Aus der Medizinischen Universitätsklinik und Poliklinik
Tübingen
Abteilung Innere Medizin III
Ärztlicher Direktor: Professor Dr. M. Gawaz

Plasma Stromal cell-derived factor-1
bei Patienten mit koronarer Herzkrankheit: Einfluss von
Klinik, kardiovaskulären Risikofaktoren und
kardiovaskulärer Therapie

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Medizin
der Medizinischen Fakultät
der Eberhard Karls Universität
zu Tübingen

vorgelegt von
Madlen Eva Ruf
aus
Stuttgart

2011
Dekan: Professor Dr. I.B. Autenrieth

1. Berichterstatter: Professor Dr. M. Gawaz
2. Berichterstatter: Frau Professor Dr. K. Klingel
Für meine Familie
Inhaltsverzeichnis

1. Abkürzungsverzeichnis .. 6
2. Einleitung .. 7
 2.1 Das Chemokin Stromal cell-derived factor-1 ... 7
 2.2 SDF-1 im Organismus ... 8
 2.2.1 SDF-1 in der Embryonalentwicklung ... 8
 2.2.2 SDF-1 im zentralen Nervensystem .. 8
 2.2.3 SDF-1 bei Tumoren .. 8
 2.2.4 SDF-1 und HIV .. 9
 2.2.5 SDF-1 in der Lunge .. 9
 2.2.6 SDF-1 bei der Hämatoopoese ... 11
 2.2.7 Zusammengefasste Darstellung von SDF-1 im Organismus 12
 2.3 SDF-1 und seine Rolle beim Myokardinfarkt ... 12
 2.4 Motivation und Zielsetzung .. 15
 2.4.1 Motivation .. 15
 2.4.2 Zielsetzung ... 16
3. Material und Methodik ... 17
 3.1 Studienpopulation .. 17
 3.2 Diagnosestellung .. 18
 3.3 Probengewinnung ... 18
 3.4 Probenauswertung mit ELISA .. 19
 3.5 Statistische Analyse und Datendarstellung .. 19
4. Ergebnisse .. 21
 4.1 Plasma SDF-1 und Klinik ... 21
 4.2 Effekt von kardiovaskuläre Risikofaktoren auf Plasma SDF-1 25
 4.3 Plasma SDF-1 bei kardiovaskulärer Therapie ... 25
5. Diskussion ... 27
 5.1 Plasma SDF-1 und klinische Präsentation bei CAD ... 27
 5.2 Kardiovaskuläre Risikofaktoren und Plasma SDF-1 ... 30
 5.3 Plasma SDF-1 und kardiovaskuläre Therapie ... 30
1. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Ausdruck</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>American College of Cardiology</td>
</tr>
<tr>
<td>ACE</td>
<td>Angiotensin-Converting-Enzym</td>
</tr>
<tr>
<td>ACS</td>
<td>akutes Koronarsyndrom</td>
</tr>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>CAD</td>
<td>koronare Herzerkrankung (coronary artery disease)</td>
</tr>
<tr>
<td>CK</td>
<td>Creatinkinase</td>
</tr>
<tr>
<td>CK MB</td>
<td>Creatinkinase Myokardtyp</td>
</tr>
<tr>
<td>CXCL12</td>
<td>Stromal cell-derived factor-1</td>
</tr>
<tr>
<td>CXCR4</td>
<td>CXC-Motiv-Chemokinrezeptor 4</td>
</tr>
<tr>
<td>CXCR7</td>
<td>CXC-Motiv-Chemokinrezeptor 7</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylen diamintetraessigsäure</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzymgekoppelter Immunadsorptionstest (Enzyme-linked Immunosorbent Assay)</td>
</tr>
<tr>
<td>EPC</td>
<td>endotheliale Progenitorzelle</td>
</tr>
<tr>
<td>G-CSF</td>
<td>Granulozyten-Kolonie stimulierender Faktor</td>
</tr>
<tr>
<td>hUCB</td>
<td>menschliches Nabelschnurblut (human umbilical cord blood)</td>
</tr>
<tr>
<td>HIF-1</td>
<td>Hypoxie-induzierbarer Faktor-1</td>
</tr>
<tr>
<td>HIV</td>
<td>Humanes Immunodefizienz-Virus</td>
</tr>
<tr>
<td>LV</td>
<td>Linksventrikulär</td>
</tr>
<tr>
<td>LVEF</td>
<td>Linksventrikuläre Ejektionsfraktion</td>
</tr>
<tr>
<td>NSTEMI</td>
<td>Myokardinfarkt ohne ST-Hebung (non ST-elevation myocardial infarction)</td>
</tr>
<tr>
<td>PCI</td>
<td>perkutane Koronarintervention</td>
</tr>
<tr>
<td>SAP</td>
<td>stabile Angina Pektoris</td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>SDF-1</td>
<td>Stromal cell-derived factor-1</td>
</tr>
<tr>
<td>STEMI</td>
<td>Myokardinfarkt mit ST-Hebung (ST-elevation myocardial infarction)</td>
</tr>
<tr>
<td>Tn I</td>
<td>Troponin I</td>
</tr>
</tbody>
</table>
2. Einleitung

