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Abstract

In this paper we generalize a chaos control method developed by Ott, Grebogi,
and Yorke (1990) to control saddle points in R? which are embedded in a strange
attractor of a chaotic system. Our generalized method admits to control any
unstable equilibrium in R™. We apply our findings to control the dynamics of
the chaotic asset pricing model of Brock and Hommes (1998). In this model
chaotic price movements are caused by heterogeneous market participants. We
introduce a control authority which trades the risky asset like the other market
participants. Using our control approach, it is possible for the authority to

stabilize the market price with minimum effort.

1 Introduction

During the last 20 years chaos theory became an increasing field of interest in eco-

nomics and finance, a field which originally arose from physics and mathematics *.

*University of Tiibingen, School of Economics and Business Administration, Mohlstr. 36, D-72074
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Fundamental work was done by Day (1983), Benhabib and Day (1982), Grandmont
(1985), and Scheinkman and LeBaron (1989).

Chaotic systems with its erratic fluctuations give us a broader perspective and
an improved understanding of observed economic and financial time series. Instead of
assuming linear relations and using linear stochastic variables to describe erratic behav-
ior, chaos theory allows to model fluctuations endogenously. In a chaotic environment
the existing attractor is a non periodic orbit. A trajectory stays in this attracting
set without reaching any point twice. This attracting set is called a strange attractor.
Trajectories on this strange attractor exhibit sensitive dependence on initial conditions.
This is known as the ”butterfly effect”: A small intervention in the model has a high
impact on the trajectory. After a short time the trajectory displays a completely dif-
ferent path than without this intervention. However, the global behavior of chaotic
models is similar to stochastic models: Fluctuations are erratic and unpredictable in
the long run.

A recent asset pricing model based on chaotic price fluctuations is given by Brock
and Hommes (1998). In their model heterogeneous groups of investors with different
expectations for the future market price generate demand and supply for the risky
asset.? The resulting price is an equilibrium price which clears the market. Depending
on the success of previous predictions market participants then adapt their future price
beliefs. These adaptions of investors’ beliefs give the model the necessary nonlinear
structure to allow chaotic dynamics. Extensions of this model have been suggested by
Chiarella and He (1999) and Gaunersdorfer (2000), recently.

A common interest of market participants is the reduction of price volatility. How-
ever, if market fluctuations are stochastic, there is no possibility to reduce volatility
without interfering in the market process. On the other hand, if fluctuations are chaotic
there exists a first control approach developed in the physics by Ott, Grebogi, and
Yorke (1990) (OGY). They stabilize saddle points embedded in the strange attractor

2Heterogeneous modelling of asset markets are in line with the recent literature. See e.g. Brock

and Hommes (1997a), Day and Huang (1990), De Fontnouvelle (1996), and LeBaron (1999).



of a chaotic 2-dimensional system only with small perturbations.> Small interventions
are sufficient due to the sensitivity of a chaotic system. A successful application of
this method was shown in a clinical experiment by Garfinkel, Spano, Ditto, and Weiss
(1992) who controlled a chaotic heart beat with small electric pulses. In social sciences
this method was first introduced by Holyst, Hagel, Haag, and Weidlich (1996) in a
model of two competing firms with asymmetrical investment strategies.! However, this
method is restricted to control saddle points in R?.

The plan of this paper is as follows: In Section 2 we show how the OGY approach can
be extended to control any unstable equilibrium and generalize it for chaotic systems
in R™. In Section 3 we apply our control approach to the chaotic asset pricing model
of Brock and Hommes (1998). We assume the existence of a control authority which
wants to reduce market volatility by stabilizing the asset price on its fundamental
value. It acts like an ordinary market participant generating demand or supply for
the risky asset. However, for these interventions the control authority has only limited
resources available. Albeit, in a chaotic environment it is able to stabilize any unstable

equilibrium with our approach. Section 4 concludes.

