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1 Introduction

Time series of (small) counts arise in various fields of statistics. Examples are: the number
of customers waiting to be served at a counter recorded at discrete points in time; the
daily number of absent workers in a firm; and the monthly cases of rare infectious diseases
in a specified area. Typically such series consist of positive (or zero) counts with a sample
mean perhaps not higher than 10. This renders any consideration of continuous modelling
inappropriate. Several models that take the discretness of the data explicitly into account
have been developed in the literature. Following a proposal of Cox (1981) they are divided
into two broad categories: observation-driven; and parameter-driven models. While the
latter rely on a latent process connecting the observations, the former specify a direct
link between current and past observations. In their important monograph Cameron and

Trivedi (1998) provide an overview over the recent literature in this area.

This paper focuses on a special class of observation driven models, the so called integer-
valued autoregressive-moving average (INARMA) processes introduced by McKenzie (1985)
and Al-Osh and Alzaid (1987). They provide an interesting class of discrete valued pro-
cesses with the ability not only to specify the dependence structure but also to choose
among a wide class of (discrete) marginal distributions. Although inherently nonlinear
in nature, INARMA models are often specified so as to mimic the linear structure of
the well known linear Gaussian ARMA processes. There exists, however, a gap between
theoretical models for INARMA processes and their practical application to time series
of counts. It is the purpose of this paper to address this gap by assessing methods for de-
termining whether or not the INARMA class should be entertained for a given set of data.

A natural first question in the analysis of time series of counts is whether the data exhibit
a significant serial dependence or not. If this is not the case, standard methods suitable
for independent data can be applied, otherwise a more sophisticated analysis is called for.
To equip the applied researcher with suitable tools to answer the question pertaining to
serial dependence, we discuss various standard tests and introduce a new class of tests

obtained from the branching process literature. The size and power properties of the



various tests are examined in Monte Carlo experiments.

Once significant serial correlation is established in data the next task is to attempt to
identify the type of correlation structure and specify a time series model suitable for it.
In this context, we suggest a testing strategy that may be useful with regard to particular
INARMA processes. The device proves useful in applications with real data reported

below.

The paper is organized as follows: In Section 2 three basic INARMA processes are de-
scribed in some detail. In Section 3 well known and newly designed tests for serial de-
pendence are discussed. Section 4 provides the results of Monte Carlo studies on the size
properties of the various testing procedures under the assumption of equidispersed iid
Poisson variables as well as overdispersed iid negative binomial variables. The empirical
power of the tests against various alternatives is analysed in Section 5. Section 6 provides

some applications and Section 7 concludes.

2 Time Series Models for Counts

Three basic observation-driven time series models for counts are presented here. They
cover a wide range of possible dependence regimes. First order dependence can either be
modelled by the so-called integer-valued first order autoregressive (INAR(1)) model or by
the first order moving average (INMA (1)) model. These have been considered extensively
elsewhere, see, for example Al-Osh and Alzaid (1987,1988), McKenzie (1988), Briannis
(1994) and Brénnés and Hall (1998). We briefly review their basic properties and struc-
ture below. To study higher order dependence the INAR(2) model proves to be a very

interesting starting point.



2.1 The INAR(1) process
The INAR(1) process {X;;t = 0,41, +2,...} is defined by the difference equation
X,=aoX, \+W,, t=0,+1,42 ..., (1)

with the state space of the process being Ny. It is assumed that a € [0,1) and W} is an
iid discrete random variable sequence with finite first () and second (central) moment
(02). Wy and X;_; are presumed to be stochastically independent for all points in time.

The process generated by (1) is stationary.

The process closely resembles the familiar Gaussian AR(1) process but is nonlinear due
to the o-operation replacing the usual scalar multiplication in continuous models. The
purpose of this operation, which goes back to the work of Steutel and van Harn (1979),
is to ensure the integer discreteness of the process. Following McKenzie (1988) it will be

called the binomial thinning or simply thinning operator and is defined as follows:

Xi—1

ao Xy 1=V 4+ Yot Yy =) Y, (2)

i=1
where the Y;;_; are assumed to be iid Bernoulli random variables with P(Y;;1 =1) =a
and P(Y;;—y = 0) =1 — a. It is important to note that subsequent thinning operations
are performed independently of each other with a constant probability a and that thin-
ning is a random operation with an associated probability distribution. Although not as
rigorously defined as above, the concept of thinning is nevertheless well known in clas-
sical probability theory and has been in use in the Bienaymé-Galton-Watson branching
processes (see Feller, 1968, ch. 12) as well as in the theory of stopped-sum distributions
(see, for example, Johnson, Kotz and Kemp, 1992, ch. 9). The close relationship between
the Bienaymé-Galton-Watson branching processes and the INAR(1) process will be high-

lighted below and subsequently exploited in the next section.

An illustrative example of the process described by equations (1) and (2) is as follows.
Consider X; to be the number of particles in a well defined space at time t. According to
the INAR(1) process this number is made up of: particles, some or all of which were in

the space at time ¢t — 1; and new entrants during the time span (¢t — 1,¢]. Each particle’s
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probability of staying within the space from one time period to the next is given by a.

High (low) values of a generate high (low) correlation among subsequent observations.

Important properties of the INAR(1) process are summarised below. More detailed infor-
mation is provided in the papers mentioned above as well as in Alzaid and Al-Osh (1988).
Grunwald et al. (2000) introduce the class of conditional linear AR(1) models in which
the INAR(1) process is nested and discuss some of the properties of this class of models.
Due to stationarity, the derivation of the first and second order (unconditional) moments
is straightforward: E(X;) = pw/(1 — a); and Var(X;) = (a py + 02)/(1 — a?). The auto-
correlation function (ACF) of the process, which is given by p(k) = a* for k = 1,2,... ,
is identical to the ACF of a linear Gaussian process with the qualification that only posi-
tive autocorrelation is allowed here. In contradistinction to Gaussian processes, however,
a knowledge of the first and second order moments does not suffice to describe the de-
pendence structure of the process entirely. Note that due to the Markovian property of
the INAR(1) model the relevant tool for this purpose is the bivariate distribution func-
tion or the bivariate probability generating function (pgf). This is explored in greater
detail in a companion paper by Jung, Ronning and Tremayne (2001) (henceforth JRT).
The structural equivalence between the INAR(1) process and the well known Bienaymé-
Galton-Watson branching process with immigration (BGWT process) can easily been seen
when (1) and (2) are compared with a definition of the BGWI process exposited in Athreya
and Ney (1972), for example,

Xi—1

Xp=> Y +W,, t=0,£1,42,..., (3)
=1

where Y;; ; and W, denote stochastically independent lattice iid random variables. The
structural equivalence is restricted to the case where E(Y;; ;) < 1 holds, i.e. to subcritical
branching processes. This feature can be exploited for purposes of parameter estimation

and inference given the rich body of literature on BGWI processes.