Obwohl sich ein Großteil der Forschung auf die Untersuchung der Herz- und Kreislauferkrankungen fokussiert, gehören diese aktuell noch immer zu den Haupttodesursachen der westlichen Welt. Im Jahre 2009 sind sie trotz unserer heutigen Behandlungsmöglichkeiten mit 41,7% führende Todesursache in Deutschland; nach dem statistischen Bundesamt erfolgten 7% aller Todesfälle aufgrund eines Myokardinfarktes, was bedeutet: 60.153 Menschen, darunter 44% Frauen und 56% Männer, erlagen dieser Erkrankung [8]. Hauptursache für den Myokardinfarkt ist die koronare Herzerkrankung. Zunehmende Forschungsergebnisse weisen darauf hin, dass das Chemokin Stromal cell-derived factor-1 (SDF-1; CXCL12) eine entscheidende Rolle bei der Wundheilung einschließlich der Angiogenese, dem „Trafficking“ von Progenitorzellen und bei der myokardialen Regeneration nach Myokardinfarkten spielt [1, 5, 17, 28, 48, 61].

Zur besseren Lesbarkeit verwende ich im Folgenden nur die männliche Form „Patienten“, obwohl natürlich durchweg „Patientinnen und Patienten“ gemeint sind.

2.1 Das Chemokin Stromal cell-derived factor-1

nalkaskade [44]. Beide Rezeptoren werden zu den G-Protein-gekoppelten Rezeptoren gezählt [50, 64].

2.2 SDF-1 im Organismus

2.2.1 SDF-1 in der Embryonalentwicklung
Schon während der Embryonalzeit ist der SDF-1/CXCR4-Signalweg essentiell für die Entwicklung mit Kardiogenese, Hämatopoese und Vaskulogenese. So konnte im Tierversuch gezeigt werden, dass Mäuse, denen CXCR4 fehlt, ebenso wie SDF-1-defizierte Mäuse multiple fatale, unter anderem hämato poetiche und kardiale Defekte aufweisen, die zu einer perinatalen Letalität führen [32, 64]. SDF-1 und CXCR4 werden komplementär während der embryonalen Organogenese gebildet und lenken primordiale Stammzellen an Orte der Vaskulogenese [10].

2.2.2 SDF-1 im zentralen Nervensystem

2.2.3 SDF-1 bei Tumoren
Bei einer Mammakarzinom-Studie konnte gezeigt werden, dass Karzinom-assoziierte Fibroblasten eine zentrale Rolle bei der Förderung des Tumor-

2.2.4 SDF-1 und HIV

2.2.5 SDF-1 in der Lunge

2.2.6 SDF-1 bei der Hämatopoese
2.2.7 Zusammengefasste Darstellung von SDF-1 im Organismus

Abbildung 2 nach [47]: Die multiplen Funktionen des SDF-1-CXCR4-Signalweges im Organismus schematisch dargestellt.

