19

Off-line Constraint Propagation for
Efficient HPSG Processing

WALT DETMAR MEURERS AND GUIDO MINNEN

19.1 Introduction

A major goal of a linguist writing HPSG theories is to express very
general constraints to capture linguistic phenomena, leaving as much as
possible underspecified. When such an HPSG theory is implemented
faithfully, either processing is inefficient because only little information
is available to guide the constraint resolution process, or the linguistic
theory is annotated with information to guide processing. Usually such
annotations are provided manually—a very time consuming and error-
prone process which can change the original linguistic theory. In this
paper we show that it is possible to automatically make a theory more
specific at those places where linguistically motivated underspecification
would lead to ineflicient processing.

An off-line compilation technique called constraint propagation is
used to improve processing efficiency by means of propagating con-
straints already expressed in the theory. Programs do not necessarily
profit from constraint propagation. For processing grammars, constraint
propagation can be very useful, since it makes it possible to process
the general constraints expressing linguistic generalizations specified by
the linguist, without falling prey to massive nondeterminism. The rel-
evant observation here is that even though certain places in a gram-
mar are underspecified, the grammar does contain enough constraining
information—it just needs to be moved to guide processing. Constraint
propagation also makes it possible to advance automatically generated

The authors are listed alphabetically.

Lexical and Constructional Aspects of Linguistic Ezplanation.
Gert Webelhuth, Jean-Pierre Koenig, and Andreas Kathol.
Copyright (© 1998, Stanford University.

a4

299




A

300 / WALT DETMAR MEURERS AND GUIDO MINNEN

encodings, such as, for example, the definite clause encoding of HPSQ
grammars introduced by Gotz and Meurers (1995, 1997b).

Constraint propagation can be performed on-line (le Provost ang
Wallace 1993) or it can be used to make programs more specific through
off-line compilation (Marriott et al. 1988). In this paper we will fo.
cus on the off-line application of constraint propagation. While on-line
constraint propagation is more space efficient since information in the
code does not need to be duplicated, the off-line process can relieve the
run-time from significant overhead.! We conjecture that the time-space
tradeoff can be exploited by doing off-line constraint propagation se-
lectively, i.e., only on those underspecified parts of the grammar which
cause processing efficiency to suffer from massive nondeterminism. Ag
such we presuppose that the places in a grammar which will profit from
constraint propagation can be located automatically by either exploiting
specific properties of the encoding of the grammar or abstract interpre-
tation. The determination of where to perform constraint propagation
is also of importance because underspecification can also be used to
improve HPSG processing efficiency—see, for example, Kathol 1994,
Krieger and Nerbonne 1992, Richemann 1993 and Frank 1994. Unfor-
tunately, a detailed discussion of this issue is beyond the scope of this
paper.

Other techniques to prune the search space that are used in practi-
cal natural language processing are dynamic coroutining, also referred
to as (goal) freezing or delaying, and static coroutining by means of
Unfold/Fold transformation (Tamaki and Sato 1984). It is important to
differentiate between coroutining and constraint propagation: Coroutin-
ing changes the way in which the search space is investigated by moving
goals through a grammar either on- or off-line. Constraint propagation
as conceived in this paper reduces the search space by making the argu-
ments of calls to goals more specific. As we will discuss in Section 19.3,
a combination of both techniques can be very useful as constraint propa-
gation can be used to extract restricting information from the definition
of goals also in cases where freezing of the call to these goals would hide
this information.

This paper is organized as follows: We start with a discussion of two
concrete HPSG examples showing how constraint propagation helps im-
prove processing efficiency (Sections 19.2 and 19.3). In Section 19.4 sev-

n case an operation for “subtraction” is available for the data structure used, it
may be possible to reduce the space cost of the off-line process by eliminating the
propagated constraints from their original specification site.

OrF-LINE CONSTRAINT PROPAGATION / 301

eral implementations of constraint propagation algorithms are discussed.
Finally, in Section 19.5 we provide some implementation results.