2 Control method

We use the sensitivity property to control chaotic systems with minimal perturbations.
Only small interventions are necessary to cause huge variations along the system trajec-

tory. In any strange attractor there are equilibria of different periods embedded. These

3 A saddle point possesses a stable and an unstable manifold. Roughly speaking a stable manifold
of a fixed point is a surface contained in the phase space of a dynamical system which has the property
that trajectories starting on this surface will converge to the fixed point. Trajectories on the unstable

manifold diverge from the fixed point, respectively. See Wiggins (1988), pp. 26.
4A different approach to control unstable equilibriums was suggested by Romeiras and Dayawansa

(1992), and Shinbrot, Grebogi, Ott, and Yorke (1993). They use the pole placement method, an
approach which is well known from applications in engineering sciences: See e.g. Ogata (1990), pp.

776. This method was used by Kaas (1998) to control a chaotic macroeconomic model.



equilibria are never reached by an uncontrolled trajectory because they are unstable
and have a repelling neighborhood. However, by waiting till the trajectory comes close
to the saddle point and then pushing it with a small intervention onto the stable man-
ifold, the chaotic system can be stabilized and the trajectory converges to the saddle
point. The intervention tends to zero the closer the trajectory gets to the saddle point.
This procedure guarantees only small interventions in the model which do not destroy
the overall chaotic behavior. We now show how this control idea can be extended to
control any unstable equilibrium in R™.

Because interventions take place only if the trajectory is close to the unstable fixed

point, it is sufficient to consider its linearized neighborhood. Assume, the chaotic map

fi (£E1,t7 ) xn,t)
Xt+1 = f(Xt) = : (1>

fn(xl,h LS xn,t)
with x; = (214, ..., 2,) € R" possesses an unstable fixed point x* = f(x*) embedded
in the strange attractor of (1). To linearize the neighborhood of the fixed point we use

the Jacobian

ofh ... Oh
o0xq 0xy,
J_ ) )
Ofn ... OIn
8951 an x*
to get
X1 = X'+ J(x" —x¢)
Ax; 1 = JAx, with Ax; = (x* — xy). (2)

Using the eigenvectors e; of the Jacobian as a new basis % we can write Ax, = a;e; +

®We restrict our discussion on controlling fixed points, but the procedure to control equilibria of
higher order x* = f¥(x*), k = 2,3, ... is similar. Instead of f(x) we consider the map g(x) = f*(x)

and treat the equilibria as fixed points x* = g (x*).
0For the moment we assume the Jacobian possesses n independent real eigenvectors. In appendix

A.1, p. 20 we consider also the case when the fixed point possesses complex eigenvectors.
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.. + aye, and get

AXt—l—l = J (a1e1 + ...+ anen)
= aAe; + ... +a\ep,. (3)

The control target is to direct the trajectory on the stable manifold of the fixed point.
The stable manifold is a subspace of the state space W* C R™ on which all trajectories
converge to the fixed point for ¢ — oo. In contrast, on the unstable manifold the
trajectories converge in negative time ¢ — —oo to the fixed point. In the linearized
neighborhood of the fixed point the eigenvectors of the Jacobian J span the subspaces
of these manifolds. The eigenvectors with eigenvalues |);| < 1 span the stable manifold
We* = span {e1, ..., en} and the eigenvectors with eigenvalues |\;| > 1 span the unstable
manifold W* = span {en1,...,e,}. The trajectory on the stable manifold has to be
orthogonal to the unstable manifold. If in a n-dimensional state space the unstable
manifold is (n — m)-dimensional (n > m) we need n — m control variables p; to direct
the trajectory during one period on the stable manifold. We assume the perturbations
op = (bp1y - 6pn,m,t)l in each period are restricted to [6p;| < 6p;max. This leads

to the following control rule:

W IF 1\FAx, if (W LF IAFAX;| < 6Pumax

0 otherwise.
See appendix A.1 or the derivation of equation (4). W contains the derivatives of f

with respect to the control variables p; at the fixed point x*

oh ... _Oh
8pl apnfm
W = : :
Ofn .. _Ofn_
apl 6pn7m x*

F is a matrix consisting of the vectors f;. These are the contravariant basis vectors to
the eigenvectors e;.” The control is started as soon as the trajectory is close to the

fixed point and the computed perturbations do not exceed the maximum value dpmax.

"The contravariant basis f; to the basis e; , i = 1,...,n is defined by the following properties:

fle; =0 for i # j and fje; =1 for i = j.