2.3 SDF-1 und seine Rolle beim Myokardinfarkt
In der Pathophysiologie der ischämischen Herzerkrankung nimmt die Entwicklung und das Remodeling von atherosklerotischen Plaques eine zentrale Stellung ein [21]. Hauptsächlich in späten Stadien, aber auch in der frühen Phase der Atherosklerose kann es zur Ruptur der atherosklerotischen Plaques kommen und somit zur klinischen Manifestation eines akuten Koronarsyndroms [21]. Neben Inflammation-mediierendenden Zellen wie den Monozyten spielen Thrombozyten hierbei eine wichtige Rolle [21]. Sie sind die ersten Zellen, welche mit der verletzten Gefäßwand interagieren und enthalten unter anderem Chemokine einschließlich Stromal cell-derived factor-1 [46]. In atherosklerotischen Plaques wird SDF-1 von aktivierten Thrombozyten sezerniert und hoch exprimiert in glatten Muskelzellen, endothelialen Zellen und Makrophagen [2, 28]. Die Thrombozyten-gebundene SDF-1-Expression korreliert mit dem Grad der Thrombozyten-Aktivierung und zeigt eine leichte, aber signifikante Assozia-

Ein Anstieg von SDF-1 ist auch bei Gewebsischämien nachweisbar. Im ischämischen Gewebe wird die SDF-1-Genexpression durch HIF-1 (Hypoxie induzierbarer Faktor-1) induziert [10, 19], welcher ebenfalls die CXCR4-Expression reguliert [40]. Dies führt in vivo zu einer selektiven Expression von SDF-1 im ischämischen Gewebe umgekehrt proportional zur Sauerstoffkonzentration, was eine Steigerung der Adhäsion, der Migration und des „Homing“ von zirkulierenden CXCR4-positiven Progenitorzellen zum ischämischen Gewebe bewirkt [10].

Die wichtige Rolle von hämatopoetischen Stammzellen in Kombination mit der SDF-1/CXCR4-Achse bei der Angiogenese wurde in Studien demonstriert [62]. Durch die thrombozytäre Sekretion von SDF-1 wird die Adhäsion an Endothelwände und die Migration von Progenitorzellen, sowie die Differenzierung von CD34⁺ Zellen in endotheliale Progenitorzellen gefördert und die Angiogenese und vaskuläres Remodeling begünstigt [28, 48]. Ebenso wird die Revaskularisation von ischämischen Arealen über die zytokin-mediierte Freisetzung von thrombozytärem SDF-1 durch die Rekrutierung von CXCR4-positiven Hämaggiozyten induziert [17]. Die CXCR4-Signaltransduktion moduliert tiefgreifend die angiogenetische Aktivität und die „Homing“-Kapazität von kultivierten endothelialen Progenitorzellen (EPC), so dass eine Störung dieses Signalweges zu funktionellen Beeinträchtigungen der EPCs von Patienten mit ko-
ronarer Herzerkrankung führen kann [54]. Die Rolle von SDF-1 aus Thrombozyten ist in Abbildung 3 schematisch dargestellt.

Abbildung 3 aus [47]: Thrombozytärer Stromal cell-derived factor-1 ist involviert in vaskuläres Remodeling, Angiogenese, ebenso wie in Atherosklerose. SMC steht für smooth muscle cell / glatte Muskelzelle.

Es konnte gezeigt werden, dass SDF-1 in Kombination mit einer Transplantation von EPCs (endothelialen Progenitorzellen) die Vaskulogenese fördert und somit die Perfusion vom ischämischen Gewebe verbessert [42, 58]. Umgekehrt führt die Blockade von SDF-1 im ischämischen Gewebe oder von CXCR4 auf zirkulierenden Zellen zu einer Verhinderung der durch HIF-1 induzierten Progenitorzell-Rekrutierung [10]. Die direkte Injektion von SDF-1 in das ischämische Myokardgebiet nach Ligatur der linken Koronararterie bei Mäusen führte zu einem kleineren Infarktgebiet mit einer erhöhten Kapillargefäßdichte, so dass davon auszugehen ist, dass SDF-1 die Herzfunktion nach Myokardinfarkt durch Angiogenese verbessert [37].

Verschiedene Studien zeigen, dass bei Patienten mit Herzerkrankungen höhere Plasma-SDF-1-Spiegel vorhanden sind als bei Gesunden [12]. Ferner hat eine Vielzahl an experimentellen Studien gezeigt, dass die therapeutische Überexpression von SDF-1 im ischämischen Myokard sowohl kardioprotektisch

2.4 Motivation und Zielsetzung

2.4.1 Motivation

2.4.2 Zielssetzung

Das Ziel der gegenwärtigen Studie war, bei Patienten mit koronarer Herzkrankheit (CAD) mögliche Assoziationen zwischen den Plasmaspiegeln von SDF-1 und der klinischen Präsentation, dem Ausmaß der myokardialen Verletzung gemessen am Troponin I (Tn I), kardiovaskulären Risikofaktoren und der medikamentösen kardiovaskulären Therapie zu beurteilen.
3. Material und Methodik

3.1 Studienpopulation

Von der Medizinischen Klinik III der Universitätsklinik Tübingen wurde eine Gesamtzahl von 492 konsekutiven Patienten, die in die Klinik aufgrund symptomatischer koronarer Herzkrankheit eingewiesen wurden und darauffolgend eine koronare Intervention erhielten, für diese Studie rekrutiert.