19.2 Efficient processing of ID Schemata

In lexically oriented grammar formalisms like HPSG, the ID schemata
specified by the linguist are very schematic since much syntactic infor-
mation is specified in the lexicon. In faithful implementations this leads
to inefficiency in top-down processing because it often is no longer pos-
sible to detect locally whether an ID schema applies or not. Consider,
for example, the head-adjunct schema and the head-specifier schema of
HPSG in Figures 1 and 2.2

phrase
SYNSEM|LOC|CAT|HEAD
DTRS head-adjunct-struc

osmiociontonior &) (e iociomtime o]

FIGURE 1 The Head-Adjunct ID Schema from Pollard and Sag 1994

phrase

SYNSEM|LOC|CAT {

HEAD ]

VAL|SPR ()
DTRS head-spr-struc

e

HEAD  func phrase
VAL[SPR () HEAD
LoC|caT
SYNSEM VAL|SPR <[LOC|CAT|VAL\SPR ()] )

NON-LOC|TO-BIND|SLASH {}

[SYNSEM1L00|CAT |:

FIGURE 2 The Head-Specifier ID Schema from Pollard and Sag 1994

Due to underspecification, it cannot be determined locally whether
the head-adjunct schema can expand specifiers or not. Only upon lexical
lookup is it revealed that the head-adjunct schema does not have to be
considered for specifiers: The lexicon contains only lexical entries like
the one sketched in Figure 3, which specify the category they modify
to have a substantive head, in this case a noun. This specification will

?The figures show the head-adjunct schema as expressed in the appendix of Pollard
and Sag 1994 and the head-specifier schema from Chapter 9 of the same book - both
including the effect of the Head Feature Principle.



302 / WaLT DETMAR MEURERS AND GUIDO MINNEN

therefore always clash with the specification in the head-specifier schema
which demands a functional head value for the specifier daughter.

word
PHON < kleine>>
adj

SYNSEM|LOC|CAT|HEAD
MOD|LOGC|CAT|HEAD noun

FIGURE 3 The lexical entry for the adjective kieine

The sketched efficiency problem seems to suggest that top-down pro-
cessing is not the right processing strategy to adopt for processing of
lexically oriented grammar formalisms. This, however, is not necessarily
the case. Strict bottom-up processing means that no filtering informa-
tion resulting from the start category is made available. To have some
guiding information in the case of parsing an extra-logical treatment of
the input string can be used, for example, a link relation. However, it is
unclear what such a treatment should look like for theories using more
elaborate linearization operations. Furthermore, refraining from taking
into account information provided by the start category is virtually im-
possible in the case of generation, and it is not generally clear what
an extra-logical treatment of the logical form in a similar fashion as in
parsing could look like. There exists an off-line compilation technique
called magic that allows for filtering given a strict bottom-up process-
ing strategy.® However, processing of magic compiled grammars suffers
from linguistically motivated underspecification as discussed above just
the same.

Returning to the above example, the insight behind constraint prop-
agation is that lifting the common restricting information contained
in the lexical entries up into the head-adjunct schema makes it pos-
sible to determine locally that there are no modified specifiers in the
grammar. In other words, applying constraint propagation to the head-
adjunct schema of Figure 1 in a grammar with a lexicon in which the
only modifying entries select substantive heads, propagates the con-
straint [SYNSEM|LOC|CAT|HEAD subst] into the mother of the
head-adjunct schema. The resulting head-adjunct schema shown in Fig-
ure 4 is now specific enough to convey immediately that it cannot be
used when specifiers need to be licensed.

Note that this way of making grammars more specific is an off-line

3See among others, Ramakrishnan 1988. In Minnen 1996 applications of these
techniques to natural language processing are discussed.

OFF-LINE CONSTRAINT PROPAGATION / 303

phrase
SYNSEM|LOC|CAT|HEAD
DTRS head-adjunct-struc

[SYNSEM|L0(J|(JAT|HEAD|MOD @] [SYNSEM B {;{{))il—iggiﬁ%é;l\lblsmqn subst]]

FIGURE 4 The Head-Adjunct ID Schema after constraint propagation

process performed completely automatically. It allows the grammar
writer to specify theories in a lexically oriented fashion without any
additional procedural specifications.

