Aus der Universitätsklinik für Zahn-, Mund- und Kieferheilkunde Tübingen

Abteilung Poliklinik für Kieferorthopädie

Ärztlicher Direktor: Professor Dr. Dr. G. Göz

Darstellung und Normwertdefinition der räumlichen Abfolge von Zungenbewegungen beim Schlucken eines Wasserbolus mit Hilfe der elektromagnetischen Artikulographie

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Zahnheilkunde

der Medizinischen Fakultät der Eberhard-Karls-Universität zu Tübingen

vorgelegt von

Cornelia Grau

aus

Mutlangen

2011

Dekan: Professor Dr. I. B. Autenrieth

1. Berichterstatter: Professor Dr. Dr. G. Göz

2. Berichterstatter: Professor Dr. J. Geis-Gerstorfer

Für meine Eltern und meine Schwester

INHALTSVERZEICHNIS

Inhaltsverzeichnis

. EINLEITUNG			
2. MATERIAL UND METHODEN	7		
2.1 Studienpopulation	7		
2.2 Messsystem	9		
2.2.1 Hardware			
2.2.2 Software			
2.2.3 Messgenauigkeitsstudie			
2.2.4 Fehlerquellen der Messaufnahme			
2.3 Messung	15		
2.3.1 Vorbereitung	15		
2.3.1.1 Studienmodelle	15		
2.3.1.2 Herstellung von Schablonen zur Registrierung der Kauebene			
2.3.1.3 Vorbereitung und Kalibrierung des Messsystems			
2.3.1.4 Probanden			
2.3.2 Aufzeichnung			
2.4. Bearbeitung der Messdaten	22		
2.4.1. Nivellierung der Referenzpunkte			
2.5 Auswertung der Dateien	26		
2.5.1 Erstellen eines Schluckschemas			
2.6 Definition der Auswertungsvariablen	31		
2.7 Statistische Auswertung	32		
2.7.1 Messfehler			
2.7.2 Messfehlerkategorien 2.7.3 Bewertungsquotient der Messfehlerkategorien			
2.7.4 Messfehler Oneway-Analyse			
2.7.5 Messwerte Oneway-Analyse			
2.7.6 Definition der Normwerte			
3. ERGEBNISSE	37		
3.1 Messfehler	37		
3.1.1 Distanzen			
3.1.2 Winkel			
3.2 Messwerte Oneway	49		
3 2 1 Finfluss Körnerhaltung	40		

INHALTSVERZEICHNIS

3.2.1.1 Distanzen	. 49
3.2.1.2 Winkel	. 51
3.2.2 Einfluss Geschlecht	
3.2.2.1 Distanzen	
3.2.2.2 Winkel	. 58
3.3 Balancepoints	59
3.4 Übersicht der Normwerte	60
3.4.1 Normwerttabelle Distanzen	60
3.4.2 Normwerttabelle Winkel	
4. DISKUSSION	67
4.1 Beurteilung der Methode	67
4.2 Diskussion der Ergebnisse	73
4.2.1 Messfehler	. 73
4.2.1.1 Distanzen	
4.2.1.2 Winkel	
4.2.2 Oneway-Analysen Messfehler	. 74
4.2.2.1 Einfluss Körperhaltung-Distanzen	
4.2.2.2 Einfluss Körperhaltung-Winkel	. 74
4.2.3 Oneway-Analysen Messwerte	
4.2.3.1 Einfluss Körperhaltung-Distanzen	. 74
4.2.3.2 Einfluss Körperhaltung-Winkel	
4.2.3.3 Einfluss Geschlecht-Distanzen	
4.2.3.4 Einfluss Geschlecht-Winkel	
4.2.3.5 Normwertdelinition	. 75
4.3 Schlussfolgerung	75
5. ZUSAMMENFASSUNG	76
o. 200Amment A000110	
6. LITERATURVERZEICHNIS	79
7. ABBILDUNGSVERZEICHNIS	86
8. TABELLENVERZEICHNIS	89
9. ANHANG	90
9.1 Tabellen Messfehler	90
9.1.1 Messfehler Distanzen (Messfehlerkategorie 4)	. 90

INHALTSVERZEICHNIS

9.2 Tabellen Oneway-Analyse – Messfehler	93
9.2.1 Einfluss Körperhaltung/Distanzen	93
9.2.2 Einfluss Körperhaltung/Winkel	138
9.2.3 Einfluss Geschlecht/Distanzen	
9.2.4 Einfluss Geschlecht/Winkel	194
9.3 Normwertetabellen	209
9.3.1 Distanzen, Einfluss Körperhaltung	209
9.3.2 Winkel, Einfluss Körperhaltung	215
9.3.3 Normwerte Winkel, Einfluss Geschlecht	216
9.4 Fragebogen zur Erfassung relevanter Daten für die	217
9.5 Probandeninformation zur Analyse von Lippen- und Zungenbewegungen mittels elektromagnetischer Artiku	
9.6 Einverständniserklärung	224
10. DANKSAGUNG	225
11. LEBENSLAUF	226

1. Einleitung

Die Zunge stellt das zentrale Organ der Mundhöhle dar und spielt eine entscheidende Rolle in der Anatomie und Funktion des oralen Bereiches³⁸. Bei der sprachlichen Artikulation und Kommunikation, bei der Formgebung und

Funktion des Gebisses sowie beim Schluckvorgang und damit der Ernährung kommt ihr eine große Bedeutung zu³⁸. Sie ist eines der vielseitigsten motorischen Systeme des menschlichen Körpers⁴.

Das Schlucken gehört zu den häufigen Bewegungsvorgängen des menschlichen Körpers⁶⁸. Es handelt sich dabei um eine lebenserhaltende Funktion des Körpers, die zwar gewollt eingeleitet werden kann, jedoch oft unbewusst abläuft. Medizinisch betrachtet stellt der Schluckvorgang ein komplexes Zusammenspiel zwischen über 25 Muskelpaaren und Reflexen und damit einen hoch differenzierten physiologischen Vorgang dar.

Der Schluckreflex zählt zu den Nutritionsreflexen, die den Fremdreflexen untergeordnet sind.

Der Schluckvorgang verläuft teilweise willkürlich und teilweise unwillkürlich. Er kann in vier Phasen eingeteilt werden, die fließend ineinander übergehen.

In der willkürlichen vorbereitenden Phase formiert sich durch Abbeiß- und Kauvorgänge sowie durch die Vermischung der zerkleinerten Nahrung mit Speichel ein Speisebolus.

In der sich anschließenden, ebenfalls willkürlich verlaufenden oralen Phase, kommt es zum Transport des Speisebolus in den Hypopharynx. Dafür wird der Speisebolus zunächst zwischen Zunge, hartem und weichem Gaumen gehalten und schließlich durch ein Anheben der Zunge nach posterior transportiert. Der dabei einsetzende velopharyngeale Verschluss verhindert das Eintreten des Speisebolus in die Nase. Die Auslösung des Schluckreflexes bedingt eine Drucksteigerung, wodurch der Bolus in den Oropharynx gelangt.

Die Auslösung des Schluckreflexes leitet die dritte, pharyngeale Phase ein. Bei dieser unwillkürlich ablaufenden Phase wird sowohl das Os hyoideum als auch der Larynx nach anterior-kranial angehoben. Durch die peristaltische Bewegung der Pharynxmuskulatur nach kaudal und die Elevation des Hyoids und des

Larynx öffnet sich der obere Ösophagussphincter. Der Speisebolus gleitet in den Ösophagus.

In der vierten und letzten Phase des physiologischen Schluckaktes gelangt der Speisebolus durch reflektorisch ablaufende peristaltische Bewegungswellen des Ösophagus und durch die Öffnung des unteren Ösophagussphincters in den Magen (ösophageale Phase).

Zeitgleich hebt sich die Epiglottis. Larynx und Os hyoideum senken sich, wobei der Respirationstrakt wieder geöffnet wird.

Dieser komplexe Vorgang lässt erahnen, wie sich Fehlfunktionen und Fehlbewegungen der Zunge auswirken können und wie wichtig die Erforschung von Zungenbewegungen ist. Zudem kommt der Ursachenforschung myofunktioneller Störungen bei der Therapie von Fehlfunktionen eine große Bedeutung zu.

Myofunktionelle Störungen der Zunge können verschiedene Ursachen haben. Stark vergrößerte Tonsillen bzw. adenoide Wucherungen und die damit einhergehende erschwerte Nasenatmung wirken sich auf die Gesichtsform, die

Zungenruhelage und auf die Atmung aus^{21,34,57}. Ein verlängertes unteres Gesichtsdrittel, das fliehende Kinn und der vergrößerte Nasolabialwinkel sind ästhetisch unvorteilhaft. Der inkompetente Lippenschluss durch das Missverhältnis von Lippenlänge und unterer Gesichtshöhe bedingen die Mundatmung.

Zudem verursachen Wachstumsanomalien des Gesichtsschädels und anomale Gebissformen, wie zum Beispiel die Progenie, Prognathie und der offene Biss die Muskeldysfunktion³⁴.

Das Daumen- und Fingerlutschen verändern stetig die Form des Kiefers und der Zahnreihen. Der Mundraum wird verkleinert und führt zu einer falschen Zungenruhelage³⁴.

Durch Flaschenernährung eines Säuglings wird die Muskulatur der Zunge, des Kiefers und des Gesichts falsch eingesetzt oder zu wenig trainiert, da das Kind nur trinkt anstatt zu saugen³⁴.

Dysfunktionen der Zunge sind zudem als ätiologische Faktoren bei Dysgnathien in der Kieferorthopädie bekannt^{13,21,34,57}. So kann ein unphysiologisches Schluckmuster einen offenen Biss verursachen und zur Persistenz desselben

mit allen funktionellen und ästhetischen Einschränkungen führen⁵⁷. Ästhetische Einschränkungen sind die Verlängerung der unteren Gesichtshöhe und das meist fliehende Kinn. Ein vergrößerter Nasolabialwinkel wirkt sich ebenfalls ästhetisch unvorteilhaft aus⁵⁷. Das Missverhältnis von Lippenlänge und unterer Gesichtshöhe führt zum inkompetenten Lippenschluss und damit zur Mundatmung.

Ist der Schluckvorgang gestört, wirken kompensatorisch die umgebenden mimischen Muskeln ein. Dadurch können einerseits die Gesichtskonturen erschlaffen und andererseits Gesichtsschmerzen durch zu starke Anspannung der mimischen Muskulatur hervorgerufen werden³⁴. Nicht nur Zahnfehlstellungen, sondern auch Schluckstörungen und damit die Beeinträchtigung der Nahrungsaufnahme, Probleme bei der Gebissentwicklung und fehlerhafte Ausbildung der Sprache können die Folge sein. Nicht zuletzt können abnorme Muskelgewohnheiten, wie die der Zunge beim Schlucken, nach Beendigung einer kieferorthopädischen Behandlung zu unbefriedigenden Behandlungsergebnissen und zu Rezidiven der Zahnstellung führen³⁴.

Bei Erkrankungen wie Trisomie 21, Störungen des velopharyngealen Abschlusses bei Spaltpatienten, zentralneurologischen Erkrankungen sowie Tumorchirurgie bei Carcinomen im Bereich der Mundhöhle und des Oropharynx treten Dysfunktionen der Zunge nicht als Ursache sondern als Folge auf¹³. Bei Trisomie 21 verhindert eine hypotone und hyperplastische Zunge den adäquaten Mundschluss. Die Patienten sind meist Mundatmer, was die Gefahr von chronischen Erkrankungen des Respirationstraktes sowie die Entstehung von Karies begünstigt. Bei Patienten mit LKG-Spalten, insbesondere aber Spalten am Gaumen, verhindert eine permanente Einlagerung der Zunge zwischen die Spaltsegmente deren Annäherung bzw. Verschluss. Operierte Tumorpatienten haben dagegen mit erheblichen Weichteilverlusten zu kämpfen. Hier fehlen der Zunge Teile oder die gesamten anatomischen Nachbarstrukturen (z.B. Gaumen, Mundboden), mit denen sie beim Schluckvorgang und beim Sprechen in Kontakt tritt.

Gerade hier gilt es, durch gezielte diagnostische und therapeutische Maßnahmen die Funktion aller Strukturen des stomatognathen Systems wiederherzu-

stellen und den Patienten den größtmöglichen funktionellen und ästhetischen Komfort wieder zu gewährleisten.

Es ist daher wichtig, die Bewegungsmuster der Zunge zu untersuchen, um im Rahmen kieferorthopädischer, logopädischer oder chirurgischer Behandlungsmaßnahmen die fehlerhafte Funktion therapieren zu können.

Die Erforschung von Zungenbewegungen stellt seit geraumer Zeit ein zentrales Thema von Studien in der Medizin dar. Die dazu gebräuchlichen Verfahren sind die transorale Sonographie, die Funktionspalatographie, Bariumbreischluckverfahren kombiniert mit Röntgenaufnahmen, die Elektromagnetische Artikulographie (EMA) und die Untersuchung mit Drucksensoren zur Messung des Lippen- und Zungendrucks^{48,62,70}.

In der Vergangenheit wurden intraoral ablaufende Bewegungsvorgänge überwiegend mit Hilfe von Röntgenaufnahmen untersucht. Der große Nachteil ist hier die erhebliche Strahlenbelastung dieser Methode, die aus diesem Grund nicht beliebig oft anwendbar ist¹⁵. Zusätzlich ergeben sich Probleme bei der Einzelbildauswertung. In Kombination mit dem Bariumbreischluckverfahren ruft die Röntgenmethode beim Patienten häufig ein Ekelgefühl hervor.

Im Gegensatz hierzu bietet die transorale Sonographie ein praktikables und beliebig oft wiederholbares, nichtinvasives Untersuchungsverfahren. Es ermöglicht auf eine für den Patienten ungefährliche und nicht gesundheitsschädliche Weise Bewegungsanalysen während des physiologischen Ablaufs von Schluckoder Artikulationsvorgängen. Da Patient und Untersucher zum Zeitpunkt der Messungen in einem Raum sind und die Bewegungen auf einem Monitor verfolgen, können während der Messungen Korrekturen im Bewegungsmuster der Zunge erfolgen⁷⁶.

Entscheidende Nachteile der Sonographie sind die fehlende räumliche Auflösung der Bilder, eine parallele Aufzeichnung von kinematischen und akustischen Signalen ist nicht möglich. Die Analyse kann nur an Einzelbildern erfolgen^{22,66}. Diese müssen per Video aufgezeichnet werden, wodurch die zeitliche und räumliche Auflösung begrenzt ist. Knöcherne Strukturen, wie Unterkiefer und Gaumen, werden nicht erfasst. Die Zungenspitze erscheint oft undeutlich, da sie sich im Schallschatten des Unterkiefers befindet. Ein weiterer Nachteil

der Sonographie ist die begrenzte Aussagekraft zu Bewegungen definierter Punkte der Zungenoberfläche¹⁷.

Mit der elektromagnetischen Artikulographie (EMA) können diese definierten Punkte der Zungenoberfläche in ihrer Bewegung verfolgt werden. Das 1983 von Schönle et al¹⁷ erstmals beschriebene Verfahren wurde im Zusammenhang neurophysiologischer Untersuchungen der Sprechmotorik entwickelt.

Die EMA gilt als biologisch sicheres, nicht invasives Verfahren und erlaubt die exakte vektorielle Analyse von Bewegungen der Zunge und des Gaumensegels in der Mediosagittalebene des orofazialen Systems ohne die Anwendung von Röntgenstrahlen¹⁷. Seit 1987 ist sie in der Abteilung für Kieferorthopädie des Zentrums für Zahn-, Mund- und Kieferheilkunde des Universitätsklinikums Tübingen im Einsatz. Die EMA ermöglicht die genauere Erfassung der sagittalen Bewegungen der gesamten Zungenoberfläche und damit die genaue Beschreibung von Bewegungsstörungen der Zunge. Die Bewegungsdaten können beliebig oft erhoben werden.

Der Proband trägt dabei einen Messhelm mit drei in der Mediosagittalebene aufgeklebten Senderspulen. Empfängerspulen werden an der Zunge, der Gingiva des Ober- und Unterkiefers, der Ober- und Unterlippe sowie am Nasenrücken angebracht. Durch die Miniaturisierung der Empfängerspulen wird der Funktionsablauf nicht oder nur in sehr geringem Maße gestört¹⁵.

Gegenstand der vorliegenden Dissertation war die genaue Analyse von Zungenbewegungen während des Schluckens eines Wasserbolus.

Es sollte untersucht werden, ob das Messsystem der EMA zur oben genannten Analyse geeignet ist.

Weiterhin wurden die einzelnen Schlucksequenzen in ihrem Ablauf analysiert und Unterschiede sowie Gemeinsamkeiten der verschiedenen Sequenzen ermittelt.

Im Fokus standen dabei die räumlichen Zusammenhänge des Schluckvorgangs sowie die Abhängigkeit des Schluckvorgangs von der Körperhaltung und vom Geschlecht der Probanden. Die Messungen wurden hierfür jeweils zehn Mal in aufrechter und zehn Mal in entspannter Körperhaltung durchgeführt.

Anschließend wurden die gemessenen Werte nach ihrer Güte in Abhängigkeit zu ihrem Messfehler analysiert.

Die folgenden Kernfragen stellten sich im Anschluss:

Wie stellt sich die Güte der Messwerte in Abhängigkeit zu ihrem Messfehler dar?

Gibt es einen Zusammenhang zwischen der Körperhaltung des Probanden und dem Messfehler?

Besteht ein Zusammenhang zwischen dem Geschlecht des Probanden und dem Messfehler?

Inwiefern wird die Bewegungsbahn der Zunge von der Körperhaltung des Probanden beeinflusst?

Beeinflusst das Geschlecht des Probanden den Bewegungsablauf der Zunge?

Unter Berücksichtigung dieser Kernfragen wurde schließlich eine Normwerttabelle für die Bewegung der Zunge beim Schlucken in den Bereichen Distanzen und Winkel erstellt. Die Ergebnisse des Wasserschluckens in aufrechter und entspannter Haltung wurden in der Diskussion verglichen.

Langfristiges Ziel der Dissertation ist es, einen Beitrag zu leisten, die EMA in Zukunft als diagnostisches und therapeutisches Hilfsmittel für die Aufzeichnung von Zungenbewegungen zu etablieren.

2. Material und Methoden

2.1 Studienpopulation

Die 25-köpfige Studienpopulation setzte sich aus 14 weiblichen und

11 männlichen Probanden zusammen. Der Median des Durchschnittsalters betrug 26 Jahre. Der älteste Proband war 29 Jahre alt, der Jüngste 23 Jahre alt.

Die Studienteilnehmer wurden nach festgelegten Kriterien ausgewählt:

Eine Voraussetzung war die bei der gesamten Studienpopulation vorhandene Motivation und die gleichermaßen gute Mitarbeit. Alle Versuchsteilnehmer waren körperlich gesund. Es lagen keine allgemeinen oder infektiösen Erkrankungen, keine Erkrankungen des Bewegungsapparates, keine psychischen Leiden und keine Erkrankungen des zentralen Nervensystems vor.

Keiner der Probanden litt an Deformationen der Wirbelsäule oder hatte akute Rückenbeschwerden.

Die Studienteilnehmer standen zum Zeitpunkt der Untersuchung weder unter medikamentösem Einfluss noch waren sie alkoholisiert.

Alle Probanden wiesen eine beidseitige Neutralbisslage sowie ein physiologisches Sprech- und Schluckmuster auf. Sämtliche funktionelle Auffälligkeiten konnten ausgeschlossen werden. Beim Sprechen der Texte wurde auf eine korrekte Aussprache geachtet.

Die Versuchsteilnehmer hatten keine Nonokklusion, keinen seitlich oder frontal offenen Biss, keinen Kreuzbiss und höchstens einen geringen Engstand im Bereich der Frontzähne.

Frontzahnkontakt war bei allen Probanden vorhanden.

Bei 21 Versuchsteilnehmern lag der Overjet im Normbereich, bei zwei Probanden wich er um +0,5 mm, bei zwei Probanden um +2,0 mm ab¹¹.

Die Probanden befanden sich zum Zeitpunkt der Messungen nicht in kieferorthopädischer Behandlung und trugen weder einen Retainer noch eine andere festsitzende kieferorthopädische Apparatur. Prothetische Versorgungen außer Einzelzahnkronen im Seitenzahnbereich waren nicht vorhanden.

Das Wachstumsmuster spielte als Auswahlkriterium keine Rolle.

MATERIAL UND METHODEN

Vorhandene Zungenpiercings mussten vor der Durchführung der Messungen herausgenommen werden, um die intraoralen Bewegungsabläufe nicht zu beeinträchtigen oder gar zu behindern.

Es lagen keine Craniomandibulären Dysfunktionen vor.

Die Studienteilnehmer waren keine Patienten der kieferorthopädischen Poliklinik und stammten alle aus dem privaten Umfeld der Forschungsgruppe.

Sie wurden vor Durchführung der Studie auf ihre Eignung hin untersucht und über den Ablauf der Studie aufgeklärt. Zudem wurde den Teilnehmern eine schriftliche Studieninformation (Anlage 9.5 Probandeninformation) ausgehändigt. Die Untersuchungsergebnisse wurden in einem eigens für die Studie zusammengestellten Fragebogen (Anlage 9.4 Fragebogen zur Erfassung relevanter Daten für die EMA - Messungen) dokumentiert. Mit einer schriftlichen Einverständniserklärung (Anlage 9.6 Einverständniserklärung) stellten die Probanden ihre Daten für die Studie zur Verfügung.

Die Anamnese und klinische Untersuchung ergab, dass 19 Studienteilnehmer bereits kieferorthopädisch behandelt worden waren, zehn von ihnen mit festsitzenden Apparaturen, neun mit herausnehmbaren Geräten. Bei vier Probanden war eine funktionskieferorthopädische Behandlung vorgenommen worden.

Vier Probanden befanden sich in der Vergangenheit in logopädischer Behandlung, zwei davon auf Grund kindlicher Sprachentwicklungsstörungen, einer im Rahmen seiner Gesangsausbildung und einer auf Grund von Legasthenie.

Bei zwei Probanden war eine systematische Reihenextraktion nach Hotz vorgenommen worden.

Zwei Studienteilnehmer wiesen ein leichtes Ankyloglosson auf, welches die Zungenmotorik nicht einschränkte und sich damit als nicht therapiebedürftig erwies.

2.2 Messsystem

2.2.1 Hardware

Als Messsystem der EMA wurde der Artikulograph der kieferorthopädischen Abteilung des Zentrums für Zahn-, Mund- und Kieferheilkunde des Universitätsklinikums Tübingen verwendet²⁹. Dieser wurde nach dem Vorbild des Artikulographen der Firma Carstens Medizinelektronik GmbH seit 1993 neu entwickelt⁶.

Das Kernstück des Messsystems ist ein 1300 g leichter Fahrradsturzhelm aus Styropor, der, an einem Karbongestänge befestigt, als Messhelm dient.

Dieser lässt sich durch gepolsterte Klettverschlüsse den verschiedenen Kopfformen anpassen und ermöglicht so einen komfortablen Sitz.

Eine individuell einstellbare Nasenstütze schützt vor Kippbewegungen der Helmkonstruktion.

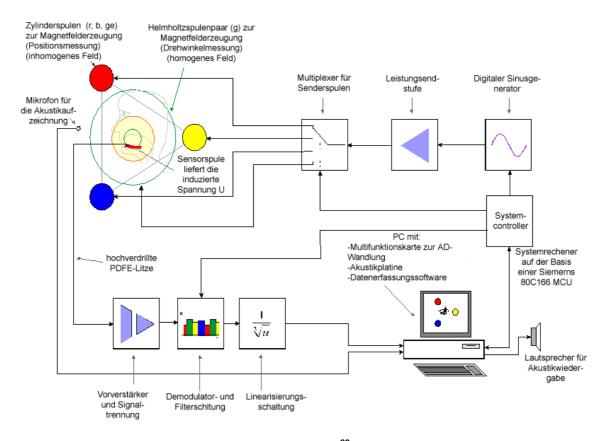


Abbildung 1: Schemazeichnung des Messsystems²⁹

Abbildung 2: Karbongestänge mit Positionssenderspulen vom Probanden getragen

Das Karbongestänge mit einer Kantenlänge von 400 mm beschreibt ein gleichseitiges Dreieck, an dessen Ecken im Bereich der Stirn, des Nackens und des Kinns Senderspulen angebracht sind, welche ein inhomogenes Magnetfeld erzeugen. Die Feldstärke des inhomogenen Magnetfeldes ist umgekehrt proportional zur dritten Potenz des Abstandes "r" von Sender- und Empfängerspule. Dieses Magnetfeld dient der Positionsmessung der Empfängerspule. Ein zusätzliches Helmholtz-Spulenpaar erzeugt ein homogenes Magnetfeld, welches eine Verdrehung der Spulen messen und unmittelbar korrigieren kann. Die Senderspulen senden im Zeitmultiplex mit einer jeweiligen Frequenz von 25,22 kHz. Dies bedeutet, dass zu einem bestimmten Zeitpunkt nur eine Spule sendet. Drei Zeitabschnitte dienen der Positionsbestimmung der Empfängerspulen, ein Zeitabschnitt der Messung des Drehwinkels.

An den Empfängerspulen, die in diesem Magnetfeld angebracht sind, kann eine Spannung u_x erzeugt werden.

Den Zusammenhang zwischen dieser Spannung und der Position der Senderspulen im Magnetfeld beschreibt folgende Gleichung:

$$u_x = k/r_x^3$$

u_x = An der Empfängerspule gemessene Spannung

k = Proportionalitätskonstante

 r_x = Abstand der Empfänger- zur Senderspule x mit x: $\{1, 2, 3\}$

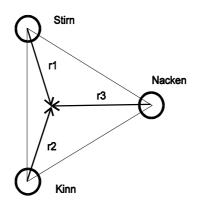


Abbildung 3: Magnetfeld der Positionssenderspulen²⁹

Diese Gleichung gilt jedoch nur bei einer parallelen Ausrichtung von Senderund Empfängerspule. Liegen diese verdreht und schließen einen Winkel α ein, nimmt u_x mit dem Faktor $cos(\alpha)$ ab.

Das Helmholtz-Spulenpaar kann diesen Winkel messen. Die unmittelbare Korrektur des Fehlers durch die verdrehten Spulen ist somit möglich.

Die genannten Empfängerspulen wurden bei den Probanden mit einem hautund schleimhautverträglichen Histoacrylkleber (CE0123 (93/42/EWG)) intraund extraoral angebracht:

Spule	Befestigungsort	Genaue Lagebezeichnung
1	Zungenspitze	0 cm
2	Mittlerer Zungenbereich	2 cm dorsal
3	Hinterer Zungenbereich	4 cm dorsal
4	Gingiva OK	Cranial der Interdentalpapille zwischen 11 und 21
5	Gingiva UK	Caudal der Interdentalpapille zwischen 31 und 41
6	Oberlippe	Grenze Lippenweiß/Lippenrot Mitte des Amorbogens
7	Unterlippe	Grenze Lippenweiß/Lippenrot Korrespondierend zum Bauch des Amorbogens
8	Nasenrücken	
9	Anteriore Kauebene	_
10	Sweep 1: Posteriore Kauebene	_
10	Sweep 2: Gaumenkontur	

Tabelle 1: Spulenbezeichnung

Zeitgleich zu den kinematischen Aufzeichnungen der Zungenbewegung wurden Sprachsequenzen mit Hilfe von zwei statischen Mikrofonen aufgezeichnet.

Diese sind auf Grund einer individuell einstellbaren Samplingrate und einem Frequenzbereich von 5 kHz bis 44 kHz für eine parallele Aufzeichnung von Kinematik- und Akustiksignalen geeignet.

Alternativ zum beschriebenen Helm für erwachsene Probanden steht ein Kinderhelm zur Verfügung. Hier sind die Senderspulen an den Ecken eines gleichseitigen Dreiecks aus Karbonstangen mit einer Kantenlänge von 340 mm angebracht.

2.2.2 Software

Die Software zur Aufzeichnung elektromagnetischer Messungen war AGMDE.EXE (Scholl, Th., Abteilung für Kieferorthopädie, Zentrum für Zahn-, Mund- und Kieferheilkunde, Universität Tübingen). Sie ermöglichte die Kalibrierung des Messsystems, die Aufzeichnung der Messungen sowie die Vorverarbeitung, Sichtung und Übertragung der erhobenen Daten.

Mit Hilfe des Programms Artikulograph konnten die Daten graphisch dargstellt und ausgewertet werden.

Im CAD-Programm Igor-Pro (Wavemetrics) wurden die Daten weiterverarbeitet und über ein Statistikmodul (Scholl, Th.; Schaupp, E.; Horn, H.; Koos, B.; Abteilung für Kieferorthopädie, Zentrum für Zahn-, Mund- und Kieferheilkunde, Universität Tübingen) für die statistische Auswertung mit JMP IN, Release 5.1 (SAS Institute Inc.) vorbereitet.

2.2.3 Messgenauigkeitsstudie

Im Oktober 1998 wurde eine Studie zur Untersuchung der Messgenauigkeit des Artikulographen durchgeführt (Horn, H.; Scholl, Th.; Abteilung für Kieferorthopädie, Zentrum für Zahn-, Mund- und Kieferheilkunde, Universität Tübingen)³⁰. Bei jedem der 588 gemessenen Sweeps wurden aus 100 gewählten Messpunkten ein Mittelwert und die Standardabweichung berechnet.

Ein Messraster von 140 mm x 140 mm im Zentrum des Messhelms legte die Sollwerte fest.

In diesem Messraster wurden 49 reproduzierbare Punkte festgelegt, die jeweils mit einer Spulenverdrehung von 0°, 10°, 20° und 30° und mit einer Seitenabweichung von 0 mm, 10 mm und 20 mm gemessen wurden.

Der Messfehler wurde aus der Abweichung der Mittelwerte vom Sollwert errechnet.

Abbildung 3 zeigt, dass eine reine Spulenverdrehung auf den Messfehler einen minimalen, eine seitlich versetzte Spule jedoch einen größeren Einfluss hat. Bei beiden konnten jedoch noch gute Messergebnisse erzielt werden.

Die Kombination von Verdrehung und Seitabweichung führte zu einem starken Anstieg des Messfehlers.

Die Standardabweichungen in Gestalt des Messrauschens waren bei allen Einstellungen kleiner als 0,2 mm. Im optimalen Messbereich betrug der Messfehler 0,12 mm.

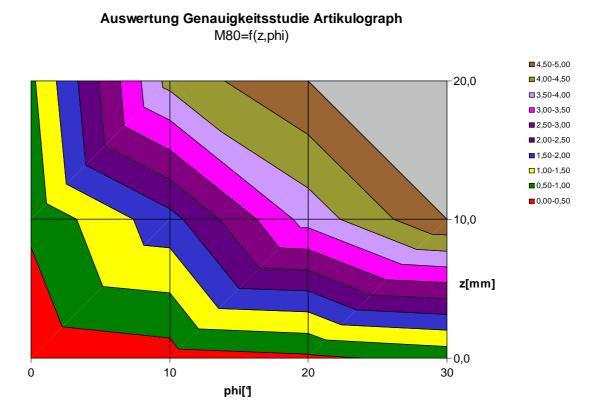


Abbildung 4: Graphische Darstellung der Messgenauigkeit (Horn, H.; Scholl, Th.)³⁰

2.2.4 Fehlerquellen der Messaufnahme

Eine Vielzahl äußerer Einflüsse kann zu Ungenauigkeiten und Fehlern bei den Messungen führen.

Der Artikulograph benötigt eine Vorbereitungs- und Kalibrierungsphase.

Werden beide nicht schrittweise durchgeführt, wird die Messgenauigkeit entscheidend beeinflusst.

Ist die Vorwärmzeit des Artikulographen zu kurz, erhöhen sich durch eine gesteigerte Temperaturdrift die Toleranzbereiche des Messsystems.

Gleiches gilt für die Umgebungstemperatur. Hier können Temperaturschwankungen, wie direkte Sonneneinstrahlung, zu verfälschten Messwerten führen.

Bei der Positionierung und Anpassung des Messhelms an den Kopf des Probanden ist auf einen korrekten Sitz zu achten, um ein Verrutschen oder Abkippen des Helms zu vermeiden.

Das mit dem Helm verbundene Karbongestänge darf keinen Kontakt zu den Schultern der Testperson haben, um diese nicht in ihrer Bewegung einzuschränken.

Das Verrutschen des Helms kann eine Verschiebung des Magnetfeldes der Senderspulen zu den weiterhin lagestabilen Empfängerspulen nach sich ziehen und die Messwerte deutlich verändern.

Die Spulen müssen sorgfältig auf die Zungenoberfläche geklebt werden, um unerwünschte Verschiebungen, Drehungen oder das Ablösen der Spulen zu verhindern.

Als Folge zu kurzer Verbindungsdrähte zwischen den Spulen kann die Zunge in ihrer Bewegungsfreiheit eingeschränkt sein.

Auch der Proband selbst stellt eine potentielle Fehlerquelle dar:

Das Tragen des Messhelms und die auf unterschiedlich resilienten Gewebsanteilen befestigten Spulen könnten den Probanden in seiner Bewegungsfreiheit beeinflussen.

Möglicherweise einsetzende Unkonzentriertheit oder Müdigkeit, die die orofaziale Muskulatur beeinflussen können, sind ebenfalls nicht auszuschließen.

Desweiteren sind Mobiltelefone oder andere schnurlose Telefone, die wie das Messsystem nach dem Prinzip von elektromagnetischen Feldern funktionieren, als Störfaktoren der Messungen zu sehen.

Da während der Messungen der Sprachsequenzen auch Audiosignale aufgezeichnet werden, können Umgebungsgeräusche die exakte Zuordnung von akustischen Signalen zu der Kinematik beeinflussen.

2.3 Messung

2.3.1 Vorbereitung

2.3.1.1 Studienmodelle

Zunächst wurden mit Hilfe von Alginatabformungen des Ober- und Unterkiefers Studienmodelle aus Superhartgips hergestellt. Die Modelle wurden nach kieferorthopädischen Richtlinien getrimmt und beschriftet.

2.3.1.2 Herstellung von Schablonen zur Registrierung der Kauebene

Analog der Form des Oberkiefers wurden Kunststoffschablonen hergestellt. Zur Übertragung der Kauebene auf diese Schablone wurden zunächst okklusale Einbisse auf den Gipsmodellen mit Futar D (Kettenbach GmbH & Co. KG, Eschenburg, Deutschland) erstellt.

Diese wurden im Frontzahnbereich und im Bereich der ersten Molaren angebracht und auf ihren korrekten Sitz am Probanden überprüft.

Bei exakter Passung wurde am Gipsmodell die Mittellinie des Oberkiefers auf die Kunststoffschablone übertragen.

Anschließend wurden die Kunststoffschablonen mit diesen Einbissen sowie mit zwei gefrästen Vertiefungen für eine anteriore und eine posteriore Empfängerspule versehen.

Die Empfängerspulen wurden anterior hinter den Frontzähnen und posterior an der dorsalen Begrenzung des harten Gaumens mit Sekundenkleber fixiert.

2.3.1.3 Vorbereitung und Kalibrierung des Messsystems

Der Artikulograph musste im Rahmen der oben genannten Vorbereitungsphase zwei Stunden vor Messbeginn eingeschaltet und auf die richtige Betriebstemperatur erwärmt werden.

Vor und nach jeder Messung mussten die Empfängerspulen und Verbindungskabel sowie der Messhelm wischdesinfiziert werden (z.B. Meliseptol HBV Tücher, B. Braun Melsungen AG, CE 0123), da diese Gerätekomponenten in unmittelbaren Körperkontakt kamen.

Vor Messbeginn wurden die Spulen mit einer dünnen Schicht Silasoft N überzogen. Die Schicht schützte die Spulen vor mechanischen Einwirkungen und Feuchtigkeit.

Mit dem Programm AGMDE.EXE wurde für jedes Messprojekt ein Projektname vergeben und ein Verzeichnis angelegt, in dem die Messdaten später gespeichert werden konnten. Anschließend erfolgte die Eingabe der Probandendaten in eine Benutzeroberfläche des Programms, um die Messergebnisse später besser zuordnen zu können. Hier wurde auch das Datum der jeweiligen Aufzeichnung festgehalten.

Es folgten die Einstellungen der Datenerfassungskarte DT3010 und der Soundkarte SB16:

Die Sampling-Frequenz sowie die Trigger-Quelle wurden manuell eingestellt. Die Trigger-Rate, welche die Frequenz des externen Triggers anzeigt, wurde vom Artikulographen vorgegeben.

An der Soundkarte wurden die Sampling-Rate, der einkanalige Aufzeichnungsmodus sowie eine Auflösung von 16 Bit pro Sample für akustisch hochwertige Aufzeichnungen eingestellt.

Vor der Kalibrierung wurden die Messkanäle vergeben. Eine Übersicht hierzu zeigt Tabelle 1 (2.2.1 Hardware).

Bei der Aussteuerung der Akustik konnten Einstellungen für die Aufnahme und für die Wiedergabe getrennt vorgenommen werden.

Anschließend erfolgte die Kalibrierung der Messkanäle über die entsprechende Gerätefunktion.

2.3.1.4 Probanden

Zunächst wurde der Messhelm an die Kopfform des Probanden angepasst.

Klettverschlusspolster, ein Nackenband sowie eine regulierbare Nasenstütze garantierten einen sicheren Sitz.

Da sich der optimale Messbereich im Zentrum des gleichseitigen Dreiecks aus Karbonstangen befand, sollte die Mundhöhle möglichst im Zentrum dieses Dreiecks liegen. Gleichzeitig war darauf zu achten, dass die Basis dieses Dreiecks, die horizontal liegenden Karbonstangen, genügend Abstand zu den Schultern der Testperson hatte.

Die Empfängerspulen wurden extra- und intraoral an den in Tabelle 1 (siehe 2.2.1 Hardware) beschriebenen Positionen mit einem Histoacrylkleber (CE0123 (93/42/EWG)) befestigt. Das feuchte Milieu der Mundhöhle erschwerte das Kleben der Spulen.

Beim Anbringen der Spulen wurde daher auf eine relativ trockene Schleimhaut intraoral und eine gereinigte und trockene Haut extraoral geachtet, um ein frühzeitiges Lösen der Spulen zu vermeiden.

Die Spulen 1, 2 und 3 wurden zur Bewegungsmessung der Zunge auf die Zungenoberseite geklebt.

Der Sulcus medianus, entlang dessen die Spulen befestigt werden sollten, wurde mit dem Farbstoff Methylenblau markiert.

Die drei Spulen wurden in orthogonaler Ausrichtung zum Sulucus medianus aufgeklebt.

Die erste Spule wurde an der Zungenspitze, die Spulen 2 und 3 in den Abständen 2 cm und 4 cm dorsal der Zungenspitze befestigt.

Spule 4 diente als Referenzpunkt für den Oberkiefer. Sie wurde auf der befestigten Gingiva der vestibulären Seite des Oberkiefers, kranial der Interdentalpapille zwischen den Zähnen 11 und 21 fixiert.

Analog zu Spule 4 wurde die fünfte Spule kaudal der vestibulären Interdentalpapille zwischen den Zähnen 31 und 41auf der befestigten Gingiva des Unterkiefers angebracht. Sie erfasste die Öffnungs- und Schließbewegungen sowie die Lateralbewegungen des Unterkiefers. Beide Referenzspulen 4 und 5 dienten der Ausrichtung und Vermessung von Strecken und Winkeln.

Zwei Spulen gewährleisteten die Erfassung der Lippenbewegung:

Spule 6 wurde hierzu in der Mitte des Amorbogens der Oberlippe am Übergang vom Lippenrot zum Lippenweiß aufgeklebt.

Spule 7 wurde am entsprechend liegenden Punkt der Unterlippe an der Grenze zwischen Lippenrot und –weiß fixiert.

Spule 8 wurde als weitere Referenzspule am Nasionpunkt des Nasenrückens befestigt. Dieser Punkt wurde gewählt, da er trotz der Bewegung der mimischen Muskulatur relativ lagestabil ist.

Um die Zungen- und Lippenbewegungen möglichst wenig zu beeinträchtigen, wurden die Verbindungskabel zwischen den Spulen mit einem Klettverschlussband gebündelt und an den Karbonstangen befestigt.

Spule 9 wurde auf oben erwähnter Kunststoffschablone für die Registrierung der Kauebene temporär befestigt. Bei der im Mund des Probanden eingesetzten Schablone lag diese Spule dorsal der Oberkieferschneidezähne.

Die Spule 10 wurde auf der gleichen Schablone an der dorsalen Begrenzung des harten Gaumens aufgeklebt.

2.3.2 Aufzeichnung

Im Rahmen der Messungen erfolgten zunächst die Aufzeichnung der Gaumenkontur sowie die Kauebenenregistrierung.

Es folgte die Aufzeichnung der Sprachsequenzen, eines Mustertextes sowie der Schlucksequenzen.

Die Aufzeichnung der Messdaten erfolgte mit dem Programm AGMDE.EXE.

Die ersten vier Messungen dienten der Aufzeichnung der Gaumenkontur.

Dazu wurde die Spule 10 auf den Zeigefinger eines Untersuchungshandschuhs geklebt und mit diesem die Gaumenkontur von dorsal nach ventral entlang der Mediansagittalebene abgefahren. Der Kontakt zur Schleimhaut durfte währenddessen keinesfalls unterbrochen werden und die vollständige Umfahrung der Oberkieferschneidezähne bis in die Umschlagfalte war unabdingbar.

