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Abstract

This study deals with the simulation of inductive hardening of conducting workpieces made of
steel. The aim is to calculate the propagation of heat in the workpiece. Based on this knowledge,
the hardened zone can be predicted with sufficient precision. Since the simulation is to be applied
in industry, workpieces and inductors are supposed to have a complex three dimensional shape.
The electromagnetic calculations are based on thequasi-static approximation of Maxwell’s equa-
tions in frequency domain, and the non-linear heat conduction equation is used to evaluate the
temperature distribution.

The focus of this treatise is on the computation of the electromagnetic fields, especially on the
boundary element methods(BEM) applied in order to master the unbounded exterior of the
conductors. In the interior of the conductors, the skin effect plays an important role and the elec-
tromagnetic fields show a rapid decay. If the numerical solution is to resolve this effect, the mesh
must be very fine at the surface, whereas this is not necessary elsewhere. To save storage, the
mesh isrefined adaptivelyin the interior, with the aid of a residual based error estimator. The
equations for the conducting region are solved using afinite element method(FEM). A hierar-
chical system of three models is presented for the coupling of the BEM equations for the exterior
with the FEM equations for the interior. Theeddy current approachis the model with the most
convenient properties. TheFEM/BEM couplingis strong and symmetric, the equations have a
unique solution, and the convergence of an iterative solver can be guaranteed. There is also a
quasi-optimal a priori error etimate for a conforming Garlerkin discretization based onedge
elementsandRaviart-Thomas elements. However in terms of implementation the eddy current
approach is also the most complicated one. Theimpedance modelcan be used as an approxi-
mation. It is based on the same equations for the two regions but in this model the coupling is
realized only weakly by imposing so-called impedance boundary conditions on the surface of the
conductors. The weak coupling has the advantage that the BEM and FEM parts can be solved
independently. In order to get a first rough estimate of the electromagnetic fields, themagne-
tostatic approachis developed. As far as the BEM computations are concerned it assumes the
negligible penetration depth of a perfect conductor and the FEM/BEM parts are coupled only
uni-directionally. A kind of scalar magnetic potential is used in all three models, and in regions
with nontrivial topology they are multivalued. In that case, the jumps of the magnetic potentials
at suitable cutting surfaces or cutting cycles are associated with the total currents in the conduc-
tors, these surfaces or cycles must be added to the meshes. For this purpose, analgorithm for the
automatic construction and classification of generators ofH1(Γh, Z ) for triangulated surfaces
is introduced. Unlike the FEM matrices, the BEM matrices are dense and cannot be stored com-
pletely. AH2-Matrix Approximationis applied on the four utilized kernels of elaborate structure.
Analytical solutionsare developed to verify the electromagnetic computations.

The non-linear heat problem is solved with an implicit Euler method. Measurements of the sur-
face temperature during the process are made for the validation of these calculations. Com-
parisons of the predicted hardened zone in the simulation with real hardened items are most
important for the program’s verification.



Zusammenfassung

Diese Arbeit behandelt die numerische Simulation des induktiven H¨artens leitender Werkst¨ucke
aus Stahl. Ziel ist die transiente Berechnung der Temperaturverteilung im Werkst¨uck, deren Ken-
ntnis eine ausreichend genaue Vorhersage der H¨artezone erlaubt. Die Form der Werkst¨ucke und
Induktoren muß als allgemein dreidimensional angenommen werden, da die Simulation in der In-
dustrie angewandt werden soll. Die elektromagnetischen Berechnungen basieren auf derquasis-
tatischen N̈aherungderMaxwell Gleichungenim Frequenzbereich. Zur Temperaturberechnung
wird die nichtlineare W¨armeleitungsgleichung benutzt.

Das Hauptaugenmerk dieser Dissertation liegt auf der Berechnung der elektromagnetischen Fel-
der, insbesondere auf denRandelementmethoden(BEM), die zur Behandlung des unbeschr¨ank-
ten Außenraums eingef¨uhrt werden. Im Leiterinnern spielt derSkin Effekteine wichtige Rolle,
aufgrund dessen die Felder nach innen schnell abfallen. Soll dieser Effekt in der Simulation
aufgelöst werden, so muß das Mesh an der Leiteroberfl¨ache sehr fein sein. Um Speicher zu spa-
ren, wird das Mesh im Leiterinnern mit Hilfe einesResiduen basierten Fehlerschätzers adaptiv
verfeinert. Die Gleichungen werden mit einerfiniten Elementmethode(FEM) gelöst. Für die
Kopplung der BEM-Gleichungen des̈Außeren mit den FEM-Gleichungen des Inneren wird ein
hierarchisches System aus drei Modellen vorgestellt. DerWirbelstromansatzist das Model mit
den besten Eigenschaften. DieFEM/BEM-Kopplungist stark und symmetrisch, die Gleichungen
sind eindeutig l¨osbar, und die Konvergenz eines iterativen L¨osers kann garantiert werden. F¨ur
eine konforme Garlerkin Diskretisierung mitKantenelementenundRaviart-Thomas Elementen
existiert außerdem einquasi optimaler a priori Fehlerscḧatzer. Allerdings ist der Wirbelstroman-
satz auch am schwierigsten zu implementieren. DasImpedanzmodelkann als Näherung benutzt
werden. Es basiert auf denselben Gleichungen f¨ur Außen- und Innenraum, die hier aber, unter
Anwendung von Impedanz-Randbedingungen, nur schwach gekoppelt sind. Dermagnetostati-
sche Ansatzwurde entwickelt, um einen ersten groben Eindruck der elektromagnetischen Felder
zu erhalten. Hier geht man im BEM-Teil von der vernachl¨assigbaren Eindringtiefe eines perfek-
ten Leiters aus, wobei der FEM-Teil nur einseitig angekoppelt wird. In allen drei Modellen wird
eine Art skalares magnetisches Potential benutzt. Dabei wird man mit dem typischen Problem
der Unstetigkeit in nicht einfach wegzusammenh¨angenden Gebieten konfrontiert. Die Spr¨unge
des Potentials an frei w¨ahlbaren Schnittfl¨achen bzw. Oberfl¨achenpfaden sind mit den Gesamt-
strömen in den Leitern verkn¨upft. Zu diesem Zweck wurde einAlgorithmus zur automatischen
Konstruktion und Klassifizierung von Generatoren vonH1(Γh, Z ) auf triangulierten Oberfl̈achen
entwickelt. Die BEM-Matrizen sind im Gegensatz zu den FEM-Matrizen nicht d¨unn besetzt und
können deshalb nicht komplett gespeichert werden. EineH 2-Matrix Approximationsmethode
wurde deshalb auf die vier auftretenden komplizierte Kerne angewandt. Zur Verifikation der
elektrodynamischen Berechnungen wurdenanalytische L̈osungenentwickelt.

Das nichtlineare W¨armeleitungsproblem wird mit Hilfe einer impliziten Euler Methode gel¨ost.
Messungen der Oberfl¨achentemperatur w¨ahrend des Prozesses wurden zum Zwecke der Validie-
rung dieser Rechenergebnisse durchgef¨uhrt. Vergleiche zwischen der berechneten H¨artezone mit
realen geh¨arteten Teilen sind die wichtigste M¨oglichkeit zur Verifikation des Programms.





The devil is a squirrel, and I know him well...
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Chapter 1

Introduction

The hardening of steel is an old, established procedure. First mentioned 2800 years ago in
Homer’s epic poems, hardening was described as the work of a smith, who heated the steel
until it was glowing and then hardened the part by ducking it into cold water. Pioneer work for
the explanation of the process was done by Max von Laue, a German physicist who found in
1912 with the aid of R¨ontgen’s X-rays that atoms have a periodic configuration in crystals. It
is clear that the properties of a metal are determined by this configuration, and the hardening
is nothing else but a phase transition, i.e., a change in the configuration of the atoms. So what
Homer’s smith did was to initiate two phase transitions: If steel is heated up to a temperature of
720oC it firstly changes into austenite. Ducking the item into water causes a fast cooling, and the
atoms of the lattice congeal into a new hard phase, the martensite.

Of course, heating and fast cooling must still be done nowadays if steel is to be hardened, but
heating techniques have changed since Homer’s days. Depending on the desired outcome, the
most promising heating strategy is employed. Martensite is hard but also brittle, thus some work-
pieces have to be hardened only in a precisely defined region in order to avoid cracks during use.
Examples are the driveshaft of a car with its joints. They should remain flexible in the interior
and abraison resistent on the surface. A fast and precisely localized heating strategy which is
restricted to regions close to the surface must be applied. Induction heating, the subject of this
examination, accomplishes these demands. It has become a standard procedure when it comes
to handling metals as part of a manufacturing process [Ben90]. Hardly any other non-intrusive
technology can compete with induction heating in terms of speed, controllability and heating
power. Cooling of the hot workpieces is still done by pouring water on it.

Controlling the inductive hardening process, however, entails a detailed quantitative insight into
the spatial conversion of electric energy into heat, and how the heat propagates through the
material. This is the topic of the present study. The insights are to be gained by a numerical
simulation. In the future, this simulation is meant to constitute the kernel of a program to be
applied in the industry, thus it must be able to deal with parts of arbitrary geometry. This restricts
the involved algorithms to a much smaller class than would be the case if the program were used
by its developers only. So in addition to electrodynamics and heat propagation, a further goal
consists in finding a numerical scheme able to deal with all geometries automatically.

During induction heating, a rotating conductingworkpieceis exposed to a time-dependent elec-
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CHAPTER 1. INTRODUCTION

Figure 1.1: Typical setting for induction hardening

tromagnetic field generated by an alternating current in aninductor, usually some coil. The field
penetrates the conductor and, according to Faraday’s law, triggerseddy currents. It is the Ohmic
losses due to the eddy currents which, eventually, heat the conductor. The dominant skin effect
causes the workpiece to be heated chiefly in a thin layer at the surface. The induced eddy currents
can be located exactly if the right inductor is chosen. Thus, the hardened zone in the workpiece
depends heavily on the shape of the inductor. The program to be developed assists in finding an
adequate one. This is the reason why the project could also be calledcomputer-aided inductor
design. The shape can as well be found by empirical experiments, but numerical simulations
promise to find it faster, more comprehensively, and cheaper.

Much work has been done on developing codes for the numerical simulation of induction heating.
Some approaches resort to semianalytic methods [HGU94, GHZU95], but these are confined to
very simple geometries. Other settings feature cylindrical symmetry and have been tackled by
codes based on essentially two-dimensional models [RS96, SR97]. A survey of techniques which
can be applied to genuinely three-dimensional induction heating problems is given in [MML94].
There, the authors stick to vector-valued surface currents as principal unknowns in the boundary
element method.

In this work, an unsymmetric ’real life’ situation is considered as depicted in Figure 1.1. The
conductor may be some technical item like a bolt, an axle, or a screw and may feature a rather
complex topology with a few holes drilled into it. The inductor has the topolgy of a torus and
may neither intersect nor touch the conductor. It might be a copper pipe bent into a coil carrying
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some coolant inside. The item to be heated circulates slowly with approximately50Hz in order
to achieve even heating. Chunks of highly permeable non-conducting materials are placed close
to the inductor to deflect the magnetic fields. All the shapes are usually available in the form of
CAD data, their surfaces composed of smooth facets.

The inductor is fed with a sinusoidal alternating current of10 to 40kA at medium-range frequen-
cies of5 to 30kHz. The size of the items is a few centimeters, and the whole process takes only
a couple of seconds. It is important to realize that the two main physical effects, electromagnetic
induction and heat conduction, occur on vastly different time-scales. This means that there is
hardly any change in the temperature of the conductor within one cycle of the electromagnetic
fields. Thus, a partial decoupling can be employed and the simulation can be done by carrying
out the following two steps in turns [PKU97, CGC+94]:

1. Compute eddy currents and Ohmic losses based on material parameters that are determined
by a stationary temperature distribution.

2. Update the temperature distribution by taking into account the heat generation computed
in the first step.

The mentioned phase transition into austenite takes place at the temperature of720oC. The hard-
ened phase martensite originates when the workpiece is quenched under a shower. The aim of
the simulation is not the high precision calculation of the phase transitions. The thermodynamic
processes are taken into account only in a rough way. It is assumed that the workpiece is hard-
ened in the zone with temperatures above830oC because the dynamic of the process predicts
the respective regions will completely be transformed into austenite, which is essential for the
desired phase change into martensite under the shower. Chapter 2 gives more insight into the
phase transitions and explains how the heat propagation is calculated numerically.

This study mainly pays attention to the electromagnetic aspects of the problem. Frequencies, di-
mensions and material parameters justify the use of thequasi-static approximation of Maxwell’s
equation in frequency domain.

The dominantskin effectcommands attention in the interior of the conductors: It denotes the
rapid decay of the electromagnetic fields away from the surface of a conductor. Roughly speak-
ing, the fields are present only up to a certainskin depthδ below the surface of the conductor.
This strongly local behavior enforces adaptive techniques in the interior if the storage is to stay
manageable. Anadaptive finite element method(FEM) based onlinear edge elementsis used
for solving Maxwell’s equations inside the conductors.

If the right completion conditions are chosen, this seems to be a feasible scheme for the un-
bounded exterior of the conductors as well. The rotation of the workpiece is an obstacle, however.
One could argue that even for rotating workpieces it is possible to restrict oneself exclusively to
FEM methods if two grids are used for workpiece and inductor, that have a grinding connection.
But this argumentation no longer holds if the arbitrary geometry of both parts has to be taken into
accout autonomously by the program. An auspicious alternative is the use of aboundary element
method(BEM) on aLagrangian mesh. It automatically fulfils two purposes: The unbounded ex-
terior is included without any approximations, and the rotation is not a difficulty for a Lagrangian
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CHAPTER 1. INTRODUCTION

mesh. These are the main arguments why this method is used here. The focus of this dissertation
is on the BEM part and on all the ingredients essential for its implementation.

The FEM part of the interior and the BEM part of the exterior domain must be coupled. In
Chapter 3, a hierarchical system of three models is developed for the coupling. All three models
disregard the induction by the movement of the workpiece, for the following reason: It rotates
only with a frequency of approximately50Hz, which can be neglected compared with the fre-
quency of somekHz of the alternating exciting current in the inductor.

The eddy current approachfrom Section 3.1 establishes a strong and symmetric coupling of
the two parts. The equations are uniquely solvable, and due to their symmetry, the convergence
of a fast iterative solver can be guaranteed. Aquasi-optimal a priori error estimateexists for
a conforming Garlerkin discretization, i.e., the error between the numerical solution and the
continuous solution of the quasi-static approximation vanishes for decreasing meshwidths. These
are nice properties, but the implementation of this model takes a lot of effort because everything
is coupled strongly.

A possibility for a partial decoupling of the FEM part and the BEM part is theimpedance model
of Section 3.2. The FEM part in the equations of the eddy current approach can be split off by
applyingimpedance boundary conditions. This is a good approximation if the item is relatively
’flat’. Thus one expects problems at edges and corners. The impedance model has the advantage
that FEM and BEM parts can be implemented separately, and that all occuring operators are also
needed in the eddy current approach. So if the impedance model is step one of an implementation,
nearly everything is prepared for the eddy current approach.

Since both models are based on a formulation including some kind of scalar magnetic potentials,
one is faced with the typicaltopological problems. The potential is multivalued if the conductors
are not simply connected and it has discontinuities at somecutting surfaces. As far as the BEM
part is concerned, the traces of these cuts arecycleson the surface, and they are needed in both
models. An algorithm for the automatical construction of those paths is presented in Section 4.4.

As already stated above, the mesh must be refined adaptively in the interior of the conductors in
order to resolve the skin effect. This is done with the aid of aresidual based error estimator, ex-
plained in simple terms in Section 5.1. The additional elements are mainly located at the surface
of the conductors and they do not cause great difficulties for the sparse FEM operators, but for
the dense BEM operators they are a problem. Acompression techniquemust be applied that is
presented in Section 5.3.

The material parameters of steel C45, the material used for all realistic simulations, are shown
in Section 5.1.1. Each of the coefficients depends on the temperature. As already mentioned,
the timescales of electromagnetics and thermodynamics are different, and for the electrody-
namic part it is sufficient to update the coefficients after a certain timespan. Additionally, the
magnetic permeabilityµr depends on the strength of the magnetic field. Thisferromagnetic be-
havior causes the electromagnetic models to benon-linear, and in frequency domain one has
to cope with this problem by usingtime-averages ofthe permeabilityand by applying arelax-
ation scheme. Both is explained in Section 5.1.1. The complete algorithms of the eddy current
approach and the impedance model work according to Figure 1.2 and Figure 1.3.
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program EDDY CURRENT MODEL
Input: (IExciting , ωExciting , ωRotation , εRefine , NSteps , Heatingtime ,NRotation)
{

read Meshes;
read Material Parameters;
set T = Room Temperature;
�t = Heatingtime

NSteps
;

//Comment : Refinement loop
repeat
{

find Paths;
fill BEM-Operators;
apply H2-Compression;
fill FEM-Operators;
//Comment : Rotation loop
for (Position= 1 to Position= NRotation) solve with relaxation:
{ Strongly Coupled FEM/BEM;}

if (Error-Estimation < εRefine) break;
else Refine Meshes;

}

//Comment : Main loop
for (Step= 1 to Step= NSteps)
{

update Material Parameters(T );
//Comment : Rotation loop
for (Position= 1 to Position= NRotation) solve with relaxation:
{ Strongly Coupled FEM/BEM;}

calculate Temperature Distribution T
(
t = (Step− 1) · �t , · · · , t = Step · �t

)
;

}
}

Figure 1.2: Program of the eddy current approach
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CHAPTER 1. INTRODUCTION

program IMPEDANCE MODEL
Input: (IExciting , ωExciting , ωRotation , εRefine , NSteps , Heatingtime ,NRotation)
{

read Meshes;
read Material Parameters;
set T = Room Temperature;
�t = Heatingtime

NSteps
;

//Comment : Refinement loop
repeat
{

find Paths;
fill BEM-Operators;
apply H2-Compression;
fill FEM-Operators;
//Comment : Rotation loop
for (Position= 1 to Position= NRotation) solve with relaxation:
{

solve BEM;
transfer BEM-result to FEM;
solve FEM;
}
if (Error-Estimation < εRefine) break;
else Refine Meshes;

}

//Comment : Main loop
for (Step= 1 to Step= NSteps)
{

update Material Parameters(T );
//Comment : Rotation loop
for (Position= 1 to Position= NRotation) solve with relaxation:
{

solve BEM;
transfer BEM-result to FEM;
solve FEM;
}
calculate Temperature Distribution T

(
t = (Step− 1) · �t , · · · , t = Step · �t

)
;

}
}

Figure 1.3: Program of the impedance model
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The magnetostatic approachof Section 3.3 is developed in order to get a first rough estimate
for the currents, temperatures and hardened zones. It is completely different from the two mod-
els above, and its algorithms cannot be reused there. However, it is easy to implement. So it is
useful to get a first ’feeling’ for the occuring physical phenomena, for the performance of some
numerical features, and for the problems to be expected. The penetration depth is small for good
conductors, about0.1mm for steel at room temperature. As a consequence, the bulk of the in-
ductor and the workpiece have little impact on the electromagnetic fields. A perfect conductor
can be assumed into which the fields cannot penetrate. The magnetostatic approach uses this
assumption, and a boundary integral equation has to be solved which is completely independent
of the interior of the conductors and therefore also independent from the material parameters.
The result is that the current flows only on the surface. The spatial current in the workpiece is
still needed, however, because it is the source of the heat. For this purpose, the surface current
is distributed into the interior by applying the skin effect formula of a plane. Here the material
coefficients come into play, and although the model is very simple, it yields relatively good re-
sults, at least for flat surfaces. It is based on a scalar magnetic potential, and in this model the
cutting surfaces themselves are needed. They must be constructed by hand in advance. Here this
is sufficient because the magnetostatic approach is only a preliminary study. The algorithm of
the model is presented in Figure 1.4.

Construct Cutting Surfaces in advance;

program MAGNETOSTATIC MODEL
Input: (IExciting , ωExciting , ωRotation , εRefine , NSteps , Heatingtime ,NRotation)
{

read Meshes;
read Cutting Surfaces;
read Material Parameters;
set T = Room Temperature;
�t = Heatingtime

NSteps
;

for (Position= 1 to Position= NRotation) solve BEM;

//Comment : Main loop
for (Step= 1 to Step= NSteps)
{

update Material Parameters(T );
//Comment : Rotation loop
for (Position= 1 to Position= NRotation) calculate Spatial Current;
calculate Temperature Distribution T

(
t = (Step− 1) · �t , · · · , t = Step · �t

)
;

}
}

Figure 1.4: Program of the magnetostatic approach
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CHAPTER 1. INTRODUCTION

The outline of this thesis is as follows: First, the physics behind the hardening process and the
numerical scheme for solving the thermal problem will be explained in the ChapterPhase Tran-
sitions and Heat Propagation. Then the hierarchical system of the three models for the electro-
magnetics is introduced in the ChapterElectromagnetic Models and Equations. The description
starts from the most precise eddy current approach, continues with the impedance model, and
ends at the most simple one, the magnetostatic approach. All the tools which are necessary to
solve the developed equations of the eddy current model and the impedance model numerically,
including the path algorithm and the compression technique, are presented in the ChaptersEx-
citation and DiscretizationandSolution Procedures. The verification of the program with the
aid of analytical solutions and the measurements of the surface temperatures is conducted in the
ChapterValidation. The final comparison of the hardened zone in simulation and reality is shown
in the ChapterResults. The last ChapterConclusionsgives a summary and presents an outlook
for future studies.
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Chapter 2

Phase Transitions and Heat Propagation

2.1 Solid State Physics

Steel is primarily a mixture of the crystalsferrite andcementite[BS92]. The ferrite orα-Fe is
an undeformed body-centered cubic lattice of iron. The cementite consists of Fe3C with 0.5 to 6
percent of carbon. Except for these states of equilibrium, steel has further meta stable phases at
room temperature. They have different properties. One of these meta stable phases ismartensite.
It is hard but also brittle. The hardening process aims at this phase. Martensite can be described
as a tetragonal contorted ferric lattice with homogeneously distributed and atomically dissolved
carbon. Meta stable means that the time necessary to recover the state of equilibrium is much
longer than the lifetime of the part. The hardening process, i.e., the transformation from ferrite
to martensite, consists of two steps:

1. Heating (Formation Of Austenite)

If steel is heated above720oC, theα-Fe transforms intoγ-Fe, which is a face-centered lattice.
The carbon dissolves and diffuses in the ferric lattice, as long as it is homogeneously distributed.
After a certain timespan above720oC, the material is transformed intoaustenite. This is a homo-
geneously mixed crystal ofγ-Fe with imperfections of atomically dissolved carbon. The degree
of conversion depends on the speed of heating and on the length of the timespan. The precise
description of the regions where the conversion took place can be evaluated with the so-called
time-temperature-austenite-diagram(ZTA-diagram) [Ben90]. The induction hardening takes ap-
proximately three seconds. According to the valid ZTA-diagram, those regions of the workpiece
that are heated above830oC are considered to be hardened in the simulation.

2. Cooling (Formation Of Martensite)

If the workpiece were cooled down to room temperature the same way as it was heated up, the
state of equilibrium would be recovered. So the cooling must be carried out differently. If a fast
method similar to a shock is applied, then the carbon atoms stay in their positions in the lattice
because diffusion is not possible. They are still homogeneously distributed and atomically dis-
solved, butγ-Fe is converted back into a ferrite. It is now tetragonal contorted due to the carbon

9



CHAPTER 2. PHASE TRANSITIONS AND HEAT PROPAGATION

atoms [Hor79]. In other words, if a shock-like cooling is applied, the austenite transforms into
martensite. The distortion is the reason for the hardness. The material is harder if the imbedded
amount of carbon is higher. Of course, this phase transition is also a time-dependent process.
Based on the knowledge of the temperature distributionT (r, t), the hardened zone can be deter-
mined with the aid of atime-temperature-transition-diagram(ZTU-diagram) [BS92].

If the worpiece is heated inductively, energy will only in a thin layer at the surface be dissipated
due to the skin effect. So for sufficient small heating times the workpiece is only in this layer
hotter then720oC. Hence austenite and martensite can only be built in there, and the workpiece
stays flexible in the interior, whereas it is hard and abrasion resistent on the surface.

2.2 Thermal Problem

As discussed in the last section, the thermodynamical processes that lead to a conversion of steel
into the desired martensite are complicated. The precise description of the involved phase transi-
tions is not part of this study and they are only briefly taken into account via standard techniques
for the calcuation of the temperature distribution with phase changes. The heat conducting equa-
tion [LMTS96]

ρ · cp ·
∂T

∂t
= div (κ · gradT ) +

σ‖E‖2
2

, (2.1)

with the mass densityρ, the heat capacitycp, the heat conductivityκ, the timet, and the tem-
peratureT and has to be solved for this purpose. The source of the heat are the Ohmic losses
σ‖E‖2

2
of the eddy current depending on the electric conductivityσ and the electric fieldE. The

material coefficients depend on the temperature according to Figure 5.1. These coefficients are
non-smooth at the temperature of720oC where the phase transition takes place.

The thermal radiation at the surface has to be taken into account, thusradiation conditionsare
used as boundary conditions. It isStefan-Boltzmann’slaw that yields the total energy density
S(T ) of a black-body’s radiation at the temperatureT

S(T ) = −κ · gradT · n = ε · σ0 · (T 4 − T 4
0 ) , (2.2)

with the Stefan-Boltzmann constantσ0, the outer normal vectorn, and room temperatureT0. The
workpiece differs from a black-body, and an empirical factorε between 0.8-0.9 is used to take
care of this difference.

