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Chapter

ntrod ction

In the fight against cancer radiotherapy is one of three eapons. It is applied together
ith surgery and chemotherapy or as a single modality. With a significant fraction of
cancer deaths associated ith the failure to control the primary tumour enhancing the
effectiveness of radiotherapy is a orthy goal. A recent study on prostate cancer produced
unambiguous evidence for the benefit of pushing the technical limits of conventional radio-
therapy ith photons to achieve a higher therapeutic dose. The concomitant development
of ever faster computers po erful imaging methods and sophisticated treatment units has
provided the means to overcome many long-standing limitations of radiotherapy.

The key stimulus for physicists to instigate rene ed activities in radiotherapy optimiza-
tion as the concept of modulated as opposed to homogeneous radiation intensity intensity
modulated radiotherapy IMRT 1 2. As the limitations of conventional therapy tech-
ni ues ith multiple homogeneous photon beams are removed ith this ne techni ue
established methods of treatment planning become unavailing. Novel biological and phys-
ical models for optimizing radiotherapy have to be conceived to keep up ith the pace of
the technical and clinical development  hich is in turn driven by novel soft are solutions.
As a conse uence of this mutual stimulation treatment planning is about to undergo a
metamorphosis to computer based treatment simulation embracing the fields of physics
biology and medical sciences.

The invention of IMRT follo ed an analogy to image reconstruction in x-ray tomog-
raphy. Starting from a the modulated uence
distribution as obtained by a formal inversion of the calculus of tomographic image re-
construction. Whilst the latter is a  ell defined problem in that the solution the density
distribution of the image object certainly exists the solution of the former the uence
distribution hich creates a certain dose distribution may very ell not exist.

Over the years the development moved ever further a ay from the inverse problem
approach to ards the concept of optimization. This evolution is expressed in efforts to
formulate rules for deviations from the dose prescription in case it is unattainable. Si-
multaneously IMRT as increasingly understood as a chance to escalate tumour doses
beyond conventional limits. The majority of methods re uires the prescription of a dose
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for the target tumour volume and a tolerance dose for a number of normal tissue vol-
umes c.f. 3 4 5 . Very soon it became clear that at least some biological considerations
had to be included into the definition of both dose prescription and rules for its violation
6 78 9 10 11. By today prescriptions for partial volumes dose-volume or dose-volume
histogram constraints are regarded as standard 12 13 14 15 16.

The common feature of all dose-based approaches is that the optimum solution is defined
by the therapists ith the specification of the prescription dose. Ho ever the clinical
guidelines hich govern conventional techni ues may not apply e ually ell to IMRT.
The common understanding of an optimum dose distribution is shaped by the available
means. The hugely greater exibility of IMRT re uires a ne definition of optimality
for radiotherapy. ndoubtedly IMRT has the potential to improve on the cure rate of
established dose prescriptions yet there is also the danger of un anted side effects. For
a safe advancement of treatment the modelling of normal tissue reactions to radiation in
the optimization process is crucial.

While dose-based optimization constitutes an attempt to bridge the gap bet een the
desired and the feasible dose distribution the concept of

as introduced here aims to incorporate the biological kno ledge and clinical evidence
of conventional radiotherapy to explore the potential of IMRT yet stay on safe ground.
Conse uentially normal tissues move into the focus of the optimization concept.

Earlier attempts at biological optimization placed less emphasis on clinical aspects and
met ith controversity c.f. 6 17 18 19 20 - the treatment objectives had been specified
in a less stringent form and by unspecific models. Nevertheless this development dra s
great inspiration from these earlier sources.

We understand evidence-based biological optimization as the inversion of the tradi-
tional planning scheme. Instead of con icting prescriptions for therapeutic dose and dose
tolerance the obtains as the result of

. While the risk of side effects can be expressed in the lan-
guage of traditional clinical experience the full potential of dose escalated treatments can
be explored ithout ad-hoc restrictions of the target prescription dose. This necessitates
the development of biological models hich impose the rules according to hich the dose
distribution is optimized. These rules are applied implicitly by therapists hen prescribing
the dose and dealing ith the feasibility gap of the dose prescription.

