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Abstract 
Imaging the serotonin transporter (SERT) with Positron Emission Tomography 
(PET) provides a useful tool for understanding alterations of the serotonergic 
system. These alterations are associated with many psychiatric disorders. However, 
no optimal PET radiotracer for the SERT yet exists as particular demands are made 
on PET ligands. Both a high binding affinity at the target site and a high selectivity 
are required, as well as suitable PET kinetics and a straightforward synthetic 
access. 

The purpose of this work was the investigation of quantitative structure-activity 
relationships (QSAR) of SERT ligands. Distinctive features for high binding affinity at 
the SERT and at the structurally similar norepinephrine transporter (NET) were to be 
elucidated. The work was concluded with the design of potential new PET 
radiotracers for the SERT. Possibilities for radiolabelling were to be considered. 

A heterogeneous data set of 19 selective and non-selective SERT ligands was 
used. Affinity data for both the SERT and the NET was available. As a necessary 
prerequisite for 3D QSAR studies a reasonable alignment of the compounds was 
developed using GASP. This was based on an existing pharmacophore model. In 
addition to the widely used CoMFA method, the CoMSIA method, considered to be 
an extension of the former, was applied. This permitted the comparison of both 
methods. Statistically reliable CoMFA models for both the SERT (q2 = 0.538) and the 
NET (q2 = 0.445) were developed, further improving the internal predictability by 
applying region focusing for the SERT (q2 = 0.674). The CoMSIA models yielded 
comparable cross-validated correlation coefficients of q2 = 0.531 for the SERT, and 
q2 = 0.502 for the NET. q2-Values of above 0.3 to 0.5 are considered to be 
significant in CoMFA and CoMSIA models. Thus, fully satisfying results were 
obtained. Certain structural features that are distinctive of each transporter and 
important for high binding affinity were identified. As highly comparable contour 
maps were obtained from CoMFA and CoMSIA both methods seem to be equally 
well suited. Therefore both methods were applied for a selectivity analysis, allowing 
a clear discrimination between selectivity features for the SERT and for the NET. 

The resulting 3D QSAR models provide important information for lead optimisation 
with respect to selectivity enhancement and offer the opportunity to predict the 
binding affinity of new substances at both the SERT and the NET. Based on the fact 
that diphenyl sulphide derivatives such as [11C]DASB have recently proven to be 
promising PET ligands a rational modification of their N,N-dimethyl-2-phenylsulfanyl-
benzylamine scaffold has been performed. A series of 100 compounds were 
suggested. The novel compounds were predicted to be selective high affinity SERT 
ligands.  

Important new ideas are the introduction of a fluoroethyl-oxycarbonyl group (ester) 
and a fluoroethyl-carbonyl group (ketone), as well as a formyl group (aldehyde) and 
the corresponding oxime and imine. Another innovative suggestion is the 
replacement of the sulphur bridge with a cyanamide group and a fluoroethyl-amino 
group. The suggested compounds are possessing features providing new 
possibilities for carbon-11 or fluorine-18 labelling. Synthesis, biological testing, and 
screening for PET suitability are reasonable further steps. 



  

 



  

 

Zusammenfassung 
Veränderungen im serotonergen System stehen im Zusammenhang mit verschiedenen 
psychischen Erkrankungen. Diese Veränderungen können über eine Visualisierung des 
Serotonintransporters (SERT) mittels Positronen-Emissions-Tomographie (PET) 
nachvollzogen werden. Bisher fehlt es jedoch an geeigneten PET-Radiotracern für den 
SERT, da solche PET-Tracer spezielle Anforderungen erfüllen müssen. Hierzu gehören, 
neben einer hohen Bindungsaffinität an der Zielstruktur und einer hohen Selektivität, eine 
geeignete PET-Kinetik und eine unproblematische synthetische Zugänglichkeit. 

Das Ziel der vorliegenden Arbeit war eine quantitative Untersuchung der Struktur-
Wirkungsbeziehungen (QSAR) von Serotonintransporterliganden. Dabei sollte eine klare 
Abgrenzung zwischen Struktur-Wirkungsbeziehungen am SERT und Struktur-
Wirkungsbeziehungen am strukturell ähnlichen Noradrenalintransporter (NET) erzielt 
werden. Im Anschluss stand das Design neuer potentieller PET-Liganden für den SERT 
unter Berücksichtigung der Möglichkeit zur Tracermarkierung. 

Es wurde mit einem heterogenen Datensatz bestehend aus 19 selektiven und nicht-
selektiven Serotonintransporter-Liganden gearbeitet, für die Bindungsdaten sowohl für den 
SERT als auch für den NET vorlagen. Grundvoraussetzung einer 3D QSAR Studie ist ein 
geeignetes Alignment der Substanzen. Dieses basierte für die vorliegende Arbeit auf einem 
existierenden Pharmakophormodell aus der Literatur. Zur Überlagerung der Substanzen 
wurde GASP herangezogen. Für die 3D QSAR Studien wurde neben der etablierten CoMFA 
Methodik die aus letzterer entwickelte CoMSIA Methodik eingesetzt. Dies sollte einen 
Vergleich der beiden Methoden ermöglichen. Bei CoMFA und CoMSIA spricht man von 
statistisch signifikanten Modellen bei einem kreuzvaldidierten Korrelationskoeffizienten q2 
oberhalb von 0,3 bis 0,5. Zunächst konnten valide und statistisch signifikante CoMFA 
Modelle für den SERT (q2 = 0,538) und den NET (q2 = 0,445) erstellt werden. Das SERT 
Modell konnte mittels Region Focusing weiter verbessert werden (q2 = 0,674). Die 
erarbeiteten CoMSIA Modelle zeigen vergleichbare kreuzvalidierte Korrelationskoeffizienten 
mit q2 = 0,531 für den SERT und q2 = 0,502 für den NET. Sie beschreiben in ähnlicher 
Weise wie die entsprechenden CoMFA Modelle die molekularen Voraussetzungen für eine 
Bindung an den SERT und an den NET. Dies zeigt, dass beide Methoden gleichermaßen 
eingesetzt werden können. Beide Methoden wurden demnach auch für eine 
Selektivitätsanalyse verwendet, die deutlich die Kriterien für SERT-Selektivität zeigt. Damit 
wurde das Ziel erreicht, eine klare Abgrenzung der Struktur-Wirkungsbeziehungen zwischen 
SERT und NET zu schaffen. 

Die vorliegenden 3D QSAR Modelle sind eine geeignete Grundlage für die Konzeption neuer 
selektiver Radiotracer für den SERT und ermöglichen es außerdem, Bindungsaffinitäten 
neuer Substanzen am SERT und am NET vorherzusagen. Als Ausgangspunkt für 
Modifikationen wurde das Grundgerüst der N,N-Dimethyl-2-phenylsulfanyl-benzylamine 
gewählt. Zu ihnen gehört beispielsweise [11C]DASB, das sich kürzlich als 
vielversprechender, jedoch noch nicht optimaler PET-Ligand für den SERT erwiesen hat und 
sich gut in die vorliegenden 3D QSAR Modelle einfügen lässt. Dadurch ergibt sich die 
Möglichkeit einer Leitstrukturoptimierung. 100 neue Strukturen wurden als selektive SERT-
Liganden vorgeschlagen. Wichtige neue Strukturvorschläge sind die Einführung einer 
Fluorethyl-oxycarbonylgruppe (Ester), einer Fluorethyl-carbonylgruppe (Keton) und einer 
Formylgruppe (Aldehyd), sowie des entsprechenden Oxims und Imins. Ein weiterer 
innovativer Vorschlag ist der Ersatz der Schwefelbrücke durch eine Cyanamidgruppe oder 
eine Fluorethylaminogruppe. Hierbei ergeben sich neue Möglichkeiten zur Kohlenstoff-11- 
und Fluor-18-Markierung. Als weitere Schritte bieten sich die Synthese der Substanzen und 
ihre biologische Testung an, sowie die Überprüfung auf ihre Eignung als PET-Liganden. 



  

 

 



 

 

1   Introduction 

1.1  Background 

The serotonergic neurotransmission plays an important role in the 

central nervous system. Alterations of serotonin levels are associated 

with many psychiatric disorders. The serotonin transporter (SERT), 

located on presynaptic nerve endings, modulates synaptic serotonin 

levels and also functions as the primary target site for many 

antidepressant drugs. Moreover drugs of misuse, such as MDMA (N-

methyl-3,4-methylenedioxyamphetamine, “ecstasy”) and to some 

extent cocaine, are known to exert their effect via the serotonin 

reuptake site. For these reasons, in vivo mapping of the SERT in the 

living human brain by positron emission tomography (PET) is most 

valuable for understanding alterations of the serotonergic system, and 

might also prove useful in monitoring antidepressant therapy. However, 

PET investigations of the SERT have been limited by the small amount 

of candidate radioligands and their various shortcomings. 

Consequently there is considerable interest in the development of a 

suitable PET radioligand for the SERT. 

1.2  Positron Emission Tomography (PET) 

PET is a molecular imaging technique that uses radiolabelled 

molecules to image molecular interactions of biological processes in 

vivo. Biochemical processes such as metabolism, and parameters 

such as receptor densities can be quantified and localised to certain 



6 1   Introduction 

 

anatomical structures [1]. Radiotracers are labelled with short-lived 

positron-emitting radionuclides such as 11C, 18F, 15O, 13N or 76Br. Due 

to the very high specific radioactivity obtainable by the short-lived 

radionuclides, minute amounts of radiotracers can be used [1]. These 

are injected intravenously into experimental animals, human volunteers 

or patients. A cyclotron is required to generate the radionuclides in 

close vicinity to the radiochemistry laboratory and the PET camera. 

This makes the clinical implementation of PET slightly more difficult in 

comparison with Single Photon Emission Computerized Tomography 

(SPECT), another molecular imaging technique using short-lived single 

photon emitting radionuclides such as 123I. However, PET offers 

several advantages over SPECT. Tracer concentration can be 

quantitatively measured, PET displays a greater sensitivity and a 

higher spatial resolution than SPECT, and chemically more diverse 

radiotracers can be used [1]. Important applications of PET in brain 

research concern human neuropsychopharmacology and the 

development of novel drugs to be used in the therapy of neurological 

and psychiatric disorders. 

Necessary requirements for a successful PET radioligand are not only 

a high binding affinity at the target site, but also a high selectivity, rapid 

crossing of the blood brain barrier, a high specific-to-nonspecific 

binding ratio, suitable brain kinetics, and good synthetic availability. 

PET radioligands are usually labelled with either carbon-11 or fluorine-

18. This is preferably done in the last synthetic step. Replacement of 

carbon-12 with carbon-11 results in compounds which are 

physiologically indistinguishable from their unlabelled counterparts. 

Replacement of a hydrogen atom or hydroxy group with fluorine also 

very often retains or even enhances the biological activity of a molecule 

[1]. Carbon-11 has got a half-life of 20 min, whereas fluorine-18 has got 
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a half-life of 110 min. This longer half-life of fluorine-18 can be 

advantageous when using PET ligands with slow kinetics. 
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Figure 1-1: Molecular structures of citalopram, sertraline, fluoxetine, paroxetine and 
venlafaxine 

1.3  PET Radiotracers for the SERT 

Several classes of compounds have been screened for their suitability 

as PET ligands for the SERT. Scheffel et al. [2] give a comprehensive 

overview of early investigations. Oh et al. [3] and Laakso et al. [4] 

summarise recent developments. Selective serotonin reuptake 

inhibitors (SSRIs) such as citalopram, sertraline and fluoxetine have 

been labelled with carbon-11 but a relatively poor signal-to-noise ratio 

limited their use in vivo for the quantification of the SERT [2, 5-7]. 

Carbon-11 labelled venlafaxine also turned out not to be an ideal PET 
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ligand [8]. Neither carbon-11 labelling nor fluorine-18 labelling of 

paroxetine, another SSRI with high affinity for the SERT, has been 

accomplished yet [2]. 
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Figure 1-2: Molecular structures of [11C]β-CIT and [11C](+)McN5652 

 

Many tropane and nortropane analogues have been investigated as 

PET ligands for the SERT such as [11C]ββ-CIT (2-β-carbomethoxy-3-β-

(4-iodophenyl)-tropane) and [11C]nor-ββ-CIT (2-β-carbomethoxy-3-β-(4-

iodophenyl)-nortropane [9, 10]. However, one major drawback is their 

lacking selectivity for the SERT over the dopamine transporter (DAT). 

Some new derivatives like ZIENT (2-β-carbomethoxy-3-β-(4-((Z)-2-

iodoethenyl)phenyl)-nortropane) [11] and FEINT (2-β-carbomethoxy-3-

β-(4-(2-fluoroethyl)-3-iodophenyl)-nortropane) [12] display high specific 

binding at the SERT and have been proposed as potential PET 

ligands. The most widely used radiotracer to date for PET imaging of 

the SERT is [11C](+)McN5652 (trans-1,2,3,5,6,10b-hexahydro-6-(4-

methylsulfanyl-phenyl)-pyrrolo[2,1-a]isoquinoline) [13, 14], a potent 

inhibitor of serotonin reuptake. McCann et al. [15, 16] proved 

neurotoxic effects of MDMA on the serotonergic system in the human 

brain by using [11C](+)McN5652 as a radiotracer. However, 
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[11C](+)McN5652 also displays moderate affinity at the norepinephrine 

transporter (NET) and at the DAT. The low specific-to-nonspecific 

binding ratio observed with [11C](+)McN5652 in humans limits its 

application as a PET imaging agent in vivo [14]. 
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Figure 1-3: Molecular structures of IDAM, ADAM, MADAM, DAPP and DASB 

 

Only recently several substituted diphenyl sulphides such as IDAM (5-

iodo-2-[(2-(dimethylaminomethyl)-phenylsulfanyl]benzylalcohol) [17], 

ADAM (N,N-dimethyl-2-(2-amino-4-iodophenylsulfanyl)benzylamine) 

[18], MADAM (N,N-dimethyl-2-(2-amino-4-methylphenylsulfanyl)-

benzylamine) [19], DAPP (N,N-dimethyl-2-(2-amino-4-methoxyphenyl-

sulfanyl)benzylamine) [20] and DASB (3-amino-4-[(2-dimethylamino-

methyl)-phenylsulfanyl)]benzonitrile) [20, 21] have been described as 

potent and selective SERT ligands.  
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These investigations were originally based on early studies that 

described moxifetin [22] and 403U76 [23] as novel antidepressants. 
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Figure 1-4: Molecular structures of moxifetin and 403U76 

 

Whereas iodine-123 labelled IDAM and ADAM have been described 

as suitable radioligands for in vivo visualisation of the SERT using 

SPECT in primates [17], carbon-11 labelled DAPP and DASB have 

shown favourable PET characteristics in the human brain [24]. Also 

carbon-11 labelled MADAM might prove a suitable PET ligand for 

imaging the SERT [19, 25]. The studies have shown that these 

diphenyl sulphides have promising characteristics for imaging the 

SERT. However, as yet, no optimal PET ligand has been found among 

them. The slow kinetics preclude ADAM, for instance, from being a 

useful PET tracer, and [11C]DASB is not appropriate to detect SERT in 

the cortex [26]. Thus, further structure-activity relationship (SAR) 

studies of these diphenyl sulphides are both necessary and warranted, 

particularly as the lack of an asymmetric centre in these agents makes 

synthesis comparatively easy. 
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1.4  Purpose of the Work 

PET investigations of the SERT have been limited due to the various 

shortcomings of the candidate radioligands. Therefore new PET 

radiotracers for the SERT are needed. 

According to a thorough literature search, no 3D QSAR studies on 

SERT ligands yet exist with the exception of a CoMFA study on 

tropane analogues [27]. Any other molecular modelling studies 

regarding SARs of SERT ligands are either of a qualitative nature [28, 

29], or are exploring two-dimensional QSARs [30]. 

The purpose of the present work was to quantitatively investigate SARs 

of SERT ligands at the SERT and at the structurally similar NET with 

regard to the development of potential new PET radiotracers. Structural 

requirements for SERT selectivity were to be elucidated since many 

known SERT ligands bind to both the SERT and the NET due to the 

similarity of the monoamine transporters, and selectivity is an important 

issue with PET ligands. No three-dimensional structure of the SERT 

was available in literature, thereby excluding receptor based modelling. 

