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Zusammenfassung

In der vorliegenden Arbeit untersuchen wir Yang-Mills-Theorien in der Weyleichung mit Hilfe
des Schrödingerbildes. Die Motivation für diese Untersuchung speist sich hauptsächlich aus
zwei einander ergänzenden Quellen: einerseits ist die Entwicklung von Techniken jenseits der
Störungstheorie in Yang-Mills-Theorien sehr wichtig. Andererseits hat das Schrödingerbild seine
Nützlichkeit in kinematischen und topologischen Betrachtungen unter Beweis gestellt, dyna-
mische Rechnungen wurden in diesem Zugang jedoch bisher - zumindest im Fall der Yang-Mills-
Theorien - kaum versucht. Daher erscheint die Fragestellung lohnend, ob Methoden aus der
Vielteilchenphysik, die sich recht einfach innerhalb des Schrödingerbildes formulieren lassen, auf
Yang-Mills-Theorien übertragen werden können. Dabei muss berücksichtigt werden, daß Yang-
Mills-Theorien Systeme mit Nebenbedingungen darstellen.
Nach einer kurzen Einführung stellen wir die Yang-Mills-Theorie und ihre kanonische Quan-
tisierung in Weyleichung in knapper Form vor. Wir betrachten dann die verschiedenen Techniken,
die im Rest dieser Arbeit Verwendung finden, nämlich das Schrödingerbild, das zeitunabhängige
Variationsprinzip von Rayleigh und Ritz und das zeitabhängige Variationsprinzip von Dirac.
Im letzten Abschnitt des ersten Kapitels stellen wir einige Methoden vor, die in der Literatur
entwickelt wurden, um die in der Weyleichung auftretende Nebenbedingung, das sogenannte
Gaußgesetz, zu behandeln.
Das zweite Kapitel ist dem Projektor auf den physikalischen Unterraum der eichinvarianten
Zustände gewidmet. Wir beginnen das Kapitel mit der Herleitung eines, für beliebige ex-
terne Ladungen gültigen, kompakten Ausdrucks für den Projektor. Da die exakte Auswer-
tung des Projektors in der Feldtheorie unmöglich ist, stellen wir zwei in der Literatur betrach-
tete Näherungsverfahren vor: entweder behandelt man den Projektor als effektives σ-Modell,
was mehr dem Geiste einer Variationsrechnung entspräche, oder man versucht eine systema-
tische störungstheoretische Entwicklung, die auf der Feynmanschen Darstellung der Übergangs-
amplitude beruht. Wir wenden uns dann einer mean-field (Molekularfeld-) Behandlung mit
Hilfe Gaußscher Wellenfunktionale zu. In einem ersten Schritt vernachlässigen wir den Ein-
fluss des Projektors völlig. In einem nächsten Schritt betrachten wir, wie dem Gaußgesetz
störungstheoretisch durch Modifikationen des Gaußschen Wellenfunktionals Genüge getan wer-
den kann, und zeigen die Grenzen dieses Zugangs auf. Dann wechseln wir den Standpunkt
und betrachten, wie man die Zeitabhängigkeit eines Zustandes - zur Verwendung in Diracs
zeitabhängigem Variationsprinzip - mittels seiner Deformation, also seiner Eichvarianz, model-
lieren kann. Das führt zum cranking-Modell, das in der Kernphysik wohlbekannt ist. Es stellt
sich allerdings heraus, daß die Ankopplung der externen Ladungen in diesem Zugang, obwohl
auf klassischem Niveau noch richtig, auf Ein-Schleifen-Niveau falsch ist.
Das letzte Näherungsschema, das wir in diesem Kapitel betrachten, ist ebenfalls der Kernphysik
entlehnt. Es handelt sich um die sog. Kamlah-Entwicklung. Dort betrachtet man die projizierte
Energie, wie man sie im Rahmen einer Rayleigh-Ritz-Rechnung benötigt, und entwickelt den
Hamiltonoperator in Potenzen derjenigen Symmetriegeneratoren, die den Projektor aufbauen.
In Verbindung mit Störungstheorie werden die Erwartungen an ein projiziertes Energiefunk-
tional, die auf den Überlegungen über die störungstheoretische Einhaltung des Gaußgesetzes
mittels Modifikationen des Wellenfunktionals gründen, erfüllt. Im letzten Abschnitt dieses Kapi-
tels illustrieren wir den Zugang der mean-field-Behandlung durch eine Berechnung der Energie
des Savvidyvakuums, wobei wir auf wohlbekannte Ergebnisse treffen.
Im dritten Kapitel betrachten wir die verallgemeinerte Random Phase Approximation (gRPA).
Wir beginnen mit ihrer Formulierung mittels des zeitabhängigen Variationsprinzips, wie sie in



der Feldtheorie wohlbekannt ist, und wenden uns dann dem Operatorzugang, welcher der in der
Kernphysik üblichere Zugang ist, zu. Wir übertragen letzteren auf den Fall von Bosesystemen in
Gegenwart von Kondensaten, und beweisen, daß unter bestimmten Umständen beide Zugänge
dasselbe Spektrum ergeben. Der wesentliche Vorteil des Operatorzugangs besteht darin, daß
die Symmetrien der vollen Theorie leichter in die gRPA-Behandlung übersetzt werden können,
und daß man Korrekturen zur Energie in mean-field-Näherung, die durch den Erwartungswert
des Hamiltonoperators im mean-field-Grundzustand gegeben ist, finden kann, falls der mean-
field-Grundzustand deformiert ist. Wir berechnen diese Energiekorrekturen in Störungstheorie
in führender Ordnung, und finden, daß sie dieselbe Struktur haben wie die Energiekorrekturen
in der Kamlahentwicklung. Der wesentliche Unterschied zur Kamlahentwicklung besteht darin,
daß die Korrekturen im Rahmen der gRPA erst berechnet werden, nachdem die Parameter des
mean-field-Grundzustandes bestimmt sind, diese also nicht mehr durch die Korrektur beeinflusst
werden.



Abstract

In this thesis we study Yang-Mills theories in the Weyl gauge employing the Schrödinger picture.
The main motivation for this study is drawn from two complementing sources: on the one hand,
non-perturbative techniques as such are very much sought after in Yang-Mills theories. On the
other hand, the Schrödinger picture has proven to be useful in topological and kinematic studies,
but dynamical calculations - at least in the case of Yang-Mills theories - have not been carried
out very much in this framework. Thus it seems worthwhile to investigate whether techniques
from many-body physics that can be formulated quite easily within the Schrödinger picture can
be transcribed to Yang-Mills theory with its special difficulties of being a constrained system.
After a short introduction, we give a succinct account of Yang-Mills theory and its canonical
quantization in the Weyl gauge. We then consider briefly the techniques that find their appli-
cation in the remainder of this thesis, namely the Schrödinger picture, the time-independent
variational principle of Rayleigh and Ritz and the time-dependent variational principle of Dirac.
In the last section of the first chapter we discuss the approaches that have been followed in the
literature to overcome the constraint innate in the Weyl gauge treatment of Yang-Mills theory,
the so-called Gauss law constraint.
The second chapter is devoted to the projector onto the physical subspace of gauge invariant
states. We begin the chapter with the derivation of a compact expression for the projector that
is valid for arbitrary external charges. Since in field theory it is impossible to treat the projector
exactly, we then present two possibilities of evaluating the projector approximately that have
been pursued in the literature: either one can consider the projector as defining an effective
σ model, which is more in the spirit of a variational calculation, or one can try a systematic
perturbative evaluation based on the Feynman propagation kernel. We then turn to a mean-field
treatment based on Gaussian wave functionals. In a first step, we ignore the projector completely.
As a next step, we study how the Gauss law constraint can be implemented perturbatively by
modifications of the Gaussian wave functional and show the limitations of this approach. Then
we change the point of view and consider how one can model the time-dependence of a wave
functional (for the usage in Dirac’s variational principle) based on its ’deformation’, i.e. gauge-
noninvariance. This leads to the cranking model well known from nuclear physics. It turns out,
however, that in this framework the coupling of external charges, although correct on a classical
level, is incorrect on a one-loop level. The last approximation scheme we consider in this chap-
ter, also borrowed from nuclear physics, is the so-called Kamlah expansion. There one considers
the projected energy functional as needed for a Rayleigh-Ritz type calculation, and expands the
Hamiltonian in powers of the symmetry generators that build up the projector. When combined
with perturbation theory, the Kamlah expansion reproduces nicely what is expected of the pro-
jected energy functional from the section on perturbative modifications of the wave functional.
In the last section of this chapter we illustrate the mean-field approach by a computation of the
energy of the Savvidy vacuum where well-known results are reproduced.
In the third chapter we study the generalized Random Phase Approximation (gRPA). We start
with the formulation based on the time-dependent variational principle that is known in field
theory, but then turn to the operator approach that is more common in nuclear physics. We
adapt the latter to the case of bosonic systems in the presence of condensates, and prove that un-
der certain circumstances the two formulations give an identical spectrum. The main advantage
of the operator approach lies in the fact that the symmetries of the full theory are more easily
translated to the gRPA treatment, and that one can determine the corrections to the mean-
field energy, i.e. the expectation value of the Hamiltonian in the mean-field ground state, if the



mean-field ground state is deformed. We evaluate these corrections in leading order perturbation
theory and find them to be of identical structure as the corrections of the Kamlah expansion.
The main difference to the Kamlah expansion is that these corrections are subtracted after the
parameters of the mean-field ground state are determined, so the latter are not influenced by the
corrections.
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Chapter 1

Introduction

Detection is, or ought to be, an exact science and
should be treated in the same cold and unemotional
manner. You have attempted to tinge it with ro-
manticism, which produces much the same effect as
if you worked a love-story or an elopement into the
fifth proposition of Euclid.

Sherlock Holmes, The Sign of the Four

1.1 Introductory Remarks

Physics is the science that deals with the structure of matter, matter’s constituents and the
constituents’ interactions. During the last centuries, physicists have been very successful at
discovering different layers of matter’s structure, from molecules over atoms to nuclei, nucleons,
and hadrons in general, to the (up to now) last layer of quarks, leptons and gauge bosons.
A very important step leading to the model of this presently last layer was the discovery of the
gauge principle1. Nowadays, the theories that encompass what is called the Standard Model of
particle physics, i.e. the Glashow-Weinberg-Salam theory of the electroweak interaction together
with Quantum Chromodynamics (QCD), the theory of the strong interaction, are based on this
principle. However, for a scientific endeavour to be meaningful, it is not enough to formulate
an aesthetically pleasing theory, one also has to be capable of computing its consequences, and
compare these consequences to experimental observations. This has been done for the electroweak
theory, and for QCD in a certain kinematical regime where perturbation theory is applicable. In
these cases of high energy experiments, satisfactory agreement between theoretical calculations
and experimental observations has been reached. For the case of QCD, however, one has to
admit that the most successful agreements between theory and experiment are usually obtained
when the theoretical predictions relate different experiments. Absolute predictions from QCD
alone have hardly been possible, since usually some information from the low energy domain is
needed. Especially in this energy regime of interest for hadronic physics, one has been very much
less successful, and well-known experimental quantities like the anomalous magnetic moment of
the proton still await their explanation starting from the QCD Lagrangian. At least w.r.t. what
Feynman called “some of the simplest qualitative features of hadronic behaviour, such as the
confinement of quarks” [Fey81], some progress has been made due to numerical lattice studies,

1For a history of the gauge idea, cf. e.g. [OS00].
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4 1.2. Yang-Mills Theories

but certainly an analytical understanding at least of these ’simplest qualitative features’ would
be desirable. Unfortunately, not many non-perturbative methods are at our disposal. It was
the motivation for the studies presented in this thesis to make some methods that have already
proved their usefulness in many-body physics available for gauge field theories. In the derivation
of the methods, we refrain from including fermions, and restrict ourselves to the gauge field part
of QCD, the so-called SU(3) Yang-Mills theory2.
In the first part of the first chapter, we will introduce the concepts needed in the remainder of
the thesis, like basic notions of Yang-Mills theories, the Schrödinger picture in quantum field
theory, the Hamiltonian approach and different variational principles. In the second part of this
chapter, we introduce some of the approaches that have been followed in the literature up to
now in order to deal with the technical problems imposed by gauge invariance. In chapter 2, we
formulate a projector that projects an arbitrary state onto a state that is invariant under small
gauge transformations, and present several methods of how one can deal with this projector
approximately. Whereas in chapter 2 we are mainly interested in methods for determining the
ground state of Yang-Mills theory, in chapter 3 we turn to excited states. We introduce an
alternative formulation of the Random Phase Approximation, and show how in this formulation
one can deal efficiently with a special class of symmetries to which also the gauge symmetry
belongs. We conclude this thesis with a critical evaluation of the methods presented.

1.2 Yang-Mills Theories

In this section we introduce some basic concepts and notations concerning Yang-Mills
theories for later use.

1.2.1 Generalities

As an introduction, and in order to fix the notation, we want to give a short overview over some
basic concepts of Yang-Mills theories and their canonical quantization. The material is fairly
standard and can be found in modern textbooks on quantum field theory, e.g. [IZ80], [Pok87].
A useful reference is also [Jac80].
Yang-Mills theories [YM54] were introduced as a non-Abelian generalization of the (Abelian)
gauge theory of electrodynamics. A prominent example of a Yang-Mills theory, namely SU(3)
Yang-Mills theory, is given by that part of QCD that is independent of quark degrees of freedom.
Yet the very structure of Yang-Mills theories can be simply motivated using the (omitted) matter
fields. The basic idea behind a gauge theory is the following: we start with a matter field3 ψ(x)
that has an internal degree of freedom, in the following to be called colour:

ψa(x). (1.1)

The next step consists of introducing a symmetry operation, i.e. a transformation of the ψa that
leaves the action invariant. In the case of an ordinary global symmetry4, ψa(x) transforms under
a representation of the corresponding Lie group5:

ψb(x) = (exp (iΘiλi))baψa(x) = U baψa(x), (1.2)

2In fact, for most of the time we will consider SU(N) Yang-Mills theory with N an arbitrary integer.
3In the following discussion, we will assume that it is a spinor field, although in general this doesn’t have to be

the case.
4An example is the isospin symmetry.
5In the case of isospin: SU(2).
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where λi denote the generators of the Lie group in the appropriate representation and Θi are
the parameters of the transformation which are space-time constants in the case of a global
symmetry. In the case of a gauge symmetry, however, the Θi are functions of space-time

Θi = Θi(x). (1.3)

The consequences of this space-time dependence of Θi can be read off a gauge transformation of
the kinetic term for the matter field6:

Lkin = iψ̄∂/ψ
g.t.→ iψ̄U †(x)∂/U(x)ψ = iψ̄∂/ψ+iψ̄U †(x)(∂/U(x))ψ = iψ̄∂/ψ−iψ̄(∂/U †(x))U(x)ψ. (1.4)

In order to render the kinetic part of the matter field Lagrangian gauge invariant, one has to
introduce a Lie-algebra valued auxiliary vector field Aµ = Aaµλ

a which transforms inhomoge-
neously under gauge transformations such as to compensate the inhomogeneous term generated
by the transformation of the derivative:

Aµ
g.t.→ (Aµ)

U = UAµU
† + iU∂µU

†. (1.5)

If we take Θ to be infinitesimal, this transformation can be written as:

(Aaµ)
U = Aaµ + (δac∂µ + fabcAbµ)Θ

c. (1.6)

One combines ∂µ and Aµ into an object that transforms homogeneously under gauge transfor-
mations, and calls this object covariant derivative7 :

Dµ = ∂µ1c − iAµ
g.t.→ UDµU

†. (1.7)

1c denotes the unit matrix that has the same dimensions as the generators λ. Usually the matter
field is defined in one of the fundamental representations, and thus Dµ denotes the covariant
derivative where the generators λa, multiplying Aaµ, are defined in the corresponding fundamental
representation of the algebra. Later on, we will need quite often the covariant derivative in the
adjoint representation8, so we will use a special symbol for it, namely D̂. In component notation,
it reads

D̂ab
µ = ∂µδ

ab + facbAcµ, (1.8)

where fabc are the structure constants of the group that appear in the commutation relations

[λa, λb] = ifabcλc. (1.9)

The first example, where one can use the covariant derivative in the adjoint representation is an
infinitesimal gauge transformation of A, eq. (1.6). This can simply be written as

(Aaµ)
U = Aaµ + D̂ac

µ Θc. (1.10)

6This is the only term of the action of the matter field that contains derivatives and will thus be different for
local and global symmetries

7The covariant derivative, as well as all of Yang-Mills theory, has a deep geometric interpretation, cf. e.g.
[BM94], that will not be needed in the remainder of this thesis. Therefore nothing further will be said about it.

8Some group theoretical notions and notations will be given in appendix A.



6 1.2. Yang-Mills Theories

Now one elevates the auxiliary vector field Aµ to a dynamical field by adding a kinetic term to the
action. The kinetic term has to be gauge invariant and contain terms quadratic in derivatives.
It can be concisely written, if one introduces the Lie-algebra valued field strength tensor

Fµν = F aµνλ
a = ∂µAν − ∂νAµ − i[Aµ, Aν ] = i[Dµ,Dν ] (1.11)

as

Lkin,A = − 1

4g2
F aµνF

aµν = − 1

2g2
tr(FµνF

µν). (1.12)

The field strength tensor transforms homogeneously under gauge transformations

Fµν → UFµνU
† (1.13)

and thus Lkin,A is gauge invariant. In Yang-Mills theories, we only keep this part of the action
and dispose of all other parts of the action that contain matter fields. Thus, in the following we
will study the system with the action

SYM = − 1

4g2

∫
d4xF aµνF

aµν . (1.14)

1.2.2 Classical Yang-Mills Theory

First we can study some classical properties of this action. The classical equations of motion
follow as usual from the stationarity of the action:

δSYM = 0 → [Dµ, F
µν ] = 0. (1.15)

In components this can be written as

D̂ab
µ F

b µν = 0. (1.16)

The next object to consider is the energy-momentum tensor that can be given in the form

Θµν = F a µρF a νρ − 1

4
gµνF a ρσF aρσ. (1.17)

Dilatation invariance of the classical action, i.e. the invariance under rescaling of x and A as

x→ λx, Aµ → 1

λ
Aµ (1.18)

implies that its trace vanishes

Θµ
µ = 0. (1.19)

Invariance under space-time translations implies the conservation of Θµν :

∂µΘ
µν = 0. (1.20)
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1.2.3 Three Dimensional Notation

For the physical interpretation and the ensuing formalism it will be useful to convert the above
equations into a three-dimensional notation. In the remainder of this thesis, three-dimensional
vectors will be denoted either by being type-set in boldface9, e.g. x, or by the use of special
symbols, especially

∇i =
∂

∂xi
. (1.21)

Thus
∂µ = (∂t,−∇) ∂µ = (∂t,∇)
Aµ = (A0,A) Aµ = (A0,−A).

Scalar products between three-dimensional vectors will be denoted by a ’.’, i.e.

a.b = aibi. (1.22)

We also introduce electric and magnetic fields as components of the field strength tensor as

Ea
i = F a i0 = −∂tAa

i − D̂ab
i A

b
0

Ba
i = −1

2εijkF
a jk = (∇×A)ai − 1

2f
abc(Ab ×Ac)i.

Using these fields, the time-component of eq.(1.20) can be written in the form of a generalized
Poynting theorem

∂tH(x, t) +∇iSi(x, t) = 0 (1.23)

with

H(x, t) =
1

2g2

(
Ea
i (x, t)E

a
i (x, t) +Ba

i (x, t)B
a
i (x, t)

)
= Θ00(x, t) (1.24)

Si(x, t) =
1

g2
εijk

(
Ea
j (x, t)B

a
k(x, t)

)
= Θ0i(x, t). (1.25)

Eq. (1.24) shows how the energy of the Yang-Mills system can be written in terms of the electric
and magnetic fields.
The introduction of the electrical fields is also very useful when exploring the canonical structure
of the Yang-Mills system. We compute the canonical momenta corresponding to A0,Ai:

Πa0(x, t) =
∂L

∂(∂tA
a
0(x, t))

= 0 (1.26)

Πa
i (x, t) =

∂L
∂(∂tAa

i (x, t))
=

1

g2
F a 0i(x, t) = − 1

g2
Ea
i (x, t). (1.27)

From eq. (1.26) we infer that the system will be subject to a constraint. More about this will
be said later on. Using eq. (1.27) we can rewrite the Yang-Mills Lagrangian into a form that is
useful for obtaining the Hamiltonian:

L = (∂tA
a
i )(−

1

g2
Ea
i ) +Ab0(δ

ab∇i − f bcaAc
i )(

1

g2
Ea
i )−

1

2g2
(Ea

iE
a
i +Ba

iB
a
i ) (1.28)

= (∂tA
a
i )Π

a
i −Ab0(δ

ab∇i − f bcaAc
i)Π

a
i −H (1.29)

9The same notation will also be used, if we want to consider an arbitrary component of a vector, e.g. xi will
denote the ith component of vector x. However, if we want to consider a special component, e.g. in the section
on the axial gauge the third component of several vectors will play a distinguished role, this component will not
be type-set in boldface, e.g. x3. This is necessary, since otherwise one could not distinguish between the third
component and a labelling of different vectors x1,x2, etc.
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with H as in eq.(1.24). We can see clearly that in a Hamiltonian formalism, A0 has the special
role of a non-dynamical variable, since its conjugate momentum vanishes. A0 merely serves as a
Lagrange multiplier for Gauss’ law

(δab∇i − f bcaAc
i )Π

a
i = 0. (1.30)

Its time-evolution is not fixed by the equations of motion. It is easy to show that in the absence
of boundary conditions in time direction10 one can always perform a gauge transformation, s.t.

A0 = 0. (1.31)

After one has used part of the gauge freedom to achieve A0 = 0 no further time-dependent gauge
transformations are allowed, since they would reintroduce a non-vanishing A0. One has thus
fixed part of the gauge freedom by adopting the so-called Weyl gauge. This is a gauge well-suited
to the Hamiltonian approach, where time has a distinct status anyway11. One has left only the
canonical coordinates A and the conjugate momenta Π, but one has lost one of the equations
of motion, namely the Gauss law equation. Thus, the system described by the action eq. (1.14)
can equivalently be described by the Hamilton density H, the coordinates A, the momenta Π
obeying the Poisson brackets

{Aa
i (x, t),Π

b
j(y, t)} = δijδ

abδxy {Aa
i (x, t),A

b
j(y, t)} = 0 {Πa

i (x, t),Π
b
j(y, t)} = 0

(1.32)
and the constraint (δab∇i − f bcaAc

i )Π
a
i = 0.

1.3 Canonical Quantization

1.3.1 Constraints and Quantization

In this section we discuss very briefly constrained systems and their quantization.

The approach given above can also be phrased in more usual terminology: the fact that

Π0 = 0 (1.33)

is usually [Dir50], [Dir58], [Wei95] called a primary constraint, since it immediately follows from
the structure of the Lagrangian. The Gauss law equation is called a secondary constraint, since it
follows from the requirement of compatibility between the primary constraint and time evolution:

0 = ∂tΠ0 = ∂t
∂L

∂(∂tA0)

Euler-
Lagrange-

eq.

=
∂L
∂A0

= −(δab∇i − facbAc
i )Π

b
i . (1.34)

In the following, we will use the notation

Γa(x) = (δab∇i − facbAc
i (x))Π

b
i (x). (1.35)

10i.e., this argument does not work if one considers e.g. a system at finite temperature in the so-called imaginary-
time formalism, cf. e.g. [Kap89].

11A useful reference for properties of non-covariant gauges is [Lei87], cf. also [Lei94].
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Alternatively, one can group the constraints into first class and second class constraints. A
constraint is first class, if its Poisson bracket with all other constraints vanishes on the con-
straint hypersurface. The remaining constraints are called second class constraints. Since Γa is
independent of A0, obviously

{Γa,Π0} = 0. (1.36)

It is also trivial that

{Πa0,Πb0} = 0. (1.37)

The only nontrivial calculation is12

{Γa(x),Γb(y)} = −iδxyfabcΓc(x). (1.38)

But on the constraint hypersurface this vanishes, too. Thus the constraints are all first class.
Whereas a problem that contains second class constraints can be faced by the formalism of Dirac
brackets, one useful approach to a problem with first class constraints is to choose a gauge which
removes the ambiguity in time evolution that is due to the gauge freedom and manifests itself
in the presence of the first class constraints [Wei95]. As was indicated above, we choose in this
thesis the Weyl gauge

A0 = 0. (1.39)

We can now proceed straightforwardly with canonical quantization [CL80]. The classical fields
A,Π become operators Â, Π̂ that act on a Hilbert space, and whereas the classical fields A,Π
satisfied a Poisson algebra, the field operators satisfy certain equal time commutation relations

[Âa
i (x, t), Â

b
j(y, t)] = 0, [Π̂a

i (x, t), Π̂
b
j(y, t)] = 0, [Âa

i (x, t), Π̂
b
j(y, t)] = iδijδ

abδxy.
(1.40)

The constraint Γa = 0 cannot be imposed as an operator identity since this would be incompatible
with the commutation relations13. The solution of this problem is well known [Wey50]: one
simply uses the constraint to select a part of the Hilbert space as the physical space Hphys, with
the states satisfying

Γ̂a|ψ〉 = 0 ∀ |ψ〉 ∈ Hphys. (1.41)

This constraint is the main source of difficulties14 in drawing consequences from Yang-Mills
theories. Some of the approaches that have been invented to circumvent the Gauss law constraint
will be discussed in sec. 1.7.

12The ’-’ sign on the RHS is noteworthy and will be discussed a bit further in footnote 15.
13By using the canonical commutation relations, we can compute the commutator

R
d3xΘb(x)[Γb(x),Ac

i (y)] =

iD̂cb
i (y)Θb(y). However, if we set as an operator identity Γ = 0, the commutator would vanish, hence we would

have a contradiction between the canonical commutation relations and Gauss’ law. This is a phenomenon not
restricted to field theory. Let’s also consider a simple quantum mechanical example [Tre85]. The Hamiltonian of
two particles (moving only in one dimension) of identical mass, that interact via a potential that depends only
on the distance between the particles, reads H = 1

2m
(p21 + p22) + V (|x1 − x2|). Obviously, the total momentum

P = p1 + p2 is conserved. Assume that we want to consider the system to be in a state of vanishing total
momentum. This cannot be implemented by the operator identity P = 0, since this would be inconsistent with

the canonical commutation relations: i = [x1, p1] = [x1, P − p2]
P=0
= = −[x1, p2] = 0.

14in Weyl gauge, at least
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1.3.2 Some Properties of Γ̂a

Up to now we have assumed that time evolution and the secondary constraint Γa = 0 are
compatible, i.e. no further constraints are generated by requiring ∂tΓ

a = 0. This is true indeed,
since both in the classical theory

∂tΓ
a = {Γa,H} = 0 (1.42)

and in the quantum theory

∂tΓ̂
a = [Γ̂a, Ĥ] = 0. (1.43)

Thus Γ̂a (in the following to be called the Gauss law operator) generates a symmetry, and it is
easy to see which one:

[

∫
d3xΘa(x)Γ̂a(x), Âb

j(y)] = iD̂ba
j (y)Θa(y). (1.44)

Thus the Gauss law operator is the generator of time-independent gauge transformations15 . A
first hint at this was already given in eq. (1.38) where one could see that the Gauss law operators
satisfy the same commutation relations (up to a sign) as the generators of the Lie algebra eq. (1.9)
that was constitutive for the gauge symmetry in the first place. The part of the gauge group that
can be continuously deformed to unity can be written with the help of the Gauss law operator
as an exponential

G = exp

(
i

∫
d3xΘa(x)Γ̂a(x)

)
(1.45)

and Â and Π̂ have the transformation properties

GÂi(x)G−1 = ÂU
i (x) = U(x)(−iDi)U

†(x) = U(x)(Ai − i∇i)U
†(x) (1.46)

GΠ̂i(x)G−1 = Π̂U
i (x) = U(x)Π̂i(x)U

†(x) (1.47)

with U(x) = exp (iΘa(x)λa), cf. e.g. [Qua99].

1.4 Schrödinger Picture

In this section we introduce the Schrödinger picture, discuss briefly the advantages it
offers, and consider three different examples: the appearance of the Θ angle in (1+1) di-
mensional electrodynamics, the free scalar field in (3+1) dimensions, and electrodynamics
in (3+1) dimensions.

1.4.1 Generalities

The usual approaches to quantum field theory are based on vacuum expectation values of time-
ordered products of field operators, often called Green’s functions or correlation functions,
and their generating functional. From them one tries to extract physical information. The
Schrödinger picture is different16. Here, one is interested directly in the states and their prop-
erties, just as in ordinary quantum mechanics. Instead of abstract state vectors one uses wave

15In fact, the generator of (small) time-independent gauge transformations is −Γ̂a, since only −Γ̂a fulfils the
same Lie algebra eq. (1.9) as the matrix representations λa.

16Useful references on the Schrödinger picture in general are [Jac87], [Jac88], [Jac89], [Yee92], [Hat92]. For
the treatment of fermions in the Schrödinger picture cf. [FJ88], [KW94]. Yang-Mills theories in the Schrödinger
picture are dealt with succinctly in [Jac80].
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functionals that are either a coordinate or momentum representation of the abstract states:

Ψ[A] = 〈A|Ψ〉 or Ψ[Π] = 〈Π|Ψ〉, (1.48)

where |A〉, |Π〉 denote eigenstates of the field operators Â, Π̂ respectively:

Âa
i (x)|A〉 = Aa

i (x)|A〉 , Π̂a
i (x)|Π〉 = Πa

i (x)|Π〉 (1.49)

For definiteness we will use in the following the ’A’ representation. The operators Â are then
realized multiplicatively

Âa
i (x)Ψ[A] = Aa

i (x)Ψ[A], (1.50)

and the momentum operators are given by functional derivatives

Π̂a
i (x)Ψ[A] =

1

i

δ

δAa
i (x)

Ψ[A]. (1.51)

In this way, the commutation relations are automatically satisfied:

[Aa
i (x),

1

i

δ

δAb
j(y)

] = iδabδijδxy, (1.52)

and from now on, no ’ˆ’ will be used anymore to indicate the operator nature of an object. Since
in the Schrödinger picture the operators are time-independent, the relations eqs. (1.50 - 1.52)
are fixed once and for all. The whole time dependence resides in the states which satisfy the
Schrödinger equation:

i∂tΨ[A, t] = H[A,
1

i

δ

δA(x)
]Ψ[A, t] . (1.53)

The inner product between two states is given via a three-dimensional functional integral

〈ψ2|ψ1〉 =
∫

DAψ∗
2 [A]ψ1[A]. (1.54)

The Schrödinger picture has a number of attractive features:

1. The most obvious advantage is the proximity of this formulation to ordinary quantum
mechanics. Quite a number of features follows directly from this: first, one has a clear
probability interpretation of the wave functional. Second, one has gained in quantum me-
chanics a lot of intuition of how wave functions behave. In favourable circumstances one
might be able to transfer some of this intuition (cf. e.g. [Fey81]) to quantum field theory.
A third aspect is that in quantum mechanics, one has invented a number of approximation
schemes, especially variational ones, which can be carried over to field theory.

2. A second main feature is that (at least some of the) topological properties of field theories
can be more easily unravelled in the Schrödinger picture, especially the appearance of
the Θ angle can be interpreted as stemming from the possibility of so-called large gauge
transformations [Tre85].

3. In the Schrödinger picture one can discuss dynamical questions without having to select a
Fock space to work in, i.e. one can discuss dynamics before one has to select a vacuum and
can let the dynamics decide by itself which vacuum it wants to use. Related to this is the
possibility to study quantum field theoretic extensions to Lie algebras without the need of
a specific choice of vacuum [FJ88].
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4. The last point which we want to mention is the study of the time-evolution of quantum
fields that are not in thermal equilibrium. There the Schrödinger equation provides a rather
efficient way of solving problems with initial conditions [ERP88].

1.4.2 First Application: Θ Angle in (1+1) Dimensional Electrodynamics

This example is taken from [Jac89]. It illustrates how one can get easily to the Θ angle in
electrodynamics, and how Gauss’ law may help in kinematical and topological investigations. In
(1+1) dimensions, one does not have a magnetic term and the Hamiltonian simply reads

H =
1

2

∫
dxΠ2

1, (1.55)

where we have used that in (1+1) dimensions Π = Π1. In the following it will be important to
take a compact manifold as space. Gauss’ law reads

d

dx
Π1(x)ψ[A] = 0. (1.56)

This is identical to the requirement

δψ[A]

δA1(x)
is independent of x. (1.57)

From this we conclude17 that ψ[A] = f(
R
x
A1), thus ψ is given by a function of the space integral

of A (since we assume that we are working in a compact space, we could try a Fourier decom-
position of the field, and we would see that

∫
xA1 is just the zero frequency part of the Fourier

decomposition of A1, the so-called zero mode). With this we obtain the stationary Schrödinger
equation for f(

R
x
A1)

Ef(y)|y=R
x A1

= −L
2

d2

dy2
f(y)|y=R

x A1
, (1.58)

where L is the length of the interval we are considering. The energy eigenstates are plane waves

ψ = e(−iE1
R
xA), (1.59)

with energy E = L
2 E2

1 and Π1ψ = −E1ψ. E1 can thus be considered as a background electric field.

The Θ angle appears when we consider gauge transformations, A → A − d
dxΛ. It is important

to note that Λ does not have to fulfil periodic boundary conditions, only exp (i[Λ(L) − Λ(0)])
!
=

1. Thus Λ(L) = Λ(0) + 2πn, n ∈ N is possible where we would call n 6= 0 a ’large’ gauge
transformation. Under such a large gauge transformation, the wave functionals do not stay
invariant (even though they satisfy Gauss’ law) but acquire a phase

ψ → e−in(2πE1)ψ, (1.60)

where in Yang-Mills theory 2πE1 would be called the ’Theta’ angle. A second way the Θ angle can
appear that we want to illustrate here arises through the possibility of adding total derivatives
to the Lagrangian. We start from L = −1

4F
2 = 1

2F
2
01 and add a total spatial and a total time

derivative, s.t. the total Lagrangian - which is still a gauge invariant Lorentz scalar - reads

L = −1

4
F 2 +ΘF01, (1.61)

17In the following, we will use the abbreviation
R
x
A1 =

R
dxA1.
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where Θ is a constant. The expression for the momentum and the Hamiltonian are changed

Π1 = Ȧ1 −Θ+∇1A0 (1.62)

H =
1

2

∫
dx (Π1 +Θ)2 (1.63)

but Gauss’ law not: ∇1Π1|phys〉 = 0. The operator that implements gauge transformations in
the Hilbert space is

G = ei
R
dx (∇iΛ)Π1(x), (1.64)

e.g.
GA1(y)G−1 = A1(y) −∇1Λ(y). (1.65)

The Θ dependence of the Hamiltonian can be removed by performing a unitary transformation,
since

UΠ1(x)U
† = eiΘ

R
dxA1(x)Π1(x)e

−iΘ R
dxA1(x) = Π1(x)−Θ (1.66)

and therefore

UHU † =
1

2

∫
dxΠ2

1(x). (1.67)

However, the Θ dependence does not disappear altogether. Assume that we had states |ψ〉 that
were completely gauge invariant, even under large gauge transformations. If we perform the
unitary transformation U , we have to apply it also to the states. Their transformation behaviour
under gauge transformations has now changed:

GU |ψ〉 = GeiΘ
R
dxA1(x)G−1 G|ψ〉︸︷︷︸

=|ψ〉

= eiΘ
R
dx (A1(x)−∇1Λ)|ψ〉 = e−iΘ

R L
0 dx∇1ΛU |ψ〉

= e−iΘ(Λ(L)−Λ(0))U |ψ〉. (1.68)

If we again require Λ(L)−Λ(0) = 2πn, n ∈ N, we obtain the transformation behaviour as before
in eq. (1.60)

U |ψ〉 g.t.→ e−i2πnΘU |ψ〉, (1.69)

where in Yang-Mills theory 2πΘ would be called the ’Theta’ angle. The last possibility of how the
Θ angle might appear that we want to illustrate here comes about if we reconsider the canonical
quantization. From the commutator

[Π1(x), A1(y)] = −iδxy (1.70)

we have up to now concluded that the momentum operator should realized as a functional
derivative operator

Π1(x) =
1

i

δ

δA1(x)
. (1.71)

However, in (1+1) dimensions, this is not the only possibility [Man85], since the operator

ΠΘ
1 (x) =

1

i

δ

δA1(x)
+ Θ = ΠΘ=0

1 (x) + Θ, (1.72)

where Θ is a constant, has the same commutation relations as Π1(x) and may be used as well.
In Gauss’ law, Θ obviously plays no role since it’s a constant throughout space-time. With this
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generalized momentum operator, we are brought back precisely to the introduction of the Θ term
via the additional term in the action, cf. eq. 1.61, since in the discussion above it was assumed
that Π1 = ΠΘ=0

1 .
It should be noted that this ambiguity in the commutation relations plays a role only in (1+1)
dimensions, since in this case we have the peculiarity that a constant electric background field
is in fact invariant under all permissable Lorentz transformations.

1.4.3 Second Application: the Free Scalar Field

As a second application that is instructive for the latter parts of this thesis we consider the free
scalar field which is described by the Hamiltonian

H =
1

2

∫
d3x

{
π2x + (∇φx)2 +m2φ2x

}
(1.73)

with the commutation relations
[φx, πy] = iδxy. (1.74)

In the ’position representation’ the momentum operator is given by

πx =
1

i

δ

δφx
. (1.75)

Thus the stationary Schrödinger equation takes the form

1

2

∫
d3x

{
− δ2

δφxδφx
+ φx(−∆+m2)φx

}
ψ[φ] = Eψ[φ]. (1.76)

To determine ground- and excited states it is useful to perform a Fourier transformation

πx =

∫
d3p

(2π)3
eip.xπ̃p φx =

∫
d3p

(2π)3
eip.xφ̃p, (1.77)

where we now have the commutation relations [π̃p, φ̃q] = i(2π)3δ(p + q), and therefore π̃p =
(2π)3

i
δ

δφ̃−p
. We then obtain the Hamiltonian

H =
1

2

∫
d3p

(2π)3

{
− δ2

δφ̃pδφ̃−p

+ (p2 +m2)φ̃pφ̃−p

}
. (1.78)

We can now introduce creation/annihilation operators

a†(p) =
1√
2

1

(2π)(3/2)
1

(p2 +m2)1/4

(√
(p2 +m2) φ̃(p)− iπ̃(p)

)
(1.79)

a(p) =
1√
2

1

(2π)(3/2)
1

(p2 +m2)1/4

(√
(p2 +m2) φ̃(p) + iπ̃(p)

)
(1.80)

and write the Hamiltonian in its final form18

H =

∫
d3p

(2π)3

√
(p2 +m2)

(
a†(p)a(p) +

1

2
δ(3)(0)

)
. (1.81)

18The δ function that appears in eq. (1.81) is the volume of space, since δ3(0) =
R
d3x eix.0 =

R
d3x = V .
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We see that the free scalar field is nothing but a collection of infinitely many uncoupled harmonic
oscillators. The ground state is therefore given by a Gaussian functional

ψ0[φ] = N e−
R
d3xφ(x)(−∆+m2)φ(x), (1.82)

where N is a normalization constant. Excitations can be built on top of the ground state
as usual by acting with a creation operator a†(p) upon it. They will have the energy E0 +√
m2 + p2, as can be easily computed. The interesting lesson we can learn here is that the energy

spectrum of the single particle excitations can be read off the covariance19 in the exponent of the
Gaussian. This is something we will meet again when discussing the generalized Random Phase
Approximation (gRPA) in chapter 3.

1.4.4 Third Application: Electrodynamics in (3+1) Dimensions

We will see that electrodynamics, which in the following is to mean the quantized theory of
photons with possibly external, classical charges, is not so very different from the scalar case,
but different enough to make it interesting [Gre79]. We start with a pair of canonically conjugate
coordinates A, and momenta Π = −E, and work in the coordinate representation where we have

Πi = −Ei =
1

i

δ

δAi
. (1.83)

Apart from the simpler definition of the magnetic field20 is the Hamiltonian of electrodynamics
identical to that of Yang-Mills theory

H =
1

2

∫
d3x
{
Πi(x)Πi(x) +Bi(x)Bi(x)

}
. (1.84)

A closer look at the potential part21 shows that it does not depend on the full A field, but only
on its transversal part:

Ai = AL
i +AT

i with ∇.AT = 0 and ∇×AL = 0. (1.85)

Using this we can write the potential part as −AT
i (x)∆AT

i (x). We can also decompose the
kinetic part into a part containing only transversal and longitudinal parts, and we end up with
a Hamiltonian

H =
1

2

∫
d3p

(2π)3

{
− δ2

δAL
i (−p)AL

i (p)
− δ2

δAT
i (−p)AT

i (p)
+ p2AT

i (−p)AT
i (p)

}
, (1.86)

where we use the abbreviation δ/δAT,L
i (p) =

(
PT,L(p)

)
ij
δ/δAj(p) with the longitudinal(L)/

transversal(T) projectors PL,T . We have also performed a Fourier transformation just as before
in the scalar case. The longitudinal and transversal parts look quite different, since for the
former there is no potential term. Up to now, we have not taken into account Gauss’ law:
∇i

δ
δAi

ψ[A] = 0. Using the decomposition of A into AL,AT we can write Gauss’ law in a more
practical way

∇i
δ

δAL
i

ψ[A] = 0. (1.87)

19In a Gaussian functional exp−(φiG
−1
ij φj) (with i,j super-indices) G−1

ij is often called ’covariance’.
20B = ∇×A
21The B2 term is often referred to as potential, whereas Π2 is called kinetic energy. The reason for this is quite

obvious in the canonical formalism.
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In contrast to the discussion of (1+1) dimensional electrodynamics, we don’t want to restrict
ourselves to a compact manifold, but rather define the theory in R3. Then, discarding the zero
mode as usual in this context, we conclude from eq.(1.87) that the wave functional depends on
AT only. In this physical subspace of the Hilbert space, the Hamiltonian simplifies,

H =
1

2

∫
d3p

(2π)3

{
− δ2

δAT
i (−p)AT

i (p)
+ p2AT

i (−p)AT
i (p)

}
. (1.88)

Once again we can introduce creation and annihilation operators, where in addition to the scalar
case we now have two polarization vectors ελ, λ = 1, 2, that are perpendicular to p

a†(p, λ) =
1√
2|p| (ελ)i

(
|p|ÃT

i (p)−
δ

δÃT
i (−p)

)
(1.89)

a(p, λ) =
1√
2|p| (ελ)i

(
|p|ÃT

i (p) +
δ

δÃT
i (−p)

)
. (1.90)

We end up with the Hamiltonian in a familiar form, cf. eq. (1.81)

H =

∫
d3p

(2π)3
|p|
( ∑
λ=1,2

a†(p, λ)a(p, λ) +
1

2
δ(3)(0)

)
. (1.91)

In terms of AT , the ground state wave functional looks very similar to eq. (1.82):

ψ0[A] = N exp

{
−1

2

∫
d3p

(2π)3
|p|AT (−p)AT (p)

}
. (1.92)

An interesting point can be made about the ground state wave functional: it is obviously gauge
invariant, since a gauge transformation in electrodynamics affects only the longitudinal degrees
of freedom22. One can, however, even rewrite the ground state wave functional in terms of gauge
invariant variables, namely the magnetic field [Gre79]:

ψ0[A] = N exp

{
−1

2

∫
d3p

(2π)3
|p|AT (−p)AT (p)

}
(1.93)

= N exp

{
−1

2

∫
d3p

(2π)3
1

|p|
[
p×AT (−p)

]
.
[
p×AT (p)

]}
(1.94)

= N exp

{
−1

2

∫
d3x1d

3x2
Bi(x1)Bi(x2)

|x1 − x2|2
}
. (1.95)

In contrast to Yang-Mills theory, the magnetic field strength is gauge invariant in electrodynam-
ics.

22To make contact with the notation used later on, we write ψ0[A] =
N exp (−AiG

−1
ij Aj); then a gauge transformation Ai → Ai − ∇iφ leads to ψ0[A − ∇φ] =

N exp (−AiG
−1
ij Aj) exp (−Ai(∇jG

−1
ij )φ) exp (−φ(∇iG

−1
ij )Aj) exp (−φ(∇i∇jG

−1
ij )φ). Thus for gauge invari-

ance we require a transverse kernel ∇iG
−1
ij = 0.
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1.5 The Time-Dependent Variational Principle

We outline first the derivation of the time-dependent variational principle (tdvp) a la
Dirac, thereby clearly indicating which quantity is actually minimized. We then will
go on to the usual statement of the principle involving an action and thereby study the
Hamiltonian structure of the time-dependent variational principle in the spirit of Kerman
and Koonin. As a last point we will indicate the connection between the action functional
that is introduced in the tdvp and the usual effective action.

1.5.1 Dirac’s Derivation

The time-dependent variational principle was introduced by Dirac in 1930 [Dir95]. The question
he considered was the following: assume that we have a wave function |ψ1〉 of a certain functional
form that depends on several parameters. How must these parameters evolve with time such that
|ψ1〉 depending on the evolved parameters deviates from the evolved |ψ1〉 using the Schrödinger
equation as little as possible ? In order to address this question, we consider the exact Schrödinger
equation

i∂t|ψ(t)〉 = H|ψ(t)〉. (1.96)

Since |ψ1〉 may vary only through its parameters in time, it will not satisfy the Schrödinger
equation, but this can be remedied by introducing a function |ψ2〉 that measures the deviation
from the exact time evolution:

i∂t|ψ1(t)〉 = H|ψ1(t)〉 + |ψ2(t)〉, (1.97)

which in turn can also be read as a defining equation for |ψ2(t)〉:

|ψ2(t)〉 = (i∂t −H)|ψ1(t)〉. (1.98)

As a next step we integrate eq. (1.97) to first order in ∆t:

i|ψ1(t+∆t)〉 = i|ψ1(t)〉+∆t H|ψ1(t)〉+∆t |ψ2(t)〉. (1.99)

Now consider a variation of |ψ1(t+∆t)〉:

|ψ1(t+∆t)〉 → |ψ1(t+∆t)〉+ |δψ1(t+∆t)〉. (1.100)

This has to be absorbed by adding a variation of |ψ2(t)〉 as well

|ψ2(t)〉 → |ψ2(t)〉+ |δψ2(t)〉 (1.101)

and since we do not vary |ψ1(t)〉 in the above context, we get a relation between |δψ1(t + ∆t)〉
and |δψ2(t)〉:

i|δψ1(t+∆t)〉 = ∆t|δψ2(t)〉. (1.102)

In the following, we will need only an accuracy up to first order in ’variations’. Having in mind a
sort of Taylor expansion, we can replace |δψ1(t+∆t)〉 by23 |δψ1(t)〉 in the formulas needed when
∆t is small. This was assumed anyway, since the integration given in eq. (1.99) is only accurate
to O((∆t)2):

i|δψ1(t)〉 ≈ ∆t|δψ2(t)〉. (1.103)

23Note that |δψ1(t)〉 is not the variation of |ψ1〉 at time t, since this was assumed to be zero.
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Now we come to the quantity that is to be minimized: obviously we want to minimize the
deviation from the exact time-evolution. But this deviation is measured by |ψ2〉. Therefore we
want the norm of |ψ2〉 to be minimal (or at least extremal):

δ(〈ψ2|ψ2〉) = 0 ↔ 〈δψ2|ψ2〉+ 〈ψ2|δψ2〉 = 0 (1.104)

with arbitrary variations |δψ2〉. If we take an arbitrary (but fixed) variation |δψ2〉, i|δψ2〉 is also
a valid variation. From eq. (1.104) we can then conclude

〈δψ2|ψ2〉+ 〈ψ2|δψ2〉 = 0 (1.105)

−i(〈δψ2|ψ2〉 − 〈ψ2|δψ2〉) = 0 (1.106)

implying that
〈δψ2|ψ2〉 = 0. (1.107)

For the norm of |ψ2〉 to be extremal this must be true for all |δψ2〉. Since we want to express
everything in terms of |ψ1〉 (and its variations) we actually have only a restricted range of |δψ2〉
as given by eq. (1.103). If we express in addition |ψ2〉 by its definition eq. (1.98) we obtain as a
condition for the minimization of the norm of the deviation from the exact time evolution

〈δψ1(t)|(i∂t −H)|ψ1(t)〉 = 0. (1.108)

Thus with respect to the possible variations of |ψ1〉 , |ψ2〉 is as small as possible.

1.5.2 Canonical Structure of the Time-Dependent Variational Principle

The formalism is set up a bit differently by Kerman and Koonin [KK76] and they seem to be
the standard reference nowadays. They set up an action functional

S =

∫ t2

t1

dt 〈ψ(t)|i∂t −H|ψ(t)〉 (1.109)

and determine the equations of motion by requiring that S be stationary under variations of
|ψ(t)〉 and 〈ψ(t)|. The result may be cast into a form identical to eq. (1.108) but also into a
form more useful for the following considerations. First we use a coordinate representation of the
abstract states (the coordinates are symbolically denoted as x with integration measure [dx]):

|ψ(t)〉 → ψ(x, t) , 〈ψ(t)| → ψ∗(x, t) (1.110)

s.t. the action functional reads

S =

∫ t2

t1

dt [dx]ψ∗(x, t)(i∂t −H)ψ(x, t). (1.111)

We introduce a Hamiltonian function

H[ψ∗, ψ] =
∫

[dx]ψ∗(x, t)Hψ(x, t). (1.112)

Then the equations of motion that result from requiring stationarity of the action can be written
as

iψ̇ =
δH
δψ∗ and iψ̇∗ = −δH

δψ
. (1.113)
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We now decompose ψ into a real and imaginary part, φ and π, in the following way

ψ =
1√
2
(φ+ iπ) (1.114)

and thus eq. (1.113) can be cast into canonical form

φ̇ =
δH
δπ

and π̇ = −δH
δφ

. (1.115)

Thus we have rewritten the Schrödinger equation into a classical Hamiltonian equation for a field
and its conjugate momentum. That this is not really surprising can be seen by adding a total
time derivative

d

dt

∫
[dx]

(
− i

4
(φ2 + π2) +

1

2
φπ

)
(1.116)

to the integrand of eq. (1.111). We can then write eq. (1.111) in canonical form

S =

∫
dt [dx]

(
πφ̇−H[φ, π]

)
. (1.117)

A last point to mention is that the identification of position and momentum as given in eq. (1.114)
is by no means unique. Consider the case that we have found a stationary state

ψ(t) = e−iEtψ(0), (1.118)

where ψ(0) shall be real. We obtain both a time-dependent coordinate and momentum:

φ(t) =
√
2 cos (E t)φ(0) , π(t) = −√

2 sin (E t)φ(0). (1.119)

However, if we make a canonical transformation ψ → e−iEtψ̃, this results in a more typical
behaviour for a stationary state

φ(t) =
√
2ψ̃ , π = 0. (1.120)

This last paragraph demonstrates that there is a certain ambiguity in the assignment of coordi-
nates and momentum to a wave function.

1.5.3 Connection to the Effective Action

Jackiw and Kerman have shown [JK79] that if one generalizes the action defined in eq. (1.109) in
a manner to be defined below it will be equivalent to the ordinary effective action. In order to be
able to put the approaches explored in this thesis in relation to more conventional approaches we
want to illuminate shortly the connection between the time-dependent variational principle and
the effective action. Let |ψ±, t〉 be states that tend to the true vacuum |0〉 of the Hamiltonian H
as the time t approaches plus or minus infinity

|ψ±〉 t→±∞−→ |0〉 (1.121)

that are subject to two constraints:

〈ψ−, t|ψ+, t〉 = 1 (1.122)

〈ψ−, t|Φ(x)|ψ+, t〉 = φ(x, t), (1.123)
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where φ(x, t) is a prescribed value which is kept fixed during the following considerations, and
Φ denotes the field operators relevant to the system under discussion - one should keep in mind
that they are time-independent in the Schrödinger picture. Both Φ and J are taken to be real.
We now define the effective action Γ[φ] to be

Γ[φ] =

∫ +∞

−∞
dt 〈ψ−, t|i∂t −H|ψ+, t〉. (1.124)

In order to ensure free variations of |ψ±, t〉, we have to couple the constraints with the help of
Lagrange multipliers to Γ:

Γlm[φ] =

∫ +∞

−∞
dt 〈ψ−, t|i∂t−H|ψ+, t〉−

∫ +∞

−∞
dtw(t)〈ψ−, t|ψ+, t〉+

∫
d3x dt J(x, t)〈ψ−, t|Φ(x)|ψ+, t〉.

(1.125)
Upon varying this action functional w.r.t |ψ±, t〉 we obtain(

i∂t −H +

∫
d3xJ(x, t)Φ(x)

)
|ψ+, t〉 = w(t)|ψ+, t〉 (1.126)(

i∂t −H +

∫
d3xJ(x, t)Φ(x)

)
|ψ−, t〉 = w∗(t)|ψ−, t〉. (1.127)

From |ψ±, t〉 we easily obtain wave functions that satisfy the time-dependent Schrödinger equation
[i∂t −H +

∫
d3x J(x, t)Φ(x)]|±, t〉 = 0:

|+, t〉 = ei
R t
−∞ dt′ w(t′)|ψ+, t〉 (1.128)

|−, t〉 = e−i
R∞
t dt′ w∗(t′)|ψ−, t〉. (1.129)

They inherit the correct boundary conditions from |ψ±, t〉 since in the limit t → ±∞ the ex-
ponential prefactor reduces to one. The logarithm of the overlap of |±, t〉 is known as vacuum
persistence amplitude and is the generating functional of connected Greens functions:

〈−, t|+, t〉 = eiW ;W =

∫ +∞

−∞
dtw(t). (1.130)

We can construct an alternative expression for W by multiplying eq. (1.126) from the left with
〈ψ−, t| and using the fact that 〈ψ−, t|ψ+, t〉 = 1

W =

∫ ∞

−∞
dtw(t) =

∫ ∞

−∞
dt 〈ψ−, t|

(
i∂t −H +

∫
d3xJΦ

)
|ψ+, t〉. (1.131)

The functional derivative δW/δJ can be computed by using eqs. (1.122), (1.123), (1.126), (1.127)
and keeping in mind that, since at t = ±∞ the states |ψ±, t〉 become independent24 of J (they
are identical to |0〉), δ

δJ |ψ±, t〉|t=±∞ = 0. Then

δW

δJ
= φ (1.132)

24This is important since otherwise one obtains δW
δJ

= φ+ i 〈ψ−, t| δ
δJ

|ψ+, t〉
��+∞
t=−∞.
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and therefore the effective action Γea is given by the Legendre transform

Γea[φ] = W −
∫
dt d3xJφ (1.133)

=

∫
dtw(t) −

∫
dt d3xJφ

=

∫ ∞

−∞
dt 〈ψ−, t|

(
i∂t −H +

∫
d3xJΦ

)
|ψ+, t〉 −

∫
dt d3xJ〈ψ−, t|Φ|ψ+, t〉

=

∫ ∞

−∞
dt 〈ψ−, t|(i∂t −H)|ψ+, t〉 = Γ[φ] (1.134)

and is thus identical to eq. (1.124) as promised.

1.6 The Rayleigh-Ritz Variational Principle

In this section we first state the Rayleigh-Ritz variational principle and show its relation
to the effective potential. Then we have a look at a restriction of the space of test wave
functionals which leads to the so-called Gaussian effective potentials and consider its
advantages and drawbacks.

1.6.1 Connection to the Effective Potential

The Rayleigh-Ritz variational principle is well-known from quantum mechanics25 [RS80]. One
starts from two basic observations:

1. the energy functional E, defined as

E[|ψ〉] = 〈ψ|H|ψ〉
〈ψ|ψ〉 (1.135)

has as its stationary points, i.e. δE = 0, the solutions of the time-independent Schrödinger
equation:

(H − E)|ψ〉 = 0 (1.136)

〈ψ|(H − E) = 0. (1.137)

2. the energy functional E is bounded from below by the ground state energy:

E[|ψ〉 ≥ EGS. (1.138)

Note that there is a caveat to this. There might be cases where the state with the lowest
energy does not belong to the physical Hilbert space (e.g. in a fermionic problem one
might try to ignore the Pauli principle). Then the statement is still true but the ground
state refers to an unphysical state and one might underestimate the physical ground state
energy26. If the space of test wave functionals lies completely in the physical Hilbert

25For early applications of the Rayleigh-Ritz principle in field theory, cf. [Sch63], [Ros68]. A selection of modern
applications can be found in [PP87].

26Note that this might also be a problem in gauge theories. In the following chapters we will try in different
fashions to extract the energy contributions due to excitations along unphysical directions and, in the cases
considered, obtain the result that the sign of these excitation energies are determined by the negative of the
eigenvalues of the covariant Laplacian in the background field under consideration (at least for the vacuum, the
case that we are mainly considering). Since the spectrum of the covariant Laplacian is negative semi-definite, the
excitation energies along unphysical directions determined this way are non-negative.
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space these problems may be ignored. Also, if excitations of unphysical degrees of freedom
strictly increase the energy, these considerations are irrelevant, since the ground state of
the physical Hilbert space has the lowest energy of all states in the complete Hilbert space.

In the following we want to show that the expectation value of the Hamiltonian, which is the
basic ingredient of the Rayleigh-Ritz principle, can be found in a more common field theoretical
context: it is nothing but the effective potential, i.e. (up to constant factors) that part of the
effective action that ”survives” if we consider only fields that are constant throughout space-
time (i.e. all derivatives vanish), and is accessible by e.g. a loop expansion of the generating
functional. For our purposes, a different though equivalent definition is more expedient ([Jon64],
[Riv87],[Wei96]): let |ψ〉 be the class of states s.t.

〈ψ|ψ〉 = 1 (1.139)

〈ψ|Φ(x)|ψ〉 = φ0, (1.140)

where φ0 is a prescribed value. Then the effective potential V (φ) is given as

V (φ) = min
|ψ〉

(〈ψ|H|ψ〉). (1.141)

For the proof we follow Coleman and Weinberg [Col85], [Wei96]. We start from the definition of
the vacuum persistence amplitude

eiW [J ] = 〈vac, out|vac, in〉J (1.142)

in the presence of the source J. Then we put the system into a box of dimensions V × T . We
assume that J has a constant value J inside the box, and is adiabatically turned off outside the
box. If V and T are large, we can neglect all derivatives of J in the derivative expansion ofW [J ],
and obtain

eiW ≈ e−iV TE(J ). (1.143)

What happens physically is that the vacuum (in) state changes due to the application of the
source into the eigenstate27 of the Hamiltonian H − J ∫ d3xΦ(x) with definite energy E[J ] =
E(J )V . In this state it stays for the time T, thereby acquiring the phase given in eq.(1.143).
If we want to minimize on the other hand 〈ψ|H|ψ〉 with the constraints eq. (1.139, 1.140) we
have to vary

〈ψ|H − α−
∫
d3xβ(x)Φ(x)|ψ〉 (1.144)

with |ψ〉 unrestricted; afterwards we have to choose α, β s.t. eq. (1.139,1.140) are fulfilled.
But by our argument above the intermediate state inside the box fulfils all the requirements
we have for |ψ〉, thereby determining α = V E(J ), and β = J (since φ0 is determined by J as
φ0 = dW [J ]/dJ). Up to now, we have only determined the lowest eigenvalue of H−J ∫ d3xΦ(x).
However, the energy of the corresponding eigenstate is given by the expectation value of the
Hamiltonian in this state 〈ψ|H|ψ〉 = −V E(J ) + J ∫ d3xΦ(x). This is precisely the Legendre
transform of −W/T for constant sources and fields, which is the negative of the part of the
effective action for constant fields divided by T , and this is effective potential times the spatial
volume. This completes the proof.