From the point of vie of biological optimization of radiotherapy intensity modulation
is a multiplication of the degrees of freedom of the problem rather than a ne class of
problem. With each degree of freedom comes a number of restrictions and problems of
various nature hich have to be taken into account to maintain maximum clinical utility

of the algorithm. The algorithm presented here constitutes an advance in three key issues:



vidence based biological optimization  For radiotherapy optimization bi-
ological models have to be employed hich pertain to t o classes of effects: the
response of tissues to the dose per treatment fraction and the response to inhomoge-
neous dose distributions. While tumour tissue response is fairly straightfor ard the
dose-response of normal tissues is very involved. The modelling discriminates the tis-
sue specific variability of the relation bet een irradiated volume and dose tolerance.

Monte Carlo dose computation The modelling of radiation transport through
complex geometries is a central problem of IMRT. Field geometries are much more
irregular and smaller than in standard radiotherapy. IMRT has the potential to
generate dose distributions ith accuracies of about one millimeter in very inhomo-
geneous regions of the body like the head and neck or the thorax. With smaller field
sizes the modelling of scatter from the collimators or compensator filters becomes
more important. These effects can be modelled precisely ith Monte Carlo meth-
ods. The simulation of radiation transport ith these methods imitates the physical
processes at the price of significantly longer computation times. Nevertheless Monte
Carlo dose computation as included into the algorithm ith clinically acceptable
computation times.

Clinical utility actors A radiotherapy optimization algorithm can facilitate
clinical routineint o ays: treatment planning can become more intuitive faster and
more standardized and the dose application can become more practical error tolerant
and verifyable. The method of treatment prescription as designed to accomodate
a data base for class solutions providing biological and clinical parameters. The
algorithm delivers technically feasible uence distributions. The complexity of the
treatment is reduced to the least possible extent.



Chapter

Mathematica Mode in

For a non-linear optimization problem of the size of radiotherapy optimization fortuitious
circumstances must come to aid the modelling. In the present development this is the
linearity of the Boltzmann radiation transport e uation hich links incident energy uence
to dose in the patient. The entire formalism relies on an adaption of the concept of Green s
functions to the problem in hand. These rays lie right at the foundation of the formalism
in the first section. The connection to the formalism of variational problems ill be made
there hich delineates the further development.

The second section deals ith the simplification of the biological dose response by virtue
of a mean-field approximation hich is expressed by the notion of objective measures. In
combination ith the ray formalism this yields the concept of ray derivatives. This latter
concept is used to derive a po erful theorem in section three. This theorem identifies the
global solution of the radiotherapy optimization problem ith an e uilibrium condition of
the Lagrange density introduced in section t o.

The central uantity of radiotherapy certainly is the at some point
in the patient volume. We often use the term if e
ant to highlight the character of dose as a three-dimensional non-negative scalar field

2.1
When e refer to e think of the space of all dose distributions hich
can be chosen as a subset of since the support of is finite yet dependent on the

actual patient.
The dose is a result of the energy ux due to particles like photons electrons positrons
hadrons or more exotic particles through the patient. The incident
is defined on tangent planes to the unit sphere centered at the iso-centre
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hich is considered to enclose the entire support of . It is a function of particle type

and energy the angles 02 and 0  and the position in the tangent plane
. With this definition is the offset of a parallel line to the radius central
ray impinging from solid angle . By using the term e high-

light the character of uence as a five-dimensional scalar field for each particle uality
0 2.2

In the follo ing e ill also often refer to hich are wuence distributions
on a certain tangent plane and often ith a certain energy spectrum and particle uality.
With e have in mind the space of all uence distributions hich can also
be chosen as a subset of

The link bet een wuence and dose space is mediated by the energy absorption per mass
and uence unit operator hich is the local energy dissipation of the Green s function
of the Boltzmann transport e uation for the given patient. We define

2.3

As a conse uence of the linearity of the Boltzmann e uation is a linear operator and one
can also assume that all dose distributions are continuous since they are a solution of the
Boltzmann e uation. The latter statement highlights the fundamental importance of the
feasibility gap for the inverse problem: the dose cannot assume different values on adjacent
points in the patient volume hich ould be necessary for undiscerning dose prescriptions
even if negative uences ere allo ed.

The most limiting factor of the radiotherapy optimization problem in this frame ork
becomes already apparent. Both uence and dose space lack an inverse element ith
respect to addition and hence cannot support groups. Even if one cannot establish a
vector space structure of both spaces it is orth hile to introduce the notion of a basis in

uence space. Since the time-invariant Boltzmann e uation is a linear homogeneous partial
differential e uation of first order it can be inferred from the theorem of Picard-Lindelof
that the corresponding operator is injective i.e. even if negative uences are permitted
a dose distribution hich is zero every here can only be generated by a zero uence. It is
ho ever not surjective so that the image of in is sparse. While could be inverted
in principle the origin of any given dose distribution ill almost certainly not lie
in .