In addition, the complexity of a transporter protein made homology 

modelling difficult. Therefore 3D QSAR techniques were limited to 

ligand based methods such as Comparative Molecular Field Analysis 

(CoMFA), and Comparative Molecular Similarity Indices Analysis 

(CoMSIA). Both techniques were chosen for the present work as this 

permits a comparison of the results. The resulting CoMFA and CoMSIA 

models were to be used to design potential new and selective PET 

radiotracers for the SERT and to predict their binding affinity at both the 

SERT and the NET.  

In recent years a new series of different N,N-dimethyl-2-phenylsulfanyl-

benzylamines was developed as potential new PET tracers for the 

SERT [21]. Although some of these diphenyl sulphides, for instance 
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[11C]DASB, displayed promising PET characteristics, no optimal PET 

tracer was found among them yet. Further investigation of this class of 

compounds was considered worthwhile. Therefore their N,N-dimethyl-

2-phenylsulfanyl-benzylamine scaffold was chosen as lead for 

structural modification. Possibilities for radiolabelling were to be 

considered when modifying the structures. 



 

 

2   Theoretical Background 

2.1  Monoamine Transporters 

2.1.1 Functions 

Monoamine transporters are membrane proteins mainly located on 

nerve endings of serotonergic, noradrenergic and dopaminergic 

neurons. Their function is to terminate the action of released 

neurotransmitter in the synaptic cleft by transporting it back into the 

neuron, a process known as reuptake. The structures of the chemically 

related monoaminergic neurotransmitters serotonin, norepinephrine 

and dopamine are shown in Figure 2-1.  
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Figure 2-1: Molecular structures of the monoaminergic neurotransmitters serotonin, 
norepinephrine and dopamine 

 

These neurotransmitters are important in the regulation of affective 

states and cognitive functions and also in the development of many 

neuropsychiatric disorders such as Parkinson´s disease, depression 
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and substance dependence [4]. Comprehensive overviews of 

monoamine transporters and their functions are provided by Povlock et 

al. [31] and Olivier et al. [32]. 

Blocking the reuptake leads to an increased concentration of 

transmitters in the synaptic cleft. This is the effect of many 

antidepressant drugs [33]. Whereas the older tricyclic antidepressants 

(TCAs) block both the reuptake of serotonin and norepinephrine, the 

second generation antidepressants, selective serotonin reuptake 

inhibitors (SSRIs), selectively block the serotonin reuptake. However, 

the third generation of antidepressants focuses again upon the 

reuptake of both serotonin and norepinephrine, combined with an 

antagonism at 5-HT2A-receptors and 5-HT1A-receptors. The mechanism 

of depression is fairly complex and not wholly understood yet. 
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Figure 2-2: Molecular structures of imipramine and amitriptyline 

 

Imipramine and amitriptyline belong to the TCAs. Fluoxetine, 

paroxetine, citalopram and sertraline are SSRIs. Venlafaxine is a 

third generation antidepressant affecting both the SERT and the NET 

in vivo, whereas nefazodone and trazodone are third generation 

antidepressants blocking both the serotonin transporter and the  

5-HT2A-receptor [34]. 
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Figure 2-3: Molecular structures of nefazodone and trazodone 

 

Also psychostimulants like amphetamine and cocaine block the 

reuptake of monoamines [35].  
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Figure 2-4: Molecular structures of amphetamine and cocaine 

 

The increase of dopamine in the synaptic cleft is mainly responsible for 

the stimulating and rewarding effects of the drugs [35, 36] and enhance 

the development of addiction and the “addiction memory” [37, 38]. 

Serotonin is considered to play a role in neuromodulation [35, 39], but 

as yet, these aspects are not fully understood. 
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Figure 2-5: Molecular structure of MDMA 

 

MDMA (“Ecstasy”) is also an inhibitor of monoamine reuptake and 

known to release serotonin via the SERT [40]. However, this alone can 

not explain its particular “entactogenic” [41] effect and its neurotoxicity 

[15, 42], which has been shown in PET studies by McCann et al. [16] 

and Scheffel et al. [43]. Further research is needed, and PET 

investigations might be most useful here. 

2.1.2 Structure 

The monoamine transporters are members of a larger family of sodium 

dependent plasma membrane transporters [31, 44]. Progress in the 

monoamine transporter field had been impeded by the difficulties 

associated with purifying these membrane proteins. However, in 1991, 

Pacholczyk et al. [45] succeeded in cloning the human NET, thus 

allowing the rapid cloning of the DAT and the SERT. The transporter 

molecules consist of 617 to 630 amino acids [32]. Hydrophobicity 

analyses of the amino acid sequence suggest the presence of 12 

putative transmembrane domains (TMs) with a large extracellular loop 

between TM3 and TM4, possessing two to four glycosylation sites [31]. 

A schematic representation of the putative secondary structure of a 

monoamine transporter can be seen in Figure 2-6. 
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Figure 2-6: Schematic representation of the putative secondary structure of a 
monoamine transporter 

 

Comparing the primary amino acid sequences reveals a homology of 

80% between DAT and NET, and a homology of 69% between DAT 

and SERT. Preliminary structure-function analyses have provided 

some insight into which domains or specific amino acids are important 

for ligand binding. Details are given in [31] and [32]. However, as the 

three-dimensional structures of the monoamine transporters are 

presently not available, ligand binding domains can not be specified. 

Yet there are indications that for instance the SSRIs citalopram, 

sertraline and paroxetine share a common ligand binding domain at 

the SERT [46], as well as citalopram, fluoxetine, imipramine and 

cocaine [47], and that this domain corresponds to the binding site of 

serotonin itself [47]. 
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2.1.3 Transport Mechanism 

Transmitter reuptake is an energy demanding process involving 

conformational changes in the transporter. The energy required for the 

process is provided by Na+/K+-ATPase. The transmitter molecule is 

transported into the cell with one or two sodium ions and one chloride 

ion. In the case of the SERT, one potassium ion is simultaneously 

transported out of the cell [44]. Rudnick [44] provides a detailed 

description of transport mechanism. 

 

2.2  Molecular Modelling 

2.2.1 Definition 

Molecular Modelling is the investigation of molecular structures and 

properties using computational chemistry and graphical visualisation 

techniques in order to provide a plausible three-dimensional 

representation under a given set of circumstances [48]. Molecular 

design is the application of such techniques leading to the discovery of 

new chemical entities with specific properties for the intended 

application [48]. Höltje and Folker´s book “Molecular Modeling” [49] 

provides a comprehensive overview of molecular modelling techniques 

including small molecule and protein modelling together with 

illustrations and examples. 

2.2.2 Short History 

The synthesis and screening of hundreds and thousands of potential 

drug candidates to find one active drug molecule is an extremely 
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expensive and laborious procedure. Although often guided by rational 

concepts, drug research generally has been, over decades, a mere 

trial-and-error search for new leads and active analogues [50]. More 

effective strategies are desirable and a rational alternative is the 

derivation of structure-activity hypotheses and their quantitative 

evaluation. Progress in drug design depends on the ability to 

understand the interactions of drugs with their biological target. In 

1894, Fischer [51] introduced the principle of “lock-and-key” when 

describing the interaction of a ligand with its receptor. This theory was 

later extended by Koshland [52] hypothesising an induced fit, i.e. a 

conformational change of the receptor protein, upon ligand binding. 

These ideas led to a better understanding of the way drugs are 

working, and provided the basis for rational drug design. Different types 

of protein-ligand interactions exist. The most important are electrostatic 

interactions including hydrogen bonding and ionic effects, and 

hydrophobic interactions. Protein-ligand interactions are thoroughly 

explained in an individual chapter of the book “Wirkstoffdesign” (“Drug 

Design”) by Böhm, Klebe and Kubinyi [53]. The pharmacophore 

concept is a result of the “lock-and-key” principle. Binding to a protein 

within a series of compounds is attributed to a particular arrangement 

of common structural features. In 1964, the Hansch analysis [54] was 

introduced. Hansch and Fujita [54] correlated physicochemical 

properties with biological activity. In the same year, Free and Wilson 

[55] developed a model of additive group contributions to biological 

activity. These works are considered the beginning of quantitative 

structure-activity relationship (QSAR) investigations. However, the 

three-dimensionality of the physicochemical properties was not taken 

into account yet. 
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2.2.3 3D QSAR: CoMFA and CoMSIA 

Three-dimensional quantitative structure-activity relationship (3D 

QSAR) involves the analysis of the quantitative relationship between 

the biological activity of a set of compounds and their three-

dimensional properties using statistical correlation methods [48]. In 

1988, Cramer et al. [56] first introduced the Comparative Molecular 

Field Analysis (CoMFA) method. This technique was based on the 

assumption that changes in binding affinities of ligands are related to 

changes in shape and strength of non-covalent interaction fields 

surrounding the molecules. These fields were of steric and electrostatic 

nature first, but were later extended by hydrophobic fields and 

hydrogen bond accepting and hydrogen bond donating fields. To 

compute the fields, the molecules are located in a cubic grid, and the 

interaction energies between each molecule and a specifically defined 

probe atom are calculated for each grid point. The molecules are thus 

represented by their field properties. To detect common regions within 

the fields of all molecules, multivariate statistics is applied. Within the 

CoMFA procedure, the Partial Least Squares (PLS) regression method 

[57-59] (cp. Chapter 2.2.4) is used. A QSAR in the form of a highly 

complex linear equation is computed. As every regression equation the 

QSAR is characterised by its correlation coefficient r2 which is 

computed from the residuals of the least-squares fit. It is a measure of 

how well the model reproduces or fits the input data. Other parameters 

for estimating the quality of a regression are the standard error of 

estimate SE and the F-value which is the ratio of explained to 

unexplained variance. Each numerical regression coefficient maps 

directly to a location in space. Since each lattice point has a QSAR 

coefficient, the CoMFA QSAR equation is summarised graphically as a 

3D contour map, showing those fields in which the lattice points are 

associated with extreme values. These correspond to the molecular 
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fields which are considered crucial for binding affinity. The QSAR 

CoMFA equation can also be used for predicting property values of 

new compounds provided that the structures being predicted are 

similar to those used for model derivation. 

An important prerequisite for the CoMFA procedure is a suitable 

alignment of the set of molecules. Aligning the molecules means 

superimposing them by particular rules. This ensures that the 

molecular fields can be compared. The alignment can be achieved by 

pharmacophore identification [49], followed by superimposing the 

common pharmacophoric points of the molecules. Comprehensive 

overviews on CoMFA and its scope and limitations are given in [60-62]. 

However, a number of problems inherent to CoMFA are known, some 

of them directly connected with the field calculation method. For 

calculating the steric contributions, the Lennard-Jones potential is 

used, and for calculating the electrostatic contributions, the Coulomb 

potential is used. Figure 2-7 shows the curves of these potentials. 

One main difficulty are the cutoff values, whose application excludes 

very high field contributions near the molecular surface from analysis. 

Due to the sharp increase of the Lennard Jones potential, and a 

comparatively shallow increase of the Coulomb potential near the 

molecular surface, the application of cutoff values can be highly critical 

as important contributions might be dropped for some molecules [61]. 

Moreover, small shifts within the alignment can lead to dramatically 

altered results. 
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Figure 2-7: Schematic representation of the Lennard Jones and the Coulomb 
potential describing steric and electrostatic contributions to the CoMFA 
fields (adapted from [53]). The Lennard Jones potential is used to 
calculate interatomic interactions between two atoms without 
considering their charges. Negative values correspond to attractive 
forces, positive values correspond to repulsive forces. When the two 
atoms approach each other, the potential first reaches a minimum due 
to mutual polarisation, then increases sharply towards infinity due to 
repulsive forces. The Coulomb potential is used to calculate 
electrostatic interactions between two atoms. For atoms of the same 
charge, the repulsive forces become infinitely large with decreasing 
distance between them. For oppositely charged atoms, the attractive 
forces become infinitely large with decreasing distance. For the 
hyperbolic Coulomb potential, cutoff values are applied. 

 

CoMSIA is an extension of the CoMFA methodology recently 

developed by Klebe et al. [63, 64]. Molecular similarity is compared in 

terms of similarity indices. Its advantages over the standard CoMFA 

technique are reported to be a greater robustness regarding both 

region shifts and small shifts within the alignment, and more intuitively 

interpretable contour maps [65]. This is a result of the application of 

similarity indices calculated by using a Gaussian-type distance 

dependence instead of the Lennard-Jones and the Coulomb potential 
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which makes the more or less arbitrary application of cutoff values 

unnecessary. This is demonstrated in Figure 2-8. 
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Figure 2-8: A Gaussian type function that slowly reaches its maximum with the 
distance between the probe atom and the molecule becoming smaller. 
For comparison see again the Lennard Jones and the Coulomb 
potential (adapted from [53]). 

 

Moreover, not only steric and electrostatic fields are typically 

considered with the CoMSIA technique, but also hydrophobic fields and 

hydrogen bond donor and hydrogen bond acceptor fields. 

2.2.4 Partial Least Squares (PLS) 

When correlating the large amount of descriptor variables (X variables), 

i.e. the field contributions at the numerous grid points produced by 

CoMFA and CoMSIA, with the target variables (Y variables), i.e. the 

biological activity of the molecules, classical Multiple Linear Regression 
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(MLR) reaches its limits. Instead, Partial Least Squares (PLS) 

regression is used as data with strongly correlated and noisy X 

variables that clearly outnumber the Y variables can be handled. The 

structural descriptors are called the X matrix, the activity values 

constitute the Y matrix. The idea of PLS is based on the Principle 

Component Analysis (PCA). The X matrix is projected into vectors by 

extracting so-called Principle Components (PCs) from the matrix that 

explain the variance within the structural descriptors in relation to the 

target variables. The NIPALS (Nonlinear Iterative Partial Least 

Squares) algorithm is usually used as described in [57]. The PCs are 

also known as X scores. Strictly speaking, the term Principle 

Component is incorrect for PLS and instead, the term Latent Variable 

(LV) or PLS factor should be used. However, Principle Component is 

also commonly accepted. The X scores are linear combinations of the 

original variables and the weights of the coefficients needed for X 

matrix transformation. These weights are also known as loadings. 

Saying that a variable is highly “loaded” in a PC means that the PC has 

a high importance for the variable. Thus, the loadings are essential for 

understanding which X variables are important and which X variables 

provide the same information. The part of the data that is not explained 

by the model, i.e. the residuals, are of diagnostic interest. Large 

residuals of Y indicate that a model is poor. A residual plot of Y 

variables is useful for identifying outliers. 

To estimate model complexity, i.e. the number of significant PLS 

components, cross-validation is used. One or more test compounds 

are removed from the data set and after model derivation with the 

remaining structures the target properties of these compounds are 

predicted. After deleting every object once, the sum of squared 

differences between predicted and observed target property is 

computed. This sum is called PRESS (Predictive Residual Sum of 
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Squares). Both the cross-validated correlation coefficient q2 and the 

standard error of prediction sPRESS are computed from PRESS. Thus, 

cross-validation estimates the predictive ability of a model which is an 

important criterion when investigating the number of significant model 

components. 

The PLS method is thoroughly explained and exemplified by Geladi 

and Kowalski [57, 66], and Wold and co-workers [58, 59]. 

 



 

 



 

 

3   Methods 

3.1  Hardware 

All molecular modelling calculations were performed on a Silicon 

Graphics Octane (R 10 000) workstation with a main memory of 640 

MB and a CPU of 175 MHz, running under the operating system IRIX 

6.6. 

3.2  Software 

The molecular modelling software package SYBYL 6.6 [67] utilising the 

following SYBYL modules was employed for this work: SYBYL/Base, 

Advanced Computation, QSAR, Advanced CoMFA (including the 

Optimize QSAR interface) and GASP. The Tripos Force Field [68] was 

used for all calculations. 