19.3 Efficient processing of the lexicon

Constraint propagation can also be applied to optimize automatically
generated lexicons. In Meurers and Minnen 1997 a compiler is described
which translates a set of HPSG lexical rules and their interaction into
definite relations used to constrain lexical entries. This, so-called, co-
variation approach uses the generalizations captured by lexical rules for
processing and makes it possible to deal with the infinite lexicon pro-
posed in many recent HPSG theories. Most of the current HPSG anal-
yses of Dutch, German, Italian, and French fall into this category. This
is, for example, the case for all proposals working with verbal lexical
entries which raise the arguments of a verbal complement (Hinrichs and
Nakazawa 1989) that also use lexical rules such as the Complement Ex-
traction Lexical Rule (Pollard and Sag 1994) to operate on those raised
elements. Also an analysis treating adjunct extraction via lexical rules
(van Noord and Bouma 1994) results in an infinite lexicon.

The linguist inputs the lexical rules used in his/her theory. On the
basis of this specification and the signature of the proposed grammar,
the covariation compiler automatically deduces the transfer of properties
which were left unspecified in the lexical rule provided by the linguist.
The compiler then uses the lexical rules and lexical entries to produce
a definite clause encoding of lexical rules and their possible interaction.
The resulting lexicon consists of extended lexical entries calling an in-
teraction predicate encoding the entries which can be derived by lexical
rule applications. Figure 5 shows an example for an extended lexical
entry: a simplified entry for a German auxiliary using argument raising
in the style of Hinrichs and Nakazawa (1989).

The call to the interaction predicate encodes the possible sequences of
lexical rule applications. For a simple theory with a Complement Extrac-
tion Lexical Rule (CELR) and a Finitivization Lexical Rule (FINLR)



304 / WaLT DETMAR MEURERS AND GUIDO MINNEN

OFF-LINE CONSTRAINT PROPAGATION / 305

extended lex_entry([ouT]):- [PHON < kénnen > 1
VFORM bse
VFORM bse
interaction 0( | SUBCAT < |SUBCAT |@ >, EE).
CONT
kénnen’
CONT
ARG

FIGURE 5 The extended lexical entry for the modal auxiliary kénnen (‘can’)

the slightly simplified interaction predicate looks as shown in Figure 6
on page 305.% The encoding in Figure 6 already contains the deduced
transfer information in the call to the lexical rule predicates; for example,
the PHON, VFORM, and CONT values are transferred to the CELR,
by adding the corresponding structure sharings to the i¥] tag and to the
tag appearing in the call to the celr/2 predicate. Regarding the
notation in the figure, a variable tag and a feature specification in the
same argument slot are intended to be unified.

The automatically obtained encoding of lexical rule application in
lexical entries shown in the above figures is not very efficient since before
execution of the call to the interaction predicate it is unknown which
information of the base lexical entry ends up in a derived lexical entry.
One is therefore forced to execute the call to the interaction predicate
directly when the lexical entry is used during processing, independent of
the processing strategy used. Otherwise there is no information available
to restrict the search space of a generation or parsing process.

Off-line constraint propagation can be used to avoid this by factoring
out the information which is common to all solutions for the called inter-
action predicate. This is accomplished by computing the most specific
generalization of these solutions and lifting this common information
into the extended lexical entries. Let ¢ be the common information,
and Dy, ..., Dj the solutions for the interaction predicate called. Then
by distributivity we factor out ¢ in (C A D1) V ... V (C A Dg) to ob-
tain ¢ A (D1 V ... V D), where the D are assumed to contain no further
common factors. The result of performing constraint propagation on the
extended lexical entry for kénnen is given in Figure 7 on page 306. In
the next section we investigate in more detail how this result is achieved.
Delaying the call to an interaction predicate as in van Noord and Bouma
1994 by freezing the recursive application of a lexical rule on the basis of

4The lexical rules in Figure 6 are simplified versions of the CELR (Pollard and Sag
1994, 378) and the Third-Singular Inflectional Rule (Pollard and Sag 1987, 210).

