On Parameterized Enumeration

Henning Fernau

WSI-2001-21

Henning Fernau

Wilhelm-Schickard-Institut fir Informatik
Universitat Tubingen

Sand 13

D-72076 Tubingen

Germany

E-Mail: fernau@informatik.uni-tuebingen.de
Telefon: (07071) 29-77565
Telefax: (07071) 29-5061

(© Wilhelm-Schickard-Institut fiir Informatik, 2001
ISSN 0946-3852

On Parameterized Enumeration

Henning Fernau
Wilhelm-Schickard-Institut fiir Informatik
Universitat Tiibingen
Sand 13, D-72076 Tiibingen, Germany
email: fernau@informatik.uni-tuebingen.de

December 17, 2001

Abstract

We study several versions of parameterized enumeration. The idea
is always to have an algorithm which outputs all solutions (in a certain
sense) to a given problem instance. Such an algorithm will be analysed
from the viewpoint of parameterized complexity. We show how to
apply enumeration techniques in a number of examples. In particular,
we give a fixed parameter algorithm for the reconfiguration of faulty
chips when providing so-called shared and linked spares.

1 Introduction

In classical complexity theory, there are three main ways to build complexity
classes or classify computational problems, respectively: decision problems,
functional problems, and counting problems.

As a running example, let us consider the vertex cover problem (VC)
for undirected graphs. This yields the following decision problem (already
formulated with a glimpse on parameterized complexity):

Instance: A graph G = (V, E)

Parameter: positive integer k

Question: Is there a vertex cover C' C V with |C| < k, i.e., each edge from
E is incident to at least one vertex from C7?

A vertex cover with k vertices will also be called k-vertex cover. Alter-
natively, one could ask for an algorithm that in fact yields a vertex cover
C C V with |C| < k instead of merely stating its existence. This would be
the functional version of the problem. Finally, one could be interested in
knowing how many different vertex covers C' C V with |C| < k exist. This
would be the natural counting version of VC.

Obviously, there is a fourth natural problem type, namely the functional
version of the counting problem (which we will call enumeration problem

in the following):! Output all k-vertex covers of a given graph. A variant
would be to output all minimum k-vertex covers of a given graph. This we
call the optima enumeration problem.

In classical complexity theory, it does not make much sense to ask for
such an algorithm for vertex cover, since only the size of the graph is mea-
sured within complexity considerations. This means that, generally speak-
ing, for NP-hard problems, an exponential number of outputs is to be gen-
erated in the worst case. Even the counting problem is considerably hard.
Notably, Goldberg, Spencer and Berque have published a low-exponential
algorithm for counting vertex covers, see [11].

In contrast, the main idea of developing fixed parameter algorithms is to
explicitly declare a part of the problem instance as a so-called parameter,
expecting that this parameter tends to be small in practice, whereas the
overall size of the instance might be huge. This means that one can afford
(mildly) exponential behaviour of algorithms in terms of the parameter, as
long as the overall running time is polynomial when considering the param-
eter as a fixed constant. More formally, a decision problem is called fized
parameter tractable if its running time is bounded by f(k) - n®"), where
f is some arbitrary function, k is the parameter, and n is the size of the
problem instance. For example, in the case of VC, algorithms running in
time O(ck + kn) have been developed, where ¢ < 1.3, see [17].

In this paper, we will focus on the following forms of parameterized
enumeration:

e Generate all solutions,
e Generate all optimal solutions, and
e Generate representative solutions.

We will discuss all above-mentioned variants by means of examples in
the following. This paper is intended to be a start-up of a theory of param-
eterized enumeration. The results obtained up to now are promising and we
think that this issue deserves more in-depth study.

