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Summary

This thesis presents a strategy for the acquisition of thematic role relations (such as AGENT,
PATIENT, or INSTRUMENT) by means of statistical corpus analysis, for the purpose of semi-
automatically extending lexical-semantic nets. In particular, this work focuses on resources in the
style of WordNet (Fellbaum 1998) and EuroWordNet (Vossen 1999). Lexical-semantic nets represent
the meanings of words via semantic relations between words and/or word concepts. Semantic (the-
matic) role relations are conceptual relations which hold between verbs and their nominal arguments
(e.g. <eat>—AGENT-<human> or <eat>-PATIENT-<food>). Such relations capture selectional
restrictions of verbs. Therefore, the task of acquiring thematic role relations is intrinsically related to
the task of acquiring selectional restrictions.

Consequently, the core of a strategy for learning role relations consists in a method for learning
selectional restrictions (or, more precisely, selectional preferences). For the latter task, a number of
methods have been proposed which utilise syntactically analysed corpora and WordNet. To acquire
the selectional preferences of a certain verb for a certain argument, the respective complement nouns
of that verb are extracted from the corpus, and statistical methods are applied to generalise over
these nouns; these generalisations are expressed as a set of WordNet noun concepts. One of these
approaches, namely the method proposed by (Abe & Li 1996), constitutes the starting point of my
research. However, this approach is not immediately applicable for learning role relations, but requires
modifications and extensions for that task. In particular, two aspects have to be taken into account.
Firstly, it is crucial that the WordNet concepts acquired to represent selectional preferences of a verb
are located at an appropriate level of generalisation (e.g. <food> as PATIENT of <eat>, rather
than <cake> or <physical_object>). I develop a modification of the approach which substantially
improves its performance in this respect. Secondly, as the existing methods generalise over syntactic
complements, they acquire selectional preferences for syntactic rather than semantic arguments. To
learn selectional preferences for semantic roles, the syntactic arguments provided by the parsed corpus
have to be linked to their underlying roles so that the statistical learning method can be applied to
generalise, for example, over all (semantic) Agents of the examined verb rather than over all its
(syntactic) subjects. Therefore, I develop a method for linking syntactic to semantic arguments. A
further aspect of the overall strategy I present is an appropriate method for mapping the verbs and
nouns in the training data to the corresponding WordNet concepts, which is a prerequisite for applying
the preference acquisition algorithm.

To evaluate the role acquisition approach developed in this thesis, I extract a gold standard from
the EuroWordNet database and propose detailed evaluation criteria. Overall, the evaluation results
(accuracy rates of up to 84%) show that the approach works effectively.
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Chapter 1

Introduction

This thesis deals with the acquisition of thematic role relations by means of statistical corpus analy-
sis, for the purpose of semi-automatically extending lexical-semantic nets. Lexical-semantic nets are
resources which represent the semantics of words via semantic relations between words and word con-
cepts. Role relations are semantic relations which hold between verbs and their nominal arguments.
Such relations capture selectional restrictions of verbs. Therefore, the task of acquiring thematic role
relations is intrinsically related to the task of acquiring selectional restrictions.

This chapter motivates and specifies the goal of the work described in this Ph.D. thesis. Section
1.1 provides a short and informal introduction to selectional restrictions and their importance for
natural language processing. Section 1.2 introduces WordNet and EuroWordNet, the lexical-semantic
resources which will be used in this work. Section 1.3 defines and delimits the task of this thesis.
Section 1.4 provides an overview of the remaining chapters.

1.1 Selectional Restrictions in Natural Language Processing

1.1.1 Motivation

Selectional restrictions (also referred to as selectional constraints or sortal constraints) can be defined
as semantic constraints which a predicate imposes on its arguments. Such constraints account for the
anomaly of semantically deviant sentences like

(1.1) *The stone is thinking.

The verb “think” selects a subject which is human; thus, inanimate subjects are rejected by this con-
straint. Selectional restrictions express the conditions of semantic compatibility between a predicate
and its arguments: “think” is not compatible with a non-human subject like “stone”.

Several syntactic configurations, i.e. syntactic relations between words and constituents in a sentence,
involve selectional restrictions. Sentence (1.1) exemplifies constraints that a verb implies for its com-
plements. In general, the investigation of selectional restrictions has focused on this type of syntactic



dependency. However, other parts-of-speech may represent predicates as well, which also pose se-
mantic constraints on their arguments. For instance, adjectives may semantically restrict the range of
the nouns they modify, e.g. “brave” qualifies (groups of) human beings.

Knowledge about selectional restrictions is very useful for basic natural language processing tasks,
such as lexical and structural disambiguation or anaphora resolution. In the sentence

(1.2) The dishwasher read the newspaper.

the lexical ambiguity of “dishwasher” (which could denote a human being or a device) is resolved by
the selectional restrictions of “read”, which require that the actor expressed by the subject must be
human and thus ruling out the alternative ‘device’ sense. The sentence

(1.3) Peter watched the woman with the umbrella.

contains a potential PP-attachment ambiguity: the PP “with the umbrella” could be a modifier of the
object noun or a complement of the verb, in which case it would denote an instrument. This structural
ambiguity can be resolved by the selectional restrictions of “watch”: these restrictions state that the
instrument has to be some optical device, which rules out the possibility of attaching the PP to the
verb. In

(1.4) Claire enjoyed the view of the cows on top of the hills, which were mooing gently.

the selectional restrictions of “moo” imply that the relative pronoun “which” refers to “the cows”
rather than “the hills”.

The information provided by selectional restrictions alone is generally not sufficient to perform these
basic disambiguation tasks. For instance, based on this kind of information it is not possible to resolve
the PP-attachment ambiguity in the well-known example

(1.5) Peter watched the man with the telescope.

Nonetheless, examples (1.2)—(1.4) illustrate that such information can make a significant contribution
to ambiguity resolution. The practical usefulness of selectional restrictions in this respect has been
shown in numerous studies, e.g. (Resnik 1997), (McCarthy, Carroll & Preiss 2001) for word sense
disambiguation, (Resnik 1993), (Li 1996) for PP-attachment disambiguation, or (Hobbs 1978) for
anaphora resolution.

Resolving ambiguities is a prerequisite for a wide range of elaborate NLP tasks. Therefore, it is
not surprising that the application of selectional restrictions has been widely investigated in NLP.
Their benefit has been shown for various tasks including speech recognition (cf. (Ueberla 1994)),
parsing (cf. (Huyck 2000)), machine translation (cf. (Viegas 1999)), semantic inferencing (cf. (Burns
& Davis 1999)), or natural language generation (cf. (Kozlowski, McCoy & Vijay-Shanker 2002)).



1.1.2 Selectional Restrictions in NLP Systems

Information about selectional restrictions has been integrated by some means or other into vari-
ous NLP systems in order to support disambiguation tasks as sketched in the previous subsection.
(Wagner 1995) and (Wagner & Mastropietro 1996) provide an exhaustive discussion of some of these
systems, comprising their overall architecture, the individual components and their interaction, and, in
particular, the role of selectional restrictions. In this section, I will concentrate on peculiar aspects of
encoding selectional restrictions in such systems. These aspects provide valuable insights regarding
the work described in this thesis. I will exemplarily refer to three concrete systems.

One of the earliest well-known NLP systems which makes use of selectional restrictions is the pref-
erence semantics system developed in the seventies by Yorick Wilks (cf. (Wilks 1986)). This is a
prototype machine translation (MT) system that determines a semantic representation of a short piece
of English text and generates a French text from this representation. One important component of
the system is a lexicon comprising about 600 words. In this lexicon, the meaning of a word is repre-
sented by a semantic formula, which consists of a binary structure over semantic primitives. (About
70 primitives are defined.) Selectional restrictions are represented as components of such a formula.
For example, the formula for “interrogate” is as follows:

(1.6) ((MAN SUBJ)((MAN OBJE)(TELL FORCE)))

This formula says that “interrogate” selects a human subject (MAN SUBJ)! and a human object (MAN
OBJE) and that the subject forces the object to tell something (TELL FORCE). The first two parts
specify selectional restrictions on the verb’s arguments: subject and object have to be human.? The
formulae representing the senses of nouns specify coarse semantic types via the same inventory of
primitives that are employed to specify selectional constraints of verbs, e.g. MAN, THING, PART, or
FOLK. For example, the ambiguous noun “crook” receives two formulae, one headed by MAN and
one headed by THING. In the sentence

(1.7) The policeman interrogates the crook.

the selectional restrictions of “interrogate disambiguate “crook”, since only the MAN sense is com-
patible with them.

The term preference semantics refers to a fundamental design principle of Wilks’ system. Semantic
definitions, such as selectional constraints, are not treated as strict rules, but as preferences. A sentence
which violates such preferences nonetheless receives a semantic interpretation. In case of competing
analyses for an utterance, that analysis with the least number of preference violations is selected. This
approach accounts for the fact that violations of selectional restrictions are all but exceptional. For
example, such violations occur in common rhetorical figures, e.g. in metaphoric expressions like

(1.8) The car drinks gasoline.

'In Wilks’ notation, MAN represents any human being, not just male humans.

It is important to note that the terms subject and object in Wilks’ representation do not refer to surface syntactic
relations, but to semantic deep cases (cf. section 2.1.1).
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Figure 1.1: Part of the sortal hierarchy in the CLE

or in metonymic constructions like

(1.9) Paris and Berlin have agreed on matters for the French presidency of the EU.

As a consequence of this fact, selectional restrictions are regarded as preferences in this thesis. In
section 2.3.2, I will address this issue in more detail. As we will see in chapter 3, the view of selec-
tional restrictions as a preferential phenomenon has generally been adopted within statistical NLP.
Essentially, this idea traces back to Wilks’ MT system.

The Core Language Engine (CLE) (cf. (Alshawi 1992)) was developed in the late eighties. The
CLE was designed as a multi-purpose NLP system, comprising various language processing mod-
ules (ranging from spelling correction and morphological analysis to pragmatic plausibility checks)
and intended as the core engine for different applications (e.g. natural language interfaces or MT).
One module is a lexicon which comprises about 1600 words, being extensible and modifiable for spe-
cific applications. Selectional restrictions are encoded and processed in an analogous way to Wilks’
system and many other systems. However, there is one striking difference between Wilks’ system and
the CLE. Wilks organises the inventory of semantic primitives used for encoding semantic types and
selectional restrictions as an unordered set. In contrast, the CLE (where such primitives are called
sorts) organises this inventory as a sortal hierarchy. This hierarchy captures 28 semantic sorts. Each
sort represents a class of entities. The hierarchy encodes subsumption relations between sorts. Figure
1.1 shows a part of the hierarchy.

Here, the sort 1iving subsumes the two sorts animate and vegetable. animate can be sub-
classified independently in two ways: human vs. animal and male vs. female. A branching in-
dicates incompatible subclassification, while a vertical bar indicates independent alternatives. For ex-
ample, human is incompatible to animal and vegetable, but compatible tomale and female.

Organising semantic sorts in a subsumption hierarchy has several advantages. Subsumption relations
holding between sorts can be specified once in the hierarchy instead of being redundantly repeated
in various lexical entries. For example, the hierarchy states that each word classified as human is
also classified as animate and 1iving. Thus, it is not necessary to specify the sorts animate
and 1iving in all lexical entries bearing the sort human. Actually, such dependencies between
sorts have to be encoded at some place, in order to cope with the fact that words satisfying certain
selectional restrictions may exhibit varying levels of abstraction. Selectional restrictions which are
characterised by a certain sort are also satisfied by words which belong to a subsort, i.e. are more
specific. For instance, given the hierarchy in figure 1.1, the most appropriate sort for specifying the
restrictions for the subject (Agent) of “creep” is animate. This restriction is satisfied by all nouns

4



of the sort human (e.g. “baby”) or animal (e.g.“crocodile”). Furthermore, a selectional constraint
is also satisfied by words which belong to a sort subsuming the constraint-defining sort, i.e. are more
general. For example, nouns of the sort 1iving (e.g. “life form” or “being”) are possible subjects
of “creep”, unless they belong to a subsort incompatible with animate (such as vegetable). In
such cases, selectional restrictions provide additional information about the semantically underspec-
ified complement. If someone talks about “creeping beings”, one can conclude that these beings are
animate. Section 2.2.2 addresses this “informational” view of selectional restrictions. These consid-
erations show that it is important to encode subsumptional dependencies of sorts. A hierarchy is an
appropriate way of modelling such dependencies.

The discussion in the previous paragraph is closely related to another crucial issue: What is the ap-
propriate abstraction level for specifying selectional restrictions? In the example above, I stated that
animate is the appropriate sort to capture the restrictions imposed by “creep”. On the one hand,
the more abstract sort 11ving would be an over-generalisation, since this sort also includes plants.
On the other hand, each of the two more specific sorts human and animal would be an under-
generalisation. A disjunction of these sorts would adequately characterise the restriction, but this
would miss a possible generalisation: one would use two sorts to encode something that one sort
could express in a more compact way. Note that selecting the appropriate generalisation level cru-
cially depends on the structure and the coverage of the employed sort hierarchy. If the sort animate
were missing and 11iving had the three immediate descendants vegetable,animal, and human
instead, then the restrictions of “creep” would be best modelled by a disjunction of the latter two sorts.
Moreover, one could object that the sorts offered by this hierarchy are too abstract to allow an appro-
priate encoding of these restrictions, because there are some kinds of animals that do not creep (e.g.
fish). To capture such differentiations, a much more fine-grained semantic hierarchy would be nec-
essary. Section 2.2.1 will discuss the linguistic finding that basically any semantic information can
play a role for selectional restrictions. This finding supports the necessity of employing a comprehen-
sive, very fine-grained hierarchy. Lexical-semantic resources like WordNet (cf. section 1.2) provide
such hierarchies. However, the more abstraction levels are captured by the employed hierarchy, the
more challenging is the problem of finding the appropriate generalisation level for defining selectional
restrictions of a given verb. This problem will be a core issue in this thesis.

So far, when talking about selectional restrictions that predicates impose on their arguments, I have
not made a clear distinction between syntactic arguments and their underlying semantic arguments.
However, such a distinction is necessary, because in general, the same semantic argument can be
syntactically realised in different ways. This phenomenon has been widely investigated in linguistics.
In chapters 2 and 6, I will discuss these investigations in detail. In many NLP systems, lexical entries
for words expressing predicates reflect this distinction by separately specifying syntactic and semantic
arguments and providing links between them. For example, this strategy is pursued in the lexicon
of the Mikrokosmos MT environment (cf. (Viegas 1999)). Examples (1.10) and (1.11) display two
entries from this lexicon.



[ explode-V1 T
cat: \'%
[ root: [0]
. cat: NP
syn: subj: { sem: }
(1.10) . cat: NP
obj: [ sem: }
[ EXPLODE
sem: AGENT: ENERGY, FORCE
| THEME: PHYSICALOBJECT

(1.10) shows the entry for “explode”. This verb has two syntactic complements, specified under “syn”:
a subject and an object, both NPs. The two corresponding semantic arguments are specified under
“sem”, labelled as AGENT and THEME, respectively. These labels refer to certain thematic roles (or
semantic roles). Intuitively, it is a plausible approach to identify semantic arguments by the roles they
play in the event denoted by the predicate. However, a detailed determination of the nature (what is
a role?) and the inventory (which roles do exist?) of thematic roles is all but trivial. Such definitions
do not only vary in different NLP systems and language resources. Thematic roles have been subject
to intensive linguistic research, yielding a number of competing theories. Chapter 2 will summarise
the most prominent accounts. These theories also aim at finding regularities for linking syntactic
arguments to their underlying semantic roles. In the lexical entry displayed here, the information
which syntactic complement corresponds to which semantic role is stated by explicit links (indicated
by numbers in boxes). In this case, the Agent corresponds to the subject and the Theme to the object.

[ explosion-N1 ]
cat: N
[ [ root: [0] 1
[root: of T
obll: . cat: NP
obj: [ sem: }
syn: L
(1.11) [ root: by, due-to
lex-rul: LSR2Event obl2: o [ cat: NP }
obJ; sem:
[ EXPLODE
sem: AGENT: ENERGY, FORCE
| THEME: PHYSICALOBIECT

Example (1.11) shows the lexical entry for “explosion”. This entry has been generated by applying a
lexical rule that accounts for nominalisations denoting events (LSR2Event) to (1.10). As “explosion”
denotes the same kind of event as “explode”, the semantic structure in the two entries are identi-
cal. However, the noun realises the semantic roles by different syntactic constituents: The Agent is
expressed by a PP headed by “by” or “due to”, the Theme by a PP headed by “of”’.

As selectional restrictions are semantic constraints, it is appropriate to attach their specification to the
semantic roles rather than to the syntactic complements (cf. section 2.2.2). This is done in the entries
above: the Agent is restricted to ENERGY, FORCE, the Theme to PHYSICALOBJECT. These specifi-
cations coincide in the two entries; differing syntactic realisations do not alter selectional restrictions.



In this context, a general terminological remark is necessary: In this thesis, I will use the terms syn-
tactic argument and syntactic complement in a very broad sense. This means that I will not make a
distinction between syntactic constituents which are obligatory to satisfy the valency of a verb (usu-
ally called complements) on the one hand and constituents which are optional modifiers of the verb
(usually called adjuncts) on the other hand. For my work, this distinction is not crucial. Actually, the-
matic roles may be related to complements (in the narrow sense) as well as adjuncts; likewise, verbs
may impose selectional restrictions on both kinds of verbal modifiers. For example, locative roles like
Location, Source, or Goal correspond to adjuncts. The fillers of these roles are semantically restricted
to denote some location.

1.2 WordNet and EuroWordNet

In general, NLP systems built till the early nineties were characterised by a very limited coverage
of phenomena and regularities in natural language. In particular, their lexicons typically comprised
no more than a few hundred or thousand entries. Whereas the merits of such systems consist in the
investigation of useful representations and mechanisms for language processing, they are too small to
be suitable for “real-world” applications, unless they are tuned to and used within a strongly delim-
ited domain. A tool capable of processing free (i.e. unrestricted) text requires, among others, a large,
broad-coverage lexicon. However, manually building such a lexicon from scratch is very labour-
intensive and time-consuming. For this reason, two major developments have emerged in the last 10—
15 years to overcome this lexicographic bottleneck. The first one is the development of techniques
to automatically acquire lexical information from large corpora (cf. (Boguraev & Pustejovsky 1996),
(Lemnitzer & Wagner 2004)). The other one is the creation of large-scale general-purpose electronic
lexical resources which can be reused for arbitrary language processing systems. One of the most
widespread resources of this kind is WordNet (cf. (Miller et al. 1990), (Fellbaum 1998)), which com-
prises lexical-semantic information for English. WordNet-like resources (usually called wordnets,
without capital letters) for various other languages have been or are being built. EuroWordNet (cf.
(Vossen 1999), (Wagner & Kunze 1999)) is a multilingual database that integrates some of these
language-specific wordnets. In my work, I employ both WordNet and EuroWordNet. In the follow-
ing, I introduce those aspects of the two resources that are of relevance for this thesis; an exhaustive
introduction can be found in the literature just mentioned.

1.2.1 WordNet

WordNet is a lexical-semantic net capturing nouns, verbs, adjectives, and adverbs. It was developed at
Princeton University and is continually being extended and improved. Basically, this resource com-
prises a large-scale semantic network, which defines the meaning of words via semantic relations
between words and word concepts. The most elementary relation in WordNet is synonymy. Synony-
mous words are gathered in so-called synsets (synonym sets). Examples of such synsets are given in
(1.12)—(1.16):

(1.12) <personi#individual#someone#mortal#human#soul >
(1.13) <soul#psyche>

(1.14) <mortal#deadly>



(1.15) <drink#imbibe#take_in_liquids>

(1.16) <consume#have#ingest#take>

Each synset belongs to a certain part-of-speech: (1.12) and (1.13) are noun synsets, (1.14) is an
adjective synset, and (1.15) and (1.16) are verb synsets. The ambiguity of a word is modelled by
its membership in several synsets. For instance, “soul” is member of (1.12) and (1.13), “mortal”
occurs in (1.12) and (1.14). Each synset in which a word occurs represents a particular sense of that
word. More exactly, a synset represents an equivalence class of senses of different words. (1.12)
represents a certain sense of “soul”, a certain sense of “mortal”, as well as a certain sense of each
other word in the synset. All these senses are equivalent, i.e. they refer to the same sort of entities. To
most synsets, a definitional gloss is attached which explains the meaning represented by the synset
and whose primary purpose is to provide orientation to the human user. For (1.12), this gloss is “a
human being”. The gloss for (1.13) (representing another sense of “soul”) is “the immaterial part of a
person”’; the one for (1.14) (representing another sense of “mortal”) is “causing or capable of causing
death”. Representing word senses is one of the fundamental functions of synsets.

Synsets form the nodes of the semantic network encoded in WordNet. These nodes are connected by
several types of semantic relations like the following:

e hyponymy/hyperonymy  (subordinate/superordinate; ~<person>> is a hyponym of
<life_form>)

e antonymy (opposite; <lightness>> and <darkness> are antonyms®)
e meronymy/holonymy (part/whole; <hand> is a meronym of <arm>)
e entailment (implication; <succeed> entails <try>)

e cause (<kill> causes <die>)

This list is not exhaustive.

Such relations form the edges of the semantic network. Essentially, there is a separate network for
each part-of-speech, i.e. most relations hold between synsets of the same part-of-speech. However,
certain relation types establish connections between these networks (e.g. expressing derivation). In
the different part-of-speech networks, different relation types are prevalent. For the nouns, the relation
type which is encoded in extenso is hyponymy/hyperonymy. These relations constitute a subsump-
tion hierarchy over the noun synsets, which is comparable to the CLE hierarchy discussed in section
1.1.2 (cf. figure 1.1 on page 4).> Figure 1.2 displays a part of that hierarchy. This figure shows that
<animal> has (among others) the synsets <insectivore>, <pet>, and <invertebrate>> as hyponymes,
<life_form> as hyperonym, and (among others) <human> and <plant> as co-hyponyms (siblings).
The hyponymy/hyperonymy relation can be interpreted transitively; in this sense, <insectivore>,

3If the context provides sufficient information about a synset, T will not mention all synset members.
*I will not refer to the difference between lexical and conceptual relations here.

Note that the WordNet hierarchy does not distinguish between compatible and incompatible co-hyponyms as does the
CLE hierarchy. The EuroWordNet database schema provides the possibility to encode this distinction. However, this is not
realised for all wordnets in EuroWordNet.



<being#life_form#living_thing#organism>

<human#mortal#person>  <animal#beast#brute#ficreature>  <flora#plant#plant_life>

<insectivore> <pet> <invertebrate>

Figure 1.2: Part of the WordNet noun hierarchy



<pet>, and <invertebrate> are (indirect) hyponyms of <life_form>. This leads us to a second fun-
damental function of synsets: they do not only represent word senses, but also semantic concepts
which are abstractions over word senses. For instance, <life_form> represents a certain sense of “‘be-
ing”, “life form”, “living thing”, and “organism”, but also an abstract concept subsuming senses of a
number of other words, such as “person”, “animal”, “insectivore”, “pet”, “invertebrate”, or “plant”. It
will turn out that the acquisition approach I pursue in this thesis requires that these two fundamental
functions are representationally separated. From now on, I will use the term concept to refer to a

synset. This conforms to the terminology used in EuroWordNet.

One of the crucial properties that renders WordNet suitable for real-world applications is its size.
Version 1.5, which I use for my work® comprises more than 60 000 noun concepts, 11 000 verb
concepts, 16 000 adjective concepts, and 3 000 adverb concepts.

1.2.2 EuroWordNet

Since the time when WordNet has become available, a large community of researchers and devel-
opers has been employing this resource for various NLP applications, including, but not limited to
word sense disambiguation (cf. (Stetina, Kurohashi & Nagao 1998)), semantic annotation of cor-
pora (cf. (Miller, Leacock, Tengi & Bunker 1993)), information retrieval (cf. (Gonzalo, Verdejo,
Chugur & Cigarran 1998)), and text categorisation (cf. (Buenaga Rodriguez, Gomez-Hidalgo &
Diaz-Agudo 1997)); cf. (Kunze & Wagner 2001) for a survey. In parallel, numerous initiatives have
emerged to create a wordnet in other languages than English; currently, wordnets in more than 30 lan-
guages exist or are under development. These initiatives are brought together in the Global WordNet
Association (GWA)”. This organisation aims at providing a platform for establishing cooperations
concerning wordnet creation and dissemination, developing wordnet-related standards, and promot-
ing the integration of language-specific wordnets in multilingual resources. For the latter goal, data
and strategies will be employed that have been developed for the first existing multilingual wordnet
database, EuroWordNet.

EuroWordNet (EWN) was created from 1996 to 1999 and comprises wordnets for eight European lan-
guages: Czech, Dutch, English, Estonian, French, German, Italian, and Spanish. Currently, EWN is re-
stricted to nouns and verbs. The language-specific wordnets are integrated in a common database. This
database has a modular structure. Each wordnet with its concepts and relations is stored separately.
The inventory of possible relations (e.g. HAS_HYPONYM, HAS_HYPERONYM, ANTONYM,
etc.) is defined globally; it captures all relations which occur in any of the individual wordnets. The
core of the EWN database is the Interlingual Index (ILI). The language-specific wordnets are aligned
via that index. Basically, the ILI is an unstructured set of records representing concepts. For practical
reasons, the noun and verb concepts of WordNet (version 1.5) have been adopted for this set. A con-
cept in a language-specific wordnet is linked to a corresponding ILI record via a so-called equivalence
relation. In this way, the ILI forms a “bridge” that allows mappings between different wordnets.

Figure 1.3 illustrates the general structure of EuroWordNet. The language-specific wordnets are
grouped around the ILI. In the example, concepts from different wordnets are linked to the ILI record
<drive>. Thus, the interconnection to the ILI allows indirect mappings between these language-
specific concepts. In addition to the ILI, two language-independent ontologies are encoded in EWN:

The latest WordNet version is 2.0. I employ version 1.5 for the sake of compatibility, because it is part of EuroWordNet.

"http://www.globalwordnet.org
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Figure 1.3: General architecture of EuroWordNet

a top ontology, consisting of a small set of abstract semantic features such as ARTEFACT, ANIMAL,
DYNAMIC, or EXISTENCE, and a (currently incomplete) domain ontology encoding specific se-
mantic fields (domains) such as computer terminology. These ontologies are used for classifying ILI
concepts. They do not play a role in this thesis.

The modular architecture of EuroWordNet allows the independent creation and integration of the
different language-specific wordnets. Basically, two strategies have been applied for that task. Some
wordnets have been built up from scratch, and equivalence relations to the ILI have been encoded
afterwards (merge approach). This approach has been pursued, for instance, for the German wordnet
(GermaNet), cf. (Kunze & Wagner 2001), (Wagner & Kunze 1999). Other wordnets (e.g. the French
wordnet) have been built by creating a translation of Princeton WordNet, i.e. by semi-automatically
translating WordNet concepts into equivalent concepts in the respective language and adopting the
relations from WordNet which connect these concepts (expand approach). Since the ILI itself consists
of WordNet concepts, this strategy yields links to the ILI records as a by-product: each synset is
linked to its WordNet origin. Both approaches have advantages and drawbacks. Building a wordnet
from scratch allows the adequate modelling of lexical-semantic patterns specific to the respective
language, while the adoption of the WordNet structure could miss such patterns and yields biases
peculiar to English (and to Princeton WordNet). On the other hand, creating a translation of WordNet
is much less labour-intensive, since it can be done semi-automatically and there is no additional effort
to encode equivalence relations to the ILI.

In order to ensure a certain degree of homogeneity of concepts and semantic fields covered in the
different wordnets, the EuroWordNet partners agreed on a set of common base concepts in the ILI,
which are characterised by a high level of abstraction (without being at the top level of the hierarchy),
a high number of relations, and high frequency in corpora. Each wordnet has to encode counterparts
of all these base concepts, and these counterparts have to be linked to the corresponding ILI records.
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In case of the merge approach (a wordnet is created independently from WordNet), it often happens
that for some language-specific concept there is no exact counterpart in the ILI. This could be due to
missing lexicalisation in English or due to a gap in WordNet. To account for such cases, several types
of equivalence relations are defined that allow flexible linking. (1.17)—(1.22) provide some example
equivalence links from the German wordnet to the ILI:

(1.17) <Weihnachten> EQ_SYNONYM < Christmas>

(1.18) <Allerheiligen> EQ_SYNONYM <Allhallows>

(1.19) <Feiertag> EQ_NEAR_SYNONYM <day>

(1.20) <Feiertag> EQ_NEAR_SYNONYM <holiday>

(1.21) <BuB-_und_Bettag> EQ_HAS_HYPERONYM <Christian_holy_day>
(1.22) <BuB-_und_Bettag> EQ_HAS_MERONYM <penitence>

Full correspondence is indicated by the EQ_SYNONYM link, as in (1.17) and (1.18). This is the
usual equivalence relation which should be used whenever possible. Sometimes a language-specific
concept is (only) roughly synonymous to an ILI record. In this case, the EQ_NEAR_SYNONYM link
is used. In particular, this relation is employed if two or more ILI concepts correspond to one word-
net concept or vice-versa. Such a case is shown in (1.19) and (1.20). The meaning of the German
concept <Feiertag> is captured to some extent by the WordNet concept <day> (with the gloss “a
day assigned to a particular purpose or observance”) subsuming concepts like <Valentine’s_Day>,
<First_of_May>, or <Mother’s_Day>, and to some extent by <holiday>, which does not com-
pletely match <Feiertag> because it does not subsume religious holidays in WordNet. (1.21) and
(1.22) show the links for <BuB-_und_Bettag>, a protestant holiday in Germany devoted to peni-
tence. For this holiday, there is no corresponding ILI record. Therefore, the meaning is modelled by
an EQ_HAS_HYPERONYM link to <Christian_holy_day> and an EQ_HAS_MERONYM link to
<penitence>.

The size of the individual wordnets in EWN differ significantly; they range from 7 500 concepts for
Estonian to 30 000 concepts for Dutch, Italian, and Spanish. For English, WordNet 1.5 is integrated,
supplemented by an English wordnet encoding additional (mostly derivational) relations.

1.2.3 Selectional Restrictions in EuroWordNet

Although, as we have seen in section 1.1, selectional restrictions are very useful for language pro-
cessing tasks, WordNet does not encode such information at all. However, some of the wordnets in
EWN comprise relations which capture selectional restrictions. These relations encode thematic roles.
They provide links between verb concepts and noun concepts. Essentially, they specify what kind of
noun concepts are involved, i.e. play a role, in events denoted by verb concepts. The relations are
bi-directional; the direction pointing from verb to noun is labelled INVOLVED, the reverse direction
from noun to verb is labelled ROLE.® Several types of such thematic role relations are defined, e.g.
AGENT, PATIENT, or INSTRUMENT. (1.23)—(1.27) display some examples of thematic role rela-
tions from the Italian wordnet. The ILI records which correspond to the Italian concepts are provided
as well.

8For each relation, the encoder specifies one direction; the reverse direction is added automatically.
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(1.23) <abbeverarsi> INVOLVED_AGENT <animale>
<drink> <animal>

(1.24) <camminare> INVOLVED_AGENT <pedone>
<walk> <pedestrian>

(1.25) <lessare> INVOLVED_PATIENT <cibo>
<boil> <food>

(1.26) <sbaraccare> INVOLVED_PATIENT <cosa>
<remove> <object#inanimate_object>

(1.27) <lavare> INVOLVED_INSTRUMENT <acqua>
<wash> <water>

Thematic role relations encode selectional restrictions in an analogous way as shown in the lexical
entry (1.10) on page 6 from the Mikrokosmos lexicon (cf. (Viegas 1999)), i.e. as relations between
semantic concepts which are characterised by similar labels (e.g. AGENT). However, there are two
differences between the representation in that lexicon and in EuroWordNet: Firstly, thematic role
relations are not encoded exhaustively in the EWN wordnets. Those wordnets which contain such
relations encode them only for a minority of verb concepts. Furthermore, these wordnets in general do
not provide role relations for all arguments of a verb concept, but, if at all, only for some arguments (in
many cases for just one). Secondly, EWN does not provide information about the possible syntactic
realisations of semantic arguments, as does the Mikrokosmos lexicon. The EuroWordNet database
scheme allows to specify syntactic subcategorisation frames of verbs. Such specifications are realised
in the different wordnets to different degrees. For example, WordNet attaches coarse characterisations
of possible subcategorisation frames to verb concepts, e.g. “Something __s” for an intransitive and
“Something __s something” for a simple transitive frame. However, none of the wordnets in EWN
captures connections between syntactic and semantic arguments.

1.3 The Task of this Thesis

At the beginning of section 1.2, I stated the two main strategies pursued in the last decade to overcome
the lexical acquisition bottleneck: learning lexical information from corpora and building reusable lex-
ical resources. These strategies can be combined. For example, (Biemann, Bordag & Quasthoft 2004)
present a method to extend wordnets by automatically acquiring paradigmatic relations (synonyms,
hyperonyms, co-hyponyms) by means of statistical analysis of co-occurrence data in large corpora.
The words and relations acquired in this way are candidates for the extension of wordnets. They have
to be inspected manually before being added to the respective wordnet.

This thesis also deals with the (semi-)automatic extension of lexical semantic resources. In particular,
it focuses on wordnets. The task of this work is to develop an approach for learning thematic role rela-
tions (as described in section 1.2.3) from corpora. As shown in this chapter, thematic role relations are
intrinsically related to selectional restrictions. Consequently, the core of a strategy for learning role
relations is a strategy for learning selectional restrictions. To fulfil the latter task, a number of methods
have been proposed. These methods take syntactically analysed corpora as input. More specifically,
they act on verbs and their syntactic arguments, which are identified by such corpora. To acquire the
selectional preferences of a certain verb, the complements of that verb are extracted from the corpus,
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and statistical methods and heuristics are applied to generalise over these complements; this general-
isation is expressed as a set of noun concepts in WordNet. I will discuss such approaches in chapter
3. They constitute the starting point of my research. However, they are not immediately applicable
for learning role relations but require enhancements and extensions for that task. In particular, two
aspects have to be taken into account:

e The WordNet concepts acquired to represent selectional preferences of a verb have to be located
at an appropriate level of generalisation. I have discussed that problem in section 1.1.2. I will
argue that the approaches presented so far do not behave satisfyingly in this respect.

e As the existing methods generalise over syntactic complements of verbs, they acquire selec-
tional preferences for syntactic rather than semantic arguments. To learn selectional restrictions
for semantic roles, the syntactic arguments provided by the parsed corpus have to be mapped
to their underlying roles. Then, the statistical methods and heuristics can be applied, say, to all
Agents of the examined verb rather than to all its subjects. Therefore, the task of this thesis
requires to develop a method for linking syntactic to semantic arguments.

It is an important goal that the learning approach developed in this thesis is applicable in a wide range
of environments. Therefore, it should meet the following criteria:

e Language independence: The approach should be as language-independent as possible, so that
it can be applied to extend wordnets of any language. In particular, this implies that only two
kinds of resources may be employed: the wordnet to be extended and a syntactically anal-
ysed corpus in the respective language. The approach should not depend on further resources,
e.g. lexicons from which thematic relations could be extracted, because such resources are not
available for many languages. I will develop and test my approach with English data, i.e. with
Princeton WordNet and a huge parsed English corpus. However, it will be applicable for other
languages as well.

o Theory neutrality: As already mentioned, there is no consensus in linguistics about the nature
and the inventory of thematic roles. In chapter 2, I will discuss a number of linguistic theories
of thematic roles. The approach I develop should be open to different theories, i.e. it should not
depend on a particular theory. Nevertheless, it should take into account general (undisputed)
linguistic insights concerning thematic roles and selectional restrictions as far as possible. In
this thesis, I will adopt the role inventory and definitions assumed in EuroWordNet. However,
this decision is guided by purely practical reasons: To evaluate my approach, I will extract
a gold standard from EuroWordNet and compare the acquired role relations with this gold
standard. To make this comparison possible, the acquired types of relations have to correspond
to those relation types offered by EWN. However, the overall approach does not presuppose
the adoption of these particular role types.

Regarding the extension of wordnets, I generally assume the scenario mentioned at the beginning of
this section: the learning approach I propose supplies candidate relations, which have to be manually
examined before being added to the respective wordnet. In this sense, I propose a semi-automatic
approach for enriching a wordnet with thematic role relations. However, one could also imagine sce-
narios where the new role relations are not intended to be persistently stored in the general, reusable
version of a wordnet, but to be acquired by a particular user to support a specific NLP application. In
this case, manual post-editing might be unnecessary for the given task.
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Although this work focuses on the extension of wordnets, the learning approach to be developed can in
principle be used for enriching other lexical resources—e.g. lexical semantic nets like FrameNet (cf.
(Fillmore, Wooters & Baker 2001)) or lexicons employed in parsing systems—with information about
selectional preferences and/or thematic role relations as well. In general, two possibilities are conceiv-
able: If the resource to be extended provides a semantic hierarchy of noun concepts, then the method
proposed in this thesis can be applied straightforwardly using this hierarchy instead of WordNet. If,
however, the respective resource does not include such a hierarchy, then selectional preferences or
thematic role relations can be acquired using the noun hierarchy of WordNet (or another wordnet,
respectively) and the resulting WordNet concepts can be mapped to equivalent representations in the
resource (i.e. words, semantic primitives, etc.).

In conclusion, I would like to summarise the essential issues which are addressed in this thesis:

e The goal of this work is to develop an approach for learning thematic role relations. This ap-
proach takes WordNet and a parsed corpus as input and acquires relations as shown in (1.23)-
(1.27).

e A core component of this approach is a method of acquiring selectional preferences. In partic-
ular, these selectional preferences have to model an appropriate level of generalisation.

e Another core component is a strategy for mapping syntactic arguments, which are encoded in
the training corpus, to their underlying semantic arguments, which represent thematic roles.

e The approach should be independent from a particular language or a particular linguistic theory.
Nonetheless, it should reflect general linguistic insights concerning thematic roles and selec-
tional restrictions.

o The statistical methods employed and developed for the acquisition approach should be theo-
retically sound.

e To evaluate the approach, I will use a gold standard, which is extracted from the EuroWordNet
database. In addition to measuring the performance of the learning approach, the evaluation
experiments will also assess the general feasibility of employing a gold standard for evaluating
the task of learning thematic role relations, and reveal strengths and weaknesses of the particular
gold standard retrieved from EWN.

1.4 Outline of this Thesis

The rest of this thesis is structured as follows: Chapter 2 provides a summary of different linguistic
theories concerning thematic roles and selectional restrictions. This chapter also states which aspects
of these theories are relevant for the task of this thesis and the strategy I will propose for its solution.
In this context, I will give an introduction of the role inventory used in EuroWordNet and discuss the
notion of selectional preference. Chapter 3 introduces several approaches for acquiring selectional
preferences proposed in the literature. In particular, I will discuss their suitability concerning the task
of this thesis. I will select one of these approaches as a starting point for developing my own method.
Chapter 4 reports preliminary experiments testing this approach. These experiments show that this
strategy exhibits an inherent weakness regarding the selection of the appropriate generalisation level
for encoding selectional preferences. I will explain the reason underlying this weakness and propose
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a modification of the approach that overcomes this drawback. Chapter 5 addresses several practical
issues concerning the method of learning selectional preferences. These issues include the employed
training data, lexical disambiguation of the words in these data, the mapping of word forms to con-
cepts in WordNet, and the compilation of a gold standard for evaluation. First evaluation experiments
round off this chapter. In chapter 6, I develop a strategy for mapping syntactic arguments extracted
from the training corpus to their underlying thematic role types. This strategy makes it possible to
apply the algorithm for learning selectional preferences to thematic roles. Chapter 7 reports experi-
ments performing a detailed evaluation of the overall approach developed in this thesis and particular
aspects of it. Chapter 8 provides concluding remarks.
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Chapter 2

Linguistic Foundations

Whereas the previous chapter concentrated on computational linguistic aspects concerning the task
of this thesis, this chapter addresses the relation between this task and theoretical linguistic research
on thematic roles and selectional restrictions. Numerous theoretical accounts have been proposed in
linguistics to appropriately model these phenomena. Neither the representation of thematic role re-
lations in EuroWordNet nor the approach for learning such relations developed in this work adhere
strictly to any of these theories. However, both have to a large extent been inspired by fundamental
linguistic insights and concepts formulated within this area. On the other hand, it turns out that cer-
tain features of my learning approach, though motivated by independent reasons, can be interpreted in
terms of linguistic theories and considerations. In my view, it is important to clarify in which respects
the approach I propose conforms to or deviates from established linguistic theories. Consequently,
throughout the presentation of my work in the subsequent chapters, I will explicitly refer to linguistic
notions which correspond with particular aspects of my approach. However, these notions can hardly
be understood in isolation, i.e. separated from their theoretical context. Therefore, this chapter pro-
vides a self-contained summary of those theories I will make reference to. Section 2.1 introduces
linguistic theories on thematic roles. Section 2.2 turns to linguistic views of selectional restrictions
and their relatedness to thematic roles. To give a preliminary idea of the overall relevance of these
theories for the task of this thesis, these sections also indicate connections to my approach as well as
to NLP implementations discussed in chapter 1. Section 2.3 addresses the significance of linguistic
insights for this thesis in a more general manner. In particular, section 2.3.1 relates the ideas presented
in section 2.1 and 2.2 to the approach of encoding thematic roles in EWN. Section 2.3.2 provides a
linguistic motivation of the notion of selectional preferences, which I adopt for my work.

2.1 Thematic Roles

Thematic roles, also called thematic relations' or 0-roles, are characterisations of certain semantic
relationships which hold between a verb and its complements (and adjuncts). As we have seen in
chapter 1 (example (1.10) on page 6; examples (1.23)—(1.27) on page 13), these relationships are
usually indicated by labels like Agent, Theme, or Goal, which are assigned to the arguments of a verb.

"To avoid confusion between the notion thematic relation as a linguistic phenomenon and the technical term relation as
a structural part of wordnets, I will use thematic role to refer to the linguistic concept and thematic role relation to refer to
a wordnet relation which encodes a thematic role.
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For example, in the sentence
(2.1) Peter sent the products from London to New York.

“Peter” is the Agent, “the products” the Theme or Patient, “from London” the Source, and “to New
York” the Goal of the sending event denoted by the sentence.

Up to now, linguistic research has not come to a consensus about the exact inventory of thematic
roles, nor about their nature or their status in linguistic theory. Roles like those just enumerated were
first mentioned by Jeffrey Gruber, who provided a detailed study about syntactic and semantic ob-
servations connected with them (cf. (Gruber 1965)). The most prominent theoretical accounts in this
domain have been developed by Charles Fillmore, Ray Jackendoff (who, to a large extent, takes up
Gruber’s observations and conclusions), and David Dowty. In the following sections, I will sketch the
main results of their work.

2.1.1 Fillmore’s Case Grammar

Fillmore does not use the term thematic roles directly. However, in (Fillmore 1968) he introduces the
very similar concept of deep cases, which he defines as “semantically relevant syntactic relationships
involving nouns and the structures that contain them”, i.e. superordinate predicates (Fillmore 1968,
p. 5).2 Deep cases make explicit the semantic functions of the complements of a predicate.

Fillmore provides a (non-exhaustive) list of such deep cases (Fillmore 1968, p. 24-25):

Agentive (A) the case of the typically animate perceived instigator of the action identified by the
verb

Instrumental (I) the case of the inanimate force or object causally involved in the action or state
identified by the verb

Dative (D) the case of the animate being affected by the state or action identified by the verb

Factitive (F) the case of the object or being resulting from the action or state identified by the verb,
or understood as a part of the meaning of the verb

Locative (L) the case which identifies the location or spatial orientation of the state or action identi-
fied by the verb

Objective (O) the semantically most neutral case, the case of anything representable by a noun
whose role in the action or state identified by the verb is identified by the semantic interpreta-
tion of the verb itself; conceivably the concept should be limited to things which are affected
by the action or state identified by the verb.

Note that these definitions include or imply semantic restrictions for individual cases: A and D are
(typically) animate, I is inanimate, L. denotes some location. I will use such restrictions as semantic

2In (Fillmore 1977), he also uses the term semantic roles.
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filters which form a component of my strategy of mapping syntactic arguments to their underlying
thematic roles (cf. section 6.5). Such filters help to distinguish between different role types. For ex-
ample, according to the definitions above, a subject that is inanimate cannot be Agentive.

A deep case can be syntactically realised in various ways. Recall that the lexical entries (1.10) and
(1.11) in section 1.1.2 illustrate this fact. These entries pertain to a verb and its nominal derivation,
respectively. However, a verb itself may allow several realisations of its semantic arguments. For
example, look at (2.2)—(2.4):

(2.2) John broke the window.
(2.3) A hammer broke the window.

(2.4) John broke the window with a hammer.

In (2.2) and (2.4), the subject is the Agentive, whereas in (2.3), it is the Instrumental. In (2.4), in
contrast, the Instrumental is realised by a with-PP. As sentence (2.5) shows, the subjects of (2.2) and
(2.3) cannot be conjoined:

(2.5) *John and a hammer broke the window.

This shows that they must differ with respect to their semantic relation to the verb. Following
(Fillmore 1977) such examples are useful for discriminating deep cases: If two disparate classes
of nominals occur in the same syntactic relation to a certain verb, as in (2.2) and (2.3), this may in-
dicate that this verb co-occurs with two different deep cases which can be realised by this syntactic
relation. Further strong evidence for that is provided by sentences in which the two nominal classes
both co-occur with the verb in question, but in different syntactic positions, as in (2.4).

Fillmore mentions dependencies between the cases which occur in a sentence. For example, if an
active transitive sentence contains an Instrument in a with-PP (as in (2.4), then its subject must be a
personal Agent. He explains the apparent counter-example

(2.6) The car broke the window with its fender.

by pointing out that it corresponds to

(2.7) The car’s fender broke the window.

since the determiner of “fender” in (2.6) has to be a possessive pronoun referring to “car’:

(2.8) *The car broke the window with a fender.

For practical reasons, the approach I develop in this thesis (as well as comparable approaches dis-
cussed in chapter 3) does not take into account semantic dependencies between different arguments
(cf. section 3.2).
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The set of case categories (the case frame) which co-occur with a particular verb is specified in its
lexical entry. For example, “die” co-occurs with a Dative, whereas “kill” co-occurs with a Dative, an
optional Instrument, and an Agent:

(2.9) die (+[___D])
(2.10) kill (+] D () A])®

Formalising his theory within the transformational grammar paradigm, Fillmore claims that the deep
structure of a sentence contains a P (Proposition) constituent which comprises the verb and its comple-
ment constituents, each of which is labelled with the appropriate case category. (2.11) is an example
of a deep structure (M is the modality constituent, which we neglect here; K is the case marker, which
is realised as a preposition in English?).

@2.11)

P
/. O\ VRN / \
K NP K NP
/L /.
. T

Past give (0] the books to my brother by John

By certain transformations (among others, the movement of one case constituent to the subject po-
sition and the deletion of the preposition of that constituent), the following sentences can be derived
from (2.11):

(2.12) John gave the books to my brother.

(2.13) John gave my brother the books.

(2.14) The books were given to my brother by John.
(2.15) My brother was given the books by John.

For “give” in active voice, A has to be realised as subject (if an Agent occurs in the sentence), while
either O or D may move to the direct object position (where the preposition is deleted as well). O or D
can only move to the subject position if the verb is passivised. Thus, in the “normal” (unmarked) con-
figuration, the Agent is the subject. Fillmore states that there is a general, verb-independent principle
for the “unmarked” subject choice, the subject selection principle:

3Formally, the notation here represents a contextual feature. This feature specifies the context (i.e. the syntactic config-
uration) in which the respective lexical item may be inserted.

“Fillmore points out that prepositions in English or postpositions in Japanese can be viewed as analogous to morpho-
logical case affixes in languages like Latin. Therefore, he proposes a broader definition of the notion case, to capture also
the marking of verbal complements by prepositions or postpositions.
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If there is an A, it becomes the subject; otherwise, if there is an I, it becomes the subject;
otherwise, the subject is the O. (Fillmore 1968, p. 33)

A transformational grammar comprises transformations which generate the surface structure from
the deep structure. Thus, in Fillmore’s account, transformations map deep cases to surface syntactic
arguments. The strategy of linking syntactic complements to thematic roles, which is a crucial module
of my acquisition approach, establishes a mapping in the reverse direction. Nonetheless, findings of
the kind just mentioned, i.e. statements specifying relationships between surface syntactic arguments
and deep cases / thematic roles, form the base of stipulating heuristics which are one component of
my linking strategy (cf. section 6.3 and 6.4).

In (Fillmore 1977), he provides a more elaborated account of assigning semantic arguments of a verb
to the subject and the object position (argument selection). He argues that any linguistic expression
is connected to a specific situation, a scene (background) and, moreover, brings certain aspects of
this situation into perspective (foreground). For example, both verbs “buy” and “sell” refer to the
commercial situation of exchanging goods for money, but “buy” refers to it from the perspective of
the buyer, “sell” from the perspective of the seller. Fillmore claims that just those elements of the
situation which are to be taken into perspective are realised as subject or direct object. Hence, while
“buy” puts the buyer and the goods into the foreground, “sell” emphasises the seller and the goods,
and “spend” the buyer and the money.

Fillmore observes that some elements of a scene are more salient than others and thus preferably
taken into perspective. There are certain semantic conditions which determine this preference, and
hence the selection for the subject or the object position. This set of conditions, which Fillmore calls
saliency hierarchy, includes humanness, undergoing a change, definiteness, and totality. For example,

(2.16) I hit Harry with the stick.

(“Harry” is object) is more natural than

(2.17) I hit the stick against Harry.

(“the stick” is object) because Harry is human. Likewise, in

(2.18) He knocked the door down.

(“the door” is object) the door undergoes a change, but in

(2.19) He knocked on the door.

(“the door” is inside a PP) it does not. Verbs of the widely examined spray/load class (cf. (Levin
1993)) exhibit the following alternation:
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(2.20)

a. I sprayed paint onto the wall.’

b. Iloaded hay onto the truck.

2.21)

a. I sprayed the wall with paint.
b. Iloaded the truck with hay.

The sentences in (2.21) imply completeness: the wall is completely covered with paint, and the truck
is completely loaded with hay. The sentences in (2.20) do not have this implication. Thus, the saliency
criterion of totality (completeness) favours putting “wall” or “truck” at the object position.

Fillmore’s approach of explaining the correspondence between syntactic and semantic arguments in
terms of foreground, background, and saliency is not applicable for the task of this thesis. The data
which the acquisition algorithm takes as input—a parsed corpus and WordNet—do not provide that
kind of situational information.

2.1.2 Jackendoff’s Conceptual Semantics

As mentioned at the beginning of section 2.1, Jackendoff’s research of thematic roles (cf. (Jackendoff
1987), (Jackendoff 1990)) is based on empirical observations and conclusions of (Gruber 1965). In
particular, he starts from Gruber’s inventory of roles. This inventory rests on the insight that “the
formalism for encoding concepts of spatial location and motion, suitably abstracted, can be gen-
eralised to many other semantic fields. The standard evidence for this claim is the fact that many
verbs and prepositions appear in two or more semantic fields, forming intuitively related paradigms.”
(Jackendoff 1990, p. 25) This fact is illustrated by the following examples:

(2.22)

a. Spatial location and motion
i. The bird went from the ground to the tree.
ii. The bird is in the tree.
iii. Harry kept the bird in the cage.
b. Possession
i. The inheritance went to Philip.
ii. The money is Philip’s.
iii. Susan kept the money.
d. Ascription of properties
1. The light went/changed from green to red.
ii. The light is red.

SFillmore uses a similar example with the verb “smear”, which also belongs to the spray/load class.
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iii. Sam kept the crowd happy.
d. Scheduling of activities

i. The meeting was changed from Tuesday to Monday.
ii. The meeting is on Monday.
iii. Let’s keep the trip on Saturday.

The (i.) sentences express a change, the corresponding (ii.) sentences the state that results from that
change, and the (iii.) sentences the causation of an enduring state.

Based on this observation, the thematic roles introduced by Gruber and adopted by Jackendoff origi-
nate, in their literal sense, from the spatial semantic field:

Theme the object in motion or being located
Source the object from which motion proceeds
Goal the object to which motion proceeds

Agent the instigator of an action or state

We saw a sentence with exactly these roles in example (2.1).

Jackendoff proposes several modifications and refinements of Gruber’s role inventory. But before we

can turn to this issue and to Jackendoff’s analyses of thematic roles in general, I have to sketch the

theoretical framework within which these analyses are formalised, namely Jackendoff’s conceptual
o 6

semantics.

Jackendoff represents the meaning of a linguistic expression by a conceptual structure. A conceptual
structure is a composition of conceptual constituents. Each conceptual constituent belongs to a major
ontological category (a “conceptual part-of-speech”) like Thing, Event, State, Place, Path, or Property.
A conceptual constituent essentially comprises one or more atomic semantic primitives or function-
argument structures. A function is a semantic primitive like GO, BE, CAUSE, TO, FROM, etc. The
arguments are themselves conceptual constituents of a certain ontological category. For example, the
basic conceptual structures that are expressed by “go”, “be”, and “keep”, respectively, in (2.22) are

(2.23)

‘ FROM ([ ])
1. |:Eve"1 GO 1, |:Palh TO( 1 :|)]

ii. [Slale BE ([ ], [Place b}
fil. [Ben  STAY ([ 1. [puc  ])]

®In contrast, Gruber, like Fillmore, worked within the paradigm of transformational grammar, although the syntactic
structures he proposes differ significantly from Fillmore’s.
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For instance, (2.23 i.) represents the function GO which takes two arguments, and the second argu-
ment contains a Path comprising a FROM and a TO function.’

The conceptual structure for a sentence is a composition of the conceptual structures for its parts. An
important requirement that conceptual semantics poses for the mapping between a syntactic structure
and a conceptual structure is that for every major constituent in the syntactic structure there has to be
a corresponding constituent in the conceptual structure, as illustrated by the following example:

(2.24)

a. [s [xe John] [ve ran [er into [ne the room]]]]
b. [Event GO ([rhing JOHN], [Pax TO ([prace IN' ([hing ROOM]]])]

(2.24'b.) is the conceptual structure which corresponds to the syntactic structure (2.24 a.). In particular,
the verb corresponds to the function GO, the subject to the first argument of GO, the PP to the second
argument of GO, and the NP inside the PP to the argument of IN. Note that the reversal of this
condition is not necessarily true: there may be conceptual constituents that do not have a syntactic
counterpart, like the Place constituent here.

The mapping between syntactic and conceptual structures is governed by correspondence rules. Cor-
respondence patterns which are specific for particular words have to be encoded in the respective
lexical entries like

run
A%
(2.25) <PP;>
L [Event GO ([hing ];, [Patn ]])]
[ into
v
(2.26) NP;
| [Patn TO ([prace IN ([rning ];)1)]

A lexical entry provides the syntactic subcategorisation frame (the angle brackets indicate optional
complements) as well as the conceptual structure corresponding to the word. Indices mark correspon-
dences between syntactic complements and conceptual substructures. (Index ¢ refers to the subject,
which is not explicitly mentioned in the subcategorisation frame.) The appropriate combination of the
conceptual structures of the words in a sentence yields its complete conceptual structure.

Jackendoff formalises the nature of thematic roles in terms of conceptual semantics. He claims that
thematic roles are structural relations within conceptual structures. In other words, a role label is just
an abbreviatory term for a specific structural configuration in a conceptual structure. In this way, the
thematic roles mentioned above are defined as:

"To distinguish between the different semantic fields, an additional feature is added, which Jackendoff notates as a
subscript on the main function. Thus, for the semantic fields mentioned above, we have GOspatial, GOPoss, GO1dent, and
GOrremp, respectively.
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Theme the first argument of any of the location or motion functions (GO, BE, STAY, etc.)
Source the argument of FROM
Goal the argument of TO

Agent the first argument of CAUSE

This approach of defining thematic roles in terms of semantic structure instead of representing them
as unanalysed labels (as done e.g. by Gruber and Fillmore and in the GB literature) has several ad-
vantages. The semantics of a role does not have to be stipulated but is motivated independently.
Furthermore, this semantics is much clearer, avoiding vague conceptions like a “default” role Objec-
tive in Fillmore’s case grammar. Analogously, relationships between different roles become explicit
(in terms of conceptual configurations), which is not the case if we just have an unstructured list of
role types. Thus, the containment and delimitation of thematic roles is much more straightforward,
and hence determining an inventory of thematic roles is facilitated.

Despite these advantages, EuroWordNet represents thematic roles by relations bearing unanalysed
labels. The reason for this is that the apparatus for semantic representation in wordnets differ fun-
damentally from the one in Jackendoff’s approach. Jackendoff represents the meaning of words and
sentences by the composition of semantic primitives, whereas wordnets encode the meaning of words
and concepts by semantic relations between them. Hence, the only way to represent a thematic role is
arelation between a verb and a noun concept. This relation is semantically characterised by an atomic
label. As the wordnet formalism does not provide an apparatus to formally define the semantics of
different relation types in general, it does not allow a further formal semantic specification of such a
label (i.e. a role type). Instead, the different role labels are characterised by informal definitions and
test sentences, entailing the vagueness natural language brings about. Section 2.3.1 will present these
definitions.

Jackendoff notes that one important role is not captured by Gruber’s work (and earlier work of Jack-
endoff himself), namely Patient (or Undergoer), which is intuitively defined as “the affected entity”.
For example, in

(2.27) Sue hit Fred.

“Fred” is the Patient. There is no role in Gruber’s inventory that captures the property of being the
affected entity. In particular, “Fred” is not the Theme, because he is not referred to as “thing in motion
or being located”. Therefore, to properly represent the Patient role, one basic refinement of the role
inventory that Jackendoff suggests is its division into two independent tiers, the thematic tier and
the action tier. The thematic tier comprises the roles mentioned so far. The action tier comprises the
Patient role and its “counterpart” Actor, the “doer of the action”. This division is motivated by the
fact that it is not unusual for verbal complements to bear two roles at the same time, one from the
thematic tier and one from the action tier. The following examples illustrate the two tiers:

(2.28) Sue hit Fred.
Theme Goal (thematic tier)
Actor Patient (action tier)
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(2.29) Pete threw the ball.
Source Theme (thematic tier)
Actor Patient (action tier)

(2.30) Bill entered the room.
Theme Goal (thematic tier)
Actor (action tier)

Analogously to the other roles, we need a representation for Actor and Patient in terms of concep-
tual structure. Moreover, this representation must be distinct from the representation of the roles of
the thematic tier. To achieve this, Jackendoff introduces the conceptual function AFF (affect). This
function takes two arguments; the first argument represents the Actor, the second one the Patient. In
a conceptual structure, AFF appears in addition to the functions which represent the thematic tier, as
in (2.31).8

(2.31) Harry gave Sam a book.

FROM ([HARRY])

CAUSE ([HARRY], [GOposs ([BOOK], TO ([SAM]) )]

AFFT ([HARRY], [SAM])

As example (2.30) shows, it can be the case that the Actor or the Patient are not referred to by an
utterance. In these cases, the respective argument of AFF is unspecified, such as the Actor argument
in (2.32):

(2.32) Sam received a book.

GOposs ([BOOK], [TO ([SAMD])
AFFT (, [SAM])

Animate beings can be volitional or nonvolitional Actors. Some verbs require volitional actors (e.g.
“buy” or “look”), some require nonvolitional actors (e.g. “die”’), and some are ambiguous in this
respect, like “roll”:

(2.33) Bill rolled down the hill.
Of course, inanimate things are always nonvolitional:
(2.34) The ball rolled down the hill.

In general, ambiguous cases with animate Actors have a preferred volitional reading.

To distinguish volitional and nonvolitional Actors, Jackendoff elaborates the function AFF by ascrib-
ing it the binary feature [1-vol] (notated as a subscript of AFF). Thus, the conceptual structure for
(2.34) is

81n cases like this one, where Harry did something for rather than o Sam, Jackendoff calls the second argument of AFF
Beneficiary rather than Patient. Formally, he distinguishes these two roles by an additional feature attached to AFF: AFF~
has a Patient, AFFT a Beneficiary as its second argument.
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GOposs ([BALL], [DOWN ([HILL])])

(2:33) | AFF_.. (BALL], )

As the reader may have noted already, the conceptual representation of Agent on the thematic tier
(the first argument of CAUSE) and Actor on the action tier (the first argument of AFF) imply a sub-
division of the traditional notion of Agent into ’extrinsic instigator’ on the one hand and ’(volitional
or nonvolitional) actor’ on the other hand. For example, “Bill” is the extrinsic instigator in (2.36), but
not in (2.37):

(2.36) Bill rolled the ball down the hill.

(2.37) Bill rolled down the hill.

Of course, these roles are related; in (2.36), “Bill” acts on the ball, and hence also bears the Actor role.
This analysis is an example of how the conceptual representation of roles clarifies their delimitations
and their relationships to each other.

The traditional Instrument role is an example for a rather complex structural representation of a the-
matic role. Jackendoff characterises this role in the following way:

(1) it plays a role in the means by which the Actor accomplishes the action [...] (2) the
Actor acts on the Instrument (3) the Instrument acts on the Patient. (Jackendoff 1990, p.
142)

The formalisation of this analysis is illustrated by the following conceptual structure:

(2.38) Sue hit Fred with the stick.

CAUSE ([SUE], [INCH ([BE ([STICK], AT ([FRED])])])

AFF ([SUE], [FRED])

(BY (| CAUSE (ISUEI [AFF (ISTICK], [FRED)]) ]
AFF ([SUE], [STICK])

(INCH is the inchoative function. It refers to an event which terminates in the state which is specified
by the argument.) The argument of BY expresses the means by which the action is performed. STICK
is at the same time Actor (with FRED as Patient) and Patient (with SUE as Actor).

While a decompositional analysis of roles and their interdependencies as illustrated above is not
feasible in the wordnet framework, it would in principle be possible to model the distinction between
action tier and thematic tier. To this end, one would have to define the role relation types in a way that
reflects this distinction, by employing labels like ACTION_ACTOR and ACTION_PATIENT on the
one hand and THEMATIC_AGENT, THEMATIC_SOURCE, THEMATIC_GOAL etc. on the other
hand. Whether it would make sense to model this distinction without the representational apparatus
of conceptual semantics employed by Jackendoff is a different question, which pertains to the general
issue of determining the inventory of thematic roles and their definitions. This issue goes beyond the
scope of this thesis.
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Jackendoff extensively addresses the problem of linking the syntactic complements of a verb to its
semantic roles. Since the semantic roles of a verb can generally be realised by a number of differ-
ent syntactic patterns (cf. examples (2.2)—(2.4) on page 19), linking is a nontrivial task. One way to
specify such a mapping is to stipulate it for each verb in its lexical entry by co-indexing the syntactic
constituents which the verb subcategorises for and the corresponding constituents of the verb’s con-
ceptual structure. The lexical entry in (2.25) on page 24 is an example for this approach, which, as
we have seen in section 1.1.2 (examples (1.10) and (1.11)) is also pursued in NLP systems. However,
this method provides an idiosyncratic mapping for each verb, and, even worse, for each meaning of
a verb. Thus, any generalisation is missed. Many researchers have noted that the mapping between
complements and roles follows certain general principles. (For example, if an Actor is mentioned, it
is realised as subject.) Consequently, much effort has been spent to capture and integrate these gener-
alisations in a linking theory (cf. (Jackendoff 1990, p. 46) for a short survey of relevant literature).

Jackendoff also presents a “preliminary exposition” (Jackendoff 1990, p. 282) of such a theory within
conceptual semantics. Among the strategies proposed in the literature, he basically adopts the ap-
proach of hierarchical argument linking. This approach assumes an ordered list of thematic roles
(thematic hierarchy) as well as an ordered list of syntactic relations (syntactic hierarchy). Based on
these lists, the mapping is done in the following way:

Following the thematic hierarchy, order the f-roles in the lexical conceptual structure
(LCS) of a verb V from first to nth. To derive the syntactic argument structure of V, map
this ordering of 0-roles into the first to nth roles in the syntactic hierarchy. (Jackendoff
1990, p. 246).°

Jackendoff states the following thematic hierarchy

(2.39) Thematic hierarchy

a. Actor
b. Patient / Beneficiary

. Theme

o o

. Location, Source, Goal

and the following syntactic hierarchy

(2.40) Syntactic hierarchy

a. sNP...] (Subject)
b. [ VNP ...] (1st Object)
c. [V ...NP..] (2nd Object)

° As noted above, it is common that one conceptual entity occurs in multiple roles (e.g., the Actor of “throw” is also the
Source). Such an entity is referred to in multiple substructures of the verb’s LCS; formally expressed, these substructures
are bound (e.g., in the LCS of “throw”, the first argument of AFF and the argument of FROM are bound, i.e. they refer to
the same entity). In these cases, the dominant role, i.e. the role which is highest in the thematic hierarchy, is crucial for the
linking process.
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A simple example: In

(2.41) The door opened.

we only have a Theme on the one hand and a subject on the other hand, so that mapping is trivial.
However, in

(2.42) Bill opened the door.

we have the roles Actor and Theme and the syntactic relations subject and object. In this case, it
follows from the linking rule and the hierarchies stated above that the Actor is linked to (e.g. realised
as) the subject and the Theme to the object.

Assuming general principles for linking, one can abandon co-indexation from the lexical entries.
However, it is still necessary to mark which subconcepts of a verb’s LCS (lexical conceptual structure)
are to be linked to its syntactic complements. In contrast to indexes, these markers do not have to
specify to which complement the respective substructures have to be mapped, since this is determined
by the linking principles. Thus, it is sufficient to introduce a single “marker of argumenthood” (A) as
a substitute for the indexes in the LCS. In this way, the LCS in the entry for “run” ((2.25) on page 24)
has to look like this:

(243) [Event GO ([Thing ]A, [Palh ]A)]

The necessity for A-marking can be demonstrated by comparing (2.43) with the more complex LCS
for the verb “enter”:

(244) [Event GO ([Thing ]A, [Palh TO ([Place IN([Thing ]A)])])]

The meaning of “enter” incorporates the TO and the IN function. These functions do not have to be
expressed by the preposition “into” (compare the lexical entry (2.26) on page 24 where TO and IN
are specified). Thus, the complement of “enter” that represents the Goal does not express a Path, but
a Thing which constitutes the Place at the end of the Path to the Goal, e.g. “the room”. Thus, it is
possible to say

(2.45) Bill entered the room.

while

(2.46) *Bill ran the room.

is odd, since the LCS of “run” requires a complement which expresses a Path, not a Thing.
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Note that the syntactic hierarchy (2.40) only contains NP complements. Other constituent types (PPs,
APs, and Ss) are not captured by the linking rule mentioned above. Jackendoff states that such comple-
ments are “freely” linked to A-marked conceptual constituents of the verb’s LCS. The only condition
that must be met is that the conceptual structure corresponding to the complement has to be consistent
with the A-marked conceptual constituent to which that complement is linked. Thus, it is not allowed
to link an info-PP to a FROM constituent, since the conceptual structure for an info-PP has TO as its
outermost function.

In other words, the linking mechanism sketched above only accounts for NP complements. The ra-
tionale behind this is that “NP arguments, unlike others, give no intrinsic hints as to their roles”
(Jackendoff 1990, p. 267) and thus require stricter principles for linking, whereas other complements
more likely provide such “intrinsic hints” (e.g., the TO function in the LCS of “into” corresponds
to the Goal). Furthermore, it is not necessary to account for the relative positions of non-NP com-
plements in a sentence by linking hierarchies, because these positions are entirely constrained by
syntactic regularities (e.g., complements appear in the order NP, AP, PP, S; if several PPs occur, then
their order is free).

As noted several times, developing a linking strategy is one of the central issues of this thesis. The
strategy for linking I will present in chapter 6 fundamentally differs from the approach of hierarchi-
cal argument linking adopted by Jackendoff. This approach requires that both the syntactic and the
semantic arguments of a verb are known. The linking principles stated above establish an appropriate
mapping between them. In contrast, the data I use only contain information about the syntactic argu-
ments of a verb; information about their semantic arguments is not given. For this reason, my linking
strategy has to apply other means (semantic clustering techniques combined with general heuristics)
to identify semantic roles.

2.1.3 Dowty’s Proto-Roles

To motivate his analysis of thematic roles, Dowty (cf. (Dowty 1991, p. 547-552)) summarises the
linguistic research in this field and states that “there is in fact a notable absence of consensus about
what thematic roles are” (Dowty 1991, p. 547). We have already noted this problem, which is the
actual reason for the difficulty to determine a set of thematic roles, in particular the granularity of this
set and the exact boundaries between its members. One way to circumvent these problems, which was
argued for in the literature (cf. (Dowty 1991, p. 547-55)), is to assume individual thematic roles for
each verb, rather than verb-independent thematic role types. For example, instead of an Agent role,
there would be a “hitter role” associated with the verb “hit”, a “killer role” with “kill”, a “builder
role” with “build”, etc. Dowty rejects this idea, because it misses syntactic generalisations related to
thematic roles (e.g. a general linking theory).

Dowty argues that the investigation of thematic roles is less complex if one, instead of trying to cope
with all issues connected with thematic roles at the same time, concentrates on a single linguistic
problem for which thematic roles are significant. In a second step, one can explore whether the results
for one domain are applicable to other domains. Following this strategy, (Dowty 1991) focuses on the
problem of argument selection. (At the end of the article, he shortly outlines how his results could
be transferred to the domains of language acquisition and the unaccusative-unergative distinction.)
Argument selection deals with the principles that determine which semantic arguments of a verb
are expressed by which grammatical relation (subject, object). Fillmore’s subject selection principle
(Fillmore 1968) and his saliency hierarchy (Fillmore 1977) as well as Jackendoff’s hierarchies for
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argument linking fall within this domain.

Dowty argues for treating thematic roles not as discrete categories, but as prototypical concepts, so
that “degreed membership” of arguments in different role types is possible. For his theory of argument
selection, he defines two proto-roles: Proto-Agent (P-Agent) and Proto-Patient (P-Patient) (cf. (Dowty
1991, p. 572)). Each of these proto-roles are characterised by a set of entailments (properties):

(2.47) Proto-Agent

a. volitional involvement in the event or state
b. sentience (and/or perception)

causing an event or change of state in another participant

e

d. movement (relative to the position of another participant)

(e. exists independently of the event named by the verb)

(2.48) Proto-Patient

a. undergoes change of state
b. incremental theme

causally effected by another participant

e

d. stationary relative to movement of another participant

(e. does not exist independently of the event, or not at all)

Usually, for a verb’s argument, several of these entailments co-occur. However, they are semantically
independent. To illustrate the individual entailments and their independence, Dowty provides the
examples in (2.49) and (2.50). (2.49) lists cases where just one of the entailments holds for the P-
Agent (at the subject position):

(2.49)

a. Volition: John is being polite to Bill / is ignoring Mary.

b. Sentience/Perception: John knows / believes / is disappointed at the statement. John sees
/ fears Mary.

c. Causation: His loneliness causes his unhappiness. Teenage unemployment causes
delinquency.

d. Movement: The rolling tumbleweed passed the rock. The bullet overtook the arrow.
Water filled the boat. He accidently fell.

e. Independent existence: John needs a car.

(2.50) lists analogous cases for the P-Patient (at the object position):
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(2.50)

a. Change of state: John made a mistake (Coming into being, therefore also e. below). John
moved the rock (indefinite change of position). John erased the error (ceasing to exist).

b. Incremental Theme: John crossed the driveway / filled the glass with water (also d.).
c. Causally affected: Smoking causes cancer.

d. Stationary relative to another participant: The bullet entered the target / overtook the
arrow.

e. Existence not independent of event: John built a house / erased the error (Coming into
and out of existence; not independent of a.). The situation constitutes a major dilemma
for us. John needs a car / seeks a unicorn / lacks enough money to buy it (de dicto
objects: no existence).

The notion Incremental theme needs explanation. It refers to the Theme of a telic predicate and is
motivated “by the principle that the meaning of a telic predicate is a homomorphism from its (struc-
tured) Theme argument denotations into a (structured) domain of events” (Dowty 1991, p. 567). This
homomorphism maps the part-of relation in the domain of the Theme into the part-of relation in the
domain of telic events. Consider, for example, the event denoted by “John filled the glass with water”.
The amount of water which actually is in the glass corresponds to the ’aspect’ of the filling event: If
the glass is empty, the event has not yet begun; if it is partially filled, then the event is partially done;
if it is full, then the event is completed.

With the help of the P-Agent and the P-Patient roles, Dowty states the argument selection principle:

In predicates with grammatical subject and object, the argument for which the predicate
entails the greatest number of Proto-Agent properties will be lexicalised as the subject of
the predicate; the argument having the greatest number of Proto-Patient entailments will
be lexicalised as direct object. (Dowty 1991, p. 576)

According to this principle, there are more or less prototypical cases for argument selection. For
predicates like “build”, “murder”, “eat”, or “wash”, the subjects have several P-Agent entailments
(volition, sentience, causation, movement) and no P-Patient entailments, and the objects have no
properties of P-Agent, but several properties of P-Patient (change, causally affected, and most of
them incremental theme, stationary, dependent existence). On the other end of the scale, there are
“lexical doublets” like “buy” and “sell”. In the buy/sell event, exactly the same entailments hold for
the buyer and the seller. The argument selection principle cannot decide which one of them should
be realised as subject and which one as object. Thus, it is consistent with that principle that both

possibilities are lexicalised (by the verbs “buy” and “sell”, respectively).

A more complex case is the class of spray/load verbs, illustrated in (2.20) and (2.21) on page 22.
Dowty explains this alternation in terms of P-Patient entailments. In

(2.51) Mary loaded the hay onto the truck.

both the hay and the truck undergo a change of state. Additionally, the hay is Incremental Theme,
since the sentence implies that there was a certain amount of hay that is completely loaded onto the
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truck when the event is completed. However, it is not implied that the truck is completely loaded when
the event is completed, so the truck is not an Incremental Theme. Thus, “the hay” has more P-Patient
entailments than “the truck”, and is placed at the object position. The reverse is true for

(2.52) Mary loaded the truck with (the) hay.

Here, the truck is Incremental Theme, since the sentence implies that it is completely loaded when
the loading event has finished. The hay is no Incremental Theme, since it is not necessarily implied
that the total amount of hay is loaded. Thus, “the truck” is realised as object here. '

Dowty notes that the traditional role types can be reformulated in terms of proto-role entailments.
Moreover, different conceptions of particular role types can be captured by different combinations of
entailments:

Agent is volition + causation + sentience + movement, or in some usages just volition
+ causation, or just volition [...] or, according to the ordinary language sense of ‘agent’,
causation alone. Experiencer is sentience without volition or causation. Instrument is
causation + movement without volition or sentience. Theme (excepting Gruber’s stative
theme) is most typically change + Incremental Theme + dependent-existence + causally-
affected, but causally-affected is sometimes absent (Patient can be distinguished from
broader Theme by this entailment [...]” (Dowty 1991, p. 577).

Thus, the system of proto-role entailments explicates similarities and differences between roles and
is more flexible with respect to the granularity of the role inventory, since it allows broader or finer
differentiation by providing different dimensions of distinction.