Für die Aufzeichnung des Gaumens erfolgten vier Abtastungen, die separat abgespeichert wurden. So konnte eine ausreichend präzise Aufzeichnung der Gaumenkontur erreicht werden, die als Referenzwert verwendet wurde.

Die folgenden drei Messungen galten der Registrierung der Kauebene. Die dafür hergestellte Kunststoffschablone mit den Spulen 9 und 10 wurde hierfür exakt im Patientenmund positioniert und während der Messung durch die Hand des Untersuchers fixiert. Auch diese drei Messungen wurden in separaten Dateien gespeichert.

Alle im Folgenden genannten Aufzeichnungen wurden sowohl in aufrechter Sitzposition als auch in entspannter Haltung durchgeführt. Die aufrechte Haltung war dabei gekennzeichnet durch einen geraden Rücken sowie hüftbreit positionierte Beine, wobei sich die Oberschenkel parallel zum Boden befanden und die Knie einen rechten Winkel bildeten. Diese Sitzposition wurde während der Messung ständig vom Untersucher kontrolliert.

In der entspannten Haltung konnte der Proband die für ihn bequemste Sitzposition einnehmen.

Zur Untersuchung der Lippenbewegung beim Sprechen wurden bestimmte Sprachsequenzen aufgezeichnet.

Vor diesen Aufzeichnungen wurden dem Probanden aufgenommene Sprechproben vorgelegt, die sowohl Lautstärke als auch Intonation und Tempo vorgaben. Der Proband konnte die zu lesende Sequenz während des Sprechens auf einem Monitor verfolgen, um die Sprachgeschwindigkeit annähernd konstant zu halten.

Vor Beginn der Messungen erfolgte ein Probelesen zur Eingewöhnung.

Dabei handelte es sich zum einen um die Aufzeichnung der Vokal-Konsonant-Vokal-Sequenzen (VCV-Sequenzen) tasat, tatat, talat, tanat, takat, taschat und tafat. Diese Kernsequenzen (y) wurden in den Satz "Ich habe me-(y)-e gesagt" eingegliedert, um den natürlichen Redefluss nicht zu stören. Zum anderen erfolgte die Aufzeichnung der Konsonant-Vokal-Konsonant-Sequenzen

(CVC-Sequenzen) mepape, mepepe, mepipe, mepope und mepupe.

Diese Kernsequenzen (z) wurden aus oben genanntem Grund ebenfalls in den Satz "Ich habe (z) gesagt" eingegliedert.

Desweiteren erfolgte das Vorlesen des phonetischen Mustertextes "Der Nordwind und die Sonne", der als offizielle Referenz für den Gebrauch des internationalen phonetischen Alphabets anerkannt ist³¹:

"Der Nordwind und die Sonne"

Einst stritten sich der Nordwind und die Sonne, wer von ihnen beiden wohl der Stärkere wäre, als ein Wanderer, der in einen warmen Mantel gehüllt war, des Weges kam. Sie wurden einig, dass derjenige für den Stärkeren gelten sollte, der den Wanderer zwingen sollte, seinen Mantel abzunehmen. Der Nordwind blies mit aller Macht, aber je mehr er blies, desto fester hüllte sich der Wanderer in seinen Mantel ein. Endlich gab der Nordwind den Kampf auf. Nun erwärmte die Sonne die Luft mit ihren freundlichen Strahlen und schon nach wenigen Augenblicken zog der Wanderer seinen Mantel aus. Da musste der Nordwind zugeben, dass die Sonne von ihnen beiden der Stärkere war.

Zur Analyse der Schlucksequenzen wurden Schluckphasen mit einem 10 ml-Wasserbolus und Leerschluckakte mit dem in der Mundhöhle befindlichen Speichel aufgezeichnet.

Während der Aufzeichnung einer Entspannungsphase von 10 Minuten, in der der Proband leise Musik hörte, liefen die Schluckvorgänge unbewusst und ohne Aufforderung ab.

Oben genannte Ereignisse sind in Tabelle 2 noch einmal zusammengefasst.

Messung	Aufzeichnungsphase	Körperhaltung
1-4	Gaumenkontur	
5-7	Schablone	
8-20	Sprachsequenzen	
21-40	Abwechselndes Wasser-	In aufrechter
21-40	und Leerschlucken	Körperhaltung
41	Ruhephasen mit	Rorpernaturing
71	unbewusstem Schlucken	
42-54	Sprachsequenzen	
55-74	Abwechselndes Wasser-	In entspannter
	und Leerschlucken	Körperhaltung
75	Ruhephasen mit	. to portiality
	unbewusstem Schlucken	

Tabelle 2: Aufzeichnungsphasen

MATERIAL UND METHODEN

2.3.3 Nachbereitung

Nach Beendigung der Aufzeichnungen wurden die Empfängerspulen von der

Zunge durch leichtes Drehen entfernt.

Die Spulen und Verbindungskabel wurden wischdesinfiziert und die schützende

Silikonschicht entfernt.

Die Dateien wurden in ein Format konvertiert, das vom Auswertungsprogramm

Igor Pro gelesen werden konnte.

2.4. Bearbeitung der Messdaten

Mit Hilfe des Programms Artikulograph in Igor Pro konnten die räumlichen, zeit-

lichen und akustischen Daten wiedergegeben und ausgewertet werden. Es

wurden Wertetabellen erstellt, die dem Statistikprogramm JMP IN zugeführt

werden konnten. Die Dateien lagen im Format *.DATEIENDUNG vor, wobei *

für das für jeden Probanden charakteristische Kürzel stand.

Die Akustikdateien lagen in dem Format *. Axx vor, wobei "xx" als Platzhalter für

die Nummern 08 bis 20 und 42 bis 54 diente. Entsprechend dieser Nummerie-

rung wurden Akustikdateien und Sprachseguenzen einander zugeordnet.

Die Referenzen Gaumen und Kauebene erhielten keine Akustikdateien.

Gleiches galt für die aufgezeichneten Schlucksequenzen und für die

10-minütige Ruhephase mit spontanem Schlucken.

Die Kinematikdateien der Gaumenkontur wurden mit *.K01 bis *.K04 bezeich-

net.

Während der Messung wurden die Spulen 4, 8 und 10 aufgezeichnet:

Spule 4: Gingiva OK

Spule 8: Nasenrücken

Spule 10: Gaumenkontur

22

MATERIAL UND METHODEN

Die Kinematikdateien der Kauebene hatten die Bezeichnung *.K05 bis *.K07.

Hier wurden während der Messung die Spulen 4, 8, 9 und 10 aufgezeichnet:

Spule 4: Gingiva OK

Spule 8: Nasenrücken

Spule 9: Anteriore Referenz der Kauebene

Spule 10: Posteriore Referenz der Kauebene

Die Kinematikdateien der Sprachsequenzen bei aufrechter Sitzposition wurden mit *.K08 bis *.K20 benannt, die Sequenzen bei entspannter Körperhaltung mit *.K42 bis *.K54.

Hierbei erfolgte die Aufzeichnung folgender Spulen:

Spule 1: Zungenspitze

Spule 2: Zungenrücken 2cm dorsal

Spule 3: Zungengrund 4cm dorsal

Spule 4: Gingiva OK

Spule 5: Gingiva UK

Spule 6: Oberlippe

Spule 7: Unterlippe

Spule 8: Nasenrücken

Die Kinematikdateien der Schlucksequenzen hatten bei aufrechter Position die Bezeichnung *.K21 bis *.K40 und bei entspannter Körperhaltung *.K55 bis *.K74. Bei der Messung wurden ebenfalls die Spulen 1 bis 8 aufgezeichnet.

2.4.1. Nivellierung der Referenzpunkte

Durch kleinste Bewegungen des Helms auf dem Kopf des Probanden veränderte sich während der Aufzeichnung die Lage der Spulen im Magnetfeld im Vergleich zur Ausgangslage.

Zudem lagen die Spulen bei jedem neuen Probanden und jeder Messung eines Probanden stets an einer anderen Position als in der vorhergehenden Messung.

Aus den genannten zwei Gründen waren die unter Kapitel 2.4 aufgeführten Daten noch nicht miteinander vergleichbar. Es musste eine gemeinsame Referenzebene definiert werden, die diese Vergleiche ermöglichte.

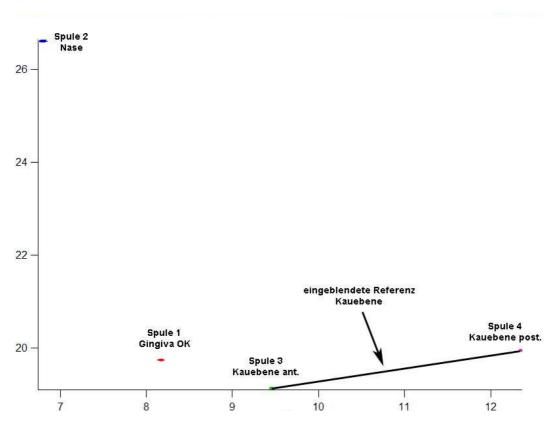


Abbildung 5: X-/Y-Darstellung der Kauebenenaufzeichnung im Programm IGOR PRO in cm

Als Referenzebene wurde die Kauebene gewählt, da die Lage der Spulen in Relation zu ihr gleich bleibt. Von jedem Probanden wurde eine Kauebene mit den Referenzpunkten Gingiva OK und Nase aufgezeichnet, wie in Kapitel 2.3.2 beschrieben. Die so ermittelte Kauebene wurde mit dem Artikulograph im Programm Igor Pro parallel zur Abszisse orientiert. Die mitaufgezeichneten Referenzpunkte Gingiva OK und Nase wurden nun in gleichbleibender Relation zur Kauebene verlagert.

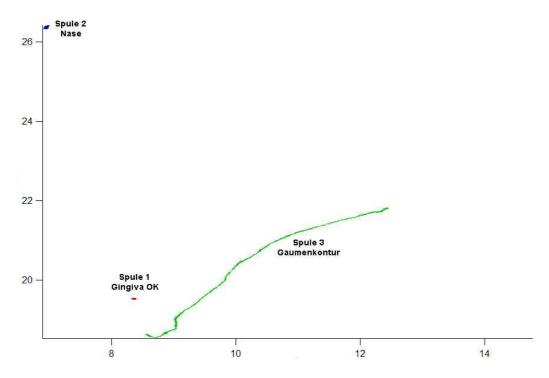


Abbildung 6: X-/Y-Darstellung der Gaumenaufzeichnung in cm

Die durch die oben genannte Verlagerung gewonnenen Punkte Gingiva OK und Nase wurden als neue Referenzpunkte gespeichert und bildeten die Grundlage für die Ausrichtung aller anderen gewonnenen Daten. Von jeder Aufzeichnung mussten die mitaufgezeichneten Punkte Nase und Gingiva OK mit den IGOR-Funktionen "Move" und "Rotate" auf die gewonnenen Referenzpunkte verlagert werden.

Durch eine Translation wurde nun die Spule 4 (Gingiva OK) auf den neuen Referenzpunkt OK verschoben, welcher das Rotationszentrum bildete, um das die Gaumenaufzeichnung rotiert wurde. Dabei wurde die Spule Nase der Gaumenaufzeichnung auf die Spule Nase der Kauebenenaufzeichnung abgebildet.

Anschließend wurden alle Spulenabbildungen der Schlucksequenzen translatiert und rotiert.

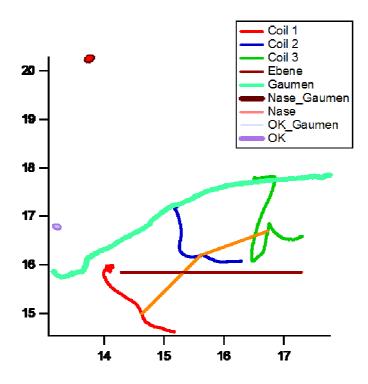


Abbildung 7: X-/Y-Darstellung aller Spulen mit eingeblendeten Referenzpunkten in cm

Die Kinematikdateien wurden mit einem Lowpass-Filter bei 15 Hz gefiltert.

Mögliche Unregelmäßigkeiten der Kurven – verursacht durch ein Grundrauschen durch die Messumgebung – wurden so eingeebnet.

Dies war nötig, um bei der später folgenden Peakbestimmung "falsche" Minima und Maxima zu vermeiden.

Die Akustikdateien wurden mit einem Highpass bei 10 kHz gefiltert und mit einem Notch-Filter bei 50 Hz bearbeitet. Umgebende Störgeräusche wurden so unterdrückt und die hochfrequenten Konsonanten der VCV-Sequenzen hervorgehoben.

2.5 Auswertung der Dateien

Um die Zungenbewegungen beim Schluckvorgang analysieren zu können, musste ein auf alle Aufzeichnungen anwendbares Schluckschema erstellt werden.

2.5.1 Erstellen eines Schluckschemas

Zunächst wurden alle durch die Aufzeichnung der Schlucksequenzen entstandenen Kurven verglichen und die vergleichbaren und überwiegend eindeutigen Messpunkte ermittelt.

Diese Messpunkte wurden als Extremwerte (Minima und Maxima) in der Koordinatendarstellung der Kinematikdateien markiert, wobei die zur Abszisse parallel verlaufende nivellierte Kauebene als Referenzebene galt.

Dabei wurde ein Messpunkt mit maximalem Abstand zur Abszisse als Maximum in y-Richtung ("Max y"), ein Messpunkt mit minimalem Abstand zur Abszisse als Minimum in y-Richtung ("Min y") festgelegt. Analog hierzu wurden in Bezug zur Ordinate Maxima in x-Richtung ("Max x") und Minima in x-Richtung ("Min x") bestimmt.

Eine erste Analyse ergab, dass die dritte Spule (Zungengrundspule) die deutlichste Aufzeichnung und regelmäßigste Abfolge dieser Extrempunkte zeigte. Diese Spule wurde als Grundlage des erstellten Konzepts herangezogen.

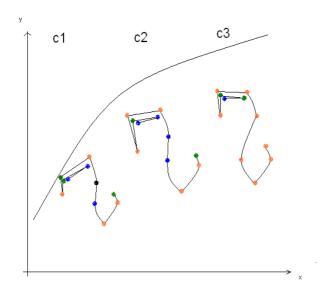
Sie zeigte die Hauptbewegung der Zunge beim Schlucken nach rostral bis zum Kontakt mit dem Gaumen, die schon in vergangenen Studien beschrieben worden war^{8,33,52-54,56,69,71}. Der Startpunkt dieser Aufwärtsbewegung wurde als Position 3 (P3: "Min y", Minimum in y-Richtung) festgelegt, der Endpunkt beim Gaumenkontakt der Zunge als Position 6 (P6: "Max y", Maximum in y-Richtung). Wie von Chi-Fishman⁸ beschrieben, zeigte die dritte Spule bei der Aufwärtsbewegung einen s-förmigen Verlauf. Daraus ergaben sich die Position 4 (P4) als Minimum in x-Richtung und die Position 5 (P5) als Maximum in x-Richtung.

Da die Zungenbewegung häufig von rostral und dorsal startete, bevor das erste Minimum in y-Richtung (P3) erreicht wurde, wurde als Postion 1 (P1) der maximal rostrale Startpunkt der Bewegung (Max y) und als Position 2 (P2) der maximal dorsale Startpunkt der Zungenbewegung (Max x) definiert.

In der Kontaktposition mit dem Gaumen verweilte die Zunge eine gewisse Zeit in ihrer rostralen Position (P6), was schon in verschiedenen Untersuchungen belegt worden war^{8,33,49,52,53,56,69}. Die von Steele⁶⁹ beschriebene Bewegung der Zunge nach anterior entlang des Gaumens konnte bei der Analyse der

Aufzeichnungen ebenfalls nachgewiesen werden. Der am weitesten anterior liegende Kontaktpunkt der Zunge mit dem Gaumen wurde als Position 7 (P7, Minimum in x-Richtung) definiert.

Das folgende Ablösen der Zunge vom Gaumen wurde in der Vergangenheit von verschiedenen Autoren beschrieben^{8,33,49,52,53,56}. Den Endpunkt der anschließenden Abwärtsbewegung stellte die Position 8 (P8) dar, ein Minimum in y-Richtung.


In manchen Studien endete der Schluckvorgang mit einer Bewegung der Zunge nach dorsal in ihre Ruhelage^{8,33}. Peng^{52,53,56} konnte im Gegensatz hierzu eine weitere Aufwärtsbewegung nachweisen, wenn bei einem Probanden eine hochgestellte Ruhelage der Zunge vorlag. Diese Aufwärtsspur zeigten die Aufzeichnungen in zum Teil ausgeprägter Form, wobei die Zunge abermals den Gaumen berührte. Die Position 9 (P9) beschrieb als Endpunkt dieser Bewegung ein Maximum in y-Richtung.

Ausgehend davon beschrieb die Zunge eine Bewegung nach dorsal, die in einem Maximum in x-Richtung endete und als Position 10 (P10) in das Schluckschema aufgenommen wurde.

Der letzte festgelegte Punkt der Aufzeichnung war Position 11 (P11), der als Minimum in x-Richtung den Endpunkt der folgenden Anteriorbewegung darstellte.

Das Schluckschema mit den ermittelten elf Extrempunkten konnte auf alle drei Spulen angewandt werden.

Abbildung 7 stellt die Extrempunkte als Bewegungsbahnen der Zunge in Relation zum Gaumen schematisch dar:

orange >66% grün >50% blau >33% schwarz <33%

Abbildung 8: Schemazeichnung der Schlucksequenzen

Tabelle 3 zeigt die ermittelten Extrempunkte.

Sie dienten als Ausgangsvariablen zur Berechnung der Variablen für die statistische Auswertung.

P1	Max y	Maximal rostraler Startpunkt der Zungenbewegung
P2	Max x	Maximal dorsaler Startpunkt der Zungenbewegung
P3	Min y	Startpunkt der ersten Aufwärtsbewegung
P4 Min x	Min v	Maximal ventraler Punkt während der s-förmigen
	Aufwärtsbewegung	
P5 Max x	Maximal dorsaler Punkt während der s-förmigen	
	IVIAX X	Aufwärtsbewegung
P6	Max y	Endpunkt der ersten Aufwärtsbewegung am Gaumen
P7	Min x	Endpunkt der ersten Ventralbewegung am Gaumen
P8	Min y	Kaudalster Punkt nach Ablösung der Zunge vom Gaumen
P9	Max y	Endpunkt der zweiten Aufwärtsbewegung
P10	Max x	Endpunkt der Dorsalbewegung am Gaumen
P11	Min x	Endpunkt der zweiten Ventralbewegung am Gaumen

Tabelle 3: Definition der ermittelten Extrempunkte des Schluckschemas

2.6 Definition der Auswertungsvariablen

Auswertungsvariablen EMA (Schlucksequenzen)

1. Ausgangsvariablen

Als Ausgangsvariablen dienten die oben genannten Extrempunkte des Schluckschemas P1-P11.

2.Berechnete Variablen

a) Distanzen

D33: c3p3-c3p4

```
D01: c1p1-c1p2
D02: c1p2-c1p3
D03: c1p3-c1p4
D04: c1p4-c1p5
D05: c1p5-c1p6
D06: c1p6-c1p7 (1. Ventralbewegung)
D07: c1p7-c1p8 (2. Abwärtsbewegung)
D08: c1p8-c1p9 (2. Aufwärtsbewegung)
D09: c1p9-c1p10 (Posteriorverlagerung)
D10: c1p10-c1p11 (Anteriorverlagerung)
D11: c1p1-c1p3 (1. Abwärtsbewegung)
D12: c1p3-c1p6 (1. Aufwärtsbewegung)
D13: c1p1-c1p6 (Strecke Startpunkt - 1. Gaumenkontakt)
D14: c1p1-c1p8 (Strecke Startpunkt - 1. Gaumenablösung)
D15: Strecke c1p1-c1p11 (Beginn Schlucken - Ende Schlucken)
D16: c2p1-c2p2
D17: c2p2-c2p3
D18: c2p3-c2p4
D19: c2p4-c2p5
D20: c2p5-c2p6
D21: c2p6-c2p7 (1. Ventralbewegung)
D22: c2p7-c2p8 (2. Abwärtsbewegung)
D23: c2p8-c2p9 (2. Aufwärtsbewegung)
D24: c2p9-c2p10 (Posteriorverlagerung)
D25: c2p10-c2p11 (Anteriorverlagerung)
D26: c2p1-c2p3 (1. Abwärtsbewegung)
D27: c2p3-c2p6 (1. Aufwärtsbewegung)
D28: c2p1-c2p6 (Strecke Startpunkt - 1. Gaumenkontakt)
D29: c2p1-c2p8 (Strecke Startpunkt - 1. Gaumenablösung)
D30: Strecke c2p1-c2p11 (Beginn Schlucken - Ende Schlucken)
D31: c3p1-c3p2
D32: c3p2-c3p3
```

```
D34: c3p4-c3p5
D35: c3p5-c3p6
D36: c3p6-c3p7 (1. Ventralbewegung)
D37: c3p7-c3p8 (2. Abwärtsbewegung)
D38: c3p8-c3p9 (2. Aufwärtsbewegung)
D39: c3p9-c3p10 (Posteriorverlagerung)
```

D40: c3p10-c3p11 (Anteriorverlagerung) **D41:** c3p1-c3p3 (1. Abwärtsbewegung) **D42:** c3p3-c3p6 (1. Aufwärtsbewegung)

D43: c3p1-c3p6 (Strecke Startpunkt - 1. Gaumenkontakt)

D44: c3p1-c3p8 (Strecke Startpunkt - kaudale Zungenablösung)

D45: c3p1-c3p11 (Beginn Schlucken - Ende Schlucken)

b) Winkel

```
Alpha01:
            c1p2 - c1p3 - c1p6
Alpha02:
            c1p3 - c1p6 - c1p7
Alpha03:
            c1p6 - c1p7 - c1p8
            c2p2 - c2p3 - c2p6
Alpha04:
Alpha05:
            c2p3 - c2p6 - c2p7
Alpha06:
            c2p6 - c2p7 - c2p8
            c3p2 - c3p3 - c3p6
Alpha07:
Alpha08:
            c3p3 - c3p6 - c3p7
Alpha09:
            c3p6 - c3p7 - c3p8
            c1p2 - c2p2 - c3p2
Alpha10:
            c1p3 - c2p3 - c3p3
Alpha11:
            c1p6 - c2p6 - c3p6
Alpha12:
Alpha13:
            c1p7 - c2p7 - c3p7
Alpha14:
            c1p8 - c2p8 - c3p8
            c1p9 - c2p9 - c3p9
Alpha15:
```

2.7 Statistische Auswertung

Zur statistischen Auswertung wurde das Program JMP IN Release 5.1 (SAS Institute Inc.) verwendet.

Die Variablen wurden nach Geschlecht (weiblich/männlich) und nach der Körperposition beim Schlucken (aufrecht/entspannt) ausgewertet.

Die räumliche Analyse der Daten beinhaltete die Auswertung der Distanzen und Winkel, welche die Extremwerte in den Kurven bildeten.

2.7.1 Messfehler

Um den Messfehler zu bestimmen, wurde der 1,96- und der 2,77-fache Messfehler nach Bland und Altman ermittelt³.

Beide Autoren legen als Grundlage fest, dass bei wiederholten Messungen die Messwerte um einen tatsächlich existierenden wahren Wert streuen.

Aus den durch wiederholte Messungen bei einem Probanden gewonnenen Werte wurde ein Mittelwert, der sogenannte intraindividuelle Mittelwert, gebildet⁷⁹:

$$\overline{x} = \left(\frac{x_1 + x_2 + \dots + x_{10}}{10}\right)$$

Aus den intraindividuellen Mittelwerten jedes Probanden einer Gruppe wurde der interindividuelle Mittelwert ermittelt. Dieser ist der mittlere Messwert.

$$\stackrel{=}{x} = \left(\frac{\overline{x}_1 + \overline{x}_2 + \dots + \overline{x}_n}{n} \right)$$

Für n gilt: n= Anzahl der männlichen/weiblichen Probanden.

Durch die Berechnung der Varianz var x jedes Probanden lässt sich die Standardabweichung σ errechnen:

$$var x = \left(\frac{\sum_{i=1}^{10} (x_i - \overline{x})^2}{10}\right)$$

Die Standardabweichung σ ergibt sich wie folgt:

$$\sigma = \sqrt{\operatorname{var} x}$$

Die Standardabweichung ist gleichzeitig der Messfehler jedes Probanden.

Um den Messfehler für jede Gruppe und damit die Normwerte zu ermitteln, wird zunächst die Varianz für eine Gruppe errechnet:

$$\overline{\operatorname{var} x} = \left(\frac{\operatorname{var} x_1 + \operatorname{var} x_2 + \dots + \operatorname{var} x_n}{n}\right)$$

Folgender Rechenweg ergibt schließlich die Standardabweichung und damit den Messfehler für eine Gruppe:

$$\overline{\sigma} = \sqrt{\overline{\operatorname{var} x}}$$

Für Bland und Altman gibt es zwei Möglichkeiten: Sie fordern, dass in 95 % aller Messungen der Unterschied zwischen der Messung und dem wahren Wert kleiner als der 1,96-fache Messfehler ist. Zudem gilt die Wiederholbarkeit der Messungen, die besagt, dass sich zwei Messungen einer Person in 95 % der Fälle um weniger als der 2,77-fache Messfehler unterscheiden dürfen.

2.7.2 Messfehlerkategorien

Die Messfehler wurden durch Grenzwerte in vier Kategorien eingeteilt. Um eine bessere Vergleichbarkeit mit der vorangegangenen Analyse der CVC-Sequenzen der Zungenbewegung zu erreichen, wurden dieselben Messfehlergrenzwerte wie in den Untersuchungen von Koos und Klink gewählt^{35,36}:

Distanzen

Kategorie	Messfehler σ	Sternchen
1	σ ≤ 1,5 mm	***
2	1,5 mm < σ ≤ 3 mm	**
3	3 mm < σ ≤ 4,5 mm	*
4	σ > 4,5 mm	

Tabelle 4: Messfehlerkategorie Distanzen

Winkel

Kategorie	Messfehler σ	Sternchen
1	σ ≤ 15°	***
2	15°< σ≤30°	**
3	30°< σ≤ 45°	*
4	σ > 45°	

Tabelle 5: Messfehlerkategorie Winkel

Variablen, deren Messfehler der Kategorie 4 angehören, wurden aus den Messfehlerkategorie-Tabellen entfernt und gesondert im Anhang tabellarisch dargestellt. Dadurch wurden nicht reliable Variablen von der weiteren statistischen Berechnung ausgeschlossen.

2.7.3 Bewertungsquotient der Messfehlerkategorien

Der Bewertungsquotient (Q*) wurde für jede Variable (D001-D045, Alpha01-Alpha15) errechnet. Dabei wurden die Messfehlerkategorien der jeweils vier Einflussfaktoren (aufrecht/entspannt/männlich/weiblich) jeder Variablen in folgende Formel eingegeben:

$$Q^* = Round \left[\frac{\left(N_1 \cdot 3 + N_2 \cdot 2 + N_3 \cdot 1 + N_4 \cdot 0 \right)}{N_{E \text{ inf luss faktor en}}}, 2. Dezimal ste lle \right]$$

N₁=Anzahl der Variablen in Kategorie 1 (***)

N₂= Anzahl der Variablen in Kategorie 2 (**)

N₃= Anzahl der Variablen in Kategorie 3 (*)

N₄= Anzahl der Variablen in Kategorie 4

N_{Einflussfaktoren}= Anzahl der Einflussfaktoren (männlich/weiblich, aufrecht/entspannt

Es ergaben sich für Q* die Werte 0 bis 3. Der Bewertungsquotient Q*= 3 ergab sich, wenn alle Einflussfaktoren einer Variablen in der Messfehlerkategorie 1 lagen, Q*= 0 liegt vor, wenn alle Einflussfaktoren die Messfehlerkategorie 4 hatten.

2.7.4 Messfehler Oneway-Analyse

In den vorangegangenen Dissertationen von Koos³⁶ und Klink³⁵ wurde bereits belegt, dass die aufrechte bzw. entspannte Körperhaltung keinerlei Einfluss auf den Messfehler des Gerätes hat.

2.7.5 Messwerte Oneway-Analyse

Für jede Variable wurde nun die Oneway-Analyse für die Leitfaktoren männliches und weibliches Geschlecht und aufrechte bzw. entspannte Körperhaltung durchgeführt. Dabei lieferte der nonparametrische Wilcoxon-Test^{2,5,59,77,78} den Wert ChiSquare, der zeigte, ob die Messfehler der Leitfaktoren männlich und weiblich sowie aufrecht und entspannt statistisch signifikant unterschiedlich waren. Bei allen Variablen mit dem Wert ChiSq < 0,05 übte der Leitfaktor Geschlecht bzw. Körperhaltung einen statistisch signifikanten Einfluss auf den Messwert aus.

2.7.6 Definition der Normwerte

Für die Distanzen und Winkel wurden jeweils Normwerttabellen erstellt, die alle statistisch aussagekräftigen und verwertbaren Daten der Kategorie 1-3 enthalten. Die Daten und Messwerte der Kategorie 4 werden gesondert im Anhang aufgeführt.

3. Ergebnisse

3.1 Messfehler

3.1.1 Distanzen

Folgende Tabelle zeigt eine Übersicht der Messfehler, sortiert nach Variablen und dem Bewertungsquotient der Messfehlerkategorien Q*. 23 der 45 Variablen befanden sich in Kategorie 1 (***), 17 Variablen in Kategorie 2 (**) und 5 Variablen in Kategorie 3 (*). Variablen in Kategorie 4 mit keinem Stern gab es nicht.

r					
Variablen	N ₃ (*)	N ₂ (**)	N ₁ (***)	*o	Kategorie Q*
D01 [mm]	0	3	0	1,5	**
D02 [mm]	0	3	0	1,5	**
D03 [mm]	0	2	2	2,5	***
D04 [mm]	0	3	0	1,5	**
D05 [mm]	0	2	0	1	*
D06 [mm]	0	3	1	2,25	***
D07 [mm]	0	3	0	1,5	**
D08 [mm]	0	3	0	1,5	**
D09 [mm]	0	3	0	1,5	**
D10 [mm]	0	1	3	2,75	***
D11 [mm]	0	4	0	2	**
D12 [mm]	0	0	4	3	***
D13 [mm]	0	1	3	2,75	***
D14 [mm]	0	0	4	3	***
D15 [mm]	0	1	3	2,75	***
D16 [mm]	0	3	0	1,5	**
D17 [mm]	0	1	2	2	**
D18 [mm]	0	0	4	3	***
D19 [mm]	0	3	1	2,25	**
D20 [mm]	0	3	1	2,25	**
D21 [mm]	0	1	3	2,75	***

	1			
N ₃ (*)	N ₂ (**)	N ₁ (***)	ð	Kategorie Q*
0	2	0	1	*
0	3	0	1,5	**
0	2	0	1	*
0	2	1	1,75	**
0	3	1	2,25	**
0	0	4	3	***
0	0	4	3	***
0	0	4	3	***
0	0	4	3	***
0	3	0	1,5	**
0	1	3	2,75	***
0	3	1	2,25	**
0	0	4	3	***
0	0	4	3	***
0	0	4	3	***
0	1	0	0,5	*
0	2	2	2,5	***
0	2	0	1	*
0	4	0	2	**
0	0	4	3	***
0	0	4	3	***
0	0	4	3	***
0	0	4	3	***
0	0	4	3	***
		0 2 0 3 0 2 0 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 0 0 3 0 0 2 0 0 2 1 0 3 1 0 0 4	0 2 0 1 0 3 0 1,5 0 2 0 1 0 2 1 1,75 0 3 1 2,25 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0

Tabelle 6: Bewertungsquotient Q* Distanzen

Im Folgenden werden die Messfehler der Distanzen mit dem 1,96- und

2,77-fachen Messfehler nach Bland und Altmann aufgeführt.

87 Variablen befanden sich in Kategorie 1 (***), 71 Variablen in Kategorie 2 (**), Variablen der Kategorien 3 (*) gab es nicht.

Die Messfehler sind nach Variablen sortiert:

Variable	Geschlecht	Körperhaltung	Mittlerer Messwert [mm]	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
D01[mm]	männlich	aufrecht	1,57	1,97	3,87	5,47	**
D01[mm]	männlich	entspannt	1,09	1,13	2,22	3,13	**
D01[mm]	weiblich	entspannt	0,88	1,21	2,37	3,35	**
D02 [mm]	männlich	aufrecht	1,41	1,8	3,53	4,99	**
D02 [mm]	weiblich	aufrecht	2,5	2,07	4,05	5,72	**
D02 [mm]	weiblich	entspannt	2,33	3,2	6,26	8,85	**
D03 [mm]	männlich	aufrecht	4,78	4,16	8,15	11,52	**
D03 [mm]	männlich	entspannt	4,53	4,24	8,31	11,75	**
D03 [mm]	weiblich	aufrecht	6,99	4,95	9,7	13,71	***
D03 [mm]	weiblich	entspannt	6,34	4,14	8,12	11,48	***
D04 [mm]	männlich	entspannt	1,29	1,17	2,3	3,25	**
D04 [mm]	weiblich	aufrecht	1,16	1,27	2,48	3,51	**
D04 [mm]	weiblich	entspannt	1,41	1,57	3,07	4,34	**
D05 [mm]	männlich	aufrecht	2,8	3,48	6,82	9,64	**
D05 [mm]	männlich	entspannt	2,2	2,55	5	7,07	**
D06 [mm]	männlich	aufrecht	2,02	1,42	2,78	3,92	***
D06 [mm]	männlich	entspannt	1,56	1,25	2,45	3,46	**
D06 [mm]	weiblich	aufrecht	1,03	0,81	1,59	2,24	**
D06 [mm]	weiblich	entspannt	1,11	1,04	2,05	2,89	**
D07 [mm]	männlich	aufrecht	1,4	1,12	2,19	3,1	**
D07 [mm]	männlich	entspannt	1,68	1,85	3,62	5,12	**
D07 [mm]	weiblich	aufrecht	1,77	2,4	4,7	6,64	**

							4
Variable	Geschlecht	Körperhaltung	Mittlerer Messwert [mm]	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
D08 [mm]	männlich	aufrecht	1,93	2,04	3,99	5,64	**
D08 [mm]	männlich	entspannt	1,82	1,96	3,83	5,42	**
D08 [mm]	weiblich	aufrecht	1,19	1,25	2,45	3,46	**
D09 [mm]	männlich	aufrecht	1,13	1,11	2,17	3,06	**
D09 [mm]	weiblich	aufrecht	1,81	2,51	4,92	6,96	**
D09 [mm]	weiblich	entspannt	1,04	1,44	2,83	3,99	**
D10 [mm]	männlich	aufrecht	1,85	0,8	1,56	2,21	***
D10 [mm]	männlich	entspannt	1,36	0,91	1,79	2,53	***
D10 [mm]	weiblich	aufrecht	0,99	0,71	1,4	1,98	***
D10 [mm]	weiblich	entspannt	1,55	2,22	4,36	6,16	**
D11 [mm]	männlich	aufrecht	2,35	2,78	5,45	7,7	**
D11 [mm]	männlich	entspannt	1,68	1,52	2,98	4,21	**
D11 [mm]	weiblich	aufrecht	2,83	2,31	4,52	6,39	**
D11 [mm]	weiblich	entspannt	2,68	2,8	5,48	7,75	**
D12 [mm]	männlich	aufrecht	6,6	3,53	6,92	9,78	***
D12 [mm]	männlich	entspannt	6,06	4,33	8,49	11,99	***
D12 [mm]	weiblich	aufrecht	7,9	4,25	8,34	11,78	***
D12 [mm]	weiblich	entspannt	7,83	4,14	8,11	11,46	***
D13 [mm]	männlich	aufrecht	7,24	4,07	7,98	11,28	***
D13 [mm]	männlich	entspannt	5,59	4,52	8,86	12,52	**
D13 [mm]	weiblich	aufrecht	8,84	3,86	7,57	10,7	***
D13 [mm]	weiblich	entspannt	7,32	4,13	8,09	11,44	***
D14 [mm]	männlich	aufrecht	7,75	3,89	7,63	10,78	***
D14 [mm]	männlich	entspannt	5,88	4,14	8,11	11,46	***
D14 [mm]	weiblich	aufrecht	8,56	4,19	8,21	11,6	***
D14 [mm]	weiblich	entspannt	7,38	3,34	6,55	9,25	***
D15 [mm]	männlich	aufrecht	7,3	3,26	6,38	9,02	***
D15 [mm]	männlich	entspannt	6,38	5,14	10,07	14,22	**

Variable	Geschlecht	Körperhaltung	Mittlerer Messwert [mm]	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
D15 [mm]	weiblich	aufrecht	9,14	5,04	9,87	13,96	***
D15 [mm]	weiblich	entspannt	8,02	3,1	6,07	8,58	***
D16 [mm]	männlich	aufrecht	0,91	0,78	1,52	2,15	**
D16 [mm]	männlich	entspannt	0,98	0,81	1,6	2,26	**
D16 [mm]	weiblich	aufrecht	0,53	0,55	1,08	1,53	**
D17 [mm]	männlich	aufrecht	2,04	2,14	4,2	5,93	**
D17 [mm]	weiblich	aufrecht	3,87	2,62	5,13	7,25	***
D17 [mm]	weiblich	entspannt	4,73	1,7	3,34	4,72	***
D18 [mm]	männlich	aufrecht	5,82	3,26	6,38	9,02	***
D18 [mm]	männlich	entspannt	4,59	2,74	5,36	7,58	***
D18 [mm]	weiblich	aufrecht	5,84	3,69	7,23	10,22	***
D18 [mm]	weiblich	entspannt	6,23	4,41	8,65	12,22	***
D19 [mm]	männlich	aufrecht	0,88	0,85	1,67	2,36	**
D19 [mm]	männlich	entspannt	2,27	1,97	3,85	5,45	**
D19 [mm]	weiblich	aufrecht	3,12	2,16	4,23	5,98	***
D19 [mm]	weiblich	entspannt	3,01	2,68	5,25	7,42	**
D20 [mm]	männlich	aufrecht	2,22	2,48	4,86	6,87	**
D20 [mm]	männlich	entspannt	2,95	2,23	4,37	6,18	***
D20 [mm]	weiblich	aufrecht	2,52	2,81	5,51	7,79	**
D20 [mm]	weiblich	entspannt	3,05	3,36	6,58	9,29	**
D21 [mm]	männlich	aufrecht	2,16	1,44	2,83	4	***
D21 [mm]	männlich	entspannt	2,03	1,17	2,3	3,25	***
D21 [mm]	weiblich	aufrecht	2,78	1,48	2,9	4,1	***
D21 [mm]	weiblich	entspannt	1,62	1,51	2,95	4,17	**
D22 [mm]	männlich	aufrecht	1,44	1,96	3,84	5,43	**
D22 [mm]	männlich	entspannt	1	1,47	2,89	4,08	**
D23 [mm]	männlich	aufrecht	1,52	1,57	3,07	4,34	**

Variable	Geschlecht	Körperhaltung	Mittlerer Messwert [mm]	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
D23 [mm]	männlich	entspannt	1,29	1,55	3,03	4,29	**
D23 [mm]	weiblich	aufrecht	1,45	1,22	2,4	3,39	**
D24 [mm]	weiblich	aufrecht	3,25	3,25	6,36	8,99	**
D24 [mm]	weiblich	entspannt	1,61	1,94	3,79	5,36	**
D25 [mm]	männlich	aufrecht	1,32	1,62	3,17	4,47	**
D25 [mm]	männlich	entspannt	1,13	1,49	2,93	4,14	**
D25 [mm]	weiblich	aufrecht	2,46	1,61	3,16	4,47	***
D26 [mm]	männlich	aufrecht	2,75	2,11	4,14	5,85	**
D26 [mm]	männlich	entspannt	2,55	1,62	3,17	4,48	***
D26 [mm]	weiblich	aufrecht	4,45	3,62	7,09	10,02	**
D26 [mm]	weiblich	entspannt	4,45	3,75	7,36	10,4	**
D27 [mm]	männlich	aufrecht	7,53	2,28	4,47	6,32	***
D27 [mm]	männlich	entspannt	7,03	2,79	5,47	7,73	***
D27 [mm]	weiblich	aufrecht	9,57	3,5	6,86	9,7	***
D27 [mm]	weiblich	entspannt	9,05	3,5	6,85	9,68	***
D28 [mm]	männlich	aufrecht	7,52	3,19	6,26	8,84	***
D28 [mm]	männlich	entspannt	6,23	3,29	6,44	9,11	***
D28 [mm]	weiblich	aufrecht	9,95	3,77	7,4	10,46	***
D28 [mm]	weiblich	entspannt	9,59	3,36	6,59	9,31	***
D29 [mm]	männlich	aufrecht	7,66	3,49	6,84	9,67	***
D29 [mm]	männlich	entspannt	5,85	3,06	6	8,48	***
D29 [mm]	weiblich	aufrecht	10,66	4,12	8,08	11,43	***
D29 [mm]	weiblich	entspannt	10,17	3,8	7,46	10,54	***
D30 [mm]	männlich	aufrecht	7,96	3,02	5,92	8,36	***
D30 [mm]	männlich	entspannt	6,25	3,55	6,96	9,84	***
D30 [mm]	weiblich	aufrecht	10,18	3,7	7,26	10,25	***
D30 [mm]	weiblich	entspannt	8,84	4,72	9,25	13,07	***

Variable	Geschlecht	Körperhaltung	Mittlerer Messwert [mm]	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
D31 [mm]	männlich	aufrecht	1,71	1,43	2,79	3,95	**
D31 [mm]	männlich	entspannt	1,38	1,14	2,23	3,15	**
D31 [mm]	weiblich	entspannt	1,19	1,71	3,35	4,74	**
D32 [mm]	männlich	aufrecht	4,25	2,44	4,78	6,76	***
D32 [mm]	männlich	entspannt	3	2,29	4,49	6,35	***
D32 [mm]	weiblich	aufrecht	5,29	3,32	6,51	9,21	***
D32 [mm]	weiblich	entspannt	4,14	4,27	8,36	11,82	**
D33 [mm]	männlich	aufrecht	4,32	3,49	6,84	9,67	**
D33 [mm]	männlich	entspannt	5	3,57	6,99	9,89	***
D33 [mm]	weiblich	aufrecht	4,68	3,9	7,65	10,82	**
D33 [mm]	weiblich	entspannt	4,02	3,48	6,82	9,64	**
D34 [mm]	männlich	aufrecht	5,45	3,1	6,08	8,59	***
D34 [mm]	männlich	entspannt	6,37	2,84	5,56	7,85	***
D34 [mm]	weiblich	aufrecht	7,35	3,2	6,28	8,87	***
D34 [mm]	weiblich	entspannt	7,14	3,63	7,11	10,05	***
D35 [mm]	männlich	aufrecht	4,6	2,85	5,58	7,89	***
D35 [mm]	männlich	entspannt	3,45	2,22	4,34	6,14	***
D35 [mm]	weiblich	aufrecht	4,11	2,11	4,13	5,84	***
D35 [mm]	weiblich	entspannt	3,56	1,86	3,65	5,16	***
D36 [mm]	männlich	aufrecht	4,63	1,53	3,01	4,25	***
D36 [mm]	männlich	entspannt	3,52	1,61	3,15	4,45	***
D36 [mm]	weiblich	aufrecht	2,85	1,68	3,3	4,66	***
D36 [mm]	weiblich	entspannt	2,02	1,45	2,85	4,02	***
D37 [mm]	weiblich	aufrecht	0,95	1,37	2,68	3,79	**
D38 [mm]	männlich	aufrecht	2,63	2,01	3,93	5,55	***
D38 [mm]	männlich	entspannt	1,6	1,57	3,07	4,34	**
D38 [mm]	weiblich	aufrecht	1,77	1,26	2,47	3,5	***

Variable	Geschlecht	Körperhaltung	Mittlerer Messwert [mm]	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
D38 [mm]	weiblich	entspannt	1,68	2,09	4,1	5,8	**
D39 [mm]	männlich	aufrecht	2,41	3,48	6,83	9,65	**
D39 [mm]	weiblich	aufrecht	3,27	3,47	6,81	9,62	**
D40 [mm]	männlich	aufrecht	1,76	1,57	3,07	4,34	**
D40 [mm]	männlich	entspannt	1,97	2,1	4,12	5,83	**
D40 [mm]	weiblich	aufrecht	1,64	2,21	4,33	6,12	**
D40 [mm]	weiblich	entspannt	1,2	1,81	3,55	5,02	**
D41 [mm]	männlich	aufrecht	4,95	2,91	5,7	8,05	***
D41 [mm]	männlich	entspannt	4,15	2,28	4,47	6,32	***
D41 [mm]	weiblich	aufrecht	5,98	3,25	6,36	8,99	***
D41 [mm]	weiblich	entspannt	4,84	3,41	6,69	9,45	***
D42 [mm]	männlich	aufrecht	12,53	3,21	6,29	8,88	***
D42 [mm]	männlich	entspannt	11,48	3,05	5,98	8,46	***
D42 [mm]	weiblich	aufrecht	13,38	3,47	6,8	9,61	***
D42 [mm]	weiblich	entspannt	12,34	3,34	6,55	9,26	***
D43 [mm]	männlich	aufrecht	9,82	3,51	6,87	9,71	***
D43 [mm]	männlich	entspannt	8,84	2,91	5,7	8,05	***
D43 [mm]	weiblich	aufrecht	11,13	3,88	7,6	10,74	***
D43 [mm]	weiblich	entspannt	9,94	4	7,84	11,09	***
D44 [mm]	männlich	aufrecht	10,97	3,49	6,85	9,67	***
D44 [mm]	männlich	entspannt	9,61	3,01	5,91	8,35	***
D44 [mm]	weiblich	aufrecht	12,17	3,91	7,67	10,83	***
D44 [mm]	weiblich	entspannt	10,4	4,16	8,16	11,53	***
D45 [mm]	männlich	aufrecht	9,92	3,01	5,9	8,34	***
D45 [mm]	männlich	entspannt	11,06	2,51	4,92	6,96	***
D45 [mm]	weiblich	aufrecht	11,73	4,23	8,28	11,71	***
D45[mm]	weiblich	entspannt	9	3,99	7,81	11,04	***

Tabelle 7: Messfehler Distanzen

ERGEBNISSE

Folgende 22 Variablen wurden ausgeschlossen, da sie der Messfehlerkategorie 4 angehören (Tabelle mit Werten siehe Anhang). Darunter finden sich neun Variablen weiblich entspannt, sechs Variablen männlich entspannt, vier Variablen weiblich aufrecht und drei Variablen männlich aufrecht.