PHON
interaction_0([iX] | VFORM J[ouT]):-
CONT
celr(in],[aux]),
PHON
interaction 0([aux] | VFORM [z] | ,[ouT)).
CONT
PHON
interaction_O([ix] SUBCAT [2] J[oTT]):-
SLASH
CONT [4]
finlr(in],[2Ux]), PHON
interaction_1([aux] Sl [ouT)).
SLASH
CONT [4

interaction_0((ouT],[0UT]).
interaction_1((ouT],[ouT]).

VFORM bse S
T
celr( [SUBCAT <[ | @& >, [SLASH E‘ E> T
SLASH
PHON PHON
finlr( 3 :- third_fi &
l:VFORM bse] L’FORM fin ) ird-fn ({2

third _fin(kdnnen,kann).

FIGURE 6 Encoding sequences of lexical rule application in definite relations

user-specified delay information, can hide important restricting informa-
tion because it is specified in the definition of the frozen goal. Therefore
constraint propagation can be useful, also when coroutining techniques
are used.

As discussed in Griffith 1996 an extension of the constraint language
with contexted constraints, also referred to as dependent or named dis-
junctions, in certain cases makes it possible to circumvent constraint
propagation. Encoding the disjunctive possibilities for lexical rule appli-
cation using contexted constraints instead of definite clause attachments
makes all relevant linguistic information available at lexical look-up. In
case of infinite lexica, though, a definite clause encoding of disjunctive
possibilities is still necessary and constraint propagation is indispensable
for efficient processing (see Section 19.5).



306 / WaLT DETMAR MEURERS AND GuipDo MINNEN

PHON < (kénnen V kann) >

extended_ lex_entry([GuT] | VFORM (@ V fin) ):-
CONT

[PHON < kénnen > W

VFORM [4]bse
VFORM bse

interaction 0( | SUBCAT < |SUBCAT |@ >, eTE.

CONT

LCONT |:k5'rmen’ ]
ARG

FICURE 7 The extended lexical entry for kénnen after specialized constraint
propagation

19.4 Implementing Constraint Propagation

In this section we discuss implementations of some constraint propa-
gation algorithms (in Prolog). We first present constraint propagation
using a simple top-down interpreter and point out the problems of this
basic algorithm. Subsequently, possible extensions of this interpreter
with a, so-called, branch-and-bound optimization (le Provost and Wal-
lace 1993) and a depth-bound are discussed. Finally, we show that it is
possible to use knowledge about the specific structure of certain encod-
ings to obtain specialized constraint propagation algorithms. In our case,
we can exploit our knowledge of the encoding of the lexicon produced
by the lexical rule compiler to define a specialized top-down interpreter
that relieves us from termination problems related to the covariation
encoding of infinite lexicons.

For reasons of exposition, in the remainder of this section, we assume
a definite clause representation of an HPSG theory (Gdtz and Meurers
1995, 1997b) and do not make typed feature structure unification ex-
plicit.

19.4.1 Top-down constraint propagation

Consider the predicate constraint_propagation_on goal/0 in Figure 8. The
predicate get_goal/0 gets a particular goal on which we want to perform
constraint propagation.® Subsequently, generalized solutions.for goal/2 is
called to produce a possibly more specific instance of this goal. The call
to write_goal/1 replaces the original goal with the possibly more specific

51f some kind of abstract interpretation is used to determine the places in a program
where underspecification leads to massive nondeterminism, this information can be
used to automatically make get_goal/1 select the relevant goals.

OFF-LINE CONSTRAINT PROPAGATION / 307

constraint_propagation_on_goal:-
get_goal(Goal),
generalized_solutions_for_goal(Goal,MoreSpecificGoal),
write_goal(MoreSpecificGoal).

FIGURE 8 A predicate defining simple off-line constraint propagation
on a goal

goal obtained. As shown in Figure 9 generalized solutions_for_geal/2 com-
putes an instance GeneralizedSolutionsForGoal of Goal by finding all its

solutions with a call to top_down_interpret/1 and subsequently generaliz-
ing over all the solutions.®

generalized solutions _for_goal(Goal,GeneralizedSolutionsForGoal):-
findall(Goal, top_down_interpret(Goal), SolutionList),
generalize_all_solutions(SolutionList ,GeneralizedSolutionsForGoal).