Moreover, characterising role types in terms of entailments together with the argument selection prin-
ciple yields rules for linking which are similar to those sketched in the two previous sections. For
example, an Agent generally appears as the subject of a sentence, since it has the most P-Agent en-
tailments. In cases where no Agent is present, Instruments or Experiencers are realised as subject
rather than Patients, because the former roles have more P-Agent and less P-Patient entailments than
the latter. Furthermore, Patients outrank Sources and Goals for objecthood, since Patients have several
P-Patient properties, whereas Sources and Goals only have one, namely stationary. Dowty summarises
rules of this kind by a role hierarchy which is similar to the hierarchy in (2.39)

Instrument ) Source
(2.53) Agent > { Experiencer } > Patient > { Goal }

and the following additional rankings (Arg refers to an argument for which no proto-role entailment
holds):

causing event > caused event
(2.54) moving argument > Source, Goal, Arg
Experiencer > Arg

19 Actually, the argument is much more subtle, e.g. concerning the determiner of “hay”. See (Dowty 1991, p. 587-592)
for details.
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Since information about entailments of proto-roles as specified in (2.47) and (2.48) are not provided
by the data I employ as input for my learning algorithm, Dowty’s approach in a strict sense is not
applicable for the task of this thesis. However, for my linking strategy, I employ a semantic clustering
technique which can be viewed as a probabilistic implementation of Dowty’s theory (cf. section 6.2,
in particular section 6.2.2). In this view, a verb—noun cluster derived by this technique is analogous to
a proto-role entailment. (Of course, which kind of entailment a cluster represents is not determined
by the clustering method.) The thematic role underlying a syntactic argument of a verb is determined
by its pattern of occurrence in the different clusters.!!

2.2 Selectional Restrictions

2.2.1 Traditional Treatment of Selectional Restrictions

The notion of selectional restrictions was originally introduced within the transformational grammar
paradigm in the sixties of the last century. This section summarises the main considerations and ideas
concerning selectional restrictions that emerged in that period.

Chomsky

A particularly controversial issue in the discussion of selectional restrictions was whether they are a
syntactic or a semantic phenomenon. Chomsky (cf. (Chomsky 1965)) models selectional restrictions
as part of the syntactic component. In his theory, nouns are characterised by features like [+Animate],
[+Human], or [—Abstract]. The encoding of selectional constraints refers to such features. Chomsky
claims that they are syntactic features, because they play a role in purely syntactic rules. For example,
the sentence

(2.55) *The book who you read was a best seller.

violates rules which are syntactic in nature and refer to the feature [Human].

A lexicon entry for a word contains, apart from its phonological form, a so-called complex symbol,
i.e. a bundle of syntactic features, as illustrated by the following entries for “sincerity”” and “boy”,
respectively:

(2.56) (sincerity, [+N, +Det—, —Count, +Abstract,...])

(2.57) (boy, [+N, +Det—, +Count, +Animate, +Human,...])

As mentioned, features like [—Count], [+Abstract], [+Animate], and [+Human] above are crucial
for characterising the selectional restrictions that a verb imposes on its arguments. For example,
“frighten” selects an abstract subject and an animate object. The lexical entry for this verb is

"'The clustering technique yields soft clusters, i.e. an argument is member of different clusters to different degrees.
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(2.58) (frighten, [+V, +——NP, +[+Abstract] Aux—Det [+Animate], +Object-deletion,...])

In this entry, selectional restrictions are expressed by the feature

(2.59) [+[+Abstract] Aux—Det [+Animate]]

Technically, this feature encodes conditions for the deep structure context into which the verb
“frighten” may be inserted. It states that if “frighten” occurs in a deep structure, then it must be
immediately preceded by a category with the feature [+Abstract] and an auxiliary, and it must be
immediately followed by a determiner and a category specified as [+Animate]. The grammar rules in
Chomsky’s base component (cf. (Chomsky 1965, p. 106-107)) provide the features [£Animate] and
[£Abstract] for nouns. Furthermore, they introduce an obligatory auxiliary category (Aux) preceding
the VP. The NP which precedes Aux is the subject, the NP which follows the main verb is the ob-
ject of the sentence. Thus, the restriction [+Abstract] refers to the head of the subject NP, while the
restriction [+Animate] refers to the head of the object NP.

Analogously, selectional restrictions which an adjective imposes on the noun it modifies are encoded
in the lexicon entry of the adjective. For example, the entry for “green” contains a feature which
specifies that the modified noun is [—Abstract].

Chomsky considers the possibility to encode selectional restrictions of a verb separately for each of
its arguments instead of stating constraints on the complete set of arguments. With this approach, the
single specification (2.59) in the lexicon entry for “frighten” would be replaced by the two features

(2.60) [+[+Abstract] Aux—, +——Det [+Animate]]

i.e., the selectional restrictions for the subject and the object would be encoded independently from
each other. However, there are cases in which the selectional restrictions for the different arguments
of a verb are not independent. As an example, Chomsky mentions the following contexts:

(2.61)
a. He — the platoon
b. His decision to resign his commission — the platoon
c. His decision to resign his commission — our respect

The verb “command” can be inserted in a. and c. but not in b. “command” can have an animate or an
abstract subject, as well as an animate or an abstract object. If we model this information as in (2.60),
i.e. specify the restrictions

(2.62) [+[+Animate] Aux—, +[+Abstract] Aux—]

for the subject and
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(2.63) [++——Det [-+Animate], +——Det [+Abstract]]

for the object, then we do not express the restriction that either both arguments have to be animate, or
both have to be abstract. To account for this constraint, we have to encode restrictions for the subject
and the object together:

(2.64) [+[+Animate] Aux—Det [+Animate], +[+Abstract] Aux—Det [+ Abstract]]

This way of encoding captures dependencies between selectional restrictions of different arguments.

As noted already in section 2.1.1, the approach proposed in this thesis and comparable approaches for
acquiring selectional preferences (cf. chapter 3) do not model such dependencies between different
arguments of a verb. The reasons for this decision are explained in section 3.2.

Generally, the violation of selectional restrictions results in an unnatural, anomalous sentence like

(2.65) *John frightened sincerity.

or Chomsky’s famous example

(2.66) *Colorless green ideas sleep furiously.

However, in certain environments (negation and/or embedded constructions constituting a certain
“meta level”), such a violation does not yield unnaturalness:

(2.67) Itis nonsense to speak of frightening sincerity.

(2.68) One can(not) frighten sincerity.

However, this phenomenon is not limited to selectional restrictions. The sentence

(2.69) One can(not) elapse a book.

is not deviant either, although it violates rules of strict subcategorisation, since “elapse” does not
subcategorise for an object.

For current approaches which acquire selectional restrictions from corpus data, such examples would
introduce undesired noise. As the kind of “meta context” they are embedded in cannot easily be recog-
nised automatically, these examples cannot be eliminated from the data employed by such approaches.
Thus, the effectiveness of these methods rests on the reasonable assumption that such examples occur
only infrequently in “real” text.

Although Chomsky models selectional restrictions as part of the syntactic component, he does not
reject the alternative possibility to treat them as part of the semantic component. He states that the
final decision on this issue requires deeper knowledge about syntax and semantics in general (cf.
(Chomsky 1965, p. 159-160).
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Katz/Fodor

In contrast to (Chomsky 1965), (Katz & Fodor 1964) treat selectional restrictions as a semantic phe-
nomenon. In their framework, selectional restrictions play a crucial role for resolving ambiguities
during the semantic interpretation of syntactic structures. Recall that the suitability of selectional
constraints for ambiguity resolution has been illustrated in section 1.1.1.

The different senses of a word are encoded in its lexicon entry by semantic features. For example,

(Katz & Fodor 1964) mention the following senses of the word “bachelor”:

(2.70)

. (Human), (Male), [who has never married]

o P

. (Human), (Male), (Young), [knight serving under the standard of another knight]

o

. (Human), [who has the first or lowest academic degree]

o

. (Animal), (Male), (Young), [fur seal when without a mate during the breeding time]

The features in parentheses are called semantic markers, whereas the expressions in square brackets
are called distinguishers. Semantic markers are “the systematic features of the semantic structure of
the language” (Katz & Fodor 1964, p. 500). These are the features which are necessary to systemati-
cally delimit the different word senses (while the distinguishers provide idiosyncratic aspects of each
sense). Thus, semantic markers contain the information which is needed for semantic disambiguation.
They are employed to encode selectional restrictions.

As we saw in the previous subsection, one can argue that features like (Male), (Female), (Human),
(Abstract) etc. are syntactic features, because they are used to model purely syntactic phenomena.
However, (Katz & Fodor 1964) claim that in cases where a feature is apparently involved in both
syntactic and semantic regularities, then there are in fact two features with the same name (or similar
names) but different domains. To support this view, Katz and Fodor mention several cases in which a
syntactic feature does not completely coincide with the corresponding semantic feature. For instance,
“baby” has the semantic marker (Human) which implies either the marker (Male) or (Female). How-
ever, “baby” is neither syntactically classified as masculine nor as feminine, but as neuter:

(2.71) The baby lost its rattle.

Selectional constraints which a verb imposes on its arguments are encoded in its lexicon entry by
Boolean combinations of semantic markers. E.g., (one sense of) the verb “hit” has the following
selectional restrictions:

(2.72) <SUBJECT: (Human) V (Higher Animal),
OBJECT: (Physical Object),
INSTRUMENTAL: (Physical Object)>

Likewise, the lexicon entry of an adjective includes (a Boolean expression of) semantic markers
encoding the restrictions on the noun it modifies. Thus, “colorful” (for its literal meaning) requires

37



that the modified noun is marked as (Physical Object).'?

In principle, the application of selectional restrictions for disambiguation in the account of Katz/Fodor
works analogously as in NLP systems discussed in section 1.1.2. The selectional restrictions encoded
in the lexicon are checked during the semantic interpretation of a sentence. This interpretation is
carried out by compositional projection rules, which act on syntactic structures (generated by a trans-
formational grammar). The projection rules determine how the semantics of a constituent is composed
(amalgamated, as Katz and Fodor call it) from the semantics of its sub-constituents. Selectional re-
strictions constrain the amalgamation of a predicate and its arguments: The semantic representations
of a predicate constituent and an argument constituent are combined only if the argument representa-
tion meets the selectional conditions specified in the predicate representation.

For illustration, Katz and Fodor discuss the sentence

(2.73) The man hits the colorful ball.

In the first step, the semantics of “colorful ball” is amalgamated from the semantics of “colorful”
and “ball”. The abovementioned selectional restrictions of “colorful” require that “ball” is marked as
(Physical Object). This is the case for the ‘round object’ sense of “ball” (as opposed to the ‘dancing
event’ sense, which is marked as (Social Activity)), so the semantic representation of this sense is
amalgamated with the semantic representation of “colorful”. In a later step, the semantics of “the
colorful ball” is amalgamated with the semantics of “hit”. The projection rule which is applied to the
corresponding syntactic sub-structure recognises “the colorful ball” as the object of “hit” and checks
whether the verb’s restrictions for its object—(Physical Object)—are met. Again, this is the case so
that the two constituents can be semantically combined.

The treatment of the ambiguity of “ball” just sketched shows how selectional restrictions are em-
ployed for disambiguation. In general, a constituent that comprises ambiguous words can have sev-
eral semantic representations, namely all those combinations of the semantic representations of its
sub-constituents which are not inhibited by selectional restrictions. For example, apart from its literal
sense, “colorful” has the metaphorical reading ‘of distinctive vividness’. Therefore, the NP “the col-
orful ball” can have the meanings (among others) ‘round object exhibiting a variety of bright colors’
or ‘dancing event of distinctive vividness’. However, the meaning ‘round object of distinctive vivid-
ness’ is excluded by the selectional restrictions of the ‘vividness’ sense of “colorful”, which is not
applicable to physical objects. The combination with “hit” further disambiguates “the colorful ball”:
The selectional restrictions of “hit” require that its object is marked as (Physical Object). Thus, senses
involving ‘dancing event’ are rejected.

In the same way, selectional restrictions can resolve syntactic ambiguities. If the grammar generates
several syntactic structures for a sentence, then semantic interpretation is applied to each of these
structures, and it may be that some of these syntactic structures do not receive a semantic repre-
sentation because selectional restrictions do not permit this. In this way, structural ambiguities are
resolved. If there are still multiple structures which are assigned a semantic interpretation, then the
sentence is syntactically ambiguous. If, however, none of the syntactic structures receives a semantic
representation, then the sentence is semantically anomalous.

"2In addition to selectional restrictions, lexical verb or adjective entries, like nominal entries, contain markers and distin-
guishers which characterise their meaning. E.g., “hit” is marked as (Action), “colorful” as (Color).
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McCawley

Unlike (Chomsky 1965) and (Katz & Fodor 1964), McCawley (cf. (McCawley 1968, p. 125-136))
does not propose a formal theory of selectional restrictions. However, he makes some important state-
ments about them. He provides convincing evidence for regarding selectional restrictions as a seman-
tic rather than a syntactic phenomenon. He claims that selectional restrictions refer to semantic, not
to syntactic properties. For example, there is no English verb which requires that its subject is syn-
tactically classified as feminine, i.e. pronominalised to “she” (which is the case for women, ships,
and countries). McCawley also discusses some apparent counter-examples. The verb “name” seems
to restrict its second object to proper nouns:

(2.74) They named their son John.

(2.75) *They named their son that boy.

However, the sentence

(2.76) They named their son something outlandish.

shows that this is not the case. Likewise, “count” seems to require a plural object:

(2.77) I counted the boys.

(2.78) *I counted the boy.

But there are possible singular objects for this verb:

(2.79) I counted the crowd.

Thus, the restriction here is not that the object has to be syntactically classified as plural, but that it
denotes a set of entities (as opposed to a singular entity). This is a semantic property.

These examples suggest that selectional restrictions only refer to semantic information. McCawley
argues that if selectional restrictions are a semantic phenomenon, then it is appropriate to capture
them by the semantic component of a linguistic theory, as in (Katz & Fodor 1964), rather than by
the syntactic component, as in (Chomsky 1965). This view has been generally accepted as well in
computational linguistics so that, as illustrated in chapter 1, selectional constraints are encoded as
lexical-semantic information in NLP systems and resources.

Now the question arises whether there is a limited set of semantic features which is sufficient to en-
code selectional restrictions appropriately, or whether any semantic information may play be relevant
for them. McCawley argues for the latter:
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“...on any page of a large dictionary one finds words with incredibly specific selectional
restrictions, involving an apparently unlimited range of semantic properties. For exam-
ple, the verb diagonalise requires as its object a noun phrase denoting a matrix (in the
mathematical sense), the adjective benign in the sense ‘noncancerous’ requires a subject
denoting a tumour, and the verb devein as used in cookery requires an object denoting a
shrimp or prawn.” (McCawley 1968, p. 134)

This finding suggests the use of large-scale semantic hierarchies such as WordNet rather than small
inventories of semantic primitives (as in the NLP systems described in section 1.1.2) to encode se-
lectional restrictions. Although no lexical-semantic resource will be “complete” in the sense that it
captures any imaginable semantic concept, a high coverage of concepts is desirable to be able to
capture very specific selectional restrictions as appropriately as possible. Furthermore, McCawley’s
examples show that the task of finding the appropriate generalisation level for representing the selec-
tional constraints of a particular predicate, a core issue of this thesis, is all but trivial: Some predicates
(such as “count”) impose rather general restrictions on their arguments, others (such as “devein”)
rather specific constraints.

Apart from the treatment of selectional restrictions as a semantic phenomenon, there is an additional
reason for favouring the approach of Katz and Fodor over that of Chomsky. While Chomsky regards
selectional restrictions as relating two lexical items (e.g. a verb and the head noun of its subject), Katz
and Fodor model them as relating a lexical item and a constituent (e.g. a verb and its subject NP). As
McCawley points out, only the latter approach accounts for the fact that selectional restrictions can
be violated not only by the head of a complement, but also by a modifier of that head. The sentence

(2.80) *My buxom neighbor is the father of two.

violates selectional restrictions in the same way as the sentence

(2.81) *My sister is the father of two.

This violation is caused by the modifier in “my buxom neighbor”, since

(2.82) My neighbour is the father of two.

does not exhibit a violation.

Despite these facts, I will adopt the decision which generally has been made for current approaches
of learning selectional preferences from corpora. These approaches only take the head noun of a
complement into account. There are practical reasons for this simplification; cf. section 3.2 for further
explanations.

McCawley criticises one important aspect of Katz’ and Fodor’s approach, namely that selectional re-

strictions are the only means for resolving semantic ambiguities. He rather claims that several factors
contribute to disambiguation, world knowledge in particular. In the sentence

(2.83) My aunt is a bachelor.
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Katz’ and Fodor’s theory would disambiguate “bachelor” as ‘who has the first or lowest academic
degree’. The sense ‘who has never married’ would be rejected, because this sense is marked as (Male).
However, in many contexts, e.g. when talking about a spinster, the latter meaning is much more
obvious than the former.

Moreover, McCawley criticises that Katz and Fodor do not assign semantic representations to con-
stituents that violate selectional restrictions. If semantically anomalous constituents were meaning-
less, then the sentences

(2.84) He says that he smells itchy.
(2.85) He says that he poured his mother into an inkwell.

(2.86) He says that his toenail sings five-part madrigals.
would have to be regarded as synonymous. McCawley concludes

“...that the violation of selectional restrictions is only one of many grounds on which one
could reject a reading as not being what the speaker intended and that it moreover does
not hold any privileged position among the various criteria for deciding what someone
meant.” (McCawley 1968, p. 130)

To a certain extent, these considerations can be accounted for by modelling selectional restrictions as
preferences rather than hard constraints. In section 2.3.2, I will argue for this option.

2.2.2 Selectional Restrictions and Thematic Roles

In this section, I turn to the question of how thematic roles and selectional restrictions are related.

As we saw in section 2.2.1, selectional restrictions of verbs are traditionally treated as constraints on
grammatical relations, i.e. subjects, objects etc. However, we also saw that selectional restrictions are
semantic, not syntactic constraints. As the examples (2.2)—(2.4) on page 19 illustrate, the semantic
roles of a verb can be realised by different patterns of syntactic complements. Accordingly, a certain
grammatical relation can express different semantic roles of a given verb. Therefore, it seems more
appropriate to model selectional restrictions as referring not to surface syntactic relations, but to the
underlying semantic roles. Recall that this has been done in NLP systems such as Mikrokosmos (cf.
the lexical entries (1.10) and (1.11) in section 1.1.2).

It is important to note that this view is no contradiction to the approaches described in section 2.2.1.
In transformational grammar, selectional restrictions refer to grammatical relations in the deep struc-
ture. Different syntactic realisations of verbal arguments are generated by transformations (e.g. the
passive transformation) at a later stage of sentence generation. Thus, in the deep structure, a particu-
lar grammatical relation corresponds to a particular semantic argument for a given verb. !> Recall that

The theory of (Katz & Fodor 1964) is slightly more sophisticated in this point. In principle, “projection rules can take
account of information about the transformational history of a sentence” (Katz & Fodor 1964, p. 505), i.e. are not necessarily
acting on deep structures. However, in cases where a sentence has undergone optional transformations which account for
syntactic alternations, the projection rules are applied to the corresponding “kernel sentence” which was generated without
these optional transformations.
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in Fillmore’s case grammar (according to (Fillmore 1968)), the deep cases are major constituents of
the deep structure (cf. example (2.11) on page 20). These constituents represent the arguments of the
verb, i.e. are just those constituents to which selectional restrictions are applied.

The literature about thematic roles sketched in section 2.1 provides further support for the view that
selectional restrictions refer to semantic roles. As noted in section 2.1.1, (Fillmore 1968) points out
that different deep cases have different semantic restrictions: Agent and Dative are (typically) animate,
Instrument is inanimate, Locative denotes some location. These constraints are of the same sort as
selectional restrictions.

(Jackendoff 1990, p. 50-55) provides a principled account of selectional restrictions within concep-
tual semantics. Selectional constraints of a verb are modelled within its lexical conceptual structure
(LCS), as elaborations of the sub-structures which represent the verb’s arguments. In other words,
selectional restrictions are connected with thematic roles. For example, “drink™ selects liquids for its
Theme. The LCS of this verb (specified in its lexical entry) approximately looks like this:

(2.87) [evenr CAUSE ([thing |“a, [Event GO ([thing LIQUID]a,
[Pt TO ([prrace IN ((MOUTH OF ([a]D]DDDD]H

Here, the Theme (the first argument of GO) is specified by the concept LIQUID. In principle, any
conceptual (sub-)structure that is suitable in the respective environment can be used to characterise
selectional restrictions. (This corresponds to McCawley’s observation that any semantic information
can be relevant for selection.)

Jackendoff emphasises that selectional restrictions are not necessarily implied by the action denoted
by the verb. For example, the action ‘pour down one’s throat’ (i.e. the action denoted by “drink™) is
not restricted to liquid Themes, since one can pour down powder as well. However, “drink” provides
the additional information that what you pour down is liquid. Likewise, “pay” refers to the action
“give in exchange for something”, but additionally provides the information that what you give is
money, which cannot be concluded from the exchange action itself.

The formulation “provides the information” instead of “imposes the restriction” in the previous para-
graph indicates that modelling selectional restrictions by conceptual structures yields an understand-
ing of this term that differs significantly from the traditional view: Jackendoff regards selectional
restrictions not as constraints that a verb imposes on its argument, but as information that a verb sup-
plies about its argument, as an integral part of the verb’s meaning. Evidence for this view is provided
by cases where the argument is pronominalised or omitted completely:

(2.88) Harry drank it.
(2.89) Harry drank (again).
(2.90) Bill paid Harry a lot.

(2.91) Bill paid.

'4The notation involving a means that the argument of MOUTH OF is bound to (i.e. identical with) the first argument of
CAUSE.
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In these cases, the object itself is underspecified. But we still know that Harry drank some liquid and
Bill paid some amount of money. This information is supplied by the verb. To obtain the complete
information which is given for an argument, the information expressed by the verb for that argument
and the information provided by the corresponding complement is merged. (Jackendoff calls this
operation argument fusion.)"> For example, in sentence (2.90), the Theme is “a lot of money”. The
information “a lot” is given by the object, the information “money” by the verb. In cases of omitted
arguments, the verb is the only supplier of information about the argument.

If the verb and a complement supply conflicting information about an argument, then there is a viola-
tion of selectional restrictions. In

(2.92) Harry drank powder.

the conceptual structure of “powder”, which contains the feature SOLID, is fused with the selectional
restriction LIQUID, resulting in a conflict. In contrast,

(2.93) Harry drank sincerity.

exhibits a violation already at the level of major category: “drink” selects a Theme of the category
Thing, whereas “sincerity” has the major category Property.

Incorporated arguments are modelled in the same way as selectional restrictions. For instance, the
verb “butter” as in

(2.94) Harry buttered the bread.
has the following LCS:
(295) [Event CAUSE ([Thing ]A, [Event GO ([Thing BUTTER], [Path TO ([Place ON ([Thing ]A)])])])]

Here, the incorporated Theme is further specified by BUTTER. This concept encodes the informa-
tion which the verb provides for its Theme. The only difference between an argument including a
selectional restriction and an incorporated argument is that the latter is not A-marked, so that it will
not be linked to—and hence not expressed by—a syntactic complement of the verb. Thus, the repre-
sentation of selectional restrictions does not differ from the representation of other parts of a verb’s
meaning. Therefore, Jackendoff concludes that “the notion of selectional restrictions can be dropped
altogether from linguistic theory except as a convenient name for the effects of Argument Fusion”
(Jackendoff 1990, p. 55).

Anyway, this conclusion does not prevent Jackendoff from using this “convenient name” as a matter
of course, which indicates that the notion of selectional restrictions nonetheless is of significance. In
fact, selectional restrictions play an important role in Jackendoft’s linking theory. Recall that in this
theory non-NP complements are linked “freely”’—without employing specific linking principles—to

'5In NLP, this merging of information would be implemented as unification.
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A-marked constituents of the verb’s LCS. Linking implies argument fusion: the conceptual structure
of an argument and the A-marked constituent which is linked to that argument are fused. This fusion
is possible only if both are semantically compatible, i.e. if the argument’s conceptual structure is
consistent with the conceptual elaboration of the A-marked constituent. This elaboration is just the
information which constitutes the verb’s selectional restrictions for that argument. This ensures that
e.g. a to-PP complement of “give” is linked to the GOAL, because the GOAL argument is specified
as [TO([ D]a in the LCS of “give”.

Jackendoff regards selectional restrictions as important only for linking non-NP complements, since
NP complements are captured by the linking hierarchies. However, it seems to me that there are
cases of NP linking in which selectional restrictions are necessary as well. In the example Jackendoff
discusses to demonstrate NP linking (“Bill opened the door.” vs. “The door opened.”), the two variants
differ in the number of arguments (two arguments for the causative, one for the inchoative sense of
“open”). Correspondingly, Jackendoff provides two different LCSs for this verb, one including Agent
and Theme, and one including only Theme. Here, the correct assignment of the two LCSs to the
corresponding syntactic patterns follows from the linking mechanism: Since the mapping between
syntactic complements and A-marked constituents has to be bijective, the numbers of arguments have
to match. However, consider cases like

(2.96) Mother is cooking.

(2.97) The potatoes are cooking.

(cf. (Fillmore 1968)). Here, the two variants have the same number of arguments. Moreover, they
share the same syntactic pattern. It is ambiguous whether the subject is Actor or Patient. In Jack-
endoff’s framework, this ambiguity would be captured by two different LCSs (or a disjunctive LCS)
where either the Actor or the Patient is A-marked. ' Since (2.96) and (2.97) are syntactically identical,
only semantic information, i.e. selectional restrictions, can help to decide which LCS is appropriate
for which alternative. The restriction that “cook” requires an animate Actor rejects the possibility that
the potatoes are the Actors in (2.97); they must be Patient. (2.96) is really ambiguous, although the
reading where “mother” is the Actor is highly preferred (except for contexts related to cannibalism).

These considerations support the usefulness of including information about selectional restrictions
within a strategy of linking. My linking strategy will make use of such information via semantic
filters (cf. section 6.5).

Jackendoff’s treatment of selectional restrictions (and incorporations) as conceptual elaborations of
thematic roles exhibits substantial commonalities and at the same time substantial differences with
their treatment in EuroWordNet. In the next section, I will discuss the rationale behind the encoding of
thematic roles in EWN. In general, thematic role relations can represent both selectional constraints
and incorporations (cf. section 5.4). Hence, the uniform modelling of selectional restrictions and in-
corporations as information about a verb’s thematic roles is common in Jackendoff’s semantics and
EWN. However, there is a crucial representational difference between the two approaches, which has
remarkable theoretical implications. Jackendoff represents thematic roles and selectional restrictions
by the same means: conceptual (sub-)structures. This suggests the view that thematic roles and selec-
tional restrictions are basically the same kind of linguistic phenomena, and that the difference between

50f course, the variant that both roles are A-marked has to be encoded as well. However, for the argument here, it is
crucial that the two possibilities of marking only the Actor or only the Patient exist.
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the two notions is just their degree of specificity (selectional restrictions are specifications of thematic
roles). In contrast, EuroWordNet represents the two notions by different means: thematic roles are
encoded as relations, whereas selectional constraints are encoded as noun concepts. This implies that
roles and selectional restrictions are completely different in nature. Roles are a kind of relational en-
tities, while selectional restrictions are a kind of conceptual entities. Of course, both phenomena are
closely related; thematic roles are relations between predicates and their arguments, while selectional
constraints represent conceptual restrictions holding for these arguments. However, in the wordnet
paradigm, it would be inadequate to say that selectional restrictions are mere refinements of thematic
roles, as in Jackendoft’s approach.

2.3 Relevance for the Task of this Thesis

Given the different theories of thematic roles and selectional restrictions described in the previous
sections, the crucial question is to what extent these theories are relevant for the task of learning
thematic role relations for wordnets. I have tried to comment on certain aspects of the respective
theories regarding this issue. In short, a concluding answer to this question is: While large parts of the
detailed analyses of thematic roles and selectional restrictions (essentially idiosyncratic parts of the
respective theories) are not applicable, other, more general insights (which are widely uncontroversial
for all quoted theories) can be fruitfully employed for this task.

2.3.1 Thematic Roles and EuroWordNet

Obviously, none of the sketched analyses of the nature of thematic roles can immediately be applied
here, because the information which would be required for that is not avaliable. Corpora (at least cor-
pora of the size necessary for statistical learning) neither provide information about the deep structure
or the situative saliency conditions underlying an utterance, nor the conceptual structure of a sentence
and its parts, nor proto-role entailments which are valid for verb complements. (Euro)WordNet does
not encode these (or related) kinds of information either. Here, thematic roles are encoded as relations
between verb and noun concepts, labelled with an appropriate role type. This representation abstracts
from the different views of the nature of roles. Thus, in a sense, EuroWordNet can be regarded as
theory-open in this respect; it is open to different detailed analyses.

The major drawback of this abstract modelling is that it does not determine or facilitate the decision
on the set of role types. This set has to be stipulated independently. Since the role inventories are
different in the respective theories (although there is a considerable overlap), this stipulation is not
straightforward. It is beyond the scope of this thesis to contribute to the discussion about an appro-
priate role inventory. I decided to adopt the role types which are defined in EuroWordNet. As noted
in section 1.3, this decision is mainly motivated by a practical reason: To evaluate different learning
approaches, I employ the role relations encoded in EuroWordNet as a gold standard, i.e. I compare
them with the learned role relations (cf. section 5.4). Therefore, the types of the acquired roles have
to correspond to the role types which are present in the gold standard.

As mentioned in section 1.2.3, the thematic role links from verb concepts to noun concepts in EWN
are labelled with INVOLVED and the respective role type. The following list (cf. (Alonge 1996,
p. 31-36)) enumerates the different INVOLVED relation types and test sentence templates which
characterise the respective roles (X refers to a noun, Y to a verb in gerundive or infinitive form):
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INVOLVED (A/An) X is the one/that who/which is involved in Y.
INVOLVED_AGENT (A/An) X is the one/that who/which does the Y.
INVOLVED_PATIENT (A/An) X is the one/that who/which undergoes the Y.

INVOLVED_INSTRUMENT (A/An) X is either i) the instrument that or ii) what is used to Y
(with).

INVOLVED_LOCATION (A/An) X is the place where the Y happens.
INVOLVED_DIRECTION It is possible to Y from/to a place.

INVOLVED_SOURCE_DIRECTION (A/An/The) X is the place from which Ying happens / one
Ys.

INVOLVED_TARGET_DIRECTION (A/An/The) X is the place to which Ying happens / one Ys.

(Alonge 1996) describes the rationale behind the choice of these role types as follows:

The specific subrelations chosen, then, have not ‘arbitrarily’ been chosen, but are the most
prominent ones to describe the different semantic references involved in the meaning of
a word. Indeed, besides providing the possibility of encoding data on involved agents and
patients, which are clearly relevant with respect to every class of verbs, these links both
allow coding data on every kind of means used to perform an action (in fact ‘instrument’
is used here in a wide sense), and assume Gruber (1976) view according to which the
semantics of motion and collocation can be seen as providing an interpretation for many
semantic classes of verbs (besides the motion ones), e.g. verbs of bringing, saying, giving.
(Alonge 1996, p. 31-32)

Thus, this role inventory is largely based on Gruber’s and Jackendoff’s perception of thematic roles.
However, in some points, this inventory deviates significantly from that perception. First, there is a
general role type INVOLVED (which was introduced presumably for pragmatic reasons, to provide
a possibility to encode roles which differ from the other types). This resembles Fillmore’s Objective
case, which is also a kind of default case. Jackendoff explicitly rejects such a default role type, since
in his theory, each role type has to correspond to a particular type of argument within conceptual
structure. Second, one basic role type in Gruber’s and Jackendoff’s inventory is missing: Theme.
Obviously, Themes are intended to be captured by INVOLVED_AGENT, INVOLVED_PATIENT,
or INVOLVED_INSTRUMENT, respectively. This type does not play a role in Fillmore’s account.
Dowty (cf. (Dowty 1991, p. 555)) expresses doubts whether it is well-defined. Third, Jackendoff’s
distinction between thematic tier and action tier is not adopted for EWN. !

Thus, the role set in EuroWordNet exhibits properties of all three mentioned theories. And of course,
it reflects the overlap between the role inventories of these theories, since it includes common role
types such as Agent, Patient, and Instrument.

7Actually, this distinction could be represented by two different role relations (e.g. IN-
VOLVED_TARGET_DIRECTION and INVOLVED_PATIENT) between a verb and a noun concept. However, this
possibility is not pursued systematically.
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Although the comprehensive theories of thematic roles cannot be employed for the task of this thesis
as a whole, these theories provide very helpful insights concerning an important subtask: linking. It
is worth noting that these insights are either very close to each other or complementary, in any case
largely uncontroversial among the different theories. They relate to different kinds of information
which provide clues for mapping syntactic complements to thematic roles:

e Lexical information
Jackendoff’s lexical entries make explicit that there is a correspondence between certain prepo-
sitions and certain roles of location and direction. For example, “from” indicates Source, while
“to” or “into” indicate Goal.

e Syntactic information
Fillmore states some isolated rules for mapping grammatical relations to deep cases, e.g. if an
Agent is present, then it is realised as subject. Jackendoff and Dowty provide thematic hierar-
chies which integrate a bundle of such rules.

e Semantic information
As Fillmore points out, different roles have different semantic restrictions (or, as I will argue in
the next section, semantic preferences). E.g. Agents are likely to be animate, Instruments inan-
imate. Analogously, Dowty’s Proto-Agent entailments of volitional involvement and sentience
imply animacy.

Given a parsed corpus and WordNet, all three kinds of information are available (or at least deducible)
for the individual syntactic complements to be linked roles during the learning process. For PP com-
plements, the recognition of the preposition is straightforward. For NP complements, the grammatical
relation is determined by the syntactic configuration of the sentence in question. Finally, the semantic
concept corresponding to a complement can be acquired more or less reliably by word sense disam-
biguation techniques. This has to be done anyway in order to connect the word forms in the corpus to
appropriate WordNet concepts. We will encounter several ways to achieve this. The approach which
I applied is described in section 5.2.

Thus, it seems reasonable to devise a strategy for linking which combines these different kinds of
information in a useful way. I will address this issue in chapter 6.

2.3.2 Selectional Preferences

In section 1.1.2, I mentioned the general idea to model selectional restrictions as preferences rather
than as hard constraints. This idea, which I adopt for my work, was first put forward by Wilks (cf.
(Wilks 1986)). This section discusses it from a linguistic point of view.

As explained in section 1.3, one of the core tasks of this thesis is the acquisition of selectional prefer-
ences by means of WordNet and the statistical analysis of corpora. The notion of selectional prefer-
ences was introduced by Resnik (cf. (Resnik 1993)) and generally adopted by other researchers who
have been working on this task (cf. chapter 3). In a sense, this notion conflicts with the concept of
selectional restrictions in the linguistic literature cited in section 2.2. In transformational grammar as
well as in Jackendoff’s conceptual semantics, selectional restrictions are categorical: either an argu-
ment conforms to the selectional restrictions of its predicate, or it violates them. In contrast, in the
corpus-based, NLP-related research initiated by Resnik, selectional preferences are graded: They are
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represented by numerical preference values which are assigned to WordNet concepts. A preference
value quantifies how strong the corresponding WordNet concept is preferred (or dispreferred) by the
predicate in question.

Now the question could arise whether this shift from a categorical to a graded view of selection should
just be regarded as a secondary fall-out of the statistical acquisition approach (the preference values
are determined by probabilities, so they are real-valued), or whether this graded view may be justified
by reasons related to the phenomenon of selection itself. Like (Resnik 1993, p. 45-52), I will argue
for the latter.'®

As mentioned, (Chomsky 1965) discusses examples where the violation of selectional restrictions are
not unnatural ((2.67)—(2.68) on page 36) if the respective constituent is embedded in a certain sen-
tential context (typically of report or belief). In these cases, the embedding context constitutes a kind
of “meta level” which either abstracts from the semantics of the embedded anomalous constituent, or
refers to its semantic anomaly itself. From a corpus linguistic point of view, such constructions seem
rather artificial. They do not play a major role in human communication. There are much more preva-
lent circumstances which involve the violation of selectional restrictions, or, to put it another way,
suggest a more flexible approach to classify instances of selection than choosing between the two
possibilities ‘satisfying’ and ‘violating’. In the following, I will discuss two of these circumstances:
metaphor and specific contexts.

Metaphorical expressions typically imply the violation of selectional restrictions. For example,
“drink” selects a human being or an animal as its Agent. However, in the sentence

(2.98) Fast cars drink petrol.

found in the British National Corpus (text CMM, sentence 890), the Agent is a car. In the traditional
analysis, this is regarded as a violation of selectional restrictions. However, there is a straightforward
metaphorical interpretation of the sentence, namely ‘Fast cars consume (a lot of) petrol’. This is
compatible with the categorical model of selectional restrictions. Chomsky himself points out that
violations of selectional restrictions can often be interpreted metaphorically or within an appropriate
context (Chomsky 1965, p. 149). However, the categorical model has no means to distinguish between
instances like (2.98) and cases which apparently lack a natural interpretation, like

(2.99) Modern sunglasses drink petrol.

If, however, we regard selection as preferential, then we can describe this difference by assigning
different values of (dis)preference to the different concepts. The selectional preferences of “drink”
for its Agent can be modelled by values which indicate high preference for the concepts <human
being> and <animal>, low preference (or weak dispreference) for the concept <car>, and strong
dispreference for concepts like <sunglasses>.

The crucial point is that if a concept is dispreferred, then this does not mean that it is completely
impossible. As McCawley emphasises, semantically anomalous constituents are not meaningless (cf.
examples (2.84)—(2.86) on page 41). In other words, an expression containing a violation of selec-
tional restrictions nonetheless has a (maybe very fragmentary) meaning. This meaning may or may

"®However, I will emphasise different aspects than Resnik’s discussion does.
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not suggest a metaphoric interpretation.'® However, for basically any semantically anomalous ex-
pression one can find (or construct) a more or less specific context in which it seems appropriate. To
illustrate this, Resnik provides a context for the phrase “buxom father”, the introduction of a guest in
a talk show:

(2.100) “Now introducing John Smith, looking lovely after his breast-augmentation surgery. This
buxom father of two makes his living in Las Vegas as a female impersonator...” (Resnik 1993,
p. 46)

This context is exceptional, but still possible in the real world. In a fictional setting, one can imagine
things like sunglasses whose owner always wears them during motor-biking, and which finally start
drinking petrol in order to impress his noisy and arrogant Harley-Davidson. It is even not a too difficult
exercise to construct a context fitting to sentences like “Colorless green ideas sleep furiously.”, as
illustrated, for example, by Yuen Ren Chao’s well-known “Story of my Friend, Whose Colorless
Green Ideas Sleep Furiously”.2°

For these reasons, it is more appropriate to model selectional phenomena as preferences rather than
strict constraints. This makes it possible to regard semantically anomalous constructions as (more
or less strongly) dispreferred, instead of rejecting them completely. In this way, metaphoric use and
different contexts can be handled with more flexibility.

It should be emphasised that these issues are anything but empirically marginal. The context-
dependence of semantic interpretation (and hence, selectional preferences) is pervasive. We have
encountered already several examples which are relevant in this respect. In sentence (2.83) on page
40, it highly depends on the context in which the sentence is uttered whether “bachelor” is interpreted
as ‘who has the first or lowest academic degree’ or ‘who has never married’. In terms of selectional
preferences, the predicate “be a bachelor” in the sense ‘be a male single’ generally prefers male human
beings as its argument. However, given a context in which the marital status of people is highlighted
and their sex is secondary (e.g. when talking about the advantages and disadvantages of being mar-
ried), then this predicate essentially prefers male or female human beings (although males still may
be stronger preferred than females), so that the ‘single’ sense of “bachelor” is not ruled out by the
argument “aunt”. Moreover, in such contexts, this sense is more salient than the ‘academic degree’
sense.

Another example where a specific context influences selectional preferences is (2.96) on page 44,
Generally, “cook” prefers a human as its Agent and food (originating from animals or plants) as
Patient. Therefore, “mother” is clearly interpreted as Agent. But in a context related to cannibalism
(which is, unfortunately, not as exotic as it might seem, since terrible crimes of that kind do happen
in our society), a “thematic ambiguity” arises: humans are preferred for the Agent and the Patient of
“cook”; thus, “mother” could be Agent or Patient.

Obviously, selectional preferences acquired by statistical approaches reflect the quantities in the ex-
amined corpus. The preference value of a certain noun concept w.r.t. an argument of a certain verb

1T will not go much into details about which factors constitute metaphor. This would go far beyond the scope of this
chapter. I refer the interested reader to (Lakoff & Johnson 1980) for a theoretical discussion of metaphor and (Fass, Martin
& Hinkelman 1992) for Al approaches to formalise non-literal language.

21n the context established by this “story”, metaphoric interpretation necessarily plays a major role, which illustrates
that the issues of metaphoric uses and specific contexts relate to each other.
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depends on the relative co-occurrence frequency of these two. Evidently, this frequency is signifi-
cantly influenced by the contexts in which the verb occurs. And this, in turn, largely depends on the
composition of the examined corpus. Thus, it is possible to acquire selectional preferences specific
to a particular domain just by restricting the data to texts which originate from that domain. (For
example, investigating a corpus of fairy tales might yield animals, plants, and mirrors as preferred
Agents of “say”.) If one wants to learn selectional preferences to supplement a “general-purpose re-
source” like WordNet, a balanced corpus of reasonable size (like the British National Corpus) is the
appropriate choice.

The presence of metaphoric language is not less significant. (Lakoff & Johnson 1980) point out the
ubiquity of metaphor in language and thinking:

...metaphor is pervasive in everyday life, not just in language but in thought and action.
Our ordinary conceptual system, in terms of which we both think and act, is fundamen-
tally metaphorical in nature.” (Lakoff & Johnson 1980, p. 3)

There is a priori no correlation between the degree of preference on the one hand and literal vs.
non-literal language on the other hand. The discussion of example (2.98) above could be misleading,
since it may suggest that metaphoric use tends to coincide with a low preference value. This would
imply that non-literal language is significantly less frequent than literal language. However, this is not
necessarily the case, and, in the light of Lakoff’s and Johnson’s statement, not even what one would
expect.

(Lakoff & Johnson 1980) identify conventionalised metaphors on the conceptual level. These concep-
tual metaphors have more or less common expressions as linguistic instances. For example, TIME IS
MONEY is a conceptual metaphor underlying utterances like

(2.101) You’re wasting my time.

(2.102) How do you spend your time these days?
(2.103) The flat tire cost me an hour.

(2.104) T’ve invested a lot of time in her.

(2.105) You need to budget your time.

It is a purely empirical question whether such expressions occur with a significant frequency to be
reflected by correspondingly high preference values. For example, it might turn out that the concept
<time> receives a rather high preference value for “invest”, but not for “budget”. Furthermore, not
all metaphoric expressions are instances of a systematic conceptual metaphor. There are “isolated”
conventionalised metaphoric expressions as well as novel, “inventive” metaphors. The representa-
tion of selectional preferences as numerical values attached to concepts is not able to indicate such
differences, nor to distinguish between literal and figurative language at all.

But, indeed, this representation does not aim at such a level of differentiation. Nor does it explain
why “drink” prefers <car> much more than e.g. <sunglasses> (i.e. that petrol is liquid, a car is a
thing which consumes petrol, and drinking is a kind of consuming), or which contextual conditions
favour the interpretation of “bachelor” as ‘male or female single’. In general, such explanations would
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include an illimitable set of inferences on world knowledge. A statistical representation of selectional
preferences abstracts from such facts and inferences?! and, instead, provides a level of information
which allows interesting insights into quantitative aspects of selection. A complex system comprising
a set of facts and inferences would not supply these insights.

This point is put forward by (Abney 1996b):

If we have a complex deterministic system, and if we have access to the initial conditions
in complete detail, so that we can compute the state of the system unerringly at every
point in time, a simpler stochastic description may still be more insightful. To use a dirty
word, some properties of the system are genuinely emergent, and a stochastic account is
not just an approximation, it provides more insight than identifying every deterministic
factor. Or to use a different dirty word, it is a reductionist error to reject a successful
stochastic account and insist that only a more complex, lower-level, deterministic model
advances scientific understanding. (Abney 19965, p. 19)

Abney argues that statistic data are not only an issue of performance, and hence useful for NLP tasks,
but also relevant for theoretical linguistics. He sketches how statistical information could be fruitfully
employed in different areas of linguistics, and concludes:

Statistical methods—by which I mean primarily weighted grammars and distributional
induction methods—are clearly relevant to language acquisition, language change, lan-
guage variation, language generation, and language comprehension. Understanding lan-
guage in this broad sense is the ultimate goal of linguistics. (Abney 19965, p. 21)

Meanwhile, statistic (or at least quantitative) methods are established in linguistic research, e.g. in
employing corpus frequencies to compare different constructions, or for setting up and evaluating
psycholinguistic experiments in which the informants are asked for (graded!) judgements e.g. about
the grammaticality of certain sentences. Thus, a graded model of selection, which has emerged from
the renaissance of statistical methods in computational linguistics, is as well conformable with a
recent tendency in theoretical linguistics.

To conclude the discussion, I would like to point out that the categorical model and the graded model
of selectional restrictions do not mutually exclude each other. Referring to (Drange 1966), (Resnik
1993, p. 47) brings up the possibility that selection is a matter of category and a matter of degree. In
fact, there is evidence for this view.

Recall Jackendoff’s discussion of the violation of selectional restrictions in (2.92) and (2.93) on page
43. Jackendoff notes that “drink powder” contains a clash between the conceptual features SOLID,
which is part of the conceptual structure of “powder”, and LIQUID, which “drink” selects for its
Theme. The major category of “powder” and the Theme of “drink™ agree, it is Thing in both cases.
However, in “drink sincerity”, there is already a clash of major category, since “sincerity” has the
category Property. Although Jackendoff does not explicitly note it, different types of conceptual clash

2INote that a categorical model of selection involves this abstraction as well. Following (Johnson-Laird 1983), Resnik
characterises selectional constraints as “inferences conventionalised because of their frequency and predictability” (Resnik
1993, p. 48). This is in a sense analogous to Jackendoff’s view of selectional restrictions as “convenient name” rather than
a peculiar theoretical concept.
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(with different severity) suggest that there are different degrees of violation of selectional restrictions
(though here the scale of violation would not be real-valued but finite). Nevertheless, Jackendoff’s
account is categorical: there is a clear distinction between the violation of and the conformance to
selectional restrictions.

Although Jackendoff’s conceptual framework to a certain extent accounts for degrees of disprefer-
ence, it does not capture degrees of preference. However, it is not difficult to find obvious examples
of a verb preferring different noun concepts with different strengths. Consider

(2.106) The pupil read the article.

“article” may refer to a word (a determiner) or to a text. “read” prefers both senses (you can read a
word as well as a text), but the ‘text’ sense is much more typical, and thus preferred much stronger
than the ‘word’ sense.?

Some of the approaches introduced in chapter 3 calculate the preference values in a way that allows
a clear distinction between preferred and dispreferred concepts. For example, in some approaches a
positive value indicates preference, a negative value dispreference; the absolute value indicates the
degree of preference or dispreference, respectively. In this case, one could imagine that to model
the selectional preferences for the Patient of <read>, the concept <text> would get the preference
value 12.2, <word> the value 1.9, <picture> -0.9, and <hammer> -6.7. These approaches inte-
grate the categorical and the graded view of selection. In the example just mentioned, the preference
values would imply that <read> prefers both <text> and <word>—but the former concept is more
preferred—and disprefers both <picture> and <hammer>—but the latter is more dispreferred. Other
approaches do not draw a clear line between preference and dispreference. Since my goal is to inte-
grate the acquired selectional preferences into WordNet, and since the WordNet data model does not
include quantitative information attached to relations,?* I have to employ a method which draws a
clear line between preference and dispreference, since verb concepts should only receive thematic
role relations to noun concepts which they actually prefer. In other words, since WordNet encodes
categorical rather than graded information, the approach I employ has to capture the categorical as-
pect of selection. Nevertheless, the WordNet relations acquired in this way encode preferences rather
than restrictions.

ZThese are introspective judgements to make the point clear. The statistical approaches advocated here just aim at
providing an empirical basis for such judgements.

B0f course, this does not mean that the preference values ultimately have to be dropped completely. It is no problem to
provide the values for the preferred concepts (as well as information concerning dispreferred concepts) as extra information
which is not integrated in WordNet.
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Chapter 3

Acquiring Selectional Preferences from
Corpora: Existing Approaches

In chapter 1.3, I have formulated the task of this thesis as developing an approach for extending
WordNet with thematic role relations such as

(3.1) <drink> INVOLVED_AGENT <human>
(3.2) <drink> INVOLVED_AGENT <animal>

(3.3) <drink> INVOLVED_PATIENT <liquid>

I have explained that due to the tight relationship between thematic roles and selectional restrictions,
this task intrinsically requires to employ a method of acquiring selectional preferences from corpora.
In recent years, several approaches have been proposed in the literature for learning selectional pref-
erences by means of statistical corpus analysis. In this chapter, I will review such approaches. In
particular, I will focus on properties and design decisions which turn out to be crucial for the devel-
opment of the approach that I propose in this thesis. For this reason, I first outline some criteria for
the suitability of a method for learning thematic role relations (section 3.1). After that, I describe the
kind of training data which in principle is common to all approaches reviewed in this chapter, as well
as the method I develop in this thesis (section 3.2). Then I turn to the presentation of individual ap-
proaches. In particular, I explain one method which does not employ a lexical resource like WordNet
as background knowledge (section 3.3) and a number of approaches which are based on WordNet
(section 3.4). I will examine to what extent these learning methods meet the suitability criteria to be
outlined. In section 3.4.7, I will provide a summary of the WordNet-based approaches and argue that
the approach introduced in section 3.4.3 fits these criteria best. This approach forms the starting point
for my development of a thematic role acquisition method.

I will assume that the reader is familiar with the principles of probability theory. Furthermore, I will
not provide a general introduction to common techniques in statistical NLP such as Hidden Markov
Models (Rabiner 1989) or the EM algorithm (Dempster, Laird & Rubin 1977). These techniques are
presented in various introductions to the field (e.g. (Charniak 1993), (Mitchell 1997), or (Manning &
Schiitze 1999)).
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A general notional remark: In the formulae presented in this and the following chapters, it is necessary
to distinguish between word forms! on the one hand and word concepts on the other hand. I will
make this distinction explicit by using different variables. The variables v and n, respectively, will
be employed to refer to verb or noun forms. In contrast, vept and nept, respectively, will usually
be employed to refer to verb or noun concepts (i.e. synsets), except for one special case: Recall that
wordnet synsets represent at the same time word senses and abstract concepts (cf. section 1.2.1).
In some contexts, one of these two representational functions is dominant. In particular, it will be
important to explicitly mark situations where synsets primarily represent word senses rather than
semantic abstractions. In those cases, the synsets in question will be referred to by the variables vsns
and nsns, respectively.

3.1 Suitability Criteria

In order to be suitable for integration in wordnets as thematic role relations, the preferences acquired
by statistical methods have to be in a certain form. In particular, they have to

1. be expressed as relations between verb concepts and noun concepts in WordNet
2. represent the appropriate level of generalisation

3. allow the distinction between preferred and dispreferred concepts

Regarding the first criterion, it is crucial to note that some statistical methods for acquiring selec-
tional preferences proposed in the literature are not connected to WordNet at all, such as clustering
approaches as the one described in section 3.3. These clustering methods model selectional associa-
tions between verb and noun forms (i.e. lemmas) rather than verb and noun concepts. For this reason,
they are not immediately applicable for learning EWN-like thematic role relations. (Nevertheless, as
we will see in chapter 5 and 6, such approaches turn out to be very useful within several preprocess-
ing steps.) The methods described in section 3.4 acquire preferred (and dispreferred) noun concepts
for a given verb form, i.e. they represent selectional preferences as relations between verb forms and
noun concepts. Only one of these approaches explicitly aims at acquiring selectional preferences of
verb concepts as well. However, all approaches could be extended accordingly: As the nouns in the
training corpora are not semantically disambiguated, certain techniques are employed for mapping
the noun forms in the data to corresponding WordNet noun concepts. Analogous techniques could be
applied to the verb forms. Then, selectional preferences can be acquired for verb concepts using the
same learning algorithm as for verb forms.

The second criterion has been mentioned already in chapter 1. It states that the noun concepts which
are acquired as preferences of a certain verb concept have to be at a level of abstraction that is em-
pirically adequate (i.e. captures all and only the preferred concepts) on the one hand and as compact
as possible on the other hand. For example, it is inappropriate to introduce a PATIENT relation from
<eat> to a concept which is so general that it also subsumes dispreferred concepts (e.g. <entity>).

'For terminological clarity, I would like to point out that the term word form in this thesis is used in opposition to the
notions of word sense and semantic concept, i.e. it refers to an occurrence of a word in the training corpus, which is not
semantically disambiguated. It is not used in a morphological sense, i.e. it does not refer to a full form as opposed to a
lemma. In the training data used for all approaches described in this thesis, verbs and nouns are lemmatised.
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Likewise, it is not desirable to establish relations to all the many food concepts in the wordnet
(<potato>, <milk_chocolate>, <mock_turtle_soup>,...) because such a representation would be
highly redundant and inefficient. Moreover, it would fail to express any generalisation. The demand
to avoid acquiring concepts which are too specific is crucial not only w.r.t. storage and processing
economy, but also for functional reasons: Firstly, expressing appropriate generalisations is important
for certain NLP applications like semantic inferencing. Secondly, a concise encoding of selectional
preferences enhances readability for human users. In the ideal case, a concept can be found which
just subsumes all the preferred and none of the dispreferred concepts (such as <food>).

It is important to point out that these general considerations should be regarded relative to the needs
of a particular application and/or approach. In different situations, different levels of abstraction are
adequate. Two examples might illustrate this point: On the one hand, there are parsing systems (e.g.
(Huyck 2000)) which make use of selectional restrictions modelled by a small set of very abstract
semantic classes (like human) to resolve structural ambiguities. On the other hand, there are lexical
resources (e.g. FrameNet, cf. (Fillmore et al. 2001)) where selectional information is represented by
nouns which typically occur at a certain frame slot of some verb. Thus, these resources model selec-
tional preferences at a rather low level of generalisation. This is appropriate for particular NLP appli-
cations, e.g. in a text understanding system tuned to a particular domain (cf. (Fillmore & Baker 2001)).
A reusable approach for acquiring selectional preferences should be adjustable to such application-
specific a priori design principles regarding the desired degree of generalisation, and, within this
degree, behave as sketched in the previous paragraph.

The third criterion means that the acquired preference values should model not only the graded aspect
of selectional preferences, but also their categorical aspect. At the end of section 2.3.2, I discussed
this issue. Statistical methods as described in section 3.4 model the preference or dispreference of
a noun concept w.r.t. a certain verb by a numeric preference value, i.e. a real number assigned to
that concept. Criterion 3 states that a numerical limit should exist which splits the range of possible
preference values into a subrange of values indicating preference and a subrange of values indicating
dispreference (e.g. values above 0 indicate preference, values below O dispreference). Approaches
which provide such a limit in a principled way are favourable. For the task of acquiring thematic role
relations, it is necessary to make the categorical distinction between preference and dispreference,
since only relations from verb concepts to preferred noun concepts should be integrated in a wordnet.

I will discuss to which extent the different WordNet-based approaches meet the criteria 2 and 3 in
section 3.4.

3.2 Training Data

All approaches described in this chapter acquire selectional preferences for syntactic complements of
verbs, i.e. there is no attempt to link these complements to thematic roles. The required training data
are obtained from a parsed corpus. These training data comprise a collection of verb—complement
co-occurrence triples (v, 7, n) where v is a verb, r is a syntactic relation, and n is the head noun of
the NP complement which is related to v via r. Each triple corresponds to an instance of a syntactic
(sub-)structure in the corpus. The syntactic relation r can be subject, (direct) object, indirect object, or
a certain preposition. In the latter case, r is the preposition of a PP complement of v and n is the head
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(eat, subject, animal)
(eat, subject, child)

(eat, object, banana)
(eat, object, lunch)

(eat, object, potato)
(come, from, newspaper)
(come, from, room)
(come, to, end)

(come, to, office)

Figure 3.1: Examples of verb—complement co-occurrence triples

of the NP inside the PP. Figure 3.1 shows some examples of such (v, r,n) triples.? These examples
are extracted from the British National Corpus (BNC) (cf. (Burnard 1995)), which is employed by
some of the approaches described here.

From this set of (v, r,n) triples, the approaches described here are able to learn selectional prefer-
ences of each verb v for each syntactic relation r it subcategorises for. Note that the structure of
these data implies two simplifications with respect to the linguistic findings about selectional re-
strictions discussed in section 2.2. First, it does not account for dependencies between the prefer-
ences of a verb for its different arguments. Chomsky notes that such dependencies exist (cf. example
(2.61) on page 35). For example, if the object of “eat” is “mouse”, then the subject is much more
likely to be “cat” or “buzzard” than if the object is “sandwich”. Such dependencies are neglected
in order to avoid a sparse data problem: A statistical model which captures this kind of dependen-
cies would be much more complex and the number of required parameters would be multiplied. In
addition to marginal probabilities for single complements of a verb, e.g. p(subj = cat|eat) and
p(obj = mouse|eat)—these marginal distributions are estimated by the approaches described in this
chapter—one would need an estimation of joint probability distributions over different arguments
of a verb, like p(subj = cat,obj = mouseleat), to obtain the corresponding conditional proba-
bilities (e.g. p(subj = cat|obj = mouse, eat)). It is obvious that much more data are required to
reliably estimate the co-occurrence probabilities of three or more words (a verb and two or more
complement nouns) than to estimate co-occurrence probabilities of just two words (a verb and one
complement noun). Li & Abe (1996) examined a model which captures pairwise dependencies be-
tween verb complements. They report that training this model on the Penn Treebank (Marcus, San-
torini & Marcinkiewicz 1993) did not provide evidence for any such dependencies.? This supports the
claim that assuming independence between the complements of a verb is quite appropriate in practice.
However, Li and Abe admit that the size of the training corpus could have been insufficient to detect
dependencies. The Penn Treebank contains about 3 million words. In the middle of the 1990s, this
was the usual magnitude for a parsed corpus. Nowadays, corpora with 100 million words (like the
BNC) or more are available as well as robust parsing techniques to process them. It would be worth
training Li & Abe’s (1996) model on corpora of that size. I decided not to pursue this option, because

“Each triple represents a token, not a type of co-occurrence; thus, if e.g. “potato” occurs several times as the object of
“eat” in the corpus, then the triple (eat, object, potato) occurs in the training data with the corresponding frequency.

>More precisely, they did find dependencies when employing a model that only takes the presence or absence of syntactic
complement types into account, but not for models which comprise distributions over complement nouns (or corresponding
WordNet concepts, respectively).
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it would not serve the eventual task of learning thematic role relations, since in (Euro)WordNet it is
not possible to encode dependencies between relations. Nevertheless, it would be interesting to find
out if corpus size matters here.

The second simplification implied by the structure of the training data is that it does not capture the
complete complement constituents, but only their heads. As illustrated by example (2.80) on page
40, the semantics of the entire complement is subject to a verb’s selection. However, the attempt
to take into account the complete complement phrase would involve two intractable problems: the
appropriate semantic representation of a phrase and data sparseness. Approaches which represent
selectional preferences in terms of WordNet concepts (section 3.4) have to map the word forms in the
corpus to corresponding WordNet concepts. In this chapter and chapter 5, we will encounter several
strategies to achieve such a mapping for simple noun forms. However, since the synsets in WordNet
are intended to represent lexical items, concepts which are equivalent to the meaning of a complex
phrase are not avaliable in general. This problem does not apply for clustering approaches which are
not based on a lexical resource (cf. section 3.3). But for both kinds of approaches, the sparse data
problem is striking: Theoretically, there is an infinite number of possible complement noun phrases,
which means that for a reliable estimation of their probabilities, an unlimited number of data would
be required. Even if one introduces an upper limit for the number of words in a phrase to be taken
into account, the number of parameters to estimate grows exponentially with this upper limit. The
decision to only take the head into account just means to set this upper limit to 1. Furthermore, it is
reasonable to assume that in general the heads carry the main information of the complement phrases
and thus provide a suitable base for acquiring a verb’s selectional preferences.

3.3 Approaches without Employing Background Knowledge

There have been several proposals in the literature to characterise selectional associations between
verbs and their complement nouns by clustering verb—noun pairs. In such a cluster model, the selec-
tional preferences of a verb are indicated by the nouns which co-occur with that verb in the same
cluster(s). Well-known approaches which implemented this idea include the work of Pereira, Tishby
& Lee (1993) and Rooth et al. (cf. (Rooth 1998), (Rooth, Riezler, Prescher, Carroll & Beil 1998)). In
the following, I will describe the latter approach, which the authors call latent semantic clustering.
As I will point out below, this approach turns out to be useful for several parts of my work.

The probability model induced by Rooth et al. aims at clustering verb—noun pairs according to their
selectional pattern. The idea behind the formation of such clusters is based on the assumption that
selectional patterns constitute groups of verbs and groups of nouns so that the members of a certain
verb group tend to select the members of a certain noun group. For example, verbs like “resolve”,
“face”, “address”, or “fight” select nouns like “problem”, “pressure”, “damage”, or “challenge” as
their object. Such a pattern corresponds to a cluster, a so-called latent semantic class (LSC), that
comprises (among others) these verbs and nouns. As indicated by the term lafent, a latent semantic
class is a soft cluster, i.e. the membership of a verb—noun pair (v,n) in a class ¢ is graded. I will

illustrate the rationale behind this approach by an example.

Figure 3.2 shows an (artificially constructed) latent semantic class. This class, labelled
Cex, Tepresents verb—object pairs, e.g. (face,problem), (face,pressure), (resolve,problem),
(resolve, pressure), etc. As stated above, the LSC model is a soft clustering method. Thus, verb—
noun pairs (v,n) are members of a class ¢ to a certain degree. This degree is quantified by the con-
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P(Cez) = 0.04
p(v|Cez) v n p(n|cex)

0.06 resolve o - problem  0.05

===
0.05 face < § % % i ;pressure 0.05
0.05 address f E damage 0.04

0.04 fight =] F challenge  0.03

\

Figure 3.2: Example of a latent semantic class

ditional probabilities p(v, n|c). The basic structural principle of the LSC approach is that these joint
probabilities are not immediately represented as parameters of the model, but are determined by the
marginal probabilities p(v|c) and p(n|c). These probabilities are represented in the model. Figure 3.2
displays the verbs with their probabilities on the left-hand side of the diagram (e.g. p(resolve|ce,) =
0.06) and the nouns with their probabilities on the right-hand side (e.g. p(problem|c.,) = 0.05).
From these marginal probabilities, the joint probabilities for verb—noun pairs are determined as fol-
lows:

p(v,nle) = p(vle) x p(njc) (3.4)

For example, for the pair (resolve, problem) this equation yields the following probability of mem-
bership in class ce,: p(resolve, problem|ce,) = p(resolvelce,) X p(problem|ce,) = 0.06 x 0.05 =
0.003. Technically, equation (3.4) states that p(v|c) and p(n|c) are independent. This independence
assumption is the fundamental generalisation that an LSC model represents. Intuitively, a cluster
gathers a group of similar verbs and a group of similar nouns so that these verbs and nouns tend to
co-occur with each other. This means that if a verb v and a noun n co-occur in the data more often
than by chance, then they are likely to be a member of the same class (more precisely: to receive a
high membership probability in the same class). But additionally, if a verb v’ is similar to v regard-
ing the nouns with which it co-occurs, but does not co-occur at all with the specific noun n in the
data, then v’ is likely to be in the same cluster as v, and the pair (v, n) is predicted with a certain
probability. This holds analogously for nouns. For example, it could be that “challenge” never oc-
curs as object of “fight” in the data. However, these words are grouped in class c., together with the
other verbs and nouns displayed in the figure. The LSC model predicts the membership of the pair
(fight, challenge) in the class with the probability 0.04 x 0.03 = 0.0012. Hence, the LSC approach
is helpful to overcome the sparse-data problem w.r.t. verb—noun co-occurrences.

In addition to the membership probabilities for verbs and nouns, each class has a certain probability
p(c) in the LSC model. (In the example in figure 3.2, this probability is p(ce,) = 0.04). With these
probabilities, one can formulate an equation that estimates the overall probability of a verb—noun pair
(v,n):
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p(o,n) = 3 ple.v.n) = 3 ple) x p(vle) x plnle) (3.5)

Now I turn to the method of estimating an LSC model. The probabilities p(c), p(v|c), and p(n|c)
for each c, v, and n are the parameters of the LSC model. They are learned by maximum likelihood
estimation from incomplete data via the EM algorithm. The observable (incomplete) data consist of
verb—noun co-occurrence pairs (v.n) which are retrieved from the training data described in sec-
tion 3.2 (e.g. by extracting all verb—noun pairs connected by a particular grammatical relation). The
corresponding unobservable (complete) data are (c,v,n) triples, i.e. verb-noun pairs together with
the respective classes which they are instances of. The number of classes has to be arbitrarily fixed
before clustering. The clustering procedure works as follows: In an initialisation step, the parame-
ters are randomly chosen. After that, a certain number of training iterations (this number also has
to be arbitrarily fixed) is performed which re-estimate the parameters. Each iteration consists of the
E-step (estimation) and the M-step (maximisation). The E-step calculates the expected frequencies
of (¢,v,n) triples (the expectation values F(c,v,n)) by employing the corresponding probabilities
p(c,v,n) and p(v, n) (which can be estimated from the parameters according to equation (3.5)) and
the frequencies* of the respective pairs (v,7n) in the observed data:

p(C, v, n)
E(c,v,n) = freq(v,n)———= (3.6)
(e, = Jredto, ) )
The related expectation values F(c,v), E(c,n), and E(c) are computed straightforwardly:
E(c,v) = Z E(c,v,n) 3.7)
E(c,n) = ZE(c,v,n) (3.8)
E(c) = Z E(c,v,n) (3.9)

In the M-step, these expectations are used to re-estimate the model parameters by maximum likeli-
hood estimation (MLE):

plvle) = EE(ijf)’) (3.10)
pnfe) = EE(C(’;;) 3.11)
E(c)

S SIS o ey (312)

(For a formulation of this estimation procedure in terms of the general framework of maximum like-
lihood estimation from incomplete data via the EM algorithm presented in (Dempster et al. 1977), cf.
(Rooth et al. 1998, p. 99-101).)

*In this work, I will refer to the frequency of an item by freq(z).

59



p(ng) = 0.052

v p(v[eze) n p(n[ca)
allow 0.05595 company 0.07287
give 0.04996 people 0.05791

tell 0.04769 investor 0.04724
help 0.04348 government  0.02802
ask 0.03068 customer 0.02600
require 0.02369 employee 0.02555
say 0.02168 worker 0.02435
attract 0.02134 client 0.01987
force 0.02101 bank 0.01928
represent  0.02067 shareholder  0.01402
protect 0.01823 agency 0.01363
leave 0.01805 consumer 0.01271

urge 0.01768 group 0.01270
keep 0.01565 state 0.01254
include 0.01482 reporter 0.01234
encourage 0.01475 court 0.01153

Figure 3.3: A latent semantic class which represents verb—object relations

Rooth et al. show two different ways to obtain the (v,n) pairs which form the input of their learning
approach from the training corpus. (Rooth 1998) pursues the straightforward possibility of only tak-
ing into account one grammatical relation at a time. i.e. to extract those verb—noun pairs which are
connected via a particular grammatical relation. An LSC model derived from these pairs represents
selectional association with respect to this relation. (Rooth 1998) presents such a model for the direct
object. An example of a class in that model is shown in figure 3.3 (the verbs and nouns are sorted
according to their probabilities in descending order). This class groups together (activities involving)
commercial products.

A more sophisticated alternative is demonstrated in (Rooth et al. 1998). Here, all grammatical rela-
tions are taken into account at once to induce an LSC model. To achieve this, the information provided
by the left part of a (v, n) tuple is extended: In addition to a verb form, this component contains the
complete subcategorisation frame of the corpus sentence which corresponds to the tuple. Further-
more, that grammatical relation which connects the verb to the noun at the right part of the tuple is
explicitly marked. Figure 3.4 shows an example of a cluster obtained from such kind of data (the
respective marked grammatical relations are underlined).

Concerning the task of this thesis, the classes in the two figures illustrate interesting properties ex-
hibited by LSCs. First, they tend to group together semantically similar words. The class in figure
3.3 groups verbs which denote giving orders or permissions, like “allow”, “tell”, “ask”, and “urge”,

LR RT3

as well as nouns referring to organisations, like “company”, “government”, and “bank™, or to (in a

LIS LR N3

sense dependent) people, like “customer”, “client”, “employee”, and “worker”. The class in figure 3.4

LR I3

groups scalar change events. It contains similar verbs like “increase”, “rise”, “fall”, and “reduce”, as

99 ¢

well as similar nouns, like “number”, “rate”, and “amount”, or “price” and “cost”. As can be seen, it is

60



p(017) = 0.0265
v p(vleir) n p(n[eir)
increase ( subj ) 0.0437 number  0.0379
increase (subj obj) 0.0392 rate 0.0315
fall ( subj) 0.0344 price 0.0313
pay ( subj obj ) 0.0337 cost 0.0249
reduce ( suﬁobj ) 0.0329 level 0.0164
rise ( subj ) o 0.0257 amount  0.0143
exceed (subjobj)  0.0196 sale 0.0110
exceed (subj obj)  0.0177 value 0.0109
affect (subj obj)  0.0169 interest  0.0105
grow (subj) 0.0156 demand  0.0103
include (subjobj)  0.0134 chance  0.0099
reach ( su%bj ) 0.0129 standard  0.0091
decline ( subj ) 0.0120 share 0.0089
lose ( subijj ) 0.0102 risk 0.0088
act (subj obj ) 0.0099 profit 0.0082
impro? ('subjobj) 0.0099 pressure  0.0077

Figure 3.4: A latent semantic class which represents any kind of grammatical relations

generally not the case that the words in a cluster can be subsumed by a single semantic feature—the
nouns in figure 3.3 require at least two, namely ‘company’ and ‘person’. Nevertheless, the similar
words which are grouped within one class provide evidence for mutual disambiguation. For example,
in figure 3.3, nouns like “agency”, “company”, or “government” support the organisation sense of
“bank”, whereas the waterside sense does not have similar counterparts in that class. This suggests
to employ latent semantic clustering for preprocessing the training data in order to (partially) disam-
biguate them and improve the mapping from word forms to WordNet concepts. As I will describe in

section 5.2, I applied this technique for that purpose.

Figure 3.4 shows another interesting property: When all grammatical relations are taken into account,
latent semantic clustering tends to group together corresponding syntactic realisations of a particular
semantic argument of a verb. For example, “increase ( subj )” and “increase ( subj obj )” are grouped
in the same class. Both syntactic configurations realise the Patient of “increase”. Information about
semantically corresponding syntactic patterns in which a verb and its complement occur is very useful
for the task of linking. In chapter 6, I will describe how I employed this information for mapping syn-
tactic complements to thematic roles. Thus, although the approach of Rooth et al. cannot be directly
adopted for the task of learning thematic role relations (since it does not involve wordnets at all), it
turns out to be very helpful for two important sub-tasks.
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3.4 Approaches Employing WordNet

At the beginning of the 1990s, Philip Resnik initiated research on acquiring selectional preferences by
statistical corpus analysis based on WordNet. Following his work (Resnik 1993), several approaches
for that task have been proposed (e.g. (Ribas 1994), (Abe & Li 1996), (Li & Abe 1998), (Agirre &
Martinez 2002), (Clark & Weir 2002), (Abney & Light 1999)). In this section, I will describe a variety
of these approaches in order to point out several design decisions which are crucial with respect to
the task of this thesis, in particular the suitability criteria mentioned in section 3.1.

3.4.1 Resnik
3.4.1.1 Mapping the Training Data to WordNet: the Word-to-Concept Approach

The statistical methods described here express selectional preferences in terms of probabilities of
WordNet concepts, which are estimated on the basis of evidence provided by the training data. The
preliminary step which is necessary to achieve this is to constitute a mapping from the word forms
in the data to the WordNet concepts which correspond to these word forms. This mapping aims at
estimating frequency counts of concepts, which in turn are employed to derive concept probabilities.
I mentioned above that most of the work which is relevant here acquires selectional preferences for
verb forms rather than verb concepts so that such a mapping is required for nouns only. However, it
can be performed for verbs as well.

Since the nouns in the training data are not disambiguated, it is not possible to decide which
sense a certain noun instance represents. Lacking this information, the mapping mechanism has
to treat a noun as an indication of all concepts which represent one of its possible senses. For
example, “bank” provides evidence (among others) for the concepts <bank#banking company>
and <bank#side>. In addition, a noun provides evidence for the (direct and indirect) hyper-
onyms of these concepts, since the semantics of the WordNet hierarchy implies that a concept
subsumes all its subconcepts. Thus, “bank™ also indicates the concepts <financial_institution>,
<institution>, <organization>, <social_group>, and <group>, as well as <incline#side#slope>,
<geological_formation>, <natural_object>, <physical_object>, and <entity>.

Resnik (1993) proposes a mapping approach which is based on these considerations. He divides the
frequency count of a noun n equally among all concepts concepts(n) for which the noun provides
evidence, i.e. the concepts representing a sense of the noun and their hyperonyms.

Figure 3.5 illustrates how this approach works. Suppose that the word “someone” occurs 100 times in
the training sample. There are four WordNet concepts that subsume “someone”: <person#someone>>,
<life_form>, <causal_agent>, and <entity>. Thus, each of these four concepts receives i of the
frequency of “someone” in the data (% = 25 in the example).’

The overall frequency of a noun concept ncpt is calculated as the sum of all word frequency portions
which are mapped to it, i.e.

Note that this is a simple example since “someone” is not ambiguous in WordNet. If the word in question is ambiguous
(like “bank” mentioned above), then its frequency has to be equally divided among all concepts which subsume any sense
of that word.
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<entity>

<life_form> , <causal_agent>
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L <person#someone>

s

100
someone

Figure 3.5: Frequency propagation by the word-to-concept approach
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1
freq(nept) = Z W freq(n) (3.13)
newordst (nept)

where freq(n) is the observed frequency in the data and words™ (ncpt) is the set of words which
are subsumed by ncpt, i.e. which are members of either the synset of ncpt or the synset of one of
its hyponyms. Henceforth, I will refer to this method as the word-to-concept approach, because it
immediately maps a word form to all the concepts indicated by this word form.

The probability of a concept is obtained by maximum likelihood estimation:

p(nept) = freqinpt) Teq](\? ) (3.14)

where N =3 ./ freq(ncpt’) is the size of the training data.

The joint frequency and the joint probability of a verb v and a noun concept ncpt are computed
analogously:

1
_ L 1
freq(v, nept) Z concepts() freq(v,n) (3.15)
newordst (nept)
p(v,nept) = M (3.16)

Similarly, the marginal probability of a verb form is

_ freq(v)
plv) =—y— (3.17)

These joint and marginal probabilities are required to calculate the conditional probabilities
p(nept|v), which, as we will see, are crucial for quantifying selectional preference.

The word-to-concept approach yields a probability distribution over all concepts in the hierarchy: the
probabilities p(ncpt) of all noun concepts sum to 1. The same holds for the conditional probabilities

p(nept]o).

Note that dividing the frequency count of a noun equally among each potentially corresponding con-
cept in equation (3.13) introduces noise, since this results in assigning a certain amount of probability
mass to concepts which correspond to incorrect senses of the noun instances in the training data.
Resnik claims that the negative impact of this effect is rather low. He argues as follows: Due to its
selectional preferences, a verb tends to co-occur with complement nouns which have senses com-
plying with these preferences. The frequency portions assigned to these senses provide cumulative
evidence (i.e. high frequency counts) for the correct concepts. In contrast, incorrectly assigned fre-
quency portions tend to disperse throughout the hierarchy, only accumulating low frequency counts.
(Ribas 1994) reports experiments which indicate that Resnik’s assumption applies to a large extent,
but that nonetheless the accumulation of incorrect senses has a significant impact on the acquired
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preferences. The experimental results which I will describe in the chapters 5 and 7 exhibit a similar
effect. I will return to this problem in section 5.2.