Die Studie wurde von der zuständigen Ethik-Kommission anerkannt. Alle Patienten wurden sowohl mündlich als auch schriftlich über die Teilnahme an der Studie aufgeklärt und gaben ihr schriftliches Einverständnis.

Nicht in die Studie aufgenommen wurden Patienten, die ihr Einverständnis verweigerten, die während der Herzkatheterisierung verstarben, sowie Patienten vor Erreichen der Volljährigkeit. Des Weiteren wurden Patienten, die zum Zeitpunkt des Eingriffes eine Infektion hatten oder dialysepflichtig waren, aus der Studie ausgeschlossen.
Eine lückenlose Aufnahme der Probanden in die Studie sowie die schnelle Verarbeitung der Proben innerhalb einer Stunde nach Entnahme erforderten eine 24-Stunden Rufbereitschaft.

3.2 Diagnosestellung

Anamnestisch wurden zum einen aktuelle Beschwerden, aber auch Vorерkrankungen, Medikation zum Aufnahmezeitpunkt, kardiovaskuläre Risikofaktoren wie auch die Familienanamnese ermittelt. Die Patienten wurden in die Diagnosegruppen stabile Angina Pektoris (SAP) und akutes Koronarsyndrom (ACS) eingeteilt. Patienten mit akutem Koronarsyndrom wurden des Weiteren in die Gruppen STEMI und NSTEMI unterteilt.

3.3 Probengewinnung

Die Blutproben für ELISA und myokardiale Nekrosemarker wurden sowohl zum Zeitpunkt der Krankenhausaufnahme als auch vor der Koronarintervention entnommen und unmittelbar analysiert.

Arterielles Blut wurde während des Herzkathetereingriffes noch vor Beginn der Koronarintervention nach Verabreichung von 2500 I.E. unfractionierten Heparins aus einer Arteria femoralis entnommen. Es wurde anschließend in 5 ml CPDA (Citrat Phosphat Dextrose Adenine)-Röhrchen gefüllt und mittels ELISA nach Standardmethoden analysiert.

Die kardialen Marker wurden zum Zeitpunkt der Aufnahme im Krankenhaus bestimmt.
3.4 Probenauswertung mit ELISA

Beim Enzym-linked Immunosorbent Assay (ELISA) wird anhand einer enzymatischen Farbreaktion die Konzentration von Antigenen bestimmt.

3.5 Statistische Analyse und Datendarstellung

Für die statistische Analyse und Datendarstellung wurden SPSS Version 15.0 für Windows (Chicago, Illinois, USA) und Microsoft Office Excel 2007 (Microsoft, Redmond, USA) verwendet.

goriale Variablen konnten anhand des Chi-Quadrat-Tests verglichen werden. Um die Auswirkung verschiedener Faktoren auf die Plasmaspiegel von SDF-1 zu beurteilen, wurden univariate Varianzanalysen (ANOVA, analysis of variance) verwendet.

Bei allen verwendeten Tests wurde immer eine zweiseitige Testung durchgeführt und alle P-Werte < 0,05 als statistisch signifikant bewertet.
4. Ergebnisse

Bei einer Studienpopulation von insgesamt 492 konsekutiven Patienten mit koronarer Herzkrankheit wurde die Plasmakonzentration von SDF-1 bestimmt. Anhand der Klinik konnte bei 346 Patienten eine stabile koronare Herzkrankheit (SAP) diagnostiziert werden, während 63 Patienten die Diagnose STEMI und 83 Patienten die Diagnose eines NSTEMI erhielten.

Tabelle 1 (Seite 22) zeigt die demographischen Daten der Studienpopulation.