Why do we think that parameterized enumeration is important? There
are a number of possible applications of such a theory, mainly dealing with
the further processing of data. For example, Gramm and Niedermeier [12]
developed a fixed parameter algorithm for the so-called minimum quartet in-
consistency problem (MQTI) which is important for constructing evolutionary
trees in biology. An evolutionary tree is a rooted binary tree whose leaves

!We are aware of the fact that Valiant [19] introduced the term “enumeration” in com-
plexity theory in the sense of “counting”. In this sense, it was also used in parameterized
complexity [5]. Since the term “enumeration” was used in recursion theory in the sense
of generating all elements of a certain (possibly infinite) set, we think that our notation
is appropriate nonetheless.

are bijectively labelled by taxa from a set S. A quartet is an evolutionary
tree with four leaves. A problem instance of MQI consists of an n-element

set of taxa S and (Z

S’ of S, there is exactly one quartet whose leaves are labelled with taxa
from S’. The aim is to construct an evolutionary tree T' whose leaves are
bijectively labelled by taxa from .S such that the number of sub-trees of T'
with four leaves which are different from the input quartet with the same
leaf labels is bounded by a given error bound, the parameter k of the prob-
lem. In this application, it is interesting for the human expert to see and
check all reconstructed evolutionary trees (satisfying the given error bound)
in order to choose the tree variants which appear to him to be the most rea-
sonable choice, given his additional background knowledge on the subject.
In fact, Gramm and Niedermeier already showed how to enumerate all such
minimum solutions in time O(4¥p(n)).

Of course, the enumerated solutions could also be the basis of further
computations, even as a kind of heuristic estimate. For example, some re-
searchers interested in computing a k-dominating set of a graph heuristically
assume that such a dominating set is included within a 2k-vertex cover and
use the known (comparatively fast) vertex cover algorithm (computing some
2k-cover) in a preprocessing phase.? Of course, this heuristic could be im-
proved by starting off from all (minimum) vertex covers.

Below, we will discuss an example from VLSI reconfiguration that shows
the practical importance of knowing some representative of all kinds of un-
comparable minimal solutions as a basis of further computations. Moreover,
it is shown how these enumeration algorithms can be employed to solve
practically relevant variants of decision problems in relation with VLSI re-
configuration.

) quartets such that, to each four-element subset

2 Generating all solutions

Let L C ¥* X N be a parameterized language. In the vertex cover example,
L would consist of pairs (¢(G), k), where G is some graph having a k-vertex
cover and c is some natural coding function.

Let Ly C ¥* x ¥* x N be the “corresponding” functional language. A
tuple (o,z,k) is in Ly iff (z,k) € L and o is a “solution witness” for (z,k).
In the vertex cover example, Ly consists of triples (¢'(V'),c(G), k), where
G is a graph having the k-vertex cover V', and ¢’ and ¢ are some coding
functions.

Let us assume in the following that the parameterized problem we are
considering is related to an optimization problem such that the parameter
bounds the entity to be optimized. Then, we say that k is optimal for the

2U. Stege, personal communication about a Swedish bioinformatics group

given optimization problem instance z if the size of the optimal solution to
z matches k.

Ly is [optimally] fized parameter enumerable iff there is an algorithm
which, given (z,k) € L [where k is optimal for]| generates all o € £* with
(0,2,k) € Ly in time f(k) - |z|O0).

Ly is of [optimal] fized parameter size iff

[{(0,2,k) | o € £*[, k optimal for 2]}| < f(k) - |z|°0).
From the discussion in the introduction, we get a first example:

Example 2.1 MQI is minimally fixed parameter enumerable.

The contraposition of the next lemma is important in the following.

Lemma 2.2 Let Ly be a functional parameterized language. If Ly is [op-
timally] fixed parameter enumerable, then L is of optimal fixed parameter
size.

Theorem 2.3 VC is optimally fixed parameter enumerable in time O(2* k2?4
kn), where n is the number of vertices of the input graph and & is the pa-
rameter.

Proof. This can be shown by using Buss’ kernelization (see [6]) and a
search-tree technique. More precisely, we use the following two kernelization
rules as long as possible:

e If v is a vertex with no neighbours, v can be removed from the graph,
since v will not be part of any minimum vertex cover.

e If v is a vertex of degree greater than k, v must be in any vertex
cover, since otherwise all neighbours would be in the cover, which is
not feasible, because we are looking for vertex covers with at most &
vertices. Hence, we can remove v from the graph.

After having applied these kernelization rules exhaustively, we are left with a
graph with at most k? vertices. Now, we can use the following simple search-
tree algorithm enumcover(G = (V, E), k,C) (similar to the algorithm which
already appeared in [15] before the advent of parameterized complexity):
enumcover (G = (V, E), k,C):

IFk=0and (V=0 or E=0) THEN output C.