27If there is no level crossing, this is the vacuum state of the theory defined by the Hamiltonian with the source
term H − R d3xJΦ(x).
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1.6.2 The Gaussian Effective Potential

The Gaussian effective potential [Ste84], [Ste85] differs from the effective potential as given above
by an additional restriction that is placed upon |ψ〉; namely, one requires |ψ〉 to be a Gaussian
state in the coordinate representation,

〈φ|ψ〉 = N exp

{
−1

2
(φ− φ0)iG

−1
ij (φ− φ0)j

}
, (1.145)

where i, j are super-indices, and one performs the minimization indicated in eq.(1.141) only
among the subset of Gaussian states. In the rest of this section, the set of Gaussian states will
be indicated by |ψG〉. This defines the so-called Gaussian effective potential (GEP):

VG(φ) = min
|ψG〉

(〈ψ|H|ψ〉). (1.146)

At first sight VG seems to be a mere approximation to the effective potential V . However,
one may take the point of view that it is physically a much more useful device than the effective
potential. This point of view has been particularly advocated by Stevenson (e.g. [Ste84], [Ste85]).
The argument runs roughly as follows: the constraint eq.(1.139) does not tell really very much
about where the wave function is localized; it might equally well give 〈ψ|Φ(x)|ψ〉 = φ0 if it
consists of several bumps that are distant from φ0, and the probability to actually be in the
configuration given by φ0 might even be zero. A consequence of this behaviour is that the
effective potential is a convex function no matter how many minima the classical potential28

had. In quantum mechanics, this convexity sometimes leads to absurd results, e.g. in the case
when a ’classical’ potential is considered that goes to a finite value for |x| → ∞; then the effective
potential is actually a constant. By restricting oneself to the GEP one has the advantage that the
wave function(al) is actually localized at the expectation value of Φ. One loses the (sometimes
unwanted) convexity property, and obtains a function(al) that mimics a classical potential (i.e. it
might have several maxima and minima) but takes into account that quantum mechanical wave
functions always have a finite width and that curvature of the wave function costs energy. There
is also a disadvantage, however; namely, we have shown above that the minimum of the effective
potential is indeed the vacuum energy. In the case of the GEP, one only has the statement
encoded in the variational principle of Rayleigh and Ritz, i.e. that the calculated energy gives
an upper bound to the vacuum energy (with the qualifications made above).

1.7 Handling the Gauss Law Constraint

In Yang-Mills theories the physical Hilbert space is only a subset of the complete Hilbert space;
the physical Hilbert space is spanned by states that are annihilated by the Gauss law operator.
In some theories, like electrodynamics, it is quite simple to construct the physical space explicitly,
since it consists of states that in this example depend only on the transversal part of the vector
potential. In Yang-Mills theory this is not so simple, and a variety of methods have been
developed to deal with the Gauss law constraint. In this section we want to discuss shortly
several approaches that have been followed in the literature. They can be roughly categorized as

1. gauge invariant variables, magnetic

28By classical potential we mean the potential function(al) that appears in the Hamiltonian.
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2. gauge invariant variables, electric

3. resolution of Gauss’ law by gauge fixing

4. techniques inspired by nuclear physics

5. introduction of a projector.

We will discuss these different philosophies in turn29:

1.7.1 Gauge Invariant Variables, Magnetic

One possible way of approaching the problem of the Gauss law constraint is motivated by the
observation in electrodynamics, that if ones writes down the wave functional in terms of gauge
invariant variables (in electrodynamics these are just the transverse components of the vector
potential) Gauss’ law is satisfied immediately and trivially. Unfortunately, in Yang-Mills theory
one cannot identify the gauge invariant degrees of freedom so easily30. In the following section,
we want to describe a number of approaches which either focus on the coordinate (A) or the mo-
mentum (Π) representation. Even though historically the first approach along these lines [GJ78]
worked in the momentum representation we will first focus on some approaches in the coordinate
representation. The approaches we are considering here try to exploit a certain 3-dimensional
spatial geometry31 as a guide. They try to construct quantities from A that transform gauge
covariantly, and out of these objects they form naturally gauge-invariant quantities. The first ap-
proach along these lines [FHJL93] tried to utilize the magnetic field as a gauge covariant object,
and proposed to use

φij = BaiBaj (1.147)

as a gauge invariant variable. It became clear soon, however, that due to Wu-Yang ambiguities
(gauge-inequivalent A configurations may give rise to an identical B field configuration) this
cannot be a good variable [HJ95]. One then introduces a gauge covariant variable uai via

D̂ab × ub = 0 (1.148)

so that A can be expressed in terms of u as

Aa
i =

(εnmk∂mu
b
k)(u

a
nu

b
i − 1

2u
b
nu

a
i )

det (u)
. (1.149)

29For the discussion of gauge-invariant variables we restrict the gauge group to SU(2).
30In the words of P. Haagensen and K. Johnson [HJ97] :“Anyone who has given a certain amount of thought to

different treatments of quantum electrodynamics comes inevitably to the conclusion that the reason it is a rather
straightforward theory to work out is, in one guise or another, always the same: at some point, one needs to
clearly separate what are physical degrees of freedom from what are gauge degrees of freedom, and this separation is
absolutely clear in an abelian gauge theory. Unfortunately, no such luck persists with nonabelian gauge theories.”

31If one assumes that Aa
i transforms as a covariant vector density under spatial GL(3) transformations and

Eai as a contravariant one (and likewise the magnetic field), one sees that all commutation relations that do not
involve the Hamiltonian are consistent with this assignment. This is an additional symmetry that is carried by
the commutators [A,Π], [A,Γa], and [E,Γa], and is used as a guiding principle for the search of suitable gauge
invariant variables. The Hamiltonian does not fit into this scheme since it contracts Eai with itself via only a flat
metric. Please note that in accordance with [FHJL93], [HJ95], [HJL96] we use E instead of Π, and upper and lower
indices for E,A respectively to indicate their different transformation behaviour under GL(3) transformations; in
contrast to the aforementioned authors, however, we have stuck to usage of boldface vectors.
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In this subsection we use ∂i instead of ∇i for the gradient, since ∇ is needed for a different sort of
derivative, cf. footnote 33. Eq. (1.148) is motivated by the fact that the thereby defined variables
u are not only SU(2) covariant but also share the GL(3) symmetry. From these variables one
now constructs the gauge invariant ones, which are suggestively called g:

gij = uaiu
a
j . (1.150)

If one now considers these new variables to be a metric, one can also define all the other quantities
that are connected to metrics, like the Riemann tensor R, Christoffel symbols Γ , Einstein tensor
G etc. It turns out that eq. (1.148) can be written as

∂iu
a
j + εabcAb

iu
c
j − Γkiju

a
k = 0 (1.151)

so we can interpret u as a dreibein, but more importantly εabcAc acts as a spin connection. The
magnetic field can be written with the help of the Einstein tensor32

Bai = det (u)uajG
ij . (1.152)

In analogy one introduces an electric tensor eij , s.t.

δ

δAa
i

= det (u)uaj e
ij (1.153)

and with this the Gauss law operator can be written33:

iGa = D̂i
δ

δAa
i

= det (u)uaj (∇ie
ij). (1.154)

Since one can show that the wave functions are annihilated by Gauss’ law iff they depend only on
the metric, one has made quite a step forward towards extracting the important gauge invariant
variables. The difficulties start when one considers the electric part of the energy. In order to
calculate it, one needs an explicit expression for EaiEai and in the long run also for eij . One can
relate the traceless part of eij , in the following called ẽ, to the functional derivative w.r.t. gij

δψ

δgij
=

1

2
εmni∇mẽ

j
nψ. (1.155)

Thus one has to invert εmni∇m and this already hints at the fact that the Hamiltonian is not
a local functional of δ

δgij
. However, apart from this problem in principle, one has a practical

problem as well34: one has to determine the inverse of ε∇ for every new u configuration. Since in
the approach of Haagensen et al [HJL96] the inversion was performed by solving the eigenvalue
problem, it cannot be done in general but only for special cases of considerable symmetry35, so
it seems difficult to make further progress along these lines.

32In this way, the geometric Bianchi identity implies the gauge Bianchi identity.
33In the following, ∇ will denote the geometric covariant derivative. One should also note that in [HJ95] Di

denotes the covariant derivative in the adjoint representation, whereas we stick here to our notation D̂i.
34We have ignored other problems involving unwanted zero modes since it seems that these problems can be

solved at the expense of just making the formulas a bit more clumsy [Haa95].
35The cases studied mainly consisted of spaces of constant curvature (Einstein spaces) which can be related to

instantons.
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1.7.2 Gauge Invariant Variables, Electric

A similar approach can also be followed in the electric/momentum representation, where one has
a similar notion of a metric [Hal77], [BFH94], but we won’t give any details here. Rather we
will give some details36 from [GJ78]. Goldstone et al also use the momentum representation, but
they attained it by a functional Fourier transformation:

φ[E] =

∫
DA exp (−i

∫
d3xA.E)ψ[A]. (1.156)

From this expression one can immediately read off that, whereas ψ[A] is gauge invariant, φ[E]
is not:

φ[E] = exp (−iΩ[E, U ])φ[EU ], (1.157)

where EU is the gauge transform of E, and

Ω[E, U ] = −
∫
d3xEi

a((∂iU)U−1)a. (1.158)

In the case of electrodynamics, since EU = E, eq. (1.157) indicates that φ[E] has only support
on the transversal part of the electric field, since we have the requirement that Ω[E, U ] = 0 for
φ[E] 6= 0 . In a non-Abelian theory one can put eq. (1.157) to a different use. [GJ78] start
out by observing that the electric field, having both three spatial and, since we are only dealing
with SU(2), three colour indices, might be considered as a 3 × 3 matrix and as such might be
decomposed into a product of an orthogonal with a diagonal with an orthogonal matrix:

Ei
a = Riα(Θ

J)ÊαβRβa(Θ
T ) with Êαβ = −δαβ π̂β (no sum over β), (1.159)

where R(Θ) can be written in terms of angle variables. The point is, that in this decomposition,
only Rβa(Θ

T ) is affected by a gauge transformation, leaving π and ΘJ as gauge invariant vari-
ables. We can now use eq. (1.157) to make the dependence of φ on R(ΘT ) explicit by choosing
U = R(ΘT )−1:

φ[E] = φ[R(ΘJ)Ê] exp (−iΩ[E, R−1(ΘT )]).

If we now transform every operator O via

Ō = exp (iΩ[E, R−1(ΘT )])O exp (−iΩ[E, R−1(ΘT )]) (1.160)

we only have to deal with the wave functional depending on the gauge invariant degrees of
freedom (π,ΘJ). The vector potential, which is given as a functional derivative w.r.t. E, can
then - via the chain rule - be expressed at each point in space by a body-fixed spin and isospin
angular momentum. One ends up realizing that gauge invariant operators don’t depend at all on
R(ΘT ) after the transformation. The computation of the Hamiltonian, however, is plagued by
infinities stemming from reordering terms, but since regularization and renormalization have not
been incorporated up to now, it is not clear whether they pose any problem. However, apart from
that sort of problem, one ends up with a Hamiltonian formulated in terms of gauge invariant
variables. One important point should be mentioned, namely that Ω[E, R−1] contains (and even
has to contain) singularities, which, in analogy to the quantum mechanical transformation to

36In some places we use the simpler notation of [Jac96].
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angular -rotation covariant - coordinates may be interpreted as centrifugal barriers.
To put the progress of the last 20 years into perspective, we may quote from [Jac96]: “It is hoped
that analysis of these singularities will provide clues to low energy dynamics - but it is also true
that thus far the hope has not been fulfilled.” To conclude this short section on gauge invariant
variables, we have to realize that all approaches presented37 have serious difficulties. The first
class of problems concern the Hamiltonian: either, one cannot even give a general expression for
the Hamiltonian, or it is non-local, or it contains fourth-order derivative terms. The second class
of problems is related to the question of the integral measure for scalar products, which seems
not to have been addressed sufficiently.

1.7.3 Gauge Fixing

Another method for dealing with the Gauss law constraint is also well known: gauge fixing.
This has been the method of choice, to quote Jackiw and Goldstone [GJ78]: “Gauss’ law is a
fixed time constraint and not a hamiltonian equation of motion. The remedy for this problem is
well-known: one chooses a gauge by setting selected components of Aµa to zero and uses Gauss’
law to eliminate from the hamiltonian the corresponding components of Eia.” However, this is
not the end of the story. The procedure indicated is essentially classical - but it is far from
clear that resolving Gauss’ law on a classical level and quantizing afterwards is the correct
procedure38. As is explained in [LNOT94], [LNT94] e.g. it is in this framework not only difficult
to prove the equivalence of different versions of gauge fixing of the quantum theory, but also
might some parts of the gauge symmetry (on the quantum level) survive the process of gauge
fixing, and give rise to global symmetries like the displacement symmetry. This cannot be seen
if variables are eliminated on the classical level altogether. However, there is a different path to
a gauge fixed theory. Canonical quantization does not require that the classical theory does not
contain redundant variables. Rather we consider the theory in the Weyl gauge, perform ordinary
canonical quantization and then perform unitary transformations to eliminate the unphysical
coordinates from the Hamiltonian39. The procedure can be illustrated by an ordinary quantum
mechanical example: assume we have a system of two particles interacting via a potential that
depends only on the distance vector between them:

H =
p2
1

2m
+

p2
2

2m
+ V (x1 − x2) (1.161)

and assume that the physical states have vanishing total momentum

(p1 + p2)|ψ〉 = 0. (1.162)

This state of affairs can be kept during time evolution since

[(p1 + p2),H] = 0 (1.163)

and just like in the case of Yang-Mills theory the Gauss law operator can be brought into
connection with gauge transformations, (p1 +p2) is the generator of centre-of-mass translations

Ω[b] = exp ((p1 + p2).b) and 〈x1,x2|Ω[b]|ψ〉 = 〈x1 + b,x2 + b|ψ〉. (1.164)
37In 2+1 dimensions, more progress seems to have been made, cf. [Sch00] and references therein.
38Gauge fixing in this context resembles going from Cartesian to curvilinear coordinates in quantum mechanics.

There it is well-known, cf. e.g. [Kle93], that ordinary canonical quantization does not work (i.e. replacing Poisson
brackets with commutators) for any other sort of coordinates but Cartesian ones due to ordering ambiguities. Cf.
in this context [CL80].

39One can also consider this problem from the path integral point of view as has been done in [Rei97a].
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Similar to the sections above, one could in this example also change variables to relative and
centre of mass coordinates and momenta (’choose gauge invariant variables’). Here, we want to
follow a different route: we perform a unitary transformation U on states and operators:

U = exp (− i

2
x1.p2) exp (ix2.p1). (1.165)

With this unitary transformation the canonical operators become

Ux1,2U
† = x2 ± 1

2
x1 , Up1,2U

† = p2 ± 1

2
p1 (1.166)

and the generator of translations becomes Ω̂[b] = exp (p2b); it thus generates translations only
in the variable x2. The constraint eq.(1.162) becomes

0 = (p1 + p2)|ψ〉 = U † U(p1 + p2)U
†︸ ︷︷ ︸

=p2

U |ψ〉 = U †p2|ψ̃〉 = 0 → p2|ψ̃〉 = 0. (1.167)

With this we can see that the Hamiltonian, which in its transformed form looks as follows

Ĥ = UHU † =
p2
1

m
+ V (x1) +

p2
2

4m
= Hp1,x1 +Hp2 , (1.168)

describes in the physical subspace only the relative coordinates, since Hp2 |phys〉 = 0. To put it
all in a nutshell: we started with a Hamiltonian that explicitly depended on two positions and
two momenta, but which was symmetric under a simultaneous change of both coordinates. In
addition we imposed a constraint on the sum of the momenta. Then we performed a unitary
transformation s.t. the constraint involves only one momentum, and the Hamiltonian is decom-
posed into two parts, one depending only on coordinates and momenta that are not affected by
the constraint and another part, that depends on the constraint variables in such a way that it
is zero when acting on states from the physical subspace.40

As an application in field theory we restrict ourselves to QED and the implementation of the
axial gauge since this seems to be a gauge that can be implemented profitably in QCD as well
[LNT94]. In the following, therefore, we will consider QED including fermions, which in Weyl
gauge has the Hamiltonian density

H = −iψ†α.(∇− ieA)ψ +mψ†βψ +
1

2
(Π2 + (∇×A)2). (1.169)

In order to avoid infrared problems (which are known to be a nuisance in the axial gauge) we
work on a torus with periodic boundary conditions on the gauge fields and quasi-periodic (i.e.
periodic up to a phase) ones for the fermions. We will also use frequently the standard definition
of the charge density

ρ(x) = ψ†(x)ψ(x). (1.170)

Classically, the axial gauge amounts to setting A3 = 0, and eliminating the conjugate momentum
Π3 with the help of Gauss’ law

Π3 = − 1

∇3
(∇⊥.Π⊥ + eρ(x)), (1.171)

40Here we have an example, where by exciting unphysical modes, one can only increase the energy.



Chapter 1. Introduction 29

where ⊥ refers to the indices 1,2. Note that this is only a formal expression since ∇3 has zero
modes and cannot be inverted.
The unitary transformation approach to gauge fixing starts by trying to decouple A3 from the
fermions. In order to achieve this, we make the ansatz

U [ξ] = exp

(
−i
∫
d3x [∇⊥.Π⊥ + eρ(x)] ξ([A3],x)

)
. (1.172)

Then, the A3-fermion coupling becomes

U [ξ]ψ†α3(∇3 − ieA3)ψU
†[ξ] = ψ†α3(∇3 + (∇3ξ − ieA3))ψ, (1.173)

and we see that it is eliminated if ∇3ξ = A3. Just as in the classical case, one has to invert
∇3. We see that due to the zero mode, we cannot eliminate A3 completely, but only up to its
constant part by choosing

ξ([A3],x) =

∫ L

0
dz ϑ(x3 − z)A3(x⊥, z), (1.174)

where ϑ(z) =
∑

n 6=0
1

2iπn exp (2iπn(z/L)) which fulfils d
dzϑ(z) = δ(z)− 1

L and is as close as one can
get to an inverse of ∇3 with periodic boundary conditions. The most interesting transformation
is that of Π3,

U [ξ]Π3(x)U
†[ξ] = Π3(x) −

∫ L

0
dz ϑ(x3 − z)(∇⊥.Π⊥(x⊥, z) + eρ(x⊥, z)), (1.175)

which should be compared to eq. (1.171). This also changes the Gauss law operator to

U [ξ]G(x)U †[ξ] = ∇3Π3(x) +
1

L
G(2)(x⊥), (1.176)

where G(2)(x⊥) is the Gauss law operator of 2-dimensional QED41 with the two-dimensional
charge

ρ(2)(x⊥) =
∫ L

0
dx3 ρ(x) (1.177)

and the zero mode electric field operators

pl(x⊥) =
∫ L

0
dx3 Πl(x). (1.178)

The transformed Gauss law operator as given by eq. (1.176) is a sum of two terms, both of which
annihilate the transformed physical states individually42, and one can conclude

G(2)(x⊥)|ψ̃〉 = 0 , Π3(x)|ψ̃〉 = 1

L
p3(x⊥)|ψ̃〉. (1.179)

We see that the three component of the gauge field is not eliminated completely due to the
zero mode of ∇3. Also, we still have a constraint to solve, namely the two-dimensional Gauss’

41If it hadn’t been for the zero mode of ∇3, this term would not have appeared.
42This can be seen very easily: due to the periodicity of Π3 the first term does not contain an x3 zero mode,

whereas the second part is constant w.r.t. x3, and thus proportional to the zero mode of ∇3.
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law. This can be done by fixing a two-dimensional Coulomb gauge via an additional unitary
transformation

u(2) = exp

(
−ie

∫
d2x⊥ ρ(2)(x⊥)

∫
d2y⊥ d(x⊥ − y⊥)∇⊥.a⊥(y⊥)

)
, (1.180)

where a⊥ denotes the zero mode of the gauge fields

a⊥(x⊥) =
∫ L

0
dx3 A(x), (1.181)

and d(x⊥ − y⊥) is the periodic Green’s function of the two-dimensional Laplace operator. We
end up with a theory that contains as cyclic variables the three-component of the vector potential
apart from its zero mode (which is still a physical variable) and the longitudinal part of the zero
mode of A⊥, so that in total the same amount of vector potential variables are cyclic as in the
Coulomb gauge where the longitudinal part of the vector potential is completely cyclic. The
Hamiltonian can - as in the quantum mechanical example above - be decomposed into a part
that contains only the unconstrained variables, and one that contains only constrained variables.
The unconstrained part of the vector potential and the electric field read respectively

Auncon = (A⊥(x)− a⊥(x⊥)) + at⊥(x⊥) +A0
⊥ + a3(x⊥)ê3, (1.182)

Πuncon = (Π⊥(x)− 1

L
p⊥(x⊥)) +

1

L
pt⊥(x⊥) +

1

V
Π0

⊥ +
1

L
p3(x⊥)ê3, (1.183)

where O0 indicates the volume integral of O, ê3 is the unit vector in 3-direction, and V is the
total spatial volume. Introducing the abbreviations

E(x) =

∫ L

0
dz ϑ(x3 − z) (∇⊥.Π⊥(x⊥, z) + eρ(x⊥, z)) , (1.184)

η(2)(x⊥) = e∇⊥
∫
d2y⊥ d(x⊥ − y⊥)ρ(2)(y⊥) (1.185)

we can write the two parts of the Hamiltonian density conveniently as

Hphys = −iψ†α.(∇−ieAuncon)ψ+mψ
†βψ+

1

2
(E2+

1

L2
η(2) 2)+

1

2
(Π2

uncon+(∇×Auncon)
2) (1.186)

and

Hvan =
1

2
(Π3 − p3)(Π3 − p3 − 2E) + 1

2L2
pl⊥(p

l
⊥ − 2η(2)). (1.187)

The Gauss law constraints on the (now twice) transformed states |ψuncon〉 = u(2)U |ψ〉 read

(Π3 − p3)|ψuncon〉 = 0 , pl⊥|ψuncon〉 = 0 , Q|ψuncon〉 = 0, (1.188)

where Q denotes the operator of the total charge. As promised, this ensures Hvan|ψuncon〉 = 0
and can be rather straightforwardly implemented by 〈A|ψuncon〉 being independent of A3 (except
its zero mode) and of al⊥. As is repeatedly emphasized by Lenz et al [LNOT94] this is quite
in contrast to an interpretation based on the classical constraint equations ∇3A3 = 0 which
rather would indicate a prescribed value for A3 (apart from its zero mode) but not arbitrary
values for it (as one gets now, since the wave functionals are independent of these variables).
As a very last point in this section, we shortly want to indicate what complications arise if one
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wants to implement this program for QCD. At first sight this seems quite more intricate than
the QED case, since one does not have to invert ∇3 but the A3 dependent 3-component of the
covariant derivative. However, this problem can be simplified considerably; one has to insert
a transformation with the help of the path ordered exponential P exp

(
ig
∫ x3
0 dzA3(x⊥, z)

)
. In

order to keep the boundary conditions periodic, one has to perform another transformation which
reintroduces the zero modes of A3, but only those that are diagonal in the Lie algebra. Thus we
end up with having to invert, instead of D̂3 = ∇3−ieÂ3(x), the operator d̂3 = ∇3−ieâ3(x⊥), the
inverse of which can be given explicitly. One can read off this explicit expression that basically
a3 serves to regularize the limit in which the torus is made large (the infrared problems that
are usually associated with the axial gauge are thereby circumvented). The next point that
is different from electrodynamics is that the zero mode of the 3-component of the electrical
field is not hermitian. This is a phenomenon well-known from curvilinear coordinate systems
in quantum mechanics, and results in a kinetic energy term that involves a Jacobian43. This
Jacobian can be absorbed into a redefined wave function, and by this procedure we obtain (just
as in quantum mechanics in cylindrical coordinates, where the redefined wave function has to
vanish at the origin) certain boundary conditions. These boundary conditions are the point where
the difficulties start, to quote from [LNT94]:”It appears that even on a symbolic formal level, the
construction of a Hamiltonian for QCD with unconstrained degrees of freedom is possible only
after some discretization.” Before leaving this subject of gauge fixing, one should note that
all the manipulations that have been carried out above are purely formal, since they contain
products of operators at the same space-time point, which are usually divergent quantities.

1.7.4 Inspiration by Nuclear Physics

The approaches we have illustrated up to now aimed at resolving Gauss’ law exactly and separate
gauge invariant from gauge variant coordinates. One can take also a different point of view, e.g.
to quote from [GS78]: “From our viewpoint the time-independent gauge transformations should
be treated in the same way as any other symmetry of the system.” This point of view provides the
opportunity of transferring techniques from nuclear physics to gauge theories. We will discuss
three different approaches: the first one, to be discussed in this section, will consist of considering
a colour-rotating (intrinsic) frame, the second one will deal with a projector and approximations
to this projector; this approach will be presented in chapter 2. The third approach will be
concerned with the formulation of the Random Phase Approximation for bosonic theories in the
presence of condensates and can be found in chapter 3. To some extent, the latter two approaches
are inspired by the Thouless-Valatin approach presented in [HMVI98], [HVMI99], [HIMV00].
In this section, we want to follow Levit [Lev95], who has written a very insightful paper on
this kind of approach. The main idea is to introduce - as successfully done in nuclear physics -
a body-fixed (or intrinsic) frame. Thereby one can distinguish between “gauge rotations” and
the intrinsic dynamics just as in nuclear physics where one can (if the coupling is weak) study
collective rotations and the vibrational modes in the body-fixed frame. A particular advantage of
the approach is that in the body-fixed frame no attention has to be paid to symmetries: whereas
in the laboratory frame a nucleus always has good angular momentum44, in the intrinsic frame
the nucleus may very well be deformed; the symmetry is restored since the intrinsic frame in

43This appears to be the first point that one would get wrong by fixing the gauge classically and quantizing
afterwards.

44Similarly, one can not accept in a gauge theory - due to Elitzur’s theorem - breaking of a gauge symmetry in
the lab frame.
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this example collectively rotates w.r.t. the laboratory frame - this is a point of view that will
be particularly emphasized in section 2.5 where the cranking approach is treated. Usually such
a decomposition into collective rotations and body-fixed dynamics will be fruitful if a Born-
Oppenheimer approximation is allowed, i.e. when inertia connected with the collective rotation
is much larger than that of the internal vibration. In the following we want to shortly discuss
Levit’s “rigid gauge rotor”. Most of his considerations are basically classical, since, although
he works with a Hamiltonian in Weyl gauge, the electric field does not appear as a canonical
momentum, but only in terms of its original definition45 (Weyl gauge !):

−Ei = ∂0A
i. (1.189)

The decomposition into gauge rotations and internal dynamics is achieved by the ansatz for
Ai(x, t)

Ai(x, t) = U(x, t)ai(x)U †(x, t) +
i

g
U(x, t)∂iU †(x, t), (1.190)

where ai is time-independent. This carries over to the covariant derivative

Di = ∂i − igAi = U(x, t)(∂i − igai)U †(x, t) = U(x, t)diU †(x, t), (1.191)

where di denotes the covariant derivative in the body-fixed frame. We now consider the Hamil-
tonian: the magnetic field squared is the same in both lab frame and internal frame since it is
invariant under all gauge transformations:

∑
i,j

[Di,Dj ]2 =
∑
i,j

[di, dj ]2, (1.192)

whereas the electric field can be written with the help of an angular velocity vector ω = 2iU †∂0U
as

−Ei = ∂0A
i =

1

2g
U [ω, di]U †. (1.193)

The kinetic energy can then be written suggestively as46

Erot =
1

4

∫
d3x(ωIω) = − 1

16g2

∫
d3xTr

(
ω[di, [di, ω]]

)
. (1.194)

For the purpose of quantizing the model later on it is useful to formulate this in terms of symmetry
generators which are here the Gauss law operators. They can be written as47

GA = [∂i − igAi, Ei] = −2gU(Iω)U † !
= U †ĜU, (1.195)

45In this section, we keep Levit’s conventions (apart from his different normalization of λ). They can be easily
transcribed into the conventions we follow in the rest of this thesis by noting: Ai = Ai, E

i = Ei, ∂
i = −∇i, D

i =
−Di.

46We have ignored possible surface terms from partial integrations.
47One has to note that, since this is a basically classical treatment, the commutator of [Ai

a, E
j
b ] vanishes, and

thus [Ai, Ej ] = Ai
aE

j
b [λ

a, λb] = ifabcA
i
aEbjλ

c. If [Ai
a, E

j
b ] 6= 0 one obtains an additional term proportional to λaλa

that spoils the first relation in eq. (1.195).
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where Ĝ denotes the symmetry generator in the body fixed frame. With their help, the Hamil-
tonian of the rigid gauge rotator (in which the magnetic term is ignored) can be written as48

HA
rot =

1

4g2

∫
d3x d3y Ĝa(x)I

−1
ab Ĝb(y) (1.196)

with I−1
ab = (1/4)Tr(λaI−1(x,y)λb) proportional to the Green’s function of diacd

i
cb where diab is

the covariant derivative in the intrinsic frame in the adjoint representation. As we will see in
the following chapters, this is a result that comes out in one guise or another in (almost) every
approach that is based upon nuclear physics techniques, be it the Thouless-Valatin approach,
or the (generalized) Random Phase Approximation, or others; at least the Greens function of
the covariant d’Alembertian always has to be computed. In the limit g → 0 (and vanishing
background field) the Green’s function reduces to the Coulomb potential, and (in the physical
sector) Ĝ is related to the electrical charge. Thus, quite naturally, the notion of the Green’s
function of the covariant d’Alembertian appears as the interaction energy of static charges.

48Note that this Hamiltonian is formulated entirely in terms of body-fixed quantities, and is therefore automat-
ically gauge invariant - gauge transformations only affect the relative position of the body fixed frame w.r.t. to
the laboratory frame.



Chapter 2

Projector on Physical States

2.1 The Projector on Gauge-Invariant States

In this section we want to introduce the projector onto states that satisfy Gauss’ law
in the presence of external charges. We show that the time-component of the fermionic
colour current generates gauge transformations of the fermionic matter. From this we can
conclude how Yang-Mills wave functionals transform in the presence of external charges,
and also give a concise formulation of the projector. In the last part of this section, we
draw the connection to the literature, and show how Kogan and Kovner [KK95] dealt
approximately with the projector.

2.1.1 Generalities

The method that we want to discuss in this chapter is the projection onto gauge invariant states,
and approximations to the exact projection. Projection onto states with good quantum numbers
is a technique that has its roots in nuclear physics [RS80]; there one is often faced with the
problem that the simple trial states one wants to use (e.g. Slater determinants for Hartree-Fock
calculations) do not share the symmetries of the Hamiltonian1. In order to restore the symmetry
one adds up all symmetry transformed wave functions. Symbolically

ψrestored[A] =

∫
dφ ψbroken[φ[A]], (2.1)

where
∫
dφ abbreviates the summation over the different symmetry transformations and φ[A]

symbolizes the symmetry transformed variables. Since symmetries form a group, and since we
are summing over all symmetry transformations2, it follows trivially that ψrestored[A] is indeed
invariant under symmetry transformations:

ψrestored[φ1[A]] =

∫
dφ ψbroken[φ1[φ[A]]] =

∫
dφ ψbroken[(φ1 ◦ φ)[A]] =

∫
d(φ−1

1 ◦ φ) ψbroken[φ[A]]

1Of course one can construct trial states in nuclear physics that do share the symmetries of the Hamiltonian;
however, the only single-particle wave functions that are compatible with, say, translational invariance are plane
waves - and thus the many particle wave function would also be a plane wave; we conclude from this that in some
instances one even has to break a symmetry by a variational ansatz in order to get sensible physics (like a localized
nucleus) with a sufficiently simple wave function.

2If one sums over all group elements, a left multiplication (as well as a right multiplication) by a fixed group
element only leads to a reshuffling of the terms in the sum, but the sum stays the same. For continuous groups this
leads to the requirement that the integration measure (Haar measure) is to be invariant under left multiplication.
This is often denoted as ’invariance of the Haar measure’.

34
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=

∫
dφ ψbroken[φ[A]] = ψrestored[A]. (2.2)

In Yang-Mills theory one would sum over all topologically trivial gauge transformations:

ψrestored[A] =

∫
DU ψ[AU ], (2.3)

where AU is given by eq. (1.5). Since one stays in the topologically trivial sector, the gauge
transformation can also be written with the help of the operator eq. (1.45) (where φ parametrize
U):

ψ[AU ] = G[U ]ψ[A], (2.4)

and thus the averaging over the different gauge copies can be put into a projection operator P∫
DU ψ[AU ] =

[ ∫
DU G[U ]

]
ψ[A] = P ψ[A] (2.5)

acting upon the wave functional whose symmetry is to be restored3. After this introduction into
the idea of projecting a state onto the physical subspace, let us briefly outline the rest of this
chapter.
First, we introduce external charges into the theory, which allows us to formulate the projector
onto arbitrarily charged states in a compact manner. Since the exact treatment of the projector
appears to be impossible in field theory, we then consider two approximate treatments of the
projector that are known from the literature. The first one is the approach of Kogan and Kovner
[KK95]. They interpret the projector as defining an effective σ-model which is then dealt with in
a mixture of perturbation theory and mean-field approximation. The second approach we con-
sider is the systematic perturbative evaluation of the influence of the projector in the framework
of the Feynman propagation kernel as suggested by Testa and Rossi [TR80a], [TR80b].
We then turn to a mean-field treatment based on Gaussian wave functionals. In a first step,
we ignore the projector completely. This will later on allow us to see the influence of the pro-
jector clearly. In a next step, we consider how Gauss’ law can be implemented order by order
in perturbation theory by modifications of the Gaussian wave functional we started with, and
demonstrate the problems of this approach.
Then we slightly change the point of view: whereas we hitherto studied how one can implement
Gauss’ law, we now try to model the time-dependence of states that are not annihilated by the
Gauss law operator based on this gauge-noninvariance of the states. This is similar in spirit to
nuclear physics, where the time-dependence of a deformed state, i.e. a state that is not invariant
under rotations, is usually taken to be a rotation. This sort of time-dependence is not available
for a rotationally invariant state. These considerations lead us to the cranking model well known
from nuclear physics. Unfortunately, it turns out that this model is insufficient to describe the
coupling of charges at the one-loop level, as can be seen from the fact that the known β-function
of Yang-Mills theory is not reproduced.
As a last approximate treatment of the projector we then consider the Kamlah expansion, which
is also well-known from nuclear physics. In this approach, one expands the Hamiltonian (be-
tween projected states) in powers of the generators that build up the projector (between projected
states). In combination with perturbation theory this is seen to work nicely - the energy func-
tional does not depend on those parameters of the wave functional that shouldn’t have appeared

3The significance of the projector in Yang-Mills theory was emphasized by [JLP91], cf. also [Hua92] and
[Qua94].
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in the first place according to the studies of perturbative modifications of the Gaussian wave
functional mentioned above. However, due to technical difficulties it has not been possible yet
to treat charges beyond the classical level.
As a last point in this chapter, we illustrate the treatment based on Gaussian wave functionals by
calculating the energy of the Savvidy vacuum, and arrive at a result well-known in the literature.

2.1.2 External Charges

In this section we want to introduce external static charges into our system. In the usual
formulations (e.g. [Pol97], [HJ97], [Qua99]) one attaches colour indices to the Yang-Mills wave
functional and requires new transformation properties under gauge transformations. If we denote
the collection of spin indices by M , then we require4, for a gauge transformation U,

|ψM 〉 U→
∑
M ′

GMM ′ |ψ′
M ′〉 with (2.6)

GMM ′ = Gm1m′
1...mnm′

n
[U ] = DR1

m1m′
1
[U(x1)] · · · DRn

mnm′
n
[U(xn)], (2.7)

where DRi denotes the matrix representation Ri of the gauge group and xi the positions of
the charges. It will turn out below that we have to choose the representation matrices DRi to
form the conjugate representation of the representation under which the quarks at the points xi
in space transform5. This formulation has the disadvantage that one does not have a concise
formulation of gauge transformations independent of the fermionic colour charge content of the
wave functional under consideration. As a result, one cannot write down a projector that projects
onto the physical sector for all fermionic charges. Since the latter is a very important requirement
for the approximations to the projector that we want to carry out later on, we have to look for a
different approach that is inspired by [Pol97], [Zar98c], [Zar98d]. We start by adding a fermionic
part to the Yang-Mills Hamiltonian appropriate to static quarks:

H = HYM +M

∫
d3x ψ̄(x)ψ(x), (2.8)

where M denotes the quark mass (we deal only with a single flavour), and we require the usual
anti-commutation relations for the quark fields:

{ψaα(x), ψ† b
β (y)} = δabδαβδxy. (2.9)

In eq. (2.9), a, b denote colour indices, α, β spinor indices, and x,y position indices. We also use
the usual notation ψ̄ = ψ†γ0, and use for γ0 the usual Dirac convention: γ0 = diag(1, 1,−1,−1).
Acting upon the bare fermionic vacuum the operators ψ,ψ† generate further eigenstates of the
Hamiltonian. Their energy can - as usual - be determined via the commutator of H with ψ,ψ†:

[H,ψaα(x)] =

{ −Mψaα(x) , α = 1, 2
Mψaα(x) , α = 3, 4

(2.10)

[H,ψ†a
α (x)] =

{
Mψ†a

α (x) , α = 1, 2

−Mψ†a
α (x) , α = 3, 4.

(2.11)

4Remember that we set the Yang-Mills Θ angle everywhere in this thesis to zero.
5The explicit form of eq. (2.7) that one can find in the literature [Pol97], [HJ97], [Qua99] seems to differ super-

ficially from the expression that we use here. However, in none of the references mentioned the authors explicitly
state, under which representation their matter fields transform, and therefore it is likely that the superficial
difference is no real difference.
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In concordance with the common interpretation we associate creation operators with operators
that create positive energy states, and thus write explicitly

ψaα(x) =




aa1(x)
aa2(x)

b†a1 (x)

b†a2 (x)


 , ψ†a

α (x) =




a†a1 (x)

a†a2 (x)
ba1(x)
ba2(x)


 . (2.12)

We then interpret the operators a as connected to quarks, and the operators b as connected to
anti-quarks. We now turn to the charge operator. Let λa be the (hermitian) generators of the
group representation appropriate for the quarks. The charge operator is then given by

ρa(x) = Ja0 (x) = ψ̄(x)γ0λaψ(x), (2.13)

where there is no integration over x just as in the remainder of this section (unless explicitly
stated). In terms of a, b operators, it can be written as (the fact that the generators of SU(N)
are traceless and hermitian has to be used)

ρa(x) = a†bi (x)λ
a
bca

c
i (x)− b†bi (x)λ

a∗
bc b

c
i (x). (2.14)

The matrix λ∗ denotes simply the complex conjugate matrix of λ. The charge operators inherit
their commutation relations from the λ matrices:

[ρa(x), ρb(y)] = δxy

(
a†i (x)[λ

a, λb]ai(x) + b†i (x)[λ
a∗, λb∗]bi(x)

)
= ifabcρc(x)δxy. (2.15)

Thus, we can form the Gauss law operator in the presence of external charges6

Ga(x) = −Γa(x) + ρa(x), (2.16)

where Γa(x) is the generator of gauge transformations on the Yang-Mills part of the wave func-
tionals7. Note that we have a special situation here: although the Gauss law operators for
different colours do not commute, there is one special instance when a state can be a simulta-
neous eigenstate of all Gauss law operators, namely if it is annihilated by all of the operators.
From the relation Ga(x)|phys〉 = 0 we can infer Γa(x)|phys〉 = ρa(x)|phys〉 but this does not
mean that we have diagonalized all Γa, since a state cannot simultaneously be an eigenstate of
all charge operators, but only of the charge operators corresponding to the Cartan subalgebra (in
SU(2), this would usually be ρ3, in SU(3), ρ3 and ρ8).
We want to show that ρa generates the usual gauge transformations of the quark operators,
just as the pure Yang-Mills operators A,Π are gauge transformed by −Γa(x). We start by
considering an infinitesimal transformation:

e−i
R
d3y ϕb(y)ρb(y)ψaα(x)e

i
R
d3y ϕb(y)ρb(y) = ψaα(x)− i

∫
d3y ϕb(y)[ρb(y), ψaα(x)] +O(ϕ2)

= ψaα(x) + δψaα(x) +O(ϕ2). (2.17)
6This result can also be obtained from the Lagrangian with matter fields. The matter field Lagrangian reads

Lm = ψ̄iD/ψ = ψ̄iγµ(∂µ − iAµ)ψ and if we concentrate on the part that is multiplied by Aa
0 this reads ψ̄γ0λaψ =

ρa. Taking into account the term multiplying Aa
0 in the pure Yang-Mills Lagrangian eq. (1.29), we obtain as

generalization of eq. (1.30) the Gauss’ law in the presence of external charges: −Γa(x)+ ρa = 0; cf. in this context
also [CL80].

7Depending on the form of the covariant derivative (with or without an explicit factor of g) this may either
be 1

g
D̂Π or D̂Π. Please note also that (a) as was discussed above in sec. 1.3.2 Γa(x) is in fact the negative of the

generator of gauge transformations, and (b) it is hopefully not confusing that we call both Ga and Γa Gauss law
operator although they differ by a sign in their respective Lie algebra.
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We can compute the commutator, and obtain the result

δψaα(x) = iϕb(x)λbacψ
c
α(x). (2.18)

As usual, we can iterate this formula and thereby obtain

e−i
R
d3y ϕb(y)ρb(y)ψaα(x)e

i
R
d3y ϕb(y)ρb(y) = (eiϕ

b(x)λb)acψ
c
α(x) = DRq

ac [U(x)]ψcα(x),

e−i
R
d3y ϕb(y)ρb(y)ψ†a

α (x)ei
R
d3y ϕb(y)ρb(y) = ψ†c

α (x)(e−iϕb(x)λb)ca = DRp
ac [U(x)]ψ†c

α (x),

(2.19)
where we have used the same procedure for ψ†, and due to the hermiticity property of λ we have
(e−iϕb(x)λb)ca = (e−iϕb(x)λ∗b)ac. DRp [U ] is called the conjugate representation of DRq [U ], cf. e.g.
[PS95].

2.1.3 External Charges and Transformation Properties of Gluonic States

We are now in a position to see how the usual formulation of transformation properties of gluonic
states in the presence of external charges comes about. The structure of the states that we are
considering is given by a sum of direct products of states from a fermionic Hilbert space (we
denote the states as |fermion i〉, where i is a collection of indices, cf. eq. 2.21) and states from a
Hilbert space that is spanned by |A〉. The states from the latter Hilbert space are denoted as
|YM a〉 with label a. Thus the complete states we are going to consider (called |coupled〉) are

|coupled〉 =
∑
a,i

cai |fermion i〉|YM a〉, (2.20)

where cai are probability amplitudes. The fermionic states are generated by acting with quark
and antiquark creation operators on the (gauge invariant) fermionic vacuum8:

|fermion i〉 = a†i1 · · · a
†
in
b†j1 · · · b

†
jm

|0〉, (2.21)

where we have combined colour-, spinor- and spatial indices into a single super-index i (or j),
and denoted the fermionic vacuum by |0〉. We can also write suggestively∑

a,i1,...,jm

cai1...jma
†
i1
· · · a†inb

†
j1
· · · b†jm |0〉|YM a〉 =

∑
i1,...,jm

a†i1 · · · a
†
in
b†j1 · · · b

†
jm

|0〉
∑
a

cai1...jm|YM a〉
︸ ︷︷ ︸

=
∑

i1,...,jm

a†i1 · · · a
†
in
b†j1 · · · b

†
jm

|0〉|YM〉i1...jm with |YM〉i1...jm =
∑
a

cai1...jm|YM a〉. (2.22)

We perform a gauge transformation by acting upon the state with9 e−i
R
ϕaGa

= Uei
R
ϕaΓa

(where
U = e−i

R
ϕaρa):

e−i
R
ϕaGa

∑
i1,...,jm

a†i1 · · · a
†
in
b†j1 · · · b

†
jm

|0〉|YM〉i1...jm
8That the fermionic vacuum is gauge invariant is a trivial consequence of the fact that it is annihilated by the

annihilation operators.
9We use the abbreviation e−i

R
ϕaGa

= e−i
R
d3xϕa(x)Ga(x).
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=
∑

i1,...,jm

Ua†i1U
†U · · ·U†Ua†inU

†Ub†j1U
†U · · ·U†Ub†jm U†|0〉︸ ︷︷ ︸

=|0〉

ei
R
ϕaΓa |YM〉i1...jm

=
∑

i1,...,jm

DRp

i1l1
[U ]a†l1 · · · D

Rp

inln
[U ]a†lnD

Rq

j1k1
[U ]b†k1 · · · D

Rq

jmkm
[U ]b†km |0〉ei

R
ϕaΓa |YM〉i1...jm

=
∑

i1,...,jm

a†i1 · · · a
†
in
b†j1 · · · b

†
jm

|0〉DRp

l1i1
[U ] · · · DRp

lnin
[U ]DRq

k1j1
[U ] · · · DRq

kmjm
[U ]ei

R
ϕaΓa |YM〉l1...km ,

(2.23)

where we use a super-index notation for a†i , b
†
i . For the representation matrices this has to be

understood as follows: if we decompose the super-index i1 into the colour index a1, the spatial
index m1 and the position index x1, and correspondingly l1 into b1, n1 and x1 (the position
index is in both cases identical since we do not associate an integration over position indices with
gauge transformations), then

Di1l1 [U ] = δm1n1Da1b1 [U(x1)]. (2.24)

This allows us now to determine ei
R
ϕaΓa |YM〉l1...km . From the requirement that the state con-

taining quarks and gluons shall be overall gauge invariant,

e−i
R
ϕaGa


 ∑
i1,...,jm

a†i1 · · · a
†
in
b†j1 · · · b

†
jm

|0〉|YM〉i1...jm


 =

∑
i1,...,jm

a†i1 · · · a
†
in
b†j1 · · · b

†
jm

|0〉|YM〉i1...jm,

(2.25)
the following relation between a representation DRq and its conjugate representation DRp

DRq

ji [U
−1] = DRp

ij [U ] (2.26)

and eq. (2.23) we can conclude that

ei
R
ϕaΓa |YM〉i1...jm = DRq

i1l1
[U ] · · · DRq

inln
[U ]DRp

j1k1
[U ] · · · DRp

jmkm
[U ]|YM〉l1...km . (2.27)

Thus, our way of approaching the problem of static charges almost exactly reproduces the usual
’effective’ gauge transformation prescription as given in eq. (2.6). However, we obtain a nice
interpretation for the spin label attached to a Yang-Mills state, that may be useful in variational
calculations: the spin labels are nothing but part of the probability amplitudes cai1...inj1...jm and
in constructing variational ansätze one may choose only certain combinations to be non-zero.

2.1.4 The Projector on Physical States

Since we now have an operator that generates gauge transformations on arbitrarily charged state,
we can also write down a very simple (formal) expression for the projector onto the physical
sector:

Pρ =

∫
Dϕei

R
d3xϕa(Γa−ρa). (2.28)

Dϕ denotes the integral over all variables parametrizing the gauge transformation including the
Haar measure necessary to make the integral invariant under left multiplication. The integration
domain runs over the topologically trivial sector of the gauge transformations. Two points
deserve attention: first, we want to consider why Pρ is indeed a projector onto the physical
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subspace, and second, why it is sufficient to restrict the domain of integration to topologically
trivial gauge transformations. In fact these two points are closely related. A state in the physical
subspace is characterized by the fact that it is annihilated by the Gauss law operator: Ga|ψ〉 = 0.
An identical requirement is e−iφaGa |ψ〉 = |ψ〉, in other words a state has to be invariant under
topologically trivial gauge transformations. If we now act with e−iφaGa

upon Pρ we can use the
fact that topologically trivial gauge transformations form a group, i.e.

e−iφ
aGa

e−iϕ
aGa

= e−iα
a(φ,ϕ)Ga

, (2.29)

the left invariance of the Haar measure

Dϕ = Dα(φ,ϕ), (2.30)

and the fact that a topologically trivial gauge transformation does not change the domain of
integration of the projector Pρ to obtain

e−iφ
aGa

Pρ = e−iφ
aGa
∫

Dϕe−iϕaGa
=

∫
Dϕe−iφaGa

e−iϕ
aGa

=

∫
Dϕe−iαa(φ,ϕ)Ga

=

∫
Dαe−iαaGa

= Pρ. (2.31)

Thus we have answered both questions: the projector projects onto the physical subspace since
the projector is invariant under small gauge transformations, and since the Gauss law constraint
is equivalent to topologically trivial gauge transformation only this domain of integration is
required.

2.1.5 QED

One main difficulty of the Yang-Mills theory with external charges lies in the fact that the charge
operators do not commute and therefore the states cannot be chosen as simultaneous eigenstates
of all charge operators. This is - obviously - very different in QED, where there is only one type
of charge. Thus we can choose the fermionic part of the states to be eigenstates of the charge
operator (this happens quite naturally if we take only states with a fixed number of external
charges into account). Then the projector can be simplified very much as well: denote by |ρ〉 an
eigenstate of the charge operator, and write the charge operator in the rest of this section as ρ̂,
i.e.

ρ̂(x)|ρ〉 = ρ(x)|ρ〉. (2.32)

Thus, upon a state |ρ〉 ⊗ |photons〉 the projector acts as

Pρ|ρ〉 ⊗ |photons〉 =

∫
Dϕ ei

R
ϕ(Γ−ρ̂)|ρ〉 ⊗ |photons〉 =

∫
Dϕ ei

R
ϕ(Γ−ρ)|ρ〉 ⊗ |photons〉

= |ρ〉 ⊗
∫

Dϕ ei
R
ϕ(Γ−ρ)|photons〉. (2.33)

We can get completely rid of the fermionic states by forming scalar products:

〈ρ′|Pρ|ρ〉 ⊗ |photons〉 = δρρ′

∫
Dϕ ei

R
ϕ(Γ−ρ)|photons〉. (2.34)

The externally prescribed charge can now be found in the projector as a c-number ρ(x). Note that
the integration domain (i.e. whether ϕ(x) runs from e.g. 0 . . . 2π or −∞ . . . + ∞) determines
whether the charges we take into account are quantized or not. In what follows we usually
assume that ϕ runs from −∞ . . .+∞, and ignore the fermionic part of the states completely. We
implement the prescribed charge content in the projector precisely via the c-number function ρ.
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2.1.6 Projection Integral as an Effective Theory

We have indicated that the projector is a very complicated object; until now nobody has been
able to deal with it exactly but there have been a number of approximate approaches in the
literature. Two of them we want to illustrate in the following: first, we have a look at the cal-
culation by Kogan and Kovner [KK95]. In sec. 2.2 we have a look at a systematic perturbative
evaluation, using the static inter-quark potential as an example, of the projector formulation.
In this section we want to consider an approach that has been pioneered by Kogan and Kovner
[KK95]. They start out by considering expectation values of local operators10 using wave func-
tionals (φ is used to indicate a generic set of fields):

〈O〉 =
∫

Dφ ψ∗[φ]Oψ[φ] =
∫

Dφ Oe−(− ln (ψ∗[φ]ψ[φ])). (2.35)

Thus, they consider expectation values as Euclidean path integrals with an action that is given by
the logarithm of the squared wave function. This point of view will be very useful later on. Since
the only path integrals that can be done exactly are polynomials times a Gaussian, they conclude
that one should restrict oneself to Gaussian wave functionals in the following. Their arguments
that restriction to a Gaussian wave functional is not only done for simplicity reasons are given
in sec. 2.3; since in Yang-Mills theories there are no gauge invariant Gaussian functionals (as
we will discuss at some length in sec. 2.4) Kogan and Kovner [KK95] propose to enforce gauge
invariance as described in eq. (2.1):

ψ[A] =

∫
Dφ exp

{
−1

2

∫
d3x d3yAU a

i (x)(G−1)abij (x,y)A
U b
j (y)

}
, (2.36)

where AU denotes the field A after a gauge transformation U , parametrized by φ. They use a
specific ansatz for the parameters in the Gaussian wave functional:

(G−1)abij (x,y) = δabδij

∫
d3k

(2π)3
eik.(x−y)G−1(|k|) with G−1(|k|) =

{ |k| for |k| > M
M for |k| < M.

(2.37)
This ansatz is inspired by the observation that it has apparently the correct large-|k| behaviour
expected from perturbation theory, and that for small |k| one expects the theory to have a (mass)
gap . Note, however, that this motivation results from the property of G−1 being the equal-time
propagator of the E-field in the unprojected theory. If we restrict ourselves to leading order in
perturbation theory, the non-Abelian character of the gauge group can be neglected, thus the
projection will replace G−1 by its transverse part, and additionally to leading order the correlator
〈Ei(x)Ej(y)〉 is gauge-invariant. Thus at least to leading order in perturbation theory one does
not have to distinguish (for motivational purposes) between the projected and the unprojected
theory. Where the leading order perturbative approximation is not valid (like in the momentum
regions where one would expect a mass gap) the interpretation is also unlikely to be valid. With
this ansatz one can now start the computation: for the variational calculation, we need two
expectation values, the first is the expectation value of 1, i.e. the norm of the projected states,
the second is the expectation value of the Hamiltonian H. Both 1 and H share the property of

10For simplicity, we assume that O will contain only field operators and no momentum operators. This is not a
restriction for the following calculation, since in the effective σ model that will be evaluated along these lines, in
fact only operators O are needed that are constructed from field operators alone.
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being gauge invariant under the permissible gauge transformations (i.e. time-independent ones).
Thus we have the following simplification∫

DA

[∫
DU1 ψ

∗[AU1 ]

]
O
[∫

DU2 ψ[A
U2 ]

]
=

∫
D(U1U

†
2 )

∫
DAψ[A(U1U

†
2 )]Oψ[A], (2.38)

where we have used the gauge invariance of DA and the left invariance of DU . Furthermore
we have assumed that the integration over DU is normalized to one11. Kogan and Kovner now
claim that - having integrated out A, which is possible since the path integral over A is just
Gaussian - the integral over the remaining U = U1U

†
2 can be approximated without harming

gauge invariance. This statement may be a bit misleading, though. It is true that under a
gauge transformation A → AV , U does not change: U → (U1V )(U2V )† = U . However, gauge
invariance means more than that. An analogy from nuclear physics will help here: the Gaussian
gauge-non invariant ansatz is similar to a deformed nucleus in nuclear physics. Such a state can
be projected onto an s-wave by averaging over all rotated versions of the deformed state. We
end up with a state that is itself invariant under rotations; it will be annihilated by the angular
momentum operators, very much like a gauge invariant state is annihilated by the Gauss law
operators. If we now calculate an expectation value of a rotationally invariant operator, we can
hold one of the deformed states fixed, and average only over the directions of the other state.
Alas, also a matrix element of a rotationally invariant operator between two deformed states is
rotationally invariant. This does not state any more than that the coordinate system that we
introduce to perform explicit calculations does not matter. It has nothing to do with the s-wave
character of the states. And so, the correct observation that U does not change under gauge
transformations (since it is nothing else but a distance between ψ[A] and ψ[AU ]) has nothing to
do with the requirement of gauge invariance of the states.
We start now with the computation of the norm Z:

Z = 〈1〉 =
∫

DU
∫

DA ψ∗[AU ]ψ[A] =

∫
DUe(−{ 1

2
Tr(ln (M))+ 1

2
λ[G+SGST ]−1λ}) =

∫
DUe−Γ[U ],

(2.39)
where we have used an obvious matrix-vector notation, and the abbreviations12

Sab(x) =
1

2
tr(τaU †(x)τ bU(x)) , λai (x) =

i

g
tr(τaU †∇iU) , (2.40)

Sabij (x,y) = Sab(x)δijδ(x − y) , Mab
ij (x,y) = [δab + ST ac(x)Scb(y)]G−1(x− y)δij . (2.41)

In this context, tr denotes a colour trace only, and Tr a trace over all three types of indices.
The matrices τ are hermitian generators of (one of) the fundamental representation(s) of SU(N)
normalized as tr(τaτ b) = 2δab, cf. also footnote 12. Eq. (2.39) implies that one can think about
the norm as a partition function of a non-linear σ-model in 3-dimensional Euclidean space with
target space SU(N)/ZN . One should note that the action is non-local and non-polynomial.
The treatment Kogan and Kovner propose is a combination of perturbation theory13, mean-field

11This is equivalent to the property of a projector PP = P.
12A short comment on notation is in order: whereas in the rest of this thesis, generators of SU(N) are indicated

by λ, and the fundamental representation is normalized as tr(λaλb) = 1
2
δab, Kogan and Kovner use a differently

normalized fundamental representation τ , with τaKK95 = 2λa
this thesis.

13For the perturbation theory one has to note that they use what we call ’perturbative scaling’, i.e. they have
put an explicit coupling constant into the covariant derivative, cf. appendixA.5.
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approximation and the renormalization group. They start setting up the perturbation theory by
writing

U(x) = eigφ
aτa/2 (2.42)

and calculate λai and Sab(x) to lowest order14, obtaining λai (x) = −∇iφ
a(x) + O(g), Sab =

δab +O(g). The action Γ[u] reduces then to leading order in g to

1

16

∫
d3x d3y (∇iφ

a(x))G−1(x− y)(∇iφ
a(y)). (2.43)

This looks like a free theory with a non-standard propagator. The treatment may be valid for
the high-momentum modes15. For the low momentum modes, a different expansion may be in
order: by ansatz, G is of short range, and hence for Us that contain only modes below M , the
action is actually local:

M

2g2

∫
d3x∇iU

†(x)∇iU(x) + . . . , (2.44)

where the spatial dependence of Sabij (x,y) in STGS has been neglected, as have been terms of

higher order16 in g. Then Kogan and Kovner rewrite the action for the low modes with the help
of an additional U(1) gauge field, s.t. the target space of the model is no longer SU(N)/ZN , but
rather U(N). The gauge symmetry there reduces the physical manifold to U(N)/U(1) which
is isomorphic to SU(N)/ZN . The idea is now that one can integrate out the high-momentum
modes and thereby produce the running of the parameters of the low-momentum part of the
action; the running is assumed to be identical to the QCD running17. The coupling constant
that enters the low-momentum action would then be αs(M) - the strong coupling constant at
the scale M .
The next part of the calculation consists of calculating

∫ DAψ∗[AU ]Hψ[A], and reexpressing
the result in the high- and low-momentum modes of U , where the high-momentum modes are
treated to lowest order perturbation theory in g. To the order of g that is considered, one obtains
as energy expectation value a sum of terms that do not contain cross terms between high- and
low momentum modes; whereas the high momentum modes give a positive contribution, the low
momentum modes give a negative contribution to the energy. In the region of large M, it is
argued that the low momentum theory is weakly coupled, and therefore its contribution to the
energy can also be calculated in perturbation theory, resulting in a total (high momentum plus
low momentum contribution) energy density

E(M)

V
=
N2 − 1

120π2
M4 , M � ΛQCD. (2.45)

For small M, it might be useful to look at the phase structure of the σ-model, and therefore use
an analogy to classical statistical mechanics: the appearance of the coupling g(M) is very much
like the appearance of the temperature. Thus, one could say that at large M, the coupling is

14A systematic perturbation theory will be set up in sec. 2.2. General expressions for λ and S that are very well
suited to a perturbative expansion beyond lowest order are given in appendixB.

