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Chapter 1

Introduction

1.1 Preliminaries

This thesis is concerned with financial mathematics in continuous time. It

is devoted to the study of problems from the theory of option pricing. Op-

tions are financial instruments that are defined in terms of other underlying

quantities such as stocks, indices, currencies, interest rates or volatilities.

Option prices are usually determined as discounted expected values of the

underlying variables. These expected values, however, solve parabolic partial

differential equations. In this thesis, we study the applicability of the Mellin

integral transform to solve these equations.

An option is an derivative security that grants its holder the right, but not

the obligation, to buy or to sell the underlying asset, at or before some matu-

rity date T , for a prespecified price X, called the strike or the exercise price.

The act of making this transaction is referred to as exercising the option.

The price, also called the options’ premium, will generally be denoted by F .

A call option gives its holder the right to buy the underlying asset, whereas

the put option gives the right to sell. For a call option, the payoff at maturity

is max(ST − X, 0) = (ST − X)+, and for a put option the exercise payoff

becomes max(X − ST , 0) = (X − ST )+. Here and in what follows, S = St
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denotes the price of the underlaying asset, and subscripts are used to place

emphasis on the evolution of the underlying asset process through time. Due

to the time dependency we will write for the price of an option F = F (S, t)

or F = F (S, τ) where τ = T − t is the remaining time to maturity.

Options which can only be exercised at the maturity date (t = T ) are called

European. In contrast, American options give the holder the right to exer-

cise the contract at any time until or at the option’s exercise date t ≤ T .

Theoretically, the number of possible exercise dates offered by American-

style derivatives tends to infinity. Similarly, a contract granting only a finite

number of exercise dates between the starting point of the contract at time

t and maturity T is called Bermudian. The terms ”European”, ”American”,

and ”Bermudian” describe different exercise rights and are not geographical

classifications1. The simple additional feature of early exercise makes the

valuation of American-style contracts substantially more complicated. Fur-

thermore, many American options are written on assets that pay dividends,

either at discrete times or continuously. The presence of dividends compli-

cates the analysis of American options further. Since there are more exercise

opportunities in an American option than in the European counterpart, it is

obvious that the price of an American option will be greater than or equal

to that of an European option. The prices coincide only in special cases.

The American option pricing problem is an exciting and challenging issue in

mathematical finance, and therefore an active field of research.

Options can also be separated into the following two main groups:

• Standard options

• Exotic options.

Standard options, or plain vanilla options, are subject to certain regular-

ity and standardization conditions. They are actively traded on organized

1Other option types with misleading names are for instance Asian, Russian, Israeli, or
Parisian options.
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exchanges. The Chicago Board of Options Exchange (CBOE) started to

trade calls in an organized and standardized manner in 1973. The trading

with put options started four years later. Since then, the growth of options

(derivatives) has been explosive. They are now traded in huge volumes on all

major world exchanges like the Chicago Board of Trade (CBOT), the Lon-

don International Financial Futures Exchange (LIFFE), and the EUREX,

which was created in 1998 with the merger of Deutsche Terminbörse (DTB)

and the Swiss Options and Financial Futures Exchange (SOFFEX). Exotic

options have more complicated payoffs. They were created to fill the needs

of various types of investors. They include path-dependent options, such as

barrier options, Asian options, and lookback options, or multi-asset options,

such as baskets. All these products, as well as even more exotic types, are

mostly traded in the over-the-counter market. Leading players are commer-

cial and investment banks, such as Goldman Sachs, Merrill Lynch, Citibank

or Deutsche Bank. The more complicated payoff, however, introduces much

greater complexity to the valuation problem, thus demanding a sophisticated

mathematical machinery.

1.2 Motivation and Structure

Analytical pricing formulae for a wide class of standard and exotic options are

often derived by solving partial differential equations. These backward-in-

time equations are of parabolic type and must be solved with payoff-specific

boundary conditions. Although a solution can be derived straightforwardly in

some cases, many contracts have corresponding partial differential equations

that are too complex to allow for a standard solution. Advanced mathe-

matics is needed to provide a solution or an accurate approximation of the

solution. Classical examples are American options and European options in

stochastic volatility and/or stochastic interest rate models. The first class of

options has partial differential equations of free-boundary type, whereas for
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the second class the resulting equations become two or higher dimensional

depending on the number of state variables2. In both cases, an application

of integral transforms facilitates the analysis since the use of a specific trans-

form reduces the complexity by reducing the dimensionality inherent in the

valuation problem.

Although the history of integral transforms can be traced back to the 18th

century to the works of d’Alembert and Euler, their permanent use in finan-

cial economics began two decades ago with the articles of Stein and Stein

(1991) and Heston (1993), where Fourier transforms were used for an ana-

lytical valuation of European options on stocks with stochastic volatility3. It

quickly became clear how powerful the new tool was and it became standard

in the theory of option pricing. In his survey article, Carr (2003) lists 76 ar-

ticles applying integral transforms to option pricing, most of them focusing

on Laplace and Fourier transforms. Up to the current date the number of

applications has certainly increased.

Besides Fourier and Laplace transforms, there are other interesting integral

transforms used in theoretical and applied mathematics: Mellin transforms,

Hankel transforms, Hilbert transforms, Stieltjes transforms or finite sine and

cosine transforms, among others. Their importance in applied sciences comes

from the fact that they provide powerful tools for solving initial value and

initial-boundary value problems for differential and integral equations aris-

ing in applied mathematics, physics and engineering. Specifically, the Mellin

integral transform gained great popularity in complex analysis and analytic

number theory for its applications to problems related to the Gamma func-

tion, the Riemann zeta function and other Dirichlet series. The transform is

also commonly used in applications to summation of infinite series. The key

conceptual difference between the Fourier and the Mellin transform approach

2For jump diffusions the resulting partial differential equations become partial-integro-
differential equations.

3Sporadic application of Fourier and Laplace transforms in financial contexts has been
done by McKean (1965), Black and Scholes (1973) and Buser (1986).
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is, that Fourier transforms usually exist in horizontal strips of the complex

plane whereas Mellin transforms are defined in vertical strips.

The purpose of this thesis is the study of the applicability of Mellin trans-

forms in the field of option pricing. Motivated by the articles of Panini and

Srivastav (2004) and Panini and Srivastav (2005) we have developed sev-

eral extensions. The thesis is based on four papers. Paper 1 (Frontczak

and Schöbel (2008)) and Paper 2 (Frontczak and Schöbel (2010)) extend the

articles of Panini and Srivastav in a straightforward manner to an analyt-

ical pricing of European power options and American put and call options

written on stocks with a continuous dividend yield. Paper 3 (Frontczak

(2010b)) applies the new transform to a closed-form valuation of European

options within the stochastic volatility model of Heston (1993). We propose

an equivalent alternative solution and test its accuracy numerically. Finally,

in Paper 4 (Frontczak (2010a)), simple analytical approximations for the free

boundary associated with the pricing of American options are derived and

compared to other approaches found in the literature.

Contents of the thesis were presented in concise form at the 11th Symposium

on Finance, Banking, and Insurance in Karlsruhe (2008), the International

Conference on Price, Liquidity, and Credit Risks in Konstanz (2008), and the

16th Annual Meeting of the German Finance Association (DGF) in Frank-

furt (2009).

The remainder of the thesis is organized as follows. Chapter 2 introduces

fundamental concepts from stochastic calculus that are frequently used in

mathematical finance. We give a short introduction into the Black/Scholes

and Merton model and the risk neutral valuation paradigm. In Chapter 3

we introduce the Mellin transform in one and two dimensions and review

some of its functional properties. Chapters 4 and 5 are basically devoted to

the pricing of American options. After presenting a detailed literature sur-

vey, we review the different formulations of the pricing problem. Thereafter

we present the analytic solutions using Mellin transforms. We start with
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American put options. After characterizing the price using the new integral

approach, we prove the equivalence of three different types of integral equa-

tions for the American put. We also show how the Mellin-type equations

may be used to derive the pricing formula for the perpetual American put.

In a next step we propose a modification of the framework that is applicable

for pricing any call option-like derivative. We use the modification for an

analytic valuation of American call options. The analysis results in a new

integral characterization of American call prices and the corresponding free

boundaries. The formulas allow us to recover all the important theoretical

properties of the pricing functions. For the modified transform, we show

in addition how Gauss-Laguerre quadrature may be applied for numerical

evaluation. Finally, we use the Mellin transform approach to derive simple

analytical approximations for the free boundary associated with the pricing

of American options and compare them to other approaches found in the

literature. The stochastic volatility model of Heston (1993) is discussed in

Chapter 6. We derive an alternative solution for the pricing problem and

provide numerical tests concerning its accuracy and flexibility. Chapter 7

concludes the thesis.
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Chapter 2

Foundations

This chapter deals with fundamental concepts from stochastic calculus used

in continuous-time mathematical finance. We also review the no-arbitrage

and the risk-neutral valuation principles in the Black/Scholes/Merton frame-

work. Both principals are essential in the theory of pricing financial securities

and are closely linked mathematically with profound financial implications.

A first introduction in the one-dimensional case is given. The theoretical

concepts presented in this chapter are well known and are described on a

more rigorous level in several textbooks: Karatzas and Shreve (1991), Bing-

ham and Kiesel (1998), Karatzas and Shreve (1998), Duffie (2001), Kijima

(2002), Øksendal (2003), Shreve (2004), Musiela and Rutkowski (2004) or

Elliott and Kopp (2005).

2.1 Stochastic Calculus

First, we introduce some notations and definitions. The stochastic setting

that will be used is a probability space (Ω,F,P) and a filtration of sub σ-

algebras F = {Ft : 0 ≤ t ≤ T} with Fs ⊆ Ft ⊆ F for s ≤ t. Furthermore we

assume that the filtration F satisfies the usual conditions of right-continuity

and completeness, and that F0 is trivial, i.e. for every A ∈ F0 either P(A) = 0
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or P(A) = 1. The filtration represents a family of information sets that

become continuously available to any market participant as time passes4. A

(one-dimensional) real valued stochastic process {Xt} = {Xt, t ∈ [0, T ]} is

a family of real valued random variables. If {Xt} is Ft −B-measurable for

each t, where B is the Borel σ-algebra, the stochastic process is said to be

adapted to F. The only source of uncertainty in the market is captured by

the process {Wt} = {Wt, t ∈ [0, T ]}, called a (one-dimensional) standard

Brownian motion.

Definition 2.1.1 A continuous-time stochastic process {Wt} = {Wt, t ≥ 0}
is called a Brownian motion with drift µ, diffusion coefficient σ, and start in

x ∈ R, if

1. W0 = x a.s.

2. {Wt} = {Wt, t ≥ 0} has independent increments, i.e. if 0 ≤ r < s ≤
t < u < ∞, then Wu −Wt and Ws −Wr are independent.

3. The increment Wt+s − Wt is normally distributed with mean µs and

variance σ2s, i.e.

∀t ≥ 0,∀s > 0 : Wt+s −Wt ∼ N(µs, σ2s).

4. Wt has continuous sample paths, i.e.

P [{ω ∈ Ω | [0,∞) 3 t 7→ Wt(ω)is continuous}] = 1 a.s.

The process {Wt} = {Wt, t ≥ 0} is called standard, if x = 0, µ = 0 and

σ2 = 1.

4Ft may represent different type of information. In our case, Ft will represent the
information one can obtain from the observed prices in financial markets up to time t.

11



Stochastic processes under consideration will be defined in terms of their

stochastic differential equations (SDEs):

dXt = µ(Xt, t)dt + σ(Xt, t)dWt , X0 = x, (2.1)

where µ and σ are measurable functions from R× [0, T ] to R. The functions

µ and σ are called drift and diffusion of the process, respectively. Suffi-

cient conditions for a unique (path-by-path) solution are called the growth

condition and the Lipschitz condition.

C1 Growth condition

There exists a constant K > 0 such that

µ2(x, t) + σ2(x, t) ≤ K(1 + x2), (x, t) ∈ R× [0, T ].

C2 Lipschitz condition

There exists a constant L > 0 such that

|µ(x, t)− µ(y, t)|+ |σ(x, t)− σ(y, t)| ≤ L|x− y|, x, y ∈ R, t ∈ [0, T ].

For a proof, see Karatzas and Shreve (1991) or Øksendal (2003). A prominent

process for which the Lipschitz condition is not satisfied is the CIR or Feller

process

dXt = κ(θ −Xt)dt + σXα
t dWt , X0 = x,

with constant κ, θ, σ and α where 0.5 ≤ α < 1. The process, however, has a

well known solution. If the SDE (2.1) has a unique t-continuous and adapted

solution Xt, it can be expressed in an equivalent integral form as

Xt = x +

∫ t

0

µ(Xs, s)ds +

∫ t

0

σ(Xs, s)dWs. (2.2)

Definition 2.1.2 The process Xt defined in (2.1) is called an Itô process, if

the functions µ and σ satisfy the following conditions:

P
[ ∫ t

0

| µ(Xs, s) | ds < ∞, ∀t ≥ 0
]

= 1,

P
[ ∫ t

0

σ(Xs, s)
2ds < ∞, ∀t ≥ 0

]
= 1.
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The following theorem is known as Itô’s formula or Itô’s lemma. It represents

a fundamental result in stochastic calculus and is frequently used in financial

mathematics:

Theorem 2.1.3 Let Xt be an Itô process and let g(x, t) ∈ C2,1(R× [0,∞)).

Then Yt = g(Xt, t) is again an Itô process whose dynamics are given by

dYt =
∂g

∂t
(Xt, t)dt +

∂g

∂x
(Xt, t)dXt +

1

2

∂2g

∂x2
(t,Xt) · (dXt)

2, (2.3)

where (dXt)
2 = dXt · dXt is computed according to the rules dWt · dWt = dt,

and dt · dt = dt · dWt = dWt · dt = 0.

The above theorem may be used to prove the famous Feynman-Kac-Theorem.

The theorem establishes a link between (parabolic) partial differential equa-

tions and stochastic processes. Loosely speaking, the theorem allows solving

PDEs by computing expectations, and vice versa. The formula is fundamen-

tal in pricing derivative securities. The idea was invented by Feynman (1948)

and developed by Kac (1949).

Theorem 2.1.4 Let F (x, t) ∈ C2,1(R+ × [0, T )) be a solution of the PDE

∂F (x, t)

∂t
+ Lt F (x, t)− r(x, t)F (x, t) = 0, (2.4)

with

LtF (x, t) = µ(x, t)
∂F (x, t)

∂x
+

1

2
σ2(x, t)

∂2F (x, t)

∂x2
,

and the boundary condition F (x, T ) = g(x). Then the solution has the form

F (x, t) = Et

[
g(XT ) · e−

∫ T
t r(Xu,u)du

]
, (2.5)

where the expectation is taken with respect to the process Xt defined in (2.1)5.

5The operator Lt is called the generator of (Xt)t∈[0,T ]. Furthermore, it is worth men-
tioning that a solution to the PDE may not be unique. Also, when r(x, t) < 0, which is not
realistic from an economic point of view when r denotes the interest rate, solutions may
not exist or may exist only for T − t < τ, τ ∈ [0, T ). For a more sophisticated discussion
of technical conditions, see Durrett (1996).
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A sketch of the proof is presented below.

Applying Itô’s formula to F (Xt, t) gives

dF (Xt, t) =
(∂F (Xt, t)

∂t
+ Lt F (Xt, t)

)
dt + dMt

where

dMt =
∂F (Xt, t)

∂x
σ(Xt, t) dWt .

Then, by assumption, it follows after integration that

F (XT , T ) = F (Xt, t)+

∫ T

t

r(Xs, s)F (Xs, s) ds+

∫ T

t

∂F (Xs, s)

∂x
σ(Xs, s) dWs.

Since this is a linear equation, it is solved as

F (XT , T ) = e
∫ T

t r(Xu,u)du
[
F (Xt, t) +

∫ T

t

e−
∫ s

t r(Xu,u)dudMs

]
.

The last integral is an Itô integral, thus by taking expectations and using the

terminal condition we finally get

F (Xt, t) = E
[
g(XT ) · e−

∫ T
t r(Xu,u)du |Xt = x

]

= Et

[
g(XT ) · e−

∫ T
t r(Xu,u)du

]
, (2.6)

where we have used a short-hand notation for the conditional expectation.

In the case of a constant r we obtain

F (x, t) = e−r(T−t)Et[g(XT )]. (2.7)

If Xt denotes the time t price of an asset, i.e. Xt = St, then F (S, t) can be

viewed as the current price of a derivative, which is given as the discounted

expected payoff at maturity under the probability measure P.

2.2 The Black/Scholes/Merton Framework

This section presents the ideas underlying the no-arbitrage and the risk-

neutral valuation principles in the Black/Scholes/Merton model (sometimes
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also called the log-normal model). The no-arbitrage principle denotes the

assumption, that there should be no possibility for a risk-free gain without

initial capital. Thus, all investments with certain payoffs should have the

same yield. The log-normal model assumes that the asset price St, t ∈ [0, T ],

evolves according to the SDE:

dSt = (µ− q)Stdt + σStdWt, (2.8)

with initial value S0 ∈ (0,∞), and where µ is the subjective expected re-

turn on the asset, q is the dividend yield, and σ > 0 is the volatility. The

dividend yield is also assumed to be positive. However, if q < 0 it can be

regarded as a cost of carry factor. The asset price process is called a (one

dimensional) geometric Brownian motion. All three parameters are assumed

to be constant. The process {Wt} is a standard Brownian motion, under the

physical (or statistical) probability measure P. The market is frictionless and

continuous, i.e. there are no transaction costs, no taxes, trading takes place

continuously, assets are infinite divisible, and unlimited investing is allowed

at a constant risk-free rate r6. A straightforward application of Itô’s formula

leads to the following solution of (2.8):

ST = St exp
((

µ− q − 1

2
σ2

)
(T − t) + σ (WT −Wt)

)
, (2.9)

for all t ∈ [0, T ]. We are interested in the pricing of contingent claims on the

underlying asset S. For a given payoff function g : R+ → R, the European

contingent claim written on S can be regarded as a financial instrument

that pays the holder g(ST ) at expiry T . For the European put option we

have g(ST ) = (X − ST )+, for all S ∈ R+. The corresponding European call

option is treated analogously. Assuming that the current price of the security

F = F (S, t) is suitably differentiable, i.e. F (S, t) ∈ C2,1(R+ × [0, T )), it

6Trading strategies are subject to a weak condition. To ensure a well-defined value
process, the quadratic variation of a portfolio must be finite P-a.s.
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follows from a dynamic replication strategy that

∂F

∂t
+ (r − q) St

∂F

∂S
+

1

2
σ2 S2

t

∂2F

∂S2
− rF = 0 (2.10)

on R+ × [0, T ). This PDE, along with the boundary conditions

F (S, T ) = g(ST ) on R+

F (0, t) = g(0)e−r(T−t) on [0, T ) (2.11)

lim
S→∞

F (S, t) = g(∞)e−r(T−t) on [0, T ),

characterizes the price of a traded derivative on the underlying S. It is

sometimes called ”the fundamental valuation equation” because it applies to

any (European) contingent claim, independent of its payoff structure. What

changes across securities are the relevant boundary conditions (2.11). For a

more comprehensive introduction to modeling derivative securities as partial

differential equations, see Wilmott et al. (1993).

Since µ does not enter (2.10), one implication of the fundamental valuation

equation is that two investors can agree on the fair price of a derivative

without taking into consideration their individual views about the expected

performance of the underlying asset. Furthermore, the equation also applies

to index options, foreign currency options, and options on futures where the

dividend yield q can be replaced by the average dividend yield on stocks

composing the index, the foreign risk-free interest rate, and the domestic

risk-free interest rate, respectively.

From a mathematical point of view, the fundamental valuation equation

is a backward-in-time parabolic partial differential equation, and the terms

(r − q)St
∂F
∂S

, 1
2
σ2S2

t
∂2F
∂S2 , and −rF are called convection term, diffusion term

and reaction term, respectively. In this sense (2.10) is a convection-diffusion

PDE. In finance, the partial derivatives ∂F
∂S

, ∂2F
∂S2 and ∂F

∂t
denote the delta,

gamma, and theta of a derivative, respectively. They give information about

different dimensions of risk in the derivative (see Hull (2006)).
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In some cases, dependent on the specific payoff structure, (2.10) with the

conditions (2.11) can be solved analytically. When the payoff is specialized

to g(ST ) = (X − ST )+, we can use a change of variables technique to reduce

it to the heat equation, and apply standard methods to get the solution

PE(S, t) = Xe−r(T−t)N(−d2(S,X, T ))− Ste
−q(T−t)N(−d1(S,X, T )), (2.12)

where PE(S, t) denotes the value of a European put option, N(·) denotes the

cumulative standard normal distribution, and

d1(S, X, T ) =
ln St

X
+ (r − q + 1

2
σ2)(T − t)

σ
√

T − t
, (2.13)

d2(S, X, T ) = d1(S, X, T )− σ
√

T − t. (2.14)

The expression is the celebrated Black-Scholes-Merton formula for a Euro-

pean put option. Similar arguments lead to the European call option

CE(S, t) = Ste
−q(T−t)N(d1(S,X, T ))−Xe−r(T−t)N(d2(S, X, T )), (2.15)

with d1/2(S,X, T ) as defined in (2.13) and (2.14). The second formula can

also be derived directly using the put-call-parity relationship for European

options. This no-arbitrage condition relates call and put options with iden-

tical maturities and strikes, and states that

CE(S, t)− PE(S, t) = Ste
−q(T−t) −Xe−r(T−t) (2.16)

for all t ∈ [0, T ]. The condition reflects the fact that the portfolios on both

sides of the equation (2.16) have the same payoff (ST −X)+ − (X − ST )+ =

ST − X at expiry. Because the terminal payoffs are identical, in order to

preclude arbitrage opportunities, their prices up to maturity must be equal.

The fundamental valuation equation (2.10) has the key property that it does

not involve any variables that are affected by the risk preferences of market

participants, i.e. it does not depend on µ. The only variables that are

relevant for pricing derivatives are the risk-free interest rate r, the volatility
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of the underlying asset σ, and the dividend yield q. This gives rise to the

risk-neutral valuation approach. The main idea is to use a change of measure

and transform the random stock price process into a martingale. The risk-

neutral valuation approach is therefore also referred to as the martingale

approach, and was first elaborated by Cox and Ross (1976), although the idea

of risk-neutral probabilities goes back to Arrow (Arrow (1964) and Arrow

(1970)). Its formalization is essentially due to Harrison and Kreps (1979)

and Harrison and Pliska (1981). An excellent summary of the martingale

approach and its applications in finance can be found in Bingham and Kiesel

(1998), Karatzas and Shreve (1998), Duffie (2001), Musiela and Rutkowski

(2004), and Elliott and Kopp (2005). For extensions and generalizations,

the reader is referred to the articles of Delbaen and Schachermayer (1994),

Delbaen and Schachermayer (1995), Pham and Touzi (1999), Kabanov and

Stricker (2001), and Broadie and Detemple (2004).

The fundamental step in risk-neutral valuation is the conversion of asset

prices into martingales. If (Ω,F,P) is a probability space with a filtration

F = {Ft : 0 ≤ t ≤ T} a real valued stochastic process {Xt} = {Xt, t ∈ [0, T ]}
is called a P-martingale with respect to the filtration F, if for all t ∈ [0, T ],

• Xt is adapted to Ft,

• Xt is integrable, i.e. E[|Xt|] < ∞,

• E[Xt|Fs] = Es[Xt] = Xs P-a.s. for all 0 ≤ s ≤ t.

Similarly, if a stochastic process follows a trend and increases or decreases on

average, the third condition is Es[Xt] ≥ Xs, or Es[Xt] ≤ Xs, and the process

is called a sub- or supermartingale, respectively.

Converting random processes such as stock prices into martingales is ac-

complished by changing the drift of such processes and leaving the volatil-

ity unchanged. This can be achieved by changing the underlying probabil-

ity measure without changing the outcomes themselves, thus changing the
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probability measure P to a equivalent probability measure Q7. The basis of

changing form P to Q is provided by the Girsanov theorem8. For the one-

dimensional case, the statement is the following:

Let (λt)t∈[0,T ] be a measurable, adapted process with
∫ T

0
λ2

t dt < ∞ a.s., and

define the new exponential process (ξt)t∈[0,T ] by

ξt := exp
{
−

∫ t

0

λs dWs − 1

2

∫ t

0

λ2
s ds

}
. (2.17)

Then ξt is measurable, continuous and positive. Also, since dξt = −ξtλtdWt

it follows that ξt is a (local) martingale. Further if λt suffices Novikov’s

condition

E
(

exp
{1

2

∫ T

0

λ2
s ds

})
< ∞,

then ξt is a continuous martingale, and we have

Theorem 2.2.1 Let λ be as above and satisfy the Novikov condition. Let ξ

be the corresponding martingale. Define the process (W ∗
t )t∈[0,T ] by

W ∗
t := Wt +

∫ t

0

λs ds . (2.18)

Then under the equivalent probability measure Q9 defined on (Ω,F) with the

Radon-Nikodym derivative dQ
dP = ξT , the new process W ∗

t is a Brownian mo-

tion.

For proofs, see Dothan (1990), Karatzas and Shreve (1991), Revuz and Yor

(1991), Protter (1992), and Øksendal (2003).

As a special case, consider λt to be constant, λt = λ for all t ∈ [0, T ]. Then

ξt = exp
(
− 1

2
λ2t− λWt

)
, (2.19)

7The measures P and Q on (Ω, F) are (mutually) equivalent if they have the same null
sets, i.e. if, for any A ∈ F, we have P(A) = 0 if and only if Q(A) = 0.

8Sometimes referred to as the Cameron-Martin-Girsanov theorem, depending on the
degree of generality.

9Henceforth referred to as the equivalent martingale measure.
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with initial value ξ0 = 1. An application of Itô’s formula shows that ξt is

indeed a martingale, and for any A ∈ F, the equivalent martingale measure

Q is given by Q(A) = EP[1AξT ] =
∫

A
ξT dP.

Now turning back to our initial stock price process given by the SDE

dSt = (µ− q)Stdt + σStdWt,

with initial value S0 ∈ (0,∞), and with Wt as a P-Brownian motion, it is

apparent that we can write the SDE in the following form:

dSt = (r − q)Stdt + σSt(dWt + λdt), (2.20)

where

λ =
µ− r

σ
. (2.21)

λ is known as the market price of risk or the Sharpe ratio. It measures the

excess return over the risk-free interest rate per unit of standard deviation,

and therefore can be seen as a reward or risk premium per unit of risk.

Under the unique martingale measure Q on (Ω,F) given by means of the

Radon-Nikodym derivative

dP
dQ

= exp
(
− 1

2

(µ− r)2

σ2
T − µ− r

σ
WT

)
, (2.22)

W ∗
t , defined by dW ∗

t = dWt +λdt, is a Brownian motion. Thus, we can write

dSt = (r − q)Stdt + σStdW ∗
t , (2.23)

under Q. The solution is given by equation (2.9) where the expected rate

of return µ is replaced by the risk free interest rate r and Wt is replaced by

W ∗
t . Thus, under the martingale measure Q, the expected total return on

the asset equals the risk free rate, i.e.

EQ
t

[dSt

St

+ q dt
]

= r dt,
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where EQ
t [·] is the conditional expectation with respect to W ∗

t . Thus, risk

premiums can be ignored, and this, in turn, is exactly what would be required

by risk neutral market participants.

We continue the section by giving a description of the stock price behavior

under the new measure Q. Doing so, it is natural to consider the discounted

asset price process S∗t = DtSt where Dt is the discount process. This process

can be interpreted as (the inverse of) the money market account10, and is

defined by

Dt = e−rt. (2.24)

From Itô’s formula we get

d(DtSt) = DtSt(µ− q − r)dt + DtStσdWt.

The Q-dynamics of the discounted asset price process DtSt are:

d(DtSt) = −DtSt q dt + DtStσdW ∗
t .

Integrating both sides yields

e−rT ST = DtSt +

∫ T

t

DuSuσ dW ∗
u −

∫ T

t

DuSuq du ,

or equivalently

St +

∫ T

t

e−r(u−t)Suσ dW ∗
u = e−r(T−t)ST +

∫ T

t

e−r(u−t)Suq du (2.25)

for all t ∈ [0, T ]. Taking conditional expectations with respect to Q, we see

that

St = EQ
t

[
e−r(T−t)ST +

∫ T

t

e−r(u−t)Suq du
]
. (2.26)

Under the equivalent martingale measure Q, the asset price equals the ex-

pected value of the discounted dividends, augmented by the expected value

10In other terms, we use the money market account as a numéraire. ”Historically”,
this was done by Harrison and Pliska (1981). Although this choice seems natural, other
numéraires are possible for which the equivalent martingale measure exists.
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of the discounted terminal price. Notice that the discount factor depends on

the risk-free rate. Again, this implies that, under Q, the asset is priced as

if the market were risk neutral; hence the terminology risk neutral measure.

Furthermore, we have

EQ
t [ST ] = Ste

(r−q)(T−t) ∀t ∈ [0, T ]. (2.27)

The quantity on the right-hand side is known as the forward price of a divi-

dend paying stock.