The true value of the injectiveness of lies in the fact that any basis of is also a
basis of the image of in  and is not redundant. While one can thus freely go from

to the opposite direction is hampered by the incompleteness of uence space ith
respect to . It is for this reason that the central position of dose is abandoned and the
foundations of the development laid in uence space.
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The uestion of a suitable set of basis functions for uence space is related to physical and
practical issues. Commonly basis functions are designed for some special purpose like
spherical harmonics. Often basis functions are chosen to be orthogonal ith respect to
some metric. In this case there is no a priori metric in uence space but one could use a
metric in dose space via . Ho ever as ill be sho n this clinically relevant metric on
dose space does not exist.

To the best of common kno ledge t o dose distributions have to be considered biologi-
cally e uivalent if they have e ual dose-volume statistics for a homogeneous target volume.
If a metric ere to re ect this fact an infinite number of different dose distributions ould
have no distance from each other in contradiction ith the axiome of definiteness . Al-
though it ould be possible to restrict the dose space to a set of dose distributions ith
uni ue dose-volume statistics this is not feasible in practice and highly arbitrary. We
conclude that it is not necessary to take into account orthogonality in the construction of
a basis of uence space. The do nside lies in the fact that there is also no ay to obtain
the linear coe cients by orthogonal projections.

It is important to notice that this basis need not span the entire uence space  as
defined above. The space of all uences is subject to very stringent
limitations such as continuous and differentiable profiles ith finite penumbra. It issu -
cient to construct a basis hich is complete for the applicable uence space. Thereby it is
ensured that the resulting uence distribution is not grossly compromised by applicability

limitations.
Henceforth e consider as uence space the subset hich is in the range of
a given basis . The basis can be enlarged to access a greater subset of e.g.

for a refinement of field discretisation. The range of needs clarification.  sually in
vector spaces all linear combinations of basis vectors lie in the vector space. In this case
only those linear combinations are permitted hich yield an element of . Although in
practical computations one can choose the basis such that all linear coe cients have to
be non-negative for theoretical considerations negative coe cients may be allo ed. The
details of this basis are given in chapter 5.

The concept of a finite basis of elementary uence distributions is a cornerstone of the

. An element  of the basis ill be termed its dose
distribution at unit eight . is called the . The image
of : is the subset of all practically feasible dose distributions. Since
is an injection the 12 form a of the accessible dose space .
The linear coe cients  of are often referred to as . Again the

restriction applies that only those linear combinations are permitted hich do not lead to
negative uences. Notice that the ray doses are the e uivalent of Green s functions for
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this special function space. We can consider the rays as field modes or single particle
states of radiotherapy optimization their doses as their charge by virtue of hich they
are coupled to each other and to an external potential hich is introduced belo

The uence space as established as the parameter space from hich the solution of
the radiotherapy optimization problem ill originate. The treatment philosophy re uires
that certain normal tissue dose limits not be exceeded hile the probability of treatment
failure is minimised. In the language of optimization this means that the optimum solution
has to meet a set of hile an is minimised. The follo ing is
concerned ith the fundamental formulation of the problem numerical methods to solve
it are the subject of chapter 6.
Commonly an objective function

2.4

is defined to model a problem such that it attains its global minimum at the optimum
solution . For the setup here is a functional rather than a function. Fre uently it is
re uired that ist ice continuously differentiable ith respect to its argument - in this
case it is re uired that the first and second of ith respect to  in our sense

——  lim for all test rays 2.5

and

lim for all test rays 2.6

exists. In this case a necessary condition for optimality is that the first variation of
vanishes and the second variation is positive definite for all test functions . It is important
to notice that the variation as defined here ith respect to the ray basis rather than
uence space . With this notion e emphasize the fact that the objective function may be
defined for a much greater parameter space but the variation and subse uent optimality
conditions are restricted to the ray basis . If an arbitrary uence distribution meets
the optimality conditions ith respect to it is not possible to improve it further ithin
the parameter space . It need not be that . There may be an enlarged basis ith
respect to hich the uence distribution is not optimum. By using the basis property the
variation problem can be transformed into a vector function. If is restricted
to the objective functional becomes a function of the linear coe cients and the
variation the gradient ith respect to the vector .
This dichotomy bet een uence and its corresponding dose distribution and the u-
ence variations as effected by the ray basis is crucial for the further development. The
underlying dose distribution and its related uence variations are regarded as separate
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entities  hich is brought to bear on the optimization of beam angles Monte Carlo dose
computation or consideration of physical constraints.