15The decomposition of U into high- and low momentum modes is thought to be permissible due to the gauge-
invariant nature of U .

16Apparently, the term Tr(ln (M)) is meant.
17This has been investigated in [BK99]. It turned out that the β-function is not quite identical to the QCD

β-function (with zero quark flavours) but that (at least to lowest non-trivial order in g) βσ = 12
11
βQCD . This was

interpreted physically in [Brow98].
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small, and thus the system is in the low temperature phase, where the SU(N) symmetry of the
σ-model is spontaneously broken. If one decreases M , thereby increasing g, one could imagine
raising the temperature, and thereby going from the spontaneously broken phase to the disor-
dered, symmetry restored phase. If in this phase transition the internal energy of the σ-model
increases, then we might find a minimum of the total energy density at values away fromM = 0,
since the contribution of the low-momentum modes, to which this discussion applies, to the total
energy is negative. For the rest of the calculation a mean-field approximation is employed, and
one obtains indeed a non-zero value for M . Kogan and Kovner [KK95] then also calculate the
value of the gluon condensate, in order to find a physical interpretation for M , and see that the
calculated gluon condensate is of the same order of magnitude as implied by phenomenological
studies.
To conclude this section, we want to mention that quite some work has emanated from this study
of Kogan and Kovner: there has been some activity to connect the β-function of the σ-model
to that of QCD [Brow98], [BK99], and also instanton effects have been studied [BGKK99]. The
whole idea of considering the projector integral as a new ’effective’ theory has been extended
[Dia98], and also been applied to lattice models (topologically massive compact U(1) theory,
compact QED) [KK96],[KS99] and to fermions (Schwinger model) [BGKK00]. However promis-
ing the idea in itself may be (as indicated by the number of studies alluded to above), one should
also see the shortcomings that are present at least at a technical level: perturbation theory is
used throughout (at least for the high momentum modes). As we will see more clearly in the
next section, things quickly become quite complicated if one wants to go beyond lowest order.
Also the explicit form of the propagator eq. (2.37) was needed in order to ensure a local action
for the low-momentum modes18. As a last point, the claim that gauge invariance was maintained
throughout the calculation is a bit dubious as we have argued in some detail.

It was indeed our visitor of the afternoon who came
bustling in, dangling his glasses more vigorously than
ever, and with a very perturbed expression upon his
aristocratic features.
Sherlock Holmes, The Adventure of the Noble Bachelor

2.2 Perturbative Evaluation of the Projector

In this section we will present the approach of Testa and Rossi to perturbation theory in
the Weyl gauge. We illustrate the general formalism by a calculation of the inter-quark
potential up to O(g4).

In this section we want to illustrate a way of evaluating the projector integral perturbatively
that has been pioneered by Testa and Rossi [TR80a], [TR80b] and appreciate the importance
of the projector for the static quark potential. In other studies one has seen that the projector
basically reinstates the (time-independent) part of the A0 field19 [Rei96] and since static charges
originally couple only to A0 it is quite straightforward to see that without the projector there
would be no quark potential at all. At tree level, the spatial components of Aµ do not contribute

18According to [KK95] one obtains practically the same results if one uses a massive scalar propagator with
mass M . However, this propagator is very similar to the one used, so the statement above is not invalidated.

19thereby bringing us from the Weyl gauge to the Polyakov gauge
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to the interquark potential.
At the heart of the approach is what Testa and Rossi call the Feynman propagation kernel:

K(A2, T/2;A1,−T/2) = 〈A2| exp (−iHT )P|A1〉, (2.46)

where P denotes the projector as outlined above. K has the advantage that it can be expressed
in several different ways: first, it can be decomposed into gauge invariant eigenstates of the
Hamiltonian:

H|ψn〉 = En|ψn〉 (2.47)

with |ψ〉 transforming appropriately with respect to the external charge content (cf.eq. (2.6))
under gauge transformations. Using them we can write K as

K(A2, T/2;A1,−T/2) =
∑
n

e−iEnTψ∗
n[A2]ψn[A1], (2.48)

where the sum n extends over all physical states. In order to construct the appropriate path
integral representation it is more useful, however, to consider first

K̃(A2, T/2;A1,−T/2) =
∑
n′
e−iEnTψ∗

n′ [A2]ψn′ [A1], (2.49)

where n′ now extends over the complete Hilbert space. The path integral representation of this
can be given straightforwardly as

K̃(A2, T/2;A1,−T/2) =
∫ A(t=+T/2)=A2

A(t=−T/2)=A1

DA eiSY M . (2.50)

Note that due to gauge invariance (at least w.r.t. time-independent gauge transformations) of
the action and the path integral measure, we have

K̃(A2, T/2;A1,−T/2) = K̃(AV
2 , T/2;A

V
1 ,−T/2), (2.51)

where V is a time-independent gauge transformation20. This will be useful later on. If one uses
eq. (2.46) as a starting point, one sees that one can implement the restriction to gauge invariant
states by performing the projection procedure at any one time slice; it is particularly convenient
to do it at t = −T/2 or t = +T/2. Note that in the case of presence of external charges, the wave
functionals with the appropriate transformation behaviour ψn will carry spin indices, whereas
the ψn′ that span the complete Hilbert space don’t21; thus K carries a set of initial spin indices

20This property of K̃ has the same origin as the invariance of U under gauge transformations in sec. 2.1.6 as one
can see from the alternative representation of K̃ as K̃ = 〈A2| exp (−iHT )|A1〉 .

21Perhaps it is obvious to the reader, but let us spend a footnote on the topic of spin indices. In sec. 2.1.2, we
discussed one way of attaching spin indices to Yang-Mills wave functionals. There is, however, a second possibility
that is even simpler. Since the Hamiltonian commutes with Γa, it commutes also with the Casimir operator(s),
like ΓaΓa. Thus, we can classify the eigenstates of the Hamiltonian by the eigenvalues of the Casimir operators
and of the Γas that span the Cartan subgroup. In other words, at every point in space the eigenstates of the
Hamiltonian carry a specific representation of SU(N). For simplicity we now restrict ourselves to SU(2), where
we have only one operator in the Cartan subgroup, but it should work identically for SU(N>2). In SU(2) the
states will be, at every point in space, in an eigenstate of ΓaΓa (eigenvalue j(j + 1)) defining the representation,
and also in an eigenstate of Γ3 (eigenvalue m = −j . . . j); thus if we concentrate on the point x0 for a moment,
the state looks like |x0; j,m〉 with ΓaΓa|x0; j,m〉 = j(j + 1)|x0; j,m〉 and Γ3|x0; j,m〉 = m|x0; j,m〉. Γ1, Γ2 only
perform linear combinations of states with the same j value and different m values; thus for a state carrying a
specific representation of SU(2) at a point in space, the Gauss law operators act like the matrices of this specific
representation. Thus, the spin labels are nothing more (in the case of SU(2)) than the eigenvalues m of Γ3.
Sometimes it is convenient to make them explicit, as in the case of K if one knows beforehand which representation
one wants at which spatial point, and sometimes one leaves them rather implicit as in the case of K̃.
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{si} and final spin indices {sf}. Let λ(j) denote the generators in the appropriate representation
j for the external charges (fundamental, adjoint, etc) that are localized at the points xj ; then
the relation between K and K̃ can be written as

K
{j}
{s2}{s1} (A2, T/2;A1,−T/2) =

∫
G0

Dh

∏

j

eigλ
(j)
a ha(xj)



{s2}{s1}

K̃
(
AUh

2 , T/2;A1,−T/2
)
,

(2.52)
where h denotes the gauge angles, i.e. the parameters of the gauge transformation. Dh includes
the corresponding Haar measure. It will be further discussed in appendixB. G0 denotes the
range of integration: only the topologically trivial sector of gauge transformations is integrated
over.

2.2.1 β-Function in this Approach

In the following we have the very modest goal of calculating the β-function to lowest order, since
we only want to give an impression of how one can evaluate the projector perturbatively. We
follow mainly [TR80b] in our presentation. It appears to be useful to extract the β-function
from the perturbative evaluation of the interquark potential to O(g4). We do this by considering
the problem of two static spins evolving from time −T/2 to T/2 and computing the Feynman
propagation kernel at imaginary time from zero field to zero field; since at g = 0, the singlet and
(N2−1)-plet states are degenerate, we have to take them both into account as the lowest energy
states22. Using the abbreviation χn;sr = ψn;sr[A = 0], where r, s are spin labels, we write K as
a sum over the N2 lowest states that are degenerate at g = 0:

Ks2r2;s1r1(0,0,−iT ) ≈
N2−1∑
n=0

e−EnTχn;s2r2χ
∗
n;s1r1 . (2.53)

In order to be able to read off En conveniently at the end of the calculation, we perform a Taylor
expansion of the exponential23, thus

Ks2r2;s1r1(0,0,−iT ) ≈
N2−1∑
n=0

χn;s2r2χ
∗
n;s1r1 − T

N2−1∑
n=0

Enχn;s2r2χ
∗
n;s1r1 + T 2 × . . . . (2.54)

Next, we expand both En and χ in powers of g (assuming En(g = 0) = 0); actually, here we can
expand them24 in powers of g2. Using the notation

En = g2ε(2)n + g4ε(4)n + . . . , χn;s2r2 = χ(0)
n;s2r2 + g2χ(2)

n;s2r2 + g4χ(4)
n;s2r2 + . . . (2.55)

22In the end we want to send T → ∞, so only the states of lowest energy will survive.
23This can be done since the radius of convergence of the exponential function is infinity; here, it is not claimed

that it is a good approximation, only that one can read off the energy from the term linear in T.
24For En one could argue that for odd powers of g one would need an odd number of the three gluon vertices,

which in the end would result in particle production from the initial to the final state; however, in perturbative
expressions for the energy, the initial and final states are always the same (with a fixed number of gluons), and
hence operators that comprise particle production don’t contribute to perturbative corrections of En. For χ the
reason lies in the fact that we need ψ[0]; if we start from the perturbative vacuum (that is very much like the QED
vacuum), and we want an odd power in g in the perturbed wave functional, we have to admix a wave functional
that is odd in A since otherwise the matrix element of the three-gluon vertex will be zero; however, an odd wave
functional is zero for A = 0, thus χ obtains corrections only of even power in g.
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and the relation (to be verified later on in eq. (2.79))

N2−1∑
n=0

χ(0)
n;s2r2χ

(0)∗
n;s1r1 = δs2s1δr2r1 , (2.56)

we obtain (abbreviating the sets of spins (s2, r2) by a2, and (s1, r1) by a1)

Ks2r2;s1r1(0,0,−iT )
≈ δs2s1δr2r1

+g2
∑
n

{
χ(0)
n;a2χ

(2)∗
n;a1 + χ(2)∗

n;a2χ
(0)
n;a1 + g2

(
χ(2)
n;a2χ

(2)∗
n;a1 + χ(4)

n;a2χ
(0)∗
n;a1 + χ(0)

n;a2χ
(4)∗
n;a1

)
+ . . .

}
−T

∑
n

g2
{
ε(2)n χ(0)

n;a2χ
(0)∗
n;a1 + g2

(
ε(4)n χ(0)

n;a2χ
(0)∗
n;a1 + ε(2)n

(
χ(2)
n;a2χ

(0)∗
n;a1 + χ(0)

n;a2χ
(2)∗
n;a1

)
+O(g4)

)}
.

+O(T 2) (2.57)

2.2.2 Perturbative Evaluation of K

The program for the rest of the section is to compute K from the path integral representation
in powers of g, ignoring all terms that are (at least in the limit of large T) not proportional to
T for A1 = 0,A2 = 0. We start out by computing K̃ for arbitrary A1,A2, since if we compute
K from K̃ we have to sum up all K̃ that have as final configuration a pure gauge potential, cf.
eq. (2.52). We consider the action25 in Weyl gauge and decompose it w.r.t. a free part and the
interacting part:

S = S0 + SI with

S0 = −1

2

∫ T/2

−T/2
dt

∫
d3x

(
Ȧa
i Ȧ

a
i + (∇iA

a
j )(∇iA

a
j )− (∇jA

a
i )(∇iA

a
j )
)
, (2.58)

SI =
g

2
fabc

∫ T/2

−T/2
dt

∫
d3x (∇iA

a
j −∇jA

a
i )A

b
iA

c
j −

g2

4

∫ T/2

−T/2
dt

∫
d3x fabcfadeAb

iA
c
jA

d
iA

e
j .

(2.59)

After introducing sources J, we can decompose K̃ into a free part K̃0 (which can be explicitly
given in terms of the sources J, and the initial and final fields A1,A2), and the interaction part
that can be written with the help of derivatives w.r.t. the sources:

K̃ = eSI [− δ
δJ

]

∫ A(t=+T/2)=A2

A(t=−T/2)=A1

DA eS0−J.A = eSI [− δ
δJ

]K̃0(A1,A2;T ;J). (2.60)

The free part will be computed as follows: decompose A into a classical part that satisfies the
classical equations of motion Acl with the boundary conditions Acl(t = −T/2) = A1,Acl(t =
+T/2) = A2, and a quantum part a with the boundary conditions a(t = −T/2) = a(t =
+T/2) = 0. The action S0, being quadratic in A, is then just a sum of a classical part and the
quantum part; the path integral for the quantum part can then be performed in a straightforward
manner:

K̃0(A1,A2;T ;J) = eS0(A2,A1,T )−J.Acl

∫ a(t=+T/2)=0

a(t=−T/2)=0
Da eS0[a]−J.a. (2.61)

25Since we are interested in K for imaginary times we use already the Wick-rotated action.
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We obtain for Acl:

Acl(x, t) =

∫
d3y

d3p

(2π)3
eip.(x−y)

{(
−sinh (|p|(t− T/2))

sinh (|p|T ) PT (p)− t− T/2

T
PL(p)

)
A1(y)

+

(
sinh (|p|(t+ T/2))

sinh (|p|T ) PT (p) +
t+ T/2

T
PL(p)

)
A2(y)

}
.

(2.62)

PT ,PL denote the transversal and longitudinal projectors respectively. Note that even for the
non-interacting theory Acl will contain longitudinal contributions if the initial or final configu-
rations contain them. Having obtained Acl we can also compute the classical action:

Sclass
0 = −1

2

∫
d3p

(2π)3

{
1

T
(Ã2 − Ã1)P

L(Ã2 − Ã1) (2.63)

+|p|
(
coth (|p|T )(Ã1P

T Ã1 + Ã2P
T Ã2)− 2

sinh (|p|T )Ã1P
T Ã2

)}
,

where Ã denotes the Fourier transform of A and in eq. (2.63) depends on p.
Now we want to deal with the quantum fluctuations. The path integral can be performed by
completing the square. One can split a into its longitudinal and transversal components and
thus has to determine the Green’s function for (−d2/dt2) and for (−d2/dt2+p2) (as we integrate
over the a modes in Fourier space). Here it is important to realize that we need the Green’s
function for a finite time domain; a possible method of construction can be found in [Kle93] and
one obtains for the complete (longitudinal and transversal) Green’s function:

Dij(x, t;y, t
′) =

∫
d3p

(2π)3
eip.(x−y)

(
Gp(t, t

′)PTij +G0(t, t
′)PLij

)
(2.64)

with

Gp(t, t
′) =

1

|p| sinh (|p|T ) ×
{
Θ(t− t′) sinh

(
|p|(T

2
− t)

)
sinh

(
|p|(t′ − T

2
)
)

(2.65)

+Θ(t′ − t) sinh
(
|p|(T

2
− t′)

)
sinh

(
|p|(t− T

2
)
)}

,

G0(t, t
′) = lim

p→0
Gp(t, t

′) =
1

T

{
Θ(t− t′)(

T

2
− t)(t′ − T

2
) + Θ(t′ − t)(

T

2
− t′)(t− T

2
)

}
. (2.66)

With these results we can write the free part of the unprojected Feynman propagation kernel as

K̃0(A2,A1;T ;J) =

∫ A(t=+T/2)=A2

A(t=−T/2)=A1

DA eS0[A]−A.J

= N e
1
2

R
d3xd3y (A2,i(x)χ

ij
1 (x,y)A2,j (y)+A1,i(x)χ

ij
1 (x,y)A1,j(y)+A1,i(x)χ

ij
2 (x,y)A2,j(y))

×e
R
d3xd3y dt (A1,i(x)g

−
ij(x,y)Jj(y,t)−A2,i(x)g

+
ij(x,y)Jj(y,t)) (2.67)

×e 1
2

R
d3xd3y dt dt′ Ja

i (x,t)Dij (x,t;y,t
′)Ja

j (y,t
′)

with

χij1 (x,y) = −
∫

d3p

(2π)3

{
|p| coth (|p|T )PTij +

1

T
PLij

}
, (2.68)
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χij2 (x,y) = 2

∫
d3p

(2π)3

{
|p| 1

sinh (|p|T )P
T
ij +

1

T
PLij

}
, (2.69)

g±ij(x,y) =

∫
d3p

(2π)3

{
sinh |p|(t± T

2 )

sinh |p|T PTij +
t± T

T
PLij

}
. (2.70)

From here on, we can use the fact that we want to use a special system, namely one where A1 =
A2 = 0 in the projected propagation kernel; thus in the unprojected kernel, we have to put in
initial and final conditions that are pure gauge fields. One could choose A1 = 0,A2 = − i

gU
†
h∇Uh

(corresponding to a projector that is applied to the final state); however, in the following we want
to be a bit more flexible, and use eq. (2.51) with V = eiρghaλ

a
[LMR84], so that by choosing ρ = 0,

we only integrate, as before, over the final configuration, whereas for ρ = −1 we integrate over
the initial configuration. With the results from the appendix B, we can write AV

1 ,A
UV
2 in terms

of the matrix26 F and ∇h:
(AV

1 )
a = ρ(δab + Fab(ρh))∇hb, (2.71)

(AUV
2 )a = (1 + ρ)(δab + Fab((1 + ρ)h))∇hb. (2.72)

We insert these definitions into eq. (2.67) to obtain the exponentiated action for the projector
field, cf. eq. (2.52). We see that the free Yang-Mills part with definite boundary conditions has
turned into a non-polynomial interacting theory for the projector field albeit in one dimension
less, since h does not depend on time. The integration measure is not flat, however, but one
has to use the Haar measure. A rather explicit expression for the Haar measure is given in the
appendix, eq. (B.16). In order to get a handle on the h integration, we again introduce a source
term − ∫ d3x {ha(x)fa(x)} and rewrite F with the help of functional derivatives27 w.r.t. f .
However, before one can perform the usual completion of squares to perform the path integral28

over h, one has to realize that there are other terms besides the newly introduced source term
that are linear in h, resulting from the terms Aclass

1,2 .J. Having done all this, we end up with
terms that are

• quadratic in either J or f : they give the AA- or hh propagators, respectively

• a term that is linear in f and J; this term gives rise to a mixed propagator

• terms linear in J but non-linear in f - they give rise to new vertices

• terms independent of both J and f : they stem from the three- and four-gluon vertices of
the original Yang-Mills action, the Haar measure, and those parts of the classical action
that contain F s.

We use as notation for the propagators: 〈Aa
i (x)A

b
j(y)〉 for the AA-propagator, correspondingly

for the others, and thus end up with the perturbative expansion for the projected Feynman
propagation kernel (Einstein summation convention even for continuous indices)

K(A2 = 0,A1 = 0,−iT )s2,r2;s1,r1
= N

{
eSI [− δ

δJ
]e
S′
I [J,− δ

δf
]
e
Sm[− δ

δf
]
(
e
−igλas δ

δf
as
xs

)
s2s1

(
e
−igλ̄ar δ

δf
ar
xr

)
r2r1

e
1
2
fax 〈haxhby〉fby+fax 〈haxAb

j,y〉Jb
j,y+

1
2
Ja
i,x〈Aa

i,xA
b
j,y〉Jb

j,y

}
, (2.73)

26For convenience we give here the definition of F that is also given in appendix B: F = (iγ)−1(eiγ − iγ − 1)
with γab = ifabchc.

27All the interactions of the projector field come into play because of F .
28In this step one ignores cavalierly that h is a compact variable.
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where the complete expressions for the propagators and the interaction parts are given in ap-
pendix B. Here, λ, λ̄ denote the representations appropriate for the two static sources. In the
following we will be concerned with the static inter-quark potential to O(g4); this will greatly
simplify matters for the following reasons: first, since we are only interested in the potential, we
are interested only in that part of K that depends on both xs and xr; thus we need only consider
the part of eq. (2.73) that contains at least one derivative w.r.t. f(xs) and one w.r.t. f(xr);
since both terms contain a factor of g, we only have to consider interaction terms up to O(g2).
Therefore, we expand Sm, S

′
I in powers of g; but now comes into play that we are interested

also only in contributions that are, in the large-T limit, proportional to T. This allows to drop a
number of terms, especially the complete contribution from the measure, and we don’t have to
consider terms arising from δ

δf(xs)
δ

δf(xs)
δ

δf(xr)
δ

δf(xr)
. These insights can be condensed into using

a simplified S′
I :

S′
I =

g

2

∫
d3x d3y hcxf

cab(∇i
xh

b
x)

∫
dt

∫
d3p

(2π)3
eip.(x−y)

{
PTij

(
(1 + 2ρ)

2

sinh (|p|t)
sinh (|p|T/2) (2.74)

+
(1 + 2ρ+ 2ρ2)

2

cosh (|p|t)
cosh (|p|T/2)

)
+ PLij

(
1

2
(1 + 2ρ+ 2ρ2) +

t

T
(1 + 2ρ)

)}
Jaj (x, t).

For the rest of this section, it will be convenient to rewrite the different parts of the action in a
form that makes the structures apparent. For this purpose we introduce vertices and a super-
index notation: a, b, c, . . . are supposed to contain all appropriate indices, i.e. position label and
colour index and sometimes - when used on a J source - also a spatial index. This condensed
notation is explain further in app.B.5.3. Then

SI [− δ

δJ
] = −gGabc

1

(
δ

δJa

)(
δ

δJb

)(
δ

δJc

)
+ g2Gabcd

2

(
δ

δJa

)(
δ

δJb

)(
δ

δJc

)(
δ

δJd

)
,

(2.75)

S′
I [J,−

δ

δf
] = gJaHa;bc

1

(
δ

δf b

)(
δ

δf c

)
, (2.76)

S0 =
1

2
fa〈hahb〉f b + fa〈haAb〉Jb + 1

2
Ja〈AaAb〉Jb. (2.77)

With this notation29 we can write the part of Ks2s1;r2r1 we are interested in as30[
δs2s1δr2r1

− g2(λass2s1λ̄
ar
r2r1)

δ

δfasxs

δ

δfarxr

− g4(λass2s1λ̄
ar
r2r1)

δ

δfasxs

δ

δfarxr

(Gabcd
2

δ

δJa
δ

δJb
δ

δJc
δ

δJd
+

1

2
G
abc
1 G

def
1

δ

δJa
δ

δJb
δ

δJc
δ

δJd
δ

δJe
δ

δJf

−3Gdbc
1 H

d;ef
1

δ

δJb
δ

δJc
δ

δf e
δ

δf f

]
eS0 . (2.78)

This expression still contains terms that are not proportional to T, but these will be neglected
subsequently wherever they appear explicitly. We will now discuss the different orders in g2

individually.
29The complete expressions for the different contributions to the action can be found in appendixB.5.2.
30The first term comes from setting g = 0; then (eig...)s2s1 = δs2s1 etc.; please note also, that we have dropped

the normalization constant. We will discuss the normalization after eq. (2.86).
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2.2.3 O(g0) Contribution

To this order, we see that

K(A2 = 0,A1 = 0,−iT )O(g0)
s2r2;s1r1 = δs2s1δr2r1 (2.79)

(the restriction to terms proportional to T obviously does not apply here) thereby proving the
claim made in eq. (2.56).

2.2.4 O(g2) Contribution

The O(g2) contribution to K that is proportional to T is given by

KO(g2)
s2r2;s1r1 = g2 (λas)s2s1

(
λ̄ar
)
r2r1

〈has(xs)har (xr)〉 = −Tg2 (λa)s2s1
(
λ̄a
)
r2r1

1

4π|xs − xr| . (2.80)

One can represent this also graphically as

xr xs .

By comparing eq. (2.80) with eq. (2.57) we can obtain further information:

∑
n

ε(2)n χ(0)
n;s2r2χ

(0)∗
n;s1r1 = Tg2

∑
a

(λa)s2s1
(
λ̄a
)
r2r1

1

4π|xs − xr| . (2.81)

In the following we want to assume that the charges are defined in the fundamental representation;
then we can reorder the indices on the RHS with the help of the Fierz identity if we note that(

λ̄a
)
r2r1

= − (λa∗)r2r1 = − (λa)r1r2 (2.82)

since the λs are hermitian. Then we can use the Fierz identity31

(λa)s2s1 (λ
a)r1r2 =

1

2

(
1− 1

N2

)
δs2r2δs1r1 −

1

N
(λa)s2r2 (λ

a)s1r1 . (2.83)

This is just the decomposition into singlet and (N2 − 1)-plet. Since the latter states are en-
ergetically degenerate, this allows an almost direct identification of the energies. One has to
give a little thought to the distribution of constant factors between the energies and the wave
functions. Of course, one will have distributed correctly if the wave functions are normalized (i.e.

tr(χaχb∗) = δab, hence χn=0;sr = χsingletsr = δsr/
√
N , χn=1...N2−1;sr = χ

(N2−1)-plet
n;sr =

√
2Lnbλ

b
sr

where L is a unitary matrix and n labels the different (N2 − 1)-plet wave functions). Thus the
Fierz transform is now written most suggestively as

(λa)s2s1 (λ
a)r1r2 =

1

2

(
N2 − 1

N

)
δs2r2√
N

δs1r1√
N

− 1

2N

(√
2 (λa)s2r2

)(√
2 (λa)s1r1

)
. (2.84)

31e.g. eq. (2.45) in [AR95]; note that the λ matrices are here normalized to 1/2 instead of 2 as in [AR95].
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Hence the energies are given by32

ε
(2)
singlet = −N

2 − 1

2N

1

4π|xr − xs| , (2.85)

ε
(2)
(N2−1)-plet =

1

2N

1

4π|xr − xs| . (2.86)

Also, one can obtain another piece of information: for the potential, we have considered only
the parts of K that are proportional to T ; let us now consider the part that is proportional to
T 0g2. For this it is important that we have used a rather implicit normalization, namely w.r.t.
K without external static sources33 [LMR84]. For this reason closed loops that are not connected
to the external charges at all can be left out of the considerations. Thus, the only terms we have
to consider are source self-energies. However, the only term that involves at least one source and
no hh-propagator (which would make it automatically ∝ T ), is (up to constants)

〈har (xr)Ab
i (x, t)〉〈Ac

j(y, t
′)Ac

k(z, t
′′)〉(G1)

bcd
ijk(x,y, z, t, t

′, t′′). (2.87)

However, Gbcd
1 ∝ f bcd whereas 〈AcAd〉 ∝ δbc, thus even this term vanishes. Therefore, we

conclude that the contribution ∝ g2T 0 to K is zero. But then, we can conclude from eq. (2.57)
that

N2−1∑
n=0

(
χ(0)
n;s2r2χ

(2)∗
n;s1r1 + χ(2)

n;s2r2χ
(0)∗
n;s1r1

)
= 0. (2.88)

As it stands this equation is not directly useful. However, we can extract with a further argument
some information that is very important for the interpretation of the O(g4) contribution (that is
also proportional to T) to K: since we are studying a gauge-invariant system, the perturbations

should not mix the singlet and the (N2 − 1)-plet wave functions. Therefore, (with χ
(0)
0 being the

unperturbed singlet wave function)

χ
(2)
0 = Cχ

(0)
0 , (2.89)

where C is a constant. Then we can decompose eq. (2.88) into a singlet part, and a sum over the
(N2 − 1)-plet:

(C + C∗)
1

N
δs2r2δs1r1 +

N2−1∑
n=1

(
χ(0)
n;s2r2χ

(2)∗
n;s1r1 + χ(2)

n;s2r2χ
(0)∗
n;s1r1

)
= 0. (2.90)

The (N2 − 1)-plet wave functions are linear combinations of the generators in the fundamental
representation; therefore they are traceless. Thus by multiplying eq. (2.90) with δs2r2δs1r1 and
summing over s2, s1, r2, r1, the latter part containing the (N2−1)-plet will vanish, and we obtain
(C + C∗) = 0. Thus, eq. (2.88) simplifies to

N2−1∑
n=1

(
χ(0)
n;s2r2χ

(2)∗
n;s1r1 + χ(2)

n;s2r2χ
(0)∗
n;s1r1

)
= 0, (2.91)

where the sum runs only over the (N2 − 1)-plet wave functions. This and the fact that the
(N2 − 1)-plet states are energetically degenerate allows to simplify drastically the Tg4 part of

32We see that the inter-quark potential is (to lowest order in g) proportional to the hh-propagator.
33One should keep in mind that we have set En(g = 0) = 0, which is consistent with this normalization.
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eq. (2.57), namely

N2−1∑
n=0

{
ε(4)n χ(0)

n;s2r2χ
(0)∗
n;s1r1 + ε(2)n

(
χ(2)
n;s2r2χ

(0)∗
n;s1r1 + χ(0)

n;s2r2χ
(2)∗
n;s1r1

)}
. (2.92)

We consider the second part of this and decompose it into singlet and (N2 − 1)-plet parts

ε
(2)
singlet

(
χ
(2)
0;s2r2

χ
(0)∗
0;s1r1

+ χ
(0)
0;s2r2

χ
(2)∗
0;s1r1

)
+ ε

(2)
(N2−1)-plet

N2−1∑
n=1

(
χ(2)
n;s2r2χ

(0)∗
n;s1r1 + χ(0)

n;s2r2χ
(2)∗
n;s1r1

)
. (2.93)

But we have shown above that both terms that are multiplied here by energy factors vanish
individually, therefore, this part of the Tg4 part vanishes, and the complete Tg4 contribution
reads now

N2−1∑
n=0

(
ε(4)n χ(0)

n;s2r2χ
(0)∗
n;s1r1

)
. (2.94)

In other words, if the T (g4) contribution has the same spin structure as the T (g2) contribution,
then the singlet and the (N2−1)-plet energies given in eqs. (2.85, 2.86) are both merely multiplied
by a common factor to give the energies up O(g4).

2.2.5 O(g4) Contribution

We now turn to the computation of the T (g4) part of K. Its form was already given above in
eq. (2.78). When one performs all the derivatives, one realizes that the term containing G1H1

actually corresponds to two distinct diagrams; fortunately, one of them vanishes, since it con-
tains Habc

1 〈hbhc〉 and Habc
1 is antisymmetric in the colour indices b, c, but the hh-propagator is

symmetric. If one sums up all the identical terms, one ends up with

[
δs2s1δr2r1

− g2(λass2s1 λ̄
ar
r2r1)〈hasxs

harxr
〉

− g4(λass2s1 λ̄
ar
r2r1)

{
G
abcd
2 〈harxr

Aa〉〈hasxs
Ab〉〈AcAd〉

+18Gb1c3c4
1 G

b2b3b4
1 〈harxr

Ab1〉〈hasxs
Ab2〉〈Ab3Ac3〉〈Ab4Ac4〉

−12(Gdbc
1 H

d;ef
1 〈hfAb〉)(〈harxr

he〉〈hasxs
Ac〉+ 〈hasxs

he〉〈harxr
Ac〉)

}]
.

(2.95)

One can also give a diagrammatic representation of the O(g4) contribution to the above expres-
sion:
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xr xsG2
xr xsG1 G1 G2

xr xsH1

(a) (b) (c)

,

where the propagators are represented by

〈hahb〉 〈haAb〉 〈AaAb〉

.

One can compute now the individual diagrams, which is quite tedious. Also, one is confronted
with a subtlety, since the restriction of K to the lowest N2 states is valid only in the large-T
expansion. One can read off the energies, however, in the construction we’ve been following so
far only if one performs a Taylor expansion in T. Thus we have to perform, somehow, the large-T
limit and at the same time perform a Taylor expansion in T. This is not so difficult in practice,
since in the end, we only want to get rid of terms that are exponentially damped in T. We do
this by replacing sinh (αT ), cosh (αT ) by 1

2e
αT if α is strictly positive, otherwise we replace them

by their definition in terms of exponentials. If one works along these lines, it turns out that all
terms that have an exponential dependence on T are damped, and thus we set them identically
to zero. After one has done this, one ends up with integrals that depend on two momenta. If one
expands the integrands w.r.t. the ratio of the absolute values of the two momenta involved34,
one obtains for all three diagrams a result of the structure

−Nδasar
4π|xs − xr| ×

∫
dq

q
. (2.96)

These integrals are obviously UV divergent (which is what we were looking for), but also IR
divergent, but this is an artifact of the expansion; one has to introduce an IR cutoff of the
same order of magnitude35 as 1/|xs − xr|. For definiteness we take the IR cutoff identical to
1/|xs − xr|. If one adds the three diagrams together (with their respective multiplicities that
are given already in eq. (2.95)) one sees that the ρ dependence (that was introduced artificially
in eqs. (2.71, 2.72) cancels (the diagram involving G2 is independent of ρ whereas the other two
have a ρ dependence of the form ρ(1 + ρ)), and one ends up with

Ks2r2;s1r1 =

[
δs2s1δr2r1 − g2T

(
λass2s1 λ̄

ar
r2r1

) δasar

4π|xs − xr|
{
1 +

g2

(4π)2
11N

3
ln
(
(ΛUV |xs − xr|)2

)}]
.

(2.97)
34In fact, one of the diagrams gives such a result after we have dropped the terms exponentially damped in T

without further expansion.
35We are only interested in the UV divergence. Thus, we split the integral over the loop momentum into a part

where the absolute value of the loop momentum q is larger than the absolute value of the other momentum (this
part will carry the UV divergence) and one where it’s smaller. We will drop the latter contribution since it is not
UV divergent. We then expand the integrand of the remaining integral in powers of the ratio of the external to
the loop momentum, and keep only the leading term. The resulting integral will be IR divergent. However, the
expansion is only valid for the loop momentum very much larger than the external momentum. The integral over

the external momentum produces the Coulomb potential, since it is of the form
R

d3p
(2π)3

eip.(xr−xs) 1
p2 and will be

dominated by |p| ≤ 1/|xr − xs|. Thus, we take as an IR cutoff 1/|xr − xs| for the loop integral.



Chapter 2. Projector on Physical States 55

Due to the structure of K when expressed in terms of wave functions and eigenenergies (as
indicated above), both the singlet and the (N2−1)-plet energy are multiplied by the same factor.
However, we can also express K in terms of a renormalized coupling constant, i.e. instead of

En = g2ε(2) + g4ε(4) + ... (2.98)

we want to absorb the divergent terms into a renormalized coupling:

En = g2Rε
(2). (2.99)

From this we obtain

g2R = g2
(
1 +

g2

(4π)2
11N

3
ln
(
(ΛUV |xs − xr|)2

))
(2.100)

or, if we now express the bare coupling g in terms of the renormalized one:

g2 =
g2R

1 +
g2R

(4π)2
11N
3 ln

(
(ΛUV |xs − xr|)2)

) , (2.101)

which is just what one would expect if gR is the renormalized coupling constant at the momentum
scale µ = 1/|xs − xr|.
The renormalized coupling is related to the β-function (e.g. [PS95]) as

β = µ
∂gR
∂µ

, (2.102)

where we take the scale µ = 1/|xs − xr|. With this definition the standard one-loop β-function
of Yang-Mills theory is reproduced by eq. (2.100):

β = − 1

(4π)2
11N

3
g3R. (2.103)

2.2.6 Summary

We have seen that one can compute the β-function to lowest order in perturbation theory within
the present framework. If one chooses the Weyl gauge, one sees that without a projector, there is
no potential between static charges, which however does not come as a surprise since the charges
are only coupled via the projector to the Yang-Mills field. Beyond one loop the formalism becomes
very tedious, since the number of diagrams explodes due to the non-polynomial action for the
projector field. This calculation thus shows how very much more complicated perturbation theory
becomes if one includes terms beyond the lowest order. This is interesting since it indicates the
order of complexity one is faced with e.g. if one wants to improve the calculation of [KK95].

2.3 Mean Field Theory - General Ideas

In this section we will lay the ground for the rest of this chapter. We will start with the
most general Gaussian wave functional, interpret the parameters, and demonstrate the
important property of factorizability. We will then consider the energy of such a state,
and by comparing with the works of Cornwall et al [CJT74] will be able to see to which
approximation in field theory the Gaussian approximation corresponds.
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2.3.1 Introduction

Whereas the preceding section focused on the Feynman propagation kernel, we now want to
return to the main line of thought of this thesis, namely to the usage of wave functionals. In the
section on the projector as an effective field theory we have already once considered the class
of wave functionals that will be the main tool in the rest of this chapter, the class of Gaussian
wave functionals. For variational calculations it is of course mandatory that we can calculate
matrix elements like the expectation value of the Hamiltonian analytically, since these expecta-
tion values then depend on the parameters of the wave functional, and may have to be minimized
by an appropriate choice of the parameters. If we had to perform e.g. a lattice calculation for
evaluation of the matrix elements only (and a new one for every changed parameter set) the
situation would be computationally quite hopeless. This fact restricts us in the choice of possible
wave functionals to polynomials times Gaussians. As we have seen in the introductory chapter,
free field theories have as their ground states Gaussian wave functionals. Thus, the question
suggests itself whether the choice of Gaussian wave functionals is physically plausible and not
only a mathematical convenience. Kogan and Kovner [KK95] have argued vividly in favour of
the physical motivation of a Gaussian ansatz. They argue that in the cases where a Gaussian
wave functional was successfully applied (they list self-interacting scalar theories and BCS ground
states), the physics is dominated by a single condensate - a situation that apparently is suggested
by sum rules also for the case of QCD.
After this motivation for the usage of Gaussian wave functionals we now consider the Gaussians
in more detail. The most general Gaussian wave functional is given by (cf. e.g. [KL95])

ψ[A] = N exp

{
−
[(

Aa
i (x)− Āa

i (x)
)(1

4
(G−1)abij (x,y) − iΣabij (x,y)

)(
Ab
j(y) − Āb

j(y)
)]}

,

× exp
{
iēai (x)

(
Aa
i (x)− Āa

i (x)
)}
, (2.104)

where we have used the Einstein summation convention (cf. app.A.2), N is a normalization
constant, and all parameters (i.e. G−1,Σ, Ā, ē) are purely real. We have used a most ex-
plicit notation in eq. (2.104), which will often be too clumsy for our purposes. Usually we will
combine all the indices (colour-, spatial-, position-) into one super-index, and use the Einstein
summation convention also for continuous indices like x. In this compact notation, eq. (2.104)
reads ψ[A] = N exp

{− [(Ai − Āi)
(
1
4(G

−1)ij − iΣij
)
(Aj − Āj)

]
+ iēi(Ai − Āi)

}
. The physical

interpretation of the parameters becomes clearer if we compute the following expectation values:

〈Aa
i (x)〉 = Āa

i (x) (2.105)

〈Πa
i (x)〉 = ēai (x) (2.106)

〈Aa
i (x)A

b
j(y)〉 = Gabij (x,y) + Āa

i (x)Ā
b
j(y) , (2.107)

〈Πa
i (x)Π

b
j(y)〉 =

1

4
(G−1)abij (x,y) + 4Σac1ii1

(x,x1)G
a1b1
i1j1

(x1,y1)Σ
b1b
j1j

(y1,y) (2.108)

+ēai (x)ē
b
j(y).

Later on, we are frequently going to use the notation 〈AB〉c = 〈AB〉 − 〈A〉〈B〉 to denote the
’connected’ part of a matrix element. With this notation, we see that Gabij (x,y) = 〈Aa

i (x)A
b
j(y)〉c.

We therefore can interpret Ā, ē as condensates, and G as equal-time AA correlation function.
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The interpretation of Σ is unfortunately not so transparent, but in the formalism of the time-
dependent variational principle (where all the parameters of the Gaussian carry an additional
time-dependence) we will be able to interpret it as the conjugate momentum to G, cf. sec. 3.2
and e.g. [KL95]. The appearance of apparently finite, non-vanishing expectation values of
obviously gauge-dependent operators demonstrates quite clearly36 the gauge dependence of the
wave functionals. One last comment should be made w.r.t. normalizability of the wave functional.
We will always assume in the following that the wave functional can be properly normalized,
although there are situations where this might not be the case. This occurs when G−1 contains
zero modes, i.e. there exist functions fai (x), s.t. G

−1
ij fj = 0. Then the integral along the direction

spanned by fai (x) will give a divergent contribution to the path integral and the norm of the
state will diverge. Usually, the existence of such zero modes is even required by Gauss’ law as
we will see in the next section. This will however not be a problem if we consider operators that
are not sensitive to these modes, since then the divergences contained in their expectation values
will be the same as the divergence of the norm; then we can drop both divergencies, and pretend
that we deal with a properly normalized state, but usually a case-by-case analysis is required
(see also footnote 36). One could argue that the avoidance of such zero modes is a virtue of the
procedure that we will use later on, utilizing so-called deformed states, i.e. states which are not
gauge invariant, and thereby regularizing the divergences due to the flat directions associated
with gauge invariance; subsequent projection then makes matrix elements independent of the
gauge variant parts. This procedure need not be in contradiction to the discussion of footnote 36
due to the following reasons: (a) the projection methods that we are going to use work only
if we consider matrix elements of gauge invariant operators. This is different from the cases
considered in footnote 36 where the difficulties arose when we considered matrix elements of
gauge variant operators. (b) The difficulty with undefined matrix elements arises only (in the
A representation) for gauge variant field operators, not the conjugate momenta. The latters’
matrix elements between gauge invariant states are well-defined, namely zero. If one considers
these operators between deformed states, one may obtain non-zero expectation values which then
have to be subtracted by a projection procedure.

2.3.2 Factorizability

After these general considerations, we now want to come to the statement on factorizability. It
seems quite obvious that such a property must exist, since a Gaussian wave functional does not

36 The comparison with electrodynamics reveals some subtleties in this point: there also one can calcu-
late 〈AiAj〉c = Gij . However, the matrix element on the LHS has some gauge invariant content, namely
〈(PTA)i(P

TA)j〉c which gives the (non-vanishing) transversal part GT
ij , whereas the other parts of 〈AiAj〉c are

indefinite, thus it does not make much sense to consider their gauge transforms: they stay indefinite. Even more
subtle is the question of a background field: if one considers the state ψ[A] = N exp−(A− Ā)iG

−1
ij (A− Ā)j with

G−1 transversal, a longitudinal background field is not possible, since G−1
ij A

L
j = G−1

ij ∇jφ = −∇jG
−1
ij φ = 0. Thus,

if the kernel G−1 has zero modes, along these zero modes no background field can exist. This is something one can-
not see if one thinks in terms of ’let’s add an infinitesimal longitudinal part to the real kernel to avoid divergences
and send it to zero later, so that - if we consider normalized states - all infinities can cancel out’, since taking the
limit ’longitudinal part → 0’ and the integration are not interchangeable, as one can see in the following seemingly
trivial example: take the function fε(x) = exp (−ε(x− x0)

2); one can compute the normN =
R +∞
−∞ fε(x) =

√
π/

√
ε;

if one now considers the normalized first moment
R +∞
−∞ dx x fε(x)/N for all non-zero ε this is obviously x0, osten-

sibly independent of ε. However, for ε = 0, the integral
R +∞
−∞ dx x does not exist (since

R +∞
−∞ dx|x| is ill-defined)

as one can see quite simply either by noting that 0 =
R +∞
−∞ dx x =

R +∞
−∞ dx(x + x0) = x0 × ∞, or, if one uses a

cut-off procedure to make the integral finite, by noting that the value that the integral gives depends on the way
the integral is cut off: limΛ→∞

R Λ

−Λ+a
dx x/

R Λ

−Λ+a
dx = a/2.
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contain information about higher correlations than those of two A operators. Thus every higher
correlation function must factorize into expectation values of one or two A operators. Formally
this can be seen as follows: first compute37

〈eijiAi〉 = eijiĀie−
1
2
jiGijjj . (2.109)

Now consider

〈(Ai1 − Āi1) · · · (Ain − Āin)〉 =

(
1

i

δ

δji1

)
. . .

(
1

i

δ

δjin

)
〈eiji(Ai−Āi)〉|j=0

=

(
1

i

δ

δji1

)
. . .

(
1

i

δ

δjin

)
e−

1
2
jiGijjj

∣∣∣
j=0

=

(
1

i

δ

δji1

)
. . .

(
1

i

δ

δjin−2

)
(Gin−1in −Gin−1kjkGinljl) e

− 1
2
jiGijjj

∣∣∣
j=0

= 〈(Ai1 − Āi1) · · · (Ain−2 − Āin−2)〉〈(Ain−1 − Āin−1)(Ain − Āin)〉
−Gin−1kGinl

(
1

i

δ

δji1

)
. . .

(
1

i

δ

δjin−2

)
jkjl e

− 1
2
jiGijjj

∣∣∣
j=0

.

The last line can be quite easily evaluated, by noting that the only non-vanishing contributions
will stem from terms, where two derivatives annihilate both jk and jl, thus leaving only n − 4
derivatives to act upon the exponential function. The minus sign will be cancelled by the fact

that
(
1
i
δ
δji

)(
1
i
δ
δjj

)
jkjl = −δikδjl. The derivatives that are used to cancel jkjl can obviously act

no more onto the exponential, thus we obtain

−Gin−1kGinl

(
1

i

δ

δji1

)
. . .

(
1

i

δ

δjin−2

)
jkjl e

− 1
2
jiGijjj

∣∣∣
j=0

=

in−2∑
k,l=i1
k 6=l

Gin−1kGinl〈(Ai1 − Āi1) · · · (A| k − Ā| k) · · · (A| l − Ā| l) · · · (Ain−2 − Āin−2)〉,

where we have used the notation A| to indicate that this particular A should not be contained in
the correlation function. We have thus constructed a recursion relation whereby an expectation
value of nA operators is expressed as a product of a two-A expectation value times an (n−2)−A
expectation value plus a sum of products of two two-A expectation values times an (n− 4)−A
expectation value. Thus, in the end, everything will be reduced to two-A expectation values just
as claimed above. Note that, since 〈A − Ā〉 = 0, every expectation value of an odd number of
factors (A− Ā) will be zero.

2.3.3 Comparison with Other Approximations

The interpretation of the usage of Gaussian trial wave functionals as an approximation equivalent
to the Hartree (or Hartree-Fock) approximation can be justified on several grounds: the first is
the property illustrated above, namely that expectation values of products of field operators
factorize into expectation values of one or two field operators. The second reason lies in the fact
that one can construct in a simple manner creation and annihilation operators, and formulate

37The fact that one can give a closed expression for the expectation value of eijiAi already very strongly points
to the factorizability property.
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the (generalized) Random Phase Approximation very similarly to the construction in nuclear
physics. This we will do in Chapter 3. The most direct connection, however, is found in the
works of [CJT74]. The authors considered a generalization of the effective action which was
constructed as a double Legendre transform of the vacuum persistence amplitude W in the
presence of a one-particle- and a two-particle source:

eiW [J,K] =

∫
Dφ eiI[φ]+

R
d4x J(x)φ(x)+ 1

2

R
d4x d4y φ(x)K(x,y)φ(y). (2.110)

In the following φ denotes a generic field. The theory is then specified via the classical action
I[φ]. Defining

δW

δJ(x)
= φ̄(x) and

δW

δK(x, y)
= φ̄(x)φ̄(y) +G(x, y) (2.111)

one obtains the generalized effective action as

Γ[φ̄, G] =W [J,K]−
∫
d4xJ(x)φ̄(x)− 1

2

∫
d4x d4y φ̄(x)K(x, y)φ̄(y)− 1

2

∫
d4x d4y G(x, y)K(y, x).

(2.112)
By the nature of the Legendre transforms, eqs. (2.111) imply corresponding equations for deriva-
tives of Γ:

δΓ

δφ̄(x)
= −J(x)−

∫
d4yK(x, y)J(y) and

δΓ

δG(x, y)
= −1

2
K(x, y). (2.113)

Thus, for vanishing external sources, the effective action is stationary under variations of φ̄ and
G. Since for K = 0, this generalized effective action is the same as the ordinary effective action,
we can also say that Γ[φ̄, G0] (where G0 is a solution of δΓ/δG = 0) is identical to the ordinary
effective action, and G0 is the full φ propagator. Since Γ[φ̄, G] is the generating functional for
all two-particle irreducible graphs, one can construct a series representation for the generalized
effective action that is given as

Γ[φ̄, G] = I(φ̄) +
i

2
Tr(ln (DG−1)) +

i

2
Tr(ln (D−1G)) + Γ2[φ̄, G] + const, (2.114)

where iD−1(φ̄;x, y) = δ2I(φ̄)

δφ̄(x)δφ̄(y)
= iD−1(x− y) + δ2Iint(φ̄)

δφ̄(x)δφ̄(y)
. D(x− y) is the free propagator of φ

that results from the part of I[φ] that is quadratic in φ. Iint[φ] is that part of I[φ] that is at least
cubic in φ. Γ2 has a diagrammatic representation: one starts from the classical action I(φ), and
replaces φ by φ + φ̄. This action has terms that are cubic or of higher order in φ; they define
the new (φ̄ dependent) vertices. The graphs that constitute Γ2 are the two-particle irreducible
vacuum graphs constructed from these vertices and G as the propagator that connects these
vertices. The Hartree-Fock38 approximation consists of taking the contribution to Γ2 that is of
lowest order in the coupling constant; in φ4 theory, this would be the ’double-bubble’:

.
38This name is used in [CJT74] also for bosonic theories like scalar φ4 theories.
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We can now draw the connection to the Rayleigh-Ritz calculation with Gaussian wave functionals.
If we consider the static generalized effective action39, we can show with an argument quite
similar to the one we used when drawing the connection between the time-dependent variational
principle and the (ordinary) effective action in sec. 1.5.3, that

Γ[φ,G]|static = −E[φ,G]

∫
dt (2.115)

where
∫
dt denotes the time during which action is accumulated, and E[φ,G] is the minimum of

the expectation value of the Hamiltonian corresponding to I[φ], where the (normalized) states
are constrained to

〈φ(x)〉 = φ̄(x), (2.116)

〈φ(x)φ(y)〉 = φ̄(x)φ̄(x) + G̃(x,y), (2.117)

where G̃(x,y) = G(x0−y0 = 0;x,y), and where the operators φ(x) are taken at some fixed time.
After this identification is made, one can compare the result of an approximation to Γ|static with
the result of a restriction of the space of test wave functionals. The comparison will be made using
the expressions for the energy that one obtains in both cases. The authors of [CJT74] computed
the static effective action in the Hartree-Fock approximation by retaining from the two-particle
irreducible graphs only the double-bubble, and via the identification given in eq. (2.115) they
then computed the energy for the example of a one-component scalar field with a φ4 interaction.
On the other hand, they computed the expectation value of the Hamiltonian between Gaussian
states that were constructed to reproduce eqs. (2.116, 2.117). The expressions obtained for the
energy are precisely the same. Here the fact that Γ|static gives already the lowest possible energy
under the constraints eqs. (2.116, 2.117) is no restriction since those parameters are the only
variational parameters in the Gaussian, and they have not been varied up to now, but are simply
prescribed. We thus see that at least for this theory the Hartree-Fock approximation and the
restriction to Gaussian states are identical in their content, since the parameters available have
identical interpretations and the equations that determine the parameters are identical as well.

2.3.4 Energy Expectation Value

Later on it will be useful in several instances to have the expectation value of the Hamiltonian
at hand. For the case of Yang-Mills theory, it is most easily computed between Gaussian states
if we (instead of evaluating H between states with 〈A〉 = Ā) shift A → Ā + a (with 〈a〉 = 0
and 〈aiaj〉 = Gij). This technique we will use quite often in the following. In contrast to the
introduction, we will now use ’perturbative scaling’ as defined in appendixA.5; however, we
will use a slight modification since we don’t want the background field to be decoupled in the
perturbative limit. Therefore, we rescale Ā by a factor of 1

g ; thus, in the end, the replacement

reads40

A → 1

g
Ā+ a. (2.118)

39Static means the following here: φ̄ is taken to be time-independent, and G is taken to be translationally
invariant. In order to obtain the static generalized effective action, one has to express G(x0 − y0;x,y) in terms of
G̃(x,y) = G(x0 − y0 = 0;x,y); Γ expressed in terms of these time-independent quantities φ̄, G̃ is then dubbed the
static generalized effective action.

40This procedure is obviously identical to using the non-perturbative scaling from the outset, and then replacing
A → Ā+ ga.
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The kinetic energy is given in this case by

T =
1

2

∫
d3xΠa

i (x)Π
a
i (x) = −1

2

∫
d3x

{
δ2

δaai (x)δa
a
i (x)

}
, (2.119)

whereas the potential is given by

V =

∫
d3xBa

i [
1

g
Ā+ a](x)Ba

i [
1

g
Ā+ a](x). (2.120)

The expectation value of the kinetic energy follows straightforwardly from eq. (2.108),

〈T 〉 = 1

2

∫
d3x {ēai (x)ēai (x)}+

1

8
Tr(G−1) + 2Tr(ΣGΣ), (2.121)

where the trace Tr is to be taken over spatial, colour and position indices. The potential is a bit
harder to evaluate, but eventually we end up with41

〈V 〉 =
1

2

∫
d3x

{
1

g2
B̄a
i (x)B̄

a
i (x) + tr

(
(
ˆ̄̂
D

ˆ̄̂
D− ˆ̄̂

B)Gxy

)∣∣∣
y→x

+
g2

2
tr(SiT̂

aGxxSiT̂
aGxx) +

g2

4
tr(SiT̂

aGxx)tr(SiT̂
aGxx)

}
, (2.122)

where we have used the notation (Si)jk = εjik, (T̂
a)bc = f bac,

ˆ̄̂
Dab
jk = (Si)jk

ˆ̄Dab
i ,

ˆ̄̂
Bbc
jk = (Si)jk(T̂

a)bcB̄a
i ,

and B̄ = B[Ā]. The symbol ′tr′ denotes here a trace both over colour and spatial indices, but
not over position indices.
We see explicitly the two double bubble terms in the second line of eq. (2.122),

which are of different origin: the first one stems from the four-gluon vertex, whereas the second
one results from two three-gluon-vertices. This is reflected in the different distribution of traces
for colour and spatial indices.
In the remainder of this section and in the next section we will ignore the fact that our wave
functionals should satisfy Gauss’ law. This will allow us later on to compare the effects of
the projector and its approximations to this näıve treatment. We see from eq. (2.121) that
the expectation value of the Yang-Mills Hamiltonian is quadratic both in ē and in Σ. Thus,
minimizing the energy will result in ē and Σ vanishing. Physically this is understandable, since
if one considers static situations (as we do when we consider the Rayleigh-Ritz principle, and
look for energy minima) one would classically expect zero kinetic energy, and the tribute that
has to be paid to the uncertainty principle has to be raised via G alone, since this is the only
parameter that also appears in the potential; thus we end up with ē = Σ = 0 at the stationary

41This result can also be found in [KV89].
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point42. Now this has an interesting consequence. If we consider 〈Γa(x)〉, we can compute this
expectation value easily:

〈Γa(x)〉 = ˆ̄Dab
i (x)ēbi (x) + 2g

∫
d3y tr(T̂ aΣxyGyx). (2.123)

We see therefore that at the stationary point w.r.t. ē and Σ the expectation value of Γa(x) is
automatically zero even though the wave functional itself is by no means gauge invariant.

2.3.5 Equations of Motion

In this section, we want to discuss shortly the solution of the equation of motion for G−1 in the
perturbative limit. This will be useful for the considerations to be taken later on; we will for the
time being not solve the equations for Ā. The special case of a quasi-Abelian Ā that leads to a
constant magnetic field will be discussed in section 2.7. In the perturbative limit, we neglect the
O(g2) terms in the potential energy, so that we end up with43,44

E[G, Ā] =
1

8
Tr(G−1) +

1

2

∫
d3x

{
tr
(
(
ˆ̄̂
D

ˆ̄̂
D− ˆ̄̂

B)Gxy

)∣∣∣
y→x

}
+

1

2g2

∫
d3x B̄a

i (x)B̄
a
i (x). (2.124)

One should once again emphasize that in writing down this expression, we have assumed that
both G−1 and G exist. When performing the variation of E w.r.t. G, we need for the kinetic
term the relation

δ

δGa1a2i1i2
(z1, z2)

Tr(G−1) = −(G−1G−1)a1a2i1i2
(z1, z2) (2.125)

and the contribution from the potential energy can be written as (since (
ˆ̄̂
D

ˆ̄̂
D− ˆ̄̂

B) is symmetric)

δ〈V 〉
δGa1a2i1i2

(z1, z2)
=

1

2

∫
d3x δxz1(

ˆ̄̂
D

ˆ̄̂
D− ˆ̄̂

B)a1a2i1i2
δxz2 . (2.126)

If we consider (G−1)a1a2i1i2
(z1, z2) as the matrix elements of an operator45 G−1, s.t.

〈z1; i1, a1|G−1|z2; i2, a2〉 = (G−1)a1a2i1i2
(z1, z2), (2.127)

and similarly the RHS of eq. (2.126) as∫
d3x δxz1(

ˆ̄̂
D

ˆ̄̂
D− ˆ̄̂

B)δxz2 = 〈z1; i1, a1| ˆ̄̂D ˆ̄̂
D− ˆ̄̂

B

∫
d3x |x〉〈x|z2; i2, a2〉, (2.128)

then one can write the variational equation that results from eqs. (2.125, 2.126) as a simple
operator equation

G
−1
G

−1 = 4(
ˆ̄̂
D

ˆ̄̂
D− ˆ̄̂

B). (2.129)

42If one inserts Σ = 0 and ē = 0 into 〈H〉 = 〈T + V 〉, one ends up with the expectation value of the energy
considered by [KV89].

