Signalling Effects of a Large Player in a Global Game of Creditor Coordination

Tobias Schüle and Manfred Stadler
Signalling Effects of a Large Player in a Global Game of Creditor Coordination

Tobias Schüle and Manfred Stadler∗
University of Tübingen
May 2005

Abstract

In case of multiple creditors a coordination problem can arise when the borrowing firm runs into financial distress. Even if the project’s value at maturity is enough to pay all creditors in full, some creditors may be tempted to foreclose on their loans. We develop a model of creditor coordination where a large creditor moves before a continuum of small creditors, and analyze the signalling effects of the large creditor’s investment decision on the subsequent behavior of the small creditors. The signalling effects crucially depend on the relative size of the large creditor and the relative precision of information. We derive conditions under which pure herding behavior is to be expected.

Keywords: Creditor coordination; Global games

JEL classification: D82, G12

∗ University of Tübingen, Dept. of Economics, Mohlstraße 36, D-72074 Tübingen, Germany.
e-mail: manfred.stadler@uni-tuebingen.de,
1 Introduction

If multiple creditors are financing an investment project a coordination problem can arise when the borrowing firm runs into financial distress. Even if the project’s value at maturity is enough to pay all the creditors in full, some creditors may be tempted to foreclose on their loans, fearing analogous behavior by other creditors. Such coordination failure among creditors has been recognized as one of the main causes of recent financial crises (see, e.g. Radelet and Sachs 1998, Fischer 1999). Despite its empirical relevance, the issue has hardly been addressed in financial market literature, since coordination problems lead to multiple equilibria if creditors are perfectly informed. By applying the equilibrium selection framework of global games as introduced by Carlsson and van Damme (1993a,b), Morris and Shin (2004) have developed a basic model which uniquely determines the incidence of inefficient liquidation due to creditor coordination failure. As is well known in the theory of global games, a single large player can crucially change the equilibrium behavior of the other small players. Takeda (2003) has therefore extended the global-game model of creditor coordination by introducing a large player who decides simultaneously with a continuum of small players on whether to foreclose on the loans or not.

In this paper, we modify the global-game approach of Morris and Shin (2004) in order to analyze the signalling effects of a large player. As opposed to simultaneous decisions of creditors, we assume that a continuum of small lenders takes into account the observable decision of the large creditor who moves first. This extended model enables us to analyze the large creditor’s signalling effects. It turns out that the influence of the signalling ability crucially depends on the relative size of the large player and the relative precision of creditor information. Even a relatively uninformed large creditor, who has no valuable information to signal, can affect the liquidation result, but only inasmuch as his size is relevant. If size is negligible our results coincide with those derived by Morris and Shin (2004). If the large creditor is much better informed than the small creditors, a herding effect occurs whereby the small lenders follow the large creditor’s behavior blindly, regardless of their own private information.

The paper is organized as follows. In Section 2 we set up the model and solve for the equilibrium in the two limiting cases where the large creditor is infinitely better or worse informed than the small creditors. Implications for the efficient creditor structure are discussed in Section 3. Section 4 compares our results with those

\[1\text{ Corsetti et al. (2004) have recently analyzed the role of a large player in the context of currency attacks.} \]
derived by Takeda (2003) to emphasize the signalling effects of the large creditor. Section 5 concludes.

2 The Model

A large creditor and a continuum of ex ante identical small creditors are financing a firm’s investment project. The proportion of loans financed by the large creditor is \(\lambda \in [0, 1] \), while the investment of every small creditor is negligible. However, the combined mass of loans financed by small creditors amounts to \((1 - \lambda) \). The project’s profitability is uncertain before maturity. If the project succeeds, the firm remains in operation and is able to pay back the full face value of a loan, normalized to unity, to the creditors. Otherwise the firm is forced into bankruptcy and the creditors receive no liquidation value. Before the project matures, creditors have the right to review their investment, i.e. to decide whether to roll over their loans or to foreclose. In the event of premature foreclosure a creditor receives the collateral \(\kappa \in (0, 1) \) per loan. We assume that neither the collateral \(\kappa \) nor the value \(v \) of a loan at maturity depends on the timing of the lenders’ investment decision. Creditors who postpone their decision are able to react on the choices of the first-move lenders. Thus, a creditor can either learn from the decisions of the predecessors, or he can use the own investment decision to signal to the subsequent lenders. As usual in modern global-game theory, it is assumed that the small creditors ignore the signalling effects of their decisions.