3.3  Biological Data 

An important prerequisite for the quantitative investigation of SARs is a 

suitable data set. Affinity data should have been determined in just one 

laboratory using just one method to avoid systematic errors. For the 

present work a chemically heterogeneous data set taken from literature 

consisting of 13 antidepressants and 6 metabolites was used [34]. The 

molecular structures are shown in Figure 3-1. 
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Figure 3-1: Molecular structures of the serotonin reuptake inhibitors used for the 
QSAR studies (continued on the following page) 
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The given binding data had been determined for both the SERT and 

the NET by competitive radioligand binding assays. Affinities had been 

obtained for the SERT from rat cortex using [3H]citalopram, and from 

human transfected cells using both [3H]citalopram and [3H]serotonin. 

For the NET affinities had been obtained from rat cortex using 

[3H]nisoxetine and from human transfected cells using both 

[3H]nisoxetine and [3H]norepinephrine. For this study, data from the 

human SERT and the human NET determined against [3H]citalopram 

and [3H]nisoxetine was chosen. The respective equilibrium inhibition 

constants (Ki) and their negative logarithms (pKi) are given in Table 

3-1. 
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Table 3-1: Experimental binding affinities [34] of the serotonin transporter ligands 
used for the QSAR studies, and affinity differences 

 
 K  i exp. ± SE (nM) a) pK  i exp. (nM) b) ∆∆pK  i exp.

c) 
Compound SERT NET SERT NET  

citalopram (m1) 1.5  ± 0.03 7 865  ± 304 8.82 5.10 3.72 

fluoxetine (m2) 0.90  ± 0.06 777  ± 37 9.05 6.11 2.94 

norfluoxetine (m3) 2.3  ± 0.10 3 947  ± 222 8.64 5.40 3.24 

sertraline (m4) 0.15  ± 0.01 817  ± 80 9.82 6.09 3.73 

desmethylsertraline (m5) 3.7  ± 0.26 811  ± 17 8.43 6.09 2.34 

paroxetine (m6) 0.065  ± 0.006 85  ± 5 10.19 7.07 3.12 

fluvoxamine (m7) 1.6  ± 0.1 2 950  ± 103 8.80 5.53 3.27 

venlafaxine (m8) 7.5  ± 0.4 2 269  ± 84 8.12 5.64 2.48 

O-desmethylvenlafaxine (m9) 7.7  ± 0.3 2 753  ± 114 8.11 5.56 2.55 

imipramine (m10) 1.3  ± 0.04 20  ± 0.54 8.89 7.70 1.19 

desipramine (m11) 22  ± 1 0.63  ± 0.03 7.66 9.20 -1.54 

chloroimipramine (m12) 0.05  ± 0.001 n.d. d) 10.30 - - 

amitriptyline (m13) 2.8  ± 0.1 19  ± 1 8.55 7.72 0.83 

nortriptyline (m14) 15  ± 0.1 1.8  ± 0.07 7.82 8.74 -0.92 

m-CPP (m15) 202  ± 9 1 940  ± 152 6.69 5.71 0.98 

nefazodone (m16) 459  ± 28 618  ± 12 6.34 6.21 0.13 

hydroxynefazodone (m17) 1 015  ± 27 664  ± 24 5.99 6.18 -0.19 

triazoledione (m18) 34 527  ± 6 773 > 100 000 4.46 4.00 0.46 

trazodone (m19) 252  ± 10 37 419  ± 1 433 6.60 4.43 2.17 
a) Ki exp. ± SE = experimental equilibrium inhibition constant ± standard error b) pKi exp. = negative logarithm of the experimental equilibrium inhibition constant 
c) ∆pKi exp. = pKi exp. (SERT) - pKi exp. (NET) d) n.d. = not determined 

 

The affinities towards both transporters are spread over a satisfactorily 

large range with seven logarithmic units for the SERT, and six 

logarithmic units for the NET. Consequently, the derivation of a 

statistically significant 3D QSAR model can be expected. Affinity data 

for the SERT and the NET are strongly correlated as shown by a high 

correlation coefficient of 0.93. For chloroimipramine, affinities are given 

for the SERT only, whereas for mazindol, affinities are given for the 

NET only. Therefore, chloroimipramine was considered in 3D QSAR 

studies on SERT affinities only. Mazindol was not considered at all. In 

cases in which the racemic mixture is usually used (citalopram and 

fluoxetine), the enantiomer which is known to be more potent was 

considered (in both cases the (S)-enantiomer) as no data about pure 

enantiomers were available. For the hydroxymetabolite of nefazodone, 



3.4   Compound Generation 31 

 

the (S)-enantiomer was arbitrarily chosen. Naturally, a larger data set 

than the one used would be preferable for 3D QSAR studies. But no 

larger appropriate data collection obtained in only one laboratory was 

found in literature. So data consistency was preferred to the idea of a 

more comprehensive data set. 

Binding affinity data of [11C]DASB and its derivatives at the SERT and 

at the NET (cp. Chapter 4.3.3) was taken from literature [21, 26, 69]. 

Ki-values are given in Table 4-3. 

3.4  Compound Generation 

The compounds under investigation were either constructed from X-ray 

crystal structure [70-75] or using SYBYL´s fragment library. All 

molecules used for model derivation were generated in both their N-

protonated and their non-protonated form. An initial geometry 

optimisation was performed in vacuo using the Tripos Force Field [68] 

and the following non-default settings: Method: Conjugate Gradient, 

Termination Gradient: 0.01 kcal/mol*Å, Max. Iterations: 10 000. The 

resulting structures were used as starting geometries for both Genetic 

Algorithm (GA) searches and Genetic Algorithm Similarity Program 

(GASP) alignments. GA searches were carried out for all substances in 

both their N-protonated and non-protonated forms in order to find low 

energy conformations and to compare them with the conformations 

found after the alignment procedure, and thus be able to judge how far 

the latter are away from a possible minimum conformation. The GA 

search method was selected as conformational search method as it is 

known to perform very well in finding lowest-energy conformations [76]. 

(S)-Citalopram (m1) was then chosen as a reference substance for the 

subsequent alignment. One of the suggested minimum conformations 
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derived from the GA search with N-protonated (S)-citalopram (m1) 

fitted into Gundertofte´s pharmacophore model [28] very well. This 

model was used as the basis for the alignment. The conformation was 

further minimized with non-default settings (Method: Conjugate 

Gradient, Termination Gradient: 0.01 kcal/mol*Å, Max. Iterations:  

10 000). Conformations of most of the other structures were obtained 

as a result of the alignment. When constructing the TCAs, the flexibility 

of the ethylene bridged ring system at room temperature [77] needed to 

be considered. The conformation of the ring system of 

chloroimipramine (m12) seen in its crystal structure [78] is different 

from the conformations of the ring systems of imipramine (m10) [74] 

and amitriptyline (m13) [72]. However, in accordance with the idea of 

flexibility, the same ring system conformation was used for all TCAs. 

Imipramine (m10) was taken from the GA search, and 

chloroimipramine (m12) was constructed from imipramine (m10). 

Trazodone (m19), triazoledione (m18) and (S)-hydroxynefazodone 

(m17) were constructed from nefazodone (m16) using SYBYL´s 

fragment library. Metabolites of any other molecules ((S)-norfluoxetine 

(m3), desmethylsertraline (m5), O-desmethylvenlafaxine (m9), 

desipramine (m11), and nortriptyline (m14)) were constructed from 

their respective parent compound. 

DASB was constructed using SYBYL´s fragment library. It was 

generated both in its N-protonated and non-protonated form. An initial 

geometry optimisation was performed in vacuo using the Tripos Force 

Field [68] and the following non-default settings: Method: Conjugate 

Gradient, Termination Gradient: 0.01 kcal/mol*Å, Max. Iterations:  

10 000. The resulting structure was used as starting geometry for the 

alignment and for a conformational GA search. Any DASB derivatives 

were constructed from their respective parent compound using 

SYBYL´s fragment library. They were minimized using the following 
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non-default settings: Method: Conjugate Gradient, Termination 

Gradient: 0.01 kcal/mol*Å, Max. Iterations: 100. 

3.5  Alignment Procedure 

GASP (Genetic Algorithm Similarity Program) [67] served as alignment 

tool. It is a genetic algorithm developed for the superimposition of sets 

of flexible molecules [79]. Molecules are represented by a chromosome 

that encodes conformational information and intermolecular mappings 

between important structural features that may be required for activity 

[76]. The fitness of the alignment is determined by the number and 

similarity of the overlaid features, by the volume overlap of the 

alignment and the internal van der Waals energy of the molecular 

conformations [76]. Default settings were used and ten alignments 

were generated during each GASP run. All conformations generated by 

GASP and chosen for CoMFA and CoMSIA analysis were further 

minimized in vacuo using the Tripos Force Field [68] and the following 

non-default settings: Method: Conjugate Gradient, Termination 

Gradient: 0.01 kcal/mol*Å, Max. Iterations: 1000. 

 

3.6  3D QSAR 

3.6.1 CoMFA 

Steric and electrostatic CoMFA fields were calculated using the 

Lennard Jones potential and the Coulomb potential [56]. Default 

parameters (Tripos standard field, dielectric distance 1/r2, steric and 

electrostatic cutoff 30 kcal/mol, positively charged sp3 hybridised 
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carbon atom as probe atom, grid spacing 2 Å) were used unless stated 

otherwise. Partial atomic charges were calculated using the Gasteiger-

Hueckel method. All CoMFA calculations were done with the Tripos 

Advanced CoMFA module [67]. To investigate the influence of different 

parameter settings on the CoMFA analysis, various steric and 

electrostatic cutoffs were explored as well as different grid spacings 

and column filtering, and various energy levels. The procedure was 

guided by suggestions made by Cramer et al. [61] and Folkers et al. 

[60]. To check the statistical significance of the models, cross-

validation was done by means of the “Leave One Out” (LOO) 

procedure using the SAMPLS method [80]. The models were assessed 

by their cross-validated correlation coefficient q2, by their optimal 

number of components and by their standard error of prediction sPRESS. 

Usually, the optimal number of components is determined by selecting 

the highest q2-value, which most often corresponds to the smallest 

sPRESS value. In the CoMFA and CoMSIA studies at the SERT, the 

“Fraction_of_Variance” was likewise examined. Whenever the last 

added component improved the “Fraction_of_Variance” by less than 

about 5%, the less complex model was chosen. This optimal number of 

components was subsequently used to derive the final QSAR models. 

CoMFA standard scaling was applied to all PLS analyses. The whole 

validation procedure, also including cross-validation in groups and data 

scrambling as described in Chapter 4.2.1, was done following 

recommendations by Wold and Eriksson [81] and Thibaut et al. [82]. 

3.6.2 CoMSIA 

CoMSIA fields were calculated using standard parameters (probe atom 

with radius 1, charge +1, hydrophobicity +1, hydrogen bond donating 

+1, hydrogen bond accepting +1, attenuation factor α of 0.3, grid 
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spacing 2 Å). Partial atomic charges were calculated by using the 

Gasteiger-Hueckel method. Cross-validation and PLS analyses were 

done in analogy to the CoMFA analyses as described above. 

3.6.3 Region Focusing 

Region focusing is the application of weights to the lattice points in a 

CoMFA region to enhance or attenuate the contribution of those points 

to subsequent analyses [76]. The PLS regression method is modified 

by a dimension-wise interactive variable selection (IVS) approach [83, 

84]. It is usually applied in order to enhance the predictability of a 

CoMFA study. “StDev*Coefficient“ values were used as weights, and 

different weighting factors were applied of which 0.5 was found to be 

most appropriate. 

3.6.4 Selectivity Analysis 

To elucidate the selectivity-discriminating criteria between SERT and 

NET ligands, a method was used that was first described by Wong et 

al. [85], and was later successfully applied by Matter et al. [86] and 

Böhm et al. [65]. The differences between the negative logarithms of 

each ligand´s affinities at the SERT and at the NET were applied as 

dependent properties in both CoMFA and CoMSIA analyses. The 

difference data spread over more than five orders of magnitude as 

shown in Table 3-1. 

3.6.5 Prediction of Novel Compounds 

The CoMFA and CoMSIA models served as starting point for the virtual 

development of new substances. For the prediction of the binding 
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affinities at the SERT and at the NET, the CoMFA PLS analysis 

considering sterics and electrostatics, and the CoMSIA PLS analysis 

considering sterics, electrostatics and hydrophobics (Table 4-1) were 

used. These models were chosen as they predict the binding affinity of 

DASB both at the SERT and at the NET in the correct order of 

magnitude (Table 4-3). All CoMFA calculations were carried out with 

the Tripos Advanced CoMFA Module [67]. DASB served as lead 

structure. The Optimize QSAR interface [67] can be used to build a 

series of analogues and make a preliminary survey of their expected 

activities against a known QSAR [76]. In this study, the N,N-dimethyl-2-

phenylsulfanyl-benzylamine core structure of DASB and its derivatives 

was provided as molecular scaffold, and S1 and S2 were specified as 

interchangeable substituents (Figure 4-19). New structures are 

automatically suggested by screening a database of possible 

substituents. The following default settings were used: Configuration 

Options: Standard (Conformational Refinement: All-trans, Computation 

of Charges: Gasteiger-Hueckel), Method: Random, Cycles: 100. The 

12 best hits were retrieved. The CoMFA PLS analysis considering 

sterics and electrostatics for the SERT was used (Table 4-1). 

Predictions of target properties are most reliable if extrapolation with 

respect to topologies and functionalities does not occur, but small 

extrapolations of descriptors that make only a small contribution to the 

model are not a cause of particular concern. Extrapolation is described 

by the total contribution made to the prediction by the out-of-range 

descriptors [76]. In predicting biological activity on a common log scale 

any extrapolation below 0.3 log units is probably acceptable [76]. This 

is the case for most CoMFA predictions. Some CoMSIA predictions, 

however, do not comply with this requirement, and are indicated with 

an asterisk in Table 4-3 to Table 4-6. 

 



 

 

4   Results and Discussion 

4.1  Pharmacophore Model and Alignment 

4.1.1 Pharmacophore Models of SERT Ligands 

The crucial step of every CoMFA and CoMSIA study is the alignment of 

the substances of the data set. Every alignment is usually based on a 

pharmacophore hypothesis. Only a small number of pharmacophoric 

models of SERT ligands have been published to date [28, 29, 87-90]. 

Whereas in most cases only one aromatic moiety (R1) had been 

included in the pharmacophore building process and this aromatic 

moiety had been placed at a distance from the basic nitrogen 

comparable to the distance in serotonin itself [29, 87-90], Gundertofte 

et al. [28] described a secondary phenyl ring (R2) as an additional 

pharmacophoric feature. This stereoselective pharmacophoric model 

was based on low-energy conformations of (S)-citalopram (m1), (S)-

fluoxetine (m2), paroxetine (m6) and sertraline (m4). As 

pharmacophoric features, the centres of the two aromatic rings R1 and 

R2 mentioned above and a site point (Sp) at a distance of 2,8 Å from 

the basic nitrogen in the direction of the lone pair had been defined 

[28]. The latter point had been used to simulate an interaction with a 

hypothetical acidic residue, presumed to be the primary recognition site 

in the transporter molecule. The distance between the aromatic rings 

R1 and R2 is confined to a narrow range from 4.6 Å to 5.2 Å. The 

distance between R1 and Sp is in the range of 7.4 Å and 8.3 Å, and the 

distance between R2 and Sp is in the range of 6.2 Å and 6.9 Å. The 
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two pharmacophoric aromatic rings are perpendicular to each other. 

Figure 4-1 illustrates the pharmacophoric features exemplified by (S)-

citalopram (m1). 

Aromatic Ring R2

Site Point Sp

Nitrogen N

Substitution 
allowed

Substitution 
prohibited

Fluoro Substitution 
allowed

Aromatic Ring R1
Oxygen Site

 

Figure 4-1: Pharmacophore model of serotonin transporter ligands [28]. Pink 
dummy atoms illustrate the pharmacophoric points: the centres of the 
two aromatic rings R1 and R2 and the site point Sp. 