43We have also set ē = Σ = 0 as discussed above.
44Taking into account the O(g2) terms in the potential energy will complicate matters, e.g. since in the equations

of motion for G, i.e δE/δG = 0, Gxx will appear which is usually a divergent quantity and thus necessitates
considerations of regularization and renormalization already at this point.

45This useful notion can be found e.g. in [KV89].
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This in turn can be inserted into the equation for the energy

E[Ā] =
1

8
Tr(G−1) +

1

2
Tr((

ˆ̄̂
D

ˆ̄̂
D− ˆ̄̂

B)︸ ︷︷ ︸
1
4
G−1G−1

G) +
1

2g2

∫
d3x B̄a

i (x)B̄
a
i (x) (2.130)

resulting in46

E[Ā] =
1

4
Tr(G−1) +

1

2g2

∫
d3x B̄a

i (x)B̄
a
i (x) =

1

2
Tr
(
(
ˆ̄̂
D

ˆ̄̂
D− ˆ̄̂

B)
1
2

)
+

1

2g2

∫
d3x B̄a

i (x)B̄
a
i (x),

(2.131)
which is now a functional of Ā alone. One word of caution has to be said at this point: whereas

the last expression for the energy is perfectly well-defined, regardless of whether M =
ˆ̄̂
D

ˆ̄̂
D − ˆ̄̂

B
contains zero modes or not, this is not so straightforward for the intermediate steps. Assume that
M does contain zero modes47, then G−1 also contains zero modes, and along those directions, G
is infinite. For the energy this does not matter, since this infinity is cancelled by the zero mode
of M ; however, for other operators that do not contain a zero mode in this direction, the infinity
will become important, as we will see below. The problem can, to some extent, be cured if we
use a projector, cf. sec. 2.6.

2.4 Requirements for Perturbative Satisfaction of Gauss’ Law

In this section we try to modify a pure Gaussian wave functional by multiplying it with
a polynomial, s.t. it is annihilated by the Gauss law operator Γa to a given order in g. It
turns out that one can indeed construct a recursion relation, s.t. the coefficients needed
for a given order in g depend only on the Gaussian and the coefficients needed for lower
orders. Unfortunately, the construction works only in a part of the space of gauge field
configurations, so that we have to use a background gauge condition, and even then some
problems remain.

In this section we want to address the following problem: assume that we start with a wave
functional that has Gaussian form. Since this wave functional is not annihilated by the Gauss
law operator Γa(x) we multiply it by a polynomial. How do we have to fix the coefficients of the
polynomial s.t. Gauss’ law is satisfied to a given order in the coupling constant g [Cea88]?
In order to proceed, we have to use the same procedure as in sec. 2.3.4: start out from ’per-
turbative scaling’, and then rescale Ā by 1/g so that the background field does not decouple
in the perturbative limit. The covariant derivative can then be split into a part containing the
background field (which is completely of O(g0)) and a part that contains the fluctuation part
and an explicit factor of g:

D̂ab
i (x) = ˆ̄Dab

i (x)− gfacbaci(x) with
ˆ̄Dab
i (x) = ∇iδ

ab − facbĀc
i (x) (2.132)

Thus the Gauss law operator reads

Γa(x) = D̂ab
i (x)

1

i

δ

δabi (x)
=

1

i
ˆ̄Dab
i (x)

δ

δabi (x)
− gfacbaci(x)

1

i

δ

δabi (x)
. (2.133)

The wave functional is of the form

Ψ = P (a)e−
1
2
aKa+iē.a, (2.134)

46A similar result was obtained in [KV89].
47It will if Ā fulfils the classical equations of motion, but more on that in sec. 2.6.



64 2.4. Requirements for Perturbative Satisfaction of Gauss’ Law

where we have used a (hopefully) obvious shorthand notation together with the abbreviation48

K = 1
2G

−1 − 2iΣ, and P (a) indicates a power series in g:

P (a) =

∞∑
n=0

gnP (n)(a). (2.135)

If we now require
Γa(x)Ψ = 0 +O(gN+1) (2.136)

we obtain a recursion relation between the different P (n)s:

0 =

N∑
n=0

gn( ˆ̄Dab
i ((−Ka)bi + iēbi )P

(n) −
N∑
n=1

gnaci(T̂
c)ab((−Ka)bi + iēbi )P

(n−1)

+

N∑
n=1

gn ˆ̄Dab
i
δP (n)

δabi
−

N∑
n=2

gnaci(T̂
c)ab

δP (n−1)

δabi
= 0, (2.137)

where it is sufficient to terminate the sums at n = N since we require Gauss’ law only up to
O(gN ). Note that the summation indices start at different lower values. Thus we study the
O(g0) and O(g1) cases separately49:

O(g0) : ˆ̄Dab
i ((−Ka)bi + iēbi ) = 0. (2.138)

Since this equation has to be valid for all a, one actually obtains two conditions50:

ˆ̄DK = 0
ˆ̄Dē = 0.

(2.139)

We will meet these conditions later on again in section 2.6 on the Kamlah expansion. If these
conditions are satisfied, eq.(2.137) will simplify, since the first term vanishes exactly:

−
N∑
n=1

gnaci (T̂
c)ab((−Ka)bi + iēbi)P

(n−1) +

N∑
n=1

gn ˆ̄Dab
i

δP (n)

δabi
−

N∑
n=2

gnaci(T̂
c)ab

δP (n−1)

δabi
= 0. (2.140)

The O(g1) case is still special, since only the first two terms contribute:

ˆ̄Dab
i

δP (1)

δabi
= aci(T̂

c)ab((−Ka)bi + iēbi). (2.141)

The solution to this is given by51

P (1)[a] =
1

2!

∫
d3x1 d

3x2 χ
a1a2
i1i2

(x1,x2)a
a1
i1
(x1)a

a2
i2
(x2)

− 1

3!

∫
d3x1 d

3x2 d
3x3 χ

a1a2a3
i1i2i3

(x1,x2,x3)a
a1
i1
(x1)a

a2
i2
(x2)a

a3
i3
(x3) (2.142)

48The usage of this abbreviation will be restricted to this section.
49We set P (0) = 1, since in the end it will be fixed by the overall normalization anyway; it has to be nonzero,

s.t. the state can be normalized as g → 0.
50Note the similarity with the QED condition of having a purely transversal kernel. Note also that ˆ̄D does not

mix real and imaginary parts, and thus ˆ̄DK = 0 implies both ˆ̄DG−1 = 0 and ˆ̄DΣ = 0.
51The solution with ē = 0 was provided by [Lae01].
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with

χa1a2i1i2
(x1,x2) = i( a1i1 [

ˆ̄Dx1Gx1x2 T̂
a2 ēx2 ]i2 +

a2
i2
[ ˆ̄Dx2Gx2x1 T̂

a1 ēx1 ]i1), (2.143)

χa1a2a3i1i2i3
(x1,x2,x3) = a1

i1
[ ˆ̄Dx1Gx1x2 T̂

a2Ki2
x2x3

]a3i3 + a1
i1
[ ˆ̄Dx1Gx1x3 T̂

a3Ki3
x3x2

]a2i2

+ a2
i2
[ ˆ̄Dx2Gx2x1 T̂

a1Ki1
x1x3

]a3i3 + a2
i2
[ ˆ̄Dx2Gx2x3 T̂

a3Ki3
x3x1

]a1i1

+ a3
i3
[ ˆ̄Dx3Gx3x1 T̂

a1Ki1
x1x2

]a2i2 + a1
i1
[ ˆ̄Dx1Gx1x2 T̂

a2Ki2
x2x3

]a3i3 ,

(2.144)

where the following abbreviations have been used

a1
i1
[ ˆ̄Dx1Gx1x2 T̂

a2 ēx2 ]i2 = ˆ̄Da1d
i1

(x1)G
da
∆ (x1,x2)f

aa2d3 ēd3i2 (x2) (2.145)

a1
i1
[ ˆ̄Dx1Gx1x3 T̂

a3Ki3
x3x2

]a2i2 = ˆ̄Da1d
i1

(x1)G
da
∆ (x1,x3)f

aa3cKca2
i3i2

(x2,x3) (2.146)

and Gda∆ (x1,x3) denotes the Green’s function of the covariant Laplacian in the background field
Ā: (

ˆ̄Dbc
i,x1

ˆ̄Dcd
i,x1

)
Gda∆ (x1,x3) = δabδx1x3 . (2.147)

Having determined P (1), we see that we are not completely done yet. Putting P (1) back into
eq.(2.141), we see that the equation is only satisfied if we restrict a (after having performed the
derivative) to the space of functions that satisfy52

ˆ̄Dab
i abi = 0, (2.148)

i.e. P (a)e−
1
2
aKa+iēa satisfies Gauss’ law to O(g1) only on the gauge fixing surface defined by the

background field condition eq.(2.148). In other words: P (a)e−
1
2
aKa+iēa does not satisfy Gauss’

law; if we compute however ∫
Da∆FP δ

(
ˆ̄Da
)
ψ∗[a]OΓa(x)ψ[a], (2.149)

where ∆FP is the Faddeev-Popov determinant appropriate for this background field gauge, this
will be zero (up to O(g2) for every operator O, that does not contain functional derivatives w.r.t.

modes of a that are longitudinal in a generalized sense, i.e. ˆ̄Da 6= 0. A prominent example of an
operator that does not belong to this class is the O(g0) contribution of the Gauss law operator.
We therefore considered ∫

Da∆FP δ
(
ˆ̄Da
)
ψ∗[a]Γb(y)Γa(x)ψ[a] (2.150)

and found that this vanishes only (up to terms of O(g2)), if ē = 0. If O consists of more than
one Gauss law operator, all the matrix elements are zero (up to terms of O(g2)), even in the
presence of ē. This demonstrates that even if the wave functional is annihilated by the Gauss
law operator on the gauge fixing surface this is not sufficient for expectation values of arbitrary

52The additional factors that make this condition necessary are due to the symmetry requirements on
χa1a2
i1i2

, χa1a2a3
i1i2i3

.
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operators times a Gauss law operator to be zero, but that a case by case analysis is required.
For higher orders in g we obtain from the recursion relation eq. (2.137) the equations

ˆ̄Dab
i

δP (n)

δabi
= aci (T̂

c)ab((−Ka)bi + iēbi )P
(n−1) + aci (T̂

c)ab
δP (n−1)

δabi
= 0. (2.151)

We thus see that (at least in principle) P (a) can be calculated recursively, since δ
δaP

(n) can be
expressed in terms of polynomials that have been computed before. For which operators problems
occur to higher order in g (taking into account that the Faddeev-Popov determinant becomes
non-trivial at O(g2) [Lae01]) we have not investigated in detail. The main lesson from this section
is that a pure Gaussian state can satisfy Gauss’ law only to order g0. This is the reason why we
can formulate an exactly gauge invariant Gaussian ground state for electrodynamics.

“Who is she?” - “She is Frankland’s daughter.” -
“What? Old Frankland the crank?”

Sherlock Holmes, The Hound of the Baskervilles

2.5 The Time-Dependent Variational Principle and Cranking

In this section we want to discuss a technique that stems from nuclear physics and is based
on the time-dependent variational principle, the so-called cranking model. We start by
giving a physical motivation for the approach, and study some general properties. Then
we restrict ourselves to Gaussian states and discuss the inter-quark potential to lowest
order in g. We also apply the model to electrodynamics, and see that the Coulomb
interaction between static charges is reproduced. The study of the static inter-quark
potential to one-loop order, however, demonstrates the short-comings of the cranking
approach, since it does not reproduce the one-loop β-function.

2.5.1 Generalities

In sec. 2.3 we discussed the variational approach, and ignored the problem that Gaussian states
in general violate the gauge invariance required. In this section, we don’t want to ignore the
problem, but want to use the violation of gauge invariance by the state to approximate its time-
dependence. The idea we follow is inspired by [HIMV00] and related to the approach presented
in sec. 1.7.4, cf. also [RS80]. We start from Dirac’s time-dependent variational principle

δS = δ

∫ t2

t1

dt〈ψ(t)|i∂t −H|ψ(t)〉 !
= 0. (2.152)

Whereas for the Rayleigh-Ritz principle only a static ansatz for the wave functional is needed,
here we also have to make an ansatz for the time dependence. We could use a Gaussian wave
functional where all parameters G−1,Σ, Ā, ē are now time-dependent, but we rather choose as
an ansatz

|ψ(t)〉 = e−iEte−i
R
d3xϕa(x,t)Γa(x)|ψ〉, (2.153)

where |ψ〉 is a time-independent state, the coordinate representation of which later on will be
restricted to a Gaussian functional. Note that, if |ψ〉 is normalized, so is |ψ(t)〉. This ansatz for
the time dependence is motivated as follows: the general time dependence of a state (unless it is
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an energy eigenstate) will consist of vibrations. However, if there are directions in configuration
space without restoring forces, we will end up not with a (small-amplitude) vibration, but with
a large amplitude motion. If there are states that are degenerate in energy and are connected
by an infinitesimal symmetry transformation, the motion from one state to the other does not
experience a restoring force. Usually, there are then not only two states which are energetically
degenerate and connected by an infinitesimal symmetry transformation, but rather a whole
continuous infinity of such states, that are then connected by finite symmetry transformations
characterized by (at least) one continuous parameter. In the following, we will call motion within
this collection of states ’motion along the zero mode’. We see that if we have a state that is not
an eigenstate53 of the complete set of commuting operators that commute with the Hamiltonian,
in other words, if the state is deformed, we necessarily have such a zero mode along which the
state could move during the time evolution. To be concrete, if we start from a state that is not
gauge invariant, we have a continuous infinity of states that have the same energy. These are
the gauge transforms of the original state. Our ansatz for the time dependence draws its form
from this consideration: we have approximated the whole time dependence of the state (apart
from the energy phase) by its rotation along the zero modes. If one considers a time-averaged
picture, the restoration of gauge invariance seems also plausible, since in due time the state will
have rotated over all its gauge transformations, thereby mimicking effectively the projector.
The second approximation that we are going to make seems also plausible from our considerations;
namely, while moving along a zero mode there should be no considerable accelerations. Thus,
an ansatz where ϕa(x, t) and ϕ̇a(x, t) are parallel in colour space54 appears to be justified. If we
insert this time dependence, we obtain an integrand in the action that is time-independent, and
we are left with a time-independent variational principle with an effective Hamiltonian

δ〈ψ|E −
(
H −

∫
d3xωa(x)Γa(x)

)
|ψ〉 !

= 0. (2.154)

We can interpret - just as is done in nuclear physics55 [Bar63], [RS80], [BR86] - the cranking
Hamiltonian Hcr

Hcr = H −
∫
d3xωa(x)Γa(x) (2.155)

as the Hamiltonian in the internal colour-rotating frame, whereas H is the Hamiltonian in the
’lab frame’. On the other hand, we may consider the variational problem given in eq. (2.154)
as a constrained variational problem with ω as a set of Lagrange multipliers that are used
s.t. 〈Γa(x)〉 acquires prescribed values. The interpretation of these prescribed values is not
as straightforward as one would wish; we have studied before in sec. 2.1 the implementation of
external colour charges. One lesson one could draw from that discussion is that, due to the
non-Abelian nature of the charge operators, static charges are necessarily quantized in a theory
that is based on a compact group like SU(N) (this is not the case in electrodynamics, where we
have a non-compact group that allows for arbitrary charges). Thus, even though it appears that
we can prescribe arbitrary values for 〈Γa(x)〉, this is not the case if we want to interpret them as

53The following is obviously only true if the operators of which the state is not an eigenstate are generators of
a continuous symmetry, e.g. to take a quantum mechanical example, J3 could be considered as a valid operator,
whereas the parity operator does not serve our purpose.

54A specific ansatz that is very popular in nuclear physics [RS80] which fulfils this condition is ϕa(x, t) = tωa(x).
55Phenomenological applications of the cranking model in nuclear physics can be found in e.g. [VDS83]. Further

theoretical considerations can be found in [KO81] where also a connection to the Random Phase Approximation
is drawn, cf. also [TV62]. For an application of the cranking approach in hadronic physics, cf. e.g. [ARW96].
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static external charges56. To put everything in a nutshell: in order to have a clean interpretation
in terms of external charges, one should use an extra space on which operators creating static
charges can act; here, however, we will interpret 〈Γa〉 as the colour content of the wave functional,
and call that ’charge’ as well57. In the following, we will denote by |ψω〉 a state that minimizes
the expectation value of Hcr for a prescribed value of ω. Its colour content is then given by

ρaω(x) = 〈ψω|Γa(x)|ψω〉. (2.156)

If we furthermore assume that the colour content is not discontinuous at ω = 0, then we can
perform a Taylor expansion for small ω:

ρaω(x) = ρaω=0(x) +
δρaω(x)

δωb(y)

∣∣∣∣
ω=0

ωb(y) + . . . . (2.157)

We call δρaω(x)/ω
b(y)

∣∣
ω=0

= Iab(x,y) the colour moment of inertia, cf. [HMVI98], [HIMV00],
since if we have no colour charge58 at ω = 0, then we have the relation 〈Γ〉 = Iω + . . ., and thus
precisely the same relationship as in ordinary mechanics of rotating bodies. Of course, we are
also interested in the energy of the state in the laboratory system:

E[ω] = 〈ψω|H|ψω〉 (2.158)

= 〈ψω|Hcr|ψω〉+ 〈ψω|
∫
d3xωa(x)Γa(x)|ψω〉. (2.159)

Since the energy will not depend on the sign of ω, upon expanding E[ω] in powers of ω the linear
term will vanish, and we end up with

E[ω] = E[0] +
1

2

∫
d3x d3y ωa(x)T ab(x,y)ωb(y) + . . . (2.160)

or, expressed in terms of the charges ρa:

E[ω] = E[0] +
1

2

∫
d3x d3y d3x1 d

3y1

{
(ρω − ρω=0)

a(x)(I−1)a1a(x1,x)T
a1b1(x1,y1) (2.161)

×(I−1)b1b(y1,y)(ρω − ρω=0)
b(y)

}
.

In nuclear physics (where the Gauss law operators are replaced by angular momentum operators
Ja), one usually has the situation [RS80] that |ψω〉 is an eigenstate of H − ωaJa, and thus one
can use the Feynman-Hellman theorem

∂Ecr[ω]

∂ωa
=

∂

∂ωa
〈ψω|H − ωbJb|ψω〉 = 〈ψω|

( ∂

∂ωa
(H − ωbJb)

)
|ψω〉 = −〈ψω|Ja|ψω〉 = −Iabωb + . . .

(2.162)
to conclude that T ab = Iab. Then the energy in the laboratory system E[ω] = 〈ψω|H|ψω〉 can be
simplified, and one ends up with

E[ω] = E[0] +
1

2

∫
d3x d3y (ρω − ρω=0)

a(x)(I−1)ab(x,y)(ρω − ρω=0)
b(y). (2.163)

56In low orders of perturbation theory the group SU(N) becomes a direct product of U(1) groups; then we may
again have arbitrary charge values. This will also be utilized in sec. 2.6.

57It would be more appropriate to call it a charge density distribution.
58We have seen in section 2.3 that if we consider the minimum of the Hamiltonian H alone (i.e. ω = 0), we

indeed have ρω=0 = 0.
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If the state |ψω〉 is not an eigenstate of the cranking Hamiltonian (as it might be if it is determined
by a variational procedure), it has to be checked explicitly whether T ab(x,y) = Iab(x,y), and
if not one has to use eq. (2.161) as an expression for the energy. In the perturbative calculation
that follows in secs. 2.5.3 and 2.5.5 it turns out that T = I at least to order O(g4).

2.5.2 Gaussian Wave Functionals

After these general considerations, let us come back to our special case, namely states that have
a Gaussian structure. The functional to be minimized reads

Ecr = 〈ψ|H −
∫
d3xωa(x)Γa(x)|ψ〉, (2.164)

where we choose 〈A|ψ〉 to be the Gaussian wave functional defined by eq. (2.104) . Then Ecr is
given as

Ecr =
1

2

∫
d3x

{
ēai (x)ē

a
i (x) +

1

4
tr(G−1

xx) + 4tr(ΣGΣ)xx +
1

g2
B̄a
i (x)B̄

a
i (x) (2.165)

+ tr
(
(
ˆ̄̂
D

ˆ̄̂
D− ˆ̄̂

B)Gxy

)∣∣∣
y→x

+
g2

2
tr(SiT̂

aGxxSiT̂
aGxx) +

g2

4
tr(SiT̂

aGxx)tr(SiT̂
aGxx)

}

−
∫
d3xωa(x)

(
ˆ̄Dab
i (x)ēbi (x) + 2g

∫
d3y tr(T̂ aΣxyGyx)

)
.

The last term can also be brought into a form that will be more useful later on. By using the
anti-symmetry of T̂ , we can write∫

d3y tr(T̂ aΣxyGyx) =
1

2
tr(T̂ a[Σ, G]xx), (2.166)

where the commutator is to be taken w.r.t. all indices. In contrast to the case without the extra
cranking term, we will obtain non-vanishing values for both ē and Σ upon variation. With a

partial integration,
∫
d3xωa(x) ˆ̄Dab

i (x)ēbi (x) = − ∫ d3x ( ˆ̄Dba
i (x)ωa(x))ēbi (x), and the variational

equation for ē can be solved easily:

δEcr
δēai (x)

!
= 0 → ēai (x) = − ˆ̄Dab

i (x)ωb(x). (2.167)

Next, we consider the equation of motion for Σ:

δ

δΣbcij (y, z)

(
2Tr(ΣGΣ)− g

∫
d3xωa(x) tr(T̂ a[Σ, G]xx)

)
!
= 0, (2.168)

which results in
2(ΣG +GΣ)bcij (y, z) + g(ωaT̂ aG−GT̂ aωa)bcij (y, z) = 0, (2.169)

and last the equation for G−1:

δEcr

δGbcij (y, z)
= −1

8
(G−2)bcij (y, z) +

1

2
(K2)bcij (y, z) + 2(ΣΣ)bcij (y, z)− g(ωaT̂ aΣ−ΣT̂ aωa)bcij (y, z)

!
= 0,

(2.170)
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where in view of the results of sec. 2.3.5 we write the operator
ˆ̄̂
D

ˆ̄̂
D− ˆ̄̂

B as K2. If we solve this
equation w.r.t. K2 and insert the resulting expression, as well as eq. (2.167), into eq. (2.165), we
obtain as an expression for the energy

Ecr|stat.point = 1

2g2

∫
d3x B̄a

i (x)B̄
a
i (x) +

1

4
Tr(G−1)− 1

2

∫
d3x ( ˆ̄Dab

i (x)ωb(x))( ˆ̄Dac
i (x)ωc(x)).

(2.171)
In order to give a definite value, however, we first have to solve the equation of motion for Σ,
eq. (2.169), since by eq. (2.170) G−1 is given in terms of both the known K and - until now
unknown - Σ.

2.5.3 Potential between Static Charges - Lowest Order in g

Before we solve the equation59 for Σ, a short comment about powers of g is in order. From
eq. (2.169) we see that Σ is always of one power higher in g than ω or ē. Thus, the leading
power of 〈Γa(x)〉 is determined by the power of ē, or rather the other way around. In the general
discussion in sec. 2.1, we saw that (using perturbative scaling) Gauss’ law implies60

Ga(x)|〉 = (−1

g
D̂ab
i (x)Πb

i (x) + ρa(x))|〉 = 0 → 〈D̂ab
i (x)Πb

i (x)〉 = g〈ρa(x)〉, (2.172)

i.e. the expectation value of D̂Π is of order g, since the charges ρa are of O(1). Thus, we
conclude that ē and ω are of O(g), and therefore Σ is of O(g2). Inserting this into eq. (2.170), we
see that the corrections to G−1 = 2K (due to the ΣΣ and the gωΣ terms) are of O(g4). Before
we solve the equation for Σ, let us first consider the energy attributed to the charges to lowest
order in g. The leading term is of O(g2):

−1

2

∫
d3x ( ˆ̄Dab

i (x)ωb(x))( ˆ̄Dac
i (x)ωc(x)). (2.173)

To obtain from this expression which is given in the colour-rotating frame the leading term in
g in the lab frame, we have to add the leading (O(g2)) contribution of

∫
d3xωa(x)Γa(x) to it.

Using eq. (2.167) this results in

−1

2

∫
d3x ( ˆ̄Dab

i (x)ωb(x))( ˆ̄Dac
i (x)ωc(x)) +

∫
d3xωa(x) ˆ̄Dac

i (x)ēci (x)

= +
1

2

∫
d3x ( ˆ̄Dab

i (x)ωb(x))( ˆ̄Dac
i (x)ωc(x)). (2.174)

Re-expressing ω in terms of charges gives to lowest order in g:

gρa = ˆ̄Dac
i (x)ēci (x) = − ˆ̄Dac

i (x) ˆ̄Dcb
i (x)ω

b(x) (2.175)

and, using the Green’s function of the covariant Laplacian: ˆ̄Dac
i (x) ˆ̄Dcb

i (x)G
bd
∆ (x,y) = δadδxy, we

have

ωb(x) = −g
∫
d3y Gba∆ (x,y)ρa(y). (2.176)

59The final result for Σ will be given in eq. (2.189).
60This can also be seen in an alternative way, if we consider the eigenstates of the Gauss law operator. Using

perturbative scaling, the operators fulfilling the SU(N) algebra are − 1
g
D̂Π. Thus, they will have the eigenvalues

0,±(1/2), . . . (at each point in space) , s.t. the eigenvalues of Γ will be 0,±(g/2),±g, . . . .
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Then the energy in the laboratory system can be written as

E =
1

2g2

∫
d3x B̄a

i (x)B̄
a
i (x) +

1

2
TrK + g2

∫
d3x d3y ρa(x)

(
−Gab∆ (x,y)

)
ρb(y). (2.177)

From this, one can read off the result that we repeatedly arrive at from different directions in
this thesis, namely that the potential between charges to lowest order in perturbation theory is
−Gab∆ (x,y).
One should note that the expression for E as given here is not complete to O(g2), since we have
obviously neglected the O(g2) that comes from the B2-term, both in the energy and in its effect
on the solution for G−1. However, these contributions should not depend on ρ and thus do not
contribute to the potential.

2.5.4 Electrodynamics with External Charges

Before we try to evaluate the O(g4) correction to the inter-quark potential, let us shortly digress
to the simpler case of electrodynamics in the presence of external charges. The necessary cal-
culations have already been performed in the previous section; we only have to simplify them
slightly. In order to go from the lowest order in g in Yang-Mills theory to electrodynamics we
simply have to make the formal substitution (T̂ a)bc = f bac → 0, and dispose of all the colour
indices. Then Ecr is given as

Ecr =
1

2

∫
d3x

{
ēi(x)ēi(x) +

1

4
tr(G−1

xx) + 4tr(ΣGΣ)xx +
1

g2
B̄i(x)B̄i(x)

+tr((∇∇− 1∆)Gxy)|y→x

}
−
∫
d3xωa(x)∇iēi(x), (2.178)

where the expression ∇∇−1∆ is a matrix in the spatial indices, s.t.(∇∇−1∆)ij = ∇i∇j−δij∆.
The equation for ē simplifies correspondingly,

δEcr
δēai (x)

!
= 0 → ēi(x) = −∇iω(x), (2.179)

and also the equations of motion for Σ are simplified:

δ

δΣbcij (y, z)
(2Tr(ΣGΣ))

!
= 0, (2.180)

which leads automatically to Σ = 0. The equation for G−1 reads

δEcr

δGbcij (y, z)
= −1

8
(G−2)bcij (y, z) +

1

2
(K2

0 )
bc
ij (y, z) + 2(ΣΣ)bcij (y, z)

!
= 0. (2.181)

In view of the results of sec. 2.3.5 we write the operator (∇∇ − 1∆) as K2
0 . Here, (K0)ij(x,y)

can be given explicitly as (K0)ij(x,y) =
∫

d3k
(2π)3

eik.(x−y)|k|PTij(k). From eq. (2.179) we see that

ē has only a longitudinal component, and that we can relate it to the external charge via Gauss’
law61. Analogously to eq. (2.175) we obtain:

gρa = ∇iēi(x) = −∇i∇iω(x). (2.182)
61In contrast to the Yang-Mills case, there are no commutation relations in the Abelian case that would fix the

overall normalization; we use here the same normalization as in the Yang-Mills case.
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Thus, at the stationary point w.r.t. Σ, ē and G−1 (but not Ā), we have the expression for the
energy

Ecr|stat.point = 1

2g2

∫
d3x B̄i(x)B̄i(x) +

1

2
Tr(K0)− 1

2

∫
d3x (∇iω(x)) (∇iω(x)) (2.183)

and in the laboratory frame

E|stat.point = 1

2g2

∫
d3x B̄i(x)B̄i(x) +

1

2
Tr(K0) +

g2

2

∫
d3x d3y ρ(x)

(
−G∆(x,y)

)
ρ(y), (2.184)

where G∆(x,y) is the Green’s function of the ordinary Laplacian: ∆G∆(x,y) = δxy. The three
terms in eq. (2.184) are easily interpretable: the first is obviously the classical energy of the
external magnetic field (which has not vanished, since we haven’t varied Ā yet), the second is
the zero point energy of the transversal photons, and the last is the Coulomb energy of the static
charges; we see that, at the stationary point, electrodynamics is treated exactly.

2.5.5 Potential between Static Charges - Next Order in g

After this short digression let us return to Yang-Mills theory. Before we solve the equations
of motion for Σ, we have to take one fact into account: if Ā satisfies the classical equations

of motion (or is zero), then ˆ̄DK = 0, i.e. K, and with it G−1, will be transversal in the gen-
eralized sense62. In other words, the longitudinal components will be zero, and therefore the
corresponding components of G do not exist, as we have already discussed in sec. 2.3.5. There
it was no problem, but here we have a term tr(ΣGΣ). From the longitudinal components of G
being infinite, we can conclude that the corresponding longitudinal components of Σ have to be
zero, thus restricting Σ to being purely transversal63 (in the generalized sense).
After these introductory comments we turn now to solving the equation of motion for the
transversal components of Σ. For simplicity, we will solve the equations only for Ā = 0. Then
the expression for K2 simplifies, and we will call it in the following K2

0 :

(K2
0 )
ab
ij (x,y) = δab

∫
d3k

(2π)3
eik.(x−y)k2(δij − kikj

k2
). (2.185)

The square root of this operator can in fact be given explicitly:

(K0)
ab
ij (x,y) = δab

∫
d3k

(2π)3
eik.(x−y)

√
k2(δij − kikj

k2
) =

1

2
(G−1)abij (x,y) +O(g2). (2.186)

If one now introduces the Fourier transform Σ̃ via

Σabij (x,y) =

∫
d3k1
(2π)3

d3k2
(2π)3

ei(k1.x−k2.y)Σ̃abij (k1,k2) (2.187)

and notes that, by requirement, PTii1(k1)Σ̃
ab
i1j

(k1,k2) = Σ̃abij1(k1,k2)P
T
j1j

(k2) = Σ̃abij (k1,k2), then
eq. (2.169) can be written as

2Σ̃bcij (k1,k2)

(
1

|k2| +
1

|k1|
)

= gω̃a(k1 − k2)(T̂
a)bc

(
1

|k2|P
T
ij(k2)− 1

|k1|P
T
ij(k1)

)
, (2.188)

62This point will be discussed in a bit more detail in sec. 2.6.3.
63This is consistent with our findings of sec. 2.4 where it turned out that, for the Gaussian wave functional to

be annihilated by the Gauss law operator to O(g0), both G−1 and Σ had to be transversal.
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where ω̃ denotes the Fourier transform of ω. It has to be observed that, contrary to our assump-
tions, the RHS is not purely transversal. This is due to the fact that eq. (2.169) was obtained
from varying the energy functional without the constraint that Σ should be purely transversal.
However, this is easily remedied. If one wants to perform a variation w.r.t the transversal com-
ponents of Σ, one only has to act with a transversal projector from the left and with a transversal
projector from the right onto δE

δΣij
, i.e. one has to compute PTi1i

δE
δΣij

PTjj1 . This is especially easy

for the equation containing the Fourier transform of Σ, since in this case we simply have to
multiply it from the left with PTi1i(k1) and from the right with PTjj1(k2). Then we end up with64

Σ̃bcij (k1,k2) =
g

2
ω̃a(k1 − k2)(T̂

a)bc
( |k1| − |k2|
|k1|+ |k2|

)(
PT (k1)P

T (k2)
)
ij
. (2.189)

Using this expression for Σ, we see that the connection between ρ and ω is altered; in fact the
contribution of the second term of 〈Γa〉 in eq. (2.123) has a logarithmic divergence (if we assume
that ρ is a smooth charge distribution - in view of the point-like nature of real static charges,
this might be a non-valid assumption):

tr(T̂ a[Σ, G]xx) = − g2N

48π2

∫
d3p

(2π)3
eip.xp2ω̃a(p) ln

(
Λ2

Λ2
IR

)
, (2.190)

where Λ is a sharp cutoff that had to be used in an intermediate momentum integration, and ΛIR
is an infrared cutoff to be discussed now. The steps in the calculation that lead to eq. (2.190) are
very similar to those that were performed at the end of sec. 2.2.5, i.e. performing an expansion in
the ratio of ’external’ momentum p to a loop momentum to obtain the logarithmic divergence,
etc. And similarly to that calculation we obtain an infrared divergence as an artifact of that
expansion (one can check that before one performs the expansion the integral is IR finite). Thus,
again one has to introduce an IR cutoff which has to be well above the scale that dominates the
p integration, and therefore depends on the characteristic of ω̃ and thus ultimately on the charge
distribution that one wants to prescribe. We perform the Fourier integral, and obtain65

tr(T̂ a[Σ, G]xx) =
g2N

48π2
(∆ωa(x)) ln

(
Λ2

Λ2
IR

)
. (2.191)

Thus, we obtain the following relation between external charge and ω:

gρa(x) = 〈Γa(x)〉 = −∆ωa(x)

{
1 +

g2N

48π2
ln

(
Λ2

Λ2
IR

)}
. (2.192)

To obtain the potential to O(g4) is by no means trivial, because one has also to compute Tr(G−1)
where G−1 is given (implicitly) by eq. (2.170); the task is simplified, however, since we are only
interested in the O(g4) contribution to the trace. Similar to sec. 2.3.5 we introduce operators
G−1,K0, Σ,P

T , s.t.

〈z1; i1, a1|G−1 |z2; i2, a2〉 = (G−1)a1a2i1i2
(z1, z2) (2.193)

〈z1; i1, a1| K0 |z2; i2, a2〉 = (K0)
a1a2
i1i2

(z1, z2) (2.194)

〈z1; i1, a1| Σ |z2; i2, a2〉 = (ΣΣ− g

2
(ωaT̂ aΣ− ΣT̂ aωa))a1a2i1i2

(z1, z2) (2.195)

〈z1; i1, a1| PT |z2; i2, a2〉 = δa1a2
∫

d3k

(2π)3
eik.(z1−z2)PTi1i2(k), (2.196)

64This result can also be found in [HIMV00].
65This result can also be found in [HIMV00].
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where Σ is proportional to g4. Let us also use the notation

〈z1; i1, a1|(K0)
−1|z2; i2, a2〉 = δa1a2

∫
d3k

(2π)3
eik.(z1−z2) 1√

k2
(δi1i2 −

ki1ki2
k2

). (2.197)

With this we have
(K0)

−1
K0 = P

T = K0(K0)
−1. (2.198)

In order to determine the static potential to O(g4) we now have to compute

Tr(G−1) = Tr

(√
(4K2

0 + 16Σ)

)
= 2Tr

(√
(K2

0 + 4Σ)

)
(2.199)

to O(g4). The first term under the square root is of O(g0) whereas the second is of O(g4).
Therefore, Tr(G−1) is given as a power series in g4. The O(g4) term can hence be obtained as

∂

∂(g4)

(
Tr(G−1)− 2Tr(K0)

)∣∣∣∣
g=0

, (2.200)

where we have subtracted the contribution to the trace that is independent of g for convenience.
We now use a proper-time representation of the square root [Sch51], [KV89], [Zin89]:

√
λ1 −

√
λ2 = −

∫ ∞

0

ds

2
√
πs3

(
e−sλ1 − e−sλ2

)
, (2.201)

the ’fluctuation formula’, cf. e.g. [AR95],

d

dx
eA =

∫ 1

0
dt etA

dA

dx
e(1−t)A (2.202)

and the cyclic property of the trace to obtain

∂

∂(g4)

(
Tr(G−1)− 2Tr(K0)

)∣∣∣∣
g=0

=
∂

∂(g4)
Tr

(
−
∫ ∞

0

ds

2
√
πs3

[
e−sG

−2 − e−s4K
2
0

])∣∣∣∣
g=0

= Tr

(∫ ∞

0

ds

2
√
πs

[
∂

∂(g4)
G

−2

]
e−s4K

2
0

)
. (2.203)

Since Tr
(
( ∂
∂(g4)

G−2)PT
)

= Tr( ∂
∂(g4)

G−2), we can carry out the proper-time integration, and

obtain

Tr(G−1) = 2Tr(K0) + 4Tr

(
(K0)

−1 1

g4
Σ

)
g4 +O(g8) (2.204)

because ∂
∂(g4)

G−2 = 16
g4
Σ. Using eq. (2.189), we can express Tr((K0)

−1Σ) as

g2

4
trc(T̂

c1T̂ c2)

∫
d3k

(2π)3
d3k2
(2π)3

{
ω̃c1(k− k2)ω̃

c2(k2 − k)
1

|k2|
( |k| − |k2|
|k|+ |k2|

)( |k2| − |k|
|k|+ |k2| + 2

)

×trs(P
T (k)PT (k2))

}
, (2.205)
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where trc denotes a colour trace and trs a trace over the spatial indices. We can now introduce
new sets of momenta P = k−k2,Q = 1

2 (k+k2). Since we are mainly interested in the logarithmic
UV divergence, we can expand the part of the integrand that depends on both P and Q in powers
of |P|

|Q| . As discussed above we again have to introduce also an infrared cutoff ΛIR, and end up

with66

Tr(G−1) = 2Tr(K0) + 4
Ng2

(4π)2
ln

(
Λ

ΛIR

)∫
d3P

(2π)3
P2ω̃a(P)ω̃a(−P) +O(g8). (2.206)

Thus, to O(g4), the contribution to the energy that depends on ω is67

E[ω]− E[ω = 0] = −1

2

∫
d3x (∇iω

a(x))(∇iω
a(x)) +

∫
d3xωa(x)〈Γa(x)〉+ 1

4
4Tr
(
(K0)

−1Σ
)

=
1

2

∫
d3p

(2π)3
p2ω̃a(p)ω̃a(−p)

[
1 +

Ng2

48π2
ln

(
Λ2

Λ2
IR

)]
. (2.207)

Here one should note that the size of the infrared cutoff is in both cases (〈Γa〉 and Tr(G−1))
determined by ω̃ and can hence chosen to be identical. This outcome for the energy is not
unexpected, since it simply means that the a priori different moments of inertia68 T ab(x,y) and
Iab(x,y) are in this perturbative calculation identical. In cases where we can treat the cranking
Hamiltonian exactly, this has in fact to be the case, and deviations from I = T can only come
into play due to an approximative treatment of the Schrödinger equation. As a last point, we
have to relate the energy to external charges. In accordance with [HIMV00], we take 〈Γa(x)〉|g=0

as definition of our external charge ρae ; this allows to express ω̃ in terms of ρ̃e as (using eq. (2.182))

ω̃a(p) =
g

p2
ρ̃ae(p). (2.208)

Then the one-loop energy can be written as

E[ρe]− E[0] =
g2

2

∫
d3p

(2π)3
1

p2
ρ̃a(p)ρ̃a(−p)

[
1 +

Ng2

48π2
ln

(
Λ2

Λ2
IR

)]
+O(g8). (2.209)

If we compare this result with the result of sec. 2.2 we observe that the cranking treatment does
not lead to the correct β-function.
The conclusion one can draw from the O(g4) treatment is that cranking deals with 〈Πi〉 correctly,
which is enough for classical quantities; however, beyond that, i.e. on the one-loop level, charges
are not correctly coupled to the system any more, and quantities like 〈ΠiΠj〉 are not treated
correctly. This conclusion is also suggested by the Kamlah expansion that will be treated in the
next section. There, it turns out, the first order - which under certain circumstances is equivalent
to cranking [Man75] - also treats only 〈Πi〉 correctly, but not 〈ΠiΠj〉.

66One should keep in mind that ω is of O(g1), cf. eq. (2.175).
67The contribution to the energy from the trace term is 1

4
Tr(G−1).

68They are defined by eqs. (2.157, 2.160).
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2.6 The Kamlah Expansion

In this section we want to present another method to deal with the projector approxi-
mately that also has its roots in nuclear physics: the Kamlah expansion. We introduce
it by considering the example of ordinary two-dimensional rotation, and then apply the
concept to electrodynamics with external charges. Next, we consider Yang-Mills theory
without external charges but we have to restrict ourselves to lowest order in perturba-
tion theory, albeit we treat a possible background field to all orders. As a last point
we consider how the quasi-Abelian properties of Yang-Mills theory in lowest order of
perturbation theory allow for the inclusion of charges to that order.

2.6.1 Generalities

In this first section we want to discuss the Kamlah expansion as it is introduced in the context
of nuclear physics69 [Ka68], [Kub72], [Man75], [RS80], [BR86], cf. also [Zeh65], [Zeh67]. In
nuclear physics, one is often confronted with the problem that (usually through the restriction
of the space of test wave functions to be used in the variational problem) the ’best’ variational
wave functions (i.e. those with the lowest energy expectation value) are ’deformed’. In other
words, the wave functions are not eigenstates of the symmetry operators that commute with the
Hamiltonian and form a complete commuting set. An important example for this is given by
the Hartree-Fock-Bogoliubov theory, where the states considered do not have a good particle
number. In order to remedy this problem, one uses a projector that ensures that the projected
states do carry good quantum numbers. In the case of particle number this would be

Pn =

∫ 2π

0

dα

(2π)
eiα(N̂−n), (2.210)

where N̂ is the particle number operator and n is the prescribed particle number. Equivalently,
we can also consider a system which is deformed in ordinary space and which has to be projected
onto states with good angular momentum. For simplicity we will deal with the two dimensional
case - where the rotation group is Abelian with generator Ĵ - first. In this case we have the
projector

PI =

∫ 2π

0

dα

(2π)
eiα(Ĵ−I). (2.211)

We see that the projectors are integral operators, and when computer time was too costly to
implement them, one sought for methods that could deal with them approximately. The case
which worked particularly well is the case of strong deformations. Strongly deformed states |φ〉
are states where

|〈φ|eiαĴ |φ〉| (2.212)

decreases rapidly for increasing α. This is very useful, since one can argue that

|〈φ|HeiαĴ |φ〉| (2.213)

will vanish rapidly for increasing α, too, but

〈φ|HeiαĴ |φ〉
〈φ|eiαĴ |φ〉 (2.214)

69Also of interest in the case of nuclear physics are [BMR70], [RBM70], [Cor72], and [VSR71]. Applications can
found e.g. in [BMR73], [RMB74]. That the Kamlah expansion can also be used to implement a symmetry-projected
Random Phase Approximation was considered in [EMR80b].
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is a smooth function of α. The argument consists basically of noting that, whereas Ĵ is a one-

particle operator, eiαĴ is a collective operator that affects arbitrarily large numbers of particles

eiαĴ = 1︸︷︷︸
0−body operator

+ iαĴ︸︷︷︸
1−body operator

+
1

2
(iαĴ )2︸ ︷︷ ︸

2−body operator

+
1

3!
(iαĴ)3︸ ︷︷ ︸

3−body operator

+ . . . , (2.215)

H is (in nuclear physics) at most a two-body operator70; thus the behaviour w.r.t. increasing α

should be the same whether we consider eiαĴ or HeiαĴ . One can now argue further that in the

matrix element 〈φ|HeiαĴ |φ〉 all degrees of freedom that are not affected by the collective rotation
(’internal degrees of freedom’) can be integrated out, and that this results in an effective Hamil-
tonian operator that is an - up to now - unknown function of Ĵ , the symmetry generator. For
this function it is proposed to use a power series expansion in powers of 71,72 (Ĵ − 〈Ĵ〉), which
is plausible, since one does not expect singularities for collective rotations with finite angular
momenta. However, this is only useful if we can stop the expansion after a few terms. That this
is indeed possible one can see as follows:

• 〈φ|eiαĴ |φ〉 is well localized in α space; therefore, a broad range of wave functions with good
Ĵ quantum number have to be added up coherently

• 〈φ|(Ĵ − 〈Ĵ〉)eiαĴ |φ〉: each wave function with good Ĵ quantum number is now weighted by
that quantum number and this begins to destroy the coherence, in other words

〈φ|(Ĵ − 〈Ĵ〉)eiαĴ |φ〉 is broader in α space than 〈φ|eiαĴ |φ〉
• the higher the power of (Ĵ−〈Ĵ〉), the broader is the resulting matrix element in α space, but

we already know that 〈φ|HeiαĴ |φ〉 is not very much broader in α space than is 〈φ|eiαĴ |φ〉,
hence the matrix elements containing higher powers of (Ĵ − 〈Ĵ〉) (besides eiαĴ ) must be
suppressed73, i.e. the corresponding expansion coefficients must be small. qed.

Thus, we can stop the expansion

〈φ|HeiαĴ |φ〉 =
∞∑
k=0

Ak〈φ|(Ĵ − 〈Ĵ〉)keiαĴ |φ〉 (2.216)

after a few terms:

〈φ|Happroxe
iαĴ |φ〉 =

n∑
k=0

Ak〈φ|(Ĵ − 〈Ĵ〉)keiαĴ |φ〉. (2.217)

The (n+1) coefficients are determined by requiring that 〈φ|HeiαĴ |φ〉 and 〈φ|Happroxe
iαĴ |φ〉 along

with their first n derivatives w.r.t. α are equal at the point α = 0. One thus ends up with the

70A similar terminology can also be constructed for Yang-Mills theory, which will in fact be done in chapter 3.
In this terminology the Yang-Mills Hamiltonian also will be at most a two-body operator, i.e. contain up to four
creation/annihilation operators.

71〈Ĵ〉 is used as an abbreviation for 〈φ|Ĵ |φ〉
72The idea to expand the Hamiltonian in powers of the symmetry generators, although with a different method

to obtain the coefficients, was proposed in [Vil65a],[Vil65b], cf. also [MW69], [MW70].
73We assume here that there is no ’conspiracy’ between different orders in the expansion, but this seems to be

a plausible assumption.
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set of equations74

〈φ|H(Ĵ − 〈Ĵ〉)m|φ〉 =
n∑
k=0

Ak〈φ|(Ĵ − 〈Ĵ〉)k+m|φ〉, (2.218)

where m = 0, . . . , n. After we have solved these equations to obtain Ai, we can insert Happrox =∑n
k=0Ak(Ĵ − 〈Ĵ〉)k into the expression for the projected energy75

Eprojapprox(I) =
〈φ|HapproxP

I |φ〉
〈φ|PI |φ〉 =

∫ 2π

0

dα

2π

〈φ|Happroxe
iαĴ |φ〉

〈φ|PI |φ〉

=

n∑
k=0

Ak

∫ 2π

0

dα

2π

〈φ|(Ĵ − 〈Ĵ〉)keiαĴ |φ〉
〈φ|PI |φ〉 =

n∑
k=0

Ak
〈φ|(Ĵ − 〈Ĵ〉)kPI |φ〉

〈φ|PI |φ〉 . (2.219)

The advantage of the approach now becomes visible: whereas before we did not know how to
evaluate the matrix elements including the projector, it has now become trivial; PI projects onto
angular momentum I. Then ĴPI = IPI , and numerator and denominator cancel, which means
that we do not have to calculate a single matrix element containing the projector explicitly:

Eproj(I) =

n∑
k=0

Ak(I − 〈Ĵ〉)k. (2.220)

In nuclear physics, for most applications n was taken to be one or two; one then ends up with76

Eproj(I) = 〈H〉+ 〈H∆Ĵ〉
〈(∆Ĵ)2〉 (I − 〈Ĵ〉) (2.221)

for n = 1 and

Eproj(I) = 〈H〉 − 〈∆Ĵ2〉
2IY +

〈Ĵ〉
Isc (I − 〈Ĵ〉) + 1

2IY (I − 〈Ĵ〉)2, (2.222)

with
1

2IY =
〈H∆Ĵ2〉 − 〈H〉〈∆Ĵ2〉

〈∆Ĵ4〉 − 〈∆Ĵ2〉2 and
〈Ĵ〉
Isc =

〈H∆Ĵ〉
〈∆Ĵ2〉 (2.223)

for n = 2 [RS80]. We have used the notation ∆Ĵ = Ĵ − 〈Ĵ〉 and abbreviated 〈φ| . . . |φ〉 by
〈. . .〉. We see that, at first order, we get no corrections to the mean field energy if 〈Ĵ〉 = I,
whereas for the expansion to second order, we obtain even then a correction. One can interpret
these corrections if one considers a deformed state as being a superposition of different angular
momenta; especially, there are components in the wave function that are of higher angular
momentum than the angular momentum one projects on. Usually one would assume that higher
angular momenta also contain higher kinetic energy that should not be present in the projected

74In the field theory case below, the equations will look slightly different; this comes about since we multiply

both sides of eq. (2.216) by the analogue of e−iαI , whereas here, we multiply both sides with e−iα〈Ĵ〉; this should
not affect the coefficients An (we will actually see that the coefficients in the field theory case are independent of
I), it only serves to give more compact formulas here.

75Let us draw at this point attention to the following difference in notation between sec. 2.1.6 and here: whereas
in sec. 2.1.6 〈. . .〉 was thought to include the projection already we have here the projector explicitly. This leads
to e.g. 〈1〉sec.2.1.6 = 〈P〉here.

76If we take simply n = 0, we obviously end up with A0 = 〈H〉 which is reassuring: the lowest order term just
gives the unprojected expectation value.
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wave function; thus one obtains negative corrections to the ordinary energy expectation value.
One notes in passing that the moment of inertia 1/IY is quite different from 1/Isc; the latter
one is associated with the cranking model. In fact one can show that, if the variational space
considered for the cranking calculation contains77 not only |φ〉 but also ∆Ĵ |φ〉, then the solution
of the cranking equations indeed solves also the variational equations derived for the n = 1
Kamlah expansion, and that the Lagrange multiplier of the cranking model has precisely the
same form as the first order correction of the Kamlah expansion [Man75].
There are calculations that seem to assume that in practice both moments of inertia are identical,
IY = Isc [HMVI98], [HIMV00], and that one can determine the moment of inertia IY from a
cranking type calculation. In Yang-Mills theory it turns out that to O(g0) they are indeed
identical, but the explicit expressions given above don’t give much hope that it stays this way
for higher orders in perturbation theory.
If one goes from an Abelian type problem to a non-Abelian problem (like three dimensional
angular momentum projection) one immediately has to face some problems [Sor77]; the first one
is that a rigid body has two frames of reference (the lab frame and the internal frame), two
sets of angular momentum operators and (since the total angular momentum is identical in the
intrinsic and in the lab frame) three angular momentum quantum numbers (usually called I,K,M
belonging to J2 = I2, J3, I3). The basic ingredient into any projector is then

PIKM = |I,K〉〈I,M |. (2.224)

The quantum numbers I,K are those of the state to be observed in the lab frame, whereas M is
only seen in the intrinsic frame. This object does not have the properties usually expected of
a projector, since it is neither hermitian, nor do we have a relation like P2 = P. The obvious
remedy cannot be used, since taking PIK=M,M would avoid the mathematical problems but would
violate rotational symmetry, as an ’intrinsic’ state with M = 0 would always lead to a state to
be observed in the lab frame with K = 0 [RS80]. One could also ask more physically: if M is
an internal quantum number that has rather little to do with what can be observed in the lab
frame, why don’t we use

P IK =
∑
M

fMP
I
KM (2.225)

as a projector with fM as additional variational parameters (cf. e.g. [KO77]) ? In [Ka68] it
was argued that one should take all fM to be equal to one, but whatever one does, one always
ends up with the problem that one has to evaluate matrix elements of operators acting upon
projectors that do not carry the quantum numbers that are projected upon; to be concrete, one
has e.g. to evaluate ∑

M,M ′〈ψ| ~JP IMM ′ |ψ〉∑
M,M ′〈ψ|P IMM ′ |ψ〉 . (2.226)

One sees clearly that, unlike in the Abelian case, the projector matrix elements do not usually
cancel. A number of ways have been devised in the literature to approximately evaluate these
sums, but they are not of interest here, since they cannot be transcribed to the field theory case.
We only want to point to the fact that the difficulties even in the formulation of the projector
do not come into play if we want to project onto a state with I = 0, since then there is only one
projector P 0

00 and no factors of f can be chosen. This is the case of the Yang-Mills projector

77The variational space that we use in field theory, consisting of Gaussian wave functionals, is not so large as
would be required for this equivalence.
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since we have combined the gluonic (Γ) and the matter (ρ) contribution into one set of operators
G which now are supposed to form an ’s-wave’. The problem of non-factorizability of projectors
and other operators will nevertheless also haunt us later on, too.
One last comment on the validity of the Kamlah expansion shall be made at this point. It
is a priori not clear that it is physically sensible to perform the Kamlah expansion for a local
symmetry. In nuclear physics, the very deformed states usually do not come about through a
very deformed nucleus in space, but are due to a very large number of participating nucleons. In
gauge field theory, one has usually the situation of a very small number of excitations at every
point in space. Therefore it is not clear whether it is sensible to use the ’large-deformation’
expansion. However, it will turn out that the Kamlah expansion performs very well in the cases
we have considered.

2.6.2 Application to Electrodynamics

In this section, we want to apply the general principles outlined above to what we call electrody-
namics - a quantized electromagnetic field interacting with static sources. It is illuminating since
we will see that in marked contrast to nuclear physics, the first and second order expansions are
quite different.

Kamlah Expansion to First Order

Here one starts from the expression

〈Hei
R
φ(Γ−ρ)〉 = A0〈ei

R
φ(Γ−ρ)〉+A1(y)〈{Γ(y) − 〈Γ(y)〉} ei

R
φ(Γ−ρ)〉, (2.227)

where we have used
∫
φ(Γ− ρ) as an abbreviation for

∫
d3z φ(z)(Γ(z)− ρ(z)). A useful notation

that will be used throughout the remainder of this section is

∆(x) = Γ(x)− 〈Γ(x)〉 , δ(x) = ρ(x)− 〈Γ(x)〉. (2.228)

The coefficient A0 is determined by setting φ = 0:

A0 = 〈H〉, (2.229)

and for A1(x), we perform the functional derivative δ/δφ(x), and set φ = 0 afterwards. Inserting
the result for A0 into this equation, and noting that 〈Hρ(x)〉 = 〈H〉ρ(x) since ρ is just a c-number
function, we obtain ∫

A1(y)〈∆(y)∆(x)〉 = 〈H∆(x)〉. (2.230)

We introduce the functional inverse Θ−1(x,y) of 〈∆(x)∆(y)〉, s.t.
Θ−1(x, z)〈∆(z)∆(y)〉 = δxy (2.231)

and can now resolve eq. (2.230) to give

A1(y) = 〈H∆(x)〉Θ−1(x,y). (2.232)

Inserting this into eq. (2.227), integrating over φ to obtain
∫ Dφ ei

R
φ(Γ−ρ) = Pρ and using

Γ(x)Pρ = ρ(x)Pρ, we obtain for the projected energy functional

〈HPρ〉
〈Pρ〉 = 〈H〉+ 〈H∆(x)〉Θ−1(x,y)δ(y). (2.233)
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Note that the derivation can be carried out for any gauge-invariant few-body operator O, since
there is nothing special about the Hamiltonian:

〈OPρ〉
〈Pρ〉 = 〈O〉+ 〈O∆(x)〉Θ−1(x,y)δ(y). (2.234)

This provides a first test of the validity of the first-order Kamlah expansion. We may set O =
∆(z), and obtain

〈∆(z)Pρ〉
〈Pρ〉 = 〈∆(z)〉 + 〈∆(z)∆(x)〉Θ−1(x,y)︸ ︷︷ ︸

=δzy

δ(y) = ρ(z)− 〈Γ(z)〉, (2.235)

or in other words 〈Γ(z)Pρ〉
〈Pρ〉 = ρ(z) (2.236)

showing that the expression provided by the first order Kamlah expansion for 〈Γ(z)Pρ〉/〈Pρ〉 is
exact. It doesn’t stay that way, however, if one considers e.g. O = ∆(z1)∆(z2) :

〈∆(z1)∆(z2)P
ρ〉

〈Pρ〉 = 〈∆(z1)∆(z2)〉+ 〈∆(z1)∆(z2)∆(x)〉︸ ︷︷ ︸
=0

Θ−1(x,y)δ(y) = 〈∆(z1)∆(z2)〉, (2.237)

where we have used that 〈∆(z1)∆(z2)∆(x)〉 = 0, which is true for every Gaussian state. We
see that there are no corrections due to the projector for ∆(z1)∆(z2) by the first order Kamlah
formula. This gives rise to the expectation that the energy will not be correctly projected, since
it contains terms of the type 〈Γ(x)Γ(y)Pρ〉 (as we will see below, they arise from the kinetic
energy).
We now start to evaluate the projected energy. For this it is useful to note that under a variety
of assumptions78

〈Bi(x)Bj(y)Γ(z)〉 = 〈Bi(x)Bj(y)〉〈Γ(z)〉, (2.238)

i.e. 〈Bi(x)Bj(y)∆(z)〉 = 0. Physically it is plausible that the magnetic part of the energy should
not be affected, since it contains the transversal degrees of freedom only. For the electrical field
one obtains

〈Πi(x)Πi(x)Γ(z)〉 = 2〈Πi(x)∆(z)〉〈Πi(x)〉+ 〈Πi(x)Πi(x)〉〈Γ(z)〉, (2.239)

which is valid even without integrating over x. With this, the first order energy correction is
given by

〈H∆(z)〉 = 〈Πi(x)∆(z)〉〈Πi(x)〉. (2.240)

In order to make any further progress, it seems that one has to assume that both G−1 and Σ are
translationally invariant; then one can write

〈Πi(x)Πj(y)〉c = 1

4
G−1
ij (x,y) + 4(ΣGΣ)ij(x,y) =

∫
d3p

(2π)3
eip.(x−y)(σ̃pLP

Lp

ij + σ̃pTP
Tp
ij ) (2.241)

78Either one may assume that the kernel in the Gaussian wave functional is purely real, i.e. Σ = 0, or that both
G−1 and Σ are translation invariant, or that the background field B̄i = εijk∇jĀk fulfils the classical equations of
motion.
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which defines the longitudinal and transversal components σ̃L, σ̃T , and where we have used the
abbreviation P

Lp

ij for pipj/p
2; correspondingly P

Tp
ij = δij − P

Lp

ij . This expression allows an

explicit expression for Θ−1(x,y):

Θ−1(x,y) =

∫
d3p

(2π)3
eip.(x−y) 1

p2σ̃pL
(2.242)

and thus

〈H∆(x1)〉Θ−1(x1,y) = 〈Πi(x)〉〈Πi(x)∆(x1)〉Θ−1(x1,y)

= 〈Πi(x)〉
∫

d3q

(2π)3
∇x1
j e

iq.(x−x1)(σ̃qLP
Lq

ij + σ̃qTP
Tq
ij )Θ

−1(x1,y)

= 〈Πi(x)〉
∫

d3q

(2π)3
eiq.(x−x1) 1

i
qj(σ̃

q
LP

Lq

ij + σ̃qTP
Tq
ij )Θ

−1(x1,y)

= 〈Πi(x)〉
∫

d3q

(2π)3
eiq.(x−x1) 1

i

qi
q2

(q2σ̃qL)Θ
−1(x1,y)

= 〈Πi(x)〉
∫

d3q

(2π)3
1

i2
∇x
i

q2
eiq.(x−x1)(q2σ̃qL)Θ

−1(x1,y)

= 〈Γ(x)〉
(
−G∆(x, z)

)
Θ(z,x1)Θ

−1(x1,y)︸ ︷︷ ︸
=δzy

= 〈Γ(x)〉
(
−G∆(x,y)

)
. (2.243)

G∆ denotes the Green’s function of the (ordinary) Laplace operator, i.e. ∇x
i ∇x

i G∆(x,y) = δxy.
Thus the projected energy reads

〈HPρ〉
〈Pρ〉 = 〈H〉 − 〈Γ(x)〉

(
−G∆(x,y)

)(
〈Γ(y)〉 − ρ(y)

)
. (2.244)

We can make this expression even more transparent if we have a look at79 〈ΠL
i (x)〉〈ΠL

i (x)〉 where
ΠL
i (x) denotes the longitudinal component of Πi(x). One can derive the identity

〈ΠL
i (x)〉〈ΠL

i (x)〉 = 〈Γ(x)〉
(
−G∆(x,y)

)
〈Γ(y)〉, (2.245)

and therefore one can write

〈HPρ〉
〈Pρ〉 = 〈H〉P − 1

2

{
〈Γ(x)〉

(
−G∆(x,y)

)
〈Γ(y)〉 − 2〈Γ(x)〉

(
−G∆(x,y)

)
ρ(y)

}
, (2.246)

where 〈H〉P denotes the part of the energy expectation value which is independent of 〈ΠL〉,
but which still80 depends on 〈ΠLΠL〉c. Thus 〈Γ(x)〉 is determined to be equal to ρ(x) at the
stationary point, giving the correct charge contribution to the energy

1

2
ρ(x)

(
−G∆(x,y)

)
ρ(y). (2.247)

79Remember, in a Gaussian state, it makes sense to split 〈Πi(x)Πi(x)〉 = 〈Πi(x)Πi(x)〉c + 〈Πi(x)〉〈Πi(x)〉.
80In formulas this is expressed simply by 〈H〉P = 〈H〉 − 1

2
〈ΠL

i (x)〉〈ΠL
i (x)〉.
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As we have seen in the section about cranking, at the stationary point, 〈ΠLΠL〉c will be zero
as well, s.t. the energy will depend only on the transversal degrees of freedom and on the
charge density. However, the outcome is quite in contrast to what we expected from the Kamlah
expansion initially: since we have computed the projected energy functional, (a) this should be
completely independent of the gauge dependent degrees of freedom; thus, it should not depend
on 〈ΠLΠL〉c, since in order to provide a non-vanishing expectation value 〈ΠLΠL〉c the wave
functional hast to depend on AL; and (b) the state was assumed to be strongly deformed, but, if
we take the first-order formalism seriously, at the stationary point our state is just not deformed,
since 〈ΠLΠL〉c = 0. These problems are overcome by performing the Kamlah expansion to
second order. Therefore, we will now turn to this.

