formation and overlain by the late Middle Eocene Pauji Formation, it has been assigned a Middle Eocene age (L.E.V., 1999).

Pauji Formation (Tobler, A., 1922)

In the Lake Maracaibo Basin, the Pauji Formation represents the Middle to Late Eocene transgression. It is characterised by marine grey shales which clearly separate it from the sands of the underlying Misoa Formation. However, in the Motatan Field, a sandy lower unit is found (Delgado & Chacartegui, 1996; Pestman, Ghosh & Melendez, 1996).

Planktonic foraminifera occur throughout the Pauji Formation. The assemblage is diverse and characteristic of the late Middle Eocene *Truncorotaloides* Zone (Walton, 1966 in L.E.V., 1999). Recently, the contact of the Pauji Formation with the underlying Misoa Formation has been described as diachronous (Petsman, Ghosh & Melendez, 1996), but the examination of calcareous nannofossils by Crux et al. (1997) in two sections of the Río San Pedro outcrop (reference section) and a well section on the Ceuta Field did not confirm the presence of such an diachronism. In the Río San Pedro Section, nannofossils indicate an undifferentiated Middle Eocene age (NP15-NP16) for the base of the Pauji Formation as based on the last occurrences of *Chiasmolithus gigas* and *Lophodolithus* sp. and below the first occurrences of *Reticulofenestra umbilicus* and *Pemma papillatum*.

Mene Grande Formation (Gorter, N. & Van der Vlerk., 1932)

The Mene Grande Formation is a local unit to the east of Lake Maracaibo.
composed of turbiditic sandstones and black shales with some lenses of limestone.

In the L.E.V. (1999), the Mene Grande Formation is dated as late Middle Eocene based on the association of *Pseudophragmina* (Proporocyclina) *flitensis*, *Discocyclina* (Asterocyclina) *georgiana*, *Lepidocyclina* (Pliolepidina) *kugleri* and other larger foraminifera as well as the planktonic foraminifera *Globigerina* *senni*, *Globorotalia* *centralis*, *G. crassata*, *G. spinuloinflata*, *G. lehner* indicative of the *Truncorotaloides rohri* Zone (Furrer, 1967).

- **Jarillal Formation** (Senn, A., 1935)

The Jarillal Formation is a thick shaly sequence with minor amounts of sand penetrated in the Pica-1X well (reference section). Its contact with the underlying Santa Rita Formation is transitional and conformable (Pittelli & Molina, 1989). This unit and the Pauji Formation represent the maximum extent of the Middle Eocene transgression in Eastern Zulia. The Jarillal Formation has been deposited in an inner to open and relatively deep shelf environment.

The Jarillal Formation is very fossiliferous with assemblages of arenaceous, larger and planktonic foraminifera similar to those of the Pauji Formation. Noteworthy is the presence some *Nummulites* in a few calcareous levels near the top (Pittelli, 1991). The fossil assemblages are characterised by the occurrence of *Textularia* spp., *Gaudryina* sp., *Cyclammina* sp., *Gyroidina soldanii*, *Lenticulina* spp., *Uvigerina peregrina*, *Uvigerina* spp., *Nummulites*, *Truncorotaloides rohri*, *Globigerina eocaena* and *Globigerina* spp.

Based on its flora and fauna, Pittelli & Molina (1989) attribute a late Middle to early Late Eocene age to the Jarillal Formation (palynological zones 21-23), *Retitricolporites guianensis* to *Janmulleripollis pentaradiatus* zones of Muller et al.,1987, and *Truncorotaloides rohri* Zone.

Crux et al., 1997 suggest that the Jarillal Formation is probably placed entirely in the Middle Eocene nanofossil Zone NP17 as indicated by the presence of *Helicosphaera seminulum*, *Reticulofenestra reticulata* and *Discoaster saipanensis* above the last occurrence of *Chiasmolithus solitus*. However, this formation also contains the palynomorphs *Perisyncolporites pokorny*, *Retitricolporites guianensis* and *Echitriporites trianguliformis* that indicate a Middle to Late Eocene age (palynological zones 21 to 24, Muller et al., 1987).
3.1 Introduction

The Middle and Upper Eocene of the Eastern coast of Lake Maracaibo have a complex geological history (see Chapter 2). Biostratigraphic data are of key importance to resolve many stratigraphic and structural problems facing the explorationist. In Eastern Zulia, a series of exploration wells sunk during the last few years have provided a wealth of stratigraphic information. Biostratigraphic studies of the subsurface Tertiary which contains the main reservoirs dealt mostly with foraminifera and calcareous nannoplankton. However, some biostratigraphic data are rather complex and in part even contradictory. These unsatisfactory results may be caused by incomplete sampling, misidentifications and differences in species concepts and reworking. The resulting inconsistencies in the stratigraphic ranges attributed to species may be in part caused by these factors and not by facies changes.

In the same interval, palynomorphs have been studied less intensively. In order to contribute to an improved understanding of the age and paleoenvironment of the Lower Tertiary in Eastern Zulia, I present and discuss in this chapter the results of my study of the quantitative distribution of the dinoflagellate cysts and fungal spore assemblages in five sections.

3.2 Previous palynological studies in the Middle and Upper Eocene of the Eastern part of Lake Maracaibo

Palynological investigations in the Middle and Upper Eocene of the Eastern coast of Lake Maracaibo have concentrated mainly on pollen and spores. Only a single report by Norris & Velásquez (1994, unpublished report) deals with dinoflagellate cysts. In this report, the authors discuss the taxonomy and biostratigraphy of fossil dinoflagellates from the Maastrichtian to Pliocene in several sections in the Lake Maracaibo Basin and adjacent areas, in the foothills of the Andes and the Perija Range (western Venezuela). In the Middle and Upper Eocene, Norris & Velásquez identify and describe the morphology of 35 dinoflagellate taxa. Based on the observed range tops (last appearance datums LAD) of selected dinoflagellate cysts they recognize four interval zones (EOM1-EOM4) in two subsurface sections (Pica-1X and 15-GU-507).

Several other palynological studies (Leon et al., 1996, Canache et al., 1995; Colmenares, 1996) mention the presence of dinoflagellate cysts, but without illustrating them or discussing their taxonomy and biostratigraphic importance.

A significant number of publications deals with Cretaceous palynological assemblages (Helenes & Somoza, 1999; Helenes et al., 1999; Helenes, de Guerra & Vazquez, 1998; Colmenares, 1994; Fasola & Paredes, 1991), but do not cover the Middle to Upper Eocene interval.

However, the taxonomy, morphology and stratigraphic importance of Eocene dinoflagellates have been extensively documented in Europe, Australia and Canada where they are a very important tool in biostratigraphy, particularly in successions in which calcareous microfossils (planktonic foraminifera, calcareous nannoplankton) are lacking or giving only unsatisfactory results (see e.g. Brinkhuis, 1994; Bujak, 1976, 1980, 1994; Châteauneuf, 1980; Cookson & Eisenack, 1982; de Coninck, 1977, 1985, 1995a, b, 1999a, b; Eaton, 1971, 1976; Gocht, 1969; Jan du Chêne, 1984; Klump, 1953; Morgenroth, 1966; Sarjeant, 1986; Wilson, 1982, 1985, 1988).

To my knowledge, no investigations on Eocene fungal spores from Venezuela have been published. They have been studied in other areas, particularly in northern North America and India by several authors. Recent comprehensive papers on dispersed fungal remains in the

3.3 Problems of the dinoflagellate cyst zonation and provincialism

Dinoflagellate cysts are an important group of microfossils in petroleum exploration all over the world, due to their potential to resolve problems of age dating and correlation. The remarkable morphological diversity displayed by dinoflagellate cysts facilitates their identification. Most of them are short-lived and, geographically widespread in marine sediments thanks to their planktonic nature.

Several zonation schemes based on dinocysts have been proposed for the Eocene, but almost all of them have been established in high and middle latitudes, whereas data from tropical areas are scarce or even lacking. Zonal schemes established in the Northern Hemisphere (northwestern Europe and Canada) cannot be applied without modifications to the northern part of South America or the Caribbean region. This is probably due to the following reasons:

Water temperature and oceanic circulation patterns seem to constitute the two principal factors in the determination of provincialism in dinoflagellate cysts (e.g. Williams et al., 1990). Today, some species of dinoflagellate cysts are confined to the tropical/subtropical regions, while others are found exclusively in high latitudes.

During the middle to late Early Eocene, the oceans and seas are characterized by a rather uniform warm global climate (“greenhouse” conditions, Miller et al. 1987). Warm marine conditions are indicated by oxygen isotope ratios of planktonic and benthic foraminifera recovered worldwide from many locations (e.g. Sloan & Barron, 1992). Within the Middle Eocene, the climate started to deteriorate leading to a steeper temperature gradient from lower to higher latitudes. This climatic change was perhaps more pronounced in tropical regions (e.g. Sloan & Rea, 1995) and did lead to an increase in the differences between low latitude and middle to high latitude assemblages.

The recognition of cosmopolitan and endemic species in the Tertiary is complicated by the increasing provincialism observed in dinoflagellate cysts (Stover et al., 1996). This affects the definition of the limits of biozones and other significant events as well as the chronostratigraphic correlation with the Eocene zonations established in NW Europe, Canada and Australia. These zonations are mainly based on representatives of the genera Apectodinium, Rhombodinium, Wetzeliella, Kisselovia, Gochtodinium, Wilsonidium and Dracodinium (see Williams & Bujak, 1985). All these genera - except Wetzeliella, Rhombodinium, Wilsonidium, and Apectodinium (Wetzeliella Group) are good index-fossils in the Eocene of southern Brazil, but unfortunately, they are absent in the basins close to the equator in northern Brazil (Mitsuru, A., 2002, written communication) and also in the samples I have studied from Venezuela.

Text-Figure 10 shows the differences in the stratigraphic ranges attributed by different authors to selected Eocene taxa found in this study. They are arranged according to their last (LAD) and first appearances (FAD). The Eocene time scale considered as standard in this study that of Berggren et al. (1995).

Already Williams et al. (1990); Stover et al. (1996) stress that, temporal and spatial distribution of most Mesozoic and Cenozoic dinoflagellate cysts are probably not uniform.

Patterns of provincialism have been proposed for this fossil group (e.g. Norris 1975; Williams & Bujak, 1977; Damassa & Williams, 1993, 1996, and Arai et al. 2000). These authors discuss and illustrate clearly the recognition of different provinces (boreal, arctic, “transitional”, tethyan, tropical/subtropical) focusing on the distribution of selected dinoflagellate taxa restricted to specific geographic areas during a given interval of time.

Unfortunately, in low latitudes, much less information on the distribution patterns of Eocene dinoflagellate cysts is readily available.

Helenes (1984) and Helenes et al. (1988) report a total of 9 species from the Middle Eocene of Mexico and Venezuela, but did not discuss the significance of their distribution. All these species are also present in central and northern Europe.
Williams & Bujak (1977) studied the affinities between selected species (Areosphaeridium diktyoplokus, Areosphaeridium multicomatum, Distatodinium paradoxum) in the Upper Eocene to Oligocene of the Grand Banks, England, the Scotian Shelf and offshore Florida. The authors discuss the variations in their distribution and suggest that they are controlled by local and regional variations of the paleoenvironmental conditions.

Williams et al. (1990) stress the differences between the Eocene dinoflagellate cyst assemblages from the Grand Banks (Williams & Brideaux, 1975) and those from southern England (Bujak et al., 1980). During the Eocene, some subtropical to tropical species disappear from the Grand Banks.

Damassa & Williams (1993, 1996) explain differences in the distribution of dinoflagellate cysts during the Eocene-Oligocene distribution in six different regions (Gulf of Mexico, offshore New Jersey, Labrador Sea, Norwegian Sea, Rockall Plateau, and northwestern Africa) by latitude and the pattern of surface currents. They identify characteristic assemblages restricted to low or middle latitudes and only a small number of cosmopolitan species, whereas some species
have pronounced heterochronous stratigraphic ranges.

Variations in the biogeographical distribution and provincialism of dinoflagellate cysts are mainly caused by climatic changes and shifts in the pattern of oceanic currents (e.g. Williams et al., 1990), but they are modified by local and regional paleoenvironmental factors.

3.4 Results

3.4.1 Analytical procedures:

The results exposed in this study are exclusively based on cuttings, outcrop and core samples of five sections in Eastern Zulia (see Chapter 5).

Two slides for each sample have been scanned in uniformly spaced traverses in order to count the number of specimens and to determine the species of dinoflagellate cysts present. If possible, an average of one hundred to one hundred fifty determinable specimens (75 grains on each slide) has been counted. According to Köthe (1990), Brinkhuis (1993), Pross (1997) and others, a count of 300 grains is necessary in order to include most species present in an assemblage. Due to the low recovery of dinoflagellate cysts, this number could not be reached and therefore, the statistical analysis is incomplete.

The representatives of each species have been described, sketched, measured and photographed. Their taxonomic status, morphological development, intraspecific variation, and paleoecology are discussed in the systematic part (see chapter 6). All these data are recorded in the data base TAXIS (Taxonomic Information System). The relative frequencies are indicated on the distribution charts (Tables 2-7) as follows: 1 specimen (trace); 2-5 specimens (rare); 6-15 specimens (common); 16-25 specimens (frequent); > 25 specimens (abundant).

The fungal spores were analysed only in the studied interval of the well Pica-1X and in the Quebrada Bijugal section, in which they are very frequent. The relative abundance of species was determined by systematically scanning four slides per sample (two unoxidized and two oxidized slides) and counting 100 specimens. This number of specimens is considered to yield a representative association. The relative abundance of each species in each sample is indicated in the same way as with the dinoflagellate cysts (see Table 2, 3 5; Appendix B). The described new species are based on a minimum of 12 or more specimens of identical morphology.

3.4.2 Stratigraphic subdivision of the sections

The subdivisions of the four sections investigated in Eastern Zulia are based mainly on the well represented marine dinoflagellate cysts and terrestrial fungal spores. The adopted bioevents are discussed in detail after presenting the main characteristics of the distribution of the two groups of palynomorphs in each of the studied sections.

3.4.2.1 Pica 1X Well

The distributions of the dinoflagellate cysts and fungal remains recovered from the Jarillal Formation are presented in Appendix B (see Table 2 and 3). A total of seventy-six samples (core and cuttings) were collected from the Pica-1X well in the north of Eastern Zulia. The majority of the studied samples are from the Jarillal Formation (Samples PP-1 to PP-56). Preservation is generally good, but abundance and species diversity vary significantly throughout the studied section. Additionally, acritarchs and fresh water algae are recorded (see Chapter 4 Palynomorph ecostratigraphy).

Distribution of palynofloras in the Jarillal Formation

The palynological assemblages from the Jarillal Formation consist mainly of dinoflagellate cysts and fungal remains as well as of frequent occurrences of pteridophyte spores, gymnosperm and angiosperm pollen grains which have not been studied..

More than 45 different taxa of dinoflagellate cysts have been identified (see Table 2, Appendix B). Species recovered in the samples between -100 ft and -4720 ft, are characteristic for Late Eocene to late Middle Eocene assemblages in other areas. (e.g London Basin, Paris Basin, Grand Banks, U.S.A. Gulf Coast, western Nile Delta, Baja California and India). However, data on their stratigraphic distribution in these areas vary in detail and perhaps several of the species are only of regional biostratigraphic value, but more research is needed to establish firmly their significance. Generally, occurrences indicated on Table 2 (see Appendix B) do not correspond to the known entire range of the taxa.. The most frequent and significant taxa belong to the genera Diphyes, Araneosphaera, Enneadocysta,
Adnatosphaeridium, Hystrichostrogylon, Lingulodinium, Homotryblium and Cordosphaeridium. They are found in most of the samples, but their distribution in the section is not uniform.

Fungal remains have been found in almost all samples from the Jarillal Formation, but their composition varies from sample to sample. They are particularly frequent in the upper part of the formation (-100 ft to -460 ft). The quantitative distribution of fungal remains is shown in Table 3, Appendix B. The fungal remains include 33 described and 5 new species. The most dominant forms are ascostromata of the family Microthyreaceae viz. Callimothallus assamicus, Callimothallus pertusus, Desmidiospora willoughbyi. Fungal spores are represented mainly by the genera Paragranatisporites, Dictyosporites, Fusiformisporites, Multicellites, Striadiporites, Brachysporisporites and Exisispores. Fungal hyphae are also widespread. Many of the fungi are similar to fungal remains recorded by Norris (1986) and Parsons & Norris (1999) from the Tertiary of the Mackenzie Delta in northern Canada, by Kalugutkar (1993) from the Paleogene of the Yukon Territory, by Ediger (1981) and Ediger & Alisan (1989) from the Tertiary of the Thrace Basin in Turkey, by Kemp (1978) from the Tertiary of the Ninetyeast Ridge in the Indian Ocean, by Lange (1978) from the Tertiary of Southern Australia and by Dilcher (1965) and Elisk & Dilcher (1974) from the Eocene of Tennessee.

Age-assessment of the palynoflora

The Pica-1X well is of primary importance in assessing the age suggested by the palynofloras, since it represents the most complete available section of the Jarillal Formation. Therefore, it is also the standard section for palynostratigraphical correlations.

The interval from -100 ft to -460 ft contains a rather uniform dinoflagellate cyst assemblage dominated by Enneadocysta pectiniformis, Glaphyrocysta texta, Polysphaeridia congretatum in co-occurrence with Chiropteridium galea.

Enneadocysta pectiniformis and Glaphyrocysta texta have both their first appearance at -460 ft (sample PP-4). According to Stover & Williams (1993), the range for E. pectiniformis in different European localities (e.g. Germany, Belgium, France and Italy) is from the late Middle Eocene (Bartonian) to the Early Oligocene (Rupelian). In terms of calcareous nanoplankton zones, the species ranges from Zone NP15 to Zone NP20 (Williams & Bujak, 1985). Likewise, G. texta has a range restricted to Zones BAR-3 to BAR-5 of the Barton Beds (Eaton et al., 1980). According to William & Bujak (1985), this interval of the Barton Beds is equivalent to the calcareous nanoplankton zone NP17. Recently, Torricelli & Biffi (2001) reported this species from the Upper Eocene of northern Tunisia.

The species P. congretatum (FAD in sample PP-3) has not been recorded from beds older than late Middle Eocene (Eaton et al. 1980; Williams & Bujak, 1985; Williams et al. 1993). This species has its first occurrence in the upper part of the calcareous nanoplankton zone NP17 (Williams & Bujak, 1985).

Chiropteridium galea was found only in the samples PP-2 and PP-3. This species has its youngest occurrence in the Oligocene of Europe, Africa and Canada (Williams, 1975; Williams, 1978; Biffi & Manum, 1988 and Köthe, 1990). However, it also has been reported from the Late Eocene deposits of offshore Eastern Canada (Williams & Brideaux, 1975) and of the North Atlantic (Damassa et al., 1990). The latter authors correlate the occurrence of C. galea in the North Atlantic with the nannofossil zones NP19/20 to 25 (late Priabonian to Chattian). The presence of C. galea in the samples PP-2 to PP-3 is a strong evidence for an early Late Eocene age of the corresponding interval (probably equivalent to calcareous nanoplankton zone NP18?).

A comparison with the dinoflagellate cyst zones of Eaton et al (1980) and Williams & Bujak (1985) shows that many representatives of the Middle to Late Eocene genera used in their zonations are also present in the Jarallil Formation, but a detailed correlation results to be difficult.

The fungal spores of the same interval are probably indicative of a broad Late Eocene age. Fusiformisporites rugosus, Paragranatisporites vermiculus (FAD in sample PP-3) are reported from the Thrace Basin (Turkey) with ranges not older than Late Eocene. The common presence of the species Dictyosporites morularis (FAD in sample PP-4) has been recorded in the Lower Miocene of Equatorial Africa (Kalugutkar & Jansonius, 2000). The new species Brachysporisporites jarillalensis is restricted to the upper part of this interval.

Microfloras extracted from the interval – 580 ft to – 3915 ft (samples PP-5 to PP-43) are rather diverse and contain a few marker species. Among the significant taxa are Diphyes colligerum, Enneadocysta arcuata,
Based on calcareous nanofossils, Crux et al. (1997) considered this interval to be entirely or nearly entirely of Middle Eocene age (calcareous nanoplankton Zone NP17 and within planktic foraminiferal zone P14-P15 of Blow 1969 = Truncorotaloides rohri to Globigerinatheka seminovoluta zones of Toumarkine & Luterbacher, 1985). An exact correlation of my samples with those of Crux (1997) is difficult, but the dinoflagellate cyst assemblages recovered from this interval corroborate independently the age based on calcareous nanoplankton.

The LAD of Diphyes colligerum at -580 ft (sample PP-5) and of Adnatosphaeridium vittatum at -3940 ft (sample PP-44; -3940 ft) indicates an age not older than the upper part of calcareous nanoplankton zone NP 16. Diphyes colligerum is restricted to the Late Eocene (Williams, 1975, 1978; Williams & Brideaux, 1975) and used worldwide to indicate the Eocene-Oligocene boundary (Williams et al., 1993). This species has also been reported in Late Eocene deposits of northern Tunisia (Torricelli & Biffi, 2001); the Western Desert (El-Bassiouni et al., 1988) and the Nile Delta in Egypt (El-Beialy, 1988; 1990). El-Beialy (1988) suggests that the range of D. colligerum in Egypt is probably equivalent to the planktonic foraminiferal Globorotalia cerroazulensis zone.

Adnatosphaeridium vittatum appears in the uppermost zone B-5 of the Bracklesham Beds (Bujak et al. 1980). On the basis of calcareous nanoplankton from the Bartonian type area, these beds are assigned to the Middle Eocene (Zone NP16). However, Williams & Bujak (1985) restrict the range of A. vittatum to the Early Eocene, but without giving conclusive support to their assumption.

Other indicators of a probable Middle Eocene age are the LAD of Enneadocysta arculata at -2357 ft (sample PP-20) and the high abundance of Araneosphaera consociata in samples PP-12 and PP-17. It place the youngest occurrence in the Middle Eocene from southwestern Kutch, India (Zone IV; Jain & Tandon, 1981).

According to Williams & Bujak (1985), the oldest occurrence of Enneadocysta arculata is within the Middle Eocene (calcareous nanoplankton zone NP 14). In the Barton Beds of the Isle of Wight the last occurrence of common E. arculata is within the Zone BAR-5 of Eaton et al. (1980) which is assigned to the upper part of the calcareous nanoplankton zone NP17 by Aubry (1983, 1985). Most of the records are, however, from the Middle Eocene Lutetian (e.g. Eaton, 1971; Williams, 1975; Bujak et al., 1980; Jain & Tandon, 1981; Helenes, 1984; Edwards, 1989; Köthe, 1990).

Based on the above discussion, I place the entire interval from -580 ft to -3915 ft into the Middle Eocene (more or less equivalent to the calcareous nanoplankton zone NP 17).

It is noteworthy that the lowermost samples from the Jarillal Formation between -3915 ft to -4440 ft (PP-43 to PP-53) contain common specimens of Adnatosphaeridium vittatum, Adnatosphaeridium cf. multispinosum, Homotryblium floripes, and Hystrichostrogylon membraniphorum. The first two species are also known in many areas as the most dominant members of Middle Eocene assemblages. The ranges of most of these species reach into the Middle Eocene,

The youngest occurrence of Hystrichostrogylon membraniphorum has been reported in the Middle Eocene calcareous nanoplankton zone NP16 by Williams & Bujak (1985). The species is also known from the Middle Eocene of Baja California (Helenes, 1984) and the Eastern U.S.A (Edwards, 1989), where its range correlates with the upper part of the nanoplankton zone NP16. H. membraniphorum reaches its greatest abundance at -4157 ft (sample PP-48).

The first occurrence of Homotryblium floripes at -4035 ft (sample PP-45) could indicate an important palynological event, since it has been used in various zonations as an important zonal marker (Drugg & Stover, 1975; Williams et al., 2001). According to Williams et al. (2001) this species has it oldest occurrence in the Middle Eocene (Lutetian). However, Williams & Bujak (1985) place its oldest occurrence into the upper part of the calcareous nanoplankton zone of NP16 (topmost Lutetian to Bartonian).

Finally, the LAD of Adnatosphaeridium vittatum and the FAD Adnatosphaeridium cf. multispinosum suggest that the interval between -3915 ft to -4440 is not younger than the upper part of the calcareous nanoplankton zone NP16.

Fungal remains from the interval -580 ft to -4720 ft support a Middle Eocene age based on the presence of several fungal spores with known stratigraphic ranges. Among the species recorded from this interval are Fusiformisporites crabii, Plochmopeltolites masonii (LAD in sample PP-6), Striadiportites cf. irregularis (FAD in sample PP-51), Dictyosporites odremansensis, Striadiportites crosstriatus and

17
Multicellites grandiusculus (LAD in sample PP-10). Most of the species are present throughout the studied interval, but a few of them show a restricted occurrence. These restricted occurrences may provide a basis for correlations and age determinations in the studied area, but more complete sequences and more detailed observations are necessary to prove their stratigraphic significance. Peak abundances of fungal remains are scattered throughout the entire section, but the diversity may be either low or high in these levels (e.g. samples PP-7 and PP-35).

Callimothallus assamicus, and C. pertusus which are common throughout the section are known from the Middle Eocene of Tennessee (Dilcher, 1965), India (Kar, Singh & Sah, 1970), North Canada (Elsik, 1976), Southern Australia (Lange, 1977), the Indian Ocean (Kemp, 1978), northern Canada (Norris, 1986; Parsons & Norris, 1999), and Turkey (Ediger & Alisan, 1989).

The presence in great numbers of Fusiformisporites crabbii in sample PP-7 (~820 ft) is another indication of a Middle Eocene age. Parsons & Norris (1999) have recorded this species in the Middle Eocene of the Mackenzie Delta where it occurs together with Plchomopeltinites masonii, Striadiporites cf. irregularis and other species. These three species are used, by these authors for the definition of the palynomorph zone CHF5 attributed to the younger part of the late Middle Eocene.

The only published record of Multicellites grandiusculus is from the Middle Eocene of Tennessee (Dilcher, 1965).

Additional evidence for an Eocene age comes from the conspicuous representatives of the genus Striadiporites which never has been recorded in beds older than Eocene in widely separated areas (India, Colombia, Alaska; see Elsik & Jansonius, 1974).

Text-Figure 11 shows some important dinoflagellate cysts and fungal spores events recognized in the studied interval of the Pica-1X well.
3.4.2.2 VL-37X Well

Forty ditch samples covering the depth interval from -8700 ft to -10960 ft from VL-37X have been investigated for their content in palynomorphs. The samples belong to the Pauji Formation. Almost all of these samples are dominated by terrestrial pollen and spores, organic-walled cysts and algae (Pediastrum). The preservation of the microfossils is generally good.

Distribution of the palynoflora in the Pauji Formation

The dinoflagellate flora contains 22 species from 13 genera. Table 4 (see Appendix B) shows the distribution chart of the identified dinoflagellate cysts in the VL-37X well. Only a few taxa are common in all samples of the studied interval. Characteristic species include Polysphaeridium subtile, Selenopemphix nephroides, Homotryblium tenuispinosum, Homotryblium pallidum, Homotryblium plectillum, Cordosphaeridium cantharellum, Lingulodinium polyedrum and Operculodinium centrocarpum.

Homotryblium pallidum and Homotryblium plectillum are common mainly in the lowermost sample, whereas the remaining taxa are either relatively rare to common or have a more or less patchy occurrence.

Three samples from the upper part of the Pauji Formation (VL-1, VL-2, VL-3) are devoid of palynomorphs.

Age–Assessments of Palynoflora

The majority of dinoflagellate cysts recovered from VL-37X are essentially Middle Eocene taxa. The exact dating of the Pauji Formation is difficult due to the lack of additional biostratigraphic data. The known ranges of selected biostratigraphically significant taxa that occur in the productive interval (VL-4 to VL-40) are based on standard reference works (e.g. Williams & Bujak, 1985; Eaton et al., 1980 and others).

I hesitate to make statements regarding the interpretation of the distribution of dinoflagellate cysts in well VL-37X for three reasons: (a), the sampling intervals are very large, and any analysis would probably be significantly modified by a more detailed study; (b) the stratigraphic ranges of a number of taxa are unknown in tropical areas; (c) many first occurrences of dinoflagellate cysts are based on ditch cuttings and the presence of down-hole contaminations cannot be excluded.

For these reasons, I prefer simply to plot the species distribution against independent age determinations and to postpone the interpretation until a more elaborate study is made. Only a few remarks on the probable age attributions are made.

Two species Polysphaeridium subtile (LAD in sample VL-4) and Homotryblium tenuispinosum (FAD in sample VL-40) seem to be restricted to beds of Early to Middle Eocene age (calcareous nannoplankton zones NP12-NP17) according to Williams & Bujak (1985).

Selenopemphix nephroides found in samples VL-4 to VL-25) has its lowermost occurrence in the calcareous nannoplankton zone NP16 (Williams & Bujak, 1985).