The objective function as a measure of treatment success is clearly related to the dose
distribution. In the follo ing e use as a shorthand notation hen e are
not concerned ith the aspect of radiation transport. In the next section a general concept
for the formulation of is given and in chapter 3 the functional form is derived from
biological principles.

The optimization of the uence is subject to a number of some of hich
are also related to dose space hen they correspond to normal tissue reactions. These
constraints

2.7

are treated similarly to  i.e. it is re uired that the first and second variation exists and
the notation is used here appropriate. Other constraints act directly on
uence space to take into account the limitations of the treatment e uipment. Those ill
be dealt ith in chapter 4.
The optimization problem of radiotherapy then becomes

minimise
subject to 0 2.8

here  constraints are taken into account. The special nature of the problem allo s
some fundamental statements at this early point. Firstly the objective is to maximise
the dose to the tumour hich translates into the minimisation of the objective function
hence ill be the only strictly decreasing function of wuence. Secondly the normal
tissue constraints hich are associated ith the ill be strictly increasing functions of

uence. Therefore these constraints cannot be mutually exclusive. For any reasonable set
of constraints there ill be a feasible solution of the problem be it even zero uence. In
practice the solution may be unsatisfactory because the constraints ere too stringent. In
general not all constraints ill be active i.e. uence limiting at the optimum.

A non-linearly constrained optimization problem is commonly solved by transformation
into an unconstrained subproblem for hich a great number of algorithms is available. This
is achieved by the method of Lagrange- multipliers hich ill be brie y motivated in the

follo ing. Let be the objective function of the unconstrained problem hich has a
solution  that solves problem e . 2.8 . Hence 0 yet not necessarily —— 0.
This is prohibited by any active constraint ith i.e. even if could attain a

smaller value else here the solution is bound to the manifold defined by this constraint.
Any direction in  hich  could be changed any feasible variation must be orthogonal to
the normal vector of this manifold for any variation in the direction of the gradient ould
change the constraint. For all these feasible directions it is re uired that the optimality
condition hold i.e. the variation of  must be zero. In the remaining directions the
is a linear combination of

gradient of  need not vanish. Hence the gradient
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the gradient vectors ith linear coe cients 0 0 the Lagrange
multipliers. If a constraint is not active the corresponding multiplier is zero. The Lagrange

function reads

2.9

If the gradients of the constraints are linearly independent then there exists a uni ue
vector . The solution of the constrained problem is a pair . For more details
about Lagrange multiplier theory e refer to 21 22 . The Lagrange multipliers may not be
taken as penalty factors or eights because they are a mere mathematical construction.

Ho ever they convey relevant information about the rate of change of ith respect to
changes of consider
minimise
subject to 2.10
then
2.11
here is the optimum objective parameterised by i.e.
2.12

see 21 pp 277 . This correlation provides the ans er to an important uestion of treat-
ment planning: ho much effect in the target volume can be gained if the risk of side-effects
is increased.

In practice the unconstrained problem is solved for a se uence of vectors of Lagrange
multipliers hich converges to . The solution of the constrained problem is hampered
by the di culties associated ith the determination of the multipliers. Fortunately the
radiotherapy optimization problem is ell behaved in many aspects such as conditioning
convexity and above all degeneracy. Many dose distributions are e uivalent ith respect
to the objective and constraint functions so that a rather large set of solutions of e . 2.8
exists ithin numerical uncertainty. Because of degeneracy the solution of the problem is
rather tolerant to ards inexactf Lagrange multipliers.

The inescapable complexity of biological modelling re uires far-reaching approximations.
With an eye to physical dose-based optimization biology is forced into a scheme hich
only clinical experience may eventually prove ade uate.

By its physical nature dose is a density function and supports in mathematical terms
a measure on . A measure assigns a non-negative real number to any set of its support
in a consistent linear ay. In that sense a measure is an entirely local uantity in that
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the measure of a set is the sum of its constituent subsets. If the rather
than the dose is regarded as a measure one does of course make a far reaching assumption
about the non-linearities in spatial interactions of complication mechanisms. This does not
imply that long-range interactions cannot be dealt ith but there are certain di culties
associated ith for example diffusion of radiation damage : tissue damage rought on a
confined volume may spread to adjacent tissues and thereby violate the linearity in volume
of a measure. Ho ever the use of such a concept for radiotherapy optimization offers great
advantage: a local variety of optimality may be found hich reduces the complexity of
the problem. This concept is invoked later in this and in the next section.