In case the fixed point has no stable manifold, however, there is no subspace on
which a trajectory converges to the equilibrium. The condition to direct the trajectory
into the fixed point then simply is Ax;,; = 0 which leads to the following control rule:®

—~W1JAx, if |- W LJAX;| < 6pmax
op; = (5)
0 otherwise.
In equation (5) the vector with the perturbations of the control variables dp; is n-
dimensional. n control variables are necessary to control the trajectory during one
period straight into the fixed point.

With equations (4) and (5) at hand we are now able to control unstable equilibria

in chaotic systems of arbitrary dimension. In the following section we use our findings

to control the chaotic asset pricing model of Brock and Hommes (1998).

3 The Control of the Asset Pricing Model of Brock
and Hommes (1998)

Brock and Hommes (1998) propose an asset pricing model with adaptive beliefs of het-
erogeneous investors. Chaotic behavior is inherent in their model for specific parameter
values. In this section we demonstrate how the chaotic asset price fluctuations can be

stabilized using our control method.

3.1 Asset Pricing Model

We review the model, first. Investors are assumed to invest in a risky and a risk free

asset, only. They have the following wealth function

fV\VJtH = RW; +\(ﬁ:+1 + Y1 — Rpt)lzt, (6)

excess return per share

8See appendix A.2.



where a tilde denotes a random variable. 1/R is the riskless discount factor. p; denotes
the price of the shares ex dividend at time ¢ and {y;} is the stochastic dividend process.
z; 18 the number of shares kept in stock at time ¢.

Brock and Hommes (1998) distinguish investor groups with different future beliefs.
Each group computes the optimal number of assets in stock with a mean variance

utility function

—_ a/ —_
arg max {Eh,t (Wt+1) — §Vh7t (m+1)} .

z

Epi( ) and Vj,( ) are the beliefs of the conditional expectation and variance of in-
vestor type h. The parameter a determines the riskaversion which is assumed to be
equal for all investors. Also the conditional variance of the excess return per share
Vit (Pes1 + Yey1 — Rpy) = o? is assumed to be constant. Hence, we get for the variance

of the investor’s portfolio V} (Wtﬂ) = zj, ,0°. Each type h investor has to maximize

- ~ a
arg max {RWt + (Eh,t (Pe+1 + Yer1) — Rpy) Zht — 52;%,,5(72} (7)

with the result

(Eht (Peg1 + Yes1) — Rpy)
ao?

. 8)

Zht =

The optimal number of shares depends only on the price and the dividend process.
The wealth W; in equation (7) has no influence on the maximization.
Each investor group h = 1, ..., j has a market share of ny, ; at time ¢. The equilibrium

of demand and supply implies

J

Bt (Dey1 + Yes1) — Rpy ()

Nopt D) = Zst-
- ao

h=

2+ denotes the supply of shares per investor in ¢. For their further analysis Brock and
Hommes (1998) assume zero supply of outside shares z,, = 0.
To get a first impact of the solution of the stochastic difference equation(9) consider

the case of homogeneous investors

E; (pty1 + Y1) = Rpy (10)



with the information set F; = {p¢, Dt 1, .-, Yt, Yt 1, --- }, first. Furthermore, let us assume

a growing stochastic dividend process *

Yri1 = QY + 441 with o > 1,8,11 is IID, and E(e) = 0. (11)

Using the forward solution technique to solve equation (10) we get the fundamental

solution
Q@
r= 12
Pe =Y, (12)
which satisfies the "no bubble” condition lim F; (p;.) /R™ =0 for R > a.
Denote the price deviation from the fundamental solution as
Ty =p— Py (13)

and assume the heterogeneous beliefs are of the following form

Ept (Pes1 + Y1) = By (p:-t,-l + §t+1) + fo (Te1, @ 1)

where E, (pf 1+ §t+1) is the conditional expectation on the fundamental solution on
the information set F;, and f}, is a deterministic function of each investor type h investor
for the estimated deviation from the fundamental solution in period ¢ + 1. Investors
predict the next deviation using past deviations up to a time lag L. We therefore can

rewrite equation (9)

J
Rp, = E; (p;:k+1 + §t+1> + Z Nt fn (Ti—1, ooy Te—r)
h=1
J

Rz + Rp; = E; (pjy + Jes1) + Z Nhe fr (Te-1, 00 Te) -
h—1

Using (10) we get

J
Rz, :Z Nhafn (Te 1, T L) - (14)
h=1

9Brock and Hommes (1998) assume an IID dividend process {g;} with constant expectation

E () =T7.