Whether the project succeeds or fails depends on the underlying fundamental state \(\theta \in \mathbb{R} \) of the firm. These fundamentals can be interpreted as a measure of the firm’s ability to meet short-term claims from creditors. Let \(\ell \in [0, 1] \) denote the proportion of loans that are foreclosed. If the total incidence of foreclosure \(\ell \) is greater than \(\theta \), the firm is forced into bankruptcy. Otherwise, the project proceeds successfully. Then the firm is able to pay back the loan proportions to the remaining creditors. Thus, the value of the loans at maturity is given by

\[
v(\theta, \ell) = \begin{cases}
1 & \text{if } \ell \leq \theta \\
0 & \text{if } \ell > \theta .
\end{cases}
\]

For convenience, we assume that if rolling over a loan yields the same expected payoff as premature foreclosure, a creditor prefers to stop lending.

If creditors know the fundamental state perfectly before reviewing their investment, the optimal investment strategies depending on \(\theta \) can be analyzed as follows. For
good fundamentals $\theta \geq 1$, the dominant strategy for any creditor is to continue lending since the project succeeds even if all other lenders prematurely foreclose on their loans. On the contrary, bad fundamentals $\theta < 0$ imply that premature foreclosure is optimal for every creditor, irrespective of the decisions of the other lenders. The interesting range is the intermediate case with $0 \leq \theta < 1$. A coordination problem among the lenders occurs since the optimal investment decision of each creditor depends on the behavior of the others. If all other creditors stop lending, the expected payoff to rolling over is 0, so that foreclosing on the loan is the optimal decision. Otherwise, if everyone else continues lending, the payoff is 1, so that rolling over the loans is the dominant strategy. Thus, under complete information there are two pure-strategy Nash equilibria, foreclose and roll over. In addition, there exists a mixed-strategy equilibrium if $\theta \in [0, 1)$, such that a creditor’s optimal strategy is to foreclose on the loans with probability $\ell = \theta$.

The coordination problem among creditors can be resolved by the assumption of incomplete information of fundamentals. In their seminal paper, Morris and Shin (2004) analyzed the investment decisions of small creditors possessing uncertain public and private information on the fundamentals. In the present paper, we follow Takeda (2003) and drop the assumption that information on the fundamental state θ is publicly available to creditors by assuming an improper uniform prior in \mathbb{R}. However, the lenders receive private signals regarding the fundamental state before reviewing their investment. The large creditor observes the realization of the noisy signal

$$y = \theta + \tau \eta,$$

where $\tau > 0$ is a scale factor, indicating the amount of noise, and η is a random variable with mean 0, continuously differentiable symmetric density $g(\cdot)$, and cumulative density $G(\cdot)$. Equivalently, a small creditor i receives the private signal

$$x_i = \theta + \sigma \varepsilon_i,$$

with the scale factor $\sigma > 0$. The random variable ε_i is distributed with mean 0, smooth symmetric density $f(\cdot)$, and cumulative density $F(\cdot)$. ε_i is i.i.d. across creditors and is independent of the disturbance η. Each creditor deduces his own estimate of θ, the distribution of signals reaching the other creditors, as well as their estimates of θ from his private information.
2.1 The benchmark cases

To set a benchmark for the signalling effects we first solve the model for the case where all creditors are small \((\lambda = 0)\). This case corresponds to the simultaneous-move game of Morris and Shin (2004) with an improper uniform prior if \(F\) is specified by the c.d.f. of the standard normal distribution. In solving for the equilibrium, we confine our attention to switching strategies, i.e. we consider strategies such that a creditor’s investment decision solely depends on whether his private signal lies below or above a certain threshold. As can be shown, this restriction is made without loss of generality, since the presumed switching strategies are the only strategies surviving the iterative elimination of strictly dominated strategies. Thus, the trigger equilibrium derived below turns out to be the unique Nash equilibrium. This equilibrium is characterized by the critical value of the fundamentals \(\theta^*\) below which the project fails, and a critical value of the signal \(x^*\) such that creditors receiving a lower signal will foreclose on the loans. The probability that any particular creditor receives a signal below this critical level is

\[
Pr \left(x_i \leq x^* \mid \theta \right) = F \left(\frac{x^* - \theta}{\sigma} \right)
\]

which equals the proportion of creditors \(\ell\) foreclosing on their loans. Thus, the critical mass condition \(\ell^* = \theta^*\) for the project to succeed is given by

\[
\theta^* = F \left(\frac{x^* - \theta^*}{\sigma} \right).
\] (3)