The results concerning the martingale property of discounted asset prices are

not limited to stocks but can be transferred to other risky claims (see Broadie

and Detemple (2004) or Shreve (2004)). This essential result is known as the

Fundamental Theorem of Asset Pricing. Accordingly, in case of non-constant

interest rates, the price of a contingent claim F = F (S, t) with the payoff

function g(ST ) at maturity T is given by

F (S, t) = EQ
[DT

Dt

F (S, T )
∣∣∣Ft

]
= EQ

[
e−

∫ T
t rs ds g(ST )

∣∣∣ Ft

]
(2.28)

with

Dt = e−
∫ t
0 rsds.

The martingale property of the underlying asset, as well as derivative prices

and their representation as conditional expectations under Q, still hold in

higher-dimensional settings where there are several underlying risky assets.
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Chapter 3

The Mellin Transform

In this chapter we shall give a brief introduction to Mellin transforms. Our

presentation is based on Panini (2004), Chapters 2.2 and 2.3. In a first step,

the introduction is restricted to one dimension. We present and prove some

basic operational properties of the integral transform. Finally we extend

the definition to higher dimensions. A detailed presentation of the topic

including proofs and examples can be found in Titchmarsh (1986), Sneddon

(1972), and Debnath and Bhatta (2007) for the one dimensional case and in

Brychkov et al. (1992), Hai and Yakubovich (1992), and Reed (1944) for the

two dimensional case.

3.1 Definition and Basic Properties

Robert Hjalmar Mellin (1854-1933) gave his name to the Mellin transform,

although Riemann had already worked with this integral transform in his

seminal paper on prime numbers in 1876. It associates to a locally Lebesgue

integrable function f(x) defined over positive real numbers the complex func-

tion M(f(x), ω) defined by

M(f(x), ω) := f̃(ω) =

∫ ∞

0

f(x) xω−1 dx. (3.1)
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The Mellin transform variable ω is a complex number, ω = Re(ω) + iIm(ω),

where i is the imaginary unit, and Re(·) and Im(·) denote the real and

imaginary parts, respectively. The integral transform itself is defined on a

vertical strip in the ω-plane, whose boundaries are determined by the asymp-

totic behavior of f(x) as x → 0+ and x → ∞. The largest strip (a, b) in

which the integral converges is called the fundamental strip. The conditions

f(x) = O(xu) for x → 0+ and f(x) = O(xv) for x → ∞, when u > v, guar-

antee the existence of M(f(x), ω) in the strip (−u,−v). Thus, the existence

is granted for locally integrable functions, whose exponent in the order at 0

is strictly larger than the exponent of the order at infinity.

Conversely, if f(x) is an integrable function with fundamental strip (a, b),

then if c is such that a < c < b and f(c + it) is integrable, the equality

M−1(f̃(ω)) = f(x) =
1

2πi

∫ c+i∞

c−i∞
f̃(ω) x−ω dω (3.2)

holds almost everywhere. Moreover, if f(x) is continuous, then the equality

holds everywhere on (0,∞). Obviously, M and M−1 are linear integral op-

erators.

Two important examples of Mellin transforms are presented:

If f(x) = e−x, then

M(e−x, ω) = f̃(ω) =

∫ ∞

0

e−xxω−1dx = Γ(ω), Re(ω) > 0,

so the Gamma function is defined as the Mellin transform of e−x.

If f(x) = (ex − 1)−1, then

M
( 1

ex − 1
, ω

)
= f̃(ω) =

∫ ∞

0

1

ex − 1
xω−1dx

=
∞∑

n=1

∫ ∞

0

e−nxxω−1dx

=
∞∑

n=1

Γ(ω)

nω
= Γ(ω)ζ(ω), Re(ω) > 1,
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where we have used that

∞∑
n=0

e−nx =
1

1− e−x
,

and hence ∞∑
n=1

e−nx =
e−x

1− e−x
=

1

ex − 1
.

The function ζ(ω) =
∑∞

n=1
1

nω , Re(ω) > 1, is the famous Riemann zeta func-

tion.

Simple changes of variables in the definition of the Mellin transforms yield

a whole set of transformation rules and facilitate the computations. In par-

ticular, if f(x) admits the Mellin transform on the strip (a, b) and α, β are

positive reals, then

M(xαf(x), ω) = f̃(ω + α) on (a, b) ,

follows directly from the definition. The change of variable t = αx gives

immediately

M(f(αx), ω) = α−ωf̃(ω) on (a, b).

Further relations of this kind are

M(f(xα), ω) =
1

α
f̃
(ω

α

)
on (aα, bα) ,

M(f
(1

x

)
, ω) = −f̃(−ω) on (−b,−a) ,

M(xβf(xα), ω) =
1

α
f̃
(ω + β

α

)
on (aα, bα) ,

M(f(x) ln(x), ω) =
d

dω
f̃(ω) on (a, b).

The Mellin transform of a derivative equals

M(
d

dx
f(x), ω) = −(ω − 1)f̃(ω − 1),
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provided xω−1f(x) vanishes as x → 0+ and as x → ∞. The relation can be

rewritten as

M(x
d

dx
f(x), ω) = −ωf̃(ω)

provided xωf(x) vanishes as x → 0+ and as x → ∞. The statement is

proved straightforwardly using integration by parts. Finally, the property

can be extended to

M
( dn

dxn
f(x), ω

)
= (−1)n Γ(ω)

Γ(ω − n)
f̃(ω − n),

for n a positive integer, provided that for k = 0, 1, ..., n− 1

lim
x→0+

xω−k−1f (n−k−1)(x) = lim
x→∞

xω−k−1f (n−k−1)(x) = 0.

The Mellin transform of an integral of f(x) is given by

M
( ∫ x

0

f(t)dt, ω
)

= − 1

ω
f̃(ω + 1).

For proofs, examples and more relations of this kind, we refer to Titchmarsh

(1986), Sneddon (1972) or Debnath and Bhatta (2007).

The change of variables x = et in definition shows that the Mellin transform

is closely related to the (two-sided) Laplace and Fourier transform defined

by, respectively,

L(f(t), ω) =

∫ ∞

−∞
f(t) e−tω dt ,

F (f(t), ω) =

∫ ∞

−∞
f(t) eitω dt .

Now, making the transformation stated above shows that

M(f(x), ω) = L(f(e−x), ω) = F (f(e−x),−i ω). (3.3)
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3.2 Convolution Theorems

Important results for Mellin transforms are the celebrated convolution theo-

rems. Assume that f̃(ω) and g̃(ω) are two Mellin transforms of the functions

f(x) and g(x), respectively. Then

M(f(x)g(x), ω) =
1

2πi

∫ c+i∞

c−i∞
f̃(z)g̃(ω − z) dz, (3.4)

M

[∫ ∞

0

f(ξ)g
(x

ξ

)dξ

ξ
, ω

]
= f̃(ω)g̃(ω), (3.5)

and

M

[ ∫ ∞

0

f(xξ)g(ξ)dξ, ω

]
= f̃(ω)g̃(1− ω). (3.6)

PROOF: Assume that f̃(ω) and g̃(ω−z) have a common strip of analyticity.

Take the vertical line Re(ω) = c to lie within the common strip. Then
∫ ∞

0

f(x)g(x)xω−1 dx =

∫ ∞

0

g(x)xω−1 dx
1

2πi

∫ c+i∞

c−i∞
f̃(z) x−z dz

=
1

2πi

∫ c+i∞

c−i∞
f̃(z) dz

∫ ∞

0

g(x)xω−z−1 dx

=
1

2πi

∫ c+i∞

c−i∞
f̃(z)g̃(ω − z) dz.

This proves the first statement. The second follows directly from the defini-

tion. We have

M

[ ∫ ∞

0

f(ξ)g
(x

ξ

)dξ

ξ
, ω

]
=

∫ ∞

0

xω−1dx

∫ ∞

0

f(ξ)g
(x

ξ

)dξ

ξ

=

∫ ∞

0

f(ξ)
dξ

ξ

∫ ∞

0

xω−1g
(x

ξ

)
dx

=

∫ ∞

0

f(ξ)
dξ

ξ

∫ ∞

0

(ξη)ω−1g(η)ξdη

=

∫ ∞

0

f(ξ)ξω−1dξ

∫ ∞

0

ηω−1g(η)dη

= f̃(ω)g̃(ω),
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where we have used the transformation x = ηξ. The last equality follows

from

M

[∫ ∞

0

f(xξ)g(ξ)dξ, ω

]
=

∫ ∞

0

xω−1dx

∫ ∞

0

f(xξ)g(ξ)dξ

=

∫ ∞

0

g(ξ)dξ

∫ ∞

0

ηω−1ξ−ω+1f(η)
dη

ξ

=

∫ ∞

0

ξ1−ω−1g(ξ)dξ

∫ ∞

0

ηω−1f(η)dη

= g̃(1− ω)f̃(ω),

with η = xξ. This completes the proof. ¤
The first identity is known as Parseval’s identity. Note also the special case

∫ ∞

0

f(x)g(x)dx =
1

2πi

∫ c+i∞

c−i∞
f̃(z)g̃(1− z)dz. (3.7)

3.3 Mellin Transforms in Higher Dimensions

For higher dimensional problems one can extend the concept of Mellin trans-

forms to functions of several variables. For instance, the double Mellin trans-

form of a function f(x1, x2) is defined by

M(f(x1, x2), ω1, ω2) := f̃(ω1, ω2) =

∫ ∞

0

∫ ∞

0

f(x1, x2) xω1−1
1 xω2−1

2 dx1dx2 ,

(3.8)

for all functions f so that the double integral converges (see Brychkov et al.

(1992), p. 194). Conversely, the inverse double Mellin transform is given by

f(x1, x2) =
( 1

2πi

)2
∫ c1+i∞

c1−i∞

∫ c2+i∞

c2−i∞
f̃(ω1, ω2) x−ω1x−ω2 dω1dω2 , (3.9)

provided that the integral exists. Reed (1944) proves conditions for the

existence. A convolution-type theorem similar to the one dimensional case
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is given by

M−1(f̃(ω1, ω2)g̃(ω1, ω2), x1, x2) =

∫ ∞

0

∫ ∞

0

f(ξ, η)g
(x1

ξ
,
x2

η

) 1

ξη
dξdη .

(3.10)

More about the double Mellin transform can be found in Brychkov et al.

(1992), Hai and Yakubovich (1992), and Reed (1944).
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Chapter 4

American Options

This chapter discusses the pricing of standard American options on a single

underlying asset in the log-normal model. After reviewing the literature, we

give brief formulations of the problem. American options are analyzed in

detail in Wilmott et al. (1993), Kwok (1998), Elliott and Kopp (2005), and

Detemple (2006).

The main difference between European and American options is that Amer-

ican options can be exercised at any time before and including expiry. Since

the early exercise privilege should have a non-negative value, it is natural

to expect an American option to be worth more than the corresponding Eu-

ropean option. The additional cost for early exercise is called the ”early

exercise premium”. However, it turns out that, under special circumstances,

the early exercise premium becomes zero, indicating that it is never opti-

mal/rational to exercise the American option prior to expiry. Merton (1973)

shows that the American call option on a non-dividend-paying stock should

never be exercised early. Thus prices of European and American calls on

non-dividend paying stocks must be equal. This does not apply if the un-

derlying asset pays dividends. The American put option always offers an

optimal early exercise policy. The early exercise feature constitutes a ”free

boundary problem” (McKean (1965)) and makes the pricing and hedging of
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American-style derivatives mathematically challenging. The free boundary

or early exercise boundary specifies the conditions under which the Ameri-

can option should be exercised optimally prior to maturity. In the case of

an American put option, it is the set of all critical stock prices S∗(t) such

that, when the stock price at time t, St = S(t), falls below S∗(t), it becomes

optimal to exercise the American put at time t before maturity. Similarly,

the American call should be exercised prematurely if the stock price at time

t rises above some critical value S∗(t). However, the optimal early exercise

policy is not known ex ante and must be determined simultaneously as a part

of the valuation problem.

4.1 Literature Survey

4.1.1 Standard American Options

The pricing of American-style options and more exotic products has become

a challenging issue and demands sophisticated mathematical tools. Due to

the complexity, different analytical and numerical treatments have been de-

veloped. Consequently, a great field of research has been created throughout

the last three decades.

The extensive literature on numerical methods for American option pric-

ing comprises finite difference and element methods, penalty methods, bino-

mial trees and simulation techniques. Brennan and Schwartz (1978) initially

proposed a finite difference scheme for the purpose of pricing American op-

tions. A proof of the convergence of the algorithm is given in Jaillet et al.

(1990). The approach has been refined and extended in various ways and

is still in the focus of current interest (Zhao et al. (2007), Tangman et al.

(2008), Khaliq et al. (2008) and Hu et al. (2009) among others). Cox et al.

(1979) used a binomial tree lattice for an accurate valuation which still en-

joys great popularity. Extensions of the initial work can be found in Leisen
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and Reimer (1996), Leisen (1998), Rogers and Stapleton (1998), Chang and

Palmer (2007), Liang et al. (2007), and Jourdain and Zanette (2008), among

others. Moreover, Monte Carlo methods, firstly introduced by Boyle (1977),

were modified to solve the forward-simulation-backward-induction valuation

problem and to provide accurate American option prices. Good references are

the articles of Boyle et al. (1997), Broadie and Glasserman (1997), Longstaff

and Schwartz (2001), Rogers (2002), Glasserman and Yu (2004a), Glasser-

man and Yu (2004b) or Milstein et al. (2004). The least-square Monte Carlo

method of Longstaff and Schwartz (2001) turned out to have desirable prop-

erties and is widely used. Detailed analyses of the regression algorithm are

given in Clement et al. (2002), Moreno and Navas (2003), Stentoft (2004a),

and Stentoft (2004b). Recently, Belomestny and Milstein (2006) developed a

simulation-based framework for American options that is based on consump-

tion processes.

Besides numerical methods, one can distinguish two main categories of an-

alytical pricing approaches: the PDE-based approach and the probabilistic

approach. The different mathematical aspects lead to different but equivalent

formulations of the problem. The most prominent are

• Free boundary formulation

• Integral equation formulation

• Optimal stopping formulation

• Linear complementarity formulation

• Primal-dual formulation

• Viscosity solution formulation.

Firth (2005) offers a comprehensive survey. The first method, similar to the

solution of Stefan’s problem from physics, expresses the price of the Ameri-

can option as the solution of a non-homogeneous PDE. The PDE formulation
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goes back to Merton (1973), who first gave it an economic interpretation, al-

though McKean (1965) presented a first solution of the free boundary prob-

lem in form of an integral expression. Many alternative methods based on

the PDE approach were proposed for the purpose of pricing the American

option and the free boundary by approximation. These methods include

the works of Geske and Johnson (1984), MacMillan (1986), Barone-Adesi

and Whaley (1987), Barone-Adesi and Elliott (1991), Bunch and Johnson

(1992), Allegretto et al. (1995), or Ju and Zhong (1999). Of special interest

is the paper of Geske and Johnson (1984) in which the authors characterize

American options as compound European options. The mathematical com-

plexity is illustrated by the American put price, which is expressed as an

infinite series of multivariate normal terms. An alternative approximation

of American option prices that is based on an extension of the compound

option approach can be found in Lee and Paxson (2003).

Mallier and Alobaidi (2000) use Laplace transforms to value American op-

tions on dividend paying stocks. They derive an integral equation of the

Fredholm-type specifying the optimal exercise boundary depending on the

relationship between the risk-free interest rate and the dividend yield. Based

on the same integral transform, Zhu (2006a) presents another analytical ap-

proximation of the free boundary and the price of an American put option.

In a different publication (Zhu (2006b)), he derives a closed-form analyti-

cal solution for the non-homogeneous PDE of an American put option on a

non-dividend paying stock. The solution has the form of a Taylor’s series

expansion, which contains an infinite number of terms. Another approach

for solving the free boundary problem explicitly was recently proposed by

Muthuraman (2008).

The second set of methods comes from probability theory. It focuses on

expressing the current price of an American option as a discounted expec-

tation of the specific option’s payoff under the risk-neutral measure. This

optimal stopping characterization is perhaps the most intuitive description
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of the problem. A complete formulation goes back to Bensoussan (1984) and

Karatzas (1988). The paper of Jaillet et al. (1990) links the probabilistic

approach to variational inequalities. See also Parkinson (1977) and Myneni

(1992) for further references. The approach is used by Bjerksund and Stens-

land (1993) for a closed-form approximation that is based on a flat boundary

restriction. Another probabilistic approximation scheme is explored in Jour-

dain and Martini (2001) and Jourdain and Martini (2002).

At the beginning of the 1990’s, a breakthrough was achieved by characteriz-

ing the price of an American option as the sum of the corresponding Euro-

pean option plus an early exercise premium. These integral representations,

also known as the early exercise representations, have been obtained by Kim

(1990), Jacka (1991), and Carr et al. (1992). An analysis can also be found in

Jamshidian (1992). These representations are exact solutions and implicitly

characterize the free boundary in terms of a recursive integral equation. They

were the starting point for new approximations for the American option price

and/or the free boundary. Huang et al. (1996) use Richardson extrapolation

to solve the integral expression. Ju (1998) approximates the early exercise

boundary by a piece-wise exponential function. Bunch and Johnson (2000)

derive expressions for the early exercise boundary using a new characteri-

zation of the option’s price in terms of its time derivative. Sullivan (2000)

introduces a Gaussian quadrature method to approximate the price of an

American put using Chebyshev polynomials. Kallast and Kivinukk (2003)

apply Newton’s method for the approximation of the integrals arising in the

early exercise representation. The approximation error of these numerical

procedures is studied in Heider (2007). Two new analytical approximations

for the critical stock price and a detailed numerical comparison of some ex-

isting approximations are given in Li (2010b).

Other popular methods are those of Broadie and Detemple (1996), Carr

(1998) and Ingersoll (1998). Broadie and Detemple (1996) provide a pric-

ing method based on a lower and upper bound. Carr (1998) determines
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accurate prices using a randomization approach whereas Ingersoll (1998) ap-

proximates American options using barrier derivatives. See also Chiarella

et al. (1999) for an application of path integrals for the pricing of American

options. Broadie and Detemple (2004) give an excellent review of existing

tools and methods.

The key to determining the value of the American option is finding the critical

stock price S∗(t) for all t 5 T . Unfortunately, finding the critical stock price

of a finite living American option in closed form seems to be impossible11.

Even approximative solutions tend to be mathematically complex. The in-

vestigation of local and global properties12 of the critical stock price attracted

the interest of many researchers from the field of mathematical finance in-

cluding the works of Barles et al. (1995), Kuske and Keller (1998), Evans

et al. (2002), Bunch and Johnson (2000), Knessl (2001), Lamberton and Vil-

leneuve (2003), Chen and Chadam (2003), Mallier and Alobaidi (2004), Chen

and Chadam (2006), and Zhang and Li (2010), among others. Little et al.

(2000) derive a one-dimensional integral equation for the free boundary by

reducing the dimension of the underlying problem. Ševčovič (2001) analyzes

the free boundary of American call options using a Fourier integral trans-

formation and derives a nonlinear singular integral equation determining its

shape. Peskir (2005) applies a change-of-variable formula to prove that the

critical boundary of an American put option can be characterized as a unique

solution of an integral equation arising in the early exercise representation.

A numerical analysis of the early exercise boundary can be found in Basso

et al. (2002), and Basso et al. (2004).

Ekström (2004a) and Chen et al. (2008) give two different proofs for the

convexity of the free boundary of an American put option on a non-dividend

paying stock. The general case seems to be more subtle and is by the cur-

11For perpetual American options, S∗(t) is independent of time and can be expressed
in closed-form. Zhu’s (2006b) paper also contains an infinite series expression for S∗(t).

12By local properties we mean the short-time behavior of S∗(t), i.e. the behavior of
limt→T S∗(t). The term global accounts for monotonicity, convexity etc.
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rent date still an open problem. Chen et al. (2008), p. 187, point out that

private communications with Detemple suggest that, for a particular choice

of parameters, the early exercise boundary may not be convex.

Price relations between call and put options, commonly known as put call

parity relations, are easily established for European options. For American

options the situation is not so obvious. Parity and duality relations for Amer-

ican options and free boundaries are studied in Chesney and Gibson (1993),

Carr and Chesney (1994), and McDonald and Schroder (1998). Several ex-

tensions can be found in Detemple (2001), Fajardo and Mordecki (2003),

Fajardo and Mordecki (2006), and Carr and Lee (2009). Duality relations

for perpetual American options are derived in Alfonsi and Jourdain (2008).

In the last decade there has also been some interest in generalizing the pricing

framework of standard American options to a broader class of payoff func-

tions. Natural extensions are American straddles and strangles. Alobaidi and

Mallier (2002) apply a partial Laplace transform to locate the free boundary

of an American straddle using an integral equation. In Alobaidi and Mallier

(2006) the framework is extended to the valuation of American straddles

close to expiry. Using Fourier transform techniques, Kim’s (1990) method

has also been generalized by Chiarella and Ziogas (2005a) to the case of

American strangles.

4.1.2 Multidimensional and Exotic American Options

The extension to an analytical pricing of American options written on sev-

eral assets is not straightforward, since the characterization of the early exer-

cise region becomes highly nontrivial. Most numerical techniques use either

lattice-based approaches or focus on combining advanced simulation meth-

ods with stochastic dynamic programming. Generalizations of the binomial

tree approach of Cox et al. (1979) to multidimensional valuation problems

were proposed by Boyle (1988), Boyle et al. (1989), Madan et al. (1989) or

He (1990), among others. First algorithms for the valuation of multidimen-
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sional American options based on simulation are those of Barraquand and

Martineau (1995) and Raymar and Zwecher (1997). Broadie and Glasser-

man (2004) introduce a stochastic mesh method for pricing high-dimensional

American options. Other popular algorithms based on simulation can be

found in the articles of Andersen and Broadie (2004) and Ibáñez and Zap-

atero (2004). See also Ibáñez (2004) for a theoretical work based on Monte

Carlo methodology concerning prices and early exercise boundaries of securi-

ties with multiple early exercise opportunities. Theoretical results of Glasser-

man and Yu (2004b) are extended in Firth (2005) by employing regression

basis functions with a martingale property. The result is an improved Monte

Carlo simulation, and computationally cheap lower and upper bounds to the

American option price. Villeneuve and Zanette (2002) propose two numerical

methods for pricing American options on two stocks based on the ADI al-

gorithm. Berridge and Schumacher (2008) propose an irregular grid method

for the valuation. Li (2010a) presents a quasi-analytical method for pric-

ing multidimensional American options based on interpolating two arbitrage

bounds.

Although much progress has been made in the understanding of early exer-

cise boundaries of American options written on a single asset, the situation

complicates significantly in the multidimensional case. When the optimal

exercise policy is specified by several assets, the shape of the early exercise

region cannot be determined by simple arguments. Also, intuition may be

false. Gerber and Shiu (1996) analyze perpetual American options written

on two underlying assets. While the understanding of finite-living contracts

was befogged and mostly based on conjectures, it was Broadie and Detemple

(1997) who first give a profound mathematical and economic clarification.

Broadie and Detemple (1997) provide characterizations of the shape of early

exercise regions of American options on multiple assets and valuation for-

mulas for a class of convex and non-convex payoff functions. These include

options on the maximum of two assets, dual strike options, spread options,
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exchange options, options on the product and powers of the product, options

on the arithmetic average of two assets and American capped exchange op-

tions. This work has been completed and extended by Villeneuve (1999),

who provides additional results concerning the asymptotic behavior of the

early exercise boundary. He also presents further results concerning the val-

uation of various types of multidimensional American options, such as the

finite-living and perpetual American put on the minimum of two assets. See

also Detemple et al. (2003) for the valuation of American call options on the

minimum of two dividend-paying assets.

Analytical valuation of exotic options with the early exercise feature is simi-

larly demanding. Most research results are relatively new. Early theoretical

work based on a general PDE framework is Barraquand and Pudet (1996).

American Asian options are considered in Wu et al. (1999), Hansen and Jor-

gensen (2000), Peskir and Uys (2005), Dai and Kwok (2006) or Lo et al.

(2009). A lattice based framework for pricing American Asian options is

explored in Dai and Lyuu (2009). American-style lookback and barrier op-

tions are studied both theoretically and numerically in Karatzas and Wang

(2000), Gao et al. (2000), Dai (2000), Haug (2001), Ait-Sahlia et al. (2003),

Ait-Sahlia et al. (2004), Dai and Kwok (2004), Dai et al. (2004), Lai and Lim

(2004), Dai and Kwok (2005), Dai and Kwok (2006), and Chang et al. (2009).

Gaudenzi and Zanette (2009) present a method for pricing American barrier

options using binomial trees. An extension of the Monte Carlo approach to

the valuation of path-dependent American-style derivatives can be found in

Fujiwara and Kijima (2007). Analytical pricing of American chooser options

is examined in Detemple and Emmerling (2009).

4.1.3 Other Price Processes

Kim and Yu (1996) study the American option pricing problem for general

underlying asset price processes. Similarly, Detemple and Tian (2002) con-

sider American options for a class of diffusion processes. Based on the integral
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equation approach, they consider American options in stochastic volatility

models, with stochastic interest rates, American bond options, and American

options in the constant elasticity of variance (CEV) model. Ekström (2003)

derives the closed-form solution for a perpetual American put option in the

CEV model. Properties of American option prices in the CEV model are

investigated in Ekström (2004b). A general numerical approach to pricing

American-style derivatives that is applicable to any Markovian setting is pre-

sented in Laprise et al. (2006).

Pham (1997) and Zhang (1997) have done first theoretical work on American

options in a jump diffusion environment. Perpetual American options in a

jump-diffusion model are priced analytically in Mordecki (1999), and Aase

(2005), and in a general Levy model setting in Mordecki (2002). Pricing

formulas for finite-living American options are provided in Gukhal (2001),

and Gukhal (2004), where the compound option approach is extended to

jump-diffusion processes. Chiarella and Ziogas (2009) value American call

options in a jump-diffusion setting applying Fourier transforms. Solutions for

perpetual and non-perpetual American options can also be found in Ches-

ney and Jeanblanc (2004). Bounds for perpetual American option prices in

terms of standard American options are derived in Ekström (2006). Liang

et al. (2010) study the optimal convergence of a binomial tree scheme for

American options in a jump diffusion model. Bayraktar and Xing (2009)

develop an approximation scheme for American options on jump diffusions

by computing a sequence of functions iteratively. American and European

options in multi-factor jump-diffusion models are considered in Levendorskǐi

(2008).

Touzi (1999) establishes fundamental properties of American options on

stocks with stochastic volatility. Chevalier (2005) considers the asymptotic

behavior of the free boundary of American options in a local volatility model.

Numerical approaches to American options on stocks with stochastic volatil-

ity are those of Zvan et al. (1998), Clarke and Parrott (1999), Ikonen and
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Toivanen (2007), and Zhylyevskyy (2010). The articles of Tzavalis and Wang

(2003) and Chiarella and Ziogas (2005b) include frameworks based on an an-

alytical approximation.

In the last few years, much progress has been achieved in the research of

American options under general Levy processes. A good reference for the

application of Levy processes in finance is Schoutens (2003). Through the

years, a number of different Levy processes has been proposed for modeling

financial markets which fit empirical observations. Prominent candidates are

the symmetric Variance Gamma process (Madan and Seneta (1990)), asym-

metric Variance Gamma process (Madan et al. (1998)), the Normal Inverse

Gaussian process (Barndorff-Nielsen (1998)), and the CGMY process (Carr

et al. (2003) and Carr et al. (2007)). American options under the Vari-

ance Gamma process are considered in Hirsa and Madan (2004). Stentoft

(2008) proposes an econometric framework for pricing American options in a

model with time-varying volatility and conditional skewness and leptokurto-

sis, using GARCH processes and the Normal Inverse Gaussian distribution.

Further theoretical works on pricing American options under Levy processes

include the papers of Boyarchenko and Levendorskǐi (2002), Boyarchenko and

Levendorskǐi (2004), Boyarchenko and Levendorskǐi (2005), Boyarchenko and

Levendorskǐi (2008), Levendorskǐi (2004), Levendorskǐi (2006) and Eberlein

et al. (2008). Finite and infinite living American options for a large class

of Levy processes are also studied in Ivanov (2007). Lamberton and Mikou

(2008) consider the asymptotic behavior of the critical stock price of an Amer-

ican put in an exponential Levy model. Numerical methods are developed

in Almendral (2005), Almendral and Oosterlee (2007), Maller et al. (2006),

and Fang and Oosterlee (2009).
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4.2 Problem Formulation

4.2.1 Preliminaries

We consider American put and call options on dividend paying stocks. Let

PA(S, t) and CA(S, t) be the prices at the point (S, t), respectively. It is

obvious that the early exercise feature imposes the conditions

PA(S, t) ≥ (X − S(t))+, t ∈ [0, T ], (4.1)

for the American put, and

CA(S, t) ≥ (S(t)−X)+, t ∈ [0, T ], (4.2)

for the American call, respectively. Non-fulfillment of these conditions im-

plies arbitrage possibilities. For an informal proof, consider the contrary and

assume that at a certain time t the American put PA(S, t) is worth less than

its intrinsic payoff. Then riskless arbitrage profits are realized by buying

the option for PA(S, t), buying the asset for S(t) and immediately exercising

the option. The strategy results in a profit of X − S(t) − PA(S, t) > 0.