Now the adaptive dynamics of the asset pricing model are introduced. The investors
adapt their beliefs of future price deviations every period by switching from an investor
group with unsuccessful prediction in the past to a successful investor group. We get
new market shares nj; immediately after the price deviation z; is determined. To
incorporate this adaption of beliefs, the market share in equation (14) has to be lagged

by one period

J
Rz, ZZ Nhyt—1fht-1 (41, 1), (15)
h=1

where n,;; are the relevant market fractions to determine the price deviation z;.
Before determining the new market fractions of each investor type, a performance

measure has to be defined. Brock and Hommes (1998) use the realized excess profit:

Thi-1 = (Det1+ Yer1 — BDt) Zna—1

= (p: + 2+ oy + & — Rp;k_l - Rl't_l) Zht—1-

Using equation (12) and (8) we get

(Eni—1(pt +y) — Rpi1)

Thi-1 = (2 — Rxe g+ &) >
ao
(fn (=2, oy zi——1) — Roy_q)
= (.%‘t — Rxy_1 + 515) 102 .

We assume further that the investors have to gather costly information to make up
their beliefs of the future price deviations. We subtract information cost Cj, from the
performance measure and get

(fh (It—Q, e It—L—1) - Rl‘t—1)

ac?

Thi—1 = (7¢ — Ri1 + &) — Ch,. (16)

If investors of group h rely not only on last but also on previous performances of the

prediction technique, we get the following adjusted performance measure

Upt—1 = Tht-1 + NUpt—2- (17)



Using the discrete choice theory '’ Brock and Hommes (1998) model agents’ choice of

expectation strategy by extending equation (17) with a stochastic variable vy, ;4

Ut
Unht—1=ups1+ % (18)

The introduction of a stochastic component has the objective to make the model more
realistic:!! In a heterogeneous complex environment there exists more degrees of free-
dom. vj_q represents the unmodelled heterogeneity and wuy¢—q is only the observable
part.'? The intensity of choice parameter (3 determines the influence of the stochastic
component. For a low (3 the stochastic component has a large influence on the perfor-
mance measure and the previous profits of an expectation strategy (16) have almost
no effect on choosing the expectation strategy for the following period and vice versa
for large 3. It is assumed, v, 1 to be double exponential distributed. The shape of
the distribution function of a double exponential distributed random variable is close
to the one of a normal distributed variable, but has the big advantage of the existence
of a closed form solution.'® With this distribution we get for the possibility that in the

next period an investor joins the group h !4

exp(Bupi-1)

7 (19)

Npt—1 =
where
Upt—1 = Thi—1 T NUpt—2,

and

Z ZZ el‘p(ﬁuh,t—l)-

h=1

0For the discrete choice theory see Anderson, de Palma, and Thisse (1992). Further implementation
of the discrete choice theory in economic models are found in Brock and Hommes (1997b), Goeree

and Hommes (2000), and Brock and de Fontnouvellel (2000).

See De Fontnouvelle (1996), p. 11.

12For a broader discussion on the stochastic component, see Anderson, de Palma, and Thisse (1992),
p- 33.

13See Anderson, de Palma, and Thisse (1992), p. 39.

14See De Fontnouvelle (1996), p. 12, and Anderson, de Palma, and Thisse (1992), p. 39.
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Equation (??)can be interpreted as new market fraction, and together with (14) we

have the model’s difference equations to compute future price deviations .

3.2 The Dynamic and Control of the Asset Pricing Model
To investigate the dynamics, Brock and Hommes (1998) assume a linear expectation

fh,t = gnTi—1 + by, (20)

where g, is the trend factor and b, the bias of investor type h. A fundamentalist,
believing on a return of the price to its fundamental value, has a trend factor and a
bias equal to zero: g, = b, = 0. A pure trend chaser has a trend factor g > 0, and the
opposite (g < 0) is called a contrarian. In the following the decision of the investors do
only depend on the performance of the last period and therefore n = 0. The dividend

payment (11) is assumed to be deterministic £, = 0. We get the following equation for

the model
Tiy1 = F(xtyxt—laxt—Q) (21)
_ liie$ (ﬁ{i(x — Rav 1) (gnve s+ by) — R )—CD
hal 7 P 002 t t—1 GrhT—2 h t—1 h
- (gnxt + by)
with

Z :Zj: exp (ﬂ {% (1 — Rrv_r) ((gnaes + bn) — Rat) — ohD |

h=1

Equation (21) is a third order difference equation with steady state z* = F (z*, z*, 2*) =
0.