The frequent occurrence of the species Hystrichokolpoma salacium from samples VL-6 to VL-9 is considered here as an important event. Data from the Bracklesham Beds (London Basin, Eaton et al., 1980) indicate that this species is restricted to the Middle Eocene, and correlates with calcareous nannofossil zone NP16.

Clesitosphaeridium placacanthum has its oldest occurrence in the Middle Eocene (Lutetian) of the Northern Hemisphere (Williams et al., 1993). Bujak & Mudge (1994) report that the range of this specie is restricted to the calcareous nannoplankton zone NP15 in the North Sea.

All taxa indicate an undifferentiated Middle Eocene age (calcareous nannoplankton zone NP15-NP16). In VL-37X the Pauji/Misoa boundary is probably above the last occurrence of C. placacanthum and below the last occurrences of P. subtile and H. tenuispinosum (see Text-Figure 12).
3.4.2.3 Quebrada Bijugal outcrop section

A total of 16 samples collected from this outcrop of the Pauji and Caus formations yielded palynomorphs. These are mainly dominated by marine (dinoflagellate cysts) and terrestrial fungal remains. The preservation varies from generally good to very bad.

Palynoflora distribution in the Pauji and Caus formations

The samples from the Pauji Formation mainly contain dinoflagellate cysts and fungal remains (samples QB-1 to QB-10). The dinoflagellate cyst assemblages are dominated by Cleistosphaeridium diversispinosum, Distatodinium ellipticum, Diphyes colligerum, Homotryblium vallum and Cleistosphaeridium sp. A.

Table 5 (see Appendix B) shows the distribution of the palynomorphs identified in this outcrop section.

Scarce to common fungal remains are found in some samples. The assemblages are of low diversity and dominated by abundant representatives of a restricted number of
species (e.g. Dictyosporites odremanensis and Fusiformisporites crabbii).

The interval between samples QB-11 and QB-16 is barren in palynomorphs.

Age-assessments of the palynoflora

The succession of dinocyst occurrences in the Pauji Formation in the Quebrada Bijugal outcrop section is quite similar to that in the interval -580 ft to -3878 ft of the Pica-1X well.

In both sections, the assemblages are diverse and contain distinctive species as Diphyes colligerum, Diphyes spinulum, Turbiosphaera filosa, Selenopemphix nephroides, Cleistosphaeridium ancyrea, Distatodinium cf. tenerum and Homotryblium floripes. In both sections Diphyes colligerum, and D. spinulum the upper part of the succession.

The dinocyst flora of the Pauji Formation indicates a Middle Eocene age with Cleistosphaeridium diversispinosum, and Distatodinium ellipticum as dominant species.

According to Eaton et al. (2001), Cleistosphaeridium diversispinosum has an Early Eocene to Early Oligocene range. However, in material from the Grand Banks (Williams & Brideaux, 1975), this species appears to be abundant in strata provisionally dated at least as young as Late Oligocene.

according to Williams & Bujak (1985) Distatodinium ellipticum has a range equivalent to the calcareous nannoplankton zone NP15-NP17. Damassa et al. (1990) indicate that the first occurrence of D. ellipticum is in the late Middle Eocene, and correlates with the calcareous nannoplankton zone NP17. Bujak et al. (1980); Mathur (1986) and Manum et al. (1989) report this species from in the Middle Eocene in England, India and Norway.

3.4.2.4 Quebrada Palma outcrop section

Eight samples were examined from the Middle Eocene sequence of the Quebrada. Palma section. Dinoflagellate cysts are general fairly to very badly preserved. Poor preservation prevented the determination of many specimens, but others could be identified reliably.

<table>
<thead>
<tr>
<th>Thickness (m)</th>
<th>LITHOLOGY</th>
<th>FORMATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Text-Figure 13. Stratigraphic summary and biostratigraphic events recognized in the Quebrada Bijugal section.

Palynoflora distribution of the Caus Formations

Dinoflagellates present in the Quebrada Palma section are dominated mainly by representatives of the genera Homotryblium and Areoligera. Common to frequent species include...
Polysphaeridium subtile, Adnatosphaeridum vittatum, Operculodinium microtriainum, Homotryblium plectillum, Homotryblium pallidum.

Areoligera senonensis, and Homotryblium tasmaniense are present in the majority of the samples. However, A. senonensis is more frequent in the middle part in contrast to H. tasmaniense which becomes more frequent up section.

Selenopemphix nephroides, Lejueneycysta hyalina occur only towards the top and bottom of the section. Species lists are show in the range chart Table 6 (see Appendix B).

Age – Assessment of the palynoflora

Samples QP-7 and QP-8 attributable to the Misoa Formation are very poor and do not allow an age determination.

Within the Caus Formation following succession of last and first occurrences is observed Homotryblium tasmaniense its last appearance in sample QP-1, while Areoligera senonensis has its youngest occurrence in samples QP-2. The first specie was originally reported from the Paleocene of Tasmania. It was subsequently recorded from strata as young as in Middle Eocene of Nigeria (Oloto, 1984), and Egypt (El-Beialy, 1990).

A. senonensis is very abundant in the Lower to Middle Eocene of Europe (Williams & Downie, 1966; Gruas-Cavagnetto, 1971). However Bujak et al. (1980) restrict its range to their zone B-1 which they correlate with the calcareous nannoplankton zone NP16.

Polysphaeridium subtile has its first occurrence in sample QP-7 near the base of the section. According to Williams & Bujak (1985), this species has its youngest occurrence in the calcareous nannoplankton zone NP17.

The age of the Caus Formation in the Quebrada Palma section is considered to be Middle Eocene (not older than equivalent to the calcareous nannoplankton zone NP 17). Because of the poor preservation of the dinoflagellate cysts and the absence of some key species, a more detailed age determination is not possible at present.

3.4.2.5 Quebrada Honda outcrop section

Of the 14 samples processed from the Middle Eocene of the Quebrada Honda outcrop section, all except one (QH-2) are productive. Dinoflagellate cysts in particular are well represented in most of the samples, but the total number of palynomorphs is generally smaller than in the other sections. The species diversity of the assemblages is very variable. A total 21 dinoflagellate cyst species have been recovered from this section. Preservation of the dinoflagellate cysts is moderate to good in most samples.

The range chart (see Table 7, Appendix B) shows the stratigraphic distribution of the dinoflagellate cysts.

![Text-Figure 14. Stratigraphic summary and biostratigraphic events recognized in the Quebrada Palma section.](image-url)
Distribution of palynomorphs in the Caus and Pauji formations

The most abundant dinoflagellate cysts belong to long-ranging species, including *Polysphaeridium subtile*, *Lingulodinium polyedrum*, and *Selenopemphix nephroides*. A few poorly represented species have rather patchy occurrences (e.g. *Turbiosphaera filosa*, *Spiniferites ramosus* and *Nematosphaeropsis balcombiana*).

The four lowermost samples (QH-11 to QH-14) which are attributed to the Caus Formation contain well-preserved assemblages with the largest number of specimens of *Areoligera senonensis* and *Homotryblium tasmaniense*. The occurrence of the latter species is restricted to the Caus Formation (LAD in sample QH-12), whereas rare representatives of *A. senonensis* reach into the lower part of the Pauji Formation (LAD in sample QH-8).

In the upper part of the Quebrada Honda section, sample QH-1 contains abundant to frequent *Polysphaeridium subtile* and *Homotryblium tenuispinosum*.

Age-Assessment of Palynoflora

Many of the dinoflagellate cyst species recorded in the Quebrada Honda section have ranges which are poorly established or which are not critical for a precise age determination of the section. Nevertheless, a late Middle Eocene age, is supported by the youngest occurrence of *Homotryblium tasmaniense* in sample QH-12 (equivalent to calcareous nannoplankton zone NP 16 or younger), and the highest occurrence of *Areoligera senonensis* in samples QH-8 (calcareous nannoplankton zone NP 16 or older). Perhaps the most significant biostratigraphic event within this interval is the FAD of *Polysphaeridium zoharyi* in sample QH-10. This species has its youngest occurrence in the calcareous nannoplankton zone NP16 (Williams & Bujak, 1985). Other events that may prove stratigraphically useful include the FAD of *Cleistosphaeridium* sp. A, in the sample QH-9, and the LAD of *Polysphaeridium subtile* and *Homotryblium tenuispinosum* in sample QH-1 (see discussion of the VL-37X subsurface section).

The LAD of *P. subtile* and *H. tenuispinosum* in sample QH-1 indicate that this sample is probably not younger than Middle Eocene (equivalent to the calcareous nannoplankton zone NP 16C).

3.5 Palynological Zonation

The dinoflagellate assemblages recovered from the samples of Eastern Zulia do not allow to propose a formal zonation of the Middle Eocene. Many of the commonly occurring taxa are long-ranging forms (see Text-Figure 12). In addition, in ditch samples (Pica-1X and VL-37X) lowest occurrence may be blurred by cavings.

Nevertheless, a considerable number of range and abundance markers allow to recognise a provisional sequence of dinoflagellate events valid mainly for Eastern Zulia. Based on data in literature, a large number of taxa such as *Enneadocysta pectiformis*, *Glaphyrocysta texta*, *Polysphaeridium congregatum*, *Chiropteridium galea*, *Diphyes colligerum*, *Adnatosphaeridium vittatum*, *Enneadocysta arctica*, *Araneosphaera consociata*, *Adnatosphaeridium cf. multispinosum*, *Hyrchistostrogyrin membraniphorum*, *Homotryblium floripes*, *Homotryblium tenuispinosum*, *Polysphaeridium subtile*, *Selenopemphix nephroides*, *Hyrchihokolpoma salacium*, *Cleistosphaeridium placacanthum*, *Cleistosphaeridium diversispinosum*, *Homotryblium tasmaniense*, *Areoligera senonensis* and *Polysphaeridium zoharyi* are considered to be biostratigraphically significant (Table 8). Isolated occurrences have not been taken into account. Last and first appearances (LAD and FAD) of species listed above as well as the last or first
Common occurrences (abundance events) of one or more dinocyst taxa have been compiled into a sequence of marker events shown in Text-Figure 16. This figure includes the correlation of these events with standard calcareous nannofossil zones of Martini (1971). The majority of these events are LAD which are more appropriate for ditch samples since they are not affected by cavings. Further work probably will extend the range of some species.

Text-Figure 16. Ranges and abundances of selected dinoflagellate cysts in the Eocene of Eastern Zulia.

<table>
<thead>
<tr>
<th>EOCENE</th>
<th>TIME (Ma)</th>
<th>EPOCH</th>
<th>AGE</th>
<th>MARKER EVENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ypresian</td>
<td>49.0</td>
<td>MIDDLE</td>
<td>P9</td>
<td>NP 14</td>
</tr>
<tr>
<td>Lutetian</td>
<td>39.1</td>
<td></td>
<td>P10</td>
<td>NP 15</td>
</tr>
<tr>
<td>Bartonian</td>
<td>29.4</td>
<td></td>
<td>P11</td>
<td>NP 16</td>
</tr>
<tr>
<td>Priabonian</td>
<td>20.1</td>
<td></td>
<td>P12</td>
<td>NP 17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LATE</td>
<td>P13</td>
<td>NP 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P14</td>
<td>NP 19-20</td>
</tr>
</tbody>
</table>

- Emendocysta pectiformis
- Clathrocysta leda
- Polysphaeridium congestatum
- Opolyphyses collumellum
- Emendocysta acutata
- Adrastosphaeridium vitatum
- Homotyphlicum forpes
- Adrastosphaeridium cf. multispinosum
- Polysphaeridium subtile
- Homotrephycileus tenuispinosum
- Culobosphaeridium planeeuratum
- Didactylinium ellipticum
- Homotrephycileus trapeziforme
- Polyosphaeridium zoharyi
- Anarosphaera conicoidea
- Selenopemphix naphroides
- Curiatrosphaeridium divaricatopinum
- Areolidera senonensis

Range Maker

Abundance Profile
<table>
<thead>
<tr>
<th>Specie</th>
<th>FAD</th>
<th>LAD</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areoligera senonensis</td>
<td>B-1 (NP16)</td>
<td>B-4 (NP16) NP14</td>
<td>Eaton et al., 1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Williams & Bujak, 1985</td>
</tr>
<tr>
<td>Homotrybium tasmaniense</td>
<td></td>
<td>Middle Eocene</td>
<td>El-Beialy, 1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(undifferentiated)</td>
<td></td>
</tr>
<tr>
<td>Polysphaeridium zoharyi</td>
<td>NP16</td>
<td></td>
<td>Williams & Bujak, 1985</td>
</tr>
<tr>
<td>Homotrybium tenuispinosum</td>
<td>NP10</td>
<td>NP17</td>
<td>Stover (in Haq et al., 1988)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Williams & Bujak, 1985</td>
</tr>
<tr>
<td>Polysphaeridium subtile</td>
<td>NP-16</td>
<td></td>
<td>Williams & Bujak, 1985</td>
</tr>
<tr>
<td>Distatodinium ellipticum</td>
<td>NP17</td>
<td>NP17</td>
<td>Damassa et al., 1990</td>
</tr>
<tr>
<td></td>
<td>NP14</td>
<td></td>
<td>Williams & Bujak, 1985</td>
</tr>
<tr>
<td>Diphyes colligerum</td>
<td>NP10</td>
<td>NP17</td>
<td>Williams et al., 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NP18</td>
<td>Williams et al., 1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Williams & Bujak, 1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bujak & Mudge, 1994</td>
</tr>
<tr>
<td>Cleistosphaeridium placacanthum</td>
<td>NP15</td>
<td>NP15</td>
<td>Williams et al., 1993</td>
</tr>
<tr>
<td></td>
<td>NP16</td>
<td></td>
<td>Bujak & Mudge, 1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Williams & Bujak, 1985</td>
</tr>
<tr>
<td>Selenopemphix nephroides</td>
<td>NP16</td>
<td></td>
<td>Williams & Bujak, 1985</td>
</tr>
<tr>
<td>Hystrichokolpoma salacium</td>
<td>NP13</td>
<td>B-2</td>
<td>Williams & Bujak, 1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B-5</td>
<td>Eaton et al., 1980</td>
</tr>
<tr>
<td>Adnatosphaeridium multispinosum</td>
<td>NP11</td>
<td>NP17</td>
<td>Stover (in Haq et al., 1988)</td>
</tr>
<tr>
<td></td>
<td>NP11</td>
<td>NP17</td>
<td>Williams et al., 1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Williams & Bujak, 1985</td>
</tr>
<tr>
<td>Homotrybium floripes</td>
<td>NP16</td>
<td>BAR-2</td>
<td>Williams & Bujak, 1985</td>
</tr>
<tr>
<td></td>
<td>BAR-2</td>
<td></td>
<td>Eaton et al., 1980</td>
</tr>
<tr>
<td>Adnatosphaeridium vittatum</td>
<td>B-1</td>
<td>NP15</td>
<td>Bujak & Mudge, 1994</td>
</tr>
<tr>
<td></td>
<td>NP16-NP17</td>
<td></td>
<td>Manum et al., 1989</td>
</tr>
<tr>
<td></td>
<td>B-1</td>
<td>B-5</td>
<td>Eaton et al., 1980</td>
</tr>
<tr>
<td>Enneadocysta arcuata</td>
<td>NP14</td>
<td></td>
<td>Stover (in Haq et al., 1988)</td>
</tr>
<tr>
<td></td>
<td>NP14</td>
<td></td>
<td>Williams & Bujak, 1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BAR-5</td>
<td>Eaton et al., 1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle-Late Eocene</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(NP16-NP17 ?)</td>
<td>Manum et al., 1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NP16</td>
<td>Edwaards, 1989</td>
</tr>
<tr>
<td>Hystrichostrogylon membraniphorum</td>
<td>NP14</td>
<td>NP14</td>
<td>Williams et al., 2001</td>
</tr>
<tr>
<td></td>
<td>Restricted range</td>
<td>Restricted range</td>
<td>El-Beily, 1988</td>
</tr>
<tr>
<td></td>
<td>NP11</td>
<td>NP14</td>
<td>Köthe, 1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NP16</td>
<td>Manum et al., 1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NP16</td>
<td>Edwards, 1989</td>
</tr>
<tr>
<td>Enneadocysta pectiformis</td>
<td>NP18</td>
<td>Late Eocene</td>
<td>Williams et al., 2001</td>
</tr>
<tr>
<td></td>
<td>NP16</td>
<td></td>
<td>El-Beily, 1988</td>
</tr>
<tr>
<td></td>
<td>NP17?</td>
<td>NP17?</td>
<td>Köthe, 1990</td>
</tr>
<tr>
<td></td>
<td>Restricted zone</td>
<td>Restricted zone</td>
<td>Manum et al., 1989</td>
</tr>
<tr>
<td></td>
<td>NP18</td>
<td>NP23/24</td>
<td>Edwards, 1989</td>
</tr>
<tr>
<td></td>
<td>NP19/20</td>
<td></td>
<td>Torricelli & Biffi, 2001</td>
</tr>
<tr>
<td>Glaphyrocysta texta</td>
<td>BAR-3</td>
<td>BAR-5</td>
<td>Eaton et al., 1980</td>
</tr>
<tr>
<td></td>
<td>Restricted zone</td>
<td>Restricted zone</td>
<td>Williams & Bujak, 1985</td>
</tr>
<tr>
<td></td>
<td>NP17</td>
<td>NP20</td>
<td>El-Beily, 1988</td>
</tr>
<tr>
<td></td>
<td>NP19/20</td>
<td>NP19/20</td>
<td>Williams & Bujak, 1985</td>
</tr>
<tr>
<td></td>
<td>Restricted zone</td>
<td>Restricted zone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NP18</td>
<td>NP24</td>
<td>Williams & Bujak, 1985</td>
</tr>
<tr>
<td></td>
<td>BAR-5</td>
<td>BAR-5</td>
<td>Eaton et al., 1980</td>
</tr>
<tr>
<td></td>
<td>Restricted zone</td>
<td>Restricted zone</td>
<td></td>
</tr>
</tbody>
</table>

Table 8. Summary of some Dinoflagellate-events found in the Eocene of Eastern Zulia and their correlation with calcareous nannofossils according to literature.
3.6 Palynostratigraphic correlations

The correlations based on palynostratigraphy of sections measured in Eastern Zulia is show in Text-Figure 17.

Only part of the taxa recognized in the Pica-1X well are also found in the Quebrada Bijugal section located about 65 km to southeast. The top of the Jarillal Formation, in the well Pica-1X correlates with the top of the Pauji Formation in the Quebrada Bijugal section based on LAD of Diphyes colligerum. The very bad preservation of the palynoflora in the Quebrada Bijugal section does not allow to correlate the lower parts of these two formations.

The correlation between the well VL-37X and the Quebrada Honda Section is based on LAD of the species Polysphaeridium subtile and Homotryblium tenuispinosum. An exact correlation of the lower part of Quebrada Bijugal Section with this two sections is difficult. No diagnostic dinoflagellate cysts, have been recovered from the lower part of the Quebrada Bijugal section.

The two distinctive dinoflagellate cysts (Homotryblium tasmaniense and Areoligera senonensis) are common in the Caus Formation and allow a correlation with the Quebrada Honda and Quebrada Palma sections. In Eastern Zulia, the ranges of these two species seem to be more restricted (See section 3.2.4.4 and 3.2.4.5). A more precise determination of FAD within the interval belonging to the Caus Formation was not possible. The LAD of H. tasmaniense and A. senonensis occur within the unit.

Correlations indicated in Text-Figure 18 are necessarily tentative and have to be detailed by the study of additional sections and samples and to be confronted and modified by additional data based on other palynomorphs (e.g. fungal remains) and other groups of microfossils.

3.7 Comparison of dinoflagellate cyst assemblages with those from others areas

Table 9 shows the percentages of dinocyst species common in the Middle Eocene in several European and Indian localities and Eastern Zulia. The lack of published data on well-dated dinoflagellate cysts from the Middle Eocene of Venezuela and northern South America forces me to rely on comparisons with occurrences in very distant areas. In general the percentages of shared dinoflagellate taxa fluctuate between 30 and 50%. These percentages are rather high and may also indicate similar paleoenvironments.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Stage</th>
<th>TSR</th>
<th>NSC</th>
<th>%SC₁</th>
<th>%SC₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern England (Eaton et al., 1980)</td>
<td>Middle Eocene</td>
<td>145</td>
<td>30</td>
<td>20,7</td>
<td>50</td>
</tr>
<tr>
<td>Norwegian Sea (Manum et al., 1989)</td>
<td>Middle Eocene</td>
<td>129</td>
<td>27</td>
<td>20,9</td>
<td>45</td>
</tr>
<tr>
<td>Rogoznik section, Poland (Geld, 1995)</td>
<td>Middle Eocene</td>
<td>80</td>
<td>24</td>
<td>30,0</td>
<td>40</td>
</tr>
<tr>
<td>South western Kachchh, India (Jain & Tandon, 1981)</td>
<td>Middle Eocene</td>
<td>48</td>
<td>19</td>
<td>39,6</td>
<td>31,7</td>
</tr>
<tr>
<td>North Cambay Basin, Western India (Marthur, 1986)</td>
<td>Middle Eocene</td>
<td>49</td>
<td>15</td>
<td>30,6</td>
<td>25,0</td>
</tr>
<tr>
<td>Himachal Pradesh, India (Sarkar & Singh, 1988)</td>
<td>Middle Eocene</td>
<td>33</td>
<td>15</td>
<td>45,5</td>
<td>25,0</td>
</tr>
<tr>
<td>Mormon Hills Haryana, India (Sarkar & Prasad, 2001)</td>
<td>Middle Eocene</td>
<td>38</td>
<td>22</td>
<td>57,9</td>
<td>36,7</td>
</tr>
<tr>
<td>West Nile Delta, Egypt (El-Beialy, 1988)</td>
<td>Upper Eocene</td>
<td>37</td>
<td>18</td>
<td>48,6</td>
<td>30,0</td>
</tr>
</tbody>
</table>

Table 9. Percentages of dinocyst species in common between compared localities and Eastern Zulia.

TSR	Total number of dinocyst species reported for the compared locality.
NSC	Number species in common between the compared locality and the Eastern Zulia.
%SC₁	Percentage species in common calculated by (NSC * 100)/TSR;
%SC₂	Percentage species in common calculated by (NSC * 100)/60.
Text-Figure 17. Correlation of Middle Eocene formations in Eastern Zulia, dated by dinoflagellate cysts and correlated with nannofossils zones (Martini, 1971; time scale after Berggren et al., 1995)

The dinoflagellate cyst assemblages studied from Eastern Zulia share a significant number of species with assemblages described from the Middle Eocene of southern England (Bartonian stratotype Eaton et al., 1980). The most significant species common to both areas are Cordosphaeridium gracile, C. inodes, Diphyes colligerum, Lingulodinium polyedrum, Homotryblium pallidum, H. tenuispinosum, Adnatosphaeridium multispinosum, A. vittatum, Polysphaeridium subtile, P. congregatum, Lejuenia hyalina, Enneadocysta arcuata, E. pectiniformis, Distatodinium ellipticum, Selenopemphix nephroides, and Cleistosphaeridium placacanthum. The species in common is high (50%, see Table 9).
The following dinoflagellate cysts used as marker species in Eastern Zulia have also been recorded by Manum et al. (1989) from the Middle Eocene of the Norwegian part of North Sea: *Adnatosphaeridium vittatum*, *Enneadocysta arcuata*, *Enneadocysta pectiniformis*, *Distatodinium ellipticum*.

Similarities at the generic and specific level with coeval dinoflagellate assemblages of India seem to be more limited. Sarkar & Prasad (2001) reported dinoflagellate assemblages from the Subathu Formation in the Morni Hills (Haryana, India) include *Achilleodinium biformoides*, *Achomosphaera multifurcata*, *Adnatosphaeridium vittatum*, *A. multispinosum*, *Lingulodinium polyedrum*, *Operculodinium centrocarpum* known from Eastern Zulia.

Coeval assemblages from Himachal Pradesh, India (Sarkar & Singh, 1988) share even less species with those from Eastern Zulia: *Adnatosphaeridium vittatum*, *A. multispinosum*, *Cleistosphaeridium divesispinosum*, *Cordosphaeridium inodes* and *Homotryblium tenuispinosum*. The percentage of common species reported by Jain & Tandon (1981) from the Kutch is relatively low (25%).

Upper Eocene dinoflagellate assemblages from Egypt and Tunisia have been described by El-Beialy (1988) and Toricelli & Biffi (2001). Only a few species are shared with the Eocene of Eastern Zulia: *Diphyes colligerum*, *Enneadocysta pectiniformis*, and *Glaphyrocysta texta*.

The albeit incomplete present analysis seems to indicate that dinoflagellate cysts reported from northwest Europe are also present in low latitude assemblages. This may indicate their adaptation to a broad spectrum of paleoenvironmental conditions. Others species, particularly *Homotryblium floripes* and *Polyosphaeridium zoharyi* seem to be restricted to or are more common in lower latitudes Williams et al. (1990).
4.1 Data processing

All productive samples were analysed qualitatively and quantitatively. The quantitative analysis is made in two steps. In a first step, up to 100 specimens of palynomorphs have been counted and separated into seven groups with different paleoenvironmental (see e.g., Van Mourik, Brinkhuis & Williams, 2001; Pross 1997; Brinkhuis & Biffi, 1993) These groups are (see Table 10): (a) terrestrial palynomorphs: pollen/spores, fungal remains. (b) aquatic palynomorphs: dinoflagellate cysts, acritarchs, foraminiferal linings, prasinophyceae, algae, and colonial chlorococcales.

Aquatic Palynomorphs

<table>
<thead>
<tr>
<th>Category</th>
<th>Biological affinity</th>
<th>General ecology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dinoflagellate cysts</td>
<td>Dinoflagellata</td>
<td>predominantly marine, sediments, although a few dinoflagellate cysts have been reported from freshwater sediments (Williams et al., 1999)</td>
</tr>
<tr>
<td>Acritarchs</td>
<td>Acritarcha</td>
<td>organic-walled microfossils of uncertain affinities, recent molecular studies indicate that some acritarchs may be dinoflagellate cysts or their phylogenetic precursors (Mullins, 2001): generally marine to brackish.</td>
</tr>
<tr>
<td>Foraminiferal lining</td>
<td>Foraminifera</td>
<td>organic remains of microforaminifera left after removal of the test, Stancliffe, 1989. Although not considered as palynomorphs sensu stricto, foraminiferal lining are found in many palynological preparations samples: generally marine to brackish.</td>
</tr>
<tr>
<td>Prasinophyte algae</td>
<td>Clorophyta</td>
<td>exact taxonomic uncertain, probably “primitive” green algae according to Guy-Olsson, 1992: Recent prasinophycean algae are mainly marine, but have been recorded also in brackish and freshwater and show tolerance to increased salinity (Tyson, 1996)</td>
</tr>
<tr>
<td>Colonial chlorococcales</td>
<td>Clorophyta</td>
<td>Pediasastrum and Botryococcus, colonial and unicellular green algae (Tyson, 1996): frequent in freshwater, but a few species tolerate higher salinity.</td>
</tr>
</tbody>
</table>

Terrestrial palynomorphs

<table>
<thead>
<tr>
<th>Category</th>
<th>Biological affinity</th>
<th>General ecology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollen and spores</td>
<td>Pollenites and Sporites</td>
<td>Pollen: male productive bodies (microgametophytes) of seed plants (Heusser, 1998). They originate in the anthers of flowering plants, or angiosperms and in the microsporangia of gymnosperms. Spores are produced by “lower plants”: dispersal into marine sediments mainly by freshwater influx and wind transport into coastal habitats.</td>
</tr>
<tr>
<td>Fungal Remains</td>
<td>Fungi imperfecti</td>
<td>dispersed spores no embryophytic as microscopic sporangia, hyphae or fragmented mycelia (Elsik, 1976): dispersal mainly by freshwater.</td>
</tr>
</tbody>
</table>

Table 10. Main groups of palynomorphs, their botanical affinity and general ecology.

In a second step, terrestrial and aquatic palynomorphs are counted separately. Since the number of specimens available for counting is generally less than 120, no statistical analyses, which in order to be representative would
require a minimum of 150 specimens, have been attempted.

a) The **Palynological Marine Index** (PMI; Helenes et al., 1998; Helenes et al., 1999) is defined as:

\[
PMI = (Rm/Rt + 1) \times 100
\]

where:

- \(Rm \) = number of aquatic palynomorphs (dinoflagellate + acritarchs + prasinophyte + foraminifera linings).
- \(Rt \) = number of terrestrial palynomorphs (Pollen + Spores + Fungal remains)

- Zero values of PMI indicate samples without marine palynomorphs and are interpreted as representative of terrestrial or freshwater environments.
- Low values of PMI are interpreted as indicative of brackish-water influence.
- Higher values of PMI are interpreted as indicative of marine conditions of deposition.