3.4.1.2 Selection and Information

In section 2.2.2, I pointed out that Jackendoff regards selectional restrictions as information which a
verb supplies about its arguments. In a sense, the modelling of selectional preferences proposed in
(Resnik 1993) forms a “statistical counterpart” of this view. For his approach, Resnik adopts ideas
from that branch of science that conceptualises information quantitatively and relates this term to
the concept of probability, namely information theory, a theory developed by Claude Shannon (cf.
(Shannon 1948))°.

Basically, information theory understands information as the content of a message which has to be
transmitted from a sender to a receiver. As a consequence, it deals with coding information as ef-
ficiently as possible. In the framework of this discipline, information is usually coded in bits. The
amount of information is measured by the number of bits needed to encode it. Of course, the applied
coding scheme, i.e. the assignment of a unique bit sequence to each sign, is crucial in this respect. If
one has to code a sequence of signs (in our case, nouns which occur as the complement of a certain
verb in a corpus), the simplest way to do this would be to represent each sign by a bit sequence of
uniform length. However, if the probabilities of the individual signs differ significantly, it is more
efficient (with respect to data compression) to assign shorter bit sequences to more probable (and thus
more frequent) signs and longer bit sequences to less probable (and less frequent) signs.

The correlation between the amount of information a message bears and the probability of that mes-
sage can be illustrated intuitively by the following scene: Suppose that it is summer in Italy, and
somebody tells someone else that it is hot outside. The amount of information of this message is quite
low, since this is exactly the weather you would expect then. In other words, the probability of hot
weather in Italy during that season is close to 1. In contrast, if the message said that it is snowing, then
the amount of information would be so high that this message would be likely to appear in newscasts
all over the world. The reason for this is that the probability of snow in Mediterranean summers is
considerably low.

Concerning the “shape” of an efficient coding scheme, it can be shown that the shortest average
code length is achieved by assigning [log, Flm)] bits to a sign x with probability p(x) (cf. (Cover &
Thomas 1991)). Thus, if a good estimation of the probability distribution underlying the occurrence
of the signs is available, then one can develop an efficient coding scheme based on this estimation.
For example, imagine a setting where messages have to be transmitted which consist of an arbitrary
sequence of four signs: A, B, C, and D. These signs could e.g. represent the possible states of a ma-
chine, and a message could be a protocol of a sequence of these states which is necessary to supervise
the processes performed by that machine. Imagine further that the probabilities of the different states
are as follows:

®For a comprehensive introduction to information theory, cf. (Cover & Thomas 1991).
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p(A) = %
p(B) = i
1
p(C) = ¢
1
p(D) = 3

Now the task is to specify a coding scheme that represents each sign by a unique codeword (i.e. a
bit sequence) in a way that the average code length of a message (which consists of a sequence of
codewords) is minimised. In order to avoid ambiguities, this coding scheme should be a so-called
prefix code (or prefix-free code). This means that no codeword may be a prefix of any other codeword.
A prefix code enables the receiver of a message to unambiguously determine where one codeword
ends and the next one starts in the received bit stream. The optimal coding scheme should assign
shorter codewords to signs with higher probability and longer codewords to signs with lower proba-
bility. Moreover, as stated above, the lengths of the codewords should correspond to the logarithm of
the reciprocal of their probabilities. Thus, for the different signs in the example the following code
lengths are appropriate:

A: log, ﬁ =logy(2) = 1
B : log,y Tl) =logy(4) = 2
C: log, Wl) =logy(8) = 3
D: log, Tl) =logy(8) = 3

Indeed, there is a coding scheme that satisfies these conditions:

A =0
B = 10
C = 110
D = 111

Algorithms (e.g. Huffman coding) exist which, given a probability distribution over the signs to be
encoded, yield a (nearly) optimal coding scheme.

Entropy is a measure of the expected amount of surprise that a message will bring about. Formally,
entropy is the lower bound of the average code length needed to represent a value of a random variable
X and is given by

1
p(z)

H(X) ==Y p(x)log p(xr) = > p(x)log (3.18)
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with log base 2, due to binary coding.

Relative entropy (or Kullback-Leibler distance) is a measure of the distance between two probability
distributions p and q. More exactly, it quantifies the cost (the number of additionally required bits) of
assuming distribution ¢ when the real distribution is p. Relative entropy is defined as

p(z) 1
D(pllq) = Zp log o) Zp (log m)—logp(m)) (3.19)

If one uses q to construct a code for a random variable X with probability distribution p, the average
code length is D(p||q) bits higher than the entropy of X.

3.4.1.3 Preference Strength and Selectional Association

Resnik refers to the amount of information that a predicate provides for a certain argument as se-
lectional preference strength. The selectional preference strength quantifies how strong the predicate
constrains an argument semantically. For example, “eat” has a greater selectional preference strength
for its object than “see”. Formally, this quantity is expressed by the relative entropy between the
probability distribution of noun concepts occurring in a certain grammatical relation to the verb in
question and the probability distribution of noun concepts occurring in this relation regardless of a
particular verb:

p(nept]v)

p(nept) (3.20)

1o = D(p(nept|v)|lp(nept)) = 3 p(nept|v) log
nept

Note that the grammatical relation 7 is kept implicit in equation (3.20). More precisely, this equation
should be

p(neptlv,r)

o = Dlp(neptle, r)lp(neptir) = 3 p(neptlo,r)log =

nept

I adopted the notational simplification from Resnik and other authors mentioned in this chapter (e.g.
Li and Abe) and will maintain it throughout this work for better readability. It is justified by the fact
that in the approaches described here, each syntactic relation is taken into account separately. Anyway,
the reader should keep in mind that the presented formulae which model the selectional association
between verbs and nouns are related to a particular argument type.’

Equation (3.20) quantifies the cost of assuming that the distribution is p(ncpt) whereas the real dis-
tribution is p(ncpt|v), and thus “the cost of not taking the predicate into account. Therefore, in a
very direct way, the selectional preference strength of a predicate can be understood as the amount of
information that it carries about its argument.” (Resnik 1993, p. 58) It should be pointed out that the
preference strength defined in this way is guaranteed to be non-negative and equals to O if and only if
p(nept|v) = p(nept) for all nept. This is a property of relative entropy (cf. (Cover & Thomas 1991)).

Ribas (1995b) also examines the possibility to replace p(ncpt|r) by p(nept), which in this case refers to a distribution
derived from all nouns in the corpus. Of course, the simplified notation does not capture this distinction.
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The overall preference strength is a measure which provides interesting characteristics about a verb.
For example, Resnik found an empirical correlation between preference strength and argument omis-
sibility: Verbs which exhibit a high preference strength for their object (e.g. “eat’) allow object omis-
sion; verbs with a weak preference strength (e.g. “see”) do not. In my view, this finding underlines
the analogy between Resnik’s model and Jackendoff’s analysis, since it captures a correspondence
between selectional constraints and incorporation, which Jackendoff treats in a uniform manner.

Nevertheless, preference strength is not the quantity we are primarily looking for, since it does not
tell which concepts a verb prefers. Resnik quantifies the preference of a certain concept by a measure
that he calls selectional association:

1 t
A(v,nept) = — p(nept|v) log p(neptjv)

M p(ncpt) (32D
Note that this is the addend of the sum in equation (3.20) that corresponds to concept ncpt (i.e. the
contribution of ncpt to the preferential profile of v), normalised by the overall preference strength
7. This normalisation yields a preference value for an individual concept which is independent from
the overall preference strength of the verb. This formula takes into account two things: the absolute
probability of ncpt occurring as complement of verb v and the deviation of this probability from the
general probability of ncpt.

Resnik does not aim at finding a representative set of noun concepts which express the selectional
preferences of a verb at an adequate level of abstraction. Rather, he stores the verb’s preference values
for each noun concept in the hierarchy. The advantage of this procedure is that the acquired informa-
tion about preferences is completely available for NLP applications. For example, Resnik suggests
a simple method which employs this information for word sense disambiguation: To disambiguate a
noun which co-occurs with a certain verb, compare the respective preference values of all its senses
and their hyperonyms, and select the sense that is related to the concept with the highest value. In this
way, the acquired association scores allow the correct disambiguation of “baseball” in “hit some base-
ball” vs. “play some baseball”. The former instance refers to a ball as physical object, while the latter
instance refers to the game. Figure 3.6 lists concepts occurring at the object position of “hit” which
subsume some sense of “baseball”, together with their respective selectional association scores.

Among these concepts, <physical_object>> has the highest preference value. Thus, the sense referring
to a ball is selected here. As figure 3.6 shows, concepts with particularly high preference values are
related to this sense, whereas concepts with particularly low preference values are related to the sense
referring to the baseball game. For “play”, the reverse is true. In particular, the concept with the
highest association score (2.73) is <game>, which is related to the correct sense in this case.

3.4.2 Ribas
3.4.2.1 Mapping the Training Data to WordNet: the Word-to-Sense Approach

To map the noun forms in the training data to WordNet concepts, Ribas (cf. (Ribas 1995q),
(Ribas 1995b)) uses a strategy which differs form Resnik’s word-to-concept approach in the way
of estimating concept frequencies. Resnik divides the frequency count of a noun n among all con-
cepts concepts(n) which subsume 7, i.e. concepts whose synsets contain n and the hyperonyms of
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nept A(hit, nept) ‘

<physical_object> 4.48
<artifact> 4.27
<entity> 2.25
<ball> 0.13
< game_equipment> 0.11
<equipment> 0.07
<sport> -0.00
<game> -0.00
<diversion> -0.01
<contest> -0.01
<competition> -0.01
<group_action> -0.27
<activity> -0.34
<act> -0.85

Figure 3.6: Concepts occurring as object of “hit” and subsuming some sense of “baseball”, and the
corresponding association scores

these concepts. Ribas, in contrast, divides this frequency count only among the concepts senses(n)
which represent a sense of n, i.e. those concepts whose synsets contain n. Henceforth, I will call
this mapping strategy the word-to-sense approach. In section 3.4.1.1, I noted that a noun does not
only provide evidence for its senses, but also for the hyperonyms of these senses. Ribas accounts
for this fact by percolating the frequency counts obtained for noun senses upwards in the hierarchy.
For example, “lamb” has two senses in WordNet, one referring to an animal and one referring to
meat. Each of these senses receives a credit of % for each occurrence of that noun in the data. The
former sense has the hyperonyms <young_mammal>, <offspring>, <animal>, <life_form>, and
<entity>. The hyperonyms of the latter sense are <meat>, <nourishment>, <food>, <substance>,
<physical_object>, and <entity>. Each of these hyperonyms gets a credit of % per occurrence and
per sense it subsumes. Thus, <entity> gets a credit of 1 and the other hyperonyms a credit of % for
each occurrence of “lamb”. The word-to-concept approach would give each sense and each hyper-

onym a portion of - per “lamb” occurrence, since |concepts(lamb)| = 12.

Figure 3.7 takes up the example in figure 3.5, this time illustrating the word-to-sense approach. The
frequency of “someone” (100) is mapped to the synset <person#someone>, which represents the
corresponding word sense. (Recall that “someone” is monosemous in WordNet.) This count is com-
pletely propagated to all concepts that subsume <person>.

In general, the frequency of a concept is estimated as the sum of the frequency counts of the word
senses which the concept subsumes. More formally, let ”* denote the HAS_ HYPERONYM relation
and * the reflexive and transitive closure of . Furthermore, let sensesyp(n) = {nsnsjnsns €
senses(n) A nsns /™ nept} be the set of senses of n which are subsumed by ncpt. Then, the
frequency of a concept is estimated by the equation
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<entity>

<life_form> : <causal_agent>
. 100

<person#someone>

100

100
someone

Figure 3.7: Frequency propagation by the word-to-sense approach
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B |sensespcpt(n)]
freq(nept) = Z [senses(n) freq(n) (3.22)
newordst (nept)

These frequency counts are employed to acquire probabilities by MLE, i.e. in the same way as de-
scribed in section 3.4.1.1.

The fundamental difference between the word-to-sense approach and the word-to-concept approach
is that given a certain noun, the word-to-sense approach assumes a probability distribution over its
senses:

Z p(nsnsin) =1 (3.23)

nsns€senses(n)

This approach views the WordNet hierarchy as an inventory of concepts with implication relations
among each other. A hyponymy/hyperonymy relation between two concepts indicates that one con-
cept (the hyponym) implies the other (the hyperonym). This means that a concept inherits all the
probability mass of its hyponyms. In particular, since the root of the hierarchy is implied by all con-
cepts, its probability is 1.8

The word-to-concept approach assumes a probability distribution over all the concepts a given noun
belongs to:

Z p(neptin) =1 (3.24)

nepteconcepts(n)

This approach views the WordNet hierarchy as an unsorted pool of concepts which represent a smaller
or larger set of nouns. In this model, hyponymy/hyperonymy relations between concepts indicate a
common (sub)set of nouns providing evidence for these concepts. This model is required for quanti-
ties which are based on probability distributions over the whole inventory of concepts, like Resnik’s
overall preference strength (cf. equation (3.20) on page 67). A consequence of this model which might
be somewhat counterintuitive is that the probability of the root concept is below 1. This is because
probability mass is not completely inherited by, but equally divided among hyperonym:s.

3.4.2.2 ‘KatzFodoresque’ Selectional Preferences

Ribas (cf. (Ribas 1994), (Ribas 1995a), (Ribas 1995b)) basically adopts Resnik’s selectional asso-
ciation measure—actually, he abandons the normalisation by the overall preference strength. But in
contrast to Resnik, he does not keep all noun concepts, but extracts a “representative set”” of concepts
to model the preferential behaviour of a verb. (Resnik calls this kind of representation “more Katz-
Fodoresque selectional restrictions in the form of weighted disjunctions” (Resnik 1997)). To induce
this set, he uses a simple greedy algorithm, which can informally be stated as follows:

8WordNet does not have a singular root concept, but contains a small number of unique beginners, which are the most
general concepts. According to the word-to-sense approach, the probability of these concepts sum to 1. It is straightforward
to create a “virtual” root node if required.
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grammatical relation | ncpt A(present, nept) ‘

subject <causal_agent> 4.15
<organization> 0.45
<city#urban_center> 0.27
<administrative_district> 0.26
<life_form> 0.14
<physical_object> -0.01
object <message#content> 0.57
<psychological_feature> 0.46
<creation> 0.31
<state> 0.24
<activity> 0.11
<attribute> 0.08

Figure 3.8: Selectional preferences for the subject and the object of “present”, acquired by Ribas’
approach

1. Initially, put all noun concepts into the set of candidate concepts.’

2. Select that concept ncpt which has the highest preference value (i.e. the highest selectional
association measure) and insert it into the set of representative concepts.

3. Remove ncpt and all its hyponyms and hyperonyms from the set of candidates.

4. Repeat step 2 and 3 until the set of candidates is empty.

In this way, Ribas yields a set of concepts which is non-redundant in the sense that the concepts
are mutually disjoint; i.e. each noun sense occurring in the data is represented by one and only one
concept in this set. To provide an example, figure 3.8 shows selectional preferences for the subject
and the object of “present”, acquired by Ribas’ approach (cf. (Ribas 1995a)).

As emphasised in section 3.1, a crucial issue is the abstraction level of the extracted concepts. Ribas
(1995a, p. 48) explicitly mentions the importance of acquiring concepts at an adequate generalisation
level. To understand the rationale behind his approach of selecting concepts with respect to that goal,
we have to look more closely at how Ribas calculates the preference values:

t
A(v, nept) = p(nept|v) log p(neptjv)

p(nept)

(v, nept)

B p
= p(nept|v) log p@)p(ncpt) (3.25)

As one can see from equation (3.25), two factors determine the selectional association score. The first
factor, p(ncpt|v), grows when moving up the hierarchy. General concepts have a higher probability
than specific concepts. The second factor turns out to be an information theoretic measure which is
known as the pointwise mutual information:

This is not exactly true. To eliminate noise, Ribas drops concepts whose frequency falls below a certain threshold.
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p(v, nept)
I(v,nept) = log p@)p(ncpt) (3.26)
This measure is widely used to detect collocations (e.g. in (Church & Hanks 1990)). It quantifies
the association of v and ncpt by the ratio of their joint probability according to the corpus and their
expected joint probability under the assumption that v and ncpt are independent, i.e. neither attract
nor repel each other. Actually, this measure tends to favour more specific concepts, for the following
reason: Due to their specificity, their usage contexts are rather restricted compared to general con-
cepts. In particular, they tend to co-occur with a rather limited set of verbs so that their occurrence
probability is highly dependent on the occurrence of these verbs. (Recall McCawley’s “diagonalise”—
“matrix” example.) Thus, the mutual information between these concepts and the verbs with which
they typically co-occur will be high.

Altogether, the selectional association measure in equation (3.25) consists of one factor which favours
general concepts, and one factor which advantages specific concepts. Ribas’ concept selection algo-
rithm is based on the assumption that these factors balance each other in a way that the concepts at
the appropriate generalisation level receive the highest preference values and are thus selected by the
above-mentioned algorithm.

Extracting a set of mutually disjoint concepts to represent selectional preferences has assets and draw-
backs. One main advantage is storage and processing economy. WordNet 1.5 contains more than
60 000 noun concepts. To take into account all concepts, a corresponding number!? of preference
values have to be stored for each argument of each verb. It is obvious that storing only a comparably
small set of concepts and preference values per verb and argument type reduces space requirements
and processing efficiency dramatically. Furthermore, as I already said in section 3.1, for some NLP
tasks it is crucial to encode selectional preferences at an appropriate generalisation level (e.g. seman-
tic inferencing). And, of course, this applies as well for the representation of selectional restrictions
in a “human-readable” form, which matters here, since EuroWordNet can be employed as a valuable
resource for (cross-)linguistic research.

The main drawback is that dropping most of the concepts implies a loss of information which might be
useful for certain NLP applications. For example, a set of concepts induced by the above-mentioned
algorithm can be employed for word sense disambiguation in the same way as Resnik used the com-
plete set of concepts (s.a.). The main difference is that each word sense is captured by one concept
rather than several concepts. It is possible that just those concepts which provide the decisive evidence
for the correct sense of a word are eliminated by the selection algorithm. This would be the case if
those concepts had a descendant which has a higher preference value but which is not a hyperonym
of the correct sense. It is an empirical question to what extent using all concepts enhances the per-
formance of a certain NLP application. Unfortunately, the investigation of this issue goes beyond the
scope of this thesis.

The mutual information component in the selectional association measure brings about an impor-
tant property, namely a clear-cut distinction between preference and dispreference (cf. section 3.1).
Equation (3.26) shows that if a verb v and a concept ncpt attract each other, i.e. co-occur with a
higher probability than it would be assuming independence, then I (v, ncpt) > 0. If, on the contrary,
the two items repel each other, i.e. their joint frequency is below the expected value under the in-
dependence assumption, then (v, nept) < 0. According to equation (3.25), this value is multiplied

190f course, one could drop concepts which have no instance in the training corpus.
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by the probability p(ncpt|v) to obtain the selectional association score. This probability scales the
absolute value of this score, but does not have an impact on its algebraic sign. Thus, we can draw
an obvious borderline to distinguish preferred and dispreferred concepts: a positive association score
indicates preference, a negative score dispreference. Note that this borderline also holds for Resnik’s
selectional association measure (equation (3.21)). As mentioned, Resnik additionally provides a nor-
malisation by the overall preference strength. This normalisation does not influence the algebraic
sign, since the preference strength is always non-negative.

3.4.3 Liand Abe

The approach described in this section provides a theoretically well-founded principle for finding an
appropriate level of generalisation for representing selectional preferences. Therefore, this approach
satisfies the second suitability criterion mentioned in section 3.1 better than all other approaches
presented in this chapter. For this reason, I employed this method as a starting point for developing
my approach for learning selectional preferences.

3.4.3.1 The Minimum Description Length Principle

As Ribas, Li and Abe (cf. (Abe & Li 1996), (Li & Abe 1998)) aim at representing selectional prefer-
ences as a set of concepts at an adequate generalisation level. However, their approach is not based on
simple heuristics, but on a well-founded theoretical account, namely the Minimum Description Length
Principle (MDL) developed by Jorma Rissanen (cf. (Rissanen 1989), (Rissanen & Ristad 1992)). This
principle is motivated by information theory and rests on the assumption that learning corresponds
to data compression: The better one knows which general principles underlie a given data sample,
the better one can make use of them to encode this sample efficiently. For efficient data compression,
it is crucial to identify a probability model which determines the distribution that underlies the data
to be compressed, since this distribution constitutes an efficient coding scheme (cf. section 3.4.1.2).
According to this rationale, to capture the information provided by a data sample, one has to encode

(1) the probability model that determines a coding scheme and

(2) the data themselves (by employing that coding scheme)

The code length needed to encode (1) is called model description length, the code length needed to
encode (2) the data description length. The MDL principle states that the best probability model is
that which achieves the highest data compression, i.e. which minimises the sum of model description
length and data description length. In our case, the sample of data to be encoded consists of the noun
tokens (more exactly, their senses) which appear in a certain syntactic relation of a certain verb v in
the examined corpus. In the subsequent formulae, this sample will be referred to by .5,.

3.4.3.2 A Tree Cut Model

Li and Abe represent the selectional preferences of a verb by a free cut model. Such a model provides
a horizontal cut through the noun hierarchy tree, so that the concepts which are located along this cut
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<life_form>
0.93

<human> <animal> <plant>
9.11 0.53 0.14

<bird> <insect> <primate>
39.02 3243 0.40

Figure 3.9: Two possible tree cut models for the subject of “fly”

form a partition of the noun senses covered by the hierarchy. A tree cut model consists of the concepts
specified by a cut and the numerical preference values for these concepts. Figure 3.9 shows a portion
of the WordNet hierarchy'! —with preference values attached to the individual concepts—and two of
the possible cuts across the hierarchy (indicated by a solid and a dashed line, respectively). Both of
the corresponding tree cut models contain the concepts <human> and <plant>. However, while one
of them contains the concept <animal>, the other one contains the more specific concepts <bird>,
<insect>, and <primate>. This is an artificial example intended to illustrate plausible preference
values (see below) and tree cut models for the subject of “fly”.

In their different papers, Li and Abe propose two ways for calculating the preference values. In the
following, I will concentrate on the alternative which is more suitable for the task of this thesis and
shortly mention the other alternative at the end of this section. In (Abe & Li 1996), selectional pref-
erences are quantified by a measure which Li an Abe call association norm:

p(nept,v)  p(nept|v)

A(v, nept) = p(nept)p(v) — p(nept)

(3.27)

"Strictly speaking, the hierarchy displayed here is a simplification. In the real WordNet taxonomy, <bird>, <insect>,
and <primate> are not immediate hyponyms of <animal>, but occur at a lower level.
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As a notational convention, I will designate probability distributions obtained by simple maximum
likelihood estimation by p(...) and probability distributions estimated in a different way by p(. . .).
In some contexts, this distinction clarifies the description.

Note that this measure is closely related to the mutual information component in the preference value
formulae of Resnik and Ribas (equations (3.21) on page 68 and (3.25) on page 72), the only difference
being that the logarithm function is absent here. In principle, the association norm measures the
association between a verb v and a noun concept ncpt in the same way as mutual information, i.e. by
the ratio of the joint probability and the product of the marginal probabilities of v and ncpt, which
is equivalent to the ratio of the conditional probability of ncpt given v and the probability of ncpt
regardless of a particular verb. In particular, this measure provides an obvious way to distinguish
preferred and dispreferred concepts: A value above 1 indicates preference (v and nept co-occur more
frequently than by chance), a value below 1 dispreference (v and ncpt co-occur less frequently than
by chance).

A tree cut model represents a certain level of generalisation. It abstracts from the concepts below
the cut. In the approach of Li and Abe, this is formalised by the stipulation that the preference value
of a concept on the cut is inherited by its subconcepts. For example, the model indicated by the
dashed line in figure 3.9 inherits the preference value for <animal> (which indicates dispreference)
to its hyponyms. Thus, it abstracts from the fact that some of these hyponyms are preferred by “fly”
(<bird>, <insect>), while others are dispreferred (<primate>). In contrast, the model indicated by
the solid line captures these differentiations, since it generalises at a level below <animal>. Hence.
the generalisation level represented by the solid-line model is more appropriate than the generalisation
level expressed by the dashed-line model.

To select a tree cut model at the appropriate generalisation level, Li and Abe employ the Minimum
Description Length principle (MDL) sketched above. A precondition for the applicability of MDL
here is that a tree cut model determines a probability distribution p(nsns|v) over the senses of the
nouns in the sample 5, (i.e. the senses of the nouns co-occurring with v); this probability distribution
in turn constitutes a coding scheme. Actually, a tree cut model does determine such a distribution,
provided that there is also an estimation of the marginal probabilities p(nsns) of noun senses regard-
less of a particular verb. These marginal probabilities can also be estimated on the basis of a similar
kind of tree cut model by employing the MDL principle (cf. section 3.4.3.3). As noted above, the
association norm of a concept is inherited by its descendants. A concept nsns representing a sense
of a noun in the data is subsumed by exactly one concept ncpt,s,s on the cut (see below). Thus,
p(nsns|v) can be obtained by

p(nsnslv) = A(v,nsns)p(nsns) = A(v, ncptysns)p(nsns) (3.28)

A probability estimation according to this equation (i.e. a unique substitution of A(v,nsns) by
A(v, neptpsns)) is only possible if for each noun sense there is a unique concept on the cut that
subsumes this sense and thus represents it. In other words, a tree cut has to define a partition over
the noun senses covered by the concept hierarchy. To ensure this, the structure of the hierarchy must
exhibit two properties, which are basically not met by WordNet: First, the hierarchy must be a pure
tree, i.e. all concepts (except the root) must have exactly one parent. This is necessary to guarantee
that no noun sense is represented by multiple concepts on the cut (which would be the case if the
cut contained two or more parents of a concept). Secondly, the noun senses must be represented by
leaf nodes in the hierarchy, while the inner nodes represent more abstract concepts. This is required
to ensure that all noun senses are below the cut and thus subsumed by a concept on it. As noted, the
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WordNet noun hierarchy does not meet either condition. Firstly, it does not have a pure tree structure,
but a DAG structure, i.e. some concepts have more than one immediate hyperonym. Secondly, as
discussed in section 1.2.1, WordNet synsets simultaneously represent both word senses and abstract
concepts: on the one hand, a synset models a particular sense of those words that are a member of it.
On the other hand, a synset models an abstraction over those synsets that are descendants (hyponyms)
of it. The tree cut approach requires that these two representational functions of WordNet nodes are
separated as described above. Fortunately, there are several ways to transform the WordNet hierarchy
in a way that makes it suitable for the tree cut approach. I will address this issue in detail in section
5.3.

To apply the MDL principle, it is necessary that the concepts constituting a tree cut model capture
the complete probability mass of all the noun senses co-occurring with the examined verb. Otherwise
this model could not properly determine a probability distribution over these noun senses. For this
reason, Li and Abe employ the word-to-sense approach, since this approach completely propagates
the frequencies (and thus the probability mass) of the noun senses at the leaves to the upward concepts
in the hierarchy so that a concept which is located on the cut inherits the complete probability mass
from its descendant leaves.

For selecting a tree cut model, the MDL principle is applied as follows: The number of bits L(M)
required to encode a sample .S, (i.e. a sample consisting of all noun senses co-occurring with the
examined verb v) using a tree cut model M is given by

L(M) = Lyoq(M) 4 Laqt (M) (3.29)

with

Lynod(M) = Leyt (M) + Lpgr (M) (3.30)

L(M) is the sum of L,,,,q(M ), the model description length (the number of bits needed to encode the
tree cut model M), and Ly, (M), the data description length (the number of bits needed to encode
the sample S, by employing the coding scheme determined by M). Following the MDL principle,
we search for the model M that minimises L(M ). The encoding of the tree cut model consists of two
parts. The first part identifies the cut through the hierarchy. The code length needed for this part is
Lyt (M). The second part encodes the parameters of the model, i.e. the association norms (preference
values) assigned to the concepts on the cut. The code length needed for that is Ly, (M ). Thus, the
model description length L,,,,q(M ) is the sum of these two code lengths.

For simplicity, it is assumed that all possible cuts through the hierarchy are equally probable. In
section 3.4.1.2, I explained that the optimal code length for an item depends on the probability of that
item. Therefore, if all possible cuts have the same probability, then the code length L ., is constant for
all cuts. For the task of minimising the description length, we can neglect this constant term. In other
words, this task can be reduced to minimising the sum of the parameter description length L4, (M)
and the data description length L g4 (M ).

Encoding the parameters of the tree cut model amounts to encoding the association norm of each
concept on the cut. Association norms are real numbers. This raises the question with which precision
these numbers should be represented, i.e. how many bits should be spent to encode the decimal places
of each association norm. This issue implies a trade-off: On the one hand, a higher precision leads
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to a higher parameter description length, since more bits are required to encode the parameters. On
the other hand, a higher precision reduces the data description length, because it results in a more
precise probability estimation, which in turn yields a more accurate coding scheme. Conversely, a
lower precision decreases the parameter description length, but increases the data description length.
Li and Abe calculate L;q, (M) as:

Lpar(M) = K (k’gTw”'> (3.31)

K is the number of parameters in M (i.e. the number of concepts on the cut) and |.S,| is the sample
size. This formula means that for every concept on the cut, the association norm is represented by
logTw“' bits. This precision yields the optimum w.r.t. the trade-off just mentioned: it minimises L (M)
given a model M (cf. (Rissanen & Ristad 1992) for a proof).

The data description length is given by

Lgat(M) = — Z log pasr(nsns|v) (3.32)

nsnscS,

where Py is the probability distribution over noun senses derived from M. This equation follows
from the information-theoretic principles sketched in section 3.4.1.2: According to the optimal cod-
ing scheme determined by pjs, each member nsns of S, is encoded by —logpy(nsnsjv) =
og m bits. The sum of the codes for all these members yields L j,: (M ).

Overall, the rationale behind the tree cut approach is as follows: If the tree cut is located near the root,
then the model contains only few concepts and the model description length will be low. However,
the data description length will be high because the code for the data is based on the probability
distribution determined by the concepts in the model, not on the real probability distribution of the
noun senses. The coarser the model is, the more the corresponding distribution p j; deviates from the
real distribution. And the more the supposed distribution deviates from the real one, the less efficient
the coding scheme, and thus, the longer the code. On the other hand, if the tree cut is located near the
leaves, the reverse is true: the fine-grained model fits the data well, resulting in an efficient coding
scheme and thus a low data description length; but the large amount of concepts increases the model
description length. Minimising the sum of these two description lengths yields a balance between
compactness (expressing generalisation) and accuracy (fitting the data) of the model.

To acquire the tree cut model, Li and Abe perform a top-down search through the WordNet noun
hierarchy. The search algorithm will be described in detail in section 3.4.3.4. Figure 3.10 shows a
portion of the tree cut model Li and Abe acquired for the object of “buy”.

3.4.3.3 Alternative Kinds of Preference Values

In (Li & Abe 1995) and (Li & Abe 1998), Li and Abe do not use the association norm of equation
(3.27) but the plain posterior probability p(ncpt|v) to quantify the preference of a concept nept by
a verb v. In these papers, they acquire a tree cut model which represents the preferences of a verb
in an analogous way as sketched above. The difference is that the preference values assigned to the
concepts on the cut are probabilities rather than association norms. The model description length can
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nept A(buy, nept) ‘

<property > 3.97
<liability > 0.81
<asset> 3.38
<object> 2.15
<life_form> 0.73
<act> 0.88

Figure 3.10: Part of the tree cut model for the object of “buy”, acquired following (Li and Abe 1996).
The concepts are ordered due to their adjacency in the hierarchy.

nept p(nept|buy) ‘
<asset> 0.10
<object> 0.30
<person> 0.02
<plant> 0.01
<action> 0.01
<activity> 0.02
<allotment> 0.03
<commerce> 0.01

Figure 3.11: Part of the tree cut model for the object of “buy”, acquired following (Li & Abe 1995).
The concepts are ordered due to their adjacency in the hierarchy.

be calculated as described above, since association norms and probabilities are encoded in the same
way (as binary representations of real numbers). Regarding the data description length, Li and Abe
stipulate that the probability of a concept on the cut is distributed equally among the senses which are
subsumed by that concept. According to this assumption, a tree cut model determines a probability
distribution over noun senses in the following way:

p(nsnslv) = (neptpsns|v) (3.33)

— P
‘ncptnsns ’

where ncpt,sns is the concept on the cut which subsumes nsns and [nept,s,s| is the number of noun
senses which are subsumed by ncpt, sns-

Figure 3.11 shows the portion of the tree cut model for the object of “buy” that corresponds to the
portion displayed in figure 3.10, this time acquired by the alternative approach just sketched. (Both
models originate from (Abe & Li 1996).)

The “probability tree cut approach” outlined here is employed for the “association norm tree cut
approach” to estimate the marginal probabilities p(ncpt) which are required to determine association
norms (cf. equation (3.27)) and noun sense probabilities (cf. equation (3.28)). The data sample used to
estimate these marginals comprises all nouns which occur in a certain grammatical relation, regardless
of a particular verb. Again, I refer the reader to section 3.4.3.4 for algorithmic details.
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A comparison of the models in figure 3.10 and figure 3.11, which are based on the same training
sample, illustrates that the two approaches yield different tree cuts. The cut in figure 3.11 is partially
more specific. In particular, <person> and <plant> in figure 3.11 correspond to <life_form> in
figure 3.10; likewise, <action>, <activity>, <allotment>, and <commerce>> correspond to <act>.
This difference reflects the fact that the two kinds of preference values model different ideas of pref-
erence. The probability p(ncpt|v) models selectional preference as an absolute quantity: a concept
which is more likely to co-occur with a verb receives a higher preference value than a concept whose

co-occurrence is less likely. In contrast, the ratio plncptlv)

o(nepd) models the preference of a concept ncpt
by a verb v relative to the overall occurrence rate of ncpt. In other words, this measure quantifies to
what extent a verb attracts a concept over average or below average, respectively. Thus, if p(nept|v)
is rather low, but exceeds p(ncpt) significantly, then ncpt receives a high preference value. If, on the
other hand, the co-occurrence of ncpt and v is quite likely, but less likely than the overall occurrence

of nept, then a low preference value is assigned.

To demonstrate the consequences of these different views of preference, let us assume two concepts
nepty and nepty and a verb v with the following probabilities: p(nepty|v) = 0.002, p(nepte|v) = 0.1,
p(nepti) = 0.001, and p(nepta) = 0.2. If one models selectional preference as an absolute quantity,
the preference value of ncpt; is 0.002, which is one fiftieth of the preference value of ncpto (0.1). If,
however, one models selectional preference as a relative concept, the preference value of ncpt is 2,
which is four times as high as the value of ncpts, namely 0.5. One might object against the relative
model that it seems counterintuitive to assign a higher preference value to that concept which co-
occurs significantly less frequently with a verb. On the other hand, it is reasonable that the preference
values reflect the peculiar impact which the verb in question imposes on the “semantic distribution” of
its arguments. Some concepts a priori have a higher occurrence probability than others, just because
they tend to be more salient in human communication (e.g. the concept <human> itself). The relative
view of preference eliminates this a priori bias, while the absolute view maintains it. Both alternatives
are intuitively justifiable.

With respect to the task of this thesis, the relative preference model has the advantage that it naturally
distinguishes preference and dispreference (s.a.). In this way, it accounts for the categorical aspect of
selection (cf. section 3.1). In the absolute model, the preference value is a probability, i.e. a number
between O and 1. It is not straightforward to fix intervals of preference and dispreference within this
range. A stipulation of such intervals is necessarily arbitrary.

3.4.3.4 The Acquisition Algorithm

This section provides a detailed description of the algorithm for acquiring tree cut models by means of
the MDL principle to represent selectional preferences. This algorithm was essentially adopted from
(Abe & Li 1996). I will discuss it in extenso because, as mentioned above, I have basically employed
this approach for my work. In particular, I have implemented the algorithm presented here. It forms
the core of my method for acquiring selectional preferences.

The data which form the input for the algorithm have been obtained from training data which consist
of (v,n) pairs where v is a verb form and n is a noun form, and v and n are connected via a fixed
grammatical relation (e.g. object). In a preprocessing step, the noun forms are mapped to the corre-
sponding WordNet concepts by the word-to-sense approach (cf. section 3.4.2.1), i.e. the frequency of
a noun is equally divided among all WordNet concepts which represent a sense of it; then the fre-
quency counts of noun senses collected in this way are propagated upwards in the hierarchy to those
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concepts that subsume the respective senses.

In the following, S denotes the sample of the senses of all nouns which occur in the data (regardless
of a particular verb), .S, the sample of all noun senses which co-occur with a certain verb v, and ¢ a
node in the WordNet noun hierarchy (the latter notation reflects the property of a node to dominate a
sub-tree in the hierarchy) 12,

The algorithm requires the following quantitative data:

e the frequency count (¢, S) of each concept ¢ in the sample S (as obtained from the training
data by the word-to-sense approach)

e the total count (size) |S| of the sample S

e the cardinality |¢| of each concept ¢, i.e. the number of noun senses (leaves in the hierarchy)
which are subsumed by ¢

e the frequency count (¢, .S,) of each concept ¢ in the sample S, (as obtained by the word-to-
sense approach)

e the total count (size) |.S,| of the sample S,

The quantities f(¢, .5), |S|, and |¢| are required to retrieve a tree cut model that determines the marginal
probabilities p(t) as sketched in section 3.4.3.3. These probabilities and the quantities #(¢,.5,) and
|Sy| are required to retrieve the association norm tree cut model that represents the selectional prefer-
ences of v (cf. section 3.4.3.2). I will explain the details of their acquisition below.

Figures 3.12 and 3.14-3.16 contain a pseudo-code of the learning algorithm. As regards content, this
pseudo-code is virtually identical to the code provided in (Abe & Li 1996). I make some algorithmic
details and distinctions explicit which were implicitly given in their pseudo-code. For example, I
notationally distinguish between, on the one hand, probabilities p and association norms A—which
are single real numbers—and, on the other hand, tree cut models p.,; and A.,;—which comprise a
set of concepts with associated probabilities or association norms. Furthermore, the code presented
here reflects some details of my own implementation (which are compatible to the algorithm of Abe
and Li).

Figure 3.12 shows the main procedure of the algorithm. This algorithm receives as input a set verbs
that contains the verbs for which selectional preferences shall be learned. The sample S is globally
accessible (1.). The same applies to the root nodes of the hierarchy wn_roots (2.). As noted in section
3.4.2.1, the WordNet hierarchy does not have a singular root node. It rather has a small number of
root nodes, i.e. very abstract concepts which do not have a hyperonym themselves. In the WordNet
terminology, these nodes are called unique beginners. Figure 3.13 lists the unique beginners of Word-
Net 1.5. Of course, it is possible to “virtually add” an absolute root node to the WordNet hierarchy.
Indeed, Li and Abe as well as McCarthy (2001) implemented this alternative. I decided not to do so,
because an absolute root node by definition represents no information at all.

"2To a large extent, the notation used in this section is borrowed from (Abe & Li 1996). This facilitates the comparison
of my presentation with the presentation of Li and Abe. Furthermore, some minor notational errors in the pseudo-code
presented by Li and Abe can straightforwardly be identified and corrected in this way.
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algorithm Assoc-MDL(verbs)

global const S

global const wn_roots

glObal ﬁclosure

for each t; € wn_roots
v; := Find-MDL(t;)
Peut *= append(7;)

for each t; € wn_roots
Calc-p-Closure(t;, peut)
/* calculates Pejosure ¥/

9.  for each v € verbs

10. for each t; € wn_roots

PN R W=

11. v; := Find-Assoc-MDL(v, t;)
12. Acut = aPPend(%')
13. output(Acyt)

Figure 3.12: The main procedure of the basic algorithm to learn tree cut models

<phenomenon>
<possession>

< group#grouping>
<act#human_action#human_activity >
<event>

<state>

<shape#form>
<location>

< abstraction>
<psychological_feature>
<entity>

Figure 3.13: The unique beginners in the WordNet 1.5 noun hierarchy
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sub-procedure Find-MDL(¢)

p(t) = ﬁ(&q)

if ¢ is a leaf node
then return(([t], p(¢)))
else
for each child ¢; of ¢
Yi = Fil’ld—MDL(tl')
7 := append(v;)
if #(¢, S)(— log %) + $1log|S| <
S ieq Hti $)(— log HEd) + Bliog ||
9. then return(([t], p(¢)))
10. else return(vy)

© NNk W =

Figure 3.14: The sub-procedure Find-MDL

The first part (4.-8.) of the algorithm (cf. figure 3.12) estimates the marginal probabilities p(¢) based
on the total sample S. This part has two sub-parts: Steps 4.—6. acquire a tree cut model p,,; that com-
prises a set of concepts ¢ and associated probabilities p(t). This is done by applying the sub-procedure
Find-MDL separately to each root node in the hierarchy (i.e. <phenomenon>, <possession>, etc).
This procedure processes the subtree dominated by the respective root and returns the best tree cut
model (w.r.t. the MDL principle) for encoding the noun senses captured by that tree. Concatenating
the cuts corresponding to the different unique beginners yields the model p.,; for the total hierarchy.
This model determines the probability p(t) for any concept t. Therefore, steps 7.—8. employ p eyt to
compute the probabilities for all concepts by the sub-procedure Calc-p-Closure, which again starts
from each root node. The probabilities are stored in Pjysure. Since they are needed in the second part
of the algorithm, p.jys.re 1S globally accessible (3.).

The second part of the algorithm (9.—13.) acquires for each verb v in verbs (9.) the association norm
tree cut model A.,; which represents the selectional preferences of v. Analogously to Find-MDL, the
sub-procedure Find-Assoc-MDL acquires a cut for each subtree spanned by a root node (10.-11.);
concatenating these cuts yields the complete model (12.), which is finally output (13.).

Figure 3.14 displays the sub-procedure Find-MDL. This procedure receives as input a concept ¢
and acquires a “local” tree cut model for the subtree spanned by ¢. For example, when applied to
<person>, Find-MDL obtains a tree cut model that contains concepts subsumed by <person>, i.e.
concepts representing some kind of person. This model is acquired following the method proposed
in (Li & Abe 1998) (cf. section 3.4.3.3). It comprises a cut through the respective subtree and the
marginal probabilities of the concepts on that cut. The subtree dominated by ¢ is processed top-down.
First, the probability p(t) is computed by simple MLE, i.e. by the ratio % (1.). If t is a leaf node, >
then we have the trivial case that the tree to be processed solely consists of the node ¢. In this case,
the only possible tree cut model ([¢], p()) is returned (2.-3.). Otherwise (if ¢ is an inner node), Find-
MDL is recursively applied to each child of ¢ and the resulting tree cut models are concatenated
(5.=7.). Thus, the resulting model - is the optimal solution among all possible cuts below ¢. For

There are two different situations in which ¢ is considered a leaf: first, ¢ does not have hyponyms in the hierarchy;
second, ¢ has hyponym concepts, but these concepts do not cover any sense in S.
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sub-procedure calc-p-closure(t, pcy:)

1. for each child ¢; of t

2. calc-p-closure(t;, peut)

3. if ¢t is contained in pcy¢

I* Pelosure(t) is directly defined by peyt */
then ﬁclosure(t) = p(t)

else if ¢ is above the cut defined by p.:

then ﬁclosure(t) = ZtiEchildren(t) ﬁclosure(ti)

else pclosure(t) = Wﬁclosm‘e(mmﬁhmﬂ(t»

N ok

Figure 3.15: The sub-procedure Calc-p-Closure

example, for the subtree dominated by <life_form>, v could comprise the immediate hyponyms
(<person>, <plant>, <animal>,...), or concepts deeper in the hierarchy (<child>, <woman>,
<flower>, <bird>, <insect>,...) or concepts from different abstraction levels (<person>, <plant>,
<bird>, <insect>,...) There is only one possibility that has not been checked by the recursive calls
of the procedure: the cut which just comprises the root ¢ (in the example, <person>). Step 8. com-
pares the code lengths needed to encode the noun senses covered by the subtree when employing the
tree cut model ([t], p(t)) or -, respectively. Following equation (3.31) on page 78, the model descrip-
tion length is 3 log |S| for ([t],p(t)) and % log | S| for y. As mentioned in section 3.4.3.3, the tree cut
model determines a probability distribution over noun senses by equally dividing the probability mass
of a concept on the cut among all senses which this concept dominates (cf. equation (3.33) on page
79). Thus, the probability of a noun sense dominated by a concept ¢; on a cut is plgtj) (For example,
suppose <bird> is part of the model with a probability of 0.07, and this concept subsumes 15 nodes
which represent noun senses occurring in S. Then the probability for each of these senses is estimated
as 01_057‘) Taking the negative logarithm to determine the corresponding code length for each instance
(cf. section 3.4.1.2) and multiplying that code length by the number of instances in S covered by ¢;
yields a data description length of #(¢;,S)(— log p‘gt;')) for each concept ¢; on the cut. (For example,
if the frequency of <bird> is 74, the code length for describing the senses subsumed by <bird> is
74 x (—log Oi—%7 .) Summing the data description lengths corresponding to all concepts on each of the
two cuts (this is trivial for ([t], p(¢)), which contains only one concept) yields the respective total data
description lengths. Finally, that tree cut model which yields the smallest total code length (model
description length + data description length) is returned by Find-MDL (9.-10.).

Figure 3.15 shows the sub-procedure Calc-p-Closure.'* This procedure receives as input a concept ¢
and the tree cut model p.,; acquired by Find-MDL. It employs this model to calculate the marginal
probabilities Pcjosure Of ¢ and its hyponyms. In steps 1.-2., Calc-p-Closure is recursively applied to
each child of t. Thus, Pejosure is computed for all descendants of ¢. Steps 3.—7. calculate P josure(t)-
There are three possible cases: If ¢ is located on the cut defined by p.y, then the corresponding
probability pe,:(t) is assigned to peosure(t) (3.—4.). (For example, assume that <bird> is part of p
with the probability 0.07. Then this probability is adopted for <bird> in P osure.) If ¢ is located above
the cut defined by p.,. in the hierarchy, then the tree cut model does not affect the probability estimate
for t. Perosure(t) can just be obtained by summing the probabilities of the children of ¢ (5.—6.). This is

"This procedure is not explicitly part of the pseudo-code presented in (Abe & Li 1996). However, the inductive definition
of Peiosure implemented in 3.—7. is provided in that paper.
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sub-procedure Find-Assoc-MDL(v, t)
/* v determines sample S, */
h(tlo) == E)
Av,1) = gty
if ¢ is a leaf node
then return(([t], A(v,t)))
else let 7 := children(t)
for each child t; € 7 of t
v, := Find-Assoc-MDL(v, t;)
7 = append(7;)
if (¢, S,)(— log A(v, 1)) + 3 log | Sy <
St e bty Su)(—log A, 1)) + Zlog S, |
10. then return(([t], A(v,1)))
11. else return(vy)

VXN kWD =

Figure 3.16: The sub-procedure Find-Assoc-MDL

equivalent to the upward propagation of frequency counts in the word-to-sense approach. Finally, if
t is below the cut defined by peyt, then peosure(t) is determined by the tree cut model. As noted, the
probability of a concept on the cut is equally divided among the senses (i.e. leaves of the hierarchy)
which are captured by that concept. Each concept below the cut ¢;; is a descendant of a certain
concept on the cut ¢.,; and covers a subset of senses covered by that concept. Thus, the probability
of e is equal to the probability of ¢.,; times the proportion of senses that the descendant captures,

ie. “Z’zi ‘|. (For example, suppose the concept <parrot> subsumes 2 nodes which represent senses
occurring in the sample. The concept representing <parrot> in pcy¢, <bird>, subsumes 15 sense
nodes. Then the probability of <parrot> is estimated as 0.07 x %.) Note that this interrelation holds
between tp; and each of its ancestor concepts which are below or on the cut, since the probabilities
of these concepts are defined accordingly. In particular, there is the following relationship between

tyer and its parent (immediate hyperonym):

[tbei|

_ (3.34)
[parent (tye)|

ﬁclosure (tbel ) = ﬁclosure (Pamnt (tbel ) )

Step 7. calculates pjosure(t) according to equation (3.34).

Figure 3.16 displays the sub-procedure Find-Assoc-MDL. It gets as input a verb v and a concept
t. It acquires a “local” association norm tree cut model (w.r.t. the sample S,,) through the subtree
dominated by ¢. This procedure has a structure which is analogous to the structure of Find-MDL. In
step 1., the probability h(t|v) is calculated by MLE.!> Step 2. computes A(v, t) according to equation
(3.27) on page 75, i.e. by dividing h(t|v) by Peiosure(t) (Which, as noted above, is globally accessible).
Note that it is this step which makes it necessary to acquire pcy: and Pejosure: Since every node in the
hierarchy is processed by Find-Assoc-MDL, there must be a marginal probability estimate for every

'>The notation h(...), adopted from (Abe & Li 1996), obviously stands for hypothesis. h(t|v) determines A(v,t). Find-
Assoc-MDL evaluates the hypothesis that ([¢t], A(v, t)) is part of the optimal tree cut model for v.
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concept. If ¢ is a leaf, then the tree cut model ([t], A(v,t)) is returned (3.—4.), else Find-Assoc-MDL
is recursively applied to the children of ¢, yielding the tree cut model v (6.-8.). Then, as in Find-MDL,
the procedure compares the code lengths that ([t], A(v,t)) and -y require for encoding the senses in
S, which are captured by ¢ and its descendants (9.). (Here, on both sides of the inequation, the first
addend calculates the data description length, the second addend the model description length.) A
remark concerning the data description length is necessary here: This length is given by

Ly = Z — log h(nsns|v) (3.35)
= Z —log(A(v, tnsns) X Pelosure(nsns)) (3.36)
= Y —10g(A(v, tnsns)) + Y — 108 Petosure (nsns) (3.37)

Equation (3.35) corresponds to equation (3.32) on page 78; equation (3.36) follows from equation
(3.28) on page 76 (t,sns 1s the concept on the cut that represents nsns), and equation (3.37) follows
from properties of the logarithm. As the second addend of this equation ) . . —10g Peiosure(n515)
does not change with the choice of A (and hence is constant for each tree cut model), this addend can
be dropped when calculating and comparing the code lengths for the two cuts. Thus, in step 9. it is
correct to add up the negative logarithms of the association norms — log A(v, t;) for each concept ¢;
instead of employing the corresponding sense probabilities.

Finally, the tree cut model yielding the smallest code length is returned (10.-11.)

For the sake of completeness, I briefly mention a couple of minor notational errors in the pseudo-code
in (Abe & Li 1996) and the corresponding pieces in the code presented here (the line numbers without
parentheses refer to my pseudo-code, while those in parentheses refer to the code of Li and Abe):

e Find-MDL, line 8 (6): _,, ., instead of >, ¢ pi1qren(t)

e Find-Assoc-MDL, line 9 (9): >, ., instead of >,

e Find-Assoc-MDL, line 9 (9): % instead of @

Note that in Find-MDL and Find-Assoc-MDL, the selection of the appropriate cut is performed lo-
cally, i.e. the choice of a cut for a particular subtree does not depend on the choice of a cut for a
different subtree. This local selection is possible because of the employed coding scheme: For the
model description, (the parameter of) each concept on the cut is encoded separately.The identification
of the cut itself is defined to have a constant code length for all possibilities, which does not affect
the choice of the cut. Concerning the data description, since the hierarchy is required to be a pure
tree with the word senses located at the leaves, it is guaranteed that two disjoint subtrees cover two
disjoint sets of word senses. Thus, the decision which cut is optimal to encode the portion of the
sample that is covered by a particular subtree can be made locally. Due to this locality property, the
learning algorithm has polynomial complexity. More precisely, it is linear in the number of leaves of
the hierarchy tree. Without the locality feature, the algorithm would have to consider every possible
global cut, which would yield an exponential complexity.
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3.4.4 Agirre and Martinez

Agirre & Martinez (2002) apply the word-to-concept approach to obtain frequencies and MLE prob-
abilities. They extract their training data from SemCor (Miller et al. 1993), a corpus which is se-
mantically tagged with WordNet senses. Thus, since they do not have to deal with the ambiguity of
word forms, they only assign credit to the correct (i.e. the annotated) sense of a word instance and the
hyperonyms of this sense.

As in (Li & Abe 1998), Agirre and Martinez quantify selectional preference by the conditional prob-
ability p(ncpt|v). The basic idea of their approach is that this probability is estimated by taking into
account the conditional MLE probabilities of ncpt and all its hyperonyms given v, instead of just
adopting the MLE probability p(ncpt|v). The motivation for this is to face the sparse data problem:
for rare concepts, plain co-occurrence frequencies with a certain verb may not provide a reliable basis
for estimating their preference values. In particular, it can be the case that a very specific concept
which is preferred by a verb does not at all co-occur with that verb in the training data, just due to
its generally infrequent usage. However, the hyperonyms of such a concept provide evidence for its
preference (or dispreference). For example, it could be that the concept <chicken> never occurs as
the object of “eat” in the data, but its hyperonym <food> occurs frequently at this position. In this
case, <food> provides evidence for the preference of <chicken>.

Formally, Agirre and Martinez estimate p(ncpt|v) in the following way: '°

p(neptlv) = Z p(nept|nept’) x p(nept’ |v) (3.38)
nept /*nept!

This is the sum of the probabilities p(ncpt’|v) for each nept’ subsuming nept. Each of these proba-

bilities is weighted by the conditional probability of ncpt given its hyperonym ncpt’, which is simply
freg(ncpt)
freq(nept’)
by the word-to-concept approach. With the word-to-sense approach, the probabilities p(ncpt’|v) of

each hyperonym ncpt’ would comprise probability mass inherited from its subconcepts, e.g. the prob-
ability mass of ncpt (which constitutes p(nept|v)). However, as equation (3.38) sums over all ances-
tors of ncpt, the same (inherited) probability mass would be added several times (though with dif-
fering weights). Thus, the word-to-sense approach would be inappropriate here. In contrast, with the
word-to-concept approach frequency counts (and hence probability mass) is not inherited, but equally
divided among ncpt and its ancestors. This has the consequence that each addend in equation (3.38)
corresponds to the portion of probability mass that ncpt’ receives due to the occurrence of ncpt in the
data. Thus, it is appropriate to add up all these portions to retrieve p(ncpt|v).

estimated by the ratio . Note that this estimation requires that the frequencies are obtained

In section 3.1, I mentioned that techniques for learning selectional preferences of verb forms can
easily be extended to acquire preferences of verb concepts as well. Agirre and Martinez propose two
ways to do this. The first alternative is straightforward: Instead of employing probabilities conditioned
by verb forms p(ncpt’|v), they employ probabilities conditioned by the corresponding verb concepts
p(nept’|vsns). Since they use a corpus which is tagged with WordNet concepts, the latter probabilities
can be obtained in the same way from the data as the former. Thus, the formula used for this alternative
is analogous to equation (3.38):

'“The corresponding formula in (Agirre & Martinez 2002) is misleading because the difference between p(ncpt|v) and
p(ncpt’|v) is not made explicit.
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p(nept|vsns) = Z p(nept|nept’) x p(nept’ |vsns) (3.39)
nept /*nept!

It would also be possible to apply this alternative when using a corpus which is not semantically
annotated. This requires a mapping from verb forms to their senses, i.e. probability distributions of
the form p(vsns|v). Section 5.2 will address the estimation of these distributions.

The second way which Agirre and Martinez propose for learning preferences of a verb concept takes
into account the ancestors of this verb concept in the same way as for noun concepts:

p(neptlvept) = Z Z p(nept|nept’) x p(vept|vept’) x p(nept'|vept’) — (3.40)
nept’ /*nept vept! /*vept

According to this approach, the selectional preferences of the hyperonyms of a verb concept pro-
vide evidence for the selectional preferences of that concept. Again, the rationale behind this is to
overcome data sparseness. For example, if the concept <devour> never takes the object <chicken>
in the corpus, but there is a high probability p(<chicken>|<ingest>), then equation (3.40) infers
that <chicken> is preferred by <devour> to a certain extent, since <ingest> is a hyperonym of
<devour>.

As Agirre and Martinez aim at integrating selectional preferences in WordNet, they have to apply a
method to select a representative set of relations between verb and noun concepts in order to avoid
redundancy and include only those links with the highest preference values. They employ a pruning
algorithm which in essence is identical to Ribas’ greedy algorithm for concept selection.!” However,
they propose an extension of this algorithm to (vept, nept) pairs: From the candidate space, which
initially comprises all pairs, select the pair (vept, nept) with the highest preference value; remove all
pairs (vept’, nept’) from the candidate space where either vept’ subsumes vept and nept’ subsumes
nept, or vept’ is subsumed by vept and nept’ is subsumed by ncpt; repeat these steps until the
candidate space is empty.

Figure 3.17 shows selectional preferences for the object of two different senses of “know”, acquired
with and without generalising over verb hyperonyms, i.e. according to equation (3.39) and (3.40),
respectively. The results for <have_sex#know> illustrate the potential of the approach to overcome
data sparseness: As this concept does not occur in the training corpus, only the generalisation over its
hyperonyms enables the acquisition of selectional preferences.

The strategy of interpolating concept probabilities by employing the probabilities of the concept’s
ancestors can be very helpful for certain NLP tasks. (Agirre & Martinez 2002) report WSD experi-
ments in which the application of this mixture model, which accounts for unseen data, significantly
improves recall. Regarding the task of this thesis, this approach is problematic if applied to verb con-
cepts. To understand why this is the case, let me cite some interesting general considerations and

7One can justify the suitability of this algorithm w.r.t. the acquired generalisation level of selectional preferences in an
analogous manner as for Ribas’ approach. Like Ribas’ association score, the formulae for the preference value proposed
by (Agirre & Martinez 2002) contains one factor which favours specific noun concepts, namely p(ncpt|ncpt’), and one
factor which favours general concepts, namely p(ncpt’|vsns) or p(ncpt’|vept’), respectively. Thus, it is reasonable that
the combination of these factors yields the highest preference values at the appropriate generalisation level.
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without verb concept generalisation with verb concept generalisation

vept nept p(neptlvept) | nept p(neptlvept)
<know#cognise> <communication> 0.1128 | <abstraction> 0.1030
<quantity#amount> 0.0615 | <cognition#knowledge> 0.0386

<attribute> 0.0535 | <physical_object> 0.0333

<physical_object> 0.0389 | <act#human_action> 0.0198
<cognition#knowledge> 0.0307 | <group> 0.0183

<have_sex#know > <person> 0.6798
<egg> 0.1793

<physical_object> 0.1254

<body_part> 0.0193

Figure 3.17: Selectional preferences for the object of different senses of “know”, with and without
generalising over the verb hyperonyms

examples pointed out by Fellbaum (1990). These considerations address the correlation between the
specificity of verbs in the WordNet hierarchy and the specificity of their selectional restrictions:

As one descends in the verb hierarchy, the variety of nouns that the verbs on a given level
can take as potential arguments decreases. This seems to be a function of the increasing
elaboration and meaning specificity of the verb. Thus, walk can take a subject referring
either to a person or an animal; most troponyms [i.e. hyponyms, AW] of walk, however,
are restricted to human subjects. And goose-stepping is usually, though not necessarily,
done by soldiers; this verb rarely takes children or old people as arguments. On the other
hand, {move, travel} can take not only person or animal subjects, but also vehicles, or
objects moved by external forces. Similarly, figures or pictures can communicate and
talk, they can even deceive or lie, but they cannot fib or perjure themselves, as only
human speakers can. A piece of news may hit, fouch or even grab you, but it cannot

punch, stroke or collar you; only people can be agents of these verbs. (Fellbaum 1990, p.
49)

Thus, predicting the preferences of a verb concept (e.g. <walk>) by using the preferences of its
ancestors (e.g. <move#travel>) is likely to indicate noun concepts as preferred which are outside the
specific range of preferences of the concept in question (e.g. <vehicle>). In figure 3.17, some of the
preferences for <have_sex#know>, like <physical_object>, are inappropriately acquired because of
this generalisation strategy. They are introduced by the hyperonyms <join> and <connect>.'® After
all, these concepts receive lower preference values than the correct concept <person>.

Therefore, acquiring selectional preferences by generalising over verb concepts may be helpful for
NLP tasks for which coverage matters more than appropriate generalisation. For the task of this
thesis, this possibility turns out to be inappropriate. In contrast, estimating the probability of noun
concepts by taking into account their hyperonyms is not a priori problematic w.r.t. this task. Note that
Li and Abe determine the probability of a noun concept below the cut by employing the probability

'8 <egg> is acquired due to a parsing error.
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of its hyperonym on the cut. The crucial point is that the concept which determines the probability
estimation of its subconcepts is at the appropriate generalisation level. The approach described in the
following section explicitly addresses this issue.

3.4.5 Clark and Weir

The basic idea of the approach proposed by Clark & Weir (2002) estimates the probability p(ncpt|v)
by means of a corresponding probability of one of its hyperonyms ncpt’. The rationale behind this is
that a probability attributed to a concept which is higher in the hierarchy (and hence more frequent)
can be estimated more reliably by MLE than a concept which is low in the hierarchy. (Clark and Weir
employ the word-to-sense approach to retrieve frequency counts and MLE probabilities.) Of course,
the probability p(ncpt’|v) itself is not suitable to approximate p(ncpt|v), since in general, it is much
higher. However, this does not apply for probabilities of the form p(v|ncpt), which do not condition
on the verb, but on the noun concept. For example, it is reasonable to assume that the probability
p(run|<dog>) can be satisfactorily estimated by p(run|<canine>), or even by p(run|<animal>).
Thus, if we have a concept nept’ that is a hyperonym of nept and if p(v|nept’) is a good approxima-
tion of p(v|ncpt), then we can use p(v|nept’) to estimate p(nept|v) in the following way:

pneptl) = p(olnept) (p"(ff;t) (3.41)
- »\, P(nept)
~ p(v|nept’) o) (3.42)

(3.41) follows from Bayes’ law. In (3.42), p(v|ncpt) is replaced by p(v|ncpt’).

This approach requires to find for each concept ncpt, given a verb v, an appropriate hyperonym
(henceforth indicated by top(ncpt,v)) which on the one hand is as general as possible and on the
other hand is suitable to estimate p(v|ncpt) as explained above. (For example, p(run|<entity>) would
be a bad approximation for p(run|<dog>).) Clark and Weir consider a hyperonym top(ncpt, v) as
suitable if all concepts ncpt’ it subsumes have a similar probability p(v|ncpt’), which in particular
means that top(ncpt, v) solely subsumes concepts which behave comparably to ncpt in this respect.
It is easy to show that under these circumstances, p(v|top(ncpt,v)) is similar as well (cf. (Clark &
Weir 2002, p. 190)). Thus, top(ncpt, v) allows an adequate estimation of p(v|ncpt).

To find the highest concept in the hierarchy which meets this condition, Clark and Weir employ an
iterative bottom-up approach. This approach starts with ncpt and moves up one level in the hier-
archy after each iteration. Within an iteration step, the approach examines whether the children of
the parent of the concept under consideration (i.e. its co-hyponyms) yield similar probabilities for
the verb in question. If this is the case, then the parent concept becomes the concept under consid-
eration in the next iteration step. If, however, the co-hyponyms of the concept under consideration
behave inhomogeneously w.r.t. the verb, then the appropriate generalisation level is reached and the
current concept is returned as top(ncpt, v). For example, consider we want to find top(<dog>, run).
The first iteration step examines the co-hyponyms of <dog>. It finds that the conditional probabili-
ties of “run” given these co-hyponyms (e.g. p(run|<wolf>), p(run|<fox>), p(run|<bitch>) (and, of
course, p(run|<dog>)) are similar. Thus, the algorithm moves one level up in the hierarchy. In the
next step, it examines the hyperonym of <dog>, i.e. <canine>, and its co-hyponyms (e.g. <feline>,
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‘ (nept,v) ‘ o ‘ top(nept,v)
(<dream>,remember) | 0.0005 | <state>
0.05 <state>

0.5 <cognitive_state>

0.995 | <preoccupation>
(<man>,see) 0.0005 | <animal>

0.05 <mammal>

0.5 <mammal>

0.995 | <man>
(<belief>,abandon) 0.0005 | <psychological_feature>
0.05 <mental_object>

0.5 <belief>
0.995 | <belief>
(<coffee>,drink) 0.0005 | <beverage>
0.05 <beverage>
0.5 <beverage>

0.995 | <beverage>

Figure 3.18: Generalising top concept top(ncpt, v) for different (ncpt, v) pairs and different o values

<bear>, etc.) and finds that the corresponding probabilities are still similar. In this way, further iter-
ation steps are performed up to the point where <animal> and its co-hyponyms (e.g. <plant>) are
examined. As p(run|<animal>) differs significantly from p(run|<plant>), the algorithm stops here
and returns <animal> as top(<dog>, run).

To determine whether the children of a concept behave homogeneously or not, Clark and Weir use
a chi-squared test where the assumption of homogeneity is the null hypothesis, which is rejected if
there is significant evidence for inhomogeneity. '

As for any significance test, an important variable of the x? test is the significance level o (alpha
error), which is the probability that the null hypothesis is rejected although it is true. The smaller
the value of « is chosen, the more conservative the is test, i.e. the more distinct evidence is required
to reject the null hypothesis. In statistical science, « is set before the test is performed, in order to
fix the level of conservativeness which is considered adequate. (Usual values are « = 0.05 or a@ =
0.01.) Clark and Weir, however, regard o as a variable whose appropriate value may be determined
empirically to fine-tune the learning approach w.r.t. a specific application. The higher the alpha error,
the easier the null hypothesis is rejected, and thus, the lower the generalisation level of top(ncpt, v).
This behaviour is illustrated by figure 3.18, which shows the generalising top concept top(ncpt, v)
acquired for different (ncpt, v) pairs and different values of «. Note that for verbs with very strong
preferences, e.g. “drink”, the influence of « is low or even nonexistent.

Different choices of top(ncpt,v) yield different estimates of p(ncpt|v). This has an impact on NLP
applications employing these probabilities. Clark and Weir evaluate their approach by a pseudo-

Technically, the contingency tables used for the x? test are based on the joint frequency counts freq(v, ncpt’) which
are used to estimate the corresponding probabilities p(v|ncpt’).
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disambiguation task.?’ They report that for different values of «, the average number of generalised
hierarchy levels differs significantly (from 4.5 for o = 0.0005 to 1.9 for o = 0.995). The differing
amount of generalisation coincides with different disambiguation accuracies, with higher accuracy
for higher values of «.. For comparison, Clark and Weir applied this task to evaluate the approaches of
Ribas and Li & Abe (1998). These approaches performed worse than the method of Clark and Weir.
Their average generalisation was comparably high (4.1 and 4.7 levels, respectively). These results
suggest that for this particular task, the optimal performance is achieved with a rather low (though not
the lowest) level of generalisation.

The approach of Clark and Weir has several similarities with the approach of Li and Abe. Both
methods aim at finding an appropriate level of generalisation for modelling selectional preferences.
Furthermore, the probability p(v|ncpt), over which Clark and Weir generalise, turns out to be closely
related to the association norm proposed in (Abe & Li 1996):

p(nept|v) ()

p(vlnept) = (3.43)
p(ncpt)
p(v) is constant for all concepts and does not make a difference w.r.t. generalisation. The ratio Z (Z:f ;ltl)’)

is equal to the association norm proposed by Li and Abe (cf. equation (3.27) on page 75). The two
quantities play an analogous role in the two approaches: while p(v|top(nept, v)) approximates the
corresponding probabilities of the hyponyms of top(ncpt,v), the association norm A(v,ncpt) of a
concept ncpt on the cut is inherited by its hyponyms.

On the other hand, there are striking differences between the two approaches. Li and Abe learn a
complete tree cut model by means of a top-down algorithm. In contrast, the generalisation procedure
of Clark and Weir is a bottom-up search which is applied separately for each noun sense in the
data. Thus, it is not guaranteed that the collection of the acquired top(nept,v) concepts yields a
(redundancy-free) cut through the hierarchy.?! Clark and Weir emphasise that they do not aim at
acquiring such a cut. Nor do they aim at acquiring concepts which represent selectional preferences
at a level of generalisation which corresponds to human intuition. In their approach, the purpose of
generalisation is to facilitate more reliable probability estimations.

3.4.6 Abney and Light

In a sense, the approach proposed by Abney and Light (cf. (Abney & Light 1998), (Abney & Light
1999)) is distinct from the other approaches introduced here. Their goal is to provide an integrated
and sound stochastic model of selectional preference. The approaches that I have discussed so far
are more or less hybrid, i.e. a composition of different (partly heuristic, partly theoretically well-
founded) strategies. For instance, in all of these approaches, a heuristic strategy of mapping word
forms to concepts on the one hand and the actual algorithm for learning selectional preferences on

2 For this task, triples of the form (v, n, v') are constructed so that the pairs (v’, n) do not occur in the data, whereas the
pairs (v, n) do. The (v, n) pairs are removed from the training set. The task is to determine which of the two verbs is more
likely to co-occur with the noun. This pseudo-disambiguation task was applied as well by other researchers for evaluation
(cf. (Pereira et al. 1993), (Rooth et al. 1998), (McCarthy 2001)).

21Tt even is not guaranteed that the probabilities p(nept|v) estimated according to (3.41) and (3.42) sum to 1. Therefore,
Clark and Weir perform a normalisation to obtain a sound probability distribution.
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the other hand are two distinct modules. In contrast, Abney and Light aim at devising a stochastic
generation model that naturally unifies these modules.

To achieve this, Abney and Light present an idea which seems appealingly elegant: They interpret the
WordNet noun hierarchy as the structure of a Hidden Markov Model: the concepts correspond to the
states and the hyponymy relations to the transitions. Each state can emit those words which belong
to the corresponding synset. Such an HMM models the selectional preferences of a certain verb v for
a certain grammatical relation r. More precisely, the HMM generates nouns which co-occur with v
(as argument 7). To train the HMM, the noun instances occurring in triples containing v and r are
extracted from the data.

Formally, a HMM of this kind is defined by

e aset of states {q1, ..., ¢} where each ¢; corresponds to a noun concept

e a set of possible emissions W U {e} where W = {wy, ..., w,,} comprises the words (nouns)
covered by the hierarchy and e denotes non-emission

e a matrix A = {a;;} where a value a;; denotes the transition probability from state g; to state
q;. This probability is nonzero only if g; is an immediate hyponym of ¢;.

e amatrix B = {b;(k)} where a value b;(k) denotes the emission probability of word wy, by
state ¢;. These probabilities are defined such that the states corresponding to the leaves of the
hierarchy emit words (i.e. the emission probability of € is 0), whereas states corresponding to
inner nodes are non-emitting (i.e. the emission probability of € is 1).

e the initial state distribution 7 = {m;}. This distribution is defined such that the state corre-
sponding to the root of the hierarchy is the only initial state (i.e. has the initial state probability
1). The leaves of the hierarchy are the final states.

The restriction that all and only the leaf states emit words (and are final states) has the consequence
that an observation sequence generated by the HMM consists of exactly one word, emitted by a final
state. This guarantees that the word probabilities estimated by the HMM sum to 1. However, in order
to meet this constraint, the WordNet hierarchy needs to be restructured. As mentioned already, the
inner nodes in WordNet represent abstract concepts (which subsume other concepts) as well as word
senses. For example, the concept <person> represents both a concept that subsumes any kind of per-
son and a particular sense of the word “person”. These two notions have to be separated. To achieve
this, each inner node is duplicated, and one of the duplicate nodes represents the inner concept, main-
taining all hyponymy relations, while the other node represents the word sense corresponding to the
original node. This node becomes an additional hyponym of the inner concept and does not have any
hyponyms itself. With this modification, the requirement that all and only the leaves represent word
senses (and thus emit word forms) is fulfilled.

In an HMM defined in this way, word forms, word senses, and concepts are combined in a principled
way. No stipulative heuristic for mapping forms to concepts is necessary, since this mapping directly
arises from the transitions and emissions constituting the HMM. Furthermore, such a model allows
the estimation of different sorts of probabilities and other quantities in a straightforward way. For
example, different senses of a word correspond to different state sequences in the HMM (starting at
the root and ending at the leaf which emits the word). The probabilities of these state sequences can
be easily computed and employed for word sense disambiguation.
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nept A(break, nept) ‘

<object> 0.033223
<law> 0.020298
<law_of_nature> 0.020287
<substance> 0.018689
<ice> 0.016658
<solid> 0.016407
< guidance> 0.015359
<rule> 0.014416
<entity > 0.014345
<crystal> 0.014334

Figure 3.19: Selectional preferences for the object of “break”, retrieved from the respective HMMs

The model also allows the estimation of concept probabilities of the form p(ncpt|v) or p(nept), which
are the components of the formulae to calculate the preference values in the approaches described so
far. The former kind of probabilities requires an HMM trained on the complements of a particular
verb, while the latter requires an HMM trained on all nouns. To estimate such concept probabilities,
the HMM has to be extended by adding to each leaf a single transition to the root. The resulting
HMM turns out to be ergodic, i.e. each state is reachable form any other state. A consequence of this
is that the probability of being in a certain state at a time ¢ converges to a single value for t — oo (cf.
(Abney & Light 1998) for a proof of this claim and the way to determine these probabilities). This
value gives the estimate of the probability of the corresponding concept. Figure 3.19 shows selectional
preferences for the object of “break” (taken from (Abney & Light 1999)) obtained by estimating
concept probabilities and then calculating the preference values following Resnik’s approach (cf.
equation (3.21) on page 68).2

Finally, an HMM defines a probability distribution over observation sequences, i.e. over words in this
case. This probability distribution could be employed as a component of a sophisticated language
model.

Abney and Light found out that unfortunately, training the HMM with the standard forward-backward
algorithm does not yield an adequate model of selectional preferences. In particular, the forward-
backward algorithm does not bias the parameters towards favouring the correct senses of ambiguous
words, which is crucial for the task. Rather, if one trains the HMM with initial parameter settings
which unavoidably reflect a mixture of senses for a word, the resulting HMM usually models such a
mixture as well. Abney and Light state that this is a property of the EM algorithm, which “strongly
prefers mixtures containing small amounts of many solutions over mixtures that are dominated by
any one solution” (Abney & Light 1999, p. 4). To overcome this problem, they introduce a smoothing
technique to favour senses which are close to other concepts in the hierarchy for which there is much
evidence in the data. For example, if the data contain many words denoting some kind of food, then
the food sense of “meat” is favoured over, say, the sense referring to the essential part of an idea.
However, this smoothing technique introduces new problems so that further balancing strategies have

2These results are obtained by the modified HMM learning approach outlined below.

94



to be employed.?

Abney and Light evaluated their extended HMM learning approach by a WSD task, for which they
used the same training and test data as in (Resnik 1997). They found that Resnik’s approach outper-
formed theirs. Abney and Light characterise the performance of their approach as “disappointing”
and conclude:

One possible lesson is that EM itself is inappropriate for this problem. Despite the fact
that it has become the default method for uncovering hidden structure in NLP problems, it
essentially averages together many possible solutions. Possibly, a less linear method that
eventually commits to one or another hypothesis about hidden structure may be more
appropriate in this case. (Abney & Light 1999, p. 4)

Nevertheless, the work of Abney and Light provides interesting insights in the behaviour of the EM
algorithm and the problem of learning selectional preferences. A particular reason for mentioning this
work here is that its basic idea is closely related to the strategy I will propose for computing frequency
counts of noun concepts (cf. section 5.3).