As mentioned in the introduction the INARMA processes are characterized by their de-
pendence structure and by their marginal distributions. So far no assumption about this

marginal distribution has been made. A natural first choice in the analysis of counting



processes is the Poisson distribution. Following Al-Osh and Alzaid (1987) one assumption
is that W, ~ Po(A) with A > 0. The marginal distribution of the process X; can than be
shown (see Al-Osh and Aly, 1992 and JRT) to be Po(A/(1 — a)). The resulting INAR(1)
process will henceforth be denoted PoOINAR(1).

Figure 1 depicts simulated sample paths of the PoOINAR(1) process. For all three pan-
els E(X;) = 2, while the autocorrelation parameter a and the Poisson parameter \ vary
across the panels. In panel [a] the parameter a was set equal to 0.1 resulting in a sam-
ple path that looks quite erratic because most of the existing count is thinned and the
current value derives mainly from new entrants. In order to obtain E(X;) = 2 the value
of A is 1.8. In panel [b] we use a = 0.5 and A = 1 and in panel [¢] we set a to 0.9 and
A to 0.1. In applications it seems a often assumes quite a large value, see, for example
Hellstrom (2001). The high autocorrelation is quite evident in the bottom panel as well
as the extremely low innovation rate A\. Note that in all three panels the process reverts

back to its mean quite regularly as a consequence of the stationarity property.

<Figure 1 about here>

2.2 The INMA(1) process

A different type of dependence structure can be induced using the first order integer-valued

moving average (INMA(1)) process {X;, ¢t =0,+1,+2,...}
Xt:bOWt_1+Wt, t:(],:tl,:i:Q,..., (4)

with the state space of the process being again Ny. It is assumed that b € [0, 1] and that
W, is a lattice iid random variable with finite mean (u,,) and variance (o). The thinning

operation bo W;_; is defined as follows:

Wi_1

boW,_ = Z Yz‘,t—l ) (5)

i=1
where Y;,_1 is an iid Bernoulli random variate with P(Y;;,—1 = 1) = band P(Y;;—1 =0) =
1—0b.



A physical interpretation of the INMA(1) process can be given using the example above
where X; denotes the number of particles in a well defined space at time ¢. According to
the INMA(1) model this number is made up of particles which entered the space during
the time span (¢ — 1,¢] and survivors (of the thinning operation) of the entrants during
the time span (¢ — 2,¢ — 1]. Each element is endowed with a fixed survival probability b.
Note that, in contrast to the INAR(1) process, thinning takes place only among the im-
migrants at time ¢ — 1, not among all particles present in the space at that time. Further,
all particles have a maximum life of two periods and are forced to die automatically after
surviving one thinning. This ensures that only adjacent observations of X; are correlated,
whereas observations that are more than one time period apart are not. The resulting

process is neither Markovian nor is it a BGWI process.

The first and second order moments of X; can be derived without assumptions about its
marginal distribution. The mean of the process is given by E(X;) = (1 + b)u, and the
variance' by Var(X;) = (1 + 0*)o2, + b(1 — b) . The ACF

boy, for k=1
p(k) = { b1 = b)pyy + (1 4+ 02)0F ] (6)
0 for k>1

is analogous to the Gaussian MA(1) process. It is straightforward to show that, with b

being restricted to [0,1], p(1) is allowed to vary in the interval [0, 0.5] only.

A natural first candidate for the marginal distribution of the INMA(1) process is again
the Poisson distribution. Assuming W; ~ Po()) it is shown in Al-Osh and Alzaid (1988)
or Jung (1999) that X; ~ Po (A(1 4 b)). The resulting process is a POINMA(1) process.

Simulated sample paths for different parameter values with this model are depicted in
Figure 2. Again E(X;) = 2 is fixed. The parameter combinations used to generate the
graphs are: b= 0.1 and A\ = 1.8 for panel [a]; b = 0.5 and A = 1.33 for panel [b]; and b = 1
and A = 1 for panel [¢]. The resulting autocorrelations are 0.09, 0.33 and 0.5. As before

!The property that bo W;_;|W;_; follows a binomial distribution with scale parameter b and index

parameter W;_; is used in this derivation.



the effect of an increased autocorrelation (less severe thinning) leads to a smoothing of

the sample path.

<Figure 2 about here>

2.3 The INAR(2) process

Higher order dependence in the data is not captured by the models discussed so far and
so we now explicitly consider one higher order process. The INAR(2) process {X;,t =
0,+1,+2,...}, a seemingly natural extension of the INAR(1) process, is defined in the

usual manner

Xt:aloXt_1+a2OXt_2+Wt, t:(),:l:]_,j:Q, (7)

The thinning operations are analogous to (2). To ensure the stationarity of the process,
we require that a, + a, < 1. It turns out that, without additional assumptions regarding
the thinning operation, no sensible and easily interpretable processes result. Following
Alzaid and Al-Osh (1990) we assume that the vector (a, o X; 1,a, 0 X; 1)’ given X; 4
is multinomially distributed with parameters (a,,a,, X;_1). JRT discuss the probability

generating function and other details pertaining to such a process.

A short description of the way the INAR(2) process can be simulated may provide further
insight into the structure of the model. At time ¢ two binomial thinning operations are
performed: U; = a, 0 X; and V; = a, o (X; — Uy). While Uy is employed at time point ¢+ 1
to help generate the new value of the process X;,, it is not until time point ¢ + 2 that
V; becomes involved in the generation of the observable process. In general the formula
for generating the count for the process at time ¢ is given by X; = Uy_1 + Vi_o + W,.
A direct consequence of the two thinning operations being involved, but appearing at
different time points in the process of generating the X;’s, is that a moving average struc-
ture is induced. As shown by Alzaid and Al-Osh (1990, p. 320), the autocovariance
function of a general INAR(p) process defined as above is similar to that of a Gaussian

ARMA(p,p — 1) process. This result is in contrast with that obtained by Du and Li
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(1990) who do not employ an additional assumption for the thinning operations in their
definition of an INAR(p) process. As a consequence, a sensible physical interpretation
of their process is not readily available. Dion, Gauthier and Latour (1995) are able to
demonstrate that INAR(p ) processes can generally be viewed as multitype branching pro-
cesses with immigration. Using this link it is, therefore, possible to exploit the classical

branching process literature for the analysis of INAR processes of higher order than unity.

Employing the Poisson assumption W; ~ Po()) for the innovation process, an INAR(2)
process (PoINAR(2)) with a Poisson marginal distribution results. The first and second
order moments of this process can be derived based on the assumption that a; and a, are
independent of one another and of the past history of the process. The mean and variance
of the process are equal to E(X;) = Var(X;) = /(1 —a, — a,). The ACF satisfies the

second-order difference equation
p(k) =a, p(k — 1)+ a, p(k — 2) for k>2, (8)

with the starting values p(0) = 1 and p(1) = a,. Note that the first order autocorrelation
of this process depends solely on the parameter a, while higher order autocorrelations

depend on both a, and a,.