To control the steady state, we first transform (21) into a three dimensional first or-
der equation system using time delay coordinates x; = (x1 @24 .’,13‘3’,5)1 = (@ Ty_y T4_9)"

.’1?17“,1 F(xl,ta x?,ta x3,t)
2o | =F(x) = T1y : (22)
L3141 Toy

11



In a second step we linearize (22) in the neighborhood of the fixed point using the

Jacobian

X1 =X, +JAX

with

OF OF  OF
Ox1 Oxo  Oxs

J=11 0 0
3.2.1 Fundamentalists versus Contrarians

We consider the simple case with two different types of investors, first. One group
consists of fundamentalists who believe the price deviation from its fundamental value
in the next period will be zero. The parameter of their prediction function are g; =
by = 0. A second group, the contrarians can be described by the parameter values
go = —1.5, by = 0. Assume further R = 1.1 and ac? = 1. The forecasts of future prices
are costless for the contrarians, therefore Co = 0. The prediction of the fundamental
value is more sophisticated and causes expenses of C'; = 1. The intensity of choice is set
to § = 15. With these parameter values the system possesses chaotic fluctuations as
shown in Figure 1. When the contrarians dominate the market the trajectory diverge
from its fundamental value. But if the price moves to far away from the fundamental
value the fundamentalists will dominate the market, and strive the market price back
to its fundamental value. The market domination of contrarians and fundamentalists

alternate in a chaotic manner.
[Figure 1]

We now introduce a control authority which wants to reduce the market volatility

5For a detailed explanation of the behavior of the trajectory see Brock and Hommes (1998).
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by controlling the steady state x* = 0. The steady state possesses the Jacobian

—-1.364 0 O
J= 1 0 0
0 10

x*=0
By mere observation of the last column of J, we recognize that in the neighborhood
of the fixed point the last component of the state vector x, in period ¢ z3, has no
influence on the following state. For the Jacobian we get two distinct eigenvalues
A1 = 0 and Ay = —1.364 with the corresponding eigenvectors e; = (0 0 1)/ and
ey = (0.7398 —0.5425 0.3979)’. Due to |A2| > 1 the fixed point is unstable.

Because the trajectory is in a R? space we cannot apply the original control approach
of OGY, but we can use our more general control method. To do this we have to
complete the eigenvectors to a basis of R? by adding a vector e} which is independent
of e; and e,.!% Using the contravariant basis we get the following linear approximation

for the system dynamics in the neighborhood of the fixed point
Ax 1 = (F]Ax)\e; + (F5Ax) \er + (F5A%,)Te;.
Because of x* = 0 we can write
xi1 = (f1x) A er + (F3x) Aoes + (f5x;)Jes. (23)

In this example it is sufficient to direct the trajectory on the stable manifold W* =
span {e1, e}}, because e, gives the direction of the unstable manifold, only.

To control the equilibrium the control authority has to find a reasonable parameter
to target the trajectory with small perturbations in this subspace. For this it can act
like an ordinary market participant with the only concern to direct the market price
to its fundamental value x* = 0. It does not maximize any profit function as other
investors do. Therefore, the authority acts as a biased investor on the market with

a market share of n.; and biased parameter b.. Conditioned on this intervention the

!