3.47 Summary

I have discussed several approaches for learning and representing selectional preferences by means
of statistical corpus analysis and WordNet. In particular, I have addressed some fundamental proper-
ties of these approaches and their suitability for the task of this thesis. In this section, I will briefly
recapitulate these properties in the light of the suitability criteria for the task of this thesis mentioned
in section 3.1.

With the exception of the method of Abney and Light, all approaches discussed here require a map-
ping from word forms to WordNet concepts as a preprocessing step. Essentially, two strategies for this
mapping have been proposed: the word-to-concept approach divides the frequency of a word form di-
rectly among all concepts which subsume (some sense of) this word form. This approach is employed
by Resnik and Agirre/Martinez. The word-to-sense approach divides the frequency of a word form
among its possible senses and inherits the concept frequencies obtained by this step to the hyper-
onyms of the respective concepts. This approach is used by Ribas, Li/Abe, and Clark/Weir. Which
mapping strategy is appropriate depends on the peculiarities of the learning approach that makes use
of it. Concerning the task of this thesis, none of the two strategies is a priori preferable over the other.

All approaches presented in this section express selectional preferences as WordNet noun concepts.
This satisfies one part of suitability criterion 1. This criterion states that selectional preferences should
be represented as relations between verb concepts and noun concepts. However, most of the ap-
proaches described here effectively acquire relations between verb forms and noun concepts. Only
Agirre and Martinez learn selectional preferences for verb concepts rather than verb forms. However,
the other approaches can be adapted to do so as well. This requires a mapping from verb forms to
verb concepts, which can be performed by applying the same techniques as are applied for nouns.

2 Another problem is that the HMM model penalises senses which correspond to a long path in the hierarchy, since longer
paths involve more probabilities to be multiplied so that the product decreases. Abney and Light address this problem by a
further balancing technique.
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It is crucial for the task of this thesis to select a set of concepts which represent the selectional pref-
erences of a verb at an appropriate level of generalisation (cf. suitability criterion 2). Resnik and Ab-
ney/Light do not determine such a set at all. Ribas and Agirre/Martinez obtain such a set by employing
a simple greedy algorithm. Li/Abe use a theoretically well-founded approach, the MDL principle, to
determine a representative set of concepts. Clark/Weir employ a generalisation procedure separately
for each word sense to obtain more reliable probability estimations. They do not aim at finding an
explicit representation of selectional preferences. Their approach, which employs a y? test, provides
the interesting possibility to influence the level of generalisation by the choice of the significance level
«. This allows to fine-tune the learning method w.r.t. a particular application. Although an empirical
determination of the value of « is anything but theoretically sound, it is an effective way of obtaining
the generalisation level which is optimal for a particular NLP application. In section 3.1, I argued that
this possibility is very important w.r.t. reusability.

The approach of Agirre/Martinez differs from the other methods in that it does not only generalise
over noun concepts, but also over verb concepts. To acquire the preferences of a verb concept, this
approach takes into account the noun concepts which co-occur with the hyperonyms of that verb
concept. This generalisation increases the coverage of the acquired preferences, but may yield too
general or even completely inappropriate preferences. Thus, it is not suitable for the task of this
thesis.

Regarding suitability criterion 3, an important issue is the distinction between absolute and relative
preference, which underlies the way the preference values are calculated. Absolute preference quan-
tifies the probability that a noun concept co-occurs with a verb. Relative preference quantifies the
ratio between this probability and the overall probability of the respective noun concept. Li & Abe
(1998), Agirre/Martinez, and Clark/Weir measure absolute preference; Abe & Li (1996) measure rel-
ative preference. Resnik and Ribas employ a combination of these two, i.e. relative preference which
is scaled by absolute preference. As relative preference provides a principled way to distinguish pre-
ferred and dispreferred concepts (which is required by criterion 3), whereas absolute preference does
not provide such a distinction, relative preference is better suited for the task of this thesis.

To conclude, this brief review shows that the approach which is most appropriate for the task of
this thesis is the method proposed by Abe & Li (1996). This approach satisfies best the suitability
criteria mentioned at the beginning of this chapter: It represents preferences as WordNet concepts
(criterion 1), aims at finding a representation at an appropriate generalisation level covering all nouns
co-occurring with a verb (criterion 2), and provides a principled way to distinguish between preferred
and dispreferred concepts (criterion 3). Basically, these criteria are also satisfied by Ribas’ approach.
However, while this approach determines the appropriate generalisation level by a simple ad-hoc
strategy, Li and Abe employ a theoretically well-founded method for that task. In this respect, the
approach of Li and Abe is superior. Therefore, I used this method as starting point for developing an
approach which is suitable for learning thematic role relations.>* It turns out that various modifications
and extensions are necessary to yield satisfying performance. In the next chapter, I will provide a
motivation and description of the modifications and extensions I propose.

**Nonetheless, I will also report experiments which empirically evaluate the suitability of Ribas’ method for the task of
this thesis, cf. section 5.5.
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Chapter 4

Acquiring Selectional Preferences for
Thematic Role Relations: The Basic
Strategy

The two following chapters provide a detailed description and discussion of the approach that I pro-
pose for acquiring selectional preferences in such a manner that the results can be integrated in word-
nets as thematic role relations. While this chapter concentrates on the general acquisition strategy, the
next chapter will address issues concerning preprocessing and evaluation.

In section 3.4.7, I have argued that the approach of Abe & Li (1996) is better suited for that task than
other approaches proposed in the literature. Therefore, I decided to employ this approach. However,
it turned out that the general strategy developed by Li and Abe requires an elementary modification
to be applicable for my work. This chapter motivates and explains this modification.

Section 4.1 addresses a fundamental shortcoming of the method of Li and Abe regarding the task of
this thesis. Preliminary experiments with that method, which I carried out in an earlier stage of this
work, showed that it does not behave satisfactorily concerning the generalisation levels of the acquired
tree cuts. In section 4.1.1, I present some results of these experiments which illustrate this inadequacy.
These results gave reason to generally considering the suitability of the Minimum Description Length
(MDL) principle for learning tree cut models. In section 4.1.2, I argue that the observed inadequate
generalisations are an immediate consequence of an intrinsic behaviour of the MDL principle. Fur-
thermore, I exemplarily sketch two MDL approaches for different tasks to show that for these ap-
proaches (like for many other MDL applications in the literature), the same behaviour is perfectly
appropriate. I conclude that the MDL principle in its strict form is inadequate for the class of tree cut
models.

In section 4.2, I propose a modification of the Li and Abe approach, namely the introduction of
a weighting factor. I show that although this modification deviates from the MDL principle, it is
compliant to the framework of Bayesian reasoning. I report the second part of the tests described in
section 4.1.1, which indicates that the weighting approach is more appropriate w.r.t. generalisation.
More systematic experiments, which will be described in the next chapter (cf. section 5.5), confirm
this result.

The considerations and findings in this chapter are not only important for the development of a method
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to learn thematic role relations. They might as well be of interest as a case study concerning conditions
and modalities for adequately applying the MDL principle. In this sense, they might provide a deeper
understanding of the Minimum Description Length Principle as such. This rather general point is not
the main issue of this thesis. Nevertheless, I think that the subtleties regarding MDL I came across
are worth discussing, since they might be of significance for applying this approach to new tasks (i.e.
tasks which have not been addressed in the MDL literature so far).

4.1 The Inadequacy of MDL

4.1.1 Preliminary Experiments

In this section, I report preliminary experiments which I performed in a rather early stage of the work
described in this thesis. The intention of these experiments was to test the approach of Li and Abe
in order to get an intuitive idea of how it works in practice and whether the acquired results exhibit
interesting patterns or characteristics. In particular, I wanted to examine the generalisation level of the
cuts learned for different verbs. These experiments have been reported in (Wagner 2000, p. 39-40).

4.1.1.1 Modifications and Extensions

In essence, I used the algorithm described in section 3.4.3.4 for the experiments. However, some
modifications and extensions were necessary or useful.

Transforming WordNet Most importantly, the problem that WordNet does not meet the require-
ments for the structure of the semantic hierarchy mentioned in section 3.4.3.2 (pure tree structure;
only leaves represent word senses) needs to be solved. In other words, the WordNet structure has to
be virtually modified' to fulfil these criteria. To ensure that every word sense is represented by a leaf, I
followed (McCarthy 1997) and introduced for every inner node an additional node, making this node
a hyponym of the inner node. This new node—which is a leaf since it does not have any hyponyms
itself—represents the sense corresponding to the words in the node’s synset, while the original inner
node represents the semantic concept subsuming these senses and the senses of the node’s hyponyms.
(I will indicate the additional nodes by the prefix ‘REST::’ as they represent the “rest” of concept
instances which is not captured by the subconcepts.) Recall that this solution was also employed by
Abney and Light (cf. section 3.4.6). To transform the WordNet DAG structure into a tree structure, I
virtually duplicated every node (and its descendants) which has more than one parent. In this way, the
DAG is “broken into a tree”. This solution was adopted from Li and Abe. How this duplication works
will be described in section 5.3. Furthermore, I will discuss alternative solutions to the transformation
issue proposed in the literature, sketch drawbacks of the different alternatives, and propose a more
principled approach in that section.

Optimising Parameter Description There is a straightforward optimisation of encoding the tree
cut model parameters. If a concept in a tree cut model does not have any instances in the data sample

"Here, virtually means that this modification is performed on runtime and not stored persistently.
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S, it receives the association norm 0. It does not make sense to represent the parameter value 0 with
log—2|5| bits. A more efficient coding strategy is to mark the concepts that have a non-zero parameter and
represent the parameter values for those concepts only. First you need K bits, one for each concept

on the cut, which indicate whether a concept occurs in the sample (1) or not (0). Then you need logT‘S'
bits for every class that occurs in the sample. Thus,
log |S
Lyar(M) = K + K (%) @.1)

K is the number of classes that have instances in the sample S. With this modification, one saves
(K - K S)long — K bits. I calculated the model description length using equation (4.1) instead of
equation (3.31) on page 78. In the pseudo-code presented in section 3.4.3.4, step 8 in Find-MDL and
step 9 in Find-Assoc-MDL have to be changed accordingly.

Threshold To eliminate noise, I introduced a threshold in the following way: The algorithm com-
pares possible cuts by traversing the hierarchy top down. If a class with a probability below 0.05 is
encountered, then the traversal stops, i.e. the descendants of that class are not examined. This has also
the advantage of limiting the search space. Li and Abe as well as McCarthy employ thresholding in
some form.

4.1.1.2 Setting

To test the behaviour of the Li and Abe approach, I applied it to acquire selectional preferences
for the direct object relation. I extracted verb—object instances from a portion of the British National
Corpus (BNC)—parts A—E (about 40 million words)—with Steven Abney’s CASS parser (cf. (Abney
1996a)).? This resulted in a sample of approx. 2 million verb—noun pairs. I chose the object relation
for two reasons. First, in the literature this relation usually has been chosen to inspect and illustrate
selectional preferences acquired by a certain approach. Recall that the examples shown in the last
chapter (which have been adopted from the respective papers) all comprise preferences for the direct
object. Second, the verb—object relation can be extracted by CASS with the necessary reliability.

Then I applied the learning algorithm to calculate the selectional preferences of 24 test verbs and
manually inspected the results. These include very frequent verbs with rather weak preferences, like
“have”, “be”, or “take” (these verbs are compatible to almost any noun concept), rather infrequent
verbs with strong preferences for particular noun concepts, like, “kiss”, “drink”, or “eat”, as well as
verbs which lie between these extreme cases, like “attack” or “defend”. In particular, the verbs “kill”,
“murder”, and “assassinate” were included because these verbs prefer nouns from the same domain
but with different specificity: As (Ikegami 1993) points out, “kill” selects any kind of life form. In
contrast, “murder” prefers human beings. The usage context of “assassinate” is even more restricted,
since the object (Patient) of this verb usually refers to a person who is important in some sense. In the

?1 thank Steven Abney and Marc Light, who made these data as well as their source code for acquiring selectional pref-
erences available to me. Those parts of my implementation which deal with collecting and storing co-occurrence statistics
from the sample make use of their code.

3Steven Abney (personal communication) reported 94.6% precision (61.4% recall) for objects as opposed to 78.3%
precision (79.7% recall) for subjects. For our purposes, high precision is crucial and more important than high recall.
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initial experiments described here, I followed the general practice to acquire selectional preferences
for verb forms rather than verb concepts.

4.1.1.3 Results

The experiment revealed a significant drawback of employing the MDL principle for the task of this
thesis. It turned out that the frequency of the examined verb in the sample has an undesirable impact
on the generalisation level of the tree cut model: The algorithm tends to over-generalise (acquire a
tree cut with few general concepts) for infrequent verbs and to under-generalise (acquire a tree cut
with many specific concepts) for frequent verbs. As an illustrative example of that behaviour, let us
look at the tree cuts for “kill” (frequency count 2820.68%), “murder” (frequency count 500.08), and
“assassinate” (frequency count 54.48).

Figure 4.1 displays part of the tree cut model acquired for “kill”. The cut is located below
<life_form>. It includes <person>, <plant>, and the immediate hyponyms of <animal> like
<domestic_animal>, <pet>, <chordate>, or <invertebrate>>. It is remarkable that all these con-
cepts are preferred (preference value > 1), except for <plant> (preference value 0.48). This is an
interesting empirical finding that deviates from Ikegami’s (1993) claim that any kind of life form is
selected by “kill”, which is intuitively plausible at first glance. This finding suggests that it is not
common to refer to the action of causing a plant to stop living by the expression “to kill a plant”.
This example makes clear that a statistical model of selectional preferences primarily captures the
probable rather than the possible complements of a predicate. Anyway, one could argue that a cut
located at the concepts <person>, <animal>, and <plant> is more appropriate here than a cut at
<life_form>. However, a cut below <animal>, like in figure 4.1 clearly is an under-generalisation,
since it does not capture the fact that any kind of animals is preferred by “kill”.

Figure 4.2 shows part of the tree cut model acquired for “murder”. In contrast to the model for
“kill”, this cut is too general. It includes <life_form>, whereas “murder” specifically prefers objects
referring to humans. For the verb “assassinate”, the over-generalisation of the acquired cut is even
worse. Figure 4.3 shows that this cut is located at <entity>, one of the root nodes in WordNet.
However, the selectional preferences of that verb (“important persons”) are even more specific than
the preferences of “murder”. The comparison of these verbs illustrates a general tendency of the Li
and Abe approach: the lower the frequency of the examined verb, the more general the learned tree
cut model. This tendency results in too general cuts for infrequent and too specific cuts for frequent
verbs.

4.1.2 The Tree Cut Model Class and the MDL Principle

It would be an error to ascribe the behaviour of the tree cut approach w.r.t. generalisation to a co-
incidence of peripheral circumstances. Rather, this behaviour immediately follows from the MDL
principle. As explained in section 3.4.3.2, this principle selects that model which minimises the sum
of the code length L,,,; needed to encode the model itself and the code length L4, needed to en-
code the data by employing the coding scheme determined by the model. The more specific a tree

“Note that concept frequency counts are not necessarily cardinal numbers. According to the word-to-sense approach,
these counts are the sum of the counts of the word senses which they subsume. The word sense counts, in turn, are generally
no cardinals, because they are estimated by dividing frequencies of word forms by the number of senses of these forms.
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nept A(kill, nept)
<person#individual#someone#mortal#human#soul > 3.39
<domestic_animal > 30.89
<pet> 30.89
<female> 42.77
<male> 5.52
<adult> 61.79
<young#offspring> 11.65
<giant> 30.89
<survivor> 61.79
<herbivore> 30.89
<embryo> 6.18
<chordate> 7.32
<invertebrate> 8.97
<predator#predatory_animal > 15.45
<prey#quarry> 170.41
<REST::animal#animate_being#beast#brute> 289.00
<plant#flora#plant_life> 0.48
<microorganism> 31.21
<parasite> 62.41
<mutant#mutation#sport> 3.69
<nonvascular_organism> 18.42
<REST::life_form#organism#being#living_thing> 9.57

Figure 4.1: Part of the tree cut model for “kill”

nept

A(murder, nept)

<life_form#organism#being#living_thing>

4.01

Figure 4.2: Part of the tree cut model for “murder”

nept A(assassinate, nept)

<entity > 2.05

Figure 4.3: Part of the tree cut model for “assassinate”
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cut model, the better the probability distribution over the examined sample fits this sample, and thus
the more efficiently the coding scheme determined by this distribution can encode the sample. On the
other hand, a specific tree cut model contains more concepts than a general one, which means that
more parameters (association norms) have to be encoded to describe it. Hence, the more specific the
tree cut, the lower the data description length L 4,¢, but the higher the model description length L.,;,,4.

An immediate consequence of this is a correlation between the frequency of the examined verb and
the specificity of the acquired tree cut. If the verb under consideration has a high frequency, then a
large amount of data (the verb’s complements) has to be described. In this case, the total description
length (L,,04 + Lgat) is largely dominated by Lg,;. Thus, the selection of a more specific tree cut
model results in a considerable reduction of the data description length (due to the more efficient
coding scheme), while the expense for encoding more parameters has a negligible impact on the total
description length. In other words, the gain of a complex model for encoding the data outweighs
the model cost. If, in contrast, the examined verb has a low frequency, then only few data have to be
encoded. In this case, Lg4,; is rather small and the relative contribution of L, to the total description
length is much more significant. Thus, the cost of encoding a specific model with many parameters
outweighs the gain for efficiently encoding the data, since this gain is limited due to the small amount
of data to be encoded. In summary, the higher the frequency of a verb, the higher the tendency of the
Li and Abe approach to acquire a specific tree cut model.

However, this is not the desired behaviour. Generalisation should not be triggered by the sample
size, but by the “semantic variety” of the instances in the sample: Nouns like “apple”, “pear”, or
“strawberry” should generalise to <fruit>. Further instances like “pork™ or *“cake” should trigger
generalisation to <food>, and yet further instances like “house” or “vessel” to <physical_object>.
Interestingly, the comparison of the verbs “kill”, “murder”, and “assassinate” suggests the tendency
that the frequency of a verb coincides with the semantic variety of its complements. Verbs with a
higher frequency tend to occur in a higher variety of contexts than verbs with a lower frequency. For
example, while “kill” co-occurs with humans or animals, “assassinate” only co-occurs with a certain
sort of humans. The reason for this is the higher meaning specificity of “assassinate” (cf. Fellbaum’s
quotation in section 3.4.4). However, the meaning specificity of a word is one factor which influences
its frequency, since words with a specific meaning only co-occur in restricted contexts. Of course,
there are other factors which influence the frequency of a word (e.g. stylistic issues). However, if
there is a correlation between the frequency of a verb and the generalisation level of its selectional
preferences, then it should be opposite to the tendency of the Li and Abe approach described above:
higher verb frequency should coincide with more general preferences, not with more specific ones.

This mismatch between the actual behaviour of the tree cut approach and its desired behaviour for
learning selectional preferences cannot be resolved within the MDL paradigm. The bias towards
favouring complex models grows with the size of the data sample is an inherent property of the MDL
principle. Rissanen & Ristad (1992, p. 163f.) summarise the rationale behind the MDL principle as
follows: “The MDL formula states that simpler models are to be preferred to more complex models
unless a more complex model provides a significantly more compact description of the observables.”
If a more complex model yields a more compact coding of a certain data item (or, more generally,
a certain pattern of data items) in the sample than a simpler model, then, of course, this results in
a reduction of Lg,. The extent of this reduction is the larger the more frequently the data item (or
the pattern) occurs in the data. Since this applies to each data unit in the sample, the selection of a
more elaborate model brings about a significantly higher reduction of the data description length if
the sample is large than if it is small. As de Marcken (1996) puts it:
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“Parameters that are only infrequently true must introduce substantial savings to be worth
including [in a model, AW]; parameters with a widespread usage are beneficial even if
they introduce only incremental improvements to the statistical model [...] The length
of a [parameter] representation is independent of the number of times a parameter is
used, so given enough evidence the benefits of any parameter will outweigh its costs.”
(de Marcken 1996, p. 51)

The more frequently a parameter is “used” (i.e. employed for encoding data items)>, the more likely
it is that the savings that its introduction causes for the encoding of the data outweigh the cost of its
description. Thus, if the introduction of an additional parameter yields only little compression of the
code for a single data item, but this parameter is used for encoding many instances of such data items,
then its introduction is justified. And, of course, the “chance” of encoding enough data to outweigh
the model cost grows with the size of the data sample to be encoded. Therefore, the MDL principle
favours complex models for large samples and simple models for small samples. A large amount of
data makes a complex model “affordable”.

As noted above, this inherent characteristic of the MDL framework has undesirable effects for the
task of learning tree cut models which represent selectional preferences. However, for other tasks for
which the application of MDL has been proposed, this property is perfectly appropriate. The reason
for this is that these tasks make use of different kinds of models. Their model classes differ from
the class of tree cut models in the general relationship between the complexity of a model and its
conservativity. (I use this term in the following way: A model is more conservative than another
model if it makes weaker claims about the general regularities underlying the data sample under
consideration.) To explain this statement, I will exemplarily discuss two tasks for which the MDL
principle is employed and compare the underlying model classes to the class of tree cut models.

First, I discuss a task that is commonly used for illustrating machine learning approaches (e.g., cf.
(Mitchell 1997)): the induction of decision trees. Quinlan & Rivest (1989) propose to apply the MDL
principle for that task. A data sample from which decision trees can be learned comprises a collection
of objects which are characterised by certain properties that are expressed as values of a fixed set of
attributes. Furthermore, each object belongs to a specific class, which partly (in the ideal case, com-
pletely) depends on the object’s properties. Figure 4.4 shows such a sample (adopted from (Quinlan
& Rivest 1989)). Here, the objects are Saturday mornings which are characterised by the attributes
Outlook (sunny, overcast, or rain), Temperature (hot, mild, or cool), Humidity (high or normal), and
Windy (false or true). These Saturday mornings are classified according to whether they are suitable
for some “unspecified activity” (P = positive) or not (N = negative).

A decision tree models the dependencies between the properties of the objects and their respective
classifications. Each inner node of a decision tree is associated with a test on the values of attributes.
For each possible outcome of this test, there is a branch from the node to a different node. In (Quinlan
& Rivest 1989), such a test evaluates a single attribute. Each possible value is represented by a branch
from the respective node. The leaves of a decision tree correspond to subsets of the objects in the
sample. A leaf represents those objects which pass all tests on the path from the root node to that leaf.
Thus, a leaf can represent more than one object, but an object cannot be represented by more than
one leaf node. Additionally, each leaf is associated with a particular class label which classifies those
data items which that leaf represents. A perfect decision tree has the property that all objects which

SFor example, a parameter of a tree cut model—an association norm of a concept on the cut—is used to determine the
code for each noun sense that is dominated by that concept.
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No Attributes Class
Outlook Temperature Humidity Windy
1 | sunny hot high false N
2 | sunny hot high true N
3 | overcast hot high false P
4 | rain mild high false P
5 | rain cool normal false P
6 | rain cool normal true N
7 | overcast cool normal true P
8 | sunny mild high false N
9 | sunny cool normal false P
10 | rain mild normal false P
11 | sunny mild normal true P
12 | overcast mild high true P
13 | overcast hot normal false P
14 | rain mild high true N

Figure 4.4: A data set to be modelled by a decision tree

are represented by a certain leaf belong to the same class (which is associated to that leaf). If the
objects at a leaf node belong to different classes, then the class to which most of these objects belong
is assigned to the leaf as a default class. Figure 4.5 shows a (perfect) decision tree which classifies the
data in figure 4.4.

The usual goal of inducing a decision tree (in general, the usual goal of acquiring models in machine
learning) is to make predictions about unseen data, i.e. to classify objects which are not included in
the sample. For this purpose, it is not necessarily the best solution to learn a perfect decision tree. Such
a tree would possibly overfit the data, e.g. capture noise in the training sample, which would result in
a misclassification of unseen data. To find a balance between capturing regularities in the sample and
avoiding the modelling of idiosyncracies, Quinlan & Rivest (1989) employ the MDL principle. To
do this, the task of learning decision trees has to be reformulated as a problem of encoding the data
sample by making use of a decision tree. This encoding is done in the following way:

(1) Encode the (possibly imperfect) decision tree

(2) Encode those objects that are misclassified by the decision tree (the list of exceptions)

The number of bits required for (1) is the model description length, the number of bits needed for
(2) the data description length. The more complex the decision tree, the more bits are required to
describe it. On the other hand, a more complex tree classifies more instances in the sample correctly
so that less exceptions have to be encoded. According to the MDL principle, the decision tree which
minimises the sum of the code length needed for (1) and (2) is selected.

A linguistic application of the MDL principle is described in (de Marcken 1996). The task is to
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ovelcast rain

sunny

Humidity
high false

N P N P

Figure 4.5: A decision tree

learn linguistic units from unsegmented text, i.e. text where word boundaries are not marked.® The
simplest variant of the approach proposed by de Marcken aims at extracting words and multiword
expressions from the examined corpus. The starting point is a lexicon whose entries represent single
characters. During the learning process, new entries are created by concatenating existing entries. To
decide which of the possible concatenations are added to the lexicon, de Marcken develops a learning
method which is based on MDL. This method encodes the data sample (the unsegmented text data)
by employing the lexicon. Each entry is assigned a unique binary code word. Following the rationale
behind the design of coding schemes sketched in section 3.4.1.2, entries which have a high occurrence
frequency in the sample are represented by short code words, while entries which rarely occur in the
data receive long code words.

The learning algorithm iteratively adds new entries. In each iteration step, new candidate entries are
created by the concatenation of existing entries. A new entry is represented in the lexicon as the
concatenation of the code words of those entries whose concatenation created it. If such a candidate
entry saves more bits for encoding the data than its representation requires, then this entry is added to
the lexicon.”

Figure 4.6 and 4.7 show an artificial example that (de Marcken 1996, p. 41) provides to illustrate the
idea behind his approach. Figure 4.6 shows three different lexicons which are capable of encoding the
character sequence themanonthemoon. (A) is the most basic lexicon which is possible. It just contains
entries for single characters. Note that the characters are ordered according to their frequencies in the
data (themanonthemoon in this case): ‘0’, ‘n’ (3 occurrences); ‘t’, ‘h’, ‘¢’, ‘m’ (2 occurrences); ‘a’
(1 occurrence). This ordering is crucial for assigning codewords. As can be seen, the codewords are
ascendingly ordered by their lengths so that frequent entries are assigned shorter codes and and infre-

quent entries longer codes.® This code assignment analogously holds for the other lexicons. Lexicon

SThis simulates one important condition of language acquisition, namely that a child perceives language as unsegmented
phonetic signals.

7 Actually, the algorithm is more complex. For example, useless entries may be deleted during the learning process.

8De Marcken applies Huffman coding, a widely used approach to code generation. Huffman coding generates a prefix-
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A) Word 0 n t h e m a
Codeword | 00 01 100 101 110 1110 1111

(B) ‘Word 0 n the m t h e a
Codeword | 00 01 100 101 1100 1101 1110 1111

©) Word 0 n t h e m a themanonthemoon
Codeword | 00 01 100 101 1100 1101 1110 1111

Figure 4.6: Alternative lexicons employed for encoding themanonthemoon (artificial example)

(A) Evidence 100 101 110 1110 1111 01 00 01 100 101 110 1110 00 00 01
(themanonthemoon)
Length 42 bits

(B) Lexicon 1100 1101 1110 (the)
Evidence 100 101 1111 01 00 01 100 101 00 0001 (the manonthemoon)
Length 40 bits

(C) Lexicon 100 101 1100 1101 1110 01 00 01 100 101 1100 1101 00 00 01
(themanonthemoon)
Evidence 1111 ( themanonthemoon )
Length 48 bits

Figure 4.7: Alternative encodings for themanonthemoon, employing the lexicons displayed in figure
4.6

(B) has an additional entry ‘the’, which is a concatenation of the entries ‘t’, ‘h’, and ‘e’. Likewise,
lexicon (C) has an entry ‘themanonthemoon’, a concatenation of several character entries.

Figure 4.7 shows the description lengths which is needed to encode themanonthemoon by employing
the different lexicons. One part of this description is the encoding of the respective lexicon, i.e. of
the individual lexical entries. As all compound entries are (directly or via other compound entries)
composed from the basic character entries, these entries have to be part of any lexicon. Thus, they do
not have to be explicitly encoded. The compound entries are encoded by concatenating the codewords
of their components. For example, the entry ‘the’ in lexicon (B) is represented by the concatenation
of the codewords for “t’, ‘h’, and ‘e’.? The other part of the description is the coding of the evidence
(data) by means of the codewords of lexicon entries. Since lexicon (A) only contains character entries,
no lexicon entries have to be described. To describe the data, each character is encoded separately.
Lexicon (B) has the entry ‘the’, which has to be encoded, but which on the other hand saves bits
for encoding the evidence, since the portion the (occurring twice) can be described by one codeword

free code, i.e. no codeword is a prefix of any other codeword. This property is important to avoid ambiguities. As mentioned
in section 3.4.1.2, the code generated by Huffman coding is guaranteed to be an optimal prefix code, i.e. yields the shortest
code length on average. For details about Huffman coding, cf. (Cover & Thomas 1991, p. 92-101).

° Additionally, the order of the entries has to be encoded in order to determine the codeword for each entry. The example
in figure 4.7 ignores this for the sake of simplicity.
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instead of three with lexicon (A). Thus, the introduction of the parameter ‘the’ yields a shorter total
description length. In contrast, the entry ‘themanonthemoon’ in lexicon (C) results in a higher overall
description length. The encoding of the data can be significantly reduced to one codeword. However,
the encoding of the entry itself is too costly.

As de Marcken reports, an experimental application of this approach created a lexicon whose entries
to a large extent capture words and multiword expressions.

Above, I have argued that there is a correlation between the amount of data to be modelled and the
complexity of the induced model which is inherent to the MDL framework: the more data have to
be described, the higher the complexity of the acquired model. Of course, this also applies to both
learning scenarios just sketched. More parameters (i.e. nodes in the decision tree or entries in the
lexicon, respectively) become “affordable” if the amount of data to encode increases. However, in
contrast to our tree cut models, this behaviour is perfectly appropriate for these applications. In the
decision tree task, regularities induced from a large data set are less likely to reflect idiosyncracies
than regularities found in a small data set. Thus, it is adequate to infer a more complex decision tree,
which models more sophisticated regularities, if the training data set is large. The same holds for de
Marcken’s language acquisition task: New lexicon entries, which model a composition of existing
entries, are only added if there is sufficient evidence for them (cf. the quotation on page 102). Overall,
more data are likely to provide sufficient evidence for more lexicon entries.

To understand why the stated dependency between sample size and model complexity is appropriate
for the approaches discussed here, but not for the Li and Abe approach, we have to look closer at
the involved model classes. There is a crucial difference between decision trees and de Marcken’s
lexicons on the one hand and tree cut models on the other hand. In the former model classes, the
simplest models (i.e. those models with the least parameters) are the most conservative models. They
do not reflect any regularities in the data. The simplest decision tree is the empty tree. This is a
trivial decision tree since it does not make any decisions, i.e. captures no regularities at all. For this
tree, no parameter has to be encoded, but on the other hand, all data have to be coded as exceptions.
The second simplest decision tree consists of one leaf node that is associated with one particular
class.!® This kind of tree merely models a default class. For such a tree, one parameter (the class
assigned to the node) has to be encoded; all data items which are classified differently have to be
encoded as exceptions. The more sophisticated a decision tree, the more subtle regularities it models,
and hence, the more subtle predictions it makes about unseen data. In de Marcken’s approach, the
simplest lexicon (the starting point of the learning algorithm) just contains entries of the letters of the
assumed alphabet. This lexicon does not make any predictions about which combinations of these
letters form words or multiword expressions. The more new parameters (which make exactly that
kind of predictions) are introduced in the learning process, the stronger hypotheses regarding the
probable compositions of letters and words are captured by the resulting model. Summing up, the two
model classes have in common that complex models express stronger claims about the regularities
in the data, while simple models are more conservative. It is important to note that this applies to
many well-known model classes which have been proposed in the literature in connection with the
MDL paradigm, be it for linguistic (e.g. Osborne’s (1997) induction of categorial grammars) or non-
linguistic tasks (e.g. the task of acquiring a polynomial function from a set of points in a coordinate
system, cf. (Li & Vitdnyi 1992), (Rissanen & Ristad 1992)).

Actually, the class of tree cut models representing selectional preferences differs from that pattern.
The simplest tree cut model is a cut located at the root of the hierarchy. This model comprises only

'9The learning algorithm in (Quinlan & Rivest 1989) starts from trees of that kind.
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one parameter (the preference value of the root concept). However, it is not the most conservative tree
cut model. In fact, it is the least conservative model. It generalises from the training data as much as
possible by representing all noun complements of the verb under consideration with the same prefer-
ence value. Thus, such a model states that the examined verb does not exhibit selectional preferences
or dispreferences at all. This is the strongest claim that is conceivable, since it completely denies the
phenomenon of selectional preference, at least for a particular verb. For the task of inducing selec-
tional preferences from a data sample, a conservative model should represent selectional preferences
in a way that reflects the information provided by the data, but no further inferred regularities. In the
tree cut model class, regularities are expressed by generalisations. Therefore, the most conservative
tree cut is located at the leaves of the hierarchy so that each noun sense in the sample is represented
by a separate parameter,!! and the probabilities determined by the model correspond to the MLE
probabilities obtained from the sample. But following the MDL paradigm, the tree cut model at the
leaves is the most complex model, since it contains the most parameters.

Hence, the desired dependency between the amount of available training data and the amount of
inference expressed by the acquired model, which holds in many model classes, is reversed in the tree
cut model class: Strictly applying the MDL principle here, more data (and thus more evidence) yield
a more conservative model, whereas less data yield a model which makes stronger claims about the
distribution underlying the data. Of course, this is inappropriate, since it is the opposite of the desired
correlation that more evidence should trigger stronger inferences. By strictly applying MDL, I mean
selecting that model which minimises the “plain” sum of model and data description length. In the
following section, I will propose a variant of this approach where the quantity to be minimised is a
slight modification of that sum. With this modification, the adequate coincidence between sample size
and generalisation of the model is established.

4.2 Balancing Model and Data Description Length

4.2.1 Introducing a Weighting Factor

Recall that the Li and Abe approach selects the tree cut model which minimises the sum of the
parameter description length L, (the number of bits required to encode the preference values of the
concepts on the cut) and the data description length L;,; (the number of bits needed to encode the
data sample employing the model). The sample .5, to be encoded consists of the noun complements of
the examined verb v. Technically, the problem discussed in the previous section is caused by different
complexities of Ly, and Lg,; with respect to the sample size | S,|. Both complexities depend on |.S,,|,
but in a different manner. As one can see from the equations (3.31) (or (4.1), respectively) and (3.32)
on page 78, Ly, has the complexity O(log |S,|) (each parameter is represented by a precision of
logTw”' bits), while L4, has the complexity O(]S,|) (|.S,| data items have to be encoded). Thus, with
growing sample size, Lgq; “grows faster” than L, and for frequent verbs, the model description
length can be neglected, so that a model with many specific concepts becomes “affordable”.

To overcome this drawback, I modified the learning algorithm (step 9. in figure 3.16 on page 85) in
the following way: I extended the expression which is to be minimised by a weighting factor. Instead
of minimising L4, + Lgq¢, the modified algorithm minimises

""Note that according to equation (4.1) on page 99, the model only contains parameters for noun senses which occur in
the sample.
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log | Sy|

Lpar (M +C<
p( ) |Sv|

) Law(M) (C > 0) 42)

In this formula, L4, is weighted by the factor C' x log1Su| Thig quantity itself comprises two parts.

[S0]
lo‘gS'j“ reduces the complexity of L4, from O(|S,|) to O(log |Sy|). Thus, both addends

have the same complexity. |.S,,| does not directly affect the level of generalisation any more. ' Instead,
the content of the sample, i.e. its “semantic variety”, is crucial for triggering generalisation (cf. the
discussion at the beginning of section 4.1.2). This is the desired behaviour.

The fraction

C, the other part of the weighting factor, is a positive constant which may be arbitrarily chosen.
The value of C' affects the proportion of the data description length to the total quantity subject to
minimisation. A high value of C biases the learning procedure towards acquiring a rather complex
model, because the code savings which such a model provides are weighted higher than its costs.
Conversely, a low value of C' introduces a bias towards acquiring a rather simple model, since the
costs of encoding a model with more parameters get a higher weight than the savings such a model
brings about. In other words, C influences the degree of generalisation: The smaller C' is, the more
general concepts are acquired. I introduced this constant to account for the discussion in section 3.1:
The possibility of manipulating the overall generalisation level by the choice of C' introduces some
flexibility which might prove useful to fine-tune the approach w.r.t. a specific application scenario
(i.e. a specific task, domain, language, etc.). An appropriate value of C' should be found empirically
for a particular application. Note that C' is intended to be independent of a particular verb. It provides
a global bias regarding the amount of generalisation. Relative to this bias, the content of the sample
belonging to a particular verb triggers generalisation specifically for that verb.

4.2.2 Theoretical Justification

The introduction of a weighting factor is a deviation from the “pure” MDL principle which states that
the model minimising the total description length is the optimal one. However, one can find usages of
the term MDL principle in the literature (e.g. (Quinlan & Rivest 1989)) which mean something like
“finding an appropriate balance between model simplicity and model accuracy w.r.t. the training data”.
In this sense, the weighting approach which I propose is still compatible with the MDL framework.
In any case, it can be shown that this approach is compliant to Bayesian reasoning. I will proof this
claim in this subsection.

Bayesian reasoning (Bayesian inference, Bayesian learning) is a learning paradigm which is based
on Bayes’ law:

(M)p(S|M)

P
P(MS) = == 43)

If we interpret .S as referring to a data sample (the available evidence) and M as referring to a model,
then p(M|S) (the posterior probability) is the crucial distribution we are interested in, since it guides

2However, as discussed in section 4.1.2, an indirect correlation between sample size and generalisation is apparent:
Frequent verbs tend to have more general preferences. This tendency evolves from distributional properties of language
rather than mathematical properties of the employed formula. It will be empirically supported by the experiments reported
later in this chapter.
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the selection of a model M given the data S: of course, one selects the model that maximises p(M|S5).
Bayes’ law (which immediately follows from elementary probability theory) states that this probabil-
ity can be obtained by the product of the prior probability p(M) (the model probability without any
knowledge about evidence) and the likelihood probability p(S|M ), divided by p(.S), the probability
of the data sample regardless of a particular model.

The weighting approach can be reformulated in terms of Bayesian reasoning.'3. To achieve this, the
crucial step is to appropriately convert (weighted) code lengths to probabilities. The basic idea of
this conversion is adopted from (Quinlan & Rivest 1989). They provide a formula for assigning a
probability to an arbitrary binary string b with length L(b):

Mm:<1—%><%>um (44)

r > 1 is an arbitrary, but fixed constant. This formula defines a probability distribution over binary
strings. As there exist 27 binary strings of length L, all strings of length L together have the proba-

bility (1 — 1) (%)L For r > 1, the sum over all lengths L of (%)L converges to 17—11” (this is the

well-known geometric series). Multiplying by (1 — %) yields 1. Thus, equation (4.4) defines a proper
probability distribution. The higher the value of r is chosen, the faster the string probabilities decrease
with the string lengths.

To convert coding schemes (rather than arbitrary binary strings) to probability distributions, equation
(4.4) presented in (Quinlan & Rivest 1989) requires a slight modification. Given a particular coding
scheme, there might be binary strings which are not used by that coding scheme. In particular, this
applies for prefix codes, where strings which form a prefix of any employed code word are not used
themselves. Thus, if code words were assigned probabilities according to equation (4.4), then the
probabilities of all possible code words would not sum to 1. Thus, the formula has to be modified
by replacing the normalising constant (1 — %) by a general constant N whose value depends on the
actual coding scheme:

1 L(c)
p@:N<§) 45)
where
1
N= RYG
Zc: cis possible code word (?)

It will turn out that for our purposes, it is not necessary to know the exact value of N, because this
constant does not play a role for the selection of the model M. We know that NV exists and is limited
by1l— 1.

T

Likewise, the “original” tree cut approach can be reformulated as a Bayesian learning problem (cf. (Li & Abe 1998)).
Moreover, the MDL principle as such can be formalised in Bayesian terms (cf. (Mitchell 1997), (Li & Vitdnyi 1992),
(Osborne 1997)).
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Employing probability distributions as defined in equation (4.5), it can be shown that the minimisation
of expression (4.2) has an equivalent Bayesian formalisation. First, define the prior probability of
model M as

1 Lmod(M)
P(M) = Nmod <2 > (46)
Tmod
and the (likelihood) probability of sample .S given M as
1 Ldat (M)
p(S|M) = Nyat (2 ) 4.7)
Tdat

As noted above, Bayesian inference selects that model that maximises the posterior probability
p(M1S). The maximisation of p(M|S) is equivalent to the minimisation of — log p(M|S). Further-
more,

arg max p(M|S)
= argmin  — log p(M1S)
p(M)p(S|M)

p(S)
= argmin  (—logp(M) —log p(S|M) + log p(5))

— in —1
arg min og

= arg mj\}n (_ 1Og Nimod — Lmod(M) 1Og(1/2rmod)

—log Ngat — Lt (M) log(1/2r44t)
+log p(S))

= arg In]vi[n (Limod(M)(1 4+ 108 Tm0d) + Laat (M)(1 + 10g 74at)
— log Nyoq — log Ngat + log p(S))

= arg mj‘}n (Limod(M)(1 4 10g Tmod) + Laar(M)(1 + log rgat))

In the last line, all addends that do not depend on M are omitted, since they do not play a role for the
minimisation.

Let D be a constant so that

1 1
D > — C>0
w15y g} €0
Now we set
T"mod = 2D‘S|71
Taat = 2DClog|S|fl
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The condition on D ensures that 7,,,q and r4,; are greater than 1. Therefore,

arg m]vi[n (Limoa(M)(1 4 10g rmoed) + Laat (M) (1 + 1og rgat))
~ argmin (DIS|Lnoa(M) + DClog S| Laus (1)

= arg mAiJn (Lmod(M) + %Ldat(M)>

AS Lppod(M) = Leyt(M) + Lpgr (M) and Lyt (M) is constant for all models (cf. section 3.4.3.2),
the last line is equivalent to minimising (4.2).

Intuitively, p(M) and p(S|M) are defined by equations (4.6) and (4.7), respectively, in a way that
their decrease with growing L,,,q and Ly, is comparable. Thus, none of these two probabilities will
overly “dominate” the other one.

At the end of this subsection, I would like to briefly address the criticism of the Bayesian framework
put forward by Rissanen & Ristad (1992). They claim that the prior probability distribution may be
arbitrarily designed, while the design of its MDL counterpart, the model description, is guided by the
“universal” criterion of efficient encoding:

... in the Bayesian approaches the prior can in principle be selected as we wish. In fact, it
often represents private subjective knowledge. ... However, the MDL framework enjoys
significant conceptual and practical advantages over the Bayesian framework. It is often
easier to design a prefix code than to design a probability function directly. Conversely, it
it is often more difficult to to design an unnatural prefix code than to design an arbitrarily
unnatural probability function. (Rissanen & Ristad 1992, p. 160,164)

Let me emphasise that this criticism does not apply to the weighting approach which I have introduced
here. The model prior p(M) is not selected arbitrarily, but is determined by the complexity of the tree
cut model M and a well-motivated coding scheme. The only “subjective” component of p()M) (due
to its relation to p(S|M)) is the choice of the constant C. However, this selection is intended to be
guided empirically, by evaluating the approach in a particular application, trying different values of
C and selecting that value that yields maximal performance.

4.2.3 Experimental Results

To test the impact of weighting on the generalisation level of the acquired tree cuts, I examined verbs
with diverse numbers of different noun complements (types) in the training sample mentioned in
section 4.1.1. In particular, I selected all verbs with a high number (> 1000), a medium number (400—
600), a low number (70-100), and a very low number (10-40) of different complements and compared
the generalisation level retrieved by the “standard MDL” algorithm and the weighting algorithm. (I
arbitrarily chose C' = 50.) For all verbs with a high number and 89% of the verbs with a medium
number of different complements, the weighting algorithm obtained more general concepts than the
standard MDL algorithm. In contrast, more specific concepts were computed for almost all verbs
with a low and a very low number of different complements (95.9% and 99.5%, respectively). Hence,
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nept A(kill,nept)

<life_form#organism#being#living_thing> 3.19

Figure 4.8: Part of the tree cut model for “kill” (weighting algorithm)

nept A(murder, nept)
<person#individual#someone#mortal#human > 4.32
<animal#animate_being#beast#brute> 0.27
<plant#flora#plant_life> 0.08

Figure 4.9: Part of the tree cut model for “murder” (weighting algorithm)

the modification changes the behaviour of the algorithm towards the desired direction: variety of
complements triggers generalisation.

Figures 4.8—4.10 show the tree cut models for “kill”, “murder”, and‘‘assassinate” which are yielded by
the weighting algorithm (C' = 50). Now these models exhibit an appropriate level of generalisation.
(Note that WordNet does not have a concept like “important person”, which would be appropriate
for “assassinate”. However, the concepts displayed in figure 4.10 fall under this category without
exception.)

As finding the appropriate generalisation level is crucial for learning appropriate thematic role rela-
tions, the preliminary experiments described in section 4.1.1 and in this section strongly indicate that
introducing a weighting factor as described in section 4.2.1 significantly improves the suitability of
the tree cut approach for the task of this thesis. The next chapter describes design and preprocessing
considerations of experiments to verify that claim, as well as their results. These results show that
indeed the weighting approach drastically outperforms the standard MDL approach.
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nept A(assassinate, nept)

<adult> 2.57

<capitalist> 1.07
<communicator> 5.22
<contestant> 8.62
<disputant#controversialist> 5.02
<spiritual_leader> 23.10
<head#chief#top_dog> 71.55
<head_of_state#chief_of_state> 242.15
<presiding_officer> 356.61
<REST::leader> 653.89
<peer#equal#match#compeer> 18.53
<relative#relation> 7.12
<party> 68.31
<ruler> 55.49
<authority > 197.08
<suspect> 653.79

Figure 4.10: Part of the tree cut model for “assassinate” (weighting algorithm)
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Chapter 5

Acquiring Selectional Preferences for
Thematic Role Relations: Practical Issues

While the previous chapter has dealt with the core approach I propose for learning selectional prefer-
ences, this chapter addresses more practical, in a sense peripheral, but nonetheless important issues.
These issues concern preprocessing steps on the one hand and the evaluation of the approach (and
related approaches) on the other hand.

Section 5.1 describes the data employed for training and discusses their usage. Section 5.2 and 5.3
describe extensions and refinements of the preprocessing step of mapping word frequencies to con-
cept frequencies. This task is divided into two steps: lexical disambiguation of the training data and
propagating frequency counts of word senses to more abstract concepts in the hierarchy.

Section 5.4 deals with the issue of retrieving a gold standard for thematic role relations from the
EuroWordNet database. With this gold standard, it is possible to perform a systematic and application-
independent evaluation of approaches for learning selectional preferences. While the experiments
referred to in section 4.1.1 and 4.2.3 only provided illustrative examples, section 5.5 presents more
recent experiments which employ the gold standard and thus operate on a broader empirical basis.
These experiments show that the weighting approach which I propose significantly outperforms the
original approach developed by Li and Abe.

5.1 The Training Data

This section describes the training data I used for the experiments which I report in this chapter and
the chapters 6 and 7. These data are different from the data I used for the preliminary experiments
sketched in the previous chapter. Both have been retrieved by parsing the British National Corpus
(cf. (Burnard 1995)). However, the data I referred to in section 4.1.1.2 only capture part of the BNC
(about 40 million words), whereas the data I describe here cover the whole BNC (100 million words).
More importantly, the former data were obtained by employing a chunk parser, while the latter data
have been extracted from complete parse trees. A chunk parser is fairly suitable for determining the
subject or the object of an English sentence. However, to acquire the complete subcategorisation
frame of a sentence, a complete parse is required. In particular, a chunk parser does not account
for PP-attachment disambiguation, i.e. for determining whether an occurring PP is a complement of a
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verb or modifies a noun. This kind of information is needed to detect thematic roles which underlie the
syntactic realisation of the arguments in a sentence. For example, role relations involving a location,
i.e. LOCATION, DIRECTION, SOURCE_DIRECTION, and TARGET_DIRECTION, are typically
realised as PPs. Moreover, as we saw in section 2.1 (cf. also the discussion of the examples (5.1)—
(5.3) below), the role which underlies a certain syntactic complement can be partially identified by the
kinds of syntactic complements co-occurring in the sentence. For these quantitative and qualitative
reasons, the data I will describe in this section are more adequate for the task of this thesis than the
data used in the experiments sketched in chapter 4. Since these experiments were restricted to direct
objects, the shallow-parsed data were sufficient. Furthermore, the data to be introduced here had not
been available when these early experiments were carried out.

The training data I used had been compiled by Sabine Schulte im Walde (cf. (Schulte im Walde 1998a,
p. 11=31) for further details of retrieving and preparing the data) at the IMS, University of Stuttgart. !
These data were retrieved by parsing the BNC with a stochastic parser which had been developed at
the IMS (cf. (Carroll & Rooth 1998)). For each parsed sentence, the head verb, the subcategorisation
frame representing the sentence’s syntactic structure, and the head word of each complement were
extracted. All extracted word forms were lemmatised by employing a morphological lexicon and a
morphological stemmer. Frames of passive sentences were transformed into the corresponding ac-
tive frames (the subject became the direct object and the by-phrase, if present, became the subject).
Sentences headed by an auxiliary verb were excluded. This procedure yielded a set of 3,428,273
(representations of) sentences. An example of such an item is

give subj:saleswoman obj:apple pp.to:customer

As explained in section 3.2, the approaches investigated in this thesis do not take into account de-
pendencies between the different complements within a sentence. Thus, they do not take as input a
verb’s complete collection of complements in a sentence, but rather process simple verb—complement
pairs. Therefore, to obtain the data in an appropriate format, the complete frame items obtained as
described above were divided into items each of which represents the relation between a verb and a
single complement as well as additional syntactic information. For example, the frame item above
corresponds to the following data items:>

give#subj:obj:pp.to/subj saleswoman
give#subj:obj:pp.to/obj apple
give#subj:obj:pp.to/pp.to customer

The left component of these pairs consists of three parts.The first part is the verb. The second part
(separated from the verb by a ’#°3) represents the syntactic arguments the verb takes in the sentence
from which the data item originated, i.e. the complete subcategorisation frame realised in that sen-
tence. The individual arguments are separated by colons. NP arguments are characterised by their
grammatical function (subject or object), PP arguments by the “pp” label and their preposition (“to”

'T am grateful to Sabine Schulte im Walde for making these data available to me.

%In the files I received from Sabine Schulte im Walde, the compiled collection of data items is represented in a much
more compact form; cf. (Schulte im Walde 1998a) for details.

3The notation illustrated here is similar to the notation used by Schulte im Walde. In addition, I had to introduce the
separators *#’ and ’/’ for implementational reasons.
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in the examples above). Of course, other argument types (e.g. clausal complements) are represented as
well. However, since they play a marginal role for my work, I will refer to them only where necessary.
The third part (separated by a ’/’) indicates that syntactic argument type, i.e. that syntactic relation,
that the data item actually represents.* Of course, this argument type belongs to the subcategorisation
frame represented in the second part. The right component of a data item contains the head noun of
that argument. For example, the item

give#subj:obj:pp.to/obj apple

represents a corpus instance where the verb “give” subcategorises for a subject, an object, and a
prepositional phrase headed by the preposition “to”, and the object is “apple”.

The additional syntactic information provided with the verb is necessary to select those data items that
correspond to that argument for which selectional preferences shall be acquired. It is obvious that the
third part of the left component is required if one learns preferences for a certain syntactic argument
of a verb, as has been done in all the work discussed so far. For example, to induce selectional
preferences for the subject, one selects those tuples which are marked with . . . /subj for training.
The information about the complete syntactic subcategorisation pattern (in the second part of the
left component) is important if selectional preferences for a semantic argument (i.e. a thematic role),
rather than a syntactic argument, are to be learned. As noted above, the semantic role underlying
a syntactic argument can to a certain extent be identified (or, at least, the range of possibilities can
be narrowed) by taking into account the other syntactic argument types in the sentence. Thus, the
information about the syntactic subcategorisation pattern is important for linking. Obviously, a certain
linking procedure, i.e. a mechanism to map syntactic to semantic arguments, is necessary to employ
syntactic training data for acquiring thematic role relations. In our acquisition context, a more concrete
definition of the linking task is the following: Given a certain thematic relation type to be learned,
select all items in the data which represent a realisation of that thematic relation. These items are used
tor train the acquisition algorithm so that this algorithm learns selectional preferences for the role in
question.

To illustrate such a linking process, recall examples (2.2)—(2.4), repeated here, slightly modified, as

(5.1)—(5.3):

(5.1) The jealous husband broke the window.
(5.2) A hammer broke the window.

(5.3) The jealous husband broke the window with a hammer.

A syntactic alternation of the kind illustrated by these examples is called diathesis alternation.> Such
alternations have been largely examined for English verbs (cf. (Levin 1993)). This research is guided

*In figure 3.4 on page 61, I used a different notation to express the sort of information which is provided by
the left component of a data item. For instance, the expression “increase ( subj obj )” in that figure corresponds to
increase#subj:obj/obj in the notation just described. Although the former notation might appear more concise,
I will stick to the latter one for the rest of this thesis, because it makes explicit the important fact that the left component
comprises three different pieces of information (a verb, a subcategorisation frame, and a particular syntactic relation).

5 As we will see in section 6.3, there are a number of types of diathesis alternation. The kind of alternation exemplified
in (5.1)—(5.3) is called instrument subject alternation.
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by the hypothesis that semantic properties of verbs are reflected by their syntactic behaviour, and that
a semantic classification of verbs can be induced from the types of diathesis alternation that each verb
does or does not undergo. Note that Schulte im Walde created and used her training data exactly for
the task of automatically acquiring such a verb classification. 1 will utilise linguistic findings about
diathesis alternations in my linking strategy (cf. section 6.3).

In the sentences above, “husband” is the Agent, “window” the Patient, and “hammer” the Instrument.
These examples illustrate that linking is all but trivial: Both Agent and Instrument can be realised as
the subject. Furthermore, the Instrument can be realised as the subject or a with-PP. However, it is
not possible that both the subject and a with-PP express an Instrument in the same sentence. Finally,
neither the Agent nor the Instrument is expressed as the object, since the object expresses the Patient.
Such dependencies between arguments can be employed in the linking process.

Now suppose that the sentences above belong to the training corpus. Then, if one wants to acquire
selectional preferences for the INSTRUMENT role, the following items should be included in the
training set, where the first item corresponds to sentence (5.2), while the second one corresponds to
(5.3):

break#subj:obj/subj hammer
break#subj:obj:pp.with/pp.with hammer

However, to learn preferences for the AGENT role, the following items are relevant (the first item
corresponding to (5.1), the second one to (5.3)):

break#subj:obj/subj husband
break#subj:obj:pp.with/subj husband

As this is a very sophisticated task (which, indeed, is worth a Ph.D. thesis of its own), I will postpone
this issue here and dedicate a separate chapter to it (chapter 6).

To eliminate noise, which could arise due to parsing errors or idiosyncratic syntactic usages of verbs in
the corpus, I only took those data items into account whose left component (verb + frame + argument)
occurs at least 10 times in the data and whose frame-argument combination appears in at least 5% of
all occurrences of the respective verb in the data.

5.2 Disambiguating the Training Data

This and the next section deal with the issue of mapping the word forms in the data to concepts in
the WordNet hierarchy. This preprocessing step is necessary because our goal is to acquire relations
between semantic verb and noun concepts, rather than verb and noun forms. Following the basic idea
of the word-to-sense approach, this problem comprises two sub-tasks: the semantic disambiguation of
word forms (i.e. mapping forms to senses) and passing the evidence found for individual word senses
to those concepts which subsume these senses.® This section addresses the former of these sub-tasks,

The word-to-concept approach does not distinguish these two steps, since it immediately projects the frequency of a
word form to all the concepts that subsume that form, i.e. it treats the senses corresponding to that form and their hyper-
onyms in a uniform way.
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while the next section is concerned with the latter.

Unlike Li and Abe, who acquire the selectional association between verb forms and noun concepts,
I aim at learning the selectional association between verb concepts and noun concepts. To achieve
this, the verbs in the training data have to be disambiguated as well as the nouns. As the training
data consist of a collection of verb—noun pairs’, the task of disambiguating these data can be for-
malised in the following way: Given a verb—noun pair (v,n), we have to estimate the probability
p(snsi(v), sns;(n)v,n) (where sns;(w) denotes sense i of word w) for each possible combination
(sns;(v), sns;(n)) of senses of v and n. This information can be employed to estimate the frequency
counts of verb—noun sense pairs freq(sns;(v),sns;(n)) from the counts of verb—noun form pairs
freq(v,n) extracted from the training data:

freq(snsi(v),sns;(n)) = freg(v,n) x p(sns;(v), sns;j(n)|v,n) 5.4

As in chapter 3, I leave the syntactic information (provided in the individual items of the training
data as the second and third part of the left component, s.a.) implicit. Frequencies and probabilities
concerning a verb—noun pair are computed separately for each syntactic configuration associated with
that pair in the data.

Of course, words which are not covered by WordNet cannot be taken into account; they are dropped
in the step of mapping word forms to word senses. Proper nouns are a special case. Some researchers
employ strategies for a coarse semantic classification of proper nouns, in order to map them to very
general WordNet concepts. For example, McCarthy (2001) uses named entity recognition software
to assign proper noun instances to one of the concepts <person#someone>, <organization>, and
<location>. In principle, such a strategy makes sense. As usually a considerable amount of verb
complements are proper nouns, capturing these complements significantly increases the data size,
and thus the empirical evidence actually employed for learning selectional preferences. On the other
hand, since such techniques provide only a very general semantic characterisation of proper nouns,
they might introduce a significant bias to very general WordNet concepts, especially if proper nouns
constitute a major portion of the data. This bias would thwart the process of generalising from the
data instances to find the appropriate level of abstraction (cf. the discussion at the beginning of sec-
tion 4.1.2). The problem is that the coarse classification of named entities involves a high amount
of abstraction, and thus the acquisition algorithm would have to generalise from very abstract items
(while proper nouns themselves by definition are maximally specific!). For example, recall the selec-
tional preferences for the object of “assassinate” discussed in the previous chapter. The appropriate
generalisation level for these preferences is below <person>, because this verb is used only in con-
nection with a specific type of persons (important persons). The tree cut acquired for “assassinate”
(cf. figure 4.10 on page 114) adequately models this generalisation level. If, however, a large portion
of the objects of “assassinate” are proper nouns, and if all these nouns are represented by <person>,
then the collection of noun senses from which the tree cut acquisition algorithm has to generalise
includes <person> with a considerable frequency. Under these circumstances, it would be likely that
the learned tree cut model contains the concept <person> with a rather high preference value, which
would be an over-generalisation. Therefore, I decided not to give a special treatment to proper nouns.
In other words, proper nouns which do not occur in WordNet (i.e. most proper nouns) are not taken

"For the sake of simplicity, the additional syntactic information provided by the data items as described in the previous
section is not taken into account for word sense disambiguation here. In principle, the knowledge of the actual subcategori-
sation frame might exclude some of the possible senses of a verb. Employing this kind of knowledge would be a refinement
of the WSD method to be proposed which is worth investigating in future work.
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into account for learning selectional preferences.

5.2.1 The Uniformity Hypothesis

Lacking further information concerning sense distributions of word forms, it is reasonable to make
the following simplifying assumptions, which I will henceforth refer to as the uniformity hypothesis:

(a) a uniform distribution of the senses of v and n, respectively

(b) independence of the sense distributions of v and n

With these assumptions, the probability of senses given word forms can be estimated as in equation
(5.5):

1 1
X

senses(v)  senses(n)

(5.5)

p(snsi(v), sns;(n)jv,n) =

(For example, if v has 9 and n 7 possible senses, then each combination of these senses receives the
probability % X % = (0.016.) Almost all the strategies for learning selectional preferences discussed
so far rest on the uniformity hypothesis.® Only Agirre & Martinez (2002) and in part Ribas (19954)
circumvent the problem by training on lexically disambiguated data. Indeed, if no disambiguation
information is available, there does not seem to be any obvious alternative to assuming uniformity.
Apart from that “negative” justification, Resnik provides a positive motivation for the appropriateness
of the uniformity hypothesis. As he puts forward his argument in several publications concerning the
acquisitions of selectional preferences (cf. (Resnik 1993), (Resnik 1997), (Resnik 1998)), and as I
think that this argument is not unproblematic, I will address it here. He argues as follows:

Note that, in the absence of sense disambiguation, it is not unreasonable to distribute the
credit for an observed noun equally among all the classes subsuming it [this realises the
uniformity hypothesis within the word-to-concept approach, AW], as a first approxima-
tion. This works because related words tend to be ambiguous in different ways. For ex-
ample, consider the observation of two verb—object combinations, drink wine and drink
water. On the basis of these observations, the joint frequency will be incremented for
each class containing wine in any sense—including, for example, <chromatic_color>.
Similarly, the second pair will be recorded as a co-occurrence between drink and in-
appropriate categorisations of water such as <body_of_water>. However, evidence for
co-occurrence will accumulate only for classes containing both water and wine, such as
<beverage>. The cumulative evidence of co-occurrence with drink will thus tend to sup-
port appropriate interpretations, and counts with inappropriate senses will appear only as
low frequencies dispersed throughout the taxonomy. (Resnik 1998, p. 251)

The critical part of this argument is the claim that “related words tend to be ambiguous in different
ways”. In fact, more recent WordNet-related work has pointed out that this is not necessarily the case.

8For those approaches that acquire preferences of verb forms, only assumption (a) (applied to nouns) is relevant.
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This work deals with enriching WordNet with information concerning a well-known phenomenon in
lexical semantics: systematic polysemy (regular polysemy). This term refers to the well-known fact
that different words have analogous patterns of senses. A widely discussed example of such a pattern
is the collection of senses exhibited by the word “school” (cf. (Bierwisch 1983)):

(5.6)

a. The school went for an outing.
b. School starts at 8.30.
. The school was founded in 1910.

. The school has a new roof.

e o

These examples (cited from (Buitelaar 1998)) demonstrate different senses of “school”: In (5.6 a.),
this word means a group of people, in (5.6 b.) a process, in (5.6 c.) an institution, and in (5.6 d.) a
building. This pattern of senses is regular, i.e. it is (completely or in parts) shared by a number of other
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words such as “university”, “kindergarten”, “theatre”, “opera”, “parliament”, etc. Other systematic
sense patterns mentioned in the literature include container / containerful (“‘glass”, “cup”), animal /
food (“lamb”, “chicken”), language / people (“Spanish”, “German”); cf. (Ostler & Atkins 1992) for
further examples. In contrast, homonymy refers to non-systematic sense patterns that are idiosyncratic
for a particular word. Usually, this phenomenon is exemplified in the literature by the word “bank”,
which has the two completely unrelated senses ‘waterside’ and ‘financial institution’, illustrated in

(5.7) (again cited from (Buitelaar 1998)):

(5.7)

a. We walked along the bank of the Charles river.
b. Did he have an account at the HBU bank?

In our context, the crucial question is to what extent the phenomenon of systematic polysemy is re-
flected by the sense distributions of the words captured by WordNet. Recently, several approaches
to detect patterns of systematic polysemy in WordNet have been proposed (cf. (Buitelaar 1998),
(Buitelaar 2000), (Peters & Peters 2000)). I will not go into details of these approaches here. They
share the common idea to group words together whose sense patterns can be characterised by a com-
mon set of superconcepts. For example, Peters & Peters (2000) found a group of 20 words which can
be characterised by either of the two concepts <music> and <dance> (“waltz”, “rumba”, “bolero”
etc.). Each of these words has (at least) one sense in WordNet that is subsumed by <dance> and
one sense subsumed by <music>. Hence, this group comprises instances of the systematic poly-
semic pattern music / dance. Other patterns Peters & Peters (2000) found in WordNet are e.g. musical
composition / group of singers (16 words, e.g. “trio”, “quartet”, “suite”), building / institution (15
words, e.g. “school”, “chamber”, “court”), supporting structure / theory (8 words, e.g. “framework”,
“foundation”, “base”) and container / quantity (33 words, e.g. “barrel”, “firkin”, “kettle”).

Moreover, Buitelaar (1998) found sense patterns that are coincidentally shared by several words. For
example, the pattern act / animal / artifact is shared by the words “bat”, “drill”, “fly”, “hobby”, “ruff”,
“solitaire”, and “spat”. Other patterns which reflect systematic relationships between senses, like act/
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region (e.g. “caliphate”, “emirate”, “clearing”, “repair”’) may refer to an act or to a location where that
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act takes or took place), also have coincidental instances in WordNet (e.g. “bolivia” or “chicago” may
refer to a location or a card game, “charleston” to a location or a dance). Buitelaar (1998) summarises
his findings by claiming that almost 95% of the nouns captured by WordNet have senses that are
“somehow related”, and only about 5% “are to be viewed as true homonyms”, exhibiting completely
unrelated senses.

These results contradict Resnik’s assumption that “related words tend to be ambiguous in different
ways”. Hence, his conclusion that “‘counts with inappropriate senses will appear only as low frequen-
cies dispersed throughout the taxonomy” is questionable. Rather, if related words exhibit common
sense patterns, then there is the danger that the frequency counts of erroneous senses accumulate
as well as the counts of the correct senses. Ribas (1994) reports that the accumulation of erroneous
senses resulted in the acquisition of inappropriate selectional preferences. My experimental evidence
confirms this observation. Regarding the findings sketched above, this seems an obvious consequence.
It remains an empirical question to what extent this is a problem for learning selectional preferences.
Therefore, I carried out the experiments reported below in two ways: once adopting the uniformity
hypothesis, and once employing a strategy of lexical disambiguation which I describe in the following
section.’

5.2.2 A Disambiguation Approach

The previous section shows that it makes sense to obtain a more informed estimation of sense dis-
tributions than to rely on the uniformity hypothesis. Therefore, I used a more sophisticated approach
to estimate p(sns;(v), sns;j(n)|v, n). This approach consists of two steps: The first step employs the
latent semantic clustering technique (LSC) developed by Rooth et al. (1998) and introduced in sec-
tion 3.3 to obtain semantic clusters of similar verb—noun pairs. The second step employs a method
proposed in (Resnik 1995a) which disambiguates words within a semantic cluster by measuring the
semantic distances between their respective senses.

In the first step, I acquired latent semantic classes from the training data described in section 5.1.
Like in (Rooth et al. 1998), subcategorisation information was attached to the verbs. To reduce the
number of parameters (class membership probabilities) to be estimated, I replaced all verbs and nouns
which do not occur in WordNet (e.g. proper nouns) by the string “notinwordnet”. This decreases
the size of the resulting LSC model significantly, since instead of estimating parameters separately
for each of these words, only parameters for “notinwordnet” are estimated. This reduction saves
memory and processing time. In the LSC approach, the number of classes as well as the number of
learning iterations has to be fixed in advance. Following (Rooth et al. 1998), I used 35 classes and
400 iterations.

Figure 5.1 shows one of the clusters of the obtained LSC model (class c1g). In section 3.3, I have
explained that a latent semantic class essentially comprises'® semantically similar verbs and seman-
tically similar nouns so that these verbs and nouns tend to co-occur with each other. The class in
figure 5.1 illustrates this behaviour. This class particularly comprises verbs denoting some kind of
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changing (“open”, “close”, “change”), putting (“put”, “sit”, “fill”’), or moving (“cross”, “go”), as well

?0f course, as the beginning of the quote on page 120 indicates, Resnik does not deny the usefulness of lexical disam-
biguation as a preprocessing step of acquiring selectional preferences.

10Recall that the LSC approach is a soft clustering method, i.e. the membership of a verb v or a noun n in a class ¢ is
modelled by the conditional probability p(v|c) or p(n|c), respectively. Thus, stating that a class comprises certain verbs
and nouns means that these verbs and nouns have comparably high membership probabilities for that class.
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p(Clg) = 0.0146
v p(v[eis) n p(nfeis)
open#subj:obj/obj 0.0369 eye 0.0976
open#subj/subj 0.0294 door 0.0776
notinwordnet 0.0253 notinwordnet  0.0385
closettsubj:obj/obj 0.0194 face 0.0328
put#subj:obj:pp.on/pp.on  0.0123 mind 0.0277
cross#subj:obj/obj 0.0111 mouth 0.0193
put#subj:obj:pp.in/pp.in  0.0104 window 0.0173
go#subj:pp.to/pp.to 0.0098 bed 0.0156
sit#subj:pp.on/pp.on 0.0094 table 0.0155
hit#subj:obj/obj 0.0088 chair 0.0143
fill#subj:obj/obj 0.0088 gray 0.0140
sit#subj:pp.in/pp.in 0.0073 wall 0.0133
change#subj:obj/obj 0.0070 side 0.0129
closeftsubj/subj 0.0067 line 0.0114
clear#subj:obj/obj 0.0063 floor 0.0113

Figure 5.1: Latent semantic class 18
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as nouns denoting body parts (“eye”, “face”, “mouth”), parts of buildings (“‘door”, “window”, “wall”,
“floor”), or pieces of furniture (“bed”, “table”, “chair”). Furthermore, entities denoted by such nouns
are typically affected by events denoted by such verbs. Note that not all verbs or nouns, respectively,
in a class are similar to each other. However, similar verbs and nouns tend to be grouped in the same
classes.

In an LSC model, the ambiguity of a verb or a noun is reflected by its (graded) membership in several
classes so that different senses of a certain word are prevalent in different classes. To illustrate this,
figure 5.2 and 5.3 show two (artificially constructed) classes. Both of them include the noun “bank”.
However, class c.;1 in figure 5.2 provides evidence for the sense denoting a geological formation
(concept <bank#side> in WordNet), whereas c..2 in figure 5.3 indicates the sense denoting a building
(concept <bank#bank_building> in WordNet). In the same way, these classes indicate certain senses
of the verbs included in them. For example, the verbs in figure 5.2 provide evidence for those senses
of “climb” that indicate a movement rather than those senses that indicate some kind of increase, e.g.
of prices (in WordNet, there are four senses of “climb”; two denote a movement and two an increase).
This evidence implies at least a partial disambiguation of “climb”. In other words, the LSC model
implicitly captures the information that the ‘movement’ senses of “climb” co-occur with the sense of
“bank” represented by <bank#side>. It is just this kind of information which is needed for mapping
pairs of verb—noun forms to appropriate pairs of verb—noun concepts. The only remaining step which
is required to employ that information is a method to make it explicit, i.e. a method to automatically
determine which WordNet senses a cluster favours for each of the verbs and nouns in it. The second
step of my disambiguation approach addresses this task.

In this second step, I employed a method for disambiguating semantically similar words within a
cluster. Resnik (1995a) proposes such a method. The basic idea is to compare the senses of the words
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p(Cez1) = 0.008
v p(vlceml) n p(nlceml)
walk#subj:pp.along/pp.along  0.01 hill 0.06
climb#subj:obj/obj 0.009 bank 0.06
reach#subj:obj/obj 0.009 shore 0.04
climb_down#subj:obj/obj 0.007 elevation 0.01

Figure 5.2: A latent semantic class containing “bank” in the ‘geological formation’ sense

P(Cex2) = 0.01
v p(v‘ceaﬂ) n p(n‘cer)
enter#subj:obj/obj  0.03 hall 0.04
build#subj:obj/obj  0.02 bank  0.03
leave#subj:obj/obj  0.02 school 0.02
plan#subj:obj/obj  0.006 palace  0.01

Figure 5.3: A latent semantic class containing “bank” in the ‘building’ sense

in a cluster and for each word select those sense(s) which is (are) closest to the senses of the other
words. For example, consider the nouns in the class displayed in figure 5.1. Their similarity helps to
mutually disambiguate each other. E.g. “chair” could denote a piece of furniture or a person. There
are a number of nouns in the cluster (such as “bed”, “table”, etc.) which have senses that also refer
to some furniture, i.e. senses which are close to the ‘furniture’ sense of “chair”. Thus, these nouns
provide strong evidence for that sense. In contrast, nouns which have a sense close to the ‘person’
sense of “chair” occur only rarely in the cluster.!! Hence, only weak evidence is provided for that
sense in the cluster. Similarly, the ‘furniture’ sense of “bed” is strongly supported by other nouns in
the class with similar senses, whereas the ‘geological formation’ sense is not.

To formalise the notion of closeness or similarity of senses, Resnik (cf. (Resnik 1995b)) employs the
hyponym/hyperonym hierarchy of WordNet. This approach is based on the assumption that semantic
similarity of two concepts (or their dissimilarity, respectively) is reflected by their closeness (distance)
in the hierarchy. To illustrate the idea, let us look at the hierarchical structure (which corresponds to
WordNet 1.5) displayed in figure 5.4, in particular the concept <bank#side>. <mountainside> is
very close to that concept, <hill> is a bit more distant, and <artefact> is located quite far away.
This is in accordance with the intuition about the similarity of these concepts: <mountainside>
is very similar to <bank#side>, <hill> is quite similar, and <artefact> is dissimilar. Now the
question arises how a semantic taxonomy can be used to obtain a quantitative measure of seman-
tic similarity or semantic distance. One obvious way to calculate the distance between two con-
cepts would be to count the number of edges on the path between these concepts. However, the
individual hyperonymy relations in WordNet represent different degrees of abstraction, and hence
different semantic distances between the concepts they relate. For instance, the relation between

"For example, “face” has a sense in WordNet which denotes a person, as in “when he returned to work he met many
new faces”.
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<inanimate_object#physical_object>

0.21
<natural_object> <artefact>
0.08 0.13
<geological_formation>
0.005
<elevation> <shore> <incline#side>
0.002 0.001 0.002
<hill> <mountainside> <bank#side> <bank#bank_building>

0.001 0.001 0.001 0.001

Figure 5.4: Part of the WordNet hierarchy with (artificial) concept probabilities
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<natural_object> and <physical_object> obviously implies a larger abstraction step than the re-
lation between <hill> and <elevation>. Or, to take another example, the fact that there is an in-
termediate node between <hill> and <geological_formation>, but there is no such node between
<shore> and <geological_formation> implies that the edge-counting approach yields a distance of
2 in the former case and a distance of 1 in the latter. However, it is counterintuitive that <hill> should
be twice as semantically distant to <geological_formation> as <shore>. For these reasons, Resnik’s
(1995b) definition of semantic similarity combines the structural information provided by the hierar-
chy with a corpus-based measure which is motivated by information theory. This measure is called
information content. In section 3.4.1.2, I explained that in information theory, the information carried
by a message is quantified by the negative logarithm of its probability. (This reflects the idea that a
message which is improbable and thus highly surprising provides a larger amount of information than
a message which is probable and thus has been expected.) Accordingly, the information content of a
concept is defined as

info(ept) = —log p(cpt) (5.8)

The higher the probability of a concept, the less informative (and the more abstract) it is. Figure
5.4 shows probabilities of the displayed concepts. Note that these probabilities have been artifi-
cially chosen in order to facilitate the intuitive understanding of the basic ideas explained in this
section. Of course, the probabilities to be employed by the WSD approach are estimated from the
training data.'> Resnik defines the similarity of two concepts in WordNet as the amount of informa-
tion which both concepts share. This is the information content of their most informative subsumer,
i.e. the most specific superconcept that subsumes both concepts. For example, the most informa-
tive subsumer of <bank#side> and <mountainside> is <incline#side>, which has the informa-
tion content —log 0.002 = 8.97. The most informative subsumer of <bank#side> and <shore>
is <geological_formation> with the information content —log 0.005 = 7.64. (Note that the same
holds for <bank#side> and <hill>. Hence, this approach overcomes the problem of the presence
or absence of intermediate nodes mentioned above.) Finally, the most informative subsumer of
<bank#side> and <artefact> is <physical_object> with the information content — log 0.21 = 2.25.
These values model the similarity of the respective concepts.