In the follo ing a linearisation in volume of the hypothetic biological objective func-
tion is introduced by reducing it to an e uivalent local biological measure . The idea is
to substitute ith a measure hich is e uivalent ith respect to local variations of the
dose on a finite set containing . The approximation is similar to mean-field techni ues
in statistical mechanics here long-range interactions are combined to a background ef-
fect. This method orks mainly because therapeutic dose distributions vary only slo ly
on mesoscopic length scales here short-range effects could lead to a breakdo n of the

approximation.

We call a measure on  if assigns a non-negative number possibly to each subset
of  such that:

1.
0 2.13
2.
if 2.14
3. If is a countable or finite se uence of sets then
2.15

ith e uality if the  are disjoint sets.

A measure can be used to eigh a volume if e envisage it as some kind of mass
density. Like ise if is the local radiation effect density e may arrive at the total effect
by integrating it over the hole tissue volume. So in case is a finite function on a
closed set e find

2.16
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here is the effect or damage accumulated in the volume

It is this last property hich becomes important in this formulation of the radiotherapy
optimization problem. Since the optimality condition relies primarily on the first variation
of the objective or Lagrange function ith dose for the purposes of optimization it is
su cient to approximate ith a function ith e uivalent first variation. By virtue of
the density nature of dose a local variation of the dose distribution defines a variation
density  hich is a valid approximation for small variations of the dose distribution. By
integrating the variation density ith respect to the local dose an objective density can
be derived hich is e uivalent to the original objective function ith respect to local
variations. A global variation of the dose distribution can be decomposed into locally
confined variations in subvolumes and subse uently their effect summed up by this ay a
first order approximation in dose mediates the measure uality of the objective function.
This highlights the fact that biological modelling for optimization need not achieve as high
a standard as for predicting treatment outcome.

First the notion of local variation of the objective function is introduced. Let be
a decomposition of the support of  into disjoint sets called test volumes and let
be an objective function of the dose distribution. With e denote the characteristic
function of i.e. 1if and else 0. If
lim lim 2.17
holds for all e call  continuous and if
——  lim 2.18
vol
exists for all e call  locally differentiable . In the follo ing is assumed to be
continuous and differentiable. By letting e arrive at the —

if issu ciently ell behaved is continuous and differentiable . The modulus of this
uantity behaves like a measure.

The optimality of the dose distribution is identified ith a vanishing first variation of
the objective function. It can be seen that this variation density rather than the objective
function itself plays an important role in the solution of the problem. In principle if a
substitute objective function can be devised hose point ise derivative ith respect to dose
e uals the variation density the solutions of both optimization problems ill be identical.
Thus it is su cient to define the objective by means of its variation density - that can be
integrated point ise ith respect to local dose to yield an . In the
follo ing e interprete

_ 2.19
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as an objective density = here e take care that 0 and conse uently refer to
2.20

as objective function of the volume  and to

2.21

2.22

as objective variation of the volume . The integrand ofe . 2.21 is the
of

Since the objective density originates in a variation of the objective functional it need
not be a function of the local dose only. In fact it may have a complex dependency on the
dose distribution and therefore change during the iterative approach to the optimum. This
may potentially cause problems if the response exhibits great variations for small varia-
tions of the dose not unlike a critical behaviour. There are t o arguments in favour of this
approximation. Firstly the optimum solution ill al ays correspond to lo complication
probabilities so that the effect of non-linearities ill also be small. Secondly the dose dis-
tribution close to the optimum ill never be very inhomogeneous especially on mesoscopic
length scales of the size of cell migration or diffusion of cytokines. Therefore non-local
interactions act in front of a rather homogeneous backdrop and can be incorporated into
a mean-field approximation.

We ill see in the third chapter that several dose-response mechanisms can be very

ell described ith a local model. For yet other complication mechanisms it may su ce
to take into account the global coupling by means of a single bias term in analogy ith
mean-field approximations in many particle physics. An instance here the variation
density is not guaranteed to exist and thus also no objective density can be defined is
for complication mechanisms ith a strong dynamic component for example the time-
dependence of diffusion-like processes cannot be treated adiabatically see chapter 3.2 or
the damage propagates along complicated geometric structures like blood vessels. To the
present day no clear experimental evidence has been given that could support a model
ith these intricate features.