The PMI is used as a proxy for marine influence and its fluctuations may indicate changes of the depositional environments. The PMI curve is useful for the recognition of maximum flooding intervals which are usually located close or coincide with the maximum PMI values within a sequence (Helenes et al., 1998). As a general rule, sequence boundaries are found in intervals with upward-decreasing values of PMI.

b) **Diversity of the dinoflagellate cysts**

The quantitative measurement of flora and faunal diversity is another important paleoecologic parameter. I use the equation of Bradford & Wall (1984) for a complete expression of faunal diversity. The number of species observed in a fauna or flora is the most direct and simple measure of species diversity (Rosenzweig, 1995; Holland, 1995). The diversity is defined as:

\[
D = \sum_{i=1}^{m} \frac{n_i \log n_i}{N}
\]

where:

- \(D \) = diversity
- \(m \) = number of species
- \(n_i \) = number of individuals of species \(i \)
- \(N \) = total count of individuals species for sample

Diversity and the occurrence of a particular taxa in recent dinoflagellate assemblages are functions of the salinity, currents, turbidity, temperature and distance from the shore (Wall et al., 1977).

However, changes in diversity in fossil assemblages may also be affected by post-mortem changes (diagenetic alterations, variable preservation potential, e.g. Fensome et al., 2000; Evitt, 1985; Gregory et al., 1995).

On the other hand, environmental conditions influence also the evolutionary diversification of dinoflagellates. The number of dinoflagellate taxa increases markedly from the Late Paleocene to Early Eocene. (e.g. Bujak & Williams, 1979), an interval which is characterised by considerable global warming (Early Eocene Thermal Maximum at approximately 55 Ma. (see Crouch et al., 2001). This event affected drastically not only the dinoflagellate assemblages (e.g. increase of representatives of the genus *Apectodinium*), but the entire surface-dwelling plankton.

Changes in the composition and diversity of dinoflagellate assemblages are useful in stratigraphic sequence analysis (e.g. Habib et al., 1992)

4.2 **Remarks on the ecology and paleoecology of dinoflagellate cysts**

Dinoflagellate cysts are remains of unicellular biflagellate algae with a size from 5 to 200 µm. They belong to the Pyrrophyta. Dinoflagellates have a relatively simple life cycle with a motile flagellate phase and an encysted phase (resting cyst). Only about 10 % of all living dinoflagellate species are know to form cysts (Evitt, 1985), and perhaps less than 70% of these may produce cysts that are preserved as fossils (Dale, 1976 in Tyson, 1996). Dinoflagellates are a significant significant part of primary planktonic production in both oceans and lakes.

The distribution of motile stage dinoflagellates, in modern oceans is controlled by several factors such as latitude, temperature, salinity and distance from the shore (Köthe 1990; Godmann, 1987; Harland 1983 and Wall et al., 1977)

The distribution of dinoflagellate cysts in sediments from middle and high latitudes of the Northern Atlantic and adjacent basins is relatively well documented (e.g. Ellegaard, 2000; Rochon et al., 1999; Dale, 1996; Mudie et al, 1992; Harland, 1983; Wall et al., 1977), but only few papers have been published on the
The distribution of dinoflagellate cysts in tropical areas (Höll et al., 2000; Vink et al., 2000; Bradford & Wall, 1984).

The information obtained from the studies of the modern distribution patterns of dinoflagellate cysts is the base understanding their potential in paleoenvironmnetal reconstructions. Of course, this ‘actualistic’ method has also serious drawbacks. Many genera and species abundant or even dominant in Middle Eocene assemblages have since become extinct. Other species belong to genera which are also known from recent sediments (e.g. Lingulodinium, Polysphaeridium, Spiniferites and Nematosphaeropsis), but their Middle Eocene representatives may not have had exactly the same ecological requirements. The uncritical transfer of ecologic parameters of modern analogues may lead to pitfalls.

The application of fossil dinoflagellate cysts assemblages in paleoenvironmental studies is a relatively young field. Characteristic associations of dinoflagellate cysts (ecogroups or ecoassemblages) which are potential indicators of inner neritic to oceanic environments have been recognised by different authors (Van Mourik et al., 2001; Jaramillo & Obol-Ikuhenobe, 1999; Pross, 1997; Brinkhuis, 1994; Stover & Hardenbol, 1993 and Köthe, 1990; Wrenn & Kokinos, 1986). Indications by these authors and additional data have been used for the paleoenvironmental interpretation of the samples studied from Eastern Zulia. However, it has to be born in mind that these data are compiled from a considerable number of geographical areas and on assemblages of varying age.

Van Mourik et al. (2001) recognised five different associations characterised by the occurrence and abundance of some genera which are characteristic of marine environments (restricted neritic, inner neritic, outer neritic, neritic to oceanic and oceanic, see Table 11). These five generic assemblages have also been used for the paleoenvironmental interpretation of the Middle and Upper Eocene of Eastern Zulia, but some of the genera included by Van Mourik et al. (2001) have been replaced by others which are thought to have similar paleoecologic requirements.

<table>
<thead>
<tr>
<th>Restricted neritic</th>
<th>Outer neritic</th>
<th>Neritic to Oceanic</th>
<th>Oceanic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enneadocysta spp.</td>
<td>Operculodinium spp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tubiosphaera spp.</td>
<td>Spiniferites spp.</td>
<td></td>
</tr>
<tr>
<td>Inner neritic</td>
<td></td>
<td>Xenicodinium spp.</td>
<td></td>
</tr>
<tr>
<td>Achilleodinium spp.</td>
<td></td>
<td>Lejeunecysta spp.</td>
<td></td>
</tr>
<tr>
<td>Areoligera spp.</td>
<td></td>
<td>Selenopemphix spp.</td>
<td></td>
</tr>
<tr>
<td>Glaphyrocysta spp.</td>
<td></td>
<td>Achomosphaera spp.</td>
<td></td>
</tr>
<tr>
<td>Lingulodinium spp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systematosphora spp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adnatosphaeridium spp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleistosphaeridium spp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polysphaeridium spp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiropteridium spp.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 11. Generic associations typical of neritic to oceanic environments (After Van Mourik et al., 2001)

4.3 Ecology and paleoecology of fungal remains

The importance of fungal spores in paleoecological interpretations has been stressed by many authors (Jarzen & Elsik, 1986; Sherwood-Pike, 1988; Phatate, 1989). Changes in the diversity and relative abundance of fungal remains can be useful in helping to determine the evolution of depositional sequences (Elsik, 1996). However, fungal palynomorphs are generally treated merely as an accessory group and are not studied in detail.

The taxonomically highly divers fungal spores occupy a variety of ecological niches. Lange, (1978); Phadtare (1989); Ethridge et al., (1986); Kumar, (1990) and Kalugutkar & McIntyre, (1991) and others have tried to compare recent and fossil fungal remains. The paleoecological
interpretation of fungal remains is largely based on their investigations. However, the interpretation of fungal remains from the Eocene of Eastern Zulia meets with some restrictions, since several of them have no recent analogues.

Because of the low recovery, the confusing taxonomy and the lack of applicable recent studies, no detailed paleoecological study of the fungal remains has been attempted. I have mainly tried to document the fungal remains encountered in my samples.

Representatives of the very frequent fungal family Microthyriaceae are widespread in the Tertiary (e.g. India: Rao, 1958, Phatadare, 1989; Turkey: Ediger, 1981; Australia: Lange, 1976; 1977; USA: Dilcher, 1965; Canada: Parsons & Norris, 1999; India Ocean: Kemp, 1978). The presence of abundant remains of the Microthyriaceae suggests uniform high humidity and warm temperature (Dilcher, 1965; Elsik, 1976; Phatare, 1989 and Kalgutkar, 1993). Microthyriacean fungi are most abundant in tropical and subtropical regions, generally with heavy rainfall and associated with broad-leaved angiosperms (Phatare 1989). This restricted occurrence and their easy identification make them useful paleoecological indicators.

Elsik (1976) considered representatives of the fungal spore genus *Exisisporites* as typical for a warm climate.

Less than 2% of all known fungi from recent sediments are aquatic (freshwater). Therefore, most fungal remains are allochthonous showing a similar hydrodynamic behaviour as other terrestrial palynomorphs (e.g. pollen and spores, Tyson, 1996). Therefore, fungal remains in marine sediments are most abundant in proximal nearshore facies and show an inverse relationship with the marine microplankton (Elsik 1976).

In general, fungal palynomorphs have been included in several studies of modern or ancient sediments, but have not received due consideration. Frequently, they are treated merely as an accessory group and more comprehensive studies focus on other groups of palynomorphs.

4.4 Paleoeconomy of the Middle to Upper Eocene in the studied sections

4.4.1 Pica-1X well

The Middle to Late Eocene palynomorph assemblages (fungal spores and dinoflagellate cysts) of the Jarillal Formation show significant quantitative changes. The depositional environments fluctuate between inner and outer neritic with variable distance to shore. The other groups of organic-walled microfossils tend to confirm this interpretations.

Text-Figure 19 shows the relative percentages of marine and non-marine palynomorphs, notably the dinocysts. Throughout the entire well, marine palynomorphs, mainly dinoflagellate cysts, predominate. Percentages of fungal remains are highest at -340 ft and -3400 ft, while those of dinocysts peak at -3170 ft.

The relative percentages of generic associations typical of neritic to oceanic environments are represented in Text-Figure 20. They show a slight to significant terrestrial influence towards the top (-100--340 ft), where palynological assemblages are dominated by fungal remains and percentages of marine phytoplankton are low.

Samples between -340 to -3390 ft are dominated by dinocyst assemblages thought to correspond to outer neritic to oceanic conditions. Downhole, dinocysts, acritarchs and foraminiferal linings are more frequent than fungal remains. The diversity of the dinocyst assemblages is increasing in this interval. Species of the genera of *Glaphyrocysta*, *Enneadocysta* and *Diphyes* are frequent. The occurrences of relatively well preserved pollen, spores and fungal remains suggest periods of increased inflow of terrestrial particles. The increase in the number of benthic foraminiferal linings might indicate intervals with higher nutrient levels.

The interval -3390 to -4720 ft is dominated by inner neritic dinocyst assemblages, the numbers of foraminiferal linings decreases, whereas those of pollen and spores increases. The generic and specific composition of the dinocyst assemblages shows only little variations (except ample –3915 ft).

The general composition of the phytoplankton and the fungal spores indicates the persistence of warm tropical conditions during the entire studied interval.

4.4.2 VL-37X well

The common occurrence of dinoflagellate cysts throughout the studied interval suggests that the depositional environments of the Pauji Formation in well VL-37X were more marine than in the corresponding interval of the Pica-1X well.
Text-Figure 18. Distribution relative percentages of marine and non-marine palynomorphs in the Pica-1X well.

Text-Figure 19. Distribution percentages of generic associations typical of neritic to oceanic environments in the Pica-1X well.
(see Text-Figure 21). Samples are richer mainly in dinoflagellate cysts as well as pollen and spores. Other groups of palynomorphs are absent.

Text-Figure 20. Distribution relative of percentages of marine and non-marine palynomorphs in the VL-37X well.

In the interval −8700 - -8760 ft, a change in paleoenvironmental conditions may be indicated by the very poorly preserved or even barren assemblages and the extensive growth of pyrite crystals.

In the topmost samples (-8900 - -9260 ft), the general composition of the microplankton assemblages, particularly the dominance of *Polysphaeridium subtile* and the presence of common *Selenopemphix nephroides* (high frequencies of peridinoid cysts) are suggestive of middle to outer neritic assemblages. The presence of *P. subtile* is indicative of restricted circulation. In the interval −9300 - -10120 ft, assemblages dominated by *Cordosphaeridium cantharellum* indicate similar conditions. The common *Polysphaeridium zoharyi* is a typical tropical species (Harland, 1984). In the assemblages of the lowermost interval (-10140 - -10960 ft), the most frequent species are *Homotryblium spp.*, *Spiniferites pseudofurcatus* and *Achomosphaera cf. ramulifera*. This association indicates high-stress shelf conditions, perhaps caused by increased salinity (Brinkhuis, 1994). The other components of the assemblages support a neritic environment, although the frequency of peridinoid cysts decreases (see Table 4). The presence of *Pediastrum spp.* in the same interval is indicative fresh water influence. This algae is often associated with estuarine conditions (Evitt, 1963).

4.2.3 Quebrada Bijugal outcrop section

The distribution of the palynomorphs recognized in the Quebrada Bijugal section is shown in Text-Figure 21. Only five of total of 16 samples yield rich palynomorph assemblages. These assemblages are dominated by dinocysts such as *Diphyes* spp., *Selenenopemphix* spp., *Nematosphaeropsis* spp., and *Lejeuncysta* spp. This palynoflora indicates deposition in open marine conditions, but the presence of the land-derived fungal remains suggests terrigenous influx.

Foraminiferal linings are common from 1580 to 1025 m. The species common in this section have been grouped in one complex of morphologically and presumably ecologically closely related taxa: the *Nematosphaeropsis-Lejeuncysta* group. Recent representatives of *Nematosphaeropsis* spp. are mainly known from outer neritic to oceanic environments (Brinkhuis et al., 1992; Brinkhuis & Biffi, 1993; Zevenboom et al., 1994). The peridinoid dinoflagellate cysts of *Lejeuncysta* spp. are presumably derived from heterotrophic dinoflagellates (Schöller et al., 1997). In the Cenozoic, assemblages dominated by peridinoid dinoflagellate cysts occur together with diatom-rich assemblages. This may imply that most dinoflagellate cysts of peridinoid affinity are derived from heterotrophs and can be used as paleoproductivity indicators (e.g. of upwelling systems bringing cold and nutrient-rich water masses to the ocean surface; Powell et al., 1990; Bujak, 1984). attributed high frequencies of heterotrophic peridinoids to areas with high primary production related to increased nutrient availability (upwelling areas, river mouths). Therefore, the intervals with high relative abundance of peridinoid cysts in the Quebrada Bijugal section may indicate times of high productivity during the Eocene. The common occurrence of terrestrial organic matter (pollen, spores and fungal remains) in the same samples suggests a continental source of the nutrients (e.g. river runoff) and probably also more proximal environments. Larger numbers of foraminiferal linings are generally found in shelf assemblages. The increase of their number observed in the upper part may indicate a trend towards outer shelf conditions. Muller (1959) indicates that the abundance of foraminiferal linings increases seawards in the modern sediments of the Orinoco Delta.
Pollen and spores are mainly represented by poorly preserved specimens of trilete spores. In contrast, fungal remains are well preserved.

The composition of the palynomorph assemblages from the interval between 1015 and 530 m is very different from the overlying interval. The number of acritarchs and fungi increases, whereas that of foraminiferal linings decreases. Most assemblages of dinoflagellate cysts are characterized by high numbers of *Homotryblium* spp., *Cleistosphaeridium* spp., and *Distatodinium* spp. Therefore, sediments from this interval have been deposited in a shallow nearshore environment into which occasionally more open marine elements may have been washed during times of bad weather.

The common occurrence of *Clesistosphaeridium* spp. is considered to indicate of 'normal' shallow marine conditions (Köthe, 1990), while that of *Homotryblium* spp. is typical of warm water masses of lower latitudes (Williams & Bujak, 1977). The fungal remains in the lower part of the section probably were washed in from fresh water habitats in the hinterland. The association of *Polyadosporites* sp. with *Fusiformisporites* sp. suggests an inner neritic environment.

4.2.4 Quebrada Palma outcrop section

In this section, three samples are either barren or yield less than 50 specimens per sample. Palynological assemblages of the interval 1075 to 920 m show relatively rich assemblages (see Text-Figure 22). Dinocysts, acritarchs and foraminiferal linings are present in significant percentages, except in sample 1045 m which yields an assemblage dominated by pollen and spores.

The dinocyst assemblages are dominated mainly by specimens of *Areoligera* spp., *Homotryblium* spp. and *Lingulodinium* spp. Five samples from the Caus Formation are dominated by *Areoligera* spp. Brinkhuis (1994) suggests that *Areoligera* associations represent marginally marine to inner neritic water masses in low to middle latitudes and possibly occur near foreslopes of carbonate platforms. The same samples are also rich in *Homotryblium* spp. and *Lingulodinium* spp. *Homotryblium* spp. may indicate restricted inner neritic environments (Van Mourik et al., 2001; Brinkhuis, 1994); while *Lingulodinium* spp. suggests euryhaline nearshore conditions (Islam, 1984; Brinkhuis et al., 1992). Therefore, the Caus Formation is likely to have been
deposited in an inner neritic environment. A decrease in the number of species in the uppermost Caus Formation may indicate upwards shoaling (see Table 6).

Text-Figure 22. Distribution of the relative percentages of marine and non-marine palynomorphs in the Quebrada Palma outcrop section.

4.2.5 Quebrada Honda outcrop section

Text-Figure 23 shows the distribution of the palynomorphs in the fourteen productive samples from the Quebrada Honda outcrop section including samples from the Caus Formation (145 to 235 m) and the Pauji Formation (260 to 560 m).

The palynological assemblages in the basal part of the section (Caus Formation) are characterized by good preservation and the occurrence of such dinoflagellate species as Areoligera spp., Homotryblium spp., and Ligulodinium spp. This interval is rather rich in pollen and spores as well as foraminiferal linings. The number of acritarchs is small. As in the corresponding interval with similar dinocyst assemblages in the Quebrada Palma section, an inner neritic environment is inferred. The samples from the Pauji Formation (260 to 560 m) are considerably more diverse than those from the Quebrada Bijugal section. Polysphaeridium spp., Cordosphaeridium spp. and Homotryblium spp. are the most frequent taxa.
In this interval, *Polysphaeridium subtile* becomes the dominant species which may suggest shallow inner neritic conditions. The extant species *P. zoharyi* (see Table 7) is typical of tropical waters (Harland, 1984). The presence of *P. subtile* is also indicative of restricted circulation. Large numbers of representatives of the *Cordosphaeridium* group have been widely reported from Mesozoic to Miocene neritic sediments (Schiøiler et al., 1997). Possibly, these assemblages indicate fluctuations in the local environmental conditions. The corresponding interval in the Quebrada Bijugal section has probably been deposited in a more offshore position, whereas the predominantly shallow neritic regime in the Quebrada Honda section is situated more inshore as indicated by the predominantly shallow inner neritic palynomorph assemblages.
Material and methods

5.1 Provenance of material

The study of the Middle to Late Eocene dinoflagellate cysts and fungal remains is based on three surface and two subsurface sections from the East coast of Maracaibo Lake (Text-Figure 2). The three outcrop sections, Quebrada Bijugal, Quebrada Palma and Quebrada Honda are located south of the Ceuta Field and have been originally studied by H.W.Loser (1954) and O.Renz (1955). Well Pica-1X is located in the western part of Falcón (coordinates U.T.M. North: 1149318.60 and East: 268114.44). Well VL-37X is in the area of Ceuta (North: 1079887 and East: 271671).

A total of 357 outcrop, core and ditch samples have been collected, but unfortunately several samples are lacking palynomorphs, because of the strong degradation of the organic matter by weathering and carbonisation (Nijsen, 1965; Fuenmayor & Di Giacomo, 1976; Rull, 1997). Predominant lithologies are shales, mudstones and siltstones. The samples are numbered and their origin is indicated: QB = Quebrada Bijugal; QH = Quebrada Honda; QP = Quebrada Palma; PP= Pica-1X; VL= VL-37X.

5.2 Palynological Processing

A total of 155 samples were processed in mineral acids in several steps according to palynological standard methods (e.g. Kaiser & Ashraf, 1974; Traverse, 1988) (see Text-Figure 24):

1. The amount processed depends on the lithology: shales, mudstones and siltstone 20-25 grams; for limestone and calcareous shales, siltstone and mudstones 25-30 grams.

2. Cutting and core samples are scraped and washed in order to avoid contaminations by drilling mud. The samples were then crushed to pieces of about 1 to 2 mm.

3. Approximately 20-30 grams of material are placed in 250 ml. polypropylene beakers. 250 ml. 30% hydrochloric acid (HCl) are added and left for at least 8 hours to remove any calcareous material. The acid is then decanted and the remaining residue is washed with distilled water and centrifuged three times in order to remove the calcium ions that can form unwanted CaF₂ crystals when hydrofluoric acid (HF) is added.

4. 250 ml of hydrofluoric acid (HF) with a concentration of 70% are added cautiously and left for at least 1 hour. The polypropylene beakers are then hermetically sealed and agitated on a shaker at 1900 r.p.m. for 8 hours until digestion is completed.

5. The sample is allowed to settle for at least 24 hours for the settling of the finest fraction of sediment. Afterward, the acid is decanted and the samples are washed three times with distilled water and decanted.

6. After the final decantation, the samples are filtered with distilled water through a 10 µ sieve, poured into a 25 ml glass test tube and centrifuged for five minutes at 2000 r.p.m.

7. The remaining mineral particles are removed using a ZnBr₂ solution (density 2.0). Twenty ml of ZnBr₂ with five drops of concentrated HCl to improve better heavy liquid separation are added to the sample and agitated. The test tubes are placed in an ultrasonic bath for 10 seconds and subsequently centrifuged for 30 minutes at 1500 r.p.m.
8. The suspended fraction (organic matter) is again filtered through a 10 µm sieve, washed with water and poured into another tube. The remaining mineral fraction is discarded.

9. The organic matter is transferred in test tubes with distilled water and centrifuged for 5 minutes at 2000 r.p.m.

10. Subsequently, the organic matter is separated into two fractions, the first fraction is oxidized with HNO₃ (see 5.2.1 oxidation method) for an improved recovery and concentration of palynomorphs (dinoflagellates and fungal spores), while the second fraction is not oxidized and used for the palynofacies analysis.

5.2.1 Oxidation method

The oxidation method is used for the elimination of “nano-coals”, such as wood, leaf cuticles, and amorphous organic matter (Traverse, 1988). This procedure must be applied with great care and caution, because sporopollenin is quite easily and irreversibly oxidated (Batten & Morrison, 1988). Type of oxidant and length of oxidation time chosen are dependent on the degree of diagenesis of the palynomorphs as indicated by the colour of the organic material.

All samples have been treated with concentrated nitric acid (HNO₃) as justified by the generally poor recovery of dinoflagellate cysts and fungal spores as well as the coaly aspect of the organic matter. According to Kummel & Raup (1965), the concentration recommended for Eocene samples is 40 % HNO₃. A series of tests have been run in order to determine the optimal time and temperature of oxidation.

1. A portion of the residue obtained in step 10 of the standard preparation is checked to determine the amount of oxidation required.

2. Five ml of nitric acid (63% HNO₃) is poured in the test tubes with the residue and mixed carefully with the sample.

3. The test tube is placed in a hot water bath for 20-30 minutes which is agitated every 5 minutes and checked each 10 minutes.

4. 10 % caustic potash solution is added to remove the oxidized humic compounds in solution, and the samples is then washed with distilled water and centrifuged at 1500 r.p.m. for 5 minutes. The procedure is repeated three times.

5. Finally, the sample is filtered through a 20 µm sieve with distilled water and the slides are mounted.

5.2.2 Mounting

Approximately five to ten drops of glycerine jelly are added to the test tubes and thoroughly mixed with the organic matter. The mixture is transferred with a disposable graduated pipette on a slide and covered with a 24x32 mm coverslip. The slide is allowed to dry for 20-30 minutes, and after one week the excess glycerine is removed from the edge of the coverslip.

Four slides (two for palynofacies and two for determination and counting of the palynomorphs) were prepared from each sample.

5.2.3 Location of the slides

The slides are deposited in the micropaleontology collection of the Institute of Geological Sciences at the University of Tübingen.

5.3 Analytical Procedures

Description and counting of the different palynomorphs groups, and classes of particulate organic matter were done mainly with a Zeiss transmitted- light microscope, using interference contrast (IC). The slides are scanned with a 40x Zeiss planapochromatic objective, whereas a 100x objective is used for detailed descriptions and observations.

5.4 Photography

Light photomicrographs are produced with an Olympus BX-51 Axioplan microscope (IC) and a digital camera Olympus Camedia C-3030 zoom. The images are enhanced in brightness and contrast using Adobe Photoshop 5.5 and saved as TIF files. Specimens illustrated (Plates 1-13) on the slides are located by England Finder references.
Sample amount 20-30 g
(Shale, mudstone, siltstone)

Cleaning
(Wash, Scrape)

Dried

Crushed down to pieces of 1 to 2 mm

+HCL (30%)
8 hours eventual short warm
Decant
Wash 3 times

+HF (70%)
8 hours 1900 r.p.m continuous shaking
Decant
Wash 3 times

Sieve
Filtered through 10μ screen with distilled water

Heavy liquid separation
ZnBr₂ (Density 2.0)
Centrifuged at 1500 r.p.m. For approximately 30 min.

Sample Partition
Two fractions for oxidized and non oxidized sample

+HNO₃ (63%) Oxydation
Hot water bath for 20-30 min.

KOH (10%) Wash
Centrifuged 1500 r.p.m. 5min.
Wash 3 times

Sieve
Filtered through 20μ screen with distilled water.

* Mounted slides with glycerine jelly
* Slides sealed with clear nail polish
* Stored residue with destilled water + phenol

Slides

Text-Figure 24. Flow chart for processing of palynological samples
This chapter presents the taxonomy of four groups: dinoflagellate cysts, acritarchs, prasinophytes, and fungal spores. In each group, genera are arranged in alphabetic order. One group of microfossils, foraminiferal linings is not treated in detail. The four other groups are treated according to the “International Code of Botanical Nomenclature of Tokyo” (Greuter et al., 1994).

Taxonomic approach

The fossil dinoflagellate, acritarch, prasinophyte and fungal spores recovered in this study have been classified using several approaches. In the case of dinoflagellate cysts, the suprageneric classification of living and fossil dinoflagellates recently published by Fensome et al. (1991, 1993) has been adopted. These authors have proposed that at the subdivision and class levels, the characteristics of the nucleus (conventional eukaryotic nucleus or dinokaryon nucleus with condensed chromosomes present during the complete meiotic cycle) are of prime value. At the order and suborder levels, the pattern of tabulation or the structure of the amphiesma are the primary defining characters.

In the classification of fungal spores, two approaches have been proposed. They can be assigned to modern fungal taxa or they can be assigned to form taxa. The latter approach is predominantly used by authors dealing with fossil occurrences (e.g. Kalgutkar & Jansonius, 2000; Parsons & Norris, 1999; Kalgutkar, 1993, Norris, 1986; Elsik, 1968). The first approach would seem to have the advantage of providing ecological information but in practice, it is generally difficult to assign fungal remains to any but the broadest of natural groups.

The second approach, the use of form taxa, has been widely used by pre-Quaternary palynologists who have built on the original form genera introduced by Van der Hammen (1954, 1956a). This approach has the advantage of providing named taxa, some of which have quite distinctive morphologies, and may represent a single species. In this study, all fungi are assigned to form taxa. Taxa are grouped under the general categories - monocellate fungal spores, dicellate fungal spores, multicellate fungal spores, Fungal fruting bodies and hyphae - rather than being classified under the so-called “Saccardoan System” for Fungi Imperfecti (Saccardo, 1899).

Acritarch genera will be listed alphabetically within the Group Acritarca (Evitt, 1963) as suggested by Mullins (2001).

Prasinophyte algae are a group of green algae. Their systematic position has been extensively discussed, but no agreement has been reached yet on their systematic position. Tappan (1980) has placed them in the Division Prasinophyta, but alternatively ranged them in the Division Chlorophyta within the Class Prasinophyceae. This latter approach has been adopted in this study.
6.1 Taxonomy of dinoflagellate cysts

Phylum Pyrrophyta **PASCHER 1914**

Division Dinoflagellata (BÜTSCHLI 1885) **FENSOME et al. 1993**

Class Dinophyceae **PASCHER 1914**

Order Gonyaulacales **TAYLOR 1980**

Suborder Cladopyxiineae **FENSOME et al. 1993**

Family Cladopyxiaceae **STEIN 1883**

Genus Enneadocysta **STOVER & WILLIAMS 1995**

Type species *Enneadocysta pectiniformis*- (GERLACH 1961) STOVER & WILLIAMS 1995

Enneadocysta arcuatum EATON 1971

(Pl. 1/Fig. 1; Pl. 2/Fig. 7)

Description: See STOVER & WILLIAMS (1995:109)

Dimensions: Ø central body=17-36 µm, Length of processes= 18-20 µm (n=3)

Stratigraphic range:
Upper Eocene- Lower Oligocene, NW Germany (Köthe, 1990)
Middle Eocene-Lower Oligocene, Norwegian Sea (Manum et al., 1989)
Middle Eocene, South England (Islam, 1983)
Middle-Upper Eocene, England (Bujak et al., 1980)
Lower Oligocene (Stover, 1977)

Enneadocysta pectiniformis (GERLACH 1961) STOVER & WILLIAMS 1995

(Pl.1/Fig. 1, 2; Pl. 2/Fig. 7)

1990: Areosphaeridium pectiniforme.- KÖTHE 1990: Pl. 21/6a-b.