- D01 [mm] weiblich aufrecht
- D02 [mm] männlich entspannt
- D04 [mm] männlich aufrecht
- D05 [mm] weiblich aufrecht
- D05 [mm] weiblich entspannt
- D07 [mm] weiblich entspannt
- D08 [mm] weiblich entspannt
- D09 [mm] männlich entspannt
- D16 [mm] weiblich entspannt
- D17 [mm] männlich entspannt
- D22 [mm] weiblich aufrecht
- D22 [mm] weiblich entspannt
- D23 [mm] weiblich entspannt
- D24 [mm] männlich aufrecht
- D24 [mm] männlich entspannt
- D25 [mm] weiblich entspannt
- D31 [mm] weiblich aufrecht
- D37 [mm] männlich aufrecht
- D37 [mm] männlich entspannt
- D37 [mm] weiblich entspannt
- D39 [mm] männlich entspannt
- D39 [mm] weiblich entspannt

3.1.2 Winkel

Folgende Tabelle zeigt eine Übersicht der Messfehler, sortiert nach Variablen und dem Bewertungsquotient der Messfehlerkategorien Q*: Kein Winkel befand sich in Kategorie 1 (***), vier Variablen befanden sich in Kategorie 2 (**), 2 Variablen in Kategorie 3 (*) und neun Variablen in Kategorie 4 ohne Sternchen.

Variablen	N ₃ (*)	N ₂ (**)	N ₁ (***)	*O	Kategorie Q*
Alpha01 [g	0	0	0	0	0
Alpha02 [g	0	0	0	0	0
Alpha03 [°]	0	0	0	0	0
Alpha04 [g	0	0	0	0	0
Alpha05 [°]	0	0	0	0	0
Alpha06 [°]	0	0	0	0	0
Alpha07 [°]	0	0	0	0	0
Alpha08 [°]	1	0	0	0,25	0
Alpha09 [°]	0	0	0	0	0
Alpha10 [g	1	3	0	1,75	**
Alpha11 [g	3	1	0	1,25	*
Alpha12 [9	3	1	0	1,25	*
Alpha13 [9	1	3	0	1,75	**
Alpha14 [9	0	4	0	2	**
Alpha15 [°]	1	3	0	1,75	**

Tabelle 8: Bewertungsquotient Q* Winkel

Im Folgenden werden die Messfehler der Winkel mit dem 1,96- und 2,77-fachen Messfehler nach Bland und Altmann aufgeführt. Kein Winkel gehörte der Kategorie 1 (***) an, 15 Variablen befanden sich in Kategorie 2 (**) und 10 Variablen in Kategorie 3 (*). Die Messfehler sind nach Variablen sortiert:

Variable	Geschlecht	Körperhaltung	Mittlerer Messwert	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
Alpha08 [9	männlich	aufrecht	0,74	0,2	0,39	0,56	*
Alpha10 [9	männlich	aufrecht	1,54	0,14	0,27	0,38	* *
Alpha10 [9	männlich	entspannt	1,49	0,09	0,18	0,25	**
Alpha10 [9	weiblich	aufrecht	1,47	0,14	0,27	0,39	* *
Alpha10 [9	weiblich	entspannt	1,5	0,22	0,42	0,6	*
Alpha11 [9	männlich	aufrecht	1,45	0,14	0,27	0,39	* *
Alpha11 [9	männlich	entspannt	1,46	0,17	0,34	0,48	*
Alpha11 [9	weiblich	aufrecht	1,38	0,2	0,39	0,54	*
Alpha11 [¶	weiblich	entspannt	1,35	0,2	0,4	0,56	*
Alpha12 [¶	männlich	aufrecht	1,45	0,14	0,27	0,39	* *
Alpha12 [9	männlich	entspannt	1,46	0,17	0,34	0,48	*
Alpha12 [¶	weiblich	aufrecht	1,38	0,2	0,39	0,54	*
Alpha12 [9	weiblich	entspannt	1,35	0,2	0,4	0,56	*
Alpha13 [9	männlich	aufrecht	1,51	0,18	0,35	0,49	*
Alpha13 [9	männlich	entspannt	1,53	0,12	0,24	0,34	**
Alpha13 [9	weiblich	aufrecht	1,51	0,1	0,19	0,26	**
Alpha13 [9	weiblich	entspannt	1,52	0,13	0,25	0,36	**
Alpha14 [¶	männlich	aufrecht	1,55	0,12	0,24	0,33	* *
Alpha14 [¶	männlich	entspannt	1,53	0,09	0,18	0,26	**
Alpha14 [9	weiblich	aufrecht	1,56	0,08	0,17	0,23	* *
Alpha14 [9	weiblich	entspannt	1,61	0,09	0,18	0,26	**
Alpha15 [9	männlich	aufrecht	1,49	0,14	0,28	0,39	* *
Alpha15 [9	männlich	entspannt	1,5	0,18	0,34	0,49	*
Alpha15 [9	weiblich	aufrecht	1,52	0,11	0,22	0,31	* *
Alpha15 [9	weiblich	entspannt	1,53	0,14	0,27	0,39	**

Tabelle 9: Messfehler Winkel

ERGEBNISSE

Die im Folgenden angeführten Variablen wurden ebenfalls ausgeschlossen, da sie der Messfehlerkategorie 4 zuzuordnen sind. (Wertetabellen siehe Anhang). Darunter befanden sich jeweils neun Variablen männlicher und weiblicher Probanden in entspannter Körperhaltung sowie neun Variablen weiblicher Probanden in aufrechter Position und acht Variablen männlicher Probanden in aufrechter Körperhaltung.

Alpha01 [9] männlich aufrecht

Alpha01 [9 männlich entspannt

Alpha01 [9] weiblich aufrecht

Alpha01 [9] weiblich entspannt

Alpha02 [9 männlich aufrecht

Alpha02 [¶ männlich entspannt

Alpha02 [9] weiblich aufrecht

Alpha02 [9] weiblich entspannt

Alpha03 [9 männlich aufrecht

Alpha03 [9 männlich entspannt

Alpha03 [9] weiblich aufrecht

Alpha03 [9] weiblich entspannt

Alpha04 [9 männlich aufrecht

Alpha04 [9 männlich entspannt

Alpha04 [9] weiblich aufrecht

Alpha04 [9] weiblich entspannt

Alpha05 [9] männlich aufrecht

Alpha05 [9] männlich entspannt

Alpha05 [9] weiblich aufrecht

Alpha05 [9] weiblich entspannt

Alpha06 [9 männlich aufrecht

Alpha06 [¶ männlich entspannt

Alpha06 [9] weiblich aufrecht

Alpha06 [9] weiblich entspannt

Alpha07 [9] männlich aufrecht

Alpha07 [9] männlich entspannt

Alpha07 [9] weiblich aufrecht

Alpha07 [9 weiblich entspannt

Alpha08 [9 männlich enstspannt

Alpha08 [9] weiblich aufrecht

Alpha08 [9] weiblich entspannt

Alpha09 [9] männlich aufrecht

Alpha09 [9 männlich entspannt

Alpha09 [9] weiblich aufrecht

Alpha09 [9] weiblich entspannt

3.2 Messwerte Oneway

3.2.1 Einfluss Körperhaltung

3.2.1.1 Distanzen

Die Tabelle zeigt für jede Variable die ChiSquare Approximation der Onewayanalyse für die Messwerte.

Variable	Wahrscheinlichkeit>ChiSq
D01	0,47
D02	0,36
D03	0,67
D04	0,94
D05	0,45
D06	0,42
D07	0,28
D08	0,78
D09	0,27
D10	0,87
D11	0,57
D12	0,71
D13	0,25
D14	0,34
D15	0,50
D16	0,65
D17	0,44
D18	0,57
D19	0,32
D20	0,36

Variable	Wahrscheinlichkeit>ChiSq
D21	0,29
D22	0,88
D23	0,66
D24	0,48
D25	0,97
D26	0,76
D27	0,53
D28	0,39
D29	0,42
D30	0,49
D31	0,44
D32	0,53
D33	0,94
D34	0,51
D35	0,18
D36	0,21
D37	0,64
D38	0,11
D39	0,36
D40	0,85
D41	0,47
D42	0,40
D43	0,26
D44	0,24
D45	0,41

Tabelle 10: Messwerte Oneway-Analyse, ChiSquare Approximation, Distanzen

3.2.1.2 Winkel

Die Tabelle zeigt für jede Variable die ChiSquare Approximation der Onewayanalyse für die Messwerte.

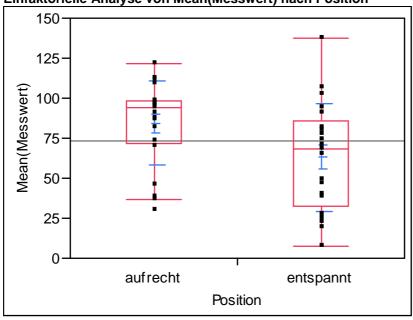

Variable	Wahrscheinlichkeit>ChiSq
Alpha01	0,02
Alpha02	0,20
Alpha03	0,47
Alpha04	0,53
Alpha05	0,27
Alpha06	0,75
Alpha07	0,96
Alpha08	0,66
Alpha09	0,83
Alpha10	0,42
Alpha11	0,62
Alpha12	0,62
Alpha13	0,93
Alpha14	0,81
Alpha15	0,96

Tabelle 11: Messwerte Oneway-Analyse, ChiSquare Approximation, Winkel

Im Folgenden wird die Oneway-Analyse der Variable mit statistisch signifikantem Einfluss auf den Messwert dargestellt:

Variable Alpha01 [9]

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	29,60074	37,15965	71,78751	93,76016	98,3047	112,0067	121,5926
entspannt	7.678964	19.66017	32.83355	68.62202	86.1816	105.8655	137.1781

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	21	84,2309	26,2437	5,7268	72,285	96,177
entspannt	21	63,1601	33,6834	7,3503	47,828	78,493

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	21	546,000	26,0000	2,365
entspannt	21	357,000	17,0000	-2,365

Einfaktorieller Test, Chi-Quadrat-Approximation Chi² Freiheitsgrade Wahrsch.>Chi² 5,6512 1 0,0174

Abbildung 9: Oneway-Analyse, Einfluss Körperhaltung, Variable Alpha01

Die Analyse zeigt einen statistisch signifikanten Enfluss der Körperhaltung auf den Messwert.

3.2.2 Einfluss Geschlecht

3.2.2.1 Distanzen

Folgende Tabelle zeigt für jede Variable die ChiSquare Approximation der Onewayanalyse der Messwerte. Das Geschlecht hat einen statistisch signifikanten Einfluss auf den Messwert der Distanzen D19, D29 und D36

Variable	Wahrscheinlichkeit>ChiSq
D01	0,20
D02	0,57
D03	0,22
D04	0,52
D05	0,44
D06	0,11
D07	0,21
D08	0,27
D09	0,62
D10	0,05
D11	0,67
D12	0,44
D13	0,52
D14	0,47
D15	0,24
D16	0,93
D17	0,80
D18	0,59
D19	0,01
D20	0,87
D21	1,00
D22	0,94
D23	0,85
D24	0,23
D25	0,63
D26	0,25
D27	0,15
D28	0,08
D29	0,04

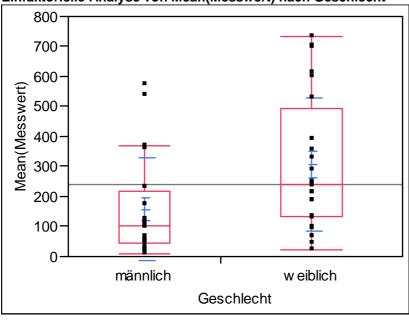

Variable	Wahrscheinlichkeit>ChiSq
D30	0,10
D31	0,81
D32	0,87
D33	0,71
D34	0,24
D35	0,85
D36	0,04
D37	0,59
D38	0,16
D39	0,50
D40	0,27
D41	0,74
D42	0,41
D43	0,56
D44	0,81
D45	0,58

Tabelle 12: Messwerte Oneway-Analyse, Chi-Square Approximation, Distanzen

Die Oneway-Analysen der statistisch signifikanten Variablen werden auf den nächsten Seiten detailliert dargestellt:

Variable D19 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	9,219544	18,05429	44,99122	100,5691	217,0326	520,5264	574,2912
weiblich	23,91757	54,25233	131,4087	241,1834	494,3911	700,6028	731,1112

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	157,265	170,242	38,067	77,59	236,94
weiblich	24	306.396	223,293	45.580	212.11	400.68

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	336,000	16,8000	-2,675
weiblich	24	654,000	27,2500	2,675

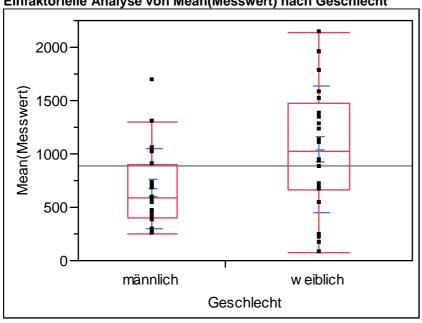

Einfaktorieller	Test, Chi-Quadrat-	Approximation
Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
7,2200	1	0,0072

Abbildung 10: Oneway-Analyse, Einfluss Geschlecht, Variable D19

Die Analyse zeigt einen statistisch signifikanten Einfluss des Geschlechts auf den Messwert.

Variable D29 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	249,2784	253,5465	402,7366	590,2102	895,9984	1305,928	1682,489
weiblich	71,95563	189,5298	660,956	1019,454	1474,723	1947,625	2135,972

Mittelwerte	und Std	Abweichungen
Stufe	Anzahl	Mittelwert

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	19	680,26	374,579	85,93	499,72	860,8
weiblich	24	1041.55	591.267	120.69	791.88	1291.2

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	19	335,000	17,6316	-2,018
weiblich	24	611,000	25,4583	2,018

Einfaktorieller Test, Chi-Quadrat-Approximation

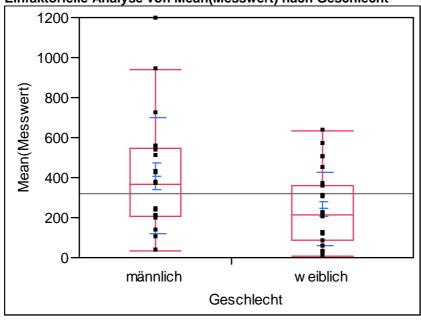

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
4.1202	1	0.0424

Abbildung 11: Oneway-Analyse, Einfluss Geschlecht, Variable D29

Die Analyse zeigt einen statistisch signifikanten Einfluss des Geschlechts auf den Messwert.

Variable D36 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	35,95486	104,7582	204,0624	369,971	548,28	918,3856	1194,605
weiblich	8,781387	24,13777	89,36075	216,3862	362,8841	534,1187	633,849

Mittelwerte und StaAbweichungen							
Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben	
männlich	20	407,447	290,601	64,980	271,44	543,45	
weiblich	24	243,459	185,826	37,932	164,99	321,93	

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)								
Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-				
männlich	20	537.000	26.8500	Mittelwert0)/Std.0 2.039				
weiblich	24	453,000	18,8750	-2,039				

Einfaktorieller Test, Chi-Quadrat-Approximation							
Chi ²	Freiheitsgrade	Wahrsch.>Chi ²					
4,2050	1	0,0403					

Abbildung 12: Oneway-Analyse, Einfluss Geschlecht, Variable D36

Die Analyse zeigt einen statistisch signifikanten Einfluss des Geschlechts auf den Messwert.

3.2.2.2 Winkel

Die Tabelle zeigt für jede Variable die ChiSquare Approximation der Onewayanalyse der Messwerte. Das Geschlecht hat keinen statistisch signifikanten Einfluss auf den Messwert der Winkel.

Variable	Wahrscheinlichkeit>ChiSq
Alpha01	0,68
Alpha02	0,64
Alpha03	0,71
Alpha04	0,61
Alpha05	0,08
Alpha06	0,77
Alpha07	0,45
Alpha08	0,69
Alpha09	0,67
Alpha10	0,69
Alpha11	0,10
Alpha12	0,10
Alpha13	0,40
Alpha14	0,76
Alpha15	0,92

Tabelle 13: Messwerte Oneway-Analyse, ChiSquare Approximation, Winkel

3.3 Balancepoints

Balancepoints sind lagestabile Punkte am Schädel, die nicht durch die Variationsbreite der Bewegungen beeinflusst werden und somit ein Maß für die Güte und Präzision der Messungen sind. Die Werte liegen im Grenzbereich der Messgenauigkeit des Artikulographen.

Variable	Geschlecht	Körperhaltung	Mittelwert (Messwerte) [mm]	Messfehler [mm]	1,96*Messfehler	2,77*Messfehler
b1x	männlich	aufrecht	103,4	0,03	0,06	0,08
b1x	weiblich	aufrecht	113,6	0,04	0,07	0,10
b1x	männlich	entspannt	103,4	0,03	0,06	0,09
b1x	weiblich	entspannt	113,6	0,05	0,09	0,12
b1y	männlich	aufrecht	176,3	0,05	0,10	0,14
b1y	weiblich	aufrecht	190,9	0,07	0,14	0,20
b1y	männlich	entspannt	176,3	0,04	0,09	0,12
b1y	weiblich	entspannt	191,0	0,11	0,21	0,30

Tabelle 14: Balancepoints

b1 = Referenzpunkt Nase

3.4 Übersicht der Normwerte

3.4.1 Normwerttabelle Distanzen

Variable	Geschlecht	Körperhaltung	Mittlerer Messwert [mm]	Normwerte	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
D01[mm]	männlich	aufrecht	1,57	1,33 ^c	1,97	3,87	5,47	**
D01[mm]	männlich	entspannt	1,09	1,00	1,13	2,22	3,13	**
D01[mm]	weiblich	entspannt	0,88	0,88 ^b	1,21	2,37	3,35	**
D02 [mm]	männlich	aufrecht	1,41	1,41 ^a	1,8	3,53	4,99	**
D02 [mm]	weiblich	aufrecht	2,5	2,42 ^d	2,07	4,05	5,72	**
D02 [mm]	weiblich	entspannt	2,33	2,42	3,2	6,26	8,85	**
D03 [mm]	männlich	aufrecht	4,78		4,16	8,15	11,52	**
D03 [mm]	männlich	entspannt	4,53	5,66	4,24	8,31	11,75	**
D03 [mm]	weiblich	aufrecht	6,99	3,00	4,95	9,7	13,71	***
D03 [mm]	weiblich	entspannt	6,34		4,14	8,12	11,48	***
D04 [mm]	männlich	entspannt	1,29	1,29 ^b	1,17	2,3	3,25	**
D04 [mm]	weiblich	aufrecht	1,16	1,29 ^d	1,27	2,48	3,51	**
D04 [mm]	weiblich	entspannt	1,41	1,23	1,57	3,07	4,34	**
D05 [mm]	männlich	aufrecht	2,8	2,5°	3,48	6,82	9,64	**
D05 [mm]	männlich	entspannt	2,2	2,3	2,55	5	7,07	**
D06 [mm]	männlich	aufrecht	2,02		1,42	2,78	3,92	***
D06 [mm]	männlich	entspannt	1,56	1,43	1,25	2,45	3,46	**
D06 [mm]	weiblich	aufrecht	1,03	1,43	0,81	1,59	2,24	**
D06 [mm]	weiblich	entspannt	1,11		1,04	2,05	2,89	**
D07 [mm]	männlich	aufrecht	1,4	1,54 ^c	1,12	2,19	3,1	**
D07 [mm]	männlich	entspannt	1,68	1,54	1,85	3,62	5,12	**
D07 [mm]	weiblich	aufrecht	1,77	1,77 ^a	2,4	4,7	6,64	**
D08 [mm]	männlich	aufrecht	1,93	1,88 ^c	2,04	3,99	5,64	**
D08 [mm]	männlich	entspannt	1,82	1,00	1,96	3,83	5,42	**
D08 [mm]	weiblich	aufrecht	1,19	1,19 ^a	1,25	2,45	3,46	**
D09 [mm]	männlich	aufrecht	1,13	1,13 ^a	1,11	2,17	3,06	**
D09 [mm]	weiblich	aufrecht	1,81	1,43 ^d	2,51	4,92	6,96	**
D09 [mm]	weiblich	entspannt	1,04	1,43	1,44	2,83	3,99	**

Variable	Geschlecht	Körperhaltung	Mittlerer Messwert [mm]	Normwerte	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
D10 [mm]	männlich	aufrecht	1,85		0,8	1,56	2,21	***
D10 [mm]	männlich	entspannt	1,36	1,438	0,91	1,79	2,53	***
D10 [mm]	weiblich	aufrecht	0,99	1,100	0,71	1,4	1,98	***
D10 [mm]	weiblich	entspannt	1,55		2,22	4,36	6,16	**
D11 [mm]	männlich	aufrecht	2,35		2,78	5,45	7,7	**
D11 [mm]	männlich	entspannt	1,68	2,39	1,52	2,98	4,21	**
D11 [mm]	weiblich	aufrecht	2,83	2,00	2,31	4,52	6,39	**
D11 [mm]	weiblich	entspannt	2,68		2,8	5,48	7,75	**
D12 [mm]	männlich	aufrecht	6,6	7,10	3,53	6,92	9,78	***
D12 [mm]	männlich	entspannt	6,06		4,33	8,49	11,99	***
D12 [mm]	weiblich	aufrecht	7,9		4,25	8,34	11,78	***
D12 [mm]	weiblich	entspannt	7,83		4,14	8,11	11,46	***
D13 [mm]	männlich	aufrecht	7,24		4,07	7,98	11,28	***
D13 [mm]	männlich	entspannt	5,59	7,25	4,52	8,86	12,52	**
D13 [mm]	weiblich	aufrecht	8,84	7,25	3,86	7,57	10,7	***
D13 [mm]	weiblich	entspannt	7,32		4,13	8,09	11,44	***
D14 [mm]	männlich	aufrecht	7,75		3,89	7,63	10,78	***
D14 [mm]	männlich	entspannt	5,88	7,39	4,14	8,11	11,46	***
D14 [mm]	weiblich	aufrecht	8,56	7,39	4,19	8,21	11,6	***
D14 [mm]	weiblich	entspannt	7,38		3,34	6,55	9,25	***
D15 [mm]	männlich	aufrecht	7,3		3,26	6,38	9,02	***
D15 [mm]	männlich	entspannt	6,38	7,71	5,14	10,07	14,22	**
D15 [mm]	weiblich	aufrecht	9,14	7,71	5,04	9,87	13,96	***
D15 [mm]	weiblich	entspannt	8,02		3,1	6,07	8,58	***
D16 [mm]	männlich	aufrecht	0,91	0.05°	0,78	1,52	2,15	**
D16 [mm]	männlich	entspannt	0,98	0,95 ^c	0,81	1,6	2,26	**
D16 [mm]	weiblich	aufrecht	0,53	0,53 ^a	0,55	1,08	1,53	**
D17 [mm]	männlich	aufrecht	2,04	2,04 ^a	2,14	4,2	5,93	**
D17 [mm]	weiblich	aufrecht	3,87	4,3 ^d	2,62	5,13	7,25	***
D17 [mm]	weiblich	entspannt	4,73	7,5	1,7	3,34	4,72	***

Variable	Geschlecht	Körperhaltung	Mittlerer Messwert [mm]	Normwerte	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
D18 [mm]	männlich	aufrecht	5,82		3,26	6,38	9,02	***
D18 [mm]	männlich	entspannt	4,59	5,62	2,74	5,36	7,58	***
D18 [mm]	weiblich	aufrecht	5,84	0,02	3,69	7,23	10,22	***
D18 [mm]	weiblich	entspannt	6,23		4,41	8,65	12,22	***
D19 [mm]	männlich	aufrecht	0,88	1,58	0,85	1,67	2,36	**
D19 [mm]	männlich	entspannt	2,27	1,00	1,97	3,85	5,45	**
D19 [mm]	weiblich	aufrecht	3,12	3,07	2,16	4,23	5,98	***
D19 [mm]	weiblich	entspannt	3,01		2,68	5,25	7,42	**
D20 [mm]	männlich	aufrecht	2,22	2,69	2,48	4,86	6,87	**
D20 [mm]	männlich	entspannt	2,95		2,23	4,37	6,18	***
D20 [mm]	weiblich	aufrecht	2,52		2,81	5,51	7,79	**
D20 [mm]	weiblich	entspannt	3,05		3,36	6,58	9,29	**
D21 [mm]	männlich	aufrecht	2,16		1,44	2,83	4	***
D21 [mm]	männlich	entspannt	2,03	0.45	1,17	2,3	3,25	***
D21 [mm]	weiblich	aufrecht	2,78	2,15	1,48	2,9	4,1	***
D21 [mm]	weiblich	entspannt	1,62		1,51	2,95	4,17	**
D22 [mm]	männlich	aufrecht	1,44	1,22 ^c	1,96	3,84	5,43	**
D22 [mm]	männlich	entspannt	1	1,22	1,47	2,89	4,08	**
D23 [mm]	männlich	aufrecht	1,52	1,41 ^c	1,57	3,07	4,34	**
D23 [mm]	männlich	entspannt	1,29	1,41	1,55	3,03	4,29	**
D23 [mm]	weiblich	aufrecht	1,45	1,45 ^a	1,22	2,4	3,39	**
D24 [mm]	weiblich	aufrecht	3,25	2,43 ^d	3,25	6,36	8,99	**
D24 [mm]	weiblich	entspannt	1,61	2,43	1,94	3,79	5,36	**
D25 [mm]	männlich	aufrecht	1,32	1 22 ^C	1,62	3,17	4,47	**
D25 [mm]	männlich	entspannt	1,13	1,23 ^c	1,49	2,93	4,14	**
D25 [mm]	weiblich	aufrecht	2,46	2,46 ^a	1,61	3,16	4,47	***
D26 [mm]	männlich	aufrecht	2,75		2,11	4,14	5,85	**
D26 [mm]	männlich	entspannt	2,55	2 55	1,62	3,17	4,48	***
D26 [mm]	weiblich	aufrecht	4,45	3,55	3,62	7,09	10,02	**
D26 [mm]	weiblich	entspannt	4,45	1	3,75	7,36	10,4	**

			ı			I		
Variable	Geschlecht	Körperhaltung	Mittlerer Messwert [mm]	Normwerte	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
D27 [mm]	männlich	aufrecht	7,53		2,28	4,47	6,32	***
D27 [mm]	männlich	entspannt	7,03	0.00	2,79	5,47	7,73	***
D27 [mm]	weiblich	aufrecht	9,57	8,30	3,5	6,86	9,7	***
D27 [mm]	weiblich	entspannt	9,05		3,5	6,85	9,68	***
D28 [mm]	männlich	aufrecht	7,52		3,19	6,26	8,84	***
D28 [mm]	männlich	entspannt	6,23	0.00	3,29	6,44	9,11	***
D28 [mm]	weiblich	aufrecht	9,95	8,32	3,77	7,4	10,46	***
D28 [mm]	weiblich	entspannt	9,59	-	3,36	6,59	9,31	***
D29 [mm]	männlich	aufrecht	7,66	6,76	3,49	6,84	9,67	***
D29 [mm]	männlich	entspannt	5,85	0,70	3,06	6	8,48	***
D29 [mm]	weiblich	aufrecht	10,66	10,42	4,12	8,08	11,43	***
D29 [mm]	weiblich	entspannt	10,17		3,8	7,46	10,54	***
D30 [mm]	männlich	aufrecht	7,96	0.04	3,02	5,92	8,36	***
D30 [mm]	männlich	entspannt	6,25		3,55	6,96	9,84	***
D30 [mm]	weiblich	aufrecht	10,18	8,31	3,7	7,26	10,25	***
D30 [mm]	weiblich	entspannt	8,84		4,72	9,25	13,07	***
D31 [mm]	männlich	aufrecht	1,71	1,55°	1,43	2,79	3,95	**
D31 [mm]	männlich	entspannt	1,38	1,55	1,14	2,23	3,15	**
D31 [mm]	weiblich	entspannt	1,19	1,19 ^b	1,71	3,35	4,74	**
D32 [mm]	männlich	aufrecht	4,25		2,44	4,78	6,76	***
D32 [mm]	männlich	entspannt	3	4,17	2,29	4,49	6,35	***
D32 [mm]	weiblich	aufrecht	5,29	4,17	3,32	6,51	9,21	***
D32 [mm]	weiblich	entspannt	4,14		4,27	8,36	11,82	**
D33 [mm]	männlich	aufrecht	4,32		3,49	6,84	9,67	**
D33 [mm]	männlich	entspannt	5	151	3,57	6,99	9,89	***
D33 [mm]	weiblich	aufrecht	4,68	4,51	3,9	7,65	10,82	**
D33 [mm]	weiblich	entspannt	4,02		3,48	6,82	9,64	**
D34 [mm]	männlich	aufrecht	5,45		3,1	6,08	8,59	***
D34 [mm]	männlich	entspannt	6,37	6,58	2,84	5,56	7,85	***
D34 [mm]	weiblich	aufrecht	7,35	0,50	3,2	6,28	8,87	***
D34 [mm]	weiblich	entspannt	7,14		3,63	7,11	10,05	***

Variable	Geschlecht	Körperhaltung	Mittlerer Messwert [mm]	Normwerte	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
D35 [mm]	männlich	aufrecht	4,6		2,85	5,58	7,89	***
D35 [mm]	männlich	entspannt	3,45	3,93	2,22	4,34	6,14	***
D35 [mm]	weiblich	aufrecht	4,11	3,93	2,11	4,13	5,84	***
D35 [mm]	weiblich	entspannt	3,56		1,86	3,65	5,16	***
D36 [mm]	männlich	aufrecht	4,63	4,07	1,53	3,01	4,25	***
D36 [mm]	männlich	entspannt	3,52	4,07	1,61	3,15	4,45	***
D36 [mm]	weiblich	aufrecht	2,85	2.44	1,68	3,3	4,66	***
D36 [mm]	weiblich	entspannt	2,02	2,44	1,45	2,85	4,02	***
D37 [mm]	weiblich	aufrecht	0,95	0,95 ^a	1,37	2,68	3,79	**
D38 [mm]	männlich	aufrecht	2,63	1,92	2,01	3,93	5,55	***
D38 [mm]	männlich	entspannt	1,6		1,57	3,07	4,34	**
D38 [mm]	weiblich	aufrecht	1,77		1,26	2,47	3,5	***
D38 [mm]	weiblich	entspannt	1,68		2,09	4,1	5,8	**
D39 [mm]	männlich	aufrecht	2,41	2,41 ^a	3,48	6,83	9,65	**
D39 [mm]	weiblich	aufrecht	3,27	3,27 ^a	3,47	6,81	9,62	**
D40 [mm]	männlich	aufrecht	1,76		1,57	3,07	4,34	**
D40 [mm]	männlich	entspannt	1,97	1,64	2,1	4,12	5,83	**
D40 [mm]	weiblich	aufrecht	1,64	1,04	2,21	4,33	6,12	**
D40 [mm]	weiblich	entspannt	1,2		1,81	3,55	5,02	**
D41 [mm]	männlich	aufrecht	4,95		2,91	5,7	8,05	***
D41 [mm]	männlich	entspannt	4,15	4,98	2,28	4,47	6,32	***
D41 [mm]	weiblich	aufrecht	5,98	4,90	3,25	6,36	8,99	***
D41 [mm]	weiblich	entspannt	4,84		3,41	6,69	9,45	***
D42 [mm]	männlich	aufrecht	12,53		3,21	6,29	8,88	***
D42 [mm]	männlich	entspannt	11,48	12.43	3,05	5,98	8,46	***
D42 [mm]	weiblich	aufrecht	13,38	12,43	3,47	6,8	9,61	***
D42 [mm]	weiblich	entspannt	12,34		3,34	6,55	9,26	***
D43 [mm]	männlich	aufrecht	9,82		3,51	6,87	9,71	***
D43 [mm]	männlich	entspannt	8,84	9,93	2,91	5,7	8,05	***
D43 [mm]	weiblich	aufrecht	11,13	9,93	3,88	7,6	10,74	***
D43 [mm]	weiblich	entspannt	9,94		4	7,84	11,09	***

Variable	Geschlecht	Körperhaltung	Mittlerer Messwert [mm]	Normwerte	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
D44 [mm]	männlich	aufrecht	10,97		3,49	6,85	9,67	***
D44 [mm]	männlich	entspannt	9,61	10,79	3,01	5,91	8,35	***
D44 [mm]	weiblich	aufrecht	12,17	10,73	3,91	7,67	10,83	***
D44 [mm]	weiblich	entspannt	10,4		4,16	8,16	11,53	***
D45 [mm]	männlich	aufrecht	9,92		3,01	5,9	8,34	***
D45 [mm]	männlich	entspannt	11,06	10,43	2,51	4,92	6,96	***
D45 [mm]	weiblich	aufrecht	11,73	10,43	4,23	8,28	11,71	***
D45[mm]	weiblich	entspannt	9		3,99	7,81	11,04	***

Tabelle 15: Normwerte Distanzen

Erläuterung:

Normwerte mit hochgestellten Buchstaben gelten nur für

a = aufrecht

b = entspannt

c = männlich

d = weiblich

3.4.2 Normwerttabelle Winkel

Variable	Geschlecht	Körperhaltung	Mittlerer Messwert [1]	Normwerte	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
Alpha08 [9	männlich	aufrecht	0,74	0,74 ^a	0,2	0,39	0,56	*
Alpha10 [9	männlich	aufrecht	1,54		0,14	0,27	0,38	**
Alpha10 [9	männlich	entspannt	1,49	1,5	0,09	0,18	0,25	**
Alpha10 [9	weiblich	aufrecht	1,47	1,0	0,14	0,27	0,39	* *
Alpha10 [9	weiblich	entspannt	1,5		0,22	0,42	0,6	*
Alpha11 [9	männlich	aufrecht	1,45		0,14	0,27	0,39	**
Alpha11 [9	männlich	entspannt	1,46	1,41	0,17	0,34	0,48	*
Alpha11 [9	weiblich	aufrecht	1,38		0,2	0,39	0,54	*
Alpha11 [9	weiblich	entspannt	1,35		0,2	0,4	0,56	*
Alpha12 [9	männlich	aufrecht	1,45		0,14	0,27	0,39	**
Alpha12 [9	männlich	entspannt	1,46	1,41	0,17	0,34	0,48	*
Alpha12 [9	weiblich	aufrecht	1,38	1,41	0,2	0,39	0,54	*
Alpha12 [9	weiblich	entspannt	1,35		0,2	0,4	0,56	*
Alpha13 [9	männlich	aufrecht	1,51		0,18	0,35	0,49	*
Alpha13 [9	männlich	entspannt	1,53	1,52	0,12	0,24	0,34	**
Alpha13 [9	weiblich	aufrecht	1,51	1,02	0,1	0,19	0,26	**
Alpha13 [9	weiblich	entspannt	1,52		0,13	0,25	0,36	**
Alpha14 [9	männlich	aufrecht	1,55		0,12	0,24	0,33	**
Alpha14 [9	männlich	entspannt	1,53	1 56	0,09	0,18	0,26	**
Alpha14 [9	weiblich	aufrecht	1,56	1,56	0,08	0,17	0,23	* *
Alpha14 [9	weiblich	entspannt	1,61		0,09	0,18	0,26	**
Alpha15 [9	männlich	aufrecht	1,49		0,14	0,28	0,39	**
Alpha15 [9	männlich	entspannt	1,5	1,51	0,18	0,34	0,49	*
Alpha15 [9	weiblich	aufrecht	1,52	1,01	0,11	0,22	0,31	* *
Alpha15 [9	weiblich	entspannt	1,53		0,14	0,27	0,39	**

Tabelle 16: Normwerte Winkel

4. Diskussion

4.1 Beurteilung der Methode

Die elektromagnetische Artikulographie (EMA) stellt ein geeignetes Verfahren zur Aufzeichnung und Analyse von Zungebewegungen beim Schluckvorgang dar³⁷. Desweiteren erwies sich diese Methode bei der detaillierten Aufzeichnung von Lippenbewegungen beim Sprechen^{35,36,73} als präzise, jedoch auch als zeitintensiv.

Sie ist noninvasiv und biologisch unbedenklich⁴¹.

Die hohe Messgenauigkeit von etwa 0,1 mm³⁰, die Möglichkeit zur parallelen Aufzeichnung von Bewegungs- und akustischen Signalen sowie die Möglichkeit, Kinematik- und Akustikdaten graphisch darzustellen, zeichnet die EMA als geeignetes Messverfahren aus³⁷. Desweiteren ermöglicht die EMA mit dem Tübinger Artikulographen Langzeitbeobachtungen durch kontinuierliches Abspeichern der Messdaten.