As is the case with Gaussian ARMA processes, the a,/a, parameter space can be parti-
tioned into an area where the ACF decays exponentially to zero for all lags £ > 2 and an
area where it oscillates before it damps out. This is depicted in Figure 3. For processes,
where a, < a, —a?, the ACF decays exponentially to zero. Oscillatory behaviour is found
when a, > a, — a?. If a, happens to be equal to a, — a? the first and second order auto-

correlations are equal.

<Figure 3 about here>

Figure 4 depicts simulated sample paths for the PoOINAR(2) process for different param-
eter combinations. In all three panels the sum of a, and a, is 0.9 and, in order to fix the

mean of the generated series at 2, the Poisson parameter A is set to 0.2. The realisation



in panel [a] is generated using a, = 0.8 and a, = 0.1. The corresponding sample auto-
correlation function (SACF) and sample partial autocorrelation function (SPACF) of the
series is shown in top panel of Figure 5. The autocorrelation exhibits no oscillatory be-
haviour, as is to be expected. In panel [b] of Figure 4, a simulated sample path is depicted
that is based on the parameter values a, = a, = 0.45. The corresponding, qualitatively
different, SACF is depicted in the middle panel of Figure 5. The two parts of which it is
made up are clearly evident. For lags up to k£ = 5 oscillating behaviour is seen, while for
k > 6 the SACF decays exponentially. In the bottom panels of the two figures a situation
where a; = 0.1 and a, = 0.8 is shown. Again, the corresponding SACF oscillates and

subsequently damps out.

<Figure 4 about here>

<Figure 5 about here>

3 Tests of serial dependence

There are several parametric as well as nonparametric tests available in the literature to
test for the presence of serial dependence in an ordered sample (zy,...,z,) of counts.
Many nonparametric tests fail to take the discrete nature of the data into account, or
break down due to the presence of multiple ties. All the tests analysed here are selected
specifically because of their acknowledgement of this special data situation. Cameron and
Trivedi (1998) exposit the use of standard autocorrelation tests routinely employed in the
analysis of time series of continuous data. The exact relationships between these tests
and the tests proposed here is the subject of separate research; our focus here is on tests

specially designed for time series of counts and in the context of the models of Section 2.

The first test considered is the simple runs test. In order to apply the test to time series
of counts, the original series has to be dichotomized on the basis of some specific criterion.
It is often recommended that the median be used for this task, with observations that
are identical to the sample median being discarded. But, given that fact that stationary

models for low value counts will often return to the median, many observations would



have to be discarded. This leads in some cases to a significant reduction in the power of
the test. Following Gibbons and Chakraborti (1992, p. 77) we, therefore, make use of the
sample mean, since even with discrete integer data the sample mean will rarely be integer
valued. In this way, no data is likely to be lost because of ties with the threshold value

used to define the dichotomy.

Under the null hypothesis of no serial dependence the distribution of the number of runs
R can be derived using combinatorics (see e.g. Gibbons and Chakraborti, 1992). The
resulting test statistic is discrete and therefore conventional nominal significance levels
can only usually be attained through a randomized test design. We confirmed by means
of Monte Carlo experiments not reported here that, from samples of size 40 upwards, the

much more convenient normal approximation

poq . 20(T-Ty)
Z: T 1/2 ) (9)
2T (T — T)[2T\(T — Ty) — T]
T2(T — 1)

of the runs test can safely be recommended. Wald and Wolfowitz (1940) show that

z -4 N(0, 1) under the null hypothesis of independence of the observable series of counts.

Since the distribution of R is discrete, the use of a continuity correction is often recom-
mended (see, for example, Gibbons and Chakraborti 1992, p. 77) in the Z-statistic. The

resulting test statistic

R—05— 2T (T — Ty)
ch = A 1/2 (10)
2T\(T — T)[2T (T — Ty) — T
T2(T — 1)

is, of course, asymptotically equivalent to the Z statistic.

The test design chosen here is one-sided. This is motivated by the fact that, under the
alternative hypotheses of conventional INAR(1), INAR(2) or INMA(1) models explic-
itly entertained in this paper, no negative autocorrelation is permitted. Hence the only

meaningful departure from the null is a smaller number of runs than would be expected
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under the null. Notice that this state of affairs will apply in particular in the presence of
first-order autocorrelation. Due to the one-sided test design the null hypothesis of serial
independence is rejected if Z (resp. Z..) < z,, where z, is the relevant quantile of the

standard normal distribution.

Another approach to testing for the presence of serial dependence in a time series of counts
is provided by the score test of Freeland (1998). The test statistic denoted by S is defined

as follows:
T

§=(VTz) S~ 2)(w ). (1)

=2
where 7 = 1/TY.}_, #;. Under the null hypothesis of the z,’s being iid Poisson with
parameter A > 0, Freeland (1998) shows that S N N(0, 1).

A modified version of Freeland’s test can be derived utilizing the mean-variance equality
property of the Poisson distribution. The modified statistic
T _ _
6+ = T Sicaltics = Dl =) )
>oim (@ — 2)?

is asymptotically equivalent to the S-statistic based on the fact that under the null hy-

pothesis of iid Poisson random variables the probability limits of the sample mean and
the sample variance are equal. Moreover, it seems reasonable to expect that this version
of the test will be better equipped to cope with situations where the Poisson distribution
is over-restrictive. This is likely to be of practical relevance in view of the widespread

incidence of overdispersion in data.

Again we advocate the use of a one-sided test. A rejection of the null is in order if the
measured dependence is higher that would be expected under the null, that is when S or

S* > s,.

A third class of tests to be considered is derived from goodness-of-fit tests of simple branch-
ing processes as proposed by Venkataraman (1982) and by Mills and Seneta (1989). One
type of statistic is based on the sample autocorrelations, whereas a second one is based

on the sample partial autocorrelations. Both statistics may be invoked in the framework
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of portmanteau tests originating from the work of Box and Pierce (1970) in the context
of models for continuous time series. Parallel to the application of the Box-Pierce test
to the original data series in order to test for serial dependence in it (e.g. Pindyck and
Rubinfeld, 1991, sec. 16.2 and Cameron and Trivedi, 1998, sec. 7.3.2 in the count data
context) we advocate the use of goodness-of-fit tests for simple branching processes to
the original series using the test statistics of Venkataraman (1982) and Mills and Seneta

(1989) and some of their special features.

Restricting consideration to a statistic based on one term of Mills and Seneta (1989), ex-
pression (14) (i.e. the case for their T' = 1) the relevant implementation of the Venkatara-

man’s (1982) statistic, given in Section 6 of his paper, is as follows:

£
Ques (1) = 8 =1

Z(fﬁt —7)% (2 9 — T)°

t=3

where 0y = 3o (0 — ) (25 — 2)/ Xy (20 — 7).