The temperatureT in the heat conduction equation (2.1) is discretized by means of hat functions
ψi at theN nodesi ∈ {1 . . .N} and it yields an equation of the form

M · Ṫ = K ·T+Q︸ ︷︷ ︸
f(T,t)

, (2.3)

10
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with the(N ×N)-dimensional matricesM, K and the vectorsT, Q ∈ R
N according to

Mij :=

∫
Ω

ρ cp · ψi · ψj dV ,

Kij := −
∫
Ω

κ · gradψi · gradψj dV ,

Ti ∈ R ,

Qi :=

∫
Ω

σ‖E‖2
2
· ψi dV −

∫
∂Ω

S · ψi dS ,

with i, j ∈ {1 . . .N}. HereΩ ∈ R
3 is the conducting domain with the surface∂Ω. The equation

is solved with the aid of an implicit Euler method with a forward difference scheme [LMTS96].
The scheme looks like

(Mn + θ� tKn) ·Tn+1 = (Mn − (1− θ)� tKn) ·Tn +�t ·Qn , (2.4)

with 0 < θ < 1. HereTn denotes the vectorT at the nth step, and the same holds for the
other items. The inversion of the matrixMn that is needed in each step is iteratively done with a
preconditioned CG solver.
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Chapter 3

Electromagnetic Models and Equations

In this chapter, the three models for the description of the electromagnetic fields are presented.
They represent a hierarchical system of approximations of theeddy current modelin frequency
domain, which can be derived from the fullMaxwell equations[Jac75]

divD = ρ , (3.1)

divB = 0 , (3.2)

curlE = −∂B
∂t

, (3.3)

curlH = j +
∂D

∂t
, (3.4)

with the electric displacementD, the charge densityρ, the magnetic inductionB, the electric
field E, the time t, the magnetic fieldH, and the current densityj. The eddy current model in
frequency domain is a time-harmonic special case of thequasi-static approximationof Maxwell’s
equations. In this approximation thedisplacement current∂D

∂t
in Amp̀ere’s law(3.4) is neglected.

The use of the quasi-static approximation should first be motivated for the case of homogeneous
linear conductorsB = µH, D = εE, j = σE with themagnetic permeabilityµ, thedielectric
constantε, and theconductivityσ. The two equations (3.2), (3.3) are automatically fulfilled if
electromagnetic potenialsA andφ with B = curlA andE = −(grad φ + Ȧ) are employed.
For the two remaining equations, it then follows

div(gradφ+ Ȧ) =
−ρ
ε
,

curl curlA = −µσ(gradφ+ Ȧ)− 1

c2
∂

∂t
(gradφ+ Ȧ) ,

with the speed of lightc =
√

1
εµ

in the material. For time harmonic processes (where∂
∂t

can be

replaced byiω) this means that the displacement current can be neglected ifµσ � ω
c2

. So for steel
and copper at angular frequenciesω of some kHz the quasi-static model is a good approximation.
This argumentation cannot be applied for linear non-conductors withσ = 0. In this case one has
to solve the equation

(�− 1

c2
∂2

∂t2
)A(x, t) = −µj(x, t) (3.5)
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in Lorentz-gauge, with the position vectorx. With the aid of retarded potentials this can be solved
with [Nol90]

A(x, t) = A(x)eiωt,

A(x) =
µ

4π

∫
�3

e
iw
c
·‖x−x′‖

‖x− x′‖ j(x
′) dx′.

So for the exterior vacuum, the solution of the quasi-static modelAQS(x) =
µ
4π

∫
�3

j(x′)
‖x−x′‖ dx

′ is
a good approximation if one is only interested in a neighborhood‖x − x ′‖ < L of the exciting
currents [Dir96], withwL/c � 1, L ∈ R >0. Additionally, to neglect the displacement current
always means to neglect space charges. This can be seen at the continuity equationdiv j = −ρ̇
and (3.4). So the quasi-static model should only be applied if no big capacities are involved. The
material parameters, fequencies, and lengths that are used in the inductive hardening process are
in such a range, that the above constraints are fulfilled, and the quasi-static approximation would
be applicable if the material was linear and homogeneous.

Steel is a non-homogeneous and ferromagnetic material, thus also non-linear, and it meets the
following material relations

B = µ0 µr(‖H‖, T ) ·H = µ(‖H‖, T ) ·H , (3.6)

D = ε0 εr E = εE , (3.7)

j = σ(T )E , (3.8)

with the relative magnetic permeabilityµr depending on the the strength of the magnetic field and
the temperatureT , the constantεr = 1 independent of temperature and field, and the temperature-
dependent conductivity. In [ABN00] it is shown that the quasi-static approximation is also ap-
plicable for such kinds of materials in the limit of small frequencies. This is no proof that the
quasi-static approximation can also be applied in the inductive hardening process, but together
with the above argumentation for linear-homogeneous materials, it is a good justification.

Splitting off the time-dependency via the approachB(x, t) = B(x)eiωt for each field and plug-
ging the material relationships into the quasi-static Maxwell’s equations yields

div(εE) = ρ , (3.9)

div(µH) = 0 , (3.10)

curlE = −iωµH , (3.11)

curlH = σE . (3.12)

At the interface between two media thejump conditions[Jac75]

σ = [n ·D] (3.13)

0 = [n ·B] (3.14)

0 = [n×E] (3.15)

k = [n×H] (3.16)

can be derived from Maxwell’s equations. Heren is the normal on the common surface,k is a
surface current andσ is a surface charge density. The surface items are mathematical idealizations
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CHAPTER 3. ELECTROMAGNETIC MODELS AND EQUATIONS

that do not exist in physical reality. They are only useful in some special arrangements. Excess
charges of a conductor, for example, are located very close to the surface within a distance of
someÅngstrøms [Jac75], and the surface densityσ is meaningful in a macroscopic sense. In the
situation of very good conductors and high frequencies the skin effect restricts the currents to a
thin layer at the surface, which from a macroscopic point of view can be seen as a surface current
k. This fact will later be used in the magnetostatic approach in Section 3.3.

At infinity the fields have to vanish in order to keep the energy of the electromagnetic fields finite,
soradiation conditionshave to be added to the eddy current model that now can be written as

div(εE) = ρ , ρ has compact support, (3.17)

div(µH) = 0 , (3.18)

curlE = −iωµH , (3.19)

curlH = σE , (3.20)

[n× E] = [n×H] = 0 , (3.21)

E(x) = O(|x|−2) , H(x) = O(|x|−2) for |x| → ∞ . (3.22)

The solutions for the electric fieldE and the magnetic fieldH have to be part of the Hilbert space
X(R 3) := H(curl, R 3) ∩H(div, R 3), where for an open subsetΩ of R 3

H(curl,Ω) :=
{
v ∈ L2(Ω); curl v ∈ L2(Ω)

}
, (3.23)

H(div,Ω) :=
{
v ∈ L2(Ω); divv ∈ L2(Ω)

}
, (3.24)

L2(Ω) :=

{
v : Ω→ R , ‖v‖L2(Ω) :=

[∫
Ω

|v(x)|2 dx
] 1

2

<∞
}
, (3.25)

L2(Ω) := L2(Ω)3 , (3.26)

equipped with the norms

‖v‖2L2(Ω) :=

∫
Ω

|v1(x)|2 + |v2(x)|2 + |v3(x)|2 dx (3.27)

‖v‖2H(curl,Ω) := ‖v‖2L2(Ω) + ‖ curl v‖2L2(Ω) , (3.28)

‖v‖2H(div,Ω) := ‖v‖2L2(Ω) + ‖ div v‖2L2(Ω) , (3.29)

‖v‖2X(Ω) := ‖v‖2L2(Ω) + ‖ curl v‖2L2(Ω) + ‖ div v‖2L2(Ω) . (3.30)

Note that the norm‖E‖2X(�3) is strongly related to the energy of the electromagnetic fields, at least
in the charge free case. Divergence and curl have to be understood in the sense of distributions
[Wlo82], since the fields may have discontinuities, for example at the interface of two media.
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In this work anE-based formulation is used and the magnetic field is eliminated. Then it holds

div(εE) = ρ , in Ω+ , (3.31)

curl
1

µ
curlE = −iωσE , in R

3 , (3.32)

[n× E] = [n× 1

µ
curlE] = 0 , at∂Ω−, (3.33)

E(x) = O(|x|−2) , curlE(x) = O(|x|−2) , for |x| → ∞ , (3.34)

with the conducting domainΩ− and the exterior vacuumΩ+ = R
3 \ Ω−. The central equation

(3.32) is valid everywhere, whereas Coulomb’s law (3.31) can only be applied inΩ+. The reason
is that the eddy current model is only an approximation of Maxwell’s equations, and if one
applies thediv-operator on (3.32) there might be inconsistencies in the conducting regionΩ−

with σ 	= 0. So Coulomb’s law is a kind of gauging in this model. The jump conditions (3.33)
which are chosen at the interface of conducting and non-conducting region are the transmission
conditions of normal and tangential component of the electric field.

To find a viable numerical scheme for solving the eddy current model is not an easy task, mainly
because of three physical reasons: First, the permeabilityµ depends on the strength of the mag-
netic fieldH, which leads to a non-linear problem in the interior of the conductors. Second, the
dominantskin effectis a purely local effect, and only adaptively refined grids can be used if the
effect is to be resolved and if the amount of storage has to remain sufficiently small at the same
time. Third, one has to tackle the unbounded exterior domain.

As far as the interior of the conductors is concerned, a finite element scheme (FEM) based on
edge elements offers the most attractive option [Bos98], [Mon92]. Their use is mandatory in or-
der to capture the singularities of the fields at material interfaces [BBHL99], [Bos99], [CDN99],
as for example at the interface plates/workpiece. Nodal formulations cannot be used because of
their difficulties with the singularities of the fields at reentrant corners [PBT00]. Additionally, a
relaxation methodis used for the non-linear part of the calculation arising from the field depen-
dency of the permeability. To approach the exterior, one often extends the mesh from the interior
to the exterior region, and homogeneous boundary conditions are introduced in a sufficiently
large distance from the conductors. This technique is not applicable here because the workpiece
is rotating. A boundary element method (BEM) is used to deal with the unbounded exterior. So
it is possible to use only one Lagrangian mesh that is rotating.

The FEM/BEM parts can be linked properly [Hip02] and the resulting numerical scheme is called
eddy current approach. A quasi-optimal error etimator exists for this approach that guarantees the
convergence of a conforming Garlerkin discretization. This means that the difference between the
approximative numerical solution and the real solution of (3.17)-(3.22) vanishes for decreasing
meshwidthh → 0. In the eddy current approach the coupling is strong and symmetric, i.e.,
FEM and BEM variables are tackled simultaneously in the same symmetric system of equations.
The convergence of an iterative solver can be guaranteed. The implementation of the model is
complicated because of different reasons. In the interior one has to deal not only with the linear
equations of a uniform mesh, but also with adaptive mesh refinement and non-linear methods for
the permeability. The temperature distribution has to be calculated there, too. On the boundary,
elaborate BEM operators have to be implemented. They need a special treatment if the items have
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CHAPTER 3. ELECTROMAGNETIC MODELS AND EQUATIONS

a non-trivial topology. A compression technique also has to be applied for the BEM operators
because of the huge amount of storage that they need. So what is desireable is a possibilty to
develop the FEM/BEM parts independently, i.e., one searches elctromagnetic models where only
a weak coupling of FEM and BEM variables is required.

Such kinds of models can be found by studying the most dominant physical effect, the skin effect.
This should first be done for an idealized situation: At the surface of a flat semi-definite, con-
ducting, permeable, and linear medium, a spatially constant magnetic field,Hx(t) = H0 cosωt,
is applied parallel to the surface, as shown in Figure 3.1. Then the solutions of (3.17)-(3.22) for

�
x

�
z

µ0Hx = H0 cosωt


 δ

µ, σ

Figure 3.1: Skin effect

the magnetic field and the electric field are given [Jac75] by the real parts of

Hx = H0e
−z/δe−i(z/δ−ωt), (3.35)

Ey = −(1 + i)

√
µω

2σ
H0e

−z/δe−i(z/δ−ωt), (3.36)

with thepenetration depth

δ :=

√
2

µσω
. (3.37)

So fields and currents are decreasing in the interior of the conductors and for steel with the given
material parameters, frequencies and temperatures one finds a penetration depth in the range of
[0.05mm−6.0mm]. A first possibility for an approximation is to neglect the fields in the interior.
This leads to the magnetostatic approach of Chapter 3.3, which is only a rough approximation
because the penetration depth of some millimeters at high temperatures and strong fields is not
small enough to get a good approximation. Another observation is that for flat surfaces the so-
calledimpedance boundary condition[SS01]

n× E = η1 · n× (n×H), (3.38)

with η1 := (1 + i)

√
µω

2σ
, (3.39)
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is valid on the surface with outer normaln. This condition can also be used for the decoupling
of FEM and BEM part and it follows the impedance model of Chapter 3.2. The implementation
of this model is as complex as the implementation of the full eddy current approach because
all fundamental components are required, such as the BEM operators, the FEM operators, com-
pression, non-linearity, and adaptivity. But due to the weak coupling it can be programmed by
different persons using different software packages, which is a big advantage.

The three schemes are introduced in the following sections. For sake of clear derivations of the
central model equations, the necessary mathematical tools are provided in advance in a short
introduction at the beginning of the sections.

3.1 Eddy Current Approach

3.1.1 Mathematical Prerequisites

The eddy current approach is a numerical scheme for solving the equations (3.17)-(3.22). The
variational formulation is discretized with a Garlerkin method, and unique solvability can be
shown with the aid of theLax-Milgram theorem. First of all, this fundamental theorem will be
introduced [DL90]. Then a representation formula is presented which is needed to derive the
BEM equations of the exterior domain by taking the Dirichlet and Neumann traces. A summary
of the properties of the resulting BEM operators is given at the end of this section.

Definition 1 (Sesquilinear Form) LetV be a vector space onC . A sesquilinear form(u, v)→
a(u, v) onV × V , is a mappingV × V → C , with the properties

a(u1 + u2, v) = a(u1, v) + a(u2, v),

a(u, v1 + v2) = a(u, v1) + a(u, v2),

a(λu, v) = λa(u, v),

a(u, λv) = λ̄a(u, v).

Definition 2 (Continuous Sesquilinear Form) LetV be a complex Hilbert space equipped with
the norm‖ · ‖V . The sesquilinear form(u, v) → a(u, v) onV × V is called continuous if there
exists a constantc > 0 with

|a(u, v)| ≤ c · ‖u‖V ‖v‖V ∀u, v ∈ V .

Definition 3 (Antilinear Form, Antidual) Let V be a topological space over the fieldR or C .
An antilinear formL onV is an antilinear mapping ofV into C :

L(v1 + v2) = L(v1) + L(v2)

L(λv) = λ̄L(v) ∀v1, v2 ∈ V , λ ∈ C

The space of the continous antilinear forms [DL90] is called the antidual and is here denoted by
V ′.

17
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Theorem 1 (Lax-Milgram Theorem) Let V be a complex Hilbert space equipped with the
norm ‖ · ‖V , a(u, v) a continous sesquilinear form onV × V , andL ∈ V ′ a continuous an-
tilinear form onV . Then the problem:

Find u ∈ V such that a(u, v) = L(v), ∀v ∈ V,

is called a variational problem. It has a unique solution if the sesquilinear forma(u, v) is V -
elliptic, i.e., if there exists a constantc > 0 with

|a(v, v)| ≥ c · ‖v‖2V ∀v ∈ V

Theorem 2 (Representation Formula [Hip02]) LetΩ ⊂ R
3 be a Lipschitz domain with exte-

rior unit normaln andG the singular function for the Laplacian in three dimensions

G(x,y) :=
1

4π

1

|x− y| , x, y ∈ R
3, x 	= y. (3.40)

If E ∈ C2(Ω̄)3 is a vector field withdivE andcurl curlE compactly supported and decaying
uniformly for |x| → ∞ like E(x) = O(|x|−1) and curlE(x) = O(|x|−1), then it holds with
Γ := ∂Ω

E(x) = − curlx

∫
Γ

(n× E)(y)G(x,y)dS(y) +

∫
Γ

(n× curlE)(y)G(x,y)dS(y)+

+ gradx

∫
Γ

(n · E)(y)G(x,y)dS(y) +
∫
Ω

curl curlE(y)G(x,y)dy− (3.41)

−
∫
Ω

divE(y) gradxG(x,y) dy , x ∈ Ω .

This is an analogy to the Stratton-Chu formulas for the full Maxwell equations. Subsequently
domains, normals, and fields are defined in correspondence with Figure 3.2.

Figure 3.2: Definitions of the domains
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The following limits, traces, and boundary operators are needed

E± := lim
t→±0

E(x+ tn) , (3.42)

γ±T E(x) := lim
t→±0

E(x+ tn)× n , (3.43)

γ±DE(x) := n× ( lim
t→±0

E(x+ tn)× n) , (3.44)

If γ+DE(x) = γ−DE(x) set γDE(x) := γ+DE(x) , (3.45)

γ±NE(x) := lim
t→±0

(
curlE(x+ tn)

)
× n , (3.46)

If γ+NE(x) = γ−NE(x) set γNE(x) := γ+NE(x) , (3.47)

λ± :=
1

µ±
(curlE± × n) , (3.48)

CE := γ+D curlx

∫
Γ

(n× E)(y)G(x,y)dS(y) , (3.49)

Aλ := γD

∫
Γ

λ(y)G(x,y) dS(y) (3.50)

SE := γ+D gradx

∫
Γ

(n ·E)(y)G(x,y)dS(y) , (3.51)

NE := γN curlx

∫
Γ

(n×E)(y)G(x,y)dS(y) , (3.52)

Bλ := γ+N

∫
Γ

λ(y)G(x,y)dS(y) . (3.53)

The BEM operatorsC,A,S,N,B exist because the following potentials are continuous map-
pings ∫

Γ

E(y)G(x,y) dS(y) : H− 1
2 (Γ)→ H1

loc(R
3) , (3.54)

pV :=

∫
Γ

E(y)G(x,y)dS(y) : H− 1
2 (Γ)→ H1

loc(R
3) , (3.55)

pM := curlx

∫
Γ

(n× E)(y)G(x,y)dS(y) : H
− 1

2
⊥ (Γ)→ H(div; R 3) . (3.56)

For the definitions of the spaces see the next page and [DL90]. It holds[γDpV ] = [γNpM ] = 0 on
the boundary, and the tracesγ+D, γ+N in A andN can be replaced byγD andγN , see [Hip02] for
proofs. The exterior Dirichlet and Neumann tracesγ+

D, γ
+
N can be applied on the representation

formula and it follows for constantµ+ and fields withcurl curlE = 0 anddivE = 0 that

γ+DE+ = CE+ + µ+Aλ+ − SE+ , (3.57)

γ+NE+ = NE+ + µ+Bλ+ . (3.58)
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This can be transformed into

γ+DE+ = C(γ+DE+) + µ+Aλ+ − SE+ (3.59)

µ+λ+ = N(γ+DE+) + µ+Bλ+. (3.60)

because ofγ+NE+ = µ+λ+ , CE = C(γ+DE), andNE = N(γ+DE). The spaces where the BEM
operators act must be defined precisely for further mathematical analyses. They should not be
derived in detail here, but motivated [AH01] by looking at theSobolev space

H1(Ω) :=
{
v ∈ L2(Ω); Dαv ∈ L2(Ω) ∀ |α| ≤ 1

}
. (3.61)

This is the space of all square-integrable functionsv ∈ L2(Ω) with each first weak derivative
Dαv ∈ L2(Ω) square-integrable. It is an interesting space because each component ofX(R 3)
can also be differentiated once. Thetrace theoremensures that forLipschitzdomainsΩ the range
of the Dirichlet traceγD(H1(Ω)) is another Sobolev spaceH

1
2 (∂Ω) over the boundary∂Ω and

equipped with its own norm‖·‖
H

1
2 (Ω)

. Its dual is here denoted byH− 1
2 (∂Ω) andH

1
2 (Γ), H− 1

2 (Γ)

are the three dimensional counterparts. The tracesγD andγT are mappings onH
1
2

|| (Γ), H
1
2
⊥(Γ),

which are generalizations ofH
1
2 (Γ) for non smoothΓ. Roughly speaking,H

1
2

|| (Γ) contains the

tangential surface vector fields which are inH
1
2 (Γi) for each smooth componentΓi of Γ and

feature a suitable ’weak tangential continuity’ across the edges of theΓi. A corresponding ’weak

normal continuity’ is satisfied by surface vector fields inH
1
2
⊥(Γ). The associated dual spaces will

be denoted byH
− 1

2

|| (Γ),H
− 1

2
⊥ (Γ). For details and notations see [BC01]. There it is also shown

that both tracesγD andγN are continuous mappings

γD : H(curl; Ω) �→ H
− 1

2
⊥ (curlΓ,Γ) , (3.62)

γN : {v ∈H(curl; Ω), curl curl v = 0} �→ H
− 1

2

|| (divΓ,Γ) , (3.63)

with

H
− 1

2
⊥ (curlΓ,Γ) := {v ∈ H

− 1
2

⊥ (Γ), curlΓ v ∈ H− 1
2 (Γ)} , (3.64)

H
− 1

2

|| (divΓ,Γ) := {v ∈ H
− 1

2

|| (Γ), divΓv ∈ H− 1
2 (Γ)} , (3.65)

curlΓv := n · (curlV) , (3.66)

gradΓ φ := n× (gradΦ× n) , (3.67)

divΓ := −grad∗
Γ . (3.68)

Hereφ is a function on the boundary andv is a tangential vectorfield on the boundary.Φ and
V are their extensions in the normal direction. The occuring BEM operators are examined in
[Hip02]. A first property is represented by the fact that they define continuous linear mappings

A : H
− 1

2

|| (Γ) �→ H
1
2

|| (Γ) , (3.69)

B : H
− 1

2

|| (divΓ,Γ) �→ H
− 1

2

|| (divΓ,Γ) , (3.70)

C : H
− 1

2
⊥ (curlΓ,Γ) �→ H

− 1
2

⊥ (curlΓ,Γ) , (3.71)

N : H
− 1

2
⊥ (curlΓ,Γ) �→ H

− 1
2

|| (divΓ,Γ) . (3.72)
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3.1. EDDY CURRENT APPROACH

Later, the vector fieldsE in the BEM operators (3.42)-(3.53) will be identified with the electric
field. As a first physical statement, it should be pointed out that a current cannot flow through the

surface of a conductor. As a consequence, it followsλ ∈ H
− 1

2

|| (divΓ0,Γ) with

H
− 1

2

|| (divΓ0,Γ) := {λ ∈ H
− 1

2

|| (divΓ,Γ), divΓλ = 0}. (3.73)

This can be seen by applying the relationdivΓ(u×n) = curl u ·n to the definition ofλ in (3.48)

divΓ λ = divΓ(
1

µ
curlE× n) = curl

1

µ
curlE · n = −iωσE · n = −iωj · n . �

The inner product〈:, :〉
�

is defined as

〈a,b〉
�
:=

∫
Γ

a(x) · b(x) dS(x) (3.74)

on the boundary, and it holds

〈ζ,SE〉
�

=

∫
Γ

ζ(x) · γ+D gradx

∫
Γ

(n · E)(y)G(x,y)dS(y) dS(x)

=

∫
Γ

ζ(x) · gradΓ

∫
Γ

(n · E)(y)G(x,y)dS(y)dS(x)

= −
∫
Γ

divΓ ζ(x) ·
∫
Γ

(n ·E)(y)G(x,y)dS(y) dS(x)

= 0 ∀ζ ∈ H
− 1

2

|| (divΓ 0,Γ) . (3.75)

The following properties of the BEM operators are derived in [Hip02].

〈Bζ,q〉
�
= 〈ζ, (C− Id)q〉

�
∀q ∈ H

− 1
2

⊥ (curlΓ,Γ), ζ ∈ H
− 1

2

|| (divΓ0,Γ) . (3.76)

Theorem 3 The bilinear form onH
− 1

2

|| (divΓ0,Γ) induced by the operatorA is symmetric

〈Aζ,η〉
�
= 〈ζ,Aη〉

�
∀ζ,η ∈ H

− 1
2

|| (divΓ0,Γ) , (3.77)

and there is a constantc > 0 depending onΓ such that

〈Aλ,λ〉
�
≥ c ‖λ‖2

H
− 1

2
|| (divΓ,Γ)

∀λ ∈ H
− 1

2

|| (divΓ0,Γ) . (3.78)

Theorem 4 The bilinear form induced by the boundary integral operatorN onH
− 1

2
⊥ (curlΓ,Γ)

is symmetric

〈p,Nq〉
�
= 〈Np,q〉

�
∀p,q ∈ H

− 1
2

⊥ (curlΓ,Γ) , (3.79)

and negative semidefinite. In particular,

−〈Nu,u〉
�
≥ c ‖curlΓ u‖2

H− 1
2 (Γ)

∀u ∈ H
− 1

2
⊥ (curlΓ,Γ) , (3.80)

holds for some constantc > 0.
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3.1.2 Symmetric FEM/BEM-Coupling

After this formal preparation, the system of equations used in the eddy current approach can now
be derived. In the two different regionsΩ− of the conductors and their exteriorΩ+ (see Figure
3.2), the fundamental equations (3.31)-(3.34) can be written as

curl
1

µ−
(curlE−) = −iω(σE− + j0) ∀x ∈ Ω− (3.81)

and

divE+ = 0 , (3.82)

curl curlE+ = 0 , ∀x ∈ Ω+ . (3.83)

In the first equation the exciting currentj0 is added and it holds for the real currentj = σE− +
j0. The excitation will be specified more precisely in Chapter 4. The jump conditions on the
boundary∂Ω− are

0 = n × (E+ −E−) , (3.84)

0 =
1

µ−
(curlE− × n)− 1

µ+
(curlE+ × n) = λ− − λ+ . (3.85)

Conclusions:

γDE := γ−DE = γ+DE (3.86)

λ := λ− = λ+ , (3.87)

so there is no need to distinguish between the variables of the exterior and the variables of the
interior. The equation of the interior domain follows from equation (3.81) by testing and by
applying Stoke’s theorem

−iω
∫
Ω−

(σE+ j0) · v dy=

∫
Ω−

curl [
1

µ
curlE] · v dy , (3.88)

⇐⇒
−iω

∫
Ω−

(σE+ j0) · v dy=

∫
Ω−

1

µ
curlE · curl v dy−

∫
Γ

(
1

µ
curlE× n) · v dS(y) . (3.89)

With the definition of the continuous sesquilinear formq(E, v) and the product〈j0, v〉Ω−

q(E, v) := iω

∫
Ω−

σE · v dy +

∫
Ω−

1

µ
curlE · curl v dy , (3.90)

〈j0, v〉Ω− :=

∫
Ω−

j0 · v dy (3.91)

this formula can be rewritten as

q(E, v) − 〈λ,v〉
�

= q(E, v) − 〈λ, γDv〉� = −iω〈j0, v〉Ω− . (3.92)
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3.1. EDDY CURRENT APPROACH

For the exterior vacuum, the equations (3.59) and (3.60) are valid because of (3.82) and (3.83),
so one finds

µ+λ = N(γDE) + µ+Bλ , (3.93)

γDE = C(γDE) + µ+Aλ − SE . (3.94)

Testing the equations withζ ∈ H
− 1

2

|| (divΓ0,Γ) andv ∈H(curl; Ω−) yields

〈(I−B)λ, γDv〉� − 1

µ+
〈N(γDE), γDv〉� = 0 , (3.95)

〈ζ, (I−C)(γDE)〉� − µ+ 〈ζ,Aλ〉
�

= 0 , (3.96)

q(E, v) − 〈λ, γDv〉� = −iω〈j0, v〉Ω− , (3.97)

where the term〈ζ,SE〉
�

dissapears because of equation (3.75). By inserting (3.97) into (3.95),
one eventually arrives at the variational problem:

Seekλ ∈ H
− 1

2

|| (divΓ0,Γ) andE ∈H(curl; Ω−) such that

q(E, v)− 1

µ+

〈N(γDE), γDv〉� − 〈Bλ, γDv〉� = −iω〈j0, v〉Ω− , (3.98)

〈ζ, (C− I)(γDE)〉� + µ+ 〈ζ,Aλ〉
�

= 0 , (3.99)

for all ζ ∈ H
− 1

2

|| (divΓ0,Γ) andv ∈H(curl; Ω−).