Durch eine genaue Darstellung der Zungenbewegung ermöglicht die EMA eine exakte individuell abgestimmte Therapieplanung bei Patienten mit Zungendyskinesien und ist damit Voraussetzung einer adäquaten Behandlung. Durch die Früherkennung von Fehlfunktionen und Fehlbewegungen der Zunge sollen mögliche Folgeschäden für die Zahnstellung und so Entwicklungsstörungen bei Kindern im Wachstum vermieden oder rechtzeitig therapiert werden.

Erhofft wird eine Senkung der Rezidivrate durch orofaziale Dyskinesien.

Durch diese den Patienten kaum beeinträchtigende, völlig schmerzfreie Messmethode kann während einer kieferorthopädischen oder logopädischen Behandlung eine regelmäßige Verlaufskontrolle erfolgen und der Therapieerfolg besser beurteilt werden.

Auch nach Abschluss der Therapie kann die EMA für Nachsorgeuntersuchungen eingesetzt werden und zur Vermeidung von Rezidiven beitragen.

Als Neuentwicklung der Abteilung für Kieferorthopädie des ZZMK der Universität Tübingen nach dem Vorbild des Artikulographen der Firma Carstens hat der Artikulograph der Universität Tübingen entscheidende Vorteile^{6,12,27,39,45,46,64,65}:

Während bisherige Messreihen durch eine geringere Messgenauigkeit und niedrige Samplingrate erschwert wurden, konnte die Messgenauigkeit beim Tübinger Artikulographen von 0,5 mm auf 0,1 mm verbessert werden.

Durch separate Messungen des Drehwinkels werden eventuelle Verdrehungen der Spulen in Echtzeit registriert und kompensiert. Ein Einfluss durch die Verdrehung von Spulen kann so minimiert werden.

Zudem ermöglicht der neue Artikulograph eine vereinfachte Handhabung:

Das Messsystem ist mobil und kann somit im Gegensatz zum Messsystem von Carstens problemlos transportiert werden.

Durch den individuell anpassbaren Messhelm und das leichte Karbongestänge mit den Spulen bleiben die Probanden in ihren Bewegungen nahezu uneingeschränkt. Ein vorhandener kleinerer Helm ermöglicht die EMA auch bei Kindern. Im Gegensatz zu vergleichbaren Untersuchungen^{12,27,29,39,45,64,65} ermöglicht das Softwareprogramm Artikulograph zahlreiche neue Möglichkeiten in der Untersuchung extra- und intraoraler Bewegungsabläufe: Zusätzlich zur Zungenbewegung können die Referenzpunkte Lippen sowie die Gaumenkontur und die Kauebene aufgezeichnet und eingeblendet werden.

Die Aufzeichnungen können als Einzelbilder und auch als Film abgespielt werden.

Die Einschränkung der EMA ist momentan darin zu sehen, dass auf Grund des Karbongestänges mit den Senderspulen und des Messhelms eine Messung nur im Sitzen erfolgen kann.

Viele vorangegangene Studien beschäftigten sich mit der Untersuchungsmethode der elektromagnetischen Artikulographie:

Bereits im Jahr 1989 untersuchten Engelke et al die Reproduzierbarkeit der Zungenbewegungen beim Schlucken und Sprechen¹⁷. Eine Einteilung in das Schlucken mit und ohne Wasser erfolgte jedoch nicht.

Eine weitere deskriptive Analyse zur Reproduzierbarkeit von Sprech- und Schlucksequenzen beschreiben Engelke et al 1990¹³. Auch hier galt der Bewegungsrichtung der Zunge besondere Aufmerksamkeit.

Die Weiterentwicklung dieser Methode beschreiben Engelke et al 1991¹⁸.

1992 stellten Schwestka-Polly et al⁶³ einen Vergleich von Schluck- und Sprechbewegungen beim gesunden und Dysphagiepatienten an.

1995 untersuchten abermals Schwestka-Polly und Engelke et al ⁶⁵ Zungenbewegungen mit Hilfe der EMA. Dabei wurden die Bewegungsbahnen der Zunge eines Patienten mit frontal offenem Biss zuerst ohne, dann mit kieferorthopädischer Apparatur untersucht.

Bei den genannten Studien handelt es sich allerdings lediglich um Einzelfalldarstellungen. Ein Vergleich der erhobenen Daten konnte nicht durchgeführt werden. Ein entscheidender Fortschritt der vorliegenden Dissertation war die Nivellierung der Referenzebene und somit die Möglichkeit, Normwerte zu ermitteln.

Eine neue Studie zur Reproduzierbarkeit von Zungenbewegungen stammt von Müller et al aus dem Jahr 2008⁴⁶. Müller analysierte die Kontaktflächen zwischen Zunge und Gaumen im Sinne der maximalen Bewegungsamplituden der Zunge.

Die Studien von Fletcher et al (2004)¹⁹, Goozee et al (2003)²⁴ und Recasens (2002)⁵⁸ beschäftigten sich mit der Zungenbewegung beim Sprechen.

Im Jahr 2009 verglichen Mehnert et al⁴² logopädische und MRT-Befunde zur Zungenfunktionsdiagnostik und untersuchten so die Ersetzbarkeit logopädischer Diagnosen durch MRT-Befunde. Zur logopädischen Untersuchung wurde das etablierte Verfahren nach Kittel (1998) angewandt. Durch die Magnetresonanztomographie lassen sich die Zungenruhelage, Zungebewegungen, sowie umliegende, für die Mundfunktion relevante anatomische Strukturen darstellen.

Allerdings zeigte dieser Vergleich deutliche Unterschiede, wobei bisher unklar ist, welches Verfahren die wirkliche klinische Situation wiedergibt.

Vorteile der Magnetresonanztomographie sind die bessere Darstellbarkeit von Organen, der Verzicht auf ionisierende Strahlung und eine Bildgebung in Echtzeit.

In einer weiteren Studie aus dem Jahr 2009 überprüften Mehnert et al die Validität und Verlässlichkeit logopädischer Befunde zur Zungenfunktion⁴³. 52 Probanden wurden in zwei logopädischen Praxen von jeweils drei Logopäden nach Kittel untersucht. Die inkonstante Übereinstimmng der Befund lässt jedoch zum bisherigen Zeitpunkt keine Aussage über die klinische Situation zu

Andere Messverfahren, wie optoelektrische Verfahren^{1,26} sind zwar ebenfalls gesundheitlich unbedenklich, lassen jedoch keine Aufzeichnung von Bewegungen der Zunge und des Gaumensegels zu. Sie ermöglichen, genau wie die Untersuchung mit Dehnungsmessstreifen, lediglich die Registrierung von Bewegungen der Lippen und des Unterkiefers^{10,20}.

Untersuchungen zur Kraftmessung des Lippen- und Zungendrucks^{28,61,62,70} bieten Vorteile durch miniaturisierte piezoresistive Silizium-Drucksensoren ohne die Signalübertragung per Kabel. So können an bis zu 10 Stellen am Gaumen gleichzeitig Druckmessungen im mbar-Bereich erfolgen.

Ein weiteres Verfahren stellt der 3-D-Gesichtsscan⁴⁸ dar. Dieses relativ neue Verfahren arbeitet allerdings nur extraoral und kann lediglich statische Einzelbilder aufzeichnen. Intraorale Bewegungsabläufe können nicht dargestellt werden, eine parallele Aufzeichnung von akustischen und dynamischen Signalen derzeit noch nicht möglich. Bei der Palatographie Elektropalatographie²⁵ wird der untersuchten Person ein künstlich gefertigter Gaumen angepasst, in dem Elektroden implantiert sind und bei deren Berührung der Zunge ein elektrisches Signal erzeugt wird. Für bestimmte Laute kann so ein Zungen-Gaumen-Konturmuster aufgezeichnet werden. Mit dieser Technik lassen sich jedoch keine größeren Patientengruppen untersuchen, da die Herstellung der individuellen Gaumenmodelle äußerst zeitaufwändig und kostenintensiv ist. Zudem werden hier nur die Berührungspunkte zwischen Zunge und Gaumen aufgezeichnet, nicht etwa die Bewegung der Artikulation.

Auch Utraschallverfahren können zur Untersuchung der Zungenmotilität herangezogen werden⁵⁶. Sie zeichnen sich vor allem durch ihre einfache Handhabung und durch die geringe Belastung für den Probanden aus. Ultraschalluntersuchungen liefern kontrastreiche Bilder und lassen die Zunge deutlich von benachbarten anatomischen Strukturen unterscheiden.

Entscheidende Nachteile sind jedoch die fehlende räumliche Auflösung der Bilder, eine parallele Aufzeichnung von kinematischen und akustischen Signalen ist zudem nicht möglich. Die Analyse muss an Einzelbildern erfolgen^{22,66}, da keine dynamische Verlaufsdarstellung der Zungenbewegung möglich ist. Knöcherne Strukturen wie Unterkiefer und Gaumen werden nicht dargestellt, so-

dass sich die Lage der Zunge zu diesen anatomischen Strukturen nicht erfassen lässt. Die Zungenspitze erscheint im Ultraschallbild oft nur undeutlich, da sie im Schallschatten der UK-Symphyse liegen kann oder sich Luft unterhalb der Zungenspitze befindet Ein weiterer Nachteil der Ultrasonographie ist die begrenzte Aussagekraft zu Bewegungen definierter Punkte der Zungenoberfläche¹⁷. Das Ultraschallbild muss mit Video aufgezeichnet werden, was die räumliche und zeitliche Auflösung begrenzt.

Man unterscheidet bei der Sonographie B-Mode- von M-Mode-Darstellungen. Im Jahr 2010 veröffentlichten Galén et al die Ergebnisse ihrer Studie. Mittels B- und M-Mode-Darstellung wurde versucht, ein viszerales von einem somatischen Schluckmuster abzugrenzen²³. Vor allem M-mode-Ultraschallbilder sind intraindividuell nicht reproduzierbar, die Abgrenzung der einzelnen Schluckphasen durch charakteristische Kurvenpunkte ist ohne ein submandibuläres Dämpfungskissen nicht möglich²³. Auch die B-Mode-Darstellung konnte keine charakteristischen Unterschiede zwischen somatischem und viszeralem Schlucken zeigen und eignet sich daher wenig zur Diagnose von Zungendyskinesien.

Weitere Beispiele für Studien mit Ultraschall finden sich unter anderem bei Shawker et al⁶⁷. Sie prüften die Bewegungsdauer und die Zungendicke beim Schluckvorgang mittels B-Modus-Sonographie. Müßig⁴⁷ untersuchte ebenfalls mit der B-Modus-Sonographie Probanden mit und ohne Lippen-Kiefer-Gaumenspalten und maß den Winkel zwischen Zungenspitze, höchstem Punkt des Zungenrückens beim Schlucken und Zungengrund.

Fuhrmann und Dietrich²² und Wein et al⁷⁵ analysierten die Zungenbewegungen anhand von fortlaufenden B-Modus-Standardbildern (25 Bilder/s).

Peng et al. verwendeten erstmals das M-Modus-Ultraschallverfahren. Die M-Modus-Sonographie ermöglicht es, Art und Dauer der Zungenbewegungen in den einzelnen Schluckphasen exakt zu messen^{50,52}. Durch das Hinzufügen eines reproduzierbar fixierten Schallkopfes und eines Dämpfungsmechanismus konnte diese Methode deutlich verbessert werden^{51,55}.

Watkin belegte 1999 ebenfalls, dass Schluckmuster auch mit Ultraschallverfahren untersucht werden können⁷⁴.

In den bisherigen Untersuchungen fehlt jedoch die Unterteilung des Schluckvorgangens in Phasen. Die Analysen waren rein quantitativ und beschränkten sich ausschließlich auf die Bewegungsamplitude und die Dauer der Bewegungen^{9,33,50,60}.

Immer mehr Anwendung in der Zahnheilkunde fand in den letzten Jahren die cushion-scanning-technique, vor allem in der Kieferorthopädie^{7,53,54} und der Kinderzahnmedizin⁴⁰.

Allen bisher genannten Verfahren ist die gesundheitliche und biologische Unbedenklichkeit für den Probanden zu Eigen.

Durch röntgenologische Verfahren lassen sich ebenfalls intraorale Bewegungsabläufe darstellen.

Bei der Röntgenkinematographie kann durch Schlucken eines Kontrastmittels ein größerer Bereich als mit der EMA dargestellt werden, allerdings kann hier nur der gesamte Bewegungsablauf untersucht werden. Eine Einzelbildanalyse wie bei der EMA ist nicht möglich⁷². Als weitere Nachteile sind die

Überlagerungsphänomene anatomischer Strukturen mit metallischen Werkstoffen zu nennen⁶⁷.

Die Röntgenkinematographie ist wie die Kineflouradiographie⁴⁴ wegen der hohen Strahlenbelastung für den Probanden problematisch.

Mit dem Röntgenmikrostahlverfahren (x-ray microbeam)^{32,33,70} konnte zwar die Strahlenbelastung reduziert werden, hohe Betriebskosten und störende Einflüsse metallischer Werkstoffe sind jedoch deutliche Nachteile.

Bei einem direkten Vergleich zwischen röntgenologischen und Ultraschallmessungen von Zungenbewegungen beim Schlucken konnten Kawashima et. al. 1999 keine signifikanten Unterschiede in der Bildqualität zwischen den Bewegungsbahnen auf den Ultraschallbildern und Röntgenaufnahmen feststellen. Beide Methoden sind gleichwertig nützlich zur Analyse von Zungenbewegungen³³.

4.2 Diskussion der Ergebnisse

4.2.1 Messfehler

4.2.1.1 Distanzen

Ausgehend vom Bewertungsquotient Q* fällt folgendes auf:

Bei allen drei Spulen liegen grundlegende Distanzen in der Kategorie 1 (***): D06 (P6-P7), D12 (P3-P6), D13 (P1-P6), D14 (P1-P8) und D15 (P1-P11).

Bei Spule 1 liegt D10 (P10-P11) ebenfalls in Kategorie 1 (***), bei Spule 2 und 3 liegt D10 (P10-P11) in der Kategorie 2 (**)

Bei den Spulen 1 und 2 liegt zudem D03 (P3-P4) in Kategorie 1 (***), dafür fällt bei Spule 3 die Distanz D03 (P3-P4) in die Kategorie 2 (**).

Bei Spule 3 liegen zusätzlich folgende Distanzen in Kategorie 1 (***):

D32, D34, D 35, D38, D41.

Folgende Distanzen fallen in die Kategorie 3 mit einem Stern (*):

D05 (P5-P6 der 1. Spule), D22 (P7-P8 der 2. Spule), D24 (P9-P10 der 2. Spule), D37 (P7-P8 der 3. Spule) und D39 (P9-P10 der 3. Spule).

Außer D05 sind dies die entsprechenden Distanzen der Spulen 2 und 3.

Dies lässt vermuten, dass die zweite Abwärtsbewegung der Zunge und die Posteriorverlagerung entlang des Gaumens eine weniger bedeutende Rolle spielen als die Aufwärtsbewegungen.

Distanzen der Kategorie 4 gibt es nicht.

4.2.1.2 Winkel

Die Winkel weisen einen eindeutig schlechteren Bewertungsquotienten Q* auf: 60% der Winkel liegen in der Kategorie 4 ohne Sternchen (Alpha01-Alpha09), zwei in Kategorie 3 mit einem Stern (Alpha 11, Alpha 12), die Winkel Alpha 10, 13, 14 und 15 in Kategorie 2 (**) und kein Winkel gehört der Kategorie 1 mit 3 Sternchen an.

Entsprechend der Beobachtungen von Koos³⁶ sind die Winkel unzuverlässige Werte, was dadurch erklärt werden kann, dass sehr kleine Abweichungen bei den Messungen große Unterschiede bei der Berechnung der Winkel ausmachen.

Kovarianzanalysen wurden nicht durchgeführt, da von Koos und Klink schon bewiesen wurde, dass die Körperhaltung (entspannt/aufrecht) während des Schluckens keinen Einfluss auf den Messfehler hat und da bei unseren Messungen keine Sweeps analysiert wurden^{35,36}.

4.2.2 Oneway-Analysen Messfehler

Mit der Oneway-Analyse wurde geprüft, ob die Körperhaltung aufrecht oder entspannt den Messfehler beeinflusst. Wie bei Koos³⁶ und Klink³⁵ bereits erwähnt, soll die Position möglichst keinen Einfluss auf den Messfehler nehmen. Die idealen Variablen sind solche, die in der Oneway-Analyse zeigen, dass kein Einfluss durch die Körperhaltung auf den Messfehler besteht.

Vor allem bei pathologischen Befunden kann nicht garantiert werden, dass der Proband während der Messungsdauer in ein und derselben Position verharrt.

4.2.2.1 Einfluss Körperhaltung-Distanzen

In der Schlucksequenz besteht kein Einfluss durch die veränderte Körperhaltung auf die Distanzen. Alle Variablen sind als ideal zu betrachten.

4.2.2.2 Einfluss Körperhaltung-Winkel

Die Körperhaltung nimmt lediglich Einfluss auf den Winkel Alpha 01. Dieser liegt jedoch in einer schlechten Messfehlerkategorie, sodass er sich nicht als Normwert eignet.

4.2.3 Oneway-Analysen Messwerte

4.2.3.1 Einfluss Körperhaltung-Distanzen

Die Oneway-Analyse zeigte, dass kein signifikanter Einfluss der Körperhaltung auf den Messwert besteht. Die Variablen sind somit ideale Variablen wie unter 4.2.2 beschrieben.

4.2.3.2 Einfluss Körperhaltung-Winkel

Hier liegen ebenfalls keine statistisch signifikanten Einflüsse vor.

4.2.3.3 Einfluss Geschlecht-Distanzen

Statistisch signifikante Unterschiede bei den Messwerten von männlichen und weiblichen Probanden sind bei D19, D29 und D36 zu beobachten.

4.2.3.4 Einfluss Geschlecht-Winkel

Es bestehen keine statistisch signifikanten Unterschiede.

4.2.3.5 Normwertdefinition

Durch die statistische Analyse zeigte sich, dass die meisten Messwerte in einer guten Kategorie liegen. Die ausgeschlossenen Werte lagen ausschließlich bei der Winkelmessung. Die Oneway-Analyse zeigte, dass die Körperhaltung keinen Einfluss auf den Messwert hat. Dies galt nicht für den Einfluss des Geschlechts. Hier fanden sich statistisch signifikante Einflüsse. Die Körperhaltung kann in weiteren Studien praktisch unberücksichtigt bleiben.

4.3 Schlussfolgerung

Die Variablen D19, D29 und D36 zeigten statistisch signifikante Unterschiede bezüglich des Geschlechts. Die Messfehleranalyse zeigte, dass sich die Distanzen besser zur Messung eignen als die Winkel. Die Winkel wiesen einen sehr hohen Messfehler auf, sie eignen sich kaum für die Diagnose myofunktioneller Störungen der Zunge. Ein Unterschied zwischen Männern und Frauen wurde bei den Distanzen D19, D29 und D36 festgestellt. Die Körperhaltung hatte bei keiner Variablen einen statistisch signifikanten Einfluss auf den Messfehler. Die EMA ist eine zuverlässige und präzise Methode. Die Variablen sind bis auf wenige Ausnahmen ideale Variablen. Die einzigen Einschränkungen zeigten sich in der Winkelanalyse, da hier der Messfehler zu groß ist.

5. Zusammenfassung

Die Untersuchung der Bewegungsmuster der Zunge stellt seit geraumer Zeit ein zentrales Thema medizinischer Studien dar.

Bisher wurden dazu oft konventionelle Untersuchungsmethoden, wie Ultraschall und Röntgen verwendet. Gegenstand dieser Dissertation war die Darstellung und Normwertdefinition der räumlichen Abfolge von Zungenbewegungen beim Schlucken eines Wasserbolus mit Hilfe der elektromagnetischen Artikulographie (EMA).

Die Zungenbewegungen wurden hinsichtlich folgender Kernfragen analysiert:

Wie stellt sich die Güte der Messwerte in Abhängigkeit zu ihrem Messfehler dar?

Besteht ein Zusammenhang zwischen der Körperhaltung des Probanden beim Schlucken und dem Messfehler?

Gibt es einen Zusammenhang zwischen dem Geschlecht des Probanden und dem Messfehler?

In welchem Umfang beeinflusst die Körperhaltung des Probanden die Bewegungsbahn der Zunge beim Schluckvorgang?

Beeinflusst das Geschlecht des Probanden den Bewegungsablauf der Zunge?

Die Untersuchung der 25-köpfigen Studiengruppe erfolgte mit Hilfe der elektromagnetischen Artikulographie (EMA) und wurde durch die Forschungsgruppe EMA der kieferorthopädischen Abteilung der Universitätsklinik Tübingen durchgeführt.

Die Methode EMA stellt ein biologisch unbedenkliches und non-invasives Messverfahren dar, ohne jegliche gesundheitliche Belastung der Probanden³⁷. Die Untersuchungen können beliebig oft wiederholt werden, Langzeitstudien mit großer Probandenzahl sind so möglich.

Durch die Früherkennung von Fehlfunktionen und Fehlbewegungen der Zunge sollen mögliche Folgeschäden für die Zahnstellung und Entwicklungsstörungen bei Kindern im Wachstum vermieden respektive rechtzeitig therapiert werden.

Die Studienteilnehmer unterlagen strengen Auswahlkriterien und zeigten in der Voruntersuchung einen physiologischen Ablauf des Schluckvorgangs.

Die Messungen wurden jeweils 20-mal wiederholt, 10-mal in aufrechter, 10-mal in entspannter Körperhaltung.

Die Untersuchungsreihen erfolgten mit dem Artikulograph der Universität Tübingen, der gegenüber seinem Vorgänger deutliche Vorteile^{12,14,16,19,39,45,63-65} aufweist:

Die Messgenauigkeit konnte von 0,5 auf 0,1 mm verbessert werden, der Tragekomfort wurde durch den leichteren Messhelm und individuell verstellbare Tragegurte deutlich erhöht. Der Artikulograph ist leicht zu transportieren und macht so die Messung an verschiedenen Standorten möglich. Für jugendliche Probanden wurde ein spezieller kleinerer Messhelm entwickelt. Die Zunge wird durch das Verfahren in ihrer Bewegungsfreiheit nur minimal beeinflusst.

Frühere Untersuchungen beschränkten sich auf quantitative und deskriptive Analysen, lieferten jedoch keine statistischen Auswertungen^{12,14,16,63-65}. Erste statistische Auswertungen erfolgten durch die Forschungsgruppe Koos, Horn et. al. ^{35-37,39,45,73}.

In vorliegender Dissertation konnten zuverlässige Normwerte für die Bewegung der Zunge beim Schluckvorgang erstellt werden.

Die statistische Analyse zeigte, dass die meisten Messwerte in einer guten bis sehr guten Kategorie liegen. Lediglich die Winkelmessung lieferte unzuverlässige Werte. Durch die Oneway-Analyse konnte belegt werden, dass die Körperhaltung keinen Einfluss auf den Messwert hat. Dies galt nicht für den Einfluss des Geschlechts. Hier fanden sich statistisch signifikante Einflüsse. Die Körperhaltung kann in weiteren Studien praktisch unberücksichtigt bleiben.

Die zum Teil breite Streuung der Normwerte liegt nicht an der Ungenauigkeit der Messapparatur. Dies belegen die stabilen Messwerte der Referenzpunkte

ZUSAMMENFASSUNG

am Schädel, welche von der Variationsbreite der Bewegungen unbeeinflusst bleiben.

Zusammenfassend zeigt sich, dass die EMA eine zuverlässige und präzise Untersuchungsmethode zur Aufzeichnung und Analyse der physiologischen und pathologischen Bewegungsabläufe der Zunge darstellt. Die EMA ermöglicht durch die genaue Darstellung der Zungenbewegungen eine individuell abgestimmte Therapieplanung bei Patienten mit Zungendyskinesien. Diese völlig schmerzfreie, den Patienten kaum beeinträchtigende Messmethode soll in Zukunft während der kieferorthopädischen oder logopädischen Behandlung eine regelmäßige Verlaufskontrolle ermöglichen und den Therapieerfolg sichern. Eine weitere Standardisierung des Verfahrens ist dazu notwendig. Auch nach Therapieabschluss kann die EMA im Rahmen von Nachsorgeuntersuchungen zur Vermeidung von Rezidiven beitragen.

6. Literaturverzeichnis

- 1. Ackermann H., Hertrich I., Scharf G. Kinematic Analysis of Lower Lip Movements in Ataxic Dysarthria. *Journal of speech and hearing research.* 1995;38:1252-1259.
- 2. Bewick V., Cheek L., Ball J. One-way analysis of variance. *Crit Care.* 2004;8:136.
- 3. Bland J.M., Altman D.G. Statistics Notes: Measurement error. *BMJ*. 1996;312
- 4. Böckler R., Wein B., Klajmann S. Ultraschalluntersuchung der aktiven und passiven Beweglichkeit der Zunge. xx. 1989.
- 5. Campbell M.J., Gardner M.J. Calculating confidence intervals for some non-parametric analyses. *Br Med J.* 1988;296:1454-1456.
- 6. Carstens B. Artikulograph AG 100, Elektromagnetisches Artikulations-Messsystem. *Handbuch zum Artikulographen AG 100.* 1989.
- 7. Cheng C.F., Peng C.L., Chiou H.Y., Tsai C.Y. Tongue function during swallowing in the dentofacial forms. *Am J Orhod Dentofacial Orthop.* 2002;122:491-499.
- 8. Chi-Fishman G., Stone M., McCall G.N. Lingual action in normal sequential swallowing. *PMID.* 1998.
- 9. Chiang Y.C., Lee F.P., Peng C.L., Lin C.T. Measurement of tongue movement during vowels production with computer-assisted B-mode and M-mode ultrasonography. *Otolaryngology-head and neck surgery*. 2003;128 805-814.
- 10. Connor N.P., Abbs J.H., Cole K.J., Gracco V.L. Parkinsonian deficits in serial multiarticulate movements for speech. *Brain.* 1989;112:997-1009.
- 11. Drescher D. Praxis der Zahnheilkunde, Band 11/I, Kieferorthopädie I. 2000:261-292.
- 12. Engelke W., Bruns T., Striebeck M., Hoch G. Midsagittal velar kinematics during production of VCV sequences. *Cleft palat.Craniofac.* 1996;33.
- 13. Engelke W., Engelke D., Schwestka R. Zur klinischen und instrumentellen Untersuchung motorischer Zungenfunktionen. *Dtsch Zahnarztl Z.* 1990.

- 14. Engelke W., Hoch G. Simultane elektromagnetische Artikulographie und Videoendoskopie. *Fortschr.Kieferorthop.* 1994;55:297-303.
- 15. Engelke W., Schönle P., Engelke D. 2 objektive Verfahren zur Untersuchung motorischer Funktionen nach Eingriffen an Zunge und Velum. xx. 1990.
- Engelke W., Schönle P.W. Elektromagnetische Artikulographie: Eine neue Methode zur Untersuchung von Bewegungsfunktionen des Gaumensegels. Folia Phoniatr. 1991;43:147-152.
- 17. Engelke W., Schönle P.W., Kring R.A., Richter C. Zur Untersuchung orofazialer Bewegungsfunktionen mit der elektromagnetischen Articulographie. *Dtsch Zahnarztl Z.* 1989.
- 18. Engelke W., Schönle P.W., Schwarzwälder W. Untersuchung zur Motorik der Zungenspitze bei der Bildung dentoalveolärer Konsonanten. xx. 1991.
- 19. Fletcher J. An EMA/EMG study of vowel-to-vowel articulation across velars in Southern British English. *Clinical linguistics and phonetics*. 2004;18 (6-8):577-592.
- 20. Forrest K., Weismer G., Turner G.S. Kinematic, acoustic and perceptual analyses of connected speech produced by Parcinsonian and normal geriatric adults. *Journal of the AcousticalSociety of America*. 1989;85 2608-2622.
- 21. Fränkel R., Fränkel C. Funktionelle Aspekte des skelettalen offenen Bisses. *Fortschr.Kieferorthop.* 1982;43:8-18.
- 22. Fuhrmann R., Diedrich P. Videogestützte dynamische B-modesonographie der Zungenfunktion während des Schluckens. *Fortschr.Kieferorthop.* 1993;54:17-26.
- 23. Galén S., Jost-Brinkmann P.-G. B-mode and M-mode Ultrasonography of Tongue Movements during Swallowing. *J Orofac Orthop.* 2010;71:125-135.
- 24. Goozee J.V., Lapointe L.L., Murdoch B.E. Effects of speaking rate on EMA-derived lingual kinematics: a preliminary investigation. *Clinical linguistics and phonetics*. 2003;17 (4-5) 375-381.
- 25. Hardcastle W.J., Gibbon F.E., Jones W. Visual display of tongue-palate contact: elektropalatography in the assessment and remediation of speech disorders. *Br J Disord Commun.* 1991:41-74.

- 26. Hertich J., Ackermann H. Articulatory control of phonological vowel length contrast: kinematic analysis of labial gestures. *J.Acoust.Soc.A.* 1997;102.
- 27. Horn H, Göz G., Bacher M., Müllauer M., Kretschmer I., Axmann-Krcmar D. Reliability of Electromagnetic Articulography Recording During Speaking Sequenzes. *Eur.J.Orthod.* 1997;19:647-655.
- 28. Horn H., Göz G., Bacher M., Koch J., Axmann-Krcmar D. Maximalkraft-messungen des Lippen- und Zungendruckes und ihre Bedeutung für die klinische Diagnostik orofazialer Dyskinesien. *Fortschr.Kieferorthop.* 1995;56:187-193.
- 29. Horn H., Scholl T. Messsystem zur Registrierung von Lippen- und Zungenbewegungen. *Handbuch zum Artikulographen, KFO UKT.* 1998.
- 30. Horn H., Scholl T., Berndt R., Hertrich I., Ackermann H., Göz G. Improvement of an elektromagnetic articulograph for registering tongue and lip movements. *Biomed Tech.* 1997;42:321-322.
- 31. International Phonetic Association. *Handbook of the International Phonetic Association*: Cambridge University Press; 1999.
- 32. Ishii T. A study of the movement of the articulatory organs in Japanese geminate production ANX-ray microbeam analysis. *Nippon Jibiinkoka Gakkai Kaiho*. 1999;102:622-634.
- 33. Kawashima S., Takahashi Y., Niikuni N., et al. Development of X-ray TV m-mode and reconstructed ultrasound m-mode methods for investigating tongue movement during swallowing in humans. *Journal of oral science*. 1999;41:1-4.
- 34. Kittel A.M., Jenaschke F. Myofunktionelle Therapie (MFT) bei Dysfunktion der Zungen-, Kiefer-, Gesichtsmuskulatur. *xx.* 1985.
- 35. Klink A. Räumliche Darstellung von Zungenbewegungen bei Sprachsequenzen mittels elektromagnetischer Artikulographie. *Med.Dissertation*, *Universität Tübingen*. 2007.
- 36. Koos B. Darstellung und Normwertdefinition der räumlichen und zeitlichen Abfolge von Lippenbewegungen bei Sprachsequenzen durch die elektromagnetische Artikulographie. *Med.Dissertation*, *Universität Tübingen*. 2008.
- 37. Koos B., Horn H., Schaupp E., Axmann D., Godt A. Analyse und Normwertdefinition der Zungenbewegung während des Schluckvorganges. *J Orofac Orthop.* 2009;70:431.

- 38. Koppenburg P., Leidig E., Bacher M., Dausch-Neumann D. Die Darstellung von Lage und Beweglichkeit der Zunge bei Neugeborenen mit oralen Spaltfehlbildungen durch transorale Ultraschallsonographie. xx. 1988.
- 39. Kretschmer I.M. Untersuchungen zur Analyse von Sprech- und Schluckbewegungen mit Hilfe der elektromagnetischen Artikulographie. Med.Dissertation, Universität Tübingen. 1996.
- 40. Kuo L.C. Ultrasound investigation of nonnutritive sucking behavior of human neonates. *Master thesis. Taipei Medical University.* 2004.
- 41. Leitgeb N. Analyse epidemiologischer Studien über magnetfeldbedingte Krebsrisiken. *Biomed Tech.* 1993;38:111-116.
- 42. Mehnert J., Landau H., Mußler A., et al. Comparison between Logopedic and MRI Findings in Evaluating Tongue Function. *J Orofac Orthop.* 2009;70:455-467.
- 43. Mehnert J., Landau H., Orawa H., et al. Validity and Reliability of Logopedic Assessments of Tongue Function. *J Orofac Orthop.* 2009;70:468-484.
- 44. Moll K. Cinefluorographic Technics in Speech Research. *J.Speech Res.* 1960;5 241.
- 45. Müllauer M.O.F. Untersuchungen zur Reproduzierbarkeit von Sprechbewegungen mit Hilfe der elektromagnetischen Artikulographie. Med.Dissertation, Universität Tübingen. 1996.
- 46. Müller C. Analyse der Zungenkinetik beim Schlucken mit Hilfe der elektromagnetischen Artikulographie. *Med.Dissertation*, *Universität Göttingen*. 2008.
- 47. Müßig D. Die Sonographie ein diagnostisches Mittel zur dynamischen Funktionsanalyse der Zunge. *Fortschr.Kieferorthop.* 1992;53:338-343.
- 48. Ohlendorf D., Hornstein A., Kopp S. Einsatz einer 3-D-Gesichtsscannung im Hinblick auf ästhetische Parameter der Gesichtsvermessung. *J Orofac Orthop.* 2009;70:437.
- 49. Ono T., Hori K., Nokubi T. Pattern of Tongue Pressure on Hard Palate During Swallowing. *Dysphagia*. 2004;19:259-264.
- 50. Peng C.L., Jost-Brinkmann P.G., Lin C.T. Classification and interpretation of the oral phase of swallowing with B+M-mode ultrasonography. *Radiologe.* 1995;35:747-752.

- 51. Peng C.L., Jost-Brinkmann P.G., Miethke R.R. The cushion scanning technique a method of dynamic tongue ultrasonography and its comparison with the transducer-skin coupling scanning during swallowing. *Acad Radiol.* 1996;3:239-244.
- 52. Peng C.L., Jost-Brinkmann P.G., Miethke R.R., Lin C.T. Ultrasonographic Measurements of Tongue Movements During Swallowing. *Journal of ultrasound in medicine*. 2000;19:15-20.
- 53. Peng C.L., Jost-Brinkmann P.G., Yoshida N., Chou H.H., Lin C.T. Comparison of tongue funktions between mature and tongue-thrust swallowing--an ultrasound investigation. *Am J.Orthod.Dentofacial Orthop.* 2004;125:562-570.
- 54. Peng C.L., Jost-Brinkmann P.G., Yoshida N., Miethke R.R., Lin C.T. Differential diagnosis between infantile and mature swallowing with ultrasonography. *European Journal of Orthodontics*. 2003;25:451-456.
- 55. Peng C.L., Miethke R.R. Eine Dämpfungsmethode ermöglicht eine exaktere sonographische Untersuchung von Zungenbewegungen. *Fortschr.Kieferorthop.* 1994;55:209-218.
- 56. Peng C.L., Miethke R.R., Pong S.J., Lin C.T. Investigation of Tongue Movements during Swallowing with M-Mode Ultrasonography. *J Orofac Orthop.* 2007;68:17-25.
- 57. Rakosi T. Ätiologie und diagnostische Beurteilung des offenen Bisses. *Fortschr.Kieferorthop.* 1982;1:73.
- 58. Recasens D. An EMA study of VCV coarticulatory directions. *The Journal of the Acoustical Society of America*. 2002;111 (6) 2828-2841.
- 59. Rosner B., Glynn R.J., Lee M.L. The Wilcoxon signed rank test for paired comparison of clustered data. *Biometrics*. 2006;62:185-192.
- 60. Saigusa H., Saigusa M., Aino I., et al. M-mode color Doppler ultrasonic imaging of vertical tongue movement during articulatory movement. *J Voice*. 2006;20:38-45.
- 61. Schopf P. Konstruktion einer Messsonde zur Registrierung des Zungenund Lippendrucks. *Fortschr.Kieferorthop.* 1971;32:25-36.
- 62. Schuster G., Stöhr I., Kopp S., Werthschützky R. Erfassung des Zungendrucks beim Sprechen mit miniaturisierten Drucksensoren. *J Orofac Orthop.* 2009;70:431.
- 63. Schweska-Polly R., Engelke W., Engelke D. Bedeutung der elektromagnetischen Artikulographie bei der Untersuchung der motorischen Zun-

- genfunktion im Rahmen kieferorthopädischer Diagnostik. *Fortschr.Kieferorthop.* 1992;53:3-10.
- 64. Schwestka-Polly R., Engelke W., Engelke D. Electromagnetic articulography for detecting tongue movement in patients with dysgnathia. *Fortschr.Kieferorthop.* 1992;53:3-10.
- 65. Schwestka-Polly R., Engelke W., Hoch G. Electromagnetic articulography as a method for detecting the influence of spikes on tongue movement. *Eur.J. Orthod.* 1995;17:411-417.
- 66. Shawker T.H, Sonies B., Hall T.E., Baum B.F. Ultrasound Analysis of tongue, Hyoid and Larynx Activity during swallowing. *xx.* 1986.
- 67. Shawker T.H., Sonies B.C., Stone M., Baum B.J. Real-time ultrasound visualization of tongue movement during swallowing. *Journal of clinical Ultrasound*. 1983;11 98.
- 68. Siegmüller J., Bartels H. Leitfaden Sprache, Sprechen, Stimme, Schlucken.
- 69. Steele C.M., Lieshout P.H. Use of electromagnetic midsagittal articulography in the study of swallowing. *Journal of speech and hearing research*. 2004;47:342-352.
- 70. Stöhr I., Schuster G., Werthschützky R., Kopp S. Telemetrisches Messsystem für die Erfassung der Zungenfunktion und des Zungendrucks. *J Orofac Orthop.* 2009;70:435.
- 71. Tasko S.M., Kent R.D., Westbury J.R. Variability in tongue movement kinematics during normal liquid swallowing. *Dysphagia*. 2002;17 (2):126-138.
- 72. Veis S.L., Logemann J.A. Swallowing disorders in person with cerebro-vascular accident. *Arch.Phys.Med.Rehabil.* 1988;66 375.
- 73. Viehweger E. Zeitliche Darstellung von Zungenbewegungen bei Sprachsequenzen mittels elektromagnetischer Artikulographie. *Med.Dissertation*, *Universität Tübingen*. 2008.
- 74. Watkin K.L. Ulrasound and swallowing. *Folia Phoniatr. Logop.* 1999;51:183-198.
- 75. Wein B., Alzen G., Tolxdorff T. Computer-sonographische Darstellung der Zungenmotilität mittels Pseudo-3D-Rekonstruktion. *Ultraschall.* 1988;9:95-97.

LITERATURVERZEICHNIS

- 76. Wein B., Klajmann S., Huber W., Döring W.H. Ultraschalluntersuchung von Koordinationsstörungen der Zungenbewegung beim Schlucken. *xx.* 1988.
- 77. Whitley E., Ball J. Comparison of means. Crit Care. 2002;6.
- 78. Whitley E., Ball J. Nonparametric methods. Crit Care. 2002;6:509-513.
- 79. Whitley E., Ball J. Presenting and summarising data. Crit Care. 2001;6.