Under the null of iid Poisson variables z; it can be shown that the statistic Qqcs(1) LN
x%(1). An outline of the reasoning is as follows. The limit distribution of the sample auto-
correlation g, is needed. Since the summands in the numerator of g, are not independent
but form a martingale difference with respect a suitable information set, a martingale
central limit theorem is required. This shows that v/T 6, —= N(0,1) and T 62 —% x2(1).
Similar arguments extend this result to all £ = 1,2, .... Then the probability limit of the
ratio in (13) is needed. For the numerator a weak law of large numbers shows that plim
[T 27 (2,—%)%> = A2, The denominator consists of dependent summands, with an ap-
propriate weak law of large numbers showing that plim 7' ", (2, —%)(2,_9—7)? = A%

This establishes that the statistic of (13) is asymptotically equivalent to one based on T g%

A further test based on the branching process literature is due to Mills and Seneta (1989)

and exploits the structure of the sample partial autocorrelations. Based upon a single
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term the test statistic is given by

o

Qpacs(1) = 63 — , (14)
D (w1 —7) (w1 — 7)°

t=3

where q32 is the second order sample partial autocorrelation. It is easy to show that

Qpacs (1) =5 (1),

Note that the Qu.s(1) test is based on the second order sample autocorrelation whereas
the Qpacs(1) test is based on the second order sample partial autocorrelation. In parallel
with AR and MA models for continuous time series it may be the case that the two tests
implemented in this way can help us distinguish between an INAR(1) and an INMA(1)

structure in count data.

The two tests just introduced can easily be expanded to a portmanteau structure in order
to assess higher order dependence in the data. The portmanteau version of the Qu.r(1)

test is defined as follows:

o]

k
Qacf (k) = Z @12—1—1 T = 3 (15)
- D (=2 (w0 — 2
t=i+2

where k£ > 2 is an arbitrary integer. Notice here and again below that these implemen-
tations ignore first order lag sample correlations, unlike the suggestions of Cameron and

Trivedi (1998). The corresponding portmanteau version of the Qpqcr(1) test is given by

Bo-o]

k
Qpacy (k) = Z dA)?Jrl T = : (16)
= Y (=2 @i —2)
t=i+2

where again k£ > 2 is an arbitrary integer. The appropriate limit distribution for both

portmanteau versions of the tests is the y2-distribution with & degrees of freedom.
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4 Empirical size properties of the tests

A Monte Carlo study is used to analyse the size properties of the various test statistics
discussed in the last section. The number of Monte Carlo replications is set to 200 000
to provide reasonably narrow confidence intervals for the nominal sizes under investiga-
tion. Using the normal approximation? the 95% confidence interval for the tests at e.g. a
nominal level of 5% is given by [4.90;5.10] and for a nominal level of 1% by [0.96; 1.04].
Under the null, independent Poisson variables are generated for low level data (A = 1)
and higher level data (A = 5). The sample sizes reported are generally 50, 100, 500 and
1000 (though a response surface analysis employs 7' = 40 and certain intermediate sam-
ple sizes). In preliminary work we experimented with smaller sample sizes but various
elements of unsatisfactory behaviour were in evidence. Additionally, extra complexities
due to randomization devices with runs tests are required. For some further information
on this see Jung (1999, sec. 3.2). For the portmanteau tests Qucs(k) and Qpacs)(k) the

number of terms, k, on which they are based is 1, 5 and 10.

Table 1 gives the rejection percentages of the different tests for for a nominal level of
5% and 1% (we do, in fact, have comprehensive results for all experiments reported in
this Section for all significance points from 1 to 10% in steps of 1% so as to model the
whole of the tail of the relevant distribution, but they are not presented to save space).
Numbers in boldface indicate that the value is outside the relevant 95% confidence interval.
Several conclusions can be drawn. Most tests exhibit size distortions for the smallest
sample size used in our simulation study (a fortiori, this applies to the smaller sample
sizes experimented with but not reported). Whereas for some tests the size distortions
disappear for moderate sample sizes, for some tests they do not, even for 1" as high as 1000.
The simple runs test behaves satisfactorily under the null while the runs test using the
continuity correction underrejects even for sample size 1000. This defect leads us to prefer
the former and to exclude the test embodying the continuity correction in the analysis of
Section 5. Both versions of the score test also behave in this fashion, though empirical

rejection frequencies at the nominal 5% level are about 4.8% at the largest sample size.

2The relevant formula is: 2 x 1.96 [nominal size x (1 — nominal size) /(200 000)]1/2.
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The asymptotic theory provides a good guide to the finite sample behaviour of Q,.s(k)
test, k = 1, 5, but for sample sizes up to 200 there is some tendency to over-reject (with
associated size distortion) on the part of Q,.;(10). The only test that seems to overreject
in all cases in small and moderate samples is the Qpucr(k) test. Only marginal differences
in the behaviour of the empirical null distribution of the test statistics can be observed
for different values of k. A variation in the level of the series has no more than minimal

systematic effects on the observed size behaviour of the test statistics under investigation.
<Table 1 about here>

Overdispersion is a phenomenon often encountered in the analysis of count data. To assess
the empirical size of the tests in the presence of overdispersion, Monte Carlo experiments
using the negative binomial distribution under the null are also reported. Parameters of
this distribution are set so as to reflect a situation with modest overdispersion (variance-
mean ratio of 1.5) and another one with higher extra binomial variation (variance-mean
ratio = 3). Table 2 gives the rejection frequencies for the different configurations of our

Monte Carlo experiment, again for the nominal sizes of 5% and 1%.
<Table 2 about here>

The results are qualitatively similar to those obtained under the Poisson assumption with
certain exceptions. An expected one concerns the behaviour of the S test. Since its scal-
ing is based on the mean, which is generally not a consistent estimator of the norming
required in the Central Limit Theorem used to establish its limit distribution, it cannot
be expected to behave well. Even in the presence of modest overdispersion the test rejects
the true null about twice as often as intended by the nominal significance level and in
the presence of higher overdispersion the situation is even worse. Clearly this problem is
exacerbated by increasing sample size. A second class of tests that is affected by overdis-
persion in the data are the Qucr(k) and Qpacs(k) tests. For small and medium sample
sizes in low level data (mean process level = 1) the portmanteau versions of these tests
exhibits some overrejection, and this problem is more evident when overdispersion is more
extreme. When the mean of the process increases to 5, all tests behave similarly, except

that the performance of S is even worse. In view of the regular occurrence of overdisper-
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sion in applied work, this test is excluded from the empirical power analysis which follows.