Theorem 5 (Unique Solvability) The sesquilinear formQ induced by the equations(3.98)and
(3.99)is elliptic and continuous, and the variational problem is uniquely solvable.

Proof: Continuity is a consequence of the continuity of the BEM operators, and ellipticity fol-
lows from the theorems 3 and 4 by using the relation (3.76) and|x + iy| ≥ max{|x|, |y|} ≥
1
2
(|x|+ |y|) :∣∣∣ q(E, E)− 1

µ+
〈N(γDE), γDE〉� − 〈Bλ, γDE〉� + 〈λ, (C− I)(γDE)〉� + µ+ 〈λ,Aλ〉

�

∣∣∣
=
∣∣∣ q(E, E)− 1

µ+
〈N(γDE), γDE〉� + µ+ 〈λ,Aλ〉

�

∣∣∣
≥ 1

2


ω ∫

Ω−

σE ·E dy +

∫
Ω−

1

µ−
curlE · curlE dy− 〈N(γDE), γDE〉� + 〈Aλ,λ〉

�




≥ c

(
‖E‖2

�(curl;Ω−) + ‖curlΓ γDE‖
2

H− 1
2 (Γ)

+ ‖λ‖2
H

− 1
2

|| (divΓ,Γ)

)

≥ c

(
‖E‖2

�(curl;Ω−) + ‖λ‖
2

H
− 1

2
|| (divΓ,Γ)

)
.

The unknowsγDE do not need to be considered explicitly since they are included in the
unknownsE of the interior field. Uniqueness now follows from Lax-Milgram’s theorem 1.�
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The sequilinearformQ is not symmetricQ{(E,λ); (v, ζ)} 	= Q{(v, ζ); (E,λ)}: Complex con-
jugation and multiplication with(−1) of equation (3.99) and adding equation (3.98) yields

Q{(E,λ); (v, ζ)}

=

(
q(E, v)− 1

µ+
〈N(γDE), γDv〉� − 〈Bλ, γDv〉� − 〈ζ, (C− I)(γDE)〉� − µ+ 〈ζ,Aλ〉

�

)

=

(
q(E, v)− 1

µ+
〈γDE,N(γDv)〉� − 〈λ, (C− I)(γDv)〉� − 〈Bζ, γDE〉� − µ+ 〈Aζ,λ〉

�

)

=

(
q(E, v)− 1

µ+

〈N(γDv), γDE〉� − 〈λ, (C− I)γDv〉� − 〈γDE,Bζ〉
�
− µ+ 〈λ,Aζ〉

�

)

=

(
q(E, v)− 1

µ+
〈N(γDv), γDE〉� − 〈Bζ, γDE〉� − 〈λ, (C− I)γDv〉� − µ+ 〈λ,Aζ〉

�

)
,

by using the theorems 3 and 4 again, and equation (3.76). Unfortunately it holdsq(E, v) 	=
q(v, E)

q(E, v) = iω

∫
ΩC

σE · v dy +

∫
ΩC

1

µ−
curlE · curl v dy

= iω


∫
ΩC

σv · E dy


+


∫
ΩC

1

µ−
curl v · curlE dy




	=


iω ∫

ΩC

σv ·E dy


+


∫
ΩC

1

µ−
curl v · curlE dy


 = q(v, E) ,

so the symmetry is slightly disturbed byq(E, v). This can be cured by splitting into real and
imaginary part (see Chapter 4).

3.2 Impedance Model

In the previous section, a formulation of the eddy current model was derived which strongly
couples the interior of the conductors with their boundary. So the numerical solving procedure
also has to cope with the variables of both regions in one big system of equations arising from
the equations (3.98) and (3.99). In terms of implementation, this proves to be much more com-
plicated than if both regions are only weakly or unidirectionally coupled. As a way to reach this
simplification, the impedance model will now be introduced. Therefore, the impedance boundary
condition of equation (3.38)

γDE = ηλ (3.100)

with η := (1− i)
√

µ−
2σω

, (3.101)

is plugged into the equation (3.95) and one gets a formulation that can be solved in two steps:
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STEP 1: Seekλ ∈ H
− 1

2

|| (divΓ0,Γ) andγDE ∈ H
− 1

2
⊥ (curlΓ,Γ) ∩ L2(Γ) such that〈

1

η
γDE, γDv

〉
�

− 1

µ+

〈N(γDE), γDv〉� − 〈Bλ, γDv〉� = 0 , (3.102)

〈ζ, (C− I)(γDE)〉� + µ+ 〈ζ,Aλ〉
�

= 0 , (3.103)

for all ζ ∈ H
− 1

2

|| (divΓ0,Γ) andγDv ∈ H
− 1

2
⊥ (curlΓ,Γ) ∩ L2(Γ).

STEP 2: SeekE ∈H(curl; Ω−) such that

q(E, v) = −iω〈j0, v〉Ω− + 〈λ, γDv〉� (3.104)

for all v ∈H(curl; Ω−).

Thus boundary integrals and volume integrals are separated. However, there is no complete uni-
directional coupling from step 1 to step 2 because the material coefficients depend on the tem-
perature. These vary slowly, so it is only necessary to update them after a certain time and then
repeat the two steps with the new coefficients. This means that the boundary of the conductors
is weakly coupled with the interior through the material coefficients. Symmetry is again sligthly
disturbed because 〈

1

η
γDE, γDv

〉
�

	=
〈
1

η
γDE, γDv

〉
�

.

The solution of STEP 1 seems to be zero because of the missing right hand side. The way how to
deal with this problem is described in Section 4.1. The impedance model uses the same BEM and
FEM operators as the eddy current approach and can be seen as a first step of its implementation.
The impedance boundary condition is only valid for a plane surface as described in Chapter 3, so
the model is a viable approximation only for relatively ’flat’ geometries. One expects problems
at edges and corners of the conductors.

3.3 Magnetostatic Approach

3.3.1 Mathematical Prerequisites

The magnetostatic approach is based on a formulation that uses a scalar magnetic potentialϕ.
The Laplace equation is valid for this potential in the simply connected domainΩE := R

3\(ΩL∪
S̄0 ∪ S̄1 ∪ . . . ∪ S̄p). Here,ΩL := ΩC ∪ΩI ∪ΩM consists of the workpieceΩC , the inductorΩI ,
and maybe of some field-concentrating, highly permeable, non-conducting, and homogeneous
platesΩM . As shown in Figure 3.3, cutting surfacesS are sometimes necessary in order to get a
simply connected domain.
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ΩL

S1

S2

Figure 3.3: Cutting surfaces

Theorem 6 (Green’s Theorem [Kos94]) The solution of the Laplace problem

�ϕ = 0 ∀x ∈ ΩE , (3.105)

can be written as

α(x)ϕ(x) = V (
∂ϕ

∂n
)(x)−K(ϕ)(x) , x ∈ ∂ΩE , (3.106)

on the boundary∂ΩE , with the single layer potential

V (
∂ϕ

∂n
)(x) :=

∫
∂ΩE

G(x,y)
∂ϕ

∂n
(y) dS(y), x ∈ ∂ΩE ,

∂ϕ

∂n
∈ H− 1

2 (∂ΩE)

and the double layer potential

K(ϕ)(x) :=

∫
∂ΩE

∂G(x,y)

∂n(y)
ϕ(y) dS(y), x ∈ ∂ΩE , ϕ ∈ L2(∂ΩE) .

The functionα(x) is the solid angle which is equal to1
2

where∂ΩE is smooth and can have
different values at edges and corners.

The potentials have to be evaluated on the cutting surfacesS for both sides. LetS denote a
generic, piecewise smooth cutting surface endowed with a crossing direction given by a unit
normal vector fieldn(y), y ∈ S. The normal vector points from sideS− to S+ (see Figure 3.4).

S+

S−

n n−

n+

Figure 3.4: Notations for cutting surfaces
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For the single layer potential restricted toS follows

V|S(
∂ϕ

∂n
)(x) =

∫
S+

G(x,y)
∂ϕ

∂n+
(y) dS(y) +

∫
S−

G(x,y)
∂ϕ

∂n− (y) dS(y)

= −
∫
S

G(x,y)

[
∂ϕ

∂n

]
S

dS(y) , ∀x ∈ R
3 .

(3.107)

Similarily one finds for the double layer potential

K|S(ϕ)(x) = −
∫
S

∂G(x,y)

∂n(y)
[ϕ]S dS(y) , ∀x ∈ ∂ΩE .

Using this, it can be concluded from (3.106) that there is a representation

α(x)ϕ(x) =

∫
∂ΩL

G(x,y)
∂ϕ

∂n
(y)− ∂G(x,y)

∂n(y)
ϕ(y) dS(y) (3.108)

+
∑
S

∫
S

∂G(x,y)

∂n(y)
[ϕ]SI

dS(y) , ∀x ∈ ∂ΩE .

3.3.2 A Model for Perfect Conductors

For C45 steel atθ = 20◦C, frequencies of10kHz andB < 1T the penetration depth is negligi-
ble δ ≈ 0, 1mm. In this situation the interior of the conductors can be ignored. Yet, the situation
changes with increasing temperature or field strength. Then conductivity and permeability are de-
creasing: For C45 steel atθ = 1000◦C, frequencies of 10kHz andB > 2T one getsδ ≈ 5mm.
Nevertheless, in the magnetostatic approach the interior ofΩC andΩI will be ignored for the
BEM part. This is only a rough estimate, and the numerical results have to be checked carefully.

If the fields inside of the conductors are ignored, there is only a surface currentk flowing. The
relevant equations of the quasi-static model (3.9)-(3.16) can then be reduced to

curlH = 0, div(µH) = 0,

∮
∂A

H · �ds = I, [n×H] = k, [n ·B] = 0 . (3.109)

The line integral along a path around the inductor or the workpiece is the total current flowing in
the part. According to Figure 3.5 this can be seen with Ampere’s law

I =

∫
A

j dS =

∫
A

curlH dS =

∮
∂A

H · �ds . (3.110)
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A

S

Figure 3.5: Path and cutting surface

Assuming vanishing fields inside the conductors one ends up with

n×H = k , H · n = 0 , ∀x ∈ ΩC ∪ ΩI

for the jump conditions in (3.109).

In every domain it holdscurlH = 0 and a magnetic scalar potentialH = −gradϕ can be used
[AR90, Bos91]. Yet, its existence is guaranteed on simply connected domains only. To reach
this, one has to introducecutting surfacesSI := S0, S1, . . . , Sp, p ∈ N . These have to meet the
following requirements:

1. Each of theSκ has to be an open subset of a piecewise smooth two-dimensional manifold.

2. ∂SI ⊂ ∂ΩI and∂Sκ ⊂ ∂ΩC , κ = 1, . . . , p.

3. ΩE := R
3 \ (ΩL ∪ S̄0 ∪ S̄1 ∪ . . . ∪ S̄p) is simply connected.

Here, the existence of such a set of cutting surfaces is taken for granted. Sloppily speaking, the
numberp corresponds to the number of holes inΩC . In the current settingΩI has exactly one
hole, so that the cutting surfaceSI is always needed. The specification of the cutting surfaces
must be done manually because it is no algorithm available for their automatical construction. For
a more profound discussion of cutting surfaces see [Bos98] and the references cited therein. For
the sake of simplicity,p = 1 is set in the sequel, i.e., there is exactly one hole in the workpiece to
which the cutting surfaceSC is to belong. Besides,SI andSC must not cut through the deflection
plates. Denoting by[ϕ]S the jump ofϕ across some externally oriented surface, equation (3.110)
can be transformed into

[ϕ]SI
= I , [ϕ]SC

= IC , (3.111)

whereI ∈ R is the fixed current in the inductor andIC ∈ R corresponds to the (unknown) total
eddy current around the hole ofΩC . Note that one can dispense with an exciting spatial current
jI in this case, as the total current flowing in the inductor is known in advance. With the aid of
the scalar potential, the system of equations of the magnetostatic approach reads as
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�ϕ = 0 in ΩE ,
∂ϕ

∂n
= 0 on∂ΩC ∪ ΩI ,

[ϕ]S =
[
µ∂ϕ

∂n

]
S

= 0 on∂ΩM ,

[ϕ]S = I , [ϕ]SC
= const = IC ,[

∂ϕ
∂n

]
S
= 0, S ∈ {SI , SC} .

(3.112)

Be aware that this system of equations (3.112) does not have a unique solution, because one
can impose arbitrary constant jumps[ϕ]SC

with (3.112) still remaining solvable. This is a very
important observation since all formulations based on (3.112) need extra conditions to achieve
uniqueness. It can be shown [HOQ00] that the solution forH is not affected by the choice of the
cutting surfaces.

The representation formula (3.108) can now be used to determineϕ. It follows with the jump
conditions in equation (3.112)

α(x)ϕ(x) = −
∫

∂ΩC∪ΩI

∂G(x,y)

∂n(y)
ϕ(y) dS(y)

+

∫
∂ΩM

G(x,y)
∂ϕ

∂n
(y)− ∂G(x,y)

∂n(y)
ϕ(y) dS(y) (3.113)

+ IC ·
∫
SC

∂G(x,y)

∂n(y)
dS(y) + I ·

∫
SI

∂G(x,y)

∂n(y)
dS(y) .

Boundary integral equations on∂ΩM also come into play (β = 1− α):

β(x)ϕM(x) =

∫
∂ΩM

G(x,y)
∂ϕM

∂nM

(y)− ∂N(x,y)

∂nM (y)
ϕM(y) dS(y) . (3.114)

The transmission conditions on∂ΩM

ϕ− ϕM = 0 ,
∂ϕ

∂n
− µr

∂ϕM

∂n
= 0

provide the necessary link between (3.114) and (3.113). First, they enable the conversion of
(3.114) into

β(x)ϕ(x) =

∫
∂ΩM

−G(x,y) 1
µr

∂ϕ

∂n
(y) +

∂G(x,y)

∂n(y)
ϕ(y) dS(y) , (3.115)

whereµr is the constant relative permeability insideΩM . Using this in (3.113), one finally gets
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(α(x) + µrβ(x))ϕ(x)+

∫
ΩC∪ΩI

∂G(x,y)

∂n(y)
ϕ(y) dS(y)− (µr − 1)

∫
∂ΩM

∂G(x,y)

∂n(y)
ϕ(y) dS(y)

(3.116)

−IC ·
∫
SC

∂G(x,y)

∂n(y)
dS(y) = I ·

∫
SI

∂G(x,y)

∂n(y)
dS(y) ,

with

α(x) =




1
2

, if x ∈ ∂ΩC ∪ ΩI ,
1
2

, if x ∈ ∂ΩM ,

1 , if x ∈
o

ΩE

and β(x) =



0 , if x ∈ ∂ΩC ∪ ΩI ,
1
2

, if x ∈ ∂ΩM ,

0 , if x ∈
o

ΩE

for smooth boundaries. IfΩC is simply connected, i.e.,SC = ∅, (3.116) is a valid boundary
integral equation of the second kind for the unknown functionϕ ∈ H

1
2 (∂ΩL). It has a unique

solution [DL90, Vol. 4,Ch. XI,§2,Thm. 5]. Yet, as already noted in Sect. 2, if there is a hole in
ΩC , (3.116) is underdetermined because it does not allow to fix the jumpIC = [ϕ]SC

. Therefore,
one has to incorporate additional information. It was not possible to include Faraday’s law. An-
other idea is to minimize the field energy. In the current setting, the electric field energy can be
neglected, what remains is the energy of the magnetic field. In order to translate the minimization
of magnetic energy into an equation for[ϕ]SC

= IC , one first notes that

Emag =
1

2

∫
�3

H(x) ·B(x)dx

=
1

2

∫
ΩA

〈µ gradϕ, gradϕ〉 dx+
1

2

∫
ΩM

〈µ gradϕM , gradϕM〉 dx

whereΩA := ΩE \ ΩM . Due to�ϕ = �ϕM = 0 one finds with∫
Ω

〈grad f, grad f〉 dx =

∫
Ω

[div(f · grad f)−�f ] dx

that

Emag =
1

2

∫
∂ΩA

µ
∂ϕ

∂n
· ϕdS +

1

2

∫
∂ΩM

µ
∂ϕM

∂nM
· ϕM dS .

As a consequence of the boundary and transmission conditions forϕ, one ends up with the
expression

Emag =
I · µ0

2

∫
SI

∂ϕ

∂n
dS +

IC · µ0

2

∫
SC

∂ϕ

∂n
dS . (3.117)
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Next, recall lemma 2 from [DL90, Vol. 4,Ch. XI,Part B,§2], which states that for a double layer
potential on a piecewise smooth surfaceΓ

u(x) =

∫
Γ

g(y)
∂G(x,y)

∂n(y)
dS(y) (3.118)

the gradient away fromΓ is given by

grad u(x) =

∫
Γ

(n(y)× grad g(y))× gradyG(x,y) dS(y) ∀x 	∈ Γ . (3.119)

Now slightly different cutting surfacesS ′
I andS ′

C are assumed for the computation ofϕ. Then
the expression (3.117) for the magnetic energy remains the same. Moreover, (3.116) provides the

following double layer representation for allx ∈
o

Ω:= R
3 \ (ΩL ∪ ΩM ∪ S ′

I ∪ S ′
C):

ϕ(x) = −
∫

ΩC∪ΩI

∂G(x,y)

∂n(y)
ϕ(y) dS(y) + (µr − 1) ·

∫
∂ΩM

∂G(x,y)

∂n(y)
ϕ(y) dS(y)

+

∫
S′+

I

∂G(x,y)

∂n(y)
ϕ+(y) dS(y) +

∫
S′+

C

∂G(x,y)

∂n(y)
ϕ+(y) dS(y)−

−
∫
S′−

I

∂G(x,y)

∂n(y)
ϕ−(y) dS(y) +

∫
S′−

C

∂G(x,y)

∂n(y)
ϕ−(y) dS(y) .

Then (3.119) immediately yields for allx ∈
o

Ω

gradϕ(x) = (µr − 1) ·
∫

∂ΩM

(n(y)× gradϕ(y))× gradyG(x,y) dS(y)−

−
∫

∂ΩC∪ΩI

(n(y)× gradϕ(y))× gradyG(x,y) dS(y) ,

as the contributions of different sides of cutting surfaces cancel due to the equality of tangential
gradients ofϕ+ andϕ−. This results from the jump conditions at the cutting surfaces. It should
be pointed out that without deflection platesΩM , the above formula is the familiarBiot-Savart
law. The magnetic field energy (3.117) can now be written as
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Emag =
1

2
µ0I ·

∫
SI

n(x) ·
[
(µr − 1)

∫
∂ΩM

(n(y)× gradϕ(y))× gradyG(x,y) dS(y)

−
∫

∂ΩC∪ΩI

(n(y)× gradϕ(y))× gradyG(x,y) dS(y)

]
dS(x)+

+
1

2
µ0IC ·

∫
SC

n(x) ·
[
(µr − 1)

∫
∂ΩM

(n(y)× gradϕ(y))× gradyG(x,y) dS(y)

−
∫

∂ΩC∪ΩI

(n(y)× grad ϕ(y))× gradyG(x,y) dS(y)

]
dS(x) .

(3.120)

One has to find the minimum ofEmag with respect to the independent variableIC . Please note
thatϕ also depends onIC in a linear affine fashion as can be seen in (3.116). This means that
one actually has to minimize a quadratic function inIC , which can easily be done analytically:
First, one uses (3.116) to calculate solutionsϕ10 andϕ01 for the particular total currentsI = 1,
IC = 0 andI = 0, IC = 1, respectively. The general solution of (3.116) is then given by

ϕ(x) = I · ϕ10(x) + IC · ϕ01(x) . (3.121)

Insert (3.121) in (3.120), and the induced total eddy currentIC results from the condition

0 =
∂Emag(ϕ(IC))

∂IC
.

From this one finds

IC =
I

2
·
{
−
∫
SI

n(x) ·
[
(µr − 1)

∫
∂ΩM

(n(y)× gradϕ01(y))× gradyG(x,y) dS(y)

+

∫
∂ΩC∪ΩI

(n(y)× gradϕ01(y))× gradyG(x,y) dS(y)

]
dS(x)

−
∫
SC

n(x) ·
[
(µr − 1)

∫
∂ΩM

(n(y)× gradϕ10(y))× gradyG(x,y) dS(y)

+

∫
∂ΩC∪ΩI

(n(y)× gradϕ10(y))× gradyG(x,y) dS(y)

]
dS(x)

}
/{∫

SC

n(x) ·
[
(µr − 1)

∫
∂ΩM

(n(y)× gradϕ01(y))× gradyG(x,y) dS(y)

−
∫

∂ΩC∪ΩI

(n(y)× gradϕ01(y))× gradyG(x,y) dS(y)

]
dS(x)

}
.

As soon as one knowsIC , (3.121) gives the desired unique solution of thesurface eddy current
problemof equation (3.112).
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3.3.3 Boundary Element Method and Spatial Current

The magnetostatic approach differs to a high degree from both the eddy current approach and
the impedance model, therefore, it also has to be implemented differently. The implementation
of the magnetostatic approach is only coarsly described in this section, whereas the two other
models are treated in detail in the following two chapters.

For the magnetostatic approach, the surfaces ofΩI ,ΩM andΩC are equipped with a shape regular
surface meshΓh composed of flat rectangles. Discretization of the boundary integral equations
(3.116) relies on a piecewise constant approximationϕh of ϕ and is based onmidpoint colloca-
tion [Hac89, Sect. 4.4]. The singular collocation integrals over the elements are evaluated exactly
by using the stable analytic expression derived by O. Steinbach1. Thus one gets linear systems
of equations for the unknown coefficients of the piecewise linear approximations ofϕ10 andϕ01.
They are solved iteratively by means of the BiCGStab Krylov method [vdV92]. Since the discrete
integral operator of the second kind is well conditioned, only a moderate number of iterations
has to be carried out.

The ultimate goal is to compute the spatial current distribution in the workpiece. So far, the
interior of the conductors has been neglected. It can be taken into consideration by employing
the skin effect formula: For anyx ∈ ΩC which is fairly close to the surface, denote the nearest
point on the surface byx∂ ∈ ∂ΩC . For almost allx ∈ ΩC this point is uniquely defined. Then
one sets

j(x) = j0 · e−
1+i
δ

·z , δ =

√
2

σµω
(3.122)

wherez := |x− x∂|. j0 is fixed for allx belonging tox∂ by the condition

k(x∂) =

∞∫
0

j(x(z)) dz

wherek(x∂) is the surface current density inx∂ . Now the material parameters are incorporated
into the model. Clearly, their temperature dependence can also be taken into accout.

1Private communication with Dr. Olaf Steinbach, University of Stuttgart
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Chapter 4

Excitation and Discretization

In this chapter it is shown how the desired excitation is incorporated into the eddy current ap-
proach and the impedance model, how these models are discretized, and how the occuring BEM
operators can be implemented. The path algorithm that is necessary in both models is also intro-
duced.

4.1 Excitation

As yet, the right hand sides of the systems of equations for eddy current approach and impedance
model are prescribed currents in the interior of the conductors. However, this is not what is
needed because the process for a given geometry and material is determined by the exciting total
current and its frequency only. The equations must represent this fact. To achieve this, one first

takes a look at the unknownλ ∈ H
− 1

2

|| (divΓ0,Γ). The surface divergence ofλ automatically
vanishes if one employs continuous surface potentialsλ = curlΓ φ := γD(grad φ) × n, but
this is only possible for simply connected surfaces. For non simply connected domains with
holes, such as the inductor of Figure 4.1, one has to add topological vector fieldsηk to cope with

Α

γ

Figure 4.1: Inductor with hole and pathγ
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possible jumps of the potential at pathsγk circumventing the holes, and to complete the kernel of
divΓ. Similar to the magnetostatic approach, these paths can be seen as traces of cutting surfaces
that patch theL holes of the configuration. Ifηk = curlΓ φk is a vector field derived from an
arbitrary potentialφk with a jump of size one[φk]γk = 1 at an arbitrary pathγk circumventing

holek, then eachλ ∈ H
− 1

2

|| (divΓ0,Γ) can, with a scaling factor1
µ+

, be written as

λ =
1

µ+

(
curlΓ φ+

L∑
k=1

αk · ηK

)
with αk ∈ C .