FIGURE 9 Generalizing all solutions for goal

Figure 10 provides the definition of top_down_interpret/1, a top-down
interpreter provided by Pereira and Shieber (1987, 160ff).”

top_down_interpret(true).

top_down_interpret(Goal):-
clause({Goal :- Body)),
top_down_interpret(Body).

top-down_interpret((Bodyl, Body2)):-
top_down_interpret(Bodyl),
top_down_interpret(Body2).

FIGURE 10 A simple top-down interpreter

This interpreter falls prey to nontermination. For example, in the case of
the recursive CELR of Figure 6 it is possible to remove elements from a

SNotice that in case there exists only one solution to a goal, the effect of perform-
ing constraint propagation on that goal is similar to its partial evaluation, see, for
example, Pereira and Shieber 1987.

"The predicate is renamed here for expository reasons. The nonunit and unit clauses
representing an HPSG theory are represented as clause({ Head :- Bedy )). and
clause(( Head :- true ))., respectively.



308 / WALT DETMAR MEURERS AND GUIDO MINNEN

(subcategorization) list that is underspecified as in the extended lexical
entry of Figure 5 over and over again.

Motivated by efficiency considerations, le Provost and Wallace (1993)
propose the branch-and-bound optimization. This optimization also im-
proves termination behavior. However, there exist linguistically moti-
vated types of recursion for which branch-and-bound does not terminate
either. Minnen et al. (1996) introduce the notion of a building series. In-
tuitively understood, a building series “builds up” a structyure recursively
until it matches a “base” case.® This type of recursion is problematic
for top-down processing as this building can go on forever. Branch-and-
bound does not ensure termination in the light of this type of recursion.

These termination problems necessitate an alternative implementa-
tion that avoids infinite loops. One possibility is to extend the interpreter
in Figure 10 with a depth-bound as shown in Figure 11.°

db_top_down_interpret(true, Depth, Max):-
Depth < Max.
db_top_down_interpret(Goal, Depth, Max):-
Depth < Max,
clanse((Goal :- Body)),
NewDepth is Depth + 1,
db_top_down_interpret(Body, NewDepth, Max).
db_top_down_interpret((Bodyl, Body2), Depth, Max):-
Depth < Max,
db_top.down_interpret(Bodyl, Depth, Max),
db_top_down_interpret(Body2, Depth, Max).
db_top_down_interpret(_Goal, Depth, Max):-
Depth >= Max.

FIGURE 11 A depth-bounded top-down interpreter

Notice that the use of this highly incomplete interpreter for constraint
propagation can only lead to a common factor that is too general. In-
tuitively understood, the depth-bound can only cut off branches of the
search space which will eventually fail or lead to a solution more specific
than the partial solution that has been computed. When the depth-

8An example of a lexical rule that exhibits this type of recursion on structural
information is the Add Adjuncts Lexical Rule proposed in van Noord and Bouma
1994,

9The call to top_down_interpret/3 in generalize solutions for_goal/2 shown in
Figure 9 has to be changed accordingly.

-

OFF-LINE CONSTRAINT PROPAGATION / 309

bound hits clause 4 of db_top_down.interpret/3 in Figure 11, the result
returned in the first argument does not become further instantiated. As
a result the MoreSpecificGoal computed can never become too specific
and correctness is guaranteed.

While the depth-bounded interpreter can be employed in general, it
is far from optimal to use it for constraint propagation of the covaria-
tion encoding of the lexicon. This is due to the fact that lexical rule
application is encoded as forward chaining using accumulator passing
(O’Keefe 1990): The argument of an interaction predicate gets in-
stantiated upon hitting a base case, i.e., a unit interaction clause. It
serves only to “return” the lexical entry eventually derived. When the
depth-bound cuts off a particular branch of the search space that corre-
sponds to a recursively defined interaction predicate, the argument
remains completely uninstantiated. Consequently, generalizing over all
possible (partial) solutions does not lead to a common factor that is
more specific than the original goal selected by get_goal/1. In the next
section, we show that it is possible to overcome this problem with a
specialized interpreter.