However, this similarity measure does not take into account the distance of the two compared
concepts from their most informative subsumer. For example, in Resnik’s approach the similar-
ity between <bank#side> and <elevation> is equal to the similarity between <bank#side> and
<geological_formation>. In both cases, the most informative subsumer is <geological_formation>,
and the information content of this concept quantifies the similarity. However, it is intuitive that the
latter pair of concepts exhibits a higher similarity than the former one. For this reason, I decided
to adopt a different though related distance measure which takes such differences into account. This
measure was defined in (Jiang & Conrath 1997). 13 In contrast to Resnik’s method, it quantifies seman-
tic distance rather than semantic similarity. This distance is defined as the difference of information
content between two concepts and their most informative subsumer:

"2This can be done by using either the word-to-concept or the word-to-sense approach. Resnik uses the former strategy,
whereas I employ the latter one in my implementation.

B3Several semantic similarity and distance measures for WordNet have been proposed. Budanitsky & Hirst (2001) re-
view five such measures and evaluate them by comparing their performance within the semantically-driven detection and
correction of real-word spelling errors. They report that the measure of Jiang & Conrath (1997) performs best.
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dist(epty,epta) = info(epty) +info(cpty)
—2 x info(mis(cpty,cpta))
= —logp(cpt1) — logp(cpta)
+2 x log p(mis(cpty, cpta)) (5.9)

where mis(cpty, cpty) denotes the most informative subsumer of ¢pt; and cptsy. The loss of informa-
tion when abstracting from cpt; to mis(cpty, cpte) is the difference of their respective information
contents, i.e. info(cpti) — info(mis(cpty, cpta)). Correspondingly, the loss of information when
abstracting from cpto to mis(cpty, cpta) is info(cpty) — info(mis(cpty, cpte)) Equation (5.9) cal-
culates the sum of these two differences. According to this measure, the semantic distance between
<bank#side> and <elevation> is — log 0.001 —log 0.002+ 2 log 0.005 = 3.66, whereas the distance
between <bank#side> and <geological_formation> is — log 0.001 —log 0.005+2 log 0.005 = 2.33,
i.e. the latter distance is smaller than the former, which is the desired effect.

To be applicable in Resnik’s overall disambiguation approach, this distance measure has to be trans-
formed into a similarity measure. To achieve this, I took 2 to the power of the negative distance:

sim(cpty, epty) = 27 Bstepticptz) (5.10)

For example, this measure quantifies the similarity between <bank#side> and <elevation> as 0.079
and the similarity between <bank#side> and <geological_formation> as 0.2.

In the following, I describe the algorithm which employs the similarity measure defined above
to (partially) disambiguate the words in a cluster. As noted, this algorithm essentially follows
(Resnik 1995a). However, it provides an extension to deal with soft clusters, i.e. with graded cluster
memberships of words. Figure 5.5 shows a pseudo-code. The algorithm is applied separately to each
class ¢ and, within a class, separately for verbs and nouns.'* For each word wj, it estimates the prob-
ability distribution p(snsk(w;)|w;, c¢) of senses snsi(w;) given w; and c. To achieve this, a pairwise
comparison of all the words (verbs or nouns, respectively) is performed. For each word pair (w;, w;),
the similarity between each sense of w; and each sense of w; is computed. Those senses sns k1 (w;)
and snsy2(w;) which are closest to each other, i.e. which yield the maximal similarity value between
the two words provide a certain amount of evidence for each other. Essentially, this evidence is quan-
tified by the similarity of the two senses itself. Thus, the more similar they are, the more evidence
they provide for each other. However, the graded membership of the words in the class also have to
be taken into account. The idea is that the higher the membership probability of w; in ¢, the more
evidence its sense k2 provides for the sense k1 of w;, and conversely, the higher the membership
probability of w; in ¢, the more evidence its sense k1 provides for the sense £2 of w ;. Therefore, the
evidence the similarity sim(snsg;(w;), snsg2(w;)) provides for snsy;(w;) is weighted (multiplied)
by p(wj|c), and the evidence this similarity provides for snsg2(w;) is weighted by p(w;|c).!”> For
sense k1 of w;, a support counter is incremented by the amount of evidence computed in this way.
The same is done for sense k2 of w;. The support counter for a specific sense of a word quantifies

14 Actually, the algorithm examines all verbs or all nouns, respectively, in the training data, since each verb and each noun
has a certain membership probability for each class (which may be very close to 0).

13(Resnik 19954) does not deal with soft clusters with a graded membership of words. Therefore, he does not employ a
weighting of this kind.
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Input:
—aset of words W = wq, ..., w, comprising all verbs or all nouns in the training data
— the corresponding set of membership probabilities p(w1|c), ..., p(w,|c) for a certain class ¢

fori=1ton,j=1tos—1 {
for k1 =1 to num_senses(w;), k2 =1 to num_senses(w;) {
if sim(snsp1(w;), snsga(w;)) = max sim(snsz(w;), snsy(w;)) {

evidence = sim(snsg1(w;), snsk2(w;)) x p(w;jlc)
increment support; i1 by evidence
increment normalisation; by evidence

evidence = sim(snsg1(w;), snsk2(w;)) x p(w;lc)
increment support ; 12 by evidence
increment normalisation; by evidence

fori=1ton {
for k = 1 to num_senses(w;) {
if normalisation; > 0 {

p(snsg(w;)|w;, c) = #m
} else {
p(snsg(w;)|w;, c) = m
}
}
}
Output: probabilities p(snsy(w;)|w;,c) forw; € W, k=1,..., num_senses(w;)

Figure 5.5: Pseudo-code of the algorithm for disambiguating words in an LSC cluster
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how much this sense is supported by the other words in the cluster. In addition, for each word a nor-
malisation counter adds up all evidence for any sense of that word. Finally, after every possible word
pair has been checked, the support count for each sense snsy(w;) is divided by the normalisation
counter, which contains the sum of support counts for all senses of w;. This normalisation transforms
the sense support counts into sense probabilities p(sns(w;)|w;, ¢). These probabilities are returned.
For those words for which no evidence for certain senses can be found, the method falls back to the
uniformity hypothesis, i.e. a uniform distribution of the possible senses is assumed.

When applied to the nouns in class cez; in figure 5.2, the algorithm examines, for instance,
the two words “bank” and “elevation”. Among all possible combinations of senses of these
words, the concepts <bank#side>, which is sense 1 of “bank”, and <elevation> (hyponym of
<geological_formation>), which is sense 4 of “elevation”, are closest. As mentioned above, their
similarity is 0.079. The class membership probability of “bank™ is 0.06, that of “elevation” is 0.01.
Therefore, the support counter for sense 1 of “bank™ is incremented by 0.079 x 0.01 = 0.00079, and
the support counter for sense 4 of “elevation” is incremented by 0.079 x 0.06 = 0.00474. Other nouns
will provide evidence for other senses of these words. However, such nouns tend to have comparably
low probabilities in the class so that this support will be low as well. For example, among all senses
of “bank”, <bank#bank_building> (sense 9) is closest to the concept representing the noun “store-
house” (this noun is monosemous in WordNet). Imagine that “storehouse” has a membership proba-
bility of 107 in c,,1 and the similarity of <bank#bank_building> and <storehouse> is 0.09. Then
the evidence that “storehouse” provides for sense 9 of “bank” amounts to 0.09 x 10~7 =9 x 107°.

The algorithm in figure 5.5 yields estimates of the probabilities p(sns;(v)|v, c) and p(sns;(n)|n,c),
i.e. the conditional probabilities of a certain sense of a word (a verb or a noun, respectively) given
that word and a certain class. With these probabilities and the parameters of the LSC model (i.e. p(c),
p(vlc), and p(n|c)), we can estimate the joint probabilities p(sns;(v), sns;j(n)) of noun and verb
senses:

p(snsi(v),sns;(n)) = Zp(c) x p(snsi(v)|c) x p(sns;(n)c) (5.11)

= > p(e) x psnsi(v)]v, )p(vle) x p(sns;(n)|n, c)p(nle) (5.12)

With this joint probability, we can compute the conditional probability of the co-occurrence of a verb
sense and a noun sense given the underlying verb and noun form:

p(sns;(v), sns;(n))
p(v,n)

p(snsi(v), sns;(n)v,n) = (5.13)

which is the ratio of the probabilities defined in equation (5.11) and equation (3.5) on page 59, re-
spectively. This probability estimation in turn is used to estimate verb—noun sense pair frequencies
according to equation (5.4) on page 119.

It should be noted that word sense disambiguation on the one hand, and learning selectional prefer-
ences on the other hand are interdependent tasks. Disambiguating the verbs and nouns in the training
data as a preprocessing step (as proposed in this section) aims at improving the acquisition of se-
lectional preferences. Conversely, we have noticed (cf. sections 1.1.1 and 2.2.1) that information of
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selectional patterns are useful for word sense disambiguation. In section 3.4, we have seen that several
researchers who developed a method for learning selectional preferences have evaluated the perfor-
mance of their approach in a WSD task. Therefore, an obvious strategy to disambiguate the training
data would be to make use of information provided by the acquired selectional preferences them-
selves. This strategy was pursued by McCarthy (1997). She adopted the Li and Abe approach. In an
initial step, she learned selectional preferences assuming uniform sense distributions of nouns. Then,
in a second step, she employed these preferences for disambiguation by assigning a noun the sense
with the highest preference value. This is a reasonable approach. However, I decided to make use of
a disambiguation strategy which does not rely on that technique of selectional preference acquisition
which it is intended to improve, in order to avoid the amplification of weaknesses (i.e. tendencies of
certain errors and biases) of this technique.

5.3 Transforming the WordNet Structure

As noted several times, WordNet deviates from the structure of the noun hierarchy assumed for the
tree cut approach in two respects. Firstly, word senses are not only represented by leaves, but by all
nodes. Secondly, WordNet does not have a pure tree structure, but is a DAG, i.e. a concept can have
multiple parents. This section deals with the transformation of the WordNet structure to overcome
these inadequacies.

To handle the first issue, two strategies have been proposed in the literature. Li and Abe themselves
solve the problem by pruning the hierarchy: If a node represents a word sense that occurs in the
data, then all subtrees of that node are removed so that this node becomes a leaf. Thus, the hierarchy
is pruned at those nodes that represent the most general word senses occurring in the sample. If a
word sense corresponds to a concept which is located in a discarded subtree, then this word sense is
represented by the root of this subtree. For instance, if the sample S ssqssinate CONtained a number
of words which are hyponyms of <person> and a single instance of “being”, then the hierarchy
is pruned at the node <life_form#organism#being#living_thing>>, which now captures the instance
“being” and the hyponyms of <person> in the data. Due to this pruning, the learning algorithm only
can select among cuts which are at least as general as <life_form>, which, as we have seen, is above
the appropriate generalisation level. This example illustrates that this strategy is inadequate for our
needs, since some rare usages of the examined verb (or noisy data) might have the effect that the
appropriate generalisation level is “pruned away”.

As I already mentioned in section 4.1.1.1, I adopted another strategy, which to my knowledge was
first proposed by McCarthy (1997) and Abney & Light (1998). To shortly recapitulate this strategy:
The idea is to (virtually) create for each inner node an additional node that represents a sense of
the words which belong to the synset of that node. This additional node becomes a hyponym of the
original node. In this way, all word senses are captured by leaf nodes.

The frequency counts for these leaves are calculated straightforwardly. The starting point is the esti-
mation of sense probabilities given pairs of verb—noun forms, which was derived in section 5.2. Recall
equation (5.4) on page 119:

freq(sense;(v), sense;(n)) = freg(v,n) x p(sense;(v), sensej(n)|v,n)
This equation maps frequencies of verb—noun form pairs to frequencies of verb—noun sense pairs via
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the estimation of conditional sense probabilities given word forms.

Each word sense corresponds to exactly one synset. Within our construction of the noun hierarchy,
the leaf concepts capture the senses. Thus, each noun synset at a leaf position represents those senses
that correspond to that synset. For verbs, the correspondence between a sense and its synset is even
more straightforward: As we do not generalise over verb concepts (cf. the discussion in section 3.4.4),
there is no need to alter the verb hierarchy (nor to treat the verbs as part of a hierarchy at all). Thus,
there are no duplicated verb concepts, and each verb synset represents a sense of each verb which
is a member of it. To get the frequency count of a synset that represents word senses, the counts of
the corresponding senses are just added up. We have to distinguish two cases here. To calculate the
frequency of a noun (leaf) concept nsns co-occurring with a particular verb concept vcpt, we have
to take into account all verb senses corresponding to vept as well as all noun senses corresponding to
nsns:

freq(vept,nsns) = Z freq(sense;, sense;) (5.14)

sense; =vcept
sense;j=nsns

For example, <grow#develop> represents sense 8 of “grow” and sense 13 of ‘“develop”.
<pupil#schoolchild> represents sense 3 of “pupil” and sense 1 of “schoolchild”. Thus,
freq(<growi#develop>,<pupil#schoolchild>) = freq(senseg(grow), senses(pupil)) +
freq(senseg(grow), sensej (schoolchild))  +  freq(senseis(develop), senses(pupil))  +
freq(senseys(develop), sensey (schoolchild)).

The counts acquired according to equation (5.14) are employed to learn a tree cut model that repre-
sents the selectional preferences of vcpt, i.e. by the procedure Find-Assoc-MDL (cf. section 3.4.3.4).
In contrast, the procedures Find-MDL and Calc-p-Closure, which calculate a probability distribution
over noun concepts regardless of a particular verb, require concept counts over the total sample. For a
leaf noun concept nsns, the overall frequency is obtained by summing its co-occurrence frequencies
for all verb concepts vcpt in the sample:

freq(nsns) = Z freq(vept, nsns) (5.15)

vept

The second problem mentioned at the beginning of this section (which McCarthy (2001) handily
calls the “DAG issue”) requires a virtual transformation of the WordNet DAG structure to a pure tree
structure. Virtual transformation means that the structure is not really altered, but the hierarchy is
processed in a way that simulates a tree structure. Two parts of the learning approach are involved in
this simulation:

1. the propagation of noun leaf concept counts to higher concepts (a preprocessing step)

2. the traversal of the structure by the learning algorithm

In section 3.4.3.4 we saw that the learning algorithm recursively traverses the structure top-down. A
side-effect of this processing is that the DAG structure is “resolved” into a tree structure. Nodes that
have multiple parents are processed multiple times, once for each parent. For example, as <person>

131



is a hyponym of both <life_form> and <causal_agent>, this concept (and thus its hyponyms) is
processed twice, once as a child of <life_form>, and once as a child of <causal_agent>. In this way,
a “virtual copy” of such a node (and its descendants) is created for each of its parents, and the DAG
is “broken into a tree” as illustrated in figure 5.6 (a virtual copy is indicated by a dashed link). Hence,
one crucial part of transformation is done already by the acquisition algorithm and does not require
any modification.

The other crucial part is the calculation of the concept frequency counts. As mentioned in section
3.4.3.2, the tree cut approach employs the word-to-sense method to obtain concept frequencies, i.e. the
frequencies of word senses are propagated to all their ancestors in the hierarchy, and for each concept,
the frequencies accumulated at it add up to its count. In fact, there are several possibilities of how to
perform this propagation. Following Ribas’ approach explained in section 3.4.2.1, the frequency of a
concept is the sum of the frequencies of the word senses which are subsumed by that concept. Taking
into account the restriction that all senses are leaves, equation (3.22) on page 71 can be reformulated
as

freq(cpt) = Z freq(sns) (5.16)

sns: is_leaf(sns) A sns *cpt}

where is_lea f(sns) denotes the condition that sns is a leaf. (It should be pointed out that this equa-
tion counts each leaf node only once, not taking into account “virtual copying” of leaves due to the
DAG-to-tree transformation.) If the hierarchy is a proper tree structure, then this is equivalent to the
sum of the frequencies of the immediate hyponyms (i.e. the children) of the concept:

freg(ept) = > freq(cptenita) (5.17)

cptenita€children(cpt)

However, if the hierarchy is a DAG, then the equations (5.16) and (5.17) yield different values, as we
will see below.

Employing either of the two equations for calculating concept counts has its advantages and draw-
backs. Both possibilities have been proposed. Li and Abe obtain concept frequencies according to
equation (5.17). The advantage of this alternative is that the counts are consistent with the tree struc-
ture which is virtually created by the top-down processing of the hierarchy. The duplication of sub-
trees is reflected by the corresponding counts. In this way, the transformation of WordNet into a tree
structure is completed. Figure 5.6 illustrates this approach. As can be seen, the frequency count for a
concept is the sum of the counts of the children (e.g. for <entity>, the count is 200 4 105 = 305).

The drawback of this approach is that multiplying certain subtrees amounts to multiplying the portion
of those items in the sample which are covered by that subtree. For example, as the concept <person>
is processed twice, all instances in the sample denoting a person are counted twice. In particular,
these multiple counts accumulate in the counts of those concepts which subsume nodes with common
descendants. Concerning the probability distribution to be acquired, this results in a bias towards such
concepts, since larger probabilities are estimated for them. For example, the frequency of the top node
<entity> contains the count of <person> twice, which results in a higher probability estimated for
<entity>.

(McCarthy 2001) calculates concept frequencies according to equation (5.16). Thus, the frequency of
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<entity>
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<life form> <causal_agent>

}oo 100
<person> <person>
100

<animal> <person> <fate>

Figure 5.6: Breaking a DAG into a tree structure according to equation (5.17)
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a concept is the sum of the frequencies of all senses subsumed by it, as described in section 3.4.2.1.
Taking into account the constraint that the senses are located at the leaves, this means that the count for
each leaf is immediately propagated to all its ancestors. To demonstrate that this approach may yield
different results than the previous one, let us apply it to the hierarchy depicted in figure 5.6. For the
sake of simplicity, let us assume that this is the complete hierarchy we deal with, i.e. that <animal>,
<person>, and <fate> are the leaves. Then the counts for <life_form> and <causal_agent> are
the same as in figure 5.6. <life_form> subsumes the leaves <animal> and <person>, thus its count
is 100 4+ 100 = 200. Likewise, <causal_agent>, subsuming <person> and <fate>, gets the count
100 + 5 = 105. However, the count for <entity> is different: this concept subsumes all three leaves
so that its count is 100 + 100 + 5 = 205 (as opposed to 305 according to equation (5.17)). This
corresponds to the real amount of data captured by the hierarchy in this example.

The advantage of this approach is that the count of a a concept captures each sense it subsumes
once and only once. Thus, the count of an individual concept is not biased by the duplication of
sense counts. However, the fotal count of the sample as captured by a tree cut model may differ for
different cuts. If a cut contains two or more concepts which have a common subconcept, then the
count for this subconcept forms part of the count of each of its ancestors on the cut. In the example
discussed in the previous paragraph, a cut along the concepts <life_form> and <causal_agent>
comprises a total count of 200 + 105 = 305, whereas a cut at the top node <entity> represents a
count of 205 (which is appropriate w.r.t. the data). McCarthy explicitly refers to that inconsistency.
She nonetheless justifies her approach by claiming that it minimises the negative impact of applying
the tree cut learning algorithm to the WordNet DAG structure. She notes that multiple hyperonymy is
very rare in WordNet; it occurs at less than 1% of the concepts, mostly at low levels of the hierarchy.

For my work, I decided to develop a different approach for retrieving concept frequency counts, in
order to avoid the drawbacks which the two previously sketched alternatives bring about. This deci-
sion is motivated by the desideratum pointed out in section 1.3 that the methods devised in this thesis
should be language-independent, i.e. applicable to any language for which the required resources (a
lexical semantic net and a parsed corpus) are available. While multiple hyperonymy is rare in Word-
Net, this is not necessarily the case in wordnets for other languages. For example, in GermaNet (cf.
(Hamp & Feldweg 1997), (Kunze & Wagner 2001)), cross classification of concepts via multiple hy-
peronymy is a major structuring principle and thus very common. Actually, 11.5% of the GermaNet
concepts have more than one parent. This illustrates that an approach which handles the DAG issue
in a more principled way is crucial w.r.t. language-independence.

The general idea of the method for concept frequency estimation which I propose here is as follows:
As in the work of Li and Abe, the count of a concept is directly determined by the counts of its
children (i.e., its immediate hyponyms). This simulates a tree structure. However, a concept does not
necessarily inherit the fotal count from each of its children. If a concept has multiple parents, then
the count of that concept is divided among its parents. In this way, counts are not duplicated, and thus
no bias towards certain parts of the sample is created. The frequency portion that a concept cpt qp14
passes to each of its parents is determined by a probability distribution p(cpt|cptpiq) Where cpt is a
parent of cpt.p;4- Thus, the frequency of a concept is given by

freq(ept) = > freq(eptenia) x plcpt|eptenia) (5.18)
cptenita€children(cpt)

The crucial question is how to estimate the distribution p(cpt|cpt cpiq). 1 decided to guide this esti-
mation by correlating the frequencies of a concept’s parents: The count of a concept is apportioned
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among its parents according to their respective frequency, relative to the frequencies of the other par-
ents. To be more exact, for a concept cpt, the distribution p(cpt parent|cpt) is estimated by the ratio of
the frequency of cpt,qrent and the sum of the frequencies of all parents of cpt:

fTeC.I(CptpaTent)
cpt’ Eparents(cpt) f?“eq(cpt’)

p(cptparent | Cpt) = Z (5.19)

In the trivial case in which cpt has only one parent, p(cptparent|cpt) is 1, i.e. the complete concept
frequency is propagated to that parent. I will provide an informal motivation of equation (5.19) below.

It is easy to notice that the equations (5.18) and (5.19) depend on each other. The probability of the
parent given a child concept in equation (5.18) is estimated by equation (5.19), whereas the parent
frequencies in equation (5.19) are obtained by equation (5.18). Therefore, to make these equations
applicable, it is necessary to assume certain initial values for either the concept frequencies or the
parent probabilities and then to re-calculate these quantities by applying (5.18) and (5.19) several
times (iterations). There is no obvious way to stipulate plausible initial concept counts. However, it is
quite straightforward to initialise the parent probabilities by assuming uniform distributions:

1

—_— 5.20
|parents(cpt)| (5:20)

p(cptparent ’ Cpt) =

In this way, the count of a concept is equally apportioned to its parents in the initial iteration. As the
parents of a concept have different additional children, this iteration yields different counts for them.
Thus, in the following iterations, equation (5.19) will estimate differing probabilities for the parents
of a concept. Note also that in general, an iteration step changes the counts and probabilities. The
approach proposed here can be viewed as an EM-style algorithm where equation (5.18) corresponds
to the E-step and equation (5.19) to the M-step. For my experiments, I performed only one further
iteration after the initial one.

An example of this approach is shown in figure 5.7. Here, the initialisation step equally appor-
tions the count of <person> to its two parents; each parent inherits the count &20 = 50. Then,
in the re-estimation step, the <person> count is divided relative to the frequencies of the parents:
<life_form> inherits 100 x z2%= = 73.17, while <causal_agent> receives 100 X 1z02== = 26.83
from <person>. (The counts for <animal> and <fate> are completely propagated to their respec-
tive parents.) Note that the count for the top node <entity> does not change. It corresponds to its

unbiased frequency in the data.

This strategy of splitting the concept count before propagation to multiple parents requires a corre-
sponding adjustment of frequencies when the learning algorithm processes the hierarchy top-down
(cf. point 2. on page 131). For example, in step 9. of the procedure Find-Assoc-MDL (figure 3.16 on
page 85), the description lengths of two tree cut models are compared: the cut located at the root of
the processed subtree and the optimal cut below the root. The counts of the concepts on the lower cut
(which are needed to calculate the data description length) have to be accommodated so that only that
portion is taken into account that has been propagated to the concept on the upper cut, i.e. the root of
the processed subtree. Thus, for each concept cpt; on the lower cut, the quantity freq(cpt;) (written
as #(t;,Sy) in the pseudo-code) has to be replaced by p(cpt,|cpt;) x freq(cpt;) where cpt, is the
root of the subtree. Let cpty,, ..., cpty, be the hyperonymy chain of concepts between cpt; and cpt,
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<entity>

150 —> 173.17 55 —>31.83
<life form> <causal_agent>

50 —> 26.83
<person>
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<person>
100

<animal> <person> <fate>

Figure 5.7: Re-estimating frequencies
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in the processed subtree.'® Then p(cpt,|cpt;) is given by the following equation:!”

p(eptr|ept;) = p(epti, |epti) X p(epti,|cptr,) X ... X p(cpty, |cpty, ) X p(epty|epty,) (5.21)

Similar changes are necessary for the procedures Find-MDL (step 8.) and Calc-p-closure (step 6.).

A possible intuitive access to the general idea that the count of a concept is divided among its par-
ents might be to understand hyperonymy in a more subjective manner: Instead of "is a kind of", a
hyperonymy relation could be interpreted as "is perceived / referred to as". This means that multiple
hyperonyms represent different aspects of a concept which might have different salience. For exam-
ple, a person might be primarily referred to as a life form in some situations, and as a causal agent
in other situations. The probabilities p(<life_form>|<person>) and p(<causal_agent>|<person>),
together with the corresponding split of the count of <person>, model the relative salience of these
two aspects w.r.t. <person>. The way I propose to estimate these probabilities employs the only
empirical quantitative information about the parent concepts that is accessible: their total frequency.
A parent that has a high frequency (compared to the other parents) gets a high probability, while a
parent with a (comparably) low frequency is assigned a low probability. The count of a parent concept
reflects its “global” salience; the comparison with the counts of the other parents reflects peculiarities
of their common child.

More formally, the approach described here can be viewed as performing a hierarchical soft clas-
sification of noun senses. The concepts can be viewed as soft classes of senses, and multiple hy-
peronymy corresponds to graded membership. For example, all instances of <person> are graded
members of both <life_form> and <causal_agent>. The degree of membership is represented by
p(<life_form>|<person>) and p(<causal_agent>|<person>), respectively.

Furthermore, I would like to point out that there are certain analogies between this approach and the
idea proposed by Abney and Light to treat the WordNet structure as a Hidden Markov Model (cf.
section 3.4.6). If, as in their approach, the nodes of the hierarchy are interpreted as states and the
links between them as arcs of an HMM, then the propagation of counts corresponds to transitions
in this HMM so that the concept counts freq(cpt) calculated by equation (5.18) can be viewed as
the expected number of transitions from state cpt and the probabilities p(cpt parent|cpt) calculated
by equation (5.19) can be interpreted as transition probabilities (usually written as a;; in the HMM
framework) from state cpt to cptyarent. However, there are crucial differences between the strategy
sketched here and the approach of Abney and Light. Firstly, Abney and Light aim at modelling selec-
tional preference as an integrated stochastic process. In contrast, the strategy described in this section
has a much more modest purpose, namely assigning concept frequencies in a sound and plausible
way in order to obtain a virtual tree structure of the WordNet hierarchy. Consequently, the demands
for the Abney and Light approach are much more sophisticated. For example, Abney and Light ex-
pected from their model to select the correct senses of the word forms in the corpus, a requirement
that gave rise to many difficulties, as noted in section 3.4.6. For my approach of propagating concept
counts, this is not an issue, because word sense disambiguation is handled by a different prepro-
cessing module (described in the previous section). Secondly, the hierarchy is processed in opposite

16Since the top-down processing virtually transforms the hierarchy into a tree structure, this chain is always unique for
the actual point of traversal.

Tt is easy to keep track of this product during recursive processing. Thus, this modification does not affect the complex-
ity of the algorithm.
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directions in the two approaches. In the HMM of Abney and Light, the root node is the initial state
and the transitions are directed downwards, i.e. from a parent to a child, until a leaf (a final state) is
reached. However, approaches to collect concept frequencies from word frequencies naturally start at
the leaves'® and propagate counts upwards. Thirdly, although the parent probabilities p(cpt parent|CPt)
can be viewed as analogous to the transition probabilities of an HMM, they are acquired in different
ways: A transition probability a;; is estimated by the fraction

expected number of transitions from state i to j (5.22)
Q5 = " - .
* expected number of transitions from state ¢

In contrast, equation (5.19), reformulated in terms of the HMM framework, would be

expected number of transitions from state cptparent

a = — 5.23
Pt Plparent D epteparents(cpt) €XPected number of transitions from state ept! (5:23)

The exact relationship between equation (5.22) and equation (5.23) has to be further investigated.
Here, I leave it at the concluding statement that the approach proposed here resembles the HMM
approach of Abney and Light at first glance, but looking more closely at the two strategies reveals
substantial differences.

In (Wagner 2003), I report experiments which compare the impact of the frequency propagation ap-
proach proposed here and the approach proposed by Li and Abe (i.e. employing equation (5.17) on
page 132). These experiments acquire tree cut models to represent selectional preferences in the way
I proposed in chapter 4. I separately employed each of the two concept frequency estimation ap-
proaches and compared the acquired tree cut models. I performed the learning algorithm on German
data and GermaNet, because, as mentioned above, the structure of the GermaNet hierarchy deviates
from a pure tree structure to a large extent. These experiments show that the results retrieved employ-
ing the two approaches differ significantly and the bias introduced by the ad-hoc strategy proposed
by Li and Abe is considerable.

5.4 A Gold Standard for Evaluation

To evaluate (i.e. assess the quality of) an NLP technique, there are basically two alternative ways. One
alternative is to measure the performance of the technique when employing it for a particular applica-
tion. This is the way which has commonly been used to evaluate approaches for learning selectional
preferences so far. Specifically, the approaches described in section 3.4 have been evaluated by apply-
ing them for word sense disambiguation (cf. (Resnik 1997), (Ribas 1995b), (Agirre & Martinez 2002),
(Abney & Light 1998)), PP attachment disambiguation (cf. (Resnik 1993), (Abe & Li 1996)), or other
tasks (e.g. the prediction of object omissibility in (Resnik 1993) or a pseudo-disambiguation task ' in
(Clark & Weir 2002)). Evaluating one or more approaches w.r.t. a specific task reveals no more and no
less than the strengths and weaknesses of these approaches regarding that task. This may be viewed

18Within the HMM interpretation, the leaves would be the initial states which emit word senses, while the inner nodes
are non-emitting states.

"This pseudo-disambiguation task (cf. footnote 20 on page 92) illustrates that the exercise employed for evaluation is
not necessarily a task required in a “real life” NLP application, but might instead be based on an artificial setting.
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as an advantage or a disadvantage, depending on the actual aim of learning selectional preferences.
If they are acquired in order to be utilised in a particular application, then an evaluation with regard
to this application is most appropriate.?’ However, the primary goal of this thesis is to develop an
approach for learning selectional preferences to enrich lexical-semantic resources, in particular word-
nets. Since wordnets are designed as general-purpose lexical resources, this preference information
is intended to be application-independent, i.e. to be employed in various applications. Therefore, an
application-independent evaluation is highly desirable here.

The second basic alternative for evaluating an NLP technique is to compare the results induced by
that technique with a gold standard, i.e. a set of “correct” data of the type that the technique induces
or predicts. This evaluation method has been applied for a variety of tasks, e.g. POS tagging, pars-
ing, or word sense disambiguation. Employing a gold standard is a method of directly evaluating
an NLP approach, in contrast to the indirect method of testing its performance in some application.
Furthermore, evaluation by a gold standard is in a sense more generic, since it is not biased towards
a specific application. Therefore, as just pointed out, this alternative is more adequate for our pur-
poses. The main problem with this evaluation approach is to obtain an appropriate gold standard. In
general, any supervised learning method is usually evaluated using a gold standard (the test data),
which comprises a comparably small subset of the available supervised data (whereas the majority
of these data is used for training). For unsupervised learning methods, data which are suitable to
serve for this purpose are not available per se. In fact, as the data feeding a gold standard have to
be created (or at least corrected) manually, compiling these data is time- and labour-intensive. Thus,
the need for reusable gold standards for different tasks, which are available to researchers in the
field, has become obvious. Several efforts have been made to compile reusable test data (as well as
training data for supervised approaches) for specific NLP tasks. For example, the PennTreebank (cf.
(Marcus et al. 1993)) has commonly been employed for the evaluation of parsers (cf. also (Grishman,
Macleod & Sterling 1992)). For other tasks, the creation of training and test data has been embed-
ded in initiatives to organise a competitive evaluation of NLP techniques, e.g. SENSEVAL for word
sense disambiguation (cf. (Killgarriff 1998)) or MUC for information extraction (cf. (Grishman &
Sundheim 1996)).

For the task of learning selectional preferences to be included in WordNet, an appropriate gold stan-
dard should comprise a set of thematic role relations between verb and noun concepts of WordNet.
Since WordNet does not provide relations of this type, such a gold standard is not immediately avail-
able. However, as stated in section 1.2.3 and 2.3.1, the formal specification of EuroWordNet allows for
a certain inventory of thematic role relations, and indeed some of the monolingual wordnets in EWN
(the wordnets for Dutch, English, Estonian, Italian, and Spanish) do contain role relations. These rela-
tions have been manually encoded or extracted from other lexical resources, respectively. I employed
them for compiling a gold standard by mapping them to WordNet. Thanks to the structure of EWN,
this mapping can be done straightforwardly. The inter-lingual index (ILI) plays a key role here: As
mentioned in section 1.2.2, the ILI essentially consists of the concept nodes of WordNet 1.5. Further-
more, (almost) each concept in a monolingual wordnet in the EWN database is related to one or more
ILI concepts, in most cases via a synonymy or a near-synonymy relation, encoding semantic (near-)
equivalence between the monolingual concept and the ILI concept. Thus, the desired gold standard
can be retrieved in a simple way: Extract from the wordnets in EWN all thematic role relations where
both the source node and the target node are linked to an ILI concept via a (near-)synonymy relation.
For each of these relations, replace the source and the target concept by the corresponding ILI con-

20Obviously, this argument does not apply to artificial tasks like pseudo-disambiguation.
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role type #

AGENT 2253
PATIENT 1017
INSTRUMENT 2107
LOCATION 220
DIRECTION 29

SOURCE_DIRECTION 40
TARGET_DIRECTION 68

RESULT 423
unspecified 594
all 6751

Table 5.1: Number of different types of role relations mapped to WordNet

cept(s).21 In section 1.2.3, I listed some role relations from the Italian wordnet, together with the ILI
(i.e. WordNet) concepts corresponding to the involved Italian concepts. I repeat these relations here
to illustrate this translation procedure:

(5.24) <abbeverarsi> INVOLVED_AGENT <animale>
<drink> <animal>

(5.25) <camminare> INVOLVED_AGENT <pedone>
<walk> <pedestrian>

(5.26) <lessare> INVOLVED_PATIENT <cibo>
<boil> <food>

(5.27) <sbaraccare> INVOLVED_PATIENT <cosa>
<remove> <object#inanimate_object>

(5.28) <lavare> INVOLVED_INSTRUMENT <acqua>
<wash> <water>

The set of relations created by this method comprises 6751 relations altogether. Table 5.1 lists the
number of relations for each role type. Table 5.2 shows some further examples of these mapped
relations. Note that I did not mention the RESULT relation type in section 2.3.1.>2 The reason for
this is that this type is not covered by the EuroWordNet deliverable (Alonge 1996) which serves as
the official documentation of the different relation types in EWN and their semantics. The RESULT
relation will not play a role in this work.

Looking more closely at the relations obtained by the procedure sketched above, it turns out that
not all of them are suited for a gold standard to evaluate the task of this thesis. Some relations,

2'n those cases where a monolingual concept is linked to multiple ILI concepts, the mapping procedure creates a corre-
sponding number of different gold standard relations.

ZHenceforth, I will often skip the prefix INVOLVED_ in the role relation label for the sake of brevity.
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verb concept relation type noun concept

<crouch#stoop#bow > AGENT <person>
<adore> AGENT <admirer#adorer>
<adore> AGENT <believer#worshipper>
<teach> AGENT <teacher#instructor>
<crow> AGENT <cock#rooster>
<change> PATIENT <clothing#clothes#wear>
<scalp#remove_the_scalp> PATIENT <person>
<edit#cut> PATIENT < writing#written_material >
<pick_up#receive> INSTRUMENT <antenna>
<pick_up#receive> INSTRUMENT <radio#tuner>
<pick_up#receive> INSTRUMENT <television>
<see> INSTRUMENT <spectacles#glasses>
<see> INSTRUMENT <eye#oculus>
<cure#heal > LOCATION < sanatorium>
<drive#motor> DIRECTION <road_route>

<disembark#debark#go_ashore> SOURCE_DIRECTION <vessel#craft>
<hop_on#mount#climb_on#bestride>> TARGET_DIRECTION <horse>
<teach> RESULT <cognition#knowledge >
<worry> unspecified <concern#worry#headache>

Table 5.2: Examples of role relations mapped to WordNet

e.g. <delouse> INVOLVED_PATIENT <louse> or <silt> INVOLVED_PATIENT <sediment>,
involve incorporated arguments. Since these arguments are not realised as syntactic complements,
such relations cannot be induced by analysing verb—complement pairs extracted from corpora. En-
coding incorporated arguments by role relations in EWN is explicitly intended. Alonge (1996, p. 32)
states: ““...our links will encode (only) data on the semantic features of arguments incorporated in
the meaning of a verb, which certainly determine also the kind of arguments which a verb allows as
its complements, but which do not exactly coincide with them.” Thus, role relations in EWN might
represent incorporated arguments or semantic information about overt arguments. Note that this cor-
responds to Jackendoff’s approach to model incorporated arguments in the same way as selectional
restrictions on syntactic complements (cf. section 2.2.2).

Other relations like <address> INVOLVED_PATIENT <addressee> indicate a noun concept that
itself is perfectly adequate, but does not (in terms of the hierarchy) subsume the majority of the noun
instances which really co-occur with the respective verb in the corpus. Any noun referring to a human
could occur as the patient of <address>. Thus, the expected and desired behaviour of the learning
algorithm would be to generalise to the <human> level. In contrast, <addressee> is a subconcept of
<human> which has no hyponyms itself. Such relations involve a noun concept that characterises an
argument of the respective verb intensionally. However, the learning approach proposed here aims at
acquiring a concept that subsumes all preferred concepts, i.e. provides an extensional characterisation
of the argument in question. In principle, it makes sense to encode thematic relations employing in-
tensional concepts. However, such relations cannot be derived by generalising from corpus instances.
They could rather be acquired by examining derivational patterns. To allow for a fair evaluation of ac-
quisition approaches examined in this thesis, relations of the kinds mentioned in this and the previous
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paragraph have to be removed from the gold standard.

Another weakness of the gold standard is that in some cases it is slightly contradictory regarding the
generalisation level of the nouns. For example, there are two INVOLVED_PATIENT relations for
the verb <own#have#possess>: one to <asset> (originating from the Dutch wordnet) and one to
<possession> (originating from the English wordnet). The former concept is a hyponym of the latter
one, i.e. the two concepts deviate by one level of abstraction in the hierarchy. Such cases indicate that
humans have a rough idea of the appropriate abstraction level for representing selectional preferences
of a given verb, but human intuition about which generalisation level is exactly adequate in this respect
is not quite clear-cut. This insight fits in a general experience which is prevalent in computational (and
traditional) lexicography, namely that in the field of lexical semantics things are not as clear-cut as for
other tasks such as POS tagging or parsing. In my view, the vagueness of human intuition regarding
appropriate generalisation justifies an analogous interpretation of the results acquired by the learning
algorithm: In the evaluation experiments described below and in chapter 7, I will count those acquired
relations as “hit” (i.e. as successfully learned) which deviate from the corresponding gold standard
relations by O or 1 hierarchy levels, i.e. where the acquired noun concept either exactly matches the
gold standard noun concept or is an immediate hyponym/hyperonym of it. A fair evaluation should
not postulate that the accuracy and consistency of an automatic method exceeds the accuracy and
consistency of human intuition.

Apart from these particular problems, a general shortcoming of the gold standard constructed in
the way described above is the involved translation step. Generally, the translation from the indi-
vidual (non-English) wordnets to WordNet may introduce some inaccuracies due to deviating selec-
tional preferences of corresponding verbs in different languages, differing hierarchical structures of
the language-specific wordnets, or—of course—plain errors. It should be pointed out that a certain
amount of errors is likely to occur in any manually built resource, and hence in any gold standard.
However, this amount usually is small so that the respective resources are sufficiently accurate to serve
for evaluation tasks. Concerning the gold standard extracted from EWN, I have manually inspected
a considerable portion of the obtained relations (especially the PATIENT relations, see below), and I
regard the actual amount of translation inaccuracies as tolerably low.

5.5 Experiments

This section describes the experiments I carried out to evaluate different approaches for learning
selectional preferences. These experiments compare the acquired preferences to the gold standard just
described. In chapter 3, I argued that the tree cut approach proposed in (Abe & Li 1996) is best suited
for the task of this thesis. Therefore, the evaluation mainly focuses on comparing the performance of
the method of Abe & Li (1996) (standard MDL) and the modification of this approach by introducing
a weighting factor (weighting), which I have proposed in section 4.2. Both variants compute the
preference values (association norms) in the same way. Furthermore, both variants determine the
appropriate level of generalisation by the MDL principle (in the broader sense). They just differ in
how they employ the MDL principle. To round up the picture, I also examined a completely different
approach, namely the approach of Ribas (cf. section 3.4.2). Ribas uses a different formula to compute
the preference value and a completely different strategy to determine the adequate generalisation
level (a simple greedy selection algorithm). Anyhow, in contrast to other strategies introduced in
chapter 3, Ribas’ approach meets the formal desiderata which are relevant for learning thematic role
relations: firstly, the formula of the preference value defines a natural distinction between preference
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and dispreference; secondly, the set of selected noun concepts is nonredundant, i.e. it does not contain
concepts which are hyponyms/hyperonyms of each other, and thus this set defines a certain level of
abstraction. Hence, this approach in principle is suitable for learning thematic role relations.

5.5.1 Setting

For the experiments, I employed the training data introduced in section 5.1. As noted several times,
employing these syntactic data to learn thematic roles requires linking syntactic complements to the-
matic roles. I will propose a strategy to fulfil this task in the next chapter. In chapter 7, I will report
extensive evaluation experiments which include that strategy. The experiments reported here are in-
tended as a case study, in order to assess the suitability of the above-mentioned approaches for learn-
ing thematic role relations. Therefore, I will not systematically address the linking problem here, but
instead concentrate on one specific thematic role, namely Patient. The choice of this particular role
is connected with the simple assumption that Patients usually are syntactically realised as objects.
Following this assumption, I extracted all verb—object pairs from the data and used them as the basis
for extracting PATIENT relations.

A manual inspection of the PATIENT relations in the gold standard showed that the simplifying
heuristic to link the grammatical object to the Patient role turned out to be useful in general. Most of
the PATIENT relations in the gold standard identify preferences for the objects of the respective verbs.
However, a certain amount of PATIENT relations were inappropriate here. As mentioned in section
5.4, some of these relations encode incorporated arguments, while others provide an intensional char-
acterisation of the Patient argument. Such information is not inducible by generalising from corpus
instances. A third problematic group, which is specific to the Patient role, comprises unaccusative
verbs (e.g. <ascend>), which realise their Patient (e.g. <cloud>) as subject. For the experiments I
describe here, I excluded these kinds of relations from the gold standard. The remaining set contains
662 relations for 368 verb concepts altogether.

To test the impact of the disambiguation approach proposed in section 5.2, I applied the learning
algorithm once on non-disambiguated data (dividing the evidence for a word uniformly among its
senses, cf. section 5.2.1) and once on disambiguated data (applying the method described in section
5.2.2). In both cases, I propagated the frequency counts of the noun senses to their superconcepts
following the method proposed in section 5.3.

In the experiments described below as well as in the evaluation experiments reported in chapter 7, I
employed the formula for optimising the parameter description length introduced in section 4.1.1.1
(equation (4.1) on page 99). However, in contrast to the experiments described in chapter 4, I did not
employ a threshold that prunes the search space by discarding concepts with very low probabilities.
Initial experiments within the setting outlined here revealed that employing a threshold significantly
decreases performance.

Another peculiarity of the experiments presented here and in chapter 7 is that I calculate the frequen-
cies and probabilities of noun concepts regardless of a particular verb (i.e. freq(ncpt) and p(nept))
by taking into account all nouns in the training data, rather than only those nouns that occur in the
examined syntactic or semantic relation (here, the object or, respectively, the PATIENT relation). This
deviates from the experiments in chapter 4 as well as from the most approaches described in section
3.4. The alternative I pursue here is explicitly addressed by Ribas (1995b) (cf. footnote 7 on page 67).
He points out that this variant also takes into account the information (in other words, the semantic
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number (percentage) of standard weighting; C' =

gold standard noun concepts MDL 1000 ‘ 10 000
exactly matched 12 (3.6%) | 108 (32.2%) | 147 (43.9%)
matched by 1 level hyponym 2 (06%)| 34 (10.1%) | 55 (16.4%)
matched by 1 level hyperonym 18 (5.4%) | 49 (14.6%) | 50 (14.9%)
matched by >= 2 level hyponym 1 (0.3%) 8 (24%) | 14 (4.2%)
matched by >= 2 level hyperonym | 152 (45.4%) | 90 (26.9%) | 36 (10.7%)
not matched 150 “44.8%) | 46 (13.7%) | 33  (9.9%)

Table 5.3: Comparison of tree cut models acquired from non-disambiguated data with the gold stan-
dard

preferences) that a certain type of argument slot provides about the nouns which fill that slot, irre-
spective of a concrete verb. In section 6.5, I will discuss (and utilise) the finding that thematic role
types provide very general semantic characterisations of their fillers (e.g. Agents tend to be animate
beings, while Instruments are usually inanimate objects. These role-specific, but verb-independent
characterisations are reflected by a preference acquisition approach if and only if the preference value
indicates the difference between the noun concept distribution given a certain verb and a certain role
type on the one hand and the overall noun concept distribution independent from verbs and from role
types on the other hand.

5.5.2 Results

5.5.2.1 Tree Cut Approach: Non-Disambiguated Data

For both variants standard MDL and weighting (with different values of the constant C), I compared
the noun concepts acquired for a verb concept with the corresponding noun concepts in the gold
standard. To avoid problems introduced by sparse data, I selected those verb concepts which have a
frequency count of at least 50 for evaluation. For the non-disambiguated data, 174 verbal concepts
met this criterion. Table 5.3 shows the number and the percentage of the noun concepts in the gold
standard which were exactly matched, not matched at all, or matched by more general or more specific
concepts in the tree cut model. Dispreferred concepts, i.e. concepts with a preference value < 1, are
considered as not matching the gold standard.

While the results for the standard MDL algorithm are not satisfying, the results for the weighting
algorithm are very promising. For C = 10 000, 43.9% of the noun concepts are exactly matched by
the tree cut model (as opposed to 3.6% with standard MDL.). If one also takes the approximate matches
(1 level deviation) into account, then the matching rate is 75.2% (vs. 9.6% for standard MDL). In
section 5.4, I have argued that it is appropriate to count approximate hits, because human intuition
about the exact generalisation level is not always clear-cut either. This is illustrated by the finding that
the gold standard itself contains cases where a verb concept is related to two noun concepts which
deviate by one level of abstraction, i.e. where one is a hyponym of the other.

As can be seen, the standard MDL approach tends to learn too general concepts or not to match
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verb H weighting model standard MDL model
<pump#raise_with_a_pump> <gas> <entity >
<start#start_up#set_in_motion> <engine> —
<climb#climb_up#mount#go_up> | <road#route> <artifact#artefact>
<send#direct> <mail> <relation>
<tame#chasten#subdue > <animal#beast#creaturef#ffauna> | <entity>
<buy#purchase#take> <commodity#goods> <commodity#goods>
<cook#change_by_heating> <food#nutrient> <food#nutrient>

< suppress#inhibit#subdue#curb> <idea#thought> <psychological_feature>
<record#tape> <material > <abstraction>

< operate#control > <device> —

<pick#pluck#cull > <flower#bloom#blossom> <entity>
<plug_in#connect > <device> —
<cultivate#foster_the_growth_of> || <plant#flora#plant_life> —

Table 5.4: Some gold standard concepts exactly matched by weighting tree cut models (C' = 1000)
and the corresponding concepts in the respective standard MDL tree cut models

preferred concepts at all, respectively. This tendency is illustrated by table 5.4. This table shows some
examples of gold standard concepts which are exactly matched by the respective tree cut models
acquired by the weighting algorithm (C' = 1000), and the corresponding concepts in the respective
tree cut models acquired by the standard MDL algorithm. (A dash indicates that a gold standard
concept is not matched by the model.)

The best performance is achieved with a rather high value of C, and hence, with a rather low gener-
alisation level of the acquired preferences. The reason for this is the heterogeneous nature of the gold
standard. The gold standard is rather inconsistent w.r.t. the degree of generalisation: On the one hand,
very general concepts, e.g. <own> INVOLVED_PATIENT <possession>, on the other hand, very
specific concepts, e.g. <add> INVOLVED_PATIENT <appendix>, have been encoded. It is obvious
that specific concepts are captured by a cut at a low generalisation level. More surprisingly, it turned
out that in many cases, low-generalisation cuts also capture rather general concepts, e.g. <person>.
This is due to the treatment of inner nodes sketched in section 5.3. It is often the case that a specific cut
contains virtual leaves, which represent senses of those words which characterise the corresponding
inner nodes. For example, the virtual leaf that corresponds to the node <person> represents a sense
of the word “person”. If a cut contains this leaf and if the corresponding preference score exceeds 1,
then “person” co-occurs with the verb under consideration with a significant frequency in the train-
ing sample so that the algorithm recognises the corresponding concept as preferred. In other words:
in such cases, general concepts are acquired due to immediate evidence from the corpus. For these
reasons, a bias to low-generalisation cuts yields the best overall performance.

Note that this evaluation focuses on recall, i.e. the percentage of relations in the gold standard which
are captured by the learned model. Unfortunately, the gold standard is far from being “exhaustive”;
in general, it does not represent all noun concepts which are preferred by a given verb concept.
Furthermore, information about which noun concepts are dispreferred by a certain verb concept is not
available. Thus, it is not possible to carry out a quantitative evaluation of precision, i.e. the percentage
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number (percentage) of standard weighting; C' =

gold standard noun concepts MDL 1000 | 10 000
exactly matched 19 8.0%) | 66 (27.8%) | 78 (32.9%)
matched by 1 level hyponym 5 2.1%) | 27 (11.4%) | 45 (19.0%)
matched by 1 level hyperonym 25 (10.5%) | 31 (13.1%) | 28 (11.8%)
matched by >= 2 level hyponym 1 04%) | 8 (3.4%) | 13 (5.5%)
matched by >= 2 level hyperonym | 115 (48.5%) | 41 (17.3%) | 23 (9.7%)
not matched 72 (304%) | 64 (27.0%) | 50 (21.1%)

Table 5.5: Comparison of tree cut models acquired from disambiguated data with the gold standard

of learned thematic relations which are “really correct”.

Manual inspection shows that the acquired selectional preferences contain a considerable amount of
noise. For example, the gold standard contains a relation between the verb <hound#hunt#trace> and
the noun <game> (an animal hunted for food or sport). The tree cut model for <hound#hunt#trace>
correctly models preference for this concept, but, additionally, preference for three other senses of
“game”, e.g. a hyponym of <competition#contest>. Of course, this kind of noise is due to the fact
that the data are non-disambiguated.

5.5.2.2 Tree Cut Approach: Disambiguated Data

For the evaluation using disambiguated data, I again selected the verb concepts with a frequency of at
least 50. This selection yielded a set of 122 verbal concepts. Table 5.5 shows the evaluation results.

Compared to learning from non-disambiguated data, the percentage of exactly or approximately (at
level O or 1) matched concepts is worse for the weighting algorithm, e.g. 63.7% for C' = 10 000 (as
opposed to 75.2%). The reason for this is that disambiguation errors misinform the learning algo-
rithm to a certain degree, as they favour “incorrect” senses, which results in dropping “correct” noun
concepts, which occur in the gold standard. Analogously, some of the “correct” verb senses were
dropped. For this reason, fewer verb concepts in the gold standard are captured by the data. However,
the results are still promising. Improved approaches to WSD should decrease this effect.

As expected, disambiguation reduces noise in the tree cut models. For example, two of the three
erroneous senses of “game” (s.a.) are not modelled as preferred concepts of <hound#hunt#trace> any
more. Unfortunately, there is no way to measure automatically how much noise and how much “good”
data is dropped by the disambiguation step. For C' = 10 000, disambiguation yields 560 preferred
noun concepts per verb concept on average, as opposed to 1326 concepts without disambiguation. For
C = 1000, disambiguation reduces this number from 378 to 242. Thus, the relative overall reduction
of preferred concepts (58% or 36%, respectively) is much higher than the loss of accuracy w.r.t. the
gold standard. This indicates that noise reduction outweighs the loss of useful information caused by
the disambiguation step. To get a better idea about this loss of “correct” information, a detailed manual
comparison of the cuts with and without disambiguation would be necessary. Anyway, in a semi-
automatic setting in which the algorithm learns candidate concepts which are manually inspected
afterwards, reducing the “candidate space” without losing too many valid candidates is very useful.
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number (percentage) of non-disambiguated | disambiguated
gold standard noun concepts data data

exactly matched 39 (11.6%) | 35 (14.8%)
matched by 1 level hyponym 43 (12.8%) | 31  (13.1%)
matched by 1 level hyperonym 53 (15.8%) | 36 (15.2%)
matched by >= 2 level hyponym 17 (5.1%) | 20 (8.4%)
matched by >= 2 level hyperonym | 149 44.5%) | 69  (29.1%)
not matched 34 (10.1%) | 46  (19.4%)

Table 5.6: Comparison of the preferences acquired by Ribas’ approach with the gold standard

Standard MDL performs better with disambiguation, but the results are still unsatisfying (20.6%
exact or approximate matches). Here, for most of the verbs, the tree cut model contains rather general
concepts, for which the danger to be “disambiguated away” is low.

5.5.2.3 Ribas’ Approach

To round up the picture, I also evaluated the performance of the preference acquisition approach
of Ribas (cf. section 3.4.2) w.r.t. the gold standard. I ran Ribas’ learning algorithm on the non-
disambiguated and the disambiguated data mentioned above. To obtain the preference scores (cf.
equation (3.25) on page 72), I used the same probability estimates as for computing the preference
values in the experiments described above.?? Table 5.6 shows the obtained results. Analogously to the
tree cut experiments, concepts with a negative association score are considered as not matching the
gold standard.

There is not much difference between the results using non-disambiguated or disambiguated data.
The (exact or approximate) matching rate is 40.2% and 43.1%, respectively. These rates are clearly
below the performance of the weighting approach, for both examined values of C'. But, after all, they
are significantly higher than the matching rates for standard MDL. The latter point is remarkable
regarding the fact that Ribas’ approach uses a simple heuristic to find the adequate level of generali-
sation, whereas Li and Abe emphasise that their approach uses a theoretically well-motivated method
to determine the appropriate abstraction level.

For a semi-automatic setting, which includes manual inspection of the acquired concepts, the number
of learned preferences is important. For Ribas’ approach, the average number of acquired preferred
concepts per verb is 638 for non-disambiguated data and 318 for disambiguated data. These numbers
lie between the corresponding values of the weighting approach for C' = 10 000 (1326 and 560,
respectively) and C' = 1000 (378 and 242, respectively). Thus, for C' = 1000, the weighting algorithm

ZNote that there is a difference between Ribas’ approach and the tree cut approach regarding the general probabilities of
noun concepts regardless of a particular verb (p(ncpt)). Ribas calculates all probabilities by simple Maximum Likelihood
Estimation. However, Li and Abe estimate p(ncpt) by a tree cut model. I decided to employ the latter alternative here,
because this allows a comparison between the different preference acquisition approaches which is not biased by using dif-
ferent probabilities. Note also that there is no corresponding difference between the verb-specific probabilities p(ncpt|vept)
for the two approaches, because for the concepts on the learned tree cut model, these probabilities are computed by MLE
as well.
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acquires a smaller amount of preferred concepts, but still achieves a higher recall rate.

5.5.3 Preliminary Conclusion and Further Proceeding

The experiments sketched here show that the standard MDL approach proposed by Li and Abe is
hardly suitable for learning thematic role relations. However, the weighting approach proposed in
chapter 4 is promising. Up to 75% of the acquired concepts were appropriate (recall). This rate was
retrieved by using non-disambiguated data. The disambiguation strategy introduced in section 5.2
significantly reduces noise, but also reduces the rate of correctly acquired concepts (although this
reduction is rather moderate). This happens because some correct senses are “disambiguated away”.
The results for non-disambiguated data indicate the “potential” of the approach. Improved disam-
biguation techniques should eliminate noise caused by incorrect senses, but keep the correct ones.

In section 5.3, I introduced a new approach for transforming the WordNet DAG structure into a
tree structure. In (Wagner 2002), I report experiments which I carried out using the same data and
strategies as for the experiments reported in section 5.5.2.1 and 5.5.2.2, but employing the ad-hoc
strategy for the structural transformation proposed by Li and Abe. It turns out that in both studies,
the results are very similar. This finding is in accordance with the fact that multiple hyperonymy, i.e.
the deviation from a pure tree structure, is very rare in WordNet. Thus, the transformation strategy
I proposed does not matter much here. This is different for wordnets where multiple hyperonymy is
much more common, e.g. GermaNet (cf. (Wagner 2003)).

As noted, the current gold standard is rather heterogeneous w.r.t. the degree of generalisation. There-
fore, it seems reasonable to divide the relations in the gold standard into subgroups according to the
generalisation level of the involved noun concepts and employ such subgroups separately for evalua-
tion. I will examine this possibility in section 7.8.

To evaluate my approach for learning thematic role relations on a broader basis, it is necessary to
examine other thematic relations as well. To achieve this, a comprehensive linking strategy is required.
I will address this issue in the next chapter.
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Chapter 6

Mapping Syntactic Arguments to
Thematic Roles

The basic learning scenario adopted for this thesis is the acquisition of thematic role relations from
parsed corpora. As noted several times, this setting involves a fundamental gap which has to be
bridged in one or another way: Whereas the training data contain information about the syntactic
arguments of verbs, the learning task is to acquire preferences for the semantic arguments of verbs.
The problem which has to be solved is that a certain semantic role type can be realised by several syn-
tactic argument types, and conversely, a certain syntactic argument type can realise several semantic
role types. In section 5.1, I illustrated this fact by referring to the examples (5.1)—(5.3). Here, I repeat
these sentences again as (6.1)—(6.3), and add (6.4) and (6.5):

(6.1) The jealous husband broke the window.

(6.2) A hammer broke the window.

(6.3) The jealous husband broke the window with a hammer.
(6.4) The furious wife broke the TV with a chair.

(6.5) The TV broke.

These sentences show that the Instrument can be realised as subject (6.2) or with-PP ((6.3); (6.4)),
and the Patient can be expressed as object ((6.1)—(6.4)) or subject (6.5). On the other hand, the subject
can realise an Agent ((6.1); (6.3); (6.4)), an Instrument (6.2), or a Patient (6.5).

In section 2.1, I described the problem of linking syntactic arguments to thematic roles from a the-
oretical linguistic perspective. Within the linguistic research summarised in that section, the primary
question could be stated as follows: “Given a particular sentence, which thematic role underlies a
certain syntactic argument?” For the learning task of this thesis, the problem has to be viewed from a
slightly different perspective. Here, the primary question has to be reformulated: “Given a particular
verb, which syntactic arguments realise a certain thematic role of that verb (in the data)?” In other
words, the linking task in our context is not to assign appropriate roles to the arguments in concrete
sentences. Rather, the task is to group together arguments (in differing syntactic configurations) which
are fillers of a specific thematic role of the verb under consideration. For example, regarding the verb
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“break”, the nouns “husband” and “wife” correspond to the Agent, “window” and “TV” to the Patient,
and “hammer” and “chair” to the Instrument. When such role-specific noun groups are established,
the learning approach for selectional preferences can be separately applied to each of them. The pre-
ferred concepts on the tree cut acquired from a role-specific noun collection are strong candidates
for being connected to the respective verb concept via a corresponding role relation. For example,
if the Instrument group yields a cut containing <artefact> as a preferred concept, this suggests an
INVOLVED_INSTRUMENT relation between <break> and <artefact>.

In this chapter, I will present a strategy to acquire such role-specific argument groups for the verb
under examination. This strategy employs the training data I described in section 5.1. As described
in that section, the data I use consist of items which represent syntactic and lexical information about
sentences in the corpus. Formally, a data item is a pair where the left component contains

e a verb (the main verb of a sentence)
e a subcategorisation frame (the list of syntactic complement types of the verb in that sentence)

e a particular argument slot captured by the subcategorisation frame (a particular complement
type occurring in the sentence)

while the right component contains the noun which is the head of the particular complement type
encoded in the left component. Notationally, a data item has the form verb#frame/slot noun. Thus, a
sentence like (6.3) would be represented in the training data by the following items:

break#subj:obj:pp.with/subj husband
break#subj:obj:pp.with/obj window
break#subj:obj:pp.with/pp.with hammer

For example, the first item above contains the information that there is a sentence in the training corpus
in which “break” occurs with the subcategorisation frame subj:obj:pp.with, i.e. with a subject, an
object, and a PP with preposition “with”, and that the subject is “husband”. As a data item represents
a syntactic argument of a verb, the task of obtaining role-specific argument noun groups effectively
involves building groups of data items.

6.1 Opverall Strategy
The strategy I propose for mapping syntactic arguments to thematic roles consists of three stages:

1. build groups of syntactic argument types such that arguments which realise the same thematic
role are assembled in the same group

2. apply heuristics to determine which thematic role types correspond to which argument groups
3. apply additional (heuristic) semantic filters to cope with concurrent role assignments and to

eliminate noise
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The first stage investigates which syntactic argument types are likely to realise the same thematic
roles. Here, the term “syntactic argument type” refers to a certain grammatical function (argument
slot) and a complete subcategorisation frame to which this grammatical function belongs. Note that
this information is encoded in the left component of the training data items. Henceforth, I will use
the term frame-argument configuration to refer to such types. Examples of frame-argument config-
urations (in the notation used in the data items) are subj:obj/obj (a direct object), subj:obj/subj (a
transitive subject), or subj/subj (an intransitive subject). The sub-task addressed in stage 1 is to group
these configurations according to which semantic role(s) they might express. In general, the resulting
groups will differ for different verbs. Consider the following sentences:

(6.6)
a. John ate the apple.
b. John ate.
c. *The apple ate.
(6.7)

a. John closed the door.
b. The door closed.

c. *John closed.

For both verbs “eat” and “close”, the transitive subject expresses the Agent and the direct object the
Patient (cf. (6.6 a) and (6.7 a)). However, for “eat”, the intransitive subject expresses the Agent (as
in (6.6 b)), whereas for “close”, the intransitive subject realises the Patient (as in (6.7 b)). Hence, for
“eat”, the intransitive and the transitive subject have to be grouped together, while for “close”, the
intransitive subject has to be grouped with the object.

The example sentences under (6.6) and (6.7) suggest a way to cluster frame-argument configurations
adequately. The basic idea is to group those frame-argument configurations together that have similar
“fillers”, i.e. similar nouns at the corresponding argument position. Examples (6.6) illustrate that
for “eat”, the nouns which occur as the intransitive subject coincide with the nouns occurring as the
transitive subject, but not with the nouns instantiating the object. Conversely, examples (6.7) show that
for “close”, the fillers of the intransitive subject correspond to the fillers of the object, but not the ones
of the transitive subject. This motivates the basic idea to cluster the frame-argument configurations
exhibited by the verb under examination according to the similarity of the nouns they tend to relate
to that verb. I will describe a principled statistical approach to perform this clustering automatically,
employing the training data.

Each of the groups acquired in this way contains frame-argument configurations that agree in the
semantic role(s) they express, but at this point, it is not determined which roles correspond to which
argument groups. This kind of information cannot be immediately acquired from the data; that would
require a training corpus where thematic roles are explicitly annotated (cf. section 6.6). However, the
properties of certain frame-argument configurations in a cluster allow to formulate rules for determin-
ing corresponding thematic role types (or, at least, excluding inappropriate role types). Such linking
rules can be straightforwardly obtained from the linguistic insights sketched in section 2.1. For ex-
ample, all three linguistic theories I mentioned in that section state that if an Agent is expressed in a
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sentence, then it must be expressed by the subject. From this fact, one can derive the rule that a group
containing an object type cannot correspond to the Agent role. In this way, grouping frame-argument
configurations constrains the possible role assignments to individual configurations. For instance, an
intransitive subject can in general express an Agent or a Patient. But if this type is grouped together
with the object type, then it cannot realise an Agent. Hence, building argument groups allows to ap-
ply linking rules to frame-argument configurations to which they could not be applied if they were
taken into account in isolation. Actually, employing a statistical clustering method and linguistically
motivated linking rules is a way of combining quantitative and symbolic evidence. As we will see, the
linking rules I will propose generally are heuristic in nature. In the 2. stage of the approach described
in this chapter, such heuristics are applied to each group to recognise the corresponding role types.

From the argument groups labelled with role types, it is straightforward to obtain role-specific groups
of noun complements: Together with the examined verb, a frame-argument configuration forms the
left component of several training data items. Thus, all those data items (pertaining to the examined
verb) whose left component belongs to a group labelled with a specific role type form a role-specific
collection of data items. Therefore, the nouns at the right component of the data items in such a
collection constitute a role-specific multiset of complements of the examined verb. The algorithm for
acquiring selectional preferences is separately applied to each of these noun complement groups to
acquire thematic role relations of the respective types. For example, suppose we inspect the verb “eat”
and yield (among others) an argument group containing the frame-argument configurations subj/subj
and subj:obj/subj that is labelled with the role type AGENT. Then all nouns occurring in data items
whose left component is eat#subj/subj or eat#subj:obj/subj are collected and the learning algorithm
is applied to the resulting set to acquire INVOLVED_AGENT relations.

Unfortunately, stages 1 and 2 sketched above do not yield unique role assignments in all cases. For
example, as illustrated in (6.1) and (6.2), a transitive subject might express an Agent or an Instru-
ment. If, for example, a group just comprises the transitive subject type, then the syntactic linking
rules applied in stage 2 are not able to distinguish between the two possible roles. In general, if
a frame-argument configuration is ambiguous w.r.t. the role it might express and there is no other
frame-argument configuration in the same group that resolves this ambiguity, then the group receives
multiple role assignments. Furthermore, if an argument group is assigned a unique role, but contains
an ambiguous frame-argument configuration, then the role-specific noun group obtained from that
argument group as described above may contain noise, i.e. some noun complements which express
another role. For instance, a noun group classified as AGENT could include several nouns expressing
a Location (which are realised as subject).

Fortunately, one can formulate simple heuristic semantic filters which are able to separate differ-
ent roles in ambiguous noun groups as well as eliminate noise. For example, to distinguish between
Agent and Instrument one can employ the heuristic that Agents usually are animate beings, while
Instruments are normally artefacts. Such heuristics are very general semantic characterisations, in a
sense semantic preferences, of thematic role types. Essentially, these preferences are of the same kind
as the preferences which are acquired by the learning algorithm discussed in the previous chapters,
though the former are at a very high level of generalisation, being valid independently of a particular
verb. Therefore, a natural way to employ such heuristics is to relate them to the selectional prefer-
ences acquired by the learning algorithm. A straightforward possibility to implement this idea is to
apply these heuristics as filters of the acquired tree cut models. This is done in stage 3 mentioned
above. In other words, stage 3 is applied after applying the learning algorithm, not—like stage 1
and 2—before. For illustration, suppose that stages 1 and 2 yield (among others) a collection of data
items which is labelled with the two role types AGENT and INSTRUMENT. The preference acqui-
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1. Cluster semantically similar syntactic arguments (stage 1 of linking strategy)

2. Apply heuristics to assign thematic role types the clusters (stage 2 of linking
strategy)

3. Apply WSD approach to the data
4. Propagate frequencies of word senses to higher concepts in the concept hierarchy

5. Apply MDL-based learning algorithm to acquire tree cut models that represent
selectional preferences

6. Apply semantic filters to these tree cuts (stage 3 of linking strategy)

Figure 6.1: Steps of the overall approach for learning thematic role relations proposed in this thesis.
The stages of the linking strategy are explicitly marked.

sition algorithm is run on the nouns in these data items and acquires a tree cut model that represents
the preferences for both roles Agent and Instrument. After that, stage 3 applies the above-mentioned
heuristics to filter those concepts from the cut which correspond to each of these roles: Those con-
cepts which denote an animate being (i.e. concepts which are subsumed by <person>, <animal>, or
<causal_agent>) are filtered as candidates for the INVOLVED_AGENT relation, while those con-
cepts that denote an artefact (i.e. concepts subsumed by <artefact>>) are extracted as candidates for
the INVOLVED_INSTRUMENT relation.

To clarify the embedding of the three stages of the linking strategy I propose in my overall approach
of learning thematic role relations, figure 6.1 provides a brief overview of all steps of this approach
and the order of their application. The components of the linking strategy are highlighted.

Overall, I would like to emphasise that the separation of the three sub-tasks as sketched in the previ-
ous paragraphs is motivated by two reasons. Firstly, this proceeding makes best use of the available
information presented earlier in this thesis. In particular, it turns out that the LSC model which I
use to lexically disambiguate the data (cf. section 5.2) also provides the information which enables
grouping arguments together which realise the same role (stage 1). Furthermore, heuristics for deter-
mining role types based on the linguistic research concerning argument linking (cf. section 2.1) and
knowledge about possible diathesis alternations can be straightforwardly formulated and applied to
these argument groups (stage 2). Finally, semantic preferences on certain role types, which as well
are motivated by linguistic research (cf. section 2.2.2) can be easily employed as filters of the learned
tree cut models (stage 3).

Secondly, this strategy modularises the language- and theory-neutral aspects on the one hand and the
language- or theory-specific aspects on the other hand. The clustering approach I propose for stage 1
is independent from both a particular language and a particular theory of thematic roles.! However,
the heuristics I employ for stage 2 depend to a large extent on the peculiarities of English. For other

!The linguistic interpretation I offer in section 6.2.2 is plausible, but not constitutive for motivating the approach.
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languages, different heuristics would have to be formulated. (This immediately becomes obvious
if one considers that these heuristics include certain prepositions as indicators of certain roles, e.g.
“with” for Instrument vs. “on” for Location vs. “onto” for Goal.) Furthermore, the formulation of
role assignment rules depends on the adopted inventory of roles and their characterisations. Finally,
the semantic filters applied in stage 3 are significantly influenced by the adopted role inventories
and definitions as well. (The rule that an Agent is animate presupposes that nonvolitional Agents are
excluded by the definition of the Agent role, or at least treated as exceptions.) As I emphasised in
section 1.3, the approach for learning thematic role relations should be as language-independent as
possible in order to be suitable for wordnets in any language. Furthermore, it preferably should be
compatible to different linguistic role theories and inventories, to be applicable for the various existing
proposals in that area. The isolation and delimitation of the necessary language- and theory-specific
parts of the strategy for learning thematic role relations facilitate its adaption to different languages
and theoretical assumptions.

This chapter is organised as follows: Section 6.2 explains the method which I use to group syntac-
tic arguments and discusses a preliminary experiment to test this method (stage 1). In section 6.3,
I propose and motivate some straightforward heuristics for determining appropriate role types for
the individual argument groups (stage 2). In section 6.4, I sketch how the labelled argument groups
are employed to prepare the input to the algorithm for learning selectional preferences. Section 6.5
describes the semantic filters I use to further discriminate role types after selectional preference acqui-
sition (stage 3). Finally, section 6.6 relates the linking strategy proposed in this chapter with related
approaches in the literature. Comprehensive experiments employing this strategy will be described in
chapter 7.

6.2 Creating Role-Specific Groups of Syntactic Arguments

The step described in this section consists in forming groups of frame-argument configurations which
are associated with a certain verb. In terms of the training data, the task is to cluster those types
of left components which refer to the verb under consideration. For example, consider the syntactic
arguments of the verb “break”. The left components in the data items representing the sentences (6.1)
and (6.2) above are

break#subj:obj/subj
break#subj:obj/obj

while the syntactic structure of the sentences (6.3) and (6.4) is represented by the following left
components:

break#subj:obj:pp.with/subj
break#subj:obj:pp.with/obj
break#subj:obj:pp.with/pp.with

and the structure of sentence (6.5) is represented by

break#subj/subj
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These six frame-argument configurations have to be grouped according to the thematic roles they
represent. The roles involved here are Agent, Patient, and Instrument. Therefore, one group for each
of these three roles is required. The Patient is realised as the object in (6.1)—(6.4) and as intransitive
subject in (6.5). Thus, the corresponding group consists of the two frame-argument configurations
which encode the object and the one encoding the intransitive subject:

break#subj:obj/obj
break#subj:obj:pp.with/ob]
break#subj/subj

The Agent is represented as the subject in (6.1), (6.3), and (6.4), and not expressed at all in (6.2) and
(6.5). Hence, the corresponding group comprises the frame-argument configurations

break#subj:obj/subj
break#subj:obj:pp.with/subj

The Instrument is realised as a subject in (6.2) and as a with-PP in (6.3), and (6.4), and not expressed
in (6.1) and (6.5). Thus, the corresponding group contains the frame-argument configurations

break#subj:obj/subj
break#subj:obj:pp.with/pp.with

Note that the argument break#subj:obj/subj occurs in two groups. This reflects the fact that the subject
in a transitive sentence without a with-PP might represent an Agent or an Instrument. This ambiguity
of that frame-argument configuration introduces noise in both noun groups corresponding to the ar-
gument groups which it is a member of. Since some nouns attached to this configuration express an
Agent and some an Instrument, but all of these nouns are included in the two noun groups in question,
the group representing Agents contains some nouns expressing an Instrument and vice-versa. For ex-
ample, suppose our training data just capture the sentences (6.1)—(6.5). Then, the Agent noun group
contains all nouns that appear as transitive subject, i.e. “husband” (2x), “wife”—and also “hammer”.
Conversely, the noun group representing Instruments contains all nouns which appear as in a with-PP
or as a transitive subject in sentences without a with-PP, i.e. “hammer” (2x), “chair”—and also “hus-
band”. The semantic filters which I will describe in section 6.5 are intended to eliminate noise of such
kind, i.e. to fade out the evidence that is erroneously provided by “hammer” regarding the Agent role
and by “husband” regarding the Instrument role.>

6.2.1 Employing the LSC Model

For the task of creating clusters of frame-argument configurations, it is crucial to find appropriate
criteria for clustering. In other words, the problem is to define characteristics of frame-argument con-
figurations which can be employed to decide which of them realise the same roles. In the following, I

“Note that the presentation is somewhat simplifying here, in order to make clear the basic idea. In fact, the heuristics
proposed in section 6.3 will assign both role types Agent and Instrument to both groups. This is motivated by linguistic
facts, which turn out to be more complex than the example discussed here suggests. Nonetheless, the role-discriminating
function of semantic filters holds as indicated.
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will argue that the latent semantic classes (LSC) model which I introduced in section 3.3 and used al-
ready for word sense disambiguation (cf. section 5.2) provides exactly the kind of information needed
to define such characteristics. To start this argument, I will recapitulate the rationale behind the LSC
approach. The goal of the LSC technique as proposed in (Rooth et al. 1998) is to obtain soft clusters
of verb—noun pairs so that similar pairs are gathered in the same cluster. More exactly, the pairs to be
clustered consist of a combination of a verb and a frame-argument configuration on the one hand and
a noun on the other hand. Thus, in terms of the setting in this thesis, the LSC technique clusters train-
ing data items. As this section concentrates on frame-argument configurations, I introduce a formal
notation of the pairs to be clustered which emphasises this aspect: For the left component of a data
item (like break#subj:obj/subj, I will use the expression fa(v) (instead of just v), where fa represents
a frame-argument configuration and v a verb. For such a combination of a verb and a frame-argument
configuration, I will use the term verb-frame-argument configuration.