A creditor, receiving the private signal \(x_i\), expects the project to succeed with probability

\[
Pr \left(\theta \geq \theta^* \mid x_i \right) = F \left(\frac{x_i - \theta^*}{\sigma} \right),
\]

and hence rolls over his loan if his expected payoff is at least as high as \(\kappa\). Thus, the optimal cutoff condition for \(x^*\) is given by

\[
F \left(\frac{x^* - \theta^*}{\sigma} \right) = \kappa.
\] (4)

Solving for the equilibrium by using (3) and (4) yields

\[
x^* = \kappa + \sigma F^{-1}(\kappa)
\]

\[
\theta^* = \kappa
\]
Thus, the project will be inefficiently liquidated if the fundamental state is low with \(\theta \in [0, \kappa) \). In the opposite extreme case in which there is only one large creditor (\(\lambda = 1 \)) the game reduces to a simple decision problem. This creditor is able to guarantee a successful completion of the project whenever \(\theta \geq 0 \). Having received the private signal \(y \), his expected payoff to rolling over a loan is given by

\[
Pr (\theta \geq 0 | y) = G \left(\frac{y}{\tau} \right).
\]

The critical signal \(y^* \) that makes the large lender indifferent between continued lending and foreclosure is therefore defined by the cutoff condition:

\[
G \left(\frac{y^*}{\tau} \right) = \kappa,
\]

so that

\[
y^* = \tau G^{-1}(\kappa).
\]

The single large creditor forecloses on the loan if he receives a bad signal \(y \leq y^* \).

2.2 The signalling case

In the following, we consider the more interesting case in which the project is financed by a single large creditor and a continuum of small creditors, i.e. \(\lambda \in (0, 1) \). As argued by Corsetti et al. (2004) within a similar game-theoretic context, the small players prefer delaying their decision while the large player benefits from signalling and thus moves first. Since small creditors do not take into account the signalling effects of their decisions, they have no incentive to make their investment decision first. However, they might benefit from waiting, since they can observe the behavior of the large creditor and learn more about the fundamental state \(\theta \) if the large lender moves first. Thus, it is a weakly dominant strategy for the small creditors to delay the decision on whether to foreclose on their loans or not. Since the large creditor anticipates the timing of the small creditors’ investment decisions, he is aware that in equilibrium he can never learn from their choices. But he knows that he will send a signal to the small creditors if he decides first. Since the large creditor is concerned with coordinating his decision with those of the continuum of small lenders, he benefits from moving first and signalling his decision to these small creditors. Thus, it is a dominant strategy for the large creditor to stop lending immediately, if he is ever going to foreclose on his loans.
In this sequential-move game a unique trigger equilibrium exists which is characterized by the 5-tuple \((y^*, x^*, \theta^*, \bar{\theta}^*)\). The large creditor, moving first, decides to roll over the loan if his private signal \(y\) is greater than the switching point \(y^*\). If the small lenders observe the large creditor rolling over the loan, they will also decide to continue lending as long as their private signal \(x_i\) exceeds the threshold \(x^*_i\). But even if the large creditor decides to foreclose on his loan, high signals \(x_i > x^*_i\) make the small creditors confident of the project’s success and entice them to continue lending. Since \(x^*_i < \bar{x}^*\) and since the private signals are correlated with the true fundamental state \(\theta\), there exist threshold values \(\theta^*\) and \(\bar{\theta}^*\) corresponding to the respective switching points \(x^*_i\) and \(\bar{x}^*\). Failure of the project can always be averted if fundamentals are sound, \(\theta \geq \bar{\theta}^*\), but never if \(\theta < \bar{\theta}^*\). In the intermediate range \(\theta^* \leq \theta < \bar{\theta}^*\), the project’s success depends entirely on the large creditor’s investment decision. Thus, in equilibrium the incidence of inefficient liquidation is uniquely determined by the interval \([0, \theta^*]\) and \([0, \bar{\theta}^*]\), respectively, depending on whether the large creditor continues lending or not. Below, we derive conditions that jointly determine the switching points \(y^*, x^*, \theta^*, \bar{\theta}^*\).