To provide a convenient summary of all of the results of our Monte Carlo experiments and
to allow applied workers to obtain size adjusted critical values for the tests of their choice
we performed a response surface analysis. We omitted the Z.. test and the S test from
this exercise because we feel there are prima facie reasons why applied workers will not
want to use these. All response surface regressions are based upon the empirical rejection
frequencies obtained under the null hypothesis of iid Poisson random variables for sample
sizes T equal to 40, 50, 60, 70, 80,90, 100, 150, 200, 500, 1000 and for values of the Poisson
parameter A of 1 and 5. This setup gives a sample size of 22 for each regression, so that
the results are best interpreted as primarily descriptive. After some experimentation, the
following sensible looking functional form was found to work satisfactorily for all the test

statistics investigated under the three different sizes (10%, 5%, 1%) chosen.
ce(p) = B + 54 T+ 5, T7" + B3 A T, (17)

where ¢,(p) denotes the estimate for the p percent quantile obtained from the Monte Carlo
experiments for the various tests as indicated by the bullet. The results are summarised

in Table 3, which structure follows closely that used by MacKinnon (1991, p. 275).

<Table 3 about here>

The foregoing implies that we would advocate the use of the simple runs test, the modified
score test, or one of the variants of the () statistics in applications. Table 3 can be used to
calculate size adjusted critical values for any test contained therein. In particular, users
may wish to size adjust the S* test. It will be seen below that this test exhibits excellent
power properties when this approach is adopted. We would also generally recommend the
use of size adjustment in the context of Qucr(k) and Qpacs(k) tests. In order to use the

Table, the value of A required may be estimated by means of the sample mean of the series.

16



5 Monte Carlo power properties

The ability of the various tests of serial dependence introduced in Section 3 to distinguish
between the alternative data generating processes discussed in Section 2 is now evaluated
on the basis of Monte Carlo experiments. All rejection frequencies are calculated on the
basis of 10000 Monte Carlo replications. Due to size distortions found in Section 4, size
adjusted as well as asymptotic critical values are used. Sample sizes of 50, 100 and 500
form the main basis of the analysis. Power calculations are also sometimes used for sam-
ple size 1000, but most consistents exhibit high power when 7" = 500, therby rendering
them of only limited importance. The empirical power curves presented are based on a
nominal size of 5%, on occasion corrected as discussed in Section 4. Calculations for other

significance levels show no substantive differences in the results.

The PoINAR(1) model serves as the first alternative hypothesis to be analysed. Empirical
power curves are calculated for series where the Poisson parameter A\ of the innovation
process is set to 1 and 5. The autocorrelation parameter a rises from 0, corresponding
to the null of serial independence, to 0.90 in steps of 0.05. The results are summarised
in Figures 6 and 7. Figure 6 depicts the power curves for all tests discussed in Section 3
surviving the size analysis of the last Section, with the qualification that only a represen-
tative of each of the two types of () tests is depicted. This is because the power of tests is
known to be a declining function of the degrees of freedom index for a given noncentrality
parameter; see Poskitt and Tremayne (1981, 1986) for related discussion. The sample size
used for the graph is 100. In the top panels the results for A = 1 are depicted whereas the
bottom panels indicate the power differences between processes with A = 1 and processes
with A = 5. The power curves in the left hand panels are based on size adjusted critical

values, whilst those to the right use asymptotic critical values.

<Figure 6 about here>

It is clear that the S* version of the score test dominates all the other tests over the
entire parameter space considered in the experiments. The power of Freeland’s original

score test S is also good, except when T is small and autocorrelation is high. But in view
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of the poorer size properties of S under departures from the Poisson model, we would

recommend use of the more robust S*.

The power properties of the basic runs test Z are of interest, for they are quite impres-
sive, being qualitatively similar, though inferior, to those of S*. However, the runs test
is affected by the level of the underlying data, as can be seen from the lower panels in
Figure 6 which indicate a power reduction as A increases. Intuitively, this is due to the
fact that the higher the level of the data the less skewed is the marginal distribution of
the counts. As a result the probability of shorter runs of observations above or below the
sample mean is raised leading to a lower rejection rate for the specified null hypothesis
and a concomitant loss of power. Inspection of the lower panels of Figure 6 indicates that

the power properties only of the runs test are affected in this way.

The last notable feature of this Figure is that the empirical power of the tests based on
sample partial autocorrelations differ markedly from those based on sample autocorre-
lations. The Qpacr(1) test (as well as its portmanteau versions Qpac(5) and Qpacr(10))
possess virtually no power at all and indeed exhibit a tendency to be biased for high values
of the parameter a. Of course, in view the special choice of these statistics omitting a
contribution from the first order sample partial autocorrelation used in this paper this
is unsurprising. The Qu.r(1) test performs a little better than its portmanteau versions
Qucr(5) and Qucr(10), but the power properties of all versions of this test are clearly infe-
rior to the score and runs tests. The tendency towards consistency of the S* test and the
Qacy test is illustrated in Figure 7, with the superiority of the former at all sample sizes

being clearly in evidence.

<Figure 7 about here>

The second alternative analysed is the POINMA(1) model. Departures from the null hy-
pothesis are now characterized by non-zero values of b. Again we conduct Monte Carlo
experiments based on increasing values of b in the range 0 to 0.9 in (4). The results are

summarised in Figures 8 and 9.
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<Figure 8 about here>

Several points emerge from an inspection of Figure 8. While it seems to be harder to
identify a first-order moving average structure in the data (as might be expected by
analogy with continuous models), the ability of the different tests to detect it is broadly
comparable to the first-order autoregressive case discussed above in many cases. Again
the score test dominates the other tests employed in this study, with the simple runs
test continuing to mimic its behaviour, albeit in an inferior manner. The roles of the
Qpacs(k) and Qucr(k) tests are now reversed, as is to be anticipated. The latter is not
now a consistent test and exhibits minimal rejection frequencies; the portmanteau ver-
sions of the statistics are not depicted for reasons of clarity, but the power of Qpacs is
a declining function of the degrees of freedom index. The strikingly different behaviour
of these two types of test statistics will subsequently be exploited to produce a device
for determinining if one or other, or neither, of the two models discussed in this Section
thus far are likely to be adequate for a given data set. Figure 9 serves as a companion to

Figure 7 and provides pointers to the consistency of S* and @Qpecs (and, by implication, Z).

<Figure 9 about here>

The power curves in the left hand panels in Figure 8 are based on the adjusted criti-
cal values obtained in Section 4. The influence of size distortions introduced by use of
asymptotic critical values is restricted to small departures from the null and no useful
purpose would be served by additionally depicting that case. As under the PoINAR(1)
alternative, it can be inferred from the right hand panel of Figure 8 that the only test
affected by the change in the level of the data is the runs test. The explanation for this

phenomenon has already been provided above.