After inserting this into the equations (3.98)-(3.99) and (3.102)-(3.103), and by usingµ+ = µ0

one ends up with

µ0 F (E, v) + 〈V (curlΓ γDE), curlΓ γDv〉� (4.1)

−〈B(curlΓφ), γDv〉� −
L∑

k=1

αk 〈Bηk, γDv〉� = −iµ0ω〈j0, v〉Ω− ,

〈γDE,B(curlΓψ)〉� + 〈A(curlΓφ), curlΓψ〉� (4.2)

+

L∑
k=1

αk 〈Aηk, curlΓψ〉� = 0 ,

〈
γDE,Bηj

〉
�
+
〈
A(curlΓφ),ηj

〉
�
+

L∑
k=1

αk

〈
Aηk,ηj

〉
�

= 0 . (4.3)

HereF (E, v) is defined as

F (E, v) :=

{
q(E, v) for theeddy current approach,〈

1
η
γDE, γDv

〉
�

for the impedance model,
(4.4)

and the relation

〈N(γDE), γDv〉� = −〈curlΓ γDv, V (curlΓ γDE)〉� (4.5)

was used [Hip02] with the ordinary scalar single layer potentialV . The physical meaning of the
new unknowsαk should be described for the inductor of Figure 4.1. Each inductor is equivalent
to this one because each inductor has exactly one hole. It holds

Iexc =

∫
A

j dS =

∫
∂A

H ds =

∫
∂A

(n× (H× n) ds =

∫
∂A

(n× (
−1
iµ0ω

curlE× n)) ds

=

∫
∂A

(n× −1
iµ0ω

[curlΓ φ+ αexc · η]) ds =

∫
∂A

(n× (
−αexc

iµ0ω
· η) ds

=

∫
∂A

(n× (
−αexc

iµ0ω
· γD(gradφexc)× n) ds =

∫
∂A

−αexc

iµ0ω
· γD(gradφexc) ds

=
−αexc

iµ0ω
· [φexc]γ =

−αexc

iµ0ω
,

with the exciting currentIexc ∈ R . Soαk = −i µ0 ω Ik is proportional to the total currentIk ∈ R

which flows around holek. In the case of the inductor, this is not an unknown and can be put
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CHAPTER 4. EXCITATION AND DISCRETIZATION

on the right hand side of the system of equations (4.1)-(4.3), where the prescribed currentj0
can now be dropped. It must be pointed out that due to this fixing, equation (4.3) must not be
tested for the inductor. Then it is obvious that the new formulation cannot be equivalent to the
variational problems (3.98)-(3.99) and (3.102)-(3.103) any more since the excitation is attached
to the boundary, which is a set of measure zero. Therefore there is no current densityj0 in Ω−
that can generate this excitation. Uniqueness of the new variational problem can still be shown
as in the last chapter, and it can finally be written as:

SeekE ∈H(curl; Ω−), a continuous potentialφ, andL− 1 unknownsαk ∈ C such that

µ0 F (E, v) + 〈V (curlΓ γDE), curlΓ γDv〉� (4.6)

−〈B(curlΓφ), γDv〉� −
L−1∑
k=1

αk 〈Bηk, γDv〉� = −iµ0ωIexc 〈Bηk, γDv〉� ,

〈γDE,B(curlΓψ)〉� + 〈A(curlΓφ), curlΓψ〉� (4.7)

+
L−1∑
k=1

αk 〈Aηk, curlΓψ〉� = iµ0ωIexc 〈Aηk, curlΓψ〉� ,

〈
γDE,Bηj

〉
�
+
〈
A(curlΓφ),ηj

〉
�

(4.8)

+
L−1∑
k=1

αk

〈
Aηk,ηj

〉
�

= iµ0ωIexc
〈
Aηk,ηj

〉
�
,

for all test fieldsv ∈ H(curl; Ω−), for all continuous potentialsψ, and for allL − 1 topo-
logical vector fieldsηk. HereL ∈ R is the total number of holes in the workpiece and the
inductor.

4.2 Discretization

The domainΩ− of the conductors is equipped with a triangulationΩh arising from CAD data
files consisting of tetrahedra. This triangulation also induces a surface meshΓh consisting of
triangles. Linear edge elements are used as conforming finite element space forH(curl; Ω−),
and the space is designated byND1(Ωh). The discretized electric fieldEh and its test field
vh are part of this space. What remains on the surface is the traceND1(Γh) of this space,
andγDEh, γDvh are part of it. The discrete potentialsφh andψh are chosen in the space of
the piecewise continuous linear functionsS1(Γh). For this kind of conforming Garlerkin finite
element discretization, a quasi-optimal a priori-error estimator can be established. This means
that the error of the discretized solution of (4.6)-(4.8) vanishes for decreasing meshwidthsh. For
a more detailed discussion of the above topics see [Hip02].

In the following, the basis functions of the boundary operators are examined. For this purpose, it

is always the impedance modelF (E, v) :=
〈

1
η
γDE, γDv

〉
�

which is chosen in equation (4.4)

as it involves only boundary operators. If the eddy current approach is to be applied, it is easy to
replace this definition byF (E, v) := q(E, v).
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r
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mi
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.

Figure 4.2: Settings for the definition of basis functions ofS1(Γh)

4.2.1 Basis Functions of S1(Γh), ND1(Γh),

All occuring functions of the boundary part of (4.6)-(4.8) can be written as linear combinations of
basis functions ofND1(Ωh) andcurlΓS1(Γh). This also holds for each topological vector field
ηk with jump at the pathγk, if the surface-curl is restricted toΓ \γk. Furthermore, all functions
can be derived from the basis functionsψmi of the spaceS1(Γh).

In the followingm, i, j, k are integer numbers and the vectorsfmi, tmi, nm, rmi in R
3 are

defined according to Figure 4.2. Their absolute value is denoted by thin characters,fmi := ‖fmi‖
is an example. It holdstmi = nm = 1 by definition, andr ∈ R

3 is the position vector.

Definition 4 (Basis functions of S1(Γh) ) Basis functionsψi of S1(Γh) are hat functions on
node i, defined by

ψi(r) :=
∑
m

ϕmi(r) , (4.9)

with the index m running over all triangles adjacent to node i and

ϕmi(r) := −
fmi

2 · Tm
(r − rmk) · tmi k 	= i (4.10)

with support ofϕmi := triangle m, andTm := area of trianglem.

The potentialφ can now be formulated in terms of these basis functions as

curlΓ φ =
∑

nodes i

φi · curlΓ ψi with φi ∈ C . (4.11)

Theorem 7 The linear functionsϕmi(r) are also basis functions ofS1(Γh), and it holds
ϕmi(rmn) = δin.
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Proof: Let i, k, and j be the three nodes with associated edges on the opposite side in the
triangle, andΩij be the angle between the edges i and j. Then there are three cases:
Case 1: n = k =⇒ (rmk − rmk) = 0 =⇒ ϕmk(rmn) = 0
Case 2: n = j =⇒ (rmj − rmk) ⊥ tmi =⇒ ϕmj(rmn) = 0
Case 3: n = i =⇒

ϕmi(rmi) := − fmi

2 · Tm
(rmi − rmk) · tmi = − fmi · (fmj · tmi)

2 · 0.5 · ||fmi × fmj ||

= −fmi · (fmj · cos[Ωij + π/2])

||fmi × fmj ||
=

fmi · fmj · sin[Ωij ]

||fmi × fmj ||
= 1

�

It follows for curlΓS1(Γh) that

curlΓ ϕmi = γD(gradϕmi)× nm = γD(−
fmi

2 · Tm
tmi)× nm (4.12)

= − fmi

2 · Tm
· (tmi × nm) = − fmi

2 · Tm
.

The topological vector fieldsηk = curlΓ φk arise from a potentialφk with a jump of size one
[φk]γk = 1 at a pathγk circling holek. The paths can automatically be generated as a series of
edges, see Section 4.4. Then the topological vector fields can uniquely be defined as

ηk :=
∑

nodes mi

ηk,mi · curlΓ ϕmi(r) (4.13)

with

ηk,mi :=

{
1 if nodei is on pathγk and trianglem is on the ’right side’,
0 else.

(4.14)

Here the ’right side’ is defined according to Figure 4.3, where the resultingηk is depicted as
arrows.

Figure 4.3: Topological vector field along pathγ

38



4.2. DISCRETIZATION

Definition 5 (Basis functions of ND1(Γh)) The basis functions ofND1(Γh) in a single tetra-
hedron are

bmk := ϕmi · gradϕmj − ϕmj · gradϕmi , (4.15)

with support ofbmk := triangle m.

Theorem 8 It holds

bmk =
1

2 · Tm
(r − rmk)× nm . (4.16)

Proof:

bmk =
fmi · fmj

4 · T 2
m

{
[(r − rmk) · tmi] · tmj − (r − rmk) · tmj] · tmi]

}
=

fmi · fmj

4 · T 2
m

(r − rmk)× (tmj × tmi)

=
fmi · fmj

4 · T 2
m

(r − rmk)× (nm · sin(Ωij))

=
1

2 · Tm
(r − rmk)× nm

�

Theorem 9 The basis functions ofND1(Γh) are tangentially continuous, except for the sign:
(f̂mk·bmk)f̂mk = ±(f̂ni·bni)f̂ni if edge(mk)=edge(ni), with unit vectorsf̂mk := fmk

fmk
andf̂ni :=

fni

fni
.

Proof: The vector̂fmk lies in the plane orthogonal totmk. This plane has the basis functionsf̂mk

andnm. Asbmk has only components orthogonal tonm, it follows

(f̂mk · bmk)f̂mk = [tmk × bmk]× tmk =

(
−nm

2 · Tm
· [(r − rmk) · tmk]

)
× tmk

=

(
−nm

2 · Tm
· 2 · Tm
fmk

)
× tmk =

−nm

fmk
× tmk

=
fmk

f 2
mk

= ± fni
f 2
ni

.

�

In the CAD data files, the order of the points in a triangle is fixed and they define the outer
normal by a right hand rule. Then it always holdsf̂mk = −f̂ni. The electric field must be
tangentially continuous at the interface of two triangles. At the edgej with basis functions
bmk andbni on the adjacent trianglesm and n, this forcesE = Ej · γDvj with γDvj :=
[sign(bmk)bmk + sign(bni)bni], depending on the orientation of the basis functions. For the
discretized electric field one finds

γDE =
∑

edges j

Ej · γDvj with Ej ∈ C . (4.17)
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The surface curl of the basis functions can be written as

curlΓ bmk = nm · curl bmk = nm · (grad×bmk) (4.18)

=
nm

2 · Tm
· [grad×(r× nm)] =

nm

2 · Tm
· [−nm(grad r)] =

−3
2 · Tm

.

Now all occuring functions can be expressed with the basis functions that can be obtained from
fundamental triangle properties.

4.2.2 Matrix Representation

With the knowledge of the basis functions, the system of equations (4.6)-(4.8) can now be repre-
sented in terms of a matrix. It consists of some submatrices which are defined as:

M	i, k
:= µ0

〈
�[1
η
] · γDvk, γDvi

〉
�

+ 〈V (curlΓ γDvk), curlΓ γDvi〉� , (4.19)

M
i, k
:= µ0

〈
�[1
η
] · γDvk, γDvi

〉
�

, (4.20)

Qi, k := 〈A(curlΓψk), curlΓψi〉� , (4.21)

Bi, k := 〈B(curlΓψi), γDvk〉� , (4.22)

with the aid of the abbreviations ’� := real part’ and ’� := imaginary part’, and the indicesi for
the rows andk for the columns. LetNn be the number of nodes andNe be the number of edges,
then the matricesM	 andM
 are(Ne × Ne)-dimensional,Q is (Nn × Nn)-dimensional, and
B is (Nn×Ne)-dimensional. All matrices are real valued, and it holdsQ = QT , M	 = MT

	, and
M
 = MT


. The right hand side is denoted by

RE, i := 〈Bη, γDvi〉� , (4.23)

Rφ, i := 〈Aη, curlΓψi〉� , (4.24)

Rα, i := 〈Aη,ηi〉� . (4.25)

One has to solve the following equation for the impedance model


M	 −M
 −BT 0
−M
 −M	 0 BT

−B 0 −Q 0
0 B 0 Q





E	
E

φ	
φ



 = µ0ωIexc. ·




0
RE

0
Rφ


 , (4.26)

in the case that the workpiece has no hole, i.e. L=1. The occuring matrix is symmetric but not
positive definite.

With (L − 1) holes in the workpiece, one additionally needs the(Ne × (L − 1))-dimensional
matrixFup, the(Nn× (L−1))-dimensional matrixFdo, and the((L−1)× (L−1))-dimensional
matrixH

Fupi,k := 〈Bηk, γDvi〉� , (4.27)

Fdoi,k := 〈Aηk, curlΓψi〉� , (4.28)

Hi,k := 〈Aηk,ηi〉� , (4.29)
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and in this most general case one has to solve the problem




M	 −M
 −BT 0 −Fup 0
−M
 −M	 0 BT 0 Fup

−B 0 −Q 0 −Fdo 0
0 B 0 Q 0 Fdo

−Fup
T 0 −Fdo

T 0 −H 0
0 Fup

T 0 Fdo
T 0 H







E	
E

φ	
φ

α	
α



 = µ0ωIexc. ·




0
RE

0
Rφ

0
Rα


 . (4.30)

4.3 Semi-Analytical Integration of the Kernels

In order to get a exact solution, it is necessary to calculate the occuring matrix entries of (4.19)-
(4.22) , (4.27)-(4.29) as accurately as possible. The entries consist of boundary integrals over the
triangles�m and�n which have the form∫

�n

∫
�m

f(x, y) dS(x) dS(y) ,

with a singular functionf at x = y. It is due to the singularities that a numerical Gaussian
quadrature scheme is not applicable for both integrals. A semi-analytical approach1 is utilized,
where the interior integral is calculated analytically and the exterior integral is evaluated by a
Gaussian quadrature scheme.

Plugging the basis functions and relations of Section 4.2.1 into the operatorsM	 of equation
(4.19),M
 of equation (4.20), and forQ of equation (4.21), one gets

µ0

〈
�[1
η
] · bnk,bmi

〉
�

+ 〈V (curlΓ bnk), curlΓ bmi〉� = (4.31)∫
�n

∫
�m

(
(bnk · bmn) · µ0 · �[

1

η
] · δnm +

9

4TnTm
G(x,y)

)
dS(x) dS(y) ,

µ0

〈
�[1
η
] · bnk,bmi

〉
�

=

∫
�n

∫
�m

(bnk · bmn)

(
µ0 · �[

1

η
] · δnm

)
dS(x) dS(y) , (4.32)

〈curlΓϕnk,A(curlΓϕmi)〉� =

〈
fnk

2 · Tn
,A(

fmi

2 · Tm
)

〉
�

(4.33)

=

∫
�n

∫
�m

1

4 Tn Tm
(fnk · fmi) ·G(x,y) dS(x) dS(y) .

1I am indebted to Dr. Olaf Steinbach, University of Stuttgart, for the analytical interior integration of single layer
and double layer potential (private communication).
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So all three operators consist of a single layer potential, either vector or scalar valued. The ana-
lytical integrations are done by Dr. O. Steinbach and are therefore not be repeated here. For the
operatorB it follows

〈B(λ), γDv〉�
=

∫
Γ

B(λ)(x) · γDv(x) dS(x) =

∫
Γ

γ+N

∫
Γ

λ(y)G(x,y)dS(y) · γDv(x) dS(x)

=

∫
Γ

[
curl+x

[ ∫
Γ

λ(y)G(x,y)dS(y)
]
× nx

]
· γDv(x) dS(x)

=

∫
Γ

[(∫
Γ

gradxG(x,y)× λ(y) dS(y)− 1

2
nx × λ(x)

)
× nx

]
γDv(x) dS(x)

=

∫
Γ

∫
Γ

[
λ(y)[nx ·gradxG(x,y)]− gradxG(x,y)[λ(y)·nx]

]
γDv(x) dS(y) dS(x)

− 1

2

∫
Γ

λ(x) · γDv(x) dS(x) ,

by using the jump condition [Rei93]

curl+x

∫
Γ

λ(y)G(x,y)dS(y) =

∫
Γ

curlx
[
λ(y)G(x,y)

]
dS(y)− 1

2
n(x)× λ(x) .

This can be expressed by the basis functions. Then one has to integrate

〈B(curlΓ ϕni),bmk〉� =∫
�n

∫
�m

[
− fni

2 · Tn
[nx · gradxG(x,y)] + gradxG(x,y)[

fni
2 · Tn

· nx]

]
bmk(x) dS(x) dS(y)

+ δmn ·
1

2

∫
�m

fni
2 · Tn

bmk(x) dS(x)

=

∫
�n

∫
�m

[
fni

2 · Tn
bmk(x)] · [

δmn

2 Tm
− nx · gradxG(x,y)] dS(x) dS(y)

+

∫
�n

∫
�m

[
fni

2 · Tn
· nm] · [bmk(x) · gradxG(x,y)] dS(x) dS(y) . (4.34)

The first integral consists of an easily integrable diagonal part and a double layer potential. The
second integral is a modified double layer potential. Note that the kernel is vector-valued.

As an example for the analytical integration of the inner integral, the modified double layer
potential is chosen and integrated below.
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Figure 4.4: Settings for the analytical integration

Therefore the notation of Figure 4.4 is used and every position vectorr can be expressed as
r = rmk + s r1k + t r2k + τ nm with t, s, τ ∈ R , and it holds

bmk =
1

2 · Tm
(s r1k + t r2k)× nm =

1

2 · Tm
(t r1k − s r2k) .

With the definitions

sk := ‖r∗ − rmk‖ , tk := ‖rmi − rmj‖ , t∗ := ‖r∗ − rmi‖ ,

α1 := − t
∗

sk
, α2 := −tk − t

∗

sk
, y = rmk + sy r

1
k + ty r

2
k + τy nm

one obtains∫
�m

bmk(x) · gradxG(x,y) dS(x)

=
1

4 π

∫
�m

bmk(x) ·
x − y

||x − y||3 dS(x)

=
1

8 πTm

∫ ∫
(t r1k − s r2k) ·

(s− sy) · r1k + (t− ty) · r2k + τy · nm

[(s− sy)2 + (t− ty)2 + τ 2y ]
3/2

dt ds

=
1

8 πTm

∫ ∫
(s− sy) · t − (t− ty) · s

[(s− sy)2 + (t− ty)2 + τ 2y ]
3/2

dt ds

=
1

8 πTm

[ ∫
t

∫
s− sy

[(s− sy)2 + (t− ty)2 + τ 2y ]
3/2

ds dt

−
∫
s

∫
t− ty

[(s− sy)2 + (t− ty)2 + τ 2y ]
3/2

dt ds
]

43



CHAPTER 4. EXCITATION AND DISCRETIZATION

=
1

8 πTm

[ 0∫
−t∗

t

sk∫
t/α1

s− sy
[(s− sy)2 + (t− ty)2 + τ 2y ]

3/2
ds dt

+

tk−t∗∫
0

t

sk∫
t/α2

s− sy
[(s− sy)2 + (t− ty)2 + τ 2y ]

3/2
ds dt

−
sk∫
0

s

α2s∫
α1s

t− ty
[(s− sy)2 + (t− ty)2 + τ 2y ]

3/2
dt ds

]

=
1

8 πTm

[ 0∫
−t∗

t

sk−sy∫
t/α1−sy

x

[x2 + (t− ty)2 + τ 2y ]
3/2

dx dt

+

tk−t∗∫
0

t

sk−sy∫
t/α2−sy

x

[x2 + (t− ty)2 + τ 2y ]
3/2

dx dt

−
sk∫
0

s

α2s−ty∫
α1s−ty

x

[x2 + (s− sy)2 + τ 2y ]
3/2

dx ds
]
.

The inner integral can be found in integral tables
∫
x · [x2 + a2]−3/2 dx = −[x2 + a2]−1/2, then

what remains for the outer integral is

8 πTm ·
∫
�m

bmk(x) · gradxG(x,y) dS(x)

=

0∫
−t∗

∣∣∣∣ −t
[x2 + (t− ty)2 + τ 2y ]

1/2

∣∣∣∣sk−sy

x=t/α1−sy

dt+

tk−t∗∫
0

∣∣∣∣ −t
[x2 + (t− ty)2 + τ 2y ]

1/2

∣∣∣∣sk−sy

x=t/α2−sy

dt

+

sk∫
0

∣∣∣∣ s

[x2 + (s− sy)2 + τ 2y ]
1/2

∣∣∣∣α2s−ty

x=α1s−ty

ds

=

tk−t∗∫
−t∗

−t
[(sk − sy)2 + (t− ty)2 + τ 2y ]

1/2
dt

+

0∫
−t∗

t

[(t/α1 − sy)2 + (t− ty)2 + τ 2y ]
1/2

dt +

tk−t∗∫
0

t

[(t/α2 − sy)2 + (t− ty)2 + τ 2y ]
1/2

dt

+

sk∫
0

s

[(α2s− ty)2 + (s− sy)2 + τ 2y ]
1/2

ds−
sk∫
0

s

[(α1s− ty)2 + (s− sy)2 + τ 2y ]
1/2

ds
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=

tk−t∗∫
−t∗

−t
[t2 − 2ty · t + (sk − sy)2 + t2y + τ 2y ]

1/2
dt

+

0∫
−t∗

t

[(1/α2
1 + 1) · t2 − 2(sy/α1 + ty) · t+ s2y + t2y + τ 2y ]

1/2
dt

+

tk−t∗∫
0

t

[(1/α2
2 + 1) · t2 − 2(sy/α2 + ty) · t + s2y + t2y + τ 2y ]

1/2
dt

+

sk∫
0

s

[(α2
2 + 1) · s2 − 2(α2ty + sy) · s+ t2y + s2y + τ 2y ]

1/2
ds

−
sk∫
0

s

[(α2
1 + 1) · s2 − 2(α1ty + sy) · s+ t2y + s2y + τ 2y ]

1/2
ds .

All these integrals are of the same form which can also be looked up in integral tables∫
x√

ax2 + bx+ c
dx =

{ √
ax2+bx+c

a
− b

2a

(
1√
a
· arsinh[ 2ax+b√

4ac−b2
]
)

if 4ac− b2 > 0, a > 0√
ax2+bx+c

a
− b

2a

(
1√
a
· ln | 2ax− b |

)
if 4ac− b2 = 0, a > 0.

Now all matrix entries of (4.19)-(4.22) are described in terms of the fundamental basis functions
and are integrated semi-analytically. The entries (4.27)-(4.29) can easily be derived from these
expressions.

4.4 Paths

As already stated in Section 4.1, the excitation is to be integrated into the impedance model and
into the eddy current approach by imposing jumps of the scalar magnetic potential on closed
paths, i.e., cycles that circle the hole in the inductor. Jumps also have to be imposed on paths
around holes in the workpiece in order to determine the total currents that flow around these
holes. The cycles have to be constructed automatically by the program and not by the user for
different reasons: First, it is annoying to construct paths by hand for a complicated geometry
or for a triangulation with many faces. Second, for some geometries it is very difficult to find
the desired cycles, i.e., a path that circumvents the hole. More precisely, such a cycle is anon-
contractablecycle [Jän01] that isboundingwith respect to theexterior (short ncbe). Bounding
with respect to the exterior in simple words means that the cycle is the boundary of a cutting
surface that lies exclusively in the exterior of the conductor. An example is the cycleγ1 in Figure
4.5. Cycleγ2 in Figure 4.5 is non-contractable and bounding with respect to the interior (short
ncbi). It is prohibited to impose a current on such a cycle because the current would flow through
the vacuum.

This section presents the algorithm for the automatical construction of the relevant cycles. The
algorithm is based on the triangulationΓh of the surface and the path consists of an ordered series
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γ1

γ2

Figure 4.5: Representatives of the basis ofH1(Γh, Z )

of surface vertices connected by surface edges. The intention is to explain the functionality of the
algorithm, not to prove every detail. Rigorous proofs can be looked up in [HO01]. The following
definitions, theorems, and proofs are, like the above definition of ’bounding’, to be understood
in the sense of an explanation. Some aspects are illustrated by using the torus as an example,
but the algorithm, of course, can be applied to arbitrary parts. Note that the inductor is always
equivalent to a torus since it has exactly one hole.

It is clear that there is not onlyγ1 which is ncbe. Closed pathsγ ′
1 which are equivalent toγ1 are

calledhomotopiccycles, written asγ1 � γ′1. This means that they can be transformed continu-
ously intoγ1 on the surface [Kn¨o96]. It is obvious thatγ2 cannot be transformed intoγ1 on the
surface, soγ1 	� γ2.

Definition 6 (Basis of H1(Γh, Z ) , Betti number) The cycles(γ1, · · · , γ2N) are called a repre-
sentative of the basis of the homology groupH1(Γh, Z ) if each closed path on the surfaceΓh is
homotopic to a linear combination (of integer numbers∈ Z ) of (γ1, · · · , γ2N). The rank of this
basis is called Betti number and it is two times the number of holesN in the surface.

The cyclesγ1 andγ2 of Figure 4.5 are representatives of a basis for the torus. The path algorithm
consists of the following two steps:

1. Find a representative of the basis, see Section 4.4.1

2. ConstructN linear independent cycles that are ncbe, see Section 4.4.2

Step one of this algorithm is purely combinatorial and relies on interpreting the triangulationΓh

of the surfaceΓ := ∂Ω of the item as a graph. Therefore some assumptions on the geometry of
Ω have to be made. A demand is thatΩ has a Lipschitz-continuous boundary, that is,Γ has to
have a local representation as the graph of a Lipschitz-continuous function [Gri85, Sect 1.2.1].
Topologically speaking, this forces̄Ω to be homeomorphic to a compact domain with smooth
boundary. Firstly, this implies∂Γ = ∅ and that each face is part of a tetrahedron. A second
consequence is thatΓ is orientable. Thus, we can fix an orientation of∂Ω and endow all triangles
with the induced orientation. Thirdly, the surface is ’locally flat’ in the sense that exactly two
faces are incident to each edge. Situations like the ’double cone’ and ’double ridge’ depicted in
Figure 4.6 are ruled out.
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Figure 4.6: Surface configurations not possible in the case of a Lipschitz-polyhedron

At first glance it seems that one can successfully tackle the problem in an entirely discrete setting,
relying on the connectivity ofΩh alone. Yet, consider a plain triangulated torus. Cut it at its small
circle, twist by2π and reconnect as in Fig. 4.7. If the first cycle was ncbe, this operation will

γ3

Figure 4.7: Destroying ncbe-cycle

render it non-relevant. Possible new representatives of the basis are(γ3, γ1) or (γ3, γ2). However,
the combinatorial description of the mesh remains the same. It is evident that it is impossible to
find the desired cycles merely by using combinatorial information aboutΩh. Unless one wants to
use an exterior mesh, one also has to rely on information about the geometry ofΩ. This is done
in step two, where the cycles are classified and the ones relevant are constructed.