Having received the signal \(y\), the large creditor’s expected payoff to rolling over a loan is given by

\[
P_r (\theta \geq \theta^* | y) = G \left(\frac{y - \theta^*}{\tau} \right).
\]

Therefore, the critical signal \(y^*\) is defined by the large lender’s cutoff condition

\[
G \left(\frac{y^* - \theta^*}{\tau} \right) = \kappa,
\]

so that

\[
y^* = \theta^* + \tau G^{-1}(\kappa).
\] (5)

A low signal \(y \leq y^*\) leads the large creditor to stop lending. Then the switching point \(\bar{x}^*\) of a small creditor \(i\) is implicitly given by his indifference condition

\[
P_r (\theta \geq \bar{\theta}^* | y \leq y^*, x_i = \bar{x}^*) = \kappa,
\] (6)

if a solution to (6) exists. If the probability on the LHS is strictly larger than \(\kappa\) for all \(x_i\), \(\bar{x}^*\) converges to \(-\infty\). Conversely, if the LHS is strictly smaller than the RHS, irrespective of the private signals \(x_i\), the critical signal \(\bar{x}^*\) tends to \(\infty\). Since the large creditor stops lending, the proportion of loans rolled over until maturity
amounts to \((1 - \lambda) Pr (x_i > \pi^* | \theta)\), so that in equilibrium the threshold \(\bar{\theta}^*\) of the fundamentals solves the critical mass condition

\[
\bar{\theta}^* = 1 - (1 - \lambda) Pr (x_i > \pi^* | \theta = \bar{\theta}^*) .
\]

(7)

If the large creditor observes \(y > y^*\), he sends an encouraging signal to the small lenders. Consequently, they prefer rolling over their loans for a larger range of signals. The private signal \(x^*\) that makes a small creditor indifferent between premature foreclosure and continued lending in this case is given by

\[
Pr(\theta \geq \theta^* | y > y^*, x_i = x^*) = \kappa ,
\]

(8)

if a solution to (8) exists. Otherwise, \(x^* \rightarrow -\infty\), if the LHS is strictly larger than \(\kappa\) for all \(x_i\). If \(\kappa\) exceeds the probability on the LHS for all \(x_i\), \(x^* \rightarrow \infty\). The corresponding threshold value \(\theta^*\) of the fundamentals, below which stopped lending by small creditors alone is sufficient for the project to fail, solves

\[
\theta^* = 1 - \lambda - (1 - \lambda) Pr(x_i > x^* | \theta = \theta^*) .
\]

(9)

To derive the equilibrium thresholds, the equations (5) to (9) have to be solved simultaneously. From (1) and (2), the private signal of the large creditor can be rewritten as

\[
y = x_i + \tau \eta - \sigma \varepsilon_i .
\]

(10)

Using the equations (5) and (10), a small creditor’s posterior probability assessment of the project’s success conditional on the signal \(x_i\) and observing the large creditor continuing lending can be expressed as

\[
Pr(\theta \geq \theta^* | y > y^*, x_i) = Pr(x_i - \sigma \varepsilon_i \geq \theta^* | x_i + \tau \eta - \sigma \varepsilon_i > \theta^* + \tau G^{-1}(\kappa)) \\
= Pr \left(\frac{x_i - \theta^*}{\sigma} \geq \frac{\tau \eta - \sigma \varepsilon_i > \theta^* - x_i + \tau G^{-1}(\kappa)} \right) .
\]

Thus, the critical signal \(x^*\) can be derived by solving

\[
Pr(\theta \geq \theta^* | y > y^*, x_i = x^*) = \frac{Pr(\theta \geq \theta^*, y > y^*, x_i = x^*)}{Pr(y > y^*, x_i = x^*)} \\
= \frac{Pr \left(\varepsilon_i \leq \frac{x^* - \theta^*}{\sigma}, \tau \eta - \sigma \varepsilon_i > \theta^* - x^* + \tau G^{-1}(\kappa) \right)}{Pr (\tau \eta - \sigma \varepsilon_i > \theta^* - x^* + \tau G^{-1}(\kappa))} = \kappa .
\]

(11)
Analogously, we can derive the switching point \bar{x}^* from condition (6), the case in which the large creditor has foreclosed on his loan:

\[
Pr(\theta \geq \bar{y} \mid y \leq y^*, x_i = \bar{x}^*) = \frac{Pr(\theta \geq \bar{y}, y \leq y^*, x_i = \bar{x}^*)}{Pr(y \leq y^*, x_i = \bar{x}^*)}
\]

\[
= \frac{Pr(\varepsilon_i \leq \frac{\bar{x}^*-\bar{x}}{\sigma}, \tau \eta - \sigma \varepsilon_i \leq \bar{y}^* - \bar{x}^* + \tau G^{-1}(\kappa))}{Pr(\tau \eta - \sigma \varepsilon_i \leq \bar{y}^* - \bar{x}^* + \tau G^{-1}(\kappa))} = \kappa .
\]

(12)

Neither of these equations can be solved explicitly in the general case, without making further parametric assumptions on the distribution of the error terms η and ε_i. Therefore, we follow the procedure suggested by Corsetti et al. (2004) and confine our analysis to the limiting properties of the equilibrium to accentuate the significance of information precision. In particular, we consider the limiting cases in which the large creditor is much better and worse informed than the small lenders, respectively.