The final INARMA process to be analysed here is the POINAR(2) process (7). The design
of the Monte Carlo experiments is analogous to that used above. Departures from the
null hypothesis of iid Poisson variables are controlled by a vector of parameter values for
a, and a, with 0 < a, + a, < 0.9. Based on the very distinct behaviour of the ACF as

described in Section 2.3 above, two sets of experiments are conducted. For the first set,
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the combination of a, and a, is chosen in such a way that a, is kept below the parabolic
boundary depicted in Figure 3. In the second set of experiments, series with oscillating

autocorrelations are generated. The results are graphed in Figure 10.

<Figure 10 about here>

As long as a, < a, — a? the autocorrelation properties of a PoINAR(2) process are quite
similar to those of a PoOINAR(1) process. The empirical power curves shown in the top
panels of Figure 10 reflect this (the right hand panels are presented to show the limited in-
fluence of the sometimes inadvisable use of asymptotic critical values). But in contrast to
the first order process the second order autoregressive process always exhibits a non-zero
second order partial autocorrelation (see the top right panel of Figure 5). Consequently
under the PoOINAR(2) alternative the Qpacr(k) test has power. All the tests considered

are now consistent under this alternative.

Once a, > a, —a? the situation changes noticeably, as is evident from the bottom left hand
panel of Figure 10. The score test and the runs test are not very powerful against this pa-
rameter constellation of the POINAR(2) alternative. The other tests now exhibit superior
power performance over the relevant area of the parameter space for which the sum of
the thinning parameters is large. The Qq.r(1) test seems to be the test with the highest
power under these circumstances. The second most powerful test is the Qpus(1) test
while the portmanteau versions behave as expected. The explanation for these results
can be inferred by referring to Figure 5, which illustrates that the second order sam-
ple autocorrelation and partial autocorrelation will generally dominate their first order
counterparts; the presence of the only first order autocorrelation in the S (and its ma-
jor influence in the Z) statistics, together with its absence (but presence of second order

lag statistics) in the Q-type tests, is clearly reflected in the empirical rejection frequencies.

Variations in the design parameters of the Monte Carlo do not produce substantively
different results with respect to the power properties of the tests, though an increase in
the level of births in the data has a tendency to decrease the power of Z slightly and,

in fact, to increase that of certain portmanteau statistics marginally. Our findings based
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on the power analyses can be summarised as follows. The (modified) score test exhibits
good empirical power properties when it comes to detecting a dependence structure that
is restricted to first order Poisson integer time series models. As soon as the dependence
structure is more complicated the other tests advocated in this paper come into their own,

at least under certain parameter configurations.

Finally, the specially designed Qqucr(k) and Qpacs(k) tests in conjunction with their quite
distinctive power behaviour can potentially be used to permit a classification of the corre-
lation structure among certain INARMA processes. The device is simple and requires con-
sideration of a multiplicity of statistics (we suggest three, viz. S*, Qucr(1) and Qpacs(1)).
If no statistic results in a significant value, the series under consideration may have no
dependence structure (though this tentative conclusion must be tempered with the caveat
that some higher order dependence not readily detected by any of the three is present). If
S* rejects the null hypothesis of serial independence, but the others do not (perhaps be-
cause of their inferior power properties) there appears a dependence structure but further
investigation may need to be made to confirm its form. If Q. (1) rejects (as frequently
would S*), but Qpecr(1) does not, an INAR(1) process may be tentatively determined,
with an INMA(1) being indicated if the behaviour of the two @ tests is interchanged.
Finally, if the () tests suggest rejection of the null hypothesis, but S* does not, a higher

order model might be entertained.

6 Applications

The methods and findings of this paper are applied to two data sets. The first data set
is well known in the branching process literature and has been analysed inter alia in
Mills and Seneta (1989). The data consist of 505 counts of pedestrians on a city block
observed every five seconds and have been compiled by and used in Fiirth (1918). The
sample mean of the series is 1.59 and the sample variance is 1.51, thus raising no question
of the presence of overdispersion. The results of the various tests for serial correlation
are summarised in the second column of Table 3. All tests are significant at the con-

ventional significance levels. Since both the Qu.s(k) tests and the Quucs(k) tests provide
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evidence for the presence of serial correlation in the data, it can be inferred, adopting
the strategy outlined at the end of Section 5, that neither the simple PoOINAR(1) model
nor the simple PoOINMA(1) model adequately characterise the Fiirth data. This result
is in accordance with Mills and Seneta (1989), who found a poor fit for their BGWI
model which is equivalent to the POINAR(1) model. Since no significant overdispersion

can be found in the data, fitting a POINAR(2) model to this data set might be entertained.

The second data set consists of a daily count of the number of absentees in a specific firm.
The sample size is 616, the sample mean is 5.04 and the sample variance is 5.49, providing
slight evidence of overdispersion. The @Q-test of Davis, Dunsmuir and Wang (1999, p. 80)
is applied to investigate this feature more rigorously. These authors indicate that this
-test may be more suitable than other tests with lagged variables. They provide Monte
Carlo evidence of unsatisfactory size properties with smaller sample sizes than we have

with iid Poisson random variables.

Since the limiting standard normal distribution of the statistic will not be appropriate if
dependence is present in the data, we report the results of a pilot Monte Carlo experi-
ment to assess the evidence of overdispersion in our data. Using a sample size of 600 and
generated series at, or very close to, 5, we conducted 100000 replications of the Q)-test un-
der Poisson independence. We find excellent agreement with the asymptotic distribution,
which may not be surprising. When dependent random variables are used in the test,
there is a noticeable deterioration in the usefulness of the asymptotic standard normal
approximation as dependence increases. We experimented with POINAR(1) models with
a = 0.5 and 0.9 and an PoINMA(1) model with b = 0.9. Although not reported in any
detail here, the empirical rejection rate at a nominal 5% level when a = 0.5 and a = 0.9
are, respectively 9.34% and 21.58%. Computing the Q-test for the absentee data yields
a statistic () = 1.54. As the sample autocorrelation function indicates substantial de-
pendence structure in the data, we feel it is too draconian to apply the usual asymptotic
distribution to assess the evidence of overdispersion, though if one did, a Prob-value of
0.05 would eventuate. We evaluated the Prob-value for the test under certain plausible

dependence structures also and found it to be over 0.2 with high dependence and 0.1 for
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moderate dependence (by which we mean a = 0.5 and b = 0.9). We, therefore, judge that
the evidence against the null hypothesis of no overdispersion is by no means strong. In
the spirit of Cameron and Trivedi (1998) p. 79 we, at any rate, feel the overdispersion is
at most modest and conclude that the Poisson assumption for the absentee data is not

unreasonable.

The results of the various tests of serial dependence are summarised in column 3 of Table
4. All tests except the Qpacr(1) test have Prob-values of less than 0.05. In accordance with
the strategy of the last section we tentatively conclude that a first-order autocorrelation
structure may be present in the data (though there may also be higher order dependencies
outwith the ambit of this paper). The simple POINAR(1) model therefore could provide

a suitable basis for a further analysis of this data set.