Kamlah Expansion to Second Order

Here one starts from the expression

〈Hei
R
φ(Γ−ρ)〉 = A0〈ei

R
φ(Γ−ρ)〉+A1(y)〈{Γ(y) − 〈Γ(y)〉} ei

R
φ(Γ−ρ)〉

+A2(y, z)〈{Γ(y) − 〈Γ(y)〉}{Γ(z) − 〈Γ(z)〉} ei
R
φ(Γ−ρ)〉. (2.248)

The coefficients will be determined in principle as above: one needs three equations, which are
obtained by (a) setting φ = 0, (b) performing a functional derivative w.r.t. φ(x1) and setting
φ = 0 afterwards, (c) performing two functional derivatives, w.r.t. φ(x1), φ(x2) and setting φ = 0
afterwards. After a bit of manipulation, one obtains

A0 = 〈H〉 −A2(y, z)〈∆(y)∆(z)〉, (2.249)

A1(y) = (〈H∆(x1)〉 −A2(y1, z1)〈∆(y1)∆(z1)∆(x1)〉)Θ−1(x1,y)

(2.250)

and for A2 one obtains an even less pleasant equation

〈H∆(x1)∆(x2)〉 − 〈H〉〈∆(x1)∆(x2)〉 − 〈H∆(z)〉Θ−1(z,y)〈∆(y)∆(x1)∆(x2)〉
= A2(y, z)

[
〈∆(y)∆(z)∆(x1)∆(x2)〉 − 〈∆(y)∆(z)〉〈∆(x1)∆(x2)〉
−〈∆(y)∆(z)∆(y1)〉Θ−1(y1,y2)〈∆(y2)∆(x1)∆(x2)〉

]
. (2.251)

This simplifies drastically if one exploits some of the factorization features of Gaussian states,

〈∆(x)∆(y)∆(z)〉 = 0 (2.252)

〈∆(y)∆(z)∆(x1)∆(x2)〉 = 〈∆(y)∆(z)〉〈∆(x1)∆(x2)〉+ 〈∆(x1)∆(z)〉〈∆(y)∆(x2)〉
+〈∆(x2)∆(z)〉〈∆(x1)∆(y)〉 (2.253)

This allows to simplify eq. (2.251) drastically:

〈H∆(x1)∆(x2)〉 − 〈H〉〈∆(x1)∆(x2)〉
= A2(y, z) (〈∆(y)∆(x1)〉〈∆(z)∆(x2)〉+ 〈∆(y)∆(x2)〉〈∆(z)∆(x2)〉) . (2.254)

In order to obtain A2 explicitly, we can again use Θ−1:(
〈∆(y)∆(x1)〉〈∆(z)∆(x2)〉+ 〈∆(y)∆(x2)〉〈∆(z)∆(x2)〉

)1
2
Θ−1(x1,y1)Θ

−1(x2,y2)

=
1

2
(δyy1δzy2 + δyy2δzy1). (2.255)
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This can be inserted into the expression for A0, and since 〈[Γ(y),Γ(z)]〉 = 0 in electrodynamics,
we obtain for the projected energy functional (using the notation ∆H = H − 〈H〉):

〈HPρ〉
〈Pρ〉 = 〈H〉 − 1

2
〈∆H∆(x1)∆(x2)〉Θ−1(x1,x2)− 〈∆H∆(x1)〉Θ−1(x1,y1)〈Γ(y1)− ρ(y1)〉

+
1

2
〈∆H∆(x1)∆(x2)〉Θ−1(x1,y1)Θ

−1(x2,y2)〈Γ(y1)− ρ(y1)〉〈Γ(y2)− ρ(y2)〉.
(2.256)

As in the paragraph above, in the derivation no special property of H apart from gauge invariance
was used, and therefore the expression is valid for every gauge-invariant few-body operator O:

〈OPρ〉
〈Pρ〉 = 〈O〉 − 1

2
〈∆O∆(x1)∆(x2)〉Θ−1(x1,x2)

−〈∆O∆(x1)〉Θ−1(x1,y1)〈Γ(y1)− ρ(y1)〉
+
1

2
〈∆O∆(x1)∆(x2)〉Θ−1(x1,y1)Θ

−1(x2,y2)〈Γ(y1)− ρ(y1)〉〈Γ(y2)− ρ(y2)〉.
(2.257)

As in the first order case, we now have a look at O = ∆(z) and O = ∆(z1)∆(z2):

〈∆(z)Pρ〉
〈Pρ〉

eq. (2.257)
= ρ(z) − 〈Γ(z)〉 (2.258)

which is the same result as in the first-order expansion, since all the additional terms due to
second order vanish; next

〈∆(z1)∆(z2)P
ρ〉

〈Pρ〉
eq. (2.257)

= 〈Γ(z1)− ρ(z1)〉〈Γ(z2)− ρ(z2)〉. (2.259)

Thus, in the second-order Kamlah expansion, both 〈∆(z)Pρ〉/〈Pρ〉 and 〈∆(z1)∆(z2)P
ρ〉/〈Pρ〉

are reproduced81 exactly. This gives rise to the hope that the energy, too, will be projected
correctly, since it depends both on 〈Γ(x)〉〈Γ(y)〉 and on 〈Γ(x)Γ(y)〉. We will now turn to the
evaluation of the energy. In addition to the terms we have computed above, we need to compute

81A certain pattern seems to emerge here: in the first-order expansion the expectation value of a single Gauss
law operator between projected states was corrected, but not those of more operators (we checked the expectation
value of ∆(z1)∆(z2) in eq. (2.237)). In the second-order expansion the expectation values of up to two Gauss law
operators between projected states were corrected, but not those of more operators (it is easy to convince oneself
that 〈∆(z1)∆(z2)∆(z3)P

ρ〉/〈Pρ〉 = −〈∆(z1)∆(z2)〉〈Γ(z3) − ρ(z3)〉 + permutations). Thus, we would expect in
order to have the expectation values of up to three Gauss law operators corrected we need a third-order expansion
etc, although we have not checked this explicitly. To what extent this pattern extends also to other operators is
currently not known. The Gauss law operator is in this context obviously useful as a first check on the accuracy of
the method, since one knows what to expect of the projected expectation value. One can give a further argument
in support of the pattern found here. If we want to project correctly the product of n Gauss law operators we have
to obtain a product of n charge distributions ρ from the Kamlah expression for the projected operator. We have
seen that the coefficients Ai are independent of ρ so the only place where ρ does appear is in the terms (〈Γ〉 − ρ)i

(where for simplicity we haven’t written out the product). But the highest power i that we obtain is equal to the
order of the Kamlah expansion, i.e. a Kamlah expansion to second order includes at most terms ∝ ρ2. Thus the
operator Γ3 can never be correctly projected to give ρ3 in the second order Kamlah expansion and a third order
treatment would be called for.
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〈Bi(x)Bj(y)Γ(z1)Γ(z2)〉. If we again take either Σ = 0 or G−1 and Σ translationally invariant,
the matrix element factorizes,

〈Bi(x)Bj(y)Γ(z1)Γ(z2)〉 = 〈Bi(x)Bj(y)〉〈Γ(z1)Γ(z2)〉 (2.260)

which is again plausible, since there should be no corrections to the magnetic part of the energy;
it depends on the transversal degrees of freedom only. The next ingredient we have to compute
for 〈∆H∆(x1)∆(x2)〉 is the electric energy, which gives a rather simple contribution, too. We can
evaluate it using the same factorization properties that underly eq. (2.253), and obtain altogether:

〈∆H∆(x1)∆(x2)〉 = 〈Γ(x2)Πi(x)〉c〈Γ(x1)Πi(x)〉c. (2.261)

This expression enters the correction of the mean-field energy

1

2
〈∆H∆(x1)∆(x2)〉Θ−1(x1,x2) =

1

2
〈PLij(x1,x2)Πj(x2)Πi(x1)〉c, (2.262)

where PLij(x2,x1) denotes the longitudinal projector as defined82 e.g. in eq. (A.16); translation
invariance, that has been assumed before, implies that the electrical energy can be written as

1

2
〈Πi(x)Πi(x)〉 = 1

2
〈PLji(y,x)Πi(x)Πj(y)〉 + 1

2
〈PTji(y,x)Πj(x)Πi(y)〉 (2.263)

and thus the second order Kamlah expansion precisely subtracts off the longitudinal (gauge
variant) part of the kernel. The other term needed to compute 〈HPρ〉/〈Pρ〉 is even simpler,

1

2
〈∆H∆(x1)∆(x2)〉Θ−1(x1,y1)Θ

−1(x2,y2) = −G∆(y1,y2). (2.264)

Similar to the first-order discussion, we subtract off the part 〈ΠL
i 〉〈ΠL

i 〉 (thus completing 〈PLjiΠiΠj〉c
to 〈PLjiΠiΠj〉) and add it back in afterwards. This gives a concise formula for the projected en-
ergy:

〈HPρ〉
〈Pρ〉 = 〈H〉 − 1

2
〈PLijΠiΠj〉+ 1

2
ρ(x)

(
−G∆(x,y)

)
ρ(y). (2.265)

Note how different the outcome is from the first-order calculation: the projected energy is com-
pletely independent of the longitudinal parts of the electric field (both the expectation value and
the correlator), and in turn they cannot be determined variationally. In the wave functional,
the longitudinal parts are totally undetermined, which is what one wants since their value is
prescribed by the projector. Thus we can conclude that, at least in electrodynamics, the second
order Kamlah expansion is mandatory for a consistent formalism.
One amusing point might be noted at the end of this section; if one restricts the dimensionality
of space-time to (1+1), there are no transversal components of A, Π; thus the projection to
second order as carried out by the Kamlah expansion leaves behind only the interaction of static
charges83.

82In this context there is no problem with the other definitions eqs. (A.17, A.18).
83Though we have not checked explicitly (by replacing Fourier integrals by sums etc), eq. (2.265) seems to suggest

strongly that if we consider the theory on a compact spatial manifold in (1+1) dimensions, we would also keep -
in addition to the energy of the charges - the spatially constant part of Π (since this part is annihilated by the
derivatives in the longitudinal projector, and is thus not subtracted), just as one would expect.
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2.6.3 Application to Yang-Mills Theory

After the experience with the Kamlah expansion in electrodynamics, we want to try to apply
it also to the Yang-Mills case. We will see, however, that we cannot incorporate charges as
simply as in electrodynamics, and an explicit computation does not transcend the lowest order
in perturbation theory (although the external field is treated to all orders). However, the outcome
will be natural in view of the previous discussion of perturbative fulfilment of Gauss’ law of sec.
2.4.
In order to discuss why we cannot include charges, the first order in the Kamlah expansion will
be enough; we won’t consider the first order any further than necessary for this purpose, since
its shortcomings were already obvious in the discussion of the electrodynamic case. Again we
start from the expression

〈He−i
R
ϕaGa〉 = A0〈e−i

R
ϕaGa〉+Aa1(y)〈∆a(y)e−i

R
ϕaGa〉 (2.266)

where we have used the abbreviation ∆a(x) = Γa(x) − 〈Γa(x)〉; later on, we will also use84

δa(x) = ρa(x) − 〈Γa(x)〉. In contrast to the previous section, δa(x) is now an operator. As
before, we obtain two equations to determine A0, A1:

〈H〉 = A0, (2.267)

〈HGb(x)〉 = A0〈HGb(x)〉 +Aa1(y)〈∆a(y)Gb(x)〉. (2.268)

In the following, we make the ansatz that our state | 〉 has the form |fermion〉|YM〉; this is
actually a restriction, since the most general state would obviously consist of a superposition of
such states, but then the following formulas would become intractable. We then obtain85

〈H〉 = 〈YM|H|YM〉, (2.269)

〈HGb(x)〉 = −〈YM|HΓb(x)|YM〉+ 〈YM|H|YM〉〈f |ρb(x)|f〉. (2.270)

At this point we again introduce the functional inverse of 〈YM|∆a(x)∆b(y)|YM〉, (Θ−1)ab(x,y),
s.t.

(Θ−1)ab(x,y)〈YM|∆c(z)∆b(y)|YM〉 = δabδxy. (2.271)

With its help, we can solve eq. (2.268) for A1, and inserting both the expression for A0 and A1

into eq. (2.266), we obtain

〈He−i
R
ϕaGa〉 = 〈H〉〈e−i

R
ϕaGa〉+ 〈YM|HΓa(x)|YM〉(Θ−1)ab(x,y)〈∆b(y)e−i

R
ϕaGa〉. (2.272)

We may now integrate both sides over all configurations ϕ with trivial topology using the correct
Haar measure. This results in

〈HPρ〉 = 〈H〉〈Pρ〉+ 〈YM|HΓa(x)|YM〉(Θ−1)ab(x,y)〈δb(y)Pρ〉, (2.273)

84Here, a little care has to be taken w.r.t. the placement of gs. If we use ’perturbative scaling’, i.e. the same
scaling as in sec. 2.4, the generator of gauge transformations in the gluonic sector is not −Γa, but − 1

g
Γa. Thus

the projector is in principle
R Dϕ e−i

R
gϕaGa

=
R Dϕ ei

R
ϕa(Γa−gρa). However, this explicit scaling will only be

used later on when we have already done away with the charges; we use the ’non-perturbative scaling’ while we
are developing most of the formalism, and re-install explicit factors of g later on.

85The mass term of the fermions has been dropped from the Hamiltonian, since the mass depends only on the
number of external charges, which is kept constant during the variational calculation.
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where we have used that Γa(x)Pρ = ρa(x)Pρ. Here we see already that the results of elec-
trodynamics do not generalize straightforwardly: there the fermionic states could be chosen as
eigenstates of all charge operators. In Yang-Mills theory this is not possible (apart from non-
charged states86), and therefore we cannot write

〈δb(y)Pρ〉 = 〈δb(y)〉〈Pρ〉. (2.274)

Thus, we cannot get rid of all the projector integrals simply by considering the normalized pro-
jected energy expectation value 〈HPρ〉/〈Pρ〉. This, however, was the main appeal of the Kamlah
expansion, and in order to rescue as much as possible of it, we will consider only uncharged states
in the following: states that satisfy 〈f |ρa(x) = 0 and ρa(x)|f〉 = 0.
We will now turn to the second order Kamlah expansion. While determining the coefficients
A0, . . . , A2, we still work with general (possibly charged) states; it will turn out that the co-
efficients are actually independent of whether we have a charged state or not. Thus we start
from

〈He−i
R
ϕaGa〉 = A0〈e−i

R
ϕaGa〉+Aa1(y)〈∆a(y)e−i

R
ϕaGa〉+Aab2 (y, z)〈∆a(y)∆b(z)e−i

R
ϕaGa〉.
(2.275)

It seems to be quite sensible to assume that Aab2 (y, z) should be symmetric under interchange
of all indices, i.e. Aab2 (y, z) = Aba2 (z,y), since (a) most of ∆a(y)∆b(z) is symmetric apart from
Γa(y)Γb(z), (b) the antisymmetric part of ∆a(y)∆b(z) is − i

2f
abcΓc(y)δyz and should therefore

rather be assigned to the term multiplying A1 from a systematic point of view. From eq. (2.275)
we obtain three equations:

〈H〉 = A0 +Aab2 (y, z)〈∆a(y)∆b(z)〉, (2.276)

〈HGc(x)〉 = A0〈Gc(x)〉 +Aa1(y)〈∆a(y)Gc(x)〉
+Aab2 (y, z)〈∆a(y)∆b(z)Gc(x)〉 (2.277)

〈H 1

2
{Gc1(x1),Gc2(x2)}〉 = A0〈1

2
{Gc1(x1),Gc2(x2)}〉 +Aa1(y)〈∆a(y)

1

2
{Gc1(x1),Gc2(x2)}〉

+Aab2 (y, z)〈∆a(y)∆b(z)
1

2
{Gc1(x1),Gc2(x2)}〉 (2.278)

where in the last equation, eq. (2.278), we have used the abbreviation {Gc1(x1),Gc2(x2)} =
Gc1(x1)Gc2(x2) + Gc2(x2)Gc1(x1). We then can - again - express A0, A1 in terms of A2 and
unprojected expectation values; the equation for A2 is very similar to eq. (2.251) in the elec-
trodynamic calculation, but here it is even worse, since [∆a(x),∆b(y)] 6= 0. Since we want to
continue to perform analytic calculations, we first have to restrict ourselves to Gaussian states (as
in electrodynamics). However, we have to make a second approximation, which is more severe:
we will restrict the Gauss law operator to its O(g0) part87:

Γa(x) = D̂ab
i (x)Πb

i (x) = ( ˆ̄Dab
i (x)−gfacbaci(x))Πb

i (x) = Γ̄a(x)−gfacbaci(x)Πb
i (x) = Γ̄a(x)+O(g),

(2.279)

86Of course, there is also another exception from the rule, namely if we have constructed our external charges
s.t. they form a local colour singlet; with objects that transform under the fundamental representation of the
gauge group this is possible only if the charges are localized at the same space point, which is quite useless for
practical purposes such as calculating the static inter-quark potential.

87We use the same scalings as indicated in footnote 40 in sec. 2.3.4. We start with the ’non-perturbative scaling’
and then replace A → Ā+ ga.
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i.e. Γ̄a(x) = ˆ̄Dab
i (x)Πb

i (x). This then will allow to use factorizability in a fashion identical to
the case of electrodynamics:

〈∆̄a(x)∆̄b(y)∆̄c(z)〉 = 0, (2.280)

〈∆̄a(y)∆̄b(z)∆̄c1(x1)∆̄
c2(x2)〉 = 〈∆̄a(y)∆̄b(z)〉〈∆̄c1(x1)∆̄

c2(x2)〉
+ 〈∆̄c1(x1)∆̄

b(z)〉〈∆̄a(y)∆̄c2(x2)〉
+ 〈∆̄c2(x2)∆̄

b(z)〉〈∆̄c1(x1)∆̄
a(y)〉, (2.281)

where we have introduced the notation ∆̄a(x) = Γ̄a(x)− 〈Γ̄a(x)〉. However, this approximation
has consequences; the first one is that we have reduced the non-Abelian SU(N) symmetry to an
Abelian U(1)(N

2−1) symmetry, since:

[Γ̄a(x), Γ̄b(y)] = 0. (2.282)

The second one has to do with the admissible background fields Ā; it is clear that we cannot
expect accuracy of the energy expectation value to order higher than O(g0); thus we approximate
the Hamiltonian by its O(g0) contribution88. The kinetic energy remains unchanged, but the
magnetic energy is simplified quite dramatically if we insert the decomposition Aa

i (x) = Āa
i (x)+

gaai (x) into
1
g2B

a
i (x)B

a
i (x) and neglect all terms of higher order than g0 :

1

g2
Ba
i (x)B

a
i (x)

=
1

g2
B̄a
i (x)B̄

a
i (x) +

2

g
B̄a
i (x)εij1k1(

ˆ̄Dac1
j1

(x)δxz1)a
c1
k1
(z1) (2.283)

+
(
εij1k1(

ˆ̄Dac1
j1

(x)δxz1)εij2k2(
ˆ̄Dac2
j2

(x)δxz2)− B̄a
i (x)f

ac1c2εik1k2δxz1δxz2

)
ac1k1(z1)a

c2
k2
(z2).

=
1

g2
B̄a
i (x)B̄

a
i (x) +

2

g
Jc1k1(x; z1)a

c1
k1
(z1) +M c1c2

k1k2
(x; z1, z2)a

c1
k1
(z1)a

c2
k2
(z2). (2.284)

For eqs. (2.283, 2.284) to be valid we don’t have to integrate over x. The restriction on Ā
comes about from the requirement that the approximated Hamiltonian should commute with the
approximated Gauss law operator, otherwise the (implicit) assumption of the Kamlah expansion
- that in the beginning the Hamiltonian commutes with the projector - is incorrect. That one
can obtain a non-trivial condition at all results from the fact that, to O(g0) of the commutator
of the full quantities, one gets also a cross term from the O(g−1) part of B2 with the O(g1) part
of Γ. Thus we can express the requirement of gauge invariance of the approximated Hamiltonian
in two different ways: (a) the term of order g−1 in eq. (2.284) should vanish, since then there can
be no cross term with the O(g1) contribution to Γ. With a partial integration, we see that this
condition can be written as

εij1k1
ˆ̄Dc1a
j1

(x)B̄a
i (x) = − ˆ̄Dc1a

j1
(x)F aj1k1(x), (2.285)

which is nothing but the classical equation of motion eq. (1.16), since F is the field strength
tensor. (b) the commutator 1

g2
[B2, Γ̄] should vanish. We can compute the commutator and

obtain
1

g2
[Ba

i (x)B
a
i (x), Γ̄

b(y)] = 2 ˆ̄Dbb1
l1

(y)M b1c2
l1k2

(x;y, z2)a
c2
k2
(z2)

!
= 0, (2.286)

88This approximation is also sensible from another point of view: theO(g0) contribution of the Hamiltonian is at
most quadratic in the operators A and Π and from the case of electrodynamics one expects that the second-order
Kamlah expansion treats correctly only (projected) expectation values of up to two operators, cf. footnote 81.
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where we have used the fact that M is symmetric under interchange of all its indices. This is of
course equivalent to condition (a), and thus to the requirement of the background field fulfilling
the classical equations of motion89. This form will be useful later on.
We now use the factorization properties to compute A2 (or, if we hadn’t required A2 to be
symmetric from the outset, the symmetric part of A2; but since the Γ̄s commute anyway, the
distinction does not play a role):

Ad1d22 (y1,y2) =
1

2

[〈H∆̄c1(x1)∆̄
c2(x2)〉 − 〈H〉〈∆̄c1(x1)∆̄

c2(x2)〉
]
(Θ−1)c1d1(x1,y1)(Θ

−1)c2d2(x2,y2).

(2.287)
With this, we can give now explicitly the projected, normalized energy functional to second order
in the Kamlah expansion:

〈HP〉
〈P〉 = 〈H〉 − 1

2
〈∆H∆̄c1(x1)∆̄

c2(x2)〉(Θ−1)c2c1(x2,x1)

−〈∆H∆̄c1(x1)〉(Θ−1)c1c2(x1,x2)〈Γc2(x2)〉 (2.288)

+
1

2
〈∆H∆̄c1(x1)∆̄

c2(x2)〉(Θ−1)c1d1(x1,y1)(Θ
−1)c2d2(x2,y2)〈Γd1(y1)〉〈Γd2(y2)〉.

As in the case of electrodynamics, we may here also insert Γ̄ into the Kamlah expansion expres-
sion90 instead of H. If we do this, the terms analogous to the second and the fourth term in
eq. (2.288) (with H replaced by Γ̄a) are zero, and the terms analogous to the first and third term
cancel, so that we obtain the correct result 〈Γ̄aP〉 = 0. The computation can also be carried out
for 〈Γ̄aΓ̄bP〉/〈P〉, and one obtains also the correct result, namely 0; the term analogous to the
second term gives −〈∆̄a∆̄b〉, whereas the terms analogous to the third and fourth term add up
to give −〈Γ̄a〉〈Γ̄b〉, thus cancelling (together with the term analogous to the second) the term
analogous to the first term.
In order to be able to compute the projected energy functional to O(g0), we now need the
following ingredients:

〈∆(Πa
i (x)Π

a
i (x))∆̄

c1(x1)〉 = 2〈Πa
i (x)∆̄

c1(x1)〉〈Πa
i (x)〉, (2.289)

〈∆(Πa
i (x)Π

a
i (x))∆̄

c1(x1)∆̄
c2(x2)〉 = 2〈Πa

i (x)∆̄
c1(x1)〉〈Πa

i (x)∆̄
c2(x2)〉, (2.290)

〈∆(Ba
i (x)B

a
i (x))∆̄

c1(x1)〉 = 0, (2.291)

〈Ba
i (x)B

a
i (x)Γ̄

c1(x1)Γ̄
c2(x2)〉 = −1

2

∫
d3x ˆ̄Dc1d1

l1
(x1)

ˆ̄Dc2d2
l2

(x2)M
d1d2
l1l2

(x;x1,x2)

= 0, (2.292)

where we have set Σ to zero here and the remaining computations of this section. Also the

expression
∫
d3x ˆ̄Dc1d1

l1
(x1)

ˆ̄Dc2d2
l2

(x2)M
d1d2
l1l2

(x;x1,x2) requires a bit of special attention: there is
no integration over x1,x2 although they appear more than once, but we have to integrate over
x, although it seems to appear only once (but this is an artifact of the notation introduced in
eq. (2.284)). The last identity eq. (2.292) is true since we had to restrict the allowed background
fields to fulfil the classical equations as discussed above. In addition, we need a simple expression
for Θ−1; in the electrodynamics calculation we saw that we had to assume translational invariance

89In the electrodynamical case there is no O(g1) contribution to the Gauss law operator and hence the whole
discussion is not necessary.

90This is due to the fact that Γ̄a is gauge-invariant w.r.t. gauge transformations carried out by eiϕ
aΓ̄a

.
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of G,Σ. Here we’ll need something similar, namely

(G−1)abij (x,y) = (ΠL)
ac1
ii1

(x,x1)(G
−1)c1c2i1i2

(x1,x2)(ΠL)
c2b
i2j

(x2,y)

+(ΠT )
ac1
ii1

(x,x1)(G
−1)c1c2i1i2

(x1,x2)(ΠT )
c2b
i2j

(x2,y)

= (G−1
LL)

ab
ij (x,y) + (G−1

TT )
ab
ij (x,y) (2.293)

with the (generalized) longitudinal projector91

(ΠL)
ab
ij (x,y) =

ˆ̄Dac
i (x)Gcd∆ (x,y) ˆ̄Ddb

j (y) , where ( ˆ̄D ˆ̄D)ac(x)Gcb∆(x,y) = δabδxy, (2.294)

(no integration over x,y) and the (generalized) transversal projector (ΠT )
ab
ij (x,y) = δabδijδxy −

(ΠL)
ab
ij (x,y). Thus, we don’t want to allow for cross terms ΠLG

−1ΠT ,ΠTG
−1ΠL being non-zero.

For the explicit construction of Θ−1 this has the advantage that one can invert the longitudinal
and transversal parts individually:

(G−1
LL)

ab
ij (x,y)(GLL)

bc
jk(y, z) = (ΠL)

ac
ik (x, z) and (G−1

TT )
ab
ij (x,y)(GTT )

bc
jk(y, z) = (ΠT )

ac
ik (x, z).
(2.295)

We now want to relate the inverse of ˆ̄Di
ˆ̄Dj(G

−1) to ˆ̄Di
ˆ̄DjG: we start with the observation that,

since G−1
LL = ΠLG

−1ΠL, we can write (no integration over x, z)

(G−1
LL)

ab
ij (x, z) =

ˆ̄Dac1
i (x) ˆ̄Dbc2

j (z)(HL)
c1c2(x, z) (2.296)

and correspondingly (again no integration over x, z)

(GLL)
ab
ij (x, z) =

ˆ̄Dac1
i (x) ˆ̄Dbc2

j (z)(KL)
c1c2(x, z), (2.297)

where HL,KL are auxiliary functions that have the important characteristic that they don’t
carry spatial indices. From the requirement

∫
d3y (G−1

LL)
ab
ij (x,y)(GLL)

bc
jk(y, z) = (ΠL)

ac
ik (x, z) we

obtain

Ga1c1∆ (x,y) =

∫
d3z

(
( ˆ̄D ˆ̄D)b2b1(z)(HL)

a1b1(x, z)
)
(KL)

b2c1(z,y). (2.298)

If on the other hand we start from the defining equation of Θ−1∫
d3y

(
1

4
ˆ̄Dab1
i (x) ˆ̄Dbb2

j (y)(G−1)b1b2ij (x,y)

)
(Θ−1)bc(y, z) = δacδxz (2.299)

we end up with

4Ga1c1∆ (x,y) =

∫
d3z

(
( ˆ̄D ˆ̄D)b2b1(z)(HL)

a1b1(x, z)
)
(Θ−1)b2c1(z,y). (2.300)

From the comparison of eq. (2.300) with eq. (2.298), we obtain

(Θ−1)b2c1(z,y) = 4(KL)
b2c1(z,y) (2.301)

and thus conclude

ˆ̄Dbb1
i (x) ˆ̄Dcb2

j (y)(Θ−1)b1b2(x,y) = 4(GLL)
bc
ij (x,y), (2.302)

91Some properties of generalized projectors are given in appendixA.6.
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where again we don’t integrate over x,y. We can now compute the correction terms to the

Kamlah expansion very easily, using the fact that e.g. 〈Πa
i (x)∆̄

b(y)〉 = ˆ̄Dbc
j (y)(G

−1
LL)

ac
ij (x,y),

first term : 〈∆(Πa
i (x)Π

a
i (x))∆̄

c1(x1)∆̄
c2(x2)〉(Θ−1)c1c2(x1,x2)

= 2(ΠL)
c2c1
i2i1

(x2,x1)〈Πc1
i1
(x1)Π

c2
i2
(x2)〉c

second term : 〈Πa
i (x)Π

a
i (x)∆̄

c1(x1)〉(Θ−1)c1c2(x1,x2)〈Γ̄c2(x2)〉
= 2(ΠL)

c2c1
i2i1

(x2,x1)〈Πc1
i1
(x1)〉〈Πc2

i2
(x2)〉

third term : 〈∆(Πa
i (x)Π

a
i (x))∆̄

c1(x1)∆̄
c2(x2)〉(Θ−1)c1d1(x1,y1)(Θ

−1)c2d2(x2,y2)〈Γ̄d1(y1)〉〈Γ̄d2(y2)〉
= 2(ΠL)

c2c1
i2i1

(x2,x1)〈Πc1
i1
(x1)〉〈Πc2

i2
(x2)〉.

This gives an overall correction to the electric energy of

−1

2

∫
d3x1 d

3x2 (ΠL)
c2c1
i2i1

(x2,x1)〈Πc1
i1
(x1)Π

c2
i2
(x2).〉 (2.303)

Thus, the electrical energy neither contains ˆ̄Dē nor the (generalized) longitudinal component of
G−1. Since by requirement of approximate gauge invariance the magnetic energy is transversal
as well, this is true for the total energy, and to O(g0), we can write

〈HP〉
〈P〉 =

1

2

∫
d3x1 d

3x2 (ΠT )
c2c1
i2i1

(x2,x1)〈Πc1
i1
(x1)Π

c2
i2
(x2)〉

+
1

2

∫
d3x

{
1

g2
B̄a
i (x)B̄

a
i (x) + tr(MGxy)|y→x

}
,

(2.304)

where we use M as it was defined in sec. 2.3.5, s.t. tr(MGxy) = tr((
ˆ̂
D(x)

ˆ̂
D(x)− ˆ̂

B(x))Gxy).
Writing the kinetic energy also in terms of G−1 and ē, the energy is given as

Eproj =
〈HP〉
〈P〉 =

1

2

∫
d3x1 d

3x2
{
(ΠT )

c2c1
i2i1

(x2,x1)ē
c1
i1
(x1)ē

c2
i2
(x2)

}
+

1

8
Tr(G−1

TT )

+
1

2

∫
d3x

{
1

g2
B̄a
i (x)B̄

a
i (x) + tr(MGxy)|y→x

}
. (2.305)

We see that the projected energy is in fact independent of the (generalized) longitudinal com-
ponents of ē and G−1. This is what we would expect from the projector: we treat it to O(g0),
and we obtain an energy functional that is compatible with the energy functional of a state
that is annihilated to O(g0) by the Gauss law operator. Perturbation theory thus seems not to
invalidate the treatment of the Kamlah expansion. It is interesting to note that eq. (2.305) is (at
least formally) identical to the improved energy functional obtained in [HIMV00] in the case of
magnetic background fields, to the same order in perturbation theory as considered here. One
difference, however, should be noted: in our treatment the condition that Ā has to satisfy the
classical equations of motion (and thus M has to be transversal in the generalized sense) oc-
cured naturally due to the requirement that the approximated Hamiltonian should still commute
with the approximated Gauss law operator, whereas in [HIMV00] it seems to be simply assumed
that M is transversal in the generalized sense. In the application considered in [HIMV00], the
Savvidy vacuum, the condition is of course fulfilled. In other cases, as e.g. the constant mag-
netic field stemming from a non-commuting gauge potential [HL94], [Gie99], this need not be
the case.
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As a last topic in this section we want to consider the value of the energy if we consider it at the
stationary point of ē and G. Since eq. (2.305) is very similar to the expression of the energy that
we obtained in sec. 2.3.4, the treatment may basically adopted from there.
We first consider ē:

δ

δēai (x)
Eproj =

∫
d3x1

{
(ΠT )

ac1
ii1

(x,x1)ē
c1
i1
(x1)

} !
= 0, (2.306)

thus the transversal component of ē has to be zero at the stationary point. Next we consider
GTT (since M is transversal, the magnetic energy also contains only GTT ). For the variation
w.r.t. GTT we need a relation92 analogous to eq. (2.125)

δ

δ(GTT )
a1a2
i1i2

(z1, z2)
Tr(G−1) = −(G−1

TTG
−1
TT )

a1a2
i1i2

(z1, z2). (2.307)

With intermediate steps analogous to eqs. (2.127-2.129) we end up with

Eproj[Ā] =
1

4
Tr(G−1

TT ) +
1

2g2

∫
d3x B̄a

i (x)B̄
a
i (x) (2.308)

=
1

2
Tr
(
(
ˆ̄̂
D

ˆ̄̂
D− ˆ̄̂

B)
1
2

)
+

1

2g2

∫
d3x B̄a

i (x)B̄
a
i (x). (2.309)

Thus we see that at the stationary point, the difference to the naive treatment of eq. (2.131)
lies only in the requirement that here Ā has to satisfy the classical equations of motion. The
important point of the Kamlah expansion is, however, that the energy functional depends only
on the transversal degrees of freedom even away from the stationary point.

2.6.4 Treatment of Charges to Lowest Order in g

Here we only want to insert an additional point that is inspired by the observation that, in
the low-order perturbative treatment, the gauge group SU(N) is reduced to a direct product of
U(1) groups. In that case one can obviously also require the charged states to be simultaneous
eigenstates of all charge operators, and can therefore factorize

〈δb(y)Pρ〉 = δb(y)〈Pρ〉, (2.310)

where the δb(y) on the RHS is no longer an operator but simply a c-number function. At this
point, we should make clear that in the perturbative scaling that has been used here, δ reads

δa(x) = gρa(x) − 〈Γa(x)〉, (2.311)

since the Gauss law implies Ga|〉 = (−1
gΓ

a + ρa)|〉 = 0 → Γa|〉 = gρa|〉. For this kind of quasi-
Abelian charges, we can immediately obtain the projected energy to second order in the Kamlah
expansion by replacing 〈Γa〉 by 〈Γa〉 − gρa in eq. (2.288):

〈HPρ〉
〈P〉 = 〈H〉 − 1

2
〈∆H∆̄c1(x1)∆̄

c2(x2)〉Θc2c1(x2,x1)

−〈∆H∆̄c1(x1)〉Θc2c1(x2,x1)
(
〈Γc2(x2)〉 − gρc2(x2)

)
(2.312)

+
1

2
〈∆H∆̄c1(x1)∆̄

c2(x2)〉Θc1d1(x1,y1)Θ
c2d2(x2,y2)×(

〈Γd1(y1)〉 − gρd1(y1)
)(

〈Γd2(y2)〉 − gρd2(y2)
)
.

92As was discussed in sec. 2.5.5, a derivative w.r.t. the transversal components can be implemented by a derivative
w.r.t. the full G, but acting with transversal projectors from the left and right on this functional derivative.



Chapter 2. Projector on Physical States 93

We see that it differs from the energy projected onto the chargeless sector by

−g
{(

〈∆H∆̄c1(y1)∆̄
c2(y2)〉Θc1d1(y1,x1)Θ

c2d2(y2,x2)〈Γd1(x1)〉
)

−〈∆H∆̄c1(x1)〉Θc1c2(x1,x2)
}
ρc2(x2) (2.313)

+
g2

2
〈∆H∆̄c1(x1)∆̄

c2(x2)〉Θc1d1(x1,y1)Θ
c2d2(x2,y2)ρ

d1(y1)ρ
d2(y2).

The first term can be easily calculated to give93 zero, thus there is no term linear in ρ that
contributes to the energy, whereas the second term simplifies to

−g
2

2

∫
d3y1 d

3y2 ρ
d1(y1)G

d1d2
∆ (y1,y2)ρ

d2(y2). (2.314)

We see that in lowest order perturbation theory, the charges interact via a potential given by the
(negative of the) Green’s function of the background field-covariant Laplacian. Two comments
are in order: first, since the Green’s function depends on the background field, the variational
equations for Ā are not independent of the charge distribution. This is a bit different from the
electrodynamical case where radiation (transversal terms) and charges were completely decou-
pled. Second, we see that obtaining the β function from corrections to the Coulomb potential
(which would result for Ā = 0) is on this level of approximation not possible; it seems almost
surprising that we obtained the correct lowest order potential, since our projection scheme only
attempts to give the correct energy to O(g0). For the first quantum corrections to the interquark
potential, we would need the energy up to O(g4).

2.7 Treatment of the Savvidy Problem

In this section we want to illustrate the general considerations we have presented before
by the specific example of the Savvidy vacuum.

In this section, we want to illustrate the calculation of the projected energy to O(g0) that was
performed above in general terms for a more specific example. The example we are going to
examine is well-known in the literature, and has also been treated in calculations that started
from different assumptions94, but ended up with expressions for the energy to be computed that
are identical to our eq. (2.309). The case we want to consider is the Savvidy vacuum [Sav77],

93We have already indicated above that the two apparently very different moments of inertia are identi-
cal in perturbation theory; this is the point where one observes this most clearly. For the evaluation of
the expressions used here, we have used a different form of the longitudinal projector, (ΠL)

c2c1
i2i1

(x2,x1) =

−
�
ˆ̄Dc2b2

i2
(x2) ˆ̄D

c1b1
i1

(x1)G
b1b2
∆ (x1,x2)

�
, where again we don’t integrate over x1,x2.

94Kerman and Vautherin [KV89] did not attach very much importance to violations of (exact) gauge invariance,
although they already indicated that one should use a projector, and that the projector could be approximately
evaluated as in nuclear physics. They gave also a local expression for the corrections, which looks remarkably similar
to what one would get if one performed a Kamlah expansion not to the Hamiltonian but to the Hamiltonian density,
and would restrict oneself to a purely local expansion; in other words, one would expand H(x) only in powers
of Γa(x). If one performs such studies in electrodynamics, it turns out that for translationally invariant kernels
G−1, corrections from a local Kamlah expansion are generically zero, and do not subtract longitudinal parts as
they should. Anyway, [KV89] neglect these corrections with the argument: ’Because the method is variational the
corrections (13) are expected to be small and improve the energy. They are omitted in the following discussion.’
They also argued that gauge invariance would imply that the fulfillment of the classical equations of motion would

result in ˆ̄DM = 0. Somehow they seem not to make a point of the fact that the state they used was gauge invariant
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[MS78], where one considers a homogeneous (quasi-Abelian) magnetic background field generated
by a vector potential

Āa
i (x) = x1Bδ

a3δi2 (2.315)

which leads to a magnetic field

B̄a
i = δi3δ

a3B. (2.316)

This background field certainly satisfies the classical equation of motion and hence can be used
in our calculation. We will follow [KV89] in our presentation; thus we restrict ourselves to the
SU(2) case, and also set both ē and Σ to zero in this calculation. Furthermore, we use a special
notation in the remainder of this section: instead of denoting components of vectors by 1,2,3, we
denote them here by x,y,z. The position vector x has the components (x, y, z).
We have in the course of this thesis not talked very much about renormalization. In Yang-Mills
theory in the Schrödinger picture, it is usually assumed95 that it is sufficient to renormalize
the coupling constant and to normal order the Hamiltonian, thereby subtracting the (infinite)
energy of the perturbative vacuum. We will do this by only considering the difference between
the expectation value of the Hamiltonian in a state with background field Ā and a state with
background field 0. For both cases, we will solve the variational equation for G−1

TT and consider
the energy expectation value in dependence of Ā only, i.e. we compute the effective potential
depending on Ā. For this, we have to compute the trace of G−1

TT with the equation of motion for
G−1
TT : G

−1
TT (Ā)G−1

TT (Ā) = 4M(Ā), whereM(Ā) is defined in eqs. (2.283, 2.284). The fact that we
compute only the difference between two traces, namely tr(G−1

TT (Ā)) − tr(G−1
TT (0)), is reflected

in our calculation by dropping all contributions to the trace of the square root of M that do
not depend on the parameter B. We start out by trying to diagonalize M explicitly. First, we
perform a partial integration w.r.t. x, and obtain as the operator to diagonalize

Mab
ij (x) = εii1k

ˆ̄Dac
i1 (x)εki2j

ˆ̄Dcb
i2(x)− εijkf

acbB̄c
j(x). (2.317)

One can make some progress if one interprets iεijk as the generators of the adjoint (spin-1)
representation of the rotation group Si, and if

abc as the generators of the adjoint representation
of the colour group. This becomes useful in two different ways: in the case of colour, we can use
a different basis of generators that is connected to the basis ifabc by a unitary transformation
(thus not changing the trace), namely the so-called Cartan-Weyl basis in which the generators
of the Cartan subgroup are diagonal. In our case, Λ3

ab (generated by the unitary transformation

(annihilated by the Gauss law operator) to the order in g that was sufficient at least for the one-loop part of their
investigations. The treatment of Heinemann et al. [HMVI98],[HIMV00], was already discussed above following
eq. (2.305). Another interesting treatment of the Savvidy vacuum in the Schrödinger picture can be found in
[Lae01]. A useful reference in this context is also [Mul85].

95The discussion of renormalization in this context is often based on the so-called Schrödinger functional which
is identical to the Feynman propagation kernel of sec. 2.2 with time in the latter taken to be imaginary. The first
one to consider the renormalization of the Schrödinger functional was Symanzik [Sym81] who considered massless
φ4 theory, where he proved the existence of the Schrödinger representation to all orders in perturbation theory.
A short account of the work of Symanzik where also the language of wave functionals is used can be found in
[Lus85]. In these works additional counterterms that result from the presence of boundaries at time t = 0 and
t = T appear. In [LNWW92] it is argued that in the case of Yang-Mills theories these additional terms cannot
appear since there are no gauge invariant terms of the right canonical dimensions, and this claim is verified up to
one-loop order explicitly. The case of QCD (also to one-loop order) has been considered in [Sin95] where it turned
out that a multiplicative renormalization of the quark boundary fields is necessary, i.e. for vanishing quark fields
at the boundary only counterterms for quark masses and a coupling constant renormalization are necessary.
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from ifab3) is of special interest:

Λ3
ab =


 1

0
−1


 . (2.318)

With this, the equivalently transformed εii1k
ˆ̄Dac
i1
(x) can be written as

i(Si1)ik
ˆ̄Dac
i1 (x) = i


 (Sl∇l + SyxB)ik

(Sl∇l)ik
(Sl∇l − SyxB)ik


 (2.319)

and with this, the whole operator M decomposes into three blocks; thus, we have already com-
pleted the diagonalization in colour space. Each block has in addition a very similar structure;
therefore in the following we will only consider a ’generic’ block and put in a parameter ea that
may be either 1, 0,−1 depending on which block we are considering at the moment:

i(Si1)ik
ˆ̄Dac
i1 (x) → (Sl∇l + eaSyB)ik. (2.320)

Since we interpret Si as spin matrices, it is useful to use Sz and linear combinations of Sx, Sy as
raising and lowering operators, S± = Sx ± iSy. Then one can rewrite96

(Sl∇+ eaSyB)ik = Sz∇z −
√
B

2
(a†S+ − aS−) (2.321)

with a = 1√
2B

(∇x + i∇y + eaxB). Furthermore, we have

[a, a†] = ea. (2.322)

In the following, we will first concentrate on the case ea = 1. Since apart from ∇y the a operators
look very much like annihilation operators for the harmonic oscillator problem, this motivates us
to consider the functions

un,ky,kz,s(x, y, z, σ) = eikyy+ikzzψn(x− ky
B
)χs(σ), (2.323)

where ψn(x) is the harmonic oscillator wave function with n nodes and χs(σ) is an eigenstate of
Sz, as a possible set of basis wave functions. Acting on these functions with a, the relation to
the harmonic oscillator will become even clearer:

aun,ky,kz,s(x, y, z, σ) = eikyy+ikzzχs(σ)
1√
2B

(∇x +B(x− ky
B

))ψn(x− ky
B

)

x− ky
B

=x′
= eikyy+ikzzχs(σ)

1√
2B

(∇x′ +Bx′)ψn(x′).

If we compare this with the annihilation operator for an oscillator with oscillator length x0

b =
x0√
2
(∇x +

1

x20
x) (2.324)

96From here on, we will always assume B > 0, since otherwise the formulas would become too clumsy, containing
instead of B always |B|.
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we see that a acts as an annihilation operator for an oscillator with oscillator length x0 = 1/
√
B.

We can conclude

aun,ky,kz,s(x, y, z, σ) =
√
nun−1,ky,kz ,s(x, y, z, σ), (2.325)

a†un,ky,kz,s(x, y, z, σ) =
√
n+ 1un+1,ky,kz,s(x, y, z, σ). (2.326)

The spin operators S± also only permute the us. Since χs are taken to be eigenstates of Sz:

S±un,ky,kz,s(x, y, z, σ) =
√
2− s(s± 1)un,ky,kz,s±1(x, y, z, σ). (2.327)

Thus, if (Sl∇ + eaSyB)ik|ea=+1 acts upon u, the first term Sz∇z leaves both n, s unchanged,
whereas S+a

† changes both n, s→ (n+1), (s+1), and similarly S−a: n, s→ (n−1), (s−1). We
see that the operator (Sl∇l + eaSyB)ik|ea=+1 does not change N = n− s, thus we have made a
further step towards diagonalizing M . Quite identical considerations can be made for ea = −1;
only the following things will change: as a basis it will be more useful to use

u′n,ky,kz,s(x, y, z, σ) = eikyy+ikzzψn(x+
ky
B

)χs(σ). (2.328)

It will turn out that here, a† acts as an annihilation operator, and a as a creation operator, and
last the conserved number is not n − s but N ′ = n+ s. After this short interlude, we return to
the case N = n − s. In the following we will always consider N to be fixed. Then the matrix
elements

〈k′y, k′z, n′, s′|(−iSi ˆ̄Di)|ky, kz , n, s〉 = skzδnn′δkyk′yδkzk′zδss′ (2.329)

+ i

√
B

2

(√
n+ 1

√
2− s(s+ 1)δn+1,n′δkyk′yδkzk′zδs+1,s′

−√
n
√
2− s(s− 1)δn−1,n′δkyk′yδkzk′zδs−1,s′

)
can be factored into a matrix K ′(N)ss′ that depends on N and has its rows and columns labelled
by s, s′ and a product of three δ functions97. Also the abbreviation p = kz/

√
B will be used in

the following:

K ′(N)ss′ =
√
B


 p −i√N + 1 0

i
√
N + 1 0 −i√N
0 i

√
N −p


 . (2.330)

With the help of this K ′(N), matrix elements of M between the states u can be written as

〈k′y, k′z, n′, s′|M |ky, kz , n, s〉 = δkyk′yδkzk′zδNN ′(K ′(N)K ′(N) +


 −B

0
B


)ss′

= K(N)ss′δkyk′yδkzk′zδNN ′ . (2.331)

Thus the only thing left to do is to diagonalize the matrix K(N):

K(N) = B


 p2 +N −ip√N + 1 −√N(N + 1)

ip
√
N + 1 2N + 1 ip

√
N

−√N(N + 1) −ip√N p2 +N + 1


 . (2.332)

97δNN′ is actually only a Kronecker-δ;
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This can be greatly simplified, since K(N) turns out to be the square of a much simpler matrix
P (N) times B, i.e. with

P (N) =


 0

√
N ip√

N 0 −√
N + 1

−ip −√
N + 1 0


 (2.333)

we have

K(N) = BP (N)P (N). (2.334)

The characteristic polynomial for P is det (P − λ1) = λ(λ2 − (p2 + 2N + 1)), resulting in the
eigenvalues

λ0 = 0 and λ1,2 = ±
√
p2 + 2N + 1. (2.335)

This results in the eigenvalues of K(N):

k0 = 0 and k1,2 = B(p2 + 2N + 1) = k2z +B(2N + 1). (2.336)

That one zero mode should appear is desired and results from the fact that ˆ̄DM = 0. The
discussion up to now is valid only for N ≥ 1, since only then do s, s′ span their whole range
−1, 0, 1. For N = 0 there are only two possible combinations of n, s: n = 1, s = 1;n = 0, s = 0;
for N = −1 there is only one possibilty n = 0; s = 1. We will discuss both cases individually:

K(0) = B

(
p2 −ip
ip 1

)
. (2.337)

The characteristic polynomial det (K(0) − k1) is given by k(k−(p2+1)), resulting in eigenvalues
k0 = 0, k1 = k2z +B.
For the case N = −1 the matrix is only one-dimensional, resulting in the eigenvalue k0 = k2z −B,
thus leading to a mode with a negative eigenvalue in the region −B < kz < B, resulting in an
imaginary contribution to the energy. Note that the three modes for N = 0,−1 together again
have one zero mode, just as was the case for the other values of N . We can now also determine
the spectrum for the case ea = −1. For all N ≥ 1 the same construction as for the case ea = 1
works, only in the matrix corresponding to eq.(2.333) one has to interchange N and N +1. The
eigenvalues, however, are identical. For N = 0 one has to interchange 1 and p2 in the matrix
K(0) leaving the resulting eigenvalues invariant, and for N = −1 both expressions are identical.
For ea = 0, the eigenvalues are independent of B (they are easily determined, and are given by
0, |k|, |k|) , and will thus be dropped as we have explained above.
In order to perform the calculation of tr(G−1

TT (Ā))− tr(G−1
TT (0)), we use a proper-time represen-

tation of the square root [Cea88]:

√
λ = −

∫ ∞

0

ds√
πs

d

ds
e−sλ (2.338)

which is an exact identity. The regularization will be imposed when we sum over all eigenvalues
’λ’ by replacing the lower boundary of the integral by 1/Λ2. When we sum over all states, we
have to take into account that the states that we have calculated above are degenerate (e.g. the
energies are independent of k2). Since the problem we have analyzed is (in the end) identical to
the Landau levels in a constant magnetic field, we can take the degeneracy factor directly from
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[LL88]. We put the system in a box, and require that the centre98 of the harmonic oscillator
wave function shall be inside the box. This results in a degeneracy factor

L2B

2π
, (2.339)

where L denotes the length of the box. The sum over k3 will be replaced by the integral L
2π

∫
dk3,

so that the total prefactor is V B/(2π)2 where V = L3 is the total spatial volume. We now have
to take into account two contributions separately: first the contribution from the modes that
give a real energy over the whole k3 range. They give a contribution

− V B

(2π)2

∫ ∞

1/Λ2

ds√
πs

d

ds
e−sB coth (sB)

∫ ∞

−∞
dk3 e

−sk23

≈ V B2

(2π)2

(
3

4

Λ4

B2
− 1

2

Λ2

B
+

5

12
ln (

B

Λ2
) + UV finite terms

)
. (2.340)

The second contribution comes from the mode that gives for |k3| <
√
B an imaginary contribution

to the energy; if we consider the real part of the energy we obtain99

− V B

(2π)2

∫ ∞

1/Λ2

ds√
πs

d

ds
esB

∫ ∞
√
B
dk3 e

−sk23 ≈ V B2

(2π)2

(
1

2

Λ2

B
+

1

2
ln (

B

Λ2
) + UV finite terms

)
.

(2.341)
Thus, if we add the two contributions, the B-dependent quadratic divergences cancel, and the
logarithmic terms add up; dropping the B-independent quartic divergence (or more properly,
cancelling it against the contribution from G−1

TT (0)), we have left

V B2

(4π)2
11

3
ln (

B

Λ2
). (2.342)

This is the contribution from the block with ea = 1. An identical contribution comes from the
block with ea = −1; in the expression for the energy, the trace (ofM) had a factor (1/2) in front,
so we obtain as the one-loop contribution to the energy the well-known result [KV89]:

V B2

(4π)2
11N

6
ln

(
B

Λ2

)
(2.343)

with N = 2. The total energy up to one loop, E1−loop, contains in addition to the one-loop
contribution also the classical term

E1−loop =
(V B2)

2

[
1

g2
− 11N

48π2
ln

(
Λ2

B

)]
. (2.344)

We can now introduce the renormalized coupling via

1

g2R
=

1

g2
− 11N

48π2
ln (

Λ2

µ2
) (2.345)

98The centre is not at 0, but is shifted by ky/B.
99A factor of 2 appears since we have to consider k3 >

√
B and k3 < −√

B.
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at the scale µ, consistent with the standard one-loop β-function (e.g. [PS95]):

β = µ
∂gR
∂µ

= − 1

(4π)2
11N

3
g3R. (2.346)

This allows us to give a cut-off free expression of the energy to one loop:

E1−loop =
(V B2)

2

[
1

g2R
+

11N

48π2
ln (

B

µ2
)

]
, (2.347)

which is the standard (Savvidy) result [Sav77], [MS78]. A last comment should be made with
regard to the imaginary part of the energy that has not been taken into account. It is easily
calculable and no regularization has to be used, since it is finite. We obtain

V B

(2π)2

∫ √
B

−√
B
dk3

(
±i
√
B − k23

)
= ±iV B

2

8π
. (2.348)

The sign seems to be undetermined; however, even though the interpretation of the imaginary
part, which also appears in the path integral formalism, as a measure of the strength of vacuum
decay has been questioned100, see e.g. [Sch82], [Gie99], in a Hamiltonian framework (where
energy eigenstates vary in time like e−iEt), a positive imaginary part seems to be undesirable,
since it would lead to an exponential increase of the norm, which is not compatible with the
requirements of unitarity.