If the large creditor’s private information is infinitely more volatile than the small creditors’ information ($\sigma/\tau \to 0$), the equilibrium behavior of lenders can be summarized by the following proposition.

Proposition 1: As $\sigma/\tau \to 0$, there is a unique trigger equilibrium with

\[
y^* = \kappa(1 - \lambda) + \tau G^{-1}(\kappa)
\]

\[
x^* = \kappa(1 - \lambda) + \sigma F^{-1}(\kappa)
\]

\[
\bar{x}^* = \kappa(1 - \lambda) + \lambda + \sigma F^{-1}(\kappa)
\]

\[
\theta^* = \kappa(1 - \lambda)
\]

\[
\bar{\theta}^* = \kappa(1 - \lambda) + \lambda .
\]

Proof. See the Appendix.

This proposition implies that even an infinitely worse informed large creditor affects the small creditors’ behavior by signalling his investment decision. Since the small creditors’ information is much more precise, the signal of the large lender can not reduce their uncertainty about the fundamental state θ. However, the observable action of the large creditor reduces the strategic uncertainty of small lenders, i.e. their uncertainty regarding the decisions of other creditors. Consequently, the equilibrium outcome of the game is merely affected by the size of the large lender. According
to $\partial(\bar{\theta} - \bar{\theta}^*)/\partial \lambda > 0$, the large creditor’s influence on the project’s success or failure is strictly increasing in λ. As $\lambda \to 1$, the coordination failure among creditors vanishes as in the case where the project is financed by a single creditor. On the contrary, if the large creditor’s investment volume becomes negligible ($\lambda \to 0$), the small creditors’ strategic uncertainty does not decrease. In this case, the critical thresholds $\bar{\theta}^*$ and $\bar{\theta}^*$ converge to κ as in the case with small lenders only. Thus, the two benchmark models described in section 2.1 are limiting cases of the sequential move game with both small and large creditors where the large creditor does not possess any informational signalling ability.

These results change distinctively in the opposite and more evident extreme case of a relatively better informed large creditor ($\sigma/\tau \to \infty$). The creditors’ switching points and the corresponding threshold values of the fundamentals can be summarized as follows:

Proposition 2: As $\sigma/\tau \to \infty$, there is a unique trigger equilibrium with

\[
\begin{align*}
y^* &= \tau G^{-1}(\kappa) \\
x^* &\to -\infty \\
\bar{x}^* &\to \infty \\
\theta^* &= 0 \\
\bar{\theta} &= 1.
\end{align*}
\]

Proof. See the Appendix.

Proposition 2 states that an infinitely better informed large creditor can exert much more influence on the small creditor’s investment decisions than in the case with $\sigma/\tau \to 0$. The large creditor does not only reduce the strategic uncertainty but also eliminates the small creditors’ fundamental uncertainty by signalling his investment decision. Actually, since the switching points x^* and \bar{x}^* tend to $-\infty$ and ∞, respectively, small creditors imitate the decision of the better informed large creditor irrespective of their own private signals. Since the large creditor anticipates that in equilibrium the second movers will follow him blindly, he acts as if he was the only lender. Thus, the equilibrium outcome of the sequential-move game with an arbitrarily better informed large creditor corresponds to the benchmark case with a single lender. Note that this result holds regardless of the size of the large creditor. Even the informational signalling ability of an entirely insignificant large lender ($\lambda \to 0$) generates such herding behavior among the small creditors.
3 Implications on the efficient creditor structure

Having established that $\theta^* \in (0, \kappa)$ and $\theta^* \in (\kappa, 1)$ in the event of a large creditor signalling to a continuum of small creditors, and that $\theta^* = \kappa$ if the project is financed exclusively by small creditors, we are now in a position to derive a firm’s preferred creditor structure conditional on its fundamental state θ. Comparing the probability of debt default in case of a mixed creditor structure with the two benchmark cases from Section 2.1 leads to the following proposition:

Proposition 3: If $\theta \geq \kappa$ ($\theta < \kappa$), a firm’s weakly dominant strategy is to finance the project exclusively by a continuum of small creditors (by a single large creditor).