4.1 Plasma SDF-1 und Klinik

Patienten mit STEMI (n=63) zeigten signifikant erniedrigte Plasmaspiegel von SDF-1 im Vergleich zu Patienten mit stabiler Angina Pektoris (SAP; n=346; P=0,001) oder mit NSTEMI (n=83; P=0,004). Hierbei betrug die Plasmakonzentration von SDF-1, gemessen in pg/ml bei SAP 2110 ± 562,46 versus 2127,33 ± 467,02 bei NSTEMI versus 1834,45 ± 377,08 bei STEMI (P<0,001; Abbildung 4).

<table>
<thead>
<tr>
<th>Charakteristika</th>
<th>Gesamt (n= 492)</th>
<th>SAP (n= 346)</th>
<th>STEMI (n= 63)</th>
<th>NSTEMI (n= 83)</th>
<th>P-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittleres Alter – Jahre (±SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69,8±10,6</td>
<td>70,2±9,6</td>
<td>62,8±13,3</td>
<td>73,3±9,8</td>
<td></td>
<td><0,001</td>
</tr>
<tr>
<td>Geschlecht – Weiblich – n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134 (27,2)</td>
<td>84 (24,3)</td>
<td>11 (17,5)</td>
<td>39 (47)</td>
<td></td>
<td><0,001</td>
</tr>
<tr>
<td>Kardiovaskuläre Risikofaktoren – n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arterielle Hypertonie</td>
<td>375 (76,2)</td>
<td>270 (78)</td>
<td>33 (52,4)</td>
<td>72 (86,7)</td>
<td><0,001</td>
</tr>
<tr>
<td>Hyperlipoproteinämie</td>
<td>312 (63,4)</td>
<td>240 (69,4)</td>
<td>27 (42,9)</td>
<td>45 (54,2)</td>
<td><0,001</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>162 (32,9)</td>
<td>114 (32,9)</td>
<td>13 (20,6)</td>
<td>35 (42,2)</td>
<td>0,023</td>
</tr>
<tr>
<td>Positive Familienanamnese</td>
<td>101 (20,5)</td>
<td>79 (22,8)</td>
<td>10 (15,9)</td>
<td>12 (14,5)</td>
<td>0,139</td>
</tr>
<tr>
<td>Nikotinabusus</td>
<td>190 (38,6)</td>
<td>125 (36,1)</td>
<td>37 (58,7)</td>
<td>28 (33,7)</td>
<td>0,002</td>
</tr>
<tr>
<td>LVEF – n (%)</td>
<td>0,001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal (>55%)</td>
<td>247 (50,2)</td>
<td>195 (56,4)</td>
<td>19 (30,2)</td>
<td>33 (39,8)</td>
<td></td>
</tr>
<tr>
<td>Leicht reduziert (45-55%)</td>
<td>89 (18,1)</td>
<td>55 (15,9)</td>
<td>14 (22,2)</td>
<td>20 (24,1)</td>
<td></td>
</tr>
<tr>
<td>Mäßig (35-45%)</td>
<td>97 (19,7)</td>
<td>56 (16,2)</td>
<td>21 (33,3)</td>
<td>20 (24,1)</td>
<td></td>
</tr>
<tr>
<td>Niedrig (<35%)</td>
<td>59 (12)</td>
<td>40 (11,5)</td>
<td>9 (14,3)</td>
<td>10 (12)</td>
<td></td>
</tr>
<tr>
<td>Medikation bei Aufnahme – n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACE Inhibitoren</td>
<td>209 (42,5)</td>
<td>166 (48)</td>
<td>16 (25,4)</td>
<td>27 (32,5)</td>
<td>0,001</td>
</tr>
<tr>
<td>Betablocker</td>
<td>299 (60,8)</td>
<td>234 (67,6)</td>
<td>23 (36,5)</td>
<td>42 (50,6)</td>
<td><0,001</td>
</tr>
<tr>
<td>Statine</td>
<td>245 (49,8)</td>
<td>200 (57,8)</td>
<td>16 (25,4)</td>
<td>29 (34,9)</td>
<td><0,001</td>
</tr>
<tr>
<td>Aspirin</td>
<td>320 (65)</td>
<td>252 (72,8)</td>
<td>22 (34,9)</td>
<td>46 (55,4)</td>
<td><0,001</td>
</tr>
<tr>
<td>Clopidogrel</td>
<td>124 (25,2)</td>
<td>102 (29,5)</td>
<td>11 (17,5)</td>
<td>11 (13,3)</td>
<td>0,005</td>
</tr>
</tbody>
</table>

ACE steht für Angiotensin-Converting-Enzym, LVEF für Linksventrikuläre Ejektionsfraktion
In Übereinstimmung mit diesem Ergebnis konnte eine umgekehrte Korrelation zwischen den Plasmaspiegeln von SDF-1 und dem myokardialen Nekrosemarker Troponin I bei Patienten mit einem ST-Hebungsinfarkt (STEMI) beobachtet werden (n=63, r=-0,268, P=0,04; Abbildung 5).