 

Additionally, Gundertofte et al. [28] found that the substituents at the 

primary ring R1 of (S)-citalopram (m1), (S)-fluoxetine (m2), paroxetine 

(m6) and sertraline (m4) occupy the same region in space. Thus, 

substitution is allowed in this position. The fluoro substituents of (S)-

citalopram and paroxetine at the secondary ring R2 also point to the 

same region in space. Moreover, another region was detected which is 

occupied by many selective NET inhibitors. Substitution is prohibited 

here for high SERT affinity, whereas norepinephrine reuptake inhibition 

is enhanced when this area is occupied by substituents. In addition, a 

possible extra pharmacophoric element in terms of an oxygen atom 

was detected. A similar observation had earlier been made by Rupp et 
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al. [29] who suggested a favourable interaction in this position between 

an oxygen atom and the transporter. The pharmacophore model of 

Gundertofte et al. [28] was used as the basis for the present work. 

4.1.2 Alignment Procedure and Discussion 

The molecules of the chosen data set [34] are a chemically 

heterogeneous group. A conformational search followed by an atom-

based superposition of minimum conformations did not lead to 

satisfying results. As GASP was able to reproduce the suggested 

alignment of the SSRIs (S)-citalopram (m1), (S)-fluoxetine (m2), 

paroxetine (m6) and sertraline (m4) in a way similar to the outcome 

seen in the work of Gundertofte et al. [28], it was considered to be an 

appropriate alignment tool. A stepwise alignment procedure was 

applied because GASP can only handle up to six or seven molecules 

simultaneously [76]. The suggested alignments were assessed by 

visual inspection following prior knowledge about the likely 

pharmacophore model. The attempt to apply the same superposition 

rules to all molecules did not result in a satisfactory alignment, and 

consequently different ways were tried for each molecule until a 

reasonable solution in every single case was found. In the following, 

the final alignment procedure is detailed. 

(S)-Citalopram (m1) obtained from the conformational GA search 

served as template for most superpositions. It was selected because it 

is not only a potent and highly selective inhibitor of the SERT [32], but it 

can also be regarded as a ring-opened analogue of the first generation 

TCAs and so it serves well as a “connecting link” between these 

different groups of SERT ligands. To superimpose the SSRIs, a GASP 

run with (S)-citalopram (m1) as template, (S)-fluoxetine (m2), 

paroxetine (m6), sertraline (m4) and m-CPP (m15) was carried out. An 
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appropriate solution in which all substances met the requirements of 

the Gundertofte model [28] was found. As m-CPP (m15) possesses 

only one aromatic moiety, the question of whether this is to be aligned 

with the pharmacophoric feature R1 or R2 of (S)-citalopram (m1) 

needed to be addressed. Both possibilities seem reasonable, but as 

GASP suggested only the superposition onto R1, this solution was 

used for further studies. The resulting and further minimized 

conformation of (S)-fluoxetine (m2) was then used as a template in a 

subsequent GASP run with fluvoxamine (m7), and in most alignment 

suggestions, the aromatic moiety of fluvoxamine (m7) was 

superimposed onto R1 of (S)-fluoxetine (m2). This solution was 

selected for the final alignment. Analogously, venlafaxine (m8) was 

superimposed onto paroxetine (m6) as template by using GASP. 

Paroxetine (m6) was chosen here as a template as only this yielded a 

conformation of venlafaxine (m8) consistent with the distance 

requirements of the Gundertofte model [28]. GASP superimposed the 

aromatic moiety of venlafaxine (m8) onto R1 of paroxetine (m6). The 

resulting alignments with (S)-citalopram (m1) are shown in Figure 4-2. 

When aligning the TCAs, the question arose as to which way round the 

TCAs should be superimposed upon (S)-citalopram (m1) concerning 

R1 and R2. GASP suggested both a superposition of the TCAs´ R1 

onto (S)-citalopram´s (m1) R1 and R2. In accordance with a 

pharmacophore study of Rupp et al. [29], a superposition of R1 with R1 

and R2 with R2 was finally used for the alignment. As GASP did not 

prove useful for the alignment of imipramine (m10), a low-energy 

conformation that complied with the distance requirements of the 

Gundertofte model [28] was taken from the GA search. Imipramine 

(m10) was superimposed onto (S)-citalopram (m1) by a four-point fit 

considering R1, R2, N and Sp. Amitriptyline (m13) was fitted onto 

imipramine (m10) by using GASP. 
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(S)-citalopram and (S)-fluoxetine (S)-citalopram and sertraline 
  

  

(S)-citalopram and paroxetine (S)-citalopram and m-CPP 
  

  

(S)-citalopram and venlafaxine (S)-citalopram and fluvoxamine 
  

Figure 4-2: Alignment of (S)-citalopram and (S)-fluoxetine, sertraline, paroxetine, 
m-CPP, venlafaxine and fluvoxamine 

 

The alignment of the phenylpiperazines was most challenging as this 

class of SERT ligands is chemically very different from the SSRIs or 

the TCAs. At first the question was addressed of whether to 

superimpose just one aromatic moiety or two aromatic moieties of the 

phenylpiperazines onto the pharmacophoric features of the 

Gundertofte model [28]. Using GASP did not lead to satisfying results 
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as the phenylpiperazines are highly flexible molecules, and too many 

potential solutions were given, many of them quite unlikely. Finally, the 

minimized crystal structure of nefazodone (m16) [73] was used for 

superimposition. The function of a pharmacophoric feature was 

ascribed only to the phenyl ring of the phenylpiperazine partial 

structure. This concept is in agreement with an early study on 5-HT1A-

receptor agonists in which phenylpiperazines are aligned in a similar 

way with aminotetralins and indolalkylamines [91]. A direct alignment of 

nefazodone (m16) onto m-CPP (m15) was not possible, as in the case 

of m-CPP (m15), the equatorial hydrogen atom is directed towards the 

pharmacophoric point Sp, whereas in the case of nefazodone (m16), 

the equatorial position is occupied by a substituent. However, an atom-

to-atom fit of nefazodone (m16) onto (S)-citalopram (m1) considering 

all six ring atoms of the phenyl moieties of R1, in addition to the 

pharmacophoric features N and Sp, resulted in a satisfying 

superposition. 

 

 

 
(S)-citalopram and chloroimipramine 

 

Figure 4-3: Alignment of (S)-citalopram and chloroimipramine 

 

The resulting alignment of the TCAs is exemplified by chloroimipramine 

as shown in Figure 4-3. The resulting alignment of the 
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phenylpiperazines is illustrated by nefazodone (m16) as shown in 

Figure 4-4. 

 

 

 
(S)-citalopram and nefazodone 

 
 

Figure 4-4: Alignment of (S)-citalopram and nefazodone 

 

The same alignment was used for both the SERT and the NET 

although it is not necessarily the case that all ligands bind in the same 

manner to both transporters. However, this makes direct comparison of 

the different physico-chemical requirements for high binding affinity at 

the SERT and at the NET possible. Moreover, using the same 

alignment is a necessary prerequisite for the selectivity analysis. 

4.1.3 Alignment of DASB 

To modify the N,N-dimethyl-2-phenylsulfanyl-benzylamine core 

structure and to predict the binding affinity of new diphenyl sulphides 

by using the CoMFA and CoMSIA models, these structures needed to 

be fitted into the present alignment. As the same alignment was 

assumed for all diphenyl sulphides, the superposition was carried out 
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for one structure only. DASB was chosen for this purpose as a 

satisfying superimposition resulted. Analogously to the alignment 

procedure used for model derivation, (S)-citalopram (m1) was used as 

template onto which DASB was superimposed together with (S)-

fluoxetine (m2), paroxetine (m6) and sertraline (m4). The conformation 

used for the alignment was chosen by visual inspection. This 

conformation fitted well into the Gundertofte model [28] and was found 

among the ten lowest-energy conformations from the GA search, 

confirming that the choice was a sensible one. The resulting alignment 

of (S)-citalopram (m1) and DASB is shown in Figure 4-5. 

 

 

 

(S)-citalopram and DASB 
 

Figure 4-5: Alignment of (S)-citalopram and DASB 

 

 

4.2  CoMFA and CoMSIA Models 

4.2.1 CoMFA Models for the SERT and the NET 

Statistically significant and chemically meaningful CoMFA models were 

developed for both the SERT and the NET. Table 4-1 summarises the 

results of the CoMFA studies. 
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For both CoMFA and CoMSIA studies non-protonated structures were 

used because statistical results proved better than with N-protonated 

structures. Additional reasons for using non-protonated structures were 

the relative influence of steric and electrostatic fields upon the final 

models. When deriving CoMFA models with the protonated structures, 

the PLS analysis revealed a contribution of over 80% of the steric field. 

This seems quite unlikely and might well be due to known problems in 

connection with the electrostatic field itself as detailed in [61]. With the 

shallow distance dependence of the Coulomb potential, the 

electrostatic field may in fact be dominated by the influence of distant 

but highly charged atoms, in this case, the protonated nitrogen atoms. 

Different recommendations to overcome this problem are given in 

literature [61, 92], for instance the use of different probe atoms and 

various cutoff values. Several suggestions were tried, but finally non-

protonated structures were used to minimize the influence of highly 

charged atoms. Moreover, the parameter of never dropping 

electrostatics at sterically unfavourable points (as opposed to dropping 

electrostatics within the steric cutoff for each row) was applied as 

recommended in [60] and [93]. This resulted in CoMFA models that 

were not any longer dominated by steric contribution, but showed a 

contribution of sterics and electrostatics comparable to the contribution 

in the respective CoMSIA studies. Apart from never dropping 

electrostatics, default parameter settings were appropriate for the data 

set, which is in agreement with the suggestion of Folkers et al. [60] to 

use CoMFA with its default settings only, because of the complex 

interdependence of the parameters. 

A 3D QSAR model is considered statistically significant if its q2-value is 

above 0.3 [94, 95] although a q2-value above 0.4 to 0.5 [53] is naturally 

preferable. The CoMFA model for the SERT is consequently a clearly 

statistically significant model showing a q2-value of 0.538 at 3 
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components. Experimental binding affinities and the residuals of the 

final non cross-validated models are shown in Table 4-2. The 

correlation plot of pKi fit versus pKi exp. is shown in Figure 4-6. 
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Figure 4-6: Non cross-validated CoMFA analysis at the SERT: correlation plot of 
pKi fit versus pKi exp. with r2 = 0.929, SE = 0.437, F = 65.80. The fit for 
chloroimipramine, desipramine and desmethylsertraline is deviating by 
more than one order of magnitude. 

 

Three compounds, namely chloroimipramine (m12), desipramine 

(m11) and desmethylsertraline (m5) are incorrectly predicted by about 

one order of magnitude. This problem disappears when more 

components are added to the model. However, due to the risk of 

overtraining the system the less complex model was chosen, accepting 

a less perfect correlation. Furthermore the contour map for the model 

with only three components is much more conclusive. 

 



 

 

Table 4-1: Summary of CoMFA and CoMSIA analyses results 

 

 

 

 

 

Biological Target Model q2
sPRESS NPC 

h) r2
SE F steric electrostatic hydrophobic

SERT CoMFA 0.538 1.118 3 0.929 0.437 65.80 0.355 0.645 -
CoMFA+RF a) 0.674 0.940 3 0.932 0.430 68.13 0.435 0.565 -
CoMSIAse b), c) 0.531 1.127 3 0.916 0.478 54.28 0.293 0.761 -

CoMSIAs b) 0.637 0.991 3 0.860 0.615 30.78 1.000 - -
CoMSIAe c) 0.547 1.040 1 0.736 0.793 47.47 - 1.000 -
CoMSIAh d) 0.508 1.083 1 0.727 0.807 44.29 - - 1.000

CoMSIAda e), f) 0.354 1.242 1 0.645 0.920 30.93 - - -
CoMSIAseh b), c), d) 0.529 1.129 3 0.920 0.464 57.75 0.174 0.527 0.299

CoMSIAall g) 0.456 1.213 3 0.957 0.341 111.45 0.101 0.278 0.165
NET CoMFA 0.445 1.028 2 0.829 0.571 33.85 0.322 0.678 -

CoMSIAse b), c) 0.502 0.973 2 0.785 0.639 25.61 0.184 0.816 -
CoMSIAh d) 0.322 1.179 3 0.873 0.510 29.85 - - 1.000

CoMSIAseh b), c), d) 0.505 1.007 3 0.887 0.482 33.89 0.125 0.549 0.326
Affinity CoMFA 0.279 1.495 2 0.782 0.822 25.09 0.341 0.659 -

Differences CoMFA+RF a) 0.453 1.303 2 0.826 0.735 33.13 0.533 0.467

CoMSIAse b), c) 0.289 1.485 2 0.704 0.958 16.63 0.210 0.790 -

a) RF = Region Focusing  b) s = sterics  c) e = electrostatics d) h = hydrophobics  e) d = hydrogen-donating  f) a = hydogen-accepting g) all = sehda  h) NPC = number of Principal Components  

Fraction in %
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Table 4-2: Experimental binding affinities, affinity differences, and residuals of fitted binding affinities 
 

 
 

 

 

∆pKi exp.
c)

compound SERT NET CoMFA CoMFA+RFe) CoMSIAsef),g) CoMFA CoMSIAsef),g) CoMFA CoMFA+RFe) CoMSIAsef),g)

citalopram (m1) 8.82 5.10 3.72 -0.06 -0.28 0.02 -0.31 0.15 0.19 0.17 -0.32
fluoxetine (m2) 9.05 6.11 2.94 0.05 -0.03 -0.11 0.76 0.69 -0.59 0.09 -0.59

norfluoxetine (m3) 8.64 5.40 3.24 -0.17 0.02 -0.37 0.09 0.07 -0.25 0.31 -0.30
sertraline (m4) 9.82 6.09 3.73 0.49 0.80 0.76 0.07 -0.10 0.81 0.75 1.39

desmethylsertraline (m5) 8.43 6.09 2.34 -0.61 -0.29 -0.46 0.17 -0.14 -0.49 -0.47 0.11
paroxetine (m6) 10.19 7.07 3.12 -0.31 -0.45 0.03 0.09 0.02 0.52 -0.40 0.85

fluvoxamine (m7) 8.80 5.53 3.27 0.09 0.08 -0.08 -0.01 0.71 0.03 -0.03 -0.62
venlafaxine (m8) 8.12 5.64 2.48 -0.09 0.05 0.04 -0.09 -0.63 0.08 -0.68 0.80

O -desmethylvenlafaxine (m9) 8.11 5.56 2.55 0.06 0.23 -0.04 -0.29 -0.62 0.38 -0.02 0.73
imipramine (m10) 8.89 7.70 1.19 0.01 -0.25 -0.02 -0.43 -0.57 0.91 1.22 0.96

desipramine (m11) 7.66 9.20 -1.54 -0.93 -0.93 -1.04 1.02 1.01 -1.67 -1.31 -1.76

chloroimipramine (m12) 10.30 n.d.h) - 1.02 0.64 1.07 - - - - -
amitriptyline (m13) 8.55 7.72 0.83 0.35 0.30 0.34 -0.93 -0.50 1.39 0.78 0.86
nortriptyline (m14) 7.82 8.74 -0.92 0.07 0.11 -0.12 0.43 0.80 -0.48 -0.57 -1.01

m -CPP (m15) 6.69 5.71 0.98 0.09 0.25 0.10 0.18 0.01 -0.75 -0.28 -0.79
nefazodone (m16) 6.34 6.21 0.13 0.19 0.19 0.00 0.25 0.26 -0.37 -0.24 -0.54

hydroxynefazodone (m17) 5.99 6.18 -0.19 -0.16 -0.11 -0.11 0.16 0.09 -0.63 -0.52 -0.71
triazoledione (m18) 4.46 4.00 0.46 -0.04 -0.40 0.23 - - - - -

trazodone (m19) 6.60 4.43 2.17 -0.07 0.10 -0.22 -1.16 -1.26 0.92 1.21 0.95
a) pKi exp. = negative logarithm of the experimental equilibrium inhibition constant b) pKi fit = negative logarithm of the fitted equilibrium inhibition constant c) ∆pKi exp. = pKi exp.(SERT) - pKi exp.(NET) d) ∆pKi fit = pKi fit (SERT) - pKi fit (NET) e) RF = Region Focusing                   
f) s = sterics g) e = electrostatics h) n.d.= not determined

Selectivity Analysis
∆pKi exp.

c) - ∆pKi fit 
d)

Biological Data
pKi exp.

a)
Serotonin Transporter (SERT)

pKi exp.
a) - pKi fit 

b)
Norepinephrine Transporter (NET)

pKi exp.
a) - pKi fit 

b)
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Helpful in this respect was also the X loading contour diagram which is 

retrievable from QSAR analysis by the “XLoadings_from_PLS” field. 