Description: See SARJEANT (1984: 83-85)

Dimensions: Ø central body=16-38 µm, Length of processes= 18-20 µm (n=5)

Stratigraphic range:
Upper Eocene, Egypt (El-Beialy, 1988b)
Upper Eocene, South England (Bujak et al., 1980)
Middle Eocene, England (Eaton, 1971, 1976)
Middle Oligocene, West Germany (Benedek, 1972)
Middle Oligocene, West Germany (Gerlach, 1961)
Systematic Palynology Chapter 6

Suborder Gonyaulacaceae FENSOME et al. 1993 (AUTONYM)

Family Gonyaulacaceae LINDEMANN 1928

Subfamily Leptodiniodeae FENSOME et al. 1993

Genus Oligosphaeridium DAVEY & WILLIAMS 1966b emend. DAVEY 1982b

Type species Oligosphaeridium complex (WHITE 1842) DAVEY & WILLIAMS 1966b

Oligosphaeridium complex (WHITE 1842) DAVEY & WILLIAMS 1966b emend. DAVEY & WILLIAMS 1966b

(Pl. 2/Fig. 1)

1842: Xanthidium tubiferum complex n. sp.- WHITE 1842: 39, Pl. 4/11.

Diagnosis: See DAVEY & WILLIAMS (1966b:71-74)

Dimensions: Ø central body= 30-48 µm, Length processes= 25-30 µm (n= 3)

Stratigraphic range:
- Late Barremian-Middle Eocene, Venezuela (CORPOVEN, 1994)
- Turonian-Coniacian, Colombia (Prössl, 1992)
- Upper Paleocene-Upper Eocene, NW Germany (Köthe, 1990)
- Eocene, North India (Sarkar & Singh, 1988)
- Upper Berriasian-Middle Eocene, General (Williams & Bujak, 1985)
- Valanginian-Cenomanian, offshore North West Africa (Williams, 1978)
- Lower Paleocene-Lower Eocene, General (Drugg & Stover, 1975)
- Barremian-Cenomanian, Lower Eocene, England (Davey & Williams, 1966b)

Genus Systematosphora KLEMENT 1960 emend. BRENNER 1988

emend. STANCLIFFE & SARJEANT 1990

Type species Systematosphora areolata KLEMENT 1960

Systematosphora ? varibilis (COOKSON & EISENACK 1967a) STOVER & EVITT 1978

(Pl.1/Fig. 4,5)

Diagnosis: See EISENACK & KJELLSTRÖM (1972: 330a)

Dimensions: Ø central body= 70-75 µm, Length of processes= 25-30 µm (n= 3)

Stratigraphic range:
- Paleocene, West Tasmania (Cookson & Eisenack, 1967)

Subfamily Cribroperidinioideae FENSOME et al., 1993

Genus Achilleodinium EATON 1976

Type species *Achilleodinium biformoides* (EISENACK 1954b) EATON 1976

Achilleodinium biformoides (EISENACK 1954b) EATON 1976

(Pl. 1/Fig. 3, 6)

1965: *Hystrichokolpoma* biformoides comb. nov.- EISENACK 1965: 3-4, Pl. 1/2.
1972: *Hystrichokolpoma cinctum* - BENDEK 1972: 28, Pl. 9/7a-b.

Diagnosis: See EATON (1976:234-236)

Dimensions: LxB central body= 44x38 µm, L. antapical processes= 22 µm, L. processes= 18µm (n= 5)

Stratigraphic range:
Lower Eocene-Upper Oligocene, North West Germany (Köthe, 1990)
Danian., Senegal (Jan du Chêne, 1988)
Lower Miocene, North Egypt (El-Beialy, 1988a)
Middle Eocene, North India (Mathur, 1986)
Eocene, North California (Damassa, 1984)
Middle Eocene, Mexico (Helenes, 1984)
Lower-Upper Eocene, South England (Bujak et al., 1980)
Upper Paleocene-Upper Eocene, offshore East Canada (Williams & Bujak, 1977a)
Middle-Upper Oligocene, North Germany (Benedek, 1972)

Genus Araneosphaera EATON 1976

Araneosphaera consociata JAIN & TANDON 1976

(Pl. 1/Fig. 10)

Diagnosis: See JAIN & TANDON (1976: 7-8)

Dimensions: LxB overall= 100x80 µm, Ø central body= 60 µm, Length of processes= 25 µm (n= 8)

Stratigraphic range:
Middle Eocene, West India (Jain & Tandon, 1981)

Type species *Cordosphaeridium inodes* (KLUMP 1953) EISENACK 1963b emend. MORGENROTH 1968 emend. SARJEANT 1981

Cordosphaeridium cantharellum (BROSIUS 1963) GOCHT 1969

(Pl.1/Fig.7,8,9)

1997: *Cordosphaeridium cantharellum*.- PROSS: 87, Pl. 15/3.
Diagnosis: See GOCHT (1969:45-46)

Dimensions: Ø overall = 45 µm, Length of processes = 25 µm (n = 2)

Stratigraphic range:
- Upper Eocene-Upper Oligocene, North West Germany (Köthe, 1990)
- Upper Oligocene-Lower Miocene, Italy (Biffi & Manum, 1988)
- Lower Oligocene-Lower Miocene, Egypt (El-Beialy, 1988a)
- Upper Eocene, South England (Bujak et al., 1980)
- Upper Eocene-Lower Miocene, offshore East Canada (Williams & Bujak, 1977a)
- Upper Middle Eocene-basal Miocene, General (Drugg & Stover, 1975)
- Middle-Upper Oligocene, West Germany (Benedek, 1972)
- Middle Oligocene, North West Germany (Gocht, 1969)

Cordosphaeridium cf. gracile (EISENACK 1954) DAVEY & WILLIAMS 1966b (Pl.1/Fig.11)

Diagnosis: See GOCHT (1969:41-42)

Dimensions: Ø overall = 90 µm, Length of processes = 38 µm (n = 1)

Stratigraphic range:
- Upper Paleocene-Upper Eocene/Oligocene, North West Germany (Köthe, 1990)
- Lower Eocene, New Zealand (Wilson, 1988)
- Lower-Upper Eocene, South England (Bujak et al., 1980)
- Middle-Upper Eocene, offshore North West Africa (Williams, 1978)
- Upper Maastrichtian-Upper Eocene, offshore East Canada (Williams & Bujak, 1977a)
- Middle-Upper Oligocene, Germany (Benedek, 1972)
- Lower-Upper Eocene, North Germany (Gocht, 1969)
- Lower Eocene, England (Davey & Williams, 1966b)
- Lower Eocene, North Germany (Morgenroth, 1966b)

SARJEANT 1981

(Pl. 2/Fig. 6)

Description: See SARJEANT (1981: 102-105)

Dimensions: Ø overall = 49-55 µm, Length of processes = 27-30 µm (n = 6)

Stratigraphic range:
- Upper Paleocene-Upper Oligocene, North West Germany (Köthe, 1990)
- Eocene, North India (Sarkar & Singh, 1988)
- Oligocene-Lower Miocene, North East India (Saxena, Rao & Singh, 1987)
- Upper Paleocene-Lower Eocene, South West Nigeria (Jan du Chêne & Adediran, 1984)
- Lower-Upper Eocene, South England (Bujak et al., 1980)
- Lower Paleocene-Upper Oligocene, General (Drugg & Stover, 1975)
- Middle-Upper Oligocene, West Germany (Benedek, 1972)
- Lower-Upper Eocene, North West Germany (Gocht, 1969)
- Upper Paleocene, West Australia (Cookson & Eisenack, 1967a)
- Lower Eocene, Belgium (Davey & Williams, 1966b)
Middle-Upper Eocene, North Germany (Klumpp, 1953)

Genus Diphyes COOKSON 1965a emend. DAVEY & WILLIAMS 1966b emend. GOODMAN & WITMER 1985

Type species *Diphyes colligerum* (DEFLANDRE & COOKSON 1955) COOKSON 1965a emend. GOODMAN & WITMER 1985

Diphyes cf. appendiculare (COOKSON & EISENACK 1970a)
(Pl. 2/Fig. 2)

Diagnosis: See COOKSON & EISENACK (1970: 149)

Dimensions: Ø central body= 38-40 µm, Length of processes= 14-16 µm, L. antapical process= 12 µm (n= 6)

Remarks: Cyst skolochorate, subspherical, with numerous nontabular, similar, long, hollow, fibrillar processes with expanded bases and a single larger antapical process. Endophragm and periphragm visible beneath and near bases of processes. Archeopyle apical.

Stratigraphic range:
Upper Paleocene-Lower Eocene (Köthe, 1990)
Lower Maastrichtian, Spain (Ashraf & Erben, 1986)
Senonian, West Australia (Cookson & Eisenack 1970)

Diphyes colligerum (DEFLANDRE & COOKSON 1955) COOKSON 1965a emend. GOODMAN & WITMER 1985
(Pl. 2/Fig. 5)

1965: *Diphyes colligerum* comb. nov.- COOKSON 1965: 86, Pl. 9/1-12.
1990: *Diphyes colligerum*.- KÖTHE 1990: Pl. 18/5.

Diagnosis: See DAVEY & WILLIAMS (1966b: 96)

Dimensions: Ø overall= 50-60 µm, Ø central body= 30-32 µm, L. antapical process= 10-13 µm (n= 8)

Stratigraphic range:
Lower Eocene (P-6)-Upper Eocene (P-17), Venezuela CORPOVEN, 1994
Lower Eocene-Lower Oligocene, North West Germany (Köthe, 1990)
Middle Eocene- Middle Miocene (Köthe, Khan & Ashraf, 1988)
Lower Eocene-Lower Oligocene, General (Williams & Bujak, 1985)
Maastrichtian., Mexico (Helenes, 1984)
Lower-Upper Eocene, South England (Bujak et al., 1980)
Middle-Upper Eocene, North France (Châteauneuf, 1980)
Middle Eocene-Upper Oligocene, offshore East Canada (Williams & Bujak, 1977a)
Lower Eocene, South England (Davey & Williams, 1966b)
Upper Eocene, Australia (Cookson, 1965)

Diphyes spinulum (DRUGG 1970b) STOVER & EVITT 1978
(Pl. 3/Fig. 3,4)

1984: *Diphyes spinulum*.- JAN DU CHÊNE & ADEDIRAN 1984: Pl. 13/2; 14/5-7.

Diagnosis: See Eisenack & Kjellström(1972: 776b) & JAN DU CHÊNE (1988: 154-155)
Dimensions: Ø central body= 32-44 μm, L. processes= 12-20 μm, L.antapical process= 15-22 μm (n= 10)

Stratigraphic range:
Upper Paleocene.-Lower Eocene, North West Germany (Köthe, 1990)
Danian, Senegal (Jan du Chêne, 1988)
Paleocene-Lower Eocene, South Weast Nigeria (Jan du Chêne & Adediran, 1984)
Upper Paleocene-Lower Eocene, Pakistan (Köthe, Khan & Ashraf, 1988)
Lower Eocene, Gulf Coast US (Drugg, 1970)

Genus *Hystrichokolpoma* KLUMPP 1953 emend. WILLIAMS & DOWNIE 1966a

Type species *Hystrichokolpoma cinctum* KLUMPP 1953

Hystrichokolpoma cf. denticulata MATSUOKA 1974

(Pl. 2/Fig. 8)

Diagnosis: See MATSUOKA (1974: 330-331)
Dimensions: Ø central body= 40 μm, Length of processes= 16-20 μm (n= 5)
Remarks: Cysts skolochorate, subspherical body with granular surface. Processes are cylindrical to tubiform in shape, large, hollow and smooth with denticulate distal termination. Archeopyle apical.
Stratigraphic range:
Lower-Middle Miocene, Central Japan (Matsuoka, 1974)
Middle/Upper Miocene-Pleistocene, Gulf of Mexico (Wrenn & Kokinos, 1986)

Hystrichokolpoma elliptica MATSUOKA 1974

(Pl. 3/Fig. 1)

Diagnosis: See MATSUOKA (1974: 330)
Dimensions: LxB central body= 40-45 x 45-48 μm, Length of processes= 16-20 μm (n= 4)

Stratigraphic range:
Lower-Middle Miocene, Japan (Matsuoka, 1974)

Hystrichokolpoma rigaudae DEFLANDRE & COOKSON 1955

(Pl. 3/Fig. 2)

Diagnosis: See BENEDEK (1972: 28-29)
Dimensions: LxB overall= 50x45 μm, LxB central body= 35x 42 μm (n= 4)
Remarks: This species is characterized by an antapical process with a distinct and somewhat point-like termination which is larger than the other process.
Stratigraphic range:
Upper Oligocene-Lower Miocene Italy (Brinkhuis, Powell & Zevenboom, 1992)
Lower Eocene, South West Nigeria (Oloko, 1992)
Upper Paleocene-Upper Oligocene, North West Germany (Köthe, 1990)
Oligocene-Lower Miocene, Italy (Biffi & Manum, 1988)
Hystrichokolpoma salacium EATON 1976

(Pl. 3/Fig. 4)

Diagnosis: See EATON (1976: 271-272)

Dimensions: LxB central body = 50-52 x 46-48 \(\mu\)m, L. antapical processes= 26-30 \(\mu\)m (n= 5)

Stratigraphic range:
- Middle Eocene, Somalia (Prössl, 1992b)
- Eocene, North India (Sarkar & Singh, 1988)
- Upper Eocene, South Netherlands (de Coninck, 1986b)
- Lower Eocene-Upper Eocene, South England (Bujak et al., 1980)
- Eocene, North India (Khanna, 1978)

Hystrichokolpoma cf. unispinum WILLIAMS & DOWNIE 1966a

(Pl. 3/Fig. 5)

Diagnosis: See WILLIAMS & DOWNIE (1966a: 179-180)

Remarks: Cyst skolochorate, subspherical, with large, hollow and cylindrical processes. Endophragm and periphragm smooth. Small processes in cingulum. Archeopyle apical

Dimensions: LxB central body = 25-28 x 38-40 \(\mu\)m, Length processes = 15-18 \(\mu\)m (n= 4)

Stratigraphic range:
- Upper Eocene, Egypt (El-Bassiouni et al., 1988)
- Middle Eocene, India (Jain & Tandon, 1981)
- Lower Eocene, South England (Bujak et al., 1980)
- Lower-Upper Eocene, North East India (Dutta & Jain, 1980)
- Lower Eocene, offshore North West Africa (Williams, 1978)
- Lower Eocene, offshore East Canada (Williams & Brideaux, 1975)
- Lower Eocene, Belgium (de Coninck, 1972)
- Lower Eocene, England (Williams & Downie, 1966a)

Hystrichokolpoma sp. A

(Pl. 3/Fig. 3)

Remarks: Cyst skolochorate, with a ellipsoidal body. Endophragm distinct, only process bases with periphragm. Processes are tubiform, hollow, slightly striate, distal termination subdivided by short tubules. Antapical process distinctly longer and bulbous shape with gradually tapering termination. Archeopyle apical with attached operculum. This species has some similarity with the species described by JAN DU CHÊNE & ADEDIRAN (1985: 18, Pl. 16/8-12) as *Hystrichokolpoma ? fenestratum*.

Dimensions: LxB overall= 50-46 x 48-45 \(\mu\)m, Length of processes= 15-18 \(\mu\)m, L. antapical process= 25-30 \(\mu\)m (n= 3)

Type species *Lingulodinium machaerophorum* (DEFLANDRE & COOKSON 1955) WALL 1967
Lingulodinium polyedrum (DEFLANDRE & COOKSON 1955) WALL 1967
(Pl. 3/Fig. 6, 7, 10)

Diagnosis: See EISENACK & KJELLSTRÖM (1972: 775)
Dimensions: Ø central body= 48-50 μm, Length of processes= 12-14 μm (n= 12)

Stratigraphic range:
- Upper Paleocene-Lower Miocene, Virginia (Edwards, 1989)
- Oligocene-Lower Miocene, Central Italy (Biffi & Manum, 1988)
- Eocene, North India (Sarkar & Singh, 1988)
- Middle Eocene, Egypt (El-Beialy, 1988c)
- Miocene-Upper Pleistocene, West & North Pacific (Bujak & Matsuoka, 1986)
- Miocene-Pleistocene, Gulf of Mexico (Wrenn & Kokinos, 1985)
- Lower Eocene-Upper Pleistocene, General (Williams & Bujak, 1985)
- Lower-Upper Eocene, South England (Bujak et al., 1980)
- Middle-Upper Oligocene, North Germany (Benedek, 1972)
- Upper- Middle Eocene-Holocene, General (Drugg & Stover, 1975)
- Eocene-Upper Miocene, offshore South East Canada (Williams, 1975)
- Pleistocene, Caribbean (Wall, 1967)

(Pl. 3/Fig. 8, 9)

Diagnosis: See BENEDEK (1972: 32)
Dimensions: Ø central body= 48-52 μm, Length processes= 14-18 μm (n= 4)

Stratigraphic range:
- Middle-Upper Oligocene, West Germany (Benedek, 1972)
- Oligocene-Lower Miocene, Central Italy (Biffi & Manum, 1988)

Genus *Operculodinium* WALL 1967 emend. MATSUOKA et al. 1997

Type species *Operculodinium centrocarpum* (DEFLANDRE & COOKSON 1955) WALL 1967

Operculodinium centrocarpum (DEFLANDRE & COOKSON 1955) WALL 1967
(Pl. 3/Fig. 11, 12)

Diagnosis: See MATSUOKA et al. (1997: 22-24)
Dimensions: Ø central body= 48-50 µm, Length of processes= 10-12 µm (n= 3)
Stratigraphic range:
Oligocene-Holocene, Venezuela (CORPOVEN, 1994)
Upper Eocene, Pakistan (Köthe, Khan & Ashraf, 1988)
Eocene, North India (Sarkar & Singh, 1988)
Danian, Senegal (Jan du Chêne, 1988)
Lower Miocene-Holocene, West North Pacific (Bujak & Matsuoka, 1986)
Middle/Upper Miocene-Pleistocene, Gulf of Mexico (Wrenn & Kokinos, 1986)
Lower Miocene, West India (Kar, 1985)
Lower-Upper Eocene, South England (Bujak et al., 1980)
Lower Paleocene-Pleistocene, offshore South East Canada; offshore Florida (Williams & Bujak, 1977a)
Lower Eocene-Pleistocene, offshore West Africa (Williams, 1978)
Lower Eocene-Pleistocene, offshore East Canada (Williams & Brideaux, 1975)

Operculodinium microtrainum (KLUMPP 1953) ISLAM 1983a
(Pl. 4/Fig.1,2)

1963: Cordosphaeridium microtiaina (Klumpp).- EISENACK 1963: 263.
1990: Operculodinium microtiainum.- KÖTHE 1990: Pl. 22/10,14,

Diagnosis: See KLUMPP (1953: 390)
Dimensions: Ø central body= 46-50 µm, Length of processes= 12-15 µm (n= 5)
Stratigraphic range:
Upper Eocene-Lower Oligocene, North West Germany (Köthe, 1990)
Lower Oligocene, North East France (Rauscher & Schuler, 1988)
Eocene, South England (Islam, 1983a)
Upper Paleocene, Morocco (Prössl, Lucas & Doubinger, 1979)
Oligocene, West India (Kar, 1979)
Upper Eocene, Germany (Klumpp, 1953)

Genus Turbiosphaera ARCHANGELSKY, 1969a

Type species Turbiosphaera filosa (WILSON 1967a) ARCHANGELSKY 1969a

Turbiosphaera filosa (WILSON 1967a) ARCHANGELSKY 1969a
(Pl. 4/Fig. 3)

Dimensions: LxB overall= 70-90 x 65-78 µm, Length of processes= 20-28 µm (n= 4)
Stratigraphic range:
Paleocene-Lower Eocene, New Zealand (Wilson, 1988)
Lower Eocene, offshore North West Africa (Williams, 1978)
Upper Maastrichtian-Upper Paleocene, offshore East Canada (Williams & Bujak, 1977a)
Lower Paleocene-Lower Oligocene, General (Drugg & Stover, 1975)
Upper Maastrichtian-Paleocene, offshore East Canada (Williams, 1975)
Subfamily Gonyaulacoideae FENSOME et al. 1993 (AUTONYM)

Genus Achomosphaera EVITT 1963

1963: *Achomosphaera* n. gen.- EVITT 1963: 163

Type species *Achomosphaera ramulifera* (DEFLANDRE 1937b) EVITT 1963

Achomosphaera cf. multifurcata JAIN & TANDON 1981
(Pl. 4/Fig. 4)

1990: *Achomosphaera multifurcata*. KÖTHE, KHAN & ASHRAF, 1988: Pl. 14/2; Pl. 16/2.

Diagnosis: See JAIN & TANDON (1981: 7)

Dimensions: Ø central body= 42-44 µm, Length of processes= 14-18 µm (n= 4)

Remarks: Cysts skolochorate, subspherical body, with sutural processes in gonal and intergonal positions. Processes hollow bifurcate or trifurcate to the second order. Periphragm–endophragm separation visible beneath process bases, periphragm surface micrsculptured. Archeopyle precingular.

Stratigraphic range:
Middle Eocene, West India (Jain & Tandon, 1981)
Upper Paleocene-Middle Eocene, Pakistan (Köthe, Khan & Ashraf, 1988)

Genus Hystrichostrogylon AGELOPOULOS 1964 emend. STOVER AND EVITT 1978

Type species *Hystrichostrogylon membraniphorum*. AGELOPOULOS 1964 emend. STOVER & EVITT 1978

Hystrichostrogylon membraniphorum AGELOPOULOS 1964 emend.
(Pl. 4/Fig. 5)

1990: *Hystrichostrogylon membraniphorum*. KÖTHE 1990: Pl. 7/7; 11/7; 16/5.

Description: See AGELOPOULOS (1964: 674)

Dimensions: Ø central body= 38-45 µm, Length of processes= 20-26 µm, Height pericoel 10-18 µm (n= 2)

Stratigraphic range:
Upper Paleocene-Upper Eocene/basal Oligocene, North West Germany (Köthe, 1990)
Middle Eocene, Virginia (Edwards, 1989)
Lower-Middle Eocene, General (Williams & Bujak, 1985)
Lower Oligocene, offshore SW Africa (Bujak, 1984)
Middle Eocene, Mexico (Helenes, 1984)
Upper Lower-Lower Middle Miocene, Central Japan (Matsuoka, 1983)
Middle-Upper Eocene, South England (Bujak et al., 1980)
Upper Eocene, India (Dutta & Jain, 1980)
Middle-Upper Eocene, South England (Eaton, 1976)
Upper Eocene, Germany (Ageiopoulos, 1964)

Genus Nematosphaeropsis DEFLANDRE & COOKSON 1955 emend. WILLIAMS & DOWNIE 1966c emend. WRENN 1988

Type species: *Nematosphaeropsis balcombiana* DEFLANDRE & COOKSON 1955

Nematosphaeropsis balcombiana DEFLANDRE & COOKSON 1955

(Pl. 4/Fig. 6)

Diagnosis: See WRENN (1988: 139-140)

Wrenn (1988) indicated that this species should be restricted to the type material, and that other reports of it probably represent other species.

Dimensions: LxB central body= 45-50 x 38-40 µm, Length processes= 18-20 µm (n= 8)

Stratigraphic range:
Lower Eocene, England (Williams, 1966)
Lower Eocene, England (Williams & Downie 1966c)
Middle Miocene, Australia (Deflandre & Cookson, 1955)

Nematosphaeropsis reticulensis (PASTIELS 1948) SARJEANT 1986 emend. SARJEANT 1986

(Pl. 4/Fig. 7)

1948: *Cannosphaeropsis reticulensis* n. sp.- PASTIELS 1948: 49: Pl. 5/7-10.

Diagnosis: See SARJEANT (1986: 9-11) & GOCHT (1969: 64)

Dimensions: Ø overall= 65-70 µm, Ø central body= 32-36 µm , Length of processes= 12-14 µm (n= 4)

Stratigraphic range:
Upper Eocene-Lower Oligocene, Central Italy (Biffi & Manum, 1988)
Lower Oligocene, North East France (Rauscher & Schuler, 1988)
Middle Eocene-Lower Oligocene, North France (Châtaeuneuf, 1980)
Lower Eocene, offshore North West Africa (Williams, 1978)
Upper Paleocene-Upper Eocene, offshore East Canada (Williams & Bujak, 1977a)
Upper Paleocene-Middle Eocene, General (Drugg & Stover, 1975)
Middle-Upper Oligocene, West Germany (Benedek, 1972)
Lower Eocene, North West Germany (Gocht, 1969)

Genus: *Spiniferites* MANTELL 1850 emend. SARJEANT 1970

1850: *Spiniferites* n. gen.- MANTELL 1850: 191.

Type species: *Spiniferites ramosus* (EHRENBERG 1838) MANTELL 1854

Spiniferites bulloideus (DEFLANDRE & COOKSON 1955) SARJEANT 1970

(Pl. 4/Fig. 8)

Diagnosis: See EISENACK & KJELLSTRÖM (1972: 533)

Dimensions: Ø central body= 24-26 µm, Length of processes= 10-14 µm (n= 6)

Stratigraphic range:
Upper Miocene-Upper Pleistocene, West North Pacific (Bujak & Matsuoka, 1986)
Middle Oligocene-Middle Miocene, North West Germany (Gerlach, 1961)
Eocene-Middle Miocene, Australia (Deflandre & Cookson, 1955)

Spiniferites mirabilis (ROSSIGNOL) SARJEANT 1970

(Pl. 4/Fig. 9)

Description: See ROSSIGNOL (1962: 132)

Dimensions: Ø central body= 30-35 µm, Length of processes= 12-15 µm (n= 8)

Stratigraphic range:
Miocene, Virginia (Edwards, 1989)
Lower Oligocene-Pliocene, Egypt cf. (El-Beialy, 1988a)
Danian, Senegal cf. (Jan du Chêne, 1988)
Lower Miocene-Upper Pleistocene, West North Pacific (Bujak & Matsuoka, 1986b)
Middle Miocene-Pleistocene, Gulf of Mexico (Wrenn & Kokinos, 1986)
Lower-Upper Oligocene, Venezuela (Fasola et al., 1985)
Upper Eocene, South England (Bujak et al., 1980)
Lower-Upper Miocene, offshore East Canada (Williams & Bujak, 1977a)
Lower Oligocene-Pleistocene, General (Drugg & Stover, 1975)
Pleistocene, Israel (Rossignol, 1962)

Spiniferites cf. multibrevis (DAVEY & WILLIAMS 1966 in DAVEY et. al. 1966) BELOW 1982c

(Pl. 4/Fig.10)

Diagnosis: See DAVEY & WILLIAMS (1966a: 35-36)

Remarks: Cysts proximo-chorate, subspherical, with strong thick sutures and short gonal and intergonal processes. Very short processes are subconical, the length and breadth of the processes are rather similar. Endophragm and periphragm distinct beneath processes. Archeopyle no discernable.

Dimensions: Ø central body= 30-35 µm, Length processes= 12-14 µm (n= 8)

Stratigraphic range:
Lower Eocene, South West Nigeria (Oloto, 1992)
Danian, Senegal (Jan du Chêne, 1988)
Upper Paleocene/Lower Eocene, South West Nigeria (Jan du Chêne & Adediran, 1985)
Hauterivian-Lower Eocene, England (Davey & Williams, 1966a)
Oligocene, West India (Kar, 1979)

Spiniferites cf. ovatus MATSUOKA 1983

(Pl. 4/Fig. 11, 12)

Diagnosis: See MATSUOKA (1983: 134-135)

Remarks: Cysts proximo-chorate, body ellipsoidal, with strong sutures and short gonal and intergonal processes with second order furcations. Archeopyle precingular.

Dimensions: Ø central body= 50-52 x 40-45 µm, Length of processes= 7-10 µm (n= 15)

Stratigraphic range:
Lower Miocene-Upper Pliocene, offshore South West Britain (Powell, 1988)
Upper Miocene-Lower Pliocene, Bering Sea (Bujak, 1984)
Upper Miocene, Japan (Matsuoka, 1983)
Spíníferites pseudofurcatus (KLUMPP 1953) SARJEANT 1970 emend. SARJEANT 1981
(Pl. 5/Fig. 1)

1953: *Hystrichokibotium pseudofurcatum* n. sp. - KLUMPP 1953: p. 388, pl. 16/12-14

Description: See Gocht (1969: 32-33)

Dimensions: Ø central body= 45-60 µm, Length of processes= 34-37 µm (n= 4)

Stratigraphic range:
- Middle Eocene, Mexico (Helenes, 1984)
- Lower-Upper Eocene, South England (Bujak et al., 1980)
- Middle Eocene-Pliocene/Pleistocene, offshore North West Africa (Williams, 1978)
- Middle-Upper Oligocene, Germany (Benedek, 1972)
- Lower Eocene, England (Davey & Williams, 1966a)
- Lower Eocene, Belgium-Germany (Morgenroth, 1966a)

Spíníferites ramosus (EHRENBERG 1838) SARJEANT 1970 emend. DAVEY & WILLIAMS in DAVEY et al. 1966
(Pl. 5/Fig. 2)

1854: *Xanthidium ramosum* EHRENBERG 1838 comb. nov.- MANTELL 1854: 239.