Gemäß einer nachfolgenden univariaten Varianzanalyse auf Kovarianzen für die Plasmaspiegel von SDF-1 und eventuelle Kofaktoren bei Patienten mit ST-Hebungsinfarkt, konnten Einflüsse auf die signifikant erniedrigten Plasma SDF-1 Spiegel durch kardiovaskuläre Risikofaktoren, Alter, linksventrikulären Funktion oder medikamentösen Therapie ausgeschlossen werden. Dies ist in der folgenden Tabelle 2 dargestellt.
Tabelle 2: Univariate Varianzanalyse für Plasma SDF-1 bei Patienten mit STEMI versus Patienten mit SAP

<table>
<thead>
<tr>
<th>Faktor</th>
<th>F</th>
<th>P-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medikation bei Aufnahme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACE Inhibitoren</td>
<td>0,03</td>
<td>0,872</td>
</tr>
<tr>
<td>Betablocker</td>
<td>0,11</td>
<td>0,745</td>
</tr>
<tr>
<td>Statine</td>
<td>0,26</td>
<td>0,612</td>
</tr>
<tr>
<td>Aspirin</td>
<td>0,04</td>
<td>0,851</td>
</tr>
<tr>
<td>Clopidogrel</td>
<td>1,06</td>
<td>0,305</td>
</tr>
<tr>
<td>Kardiovaskuläre Risikofaktoren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arterielle Hypertension</td>
<td>0,41</td>
<td>0,523</td>
</tr>
<tr>
<td>Hyperlipoproteinämie</td>
<td>1,82</td>
<td>0,178</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>0,54</td>
<td>0,461</td>
</tr>
<tr>
<td>Positive Familienanamnese</td>
<td>1,79</td>
<td>0,182</td>
</tr>
<tr>
<td>Nikotinabusus</td>
<td>0,42</td>
<td>0,516</td>
</tr>
<tr>
<td>Andere Faktoren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alter</td>
<td>0,6</td>
<td>0,985</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>0,62</td>
<td>0,432</td>
</tr>
<tr>
<td>LV-Funktion</td>
<td>0,38</td>
<td>0,771</td>
</tr>
<tr>
<td>Frühere Myokardinfarkte</td>
<td>0,004</td>
<td>0,949</td>
</tr>
<tr>
<td>Gruppe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEMI vs. SAP</td>
<td>14,06</td>
<td><0,001</td>
</tr>
</tbody>
</table>
4.2 Effekt von kardiovaskuläre Risikofaktoren auf Plasma SDF-1

4.3 Plasma SDF-1 bei kardiovaskulärer Therapie

Abbildung 6: Es zeigte sich kein signifikanter Unterschied der Plasmaspiegel von SDF-1 bei Patienten mit stabiler Angina Pektoris bezüglich einer Statineinnahme versus ohne Statinmedikation.

Abbildung 7: Bei Patienten mit akutem Myokardinfarkt (AMI) zeigten Patienten unter Statineinnahme signifikant niedrigere Plasmaspiegel von SDF-1 im Vergleich mit AMI-Patienten ohne Statintherapie.
5. Diskussion

5.1 Plasma SDF-1 und klinische Präsentation bei CAD

In der vorliegenden Studie zeigte sich Plasma-SDF-1 erniedrigt bei Patienten mit STEMI, nicht jedoch bei NSTEMI-Patienten, verglichen mit Patienten mit stabiler Angina Pektoris (SAP), was einen Teil der früheren etwas kleineren Beobachtungsstudien bestätigt [27, 56].