The fields show the loadings on each PLS component and can also be 

used to identify the meaning of each component. Up to the third 

component new descriptors are added whereas only redundancy and 

inconsistent results were observed from the forth components 

onwards, indicating that merely noise had been modelled. This 

confirms that the choice of using only three components for the model 

is appropriate. The X loading contour diagrams for each of the three 

components of the CoMFA model for the SERT are shown and 

discussed in Chapter 4.2.3. 

For the CoMFA model derived from affinity data at the NET, 

triazoledione (m18) was excluded from the training series. As 

triazoledione (m18) proved to be inactive in biological testing (Ki given 

as > 100 µmol/l in [34]) but was predicted to be active in the 10 µmol/l 

range by CoMFA (data not shown), a detrimental bias on model 

statistics can be expected. As a result of excluding triazoledione (m18), 

the q2-value for the NET model increased from 0.364 at 2 components 

(data not shown) to 0.445 at 2 components. 

In addition to LOO cross-validation, cross-validation in groups was 

carried out for affinity data at the SERT. The training set was divided 

into four equally sized groups and the compounds were randomly 

assigned to one of these groups. One group was dropped when 

deriving the model and used for prediction. For reasons of computing 

time, column filtering (2 kcal/mol) was applied and the procedure was 

repeated ten times. This resulted in similar q2-values compared to the 

corresponding LOO results. The q2-values ranged from 0.436 to 0.635. 

Scrambling the biological data and performing a cross-validation 

afterwards is commonly used to check the consistency of the model as 
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this allows detection of possible chance correlations. After randomising 

the data several times only negative or very small positive q2-values 

were observed for both the SERT and the NET, showing model 

consistency. The q2-values ranged from -1.269 to 0.044 for scrambled 

SERT data and from -0.764 to 0.169 for scrambled NET data. 

To improve the predictability of the models region focusing was tried. 

According to [84], a model improvement should only be trusted if the 

q2-value increases by at least 10%. In the present work, this was the 

case for the SERT model only. Whereas the q2-value for the SERT 

increased from 0.538 to 0.674 at 3 components, there was only a small 

increase from 0.445 to 0.457 at 2 components for the NET. Thus, a 

final non cross-validated model using region focusing was only derived 

for the SERT. The same number of components as in the original 

model was used so that the results were directly comparable. 

Additional application of tightened grid spacing and column filtering as 

suggested in [76] did not markedly improve the results. However, 

applying region focusing to clearly senseless models derived from 

scrambled data also considerably increased q2-values, now ranging 

from -0.416 to 0.102 for scrambled SERT data. Thus, improved 

statistics as a result of region focusing need to be handled with care. 

The external predictive power of a 3D QSAR model is ideally checked 

by means of an appropriate test set but the chosen training set of 19 

compounds was too small to spare any structures for a reasonable test 

set. Instead, affinity data of several SERT ligands measured in test 

systems different from the one used for the training set were predicted 

in the correct order of magnitude for both the SERT and the NET as 

detailed in Chapter 4.3.3. 
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4.2.2 CoMSIA Models for the SERT and the NET 

Statistical data of the CoMSIA models for the SERT and for the NET is 

summarised in Table 4-1. Experimental binding affinities and the 

residuals of the final non cross-validated models are shown in Table 

4-2. 

Applying CoMFA and CoMSIA to the same datasets usually results in 

models of similar statistical significance as demonstrated by Klebe et 

al. [64]. The present work confirms these findings when comparing the 

q2-value of 0.538 for CoMFA and 0.531 for CoMSIA for the SERT 

considering only sterics and electrostatics. Again, cross-validation in 

groups was performed in addition to LOO cross-validation for affinity 

data at the SERT, yielding q2-values ranging from 0.456 to 0.630. 

Various CoMSIA studies experimenting with different combinations of 

steric and electrostatic fields, hydrophobic fields and hydrogen bond 

donor and acceptor fields were carried out. Almost all combinations 

yielded similar q2-values, supporting the finding of Böhm et al. [65] that 

there must be more or less the same information hidden in the different 

fields regarding the quantitative explanation of binding affinity, and 

thus, no improvement of model statistics is to be expected. For the 

SERT, the best q2-value of 0.637 was obtained when applying steric 

fields only, the second best q2-value of 0.547 when applying 

electrostatic fields only. Applying sterics and electrostatics, or sterics, 

electrostatics and hydrophobics together yielded comparable q2-values 

of 0.531 and 0.529. The q2-value decreased when combining all five 

field types (q2 = 0.456). It has to be noted, though, that CoMSIA studies 

considering hydrogen bonding fields alone were done with the 

protonated structures as the protonated nitrogen is supposed to be of 

importance in ligand binding [28]. This is supported by the fact that 

considering hydrogen donating properties with the non-protonated 
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structures yielded very poor q2-values. The correlation plot of pKi fit 

versus pKi exp. of the final non cross-validated CoMSIA model 

considering sterics and electrostatics is shown in Figure 4-7. 
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Figure 4-7: Non cross-validated CoMSIA analysis considering sterics and 
electrostatics at the SERT: correlation plot of pKi fit versus pKi exp. with   
r2 = 0.916, SE = 0.478, F = 54.28. The fit for chloroimipramine and 
desipramine is deviating by more than one order of magnitude. 

 

The CoMSIA analysis for the NET considering sterics and 

electrostatics yielded a q2-value of 0.502. The CoMSIA analysis for the 

NET using hydrophobics yielded a q2-value of 0.322. The CoMSIA 

analysis of hydrogen bonding properties yielded a rather poor q2-value, 

and is thus discounted and not discussed further. 
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4.2.3 Discussion of the Contour Plots 

CoMFA and CoMSIA results were graphically interpreted by field 

contribution maps. Coefficient contour maps using the field type 

“StDev*Coeff” were generated. To select the appropriate contour levels 

for each feature, the respective histograms of actual field values were 

analysed. Contour levels that produced chemically meaningful contour 

maps were chosen. Whereas the contour maps of CoMFA models 

highlight those regions in space where the aligned molecules would 

favourably or unfavourably interact with a possible environment, the 

contribution maps obtained by the CoMSIA approach denote those 

areas within the region occupied by the ligands that ´favour´ or ´dislike´ 

the presence of a group with a particular physico-chemical property 

[64]. The latter is said to be a much more intuitive guide when 

designing new ligands. Only CoMSIA plots for hydrogen bonding 

properties are contoured in a way similar to the CoMFA maps, denoting 

areas where donor or acceptor groups should be located within the 

putative receptor. Contour diagrams of the CoMFA and CoMSIA 

models considering sterics and electrostatics are shown for the SERT 

in Figure 4-8, and for the NET in Figure 4-9. Added to the maps are 

(S)-citalopram (m1) and desipramine (m11) as examples for 

substances displaying high affinity and high selectivity for the 

respective transporter. As the contour diagrams derived from CoMFA 

and CoMSIA are very much alike they will be discussed together. 

Analysing the contour plots for the SERT reveals three regions in the 

CoMFA plot where steric bulk enhances affinity. This is the green area 

around the substituent at the primary aromatic moiety R1, the green 

area around the aromatic moiety R2, and the green area into which the 

methyl group of many N-methylated substances with high affinity to the 
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SERT is orientated. The latter finding is clearly alignment-dependent as 

the orientation of the N-methyl groups of the various substances was 

carefully contemplated when actually doing the alignment. 

 

  

  
(a) (b) 

  

  
(c) (d) 

  

Figure 4-8: CoMFA ((a), (b)) and CoMSIA ((c), (d)) “StDev*Coeff” plots for the 
serotonin transporter denoting steric ((a), (c)) and electrostatic ((b), (d)) 
features. The contour levels were derived by examining the field value 
histograms. (S)-Citalopram is shown within the fields. (a), (c) Green 
areas indicate regions where steric bulk favourably effects binding 
affinity. Yellow regions denote areas in which sterically demanding 
groups have got a detrimental effect on binding affinity. (b), (d) Blue 
contours enclose areas where more positive charges increase binding 
affinity, whereas in the regions enclosed by red contours, more negative 
charges are favoured. 

 

The CoMSIA contour plot for the SERT also shows a large green 

region spanning from R2 to the N-methyl group, but unexplicably does 

not reveal any green region at R1. The areas indicated by yellow 

contours should be sterically avoided, otherwise reduced affinity can be 
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expected. The large yellow region visible in both the CoMFA and the 

CoMSIA plot extending far beyond the alkyl side chain (not completely 

shown in Figure 4-8) can be attributed to the phenylpiperazines; these 

are aligned in a way that their long residues attached to the 

phenylpiperazine moiety are pointing to that region. The model 

ascribes their low affinity at the SERT to this long residue by which 

they can be clearly differentiated from any other SERT ligands. 

Obviously, this is also alignment-dependent. 

Blue areas represent regions where electron-deficiency is 

advantageous. One large blue region can be seen in both plots for the 

SERT around the primary aromatic moiety R1. This can be attributed to 

ring substituents with a strong electron-withdrawing effect as for 

instance the cyano group in (S)-citalopram (m1). Interestingly, this area 

is only visible when working with non-protonated compounds as 

opposed to N-protonated compounds. A possible explanation is the 

influence of the highly charged protonated nitrogen that obscures other 

important electrostatic contributions. The red contoured area between 

R1 and R2 shows that partial negative charge is important at this part 

of the molecules for high binding affinity. Another red region can be 

detected around the ring substituent at R1, which consequently, should 

be an electronegative substituent if high affinity is desired. This finding 

is in agreement with the work of Rupp et al. [29]. The red region near 

the pharmacophoric nitrogen of (S)-citalopram (m1) needs to be 

handled with care, of course, as one must consider the fact that it is 

most likely that the compounds bind to the SERT in their N-protonated 

state and not in their non-protonated state as assumed in this model for 

the reasons outlined in Chapter 4.2.1. Surprisingly, no red area is 

found near the oxygen in (S)-citalopram´s (m1) dihydrofuran ring, 

although both (S)-fluoxetine (m2) and paroxetine (m6) also orientate 

their oxygen atoms into that area and an oxygen in this region is 
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considered to be of some importance in high affinity binding at the 

SERT [28]. 
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Figure 4-9: CoMFA ((a), (b)) and CoMSIA ((c), (d)) “StDev*Coeff” plots for the 
norepinephrine transporter denoting steric ((a), (c)) and electrostatic 
((b), (d)) features. The contour levels were derived by examining the 
field value histograms. Desipramine is shown within the fields. (a), (c) 
Green areas highlight those regions where steric bulk enhances binding 
affinity, whereas yellow regions denote those areas where steric bulk 
has got a detrimental effect on binding affinity. (b), (d) Blue contoured 
areas show regions where more positive charges are favourable for 
binding affinity, whereas within the red areas more negative charges 
are favoured. 

 

When analysing the contour plots for NET ligands, three distinct green 

regions were observed in the CoMFA plot where steric bulk is 

favourable for binding affinity. The first is the area in which the methyl 

group of many ligands with high affinity to the NET is located as 

demonstrated by desipramine (m11) in Figure 4-9. This is also 
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alignment-dependent as discussed above for SERT ligands. The 

second (consisting of two separated areas in the CoMFA plot) is a 

region occupied by the ethylene bridge connecting the two aromatic 

moieties of the TCAs. This region corresponds to the area found by 

Gundertofte et al. [28], in which substitution is prohibited for high SERT 

binding affinity, and whose occupation enhances norepinephrine 

reuptake inhibition. The third green region is an area around the 

secondary aromatic moiety R2. However, it is not typical for NET 

ligands only, as the presence of a secondary aromatic moiety or a 

bulky substituent is also a necessary prerequisite for high affinity 

binding at the SERT. In accordance with this, no green region around 

R2 is visible in the CoMSIA plot. Various yellow regions that should be 

sterically avoided can be seen. One of them clearly shows that large 

substituents at R1 should be avoided for high affinity at the NET. The 

regions encompassed by red contours show areas where partial 

negative charges are favourable for binding affinity. A red region 

around the primary aromatic moiety R1 indicates that the aromat 

should be electron-rich for high binding affinity at the NET. This is an 

important distinguishing feature from high affinity SERT ligands as 

these require an electron-deficient aromat in this position. Another red 

area can be seen in the CoMFA plot around the secondary aromatic 

moiety, indicating that a partial negative charge is favourable here. A 

third red area is the region that is occupied by a nitrogen or an sp2-

hybridized atom in the case of the TCAs. 

A CoMFA plot was derived for the SERT model that had been 

submitted to region focusing (not shown here). When the weights are 

“StDev*Coefficient” values, the process is exactly equivalent to image 

enhancement [76]. As expected, the focused fields appear much more 

sparse. Surprisingly, the green region related to R2 is suppressed in 

the SERT model submitted to region focusing. Any other fields 
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discussed above can still be seen, showing their importance for high 

affinity binding. 

 

   

  

(a) (b) 
  

Figure 4-10: CoMSIA “StDev*Coeff” contour plots illustrating hydrophobic features 
at the serotonin transporter ((a)) and at the norepinephrine transporter 
((b)). (S)-Citalopram and desipramine are shown within the fields. 
Yellow contoured regions show areas in which hydrophobic groups 
favourably effect binding affinity, whereas in white contoured regions 
hydrophobic groups have got an unfavourable effect on binding 
affinity. 

 

Figure 4-10 shows the hydrophobic plots for the SERT and the NET 

derived from the CoMSIA models considering hydrophobics only. The 

yellow areas denote regions in which hydrophobic groups are 

favourable for high affinity binding, whereas the light grey areas 

highlight regions in which such groups have got a detrimental effect on 

binding affinity. The CoMSIA map for the SERT reveals that the 

substituent at the primary aromatic moiety R1 should be hydrophobic 

as should be those parts of the molecule located at the R2 site. The 

CoMSIA plot for the NET also shows a large yellow region at the R2 

site, indicating that lipophilic partial structures are favourable here. 

Another yellow region can be seen in the area in which the ethylene 

bridge of the TCAs is located. 
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Figure 4-11: CoMSIA “StDev*Coeff” contour plot showing hydrogen bond donor and 
hydrogen bond acceptor properties at the serotonin transporter. (S)-
Citalopram is shown within the fields. In the magenta contoured areas, 
hydrogen bond donors would be favourably located in a hypothetical 
receptor, i.e. hydrogen bond accepting groups in the aligned 
molecules would favourably point towards these areas. Cyan 
contoured areas highlight those regions in space in which hydrogen 
bond acceptors would be favourably located in a putative receptor. 
Purple contoured areas show regions that are unfavourable for 
hydrogen bond accepting groups in a putative receptor. 

 

Figure 4-11 shows the map for hydrogen bonding properties for the 

SERT derived from the N-protonated structures. Cyan contours 

highlight areas in which hydrogen-bond acceptors would be favourably 

located in a putative receptor. Paroxetine (m6) and (S)-fluoxetine (m2) 

are directing one of their nitrogen protons towards this area. For (S)-

citalopram (m1) this is actually not the case as can be seen in the 

figure. Obviously this is compensated by the combination of other 

favourable features. In the magenta contoured areas, hydrogen bond 

donors would be favourably located in a putative receptor. The cyano 

group in (S)-citalopram (m1) for instance could act as such a hydrogen 

bond accepting group. Another feature displaying hydrogen bond 

accepting properties is the oxygen atom present in paroxetine (m6), 

(S)-fluoxetine (m2) and (S)-citalopram (m1) to which had been 

ascribed a pharmacophoric function [28] as discussed before. 