Similar arguments applied to the American call establish (4.2). The critical

stock price at which one should exercise the American option prematurely, is

called the optimal exercise boundary, the early exercise boundary, or simply

the free boundary. Due to its time dependency, it will be denoted by S∗(t).

It is clear that the early exercise boundaries will differ for American puts

and calls, and therefore the more proper notation of S∗(t) = S∗P (t) for puts

and S∗(t) = S∗C(t) for calls should be used13. Also, since early exercise is

only optimal for in-the-money options, it follows that 0 < S∗P (t) ≤ X and

X ≤ S∗C(t) < ∞ for all t ∈ [0, T ]. If confusion is excluded we will write S∗(t)

for the early exercise boundary for notational simplicity.

The American pricing problem must be solved in the domain

D = {(S, t) ∈ R+ × [0, T )}.
13Analytic relations between S∗P (t) and S∗C(t) will be studied later.
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The solution domain D is divided by S∗(t) into two sets, the continuation

region C and the stopping region S. The continuation region is the set of

all S and t combinations where the American option is alive, whereas in the

stopping region the American option is exercised or dead. More formally, we

have for the American put

CP = {(S, t) ∈ R+ × [0, T ) : PA(S, t) > (X − S)+},

SP = {(S, t) ∈ R+ × [0, T ) : PA(S, t) = (X − S)+}.
Similarly,

CC = {(S, t) ∈ R+ × [0, T ) : CA(S, t) > (S −X)+},

SC = {(S, t) ∈ R+ × [0, T ) : CA(S, t) = (S −X)+}.
The next figure summarizes the results graphically. It also indicates the

high contact or smooth pasting conditions

PA(S∗, t) = X − S∗(t) and
∂PA(S, t)

∂S

∣∣∣
S(t)=S∗(t)

= −1, (4.3)

for puts and

CA(S∗, t) = S∗(t)−X and
∂CA(S, t)

∂S

∣∣∣
S(t)=S∗(t)

= 1, (4.4)

for calls, respectively.

Proposition 4.2.1 Let PA(S, t) be the value of the American put option.

Then

• PA(S, t) is continuous on R+ × [0, T ].

• PA(·, t) is convex and non-increasing on R+ for every t ∈ [0, T ].

• PA(S, ·) is non-decreasing on [0, T ] for every S ∈ R+.

• −1 ≤ ∂P A(S,t)
∂S

≤ 0 in D and ∂P A(S,t)
∂S

= −1 in the interior of SP .
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Figure 4.1: Price functions of American options with strike price X = 100.

For the American put, the price function touches the intrinsic payoff tangen-

tially at (S∗(t), X − S∗(t)). For S < S∗(t), the American put price becomes

X−S. Similarly, the price function of an American call touches the intrinsic

payoff tangentially at (S∗(t), S∗(t) − X). For S > S∗(t), the American call

price becomes S −X.

Analogously, we have for the American call

• CA(S, t) is continuous on R+ × [0, T ].

• CA(·, t) is convex and non-decreasing on R+ for every t ∈ [0, T ].

• CA(S, ·) is non-increasing on [0, T ] for every S ∈ R+.

• 0 ≤ ∂CA(S,t)
∂S

≤ 1 in D and ∂CA(S,t)
∂S

= 1 in the interior of SC.

PROOF: The first part is proved in Elliott and Kopp (2005), the second in

Detemple (2006). ¤
As pointed out by Detemple (2006), the continuity of the price functions
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imply the stopping regions to be closed sets. Therefore, one may conclude

that the sets {S∗P (t) : t ∈ [0, T ]}, and {S∗C(t) : t ∈ [0, T ]} belong to SP and

SC , respectively. Finally, one deduces that

SP = {(S, t) ∈ R+ × [0, T ) : S ≤ S∗P (t)},

and

SC = {(S, t) ∈ R+ × [0, T ) : S ≥ S∗C(t)}.
The next proposition summarizes the results on the structure of the free

boundaries.

Proposition 4.2.2 Let S∗P (t) and S∗C(t) be the early exercise boundaries of

an American put and call options, respectively. Then

• S∗P (t) is continuous on [0, T ).

• S∗P (t) does not depend on the current price of the asset, S(0).

• S∗P (t) is linearly homogeneous in X.

• S∗P (t) is non-decreasing with respect to calendar time t, i.e. non-increasing

with respect to time to maturity τ = T − t, and has the limiting values

lim
t→T

S∗P (t) = lim
τ→0

S∗P (τ) = min(X,
r

q
X)

and limτ→∞ S∗P (τ) = γ
γ−1

X, where

γ = (−(r − q − 1
2
σ2)−

√
(r − q − 1

2
σ2)2 + 2rσ2)/σ2.

Similarly,

• S∗C(t) is continuous on [0, T ).

• S∗C(t) does not depend on the current price of the asset, S(0).

• S∗C(t) is linearly homogeneous in X.
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• S∗C(t) is non-increasing with respect to calendar time t, i.e. non-decreasing

with respect to time to maturity τ = T − t, and has the limiting values

lim
t→T

S∗C(t) = lim
τ→0

S∗C(τ) = max(X,
r

q
X)

and limτ→∞ S∗C(τ) = β
β−1

X, where

β = (−(r − q − 1
2
σ2) +

√
(r − q − 1

2
σ2)2 + 2rσ2)/σ2.

PROOF: Proofs for most of these statements can be found in the textbooks

of Elliott and Kopp (2005) or Detemple (2006). See also Myneni (1992).

Especially, the limiting values are due to Kim (1990). A proof of the linear

homogeneity property with respect to the strike price is given in Basso et al.

(2004), although it has also been obtained by Gao et al. (2000) concerning

American barrier options. ¤
The next figure displays the functional form of the free boundaries for a spe-

cial set of parameters. From the last proposition, it follows that the limiting

values for τ = 0 and τ = ∞ give lower and upper bounds for the free bound-

aries. Also, when r = 0 it follows that S∗P (τ) → 0 as τ → 0. Furthermore,

since S∗P (τ) decreases monotonically in τ , we have S∗P (τ) → 0 for all values of

τ . This shows that, for a zero interest rate, it is never optimal to exercise an

American put option prior to maturity. In a similar manner, when q = 0 we

have that S∗C(τ) →∞ as τ → 0. Again, since S∗C(t) increases monotonically

in τ , it follows that S∗C(τ) → ∞ for all values of τ . This result confirms

Merton’s (1973) result that it is never optimal to exercise an American call

on a non-dividend paying stock prematurely. Finally, it is worth mentioning

that, if there is no uncertainty in the underlying price process, i.e. σ = 0,

the early exercise boundaries become constants, min(X, r
q
X) for puts and

max(X, r
q
X) for calls, respectively. The intuition underlying these results is,

that if there is no uncertainty, it is profitable to exercise early if the payoffs

and local gains are non-negative: S ≤ X and rX − qS ≥ 0 for puts and

S ≥ X and qS − rX ≥ 0 for calls, respectively. For τ → ∞, the optimal
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Figure 4.2: Early exercise boundaries of American options as a function of

time to maturity with fixed parameters X = 100, r = q = 0.05, τ = 1.5

and σ = 0.2. The dotted lines represent the constant free boundaries of

perpetual American options. The exact numerical values are 53.67 for the

put and 186.33 for the call, respectively.

exercise policy becomes a constant and it becomes optimal to exercise at the

first hitting time of this constant barrier.

4.2.2 Optimal Stopping Formulation

Possibly the most intuitive formulation of the American pricing problem

comes from probability theory and is called the Optimal Stopping Formula-

tion. Since the early exercise feature imposes an optimal decision when the

contract has to be exercised, the valuation equation (2.28) must be general-
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ized to

F (S, t) = sup
τ∈Tt,T

EQ
t

[
e−r(τ−t)g(Sτ )

]
, (4.5)

where Tt,T is the set of all stopping times between t and T . If F (S, t) is an

American put, then

PA(S, t) = sup
τ∈Tt,T

EQ
t

[
e−r(τ−t)(X − S(τ))+

]
. (4.6)

From the theory of optimal stopping, it follows that the first optimal stopping

time after t is

%t = inf{u ∈ [t, T ] : PA(S, u) = (X − S(u))+}. (4.7)

Analogously, for CA(S, t). Similar to a European put, the American put is

expressed in terms of the expected discounted payoff under the risk neutral

probability measure Q. However, since the holder has the additional privilege

of exercising the option at any time, the supremum is taken over all possible

exercise times. One can use the formulation to prove all the properties of

the price function and the free boundary. However, good skills in stochastic

calculus are a prerequisite. Details can be found in the articles of Bensoussan

(1984), Karatzas (1988), Jacka (1991), and Myneni (1992).

4.2.3 Free Boundary Formulation

The free boundary formulation of American (call) options goes back to McK-

ean (1965). A good description is also given in Wilmott et al. (1993). A rig-

orous justification for the equivalence of the Optimal Stopping Formulation

and the Free Boundary Formulation is given in Carr et al. (1992) or Peskir

(2005).

The American put option problem can be formulated as the solution of

∂PA

∂t
+ (r − q) St

∂PA

∂S
+

1

2
σ2 S2

t

∂2PA

∂S2
− rPA = 0 , (4.8)
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on R+ × [0, T ), along with the boundary conditions

PA(S, T ) = (X − S(T ))+, (4.9)

PA(S∗, t) = X − S∗(t), (4.10)

∂PA(S, t)

∂S

∣∣∣
S(t)=S∗(t)

= −1. (4.11)

In the continuation region CP the price function is governed by the BSM-

PDE. The equation must be solved along the smooth pasting conditions.

Advanced theory of free boundary value problems shows that, using the

principle of Duhamel14, the solution can be written formally as

PA(S, τ) = e−rτ

∫ X

0

(X − S(T ))ψ(S(T ), S)dS(T ) (4.12)

+

∫ τ

0

e−rξ

∫ S∗(τ−ξ)

0

(rX − qS(ξ))ψ(S(ξ), S)dS(ξ)dξ,

where τ = T − t, ξ is a dummy variable for the time elapsed after time t,

and ψ(S(ξ), S) is the transition density function given by

ψ(S(ξ), S) =
1

S(ξ)
√

2πξσ2
exp

(
−

(
ln S(ξ)− ln S − (r − q − 1

2
σ2)ξ

)2

2ξσ2

)
.

(4.13)

The first part of (4.12) is the European put and the integral represents the

early exercise premium. A financial interpretation of the necessity of the

smooth pasting conditions in terms of a dynamic trading strategy is given

in Carr et al. (1992). Jamshidian (1992) gives an interpretation of the early

exercise premium as a delay exercise compensation. Further evaluations of

the integrals in (4.12) give the following characterization of the American

14See Kwok (1998).

48



put price:

PA(S, τ) = PE(S, τ)

+

∫ τ

0

rXe−rξN(−d2(S, S∗(τ − ξ), ξ))dξ

−
∫ τ

0

qSe−qξN(−d1(S, S∗(τ − ξ), ξ))dξ (4.14)

where τ = T − t, PE(S, τ) is the European put price from (2.12), and

d1(x, y, t) =
ln x

y
+ (r − q + 1

2
σ2)t

σ
√

t
,

d2(x, y, t) = d1(x, y, t)− σ
√

t.

Similar arguments give the American call price as

CA(S, τ) = CE(S, τ)

+

∫ τ

0

qSe−qξN(d1(S, S∗(τ − ξ), ξ))dξ

−
∫ τ

0

rXe−rξN(d2(S, S∗(τ − ξ), ξ))dξ, (4.15)

where τ = T − t, CE(S, τ) is the European call price from (2.15). These are

the early exercise representations due to Kim (1990), Jacka (1991), and Carr

et al. (1992).

4.2.4 Integral Equation Formulation

The decomposition formulas (4.14) and (4.15) express American option prices

in terms of the unknown early exercise boundary. However, since they hold in

the entire domain D, they particularly hold on the boundary of the exercise

region before maturity, where S(t) = S∗(t), t < T , or equivalently, S(τ) =

S∗(τ), τ > 0. Applying the conditions PA(S∗, τ) = X − S∗P (τ) for puts, and

CA(S∗, τ) = S∗C(τ)−X for calls respectively, each early exercise boundary is
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uniquely characterized implicitly by a recursive non-linear integral equation

X − S∗(τ) = PE(S∗, τ)

+

∫ τ

0

rXe−rξN(−d2(S
∗(τ), S∗(τ − ξ), ξ))dξ

−
∫ τ

0

qS∗(τ)e−qξN(−d1(S
∗(τ), S∗(τ − ξ), ξ))dξ (4.16)

where S∗(·) = S∗P (·) and

S∗(τ)−X = CE(S∗, τ)

+

∫ τ

0

qS∗(τ)e−qξN(d1(S
∗(τ), S∗(τ − ξ), ξ))dξ

−
∫ τ

0

rXe−rξN(d2(S
∗(τ), S∗(τ − ξ), ξ))dξ, (4.17)

for S∗(·) = S∗C(·). In each case the solution procedure starts at maturity

τ = 0 with S∗(0). Also, solving for the early exercise boundary S∗(τ) for

some τ > 0 requires the knowledge of S∗(ξ), 0 < ξ ≤ τ . A numerical im-

plementation of the early exercise representations consists of first solving

the integral equations for the free boundary, and computing the prices from

(4.14) and (4.15) taking the free boundary curve as an input.

Since the above formulae use the cumulative normal distribution function,

which itself is an integral expression, they may be regarded as two-dimensional

characterizations of the free boundary. Another two-dimensional integral

equation is presented in Kwok (1998). In the exercise region, however, the

price functions have nice properties which can be exploited to reduce the

dimensionality. Little et al. (2000) achieve a reduction to a one-dimensional

integral equation by exploiting the fact that, in the exercise region, the sec-

ond derivative of an American option with respect to the underlying must be

zero when evaluated at the boundary. In the case of an American put, their
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final result characterizing the free boundary is

S∗(τ)
(
σe−qτ− 1

2
d2
1(S∗(τ),X,τ) + q

√
2πτ

)
= rX

√
2πτ

+qS∗(τ)
√

τ

∫ τ

0

e−qξ− 1
2
d2
1(S∗(τ),S∗(τ−ξ),ξ)

(
d2(S

∗(τ), S∗(τ − ξ), ξ)

ξ

)
dξ

−rX
√

τ

∫ τ

0

e−rξ− 1
2
d2
2(S∗(τ),S∗(τ−ξ),ξ)

(
d1(S

∗(τ), S∗(τ − ξ), ξ)

ξ

)
dξ.(4.18)

The formula holds for any τ > 0 and does not involve the cumulative normal

distribution function. The corresponding expression for the free boundary

of an American call can be found in Detemple (2006). Additionally, Detem-

ple (2006) points out that such a reduction is not unique implying a whole

set of one-dimensional integral equations characterizing the free boundary

which may be used for a numerical computation. A numerical comparison of

the performance of a large family of analytical approximations for the early

exercise boundary is given in Li (2010b).

4.2.5 Other Formulations

The free boundary problem associated with the pricing of American options

can be formulated as a linear complementarity problem. The link between

the Optimal Stopping Formulation and variational inequalities is provided

in Jaillet et al. (1990). A concise derivation of the linear complementarity

formulation can be found in Kwok (1998) or Firth (2005).

The American option problem has also been formulated as a viscosity solu-

tion (Benth et al. (2003)). By applying the theory of dynamic programming,

the authors derive a semilinear BSM-type partial differential equation whose

unique solution equals the American option price. The formulation allows a

solution on a fixed domain, with no explicit free boundary. The “price” for

this is a discontinuous non-linearity. Benth et al. (2003) note that the partial

differential equation resulting from the viscosity solution formulation allows
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an interpretation as the infinitesimal version of the early exercise premium

representation.

A further method coming from probability theory, which was recently de-

veloped to characterize American options, is called the Primal Dual Formu-

lation. Rogers (2002) introduced the idea of a dual pricing procedure by

simulating the paths of the payoff and a suitable Lagrangian martingale.

This gives sharp upper bounds for the American option price. Similar ideas

for constructing tight bounds for the price were developed in Haugh and

Kogan (2004) and Andersen and Broadie (2004).

4.2.6 Symmetry Relations

The early exercise feature inherent in the pricing of American options implies

the non-validity of the put-call parity for European options. The parity can

be replaced by the so-called put-call symmetry. The symmetry relation for

American options is a theoretical statement that makes it possible to infer

the American call value on a dividend paying stock by a reparametrization of

the American put price function, and vise versa. Once the functional relation

is established, it additionally allows to infer the behavior of the early exercise

boundary of one contract when knowing the other. The proof is essentially

due to McDonald and Schroder (1998). Several extensions can be found in

Detemple (2001), Fajardo and Mordecki (2003), and Fajardo and Mordecki

(2006).

Let PA(S, τ) = PA(S, τ, X, r, q) be the price function of an American put

option. Then, prior to exercise, the corresponding call price CA(S, τ, X, r, q)

equals

CA(S, τ, X, r, q) = PA(X, τ, S, q, r), (4.19)

i.e. an American call on a dividend paying asset S with strike price X and

maturity date τ exactly equals an American put on a dividend paying asset

X with strike price S and the same maturity date τ . Also, the roles of r and
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q are interchanged. The intuition behind the symmetry comes from foreign

exchange options. If τP = τP (S,X, r, q) denotes the optimal exercise time

before maturity of an American put, then

τC(S, X, r, q) = τP (X,S, q, r), (4.20)

where τC(S, X, r, q) denotes the optimal exercise time for the correspond-

ing symmetric call. The relationship between the respective early exercise

boundaries is

S∗C(τ, S, r, q) =
SX

S∗P (τ,X, q, r)
, (4.21)

where S∗P (·) and S∗C(·) denote the critical stock prices of puts and calls,

respectively. Especially,

S∗C(τ,X, r, q) =
X2

S∗P (τ,X, q, r)
. (4.22)

The symmetry relation states that an American call price can be inferred

from the corresponding American put price by interchanging S and X and

r and q. The same is true for the free boundaries. A rigorous proof is given

in Detemple (2006). Another one can be found in Kwok (1998), where a

homogeneity property of the price functions is used to establish the relation.

An application of (4.22) is for instance

lim
τ→0

S∗C(τ, X, r, q) =
X2

limτ→0 S∗P (τ, X, q, r)
=

X2

min(X, q
r
X)

= max(X,
r

q
X).

The other extreme, limτ→∞ S∗C(τ,X, r, q), can be determined similarly using

(4.22) and the limiting value of S∗P (τ,X, r, q). The validity of the symmetry

relations is not restricted to the log-normal model and holds for a wide class

of diffusions.

53



Chapter 5

American Options and Mellin

Transforms

This chapter is concerned with the analytical pricing of American options

applying Mellin transforms15. The American put is considered first. There-

after, we propose a modification of the transform to be applicable for a valu-

ation of European and American calls. After proving all relevant theoretical

and economically meaningful properties of the derived formulae, we propose

the Gauss-Laguerre quadrature for an efficient pricing. Finally, we use the

pricing functions based on Mellin transforms to derive simple and accurate

approximations of the free boundary.

5.1 The American Put Option

Before dealing with American options it is convenient to start with their

European counterparts. Instead of focusing on a standard European put,

we consider a broader class of payoff functions called power options. Power

options offer flexibility to investors and are of practical interest since many

15The Sections 5.1, 5.2, and 5.3 are based on the papers Frontczak and Schöbel (2008),
Frontczak and Schöbel (2010), and Frontczak (2010a), respectively.
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OTC-traded options exhibit such a payoff structure. After characterizing

the payoff of a power put option, we show how the Mellin transform can be

applied to derive a BSM-like formula for this derivative. The results are used

afterwards to price the American put analytically.

5.1.1 The European Power Put Option

A European power put option is an option with a non-linear payoff given by

the difference between the strike price X and the underlying asset price at

maturity raised to a strictly positive power

PE
n (S, T ) = max(X − Sn

T , 0) , n > 0. (5.1)

For n = 1 we have the plain vanilla put as a special case. For references

to power options see for example Esser (2003) and Macovschi and Quittard-

Pinon (2006)16. Our goal is to derive a valuation formula for European power

put options using Mellin transform techniques. Assuming the log-normal risk

neutral dynamics of Chapter 2, we may apply Ito’s Lemma to St = Sn
t to get

dSt =
(
n(r − q) +

1

2
n(n− 1)σ2

)
St dt + nσ St dWt . (5.2)

The new process is identified as a new Geometric Brownian motion. Now it

is straightforward to derive the PDE for any derivative F written on S:

∂F

∂t
+ n(

1

2
σ2(n− 1) + (r − q))S ∂F

∂S +
1

2
σ2n2 S2 ∂2F

∂S2
− rF = 0. (5.3)

16Macovschi and Quittard-Pinon (2006) also study polynomial options with a payoff of
the form

PE
n (S, T ) = max(X − ST , 0)n, for n > 0 .

Since by the binomial theorem we have that

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k,

an extension of the framework to polynomial options may also be possible.
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Especially, for European power put options PE
n we have

∂PE
n

∂t
+ n(

1

2
σ2(n− 1) + (r − q))S ∂PE

n

∂S +
1

2
σ2n2 S2 ∂2PE

n

∂S2
− rPE

n = 0 (5.4)

with boundary conditions

lim
S→∞

PE
n (S, t) = 0 on [0, T ) , (5.5)

PE
n (S, T ) = θ(S) = (X − S)+ on [0,∞) , (5.6)

and

PE
n (0, t) = Xe−r(T−t) on [0, T ) . (5.7)

For n = 1 the solution to the above PDE is the celebrated BSM formula

given in (2.12).

Let P̃E
n (ω, t) denote the Mellin transform of PE

n (S, t). Then a straightforward

application shows that the Mellin transform of the PDE equals

∂P̃E
n (ω, t)

∂t
+

1

2
n2σ2

[
ω2 + ω(1− κ2)− κ1

]
P̃E

n (ω, t) = 0 (5.8)

where

κ2 =
n− 1

n
+

2(r − q)

nσ2

and

κ1 =
2r

n2σ2
.

This is a ordinary differential equation (ODE) which general solution is given

by

P̃E(ω, t) = c(ω) · e− 1
2
n2σ2·Q(ω)·t (5.9)

where we have set

Q(ω) = ω2 + ω(1− κ2)− κ1, (5.10)

and c(ω) a constant depending on the boundary conditions. Now, the termi-

nal condition gives

c(ω) = θ̃(ω, t) · e 1
2
n2σ2·Q(ω)·T (5.11)
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where

θ̃(ω, t) = θ̃(ω) = Xω+1
( 1

ω
− 1

ω + 1

)
(5.12)

is the Mellin transform of the terminal condition and is independent of n.

Using the inverse Mellin transform we see that the price of a European power

put option is given by

PE
n (S, t) =

1

2πi

∫ c+i∞

c−i∞
P̃E

n (ω, t)S−ω dω

=
1

2πi

∫ c+i∞

c−i∞
θ̃(ω, t) · e 1

2
n2σ2·Q(ω)·(T−t) S−ω dω (5.13)

with (S, t) ∈ (0,∞)×[0, T ), c ∈ (0,∞) a constant, {ω ∈ C | 0 < Re(ω) < ∞},
and θ̃(ω, t) and Q(ω) as defined in equations (5.12) and (5.10), respectively.

To derive a ”BSM-like” formula, we follow Panini and Srivastav (2004) and

use the convolution property of Mellin transforms from Chapter 3

PE
n (S, t) =

∫ ∞

0

θ(u) · φ
(S

u

)
· 1

u
du (5.14)

where φ(u) is to be determined. First, observe that for β1 = 1
2
n2σ2(T − t)

we have

1

2
n2σ2(T − t)Q(ω) = β1

[(
ω +

1− κ2

2

)2

−
(1− κ2

2

)2

− κ1

]

= β1

[
(ω + β2)

2 − β2
2 − κ1

]
(5.15)

where we have set β2 = 1−κ2

2
. Thus, we can write for the put price

PE
n (S, t) = e−β1(β2

2+κ1) 1

2πi

∫ c+i∞

c−i∞
θ̃(ω, t) · eβ1(ω+β2)2 S−ω dω. (5.16)

Now, φ̃(ω) is the Mellin transform of

eβ1(ω+β2)2 =

∫ ∞

0

φ(S)Sω−1 dS. (5.17)

Using the transformation (see Erdelyi et al. (1954))

eθω2

=

∫ ∞

0

1

2
√

πθ
e−

(lnS)2

4θ Sω−1 dS , Re(θ) ≥ 0
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we get

φ(S) = φ(S, t) =
Sβ2

nσ
√

2π(T − t)
e
− 1

2

(
lnS

nσ
√

T−t

)2

. (5.18)

The European power put price can therefore be expressed as

PE
n (S, t) =

e−β1(β2
2+κ1)

nσ
√

2π(T − t)

∫ X

0

(X − u)
(S

u

)β2

e
− 1

2

(
ln Su

nσ
√

T−t

)2

· 1

u
du

=
e−β1(β2

2+κ1)

nσ
√

2π(T − t)
·X · Sβ2

∫ X

0

1

uβ2+1
e
− 1

2

(
ln Su

nσ
√

T−t

)2

du

− e−β1(β2
2+κ1)

nσ
√

2π(T − t)
· Sβ2

∫ X

0

1

uβ2
e
− 1

2

(
ln Su

nσ
√

T−t

)2

du (5.19)

with

β1 =
1

2
n2σ2(T − t) , β2 =

1− κ2

2
,

and

κ2 =
n− 1

n
+

2(r − q)

nσ2
.

To evaluate the first integral use the new variable

γ =
1

nσ
√

T − t

(
ln

(S
u

)
− β2n

2σ2(T − t)
)
.

For the second integral use the slightly different transformation

γ =
1

nσ
√

T − t

(
ln

(S
u

)
− (β2 − 1)n2σ2(T − t)

)
.

Finally, the first part of (5.19) is determined as

X e−r(T−t) N(−d2,n(S, X, T ))

where

d2,n(S, X, T ) =
ln S

X
+ n

(
r − q − 1

2
σ2

)
(T − t)

nσ (T − t)
. (5.20)
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The second integral is evaluated using the transformation suggested above

and the result is

−e((n−1)r−nq+ 1
2
n(n−1)σ2)(T−t) S N(−d1,n(S, X, T ))

where

d1,n(S, X, T ) =
ln S

X
+ n

(
r − q + (n− 1

2
)σ2

)
(T − t)

nσ (T − t)
. (5.21)

The price of a power put option is therefore given by

PE
n (S, t) = X e−r(T−t) N(−d2,n)− e((n−1)r−nq+ 1

2
n(n−1)σ2)(T−t) S N(−d1,n)

(5.22)

with S = Sn, and d1,n and d2,n given in (5.21) and (5.20), respectively.

5.1.2 The American Put Option

Although possible, we don’t pursue the valuation of American power options.

Instead we focus our attention to the classical problem of valuing plain vanilla

options on dividend paying stocks. Therefore, n = 1 is fixed.

Following Kwok (1998) we extend the domain of the BSM PDE by setting

PA(S, t) = X − S(t) for S(t) < S∗(t). Then PA = PA(S, t) satisfies the

non-homogeneous PDE:

∂PA

∂t
+ (r − q) S

∂PA

∂S
+

1

2
σ2 S2 ∂2PA

∂S2
− rPA = f (5.23)

with

f = f(S, t) =

{
− rX + qS , for 0 < S ≤ S∗(t)

0 , for S > S∗(t)
(5.24)

on (0,∞)× [0, T ). Furthermore, we have the boundary conditions

lim
S→∞

PA(S, t) = 0 on [0, T ) , (5.25)

PA(S, T ) = θ(S) = (X − ST )+ on [0,∞) (5.26)

59



and

PA(0, t) = X on [0, T ). (5.27)

The ”smooth pasting conditions” at S∗(t) are:

PA(S∗, t) = X − S∗(t) and
∂PA

∂S

∣∣∣
S(t)=S∗(t)

= −1. (5.28)

The Mellin transform of (5.23) is given by

∂P̃A(ω, t)

∂t
+

1

2
σ2

[
ω2 + ω(1− κ2)− κ1

]
P̃A(ω, t) = f̃(ω, t) (5.29)

where κ2 = 2(r−q)
σ2 and κ1 = 2r

σ2 , and

f̃(ω, t) =

∫ ∞

0

f(S, t) Sω−1dS = −rX

ω
(S∗(t))ω +

q

ω + 1
(S∗(t))ω+1. (5.30)

The general solution to this non-homogeneous ODE is given by

P̃A(ω, t) = c(ω)e−
1
2
σ2·Q(ω)·t

+

∫ T

t

rX

ω
(S∗(x))ωe

1
2
σ2·Q(ω)·(x−t) dx

−
∫ T

t

q

ω + 1
(S∗(x))ω+1e

1
2
σ2·Q(ω)·(x−t) dx

= θ̃(ω)e
1
2
σ2·Q(ω)·(T−t)

+

∫ T

t

rX

ω
(S∗(x))ωe

1
2
σ2·Q(ω)·(x−t) dx

−
∫ T

t

q

ω + 1
(S∗(x))ω+1e

1
2
σ2·Q(ω)·(x−t) dx (5.31)

where Q(ω) is defined in equation (5.10) and θ̃(ω) is the terminal condition

given in equation (5.12). Again, Mellin inversion of (5.31) yields

PA(S, t) =
1

2πi

∫ c+i∞

c−i∞
θ̃(ω) · e 1

2
σ2·Q(ω)·(T−t) S−ω dω

+
1

2πi

∫ c+i∞

c−i∞

∫ T

t

rX

ω

( S

S∗(x)

)−ω

e
1
2
σ2·Q(ω)·(x−t) dxdω

− 1

2πi

∫ c+i∞

c−i∞

∫ T

t

qS∗(x)

ω + 1

( S

S∗(x)

)−ω

e
1
2
σ2·Q(ω)·(x−t) dxdω. (5.32)
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Now, notice that the first term in equation (5.32) is the plain vanilla Euro-

pean put price from (5.13) and the last two terms capture the early exercise

premium. Therefore, we finally arrive at

Theorem 5.1.1 The American put option PA(S, t) satisfies the decomposi-

tion

PA(S, t) = PE(S, t)

+
1

2πi

∫ c+i∞

c−i∞

∫ T

t

rX

ω

( S

S∗(x)

)−ω

e
1
2
σ2·Q(ω)·(x−t) dxdω

− 1

2πi

∫ c+i∞

c−i∞

∫ T

t

qS∗(x)

ω + 1

( S

S∗(x)

)−ω

e
1
2
σ2·Q(ω)·(x−t) dxdω , (5.33)

where (S, t) ∈ (0,∞)× [0, T ), c ∈ (0,∞), {ω ∈ C | 0 < Re(ω) < ∞}, and

Q(ω) = ω2 + ω(1− κ2)− κ1 ,

with κ2 = 2(r−q)
σ2 , and κ1 = 2r

σ2 . The implicit equation for the free boundary is

given by

X − S∗(t) = PE(S∗(t), t)

+
1

2πi

∫ c+i∞

c−i∞

∫ T

t

rX

ω

( S∗(t)
S∗(x)

)−ω

e
1
2
σ2·Q(ω)·(x−t) dxdω

− 1

2πi

∫ c+i∞

c−i∞

∫ T

t

qS∗(x)

ω + 1

( S∗(t)
S∗(x)

)−ω

e
1
2
σ2·Q(ω)·(x−t) dxdω. (5.34)

We point out that equation (5.34) can be used to recover the asymptotics

regarding the optimal exercise price of American put options at expiry. The

first part of the proof below partially follows Chiarella et al. (2004).