Description: See DAVEY & WILLIAMS (1966: 32-34)

Dimensions: LxB central body= 40-44 x 50-55 µm, Length processes= 18-20 µm (n= 8)

Stratigraphic range:
- Lower Eocene, South West Nigeria (Oloto, 1992)
- Eocene, North India (Sarkar & Singh, 1988)
- Danian, Senegal (Jan du Chêne, 1988)
- Upper Paleocene/Lower Eocene, Nigeria (Jan du Chêne & Adediran, 1985)
- Albian, Mexico. (Helenes, 1984)
- Middle-Upper Oligocene, West Germany (Benedek, 1972)
- Maastrichtian-Pleistocene, offshore East. Canada (Williams & Bujak, 1977a)
- Barremian-Lower Eocene, England (Davey & Williams, 1966c)

Spíníferites sp. A
(Pl. 5/Fig. 3)

Description: Cysts with elongated ovoidal and large, skolochorate body. Periphragm separated from endophragm at bases of processes and long sutural septa; surface of periphragm irregularly granulate. Anteapex marked by 2 very large processes with wide bases connected at their bases along crests of sutural lines. The processes are bifurcate or trifurcate to second order; terminal branches of processes long and filamentous, not connected. Archeopyle precingular, Type P.

Dimensions: LxB central body= 50-52 x 40-44 µm, Length processes basal= 18-20 µm (n= 8)
Subfamily Uncertain

Genus: *Amphorosphaeridium* DAVEY 1969c

Type species: *Amphorosphaeridium fenestratum* DAVEY 1969c

Description: See LEJEUNE-CARPENTIER & SARJEANT (1981: 12-13)

Dimensions: LxB central body= 70-78 x 58-56 µm, Length processes= 18-22 µm (n= 4)

Discussion: Skolochorate, with numerous large solid, fibrous processes with distal termination gradually tapering into small multiple furcate flared tips. Archeopyle probably precingular.

Stratigraphic range:
Senonian, Belgium (Lejeune-Carpentier, 1940)
Paleocene, Assam India (Mehrotra, 1983)

Genus *Sentusidinium* SARJEANT & STOVER 1978 emend. COURTINAT 1989

Type species *Sentusidinium rioultii* SARJEANT, 1968

Sentusidinium sp. A

Description: Proximate cysts, body subspherical with very delicate short possibly solid nontabular processes with termination furcate or more flared tips. Autophragm very thin. Archeopyle apical with detached operculum.

There is some similarity with the form described by Sarkar & Singh (1988: 52: Pl.3/13-15) as *Sentusidinium rioultii*.

Dimensions: Ø central body= 18-24 µm, Length of processes= 1-3 µm (n= 5)

Genus *Xenicodinium* KLEMENT 1960

Xenicodinium conispinosum STOVER & HARDENBOL 1993

Description: See STOVER & HARDENBOL (1993: 40)

Dimensions: LxB central body= 32-34 µm, Length of processes= 2-3 µm (n= 5)

Stratigraphic range:
Lower Oligocene, Belgium (Stover & Hardenbol, 1993)
Lower Oligocene, South West Germany (Pross, 1997)
Family Areoligeraceae EVITT 1963

Genus Adnatosphaeridium WILLIAMS & DOWNIE 1966c emend. STANCLIFFE & SARJEANT 1990

Type species Adnatosphaeridium vittatum.- WILLIAMS & DOWNIE 1966c

Adnatosphaeridium vittatum WILLIAMS & DOWNIE 1966c
(Pl. 5/Fig. 6)

Description: See WILLIAMS & DOWNIE (1966c: 215)
Dimensions: LxB central body= 34-36 x 45-49 µm, Length of processes= 20-23 µm (n= 5)
Stratigraphic range:
Lower Eocene, South West Nigeria (Oloto, 1992)
Lower-Eocene, North West Germany (Köthe, 1990)
Eocene, North India (Sarkar & Singh, 1988)
Oligocene, North East India (Saxena, Rao & Singh, 1987)
Lower-Upper Eocene, South England (Bujak et al., 1980)
Middle Eocene, India (Jain & Tandon, 1981)
Lower-Upper Eocene, England (Eaton, 1976)

Adnatosphaeridium multispinosum WILLIAMS AND DOWNIE 1966c
(Pl. 5/Fig. 7)

Description: See WILLIAMS & DOWNIE (1966c: 216)
Remarks: Cysts skolochorate, body subspherical, with numerous solid narrow, slender processes connected distally by trabeculae. Autophragm with scabrate surface. Trabeculae of similar width as processes but tending to be wider at the junctions with the processes. Archeopyle apical.
Dimensions: LxB central body= 35-40 x 25-30 µm, Length of processes= 12-15 µm (n= 6)
Stratigraphic range:
Lower Eocene, North India (Sarkar, 1991)
Lower Eocene-Lower Oligocene, Pakistan (Köthe, Khan & Ashraf, 1988)
Paleocene-Middle Eocene, South West Nigeria (Jan du Chêne & Adediran, 1985)
Upper Paleocene/Lower Eocene, England (Eaton, 1976)
Lower Eocene, England (Williams & Downie, 1966c)

Genus Areoligera LEJEUNE-CARPENTIER 1938 emend. WILLIAMS & DOWNIE 1966c

Type species Areoligera senonensis LEJEUNE-CARPENTIER 1938
Areoligera senonensis LEJEUNE-CARPENTIER 1938
(Pl. 5/Fig. 8,9)

Description: See GOCHT (1969: 56-58)
Dimensions: LxB central body= 50-54 x 55-60 µm, Length of processes= 20 µm (n= 5)

Stratigraphic range:
Lower Eocene, North India (Sarkar, 1991)
Upper Paleocene-basal Upper Eocene, North West Germany (Köthe, 1990)
Danian, Senegal cf. (Jan du Chêne, 1988)
Campanian-Middle Eocene, General (Williams & Bujak, 1985)
Lower Paleocene, Mexico (Helenes, 1984)
Lower-basal Middle Miocene, Central Japan (Matsuoka, 1983)
Lower Eocene, South England (Bujak et al., 1980)
Upper Campanian-Lower Paleocene, offshore South East Canada (Bujak & Williams, 1978)
Maastrictian-Uppper Paleocene, offshore South East Canada (Williams & Bujak, 1977a)
Lower Eocene & Lower-Middle Eocene cf., England (Eaton, 1976)
Paleocene, Germany (Gocht, 1969)
Lower Eocene, England cf. (Williams & Downie, 1966c)

Genus Chiropteridium GOCHT 1960

Type species Chiropteridium lobospinosum.- GOCHT 1960

Chiropteridium galea (MAIER 1959) SARJEANT 1983 emend. SARJEANT 1983
(Pl. 5/Fig. 10,11, 12)

Description: See SARJEANT (1983: 108)
Dimensions: LxB central body= 50-55 x 60-68 µm, Length processes= 20-25 µm (n= 6)

Stratigraphic range:
Lower Oligocene., North West Germany (Köthe, 1990)
Lower-Middle Eocene, North West Germany (Heilmann-Clausen & Costa, 1989)
Oligocene- Miocene, North West Germany (Benedek, 1972)
Oligocene, offshore North West Africa (Williams, 1978)
Oligocene, offshore South East Canada (Williams, 1975)
Middle-Upper Oligocene, North West Germany (Gocht, 1960)

Genus Glaphyrocysta STOVER & EVITT 1978

Type species Glaphyrocysta retintexta.- (COOKSON 1965a) STOVER AND EVITT 1978
Glaphyrocysta texta (BUJAK 1976) STOVER & EVITT 1978
(Pl. 6/Fig. 1)

1976: Cyclonephelium textum n. sp.- BUJAK 1976: 110; Pl. 3/6-11.

Description: See BUJAK (1976:110-112)
Dimensions: LxB central body= 38-40 x 42-45 µm, Length processes= 18-20 µm (n= 2)
Stratigraphic range:
- Lower Eocene, New Zealand (Wilson, 1988)
- Upper Eocene, Egypt (El-Beialy, 1988b)
- Middle-Upper Eocene, General (Williams & Bujak, 1985)
- Upper Eocene, South England (Bujak et al., 1980)
- Upper Eocene-Lower Oligocene, offshore East Canada (Williams & Bujak, 1977a)
- Upper Eocene, England (Bujak, 1976)

Family Goniodomineae FENSOME et al.1993 (subordo nov.)
Subfamily Goniodomoideae FENSOME et al. 1993 (AUTONYM)

Genus Heteraulacacysta DRUGG & LOEBLICH 1967 emend. BUJAK in BUJAK et al. 1980

Type species Heteraulacacysta campanula

Heteraulacacysta campanula DRUGG & LOEBLICH 1967
(Pl. 6/Fig. 2)

1967: Heteraulacacysta campanula n. sp.- DRUGG & LOEBLICH 1967: 183-184; pl. 1/6-8c.

Description: See DRUGG & LOEBLICH (1967: 183-184)
Dimensions: Ø overall= 68-70 µm (n= 4)
Stratigraphic range:
- Lower Oligocene-?Upper Miocene, Norwegian Sea (Manum et al, 1989)
- Lower Oligocene, North East France (Rauscher & Schuler, 1988)
- Lower Oligocene-Lower Miocene, General (Williams & Bujak, 1985)
- Lower Oligocene, offshore East Canada (Williams & Bujak, 1977a)
- Upper Middle Eocene-Lower Oligocene, General (Drugg & Stover, 1975)
- Middle Eocene (Drugg & Loeblich, 1967)

Subfamily Pyrodinioideae LINDEMANN 1928
Unterfamily Pyrodinioideae FENSONME et al. 1993

Genus Homotryblium DAVEY & WILLIAMS 1966b

Type species Homotriblyum tenuispinosum DAVEY & WILLIAMS 1966b

Homotryblium floripes (DEFLANDRE & COOKSON 1955) STOVER 1975
(Pl. 6/Fig. 3)

Description: See EISENACK & KJELLSTRÖM (1972: 257)

Dimensions: Ø central body= 45-47 \(\mu m\), Length of processes= 18 \(\mu m\) (n= 12)

Stratigraphic range:
- Upper Oligocene-Lower Miocene, Central Italy (Biffi & Manum, 1988)
- Upper Eocene-Lower Oligocene, Egypt (El-Bassiouni et al., 1988a)
- Eocene, North India (Sarkar & Singh, 1988)
- Oligocene-Lower Miocene, North East India (Sarkar & Singh, 1988)
- Middle Eocene-Lower Miocene, General (Williams & Bujak, 1985)
- Upper Eocene, South England (Bujak et al., 1980)
- Upper Eocene-Upper Oligocene (Williams & Bujak, 1977a)
- Middle Eocene-Middle Miocene, General (Drugg & Stover, 1975)
- Middle-Upper Oligocene, West Germany (Benedek, 1972)
- Lower Tertiary, Australia (Deflandre & Cookson, 1955)

Homotryblium pallidum DAVEY & WILLIAMS 1966b

(Pl. 6/Fig. 4)

Description: See DAVEY & WILLIAMS (1966b: 102-103)

Dimensions: Ø central body= 38-42 \(\mu m\), Length of processes= 16-21 \(\mu m\) (n= 10)

Stratigraphic range:
- Lower Eocene-Upper Oligocene, North West Germany (Köthe, 1990)
- Eocene, North India (Sarkar & Singh, 1988)
- Lower Eocene-Lower Oligocene, General (Williams & Bujak, 1985)
- Middle Eocene, India (Jain & Tandon, 1981)
- Lower-Upper Eocene, South England (Bujak et al., 1980)
- Lower-Upper Eocene, offshore South East Canada (Williams, 1975)
- Lower-Upper Eocene, offshore East Canada (Williams & Brideaux, 1975)
- Lower Eocene, England (Davey & Williams, 1966b)

Homotryblium plectilum DRUGG & LOEBLICH Jr. 1967

(Pl. 6/Fig. 5)

Description: See DRUGG & LOEBLICH Jr. (1967:184-186)

Dimensions: Ø central body= 50-54 \(\mu m\), Length of processes=22-26 \(\mu m\) (n= 10)

Stratigraphic range:
- Lower-Upper Oligocene, North West Germany (Köthe, 1990)
- Upper Oligocene-Lower Miocene, South Carolina (Edwards, 1986)
- Middle Eocene, West India (Kar, 1985)
- Middle Eocene, India (Jain & Tandon, 1981)
- Lower-Upper Oligocene, offshore East US (Stover, 1977)
- Upper Middle Eocene-Lower Oligocene, General (Drugg & Stover, 1975)
- Upper Middle Eocene-Middle Miocene, offshore South East Canada (Williams, 1975)
- Oligocene, Gulf Coast US (Drugg & Loeblich, 1967)
Homotryblium tasmaniense COOKSON & EISENACK 1967
(Pl. 6/Fig. 6)

Description: See EISENACK & KJELLSTRÖM (1972: 479)
Dimensions: Ø central body= 40-45 µm, Length of processes= 12-14 µm (n= 4)
Stratigraphic range:
Middle Eocene, North Egypt (El-Beialy, 1990)
Lower Eocene, New Zealand (Wilson, 1988)
Lower Eocene, Virginia-Maryland (Edwards, Goodman & Witmer, 1984)
Lower Eocene, General (Drugg & Stover, 1975)
Paleocene, West Tasmania (Cookson & Eisenack, 1967)

Homotryblium tenuispinosum DAVEY & WILLIAMS 1966b
(Pl. 6/Fig. 7)

1990: *Homotryblium tenuispinosum*.- KÖTHE 1990: Pl. 11/1; Pl. 19/1.

Description: See DAVEY & WILLIAMS (1966b:101-102)
Dimensions: Ø central body= 36-40 µm, Length of processes= 18-20 µm (n= 10)
Stratigraphic range:
Upper Paleocene-Upper Eocene, North West Germany (Köthe, 1990)
Lower-Middle Eocene, Virginia (Edwards, 1989)
Lower Oligocene, Central Italy (Biffi & Manum, 1988)
Lower-Middle Eocene, Pakistan (Köthe, Khan & Ashraf, 1988)
Eocene, North India (Sarkar & Singh, 1988)
Upper Eocene, Egypt (El-Beialy, 1988b)
Basal Middle Eocene, General (Williams & Bujak, 1985)
Lower-Upper Eocene, South England (Bujak et al., 1980)
Lower-Upper Eocene, offshore East Canada (Williams & Bujak, 1977a)
Lower-Upper Eocene, England (Eaton, 1976)
Lower-Middle Eocene, General (Drugg & Stover, 1975)
Lower Eocene, England (Davey & Williams, 1966b)

Homotryblium vallum STOVER 1977
(Pl. 6/Fig. 8)

Description: See STOVER (1977: 79-80)
Dimensions: Ø central body= 44-48 µm, Length processes= 12-15 µm (n= 6)
Stratigraphic range:
Lower Oligocene, NW Germany (Köthe, 1990)
Lower-Upper Miocene, Norwegian Sea (Manum et al., 1989)
Miocene, Virginia (Edwards, 1989)
Middle/Upper Miocene-Lower/Upper Pliocene, Gulf of Mexico (Wrenn & Kokinos, 1986)
Upper Oligocene-Lower Miocene, South Carolina (Edwards, 1986)
Lower Upper Oligocene, offshore East US (Stover, 1977)
Genus *Hystrichosphaeridium* DEFLANDRE 1937b emend. DAVEY & WILLIAMS 1966b

1937: *Hystrichosphaeridium* n. sp.- DEFLANDRE 1937b: 68.

Type species *Hystrichosphaeridium tubiferum* (EHRENBERG 1838) DEFLANDRE 1937b emend. DAVEY & WILLIAMS 1966b

Hystrichosphaeridium sp. A
(Pl. 6/Fig. 9)

Remarks: Cysts subspherical, skolochorate, with hollow slender intratabular processes with funnel-shape termination, with horizontal to recurved margins. Autophagm. Archeopyle apical.

Dimensions: Ø central body= 40-45 µm, Length of processes= 10-15 µm (n= 8)

Genus *Polysphaeridium* DAVEY & WILLIAMS 1966b emend. BUJAK et al. 1980

Type species: *Polysphaeridium subtile* DAVEY & WILLIAMS 1966b

Polysphaeridium congregatum (STOVER 1977) emend. BUJAK et al. 1980
(Pl. 6/Fig. 10,11)

Description: See STOVER (1977: 79)

Dimensions: LxB central body= 40-50 x 38-40 µm, Length of processes= 8-11 µm (n= 6)

Remarks: Processes arranged in groups (3-5), shorter and more slender than in *Polysphaeridium subtile*.

Stratigraphic range:
Upper Eocene-Upper Oligocene, General (Williams & Bujak, 1985)
Upper Eocene, South England (Bujak et al., 1980)
Upper Oligocene, Blake Plateau, Atlantic Ocean (Stover, 1977)

Polysphaeridium subtile DAVEY & WILLIAMS 1966b emend. BUJAK et al. 1980
(Pl. 7/Fig. 1)

Description: See DAVEY & WILLIAMS (1966b: 92) & BUJAK et al. (1980: 34)

Dimensions: Ø central body=, 34-40 µm, Length of processes= 12-14 µm (n= 8)

Stratigraphic range:
Upper Paleocene-Middle Eocene, Pakistan (Köthe, Khan & Ashraf, 1988)
Eocene, North India (Sarkar & Singh, 1988)
Oligocene, North East India (Saxena, Rao & Singh, 1987)
Upper Oligocene-Pleistocene, South Carolina (Edwards, 1986)
Lower-Middle Eocene, General (Williams & Bujak, 1985)
Upper Paleocene-Lower Eocene, South West Nigeria (Jan du Chêne & Adediran, 1984)
Lower-Upper Eocene, England (Eaton, 1976)
Middle Oligocene-Lower Miocene, offshore East US (Stover, 1977)
Lower Eocene-Pleistocene, offshore West Africa (Williams, 1978)
Lower Eocene, England (Davey & Williams, 1966b)
Polysphaeridium zoharyi (ROSSIGNOL 1962) emend. BUJAK et al. 1980
(Pl. 7/Fig. 2,3)

Description: See EISENACK & KJELLSTRÖM (1972: 431)
Remarks: Cysts skolochorate, subspherical, with hollow processes, termination flared tips. Wall microreticulate. Archeopyle epicystal.
Dimensions: LxB central body= 40-45 x 30-34 μm, Length of processes= 9-12 μm (n= 5)
Stratigraphic range:
Middle Eocene, Pakistan (Köthe, Khan & Ashraf, 1988)
Middle Eocene, South England (Islam, 1983b)
Lower Eocene-Oligocene, offshore East Canada (Williams & Brideaux, 1975)
Lower Eocene, West Germany (Morgenroth, 1966a)
Pleistocene, Israel (Rossignol, 1964)

Genus Cleistosphaeridium (DAVEY et al. 1966) emend. EATON et al. 2001

Type species: Cleistosphaeridium diversispinosum DAVEY et. al 1966.

Cleistosphaeridium ancyrea (COOKSON & EISENACK 1965a)
(Pl. 7/Fig. 4)

1996: Systematosphora ancyrea.- GEDL 1996:Pl. 7/a-b, i.

Description: See EISENACK & KJELLSTRÖM (1975b: 998a) and EATON et al. (2001: 191-194)
Remarks: Cysts skolochorate, body subspherical, with numerous long processes with hollow bases and solid shafts with bifurcate to branched to Y shaped termination, penitabulate. Surface scabrate to subgranular. Archeopyle apical.
Dimensions: LxB central body= 38-40 x 48-50 μm, Length of processes= 16-20 μm (n= 6)
Stratigraphic range:
Early Eocene-Miocene (Eaton et. al, 2001)
Early Oligocene, North Japan (Kurita & Matsouka, 1995)
Upper Oligocene-Lower Miocene, Marche Region, Italy (Biffi & Manum, 1988)
Lower Miocene, offshore SW Britain (Powell, 1988)
Upper Eocene Tongrien, Belgium (Weyns, 1970)
Upper Eocene., Victoria, Australia (Cookson & Eisenack, 1965)
Cleistosphaeridium diversispinosum (DAVEY et al. 1966) emend. EATON et al. 2001

(Pl. 7/Fig. 5,6,7)

1993: *Cleistosphaeridium diversispinosum*.- STOVER & HARDENBOL 1993: Pl. 1/6a-b.
2001: *Cleistosphaeridium diversispinosum* (DAVEY et al. 1966) emend.- EATON et al. 2001: 177-189: Fig. 1-9.

Description: See EATON et al. (2001: 177-189)

Dimensions: LxB central body= 34-36 x 54-60 μm, Length of processes= 16-18 μm (n= 12)

Stratigraphic range:
- Lower Eocene to Lower Oligocene (Eaton et al., 2001)
- Lower Eocene, England (Davey et al., 1966)

Cleistosphaeridium placacanthum (DEFLANDRE & COOKSON 1955)

(Pl. 7/Fig. 8,9)

Description: See BENEDEK (1972:31) und EATON et al. (2001: 190-191)

Remarks: *Cleistosphaeridium placacanthum* differs from the species *C. diversispinosum* and *C. ancyrea*, in that the majority, or all, of its processes are arranged in clearly defined penitabular process complexes (Eaton et al 2001, p. 190). These are emphasized by the extensive development of basal ridges.

Dimensions: Ø central body= 34-38 μm, Length of processes= 20-25 μm (n= 4)

Stratigraphic range:
- Mid.Eocene-Late Miocene based on illustrated records (Eaton et al., 2001)
- Early Oligocene, Mainzer Beckens South West, Germany (Pross, 1997)
- Mid. Eocene-Late Miocene, Northern Hemisphere (Williams, Stover & Kidson, 1993)
- Oligocene-Early Miocene, Marche Region, Italy (Biffi & Manum, 1988)
- Late Eocene, Victoria, Australia, General (Drugg & Stover, 1975)
- Mid-Late Oligocene, Tonisberg, Germany (Benedek, 1972)

Cleistosphaeridium ? sp. A

(Pl. 7/Fig. 10,11)

Remarks: Cysts skolochorate, subspherical body, with numerous rather uniform closed acumiate processes. Surface scabrate. Archeopyle apical with operculum. This species can be compared with a species described by Kar 1985 (p. 198: Pl. 45/3-4) as *Cleistosphaeridium heteracanthum*, but his specimens disagree with the original description of this species.

Dimensions: LxBcentral body= 38-40 x 36-38 μm, Length processes= 10-11 μm (n= 6)

Genus **Distatodinium** EATON 1976

Type species **Distatodinium craterum** EATON 1976

Distatodinium ellipticum (COOKSON 1965a) EATON 1976

(Pl. 8/Fig. 1)

1965: *Hystrichosphaeridium ellipticum* n. sp.- COOKSON 1965a: 87: Pl. 11/1-3a.

Description: See BENEDEK (1972: 35)

Dimensions: LxB central body = 65-72 x 40-45 µm, Length of processes = 17-25 µm (n= 6)

Stratigraphic range:
- Eocene, North India (Sarkar & Singh, 1988)
- Oligocene-Pliocene, Egypt (El Beialy, 1988c)
- Middle-Upper Eocene, General (Williams & Bujak, 1985)
- Middle Eocene, South England (Islam, 1983)
- Lower Oligocene, North France (Châteauneuf, 1980)
- Upper Middle Eocene-Lower Oligocene, offshore East Canada (Williams & Bujak, 1977a)
- Upper Eocene, England (Eaton, 1976)
- Upper Middle Eocene-Lower Oligocene, General (Drugg & Stover, 1975)
- Middle-Upper Oligocene, Germany (Benedek, 1972)
- Upper Eocene, Victoria, Australia (Cookson, 1965)

Distatodinium cf. *tenerum* (BENEDEK 1972) EATON 1976

(Pl. 8/Fig. 2,3)

Description: See BENEDEK (1972:35)

Dimensions: LxB central body = 55-57 x 36-40 µm, Length of processes = 10-12 µm (n= 3)

Discussion: Cyst body ovoidal, proximo-chorate, outer surface scarabate, the bases of the processes suggest the presence of a pericoel. The numerous processes are short, hollow, flattened, furcate and distally flared, non tabular, arranged in linear groups which may indicate sutural features. Archeopyle apical.

Stratigraphic range:
- Upper Eocene, North France (Châteauneuf, 1980)
- Middle-Upper Oligocene, West Germany (Benedek, 1972)

Ordinung Peridiniales HAECKEL 1984
Family Congruentidiaceae SCHILLER 1935
Subfamily Congruentidioideae FENSOME et al. 1993 (AUTONYM)

Genus Lejeunecysta ARTZNER & DÖRHÖFER 1978 emend. BUJAK in BUJAK et al. 1980

Type species *Lejeunecysta hyalina* (GERLACH 1961) ARTZNER & DÖRHÖFER 1978 emend. KJELLSTRÖM 1972 emend.

(Pl. 8/Fig. 5,6)

Selenopemphix BENDEK 1972 emend. BUJAK in BUJAK et al. 1980 emend. HEAD 1993

Type species Selenopemphix nephroides.- BENEDEK 1972 emend. BUJAK in BUJAK et al. 1980 emend. BENEDEK & SARJEANT 1981

(Pl. 8/Fig. 7,8)

Description: See BENEDEK & SARJEANT (1981: 333-336)
Dimensions: LxBoverall= 50-55 x 60-63 µm (n= 10)
Stratigraphic range:
Lower Oligocene, North West Germany (Köthe, 1990)
Upper Oligocene-Lower Miocene, Central Italy (Biffi & Manum, 1988)
Oligocene-Pliocene, Egypt (El-Beialy, 1988a)
Lower Oligocene, Egypt (El-Bassiouni et al., 1988)
Lower Miocene-Upper Pleistocene, West North Pacific (Bujak & Matsuoka, 1986)
Middle Miocene-Pleistocene, Gulf of Mexico (Wrenn & Kokinos, 1986)
Upper Eocene-Lower Oligocene, Netherlands (de Coninck, 1986b)
Middle Eocene-Upper Miocene, General (Williams & Bujak, 1985)
Oligocene, Nigeria (Biffi & Grignani, 1983)
Oligocene, North West Germany (Benedek, 1972)
6.2 Taxonomy of acritarchs, prasinophyte algae and others

Group Acritarca EVITT, 1963

Genus Chomotriletes NAUMOVA 1939 ex 1953

Type species Chomotriletes vedugensis.- NAUMOVA 1953: 58: Pl. 7/21-22.

Chomotriletes minor (KEDVES 1961) POCOCK 1970

(Pl. 9/Fig. 1)

Diagnosis: See JARAMILLO (2001: 97)

Remarks: This species probably is a flattened freshwater algal cyst of uncertain affinity (Schrank, 1994) rather than miospores. In agreement with Jaramillo (2001), it is here placed in the acritarchs (see also Fensome et al., 1990.

Dimensions: Ø overall= 40-42 µm (n= 4)

Stratigraphic range:
Jurassic to Lower Eocene (Fensome et al., 1993)

Chomotriletes sp. A

(Pl. 9/Fig. 2)

Remarks: Cyst transparent, form circular, with concentrical radial ridges and fine membrane.

Dimensions: LxB overall= 58-60 x 45-50 µm (n= 3)

Genus Cyclopsiella DRUGG & LOEBLICH 1967 emend. JAIN & DUTTA in DUTTA & JAIN 1980 emend. HEAD et al. 1989c

Type species Cyclopsiella elliptica DRUG & LOEBLICH 1967

Cyclopsiella sp. A

(Pl. 9/Fig. 3)

Remarks: Ellipsoidal cyst, with a small circular aperture. Wall double-layered. The endophragm is smooth to faintly granulate.

Dimensions: LxB overall= 30-34 x 24-26 µm, Ø aperture= 3-6 µm (n= 5)

Division Chlorophyta PACHER 1914

Class Prasinophyceae CHRISTENSEN 1962

Order Pyramimonadales

Family Leiosphaeridiaceae

Genus Leiosphaeridia EISENACK 1958a emend. DOWNIE & SARGENT 1963 emend. TURNER 1984

Type species Leiosphaeridia baltica EISENACK 1958a: 8: Pl. 2/5.
Leiosphaeridia sp. A
(Pl. 9/Fig. 8)

Remarks: Spherical cyst with slightly microgranulate, relatively thin wall; compressed specimens with tapering and pointed folds.
Dimensions: LxB overall= 34-36 x 30-32 µm (n= 8)

Order Pterospermatales SCHILLER 1925
Family Cymatiosphaeraceae MÄDLER 1963

Genus Cymatiosphaera O. WETZEL 1933b ex DEFLANDRE 1954

1933: Cymatiosphaera. - O. WETZEL 1933b: 27.

Type species Cymatiosphaera radiata O. WETZEL 1933b emend. SARJEANT 1985.