4.4.1 Find a Basis

The example of a hollow torus shows that not every item has a surface that consists of only
one component. But it is possible to restrict the explanation to this case because the algorithm
find a basiscan be applied to each component separately. In order to introduce the algorithm,
some definitions must be made: Denote byS0 := Vh,S1 := Eh, andS2 := Fh the sets of
vertices, edges, and faces of the surface meshΓh coveringΓ. An l-simplexx ∈ Sl is contained in
anotherk-simplexy ∈ Sk, x ≺ y, if all vertices ofx are vertices ofy as well. Thek-simplicial
neighborhood ofx ∈ Sl is defined as

Sk(x) := {y ∈ Sk, x ≺ y or y ≺ x} .
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With these notations, the three internal steps of the algorithmfind a basiscan be written as

1.1 build face-tree according to Figure 4.8,

1.2 build node-tree according to Figure 4.10,

1.3 build cycles according to Figure 4.12.

Dh := Fh; EDh := ∅;
while (Dh 	= ∅) {

Pick t ∈ Dh; Q := ∅; Q.push back(t); Dh := Dh \ {t};
while (Q 	= ∅) {
t := Q.pop front();
for each (e′ ∈ S1(t)) {
{t′} := S2(e′) \ {t};
if (t′ ∈ Dh) { Dh := Dh \ {t′}; Q.push back(t′); EDh := EDh ∪ {e′}; }

}}}

Figure 4.8: Algorithm build face-tree

After the face-tree is built in step 1.1, one finds a situation as shown in Figure 4.9 for the example
of the torus of Figure 4.5. In Figure 4.9, the torus is cut along the cyclesγ1 andγ2, and opposite
sides must be identified.

Figure 4.9: Face-tree in the case of a triangulated torus, which is represented by identifying
opposite sides of a rectangle. Output of the algorithm from Figure 4.8.
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The edges which are ’part of the tree’, i.e., those edges which are touched by the connecting lines
of the faces, are collected in the setEDh . Its complement, i.e., the set of the remaining edges, is
denoted byE i .

Theorem 10 No cycle inE i is contractable.

Proof: If a contractable cycle existed the surface would consist of the ’interior’ of this cycle and
the ’exterior’. The faces of these regions would not have a connection, and this is a contradiction
to the fact that the faces are connected by the face-tree.�

Theorem 11 Each cycleγ on the surface is homotopic to a cycle inE i .

Proof: To prove this, one takes a cycleγ that can have edges inEDh , and wipes it off intoE i . This
continuous transformation can always be done according to the following algorithm. First, fix an
arbitrarytr ∈ Fh as ’root’ of the face-tree. This makes it possible to assign to each trianglet in
the tree a unique numberd(t) ∈ N , its distance to the root, i.e., the length of the unique path in
the tree connectingt andtr. Then it is also possible to establish a distance function for the edges
’in the tree’

d(e) := min{d(t), e ≺ t}, e ∈ EDh .

One sorts the edges of the cycleγ with respect to this ’distance function’. Letej be the edge
with the smallest distance in the cycleγ. Select the facetj adjacent to the edgeej that has the
bigger distance from the root and replace the edgeej in the cycleγ by the two other edges intj.
These new edges might either lie inE i or again inEDh . The crucial point is that if they are inEDh ,
then their distance to the root is bigger than the distance ofej ! So, repeating this construction,
one arrives at a cyclẽγ in E i with γ̃ � γ. �

The last theorem ensures that a representative of a basis ofH1(Γh, Z ) is included inE i . The
remaining task is to explicitely construct the cycles, i.e., the series of points. Therefore, one first
builds a node-tree inE i according to the algorithm presented in Figure 4.10 (the edges inE i



are connected [HO01]). Due to theorem 10 one finds exactly2N edges, which would close the
node-tree and collects them in the setE i∗. Starting from the nodes of these edges, one constructs
the cycles by climbing up the node-tree tree to its root, according to the algorithm of Figure
4.12. The cycles in this algorithm are stored as2N lists of edges, but this structure can easily be
converted into the desired series of nodes.
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Lh := Vh; E i∗ := ∅;
while (Lh 	= ∅) {

Pickv ∈ Lh; v.depth := 0; Lh := Lh \ {v}; Q := ∅; Q.push back(v);
while (Q 	= ∅) {
v := Q.pop front();
for each (e′ ∈ S1(v) \ EDh ) {
{v′} := S0(e′) \ {v};
if (v′ ∈ Lh) { Lh := Lh \ {v′}; Q.push back(v′); v′.depth = v.depth+1; }
else { E i∗ := E i∗ ∪ {e′}; }

}}}

Figure 4.10: Algorithm build node-tree

e1

e2

Figure 4.11: Construction of the node-tree (dashed lines) on the torus according to the algorithm
of Figure 4.10, yieldingE i∗ := {e1, e2}.
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for each (e ∈ E i∗) {
list<Edge> se; se := ∅; {x,y} := S0(e); se.push back(e);
do {

while (x.depth > y.depth) {
for each (e′ ∈ S1(x) \ EDh ) {
{z} := S0(e′) \ {x};
if (z.depth < x.depth) { se.push back(e′); x← z; break; }}}

while (x.depth ≤ y.depth and x 	= y) {
for each (e′ ∈ S1(y) \ EDh ) {
{z} := S0(e′) \ {y};
if (z.depth ≤ y.depth) { se.push front(e′); y← z; break; }}}

}
while (x 	= y); }

Figure 4.12: Algorithm build cycles

e1

e2

Figure 4.13: Two circuitsse1 (solid) andse2 (dashed) on the triangulated torus as produced by
the algorithm of Figure 4.12.
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4.4.2 Construct Linear Independent ncbe-Cycles

As pointed out in Section 4.4, finding ncbe-generators ofH1(Γh, Z ) involves geometric con-
siderations, because one has to distinguish between ncbe-cycles, ncbi-cycles, and mixed cycles.
All these types of cycles can occur in the basis. A look at Figure 4.5 in combination with the
knowledge of Biot-Savart’s law gives an idea of how to cope with that problem. If cycleγ1 is
submerged into the interior of the torusγ1 → γ1 ↓ and a loop-current of strength one is imposed
on this cycle, then a current of1 Ampère flows through cycleγ2.

1 =

∫
γ2

H d�s(y)

= −
∫
γ2


∫
γ1↓

gradyG(x,y)× d�s(x)


 d�s(y) (4.35)

= −
∫
γ2

∫
γ1↓

gradyG(x,y) · (d�s(x)× d�s(y))

HereG is again the singular function of the Laplacian. The situation is illustrated in the left
picture of Figure 4.14. If both cycles change their roles, like in the right picture, andγ2 is sub-
merged into the torus, no current will flow throughγ1. So this process of submerging one cycle

γ1↓ γ2 γ1 γ2↓

Figure 4.14: Left submergeγ1, right submergeγ2

and testing it with an other one seems to be the key to the desired geometrical information. In
order to extend the idea to a more general setting, therelative linking numberL(γ, γ ′) of two
cyclesγ andγ′ is defined as

L(γ, γ′) := −
∫
γ

∫
γ′
gradyG(x,y) · (d�s(x)× d�s(y)) . (4.36)

The mapping from two cycles intoZ by submerging and testing can now be written as

〈γ′, γ〉 := L(γ ↓, γ′) (4.37)

in compact format. For the torus it holds〈γ2, γ1〉 = 1 and〈γ1, γ2〉 = 〈γ1, γ1〉 = 〈γ2, γ2〉 = 0.
This can be ordered as a matrix

A := (〈γj , γi〉)2Ni,j=1 ∈ Z
2N,2N . (4.38)
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Each cycle on the surface of the torus is homotopic to a cycleδ =
2N∑
j=1

κjγj, and one finds the

relevant ncbe-cycle2 as the kernel of the matrix�κ ∈ Ker(AT ). This fact can also be proved for
other representatives that consist not only of purely ncbe- and ncbi-cycles. Furthermore, it can
be generalized for the case ofN holes [HO01]. Thus the following approach to the construction
of the relevant surface cycles can be used:

2.1 Compute the matrixA by evaluation of the pairing〈·, ·〉.

2.2 Use Gaussian elimination with full pivoting inZ to obtain an integral basis forKer(AT ).
Every basis vector will define a combination ofγ1, . . . , γ2N that provides a relevant cycle.

The first step of this scheme needs to be discussed in more detail because one has to provide an
algorithm for computing representatives of the submerged cyclesγi↓, i = 1, . . . , 2N . It turns out
to be most efficient to split the task into

2.1.1 the computation of shifted surface cyclesγ̂i, i = 1, . . . , 2N , which clear all vertices ofΓh,
and satisfŷγi � γi,

2.1.2 replace every cycleγi by its submerged cycleγi ↓ such that̂γi ∩ γi ↓= ∅,

2.1.3 compute linking numbers〈γi, γk〉.

The new cycles are given by sequences of points. The restriction in 2.1.1 to cycles that clear
all vertices ofΓh is necessary to avoid complications in the numerical integration of the linking
numbers at singularities ofG. The algorithm for the construction of the shifted paths as midpoints
of edges is presented in Figure 4.15, whereas Figure 4.16 illustrates the result.

Given: A cycle as a sequence of points (v1, . . . ,vN)
list<Point> P := ∅;
Pick {t} ∈ {S2(v1) ∩ S2(v2)};
for (i = 1, i ≤ N, i++) {
{ecurrent} = S1(vi) ∩ S1(vi+1);
{enext} = S1(vi+1) ∩ S1(vi+2);
{p} = S0(t) \ S0(ecurrent);
{econnect} = S1(vi+1) ∩ S1(p);
while (ecurrent 	= enext) {
P .push back(midpoint ofeconnect);
{t} = S2(econnect) \ {t};
{p} = S0(t) \ S0(econnect);
{econnect} = S1(vi+1) ∩ S1(p); }}

Figure 4.15: Construction of a shifted cycle(p1 ,p2 , · · · ). Note thatvN+1 := v1.

2in the case of the torus it isγ1
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p1
p2

p3,p7

p4,p6

p5

p8

v1

v2

v3

v4

v5

v6

γ

Figure 4.16: Shift a cycle

One gets the submerged paths by inserting the center of gravity of a tetrahedron adjacent to two
consecutive verticesvi, vi+1. The simple algorithm is shown in Figure 4.17. Only at this stage
the volume meshΩh is used!

Given: A cycle as a sequence of points (v1, . . . ,vN)
list<Point> U := ∅;
for (i = 1; i ≤ N ; i++) {
U .push back(vi);
T := tetrahedron adjacent tovi andvi+1 ;
U .push back(center of gravity ofT );}

Figure 4.17: Submerging of a cycle. Output is polygon(u1 ,u2 , · · · ).

Next, one has to compute the relative linking number of a submerged cycleγ ↓ and a shifted
cycle γ̂. Analytic expressions are available for the inner integrals. For the outer integrals one
has to resort to numerical quadrature. Here, it is important to take into account the singular
behavior of the kernelG(x,y) for x → y. It entails anadaptiveapproach to quadrature: A
Gauß-Legendre quadrature formula of order2n (i.e., with n nodes),n ∈ N , on each interval
of an equidistant subdivision of[0; 1] into kij, kij ∈ N , parts. Adaptivity will be achieved by
adjustingkij depending on the relative position of the line segments[ui,ui+1] and [pi,pi+1].
Due to the construction of(u1 ,u2 , · · · ), and(p1 ,p2 , · · · ) they have no common points!
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4.4.3 Summary

The complete algorithm for the construction of the relevant paths now looks as follows:

1. Find a representative of the basis

1.1 Build face-tree

1.2 Build node-tree

1.3 Build cycles

2. ConstructN linear independent ncbe-cycles

2.1 Compute matrixA by evaluation of the pairing〈·, ·〉
2.1.1 Shift surface cycles
2.1.2 Submerge cycles
2.1.3 Compute〈γi, γk〉.

2.2 Gaussian elimination to obtainKer(AT )

For shape-regular, quasiuniform families of meshes, the asymptotic complexity of the algorithm
is shown [HO01] to beO(M 2), whereM is the number of edges ofΓh. A typical example
for a workpiece to be hardened is the cylinder of Figure 4.18 with two intersecting holes drilled
through it. For a workpiece this is nothing special, but from a topological point of view, nontrivial
cycles have to be constructed.

Figure 4.18: Surface mesh (left) and cyclesγ1, . . . , γ6 (right)

Another example is the so-called trefoil knot. Topologically, this knot has the most elaborate
complexity, where cutting surfaces are hard to construct. The path algorithm is also able to cope
with this kind of problem. Figure 4.19 qualitatively shows the x-, y-, and z-components of the
surface current, which is fully automatically calculated by the impedance model. Note that the
current flows around the knot.
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Figure 4.19: Surface current components of the trefoil knot. Black positive, white negative.
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Chapter 5

Solution Procedures

This chapter presents some practically important facts about the implementation of a solver for
eddy current approach and impedance model. First it is shown how to handle the FEM part,
especially the non-linear ferromagnetic permeability. Then the iterative solver is determined by
some experiments with a small test problem that can also be solved exactly with a direct solver.
The compression technique for the BEM operators is introduced in the last section of this chapter.

5.1 Solution in the Interior

The sesquilinear formq(E, v) of the FEM part in equation (3.90) that has to be evaluated is
discretized with linear edge elements. The resulting matrix is here calledAFEM .

In the impedance modelan equation of the formAFEM x = b must be solved for a given right
hand sideb (from the BEM part). This is done by applying a preconditioned iterative solver of
Krylov type. Several complex and real solvers have been tested.

If a fixpoint iteration(Picard method) [Kol02] is used to master the non-linearµr, then acomplex
solvercan be used for the FEM part. Nearly every method is convergent with different precondi-
tioners. The fixpoint iteration with complex solver is used for the impedance model.

Splitting the equations into real and imaginary parts is mandatory if the fastNewton-Raphson
method[Kol02] operates at the non-linearity ofµr because some occuring complex derivatives
are no more meaningful. Unfortunately only a BiCGstab method or a CGS method, precondi-
tionned with an incomplete ILU decomposition, are convergent in this real case [vR01]. The ILU
decomposition needs so much storage that this method is not applicable for realistic problems.

In the eddy current approachthe FEM and BEM parts are strongly coupled in one big system
and must be solved simultaneously. An option is to split the system of equations into real and
imaginary parts in order to keep the matrix symmetric. But in this case the same problem with
the ILU decomposition as described above occurs in the rows of the FEM part unknowns. Nev-
ertheless the splitting is used here for the eddy current approach because it is only tested with
small test examples. The preconditioner of the BEM part is the same as in the impedance model,
and it will be presented in Section 5.2.
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The skin effect is the most important difficulty in the interior and alocal residual based error
estimator[BHHW00] is used to resolve the strong decrease of the fields at the most important
points, i.e., at positions where a strong current is flowing. Thus the mesh is chiefly refined at the
surface of the conductors. The error estimator uses a Helmhotz type decomposition of the error
in energy norme := ‖E − Ẽh‖ between the correct solutionE and the approximative solution
Ẽh. It splits the error into itscurl-free part and into its weakly solenoidal part on the meshΩh.
Each error can be estimated locally, thus their addition is used for adaptive grid refinement.

5.1.1 Material Parameters

In general, it is very difficult to find good experimental data concerning the behavior of the
material. All measurements for the verification of the program are made with workpieces of C45
steel. Fortunately, the material parameters of this type of steel can be found in [Stu62]. Figure 5.1
shows the temperature dependency ofheat capacity, heat conductivity, andelectric resistence.

The material is typically ferromagnetic, and the relative magnetic permeabilityµr depends on
the absolute value of the strength of the field, according to Figure 5.2. So one has to deal with
a non-linearity in the governing equations. Due to the variation of the field strength during a
period, one has to use an average value [LNA86], the so-calledeffective relative permeability

µeff
r :=

ω

2π

2π/ω∫
0

µr

(
‖B0‖

)
dt , (5.1)

with the real partB0 of the solutionB = −1
iω

curlE = (Breal(x) + iBimag(x)) · eiωt. It can be
written as

B0(x, t) = Breal(x) cos(ωt)−Bimag(x) sin(ωt) . (5.2)

In this form, µeff
r has to be calculated at each timestep and each point in the mesh. This is

discontenting, and what is needed is a possibility to calculateµeff
r only once in advance. The

following remarks show how to transformB0 in a more pleasant format. Adding a phaseα does
not have any impact if an average value has to be built, and one gets

B0(x, t) = Breal(x) cos(ωt+ α)−Bimag(x) sin(ωt+ α) . (5.3)

This equation describes an ellipse

B0(x, t) = B1 cos(ωt) +B2 sin(ωt) , (5.4)

with B1 ·B2 = 0 . (5.5)

The principal axesB1 andB2 lie in the same plane asBreal andBimag. Equation (5.3) can be
transformed into

B0 = Breal

[
cos(ωt) cosα− sin(ωt) sinα

]
−Bimag

[
sin(ωt) cosα+ cos(ωt) sinα

]
=
[
Breal cosα−Bimag sinα

]
cos(ωt)−

[
Breal sinα +Bimag cosα

]
sin(ωt) ,
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Figure 5.1: Heat capacity, heat conductivity, and electric resistence
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Figure 5.2: Relative magnetic permeability

with the aid of the addition theorems for sine and cosine. One finds

B1 = Breal cosα−Bimag sinα , (5.6)

B2 = −Breal sinα−Bimag cosα . (5.7)

Condition (5.5) is used to determine alpha

0 = −B2
real cosα sinα−BrealBimag cos

2 α +BrealBimag sin
2 α +B2

imag sinα cosα

= (B2
imag −B2

real) · cosα sinα + (2 sin2 α− 1) ·BrealBimag

= (B2
imag −B2

real) ·
sin(2α)

2
− cos(2α) ·BrealBimag ,

=⇒ α =

{
1
2
arctan(

2·Breal·Bimag

(B2
imag−B2

real)
) if B2

imag 	= B2
real ,

π
4

else .

The effective permeability now looks like

µeff
r =

ω

2π

2π/ω∫
0

µr

(√
B2

1 cos
2(ωt) +B2

2 sin
2(ωt)

)
dt , (5.8)

depending only on the absolute values ofB1 andB2. A table of this function can be calculated
in advance with the aid of the values of Figure 5.2, which have to be transformed fromµr(H) to
µr(B) first.

Themagnetic permeabilityalso depends on the temperature. Therefore, an analytical correction
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f(T ) is used, which finally leads to

µ(T ) = µnew
r · µ0 , (5.9)

with µnew
r =

{
1.0 + (µeff

r − 1.0) · f(T ) if T < 1042K ,
1.0 else ,

(5.10)

andf(T ) =

(
10422 − T 2

10422 − 2932

) 1
4

. (5.11)

Above the Curie-temperature of 1042 Kelvin, the small permanent magnetic moments of the ma-
terial cannot orient themselves any more, and the relative permeability is constant one. Figure 5.3
shows the correction. The non-linearity arising from the ferromagnetic behavior of the material
is mastered by applying arelaxation schemeat each timestep.
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Figure 5.3: Correctionf(T )

The inductor is made of copper. Its permeability is constantµr = 1. The temperature dependency
of the electric resistence is chosen to be

ρel(T ) = 1.7 · 10−8 · T , (5.12)

according to [Sta88]. The temperature of the inductor is not calculated in the program, how-
ever it is assumed that the water cooled inductor homogeneously has a third of the maximum
temperature of the workpiece.

5.2 Iterative Solver for the BEM Part

For the BEM part of theimpedance modelone has to solve the equationAx = b, with
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Figure 5.4: Test example

Ax :=




M	 −M
 −BT 0 −Fup 0
−M
 −M	 0 BT 0 Fup

−B 0 −Q 0 −Fdo 0
0 B 0 Q 0 Fdo

−Fup
T 0 −Fdo

T 0 −H 0

0 Fup
T 0 Fdo

T 0 H







E	
E

φ	
φ

α	
α



 , (5.13)

see equation (4.30). If the strongly couplededdy current approachis to be applied, the operators
M	 andM
 have to be replaced by the discretized sesquilinear formq(E, v). The equation needs
to be solved more than a hundred times per simulation run. This is necessary because of the
rotation of the workpiece and the numerous updates of the material parameters after temperature
changes. Thus the use of a slow direct solver is impossible. Furthermore a direct solver needs
too much storage. Instead, a fast iterative solver has to be applied. Numerical experiments were
made with the aid of the program packages1 LAPACK and MATLAB in order to determine the
adequate solver. Therefore, the realistic but small and coarse discretized test example of Figure
5.4 was used. The matrixA is symmetric but not positive definite. For problems of this kind,
the Minimal Residual Method(MINRES) is often recommended [PS75], [Hac91] because it
is stable and convergent. However, in this case MINRES turns out to be unstable. The simpler
Conjugate Residual Method(CR) [Saa95] of Figure 5.5 is the better choice. For the test problem,
the condition number was found to be3.8 · 104. This bad conditioning can be cured by applying
the preconditioned version of Figure 5.6, where the alternative equationP−1b = P−1Ax is solved
with an adequate preconditionerP. For the practical implementation, the preconditioned CR can
be rewritten in such a way that the matrix vector multiplication and the preconditioner must be
applied only once per iteration. This version is shown in Figure 5.7.

1For LAPACK see http://www.netlib.org, and for MATLAB see http://www.mathworks.com/
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Given: x0 := initial guess, tol := tolerance

itmax := maximum number of iterations

r = p = b− Ax0

resit = res0 = r, it = 0

while [ it < itmax AND resit > tol · res0 ]

α =
< r,Ar >

< Ap,Ap >
x = x+ α · p
r1 = r− α · Ap

β =
< r1,Ar1 >

< r,Ar >
p = r1 + β · p
r = r1

resit = r, it = it+ 1

end while

Figure 5.5: Conjugate residual method

r = p = P−1(b− Ax0)

resit = res0 = r, it = 0

while [ it < itmax AND resit > tol · res0 ]

α =
< r,Ar >

< P−1Ap,Ap >
x = x+ α · p
r1 = r− α · P−1Ap

β =
< r1,Ar1 >

< r,Ar >
p = r1 + β · p
r = r1

resit = r, it = it+ 1

end while

Figure 5.6: Preconditioned conjugate residual method
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r = p = P−1(b− Ax0)

y = w = Ar

resit = res0 = r, it = 0

while [ it < itmax AND resit > tol · res0 ]

q = P−1w

α =
< r,y >

< q,w >
x = x+ α · p
r1 = r− α · q
y1 = Ar1

β =
< r1,y1 >

< r,y >
p = r1 + β · p
w = y1 + β ·w
r = r1, y = y1

resit = r, it = it+ 1

end while

Figure 5.7: Implemented conjugate residual method

5.2.1 Preconditioning

As already noted, the condition number of the small test example was found to be3.8 · 104. So
preconditioning is mandatory if the number of iterations is to be small. A good preconditionerP
of A has to meet the following requirements: First, the preconditioning must be independent of
the discretization of the problem, i.e. the spectrum ofP−1A must be bounded independently of
the meshwidthh, and second, the condition number ofP−1A must be small compared with the
condition number ofA.

First of all, the properties of the sesquilinear formQ induced by the equations (3.98) and (3.99)
are examined. It holds

|Q(E,λ)| =
∣∣∣ q(E, E)− 1

µ+
〈N(γDE), γDE〉� + µ+ 〈λ,Aλ〉

�

∣∣∣
=

〈
1

η
γDE, γDE

〉
�

− 〈N(γDE), γDE〉� + 〈Aλ,λ〉
�

= iω

∫
Ω−

σE · E dy +

∫
Ω−

1

µ−
curlE · curlE dy − 〈N(γDE), γDE〉� + 〈Aλ,λ〉

�
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The following inequality is valid for every complex numberz = a+ ib

1√
2
· |a+ b| ≤ |z| ≤ |a|+ |b| . (5.14)

It follows with 〈N(γDE), γDE〉� ≤ 0 that

1√
2


ω ∫

Ω−

σE · E dy +

∫
Ω−

1

µ−
curlE · curlE dy + 〈Aλ,λ〉

�


 ≤ |Q(E,λ)| ≤

ω

∫
Ω−

σE · E dy +

∫
Ω−

1

µ−
curlE · curlE dy− 〈N(γDE), γDE〉� + 〈Aλ,λ〉

�
.

Using the Cauchy-Schwartz inequality together with the continuity ofN, and the continuity of
the trace operator leads to

−〈N(γDE), γDE〉� ≤ ‖N(γDE)‖
H

− 1
2

|| (divΓ,Γ)
· ‖γDE‖

H
− 1

2
⊥ (curlΓ,Γ)

≤ c · ‖γDE‖2
H

−1
2

⊥ (curlΓ,Γ)
≤ c1 · ‖E‖2�(curl;Ω) .

One finds withD̄
[
(E,λ), (v, ζ)

]
:= ω

∫
Ω−

σE · v dy+
∫
Ω−

1
µ− curlE · curl v dy+ 〈Aλ, ζ〉

�
that

1√
2
· D̄
[
(E,λ), (E,λ)

]
≤ |Q(E,λ)| ≤ c̄ · D̄

[
(E,λ), (E,λ)

]
.

So the spectrum of the discrete operator assoziated with the sesquilinear formQ depends only
on the norm bounds of the operators, thus it is bounded independent of the meshwidhth. Let P̄
be the discrete operator assoziated with the sesquilinear formD̄, andĀ be the discrete operator
assoziated with the sesquilinear formQ, then the spectrum of the operatorP̄−1Ā is also bounded
independent of the meshwidhth.

For the impedance modelq(E, E) has to be replaced by
〈

1
η
γDE, γDE

〉
�

and

P :=




M	 +M
 0 0 0 0 0
0 M	 +M
 0 0 0 0
0 0 Q 0 0 0
0 0 0 Q 0 0
0 0 0 0 H 0
0 0 0 0 0 H


 (5.15)

is used as a preconditioner forA. This was tested with the small example of Figure 5.4, and the
condition number decreased from3.8 · 104 for A to 4.0 for the preconditioned systemP−1A.

5.2.2 Numerical Experiments

The amount of time and storage for solving the test example of Figure 5.4 is small enough to
allow quick numerical experiments in order to find the adequate solver for the preconditioner.
Five solvers were tested.
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• A direct solver (ideal preconditioning).

• A conjugate gradient (CG) method [DH91]. with a fixed number of steps (15).

• A CG method with a fixed decrease of0.01 of the relative residual.

• A Gauss Seidel method [Oev96] with a fixed number of steps (40, 60).

• No preconditioning.