7 Summary and conclusions

This paper presented different kind of tests for serial correlation applicable to time series
of counts. In a Monte Carlo study both the size and power properties of the tests are

evaluated thoroughly against a range of alternative data generating process.

The set of statistics of serial independence originally advanced is reduced somewhat by
undesirable behaviour of finite sample approximations to their standard asymptotic null
distributions arising from over-restrictiveness of the Poisson assumption and other fea-
tures. The power properties of the remaining tests indicate that dependence structure
in the data can often expect to be detected. A simple strategy to help determine an
appropriate model for data is proposed and shown to be of potential value in applica-
tions. The strategy exploits the special structure of test procedures originally advanced
in the branching process literature. A model of higher order than first order within the
INARMA class is also considered and appears to be a useful benchmark for moving to

higher order dependence structures.
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size | A test T=5 T=100 T=500 T =1000
5% | 1|2 5.30 5.11 4.99 4.99
Zee 3.72 4.08 4.50 4.63
S 3.41 4.11 4.57 4.74
S 3.44 4.08 4.64 4.73
Qacr(1) 4.99 5.11 5.08 5.02
Qacr(5) 5.01 5.19 5.22 5.08
Qacs(10) | 6.05 5.86 5.36 5.26
Qpacs(1) 6.13 5.71 5.21 5.07
Qpacs(5) 6.11 5.75 5.32 5.15
Qpacs(10) | 6.53 6.05 5.32 5.22
5|72 5.25 4.81 5.00 4.96
Zee 3.46 4.13 4.55 4.64
S 3.37 3.84 4.47 4.73
S 3.38 3.82 4.47 4.74
Qacr(1) 4.80 4.96 5.02 5.09
Qacr(5) 4.98 4.97 5.04 4.92
Qacr(10) | 5.95 5.66 5.14 5.07
Qpacs(1) 5.69 5.39 5.11 5.11
Qpacs(5) 5.60 5.24 5.05 4.95
Qpacs(10) | 5.86 5.33 5.06 5.02
1% |12 1.10 1.12 1.06 1.04
Zee 0.74 0.84 0.94 0.96
S 0.84 0.93 0.97 1.02
S* 0.59 0.79 0.92 1.00
Qacr(1) 0.73 0.91 1.00 1.02
Qacr(5) 1.04 1.02 1.02 1.04
Qacy(10) 1.72 1.49 1.15 1.10
Qpacs(1) 1.07 1.13 1.05 1.05
Qpacs(5) 1.15 1.12 1.02 1.03
Qpacs(10) | 1.34 1.23 1.06 1.06
512 0.88 1.03 1.02 1.01
Zee 0.73 0.71 0.91 0.92
S 0.78 0.81 0.89 0.91
S 0.52 0.67 0.87 0.90
Qacy (1) 0.71 0.85 0.98 1.00
Qacs(5) 1.08 1.05 1.04 1.03
Qacs(10) | 1.71 1.47 1.10 1.05
Qpacs(1) 0.99 1.00 1.00 1.02
Qpacs(5) 1.05 0.95 0.98 1.01
Qpacs(10) | 1.15 1.02 1.00 1.01

Table 1: Rejection percentages of the tests under the iid Poisson assumption at nominal
5% and 1% significance levels.



modest overdispersion high overdispersion
size | E(X) test T=50 T=100 T=500 T=1000|T=50 T=100 T =500 T =1000
5% 1 VA 5.48 4.97 517 5.10 5.49 4.98 517 5.01
Zee 3.68 4.15 4.64 4.77 3.67 4.10 4.57 4.81
S 9.28 10.78 12.62 12.91| 18.67 21.70 25.79 26.88
S* 3.71 4.27 4.87 4.80 3.96 4.62 5.22 5.18
Qacs(1) 5.15 5.51 5.28 5.07 5.57 7.05 6.34 5.97
Qacs(5) 5.10 5.76 5.59 5.42 5.70 8.07 8.37 7.51
Qacs(10) 6.22 6.53 591 5.64 7.05 9.95 9.93 8.53
Qpacy(1) 6.78 6.43 5.49 5.18 8.63 8.88 6.80 6.21
Qpacs (D) 7.31 6.93 5.87 5.55| 11.08 11.17 9.08 7.88
Qpacy(10) 8.71 7.77 6.12 5.70| 15.86 14.45 10.71 8.93
5 VA 5.24 4.86 4.98 5.06 5.11 4.77 4.99 4.96
Zee 3.42 4.25 4.53 4.77 3.53 3.97 4.53 4.62
S 9.47 10.84 12.62 13.04| 22.09 24.17 27.22 27.83
S* 3.36 3.93 4.57 4.76 3.53 4.06 4.65 4.72
Qacs(1) 4.83 4.95 4.97 5.01 4.97 5.16 512 5.03
Qacs(5) 4.87 5.01 5.04 4.95 4.85 5.21 5.21 5.20
Qacs(10) 591 5.61 511 5.01 5.83 5.82 5.45 5.29
Qpacs(1) 5.87 5.43 5.07 5.06 6.24 5.86 5.29 5.11
Qpacs (D) 5.75 5.38 5.09 5.01 6.51 6.04 5.38 5.29
Qpacy(10) 6.16 5.48 5.06 5.01 7.51 6.50 5.56 5.26
1% 1 Z 1.08 1.09 1.07 1.07 1.18 1.14 1.06 1.08
Zee 0.80 0.72 0.93 0.98 0.76 0.83 0.94 0.96
S 4.19 4.91 5.78 579 | 13.23 15.83 19.36 20.20
S* 0.74 0.94 1.08 1.05 1.03 1.30 1.40 1.35
Quacs(1) 0.68 0.98 1.08 1.05 0.51 1.35 1.81 1.61
Qacs(5) 0.98 1.16 1.24 1.15 0.86 1.62 2.44 2.14
Qacs(10) 1.61 1.61 1.36 1.28 1.59 2.39 2.98 2.46
Qpacy(1) 1.18 1.33 1.18 1.09 1.47 2.10 2.03 1.73
Qpacs (D) 1.55 1.51 1.30 1.21 293 3.03 2.76 2.32
Qpacy(10) 2.18 1.84 1.41 1.24 5.42 4.62 3.33 2.61
5 Z 0.87 1.05 0.98 1.03 0.93 0.99 0.97 1.00
Zee 0.70 0.71 0.90 0.94 0.70 0.72 0.87 0.91
S 4.03 4.71 5.53 5.75| 15.72 17.61 20.31 20.83
S* 0.54 0.72 0.91 0.97 0.61 0.83 0.97 1.00
Quacs(1) 0.64 0.83 0.99 0.99 0.64 0.84 1.02 1.03
Qacs(5) 0.98 1.01 1.01 0.97 0.97 1.01 1.09 1.09
Qacs(10) 1.60 1.40 1.12 1.06 1.57 1.43 1.17 1.13
Qpacs(1) 0.94 0.97 1.02 1.01 1.01 1.10 1.10 1.06
pact (D) 1.08 1.01 1.02 0.98 1.29 1.18 1.08 1.10
Qpacy(10) 1.28 1.03 0.99 1.01 1.73 1.38 1.12 1.07