Formally, an LSC model consists of a set of latent semantic classes where each class ¢ contains
(fa(v),n) pairs. These classes are soft clusters, i.e. a pair is member of a cluster fo a certain degree.
This graded membership is modelled in the following way: For each class ¢ and pair (fa(v), n), there
is a conditional probability p(fa(v),n|c), the probability that this pair is a member of this class. The
crucial idea of the LSC method is that it does not directly estimate this joint probability p(fa(v), n|c).
Instead, for each class ¢, the LSC algorithm estimates the two marginal distributions p(fa(v)|c) and
p(n|c). The joint probability is obtained from these marginal probabilities as in equation (6.8):

p(fa(v),nle) = p(fa(v)lc)p(nfc) (6.8)

Technically, equation (6.8) formalises the assumption that, given a class ¢, the probabilities p(fa(v)|c)
and p(n|c) are independent from each other. Conceptually, this independence assumption models an
abstraction step over data items that constitutes the main characteristic of the LSC model: A class
is not just a collection of (fa(v),n) pairs. Rather, it comprises a collection of similar verb-frame-
argument configurations on the one hand and a collection of similar nouns on the other hand so that
the verb-frame-argument configurations and the nouns which tend to co-occur significantly belong to
the same latent semantic class.’

Figure 6.2 shows class c;g of the LSC model I obtained from the training data (assuming 35 classes
and running the EM algorithm for 400 iterations). In particular, the figure displays the verb-frame-
argument configurations and nouns with the highest conditional probabilities given c;g. At this point,
I have to provide two remarks concerning technical subtleties reflected in the notation. Firstly, as for
the experiments in chapter 5, I conflated all verb and noun forms which are not captured by WordNet
into a single form “notinwordnet”. This leads to a significant reduction of parameters, which facil-
itates processing the model. Secondly, the numbers at the end of the verb-frame-argument configu-
rations indicate the position of the respective argument in the subcategorisation frame. For example,
in put#subj:obj:pp.on/pp.on3 the argument in question, pp.on, is the third argument in the associ-
ated frame. In most cases, this information is redundant so that I generally do not display the trailing
number when displaying verb-frame-argument configurations. However, there are frames where a
grammatical function occurs more than once, e.g. double object constructions. In these cases, the
position of the argument in question is needed to identify which part of the frame is meant. For ex-
ample, give#subj:obj:obj/obj2 represents the first object (which is the second argument in the frame),

3Recall that in the context of soft clusters, the expression belongs to a class is a simplification which I use for the sake
of readability. Exactly, x belongs to class c is an abbreviation for the probability p(x|c) of x given class ¢ is (comparably)
high.
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p(Clg) = 0.0146
v p(fa(v)lcis) n p(nfcis)
open#subj:obj/obj2 0.0369 eye 0.0976
open#subj/subjl 0.0294 door 0.0776
notinwordnet 0.0253 notinwordnet  0.0385
closet#tsubj:obj/obj2 0.0194 face 0.0328
put#subj:obj:pp.on/pp.on3  0.0123 mind 0.0277
cross#subj:obj/obj2 0.0111 mouth 0.0193
put#subj:obj:pp.in/pp.in3  0.0104 window 0.0173
go#subj:pp.to/pp.to2 0.0098 bed 0.0156
sit#subj:pp.on/pp.on2 0.0094 table 0.0155
hit#subj:obj/obj2 0.0088 chair 0.0143
fill#subj:obj/obj2 0.0088 gray 0.0140
sit#subj:pp.in/pp.in2 0.0073 wall 0.0133
change#subj:obj/obj2 0.0070 side 0.0129
closeftsubj/subjl 0.0067 line 0.0114
clear#subj:obj/obj2 0.0063 floor 0.0113

Figure 6.2: Latent semantic class 18

give#subj:obj:obj/obj3 the second object in a double object construction with “give”. For procedural
convenience, my implementation always includes the position number in the verb-frame-argument
configurations. Therefore, when I present concrete models which I acquired from the data, I mention
this technical detail.

Recall how to read figure 6.2: The model defines a probability of membership in class cig for
any possible (fa(v),n) pair. Of course, pairs consisting of a verb-frame-argument configuration
and a noun with high probabilities p(fa(v)|cis) and p(n|cis), respectively, receive particularly
high membership probabilities. Thus, any combination of an item on the left and an item on
the right in the figure has a comparably high membership probability. For example, the prob-
ability of the pair (close#subj:obj/obj2, door) is as follows: p(close#subj:obj/obj2,door|c1s) =
p(close#subj:obj/obj2|c1g) x p(door|cig) = 0.0194 x 0.0776 = 0.0015.

Like the other LSC examples we have seen so far, this example illustrates that a class tends to comprise
similar verb-frame-argument configurations (verbs of opening/closing or putting/moving) as well as
similar nouns (parts of faces, parts of buildings, furniture). To understand why these classes provide
the information we need to group frame-argument configurations, we have to look more closely at
the nature of this similarity, i.e. the question in what respect the verb-frame-argument configurations
or nouns, respectively, occurring in one class are similar. In section 5.2, I described how words in
the same class can mutually disambiguate each other. In particular, I utilised techniques which mea-
sure semantic similarity in terms of distances in the WordNet hierarchy. Hence, the disambiguation
approach I proposed rests on the assumption that words whose senses are close together in WordNet
tend to occur in the same class. The examples of latent semantic classes we have seen so far confirm
this behaviour. Furthermore, the comparison of experiments with and without disambiguated data
in section 5.5 shows that the WSD approach is effective, which provides further evidence for this
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p(Clg) = 0.0183
v p(fa(v)lci2) n p(nfcia)
see#subj:obj:obj/obj3 0.0601 notinwordnet (0.1164
notinwordnet 0.0307 hand 0.0638
wear#subj:obj/obj2 0.0271 arm 0.0252
put#subj:obj:pp.on/obj2 0.0107 light 0.0165
get#subj:obj/obj2 0.0096 foot 0.0164
pick_up#subj:obj/obj2 0.0083 lip 0.0154
remove#subj:obj/obj2 0.0083 face 0.0153
break#subj:obj/obj2 0.0081 hair 0.0134
place#subj:obj:pp.on/obj2 0.0078 finger 0.0131
touch#subj:obj/obj2 0.0077 shoulder 0.0113
begin#subj:to/subj1 0.0064 heart 0.0108
find#subj:obj/obj2 0.0058 body 0.0099
coveritsubj:obj:pp.with/pp.with3  0.0058 glass 0.0095
hold#subj:obj/obj2 0.0054 leg 0.0093
light#subj:obj/obj2 0.0052 back 0.0077

Figure 6.3: Latent semantic class 12

assumption.

However, this captures only one aspect of the similarity of the items clustered together in an LSC
model. The primary nature of this similarity is more sophisticated: Those verb-frame-argument con-
figurations that behave similarly w.r.t. the nouns with which they co-occur are gathered in the same
class(es), and, conversely, those nouns that behave similarly w.r.t. the verb-frame-argument configu-
rations with which they co-occur are gathered in the same class(es). For instance, class c1g models
the finding that verbs like “open”, “close”, “put”, “go”, or “hit” tend to select nouns like “eye”,
“door”, “mouth”, “window”, or “bed” as arguments. Essentially, latent semantic classes sort verb-
frame-argument configurations and nouns according to their mutual relational similarity.

In other words, a latent semantic class as a whole represents a certain type of semantic relationship
between verb-frame-argument configurations and nouns. This semantic relationship has two aspects,
which may be more or less distinct in an individual class. As yet, we have concentrated on one
of these aspects: verbs and nouns in a certain class tend to be associated with one or a couple of
certain semantic fields. I make use of this tendency by employing the LSC model for word sense
disambiguation. In the context of linking, however, the other aspect is crucial: Actually, it turns out
that a number of classes strongly indicate a certain thematic role. More precisely, it is often the case
that the relations between verb-frame-argument configurations and nouns in a certain class tend to
correspond to the same thematic role. In the following, I will discuss several classes where both
aspects are visible.

Figures 6.3 and 6.4 show the classes c1o and cog, respectively. As can easily be seen, both classes
model verb—noun relations which realise the Patient role. However, they differ in the semantic fields
they cover. Class cjo comprises relations between mainly verbs of placing or displacing and their

158



p(CQG) = 0.0303
v p(fa(v)lczs) n p(nlcos)
seemdtsubj:to/subjl 0.0215 notinwordnet  0.1257
notinwordnet 0.0169 people 0.0651
kill#subj:obj/obj2 0.0132 man 0.0391
die#subj/subjl 0.0132 child 0.0363
become#subj:obj/obj2 0.0117 woman 0.0275
begin#subj:to/subj1 0.0099 patient 0.0166
tend#subj:to/subj1 0.0095 member 0.0105
appear#subj:to/subjl 0.0087 student 0.0100
give#subj:obj:obj/obj2 0.0069 one 0.0096
become#subj:ap/subjl 0.0068 girl 0.0096
allow#subj:obj:to/obj2 0.0067 family 0.0093
givet#fsubj:obj:pp.to/pp.to3  0.0063 person 0.0092
come#subj:to/subj1 0.0060 mother 0.0075
see#subj:obj/obj2 0.0059 boy 0.0069
look#subj:pp.like/pp.like2  0.0058 animal 0.0066

Figure 6.4: Latent semantic class 26

objects, mostly body parts. In contrast, class cog captures relations between verbs of diverse semantic
domains and nouns mainly denoting persons.

In contrast, figures 6.5-6.7 show three classes, c3, c17, and c3p, which model verb—noun relations
corresponding to the Agent role. Again, these classes differ in the semantic fields to which the verbs
and nouns belong. c3 apparently does not exhibit a particular semantic domain, except from the fact
that the nouns denote persons or person groups. ci7 focuses on actions of exerting force, where the
agentive noun arguments may be human or inanimate. c3y captures actions of communication or
cognition, naturally with human arguments.

Looking at concrete verbs and their distributions within one class or across different classes shows
how the LSC model can be utilised for grouping frame-argument configurations. First of all, there are
verbs which occur in a class with several frame-argument configurations. For example, class 26 con-
tains two different verb-frame-argument configurations pertaining to “give”: give#subj:obj:obj/obj2
and give#subj:obj:pp.to/pp.to3. This is an instance of the dative alternation (which I will discuss in
section 6.3.2). Both frame-argument configurations realise the same semantic argument for “give”
(the recipient). This illustrates that an LSC model is able to assemble different syntactic realisations
of the same semantic argument of a verb in the same class. I mentioned this property of the LSC
method already in section 3.3.

On the other hand, the same verb-frame-argument configuration may occur in different classes.
For example, take#subj:obj/subjl and tell#subj:obj/subjl have high probabilities in c3 and csp,
give#subj:obj:obj/subjl has high probabilities in c3 and c;7. Note that the occurrence of a verb-frame-
argument configuration in different classes does not necessarily coincide with different meanings of
the respective verb. There is no apparent meaning difference for “tell” in the context of c3 and cj3,
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p(c3) = 0.0163

v p(fale) | [ P(lcs)
make#subj:obj/subj1 0.0558 notinwordnet  0.4306
take#subj:obj/subj1l 0.0543 he 0.1060
win#subj:obj/subj1 0.0303 who 0.0349
tell#subj:obj/subjl 0.0218 party 0.0084
give#subj:obj/subjl 0.0209 father 0.0080
play#subj:obj/subj1 0.0190 man 0.0073
hold#subj:obj/subj1 0.0146 company 0.0059
become#subj:obj/subjl  0.0145 team 0.0054
give#subj:obj:obj/subjl  0.0126 family 0.0042
notinwordnet 0.0121 labour 0.0042
lose#subj:obj/subjl 0.0089 mother 0.0041
run#subj:obj/subj1 0.0085 group 0.0040
join#subj:obj/subj1 0.0084 woman 0.0036
own#subj:obj/subj1 0.0078 government  0.0031
tell#subj:obj:that/subjl  0.0077 kingbolt 0.0030

Figure 6.5: Latent semantic class 3
p(017) = 0.008

v p(fav)|cir) n p(njerr)

hit#subj:obj/subj 0.0211 notinwordnet 0.1171

kill#subj:obj/subj 0.0195 police 0.0356

catch#subj:obj/obj2 0.0190 force 0.0234

notinwordnet 0.0134 car 0.0168

carry#subj:obj/subj1 0.0119 man 0.0147

give#subj:obj:obj/subjl  0.0117 firebreak 0.0143

begin#subj:to/subjl 0.0114 troop 0.0140

strike#subj:obj/subj1 0.0109 bomb 0.0120

come#subj/subj1 0.0099 army 0.0113

destroy#subj:obj/subjl ~ 0.0098 train 0.0099

attack#subj:obj/subj1 0.0096 someone 0.0092

arrive#subj/subjl 0.0095 rain 0.0091

stop#subj/subj1 0.0091 sight 0.0074

reach#subj:obj/subjl 0.0086 light 0.0071

leave#subj:obj/subj1 0.0084 shot 0.0071

Figure 6.6: Latent semantic class 17
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p(Cgo) = 0.1081
v p(fa(v)leso) n p(nleso)
say#subj/subjl 0.1129 notinwordnet  0.5173
say#subj:adv/subjl 0.0173 he 0.4198
notinwordnet 0.0172 man 0.0074
tell#subj:obj/subjl 0.0117 woman 0.0032
ask#subj/subj1 0.0112 doctor 0.0025
think#subj/subj1 0.0087 mother 0.0024
add#subj/subjl 0.0087 girl 0.0023
try#subj:to/subj1 0.0076 father 0.0022
make#subj:obj/subjl ~ 0.0075 boy 0.0021
want#subj:to/subjl 0.0069 someone 0.0015
will#subj:vbase/subjl  0.0068 who 0.0012
begin#subj:to/subjl 0.0066 one 0.0010
take#subj:obj/subjl 0.0059 voice 0.0009
write#subj/subj1 0.0055 husband 0.0006
go#subj:to/subj1 0.0054 people 0.0006

Figure 6.7: Latent semantic class 30

respectively. Rather, since “tell” fits into the semantic domains which both classes focus on, and
tell#subj:obj/subjl expresses a semantic role which is expressed in both classes (Agent), this verb-
frame-argument configuration unsurprisingly occurs in these two classes. In general, the role which
corresponds to a verb-frame-argument configuration is not reflected by its membership in one partic-
ular class, but by its overall profile of membership in all classes of the LSC model. This membership
profile depends on both the individual verb (it differs for “give” and “tell”’) and the role that is ex-
pressed by the frame-argument configuration associated with that verb (it differs for the subject and
the object of “give”). The approach I propose for grouping frame-argument configurations assumes
that different frame-argument configurations pertaining to the same verb and expressing the same role
(e.g. give#subj:obj:obj/obj2 and give#subj:obj:pp.to/pp.to3) have similar class membership profiles.

As the LSC model represents the degreed class membership by probabilities, it is straightforward to
model the membership profile just discussed by probabilities as well. Actually, the class membership
profile of a verb-frame-argument configuration fa(v) can be straightforwardly expressed by a single
probability distribution, namely the distribution of classes ¢; given that configuration, i.e. p(¢;|fa(v)).
Intuitively, this probability distribution models how fa(v) is divided among the classes in the LSC
model. The LSC model does not immediately estimate these probabilities. Its parameters comprise
marginal class probabilities p(c;) and class membership probabilities p(fa(v)|c;). However, with
these probability distributions, the probabilities p(c;|fa(v)) can be retrieved using Bayes’ law:

plei fa(v)) _ p(fa(v)leip(ci)
p(fa()) 2., p(fa(v)le;)p(es)

p(ci|fa(v)) = (6.9)

Equation (6.9) makes explicit that p(c;|fa(v)) is a function of the class membership probability
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p(fa(v)|c;) and thus the distribution obtained by this formula captures the information the LSC model
provides about the distributional profile of fa(v). The fact that this profile can be summarised by a
single probability distribution is very convenient concerning the task addressed in this section, i.e.
grouping frame-argument configurations. According to the previous paragraphs, this task amounts
to dividing verb-frame-argument configurations fai(v),..., fa,(v) pertaining to a particular verb v
into groups so that configurations which have a similar distributional profile are grouped together. As
the distributional profile indicates the thematic role that a verb-frame-argument configuration realises,
it is likely that a group of several fay(v) with similar profiles comprises frame-argument configura-
tions which express the same role. Of course, a precondition for this approach is that we are able to
measure the similarity of distributional profiles corresponding to different verb-frame-argument con-
figurations. As these profiles are represented as single probability distributions, this can be done in a
simple way. Several formulae for measuring the (dis-)similarity of probability distributions have been
proposed in the literature. Thus, the similarity of two verb-frame-argument configurations fa(v)
and fa;(v) can be measured by computing the similarity of the corresponding probability distribu-

tions p(ci[ fax (v)) and p(ci] far(v)).

(Manning & Schiitze 1999, p. 303-306) review some measures of the distance between two prob-
ability distributions proposed in the literature (following (Dagan, Lee & Pereira 1997)). In section
3.4.1.2, we have already encountered a very common information-theoretic distance measure: rela-
tive entropy. The relative entropy (or Kullback-Leibler distance) D(p||q) of two distributions p and g
is defined as in equation (6.10) (which is a repetition of equation (3.19) on page 67):

m) (6.10)

p(z)

D(pllq) = E:p )log 222 e E:p — log
Relative entropy is a measure of the information that is lost if one assumes distribution ¢ while the
true distribution is p. The main problem of this measure for our purposes is that it is not symmet-
ric, i.e. in general, D(p|lq) # D(q||p). Thus, if we want to assess the similarity of two configu-
rations fax(v) and fa;(v), it is not clear whether we should use D(p(c;|far(v))||p(ci|fai(v))) or
D(p(c;|fai(v))|lp(ci| fag(v))). The problem is that, in our setting, we do not have to compare two
probability distributions where one of them is “true” and the other one is a more or less good ap-
proximation of it. Instead, we have to compare two distributions of equal status, since each of them
represents the distributional profile of a certain verb-frame-argument configuration. Therefore, we
need a symmetric (dis-)similarity measure.* A distance measure which is derived from relative en-
tropy is information radius (I Rad), which is defined as follows:

p+q pt+q
) —)

IRad(p, q) = D(pl|—— 5

+ D(q|| (6.11)

The information radius measures how much information is lost if we model two random variables
whose underlying probability distributions are p and g, respectively, by the average distribution 1%.
In our setting, this means the following: We have to compare two verb-frame-argument configurations
fax(v) and fa;(v) whose profiles are modelled by the distributions p(c;| fax(v)) and p(c;| fa;(v)), re-
spectively. The information radius of these two distributions I Rad(p(c;| fax(v)), p(ci| fa;(v))) mea-

sures the information which would be lost if we modelled the profiles of both configurations by the

*The other main drawback of relative entropy is that this measure is not defined for those z for which g(z) = 0 and
p(x) # 0. However, this is no problem in our context. The parameters estimated by the LSC algorithm are non-zero, i.e.
p(ci) > 0and p(fa(v)|c;) > 0 forall ¢; and fa(v). Thus, following equation (6.9), p(c;|fa(v)) > 0 for all ¢; and fa(v).
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average of these two distributions, i.e. using the following distributions p(...) instead of the “true”
ones:

pleilfar(v)) + pleil fai(v))
2

pleilfar(v)) = pleil fa(v) = (6.12)

The information radius is a symmetric measure, i.e. I Rad(p,q) = I Rad(q, p). Thus, it is appropriate
for our purpose. It can be shown that this measure has a fixed range: 0 < I Rad(p, q) < 2log 2 for all
distributions p and q.

(Manning & Schiitze 1999) discuss a third distance measure, the L; norm, which is defined as
> . |Ip(z) — g(x)|. This measure is also symmetric, i.e. adequate for our needs. I decided to use
I Rad for my work. This is a purely pragmatic choice, motivated by experiments reported in (Dagan
et al. 1997) (cited by (Manning & Schiitze 1999)) and (Dagan, Lee & Pereira 1999), which show that
I Rad performs better than L in several tasks. However, there is no principled reason against using
the L; norm for the grouping strategy I describe below.

Employing I Rad to measure the distance dist between two verb-frame-argument configurations
fax(v) and fa;(v) leads to the following equation:

dist(fax(v), far(v)) = ITRad(p(ci| far(v)), p(eil far(v))) (6.13)

I made use of this distance measure in a straightforward way: If dist( fax(v), fa;(v)) does not exceed
a certain similarity threshold thrg;,, then fai(v) and fa;(v) are put into the same group. I will
explain below how I determine this similarity threshold.

Now we have the means required to group frame-argument configurations of a certain verb according
to their similarity w.r.t. the semantic roles they tend to realise. The general strategy I pursue for this
task is as follows:

1. For each verb v, let fai(v),..., fa,(v) be the verb-argument configurations pertaining to v
which occur in the data

2. create a set of groups G = {¢1,...,gm} of these verb-frame-argument configurations so that
similar configurations are pooled in the same group. In particular, the following conditions must
hold:

e correctness: all configurations in a group must be pairwise similar: if fax(v) € g; and
fa;(v) € g, then dist(fag(v), fa;(v)) < thrsim, (i.e. if two configurations are in the
same group, then the distance between them must not exceed the similarity threshold)

e completeness: all similar configurations must be grouped together: if
dist(fax(v), fa;(v)) < thrsim, then there must be a group g; so that fax(v) € g; and
fai(v) € g; (i.e. if two configurations are similar, then there must be a group which
contains both configurations)

¢ non-redundancy: the set of groups G' must be non-redundant: if g;, g; € G, then g; Z g;
and g; Z g; (i.e. there must not be a group that is a subset of another group)
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e exhaustive coverage: each configuration fa(v) must be member of at least one group
gi € G.If fag(v) is not similar to any other configuration pertaining to v, then it is
captured by a separate group containing solely this configuration

To retrieve this set of groups, I use a simple inductive approach: I start with the first verb-frame-
argument configuration faq(v) (the order in which the argument configurations are processed is
completely arbitrary) and create a group containing just this configuration. Each of the subsequent
inductive steps processes a further verb-frame-argument configuration fay(v). In particular, it is ex-
amined whether this configuration can be integrated into one or more of the existing groups. To
achieve this, fay(v) is compared to all members of each group. If fay(v) is pairwise similar to all
members of a group g;, then it is integrated into that group. If fay(v) is only similar to some members
of a group g; (but not to all), then a new group is created that contains fay(v) and those configurations
in g; that are similar to it.” If fa(v) is not similar to any other frame-argument configuration, then a
separate group containing just this configuration is created. After all frame-argument configurations
pertaining to the same verb have been processed, a final step checks the resulting groups for subsets:
the groups are compared pairwise; if a group is a subset of another group, then it is deleted.

Let us look at an example that illustrates this approach. Recall the verb-frame-argument configura-
tions pertaining to “break” mentioned above:

o break#subj/subj

break#subj:obj/subj

break#subj:obj/obj

break#subj:obj:pp,with/subj

break#subj:obj:pp,with/obj

break#subj:obj:pp,with/pp.with

In the following, I will demonstrate how the inductive strategy retrieves the frame-argument configu-
ration groups for that verb which I discussed above. The approach starts by creating a group g; that
contains the first configuration break#subj/subj:

g1 = {break#subj/subj}

The next step processes the next configuration, i.e. break#subj:obj/subj. This configuration is com-
pared with the only member of the only existing group g1 (break#subj/subj) They are found not to be
similar. Thus, a new group g- is created to capture break#subj:obj/subj:

g1 = {break#subj/subj}
g2 = {break#subj:obj/subj}

In the next step, break#subj:obj/obj is processed. This configuration is compared with the only mem-
ber of g1, break#subj/subj. As the two configurations are similar, break#subj:obj/obj is integrated

>Note that the mutual similarity of these configurations has been verified already, since they are members of the same
group g;.
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into g;. The comparison of break#subj:obj/obj with the member of g9, break#subj:obj/subj, yields no
similarity. Thus, g» remains unchanged. Altogether, the groups after that step look like this:

g1 = {break#subj/subj, break#subj:obj/obj}
g2 = {break#subj:obj/subj}

The next step processes the configuration break#subj:obj:pp,with/subj. The comparison with the con-
figurations in the two groups yields that it is not similar to any member of g, but similar to the only
member of go. Thus, break#subj:obj:pp,with/subj is integrated into go, while g; remains unchanged:

g1 = {break#subj/subj, break#subj:obj/obj}
g2 = {break#subj:obj/subj, break#subj:obj:pp,with/subj}

The next step deals with break#subj:obj:pp,with/obj. This configuration is similar to all members of
g1 and to no member of g2 so that it is integrated in g7, leaving g2 unchanged:

g1 = {break#subj/subj, break#subj:obj/obj, break#subj:obj:pp,with/obj}
g2 = {break#subj:obj/subj, break#subj:obj:pp,with/subj}

In the last inductive step, break#subj:obj:pp,with/pp.with is processed. This configuration is not
similar to any configuration in g;. Regarding g, we have the slightly more complex case that
break#subj:obj:pp,with/pp.with is not similar to all members, but only to one of them, namely
break#subj:obj/subj. In this case, a new group gs has to be created that comprises the new configura-
tion break#subj:obj:pp,with/pp.with and the similar configuration of go. Hence, the groups resulting
from these induction steps are:

g1 = {break#subj/subj, break#subj:obj/obj, break#subj:obj:pp,with/obj}
g2 = {break#subj:obj/subj, break#subj:obj:pp,with/subj}
g3 = {break#subj:obj/subj, break#subj:obj:pp,with/pp.with}

The final check for subsets yields that none of these groups is a subset of another one so that none of
them has to be deleted.

Looking at these groups (which are identical to the groups presented at the beginning of section 6.2),
it is easy to see that they correspond to different thematic roles: g; corresponds to the Patient, g to
the Agent, and g3 to the Instrument. Furthermore, this example illustrates that a verb-frame-argument
configuration may be a member of more than one group. In this case, break#subj:obj/subj is in g9 and
in g3. This reflects the observation discussed above that this configuration might express an Agent or
an Instrument.

For the sake of better readability, I will henceforth use a more concise notation for argument groups.
Technically, such groups contain verb-frame-argument configurations. However, since all configura-
tions in a group pertain to the same verb, I will mention this verb as a parameter of the group identifier
and denote the group members by the bare frame-argument configurations. For example, the group
g3 above is written as

g3(break) = {subj:obj/subj, subj:obj:pp,with/pp.with}

One issue which I have not addressed so far is how to fix the similarity threshold that determines
whether two verb-frame-argument configurations are similar or not. Several possibilities to define
a threshold are conceivable. As noted above, the information radius, which I employ as distance
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measure, ranges from O (identity of the compared distributions) to 2log 2 (maximal distance). Any
value between these two limits could serve as a threshold. Furthermore, one could either use a global
threshold, i.e. the same threshold for all verbs, or use different thresholds for the frame-argument
configurations pertaining to different verbs. For simplicity, I decided to use a global threshold and to
determine its value empirically. More precisely, I employ the mean of all distances which are calcu-
lated for the grouping task as the similarity threshold. This mean is obtained by a preprocessing step:
For all verbs v, the distance between each possible pair of frame-argument configurations pertaining
to v is computed, and the arithmetic mean of all these distances is calculated. This arithmetic mean is
adopted as the threshold: If a distance between two verb-frame-argument configuration is below this
value, then these configurations are considered to be similar.

6.2.2 A Linguistic Interpretation of the LSC Model

Before I report results of applying the approach described above, I would like to outline a possible
linguistic interpretation of this approach and the LSC model in general. (Rooth et al. 1998) them-
selves offer a linguistic interpretation of their approach in the context of theories of lexical semantic
representations. In short, they suggest that the labels of LSC classes c¢; should be used as types of
verb—argument relations in semantic representations of verbs (cf. (Rooth et al. 1998, p. 112-116)).
In contrast, the interpretation I will sketch in this section aims to relate my grouping approach to a
linguistic theory of thematic roles.

In general, a latent semantic class models a certain semantic relationship between verbs and nouns.
We have seen various classes where this relationship corresponds to a specific thematic role (often
connected with a certain semantic domain). Unsurprisingly, not all classes exhibit a neat correspon-
dence with a single thematic role. Often the kind of semantic relation captured by a class is not
immediately obvious. However, in some cases such a relation resembles another theoretic construct
related to thematic roles, which I described in section 2.1.3: a proto role entailment a la Dowty. For
example, class cig (displayed in figure 6.2 on page 157) cannot be associated with a specific role.
The verb-frame-argument configurations express different roles (e.g. put#subj:pp.on/pp.on2 a Goal,
sit#subj:pp.on/pp.on2 a Location, or hit#subj:obj/obj2 a Patient). However, the verb—noun relations
represented in that class commonly imply that the Proto-Patient entailment “stationary relative to
movement of another participant” holds for the noun arguments.

The finding that latent semantic classes may correspond to proto role entailments leads to the lin-
guistic interpretation I suggest here. Actually, there is a striking analogy between an LSC model and
Dowty’s theory of thematic roles. This theory states that roles are no discrete categories, but prototyp-
ical concepts, and that arguments exhibit a degreed association to different role types. In particular,
the proto roles P-Agent and P-Patient are each characterised by a set of proto entailments. In a certain
sentence, the argument that meets the most P-Agent entailments is the P-Agent, and the argument
that meets the most P-Patient entailments is the P-Patient. Thus, an argument that represents a certain
role does not have to meet all entailments corresponding to that role. Rather, the fulfilment or non-
fulfilment of an entailment by an argument provides evidence for or against the possibility that this
argument represents the role corresponding to that entailment. The cumulative evidence regarding
all entailments determines the role which an argument expresses. Moreover, Dowty explicitly leaves
open the possibility that the individual entailments have different weights so that an entailment with
a higher weight provides more evidence for the corresponding role than an entailment with a lower
weight.
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These considerations lead to the idea that, in the broadest sense, an LSC model can be regarded
as a probabilistic implementation of Dowty’s theory: We have seen that latent semantic classes can
be viewed as corresponding to proto role entailments (or entire roles). Therefore, analogously to
Dowty’s approach where the fulfilment of entailments provides cumulative evidence for the role of an
argument, one can say that the profile of membership in latent semantic classes provides cumulative
evidence for the role which an argument expresses. (Here, argument means a frame-argument con-
figuration, not an individual complement in a particular sentence.®) In the following, I explicate this
analogy in more detail.

Basically, the collection of classes in the LSC model corresponds to the collection of proto role en-
tailments in Dowty’s theory. Within these collections, the function of an individual class mirrors the
function of an individual entailment. This does not mean that the verb—noun relation which is captured
by a certain class can always be interpreted in terms of an entailment like those proposed by Dowty.’
Some classes correspond to such entailments, some classes correspond to entire roles, and for some
classes, there is no straightforward interpretation related to thematic roles at all. However, like proto
role entailments, latent semantic classes can be viewed as properties which, in total, provide the infor-
mation that can be utilised to determine the role expressed by a certain frame-argument configuration
of a certain verb. In Dowty’s approach, this information comprises the pattern of fulfilment/non-
fulfilment of the individual proto entailments. In the LSC approach, this information is the degreed
membership profile of the respective verb-frame-argument configuration fa(v). As described in the
previous subsection, this profile is modelled by the distribution p(c;|fa(v)). This distribution is com-
puted by equation (6.9), repeated here:

p(fa(v)|ei)p(c:) (6.14)

plalfa(v) = 5=~ p(fa()le;)p(cy)

In its basic form, Dowty’s theory is discrete in the sense that an entailment is either fulfilled or not
fulfilled by the argument in question. In contrast, the LSC approach is statistical; instead of the binary
fulfilment vs. non-fulfilment classification it estimates a probability, namely p(c;|fa(v)). However,
Dowty explicitly acknowledges that the kind of entailments he assumes do not have entirely clear-cut
boundaries and that they may hold to differing degrees, depending on the situation and their partici-
pants denoted in the sentence in question. The work I present in this thesis is based on the assumption
that probabilistic models are suitable to account just for such degreed phenomena. Moreover, as noted
above, Dowty states that it might be more appropriate to associate different weightings to different
entailments. He considers both a priori weightings of entailments regardless of a particular verb
(cf. (Dowty 1991, p. 574)) and weightings which depend on the examined verb or verb class (cf.
(Dowty 1991, p. 597)). Both kinds of weighting are reflected in the numerator in equation (6.14):
p(c;) mirrors an a priori weight, p(fa(v)|c;) a verb-dependent weight.

The major structural difference between Dowty’s theory and the argument grouping approach I pro-
pose here is the way in which the profiles of entailment fulfilment or class membership, respectively,

In Dowty’s theory, the fulfilment of an entailment by an argument must follow from the verb’s meaning, and not be
a consequence of other coincidental factors, e.g. the meaning of a complement or the context. For example, for “kill”, the
subject does not meet the P-Agent entailment of volitional involvement, nor the entailment of sentience (an illness also can
kill someone), although it is straightforward to think of concrete sentences where the subject is a volitional and sentient
actor. However, for “murder”, these entailments are met by the subject—this is implied by the meaning of the verb. Thus,
entailments are meant to be valid or not valid for frame-argument configurations, irrespective of individual arguments in
concrete sentences.

"However, note that Dowty does not claim that the catalogue of entailments he proposes is exhaustive.
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are employed within the overall linking approach. This difference is connected with the differing
ultimate goals of the two approaches. Like all linguistic linking theories, Dowty’s approach aims at
explaining the correspondence between syntactic arguments and their underlying thematic roles in
an individual sentence. Therefore, the entailment profiles of all arguments in this sentence are com-
pared to each other; the realisation of the Agent as subject and the Patient as object is explained by
the fact that the former argument meets the most P-Agent entailments and the latter one meets the
most P-Patient entailments. In contrast to this explanative theory, the linking strategy described in
this chapter has the constructive function of sorting data items according to their underlying roles so
that overall statistics about the semantic preferences for these roles can be collected. Specifically, the
argument grouping approach does not compare the class membership profiles of the arguments in an
individual sentence, but the overall membership profiles of different frame-argument configurations
of a verb regarding the complete training corpus. Another difference is that this stage of the linking
strategy does not have access to information about which class corresponds to which role or role
entailment. Frame-argument configurations with similar profiles are collected in one group, since it
is expected that these similar profiles indicate the same thematic role. However, the question which
role is indicated by these profiles is not addressed here. This is determined in the second stage of the
linking strategy, which I will describe in section 6.3. In contrast, in Dowty’s theory each entailment
is explicitly associated with one particular role (Agent or Patient) and the fulfilment of an entailment
is understood to provide evidence for the associated role.

In summary, Dowty’s proto entailment approach and the LSC approach exhibit intriguing analogies
concerning their design, but differ significantly w.r.t. their function within the complete theoretical or
technical apparatus they are part of. Therefore, interpreting the LSC approach in terms of Dowty’s
approach is manifest, but not compulsory.

6.2.3 Experiments

To test the argument grouping method proposed here, I applied this approach as described in section
6.2.1 to the LSC model I estimated from the training data.® A manual inspection of the results shows
that this approach is effective. However, this inspection also reveals shortcomings which motivate a
simple refinement of the approach. To give a general impression of the acquired results, I show some
argument groups retrieved in the experiment which exemplify the overall suitability as well as the
limitations of the strategy. I start with the verb that I use to illustrate the different stages of my linking
approach in this chapter, namely “break”. The following groups have been acquired for that verb:

break: subj:obj/obj2, subj/subijl
break: subj:pp.into/subjl, subj:obj/subjl, subj/subjl

break: subj:pp.into/pp.into2, subj/subjl

Interestingly, this result differs from the illustrative (and artificial) examples for “break” in this chapter
(which I nonetheless will continue to use due to their clarity). First of all, none of the groups contains
a with-PP. This PP occurs as argument of “break™ at such a low frequency that it is discarded when

8The similarity threshold, i.e. the mean of all distances of pairwise compared frame-argument configurations, was com-
puted as 1.37.
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training the LSC model. In exchange, an into-PP co-occurs with “break” to a significant extent (as part
of the subj:pp.into frame). The first group appropriately captures the causative-inchoative alternation
(the object of the transitive variant corresponds with the subject of the intransitive variant). The second
group assembles the subjects of all argument frames co-occurring with “break” in the LSC model. The
third group contains the into-PP and the intransitive subject. Intuitively, the first group embodies the
Patient, the second one the Agent, and the third one the Goal. However, assuming this role assignment
it is linguistically inadequate that the intransitive subject belongs to the second and the third group,
because this frame-argument configuration neither realises an Agent (except for elliptic constructions)
nor a Goal, but a Patient of “break”. Apparently, the reason for including break#subj/subjl in all
groups is that virtually any kind of entity might break. Hence, the corresponding slot is filled, among
others, by nouns which denote typical Agents (e.g. “doctor” “Macedonian”) or Goals (e.g. “box”,
“country”, “window”). Therefore, it is not surprising that this verb-frame-argument configuration is
classified as similar to those configurations expressing the Agent or the Goal, respectively. This is
an example of a general problem of my linking strategy: frame-argument configurations realising
different roles may nevertheless be filled with similar nouns so that they are grouped together.

For other verbs, the acquired groups completely conform to linguistic intuition. For example, in many
cases the approach is able to recognise whether verbs do or do not undergo the causative/inchoative
alternation and retrieve appropriate groups. For example, the groups for “decrease” reflect this alter-
nation:

decrease: subj:obj/subjl

decrease: subj:obj/obj2, subj/subjl

In contrast, the groups for “eat” indicate that the intransitive variant emerges from dropping the ob-
ject of the transitive variant so that the subjects of the two variants are correspondent (an additional
intransitive frame containing an adverb is also classified correctly):

eat: subj:obj/subjl, subj/subjl, subj:adv/subjl

eat: subj:obj/obj2

Typically, the groups yielded for a given verb capture the alternations which that verb undergoes, but
also contain some noise. For example, “load” receives, among others, the following groups:

load: subj:obj:pp.with/subjl, subj:obj:pp.onto/subjl,
subj:obj:pp.into/subjl, subj:obj/subjl

load: subj:obj:pp.with/obj2, subj:obj:pp.into/pp.into3,
subj:obj/obj2

load: subj:obj:pp.with/pp.with3, subj:obj:pp.into/obj2,
subj:obj/obj2, subj/subjl

load: subj:obj:pp.onto/pp.onto3, subj:obj:pp.onto/obj2,
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subj:obj:pp.into/pp.into3, subj:obj:pp.into/obj2,
subj:obj/obj2

The first group gathers the subjects of all frames. The second and the third group reflect the spray/load
alternation (cf. examples (2.20) and (2.21) on page 22): they appropriately model the fact that the
object in a frame containing an info-PP corresponds to a with-PP and, conversely, the object in a
frame containing a with-PP corresponds to an info-PP. Thus, for the alternation

(6.15)

a. Bill loaded the books into the container.

b. Bill loaded the container with the books.

the second group represents “the container”, while the third one represents “the books”. The fourth
group is partly inadequate. It correctly encodes the correspondence between an info-PP and an onto-
PP. However, it also says that these PPs correspond with the direct object in their own frames. This
would mean that two syntactic arguments in a sentence represent the same underlying semantic argu-
ment, which is obviously inaccurate. Overall, these groups are noisy, but not completely arbitrary. It is
not the case that the correct combinations of frame-argument configurations arise by chance, among a
lot of other deliberate wrong combinations. Rather, the grouping tends to be adequate, with a certain
amount of errors. This example also shows that the groups might miss some correspondences. Here,
the groups do not capture the observation that the onto-PP undergoes the same alternation with an
object as the info-PP.

The groups acquired for “fill” demonstrate that the approach is able to capture sophisticated alterna-
tion patterns as well as the fact that one frame-argument configuration possibly can express several
kinds of semantic arguments:

fill: subj:obj:pp.with/subjl, subj:obj/subjl

fill: subj:pp.with/subjl, subj:obj:pp.with/obj2, subj:obj/obj2

fill: subj:pp.with/pp.with2, subj:obj:pp.with/pp.with3,
subj:obj/subjl

fill: subj:obj:pp.with/obj2, subj:obj/subjl
This verb undergoes several overlapping alternations, illustrated below:

(6.16)

a. John filled the tank with water.
b. John filled the tank.

. Water filled the tank.

. The tank filled with water.

e o
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Concerning these sentences, the first group represents “John”, the second group “the tank”, and the
third group “water”. These three groups form a correct and complete model of the alternations shown
in (6.16). In particular, the frame-argument configuration subj:obj/subjl is instantiated by “John”
and “water”. Consequently, this type is member of the first and the third group. The fourth group is
eIroneous.

Sometimes the approach fails to assemble corresponding frame-argument configurations in a single
group, but acquires multiple groups instead (which often overlap). For example, the arguments ex-
pressing the Location of “kneel” are collected in two groups:

kneel: subj:pp.by/pp.by2, subj:pp.beside/pp.beside?

kneel: subj:pp.on/pp.on2, subj:pp.in/pp.in2, subj:pp.by/pp.by2

As we have seen already in the “break” example, it often happens that frame-argument configurations
which realise different roles are grouped together because they are semantically similar. The most ob-
vious cases are comitatives, which are usually expressed by a with-PP, but are semantically equivalent
to the Agent of the respective sentence. Hence, the subject and the with-PP are semantically similar
and included in one group, e.g. for “cooperate’:

cooperate: subj:pp.with/pp.with2, subj:pp.with/subijl,
subj:pp.in/subjl

Source and Goal are often semantically similar as well so that the corresponding PPs are grouped
together, as for “rise”:

rise: subj:pp.to/pp.to2, subj:pp.from:pp.to/pp.to3,
subj:pp.from:pp.to/pp.from2

On the other hand, many groups are inappropriately acquired although their members apparently do
not behave similarly w.r.t. the nouns they take as fillers. For example, “mark™ receives a couple of
groups like

mark: subj:obj:pp.in/pp.in3, subj:obj:pp.in/obj2, subj:obj/obj2,
subj:obj/subjl

where subjects, objects, and PPs are included in one group. Often (as in this case) the reason is that the
nouns that fill these frame-argument configurations exhibit a high semantic variety, denoting humans,
inanimate entities, actions, or abstract notions. It appears that this variety leads to comparably sim-
ilar class distributions of the different frame-argument configurations so that the computed distance
between them is low.

Overall, the results presented here are promising. They suggest that the argument grouping strategy
is suitable for our needs, despite several weaknesses of the kind that any automatic clustering method
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exhibits. One of these shortcomings can easily be eliminated. We have seen examples of groups which
include frame-argument configurations with the same frame (e.g. subj:obj/obj2 and subj:obj/subjl).
As noted, this is inappropriate, since a semantic argument is usually not expressed by multiple syn-
tactic arguments at a time. Therefore, I modified the grouping algorithm by adding the constraint that
two frame-argument configurations with the same frame must not be grouped together.

6.3 Heuristics to Determine Role Types of Argument Groups

In this section, I propose heuristics for assigning thematic role labels to the frame-argument config-
uration groups created as described in the previous section. These heuristics are based on findings
concerning linking captured by the linguistic theories which I described in section 2.1. These find-
ings comprise constraints which restrict the range of frame-argument configurations that may realise
a certain thematic role type. In addition, the rules proposed here reflect to a large extent the possible
syntactic alternations (diathesis alternations) in English. These alternations have been studied in detail
in (Levin 1993). Since I have adopted the inventory of thematic roles of EuroWordNet for my work,
I concentrate on those linguistic facts which are relevant w.r.t. this inventory and the corresponding
definitions of the individual roles (cf. section 2.3.1).

In my work, I will concentrate on four roles: Agent, Patient, Instrument, and Location. Recall that
the Theme role, which is central to the thematic role theory developed by Gruber and Jackendoff
(but whose adequacy is questioned by Dowty) is not part of the EWN inventory. Thus, I will not
address this role type. Furthermore, I will not devise heuristics for several role types occurring in
EWN, namely Source (SOURCE_DIRECTION), Goal (TARGET_DIRECTION), Direction, and Re-
sult. Source and Goal have been largely discussed in the literature that deals with thematic roles.
However, as table 5.1 on page 140 (section 5.4) shows, these roles occur in the gold standard with
a rather low number of items (40 and 68, respectively). This low number of test instances decreases
the reliability of evaluating the learning algorithm’s accuracy of acquiring these roles.” However, as
I will explain below, heuristics to detect Source and Goal would be analogous to those rules which I
use to determine the Location role. This role type is represented in the gold standard by much more
items (220). Therefore, I decided to concentrate on this type as the “locative” role with the most
training instances. The DIRECTION role type in EuroWordNet has been introduced for verb senses
which explicitly involve a direction but where the kind of direction (Source or Goal) is unspecified.
(Alonge 1996) notes that some verbs in Italian (e.g. “correre” = “to run”) have two different meanings
(distinguished by different auxiliary selection) where one involves a directional motion (‘run from/to
a place’) and the other one does not (‘run around’). A DIRECTION pointer to a general locative noun
concept can be used to distinguish these senses. This is a rather idiosyncratic use of a thematic role
relation. Not surprisingly, this role type occurs very infrequently in the gold standard (29 times). The
RESULT role is not defined at all in the relevant EWN document (Alonge 1996). Furthermore, it is
not obvious whether and how the latter two role types could be related to the linguistic theories which
I described in chapter 2. Therefore, I did not take them into account.

In short, the heuristics which I employ to label argument groups with the four above-mentioned role

This shortcoming becomes even more serious if one takes into account that a certain percentage of these test instances
are cases of incorporation, i.e. implicit arguments which are not expressed by syntactic complements. As explained in
section 5.4, such relations cannot be acquired by learning approaches discussed in this thesis. In chapter 7, I will describe
simple heuristics to detect such cases and eliminate them from the gold standard. This further decreases the number of test
items.
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types are based on the following observations:

1. If a sentence contains an Agent, then the Agent is realised as the subject
2. If a Patient is expressed in a transitive sentence, then in general it is expressed as the object

3. A PP expressing an Instrument is usually headed by “with”

LU LTI BT 2

4. Likewise, there are certain prepositions which typically signify a Location, e.g. “in”, “at”, “on”,
“above”, etc.

All these statements refer to syntactic configurations or individual prepositions as signals for certain
role types. This kind of information is available in the verb-frame-argument configurations as encoded
in the training data, and thus in the argument groups to be labelled. Other findings concerning the
distinction of thematic roles refer to the semantics of the complements which realise a certain role.
Such observations are employed in stage 3 of my linking strategy (cf. section 6.5). As noted at the
beginning of this chapter, the heuristic rules I will present in this section are not always able to assign
one unique role type to an argument group; sometimes multiple role types are assigned. The reason
for this is that the kind of information available at this point (syntactic and prepositional) is not
sufficient to completely determine the appropriate role. The semantic filters employed is stage 3 have
the function to indirectly resolve the remaining “role ambiguity”.

Note that terms like “in general”, “usually”, and “typically” used in the enumeration of observations
above indicate that these observations (except from 1.) describe tendencies rather than regularities
without exceptions. Indeed, there are a couple of transitive verbs where the subject is a Patient; also
there are with-PPs that do not express an Instrument or in-PPs which do not realise a Location. This
is the reason why linking rules depending on these statements are necessarily heuristic in nature.
Therefore, applying such rules to determine thematic roles of argument groups brings about a certain
amount of noise, i.e. a certain amount of data items represented by the argument groups for which the
role assignment is erroneous. The semantic filters help to eliminate such kind of noise as well.

In the following subsections, I turn to each of the four role types that I investigate in detail. I will
describe how heuristics for role labelling can be developed from the linguistic findings summarised
above and address their limitations. At the end of this section, I will put these heuristics together
to a complete sequence of rules which I use in my implementation and discuss some general points
regarding this stage of the linking approach.

6.3.1 Agent

All three theories of semantic roles described in section 2.1 state that if an Agent is realised in a
sentence, then it is expressed as the subject. Regarding the task of assigning role types to argument
groups, this fact can be translated into the following rule:

Agent heuristic: (version 1)
An argument group that does not contain a subject cannot be labelled as Agent.

This is the only rule presented here that has the status of a fact rather than a default.

173



Of course, the reverse is not true: Not every group containing a subject can properly be classified
as Agent. Recall the example of the groups for “break” in section 6.2 (page 165). All three groups
contain at least one frame-argument configuration which represents a subject. However, only one of
them, g0, can appropriately be labelled as Agent, while g; corresponds to the Patient and g3 to the
Instrument. As we will see below, I employ a syntactic heuristic to determine whether an argument
group represents the Patient role. In addition, I propose a semantic filter to distinguish Agents from
Instruments and Locations at a later stage. Therefore, the negative rule above can be transformed into
a positive heuristic:

Agent heuristic: (version 2)
An argument group that contains a subject is labelled as Agent unless it is labelled as
Patient due to other heuristics.

6.3.2 Patient

Before explaining the heuristics I employ for labelling argument groups as Patient, I have to make a
preliminary remark. The Patient role differs from the other role types we discuss in a crucial respect.
As we will see in section 6.5, the other roles can be associated with quite homogeneous coarse-grained
selectional preferences which are verb-independent. This means that the noun concepts which usually
are involved in role relations of a certain type are subsumed by a few general concepts. For example,
the AGENT relation typically is connected with noun concepts subsumed by <life_form>, while the
INSTRUMENT relation is typically tied to noun concepts that are hyponyms of <inanimate_object>>.
As these general semantic preferences of different role types are disjunct, they can be used as semantic
filters to distinguish role types. However, the PATIENT relation does not have such homogeneous
semantic preferences. A Patient can be a life form as well as an inanimate object. For this reason,
it is not possible to employ semantic filters as will be introduced in section 6.5 to distinguish the
Patient role from other roles. Hence, within my linking strategy, syntactic heuristics as described in
this section are the only way to discover Patients. Fortunately, a rather simple rule can be applied
to achieve this. In the following pages, I will motivate this rule and investigate to what extent it
is able to cope with several widely discussed linguistic facts. This discussion will be much more
comprehensive then the analogous considerations for the other role types. For the recognition of those
types, syntactic heuristics only perform a more or less rough preselection of noun instances, whereas
the final determination is done by semantic filters. The Patient, in contrast, is determined solely by
the heuristic introduced in this subsection. This requires a more thorough investigation whether it can
adequately fulfil this task.

The general heuristic

(Jackendoff 1990, p. 129) states that if there is a Patient in an English transitive sentence, then it tends
to be realised as the direct object. Essentially, this is also a major consequence of Dowty’s theory
according to which that argument that meets the most P-Patient entailments is realised as object. This
finding is illustrated by our “break” example, where the group that corresponds to the Patient (g1)
is the only one that contains objects. (Dowty 1991, 581) points out that there are a few exceptions,
i.e. transitive verbs where the Patient is expressed as the subject. These verbs include “receive”,

“inherit”, “undergo”, “suffer (from)”, and a couple of others. Dowty emphasises that there is only a
small number of such verbs. Furthermore, he argues that for some of these verbs, historical meanings
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are proved which imply that the subject really is the Agent of the denoted action. For example, beside
the “passive” meaning which is common today, “receive” once also had an “active” sense equivalent
to ‘take or accept something willingly’; likewise, once a possible meaning of “undergo” was ‘submit
oneself to’.

Interestingly, this ambiguity is reflected in the gold standard as well. Several wordnets in
EWN contain a thematic role relation whose English equivalent is <receive#have> AGENT
<recipient#receiver>. This corresponds to an “active” sense of “receive” with a volitional receiver.
Strikingly, one wordnet encoding this relation (the Italian wordnet) as well contains the analogous re-
lation which captures the “passive” sense, i.e. <receive#have> PATIENT <recipient#receiver>. !0
A volitional sense of “receive” and ‘“undergo” is also captured by AGENT relations from
<experience#receive#fundergo> to <recipient#receiver> and <victim> (sic!). Some PATIENT rela-
tions from <receive#have> correspond to the passive (nonvolitional) sense (like the one mentioned
above), e.g. a relation to <bailee>. Other PATIENT relations correspond to the volitional sense, e.g.
from <receive#have> to <prize#faward>. (Here, the received entity is the Patient, not the receiver.)
These examples illustrate that in the gold standard, even for these exceptional verbs, the “active”
sense, which implies the correspondence Agent—subject and Patient—object, is encoded to a certain
extent. Thus, a default rule like the following seems justified:

Patient heuristic: (version 1)
An argument group that contains an object is labelled as Patient.

It turns out that this heuristic (with a minor modification which I will discuss below) is largely suffi-
cient to detect Patients. It might appear surprising that such a simple rule is able to cope with a number
of issues concerning this role type discussed in the literature. In particular, three kinds of syntactic
configuration concerning the linking problem are relevant in this context:

e intransitive sentences
e verbs subcategorising for two objects

e objects which express a role different from the Patient

In the following, I address these points.

Intransitive sentences

One important point is the treatment of intransitive subjects (i.e. the subjects of intransitive sentences).
Examples (6.6 b) and (6.7 b) on page 151 show that the subject of an intransitive sentence may be an
Agent (as with the verb “eat”) or a Patient (as with the verb “close”). As discussed already, examples
(6.6) and (6.7) illustrate that for “eat”, the nouns which are selected as the intransitive subject tend
to correspond to the nouns selected as the transitive subject, while for “close”, the nouns selected
as the intransitive subject tend to correspond to the nouns selected as the object. Hence, in an LSC

'%Tn a few cases, a verb concept and a noun concept are related via two role relations of different type in the gold standard.
Mostly, these different relations originate from different monolingual wordnets. Sometimes, however, one language-specific
wordnet provides two role relations of different type which connect the same verb concept and noun concept.

175



model, eat#subj/subj behaves similarly to eat#subj:obj/subj w.r.t. the pattern of class membership,
while eat#subj:obj/obj exhibits a different class membership profile. As a consequence, grouping the
arguments of “eat” yields a group that contains the intransitive and the transitive subject types, i.e. a
group like

gi(eat) = {subj/subj, subj:obj/subj}

Of course, other frame-argument configurations (e.g. subjects belonging to a subcategorisation frame
with some PP) could belong to such a group as well. The crucial point is that the object type
subj:obj/obj is not part of that group. For the verb “close”, the situation is different: here, the in-
transitive subject behaves similarly to the object w.r.t. the selection of nouns. This means that in an
LSC model, close#subj/subj and close#subj:obj/obj exhibit similar class membership profiles and
thus grouping yields an argument group that contains both types, e.g.

gi(close) = {subj/subj, subj:obj/obj}

It is easy to see that the heuristics mentioned so far are sufficient to assign the correct role types to
the two argument groups: As g;(close) contains an object, the Patient heuristic can be applied to that
group and correctly classifies it as representing the Patient. In contrast, g;(eat) does not involve an
object so that the Patient heuristic does not apply. However, since this group comprises several subject
types, the Agent heuristic is employed classifying it as corresponding to the Agent, which is indeed
the case.

This example demonstrates the benefit of grouping frame-argument configurations for determining
the corresponding thematic roles. Considered in isolation, a frame-argument configuration generally
might express several roles. However, if frame-argument configurations are assembled in role-specific
groups, then the set of possible roles corresponding to one configuration is constrained by the possible
roles corresponding to the other configurations in the group. More precisely, a role that might be
expressed by one frame-argument configuration is excluded if there is another configuration in the
same group that cannot realise that role. Here, the type subj/subj might correspond to the Agent or
the Patient. If this configuration is grouped with an object configuration, then this rules out the Agent
role. If, however, the group to which it belongs does not contain an object (but other subject types),
then classifying that group by the Agent role is an appropriate default choice. The crucial point is that
the combination of frame-argument configurations in a group provides information for determining
the appropriate thematic role which is not available from the single frame-argument configurations
alone.

Unfortunately, this discussion also reveals the limitations of the grouping strategy. Obviously, the
advantage of combining frame-argument configurations can only be effective if there actually are
configurations which constrain the range of possible role types. Regarding the role assignment to
intransitive subjects, it depends on the examined verb whether such constraining frame-argument
configurations are available. More concretely, an intransitive subject is only recognised as Patient if it
is grouped with an object type. This requires that the intransitive frame (where the Patient is realised
as the subject) has a transitive alternation where the Patient is realised as the object. So far, we have
looked at verbs like “break’ and “close” where this is the case. However, other verbs do not show this
alternation. Some verbs which express a Patient as the intransitive subject do not have a correspond-
ing transitive frame.!! (Levin 1993) mentions verb classes which do and verb classes which do not

"'Note that such verbs have to be distinguished from verbs like “receive” or “undergo” mentioned at the beginning of
this subsection. Those verbs are transitive but (nonetheless) express a Patient by the subject.
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exhibit an object of transitive = subject of intransitive alternation. For example, “die” is only used
intransitively, and the subject expresses a Patient.!? For such verbs, the frame-argument configuration
subj/subj cannot be grouped with an object type, since such a type does not exist here. Hence, our
heuristics will fail to assign the Patient role to the group containing the intransitive subject config-
uration. Fortunately, the range of affected verbs seems limited. Levin lists only three (related) verb
classes which solely occur with the intransitive variant of the alternation we are discussing, namely
verbs of appearance (“appear”, “arise”, “awake”, etc.), verbs of disappearance (“die”, “disappear”,
“expire”, etc.), and verbs of occurrence (“ensue”, “eventuate”, “occur”, etc.). Verbs of these classes
realise a Patient as an intransitive subject, but not as an object. However, some of them have an ad-

ditional agentive interpretation, e.g. “appear”, “disappear”, “or “vanish” (at least if their subject is
animate) so that the classification of their intransitive subject as Agent is justified as well. '3

Double object constructions

The next point we have to consider is the possibility that a verb subcategorises for two objects. This
is the case for double object constructions as in

(6.17) Harry gave Sam a book.

Here, the question is whether both objects express a Patient or only one of them (and if so, which
one). To answer this question, we have to look at the different kinds of verbs which occur with two
objects. Levin mentions a number of verb classes with this property. These verb classes can be divided
in two groups, according to the alternations which they typically undergo. The first group comprises
verbs which usually imply a change of possession (in the broadest sense, including e.g. the exchange
of information), e.g. give verbs (“give”, “lend”, “sell”, etc), send verbs (“send”, “mail”, etc.), or verbs
of transfer of a message (“teach”, “tell”, “write”, etc.). These verbs exhibit the dative alternation, i.e.
the object adjacent to the verb alternates with a fo-PP:

(6.18)

a. Bill sold a car to Tom.
b. Bill sold Tom a car.

In this alternation, the first object in b. (“Tom”) corresponds to the fo-PP in a. and denotes the recipient
of the entity that is denoted by the other object in a. and b. (“a car””). Which of these arguments is
a Patient? The linguistic theories described in section 2.1 imply differing views regarding this issue.
According to Dowty’s approach, both arguments meet a couple of P-Patient entailments. The recipient
is stationary relative to another participant of the action and—at least to a certain degree—undergoes
a change of state and is causally affected by another participant. The exchanged entity is causally
affected, in a sense undergoes a change of state (a change of possessor), and, for some verbs, is an
Incremental Theme (e.g. “write a letter”). (Dowty 1991, p. 576) states that two arguments which have
“approximately equal numbers of entailed P-Patient properties” may both be realised as direct objects.

">The gold standard contains the corresponding relation: <die> PATIENT <person>.

3The restriction to animate subjects will be achieved by a semantic filter; cf. section 6.5 below.
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From this point of view, both arguments could be characterised as Patients. Jackendoff analyses such
sentences differently. Example (2.31) on page 26 contains the conceptual structure for sentence (6.17)
above. According to that structure, “Sam” is the Patient (second argument of AFF) as well as the Goal
(argument of TO), while “a book™ is the Theme (first argument of GO). Hence, the two theories agree
in treating the recipient as Patient, but disagree w.r.t. the “Patienthood” of the exchanged entity.

In view of these different analyses, the crucial guide to decide the question is the definition of the
PATIENT relation in EWN. In section 2.3.1, I mentioned that the relation “Y INVOLVED_PATIENT
X” is defined by the test sentence template “(A/An) X is the one/that who/which undergoes the Y.”
As noted, the Theme role is not a part of the EWN inventory. However, in the cases discussed here,
the definition for the Patient clearly holds for the argument that Jackendoff classifies as Theme, i.e.
the entity which is exchanged, since this entity undergoes the exchange action. Furthermore, one
can argue that the target of the exchange act (expressed by a direct object or a to-PP, respectively)
undergoes this act as well, at least to the extent to which the exchange is of relevance for that target.
In this regard, an observation noted by Levin is relevant: The alternation illustrated by (6.18) only is
possible if the recipient denotes an animate being or an institution, as shown in (6.19):

(6.19)

a. Bill sent a package to Tom/London.
b. Bill sent Tom/*London a package.

It appears that this restriction can be understood in terms of affection of the recipient by the event. If
a package is sent to a human (or an organisation), then this is relevant for the target (the recipient).
Hence, the target in a sense undergoes the act of being sent a package. However, if a package is sent
to a certain location (e.g. a city), then this does not significantly affect that location.'* (Indeed, the
target cannot be referred to as the recipient.) Here, it would be inappropriate to say that the target
undergoes the sending action.

Regarding the task of labelling argument groups, it turns out that the Patient heuristic as proposed
above adequately covers the facts I have just discussed. We have seen that both objects in the double
object variant of the dative alternation are properly classified as Patient. This is exactly what the Pa-
tient heuristic does, since it assigns the Patient role to any object. In particular, it does not distinguish
between the two objects in a double object frame. Moreover, it treats the to-PP in an appropriate
manner. This PP expresses the target of the exchange action. As shown above, this target can only
be viewed as a Patient (i.e. as something which undergoes the delivery action) if it also can be ex-
pressed as object, i.e. if the dative alternation is possible. In this case, the respective frame-argument
configurations subj:obj:obj/obj2 and subj:obj:pp.to/pp.to should be member of the same argument
group, which the Patient heuristic labels as Patient. If, however, the dative alternation is not possible,
then the group that contains subj:obj:pp.to/pp.to should not contain subj:obj:obj/obj2 (nor any other
object type) and thus is not classified as Patient.

The other alternation mentioned by Levin that involves a double object construction is the benefactive
alternation. In this alternation, the first object of a double object construction alternates with a for-PP,
and this alternating argument expresses a Beneficiary of an action, as in

14Of course, this does not apply for a metonymic interpretation where the name of a location denotes a group of people or
an organisation, e.g. if “London” refers to a firm’s office in London. In case of such an interpretation, the dative alternation
is possible.

178



(6.20)

a. Martha carved a toy for the baby.
b. Martha carved the baby a toy.

This alternation occurs, broadly speaking, with verbs of creation (e.g. “build”, “design”, “bake”, or
“write”) or get verbs (e.g. “buy”, “catch”, or “pick”). Again, the question here is whether one or
both objects realise a Patient. Following the EWN definition for the PATIENT relation, I think it
is uncontroversial that the non-alternating object (“a toy” in this example) expresses a Patient. This
object expresses the entity which is created or obtained, respectively. One can say that a toy undergoes
the action of being carved as well as a flower undergoes the action of being picked. However, in my
opinion, the alternating object requires different treatment than the alternating object in the dative
alternation. It is rather odd to say that the baby undergoes the action of being carved a toy or the
girlfriend undergoes the action of being picked a flower. Thus, an object that expresses a Beneficiary
of a verb exhibiting the benefactive alternation should not be classified as Patient. One can account
for that by extending the Patient heuristic by a simple exception: If an argument group containing
an object configuration also contains a for-PP configuration, then this group must not be labelled
as Patient. This exception is based on the reasonable assumption that for verbs which undergo the
benefactive alternation, the types subj:obj:obj/obj2 and subj:obj:pp.to/pp.for are grouped together.
Therefore, we have to revise the heuristic accordingly:

Patient heuristic: (version 2)
An argument group that contains an object is labelled as Patient unless it contains a for-
PP.

One might object that the difference in Patienthood of the recipient in the dative alternation and the
beneficiary in the benefactive alternation is rather degreed than categorical. Indeed, my decision to
treat the former as a Patient and the latter not is debatable. However, the general linking approach
I propose is open to other decisions in this respect. If the dative recipient should not be classified
as Patient either, then the heuristic has to be modified in the way that the Patient assignment is also
precluded if the argument group contains a fo-PP. If, on the other hand, the beneficiary of benefactive
verbs should be treated as Patient as well, then version 1 of the Patient heuristic has to be applied
without exceptions.

Locative alternations

Apart from double object constructions, there is a further possibility that two arguments of a verb are
realised as object. Levin discusses several alternations which comprise two subcategorisation patterns
each of which includes an object, but the objects in the different patterns contain different kinds of
participants of the event denoted by the verb. The best-known alternation with these characteristics
is the spray/load alternation, which I have mentioned several times in sections 2.1 and 6.2.3. Many
verbs expressing some kind of putting or covering undergo this alternation. I will discuss it as rep-
resentative of similar cases which Levin subsumes as locative alternations. The arguments I provide
apply analogously to other alternations of that sort.

Consider the following example:
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(6.21)

a. Bill loaded the books onto the truck.
b. Bill loaded the truck with the books.

In terms of Jackendoft’s thematic tier, the object in sentences like (6.21 a.) expresses the Theme (the
entity which is moved), while the object in sentences like (6.21 b.) expresses the Goal of the described
action. Jackendoff and Dowty state that in both cases it is the object that expresses the Patient. Dowty
justifies that claim by a subtle argument based on proto entailments (I sketched that argument in
section 2.1.3). Jackendoff provides a simple test for the Patient role. If the sentence in question can
be paraphrased using the template “What happened / What Y did to NP was...”, then NP represents a
Patient. Applying this test to the sentences in (6.21) yields the following:

(6.22)

a. (1) What Bill did to the books was load them onto the truck.
(i) ?What Bill did to the truck was load the books onto it.

b. (1) What Bill did to the truck was load it with books.
(i) *What Bill did to the books was load the truck with them.

Thus, “the books” is the Patient in (6.21 a.) and “the truck” in (6.21 b.). The essential observation un-
derlying these arguments is that the sentences in (6.21) have a slight difference in meaning. Roughly
speaking, this difference consists in which of the non-agentive participants is “more directly affected”
by the action. In (6.21 a.), it is “the books”, while in (6.21 b.), it is “the truck”. Such subtle meaning
differences are usually not reflected by sense distinctions in (Euro)WordNet. !> Moreover, a thematic
role relation in EWN is a concept-to-concept relation. It is not possible (and not intended) to specify
that a role relation is related to a specific subcategorisation frame of the verb. Therefore, the informa-
tion that “the books™ (or “the truck”, respectively) can only be the Patient of “load” if expressed as
object cannot be encoded in EuroWordNet.

The EWN definition for PATIENT fits for both arguments in question; it is adequate to say that the
books as well as the truck undergo the loading act. Thus, for a verb which exhibits the spray/load
alternation, a PATIENT relation is appropriate to concepts which denote either the “Theme” or the
“Goal” of the action expressed by that verb. Here, again, the Patient heuristic works appropriately. Due
to the alternation, there should be several argument groups which contain an object type: the “Theme”
is represented by a group containing an object and a with-PP, whereas the “Goal” is represented by a
group containing an object and a locative PP. In section 6.2.3, we have seen that these groups really
are acquired. The heuristic classifies both as Patient, which is the desired behaviour.

Levin also mentions verbs related to putting or covering which do not participate in the spray/load
alternation. Some of such verbs only occur with the variant involving a with-PP:

(6.23)

a. *Marc filled water into the bowl.

I5Tf such distinctions were encoded, then, for example, the respective meaning of “load” in (6.21 a.) and (6.21 b.) should
be represented by two different synsets. Actually, this is not the case in WordNet.
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b. Marc filled the bowl with water.

Other verbs only appear with the variant containing a locative PP:

(6.24)

a. Tamara poured water into the bowl.

b. *Tamara poured the bowl with water.

For the former kind of verbs, my linking strategy only classifies the “Goal” (here, “the bowl”) as
Patient; for the latter kind of verbs, only the “Theme” (here, “water”’). One could argue that, according
to the PATIENT criterion of EWN, the other non-subject arguments are Patients as well: The water
undergoes the filling, the bowl undergoes the pouring. The Patient heuristic which I propose does
not recognise these arguments, because they are never realised as object. In this sense, this heuristic
misses some arguments that express a Patient. To capture these arguments, the heuristic would have
to be extended in a way that it also labels an argument group as Patient if it contains a with-PP or
a locative PP. However, this would raise serious problems regarding the distinction between Patients
and other role types. A with-PP is a strong indicator of the Instrument role; likewise, locative PPs
indicate a locative role type. Thus, groups comprising these PPs would have to be classified as Patient
or Instrument (in case of a with-PP) or as Patient or locative role'® (in case of a locative PP), and
semantic filters would be necessary to decide between these alternatives. However, as mentioned at
the beginning of this subsection and as I will show in more detail in section 6.5, the semantic range of
the nouns occurring as Patient overlaps with the semantic ranges of the other role types so that it is not
possible to distinguish the Patient by semantic filters. Therefore, to obtain unique role assignments at
the end of the linking process, I decided to restrict the Patient heuristic to objects.

This restriction is justifiable by linguistic reasons. (Fillmore 1977) addresses the issue of realising
arguments as object or PP, respectively, in terms of saliency (cf. section 2.1.1). His theory states that
the arguments which are most salient in the scene described by a sentence are expressed as subject and
object, while other arguments are realised as PPs (or other constituents). Different verbs put different
participants of an event into the foreground. For example, “fill” emphasises the container (it implies
that the container is full after the event), while “pour” stresses the movement of the liquid. Dowty
and Jackendoff provide analogous (though more sophisticated) considerations within their theories.
Roughly speaking, these considerations justify to solely regard the respective (possible) objects of
the individual verbs as Patients (or, at least, ascribe them a “higher Patienthood”) than the PPs. Thus,
concentrating on the objects is reasonable, since in this way, the “salient” or “primary” Patients can
be discovered.

Interference with other roles

Finally, another issue has to be addressed: Is it possible that other roles are expressed as object? If
this is the case, then the heuristic I propose would wrongly classify such cases as Patient. As we have
seen in section 6.3.1, the Agent does not “compete” with the Patent in this respect, since this role is
always realised as subject. Regarding the remaining roles, I will turn to that question in the respective
sections 6.3.3 and 6.3.4.

15T will address the issue of distinguishing locative roles (Location, Source, or Goal) in section 6.3.4.
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6.3.3 Instrument

During the current discussion, we have seen various examples in which the Instrument is realised
either as the subject or as a with-PP, as in

(6.25)

a. David broke the window with the hammer.

b. The hammer broke the window.

Levin refers to this pattern as the Instrument subject alternation. She notes that not all kinds of
Instruments can be expressed as subject. More precisely, there is a distinction between intermediary
and enabling/facilitating instruments. Only the former kind can appear in the subject position:

(6.26)

a. The crane loaded the truck. (intermediary Instrument)

b. *The pitchfork loaded the truck. (enabling/facilitating Instrument)

Moreover, there are verbs that only select enabling/facilitating Instruments, e.g. “eat” or “see”:

(6.27)

a. Doug ate the ice cream with a spoon.

b. *The spoon ate the ice cream. (enabling/facilitating Instrument)

All these cases have in common that a with-PP signals an Instrument. This motivates a preliminary
formulation of a heuristic for labelling argument groups that express an Instrument:

Instrument heuristic: (version 1)
An argument group that contains a with-PP is labelled as Instrument.

In a sense, this is the core of the Instrument heuristic. However, this rule requires an extension,
which concerns the subject. As the examples under (6.26) illustrate, a verb might exhibit a difference
between those Instruments which are realised as a subject and those Instruments which are expressed
by a with-PP. If this difference is (quantitatively) significant, then it might happen that the with-PP
type and the corresponding subject type are not members of the same argument group. If this is the
case, however, then the heuristic stated above will not capture those Instrument instances which are
expressed as subject. To overcome that shortcoming, I revise the Instrument heuristic as follows:

Instrument heuristic: (version 2)
An argument group that contains a with-PP or a subject is labelled as Instrument.
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In this way, Instruments at the subject position are captured even if the corresponding frame-argument
configuration is not in a group that also contains a with-PP. An obvious objection to this extension is
that it is too permissive. If any subject type is classified as Instrument, then those subjects that realise
a different role are misclassified. In particular, since Agents are always expressed as subject, all argu-
ment groups that represent an Agent misleadingly receive the Instrument label. Actually, the problem
is that the syntactic information encoded in argument groups is not sufficient to distinguish Agents
and Instruments. However, as noted already, semantic criteria are able to perform this distinction.
Therefore, the solution of this problem is to assign both role types Agent and Instrument to groups
that contain a subject and to leave the final discrimination to the semantic filters.

It is important to note that the presence of the with-PP type in an argument group does not exclude
the possibility that this group represents an Agent. I emphasise this point because there is a manifest
consideration implying the contrary: As the Agent is always realised as the subject, an argument group
which contains a subject and a with-PP cannot correspond to the Agent role. Therefore, it would be
adequate not to assign the Agent, but only the Instrument label to such a group. Unfortunately, that
would yield inappropriate results. Although a with-PP never realises an Agent immediately, it is quite
common that it expresses an argument which is of the same kind as the Agent. This phenomenon is
closely related to an alternation which Levin calls the simple reciprocal alternation for intransitive
verbs. Consider the following example:

(6.28)

a. Brenda cooperated with Molly.
b. Brenda and Molly cooperated.

Here, (6.28 a.) contains a subject and a PP, whereas in (6.28 b.), both arguments are coordinated and
appear in the subject position. In both variants, the subject expresses the Agent role. This alternation
makes overt the fact that for certain verb classes (e.g. correspond verbs, meet verbs, talk verbs, or
amalgamate verbs), a PP which usually is headed by “with”!” expresses an argument that also could
occur at the subject position, where in many cases it corresponds to an Agent. For such verbs, it
is likely to obtain an argument group that contains the intransitive subject as well as the with-PP
type. It is inadequate to classify these groups solely as Instrument and exclude the assignment of the
Agent role, which often would be the correct role type. Therefore, my strategy invariably classifies an
argument group containing a subject and a with-PP as both Agent and Instrument and leaves the final
decision on the correct role to the semantic filters.

Semantic filters are also necessary to eliminate noise. In many cases, a with-PP neither expresses an
Instrument nor an argument that is coequal to the Agent, e.g. in

(6.29) The vase broke with a loud bang.

Such cases can only be eliminated by semantic filters.

To complete the discussion of the Instrument heuristic, I will shortly consider the possibility that
other argument slots apart from the subject and the with-PP could express an Instrument. Two kinds

17 A few verbs exhibit the described behaviour involving other prepositions, e.g. “to” (“join”) or “from” (“divorce™).
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of arguments have to be considered: objects and PPs headed by a preposition different from “with”.
Concerning the former, it is a linguistic finding that an Instrument is normally not realised by an
object. (Jackendoff 1990, p. 259) explicitly excludes the Instrument role in that part of his linking
theory which is concerned with NP complements, i.e. subjects and objects. (He analyses instrumental
subjects as in (6.25 b.) as inanimate Agents.) He mentions one exceptional case of a verb whose object
expresses an Instrument, namely “use”. Nevertheless, Levin lists a number of verbs where the object
and a with-PP alternate, as in

(6.30)

a. I mixed the sugar with the butter.

b. I mixed the sugar and the butter.