19.4.2 Specialized Constraint Propagation

We employ a specialized top-down interpreter that allows us to extract
an informative common factor using constraint propagation even in cases
of a covariation encoding of an infinite lexicon. The specialized inter-
preter makes the use of a depth-bound to ensure termination of the
interpretation of the interaction predicates superfluous.!® Intuitively
understood, the specialized interpreter exploits the fact that automatic
property transfer is not influenced by recursion. I.e., the specifications
that are left unchanged by a recursive lexical rule are independent of
the number of times the rule is applied. This is a general, i.e., theory
independent, property of the covariation encoding of lexical rule appli-
cation and interaction, and therefore the improvement of the covariation
encoding using specialized constraint propagation can be accomplished
completely automatically.

We discuss a possible extension of the simple top-down interpreter
given in Figure 10. For expository reasons the interpreter given in Fig-
ure 12 is simplified in the sense that it deals only with directly recursive
interaction predicates such as the one given in Figure 6. Indirectly re-
cursive interaction predicates necessitate a further extension of the in-
terpreter with a tabulation technique as indirect recursion can not be

10 As nontermination can not only result from recursive interaction predicates, a
depth-bound might still be needed for the other predicates. We ignore this compli-
cation in the remainder of this section for expository reasons.



310 / WaLT DETMAR MEURERS AND GUIDO MINNEN

identified locally, i.e., as a property of the interaction clause under con-
sideration. The original top-down interpreter is extended with an extra
clause, i.e., the second clause of spec_top_down_interpret/1, which is spe-
cialized to deal with recursive interaction predicates which are identified
by means of a call to recursive_interaction clause/1. By eliminating the
call to the lexical rule predicate (corresponding to the application of the
recursive lexical rule) the interpreter abstracts over the information that
is changed by the recursive lexical rule. As a result, only unchanged in-
formation remains. Subsequently, spec_top_down_interpret/2 is called to
ensure that the same recursive interaction predicate is not called (over
and over) again.!?

spec_top_downjnterpret(true).
spec_top_down_interpret(Goal):-
clause({Goal :- Body)),
recursive_interaction_clause((Goal :- Body)),
% True if the retrieved clause is a directly recursive
% interaction clause.
make_body_more_general(Body, AdaptedBody),
% Removes the call to the recursive lexical rule predicate from
% Body in order to abstract over changed information.
spec_top_down.interpret(AdaptedBody,(Goal :- Body)).
spec_top_down_interpret(Goal):-
clause((Goal :- Body)),
\+ recursive.interaction clause((Goal :- Body)),
gpec.top-down_interpret(Body).
spec_top_down_interpret((Bodyl, Body2)):-
spec_top_down_interpret(Body1),
spec_top_down_interpret(Body2).

spec_top_down_interpret(Goal, RecursivelnteractionClause):-
clause((Goal :- Body)),
\+ (Goal :- Body) = RecursivelnteractionClause,
% Avoid repeated application of RecursivelnteractionClause.
spec_top_down_interpret(Body).

FIGURE 12 A top-down interpreter specialized for constraint propagation on
(calls to) interaction predicates in a covariation lexicon

HUWe exploit the fact that two interaction clauses can never stand in the sul_}-
sumption relation.  Otherwise, a more elaborate equality test is needed in
spec_top-down_interpret/2 to avoid repeated application.

OrrF-LINE CONSTRAINT PROPAGATION / 311

Since we abstract over the information changed by a recursive lex-
ical rule, the common factor that is extracted by means of performing
constraint propagation with the specialized top-down interpreter might
be too general: In case we are dealing with an infinite lexicon not all
(possible infinite) applications of a recursive lexical rules are performed
and there might be cases in which the application of a lexical rule after
the n-th cycle is impossible even though we are taking it into account
during constraint propagation. It is important to note though that such
a situation can only lead to a common factor that is too general since
generalizing over too large a set of solutions can only lead to a less
specific generalization, not a more specific one. Therefore constraint
propagation does not influence the soundness and completeness of the
encoding. At run-time the additional lexical rule applications not ruled
out by constraint propagation will simply fail.