These solvers for the preconditioner were used in the CR-solver applied to the problemP−1Ax =
P−1b with different right-hand sidesb:

• A right-hand sideb0 with a known constant solution ofx0 = 1, 1, 1...,

• and a realistic right-hand sideb1 of the test example.

Different quantities of the approximationx[i] were analyzed at each stepi of the iteration:

• The most significant quantity is the difference‖x[i]− x0‖ between the approximation and
the exact solution. (This can only be evaluated in the case where the solutionx0 is known.)

• The euklidian residual‖Ax[i]− b‖.

• The iterative residualresit (see Figure 5.7).

The following graphs show the results for the known constant solutionx0 when an ordinary
non-restarted CR is used:
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Figure 5.8:‖x[i]− x0‖ for CR-method, solution is known
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Figure 5.9: Euklidian residual for CR-method, solution is known
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Figure 5.10: Iterative residual for CR-method, solution is known

The decrease of the error‖x[i] − x0‖ and the decrease of the euklidian residual stalls after
approximately 20 steps. The residual vectors were supposed to be non-orthogonal and the same
quantities were measured again for a restarted CR. The restart was made every fifteenth step, and
the Figures 5.11, 5.12, and 5.13 show the results.
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Figure 5.11:‖x[i]− x0‖ for restarted CR-method, solution is known
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Figure 5.12: Euklidian residual for restarted CR-method, solution is known
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Figure 5.13: Iterative residual for restarted CR-method, solution is known

So restarting seems to cure the problems, and the methods were also tested for the realistic right
hand side of an exciting current in the inductor of Figure 5.4. The results are presented in the next
two Figures 5.14 and 5.15. The difference of the approximation and the exact solution cannot be
calculated as the exact solution is unknown.
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Figure 5.14: Euklidian residual for restarted CR-method, realistic right-hand side
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RHS = realistic Ideal preconditioner   
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Gauss Seidel, 60 steps 
No preconditioning     

Figure 5.15: Iterative residual for restarted CR-method, realistic right-hand side

The ideal preconditioned method is the quickest one to converge, but as the direct solver needs
too much storage, it cannot be applied. Therestarted CR method with CG preconditioneris the
second best. In the same number of steps, it yields the most accurate results if a fixed decrease
of the relative residual is used as the stopping criterion for the preconditioner. In this case, the
CG preconditioner needs approximately25 steps for a decrease of0.01 of its relative residual
whereas the CR needs a similar number of steps for a decrease of0.001. As these are convenient
small numbers, this method is applied in the simulation.

5.2.3 Kernel Elimination

The matricesM	 andM
 in equation (5.13) are symmetric and positive definite. Due to possible
gauging of the scalar potential,Q is symmetric but only positive semidefinite: On each of the
connected components a constant vector can be added to the solution. So these gauging vectors
constitute the kernel ofQ. Its dimensionD is the number of connected components of the con-
figuration.B has the same kernel. In order to analyze its influence on the CR method, the kernel
was removed and the numerical experiments of the last Section 5.2.2 were repeated. There are
different possibilities to dispose of the kernel, but the aim is to do it in such a way, that the
condition ofA remains unchanged.

Definition 7
ρ(Q) := {Eigenvaluesλ of Q}
ρ>(Q) := {Eigenvaluesλ of Q | λ > 0}
λmin(Q) := {λmin ∈ ρ>(Q) | λmin ≤ λ ∀ λ ∈ ρ>(Q)}
λmax(Q) := {λmax ∈ ρ>(Q) | λmax ≥ λ ∀ λ ∈ ρ>(Q)}

70



5.2. ITERATIVE SOLVER FOR THE BEM PART

Define for everyith-component withni nodes a constant vectorKT
i by Ki := (ki1, ki2, ki3.....)

with kim = 0 if nodem is not on theith-component andkim = 1 if nodem is on theith-
component. The length ofKi is dim(Q):= dimension ofQ =

∑D
i=1 ni. Then{KT

1 , K
T
2 ...} is the

kernel ofQ.

Theorem 12 The replacementQ → Q1 := Q +
∑D

i=1 ci K
T
i Ki, with

ci =
trace(Q)

ni · (dim(Q)−D)

enforces

ρ(Q1) = {ρ>(Q) ∪
trace(Q)

dim(Q)−D}

λmin(Q1) ≤
trace(Q)

dim(Q)−D ≤ λmax(Q1),

so the kernel is eliminated and the condition numberλmax(Q)/λmin(Q) remains unchanged.

Proof: For every matrix it holds

trace(Q) =
∑
i

kiλi ,

with the orderki of λi. For the symmetric and positive semidefinite matrixQ it follows

λmin(Q) ≤
trace(Q)

dim(Q)−D ≤ λmax(Q) .

For everyKT
i one finds:

Q1 ·KT
i = ci ·KT

i · (KiK
T
i ) = ci · ni ·KT

i =
trace(Q)

dim(Q)−D ·K
T
i

Let xk be an eigenvector ofQ with eigenvalueλk > 0. ThenKT
i Kixk = 0 becauseKT

i Ki has
rank 1 with eigenvectorKT

i ∈ kernel(Q). It follows

Q1 · xk = λk · xk .

So all eigenvectors ofQ1 are found.�

The kernel ofA was eliminated with the aid of this method (A→ A1). Then the CR method was
applied to the new matrixA1 but no significant differences to the results of Section 5.2.2 were
found. Thus the elimination of the kernel seems to be not necessary and it is not eliminated in
the program.
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5.3 H2-Matrix Approximation

The triangulation of the boundaryΓ of the workpiece, the inductor and the plates must be fine
enough to meet two different demands. First, the geometry of the items must be described in a
satisfactory way, and second, the desired precision of the solution must be achieved. This means
that a numberN ≥ 10000 of surface triangles must be used for typical workpieces. The occuring
BEM operators inA of equation (5.13) are dense. A matrix-vector multiplication forn unknowns
needsO(n2) operations, and the amount of storage is of the same order. Parts withN = 10000
surface triangles have approximately15000 edges and5000 nodes. For the storage requirements
of the matrices inA this means:

M	 needs150002· size of(double) =1.67GByte,

M
 needs150002· size of(double) =1.67GByte,

B needs15000 · 5000· size of(double) =0.56GByte,

Q needs50002· size of(double) =0.18GByte.

So more than 4 GBytes are needed, a volume that cannot be mastered by standard computers
of the present generation. A compression technique must be applied to the four different op-
erators. Parts of their kernels are vector-valued, and each component consists of either a single
layer potential, a double layer potential or a modified double layer potential. Each of these poten-
tials has anasymptotically smoothkernelkj(x,y) in each componentj, i.e., there are constants
Cas(n,m) ∈ R >0 satisfying

|∂αx∂βy kj(x,y)| ≤ Cas(|α|, |β|) ‖x− y‖−|α|−|β| |kj(x,y)| (5.16)

for all multi-indicesα, β ∈ N
3
0 and allx,y ∈ R

3. In the terms of physics, this means that the
potentials describe rapidly decreasing interactions between the boundary regions atx andy. Still
these are long distance interactions because the variables are coupled in the kernels, depending
on (x − y). As all regions are linked to each other, the resulting matrix is dense. A common
strategy for compression is to approximate the kernels in the so-calledfarfield, i.e., in regions
that are far away from each other, whereas one sticks to exact kernels in thenearfield. Panel
clustering methodsare widely used [HN89][Sau99]. They are based on Taylor expansions of the
kernel function in the farfield, and if they are used, derivatives in all directions of all three ker-
nels are required up to a certain degree. This is avoided by applying theH 2-matrix approximation
by interpolation[HB01]. In this method, the kernel function is approximated by a polynomial
Tschebyscheff interpolation [Oev96], so only pointwise evaluations of the three kernels have to
be performed. The entire domainΓ × Γ, where the kernelk(x,y) is to be integrated, is subdi-
vided into pairsΓτ × Γσ of clustersτ, σ, i.e., unions of contiguous triangles. The polynomial
interpolation is made on admissible pairs. These are pairs with clusters of sufficient distance. The
coefficients of the interpolation are stored in matrices which are nested in a special way. Those
so-calledH2-matrices were first introduced in [HKS00]. The nesting can be utilized for saving
storage and allows to perform a quick multiplication. The amount of storage and the number
of operations necessary for a matrix-vector multiplication are of orderO(np3). Herep ∈ N is
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5.3. H2-MATRIX APPROXIMATION

the polynomial order andn is the number of unknowns. The following sections sketch several
aspects of the implementation of theH 2-matrix approximation method. Numerical experiments
with several test problems were made and theH 2-method is compared with the uncompressed
standard method. Similar experiments are presented in [Gie00].

5.3.1 Interpolation and Multiplication

In order to achieve a compact representation, the kernel functions and the finite element functions
are split into their components. Then the remaining discrete BEM operators can be written as

Kil =

∫
Γ�i

∫
Γ�l

kil(x,y)Ψi(x)Φl(y)dxdy , i, l ∈ N 0 , (5.17)

for not necessarily identical finite element basis functionsΨi, Φl with local support on the
surface-trianglesT i, T l. The matrixK is to be compressed and the matrix-vector multiplication
v = Ku with u(x) :=

∑
i

uiΨi(x) , ui ∈ R has to be performed.

In theH2-matrix approximation method one has to distinguish two different steps: Theprepara-
tion of the matrix-vector multiplication which needs to be performed only once even for several
multiplications, and thematrix-vector multiplicationitself. For preparation, the mentioned clus-
tersτ of contiguous triangles are built on the surfaceΓ. They are not necessarily disjoint, thus
can overlap. The resultingclusteringof the surfaceΓ =

⋃
τ

Γτ is organized in a hierarchical

structure, a binary tree. The root-cluster of the tree is the whole surface. Each clusterτ that is
not a leaf-cluster is subdivided into two son-clusters, forming the setS(τ). This is done in a
geometrical way. The leaf-clusters consist of less then a fixed numberlmin ∈ N of triangles.
A recursive algorithm for the automatic construction of such a geometrical binary tree can be
found in [Gie00]: First the center of gravityzi of each surface-triangleT i has to be built. Then
the algorithmgeometricbisection(Z) of Figure 5.16 is called, with the index setZ = 1..N of
the surface-triangles. The output of the procedure is a binary tree of the centers of gravity of the
triangles.

In a second step, axiparallel quadratic bounding boxesBτ have to be built around each clusterτ .
The interpolation with the aid of tensor products of Lagrange polynomials [Oev96] is made on
admissible pairsof such boxes, i.e., on boxes with small radii compared with their distance

max{diam(Bτ ), diam(Bσ)} ≤ 2η · dist(Bτ , Bσ). (5.18)

Hereη ∈]0, 1[ is a parameter controlling the precision of the interpolation, and it needs to be
fixed in this intervall to ensure the desired asymptotic behavior of the error. On an admissible
pair of clustersΓσ × Γτ , one approximates the kernel functionk(x,y) by its interpolant

k̃τ × σ(x,y) =
∑
ι∈I

∑
κ∈I

k(xσ
ι ,y

τ
κ) · pσι (x) · pτκ(y) , (5.19)

with pσι (x) := Lσ,1
t (x1)L

σ,2
l (x2)L

σ,3
m (x3) and xσ

ι := (xσ,1t , xσ,2l , xσ,3m ). (5.20)
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input:Z = {zi, 1 ≤ i ≤ k}
output: binary treeT
procedur T = geometric bisection(Z)
{

if |Z| ≥ lmin

{
let δj := max

i=1···k
zij − min

i=1···k
zij , componentj = 1, 2, 3 ;

let l ∈ {1, 2, 3} such thatδl = max δj ;

split Z = Z1 ∪ Z2 such that

||Z1| − |Z2|| ≤ 1 and ∀x ∈ Z1, y ∈ Z2 : xl ≤ yl ;

T → son1 = geometric bisection(Z1) ;

T → son2 = geometric bisection(Z2) ;

}
else { T := Z ; }
}

Figure 5.16: Algorithm geometric bisection
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5.3. H2-MATRIX APPROXIMATION

Herepσι (x) is defined as a tensor product of Lagrange polynomialsLσ,1
t (x1)L

σ,2
l (x2)L

σ,3
m (x3) in

the three directions on the clusterσ. The set of indicesI is defined asI := {(t, l,m) ∈ N
3 :

t, l,m ≤ p} for the polynomial orderp and it holdsι := (t, l,m) ∈ I. The respective inter-
vals of the Lagrange interpolation in the three directions are given by the axiparallel quadratic
bounding boxBσ around the cluster. The sample pointsxσ

ι ∈ R
3 are tensor products of roots

of Tschebyscheff polynomials [Oev96] in this box. With this notation, the interpolating operator
K̃il of equation (5.17) can be written as

K̃il =
∑
ι∈I

∑
κ∈I

∫
Γσ

∫
Γτ

k(xσ
ι ,y

τ
κ)p

σ
ι (x)p

τ
κ(y)Ψi(x)Φl(y)dxdy (5.21)

=
∑
ι∈I

∑
κ∈I

k(xσ
ι ,y

τ
κ)

∫
Γσ

pσι (x)Ψi(x)dx

∫
Γτ

pτκ(y)Φl(y)dy , i, l ∈ N 0 , ι, κ ∈ I ,

on the admissible clustersσ andτ with supp(Ψi) ⊆ σ andsupp(Φl) ⊆ τ . So the variablesx
andy are no longer coupled! This leads to the required compression. Equation (5.21) can be
transformed into the compact formatK̃il = VσSσ×τWτ T with the matricesVσ andWτ

Vσ
iι :=

∫
Γσ

pσι (x)Ψi(x)dx, (5.22)

Wτ
lκ :=

∫
Γτ

pτκ(y)Φl(y)dy , (5.23)

and the(p+ 1)6-dimensional matrix

Sσ×τ
ικ := k(xσ

ι ,y
τ
κ). (5.24)

The polynomials corresponding to father clustersσ can be expressed exactly in terms of polyno-
mials corresponding to son clustersσ ′ by

pσι (x) =
∑
λ∈I

pσι (x
σ′
λ )p

σ′
λ (x) . (5.25)

With the definition of the transfer matricesBσ′,σ
λι := pσι (x

σ′
λ ) between father and son, it can easily

be seen that the matricesVσ andWτ are nested, i.e.,Vσ = Vσ′
Bσ′,σ andWτ = Wτ ′Bτ ′,τ .

The multiplication has to be performed on the domain associated withΓ × Γ. There are many
possibilities to cover this domain with pairs of clusters, but one searches a covering that is in
some sense ideal. It should only consist of admissible pairs of clusters or pairs of leaf-clusters,
and the total number of pairs should be minimal. This covering is calledminimal partitioning
P. It can be constructed by calling the algorithmdivide(Γ × Γ, ∅) of Figure 5.17 presented in
[Sau99].

The approximate matrix-vector multiplicatioñv = K̃u is realized onP. The kernel function
remains unchanged in the nearfield consisting of non-admissible leaf-clusters and is replaced by
its interpolant on admissible farfield pairs

K̃ = KNearfield +
∑

adm. σ×τ

(
VσSσ×τWτ T

)
. (5.26)
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procedure divide(Γσ × Γτ ,P)
{

if (S(σ) = S(τ) = ∅) then {P = P ∪ (Γσ × Γτ ) ;}
else
{

if ((Bσ, Bτ ) are admissible)then { P = P ∪ (Γσ × Γτ ) ;}
else
{

if (S(σ) = ∅) then {for all τ ′ ∈ S(τ) call divide(Γσ × Γτ ′,P) ;}
else
{

if (S(τ) = ∅) then {for all σ′ ∈ S(σ) call divide(Γσ′ × Γτ ,P) ;}
else {for all pairs of sons σ′ ⊂ S(σ), τ ′ ⊂ S(τ) call divide(Γσ′ × Γτ ′ ,P) ;}

}
}
}
}

Figure 5.17: Algorithm divide

The multiplication of Figure 5.18 consists of three steps, see also Figure 5.19:

• the Forward Transformation, where the values of the vectoru are transported from the
leaves to the clusters,

• theMultiplication ṽ = K̃u on the clusters,

• and theBackward Transformation, where the result̃v is transported from the clusters to
the leaves.

procedure H2 Multiplication
{
v = 0 ;
Forward Transformation(Γ) ;
for all Γσ × Γτ ⊂ P call Multiply(σ × τ) ;
Backward Transformation(Γ) ;
}

Figure 5.18: The multiplicatioñv = K̃u
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procedure Forward Transformation(σ)
{

if (S(σ) 	= ∅) then { ∀σ′ ∈ S(σ) call Forward Transformation(σ′)};
xσ = 0 ; yσ = 0 ;
if (S(σ) = ∅) then { xσ = WσTuσ};
else {∀σ′ ∈ S(σ) xσ = xσ + Bσ′,σTxσ′};
}

procedure Multiply(σ × τ)
{

if (S(σ) = S(τ) = ∅) then { for all T i ∈ σ set vi = vi +
∑

�j∈τ Kijuj ;}
else { yσ = yσ + Sσ×τxτ};
}

procedure Backward Transformation(σ)
{

if (S(σ) = ∅) then { vσ = vσ + Vσyσ};
else
{

for all sons σ′ ∈ S(σ)
{

yσ′ = yσ′ + Bσ′,σyσ ;
call Backward Transformation(σ′);

}
}
}

Figure 5.19: Algorithms for the multiplicationv = Ku
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5.3.2 Numerical Experiments

It is shown in [HB01], that for the scalar examples explained in the previous Section 5.3.1, the
amount of storage and the number of operations necessary for a matrix-vector multiplication are
of orderO(np3). It it also shown that the error of the approximation can be bounded and satisfies
the estimate

‖k − k̃τ × σ‖∞,Bτ×Bσ ≤ C(p) ηp+1‖k‖∞,Bτ×Bσ . (5.27)

So for0 < η < 1 the error decreases with increasing orderp of the interpolation.

In a first numerical experiment, this predicted behavior of theH 2-matrix approximation method
was tested using the typical geometry of the induction heating setting, as shown in Figure 5.20.

Figure 5.20: Test geometries A and B

A single layerwith kernelk(x,y) = 1
4π

1
‖x−y‖ was compressed. It was discretized with a Gar-

lerkin method and constant finite element basis functionsΨi = Φi. The resulting matrixK was
multiplied by a vector ten times. The storage and cpu-time requirements for the uncompressed
standard method and the interpolatingH2-method were compared. The order of interpolation was
set to be2 and the admissibility parameterη was set to be0.99. This turned out to be sufficient.
The measured data is defined as follows:

n := Number of unknowns (=Number of panels)

Size of double = 8 Byte

Standard storage= n2 · 8 Byte
H2storage := Storage needed for theH2 interpolation

Standard time := Time for filling + 10 multiplications standard method

H2 Time := Time for filling + 10 multiplicationsH2 method

‖K‖2 := sup
‖y‖=1

‖K · y‖

KH2 := Interpolated matrix

Relative error :=
‖K− KH2‖2
‖K‖2
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In each case the time for filling amounts to90% of the total time. The Euklidian operator norm
was calculated with the aid of a vector iteration. Table (5.21) shows the results that are computed
on a Sun Ultra 450 computer with a 300 MHz Ultrasparc-II CPU.

n Standardstorage H2 storage Standard time H2 time Relative error

730 4 MB 2.3 MB 54 sec 49 sec 0.00044
2752 57 MB 14 MB 12 min 4 min 0.00067
7488 427 MB 45 MB 1.5 h 10.2 min 0.00065
11520 1012 MB 75 MB 3.7 h 21.7 min 0.0007
17312 2286 MB 91 MB 8.5 h 25 min -

Figure 5.21: Time, storage and errors for single layer potential

The first four rows were produced by interpolation on the geometry A of Figure 5.20 and the last
example on geometry B. The error was not calculated for this example because the vector itera-
tion would have taken days. The compression rate is higher for ’flat’ pieces as the admissibility
condition can be fulfilled for bigger clusters.

So theH2-technique seems to work well. Next, the matrix of the impedance model was com-
pressed, and equation (4.30) was solved for the geometries of Figure 5.20. As a first difference
to the above example, it should be pointed out that the unknowns are now located on the edges
and the nodes of the geometry. This means that the tree also normally has to be constructed
over the edges and the nodes to reach an optimal compression rate. Therefore two trees have
to be constructed. In practice, however, especially the coupling of both trees in mixed operators
is complicated. Only one tree was built in this program over the triangles. As a consequence
some edges and nodes on the boundary of the triangle-clusters appear twice. This is acceptable,
however, as can be seen from the compression rates in Figure 5.22. The occuring BEM operators
arising from the matricesM	, M
, B, andQ can be found in the equations (4.31) - (4.34), and
are repeated here for convenience

M −→
∫
�n

∫
�m

(
(bnk · bmn) · µ0 · �[

1

η
] · δnm +

9

4TnTm
G(x,y)

)
dS(x) dS(y) ,

Q −→
∫
�n

∫
�m

1

4 Tn Tm
(fnk · fmi) ·G(x,y) dS(x) dS(y) .

B −→
∫
�n

∫
�m

[
fni

2 · Tn
bmk(x)] · [

δmn

2 Tm
− nx · gradxG(x,y)] dS(x) dS(y)

+

∫
�n

∫
�m

[
fni

2 · Tn
· nm] · [bmk(x) · gradxG(x,y)] dS(x) dS(y) .

The diagonal part ofM consists of scalar products of linear edge functions, and it does not need
to be compressed. The non-diagonal part is a scalar single layer potential with constant basis
functions.
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The constantf-basis functions of the single layer potential ofQ are vector-valued. So the matrices
V of equation (5.22), for the operatorQ denoted byVQ, have to be adapted to this fact and
extended to three dimensions. There is no need to store the matricesWQ of equation (5.23)
because the basis functions are the same and it holdsWQ = VQ. The transfer matrices of
equation (5.25) are identical for all three operators and have to be calculated and stored only
once.

The next operatorB is the most complicated one. The basis functions are vector-valued and
mixed, consisting ofb- andf-basis functions, and one needsWB andVB. As VB = VQ, VB

does not have to be calculated again. A problem occurs for the double layer potential because the
normal is defined on the triangles and cannot be generalized for a cluster of triangles.

Kil =

∫
Γ�i

∫
Γ�l

∂

∂nx
G(x,y)ilΨi(x)Φl(y)dxdy (5.28)

This can be cured with the recipe introduced in [HB01], where the derivative of the polynomial
kernel interpolant is used

K̃il =

∫
Γ�i

∫
Γ�l

∂

∂nx
G̃(x, y)ilΨi(x)Φl(y)dxdy (5.29)

=
∑
ι∈I

∑
κ∈I

G(xσ
ι ,y

τ
κ)

∫
Γσ

∂

∂nx
pσι (x) ·Ψi(x)dx

∫
Γτ

pτκ(y)Φl(y)dy .

The problems occuring in the modified double layer potential can be mastered in a similar fash-
ion. Its kernel is vector-valued, but splitting it up into its components does not cause any prob-
lems.

All in all, the elaborate operators can be compressed without major difficulties by theH 2-matrix
approximation technique. Lots of matrices must be calculated only once and can be reused for
different operators. This automatically saves a lot of storage and enhances the efficiency of the
algorithm. The solution of equation (4.30) can additionally be accelerated by using the nearfield
of the operatorQ as a preconditioner of the second row ofP, as defined in equation (5.15).
This row is solved with aconjugate gradient method, which in the standard method is precondi-
tioned with aJacobi preconditioner. ThisJacobi preconditionerof P can now be replaced by the
nearfield matrixQNearfield which can be inverted with aGaussian elimination scheme. The direct
solver is implemented in a sparse format and does not need much storage because the nearfield
matrix is sparse, too. Table 5.22 shows the performance of theH 2-matrix approximation for the
impedance model compared with the uncompressed standard method. The solver was stopped
when the residual had decreased to a value below0.0001 times the residual in the first step. The
documented time is again the time needed for filling the matrices and solving the system. The
number of unknowns is defined as

n := 2 · ( number of edges + number of nodes + number of holes in the workpiece) .

The relative error is defined here as the difference between the surface currentγDj of theH2-
solution and that of the standard solution

relative error :=
∫
Γ

‖γDjH2(x)− γDjst.(x)‖
‖γDjst.(x)‖

dSx ,
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n Standardstorage H2 storage Standard time H2 time Relative error

2948 22.7 MB 15.5 MB 19.75 min 15.0 min 0.00139
6916 125.3 MB 35.0 MB 1.9 h 43.3 min 0.00250
11420 342.0 MB 71.0 MB 6.7 h 1.6 h 0.00146
23840 954.1 MB 93.4 MB 14.6 h 2.4 h 0.00218
46724 5725.0 MB 333.0 MB - 9.0 h -

Figure 5.22: Time, storage, and errors for the impedance model

because the current is the most important final result of the calculations of the electromagnetic
part. Again, the first four rows were produced by interpolation on the geometry A of Figure 5.20
and the last on geometry B. Storage requirements and calculation times are strongly reduced, and
geometries consisting of20000 surface faces can be calculated.

Another special feature is implemented due to the fact that the workpiece rotates with a frequency
of 50Hz. If the material data is updated20 times per simulation and the equation is solved for10
positions per rotation, then the equation is to be solved200 times. Even with theH 2-technique,
it is impossible to store the data of all theses matrices, so they have to be exported to a hard disk.
Moreover, they cannot completely be filled so often in an acceptable timespan. By looking at
the positions of the material parameters in the equations, the solution to the problem becomes
obvious. The material parameters only occur in the diagonal part of the operatorM, which is
small and can be calculated fast. So updating of the parameters is an easy, quick task. Rotation
is a bigger challenge. The BEM operators change only for items that are moving relative to
each other. Parts of the operators which describe workpiece/workpiece interactions (w/w) or
inductor/inductor interactions (i/i) need to be calculated only once. But how to reach this goal
in theH2 context where everything is linked together in the tree? The option chosen here is to
apply the algorithmgeometric bisectionseparately for workpiece and inductor. Then each cluster
consists exclusively of workpiece triangles or inductor triangles. In this case, the matricesV, W
andB do not change during the rotation and have to be calculated only once (except for the
uselessB of the root)! After merging the two resulting trees under one big root, one finds the
situation of Figure 5.23. If the algorithmdivide is now applied to this new tree, each pair of
admissible clusters belongs either to w/w or i/i or to the interaction w/i between workpiece and
inductor. The nearfield and the matricesS have to be refreshed only for the w/i pairs. This is a
big advantage because the interesting part with the biggest number of triangles is the workpiece,
and w/w does not have to be refreshed.
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Figure 5.23: Tree
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Chapter 6

Validation

Several tests were made in order to check the correctness of the results of the program. First of all
separated and uncoupled features of the program are tested, such as the temperature calculation,
the BEM part or the FEM part. Analytical solutions of special configurations often exist, and the
simulation results can be compared with these. This is the most reliable possibility for verification
because no experimental errors are involved. For the electromagnetic part, analytical solutions
of the eddy current problem are developed for highly symmetric settings with homogeneous
materials. In Section 6.1 this is done for a sphere and a cylinder excited by a circular current
loop . No analytical solutions are available for less symmetric geometries or if non-linearities are
involved. In this case one has to rely on experiments. Measurements of the surface temperature
during the hardening of a cylinder were made with the aid of a thermographical camera. The
evolution of the temperature in the experiment and in a simulation are compared in Section 6.5.
Most important is the prediction of the location of the hardened zone. These final results are
presented in Section 7.