Y6 For simplicity we use e§ = (0 1 0)
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market shares of the other investor groups are reduced by the factor (1 — n.;). With an
intervention of n.; we get the following revision of ;11 = F(z14, Z24, £3,) in equation
(22)

LIS L (5L (one = Res) (gue + b — Rese) — Ca] )22

x = —= — — (z1; — Rx x — Rxoy) — .
1,t+1 R 2 7, rp 002 1, 2,t) \GhT3t h 2.t h

(1= ney) (gnwrs + by) + neebe) -

The vector w, which determines the influence of the perturbation in the neighborhood

of x* is given by

oF
One,¢
wW = 0 (25)
0
with
oF _ 1 iMb +2 and Z_im (—BC)
e ) 2 7, h 7, t—h:1 P h) -

We now add the influence of a perturbation én.; to equation (23)
xip1 = (fixe) Aer + (£5x) Aoes + (£5x4)J e + won, (26)

and are able to quantify én.;. The perturbation has to direct the trajectory into the

stable subspace.!” This leads to the condition
foxi1 = (£3x) A + (£3x,)f5J e + fHwon., =0

and we get

—(f33%:) Ao — (£3x)f3J e}
fiw '

(27)

577,07,5 =

It is assumed that any fraction of the asset can be traded.

"The condition f{x;,1 = 0 has to be fulfilled.
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In the first simulation we assume the control institution can have a maximum

market share of 1 %. We get the following control law

_(féxt))\gtgv(:'éxt)fé.]eg Zf 0< —(féxt))\gtgv(:'éxt)fé.]eg < 0.01
67’1,07t = (28)
0 otherwise.

We set the starting state of the trajectory to xo = (—0.1 0.1 0)/ and b, = 0.2.
[Figure 2]

As shown in Figure 2 a) the trajectory is controlled after 22 periods to its steady
state x*. The dotted line shows the uncontrolled trajectory and in Figure 2 b) we see
the necessary control perturbations. The biggest intervention of the control authority
occurs in period 22: 6n. 90 = 0.0552%. Despite of the maximum market share of 1 % we
get much smaller interventions. This is caused by the market behavior. If the asset price
diverges too far from its fundamental value a growing number of fundamentalists push
the price back in the neighborhood of x*. Only small interventions are then necessary
to keep the trajectory in the steady state. Note, that successive control interventions
are so small that they cannot be seen from Figure 2 b). However, without these tiny
interventions the trajectory would leave the unstable steady state again.

The initial value xq possesses a big influence on the control speed. Figure 3 visualizes
the control speed for different initial values of the trajectory.'® We varied x1 g, 220 in

the range of [—1, 1] and fixed z3 to zero.
[Figure 3]

Surprisingly, there are starting points close to the fixed point, which have a longer

control time than points further apart. As we can see in Figure 3, variation of z; is

8For computing the control surface we put a grid on the plane [-1, 1] x [-1, 1] with a distance
of 0.005 to each neighboring point and computed the control success for each starting point. We
computed the number of periods the trajectory needs to reach an e-neighborhood (¢ = 0.01), which

it never will leave.
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much more sensitive for the control success than z. There are two regions with low
control speed for high z; o-values combined with low x5 o-values and vice versa.

The closer the trajectory gets to its fundamental value the smaller are the pertur-
bations. If we neglect small interventions we can implement a minimum boundary in

the control law (28) 6nmim = 0.1%

_(féxt)/\gfg‘(:é)&)fé.]eg Zf 0.001 < _(féxt)/\Qfg‘(:éxi)féJeg <0.01
67’1,07,5 = (29)
0 otherwise.

The control authority waits with its stabilizing intervention until it exceeds én;,. Only
if the trajectory diverges to far from x* it will be dragged back. Applying the revised
control law (29) to our example we get in Figure 4 a) and b) the same control success
as before but in the time horizon of 100 periods only during 5 periods interventions are
necessary compared to 77 without a minimum boundary. On the other hand in those
few intervention periods higher perturbations are necessary to keep the trajectory in

the neighborhood of x*.

[Figure 4]

3.2.2 Four Belief Types

In a second example we consider the case of four different belief types: One fundamen-
talist (g1 = by = 0), two biased trend chasers (go3 = 0.9, by 3 = £0.2), and one pure
trend chaser (g4 = 1.01, by = 0). We further assume R = 1.01, = 95, C1 234 = 0 and
ao? = 1.0. For these market situation Brock and Hommes (1997a) have found chaotic

price behavior with the following Jacobian for the unstable steady state x* = 0

2478 —18 0
IJ=1| 1 0 0 (30)
0 1 0
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The Jacobian has two conjugate complex eigenvalues Ao = 1.239 4= 0.515¢ and one
real eigenvalue A3 = 0." Because of the eigenvalues mod A\;o > 1 and |[\3] < 1, x*
has a 2-dimensional unstable manifold W* C R? and a 1-dimensional stable manifold
W C R. To control the system it is necessary to direct the trajectory onto the stable
manifold of the steady state. As shown in Appendix A.1 the complex eigenvectors
cannot be used as a basis. We replace them by e = (1 0 0) and ej = (0 1 0) to
get a basis for the R? space.?’