IF k> 0and (V # 0 and E # ()) THEN DO:

e Choose some edge {vy,v9} € E.
e Recursively branch according to the following two cases:

1. vy is contained in a cover: Call enumcover(G —vy,k—1,CU{v;}),

2. vy is contained in a cover: Call enumcover(G —v2, k—1,CU{v2}).

If G and k is the input instance of the VC optima enumeration problem (after
having applied the kernelization rules), then enumcover (G, k, () solves the
problem. The claimed time bounds are immediate: O(kn) time is needed
for the kernelization, and the computation necessary in each invocation of
enumcover can be done in time proportional to the number of vertices in
the remaining graph, so that O(2¥k?) time is spent for evaluating the search
tree. |

Remark 2.4 Let us mention the following historical aside: Although the
reduction rules listed above are generally attributed to a personal commu-
nication of Sam Buss, there is a reference of Evans [8] that predates the
Buss reference considerably. Admittedly, Evans considers a special variant
of vertex cover (namely, the CBVC problem discussed in detail in the next
section) which arises in connection with VLSI reconfiguration, but the reduc-
tion rules are basically the same. Possibly even more interestingly, Haddad,
Dahbura and Sharma presented a rather complete fixed parameter algorithm
(and its analysis) for CBVC (including the discussion of kernelization and
search-tree techniques) already in 1991 [13].

The following remark is interesting, since lower bounds are usually hard
to obtain.

Remark 2.5 Essentially, there is no better minimum vertex cover enumer-
ation algorithm than the one given in Theorem 2.3, since the graph

{1k < {125 {{G, 1), (5, 2)} | 1 < i < k})

has 2¥ many different minimum vertex covers.
This simple example is interesting, since it shows, in addition, that there
is no minimum vertex cover enumeration algorithm for planar vertex cover

vk

having running time of the form ¢¥*n, as it has been found for the decision

problem in [2].

Remark 2.6 On the contrary, vertex cover is not of fixed parameter size,

since the n-vertex graph with no edges has n > many different k-vertex

k
covers. Lemma 2.2 shows that VC is hence not fixed parameter enumerable.

The previous considerations show that the two notions of parameterized
enumerability defined above are really different. On the other hand, we can
prove the following general relationship between both notions:

Lemma 2.7 If a minimization problem is fixed parameter enumerable, then
it is optimally fixed parameter enumerable.

If a maximization problem (where the size of the parameter is natu-
rally bounded by a polynomial of the size of the problem instance) is fixed
parameter enumerable, then it is optimally fixed parameter enumerable.

Proof. We consider the case of minimization problems. Maximization prob-
lems are treated similarly. One simply starts the enumeration algorithm with
parameter 1, 2 through £ and checks, for each output solution, whether it is
minimal; the minimality is checked by going through all solutions generated
by invocations of the enumeration algorithm with smaller parameter values.
If the enumeration problem can be solved in time f (k) - |#|°!) on a problem
instance (z, k), then the minima enumeration problem is solvable in time

—_

FB) 12190 O fG) - 121°W) < k(£ (K))? - |2]7W).

>

<.
i
=)

|

The next remark shows that not all parameterized problems are opti-
mally fixed parameter enumerable. Moreover, the given example proves
again that the dominating set problem? appears to be harder than the ver-
tex cover problem from a parameterized point of view, also see [6].

Remark 2.8 Dominating set is even not of optimal fixed parameter size,
as the k-fold disjoint graph union of K,, shows. By Lemma 2.2, this problem
is not optimally fixed parameter enumerable.

Up to now, we only considered minimization problems. Let us briefly
consider one maximization problem in the parameterized setting, namely,
the problem of finding a maximum independent set, i.e., a set of vertices [
of a given graph such that no vertex in I is neighbour of another vertex in I,
of size (at least) k.

Remark 2.9 We first consider the independent set problem restricted to
planar graphs. It is quite easy to see that this problem is optimally fixed
parameter enumerable. Namely, construct a 4-colouring of the given planar
graph G (which exists due to the famous four-colour theorem for planar
graphs); each of the four such-obtained monochromatic vertex sets is inde-
pendent and the largest one contains at least n/4 vertices. Hence, if & < n/4,
we can always answer “no”; otherwise, we know that n < 4k and, hence,

there are at most f(k) = (4kk

Hence, enumerating all mazimum independent sets would amount checking
for at most 3kf(k) many vertex sets whether they are independent or not

) many different independent sets of size k.