However, the magenta region around R2 is difficult to explain and 

seems less convincing. 
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Figure 4-12: CoMFA “XLoadings_from_PLS” contour plots for the SERT, denoting 
those steric ((a), (b), (c)) and electrostatic ((d), (e), (f)) variables that 
are “loaded” on each of the three PLS components (PC1: (a) and (d), 
PC2: (b) and (e), PC3: (c) and (f)). (S)-citalopram is shown within the 
fields. 
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As described in Chapter 4.2.1, X loading contour diagrams for both the 

CoMFA and the CoMSIA models for the SERT were derived by 

retrieving the “XLoadings_from_PLS” fields. As the diagrams were 

similar for CoMFA and CoMSIA, only the X loadings for the CoMFA 

analysis are shown in Figure 4-12. When comparing the individual 

contour diagrams one realises that many of the important features 

necessary for high SERT binding affinity that were discussed earlier 

can be found on the first PLS component. For instance, sterically 

demanding groups with partial negative charges are favourable as 

substituents at R1, and the presence of R2 is important. Some other 

features are added with the second and third component. The 

presence of one of the methyl groups at the pharmacophoric nitrogen 

is favourable for high SERT binding affinity whereas the presence of 

the other one seems to be unfavourable. Thus, additional important 

information is disclosed. 

4.2.4 Selectivity Analysis 

To better explain the selectivity-discriminating criteria, a selectivity 

analysis was performed as described in Chapter 3.6.4. Since 

triazoledione (m18) had been removed from the training set for the 

NET model, it consequently was not considered in the selectivity 

analysis. Applying both the CoMFA and the CoMSIA method yielded 

comparable q2-values of 0.279 and 0.289. Statistical data of the 

selectivity CoMSIA models is summarised in Table 4-1. Experimental 

binding affinities and the residuals of the final non cross-validated 

models are shown in Table 4-2. Obviously, statistics are not expected 

to be as good as for the SERT and the NET model alone, because the 

affinity differences are associated with a higher experimental 

uncertainty due to error propagation [65]. However, model statistics 
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could be improved by applying region focusing to the CoMFA model, 

resulting in a statistically significant model with a q2-value of 0.453. 

One clear shortcoming of the selectivity model is the poor fitted 

prediction of desipramine (m11). Whereas desipramine (m11) is a 

clearly NET selective substance, it is predicted by the CoMFA and 

CoMSIA final non cross-validated models as being SERT selective. 

Only the CoMFA model enhanced by region focusing predicts 

desipramine (m11) as being NET selective, but still in a wrong order of 

magnitude. Apart from this the selectivity analysis led to reasonable 

and well interpretable results. The outcome of the CoMFA and the 

CoMSIA plots is very similar, and for this reason, the results for the 

CoMSIA study are discussed only. The CoMSIA contour plot is shown 

in Figure 4-13. The contour plot clearly reveals those steric and 

electrostatic features that are important for selectivity at the SERT over 

the NET. One of the green regions, which require sterically demanding 

groups, is stretching out from R2 towards one of the N-methyl groups 

as observed before in the CoMSIA plot for the SERT, although in the 

selectivity plot, the methyl group is not actually included in the green 

contoured area. Thus, occupation of this area is obviously not a 

necessary criterion for SERT selectivity. This becomes clear when 

thinking of sertraline (m4), which, in the present alignment, does not fill 

this particular space, although it displays high selectivity for the SERT. 

The other green contoured region is found at a position into which 

substituents at the primary aromatic moiety R1 of selective SERT 

ligands extend, like the cyano group of (S)-citalopram (m1). It can be 

concluded that the presence of such a substituent is a necessary 

requirement for SERT selectivity. Moreover, this substituent needs to 

be electronegative as indicated by the red contoured region. This 

inevitably results in an electron-deficient aromatic moiety R1, which is 

highlighted by blue contours. Thus, these latter features are not only 
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important for high affinity at the SERT, but also for high selectivity at 

the SERT over the NET. Interestingly, another red region indicating 

negative charge to be favourable can be seen just above the oxygen 

atom of the dihydrofuran ring of (S)-citalopram (m1). This was 

expected to be seen earlier as discussed for the SERT CoMFA model. 

So obviously the presence of a group or atom possessing partial 

negative charges, as for instance the oxygen in paroxetine (m6) or (S)-

fluoxetine (m2), is important when discussing selectivity criteria.  
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Figure 4-13: CoMSIA “StDev*Coeff” contour plot illustrating steric ((a)) and 
electrostatic ((b)) selectivity features derived from the affinity 
differences between the serotonin transporter (SERT) and the 
norepinephrine transporter (NET). (S)-Citalopram is shown as an 
example of a highly SERT selective compound. (a) Areas enclosed by 
green contours show regions where steric bulk enhances selectivity at 
the SERT over the NET, whereas sterically demanding groups within 
yellow regions decrease selectivity. (b) More positive charges are 
favourable for SERT selectivity in blue contoured regions. Red areas 
denote regions where more negatively charged groups have got a 
favourable effect on SERT selectivity. 

 

Two areas are highlighted by yellow contours. One of them is the 

region into which the methyl group extends that was found earlier to be 

of importance in high affinity binding at the NET. Clearly, the 

occupancy of this region with bulky substituents has got a detrimental 

effect on SERT selectivity. Equally, occupancy of the region in which 

the ethylene group that is bridging the two aromatic rings in the TCAs 
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is found, has a negative effect on SERT selectivity as indicated by the 

second yellow region in Figure 4-13. 

Hydrophobicity was not considered in the selectivity analysis as the 

hydrophobicity contour plots for the SERT and for the NET were very 

similar. Thus, no reasonable selectivity analysis was to be expected. 

Hydrogen bonding properties were not considered in the selectivity 

analysis as no conclusive models for the NET had been developed, 

and thus analysing selectivity using these properties would not be 

meaningful. 

 

4.3 Design and Prediction of Novel Compounds 

4.3.1 General Approach 

As various N,N-dimethyl-2-phenylsulfanyl-benzylamines had turned out 

to be promising PET ligands for the SERT, the endeavour was to find 

even more suitable substances of this type. To structurally modify the 

lead compound DASB (Figure 1-3), knowledge on SARs of serotonin 

transporter ligands derived from the CoMFA and CoMSIA models was 

employed. It should be noted at this point that the phenyl rings of these 

diphenyl sulphides are termed ring A and ring B according to Sindelar 

et al. [96] and Emond et al. [25]. Ring B corresponds to R1 of the 

Gundertofte model [28], and ring A corresponds to R2. In Figure 4-14, 

DASB is shown within the steric and electrostatic CoMFA fields for the 

SERT. The three green regions reveal those areas where steric bulk 

enhances affinity. The substituent in DASB´s position 4´ at ring B and 

the area around ring A are located here, as well as the area into which 

one of DASB´s N-methyl groups is orientated. The areas indicated by 
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yellow contours should be sterically avoided, otherwise reduced affinity 

can be expected. DASB does not occupy these areas.  
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Figure 4-14: DASB within the steric (a) and electrostatic (b) “StDev*Coeff” CoMFA 
fields for the SERT. Green regions show areas where steric bulk 
enhances binding affinity, whereas steric bulk has got a detrimental 
effect on binding affinity in yellow regions. Partial positive charges are 
favourable in blue regions, and partial negative charges are favourable 
in red regions. 

 

A blue area, which represents a region where electron-deficiency is 

advantageous, can be seen around ring B. This can be attributed to 

ring substituents with a strong electron withdrawing effect as for 

instance the cyano group in DASB. In regions enclosed by red areas, 

more negative charges are favoured. One red area is found at ring A, 

another red area is seen around DASB´s cyano group, showing that an 

electronegative substituent is favourable here. The fact that DASB is a 

compound displaying high affinity at the SERT is well illustrated by the 

CoMFA contour map. Therefore the contour diagrams prove useful 

when designing new SERT ligands from the N,N-dimethyl-2-

phenylsulfanyl-benzylamine scaffold. Moreover, known SARs of these 

diphenyl sulphides were considered during structural modification, as 

well as the concept of bioisosterism in drug design. Additionally, 

structures were automatically suggested by using SYBYL´s Optimize 

QSAR module [67] (cp. Chapter 3.6.5). 



 

 

Table 4-3: Experimental and predicted binding affinities of diphenyl sulphides 
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CH3

CH3
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   SERT NET 

Compound X Y Ki pred. CoMFA (nM) Ki pred. CoMSIA (nM) Ki exp. (nM) Ki pred. CoMFA (nM) Ki pred. CoMSIA (nM) Ki exp. (nM) 

DASB NC- NH2- 1.34 1.65 1.1 a) 3715 2188* 1350 a) 

ADAM I- NH2- 2.25 1.23* 0.40 b) 1259 288 683 d) 
s2 Br- NH2- 2.47 1.56* 0.37 c) 1122 282 107 d) 

s3 Cl- NH2- 2.50 1.74* 0.27 a) 1148 316 230 a) 
s4 F- NH2- 2.07 1.82 4.8 b) 1514 550 137 b) 

MADAM H3C- NH2- 2.82 2.34 0.43 c) (1.65 d)) 102 468 325 d) 
s5 H3CO- NH2- 1.54 1.70* 1.89 a) 794 288 1992 a) 

s6 F3C- NH2- 0.57 0.97 0.33 a) 8318 4365 1205 a) 

s7 FCH2- NH2- 1.66 1.45 1.8 b) 1000 209 97 b) 
s8 CH3CH2- NH2- 2.60 1.99* 0.17 c) 661 117 367 c) 

s9 FCH2CH2- NH2- 2.60 2.72 3.4 b) 562 126 809 b) 
s10 CH2=CH2- NH2- 3.29 1.77* 2.74 c) 759 219 - 

s11 FCH2CH2CH2- NH2- 3.30 2.48 11.0 c) 575 81 219 c) 

IDAM I- HOCH2- 0.98 0.79* 0.98 d) 513 240 12.8 d) 
s12 I- CH3OCH2- 2.54 1.89* 2.50 d) 2239 537 212 d) 

s13 Br- CH3OCH2- 2.61 2.49 2.75 d) 2089 513 326 d) 
s14 I- FCH2- 1.13 0.69 (0.003 e)) h) 759 537 - 

s15 I- F- 1.12 0.58* (0.22 e)) h) 1862 1096 - 
s16 Br- F- 1.26 0.76 (0.12 e)) h) 1585 1047 - 

s17 Cl- F- 1.20 0.82 (0.33 e)) h) 1698 1202 - 

         

ODAM - - 1.03 1.75* 2.8 f) 759 437 (20.0 f)) 

s18 - - 1.42 1.98 > 1000 g) 1096 229 - 
a) 

Wilson AA et al., J Med Chem 43, 3103-10 (2000) 
b) 

Huang Y et al., J Labelled Cpd Radiopharm 44 (1 Suppl), S18 (2001) 
c) 

Jarkas N et al., J Labelled Cpd Radiopharm 44 (1 Suppl), S204 
(2001) d) Emond P et al., J Med Chem 45, 1253-58 (2002) e) Oya S et al., J Labelled Cpd Radiopharm 44 (1 Suppl), S15-16 (2001) f) Zhuang Z-P et al., J Labelled Cpd Radiopharm 42 (1 Suppl), 
S357-358 (1999) g) Oya S et al., J Labelled Cpd Radiopharm 82 (1 Suppl), S57 (1999) h) SERT expressed in LLC-PK1 cells. Ki exp. (IDAM): 0.097 nM, Ki exp. (ADAM): 0.013 nM. Direct comparison 
of Ki-values seems questionable here. 

 * extrapolation > 0.3 log unit 
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4.3.2 SARs of Diphenyl Sulphides 

SARs of various diphenyl sulphides as potential antidepressants were 

first described by Sindelar et al. [22, 96]. Whereas structure s1 shows 

high binding affinity at both the SERT and the NET, moxifetin, 

additionally bearing a hydroxy group in position 3´, is SERT selective 

[97, 98]. Any further modifications at the moxifetin scaffold made by 

Sindelar et al. [22, 96] resulted in compounds possessing a substituent 

in position 3´. This changes with Ferris et al. [23] describing 403U76 as 

a new potential antidepressant inhibiting both the serotonin and 

norepinephrine reuptake. The 2´, 4´-substitution pattern seen in 

403U76 was maintained throughout further ligand optimisation for 

SPECT and PET applications. 
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Figure 4-15: Molecular structures of s1, moxifetin and 403U76 

 

A comprehensive overview of the SARs of 2´, 4´-substituted diphenyl 

sulphides is given by Emond et al. [25]. Table 4-3 shows a collection of 

binding affinity data of diphenyl sulphides from literature. 

The dimethylaminomethyl group in position 2 of ring A seems to be 

optimal although a monomethylaminomethyl group is also tolerated. At 

position 2´ of ring B, the SERT binding site tolerates quite a broad 
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range of functional groups containing a heteroatom, such as alcohol, 

ether, ester, nitro and amine functions. The nature of this group seems 

to be important for SERT selectivity. Whereas compounds containing a 

hydroxymethyl group in position 2´ (IDAM) display high binding affinity 

at both the SERT and the NET, compounds substituted with an amino 

group (ADAM) or a methoxymethyl group (s12, s13) in position 2´ are 

SERT selective [25]. Oya et al. [99] recently reported a new compound 

substituted with a fluorine-18 labelled fluoromethyl group in position 2´ 

(s14) displaying very high binding affinity at the SERT and also 

showing promising characteristics as a possible PET ligand. As no 

affinity data for the NET or the DAT is given, no conclusions about 

SERT selectivity can be drawn. Choi et al. [100] reported that a fluoro 

substitution is also tolerated in position 2´ (s15, s16, s17). It was 

further reported that arylation and acylation of the amino group in 

position 2´ in most cases resulted in reduced binding affinity at the 

SERT. Regarding the 4´ position of ring B, Emond et al. [25] concluded 

that the nature of the substituent only slightly influences the SERT 

binding affinity, as for instance a fluorine, a bromine and a iodine atom 

seem to be interchangeable in this position. This is supported by the 

findings of Wilson et al. [21] showing that also a chlorine (s3), a 

trifluoromethyl (s6), a methoxy (s5) and a cyano (DASB) group in 

position 4´ display high SERT binding affinity. However, not all 

substituents are favourable as PET ligands. The trifluoromethyl group, 

for instance, is much too lipophilic, thus displaying a clearance from the 

cerebellum too slow for favourable pharmacokinetics in human PET 

studies [21]. According to Emond et al. [25], sterically demanding 

groups in position 4´ markedly decrease binding affinity at the SERT. 

However, Jarkas et al. [69] found that both an ethyl (s8) and an ethenyl 

(s10) group in position 4´ display good binding affinity at the SERT. 

Huang et al. [26] reported that a 2-fluoroethyl group in position 4´ (s9) 
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also displays a good binding affinity at the SERT but additionally, a 

moderate binding affinity at the NET. 