Bei einer Studie nach Leone et al. [25] wurde bei 16 Patienten mit akutem Myokardinfarkt sowie 18 Patienten mit stabiler Angina Pektoris die Blutkonzentration von CD34⁺ Zellen sowie mobilisierende Zytokine einschließlich SDF-1 ge-
messen; die Blutentnahmen erfolgten an den Tagen 1, 3, 5 und 7 nach dem akuten Myokardinfarkt; die Werte von SDF-1 zeigten sich hier höher bei Patienten mit akutem Myokardinfarkt [25]. Die Inkonsistenz der Ergebnisse zwischen den verschiedenen Studien könnte an den folgenden Faktoren liegen:

1) der klinischen Präsentation des akuten Myokardinfarktes (STEMI versus NSTEMI)
2) der Einteilung in die Diagnosegruppen (AMI versus Unterteilung in STEMI und NSTEMI)
3) dem Ausmaß der myokardialen Nekrose (dem Anstieg des Troponin I),
4) der Art der Blutentnahme (arteriell versus venös)
5) dem Zeitpunkt der Blutentnahme (in der akuten Phase des Myokardinfarktes versus einen Tag später) und Zentrifugation,
6) der Kohortengröße.

In die vorliegende Studie wurde eine relativ große Kohorte von Patienten mit koronarer Herzkrankheit, darunter Patienten mit STEMI wie auch NSTEMI, rekrutiert. Das Blut wurde in der akuten Phase des Myokardinfarktes innerhalb der ersten 4-6 Stunden nach Beginn der Brustschmerzen, noch vor Beginn der Koronarintervention entnommen, und das Ausmaß der myokardialen Nekrose anhand Tn I dokumentiert.

3) Die erniedrigten Werte von SDF-1 im Plasma und der erhöhte thrombozytäre und myokardiale Stromal cell-derived factor-1-Spiegel bei Patienten mit STEMI könnten einen peripheren Gradienten bilden,
welcher Progenitorzellen in Gebiete der vaskulären und myokardialen Verletzungen leitet [45].

5.2 Kardiovaskuläre Risikofaktoren und Plasma SDF-1

Der Effekt von kardiovaskulären Risikofaktoren auf die Plasmaspiegel von SDF-1 bei Patienten mit stabiler Angina Pektoris (SAP) oder akutem Myokardinfarkt (AMI) wurde nach meinem Wissen bis jetzt nicht beschrieben.

Bei der gegenwärtigen Studie konnten keine signifikanten Assoziationen zwischen Plasmawerten von Stromal cell-derived factor-1 und kardiovaskulären Risikofaktoren, welche an der Manifestation der koronaren Herzkrankheit maßgeblich beteiligt sind, festgestellt werden.

5.3 Plasma SDF-1 und kardiovaskuläre Therapie

Ebenso sind keine Studien über den Einfluss der medikamentösen Therapie auf die Plasma-SDF-1-Werte bei SAP-Patienten oder akuten Myokardinfarkt-Patienten bekannt.

Statinen im Anschluss an eine perkutane koronare Intervention aufgrund eines akuten Myokardinfarktes mit einer höheren Anzahl an endothelialen Progenitorzellen assoziiert ist [26]. Diese Beobachtungen legen nahe, dass die Regulation von SDF-1 bei der Maus möglicherweise anders als beim Menschen ist. Unter Berücksichtigung der Studie von Jorgensen et al. [18] komme ich zu folgenden Hypothesen:

2) Zudem könnte eine vermehrte Bindung von SDF-1 an dessen Rezeptoren CXCR4 und CXCR7 während des akuten Myokardinfarktes an den erniedrigten SDF-1 Werten ebenfalls eine Rolle spielen.

5.4 Schlussfolgerung

Unter Berücksichtigung der vorliegenden Literatur sind diese Ergebnisse am ehesten wie folgt zu deuten: Plasma-SDF-1 ist erniedrigt bei Patienten mit größeren Infarkten - somit höheren Troponinwerten - und STEMI. Dies könnte unter anderem durch die vermehrte Bindung von SDF-1 an dessen Rezeptoren CXCR4 und CXCR7 verursacht sein. Die vermehrte Bindung an diese Rezeptoren wird unter anderem durch die erhöhte Anzahl an Blutzellen während der Akutphase bedingt. Dies könnte dazu beitragen, einen Gradienten zu bilden, der die bereits beschriebene Mobilisierung von Progenitorzellen, deren Aktivierung und Leitung in Gebiete mit vaskulären und myokardialen Verletzungen fördert. Bei leichteren Infarkten mit niedrigerem Troponin I (Tn I) und ohne ST-
6. Zusammenfassung

In diese Studie wurden 492 konsekutive Patienten aufgenommen, die wegen symptomatischer koronarer Herzkrankheit in die Universitätsklinik Tübingen eingewiesen wurden und dort eine Koronarintervention (PCI) erhielten. Arterielles Blut wurde während des Herzkathetereingriffes noch vor Beginn der PCI entnommen und der Plasmaspiegel von Stromal cell-derived factor-1 mittels eines handelsüblich erhältlichen ELISA bestimmt.