Proof. To confirm the Proposition, first consider a firm with sound fundamentals $\theta \geq \kappa$. Such a firm’s project succeeds with probability 1 if it is financed solely by a continuum of small creditors. However, if $\theta \in [\kappa, \theta^*)$ the project fails with positive probability $Pr(\gamma \leq y^*|\theta)$ in case of a mixed creditor structure since the large creditor stops lending and fundamentals are insufficient to compensate the small lenders foreclosing on the loan. Also, financing the project by a single creditor cannot be a dominant strategy since the project fails with positive probability $Pr(\gamma \leq y^*|\theta)$ if $\theta \in [\kappa, 1)$. Thus, whenever $\theta \geq \kappa$, a firm’s weakly dominant strategy is to finance its project by small creditors only.

On the contrary, bad fundamentals $\theta < \kappa$ lead to failure of the project if it is financed exclusively by a continuum of small creditors. However, the probability of success $Pr(\gamma \geq y^*|\theta)$ is strictly positive in the case with a single creditor if $\theta \geq 0$ and in the case with a mixed creditor structure if $\theta \geq \theta^*$. To compare the probability of default under these two creditor structures, note that in both cases the project’s failure or success depends entirely on the large creditor’s decision whenever $\theta \in [\theta^*, \theta^*)$. Since the large creditor’s critical signal y^* is strictly lower if he is the only lender, a firm with a fundamental state $\theta < \kappa$ will favor this alternative over a mixed creditor structure in order to minimize the probability of debt default. Thus, whenever $\theta < \kappa$, the firm’s weakly dominant strategy is to finance its project by a single large creditor.

Hence, regardless of its liquidity, a firm attempting to minimize the probability of inefficient liquidation is never dependent on a mixed creditor structure with a large creditor signalling to small lenders.
4 Signalling effects of the large creditor

In order to quantify the signalling effects of the large creditor we compare our results with those of the corresponding simultaneous-move game which describes the case of unobservable investment decisions. Since it is not possible to obtain closed-form solutions in Takeda’s model, this analysis has to be restricted to the case where the private information of both creditor types becomes very precise \((\sigma \to 0, \tau \to 0)\). The signalling effects of the large creditor are summarized in Table 1.

<table>
<thead>
<tr>
<th>Large creditor’s investment decision is</th>
<th>Large creditor is relatively informed ((\sigma/\tau \to \infty, \sigma \to 0))</th>
<th>Large creditor is relatively uninformed ((\sigma/\tau \to 0, \tau \to 0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unobservable</td>
<td>(\theta^* = \kappa (1 - \lambda))</td>
<td>(\theta^* = \begin{cases} \kappa \frac{1 - \lambda}{\kappa} & \text{if } \lambda > \kappa \ \kappa & \text{if } \lambda \leq \kappa \end{cases})</td>
</tr>
<tr>
<td>Observable</td>
<td>(\tilde{\theta}^* = 0)</td>
<td>(\tilde{\theta}^* = \kappa (1 - \lambda))</td>
</tr>
<tr>
<td></td>
<td>(\tilde{\theta}^* = 1)</td>
<td>(\tilde{\theta}^* = \kappa (1 - \lambda) + \lambda)</td>
</tr>
</tbody>
</table>

If the large creditor is able to signal his decision, the critical levels of the fundamentals \(\tilde{\theta}^* (\tilde{\theta}^*)\) are always lower (higher) than the corresponding threshold \(\theta^*\) in the case of unobservable investment decisions. In other words, the signalling effect of the large creditor is always positive, regardless of the relative precision of private information. Furthermore, allowing the large creditor to signal to small lenders dominates the outcome of the simultaneous-move game if private information is arbitrarily precise. This is due to the fact that a well informed large creditor never makes a wrong decision, i.e. he stops lending if the true state of the fundamentals is lower than \(\tilde{\theta}^*\). As a consequence, the project fails if \(\theta < \tilde{\theta}^*\) so that the upper threshold \(\tilde{\theta}^*\) becomes irrelevant for the analysis of coordination failure as \(\tau \to 0\). Since \(\tilde{\theta}^* < \theta^*\), irrespective of the relative precision of information, a firm facing a very precisely informed large creditor can always reduce the incidence of inefficient liquidation by announcing the large lender’s investment decision to the small creditors.
As Table 1 reveals, the large creditor’s investment decision is only irrelevant if decisions are observable and if the large creditor is infinitely better informed. Otherwise, coordination failure among creditors with very precise but imperfect information decreases monotonically with the size of the large lender. The reason is that a more powerful large creditor diminishes strategic uncertainty whereas fundamental uncertainty is unaffected by the size of the large creditor.