7. Abbildungsverzeichnis

Abbildung 1: Schemazeichnung des Messsystems ²³	9
Abbildung 2: Karbongestänge mit Positionssenderspulen vom Probanden	
getragen	. 10
Abbildung 3: Magnetfeld der Positionssenderspulen ²⁹	. 11
Abbildung 4: Graphische Darstellung der Messgenauigkeit (Horn, H.; Scholl,	
Th.) ³⁰	. 13
Abbildung 5: X-/Y-Darstellung der Kauebenenaufzeichnung im Programm IG	OR
PRO in cm	. 24
Abbildung 6: X-/Y-Darstellung der Gaumenaufzeichnung in cm	. 25
Abbildung 7: X-/Y-Darstellung aller Spulen mit eingeblendeten Referenzpunk	
in cm	
Abbildung 8: Schemazeichnung der Schlucksequenzen	. 29
Abbildung 9: Oneway-Analyse, Einfluss Körperhaltung, Variable Alpha01	. 52
Abbildung 10: Oneway-Analyse, Einfluss Geschlecht, Variable D19	. 55
Abbildung 11: Oneway-Analyse, Einfluss Geschlecht, Variable D29	. 56
Abbildung 12: Oneway-Analyse, Einfluss Geschlecht, Variable D36	. 57
Abbildung 13: Oneway-Analyse, Einfluss Körperhaltung, Variable D01	. 93
Abbildung 14: Oneway-Analyse, Einfluss Körperhaltung, Variable D02	. 94
Abbildung 15: Oneway-Analyse, Einfluss Körperhaltung, Variable D03	. 95
Abbildung 16: Oneway-Analyse, Einfluss Körperhaltung, Variable D04	. 96
Abbildung 17: Oneway-Analyse, Einfluss Körperhaltung, Variable D05	
Abbildung 18: Oneway-Analyse, Einfluss Körperhaltung, Variable D06	. 98
Abbildung 19: Oneway-Analyse, Einfluss Körperhaltung, Variable D07	
Abbildung 20: Oneway-Analyse, Einfluss Körperhaltung, Variable D08	
Abbildung 21: Oneway-Analyse, Einfluss Körperhaltung, Variable D09	
Abbildung 22: Oneway-Analyse, Einfluss Körperhaltung, Variable D10	
Abbildung 23: Oneway-Analyse, Einfluss Körperhaltung, Variable D11	
Abbildung 24: Oneway-Analyse, Einfluss Körperhaltung, Variable D12	
Abbildung 25: Oneway-Analyse, Einfluss Körperhaltung, Variable D13	
Abbildung 26: Oneway-Analyse, Einfluss Körperhaltung, Variable D14	
Abbildung 27: Oneway-Analyse, Einfluss Körperhaltung, Variable D15	
Abbildung 28: Oneway-Analyse, Einfluss Körperhaltung, Variable D16	
Abbildung 29: Oneway-Analyse, Einfluss Körperhaltung, Variable D17	
Abbildung 30: Oneway-Analyse, Einfluss Körperhaltung, Variable D18	
Abbildung 31: Oneway-Analyse, Einfluss Körperhaltung, Variable D19	
Abbildung 32: Oneway-Anlayse, Einfluss Körperhaltung, Variable D20	
Abbildung 33: Oneway-Analyse, Einfluss Körperhaltung, Variable D21	
Abbildung 34: Oneway-Analyse, Einfluss Körperhaltung, Variable D22	
Abbildung 35: Oneway-Analyse, Einfluss Körperhaltung, Variable D23	
Abbildung 36: Oneway-Analyse, Einfluss Körperhaltung, Variable D24	
Abbildung 37: Oneway-Analyse, Einfluss Körperhaltung, Variable D25	
Abbildung 38: Oneway-Analyse, Einfluss Körperhaltung, Variable D26	
Abbildung 39: Oneway-Analyse, Einfluss Körperhaltung, Variable D27	
Abbildung 40: Oneway-Analyse, Einfluss Körperhaltung, Variable D28	
Abbildung 41: Oneway-Analyse, Einfluss Körperhaltung, Variable D29	121

ABBILDUNGSVERZEICHNIS

Abbildung 42: Oneway-Analy	se, Einfluss Körperhaltung, Variable D30 122
Abbildung 43: Oneway-Analy	se, Einfluss Körperhaltung, Variable D31 123
Abbildung 44: Oneway-Analy	se, Einfluss Körperhaltung, Variable D32 124
	se, Einfluss Körperhaltung, Variable D33 125
	se, Einfluss Körperhaltung, Variable D34 126
	se, Einfluss Körperhaltung, Variable D35 127
	se, Einfluss Körperhaltung, Variable D36 128
	se, Einfluss Körperhaltung, Variable D37 129
	se, Einfluss Körperhaltung, Variable D38 130
	se, Einfluss Körperhaltung, Variable D39 13
	se, Einfluss Körperhaltung, Variable D40 132
	se, Einfluss Körperhaltung, Variable D41 133
	se, Einfluss Körperhaltung, Variable D42 134
	se, Einfluss Körperhaltung, Variable D43 135
	rse, Einfluss Körperhaltung, Variable D44 136
	rse, Einfluss Körperhaltung, Variable D45 137
	rse, Einfluss Körperhaltung, Variable Alpha02 138
	se, Einfluss Körperhaltung, Variable Alpha03 139
	rse, Einfluss Körperhaltung, Variable Alpha04 140
	rse, Einfluss Körperhaltung, Variabel Alpha05 14
, ,	rse, Einfluss Körperhaltung, Variable Alpha06 142
	rse, Einfluss Körperhaltung, Variable Alpha07 143
	rse, Einfluss Körperhaltung, Variable Alpha08 144
	se, Einfluss Körperhaltung, Variable Alpha09 145
	rse, Einfluss Körperhaltung, Variable Alpha09 140 rse, Einfluss Körperhaltung, Variable Alpha10 140
	se, Einfluss Körperhaltung, Variable Alpha11 147
	se, Einfluss Körperhaltung, Variable Alpha11 148 se, Einfluss Körperhaltung, Variable Alpha12 148
	rse, Einfluss Körperhaltung, Variable Alpha12 146 rse, Einfluss Körperhaltung, Variable Alpha13 149
	rse, Einfluss Körperhaltung, Variable Alpha14 150
	rse, Einfluss Körperhaltung, Variable Alpha15 15
	rse, Einfluss Geschlecht, Variable D01
, ,	rse, Einfluss Geschlecht, Variable D02
	rse, Einfluss Geschlecht, Variable D03
, ,	rse, Einfluss Geschlecht, Variable D04
	rse, Einfluss Geschlecht, Variable D05
	rse, Einfluss Geschlecht, Variable D06
	rse, Einfluss Geschlecht, Variable D07 158
, ,	se, Einfluss Geschlecht, Variable D08 159
	se, Einfluss Geschlecht, Variable D09 160
	se, Einfluss Geschlecht, Variable D10 16
	se, Einfluss Geschlecht, Variable D11 162
	se, Einfluss Geschlecht, Variable D12 163
	se, Einfluss Geschlecht, Variable D13 164
	se, Einfluss Geschlecht, Variable D14 165
	se, Einfluss Geschlecht, Variable D15 166
	se, Einfluss Geschlecht, Variable D16 167
	se, Einfluss Geschlecht, Variable D17 168
Abbildung 89: Oneway-Analy	se, Einfluss Geschlecht, Variable D18 169

ABBILDUNGSVERZEICHNIS

Abbildung 90: Oneway-Analyse, Einfluss Geschlecht, Variable D20
Abbildung 91: Oneway-Analyse, Einfluss Geschlecht, Variable D21 171
Abbildung 92: Oneway-Analyse, Einfluss Geschlecht, Variable D22 172
Abbildung 93: Oneway-Analyse, Einfluss Geschlecht, Variable D23 173
Abbildung 94: Oneway-Analyse, Einfluss Geschlecht, Variable D24 174
Abbildung 95: Oneway-Analyse, Einfluss Geschlecht, Variable D25 175
Abbildung 96: Oneway-Analyse, Einfluss Geschlecht, Variable D26 176
Abbildung 97: Oneway-Analyse, Einfluss Geschlecht, Variable D27 177
Abbildung 98: Oneway-Analyse, Einfluss Geschlecht, Variable D28 178
Abbildung 99: Oneway-Analyse, Einfluss Geschlecht, Variable D30 179
Abbildung 100: Oneway-Analyse, Einfluss Geschlecht, Variable D31 180
Abbildung 101: Oneway-Analyse, Einfluss Geschlecht, Variable D32 181
Abbildung 102: Oneway-Analyse, Einfluss Geschlecht, Variable D33 182
Abbildung 103: Oneway-Analyse, Einfluss Geschlecht, Variable D34 183
Abbildung 104: Oneway-Analyse, Einfluss Geschlecht, Variable D35 184
Abbildung 105: Oneway-Analyse, Einfluss Geschlecht, Variable D37 185
Abbildung 106: Oneway-Analyse, Einfluss Geschlecht, Variable D38 186
Abbildung 107: Oneway-Analyse, Einfluss Geschlecht, Variable D39 187
Abbildung 108: Oneway-Analyse, Einfluss Geschlecht, Variable D40 188
Abbildung 109: Oneway-Analyse, Einfluss Geschlecht, Variable D41 189
Abbildung 110: Oneway-Analyse, Einfluss Geschlecht, Variable D42 190
Abbildung 111: Oneway-Analyse, Einfluss Geschlecht, Variable D43 191
Abbildung 112: Oneway-Analyse, Einfluss Geschlecht, Variable D44 192
Abbildung 113: Oneway-Analyse, Einfluss Geschlecht, Variable D45 193
Abbildung 114: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha01 194
Abbildung 115: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha02 195
Abbildung 116: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha03 196
Abbildung 117: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha04 197
Abbildung 118: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha05 198
Abbildung 119: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha06 199
Abbildung 120: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha07 200
Abbildung 121: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha08 201
Abbildung 122: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha09 202
Abbildung 123: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha10 203
Abbildung 124: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha11 204
Abbildung 125: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha12 205
Abbildung 126: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha13 206
Abbildung 127: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha14 207
Abbildung 128: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha15 208

8. Tabellenverzeichnis

Tabelle 1: Spulenbezeichnung	11
Tabelle 2: Aufzeichnungsphasen	21
Tabelle 3: Definition der ermittelten Extrempunkte des Schluckschemas	30
Tabelle 4: Messfehlerkategorie Distanzen	34
Tabelle 5: Messfehlerkategorie Winkel	34
Tabelle 6: Bewertungsquotient Q* Distanzen	38
Tabelle 7: Messfehler Distanzen	44
Tabelle 8: Bewertungsquotient Q* Winkel	
Tabelle 9: Messfehler Winkel	
Tabelle 10: Messwerte Oneway-Analyse, ChiSquare Approximation, Distanz	
Tabelle 11: Messwerte Oneway-Analyse, ChiSquare Approximation, Winkel	51
Tabelle 12: Messwerte Oneway-Analyse, Chi-Square Approximation, Distant	- 4
Tabelle 13: Messwerte Oneway-Analyse, ChiSquare Approximation, Winkel Tabelle 14: Balancepoints	
Tabelle 15: Normwerte Distanzen	
Tabelle 16: Normwerte Winkel	
Tabelle 17: Drop out Variablen Distanzen (Messfehler Distanzen der Katego	
Tabelle 18: Drop out Variablen Winkel (Messfehler Winkel der Kategorie 4)	92
Tabelle 19: Normwerte Distanzen, Einfluss Körpehaltung	
Tabelle 20: Normwerte Winkel, Einfluss Körperhaltung	215
Tabelle 21: Normwerte Winkel, Einfluss Geschlecht	216

9. Anhang

9.1 Tabellen Messfehler

9.1.1 Messfehler Distanzen (Messfehlerkategorie 4)

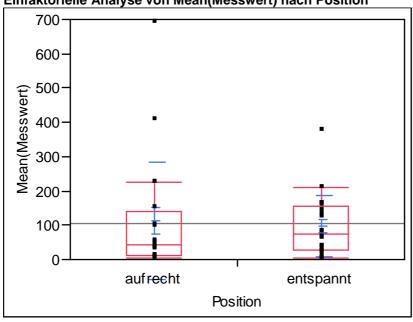
Variable	Geschlecht	Körperhaltung	Mittlerer Messwert []	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
D001[mm]	weiblich	aufrecht	0,67	1,48	2,9	4,1	
D002 [mm]	männlich	entspannt	0,92	1,49	2,92	4,12	
D004 [mm]	männlich	aufrecht	1,49	3,19	6,26	8,85	
D005 [mm]	weiblich	aufrecht	1,95	3,48	6,81	9,63	
D005 [mm]	weiblich	entspannt	2,14	4,28	8,38	11,85	
D007 [mm]	weiblich	entspannt	2,12	3,46	6,79	9,6	
D008 [mm]	weiblich	entspannt	1,71	2,65	5,2	7,35	
D009 [mm]	männlich	entspannt	0,91	1,52	2,98	4,21	
D016 [mm]	weiblich	entspannt	0,85	3,33	6,53	9,23	
D017 [mm]	männlich	entspannt	1,45	2,81	5,5	7,78	
D022 [mm]	weiblich	aufrecht	0,87	1,46	2,87	4,06	4
D022 [mm]	weiblich	entspannt	2,19	4,21	8,26	11,68	4
D023 [mm]	weiblich	entspannt	1,94	2,98	5,83	8,25	
D024 [mm]	männlich	aufrecht	1,14	2,22	4,35	6,14	
D024 [mm]	männlich	entspannt	0,99	2,01	3,94	5,57	
D025 [mm]	weiblich	entspannt	2,51	4,68	9,18	12,98	
D031 [mm]	weiblich	aufrecht	0,82	1,3	2,55	3,6	
D037 [mm]	männlich	aufrecht	1,14	2,33	4,57	6,46	
D037 [mm]	männlich	entspannt	1,06	1,87	3,66	5,17	
D037 [mm]	weiblich	entspannt	1,64	2,92	5,72	8,09	
D039 [mm]	männlich	entspannt	1,59	3,09	6,05	8,55	
D039 [mm]	weiblich	entspannt	1,47	3,26	6,4	9,04	

Tabelle 17: Drop out Variablen Distanzen (Messfehler Distanzen der Kategorie 4)

9.1.2 Messfehler Winkel (Messfehlerkategorie 4)

Variable	Geschlecht	Körperhaltung	Mittlerer Messwert []	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
Alpha01 [¶	männlich	aufrecht	0,78	0,42	0,83	1,17	
Alpha01 [9	männlich	entspannt	0,66	0,31	0,61	0,86	
Alpha01 [9	weiblich	aufrecht	0,9	0,33	0,66	0,93	
Alpha01 [9	weiblich	entspannt	0,61	0,32	0,63	0,89	
Alpha02 [9	männlich	aufrecht	0,81	0,28	0,54	0,77	
Alpha02 [9	männlich	entspannt	0,77	0,38	0,75	1,06	
Alpha02 [9	weiblich	aufrecht	0,87	0,32	0,63	0,89	
Alpha02 [9	weiblich	entspannt	0,76	0,43	0,84	1,19	
Alpha03 [9	männlich	aufrecht	0,89	0,29	0,58	0,82	
Alpha03 [9	männlich	entspannt	0,94	0,31	0,61	0,87	
Alpha03 [9	weiblich	aufrecht	0,93	0,39	0,77	1,09	
Alpha03 [9	weiblich	entspannt	0,95	0,37	0,73	1,03	
Alpha04 [9	männlich	aufrecht	0,78	0,28	0,56	0,79	
Alpha04 [9	männlich	entspannt	0,77	0,38	0,75	1,06	
Alpha04 [9	weiblich	aufrecht	0,76	0,29	0,57	0,8	4
Alpha04 [9	weiblich	entspannt	0,68	0,36	0,7	0,99	
Alpha05 [9	männlich	aufrecht	0,8	0,29	0,58	0,82	
Alpha05 [9	männlich	entspannt	0,74	0,32	0,63	0,89	
Alpha05 [9	weiblich	aufrecht	0,66	0,27	0,53	0,75	
Alpha05 [9	weiblich	entspannt	0,63	0,36	0,7	0,99	
Alpha06 [9	männlich	aufrecht	1,03	0,35	0,69	0,97	
Alpha06 [9	männlich	entspannt	0,98	0,32	0,62	0,88	
Alpha06 [9	weiblich	aufrecht	1,06	0,33	0,66	0,93	
Alpha06 [9	weiblich	entspannt	1,02	0,32	0,62	0,87	
Alpha07 [9	männlich	aufrecht	0,47	0,25	0,49	0,69	
Alpha07 [9	männlich	entspannt	0,5	0,28	0,55	0,77	
Alpha07 [9	weiblich	aufrecht	0,52	0,24	0,48	0,67	
Alpha07 [9	weiblich	entspannt	0,49	0,29	0,58	0,82	
Alpha08 [9	männlich	entspannt	0,76	0,24	0,47	0,67	

Variable	Geschlecht	Körperhaltung	Mittlerer Messwert []	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
Alpha08 [¶	weiblich	aufrecht	0,8	0,26	0,5	0,71	
Alpha08 [9	weiblich	entspannt	0,77	0,3	0,59	0,83	
Alpha09 [9	männlich	aufrecht	0,72	0,36	0,71	1,01	4
Alpha09 [9	männlich	entspannt	0,77	0,44	0,85	1,21	- T
Alpha09 [9	weiblich	aufrecht	0,74	0,31	0,61	0,86	
Alpha09 [9	weiblich	entspannt	0,7	0,34	0,67	0,95	


Tabelle 18: Drop out Variablen Winkel (Messfehler Winkel der Kategorie 4)

9.2 Tabellen Oneway-Analyse – Messfehler

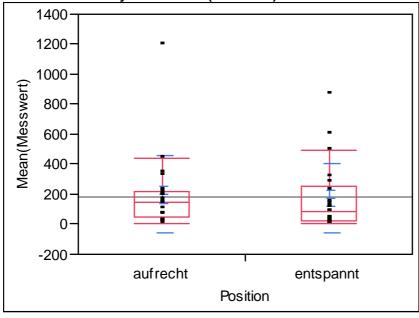
9.2.1 Einfluss Körperhaltung/Distanzen

Variable D01 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	4,40222	4,707595	10,40114	41,54405	139,7088	389,2762	692,1765
entspannt	4,472136	5,734969	26,19472	74,02035	155,2416	205,4005	375,3992

Mittelwerte und StdAbweichungen									
Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben			
aufrecht	20	111,827	170,550	38,136	32,007	191,65			
entspannt	20	97 159	90 592	20 257	54 760	139 56			


Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)								
Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0				
aufrecht	20	383,500	19,1750	-0,703				
entspannt	20	436,500	21,8250	0,703				

Einfaktorieller Test, Chi-Quadrat-Approximation							
Chi ²	Freiheitsgrade	Wahrsch.>Chi2					
0,5139	1	0,4735					

Abbildung 13: Oneway-Analyse, Einfluss Körperhaltung, Variable D01

Variable D02 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

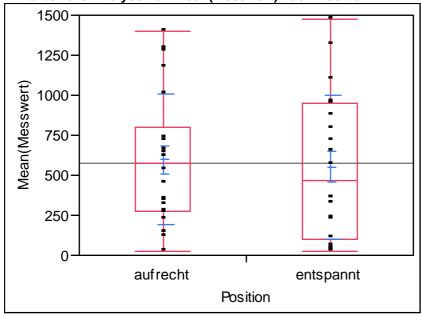
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	7,654417	13,96764	44,4694	144,6881	220,6014	421,3812	1198,374
entspannt	0,5	3,699577	18,67638	85,81494	250,0057	578,0298	862,4171

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	21	198,352	257,788	56,254	81,009	315,70
entspannt	21	172.605	227.460	49.636	69.066	276.14

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	21	488,000	23,2381	0,906
entspannt	21	415,000	19,7619	-0,906


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,8431	1	0,3585

Abbildung 14: Oneway-Analyse, Einfluss Körperhaltung, Variable D02

Variable D03 [mm]

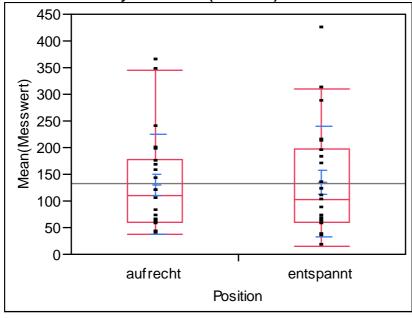
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	25,42639	120,3936	275,101	575,2734	801,9851	1286,816	1396,443
entspannt	21,35741	32,78661	96,14262	463,7815	947,286	1250,765	1478,07

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	598,712	406,544	86,675	418,46	778,96
entspannt	22	551,781	451,237	96,204	351,71	751,85

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	513,000	23,3182	0,411
entspannt	22	477.000	21.6818	-0.411


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,1785	1	0,6727

Abbildung 15: Oneway-Analyse, Einfluss Körperhaltung, Variable D03

Variable D04 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	36,88051	39,4389	59,44719	109,7736	177,5917	313,4203	363,5938
entspannt	15,62423	32,77994	60,66976	103,1368	197,3606	303,1928	421,8921

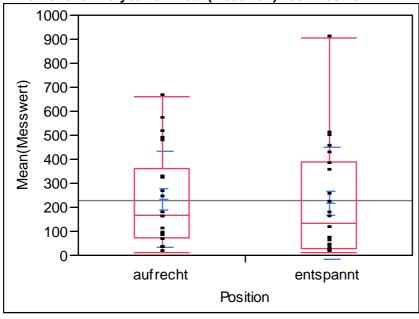
Mittelwerte und Std.-Abweichungen

Stute	Anzahi	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	130,653	93,260	19,883	89,304	172,00
entspannt	22	135,483	103,521	22,071	89,584	181,38

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	492,000	22,3636	-0,059
entspannt	22	498.000	22.6364	0.059

Einfaktorieller Test, Chi-Quadrat-Approximation


 Chi²
 Freiheitsgrade
 Wahrsch.>Chi²

 0,0050
 1
 0,9439

Abbildung 16: Oneway-Analyse, Einfluss Körperhaltung, Variable D04

Variable D05 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

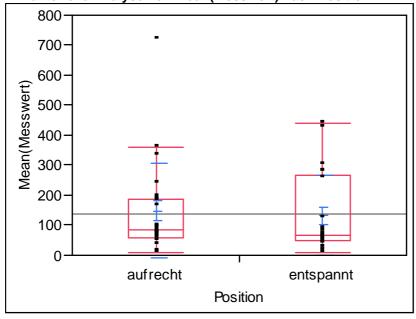
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	12,01996	25,24431	72,49329	163,969	358,9298	551,4784	658,6952
entspannt	12,0883	16,12785	30,29223	131,9727	389,6595	500,4022	904,3625

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	233,701	197,849	42,182	145,98	321,42
entspannt	22	216.427	231.679	49.394	113.71	319.15

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	527,000	23,9545	0,739
entspannt	22	463,000	21,0455	-0,739


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,5642	1	0,4526

Abbildung 17: Oneway-Analyse, Einfluss Körperhaltung, Variable D05

Variable D06 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

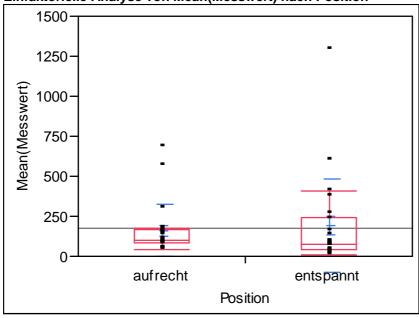
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	10,05009	20,68042	59,82001	85,997	188,6375	350,7104	719,1228
entspannt	10,80291	20,84334	48,36342	65,17667	265,2958	389,56	438,6518

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	148,128	158,861	33,869	77,693	218,56
entspannt	22	131.766	133,362	28.433	72.637	190.90

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	-Mittelwert) Mittelwert0)/Std.0
aufrecht	22	529,000	24,0455	0,786
entspannt	22	461,000	20,9545	-0,786


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,6369	1	0,4248

Abbildung 18: Oneway-Analyse, Einfluss Körperhaltung, Variable D06

Variable D07 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

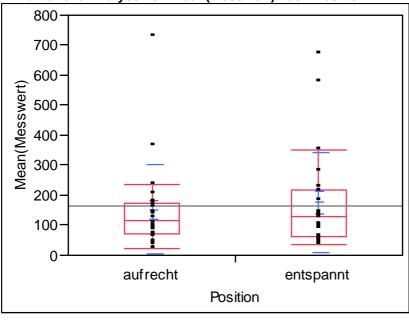
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	42,70664	46,33037	80,31619	101,6193	164,6283	483,9965	679,426
entspannt	10,74705	15,52042	38,63731	77,76817	239,5544	544,051	1293,217

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	160,348	161,386	34,408	88,793	231,90
entspannt	22	191.911	288.513	61.511	63.992	319.83

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	541,000	24,5909	1,068
entspannt	22	449,000	20,4091	-1,068


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 1,1658 1 0,2803

Abbildung 19: Oneway-Analyse, Einfluss Körperhaltung, Variable D07

Variable D08 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

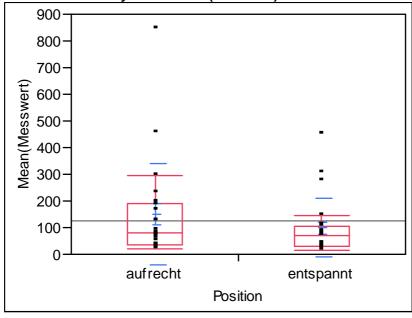
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	23,83501	39,34786	69,09496	115,305	171,5915	325,94	728,0407
entspannt	35.40047	44.77127	61.46319	127.4904	217.9317	509.9781	672.1273

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	152,559	149,479	31,869	86,28	218,83
entspannt	22	175.556	166.842	35.571	101.58	249.53

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	483,000	21,9545	-0,270
entspannt	22	507.000	23.0455	0.270


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi²
0,0793 1 0,7782

Abbildung 20: Oneway-Analyse, Einfluss Körperhaltung, Variable D08

Variable D09 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	17,65863	23,76992	37,22893	77,82992	187,6311	406,4848	846,0016
entspannt	12,58541	24,98037	28,89728	69,34692	107,4084	295,8885	448,8557

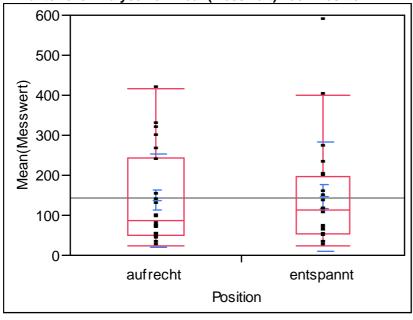
Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	149,837	187,908	40,062	66,523	233,15
entspannt	22	98.388	109.354	23.314	49.903	146.87

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	542,000	24,6364	1,091
entspannt	22	448.000	20.3636	-1.091

Einfaktorieller Test, Chi-Quadrat-Approximation


 Chi²
 Freiheitsgrade
 Wahrsch.>Chi²

 1,2171
 1
 0,2699

Abbildung 21: Oneway-Analyse, Einfluss Körperhaltung, Variable D09

Variable D10 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	22,02272	33,30565	50,53842	86,41362	243,6159	324,8824	416,5153
entspannt	22,38565	28,73173	54,92377	113,3353	197,5253	373,0611	586,3813

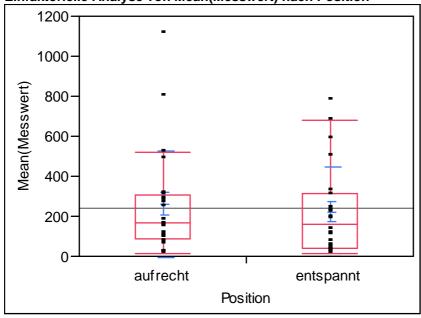
Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	137,929	116,692	24,879	86,190	189,67
entspannt	21	146,961	137,539	30,013	84,354	209,57

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	477,000	21,6818	-0,158
entspannt	21	469,000	22,3333	0,158

Einfaktorieller Test, Chi-Quadrat-Approximation


 Chi²
 Freiheitsgrade
 Wahrsch.>Chi²

 0,0289
 1
 0,8650

Abbildung 22: Oneway-Analyse, Einfluss Körperhaltung, Variable D10

Variable D11 [mm]

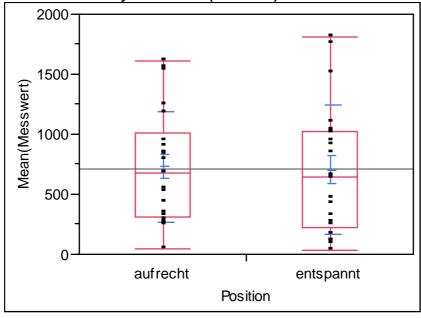
Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	11,77792	22,35576	86,37269	167,1846	307,9102	714,6297	1110,038
entspannt	13,34166	22,59628	42,09229	161,4865	310,1695	651,3265	777,0014

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	260,911	267,325	56,994	142,39	379,44
entspannt	22	222.411	224.583	47.881	122.84	321.99

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	519,000	23,5909	0,552
entspannt	22	471,000	21,4091	-0,552

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,3174	1	0,5732

Abbildung 23: Oneway-Analyse, Einfluss Körperhaltung, Variable D11

Variable D12 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

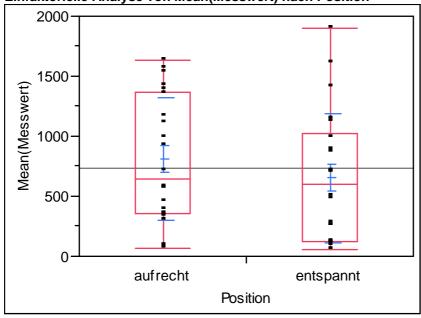
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	48,14168	247,1595	315,2385	676,1309	1006,817	1553,163	1607,402
entspannt	30,68392	92,21366	224,2519	645,3925	1020,418	1677,209	1814,439

Mittelwerte und Std.-Abweichungen

Stute	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	730,944	463,066	98,73	525,63	936,26
entspannt	22	702,339	537,610	114,62	463,98	940,70

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	511,000	23,2273	0,364
entspannt	22	479,000	21,7727	-0,364


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,1410 1 0,7072

Abbildung 24: Oneway-Analyse, Einfluss Körperhaltung, Variable D12

Variable D13 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

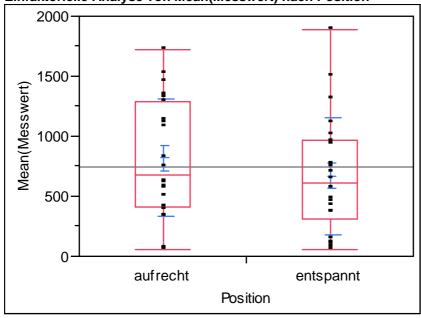
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	65,8128	148,6747	353,9	644,3388	1366,164	1559,432	1631,477
entspannt	58,24815	94,79971	119,5701	596,9877	1019,188	1553,181	1899,67

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	811,005	512,979	109,37	583,56	1038,4
entspannt	22	653,841	538,856	114,88	414,93	892,8

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	544,000	24,7273	1,138
entspannt	22	446,000	20,2727	-1,138


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi²
1,3229 1 0,2501

Abbildung 25: Oneway-Analyse, Einfluss Körperhaltung, Variable D13

Variable D14 [mm]

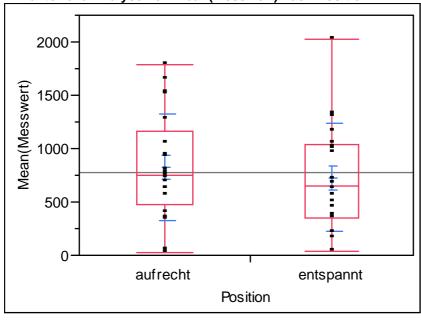
Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	55,99541	148,2662	406,5484	680,6606	1292,89	1500,249	1727,088
entspannt	60,6156	85,08328	309,3529	608,6128	971,3697	1443,53	1889,632

Mittelwerte und Std.-Abweichungen Stufe Anzahl Mittelwert

Stute	Anzani	Mittelwert	StdAbw.	StdFenier Mittelwert	95% KI unten	95% KI oben
aufrecht	22	819,186	487,639	103,96	602,98	1035,4
entspannt	22	669,906	489,962	104,46	452,67	887,1

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	536,000	24,3636	0,951
entspannt	22	454.000	20.6364	-0.951

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,9262	1	0,3359

Abbildung 26: Oneway-Analyse, Einfluss Körperhaltung, Variable D14

Variable D15 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

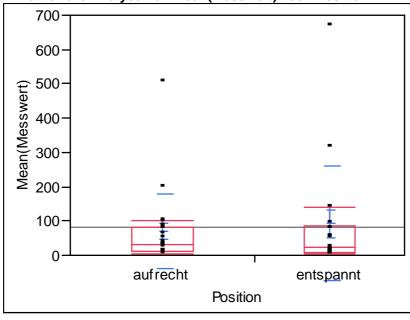
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	22,80351	106,242	481,0225	749,4616	1163,593	1620,241	1785,349
entspannt	37,10612	53,43862	351,441	648,7453	1042,157	1324,495	2028,666

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	21	826,559	495,707	108,17	600,92	1052,2
entspannt	20	728,248	505,841	113,11	491,51	965,0

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	21	467,000	22,2381	0,665
entspannt	20	394,000	19,7000	-0,665


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,4599 1 0,4977

Abbildung 27: Oneway-Analyse, Einfluss Körperhaltung, Variable D15

Variable D16 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

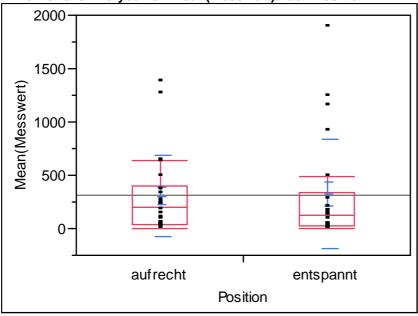
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	2,943175	7,923092	12,15294	30,08609	82,66979	179,8153	503,8079
entspannt	3.605551	3.99828	7.807799	23.91791	85.43729	385.2853	668.4032

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	21	70,8825	109,450	23,884	21,061	120,70
entspannt	17	92,4145	167,325	40,582	6,384	178,45

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	21	425,000	20,2381	0,440
entspannt	17	316,000	18,5882	-0,440


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,2071 1 0,6491

Abbildung 28: Oneway-Analyse, Einfluss Körperhaltung, Variable D16

Variable D17 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

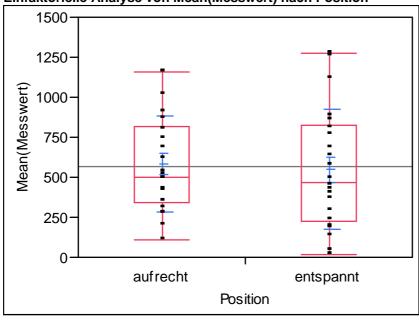
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0	9,489737	33,23693	198,2768	398,2074	1076,087	1379,741
entspannt	3,717621	6,497367	24,96094	123,9576	333,2259	1213,297	1890,693

Mittelwerte und Std.-Abweichungen

Stute	Anzahi	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	303,789	380,442	81,11	135,11	472,47
entspannt	22	323,926	508,945	108,51	98,27	549,58

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	528,000	24,0000	0,763
entspannt	22	462,000	21,0000	-0,763


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,6000 1 0,4386

Abbildung 29: Oneway-Analyse, Einfluss Körperhaltung, Variable D17

Variable D18 [mm]

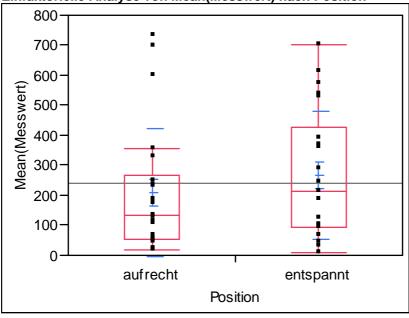
Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	108,1413	223,2894	341,9199	503,4837	816,8605	1114,667	1160,076
entspannt	14,28004	71,30524	224,3744	466,8731	823,1179	1217,306	1277,57

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	583,090	300,395	64,044	449,90	716,28
entspannt	22	548 686	374.414	79 825	382 68	714 69

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	519,000	23,5909	0,552
entspannt	22	471,000	21,4091	-0,552

Wahrsch.>Chi ²	Freiheitsgrade	Chi ²
0.5732	1	0.3174

Abbildung 30: Oneway-Analyse, Einfluss Körperhaltung, Variable D18

Variable D19 [mm]

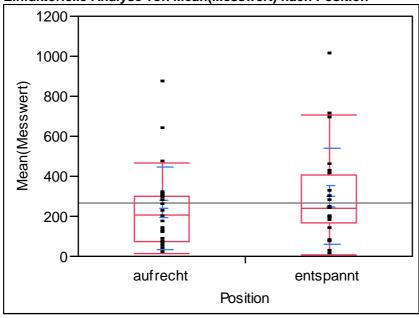
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	17,4806	23,42752	53,5822	131,8029	268,6524	668,2388	731,1112
entspannt	9,219544	34,30094	94,97249	211,5542	424,7892	601,0335	703,3674

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	209,789	213,893	45,602	114,95	304,62
entspannt	22	267,429	211,880	45,173	173,49	361,37

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	453,000	20,5909	-0,974
entspannt	22	537,000	24,4091	0,974


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,9719 1 0,3242

Abbildung 31: Oneway-Analyse, Einfluss Körperhaltung, Variable D19

Variable D20 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	10,90225	34,90904	75,22073	207,2495	299,3133	585,6555	868,3268
entspannt	5,424429	31,18781	166,041	239,3473	408,1348	699,8346	1005,477

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	238,263	206,247	43,972	146,82	329,71
entspannt	22	300.475	241.460	51.479	193.42	407.53

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	456,000	20,7273	-0,904
entspannt	22	534.000	24.2727	0.904

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,8380	1	0,3600

Abbildung 32: Oneway-Anlayse, Einfluss Körperhaltung, Variable D20

Variable D21 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

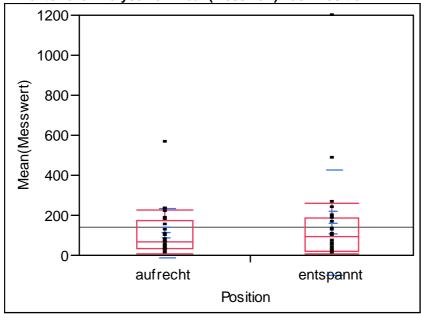
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	9,989458	21,11824	57,45862	201,9642	406,6417	572,1279	901,5824
entspannt	5,09902	13,22422	49,45271	98,28382	242,8198	516,6626	593,8167

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	249,542	232,326	49,532	146,53	352,55
entspannt	21	181,086	186,575	40,714	96,16	266,01

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	528,000	24,0000	1,057
entspannt	21	418,000	19,9048	-1,057


Einfaktorielle	· Test,	Chi-Quadrat-	Approximation
----------------	---------	--------------	---------------

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1.1429	1	0.2850

Abbildung 33: Oneway-Analyse, Einfluss Körperhaltung, Variable D21

Variable D22 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	5,656854	12,04104	30,95628	68,56263	174,1945	225,8388	560,1455
entspannt	6,324555	7,303045	17,63533	96,05198	187,4367	435,7026	1196,213

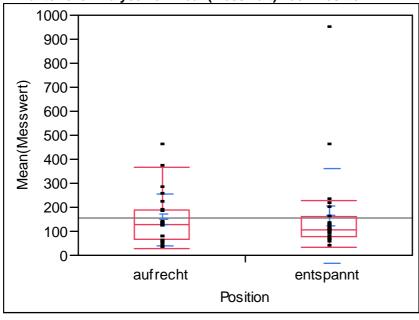
Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	112,764	123,047	26,234	58,207	167,32
entspannt	21	162,493	263,056	57,404	42,751	282,23

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	478,000	21,7273	-0,134
entspannt	21	468,000	22,2857	0,134

Einfaktorieller Test, Chi-Quadrat-Approximation


 Chi²
 Freiheitsgrade
 Wahrsch.>Chi²

 0,0213
 1
 0,8841

Abbildung 34: Oneway-Analyse, Einfluss Körperhaltung, Variable D22

Variable D23 [mm]

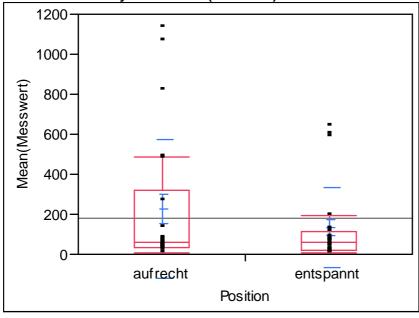
Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	29,41042	35,4022	67,99266	125,04	190,2457	338,5142	452,8897
entspannt	36,11073	52,3741	79,72476	103,0491	163,8273	388,7533	946,4882

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	148,254	108,537	23,140	100,13	196,38
entspannt	22	164,286	196,032	41,794	77,37	251,20

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	514,000	23,3636	0,434
entspannt	22	476,000	21,6364	-0,434

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0.1989	1	0.6556

Abbildung 35: Oneway-Analyse, Einfluss Körperhaltung, Variable D23

Variable D24 [mm]

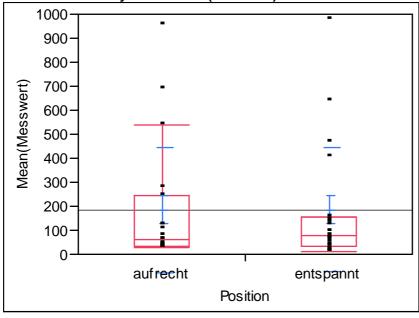
Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	8,964927	21,06547	35,85494	58,44438	320,6209	992,8372	1133,544
entspannt	6,582488	8,242274	21,21829	60,96329	115,0013	597,6023	643,248

Mittelwerte und Std.-Abweichungen

Stute	Anzahi	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	229,135	346,979	73,976	75,293	382,98
entspannt	22	132,748	199,609	42,557	44,247	221,25

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	525,000	23,8636	0,692
entspannt	22	465,000	21,1364	-0,692

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0.4959	1	0.4813

Abbildung 36: Oneway-Analyse, Einfluss Körperhaltung, Variable D24

Variable D25 [mm]

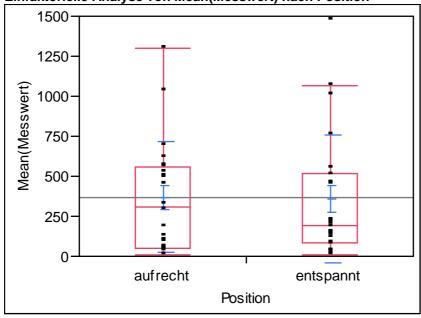
Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	26,53507	27,41643	33,81479	62,93289	245,6586	690,6012	956,6721
entspannt	9,055385	10,94708	35,71969	79,02103	154,6849	637,4789	976,3277

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	19	185,861	261,186	59,920	59,974	311,75
entspannt	19	185.625	257.448	59.063	61.539	309.71

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	19	369,000	19,4211	-0,029
entspannt	19	372.000	19.5789	0.029

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,0019	1	0,9651

Abbildung 37: Oneway-Analyse, Einfluss Körperhaltung, Variable D25

Variable D26 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	11,40175	35,85493	52,67815	308,3312	557,8662	930,3018	1300,655
entspannt	9,22604	22,24391	84,44381	188,6273	517,0712	1051,214	1472,653

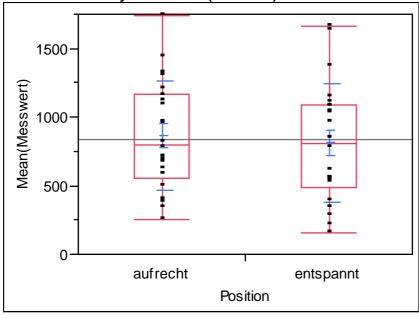
Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	367,526	345,824	73,730	214,20	520,86
entspannt	22	358,522	396,835	84,606	182,57	534,47