Proposition 5.1.2 If t → T the free boundary of the American put satisfies

lim
t→T

S∗(t) = min
(
X,

r

q
X

)
. (5.35)

61



PROOF: Change the time variable, t 7→ τ = T − t, to obtain

X − S∗(τ) = PE(S∗(τ), τ)

+
1

2πi

∫ τ

0

∫ c+i∞

c−i∞

rX

ω

(S∗(τ)

S∗(x)

)−ω

e
1
2
σ2·Q(ω)·(τ−x) dωdx

− 1

2πi

∫ τ

0

∫ c+i∞

c−i∞

qS∗(x)

ω + 1

(S∗(τ)

S∗(x)

)−ω

e
1
2
σ2·Q(ω)·(τ−x) dωdx . (5.36)

A simple factorization and rearrangement produces the following implicit

equation for S∗(τ):

S∗(τ)

X
=

1− e−rτ + e−rτN(d2(S
∗(τ), X, τ))− r · I1(τ)

1− e−qτ + e−qτN(d1(S∗(τ), X, τ))− q · I2(τ)
(5.37)

where

I1(τ) =
1

2πi

∫ τ

0

∫ c+i∞

c−i∞

1

ω

(S∗(τ)

S∗(x)

)−ω

e
1
2
σ2·Q(ω)·(τ−x) dωdx (5.38)

and

I2(τ) =
1

2πi

∫ τ

0

∫ c+i∞

c−i∞

1

ω + 1

(S∗(τ)

S∗(x)

)−(ω+1)

e
1
2
σ2·Q(ω)·(τ−x) dωdx . (5.39)

Notice first that the critical stock price is bounded from above, i.e. S∗(τ) ≤
X, ∀τ > 0 (see for example Jacka (1991), Prop. 2.2.2). To find the value

S∗(0+) = limτ→0+ S∗(τ), in a first step we evaluate the limits involving d1

and d2. We have

lim
τ→0+

d1(S
∗(τ), X, τ) =

{
0 , for S∗(0+) = X

−∞ , for S∗(0+) < X .

Similarly,

lim
τ→0+

d2(S
∗(τ), X, τ) =

{
0 , for S∗(0+) = X

−∞ , for S∗(0+) < X .

If limτ→0+ S∗(τ) = X we have

lim
τ→0+

N(d1(S
∗(τ), X, τ)) = lim

τ→0+
N(d2(S

∗(τ), X, τ)) =
1

2
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and

lim
τ→0+

S∗(τ)

X
=

1
2
− limτ→0+ r · I1(τ)

1
2
− limτ→0+ q · I2(τ)

. (5.40)

It is easily verified that both expressions I1(τ) and I2(τ) tend to zero as

τ → 0+. As a result we have limτ→0+ S∗(τ) = X being a possible solution.

In the second case where limτ→0+ S∗(τ) < X, the implicit equation for S∗(τ)

reads

lim
τ→0+

S∗(τ)

X
=

r

q
· lim

τ→0+

I1(τ)

I2(τ)
. (5.41)

But

I1(τ) =

∫ τ

0

1

2πi

∫ c+i∞

c−i∞

1

ω

(S∗(τ)

S∗(x)

)−ω

e
1
2
σ2·Q(ω)·(τ−x) dωdx

and a simple application of the residue theorem (see for example Freitag and

Busam (2000)) shows that the inner integral equals

1

2πi

∫ c+i∞

c−i∞

1

ω

(S∗(τ)

S∗(x)

)−ω

e
1
2
σ2·Q(ω)·(τ−x) dω = e−r(τ−x) (5.42)

and thus

I1(τ) =
1

r

(
1− e−rτ

)
. (5.43)

In the same manner we apply the residue theorem to the second integral to

get

I2(τ) =
1

q

(
1− e−qτ

)
. (5.44)

Obviously, the above calculations can be used to prove the limits in the first

case, i.e. for limτ→0+ S∗(τ) = X, as well. Putting the results together we

arrive at

lim
τ→0+

S∗(τ)

X
=

r

q
· lim

τ→0+

1
r

(
1− e−rτ

)

1
q

(
1− e−qτ

) = lim
τ→0+

1− e−rτ

1− e−qτ
. (5.45)

Now, use the rule of l’Hospital to establish the second assertion. Recalling

that the result holds only when S∗(0+) < X, it follows that r < q. Combining

both results confirms Kim’s formula. ¤
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5.1.3 The Equivalence of Integral Representations

In this section we prove explicitly the equivalence of three types of integral

representations for American put options17. We show the equivalence of the

integral representation derived herein, the representation obtained by Kim

(1990), Jacka (1991), and Carr et al. (1992).

Proposition 5.1.3 The following three representations for American put

options are equivalent:

• Representation derived herein using Mellin transforms

PA(S, t) = PE(S, t)

+
1

2πi

∫ c+i∞

c−i∞

∫ T

t

rX

ω

( S

S∗(x)

)−ω

e
1
2
σ2·Q(ω)·(x−t)dxdω

− 1

2πi

∫ c+i∞

c−i∞

∫ T

t

qS∗(x)

ω + 1

( S

S∗(x)

)−ω

e
1
2
σ2·Q(ω)·(x−t)dxdω (5.46)

with Q(ω) given in (5.10).

• Representation obtained by Kim (1990) and Jacka (1991)

PA(S, τ) = PE(S, τ)

+

∫ τ

0

rXe−r(τ−ξ) ·N(−d2(S, S∗(ξ), τ − ξ))dξ

−
∫ τ

0

qSe−q(τ−ξ) ·N(−d1(S, S∗(ξ), τ − ξ))dξ (5.47)

where τ = T − t,S = S(τ),S ≥ S∗(τ), and

d1(x, y, t) =
ln x

y
+ (r − q − 1

2
σ2)t

σ
√

t
,

d2(x, y, t) = d1(x, y, t)− σ
√

t.

17Chiarella et al. (2004) use the incomplete Fourier transform to survey the integral
representations of American call options.
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• Decomposition derived by Carr et al. (1992))

PA(S, τ) = max(X − S, 0) +
1

2
σ2S

∫ τ

0

e−q(τ−ξ)

σ
√

τ − ξ
·N ′

(−d1(S,X, τ − ξ))dξ

+

∫ τ

0

rXe−r(τ−ξ)
[
N(−d2(S, S∗(ξ), τ − ξ))−N(−d2(S, X, τ − ξ))

]
dξ

−
∫ τ

0

qSe−q(τ−ξ)
[
N(−d1(S, S∗(ξ), τ − ξ))−N(−d1(S, X, τ − ξ))

]
dξ(5.48)

where τ = T − t,S = S(τ),S ≥ S∗(τ), and d1 and d2 as above.

PROOF: A change of the time variable in the ”Mellin representation” t 7→
τ = T − t leads to

PA(S, τ) = PE(S, τ)

+
1

2πi

∫ τ

0

∫ c+i∞

c−i∞
rX

1

ω

( S

S∗(x)

)−ω

e
1
2
σ2·Q(ω)·(τ−x)dωdx

− 1

2πi

∫ τ

0

∫ c+i∞

c−i∞

qS∗(x)

ω + 1

( S

S∗(x)

)−ω

e
1
2
σ2·Q(ω)·(τ−x)dωdx

or using a more compact form

PA(S, τ) = PE(S, τ)−
∫ τ

0

1

2πi

∫ c+i∞

c−i∞
f̃(ω, x) · φ̃(ω, x) · S−ω dωdx

with

f̃(ω, x) = −rX

ω
(S∗(x))ω +

q

ω + 1
(S∗(x))ω+1

and

φ̃(ω, x) = e
1
2
σ2·Q(ω)·(τ−x)

the Mellin transforms of f(S, x) and φ(S, x), respectively. Using the convo-

lution theorem we can write

PA(S, τ) = PE(S, τ)−
∫ τ

0

∫ ∞

0

f(u, x) · φ
(S

u
, x

)
· 1

u
du dx.

Now, we have

PA(S, τ) = PE(S, τ)−
∫ τ

0

h(S, x)dx (5.49)
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where

h(S, x) = −rXe−β1(β2
2+κ1) Sβ2

σ
√

2π(τ − x)

∫ S∗(x)

0

1

uβ2+1
e
− 1

2

(
ln S

u
σ
√

τ−x

)2

du

+qe−β1(β2
2+κ1) Sβ2

σ
√

2π(τ − x)

∫ S∗(x)

0

1

uβ2
e
− 1

2

(
ln S

u
σ
√

τ−x

)2

du, (5.50)

and β1 = 1
2
σ2 (τ − x), β2 = 1−κ2

2
, κ1 = 2r

σ2 , and κ2 = 2(r−q)
σ2 . Transforming

variables

γ =
1

σ
√

τ − x

(
ln

(S

u

)
− βσ2(τ − x)

)
(5.51)

for the first integral in (5.50), and

γ =
1

σ
√

τ − x

(
ln

(S

u

)
− (β − 1)σ2(τ − x)

)
(5.52)

for the second yields to

h(S, x) = −rX e−r(τ−x) ·N(−d2(S, S∗(x), τ − x))

+qS e−q(τ−x) ·N(−d1(S, S∗(x), τ − x)). (5.53)

Finally, change the variables from x to ξ and the equivalence of (5.46) and

(5.47) follows.

For the second equivalence, observe that we can write the European put as

PE(S, τ) = X ·H(X − S)−X ·H(X − S)

+Xe−rτN(−d2(S,X, τ))− Se−qτN(−d1(S,X, τ)) ,(5.54)

where H(x) is the Heaviside step function given by

H(x) =





1 , for x > 0

1

2
, for x = 0

0 , for x < 0 .
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The reason for the appearance of the factor 1/2 at the point of discontinuity

will become obvious below. Given the limit result that

lim
τ→0

d1(S, X, τ) = lim
τ→0

d2(S, X, τ) =





∞ for S > X

0 for S = X

−∞ for S < X

we can express PE(S, τ) as

PE(S, τ) = X ·H(X − S)− S e−qτN(−d1(S, X, τ)) +
[
X e−rξN(−d2(S, X, ξ))

]∣∣∣
τ

0

= X ·H(X − S)− S e−qτN(−d1(S, X, τ))

+X

∫ τ

0

[
e−rξN

′
(−d2(S,X, ξ)) · ∂

∂ξ
(−d2(S,X, ξ))

−r e−rξN(−d2(S, X, ξ))
]
dξ

= X ·H(X − S)− S e−qτN(−d1(S, X, τ))

−r X

∫ τ

0

e−rξN(−d2(S, X, ξ)) dξ

+X

∫ τ

0

e−rξN
′
(−d2(S, X, ξ))

∂

∂ξ

[− (d1(S, X, ξ)− σ
√

ξ)
]
dξ

= X ·H(X − S)− S e−qτN(−d1(S, X, τ))

−r X

∫ τ

0

e−rξN(−d2(S, X, ξ)) dξ

+X

∫ τ

0

e−rξN
′
(−d2(S, X, ξ))

∂

∂ξ
(−d1(S, X, ξ)) dξ

+X

∫ τ

0

e−rξN
′
(−d2(S, X, ξ))

σ

2
√

ξ
dξ , (5.55)

where N
′
(x) = n(x) is the density function of a standard normal distributed

random variable x. Now, we have

N
′
(−d2(S, X, ξ)) = N

′
(d2(S, X, ξ))

N
′
(−d1(S, X, ξ)) = N

′
(d1(S, X, ξ))

and

Se−qξN
′
(d1(S,X, ξ)) = Xe−rξN

′
(d2(S, X, ξ)) .
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Thus,

PE(S, τ) = (X − S) ·H(X − S) + S ·H(X − S)− S e−qτN(−d1(S, X, τ))

−r X

∫ τ

0

e−rξN(−d2(S, X, ξ)) dξ

+S

∫ τ

0

e−qξN
′
(−d1(S, X, ξ))

∂

∂ξ
(−d1(S, X, ξ)) dξ

+S

∫ τ

0

e−qξN
′
(−d1(S, X, ξ))

σ

2
√

ξ
dξ

= max(X − S, 0)

+
1

2
σ2 S

∫ τ

0

e−qξ N
′
(−d1(S, X, ξ))

1

σ
√

ξ
dξ

−r X

∫ τ

0

e−rξN(−d2(S, X, ξ)) dξ

−S
[
e−qτN(−d1(S, X, τ))−H(X − S)

−
∫ τ

0

e−qξN
′
(−d1(S, X, ξ))

∂

∂ξ
(−d1(S, X, ξ))

]
dξ. (5.56)

Finally,

PE(S, τ) = max(X − S, 0) +
1

2
σ2 S

∫ τ

0

e−qξ ·N ′
(−d1(S, X, ξ))

1

σ
√

ξ
dξ

−r X

∫ τ

0

e−rξN(−d2(S, X, ξ)) dξ

−S
[[

e−qξN(−d1(S, X, ξ))
]∣∣∣

τ

0

−
∫ τ

0

e−qξN
′
(−d1(S, X, ξ))

∂

∂ξ
(−d1(S, X, ξ)) dξ

]
. (5.57)

Changing the integration variable from ξ to τ − ξ gives

PE(S, τ) = max(X − S, 0) +
1

2
σ2 S

∫ τ

0

e−q(τ−ξ)

σ
√

τ − ξ
·N ′

(−d1(S, X, τ − ξ)) dξ

−r X

∫ τ

0

e−r(τ−ξ)N(−d2(S, X, τ − ξ)) dξ

+qS

∫ τ

0

e−q(τ−ξ)N(−d1(S,X, τ − ξ)) dξ . (5.58)
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Now, substitute this expression into Kim’s representation and rearrange

terms. This completes the proof. ¤

Remark 5.1.4 It is worth mentioning that a second proof for the first equiv-

alence was found by the author. This proof makes no explicit use of the

convolution theorem.

SECOND PROOF: The starting point is equation (5.1.16) in Panini and

Srivastav (2004). Including dividends it is straightforward to extend the

result and show that equation (5.46) is equivalent to

PA(S, τ) = PE(S, τ) +

∫ τ

0

I1(ξ)dξ −
∫ τ

0

I2(ξ)dξ , (5.59)

where

I1(ξ) =
rX

2
√

πζ̄
e−rξ e−ζ̄c2+βc

∫ ∞

0

e−cx e
− (β−x)2

4ζ̄ dx (5.60)

and

I2(ξ) =
qS∗(τ − ξ)

2
√

πζ̄
e−rξ e−ζ̄c2+βc

∫ ∞

0

e−(c+1)x e
− (β−x)2

4ζ̄ dx (5.61)

with ξ = τ − x, ζ̄ = 1
2
σ2ξ and

β = ζ̄(2c + 1− κ2)− ln
( S(τ)

S∗(τ − ξ)

)
. (5.62)

Now, the integrals can be expressed as

I1(ξ) =
rX

2
√

πζ̄
e−rξ e−ζ̄c2+βc e

− b
4ζ̄

∫ ∞

0

e
−x2

4ζ̄ e
−a1x

4ζ̄ dx (5.63)

and

I2(ξ) =
qS∗(τ − ξ)

2
√

πζ̄
e−rξ e−ζ̄c2+βc e

− b
4ζ̄

∫ ∞

0

e
−x2

4ζ̄ e
−a2x

4ζ̄ dx (5.64)

with

a1 = 2ζ̄(κ2 − 1) + 2 ln
( S(τ)

S∗(τ − ξ)

)
,
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a2 = 2ζ̄(κ2 + 1) + 2 ln
( S(τ)

S∗(τ − ξ)

)
,

and b = β2. From Gradshteyn and Ryzhik (2007), p.336, we have

∫ ∞

0

exp
(
− x2

4β
− γx

)
dx =

√
πβ exp (βγ2)

[
1− Φ(γ

√
β)

]
(5.65)

for Re(β) > 0 and where Φ(x) denotes the error function at x

Φ(x) =
2√
π

∫ x

0

e−t2dt .

After simplifying the expressions for I1(ξ) and I2(ξ) become, respectively:

I1(ξ) =
rX

2

(S∗(τ − ξ)

S(τ)

)c

e−rξ eζ̄c(c+1−κ2) e
1
4ζ̄

(
a2
1
4
−b

)[
1− Φ

(a1

4ζ̄

)]

=
rX

2

(S∗(τ − ξ)

S(τ)

)c(S∗(τ − ξ)

S(τ)

)−c

e−rξ
[
1− Φ

(a1

4ζ̄

)]

=
rX

2
e−rξ

[
1− Φ

(a1

4ζ̄

)]
(5.66)

and

I2(ξ) =
qS∗(τ − ξ)

2

(S∗(τ − ξ)

S(τ)

)c

e−rξ eζ̄c(c+1−κ2) e
1
4ζ̄

(
a2
2
4
−b

)[
1− Φ

(a2

4ζ̄

)]

=
qS∗(τ − ξ)

2

(S∗(τ − ξ)

S(τ)

)c( S(τ)

S∗(τ − ξ)

)c+1

e−rξe
1
4
ζ̄[(κ2+1)2−(κ2−1)2]

[
1− Φ

(a2

4ζ̄

)]

=
qS(τ)

2
e−qξ

[
1− Φ

(a2

4ζ̄

)]
. (5.67)

Using the connection between the error function and the cumulative standard

normal distribution function

Φ(x) = 2 N(
√

2 x)− 1 (5.68)

we have, respectively:

I1(ξ) = rX e−rξ N
(
− a1

2

1√
2ζ̄

)
(5.69)
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and

I2(ξ) = qS(τ) e−qξ N
(
− a2

2

1√
2ζ̄

)
. (5.70)

Finally, observe that

−a1

2

1√
2ζ̄

=
1

2
σ (1− κ2)

√
ξ − 1

σ
√

ξ
ln

( S(τ)

S∗(τ − ξ)

)
(5.71)

and

−a2

2

1√
2ζ̄

= −1

2
σ (1 + κ2)

√
ξ − 1

σ
√

ξ
ln

( S(τ)

S∗(τ − ξ)

)
(5.72)

and Kim’s integral representation follows immediately. This completes the

second proof. ¤

5.1.4 Perpetual American Puts and Mellin Transforms

In this section, we show how to use the Mellin transform approach to derive

closed-form solutions for perpetual American put options. An extension of

Panini and Srivastav (2005) to dividend-paying stocks is provided.

Proposition 5.1.5 It T → ∞ the free boundary of the perpetual American

put becomes

S∗∞ =
ω2

ω2 + 1
X, (5.73)

where

ω2 =
κ2 − 1

2
+

√
(κ2 − 1)2 + 4κ1

2
(5.74)

and the perpetual American put equals

PA
∞(S, t) =

( S

S∗∞

)−ω2

(X − S∗∞) , for S > S∗∞ . (5.75)

PROOF: The roots of Q(ω) defined in (5.10) are given by

ω1 =
κ2 − 1

2
−

√
(κ2 − 1)2 + 4κ1

2
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and

ω2 =
κ2 − 1

2
+

√
(κ2 − 1)2 + 4κ1

2
.

Thus, we have

Q(ω) = (ω − ω1)(ω − ω2)

with ω1 ≤ −1 < 0 < ω2 ≤ κ1. The limiting cases ω1 = −1 and ω2 = κ1 are

special roots for q = 0. We will determine the unknown critical stock price

S∗(t) using the second smooth pasting condition.

Notice, that for the valuation formula (5.33) to hold as T →∞, it is necessary

that Re(Q(ω)) < 0, i.e. 0 < Re(ω) < ω2.

Using the second smooth pasting condition we obtain as T →∞

−1 =
∂PA

∂S

∣∣∣
S=S∗

=
∂PE

∂S

∣∣∣
S=S∗

+
∂P1

∂S

∣∣∣
S=S∗

+
∂P2

∂S

∣∣∣
S=S∗

where the free boundary S∗ = S∗∞ is now independent of time, and P1 and

P2 denote the second and third term in the valuation formula (5.33), respec-

tively.

Now, the delta of a European put option on a dividend-paying stock is de-

termined as
∂PE

∂S
= −e−q(T−t) ·N(−d1(S, X, T ))

with

d1(S,X, T ) =
ln S

X
+ (r − q + 1

2
σ2)(T − t)

σ
√

T − t
.

It follows that as T →∞
∂PE

∂S

∣∣∣
S=S∗∞

→ 0.

Now consider the P1 term. The limit T →∞ gives

∂P1

∂S
= −rX

2πi

∫ c+i∞

c−i∞

1

S

( ∫ ∞

t

( S

S∗∞

)−ω

e
1
2
σ2·Q(ω)·(x−t) dx

)
dω

= −rX

2πi

∫ c+i∞

c−i∞

1

S

( S

S∗∞

)−ω[ 1
1
2
σ2 ·Q(ω)

e
1
2
σ2·Q(ω)·(x−t)

∣∣∣
∞

t

]
dω
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Therefore,

∂P1

∂S

∣∣∣
S=S∗∞

=
κ1X

2πi

∫ c+i∞

c−i∞

1

S∗∞
· 1

(ω − ω1)(ω − ω2)
dω. (5.76)

Similarly, the P2 term is determined as

∂P2

∂S
=

q

2πi

∫ c+i∞

c−i∞

( ∫ ∞

t

ω

ω + 1

( S

S∗∞

)−(ω+1)

e
1
2
σ2·Q(ω)·(x−t) dx

)
dω

= −2q

σ2

1

2πi

∫ c+i∞

c−i∞

ω

ω + 1

( S

S∗∞

)−(ω+1)

· 1

Q(ω)
dω.

Therefore,

∂P2

∂S

∣∣∣
S=S∗∞

= (κ2 − κ1)
1

2πi

∫ c+i∞

c−i∞

ω

(ω + 1)(ω − ω1)(ω − ω2)
dω. (5.77)

To evaluate both integrals we consider the integration path (or contour path)

in the complex plane outlined in the next figure. An application of the residue

theorem (see Freitag and Busam (2000)) gives

∂P1

∂S

∣∣∣
S=S∗∞

= κ1 X
1

S∗∞(ω1 − ω2)
(5.78)

and

∂P2

∂S

∣∣∣
S=S∗∞

= (κ2 − κ1)
[ ω1

(ω1 + 1)(ω1 − ω2)
− 1

(ω1 + 1)(ω2 + 1)

]
. (5.79)

Finally, we get for the critical stock price18

S∗∞ =
κ1(ω1 + 1)

ω1(κ1 − κ2)
X

=
ω2

ω2 + 1
X. (5.80)

18Merton’s result (1973)
S∗∞ =

κ1

κ1 + 1
X

is obtained as a special case for q = 0.
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Figure 5.1: Integration path for the critical stock price of the perpetual

American put option.

Observe that since S∗(t) is non-decreasing in t (see Kim (1990), p. 560,

Jacka (1991), Proposition 2.2.2 for a reference) we have the lower and upper

bounds for S∗(t) given by

S∗∞ ≤ S∗(t) ≤ S∗(T ) = min
(
X,

r

q
X

)
∀t ∈ [0, T ]. (5.81)

The price for the perpetual American put is given by

PA
∞(S, t) = −κ1X

2πi

∫ c+i∞

c−i∞

( S

S∗∞

)−ω 1

ω(ω − ω1)(ω − ω2)
dω

+
2q

σ2

1

2πi

∫ c+i∞

c−i∞
S∗∞

( S

S∗∞

)−ω 1

(ω + 1)(ω − ω1)(ω − ω2)
dω. (5.82)
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Once again, we apply the residue theorem to determine the first integral as
( S

S∗∞

)−ω2 κ1X

ω2(ω2 − ω1)
.

The second integral is evaluated as

−2q

σ2

( S

S∗∞

)−ω2 S∗∞
(ω2 + 1)(ω2 − ω1)

.

Thus, we finally get for the perpetual American put price

PA
∞(S, t) =

( S

S∗∞

)−ω2 κ1X

ω2(ω2 − ω1)
− 2q

σ2

( S

S∗∞

)−ω2 S∗∞
(ω2 + 1)(ω2 − ω1)

=
( S

S∗∞

)−ω2 X

ω2 + 1

=
( S

S∗∞

)−ω2

(X − S∗∞) , for S > S∗∞ . (5.83)

This establishes the result. ¤

5.2 The American Call Option

This section illustrates a modification of Mellin transforms that is applicable

to any call option-like derivative, i.e. any derivative with a linearly in S as S

tends to infinity increasing payoff function. The modification must be done

in such a way that the existence of the integral arising in the definition will

be guaranteed. The modification will be used to value call options in the

log-normal and square root stochastic volatility model of Heston (Chapter

6). Starting with the log-normal model, we establish some theoretical results

of the option’s price, and put special interest on the application of Gauss-

Laguerre quadrature for an efficient numerical evaluation of American calls.

5.2.1 Modification and First Application

The objective of this section is to propose a modification of the original defi-

nition of Mellin transforms to be applicable to any call option-like derivative.
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The approach is illustrated considering plain vanilla European call options

but the modified definition can be used for any payoff structures with the

above property.

Let CE(S, t) denote the price of a European call option. Since CE(S, t) =

O(1) for S → 0+ and CE(S, t) = O(S) for S → ∞ the integral arising in

the definition of Mellin transforms will not exist. We therefore propose the

modified Mellin transform for call options defined by

M(CE(S, t),−ω) = C̃E(ω, t) :=

∫ ∞

0

CE(S, t) S−(ω+1) dS , (5.84)

where 1 < Re(ω) < ∞. Conversely, the inverse of the modified Mellin

transform is given by

CE(S, t) = M−1
(
C̃E(ω, t)

)
=

1

2πi

∫ c+i∞

c−i∞
C̃E(ω, t) Sω dω , (5.85)

with 1 < c < ∞.

To apply the modified definition to the European call option, recall that

CE(S, t) satisfies (2.10) along with the boundary conditions

CE(S, T ) = (S(T )−X)+ on R+

CE(0, t) = 0 on [0, T ),

and

lim
S→∞

CE(S, t) = ∞ on [0, T ).

An application of the modified Mellin transform again converts the PDE into

an ODE
∂C̃E(ω, t)

∂t
+

1

2
σ2Q(ω) C̃E(ω, t) = 0 (5.86)

where Q(ω) has a very similar structure as for put options and equals

Q(ω) = ω2 − ω(1− κ2)− κ1 , (5.87)
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with κ1 = 2r
σ2 and κ2 = 2(r−q)

σ2 . Imposing the boundary conditions the ODE

is solved as

C̃E(ω, t) = X−ω+1
( 1

ω − 1
− 1

ω

)
· e 1

2
σ2Q(ω)(T−t) (5.88)

Hence, using (5.85), we see that the price of a European call option equals

CE(S, t) =
1

2πi

∫ c+i∞

c−i∞
X−ω+1

( 1

ω − 1
− 1

ω

)
· e 1

2
σ2Q(ω)(T−t)Sωdω (5.89)

with (S, t) ∈ (0,∞)×[0, T ), c ∈ (1,∞) a constant, {ω ∈ C | 1 < Re(ω) < ∞}.
For completeness we give an explicit proof of the equivalence of the above

integral expression and the BSM solution (2.15).