6.1 Analytical Solutions

6.1.1 Conducting Sphere in the Alternating Field of a Current Loop

In this section, an analytical solution of the eddy current model is developed for a homogeneous
sphere excited by a circular current loop. For axial symmetry all quantities can be considered
independent ofφ in spherical coordinates. IfB additionally has noφ-component, then the vector
potentialB = curlA can be considered as

A = Aφ(r, θ) · eiωt · eφ , with Aφ(r, θ) ∈ C . (6.1)

The coordinate axes are chosen according to Figure 6.1. It can easily be shown that for homoge-
neous material parameters and in Coulomb gauge the magnetic vector potentialA is equivalent
to the electric fieldE in the eddy current model. With the ansatz

Aφ(r, θ) =
R(r)√
r
· T (θ), with R(r), T (θ) ∈ C , (6.2)

83



CHAPTER 6. VALIDATION

z

x

y

r

φ

θ

x

z

y
b

a

Conducting Sphere

Exciting Loop

Figure 6.1: Setting sphere

equation (3.32) can be transformed into

r2

R

d2R

dr2
+
r

R

dR

dr
− 1

4
− ikr2 +

√
1− u2
T

d2

du2
[
√
1− u2 · T ] = 0 , (6.3)

with k := ωσµ andu := cos θ. When setting the terms involvingr equal ton(n+1), with n ∈ Z ,
and those involvingθ to−n(n + 1) it follows [Smy68, p. 375]

Legendre diff. eqn. 0 = (1− u2) d
2Tn
du2

− 2u
dTn
du
− Tn

1− u2 + n(n + 1)Tn , (6.4)

Bessel diff. eqn. 0 =
d2Rn

dr2
+

1

r

dRn

dr
+

(
−ik −

(n+ 1
2
)2

r2

)
Rn . (6.5)

It can be shown [FK98, p. 85] thatTn is only bounded ifn > 0 is a positiv integer. The solution
of the system of equations (6.4), (6.5) is [FK98, p. 91], [Smy68, p. 375]

Tn(θ) = C1n P
1
n(u) + C2nQ

1
n(u) , (6.6)

Rn(r) = C3n Jn+ 1
2
(ir
√
ik) + C4n J−n− 1

2
(ir
√
ik) k 	= 0 , (6.7)

Rn(r) = C5n r
n+ 1

2 + C6n r
−n− 1

2 k = 0 , (6.8)

with the coefficientsC1n . . . C6n ∈ C , with theassociated Legendre functionsP 1
n andQ1

n of first
and second kind, and with theBessel functionsJn+ 1

2
, J−n− 1

2
. It holdsC2n = 0 becauseQ1

n(u) is
unbounded [Smy68, p. 155, 158]. The vector potential of a circular current loop with the radius
b and the currentI is [Jac75, p. 144]

AC
φ (r, θ) = −Ibµ0

4

∞∑
n=0

(−1)n(2n− 1)!!

2n(n + 1)!
· P 1

2n+1(u) ·
r2n+1

b2n+2
for r ≤ b , (6.9)

ACE
φ (r, θ) = −Ibµ0

4

∞∑
n=0

(−1)n(2n− 1)!!

2n(n + 1)!
· P 1

2n+1(u) ·
b2n+1

r2n+2
for b < r , (6.10)

with (2n− 1)!! := (2n− 1) · (2n− 3)..... · 5 · 3 · 1 , (2 · 0− 1)!! := 1 .
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The complete vector potential is a superposition of the solution of the sphere and the loop. It
consists of three parts in the following three regions: The interior of the sphere (AI

φ), the region
between the sphere and the loop (AO

φ ), and the exterior region (AE
φ ). These vector potentials can

be written as

AI
φ(r, θ) =

∞∑
n=1

r−
1
2 · [C3nJn+ 1

2
(ir
√
ik) + C4nJ−n− 1

2
(ir
√
ik)] · C1nP

1
n(u) r < a , (6.11)

AO
φ (r, θ) =

( ∞∑
n=1

[C5n r
n + C6n r

−n−1] · C1nP
1
n(u)

)
+ AC

φ (r, θ) a < r < b , (6.12)

AE
φ (r, θ) =

( ∞∑
n=1

[C5n r
n + C6n r

−n−1] · C1nP
1
n(u)

)
+ ACE

φ (r, θ) b < r . (6.13)

A must vanish forr →∞, so it followsC5n = 0. In the case ofx→ 0, the rule [AI70, 9.1.7]

Jν(x) =
(x
2

)ν
· 1

Γ(ν + 1)
+O(|x|ν+1) ν ∈ C , ν 	= −1, −2, −3, ..... (6.14)

with the gamma functionΓ shows thatC4n = 0 if AI
φ(r, θ) is finite atr = 0. It remains

AI
φ(r, θ) =

∞∑
n=1

BI
n · r−

1
2 · Jn+ 1

2
(ir
√
ik) · P 1

n(u) r < a , (6.15)

AO
φ (r, θ) =

( ∞∑
n=1

BO
n · r−n−1 · P 1

n(u)

)
+ AC

φ (r, θ) a < r < b , (6.16)

AE
φ (r, θ) =

( ∞∑
n=1

BO
n · r−n−1 · P 1

n(u)

)
+ ACE

φ (r, θ) b < r . (6.17)

The unknown coefficientsBI
n, B

O
n ∈ C can be fixed by taking into account the jump conditions

in coulomb gauge[n ·B] = [n×H] = 0 on the surface of the sphere(r = a). If B is integrated
over a Stokesian loopC, one finds

0 =

∫
S

B · n dS =

∫
C

A ds =⇒ 0 = [n×A] , (6.18)

with the first jump condition. Integration of the Coulomb gauge condition over a Gaussian pillbox
V yields

0 =

∫
V

divA dV =

∫
S

A · n dS =⇒ 0 = [n ·A] , (6.19)

so one finds[A] = 0. Together with[n×H] = 0, this can be written as

AI
φ(a, θ) = AO

φ (a, θ) , (6.20)

1

µr

∂

∂r
(r AI

φ(r, θ))

∣∣∣∣
r=a

=
∂

∂r
(r AO

φ (r, θ))

∣∣∣∣
r=a

,

⇔ 1

µr

(
AI

φ(a, θ) + a
∂AI

φ(r, θ)

∂r

∣∣∣∣∣
r=a

)
=

(
AO

φ (a, θ) + a
∂AO

φ (r, θ)

∂r

∣∣∣∣∣
r=a

)
, (6.21)
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which has to be valid for allθ. The exciting vector potential consists only of odd associated
Legendre functions. This, their linear independence and (6.21) suggestB I

n = BO
n = 0 for even

n. It remains for the two interesting regions

AI
φ(r, θ) =

∞∑
n=0

AI
n · r−

1
2 · J2n+ 3

2
(ir
√
ik) · P 1

2n+1(u) , (6.22)

AO
φ (r, θ) =

∞∑
n=0

AO
n · r−2n−2 · P 1

2n+1(u)−
Ibµ0

4

(−1)n(2n− 1)!!

2n(n+ 1)!

r2n+1

b2n+2
P 1
2n+1(u) . (6.23)

The jump conditions (6.20), (6.21) together withJ ′
y(x) = Jy−1(x)− y

x
Jy(x) are fulfilled if

AI
n · a−

1
2 · J2n+ 3

2
= AO

n · a−2n−2 −AC
φn · a2n+1 , (6.24)

AI
n

µr

(
a−

1
2J2n+ 3

2
+ a ·

{
− 1

2
a−

3
2J2n+ 3

2
+ a−

1
2 (i
√
ik)[J2n+ 1

2
−

2n+ 3
2

ia
√
ik
J2n+ 3

2
]
})

(6.25)

= AO
n a

−2n−2 − AC
φna

2n+1 + AO
n (−2n− 2)a−2n−2 −AC

φn(2n+ 1)a2n+1 ,

with

Jy = Jy(ia
√
ik) and AC

φn =
Ibµ0

4

(−1)n(2n− 1)!!

2n(n+ 1)! b2n+2
.

This is equivalent to

AI
n =

AO
n · a−2n− 3

2 − AC
φn · a2n+

3
2

J2n+ 3
2

, (6.26)

AI
n

µr

(
J2n+ 3

2
− 1

2
J2n+ 3

2
+ a(i

√
ik)J2n+ 1

2
− (2n+

3

2
)J2n+ 3

2

)
(6.27)

= AO
n a

−2n− 3
2 − AC

φna
2n+ 3

2 + AO
n (−2n− 2)a−2n− 3

2 − AC
φn(2n+ 1)a2n+

3
2 ,

which leads to

AO
n · a−2n− 3

2 − AC
φn · a2n+

3
2

µr

(
1− 1

2
+ a(i

√
ik)

J2n+ 1
2

J2n+ 3
2

− (2n +
3

2
)
)

= AO
n (−2n− 1)a−2n− 3

2 − AC
φn(2n+ 2)a2n+

3
2 ,

⇐⇒

AO
n −AC

φna
4n+3

µr

(
ai
√
ik
J2n+ 1

2

J2n+ 3
2

− 2n− 1
)

= AO
n (−2n− 1)− AC

φn(2n+ 2)a4n+3 ,

⇐⇒

AO
n

(
ai
√
ik
J2n+ 1

2

J2n+ 3
2

− 2n− 1 + µr(2n+ 1)
)

= AC
φna

4n+3
(
ai
√
ik
J2n+ 1

2

J2n+ 3
2

− 2n− 1− µr(2n+ 2)
)
.
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With these relations it finally follows

AI
φ(r, θ) =

∞∑
n=0

AI
n · r−

1
2 · J2n+ 3

2
(ir
√
ik) · P 1

2n+1(u) , (6.28)

AO
φ (r, θ) =

∞∑
n=0

AO
n · r−2n−2 · P 1

2n+1(u)− AC
φn · r2n+1 · P 1

2n+1(u) , (6.29)

with ,

AO
n = AC

φna
4n+3

(
ai
√
ik

J
2n+1

2
(ia

√
ik)

J
2n+3

2
(ia

√
ik)
− 2n− 1− µr(2n+ 2)

)
(
ai
√
ik

J
2n+1

2
(ia

√
ik)

J
2n+3

2
(ia

√
ik)
− 2n− 1 + µr(2n+ 1)

) , (6.30)

AI
n =

AO
n · a−2n− 3

2 − AC
φn · a2n+

3
2

J2n+ 3
2
(ia
√
ik)

, (6.31)

AC
φn =

Ibµ0

4

(−1)n(2n− 1)!!

2n(n+ 1)! b2n+2
, (6.32)

k = ωσµ = ωσµrµ0 , (6.33)

u = cos θ . (6.34)

The potential was calculated numerically with the aid of the program package MATLAB1. There-
fore, a mesh of the sphere was built in the two dimensionsr andφ, consisting of equidistant grid
points(rm, φn). The potentialAI

φ(r, θ) was calculated adaptively at each of these points. This
was done by addingk ∈ N terms of the series

AI,k
φ (rm, θn) =

k∑
n=0

AI
n · r

− 1
2

m · J2n+ 3
2
(irm
√
ik) · P 1

2n+1(un) .

k is increased until the sum remains unchanged at each grid point, i.e. until the difference of the
sum in consecutive steps|AI,ki+1

φ − AI,ki
φ | was smaller than a certain criterion.

Figure 6.2 illustrates the result for a sphere with radiusa = 5 cm, the conductivityσ = 2 ·
106 (Ωm)−1, and a relative magnetic permeability ofµr = 10. It is excited by a loop current of
I = 1 kA, ω = 2π · 10kHz, with a radius ofb = 6.5 cm. These are typical material parameters,
excitations, and dimensions in the hardening context. The first graph shows the spatial current
density in the planez = 0, the second graph shows the current density on the surface along a
longitude.

1http://www.mathworks.com/
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Figure 6.2: Eddy current in a sphere
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Verification: Asymptotic for the Vacuum σ → 0, µr = 1.

In order to check the result, the vacuum-limitσ → 0, µr = 1 can be calculated. It follows from
(6.14) that

x ·
J2n+ 1

2
(x)

J2n+ 3
2
(x)

→ x ·

(
x
2

)2n+ 1
2 · 1

Γ(2n+ 1
2
+1)(

x
2

)2n+ 3
2 · 1

Γ(2n+ 3
2
+1)

= 2 ·
Γ(2n+ 3

2
+ 1)

Γ(2n+ 1
2
+ 1)

= 2 ·
(2n+ 1

2
+ 1) · Γ(2n+ 1

2
+ 1)

Γ(2n+ 1
2
+ 1)

= 4n+ 3 ,

soAO
n = 0. If this is inserted into equation (6.28), it remains

AI
φ(r, θ) =

∞∑
n=0

−AC
φn · a2n+

3
2

J2n+ 3
2
(ia
√
ik)
· r− 1

2 · J2n+ 3
2
(ir
√
ik) · P 1

2n+1(u) ,

J2n+ 3
2
(ir
√
ik)

J2n+ 3
2
(ia
√
ik)

→
( ir

√
ik

2
)2n+

3
2 · 1

Γ(2n+ 3
2
+1)

( ia
√
ik

2
)2n+

3
2 · 1

Γ(2n+ 3
2
+1)

=
r2n+

3
2

a2n+
3
2

,

⇒ AI
φ(r, θ) =

∞∑
n=0

−AC
φn · r2n+1 · P 1

2n+1(u) .

This means that the vector potential derived from the limitσ → 0 andµr = 1 is the same as the
vacuum solution (6.9)!

Special Case: σ =∞.

The calculation is started at equation (6.15). Using the rule [AI70, 9.2.1] for|z| → ∞

Jν(z) =

√
2

πz

(
cos (z − 1

2
νπ − 1

4
π) + e|
z|O(|z|−1)

)
|argz| < π

with the imaginary part�z of z, and argz = argx+ iy = arctan y
x
, leads to

AI
φ(r, θ) =

∞∑
n=1

BI
n · r−

1
2 ·
√

2

πir
√
ik

cos (ir
√
ik − 1

2
(n+

1

2
)π − 1

4
π) · P 1

n(u) .

This means thatBI
n = 0 if the vector potential should remain finite fork → ∞. The jump

condition (6.21) is no longer valid because there is a surface current flowing. So (6.20) alone
fixes the coefficientsAO

n . Condition (6.24) implies

AO
n = AC

φn · a4n+
7
2 ,

=⇒ AO
φ (r, θ) =

∞∑
n=0

AO
n · r−2n− 5

2 · P 1
2n+1(u)− AC

φn · r2n+1 · P 1
2n+1(u)

=
∞∑
n=0

AC
φn · P 1

2n+1(u)
(
a4n+

7
2 · r−2n− 5

2 − r2n+1
)
.
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The surface current follows from the right side of (6.25) with the aid of[n×H] = k

k(θ) =

=
1

µ0a

∞∑
n=0

(
AO

n a
−2n−2−AC

φna
2n+1+AO

n (−2n− 2)a−2n−2−AC
φn(2n+ 1)a2n+1

)
P 1
2n+1(u) eφ

=
1

µ0 · a

∞∑
n=0

(
AO

n · (−2n− 1)a−2n−2 −AC
φn(2n+ 2)a2n+1

)
P 1
2n+1(u) · eφ

=
1

µ0 · a

∞∑
n=0

(
AC

φn · (−2n− 1)a2n+1 − AC
φn(2n+ 2)a2n+1

)
P 1
2n+1(u) · eφ

=
−1
µ0 · a

∞∑
n=0

(
AC

φn · (4n+ 3) · a2n+1
)
P 1
2n+1(u) · eφ . (6.35)

The surface current was calculated in the same way as before in the case of a finite conductiv-
ity, by adding the terms of the sum until a certain precision was reached. Figure 6.3 shows the
surface current‖k‖ of the perfect conducting sphere along a longitude. Dimensions and exci-
tation remained unchanged from the last example of a non-perfect conducting sphere: Radius
a = 5 cm, exciting currentI = 1 kA, loop radiusb = 6.5 cm, andω = 2π · 10kHz. Now,
material parameters and frequency have no influence on the solution.
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Figure 6.3: Perfect conducting sphere
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6.1.2 Conducting Cylinder in the Alternating Field of a Current Loop

z

x

y

φ
r

z

x

y
b

Exciting Loop

z
a

Conducting Cylinder

Figure 6.4: Setting cylinder

In this section, an analytical solution of the eddy current model is developed for a homogeneous,
infinite long cylinder excited by a circular current loop. For axial symmetry all quantities can be
considered independent ofφ in cylindrical coordinates. If additionallyB has noφ-component,
then the vector potentialB = curlA can be considered as

A = Aφ(r, z) · eiωt · eφ , with Aφ(r, z) ∈ C . (6.36)

In Coulomb gauge equation (3.32) can be transformed into (k = ωσµ)

0 =

[
d2Aφ

dr2
+

1

r

dAφ

dr
− Aφ

r2
+
d2Aφ

dz2
+ ikAφ

]
.

With the ansatz
Aφ(r, z) = R(r) · T (z), with R(r), T (z) ∈ C , (6.37)

it follows

0 =
1

R

d2R

dr2
+

1

R · r
dR

dr
+

1

T

d2T

dz2
+ ik − 1

r2
. (6.38)

By setting the terms involvingr equal top2, p ∈ R , and those involvingz to−p2, one finds

0 =
d2T (p, z)

dz2
+ p2T (p, z) , (6.39)

Bessel diff. eqn. 0 =
d2R(p, r)

dr2
+

1

r

dR(p, r)

dr
+

(
ik − p2 − 1

r2

)
R(p, r) . (6.40)

The solution of the system of equations (6.39), (6.40) is [FK98, p.90, 91], [AI70, 9.1.1]

T (p, z) = C1n e
ipz + C2n e

−ipz , (6.41)

R(p, r) = C3n J1(r
√
ik − p2) + C4n J−1(r

√
ik − p2) k 	= 0 (6.42)

R(p, r) = C5nH
(1)
1 (irp) + C6nH

(2)
1 (irp) k = 0, (6.43)
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with the coefficientsC1n . . . C6n ∈ C , with p > 0, and with theHankel functionsH (1)
1 andH (2)

1 .

The infinite long and homogeneous cylinder lies in the coordinate system according to Figure
6.4. The loop inz = 0 causesC1n = C2n. As in Section 6.1.1,C4n must vanish. Because of the
behavior of the Hankel functions for|z| → ∞ [AI70, 9.2]

H(1)
ν (z) ∼

√
2

πz
ei(z−

1
2
νπ− 1

4
π) (−π < argz < 2π) (6.44)

H(2)
ν (z) ∼

√
2

πz
e−i(z− 1

2
νπ− 1

4
π) (−2π < argz < π) , (6.45)

it also holdsC6n = 0. For the vector potential, it remains

AI
φ(r, z) =

∫ ∞

0

CI(p) · J1(r
√
ik − p2) · cos(pz) dp r < a , CI(p) ∈ C , (6.46)

AO
φ (r, z) =

∫ ∞

0

CO(p) ·H(1)
1 (irp) · cos(pz) dp + AC

φ (r, z) r > a , CO(p) ∈ C . (6.47)

Herea is the radius of the cylinder. The vector potential of a circular current loop with the radius
b and the exciting currentI in spherical coordinates is [Jac75, p. 142]

AC
φ (rs, θ) =

Ibµ0

4π

∫ 2π

0

cosφ′ dφ′

(b2 + r2s − 2brs sin θ cosφ′)
1
2

.

Transformation in cylindrical coordinates withr2s = r2 + z2 andr = rs sin θ yields

AC
φ (r, z) =

Ibµ0

4π

∫ 2π

0

cosφ′ dφ′

(b2 + r2 + z2 − 2br cos φ′)
1
2

. (6.48)

With the aid of [BS89, p. 622, p.619] one finds

AC
φ (r, z) =

Ibµ0

4π

∫ 2π

0

(√
2

π

∫ ∞

0

√
2

π
K0(p

√
b2 + r2 − 2br cosφ′) cos(pz)dp

)
cosφ′ dφ′

=

∫ ∞

0

(
Ibµ0

2π2

∫ 2π

0

K0(p
√
b2 + r2 − 2br cosφ′) cosφ′ dφ′

)
cos(pz)dp , (6.49)

with the modified Bessel functionK0. The unknown coefficientsCI andCO can be fixed by
taking into account the jump conditions (6.20) and (6.21) on the surface of the cylinder(r = a)

AI
φ(a, z) = AO

φ (a, z) , (6.50)

1

µr

∂

∂r
(r AI

φ(r, z))

∣∣∣∣
r=a

=
∂

∂r
(r AO

φ (r, z))

∣∣∣∣
r=a

,

⇔ 1

µr

(
AI

φ(a, z) + a
∂AI

φ(r, z)

∂r

∣∣∣∣∣
r=a

)
=

(
AO

φ (a, z) + a
∂AO

φ (r, z)

∂r

∣∣∣∣∣
r=a

)
. (6.51)
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Thez-dependent part can now be separated. Using the relations [AI70, 9.6.27] and [AI70, 9.1.27]

dK0(x)

dx
= −K1(x) ,

dH
(1)
1 (x)

dx
= H

(1)
0 (x)− 1

x
H

(1)
1 (x) ,

dJ1(x)

dx
= J0(x)−

1

x
J1(x) ,

in the jump conditions results in

CI(p)J̃1(p) = CO(p)H̃1(p) +
Ibµ0

2π2

∫ 2π

0

K̃0(p, φ
′) cosφ′ dφ′ , (6.52)

CI(p)

µr

(
J̃1(p) + a

[
J̃0(p)−

1

a
√
ik − p2

J̃1(p)

]√
ik − p2

)
= (6.53)

CO(p)

(
H̃1(p) + a

[
H̃0(p)−

1

iap
H̃1(p)

]
ip

)
+

Ibµ0

2π2

∫ 2π

0

[
K̃0(p, φ

′) cosφ′

−aK̃1(p, φ
′) cosφ′ p · (a− b cosφ′)√

b2 + a2 − 2ba cos φ′ dφ
′
]
,

with

K̃0(p, φ
′) = K0(p

√
b2 + a2 − 2ba cosφ′) , K̃1(p, φ

′) = K1(p
√
b2 + a2 − 2ba cosφ′) ,

J̃0(p) = J0(a
√
ik − p2) , J̃1(p) = J1(a

√
ik − p2) ,

H̃0(p) = H0(iap) , H̃1(p) = H1(iap) .

The two equations (6.52) and (6.53) can be transformed into

CI(p)J̃1(p) = CO(p)H̃1(p) +R0(p) , (6.54)

a
√
ik − p2CI(p)

µr

J̃0(p) = iapCO(p) H̃0(p) +R0(p)− aR1(p) , (6.55)

with

R0(p) =
Ibµ0

2π2

∫ 2π

0

K̃0(p, φ
′) cosφ′ dφ′ ,

R1(p) =
Ibµ0

2π2

∫ 2π

0

K̃1(p, φ
′) cosφ′ p(a− b cosφ′)√

b2 + a2 − 2ba cosφ′ dφ
′ .

It follows

CI(p) =
1

J̃1(p)
(CO(p)H̃1(p) +R0(p)) , (6.56)

a
√
ik − p2CI(p) J̃0(p) = µr(iapC

O(p) H̃0(p) +R0(p)− aR1(p)) . (6.57)
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Equation (6.57) is equivalent to

a
√
ik − p2 J̃0(p)

J̃1(p)
(CO(p)H̃1(p) +R0(p)) = µr(iapC

O(p) H̃0(p) +R0(p)− aR1(p))

⇐⇒

(a
√
ik − p2 J̃0(p)

J̃1(p)
H̃1(p)− µriap H̃0(p))C

O(p) =

µrR0(p)− µr aR1(p)− a
√
ik − p2 J̃0(p)

J̃1(p)
R0(p)

⇐⇒

CO(p) =
J̃1(p)µr(R0(p)− aR1(p))− a

√
ik − p2 J̃0(p)R0(p)

a
√
ik − p2 J̃0(p) H̃1(p)− J̃1(p)µriap H̃0(p)

.