Reconsider the definite clause encoding in Figure 6. As a result of
the fact that repeated recursive application of interaction_0/2 is avoided,
much relevant information can be lifted into the extended lexical entry.
Figure 7 given in the previous section shows the result of performing
specialized constraint propagation to the lexical entry for kénnen (Fig-
ure 5).

19.4.3 Constant time lexical lookup

As Figure 7 shows, optimizing the extended lexical entries by means of
specialized constraint propagation can also lift up phonological informa-
tion in case of infinite lexicons.'? In the case of parsing, this information
can be used to index the lexicon so that constant time lexical lookup
can be achieved. For this purpose, the extended lexical entry is split up
as shown in Figure 13.

ind_ lex_entry(kénnen, [PHON < kénnen >]):- extended_lex _entry([GuT)).
ind lex_entry(kann, [PHON < kann >] )i~ extended lex_entry([ouT]).

FIGURE 13 The result of splitting up the optimized lexical entry in Figure 7

On the basis of the input string it is now possible to access the lexicon
in constant time. Without specialized constraint propagation this is
impossible as the possible values of the phonology feature are hidden

121f there are recursive phonology changing rules the phonological information cannot
be lifted by the constraint propagation using the specialized interpreter presented.



312 / WALt DETMAR MEURERS AND GUIDO MINNEN

away deep in the covariation encoding of the lexical entries that can be
derived from the base lexical entry.

19.5 Implementation Results

The depth-bounded constraint propagation method was implemented
for the ConTroll system (Gerdemann and King 1994, Gotz and Meurers
1997a) under Prolog. Test results on a complex grammar implementing
an analysis of partial VP topicalization in German (Hinrichs et al. 1994)
show that constraint propagation significantly improves parsing with a
covariation encoding of lexical rules. For the lexicons produced by the
covariation compiler, the implementation revealed that the most specific
generalization which is propagated contains much valuable information.
This is the case because usually the lexical entries resulting from lex-
ical rule application only differ in few specifications compared to the
number of specifications in a base lexical entry. The relation'® between
parsing times with the expanded (EXP), the covariation (cov) and the
constraint propagated covariation (OPT) lexicon for the above grammar
can be represented as OPT : EXP : cOvV =1: 1.3 : 14.

Acknowledgments

The research reported here was supported by Teilprojekt B4 ‘From Con-
straints to Rules: Efficient Compilation of HPSG Grammars’ of SFB
340 ‘Sprachtheoretische Grundlagen fiir die Computerlinguistik’ of the
Deutsche Forschungsgemeinschaft. The authors wish to thank Thilo
Gitz, Dale Gerdemann and the anonymous reviewers for comments and
discussion.

References

Frank, Anette. 1994. Verb Second by Underspecification. In KONVENS ’94,
ed. Harald Trost, 121-130. Berlin. Springer-Verlag.

Gerdemann, Dale, and Paul King. 1994. The Correct and Efficient Implemen-
tation of Appropriateness Specifications for Typed Feature Structures. In
Proceedings of the 15th Conference on Computational Linguistics. Kyoto,
Japan.

Gétz, Thilo, and Detmar Meurers. 1995. Compiling HPSG Type Constraints
into Definite Clause Programs. In Proceedings of the 33rd Annual Meeting
of the Association for Computational Linguistics. Boston, USA.

G6tz, Thilo, and Detmar Meurers. 1997a. The ConTroll System as Large
Grammar Development Platform. In Proceedings of the ACL/EACL post-

13The comparison was done without indexing the lexicon by the word form, since such
indexing is not possible for the covariation lexicon without constraint propagation.

a4

OFF-LINE CONSTRAINT PROPAGATION / 313

conference workshop on Computational Environments for Grammar De-
velopment and Linguistic Engineering. Madrid, Spain.