Proposition 5.2.1 Equations (5.89) and (2.15) are equivalent.

PROOF: First, observe that

CE(S, t) =
1

2πi

∫ c+i∞

c−i∞
S
( S

X

)ω−1 1

ω − 1
e

1
2
σ2Q(ω)(T−t) dω

− 1

2πi

∫ c+i∞

c−i∞
X

( S

X

)ω 1

ω
e

1
2
σ2Q(ω)(T−t) dω .

Now write ω = c + iy, 1 < c < ∞ and ζ = 1
2
σ2(T − t) to get

CE(S, t) = I1(S,X, T − t)− I2(S, X, T − t) ,

with

I1(S, X, T−t)) = Se−r(T−t)+ζc2+c(α−2cζ)−ln(S/X) 1

2π

∫ ∞

−∞

c− 1− iy

(c− 1)2 + y2
e−ζy2+iyα dy ,

where we have set

α = ln
( S

X

)
+ ζ(2c + κ2 − 1).

Similarly,

I2(S,X, T − t) = Xe−r(T−t)+ζc2+c(α−2cζ) 1

2π

∫ ∞

−∞

c− iy

c2 + y2
e−ζy2+iyα dy .
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Using Euler’s theorem for the complex valued exponential function eix =

cos(x) + i sin(x) we can simplify further and get

I1(S, X, T−t) = Xe−r(T−t)+ζc2+c(α−2cζ) 1

π

∫ ∞

0

e−ζy2 (c− 1) cos(αy) + y sin(αy)

(c− 1)2 + y2
dy ,

and

I2(S, X, T −t) = rXe−r(T−t)+ζc2+c(α−2cζ) 1

π

∫ ∞

0

e−ζy2 c cos(αy) + y sin(αy)

c2 + y2
dy ,

where we have used that cos(x) and sin(x) are even and odd functions, re-

spectively. From Gradshteyn and Ryzhik (2007), p. 504, we have: For a > 0,

Re(β) > 0, and Re(γ) > 0:
∫ ∞

0

e−βx2

sin(ax)
x dx

γ2 + x2
= −π

4
eβγ2

[
2 sinh aγ + e−γaΦ

(
γ
√

β − a

2
√

β

)

−eγaΦ
(
γ
√

β +
a

2
√

β

)]
(5.90)

and
∫ ∞

0

e−βx2

cos(ax)
dx

γ2 + x2
=

π

4γ
eβγ2

[
2 cosh aγ − e−γaΦ

(
γ
√

β − a

2
√

β

)

−eγaΦ
(
γ
√

β +
a

2
√

β

)]
(5.91)

where Φ(x) is the error function. Inserting β = ζ,a = α, γ = c−1 and γ = c,

respectively, and simplifying gives

I1(S, X, T − t) = Xe−r(T−t)+ζc2+c(α−2cζ) 1

2
eζ(c−1)2

·
(

cosh((c− 1)α)− sinh((c− 1)α)− e−(c−1)αΦ
(
(c− 1)

√
ζ − α

2
√

ζ

))

= Xe−r(T−t)+ζc2+c(α−2cζ)eζ(c−1)2−(c−1)α 1

2

(
1− Φ

(
(c− 1)

√
ζ − α

2
√

ζ

))
,

where in the last step we have used the relation cosh(x)− sinh(x) = e−x. In

the same manner we obtain for I2(S, X, T − t)

I2(S,X, T − t) = Xe−r(T−t)+ζc2+c(α−2cζ)eζc2−cα 1

2

(
1− Φ

(
c
√

ζ − α

2
√

ζ

))
.
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Now, the exponentials can be simplified further to get

I1(S,X, T − t) = Se−q(T−t) 1

2

(
1− Φ

(
(c− 1)

√
ζ − α

2
√

ζ

))
,

and

I2(S, X, T − t) = Xe−r(T−t) 1

2

(
1− Φ

(
c
√

ζ − α

2
√

ζ

))
.

The final step in our proof is to use the connection between the error function

Φ(x) and the normal distribution function N(x) from the last section given

by the relation Φ(x) = 2N(
√

2x)− 1, and observing that

α√
2ζ
− (c− 1)

√
2ζ =

ln
(

S
X

)
+ ζ(κ2 + 1)

σ
√

T − t
= d1(S, X, T − t) ,

and
α√
2ζ
− c

√
2ζ =

ln
(

S
X

)
+ ζ(κ2 − 1)

σ
√

T − t
= d2(S,X, T − t) .

This completes the proof. ¤

5.2.2 The American Call Option

To derive a decomposition formula for the American call CA(S, t), similarly

to the previous section we will use Mellin transforms to solve the resulting

non-homogeneous PDE

∂CA

∂t
+ (r − q) S

∂CA

∂S
+

1

2
σ2 S2 ∂2CA

∂S2
− rCA = f (5.92)

with

f = f(S, t) =

{
rX − qS for S∗(t) ≤ S(t) < ∞

0 for 0 < S(t) < S∗(t)
(5.93)

on (0,∞)× [0, T ) with the boundary conditions

lim
S→∞

CA(S, t) = ∞ on [0, T ) , (5.94)
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CA(S, T ) = θ(S) = max(S(T )−X, 0) on [0,∞) (5.95)

and

CA(0, t) = 0 on [0, T ). (5.96)

In a similar manner as for American puts, the ”smooth pasting conditions”

at S∗(t) are:

CA(S∗, t) = S∗(t)−X and
∂CA

∂S

∣∣∣
S(t)=S∗(t)

= 1. (5.97)

The resulting non-homogeneous ODE after transformation equals

∂C̃A(ω, t)

∂t
+

1

2
σ2Q(ω) C̃A(ω, t) = f̃(ω, t) (5.98)

where

f̃(ω, t) =
rX

ω
(S∗(t))−ω − q

ω − 1
(S∗(t))−ω+1 , (5.99)

and Q(ω) from above. Solving the ODE similar to the American put option

case results in

Theorem 5.2.2 The American call option CA(S, t) can be expressed as

CA(S, t) = CE(S, t)

+
1

2πi

∫ c+i∞

c−i∞

∫ T

t

qS∗(x)

ω − 1

( S

S∗(x)

)ω

e
1
2
σ2Q(ω)(x−t) dxdω

− 1

2πi

∫ c+i∞

c−i∞

∫ T

t

rX

ω

( S

S∗(x)

)ω

e
1
2
σ2Q(ω)(x−t) dxdω. (5.100)

where (S, t) ∈ (0,∞) × [0, T ), c ∈ (1,∞), {ω ∈ C | 1 < Re(ω) < ∞}, and

with Q(ω) from (5.87). In a similar manner we have for the free boundary

S∗(t)−X = CE(S∗(t), t)

+
1

2πi

∫ c+i∞

c−i∞

∫ T

t

qS∗(x)

ω − 1

( S∗(t)
S∗(x)

)ω

e
1
2
σ2Q(ω)(x−t) dxdω

− 1

2πi

∫ c+i∞

c−i∞

∫ T

t

rX

ω

( S∗(t)
S∗(x)

)ω

e
1
2
σ2Q(ω)(x−t) dxdω. (5.101)
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For completeness we prove the following proposition:

Proposition 5.2.3 Equation (5.100) is equivalent to the following integral

representation derived by Kim (1990)

CA(S, τ) = CE(S, τ)

+

∫ τ

0

qS e−q(τ−ξ) N(d1(S, S∗(ξ), τ − ξ)) dξ

−
∫ τ

0

rX e−r(τ−ξ) N(d2(S, S∗(ξ), τ − ξ)) dξ (5.102)

where τ = T − t,S = S(τ),S ≤ S∗(τ), and the arguments d1 and d2 are

given in (2.13) and (2.14), respectively.

PROOF: A direct proof of the equivalence is similar to that one presented

in the previous subsection so we just give the main idea. Set τ = T − t and

ξ = τ − x and write for the American call price

CA(S, τ) = CE(S, τ) +

∫ τ

0

I1(ξ) dξ −
∫ τ

0

I2(ξ) dξ , (5.103)

with

I1(ξ) =
1

2πi

∫ c+i∞

c−i∞

qS∗(τ − ξ)

ω − 1

( S(τ)

S∗(τ − ξ)

)ω

e
1
2
σ2Q(ω)ξdω (5.104)

and

I2(ξ) =
rX

2πi

∫ c+i∞

c−i∞

1

ω

( S(τ)

S∗(τ − ξ)

)ω

e
1
2
σ2Q(ω)ξdω . (5.105)

Now, with ω = c + iy, 1 < c < ∞ and ζ = 1
2
σ2ξ we have

I1(ξ) = qS∗(τ − ξ)e−rξ+ζc2+c(α−2cζ) 1

2π

∫ ∞

−∞

c− 1− iy

(c− 1)2 + y2
e−ζy2+iyα dy ,

(5.106)

where we have set

α = ln
( S(τ)

S∗(τ − ξ)

)
+ ζ(2c + κ2 − 1). (5.107)
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Similarly,

I2(ξ) = rXe−rξ+ζc2+c(α−2cζ) 1

2π

∫ ∞

−∞

c− iy

c2 + y2
e−ζy2+iyα dy . (5.108)

From now on the argumentation goes along the same lines as in the proof for

the European call and straightforward calculations establish the result. ¤

5.2.3 Further Analysis and Applications

The following two theoretical properties of the price functions in Theorem

5.2.2 follow immediately:

Proposition 5.2.4 If t → T the free boundary of the American call satisfies

lim
t→T

S∗(t) = max
(
X,

r

q
X

)
. (5.109)

PROOF: The proof uses the same arguments as in the put option case and

the statement can be verified straightforwardly. ¤
As a final application, we show in detail how the new integral representation

can be used for a closed-form valuation of perpetual American calls. Al-

though the derivation is similar to the put option case, special interest must

be put for a call on a non-dividend paying stock.

Proposition 5.2.5 If T → ∞ the free boundary of the perpetual American

call option is given by

S∗∞ = X
ω1

ω1 − 1
, (5.110)

where

ω1 =
1− κ2

2
+

√
(1− κ2)2 + 4κ1

2
, (5.111)

and the closed-form solution for the perpetual American call option equals

CA
∞(S, t) =

( S

S∗∞

)ω1

(S∗∞ −X), for S < S∗∞. (5.112)
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PROOF: The roots of Q(ω) defined in (5.87) are given by

ω1/2 =
1− κ2

2
±

√
(1− κ2)2 + 4κ1

2
.

Thus, we have Q(ω) = (ω−ω1)(ω−ω2) with −κ1 ≤ ω2 ≤ 0 and 1 ≤ ω1 < ∞.

Again, the limiting cases ω1 = 1 and ω2 = −κ1 are special roots for q = 0.

We will determine the unknown critical stock price S∗(t) using the second

smooth pasting condition.

For (5.100) to hold as T → ∞, it is necessary that Re(Q(ω)) < 0, i.e.

1 < Re(ω) < ω1.

Using the second smooth pasting condition we obtain as T →∞

1 =
∂CA

∂S

∣∣∣
S=S∗

=
∂CE

∂S

∣∣∣
S=S∗

+
∂C1

∂S

∣∣∣
S=S∗

+
∂C2

∂S

∣∣∣
S=S∗

, (5.113)

where the free boundary S∗ = S∗∞ is now independent of time, and C1 and

C2 denote the second and third term in (5.100), respectively.

The first summand is the delta of a European call option on a dividend-paying

stock and equals

∂CE

∂S
= e−q(T−t)N(d1(S,X, T − t))

with d1(S,X, T − t) given in (2.13). It follows19 that as T →∞

∂CE

∂S

∣∣∣
S=S∗∞

→ 0.

Now consider the C1 term. The limit T →∞ gives

∂C1

∂S
=

1

2πi

∫ c+i∞

c−i∞

∫ ∞

t

qω

ω − 1

( S

S∗∞

)ω−1

e
1
2
σ2Q(ω)(x−t) dx dω.

19Note that this is not true if q = 0. In this case we have

∂CE

∂S

∣∣∣
S=S∗∞

→ 1.
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Therefore

∂C1

∂S

∣∣∣
S=S∗∞

=
κ2 − κ1

2πi

∫ c+i∞

c−i∞

ω

(ω − 1)(ω − ω1)(ω − ω2)
dω. (5.114)

Similarly, the C2 term is determined as

∂C2

∂S
= −rX

2πi

∫ c+i∞

c−i∞

∫ ∞

t

1

S

( S

S∗∞

)ω

e
1
2
σ2Q(ω)(x−t) dx dω,

and we have

∂C2

∂S

∣∣∣
S=S∗∞

= κ1
X

S∗∞

1

2πi

∫ c+i∞

c−i∞

1

(ω − ω1)(ω − ω2)
dω. (5.115)

An application of the residue theorem gives

∂C1

∂S

∣∣∣
S=S∗∞

= (κ2 − κ1)
( 1

(1− ω1)(1− ω2)
+

ω2

(ω2 − 1)(ω2 − ω1)

)

and
∂C2

∂S

∣∣∣
S=S∗∞

= κ1
X

S∗∞

1

(ω2 − ω1)
.

Finally, we get for the critical stock price

S∗∞ = X
κ1

ω2 + κ1

= X
ω1

ω1 − 1
. (5.116)

Now, the perpetual American call can be expressed as

CA
∞(S, t) =

κ2 − κ1

2πi

∫ c+i∞

c−i∞

( S

S∗∞

)ω S∗∞
(ω − 1)(ω − ω1)(ω − ω2)

dω

+κ1
X

2πi

∫ c+i∞

c−i∞

( S

S∗∞

)ω 1

ω(ω − ω1)(ω − ω2)
dω .

Another application of the residue theorem gives us the closed-form solution

for the perpetual American call option:

CA
∞(S, t) =

( S

S∗∞

)ω1 X

ω1 − 1

=
( S

S∗∞

)ω1

(S∗∞ −X) .

This completes the proof. ¤

Remark 5.2.6 Note that for q = 0 the critical stock price of the perpetual

American call option becomes infinite and CA
∞(S, t) = S(t).
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5.2.4 Numerical Experiments

It is shown how to use Gauss-Laguerre quadrature for an efficient and accu-

rate pricing of American call options.

From the previous analysis we have

CA(S, τ) = CE(S, τ) +

∫ τ

0

I1(ξ) dξ −
∫ τ

0

I2(ξ) dξ, (5.117)

with τ = T − t,

I1(ξ) = qS∗(τ − ξ)e−rξ−ζc2+cα 1

π

∫ ∞

0

e−ζy2 (c− 1) cos(αy) + y sin(αy)

(c− 1)2 + y2
dy,

(5.118)

and

I2(ξ) = rXe−rξ−ζc2+cα 1

π

∫ ∞

0

e−ζy2 c cos(αy) + y sin(αy)

c2 + y2
dy, (5.119)

where again we have set

α = ln
( S(τ)

S∗(τ − ξ)

)
+ ζ(2c + κ2 − 1). (5.120)

From Gradshteyn and Ryzhik (2007), p. 228 and p. 229, we have:

∫
eax sin(bx) dx =

eax
(
a sin(bx)− b cos(bx)

)

a2 + b2
(5.121)

and ∫
eax cos(bx) dx =

eax
(
a cos(bx) + b sin(bx)

)

a2 + b2
(5.122)

so the equations for I1(ξ) and I2(ξ) become, respectively:

I1(ξ) = qS∗(τ − ξ)e−rξ−ζc2+cα 1

π

( ∫ ∞

0

∫ ∞

0

e−ζy2

e−(c−1)x cos(αy) cos(xy) dxdy

+

∫ ∞

0

∫ ∞

0

e−ζy2

e−(c−1)x sin(αy) sin(xy) dxdy
)
,
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and

I2(ξ) = rXe−rξ−ζc2+cα 1

π

( ∫ ∞

0

∫ ∞

0

e−ζy2

e−cx cos(αy) cos(xy) dxdy

+

∫ ∞

0

∫ ∞

0

e−ζy2

e−cx sin(αy) sin(xy) dxdy
)
.

Now, we use product rules for the sine and cosine function, respectively,

sin(x) sin(y) =
1

2

(
cos(x− y)− cos(x + y)

)

cos(x) cos(y) =
1

2

(
cos(x− y) + cos(x + y)

)

to obtain

I1(ξ) = A1
1

π

( ∫ ∞

0

1

2
e−(c−1)x

∫ ∞

0

e−ζy2(
cos(y(α− x)) + cos(y(α + x))

)
dydx

+

∫ ∞

0

1

2
e−(c−1)x

∫ ∞

0

e−ζy2(
cos(y(α− x))− cos(y(α + x))

)
dydx

)
,

and

I2(ξ) = A2
1

π

( ∫ ∞

0

1

2
e−cx

∫ ∞

0

e−ζy2(
cos(y(α− x)) + cos(y(α + x))

)
dydx

+

∫ ∞

0

1

2
e−cx

∫ ∞

0

e−ζy2(
cos(y(α− x))− cos(y(α + x))

)
dydx

)
,

where we have set

A1 = qS∗(τ − ξ)e−rξ−ζc2+cα

and

A2 = rXe−rξ−ζc2+cα.

Again, from Gradshteyn and Ryzhik (2007), p. 488, we have for Re(β) > 0:
∫ ∞

0

e−βx2

cos(bx)dx =
1

2

√
π

β
e−b2/4β, (5.123)

and the last equations for I1 and I2 can be simplified to

I1(ξ) = A1
1

2
√

πζ

∫ ∞

0

e−(c−1)xe−
(α−x)2

4ζ dx (5.124)
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and

I2(ξ) = A2
1

2
√

πζ

∫ ∞

0

e−cxe−
(α−x)2

4ζ dx. (5.125)

Finally, observe that the integrals can be approximated accurately using

Gauss-Laguerre quadrature

∫ ∞

0

e−(c−1)xe−
(α−x)2

4ζ dx =
1

c− 1

∫ ∞

0

e−xf
( x

c− 1

)
dx (5.126)

≈
1

c− 1

n∑
i=1

ωif
( xi

c− 1

)
,

and
∫ ∞

0

e−cxe−
(α−x)2

4ζ dx =
1

c

∫ ∞

0

e−xf
(x

c

)
dx (5.127)

≈
1

c

n∑
i=1

ωif
(xi

c

)
,

where f equals

f(x) = e−
(α−x)2

4ζ (5.128)

and ωi and xi, i = 1, 2, ...n, correspond to the weights and abscissa of the

Gauss-Laguerre quadrature. As a final result we have the following approxi-

mation for the American call option:

CA(S, τ) = CE(S, τ) +

∫ τ

0

I1(ξ) dξ −
∫ τ

0

I2(ξ) dξ, (5.129)

with

I1(ξ) = qS∗(τ − ξ)e−rξ−ζc2+cα 1

2(c− 1)
√

πζ

n∑
i=1

ωif
( xi

c− 1

)
(5.130)

and

I2(ξ) = rXe−rξ−ζc2+cα 1

2c
√

πζ

n∑
i=1

ωif
(xi

c

)
, (5.131)
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with 1 < c < ∞, ζ = 1/2σ2ξ, and α and f given in equations (5.120) and

(5.128), respectively. The weights ωi, i = 1, ..., n, are determined by

ωi =
1

xi(L
′
n(xi))2

=
xi

(n + 1)2(Ln+1(xi))2
,

with Ln(x) the n-th Laguerre polynomial defined by

Ln(x) =
ex

n!

dn

dxn

(
e−xxn

)
.

The integrals in equation (5.129) are determined using the trapezoidal rule.

Additionally, in equation (5.129) we assume that the critical stock price S∗(τ)

is known for all τ . The calculation is performed using equation (5.101) where

the complex integrals are approximated recursively using a n-point Gauss-

Laguerre scheme and the time integral is evaluated using the trapezoidal rule.

As a specific numerical example, we value a six months American call op-

tion with strike price X = 100. The parameters (r, q, σ) are varied from

(0.03, 0.07, 0.2) (top) to (0.03, 0.07, 0.4) (center) to (0.07, 0.03, 0.3) (bottom).

For the valuation we use a 16-point Gauss-Laguerre scheme combined with

a 300 time step approximation of the time integral. Furthermore we fix

the parameter c = 4. The results are shown in the next table. We com-

pare our results to nine other numerical and analytical approaches known in

the literature. The ”True” value is based on a binomial tree method with

N = 10000 time steps. The following approaches represent the method pro-

posed by Barone-Adesi and Whaley (1987) (BAW), the four-point method of

Geske and Johnson (1984) (GJ4), the modified two-point Geske-Johnson ap-

proach of Bunch and Johnson (1992) (BJ2), the four-point schemes of Huang

et al. (1996) (HSY4), the lower and upper bound approximation of Broadie

and Detemple (1996) (LUBA), the four-point randomization method of Carr

(1998) (RAN4), the three-point multi-piece exponential boundary approxi-

mation of Ju (1998) (EXP3), an approximation of Ju and Zhong (1999) (JZ),
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and the procedure based on Gauss-Laguerre quadrature of this article (GL),

respectively.

S True BAW GJ4 BJ2 HSY4 LUBA RAN4 EXP3 JZ GL

80 0.2194 0.2300 0.2191 0.2186 0.2199 0.2195 0.2188 0.2196 0.2216 0.2185

90 1.3864 1.4050 1.3849 1.3818 1.3898 1.3862 1.3802 1.3872 1.3857 1.3851

100 4.7825 4.7821 4.7851 4.7862 4.8044 4.7821 4.7728 4.7837 4.7682 4.7835

110 11.0978 11.0409 11.0889 11.2553 11.0686 11.0976 11.0893 11.0993 11.0794 11.1120

120 20.0004 20.0000 20.0073 20.0000 20.0531 20.0000 20.0000 20.0005 20.0000 20.0000

80 2.6889 2.7108 2.6864 2.6827 2.6897 2.6893 2.6787 2.6899 2.6871 2.6788

90 5.7223 5.7416 5.7212 5.7163 5.7361 5.7231 5.7113 5.7237 5.7110 5.7195

100 10.2385 10.2417 10.2451 10.2351 10.2752 10.2402 10.2205 10.2404 10.2143 10.2265

110 16.1812 16.1520 16.1831 16.2107 16.2012 16.1817 16.1629 16.1831 16.1456 16.1756

120 23.3598 23.2883 23.3419 23.4771 23.3288 23.3574 23.3389 23.3622 23.3211 23.3828

80 1.6644 1.6645 1.6644 1.6644 1.6644 1.6644 1.6604 1.6644 1.6644 1.6644

90 4.4947 4.4950 4.4946 4.4947 4.4947 4.4947 4.4959 4.4947 4.4947 4.4947

100 9.2504 9.2513 9.2509 9.2506 9.2506 9.2506 9.2513 9.2506 9.2507 9.2506

110 15.7977 15.7988 15.7973 15.7975 15.7975 15.7975 15.7994 15.7975 15.7977 15.7980

120 23.7061 23.7086 23.7082 23.7062 23.7062 23.7062 23.7027 23.7062 23.7066 23.7060

Table 5.1: Comparison of American call option prices computed ten different

ways: a binomial tree method with N = 10000 time steps (True), the method

proposed by Barone-Adesi and Whaley (1987) (BAW), the four-point method

of Geske and Johnson (1984) (GJ4), the modified two-point Geske-Johnson

approach of Bunch and Johnson (1992) (BJ2), the four-point schemes of

Huang et al. (1996) (HSY4), the lower and upper bound approximation of

Broadie and Detemple (1996) (LUBA), the four-point randomization method

of Carr (1998) (RAN4), the three-point multi-piece exponential boundary

approximation of Ju (1998) (EXP3), an approximation of Ju and Zhong

(1999) (JZ), and the procedure based on Gauss-Laguerre quadrature (GL),

respectively.

The calculations show that the new method provides comparable results. The

accuracy is convincing and the absolute deviations from the ”true” value are

negligible. Moreover, since the numerical approximation of our integral so-
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lution is easy to implement, we suggest the new framework as a capable

alternative to existing methods.

5.3 New Approximations for the Free Bound-

ary

This section focuses on deriving new simple analytical approximations for

the critical stock price of American options. We use integral representations

from the previous two sections to establish the results. Our formulae are

consistent with the short- and long-time asymptotics of the early exercise

boundary. They also satisfy other financially important limits. Since the

log-normal model is still a benchmark model for American options and is

widely used in practice, the derived approximations may be of interest for

practitioners and traders.

5.3.1 Main Results

The key to determine the value of the American option is finding the critical

stock price, which specifies the conditions under which the option should be

exercised prior to maturity. Although the integral representations of Kim

(1990), Jacka (1991), Carr et al. (1992), and those derived in this thesis are

exact from a theoretical point of view, one must solve the problem numer-

ically in two steps. The first step is to determine the critical stock price

recursively. Here, one is faced with the backward solution of a system of

nonlinear integral equations. This is sometimes regarded as burdensome and

computational errors may be inherent. Having determined the critical stock

price, American option prices are calculated in a second step by taking the

stock price curve as an input for the integration.

Since closed form solutions for the critical stock price of a finite living Amer-

ican option seem to be impossible, one seeks for good approximations to
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circumvent the problems resulting from a numerical procedure. From a

mathematical point of view this is a challenging issue. Carr (1998), p. 598,

describes the situation as ”... it is difficult to analytically approximate Amer-

ican option values using boundary approximations that are consistent with

the known short- and long-time behavior of the exercise boundary”.

Through the years many methods have been developed for an accurate ap-

proximation of American option prices and the corresponding early exercise

boundaries. Each of the methods has its own advantages and weaknesses,

and an assessment must crucially depend on specific theoretical and/or nu-

merical aspects. Additionally, as pointed out by Li (2010b) it is important

to realize that approximating the American option price and approximating

the critical stock price are two different issues. Although the problems are

closely related, it is possible that a method provides good results for the first

problem but not for the second, and vice versa. In Li (2010b) he reviews

the most prominent analytical approximations of the critical stock price and

gives a detailed numerical comparison of their performance.

We start the derivation by recalling from the previous two sections a unique

characterization of the free boundary S∗(t) for American puts and calls, re-

spectively:

X − S∗(t) = PE(S∗(t), t)

+
1

2πi

∫ c+i∞

c−i∞

∫ T

t

rX

ω

( S∗(t)
S∗(x)

)−ω

e
1
2
σ2Q(ω)(x−t) dxdω

− 1

2πi

∫ c+i∞

c−i∞

∫ T

t

qS∗(x)

ω + 1

( S∗(t)
S∗(x)

)−ω

e
1
2
σ2Q(ω)(x−t) dxdω , (5.132)

and

S∗(t)−X = CE(S∗(t), t)

+
1

2πi

∫ c+i∞

c−i∞

∫ T

t

qS∗(x)

ω − 1

( S∗(t)
S∗(x)

)ω

e
1
2
σ2Q(ω)(x−t) dxdω

− 1

2πi

∫ c+i∞

c−i∞

∫ T

t

rX

ω

( S∗(t)
S∗(x)

)ω

e
1
2
σ2Q(ω)(x−t) dxdω. (5.133)
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To value the American option one must solve numerically the last integral

equations in order to determine the early exercise premium. This can be

done using Gauss-Laguerre quadrature as outlined in the last section. This

approach, however, does not yield an analytical expression. It is therefore

desirable to find accurate approximations for S∗(t).

To derive the approximate solutions, we will apply the smooth pasting con-

ditions for American options. Recall that along the free boundary S∗(t)

American option prices as well as the corresponding deltas are continuous

functions and must satisfy ∂P A

∂S
|S=S∗(t) = −1 for puts and ∂CA

∂S
|S=S∗(t) = 1

for calls, respectively. Since from now on the analysis is equivalent for both

contracts, we will restrict the attention to American put options only, i.e.

S∗(t) = S∗P (t).

Setting τ = T − t, determining the delta of PA, and letting S → S∗ from the

left it is straightforward to get the following equation for S∗(τ):

−1 + e−qτN(−d1(S
∗, X, τ)) =

∫ τ

0

I1(ξ) dξ +

∫ τ

0

I2(ξ) dξ, (5.134)

where d1 is given by

d1(S, X, τ) =
ln S

X
+ (r − q + 1

2
σ2)τ

σ
√

τ
, (5.135)

ξ = τ − x, N(·) denotes the standard normal distribution function, and

I1(ξ) =
−rX

S∗(τ)
· 1

2πi

∫ c+i∞

c−i∞
e

1
2
σ2Q(ω)ξ dω (5.136)

and

I2(ξ) = q · 1

2πi

∫ c+i∞

c−i∞

ω

ω + 1
e

1
2
σ2Q(ω)ξ dω. (5.137)

For a moment we will assume that the stock does not pay any dividends, i.e.

q = 0. In this case the final equation determining the critical stock price is:

−1 + N(−d1(S
∗, X, τ)) =

∫ τ

0

I1(ξ) dξ (5.138)
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with I1(ξ) from above, Q(ω) given by

Q(ω) = ω2 + ω(1− κ1)− κ1, (5.139)

and

d1(S, X, τ) =
ln S

X
+ (r + 1

2
σ2)τ

σ
√

τ
. (5.140)

The complex integral I1(ξ) can be evaluated in closed form. As a result we

have the following simple approximation for S∗(τ):

Proposition 5.3.1 If the stock pays no dividends, the critical stock price

S∗(τ) of an American put option can be determined approximately by solving

the following implicit equation:

S∗(τ) = X · κ1

κ1 + 1
· 2 N(

√
δτ)− 1

N(d1(S∗, X, τ))
, (5.141)

where δ is given by

δ =
1

4
σ2(1− κ1)

2 + 2r =
(1

2
σ (1 + κ1)

)2

, (5.142)

κ1 = 2r
σ2 and d1(S

∗, X, τ) is given in (5.140).