Obviously, coordination failure in the unobservable action, informed large creditor case is just as severe as in the observable action, uninformed large creditor case. This is due to the fact that the large creditor does not ”add noise” to the game in both cases, either because he is arbitrarily better informed or because his investment decision is observable. Thus, the decision problem of small lenders is the same under both circumstances: they have to estimate the true state of the fundamentals as well as possible, given their own private signal.

5 Concluding remarks

In the case of multiple creditors financing a firm’s project a coordination problem arises when the borrower runs into financial distress. In their seminal paper, Morris and Shin (2004) analyzed the investment decisions of small creditors having public information about the fundamentals and receiving a private signal concerning these fundamentals. In our model we neglected public information. This enabled us to concentrate on the updated beliefs of the small creditors conditional on the large creditor’s signal without taking into account the information contained in the prior distribution. Of course, the large creditor has a strong impact on the small creditor’s decisions. This influence depends on three factors, the relative size of the large creditor, the relative precision of information, and his signalling ability depending on whether his decision is observable or not. As was shown by Takeda (2003), the incidence of inefficient liquidation is low if the size of the large creditor is considerable, and it is even lower if the large creditor is much better informed. Additionally, we derived a strong signalling effect of the large creditor. If his decision is observable, the large creditor has an even stronger influence. The two thresholds of our sequential-move game indicating the investment behavior of small creditors conditional on the large creditor’s signal are higher and lower, respectively, than the corresponding threshold derived by Takeda (2003) in the simultaneous-move game. Even a relatively uninformed large creditor, who has no valuable information to signal, can affect the liquidation result, but only inasmuch as his size is relevant. If size is negligible our results coincide with those derived by Takeda (2003) which
in turn coincide with those derived by Morris and Shin (2004) in the version with an improper prior. If the large creditor is significantly better informed than the small creditors, a herding effect occurs. Irrespective of his size, the small creditors imitate his behavior blindly, completely ignoring their own information. Regardless of its liquidity, a firm never prefers to finance the project by creditor structure with both small and large creditors. In the case of good fundamentals the efficient creditor structure is given by a continuum of small creditors only. In the case of bad fundamentals, however, the efficient structure is represented by a single large creditor.

Our results imply that a single relatively well-informed large creditor like a bank can make the other small creditors either extremely aggressive or not aggressive at all, depending on the private information the large creditor receives. This reintroduces a stochastic component to the foreclosure decisions of multiple creditors. To the extent that the success of an investment project is the mitigation of a coordination problem among the creditors, the signalling ability of a precisely informed large creditor is appropriate to reduce the incidence of inefficient liquidations.
Appendix

Proof of Proposition 1

Rewrite equation (11) as

\[
\frac{\Pr (\varepsilon_i \leq \frac{x^* - \theta^*}{\sigma}, \eta - \frac{\sigma}{\tau} \varepsilon_i > \frac{\theta^* - x^*}{\tau} + G^{-1}(\kappa))}{\Pr (\eta - \frac{\sigma}{\tau} \varepsilon_i > \frac{\theta^* - x^*}{\tau} + G^{-1}(\kappa))} = \kappa.
\]

Taking the limit as \(\sigma/\tau \to 0\) yields

\[
\frac{\Pr (\varepsilon_i \leq \frac{x^* - \theta^*}{\sigma}, \eta > \frac{\theta^* - x^*}{\tau} + G^{-1}(\kappa))}{\Pr (\eta > \frac{\theta^* - x^*}{\tau} + G^{-1}(\kappa))} = \kappa.
\]

Independence of the error terms \(\varepsilon_i\) and \(\eta\) implies

\[
\frac{\Pr (\varepsilon_i \leq \frac{x^* - \theta^*}{\sigma}) \Pr (\eta > \frac{\theta^* - x^*}{\tau} + G^{-1}(\kappa))}{\Pr (\eta > \frac{\theta^* - x^*}{\tau} + G^{-1}(\kappa))} = \kappa \iff \Pr (\varepsilon_i \leq \frac{x^* - \theta^*}{\sigma}) = F\left(\frac{x^* - \theta^*}{\sigma}\right) = \kappa
\]

and therefore

\[x^* = \theta^* + \sigma F^{-1}(\kappa).\]

Inserting this equation into (9) yields

\[
\theta^* = 1 - \lambda - (1 - \lambda) \Pr (\theta^* + \sigma \varepsilon_i > \theta^* + \sigma F^{-1}(\kappa))
= 1 - \lambda - (1 - \lambda)(1 - F(F^{-1}(\kappa)))
= 1 - \lambda - (1 - \lambda)(1 - \kappa)
= \kappa(1 - \lambda).
\]