2.8 Summary and Conclusions

Let us shortly summarize what has been achieved in this chapter, and which problems remain.
We started this chapter by considering the projector onto physical states including external
charges. This projector was cast into a compact form by introducing an extra Hilbert space for
the external (fermionic) charges, and using the insight that the time component of the (fermionic)
colour current is the generator of gauge transformations of the external charges. Then we briefly
considered the calculation by Kogan and Kovner [KK95], since one way of approaching the prob-
lem of evaluating the projector integral was presented there: [KK95] considered the projection
integral as an effective non-linear, non-local σ-model. We also presented some criticism of their
notion of gauge invariance.
Then we considered the work of Testa and Rossi [TR80a], [TR80b] on the projected Feynman
propagation kernel. They gave a method to calculate the static inter-quark potential to one-loop
order including the effects of the projector. This was a calculation of interest, since Testa and
Rossi gave a systematic way of approaching the influence of the projector, whereas Kogan and
Kovner always stayed - wherever they used perturbation theory - at lowest order.
Then we turned again to the main theme of this chapter, namely variational calculation with
Gaussian states. We gave an interpretation of the parameters that appear in the most general
Gaussian state, discussed its factorization property, and drew the connection to the work of
100It was argued that the imaginary eigenvalue was an artifact of the one-loop approximation, since for (covari-

antly) constant magnetic field, the quartic term in the exponent of the Euclidean path integral is strictly negative,
thus making an integral that is divergent in one-loop approximation actually convergent in the ’full’ theory [Flo83].
One can also study the energy transfer from the magnetic background field to gluons, and one obtains - in contrast
to an electric background field in QED coupled to fermions - no energy transfer [Gie99]. Thus, if the Savvidy
vacuum is unstable, the instability is not mediated by creation of charged gluons according to these arguments.
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[CJT74], where it was shown that the choice of Gaussian states corresponds to the Hartree-Fock
approximation. Then we simplified our considerations even further to the leading order in per-
turbation theory, and considered the energy at the stationary point w.r.t. all parameters except
for the background vector potential. It turns out that the energy has the one-loop form that
was to be expected. Up to this point, we ignored the requirements of gauge invariance under
small gauge transformations that the wave functionals have to satisfy. Therefore, we studied in a
next step what form a polynomial that is multiplied to the Gaussian wave functional must take,
if we want the complete state to be annihilated by the Gauss law operator to a given order in
g. We have to conclude, however, that annihilation for arbitrary gauge fields is possible only to
lowest order in g. For higher orders, we need in addition a gauge condition that restricts us to a
hypersurface in configuration space where Gauss’ law can be satisfied.
We then turned to two approximation schemes for the projector on physical states. The first
one is based on the time-dependent variational principle, and on the physical idea that, if we
have a deformed state (i.e. a state that is not gauge-invariant), this state has to rotate in colour
space, and - by considering time-averages - will thereby restore gauge invariance. We studied
this approach both for electrodynamics and Yang-Mills theory, where again we considered the
inter-quark potential to O(g4). For electrodynamics the cranking procedure reproduced nicely
the Coulomb potential, but for the Yang-Mills case we failed to obtain the correct β-function.
We then turned to the Kamlah expansion, which is an expansion of the expectation value of
the Hamiltonian between projected states in powers of the generator of the symmetry. This is
a technique successfully employed in nuclear physics, but it is not clear that the same can be
done in a field theory with a local symmetry since the applicability in nuclear physics is based on
the fact that the states are strongly deformed, which comes about usually from many particles
participating in that deformed state. We tried the Kamlah expansion first for electrodynamics
with external charges, where we found that the first order of the Kamlah expansion is inconsis-
tent with the assumptions, since at the stationary point we find a state that is not deformed.
Going to second order, however, we found exactly the properties that we expect of a projected
energy functional, namely that it is independent of the longitudinal parts of the (ΠΠ) correla-
tion function and the longitudinal part of the expectation value of Π, and therefore the correct
Coulomb energy appears in the projected energy. This result motivated us to also consider Yang-
Mills theory in this framework but again we restricted ourselves to lowest order in g. Since we
have approximated both the Gauss law operator and the Hamiltonian, we obtain consistency
conditions from the requirement that the approximated Hamiltonian still commutes with the
approximated Gauss law operator. Effectively, this restricts the choice of possible background
fields to those which satisfy the classical equations of motion. This condition makes the operator
that multiplies the part of the potential energy quadratic in A transversal w.r.t. the covariant
derivative in the background field. Since the projection subtracts off the longitudinal part of
the electrical energy, we end up with an energy functional that is independent of the longitu-
dinal parts of the parameters of the Gaussian wave functional. At the stationary point of all
parameters save the background vector potential, the energy functional looks precisely like the
one-loop functional that we obtain in the mean field considerations without taking into account
the projector. Of course, this is so only formally, since on the one hand the consistency condition
alluded to above ensures that the energy depends only on the transversal degrees of freedom
(thereby reducing three polarization states to two), and, on the other hand, the longitudinal
parts of the parameters in the Gaussian wave functional are undetermined - instead of being set
to zero - as one would expect from a projected energy functional. We then also considered how
external charges can be included into the Kamlah expansion. Up to now, we have been able to
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allow for them only to lowest order in perturbation theory, since only then the charges can be
treated in a quasi-Abelian manner.
As a last point, we considered as a simple application the calculation of the one-loop energy of
a constant magnetic background field. We obtained the result that is known in the literature,
namely the Savvidy result.
To put it all in a nutshell: variational calculations in Yang-Mills theories that try to take into
account the requirement of Gauss’ law have up to now only been possible in combination with
perturbation theory, and usually been restricted to Gaussian states. These are limitations we
have not been able to overcome. However, we have added with the Kamlah expansion a new way
of approximately evaluating the projector. Three investigations seem worthwhile:
first, one has to investigate whether the Kamlah expansion is a truly non-perturbative expansion
or whether at some stage an implicit expansion in powers of g takes place. In this context, one
should also investigate further the ’pattern’ found in our discussion on electrodynamics, namely
that one seems to need the Kamlah expansion to nth order to project correctly terms containing
n operators. If this would be true in general, one would need the fourth-order Kamlah expansion
for a correct projection of the full Yang-Mills Hamiltonian.
Second, one should try to find out whether the Kamlah expansion can be carried out also to
higher orders in perturbation theory since this would lift the restriction to background fields
that satisfy the classical equations of motion. This should be considered also in the presence of
external charges, which up to now can only be dealt with classically. If that can be done suc-
cessfully, one should face the problem of computing the one-loop contribution to the inter-quark
potential. If this reproduces the standard results, one could also try in a third investigation a
non-perturbative evaluation of the second-order Kamlah expansion (provided the Kamlah ex-
pansion is truly non-perturbative and a second-order treatment is sufficient), although this will
be a quite difficult task, since in our evaluation we relied strongly on the factorization properties;
these, however, cannot be applied so easily in a non-perturbative framework, since the full Gauss
law operator contains products of two operators at the same point in space.
Thus, renormalization problems, which we have ignored completely (apart from sec. 2.7 on the
Savvidy vacuum), will have to be taken into account in a non-perturbative manner before one
can perform such a non-perturbative evaluation of the projected energy functional.
Of course, when considering such non-perturbative extensions one should keep in mind that the
restriction to Gaussian states has tied us already to the Hartree-Fock approximation, which is
basically the two-loop approximation of the total quantum energy.



Chapter 3

Generalized Random Phase
Approximation

3.1 Introduction

In this chapter, we study the generalized Random Phase Approximation (gRPA) for bosonic
systems in the presence of condensates. The main motivation for this study is drawn from the
experience in nuclear physics that symmetries broken by a mean-field treatment are restored in
the Random Phase Approximation.
We start our studies by recalling the formulation of the generalized Random Phase Approximation
based on the time-dependent variational principle, since this is the approach followed in the
literature in the case of field theory. Then we turn to the operator formulation which is more
common in nuclear physics, since in this formulation it is easier to see how conservation laws of
the full theory translate into conservation laws in the generalized Random Phase Approximation.
For a certain class of Hamiltonians, we will show that the two approaches indeed give an identical
spectrum, and obtain a correspondence between quantities associated with the ’fluctuations’ in
the two different approaches. We also study in some detail the problem of zero modes, i.e.
solutions of the gRPA equations with zero excitation energy.
We then consider the question of conservation laws in the operator approach and find that, under
certain conditions, conservation laws of the full theory can also be translated to conservation laws
in the approximate treatment of the generalized RPA, especially if the corresponding symmetries
are broken in the mean-field treatment, i.e. the mean-field ground state is deformed. In this case,
conservation laws of the full theory imply (if the symmetry generator is a one-body operator)
that the gRPA equations have zero mode solutions.
As a last point in this chapter, we study how the mean-field energy is modified in the presence
of zero modes due to deformations, and compute the moment-of-inertia which is used to give a
transparent expression of this energy modification.

3.2 Generalized RPA from the Time-Dependent Variational Prin-

ciple

In this section we present the approach to the Random Phase Approximation via the
time-dependent variational principle as pioneered by Kerman et al. We show that it
leads to equations of motion of coupled harmonic oscillators.

102
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In this section, we will set up the Random Phase Approximation via the time-dependent vari-
ational principle, following Kerman et al [KK76], [KL95], [KL98]. We don’t want to deal with a
specific theory at the moment, we will only require the Hamiltonian to be of the form

H =
1

2
π2i + V [φi], (3.1)

where φi are a set of fields, and πi are the canonical momenta conjugate to φi, in the field
(coordinate) representation under consideration

πi =
1

i

δ

δφi
(3.2)

and i is a super-index, containing a position variable x, and all other indices required (like colour,
spatial etc). The Einstein summation convention is adopted, implying sums over all discrete and
integrals over all continuous variables. V [φ] is a functional of the field operators, in the following
referred to as ’potential’.
The states that we consider as trial states for the time-dependent variational principle are the
most general time-dependent Gaussian states (we only indicate the time-variable explicitly, i, j
are super-indices):

ψ[φ, t] = exp

(
−(φ− φ̄(t))i(

1

4
G−1(t)− iΣ(t))ij(φ− φ̄(t))j + iπ̄i(t)(φ− φ̄(t))i

)
. (3.3)

The meaning of the parameters becomes clear by considering expectation values:

〈ψ(t)|φi|ψ(t)〉 = φ̄i(t) ; 〈ψ(t)|φiφj|ψ(t)〉 = φ̄i(t)φ̄j(t) +Gij(t) (3.4)

〈ψ(t)|πi|ψ(t)〉 = π̄i(t) ; 〈ψ(t)|πiπj |ψ(t)〉 = π̄iπ̄j +
1

4
G−1
ij (t) + 4(Σ(t)G(t)Σ(t))ij . (3.5)

We can now compute the action of the time-dependent variational principle as defined in eq. (1.109)

S =

∫
dt〈ψ(t)|i∂t −H|ψ(t)〉 (3.6)

and obtain

S =

∫
dt

{[
π̄i(t)

˙̄φi(t)− tr(Σ̇G) +
i

4
tr(Ġ−1G)

]
−H(t)[φ̄, π̄, G,Σ]

}
(3.7)

with
H(t) = 〈ψ(t)|H|ψ(t)〉. (3.8)

We can now add a total time derivative1 that does not change the equations of motion, and
obtain for the action

S =

∫
dt(Σij(t)Ġij(t) + π̄i(t)

˙̄φi(t)−H(t)), (3.9)

which shows that Σ is to be considered as the canonical momentum conjugate to G, and π̄ that of
φ̄. The parameters of the wave functional are now determined via Hamilton’s classical equations
of motion:

˙̄φi(t) =
δH
δπ̄i

; ˙̄πi(t) = − δH
δφ̄i

(3.10)

Ġij(t) =
δH
δΣij

; Σ̇ij(t) = − δH
δḠij

. (3.11)

1Its form can e.g. be found in [KL95] as (here only symbolically) d
dt
(− i

4
log (G−1)−ΣG).
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However, in general it will be much too complicated to solve these equations, therefore we now
consider a two-step procedure

1. look for static solutions to the equations of motion

2. consider small fluctuations around these static solutions.

The static solutions are (obviously) determined via

˙̄φi(t) = 0 ; ˙̄πi(t) = 0 ; Ġij(t) = 0 ; Σ̇ij(t) = 0. (3.12)

But these are nothing but the equations resulting from the Rayleigh-Ritz principle:

δH
δπ̄i

= 0 ;
δH
δφ̄i

= 0 ;
δH
δΣij

= 0 ;
δH
δḠij

= 0. (3.13)

Thus, for a static solution of the time-dependent variational principle, the parameters are those
which minimize the energy. This should not really come as a surprise, since for a static state ψ[φ],
the action reduces just to minus the energy times the respective time interval under consideration.
For the next step, we decompose the general, time-dependent parameters into the static solution
plus a time-dependent contribution that later on is considered to be small, e.g. for φ̄:

φ̄i(t) = φ̄i,s + δφ̄i(t), (3.14)

where φ̄i,s denotes the static solution2, and δφ̄i(t) the ’small’ time-dependent part. We insert
this decomposition into the equations of motion eqs. (3.10, 3.11), and obtain

δ ˙̄φi(t) =
δH
δπ̄i

[φ̄s + δφ̄(t), π̄s + δπ̄(t), Gs + δG(t),Σs + δΣ(t)]

=
δH
δπ̄i

[φ̄s, π̄s, Gs,Σs]

+
δ2H
δπ̄jδπ̄i

[φ̄s, π̄s, Gs,Σs]δπ̄j +
δ2H
δφ̄jδπ̄i

[φ̄s, π̄s, Gs,Σs]δφ̄j

+
δ2H

δGjkδπ̄i
[φ̄s, π̄s, Gs,Σs]δGjk +

δ2H
δΣjkδπ̄i

[φ̄s, π̄s, Gs,Σs]δΣjk

+O(δ2). (3.15)

Now the meaning of δφ, etc. being small is clarified: in the equations of motion terms of
higher than linear order are neglected (in the action, it would be terms of higher than quadratic
order). The first contribution δH

δπ̄i
[φ̄s, π̄s, Gs,Σs] vanishes by virtue of the static equations of

motion eqs. (3.12, 3.13). The same construction can be carried out for all four parameter types
(φ̄, π̄,Σ, G), and the resulting equations of motion can be nicely summarized as follows:




δ ˙̄φ
δ ˙̄π

δĠ

δΣ̇


 =




δ2H
δπ̄δφ̄

δ2H
δπ̄δπ̄

δ2H
δπ̄δG

δ2H
δπ̄δΣ

− δ2H
δφ̄δφ̄

− δ2H
δφ̄δπ̄

− δ2H
δφ̄δG

− δ2H
δφ̄δΣ

δ2H
δΣδφ̄

δ2H
δΣδπ̄

δ2H
δΣδG

δ2H
δΣδΣ

− δ2H
δGδφ̄

− δ2H
δGδπ̄ − δ2H

δGδG − δ2H
δGδΣ






δφ̄
δπ̄
δG
δΣ


 (3.16)

2In other words, if we evaluate the first derivative δH
δπ̄i

for π̄ = π̄s, it is zero, and correspondingly for φ̄, G,Σ.
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and can be made even more transparent if one introduces an auxiliary matrix


δ ˙̄φ
δ ˙̄π

δĠ

δΣ̇


 =




0 1
−1 0

0 1
−1 0






δ2H
δφ̄δφ̄

δ2H
δφ̄δπ̄

δ2H
δφ̄δG

δ2H
δφ̄δΣ

δ2H
δπ̄δφ̄

δ2H
δπ̄δπ̄

δ2H
δπ̄δG

δ2H
δπ̄δΣ

δ2H
δGδφ̄

δ2H
δGδπ̄

δ2H
δGδG

δ2H
δGδΣ

δ2H
δΣδφ̄

δ2H
δΣδπ̄

δ2H
δΣδG

δ2H
δΣδΣ






δφ̄
δπ̄
δG
δΣ


 , (3.17)

where δ2H
δAδB = δ2H

δAδB [φ̄s, π̄s, Gs,Σs]. At this point it becomes clear what determines the spectrum
of small fluctuations around a static mean-field solution: it’s the stability matrix of this static
mean-field solution. Eqs. (3.17) are usually called the generalized RPA equations. Up to now,
the only assumption that has been used was the assumption of ψ being a Gaussian state. But
we have also restricted the choice of Hamiltonians that we want to consider by eq. (3.1). This
restriction will allow to carry the calculation a bit further. H depends only via 〈π2〉 on both π̄
and Σ, V [φ] only depends on φ̄ and G. Thus for all Hamiltonians that we are considering, we
have the kinetic energy written as

〈ψ|1
2
π2i |ψ〉 =

1

2
π̄iπ̄i +

1

8
tr(G−1) + 2tr(ΣGΣ), (3.18)

where tr denotes the trace over the super-indices. The static solutions π̄i,s,Σij,s are determined
via

δH
δπ̄i

= 0 ,
δH
δΣij

= 0 (3.19)

and result in
π̄i,s = 0 , Σij,s = 0. (3.20)

This information, together with the knowledge that V [φ] does neither depend on π̄ nor on Σ,
determines a number of second derivatives:

δ2H
δπ̄δφ̄

= 0, δ2H
δΣδφ̄

= 0, δ2H
δGδπ̄ = 0, δ2H

δπ̄iδπ̄j
= δij ,

δ2H
δΣδπ̄ = 0, δ2H

δπ̄δG = 0, δ2H
δΣδG = 0, δ2H

δΣδΣ = (G1),
(3.21)

where we have used the abbreviation

(G1)ij;kl = 2
δ

δΣij

δ

δΣkl
tr(ΣGΣ) = Gkiδlj +Gkjδli +Gjlδki +Gliδkj. (3.22)

These results can be used to simplify eq. (3.16):


δ ˙̄φ
δ ˙̄π

δĠ

δΣ̇


 =




0 1 0 0

− δ2H
δφ̄δφ̄

0 − δ2H
δφ̄δG

0

0 0 0 (G1)

− δ2H
δGδφ̄

0 − δ2H
δGδG 0






δφ̄
δπ̄
δG
δΣ


 , (3.23)

with (1)ij = δij . By taking the derivative of eq. (3.23) with respect to time, and reinserting
eq. (3.23), one obtains two sets of partially decoupled equations(

δ ¨̄φ

δG̈

)
= −

(
δ2H
δφ̄δφ̄

δ2H
δφ̄δG

(G1) δ
2H

δGδφ̄
(G1) δ2H

δGδG

)(
δφ̄
δG

)
(3.24)

and

(
δ ¨̄π

δΣ̈

)
= −

(
δ2H
δφ̄δφ̄

δ2H
δφ̄δG

(G1)
δ2H
δGδφ̄

δ2H
δGδG (G1)

)(
δπ̄
δΣ

)
. (3.25)
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If we now make the ansatz of a harmonic time-dependence(
δφi(t)
δGij(t)

)
=

(
δφi(0)
δGij(0)

)
cos (ωt+ δ1) and

(
δπi(t)
δΣij(t)

)
=

(
δπi(0)
δΣij(0)

)
cos (ωt+ δ2)

(3.26)
we obtain the ’eigenvalue’ equations(

δ2H
δφ̄δφ̄

δ2H
δφ̄δG

(G1) δ
2H

δGδφ̄
(G1) δ2H

δGδG

)(
δφ̄
δG

)
= ω2

(
δφ̄
δG

)
(3.27)

and

(
δ2H
δφ̄δφ̄

δ2H
δφ̄δG

(G1)
δ2H
δGδφ̄

δ2H
δGδG (G1)

)(
δπ̄
δΣ

)
= ω2

(
δπ̄
δΣ

)
. (3.28)

In analysing properties of the generalized RPA equations eqs. (3.27, 3.28) it is often simpler to
study the Hamiltonian they are derived from than to study the equations themselves. In this
context one can imagine eq. (3.23) to originate from a Hamiltonian3 H:

H =
1

2
(δπ δΣ)

(
1 0
0 (G1)

)(
δπ
δΣ

)
+

1

2
(δφ δG)

(
δ2H
δφ̄δφ̄

δ2H
δφ̄δG

δ2H
δGδφ̄

δ2H
δGδG

)(
δπ
δΣ

)
. (3.29)

This evidently is the Hamiltonian of a set of coupled oscillators. The important point is that
the signs of the eigenvalues of the decoupled oscillators are determined by the reduced stability
matrix4 containing only second derivatives w.r.t. to φ̄ and G (We assume here that (G1) is
positive definite and since (G1) is only multiplied by objects symmetric in their two indices,
e.g. δΣij = δΣji, this boils down to assuming that G is positive definite. This is a sensible
assumption connected to the normalizabilty of ψ[φ] and will be discussed further in sec. 3.3.1).

An interesting observation can be made immediately: usually δ2H
δφ̄δG

will be only non-zero if there

is a condensate5 in the system. Thus if we don’t have a condensate, the equations for the one-
and two-particle content6 decouple, and, since in a system without condensate G will usually be
translation invariant, we can see by considering the Fourier transformed quantities7 that 1/g̃(p)
just describes the energy spectrum of single-particle excitations with momentum p, where g̃(p)
is defined by the following procedure. We introduce the Fourier transform G̃(p,q) by

G(x,y) =

∫
d3p

(2π)3
d3q

(2π)3
eip.xG̃(p,q)e−iq.y. (3.30)

If we now require that G shall be translation invariant, i.e. G(x,y) = G(x − y), we obtain for
G̃(p,q)

G̃(p,q) = (2π)3δ(p − q)g̃(p). (3.31)

This defines g̃(p).
3They originate by the canonical equations of motion, e.g. δ ˙̄π = −δH/δ(δφ̄).
4The problem of coupled oscillators is well-known, cf. [Gold91], [FK92]. If the reduced stability matrix is a

positive matrix (and thus our mean field vacuum is indeed a minimum), all the eigenvalues will be positive, and
thus all oscillator frequencies will be real.

5in other words, if φ̄ 6= 0
6We will see in sec. 3.3 that in a creation/annihilation operator formalism δφ̄, δπ̄ are connected to the ampli-

tudes of operators containing one creation/annihilation operator, whereas δG, δΣ are connected to the amplitudes
containing two creation/annihilation operators.

7Since G is translationally invariant, we can separate a total-momentum conserving δ function.
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3.3 Operator Approach to the Generalized Random Phase Ap-
proximation

In this section we take a different route to the generalized Random Phase Approximation
(gRPA, generalized RPA). In the long run, this approach has the advantage that one can
show more easily the special role of symmetry generators that fall into the general class of
one-body operators. The formalism is a bit more complicated and in closer resemblance to
the formalism usually employed in many-body calculations. In a first step, one introduces
creation and annihilation (c/a) operators. Then all operators relevant to the problem at
hand (especially the Hamiltonian) can be expressed with the help of these c/a operators.
In the next step the Schrödinger equation is rewritten into an equation containing only
vacuum expectation values of commutators (so-called ’equation of motion’). The two
basic approximations of the gRPA are introduced that allow to reduce the ’equation of
motion’ into a generalized eigenvalue equation. Two alternative versions of the second
basic approximation are considered. The second of these alternatives, called the quasi-
boson approximation, allows to rewrite the gRPA equations in a form that makes the
equivalence of the gRPA Hamiltonian to a collection of harmonic oscillators obvious.
The special role of symmetry generators is emphasized. The deviations of the gRPA
energy from the mean-field energy are presented and the special role of the ’zero modes’
is discussed.

3.3.1 Creation and Annihilation Operators

In this section we will take a different route8 to the generalized Random Phase Approximation
(gRPA, generalized RPA) than in the previous section. In order to allow close comparison to the
section before, we will again consider Hamiltonians of the form

H =
1

2
π2i + V [φ], (3.32)

where πi is the canonical momentum conjugate to φi, in the field representation under consider-
ation

πi =
1

i

δ

δφi
(3.33)

and i is a super-index, containing a position variable x, and all other indices required (like colour,
spatial etc). The Einstein summation convention is adopted, implying sums over all discrete and
integrals over all continuous variables. V [φ] is functional of the field operator, in the following
referred to as ’potential’.
The states we are considering here are a bit different though, since the basis of this approach is
the stationary Schrödinger equation. We start therefore from the most general time-independent
Gaussian state (i, j are super-indices):

ψ[φ] = exp

(
−(φ− φ̄)i(

1

4
G−1 − iΣ)ij(φ− φ̄)j + iπ̄i(φ− φ̄)i

)
. (3.34)

The only difference between eq. (3.34) and eq. (3.3) is that in the latter the parameters φ̄, π̄, G,Σ
are time-dependent and in the former they are not. A Gaussian state allows the explicit con-
struction of creation and annihilation operators as linear combinations of φi and πi:

a†i = Uij

{(
1

2
G−1
jk + 2iΣjk

)
(φ− φ̄)k − i (π − π̄)j

}
, (3.35)

8In nuclear physics, this is the standard approach [MW69], [RS80], cf. also [Sol76], [MR85], [Tho60a], [Tho60b],
[BET61], [TV62], [MW70]. An interesting discussion is also given by [Nes64]. That it may also be used in the
boson case was indicated, although only very briefly, in [KT97].
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ai = Uij

{(
1

2
G−1
jk − 2iΣjk

)
(φ− φ̄)k + i (π − π̄)j

}
, (3.36)

where U is (implicitly) defined via the relation

UijUjk = Gik (3.37)

and could also be called the square root of G. A short excursion on the existence and the implicit
assumption of reality of U is in order here: since Gik is a symmetric matrix (matrix is used
in the generalized sense s.t. also continuous indices are allowed) one can always diagonalize it.
Therefore one can also always write down a U as given above. However, G has to satisfy another
condition, namely all of its eigenvalues have to be strictly positive, since otherwise one will run
into two kinds of problems: if G has a zero eigenvalue G−1 does not exist and the matrix element
of 〈π2〉 will be infinite. This can certainly not be tolerated9. Moreover, if G has a negative
eigenvalue, ψ[φ] is not even normalizable, since in the direction of the negative eigenvalue ψ[φ]
will explode exponentially for increasing values of φ. Thus, all eigenvalues of G must be strictly
positive, therefore U can be chosen to be real.
The normalization of the creation/annihilation operators is fixed by the usual bosonic commu-
tation relations

[ai, a
†
j ] = δij . (3.38)

Since ai, a
†
i are just given via linear combinations of φ and π, one can invert these relations to

obtain φ, π in terms of a, a† and the parameters of the Gaussian wave functional we started with:

φi = φ̄i + Uij

(
aj + a†j

)
(3.39)

πi = π̄i + 2i

((
1

4
G−1
ik − iΣik

)
Ukja

†
j −

(
1

4
G−1
ik + iΣik

)
Ukjaj

)
. (3.40)

One should note that the dependence of the canonical operators on the parameters of the wave
functional we choose is only seeming, since the creation and annihilation operators depend im-
plicitly on these parameters as well. If one inserts eqs. (3.36, 3.35) into eqs. (3.39, 3.40) one
obtains an identity φ = φ, π = π. In a practical sense, however, we have transferred information
that is contained in the wave functional to the operators, since in the following we will only
use that aiψ[φ] = 0. All parameter dependence that usually comes about by calculating matrix
elements now enters the formulas via normal ordering.
Since we have now a representation of the canonical operators in terms of a, a†, all operators
permissible in a canonical system can be expressed in terms of a, a†, especially the Hamiltonian
which for obvious reasons is central to the following calculations.

3.3.2 Hamiltonian in c/a Representation

We have required the Hamiltonian to have a certain structure (cf. eq. (3.32)). The Hamiltonian
there resolves naturally into a kinetic energy 1

2π
2 and a potential term V [φ] which is a functional

of φ only. It is very useful to normal-order these expressions to make further progress. In the

9A rather long discussion on zero modes and existence of certain integrals can be found in chapter 2, footnote
36.
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course of this, one makes the useful observation that one can write the kinetic energy as :

1
2π

2
i = 1

2

(
π̄2i +

1
4Tr(G

−1) + 4Tr(ΣGΣ)
)

+
(

δ
δπ̄k1

〈12π2i 〉
)(

i
2U

−1
k1j1

(
a†j1 − aj1

)
+ 2Σk1l1Ul1j1

(
a†j1 + aj1

))
+

(
δ

δGk1k2
〈12π2i 〉

)
Uk1j1Uk2j2

(
a†j1a

†
j2
+ aj1aj2 + 2a†j1aj2

)
+

(
δ

δΣk1k2
〈12π2i 〉

)
U−1
k1j1

U−1
k2j2

i
4

(
a†j1a

†
j2
− aj1aj2

)
+

(
1
4G

−1
j1j2

+ i
2

(
U−1ΣU − UΣU−1

)
j1j2

)
2a†j1aj2 ,

(3.41)

where Tr is a trace over the super-indices. A similar result can be found for the potential part
(except that it is independent of Σ and π̄). In appendix D we will demonstrate that the potential
can be decomposed into c/a operators s.t. the prefactors can be written as functional derivatives
of the expectation value of the potential between Gaussian states, and the c/a operators always
appear in a fixed structure10. In the following we will restrict ourselves to the contributions to
V with up to four c/a operators, since the terms containing higher numbers of c/a operators do
not contribute11 to the gRPA matrices that will be introduced in eq. (3.57):

V [φ] = 〈V [φ]〉
+

(
δ

δφ̄k1
〈V [φ]〉

)
Uk1j1

(
a†j1 + aj1

)
+

(
δ

δGk1k2
〈V [φ]〉

)
Uk1j1Uk2j2

(
a†j1a

†
j2
+ aj1aj2 + 2a†j1aj2

)
+ 1

3

(
δ

δφ̄k1

δ
δGk2k3

〈V [φ]〉
)
Uk1j1Uk2j2Uk3j3

×
(
a†j1a

†
j2
a†j3 + 3a†j1a

†
j2
aj3 + 3a†j1aj2aj3 + aj1aj2aj3

)
+ 1

6

(
δ

δGk1k2

δ
δGk3k4

〈V [φ]〉
)
Uk1j1Uk2j2Uk3j3Uk4j4

×
(
a†j1a

†
j2
a†j3a

†
j4
+ 4a†j1a

†
j2
a†j3aj4 + 6a†j1a

†
j2
aj3aj4

+4a†j1aj2aj3aj4 + aj1aj2aj3aj4

)
.

(3.42)

10e.g. if in the potential there are terms that contain two creation operators, or two annihilation operators or
one creation/ one annihilation operator, they can always be written as factor×(a†ia

†
j+aiaj+2a†iaj), and similarly

for all other terms that contain a fixed sum of creation and annihilation operators. For the kinetic terms things
are a bit different, but we have given the decomposition of the only allowed kinetic term in eq. (3.41).

11That this is true can be seen by usage of Wick’s theorem and the so-called second gRPA approximation a|〉 = 0
that will be introduced in sec. 3.3.4.
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By adding the expressions eq. (3.41, 3.42) together, one observes that the Hamiltonian has a very
simple schematic structure12 :

Ĥ = 〈Ĥ〉
+

(
δ

δφ̄k1
〈Ĥ〉

)
Uk1j1

(
a†j1 + aj1

)
+

(
δ

δπ̄k1
〈Ĥ〉

)(
i
2U

−1
k1j1

(
a†j1 − aj1

)
+ 2Σk1lUlj1

(
a†j1 + aj1

))
+

(
δ

δGk1k2
〈Ĥ〉

)
Uk1j1Uk2j2

(
a†j1a

†
j2
+ aj1aj2 + 2a†j1aj2

)
+

(
δ

δΣk1k2
〈Ĥ〉

)
U−1
k1j1

U−1
k2j2

i
4

(
a†j1a

†
j2
− aj1aj2

)
+

(
1
4G

−1
j1j2

+ i
2

(
U−1ΣU − UΣU−1

)
j1j2

)
2a†j1aj2

+ 1
3

(
δ

δφ̄k1

δ
δGk2k3

〈Ĥ〉
)
Uk1j1Uk2j2Uk3j3

(
a†j1a

†
j2
a†j3 + 3a†j1a

†
j2
aj3 + 3a†j1aj2aj3 + aj1aj2aj3

)
+ 1

6

(
δ

δGk1k2

δ
δGk3k4

〈V̂ 〉
)
Uk1j1Uk2j2Uk3j3Uk4j4

(
a†j1a

†
j2
a†j3a

†
j4
+ 4a†j1a

†
j2
a†j3aj4 + 6a†j1a

†
j2
aj3aj4

+4a†j1aj2aj3aj4 + aj1aj2aj3aj4

)
.

(3.43)
Up to now, we have taken an arbitrary Gaussian as a reference state: we have defined our
creation/annihilation operators relative to that state - nothing else. Eq. (3.43) is exactly the
same as H given in eq. (3.32). However, it is obvious from eq. (3.43) that the Hamiltonian
greatly simplifies if we choose a specific reference state: a state that is a stationary point of
the energy functional under variation of the parameters φ̄, π̄, G,Σ - in other words, a state that
satisfies the Rayleigh-Ritz variational principle13.

3.3.3 Reformulation of the Schrödinger Equation

Now we want to reformulate the Schrödinger equation in such a way that it can be written in
terms of matrix elements of commutators , since this form will be useful for formulating the
generalized RPA. We assume that |ν〉 is an exact eigenstate of the full Hamiltonian, and that it

is created from the exact vacuum |0〉 by the operator14 Q†
ν . Thus

HQ†
ν |0〉 = EνQ

†
ν |0〉. (3.44)

If we denote the vacuum energy by E0, we can write this equivalently with a commutator:

[H,Q†
ν ]|0〉 = (Eν − E0)Q

†
ν |0〉. (3.45)

We may multiply both sides of the equation with an arbitrary operator δQ, and obtain an
expectation value by multiplying from the left with 〈0|:

〈0|δQ[H,Q†
ν ]|0〉 = (Eν − E0)〈0|δQQ†

ν |0〉. (3.46)
12One should note that in all save the last term, the derivatives are taken of 〈Ĥ〉 whereas in the last term the

derivative is taken of 〈V 〉. The importance of this will become clear in sec. 3.3.10.
13One should note that we required the same in the time-dependent approach, when we decomposed the time-

dependent parameters φ̄(t), π̄(t), G(t),Σ(t) into a static part and small fluctuations. The equations for the static
part were identical to the Rayleigh-Ritz equations.

14It is clear that, since Q† are creation operators, when acting to the left they annihilate the vacuum: 〈0|Q† = 0.
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By subtracting zero on both sides15 we obtain an equation that only contains expectation values
of commutators:

〈0|[δQ, [H,Q†
ν ]]|0〉 = (Eν − E0)〈0|[δQ,Q†

ν ]|0〉. (3.47)

Using this equation as a starting point to derive the (generalized) RPA is known in nuclear
physics as the equations of motion method [RS80].

3.3.4 Excitation Operators

The operatorsQ†
ν are called excitation operators in the following. The first gRPA approximation16

deals with the class of allowed operators. In nuclear physics it is quite reasonable to assume that
the lowest excited state above a Hartree-Fock ground state consists of a particle-hole excitation.
This results in the so-called Tamm-Dancoff approximation. In the generalized RPA one assumes
that one has a correlated ground state, s.t. not only the creation of a hole and a particle, but
also their destruction is a possible excitation. In Yang-Mills theory it is by far not so clear what
structure the lowest excitation will have; we have thus taken the two following guiding principles:

1. We already have a formulation of the generalized RPA from the time-dependent variational
principle; we know therefore that the choice of the class of operators that we allow should
lead to equations where the excitation spectrum is closely related to the stability matrix of
the mean-field problem. Therefore, even if the class of operators will look a bit strange at
first sight, it will lead to a well-posed and not so unreasonable problem: one looks at the
small fluctuations around the mean-field solution.

2. The principal goal of the Random Phase Approximation is the restoration of symmetries
that are violated at the mean-field level. The procedure works, generally speaking, in the
following way: assume that the system under consideration should be symmetric under a
symmetry generated by an operator Γ. The ground state should thus be annihilated by Γ.
In the mean-field approximation this symmetry shall be violated, therefore

Γ|MF〉 6= 0. (3.48)

The gRPA equations can be formulated as

[HB, Q
†
ν ] = (Eν − E0)Q

†
ν (3.49)

as we will see later on, cf. eq. (3.88). HB denotes the Hamiltonian in the so-called quasi-
boson approximation. This approximation will be treated in more detail in sec. 3.3.6. Since
we are able to show that under quite general conditions,

[H,Γ] = 0 → [HB ,ΓB ] = 0 (3.50)

15On the LHS, we write zero as 0 = 〈0|[H,Q†
ν ]δQ|0〉, whereas on the RHS, we write zero as (Eν−E0)〈0|Q†

νδQ|0〉,
cf. footnote 14.

16A short note on linguistic usage is in order here: in the derivation of the gRPA equations we make two
prominent approximations, the first one on the class of allowed excitation operators, the second one on the ground
state. These approximations are called ’first’ and ’second gRPA approximation’, whereas the terms ’gRPA’,
’generalized RPA’ and ’generalized Random Phase Approximation’ are used to denote the whole procedure as it
is laid down in this section. This naming seems useful even though the term ’approximation’ appears twice if one
expands ’RPA’ to ’Random Phase Approximation’ in the term ’RPA approximation’.
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(ΓB denotes the quasi-boson approximation of Γ; it will be defined below in sec. 3.3.6), and
we know that all excitations in the generalized RPA are automatically orthogonal, we only
have to choose the class of excitation operators in such a way that the generator of the
symmetry that is broken on the mean-field level belongs to the class of excitation operators
under consideration for the formulation of generalized RPA. Then we have restored the
symmetry in the sense that, even though

ΓB|MF〉 6= 0, (3.51)

ΓB creates an excitation that is orthogonal to all other (physical) excitations17.

To put it all in a nut-shell: one looks at the Gauss law operator, determines its structure, and
keeps the class of excitation operators so large that the Gauss law operator belongs to this class.
All the concepts and claims will become clear and be proved in what follows. After this rather
long motivation, we will consider excitation operators of the following form19:

Q†
ν =

1

2

∑
mi

(
X̃ν
mia

†
mai +Xν

mia
†
ma

†
i − Y ν

miamai

)
+
∑
n

(
Z̃νma

†
m − Zνmam

)
. (3.52)

In the following20, we will call X̃,X, Y, Z, Z̃ amplitudes. In order to obtain a solvable problem,
we want to obtain a set of equations that contain the amplitudes, some given matrices, and the
energy difference Eν − E0. To this end, the (up to now arbitrary) operators δQ will be utilized,
together with the second gRPA approximation. We choose δQ in such a way that the different
amplitudes are extracted individually on the RHS of eq. (3.47). It will be useful to consider

δQ ∈ {ai, a†i , a†iaj , aiaj , a†ia†j}, and compute the commutators [δQ,Q†
ν ]:[

aj, Q
†
ν

]
= 1

2

∑
i

(
X̃ν
jiai +Xν

{ji}a
†
i

)
+ Z̃νj[

a†j, Q
†
ν

]
= 1

2

∑
i

(
X̃ν
ija

†
i + Y ν

{ji}ai
)
+ Zνj[

a†naj, Q
†
ν

]
= 1

2

∑
i

(
X̃ν
jia

†
nai − X̃ν

nia
†
iaj +Xν

{ji}a
†
na

†
i + Y ν

{ji}anai
)
+ Z̃νj a

†
n + Zνnaj[

a†na†j, Q
†
ν

]
= −1

2

∑
i

(
X̃ν
ina

†
ia

†
j + X̃ν

ija
†
ia

†
n − Y ν

{jn} − Y ν
{in}a

†
jai − Y ν

{ij}a
†
nai

)
− Zνna

†
j − Zνj a

†
n[

anaj, Q
†
ν

]
= 1

2

∑
i

(
X̃ν
jianai + X̃ν

niajai +Xν
{jn} +Xν

{ji}a
†
ian − Y ν

{ni}a
†
iaj

)
+ Z̃νnaj + Z̃νj an

(3.53)
17This is a certain abuse of language, since the excitation ’created by ΓB ’ is not created by ΓB by acting upon

the gRPA ground state18|RPA〉 (that is in fact annihilated by ΓB) in the same way as the other excitations are
created by acting with Q†

ν upon the gRPA ground state. However, as we will discuss in secs. 3.3.9 and 3.5, one
can construct a coordinate conjugate ΘB to ΓB , and the states |γ〉 = exp (iγΘB)|RPA〉 are the states that we call
’excitations generated by ΓB’. That these states are indeed orthogonal to the all other (physical) excitations follows
from the fact that [Q†

ν ,ΘB ] = 0 (as follows from the considerations of sec. 3.3.7): 〈RPA|Qν exp (iγΘB)|RPA〉 =
〈RPA| exp (iγΘB)Qν |RPA〉 = 0.

18The gRPA ground state is defined by the fact that it is annihilated by all Qν and the symmetry generators
(that are given as one-body operators) that don’t annihilate the mean-field vacuum.

19The Gauss law operator in creation/annihilation formulation is given in appendix C.4.2.
20Q†

ν does not contain an aa† term. This is due to the fact that aa† is distinguished from a†a (which is included)
only by a constant. However, this constant would lead to a non-vanishing expectation value ofQ†

ν between mean-
field vacua, in view of the second gRPA approximation a situation certainly not desirable for an excitation operator
(all other terms contained in Q†

ν vanish between mean-field vacua !). One could also argue on a formal level that
the way the generalized RPA is derived here does not allow to determine any constant parts of Q†

ν , so if we cannot
determine a constant, we shouldn’t put it into our ansatz in the first place. Another point of view that is based
on the quasi-boson approximation can be found in footnote 27.
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with X{ij} defined as X{ij} = Xij + Xji, and correspondingly for Y{ij}. The second gRPA
approximation states that in the case of expectation values of commutators, the exact vacuum
state shall be replaced by the mean-field vacuum state; in the rest of this chapter, |〉 denotes the
mean-field vacuum with the property a|〉 = 0. Then the equations simplify drastically, and we
obtain:

〈[aj , Q†
ν ]〉 = Z̃νj 〈[a†j , Q†

ν ]〉 = Zνj
〈[a†na†j , Q†

ν ]〉 = 1
2Y

ν
{jn} 〈[anaj, Q†

ν ]〉 = 1
2X

ν
{jn}

〈[a†naj , Q†
ν ]〉 = 0,

(3.54)

where we have used the notation 〈| . . . |〉 = 〈. . .〉. Two things are remarkable: first, quite simple
δQ are sufficient to extract (within the second gRPA approximation) the amplitudes on the RHS
of eq. (3.47). Second, it is impossible (even if one uses arbitrarily complicated operators) to
extract the amplitude X̃ν if one wants to use the second gRPA approximation:

〈|[δQ, a†a]|〉 = 〈|δQa† a|〉︸︷︷︸
=0

− 〈|a†︸︷︷︸
=0

aδQ|〉 = 0. (3.55)

In the context of the quasi-boson approximation, this will be elucidated from a different angle
(see below). To accommodate this fact we restrict the class of excitation operators further21,22

to those that do not contain terms of the form a†a:

Q†
ν =

1

2

∑
mi

(
Xν
mia

†
ma

†
i − Y ν

miamai

)
+
∑
m

(
Z̃νma

†
m − Zνmam

)
. (3.56)

With the δQs defined above we now have to compute the LHS of eq. (3.47). For this purpose we
introduce a number of matrices

Anjmi = 〈[a†na†j, [H, a†ma†i ]]〉, Bnjmi = 〈[a†na†j, [H, amai]]〉,
Cnjm = 〈[a†na†j, [H, a†m]]〉, Dnjm = 〈[a†na†j, [H, am]]〉,
Enm = 〈[a†n, [H, a†m]]〉, Fnm = 〈[a†n, [H, am]]〉,

(3.57)

and study their properties under interchange of labels. This will allow to reduce the number of
independent entries of the LHS of eq. (3.47). The basic tools for this study will be the Jacobi
identity and the second gRPA approximation, i.e. a|〉 = 0. We will also frequently use that
[a, a] = [a†, a†] = 0.

21The same structure, albeit with Z = Z̃ = 0, is used in nuclear physics if one performs a quasi-particle RPA
starting from a Hartree-Fock-Bogoliubov calculation [RS80].

22It may be possible that instead of using Q†
ν in the form given in eq. (3.56) one could also use a two-step process

that starts with a Bogoliubov transformation bµ =
P

m(Z̃µ
ma

†
m − Zµ

mam) + cµ, where bµ are the new annihilation
operators and cµ is a (complex) constant that is allowed in a Bogoliubov transformation for bosons [RS80]. b†µ
is defined correspondingly. It may be that at this point the consistency condition between the second gRPA
approximation and the quasi-boson approximation which will be discussed further in sec. 3.3.6, i.e. δ〈H〉

δπ̄
= δ〈H〉

δφ̄
=

0, appears naturally as determining equations for the coefficients of the Bogoliubov transformation. Now one could
build up Q†

ν in terms of bµ1bµ2 and b†µ1
b†µ2

. We do not follow this path (and have not investigated its feasibility),
since our main goals, i.e. the proof of equivalence of the operator approach to the gRPA to the approach based
on the time-dependent variational principle and the discussion of conservation laws, seems simpler in the one-step
treatment based on eq. (3.56).
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Properties of A

Aminj is symmetric in all four indices:

Aminj = 〈[a†ma†i , [H, a†na†j]]〉 = 〈[a†na†j, [H, a†ma†i ]]〉 = Anjmi. (3.58)

It’s trivial to show that e.g. Aminj = Aimnj etc.

Properties of B

Consider the complex conjugate of Bminj:

B∗
njmi = 〈[a†na†j , [H, amai]]〉∗

= 〈[anaj , [H, a†ma†i ]]〉
= −〈[H, [a†ma†i , anaj ]]〉+ 〈[a†ma†i , [H, anaj]]〉
= −〈[H, [a†ma†i , anaj ]]〉+Bminj . (3.59)

The first term will vanish, as one can see as follows: we compute the commutator

[a†ma
†
i , anaj] = −

(
δjmδni + δjiδnm + δjma

†
ian + δnma

†
iaj + δjia

†
man + δnia

†
maj

)
. (3.60)

It consists of two different structures: δδ and δa†a. We can insert this into the above commutator:
obviously [H, δδ] = 0; the other contributions vanish upon taking expectation values with the
mean-field vacuum (cf. eq. (3.55)). Thus we have shown that

B∗
njmi = Bminj (3.61)

or if we introduce a ’super-boson index’ that combines (mi) and (nj) into one index each, thus
making B a matrix in the usual sense,

B = B†. (3.62)

Properties of E

Enm is a symmetric matrix

Enm = 〈[a†n, [H, a†m]]〉 = −〈[a†m, [a†n,H]]〉 = Emn. (3.63)

Properties of F

F, in contrast, is hermitian:

F ∗
nm = 〈[a†n, [H, am]]〉∗ = Fmn, (3.64)

or, in matrix notation:

F = F †. (3.65)
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Other Commutators

Apart from one matrix, all other matrices that arise from inserting the different δQs into the LHS
of eq. (3.47) are trivially related to the matrices A, . . . , F introduced above; this one non-trivial
matrix is

〈[a†n, [H, amai]]〉. (3.66)

It is related to the matrix D via

〈[a†n, [H, amai]]〉 = 〈[H, [a†n, amai]︸ ︷︷ ︸
−δinam−δnmai

]〉 − 〈[amai, [a†n,H]]〉 (3.67)

= δin 〈[H, am]〉︸ ︷︷ ︸
Λm

+δnm 〈[H, ai]〉︸ ︷︷ ︸
Λi

+〈[amai, [H, a†n]]〉 (3.68)

= δinΛm + δnmΛi +D∗
min. (3.69)

Later on, in sec. 3.3.6, the second gRPA approximation will be replaced by the so-called quasi-
boson approximation. In that formulation, it will be obvious that we have to neglect the terms
Λ. When we compute explicitly the expectation values in a later section, we will see that, at the
stationary mean-field point23, Λ is indeed zero. We note two points:

• the gRPA matrix (essentially the LHS of eq. (3.47)) is hermitian iff Λ = 0

• the second gRPA approximation and the quasi-boson approximation introduced below are
compatible iff Λ = 0; such a constraint does not appear in nuclear physics, as is easily
comprehensible in two different ways: first, the matrix under consideration (as well as the
matrices C,D) are non-zero only if the Hamiltonian contains terms with in total three
creation/annihilation operators, i.e. terms that violate particle-number conservation. Such
terms are not allowed in the usual nuclear physics framework, and thus there is no possibility
for the above consistency condition to arise24. Second, if we replace (as we will do in sec.
3.3.6) the operators containing two ordinary boson creation operators by a new boson
operator, we have in the case of bosonic theories the original boson still left, in contrast to
nuclear physics, where it is not necessary to retain the original fermions once one has the
formulation in terms of bosonic operators at hand;

This whole discussion allows us now to write down a first form of the gRPA equations:




1
2B

∗
ij;kl −1

2A
∗
ij;kl D∗

ij;k −C∗
ij;k

−1
2Aij;kl Bij;kl −Cij;k Dij;k
1
2Dkl;i −1

2C
∗
kl;i F ∗

ik −E∗
ik

−1
2Ckl;i

1
2D

∗
kl;i −Eik Fik






1
2X

ν
{kl}

1
2Y

ν
{kl}
Z̃νk
Zνk


 = Ων




1
−1

1
−1






1
2X

ν
{ij}

1
2Y

ν
{ij}
Z̃νi
Zνi




(3.70)
with Ων = Eν −E0. The factors

1
2 associated with some of the matrices C,D shouldn’t lead one

to conclude that the gRPA matrix on the LHS is not hermitian. In fact, as we will see later on,
we can write the gRPA equations in a very compact form resulting from a hermitian Hamiltonian

(at the stationary point of the mean-field equations δ
δφ̄i

〈H〉 !
= 0, and δ

δπ̄i
〈H〉 !

= 0).

23i.e., that point in parameter space where the energy expectation value is stationary with respect to variations
of φ̄, π̄, G,Σ; for Λ to be zero it is necessary that δ

δφ̄i
〈H〉 = 0, and δ

δπ̄i
〈H〉 = 0.

24In the bosonic theories under consideration here, these terms with three creation/annihilation operators appear
in the Hamiltonian usually due to a condensate.
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3.3.5 Explicit Expressions for A, ..., F

In this paragraph, we want to give explicit expressions that are valid for the theories that have a
Hamiltonian of the form eq. (3.32). As we have mentioned above, terms in the Hamiltonian that
contain more than four c/a operators do not contribute to any of the matrix elements due to
the second gRPA approximation25. Then the computation is straightforward: we simply insert
eq. (3.43) into eq. (3.57), and compute the double commutators. The computation is simplified
by the observation that only those terms of H contribute to the matrices where the number
of creation operators together with the number of creation operators in the definition of the
matrix elements match the respective number of annihilation operators. This is the reason for
the matrices A,C,D,E having contributions from one term of H only. B obtains contributions
from two terms of H as is to be expected, whereas F obtains only one. Individually, the matrices
read:

Matrix A

Aminj = −24H
{minj}
04 (3.71)

Matrix B

Bminj = B11
minj +B22

minj (3.72)

with

B11
minj = (Hji

11δnm +Hni
11δjm +Hjm

11 δni +Hnm
11 δji) ; B22

minj = 4H
{nj}{mi}
22 (3.73)

Matrix C

Cjmi = −6H
{jmi}
03 (3.74)

Matrix D

Djmi = 2H
i{jm}
12 (3.75)

Matrix E

Emi = −2H
{mi}
02 (3.76)

Matrix F

Fmi = H im
11 , (3.77)

where {ij} means: symmetrize in the indices i, j (i.e. add all permutations and divide by the
number of permutations) andH ...

ab means ’that factor in the Hamiltonian that multiplies a creation

25One can use Wick’s theorem to compute the double commutators that appear in the definition of the matrices
A, . . . , F . Then one realizes that if there are terms in the Hamiltonian with more than four c/a operators, every
term appearing in the evaluation of the double commutator contains at least one c/a operator, and the vacuum
expectation value in the second gRPA approximation sets these terms to zero.
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and b annihilation operators’. We see that at the stationary point they simplify considerably:

Aminj = −4Umm1Uii1Unn1Ujj1
δ2

δGm1i1δGn1j1

〈V 〉

Bminj = 4Umm1Uii1Unn1Ujj1
δ2

δGm1i1δGn1j1

〈V 〉+ (Fmnδij + Fmjδin + Finδmj + Fijδmn)

Cjmi = −2Ujj1Umm1Uii1
δ2

δφ̄j1δGm1i1

〈H〉
Djmi = −Cjmi
Emi = 0

Fmi = 1
2G

−1
mi .

(3.78)

3.3.6 The Quasi-Boson Approximation

Sometimes, it is useful to have the second gRPA approximation at hand without having to take
expectation values. This can be done with the help of the quasi-boson approximation. The
name has its roots in nuclear physics [MW69], [RS80], where two fermions were combined into
one boson. This works only approximately26, so that the result was christened a quasi-boson.
Interestingly enough, we can do the same in a bosonic system: we replace a two boson operator
(like aa or a†a†) by a new operator that again has bosonic commutation relations. We construct
the new boson-pair operators B,B† s.t. the commutation relations are identical to the mean-field
expectation values of commutators containing still the pair of original boson operators27:

[amai, aj ] = 0 → [Bmi, aj ] = 0

[amai, a
†
j ] = δijam + δmjai → 〈[amai, a†j ]〉 = 0 → [Bmi, a

†
j ] = 0

[a†ma†i , aj ] = −δija†m − δmja
†
i → 〈[a†ma†i , aj ]〉 = 0 → [B†

mi, aj ] = 0.

The only non-vanishing commutators involving B,B† originates from [amai, a
†
na

†
j ]:

[amai, a
†
na

†
j] = δinδmj + δijδmn + δina

†
jam + δmna

†
jai + δija

†
nam + δmja

†
nai

→ 〈[amai, a†na†j]〉 = δinδmj + δijδmn

→ [Bmi, B
†
nj ] = δinδmj + δijδmn.

26i.e. the ordinary bosonic commutation relations are only fulfilled if we take the mean-field expectation value
of the commutator of the boson pairs, and thus in some sense employ the second gRPA approximation, by using
the mean-field instead of the exact vacuum state.

27Here it seems appropriate to comment once again on the fact that a†a does not appear in our excitation oper-
ator: the excitation operator is linear in all the different boson creation/annihilation operators that we construct
as one can see in eq. (3.83). Thus, we have the question whether we can construct a boson operator from a†a
similar to how we construct one from a†a†. The problem is immediately apparent: if we consider Cmi = a†mai,
then its adjoint has the same structure as Cmi, since C†

mi = a†iam = Cim; if we compute the commutator
[Cij , C

†
kl] = δjka

†
ial − δlia

†
kaj we see that its mean-field expectation value is zero. Therefore we cannot construct

Boson operators with the correct commutation relations from a†a in the same way as we did for a†a†, and thus
they don’t appear in the excitation operators Q†

ν . In nuclear physics this is well-known. There one can see that the
quasi-boson operators correspond to a creation of a particle-hole pair (or its annihilation), whereas the operator
that creates and annihilates a particle is translated into an operator that creates and annihilates a quasi-boson
[MW69].
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This last relation implies that the B operators should be normalized differently, and implies
therefore that not amai should be replaced by Bmi, but rather one should replace

1√
2
(amai) ↔ Bmi

1√
2
(a†ma†i ) ↔ B†

mi.
(3.79)

They have the following commutation relations

[aj ,Bmi] = [aj ,B
†
mi] = [a†j ,Bmi] = [a†j ,B

†
mi] = [Bmi,Bnj] = [B†

mi,B
†
nj] = 0 (3.80)

and [Bmi,B
†
nj] =

1

2
(δinδmj + δijδmn). (3.81)

With these new operators, the excitation operators

Q†
ν =

1

2

∑
mi

(
Xν
mia

†
ma

†
i − Y ν

miamai

)
+
∑
m

(
Z̃νma

†
m − Zνmam

)
(3.82)

become:

Q†
ν =

1√
2

∑
mi

(
Xν
miB

†
mi − Y ν

miBmi

)
+
∑
m

(
Z̃νma

†
m − Zνmam

)
. (3.83)

At this point a short comment on how one constructs quasi-boson approximations is in order28.
Usually we will have to consider only one- and two-body operators, but the procedure should
work for higher-body operators as well:

(i) first, one writes down the operator O under consideration as a polynomial of a, a† operators.
Then one tries to extract the coefficients of the different powers in analogy to eqs. (3.54,3.57)
via (a) taking multiple commutators of O with up to two a, a† operators, and then (b)
taking vacuum expectation values of these multiple commutators employing the second
gRPA approximation.

(ii) The quasi-boson approximation OB of this operator O is then given as a polynomial of
B,B†, a, a† operators. The coefficients of the different powers are extracted by taking mul-
tiple commutators of OB with a, a†,B,B† without taking expectation values. One then
requires that the coefficients of OB determined in this way are identical to those of O
determined in (i) if one replaces in the multiple commutators of (i) O by OB and terms of
the structure aa by

√
2B and a†a† by

√
2B† as indicated in eq. (3.79) .

This is precisely the procedure that led to eq. (3.83), and will also be used to obtain the Hamil-
tonian in quasi-boson approximation. The coefficients mentioned are nothing but the matrices
A, ..., F . We therefore have the requirements

Anjmi = 〈[a†na†j, [H, a†ma†i ]]〉
!
= [

√
2B†

nj, [HB ,
√
2B†

mi]],

Bnjmi = 〈[a†na†j, [H, amai]]〉 !
= [

√
2B†

nj, [HB ,
√
2Bmi]],

Cnjm = 〈[a†na†j, [H, a†m]]〉 !
= [

√
2B†

nj, [HB , a
†
m]],

Dnjm = 〈[a†na†j, [H, am]]〉 !
= [

√
2B†

nj, [HB , am]],

Enm = 〈[a†n, [H, a†m]]〉 !
= [a†n, [HB , a

†
m]],

Fnm = 〈[a†n, [H, am]]〉 !
= [a†n, [HB , am]],

(3.84)

28A general formula for the quasi-boson approximation of a one-body operator is given in eq. (3.142).
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where HB denotes the Hamiltonian in quasi-boson approximation. At this point it seems in
order to discuss a question that turned up in connection with eq. (3.66): there we saw that one
of the double commutators was not directly connected to one of the matrices A, ..., F but that
some extra terms appeared, the ’Λ-terms’. If we consider the same double commutator in the
quasi-boson approximation, we obtain

〈[H, [a†n, amai]]〉 → 〈[H, [a†n,
√
2Bmi]︸ ︷︷ ︸

=0

]〉 = 0. (3.85)

Thus the quasi-boson approximation implies the vanishing of Λ. An explicit expression can be
given for Λ as well

Λi = 〈[H, a†i ]〉 =
(

δ

δφ̄k
〈Ĥ〉

)
Uki +

(
δ

δπ̄k
〈H〉

)(
1

2i
U−1
ki + 2ΣklUli

)
, (3.86)

which vanishes if we choose the parameters of the reference state s.t. the energy is stationary
under their variation (at least w.r.t. φ̄, π̄). We obtain a consistency condition between the second
gRPA approximation and the quasi-boson approximation: the latter is equivalent to the former
only at the stationary point29 of 〈H〉. Thus, in the following we will always assume that the
state (which we often call the mean-field vacuum) relative to which our creation/annihilation
operators are defined has its parameters chosen s.t. it satisfies the Rayleigh-Ritz principle. With
this qualification, we can give the (now hermitian) Hamiltonian in quasi-boson approximation:

HB = E −1
4

(
An1j1n2j2Bn1j1Bn2j2 +A∗

n1j1n2j2
B†
n1j1

B†
n2j2

)
+ 1

2Bn2j2n1j1B
†
n1j1

Bn2j2

− 1√
2

(
Cn1j1n2Bn1j1an2 + C∗

n1j1n2
B†
n1j1

a†n2

)
+ 1√

2

(
Dn1j1n2Bn1j1a

†
n2 +D∗

n1j1n2
B†
n1j1

an2

)
−1

2

(
En1n2an1an2 + E∗

n1n2
a†n1a

†
n2

)
+ Fn2n1a

†
n1an2 .

(3.87)
We have achieved writing the approximated Hamiltonian as a quadratic form, which always can
be diagonalized30. Using this Hamiltonian HB, one can see that the gRPA equations eq. (3.70)
can be written in the transparent form31

[HB , Q
†
ν ] = ΩνQ

†
ν . (3.88)

This form of the gRPA equations demonstrates that we have performed the approximation to the
dynamics (Hamiltonian) and to the excitation operators consistently, since the form of the equa-
tions is identical to the form of the Schrödinger equation eq. (3.45) with the exact Hamiltonian
and the exact excitation operators.