3A dominating set of a graph is a subset of vertices such that every vertex is either a
member of the dominating set or a neighbour of a member of the dominating set.

(the additional factor of 3k comes from the necessity of checking all possible
extensions of a candidate set of size k).

As in Remark 2.6, one can see that planar independent set is not of fixed
parameter size.

This example is illuminating in a further way:

As Eppstein has shown in [7], there is an algorithm for listing all maxi-
mum independent sets smaller than &k in a (not necessarily planar) n-vertex
graph in time O(3*—"47=3k) Moreover, he gave an example, namely the
disjoint graph union of 4k —n triangles and n — 3k Ky’s for proving that the
derived time bound is tight if n/4 < k < n/3. It is tempting to conclude
that the language describing all maximum independent sets is not of optimal
fixed parameter size, even if we restrict the problem to planar graphs, but
this conclusion is false, as explained above.

As can be seen similarly to Remark 2.8, the independent set problem on
general graphs is not of optimal fixed parameter size.

Finally, we observe that Theorem 2.3 can be used in order to show fixed
parameter tractability of the decision problem mentioned in the introduc-
tion:

Remark 2.10 The following decision problem is fixed parameter tractable:
Given a graph G and parameters k£ and /¢, is there a k-dominating set in-
cluded in some minimum £ - k-vertex cover of G?

This can be seen by generating all minimum ¢ - k-vertex covers and
then testing, for each k-element subset of such a cover, whether it forms a
dominating set.

3 Generating all representative solutions

In the course of this section, we will mainly focus on parameterized min-
imization problems with two parameters, although the main ideas can be
easily generalized to an arbitrary number of parameters. Similar notions
can be coined for maximization problems, as well.

Let L C ¥* x N? be a parameterized language with two parameters
k1, ko (stemming from a minimization problem). If (o, z, k1, k2) € Ly, where
Ly is the functional problem corresponding to L as in the previous sec-
tion, then (ki, k) is called the signature of (o,z) if (o,z,k},k}) € Ly and
(K}, KY) < (ki,ke) imply (K|, kL) = (k1,k2), where we consider the partial
order (K}, k) < (ki, ko) iff £ < ky and K, < ko.

Lemma 3.1 If we consider k; and k9 as fixed, then there are at most
min{ki, ko } + 1 pairwise uncomparable (minimal) signatures.

Hence, given a (codified) problem instance z € ¥* and parameters k;
and ko, there are at most min{ky, ko} + 1 elements in

{(o,z,k1,ky) € Ly | (K1, k) < (k1,k2) A (K}, k5) is the signature of (o, z)}

having different minimal signatures (k,%)). In some applications (as ex-
plained below), it is interesting to generate one representative solution for
each minimal signature, given some problem instance. Due to the above
lemma, there are at most min{ki, k2} + 1 such representative solutions.

Detailed example: chip reconfiguration

Kuo and Fuchs [14] provide a fundamental study of the spare allocation
problem. Put concisely, this “most widely used approach to reconfigurable
VLSI” uses spare rows and columns to tolerate failures in rectangular arrays
of identical computational elements, which may be as simple as memory cells
or as complex as processor units. If a faulty cell is detected, the correspond-
ing entire row or column is replaced by a spare one.

The array below sketches a concrete small example of a 7x 9 array, where
faults are indicated by question marks.

123 45 6 7 89
1|7 ? ?
2

317

4 ? 7 ?
bt

6

7 ? ?

This array can be repaired, e.g., by using three spare rows (replacing rows
number 1,4 and 7) and one spare column (replacing column number 1).

Equivalently, this reconfiguration problem can be formulated graph-theo-
retically as Constraint Bipartite Vertex Cover (CBVC) problem as follows:
given a bipartite graph G = (V1, Vs, E) and two positive integers k1 and ko,
are there two subsets C; C Vi and Cy C V5 of sizes |Cy| < ky and |Cy| < ko
such that each edge in E has at least one endpoint in C; U Cy?4

In [10], a fixed parameter algorithm running in time less than O(1.4%1+2p)
was developed for this decision problem.® In fact, by analyzing the decision
procedure developed in that paper one easily derives:

It was this problem where Evans proposed the Buss-like reduction as noted in Re-
mark 2.4.