Cymatiosphaera radiata O. WETZEL 1933b emend. SARJEANT 1985
(Pl. 9/Fig. 4)

Diagnosis: See SARJEANT (1985: 161-162)
Dimensions: Ø overall= 25-30 µm (n= 6)
Stratigraphic range:
Upper Eocene-Lower Oligocene, North France (Châteauneuf, 1980)
Upper Eocene-Lower Oligocene, Italy (Gruas-Cavagnetto & Barbin, 1988)
Upper Oligocene, North West Germany (Köthe, 1990)

Cymatiosphaera sp. A
(Pl. 9/Fig. 5)

Remarks: Vesicle spherical with laevigate surface and somewhat thickened wall. The membrane is transparent, thin and produced triangular, square to rectangular polygonal outlines with striations along the membrane.
Dimensions: Ø overall= 60-64 µm, Ø central body= 32-34 µm (n= 4)

Family Pterospermellaceae EISENACK 1972

Genus Pterospermella EISENACK 1972

Type species Pterospermella aureolata.- COOKSON & EISENACK 1958

Pterospermella barbarae (GORKA 1963) EISENACK et al. 1973
(Pl. 9/Fig. 10)

Diagnosis: See BENEDEK (1972: 52)
Remarks: This species is very small in size as compared to those of Benedek (1972) and Pross (1997).
Dimensions: LxB overall= 32-36 x 28-30 µm (n= 3)
Stratigraphic range:
Maastrichtian-Danian, California (Drugg, 1966)
Eocene-Middle Oligocene, Germany (Gocht, 1969)

Pterospermella aff. harti SARJEANT 1960
(Pl. 9/Fig. 6)

Diagnosis: See SARJEANT (1960: 402)
Remarks: Vesicle commonly spherical to oval, transparent and thin, of equal thickness as the equatorial membrane. The surface laevigate in appearance, with folds radiating from the vesicle.
Dimensions: Ø overall= 30-32 µm (n=4)
Stratigraphic range:
Lower Eocene., Belgium (de Coninck 1977)

Pterospermella sp. A
(Pl. 9/Fig. 9)

Remarks: Vesicle spherical, wall rather thick, with reticulate sculpture. The vesicle is enveloped by a thin membrane which is attached to it at the equator.
Dimensions: LxB overall= 135-140 x 115-120 µm, Ø central body= 28-32 µm (n= 6)

Class Chlorophyceae KÜTZING 1843
Order Chlorococcales MARCHAND 1895
Family Hydrodictyaceae (DUMORTIER 1829)
Genus *Pediastrum* MEYEN 1929

Pediastrum cf. wilsonii SINGH & KHANNA, 1978
(Pl. 9/Fig. 7)

Diagnosis: See SARKAR & SINGH (1988: 58)
Remarks: Colonies di- or tricyclic; unicameral, with fringes of short pyramidal cells surmounted by long appendiform terminations with rounded tip. The central coenocysts are tetragonal or pentagonal.
Dimensions: LxB total colony= 45-47 x 40-43 µm (n=10)
Stratigraphic range:
Eocene, North India (Sarkar & Singh, 1988)

Class Rhizopodea VON SIEBOLD 1845
Order Foraminiferida EICHWALD 1830

Microforaminiferal linings
(Pl. 9/ Fig. 12, 13)

Many of the studied assemblages of marine palynomorphs contain resistant inner linings of trochospiral, biserial and planispiral microforaminiferal tests.
Scolecodonts
(Pl. 9/Fig. 11, 14)

The morphology of the scolecodonts is variable. Most of them are elongated, double walled plates and denticulate along one margin (Szaniawki 1996). These forms are common in the studied material and their general shape corresponds to the morphogenera *Staurocephalites* HINDE 1849 and *Goniada* KINBERG 1866. Generally, scolecodonts occur in marine sediments, but are most abundant in shallow water and associated with spores and acritarchs (Szaniawki 1996).
6.3 Taxonomy of fungal spores, mycelia and fructifications

Class FUNGI IMPERFECTI
Order SPORAE DISPERSAE

MONOCELLATE FUNGAL SPORES

Genus *Exesisporites* **ELSIK 1969**

Type species *Exesisporites neogenicus* ELSIK 1969

Exesisporites annulatus KALGUTKAR 1993
(Pl.10/Fig. 1)

Diagnosis: See KALGUTKAR (1993: 80)
Dimensions: Ø overall= 30-34 µm (n= 3)
Stratigraphic range: Upper Paleocene-Lower Eocene, Canada (Kalgutkar, 1993)

Genus *Inapertisporites* **VAN DER HAMMEN 1954 ex ROUSE, emend. SHEFFY & DILCHER 1971**

Type species *Inapertisporites variabilis* VAN DER HAMMEN 1954

Inapertisporites cf. nodulus SHEFFY & DILCHER 1971
(Pl.10/Fig. 2)

Diagnosis: See SHEFFY & DILCHER (1971: 39)
Remarks: Spore inaperturate, circular, unicellate, smooth, brown, with two walls. The outer wall is 0.7 µm thick and the inner wall 1.5 µm. The cell presents a circular-curved 4-6 µm long projection. This species presents some similarity with *I. nodulus*, but the latter is smaller in size and the projection is spherical.
Dimensions: Ø overall= 70-74 µm (n=4)
Stratigraphic range: Middle Eocene, Tennessee USA (Sheffy & Dilcher, 1971)

Type species *Monoporisporites minutus* VAN DER HAMMEN 1954

Monoporisporites cf. traversii EDIGER & ALISAN 1989
(Pl. 10/Fig. 3)

Diagnosis: See KALGUTKAR & JANSONIUS (2000: 178)
Remarks: The spore outline is somewhat teardrop-shaped, monoporate, pore not more than 3 µm in diameter, unicellular, smooth and brown in color. Hopkins (1969: 1126: Pl. 11/166) illustrates a spore with similar dimensions and shape.

Dimensions: Ø overall= 32-34µm (n=3)

Stratigraphic range:
Middle?-Upper Eocene to Upper Oligocene, Miocene-Pliocene (Kalgutkar & Jansonius, 2000)
Middle Eocene, Southwest British Columbia (Hopkins, 1969)

Monoporisporites lagenarius SONG & LUO 1989
(Pl. 10/Fig. 4)

Dimensions: LxB overall= 40 x 36 µm (n= 4)

Stratigraphic range:
Lower -Middle Oligocene, China (Song & Luo, 1989)

Genus Striadiporites VARMA & RAWAT 1963

Type species Striadiporites reticulatus VARMA & RAWAT 1963

Striadiporites crucistriatus sp. nov.
(Pl. 10/Fig. 7)

Holotype: Slide No. PP-8B; England Finder reference (38K4); Jarillal Formation, Pike-1X well; Depth 286.5-292.6 m.

Etymology: Named for cross-shaped striation as ornament.

Description: Monocellular.. Diporate, pores 8 µm in diameter. Ellipsoidal, shape of outline is laterally slightly convex. Outer layer (1.5- 2 µm) thicker than the inner one (0.5 µm). Exine with two muri, cross shaped, a single murus (width 3 µm) well-developed along principal spore axis and other murus not present; ridges of the surface parallel to equatorial axis (8 µm with). The spore is divided into four triangular lumina (10 µm with x 24 µm high), approximately similar in size. The exine is perforated by small pointed pores.

Dimensions: LxB overall= 72-74 x 34-36 µm (n= 15)

Comparison: The present specie differs from S. dolium (Ke & Shi, 1978) in its smaller size and the single striation along the major axis and in the size than is more smaller.

Striadiporites cf. irregularis KALGUTKAR 1993
(Pl. 10/Fig. 8)

Diagnosis: See KALGUTKAR & JANSONIUS (2000: 289)
Remarks: Unicellular, fusiform fungal spore, diporate , pores 5 µm in diameter, well developed, exine reticulate with tendency of muri (2 µm wide) and lumina that are perforated by diminute pores.

Dimensions: LxB overall= 66-68 x 40-44 µm (n= 4)

Stratigraphic range:
Upper Paleocene-Lower Eocene, Northwest Territories, Canada (Kalgutkar, 1993)

Striadiporites reticulatus VARMA & RAWAT 1963
(Pl. 10/Fig. 6)

Diagnosis: See KALGUTKAR & JANSONIUS (2000: 290)
Remarks: Ellipsoidal in shape, dark brown, diporate fungal spore, 12 luminae. Pores 6-8 μm in diameter.
Dimensions: LxB overall= 46-50 x 32-34 μm (n= 4)
Stratigraphic range:
Upper Oligocene-Lower Miocene, India (Varma & Rawat, 1963)

DICELLATE FUNGAL SPORES

Genus *Didymoporisporonites* SHEFFY & DILCHER 1971, emend. KALGUTKAR & JANSONIUS 2000

Type species *Didymoporisporonites psilatus* SHEFFY & DILCHER 1971

Didymoporisporonites poratus sp. nov.

(Pl. 10/Fig. 5)

Holotype: Slide No. PP-35A; England Finder reference (58E); Jarillal Formation, Pike-1X well; Depth 1066.7 m.

Etymology: Named for the compound pore in the terminal cell.

Description: Spore two cells, monoporate, dicellate. Teardrop shape. The proximal cell is smooth, hyaline and contains a compound pore of 12 μm in diameter, other cell is opaque and wall is perforated by diminuitive small pores which are not uniformly distributed on the surface of the cell. Wall 1.5-2 μm thick.

Dimensions: LxB overall= 68 x 46 μm (n= 10)
Comparison: The compound pore present in the proximal cell and the size distinguishes *Didymoporisporonites poratus* from the others species of genus.

Genus *Fusiformisporites* ROUSE 1962 emend. ELSIK 1968

Type species *Fusiformisporites crabbii* ROUSE 1962

Fusiformisporites crabbii ROUSE 1962

(Pl. 10/Fig. 11)

Diagnosis: Parsons & Norris (1999: 122)
Dimensions: LxB overall= 54-56 x 30-32 μm (n= 4)
Stratigraphic range:
Middle Eocene, British Columbia Canada (Rouse, 1962)
Lower Eocene, Yukon Territory Canada (Kalugutkar, 1993; Parsons & Norris,1999)

Fusiformisporites rugosus SHEFFY & DILCHER 1971

(Pl. 10/Fig. 9)

Diagnosis: See SHEFFY & DILCHER (1971: 48)
Dimensions: LxB overall= 40-42 x 16-18μm (n=4)
Stratigraphic range :
Upper Eocene-Lower Oligocene, Turkey (Ediger & Alisan, 1989)
Middle Eocene, Tenese USA (Sheffy & Dilcher, 1971)
Fusiformisporites septatus sp. nov.
(Pl. 10/Fig. 10)

Holotype: Slide No. PP-35A; England Finder reference (43C); Jarillal Formation, Pike-1X well; Depth 1066.7 m.

Etymology: Named for broad septum.

Description: Spore dicellate, inaperturate, with sides generally convex, rhomboidal in shape. The cells are all similar in shape and size and the acuminate apices are subrounded, 3.5-4 µm thick. Septum 5-5.3 µm. Fungal spores with striate spore wall approximately 0.30 µm thick.

Dimensions: LxB = 45-46 x 32.5-33 µm (n= 12)

Comparison: In *Fusiformisporites foedus* (Salujha, Kindra & Rehman, 1974) the septum is smaller (2-2.5 wide) and oval in shape. *F. keralensis* (Ramanujam & Rao, 1978) differs from *F. septatus* sp.nov. by its numerous striae and the truncate terminations.

MULTICELLATE FUNGAL SPORES

Genus Brachysporisporites LANGE & SMITH 1971

Type species *Brachysporisporites pyriformis* LANGE & SMITH 1971.

Brachysporisporites jarillalensis sp. nov.
(Pl. 11/Fig. 1)

Holotype: Slide No. PP-1A; England Finder reference (47R4); Jarillal Formation, Pica-1X well; Depth 304 ft.

Etymology: Named for the Jarillal Formation.

Description: Fungal spore, smooth, opaque. Tetracellate, typical pyriform shape and aperturate. The distal cells are separated by a thick septum, 7.8-8 µm wide. Small apical cell is rectangular and hyaline, 7-7.5 wide and 1.5 µm high.

Dimensions: LxB = 60-62 x 40-42 µm (n= 10)

Comparison: *Brachyporisporites atratus* (Kalgutkar, 1993) has an ellipsoidal shape; in *B. cotalis* (Elsik & Jansonius) Norris 1986 the septum is indistinctly perforate; *B. pyriformis* (Lange & Smith 1971) differs from *B. jarillalensis* in being 50 % larger.

Genus Dictyosporites FELIX 1894, emend. KALGUTKAR & JANSONIUS 2000

Type species *Dictyosporites loculatus* FELIX 1894

Dictyosporites odremanensis sp. nov.
(Pl. 11/Fig. 2)

Holotype: Slide No. PP-1A; England Finder reference (47R3); Jarillal Formation, Pike-1X well; Depth 30.4 m.

Etymology: Named in honor of Prof. Oscar Odreman.

Description: Fungal spore, inaperturate, smooth, slightly opaque, oval shape, multicellate (16-18 cells), with internal septation 3.5-4 µm wide, dark colored. Right side slightly larger than left one. The cells in the middle part of the spore are small and of approximately uniform size and aligned along the major axis. Lateral cells are rectangular in shape and similar in size. Exine is psilate, light colored.

Dimensions: LxB = 70-72 x 53-54 µm (n= 10)

Comparison: *Dictyosporites odremanensis* differs from all other older and younger species of *Dictyosporites* by its distinct morphology.
Dictyosporites morularis SALARD-CHEBOLDAEFF & LOCQUIN 1980
(Pl. 11/Fig. 4)

2000: *Dictyosporites morularis* - KALGUTKAR & JANSONIUS 2000: 74; Pl. 15/32.

Diagnosis: See KALGUTKAR & JANSONIUS (2000: 74)

Dimensions: LxB overall= 60-62 x 44-46 μm (n= 4)

Stratigraphic range:
Oligocene, Equatorial Africa (Salard-Cheboldaeff & Locquin, 1980)

Dictyosporites cf. moruloides SALARD-CHEBOLDAEFF & LOCQUIN 1980
(Pl. 11/Fig. 3)

Diagnosis: See KALGUTKAR & JANSONIUS (2000: 74)

Dimensions: LxB overall= 46-48 x 46-48 μm (n= 5)

Stratigraphic range:
Lower Miocene, Equatorial Africa (Salard-Cheboldaeff & Locquin, 1980)

Genus *Diporipollis*? DUTTA & SAH 1970 emend. KALGUTKAR & JANSONIUS 2000

Type species *Diporipollis assamicus* DUTTA & SAH 1970: 45.

Diporipollis? cf. melanii (ELSIK) comb. nov.
(Pl. 11/Fig. 5)

Diagnosis: See KALGUTKAR & JANSONIUS (2000: 90)

Remarks: Tetracellate spore, with subspherical basal chamber 64 μm in diameter, distal cell tapering, small and porate. This species is larger in size than *D. melanii*.

Dimensions: LxB overall= 88-90 x 64-66 μm (n= 4)

Stratigraphic range:
Paleocene, Texas, USA (Elsik, 1968)

Genus *Involutisporonites* CLARKE 1965

Type species *Involutisporonites foraminus* CLARKE 1965: 90.

Involutisporonites foraminus CLARKE 1965
(Pl. 11/Fig. 7)

1965: *Involutisporonites foraminus* n. sp.- CLARKE 1965: 90; Pl. 1/11.

Diagnosis: See KALGUTKAR & JANSONIUS (2000: 156)

Remarks: Coiled aggregates of five cells, planispiral, multisepate, psilate, individual cells lobate, absence of a pore in each septum.

Dimensions: LxB overall= 56 x 48 μm (n= 3)

Stratigraphic range:
Upper Cretaceous, Colorado USA (Clarke, 1965)
Involutisporonites cf. foraminus CLARKE 1965
(Pl. 11/Fig. 6)

Diagnosis: See KALGUTKAR & JANSONIUS (2000: 156)
Remarks: Fungal spore of 10 rectangular cells of different size decreasing towards apical chamber, spiral, psilate, septate.
Dimensions: LxB overall= 42-44 x 39-40 µm (n= 4)
Stratigraphic range:
Upper Cretaceous, Colorado USA (Clarke, 1965)

Involutisporonites trapezoides KALGUTKAR 1993
(Pl. 11/Fig. 8)

Diagnosis: See KALGUTKAR & JANSONIUS (2000: 156)
Remarks: Spore planispiral, individual cells rectangular and unequal in size. Septa always perforated and slightly thicker than wall.
Dimensions: LxB overall= 46-48 x 38-40 µm (n= 4)
Stratigraphic range:
Upper Paleocene-Lower Eocene, Canada (Kalgutkar 1993)

Genus Marthusrisporites MARTHUR & MARTHUR 1969 emend. KALGUTKAR & JANSONIUS 2000

Type species Marthusrisporites ellipticus comb. nov.- MARTHUR & MARTHUR 1969

Marthusrisporites glomeratus SRIVASTAVA 1968
(Pl. 11/Fig. 13)

Diagnosis: See Kalgutkar & Jansonius (2000: 166-167)
Remarks: Fungal spore, composed of 6 cells, apical cell hyaline and triangular (6 x 10 µm) in shape, distal cell hyaline rectangular and porate (4 µm in diameter).
Dimensions: LxB overall= 64-68 x 30 µm (n=4)
Stratigraphic range:
Maastrichtian, Alberta, Canada (Srivastava, 1968)

Genus Multicellites KALGUTKAR & JANSONIUS 2000

Type species Multicellites tener KE & SHI 1978:39

Multicellites cingulatus KE & SHI 1978
(Pl. 11/Fig. 11)

Diagnosis: See Kalgutkar & Jansonius (2000: 189)
Dimensions: LxB overall= 64-65 x 20-22 µm (n=8)
Stratigraphic range:
Eocene-Oligocene (Kalgutkar & Jansonius, 2000)
Multicellites grandiusculus SHEFFY & DILCHER 1971 (Pl. 11/Fig. 10)

1971: *Multicellaeasporites grandiusculus* n. sp.- SHEFFY & DILCHER 1971: 45; Pl. 16/51.

Diagnosis: See Kalgutkar & Jansonius (2000: 191)

Dimensions: LxB overall 50-52 x 19-20 µm (n=3)

Stratigraphic range:
Middle Eocene, Tennessee, USA (Sheffy & Dilcher, 1971)

Multicellites cf. ovatus SHEFFY & DILCHER 1971 (Pl. 11/Fig. 9)

Diagnosis: See Kalgutkar & Jansonius (2000: 193)

Remarks: Tetracellate spore, uniserial, inaperturate, with three septa, dark with two septal folds, the septal thickness decreases towards the proximal cell that is smaller than the other cells. Size is bigger than in *M. ovatus*.

Dimensions: LxB overall 46-48 x 32-34 µm (n=4)

Stratigraphic range:
Middle Eocene, Tennessee USA (Sheffy & Dilcher, 1971)

Multicellites sp. B

(Pl. 11/Fig. 12)

Remarks: Multicellate, uniserial, inaperturate fungal spore, consists of five cells, outline elliptical. Spore slightly constricted at septa. Septa hyaline, 1.5 µm wide and perforate. Cells at each end subcircular in shape.

Dimensions: LxB overall 74-76 x 26-30 µm (n=4)

Genus Octosporites SALARD-CHEBOLDAEFF & LOCQUIN 1980

Type species *Octosporites saturoides* SALARD-CHEBOLDAEFF & LOCQUIN 1980

Octosporites? cf. saturoides SALARD-CHEBOLDAEFF & LOCQUIN 1980 (Pl. 12/Fig. 1)

Diagnosis: See Kalgutkar & Jansonius (2000: 198)

Dimensions: Ø overall= 30-32 µm; LxB cross 24 x 4 µm (n=4)

Stratigraphic range:
Lower Miocene, Equatorial Africa (Salard-Cheboldaeff & Locquin, 1980)

Genus Papulosporinites SCHMIEDEKNECHT & SCHWAB 1964

Type species *Papulosporinites sphaeromorphus* SCHMIEDEKNECHT & SCHWAB 1964

Papulosporinites mohgaoensis CHITALEY & YAWALE 1978 (Pl. 12/Fig. 2)

1978: *Sorosporium mohgaoenses* n. sp.- CHITALEY & YAWALE 1978: 190; Pl. 1/1.
Dimensions: Ø overall= 42-43 μm (n=4)
Stratigraphic range:
Upper Cretaceous, India (Chitaley & Yawale, 1978)

Genus Paragranatisporites ZHANG ZHONGYING 1980

Type species Paragranatisporites lunpolaensis ZHANG ZHONGYING 1980

Paragranatisporites vermiculus EDIGER 1981
(Pl. 12/Fig. 5)

Diagnosis: See Ediger (1981: 92)
Dimensions: LxB overall= 48-50 x 24-28 μm (n=4)
Stratigraphic range:
Upper Eocene-Oligocene, Miocene-Pliocene, Turkey (Ediger, 1981a)
Eocene-Oligocene, Indian Ocean (Kemp, 1978)

Genus Pluricellaesporites VAN DER HAMMEN 1954 emend. ELSIK & JANSONIUS 1974

Type species Plucellaesporites typicus VAN DER HAMMEN 1954

Plucellaesporites trichocladites KALGUTKAR 1997
(Pl. 12/Fig. 4)

Diagnosis: See Kalgutkar & Jansonius (2000: 247-248)
Remarks: Fungal spore with four cells, opaque, asymmetrical along its axis, with a single aperture 4 μm in diameter. Septa inaperturate, brown and approximately of equal thickness (6 μm) and surface psilate.
Dimensions: LxB overall= 58-60 x 32-34 μm (n=3)
Stratigraphy range:
Upper Paleocene-Lower Eocene, Northwest Territories, Canada.

Genus Polyadosporites VAN DER HAMMEN 1954 emend.KALGUTKAR & JANSONIUS 2000

Type species Polyadosporites suescae VAN DER HAMMEN 1954

Polyadosporites suescae VAN DER HAMMEN 1954
(Pl. 12/Fig. 3)

Diagnosis: See Kalgutkar & Jansonius (2000: 249)
Remarks: Spore composed of several united cells. Individual cells are spherical 12-14 μm in diameter, psilate. The aggregated upper cells are darker than the rest of the spore.
Dimensions: Ø clustered= 82-86 μm (n= 5)
Stratigraphic range:
Maastrichtian, Colombia (Van der Hammen, 1954)

Genus *Staphlosporonites SHEFFY & DILCHER 1971 emend. KALGUTKAR & JANSIONIUS 2000*

Type species *Staphlosporonites conoideus* SHEFFY & DILCHER 1971

Staphlosporonites cf. felixii Lange & Smith 1971

(Pl. 12/Fig. 6, 10)

1971: *Dictyosporites felixii* nov. sp.- LANGE & SMITH 1971: 672: Pl. 6/A.

Diagnosis: See Kalgutkar & Jansonius (2000: 285)
Dimensions: LxB overall= 32 x 28 µm (n=4)
Stratigraphic range:
Lower-Middle Eocene, South Australia (Lange & Smith, 1971)

FUNGAL FRUITING BODIES

Genus *Appendicisporonites* SAXENA & KHARE 1992

Type species *Appendicisporonites typicus* SAXENA & KHARE 1992

Appendicisporonites typicus SAXENA & KHARE 1992

(Pl. 12/Fig. 13)

Diagnosis: See Kalgutkar & Jansonius (2000: 27)
Dimensions: Ø body= 18-24 µm; Long processes= 18-20 µm (n= 4)
Stratigraphic range:
Tertiary (Kalgutkar & Jansonius, 2000)

Genus *Callimothallus DILCHER 1965*

Type species *Callimothallus pertusus* DILCHER 1965

Callimothallus assamicus KAR, SINGH & SAH 172

(Pl. 12/Fig. 9)

Diagnosis: See Kalgutkar & Jansonius (2000: 46)
Dimensions: LxB overall= 58-60 x 48-50 µm (n=8)
Stratigraphic range:
Tertiary, Indian (Kar, Singh & Sah, 1970)
Tertiary, Indian Ocean (Kemp, 1978)
Eocene, India (Sarkar & Singh, 1988)
Systematic Palynology Chapter 6

Callimothallus pertusus DILCHER 1965
(Pl. 12/Fig. 7, 8)

Diagnosis: See Dilcher (1965: 13)
Dimensions: Ø overall= 58-66 μm (n=8)
Stratigraphic range:
Lower to Middle Eocene, Northern Canada (Parsons & Norris, 1999)
Upper Paleocene to Middle Eocene, Yukon Territory Canada (Kalgutkar, 1985)
Eocene, Tennessee USA (Dilcher, 1965)

Genus Desmidiospora THAXTER 1891

1891: *Desmidiospora* nov. gen.- THAXTER 1891.
Type species *Desmidiospora myrmecophila* THAXTER 1891.

Desmidiospora marginiconvoluta KALGUTKAR 1997
(Pl. 12/Fig. 14)

Diagnosis: See Kalgutkar & Jansonius (2000: 62-63)
Dimensions: Ø overall= 18-20 μm (n= 4)
Stratigraphic range:
Upper Paleocene-Lower Eocene, Northwest Territories, Canada (Kagutkar, 1997)

Desmidiospora willoughbyi (BRADLEY) ETHRIDGE GLASS, BROWN & ELSIK 1986
(Pl. 12/Fig. 15)

1967: *Entophlyctis willoughbyi* nov. sp.- BRADLEY 1967: 579: Fig. 6.

Diagnosis: See Kalgutkar & Jansonius (2000: 63)
Dimensions: Ø overall= 24-26 μm (n=5)
Stratigraphic range:
Upper Eocene, Texas USA (Ethridge et al., 1986)
Eocene, Colorado USA (Bradley, 1967)

Genus Kutchiathyrites KAR 1979 emend. KALGUTKAR & JANSOYIUS 2000

Type species *Kutchiathyrites eccentricus* KAR 1979

Kutchiathyrites palmatus KE & SHI 1978
(Pl. 12/Fig. 11, 12)

Diagnosis: See Kalgutkar & Jansonius (2000: 158)
Dimensions: LxB overall= 28-32 x 40-42 μm (n=3)
Stratigraphic range:
Eocene-Oligocene, China (Ke & Shi, 1978)
Genus *Parmathyrites* JAIN & GUPTA 1970

Type species *Parmathyrites indicus* JAIN & GUPTA 1970

Parmathyrites cf. indicus JAIN & GUPTA 1970

Diagnosis: See JAIN & GUPTA (1970: 178)
Dimensions: Long spines= 36-40 µm (n=1)
Stratigraphic range:
Miocene, South India (Jain & Gupta, 1970)

Genus *Plochmopeltinites* COOKSON 1947a

Type species *Plochmopeltinites masonii* COOKSON 1947a

Plochmopeltinites masonii COOKSON 1947

Diagnosis: See Kalgutkar & Jansonius (2000: 237)
Dimensions: Ø overall= 140-160 µm (n=6)
Stratigraphic range:
Oligocene-Miocene, Southern Australia (Cookson, 1947)
Middle Eocene–Miocene, Canada (Norris, 1986)
Lower Eocene, Northwest Territories, Canada (Kalgutkar & McIntyre, 1990)

MYCELIAL HYPHAE

Hyphae Type A

(Pl. 13/Fig. 2)

Remarks: Branching and septate hyphae, cells 58 µm long, 8 µm wide, with branched conidiophore and conidium up to 18 µm in diameter. Hyphal wall slightly thicker than septal wall. Similar species have been found in Tertiary sediments on the Ninetyeast Ridge, Indian Ocean (Kemp, 1978).

Hyphae Type B

(Pl. 13/Fig. 3)

Remarks: Overall length 160 µm, septate and non-branching hyphae. Septa widely spaced, very slight constriction at the points of septal insertion.
<table>
<thead>
<tr>
<th>Hyphae Type C</th>
<th>(Pl. 13/Fig. 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remarks:</td>
<td>Filaments tubular, cylindrical, unbranched, septate. Length of septate cells 74-78 μm. The septa are always perforate. Cell wall 2 μm thick.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hyphae Type D</th>
<th>(Pl. 13/Fig. 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remarks:</td>
<td>Hyphae septate, smooth, distal termination tapering (1.5 μm wide) and proximal termination rounded (10 μm wide), hyphal wall 1.5 μm thick.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hyphae Type E</th>
<th>(Pl. 13/Fig. 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remarks:</td>
<td>Hyphae septate, 150 μm long, smooth, melanin color. Septa are closely spaced and not perforated.</td>
</tr>
</tbody>
</table>
In this section this most import conclusions are briefly presented. They are given following the sequence in which the different subjects have been treated in this study.

The assemblages consists of a total of 60 species of dinoflagellate cysts, 42 species of fungal remains and green algae and acritarchs. All these species are described and illustrated. A total of five new species of fungal remains are described: Brachysporisporites jarillalensis, Dictyosporites odremanensis sp., Didymoporisporonites poratus sp., Fusiformisporites septatus sp., Striadiportes crosstriatus sp.