Finally it remains

AI
φ(r, z) =

∫ ∞

0

CI(p) · J1(r
√
ik − p2) · cos(pz) dp r < a , (6.58)

AO
φ (r, z) =

∫ ∞

0

CO(p) ·H(1)
1 (irp) · cos(pz) dp + AC

φ (r, z) r > a , (6.59)

CO(p) =
J1(a

√
ik − p2)µr(R0(p)− aR1(p))− a

√
ik − p2 J0(a

√
ik − p2)R0(p)

a
√
ik − p2 J0(a

√
ik − p2)H(1)

1 (iap)− J1(a
√
ik − p2)µriapH

(1)
0 (iap)

, (6.60)

CI(p) =
1

J1(a
√
ik − p2)

(CO(p)H
(1)
1 (iap) +R0(p)) , (6.61)

R0(p) =
Ibµ0

2π2

∫ 2π

0

K0(p
√
b2 + a2 − 2ba cosφ′) cosφ′ dφ′ , (6.62)

R1(p) =
Ibµ0

2π2

∫ 2π

0

K1(p
√
b2 + a2 − 2ba cosφ′) cosφ′ p(a− b cosφ′)√

b2 + a2 − 2ba cosφ′ dφ
′ , (6.63)

AC
φ (r, z) =

Ibµ0

4π

∫ 2π

0

cos φ′ dφ′

(b2 + r2 + z2 − 2br cosφ′)
1
2

, (6.64)

k = ωσµ = ωσµrµ0 . (6.65)

The potential was again calculated numerically with the aid of the program package MATLAB2.
Therefore, a mesh of the cylinder was built in the two dimensionsr andz, consisting of equidis-
tant grid points(rm, zn) (the infinite long cylinder was cut). Similar to the sphere, the potential

2http://www.mathworks.com/
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6.1. ANALYTICAL SOLUTIONS

AI
φ(r, z) was calculated adaptively at each of these points: One defines

AI, x
φ (rm, zn) :=

∫ x

0

CI(p) · J1(rm
√
ik − p2) · cos(pzn) dp

and increases x as long as a certain precision is reached. Figure 6.5 shows the result for a cylinder
with the radiusa = 2 cm, the conductivityσ = 2 · 106 (Ωm)−1, and a relative magnetic perme-
ability of µr = 10. It is excited by a loop current ofI = 1 kA, ω = 2π · 10kHz, with a radius
of 2.5 cm. The first graph shows the spatial current density in the planex = 0, and the second
graph shows the current density on the surface along thez−axis.
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Figure 6.5: Eddy current in cylinder
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6.2 Validation of the Magnetostatic Approach

The magnetostatic approach (3.116) is applied to the sphere of Figure 6.6. The mesh has 2880
surface faces. According to Section 3.3.3 this means that the system of equations has 2880 real
valued unknowns due to the discretization by collocation with constant basis functions. The
parameters of the setting are: The sphere radiusa = 5 cm, the exciting currentI = 1 kA, the
loop radiusb = 6.5 cm, andω = 2π · 10kHz.

Figure 6.6: Mesh sphere
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Figure 6.7: Comparison analytical solution / magnetostatic approach

Figure 6.7 shows the surface current density on a perfect conducting sphere along a longitude.
The analytical solution of equation (6.35) is drawn as a solid line (-). The dotted curve (*) is
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6.3. VALIDATION OF THE IMPEDANCE MODEL

the numerical solution of the magnetostatic approach (3.116). The calculated surface current in
the numerical computations is very close to the analytical solution of the perfect conducting
sphere. The curve remains the same for allµr, σ, andω, because the material parameters are not
involved in the calculations of the surface current. Of course, steel is not a perfect conductor,
but what is interesting in the simulation of inductive heating is the spatial current. This is done
in the postprocessing step of equation (3.122), and here the material parameters come into play.
Nevertheless, the magnetostatic approach is only a crude method. However, it also has advantages
compared with the two other approaches: The number of unknowns is much smaller and it is
much easier to implement.

6.3 Validation of the Impedance Model

6.3.1 The Current Density at the Surface in the Impedance Model

The calculation of the current density of the surface can be carried out in two different ways in
the BEM part of the impedance model. IfES,λS are the solutions of (3.102)-(3.103) then the
current density can be computed byjE := σES. The second possibility is to use the impedance
conditionγDE = ηλ of equation (3.100) and calculate the current density byjλ := σηλS.
The two current densities are different. This can be seen in Figure 6.8, where these items are
presented for the same cylinder that was also used in the numerical experiment of Section 6.3.3.
The Figure shows the current densities at the surface along the z-axis,with‖jλ‖ depicted by (+),
‖jE‖ depicted by (- -), their average value0.5 · ‖jE + jλ‖ depicted by (*), and the analytical
solution depicted by (-). For definition of the axes see Figure 6.4.

Figure 6.8: Different current densities at the surface of the cylinder of Section 6.3.3
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CHAPTER 6. VALIDATION

So the average value seems to be the best way for the calculation of the current density, and
in the following this method is used for the computation of the current density at the surface
in the BEM part of the impedance model. The two different currentsjE, jλ were examined for
decreasing meshwidths and their difference remained approximately the same. In theory there is
no proof available that the difference vanishes for decreasing meshwidths.

As the right hand side of the FEM part of equation (3.104) one needs[
1

µ
curlE× n

]
BEM

from the BEM part. This is also computed by using an average value according to[
1

µ
curlE× n

]
BEM

:= 0.5 ·
(
λS +

1

η
ES

)
,

whereES is used at the center of gravity of each face.

6.3.2 Sphere

The evaluated numerical results of the impedance model of (3.102)-(3.104) and the analytical
solution of (6.28)-(6.34) are compared in Figure 6.10. As before the same sphere is used, with:
The sphere radiusa = 5 cm, the exciting currentI = 1 kA, the loop radiusb = 6.5 cm, and
ω = 2π · 10kHz. The mesh that is used is shown in Figure 6.9. It has2214 faces,3321 edges,
and1109 nodes at the surface, thus a system of equations with4430 complex unknowns has to
be solved for the BEM part.

Figure 6.9: Mesh sphere
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Figure 6.10: Comparison analytical solution / impedance model

The (average) current density at the surface calculated by the BEM part (3.102)-(3.103) of the
impedance model (depicted by *) is in good agreement with the analytical solution (depicted by -)
of the quasi-static approximation for a wide range of material parameters. A big advantage of the
approach is that it has no problems coping with very small penetration depths. The penetration
depth isδ = 0.16mm for the combinationσ = 5.0 · 106 1

Ωm
, µr = 200, and a frequency of

10 kHz . This is a typical value at the beginning of the hardening process, when the temperature
is low and the conductivity is high. Note that the triangles of the mesh are much bigger than
0.16mm, and that it is not necessary to compute with smaller triangles to get a good current at
the surface.
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CHAPTER 6. VALIDATION

6.3.3 Cylinder

A refined mesh is used in the case of the cylinder with a radius of2 cm and an exciting loop
current with a radius of2.5 cm. Figure 6.11 shows the setting and the refined mesh with8272
faces,12408 edges, and4138 nodes at the surface, i.e.16546 complex unknowns for the BEM
part.

X

Y

Z

1

Figure 6.11: Refined mesh cylinder

The next Figure 6.12 shows the same mesh in the interior of the cylinder in the planez = 0. For
definition of the axes see Figure 6.4. The mesh has a total of245538 edges, and the FEM part
has the same number of complex unknowns.

Figure 6.12: Interior mesh cylinder

The solution of the impedance approach of (3.102)-(3.104) and the analytical solution of (6.58)-
(6.65) are compared in Figure 6.13. The exciting current isI = 7875A andω = 2π · 10kHz.
The homogeneous material parameters areσ = 2 · 106 (Ωm)−1 andµr = 10.
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Figure 6.13: Comparison analytical solution / impedance approach
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The first graph of Figure 6.13 presents the (average) current density on the surface along the
z−axis, as computed by the BEM part of the equations (3.102)-(3.103). As already observed at
the sphere, the solution of the impedance approach and the analytical solution agree very well.

The second graph in Figure 6.13 shows the current density in the interior of the cylinder along
the linex = z = 0, as computed by the FEM part of equation (3.104). The numerical result has
jumps because the edge elements are discontinuous in the normal direction at the interface of
two tetrahedra. The penetration depth isδ = 1.1mm in this example. The mesh is graded in the
interior, and the meshwidth decreases toward the surface in order to resolve the skin effect. The
meshwidth is approximatelyh = 0.5mm at the surface.

6.4 Validation of the Eddy Current Approach

The eddy current approach (3.98)-(3.99) is verified by comparison with the analytical solution
(6.28)-(6.34) of the sphere. The sphere of Figure 6.9 is refined twice, and the result is the mesh of
Figure 6.14 with a total of144569 edges and5348 surface nodes. So a system of equations with
149917 complex unknowns has to be solved for the eddy current approach. The right picture in
Figure 6.14 shows the interior mesh in a plane at the equator. The mesh is constructed by rotation.
This is the only reason why there are small elements in the center of the sphere.

Figure 6.14: Refined mesh sphere

The solutions of the eddy current approach (depicted by *) and the analytical solutions (depicted
by -) are compared in Figure 6.15 for different conductivities but a constant magnetic permeabil-
ity of µr = 1.0. The exciting current isI = 1000A andω = 2π · 10kHz. The figure shows the
current at the surface, and numerical and analytical results agree well for these examples. The
penetration depth varies betweenδ = 2.3mm andδ = 5.6mm.
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Figure 6.15: Comparison analytical solution / eddy current approach
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Figure 6.16: Solution forσ = 0.8 · 106 (Ωm)−1 andµr = 10.0
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Results are worse for smaller penetration depths. The penetration depth isδ = 1.7mm for a
conductivity ofσ = 0.8 · 106 (Ωm)−1 andµr = 10.0. Figure 6.16 shows the result of the eddy
current approach in this case. The numerical result and the analytical solution are not in good
accordance for this example. It seems as if the mesh is too coarse. If this hypothesis was true for
the fine mesh of Figure 6.14 then the results would be worse for the coarser mesh in Figure 6.9.
To verify this, the eddy current approach was calculated on the coarser mesh of Figure 6.9 and
the results did indeed get worse. As a conlusion it should be pointed out that the eddy current
approach with the most convenient properties seems to have difficulties if the meshwidth is too
big. This is not a surprise, but the consequence is that the impedance approach is prefered for
the simulation of inductive hardening, because a wide range of material parameters with small
penetration depths occur there.

6.5 Measurements of the Surface Temperature

Besides the theoretical possibilities for the validation of the program, there were also experiments
made in order to check the correctness of the predicted temperatures. This was done by using a
cylinder and an inductor with the shape of a torus. The mesh is shown in Figure 6.17. The cylinder
was made of steel C45, it had a radius of2cm, and it was10cm long. The torus was made of
copper, it had an interior radius of2.5cm, an exterior radius of3.5cm, and its height was1cm.
Three currents were used for the excitation:10500A, 7875A, and5250A. The frequency was
10kHz. In the first0.2 seconds of the heating phase, only50% of the exciting current is used,
due to the power regulation of the heating machine. The maximum heating time was six seconds.

Figure 6.17: Setting experiment
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6.5. MEASUREMENTS OF THE SURFACE TEMPERATURE

The maximum surface temperature of the cylinder during the heating phase was measured with
the aid of a thermographical camera. Of course, the maximum surface temperature is located
at the center of the cylinder, close to the inductor. The next Figure 6.18 shows the measured
maximum surface temperature in the experiment (depicted by a solid line) in comparison with the
maximum surface temperature calculated by the magnetostatic approach (depicted by a dashed
line and ’o’).
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Figure 6.18: Surface temperature in the simulation with the magnetostatic approach and in the
experiment

Although the magnetostatic approach gives only a crude approximation of the currents, the mea-
sured temperature can be reproduced very well. However, the cylinder is a ’flat’ geometry, and
the problems expected for the magnetostatic approach occur at edges and corners. There, the
impedance model gives a better approximation.

Unfortunately the results of the impedance model are worse, as can be seen in Figure 6.19.
There, the surface temperature as predicted by the simulation (depicted by a dashed line and ’o’)
are compared with the experimental data (depicted by a solid line) for the two exciting currents
10500A and5250A.
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Figure 6.19: Surface temperature in the simulation with the impedance model and in the experi-
ment

The behavior is the same for both exciting currents: The results are close to the measured data
until the critical temperature of800oC is reached. Then the temperature at the surface increases
rapidly in the simulation and big differences can be observed to the measured data. Approxi-
mately at800oC the phase transition takes place and all the material coefficients change their
values dramatically. We do not know the exact reason for the instability of the simulation,
but we made the same calculation for constant electric material parameters (µr = 10, σ =
2.0 · 106 (Ωm)−1). Then the unstable behavior vanished. Thus it seems to be a problem of the
electromagnetic calculations. This is a surprise because the electromagnetic calculations were
checked carefully, as can be seen in the last sections.

In order to verify the BEM part at high temperatures, I made an additional test for typical material
parameters at10000C: The conductivity was supposed to beσ = 0.8 · 106 (Ωm)−1, and the
permeability is one above the Curie-temperature. With these material parameters, the analytical
solution (6.58)-(6.65) of the homogeneous cylinder excited by a loop current was again compared
with the result of the impedance model (3.102)-(3.104) for an exciting current of5250A and a
frequency of10kHz. Figure 6.20 shows the curves. The same was done for typical material
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6.5. MEASUREMENTS OF THE SURFACE TEMPERATURE

parameters at500oC in order to compare the current density at different temperatures. At500oC
the following parameters are considered:µr = 10, σ = 2.0·106 (Ωm)−1. The analytical solutions
are depicted by solid lines and the results of the impedance model are depicted by *.
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Figure 6.20: Comparison analytical solution / impedance approach for typical material parame-
ters at1000oC and500oC

So the BEM part seems to work well at high temperatures and the current density is much smaller
than for low temperatures. We believe the problem to be hidden in the FEM part. It may be caused
by the heavily changing material parameters, especially the temperature and field dependent
magnetic permeability. Due to the decrease of the magnetic field and due to the strong gradient
of the temperature at the surface, the relative magnetic permeability increases from1 to 1000
within a few milimeters, and it seems as if it is impossible to take this effect into account with
our kind of meshes. However we do not exactly know if this is really the reason and unfortunately
we were running out of time in the project, so we did not have the possibility to fix the problem.
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Chapter 7

Results

The final goal of the simulation is the correct prediction of the hardened zone in the workpiece,
i.e. the region with a temperature above830oC, see Section 2.1. Therefore, the cylinder of the
experiment of the last Section 6.5 is used. The heating phase was interrupted after a certain time
�t, and the workpiece was quenched under a shower. It was cut in the planex = 0 and then it
was polished. The hardened zone, i.e. the martensite has other optical properties than the non-
hardened zone, i.e. the ferrite-cementite mixture. Thus the hardened zone can be distinguished
optically from the non-hardened zone after the polish.

Figure 7.1 compares the predicted hardened zone as computed by the magnetostatic approach
(gray) with the real hardened zone of the workpiece, depicted by the black line in the pictures
for the exciting current7875A, and a frequency of10kHz after�t = 4s, 5s , 6s. Figure 7.2
compares the same entities for an exciting current of10500A and for�t = 1s, 1.5s , 2s. The
results agree very well in the beginning of the heating phase for both exciting currents, whereas
there are some differences for longer heating times.
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Figure 7.1: Hardened zone in the magnetostatic approach and in the experiment after�t =
4s, 5s , 6s for an exciting current of7875A. In reality the pictures are11mm in height and their
width is25mm.
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Figure 7.2: Hardened zone in the magnetostatic approach and in the experiment after�t =
1s, 1.5s , 2s for an exciting current of10500A. In reality the pictures are11mm in height and
their width is25mm.
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As an example for a real life item, the benchmark problem that is used in our project is simulated.
The setting is the same as in Figure 1.1. In practice, this workpiece is used as a joint of a driveshaft
of a car. Figure 7.3 shows the current density at the surface of the workpiece and the inductor.
The results are produced with the magnetostatic approach. Dark colours indicate a strong current.
One can see the impact of the plates on the workpiece and on the inductor. No experimental data
is available for this workpiece, thus the results of the simulation cannot be compared with the
real hardened item.

Figure 7.3: Current in workpiece and inductor
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Chapter 8

Conclusions

The focus of this dissertation lay on the boundary element methods that are used in the electro-
magnetic part of the simulation of the inductive hardening process. Therefore, three approaches
based on the quasistatic model of Maxwell’s equations were developed and implemented. The
three approaches differ in the effort that is necessary for the implementation and in the degree of
approximation.

The crudest model, which is the easiest one to implement, is themagnetostatic approach. Our
program is already in practical use in the industry. For the experiment with the cylinder, the pre-
dicted hardened zones are close to the real hardened zones, although the approach does not have
the ability to deal with a wide range of material parameters precisely. People from the industry
who are using the program told me, that problems occur at edges and corners, as expected.

In theory it is shown that theeddy current approachavoids these errors at edges and corners if
the meshwidth is small enough. For small penetration depths I found that the meshwidth must be
made so small, that the number of elements of the mesh is much too big for standard computers
of the present generation. Thus this approach cannot be used for the simulation of the inductive
hardening process. However, for conductors with a penetration depthδ > 3mm the model seems
to be applicable for electromagnetic computations. In this case, I expect this approach to produce
the best results, but I have to admitt, that this has not been tested.

The impedance modelis able to cope with the skin effect on relatively coarse meshes even for
small skin depths because it automatically uses the right boundary condition, at least for com-
paratively ’flat’ surfaces. The calculated current density in the interior of the conductors is, for
the theoretical experiments that were made, in good agreement with the analytical solutions even
for varying material parameters. Thus I expected this model would yield the best results in the
simulation of inductive hardening, but unfortunately, the predicted temperatures are only close
to the experimental data until the phase transition takes place at approximately800oC. Then the
simulation becomes unstable. We were running out of time in the project, so we were not able
to attend to the problem. However, it seems as if the boundary element part works well. The nu-
merical experiments that were made indicate that the FEM part must be checked more carefully
with focus on the special situation of heavily varying magnetic permeability.

If one is only interested in the electromagnetic fields for eddy current problems with moderately
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varying material parameters, each of the developed approaches can be applied. Depending on
what the aim is, one has to choose the right approach. The magnetostatic approach is applicable
if the skin depth is small, and if the solution at edges and corners is of minor importance. The
impedance model can be used for a wide range of material parameters (except for high temper-
atures), and it provides a much better approximation at edges and corners compared with the
magnetostatic approach. However, it must be pointed out that the impedance model needs much
more storage than the magnetostatic approach, thus it should only be used for ’smaller’ prob-
lems. The eddy current approach can be applied if one is interested in the electromagnetic fields
at edges and corners, but if the penetration depth is small, a lot of elements are needed to resolve
the skin effect. The eddy current approach is the best choice if the items have edges and corners,
and if the penetration depth is bigger than3mm.

A good idea for future simulations of the electromagnetic phenomena might be, to use the
impedance model as an initial guess for the electric field and then apply the eddy current ap-
proach only as a correction, especially at edges and corners.
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List of Notations

This is a fragmentary list of often used notations. Note that some symbols may occur several
times like, for example,B. However, everything except for very common signs, is defined locally
in the text too. So mixing up different meanings is avoided.

〈γ′, γ〉 := L(γ ↓, γ′)
[v] := Jump ofv

λ̄ := Complex conjugatedλ

‖ · ‖ := Euklidian norm of·
‖ · ‖V := Norm of · in V
| · | := Absolute value

γ ↓ := Submerged cycleγ

γ1 	� γ2 meansγ1 andγ2 are homotopic

〈a,b〉
�
:=
∫
Γ

a(x) · b(x) dS(x)

A := Magnetic vector potential

argz := Argument ofz = x+ iy, argz = arctan(y/x)

BEM-operatorsE±, γ±D, γ
±
N , λ±, C, A, N, B see page 19

B := Magnetic induction

bmk := The basis functions ofND1(Γh)

C := Complex numbers

C(Ω) := Continuous functions overΩ

Ck(Ω) := Functions with k-th derivative inC(Ω)

cp := Heat capacity

c := Speed of light

curlΓv := n · (curl v)
Dα := Differential operator( ∂

∂x1
)α1( ∂

∂x2
)α2 · · · ( ∂

∂xn
)αn
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∂αy := Differential operator( ∂
∂y1

)α1( ∂
∂y2

)α2 · · · ( ∂
∂yn

)αn , with |α| := α1 + α2 + · · ·+ αn

δ := Penetration depth

D := Electric displacement

diam := Diameter

dist := Distance

divΓ := grad∗
Γ

E := Electric field

ε = εr · ε0 := dielectric constant

F (E, v) :=

{
q(E, v) For theeddy current approach〈

1
η
γDE, γDv

〉
�

For theimpedance model

f(T ) := Temperature correction

Γ := Boundary of a region inR 3

G(x,y) := 1
4π

1
|x−y| , x, y ∈ R

3, x 	= y

gradΓ φ := n× (grad φ× n)

h := Meshwidth

H
− 1

2
⊥ (curlΓ,Γ) := {v ∈ H

− 1
2

⊥ (Γ), curlΓ v ∈ H− 1
2 (Γ)}

H
− 1

2

|| (divΓ,Γ) := {v ∈ H
− 1

2

|| (Γ), divΓv ∈ H− 1
2 (Γ)}

H
− 1

2

|| (divΓ0,Γ) := {λ ∈ H
− 1

2

|| (divΓ,Γ), divΓλ = 0}

H1(Ω) := {v ∈ L1
loc(Ω); D

αv ∈ L2(Ω) ∀ |α| ≤ 1}
H(curl,Ω) := {v ∈ L2(Ω); curl v ∈ L2(Ω)}

H(div,Ω) := {v ∈ L2(Ω); div v ∈ L2(Ω)}
H1(Γh, Z ) := Homology group

H := Enthalpy

H := Magnetic field

H
(1)
1 andH (2)

1 are Hankel functions

Iexc := Exciting current

Im, or�[·] := Imaginary part

J := Bessel functions

j := Spatial current density

κ := Heat conductivity
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k := Surface current density

Ker(T ) := Kernel of T

L(γ, γ′) := −
∫
γ

∫
γ′
gradyG(x,y) · (d�s(x)× d�s(y))

Lσ
t (x1)) := Lagrange polynomial

L2(Ω) :=
{
v : Ω→ R , ‖v‖L2(Ω) :=

[∫
Ω
|v(x)|2 dx

] 1
2 <∞

}
,

L2(Ω) := L2(Ω)3

N := {1, 2, 3 . . .}
N 0 := {0, 1, 2, 3 . . . }
n := Outer normal

ND1(Γh) := Space of linear surface edge functions

O(·) := Asymptotic behavior

ω := Angular frequency

Ω := Domain inR 3

∂Ω := Boundary ofΩ

Ω̄ := Closure ofΩ
o

Ω := Interior ofΩ

ψi := Basis functions ofS1(Γh)

pσι (x) := Lσ
t (x1)L

σ
l (x2)L

σ
m(x3) is a tensor product of Lagrange polynomials

P := Associated Legendre functions of the first kind

Q := Associated Legendre functions of the second kind

R := Real numbers

R >0 := Real numbers bigger than zero

Re, or�[·] := Real part

R··· := Right hand side

Sobolev spacesγD(H1(Ω)), H− 1
2 (∂Ω), H

1
2 (Γ), H− 1

2 (Γ), H
1
2

|| (Γ), H
1
2
⊥(Γ) see page 20

dS := Surface measure

dS := ndS

σ := Electric conductivity

σ0 := Stefan-Boltzmann constant

S1(Γh) := Space of nodal hat functions

S0 := Vh,S1 := Eh, andS2 := Fh are the sets of vertices, edges, and faces
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d�s := Path measure

S(τ) := Set of sons of clusterτ

sign(b) := sign (±1) of the edge functionb depending on the orientation

T := Temperature

Tm := Area of triangle m

µ = µr · µ0 := Magnetic permeability

µeff
r := f

1/f∫
0

µr

(
‖B0‖

)
dt

dx := Lesbesque measure

X(R 3) := H(curl, R 3) ∩H(div, R 3)

Z := All integer numbers

117



List of Figures

1.1 Typical setting for induction hardening . . . .. . . . . . . . . . . . . . . . . . . 2

1.2 Program of the eddy current approach . . . .. . . . . . . . . . . . . . . . . . . 5

1.3 Program of the impedance model. . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Program of the magnetostatic approach . . .. . . . . . . . . . . . . . . . . . . 7

3.1 Skin effect . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Definitions of the domains . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Cutting surfaces . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Notations for cutting surfaces . .. . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Path and cutting surface . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Inductor with hole and pathγ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Settings for the definition of basis functions ofS1(Γh) . . . . . . . . . . . . . . . 37

4.3 Topological vector field along pathγ . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Settings for the analytical integration . . . .. . . . . . . . . . . . . . . . . . . 43

4.5 Representatives of the basis ofH1(Γh, Z ) . . . . . . . . . . . . . . . . . . . . . 46

4.6 Surface configurations not possible in the case of a Lipschitz-polyhedron . . . . . 47

4.7 Destroying ncbe-cycle . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.8 Algorithm build face-tree . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.9 Face-tree in the case of a triangulated torus, which is represented by identifying
opposite sides of a rectangle. Output of the algorithm from Figure 4.8. . . . . . . 48

4.10 Algorithm build node-tree . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.11 Construction of the node-tree (dashed lines) on the torus according to the algo-
rithm of Figure 4.10, yieldingE i∗ := {e1, e2}. . . . . . . . . . . . . . . . . . . . 50

4.12 Algorithm build cycles . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.13 Two circuitsse1 (solid) andse2 (dashed) on the triangulated torus as produced by
the algorithm of Figure 4.12. . .. . . . . . . . . . . . . . . . . . . . . . . . . . 51

118



4.14 Left submergeγ1, right submergeγ2 . . . . . . . . . . . . . . . . . . . . . . . . 52

4.15 Construction of a shifted cycle(p1 ,p2 , · · · ). Note thatvN+1 := v1. . . . . . . . 53

4.16 Shift a cycle . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.17 Submerging of a cycle. Output is polygon(u1 ,u2 , · · · ). . . . . . . . . . . . . . 54

4.18 Surface mesh (left) and cyclesγ1, . . . , γ6 (right) . . . . . . . . . . . . . . . . . . 55

4.19 Surface current components of the trefoil knot. Black positive, white negative. . 56

5.1 Heat capacity, heat conductivity, and electric resistence . . . . . .. . . . . . . . 59

5.2 Relative magnetic permeability .. . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Correctionf(T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Test example . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5 Conjugate residual method . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6 Preconditioned conjugate residual method . .. . . . . . . . . . . . . . . . . . . 63

5.7 Implemented conjugate residual method . . .. . . . . . . . . . . . . . . . . . . 64

5.8 ‖x[i]− x0‖ for CR-method, solution is known. . . . . . . . . . . . . . . . . . . 66

5.9 Euklidian residual for CR-method, solution is known. . . . . . . . . . . . . . . 67

5.10 Iterative residual for CR-method, solution is known .. . . . . . . . . . . . . . . 67

5.11 ‖x[i]− x0‖ for restarted CR-method, solution is known . . . . . .. . . . . . . . 68

5.12 Euklidian residual for restarted CR-method, solution is known . .. . . . . . . . 68

5.13 Iterative residual for restarted CR-method, solution is known . . .. . . . . . . . 69

5.14 Euklidian residual for restarted CR-method, realistic right-hand side . . . . . . . 69

5.15 Iterative residual for restarted CR-method, realistic right-hand side. . . . . . . . 70

5.16 Algorithm geometric bisection .. . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.17 Algorithm divide .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
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