Hierbei zeigten sich die Plasmaspiegel von SDF-1 bei Patienten mit STEMI signifikant erniedrigt im Vergleich mit Patienten, die eine stabile Angina Pektoris (P=0,001) oder einen NSTEMI (P=0,004) aufwiesen. Des Weiteren wurde eine inverse Korrelation zwischen dem SDF-1 Plasmaspiegel und dem myokardialen Nekrosemarker Troponin I bei STEMI Patienten beobachtet (r=-0,268, P=0,04). Unter einer zum Zeitpunkt der Krankenhausaufnahme vorbestehenden Statintherapie, jedoch nicht bei anderer medikamentöser Therapie, zeigten lediglich Patienten mit akutem Myokardinfarkt signifikant erniedrigte Plasmaspiegel von SDF-1 (P=0,015), es fand sich keine signifikante medikamentöse Beeinflussung von SDF-1 Plasmaspiegeln bei Patienten mit stabiler Angina Pektoris (SAP) (P=0,141).

Plasma SDF-1 wird bei Patienten mit akutem Myokardinfarkt unterschiedlich reguliert, könnte durch Statine beeinflusst werden und bei Patienten mit STEMI eine vermehrte Progenitorzellmobilisierung verursachen.
7. Literaturverzeichnis

progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 91:4523-4530

52. Tiensiwakul P (2004) Stromal cell-derived factor (SDF) 1-3'A polymorphism may play a role in resistance to HIV-1 infection in seronegative high-risk Thais. Intervirology 47:87-92

8. Publikationen

Die Ergebnisse dieser Dissertation sind Inhalt folgender Publikation:

Originalartikel

Andere Publikationen ohne Bezug zu dieser Dissertation

9. Danksagung

Als erstes bedanke ich mich bei Herrn Professor Dr. Meinrad Gawaz für die Bereitstellung meines Dissertationsthemas und die Ermöglichung dieser Dissertation in seiner Abteilung.

Meinem Betreuer, Dr. Konstantinos Stellos, der das Entstehen und Gelingen dieser Arbeit durch seine gute Erreichbarkeit zu jeder Tages- und Nachtzeit, zeitliches Engagement und wertvolle Anregungen förderte, gilt mein besonderer Dank.

Des Weiteren danke ich der gesamten Arbeitsgemeinschaft von Professor Dr. Meinrad Gawaz, im Besonderen Özlem Akcay und Tserenchimeg Ganbaatar für die ausführliche Einarbeitung in die Studie.

Ebenso bedanke ich mich beim Team des Herzkatheters der Medizinischen Klinik III für die gute Kooperation sowohl tags als auch nachts, ohne die diese Studie nicht durchführbar gewesen wäre.

Ein wichtiger Dank gilt allen Probanden für ihre Einwilligung zur Teilnahme an der Studie.

10. Curriculum vitae

Persönliche Daten
Name: Madlen Eva Ruf
Geburtstag: 23. März 1985
Geburtsort: Stuttgart
Familienstand: ledig

Schulbildung
08/1995 – 06/2004 Graf-Eberhard Gymnasium, Bad Urach
06/2004 Allgemeine Hochschulreife mit naturwissenschaftlichem Schwerpunkt

Hochschulbildung
10/2004 – 10/2010 Studium der Humanmedizin an der Eberhard Karls Universität Tübingen
09/2006 Erster Abschnitt der Ärztlichen Prüfung
Famulaturen:
03/2007 Innere Medizin, Albklinik Münsingen
04/2008 Chirurgie, Albklinik Münsingen
08/2008 Gynäkologie und Geburtshilfe, Klinikum am Steinenberg Reutlingen
09/2008 Praxis für Chirurgie und Unfallchirurgie, Münsingen
03/2009 Allgemeinmedizinische Praxis, Münsingen
21. Oktober 2010 Zweiter Abschnitt der Ärztlichen Prüfung

Publikationen: aufgeführt unter Kapitel 8 (Seite 40) „Publikationen“