From the previous section we know two control variables are needed if the unstable
manifold is 2-dimensional. But in our example x; is a time delay vector. In period ¢
only the first coordinate of the vector x; can be directly influenced by a perturbation.
The second and third coordinate are already determined in ¢. On this account we have
to direct the trajectory during two periods on the stable manifold. In this case only
one control variable is sufficient.

With a similar control authority as in the first example, there influence of two

successive interventions on the trajectory is given by
X0 = IPx + Wone 11 + Jwong, (31)
or using the contravariant vectors
X0 = (£1x;) J2e} + (£3x;) J2e} + (£ix;) Ases + won 1 + Jwone,. (32)

To ensure that the trajectory is on the stable manifold in ¢+2 the conditions f;x; 5 = 0
and f,x;,5 = 0 have to hold. This leads to the following linear equation system which

has to be solved for the perturbations én.; and on 11

f] (Fx;) J%e} + f] (f3x;) J2el + fiwéne g + £ Iwén., = 0

£ (Fx;) J%e} + £} (£3x;) J*el + fiwéne 1 + 5 Iwén,, = 0. (33)

YThe corresponding eigenvectors are ef, = (0.0014+0.732i 0.210 £ 0.504i 0.289 + 0.2862')/ and

es=(0 0 1).

20er e}, and e3 are an orthogonal basis of R3. This basis corresponds with its contravariant basis.
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Using equation (25) we get the vector w

0.0495

We find, that with the restriction of positive market interventions (én.; > 0) we do not
get any control success. Only if negative market shares (short selling) of the control
authority are allowed, the chaos control is possible. Figure 5 a) shows the controlled

trajectory with an initial value xo = (—0.2 0.2 0)’ and dnpax = 1%.
[Figure 5]

After 18 periods the fundamental value is stabilized.?! A closer look on the perturba-
tions in Figure 5 b) makes it obvious why negative market shares are necessary: The
perturbations changes its sign every period. Therefore én.; and on. .1, computed with
the equation system (33), will not fulfill the conditions én.; > 0 and én.+1 > 0.

As in the example before, introducing a minimum intervention of én.,;, = 0.01%,
to reduce the number of control interventions, leads to the same control result, and to
an increase in the cumulated perturbations.

Finally we investigate again the control speed for different initial values. As it can
be seen in Figure 6 more groups of different investor types lead to a higher sensitivity
of the control speed on the starting values: Already small variations of the initial value
can change the control success dramatically. Figure 6 reveals a symmetry of the control

speed with respect to the fixed point x*.

[Figure 6]

4 Summary

In this paper we first have shown how the chaos control method of OGY can be ex-

panded to stabilize not only saddle points in the R? space but also any unstable equi-

?IThe dotted line shows again the uncontrolled trajectory.
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librium in the R™ space, embedded in the strange attractor. With our method the
trajectory is directed on the stable manifold of the equilibrium. If no stable mani-
fold exists, we control the trajectory straight into the equilibrium. Depending on the
dimension of the unstable manifold we get a linear equation system to compute the
control interventions.

We applied our control method on the asset pricing model of Brock and Hommes
(1998). This model explains chaotic price movements endogenous by heterogeneous
market participants and their adaption policy. If such chaotic price behavior exists a
control authority is able to stabilize the market price. In our first example with two
investor groups the control authority was able to push any chaotic price trajectory,
close to the equilibrium price, with their demand or supply for the risky asset during
one period onto the stable manifold of the equilibrium. In a more complex market
structure with four investor groups two successive market interventions were necessary
for the control, due to the dimension of the unstable manifold of the equilibrium.

In a chaotic market environment no longer big interventions are necessary to control
erratic price fluctuations. Using the properties of chaotic systems small interventions

are sufficient for a control authority to stabilize any unstable equilibrium.