Zhuang et al. [101] prepared an analogue of IDAM called ODAM with 

an oxygen instead of a sulphur bridge between the two phenyl rings as 

this was thought to be metabolically more stable. 
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Figure 4-16: Molecular structure of ODAM 

 

ODAM showed high binding affinity at the SERT and moderate binding 

affinity at both the NET and the DAT. However, Acton et al. [102] 

concluded that, although ODAM seems to have a higher brain uptake 

than IDAM and indeed a slower metabolism, it also exhibits higher 

nonspecific binding than IDAM, which makes it less suitable as a PET 

ligand.
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4.3.3 Comparison of Predicted and Experimental 
Binding Affinity 

To check whether the CoMFA and CoMSIA models are suitable to 

predict SERT binding affinity of new diphenyl sulphides, the Ki-values 

of several diphenyl sulphides already synthesised and biologically 

tested were predicted. Predicted and experimental Ki-values for both 

the SERT and the NET are shown in Table 4-3. Additionally, predicted 

versus experimental pKi values for the diphenyl sulphides are shown 

within the correlation plot of the CoMFA analysis for the SERT (Figure 

4-17). 
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Figure 4-17: Predicted versus experimental pKi values of seven diphenyl sulphides 
within the correlation plot of the non cross-validated CoMFA analysis 
for the serotonin transporter. ADAM and MADAM are predicted in the 
wrong order of magnitude, whereas DASB, IDAM, s22, s25 and s28 
are correctly predicted. 
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Clearly, one has to be careful with comparison of data across 

laboratories. However, the comparison of Ki-values seems permissible 

as the Ki-value is an absolute value for a compound and is independent 

of the specific radioligand used and the concentration of radioligand in 

the assay [34]. For DASB, a Ki-value of 1.1 nM at the SERT and of 

1350 nM at the NET was experimentally determined [21], showing that 

DASB is highly selective for the SERT. This is correctly predicted by 

the CoMFA and CoMSIA analyses, the predicted Ki-values being within 

the same order of magnitude as the experimentally determined ones 

with 1.34 nM (CoMFA) and 1.65 nM (CoMSIA) for the SERT, and 3715 

nM (CoMFA) and 2188 nM (CoMSIA) for the NET. The Ki-values of 

compound s9, bearing a 2-fluoroethyl group in position 4´, are also 

predicted within the correct order of magnitude for both the SERT and 

the NET. This is of particular interest, as the 2-fluoroethly group is 

suitable for fluorine-18 labelling. This was shown only recently by 

Huang et al. [103] who prepared fluorine-18 labelled s9. However, 

judging from binding affinity data given in [26], compound s9 is less 

SERT selective than DASB. This probably makes it less suitable as a 

PET radiotracer, although Huang et al. [103] were able to demonstrate 

high specificity during PET studies in rats and baboons. The binding 

affinity of IDAM, possessing a hydroxymethyl group in position 2´ and a 

iodine atom in position 4´, is correctly predicted as being in the sub-

nanomolar range at the SERT, whereas the binding affinity at the NET 

seems to be underestimated by one order of magnitude. CoMSIA 

analysis appears to be performing better when looking at the Ki-values 

of ADAM and its fluorine (s4), bromine (s2) and chlorine (s3) 

analogues. The Ki-values for the NET are predicted in the correct order 

of magnitude by CoMSIA. However, binding affinity at the SERT seems 

to be underestimated by one order of magnitude by both CoMFA and 

CoMSIA. Compound s14, possessing a fluoromethyl group in position 
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2´ and a iodine atom in position 4´, is correctly predicted as displaying 

high binding affinity at the SERT, although binding affinity seems to be 

slightly underestimated. Compound s14 is of particular interest as 

fluorine-18 labelling of the fluoromethyl group proved to be possible 

[99]. Binding affinity at the SERT of ODAM, differing from the other 

compounds by the oxygen which bridges the two phenyl rings, is also 

predicted in the correct order of magnitude by both CoMFA and 

CoMSIA. Nevertheless, SERT selectivity seems to be slightly 

overestimated by both models. Binding affinity at the SERT of the 

pyridinyl compound s18, for which Oya et al. [104] reported only weak 

binding affinity at the SERT, seems to be wrongly predicted by several 

orders of magnitude. This is, clearly, a shortcoming of the models.  
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Figure 4-18: Molecular structure of s18 

 

Yet most of the tested diphenyl sulphides are correctly predicted by 

both CoMFA and CoMSIA, thus making the models suitable for the 

estimation of binding affinities for novel diphenyl sulphide structures. 

This also becomes clear from the correlation plot in Figure 4-17, 

showing the quality of the predictions. 
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4.3.4 Bioisosterism 

The principle of bioisosteric replacement of functional groups is 

considered to be a successful optimisation strategy. Langmuir [105] 

introduced the concept of isosterism in 1919. Isosterism was at that 

time used to describe the similarity of molecules or ions which have the 

same number of atoms and valence electrons. This concept was 

extended by Grimm´s hydride displacement law [106], describing the 

similarity between groups of atoms which have the same number of 

valence electrons, but a different numbers of hydrogen atoms. For 

instance some similarities are present within the sequence F, OH, NH2, 

and CH3. Grimm [106] termed such groups “pseudoatoms”. However, 

hydrogen bonding was not yet understood. Friedman [107] introduced 

the term bioisosterism. Bioisosteres are groups or molecules which are 

structurally similar and show the same type of biological activity. 

Comprehensive overviews of isosterism and bioisosterism in drug 

design are documented in the publications [108-112]. The concept of 

bioisosterism was used when designing new diphenyl sulphide 

derivatives. 



 

 

Table 4-4: Predicted binding affinities of novel diphenyl sulfides 
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    Ki pred. SERT (nM) Ki pred. NET (nM) 

Compound Scaffold X Y CoMFA CoMSIA CoMFA CoMSIA 

n1 (a) H3CO-C(O)- NH2- 1.18 1.67* 2344 1230* 
n2 (a) H3C-CH2O-C(O)- NH2- 1.24 1.60* 2239 1230 

n3 (a) FCH2O-C(O)- NH2- 1.18 1.44 2239 759 

n4 (a) FCH2-CH2O-C(O)- NH2- 1.23 1.43* 2239 891 
n5 (a) H3CS- NH2- 2.77 2.79 708 219 

n6 (a) F3CS- NH2- 2.48 1.10* 851 135 
n7 (a) FH2CS- NH2- 2.54 2.48 871 191 

n8 (a) NCO- NH2- 1.34 1.77 1413 537 

n9 (a) NCS- NH2- 2.24 1.88 794 200 
n10 (a) NC- H3CO- 1.28 1.27 3548 3236* 

n11 (a) FCH2CH2- NO2- 1.51 1.29 1698 912 
n12 (a) NC- FCH2- 0.78 0.81* 2692 4169* 

n13 (a) H3CO-C(O)- FCH2- 0.70 0.88* 1778 2344* 
n14 (a) NO2-CH=CH- FCH2- 1.18 4.15* 363 117* 

n15 (a) NC- H3CO-C(O)- 0.52 1.13* 7943 7586* 

n16 (a) FCH2CH2- H3CO-C(O)- 1.06 1.84 1514 513 
n17 (a) NC- FH2CO-C(O)- 0.44 1.01* 9120 8511* 

n18 (a) NC- FH2C-C(O)- 0.46 0.68* 6607 4074* 
n19 (a) H3C-NH-S(O)2- NH2- 0.90 2.10 2818 1259 

n20 (a) H3C-NH-S(O)2- FCH2- 0.45 1.09 1862 2042 

n21 (a) H3C-S(O)2- NH2- 1.13 3.78 1549 776 
n22 (a) H3C-S(O)2- FCH2- 0.55 1.91 1096 1230* 

n23 (a) H3C-S(O)- NH2- 1.63 3.15 1122 550 
n24 (a) H3C-S(O)- FCH2- 0.81 1.61* 776 832 

n25 (a) H3C-NHC(O)- NH2- 0.76 1.79* 2630 1445* 
n26 (a) H3C-NHC(O)- FCH2- 0.41 0.93* 2042 2630* 

n27 (a) FCH2-CH2-C(O)- NH2- 0.88 0.90* 1622 537 

n28 (a) FCH2-CH2-C(S)- NH2- 1.16 0.98* 1349 380 
n29 (a) FCH2-CH2O-C(S)- NH2- 1.52 1.51* 1905 646 

n30 (a) FCH2-CH2S-C(O)- NH2- 0.87 0.87* 2239 871 
n31 (a) FCH2CH2- HC(O)- 0.91 1.47* 1445 309 

n32 (a) FCH2CH2- HON=CH- 1.66 2.75 692 200 

n33 (a) FCH2CH2- HN=CH- 1.04 1.91 1072 195 
n34 (a) FCH2CH2- H3CN=CH- 0.99 1.78 955 162 

n35 (a) FCH2CH2- Phe-C(O)- 2.37* 3.62* 1072 550* 
n36 (a) FCH2-CH2O-C(O)- HC(O)- 0.36 0.74* 6026 2399 

n37 (a) FCH2-CH2O-C(O)- HON=CH- 0.59 1.42* 3020 1589 
n38 (a) FCH2-CH2O-C(O)- HN=CH- 0.40 0.96* 4571 1514 

n39 (a) FCH2-CH2O-C(O)- H3CN=CH- 0.38 0.89* 3890 1259 

n40 (a) FCH2-CH2O-C(O)- Phe-C(O)- 0.64 2.16* 5623 4898 
n41 (a) Phe- FCH2- 1.09 0.97* 724 724 

n42 (a) FCH2-phe- NH2- 2.32 1.69* 871 355 

n43 (b) - NH2- 0.64 0.82* 851 316 

n44 (b) - FCH2- 0.32* 0.42* 603 575 

n45 (c) - NH2- 1.22 1.17* 871 347 
n46 (c) - FCH2- 0.67 0.60* 631 589 

n47 (d) - NH2- 0.96 1.00* 603 174 

n48 (d) - FCH2- 0.50 0.51* 437* 302 

*extrapolation > 0.3 log units 
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Table 4-5: Predicted binding affinities of novel phenyl-pyridinyl sulphides and phenyl-thienyl sulphides 
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    SERT NET 

Compound Scaffold X Y Ki pred. CoMFA (nM) Ki pred. CoMSIA (nM) Ki pred. CoMFA (nM) Ki pred. CoMSIA (nM) 

n49 (a) NC- NH2- 0.74 1.38 3467 1698* 

n50 (a) FCH2CH2- NH2- 1.33 2.59 813 91* 
n51 (a) FCH2O-C(O)- NH2- 0.59 1.35 2818 562 

n52 (a) FCH2CH2O-C(O)- NH2- 0.54 1.30 2630 661 

n53 (a) FCH2CH2C(O)- NH2- 0.50 0.85 2042 355* 
n54 (a) H3CO-C(O)- FCH2- 0.36 0.72* 1862 1585 

n55 (b) NC- NH2- 1.17 1.54 3631 2089 

n56 (b) FCH2CH2- NH2- 1.71 2.63 759 126* 
n57 (b) FCH2O-C(O)- NH2- 1.16 1.29* 2344 724 

n58 (b) FCH2CH2O-C(O)- NH2- 1.15 1.32* 2455 813 
n59 (b) FCH2CH2C(O)- NH2- 0.87 0.80* 1698 537 

n60 (b) H3CO-C(O)- FCH2- 0.67 0.78* 1738 2188* 

n61 (c) NC- NH2- 2.58 3.11 2291 1660* 

n62 (c) FCH2CH2- NH2- 2.83 4.61 550 102* 

n63 (c) FCH2O-C(O)- NH2- 1.81 2.54 1778 562 
n64 (c) FCH2CH2O-C(O)- NH2- 2.61 1.75 1820 617 

n65 (c) FCH2CH2C(O)- NH2- 1.27 1.59* 1230 437 

n66 (c) H3CO-C(O)- FCH2- 1.09 1.52* 1230 1698* 

n67 (d) NC- NH2- 1.79 2.64 3631 4898* 

n68 (d) FCH2CH2- NH2- 2.68 3.31 692 182 
n69 (d) FCH2CH2O-C(O)- NH2- 1.15 2.20 1479 1514* 

n70 (e) NC- NH2- 0.84 1.21 4467 3802* 

n71 (e) FCH2CH2- NH2- 1.66 1.85 692 132 
n72 (e) FCH2CH2O-C(O)- NH2- 0.81* 0.78* 2291 1047 

*extrapolation > 0.3 log unit 
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Table 4-6: Predicted binding affinities of novel compounds with different diphenyl bridging 
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    SERT NET  

Compound Scaffold X Y Ki pred. CoMFA (nM) Ki pred. CoMSIA (nM) Ki pred. CoMFA (nM) Ki pred. CoMSIA (nM) 

n73 (a) NC- NH2- 1.32 1.95 3631 3890* 

n74 (a) FCH2CH2- NH2- 3.55 2.65 603 295 
n75 (a) FCH2CH2O-C(O)- NH2- 0.96 1.45* 2570 2630* 

n76 (a) FCH2CH2-C(O)- NH2- 1.12 1.15* 2089 2239* 

n77 (b) NC- NH2- 0.77 0.75 1698 933* 

n78 (b) FCH2CH2- NH2- 2.37 1.11 174 59 

n79 (b) FCH2CH2O-C(O)- NH2- 0.79 0.68 1122 575 
n80 (b) FCH2CH2-C(O)- NH2- 0.67 0.44* 676 389* 

n81 (c) NC- NH2- 0.47 0.88 1514 617 

n82 (c) FCH2CH2- NH2- 0.94 1.37* 550 204 
n83 (c) FCH2CH2O-C(O)- NH2- 0.38 0.73* 891 324 

n84 (c) FCH2CH2-C(O)- NH2- 0.37 0.47* 550 204 

n85 (d) NC- NH2- 2.35 3.84 794 617 

n86 (d) FCH2CH2- NH2- 4.01* 4.80 219* 55 

n87 (d) FCH2CH2O-C(O)- NH2- 4.39 3.37 407 229 
n88 (d) FCH2CH2-C(O)- NH2- 2.99* 2.22 550 204 

n89 (e) NC- NH2- 3.40 3.39 14 125* 17 378* 

n90 (e) FCH2CH2- NH2- 6.35 5.07 1950 1698* 
n91 (e) FCH2CH2O-C(O)- NH2- 2.81 3.04 8128 12 589* 

n92 (e) FCH2CH2-C(O)- NH2- 2.17 2.72 7413 11 482* 

n93 (f) NC- NC- 1.00 1.44* 7079* 10 715* 

n94 (f) NC- H3C- 1.35 0.76* 933 546* 

n95 (f) NC- FCH2- 1.30 0.58* 871 479 
n96 (f) NC- H3C-CH2- 1.17 0.86 871 575 

n97 (f) NC- FCH2CH2- 1.60 0.89* 1148 602 

n98 (f) FCH2CH2- NC- 2.17 2.23 1202 661* 
n99 (f) FCH2CH2O-C(O)- NC- 0.88 1.29* 4786 5370* 

n100 (f) FCH2CH2-C(O)- NC- 0.73 0.74* 3236 3020* 

*extrapolation > 0.3 log units 
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4.3.5 Novel Compounds and Discussion 

Table 4-4 to Table 4-6 summarise the molecular structures of the 

newly designed compounds and their predicted binding affinities at the 

SERT and at the NET. Very high binding affinity of a radioligand in 

combination with a comparatively slow clearance from tissue can 

restrict its usefulness for PET, because the rate-limiting step of tracer 

retention may become the delivery instead of the binding process [1]. A 

consequence of this would be to only consider substances whose Ki-

values are found within a particular range, for instance, between 0.5 

and 10 nM as suggested by Lassen et al. [113] for benzodiazepine 

receptor tracers. However, as the used CoMFA and CoMSIA models 

cannot predict PET kinetics, and thus no optimum Ki-value for any one 

compound can be estimated, all substances were considered which 

were estimated as displaying high binding affinity in a nanomolar or 

subnanomolar range at the SERT and low binding affinity at the NET. 

Another aspect during molecular design was to obtain structures that 

could easily be radiolabelled with either carbon-11 or preferably 

fluorine-18. Carbon-11 labelling of one of the N-methyl groups as seen 

in [11C]DASB seems not necessarily suitable as the N-methyl groups 

are susceptible to metabolism. Therefore it seems difficult to quantify 

radiolabelled metabolites that cross the blood brain barrier and need to 

be considered during evaluation of a PET study. These considerations 

seem to contrast with the findings of Halldin et al. [114] who labelled 

MADAM with carbon-11 in two different positions (at the methyl group 

of the phenyl ring and at one methyl group of the tertiary amino group) 

and measured metabolism in monkey brain. They found no significant 

difference with regard to brain kinetics and metabolism, indicating that 

no radioactive metabolites entered the brain. 
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When modifying the N,N-dimethyl-2-phenylsulfanyl-benzylamine 

scaffold, four structural features were focused upon. These were the 

substituents in position 2´ and 4´ of ring B, the aromatic ring B itself, 

and the sulphur bridge between ring A and ring B as shown in Figure 

4-19. 
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Figure 4-19: Positions of possible modifications at the former N,N-dimethyl-2-
phenylsulfanyl-benzylamine scaffold. Substituents in position 2´ and 4´ 
were exchanged as well as the aromatic ring B and the atom bridging 
ring A and ring B. 

 

From the CoMFA and CoMSIA models it became clear that the 

substituent in position 4´ should preferably display electron-withdrawing 

characteristics which is particularly required for high SERT selectivity. 