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	508,000	23,0909	0,293
entspannt	22	482,000	21,9091	-0,293

Einfaktorieller Test, Chi-Quadrat-Approximation


 Chi²
 Freiheitsgrade
 Wahrsch.>Chi²

 0,0931
 1
 0,7603

Abbildung 38: Oneway-Analyse, Einfluss Körperhaltung, Variable D26

Variable D27 [mm]

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	257,6144	350,9287	558,7694	794,3654	1170,281	1400,903	1741,398
entspannt	157,3927	235,352	490,4447	810,1051	1084,99	1554,24	1658,708

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	864,344	396,684	84,573	688,46	1040,2
entspannt	22	812,836	434,667	92,671	620,12	1005,6

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	522,000	23,7273	0,622
entspannt	22	468,000	21,2727	-0,622

Einfaktorieller Test, Chi-Quadrat-Approximation

 Chi²
 Freiheitsgrade
 Wahrsch.>Chi²

 0,4017
 1
 0,5262

Abbildung 39: Oneway-Analyse, Einfluss Körperhaltung, Variable D27

Variable D28 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

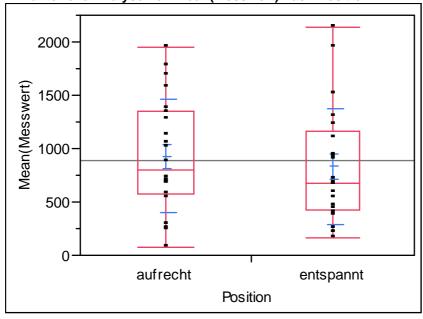
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	72,84672	307,2771	548,0475	764,7554	1283,521	1525,091	2001,878
entspannt	175,3377	202,8182	462,2393	613,6686	1045,444	1851,429	2113,043

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	884,712	478,215	101,96	672,68	1096,7
entspannt	22	806,635	525,965	112,14	573,43	1039,8

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	532,000	24,1818	0,857
entspannt	22	458,000	20,8182	-0,857


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,7543 1 0,3851

Abbildung 40: Oneway-Analyse, Einfluss Körperhaltung, Variable D28

Variable D29 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	71,95563	243,9926	568,8722	797,8907	1347,57	1746,548	1945,972
entspannt	164,0823	221,8375	419,3658	680,7199	1158,655	1860,822	2135,972

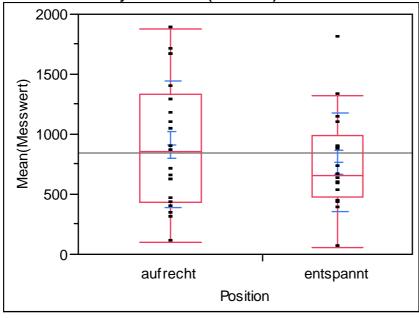
Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	929,716	530,787	113,16	694,38	1165,1
entspannt	21	831,825	544,569	118,83	583,94	1079,7

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	517,000	23,5000	0,790
entspannt	21	429,000	20,4286	-0,790

Einfaktorieller Test, Chi-Quadrat-Approximation


 Chi²
 Freiheitsgrade
 Wahrsch.>Chi²

 0,6429
 1
 0,4227

Abbildung 41: Oneway-Analyse, Einfluss Körperhaltung, Variable D29

Variable D30 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	104,9238	308,8277	436,3403	851,8459	1333,338	1696,108	1879,681
entspannt	55,8992	310,5389	474,8148	658,4778	989,1134	1419,785	1799,039

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	21	912,509	526,573	114,91	672,82	1152,2
entspannt	17	762.425	411.138	99.72	551.04	973.8

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	21	433,000	20,6190	0,675
entspannt	17	308.000	18,1176	-0.675

Wahrsch.>Chi²	Freiheitsgrade	Chi ²
0.4003	- 1	0.4760

Abbildung 42: Oneway-Analyse, Einfluss Körperhaltung, Variable D30

Variable D31 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

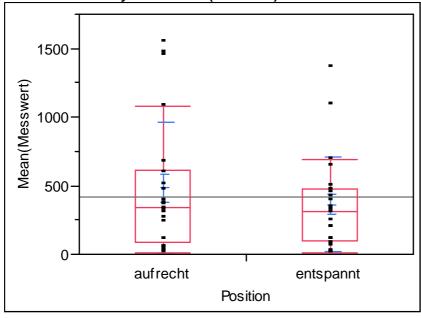
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	5,429702	7,750318	14,86535	50,50545	128,389	421,8552	797,4603
entspannt	3,162278	8,590122	40,51245	70,87626	155,2609	325,5713	753,3742

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	122,543	191,249	40,774	37,748	207,34
entspannt	21	128,074	169,183	36,919	51,063	205,09

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	452,000	20,5455	-0,765
entspannt	21	494,000	23,5238	0,765


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,6045 1 0,4369

Abbildung 43: Oneway-Analyse, Einfluss Körperhaltung, Variable D31

Variable D32 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

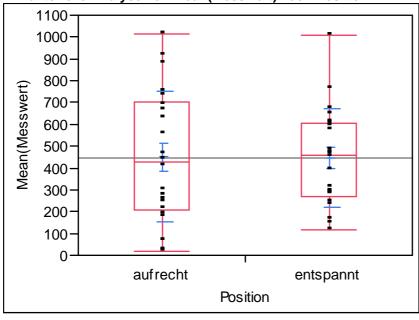
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	7,541316	23,63822	91,04715	344,4194	616,7617	1460,791	1548,221
entspannt	8	14,31415	97,20856	309,0365	474,5226	967,3512	1361,268

Mittelwerte und Std.-Abweichungen Stufe Anzahl Mittelwert

Stute	Anzani	Mittelwert	StdAbw.	StdFenier Mittelwert	95% KI unten	95% KI oben
aufrecht	22	482,155	479,768	102,29	269,44	694,87
entspannt	22	362,170	344,893	73,53	209,25	515,09

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	522,000	23,7273	0,622
entspannt	22	468.000	21.2727	-0.622


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,4017 1 0,5262

Abbildung 44: Oneway-Analyse, Einfluss Körperhaltung, Variable D32

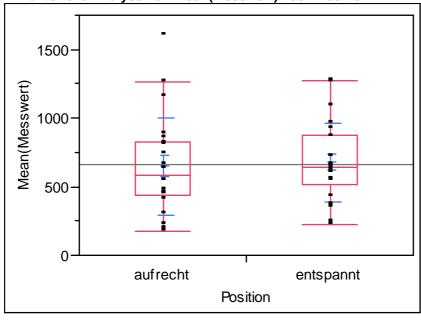
Variable D33 [mm]

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	19,4451	36,00173	207,1456	425,1919	702,2494	905,2423	1015,069
entspannt	117,7005	154,1321	270,077	459,4488	604,2319	735,8351	1010,972

Mittelwerte und	l StdAbweichungen
-----------------	-------------------

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	451,313	299,899	63,939	318,34	584,28
entspannt	22	446,400	225,098	47,991	346,60	546,20

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	492,000	22,3636	-0,059
entspannt	22	498.000	22.6364	0.059

		•
Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0.0050	1	0.0430

Abbildung 45: Oneway-Analyse, Einfluss Körperhaltung, Variable D33

Variable D34 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

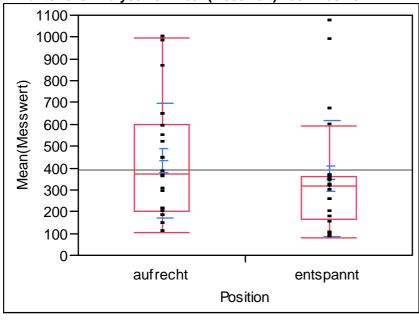
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	172,5156	203,4234	434,4438	586,4934	826,0319	1230,406	1600,265
entspannt	225.0272	275.0062	516.4777	641.7769	878.7448	1209.138	1269.562

Mittelwerte und Std.-Abweichungen

Stute	Anzahi	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	648,708	355,931	75,885	490,90	806,52
entspannt	22	678,878	288,298	61,465	551,05	806,70

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	467,000	21,2273	-0,645
entspannt	22	523.000	23.7727	0.645


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,4320 1 0,5110

Abbildung 46: Oneway-Analyse, Einfluss Körperhaltung, Variable D34

Variable D35 [mm]

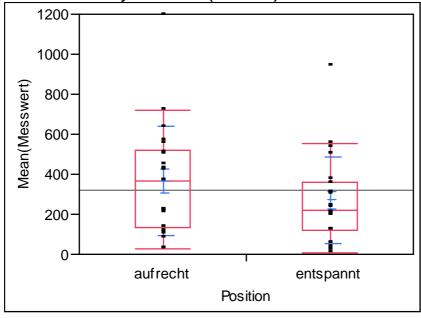
Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	101,4253	153,3671	202,6278	370,0218	601,8124	943,4761	998,2334
entspannt	79,86343	90,4676	162,518	315,8022	361,3738	886,8102	1070,464

Mittelwerte und Std.-Abweichungen

Stute	Anzahi	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	433,326	264,415	56,373	316,09	550,56
entspannt	22	351,004	264,594	56,412	233,69	468,32

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	552,000	25,0909	1,326
entspannt	22	438.000	19.9091	-1.326

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1,7901	1	0,1809

Abbildung 47: Oneway-Analyse, Einfluss Körperhaltung, Variable D35

Variable D36 [mm]

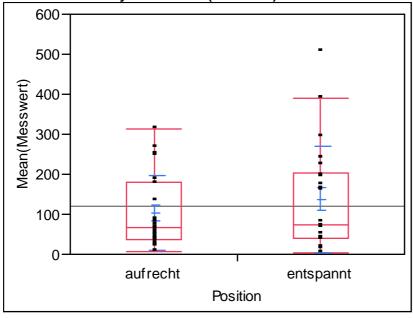
Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	27,78268	44,97826	130,6017	365,99	520,6214	693,6104	1194,605
entspannt	8,781387	25,13147	121,5829	219,6466	360,3392	548,3241	940,5148

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	365,985	275,629	58,764	243,78	488,19
entspannt	22	270.013	217.716	46.417	173.48	366.54

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	549,000	24,9545	1,256
entspannt	22	441,000	20,0455	-1,256

Wahrsch.>Chi ²	Freiheitsgrade	Chi ²
0.2050	1	1 6066

Abbildung 48: Oneway-Analyse, Einfluss Körperhaltung, Variable D36

Variable D37 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

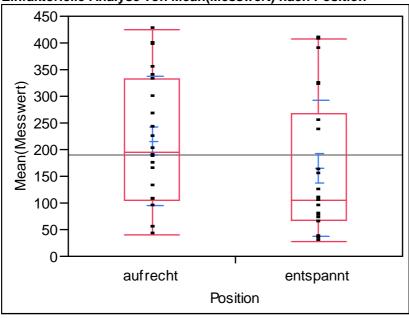
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	8,215702	19,52963	35,68073	65,47747	179,2449	261,6369	313,2026
entspannt	2,279074	13,39421	39,0652	73,60594	204,226	361,5825	506,4835

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	103,684	93,000	19,828	62,450	144,92
entspannt	22	137.648	132.657	28.283	78.832	196.47

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	475,000	21,5909	-0,458
entspannt	22	515,000	23,4091	0,458


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,2204 1 0,6387

Abbildung 49: Oneway-Analyse, Einfluss Körperhaltung, Variable D37

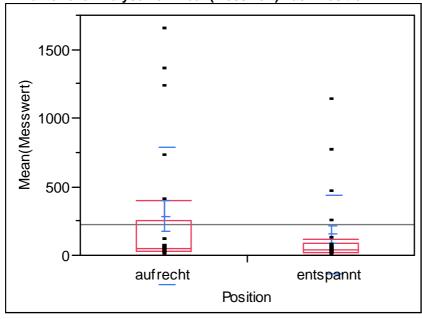
Variable D38 [mm]

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	38,93221	52,15388	105,1749	194,3726	332,887	397,3907	425,1703
entspannt	28,37546	33,56414	68,66271	106,2073	268,153	400,4124	407,9832

Mittelwerte und Std.-Abweichungen

Stufe	Anzahi	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	215,884	120,412	25,672	162,50	269,27
entspannt	22	164,332	127,961	27,281	107,60	221,07

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	564,000	25,6364	1,608
entspannt	22	426.000	19.3636	-1.608

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
2 6221	1	0.1053

Abbildung 50: Oneway-Analyse, Einfluss Körperhaltung, Variable D38

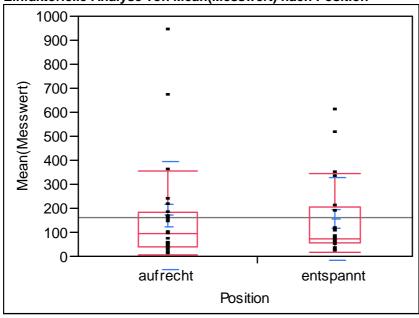
Variable D39 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	4,380338	11,85833	24,83111	50,67355	252,7384	1328,605	1646,805
entspannt	4.857052	9.493866	15.32223	36.87818	90.61897	696.0946	1125.252

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	21	285,993	502,177	109,58	57,405	514,58
entspannt	21	152,059	287,752	62,79	21,076	283,04

Wilcovon	//www.bal.\Mal	lia Tasta /	Rangsummen)
wiicoxon	/Kruskai-wai	ilis-Tests (Randsummeni


Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	21	488,000	23,2381	0,906
entspannt	21	415,000	19,7619	-0,906

Wahrsch.>Chi ²	Freiheitsgrade	Chi ²
0.3585	_ 1	0.8431

Abbildung 51: Oneway-Analyse, Einfluss Körperhaltung, Variable D39

Variable D40 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	7,28011	14,41394	37,27977	92,06639	185,3996	574,6747	938,3079
entspannt	18,38478	19,53054	54,57106	74,33034	207,8533	511,6651	607,3251

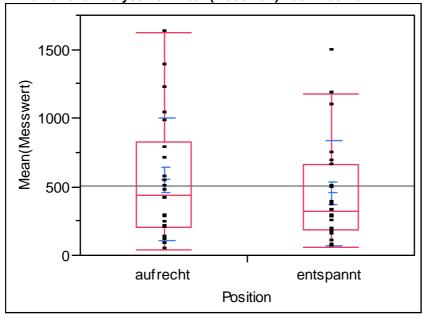
Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	169,760	226,447	48,279	69,359	270,16
entspannt	19	156,095	171,640	39,377	73,367	238,82

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	455,000	20,6818	-0,170
entspannt	19	406,000	21,3684	0,170

Einfaktorieller Test, Chi-Quadrat-Approximation


 Chi²
 Freiheitsgrade
 Wahrsch.>Chi²

 0,0335
 1
 0,8548

Abbildung 52: Oneway-Analyse, Einfluss Körperhaltung, Variable D40

Variable D41 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

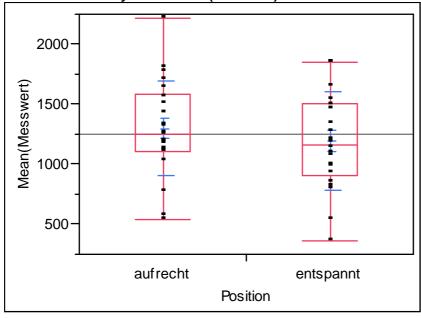
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	42,44653	86,7304	201,7435	437,5688	824,8935	1327,429	1627,737
entspannt	57,71199	75,97148	180,4333	319,8903	661,7143	1149,461	1483,677

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	550,824	446,120	95,113	353,03	748,62
entspannt	22	452.536	380.400	81.101	283.88	621.20

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	526,000	23,9091	0,716
entspannt	22	464.000	21.0909	-0.716


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,5295 1 0,4668

Abbildung 53: Oneway-Analyse, Einfluss Körperhaltung, Variable D41

Variable D42 [mm]

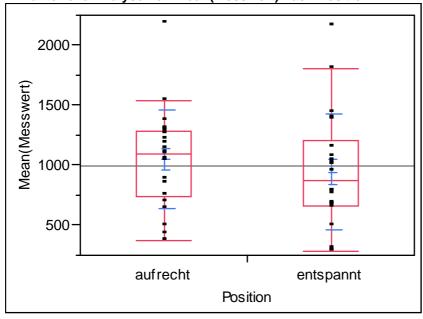
Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	534,7684	634,2467	1110,125	1255,398	1578,459	1796,965	2216,664
entspannt	364,377	617,8384	909,1519	1165,499	1510,474	1847,383	1855,312

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	1299,50	398,540	84,969	1122,8	1476,2
entspannt	22	1194.92	410.431	87.504	1012.9	1376.9

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	531,000	24,1364	0,833
entspannt	22	459,000	20,8636	-0,833

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,7140	1	0,3981

Abbildung 54: Oneway-Analyse, Einfluss Körperhaltung, Variable D42

Variable D43 [mm]

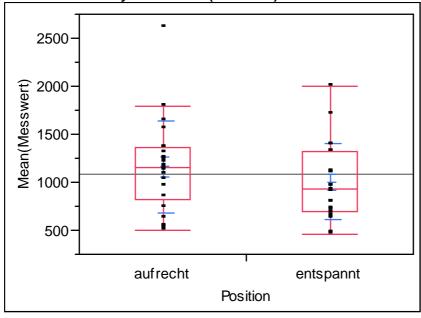
Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	372,4411	445,8844	734,2624	1099,654	1284,807	1488,283	2181,4
entspannt	277,8844	290,284	666,4863	866,9373	1210,371	1695,203	2156,387

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	1053,61	409,252	87,25	872,16	1235,1
entspannt	22	944.33	478.269	101.97	732.27	1156.4

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	543,000	24,6818	1,115
entspannt	22	447.000	20.3182	-1.115

Wahrsch.>Chi ²	Freiheitsgrade	Chi²
0.2500	_ 1	1 2604

Abbildung 55: Oneway-Analyse, Einfluss Körperhaltung, Variable D43

Variable D44 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	493,6416	531,2897	823,9556	1151,192	1362,199	1743,461	2604,723
entspannt	459,2605	521,9238	697,1584	933,7547	1318,023	1611,054	1994,589

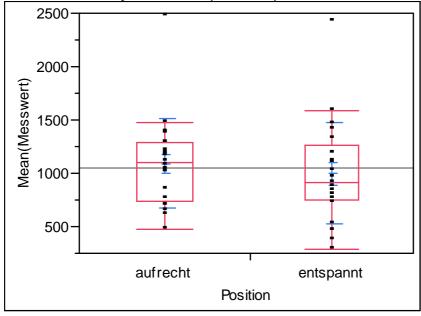
Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	1162,08	480,381	102,42	949,09	1375,1
entspannt	22	1004.00	391.956	83.57	830.21	1177.8

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	545,000	24,7727	1,162
entspannt	22	445.000	20.2273	-1.162

Einfaktorieller Test, Chi-Quadrat-Approximation


 Chi²
 Freiheitsgrade
 Wahrsch.>Chi²

 1,3774
 1
 0,2405

Abbildung 56: Oneway-Analyse, Einfluss Körperhaltung, Variable D44

Variable D45 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	478,2353	622,5639	741,9859	1095,517	1285,353	1444,29	2477,933
entspannt	286,1748	392,5363	743,8341	914,0483	1261,66	1558,865	2422,378

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	1090,50	416,753	88,85	905,72	1275,3
entspannt	21	997,86	479,090	104,55	779,79	1215,9

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	518,000	23,5455	0,814
entspannt	21	428,000	20,3810	-0,814

Einfaktorieller Test, Chi-Quadrat-Approximation

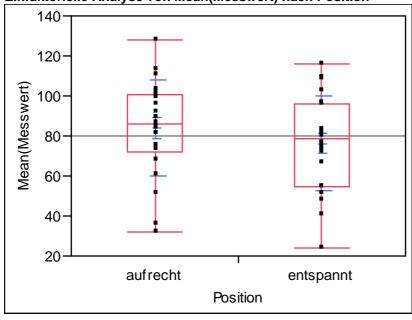

Chi² Freiheitsgrade Wahrsch.>Chi² 0,6824 1 0,4088

Abbildung 57: Oneway-Analyse, Einfluss Körperhaltung, Variable D45

9.2.2 Einfluss Körperhaltung/Winkel

Variable Alpha02 [9

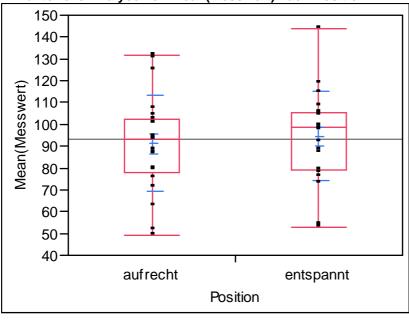
Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	32,07933	40,71103	71,97515	85,76355	100,7058	112,462	128,0814
entspannt	24,27284	42,80187	54,75263	78,35755	96,02045	109,1505	115,6907

Mittelwerte und	StdAbweichungen
-----------------	-----------------

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	84,0808	23,9299	5,1019	73,471	94,691
entspannt	22	76.0892	23.6978	5.0524	65.582	86.596

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	550,000	25,0000	1,279
entspannt	22	440,000	20,0000	-1,279


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 1,6667 1 0,1967

Abbildung 58: Oneway-Analyse, Einfluss Körperhaltung, Variable Alpha02

Variable Alpha03 [9

Einfaktorielle Analyse von Mean(Messwert) nach Position

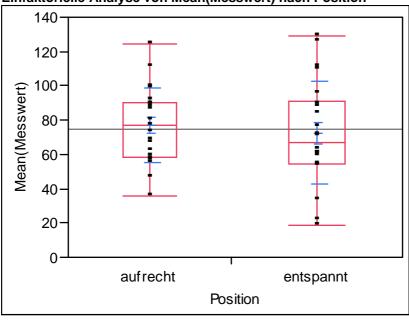
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	49,1993	55,00418	78,16076	93,11123	102,6211	128,7009	131,8741
entspannt	52.87866	59.89884	78.80968	98.58764	105.6116	117.5429	143,6836

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	91,2115	22,0053	4,6916	81,455	100,97
entspannt	22	94.5749	20.6252	4.3973	85.430	103.72

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	464,000	21,0909	-0,716
entspannt	22	526.000	23.9091	0.716


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,5295 1 0,4668

Abbildung 59: Oneway-Analyse, Einfluss Körperhaltung, Variable Alpha03

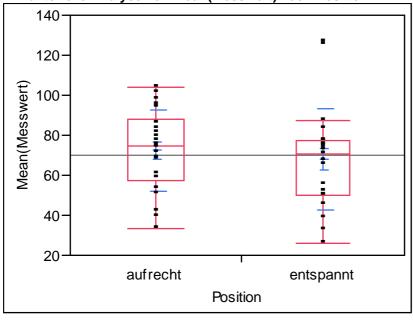
Variable Alpha04 [9]

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	36,16584	48,20327	58,0998	76,90158	90,38102	108,5919	124,4716
entspannt	18,62307	25,47499	54,43911	66,91929	90,88374	121,7206	129,1409

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	21	76,8868	22,0423	4,8100	66,853	86,920
entspannt	22	72,3652	29,9745	6,3906	59,075	85,655

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	21	488,000	23,2381	0,620
entspannt	22	458,000	20,8182	-0,620

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0.3991	1	0.5276

Abbildung 60: Oneway-Analyse, Einfluss Körperhaltung, Variable Alpha04

Variable Alpha05 [9]

Einfaktorielle Analyse von Mean(Messwert) nach Position

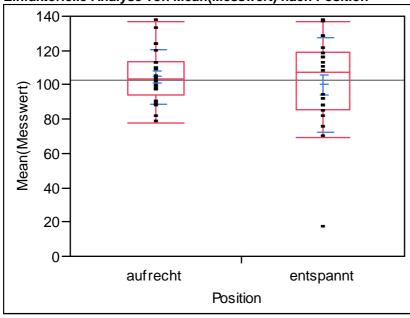
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	33,3542	40,34285	57,37207	74,73919	87,74198	100,1942	104,1154
entspannt	26,07819	33,73015	50,05419	70,52258	77,39008	117,643	126,9955

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	72,4806	20,2826	4,3243	63,488	81,473
entspannt	21	68,0058	25,6453	5,5963	56,332	79,679

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	529,000	24,0455	1,081
entspannt	21	417,000	19,8571	-1,081


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 1,1954 1 0,2742

Abbildung 61: Oneway-Analyse, Einfluss Körperhaltung, Variabel Alpha05

Variable Alpha06 [9]

Einfaktorielle Analyse von Mean(Messwert) nach Position

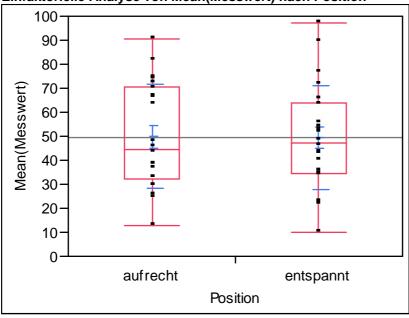
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	77,76602	82,58184	94,43852	103,4401	113,9172	129,6756	136,7327
entspannt	15,96966	70,51047	85,63563	107,3502	118,918	134,2294	136,8775

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	104,724	15,7399	3,3558	97,745	111,70
entspannt	21	99,982	27,7632	6,0584	87,345	112,62

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	497,000	22,5909	0,304
entspannt	21	449,000	21,3810	-0,304


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,0998 1 0,7521

Abbildung 62: Oneway-Analyse, Einfluss Körperhaltung, Variable Alpha06

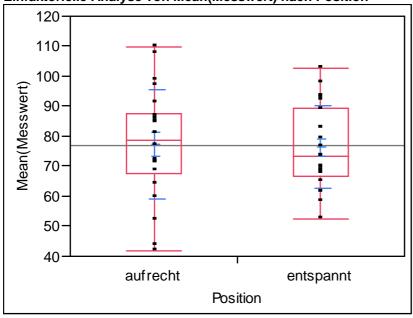
Variable Alpha07 [9]

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	12,75896	24,87287	31,95638	44,66757	70,6494	79,62099	90,324
entspannt	9,754452	22,0921	34,37745	47,29089	63,71746	85,57854	97,25436

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	49,8940	21,8347	4,6552	40,213	59,575
entspannt	22	49.5450	21.5478	4.5940	39.991	59.099

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	493,000	22,4091	-0,035
entspannt	22	497,000	22,5909	0,035

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,0022	1	0,9626

Abbildung 63: Oneway-Analyse, Einfluss Körperhaltung, Variable Alpha07

Variable Alpha08 [9]

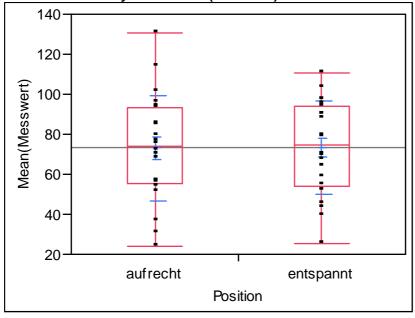
Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	41,90434	46,02902	67,39768	78,81544	87,72271	105,0314	109,9524
entspannt	52,5109	59,16582	66,82239	73,41417	89,55188	96,50563	102,627

Mittelwerte und Std.-Abweichungen

Stute	Anzahi	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	77,2874	18,3529	3,9129	69,150	85,425
entspannt	22	76,2387	13,7864	2,9393	70,126	82,351

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	514,000	23,3636	0,434
entspannt	22	476.000	21.6364	-0.434

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,1989	1	0,6556

Abbildung 64: Oneway-Analyse, Einfluss Körperhaltung, Variable Alpha08

Variable Alpha09 [9

Einfaktorielle Analyse von Mean(Messwert) nach Position

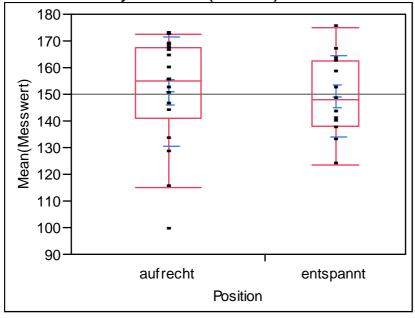
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	23,8846	32,61837	55,55229	73,85048	93,46955	110,1664	130,5736
entspannt	25,66477	40,55007	54,07006	74,4717	94,2237	101,45	110,4638

Mittelwerte und Std.-Abweichungen

Stute	Anzahi	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	73,0524	26,4538	5,6400	61,323	84,781
entspannt	22	73,3226	23,3047	4,9686	62,990	83,655

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	486,000	22,0909	-0,200
entspannt	22	504,000	22,9091	0,200


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,0446 1 0,8327

Abbildung 65: Oneway-Analyse, Einfluss Körperhaltung, Variable Alpha09

Variable Alpha10 [9

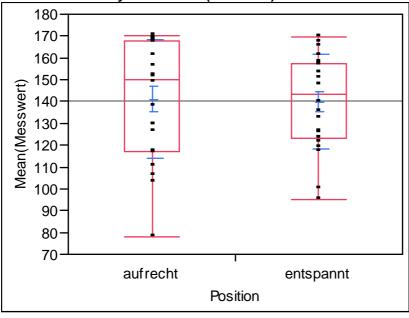
Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	99,18431	113,5277	140,7745	154,9997	167,3141	171,9661	172,3021
entspannt	123,5146	127,035	138,2072	147,7524	162,5494	171,6993	175,0365

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	18	150,799	20,4923	4,8301	140,61	160,99
entspannt	13	149.233	15.0491	4.1739	140.14	158.33

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	18	308,000	17,1111	0,781
entspannt	13	188.000	14,4615	-0.781

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,6410	1	0,4233

Abbildung 66: Oneway-Analyse, Einfluss Körperhaltung, Variable Alpha10

Variable Alpha11 [9]

Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	77,74569	103,7607	116,9935	149,8005	167,4914	169,1083	170,4364
entspannt	94,92981	104,958	122,8717	143,6241	157,5294	166,365	169,3805

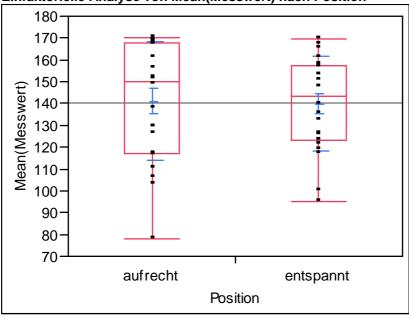
Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	140,972	27,1472	5,7878	128,94	153,01
entspannt	22	139.846	21.6963	4.6257	130.23	149.47

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	516,000	23,4545	0,481
entspannt	22	474.000	21.5455	-0.481

Einfaktorieller Test, Chi-Quadrat-Approximation


 Chi²
 Freiheitsgrade
 Wahrsch.>Chi²

 0,2430
 1
 0,6221

Abbildung 67: Oneway-Analyse, Einfluss Körperhaltung, Variable Alpha11

Variable Alpha12 [9

Einfaktorielle Analyse von Mean(Messwert) nach Position

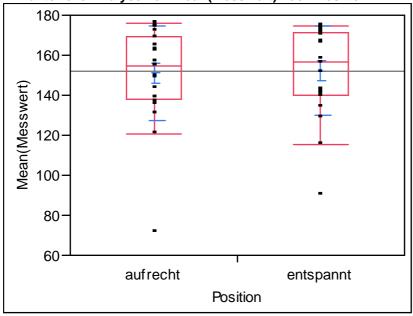
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	77,74569	103,7607	116,9935	149,8005	167,4914	169,1083	170,4364
entspannt	94,92981	104,958	122,8717	143,6241	157,5294	166,365	169,3805

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	140,972	27,1472	5,7878	128,94	153,01
entspannt	22	139.846	21.6963	4.6257	130.23	149.47

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	516,000	23,4545	0,481
entspannt	22	474.000	21.5455	-0.481


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,2430 1 0,6221

Abbildung 68: Oneway-Analyse, Einfluss Körperhaltung, Variable Alpha12

Variable Alpha13 [9]

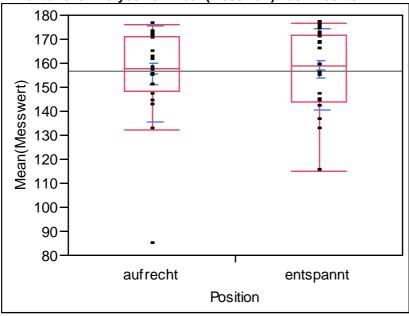
Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	71,64071	123,5089	138,2389	154,9003	169,2432	174,6866	175,8029
entspannt	90,31937	119,4184	140,3119	156,932	171,583	173,6087	174,9413

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	151,042	23,7248	5,0582	140,52	161,56
entspannt	22	152.321	22.2311	4.7397	142.46	162.18

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	491,000	22,3182	-0,082
entspannt	22	499.000	22.6818	0.082

Wahrsch.>Chi ²	Freiheitsgrade	Chi²
0.0252	1	0.0088

Abbildung 69: Oneway-Analyse, Einfluss Körperhaltung, Variable Alpha13

Variable Alpha14 [9

Einfaktorielle Analyse von Mean(Messwert) nach Position

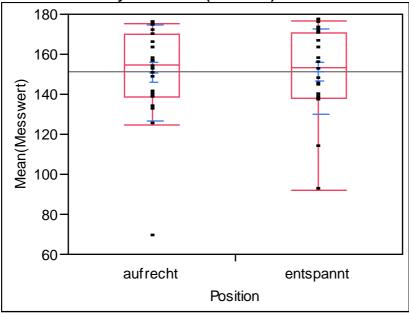
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	84,22937	134,4036	148,6071	158,0512	171,039	172,4247	176,1359
entspannt	115,0206	133,0392	144,128	159,0623	171,6386	175,9701	176,4844

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	21	155,513	20,1951	4,4069	146,32	164,71
entspannt	21	157,380	17,0160	3,7132	149,63	165,13

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	21	442,000	21,0476	-0,226
entspannt	21	461,000	21,9524	0,226


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,0571 1 0,8111

Abbildung 70: Oneway-Analyse, Einfluss Körperhaltung, Variable Alpha14

Variable Alpha15 [9]

Einfaktorielle Analyse von Mean(Messwert) nach Position

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	68,60355	126,9184	138,9444	154,5704	170,1318	174,9883	175,473
entspannt	92,07205	120,5916	137,9485	153,6654	170,4332	174,6141	176,3337

Mittelwerte und Std.-Abweichungen

Stute	Anzahi	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
aufrecht	22	150,800	23,9332	5,1026	140,19	161,41
entspannt	22	151,335	21,2743	4,5357	141,90	160,77

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
aufrecht	22	497,000	22,5909	0,035
entspannt	22	493.000	22.4091	-0,035

Einfaktorieller Test, Chi-Quadrat-Approximation

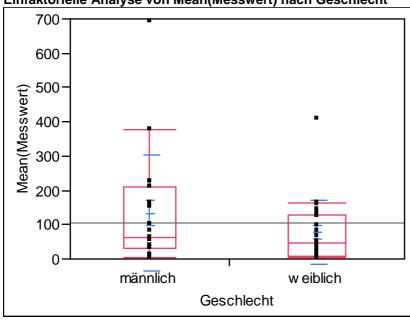

Chi² Freiheitsgrade Wahrsch.>Chi² 0,0022 1 0,9626

Abbildung 71: Oneway-Analyse, Einfluss Körperhaltung, Variable Alpha15

9.2.3 Einfluss Geschlecht/Distanzen

Variable D01 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

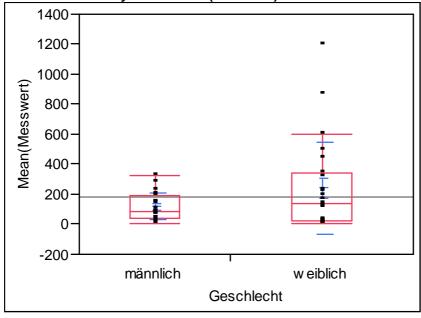
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	4,472136	10,63015	32,9394	61,94627	210,1232	375,3992	692,1765
weiblich	4,40222	4,608018	8,854608	46,02452	129,7546	162,1487	407,3612

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	19	133,941	167,508	38,429	53,204	214,68
weiblich	21	77,850	93,354	20,371	35,356	120,34

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	19	436,500	22,9737	1,259
weiblich	21	383.500	18.2619	-1.259


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 1,6205 1 0,2030

Abbildung 72: Oneway-Analyse, Einfluss Geschlecht, Variable D01

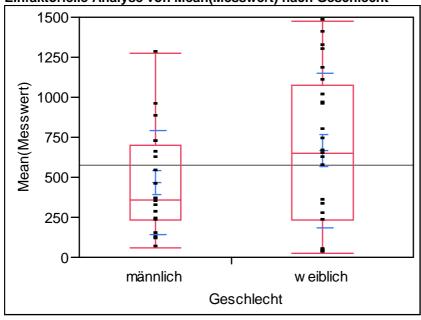
Variable D02 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,5	17,23149	41,30307	85,81494	187,5042	277,0513	325,5592
weiblich	3,162278	6,57103	20,12127	142,064	338,6993	757,1616	1198,374

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	19	118,064	91,184	20,919	74,11	162,01
weiblich	23	241,169	306,258	63,859	108,73	373,60

Wilcoxon/	Kruska	I-Wallis	-Tests	(Rangsummen))
-----------	--------	----------	--------	--------------	---


Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	19	386,000	20,3158	-0,556
weiblich	23	517,000	22,4783	0,556

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0.3233	1	0.5696

Abbildung 73: Oneway-Analyse, Einfluss Geschlecht, Variable D02

Variable D03 [mm]

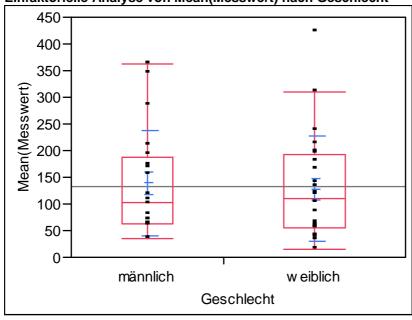
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	55,00905	110,1601	229,8432	359,4291	699,8988	939,0563	1272,316
weiblich	21,35741	28,51634	237,1442	651,8846	1075,744	1356,362	1478,07

Mittelwerte und Std.-Abweichungen

Stufe	Anzahi	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	465,675	322,099	72,023	314,93	616,42
weiblich	24	666,556	482,726	98,536	462,72	870,39

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	398,000	19,9000	-1,214
weiblich	24	592.000	24.6667	1.214

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1,5022	1	0,2203

Abbildung 74: Oneway-Analyse, Einfluss Geschlecht, Variable D03

Variable D04 [mm]

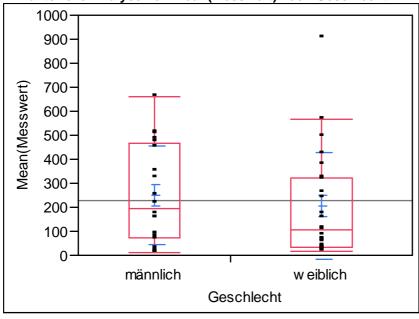
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	34,76553	60,20677	61,89639	103,1368	187,931	340,0479	363,5938
weiblich	15.62423	34.40474	55.79348	109.7736	191.8654	274.0137	421.8921

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	138,792	97,8731	21,885	92,986	184,60
weiblich	24	128.298	98.8512	20.178	86.557	170.04

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	477,000	23,8500	0,625
weiblich	24	513.000	21.3750	-0.625

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0.4050	1	0,5245

Abbildung 75: Oneway-Analyse, Einfluss Geschlecht, Variable D04

Variable D05 [mm]

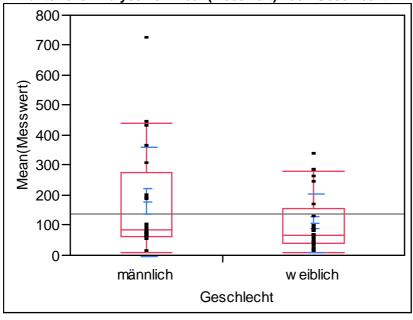
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	12,01996	12,46275	69,45555	194,7959	467,4353	509,3352	658,6952
weiblich	16,81649	20,35699	34,48188	107,8349	320,0441	532,0172	904,3625

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	249,805	204,231	45,667	154,22	345,39
weiblich	24	204.447	222.394	45.396	110.54	298.36

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	483,000	24,1500	0,766
weiblich	24	507.000	21.1250	-0.766

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,6050	1	0,4367

Abbildung 76: Oneway-Analyse, Einfluss Geschlecht, Variable D05

Variable D06 [mm]

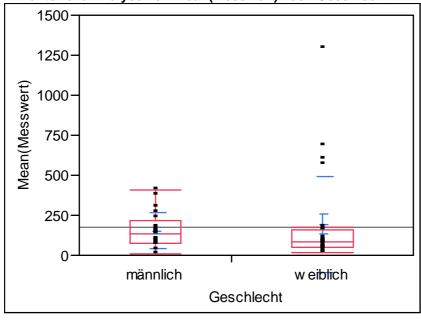
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	10,80291	51,58865	61,4834	84,26618	277,1454	437,404	719,1228
weiblich	10,05009	16,86026	38,71789	68,58071	155,3509	281,5494	333,9591

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	179,411	182,106	40,720	94,183	264,64
weiblich	24	107.060	97.628	19.928	65.836	148.28

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	517,000	25,8500	1,567
weiblich	24	473.000	19,7083	-1.567

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
2,4939	1	0,1143

Abbildung 77: Oneway-Analyse, Einfluss Geschlecht, Variable D06

Variable D07 [mm]