With the introduction of objective densities the radiotherapy optimization problem e .
2.8 no reads

minimise
subject to 12
and 1 2.23
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ith and 0 being the of constraint . The volumes
and target volume delineate the support of the corresponding objective density
respectively . Notice that not all need to be different in this case more than one
constraint is defined in a volume. In case a dose limiting constraint is defined
in the target volume. The additional constraints 1 correspond to
physical restrictions of the uence distribution.
For the corresponding Lagrange function e obtain

— 2.24

here the biological constraints are normalised to unity. The physical constraints are
dealt ith in a variety of ays hich ill be the subject of chapter 4. ntil then they
are stripped from the Lagrange function. The definition of the Lagrange density is
straightfor ard

— 2.25

In this formulation a number of issues concerning the uni ueness of the solution and
the existence of local minima can easily be addressed. One fundamental theorem of opti-
mization theory states that a convex function assumes a uni ue minimum on a convex set.

For definitions of convexity of functions and sets see 21 23 . Since convexity is preserved
in addition hence integrals the Lagrange function is convex if all functions and  are
convex. For a t ice differentiable function of one variable convexity is tantamount to a
positive definite second derivative  hich can be easily checked. The objective density is
al ays convex. The parameter space is also convex. As a conse uence together ith
the injectiveness of  the radiotherapy optimization problem has a single global minium
ifall  are convex hich is often the case as is sho n in chapter 3. Ho ever this does not
mean that there exists a uni ue solution in practice. The reason is that the integrals are
rather insensitive to minute changes of the objective density in particular hen a slight
increase in one region is compensated for by a slight decrease in another. The approx-
imate solution as obtained from an algorithm ill therefore be sensitive to pertubations
depending on the degree of of the Lagrange function.

The variation of the Lagrange function ith respect to a ray can be captured by a po erful
intuitive picture if the measure properties are included. Starting ithe . 2.24 e find for
the variation of ith respect to the eight  of ray

2.26
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Again it is important to notice that the ray need not contribute to the dose distribution
. We find that the variation of is affected only by those volumes hich lie in the path
of the ray this is a conse uence of the linearisation induced by the introduction of a
Lagrange density. Although this may seem obvious from the point of vie of dose based
optimization for a biological objective function this originates only from the approximation
leading to the measure uality of the objective.
E . 2.26 can be seen as a dose eighted mean effect along the path of the ray. The
ray picks up negative and positive contributions to the variation density and sums them
eighted ith the dose at these points only if this balance is even the variation vanishes.
The intuitive picture that beam directions hich align to the greatest extension of a target
volume are favourable or that the beam should enter from the direction here the target

volume is closest to the surface is formalised in this concept of a . The

potential of a ray to improve on a given dose distribution is a combination of the

effect that has already been accumulated along its path and the dose deposited by this ray.

In case the dose distribution is comprised of the basis rays e introduce the shorthand
notation

_— 2.27

2.28

This e uation governs the practical computation of the optimum dose distribution. Ho -
ever e . 2.26 also is of practical importance because the dose distribution need not be a
linear combination of the rays. This earlier e uation can be used to determine refinements
of the ray basis like a finer decomposition of the beams or in the form of additional beams.
The latter leads to the uestion of beam angle optimization and seen together ith clinical
issues the necessary number of beams.

The original setting of uence space does not kno finitely many beam directions. Ho ever
both in computations and most treatment applications the number of beams is limited
to a number bet een 3 and 100. If this ere taken into account for the optimization
it ould become a discrete combinatorical optimization problem ith a continuous sub-
problem. This ould increase the complexity tremendously not in the least because an
abundance of local minima ould emerge . Also the optimization of beam angles and

uence profiles cannot be separated as e ill see later. As a conse uence to evaluate
each beam arrangement a full optimization of the uence profiles has to be run.
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These di culties may make it appear poorly justified to expend so much effort on hat
may be such a small gain. Indeed the high degeneracy of the radiotherapy optimization
problem causes the attainable minimum objective to saturate for as fe as 5 to as many
as 15 beams in virtually all cases. The true problem lies in the fact that the saturation
threshold is patient dependent and close to the threshold beam angle optimization does
yield a considerable gain in di cult cases located in the head or thorax. Especially in the
head non-coplanar beams can be indispensable ith the result that a techni ue relying
on coplanar beam angles 1ill aste chances for tumour cure. In many cases the search
for solutions ith fe beams is predominantly driven by the clinical re uirement for short
treatment times and may lose importance ith improvements in technology.