A simpler algorithm for the CBVC problem with the additional restriction that only
those bipartite covers are considered which also form a minimum vertex cover of the graph
was established in [4].

Figure 1: Sharing repair resources

Corollary 3.2 For the CBVC problem, generating one representative solu-
tion for each minimal signature can be done in time

0(1.3999%1 tF2k kg + (k1 + ko)n),

where n is the number of vertices of the input graph and k; and ks are the
two parameters.

Remark 3.3 As in the case of VC, CBVC is not fixed parameter enumer-
able.

A more realistic scenario

As pointed out in, e.g., [13], there are several points due to which the
problem formulated above is not a completely adequate model:

1. In the manufacturing process, the cost of repairing a chip by using
vertical movements of the repair laser may be different from that of
horizontal movements. This leads to a sort of weighted variant of
CBVC.

2. As indicated in Fig. 1, a huge memory chip may be split into smaller
blocks, each of them possibly having its own spare rows and columns.
For reasons of economy, other designs are preferred in this case, e.g.,
each spare row depicted inbetween two memory blocks can be individ-
ually used to reconfigure either the block above or the block below it.

In other words, in such complex designs, spares may be shared. More-
over, there may be spare rows or columns which are linked, which
means that such a spare can only be used to reconfigure one certain
row or column in several blocks. Obviously, the idea is here to reduce
the costs of chip repair.

We will address the problems mentioned above in the following.

Theorem 3.4 The weighted CBVC problem mentioned in point 1. above
can be solved in time O(1.3999%1 k2, ko + (ky +k2)n), where n is the number
of vertices of the input graph and k; and ko are the two parameters.

Proof. According to Cor. 3.2, one representative solution per minimal
signature can be produced in time O(1.3999%1 %2k ko + (ky + k2)n). Among
these, a cost-optimal solution can be found basically in time O(ky + k3),
since the “repair cost” only depends on the signature, and there are at most
min{k;, k2} + 1 minimal signatures, see Lemma 3.1. O

Let us now consider the chip reconfiguration problem with memory
blocks and shared spares.

Theorem 3.5 Given a chip board with n elementary cells which is split
into k3 blocks each of which has at most k1 neighbouring spare rows and ks
neighbouring spare columns, then a reconfiguration strategy can be found
in time

O (k3 (1.3999" *2 1, by + (ky + ka)n) + ks (minfky, ko } + 1)VFet)

if it exists.

Proof. (Sketch) At first, we run the representative enumeration procedure
from Cor. 3.2 for each block. Then, all possible combinations of signatures
for all blocks are examined to see whether the decision problem is solvable.
This second step can be implemented more efficiently by using dynamic
programming techniques in a sweep-line fashion. From a graph-theoretic
point of view, we exploit the fact that a grid graph (representing the local
dependencies between the blocks on the chip) with k vertices has treewidth
of at most vk + 1, see [3]. O

In other words, the parameterized enumeration of representative solu-
tions can be used in order to show that another (related) decision problem
is fixed parameter tractable, considering ki, k2 and k3 as parameters of the
problem.

The third mentioned variation which is also incorporating linked spares
seems to be harder, since knowing only one representative solution per sig-
nature is of not much help here. Even worse, also the generation of all min-
imum solutions (which can be done as in the case of vertex cover elaborated

10

above) would not help, since possibly non-optimal solutions (considered “lo-
cally” for each block) would be a better choice. For example, consider the
following chip with two blocks each containing three rows:

123 45 6 7 89
? ?

SO W N~

For each of the two blocks, we have one spare row and, furthermore, there
are two linked spare columns. If we use the linked spare columns in order
to repair columns number 1 and 4, the array can be repaired by using the
remaining two spare rows for row number 3 and row number 5. Only con-
sidering the first block, this solution is not minimal, since its signature (1, 2)
is outperformed by taking, e.g., a spare row for row number 1 and one of the
two linked spare columns for column number 2. However, then the second
block would be not repairable with the remaining spares (one spare row and
one spare column).