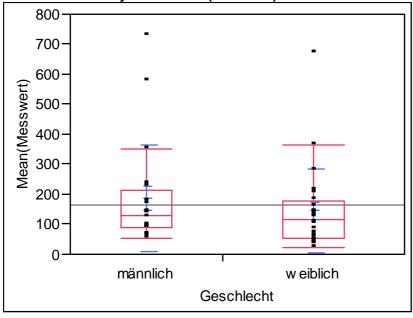
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	10,74705	34,8978	77,50897	131,3982	217,0244	365,6426	408,9486
weiblich	14,12365	26,69152	46,30083	82,00171	160,9907	640,689	1293,217

Mittelwerte und Std.-Abweichungen

Stufe	Anzani	Mittelwert	StdAbw.	StdFenier Mittelwert	95% KI unten	95% KI oben
männlich	20	154,032	109,204	24,419	102,92	205,14
weiblich	24	194,544	299,380	61,111	68,13	320,96

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	503,000	25,1500	1,237
weiblich	24	487.000	20.2917	-1.237

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1,5606	1	0,2116

Abbildung 78: Oneway-Analyse, Einfluss Geschlecht, Variable D07

Variable D08 [mm]

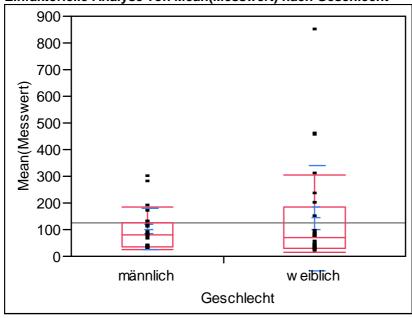
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	53,26788	62,81032	88,75247	130,8845	214,7767	554,7978	728,0407
weiblich	23,83501	35,90153	52,73877	115,305	177,9788	322,276	672,1273

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	187,268	176,299	39,422	104,76	269,78
weiblich	24	144.715	139.768	28.530	85.70	203.73

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	497,000	24,8500	1,096
weiblich	24	493.000	20.5417	-1.096

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1,2272	1	0,2679

Abbildung 79: Oneway-Analyse, Einfluss Geschlecht, Variable D08

Variable D09 [mm]

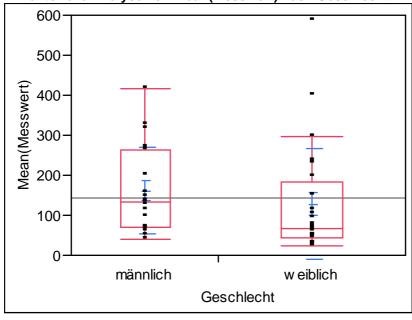
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	23,02691	26,10592	37,03148	81,13202	124,3531	267,2035	296,4428
weiblich	12,58541	21,15151	30,5169	69,3648	183,0173	451,2507	846,0016

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	102,029	78,206	17,487	65,428	138,63
weiblich	24	142.514	196.453	40.101	59.560	225.47

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	471,000	23,5500	0,483
weiblich	24	519.000	21.6250	-0.483

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,2450	1	0,6206

Abbildung 80: Oneway-Analyse, Einfluss Geschlecht, Variable D09

Variable D10 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

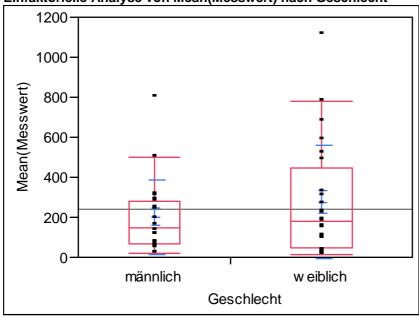
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	39,91303	50,95925	69,95907	132,5919	264,2668	327,8676	416,5153
weiblich	22.02272	25.443	43,48136	67.12831	183,6893	348.0792	586.3813

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	19	161,586	108,803	24,961	109,14	214,03
weiblich	24	127,104	138,231	28,216	68,73	185,47

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	19	497,000	26,1579	1,920
weiblich	24	449,000	18,7083	-1,920


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 3,7327 1 0,0534

Abbildung 81: Oneway-Analyse, Einfluss Geschlecht, Variable D10

Variable D11 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	20,04976	24,45633	65,8208	147,082	282,592	484,3559	797,2907
weiblich	11.77792	18.14882	46.04783	181.5891	445.0669	727.3747	1110.038

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	201,468	187,845	42,003	113,55	289,38
weiblich	24	275.155	283.346	57.838	155.51	394.80

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	432,000	21,6000	-0,412
weiblich	24	558.000	23.2500	0.412

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,1800	1	0,6714

Abbildung 82: Oneway-Analyse, Einfluss Geschlecht, Variable D11

Variable D12 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	111,2355	172,5326	298,9299	587,1908	892,6368	1459,937	1607,402
weiblich	30,68392	67,13843	268,9941	839,5625	1159,379	1655,336	1814,439

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	632,820	414,791	92,75	438,69	826,9
weiblich	24	786.492	553.838	113.05	552.63	1020.4

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	417,000	20,8500	-0,766
weiblich	24	573,000	23.8750	0.766

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,6050	1	0,4367

Abbildung 83: Oneway-Analyse, Einfluss Geschlecht, Variable D12

Variable D13 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

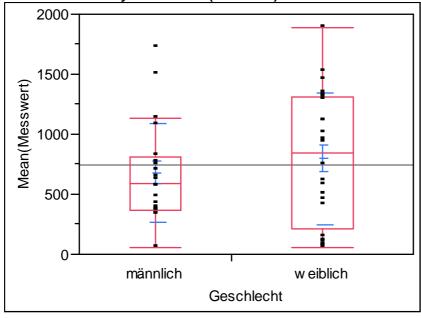
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	90,14441	136,0874	309,0215	533,3217	915,046	1495,427	1611,726
weiblich	58,24815	74,58224	150,8795	783,864	1384,714	1601,319	1899,67

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	641,511	435,026	97,27	437,91	845,1
weiblich	24	808,183	589,647	120,36	559,20	1057,2

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	423,000	21,1500	-0,625
weiblich	24	567,000	23,6250	0,625


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,4050 1 0,5245

Abbildung 84: Oneway-Analyse, Einfluss Geschlecht, Variable D13

Variable D14 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

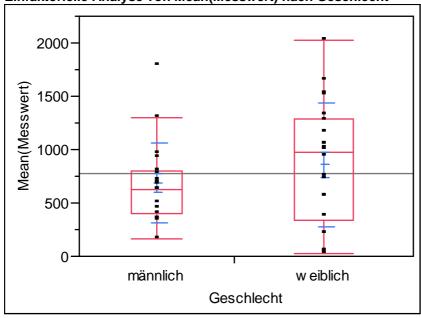
Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	60,6156	332,9751	370,6642	593,9133	811,6753	1462,392	1727,088
weiblich	55.99541	73.86102	213.9559	841.7587	1305.676	1486,135	1889.632

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	681,278	410,950	91,89	488,95	873,6
weiblich	24	797.269	548.697	112.00	565.57	1029.0

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	419,000	20,9500	-0,719
weiblich	24	571.000	23,7917	0.719


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,5339 1 0,4650

Abbildung 85: Oneway-Analyse, Einfluss Geschlecht, Variable D14

Variable D15 [mm]

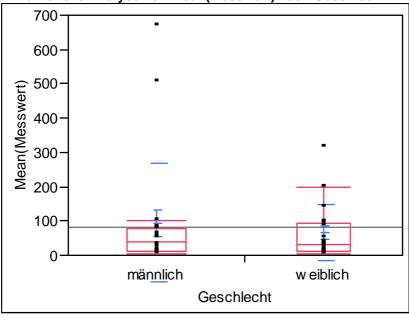
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	167,5723	333,6662	404,1299	629,4747	793,885	1304,367	1785,349
weiblich	22,80351	38,20141	333,2418	971,8125	1291,481	1607,905	2028,666

Mittelwerte	und Std	Abweichungen
Ctuto	Annahl	Mittalyrant

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	19	686,757	376,517	86,38	505,28	868,2
weiblich	22	857,924	578,367	123,31	601,49	1114,4

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	19	354,000	18,6316	-1,163
weiblich	22	507,000	23,0455	1,163

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1.3841	_ 1	0.2394

Abbildung 86: Oneway-Analyse, Einfluss Geschlecht, Variable D15

Variable D16 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

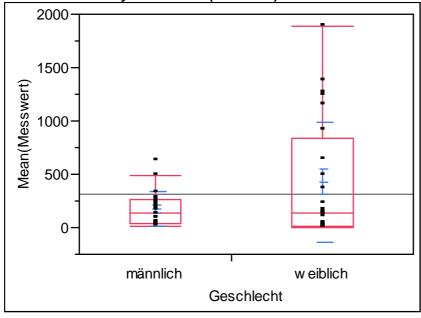
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	4,472136	6,737188	11,49223	40,08166	77,62752	463,4839	668,4032
weiblich	2,943175	3,539313	10,61655	29,81609	94,08734	211,115	314,5058

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	94,3156	173,058	38,697	13,322	175,31
weiblich	18	65,1815	82,188	19,372	24,310	106,05

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	393,000	19,6500	0,073
weiblich	18	348,000	19,3333	-0,073


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,0077 1 0,9301

Abbildung 87: Oneway-Analyse, Einfluss Geschlecht, Variable D16

Variable D17 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

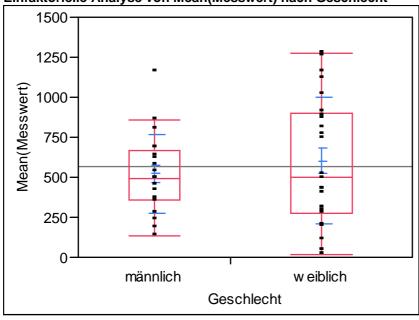
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	8,602325	28,53487	33,40634	142,122	258,3163	475,1396	619,4249
weiblich	0	4.77216	10.21756	134,8366	842.3245	1322.719	1890.693

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	174,079	164,008	36,67	97,32	250,84
weiblich	24	430.340	561.673	114.65	193.17	667.51

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	439,000	21,9500	-0,247
weiblich	24	551.000	22.9583	0.247


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,0672 1 0,7954

Abbildung 88: Oneway-Analyse, Einfluss Geschlecht, Variable D17

Variable D18 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	130,7668	184,9133	356,4333	489,0159	669,0337	855,9585	1160,076
weiblich	14.28004	76.98151	275.5778	503.4837	900.2422	1207.995	1277.57

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	520,914	247,580	55,361	405,04	636,78
weiblich	24	603.367	396.348	80.904	436.00	770.73

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	427,000	21,3500	-0,530
weiblich	24	563.000	23.4583	0.530

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,2939	1	0,5877

Abbildung 89: Oneway-Analyse, Einfluss Geschlecht, Variable D18

Variable D20 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

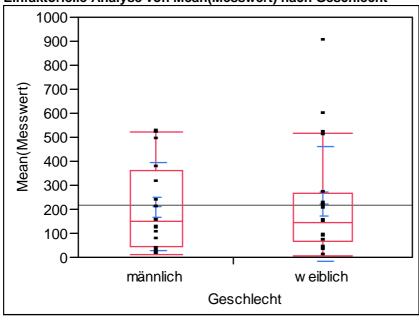
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	5,424429	12,88743	67,0297	243,7824	312,2832	664,7835	705,5354
weiblich	17,04187	53,96567	126,0599	205,3701	310,9195	751,9802	1005,477

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	258,363	201,249	45,001	164,18	352,55
weiblich	24	278,541	245,505	50,113	174,87	382,21

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	457,000	22,8500	0,153
weiblich	24	533,000	22,2083	-0,153


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,0272 1 0,8690

Abbildung 90: Oneway-Analyse, Einfluss Geschlecht, Variable D20

Variable D21 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

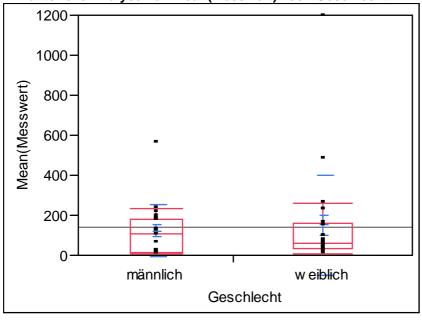
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	9,084607	10,88903	42,99696	149,4143	358,3516	516,9193	521,478
weiblich	5,09902	29,01935	64,39437	143,5469	269,2211	593,8276	901,5824

Mı	ttelwerte	und	Std	Abweic	hungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	209,058	182,884	40,894	123,47	294,65
weiblich	23	222,242	237,668	49,557	119,47	325,02

Wilcoxon/Kruskal-Wallis-Tests ((Rangsummen)	
---------------------------------	--------------	--

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	440,000	22,0000	0,000
weiblich	23	506,000	22,0000	0,000


Einfaktorieller Test.	Chi-Quadrat-Approximation
-----------------------	----------------------------------

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0.000	1	1 0000

Abbildung 91: Oneway-Analyse, Einfluss Geschlecht, Variable D21

Variable D22 [mm]

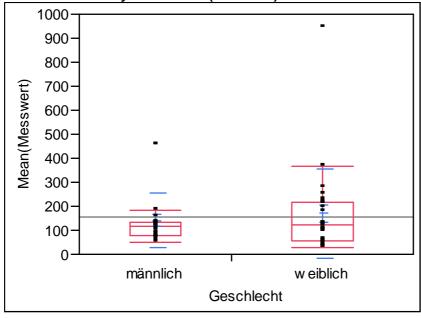
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	5,656854	6,410573	16,38086	108,353	181,6704	231,9902	560,1455
weiblich	7.776266	15.72279	36.20596	57.62841	157.2063	391.3569	1196.213

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	121,836	129,090	28,865	61,420	182,25
weiblich	23	150.280	252.552	52.661	41.068	259.49

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	443,000	22,1500	0,061
weiblich	23	503.000	21.8696	-0.061

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,0053	1	0,9418

Abbildung 92: Oneway-Analyse, Einfluss Geschlecht, Variable D22

Variable D23 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

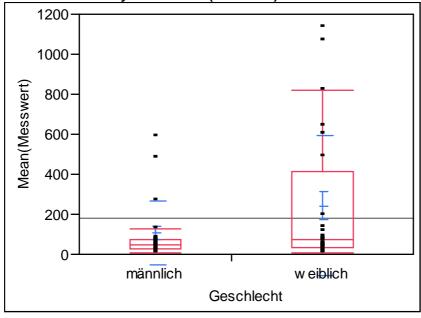
Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	49,7697	59,76819	75,94126	115,297	131,1414	425,757	457,7275
weiblich	29.41042	34.36132	57.53513	120.9806	214.5741	321.5941	946.4882

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	140,286	112,493	25,154	87,638	192,93
weiblich	24	169.590	187.362	38.245	90.474	248.71

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	442,000	22,1000	-0,177
weiblich	24	548.000	22.8333	0.177


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,0356 1 0,8504

Abbildung 93: Oneway-Analyse, Einfluss Geschlecht, Variable D23

Variable D24 [mm]

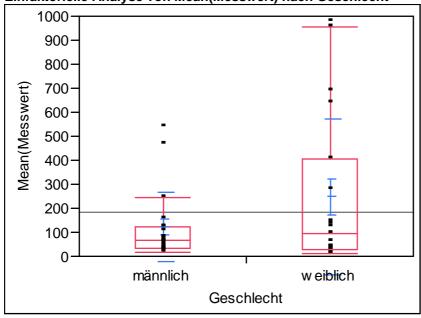
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	6,582488	10,06092	24,18113	49,86239	76,51385	456,3441	586,0145
weiblich	7.941418	12.40563	34.48127	70.34695	414.1909	942.7695	1133.544

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	106,352	157,120	35,133	32,817	179,89
weiblich	24	243.100	348.546	71.147	95.922	390.28

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	399,000	19,9500	-1,190
weiblich	24	591.000	24.6250	1.190

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1,4450	1	0,2293

Abbildung 94: Oneway-Analyse, Einfluss Geschlecht, Variable D24

Variable D25 [mm]

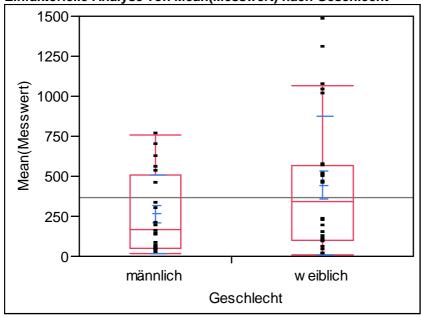
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	18,50844	23,37285	35,71969	67,60178	124,3696	463,9465	538,1758
weiblich	9,055385	10,94708	29,748	92,9471	407,8999	956,6721	976,3277

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	19	122,720	144,698	33,196	52,978	192,46
weiblich	19	248.766	324.307	74.401	92.455	405.08

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	19	354,000	18,6316	-0,467
weiblich	19	387.000	20.3684	0.467

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,2320	1	0,6300

Abbildung 95: Oneway-Analyse, Einfluss Geschlecht, Variable D25

Variable D26 [mm]

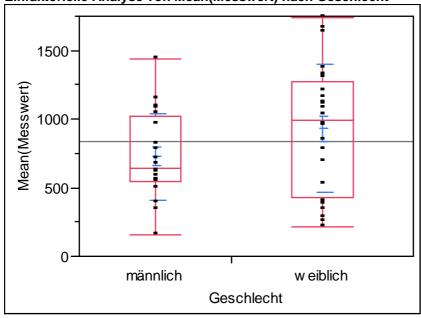
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	17,9586	32,24297	48,93658	163,0594	507,9199	682,2386	760,1977
weiblich	9,22604	21,87375	96,19032	338,8738	563,9356	1185,685	1472,653

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	265,107	245,709	54,942	150,11	380,10
weiblich	24	444,621	433,428	88,473	261,60	627,64

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	401,000	20,0500	-1,143
weiblich	24	589,000	24,5417	1,143

Wahrsch.>Chi ²	Freiheitsgrade	Chi ²
0.2491	1	1 2220

Abbildung 96: Oneway-Analyse, Einfluss Geschlecht, Variable D26

Variable D27 [mm]

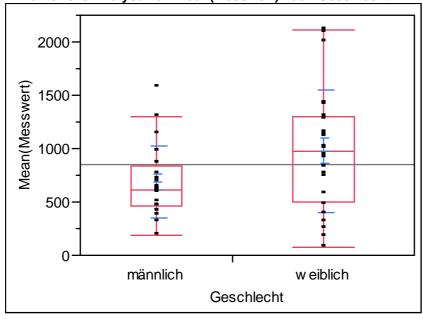
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	157,3927	343,5818	543,1729	644,9292	1017,367	1144,115	1436,613
weiblich	214,8789	270,3685	431,4517	996,5034	1277,018	1645,153	1741,398

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	727,902	315,244	70,491	580,36	875,4
weiblich	24	930.830	464.567	94.829	734.66	1127.0

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	389,000	19,4500	-1,426
weiblich	24	601.000	25.0417	1.426

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
2,0672	1	0,1505

Abbildung 97: Oneway-Analyse, Einfluss Geschlecht, Variable D27

Variable D28 [mm]

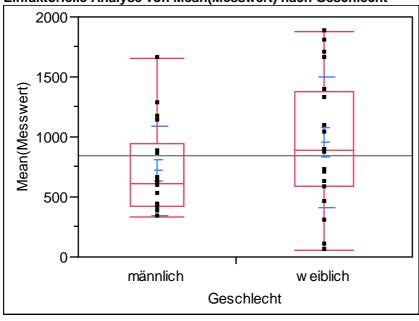
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	181,3416	314,5723	459,0927	613,6686	842,5407	1286,269	1569,355
weiblich	72.84672	214.1339	502.9333	973.3186	1297.793	2044.102	2113.043

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	687,869	341,796	76,43	527,90	847,8
weiblich	24	977.177	572.797	116.92	735.31	1219.0

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	375,000	18,7500	-1,756
weiblich	24	615.000	25.6250	1.756

Wahrsch.>Chi ²	Freiheitsgrade	Chi ²
0.0771	- 1	2 1250

Abbildung 98: Oneway-Analyse, Einfluss Geschlecht, Variable D28

Variable D30 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

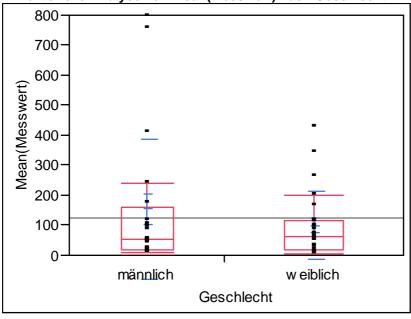
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	337,9303	370,5719	423,817	610,6219	941,2096	1312,178	1658,191
weiblich	55.8992	124.5866	592.9301	887.8664	1375,951	1789.658	1879.681

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	18	720,161	370,352	87,29	535,99	904,3
weiblich	20	958,051	542,600	121,33	704,11	1212,0

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	18	295,000	16,3889	-1,623
weiblich	20	446,000	22,3000	1,623


Einfaktorieller Test, Chi-Quadrat-Approximation Chi² Freiheitsgrade Wahrsch

Wahrsch.>Chi2 2,6803 0,1016

Abbildung 99: Oneway-Analyse, Einfluss Geschlecht, Variable D30

Variable D31 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	8,571068	8,700496	19,7804	51,2243	157,8258	719,1002	797,4603
weiblich	3,162278	6,304131	18,98594	63,95311	115,226	310,1001	426,6644

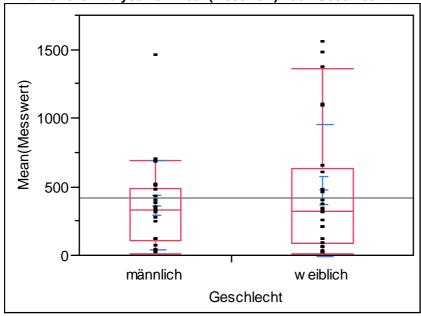
Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	154,362	233,318	52,172	45,166	263,56
weiblich	23	99,924	111,778	23,307	51,588	148,26

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	450,000	22,5000	0,231
weiblich	23	496,000	21,5652	-0,231

Einfaktorieller Test, Chi-Quadrat-Approximation


 Chi²
 Freiheitsgrade
 Wahrsch.>Chi²

 0,0593
 1
 0,8076

Abbildung 100: Oneway-Analyse, Einfluss Geschlecht, Variable D31

Variable D32 [mm]

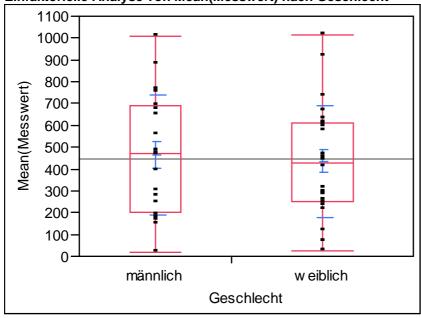
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	13,2743	21,35712	104,3733	331,3398	489,356	687,9259	1446,965
weiblich	7.541316	12.37023	83.4444	321.5731	629.0899	1413.992	1548.221

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	362,521	327,783	73,294	209,11	515,93
weiblich	24	471.864	480.861	98.155	268.81	674.91

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	443,000	22,1500	-0,153
weiblich	24	547.000	22.7917	0.153

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,0272	1	0,8690

Abbildung 101: Oneway-Analyse, Einfluss Geschlecht, Variable D32

Variable D33 [mm]

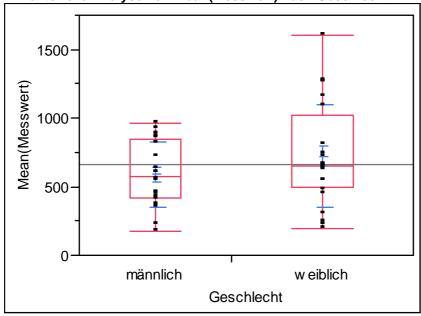
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	19,4451	150,25	202,8091	468,5582	688,4299	869,6475	1010,972
weiblich	21,44982	93,82833	248,3002	425,1919	608,295	822,9086	1015,069

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	465,745	275,744	61,658	336,69	594,80
weiblich	24	434,783	255,201	52,093	327,02	542,55

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	466,000	23,3000	0,365
weiblich	24	524,000	21,8333	-0,365

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0.1422	1	0.7061

Abbildung 102: Oneway-Analyse, Einfluss Geschlecht, Variable D33

Variable D34 [mm]

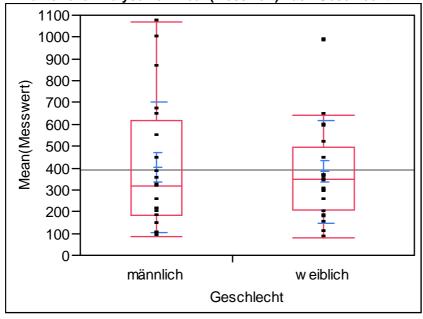
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile		400/	050/		75 0/	200/	
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	172,5156	232,0396	413,2329	576,5794	845,7485	919,3811	959,1314
weiblich	196.7492	234.0691	496.3338	648.633	1016.925	1266.471	1600.265

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	591,198	237,158	53,030	480,20	702,19
weiblich	24	724.289	370.311	75.589	567.92	880.66

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	400,000	20,0000	-1,167
weiblich	24	590.000	24.5833	1.167

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1,3889	1	0,2386

Abbildung 103: Oneway-Analyse, Einfluss Geschlecht, Variable D34

Variable D35 [mm]

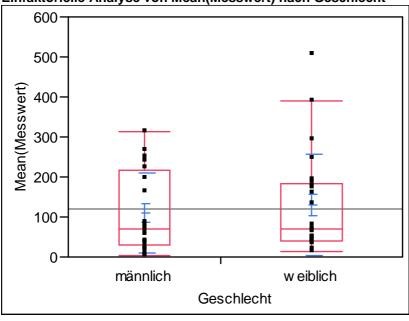
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile			/				
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	88,19103	95,9579	181,6137	315,8022	615,181	984,7911	1070,464
weiblich	79.86343	123,4342	207.7381	348.144	493.3016	810.1793	981.9867

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	402,201	301,164	67,342	261,25	543,15
weiblich	24	383,802	236,458	48,267	283,95	483,65

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	442,000	22,1000	-0,177
weiblich	24	548.000	22.8333	0.177

Wahrsch.>Chi ²	Freiheitsgrade	Chi ²
0.8504	- 1	0.0356

Abbildung 104: Oneway-Analyse, Einfluss Geschlecht, Variable D35

Variable D37 [mm]

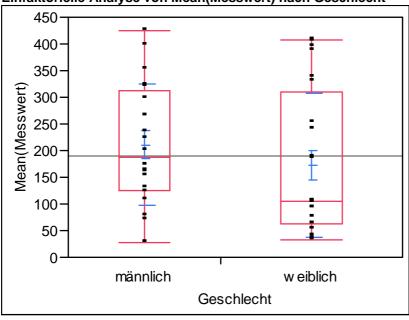
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	2,279074	9,000779	28,87357	69,48563	216,5596	264,89	313,2026
weiblich	12,24895	25,84923	40,9314	68,41521	184,2524	341,8451	506,4835

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	110,048	101,301	22,652	62,638	157,46
weiblich	24	129,515	125,933	25,706	76,338	182,69

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	427,000	21,3500	-0,530
weiblich	24	563,000	23,4583	0,530

Einfaktorieller Test, Chi-Quadrat-Approximation
Chi² Freiheitsgrade Wahrsch.>Chi²
0,2939 1 0,5877

Abbildung 105: Oneway-Analyse, Einfluss Geschlecht, Variable D37

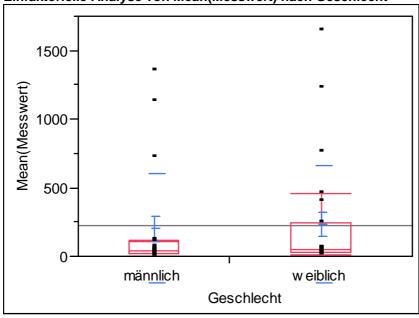
Variable D38 [mm]

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	28,37546	71,15827	124,8166	186,2591	313,3872	393,9283	425,1703
weiblich	33.19443	36.6795	62.83914	104.0101	311.14	400.5877	407.9832

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	211,146	112,812	25,226	158,35	263,94
weiblich	24	172.576	135.058	27.569	115.55	229.61

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	509,000	25,4500	1,379
weiblich	24	481.000	20.0417	-1.379

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1,9339	1	0,1643

Abbildung 106: Oneway-Analyse, Einfluss Geschlecht, Variable D38

Variable D39 [mm]

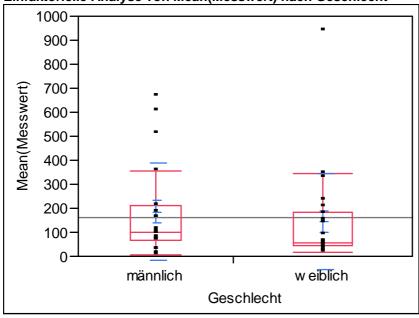
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	4,380338	4,857052	15,08811	37,1573	109,0115	1125,252	1353,615
weiblich	10,78398	11,28802	28,01785	51,61577	244,1575	1039,306	1646,805

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	19	202,228	399,834	91,728	9,514	394,94
weiblich	23	232,903	426,434	88,918	48,499	417,31

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	19	382,000	20,1053	-0,657
weiblich	23	521,000	22,6522	0,657

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0.4485	1	0.5031

Abbildung 107: Oneway-Analyse, Einfluss Geschlecht, Variable D39

Variable D40 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

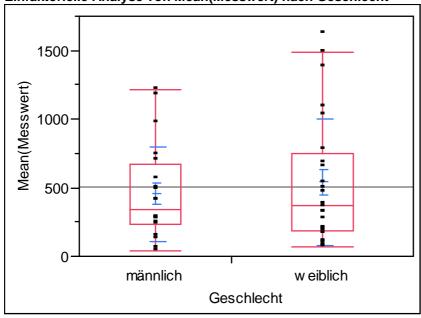
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	7,28011	10,04988	67,3779	99,29588	212,9105	607,3251	668,3949
weiblich	18,38478	21,0504	42,84137	57,46667	184,1353	341,6622	938,3079

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	19	185,784	201,794	46,295	88,523	283,05
weiblich	22	144,119	202,174	43,104	54,481	233,76

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	19	441,000	23,2105	1,085
weiblich	22	420,000	19,0909	-1,085


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1.2057	1	0.2722

Abbildung 108: Oneway-Analyse, Einfluss Geschlecht, Variable D40

Variable D41 [mm]

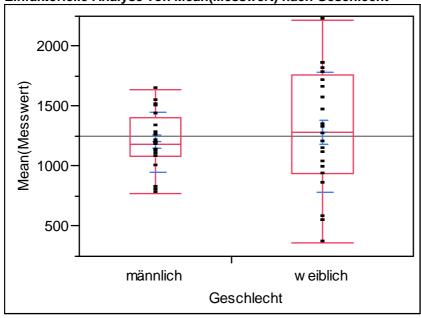
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	42,44653	64,10967	233,6937	342,711	669,4959	1154,12	1212,22
weiblich	67,28033	87,14879	188,0104	372,9086	751,9196	1430,24	1627,737

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	454,711	346,333	77,442	292,62	616,80
weiblich	24	540.820	464.602	94.836	344.64	737.00

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	436,000	21,8000	-0,318
weiblich	24	554.000	23.0833	0.318

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,1089	1	0,7414

Abbildung 109: Oneway-Analyse, Einfluss Geschlecht, Variable D41

Variable D42 [mm]

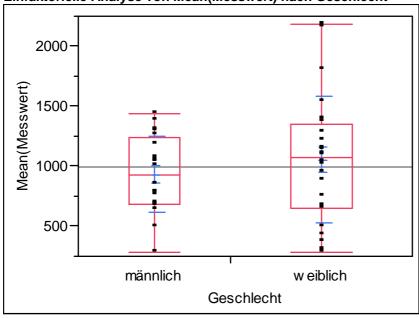
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	777,0826	793,0324	1078,486	1187,527	1406,743	1540,162	1638,457
weiblich	364.377	539.3201	942.4347	1284.34	1757.466	1851.756	2216.664

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	1200,58	246,114	55,03	1085,4	1315,8
weiblich	24	1286,07	500,554	102,18	1074,7	1497,4

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	415,000	20,7500	-0,813
weiblich	24	575.000	23,9583	0.813

Wahrsch.>Chi2	Freiheitsgrade	Chi ²
0.4004	4	0 6006

Abbildung 110: Oneway-Analyse, Einfluss Geschlecht, Variable D42

Variable D43 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

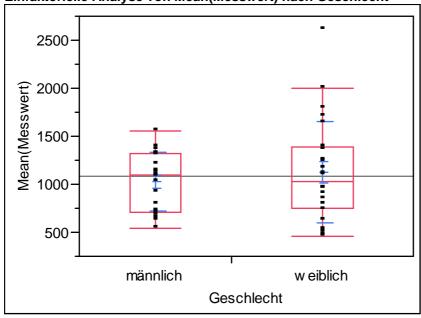
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	277,8844	506,9647	682,6384	929,6286	1240,671	1373,227	1439,299
weiblich	283,3914	339,4039	654,8003	1068,647	1350,821	1980,632	2181,4

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	933,13	318,424	71,20	784,10	1082,2
weiblich	24	1053,83	526,133	107,40	831,67	1276,0

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	425,000	21,2500	-0,577
weiblich	24	565,000	23,5417	0,577


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,3472 1 0,5557

Abbildung 111: Oneway-Analyse, Einfluss Geschlecht, Variable D43

Variable D44 [mm]

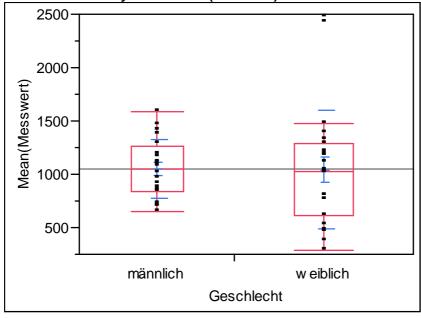
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile								
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum	
männlich	542,4563	621,923	708,4242	1092,667	1314,294	1387,37	1550,807	
weiblich	459.2605	485.8877	749.0371	1033.378	1387.336	1891.83	2604.723	

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	1028,81	304,158	68,01	886,46	1171,2
weiblich	24	1128.24	530.858	108.36	904.08	1352.4

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	440,000	22,0000	-0,224
weiblich	24	550.000	22.9167	0.224

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,0556	1	0,8137

Abbildung 112: Oneway-Analyse, Einfluss Geschlecht, Variable D44

Variable D45 [mm]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	647,8765	694,1952	837,8559	1047,021	1265,243	1452,85	1584,115
weiblich	286,1748	408,805	611,7156	1029,979	1284,083	2041,753	2477,933

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	1048,71	276,068	61,73	919,50	1177,9
weiblich	23	1042,26	559,285	116,62	800,41	1284,1

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	463,000	23,1500	0,548
weiblich	23	483,000	21,0000	-0,548

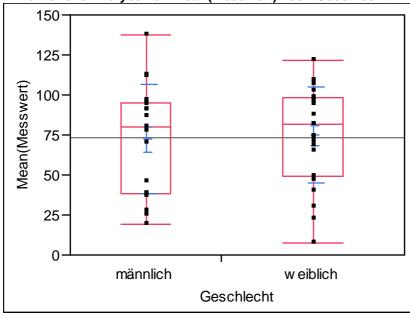

Wahrsch.>Chi ²	Freiheitsgrade	Chi ²
0.5755	1	0.3136

Abbildung 113: Oneway-Analyse, Einfluss Geschlecht, Variable D45

9.2.4 Einfluss Geschlecht/Winkel

Variable Alpha01 [9

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	18,92696	25,37028	38,38255	80,15563	94,6942	112,1669	137,1781
weiblich	7,678964	25,3961	49,45846	81,46421	98,16223	108,2256	121,5926

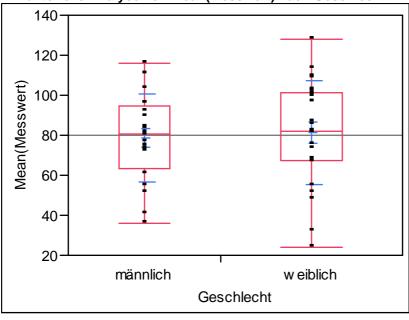
Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	19	72,2793	34,3352	7,8770	55,730	88,828
weiblich	23	74,8654	30,0288	6,2614	61,880	87,851

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	19	392,000	20,6316	-0,404
weiblich	23	511.000	22.2174	0.404

Einfaktorieller Test, Chi-Quadrat-Approximation


 Chi²
 Freiheitsgrade
 Wahrsch.>Chi²

 0,1739
 1
 0,6767

Abbildung 114: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha01

Variable Alpha02 [9]

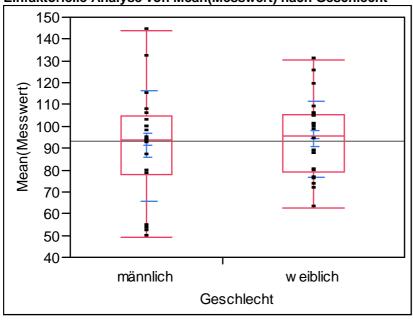
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	36,16487	41,53454	63,45396	80,72472	94,97082	110,0372	115,6907
weiblich	24.27284	40,18747	67.21459	81.7864	101.4069	111.2592	128.0814

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	78,6137	21,7275	4,8584	68,445	88,782
weiblich	24	81.3112	25.9366	5.2943	70.359	92.263

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	430,000	21,5000	-0,460
weiblich	24	560,000	23,3333	0,460

Wahrsch.>Chi ²	Freiheitsgrade	Chi ²
0.6374	1	0.2222

Abbildung 115: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha02

Variable Alpha03 [9

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

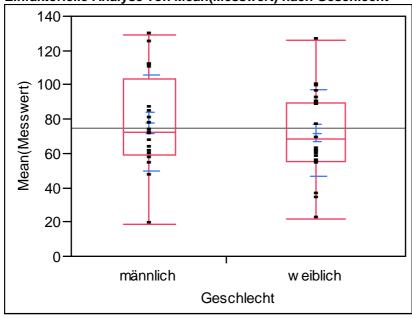
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	49,1993	51,75805	78,09272	93,72132	104,7175	130,1655	143,6836
weiblich	62,86903	72,09553	79,23315	95,79144	105,2942	121,9757	130,1894

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	91,2736	25,3895	5,6773	79,391	103,16
weiblich	24	94,2429	17,2987	3,5311	86,938	101,55

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	434,000	21,7000	-0,365
weiblich	24	556,000	23,1667	0,365


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,1422 1 0,7061

Abbildung 116: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha03

Variable Alpha04 [9

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

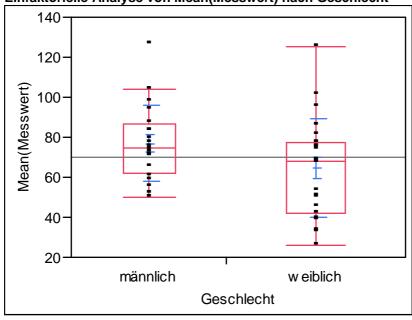
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	18,62307	47,23383	59,26206	72,25242	103,6966	123,1667	129,1409
weiblich	21,92213	34,72533	54,87597	68,06692	89,37212	99,12724	126,1341

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	77,6286	27,8789	6,2339	64,581	90,676
weiblich	23	71,9168	24,9439	5,2012	61,130	82,703

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	461,000	23,0500	0,499
weiblich	23	485,000	21,0870	-0,499


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi²
0,2615 1 0,6091

Abbildung 117: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha04

Variable Alpha05 [9]

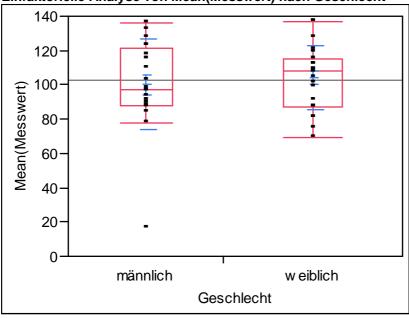
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	50,08191	52,51566	61,72023	74,65559	86,56296	103,4777	126,9955
weiblich	26.07819	32.80322	41.98324	67.96915	77.51686	98.82178	125.1506

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	76,9523	18,9053	4,2274	68,104	85,800
weiblich	23	64,5065	24,8266	5,1767	53,771	75,242

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	513,000	25,6500	1,765
weiblich	23	433,000	18,8261	-1,765

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
3.1595	1	0.0755

Abbildung 118: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha05

Variable Alpha06 [9]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	15,96966	78,413	88,07745	97,29401	121,5338	131,9588	135,9108
weiblich	69,39586	77,22565	87,18114	108,3314	114,9395	133,0413	136,8775

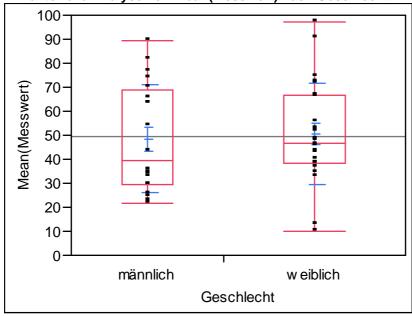
Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	100,212	26,3600	5,8943	87,875	112,55
weiblich	23	104,318	18,4362	3,8442	96,345	112,29

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	428,000	21,4000	-0,280
weiblich	23	518,000	22,5217	0,280