3.3.7 Commutation Relations

In this section we want to consider the question ’what are the conditions under which the eigen-
modes Q†

ν can be treated as harmonic oscillators ?’ We start with the observation that eq. (3.88)
29At least w.r.t the condensates φ̄, π̄.
30To quote from [MW69]: ’The achievement of a quadratic form in the bosons, which is always diagonalizable

has, of course, been the aim of the game.’
31One inserts eq. (3.87) and eq. (3.83) into eq. (3.88) and compares the coefficients of the different operators

a, a†,B,B†. This then reproduces eq. (3.70).
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implies by hermitian conjugation
[HB, Qν ] = −ΩνQν . (3.89)

Thus, to every eigenfrequency, the negative eigenfrequency also belongs to the spectrum. Thus,
without loss of generality32 in the following we will assume that

Ων ≥ 0, (3.90)

otherwise we just exchange the respective Qν , Q
†
ν . The next point is that all the commutators

[Q†
ν , Q

†
µ] [Qν , Q

†
µ] [Qν , Qµ] (3.91)

are pure numbers. This is due to the fact that all operators considered in this context are by
construction linear in B,B†, a, a†. We denote these numbers as

[Q†
µ, Q

†
ν ] =Mµν ; [Qµ, Q

†
ν ] = Nµν ; [Qµ, Qν ] = Oµν . (3.92)

Up to now these numbers are arbitrary; one can, however, put the equations of motion to some
good use. Consider

Ων [Qµ, Q
†
ν ]

eq. (3.88)
= [Qµ, [HB, Q

†
ν ]] (3.93)

Jacobi id.
= −[HB, [Q

†
ν , Qµ]]− [Q†

ν , [Qν ,HB ]] (3.94)

= [HB, Nµν ]︸ ︷︷ ︸
=0

+[Q†
ν , [HB , Qµ]︸ ︷︷ ︸

=−ΩµQµ

] (3.95)

= Ωµ[Qµ, Q
†
ν ]. (3.96)

In other words:
(Ων −Ωµ)Nµν = 0 (no sum over µ, ν). (3.97)

If all eigenvalues are distinct and non-zero then eq. (3.97) implies that Nµν is diagonal. Since
the gRPA equations are homogeneous equations, we may now normalize the amplitudes in such
a way that33,34

Nµν = δµν . (3.98)
32We will see later on in sec. 3.3.10 that the assumption that the eigenenergies of the modes are real already

implies that we are dealing with a stable mean-field solution.
33In [RS80] it is stated that one can show that Nµν is positive if one is considering a positive definite Hessian

at the stationary point of the mean-field problem; a possible proof of this statement works as follows: only if the
Hessian is a positive matrix it is guaranteed that all eigenvalues Ω2 are positive. This has been assumed so far
(e.g. how we concluded that for every positive frequency there is also a negative one etc.); thus we know that
the system is stable. Knowing this, we can argue as follows: we know that [H,Q†

ν ] = ΩνQ
†
ν , [H,Qν ] = −ΩνQν

and [Qν , Q
†
ν′ ] = Nνδνν′ . From this we conclude that the Hamiltonian has to look like H =

P
ν(Ων/Nν)Q

†
νQν .

Now we can study two different scenarios, namely Nν can be positive (we call the set of ν for which this is true
ν+) or negative (correspondingly ν−). In order to have the usual creation/annihilation commutation relations we
have - for ν ∈ ν− - to interchange ’creation’ and ’annihilation’ operators; for clarity, we introduce new letters
for them, i.e. for ν ∈ ν−, Qν → P †

ν , Q
†
ν → Pν . Now we normalize Qs and P s s.t. for ν ∈ ν+,Nν = 1 and for

ν ∈ ν−,Nν = −1. The Hamiltonian then reads H =
P

ν∈ν+
ΩνQ

†
νQν +

P
ν∈ν−(−Ων)P

†
νPν + const. But here we

see that we are dealing with a rather unstable system: the more modes are generated by P †, the lower the energy
becomes. This cannot be true, however, since we know that we started from a stable system (with all frequencies
real) ! Thus ν− has to be empty.

34This relation has also as its consequence that the states generated by Q†
µ, Q

†
ν from the gRPA vacuum (cf.

footnote 18) are indeed orthogonal: 〈RPA|QµQ
†
ν |RPA〉 = 〈RPA|[Qµ, Q

†
ν ]|RPA〉 = 〈|[Qµ, Q

†
ν ]|〉 = δµν where we

have used the second gRPA approximation in the next to last step [RS80].
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The same procedure can be carried out for Mµν , Oµν . We derive in analogy to eq. (3.97):

(Ων +Ωµ)Mµν = 0, (Ων +Ωµ)Oµν = 0, (3.99)

where again no sum over double indices is performed. From this we conclude, again if there are
no zero modes, that

Mµν = 0 Oµν = 0. (3.100)

Thus, under the aforementioned conditions, the normal modes satisfy ordinary c/a commutation
relations. To arrive at this, we have indeed used both gRPA approximations, since the basic
ingredient was that Q† is a one-particle operator (first gRPA approximation) and that all the
commutators of a, a†,B,B† are pure numbers (quasi-boson approximation).
Using the fact that the normal modes satisfy ordinary Bose commutation relations, we can
automatically write

HB = ERPA +
∑
ν

ΩνQ
†
νQν . (3.101)

The sum over ν extends over all positive semi-definite Ων. The constant ERPA can be determined
as usual, cf. [RS80], namely by requiring

〈HB〉 = EMF . (3.102)

Using

〈Q†
νQν〉 =

1

2

∑
mi

|1
2
Y ν
{mi}|2 +

∑
i

|Zνi |2, (3.103)

with Y ν
{mi} = Y ν

mi + Y ν
im this gives

ERPA = EMF −
∑
ν

Ων

(
1

2

∑
mi

|1
2
Y ν
{mi}|2 +

∑
i

|Zνi |2
)
. (3.104)

A similar expression can be obtained in nuclear physics [RS80] but without the appearance of
|Zνi |2.

3.3.8 Zero Modes - Preliminary Discussion

We are now in the following position: we have a mean-field vacuum that breaks a certain sym-
metry. Our class of gRPA excitation operators is s.t. the generator of that symmetry (or at least
its quasi-boson approximation) falls into this class. If we can show (and this will be done below
in sec. 3.4), that the quasi-boson approximation of the symmetry generator ΓB commutes with
the quasi-boson approximation of the Hamiltonian HB , i.e.

[HB,ΓB ] = 0 (3.105)

we have approximated the symmetry and the dynamics in a consistent manner: the approximated
symmetry is an exact symmetry of the approximated dynamics35. One should note, however,
that eq. (3.105) can also be read in a different way if one compares it to eq. (3.88): the symmetry
generator is a zero-mode solution of the gRPA equations36. This is clear as soon as eq. (3.105) is
satisfied.

35One should note that the symmetry generated by ΓB need not be the same as the symmetry that is generated
by Γ as we will discuss in sec. 3.4.

36It is the main advantage of this approach over the approach via the time-dependent variational principle that
this connection is so explicit.
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3.3.9 Further Discussion of Zero Modes

In the nuclear physics literature it is well-known [MW69] that the appearance of zero-modes,
despite being welcome in our case, leads to all sorts of problems, especially that the solutions of
the gRPA equations no longer form a complete set37. Marshallek et al. [MW69] however pointed
out that the problems one has are actually an artifact of the creation/annihilation operator
formalism. We want to give a very primitive illustration of their point: one can write down a
quantum mechanical oscillator in two equivalent forms (we have set the mass equal to one for
simplicity):

H =
p2

2
+
ω2

2
x2 (3.106)

= ω(a†a+
1

2
), (3.107)

where ω denotes the frequency of the harmonic oscillator. If we now send the frequency to zero,
something seemingly strange happens:

p2

2
+
ω2

2
x2

ω→0
=

p2

2
(3.108)

ω

2
(a†a+ 1)

ω→0
= 0. (3.109)

If one now looks at the transformation from canonical to c/a operators, one begins to see more
clearly:

a =

√
ω

2
x+

i√
2ω
p

ω→0
=

i√
2ω
p (3.110)

a† =
√
ω

2
x− i√

2ω
p

ω→0
= − i√

2ω
p (3.111)

(3.112)

and if we take this small-ω behaviour into account, there is actually no paradox38, since

ω

2
a†a ω→0

=
ω

2
(
1√
ω
)2p2 =

p2

2
. (3.113)

This is actually the solution of the problems involving zero modes: one puts the system into
an external field, s.t. there are no zero modes any more, since the external field39 breaks all

37In nuclear physics this is a problem since one there cannot prove that the Hamiltonian can be written as a sum
of Q†

νQν . Completeness is lost in the following way: we have seen that from every solution of the gRPA equations
we can form another solution by considering the adjoint operator, therefore the solutions to the gRPA equations
always come in pairs. In the case of zero modes, this is not necessarily true any more, since now the ’excitation
operators’ that we find may be hermitian; thus, by considering the adjoint, we do not get a new solution. In fact
this situation is the usual case for zero modes, since in sec. 3.4 we will see that the excitation operators for the
zero modes are just the symmetry generators, which are hermitian. In our previous discussion in sec. 3.3.7, we hit
upon the problem from a different direction; we saw that only if there are no zero modes in the spectrum we can
show that the excitation operators can be considered as independent oscillators.

38One should note that, in this limit ω → 0, no new information can be obtained by considering the adjoint of
a†.

39The external field can in fact be engineered just to do that, and this works as follows: we solve the gRPA
equations and determine all modes available. The operator belonging to the zero mode will be known beforehand
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symmetries. One diagonalizes the Hamiltonian into a set of harmonic oscillators using canonical
coordinates, and at the end sends the external field to zero. Then the would-be zero modes
indeed become zero modes with the correct operator representation, namely p2, and the non-zero
modes can be rewritten using creation and annihilation operators. As a last comment on this
topic, one should keep in mind the following: since we already have some prejudice about the
zero mode operators (as the symmetry generators), we cannot just choose their mass to be one
as we did in the example. We will rather have to allow for a mass tensor, and this will be dealt
with in section 3.5.

“Now, Watson, confess yourself utterly taken aback,”
said he. “I am.” “I ought to make you sign a paper
to that effect.” “Why?” “Because in five minutes you
will say that it is all so absurdly simple.”
Sherlock Holmes, The Dancing Men

3.3.10 p-q Formulation of gRPA

We have seen that at least three formulations of the generalized Random Phase Approximation
of bosonic systems are available. In this paragraph we want to add one more, since it simplifies
the treatment of those Hamiltonians we set out to consider, cf. eq. (3.32). Since we start from
the gRPA formulation using quasi-Boson operators, the whole treatment is only valid for the
mean-field vacuum representing a solution of the Rayleigh-Ritz variational principle (at least
w.r.t. variations of φ̄ and π̄). In this section we assume that the mean-field vacuum is a solution
of the Rayleigh-Ritz variational principle w.r.t. all parameters φ̄, π̄,Σ, G. We consider linear
combinations of a, a† and B,B†, s.t.

qm = 1√
2
(a†m + am) pm = i√

2
(a†m − am)

Qmi = 1√
2
(B†

mi + Bmi) Pmi = i√
2
(B†

mi − Bmi).
(3.114)

They fulfil the usual canonical commutation relations:

[qm, pn] = iδnm ; [Qmi, Pnj ] =
i

2
(δmnδij + δmjδni) (3.115)

and [qm, qn] = [pm, pn] = [Qmi, Qnj ] = [Pmi, Pnj ] = 0. (3.116)

- it is just the quasi-boson approximation of the (known) symmetry generator, which is usually a hermitian
operator, and so will be the operator associated with the zero mode. One then constructs a canonically conjugate
variable, s.t. [q, p] = i and q commutes with all other creation/annihilation operators, and adds a term ω2q2 to
the Hamiltonian; this will lift the zero mode to a finite frequency. By this construction, only the zero mode will be
lifted and nothing strange will happen to the other modes. Two points should be mentioned: first, the construction
of a canonically conjugate coordinate to a such a generator is only possible in the gRPA context, since we will
see in sec. 3.4 that the symmetry we have in mind will be reduced to an Abelian symmetry; if we would still have
the non-Abelian symmetry this would not be possible (the problems with the construction of ’angle operators’ in
nuclear physics are well-known, cf. e.g. [TI98]). As a second point, one should mention that in a quantum field
theory there might be problems with breaking gauge symmetries in intermediate steps. Since we have indicated
here only a formal construction, it is not easy to see where these kinds of problems might surface.
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If we now rewrite the Hamiltonian HB in terms of these new operators, we obtain a complicated
expression where the real and imaginary parts of the matrices A, ..., F are separated. We can
now put to use that we have computed the matrices A, ..., F above; we have found that

1. A,C,D are always real

2. C = −D
3. B,E,F may be imaginary; however, as this imaginary part is due to Σ, and in the theories

under consideration40 at the stationary point Σ = 0, the imaginary parts of B,E,F vanish.

4. As a matter of fact, E vanishes altogether at the stationary point.

5. A last simplification is that one may decompose B = B11 + B22 and, using this notation,
we have A = −B22.

Using this information, the Hamiltonian simplifies considerably:

HB = E′ + Qn1j1Qn2j2
1
4(Bn1j1n2j2 −An1j1n2j2) + Pn1j1Pn2j2

1
4(Bn1j1n2j2 +An1j1n2j2)

+
√
2Qn1j1qn2Dn1j1n2 +

1
2Fn2n1(qn2qn1 + pn2pn1)

(3.117)
and can even be written in a nice matrix form:

H = E′ +
1

2
(Pn1j1 pn1)

(
1
2(Bn1j1n2j2 +An1j1n2j2) 0

0 Fn2n1

)(
Pn2j2

pn2

)

+
1

2
(Qn1j1 qn1)

(
1
2(Bn1j1n2j2 −An1j1n2j2)

√
2Dn1j1n2√

2Dn2j2n1 Fn2n1

)(
Qn2j2

qn2

)
,(3.118)

where E′ is a constant that has to be chosen s.t. 〈HB〉 = EMF . This is a viable starting point
for proving the equivalence between the two gRPA formulations41. We will rewrite eq. (3.118)
into a Hamiltonian that leads to the same eigenvalue equations as does the Hamiltonian of the
small-fluctuation approach given in eq. (3.29). From this we will conclude - since we have both
times the same matrix to diagonalize - that the spectra of the Hamiltonians of the two approaches
are identical, and we will see a correspondence in the eigenvectors. For this purpose we note the
following:

1. We start with the term quadratic in p, P ; there we have

(B +A)n1j1n2j2 = (B11 +B22 −B22)n1j1n2j2

=
1

4
(G−1

n1n2
δj1j2 +G−1

n1j2
δj1n2 +G−1

j1n2
δn1j2 +G−1

j1j2
δn1n2)

= (
1

2
U−1
n1m1

U−1
j1i1

)(
1

2
U−1
n2m2

U−1
j2i2

)(G1)m1i1m2i2 (3.119)

and

Fn2n1 = (
1√
2
U−1
n2m2

)(
1√
2
U−1
n1m1

)δm2m1 (3.120)

40This excludes the cranking Hamiltonian as it was defined in eq. (2.155) (Hcr = H − R d3xωa(x)Γa(x) where
H is the Yang-Mills Hamiltonian) here, since it is not of the form given in eq. (3.32).

41Here the formulation using the quasi-Boson operators and the formulation originating from the time-dependent
variational principle are meant.
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This suggests that one should introduce new momentum operators

Pm1i1 =
1

2
U−1
n1m1

U−1
j1i1

Pn1j1 (3.121)

pm1 =
1√
2
U−1
n1m1

pn1 . (3.122)

2. Now we consider the term quadratic in q,Q; there the observation

B11
minj = Umk1Uik2Unk3Ujk4

δ

δGk1k2

δ

δGk3k4
tr
(
G−1

)
= 8Umk1Uik2Unk3Ujk4

δ

δGk1k2

δ

δGk3k4
〈T 〉 (3.123)

(where T denotes the kinetic energy 1
2π

2
i ) is useful. Then one can rewrite

(B −A)minj = (B11 +B22 − (−B22))minj

= B11
minj + 2 ∗ 4Umk1Uik2Unk3Ujk4

δ

δGk1k2

δ

δGk3k4
〈V 〉

= 8Umk1Uik2Unk3Ujk4
δ

δGk1k2

δ

δGk3k4
〈H〉. (3.124)

Next, one can put to use both the stationarity condition, the identity eq. (D.19) from
appendix D and the fact that the kinetic energy 〈12π2i 〉 is independent of φ̄:

Fn2n1 =
1

2
G−1
n2n1

= −1

2

(
δ

δGk1k2
tr
(
G−1

))
Uk1n1Uk2n2

= −4

(
δ

δGk1k2
〈T 〉
)
Uk1n1Uk2n2 = −4

(
δ

δGk1k2
〈H − V 〉

)
Uk1n1Uk2n2

s.p.
= 4

(
δ

δGk1k2
〈V 〉

)
Uk1n1Uk2n2 = 2

(
δ2

δφ̄k1δφ̄k2
〈V 〉
)
Uk1n1Uk2n2

= 2

(
δ2

δφ̄k1δφ̄k2
〈H〉

)
Uk1n1Uk2n2 (3.125)

where we have used that the mean-field vacuum is a stationary point (s.p.) and thus
δ〈H〉/δG = 0. This now suggests introducing new coordinates as well:

Qm1i1 = 2Un1m1Uj1i1Qn1j1 (3.126)

qm1 =
√
2Un1m1qn1 . (3.127)

3. One should note that the newly defined coordinates and momenta still fulfil the canon-
ical commutation relations eq. (3.116); thus, the new definitions amount to a canonical
transformation that leaves the dynamics unchanged.

We therefore end up with a Hamiltonian where the matrices in the quadratic forms are identical
to those appearing in the Hamiltonian of the small-fluctuation approach

H = E′ +
1

2
(p P)

(
1 0
0 (G1)

)(
p
P

)
+

1

2
(q Q)

(
δ2H
δφ̄δφ̄

δ2H
δφ̄δG

δ2H
δGδφ̄

δ2H
δGδG

)(
q
Q

)
,

(3.128)
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since H = 〈H〉 as defined in eqs. (3.8, 3.15). As a last point, we want to show that the eigenvalue
equations that result from the Hamiltonian given in eq. (3.128) are identical to eqs. (3.27, 3.28).

This is in fact quite simple; since the excitation operator Q†
ν is a linear combination of B,B†, a, a†

one can write it just as well as a linear combination of q,Q, p, P or q,Q,p,P. Thus, we may
write

Q†
ν =

∑
mi

(Q̃νmiQmi + P̃ νmiPmi) +
∑
m

(q̃νmqm + p̃νmpm). (3.129)

We can now use the gRPA equations eq. (3.88) to derive the eigenvalue equations: we insert

eq. (3.129) and eq. (3.128) into [HB, Q
†
ν ] = ΩνQ

†
ν and compare the coefficients of the various

operators q,p,Q,P. The resulting equations are then easily expressed as
 δ2H

δφ̄mδφ̄m2

δ2H
δφ̄mδGm1i1

(G1)m1i1;m2i2

δ2H
δGmiδφ̄m2

δ2H
δGmiδGm1i1

(G1)m1i1;m2i2


( q̃νm2

1
2Q̃

ν
{m2i2}

)
= Ω2

ν

(
q̃νm

1
2Q̃

ν
{mi}

)
(3.130)

and
 δ2H

δφ̄mδφ̄m2

δ2H
δφ̄mδGm2i2

(G1)mi;m1i1
δ2H

δGm1i1
δφ̄m2

(G1)mi;m1i1
δ2H

δGm1i1
δGm2i2


( p̃νm2

1
2 P̃

ν
{m2i2}

)
= Ω2

ν

(
p̃νm

1
2 P̃

ν
{mi}

)
.

(3.131)
These equations are now identical to eqs. (3.27, 3.28), only the components of the vectors have
acquired new names:

δφ̄ → p̃νm ; δG→ 1

2
P̃ ν{mi} and δπ̄ → q̃νm ; δΣ → 1

2
Q̃ν{mi}. (3.132)

Thus, we have proven that the two different approaches to the generalized RPA, namely the small-
fluctuation approach from the time-dependent variational principle, and the operator approach,
give in fact the same spectrum of possible excitations. Now the comments made at the end of
sec. 3.2 carry over to the operator formulation of gRPA: if the stability matrix of the mean-field
problem is positive, all ’eigenvalues’ Ω2

ν are larger than zero, and thus all Ωνs are real; if we are
not at a minimum of the energy with our choice of the mean-field vacuum, the stability matrix
will also have negative eigenvalues, and thus we will obtain complex conjugate pairs ±i|Ων |. As
long as we have real ’eigenvalues’ Ων in the gRPA problem, the minimum under consideration
will be stable at least w.r.t. small fluctuations. One should note that this relation was of some
importance in footnote 33.

3.4 Conservation Laws in the Generalized Random Phase Ap-
proximation

In this section we want to demonstrate how conservation laws of the full theory are
translated into the generalized RPA approximation of that theory. We only study con-
servation laws that are based on symmetries generated by one-body operators. The
important point is that the commutator of the quasi-boson approximation of a general
one-body operator with the quasi-boson approximation of the Hamiltonian is related to
the mean-field expectation value of the commutator of the full operators.

In this section, we want to show how conservation laws (expressed as [H,O] = 0) translate into
the gRPA formalism where the operators H,O are replaced by their quasi-boson approximations.
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For this purpose, we start by considering the commutator of the quasi-boson approximation ΓB
of a general one-body operator Γ with the Hamiltonian in quasi-boson approximation. It will be
possible to relate this commutator to the commutator of the unapproximated operators as could
also be done in nuclear physics42 [MW69]. For a general one-body operator Γ

Γ = Γ0 + Γ10
n1
a†n1

+ Γ01
n1
an1 + Γ20

n1n2
a†n1

a†n2
+ Γ02

n1n2
an1an2 + Γ11

n1n2
a†n1

an2 (3.133)

we write down the quasi-boson approximation ΓB

ΓB = Γ0 +
(
Γ10
n1
a†n1

+ Γ01
n1
an1

)
+

√
2
(
Γ20
n1n2

B†
n1n2

+ Γ02
n1n2

Bn1n2

)
, (3.134)

and take the quasi-boson approximation for the Hamiltonian given in eq. (3.87). We obtain for
the commutator

[HB ,ΓB] = − 1√
2
Bn1j1

(
Cn1j1m1Γ

10
m1

+Dn1j1m1Γ
01
m1

+An1j1m1m2Γ
20
m1m2

+Bn1j1m1m2Γ
02
m1m2

)
+ 1√

2
B†
n1j1

(
C∗
n1j1m1

Γ01
m1

+D∗
n1j1m1

Γ10
m1

+A∗
n1j1m1m2

Γ02
m1m2

+B∗
n1j1m1m2

Γ20
m1m2

)
−an1

(
En1m1Γ

10
m1

+ Fn1m1Γ
01
m1

+ Γ20
m1m2

Cm1m2n1 + Γ02
m1m2

D∗
m1m2n1

)
+a†n1

(
E∗
n1m1

Γ01
m1

+ F ∗
n1m1

Γ10
m1

+ Γ02
m1m2

C∗
m1m2n1

+ Γ20
m1m2

Dm1m2n1

)
.
(3.135)

By formulating the generalized RPA in terms of the quasi-boson approximation, we restrict
ourselves to reference states that satisfy the Rayleigh-Ritz variational principle43. We now insert
the definitions of the matrices A, ..., F as expectation values of double commutators of the exact
Hamiltonian with the creation/annihilation operators, and note that upon usage of the Jacobi
identity

〈[a†m1
a†m2

, [H, a†n1
]]〉 = 〈[a†n1

, [H, a†m1
a†m2

]]〉, (3.136)

〈[am1am2 , [H, a
†
n1
]]〉 = 〈[a†n1

, [H, am1am2 ]]〉+ δn1m1〈[H, am2 ]〉+ δn1m2〈[H, am1 ]〉, (3.137)

where again at the stationary point we can drop the last two terms. In order to see how one
proceeds, take the first line of eq. (3.135)

Bn1j1

(
Cn1j1m1Γ

10
m1

+Dn1j1m1Γ
01
m1

+An1j1m1m2Γ
20
m1m2

+Bn1j1m1m2Γ
02
m1m2

)
. (3.138)

It is now written as

Bn1j1

(
〈[a†n1

a†j1 , [H, a
†
m1

]]〉Γ10
m1

+ 〈[a†n1
a†j1 , [H, am1 ]]〉Γ01

m1
+ 〈[a†n1

a†j1 , [H, a
†
m1
a†m2

]]〉Γ20
m1m2

+〈[a†n1
a†j1 , [H, am1am2 ]]〉Γ02

m1m2

)
.

= Bn1j1〈[a†n1
a†j1 , [H,Γ

10
m1
a†m1

+ Γ01
m1
am1 + Γ20

m1m2
a†m1

a†m2
+ Γ02

m1m2
am1am2 ]]〉

= Bn1j1〈[a†n1
a†j1 , [H,Γ − Γ0 − Γ11

m1m2
a†m1

am2 ]]〉
= Bn1j1(〈[a†n1

a†j1 , [H,Γ]]〉 − Γ11
m1m2

〈[a†n1
a†j1 , [H, a

†
m1
am2 ]]〉︸ ︷︷ ︸

(∗)

). (3.139)

42Further interesting developments can also be found in [Mar77].
43For the equivalence of the second gRPA approximation and the quasi-boson approximation it is only necessary

that 〈H〉 be stationary w.r.t. variations of π̄ and φ̄. However, we need the stationarity condition w.r.t. G,Σ later
on anyway, so we just assume here that our mean-field vacuum satisfies the Rayleigh-Ritz variational principle.
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Now consider (∗):

〈[a†n1
a†j1 , [H, a

†
m1
am2 ]]〉 = − (H02

n1m1
δj1m2 +H02

j1m1
δn1m2 +H02

m1n1
δj1m2 +H02

m1j1δn1m2

)
. (3.140)

However, it can be seen by explicit computation that at the stationary point H02 = H20 = 0,
since H20 can be written in terms of derivatives of 〈H〉 w.r.t. G and Σ, cf. eq. (3.43). The other
three lines in eq. (3.135) can be treated identically. A slight difference in the treatment will be

necessary for the terms multiplying an, a
†
n in eq. (3.135), since there the term additional to the

desired commutator is not 〈[a†n1a
†
j1
, [H, a†m1am2 ]]〉 but 〈[a†n1 , [H, a

†
m1am2 ]]〉. However, by a simple

computation one sees that it is related to H10, and will therefore also vanish at the stationary
point. Thus, we can conclude

[HB,ΓB ] = − 1√
2
〈[a†n1a

†
j1
, [H,Γ]]〉Bn1j1 +

1√
2
〈[an1aj1 , [H,Γ]]〉B†

n1j1

−〈[a†n1 , [H,Γ]]〉an1 + 〈[an1 , [H,Γ]]〉a†n1

+terms that vanish at the stationary point.

(3.141)

One should note that

• the treatment has been general in the sense that Γ is an arbitrary one-body operator. If
in the full theory [H,Γ] = 0, this obviously implies at the stationary point [HB ,ΓB ] = 0,
i.e. a conservation law in the full theory (where the symmetry is generated by a one-body
operator) translates into a symmetry of the theory in quasi-boson approximation.

• the stationarity condition has been used several times; if we are not at the stationary
point, some of the terms neglected above do not vanish, i.e. [H,Γ] = 0 does not imply
[HB ,ΓB] = 0 away from the stationary point.

• in sec. 3.3.6 we have given our construction principle for the quasi-boson approximation of
a general one-body operator. One can give also a closed formula for this. If O is a general
one-body operator, its quasi-boson approximation reads

OB = 〈O〉 − 1√
2
〈[a†ia†j,O]〉Bij + 1√

2
〈[aiaj,O]〉B†

ij − 〈[a†i ,O]〉ai + 〈[ai,O]〉a†i . (3.142)

Thus, if [H,Γ] is a one-body operator, [HB ,ΓB] is the quasi-boson approximation of that
operator44 as can be seen by comparing eq. (3.141) to eq. (3.142).

• from eq. (3.142) it is clear that if both O and O† annihilate the mean-field vacuum, the
quasi-boson approximation of O will be zero ! Thus, in order to have a non-trivial zero
mode solution of the gRPA equations the mean-field vacuum has to be deformed.

We conclude that our main point of interest, namely the restoration of symmetries, is satisfied
only if the reference state that we use to define the creation/annihilation operators is a stationary
point of the time-independent variational principle.
Another word of caution is appropriate here. We have seen in this section that generators of
symmetries of the Hamiltonian stay (upon quasi-boson approximation) generators of symmetries

44Apart from a possible constant part 〈[H,Γ]〉.
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of the quasi-boson approximated Hamiltonian. Thus, symmetries stay symmetries, but the sym-
metries themselves may change. This can be seen by computing the commutator of two general
quasi-boson approximated one-body operators. One can use eq. (3.142) to determine

[OB ,PB ] = 〈[O,P]〉. (3.143)

In the case of Yang-Mills theories, we would obtain for the commutator of the Gauss law operators

[ΓaB ,Γ
b
B ] = 〈[Γa,Γb]〉 = ifabc〈Γc〉. (3.144)

At the stationary point, however, we have45 ē = Σ = 0 as was discussed in sec. 2.3.4, thus

[ΓaB,Γ
b
B ] = 0. (3.145)

In other words, the quasi-boson approximation has reduced the non-Abelian SU(N) symmetry
to an Abelian U(1)N

2−1 symmetry. This is a phenomenon also well known from perturbation
theory.

3.5 Moment of Inertia

In this section, we want to show how one can compute the contribution of the operators
generating zero modes to the Hamiltonian in quasi-boson approximation. In order to be
able to do this, we need a quantity called ’moment of inertia’. We will be able to give a
rather explicit expression in the case of Yang-Mills theory in the perturbative limit.

3.5.1 General Discussion

From the discussion in sec. 3.3.9 we saw that we can in general write the Hamiltonian in quasi-
boson approximation as

HB =
∑
ν∈ν+

ΩνQ
†
νQν +

∑
ν∈ν0

1

2
P 2
ν , (3.146)

where {ν+} denotes the set of modes with positive Ων and {ν0} denotes the set of zero modes.
However, quite often an alternative expression to eq. (3.146) in terms of symmetry generators is
useful. For this we have to recall that if our reference state is a solution of the Rayleigh-Ritz
equations, and if the symmetry generators under consideration are one-body operators, then
the quasi-boson approximations ΓaB of the symmetry generators commute with the quasi-boson
approximation of the Hamiltonian. This implies that they are zero mode solutions of the gRPA
equations. If we now assume that there are no ’accidental zero modes’, i.e. the whole space of
zero modes is spanned by the ΓaBs, then we can write the Pνs, ν ∈ {ν0}, as linear combinations
of the ΓaBs, and

∑
ν∈{ν0} P

2
ν becomes a quadratic form in terms of the ΓaBs. The advantage of

this alternative expression is two-fold: first, in general the quasi-boson approximations of the
symmetry operators are known. Second, the expression one obtains is (physically) more trans-
parent, and can be more easily compared to other frameworks like e.g. the Kamlah expansion.
The general dependence of HB on the generators ΓaB will then be46

HB,zm =
1

2
ΓaB(M−1)abΓbB , (3.147)

45In Yang-Mills theory, we usually use ē instead of π̄ to denote the expectation value of the canonical momentum.
46HB,zm means ’that part of the Hamiltonian in quasi-boson approximation that only contains the zero mode

operators’.
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where M is the moment-of-inertia tensor, and Einstein’s summation convention is also used for
the indices a, b which are employed to label the different symmetry generators ΓaB. We cannot (as
we have done in preceding discussions where masses were set to 1) ’normalize’ M ’away’, since
the normalization of ΓaB is fixed by its very nature of a known operator47. Thus, in this section,
we will see how one can actually compute the moment-of-inertia tensor, cf. [RS80]. We have seen
in sec. 3.3.9 that in cases of appearances of zero modes one has to pass to a description of the
oscillators in terms of canonical coordinates48 and momenta (which we have done above). This
actually allows to determine the moment-of-inertia tensor. We assume that we can construct a
set of coordinates Θa

B , s.t.

[Θa
B,Γ

b
B ] = iδab, (3.148)

and which commute with all other normal modes. Since we already know the form of the part
of HB that is not supposed to commute with ΘB, we also require49

[Θa
B ,HB] = iMabΓbB. (3.149)

As a matter of fact, the usage of the equations is opposite to their motivation. This has its
reason in the number of equations that are actually provided: we start by making an ansatz of
Θa
B as a generalized one-body operator in quasi-boson approximation50:

Θa
B = Θa

Q;miQmi +Θa
P ;miPmi +Θa

q;mqm +Θa
p;mpm (3.150)

whereas in general ΓB reads

ΓaB = ΓaQ;miQmi + ΓaP ;miPmi + Γaq;mqm + Γap;mpm.. (3.151)

In the latter case the coefficients are obviously known. We now insert eqs. (3.150, 3.151) into
eq. (3.149), and compare coefficients. This gives in general four equations, and allows to determine
Θa
Q;mi,Θ

a
P ;mi,Θ

a
q;m,Θ

a
p;m in terms of M−1 and the coefficients of ΓB. If we now insert the thus

determined coefficients of ΘB into the one equation that results from eq. (3.148) we obtain an
equation of the type

(M−1)acN cb = iδab, (3.152)

where N is a matrix given entirely in terms of the matrices A, ..., F and the coefficients of ΓB.
Thus, one has to invert the matrix N in order to obtain the correct kinetic term for the zero
modes. One should note that the logic is just the other way around from what one would expect,
namely that ΘB is defined via its commutator with ΓB . However, for a proper definition of
ΘB we also need the fact that it commutes with all the other normal modes. These general
considerations find their application to the specific case of Yang-Mills theory in the next section.

47If the original symmetry generators (before the quasi-boson approximation) were generators of a non-Abelian
symmetry, their normalization is fixed by the commutation relations.

48Let us once again mention that the reduction of the non-Abelian to an Abelian symmetry (in the Yang-Mills
case) in the quasi-boson approximation seems to be essential since otherwise one cannot construct canonically
conjugate ’angle’ operators fulfilling the canonical commutation relations [TI98].

49We assume here that the moment of inertia tensor is symmetric, which is at least true for the case of Yang-Mills
theories, since there [Γa

B ,Γ
b
B ] = 0.

50The usage of the p-q formulation as in section 3.3.10 will be useful in this context.
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3.5.2 Yang-Mills Theory

We have repeatedly emphasized that the quasi-boson formulation works properly only if the ref-
erence state fulfils the mean-field equations (the parameters are such that ’the energy functional
is at its stationary point’). In Yang-Mills theory without a cranking term this leads automatically
to51

ē = 0 and Σ = 0. (3.153)

This simplifies the expression for the Gauss law operator considerably, since, when we insert
these results into the expression given in Appendix C.4.2, we obtain52

ΓaB = ΓaP,miPmi + Γap,mpm = (ΓaP (x))
bc
ij (x1,x2)P

bc
ij (x1,x2) + (Γap(x))

b
i (x1)p

b
i (x1) (3.154)

with

(ΓaP (x))
b1b2
n1n2

(z1, z2) =
1

2

(
δ

δΣa1a2,l1l2x1x2

〈D̂ab
x,iΠ̂

b
ix〉
)
(U−1)a1b1,l1n1

x1z1 (U−1)a2b2,l2n2
x2z2 (3.155)

(Γap(x))
b1
n1
(z1) =

1√
2

(
δ

δēa1l1y1

〈D̂ab
x,iΠ̂

b
ix〉
)
(U−1)a1b1,l1n1

y1z1 , (3.156)

where we don’t integrate over x. Further remarks on notation can be found in footnote 52. One
should note that all double indices are summed over except for x ! Inserting eq. (3.150) into
eq. (3.149), with the Hamiltonian given in eq. (3.117), we obtain (apart from ΘP = Θp = 0)

Θa
q,mFmi = (M−1)abΓbp,i,

Θa
Q,miB

11
minj = (M−1)abΓbP,nj,

(3.157)

where we have used the properties of the stationary point, i.e. the matrices A, ..., F are all real,
etc. (cf. sec. 3.3.10). We invert the second line in a way that will be discussed below in some
detail. Let us only mention at this point that (B11)−1 is defined by

((B11)−1)i1m1j1n1(B
11)j1n1i2m2 =

1

2
(δi1i2δm1m2 + δi1m2δm1i2). (3.158)

We insert the result into the normalization eq. (3.148) and obtain

(M−1)ac
(
Γcp,m(F

−1)miΓ
b
p,i + 2ΓcP,mi((B

11)−1)minjΓ
b
P,nj)

)
= δab, (3.159)

which bears some resemblance to the expression obtained in nuclear physics [RS80], especially
if one notes that (B11)minj ∝ (A+ B)minj and Fij ∝ (E + F )ij at the stationary point. Unfor-
tunately, we cannot read off an explicit expression for (M−1)ab from this in general. However,

51We use the standard Yang-Mills notation for parameters of the wave functional etc. as they are also used in
Appendix C. At some places there will therefore be deviations from the ’generic field’ notation of the rest of this
chapter.

52 In this section we have to give up the super-index notation used until now in some places; instead of one
super-index, the operators p will carry three (colour, spatial, and position index), i.e. pm → pbi(x) where b is
the colour, i the spatial, and x the position index, and correspondingly for Pmi. In this context, also the index
a carried by Γa

B has to be re-examined; in fact it is also a super-index, consisting of a colour index a, and a
position index x: Γa

B → Γa
B(x); the same applies to the super-indices that are carried by the moment-of-inertia

tensor: Mab → Mab(x,y). Having clarified this, in the more formal parts of this section, we will still stick to the
super-index notation, since otherwise the formulas will become unreadable.
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we can go back to perturbation theory to make an evaluation. We note53 that ΓaP is, in the
perturbative scaling scheme given in appendixA.5, of higher order in g than54 Γap. Thus, we just
compute the leading order piece of the moment of inertia:

(M−1)ac(x,y)
((

Γcp(y)
)b1
n1

(z1)(F
−1)b1b2n1n2

(z1, z2)(Γ
b
p(z))

b2
n2
(z2)

)
= −(D̂D̂)bc(z)(M−1)ca(z,x)

!
= δbaδxz. (3.160)

From this we conclude that the leading order piece of the moment of inertia in a perturbative
expansion is just the Green’s function of the covariant Laplacian in the background field Ā:

(M−1
)ab
xy

= −Gab∆ (x,y) +O(g2) (3.161)

with
ˆ̄Dad
x,l

ˆ̄Ddb
x,lG

bc
∆(x,y) = δacδxy. (3.162)

Obviously, in the case of a vanishing background field, we obtain Coulomb’s law:(M−1
)ab
xy

=
δab

4π

1

|x− y| . (3.163)

We have now to discuss one point that was passed over before, namely the existence of (B11)−1

in the sense defined in eq. (3.158). One can combine the indices m, i and n, j into a super-index
each, and calculate the determinant of B11; it turns out to be zero. This is, however, only a
problem at first sight, since it turns out that with the same prescription for the indices the
RHS of eq. (3.158) has also a zero determinant. In the following, we call the RHS of eq. (3.158)
Wi1i2m1m2 . Writing suggestively

B11
i1i2m1m2

= Fi1m1δi2m2 + Fi1m2δi2m1 + Fi2m1δi1m2 + Fi2m2δi1m1

Wi1i2m1m2 = 1
4δi1m1δi2m2 + 1

4δi1m2δi2m1 + 1
4δi2m1δi1m2 + 1

4δi2m2δi1m1 ,
(3.164)

we see that W has the same structure as B11, in fact it is just a special case with Fij = 1
4δij .

This motivates the idea that both B11 andW could have the same kernel. Since we know that F
is symmetric, and has positive definite eigenvalues55, F itself has an empty kernel; the kernel will
consist of objects carrying two indices (not yet combined into one super-index). These objects
come in two types

Lab = −Lba (antisymmetric) Lab = Lba (symmetric). (3.165)

The first span the kernel of both W

Wi1i2m1m2L
m1m2 = Li1i2 + Li2i1 = 0 (3.166)

and B11:
B11
i1i2m1m2

Lm1m2 = Fi1m(L
mi2 + Li2m) + Fi2m(L

mi1 + Li1m) = 0. (3.167)

We see also that for symmetric L no new zeros are produced: the entire kernel is spanned by
objects antisymmetric in the two indices, and therefore one can give an inverse of B11 in the
subspace of symmetric objects56. One can define a basis for this subspace, and obtain a new B11

53This can be read off the expressions eqs. (3.155, 3.156) together with mean-field expectation value of Γa(x)
given in eq. (2.123).

54For the purpose of counting powers of g, we take Ā to be of O(g−1), s.t. ˆ̄D is completely of O(g0).
55This is so, since F is directly connected to the kernel G−1 in the Gaussian wave functional, cf. eq. (3.78).
56In this context one should note that both Θa

Q,mi and Γa
P,mi are symmetric, thus considering the subspace of

symmetric objects is sufficient.
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defined solely in this subspace, but we refrain from commenting on the procedure further since
we would need it only if we wanted to calculate M−1 to higher order in g.

3.5.3 Energy Contributions of the Zero Modes

We have discussed in some detail that zero modes cannot be treated via the ordinary cre-
ation/annihilation operator formalism; they have to be treated with the help of canonical coor-
dinates and momenta. This changes their contribution to the gRPA vacuum energy. The gRPA
energy in eq. (3.101) was fixed s.t.

〈HB〉 = EMF . (3.168)

Since now HB no longer only contains oscillator modes but looks like

HB = ERPA +
1

2
ΓaB(M−1)abΓbB +

∑
ν∈{ν+}

ΩνQ†
νQν , (3.169)

where {ν+} denotes the set of modes with positive Ων , eq. (3.104) becomes in this context

ERPA = EMF − 1

2
〈ΓaB(M−1)abΓbB〉 −

∑
ν∈{ν+}

Ων

(
1

2

∑
mi

|1
2
Y ν
{mi}|2 +

∑
i

|Zνi |2
)
, (3.170)

which is again similar to the result obtained in nuclear physics [RS80]. We obtain an energy
correction to the mean-field energy due to the zero modes that is very similar in structure to
what we obtained in the second order Kamlah expansion57,58, cf. eq. (2.303), but also with an
important difference: the energy contribution which is due to the zero modes (and thus ultimately
due to the deformation) is subtracted off after variation of the mean-field vacuum wave functional,
and not before, as in the case of the Kamlah expansion59; therefore, the determination of the
parameters of the mean-field vacuum is not influenced by the correction.

’Have you anything positive to tell him?’ - ’I think
so.’ - ’You have formed a conclusion?’ - ’Yes, my
dear Watson, I have solved the mystery.’

Sherlock Holmes, The Three Students

3.6 Summary and Conclusion

Let us shortly summarize what has been achieved in this chapter, and which problems remain to
be solved. We started by considering the formulation of the Random Phase Approximation that
has been the usual one to date in field theory, namely the one which is derived from the time-
dependent variational principle. We then turned to the operator formulation that is common in
nuclear physics. We demonstrated that this approach can also be implemented in a bosonic field

57If we integrate partially twice in eq. (2.303), we see that the energy correction in the second-order Kamlah
expansion (to the order in g considered) is given as − 1

2

R
d3x1 d

3x2 (−Gba
∆ (x2,x1))〈Γ̄a(x1)Γ̄

b(x2)〉.
58It is also very similar in structure to the so-called ’Thouless-Valatin term’ proposed in [HMVI98], [HIMV00].
59Also in the Thouless-Valatin method, the Thouless-Valatin term is subtracted before variation [HMVI98],

[HIMV00].
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theory, but that the class of excitation operators to be considered has to be larger than in nuclear
physics; namely, one has to also allow for terms linear in creation/annihilation operators of the
fundamental boson fields. It turned out to be possible (at least for a certain class of Hamiltonians
with standard kinetic term) to prove the equivalence of the operator formulation to the formula-
tion starting from the time-dependent variational principle. Then we demonstrated that, in the
absence of zero modes, the gRPA Hamiltonian is just a collection of harmonic oscillators. The
zero modes required special attention, but the problems could be solved along lines parallelling
nuclear physics. We then considered the question of how conservation laws of the full theory
translate into conservation laws of the theory in generalized Random Phase Approximation, and
saw that, at least in the case of symmetries generated by one-body operators, existence of sym-
metries in the full theory implies existence of symmetries in the gRPA-approximated theory,
although these symmetries need not be the same; in Yang-Mills theory, the generalized RPA
only carries an Abelian symmetry. As a last point we investigated the difference between the
mean-field energy and the energy of the gRPA ground state with special emphasis on the energy
contribution of the zero modes. For this purpose we had to calculate the moment-of-inertia ten-
sor which (at least to lowest order in perturbation theory) turned out to be the Green’s function
of the covariant Laplacian in the background field at the stationary point.
To put the method into perspective, let us summarize the main positive and negative aspects:
on the positive side, we first have to mention that in the generalized RPA only energy differences
w.r.t. the ground state are computed. This simplifies matters, since that part of renormalization
that is usually done by normal-ordering is automatically taken care of. This brings us directly to
the second point: energies of excited states can be computed. This is usually very difficult if one
relies upon e.g. the Rayleigh-Ritz principle. The most important point, however, is the effective
implementation of the Gauss law constraint. Even though the gauge symmetry is broken in the
mean-field treatment, the unphysical excitations generated by the (gRPA approximated) Gauss
law operator (in the sense of footnote 17) are orthogonal to to all the other physical excited states,
which is almost as good as if they didn’t even exist. But there are also a number of drawbacks
of the method presented. The first has to do with the ground state energy: Whereas one does
obtain a lowering of the ground state energy w.r.t. the mean-field energy due to deformation,
in a manner which is even formally quite similar to the lowering obtained in the second order
Kamlah expansion (at least to the order in perturbation theory considered), the point of the
calculation at which the energy correction due to the deformation is considered is fundamentally
different. In the Kamlah expansion, the corrections are subtracted before the variation is carried
out, whereas in the generalized RPA they are subtracted only after the variation. Therefore the
energy correction does not have any influence on the parameters of the mean-field. This brings us
directly to the next problematic point: of course the mean-field vacuum is not the gRPA ground
state. In nuclear physics, one was able, however, to construct the gRPA ground state from the
mean-field ground state; but, in the presence of zero modes, this state has a divergent norm. This
is due to the fact that the gRPA is a ’small angle’ approximation [MW69], or in other words, the
compact nature of the non-Abelian symmetry is lost. We have seen explicitly that in the case
of Yang-Mills theory, the compact SU(N) symmetry is replaced by the non-compact U(1)N

2−1

symmetry. In nuclear physics, at least in the case of two-dimensional rotations, the fact that
RPA is only a small-angle approximation was not so much of a problem, since the global depen-
dence on the angle is generally known and therefore one can extract enough information from
the small-angle approximation to determine the whole wave function [MW69]. In Yang-Mills
theory, we have no comparable knowledge that could be put to use practically and therefore, we
cannot compute the ground-state wave functional. Lacking this knowledge, however, one needs
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other methods to evaluate matrix elements of operators, which up to now we haven’t developed.
Therefore, the only quantities we currently can calculate are the energies of the excited states.
As a last point, we have to mention that just like in the mean-field calculations of Chapter 2, we
have not dealt with the problems of renormalization. However, it should be possible to deal with
them, since (at least in the case of φ4 theory) this problem has been faced already by Kerman
et al [KL95], [KL98] in the context of the generalized RPA derived from the time-dependent
variational principle.



Chapter 4

Conclusions

”The division seems rather unfair,” I remarked. ”You
have done all the work in this business. I get a wife
out of it, Jones gets the credit, pray what remains for
you?” ”For me,” said Sherlock Holmes, ”there still
remains the cocaine-bottle.” And he stretched his long
white hand up for it.

Sherlock Holmes, The Sign of the Four

In this thesis, we have studied Yang-Mills theory in the Weyl gauge employing the Schrödinger
picture. The motivation for this investigation was drawn from the fact that the formulation
in the Schrödinger picture had previously allowed for a successful treatment of topological and
kinematic questions, but only to a lesser extent dynamical calculations, at least in Yang-Mills the-
ories. We took from quantum mechanics the variational principles due to Dirac and to Rayleigh
and Ritz that have proved to be successful in many-body theory, especially in nuclear physics.
We then considered the problem of gauge invariance of the wave functionals, which is a necessary
property if one wants to have the same equations of motion in the Hamiltonian framework as in
the Lagrangian formalism. First, we considered a variety of methods that have been proposed
in the literature starting from construction of gauge invariant variables, over gauge fixing all the
way to models inspired by nuclear physics, where one deals with the system in a colour-rotating,
intrinsic frame.
However, there exist still further techniques inspired by nuclear physics, to which we then turned.
A common problem in nuclear physics is that the simple wave functions one wants to use for
calculations cannot contain interesting correlations, if they have to respect all the symmetries of
the Hamiltonian. Therefore, one starts with a simple wave function and projects it onto a state
that carries good quantum numbers. We follow the same approach, only our motivation is a bit
different: we are not able to write down a non-trivial wave function at all that is gauge invariant
to begin with. Therefore, we take as trial state a state that is close to the Slater determinant in
nuclear physics, since it shares its most important property - the factorizability of all expectation
values of arbitrary A-dependent operators (they have to be expandable in a power series in A,
though) into expectation values of one or two A operators. This is the class of Gaussian states.
Then we project it, and deal with the projection in an approximate fashion. Unfortunately, the
evaluation of these approximations, be it within the cranking approach or the Kamlah expansion,
was limited to a combination with perturbation theory, and restricted to low orders. In addition,
at least the Kamlah expansion makes - for the purpose of explicit computations - quite heavy
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use of the factorization properties. However, since the usage of Gaussian states has tied us to
the Hartree-Fock approximation (which in a certain sense is a two-loop approximation) anyway,
it is indeed questionable whether we ever have to go to higher order than g2 in the evaluation of
the Kamlah expansion, since the energy isn’t more accurate anyway. We ended Chapter 2 with
an evaluation of the Savvidy vacuum which reproduced the well-known results.
The third chapter was devoted to the generalized Random Phase Approximation which is also
known from nuclear physics. Here we have a different example of how Gauss’ law may be realized
in an approximation scheme: if the mean-field ground state is not annihilated by the Gauss law
operator, the excitations associated with the Gauss law operator are orthogonal to all physi-
cal excitations, and thus effectively decouple from the physical part of the Hilbert space. We
were also able to prove the equivalence of the operator approach used here for the generalized
Random Phase Approximation to the formulation found in the literature which is based on the
time-dependent variational principle for a certain class of Hamiltonians. The approach presented
here has the advantage that conservation laws can (under certain conditions) be transcribed
from the full theory to the theory in generalized RPA treatment, and the fact that one can see
explicitly the connection between the generators of symmetries and excitation operators that are
zero mode solutions of the gRPA equations.
In this entire thesis, we have refrained from discussing renormalization. This nevertheless is an
important point, since many of the expressions presented here are only formal, as they contain
products of operators at the same point in space-time. Before this point is clarified, detailed
calculations of e.g. the glueball spectrum, which could be carried out in the generalized Ran-
dom Phase Approximation, remain ambiguous. However, the fact that the renormalization of
φ4 theory was carried out successfully by Kerman et al within the generalized Random Phase
Approximation (albeit starting from the time-dependent variational principle) gives rise to the
hope that this can also be done in Yang-Mills theory.



Appendix A

Units and Conventions

Those are the facts of the case, Doctor, and if they are
of any use to your collection, I am sure that they are
very heartily at your service.
Sherlock Holmes, The “Gloria Scott”

A.1 Units

Throughout this thesis we work in natural units

~ = c = 1. (A.1)

In these units, time and length have dimension of inverse energies. Especially, we have

1 fm = 10−15 m = (197.327MeV)−1. (A.2)

A.2 Indices and Summation Conventions

In this thesis, four different kinds of indices appear: colour indices, spatial indices, position in-
dices and super-indices, combining several of the former three kinds as will be explicitly stated
wherever they are introduced. To each kind of index a certain range of letters is attached: colour
indices: a, b, c, . . ., spatial indices: i, j, k, . . ., position indices: x,y . . ., super-indices: i, j, k, . . . .
Unless explicitly stated, Einstein’s summation convention will be used throughout. Discrete in-
dices will be summed over, continuous indices will be integrated over. We will also use a uniform
notation for δ functions, regardless of the nature of indices (discrete or continuous); thus, δxy
in this thesis corresponds to δ(3)(x − y) in the usual notation for Dirac’s δ, whereas e.g. δab is
simply Kronecker’s δ.
On some occasions it is useful to indicate only those indices explicitly that shall not be summed
(integrated) over by Einstein’s summation convention, e.g. we use tr(ΣGΣ)xx as an abbrevi-

ation of (Σab1,ik1xx1 Gb1b2,k1k2x1x2 Σb2a,k2ix2x ) where all double indices are summed or integrated over (as
appropriate) except for x.

A.3 Minkowski Space

We use as metric for the Minkowski space

gµν = diag(1,−1,−1,−1), (A.3)
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and thus have as four-vectors aµ and aµ = gµνa
ν

aµ = (a0,a) , aµ = (a0,−a) (A.4)

with the scalar product

a · b = aµb
µ = a0 b0 − a.b. (A.5)

Only for the four-derivative, signs are distributed differently:

∂µ = (∂0,−∇) , ∂µ = (∂0,∇) (A.6)

with ∇i = ∂
∂xi

. Sometimes we need a gradient w.r.t. another variable. This we denote by

attaching the variable name to ∇, e.g. ∇y
i = ∂

∂yi
.

A.4 Group Theory Conventions

We will be very brief here, since we only need very few conventions. We will concentrate on
SU(N) groups. Group elements U of SU(N) can be written as

U = eiλ
aΘa

, (A.7)

where Θa are the parameters of the group element, and λ denote the generators, defined in the
Lie algebra. The representation of the algebra has to be chosen according to which representation
the Us are to be considered in (fundamental, adjoint, etc), and they satisfy the commutation
relations

[λa, λb] = ifabcλc. (A.8)

We therefore take the generators to be hermitian. The generators in the fundamental represen-
tation(s) are normalized to (1/2):

tr
(
λafundλ

b
fund

)
=

1

2
δab (A.9)

and we have used a special notation for the generators of the adjoint representation times minus i:

(T̂ a)bc = f bac. (A.10)

The structure constants satisfy the Jacobi identity

fabrfcdr + facrfdbr + fadrfbcr = 0 (A.11)

and are normalized as

fabcfdbc = −tr(T̂ aT̂ d) = Nδad. (A.12)

Further useful formulas can be found in [Ten00].



140 A.5. Factors of g

A.5 Factors of g

In Yang-Mills theory one has basically two options concerning where one wants to put the cou-
pling constant, either in front of the action1, or in front of the commutator term in the field
strength2. In this appendix we give a short list concerning which convention leads to which
placing of factors of g in other quantities of interest:

non-perturbative scaling perturbative scaling

covariant derivative Dµ = ∂µ − iAµ Dµ = ∂µ − igAµ

field strength Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ]

= i[Dµ,Dν ] = i
g [Dµ,Dν ]

action S = − 1
4g2

∫
d4xF aµν(x)F

a µν(x) S = −1
4

∫
d4xF aµν(x)F

a µν(x)

electrical field Ea
i = F a0i Ea

i = F a0i

magnetic field Ba
i = −1

2εijkF
a jk Ba

i = −1
2εijkF

a jk

= (∇×A)ai − 1
2f

abc(Ab ×Ac)i = (∇×A)ai − g
2 f

abc(Ab ×Ac)i

momenta Πa
i =

∂L
∂Ȧa

i

Πa
i =

1
g2F

a
i0 = − 1

g2E
a
i Πa

i = F ai0 = −Ea
i

Hamiltonian H = g2

2 Πa
iΠ

a
i +

1
2g2B

a
iB

a
i H = 1

2Π
a
iΠ

a
i +

1
2B

a
iB

a
i

= 1
2g2 (E

a
iE

a
i +Ba

iB
a
i ) = 1

2(E
a
iE

a
i +Ba

iB
a
i )

wave functional of ψ[A] ∼ e
− 1

g2
AG−1A

ψ[A] ∼ e−AG−1A

’free’ theory

gauge transformations U = eiφ
aλa U = eigφ

aλa

generators [(−Γax), (−Γby)] = iδxyf
abc(−Γcx) [ 1g (−Γax),

1
g (−Γby)] =

g
g iδxyf

abc 1
g (−Γcx)

finite gauge trafos G = ei
R
φaΓa G = e

i
R
gφa 1

g
Γa

A.6 Generalized Projectors

In this appendix we want to give some notions on the generalized projectors as they are used in
sec. 2.6. First let us note that the projection operators are thought of as bilocal objects, i.e. they
depend on two spatial coordinates. Consider e.g. the (generalized) longitudinal projector (ΠL):

(ΠL)
ab
ij (x,y). (A.13)

1in the following, this will be called ’non-perturbative scaling’
2in the following, this will be called ’perturbative scaling’
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As is to be expected for a projector, (ΠL) is idempotent (if we include an integration over the
double continuous index as well):

(ΠL)
ab
ij (x,y) =

∫
d3z (ΠL)

ac
ik (x, z)(ΠL)

cb
kj(z,y). (A.14)

The (generalized) longitudinal projector (ΠL) is a symmetric operator in the sense that3∫
d3x d3y fai (x)(ΠL)

ab
ij (x,y)g

b
j (y) =

∫
d3x d3y gai (x)(ΠL)

ab
ij (x,y)f

b
j (y). (A.15)

The latter property implies that it can be diagonalized, and from eq. (A.14) one can conclude
that its eigenvalues are 0, 1. The generalized longitudinal projector can be given in different
forms; for this it might be useful to recall that the ordinary longitudinal projector PL also can be
given in different forms that are under the usual circumstances (i.e. all functions of y are found
to the right4 of (PL)ij(x,y))

(PL)ij(x,y) =
(
∇x
i G∆(x,y)

)
∇y
j (A.16)

= −
(
∇y
j∇x

i G∆(x,y)
)

(A.17)

=

∫
d3k

(2π)3
eik.(x−y)kikj

k2
, (A.18)

where G∆(x,y) denotes the Green’s function of the Laplace operator. Under the given circum-
stances all three definitions are equivalent; however, only the first one really has to ’act to the
right’ in order to make sense. The (ordinary) transversal projector can also easily be defined as

(PT )ij(x,y) = δijδxy − (PL)ij(x,y). (A.19)

For the generalized longitudinal projectors we can now give corresponding definitions:

(ΠL)
ab
ij (x,y) =

(
ˆ̄Daa1
i (x)Ga1b1∆ (x,y)

)
ˆ̄Db1b
j (y) (A.20)

= −
(
ˆ̄Dbb1
j (y) ˆ̄Daa1

i (x)Ga1b1∆ (x,y)
)

(A.21)

=
∑
n

(ξ∗n)
a
i (x)(ξn)

b
j(y) (A.22)

where Ga1b1∆ (x,y) is the Green’s function of the covariant Laplacian5 ( ˆ̄D ˆ̄D)c1b1(x), (ξn)
a
i (x) are

the normalized eigenfunctions of (ΠL)
ab
ij (x,y) with eigenvalue 1, and we do not integrate over

x,y. Here the corresponding generalized transversal projectors are given by

(ΠT )
ab
ij (x,y) = δijδ

abδxy − (ΠL)
ab
ij (x,y). (A.23)

3Here we have dropped boundary terms from two partial integrations.
4In other words, for expressions of the type fi(x)(P

L)ij(x,y)gj(x,y) (with a sum or integral over all double
indices) all these definitions are equivalent, otherwise they will usually be not.