Only at the expense of a considerable exponential blow-up, we can show
the following fixed parameter tractability result:

Theorem 3.6 Given a chip board with n elementary cells which is split
into k3 blocks each of which has at most k; neighbouring spare rows and ks
neighbouring spare columns and assuming that there are, furthermore, at
most k4 linked spare rows and k5 linked spare columns on the whole board,
then a reconfiguration strategy can be found in time

O(kg((kl + ko + k4 + k5)n+

(’“3(’“1k+ Fa)) (’“3(’“2k+ Fs)) [1.3999% 42, by + (min{ki, ko) + 1)VF5+1]))
4 5

if it exists.
Proof. Such a board can be reconfigured as follows:

1. Kernelize each block assuming that there are at most k; + k4 spare
rows and at most ks + k5 spare columns per block. The size of the
problem kernel such obtained is k3(k1 + kq) (k2 + k5).

2. Consider all possible assignments of the k4 linked spare rows to one
of the k3(ki + k4) possibly faulty rows and all assignments of linked
spare columns to possibly faulty columns and apply the algorithm
sketched in the proof of the preceding theorem to each of the remaining
“boards”. a

11

Of course, the algorithm obtained in the previous theorem is only man-
ageable for very small values of k3, k4 and k5. Again, one might think about
a weighted variant of the last considered problem (which is again solvable
by considering the signatures as detailed above), since a solution using one
linked spare is probably to be preferred over a solution using ~ v/k3 many
individual spares.

Remark 3.7 The example shown in this section proves that, from the point
of view of applications, it might make perfect sense to consider problems
with a certain number of parameters. Note that the philosophy behind the
development of fixed parameter algorithms is that the involved parameters
should be small in practice, and this is exactly what we expect for all five
parameters occurring in Theorem 3.6.

4 Conclusions

We considered the problem of enumerating all solutions of a given prob-
lem from the parameterized point of view. We coined different notions of
parameterized enumeration and gave several examples, mainly from graph
theory, with motivations from chip fabrication. We have shown that ker-
nelizations as well as search trees (which are the most prominent ways to
devise fixed parameter decision algorithms) are very useful techniques also
for parameterized enumeration.

Remarkably, lower bounds and non-membership can be shown for several
examples of enumeration problems and enumeration classes. In contrast, in
the classical area of decision problems, mostly only relativized assertions of
this kind are obtainable. We showed that answers to enumeration problems
can be used in solutions of decision problems, as well. In particular, we
proved several more realistic scenarios of the chip reconfiguration problem
considered in [10] to be fixed parameter tractable.

Note that we deliberately focussed on considering the complexity of enu-
meration problems to include the time to output the solutions. Another
variant where the size of the output solutions was considered as an extra,
sort of parameter (in the sense of providing output sensitive algorithms) was
discussed by Grohe.® In this spirit, several papers on graph algorithms ap-
peared, too, see, e.g., [16] and the references therein. When thinking about
enumeration as some sort of preprocessing step for another algorithm which
investigates all the obtained solutions, considering the size or number of
output solutions as additional parameter does not seem to be reasonable.

It would be also interesting to consider the parameterized complexity of
enumerating all (optimal) solutions without repetitions, as discussed in [16].

%in a talk on parameterized complexity and databases given at the Dagstuhl Workshop
on Parameterized Complexity in August, 2001

12

Of course, one could avoid repetitions by either examining all pairs of output
solutions in a postprocessing phase (which would square the already expo-
nential running time) or by additional bookkeeping (with tables of exponen-
tial size), but possibly better solutions can be found for concrete problems.

In [9], we showed that parameterized enumeration can be also used (in
principle) for proving parameterized tractability for maximization problems
(in the sense elaborated in [9]), thus providing another sort of application
of enumeration problems.

Finally, it would be interesting to see whether problems related to ver-
tex cover are also fixed parameter enumerable. Here, the setting established
in [18] might be helpful in order to prove enumerability results. More gen-
erally speaking, it would be interesting to develop enumeration techniques
which are applicable not only to special situations. One idea would be to
see whether (or in which cases) dynamic programming techniques typical
for treewidth-based algorithms (see [3]) could be useful also for enumera-
tion. This could be tricky, since new bookkeeping strategies need to be
developped. In particular, such considerations might help answer the ques-
tion whether or not the optima dominating set problem restricted to planar
graphs is feasible or not, see [1] for the corresponding decision problem.

Acknowledgments: We thank M. R. Fellows and U. Stege for some dis-
cussions.