Einfaktorieller Test, Chi-Quadrat-Approximation


 Chi²
 Freiheitsgrade
 Wahrsch.>Chi²

 0,0854
 1
 0,7701

Abbildung 119: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha06

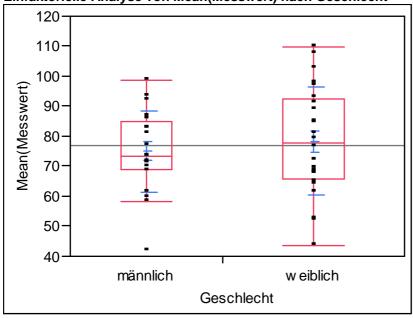
Variable Alpha07 [9]

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	21,7459	23,07714	29,41966	39,54891	68,87657	81,32015	89,41571
weiblich	9.754452	22.74245	38.48282	46.83381	66.64797	82.38152	97.25436

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	48,5837	22,3449	4,9965	38,126	59,041
weiblich	24	50.6659	21.0896	4.3049	41.761	59.571

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	418,000	20,9000	-0,742
weiblich	24	572.000	23.8333	0.742

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,5689	1	0,4507

Abbildung 120: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha07

Variable Alpha08 [9]

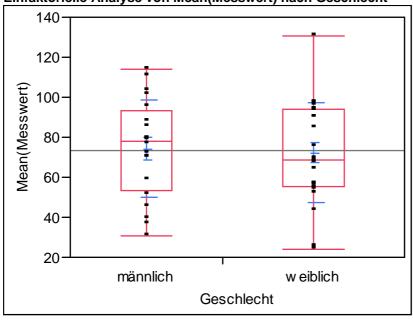
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	41,90434	58,31955	68,75199	73,41417	85,09971	93,14167	98,87417
weiblich	43,53835	52,17574	65,62574	77,7786	92,46982	105,1486	109,9524

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	74,9942	13,6104	3,0434	68,624	81,364
weiblich	24	78.2371	17.9885	3.6719	70.641	85.833

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	433,000	21,6500	-0,389
weiblich	24	557.000	23.2083	0.389

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,1606	1	0,6886

Abbildung 121: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha08

Variable Alpha09 [9]

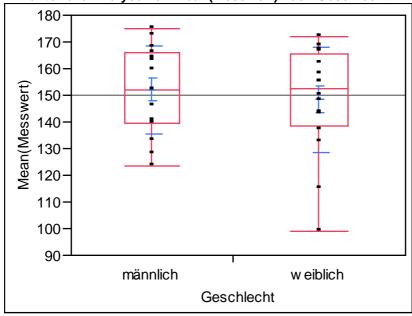
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	30,79137	37,13815	53,14816	77,82779	93,23082	109,7347	114,046
weiblich	23.8846	34.39185	55.03036	68.62838	93.68462	97.26662	130.5736

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	74,3025	24,5114	5,4809	62,831	85,774
weiblich	24	72.2584	25.2302	5.1501	61.605	82.912

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	468,000	23,4000	0,412
weiblich	24	522,000	21,7500	-0,412

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,1800	1	0,6714

Abbildung 122: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha09

Variable Alpha10 [9

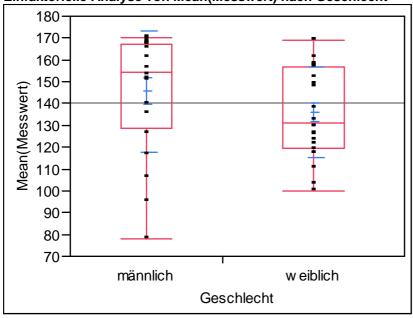
Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	123,5146	126,3297	139,2688	152,1281	166,2222	173,3959	175,0365
weiblich	99,18431	110,3403	138,5586	152,5544	165,5741	169,4148	171,9287

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	15	152,143	16,4257	4,2411	143,05	161,24
weiblich	16	148,266	19,9692	4,9923	137,63	158,91

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	15	250,000	16,6667	0,376
weiblich	16	246,000	15,3750	-0,376


Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,1563 1 0,6926

Abbildung 123: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha10

Variable Alpha11 [9]

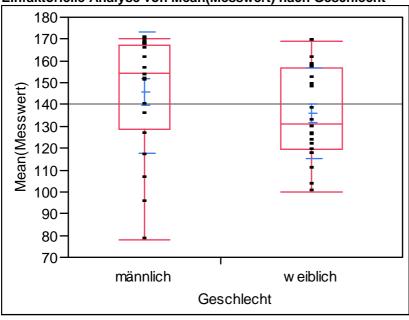
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	77,74569	96,05913	128,5064	154,5684	167,3318	169,2878	170,4364
weiblich	99.85393	106.5921	119.6589	130.8865	156.6193	164.9735	169.1342

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	145,555	27,6212	6,1763	132,63	158,48
weiblich	24	136.121	20.7563	4.2369	127.36	144.89

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	519,000	25,9500	1,615
weiblich	24	471.000	19.6250	-1.615

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
2,6450	1	0,1039

Abbildung 124: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha11

Variable Alpha12 [9]

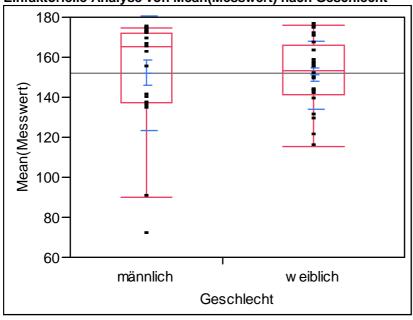
Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	77,74569	96,05913	128,5064	154,5684	167,3318	169,2878	170,4364
weiblich	99.85393	106.5921	119.6589	130.8865	156.6193	164.9735	169.1342

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	145,555	27,6212	6,1763	132,63	158,48
weiblich	24	136.121	20.7563	4.2369	127.36	144.89

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)


Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	519,000	25,9500	1,615
weiblich	24	471.000	19.6250	-1.615

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
2,6450	1	0,1039

Abbildung 125: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha12

Variable Alpha13 [9]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	71,64071	94,6887	137,0137	165,3316	172,2518	173,8408	174,9419
weiblich	115.4129	124.6463	141.5537	153.0659	165.917	174.5162	175.8029

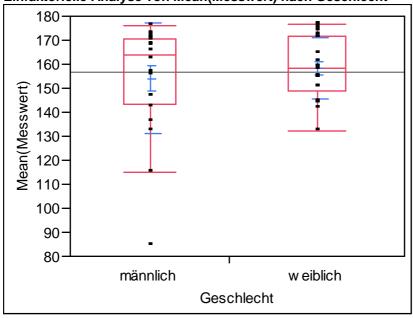
Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	152,269	28,6839	6,4139	138,84	165,69
weiblich	24	151.191	16.9034	3.4504	144.05	158.33

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	486,000	24,3000	0,837
weiblich	24	504.000	21.0000	-0.837

Einfaktorieller Test, Chi-Quadrat-Approximation


 Chi²
 Freiheitsgrade
 Wahrsch.>Chi²

 0,7200
 1
 0,3961

Abbildung 126: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha13

Variable Alpha14 [9

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	84,22937	116,7434	143,221	163,8714	170,8223	172,4778	176,1359
weiblich	132,4767	142,1579	148,9856	158,5456	171,5873	175,8164	176,4844

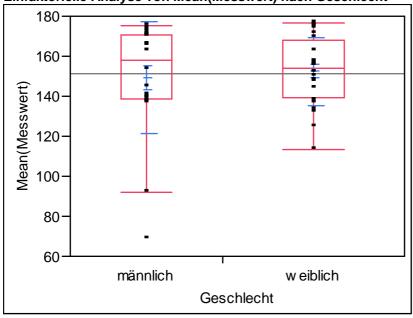
Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	154,148	23,2988	5,2098	143,24	165,05
weiblich	22	158,536	12,8522	2,7401	152,84	164,23

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	418,000	20,9000	-0,290
weiblich	22	485,000	22,0455	0,290

Einfaktorieller Test, Chi-Quadrat-Approximation


 Chi²
 Freiheitsgrade
 Wahrsch.>Chi²

 0,0913
 1
 0,7625

Abbildung 127: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha14

Variable Alpha15 [9]

Einfaktorielle Analyse von Mean(Messwert) nach Geschlecht

Quantile Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	68,60355	96,55024	138,5214	157,8755	170,7393	173,8704	175,473
weiblich	113.6219	128.3848	139.6474	153.722	167.855	175.4786	176.3337

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	StdAbw.	StdFehler Mittelwert	95% KI unten	95% KI oben
männlich	20	149,393	27,9890	6,2585	136,29	162,49
weiblich	24	152.463	16.8745	3.4445	145.34	159.59

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	454,000	22,7000	0,082
weiblich	24	536.000	22.3333	-0.082

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi² Freiheitsgrade Wahrsch.>Chi² 0,0089 1 0,9249

Abbildung 128: Oneway-Analyse, Einfluss Geschlecht, Variable Alpha15

9.3 Normwertetabellen

9.3.1 Distanzen, Einfluss Körperhaltung

Variable	Körperhaltung	Geschlecht	Mittlerer Messwert [mm]	Mittelwerte (aufrecht/entspannt)	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
D01[mm]	aufrecht	männlich	1,57	1,33	1,97	3,87	5,47	**
D01[mm]	entspannt	männlich	1,09	1,55	1,13	2,22	3,13	**
D01[mm]	entspannt	weiblich	0,88	-	1,21	2,37	3,35	**
D02 [mm]	aufrecht	männlich	1,41	-	1,8	3,53	4,99	**
D02 [mm]	aufrecht	weiblich	2,5	2,415	2,07	4,05	5,72	**
D02 [mm]	entspannt	weiblich	2,33	2,415	3,2	6,26	8,85	**
D03 [mm]	aufrecht	männlich	4,78	4,655	4,16	8,15	11,52	**
D03 [mm]	entspannt	männlich	4,53	4,000	4,24	8,31	11,75	**
D03 [mm]	aufrecht	weiblich	6,99	6,665	4,95	9,7	13,71	***
D03 [mm]	entspannt	weiblich	6,34	0,003	4,14	8,12	11,48	***
D04 [mm]	entspannt	männlich	1,29	-	1,17	2,3	3,25	**
D04 [mm]	aufrecht	weiblich	1,16	1,285	1,27	2,48	3,51	**
D04 [mm]	entspannt	weiblich	1,41	1,200	1,57	3,07	4,34	**
D05 [mm]	aufrecht	männlich	2,8	2,5	3,48	6,82	9,64	**
D05 [mm]	entspannt	männlich	2,2	2,5	2,55	5	7,07	**
D06 [mm]	aufrecht	männlich	2,02	1,79	1,42	2,78	3,92	***
D06 [mm]	entspannt	männlich	1,56	1,79	1,25	2,45	3,46	**
D06 [mm]	aufrecht	weiblich	1,03	1,07	0,81	1,59	2,24	**
D06 [mm]	entspannt	weiblich	1,11	1,07	1,04	2,05	2,89	**
D07 [mm]	aufrecht	männlich	1,4	1,54	1,12	2,19	3,1	**
D07 [mm]	entspannt	männlich	1,68	1,54	1,85	3,62	5,12	**
D07 [mm]	aufrecht	weiblich	1,77	-	2,4	4,7	6,64	**
D08 [mm]	aufrecht	männlich	1,93	1,875	2,04	3,99	5,64	**
D08 [mm]	entspannt	männlich	1,82	1,073	1,96	3,83	5,42	**
D08 [mm]	aufrecht	weiblich	1,19	-	1,25	2,45	3,46	**
D09 [mm]	aufrecht	männlich	1,13	-	1,11	2,17	3,06	**
D09 [mm]	aufrecht	weiblich	1,81	1,425	2,51	4,92	6,96	**
D09 [mm]	entspannt	weiblich	1,04	1,720	1,44	2,83	3,99	**

Variable	Körperhaltung	Geschlecht	Mittlerer Messwert [mm]	Mittelwerte (aufrecht/entspannt)	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
D10 [mm]	aufrecht	männlich	1,85	1,605	0,8	1,56	2,21	***
D10 [mm]	entspannt	männlich	1,36	,,,,,,	0,91	1,79	2,53	***
D10 [mm]	aufrecht	weiblich	0,99	1,27	0,71	1,4	1,98	***
D10 [mm]	entspannt	weiblich	1,55	1,2,	2,22	4,36	6,16	**
D11 [mm]	aufrecht	männlich	2,35	2,015	2,78	5,45	7,7	**
D11 [mm]	entspannt	männlich	1,68	2,010	1,52	2,98	4,21	**
D11 [mm]	aufrecht	weiblich	2,83	2,755	2,31	4,52	6,39	**
D11 [mm]	entspannt	weiblich	2,68	2,733	2,8	5,48	7,75	**
D12 [mm]	aufrecht	männlich	6,6	6 22	3,53	6,92	9,78	***
D12 [mm]	entspannt	männlich	6,06	6,33	4,33	8,49	11,99	***
D12 [mm]	aufrecht	weiblich	7,9	7 965	4,25	8,34	11,78	***
D12 [mm]	entspannt	weiblich	7,83	7,865	4,14	8,11	11,46	***
D13 [mm]	aufrecht	männlich	7,24	6,415	4,07	7,98	11,28	***
D13 [mm]	entspannt	männlich	5,59	0,415	4,52	8,86	12,52	**
D13 [mm]	aufrecht	weiblich	8,84	9.09	3,86	7,57	10,7	***
D13 [mm]	entspannt	weiblich	7,32	8,08	4,13	8,09	11,44	***
D14 [mm]	aufrecht	männlich	7,75	6 01 5	3,89	7,63	10,78	***
D14 [mm]	entspannt	männlich	5,88	6,815	4,14	8,11	11,46	***
D14 [mm]	aufrecht	weiblich	8,56	7,97	4,19	8,21	11,6	***
D14 [mm]	entspannt	weiblich	7,38	7,97	3,34	6,55	9,25	***
D15 [mm]	aufrecht	männlich	7,3	6,84	3,26	6,38	9,02	***
D15 [mm]	entspannt	männlich	6,38	0,04	5,14	10,07	14,22	**
D15 [mm]	aufrecht	weiblich	9,14	8,58	5,04	9,87	13,96	***
D15 [mm]	entspannt	weiblich	8,02	0,50	3,1	6,07	8,58	***
D16 [mm]	aufrecht	männlich	0,91	0,945	0,78	1,52	2,15	**
D16 [mm]	entspannt	männlich	0,98	0,940	0,81	1,6	2,26	**
D16 [mm]	aufrecht	weiblich	0,53	-	0,55	1,08	1,53	**
D17 [mm]	aufrecht	männlich	2,04	-	2,14	4,2	5,93	**
D17 [mm]	aufrecht	weiblich	3,87	4,3	2,62	5,13	7,25	***
D17 [mm]	entspannt	weiblich	4,73	4,3	1,7	3,34	4,72	***

Variable	Körperhaltung	Geschlecht	Mittlerer Messwert [mm]	Mittelwerte (aufrecht/entspannt)	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
D18 [mm]	aufrecht	männlich	5,82	5,205	3,26	6,38	9,02	***
D18 [mm]	entspannt	männlich	4,59	, , ,	2,74	5,36	7,58	***
D18 [mm]	aufrecht	weiblich	5,84	6,035	3,69	7,23	10,22	***
D18 [mm]	entspannt	weiblich	6,23	0,000	4,41	8,65	12,22	***
D19 [mm]	aufrecht	männlich	0,88	1,575	0,85	1,67	2,36	**
D19 [mm]	entspannt	männlich	2,27	1,070	1,97	3,85	5,45	**
D19 [mm]	aufrecht	weiblich	3,12	3,065	2,16	4,23	5,98	***
D19 [mm]	entspannt	weiblich	3,01	3,000	2,68	5,25	7,42	**
D20 [mm]	aufrecht	männlich	2,22	2,585	2,48	4,86	6,87	**
D20 [mm]	entspannt	männlich	2,95	2,303	2,23	4,37	6,18	***
D20 [mm]	aufrecht	weiblich	2,52	2,785	2,81	5,51	7,79	**
D20 [mm]	entspannt	weiblich	3,05	2,700	3,36	6,58	9,29	**
D21 [mm]	aufrecht	männlich	2,16	2,095	1,44	2,83	4	***
D21 [mm]	entspannt	männlich	2,03	2,093	1,17	2,3	3,25	***
D21 [mm]	aufrecht	weiblich	2,78	2,2	1,48	2,9	4,1	***
D21 [mm]	entspannt	weiblich	1,62	2,2	1,51	2,95	4,17	**
D22 [mm]	aufrecht	männlich	1,44	1,22	1,96	3,84	5,43	**
D22 [mm]	entspannt	männlich	1	1,22	1,47	2,89	4,08	**
D23 [mm]	aufrecht	männlich	1,52	1,405	1,57	3,07	4,34	**
D23 [mm]	entspannt	männlich	1,29	1,403	1,55	3,03	4,29	**
D23 [mm]	aufrecht	weiblich	1,45	-	1,22	2,4	3,39	**
D24 [mm]	aufrecht	weiblich	3,25	2,43	3,25	6,36	8,99	**
D24 [mm]	entspannt	weiblich	1,61	2,43	1,94	3,79	5,36	**
D25 [mm]	aufrecht	männlich	1,32	1 225	1,62	3,17	4,47	**
D25 [mm]	entspannt	männlich	1,13	1,225	1,49	2,93	4,14	**
D25 [mm]	aufrecht	weiblich	2,46	-	1,61	3,16	4,47	***
D26 [mm]	aufrecht	männlich	2,75	2.65	2,11	4,14	5,85	**
D26 [mm]	entspannt	männlich	2,55	2,65	1,62	3,17	4,48	***
D26 [mm]	aufrecht	weiblich	4,45	4,45	3,62	7,09	10,02	**
D26 [mm]	entspannt	weiblich	4,45	7,45	3,75	7,36	10,4	**

Variable	Körperhaltung	Geschlecht	Mittlerer Messwert [mm]	Mittelwerte (aufrecht/entspannt)	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
D27 [mm]	aufrecht	männlich	7,53	7,28	2,28	4,47	6,32	***
D27 [mm]	entspannt	männlich	7,03	7,20	2,79	5,47	7,73	***
D27 [mm]	aufrecht	weiblich	9,57	9,31	3,5	6,86	9,7	***
D27 [mm]	entspannt	weiblich	9,05	9,51	3,5	6,85	9,68	***
D28 [mm]	aufrecht	männlich	7,52	6,875	3,19	6,26	8,84	***
D28 [mm]	entspannt	männlich	6,23	0,073	3,29	6,44	9,11	***
D28 [mm]	aufrecht	weiblich	9,95	9,77	3,77	7,4	10,46	***
D28 [mm]	entspannt	weiblich	9,59	9,77	3,36	6,59	9,31	***
D29 [mm]	aufrecht	männlich	7,66	6,755	3,49	6,84	9,67	***
D29 [mm]	entspannt	männlich	5,85	0,733	3,06	6	8,48	***
D29 [mm]	aufrecht	weiblich	10,66	10,415	4,12	8,08	11,43	***
D29 [mm]	entspannt	weiblich	10,17	10,413	3,8	7,46	10,54	***
D30 [mm]	aufrecht	männlich	7,96	7,105	3,02	5,92	8,36	***
D30 [mm]	entspannt	männlich	6,25	7,103	3,55	6,96	9,84	***
D30 [mm]	aufrecht	weiblich	10,18	9,51	3,7	7,26	10,25	***
D30 [mm]	entspannt	weiblich	8,84	9,51	4,72	9,25	13,07	***
D31 [mm]	aufrecht	männlich	1,71	1,545	1,43	2,79	3,95	**
D31 [mm]	entspannt	männlich	1,38	1,545	1,14	2,23	3,15	**
D31 [mm]	entspannt	weiblich	1,19	-	1,71	3,35	4,74	**
D32 [mm]	aufrecht	männlich	4,25	3,625	2,44	4,78	6,76	***
D32 [mm]	entspannt	männlich	3	0,020	2,29	4,49	6,35	***
D32 [mm]	aufrecht	weiblich	5,29	4,715	3,32	6,51	9,21	***
D32 [mm]	entspannt	weiblich	4,14	4,710	4,27	8,36	11,82	**
D33 [mm]	aufrecht	männlich	4,32	4,66	3,49	6,84	9,67	**
D33 [mm]	entspannt	männlich	5	7,00	3,57	6,99	9,89	***
D33 [mm]	aufrecht	weiblich	4,68	4,35	3,9	7,65	10,82	**
D33 [mm]	entspannt	weiblich	4,02	7,55	3,48	6,82	9,64	**
D34 [mm]	aufrecht	männlich	5,45	5,91	3,1	6,08	8,59	***
D34 [mm]	entspannt	männlich	6,37	0,31	2,84	5,56	7,85	***
D34 [mm]	aufrecht	weiblich	7,35	7,245	3,2	6,28	8,87	***
D34 [mm]	entspannt	weiblich	7,14	7,240	3,63	7,11	10,05	***

Variable	Körperhaltung	Geschlecht	Mittlerer Messwert [mm]	Mittelwerte (aufrecht/entspannt)	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
D35 [mm]	aufrecht	männlich	4,6	4.005	2,85	5,58	7,89	***
D35 [mm]	entspannt	männlich	3,45	4,025	2,22	4,34	6,14	***
D35 [mm]	aufrecht	weiblich	4,11	2 025	2,11	4,13	5,84	***
D35 [mm]	entspannt	weiblich	3,56	3,835	1,86	3,65	5,16	***
D36 [mm]	aufrecht	männlich	4,63	4,075	1,53	3,01	4,25	***
D36 [mm]	entspannt	männlich	3,52	4,075	1,61	3,15	4,45	***
D36 [mm]	aufrecht	weiblich	2,85	2,435	1,68	3,3	4,66	***
D36 [mm]	entspannt	weiblich	2,02	2,433	1,45	2,85	4,02	***
D37 [mm]	aufrecht	weiblich	0,95	-	1,37	2,68	3,79	**
D38 [mm]	aufrecht	männlich	2,63	2 115	2,01	3,93	5,55	***
D38 [mm]	entspannt	männlich	1,6	2,115	1,57	3,07	4,34	**
D38 [mm]	aufrecht	weiblich	1,77	1 725	1,26	2,47	3,5	***
D38 [mm]	entspannt	weiblich	1,68	1,725	2,09	4,1	5,8	**
D39 [mm]	aufrecht	männlich	2,41	-	3,48	6,83	9,65	**
D39 [mm]	aufrecht	weiblich	3,27	-	3,47	6,81	9,62	**
D40 [mm]	aufrecht	männlich	1,76	1,865	1,57	3,07	4,34	**
D40 [mm]	entspannt	männlich	1,97	1,005	2,1	4,12	5,83	**
D40 [mm]	aufrecht	weiblich	1,64	1,42	2,21	4,33	6,12	**
D40 [mm]	entspannt	weiblich	1,2	1,42	1,81	3,55	5,02	**
D41 [mm]	aufrecht	männlich	4,95	4,55	2,91	5,7	8,05	***
D41 [mm]	entspannt	männlich	4,15	4,55	2,28	4,47	6,32	***
D41 [mm]	aufrecht	weiblich	5,98	5,41	3,25	6,36	8,99	***
D41 [mm]	entspannt	weiblich	4,84	3,41	3,41	6,69	9,45	***
D42 [mm]	aufrecht	männlich	12,53	12.005	3,21	6,29	8,88	***
D42 [mm]	entspannt	männlich	11,48	12,005	3,05	5,98	8,46	***
D42 [mm]	aufrecht	weiblich	13,38	12.96	3,47	6,8	9,61	***
D42 [mm]	entspannt	weiblich	12,34	12,86	3,34	6,55	9,26	***
D43 [mm]	aufrecht	männlich	9,82	9,33	3,51	6,87	9,71	***
D43 [mm]	entspannt	männlich	8,84	. 9 ,33	2,91	5,7	8,05	***
D43 [mm]	aufrecht	weiblich	11,13	10,535	3,88	7,6	10,74	***
D43 [mm]	entspannt	weiblich	9,94	10,555	4	7,84	11,09	***

Variable	Körperhaltung	Geschlecht	Mittlerer Messwert [mm]	Mittelwerte (aufrecht/entspannt)	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
D44 [mm]	aufrecht	männlich	10,97	10,29	3,49	6,85	9,67	***
D44 [mm]	entspannt	männlich	9,61	10,23	3,01	5,91	8,35	***
D44 [mm]	aufrecht	weiblich	12,17	11,285	3,91	7,67	10,83	***
D44 [mm]	entspannt	weiblich	10,4	11,200	4,16	8,16	11,53	***
D45 [mm]	aufrecht	männlich	9,92	10,49	3,01	5,9	8,34	***
D45 [mm]	entspannt	männlich	11,06	10,79	2,51	4,92	6,96	***
D45 [mm]	aufrecht	weiblich	11,73	10,365	4,23	8,28	11,71	***
D45[mm]	entspannt	weiblich	9	10,303	3,99	7,81	11,04	***

Tabelle 19: Normwerte Distanzen, Einfluss Körpehaltung

9.3.2 Winkel, Einfluss Körperhaltung

Variable	Körperhaltung	Geschlecht	Mittlerer Messwert []	Normwerte	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
Alpha08 [9	aufrecht	männlich	0,74	-	0,2	0,39	0,56	*
Alpha10 [9	aufrecht	männlich	1,54	1,515	0,14	0,27	0,38	**
Alpha10 [9	entspannt	männlich	1,49	1,010	0,09	0,18	0,25	**
Alpha10 [9	aufrecht	weiblich	1,47	1,485	0,14	0,27	0,39	**
Alpha10 [9	entspannt	weiblich	1,5	1,100	0,22	0,42	0,6	*
Alpha11 [9	aufrecht	männlich	1,45	1,455	0,14	0,27	0,39	**
Alpha11 [9	entspannt	männlich	1,46	1,455	0,17	0,34	0,48	*
Alpha11 [9	aufrecht	weiblich	1,38	1,365	0,2	0,39	0,54	*
Alpha11 [9	entspannt	weiblich	1,35	1,505	0,2	0,4	0,56	*
Alpha12 [9	aufrecht	männlich	1,45	1,455	0,14	0,27	0,39	**
Alpha12 [9	entspannt	männlich	1,46	1,400	0,17	0,34	0,48	*
Alpha12 [9	aufrecht	weiblich	1,38	1,365	0,2	0,39	0,54	*
Alpha12 [9	entspannt	weiblich	1,35	1,505	0,2	0,4	0,56	*
Alpha13 [9	aufrecht	männlich	1,51	1,52	0,18	0,35	0,49	*
Alpha13 [9	entspannt	männlich	1,53	1,02	0,12	0,24	0,34	**
Alpha13 [9	aufrecht	weiblich	1,51	1,515	0,1	0,19	0,26	**
Alpha13 [9	entspannt	weiblich	1,52	1,515	0,13	0,25	0,36	**
Alpha14 [9	aufrecht	männlich	1,55	1,54	0,12	0,24	0,33	**
Alpha14 [9	entspannt	männlich	1,53	1,54	0,09	0,18	0,26	**
Alpha14 [9	aufrecht	weiblich	1,56	1,585	0,08	0,17	0,23	**
Alpha14 [9	entspannt	weiblich	1,61	1,565	0,09	0,18	0,26	**
Alpha15 [9	aufrecht	männlich	1,49	1,495	0,14	0,28	0,39	**
Alpha15 [9	entspannt	männlich	1,5	1,433	0,18	0,34	0,49	*
Alpha15 [9	aufrecht	weiblich	1,52	1,525	0,11	0,22	0,31	**
Alpha15 [9	entspannt	weiblich	1,53	1,020	0,14	0,27	0,39	**

Tabelle 20: Normwerte Winkel, Einfluss Körperhaltung

9.3.3 Normwerte Winkel, Einfluss Geschlecht

Variable	Geschlecht	Körperhaltung	Mittlerer Messwert []	Normwerte	Messfehler	1,96* Messfehler	2,77* Messfehler	Messfehlerkategorie
Alpha08 [9	männlich	aufrecht	0,74	-	0,2	0,39	0,56	*
Alpha10 [9	männlich	aufrecht	1,54	1,505	0,14	0,27	0,38	**
Alpha10 [9	weiblich	aufrecht	1,47	1,000	0,14	0,27	0,39	* *
Alpha10 [9	männlich	entspannt	1,49	1,495	0,09	0,18	0,25	**
Alpha10 [9	weiblich	entspannt	1,5	1,100	0,22	0,42	0,6	*
Alpha11 [9	männlich	aufrecht	1,45	1,415	0,14	0,27	0,39	**
Alpha11 [9	weiblich	aufrecht	1,38	1,410	0,2	0,39	0,54	*
Alpha11 [9	männlich	entspannt	1,46	1,405	0,17	0,34	0,48	*
Alpha11 [9	weiblich	entspannt	1,35		0,2	0,4	0,56	*
Alpha12 [9	männlich	aufrecht	1,45	1,415	0,14	0,27	0,39	**
Alpha12 [9	weiblich	aufrecht	1,38	1,415	0,2	0,39	0,54	*
Alpha12 [9	männlich	entspannt	1,46	1,405	0,17	0,34	0,48	*
Alpha12 [9	weiblich	entspannt	1,35	1,403	0,2	0,4	0,56	*
Alpha13 [9	männlich	aufrecht	1,51	1,51	0,18	0,35	0,49	*
Alpha13 [9	weiblich	aufrecht	1,51	1,51	0,1	0,19	0,26	**
Alpha13 [9	männlich	entspannt	1,53	1,525	0,12	0,24	0,34	**
Alpha13 [9	weiblich	entspannt	1,52	1,525	0,13	0,25	0,36	**
Alpha14 [9	männlich	aufrecht	1,55	1,555	0,12	0,24	0,33	**
Alpha14 [9	weiblich	aufrecht	1,56	1,555	0,08	0,17	0,23	* *
Alpha14 [9	männlich	entspannt	1,53	1 57	0,09	0,18	0,26	**
Alpha14 [9	weiblich	entspannt	1,61	1,57	0,09	0,18	0,26	**
Alpha15 [9	männlich	aufrecht	1,49	1 505	0,14	0,28	0,39	**
Alpha15 [9	weiblich	aufrecht	1,52	1,505	0,11	0,22	0,31	* *
Alpha15 [9	männlich	entspannt	1,5	1,515	0,18	0,34	0,49	*
Alpha15 [¶	weiblich	entspannt	1,53	1,515	0,14	0,27	0,39	**

Tabelle 21: Normwerte Winkel, Einfluss Geschlecht

9.4 Fragebogen zur Erfassung relevanter Daten für die EMA - Messungen

Datum:			
Name: Vorname: Straße: PLZ: Ort:			
Geb.:			
Telefonnr.:			
1. Anamnese:			
Prä-, peri-, postnatale Auffälligk	keiten:	nein 🗌	ja ⊡, welche:
Stillen:		nein 🗌	ja ⊡, wie lange:
Flasche, welcher Sauger:		nein 🗌	ja ⊡, wie lange:
Schnuller, welcher:		nein 🗌	ja ⊡, wie lange:
Feste Nahrung, ab wann:			
Essstörungen:		nein 🗌	ja 🗌
Schluck-, Verdauungsprobleme) :	nein 🗌	ja 🗌
Entwicklungsstörung der Motori	ik:	nein 🗌	ja 🗌
(Verzögerung beim Laufen lerne	en,)		
Entwicklungsstörung des Spred	chens:	nein	ja □
Lutschgewohnheiten, Habits:		nein	☐ ja ☐, welche:
Auffälligkeiten in der Familie/Ge	eschwist	ter: nein	☐ ja ☐, welche:
1.1 Allgemeinerkrankungen:			
Stoffwechselerkrankungen: r	nein 🗌	ja ⊡, we	lche:
Verdauungsprobleme:	nein 🗌	ja ⊡, we	lche:
Adipositas:	nein 🗌	ja 🗌	
Größe:			
Gewicht:			
Allergien: nein ja , w Asthma: nein ja	velche:		
HNO: häufige Erkrankungen:			

Tonsi	illenerkr., Ade	enoide:	nein 🗌] ja	
Atmu	ng:	МА	NA 🗌		
Septu	ımabweichur	ng:	nein 🗌	ја 🗌	
Nebe	nhöhlenerkr.	:	nein 🗌	ја 🗌	
Luftschlucke	en, Globusge	fühl:	nein 🗌	ја 🗌	
Muskeltonus	s Körperhaltu	ıng:			
Traumen:			nein 🗌	ja [], welche) :
Operationen	1 :		nein 🗌	ja □, welche) :
Neurologisc	he Befunde:		nein 🗌	ja ⊡, welche	e :
Verhalten, P	syche (Erkra	ank.):	nein 🗌	ja ⊡, welche)
2. Befunde:	:				
2.1 Zahnme	edizin:				
Pflegezusta	nd, Mundhyg	iene:			
Okklusion:					
Klasse:					
Offener Biss	s: nein [] ja[
Kreuzbiss:	nein [] ja[
Schneidezal	hnstufe (mm)): vertika	al:		
		saggi	tal:		
Diastema:	nein [] ja[
Protrusion, 0	OK,UK:			nein 🗌	ja 🗌
Zungenband	d (eingeschrä	inkte Be	weglichk	.,): nein 🗌	ja 🗌
Lippenband	(hoch ansetz	zend,):	nein 🗌	ja 🗌
LKG- Spalte):			nein 🗌	ja 🗌
Kiefergelenk	k (Auffälligkei	iten):		nein 🗌	ја 🗌
SKD:					
Mundöffnun	a:				
	bogenförmi	g:			
	s- förmig:	-			
	termin. Abw	veichung	g:		
Knirschen:		nein []	

Pressen:	nein 🗌	ja 🗌		
Orofazialer Schmerz:	nein 🗌	ја 🗌		
Kopfschmerz:	nein 🗌	ја 🗌		
Sonstiger Schmerz:	nein 🗌	ја 🗌		
KFO- Behandlung:	nein 🗌	ја 🗌		
von:	bis: (LJ.)			
Apparatur:				
Rezidive:	nein 🗌	ja ⊡, weld	che:	
Kieferchirurgische Eingriff	e: n	ein 📗 ja	a [], welch	e:
Parodontologie (Auffälligk	eiten): n	ein 📗 ja	a [], welch	e:
2.2 Logopädie, Sprachth	erapie:			
Sigmatismus:	nein 🗌	ja 🗌		
Schetismus lat.:	nein 🗌	ja 🗌		
Multiple Dyslalie:	nein 🗌	ja 🗌		
Multiple Interdentalität:	nein 🗌	ја 🗌		
Andere Sprechstörungen:	nein 🗌	ja ⊡, weld	che:	
Sprachstörungen:	nein 🗌	ja ⊡, weld	che:	
Stimmstörungen:	nein 🗌	ja □, weld	che:	
Logopädische Behandlung	g: nein[ja		
von: bis:				
2.3 Orofaziale Funktion:				
Lippen: Morphologie:				
Tonus, Bewe	eglichkeit:			
Lippenschlus	ss:			
Lippensauge	en, -beissei	n:	nein 🗌	ja 🗌
Einlagern:			nein 🗌	ja 🗌
Speichel/Ris	se in Mund	dwinkeln:	nein 🗌	ja 🗌
Lippenlecker	า:		nein 🗌	ja 🗌

Lippendruck: normal ☐, erhöht ☐, vermindert ☐
Zunge: Morphologie: Tonus: Impressionen: nein ja Asymmetrien: nein ja Ankyloglossie: nein ja Ruhelage: Motilität:
Kiefer: normale Breite zu geringe transversale Breite Frontaler Engstand: OK: nein ja UK: nein ja Wangentonus. Impressionen: nein ja
Muskelbefunde (Druckdolenzen, Myogelosen, Hypertrophien,:
m.masseter: rechts links m.mentalis: rechts links
Gaumen: Form: normal hoch/spitz
Schluckmuster (angestrengt, verkrampft): nein
Ernährung: ausgewogen einseitig

ANHANG

Λ (Many d
Atmung:	Mund
	Nase
	Mischatmung
	Nasenlochtest (Spiegel): positiv negativ
	Beim Schlafen:
Besonderhei	ten:
Zahnwechse	l: normal verzögert
Sonstiges:	

9.5 Probandeninformation zur Analyse von Lippen- und Zungenbewegungen mittels elektromagnetischer Artikulographie

Ziel der durchzuführenden Untersuchung ist die Analyse von Lippen- und Zungenbewegungenbei Sprech- und Schluckbewegungen zur Untersuchung des Einflusses von muskulären Fehlfunktionen, Kieferfehlstellungen und deren Korrekturen auf die Lippen- und Zungenmotorik.

Aus der Studie werden neue Erkenntnisse über den Einfluss kieferorthopädischer, kieferchirurgischer und funktionsverbessernder Maßnahmen auf die Muskulatur im Lippen-, Zungen- und Kieferbereich erwartet, um die Stabilität kieferorthopädischer Behandlungsergebnisse zu verbessern.

Die Analyse der Bewegungen erfolgt mit der so genannten elektromagnetischenArtikulographie. Dabei werden zunächst auf die zu untersuchenden Stellen (Lippen, Zunge, Kiefer) kleine Empfängerspulen (Durchmesser: 3 x 2 x 1,5 mm) geklebt, an denen jeweils ein dünnes Kabel befestigt ist. Die Kabel der Empfängerspulenwerden am Messgerät angeschlossen. Ein Ablösen der Empfängerspulen während der Untersuchung kann es erforderlich machen, diese zu unterbrechen und die Spulen erneut wieder zu befestigen.

Anschließend wird auf den Kopf des Probanden ein Messhelm mit drei Senderspulen, welche elektromagnetische Felder ausstrahlen, aufgesetzt. Die dabei ausgestrahlten Felder bedeuten keinerlei Risiko für die zu untersuchende Person. Ein Verschlucken der Empfängerspulen ist durch die daran befestigten Kabel praktisch ausgeschlossen.

Während der Untersuchung werden bestimmte Sprech- und Schluckbewegungen aufgezeichnet. Die Untersuchungsdauer beträgt ca. 30 min.

Am Untersuchungsende werden die Empfängerspulen wieder vorsichtig abgelöst, ohne dass dabei die Haut oder Schleimhaut verletzt wird. Möglicherweise

kann durch verbliebene Klebereste die Tastempfindung an der Zunge bis zu 30min. beeinträchtigt sein.

Bei der Studie handelt es sich um eine so genannte offene Studie, bei der die Probanden nach bestimmten Krankheitskriterien bzw. als Kontrollgruppe gesunde Probanden ausgewählt werden.

Die Teilnahme an der Studie hat keinerlei Auswirkung auf die Art der durchgeführten therapeutischen Maßnahmen und ist für die zu untersuchende Person freiwillig. Der Proband hat das Recht, jederzeit und ohne Angabe von Gründen und ohne Benachteiligung bei der weiteren Behandlung aus der Studie auszuscheiden. Es wird darauf hingewiesen, dass das Arztgeheimnis gewahrt bleibt und Daten nur in anonymer Form weitergegeben bzw. veröffentlicht werden.

Der Proband kann selbst erwägen, ob er für die oben genannten Ziele die aufgeführten Risiken auf sich nehmen will.

9.6 Einverständniserklärung

Mit der Unterschrift erklärt sich der Unterzeichnende bereit, dass er über die Ziele der Studie, die Untersuchungsmethoden und deren Risiken, über die Freiwilligkeit der Teilnahme sowie die Möglichkeit, jederzeit und ohne Angabe von Gründen und ohne Benachteiligung bei der weiteren Behandlung aus der Studie ausscheiden zu können, ausreichend informiert, ausreichend informiert worden ist und keine weiteren Fragen mehr hat.

Datum, Unterschrift (Proband):
Datum, Unterschrift (Untersucher):

10. Danksagung

Ich danke Herrn Prof. Dr. Dr. Göz für die freundliche Überlassung des sehr interessanten Dissertationsthemas.

Herzlichen Dank an Herrn Dr. Bernd Koos für seine hervorragende Betreuung während der gesamten Zeit. Insbesondere in der Phase der Planung, sowie Durchführung der Auswertung und deren statistischer Betrachtung, stand er in vielen umfangreichen Gesprächen immer konstruktiv kritisch und sehr hilfreich zur Seite.

Ich bedanke mich bei Herrn Diplomphysiker Edgar Schaupp für seine umfassende Unterstützung bei der Programmierung der Software.

Weiterhin bedanke ich mich bei allen Probanden, die in ihrer Freizeit unentgeltlich an den zeitaufwendigen Messungen teilgenommen haben.

Einen besonderen Dank an meine Eltern für Ihre Unterstützung während der gesamten Zeit, die diese Dissertation in Anspruch genommen hat.

11. Lebenslauf

Persönliche Daten

Name Cornelia Grau

Geburtsdatum 23.01.1983

Geburtsort Mutlangen

Eltern Rita Grau, geb. Maidan

Eberhard Grau

Schulbildung

1989 - 1993 Grundschule Schwäbisch Gmünd

1993 - 2002 Hans-Baldung-Gymnasium Schwäbisch Gmünd

Abschluss: Abitur

Studium

2002 - 2008 Eberhard-Karls-Universität Tübingen

28.05.2008 Abschluss: Staatsexamen

08/2006 Famulatur an den Universitäts-Zahnkliniken Zürich und

Basel

Berufstätigkeit

10/2008 - 09/2009 Assistenzzahnärztin in zahnärztlicher

Gemeinschaftspraxis Öhringen

10/2009 - 09/2010 Assistenzzahnärztin im Zahnärztehaus Ilsfeld

Seit 10/2010 Partnerin im Zahnärztehaus Ilsfeld