Table 2: Rejection percentages under independence of the tests under overdispersion at
nominal 5% and 1% significance levels.



test size(%) Boo (S.E.) By B Bs

z 10 —1.260 (0.013) —0.590 2.598  0.013
5 —1.607 (0.020) —1.199 5875  0.027

1 —2.335 (0.016) —0.427 0227  0.114

S* 10 1.284 (0.005) —0.951  —1.793  —0.006
5 1.647 (0.007) —0.773  —2.814 —0.029

2.327  (0.013) —0.345 —5.802 —0.079

Qacy (1) 10 2685 (0.013) 1.198  —2.069 —0.090
5 3841 (0.017) 1103  —6.725 —0.121

6.648  (0.042) 1425 —32.110 —0.141

Qacs(5) 10 9201 (0.037) 2667 —12.406 —0.178
5 11.048 (0.056) 2.585 —13.783 —0.184

15.097 (0.081) 1.684  —7.592 —0.015

Qacy(10) 10 15864 (0.054)  6.501 —15.634 —0.285
5 18.140 (0.060) 9.240 —16.085 —0.263

22.809 (0.123) 18.615  —2.639 —0.098

Qpacs(1) 10 2681 (0.013)  1.606 7.269  —0.166
5 3819 (0.019) 2.195 4101  —0.243

6.593  (0.057)  4.472 —21.542 —0.361

Qpacs(5) 10 9212  (0.029)  3.258 9.923  —0.425
5 11.048 (0.043)  3.517 7.360  —0.536

15236 (0.091) —1.828  32.090 —0.707

Qpacs(10) 10 15937 (0.038) 5271  16.802 —0.722
5 18317 (0.064)  4.461  21.342 —0.849

1 23526  (0.141) -2.832 62486 —1.067

Table 3: Descriptive results from response surface analysis

test Fiirth data Absentee data
Z —10.71*** —12.40***
S* 14.93*** 16.34***
Qacy(1) 40.02*** 108.86***
Qacs(5) 87.12*** 379.31%+*
Qacr(10) | 116.97** 579.00***
Qpacs(1) 17.51%** 3.65*
Qpacs (D) 2777 17.95%**
Qpacy(10) 37.27*** 22.52**

*xx denotes significance at the 1% level
** denotes significance at the 5% level
* denotes significance at the 10% level

Table 4: Results of the various tests applied to two data sets
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Figure 1: Simulated sample paths for a POINAR(1) process
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Figure 2: Simulated sample paths for a POINMA (1) process
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Figure 3: Partition of the a,/a,-parameter space in the POINAR(2) process



(a]

6
5
4 [ X XX [ 2
3 9. 000 000 P iee:
2 [ 3 2 Pt °: eoe-. o e
1 ¢00080E: 000000000’ ®ee .00 * .
g laa al PN
8] 5 10 15 20 25 30 35 40 43 50
t
(bl
7
B
5
4
3
2 ¢, .00 00000 0
1 e . SS0E . 00O 800’ & &
g bad i . -
8] S| 10 15 20 25 30 35 40 45 50
t
(c]
7
B
5
4
3
2
1
o]
t
Figure 4: Simulated sample paths for a POINAR(2) process
Sample autocorrelation function Sample partial autocorrelation function
1o 1a
o.s o.s
os o.8
a 0.7
0.7 o.e
o.e os
os 0.4
0.3
o.a
0.z
as on
0.2 0.0
= a s s 10 1= 14 15 12 3 4 5 8 7 8 8 10 1 12 13 14 15
< <
Sample autocorrelation function Sample partial autocorrslation function
1.0 1.0
a.s a.s
o.e o.s
a.7 0.7
o o.e
o.s o.s
0.4 0.4
a.s o.3
0.2 0.2
(=} oA
0.0 0.0 -
a = Py S s 1a 1= 1= 1= 12 3 4 5 &8 7 & @ 10 1 12 1@ 14 15
< w
Sample autocorrelation function Sample partial autocorrelation function
+0 1.0
o.s a.s
o.s o.a
a7 0.7
o o.s
0.5 o.s
0.4 0.4
a.s o.3
o= o2
0.1 oA
0.0 0.0 -
a = a s = 1a 1= 12 1= 12 3 a5 & 7 8 8 10 1 12 13 1a 15
w w

Figure 5: Sample autocorrelation and partial autocorrelation functions for simulated sam-
ple paths of a POINAR(2) process



-
=)

© o ° 6 6 o o o 0 0o

.02
.03
.04
.05
.06
.07

1 and adj. crit. values

0.8 0.9 1.

parameter a

power diff. between A=1 and 5 (adj. c.v.)

o

o7
06
05
04
03
[0F=1
01

00
01

0.3 0.4 0.5 0.8 07 0.8 0.9 1.

parameter a

[

A = 1 and asympt. crit. values
1.0 —
_-
0.9 -7
7
’
0.8 4
’
4
0.7 ’
4
I/
0.6 ,
/
0.5 /
’
0.4 J/
/. -~ Z
0.3 /0 — s+
0.2 /2 Qace(1)
A — Qpact(1)
0.1 .
i —
0.0 —
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
parameter a
power diff. between A=1 and 5 (asympt. c.v.)
0.07
0.08
0.05
0.04
0.03
0.02
0.01
0.00
—0.01
—0.02
—0.03
—0.04
=0.05
=0.06
—0.07
0.0 0.1 0.2 0.3 0.4 0.5 0.6 Q.7 0.8 0.9 1.0

parameter a

Figure 6: Empirical power curves for the various tests under the POINAR(1) alternative
at sample size T'= 100 and a test level of 5%.
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PoINMA(1) alternative at various sample sizes and a test level of 5%.



A = 1 1 adj. crit. values | a, < a, — a A = 1 | asymp. crit. values | a, < a, — a

1.0 1.0
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
0.0 0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

aq * ap a1 * ap
A = 11 adj. crit. values | a, > a, — a. A = 11 asymp. crit. values | a, > a, — a.
1.0 10 oo
= Z

0.9 oo 1T Sacf(l)
o8 | §ti0)
0.7 07 {777 Qpect10)
0.6 0.8
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
0.0 0.0

00 0.1 02 03 04 05 06 07 08 08 1.0 0.0 01 02 0.3 0.4 05 06 07 0.8 08 1.0

a1 + ag a1 + ag

Figure 10: Empirical power curves for various tests under the POINAR(2) alternative at
sample size 100 and a test level of 5%.