Analogously, equation (12) can be rewritten as

\[
\frac{\Pr (\varepsilon_i \leq \frac{x^* - \theta^*}{\sigma}, \eta - \frac{\sigma}{\tau} \varepsilon_i \leq \frac{\theta^* - x^*}{\tau} + G^{-1}(\kappa))}{\Pr (\eta - \frac{\sigma}{\tau} \varepsilon_i \leq \frac{\theta^* - x^*}{\tau} + G^{-1}(\kappa))} = \kappa.
\]
Thus, in the limiting case $\sigma/\tau \to 0$ results
\[
Pr \left(\varepsilon_i \leq \frac{\bar{\sigma} - \bar{\theta}^*}{\sigma} \right) = F \left(\frac{\bar{\sigma} - \bar{\theta}^*}{\sigma} \right) = \kappa ,
\]
so that the critical signal \bar{x}^* is given by
\[
\bar{x}^* = \bar{\theta}^* + \sigma F^{-1}(\kappa) .
\]
Inserting into equation (7) yields
\[
\bar{\theta}^* = 1 - (1 - \lambda)Pr(\bar{\theta}^* + \sigma \varepsilon_i > \bar{\theta}^* + \sigma F^{-1}(\kappa))
= 1 - (1 - \lambda)(1 - F(F^{-1}(\kappa)))
= 1 - (1 - \lambda)(1 - \kappa)
= \kappa(1 - \lambda) + \lambda .
\]
Using the above results, the creditors’ switching points are given by:
\[
y^* = \kappa(1 - \lambda) + \tau G^{-1}(\kappa)
\]
\[
\bar{x}^* = \kappa(1 - \lambda) + \sigma F^{-1}(\kappa)
\]
\[
\bar{x}^* = \kappa(1 - \lambda) + \lambda + \sigma F^{-1}(\kappa) .
\]

Proof of Proposition 2

Rewriting equation (11) as
\[
Pr \left(\varepsilon_i \leq \frac{\varepsilon_i - \bar{\theta}^*}{\sigma}, \varepsilon_i - \varepsilon_i > \frac{\varepsilon_i - \bar{\theta}^*}{\sigma} + \frac{\bar{\sigma} - \bar{\theta}^*}{\sigma} + \frac{\bar{\sigma} - \bar{\theta}^*}{\sigma} + \bar{\sigma} G^{-1}(\kappa) \right) = \kappa
\]
\[
Pr \left(\frac{\varepsilon_i}{\sigma} - \varepsilon_i > \frac{\varepsilon_i - \bar{\theta}^*}{\sigma} + \frac{\bar{\sigma} - \bar{\theta}^*}{\sigma} + \bar{\sigma} G^{-1}(\kappa) \right)
= 1 > \kappa .
\]
Thus, the switching point of a small creditor who has observed the large creditor rolling over the loan, tends to

$$\bar{x}^* \to -\infty.$$

Hence, the probability in equation (9) is equal to 1, so that

$$\bar{\theta}^* = 0.$$

By the same token, equation (12) can be transformed to

$$\frac{Pr\left(\varepsilon_i \leq \frac{x^* - \overline{y}^*}{\sigma} + \frac{\xi}{\sigma} G^{-1}(\kappa) - \varepsilon_i \leq \frac{\overline{y}^* - x^*}{\sigma} + \frac{\xi}{\sigma} G^{-1}(\kappa)\right)}{Pr\left(\frac{\xi}{\sigma} - \varepsilon_i \leq \frac{\overline{y}^* - x^*}{\sigma} + \frac{\xi}{\sigma} G^{-1}(\kappa)\right)} = \kappa,$$

so that we get

$$\frac{Pr\left(\varepsilon_i \leq \frac{x^* - \overline{y}^*}{\sigma}, \varepsilon_i \geq \frac{x^* - \overline{y}^*}{\sigma}\right)}{Pr\left(\varepsilon_i \geq \frac{x^* - \overline{y}^*}{\sigma}\right)} = 0 < \kappa$$

in the limiting case where $\sigma/\tau \to \infty$.

Thus, the switching point of a small creditor who has observed the large creditor foreclosing on the loan, tends to

$$\bar{x}^* \to \infty.$$

Hence, the probability in equation (7) is equal to 0, so that

$$\bar{\theta}^* = 1.$$

Finally, we can derive the large creditor’s switching point from (5):

$$y^* = \tau G^{-1}(\kappa).$$
References