Gotz, Thilo, and Detmar Meurers. 1997b. Interleaving Universal Principles
and Relational Constraints over Typed Feature Logic. In Proceedings of
the 35th Annual Meeting of the ACL and the 8th Conference of the EACL.
Madrid, Spain.

Griffith, John. 1996. Modularizing Contexted Constraints. In Proceedings
of the 16th Conference on Computational Linguistics. Copenhagen, Den-
mark.

Hinrichs, Erhard, Detmar Meurers, and Tsuneko Nakazawa. 1994. Partial-VP
and Split-NP Topicalization in German—An HPSG Analysis and its Im-
plementation. Arbeitspapiere des SFB 340 no. 58. University of Tiibingen,
Germany.

Hinrichs, Erhard, and Tsuneko Nakazawa. 1989. Flipped Out: AUX in Ger-
man. In Papers from the 25th Regional Meeting of the Chicago Linguistic
Society. Chicago, lllinois. Chicago Linguistic Society.

Kathol, Andreas. 1994. Passives without Lexical Rules. In German in Head-
Driven Phrase Structure Grammar, ed. John Nerbonne, Klaus Netter, and
Carl Pollard. 237-272. Lecture Notes 46. CSLI Publications.

Krieger, Hans-Ulrich, and John Nerbonne. 1992. Feature-Based Inheritance
Networks for Computational Lexicons. In Defoult Inheritance Within
Unification-Based Approaches to the Lexicon, ed. Ted Briscoe, Ann Copes-
take, and V. de Paiva. Cambridge: Cambridge University Press.

le Provost, Thierry, and Mark Wallace. 1993. Generalised Constraint Propa-
gation over the CLP Scheme. Journal of Logic Programming 10.

Marriott, Kim, Lee Naish, and Jean-Louis Lassez. 1988. Most Specific Logic
Programs. In Proceedings of 5th Int. Conference and Symposium on Logic
Programming.

Meurers, Detmar, and Guido Minnen. 1997. A Computational Treatment of
Lexical Rules in HPSG as Covariation in Lexical Entries. Computational
Linguistics 23(4).

Minnen, Guido. 1996. Magic for Filter Optimization in Dynamic Bottom-up
Processing. In Proceedings of the 34th Annual Meeting of the Association
for Computational Linguistics. Santa Cruz, USA.

Minnen, Guido, Dale Gerdemann, and Erhard Hinrichs. 1996. Direct Auto-
mated Inversion of Logic Grammars. New Generation Computing 14(2).

O’Keefe, Richard. 1990. The Craft of Prolog. Cambridge, USA: MIT Press.

Pereira, Fernando, and Stuart Shieber. 1987. Prolog and Natural Language
Analysis. CSLI Lecture Notes, No. 10. Chicago, USA: Chicago University
Press.

Pollard, Carl, and Ivan A. Sag. 1987. An Information-based Approach to
Syntaz and Semantics: Volume 1 Fundamentals. CSLI Lecture Notes,
No., No. no. 13. Stanford, USA: Center for the Study of Language and
Information.



314 / WaLr DETMAR MEURERS AND GUIDO MINNEN

Pollard, Carl, and Ivan Sag. 1994. Head-driven Phrase Structure Grammar. -

Chicago, USA: University of Chicago Press.

Ramakrishnan, Raghu. 1988. Magic Templates: A Spellbinding Approach to
Logic Programs. In Proceedings of the 5th Int. Conference and Symposium
on Logic Programming.

Riehemann, Susanne. 1993. Word Formation in Lexical Type Hierarchies: A
Case Study of bar-Adjectives in German. Master’s thesis, University of
Tibingen.

Tamaki, Hisao, and Taisuke Sato. 1984. Unfold/Fold Transformation of Logic
Programs. In Proceedings of the 2nd Int. Conference on Logic Program-
ming. Uppsala, Sweden.

van Noord, Gertjan, and Gosse Bouma. 1994. The Scope of Adjuncts and
the Processing of Lexical Rules. In Proceedings of the 15th Conference on
Computational Linguistics. Kyoto, Japan.

Part VI

Semantics and Pragmatics