A common misnomer lies in the notion that finding a suitable set of beam angles is an
optimization problem . In the frame ork of our ray formalism beam angle optimization is
tantamount to picking the best set of basis rays hich are bundled to beams from certain
angles. It is similar to an problem: a truly optimum dose distribution of
rays using the hole uence space is to be approximated by fe beams such that the loss
expressed in the changee of the objective function is acceptable. Degeneracy is exploited
here: it is not necessary to approximate the wuence distribution hich ould be uite
di cult but the dose distribution hich supports the only relevant measure of proximity
of dose distributions the objective function. Normal tissue constraints enter the balance
indirectly by causing a certain increase of the objective function by shielding since they are
never violated by an optimum dose distribution. Once the basis is chosen the radiotherapy
optimization problem can be solved - e bear in mind that optimum in this context means
optimum ith respect to this particular basis.

Obviously the global optimum dose distribution cannot be generated. Also due to
degeneracy it is not indicated to accumulate too much information about it. The follo ing
propositions give a number of criteria hich characterise the global optimum ithout
computing it and aid in the search for a suitable basis.

The first proposition gives a necessary criterion for optimality of a dose distribution ithout
the need to kno the ray doses so that this criterion can also be applied to dose
distributions for hich the uence distribution is not kno n.

If the dose distribution  is a solution of e . 2.23  ith the Lagrange
multipliers  then

0 2.29

hich must vanish for 1.

Proof: Consider
Of course it ill not be possible to obtain ithout the kno ledge of the basis
hich created . The true value of this proposition lies in the fact that it can be used
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to verify hether t o dose distributions obtained from different ray basis sets and the
global solution are degenerate. If is convex then for t o dose distributions ith
e uivalent Lagrange multipliers

1 1 2.30

If e uivalence holds and the condition of proposition I is met it can be supposed all convex
combinations are degenerate to the global optimum and are solutions of e . 2.23 . If they
are either of the sets yields a suitable beam angle optimized basis. Other ise other
basis sets need to be created. In that sense proposition I is a termination criterion for

an iterative basis refinement.

The last proposition gave a necessary condition that a dose distribution is optimum ith
respect to its basis. To verify that a given dose distribution is e uivalent to the global
optimum there is no other ay than to use rays from all possible angles as test functions.
This is impractical for finely grained rays. Ho ever it is possible to exploit a uality of the
optimum dose distribution for a heuristic method hich speeds up the selection of suitable
beam angles.

Turning back to the Lagrange function e recall that all normal tissue constraints
are an increasing function of dose hereas the objective function is the only decreasing
function of dose. So in the ray derivatives all positive contributions to the integral stem
from constraints  hereas all negative contributions stem from the target volume. Since
at the optimum every ray derivative is a balanced sum of normal tissue and target volume
terms the modulus of each contribution is e ual. The fortuitious detail is that many
rays overlap in any given point in the target volume so that the volume centered at this
point contributes to the negative terms of many ray derivatives and thus also to the
positive terms. In a highly symmetric setting the normal tissue dose load as expressed by
the positive contributions to all ray derivatives is e uivalent for every ray. The optimum
solution can thus be seen as an e uilibrium state of all rays: the variations of the objective
function and the constraints have relaxed to the common ground state in that sense
every ray hich contributes to the dose distribution has e ual importance .

We formalise this finding in the follo ing proposition. With e denote the positive
belonging to normal tissue  ith e denote the modulus of the negative belonging
to the target volume part of the ray derivative. Let be a basis of conical rays hich
originate from every point of the unit sphere centered at ith ray diameter in
the plane containing perpendicular to the ray.
Let be the solution of e . 2.23  ith respect to
Let be the ray impinging on from solid angle . Let be the set of all

rays ith non-zero wuence i.e. for every point ith 0 it holds that
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0. Then for all rays

min —_— — max — 2.31

here is the ball ith radius centered at
Proof: For every ray e have

N N 2.32

since for these rays the optimality condition holds. The second ine uality follo s. Also
ith
- S — 2.33

follo s the first ine uality since supp

This proposition gives upper and lo er boundaries for the ray derivative of the normal
tissue constraints. It is the formal expression of the intuitive vie that the damage to
the normal tissue has to be spread evenly to obtain the best treatment plan. This vie
is implicit in many treatment techni ues most clearly in rotational irradiation . From a
different perspective the proposition can be interpreted as Only if the tolerance of all
normal tissues is exploited to the same extent the effect to the target can be optimum .
At the global optimum the uence distribution is relaxed in the sense that all rays fulfill
the e uilibrium conditions of proposition II i.e. not only are all ray derivatives zero if the
rays contribute to the solution but also are all positive contributions to the ray derivatives

ithin a given interval hose idth depends on the patient geometry.