PROOF: We begin by setting ω = c + iy, i.e. dω = idy and ζ = 1
2
σ2ξ. Then

ζQ(c + iy) = −ζ(c2 + y2) + ζiy(2c + 1− κ1) + ζc(2c + 1− κ1)− rξ

and

e
1
2
σ2Q(ω)ξ = e−ζ(c2+y2)+ζiy(2c+1−κ1)+ζc(2c+1−κ1)−rξ.

The integral I1(ξ) can be written as

I1(ξ) =
−rX

S∗(τ)
· e−ζc2+ζc(2c+1−κ1)−rξ · 1

2π

∫ ∞

−∞
e−ζy2+iyϕdy, (5.143)

with ϕ = ζ(2c + 1 − κ1). Now, we use Euler’s formula for the complex

exponential function eiy = cos(y) + i sin(y) to get

I1(ξ) = α
1

2π

∫ ∞

−∞
e−ζy2

cos(ϕy)dy + α
i

2π

∫ ∞

−∞
e−ζy2

sin(ϕy)dy,
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where we have set

α =
−rX

S∗(τ)
· e−ζc2+ζc(2c+1−κ1)−rξ. (5.144)

Since sin(x) and cos(x) are odd and even functions of x, respectively, we see

that the last integral vanishes and we obtain:

I1(ξ) =
α

π

∫ ∞

0

e−ζy2

cos(ϕy)dy. (5.145)

Form Gradshteyn and Ryzhik (2007), p. 488, we have

∫ ∞

0

e−ay2

cos(xy)dy =
1

2

√
π

a
e−

x2

4a , y 6= 0, Re(a) > 0 . (5.146)

Therefore

I1(ξ) =
−rX

2π S∗(τ)
· e−ζc2+ζc(2c+1−κ1)−rξ ·

√
π

ζ
· e− ζ2(2c+1−κ1)2

4ζ

=
−rX√

2π S∗(τ) σ
· e(− 1

8
σ2(1−κ1)2−r)ξ · ξ− 1

2 (5.147)

is independent of c and
∫ τ

0

I1(ξ) dξ =
−rX√

2π S∗(τ) σ

∫ τ

0

eγξξ−
1
2 dξ, (5.148)

where

γ = −1

2

(1

2
σ(1− κ1)

)2

− r.

Finally, we transform the last integral twice to get

∫ τ

0

I1(ξ) dξ =
−2rX√

2π S∗(τ) σ

∫ √
τ

0

eγy2

dy =
−2rX

S∗(τ)σ
√

δ

(
N(
√

δτ)− 1

2

)
,

(5.149)

with

δ =
1

4
σ2(1− κ1)

2 + 2r.

The result follows now by observing that r
σ
√

δ
= κ1

κ1+1
where κ1 = 2r

σ2 . ¤
Although there is a large literature on pricing American options by approxi-

mation and also much attention has been put on the critical stock price, we
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could not find the formula in the literature. It has the additional appealing

feature that it is consistent with known and financially important limits. For

instance, we have the following properties which are an immediate conse-

quence of the previous proposition:

Corollary 5.3.2 The critical stock price S∗(τ) from (5.141) satisfies:

lim
τ→∞

S∗(τ) =
κ1

κ1 + 1
X (5.150)

lim
τ→0+

S∗(τ) = X , (5.151)

lim
r→0+

S∗(τ) = 0 , ∀τ ≥ 0 , (5.152)

and

lim
σ→0+

S∗(τ) = X , ∀τ ≥ 0 . (5.153)

PROOF: For S > 0 define the function g(S) = g(S, r, σ, τ) by

g(S) := N(d1(S, X, τ))− X

S

κ1

κ1 + 1
(2 N(

√
δτ)− 1) .

Since limS→0+ g(S) = −∞, limS→∞ g(S) = 1, and ∂g/∂S > 0 it follows that

S∗(τ) is the unique root of g(S) for S > 0. Now, all properties are easily

verified. For example, the critical stock price for τ →∞ follows immediately.

For the second assertion notice that S∗(τ) ≤ X, ∀τ and use l’Hospital’s rule.

The third property is obvious. For the last property observe that

lim
σ→0+

κ1

κ1 + 1
= 1,

and the equation for g becomes

g(S, r, 0, τ) =





1− X

S
for S > Xe−rτ

1
2
− X

S
for S = Xe−rτ

− X

S
for S < Xe−rτ .
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This completes the proof. ¤
Our approximation satisfies all important asymptotic requirements. The

limiting values for the free boundary for τ → 0+ and τ →∞ are results due

to McKean (1965) and Merton (1973), and can also be found in Jacka (1991).

They describe the asymptotic behavior of the free boundary for an American

put with infinite and zero maturity, respectively. Also, it is well-known that

an American put option will never be exercised for an interest rate of zero.

Finally, the last limit states that for a volatility of zero, the free boundary

will equal X. A financial interpretation of this property is given in Detemple

(2006).

If we abandon the restriction on q the approximation formula for the free

boundary S∗(τ), although slightly more complicated, preserves its structure.

Proposition 5.3.3 The critical stock price S∗(τ) of an American put option

on a dividend paying stock can be determined by the implicit equation:

S∗(τ) = X · r

σ
√

δ
· 2 N(

√
δτ)− 1

e−qτ [N(d1(S∗, X, τ))−N(
√

(δ − 2q)τ)] + c + 1
2

, (5.154)

where

c =
2q + σ

√
δ − 2q

2σ
√

δ
· [2N(

√
δτ)− 1], (5.155)

δ =
(1

2
σ(1− κ2)

)2

+ 2r =
(1

2
σ(1 + κ2)

)2

+ 2q, (5.156)

κ2 = 2(r−q)
σ2 and d1(S

∗, X, τ) is given in (5.135).

PROOF: We proceed like in the previous proof and write ω = c + iy and

ζ = 1
2
σ2ξ. If the restriction on the dividend yield q is abandoned, the equation

for Q(ω) becomes

ζQ(c + iy) = −ζ(c2 + y2) + ζiy(2c + 1− κ2) + ζc(2c + 1− κ2)− rξ

and

e
1
2
σ2Q(ω)ξ = e−ζ(c2+y2)+ζiy(2c+1−κ2)+ζc(2c+1−κ2)−rξ.
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Since now the critical stock price is determined by

−1 + e−qτ N(−d1(S
∗, X, τ)) =

∫ τ

0

I1(ξ) dξ +

∫ τ

0

I2(ξ) dξ, (5.157)

where

I1(ξ) =
−rX

S∗(τ)
· 1

2πi

∫ c+i∞

c−i∞
e

1
2
σ2Q(ω)ξ dω (5.158)

and

I2(ξ) = q · 1

2πi

∫ c+i∞

c−i∞

ω

ω + 1
e

1
2
σ2Q(ω)ξ dω (5.159)

the problem is to evaluate the second integral. We have ω
ω+1

= 1− 1
ω+1

and

therefore

I2(ξ) = q · α(
I2,1(ξ)− I2,2(ξ)

)
(5.160)

where we have set

α = e−ζc2+ζc(2c+1−κ2)−rξ, and ϕ = ζ(2c + 1− κ2), (5.161)

and

I2,1(ξ) =
1

2π

∫ ∞

−∞
e−ζy2+iyϕ dy, (5.162)

I2,2(ξ) =
1

2π

∫ ∞

−∞

c + 1− iy

(c + 1)2 + y2
e−ζy2+iyϕ dy. (5.163)

We identify the integral I2,1(ξ) as identical to that in equation (5.143) (with

an adjusted value for ϕ). Therefore

q · α · I2,1(ξ) =
q

σ
√

2π
· e− 1

2
δξ · ξ− 1

2 (5.164)

is independent of c with δ given by

δ =
1

4
σ2(1− κ2)

2 + 2r. (5.165)

Once again, Euler’s formula applied to I2,2, and the use of sin(−x) = − sin(x)

and cos(−x) = cos(x) gives

I2,2(ξ) =
1

π

∫ ∞

0

c + 1

(c + 1)2 + y2
e−ζy2

cos(ϕy)dy+
1

π

∫ ∞

0

y

(c + 1)2 + y2
e−ζy2

sin(ϕy)dy.

(5.166)
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For the evaluation of the integrals we use equations (5.90) and (5.91). In-

serting a = ϕ, β = ζ, γ = c + 1 and simplifying yields

I2,2(ξ) =
1

2
eζ(c+1)2

[
cosh(ϕ(c + 1))− sinh(ϕ(c + 1))

]

−1

2
eζ(c+1)2−ϕ(c+1) Φ

(
(c + 1)

√
ζ − ϕ

2
√

ζ

)

=
1

2
eζ(c+1)2−ϕ(c+1)

[
1− Φ

(
(c + 1)

√
ζ − ϕ

2
√

ζ

)]
(5.167)

where again we have used the relation cosh(x) − sinh(x) = e−x. Now, we

have

(c + 1)
√

ζ − ϕ

2
√

ζ
=

√
2

4
(1 + κ2)σ

√
ξ (5.168)

and we observe that the argument in Φ is independent of c. Using the

connection between the error function and the standard normal distribution

function Φ(x) = 2N(
√

2 x)− 1 we arrive at

qαI2,2(ξ) = qe−qξN
(
− 1

2
σ(1 + κ2)

√
ξ
)

(5.169)

with κ2 = 2(r−q)
σ2 . In summary, we have

I2(ξ) = q · α(
I2,1(ξ)− I2,2(ξ)

)

=
q

σ
√

2π
· e− 1

2
δξ · ξ− 1

2 − qe−qξN
(
− 1

2
σ(1 + κ2)

√
ξ
)

(5.170)

is independent of c. We conclude that

∫ τ

0

I2(ξ)dξ =
q

σ
√

2π
·
∫ τ

0

e−
1
2
δξ · ξ− 1

2 dξ − q

∫ τ

0

e−qξN
(
− 1

2
σ(1 + κ2)

√
ξ
)
dξ.

(5.171)

The evaluation of the first integral is straightforward and was performed

above. The result is

q

σ
√

2π
·
∫ τ

0

e−
1
2
δξ · ξ− 1

2 dξ =
2q

σ
√

δ
·
[
N(
√

δτ)− 1

2

]
. (5.172)
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For the second integral we use integration by parts to obtain

−q

∫ τ

0

e−qξN
(
− 1

2
σ(1 + κ2)

√
ξ
)
dξ = e−qτN

(
− 1

2
σ(1 + κ2)

√
τ
)
− 1

2

+
σ(1 + κ2)

2
√

δ

[
N(
√

δτ)− 1

2

]
.(5.173)

Summing up, we have

∫ τ

0

I1(ξ)dξ +

∫ τ

0

I2(ξ)dξ =
−2rX

S∗(τ)σ
√

δ

[
N(
√

δτ)− 1

2

]
+

2q

σ
√

δ

[
N(
√

δτ)− 1

2

]

+e−qτN
(
− 1

2
σ(1 + κ2)

√
τ
)
− 1

2

+
σ(1 + κ2)

2
√

δ

[
N(
√

δτ)− 1

2

]
. (5.174)

Using N(−x) = 1 − N(x) and observing that 1
2
σ(1 + κ2) =

√
δ − 2q the

statement follows from (5.157) after slight simplifications. ¤
Similarly, we have the requested properties:

Corollary 5.3.4 The critical stock price S∗(τ) determined by (5.154) satis-

fies:

lim
τ→∞

S∗(τ) =
ω

ω + 1
X , (5.175)

lim
τ→0+

S∗(τ) = X ·min(1,
r

q
) , (5.176)

lim
r→0+

S∗(τ) = 0 , ∀τ ≥ 0 , (5.177)

and

lim
σ→0+

S∗(τ) = X ·min(1,
r

q
) , ∀τ ≥ 0 , (5.178)

where

ω =
κ2 − 1

2
+

√
(κ2 − 1)2 + 4κ1

2
. (5.179)

PROOF: The verification of all properties can be done in analogy to the

proof of the previous Corollary. ¤
Now we present the approximation of S∗(τ) for American call options. Since
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it is well known that an American call option on a non-dividend paying

stock will never be exercised prematurely (Merton (1973)), we assume a

strictly positive dividend yield q. Additionally, it is worth to mention that

the critical stock price of an American call option can be determined using

the corresponding critical stock price of an American put option via the put-

call-symmetry relation for American options and free boundaries as outlined

in Chapter 4.

A direct approximation is given by the following equation.

Proposition 5.3.5 The critical stock price S∗(τ) of an American call option

is uniquely determined by the implicit equation:

S∗(τ) = X · r

σ
√

δ
· 2 N(

√
δτ)− 1

e−qτ [N(d1(S∗, X, τ))−N(
√

(δ − 2q)τ)] + c− 1
2

, (5.180)

where κ2 = 2(r−q)
σ2 and c, δ, and d1(S

∗, X, τ) are given in equations (5.155),

(5.156), and (5.135), respectively.

PROOF: The proof uses the same arguments as in the put option case and

is straightforward. ¤

Remark 5.3.6 The proposed approximations reveal a surprising and striking

similarity. The only difference comes from the opposite sign of the factor 1/2

in the denominator in (5.154) and (5.180). Note further that if the stock pays

no dividends, the equation characterizing the free boundary becomes

S∗(τ) = X · κ1

κ1 + 1
· 2 N(

√
δτ)− 1

N(d1(S∗, X, τ))− 1
, (5.181)

implying that S∗(τ) becomes infinite for all τ .

Finally, we have the asymptotics:
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Corollary 5.3.7 The critical stock price S∗(τ) determined by (5.180) satis-

fies

lim
τ→∞

S∗(τ) =
ω∗

ω∗ − 1
X , (5.182)

lim
τ→0+

S∗(τ) = X ·max(1,
r

q
) , (5.183)

lim
q→0+

S∗(τ) = ∞ , ∀τ ≥ 0 , (5.184)

and

lim
σ→0+

S∗(τ) = X ·max(1,
r

q
) , ∀τ ≥ 0 (5.185)

where

ω∗ =
1− κ2

2
+

√
(1− κ2)2 + 4κ1

2
. (5.186)

PROOF: Straightforward. ¤
Since our analytical approximations of S∗(τ) for both American options are

consistent with the short- and long-time behavior of the free boundary and

also satisfy the other limits for r, q, and σ, they may turn out to give accurate

values for all τ in between. In the next section we will test our formulas

by doing several numerical experiments and comparing the values to other

approaches found in the literature. Also, it is worth to point out that our

approximations can still be modified to obtain other expressions for S∗(τ).

As an example we consider the American put option. Using approximations

of the standard normal tail probabilities (see Bryc (2002) for an overview)

we can modify equation (5.141) further. As a result we can get the following

analytical expression determining S∗(τ):

S∗(τ)

X
= e−

√
1
2
σ2τ g−(r+ 1

2
σ2)τ , (5.187)

with

g = ±
√
−π

(
ln [4θ(1− θ)]

)
, (5.188)

where

θ =
κ1

κ1 + 1

X

S∗(τ)

√
1− e−

2
π

δτ . (5.189)
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Especially for small τ the expressions can be simplified to

S∗(τ)

X
= e−

√
1
2
σ2τ g̃−(r+ 1

2
σ2) τ , (5.190)

with

g̃ = ±
√
−π

(
ln [4θ̃(1− θ̃)]

)
, (5.191)

and

θ̃ = κ1
X

S∗(τ)

√
σ2τ

2π
. (5.192)

The structure of the implicit approximation is similar to a solution presented

by Bunch and Johnson (2000) where S∗(τ) is approximated as the solution

to the equation:
S∗(τ)

X
= e−

√
σ2τ g−(r+ 1

2
σ2)τ , (5.193)

with

g = ±
√√√√2 ln

(√
ασ2 exp(α(r + σ2/2)2τ/(2σ2))

2r(X/S∗(τ)) log(X/S∗(τ))

)
, (5.194)

where

α = 1− A

1 + (1+κ1)2

4
σ2τ

, and A =
1

2

( κ1

1 + κ1

)2

. (5.195)

Similar expressions may be obtained in the general case.

5.3.2 Numerical Experiments

In the following we use the results from the previous section to compute

and compare critical stock prices for a range of different parameter values.

Having done this, it is straightforward to use them for the purpose of de-

termining American option prices and hedging parameters. The numerical

analysis, however, will be restricted to the case of American put options only.

This is due to the duality relationship for the free boundaries. Also, explicit

numerical experiments show that the proposed approximation of S∗(τ) for
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American calls is very similar in quality.

First, we consider the non-dividend case. We study the behavior of S∗(τ)

functions derived in this paper by generating plots of our S∗(τ) approxi-

mations (equations (5.141), (5.187), and (5.190)) for some notional param-

eter values: strike X = 100, riskless interest rate r = 0.03, dividend yield

q = 0.00, volatility σ = 0.3, and time to maturity 0 ≤ τ ≤ 1. The calculation

of S∗(τ) is performed easily and quickly using Newton’s method. All three
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Figure 5.2: The behavior of critical stock price approximations of an Amer-

ican put option as a function of τ . τ varies from zero to one year. Other

fixed parameters are: X = 100, r = 0.03, q = 0, and σ = 0.3.

approximations produce curves that are very similar in quality. They illus-

trate the general shape of the critical stock price as a function of τ = T − t.

For American puts S∗(τ) is monotonically decreasing, bounded by S∗(∞)

for large values of τ and by X for τ approaching zero. Ekström (2004a) and

Chen et al. (2008) recently gave two different proofs for the convexity of the

early exercise boundary if there are no dividends. For positive values of q

the situation is more complex and for specific parameter values the critical

stock price may not be convex (see Chen et al. (2008), p.187). For very small

τ , S∗(τ) grows very fast and approaches X with an ever-increasing slope.
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The behavior of S∗(τ) for τ → 0+ is not trivial at all and has attracted the

interest of many researchers in financial mathematics. Close to expiry, the

remaining maturity of the option can be regarded as a small parameter and

allows an expansion. The leading-order expansion near expiration was stud-

ied by several authors: Barles et al. (1995), Kuske and Keller (1998), Evans

et al. (2002), Bunch and Johnson (2000), Knessl (2001), Chen and Chadam

(2003), Mallier and Alobaidi (2004), Chen and Chadam (2006), and Zhang

and Li (2010) among others. All the studies suggest that the actual behavior

of the free boundary crucially depends on the relationship between the inter-

est rate r and the dividend yield q. For a comparison we pick the last named

authors who use perturbation methods and derive expressions for S∗(τ) de-

pending on whether r > q, r = q, and r < q. In order to demonstrate the

accuracy of our approximation we will compare our results to their values.

The main result of Zhang and Li (2010) is the following theorem regarding

the analytical formulas for S∗(τ):

If 0 ≤ q < r,

S∗(τ) = Xe−
√

2σ2τu(ξ),

u(ξ) = −ξ − 1

2ξ
+

1

8ξ2
+

11

24ξ3
+ O

( 1

ξ4

)
,

ξ = ln
√

8π(r − q)2τ/σ2.

If q = r,

S∗(τ) = Xe−
√

2σ2τν(η),

ν(η) = −η − 1

2
ln(−η)− 1

4η
ln(−η)−

1− 5
4
√

2π

η
+ o

(1

η

)
,

η = ln(4
√

πrτ).

Finally, if q > r,

S∗(τ) =
r

q
Xe−2

√
τ∗w(

√
τ∗), τ ∗ =

1

2
σ2τ, r∗ =

2r

σ2
, q∗ =

2q

σ2
,

w(
√

τ ∗) = β0 + β1

√
τ ∗ + β2τ

∗ + β3

√
τ ∗3 + O(τ ∗2),
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where

β0 = 0.451723,

β1 = 0.144914(r∗ − q∗),

β2 = −0.009801− 0.041764(r∗ + q∗) + 0.014829(r∗ − q∗)2,

β3 = −0.000618− 0.002087(r∗ − q∗)− 0.015670(r∗2 − q∗2)− 0.001052(r∗ − q∗)3.

Zhang and Li (2010) truncate the above expressions gradually and give in

each of the above cases four different analytic expressions for the free bound-

ary with slightly different degrees of accuracy (equations termed TA1 to

TA4 in the original paper). We consider four (r/q)-combinations: (0.05; 0),

(0.05; 0.05), (0.05; 0.08), and (0.05; 0.1). The volatility equals σ = 0.2. The

next figure displays the results for equation (5.154), and the functions TA1

and TA4, respectively. The corresponding limiting values of S∗(τ) for τ → 0+

are 100.0, 100.0, 62.5, and 50.0. As a ”small” time to maturity we choose

τ to equal one week. The quality of our approximation is convincing. The

curves generated by the corresponding formulas are very similar in shape and

magnitude. Independent of the (r/q)-combination the differences are small

enough to be neglected from a practical point of view.

To get further information about the quality of the approximation derived

herein, we continue the numerical analysis by comparing it to S∗(τ) values

found in Zhang and Li (2010). As a benchmark we choose the highly accu-

rate values resulting from the integral-equation approach. The strike price

X and the volatility σ are held constant, and equal X = 100 and σ = 0.3,

respectively. The (r/q)-combinations under consideration are (0.05; 0.00),

(0.05; 0.05), and (0.05; 0.07). Since the authors point out that their expres-

sions are valid only for small maturities, we let τ vary from one week to 3

months. HA is the highly accurate value obtained by solving the integral

equations specifying the critical stock price numerically. TA1 to TA4 are the

respective truncated solutions. To assess the accuracy we also determine the

average absolute error (AAE) and the maximum absolute error (MAE) for
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Figure 5.3: The behavior of the critical stock price for small values of τ .

We compare our approximation, equation (5.154), to that found in Zhang

and Li (2010) where we have picked out two out of four presented formulas

(termed TA1 and TA4 in the original paper). Fixed parameter values are

X = 100, r = 0.05, σ = 0.2, τ = 1/52. In contrast to the previous plot we

vary the dividend yield from q = 0 (upper left), q = 0.05 (upper right),

q = 0.08 (lower left), and q = 0.1 (lower right).

each sample. The results are presented in the next three tables.

We observe that in all three cases the critical stock prices converge for

τ → 0+, but diverge for large τ . The accuracy of (TA1)-(TA4) decreases

with time to maturity, leading to higher AAE- and MAE-values. An excep-

tion is the sample with q > r (Table 5.4) where both approaches give very

satisfactory results.

In order to be able to study critical stock prices for higher τ -values, we ex-

tend the numerics further and compare our results to selected S∗(τ) values

found in the article of Li (2010b), where we adopt the original notation.

In Li (2010b) the author compares the performance of a range of promi-
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Parameters: r = 0.05, q = 0.00, σ = 0.3

τ HA TA1 TA2 TA3 TA4 Eq. (5.141)

1/52 91.33 91.73 91.31 91.26 91.35 91.65
2/52 88.74 89.41 88.68 88.58 88.78 89.14
3/52 86.96 87.88 86.84 86.69 87.04 87.40
4/52 85.57 86.74 85.38 85.16 85.72 86.04
1/12 85.16 86.41 84.95 84.71 85.34 85.64
5/52 84.41 85.82 84.15 83.86 84.66 84.91
6/52 83.42 85.07 83.07 82.71 83.79 83.94
7/52 82.55 84.43 82.10 81.66 83.08 83.09
8/52 81.78 83.88 81.21 80.68 82.51 82.33
1/6 81.30 83.56 80.66 80.06 82.20 81.86
9/52 81.07 83.41 80.39 79.76 82.07 81.63
10/52 80.43 82.99 79.61 78.88 81.75 81.00
11/52 79.84 82.63 78.87 78.03 81.55 80.42
12/52 79.29 82.31 78.17 77.21 81.50 79.87
1/4 78.78 82.02 77.49 76.40 81.59 79.37

AAE 1.84 0.52 1.00 0.82 0.51
MAE 3.24 1.29 2.38 2.81 0.59

Table 5.2: Critical stock prices of an American put option with strike price

X = 100 in the case 0 ≤ q < r.

Parameters: r = 0.05, q = 0.05, σ = 0.3

τ HA TA1 TA2 TA3 TA4 Eq. (5.154)

1/52 88.23 87.69 88.66 88.56 88.43 88.58
2/52 84.76 84.16 85.46 85.30 85.09 85.21
3/52 82.39 81.79 83.31 83.11 82.81 82.90
4/52 80.55 79.99 81.67 81.42 81.05 81.10
1/12 80.01 79.47 81.20 80.94 80.54 80.58
5/52 79.03 78.52 80.34 80.05 79.60 79.62
6/52 77.73 77.29 79.21 78.89 78.36 78.35
7/52 76.59 76.22 78.24 77.89 77.28 77.24
8/52 75.58 75.29 77.38 77.00 76.31 76.24
1/6 74.96 74.73 76.86 76.46 75.72 75.64
9/52 74.67 74.46 76.61 76.21 75.44 75.35
10/52 73.83 73.72 75.92 75.49 74.65 74.53
11/52 73.06 73.05 75.30 74.84 73.91 73.77
12/52 72.35 72.44 74.72 74.24 73.23 73.08
1/4 71.69 71.88 74.19 73.69 72.60 72.43

AAE 0.35 1.58 1.25 0.64 0.61
MAE 0.60 2.50 2.00 0.91 0.74

Table 5.3: Critical stock prices of an American put option with strike price

X = 100 in the case q = r.
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Parameters: r = 0.05, q = 0.07, σ = 0.3

τ HA TA1 TA2 TA3 TA4 Eq. (5.154)

1/52 69.56 69.56 69.56 69.56 69.56 69.60
2/52 68.81 68.79 68.81 68.81 68.81 68.87
3/52 68.24 68.22 68.24 68.24 68.24 68.31
4/52 67.76 67.73 67.76 67.76 67.76 67.85
1/12 67.62 67.58 67.62 67.62 67.62 67.71
5/52 67.33 67.31 67.34 67.35 67.35 67.43
6/52 66.92 66.93 66.97 66.98 66.98 67.04
7/52 66.51 66.58 66.63 66.64 66.64 66.64
8/52 66.08 66.26 66.32 66.32 66.32 66.23
1/6 65.79 66.05 66.12 66.13 66.13 65.95
9/52 65.64 65.95 66.02 66.03 66.03 65.81
10/52 65.19 65.67 65.74 65.76 65.76 65.39
11/52 64.73 65.40 65.48 65.50 65.50 64.96
12/52 64.28 65.15 65.23 65.25 65.25 64.53
1/4 63.83 64.90 65.00 65.01 65.01 64.10

AAE 0.27 0.30 0.31 0.31 0.14
MAE 1.07 1.17 1.18 1.18 0.27

Table 5.4: Critical stock prices of an American put option with strike price

X = 100 in the case q > r.

nent analytical approximations for the critical stock price: the quadratic

approximations of MacMillan (1986), Barone-Adesi and Whaley (1987), and

Barone-Adesi and Elliott (1991), the lower bound approximation of Broadie

and Detemple (1996), the approximation proposed by Bunch and Johnson

(2000), the integral approximation of Zhu (2006a), and the refined quadratic

approximations of Li (2010b). The critical stock price computed within the

binomial tree framework is chosen as a benchmark. We distinguish between

short-term and mid-term options. For each of the two classes we consider

two maturity dates: maturities of 0.1 and 0.5 years for short-term options,

and maturities of 1 and 3 years for the mid-term options, respectively. The

strike price is assumed to be X = 100, and the volatility varies from σ = 0.2

to σ = 0.6. The riskless interest rate is chosen to equal either 0.02, 0.04, or

0.08. Also, the AAE and the MAE are presented.

The experiments show that the new approximate expressions for the free

boundary provide comparable results. The numerical differences between
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σ, r True IG QD BE IM QD+ QD∗ LB TA PS Eq. (5.141)

Short-term options with τ = 0.1
0.2, 0.02 87.90 88.98 88.64 87,71 88.38 88.11 87.68 88.31 88.12 85.10 88.31

0.2, 0.04 89.60 89.75 90.22 89.38 90.05 89.76 89.48 89.92 89.75 87.88 89.90

0.2, 0.08 91.44 91.06 91.92 91.19 91.87 91.55 91.40 91.66 91.53 90.56 91.61

0.4, 0.02 74.80 78.46 76.19 74.51 75.54 75.19 74.23 75.59 75.25 67.79 75.64

0.4, 0.04 77.48 79.22 78.74 77.14 78.25 77.82 77.12 78.17 77.74 72.54 78.20

0.4, 0.08 80.47 80.63 81.55 80.08 81.22 80.75 80.29 81.02 80.54 77.37 81.02

0.6, 0.02 63.11 69.17 64.93 62.78 63.91 63.63 62.27 64.17 63.84 52.51 64.27

0.6, 0.04 66.37 69.89 68.07 65.97 67.29 66.84 65.79 67.32 66.87 58.37 67.42

0.6, 0.08 70.06 71.25 71.59 69.58 71.00 70.47 69.72 70.88 70.26 64.55 70.95

Short-term options with τ = 0.5
0.2, 0.02 79.04 78.97 80.17 78.60 79.84 79.32 78.87 79.61 79.05 75.95 79.61