Dinoflagellate cysts and Fungal remains are present in useful amounts in nearly all cores, cuttings and outcrop samples of the Middle to Late Eocene strata of Eastern Zulia sections studied. While pollen and spores are limited biostratigraphic value.

I consider the upper part of the Jarillal Formation to be Late Eocene, based on dinoflagellate cysts. This agrees with previous age determinations based on others microfossils.

Dinoflagellate cysts can be used throughout for zonation and correlation; however, key species for existing zonations are generally scarce or lacking. A local scheme was established based on the from the Pica-1X, VL-37X wells and Quebrada Bijugal, Quebrada Palma and Quebrada Bijugal outcrop sections. Still, sufficient age diagnostic species are present that allow identification of epochs. The dinocysts thus become particularly important in the Eocene sections where other biostratigraphic indicators are missing.

Dinoflagellate assemblages include several species that have been reported from the Middle to Late Eocene of Europe, North America and Asia. Quantitative comparison of the assemblages from others localities show high percentages of similarity, mainly which of the assemblages from London Basin. The differences are considered to be related not only to climatic-latitudinal factors, but also to differences of the associated paleoenvironments of deposition.

Analysis of the relative distribution of the major categories of palynomorphs in the samples and of the most important dinocysts and fungi indicates that the Jarillal, Pauji formations were deposited in lower energy water relatively far from the coastline and Caus Formation was deposited in a marginal marine enviroment, under increasingly shallowing conditions.

Species diversity in dinoflagellate cysts shows an relationship with increase in foraminiferal test linings.

On the basis of fungal remains, I interpret the Eastern Zulia area during Middle to Late Eocene as representing a warm, tropical-subtropical and shallow, inner neritic to outer neritic enviroment.
AGELOPOULOS, J.
1964 Hystrichostrogylon membraniphorum n.g.n. sp aus dem Heiligenhafener Kieselton (Eozän). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1964: 673-675.

AL-AMERI, T. K., AL-NAJAR, T. K., and BATTEN, D. J.

ALEXOPOULOS, C. J., MIMS, C. W., and BLACKWELL, M.

AL-AMERI, T. K., AL-NAJAR, T. K., and BATTEN, D. J.

ALEXOPOULOS, C. J., MIMS, C. W., and BLACKWELL, M.

ARAI, M, BOTELHO, J. N, CUNHA, C. L, and PEDRAO, E.

ARAI, M.

ASHRAF, A. R., and ERBEN, H. K.

BATTEN, D. J.

BATTEN, D. J. and MORRISON, L.

BATTEN, D. J. and LISTER, J. K.

BENVEN, N. P.
BENVEN, N. P and SARJEANT, W. A. S.
1981 Dinoflagellate cysts from the Middle and Upper Oligocene of Tönisberg (Niederrheingebiet). Nova Hedwigia, 35: 313-356.

BENSON, Jr. D. G.

BERGREN, W. A and MILLER, K. G.

BIFI, U. and GRIGNANI, D.

BIFI, U. and MANUM, S. B.

BOULTER, M.

BOULTER, M. AND RIDDICK, A.

BP-PDVSA
References cited

CHÂTEAUNEUF, J.

CHÂTEAUNEUF, J. and GRUAS-CAVAGNETTO, C.

CHENG-QUAN, H.E.

COLMENARES, O.

COOKSON, I. C.

COOKSON, I. C. and EISENACK, A.

CORRADINI, D.

CORRADINI, D. and BIFFI, U.

CRUX, J., COLMENARES, O., CANACHE, M., and CARVAJAL, H.

DALE, B.

DAMASSA, S. P.

References cited

DAMASSA, S. P. and WILLIAMS, G. L.

DAVEY, R. J., DOWNIE, C., SARJEANT, W. A. S., and WILLIAMS, G. L.

DAVEY, R. J. and ROGERS, J.

DAVEY, R. J., and WILLIAMS, G. L.

DAVIS, J. C.

DE CONINCK, J.
1986a Microfossiles a paroi organique de l’Ypresien inférieur à Quenast. Service géologique de Belgique, Mémoires, 224: 59 p.

DE TONI B., LOUREIRO, D., COLLETA, B., ROURE, F., GOU, Y., and MARQUEZ, C.

DE VERTEUIL, L and NORRIS, G.

DEFLANDRE, G., and COOKSON, I. C.
DELGADO, M. and CHACARTEGUI, F.
1996 Sedimentological and Stratigraphic controls on hydrocarbon accumulation and production, Pauji Formation, Maracaibo Lake, Venezuela. Program, Caracas Again! II AAPG/SVG International Congress and Exhibition, A12.

DILCHER D. L.

DOWNIE, C. and WILLIAMS, G. L.

DRUGG, W. S.

DURÁN, I.

DUTTA, S. K., and JAIN, K. P.
1980 Geology and palynology of the area around Lumshnong, Jaintia Hills, Meghalaya, India. *Biology Memoire*, 5: 56-81.

EATON, G. L.

EATON, G. L., FENSOME, R. A., RIDING, J. B., and WILLIAMS, G. L.

EDIGER, V.

EDGER, V. and ALISAN, C.

EDWARDS, L. E.

1976 Microscopic fungal remains and Cenozoic palynostratigraphy. Geoscience and Man, 23: 115-120.

ELSIK, W. C. and JANSONIUS, J.

ELSIK, W. C. and DILCHER D. L.

ESTEX

ETHRIDGE G.D., BROWN, D. D., and ELSIK, W. C.

EVITT, W. R.

FASOLA, A., GIFFUNI, G., CRESPO DE CABRERA, S., PAREDES DE RAMOS, I., and EURIBE, A.

FECHNER, G. G.

FECHNER, G. G. and APPEL, R.

FENSOME, R. A, MacRAE, R.A, and WILLIAMS, G. L.

FENSOME, R. A., RIDING, J. B, and TAYLOR, F. J. R.

FRITZ-NIELSEN, W. and EKKEHARD, H.

FUENMAYOR, A. and DI GIACOMO, E.

FURRER, M.

GEDL, P.
1996 Middle Miocene dinoflagellate cysts from the Korytnica clays (Góry Swietokrzyskie Mountains, Poland). *Annales societatis geologorum poloniae,* 66: 191-218.
GERLACH, E.

GHOSH, S. and ZAMBRANO, E.

GHOSH, S., PESTMAN, P., MELÉNDEZ, L., LORENTE, M., and ZAMBRANO, E.

GOCHT, H.

GONZÁLEZ DE JUANA, C., ITURRALDE DE AROZENA, J. M., and PICARD, X.

GOODMAN, D. K.

GRADSTEIN, F., AGTERBERG, F., BROWER, J., and SCHWARZACHER, W.

GRAHAM, A.

GREGORY, W. A., and HART, G. F.

GRUAS-CAVAGNETTO, C.

GUY-OHLSON, D.

HABIB, D. and MILLER, J. A.

HABIB, D., MOSHKOVITZ, S., and KRAMER, C.

HARDING, I. C. and ALLEN, R. M.

HARLAND, R.

HE CHENG-QUAN and WANG KE-DE.

HEAD, M. J. and NORRIS, G.
HEAD, M. J.

HEAD, M. J and WRENN, J. W.

HEILMANN-CLAUSEN, C. and COSTA, L.

HELENES, J.

HELENES J. and CLARK-LUCAS, J.

HELENES J., DE GUERRA, C., and VASQUEZ, J.

HELENES J. and SOMOZA, D.

HELENES J., SOMOZA, D., DE GUERRA, C., and VASQUEZ, J.

HIGGS, R. and PINDELL, J.

HIGGS, R., PINDELL, J. and ODREMAN, O.

HOPKINS, JR. W. S.

HÖLL, C, ZONNEVELD, K, and WILLEMS, H.

HUault, V., MERZERAUD, G., RAUSCHER, R., and SCHULER, M.

INTEVEP-PDVSA.

ISLAM, M.A.

JAIN, K. P. and GUPTA, R. C.
JAIN, K. P. and TANDON, K. K.
1981 Dinoflagellate and acritarch biostratigraphy of the Middle Eocene rocks of a part of South-Western Kachchh, India. *Journal of the Palaeontological Society of India*, 26: 6-21.

JAN DU CHÊNE, R. E.

JAN DU CHÊNE, R. E. and ADEDIRIAN, S. A.

JANSONIUS, J.

JANSONIUS, J. and KALGUTKAR, R. M.

JARAMILLO, C.

JARAMILLO, C. and DILCHER D.L.

JARAMILLO, C. and OBOH- IKUENOBE, F. E.

JARZEN, D. M. and ELSIK, W. C.

KAISER, H. and ASHRAF, R.

KALGUTKAR, R. M.

KALGUTKAR, R. M. and McCINTYRE, D. J.

KALGUTKAR, R. M. and SIGLER, L.

KALGUTKAR, R. M. and JANSONIUS, J.

KAR, R. K.

KAR, R. K, SINGH, R. Y., and SAH, S. C. D.

KEMP, E. M.
KHANNA, A. K.

KHANNA, A. K and SINGH, L.H. P.

KHANNA, A. K, SARKAR, S, and SINGH, L. H. P.

KLUMPP, B.

KOVACH, W.

KÖHLER, J. and CLAUSING, A.

KÖTHE, A.

KÖTHE, A., KHAN, A. M., and AHSRAF, M.
1988 Biostratigraphy of the Surghar Range, Salt Range, Sulaiman Range and the Kohat area, Pakistan, according to Jurassic through Paleogene calcareous nannofossils and Paleogene dinoflagellates. *Geologisches Jahrbuch* B71: 3-87.

KUMAR, A.

KUMMEL, B. and RAUP, D.

KURITA, H. and MATSUOKA, K.

KUYL, O. S.

LANGE, R. T. A.

LANGE, R. T. A. and SMITH, P. H.

LEJEUNE-CARPENTIER, M.

LEJEUNE-CARPENTIER, M. and SARJEANT, W.A.S.

LEÓN, F., DE TONI, B., PILLOUD, A., SARZALEJO, S., CASÁNOVA, M., VIVAS, B., COLMÉNARES, O., CANACHE, M., and CRUX, J.

LIENGJARERN, M., COSTA, L., and DOWNIE, C.
LOSER, H.W.
1954 Northern Andean foothills, Tertiary sedimentation and relation to tectonical movements.

LOUWYE, S., DE CONINCK, J. and VERNIERS, J.
2000 Shallow marine Lower and Middle Miocene deposits at the southern margin of the North
Sea Basin (northern Belgium): dinoflagellate cyst biostratigraphy and depositional history.

LUGO, J.

LUGO, J. and MANN, P.
Suárez, S., and Welsink, H. J., (Eds.), Petroleum basins of South America. *American

MAHMOUD, M. S.
1993 Dinocyst stratigraphy of the Middle Miocene from Shagar-1 borehole, SW Gulf of Suez

1998 Palynology of Middle Cretaceous-Tertiary sequence of Mersa Matruh-1 well, northern
Western Desert, Egypt. *Neues Jahrbuch für Geologie und Paläontologie Abhandlungen*,
209 (1): 79-104.

MANUM, S., BOULTER, C., GUNNARSDOTTIR, H., RANGNES, K., and SCHOLZE, A.
1989 Eocene to Miocene palynology of the Norwegian Sea (ODP LEG 104). In: Eldholm, O.,
Thiede, J., Taylor, E., and et al.,(Eds.). *Proceedings of the Ocean Drilling Program,

MAO, S and MOHR, B.
1995 Middle Eocene dinocyst froms Bruce Bank (Scotia Sea, Antarctica) and their
paleoenvironmental and paleogeographic implications. *Review of Palaeobotany and
Palynology*, 86: 235-263.

MARTIN, H. A. and ROUSE, G. E.
1966 Palynology of the Late Tertiary sediments from Queen Charlotte Islands, British

MARTIN, E.
1970 Standard Tertiary and Quaternary Calcareous Nannoplankton Zonation. In: Farinacci, A.,
(Eds.), Proceedings of the II Planktonic Cconference, II: 739-785.

MARTHUR, Y. K.
1963 Occurrence of Pediastrum in Subathu Form ation (Eocene) of Himachal Pradesh, India.
Sciences and Culture, 29 (5): 250-250.

1979 Palaeoecology of the Subathu Formation, Kumaun Himalaya. *Bulletin Indian Geologists

1986 Dinoflagellate cyst biostratigraphy and age of the Middle Eocene Kalol Formation in the
Kalol-109 Well, North Cambay Basin, Western India. *Review of Palaeobotany and

MATSUOKA, K.

1983 Late Cenozoic Dinoflagellates and Acritarchs in the Niigata District, Central Japan.

1984 Some dinoflagellate cysts from the Naggulan Formation in central Java,

MATSUOKA, K., BUIJAK, J., and SHIMAZAKI, T.
1987 Late Cenozoic dinoflagellate cyst biostratigraphy from west coast of northern

MATSUOKA K., MCMINN, A., and WRENN, J. H.
1997 Restudy of the holotype of *Operculodinium centrocarpum* (DEFLANDRE & COOKSON)
WALL (Dinophyceae) from the Miocene of Australia, and the taxonomy of related

MAY, F. E.
1980 Dinoflagellate cysts of the Gymnodiiniaceae, Peridiniaceae, and Gonyaulacaceae from the
Upper Cretaceous Monmouth Group, Atlantic Highlnds, New Jersey.

MEHROTRA, N. C.
MELÉNDEZ, L.GHOSH, S. K., and PESTMAN, P. J.

MEYER, R.

MICHOUX, D.

MOHR, B.

MORGENROTH, P.

MORZADEC-KERFOURN, M. T.

MUDGE, D. and BUJAK J.

MUDIE, P. J., AKSU, A. E., and YASAR, D.

MULLER, J., DI GIACOMO, E., and VAN ERBE, W. A.

MULLINS, G. L.

MUSSARD, J. M., GÉRARD, J., DUCAZEAUX, J., and BÉGOUEN, V.

NIJSSEN, L.

NOREM, W. L.

NORRIS, G.

NORRIS, G. and VELÁSQUEZ, M.
References cited

OBOH-IKUENOBE F. E.

OBOH-IKUENOBE F. E. and YEPE S, O.

OBOH-IKUENOBE F. E., YEPE S, O., and GREGG, J. M.

OBOH-IKUENOBE F. E. and CHRISFIELD, R. A.

OLOTO, N. I.

PARNAUD, F., CAPELLO, M. A., GOU, J. C., SÁNCHEZ, A., PASCUAL, J. C., and TRUSKOWSKI, I.

PARNAUD, F., GOU, J., PASCUAL, M. A., TRUSKOWSKI, I., and PASSALACQUA, H.

PARSONS, G. M. and NORRIS, G.

PEETERS, F. J. C., HOEK, R. P., BRINKHUIS, H., WILPSHAAR, M., DE BOER, P. L., KRIJGSMAN, W., and MUELENKAMP, J. E.

PESTMAN, P. J., BARTOK, P., GHOSH, S. K., and MELÉNDEZ, L.

PITTELLI, R.

PITTELLI, R. and MOLINA, A.

POWELL, A. J.

References cited

PROSS, J.

PROSSL, K. F.

PRÖSSL, L., LUCAS, J., and DOUBINGER, J.

RAO, M. R.
1959 Fungal remains from some Tertiary deposits of India. The Palaeobotanist, 7: 43-46.

RAUSCHER, R. and SCHULER, M.

REGALI, P. S.

RENZ, O.
1955 The Paleocene of Western Venezuela: Part I. Geological Report Shell Venezuela, EPC-1349A

ROCHON, A., DE VERNAL, A., TURON, J-L., MATTHIENSE, J., and HEAD, M. J.

ROUZEN, B.

RUIZ, M.

RULL, V.
RULL, V., DE GIACOMO, E., HIDALGO, M., CONTRERAS, C. and CASSANI, F.

SARJEANT, W. A. S.

SARJEANT, W. A. S, LACALLI, T., and GAINES, G.

SARKAR, S.

SARKAR, S. AND SINGH, L. H. P.

SAXENA, R. K., RAO, M. R., & SINGH, H. P.
1987 Palynology of the Barail (Oligocene) and Jurma (lower Miocene) sediments exposed along Sonapur-Badarpur Road section, Jaintia Hills (Meghalaya) and Cachar (Assam). Part VI. Palynostratigraphic zonation. The Palaeobotanist, 35: 150-158.

SAXENA, R. K. and SARKAR, S.

SCHIØLER, P., BRINKHUIS, H., RONCAGLIA, L., and WILSON, G. J.

SCHULER, M.

SEVRIN-REYSSAC, J.

SHEFFY, M. V. and DILCHER, D. L.

SHERWOOD-PIKE, M. A.

SINGH, L.H. P. and KHANNA, A. K.

SINGH, L.H. P. AND SARKAR, S.

SITTLER, C. and OLLIVIER-PIERRE, M. F.

STANCLIFFE, R. P. W.

STAPLIN, F. L.
References cited

STOVER, L. E.

STOVER, L. E and EVITT, W. R.

STOVER, L. E. and HARDENBOL, J.

STOVER, L. E. and WILLIAMS, G.L.

STRAUSS, C. and WIETZE, J. J.

TAPPAN, H.

TAYLOR, F. J. R.

TORRICELLI, S. and BIFFI, U.

TRAVERSE, A.

TYSON, R. V.

TYSON, R. V. and FOLLOWS, B.

VAN DER HAMMEN, T.

VAN MOURIK, C. A and BRINKHUIS, H.

VARMA, C. P. and RAWAT, M. S.

VENKATAchalA, B. S. and KAR, R. K.

VENKATAchalA, B. S. and KUMAR, A.

WILLIAMS, R. W.

WILPSHAAR, M.

WILPSHAAR, M., SANTARELLI, H., BRINKHUIS, H., and VISSCHER, H.

WILSON, G. J.

WOOD, G. D., GABRIEL, A. M., and LAWSON, J. C.

WRENN, J. H.

WRENN, J. H., & KOKINOS, J. P.

ZAMBRANO, E., MELENDEZ, L., and GHOSH, S.

ZE-SHUN, QIUAN and CHENG-QUAN, HE.

ZEVENBOOM, D., BRINKHUIS, H., and VISSCHER, H.
PLATES 1-13
PLATE 1

All figures 640x.

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Species</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enneadocysta arcuatum EATON 1971</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Lateral views; surface of the body and shape of the processes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-20A (40M2) [Pica-1X / 2357 ft]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Enneadocysta pectiniformis (GERLACH 1961) STOVER & WILLIAMS 1995</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Lateral views; surface of cyst and shape of the processes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-4A (36G3) [Pica-1X / 460 ft]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Cordosphaeridium cf. gracile (EISENACK 1954) DAVEY & WILLIAMS 1966b</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Optical section; focused on the processes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-37A (35T1) [Pica-1X / 3610 ft]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4, 5</td>
<td>Systematosphora ? varibilis (COOKSON & EISENACK 1967a) STOVER & EVITT 1978</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>4.- Ventral view; focused on the processes. Note the joined processes at the top of the picture.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.- Ventral view; focused on the ventral surface. Arrow indicates the sulcal notch.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-12A (32K2) [Pica-1X / 1432 ft]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3, 6</td>
<td>Achilleodinium biformoides (EISENACK 1954b) EATON 1976</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>3.- Lateral view; focused on the archeopyle (arrow) and processes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.- Lateral view; focused on the surface.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-13A (53G4) [Pica-1X / 1554 ft]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Arenosphaera consociata JAIN & TANDON 1976</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Dorsal view; cingular zone devoid of processes and joined processes in the antapical region.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-12A (43P) [Pica-1X / 1432 ft]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7, 8, 9</td>
<td>Cordosphaeridium cantharellum (BROSIUS 1963) GOCHT 1969</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>7.- Antapical view; shape of the fibrous processes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.- Antapical view; focused on the surface. Same specimen as 7.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.- Apical view; focused on the precingular archeopyle.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-48A (45O) [Pica-1X / 4157 ft]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PLATE 2

All figures 640x, except Fig. 1 and 2 500x.

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Oligosphaeridium complex (WHITE 1842) DAVEY & WILLIAMS 1966b emend.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Optical section; buccinate shape of the processes.</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP- (21U2) [Pica-1X]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magnification 500x</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Diphyes cf. appendiculare (COOKSON & EISENACK 1970)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Ventral view; surface and shape of the processes.</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-10A (51D) [Pica-1X / 1170 ft]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magnification 500X</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Diphyes spinulum (DRUGG 1970b) STOVER & EVITT 1978</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3, 4</td>
<td>3.- Ventral view; with attached operculum.</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>4.- Dorsal view; slender antapical process.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. QB-1Ab (39W1) [Quebrada Bijugal / 158,0 m]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. QB-1Aa (38W) [Quebrada Bijugal / 158,0 m]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Diphyes colligerum (DEFLANDRE & COOKSON 1955) COOKSON 1965 emend.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Optical section; broad antapical process.</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-5A (44V2) [Pica-1X / 580 ft]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Cordosphaeridium inodes (KLUMPP 1953) EISENACK 1963b emend.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Antapical view; showing in detail the fibrous processes.</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-41A (24L3) [Pica-1X / 3818 ft]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Enneadocysta arcuatum EATON 1971</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Right lateral views; shape of the processes.</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-20B (44H1) [Pica-1X / 2357 ft]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Hystrichokolpoma cf. denticulata MATSUOKA 1974</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Ventral section, sulcal region.</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-2A (36Q) [Pica-1X / 220 ft]</td>
<td></td>
</tr>
</tbody>
</table>
PLATE 3

All figures 640x, except fig. 9 500x

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hystrichokolpoma elliptica MATSUOKA 1974 Ventral view; shape of the processes and apical archeopyle. Slide No. PP-17A (42D3) [Pica-1X / 1990 ft]</td>
<td>47</td>
</tr>
<tr>
<td>2</td>
<td>Hystrichokolpoma rigaudae DEFLANDRE & COOKSON 1955 Ventral view, focused on the antapical process. Slide No. PP-2A (36J2) [Pica-1X / 220 ft]</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>Hystrichokolpoma salacium EATON 1976 Ventral view; sulcal region. Slide No. PP-26A (55P2) [Pica-1X / 2937 ft]</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>Hystrichokolpoma cf. unispinum WILLIAMS & DOWNIE 1966a Apical view; sulcus marked by belt of small buccinate processes. Slide No. PP-4A (44V3) [Pica-1X / 460 ft]</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>Hystrichokolpoma sp. A Dorsal view; showing archeopyle attached to the top and shape of the processes. Slide No. PP-9A (33X) [Pica-1X / 1060 ft]</td>
<td>48</td>
</tr>
<tr>
<td>6, 7, 10</td>
<td>Lingulodinium polyedrum (DEFLANDRE & COOKSON 1955) WALL 1967 6.- Lateral view; shape of the processes. 7.- Lateral view; arrow showing a part of the precingular archeopyle with attached operculum. 10.- Apical view. Slide No. QB-4A (51Y2) [Quebrada Bijugal / 105,5 m] Slide No.PP-18A (53K2) [Pica-1X / 2119 ft] Slide No.PP-35B (54F3) [Pica-1X / 3500 ft]</td>
<td>49</td>
</tr>
<tr>
<td>8, 9</td>
<td>Lingulodinium pycnospinosum (BENEDEK 1972) STOVER & EVITT 1978 emend. BENEDEK & SARJEANT 1981 8.- Lateral view, focused on processes. 9.- Lateral view, complete specimen, 500X. Slide No. PP-6A (42Q4) [Pica-1X / 580 ft]</td>
<td>49</td>
</tr>
<tr>
<td>11, 12</td>
<td>Operculodinium centrocarpum (DEFLANDRE & COOKSON 1955) WALL 1967 11.- Ventral view; focused on the surface. 12.- Ventral view; focused on the precingular archeopyle. Slide No.VL-33 (59F3) [VL-37X / 10700-10710 ft]</td>
<td>49</td>
</tr>
<tr>
<td>Fig.</td>
<td>Name</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>1, 2</td>
<td>Operculodinium microtrainum (KLUMPP 1953) ISLAM 1983</td>
<td>50</td>
</tr>
<tr>
<td>1.</td>
<td>Lateral view; focused on the processes.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Lateral view; focused on the surface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. QP-1A (53G) [Quebrada Palma / 115,0 m]</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Turbiosphaera filosa (WILSON 1967) ARCHANGELSKY 1969</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Ventral view; showing precingular archeopyle and fibrous processes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-6B (36L1) [Pica-1X / 700 ft]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Achomosphaera cf. multifurcata JAIN & TANDON 1981</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Ventral view; focused on the precingular archeopyle and processes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-26A (35T4) [Pica-1X / 2937 ft]</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Hystrichostrogylon membraniphorum AGEOPOULOS 1964 emend. STOVER & EVITT 1978</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Lateral view; pericoel developed over central area.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-46B (67T1) [Pica-1X / 4060 ft]</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Nematosphaeropsis balcombiana DEFLANDRE & COOKSON 1955</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Variability in size of processes and slender trabeculae.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. QB-1Ab (39Q1) [Quebrada Bijugal / 158,0 m]</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Nematosphaeropsis reticulensis (PASTIELS 1948) SARJEANT 1986 emend. SARJEANT 1986</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Lateral view; focused on surface and distal processes joined by weak trabeculae.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. QB-1Bb (61U2) [Quebrada Bijugal / 158,0 m]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Spiniferites bulloideus (DEFLANDRE & COOKSON 1955) SARJEANT 1970</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Dorsal view, complete specimen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-18A (49T1) [Pica-1X / 2119 ft]</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Spiniferites mirabilis (ROSSIGNOL) SARJEANT 1970</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Dorsal view; slender processes and antapical membrane characteristic for this species.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. QB-1Aa (41O2) [Quebrada Bijugal / 158,0 m]</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Spiniferites cf. multibrevis (DAVEY & WILLIAMS 1966 in DAVEY et. al. 1966)</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Lateral view; shape of processes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-30A (38R) [Pica-1X / 3280 ft]</td>
<td></td>
</tr>
<tr>
<td>11, 12</td>
<td>Spiniferites cf. ovatus MATSUOKA 1983b</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Lateral view; sutures on surface and termination of processes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-26A (52G1; 34C2) [Pica-1X / 2937 ft]</td>
<td></td>
</tr>
<tr>
<td>Fig.</td>
<td>Specimen Description</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Spiniferites pseudofurcatus (KLUMPP 1953) SARJEANT 1970 emend.</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>SARJEANT 1981</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lateral view of complete specimen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-43A (52Q1) [Pica-1X / 3915 ft]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Spiniferites ramosus (EHRENBERG 1838) SARJEANT 1970 emend. DAVEY & WILLIAMS in DAVEY et al. 1966</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Dorsal view.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-32A (36L1) [Pica-1X / 3360 ft]</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Spiniferites sp. A</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Dorsal view; focused on the antapical processes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-43A (52K) [Pica-1X / 3915 ft]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Amphorosphaeridium cf. major (LEJEUNE-CARPENTIER 1940) emend. LEJUENE-CARPENTIER & SARJEANT. 1981</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Lateral view; surface and processes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-2B (35Q4) [Pica-1X / 220 ft]</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Sentusidinium sp. A</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Apical view; apical archeopyle, detached operculum.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-42A (59M2) [Pica-1X / 3878 ft]</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Adnatosphaeridium vittatum WILLIAMS & DOWNIE 1966</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Lateral view; focused on the apical archeopyle.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. QB-1Aa (38W) [Quebrada Bijugal / 158,0 m]</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Adnatosphaeridium cf. multispinosum WILLIAMS AND DOWNIE 1966</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Optical section; complete specimen, processes joined by ribbon-like trabeculae.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-31A (36T1) [Pica-1X / 3320 ft]</td>
<td></td>
</tr>
<tr>
<td>8, 9</td>
<td>Areoligera senonensis LEJEUNE-CARPENTIER 1938</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>8.- Antapical view; focused on upper surface and complexes of penitabular complexes processes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.- Dorsal view; focused on upper surface, showing the tabulation (4", 3", 2")</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. QP-3 (33N1; 24C3) [Quebrada Palma / 107,5 m]</td>
<td></td>
</tr>
<tr>
<td>10, 11, 12</td>
<td>Chiropteridium galea (MAIER 1959) SARJEANT 1983 emend. SARJEANT 1983</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>10; 12.- Ventral view, focused on the right lateral side and the archeopyle.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.- Dorsal view; focused on the central surface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-2A (38M4) [Pica-1X / 220 ft]</td>
<td></td>
</tr>
</tbody>
</table>
PLATE 6