5For simplicity, we assume that the covariant Laplacian has no eigenvalues zero.
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Perturbation Theory in Weyl Gauge

In this appendix we want to present a number of tools that are used in sec. 2.2, and some
explicit expressions for propagators and interaction parts of the action, cf. also [TR80a], [TR80b],
[LMR84].

B.1 Adjoint Representation and Integral

Assume that we have a SU(N) group element Uh

Uh = exp (ighaλ
a). (B.1)

An ingredient that is used frequently in diverse computations to follow is∫ 1

0
dt 2 tr(λaU †

thλ
bUth) =

∫ 1

0
dt σab(th). (B.2)

We first start out by deriving a useful representation for σ by considering the differential equation
it satisfies,

σab(0) = δab (B.3)

d

dt
σab(th) = σad(th)γdb = γadσdb(th) with γab = igf cabhc. (B.4)

Thus we can write σ as
σab(th) = (eitγ)ab. (B.5)

With this we can now perform the integration and obtain∫ 1

0
dt σab(th) = (iγ)−1

ac (e
iγ − 1)cb. (B.6)

B.2 Pure Gauge Potentials

The first instance where the above formula can be applied is in deriving a form of a pure gauge
potential in terms of h that can be easily expanded in terms of g:

AUh = − i

g
U †
h∇Uh → (AUh)a = (∇hb)

∫ 1

0
dt σab(th) = (δab + Fab)(∇hb) (B.7)
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with F = (iγ)−1(eiγ − iγ−1). The advantage of F is that - upon expansion of the exponential in
powers of g - it is of O(g). In the main text we will need the expansion of F up to second order
in g:

Fab = −1

2
ghcf cab +

g2

6
hc1hc2f c1acf c2cb +O(g3). (B.8)

B.3 Haar Measure, General

In this section, we want to construct the Haar measure from its property that it is left-invariant,
following [Cor84]. We start by considering a group element Ua that is parametrized by the param-
eters a1, . . . , an. The Haar measure dµ[Ua] can be written as a ’measure function’ ρ(a1, . . . , an)
times a flat integration measure da1 . . . dan. Thus, we try to compute ρ. If we consider a fixed
group element Ub, the left-invariance of the Haar measure implies that dµ[Ua] = dµ[UbUa]; we
call the group element obtained by that left-multiplication Uc = UbUa. This is almost enough to
determine the Haar measure:

dµ[Ua] = ρ(a1, . . . , an)da1 . . . dan

= dµ[UbUa︸ ︷︷ ︸
=:Uc

] = ρ(c1, . . . , cn)dc1 . . . dcn

= ρ(c1, . . . , cn)

∣∣∣∣det ∂c∂a
∣∣∣∣ da1 . . . dan. (B.9)

Thus ρ(a1, . . . , an) =
∣∣det ∂c∂a ∣∣ ρ(c1, . . . , cn). Now consider Ua = 1, i.e. a1 = . . . = an = 0, then

Uc = Ub, and we obtain

ρ(b1, . . . , bn) =
ρ(0)∣∣det ∂c∂a ∣∣a=0

. (B.10)

In order to calculate the determinant, we use the identity Uc = UbUa; then

∂

∂ak
Uc

∣∣∣∣
a=0

=
∂Uc
∂ce

∂ce

∂ak

∣∣∣∣
a=0

= Ub
∂

∂ak
Ua

∣∣∣∣
a=0

= Ub(igλ
k) = Uc|a=0 (igλ

k). (B.11)

Thus

igδkn = 2ig tr(λnλk) = 2 tr(λnU †
c
∂Uc
∂ce

)

∣∣∣∣
a=0

∂ce

∂ak

∣∣∣∣
a=0

= ig

∫ 1

0
ds σne(sc)

∂ce

∂ak

∣∣∣∣
a=0

. (B.12)

This implies that (using a matrix notation)

1 =
(
(iγ)−1(eiγ − 1)

)
(
∂c

∂a
) (B.13)

and for the determinant we get

1

det ∂c∂a
= det

(
(iγ)−1(eiγ − 1)

)
= det (1 + F ), (B.14)

where F was defined above. Thus we end up with the Haar measure of the SU(N) group

ρ(b1, . . . , bn) = ρ(0) det (1 + F ). (B.15)



144 B.4. Functional Haar Measure

B.4 Functional Haar Measure

In the following we neglect1 ρ(0), i.e. we set it equal to 1, since it is just a constant that will
cancel out in the end. In order to define the functional Haar measure, we “just” take a product
of Haar measures at every point in space2, cf. also [LNT94]:

Dµ =
(∏

x

ρ(h(x))
)
Dh = exp

(∑
x

log ρ

)
Dh

= exp

(
1

a3
a3
∑
x

log ρ

)
Dh = exp

(
1

a3

∫
d3x log ρ

)
Dh

= exp

(
δ3(0)

∫
d3x tr

(
log (1 + F )

))
Dh. (B.16)

B.5 Explicit Expressions Used in the Computations of Sec. 2.2

Please note that we have put in this section in a number of places the position indices that are
usually put in brackets behind the objects to which they belong in a real index position, e.g.
ha(x) has been replaced by hax, since otherwise the formulas would become too complex.

B.5.1 Propagators

We have three different types of propagators, one for the projector field eq. (B.17), one for
the spatial components of the vector potential eq. (B.19), and a mixed propagator eq. (B.18).

〈haxhby〉 =
Tδab

4π|x− y| (B.17)

〈haxAb
j,y(t)〉 = δab(t+

1

2
T (1 + 2ρ))∇y

j

1

4π|x− y| (B.18)

〈Aa
i,x(t)A

b
j,y(t

′)〉 = δab
∫

d3p

(2π)3
eip.(x−y)

{
PTij

(
− 1

|p| sinh |p|T (B.19)

×
[
Θ(t− t′) sinh (|p|(t− T

2
)) sinh (|p|(t′ + T

2
))

+Θ(t′ − t) sinh (|p|(t′ − T

2
)) sinh (|p|(t + T

2
))
])

+PLij

(
−1

2
|t− t′|+ 1

2
(t+ t′)(1 + 2ρ) +

1

2
T (1 + 2ρ+ 2ρ2)

)}
.

B.5.2 Contributions to the Action

There are three contributions to the interacting part of the action. The first, eq. (B.20), contains
the three- and four-gluon vertex of the original action (albeit only the spatial components of

1In principle it could be computed from the property that the integral over the Haar measure is normalized to
one:

R
dµ = 1.

21 = a3 1
a3 = δ(3)(0)d3x→ 1/a3

a→0
= δ3(0) .
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the vector potential are contained), the second one, eq. (B.21) contains the contribution from
the measure of the projector integral, and thus corresponds to the Faddeev-Popov determinant
of the Polyakov gauge, and the third contribution, eq. (B.22), describes the interaction of the
projector field with the spatial components of the vector potential.

SI [− δ

δJ
] = −g

2
fabc

∫
d3x dt

{(
∇i

δ

δJaj (x, t)

)
−
(
∇j

δ

δJai (x, t)

)}
δ

δJbi (x, t)

δ

δJcj(x, t)
(B.20)

−g
2

4
fabcfade

∫
d3x dt

{
δ

δJbi (x, t)

δ

δJcj(x, t)

δ

δJdi (x, t)

δ

δJej(x, t)

}

Sm[− δ

δf
] = δ3(0)

∫
d3xTr

(
log

[
1 + F

(
− δ

δf

)])
(B.21)

S′
I [J,−

δ

δf
] =

∫
d3x d3y

{∫
dt

[
Fab

(
−ρ δ

δf

)(
−ρ∇x

i

δ

δf bx

)
Gij(x,−T

2
;y, t)Jaj (y, t)

]
(B.22)

+
1

2
Fab

(
−ρ δ

δf

)(
ρ∇x

i

δ

δf bx

)
χij1 (x,y)Fac

(
−ρ δ

δf

)(
ρ∇y

j

δ

δf cy

)

−
∫
dt

[
Fab

(
−(1 + ρ)

δ

δf

)(
−(1 + ρ)∇x

i

δ

δf bx

)
Gij(x,+

T

2
;y, t)Jaj (y, t)

]

+
1

2
Fab

(
−(1 + ρ)

δ

δf

)(
(1 + ρ)∇x

i

δ

δf bx

)
χij1 (x,y)

×Fac
(
−(1 + ρ)

δ

δf

)(
(1 + ρ)∇y

j

δ

δf cy

)

+Fab

(
−ρ δ

δf

)(
ρ∇x

i

δ

δf bx

)
χij2 (x,y)

×Fac
(
−(1 + ρ)

δ

δf

)(
(1 + ρ)∇y

j

δ

δf cy

)}

+

∫
d3x

1

T

[
ρ

(
∇x
i

δ

δfax

)
Fab

(
−ρ δ

δf

)(
∇x
i

δ

δf bx

)
−

+(1 + ρ)

(
∇x
i

δ

δfax

)
Fab

(
−(1 + ρ)

δ

δf

)(
∇x
i

δ

δf bx

)]
.

B.5.3 Condensed Notation

As a last point in this appendix we want to explain briefly the very condensed notation used
from eq. (2.75) onwards. As an example we take the term

G
abc
1

(
δ

δJa

)(
δ

δJb

)(
δ

δJc

)
(B.23)

that is to be identical to

−g
2
fabc

∫
d3x dt

{(
∇i

δ

δJaj (x, t)

)
−
(
∇j

δ

δJai (x, t)

)}
δ

δJbi (x, t)

δ

δJcj(x, t)
. (B.24)
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This can be achieved if we include into the super-indices also a time label, and the summing over
double indices has also to include a time integration (this is not necessary for super-indices that
connect δ

δf to vertices). Thus, we expand the super-indices as follows: a→ (a, ia,xa, ta) with
′a′

colour index, ′i′a spatial index, ′x′
a position index, ′t′a time index:

G
abc
1

(
δ

δJa

)(
δ

δJb

)(
δ

δJc

)

= −g
2
fa1b1c1

∫
d3x dt

[(
∇i

δ

δJa1j (x, t)

)
−
(
∇j

δ

δJa1i (x, t)

)]
δ

δJb1i (x, t)

δ

δJc1j (x, t)

= −g
2
fa1b1c1

{∫
d3x dt

[(
∇iδ

a1aδjia

∫
dta δtta

∫
d3xa δxxa

δ

δJaia(xa, ta)

)

−
(
∇jδ

a1aδiia

∫
dta δtta

∫
d3xa δxxa

δ

δJaia(xa, ta)

)]
×

δb1bδiib

∫
dtb δttb

∫
d3xb δxxb

δ

δJbib(xb, tb)
δc1cδjic

∫
dtc δttc

∫
d3xc δxxc

δ

δJcic(xc, tc)

}

=

{∫
d3xa d

3xb d
3xc dta dtb dtc[∫

d3x dt δttaδttbδttcδ
aa1δbb1δcc1

[
(∇iδjiaδxxa)− (∇jδiiaδxxa)

]
δxxb

δxxcδiibδjic

]

δ

δJaia(xa, ta)

δ

δJbib(xb, tb)

δ

δJcic(xb, tc)

}
.

We want to consider the last part of this equation:

• ∫ d3xa d3xb d3xc dta dtb dtc denotes the summation over the continuous double indices, po-
sition and time;

• the last line δ
δJa

ia
(xa,ta)

δ
δJb

ib
(xb,tb)

δ
δJc

ic
(xb,tc)

would be abbreviated in the super-index notation

as δ
δJa

δ
δJb

δ
δJc ;

• the symmetrization of the expression given in the middle-line then gives Gabc
1 .

With the procedure indicated here corresponding expressions for Gabcd
2 and Ha;bc

1 can be derived
easily.



Appendix C

Explicit Expressions Used in gRPA

C.1 General Remark

In this appendix there is no integration over x unless explicitly stated.

C.2 Decomposing B2 into Creation/Annihilation Operators

Here, we want to calculate the magnetic field and its square in the creation/annihilation operator
decomposition for further usage in the gRPA calculations.

C.2.1 Preliminaries, Definitions

First, a comment on notation: the objects that appear in this appendix carry three different
types of indices: colour indices (a, b, . . .), spatial indices (i, j, . . .), and position indices (x,y, . . .).
Whereas usually position indices are put in brackets behind the object to which this index belongs,
in this chapter we have to put them as an index to the respective object, since otherwise the
formulas in this appendix would have become unbearably complex. In the following, we need
three basic definitions and expressions1:

Ba
ix = εijk∇jA

a
kx − g

2
fabcεijkA

b
jxA

c
kx. (C.1)

Aa
i,x = Āa

i,x + Uab,ijxy (a†bjy + abjy ) (C.2)

[aaix , a
†bj
y ] = δabδijδxy. (C.3)

Note that in the following, every double index is summed over except for x , which is only
summed over if explicitly indicated. tr(...) denotes the trace over colour and spatial indices only.
We will also use the following notation:

B̄a
ix = εijk∇jĀ

a
kx − g

2
fabcεijkĀ

b
jxĀ

c
kx (C.4)

for the classical magnetic field. Often, the adjoint representations of the colour group and SU(2)
come into our formulas, we use thus

f bac = (T̂ a)bc (C.5)

εjik = (Si)jk (C.6)
1In this appendix we use ’perturbative scaling’ as defined in AppendixA. In contrast to chapter 2 we do not

rescale Ā to 1
g
Ā.
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to make their appearance explicit (though the generators of the adjoint representation of the
respective groups are in fact i times the LHS of eqs. (C.5,C.6)).

C.2.2 Calculating Ba
ix

One simply inserts eq. (C.2) into eq. (C.1) and uses eq. (C.3) to bring everything into normal
order. Then one obtains

Ba
ix = B̄a

ix − g

2
tr(SiT̂

aGxx) + εijk(∇x
j δ
ac − gfabcĀb

jx)U
cd,kl
xz (a†dlz + adlz ) (C.7)

− g

2
fabcεijkU

bd,jl
xy U ce,kmxz (a†dly a†emz + adly a

em
z + 2a†dly aemz ),

where we have introduced ∇x
j to indicate a gradient w.r.t. x. However, one can rewrite this into

a more interesting form if one realizes that

δB̄a
ix

δĀb
ly

= εijl(δ
ab∇x

j − gfacbĀc
jx)δxy = εijl

ˆ̄Dab
x,jδxy, (C.8)

δ2B̄a
ix

δĀb
lyδĀ

c
mz

= −gεilmfabcδxzδxy = −g(Si)lm(T̂ a)bcδxzδxy, (C.9)

where we have introduced the covariant derivative in the background field Ā as

ˆ̄Dab
x,j = δab∇x

j − gfacbĀc
jx. (C.10)

Note that the vacuum expectation value of the magnetic field is not only given by the classical
term, but one gets an additional term from normal ordering:

〈Ba
ix〉 = B̄a

ix − g

2
tr(SiT̂

aGxx) (C.11)

and via the relation

δ

δGbc,lmyz

g tr(SiT̂
aGxx) = gδxyδxz(Si)lm(T̂

a)bc = − δ2B̄a
ix

δĀb
lyδĀ

c
mz

(C.12)

this allows for an interesting identity2:

δ

δGbc,lmyz

〈Ba
ix〉 = −1

2

δ

δGbc,lmyz

gtr(SiT̂
aGxx) = −1

2
(− δ2B̄a

ix

δĀb
lyδĀ

c
mz

) =
1

2

δ2〈Ba
ix〉

δĀb
lyδĀ

c
mz

. (C.13)

One can therefore trade a second derivative w.r.t. Ā for a first derivative in G.

Ba
ix = B̄a

ix − g

2
tr(SiT̂

aGxx) +
δB̄a

ix

δĀb
ly

U bb1,ll1yz1 (a†b1l1z1 + ab1l1z1 ) (C.14)

+
1

2

δ2B̄a
ix

δĀb
lyδĀ

c
mz

U bb1,ll1yz1 U cb2,ml2zz2 (a†b1l1z1 a†b2l2z2 + ab1l1z1 ab2l2z2 + 2a†b1l1z1 ab2l2z2 )

= 〈Ba
ix〉+

δ〈Ba
ix〉

δĀb
ly

U bb1,ll1yz1 (a†b1l1z1 + ab1l1z1 ) (C.15)

2This is a special example of the general relation eq. (D.19).
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+
1

2

δ2〈Ba
ix〉

δĀb
lyδĀ

c
mz

U bb1,ll1yz1 U cb2,ml2zz2 (a†b1l1z1 a†b2l2z2 + ab1l1z1 ab2l2z2 + 2a†b1l1z1 ab2l2z2 )

= 〈Ba
ix〉+

δ〈Ba
ix〉

δĀb
ly

U bb1,ll1yz1 (a†b1l1z1 + ab1l1z1 ) (C.16)

+
δ2〈Ba

ix〉
δGbc,lmyz

U bb1,ll1yz1 U cb2,ml2zz2 (a†b1l1z1 a†b2l2z2 + ab1l1z1 ab2l2z2 + 2a†b1l1z1 ab2l2z2 ).

C.2.3 Calculating Ba
ixB

a
ix

This is a good starting point for the calculation of Ba
ixB

a
ix: one squares eq. (C.16) and normal

orders the expression. The calculation is not really very interesting apart from the fact that one
usually obtains by direct calculation an expression where the symmetry under permutation is
carried by the operators, and can trade this for an expression where the prefactor multiplying
the operators is symmetric in all the indices3 and the operators have a definite order. Then one
obtains

Ba
ixB

a
ix = B̄a

ixB̄
a
ix − gB̄a

ixtr(SiT̂
aGxx) +

δB̄a
ix

δĀb
ly1

Gbc,lky1y2

δB̄a
ix

δĀc
ky2

+ g2

4 tr(SiT̂
aGxx)tr(SiT̂

aGxx) +
g2

2 tr(SiT̂
aGxxSiT̂

aGxx)

+

(
δ

δĀ
a1
n1x1

〈Ba
ixB

a
ix〉
)
Ua1b1,n1l1
x1z1 (a†b1l1z1 + ab1l1z1 )

+

(
δ

δG
a1a2,n1n2
x1x2

〈Ba
ixB

a
ix〉
)
Ua1b1,n1l1
x1z1 Ua2b2,n2l2

x2z2 (a†b1l1z1 a†b2l2z2 + ab1l1z1 ab2l2z2 + 2a†b1l1z1 ab2l2z2 )

+ 1
3

(
δ

δĀ
a1
n1x1

δ
δG

a2a3,n2n3
x2x3

〈Ba
ixB

a
ix〉
)
Ua1b1,n1l1
x1z1 Ua2b2,n2l2

x2z2 Ua3b3,n3l3
x3z3

(a†b1l1z1 a†b2l2z2 a†b3l3z3 + 3a†b1l1z1 a†b2l2z2 ab3l3z3 + 3a†b1l1z1 ab2l2z2 ab3l3z3 + ab1l1z1 ab2l2z2 ab3l3z3 )

+ 1
6

(
δ

δG
a1a2,n1n2
x1x2

δ
δG

a3a4,n3n4
x3x4

〈Ba
ixB

a
ix〉
)
Ua1b1,n1l1
x1z1 Ua2b2,n2l2

x2z2 Ua3b3,n3l3
x3z3 Ua4b4,n4l4

x4z4

(a†b1l1z1 a†b2l2z2 a†b3l3z3 a†b4l4z4 + 4a†b1l1z1 a†b2l2z2 a†b3l3z3 ab4l4z4 + 6a†b1l1z1 a†b2l2z2 ab3l3z3 ab4l4z4

+4a†b1l1z1 ab2l2z2 ab3l3z3 ab4l4z4 + ab1l1z1 ab2l2z2 ab3l3z3 ab4l4z4 ).

(C.17)
For further usage, we give the explicit expressions:

1.

(
δ

δĀa1
nx1

〈Ba
ixB

a
ix〉
)

= 2
(
B̄a
ix − g

2
tr(SiT̂

aGxx)
)
(Sj)in(

ˆ̄Daa1
x,j δxx1)

−2g(Sj)in1(
ˆ̄Dab1
x,j δxy1)G

b1b2,n1n2
y1y2

(Si)n2n(T̂
a)b2a1δxy2δxx1

2.

(
δ

δGa1a2,n1n2
x1x2

〈Ba
ixB

a
ix〉
)

= −g
(
B̄a
ix − g

2
tr(SiT̂

aGxx)
)
(Si)n1n2(T̂

a)a1a2δxx1δxx2

3Only these symmetric prefactors can usually be written as derivatives of 〈Ba
ixB

a
ix〉.
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+g2(SiT̂
aGxxSiT̂

a)a1a2n1n2
δxx1δxx2 +

δB̄a
ix

δĀa1
n1x1

δB̄a
ix

δĀa2
n2x2

3.

(
δ

δĀa1
n1x1

δ

δGa2a3,n2n3
x2x3

〈Ba
ixB

a
ix〉
)

= g(Sj)in1(
ˆ̄Daa1
x,j δxx1)(Si)n2n3(T̂

a)a2a3δxx2δxx3 + g(Sj)in2(
ˆ̄Daa2
x,j δxx2)(Si)n3n1(T̂

a)a3a1δxx3δxx1

+g(Sj)in3(
ˆ̄Daa3
x,j δxx3)(Si)n1n2(T̂

a)a1a2δxx1δxx2

4.

(
δ

δGa1a2,n1n2
x1x2

δ

δGa3a4,n3n4
x3x4

〈Ba
ixB

a
ix〉
)

=
g2

2
δxx1δxx2δxx3δxx4

(
(SiT̂

a)a1a2n1n2
(SiT̂

a)a3a4n3n4
+ (SiT̂

a)a1a3n1n3
(SiT̂

a)a2a4n2n4
+ (SiT̂

a)a1a4n1n4
(SiT̂

a)a2a3n2n3

)
.

C.3 Decomposing Π2 into Creation/Annihilation Operators

The calculation is a lot simpler than the calculation of the magnetic field in appendixC.2, but
the result will be comparably less compact, since Π not only depends on ē and G, but also on
Σ:

Πb
ix = ēbix+2i

(
(
1

4
(G−1)bb1,ii1xx1

− iΣbb1,ii1xx1
)U b1c1,i1j1x1y1

a†c1j1y1
− (

1

4
(G−1)bb1,ii1xx1

+ iΣbb1,ii1xx1
)U b1c1,i1j1x1y1

ac1j1y1

)
.

(C.18)
As usual, all double indices will be summed over except for x. As in the case of the magnetic
field, one simply squares eq.(C.18) and normal orders the resulting expression. In order to write
the prefactors of most of the terms as total derivatives, one has to note that

δ

δGa1a2,j1j2y1y2

(Σab1,il1xx1
Gb1b2,l1l2x1x2

Σb2a,l2ix2x ) = Σaa2,ij2xy2
Σaa1,ij1xy1

(C.19)

δ

δGa1a2,j1j2y1y2

(G−1)aa,iixx = −(G−1)aa1,ij1xy1
(G−1)aa2,ij2xy2

. (C.20)

Then one obtains

Πb
ixΠ

b
ix = ēbixē

b
ix + 1

4 tr(G
−1
xx) + 4tr(ΣGΣ)xx

+ 2

(
δ

δē
a1
l1x1

〈Πb
ixΠ

b
ix〉
)(

i
4 (U

−1)a1b1,l1n1
x1z1 (a†b1n1

z1 − ab1n1
z1 )

+Σa1c1,l1k1x1y1 U c1b1,k1n1
y1z1 (a†b1n1

z1 + ab1n1
z1 )

)
+

(
δ

δG
a1a2,l1l2
x1x2

〈Πb
ixΠ

b
ix〉
)
Ua1b1,l1n1
x1z1 Ua2b2,l2n2

x2z2 (a†b1n1
z1 a†b2n2

z2 + ab1n1
z1 ab2n2

z2 + 2a†b1n1
z1 ab2n2

z2 )

+

(
δ

δΣ
a1a2,l1l2
x1x2

〈Πb
ixΠ

b
ix〉
)

i
4(U

−1)a1b1,l1n1
x1z1 (U−1)a2b2,l2n2

x2z2 (a†b1n1
z1 a†b2n2

z2 − ab1n1
z1 ab2n2

z2 )

+
(
(U−1)b1b,n1i

z1x (U−1)bb2,in2
xz2

+2i
(
(U−1)b1b,n1i

z1x Σba2,il2xx2 Ua2b2,l2n2
x2z2 − U b1a1,n1l1

z1x1 Σa1b,l1ix1x (U−1)bb2,in2
xz2

))
a†b1n1
z1 ab2n2

z2 ,

(C.21)
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where tr denotes a trace over spatial and colour indices, and tr(ΣGΣ)xx is an abbreviation

for (Σab1,ik1xx1 Gb1b2,k1k2x1x2 Σb2a,k2ix2x ) where over all double indices are summed or integrated over (as
appropriate) except for x. If one integrates over x the next to last line in eq. (C.21) simplifies to

(G−1)b1b2,n1n2
z1z2 . One should note that in contrast to B2, at the stationary point terms of the form

a†b1n1
z1 ab2n2

z2 survive. In the language of nuclear physics, one would call this the kinetic energy,
whereas the magnetic term provides (apart from the terms involving three creation/annihilation
operators) something like a two-particle potential.

C.4 Decomposing the Gauss Law Operator into Creation/Anni-
hilation Operators

C.4.1 Preliminaries, Definitions

In this section we want to express the Gauss law operator in terms of creation/annihilation
operators. We find that the decomposition has the same structure as the decomposition of
the Hamiltonian, i.e. we find the same operator structures (with up to 2 creation/annihilation
operators) as in the Hamiltonian, only the prefactors are given as functional derivatives of the
mean-field vacuum expectation value of the Gauss law operator, instead of the Hamiltonian.
From this we can conclude that - just as the ordinary Yang-Mills Hamiltonian - the cranking
Hamiltonian eq. (2.155) also can be written in the form eq. (3.43). Since in the case of the
cranking Hamiltonian we look for a stationary point of the cranking Hamiltonian as our mean-
field vacuum, the decomposition of the cranking Hamiltonian into creation/annihilation operators
will also be free from linear terms just as in the case of the ordinary Yang-Mills Hamiltonian.
Schematically

H = 〈H〉+ δ〈H〉
δĀ

(a† + a) +
δ〈H〉
δē

i(a† − a)

+
δ〈H〉
δG

(a†a† + aa+ 2a†a) +
δ〈H〉
δΣ

i(a†a† − aa)

+ terms containing more than two creation/annihilation operators

+ a non-derivative term ∝ a†a

D̂Π = 〈D̂Π〉+ δ〈D̂Π〉
δĀ

(a† + a) +
δ〈D̂Π〉
δē

i(a† − a)

+
δ〈D̂Π〉
δG

(a†a† + aa+ 2a†a) +
δ〈D̂Π〉
δΣ

i(a†a† − aa)

+ a non-derivative term ∝ a†a.

Thus, we obtain as a cranking Hamiltonian (µ is an arbitrary local function):

H − µD̂Π = 〈H − µD̂Π〉+ δ〈H − µD̂Π〉
δĀ

(a† + a) +
δ〈H − µD̂Π〉

δē
i(a† − a)

+
δ〈H − µD̂Π〉

δG
(a†a† + aa+ 2a†a) +

δ〈H − µD̂Π〉
δΣ

i(a†a† − aa)

+ terms containing more than two creation/annihilation operators

+ non-derivative terms ∝ a†a.
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Thus, we get no additional linear terms in the cranking Hamiltonian if we go to the stationary
point of the cranking Hamiltonian. In addition to the definitions and decompositions used before
in this appendix we only need

D̂ab
x,j = δab∇x

j − gfacbAc
jx. (C.22)

C.4.2 Calculating Γax

The calculation is again not very interesting: one inserts all the definitions into one another and
normal orders the resulting expression. Only one useful trick shall be given:

ˆ̄Dab
x,i(G

−1)ii1,bb1xy1
= ˆ̄Dab

x,i(δxyδijδ
bd)(G−1)ji1,db1yy1

= ˆ̄Dab
x,i(

δēbix
δēdjy

)(G−1)ji1,db1yy1

=
( δ

δēdjy
〈D̂ab

x,iΠ̂
b
ix〉
)
(G−1)ji1,db1yy1

. (C.23)

After normal ordering, we obtain the result

D̂ab
x,iΠ

b
ix = ˆ̄Dab

x,iē
b
ix + 2gtr(T̂ aΣxx1Gx1x)

+

(
δ

δĀ
a1
l1x1

〈D̂ab
x,iΠ

b
ix〉
)
Ua1b1,l1n1
x1z1 (a†b1n1

z1 + ab1n1
z1 )

+ 2

(
δ

δē
a1
l1x1

〈D̂ab
x,iΠ

b
ix〉
)(

i
4 (U

−1)a1b1,l1n1
x1z1 (a†b1n1

z1 − ab1n1
z1 )

+Σa1c1,l1k1x1y1 U c1b1,k1n1
y1z1 (a†b1n1

z1 + ab1n1
z1 )

)
+

(
δ

δG
a1a2,l1l2
x1x2

〈D̂ab
x,iΠ

b
ix〉
)
Ua1b1,l1n1
x1z1 Ua2b2,l2n2

x2z2 (a†b1n1
z1 a†b2n2

z2 + ab1n1
z1 ab2n2

z2 + 2a†b1n1
z1 ab2n2

z2 )

+

(
δ

δΣ
a1a2,l1l2
x1x2

〈D̂ab
x,iΠ

b
ix〉
)

i
4(U

−1)a1b1,l1n1
x1z1 (U−1)a2b2,l2n2

x2z2 (a†b1n1
z1 a†b2n2

z2 − ab1n1
z1 ab2n2

z2 )

− g i2f
aa1a2(Ua1b1,ln1

xz1 (U−1)a2b2,ln2
xz2 + (U−1)a1b1,ln1

xz1 Ua2b2,ln2
xz2 )a†b1n1

z1 ab2n2
z2 .

(C.24)

C.5 Gauge Transformations in the Generalized RPA

In this section, we want to consider how various objects that appear in the generalized RPA
transform under gauge transformations.

C.5.1 Preliminaries

In this section we want to study the behaviour of the parameters of the Gaussian reference state
and the related creation/annihilation operators under (time-independent) gauge transformations.
We take the same conventions for gauge transformations as given in the introduction:

Aµ
V→ AVµ := V AµV

† + iV ∂µV
† (C.25)

Fµν
V→ F Vµν := V FµνV

† (C.26)
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with

Aµ = Aaµλ
a tr(λaλb) =

1

2
δab (C.27)

∂µ = (
∂

∂t
,∇) Aµ = (A0,−A). (C.28)

In our three-dimensional formalism with the fields A,Π we thus have

A
V→ AV := VAV † − iV∇V †

Π
V→ ΠV := VΠV †.

(C.29)

In the following it is useful to have formulas for the gauge transformations of the components of
the gauge fields. They can be easily derived and if one introduces the abbreviations

Rab[V ] = 2tr(V †λaV λb) Ωai [V ] = 2tr(V∇iV
†λa), (C.30)

then the gauge transformation of A can be written as

AV b
ix = Rba[Vx]A

a
ix − iΩbi [Vx]. (C.31)

The R matrices form an adjoint representation of SU(N), and using the Fierz identity (λa form
a fundamental representation of SU(N))

(λa)ij(λ
a)kl =

1

2
δilδkj − 1

2N
δijδkl (C.32)

one can easily show that

Rac[UV ] = Rab[U ]Rbc[V ] (C.33)

and therefore

Rab[U ]Rbc[U †] = Rac[UU †] = δac. (C.34)

With the same technique one can rewrite

Rab[V †
x ]Ω

b
i [Vx] = −Ωai [V

†
x ]. (C.35)

C.5.2 Behaviour of the Parameters of the Gaussian Reference State under
Gauge Transformations

We start from

ψG,Σ,Ā,ē[A] = N exp

{
− (A− Ā

)a
ix

(
1

4
(G−1)ab,ijxy − iΣab,ijxy

)(
A− Ā

)b
jy

+ iēaix
(
A− Ā

)a
ix

}
,

(C.36)
where N is a normalization constant. Performing a gauge transformation

A → AV ; ψG,Σ,Ā,ē[A] → ψG,Σ,Ā,ē[A
V ] (C.37)
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explicitly

ψG,Σ,Ā,ē[A
V ]

= N exp

{
− (AV a

ix − Āa
ix

)(1

4
(G−1)ab,ijxy − iΣab,ijxy

)(
AV b
jy − Āb

jy

)
+ iēaix

(
AV a
ix − Āa

ix

)}

= N exp

{
−
(
Raa1 [Vx]A

a1
ix − iΩai [Vx]− Āa

ix

)(1

4
(G−1)ab,ijxy − iΣab,ijxy

)

×
(
Rbb1 [Vy]A

b1
jy − iΩbj[Vy]− Āb

iy

)}

× exp

{
iēaix

(
Raa1 [Vx]A

a1
ix − iΩai [Vx]− Āa

ix

)}

= N exp

{
−
[
Aa1
ix −Ra1a2 [V †

x ]
(
ĀV a2
ix + iΩa2i [Vx]

)]
Ra1a[V †

x ]

(
1

4
(G−1)ab,ijxy − iΣab,ijxy

)

×Rbb1 [Vy]
[
Ab1
jy −Rb1b2 [V †

y ]
(
Āb2
jy + iΩb2j [Vy]

)]}

× exp

{
iRa1a[V †

x ]ē
a
ix

(
Aa1
ix −Ra1a2 [V †

x ]
(
Āa2
ix + iΩa2i [Vx]

))}
= ψGV ,ΣV ,ĀV ,ēV [A] (C.38)

with

(GV )a1b1,ijxy = Ra1a[V †
x ]G

ab,ij
xy Rbb1 [Vy]

(ΣV )a1b1,ijxy = Ra1a[V †
x ]Σ

ab,ij
xy Rbb1 [Vy]

ēV a1ix = Ra1a[V †
x ]ē

a1
ix

ĀV a1
ix = Ra1a[V †

x ]Ā
a1
ix − iΩa1i [V †

x ],

(C.39)

i.e. one can write the gauge transformed Gaussian wave functional again as a Gaussian, albeit
with different parameters.

C.5.3 Behaviour of Creation/Annihilation Operators under Gauge Transfor-
mations

The same procedure as in the case of the wave functional will be pursued: here we start from the
definition of the operators a, a†, and gauge transform their operator content (i.e. A,Π). Then we
reorder the terms such that the original structure will again become apparent, however with dif-
ferent parameters. In this context we will need an extended notation for the creation/annihilation
operators, too, since we have to make their parameter dependence explicit:

aaix,G,Σ,Ā,ē = 2Uaa1,ii1xx1

{(
1

4
(G−1)a1b,i1jx1y − iΣa1b,i1jx1y

)
(Ab

jy − Āb
jy) +

i

2
(Πa1

i1x1
− ēa1i1x1

)

}
(C.40)

a†ai
x,G,Σ,Ā,ē

= 2Uaa1,ii1xx1

{(
1

4
(G−1)a1b,i1jx1y + iΣa1b,i1jx1y

)
(Ab

jy − Āb
jy)−

i

2
(Πa1

i1x1
− ēa1i1x1

)

}
. (C.41)
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Thus, in the first step

aaix,G,Σ,Ā,ē
V→ aV aix,G,Σ,Ā,ē (C.42)

= 2Uaa1,ii1xx1

{(
1

4
(G−1)a1b,i1jx1y − iΣa1b,i1jx1y

)(
Rbb1 [Vy]A

b1
jy − iΩbjy[Vy]− Āb

jy

)

+
i

2

(
Ra1b1 [Vx1 ]Π

b1
i1x1

− ēa1i1x1

)}
.

In the second step, we insert the transformed parameters4 as given by eq. (C.39), and obtain

aV aix,G,Σ,Ā,ē = Rab[Vx]a
bi
x,GV ,ΣV ,ĀV ,ēV , (C.43)

i.e. the gauge transformed creation/annihilation operators are of the same form as the original
ones with parameters transformed as in the Gaussian reference state and multiplied by the adjoint
representation transformation matrix.

C.5.4 Behaviour of the Hamiltonian under Gauge Transformations

In the context of this section, ’gauge transformation’ means the transformation of the parameters,
i.e. (G,Σ, Ā, ē) → (GV ,ΣV , ĀV , ēV ).
We will consider the two contributions to the Hamiltonian, i.e. Ba

iB
a
i and Πa

iΠ
a
i , separately.

Since most of the terms in the Hamiltonian can be written as derivatives of expectation values
in the Gaussian reference state (’Gaussian expectation value’), it makes sense to study these
expectation values first.

Transformation of Ba
iB

a
i

The Gaussian expectation value is given as

〈Ba
ixB

a
ix〉 = B̄a

ixB̄
a
ix − gB̄a

ixtr(SiT̂
aGxx) +

δB̄a
ix

δĀb
l,y1

Gbc,lky1y2

δB̄a
ix

δĀc
k,y2

(C.44)

+
g2

4
tr(SiT̂

aGxx)tr(SiT̂
aGxx) +

g2

2
tr(SiT̂

aGxxSiT̂
aGxx).

Consider each term in turn:

• B̄a
ix is the classical magnetic field and thus transforms homogeneously under the adjoint

representation

B̄V a
ix = Raa1 [V †

x ]B̄
a1
ix , (C.45)

which immediately leads to

B̄V a
ix B̄V a

ix = Raa1 [V †
x ]B̄

a1
ixR

ab1 [V †
x ]B̄

b1
ix = Ra1a[Vx]R

ab1 [V †
x ]︸ ︷︷ ︸

δa1b1

B̄a1
ixB̄

b1
ix = B̄a1

ixB̄
a1
ix . (C.46)

4It is trivial to show that U transforms in the same way as G and Σ.
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• For the next two terms it is useful to realize that5

Rb1b[Vx](T̂
a)bcRcc1 [V †

x ] = Rab[V †
x ](T̂

b)b1c1 (C.47)

which is not really surprising, since T̂ a are the generators of the adjoint representation (up
to an in this context unimportant factor of −i).

• Using this relation, one sees that

tr(SiT̂
aGxx)

V = Rab[V †
x ]tr(SiT̂

bGxx) (C.48)

; tr(SiT̂
aGxx)

V tr(SiT̂
aGxx)

V = tr(SiT̂
aGxx)tr(SiT̂

aGxx) (C.49)

tr(SiT̂
aGxxSiT̂

aGxx)
V = tr(SiT̂

aGxxSiT̂
aGxx). (C.50)

• Combining eq. (C.45) and eq. (C.48), one obtains

B̄V a
ix tr(SiT̂

aGxx)
V = B̄a

ixtr(SiT̂
aGxx). (C.51)

• For the last term in the Gaussian expectation value of Ba
iB

a
i one has to consider

(
δB̄a

ix

δĀb
ly

)V
= εijl

(
ˆ̄Dab
x,j

)
V δxy. (C.52)

Using eq. (C.47) and the fact that

Raa1 [V †
x ]δ

a1b1 [Rb1b[Vx],∇x
j ] = −i(T̂ c)abΩcj[V †

x ], (C.53)

one obtains

εijl

(
ˆ̄Dab
x,jδxy

)
V = εijlR

aa1 [V †
x ]
(
ˆ̄Da1b1
x,j R

b1b[Vx]δxy

)
. (C.54)

Thus(
δB̄a

ix

δĀb
ly1

Gbc,lky1y2

δB̄a
ix

δĀc
ky2

)V

= εij1l

(
ˆ̄Dab
x,j1δxy1

)
V
(
Gbc,lky1y2

)
V εij2k

(
ˆ̄Dac
x,j2δxy2

)
V

= εij1lR
aa1 [V †

x ]
(
ˆ̄Da1b1
x,j1

Rb1b[Vx]δxy1

)
Rba2 [V †

y1
]Ga2b2,lky1y2

Rb2c[Vy2 ]εij2kR
aa3 [V †

x ]
(
ˆ̄Da3b3
x,j2

Rb3c[Vx]δxy2

)
=

δB̄a
ix

δĀb
ly1

Gbc,lky1y2

(
δB̄a

ix

δĀc
ky2

)
. (C.55)

We see that the Gaussian expectation value of Ba
iB

a
i is unchanged under gauge transformations.

The next topic is ’derivatives’. We will discuss it for one example, since the rest follows trivially.
Consider (

δ

δAa1
n1x1

〈Ba
ixB

a
ix〉
)
Ua1b1,n1l1
x1z1 . (C.56)

5Once again, the Fierz identity is used.
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It is important6 that under a gauge transformation not only 〈Ba
ixB

a
ix〉 and Ua1b1,n1l1

x1z1 are trans-
formed but also δ

δA
a1
n1x1

becomes δ

δA
V a1
n1x1

. Thus

(
δ

δAa1
n1x1

〈Ba
ixB

a
ix〉
)
Ua1b1,n1l1
x1z1

V→
(

δ

δAV a1
n1x1

〈Ba
ixB

a
ix〉V

)
UV a1b1,n1l1
x1z1

=
δAa2

n2x2

δAV a1
n1x1

(
δ

δAa2
n2x2

〈Ba
ixB

a
ix〉
)
Ra1a3 [V †

x1
]Ua3b3,n1l1

x1z1 Rb3b1 [Vz1 ]

= Ra2a1 [Vx1 ]δn2n1δx2x1

(
δ

δAa2
n2x2

〈Ba
ixB

a
ix〉
)
Ra1a3 [V †

x1
]Ua3b3,n1l1

x1z1 Rb3b1 [Vz1 ]

=

(
δ

δAa1
n1x1

〈Ba
ixB

a
ix〉
)
Ua1b2,n1l1
x1z1 Rb2b1 [Vz1 ]. (C.57)

This is the general behaviour: every free colour index that is to be multiplied later on by a
creation/annihilation operator obtains a corresponding R[V ], or to put it another way: call the
prefactor (G,Σ, Ā, ē)b1b2...b2 , then

(G,Σ, Ā, ē)b1b2...bnRb1a1 [V ]Rb2a2 [V ] . . . Rb2a2 [V ] = (GV ,ΣV , ĀV , ēV )a1a2...an . (C.58)

Now we can look at an arbitrary part of the decomposition of the magnetic field7 :

(G,Σ, Ā, ē)b1...bnab1
G,Σ,Ā,ē

. . . abn
G,Σ,Ā,ē

V→ (G,Σ, Ā, ē)b1...bnaV b1
G,Σ,Ā,ē

. . . aV bn
G,Σ,Ā,ē

= (G,Σ, Ā, ē)b1...bnRb1a1 [V ]aa1
GV ,ΣV ,ĀV ,ēV

. . . Rbnan [V ]aan
GV ,ΣV ,ĀV ,ēV

=
(
(G,Σ, Ā, ē)b1...bnRb1a1 [V ] . . . Rbnan [V ]

)
aa1
GV ,ΣV ,ĀV ,ēV

. . . aan
GV ,ΣV ,ĀV ,ēV

= (GV ,ΣV , ĀV , ēV )a1...anaa1
GV ,ΣV ,ĀV ,ēV

. . . aan
GV ,ΣV ,ĀV ,ēV

.

In short

(G,Σ, Ā, ē)b1...bnab1
G,Σ,Ā,ē

. . . abn
G,Σ,Ā,ē

V→ (GV ,ΣV , ĀV , ēV )a1...anaa1
GV ,ΣV ,ĀV ,ēV

. . . aan
GV ,ΣV ,ĀV ,ēV

.

(C.59)

Transformation of Πa
iΠ

a
i

Compared to the magnetic field, the calculation for the electric field is quite trivial. We again
start from the Gaussian expectation value

〈Π̂b
ixΠ̂

b
ix〉 = ēbixē

b
ix +

1

4
tr(G−1

xx) + 4tr(ΣGΣ)xx (C.60)

and consider the three terms in turn:
6However, it seems quite obvious that it should be like this, since the derivative annihilates a term in the

expression of which the derivative is taken, which afterwards cannot be transformed any more, e.g. 1 = δA/δA =
(δA/δA)V = δAV /δAV 6= δAV /δA.

7In the following, ’gauge transformation’ recovers its original meaning: transformation of the operators A,Π.



158 C.5. Gauge Transformations in the Generalized RPA

• ēbixē
b
ix transforms identically to B̄a

i B̄
a
i , cf. eq. (C.46).

• tr(G−1
xx) is also trivial.

• Only the last term is remotely worth considering

tr(ΣVGV ΣV )xx

=
(
Rab[V †

x ]Σ
bb1,ii1
xx1

Rb1a1 [Vx1 ]
)(

Ra1c1 [V †
x1
]Gc1c2,i1i2x1x2

Rc2a2 [Vx2 ]
)(

Ra2b2 [V †
x2
]Σb2b3,i2ix2x Rb3a[Vx]

)
= tr(ΣGΣ)xx. (C.61)

Thus 〈Π̂b
ixΠ̂

b
ix〉 stays invariant under this parameter transformation, and the rest of the argu-

ment follows as in the case of the B2. We therefore conclude that the decomposition of the
Hamiltonian is form-invariant in the sense that after a gauge transformation of the operators
A,Π the decomposition of the Hamiltonian into creation/annihilation operators stays the same
albeit with changed parameters.

C.5.5 Behaviour of the Gauss Law Operator under Gauge Transformations

Again, we start from the Gaussian expectation value of the Gauss law operator, which contains
the following two parts

• ˆ̄Dab
x,iē

b
ix: we use eq. (C.39) and eq. (C.54) to obtain

ˆ̄DV ab
x,i ē

V b
ix =

(
Raa1 [V †

x ]
ˆ̄Da1b1
x,i R

b1b[Vx]
)(

Rbc1 [V †
x ]ē

c1
ix

)
= Raa1 [V †

x ]
ˆ̄Da1b
x,i ē

b,i
x . (C.62)

• tr(T̂ aΣxx1Gx1x): we use eq. (C.39) and eq. (C.47) to obtain

tr(T̂ aΣVxx1
GVx1x) = Rad[V †

x ]tr(T̂
dΣxx1Gx1x). (C.63)

Thus, the Gaussian expectation value of the Gauss law operator transforms under gauge trans-
formations in the adjoint representation as expected. The rest of the argument goes through as in
the previous section, so we see that the decomposition of the Gauss law operator is form-invariant,
but the whole operator transforms in the adjoint representation (as it should).



Appendix D

General Potential

In this appendix we will demonstrate that a potential that is an arbitrary polynomial in the field
operators, can - once one decomposes the field operator into creation and annihilation operators -
be written in normal ordered form s.t. all the coefficients appearing in front of the normal ordered
products of creation/annihilation operators can be written as functional derivatives w.r.t. to G
and φ̄ of the vacuum expectation value of the potential (the creation/annihilation operators are
defined with respect to that vacuum).
For simplicity we take the potential of the form

V [φ] = Mx1...xnφx1 · · ·φxn , (D.1)

where xi are super-indices. It is clear that, if the claims hold for this potential, they will hold
for an arbitrary polynomial since it will be a sum of terms of type (D.1).
Since the field operators commute, it is sufficient to consider an Mx1...xn that is symmetric in
all indices. We have seen in chapter 3 that one can write

φx = φ̄x + Uxy(b
†
y + by), (D.2)

where x, y are super-indices, U2 = G, and [bx, b
†
y] = δxy. For our purposes, it will be more useful

to define rescaled operators

a†x = Uxyb
†
y ; ax = Uxyby with [ax, a

†
y] = Gxy. (D.3)

Sometimes we find it also useful to write

φx = φ̄x + ϕx with ϕx = a†x + ax. (D.4)

After all this notational introduction, let’s come to the proof. We note that, similar to φ, both
φ̄ and ϕ commute; thus we can write equally1 instead of eq. (D.1):

V [φ] = Mx1...xn

n∑
m=0

(
n

m

)
φ̄x1 · · · φ̄xmϕxm+1 · · ·ϕxn . (D.5)

1It is understood, obviously, that the index of x increases from left to right; if it should ever decrease, as in the
case m = 0, the φ̄s are to be considered absent.
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Now we normal order the terms with a fixed m:

ϕxm+1 · · ·ϕxn
= (axm+1 + a†xm+1

) · · · (axn + a†xn)

= a†xm+1
a†xm+2

· · · a†xn
+ axm+1a

†
xm+2

a†xm+3
· · · a†xn + a†xm+1

axm+2a
†
xm+3

· · · a†xn + · · ·+ a†xm+1
a†xm+2

a†xm+3
· · · axn

+ axm+1axm+2a
†
xm+3

· · · a†xn + a†xm+1
axm+2axm+3 · · · a†xn + · · ·+ a†xm+1

a†xm+2
a†xm+3

· · · axn
...

+ axm+1axm+2 · · · axn . (D.6)

We see that every row contains a fixed number of creation/annihilation operators and that it
contains all possible permutations of types (creation or annihilation) among the possible indices.
Especially for every term

· · · a†xp · · · axq · · · (D.7)

there also exists a term
· · · axp · · · a†xq · · · (D.8)

with all undenoted operators identical. We now use Wick’s theorem, cf. e.g. [RS80], [Nol92],
to put every line into normal order. It is practical to deal with the whole line for the following
reason: if we use Wick’s theorem naively we obtain the normal ordered expression plus the
normal ordered expression of two less operators times their contraction etc. . However, a lot of
these contractions are zero, since (we denote the contraction of two operators by C)

C(a†iaj) = 0. (D.9)

However, if we deal with the complete line at once, we can use that, since for every arrangement
eq. (D.7) there also exists a partner eq. (D.8), we will always obtain contractions

C(a†iaj + aia
†
j) = Gij . (D.10)

It is clear that for k contractions present we need 2k partners to obtain a non-vanishing contri-
bution. The important point is that they exist if we deal with the whole line at once. Remember
that the contractions are multiplied by normal ordered terms, and that [a, a] = [a†, a†] = 0. Since
in addition Mx1...xn is symmetric in all its indices, all terms with a fixed number of contractions,
creation, and annihilation operators, will give an identical contribution. Thus the question ap-
pears: assume we start out from the line where every term contains p creation operators, q
annihilation operators and consider now terms with k contractions; how many terms will we
obtain ? The answer is simple,

number of terms =
1

2k
× (p+ q)!

p!q!
×
(

1

k!

p!

(p − k)!

q!

(q − k)!

)
, (D.11)

and comes about as follows:2

1. the line containing p c’s and q a’s contains (p+q)!
p!q! terms;

2In the following, we abbreviate ’creation operators’ as c’s and ’annihilation operators’ as a’s.
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2. out of the p c’s and q a’s we take k each, and put them together to form contractions:
there are obviously p!

(p−k)!
q!

(q−k)! ways to do this.

3. However, it does not matter in which order we perform the contractions since the contrac-
tions commute; thus in the step before we have overcounted by a factor of k!.

4. We now have to take into account what was said above: one the one hand, a lot of con-
tractions are zero. On the other hand we can form pairs - this gives as argued above an
additional factor of 2−k.

With this formula at hand, we can at first answer the following important question: assume
that we have started from an expression with n field operators; upon normal ordering we obtain
expressions with n, n − 2, . . . , n − 2k c/a operators each; the question now is: is the relative
number of P c’s and Q a’s with P +Q fixed always the same, no matter from which n one starts
and how many contractions one needs3 (provided n − (P + Q) is even) ? This question can be
answered in the affirmative in the following way: we start out with an expression that contains p
c’s and q a’s; after k contractions we will end up with P = p− k c’s and Q = q − k a’s. Since in
the beginning p+ q = n was fixed, and we end up with P +Q = n′ fixed we need for every term
the same number of contractions, namely 2k = n − n′. With this we can rewrite the eq. (D.11)
as

n!

2kk!

1

P !(n′ − P )!
=

n!

2kk!

1

P !Q!
. (D.12)

Thus, we have decomposed the number of terms into a factor that depends on n, n′ which is a
constant for P+Q = n′ fixed and P varying, and a factor that depends on the number of creation
and annihilation operators. If we go back to eq. (D.5) we see that we have different possibilities
to end up with P c’s and Q a’s (P +Q = n′): either start from n ϕs, and perform k contractions,
or start from two φ̄s, (n − 2)ϕs and perform k − 1 contractions etc. Thus the contribution to
Mx1...xnφx1 · · · φxn containing n′ c’s and a’s can be written as4

Mx1...xn

[
n′∑
P=0

1

P !(n′ − P )!
a†x1 · · · a†xP axP+1

· · · axn′

]
(D.13)

×
[ 1
2
(n−n′)]∑
k=0

(
n!

2kk!(n − n′ − 2k)!
Gxn′+1xn′+2

· · ·Gxn′+(2k−1)xn′+2k
φ̄xn′+2k+1

· · · φ̄xn
)
,

where the latter sum runs to 1
2(n− n′) if n− n′ is even, and to 1

2(n− n′ − 1) if it is odd - we will
deal with these details below. This expression allows us to write down the vacuum expectation
value (VEV) of V [φ] since it corresponds to the case n′ = 0. Distinguish

• n = 2N : the VEV reads

〈V [φ]〉 = Mx1...x2N

N∑
k=0

(
n!

2kk!(n− 2k)!
Gx1x2 · · ·Gx(2k−1)x2k φ̄x2k+1

· · · φ̄x2N
)

(D.14)

3As an example: no matter where one starts - if one can get to the expression with, in total, two c’s and a’s,
will they always come as aa+ a†a† + 2a†a ?

4Note that the factors of the contractions and of the binomial decomposition of eq. (D.5) can be put together

in a practical manner: (n′+2k)!

2kk!

 
n

n+ 1− (n′ + 2k + 1)

!
= n!

2kk!(n−n′−2k)!
. Note also that we have arranged here

ϕ, φ̄ opposite to eq. (D.5).
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• n = 2N + 1: the VEV reads

〈V [φ]〉 = Mx1...x2N+1

N∑
k=0

(
n!

2kk!(n − 2k)!
Gx1x2 · · ·Gx(2k−1)x2k φ̄x2k+1

· · · φ̄x2N
)
φ̄x2N+1

.

(D.15)

For the following treatment, we can treat both cases with the same formula if we realize that
Mx1...x2N+1

φ̄x2N+1
has the same properties as Mx1...x2N and that in the sum in eq. (D.15) always

at least one φ̄ survives. Thus we only have to treat the case with n = 2N . We now consider

δ

δGy1y2
〈V [φ]〉

=
δ

δGy1y2
Mx1...x2N

N∑
k=0

(
n!

2kk!(n− n′ − 2k)!

∣∣∣∣
n′=0

Gx1x2 · · ·Gx(2k−1)x2k φ̄x2k+1
· · · φ̄x2N

)

(∗)
= My1y2x3...x2N

N∑
k=1

(
n!

2kk!(n − n′ − 2k)!

∣∣∣∣
n′=0

k Gx3x4 · · ·Gx(2k−1)x2k φ̄x2k+1
· · · φ̄x2N

)

=
1

2N ′ My1y2xn′+1...x2N

×
N−N ′∑
k=0

(
n!

2kk!(n− n′ − 2k)!
Gxn′+1xn′+2

· · ·Gx(2k−1)x2k φ̄x2k+1
· · · φ̄x2N

∣∣∣∣
n′=2=2N ′

)
.

(D.16)

In (*) we have used the symmetry of M. Obviously, as has been indicated by the suggestive
notation, one is not restricted to one functional derivative but one can also perform N ′ of them,
and then the restriction N ′ = 1 in the last line is rendered unnecessary. We see clearly that, apart
from the factor 2−N ′

the outcome of N ′ derivatives of the vacuum expectation value w.r.t. G is
identical to the prefactor of the addend containing P +Q = n′ = 2N ′ c’s and a’s in eq. (D.13).
Thus we can rewrite eq. (D.13) as

2N
′
[

n′∑
P=0

1

P !(n′ − P )!
a†y1 · · · a†yP ayP+1

· · · ayn′

]
δ

δGy1y2
· · · δ

δGyn′−1yn′
〈V [φ]〉. (D.17)

The treatment we have presented up to here is valid for P +Q even. If P +Q is odd, we have to
perform derivatives w.r.t. φ and thus we have to treat the n even/odd cases individually. Let’s
start with n even:

δ

δφ̄y1
〈V [φ]〉

=
δ

δφ̄y1
Mx1...xn−1xn

N∑
k=0

(
n!

2kk!(n − n′ − 2k)!

∣∣∣∣
n′=0

Gx1x2 · · ·Gx(2k−1)x2k φ̄x2k+1
· · · φ̄xn−1 φ̄xn

)

(∗)
= Mx1...xn−1y1

N−1∑
k=0

(
n!

2kk!(n− n′ − 2k)!

∣∣∣∣
n′=0

Gx1x2 · · ·Gx(2k−1)x2k φ̄x2k+1
· · · φ̄xn−1(n− 2k)

)

= Mx1...xn−1y1

N−1∑
k=0

(
n!

2kk!(n− n′ − 2k)!

∣∣∣∣
n′=1

Gx1x2 · · ·Gx(2k−1)x2k φ̄x2k+1
· · · φ̄xn−1

)
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= My1x2...xn

N−1∑
k=0

(
n!

2kk!(n − n′ − 2k)!
Gxn′+1xn′+2

· · ·Gxn′+(2k−1)xn′+2k
φ̄xn′+2k+1

· · · φ̄xn
∣∣∣∣
n′=1

)
.

(D.18)

The main point happened in line (∗) where the fact that we started from even n played a role. If
n is even, k = N means that this addend doesn’t contain a single factor of φ̄, thus its derivative
vanishes. This is different in case of n odd, there the upper boundary is not affected by the first
differentiation. It is different if one performs two derivatives w.r.t. to φ̄ since then the upper
limit of the sum changes once altogether independent of whether one starts from n even or odd.
Thus one obtains a relation between derivatives w.r.t. to G and to φ̄

1

2

δ2

δφ̄xδφ̄y
〈V [φ]〉 = δ

δGxy
〈V [φ]〉, (D.19)

which will be very useful in proving the equivalence between the generalized RPA using the
operator approach and generalized RPA as derived from the time-dependent variational principle.
To put this appendix in a nutshell, we have proved that a potential that is an arbitrary polynomial
in the field operators can be decomposed into creation and annihilation operators, s.t. upon
normal ordering one obtains a sum of subsums where each subsum contains a fixed number of
c’s and a’s. The subsum consisting of the terms containing n′ c’s and a’s can be written as a
standard polynomial in c’s and a’s[

n′∑
P=0

1

P !(n′ − P )!
a†x1 · · · a†xP axP+1

· · · axn′

]
(D.20)

multiplied by

• if n′ is even, n′/2 derivatives w.r.t. to G times a factor 2n
′/2

• if n′ is odd, one derivative w.r.t. to φ̄ and (n′ − 1)/2 derivatives w.r.t. to G.

We have also shown that each derivative w.r.t. to G may be traded for two derivatives w.r.t. to
φ̄.
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