0.2, 0.04 82.71 81.82 83.57 82.21 83.50 82.91 82.66 83.10 82.49 81.15 83.02

0.2, 0.08 86.69 85.94 87.25 86.15 87.53 86.77 86.67 86.88 86.15 86.12 86.66

0.4, 0.02 58.10 59.94 59.98 57.54 59.13 58.60 57.68 59.12 58.49 50.50 59.29

0.4, 0.04 63.20 62.74 64.82 62.51 64.23 63.61 63.00 64.03 63.10 58.29 64.15

0.4, 0.08 69.09 67.47 70.34 68.26 70.15 69.37 69.04 69.67 68.40 66.47 69.67

0.6, 0.02 42.14 45.45 44.21 41.58 43.02 42.70 41.61 43.30 42.93 31.89 43.62

0.6, 0.04 47.48 47.90 49.40 46.77 48.43 47.99 47.20 48.51 47.81 40.01 48.81

0.6, 0.08 53.92 52.30 55.53 53.02 54.90 54.33 53.84 54.73 53.55 49.21 54.96

AAE 1.61 1.31 0.48 0.81 0.34 0.28 0.69 0.34 4.85 0.50

MAE 6.05 2.07 0.90 1.06 0.56 0.85 1.15 0.79 10.60 1.48

Table 5.5: Critical stock prices of short-term American put options on non-dividend paying stocks

calculated using eleven different approaches: The binomial tree approach with 15000 time steps (True),

the initial guess (IG) in Barone-Adesi and Whaley (1987), the quadratic approximation (QD) of MacMil-

lan (1986) and Barone-Adesi and Whaley (1987), the refined quadratic approximation of Barone-Adesi

and Elliott (1991) (BE), the interpolation method (IM), and the quadratic approximations (QD+ and

QD∗) of Li (2010b), the lower bound approximation of Broadie and Detemple (1996) (LB), the tangent

approximation proposed by Bunch and Johnson (2000) (TA), the integral approximation of Zhu (2006a)

(PS), and the approximate solution in (5.141).
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σ, r True IG QD BE IM QD+ QD∗ LB TA PS Eq. (5.141)

Mid-term options with τ = 1.0
0.2, 0.02 74.24 73.38 75.49 73.64 75.19 74.55 74.13 74.85 74.00 71.30 74.85

0.2, 0.04 79.24 77.99 80.12 78.55 80.22 79.41 79.22 79.60 78.58 77.91 79.46

0.2, 0.08 84.60 84.04 85.12 83.91 85.76 84.64 84.57 84.73 83.39 84.21 84.36

0.4, 0.02 49.90 50.18 51.79 49.18 50.88 50.39 49.63 50.90 50.15 42.77 51.18

0.4, 0.04 56.31 54.65 57.88 55.41 57.31 56.70 56.23 57.09 55.86 51.92 57.28

0.4, 0.08 63.88 61.85 64.98 62.81 65.03 64.11 63.90 64.36 62.51 61.75 64.36

0.6, 0.02 33.10 34.26 34.95 32.45 33.73 33.60 32.82 34.13 33.82 24.23 34.59

0.6, 0.04 39.27 38.00 40.93 38.40 39.93 39.71 39.18 40.16 39.40 32.88 40.61

0.6, 0.08 47.01 44.50 48.30 45.88 47.75 47.33 47.05 47.66 46.17 43.16 48.01

Mid-term options with τ = 3.0
0.2, 0.02 66.02 64.10 67.21 65.06 67.14 66.28 66.02 66.55 64.97 63.68 66.55

0.2, 0.04 73.77 72.64 74.47 72.73 75.19 73.85 73.75 73.99 71.80 72.95 73.69

0.2, 0.08 81.86 82.08 82.28 81.04 83.79 81.78 81.75 81.87 78.81 81.70 81.20

0.4, 0.02 37.34 35.26 38.77 36.37 37.83 37.72 37.35 38.11 37.22 31.94 38.61

0.4, 0.04 45.95 43.32 46.93 44.68 46.58 46.20 46.03 46.46 44.63 42.90 46.82

0.4, 0.08 56.58 55.06 57.01 55.12 57.80 56.63 56.58 56.77 53.55 55.36 56.77

0.6, 0.02 21.14 19.56 22.16 20.39 20.95 21.44 21.19 21.75 21.60 15.55 22.42

0.6, 0.04 28.23 25.65 28.96 27.16 27.98 28.48 28.36 28.72 27.89 24.28 29.40

0.6, 0.08 37.92 35.63 38.14 36.48 37.90 38.02 38.00 38.18 36.02 35.75 38.69

AAE 1.53 1.06 0.95 0.86 0.26 0.08 0.53 1.06 3.45 0.54

MAE 2.63 1.89 1.46 1.94 0.50 0.29 1.02 3.05 8.87 1.49

Table 5.6: Critical stock prices of mid-term American put options on non-dividend paying stocks

calculated using eleven different approaches: The binomial tree approach with 15000 time steps (True),

the initial guess (IG) in Barone-Adesi and Whaley (1987), the quadratic approximation (QD) of MacMil-

lan (1986) and Barone-Adesi and Whaley (1987), the refined quadratic approximation of Barone-Adesi

and Elliott (1991) (BE), the interpolation method (IM), and the quadratic approximations (QD+ and

QD∗) of Li (2010b), the lower bound approximation of Broadie and Detemple (1996) (LB), the tangent

approximation proposed by Bunch and Johnson (2000) (TA), the integral approximation of Zhu (2006a)

(PS), and the approximate solution in (5.141).
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our formulas and the other analytical approximations as well as numerical

procedures are negligible from a practical point of view. Furthermore, the

formulas are computationally efficient, robust and very easy to implement.

Finally, no distinction between the relationship of r and q is needed.
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Chapter 6

Mellin Transforms and the

Heston Model

This chapter deals with options written on stocks with a stochastic volatility

structure20. The Heston (1993) mean reverting square root process is used

for the stochastic volatility dynamics. We show how the Mellin transform

framework can be applied to solve the problem analytically.

6.1 Introduction and Related Literature

Although the pricing model of Black/Scholes and Merton (BSM) was and

still is one of the most influential developments in financial economics, the

assumptions underlying the original works were questioned ab initio and be-

came the subject of wide theoretical and empirical study. It quickly became

clear that extensions are necessary to fit the empirical data. The main draw-

back of the model is the assumption of a constant volatility. The inadequacy

of a constant volatility for modeling stock returns is mainly based on two

empirical observations:

20The main part of this chapter is based on the paper Frontczak (2010b).
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• volatilities vary over time

• volatilities are correlated with stock returns.

The first observation can even be strengthened to a persistence of volatilities

in a certain level, called the mean reversion or long-run level. Furthermore,

most empirical tests describe a negative correlation between volatilities and

stock returns. This means that an upward-move in the stock price is accom-

panied by a downward-move in volatility.

A simple test for a constant volatility is computing implied volatilities from

a range of option prices that are observable on the market. If the assump-

tion of a constant volatility were true, implied volatilities should also remain

constant. Unfortunately, this is not observed and implied volatilities in the

BSM formula present non-constant behavior which depends on moneyness.

This pattern is called the ”volatility smile” which exhibits either a downward

sloping or a down- and upward sloping structure. Recent theoretical work

on the volatility smile can be found in the articles of Lee (2001), Balland

(2002), Lee (2004b), Fouque et al. (2004), Li (2008) or Gulisashvili and Stein

(2009).

Different approaches have been developed to reflect the empirical evidence of

a non-constant volatility and to explain the effect of a volatility smile. The

first extension was suggested by Merton (1973) himself, who extended the

BSM pricing formula to a volatility function that is deterministic in time.

Another extension of the original model is the CEV model developed by Cox

(1975). Dupire (1994) assumed that volatility dynamics can be modeled as

a deterministic function of the stock price and time. Another different ap-

proach was proposed by Sircar and Papanicolaou (1999). Based on the PDE

framework they developed a methodology that is independent of a particular

volatility process. The result is an asymptotic approximation consisting of

a BSM-like price plus a Gaussian variable which captures the risk from the

volatility component.
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The majority of the financial community, however, focuses on stochastic

volatility models. These models assume that volatility itself is a random pro-

cess and fluctuates over time. Stochastic volatility models were first studied

by Johnson and Shanno (1987), Hull and White (1987), Scott (1987), and

Wiggins (1987). Other models for the volatility dynamics were proposed by

Stein and Stein (1991), Heston (1993), Schöbel and Zhu (1999), and Rogers

and Veraart (2008). In these models, the stochastic process governing the

asset price dynamics is driven by a subordinated stochastic volatility process

that may or may not be independent.

While the early models couldn’t produce closed-form formulae, it was Stein

and Stein (1991) (S&S) who first succeeded in deriving an analytical solu-

tion. Assuming that volatility follows a mean reverting Ornstein-Uhlenbeck

process and is uncorrelated with asset returns, they present an analytic ex-

pression for the density function of asset returns for the purpose of option

valuation. Schöbel and Zhu (1999) generalize the S&S model to the case

of non-zero correlation between instantaneous volatilities and asset returns.

They present a closed-form solution for European options and discuss addi-

tional features of the volatility dynamics.

The maybe most popular stochastic volatility model was introduced by He-

ston (1993). The model assumes that the dynamics of the squared volatility

(variance) are given by a square-root process that exhibits mean reversion.

The risk neutral dynamics of the asset price are governed by the following

system of stochastic differential equations:

dSt = (r − q)St dt +
√

VtSt dWt , (6.1)

dVt = κ(θ − Vt)dt + ξ
√

Vt dZt , (6.2)

where St is the price of a dividend paying stock at time t and Vt its instanta-

neous variance with initial values S0, V0 ∈ (0,∞), and where r, q, κ, θ, ξ > 0.

As usual, r is the constant riskfree interest rate, and q is the constant divi-

dend yield. κ is the speed of mean reversion to the mean reversion level θ,
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and ξ is the so-called volatility of volatility. Wt and Zt are two correlated

Brownian motions with dWtdZt = ρdt where ρ ∈ [−1, 1] is the correlation co-

efficient. The Feller condition κθ > 1
2
ξ2 guarantees that the variance process

never reaches zero and always stays positive. In the second case if κθ ≤ 1
2
ξ2

the variance may reach zero but it can subsequently become positive. The

natural barrier at V = 0 is called reflecting.

The wide-spread recognition and attractiveness of the model comes from im-

portant economic, empirical, mathematical, and computational reasons. The

model is able to produce a number of different non-Gaussian distributions of

stock returns and accounts for a flexible skewness and kurtosis of the density

function. Furthermore, it is robust and mathematically and computation-

ally tractable. In his influential paper, Heston presented a new approach

for a closed-form valuation of options applying Fourier inversion techniques

for the pricing procedure. The characteristic function approach of Heston

(1993) turned out to be a very powerful tool. As a natural consequence, it

became standard in option pricing theory and was refined and extended in

various directions (Bates (1996), Carr and Madan (1999), Bakshi and Madan

(2000), Lewis (2000), Lee (2004a), Kahl and Jäckel (2005), Kruse and Nögel

(2005), Fahrner (2007) or Lord and Kahl (2007), among others). See also

Duffie et al. (2000) and Duffie et al. (2003) for the mathematical foundations

of affine processes.

6.2 Option Pricing

The crucial difference between the BSM economy and the Heston model is,

that prices of derivatives are now affected by two sources of randomness:

the asset price and the volatility. Also, in the BSM economy, the source of

randomness is a traded asset which is infinitely divisible and traded contin-

uously. Therefore, a derivative can be hedged continuously by continuously

trading the asset. This makes the market complete, i.e. derivatives can be
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priced by replication.

In stochastic volatility models, there are two sources of randomness. Only

the asset is tradeable. Since volatility is not a traded asset, the market be-

comes incomplete and a replication argument does not fully work, i.e. the

risk associated with the volatility component cannot be completely elimi-

nated.

Let F (S, V, t) be the current price of an option with strike price X and ma-

turity T . Setting up a riskless portfolio of the form

Π = F (S, V, t) +4SS +4V1V1,

with4S and4V1 being the numbers of the stock and another asset V1, whose

price depends on volatility, it is straightforward to derive a two dimensional

PDE that must be satisfied by F = F (S, V, t):

Ft + (r − q)SFS +
1

2
V S2FSS + (κ(θ − V ) + λξ

√
V )FV

+
1

2
ξ2V FV V + ρξV SFSV − rF = 0,

on 0 < S, V < ∞, 0 < t < T , and where partial derivatives with respect to the

underlying variables are denoted by subscripts. For a detailed derivation, see

Lewis (2000) or Gatheral (2002). λ is called the market price of volatility risk

and cannot be completely eliminated in an incomplete market environment.

Its functional form is difficult to estimate. Heston provides some reasons

for the assumption that λ is proportional to volatility, i.e. λ = k
√

V for

some constant k. Therefore λξ
√

V = kξV = λ∗V (say). Now it is possible

to define the risk-adjusted speed κ∗ and mean reversion θ∗, respectively, by

κ∗ = κ− λ∗ and θ∗ = κθ/κ∗. The resulting PDE becomes

Ft+(r−q)SFS +
1

2
V S2FSS +κ∗(θ∗−V )FV +

1

2
ξ2V FV V +ρξV SFSV −rF = 0.

(6.3)

Since κ and θ are risk-adjusted, the equation accounts for different risk pref-

erences. The functional form of the pricing equation, however, remains un-

changed. In the following we will again write κ and θ, assuming risk-adjusted
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parameters. If F is a European call option, i.e. F (S, V, t) = CE(S, V, t), we

have

CE
t +(r−q)SCE

S +
1

2
V S2CE

SS+κ(θ−V )CE
V +

1

2
ξ2V CE

V V +ρξV SCE
SV −rCE = 0

(6.4)

with the terminal condition

CE(S, V, T ) = max(S(T )−X, 0),

and where CE(S, V, t) : R+×R+×[0, T ] → R+. The solution can be expressed

as

CE(S, V, t) = Se−q(T−t)
(1

2
+

1

π

∫ ∞

0

f1(u)du
)
−Xe−r(T−t)

(1

2
+

1

π

∫ ∞

0

f2(u)du
)
,

(6.5)

with S = St being the current price and

f1(u) = Re
(e−iu ln Xϕ(u− i)

iuSe(r−q)(T−t)

)
and f2(u) = Re

(e−iu ln Xϕ(u)

iu

)
. (6.6)

The function ϕ(u) is the characteristic function of the log-stock price at

maturity:

ϕ(u) = E
[
eiu ln S(T )

]
,

where i denotes the imaginary unit. The analytic expression of the charac-

teristic function in the Heston model equals

ϕ(u) = eC(u,T−t)+D(u,T−t)V +iu(ln S+(r−q)(T−t)), (6.7)

with V = Vt being the current level of variance, and

C(u, T−t) =
κθ

ξ2

(
(κ−ρξiu+d(u))(T−t)−2 ln

(
1− c(u)ed(u)(T−t)

1− c(u)

))
, (6.8)

D(u, T − t) =
κ− ρξiu + d(u)

ξ2

(
1− ed(u)(T−t)

1− c(u)ed(u)(T−t)

)
, (6.9)
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c(u) =
κ− ρξiu + d(u)

κ− ρξiu− d(u)
, (6.10)

and

d(u) =
√

iuξ2 + ξ2u2 + (ρξiu− κ)2. (6.11)

It seems impossible to evaluate the above integrals exactly. However, they

can be approximated with reasonable accuracy by using efficient numerical

integration techniques, e.g., Gauss-Legendre or Gauss-Lobatto integration.

Similarly, if F is a European put option, i.e. F (S, V, t) = PE(S, V, t), we

have

PE
t +(r−q)SPE

S +
1

2
V S2PE

SS +κ(θ−V )PE
V +

1

2
ξ2V PE

V V +ρξV SPE
SV −rPE = 0,

(6.12)

where PE(S, V, t) : R+ × R+ × [0, T ] → R+. The boundary conditions may

be specified as

PE(S, V, T ) = max(X − S(T ), 0) (6.13)

PE(0, V, t) = Xe−r(T−t) , (6.14)

PE(S, 0, t) = max(Xe−r(T−t) − S(t)e−q(T−t), 0) , (6.15)

lim
S→∞

PE(S, V, t) = 0 , (6.16)

and

lim
V→∞

PE(S, V, t) = Xe−r(T−t). (6.17)

The first condition is the terminal condition. It specifies the final payoff of

the option. The second condition states that for a stock price of zero the put

price must equal the discounted strike price. The third condition specifies

the payoff for a variance (volatility) of zero. In this case the underlying

asset evolves completely deterministic and the put price equals its lower

bound derived by arbitrage considerations. The next condition describes the

option’s price for ever increasing asset prices. Obviously, since a put option

gives its holder the right to sell the asset the price will tend to zero if S tends

to infinity. Finally, notice that if variance (volatility) becomes infinite the
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current asset price contains no information about the terminal payoff of the

derivative security, except that the put entitles its holder to sell the asset for

X. In this case the put price must equal the discounted strike price, i.e. its

upper bound, again derived by arbitrage arguments.

6.3 Alternative Analytic Solution

The objective of this section is to solve equation (6.12) subject to (6.13)-

(6.17) in closed-form. Let P̃E = P̃E(ω, V, t) denote the Mellin transform

of PE(S, V, t). It is easily verified that P̃E exists in the entire halfplane

with Re(ω) > 0, where Re(ω) denotes the real part of ω. A straightforward

application to (6.12) gives

P̃E
t + (a1V + b1)P̃

E
V + (a2V + b2)P̃

E
V V + (a0V + b0)P̃

E = 0, (6.18)

where

a1 = −(ωρξ + κ), b1 = κθ

a2 =
1

2
ξ2, b2 = 0

a0 =
1

2
ω(ω + 1), b0 = qω − r(ω + 1). (6.19)

This is a one dimensional PDE in the complex plane with non-constant co-

efficients. To provide a unique solution for 0 < V < ∞, 0 < t < T we

need to incorporate the boundary conditions. The transformed terminal and

boundary conditions are given by, respectively,

P̃E(ω, V, T ) = Xω+1
( 1

ω
− 1

ω + 1

)
(6.20)

P̃E(ω, 0, t) = e(qω−r(ω+1))(T−t) ·Xω+1
( 1

ω
− 1

ω + 1

)
(6.21)

and condition (6.17) becomes

lim
V→∞

| P̃E(ω, V, t) |= ∞. (6.22)
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Now, similar to the previous sections we change the time variable from t to

τ = T − t and convert the backward in time PDE into a forward in time

PDE with solution domain 0 < V, τ < ∞. With P̃E(ω, V, t) = P̃E(ω, V, τ)

the resulting equation is

−P̃E
τ + (a1V + b1)P̃

E
V + (a2V + b2)P̃

E
V V + (a0V + b0)P̃

E = 0 , (6.23)

where the coefficients a0, a1, a2, b0, b1 and b2 are given above and the terminal

condition becomes an initial condition

P̃E(ω, V, 0) = Xω+1
( 1

ω
− 1

ω + 1

)
. (6.24)

Additionally we have

P̃E(ω, 0, τ) = e(qω−r(ω+1))τ ·Xω+1
( 1

ω
− 1

ω + 1

)
, (6.25)

and

lim
V→∞

| P̃E(ω, V, τ) |= ∞ . (6.26)

To simplify the PDE further we assume that the solution P̃E(ω, V, τ) can be

written in the form

P̃E(ω, V, τ) = e(qω−r(ω+1))τ · h(ω, V, τ) (6.27)

with an appropriate function h(ω, V, τ). It follows that h must satisfy

−hτ + (a1V + b1)hV + a2V hV V + a0V h = 0, (6.28)

with initial and boundary conditions

h(ω, V, 0) = Xω+1
( 1

ω
− 1

ω + 1

)
(6.29)

h(ω, 0, τ) = Xω+1
( 1

ω
− 1

ω + 1

)
(6.30)

and

lim
V→∞

| h(ω, V, τ) |= ∞ . (6.31)
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Observe that for κ = θ = ξ = 0, i.e. if the stock price dynamics are given by

the standard BSM model with constant volatility, the PDE for h is solved as

h(ω, V, τ) = Xω+1
( 1

ω
− 1

ω + 1

)
e

1
2
ω(ω+1)V τ . (6.32)

In this case the equation for P̃E(ω, V, τ) becomes

P̃E(ω, V, τ) = Xω+1
( 1

ω
− 1

ω + 1

)
e( 1

2
ω(ω+1)V +qω−r(ω+1))τ , (6.33)

and the price of a European put option can be expressed as

PE(S, V, τ) =
1

2πi

∫ c+i∞

c−i∞
P̃E(ω, V, τ) S−ω dω, (6.34)

with 0 < c < ∞. This is exactly the valuation formula for European put

options derived in Chapter 5 (equation (5.13) with n = 1).

The final step in deriving a general solution for h or equivalently for P̃E for

a non-constant volatility is to assume the following functional form of the

solution:

h(ω, V, τ) = c̃ ·H(ω, τ) · eG(ω,τ)·a0·V , (6.35)

with H(ω, 0) = 1, G(ω, 0) = 0 and where we have set

c̃ = Xω+1
( 1

ω
− 1

ω + 1

)
. (6.36)

Inserting the functional form for h in (6.28), determining the partial deriva-

tives and simplifying yields two ordinary differential equations. We have

Gτ (ω, τ) = A ·G2(ω, τ) + B ·G(ω, τ) + C , (6.37)

and

Hτ (ω, τ) = a0 · b1 ·G(ω, τ) ·H(ω, τ) (6.38)

where A = a0a2, B = a1, and C = 1. The ODE for G(ω, τ) is identified as

a Riccati equation with constant coefficients. These types of equations also

appear in frameworks based on Fourier transforms, see Heston (1993), Bates

121



(1996) or Schöbel and Zhu (1999). Having solved for G, a straightforward

calculation shows that H(ω, τ) equals

H(ω, τ) = ea0 b1
∫ τ
0 G(ω,x)dx. (6.39)

Thus, we first present the solution for G. The transformation

G(ω, τ) =
1

A
u(ω, τ)− B

2A

gives

uτ (ω, τ) = u2(ω, τ) +
4AC −B2

4
. (6.40)

Note that this is a special case of the more general class of ODEs given by

uτ (ω, τ) = au2(ω, τ) + b τn,

with n ∈ N and a and b constants. This class of ODEs has solutions of the

form

u(ω, τ) = −1

a

Fτ (ω, τ)

F (ω, τ)
,

where

F (ω, τ) =
√

τ

(
c1 J 1

2m

( 1

m

√
ab τm

)
+ c2 Y 1

2m

( 1

m

√
ab τm

))
.

The parameters c1, c2 are again constants depending on the underlying bound-

ary conditions, m = 1
2
(n+2) and J and Y are Bessel functions of the first and

second kind, respectively. See Polyanin and Zaitsev (2003) for a reference.

Setting m = 1 and incorporating the boundary conditions, u(ω, τ) is solved

as

u(ω, τ) =
k

2

tan
(

1
2
kτ

)
+ B

k

1− B
k

tan
(

1
2
kτ

) , (6.41)

where we have set

k = k(ω) =
√

4AC −B2 =
√

ξ2ω(ω + 1)− (ωρξ + κ)2. (6.42)
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Thus, we immediately get

G(ω, τ) = − B

2A
+

k

2A

tan
(

1
2
kτ

)
+ B

k

1− B
k

tan
(

1
2
kτ

)

= − B

2A
+

k

2A

k sin
(

1
2
kτ

)
+ B cos

(
1
2
kτ

)

k cos
(

1
2
kτ

)−B sin
(

1
2
kτ

) . (6.43)

Using k2 + B2 = 4A it is easily verified that an equivalent expression for

G(ω, τ) equals

G(ω, τ) =
2 sin

(
1
2
kτ

)

k cos
(

1
2
kτ

)
+ (ωρξ + κ) sin

(
1
2
kτ

) (6.44)

with k = k(ω) from above. To solve for H(ω, τ) we first mention that (Grad-

shteyn and Ryzhik (2007))
∫

B cos x + C sin x

b cos x + c sin x
dx =

Bc− Cb

b2 + c2
ln(b cos x + c sin x) +

Bb + Cc

b2 + c2
x.

Therefore,

∫ τ

0

G(ω, x)dx = −Bτ

2A
+

1

A
ln

(
k

k cos
(

1
2
kτ

)−B sin
(

1
2
kτ

)
)

(6.45)

and

H(ω, τ) = e
κθ
ξ2

[
(ωρξ+κ)τ+2 ln

(
k

k cos( 1
2 kτ)+(ωρξ+κ) sin( 1

2 kτ)

)]
. (6.46)

Finally, we have arrived at the following result:

Theorem 6.3.1 A new Mellin-type pricing formula for European put op-

tions in Heston’s (1993) mean reverting stochastic volatility model given by

PE(S, V, τ) =
1

2πi

∫ c+i∞

c−i∞
P̃E(ω, V, τ) S−ω dω, (6.47)

with 0 < c < c∗ and where

P̃E(ω, V, τ) = c̃ · e(qω−r(ω+1))τ ·H(ω, τ) · eG(ω,τ)a0V . (6.48)

with G(ω, τ) and H(ω, τ) from above. The parameters c̃ and k are given in

(6.36) and (6.42), respectively. The choice of c∗ will be commented below.
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Remark 6.3.2 Note that similar to the approach of Carr and Madan (1999)

the final pricing formula only requires a single integration.

We now consider the issue of specifying c∗. Recall that to guarantee the

existence of the inverse Mellin transform of P̃E(ω, V, τ) in a vertical strip of

the ω-plane, we need P̃E(c+iy, V, τ) to be integrable, and hence analytic. The

analysis shows that G(ω, τ) and H(ω, τ) have the same points of singularity

with

lim
ω→0

G(ω, τ) =
2 sin

(
1
2
iκτ

)

iκ cos
(

1
2
iκτ

)
+ κ sin

(
1
2
iκτ

)

=
2

iκ
sin

(1

2
iκτ

)
e

1
2
κτ

=
1− e−κτ

κ
, (6.49)

and

lim
ω→0

H(ω, τ) = 1. (6.50)

Furthermore, since

k(ω) =
√

ξ2ω2(1− ρ2) + ω(ξ2 − 2ρξκ)− κ2, (6.51)

it follows that k(ω) has two real roots given by

ω1/2 =
−(ξ − 2ρκ)±

√
(ξ − 2ρκ)2 + 4κ2(1− ρ2)

2ξ(1− ρ2)
, (6.52)

where ρ 6= ±1 and where only the positive root ω1 is of relevance. For ρ = ±1

we have a single root

ω1 =
κ2

ξ2 ∓ 2ξκ
. (6.53)

We deduce that all singular points of G and H are real, starting with ω1 being

a removable singularity. We therefore define c∗ as the first non-removable

singularity of G and H in {ω ∈ C | 0 < Re(ω) < ∞, Im(ω) = 0}, i.e. the

first real root of f(ω) except ω1 where f(ω) is defined by

f(ω) = k(ω) cos
(1

2
k(ω)τ

)
+ (ωρξ + κ) sin

(1

2
k(ω)τ

)
. (6.54)
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If f(ω) has no roots or no other roots except ω1 in {ω ∈ C | 0 < Re(ω) <

∞, Im(ω) = 0} we set c∗ = ∞. By definition it follows that ω1 ≤ c∗, with

the special cases limτ→0 c∗ = ∞, and limτ→∞ c∗ = ω1.

6.3.1 Further Analysis

In the previous section a Mellin transform approach was used to solve the

European put option pricing problem in Heston’s mean reverting stochastic

volatility model. The outcome is a new characterization of European put

prices using an integration along a vertical line segment in a strip of the pos-

itive complex half plane. Our solution has a clear and well defined structure.

The numerical treatment of the solution is simple and requires a single inte-

gration procedure. However, the final expression for the option’s price can

still be modified to provide further insights on the analytical solution. First

we have the following proposition.

Proposition 6.3.3 An equivalent (and more convenient) way of expressing

the solution in Theorem 6.3.1 is:

PE(S, V, τ) = Xe−rτP1 − Se−qτP2, (6.55)

with S = S(t) being the current stock price,

P1 =
1

2πi

∫ c+i∞

c−i∞

(Xe−rτ

Se−qτ

)ω 1

ω
H(ω, τ)eG(ω,τ)a0V dω, (6.56)

and

P2 =
1

2πi

∫ c+i∞

c−i∞

(Xe−rτ

Se−qτ

)ω+1 1

ω + 1
H(ω, τ)eG(ω,τ)a0V dω, (6.57)

where 0 < c < c∗.

PROOF: The statement follows directly from Theorem 6.3.1 by simple rear-

rangement. ¤
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Remark 6.3.4 Equation (6.55) together with (6.56) and (6.57) provides a

direct connection to Heston’s original pricing formula given by

PE(S, V, τ) = Xe−rτΠ1 − Se−qτΠ2,

with

Π1 =
1

2
− 1

π

∫ ∞

0

Re

(
e−iω ln Xϕ(ω)

iω

)
dω,

and

Π2 =
1

2
− 1

π

∫ ∞

0

Re

(
e−iω ln Xϕ(ω − i)

iωϕ(−i)

)
dω,

where the function ϕ(ω) is the log-characteristic function of the stock at ma-

turity S(T ):

ϕ(ω) = E
[
eiω ln S(T )

]
.