All figures 640x

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Glahysrocysta texta (BUJAK 1976) STOVER & EVITT 1978</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Lateral view; distal processes joined by interwoven fenestrate membrane. Slide No.PP-4A (33B4) [Pica-1X / 460 ft]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Heteraulacacysta campanula DRUGG & LOEBLICH 1967</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Apical view. Slide No.QB-7A (55O1) [Quebrada Bijugal / 100.5 m]</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Homotryblium florispe (DEFLANDRE & COOKSON 1955) STOVER 1975</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Lateral view; focused on the basal process. Slide No. PP-21B (47H1) [Pica-1X / 2460 ft] Slide No.PP-21B (47H1) [Pica-1X / 2460 ft]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Homotryblium pallidum DAVEY & WILLIAMS 1966b</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Lateral view. Slide No. PP-48A (23K1) [Pica-1X / 4157 ft]</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Homotryblium plectilum DRUGG & LOEBLICH Jr. 1967</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Optical section. Slide No. QB-7A (40Y2) [Quebrada Bijugal / 100.5 m]</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Homotryblium tasmaniense COOKSON & EISENACK 1967</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Lateral view; surface body and processes with aculeate termination. Slide No. QP-1A (47K3) [Quebrada Palma / 115.0 m]</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Homotryblium tenuispinosum DAVEY & WILLIAMS 1966</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Lateral view; distally open cylindrical processes with serrate margin. Slide No. QB-9A (51X4) [Quebrada Bijugal / 79.0 m]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Homotryblium vallum STOVER 1977</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Lateral view, with focus on taeniate processes Slide No. QB-6Ab (51U4) [Quebrada Bijugal / 101.5 m]</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Hystrichosphaeridium sp. A</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Focused on processes with terminal funnel. Slide No.PP-28A (55C3) [Pica-1X / 3170 ft]</td>
<td></td>
</tr>
<tr>
<td>10, 11</td>
<td>Polysphaeridium congregatum (STOVER 1977) emend. BUJAK et al. 1980</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Lateral view; 11. processes arranged in groups as characteristic for this species. Slide No. PP- 22A (41M) [Pica-1X]</td>
<td></td>
</tr>
</tbody>
</table>
PLATE 7

All figures 640x

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Specimen</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
</table>
| 1 | *Polysphaeridium subtile* | DAVEY & WILLIAMS 1966b Emend. BUJAK et al. 1980
Antapical view, long, cylindrical and narrow processes.
*Slide No.*PP-31A (46W2)
[Pica-1X / 3320 ft] | 61 |
| 2, 3 | *Polysphaeridium zoharyi*
(ROSSIGNOL 1962) emend. BUJAK et al. 1980
Antapical view; processes terminating in flared tip.
Slide No. QB-4A (60M)
[Quebrada Bijugal / 105,5 m]
Slide No. QB-5A (54W)
[Quebrada Bijugal / 102,5 m] | 62 |
| 4 | *Cleistosphaeridium ancyrea* | (COOKSON & EISENACK 1965)
Lateral view; zigzag shape of apical archeopyle and penitabular processes.
*Slide No.*PP-20A (48R)
[Pica-1X / 2357 ft] | 62 |
| 5, 6, 7 | *Cleistosphaeridium diversispinosum* | (DAVEY et al. 1966) emend. EATON et al 2001
5.- Lateral view; margin of archeopyle margin and some processes arranged in penitabular complexes.
6.- Dorsal view; variation in width of dolabrate processes.
7.- Dorsal view; shape of processes.
Slide No. QB-6A (54T3; 59K3; 50E1)
[Quebrada Bijugal / 101,5 m] | 63 |
| 8, 9 | *Cleistosphaeridium placacanthum* | (DEFLANDRE & COOKSON 1955)
8.- Antapical view; penitabular processes and body surface.
9.- Part of specimen; penitabular processes.
Slide No. PP-52A
[Pica-1X / 4406 ft] | 63 |
| 10, 11 | *Cleistosphaeridium ? sp. A* |
10.- Dorsal view; apical archeopyle with attached operculum.
11.- Antapical view; arrangement of acuminate processes on surface of cyst.
Slide No. QB-8A (5OD)
[Quebrada Bijugal / 81,0 m]
Slide No. QB-9Ab (60G3)
[Quebrada Bijugal / 79,0 m] | 63 |
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Specimen</th>
<th>Description</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Distatodinium ellipticum (COOKSON 1965a) EATON 1976</td>
<td>Ventral view; shape of processes and apical archeopyle. Slide No. QB-8A (46W) [Quebrada Bijugal / 81,0 m]</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>2, 3</td>
<td>Distatodinium cf. tenerum (BENEDEK 1972) EATON 1976</td>
<td>Lateral view; processes arranged in linear groups, indicating sutural surface. Slide No. QB-8A (48N2); QB-8B (46W) [Quebrada Bijugal / 81,0 m]</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Lejeunecysta fallax (MORGENROTH 1966b) ARTZNER & DÖRHÖFER emend. BIFFI & GRIGNANI 1983</td>
<td>Dorsal view; circular cingulum. Slide No. QB-1Aa (41O4) [Quebrada Bijugal / 158,0 m]</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>5, 6</td>
<td>Lejeunecysta hyalina (GERLACH 1961) ARTZNER & DÖRHÖFER 1978 emend. KJELLSTRÖM 1972</td>
<td>Dorsal view; showing pentagonal shape. Slide No.QB-4A (60M) [Quebrada Bijugal / 105,5 m] Slide No.QB-1Ab (55Y2) [Quebrada Bijugal / 158,0 m]</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>7, 8</td>
<td>Selenopemphix nephroides BENEDEK 1972 emend. BUJAK in BUJAK et al. 1980 emend. BENEDEK & SARJEANT 1981</td>
<td>Polar view; showing one apical and two antapical horns. Slide No. QB-1Aa (51J1); QB-1Ab (52T) [Quebrada Bijugal / 158,0 m]</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Xenocodinium conispinosum STOVER & HARDENBOL 1993</td>
<td>Lateral view; arrangement of processes on surface. Slide No. QB-8A (42H1) [Quebrada Bijugal / 81,0 m]</td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>
PLATE 9

All figures 640x.

Fig. Page

1 **Chomotrilletes sp. A** Slide No. PP-5A (34C4) [Pica-1X / 580 ft] 67
2 **Chomotrilletes sp. B** Slide No. PP-5A (43O3) [Pica-1X / 580 ft] 67
3 **Cyclopsiella sp. A** Slide No. PP-18A (51J1) [Pica-1X / 2119 ft] 68
8 **Leiosphaeridia sp. A** Slide No. QB-1Ab (41T) [Quebrada Bijugal / 158,0 m] 68
4 **Cymatosphaera radiata** O. WETZEL 1933b emend. SARJEANT 1985 Slide No. PP-18A (52Q1) [Pica-1X / 2119 ft] 68
5 **Cymatosphaera sp. A** Slide No. QB-2Aa (38D3) [Quebrada Bijugal / 152,0 m] 68
10 **Pterospermella barbara** (GORKA 1963) EISENACK et al. 1973 Slide No. QB-6A (55L1) [Quebrada Bijugal / 101,5 m] 69
6 **Pterospermella aff. harti** SARJEANT 1960 Slide No. PP-18A (55M4) [Pica-1X / 2119 ft] 69
9 **Pterospermella sp. A** Slide No. QB-1Ab (57C4) [Quebrada Bijugal / 158,0 m] 69
7 **Pediastrum cf. wilsonii** SINGH & KHANNA, 1978 Slide No. QB-6A (44D1) [Quebrada Bijugal / 101,5 m] 69
12, 13 **Microforaminifer linings**
 12. Biserial
11, 14 **Scolecodonts**
 11. *Staurocephalites* HINDE 1849
 12. *Goniada* KINBERG 1866 Slide No. QB-2Aa (38D3) [Quebrada. Bijugal / 152,0 m] 70
PLATE 10

All figures 500x, except Fig. 9 1250x

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Taxon Name</th>
<th>Author</th>
<th>Slide No.</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exisisporites annulatus</td>
<td>KALGUTKAR 1993</td>
<td>PP-3A (54Y)</td>
<td>Pica-1X / 340 ft</td>
<td>71</td>
</tr>
<tr>
<td>2</td>
<td>Inapertisporites cf. nodulus</td>
<td>SHEFFY & DILCHER 1971</td>
<td>PP-1A (47J2)</td>
<td>Pica-1X / 100 ft</td>
<td>71</td>
</tr>
<tr>
<td>3</td>
<td>Monoporisporites cf. traversii</td>
<td>EDIGER & ALISAN 1989</td>
<td>PP-9A (53C1)</td>
<td>Pica-1X / 1060 ft</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>Monoporisporites lagenarius</td>
<td>SONG & LUO 1989</td>
<td>PP-5A (55J1)</td>
<td>Pica-1X / 580 ft</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>Striadiporites crucistriatus sp. nov., Holotype</td>
<td></td>
<td>QB-2A (38K4)</td>
<td>Quebrada Bijugal / 152,0 m</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>Striadiporites cf. irregularis</td>
<td>KALGUTKAR 1993</td>
<td>PP-6A (38H4)</td>
<td>Pica-1X / 700 ft</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>Striadiporites reticulatus</td>
<td>VARMA & RAWAT 1963</td>
<td>PP-3A (48V4)</td>
<td>Pica-1X / 340 ft</td>
<td>73</td>
</tr>
<tr>
<td>8</td>
<td>Fusiformisporites crabbii</td>
<td>ROUSE 1962</td>
<td>PP-6A (57L3)</td>
<td>Pica-1X / 700 ft</td>
<td>73</td>
</tr>
<tr>
<td>9</td>
<td>Fusiformisporites rugosus</td>
<td>SHEFFY & DILCHER 1971</td>
<td>PP-2A (50R3)</td>
<td>Pica-1X / 220 ft</td>
<td>73</td>
</tr>
<tr>
<td>10</td>
<td>Fusiformisporites septatus sp. nov., Holotype</td>
<td></td>
<td>PP-36A (43C)</td>
<td>Pica-1X / 3520 ft</td>
<td>74</td>
</tr>
<tr>
<td>11</td>
<td>Didymoporisporonites poratus sp. nov., Holotype</td>
<td></td>
<td>PP-36A (58E)</td>
<td>Pica-1X / 3520 ft</td>
<td>73</td>
</tr>
</tbody>
</table>
PLATE 11

All figures at 500x.

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Species/Genus</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brachysporisporites jarillalensis sp. nov., Holotype</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-1A (47R4) [Pica-1X / 100 ft]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Dictyosporites odremanensis sp. nov., Holotype</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-1A (47R3) [Pica-1X / 100 ft]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Dictyosporites morularis SALARD-CHEBOLDAEFF & LOCQUIN 1980</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-4A (32C1) [Pica-1X / 460 ft]</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Dictyosporites cf. moruloides SALARD-CHEBOLDAEFF & LOCQUIN 1980</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-6A (35M3) [Pica-1X / 700 ft]</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Diporipollis? cf. melanii (ELSIK) comb. nov.</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-6A (44C) [Pica-1X / 700 ft]</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Involutisporonites foraminus CLARKE 1965</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-6A (53E2) [Pica-1X / 700 ft]</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Involutisporonites cf. foraminus CLARKE 1965</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-7A (50D4) [Pica-1X / 820 ft]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Involutisporonites trapezoides KALGUTKAR 1993</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-9A (44R3) [Pica-1X / 1060 ft]</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Marthurisporites glomeratus SRIVASTAVA 1968</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-3A (52S) [Pica-1X / 340 ft]</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Multicellites cingulatus KE & SHI 1978</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-4A (56G) [Pica-1X / 460 ft]</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Multicellites grandiusculus SHEFFY & DILCHER 1971</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-10A (39M) [Pica-1X / 1170 ft]</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Multicellites cf. ovatus SHEFFY & DILCHER 1971</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-5A (35L3) [Pica-1X / 580 ft]</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Multicellites sp. A</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-6A (49C) [Pica-1X / 700 ft]</td>
<td></td>
</tr>
<tr>
<td>Fig.</td>
<td>Specimen</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Octosporites? cf. saturoides</td>
<td>SALARD-CHEBOLDAEFF & LOCQUIN 1980</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-1A (43R3) [Pica-1X / 100 ft]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Papulosporinites mohgaenosus</td>
<td>CHITALEY & YAWALE 1978</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-6A (38R) [Pica-1X / 700 ft]</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Paragranatisporites vermiculus</td>
<td>EDIGER 1981</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-2A (39O) [Pica-1X / 220 ft]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Pluricellaesporites trichoclades</td>
<td>KALGUTKAR 1997</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-34A (37C2) [Pica-1X / 3400 ft]</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Polyadosporites suescae</td>
<td>VAN DER HAMMEN 1954</td>
</tr>
<tr>
<td></td>
<td>Slide No. QB-3A (48G) [Quebrada Bijugal / 125,5 ft]</td>
<td></td>
</tr>
<tr>
<td>6, 10</td>
<td>Staphlosporonites cf. felixii</td>
<td>LANGE & SMITH 1971</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-33A (51C; 34M4) [Pica-1X / 3390 ft]</td>
<td></td>
</tr>
<tr>
<td>7, 8</td>
<td>Callimothallus pertusus</td>
<td>DILCHER 1965</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-1A (35T3; 51S1) [Pica-1X / 100 ft]</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Callimothallus assamicus</td>
<td>KAR, SINGH & SAH 172</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-4A (34K2) [Pica-1X / 460 ft]</td>
<td></td>
</tr>
<tr>
<td>11, 12</td>
<td>Kutchiathyrites palmatus</td>
<td>KE & SHI 1978</td>
</tr>
<tr>
<td></td>
<td>Slide No. PP-3A (44H) [Pica-1X / 340 ft]</td>
<td></td>
</tr>
</tbody>
</table>
PLATE 13

All figures 500x.

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Parmathyrites cf. indicus JAIN & GUPTA 1970 Slide No. PP-14A (48T1) [Pica-1X / 1642 ft]</td>
<td>81</td>
</tr>
<tr>
<td>7</td>
<td>Plochmopeltinites masonii COOKSON 1947 Slide No. PP-7A (36D) [Pica-1X / 820 ft]</td>
<td>81</td>
</tr>
<tr>
<td>2</td>
<td>Hyphae Type A Slide No. PP-3A (39C1) [Pica-1X / 340 ft]</td>
<td>81</td>
</tr>
<tr>
<td>3</td>
<td>Hyphae Type B Slide No. PP-3A (45D) [Pica-1X / 340 ft]</td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td>Hyphae Type C Slide No. PP-3A (36T1) [Pica-1X / 340 ft]</td>
<td>82</td>
</tr>
<tr>
<td>8</td>
<td>Hyphae Type D Slide No. PP-3A (52H3) [Pica-1X / 340 ft]</td>
<td>82</td>
</tr>
<tr>
<td>1</td>
<td>Hyphae Type E Slide No. PP-3B (45M1) [Pica-1X / 340 ft]</td>
<td>82</td>
</tr>
</tbody>
</table>
APPENDIX A: List of Identified Palynomorphs

Dinoflagellate cysts

Appendix A

APPENDIX A:

List of Identified Palynomorphs

Achilleodinium biformoides (EISENACK 1954b) EATON 1976
Achomosphaera cf. multifurcata JAIN & TANDON 1981
Adnatosphaeridium vittatum WILLIAMS & DOWNIE 1966c
Adnatosphaeridium cf. multispinosum WILLIAMS AND DOWNIE 1966c
Araneosphaera consociata JAIN & TANDON 1981
Areoligera senonensis LEJUENE-CARPENTIER 1938
Chiropteridium galea (MAIER 1959) SARJENT 1983 emend. SARJENT 1983
Cordosphaeridium cantharellum (BROSIUS 1963) GOCHT 1969
Cordosphaeridium gracile (EISENACK 1954) DAVEY & WILLIAMS 1966b
Cleistosphaeridium ancyrea (COOKSON & EISENACK 1965a)
Cleistosphaeridium diversispinosum (DAVEY et al. 1966) emend. EATON et al. 2001
Cleistosphaeridium placacantha (DEFLANDRE & COOKSON 1955)
Cleistosphaeridium? sp. A
Diphyes cf. appendiculare (COOKSON & EISENACK 1970a)
Diphyes colligerum (DEFLANDRE & COOKSON 1955) COOKSON 1965a emend. GOODMAN & WITMER 1985
Diphyes spinulum (DRUGG 1970b) STOVER & EVITT 1978
Distatodinium ellipticum (COOKSON 1965a) EATON 1976
Distatodinium cf. tenerum (BENEDEK 1972) EATON 1976
Enneadocysta arcuatum (EATON 1971)
Enneadocysta pectiniformis (GERLACH 1961) STOVER & WILLIAMS 1995
Glaphyrocysta texta (BUJAK 1976) STOVER & EVITT 1978
Heteraulacacysta campanula DRUGG & LOEBLICH 1967
Homotryblium floripes (DEFLANDRE & COOKSON 1955) STOVER 1975
Homotryblium pallidum DAVEY & WILLIAMS 1966b
Homotryblium plectilum DRUGG & LOEBLICH Jr. 1967
Homotryblium tasmaniense COOKSON & EISENACK 1967a
Homotryblium tenuispinosum DAVEY & WILLIAMS 1966b
Homotryblium vallum STOVER 1977
Hystrichocolpoma cf. denticulata MATSOUKA 1974
Hystrichokolpoma elliptica MATSOUKA 1974
Hystrichokolpoma cf. unispinum WILLIAMS & DOWNIE 1966a
Hystrichokolpoma rigaudae DEFLANDRE & COOKSON 1955
Hystrichokolpoma salacium EATON 1976
Hystrichokolpoma sp. A
Hystrichosphaeridium sp. A
Hystrichostrogylon membraniphorum AGEOPoulos 1964 emend. STOVER & EVITT 1978
Appendix A

Lejeunecysta fallax (MORGENROTH 1966b) ARTZNER & DÖRHÖFER emend. BIFFI & GRIGNANI 1983
Lingulodinium polyedrum (DEFLANDRE & COOKSON 1955) WALL 1967
Nematosphaeropsis balcombiana (DEFLANDRE & COOKSON 1955)
Nematosphaeropsis reticulensis (PASTIELS 1948) SARJENT 1986 emend. SARJENT 1986
Oligosphaeridium complex (WHITE 1842) DAVEY & WILLIAMS 1966b emend. DAVEY & WILLIAMS 1966b
Operculodinium centrocarpum (DEFLANDRE & COOKSON 1955) WALL 1967
Operculodinium microtriainun (KLUMPP 1953) ISLAM 1983a
Polysphaeridium congregatum (STOVER 1977) emend. BUJAK et al. 1980
Polysphaeridium subtile DAVEY & WILLIAMS 1966b Emend. BUJAK et al. 1980
Polysphaeridium zoharyi (ROSSIGNOL 1962) emend. BUJAK in BUJAK et al. 1980
Turbiosphaera filosa (WILSON 1967a) ARCHANGELSKY 1969a

Fungal Spores

Appendicisporonites typicus SAXENA & KHARE 1992
Brachysporisporites jarillalensis sp. nov.
Callimothallus assamicus KAR, SINGH & SAH 172
Callimothallus pertusus DILCHER 1965
Desmidiospora marginiconvoluta KALGUTKAR 1997
Desmidiospora willoughbyi (BRADLEY) ETHRIDGE GLASS, BROWN & ELSIK 1986
Dictyosporites odrnarimensis sp. nov.
Dictyosporites moruloides SALARD-CHEBOLDAEFF & LOCQUIN 1980
Dictyosporites cf. moruloides SALARD-CHEBOLDAEFF & LOCQUIN 1980
Didymoporisporites poratus sp. nov.
Diporipollis? cf. melani (ELSIK) comb. nov.
Exisisporites annulatus KALGUTKAR 1993
Fusiformisporites crabbii ROUSE 1962
Fusiformisporites rugosus SHEFFY & DILCHER 1971
Fusiformisporites septatus sp. nov.
Hyphae Type A
Hyphae Type B
Hyphae Type C
Hyphae Type E
Inapertisporites cf. nodulus SHEFFY & DILCHER 1971
Involutasporonites foraminus CLARKE 1965
Involutasporonites cf. foraminus CLARKE 1965
Monoporisporites cf. traversii EDIGER & ALISAN 1989
Involutasporonites trapezoides KALGUTKAR 1993
Kutchiahyrites Palmatus KE & SHI 1978
Marthurisporites glomeratus SRIVASTAVA 1968
Monoporisporites lagenarius SONG & LUO 1989
Multicellites cingulatus KE & SHI 1978
Multicellites grandiusculus SHEFFY & DILCHER 1971
Appendix A

Multicellites cf. ovatus SHEFFY & DILCHER 1971
Multicellites sp. A
Octosporites? cf. saturoides SALARD-CHEBOLDAEFF & LOCQUIN 1980
Papulosporinites mohgaoensis CHITALEY & YAWALE 1978
Paragranatisporites vermiculus EDIGER 1981
Parnathyrites cf. indicus JAIN & GUPTA 1970
Plochmopeltinites masonii COOKSON 1947
Pluricellaesporites trichocladiites KALGUTKAR 1997
Polyadosporites suevae VAN DER HAMMEN 1954
Staphlosporonites cf. felixii LANGE & SMITH 1971
Striadiaporites crosstriatus sp. nov.
Striadiaporites cf. irregularis KALGUTKAR 1993
Striadiaporites reticulatus VARMA & RAWAT 1963
APPENDIX B: Chart of Distribution

Table 2: Dinoflagellate cysts distribution in samples from the Pico 1X section. Abundances are based on the total of specimens counted in a single slide.
TABLE 3.
Fungal remains distribution in samples from the Pica-1X section. Abundances are based on the total of specimens counted in a single slide.
Table 4

<table>
<thead>
<tr>
<th>QUANTITATIVE SYMBOL</th>
<th>PRESENTATION</th>
<th>SAMPLE TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
<td>Specimen</td>
<td>G6, G10</td>
</tr>
<tr>
<td>2-5 Specimens</td>
<td>Specimen</td>
<td>G2, G9</td>
</tr>
<tr>
<td>> 5 Specimens</td>
<td>Specimen</td>
<td>G1, G8</td>
</tr>
<tr>
<td>> 25 Specimens</td>
<td>Specimen</td>
<td>G3, G7</td>
</tr>
</tbody>
</table>

PAUJÍ

<table>
<thead>
<tr>
<th>BIOEVENTS</th>
<th>SAMPLES</th>
<th>SAMPLE POSITION (m From the Base)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QF</td>
<td>QB-1</td>
<td>158.0</td>
</tr>
<tr>
<td>OQ</td>
<td>B-2</td>
<td>152.0</td>
</tr>
<tr>
<td>OU</td>
<td>B-3</td>
<td>125.5</td>
</tr>
<tr>
<td>QB</td>
<td>B-4</td>
<td>105.5</td>
</tr>
<tr>
<td>OQ</td>
<td>C-5</td>
<td>102.5</td>
</tr>
<tr>
<td>OU</td>
<td>C-6</td>
<td>101.5</td>
</tr>
<tr>
<td>QC</td>
<td>B-7</td>
<td>100.5</td>
</tr>
<tr>
<td>OQ</td>
<td>C-8</td>
<td>81.0</td>
</tr>
<tr>
<td>OU</td>
<td>C-9</td>
<td>79.0</td>
</tr>
<tr>
<td>QC</td>
<td>B-10</td>
<td>66.0</td>
</tr>
<tr>
<td>OQ</td>
<td>B-11</td>
<td>53.0</td>
</tr>
<tr>
<td>OU</td>
<td>B-12</td>
<td>44.5</td>
</tr>
<tr>
<td>QC</td>
<td>B-13</td>
<td>32.0</td>
</tr>
<tr>
<td>OQ</td>
<td>B-14</td>
<td>22.0</td>
</tr>
<tr>
<td>OU</td>
<td>B-15</td>
<td>8.0</td>
</tr>
<tr>
<td>QC</td>
<td>B-16</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Table 4. Dinoflagellate cysts and fungal remains distribution in samples from the VI-37X section. Abundances are based on the total of specimens counted in a single slide.

Table 5

<table>
<thead>
<tr>
<th>QUANTITATIVE SYMBOL</th>
<th>PRESENTATION</th>
<th>SAMPLE TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
<td>Specimen</td>
<td>G6, G10</td>
</tr>
<tr>
<td>2-5 Specimens</td>
<td>Specimen</td>
<td>G2, G9</td>
</tr>
<tr>
<td>> 5 Specimens</td>
<td>Specimen</td>
<td>G1, G8</td>
</tr>
<tr>
<td>> 25 Specimens</td>
<td>Specimen</td>
<td>G3, G7</td>
</tr>
</tbody>
</table>

PAUJÍ

<table>
<thead>
<tr>
<th>BIOEVENTS</th>
<th>SAMPLES</th>
<th>SAMPLE POSITION (m From the Base)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QF</td>
<td>QB-1</td>
<td>158.0</td>
</tr>
<tr>
<td>OQ</td>
<td>B-2</td>
<td>152.0</td>
</tr>
<tr>
<td>OU</td>
<td>B-3</td>
<td>125.5</td>
</tr>
<tr>
<td>QB</td>
<td>B-4</td>
<td>105.5</td>
</tr>
<tr>
<td>OQ</td>
<td>C-5</td>
<td>102.5</td>
</tr>
<tr>
<td>OU</td>
<td>C-6</td>
<td>101.5</td>
</tr>
<tr>
<td>QC</td>
<td>B-7</td>
<td>100.5</td>
</tr>
<tr>
<td>OQ</td>
<td>C-8</td>
<td>81.0</td>
</tr>
<tr>
<td>OU</td>
<td>C-9</td>
<td>79.0</td>
</tr>
<tr>
<td>QC</td>
<td>B-10</td>
<td>66.0</td>
</tr>
<tr>
<td>OQ</td>
<td>B-11</td>
<td>53.0</td>
</tr>
<tr>
<td>OU</td>
<td>B-12</td>
<td>44.5</td>
</tr>
<tr>
<td>QC</td>
<td>B-13</td>
<td>32.0</td>
</tr>
<tr>
<td>OQ</td>
<td>B-14</td>
<td>22.0</td>
</tr>
<tr>
<td>OU</td>
<td>B-15</td>
<td>8.0</td>
</tr>
<tr>
<td>QC</td>
<td>B-16</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Table 5. Dinoflagellate cysts and fungal remains distribution in samples from the Quebrada Bijugal section. Abundances are based on the total of specimens counted in a single slide.
Appendix B

Table 6

<table>
<thead>
<tr>
<th>Formation</th>
<th>Epoch</th>
<th>Bioevents</th>
<th>Preservation</th>
<th>Samples</th>
<th>Sample Position (m from the base)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUS</td>
<td>Middle Eocene</td>
<td>H. issueriense (LAD)</td>
<td>OU C</td>
<td>QP-1</td>
<td>115.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OU F</td>
<td>QP-2</td>
<td>110.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OU C</td>
<td>QP-3</td>
<td>107.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OU C</td>
<td>QP-4</td>
<td>104.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OU C</td>
<td>QP-5</td>
<td>100.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OU C</td>
<td>QP-6</td>
<td>92.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OU F</td>
<td>QP-7</td>
<td>52.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OU F</td>
<td>QP-8</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Table 7

<table>
<thead>
<tr>
<th>Formation</th>
<th>Epoch</th>
<th>Bioevents</th>
<th>Preservation</th>
<th>Samples</th>
<th>Sample Position (m from the base)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAUJi</td>
<td>Middle Eocene</td>
<td>P. subtile</td>
<td>OU B</td>
<td>QH-1</td>
<td>56.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OU D</td>
<td>QH-2</td>
<td>53.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OU B</td>
<td>QH-3</td>
<td>44.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OU B</td>
<td>QH-4</td>
<td>42.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OU D</td>
<td>QH-5</td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OU C</td>
<td>QH-6</td>
<td>37.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OU C</td>
<td>QH-7</td>
<td>35.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OU C</td>
<td>QH-8</td>
<td>33.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OU C</td>
<td>QH-9</td>
<td>32.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OU C</td>
<td>QH-10</td>
<td>26.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OU B</td>
<td>QH-11</td>
<td>23.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OU B</td>
<td>QH-12</td>
<td>20.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OU B</td>
<td>QH-13</td>
<td>17.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OU B</td>
<td>QH-14</td>
<td>14.5</td>
</tr>
</tbody>
</table>

Table 6. Dinoflagellate cysts distribution within samples from the Quebrada Palma section. Abundances are based on the total of specimens counted in a single slide.

Table 7. Dinoflagellate cysts distribution within samples from the Quebrada Honda section. Abundances are based on the total of specimens counted in a single slide.
Persönliche Daten:

Name: Rafael Alfonso Ramírez Rondón
Geb.: 29.10. 1970 in Mérida-Venezuela
Ledig

Adresse: Calle Arismendi, Residencia Las Salinas, Apartamento 7-L, Lechería Estado Anzoátegui-Venezuela.
Privat
Tel. +58 (0)281- 418 85 40

Adresse: Laboratorio Geológico Refinería El Chaure, Guanta Estado Anzoátegui
Dientl.
Venezuela, Apdo. 6014. PDVSA Exploración.
Tel. +58 (0)281- 260 64 38
Fax. +58 (0)281- 260 64 45

Profesionäle Karriere:

1996 Staatsexamen in den Fächern Geologie und Mathematik an der Universität Los Andes-Venezuela.

1998-2002 Promotion zum Dr. rer. Nat. an der Universität Tübingen.

Seit 2002 Arbeitstelle bei der Erdölindustrie in Venezuela (PDVSA)