Obviously, a fluoroethyl group in position 4´ as seen in structure s9 

does not meet this requirement which explains its selectivity loss 

compared to DASB [26]. Therefore, the replacement of the fluoroethyl 

group with a fluoroethyl-oxycarbonyl group (ester) seems promising as 

the possibility of fluorine-18 labelling is maintained. The estimated Ki -
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values of compound n4 are 1.23 nM (CoMFA) and 1.43 nM (CoMSIA) 

for the SERT, and 2239 nM (CoMFA) and 891 nM (CoMSIA) for the 

NET. Substitution of the fluoroethyl group by a fluoroethyl-carbonyl 

group (ketone) seems also most promising, since compound n27 was 

predicted to have Ki-values around 0.88 nM (CoMFA) and 0.90 nM 

(CoMSIA) for the SERT, and around 1622 nM (CoMFA) and 537 nM 

(CoMSIA) for the NET. 

To further improve binding affinity at the SERT, replacement of ring B 

with an electron-deficient pyridine ring seemed reasonable. Depending 

on the position of the nitrogen atom in the pyridine ring, binding affinity 

at the SERT is estimated as slightly decreased compared to n4 for 

compound n64, and as about the same for compound n58, whereas a 

markedly improved binding affinity at the SERT (Ki = 0.54 nM) is 

estimated for compound n52 by CoMFA analysis. Moreover, SERT 

selectivity seems to be retained, as for compound n52 a Ki-value of 

2630 nM at the NET is estimated by using CoMFA. Substitution with a 

fluoroethyl group in position 4´ as in compounds n50, n56, and n62 

appears to result in decreased selectivity, whereas binding affinity at 

the SERT is predicted in a nanomolar range suitable for a PET ligand. 

Substitution in position 4´ by a fluoroethyl-carbonyl group as in 

compounds n53, n59 and n65 results in clearly selective substances. 

This is demonstrated by Figure 4-20, showing compound n53 within 

the SERT CoMFA fields and within the CoMSIA selectivity fields. The 

electron deficient pyridine ring is located in the blue region, which 

shows that partial positive charges are favourable for high binding 

affinity at the SERT and for SERT selectivity at this site. Moreover, the 

fluoroethyl-carbonyl substituent is directed towards the green region. 

This region denotes areas in which steric bulk enhances binding affinity 

and SERT selectivity. The oxygen atom of the carbonyl group is 

directed towards the red region visible in both the SERT CoMFA plot 
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and the CoMSIA selectivity plot. Thus, partial negative charge is 

located in the red region as required. Furthermore, this may confirm the 

choice of the conformation of the fluoroethyl-carbonyl substituent. 
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Figure 4-20: Compound n53 within the steric (a) and electrostatic (b) SERT 
“StDev*Coeff” CoMFA fields, and within the steric (c) and electrostatic 
(d) “StDev*Coeff” CoMSIA fields from the selectivity analysis. Green 
regions denote those areas in which steric bulk is favourable for high 
binding affinity at the SERT and for high SERT selectivity. Yellow 
regions denote those areas where steric bulk has got a detrimental 
effect on SERT binding affinity and SERT selectivity. Binding affinity 
and SERT selectivity is enhanced by partial positive charges in blue 
regions, and by partial negative charges in red regions. 

 

As thiophene is considered a classical bioisostere of benzene [108, 

112], the exchange of ring B for thiophene was attempted. Good 

results were obtained for compound n67 and compound n70, differing 

from each other in the position of the sulphur atom in the thiophene 

ring. Both compounds were predicted as displaying high binding affinity 

at the SERT and low binding affinity at the NET, thus being highly 

selective. To make fluorine-18 labelling possible, the cyano group was 
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exchanged for the above mentioned fluoroethyl-oxycarbonyl group, 

resulting in compounds n69 and n72, which are predicted as also 

showing high binding affinity at the SERT, and as being SERT 

selective. The only congeneric compounds found in literature with ring 

B being replaced with thiophene had been prepared and tested by 

Sindelar et al. [22]. These two compounds displayed only moderate 

affinity at the SERT. Probably this can be attributed to a different 

substitution pattern. 

As suggested by Oya et al. [99] for compound s30, the amino group in 

position 2´ can be replaced with a fluoromethyl group without affinity 

loss and, moreover, this provides a good possibility for fluorine-18 

labelling. Affinity and selectivity seem to be retained for compound n12, 

possessing an electron-withdrawing cyano group in position 4´, or for 

the pyridine compounds n54 and n60. Another electron withdrawing 

group is the methylsulfonyl group which Burger [108] suggested to be 

bioisosteric to the trifluoromethyl group. As Wilson et al. [21] found that 

a trifluoromethyl group in position 4´ makes compound s22 much too 

lipophilic to display favourable PET kinetics, substitution of position 4´ 

with a methylsulfonyl group is probably advantageous for a PET ligand. 

Both compound n21, possessing an amino group in position 2´, and 

compound n22, possessing a fluoromethyl group in position 2´, are 

predicted to be highly selective SERT ligands. Compound n21 could 

possibly be carbon-11 labelled at the methylsulfonyl group, whereas 

compound n22 can obviously be fluorine-18 labelled. Other possible 

electron-withdrawing substituents in position 4´, probably resulting in 

highly selective SERT ligands, are a methylamino-carbonyl group (n25, 

n26), a methylsulfoxide group (n23, n24), a methylamino-sulfonyl 

group (n19, n20), a fluoroethyl-thiocarbonyl group (n28), a fluoroethyl-

oxythiocarbonyl group (n29), a fluoroethyl-sulfanylcarbonyl group 

(n30), and a cyanato group (n8). These groups were suggested as a 
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result of an Optimize QSAR run. Only moderately selective substances 

seem to result from a thiocyanato group (n9), a methylsulfanyl group 

(n5) or a trifluoromethylsulfanyl group (n6) in position 4´. A nitroethenyl 

group in position 4´ (n14) also does not seem to be favourable, 

although it is suggested to be bioisosteric to halogens or the 

trifluoromethyl group [112]. The idea of placing an additional electron 

withdrawing group in position 2´ resulted in the suggestion of 

compounds n15 – n17, all possessing an ester function in position 2´. 

These compounds are predicted as being highly selective for the 

SERT. Considering known SARs, these suggestions seem reasonable, 

which is confirmed by Emond et al. [25] stating that ester functions are 

generally tolerated in position 2´. Whereas compound n15 can only be 

carbon-11 labelled, fluorine-18 labelling seems possible for compounds 

n16 and n17 at either the fluoroethyl group in position 4´, or the 

fluoromethyl-oxycarbonly group in position 2´. Substitution of position 

2´ with a fluoromethyl-carbonyl group resulted in compound n18 which 

is predicted to be a particularly selective high affinity SERT ligand as 

can be concluded from the estimated Ki-values of 0.46 nM (CoMFA) 

and 0.68 nM (CoMSIA) for the SERT, and 6607 nM (CoMFA) and 4074 

nM (CoMSIA) for the NET. Moreover, fluorine-18 labelling seems 

possible. Another idea was to link position 4´ and 5´ with a 

methylenedioxy group (n43 and n44) in analogy to the SSRI 

paroxetine, or with a furano ring (n45 – n48). Compounds n44, n46 

and n48, possessing a fluoromethyl group in position 2´, are predicted 

as being as selective as their respective amino analogues n43, n45 

and n47. Substitution of position 2´ with a formyl group (aldehyde) (n31 

and n36), and their corresponding oximes (n32 and n37), imines (n33 

and n38), and methylimines (n34 and n39), was a result of using the 

Optimize QSAR module. To provide a possibility for fluorine-18 

labelling, position 4´ was substituted with either a fluoroethyl group, 
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which in the case of the aldehyde (n31) and the imine (n33) still seems 

to result in comparatively SERT selective substances, or with a 

fluoroethyl-oxycarbonly group, which in all cases seems to result in 

highly SERT selective compounds. This series of compounds also 

appears to be quite convenient for synthesis planning as the oxime, the 

imine and the methylimine can easily be prepared from the aldehyde. 

Substitution of position 2´ with a benzoyl rest (n35 and n40), which was 

also found as a result of an Optimize QSAR run, seems arguable in 

some ways. Although it was found by Choi et al. [100] that sometimes 

quite large substituents are tolerated in position 2´, as for instance a 

fluorophenyl-carbonylamino group, such sterically demanding 

substituents are probably too lipophilic to finally display favourable PET 

characteristics. Another suggestion derived from an Optimize QSAR 

run is the substitution of position 4´ with a phenyl rest as seen in 

compound n41 and n42. On the one hand, Emond et al. [25] concluded 

that sterically demanding groups in position 4´ have got a detrimental 

effect on binding affinity at the SERT, but on the other hand, such 

groups at ring B are considered favourable for high SERT affinity and 

high SERT selectivity by the CoMFA and CoMSIA models. The phenyl 

ring in compound n42 is further substituted by a fluoromethyl group 

which could possibly be fluorine-18 labelled. 

Starting from the finding of Zhuang et al. [101] that ODAM is binding 

with high affinity at the SERT, a series of additional structures were 

suggested in which the sulphur bridge was replaced with bioisosteric 

groups or atoms. Classical bioisosteres of divalent sulphur (-S-) are a 

methylene group (-CH2-), divalent oxygen (-O-), and amine functions  

(-NH- or -NR-) [108, 112]. Less typical, but also known as bioisosteric 

to divalent sulphur, are a cyanamide (-NCN-) [108, 111, 112, 115] and 

an ethene group (-CH=CH-) [108, 111, 112]. Binding affinity at the 

SERT is predicted to move towards the sub-nanomolar range for the 
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DASB analogues n77 and n81 in which the sulphur bridge was 

substituted by either an amine function or a methylene bridge. Binding 

affinity at the NET seems to increase only slightly and is still in the 

same order of magnitude as for DASB. Thus, selective SERT ligands 

can probably be obtained by replacing the sulphur bridge with a 

methylene bridge or an amine function. DASB analogue n73, in which 

the sulphur bridge is exchanged by an oxygen bridge, seems to show 

similar binding characteristics as DASB itself. This is in close 

agreement with the suggestion of Burger [108] that it is often the steric 

rather than the electronic properties of the oxygen or sulphur bridge 

that are the determinants of pharmacological activity. The replacement 

of the sulphur atom with a (Z)-configurated carbon-carbon double bond 

results in compound n85, which still seems to show affinity at the 

SERT in the same order of magnitude as DASB itself, but is predicted 

to be markedly less SERT selective. The cyanamide n93 is believed to 

be highly SERT selective with predicted Ki-values at the SERT of 1.00 

nM (CoMFA) and 1.44 nM (CoMSIA), and at the NET of 7079 nM 

(CoMFA) and 10 715 nM (CoMSIA). These values strongly qualify this 

compound for inclusion as a possible PET ligand. Moreover, carbon-11 

labelling seems possible at the cyanamide group as has been reported 

for diphenyl[11C]cyanamide [116]. Another particularly interesting 

structure for possible application as a PET tracer is compound n97. 

The amine function bridging the two phenyl rings has been further 

substituted with a fluoroethyl group which could possibly be fluorine-18 

labelled. Just as its ethyl, methyl and fluoromethyl analogues (n96, n94 

and n95), compound n97 is predicted to be highly SERT selective. The 

benzophenone derivative n89 is also predicted to be a highly SERT 

selective substance with remarkably low affinity at the NET and so are 

its fluoroethyl-oxycarbonyl analogue n91 and its fluoroethyl-carbonyl 

analogue n92. However, binding affinity at the SERT also seems to be 
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lower than for the respective sulphur bridged analogues. Surely, any 

modifications at the 2´ and 4´ position suggested earlier can be also be 

transferred to the DASB analogues in which the sulphur bridge is 

replaced by other bioisosteric atoms or groups. This can be interesting 

for synthesis planning. 

 



 

 



 

 

5   Conclusion 

Structure-activity relationships of SERT ligands were quantitatively 

investigated at both the SERT and the NET by applying 3D QSAR 

techniques. After carefully aligning the model compounds from the 

structurally heterogeneous data set, statistically significant CoMFA and 

CoMSIA models were obtained. Structural requirements for SERT 

selectivity were elucidated. An electron-deficient primary aromatic 

moiety with an electronegative substituent, and the presence of 

another sterically demanding moiety as for instance a secondary 

aromatic ring are necessary selectivity criteria. The 3D QSAR models 

provide a rational basis for the development and optimisation of 

potential new PET ligands displaying SERT selectivity. Highly 

comparable results were obtained from the CoMFA and CoMSIA 

models, indicating that both field types are equally well suited if 

discontinuous and predominating electrostatic field variables are 

avoided. The latter was ensured by disregarding the protonation state, 

and by never dropping electrostatics at sterically unfavourable points. 

The results of this methodological comparison may be generalised to a 

certain extent. 

In recent PET literature, diphenyl sulphides such as [11C]DASB are 

described to be promising PET ligands for the SERT. However, as yet, 

no optimal PET ligand had been found among them. The diphenyl 

sulphide scaffold seems suitable for fine tuning. Many existing diphenyl 

sulphides were correctly predicted by both the CoMFA and the 

CoMSIA models. Therefore their N,N-dimethyl-2-phenylsulfanyl-

benzylamine scaffold was used in the present work as lead structure. A 

series of 100 potential new and selective PET radiotracers for the 

SERT were designed by modifying this N,N-dimethyl-2-phenylsulfanyl-
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benzylamine scaffold. Many of the newly designed compounds 

possessing a fluoroethyl-oxycarbonyl group in position 4´ are predicted 

to be selective high affinity ligands at the SERT and are of particular 

interest for possible fluorine-18 labelling. The same holds true for 

compounds possessing a fluoroethyl-carbonly group in position 4´. 

Fluorine-18 labelling seems also possible for substances possessing a 

fluoroethyl group in position 4´, combined with an electron withdrawing 

group in position 2´ as it is the case for the aldehyde n31 and its 

corresponding oxime n32, imine n33 and methylimine n34. The oxim, 

the imin, and the methylimin should be easily accessible from the 

aldehyd. Compound n18, possessing a flouromethyl-carbonyl group in 

position 2´, provides another new possibility for fluorine-18 labelling. 

Compound n93 is predicted as highly SERT selective and the 

cyanamide substructure may be an alternative for carbon-11 labelling. 

Compound n97, possessing a tertiary fluoroethyl amine substructure, 

provides another new option for fluorine-18 labelling. 

Although most compounds are predicted as being SERT selective it 

has to be acknowledged that only data on SERT and NET affinity had 

been available when generating the models, whereas data on DAT 

affinity had been lacking. 

Future studies might include synthesis and biological testing of the 

compounds to verify the predictions. Combinatorial chemistry seems 

suitable as all new structures possess similar scaffolds. Moreover, the 

3D QSAR models might serve as queries for 3D database searching in 

order to find new leads. Another idea to continue the ligand based 3D 

QSAR studies is pseudoreceptor modelling. No 3D structure of the 

target site is required. Instead, a receptor model is constructed from 

single isolated amino acids [49, 117]. The CoMFA and CoMSIA fields 

can be of valuable help when choosing the amino acids. With the 

developing practice of NMR spectroscopy and X-ray crystallography, 
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the 3D structure of the SERT might be available soon. This will provide 

new options for molecular modelling. The application of receptor based 

techniques including docking studies and de-novo design will be 

possible. 

The present work presents a fairly unique combination of PET ligand 

design and molecular modelling. Yet the models do not provide any 

information concerning PET kinetics. Screening for suitability of the 

novel compounds as PET ligands is needed. Following this, the 

derivation of models predicting PET kinetics seems conceivable. First 

approaches in this direction have been made by Abrunhosa et al. [118, 

119]. A model has been developed correlating the in vivo behaviour of 

a series of PET ligands with their calculated physico-chemical 

characteristics [118]. Further optimisation of PET ligands for the SERT 

can possibly be achieved by considering kinetic aspects during 

molecular modelling. As kinetic shortcomings are the main reason for 

PET ligand failing, this will dramatically facilitate PET ligand 

development. 
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