The definitive measure for the impact of a given ray on the normal tissue is the ray
derivative ——— hich can of course be computed for any dose distribution and ith
respect to any ray. If

2.34

this ray does not contribute to the dose distribution . If a relatively coarse ray is used
as a test function this may be taken as indicative of a bad or good angle of incidence.
Ho ever this should be taken ith care: if the ray is decomposed into a number of smaller
rays the condition e . 2.34 may only apply to afe so that on total the given beam angle
may ell be included into the ray basis. An example: hile an unmodulated field may
exceed the tolerance of some high risk structure and should not be chosen a modulated
field may spare this structure completely. As a conse uence the best beam angles of a ray
basis depend on the size of its constituent rays.

In general practice proposition IT ill be applied to approximations of the optimum
dose distribution and Lagrange multipliers. The import of proposition II ere limited if the
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Lagrange multipliers had to be kno n exactly. Ho ever it ill generally be su cient for
the selection of beam angles to ork ith an approximation of the multipliers. nless the
patient geometry is irregular to a degree that a satisfying therapy ill barely be possible
the boundaries of proposition II ill be fairly tight. If ho ever the first ine uality is
violated the dose distribution is not a good approximation to the optimum. The main
purpose is to motivate a heuristic method for the selection of beam angles.

In the follo ing e give a recipe ho a suitable fe -beams basis can be constructed hen
a good approximation to the optimum solution is kno n. This solution may be
obtained from a basis ith significantly more beams than clinically practical it is only im-
portant that this solution is close to the e uilibrium in the sense of the above proposition
IT.

As already pointed out constructing such an optimized basis is an approximation
problem: ho can the relaxation property be met approximately ith the smallest number
of fields. With e denote the set of all rays hich belong to a field hich
impinges from a solid angle . With e denote the beam composed of these rays

hich can itself be understood as a ray. It is essential to measure the relative importance
of a beam to the dose distribution maybe by

2.35
here 0 1 is some eighting parameter. The problem ith this approach is that
there may emerge solutions ith negative total uence. A better ay ould be

arg max 2.36

arg max 1 2.37

arg min 1 2.38

. 1
arg min 1 2.39
1
arg max 2.40

here e expand the Lagrange function to first order in the test uence and use the fact that
the ray derivative ill be dominated by the negative target volume term. Of course this
chain of arguments is impossible to prove and constitutes an abuse of notation for the sake
of clarity. The result implies the intuitive picture that the beam hich causes the greatest
variation of the objective function some bias dose distribution should be included
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into the basis. It is important to see the role of the bias dose distribution: it generates
the proper background of normal tissue dose load hich determines the proximity to the
optimum by virtue of the relaxation property. The parameter mediates a redistribution
of normal tissue dose from many rays to fe beams according to the effect in the target
volume of these beams.

In practice the problem is to choose suitable test rays hich in this picture ould
have to be intensity modulated beams. This can be accomplished by constructing the
beam as a set of its constituent rays  and determining the optimum uence distribution

in a run of the uence optimization ith the basis of this beam.

In the follo ing an iterative scheme for the selection of the optimum set of beam angles
is devised.

1. Find ith respect to some basis . Set and 0 1. Number of
beams 0.

2. 1.

3. Find the best beam angle by

arg min min 1 241

5. Find

arg max min 1 1 2.42

6. If 1 exit. Else goto 2.

The maximum deviation of the fe -field solution from the optimum is denoted by

The advantage of this algorithm over search schemes including simulated annealing is
that the computation time goes ith if  is the number of beams as compared to
for some . Nevertheless computation times 1ill be too long for routine clinical use. The
gain of beam angle optimization may often not justify the effort especially if class solution
based arrangements of beams are available. The benefit of beam angle optimization may
eventually lie in generating these class solutions.
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