References

[1] J. Alber, H. L. Bodlaender, H. Fernau, and R. Niedermeier. Fixed
parameter algorithms for planar dominating set and related problems.
In M. M. Halldérsson, editor, 7th Scandinavian Workshop on Algorithm
Theory SWAT 2000, volume 1851 of LNCS, pages 97-110, 2000. Long
version to appear in Algorithmica.

[2] J. Alber, H. Fernau, and R. Niedermeier. Parameterized complexity:
exponential speedup for planar graph problems. In F. Orejas, P. G.
Spirakis, and J. v. Leeuwen, editors, International Colloquium on Au-
tomata, Languages and Programming ICALP’01, volume 2076 of LNCS,
pages 261-272. Springer, 2001.

[3] H. L. Bodlaender. A partial k-arboretum of graphs with bounded
treewidth. Theoretical Computer Science, 209:1-45, 1998.

[4] J. Chen and I. A. Kanj. On constrained minimum vertex covers of
bipartite graphs: Improved algorithms. In A. Brandstadt and V. B.
Le, editors, Graph-Theoretic Concepts in Computer Science WG'01,
volume 2204 of LNCS, pages 55—65. Springer, 2001.

13

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

B. Courcelle, J. A. Makowsky, and U. Rotics. On the fixed param-
eter complexity of graph enumeration problems definable in monadic
second-order logic. Discrete Applied Mathematics, 108:23-52, 2001.

R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999.

D. Eppstein. Small maximal independent sets and faster exact graph
coloring. In F. Dehne, J.-R. Sack, and R. Tamassia, editors, Proc.
7th Workshop Algorithms and Data Structures WADS, volume 2125 of
LNCS, pages 462-470. Springer, 2001.

R. C. Evans. Testing repairable RAMs and mostly good memories. In
Proceedings of the IEEE Int’l Test Conf., pages 49-55, 1981.

H. Fernau. Parameterized maximization. Technical Report WSI-2001-
22, Universitat Tibingen (Germany), Wilhelm-Schickard-Institut fiir
Informatik, 2001.

H. Fernau and R. Niedermeier. An efficient exact algorithm for con-
straint bipartite vertex cover. Journal of Algorithms, 38(2):374-410,
2001.

M. K. Goldberg, T. H. Spencer, and D. A. Berque. A low-exponential
algorithm for counting vertex covers. Graph Theory, Combinatorics,
Algorithms, and Applications, 1:431-444, 1995.

J. Gramm and R. Niedermeier. Quartet inconsistency is fixed parameter
tractable. In A. Amir and G. M. Landau, editors, Proceedings of the
12th Annual Symposium on Combinatorial Pattern Matching (CPM
2001), volume 2089 of LNCS, pages 241-256. Springer, 2001.

R. W. Haddad, A. T. Dahbura, and A. B. Sharma. Increased through-
put for the testing and repair of RAMs with redundancy. IEEE Trans-
actions on Computers, 40(2):154-166, Feb. 1991.

S.-Y. Kuo and W. Fuchs. Efficient spare allocation for reconfigurable
arrays. IEEFE Design and Test, 4:24-31, Feb. 1987.

K. Mehlhorn. Graph algorithms and NP-completeness. Heidelberg:
Springer, 1984.

S. Nakano. Efficient generation of triconnected plane triangulations. In
J. Wang, editor, Computing and Combinatorics, Proceedings COCOON
2001, volume 2108 of LNCS, pages 131-141. Springer, 2001.

R. Niedermeier and P. Rossmanith. Upper bounds for vertex cover
further improved. In C. Meinel and S. Tison, editors, Proceedings

14

[19]

of the 16th Symposium on Theoretical Aspects of Computer Science
(STACS’99), volume 1563 of LNCS, pages 561-570. Springer, 1999.

N. Nishimura, P. Ragde, and D. M. Thilikos. Fast fixed-parameter
tractable algorithms for nontrivial generalizations of vertex cover. In
F. Dehne, J.-R. Sack, and R. Tamassia, editors, Proc. 7th Workshop
Algorithms and Data Structures WADS, volume 2125 of LNCS, pages
75-86. Springer, 2001.

L. G. Valiant. The complexity of enumeration and reliability problems.
SIAM Journal Comput., 8(3):410-421, 1979.

15