This is the transitive variant of the reciprocal alternation illustrated above by example (6.28). Here,
the two arguments expressed by the object and the with-PP as in (6.30 a.) can be coordinated and both
realised as the object, as in (6.30 b.). Furthermore, both arguments express Patients, not Instruments.
Regarding the grouping of frame-argument configurations, this alternation is expected to result in a
group containing the object and the with-PP type. This group would be labelled as Patient according
to the Patient heuristic and as Instrument according to the Instrument heuristic. However, in this case
only the Patient classification is correct, since an Instrument generally is not expressed by an object.
Therefore, the Instrument heuristic has to be modified to prevent classifying a group as Instrument if
it contains an object:

Instrument heuristic: (version 3)
An argument group that contains a with-PP or a subject is labelled as Instrument, unless
it contains an object.

Finally, I have to address the issue whether an Instrument can be expressed by a PP not headed by
“with”. In fact, there are some alternative prepositions which come into question. (Gruber 1965, p.
139) notes that a PP headed by “by” or “by means of” can express an abstract Instrument, as in

(6.31) Bill turned John into a pumpkin by magic.

Unfortunately, “by” is ambiguous. Apart from an instrumental reading, a by-PP in an active sentence
can express other things, e.g. local proximity (“stand by me”) or the quantity of a degree (“increase
by 5 per cent”). To decide whether it is suitable to employ this preposition as Instrument marker,
I manually examined the argument groups containing a by-PP which I acquired from the training
corpus (cf. section 6.2.3). The result was that such groups existed for 16 verbs. For 4 verbs, these
groups represented an (abstract) Instrument. This means that firstly, a by-PP complement is rare, and
secondly, it is a bad predictor for the Instrument role. I obtained similar findings for the preposition
“through”, which might also signal an abstract instrument, but is used to indicate a path in most cases.
Therefore, I did not take prepositions other than “with” into account to detect Instruments.
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6.3.4 Location

This subsection addresses the Location role. This role is closely related to the widely discussed role
types Source and Goal. All three types are concerned with locative categories; therefore, I will refer
to them as locative role types. Their commonality as well as their differences can be easily revealed
by comparing the definitions in EWN mentioned in section 2.3.1. A LOCATION relation from verb
Y to noun X in EWN means: “(A/An) X is the place where Ying happens / one Ys.” The analogous
definition of the SOURCE_DIRECTION pointer is: “(A/An) X is the place from which Ying happens
/ one Ys.”, whereas the TARGET_DIRECTION (corresponding to the Goal) is characterised by:
“(A/An) X is the place to which Ying happens / one Ys.” In other words, Source and Goal specify a
place where the action specified by the verb starts or where it ends, respectively. Furthermore, these
definitions presuppose that not the complete action takes place at that location. This implies that this
action involves a kind of motion. Note that the term “the place” in these definitions restricts the two
role types to their primary locative domain. This means that verbs describing an abstract motion such
as a change of possession (which does not necessarily imply a motion in space) are not supposed
to select a Source or a Goal. This differs from analyses in (Gruber 1965) and (Jackendoff 1990)
(cf. section 2.1.2). Following them, e.g. “sell” has a Source (the seller) and a Goal (the buyer). In
general, these participants of the denoted action are captured in EWN by the Agent and Patient role,
respectively.

In contrast to Source and Goal, the Location role indicates a place where typically the complete
action denoted by the verb happens. This role type is not restricted to verbs denoting motion. Stative
verbs involve a Location as well. For motion verbs, the Location delimits the space within which the
denoted action takes place. Beside these differences, Location, Source, and Goal specify a location
where an action (partly or completely) happens. Hence, it is not surprising that the linguistic means to
express them are similar and overlapping to a large extent. Therefore, the following paragraphs, while
focusing on Location, will also include aspects concerning Source and Goal. However, I will not
discuss the latter two role types systematically. The main reason for this is that they are not included
in the evaluation described in chapter 7. At the beginning of section 6.3, I have justified this exclusion
by practical shortcomings of the gold standard. This subsection will show that Source and Goal would
have to be treated in an analogous way as the Location role. On the other hand, we will see that it is
very hard to distinguish them, in particular Location and Goal.

Locative role types are usually expressed by PPs which are headed by certain prepositions. Unlike for
the Instrument role, there are multiple prepositions that indicate a locative role. In particular, preposi-
tions used to express a Location include “in”, “at”, “on”, “under”, “above”, or “around”. In contrast,
typical prepositions that signal a Goal are “to”, “into”, or “onto”. A Source is usually indicated by
“from”, but also by “out of” or “off of”. Typically, these roles are exemplified in the literature by

sentences like

LIS LR INT3

(6.32) Mare travelled from Augsburg to Cologne in a comfortable train.
where “from Augsburg” denotes the Source, “to Cologne” the Goal, and “in a comfortable train” the
Location.

This suggests the following heuristic to detect the Location role:
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Location heuristic: (version 1)
An argument group that contains a PP headed by a locational preposition (“in”, “at”,
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on”, “under”, “above”, “around”,...) is labelled as Location.

In principle, analogous heuristics (including the appropriate prepositions) can be formulated for
Source and Goal.

Not surprisingly, as for other role types, certain linguistic facts complicate the situation. One obvious
fact is that the PPs mentioned might represent other arguments than a Location:

(6.33) The package will be delivered in two weeks.
(6.34) This rule does not work in many cases.

(6.35) We have to address this issue in a certain way.
(6.36) The workshop participants had lunch at 2 p.m.
(6.37) He went on a long journey.

(6.38) The baby weighs over seven pounds.

(6.39) Lots of assistants work under horrible conditions.
Note that this also holds for prepositions used to express a Source or a Goal:

(6.40) Several hundred people died from SARS.

(6.41) The vase broke into a thousand pieces.

It would take us too far to discuss the nature of non-locative entities which may co-occur with a
locative preposition.'® The crucial point is that, again, semantic filters can be employed to recognise
locative PPs which really express some kind of locative entity. I will describe the filters that I use for
this in section 6.5.

However, there is a problem which cannot be solved by semantic filters: the distinction between
Location and Goal can be difficult. Actually, this problem does not arise for my practical work, since
I do not take Source and Goal into account. Nevertheless, since this decision has been made for
purely pragmatic reasons concerning the available resources, I mention that issue here. Gruber and
Jackendoff point out that for motion verbs, locative PPs may be ambiguous regarding whether they
express a Goal or a Location. For example, in

(6.42) The ball rolled behind the house.

8For example, (Lakoff & Johnson 1980) offer a theory that explains such observations in terms of metaphor.
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“behind the house” may express the target of the rolling event or delimit the place where the com-
plete event happens. This ambiguity occurs with many locative prepositions, such as “behind”, “in
front of”, “above”, or “under”. Some prepositions are not ambiguous in this way: “in”” and “on” indi-
cate a Location, whereas their counterparts “into”” and “onto” signal a Goal. Thus, one could formu-
late heuristics that label argument groups containing one of the former two prepositions as Location
and argument groups containing one of the latter two as Goal. However, if an argument group only
contains ambiguous locative prepositions, it is not obvious which role should be assigned. Several
strategies are imaginable and justifiable to cope with these cases. One could assign such groups the
Location role, because the Goal only occurs with motion verbs, while the Location is not restricted to
that verb class. Or one could label them as Goal, because a Location does not belong to the argument
structure of most verbs, but rather has the function of a restrictive modifier of the denoted event (cf.
the analyses in (Jackendoff 1990, p. 72)). Or one could treat motion verbs and other verbs differently
by choosing Goal for the former and Location for the latter. This, however, would raise the problem
of automatically recognising motion verbs. Obviously, semantic filters are not helpful to distinguish
the two role types, since both of them select locative entities, i.e. entities of the same semantic sort.
Anyway, a heuristic solution of that problem is possible. However, since I do not take the Goal into
account for independent reasons, I do not have to decide which alternative to pursue.

There is a further subtle differentiation which is made in Jackendoff’s theory of semantic structures.
He distinguishes the major semantic categories Place and Path. These categories are illustrated in the
following examples:

(6.43)

a. The plane flew around over the city.

b. The plane flew over the city towards the mountains.

In (6.43 a.), “over the city” delimits the place where the flying event happened. (6.43 b.) implies a
directional flying motion, and “over the city” denotes the path of that motion. Again, prepositions
like “over” are ambiguous w.r.t. that differentiation. I decided to regard both cases as expressing a
Location, because in my view, both meet the EWN definition of Location (although the expression of
a place is more “prototypical” in this respect than the expression of a path). This decision affects the
set of prepositions to be included in the Location heuristic. For example, “through” expresses a path,
but not a place. As we will see below, I included this preposition in the final version of the heuristic.

As for the Instrument role, I have to address the question whether a Location can be also expressed
by the subject or the object of a verb, rather than a PP complement. Concerning the subject, some of
the alternations presented by Levin involve a correspondence between a locative PP of one syntactic
variant and the subject of the other variant. One of these is the swarm alternation, illustrated by (6.44):

(6.44)

a. Bees are swarming in the garden.

b. The garden is swarming with bees.

This alternation holds for a number of verb classes, e.g. for verbs of emission of light, sound, or
substance, or for swarm verbs. Another alternation, exhibited by a rather small verb class called fit
verbs, is shown in (6.45):
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(6.45)

a. We sleep five people in each room.

b. Each room sleeps five people.

If such an alternation is reflected by the data pertaining to a particular verb, then subject and locative
PP will be in the same argument group and the Location heuristic will label this group as Location.
However, such a group is also labelled as Agent due to the Agent heuristic. This is analogous to am-
biguous groups w.r.t. the distinction between Agent and Instrument. As for that distinction, semantic
filters are able to distinguish between Agent and Location. However, the situation is different for the
distinction of Instrument and Location. We will see in section 6.5 that it is virtually not feasible to
discriminate these two roles by semantic filters. The reason for this is that many entities can be re-
ferred to as Instrument or as Location. For example, a chair can be viewed as an instrumentality (e.g.
for decorating rooms or, sometimes, for breaking windows) or as a Location where a person sits or a
thing rests on. Therefore, we have to formulate the heuristics in a way that an argument group is not
assigned both the Instrument and the Location type. To achieve this, I revise the Instrument heuristic
in the following way:

Instrument heuristic: (version 4)

An argument group that contains a with-PP is labelled as Instrument, unless it contains an
object. In addition, an argument group that contains a subject is labelled as Instrument,
unless it contains an object or a locational PP.

This refinement has the effect that the classification of an argument group as Instrument due to a
subject is blocked if this group also contains a locative PP (which triggers the assignment of the
Location type). Note that the above formulation of the rule does not impose that restriction on a
group containing a with-PP. Levin does not mention any alternation between a with-PP and a locative
PP. Therefore, these PPs should not occur in the same argument group so that a conflict should not
arise. In case a with-PP and a locative PP do co-occur in a group, there is an erroneous grouping. In
such a case, I allow a simultaneous labelling of this group as Instrument and Location, because there
is no obvious way to decide which of these roles would be more appropriate.

There is also an alternation between a locative PP and the object. This alternation, called the preposi-
tion drop alternation, involves a PP expressing a path (cf. (6.46)) or a Source (cf. (6.47)):

(6.46)
a. They skated along the canals.
b. They skated the canals.

(6.47)
a. They escaped from the prison.
b. They escaped the prison.
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Again, if this alternation occurs significantly for the verb under examination, then argument groups are
built which contain the object and the locative PP. The Location heuristic in the above-mentioned ver-
sion (or an analogous Source heuristic, respectively) would label such a group as Location (Source).
And again, as above, this role assignment would “compete” with a different role assignment due to
another heuristic, in this case the Patient heuristic. But unfortunately, semantic filters are not capable
of distinguishing Patients and locative roles, which is the consequence of the broad semantic variety
of nouns that occur as Patients. In fact, locations can be Patients, as in

(6.48) The caretaker swept the street.

(6.49) Mary decorated the room.

In these examples, the objects denote locations, but the thematic role they express in first place is the
Patient. Of course, they can also be regarded as expressing both Patient and Location. In Jackendoff’s
theory, the former role is part of the action tier, while the latter one rather corresponds to the thematic
tier. However, since the semantic representation of roles in EWN does not include the distinction of
different tiers, my linking approach assumes that each argument expresses only one role. In (6.48) and
(6.49), the Patienthood of the objects is salient. In other, syntactically analogous, cases, the situation
is different. Several motion verbs incorporate locative prepositions so that locative roles obligatorily
appear as an object rather than a PP. This means that, unlike in (6.46) and (6.47), the objects of such
verbs do not alternate with locative PPs. For example, the object in (6.50) expresses a Location (a
path), in (6.51) a Goal, and in (6.52) a Source:

(6.50) The pedestrians traversed the street.
(6.51) John entered the room.

(6.52) George left the room.

In these sentences, the Patienthood of the objects, if present at all, is secondary. (In my view, it is
rather odd to say that e.g. the room undergoes the entering action.) In other words, for these verbs,
the Patient heuristic inappropriately assigns objects the Patient role. Examples (6.48)—(6.52) show
that it depends on the verb whether its object has to be classified as Patient or as a locative role.'® To
automatically distinguish cases like (6.48) and (6.49) from cases like (6.50)—(6.52), information about
the semantics of the individual verbs is required which is not overtly available in WordNet. Therefore,
I decided that the rules in my approach do not depend on the particular verb processed. Hence, the
linking rules have to treat both kinds of verbs in the same way; a heuristic like “Label an argument
group which contains an object as Patient if the verb is like ... and as Location if the verb is like ...”
is not possible. On the other hand, the preliminary assignment of multiple roles, i.e. the Patient and
locative roles, is not possible either, since semantic filters cannot distinguish between them. Hence,
the linking heuristics have to classify argument groups consisting of objects either as Patient or as
Location. Obviously, the first alternative is the adequate choice, since objects express Patients for the
vast majority of verbs.

But how should verbs be treated which do exhibit an alternation between an object and a locative PP,
as in (6.46) and (6.47)? Does the locative PP provide sufficient evidence to resolve the Patient/locative

Furthermore, examples (6.50)—(6.52) show that in the latter case, the question which locative role is realised by an
object is also verb-dependent.
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ambiguity, i.e. to exclude the possibility that the corresponding argument group represents a Patient?
If this were the case, then the Patient heuristic should be modified in a way that an argument group
containing an object is not classified as Patient if the group also contains a locative PP. Unfortunately,
this would not be appropriate for all verbs either. In particular, verbs which undergo the conative
alternation (e.g. hit verbs, cut verbs, some spray/load verbs, or push/pull verbs) express a Patient
either by an object or by a PP headed by a locative preposition (typically “at”):

(6.53)

a. I pushed the table.
b. I pushed at/on the table.

Note that there is a meaning difference between (6.53 a.) and (6.53 b.). The first variant implies a
causal affection of the second argument, while the second variant does not. (Here, (6.53 a.) implies
that the table has been moved; (6.53 b.) does not imply that.) Consequently, Dowty and (Fillmore
1977) discuss whether and to what degree the second argument has to be regarded a Patient at all.
Anyway, both variants pass the EWN test for Patienthood: The table undergoes the pushing action.
Hence, in these cases, it is appropriate to classify the corresponding argument groups as Patient. This
means that the occurrence of a locative PP in a group also containing an object is no reliable indicator
for the corresponding locative role.

As a conclusion of this discussion, I decided to generally give preference to the Patient in case of a
Patient/Location ambiguity. This can be achieved by modifying the Location heuristic so that it does
not label an argument group as Location if it contains an object. Such a group will solely be labelled
as Patient by the Patient heuristic. Thus, the final version of the Location heuristic is as follows:

Location heuristic: (version 2)
An argument group that contains a PP headed by a locational preposition, i.e. “in”, “in-
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side”, “at”, “on”, “above”, “under”, “below”, “behind”, “before”, “around”, or “along”,
is labelled as Location unless it contains an object.

Note that this version also lists all prepositions which I take into account as indicators of Location.

6.3.5 Summary and Concluding Remarks

At the end of this section, I list the final versions of the heuristics for labelling argument groups with
the four roles I take into account, i.e. Agent, Patient, Instrument, and Location:

Agent heuristic:
An argument group that contains a subject is labelled as Agent, unless it contains an
object.

Patient heuristic:
An argument group that contains an object is labelled as Patient, unless it contains a
for-PP.
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Instrument heuristic:

An argument group that contains a with-PP is labelled as Instrument, unless it contains
an object. In addition, an argument group that contains a subject is labelled as Instru-
ment, unless it contains an object or a PP indicating a Location (as listed in the Location
heuristic).

Location heuristic:
An argument group that contains a PP headed by a locational preposition, i.e. “in”, “in-

side”, “at”, “on”, “above”, “under”, “below”, “behind”, “before”, “around”, or “along”,
is labelled as Location, unless it contains an object.

The discussion of these heuristics showed that they adequately deal with a number of syntactic alter-
nations which involve realisations of a particular role by different syntactic arguments within different
subcategorisation frames. I also pointed out cases where subtle differentiations which are not captured
by the heuristics would be necessary for an appropriate role assignment. Such differentiations are not
possible within the framework which I set up for my linking strategy at the beginning of this chapter,
which, in turn, is constrained by the general setting of this work (the ultimate task, available resources,
etc.). For example, I abandoned the possibility to formulate heuristics dependent on the kind of verb
that is actually processed. We have seen that under certain circumstances, this would be required to
determine the correct role (e.g. to discriminate between Patient and Location). However, such dif-
ferentiations would require information about the semantics of individual verbs that is not available.
One could imagine to develop methods to obtain such verb-specific information from the information
present in the wordnet (e.g. the glosses of verbs or their location within the hierarchy). Such strate-
gies would highly depend on the specific wordnet under consideration. However, this thesis aims at
developing approaches which are as language-independent as possible. Thus, the intended portability
of the proposed linking approach is accompanied by limitations in accuracy, which is not surprising.
Nevertheless, it seems remarkable to me that one rather simple heuristic for each role type is able to
cover a considerable variety of alternations related to the realisation of the respective role.

In section 6.1, I pointed out that the role assignment heuristics described here constitute the part of my
linking approach that is predominantly language-dependent. The 1. stage of this approach, building
syntactic argument groups, is its most universal part; it neither depends on the employed inventory
and definition of roles, nor on the language for which role relations are to be acquired. The semantic
filters applied in the 3. stage for the final role discrimination are primarily determined by the assumed
role inventory, particularly on the definition of the semantic characteristics of the individual roles. The
heuristics discussed in this section, which are applied in the 2. stage, also depend on this factor. When
devising the collection of heuristic rules, I anticipated the capability of semantic filters to discriminate
different role types: The assignment of multiple roles to an argument group is only admissible if
these concurrent roles can be distinguished by semantic filters. However, language-dependency is a
particular property of the role assignment heuristics. Unlike the other stages, these heuristics are to a
large extent specific to English. If another language had to be processed, then the rules would have to
be adapted or even substantially revised.

Let me briefly mention some exemplary points subject to necessary modifications of the heuristics.
First of all, it is obvious that at least the prepositions specified in the rules would have to be replaced
by corresponding prepositions, postpositions, case markings etc. which express the respective role in
a different language. For example, an Instrument is expressed by a PP headed by “mit” in German
and “avec” in French; in German, the case of the NP inside a locative PP determines whether this PP
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expresses a Location or a Goal (accusative indicates a Goal as in “auf die Strafe”, dative a Location as
in “auf der Strae”). This example also illustrates that the discriminative accuracy of role assignment
heuristics strongly relies on the means used by the examined language to express semantic roles. Since
in German the Goal/Location ambiguity discussed in section 6.3.4 (cf. example (6.42) on page 186)
is resolved by the case inside the PP, these roles can be easily distinguished by heuristics. Another
question which has a strong impact on the formulation of role assignment heuristics is which syntactic
alternations occur in the examined language. For example, in French, the dative alternation, which
typically is exhibited by change of possession verbs in English (cf. example (6.18) on page 177),
is only possible if the recipient is expressed by a pronoun. Otherwise, the recipient is realised by a
PP rather than an object (“Jean donne le journal a ses amis”). If, as I have argued, the recipient is
regarded as a Patient, then the restriction of the Patient heuristic to objects is not sufficient; it has to
be extended to also capture argument groups containing PPs corresponding to recipients.

Finally, as Dowty and (Fillmore 1968) noted, ergative languages require a substantial modification of
role assignment rules. Ergative languages (e.g. Tibetan) exhibit a relation between cases and under-
lying roles which in a sense is reverse to non-ergative languages like English. In English, a transitive
sentence usually expresses the Agent as subject and the Patient as object. An intransitive sentence
only has a subject, which may express an Agent or a Patient. In ergative languages, a transitive sen-
tence expresses the Agent by an argument bearing the ergative case and the Patient by an argument
bearing the absolutive case. An intransitive sentence realises an Agent or a Patient by an absolutive
complement, i.e. by an argument which, roughly speaking, corresponds to an object in non-ergative
languages. To appropriately deal with this constellation, the Agent and the Patient heuristic would
have to be exchanged: An argument group that contains an ergative has to be labelled as Agent, while
an argument group that contains an absolutive has to be classified as Patient, unless it contains an
ergative.

The dependency of role assignment heuristics of the kind presented here to a specific language reflects
the language-dependency of linguistic linking theories in general. In other words, due to considerable
variations across individual languages and language families, it is not possible to develop a linking
strategy which is completely language-independent. Unfortunately, this fact is opposed to the desider-
atum that the solutions proposed in this thesis should not be bound to a particular language. However,
regarding this desideratum, it is an advantage of my linking strategy that language-specific aspects
are isolated within one module. This facilitates the adaption to other languages. (Jackendoff 1990, p.
261f) poses the question which aspects of a linking theory are universal and which parameters guide
language-dependent variations. To the extent to which linguistic research will be able to answer this
question, language-independent and language-specific portions of the heuristics presented here can
be made explicit.

6.4 Preparing the Input of the Learning Algorithm

The set of argument groups for a verb which are labelled with role types provides the information
required to apply the algorithm for selectional preference acquisition to semantic roles rather than
syntactic arguments. This information has to be transformed appropriately to be suitable as input of
this algorithm. This section describes that transformation.

As the first step, the argument groups are broken down again into individual frame-argument config-
urations. However, each frame-argument configuration inherits the role label(s) of the group(s) it is a
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‘ argument group ‘ role type(s) ‘

g1(break) = {subj/subj, subj:obj/obj, subj:obj:pp.with/obj} | Patient
g2(break) = {subj:obj/subj, subj:obj:pp.with/subj} Agent, Instrument
g3 (break) = {subj:obj/subj, subj:obj:pp.with/pp.with} Agent, Instrument

Table 6.1: Argument groups for the verb “break’ and the corresponding role types

frame-argument configuration ‘ role type(s)

subj/subj Patient
subj:obj/obj Patient
subj:obj:pp.with/obj Patient
subj:obj/subj Agent, Instrument
subj:obj:pp.with/subj Agent, Instrument
subj:obj:pp.with/pp.with Agent, Instrument

Table 6.2: frame-argument configuration — role type mapping for the verb “break”

member of. In this way, individual frame-argument configurations are related to one or more corre-
sponding role types. As an example, let us look at the argument groups of the verb “break”™ as listed at
the end of section 6.2.1. Table 6.1 lists these groups and the roles assigned to them by the heuristics
developed in the previous section.

g1 is labelled as Patient, because it contains an object. go and g3 are labelled as Agent, because they
contain a subject. g; also contains a subject, but the Agent heuristic does not apply here because this
group also contains an object. Likewise, go and g3 are labelled as Instrument, because they contain
a subject (and g3 a with-PP). Again, the object in g; prevents this group from being labelled as
Instrument.

Breaking down the groups into the individual frame-argument configurations, which receive the role
assignments of their groups, yields the frame-argument configuration — role type mapping displayed
in table 6.2. The fact that the two object types subj:obj/obj and subj:obj:pp.with/obj are classified as
Patient is straightforward. However, the unambiguous classification of the intransitive subject type
subj/subj as Patient has only been possible by using the detour via the argument groups. The am-
biguous classification of subj:obj/subj is appropriate, since, as discussed, the subject of “break” in
a transitive sentence could express an Agent or an Instrument. In contrast, it might seem counterin-
tuitive that the type subj:obj:pp.with/subj is not only labelled as Agent, but also as Instrument. One
might object that a sentence expressing an Instrument by a PP cannot express another Instrument by
the subject. However, the subject can realise an Instrument if the with-PP does not realise this role,
e.g.in

(6.54) The hammer broke the pane with a loud bang.

Thus, this classification is appropriate. The assignment of the Instrument role to the type
subj:obj:pp.with/pp.with is straightforward. In addition, this type is labelled as Agent because it was
in a group that also contains a subject type. However, classifying a PP type as Agent contradicts the

193



frame-argument configuration | role type(s) ‘

subj/subj Patient
subj:obj/obj Patient
subj:obj:pp.with/obj Patient
subj:obj/subj Agent, Instrument
subj:obj:pp.with/subj Agent, Instrument
subj:obj:pp.with/pp.with Instrument

Table 6.3: Refined frame-argument configuration — role type mapping for the verb “break”

linguistic observation that Agents are always expressed as subject. As emphasised in section 6.3.1,
this is the only correlation between a syntactic argument and a role type that is a fact rather than
a default. For this reason, a refinement of the frame-argument configuration — role type mapping is
justified that excludes such cases. To achieve such a refinement, I adopted the following rule:

frame-argument configuration — role type mapping refinement rule:
Remove all assignments of the Agent role to non-subject frame-argument configurations
from the retrieved frame-argument configuration — role type mapping.

Table 6.3 shows the complete mapping for “break™ after applying this refinement rule.

The next step consists in dividing the items in the training data into sets so that each set corresponds
to a particular thematic role type. This can be done by employing the frame-argument configuration
— role type mapping in a straightforward way: For each role type, collect all data items whose left
component (including the examined verb) is mapped to that role type. For illustration, let us assume
that the training corpus contains the sentences (6.1)—(6.5) on page 149 and sentence (6.54) above so
that the corresponding items are included in the training data. Then the item set related to the Patient
comprises the following items:

break#subj:obj/obj window
break#subj:obj/obj window
break#subj:obj:pp.with/obj window
break#subj:obj:pp.with/obj TV
break#subj/subj TV
break#subj:obj:pp.with/obj pane

The set corresponding to the Agent contains these items:

break#subj:obj/subj husband
break#subj:obj/subj hammer
break#subj:obj:pp.with/subj husband
break#subj:obj:pp.with/subj wife
break#subj:obj:pp.with/subj hammer
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The set pertaining to the Instrument comprises the following data:

break#subj:obj/subj husband
break#subj:obj/subj hammer
break#subj:obj:pp.with/subj husband
break#subj:obj:pp.with/pp.with hammer
break#subj:obj:pp.with/subj wife
break#subj:obj:pp.with/pp.with chair
break#subj:obj:pp.with/subj hammer
break#subj:obj:pp.with/pp.with bang

These sets demonstrate that at this stage of the linking approach, the role assignment is over-
generalising. A number of items associated with a role actually do not realise that role. Here, “ham-
mer” is not an Agent, “husband”, “wife”, and “bang” are not Instruments. There are two reasons for
this over-generalisation. Firstly, some data items are included in several sets, because their left com-
ponent is mapped to multiple roles. In the example, this is the case for all transitive subject types,
which are assigned the Agent and the Instrument role. Secondly, some data items are associated with
a certain role according to their frame-argument configuration, but do not express that role (nor any
of the other roles). Here, this applies to the last item in the Instrument set with the noun “bang”.
This demonstrates the necessity of semantic filters, which are intended to cope with both kinds of
misclassification.

Aside of such errors, the set of items associated with a certain role provides the appropriate in-
put to the algorithm for acquiring selectional preferences corresponding to that role. In this way,
thematic role relations for WordNet can immediately be learned. For example, for learning IN-
VOLVED_INSTRUMENT relations, the set of items corresponding to the Instrument role has to
be employed. The verb—noun pairs in this set undergo the preprocessing steps described in chapter
5. First, the general mapping of verb—noun form pair frequencies to verb—noun sense pair frequen-
cies performed as described in section 5.2 has to be applied to the items in the role-specific set. In
section 5.2, I pointed out that these frequencies are computed separately for each syntactic config-
uration associated with a verb—noun pair in the data. For the sake of simplicity, this has not been
made explicit in the corresponding equation (5.4) on page 119. However, employing the notation of
verb-frame-argument configurations introduced in this chapter, this equation can be reformulated as
follows:

freq(snsi(v), sns;j(n)|fa(v)) = freq(fa(v),n) x p(sns;(v), sns;(n)|fa(v),n) (6.55)

With the assignment of role types to verb-frame-argument configurations, these frequencies can
straightforwardly be transformed into sense pair frequencies given a certain role type:

freq(snsi(v), sns;(n)|role) = Z freq(snsi(v), sns;j(n)|fa(v))  (6.56)
{fa(v)|role€roles(fa(v))}

Equation (6.56) captures sense frequencies corresponding to those items which belong to the set
associated with the role type role (e.g. Instrument). The resulting counts of noun senses (depend-
ing on a certain verb and a certain role) are propagated to higher concepts in the hierarchy as
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described in section 5.3. After these preprocessing steps, the learning algorithm acquires tree cut
models for the verb concepts under consideration. In the example, the verb form “break” and the
co-occurring noun forms (“hammer”, “husband”, “wife”, “chair”, “bang”) are transformed into ap-
propriate senses and concepts. Then, for the obtained verb concept <break>, a tree cut model
is acquired from the co-occurring noun concepts obtained by the preprocessing steps.?’ The pre-
ferred concepts on that cut form candidates for establishing a role relation. For example, if the
cut contains the concept <instrumentality#instrumentation> (this concept subsumes suitable senses
of “hammer” and “chair”), and if this concept has a preference value above 1 (indicating pref-
erence), then this strongly suggests to adopt the relation <break> INVOLVED_INSTRUMENT

<instrumentality#instrumentation>.

6.5 Semantic Filters

The last part of the linking strategy I propose is applied after learning tree cut models, i.e. it is a
postprocessing step acting on the acquired tree cuts. This step is necessary to cope with the over-
general assignment of roles to data items resulting from stages 1 and 2 of the linking strategy. We
have seen that data items are associated with role types which, in fact, they do not express. The tree
cut model obtained from a role-specific data item set represents these misclassified data items as well
as the correct items. Continuing the example in the previous section, a tree cut model learned for
the Instrument of <break> would be expected to contain adequate concepts like <instrumentality>
(generalised from nouns like “hammer” and “chair”) as well as inadequate concepts like <human>
(generalised from nouns like “husband” and “wife””) or <bang>.

The 3. linking stage has the following function: Given a tree cut which was acquired for a certain role,
select those concepts on the cut which really correspond to that role and discard the other concepts.
To achieve this goal, I pursue an approach which is based on a very simple idea. In short, this idea
consists in associating each role type with a certain semantic range. Such a range is defined by a
small number of rather abstract WordNet concepts. For example, we could define the semantic range
of the Instrument role by the concept <inanimate_object>>. That means that this range comprises
that concept and all its descendants in the WordNet hierarchy. A semantic range of a certain role
can be used as a filter to discard inappropriate concepts from a tree cut representing preferences
for that role. To achieve that, one just has to extract that part of the cut that is dominated by the
concept(s) which model(s) the semantic range of the respective role. Regarding the imaginary cut
for the Instrument of <break> discussed above, this filter would approve <instrumentality>, since
this is a subconcept of <inanimate_object> and thus belongs to the above-mentioned semantic range
defined for Instruments. However, concepts like <human> or <bang> would be rejected, since they
do not belong to that range.

Before turning to the practical issue of how to determine the semantic ranges for the respective role
types, I would like to argue that the idea sketched above is not just an ad hoc strategy, but can be
motivated from linguistic insights. Basically, this idea rests on the assumption that entities which
fill a certain semantic role typically bear certain semantic properties which are independent of the
involved verb. We have encountered such semantic characterisations of role fillers in Fillmore’s deep
case definitions (cf. section 2.1.1). These definitions state that an Agentive is a (typically) animate
instigator, an Instrumental is an inanimate force or object, and a Locative denotes a location or spatial

More precisely, a tree cut model is acquired for each verb concept the disambiguation procedure has found to represent
“break”.
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orientation.

There is a fundamental relationship between such semantic characterisations for role fillers and se-
lectional restrictions (or preferences) of verbs. Essentially, the semantic properties associated to a
specific role can be regarded as verb-independent semantic restrictions / preferences imposed on the
fillers of that role. In analogy to Jackendoff’s view of selectional restrictions as the information that a
verb provides about its arguments (cf. section 2.2.2), one can state that semantic restrictions on role
types comprise the information that the respective roles provide about their fillers. Moreover, the se-
mantic restrictions imposed on a role have to be compatible with, i.e. subsume, selectional restrictions
that any concrete verb imposes for that role. For instance, “drive” selects a vehicle as its Instrument,
“paste” glue, and “break” some solid, movable object. All these selectional restrictions are subsumed
by the general characterisation ‘inanimate object’. As in our case selectional preferences are rep-
resented by WordNet noun concepts, semantic characterisations of roles should be represented by
WordNet concepts as well. These concepts should subsume those concepts that verbs typically prefer
for the respective role, excluding concepts that typically are not preferred for that role. For exam-
ple, following the examples just sketched, <inanimate_object>> would be an appropriate concept for
modelling the semantic preferences on the Instrument role. In a sense, a concept or a set of concepts
that represents role-specific, but verb-independent preferences defines a semantic range of a role.

In section 2.1, we have seen that there is neither a consensus about the adequate inventory of roles nor
on the appropriate definition of a particular role. As a consequence, it is not obvious how to delineate
the semantic ranges of roles. The semantic range of a role relies on the definition of that role, which
in turn is dependent on the complete role inventory. For example, consider the question whether an
Agent is normally animate?' or whether inanimate entities are also regarded as common instances of
the Agent role. In Jackendoff’s theory, the Instrument is analysed as being both Actor (Agent in terms
of EWN) and Patient. If, following this analysis, one decides to abolish the Instrument type from the
role inventory and to capture “instrumental” arguments by the Agent role, then inanimate entities may
naturally serve as Agent. Anyway, independently of whether the Instrument is included in or excluded
from the role inventory, Jackendoff explicitly allows for inanimate Actors, e.g. “the ball” in “The ball
rolled down the hill.” This is opposed to Fillmore’s characterisation of the Agentive case. Hence, the
question can be (and has been) decided in different ways.

For the task addressed here, it is necessary to delimit semantic ranges for the role types in EWN.
The EWN role definitions are not helpful in this case, because they hardly provide any semantic re-
strictions on the noun concepts involved in the respective role relations. For example, the AGENT
definition is: “(A/An) X is the one/that who/which does the Y.” This definition characterises the in-
volved noun by “the one/that”, which is not restrictive at all. Fortunately, there is another source of
information that allows to determine role-specific semantic ranges: the gold standard. For each of the
roles I examine, the gold standard comprises a considerable number of relations covering a variety of
verbs. Consequently, these data provide empirical evidence which is suitable to determine semantic
ranges of roles. More precisely, the task of fixing these ranges amounts to the following: for each
role type, find a noun concept (or a small set of noun concepts) which subsumes those noun concepts
which occur in the corresponding role relations in the gold standard.

One major difficulty concerning a proper definition of the semantic range of a role is the appropriate
generalisation level of the concept(s) used for that task. For example, which concept provides the most
adequate characterisation of Agents: <human>, <life_form>, or <entity>? Regarding this issue,

2'Here, “normally” means that exceptional cases of inanimate Agents, e.g. within unusual contexts or metaphoric ex-
pressions, never can be excluded.
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root node ‘ Agent ‘ Patient ‘ Instrument ‘ Location

<entity > 2188 (97.1%) | 759 (74.6%) | 1853 (87.9%) | 158 (71.8%)
<psychological_feature> 13 (0.6%) 28 (2.8%) 25 (1.2%) 1 (0.5%)
<abstraction> 10 (0.4%) 72 (7.1%) | 110  (5.2%) 4  (1.8%)
<location> 1 (0.0%) 23 (2.3%) 14 (0.7%) | 54 (24.5%)
<shape#tform> 0 (0.0%) 8  (0.8%) 18  (0.9%) 0 (0.0%)
<state> 7 (0.3%) 3 (0.3%) 1 (0.0%) 1 (0.5%)
<event> 3 (0.1%) 5 (0.5%) 6 (0.3%) 0 (0.0%)
<act#human_action> 7 (0.3%) 19  (1.9%) 45  (2.1%) 2 (0.9%)
< group#grouping> 25 (1.1%) 30 (2.9%) 14 (0.7%) 0 (0.0%)
<possession> 0 (0.0%) 50  (4.9%) 23 (1.1%) 0 (0.0%)
<phenomenon> 1 (0.0%) 20 (2.0%) 1 (0.0%) 0 (0.0%)
| num. of concepts | 2253 | 1017 | 2107 | 220

Table 6.4: Number and percentage of (noun concepts of) role relations in the gold standard covered
by each WordNet root node

there are two complementary desiderata: On the one hand, the concepts have to be general enough
in order to be not biased towards arbitrary idiosyncrasies of the gold standard. Such idiosyncrasies
can be introduced by errors or by singular role relations which significantly deviate from the majority
of relations encoded for comparable verbs. On the other hand, the subsuming concepts have to be
specific enough to distinguish role types. In other words, it is desirable that the semantic ranges
of the different role types do not overlap. As noted, one major motivation for employing semantic
filters is that some training data items are included in several role-specific data sets so that these
items are captured by the respective tree cuts acquired for differing roles. If the semantic ranges of
these roles are mutually exclusive, then the corresponding filters select (i.e. approve) role-specific
tree cut sections which are mutually disjoint. In this way, it is guaranteed that finally each data item
contributes evidence for at most one role rather than for several roles. In the example discussed in
the previous section, the nouns “husband” and ‘“hammer” belong to two data sets, pertaining to the
Agent and the Instrument, respectively. If, for example, the Agent range were defined by <human>
and the Instrument range by <instrumentality>, then “husband” would be captured by the selected
portion of the cut acquired for the Agent, while “hammer” would not. For the Instrument, the reverse
is true. If, however, the range for both roles were defined by <entity>, then both nouns were covered
by the selected portion of both cuts. In the latter case, the linking strategy would ultimately not decide
whether “husband” (or “hammer”), occurring as the subject of “break”, is an Agent or an Instrument.
Therefore, it is crucial that at least those roles whose data sets overlap are associated with mutually
exclusive semantic ranges. Note that both of the desiderata just discussed have the consequence that
the concepts which define the range of a role type will not capture all relations of that type included in
the gold standard. To avoid the encoding of idiosyncrasies and to obtain mutually exclusive semantic
ranges, the subsuming concepts that I will employ neglect a minor portion of relations.

To determine which concepts are most appropriate for defining semantic ranges of the four role types
I investigate, I collected statistics about the noun concepts involved in the gold standard relations
of each of these role types. In particular, I took into account different rather general noun concepts
which are plausible candidates for defining role-specific semantic ranges. For these general concepts,
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concept ‘ subsumed concepts ‘

<entity> 2188 (97.1%)
<life_form> 2078 (92.2%)
<causal_agent> 2016 (89.5%)

<person> 2005 (89.0%)
<inanimate_object> 97 (4.3%)
<artefact> 77 (3.4%)

< group> 25 (1.1%)

<social_group> 24 (1.1%)

Table 6.5: Concepts covering a significant number / percentage of AGENT relations

I computed the amount of gold standard relations whose noun concepts they subsume, and manually
selected the most adequate concepts. To get a broad overview, I started from the root concepts of
WordNet. Table 6.4 shows the number and percentage of noun concepts in the gold standard that are
subsumed by each root separately for each role. Obviously, this most general level is not distinctive
enough, because for all roles, the vast majority of concepts is subsumed by <entity>. This means that
more specific concepts have to be chosen to define semantic ranges. Therefore, I went down the Word-
Net hierarchy to assess which concepts are appropriate for a certain role, starting from those concepts
which cover the most relations. In the following, I provide role-specific lists of concepts on differ-
ent hierarchy levels which capture significant portions of relations and comment on them. In these
listings, indentation indicates the levels of the concepts, relative to their ancestors and descendants.
Child concepts are listed immediately below their parent, with a higher indentation.

Table 6.5 lists general concepts covering significant portions of Agent relations. More than 97%
of these relations are covered by <entity>. On the level below that root node, a comparably clear
tendency can be stated: Over 90% of the Agent relations in the gold standard involve living entities,
mostly persons. Only about 4% pertain to inanimate objects. Concerning the question addressed above
whether inanimate entities should be included in the semantic range for the Agent, these numbers give
a definite answer: In EuroWordNet, inanimate Agents are marginal so that it is adequate to restrict the
semantic range to living entities. The root concept with the second highest percentage of subsuming
concepts is <group>, which is due to its hyponym <social_group>. This is an intuitive finding, since
groups of people naturally occur as Agent. It is surprising that only 1% of Agent relations are covered
by that concept.

Table 6.6 displays the concepts covering significant portions of Patient relations. Here, the picture is
far less clear-cut than for the Agent role. <entity>> is by far the dominant root concept, but other Word-
Net roots play a considerable role as well, such as <abstraction> (mostly due to <communication>,
which subsumes concepts related to messages or documents) or <possession>. In general, table 6.4
shows that, as opposed to the other roles, every root node subsumes several concepts involved in Pa-
tient relations. Below <entity>, the distribution of concepts is much more heterogeneous than for the
other roles. 55% of the Patient concepts are inanimate, but also a non-negligible rate of about 17%
denote living entities. In sum, one can state that these findings do not justify to impose any restriction
on the semantic range of the Patient.

Table 6.7 displays the concepts covering significant portions of Instrument relations. This role ex-
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concept ‘ subsumed concepts ‘

<entity > 759 (74.6%)
<inanimate_object> 559 (55.0%)
<artefact> 265 (26.1%)
<substance> 202 (19.9%)
<life_form> 170 (16.7%)
<causal_agent> 119 (11.7%)
<person> 117 (11.5%)

< abstraction> 72 (7.1%)
<relation> 65 (6.4%)
<social_relation> 58 (5.7%)
<communication> | 58 (5.7%)
<possession> 50 (4.9%)

Table 6.6: Concepts covering a significant number / percentage of PATIENT relations

concept ‘ subsumed concepts ‘
<entity> 1853 (87.9%)
<inanimate_object> 1739 (82.5%)
<artefact> 1450 (68.8%)
<instrumentality> | 1071 (50.8%)
<substance> 188 (8.9%)
<material > 87 (4.1%)
<goods> 85 (4.0%)
<natural_object> 30 (1.4%)
<part> 41 (1.9%)
<body_part> 41 (1.9%)
<life_form> 65 (3.1%)
<person> 48 2.3%)
< abstraction> 110 (5.2%)
<relation> 91 (4.3%)
<social_relation> 78 (3.7%)
<communication> 78 (3.7%)
<act#human_action> 45 (2.1%)

Table 6.7: Concepts covering a significant number / percentage of INSTRUMENT relations
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concept ‘ subsumed concepts ‘

<entity > 158 (71.8%)
<inanimate_object> 155 (70.5%)
<artefact> 115 (52.3%)
<construction#structure > 68 (30.9%)
<building > 26 (11.8%)

<way> 15 (6.8%)
<instrumentality > 15 (6.8%)
<substance> 21 (9.5%)
<natural_object> 9 (4.1%)
<body_of_water> 8 (3.6%)
<location> 54 (24.5%)

Table 6.8: Concepts covering a significant number / percentage of LOCATION relations

hibits a semantic profile that is almost reverse to the one corresponding to the Agent. Among the
88% portion of concepts captured by <entity>, the overwhelming majority (82.5%) is covered by
<inanimate_object>, in particular by <artefact>, but also by <substance> and others. Concepts
subsumed by <life_form> play a marginal role (about 3%). This justifies to exclude living entities
from the semantic range of the Instrument, which avoids an intersection with the range of the Agent
role. Another hyponym of <entity> which occurs in the Instrument profile is <body_part> (a sub-
concept of <part>). Although the percentage (scarcely 2%) is lower than the rate of <life_form>,
body parts are a typical kind of Instrument. Therefore, it is adequate to include body parts in the
Instrument range, the more so as this does not cause an overlap with the Agent range. Apart from
<entity>, <abstraction> subsumes a noteworthy amount of relations (about 5%). This is in accor-
dance with statements about this role in the literature (e.g. (Gruber 1965, p. 171) discusses abstract
Instruments). Another root node which also represents a kind of abstract Instruments occurs with
about 2%: <human_action>.

Finally, table 6.8 lists the concepts covering significant portions of Location relations. For this
role type, two root concepts are of importance: <entity> (covering more than 70% of relations)
and <location> (covering about 24%). At first glance, it might be surprising that <entity> is
the dominant root concept rather than <location>. However, looking more closely at deeper lev-
els of the hierarchy, this becomes more intuitive. Almost all concepts subsumed by <entity> are
captured by <inanimate_object>>. Most of these (52%) are artefacts, in particular pertaining to
<construction> (this concept comprises e.g. buildings), but also to <way> (in the ‘path’ sense) or
even <instrumentality> (subsuming concepts like <bed>, <camp_bed>, or <frying_pan>, which
are encoded as Locations in the gold standard). Apart from <artefact>, a couple of other concepts de-
noting some kind of points or areas found in nature are of importance: <substance> (comprising e.g.
liquid, water, or ice), <natural_object>, and <body_of_water>. All these concepts may naturally
be referred to as Location, although they are not subsumed by <location>. Overall, this semantic
profile is clearly distinct from the Agent profile. In contrast, it cannot be so clearly distinguished from
the Instrument profile. Both exhibit a strong focus on inanimate objects. Although within this sub-
range there is emphasis on different kinds of concepts, there is a considerable overlap even on deeper
hierarchical levels (e.g. <instrumentality> or <substance>). Therefore, it is not possible to define
semantic ranges for these two role types which do not intersect.
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Based on these profiles, I fixed the following general concepts to define semantic ranges for the
different roles:

Agent: <life_form>, <causal_agent>, <group#grouping>
Patient: —
Instrument: <inanimate_object>, <body_part>, <abstraction>, <act#human_action>

Location: <inanimate_object>, <location>

These ranges reflect the two desiderata mentioned above. On the one hand, the concepts I selected
are at a rather general level, e.g. <inanimate_object> instead of <artefact>, <building>, <way>,
or <body_of_water>. In this way, the range definitions abstract from idiosyncrasies in the gold stan-
dard. For the same reason, I did not take into account root concepts which only represent a marginal
percentage of relations for a particular role (e.g. <psychological_feature> for all role types). Ex-
ceptions are the inclusion of <group#grouping> in the Agent range as well as <body_part> and
<human_action> in the Instrument range. These concepts denote typical instantiations of the re-
spective roles, although they are under-represented in the gold standard.??> On the other hand, the
selected concepts are specific enough to allow distinctions between roles where possible. In particu-
lar, the root node <entity>, which is predominating for all roles, would be too general. Restricting
the Agent range to living entities and the Instrument and Location ranges to inanimate entities allows
to distinguish Agents from Instruments or Locations.

In contrast, the examination of the gold standard shows that it is not possible to fix semantic ranges for
Instrument and Location that are mutually exclusive and thus allow to discriminate these role types by
semantic filters. Therefore, I had to introduce linking heuristics which do not concurrently assign both
role types. I discussed this issue in section 6.3.4. I formulated the Instrument heuristic in a way that
it does not assign the Instrument label to an argument group which is classified as Location. Hence,
the linking heuristics already do the job of distinguishing these two role types. The situation is even
worse for the Patient. As table 6.4 shows, about 75% of Patient relations is captured by <entity>. The
rest is more or less equably divided among the other root nodes. Discarding these nodes and defining
the semantic range of the Patient by <entity> would have the consequence that about one quarter of
the relations would not be taken into account. Moreover, a further restriction of the <entity> range
would be inadequate, since inanimate objects as well as life forms are represented with a significant
rate. Hence, the Patient role cannot be associated with a semantic range at all. For this reason, the
linking rules have to separate the Patient from the remaining roles: If an argument group is labelled
as Patient, then the rules ensure that this group is not at the same time labelled as another role.

I would like to conclude this section with some general remarks concerning the approach of deter-
mining semantic filters by examining the gold standard. One could object that this approach is not
admissible, because it tunes the tree cuts to be evaluated by adapting them to the test data which are
used for the evaluation. More specifically, first the tree cuts are filtered so that only those concepts
remain which are captured by the gold standard, and after that the evaluation experiments examine
to what extent these manipulated tree cuts match with the gold standard. In the following, I provide
several arguments to rebut this objection.

22 Actually, one could regard the low percentage of these concepts itself as an idiosyncrasy of the gold standard.
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First of all, the investigation of the role-specific semantic profiles in the gold standard proved that
these profiles are not arbitrary. In contrary, they are intuitive and, in essence, internally consistent.
Furthermore, they conform to semantic characterisations of the respective roles provided in the litera-
ture. This is a remarkable finding, considering the fact that the gold standard is no homogeneous data
set, but originates from several independent sources (different language-specific wordnets in EWN)
and the role relations in these wordnets have not been encoded for the purpose of providing a balanced
and representative test set. It is necessary to examine the semantic profiles for two reasons. Firstly,
it is important to find out how the gold standard “behaves” with respect to controversial role charac-
terisations. For instance, concerning the question whether it is adequate or not to exclude inanimate
objects form the Agent range (both alternatives are linguistically justifiable), it is crucial to know to
what extent inanimate objects are encoded as Agents in the gold standard. Secondly, it is not im-
mediately clear how quite general and informal semantic characterisations provided in the linguistic
literature are captured by the hierarchical structure of WordNet. For example, buildings naturally be-
long to the semantic range of the Location role. However, in WordNet <building> and its hyponyms
are not subsumed by <location>, but by <inanimate_object>. For such reasons, the latter concept
must be included in the Location range. Looking at the semantic profiles of the different roles helps
to recognise such subtleties, which would be likely to be missed if role ranges were fixed by mere
introspection. Nevertheless, although the profiles extracted from the gold standard guided my defini-
tions of semantic ranges, they did not exclusively determine them. I also took concepts into account
which are only marginally reflected by these profiles, but which intuitively belong to the role range in
question (e.g. <group> for the Agent or <body_part> for the Instrument). Thus, the semantic ranges
defined above are motivated both empirically and introspectively.

Another argument against the objection mentioned above is that one crucial aspect of the task of this
thesis is to acquire selectional preferences at an appropriate level of generalisation. This challenge is
in no way alleviated by restricting the acquired preferences to a limited, but still very broad range.
The task is to find the appropriate abstraction level within that general range.

Finally, in the next chapter I empirically investigate the impact of semantic filters. In our setting the
practical consequences of applying semantic filters to the acquired tree cuts is two-fold. On the one
hand, the number of recognised relations in the gold standard may be decreased, because a minor
portion of gold standard relations is not captured by the role ranges. This would result in a decrease
of recall. However, this effect will be marginal, because the portion of dropped relations is small. For
each role type, the range defined above captures more than 90% of the corresponding relations in the
gold standard. On the other hand, since the filters discard large portions of the learned tree cuts, the
number of candidate concepts for the examined role is reduced. One can expect that this reduction
will be significant, which would speed up the manual inspection of the remaining candidate concepts.
However, this question has to be examined empirically. Therefore, in the experiments described in
section 7.4, I will test the impact of employing semantic filters by comparing recall and the number
of candidate concepts with and without applying these filters.

6.6 Related Work

At the end of this chapter, I would like to briefly discuss the major commonalities and differences
between the linking strategy I have proposed here and related approaches proposed in the NLP liter-
ature. It is important to note that these approaches serve different purposes than my strategy. In my
work, linking serves to transform the training data, which consist of syntactic verb—noun relations, to
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semantic verb—noun relations. These relations form the input to the algorithm for learning selectional
preferences so that this algorithm immediately acquires thematic role relations. In contrast, the work I
refer to in this section pursues different goals: a general semantic characterisation of verbal arguments
within a particular domain; verb classification, especially detecting a verb’s participation in diathesis
alternations; automatic labelling of semantic roles in a corpus.

The work which perhaps is closest to my linking strategy has been done by Peters (1996). Peters
aims at acquiring a semantic characterisation of thematic arguments of verbs within a constrained
sublanguage. For his feasibility study, he uses a corpus containing texts about satellite communi-
cation. This corpus was automatically tagged and parsed. In a first step of his analysis (which is
performed with four high-frequency verbs), simple rules map syntactic arguments to thematic roles.
For example, the NP following the verb is classified as THEME, PPs headed by “over” or “through”
as PATH, PPs headed by “from” as SOURCE, or PPs headed by “with” as INSTRUMENT / CON-
COMITANT. A second step acquires coarse-grained semantic characterisations for the thematic argu-
ments of the examined verbs. To this end, Peters defines ten abstract semantic classes which represent
very general WordNet concepts, e.g. ‘Inanimate object’, ‘Agent’ (effectively comprising the concepts
<causal_agent> and <life_form>), ‘Activity’, or ‘Group, Organisation’. To retrieve the semantic
characterisation for a role of a verb, each of these classes is associated with the number of different
nouns (types rather than tokens) occurring at the respective argument position which are subsumed
by the corresponding WordNet concepts. In effect, these semantic characterisations can be viewed as
a rudimentary form of abstract selectional preferences, where the preference values consist in counts
of noun types.

There are a number of similarities between this approach and my linking strategy. In particular, the
rules of mapping syntactic arguments to thematic roles resemble the linking heuristics which I em-
ploy in the second stage. However, these rules immediately act on the parsed sentences rather than
on argument groups. Moreover, except for the INSTRUMENT / CONCOMITANT ambiguity (see
below), they establish a one-to-one mapping between syntactic arguments and thematic roles, which
my heuristics do not. This unique mapping is possible due to two reasons (that are mentioned by
Peters himself). Firstly, Peters does not take into account the subject of a sentence, which, as we have
seen, is most ambiguous regarding the role it might express. Secondly, within a highly restricted do-
main (which is intended in Peters’ work), the use of prepositions is likely to be restricted in a way
that a certain preposition uniquely realises a certain role. In contrast, since the task of this thesis is
the acquisition of roles for general-purpose lexical resources, which implies processing unrestricted
text, my linking strategy has to be much more sophisticated. One exception in Peters’ study is “with”.
This preposition is ambiguous; it might indicate an INSTRUMENT or a CONCOMITANT. Peters
suggests that this ambiguity can easily be resolved by separating the abstract semantic classes ac-
cording to animacy/non-animacy. In a sense, this corresponds to the semantic filters I use in stage
3. To conclude, Peters’ approach shares some basic ideas with my strategy, but is very simplistic in
many respects, (linking rules, preference acquisition, restriction of domain and syntactic structures).

In the past years, much work has been done to automatically classify verbs with respect to patterns of
subcategorisation and selection. Essentially, this work was inspired by (Levin 1993), who did not only
provide a comprehensive survey of diathesis alternations, but furthermore developed a detailed system
of semantic classification of verbs which is based on the hypothesis that the semantic class a verb
belongs to is strongly correlated with the set of alternations which this verb undergoes. Meanwhile,
numerous publications addressed the issue of automatically obtaining such a kind of classification
(including the extension of Levin’s classification system and its coverage), or the related issue of
detecting the participation of verbs in diathesis alternations. The information employed for these goals
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consists of syntactic and semantic properties of verbs, which are extracted from corpora by means of
quantitative methods. (McCarthy 2001, p. 110-125) provides an excellent overview about the work
within this area. In this section, I will concentrate on two approaches, which have been proposed in
(Schulte im Walde 1998b) and in (McCarthy 2001), respectively. These approaches are particularly
interesting in our context, because each of them employs techniques which are very similar to the
ones [ make use of.

Schulte im Walde (1998b) applies clustering techniques to acquire verb classes. She uses the same
training data that I use. (As noted in section 5.1, I received the data from her.) Verbs are clustered ac-
cording to two kinds of information: subcategorisation frames and selectional preferences. In detail,
Schulte im Walde extracts two kinds of input to the clustering mechanism from the data. The first kind
consists of pairs of verbs and corresponding subcategorisation frames, e.g. (fly, subj) or (fly, subj:obj),
and probabilities associated with these pairs. The second kind is similar, but the argument slots in
the frames are supplemented with selectional preferences expressed by high-level WordNet concepts,
e.g. (fly, subj(<physical_object>) or (fly, subj(<life_form>):obj(<physical_object>).”> Clustering
is performed separately for each kind of pairs, i.e. with and without taking selectional preferences
into account. Furthermore, two different clustering methods are used and evaluated: an iterative clus-
tering approach and the LSC approach, which I employ for grouping frame-argument configurations.
However, note that the pairs to be clustered do not consist of a verb-frame-argument configuration and
a noun, but of a verb and a frame (optionally supplemented with selectional preferences). For eval-
uating the resulting clusters, Levin’s classification is used as a gold standard. A cluster is judged as
accurate if the verbs it contains?* form a subset of a Levin class. Surprisingly, the approach performs
better without including selectional preferences. (Schulte im Walde 1998b) explains this finding as a
problem of data sparseness, which becomes more salient for a more complex statistical model with
more parameters. In more recent work, Schulte im Walde performed similar experiments for Ger-
man data (cf. (Schulte im Walde 2003)). She provides a qualitative evaluation of the verb clusters
retrieved by her experiments and concludes that for some verb classes, accuracy should be improved
by employing more fine-grained selectional preferences, while for other verb classes, preferences at
a lower abstraction level would decrease accuracy. This immediately raises the question of the (verb-
dependent) appropriate generalisation level of selectional preferences, which is a key issue of this
thesis. It would be interesting to investigate to what extent my approach can be employed for the
work of Schulte im Walde to increase the performance of automatic verb classification.

McCarthy (2001) addresses the task of detecting verbal participation in diathesis alternations. She
proposes strategies which, given a particular alternation (e.g. the causative alternation), test whether
verbs that exhibit syntactic argument structures corresponding to both alternation variants really un-
dergo this alternation or not. For example, “break™ and “eat” occur as transitive or intransitive verbs,
i.e. in both subcategorisation variants pertaining to the causative alternation. However, “break™ par-
ticipates in this alternation, whereas “eat” does not. Candidate verbs for a particular alternation are
found by employing subcategorisation information which has been extracted from a parsed corpus.
McCarthy develops several approaches to determine participation or non-participation of these can-
didates in the alternation in question. These approaches are based on the same general idea which
underlies stage 1 of my linking strategy (argument grouping): She measures the similarity of the
frame-argument configurations in the alternation variants which correspond to each other (e.g., for
the causative alternation, the object of the transitive variant is compared with the subject of the in-

BThe estimation of probabilities for these pairs take into account the preference values of the respective concepts, which
are computed according to Ribas’ approach.

2*For each LSC cluster, only the four verbs with the highest class probabilities are taken into account.
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transitive variant). To this end, she employs the tree cut approach of Li and Abe to acquire a tree cut
model for each of the frame-argument configurations to be compared. She investigates several meth-
ods to assess the similarity of these tree cut models. If they are judged to be similar, then the verb
is classified as undergoing the alternation, otherwise it is not. My strategy measures the similarity of
frame-argument configurations by employing a LSC model rather than tree cut models. Both methods
have in common that the models which represent the semantic profiles of the frame-argument con-
figurations perform a kind of smoothing over the nouns occurring as the respective arguments. This
overcomes data sparseness problems. McCarthy also tests a method that measures similarity by just
comparing the bare multisets of nouns which occur as fillers of either frame-argument configuration;
here, the portion of overlap of the two multisets quantifies the frame-argument configurations’ simi-
larity. McCarthy’s experiments show that this method performs worse than the approaches employing
tree cut models.

Note that there is a major conceptual difference between the setting of McCarthy’s approach and
the setting of my linking strategy. McCarthy starts from concrete diathesis alternations and tests the
similarity of frame-argument configurations to judge whether particular verbs take part in these al-
ternations. In contrast, I first establish groups of similar frame-argument configurations regardless
of specific diathesis alternations, and in the following step, I apply role labelling heuristics which
to a large degree are based on knowledge about such alternations. However, my grouping strategy
can straightforwardly be adapted to fit in McCarthy’s setting: given a particular alternation, a verb
under examination undergoes this alternation if the corresponding frame-argument configurations are
grouped together. It would be interesting to test the performance of the argument grouping strategy
for that task.

Finally, the work initiated by (Gildea & Jurafsky 2002) is highly relevant in our context. Gildea and
Jurafsky develop a supervised approach for automatically labelling semantic roles in corpus sen-
tences. This approach uses a training corpus which has been manually annotated with semantic role
markings. This corpus has been compiled within the FrameNet project. For each sentence, the annota-
tion specifies the so-called target word, i.e. a predicate (in most cases a verb) which is associated with
a certain conceptual frame, as well as those constituents that express particular roles of that frame.
For example, the JUDGEMENT frame comprises the roles JUDGE, EVALUEE, and REASON. “blame”
is a verb that invokes this frame. A sentence containing that verb is annotated as follows:

(6.57)  [wmdge She] blames [rvanee the Government] [reason for failing to do enough to help].

The example illustrates that the role inventory used here is less general than the thematic role types
which I deal with in this thesis. (However, Gildea and Jurafsky address the task of learning abstract
thematic roles by mapping the FrameNet role types to corresponding roles like Agent, Patient, Path,
or Proposition.) The sentences annotated in this way are automatically parsed and then employed
for training a statistical classifier (i.e. a statistical model) to be used for role labelling. This model
incorporates probabilities of specific features given a particular role type, which are estimated from
the training data. These features include the target word invoking the frame, the voice of the target
word, the phrase type (NP, PP, etc.) of the constituent expressing the role in question, the grammatical
function of that constituent, its location in the parse tree relative to the target word, and its head word.
The statistical classifier combines these probabilities by a backing-off mechanism and predicts the
appropriate role expressions for unseen sentences. Gildea and Jurafsky investigate two variants of the
labelling task. In the easier variant, the boundaries of the role expressions (i.e. the constituents which
actually express some role) are known and just have to be labelled correctly. In the more difficult
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variant, these boundaries have to be predicted as well. Strategies of generalising from the head words
to overcome the sparse data problem are also investigated, among them LSC clustering and the use of
WordNet. These techniques prove successful for increasing the performance of the system.

Recently, the work of Gildea and Jurafsky has inspired the setup of closely related shared tasks (com-
petitions) of semantic role labelling in association with two different conferences, namely Senseval-
3 and CoNLL-2004. These shared tasks in turn have initiated various research efforts within that
field. For an overview of the respective task definitions as well as the submitted contributions, cf.
(Litkowski 2004) for Senseval-3 and (Carreras & Marques 2004) for CoNLL-2004. For both tasks,
training data had been provided comprising a set of parsed sentences® in which target words were
marked and the constituents realising associated semantic roles were labelled accordingly. For the
Senseval-3 task, these sentences had been taken from the FrameNet corpus; for the CoNLL-2004
task, the data had been extracted from PropBank (cf. (Kingsbury, Palmer & Marcus 2002)), a cor-
pus of syntactic trees (originating from the PennTreebank) supplemented with information about
predicate-argument relations, in particular semantic role identifiers. In both settings, the task was to
employ these data for learning a classifier which assigns semantic role labels to unseen test data.
For these shared tasks, a number of contributions were submitted, applying various machine learn-
ing approaches such as clustering techniques, Brill’s Transformation-based Error-driven Learning,
Maximum Entropy, Memory-Based Learning, Support Vector Machines, etc.

In a sense, the task addressed by (Gildea & Jurafsky 2002) and subsequent work is at the same
time more and less ambitious than my linking strategy and its utilisation for the task of this thesis.
Labelling semantic roles in sentences is equivalent to retrieving a unique assignment of semantic role
types to role-expressing constituents. In contrast, as we have seen in section 6.4, stages 1 and 2 of
my approach in general yield a non-unique mapping between verb-frame-argument configurations
and roles, i.e. a verb-frame-argument configuration (and thus all corresponding data items) might be
associated with multiple role types. The design of the semantic filters in stage 3 aims at indirectly
compensating this shortcoming: As the semantic ranges of those role types which might concurrently
be assigned to an argument group are mutually exclusive, each data item should contribute to only
one filtered role preference model, provided that argument grouping and word sense disambiguation
work correctly. Apart from that, the information learned by the method of Gildea and Jurafsky and
related approaches is more sophisticated than the information acquired by my strategy w.r.t. a further
aspect. While my approach only takes head nouns of verb complements into account, the setting
put forward by Gildea and Jurafsky also includes (in its more difficult variant) the identification of
the boundaries of role expressions, as well as the recognition of roles which are realised as adjuncts
or subconstituents of complements. As the task of this thesis consists in acquiring models of role
realisations which generalise from concrete utterances, it is justifiable that the information I deal with
abstracts from various aspects of individual realisations of roles.

On the other hand, the sophisticated task of semantic role labelling requires supervised learning meth-
ods, at least at the current state of the art. This, in turn, requires training corpora which include anno-
tated role labels. To my knowledge, such data are currently available only for English, as part of the
FrameNet database and in PropBank. FrameNet-like resources are under construction for a few other
languages (German, Spanish, Japanese). In contrast, my linking strategy is an unsupervised approach.
It solely requires resources which are available for a considerable and yet increasing number of lan-
guages. In this context, it is worth noting that this strategy is hybrid, i.e. it integrates a quantitative
clustering approach (stage 1) and rules based on linguistic and conceptual knowledge (stage 2 and 3),

The Senseval-3 data contained complete parse trees, whereas the CONLL-2004 data only contained partial parses
(chunk parses).
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while the classifiers developed by Gildea and Jurafsky and within the work submitted for the shared
tasks of Senseval and CoNLL in general do not incorporate the latter kind of knowledge (apart from
the selection and combination of features). Apparently, linguistic regularities which are stipulated in
my approach are implicitly available in and learned from the role-labelled training data. In summary,
the information effectively acquired by my linking strategy is poorer than the information acquired for
arole labelling system. However, it is sufficient for learning thematic role relations. The unsupervised
method to acquire it is in principle applicable for numerous languages. The necessary adaptation of
the linguistically motivated rules to a specific language requires much less effort than creating suit-
able corpora for supervised training of a linking system. In case such data are available, they are very
useful for the task of learning role relations as well: Corpora which are manually or automatically
role-labelled could immediately be used as input for algorithms learning selectional preferences. But
since the task of this thesis includes the maximal adaptability to different languages, an approach that
does not need such corpora is preferable, at least until they are as widespread across languages as
wordnets themselves.
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Chapter 7

A Detailed Evaluation

This chapter provides an in-depth evaluation of the approach for learning thematic role relations I de-
veloped in this thesis. This evaluation investigates the performance of acquiring relations of the four
role types which I selected for that task and which I elaborately discussed in the previous chapter, i.e.
AGENT, PATIENT, INSTRUMENT, and (to a limited extent) LOCATION. To measure this perfor-
mance, I employ the gold standard introduced in section 5.4. Recall that this gold standard, although
suitable in general, exhibits some inadequacies with regard to the evaluation task. In section 7.1, I
briefly repeat these inadequacies and describe some simple heuristics I applied to overcome them to
a certain degree. Nonetheless, in the following sections we will encounter other shortcomings of the
gold standard which significantly affect the evaluation results. Section 7.2 outlines the general setup
of the evaluation experiments and states the evaluation criteria. After that, I turn to the experiments
themselves: In section 7.3, I report the results of basic performance tests. The subsequent sections
describe elaborations and modifications of these tests, which focus on how different factors influence
performance. First, I investigate the impact of the linking strategy proposed in chapter 6, in particu-
lar the application of semantic filters (section 7.4) and the clustering approach for mapping syntactic
arguments to thematic relations (section 7.5). Other factors I examine comprise the parameters of the
LSC model employed by the learning approach (section 7.6), the treatment of virtual leaves in the
concept hierarchy (section 7.7), and the generalisation level of the noun concepts in the gold standard
(section 7.8). Section 7.9 summarises the main findings of the experiments. In general, it will turn
out that these findings do not only concern the performance of the learning algorithm, but at the same
time provide substantial insights into certain properties of the gold standard and its suitability for the
evaluation task.

7.1 The Gold Standard

In section 5.4, I sketched how I extracted a gold standard of thematic role relations from the Eu-
roWordNet database: Several language-specific wordnets in EWN contain such relations. Replacing
the verb and noun concepts involved in these relations by the corresponding concepts in the Inter-
lingual Index (which essentially consists of all WordNet concepts) yields a set of role relations for
WordNet. As discussed in section 5.4, this gold standard has some considerable weaknesses. Gener-
ally, the translation step from the individual wordnets to WordNet may introduce some inaccuracies
due to deviating selectional preferences of corresponding verbs in different languages, differing hi-
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erarchical structures of the language-specific wordnets, or plain errors, which usually occur in any
manually built resource. However, having inspected a considerable portion of the gold standard (es-
pecially the PATIENT relations, cf. section 5.5.1), I regard the actual amount of such inaccuracies
as tolerably low. A more serious problem concerning the evaluation task is caused by the intended
semantic nature of part of the role relations encoded in EWN. Some relations capture incorporated
arguments of a verb rather than arguments which are realised as syntactic complements, e.g.

(7.1

a. <delouse> INVOLVED_PATIENT <louse#sucking_louse>
b. <silt_up#silt> INVOLVED_PATIENT <deposit#sedimentation#alluvium>

Obviously, the approach proposed in this thesis cannot detect incorporated arguments, since they are
not visible in corpus data. Another kind of relations includes noun concepts which provide an inten-
sional characterisation of a preferred argument rather than a generalisation of the preferred extensional
range, e.g.

(7.2) <addresst#speak_to#turn_to> INVOLVED_PATIENT <addressee>

In this example, <addressee> adequately characterises the preferences of <address> for its Patient.
However, it is unlikely that such intensional characteristics will be captured by an approach that
generalises from corpus instances. In this case, <addressee> is a hyponym of <person> and does
not have any hyponyms itself. In the training corpus, however, the objects of “address” (which are
recognised as Patient by the linking strategy) denote, among others, several kinds of person (e.g.
“captain”, “customer”, or “member”), but not “addressee”. Thus, the learning strategy pursued in this
work would probably acquire <person> as the appropriate generalisation of these instances, but in

any case miss <addressee>, since the corpus instances are not subsumed by that concept in WordNet.

To allow for a fair evaluation, relations like in (7.1) and (7.2) should be excluded. As a manual
inspection of the complete gold standard to eliminate relations would be too time-consuming and
error-prone, I decided to apply a simple heuristic to filter unsuitable relations automatically. This
heuristic rests on the reasonable assumption that role relations which encode incorporations or inten-
sional preferences tend to involve nouns and verbs which are derivationally related to each other. Note
that this assumption holds for (7.1 a.) and (7.2), though not for (7.1 b.). I employed a straightforward
method to automatically recognise derivations: For every relation, each verb form in the verb synset
is compared to each noun form in the noun synset. If a verb string is completely contained in a noun
string or vice-versa, then the relation is regarded as derivational. This strategy recognises the deriva-
tional relationships in (7.1 a.) (“louse” is contained in “delouse”) and (7.2) (“address” is contained in
“addressee”). However, it misses some obvious cases of derivation, e.g. in

(7.3) <producetbring_about#give_rise_to> INVOLVED_PATIENT <product#production>

For this reason, I refined the heuristic as follows: If the comparison of verb and noun forms do not
detect derivation, then delete a trailing ‘e’ from each verb form if present. If a verb string modified in
this way is contained in a noun string, then the relation is regarded as derivational. This also captures
(7.3), since the shortened verb string “produc” is contained in “product”.
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role type #
AGENT 1685
PATIENT 888
INSTRUMENT | 1621
LOCATION 173

Table 7.1: Number of different types of role relations in the gold standard after filtering

If a relation exhibits a derivation, then it is not necessarily adequate to eliminate it. In some cases,
a role relation involves a noun concept that is an intensional characterisation as well as an exten-
sional generalisation of the preferences of the involved verb concept. For example, the noun con-
cept <product#production> in (7.3) subsumes a number of concepts in the WordNet hierarchy, e.g.
<book>, <handcraft>, or <software>. Such relations should not be excluded, because here the
learning algorithm has a “fair chance” to find the noun concept by generalising from corpus instances.
Therefore, I applied the following heuristics to eliminate relations from the gold standard: If a rela-
tion is classified as derivational, then it is deleted if the noun concept has less than 5 subconcepts (i.e.
direct or indirect hyponyms). This strategy is very coarse-grained and does not capture all unsuit-
able relations (e.g. (7.1 b.)). However, the portion of such relations is reduced significantly. Table 7.1
shows the number of relations in the gold standard for each examined role type after the filtering step.
A comparison with the original numbers (cf. table 5.1 on page 140) shows that filtering eliminated
about 25% of AGENT relations, 13% of PATIENT relations, 23% of INSTRUMENT relations, and
21% of LOCATION relations.

7.2 Experimental Setup, Evaluation Criteria, and Parameters

The evaluation experiments described in this chapter have a very similar setup to the experiments
reported in section 5.5. The main difference is that the experiments in the following sections take
into account several role types and include the linking strategy developed in chapter 6 (apart from
section 7.4 and 7.5), whereas the tests in chapter 5 are restricted to the PATIENT relation and employ
the simple linking heuristic that all and only syntactic objects express Patients. All other process-
ing steps remain the same. The training data described in section 5.1 are used. In a preprocessing
phase (following stages 1 and 2 of the linking strategy), word forms are related to WordNet concepts
via the frequency count technique sketched in section 5.3, optionally preceded by the word sense
disambiguation strategy presented in section 5.2. The acquired tree cuts are compared to the gold
standard, separately for each role type. To avoid data sparseness problems, I only take into account
verb concepts with a frequency of at least 50.

The usual measures to assess the performance of an NLP technique are precision and recall. In our
case, recall corresponds to the percentage of relations in the gold standard which are acquired by the
learning algorithm, while precision corresponds to the percentage of acquired relations which occur
in the gold standard. I pointed out already in section 5.5 that, while it is no problem to employ the
recall measure, it would be inappropriate to use the precision measure. The reason for this is that the
gold standard does not necessarily provide an exhaustive encoding of the selectional preferences of a
verb concept. Thus, it is common that the learning algorithm acquires preferred concepts for a verb
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which are perfectly adequate, but which are not covered by the gold standard. Employing precision
for evaluation would punish this behaviour, because it would treat such correctly acquired preferences
as errors. For this reason, the primary measure I adopt to test performance is based on recall. However,
the measure I employ deviates from the above-mentioned definition of recall in one important respect:
It is not based upon all relations in the gold standard, but only on the relations with a verb concept for
which the algorithm effectively retrieves role relations of the examined type. Actually, it happens that
for some verb concepts in the gold standard no relation is learned at all. The reason for this might be
found in any stage of the acquisition process, e.g. the corresponding verb forms do not occur in the
data with sufficient frequency (or not at all), or the correct verb senses are erroneously “disambiguated
away”’, or the semantic filter eliminates all noun concepts which are preferred by the verb concept.
These factors relate to the performance of the learning approach and its evaluation in very different
ways. For example, the evaluation should not penalise a verb’s absence in the data, whereas the
appropriate construction of semantic filters should be subject to evaluation. Unfortunately, however,
it is not trivial (if possible at all) to determine the “responsible factor” in each individual case. Thus,
I decided to leave those verb concepts aside for which no relations are learned. In other words, the
evaluation presented here focuses on the question: If the learning approach proposes some relations
for a verb concept, how good are these proposals? The measure I use does not depend on the absolute
coverage of the gold standard by the acquired results. Recall as defined above would include that
aspect. Therefore, to avoid confusion, I will use the term accuracy instead of recall for the primary
performance measure. I will always explicitly state the respective number of gold standard relations
taken into account in each experiment. This information will be of interest in some cases.