A Appendix: Derivation of the Control Rules
To derive the control rules we distinguish two cases:
Case 1: The unstable fixed point possesses a m-dimensional.

Case 2: The fixed point possesses an n-dimensional unstable manifold and no stable man-

ifold.

A.1 The Equilibrium has a Stable Manifold

In equation (3) we use the eigenvectors as basis:
Axy 1 = a1 e1 + ... + a \e,.
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It is possible to substitute the coordinates ai,..., a, by the contravariant basis

fi,....f,, and Ax,. For equation (2) we get 2>

Axt—l—l = (f{AXt) )\161 + ...+ (fylLAXt) )\nen.

(34)

Now the control target is to direct the trajectory on the stable manifold W* using n—

m control variables p,;. The influence of the parameter shifts 6p;; can be incorporated

in equation (34) via the vectors w; which contain the derivatives of f with respect to

23
Dj

We get the following equation

n

AXyiq :Z (fiAx;)e N+ Z w;0p;it

i=1 j=1

(35)

To be on the stable manifold in period ¢ + 1, Ax;,; has to be orthogonal to the

contravariant basis vectors f,,,1...f,

/ ! /
fm+1AXt+1 = m+2AXt+1 = ... = anXt—i—l =0.

We get the following linear equation system for ép, = (6pj; - OPn_m.t)

)‘m+1 0 frln+1 frln+1
Axy = | ¢ Wi -+ Wpom } op;
0 \ ¢ (nx1) ¢ (nx (n—m)) ((n—m)x1)
(n=m)x(n-m))  ((n—m)xn) ((n—m)xn)
or simply

(36)

22From the definition of the contravariant basis (see footnote 7) it follows immediately: a; = f/Ax;,

i=1,..,n.

23For a successful control the vectors w; must be independent.
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This leads to the following control rule:

W-IF 1 AFAx, if [IWIFIAFAX;| < 6Pmax
0 otherwise.

All components of the vector dp; have to be smaller than the corresponding components

of the vector dpmax before the control is started.

Till now we assumed all eigenvalues to be real. If however the Jacobian possesses
k complex eigenvalues, the corresponding complex eigenvectors cannot be used as
basis vectors for the state space R™. To define a basis for R™ the complex eigen-
vectors have to be replaced by real vectors ej,...,e;, which span the space R" =
span{ej, ..., €5, €pi1,...,€,} together with the real eigenvectors.

To direct the trajectory on the m-dimensional stable manifold we use the corre-
sponding contravariant basis and compute

k

Axyyq :Z (f/Ax;)Jel + Z (£ Ax;)e N+ Z W01 (38)

i=1 i=k+1 J=1
In the first term of equation (38) J cannot be substituted by A; because the vectors e}
are no eigenvectors of J. Similar to equation (36) we get to the following linear system

to solve for the (n — m)-tuple ép;

! ]
Je}‘ s Jez Akr1€ks1 0 An_m€nm Ax; =
(nx1)
£ £,

((n—=m)xn) (nx(n—m)) ((n—m)xn)
it
. (nx (n—m)) ((n=m)x1)

((n—m)xn)

Like equation (37) we start the control if 6p; < épmax-
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A.2 The Equilibrium has no Stable Manifold

If there exists no stable manifold the trajectory has to be directed straight into the
fixed point. To control the trajectory in the fixed point we need n parameters p;..., py,.
With the following equation
n
AXH»I = JAXt—l— Z Wjépjvt (40)
j=1
we can compute the perturbation vector dp;. Because the condition for the trajectory

in the fixed point is simply Ax;,1= 0, it is not necessary to change the basis. From

JAx; + Wép; =0 with W = (w; ... w,)
(nxn) (nx1)  (nx1)

we get
opr = —W LJAx,.
If we restrict each parameter shift again to a maximum absolute value of dpp.x the
control law reads finally
—~W-1JAx, if |-W™JAX| < 6pmax

op; = (41)

0 otherwise.
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Figure 1: a) Chaotic movement of the price trajectory b) Market share of the funda-

mentalists n;; and the contrarians ng;
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(=0.1 0.1 0) b) The control perturbation of the market authority
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Figure 3: Control speed for different initial values
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initial value xo = (—0.2 0.2 0) b) The control perturbation of the market authority
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