Remark 6.3.5 By the fundamental concept of a risk-neutral valuation we

have

PE(S, V, τ) = EQ
t

[
e−rτ (X − S(T )) · 1{S(T )<X}

]

= Xe−rτEQ
t

[
1{S(T )<X}

]
− Se−qτEQ∗

t

[
1{S(T )<X}

]
,

with E ·
t being the time t expectation under the corresponding risk-neutral prob-

ability measure, while Q∗ denotes the equivalent martingale measure given by

the Radon-Nikodym derivative

dQ∗

dQ
=

S(T )e−rτ

Se−qτ
.

So the framework allows an expression of the above probabilities as the inverse

of Mellin transforms.

A further advantage of the new framework is that hedging parameters, com-

monly known as Greeks or Greek letters, are easily determined analytically.

These quantities represent the sensitivities of the price of a derivative to
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a change in the underlying parameters on which the value is dependent.

The most popular Greek letters widely used for risk management are delta,

gamma, vega, rho, and theta. Two other second-order Greeks commonly

used in financial markets are called vanna and vomma, respectively. Vanna

is a second order derivative of the option value, once to the underlying spot

price and once to volatility. Vomma or Vega Convexity measures the second

order sensitivity to volatility. It is the second derivative of the option value

with respect to the volatility. Equivalently one can say that vomma measures

the rate of change to vega as volatility changes. The results for Greeks are

summarized in the next proposition.

Proposition 6.3.6 Setting

I(ω, τ) = H(ω, τ)eG(ω,τ)a0V ,

the analytical expressions for the delta, gamma, vega, rho, and theta in the

case of European put options are given by, respectively,

PE
S (S, V, τ) =

−1

2πi

∫ c+i∞

c−i∞

(X

S

)ω+1 1

ω + 1
e(qω−r(ω+1))τI(ω, τ)dω, (6.58)

PE
SS(S, V, τ) =

1

2πi

∫ c+i∞

c−i∞

1

S

(X

S

)ω+1

e(qω−r(ω+1))τI(ω, τ)dω, (6.59)

PE
V (S, V, τ) =

1

2πi

∫ c+i∞

c−i∞

X

2

(X

S

)ω

e(qω−r(ω+1))τG(ω, τ)I(ω, τ)dω. (6.60)

Recall that the rho of a put option is the partial derivative of PE with respect

to the interest rate and equals

PE
r (S, V, τ) =

−Xτ

2πi

∫ c+i∞

c−i∞

(X

S

)ω 1

ω
e(qω−r(ω+1))τI(ω, τ)dω . (6.61)

The theta of the put, i.e. the partial derivative of PE with respect to τ is

determined as

PE
τ (S, V, τ) =

1

2πi

∫ c+i∞

c−i∞
X

(X

S

)ω 1

ω(ω + 1)
e(qω−r(ω+1))τI(ω, τ)J(ω, τ)dω ,

(6.62)
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with

J(ω, τ) = qω − r(ω + 1) +
1

2
ω(ω + 1)

(
κθG(ω, τ) + V Gτ (ω, τ)

)
, (6.63)

where

Gτ (ω, τ) =

(
1− (ωρξ + κ)2

ξ2ω(ω + 1)

)
1

cos2
(

1
2
kτ + tan−1

(
−(ωρξ+κ)

k

)) . (6.64)

Finally, the second-order Greeks Vanna and Vomma equal, respectively

PE
SV (S, V, τ) =

−1

2πi

∫ c+i∞

c−i∞

1

2
ω
(X

S

)ω+1

e(qω−r(ω+1))τG(ω, τ)I(ω, τ)dω, (6.65)

and

PE
V V (S, V, τ) =

X

2πi

∫ c+i∞

c−i∞

1

4
ω(ω + 1)

(X

S

)ω

e(qω−r(ω+1))τG2(ω, τ)I(ω, τ)dω.

(6.66)

PROOF: The expressions follow directly from Theorem 6.3.1 or Proposition

6.3.3. The expression for J(ω, τ) follows by straightforward differentiation

and (6.38). ¤
We point out that instead of using the put call parity relationship for valuing

European call options a direct Mellin transform approach is also possible.

Recall that the European call option price CE(S, V, t) is characterized as the

unique solution of (6.4) subject to

CE(S, V, T ) = max(S(T )−X, 0) ,

CE(0, V, t) = 0 ,

CE(S, 0, t) = max(S(t)e−q(T−t) −Xe−r(T−t), 0) ,

lim
S→∞

CE(S, V, t) = ∞ ,

and

lim
V→∞

CE(S, V, t) = S(t)e−q(T−t) .

Applying the modified definition from Section 5.2. and following the lines of

reasoning outlined in the previous section it is straightforward to derive at
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Theorem 6.3.7 The Mellin-type closed-form valuation formula for Euro-

pean call options in the square-root stochastic volatility model of Heston

(1993) equals

CE(S, V, τ) = Se−qτP ∗
2 −Xe−rτP ∗

1 , (6.67)

where

P ∗
2 =

1

2πi

∫ c+i∞

c−i∞

( Se−qτ

Xe−rτ

)ω−1 1

ω − 1
H∗(ω, τ)eG∗(ω,τ)a∗0V dω, (6.68)

and

P ∗
1 =

1

2πi

∫ c+i∞

c−i∞

( Se−qτ

Xe−rτ

)ω 1

ω
H∗(ω, τ)eG∗(ω,τ)a∗0V dω, (6.69)

with

H∗(ω, τ) = e
κθ
ξ2

[
−(ωρξ−κ)τ+2 ln

(
k∗

k∗ cos( 1
2 k∗τ)−(ωρξ−κ) sin( 1

2 k∗τ)

)]
, (6.70)

G∗(ω, τ) =
2 sin

(
1
2
k∗τ

)

k∗ cos
(

1
2
k∗τ

)− (ωρξ − κ) sin
(

1
2
k∗τ

) , (6.71)

k∗ = k∗(ω) =
√

ξ2ω(ω − 1)− (ωρξ − κ)2, (6.72)

and a∗0 = 1
2
ω(ω − 1). Furthermore, we have that 1 < c < c∗ with c∗ being

characterized equivalently as at the end of the previous section.

Remark 6.3.8 Again, a direct analogy to Heston’s original pricing formula

is provided. The corresponding expressions for the Greeks follow immediately

either by direct differentiation of the price formula or using the put-call parity.

6.3.2 Numerical Examples

In this section we evaluate the results of the previous sections for the pur-

pose of computing and comparing option prices for a range of different pa-

rameter combinations. Since our numerical calculations are not based on

a calibration procedure we will use notional parameter specifications. As a

benchmark we choose the pricing formula due to Heston based on Fourier
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inversion (H). From the previous analysis it follows that the numerical inver-

sion in both integral transform approaches requires the calculation of loga-

rithms with complex arguments. As pointed out by Schöbel and Zhu (1999)

and Kahl and Jäckel (2005) this calculation may cause problems especially

for options with long maturities or high mean reversion levels. We there-

fore additionally implement the rotation count algorithm proposed by the

second authors to overcome these possible inconsistencies (H(RCA)). The

Mellin transform solution (MT) is based on equations (6.47) for puts and

(6.67) for calls, respectively. The limits of integration c± i∞ are truncated

at c± i500. Although any other choice of truncation is possible this turned

out to provide comparable results. To assess the accuracy of the alternative

solutions we determine the absolute difference between H(RCA) and MT

(Diff). Table 6.1 gives a first look at the results for different asset prices

and expiration dates. We distinguish between in-the-money (ITM), at-the-

money (ATM), and out-of-the-money (OTM) options. Fixed parameters are

X = 100, r = 0.04, q = 0.02, V = 0.09, κ = 3, θ = 0.12, ξ = 0.2, and

ρ = −0.5, whereas S and τ vary from 80 to 120 currency units, and three

months to three years, respectively. Using these values we have for the Eu-

ropean put ω1 = 9.6749 constant, while c∗ varies over time from 54.7066

(τ = 0.25) to 11.7046 (τ = 3.0) and for the European call ω1 = 31.0082 with

c∗ changing from 116.7385 (τ = 0.25) to 33.7810 (τ = 3.0). We therefore

use c = 2 for the calculations (in both cases). Our major finding is that

the pricing formulae derived in this paper provide comparable results for all

parameter combinations. The absolute differences are very small (of order

10−6 to 10−8 for puts and 10−5 to 10−8 for calls). They can be neglected

from a practical point of view. In addition, since the numerical integration is

accomplished in both frameworks equivalently efficient, the calculations are

done very quickly.

Next, we examine how the option prices vary if the correlation between the

underlying asset and its instantaneous variance changes. Although from a
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Puts Calls
(S, τ) H H(RCA) MT Diff H H(RCA) MT Diff

(80 ; 0.25) 19.8379 19.8379 19.8379 1.7 · 10−6 0.4339 0.4339 0.4339 1.7 · 10−6

(90 ; 0.25) 11.6806 11.6806 11.6806 1.1 · 10−6 2.2267 2.2268 2.2268 1.1 · 10−6

(100 ; 0.25) 5.9508 5.9508 5.9508 4.9 · 10−7 6.4471 6.4471 6.4471 4.9 · 10−7

(110 ; 0.25) 2.6708 2.6708 2.6708 6.4 · 10−6 13.1172 13.1173 13.1173 6.4 · 10−5

(120 ; 0.25) 1.0870 1.0870 1.0870 7.5 · 10−6 21.4835 21.4835 21.4835 7.4 · 10−6

(80 ; 0.5) 20.5221 20.5221 20.5221 3.4 · 10−6 1.7062 1.7062 1.7062 3.4 · 10−6

(90 ; 0.5) 13.5342 13.5342 13.5342 2.2 · 10−6 4.6188 4.6188 4.6188 2.2 · 10−6

(100 ; 0.5) 8.4302 8.4302 8.4302 1.1 · 10−6 9.4153 9.4153 9.4153 1.1 · 10−6

(110 ; 0.5) 5.0232 5.0232 5.0232 3.0 · 10−7 15.9088 15.9088 15.9088 3.0 · 10−7

(120 ; 0.5) 2.8995 2.8995 2.8995 9.7 · 10−7 23.6856 23.6856 23.6856 9.7 · 10−7

(80 ; 1.0) 22.1413 22.1413 22.1413 6.7 · 10−6 4.4783 4.4782 4.4783 6.7 · 10−6

(90 ; 1.0) 16.2923 16.2923 16.2923 4.7 · 10−6 8.4312 8.4312 8.4312 4.7 · 10−6

(100 ; 1.0) 11.7819 11.7819 11.7819 2.3 · 10−6 13.7229 13.7229 13.7229 2.3 · 10−6

(110 ; 1.0) 8.4207 8.4207 8.4207 2.5 · 10−7 20.1636 20.1636 20.1636 2.5 · 10−7

(120 ; 1.0) 5.9755 5.9755 5.9755 2.3 · 10−6 27.5204 27.5204 27.5204 2.3 · 10−6

(80 ; 2.0) 24.5972 24.5972 24.5972 1.3 · 10−6 9.1487 9.1487 9.1487 1.3 · 10−5

(90 ; 2.0) 19.8041 19.8041 19.8041 8.2 · 10−6 13.9635 13.9635 13.9635 8.2 · 10−6

(100 ; 2.0) 15.9136 15.9136 15.9136 3.6 · 10−6 19.6809 19.6809 19.6809 3.6 · 10−6

(110 ; 2.0) 12.7852 12.7852 12.7852 7.2 · 10−7 26.1604 26.1604 26.1604 7.2 · 10−7

(120 ; 2.0) 10.2833 10.2833 10.2833 5.2 · 10−6 33.2664 33.2664 33.2664 5.2 · 10−6

(80 ; 3.0) 26.1731 26.1731 26.1731 1.4 · 10−6 12.8222 12.8222 12.8222 1.4 · 10−6

(90 ; 3.0) 21.9865 21.9865 21.9865 7.3 · 10−6 18.0533 18.0533 18.0533 7.3 · 10−7

(100 ; 3.0) 18.5011 18.5011 18.5011 2.3 · 10−8 23.9855 23.9855 23.9855 2.3 · 10−8

(110 ; 3.0) 15.6055 15.6055 15.6055 6.9 · 10−6 30.5076 30.5076 30.5076 6.9 · 10−6

(120 ; 3.0) 13.2004 13.2004 13.2004 1.2 · 10−6 37.5201 37.5201 37.5201 1.2 · 10−6

Table 6.1: European option prices in Heston’s stochastic volatility model for

different asset prices S and maturities τ . Fixed parameters are X = 100,

r = 0.04, q = 0.02, V = 0.09, κ = 3, θ = 0.12, ξ = 0.2, ρ = −0.5, and c = 2.

practical point of view it may be less realistic to allow for a positive correla-

tion we do not make any restrictions on ρ and let it range from −1.00 to 1.00.

We fix time to maturity to be 6 months. Also, to provide a variety of pa-

rameter combinations we change some of the remaining parameters slightly:

X = 100, r = 0.05, q = 0.02, V = 0.04, κ = 2, θ = 0.05, and ξ = 0.2. We
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abstain from presenting the numerical values of ω1 and c∗ in this case and

choose again c = 2 for the integration. Our findings are reported in Table

6.2.

Puts Calls
(S, ρ) H H(RCA) MT Diff H H(RCA) MT Diff

(80 ; -1.00) 18.4620 18.4620 18.4620 1.7 · 10−6 0.1350 0.1350 0.1350 1.7 · 10−6

(100 ; -1.00) 5.0431 5.0431 5.0431 2.1 · 10−6 6.5170 6.5170 6.5170 2.1 · 10−6

(120 ; -1.00) 1.0353 1.0353 1.0353 2.6 · 10−5 22.3103 22.3103 22.3103 2.6 · 10−5

(80 ; -0.75) 18.5533 18.5533 18.5533 1.3 · 10−6 0.2263 0.2263 0.2263 1.3 · 10−6

(100 ; -0.75) 5.0403 5.0403 5.0403 4.1 · 10−6 6.5143 6.5143 6.5143 4.1 · 10−6

(120 ; -0.75) 0.9541 0.9541 0.9541 6.6 · 10−6 22.2291 22.2291 22.2291 6.6 · 10−6

(80 ; -0.50) 18.6413 18.6413 18.6413 1.0 · 10−6 0.3143 0.3143 0.3143 1.0 · 10−6

(100 ; -0.50) 5.0371 5.0371 5.0371 4.4 · 10−6 6.5111 6.5111 6.5111 4.4 · 10−6

(120 ; -0.50) 0.8695 0.8695 0.8695 2.5 · 10−6 22.1445 22.1445 22.1445 2.5 · 10−6

(80 ; -0.25) 18.7269 18.7269 18.7269 7.9 · 10−6 0.3999 0.3999 0.3999 7.9 · 10−6

(100 ; -0.25) 5.0332 5.0332 5.0332 4.7 · 10−6 6.5072 6.5072 6.5072 4.7 · 10−6

(120 ; -0.25) 0.7812 0.7812 0.7812 1.5 · 10−6 22.0562 22.0562 22.0562 1.5 · 10−6

(80 ; 0.00) 18.8104 18.8104 18.8104 4.9 · 10−5 0.4834 0.4834 0.4834 4.9 · 10−5

(100 ; 0.00) 5.0285 5.0285 5.0285 2.7 · 10−5 6.5025 6.5025 6.5025 3.0 · 10−5

(120 ; 0.00) 0.6887 0.6887 0.6887 6.0 · 10−5 21.9637 21.9637 21.9637 6.0 · 10−5

(80 ; 0.25) 18.8921 18.8921 18.8921 1.1 · 10−6 0.5651 0.5651 0.5651 1.1 · 10−6

(100 ; 0.25) 5.0229 5.0229 5.0229 5.3 · 10−6 6.4969 6.4969 6.4969 5.3 · 10−6

(120 ; 0.25) 0.5913 0.5913 0.5913 9.6 · 10−6 21.8663 21.8663 21.8663 9.5 · 10−6

(80 ; 0.50) 18.9721 18.9721 18.9721 2.2 · 10−6 0.6451 0.6451 0.6450 2.2 · 10−6

(100 ; 0.50) 5.0166 5.0166 5.0166 5.7 · 10−6 6.4906 6.4906 6.4906 5.7 · 10−6

(120 ; 0.50) 0.4882 0.4881 0.4881 1.2 · 10−6 21.7931 21.7630 21.7630 1.2 · 10−6

(80 ; 1.00) 19.1275 19.1275 19.1275 9.60 · 10−6 0.8005 0.8005 0.8005 1.4 · 10−5

(100 ; 1.00) 5.0027 5.0027 5.0027 4.2 · 10−6 6.4767 6.4767 6.4767 5.7 · 10−6

(120 ; 1.00) 0.2566 0.2566 0.2566 1.3 · 10−6 21.5316 21.5316 21.5316 2.0 · 10−6

Table 6.2: European option prices in Heston’s stochastic volatility model for

different asset prices S and correlations ρ. Fixed parameters are X = 100,

r = 0.05, q = 0.02, V = 0.04, κ = 2, θ = 0.05, ξ = 0.2, and c = 2.

The Mellin transform approach gives satisfactory results as the absolute dif-

ferences show. For both puts and calls they are of order 10−5 to 10−6. An-

132



alyzing the results in detail one basically observes two different kinds of

behavior. For ITM put options we have an increase in value for increasing

values of ρ. The maximum difference is 0.6655 or 3.60%. The opposite is

true for OTM puts. Here we have a strict decline in price if ρ is increased.

The magnitude of price reactions to changes in ρ increases, too. The max-

imum change in the downward move is 0.7787 or equivalently 75.21%. The

same behavior is observed for ATM options. However, the changes are much

more moderate with a maximum percentage change of 0.80%. For European

calls the situation is different. OTM calls increase significantly in value if ρ

is increased whereas ITM and ATM call prices decrease for an increasing ρ.

The maximum percentage changes are 492.96% (OTM), 3.49% (ITM), and

0.62% (ATM), respectively.

Finally, we compare the values of delta for different (S; τ) combinations. For

the calculation of the delta of a European put we use equation (6.58). The

corresponding delta value for a call is easily determined from (6.65). S and

τ vary from 80 to 120 currency units, and three months to three years, re-

spectively. Again, the remaining parameters are slightly altered and equal

X = 100, r = 0.06, q = 0.03, V = 0.16, κ = 3, θ = 0.16, ξ = 0.10, ρ = 0.75,

and c = 2. The results are summarized in Table 6.3. Once more, we observe

a high consistency with Heston’s framework based on Fourier inversion. For

all parameter combinations our results agree with Heston’s with a great de-

gree of precision.

In summary, our numerical experiments suggest that the new framework is

able to compete with Heston’s solution based on Fourier inversion. The ac-

curacy of the results is very satisfying and the framework is flexible enough

to account for all the pricing features inherent in the model. The findings

justify the assessment of the Mellin transform approach as a very competitive

alternative.
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Puts Calls
(S, τ) 4H 4H(RCA) 4MT Diff 4H 4H(RCA) 4MT Diff

(80 ; 0.25) -0.8318 -0.8318 -0.8318 2.4 · 10−7 0.1607 0.1607 0.1607 2.4 · 10−7

(90 ; 0.25) -0.6422 -0.6422 -0.6422 2.4 · 10−7 0.3503 0.3503 0.3503 2.4 · 10−7

(100 ; 0.25) -0.4348 -0.4348 -0.4348 2.4 · 10−7 0.5578 0.5578 0.5578 2.4 · 10−7

(110 ; 0.25) -0.2625 -0.2625 -0.2625 2.4 · 10−7 0.7300 0.7300 0.7300 2.4 · 10−7

(120 ; 0.25) -0.1447 -0.1447 -0.1447 2.5 · 10−7 0.8479 0.8479 0.8479 2.5 · 10−7

(80 ; 0.5) -0.7118 -0.7118 -0.7118 4.8 · 10−7 0.2734 0.2734 0.2734 4.8 · 10−7

(90 ; 0.5) -0.5558 -0.5558 -0.5558 4.8 · 10−7 0.4294 0.4294 0.4294 4.8 · 10−7

(100 ; 0.5) -0.4085 -0.4085 -0.4085 4.8 · 10−7 0.5766 0.5766 0.5766 4.8 · 10−7

(110 ; 0.5) -0.2863 -0.2863 -0.2863 4.8 · 10−7 0.6988 0.6988 0.6988 4.7 · 10−7

(120 ; 0.5) -0.1936 -0.1936 -0.1936 4.8 · 10−7 0.7915 0.7915 0.7915 4.8 · 10−7

(80 ; 1.0) -0.5892 -0.5892 -0.5892 8.6 · 10−8 0.3812 0.3812 0.3812 8.6 · 10−8

(90 ; 1.0) -0.4738 -0.4738 -0.4738 8.7 · 10−8 0.4966 0.4966 0.4966 8.7 · 10−8

(100 ; 1.0) -0.3723 -0.3723 -0.3723 8.6 · 10−8 0.5981 0.5981 0.5981 8.6 · 10−8

(110 ; 1.0) -0.2878 -0.2878 -0.2878 8.0 · 10−8 0.6827 0.6827 0.6827 8.0 · 10−8

(120 ; 1.0) -0.2199 -0.2199 -0.2199 8.6 · 10−8 0.7505 0.7505 0.7505 8.6 · 10−8

(80 ; 2.0) -0.4684 -0.4684 -0.4684 1.7 · 10−7 0.4733 0.4733 0.4733 1.7 · 10−7

(90 ; 2.0) -0.3895 -0.3895 -0.3895 1.7 · 10−7 0.5523 0.5523 0.5523 1.7 · 10−7

(100 ; 2.0) -0.3222 -0.3222 -0.3222 1.7 · 10−7 0.6196 0.6196 0.6196 1.7 · 10−7

(110 ; 2.0) -0.2659 -0.2659 -0.2659 1.7 · 10−7 0.6758 0.6758 0.6758 1.7 · 10−7

(120 ; 2.0) -0.2193 -0.2193 -0.2193 1.7 · 10−7 0.7224 0.7224 0.7224 1.7 · 10−7

(80 ; 3.0) -0.3969 -0.3969 -0.3969 2.4 · 10−7 0.5170 0.5170 0.5170 2.4 · 10−7

(90 ; 3.0) -0.3361 -0.3361 -0.3361 2.4 · 10−7 0.5779 0.5779 0.5779 2.4 · 10−7

(100 ; 3.0) -0.2847 -0.2847 -0.2847 2.4 · 10−7 0.6292 0.6292 0.6292 2.4 · 10−7

(110 ; 3.0) -0.2417 -0.2417 -0.2417 2.4 · 10−7 0.6723 0.6723 0.6723 2.4 · 10−7

(120 ; 3.0) -0.2056 -0.2056 -0.2056 2.4 · 10−7 0.7083 0.7083 0.7083 2.4 · 10−7

Table 6.3: Delta values of European option prices in Heston’s stochastic

volatility model for different asset prices S and maturities τ . Fixed param-

eters are X = 100, r = 0.06, q = 0.03, V = 0.16, κ = 3, θ = 0.16, ξ = 0.1,

ρ = −0.75, and c = 2.
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Chapter 7

Conclusion

This thesis is the outcome of my research activities at the Eberhard Karls

University in Tuebingen. The thesis was concerned with the pricing of op-

tions based on a Mellin integral transform approach. The interest in this

subject was motivated by the articles of Panini and Srivastav (2004) and

Panini and Srivastav (2005). Several extensions were derived by using the

new methodology.

Firstly, we have established a new formula for European power put options

on dividend-paying stocks consisting of a single integral. Focusing on plain

vanilla American put options on dividend-paying stocks, we have used the

Mellin transform approach to derive the valuation formulas for the price and

the free boundary. To emphasize the generality of the results, we have proved

the equivalence of the new pricing formula to the integral characterizations

of Kim (1990), Jacka (1991), and Carr et al. (1992). Also, we have recov-

ered important theoretical properties of the pricing function. Finally, it was

shown how to use the expressions to derive the price of a perpetual American

put. This is a straightforward extension of Panini and Srivastav (2005).

The second contribution of the thesis is the introduction of a modified ver-

sion of the integral transform that allows an analytical valuation of European

and American call options. The outcome of this modification are new inte-
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gral representations of American call options and free boundaries. For the

modified transform, it was also shown how Gauss-Laguerre quadrature may

be applied for an accurate numerical evaluation. Additionally, we have re-

covered important theoretical properties of American call options using the

new method.

The integral expressions for American options were used subsequently to pro-

vide simple analytical approximations for the free boundary. It was shown

that the approximations are correct in the sense that they satisfy all impor-

tant and financially meaningful asymptotic requirements. Our approximative

solutions are easy to implement and numerically robust. To provide a suf-

ficient numerical analysis, we have compared our solutions to eleven other

numerical and analytical approaches found in the literature. The numerical

experiments have shown that the approximations produce accurate prices for

the critical stock price for a wide range of parameter combinations. Many of

the alternative frameworks have been outperformed by our solutions.

Finally, we have left the log-normal model behind us and have applied the

new integral transform approach for a closed-form valuation of European op-

tions within the mean reverting stochastic volatility model of Heston (1993).

Here, the main results are new analytical characterizations of options’ prices

and hedging parameters. The new solutions can be written as a single in-

tegral which allows a fast and efficient computation. Numerical tests have

demonstrated the flexibility and accuracy of the sophisticated alternative so-

lutions.

Further research can explore extensions of the methodology. In the case of

American options, the analysis presented in this thesis was restricted to plain

vanilla options in the Black/Scholes and Merton economy. A natural exten-

sion is therefore the valuation of American-style contracts on two (or more)

assets or options with more complicated payoffs. Prominent candidates are

for instance exchange options or American straddles and strangles. The more

complicated payoff will affect the non-homogeneous part of the early exercise
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premium. However, it could be possible to solve the equations explicitly in

some cases. For European options, extensions may be possible to other price

processes, such as jump diffusions, other stochastic volatility, and/or interest

rate models. Also two-dimensional or even n-dimensional pricing problems

could be studied using the double or n-dimensional Mellin transform. Finally,

one could try to combine the different aspects and use this approach to value

path dependent American options, American options in jump diffusion, or

stochastic volatility models.
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Boyarchenko, S. and Levendorskǐi, S.: 2004, Perpetual Put-Like and Call-

Like American Options under Levy Processes, and Incremental Capital

Expansion. University of Texas at Austin.
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Kahl, C. and Jäckel, P.: 2005, Not-so-complex logarithms in the Heston

model, Wilmott Magazine 4, 94–103.

Kallast, S. and Kivinukk, A.: 2003, Pricing and Hedging American Options

Using Approximations by Kim Integral Equations, European Finance Re-

view 7, 361–383.

Karatzas, I.: 1988, On the Pricing of American Options, Appl. Math. Opti-

mization 17, 37–60.

153



Karatzas, I. and Shreve, E.: 1991, Brownian Motion and Stochastic Calculus,

2nd edn, Springer Verlag.

Karatzas, I. and Shreve, E.: 1998, Methods of Mathematical Finance, 1st

edn, Springer Verlag.

Karatzas, I. and Wang, H.: 2000, A Barrier Option of American Type, Ap-

plied Mathematics and Optimization 42, 259–279.

Khaliq, A., Voss, D. and Kazmi, K.: 2008, Adaptive θ-Methods for Pricing

American Options, Journal of Computational and Applied Mathematics

222, 210–227.

Kijima, M.: 2002, Stochastic Processes with Applications to Finance, 1st edn,

Chapman and Hall/CRC.

Kim, I.: 1990, The Analytic Evaluation of American Options, Review of

Financial Studies 3, 547–572.

Kim, I. and Yu, G.: 1996, An Alternative Approach to the Valuation of

American Options and Applications, Review of Derivatives Research 1, 61–

85.

Knessl, C.: 2001, A Note on a Moving Boundary Problem Arising in the

American Put Option, Studies In Applied Mathematics 107, 157–183.
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Put in an Exponential Lévy Model, Finance and Stochastics 12, 561–581.

Lamberton, D. and Villeneuve, S.: 2003, Critical Price Near Maturity for

an American Option on a Dividend-Paying Stock, The Annals of Applied

Probability 13(2), 800–815.

Laprise, S., Fu, M., Marcus, S., Lim, A. and Zhang, H.: 2006, Pricing

American-Style Derivatives with European Call Options, Management Sci-

ence 52(1), 95–110.

Lee, J. and Paxson, D.: 2003, Confined exponential approximations for the

valuation of American options, European Journal of Finance 9, 449–474.

Lee, R.: 2001, Implied and Local Volatilities under Stochastic Volatility,

International Journal of Theoretical and Applied Finance 4(1), 45–89.

Lee, R.: 2004a, Option Pricing by Transform Methods: Extensions, Unifica-

tion, and Error Control, Journal of Computational Finance 7(3), 51–86.

Lee, R.: 2004b, The Moment Formula for Implied Volatility at Extreme

Strikes, Mathematical Finance 14(3), 469–480.

Leisen, D.: 1998, Pricing the American Put Option: A Detailed Convergence

Analysis for Binomial Models, Journal of Economic Dynamics and Control

22, 1419–1444.

Leisen, D. and Reimer, M.: 1996, Binomial Models for Option Valuation

- Examining and Improving Convergence, Applied Mathematical Finance

3, 319–346.

155
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