As in section 5.5, accuracy is differentiated as to how precisely a relation learned by the acquisition
algorithm matches a gold standard relation. In particular, the evaluation captures the number and the
percentage of the noun concepts in gold standard relations which were exactly matched, not matched
at all, or matched by more general or more specific concepts in the tree cut models retrieved for the
respective verb concepts. This makes it possible to measure to what extent the cuts exactly agree with
the gold standard, miss it completely, or exhibit a level of generalisation which is too high or too
low. Note that I will consider approximate matches, i.e. concepts on the cut which match the gold
standard with a deviation of at most one hierarchical level, as sufficiently adequate. This is justifiable
because human intuition might slightly vary w.r.t. the exact generalisation level of a verb’s selec-
tional preferences. Even the gold standard itself contains cases of one-level variations, e.g. the two
INVOLVED_PATIENT relations (originating from different wordnets) from <own#have#possess>
to <asset> and <possession>, respectively (cf. section 5.4). In this context, it is worth noting that
the average depth of the WordNet 1.5 noun hierarchy amounts to 7.2. The maximal hierarchy depth
is 15.

Despite the above-mentioned drawbacks of the precision measure in our context, it is highly desirable
to include an evaluation criterion that complements our recall-related accuracy measure in some way.
If the evaluation only concentrated on recall, it would be biased to favour tree cut models with a high
number of preferred concepts. This is because a tree cut that the algorithm learns for a certain verb
(provided it is located at the appropriate generalisation level) is more likely to match the noun con-
cept(s) listed for that verb in the gold standard if it comprises a large amount of preferred concepts.
On the other hand, however, the more concepts a cut contains, the more concepts could be erroneously
acquired. Recall that one of the basic application scenarios assumed for the learning approach devel-
oped in this thesis is the semi-automatic acquisition of role relations: Given a verb concept and a role
relation type, the algorithm acquires a set of corresponding noun concepts, which are manually in-
spected afterwards. Within this scenario, it is preferable that the set of acquired noun concepts is rather
small so that the effort of manual examination is minimised. Therefore, to quantify this manual effort,
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I decided to adopt the average number of preferred noun concepts per verb, i.e. the average number
of relations (of a specific role type) the algorithm learns per verb, as a second evaluation criterion.
Note that this quantity is related to precision. The total number of acquired relations corresponds to
the denominator of the precision ratio. The numerator, i.e. the number of correctly acquired relations,
cannot be determined automatically (s.a.). Hence, although it is not possible to employ the precision
measure, at least its known component is taken into account. I decided to employ the average number
of acquired relations per verb rather than the total number of acquired relations. This is motivated by
two reasons: firstly, the average number of relations per verb is more meaningful w.r.t. the effort of
manual postprocessing; secondly, since the number of verbs captured by the gold standard differs sig-
nificantly for different role types, the only way to compare the amount of relations across role types
is to average this amount over the involved verbs. Hence, I use two measures as evaluation criteria:
accuracy (a modification of recall) and the number of acquired relations per verb. There is no obvious
way of combining these two quantities as, for example, the F-measure combines precision and recall.
Therefore, these two quantities have to be treated as independent characteristics.

Independently from the different aspects I examine in turn in the subsequent sections, there are two
general parameters which have a major impact on the evaluation results. As in section 5.5, I examine
this impact by using different settings in the experiments described below. The first of these parame-
ters is the constant C, which influences the degree of generalisation. I will test several values of this
constant in order to optimise performance. The second parameter is the alternative to employ or to
skip word sense disambiguation when preprocessing the data. The experiments in section 5.5 sug-
gest that WSD might have a contradictory effect on our two evaluation measures, which illustrates
the trade-off between them. On the one hand, WSD reduces the number of acquired relations, since
disambiguation abolishes most of the potential word senses; therefore many verb and noun concepts
are “disambiguated away” so that the algorithm does not acquire relations between them. This is the
desired positive effect. On the other hand, as the WSD approach (like any of the current WSD tech-
niques) is not free of errors, a certain amount of correct senses are dropped as well. This has a negative
effect on accuracy, because the more correct senses are missing, the more concepts which match the
gold standard get lost.! The better the WSD technique, the more this negative effect is reduced, while
maintaining the positive effect of sorting out erroneous candidate relations. Therefore, taking into
account results for both disambiguated and non-disambiguated data gives a rough idea of the poten-
tial of the learning algorithm: An optimised WSD method should approximate the accuracy achieved
with non-disambiguated data and the number of relations per verb acquired with disambiguated data.

7.3 Basic Performance

This section reports the results of experiments with the basic settings as outlined above. In particular,
the series of tests described here employ different values of C, namely 100, 1000, 10 000, 1 000 000,
and 1 000 000 000.

! Note that this is an empirical finding. The sketched interrelation is highly plausible, but not necessary. It could also
happen that concept frequencies and probabilities estimated from non-disambiguated data are negatively biased by erro-
neous senses so that for many concepts matching the gold standard the preference value would indicate dispreference. In
that case, recall would be low for non-disambiguated data. However, the experiments in chapter 5 show that recall is higher
without WSD than with WSD. Obviously, the probabilities of correct concepts overall are still high enough to let them be
classified as preferred, but a high number of erroneous concepts receive high preference values as well.
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Figure 7.1: Gold standard matching rates for AGENT applying different values of C' with WSD

7.3.1 AGENT

Tables 7.2 to 7.6 show the results for the AGENT role. Figures 7.1 and 7.2 provide bar diagrams
which visualise the most interesting matching and mismatching rates with and without employing
WSD, respectively. In general, with growing value of C' accuracy increases as well. The maximal
rate of approximate matches (matches with a deviation of 0 or 1 levels in the hierarchy) is 40%,
accomplished with C' = 1 000 000 000 and without WSD. This value is far below the results achieved
in the experiments reported in section 5.5. The minimal percentage of relations not matched at all by
the acquired cuts is achieved with C' = 1000, where most concepts are matched by over-general
concepts. With C' growing above that value, the portion of relations captured by over-generalisation
decreases, with the side effect that more concepts are completely missed.

Apart from a rather high percentage of gold standard concepts which are not matched at all, a large
amount of concepts is matched by too general concepts on the acquired tree cuts. This would suggest
that the abstraction level of the cuts is too high. However, even for very high values of C, about
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Figure 7.2: Gold standard matching rates for AGENT applying different values of C' without WSD

‘ role type ‘ AGENT

| C | 100
gold standard noun concepts number (percentage)
which are... with WSD | without WSD
exactly matched 0 (0.0%) 1 (0.1%)
matched by 1 level hyponym 0 (0.0%) 0 (0.0%)
matched by 1 level hyperonym 3 (0.5%) 3 (0.3%)
matched by > 2 level hyponym 0 (0.0%) 0 (0.0%)
matched by > 2 level hyperonym | 399 (64.8%) | 382 (44.5%)
not matched 214 (34.7%) | 472 (55.0%)

> | 616 | 858

‘ acquired noun concepts per verb ‘ 4.4 ‘ 2.5

Table 7.2: Basic performance for the AGENT role, C = 100
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‘ role type ‘ AGENT

| C | 1000
gold standard noun concepts number (percentage)
which are... with WSD | without WSD
exactly matched 34 (4.6%) 35 (3.2%)
matched by 1 level hyponym 19 (2.6%) 14 (1.3%)
matched by 1 level hyperonym 28  (3.8%) 12 (1.1%)
matched by > 2 level hyponym 7 (0.9%) 2 (0.2%)
matched by > 2 level hyperonym | 449 (60.8%) | 771 (71.5%)
not matched 201 (27.2%) | 244 (22.6%)

> | 738 | 1078

‘ acquired noun concepts per verb ‘ 37.7 ‘ 33.8

Table 7.3: Basic performance for the AGENT role, C' = 1000

‘ role type ‘ AGENT

| C | 10 000
gold standard noun concepts number (percentage)
which are... with WSD ‘ without WSD
exactly matched 96 (13.0%) | 161 (14.5%)
matched by 1 level hyponym 48  (6.5%) 77 (6.9%)
matched by 1 level hyperonym 58  (7.9%) 87  (7.9%)
matched by > 2 level hyponym 10 (1.4%) 7  (0.6%)
matched by > 2 level hyperonym | 257 (34.8%) | 469 (42.3%)
not matched 269 (36.4%) | 307 (27.7%)

> | 738 | 1108

‘ acquired noun concepts per verb ‘ 106.9 ‘ 176.2

Table 7.4: Basic performance for the AGENT role, C' = 10 000

‘ role type ‘ AGENT

| C | 1000 000
gold standard noun concepts number (percentage)
which are... with WSD ‘ without WSD
exactly matched 108 (14.6%) | 232 (20.9%)
matched by 1 level hyponym 57  (1.7%) | 102  (9.2%)
matched by 1 level hyperonym 70 O95%) | 109  (9.8%)
matched by > 2 level hyponym 11 (1.5%) 9 (0.8%)
matched by > 2 level hyperonym | 203 (27.5%) | 312 (28.2%)
not matched 289 (39.2%) | 344 (31.0%)

> | 738 | 1108

‘ acquired noun concepts per verb ‘ 138.1 ‘ 249.1

Table 7.5: Basic performance for the AGENT role, C' = 1 000 000
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| role type | AGENT \

| C | 1000 000 000 \
gold standard noun concepts number (percentage)
which are... with WSD ‘ without WSD
exactly matched 108 (14.6%) | 232 (20.9%)
matched by 1 level hyponym 57 (1.7%) | 102 (9.2%)

matched by 1 level hyperonym 70  (9.5%) 110  (9.9%)
matched by > 2 level hyponym 11 (1.5%) 9 (0.8%)
matched by > 2 level hyperonym | 202 (27.4%) | 310 (28.0%)

not matched 290 (39.3%) | 345 (31.1%)
> | 738 | 1108 \
‘ acquired noun concepts per verb ‘ 138.5 ‘ 250.6 ‘

Table 7.6: Basic performance for the AGENT role, C' = 1 000 000 000

28% of the matching tree cut concepts are too general. Furthermore, the results hardly differ between
C = 1000 000 and C' = 1 000 000 000, although the latter value exceeds the former one by a
factor of 1000. This means that the lowest possible generalisation level (where the synsets on the
cuts immediately correspond to senses of the nouns in the data) is reached in most cases with C' =
1 000 000, and specificity cannot be increased any more by raising the constant value. To understand
this apparently contradictory behaviour, let us look at some examples. One gold standard relation is

(7.4) <rescue> INVOLVED_AGENT <liberator>

Figure 7.3 shows a part of the tree cut model acquired for <rescue> (C' = 1 000 000, without WSD).
As one can see, the displayed concepts are very specific; they are at the same hierarchical level as
<liberator> (2 hyponym steps from <person>) or even below. Hence, <liberator> is not missing on
the cut due to inappropriate generalisation. The reason is much simpler: “liberator” does not occur as
Agent of “rescue” in the data. We have already encountered examples of very specific noun concepts
in the gold standard. The results presented here suggests two conclusions: firstly, such specific noun
concepts pose a serious data sparseness problem—the danger of their absence in the data is quite
high; secondly, a large portion of AGENT relations in the gold standard make use of such concepts. I
will examine the latter point in more detail in section 7.8.

The considerations in the previous paragraph explain the high percentage of concepts not matched at
all. However, they still do not account for the finding that even cuts at a low abstraction level match
the gold standard to a large extent by too general concepts. Again, to elucidate this I start with an
example. The gold standard contains the following AGENT relations for <travel>:

(7.5)

a. <travel> INVOLVED_ AGENT <traveler#traveller>
b. <travel> INVOLVED_AGENT <voyager>
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concept pref. value

<headmaster#schoolmasterf#fmaster> 27.66

<appointee#appointment > 16.00
<destroyer#ruiner> 310.85
<owner#proprietor> 5.53
<owner#possessor> 3.99
<cipher#cypher#nobody#nonentity > 16.10
<farmer#husbandman#granger> 9.04
< champion#fighter#hero#paladin> 15.67
<custodian#tkeeper#steward > 8.08
<firemant#tfire_fighter#fire-fighter#fire_eater> 485.60
<prison_guard#jailer#gaoler#keeper#screw#turnkey > 35.25
<policeman#police_officer#officer> 14.76
<combatant#battler#belligerent#fighter#scrapper> 12.16

Figure 7.3: Part of the tree cut model for <rescue>

c. <travel> INVOLVED AGENT <wanderer#froamer#rover>
d. <travel> INVOLVED_AGENT <salesman>

Figure 7.4 shows a part of the tree cut model acquired for <travel> (C' = 1 000 000, without WSD).
This part contains several virtual leaves. A virtual leaf is a (virtual) copy of an inner node in the
hierarchy which is treated as a hyponym of that inner node (cf. sections 4.1.1.1 and 5.3). This is
necessary since the tree cut approach requires that each word sense is represented by a leaf. A vir-
tual leaf represents a sense of the words in the synset of the respective concept. Thus, a virtual leaf
captures the “rest” of word senses which are subsumed by the corresponding inner node but not en-
coded by one of its hyponyms. In the figure, virtual leaves are indicated by the prefix ‘REST::". For
example, regarding the concepts in figure 7.4, <traveler#ftraveller> is a hyperonym of, among others,
<passenger#rider>, <guest#invitee>, and <migrant>. The latter concept, in turn, is a hyperonym
of <immigrant>. The virtual leaves <REST::traveler#traveller> and <REST::migrant> represent a
sense of “traveler” and “traveller”, or “migrant”, respectively. The fact that e.g. <REST::migrant>
has a high preference value means that “migrant” occurs as the Agent of “travel” with a probability
that is significantly higher than its overall occurrence probability in the data. Hence, different levels
of abstraction can be found in a tree cut model if these different levels occur in the data to a significant
extent.

Comparing the gold standard relations and the acquired tree cut model for <travel> yields the follow-
ing: relations (7.5 a.)—(7.5 c.) are matched by <REST::traveler#traveller> in the model—a. is exactly
matched, b. and c. are approximately matched since <voyager> and <wanderer> are immediate hy-
ponyms of <traveler>. Relation (7.5 d.) is matched by <REST::worker> in the model. <worker>
subsumes <salesman>, being located three levels higher in the hierarchy. Hence, this match falls
under the category “matched by > 2 level hyperonym”. This example illustrates that tree cut mod-
els might encompass various levels of generalisation introduced by virtual leaves. This explains the
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concept pref. value

<immigrant> 28.16

<REST::migrant> 48.94
<passenger#rider> 11.80
< guest#invitee> 5.77
<REST::travelert#traveller> 10.03
<body_servant> 2.29
<maid#maidservant#housemaid#amah 10.13
<valet#valet_de_chambre#gentleman#gentleman’s_gentleman#man 3.95
< craftsman#artisan#journeyman#artificer> 1.36
<REST::worker> 3.71

Figure 7.4: Part of the tree cut model for <travel>

surprising effect that even very specific cuts match gold standard concepts at a too general level. The
evaluation results indicate that this is a common case. Very specific concepts, which do not occur in
the data (indeed, “salesman” does not occur as a complement of “travel” either), can often “at least”
be captured by general virtual leaves.

The overall relevance of virtual leaves, their status, and their treatment within the evaluation exper-
iments deserve further discussion. For example, I treat a match by a virtual leaf as a match by the
corresponding inner node. This decision is justifiable, but not trivial. Section 7.7 will address virtual
leaves in more detail.

As expected, the average number of acquired concepts per verb increase with C' (visualised by the
bar diagram in figure 7.5). Again, for C' > 1 000 000, no noteworthy difference can be observed.
If the cuts are already at the lowest possible abstraction level, the number of concepts has reached
its maximum. In general, disambiguation reduces both accuracy and the number of concepts. As
explained in section 7.2 above, this is the expected behaviour. Only for low values of C (100 and
1000), the reverse holds. It seems that in these cases, the accumulation of erroneous senses leads to
inadequate results (cf. footnote 1 on page 213). For higher values of C, the reduction of concepts
achieved by the WSD step is much more substantial than the accompanying loss of accuracy. For
C = 10 000, WSD reduces the average number of concepts from 176.2 to 106.9, which means a
decrease of about 39%. The corresponding decrease of accuracy is moderate (from 29.3% to 27.4%
approximate hits). For C' = 1 000 000, the drop of accuracy caused by WSD is more significant
(39.9% vs. 31.8% approximate hits), but the reduction of concepts (about 45%) is even higher. As
discussed already, this is an indirect indicator of the performance of the employed disambiguation
strategy: most of the concepts that are dropped by disambiguation are—as it should be—erroneous
senses.

219



500 B with WSD

@ 400 - --- [ ] without WSD |
=)
8 300 ——-----——————————— -
G
o
5 200 =
O
£ 100 .
“ o
S [a] ) o [a]
[a] () (] S S
— (e} [e) (e] [a]
— o o )
— o [}
) (e}
— o
()
S
C =

Figure 7.5: Average number of acquired concepts per verb for AGENT applying different values of
C with and without WSD

7.3.2 PATIENT

Tables 7.7 to 7.11 show the results for the PATIENT role. Figures 7.6 and 7.7 provide corresponding
bar diagrams of matching / mismatching rates. Compared to the results for the AGENT role, it is most
striking that the accuracy results are much better: the maximal percentage of approximate matches is
69.1%, achieved with C' = 1 000 000 (or higher) and without disambiguation. This is almost twice as
much as the corresponding value for AGENT (39.9%). On the other hand, the amount of over-general
matches and complete mismatches is rather low (13.4% and 13.0%, respectively, given the parameters
just mentioned). As we will see later, the reason for this discrepancy is a heterogeneity in the gold
standard across different role types: for PATIENT, a larger amount of encoded noun concepts is at
a relatively general level, while such concepts occur to a lower percentage within AGENT relations.
For example, although almost 90% of AGENT relations in the gold standard involve noun concepts
subsumed by <person> (cf. section 6.5), only 7 AGENT relations contain this concept itself. In
contrast, 29 PATIENT relations in the gold standard contain <person>, although only about 10% of
them include noun concepts denoting some kind of person. This implies that very specific concepts,
which pose the problems described in the previous section, play a minor role for PATIENT than they
do for AGENT. I will examine the correlation between the generalisation level in the gold standard
and the performance of the acquisition algorithm for the different role types in section 7.8.

Another major difference between the results for AGENT and PATIENT is that with the latter role
type the average number of acquired concepts (visualised in figure 7.8) is much higher, namely up
to 782.2 (with WSD) or 1743.9 (without WSD), as opposed to 138.5 / 250.6 for AGENT. This is
an expected finding, since the semantic range of PATIENT is much more diverse than the one for
AGENT so that no semantic filter for the PATIENT role can be employed (cf. section 6.5).

Apart from these differences, it turns out that in principle, most of the tendencies noted for the AGENT
role can be observed here as well. Accuracy improves with growing C, as does the average number
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Figure 7.6: Gold standard matching rates for PATIENT applying different values of C' with WSD

‘ role type ‘ PATIENT ‘
C [ 100 \
gold standard noun concepts number (percentage)
which are... with WSD | without WSD
exactly matched 32 (112%) | 39 (8.4%)
matched by 1 level hyponym 14 (4.9%) 6 (1.3%)
matched by 1 level hyperonym 27 (95%) | 47 (10.2%)
matched by > 2 level hyponym 2 (0.7%) 1 (0.2%)
matched by > 2 level hyperonym | 97 (34.0%) | 193 (41.8%)
not matched 113 (39.6%) | 176 (38.1%)
> | 285 | 462 |
‘ acquired noun concepts per verb ‘ 29.8 ‘ 21.7 ‘

Table 7.7: Basic performance for the PATIENT role, C' = 100

221



100 Bl cxact match

B 1 level deviation

90— R
[ ] over-generalisation

I [ ] not matched — — -

Matching / mismatching rate (%)

o o o o o
S S S S S
— S S S S
— o o o

— o o

S S

— o

S

S

o—

Figure 7.7: Gold standard matching rates for PATIENT applying different values of C' without WSD

‘ role type ‘ PATIENT ‘
C [ 1000 \
gold standard noun concepts number (percentage)
which are... with WSD | without WSD
exactly matched 69 (24.2%) | 128 (27.7%)
matched by 1 level hyponym 30 (10.5%) | 43  (9.3%)

matched by 1 level hyperonym 38 (133%) | 64 (13.9%)
matched by > 2 level hyponym 11 (3.9%) 10 (2.2%)
matched by > 2 level hyperonym | 51 (17.9%) | 132 (28.6%)

not matched 86 (30.2%) | 85 (18.4%)
> | 285 | 462 |
‘ acquired noun concepts per verb ‘ 242.5 ‘ 339.3 ‘

Table 7.8: Basic performance for the PATIENT role, C' = 1000
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‘ role type ‘ PATIENT ‘

C [ 10000 \
gold standard noun concepts number (percentage)
which are... with WSD | without WSD
exactly matched 87 (30.5%) | 180 (39.0%)
matched by 1 level hyponym 54 (189%) | 81 (17.5%)

matched by 1 level hyperonym 25  (8.8%) | 48 (10.4%)
matched by > 2 level hyponym 20 (7.0%) 17 (3.7%)
matched by > 2 level hyperonym | 34 (11.9%) | 71 (15.4%)

not matched 65 (22.8%) 65 (14.1%)
> | 285 | 462 |
| acquired noun concepts per verb | 611.1 | 1372.0 ‘

Table 7.9: Basic performance for the PATIENT role, C' = 10 000

| role type | PATIENT |
C [ 1000 000 \
gold standard noun concepts number (percentage)
which are... with WSD ‘ without WSD
exactly matched 90 (31.6%) | 188 (40.7%)
matched by 1 level hyponym 54 (18.9%) | 89 (19.3%)

matched by 1 level hyperonym 26 9.1%) | 42 (9.1%)
matched by > 2 level hyponym 23 (8.1%) | 21 (4.5%)
matched by > 2 level hyperonym | 31 (109%) | 62 (13.4%)

not matched 61 (21.4%) | 60 (13.0%)
> | 285 | 462 |
‘ acquired noun concepts per verb ‘ 772.8 ‘ 1739.4 ‘

Table 7.10: Basic performance for the PATIENT role, C' = 1 000 000

| role type | PATIENT \
| C | 1000 000 000 |
gold standard noun concepts number (percentage)
which are... with WSD ‘ without WSD
exactly matched 90 (31.6%) | 188 (40.7%)
matched by 1 level hyponym 54 (189%) | 88 (19.0%)

matched by 1 level hyperonym 26 (9.1%) | 43  (9.3%)
matched by > 2 level hyponym 23 @8.1%) | 21 (4.5%)
matched by > 2 level hyperonym | 31 (109%) | 62 (13.4%)

not matched 61 (21.4%) | 60 (13.0%)
D> | 285 | 462 |
‘ acquired noun concepts per verb ‘ 782.2 ‘ 1743.9 ‘

Table 7.11: Basic performance for the PATIENT role, C' = 1 000 000 000
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Figure 7.8: Average number of acquired concepts per verb for PATIENT applying different values of
C with and without WSD
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Figure 7.9: Gold standard matching rates for INSTRUMENT applying different values of C' with
WSD

of noun concepts per verb; however, no significant changes take place for C' > 1 000 000, indicating
that the lowest abstraction level has been reached. Except for C' = 100, disambiguation results in a
substantial reduction of the number of concepts (more than a half for C' > 10 000), accompanied by
a much less dramatic decrease of accuracy (e.g. from 69.1% to 59.6% for C' = 1 000 000).

7.3.3 INSTRUMENT

Tables 7.12 to 7.16 show the results for the INSTRUMENT role; figures 7.9 to 7.11 provide the cor-
responding bar diagrams. Major tendencies that could be observed for the role types in the previous
sections apply here as well: increasing C' improves accuracy and increases the number of noun con-
cepts per verb up to a certain point (1 000 000) beyond which no noteworthy changes take place;
WSD decreases accuracy to some extent (except for C' < 1000) while reducing the number of noun
concepts substantially (except for C' = 100). The most striking observation here is that accuracy is
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Figure 7.10: Gold standard matching rates for INSTRUMENT applying different values of C' without
WSD

even worse than for the AGENT role: the highest achieved rate of approximate hits is 31.4%, opposed
to 40% with AGENTs. More seriously, the percentage of entirely unmatched concepts is significantly
higher (50.6% or more; the corresponding rate for AGENT varies between about 20% and 30% for
C' > 1000 without WSD).

A manual inspection of a random sample of the unmatched gold standard relations makes this drop
of accuracy become plausible. Obviously, a major portion of INSTRUMENT relations encode incor-
porations which do not coincide with derivational patterns so that the filter mechanism sketched in
section 7.1 is not able to eliminate them. Some examples are listed in (7.6) to (7.12):

(7.6) <step#take_a_step> INVOLVED_INSTRUMENT <leg>
(7.7) <jump#leap#bound#spring> INVOLVED_INSTRUMENT <oil >

(7.8) <embark> INVOLVED_INSTRUMENT <landing_stage>
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Figure 7.11: Average number of acquired concepts per verb for INSTRUMENT applying different
values of C' with and without WSD

| role type | INSTRUMENT |
C [ 100 \
gold standard noun concepts number (percentage)
which are... with WSD | without WSD
exactly matched 10 (2.7%) 6 (1.2%)
matched by 1 level hyponym 0 (0.0%) 1 (0.2%)
matched by 1 level hyperonym 12 (3.2%) 9 (1.8%)
matched by > 2 level hyponym 1 (0.3%) 0 (0.0%)
matched by > 2 level hyperonym | 97 (26.1%) | 101 (19.6%)
not matched 252 (67.7%) | 397 (77.2%)
> | 372 | 514 |
‘ acquired noun concepts per verb ‘ 13.6 ‘ 5.1 ‘

Table 7.12: Basic performance for the INSTRUMENT role, C' = 100
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| role type | INSTRUMENT |

C [ 1000 \
gold standard noun concepts number (percentage)
which are... with WSD | without WSD
exactly matched 40 (9.6%) | 59 (8.3%)
matched by 1 level hyponym 11 26%) | 19 (2.7%)
matched by 1 level hyperonym 32 (17%) | 42 (5.9%)
matched by > 2 level hyponym 6 (1.4%) 0 (0.0%)
matched by > 2 level hyperonym | 53 (12.7%) | 174 (24.5%)
not matched 276 (66.0%) | 415 (58.5%)

> | 418 | 709 |

‘ acquired noun concepts per verb ‘ 99.4 ‘ 125.1 ‘

Table 7.13: Basic performance for the INSTRUMENT role, C' = 1000

| role type | INSTRUMENT |
C [ 10000 \
gold standard noun concepts number (percentage)
which are... with WSD ‘ without WSD
exactly matched 37 (94%) | 109 (15.4%)
matched by 1 level hyponym 23 (58%) | 52 (7.3%)
matched by 1 level hyperonym 23 (5.8%) | 46 (6.5%)
matched by > 2 level hyponym 7 (1.8%) 8 (1.1%)
matched by > 2 level hyperonym | 37  (94%) | 126 (17.8%)
not matched 267 (67.8%) | 368 (51.9%)
> | 394 | 709 |
‘ acquired noun concepts per verb ‘ 213.0 ‘ 522.0 ‘

Table 7.14: Basic performance for the INSTRUMENT role, C' = 10 000

| role type | INSTRUMENT |
| C | 1000 000 |
gold standard noun concepts number (percentage)
which are... with WSD ‘ without WSD
exactly matched 39 (99%) | 118 (16.6%)
matched by 1 level hyponym 25  (6.3%) | 58 (8.2%)
matched by 1 level hyperonym 21 (53%) | 47 (6.6%)
matched by > 2 level hyponym 9 (23% | 10 (1.4%)
matched by > 2 level hyperonym | 36  (9.1%) | 117 (16.5%)
not matched 264  (67.0%) | 359 (50.6%)
> | 394 | 709 \
‘ acquired noun concepts per verb ‘ 253.5 ‘ 658.7 ‘

Table 7.15: Basic performance for the INSTRUMENT role, C' = 1 000 000
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| role type | INSTRUMENT |

| C | 1000 000 000 \
gold standard noun concepts number (percentage)
which are... with WSD ‘ without WSD
exactly matched 39 (9.9%) | 119 (16.8%)
matched by 1 level hyponym 26 (6.6%) | 57 (8.0%)
matched by 1 level hyperonym 21 5.3%) | 47 (6.6%)
matched by > 2 level hyponym 9  (2.3%) 10  (1.4%)
matched by > 2 level hyperonym | 36  (9.1%) | 117 (16.5%)
not matched 263 (66.8%) | 359 (50.6%)

> | 394 | 709 |

‘ acquired noun concepts per verb ‘ 254.9 ‘ 660.1 ‘

Table 7.16: Basic performance for the INSTRUMENT role, C' = 1 000 000 000

(7.9) <pour#cause_to_run> INVOLVED_INSTRUMENT <pitcher#tewer>
(7.10) <smell#inhale_odor_of> INVOLVED_INSTRUMENT <nose#olfactory_organ>

(7.11) <pay#make_a_payment> INVOLVED_INSTRUMENT
<medium_of_exchange#monetary_system>

(7.12) <offer#proffer#present_for_acceptance> INVOLVED_INSTRUMENT <word>

The nouns in these relations (some of which appear somewhat unconventional to me) are hardly, if at
all, expressed as instrumental complements of the corresponding verbs. Thus, they cannot be acquired
from corpus data.

7.3.4 LOCATION

Tables 7.17 to 7.21 show results for the LOCATION role. I list these results for the sake of complete-
ness, but will not draw substantial conclusions from them. The reason for this becomes clear if one
looks at the number of gold standard relations which are included for evaluation (the row indicated by
">""): From the 173 LOCATION relations in the gold standard which remain after filtering deriva-
tional patterns (cf. table 7.1 on page 211), only 19 (with WSD) or, respectively, 27 (without WSD)
relations pertain to verb concepts which appear in the data with sufficient frequency to be taken into
account.> This is an unexpected finding. Unfortunately, this is not enough to be suitable as a basis
for evaluation. A difference of matching or not matching one single relation amounts to a difference
in accuracy of about 5% with disambiguation and 4% without disambiguation. Therefore, the results

%1 would like to emphasise that the frequency criterion I employ (verb concepts must have a frequency of at least 50)
is not primarily responsible for this discrepancy. The 173 LOCATION relations pertain to 116 different verb concepts
altogether. From these, only 42 concepts without WSD and 25 concepts with WSD occur in the training data (or, more
precisely, are extracted from them) at all.
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| role type | LOCATION |

C [ 100 |
gold standard noun concepts number (percentage)
which are... with WSD ‘ without WSD
exactly matched 4 (21.1%) | 2 (8.0%)
matched by 1 level hyponym 0 (©00%) | 0 (0.0%)

matched by 1 level hyperonym 2 (105%) | 3 (12.0%)
matched by > 2 level hyponym 0 (©00%) | 0 (0.0%)
matched by > 2 level hyperonym | 10 (52.6%) | 13 (52.0%)

not matched 3 (158%) | 7 (28.0%)
> | 19 | 25 \
‘ acquired noun concepts per verb ‘ 16.2 ‘ 10.5 ‘

Table 7.17: Basic performance for the LOCATION role, C' = 100

would be rather unreliable, depending too much on idiosyncratic factors. Therefore, I will exclude the
LOCATION type from further evaluation.

For the experiments described in the following sections, the value of C' will be fixed to 1 000 000. For
all role types, this value essentially yields the best accuracy rates.

7.4 The Impact of Semantic Filtering

In this section, I examine the impact of employing semantic filters. Recall that semantic filters are
applied to the acquired tree cuts to narrow down their semantic range as adequate for the respective
role type (cf. section 6.5). For each role type, the corresponding semantic filter demarcates a certain
part of the WordNet hierarchy which represents the typical semantic range of that role. (For example,
for the AGENT role, this range comprises all concepts subsumed by <life_form>, <causal_agent>,
and <group#grouping>.) From a tree cut model acquired for a certain role, the corresponding filter
selects the concepts which are within this range and discards the other concepts on the cut. To test
the impact of such filters, I performed the evaluation experiments without applying semantic filters.
Tables 7.22 and 7.23 show the results for AGENT and INSTRUMENT, respectively. (Recall that for
PATIENT, no semantic filter is employed.) Figures 7.12 and 7.13 visualise the comparison of accuracy
and average number of acquired concepts with and without filtering.

Comparing the AGENT results in table 7.22 with the corresponding results in section 7.3 (i.e. table
7.5 on page 216), one can state two facts: firstly, semantic filtering decreases accuracy to a fairly low
extent. The rate of approximate matches is reduced from 32.8% to 31.8% with WSD and from 42.5%
to 39.9% without WSD. This finding is expectable, since the filters are defined in a way that at least
90% of the gold standard relations of each role type pass the filter. Thus, the relations eliminated by
the filter could only cover a small amount of gold standard relations so that their absence does not

230



‘ role type

| LOCATION

| C

| 1000

gold standard noun concepts
which are...

number (percentage)
with WSD | without WSD

exactly matched 6 (Bl.6%) | 5 (18.5%)
matched by 1 level hyponym 2 (10.5%) | 2 (7.4%)
matched by 1 level hyperonym I (53%) | 1 (3.7%)
matched by > 2 level hyponym 0 (©00%) | 0 (0.0%)
matched by > 2 level hyperonym 1 (5.3%) | 13 (48.1%)
not matched 9 474%) | 6 (22.2%)
> | 19 | 27 |
‘ acquired noun concepts per verb ‘ 87.0 ‘ 92.4 ‘

Table 7.18: Basic performance for the LOCATION role, C' = 1000

‘ role type

| LOCATION

| C

| 10 000

gold standard noun concepts
which are...

number (percentage)
with WSD | without WSD

exactly matched 8 (42.1%) | 8 (29.6%)
matched by 1 level hyponym 3 (158%) | 4 (14.8%)
matched by 1 level hyperonym I (3% | 5 (18.5%)
matched by > 2 level hyponym 0 (©00%) | 0 (0.0%)
matched by > 2 level hyperonym | 0  (0.0%) | 4 (14.8%)
not matched 7 (B68%)| 6 (22.2%)
> | 19 | 27 \
‘ acquired noun concepts per verb ‘ 172.5 ‘ 486.7 ‘

Table 7.19: Basic performance for the LOCATION role, C' = 10 000

‘ role type

| LOCATION

| C

[ 1,000 000

gold standard noun concepts
which are...

number (percentage)
with WSD | without WSD

exactly matched 8 (42.1%) | 8 (29.6%)
matched by 1 level hyponym 3 (158%) | 5 (18.5%)
matched by 1 level hyperonym I (3% | 4 (14.8%)
matched by > 2 level hyponym 0 (©0%) | 0 (0.0%)
matched by > 2 level hyperonym | 0  (0.0%) | 4 (14.8%)
not matched 7 (B68%)| 6 (22.2%)
(> | 19 | 27 \
‘ acquired noun concepts per verb ‘ 193.4 ‘ 606.9 ‘

Table 7.20: Basic performance for the LOCATION role, C' = 1 000 000
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‘ role type ‘ LOCATION ‘

IE [ 1000 000 |
gold standard noun concepts number (percentage)
which are... with WSD | without WSD

exactly matched 42.1%) | 8 (29.6%)
matched by 1 level hyponym (15.8%) (18.5%)
matched by 1 level hyperonym (5.3%) (14.8%)

8
3 5
1 4
matched by > 2 level hyponym 0 (©00%) | O (0.0%)
0 4
7 6

matched by > 2 level hyperonym (0.0%) (14.8%)

not matched (36.8%) (22.2%)
> | 19 | 27 \
‘ acquired noun concepts per verb ‘ 194.5 ‘ 608.4 ‘

Table 7.21: Basic performance for the LOCATION role, C' = 1 000 000 000
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Figure 7.12: Accuracy (approximate match rates) for AGENT and INSTRUMENT with and without
semantic filtering
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Figure 7.13: Average number of acquired concepts per verb for AGENT and INSTRUMENT with
and without semantic filtering
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‘ role type ‘ AGENT
| C | 1000 000
gold standard noun concepts number (percentage)
which are... with WSD ‘ without WSD
exactly matched 112 (15.2%) | 251 (22.7%)
matched by 1 level hyponym 59  (8.0%) 108  (9.7%)
matched by 1 level hyperonym 71 (9.6%) | 112 (10.1%)
matched by > 2 level hyponym 13 (1.8%) 9 (0.8%)
matched by > 2 level hyperonym | 215 (29.1%) | 330 (29.8%)
not matched 268 (36.3%) | 298 (26.9%)
> | 738 | 1108 |
‘ acquired noun concepts per verb ‘ 554.1 ‘ 1202.6 ‘

Table 7.22: Results for the AGENT role without semantic filtering

| role type | INSTRUMENT

| C | 1000 000 |
gold standard noun concepts number (percentage)
which are... with WSD ‘ without WSD
exactly matched 42 (10.7%) | 128 (18.1%)
matched by 1 level hyponym 27 (69%) | 63  (8.9%)
matched by 1 level hyperonym 22 (5.6%) | 50 (7.1%)
matched by > 2 level hyponym 9 23% | 12 (1.7%)
matched by > 2 level hyperonym | 44 (11.2%) | 144 (20.3%)
not matched 250 (63.5%) | 312 (44.0%)

> | 394 | 709 \

‘ acquired noun concepts per verb ‘ 442.3 ‘ 1147.4 ‘

Table 7.23: Results for the INSTRUMENT role without semantic filtering
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have a major effect on accuracy. On the other hand, semantic filtering leads to a dramatic reduction
of the acquired noun concepts per verb: from 554.1 to 138.1 with WSD and from 1202.6 to 249.1
without WSD. This is a reduction of more than 75%.

For INSTRUMENT, the impact of semantic filtering is comparable: The comparison of table 7.23
with the corresponding table 7.15 on page 228 shows that applying the filter yields a small reduction
of approximate matches form 23.2% to 21.6% with WSD and from 34.1% to 31.4% without WSD.
Conversely, the average number of noun concepts decreases significantly, namely from 442.3 to 253.5
with WSD and from 1147.4 to 658.7 without WSD, a reduction of about 45%.3

Overall, one can state that the semantic filters work as intended. The significant reduction of acquired
“candidate relations” is very useful within the semi-automatic acquisition scenario, since this imme-
diately reduces the effort of manual inspection of these candidates. This outweighs the moderate loss
of accuracy semantic filtering brings about.

7.5 The Impact of Argument Clustering

After testing the impact of semantic filtering, this section examines the effect that the approach of
clustering arguments and determining their roles developed in chapter 6 (section 6.2 to section 6.4)
has on the acquired results. Instead of employing this rather sophisticated clustering strategy to map
syntactic arguments to thematic roles, one could apply simplistic heuristics like Use all subjects to
acquire AGENT relations or, as in section 5.5, Use all objects to acquire PATIENT relations. In the
following, I test how the results look like if these two heuristics are employed.

Comparing these two rules to the argument clustering approach is particularly interesting because
the latter is supposed to cope with a common phenomenon which the simple rules do not take into
account, namely the causative/inchoative alternation. As exhaustively discussed in the previous chap-
ter, the linking approach should recognise that e.g. the subject in the intransitive sentence “The vase
broke.” (which corresponds to the object in the analogous transitive sentence “The man broke the
vase.”) realises a Patient so that the pair (break, vase) serves as input for learning PATIENT relations.
In contrast, the simplifying rules just stated employ (break, vase) for acquiring AGENT relations.
However, the semantic filter would eliminate the corresponding concept(s). Moreover, only if “vase”
also occurred as object of “break” in the data, then the simple heuristics would also take this pair into
account for learning PATIENT relations. However, if “vase” did not occur as object of “break”, but
nouns similar to “vase” did, then the clustering strategy still could recognise that this noun expresses
a Patient though it is only found in subject position.

These considerations lead to the following expectations regarding the performance with clustering vs.
with simple linking heuristics: For AGENT, there should be no significant differences; the heuristics
include some data items which are inadequate, but the corresponding concepts are filtered out. For
PATIENT, the clustering technique includes data items which are missed by the heuristics. Therefore,
clustering should yield a higher coverage of the gold standard relations and maybe improve accuracy.

Tables 7.24 and 7.25 show the results obtained by using the above-mentioned heuristics. A compari-
son with the corresponding tables 7.5 on page 216 and 7.10 on page 223 yields the following: Overall,

3This reduction rate does not reach the corresponding rate for AGENT, because the semantic range determined for the
AGENT role is much narrower than the range for the INSTRUMENT role, cf. section 6.5.
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Figure 7.14: Accuracy (approximate match rates) for AGENT and PATIENT with the linking strategy
and with simple heuristics

| role type | AGENT ‘
IE [ 1000 000 |
gold standard noun concepts number (percentage)
which are... with WSD | without WSD
exactly matched 108 (14.1%) | 239 (20.8%)
matched by 1 level hyponym 57  (1.5%) | 112 (9.8%)

matched by 1 level hyperonym 69 (9.0%) | 109 (9.5%)
matched by > 2 level hyponym 14 (1.8%) 10 (0.9%)
matched by > 2 level hyperonym | 218 (28.5%) | 318 (27.7%)

not matched 298 (39.0%) | 360 (31.4%)
> | 764 | 1148 \
‘ acquired noun concepts per verb ‘ 135.7 ‘ 248.5 ‘

Table 7.24: Results for the AGENT role, drawn from all subjects
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AGENT and PATIENT with the linking strategy and with simple heuristics
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| role type | PATIENT |

| C | 1000 000 \
gold standard noun concepts number (percentage)
which are... with WSD ‘ without WSD
exactly matched 80 (30.0%) | 166 (40.7%)
matched by 1 level hyponym 49 (184%) | 77 (18.9%)

matched by 1 level hyperonym 28 (10.5%) | 43 (10.5%)
matched by > 2 level hyponym 18  (6.7%) 17 (4.2%)
matched by > 2 level hyperonym | 33 (124%) | 52 (12.7%)

not matched 59 (22.1%) | 53 (13.0%)
> | 267 | 408 \
‘ acquired noun concepts per verb ‘ 669.4 ‘ 1530.0 ‘

Table 7.25: Results for the PATIENT role, drawn from objects only

the accuracy rates are fairly similar (cf. figure 7.14). Thus, the clustering strategy neither improves
nor impairs performance significantly in this respect. However, there are remarkable changes con-
cerning the coverage of the gold standard (row in the tables labelled with “» "), i.e. the number of
gold standard relations which can be taken into account for evaluation (cf. figure 7.15). Recall that,
as motivated in section 7.2, the evaluation procedure considers only those gold standard relations
that contain a verb concept for which the learning algorithm effectively does acquire any relations
of the inspected role type. Without WSD, the number of considered gold standard relations increases
from 408 to 462. As explained above, this behaviour is expected since more data items are taken into
account. Along with that it is not surprising that the average number of acquired noun concepts is
significantly higher with clustering (772.8 / 1739.4 vs. 669.4 / 1530). Regarding AGENT, it is strik-
ing that clustering decreases the coverage of gold standard relations (e.g. without WSD from 1148 to
1108). Obviously, some data items which really represent Agents are erroneously misclassified by the
clustering approach. However, taking into account that there are twice as many AGENT relations as
PATIENT relations in the gold standard (cf. table 7.1 on page 211), the coverage increase of PATIENT
relations outweighs the coverage decrease of AGENT relations.

7.6 The Impact of the LSC Model

One important component of the approach of learning role relations proposed in this thesis is the
latent semantic class (LSC) model (cf. section 3.3). This model is applied twice; once for word sense
disambiguation (cf. section 5.2.2) and once within the linking approach, to cluster similar arguments
of a verb (cf. section 6.2). For training an LSC model, one has to fix two variables in advance: the
number of latent semantic classes and the number of training iterations. The LSC model I used so
far comprises 35 classes and was trained with 400 iterations. One might expect that changing these
variables affects the performance of the WSD and/or the linking component. For example, a higher
number of classes and iterations yields a more fine-grained model that might increase the performance
of WSD and/or argument clustering (because this model exhibits a higher discriminative power) or
decrease this performance (because the larger amount of parameters to be estimated causes a sparse-
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Figure 7.16: Accuracy (approximate match rates) for AGENT, PATIENT, and INSTRUMENT with
the original and an alternative LSC model

data problem). To test whether the setting of these variables has an effect on the performance of
the acquisition approach, I did experiments which employ an alternative LSC model with different
settings, namely 70 classes and 800 iterations. Tables 7.26 to 7.28 show the results for AGENT, PA-
TIENT, and INSTRUMENT, respectively. The corresponding results with the “original” LSC model
are listed in table 7.5 on page 216, table 7.10 on page 223, and table 7.15 on page 228. Figures 7.16
and 7.17 provide bar diagrams which allow an immediate comparison.

Overall, the results obtained with the two LSC models are comparable. The patterns of accuracy rates
are very similar and the respective average numbers of noun concepts are very close. For AGENT and
PATIENT, the originally employed model yields slightly better accuracy rates, while for INSTRU-
MENT, the results are slightly better using the alternative model. Likewise, the impact of changing
the LSC model on the average number of concepts is nonuniform. Hence, no general tendency can
be observed which favours one model over the other. This experiment provides no evidence for the
hypothesis that the selection of the LSC model parameters plays a major role for our task. However,
this is a preliminary finding. To ultimately disprove—or prove—a general relationship between the
employed LSC model and performance, a systematic empirical investigation employing a larger num-
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‘ role type ‘ AGENT ‘
C [ 1000 000 \
gold standard noun concepts number (percentage)
which are... with WSD ‘ without WSD
exactly matched 101 (13.8%) | 232 (20.8%)
matched by 1 level hyponym 51 (6.9%) 103 (9.2%)
matched by 1 level hyperonym 68  (9.3%) 109  (9.8%)
matched by > 2 level hyponym 13 (1.8%) 11 (1.0%)
matched by > 2 level hyperonym | 215 (29.3%) | 311 (27.8%)
not matched 286 (39.0%) | 351 (31.4%)
D> | 734 | 1117 |
‘ acquired noun concepts per verb ‘ 133.5 ‘ 247.6 ‘

Table 7.26: Results for the AGENT role with an alternative LSC model

| role type | PATIENT \
IE [ 1000 000 |
gold standard noun concepts number (percentage)
which are... with WSD ‘ without WSD
exactly matched 89 (31.1%) | 184 (39.8%)
matched by 1 level hyponym 51 (17.8%) | 85 (18.4%)
matched by 1 level hyperonym 29 (10.1%) | 42  (9.1%)
matched by > 2 level hyponym 21 (73%) | 25 (5.4%)
matched by > 2 level hyperonym | 35 (12.2%) | 60 (13.0%)
not matched 61 (21.3%) | 66 (14.3%)
> | 286 | 462 \
‘ acquired noun concepts per verb ‘ 734.1 ‘ 1706.9 ‘

Table 7.27: Results for the PATIENT role with an alternative LSC model

| role type | INSTRUMENT

IE [ 1000 000 |
gold standard noun concepts number (percentage)
which are... with WSD ‘ without WSD
exactly matched 55 (12.6%) | 128 (17.7%)
matched by 1 level hyponym 24 (5.5%) | 57 (7.9%)
matched by 1 level hyperonym 29  (6.6%) | 46 (6.4%)
matched by > 2 level hyponym 11 (2.5%) 9 (1.2%)
matched by > 2 level hyperonym | 36  (8.2%) | 97 (13.4%)
not matched 282 (64.5%) | 387 (53.5%)

> | 437 | 724 \

‘ acquired noun concepts per verb ‘ 257.8 ‘ 650.6 ‘
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ber of different LSC models (i.e. models with different numbers of classes and iterations) would be
necessary.

7.7 The Impact of Virtual Leaves

In section 7.3.1, I explained the role that virtual leaves on the acquired tree cuts play for matching gold
standard relations. The current section investigates the performance achieved without taking virtual
leaves into account. But before turning to the actual experiments, I would like to prepend a general
discussion about the proper treatment of virtual leaves in the context of our learning approach.

Consider again the example in section 7.3.1. Figure 7.4 on page 219 displays the tree cut model ac-
quired for the Agent of <travel>. The gold standard relations for this verb concept are listed under
(7.5). I stated above that all these relations are matched by virtual leaves on the tree cut: <traveler>,
<voyager>, and <wanderer> are exactly or approximately hit by <REST::traveler#traveller>;
<salesman> is matched by the over-general concept <REST::worker>. However, in a strict
technical sense, these assertions are not correct. In the hierarchy augmented by virtual leaves,
<REST::traveler> is an immediate hyponym of <traveler>. Hence, the former concept matches the
latter only approximately, not exactly. Furthermore, <voyager>, and <wanderer> are not matched by
<REST::traveler> at all, since all three concepts are immediate hyponyms of <traveler>. Likewise,
<salesman> is not matched by <REST::worker>. Both are subconcepts of <worker>, but neither
of them is a subconcept of the other. Indeed, for counting matches in the evaluation experiments, I
treat a virtual leaf as if it were the underlying WordNet concept, e.g. | identify <REST::traveler> as
<traveler>. In this sense, <REST::traveler> does match <traveler>, <voyager>, and <wanderer>.
One could argue that this proceeding is technically inexact. However, it is justifiable for linguistic rea-
sons.

Virtual leaves had to be introduced due to formal requirements of the tree cut approach: all word
senses have to be represented as leaves of the hierarchy tree, while inner nodes represent abstract
semantic classes. For example, <REST::worker> represents a word sense of “worker”, whereas
<worker> represents a semantic class that comprises all kinds of worker. However, the semantic
difference between a concept and the corresponding virtual leaf is not quite clear. Indeed, the word
sense of “worker” represented by <REST::worker> refers to a concept that captures any kind of
worker—which is just the concept represented by <worker>. In the wordnet framework, synsets si-
multaneously represent both word senses and semantic classes. This design principle appears natural
and has proved its worth in the numerous wordnet applications in the past years. Therefore, it is as
well appropriate to abolish the technically motivated separation of these two functions for the extrac-
tion of role relations from tree cuts and equate a virtual leaf with its underlying “original” synset to
this end.

But what does a preferred virtual leaf in a tree cut model imply? It means that the words with the
corresponding sense are more likely to appear as a complement of the examined verb concept than
by chance. <REST::worker> is acquired as a preferred Agent of <travel> because “worker” co-
occurs with “travel” to a significant extent. According to the tree cut in figure 7.4, nouns referring to
more specific senses (such as “journeyman’) occur with that verb as well. Thus, the noun senses co-
occurring with a certain verb are located at differing generalisation levels themselves. A (more or less)
abstract virtual leaf in a tree cut model is no generalisation from the data, but reflects generalisation
which is immediately manifest in the data. This basic phenomenon has been neglected in the discourse
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| role type | AGENT \

| C | 1000 000 \
gold standard noun concepts number (percentage)
which are... with WSD ‘ without WSD
exactly matched 49  (6.6%) | 114 (10.3%)
matched by 1 level hyponym 110 (14.9%) | 215 (19.4%)

matched by 1 level hyperonym 22 (3.0%) 4  (4.0%)
matched by > 2 level hyponym 19 (2.6%) 15  (1.4%)
matched by > 2 level hyperonym | 62  (8.4%) | 115 (10.4%)

not matched 476 (64.5%) | 605 (54.6%)
> [ 738 [ 1108 \
| acquired noun concepts per verb | 138.1 | 249.1 ‘

Table 7.29: Results for the AGENT role without allowing matches of virtual leaves

about the tree cut approach so far. This discourse has focused on the MDL approach as a source of
generalisation. Immediate evidence from the data is another source. In the experiments described
below, I examine the the importance of this source.

These experiments differ from the basic performance tests in section 7.3 by ignoring virtual leaves
when comparing the learned cuts with the gold standard. The results for AGENT, PATIENT, and
INSTRUMENT are shown in tables 7.29 to 7.31. The differences to the basic performance results ex-
hibit a similar pattern for all three role types. I will exemplify this pattern by comparing the results for
AGENT without WSD (cf. figure 7.18). First of all, disregarding virtual leaves leads to a decrease of
approximate accuracy: 33.7% vs. 39.9% (in figure 7.18, the respective sum of the first three columns).
It is striking that while the rate of exact matches drops significantly (10.3% vs. 20.9%), the rate of
matches by 1-level hyponyms increases (19.4% vs. 9.2%). Obviously, in many cases concepts which
are one level too specific are present in addition to an exactly matching virtual leaf; those concepts
compensate the loss of that leaf (e.g. in the cut in figure 7.4, the loss of <REST::traveler> would be
compensated by the presence of concepts like <passenger> or <guest>, which match <traveler>
at least approximately). The matching rate of hyperonym concepts drops dramatically, especially for
two or more levels up in the hierarchy (10.4% vs. 28.2%). This mainly accounts for a comparably
dramatic increase of relations not matched at all (54.6% vs. 31%). Overall, one can conclude that
virtual leaves play a significant role for acquiring thematic relations.

7.8 The Impact of the Generalisation Level

In section 7.3, I pointed out that a considerable amount of relations in the gold standard involve very
specific noun concepts. I presented examples which demonstrate that these specific concepts introduce
a sparse data problem: often they are missed by the acquired tree cuts because the respective words
do not occur in the data. I claimed that this problem is primarily responsible for the rather moderate
performance for AGENT and INSTRUMENT in comparison to PATIENT. To verify this claim and to
test the significance of this data sparseness problem, I did evaluation experiments in which the gold
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‘ role type ‘ PATIENT ‘

| C | 1000 000 \
gold standard noun concepts number (percentage)
which are... with WSD ‘ without WSD
exactly matched 34 (11.9%) | 63 (13.6%)
matched by 1 level hyponym 99 (34.7%) | 205 (44.4%)
matched by 1 level hyperonym 9 (B2%)| 14 (3.0%)
matched by > 2 level hyponym 36 (12.6%) | 34  (7.4%)
matched by > 2 level hyperonym 1 (0.4%) 8 (1.7%)
not matched 106 (37.2%) | 138 (29.9%)

> | 285 | 462 |

‘ acquired noun concepts per verb ‘ 772.8 ‘ 1739.4 ‘

Table 7.30: Results for the PATIENT role without allowing matches of virtual leaves

| role type | INSTRUMENT \
IE [ 1000 000 |
gold standard noun concepts number (percentage)
which are... with WSD ‘ without WSD
exactly matched 23 (58%) | 61  (8.6%)
matched by 1 level hyponym 38 (9.6%) | 110 (15.5%)
matched by 1 level hyperonym 7 (18%) | 15 (2.1%)
matched by > 2 level hyponym 13 33%) | 15 (21%)
matched by > 2 level hyperonym 5 (1.3%) 2 (0.3%)
not matched 308 (78.2%) | 506 (71.4%)
> | 394 | 709 |
‘ acquired noun concepts per verb ‘ 253.5 ‘ 658.7 ‘

Table 7.31: Results for the INSTRUMENT role without allowing matches of virtual leaves
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Figure 7.18: Matching / mismatching rates for AGENT (without WSD) with and without taking into
account virtual leaves
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standard was restricted to relations at a comparably high level of generalisation. More precisely, I
fixed a certain abstraction level in the WordNet hierarchy and only employed gold standard relations
where the noun concepts do not fall below this level.

First of all, I had to define this limiting abstraction level. It is inevitable that such a definition has
to be arbitrary to some extent. However, to get an idea about the performance w.r.t. general con-
cepts, the exact course of the border which separates concepts with sufficient generality from other
concepts is secondary. A straightforward way of fixing the limit would be to start from the Word-
Net root nodes and stipulate that all concepts located at O—n levels below these nodes are considered
as sufficiently general. However, this would neglect the fact that for the individual role types there
are certain effective upper bounds of abstraction, which have to be taken into account. These upper
bounds correspond to the semantic filters specified in section 6.5. For example, the INSTRUMENT
filter includes (among others) the concepts <inanimate_object> and <body_part>. This does not
only constrain the semantic range of the INSTRUMENT role, but also implies that INSTRUMENT
concepts should not be located above these two nodes. For AGENT, the same holds with the concepts
<life_form> and <causal_agent>.* For PATIENT, there is no semantic restriction. I decided to de-
fine a common limit of generality for all role types which takes into account these upper bounds. As
a starting point, I adopted all WordNet roots plus all “non-root” concepts in the semantic filters. This
yields the following list:

<life_form#organism#being#living_thing>
<causal_agent#cause#causal_agency>
<object#inanimate_object#physical_object>
<body_part>

<part#piece>>

<entity>

<psychological_feature>

<abstraction>

<location>

<shape#form>

<state>

<event>
<act#human_action#human_activity>

< group#grouping >

<possession>

<phenomenon>

I consider a concept as sufficiently general if it is located at most 2 levels below one of the concepts
in the list. The obtained abstraction limit covers the top levels of the complete hierarchy (via the root
nodes) on the one hand and allows further specificity according to semantic filter definitions on the
other hand.

The experiments restricted to general gold standard relations defined in this way yield interesting
results. Table 7.32 shows the matching rates for AGENT. Figure 7.19 provides a bar diagram of the
accuracy rates and the complete mismatches. The rate of exact or approximate matches is almost
doubled (without WSD, 72.8% as opposed to 39.9% basic performance). Conversely, the rate of com-

“Note that the other concepts included in the filters of AGENT and INSTRUMENT are WordNet roots.

This concept is the hyperonym of <body_part> and an immediate hyponym of <entity>. I included it to obtain a
smoother range of general concepts.
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Figure 7.19: Accuracy (approximate match rates) and complete mismatch rates for AGENT with and
without restriction to relations at higher generalisation levels

| role type | AGENT ‘

| C | 1000 000 \
gold standard noun concepts number (percentage)
which are... with WSD | without WSD
exactly matched 14 (17.7%) | 34 (27.2%)
matched by 1 level hyponym 27 (34.2%) | 38 (30.4%)

matched by 1 level hyperonym 11 (139%) | 19 (15.2%)
matched by > 2 level hyponym 3 (3.8%) 2 (1.6%)
matched by > 2 level hyperonym | 10 (12.7%) | 11  (8.8%)
not matched 14 (17.7%) | 21 (16.8%)

> | 79 | 125 \

Table 7.32: Results for the AGENT role restricted to relations at higher generalisation levels
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Figure 7.20: Accuracy (approximate match rates) and complete mismatch rates for PATIENT with
and without restriction to relations at higher generalisation levels

pletely unmatched relations falls below the respective rate in the basic experiment to a considerable
extent (without WSD, 16.8% as opposed to 31%). Thus, the learning algorithm performs considerably
better when restricted to general relations.

Table 7.33 displays the accuracy rates for PATIENT. Figure 7.20 provides a corresponding bar dia-
gram. As for AGENT, the rates of exact or approximate matches significantly exceed the rates in the
basic experiments (without WSD, 84.2% vs. 69.1%). Furthermore, the rate of unmatched concepts is
much lower (without WSD, 4.7% vs. 13%). However, the difference in accuracy is not so dramatic as
for AGENT. In fact, the results for PATIENT are already quite satisfying in the basic setting where
all gold standard relations are taken into account. In section 7.3.2, I mentioned findings which indi-
cate that the relative portion of general relations in the gold standard is higher for PATIENT than for
AGENT. The results displayed here confirm this claim. Without WSD, 125 general AGENT relations
are taken into account. In the basic experiment, 1108 relations are considered. This means that only
11% of the relations employed to measure basic performance fall under our definition of general re-
lations. For PATIENT, the corresponding numbers of relations are 107 (general) and 462 (all). Thus,
around a quarter (23%) of PATIENT relations used to test basic performance are general. In other
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| role type | PATIENT |

| C | 1000 000 \
gold standard noun concepts number (percentage)
which are... with WSD ‘ without WSD
exactly matched 21 (33.9%) | 45 (42.1%)
matched by 1 level hyponym 18 (29.0%) | 40 (37.4%)

matched by 1 level hyperonym 4  (6.5%) 5 4.7%)
matched by > 2 level hyponym 14 (22.6%) | 10  (9.3%)
matched by > 2 level hyperonym | 0  (0.0%) 2 (1.9%)
not matched 5 (8.1%) 5 4.7%)

> | 62 | 107 \

Table 7.33: Results for the PATIENT role restricted to relations at higher generalisation levels

| role type | INSTRUMENT |

IE [ 1000 000 |
gold standard noun concepts number (percentage)
which are... with WSD | without WSD
exactly matched 3 (17.6%) | 10 (38.5%)
matched by 1 level hyponym 4 (235%) | 6 (23.1%)
matched by 1 level hyperonym 0 (©.0%) | 2 (7.7%)
matched by > 2 level hyponym 1 B9%) | 0 (0.0%)
matched by > 2 level hyperonym | 0  (0.0%) 1 (3.8%)
not matched 9 (529%) | 7 (26.9%)

(> [ 17 | 26 |

Table 7.34: Results for the INSTRUMENT role restricted to relations at higher generalisation levels

words, the portion of general relations, which are matched by the algorithm with more reliability, is
considerably higher. This provides an explanation for the fact that the basic results for PATIENT are
better than for AGENT.

Table 7.34 shows the matching rates for INSTRUMENT. These rates indicate that also for this role
type, the results significantly exceed the basic performance. However, the number of relations taken
into account (17 or 26, respectively) show that the portion of general INSTRUMENT relations in the
gold standard is too small to draw reliable conclusions. This is a remarkable finding: Obviously, the
overwhelming majority of INSTRUMENT relations contain rather specific concepts. This explains
why the performance for INSTRUMENT is even poorer than for AGENT.

To exclude the possibility that the arbitrary choice of the limit of abstraction inadequately biases the
results, I repeated the experiments extending the range of general concepts, i.e. I permitted concepts
located up to 3 or 4 (rather than 2) levels below the concepts listed above. These experiments confirm
the described tendencies. With each further included level, the accuracy rates decrease and, naturally,
the numbers of relations taken into account increase. In any case, the portion of captured relations is
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significantly higher for PATIENT than for AGENT, and remains fairly low for INSTRUMENT.

7.9 Summary and Conclusion

The detailed evaluation presented in this chapter revealed some interesting insights into the perfor-
mance of the role acquisition approach on the one hand and the nature and the suitability of the gold
standard on the other hand. In detail, the following findings concerning the learning approach can be
observed:

e As the experiments show, the approach exhibits a good performance of learning role relations
involving noun concepts at higher levels of abstraction.

e On the other hand, the performance of matching gold standard relations at low generalisa-
tion levels was rather poor. This is essentially due to a sparse data problem: often the spe-
cific noun concepts in the gold standard do not occur (or, more precisely, do not co-occur
with the respective verb in question) in the data. Therefore, it would be unreasonable to con-
clude that the approach is not capable of appropriately acquiring role relations with specific
noun concepts. Rather, all that follows from the experiments is that this capability cannot be
assessed with a gold standard as employed here. For example, as we have seen in section
7.3.1, the gold standard contains the relation <rescue> INVOLVED_AGENT <liberator>.
The tree cut acquired for the Agent of <rescue> (cf. figure 7.3 on page 218) misses the con-
cept <liberator>, but comprises a number of concepts which as well refer to typical instances
of rescuers, e.g. <fireman> or <policeman>. It is mere coincidence that the gold standard
includes <liberator> but not <fireman>, or that nouns like “fireman” occur in the data but
“liberator” does not.

e Applying semantic filters reduces the number of acquired relations to a large extent, accom-
panied by a tolerable decrease of accuracy. This is very useful in the semi-automatic scenario
where the learned relations undergo manual post-editing.

o Employing argument clustering for linking instead of simple heuristics neither enhances nor
lowers accuracy. However, an overall improvement of the coverage of the gold standard could
be observed, i.e. the range of captured relations increases with argument clustering. This im-
provement, though, is rather moderate.

e My experiments yield no evidence that the variation of parameters of the LSC model which
underlies the learning approach does not have a crucial influence on performance.

e The inclusion of virtual leaves improves accuracy, which indicates that they constitute a valu-
able source of information for learning role relations. Preferred virtual leaves in a tree cut
model capture (different levels of) generalisation immediately present in the corpus data. This
complements the ability of the MDL-based algorithm to generalise from the data.

The following findings and conclusions concern the proper application of a gold standard in general as
well as specific properties of the actual gold standard originating from the EWN database in particular:

e For the compilation of a gold standard for evaluating approaches for learning role relations,
only relations involving noun concepts at higher abstraction levels should be taken into account.
Relations with a noun concept at low generalisation levels impose a severe sparse data problem.
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e According to this condition, the suitability of the set of role relations in EWN differs for the
different role types.

— For AGENT, there is a sufficient number of relations with higher generalisation. Such
relations can be extracted and employed as a gold standard where the exact limit of “suf-
ficient abstraction” adopted is secondary.

— For PATIENT, the portion of relations with suitable generality seems to be so dominant
that satisfying accuracy rates are achieved even without any preselection of general rela-
tions. However, such a preselection improves the results for this role type as well.

— Although the number of INSTRUMENT relations in EWN is quite high, there are hardly
any relations at suitable abstraction levels. Thus, the information encoded in EWN does
not allow the compilation of a gold standard for INSTRUMENT.

e For LOCATION and directional role types, the amount of relations in EWN is not sufficient
to serve as a gold standard. Although the absolute number of LOCATION relations appears
adequate, the majority of involved verb concepts do not or do only sparsely occur in the data.

From these points it follows that the EWN database allows the extraction of a gold standard only for
PATIENT and (to a limited extent) for AGENT.
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Chapter 8

Conclusion

This chapter provides a concise summary of this thesis by highlighting its main results. Furthermore,
it mentions several directions for future research. The task of this thesis has been to devise a strategy
of learning thematic role relations for lexical-semantic nets, in particular wordnets. To fulfil this task,
I have developed an approach that takes as input a syntactically analysed corpus and WordNet, and
employs probabilistic techniques and linguistically motivated heuristics to learn role relations. These
candidate relations are subject to manual inspection before being integrated into the wordnet to be
extended.

The approach comprises the following components:

e The central module is a learning algorithm that acquires selectional preferences from cor-
pus data. This approach is an enhancement of a method proposed in (Abe & Li 1996). This
method acquires a tree cut model to capture the selectional preferences of a verb for a certain
argument. A tree cut model is a horizontal cut through the WordNet noun hierarchy where the
concepts located on the cut are assigned numerical preference values; a value > 1 indicates
preference, a value < 1 indicates dispreference. The location of the tree cut in the hierarchy,
and thus the generalisation level of the acquired selectional preferences, is determined by the
theoretically well-founded MDL principle. The general approach of (Abe & Li 1996) is de-
scribed in section 3.4.3. However, preliminary experiments showed that this approach exhibits
a highly undesired behaviour regarding the task of this thesis. The acquired generalisation level
inadequately depends on the frequency of the respective verb: the lower the frequency, the
higher the generalisation level. Section 4.1 describes these preliminary experiments and dis-
cusses this behaviour. I proposed a modification of the method that overcomes this drawback.
This modification deviates from the MDL principle in its strict sense, but still conforms to the
Bayesian Learning paradigm. The modified approach I propose is described in section 4.2. This
section also reports first tests which indicate its appropriateness.

e The tree cut approach learns selectional preferences by generalising over nouns occurring as a
certain argument of a certain verb. Originally, this approach—as well as comparable approaches
introduced in chapter 3—Ilearns selectional preferences for syntactic arguments, since the avail-
able training data (parsed corpora) only indicate syntactic complements. However, the task of
this thesis requires to learn preferences for thematic roles, i.e. semantic arguments. For this
reason, I developed a linking strategy to map syntactic complements to their underlying roles.
This allows acquiring selectional preferences by generalising over nouns that occur as the filler
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of a certain thematic role of the examined verb. This linking strategy (described in chapter 6)
consists of three stages. The first stage computes clusters of semantically similar syntactic rela-
tions between verbs and nouns. The second stage applies linguistically motivated heuristics for
assigning appropriate thematic role types to these clusters. These stages yield thematic role re-
lations between verbs and nouns, which are—after undergoing certain preprocessing steps (see
below)—fed into the preference acquisition algorithm. A third stage of linking consists of se-
mantic filters which are applied to the acquired tree cuts to narrow down the space of candidate
role relations.

e The training data contain non-disambiguated verb and noun forms that have to be mapped
to the corresponding WordNet concepts before the learning algorithm can be applied. This is
done in two preprocessing steps. Firstly, the word forms in the data are (partially) lexically
disambiguated. For this step, I employed a WSD strategy that combines semantic clustering
with a method which disambiguates words within a cluster (cf. section 5.2). Secondly, the
frequencies of the noun senses retrieved by this step are propagated to their hyperonym concepts
in the WordNet hierarchy. This propagation has to take into account the fact that WordNet is
not a pure tree, but a DAG, i.e. a concept may have multiple immediate hyperonyms. In section
5.3, I propose a principled solution to that so-called DAG issue.

Figures 8.1 and 8.2 show a data flowchart which provides an overview of the overall approach devel-
oped in this thesis. This flowchart (to be read top down) makes explicit the dependencies between the
different processing modules (represented by rectangles) and the different types of input and inter-
mediary data (represented by parallelograms, in some cases associated with a comment comprising
a formula which explicates the respective kind of data). While figure 8.1 depicts the preprocessing
phase including the role assigning strategy and the mapping of word forms to WordNet concepts,
figure 8.2 displays the preference acquisition step itself (taking into account a particular role) and the
postprocessing step of semantic filtering. Both sub-flowcharts are associated via a connector symbol
labelled with “A”.

In section 1.3, I stated two desiderata for the acquisition approach: it should be language-independent
and open to different linguistic theories of thematic roles. These desiderata are met to the largest extent
possible. Almost all components mentioned above employ statistical methods which are independent
from particular languages and thematic role theories. There are only two exceptions, namely stage 2
and 3 of the linking strategy. Stage 2 (heuristics for assigning role types to verb—noun clusters) makes
heavy use of linguistic findings about diathesis alternations in English and the inventory and defini-
tion of role relations in EWN. Thus, this module does not satisfy either of the two desiderata. Stage
3 (semantic filters) makes use of general semantic characterisations of role types (e.g. that Agents
are usually animate), thus violating the desideratum of theory-neutrality. Applying my approach for
another language or under other theoretical assumptions requires the reformulation of these two mod-
ules. The question whether it is possible to design them in a universal way is intrinsically connected to
the question whether and to what degree linking follows universal principles, and how these principles
look like. This question is subject to linguistic research and far from being conclusively answered.

The approach presented here is not limited to the task of acquiring role relations for wordnets. In prin-
ciple, it is suitable to enrich other lexical resources with selectional restrictions as well. In particular,
it offers the flexibility to globally influence the level of generalisation of the acquired preferences by
the choice of the constant C'. In this way, it can be fine-tuned to the needs of different applications.
For example, selectional restrictions for a lexicon supplementing a parser may be at a rather abstract
level, while preferences encoded in a knowledge base for semantic and pragmatic inferencing should
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Figure 8.1: Part 1 of the data flowchart giving an overview of the approach developed in this thesis
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be rather specific. My approach offers the possibility of respective adjustments.

A further important issue in this work has been to devise a principled evaluation procedure for the
approach developed here and related methods. To this end, I extracted a gold standard from the
data in EuroWordNet (cf. section 5.4) and proposed a setup and criteria for evaluation (cf. section
7.2). Chapter 7 reports a detailed evaluation of different aspects of my role acquisition approach.
Overall, the results (accuracy rates of up to 84%) are satisfying and show that the approach works
effectively. This evaluation also assesses the general feasibility of employing a gold standard for
evaluating the task of this thesis, and reveals the strengths and weaknesses of the particular gold
standard retrieved from EWN. In general, a gold standard is only suitable to evaluate the acquisition of
selectional preferences located at higher generalisation levels. For lower abstraction levels, a sparse-
data problem makes a fair evaluation impossible. The particular gold standard used in this work is
suitable to evaluate the acquisition of AGENT and PATIENT relations.

Apart from the main focus of this work, the thesis also contains some general considerations regarding
diverse theoretical issues:

e Insection 5.2.1, I present arguments questioning a widely-held assumption that is often referred
to when estimating word sense frequencies from corpora which are not lexically disambiguated.
This assumption, which I call the uniformity hypothesis, states that, if further information con-
cerning sense distributions of word forms are missing, it is suitable to stipulate for each word
form a uniform probability distribution of its senses. Thus, if a word form with n senses has
the frequency f, each of its senses is assigned the frequency % I have pointed out a general
shortcoming of this approach, related to the phenomenon of regular polysemy, and argued for
the importance of employing (at least partial) word sense disambiguation.

e In section 4.1.2, I discuss the class of tree cut models from the perspective of the MDL princi-
ple. The undesired behaviour yielded if MDL is applied to select a tree cut model—the lower
the frequency of a verb, the more general the selected tree cut—is a consequence of an inherent
property of MDL. This property can be stated as follows: the more data have to be described,
the higher the bias towards a more complex model, i.e. a model with many parameters. I argue
that this behaviour is perfectly adequate for many model classes addressed in the MDL liter-
ature (e.g. decision trees), but inappropriate for the class of tree cut models. In this context, I
introduce the distinction between the complexity of a model and the extent to which this model
explicitly expresses regularities which are implicit in the data. I hope that this discussion may
provide a deeper insight into the MDL principle and the conditions of its application.

e In section 6.2.2, I provide a linguistic interpretation of the latent semantic clustering (LSC)
approach developed by (Rooth et al. 1998), which I employ in my linking strategy. I argue
that an LSC model can be viewed as a probabilistic implementation of Dowty’s theory of the-
matic roles. Note that this statement does not conflict with the desideratum of theory-neutrality.
Interpreting the LSC approach in terms of Dowty’s approach is evident, but not compulsory.

These considerations should be understood as contributions to the discussion of the respective issues.

At the end of this thesis, I would like to briefly indicate some possible directions of future research.
First of all, it would be interesting to assess whether changes in individual modules would improve
the performance of the overall approach. Such changes could be, among others:
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o Preference/dispreference borderline: The distinction between preferred and dispreferred con-
cepts in the tree cut model is made according to the respective preference values. Currently, the
theoretically justified value 1 serves as the border between preference and dispreference. Only
those concepts that are above that borderline are regarded as preferred, the others are regarded
as dispreferred and discarded. One could arbitrarily choose a different value for that border.
A higher limit would further narrow down the set of acquired candidate relations, resulting
in less effort for manual inspection. However, a certain portion of appropriate relations would
be missed. A lower limit could possibly capture more relations that are appropriate, but the
candidate set would grow. These effects should be investigated empirically.

o Word sense disambiguation: Instead of the WSD approach I use, any existing WSD approach
related or adaptable to WordNet could be employed. The better the disambiguation module, the
better the overall performance.

Another research direction concerns the linking strategy. This approach could be of interest indepen-
dently from acquiring thematic role relations. It could be adapted and employed for related tasks such
as the detection of diathesis alternations and automatic verb classification in general (cf. section 6.6).
Therefore, this approach deserves further investigation. A first step could be a systematic evaluation.
In this work, the linking strategy was evaluated indirectly by employing it for a concrete task, namely
role relation acquisition. One could imagine a complementary setup in which the acquisition of roles
is employed to evaluate linking. Such a setup could be designed as follows: For a verb occurring in
the gold standard, the learning algorithm acquires tree cut models from the respective noun sets which
are determined by argument grouping via LSC clusters. The resulting tree cuts are compared to the
gold standard relations of a certain role type (e.g. AGENT) of the examined verb; the cut which is
most similar to these relations is assigned the corresponding role type. Then one evaluates whether or
not the linking heuristics would assign this same role type to the clusters which underly that tree cut.

Finally, the overall acquisition approach has been evaluated by comparison to a gold standard. It
would be interesting to perform additional evaluations by employing the approach for concrete NL.P
applications, such as parsing, WSD, or information extraction. In particular, one could test the impact
of the choice of C, i.e. the global abstraction bias, on the performance of the respective applications.

In any case, much work remains to be done.
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