Identifizierung Interleukin-17 positiver Zellpopulationen bei Patienten mit rheumatoider Arthritis

Inaugural-Dissertation
zur Erlangung des Doktorgrades der Medizin
der Medizinischen Fakultät
der Eberhard-Karls-Universität zu Tübingen

vorgelegt von
Paul Martin Schlegel
aus
Leipzig
2010
Dekan : Professor Dr. I. B. Autenrieth

1. Berichterstatter : Professor Dr. C. Müller
2. Berichterstatter : Professor Dr. I. Kötter
Inhaltsverzeichnis

1. Einleitung
1.1. Rheumatoide Arthritis
 1.1.1. Geschichte der Rheumatoiden Arthritis.. S. 1
 1.1.2. Klinik der Rheumatoiden Arthritis.. S. 2
 1.1.3. Epidemiologie und Ätiologie der Rheumatoiden Arthritis............ S. 5
 1.1.4. Rolle der T-Zellen bei der Rheumatoiden Arthritis................. S. 6
 1.1.5. Rolle der Zytokine bei der Rheumatoiden Arthritis............... S. 8

1.2. Interleukin 17
 1.2.1. Entdeckung des Interleukin 17... S. 11
 1.2.2. Rezeptoren des Interleukin-17... S. 12
 1.2.3. Charakteristika der Mitglieder der IL-17 Familie......................... S. 12
 1.2.4. Das Th1/Th2-Paradigma... S. 14
 1.2.5. Differenzierung von naiven T-Zellen zu Th17-Zellen............ S. 15
 1.2.6. Rolle von Interleukin 17 bei Autoimmunerkrankungen........ S. 18
 1.2.7. Rolle von Interleukin 17 bei der Rheumatoiden Arthritis...... S. 19

1.3. Zielsetzung.. S. 21

2. Material und Methoden
 2.1. Chemikalien.. S. 23
 2.2. Material.. S. 23
 2.3. Geräte... S. 24
 2.4. Software.. S. 24
 2.5. Zelllinien... S. 22
 2.6. Patienten und Probanden... S. 25
 2.7. Isolierung mononukleärer Zellen aus Vollblut.. S. 28
 2.8. Bestimmung der Anzahl vitaler Zellen mittels Trypanblau................. S. 29
 2.9. Kryokonservierung der Zellen... S. 29
 2.10. Auftauen der Zellen.. S. 29

2.11. Stimulanzien
 2.11.1. Phytohämagglutinin (PHA).. S. 30
 2.11.2. Phorbol-12-Myristat-13-Aacetat (PMA)/Ionomycin..................... S. 30
2.11.3. MHC Klasse II CEFT Peptid Pool.. S. 30

2.12. Antikörper .. S. 32

2.13. Durchflusszytometrie (FACS)
 2.13.1. Grundlagen der Durchflusszytometrie................................. S. 33
 2.13.2. FACS-Analyse von PBMC ... S. 37
 2.13.3. FACS-Analyse von B-Zelllinien .. S. 39
 2.13.4. Färbung von Kontroll-BEADS zur Kompensation................. S. 40
 2.13.5. Messung der Zellen am LSRII... S. 41
 2.13.6. Ausschluß unspezifisch markierter Zellen............................. S. 41
 2.13.7. Identifizierung lebendener und toter Zellen am FACS............. S. 42
 2.13.8. Datenauswertung .. S. 43
 2.13.9. Das Lymphozyten-Gate ... S. 44
 2.13.9.1. Bewertung der CD3 Markierung...................................... S. 45
 2.13.9.2. Bewertung der CD4 und CD8 Markierung......................... S. 46
 2.13.9.3. Bewertung der CD28 Markierung..................................... S. 47
 2.13.9.4. Bewertung der CD25 Markierung..................................... S. 48
 2.13.9.5. Bewertung der CD56 Markierung..................................... S. 49
 2.13.9.6. Bewertung der intrazellulären Markierungen von
 IL-17 und IFN-γ .. S. 50
 2.13.9.7. Nomenklatur der Gates .. S. 52

3. Ergebnisse

3.1. Standardisierung der Testreagenzien und Zytokinmengen
 3.1.1. Vergleich von Brefeldin und Monensin als Inhibitor der
 Zytokinsekretion.. S. 53
 3.1.2. Stimulationskinetik der PMBC zur Optimierung der
 Interleukin-17 Analyse .. S. 54
 3.1.3. Antikörpertitrationen ... S. 55
 3.1.4. Untersuchung zum Einfluss von Einfrieren auf die FACS
 Detektion von Oberflächenantigenen sowie Interleukin-17 und
 Interferon-γ .. S. 57

3.2. Charakterisierung von Lymphozytensubpopulationen und ihrer
Zytokinsekretion von RA-Patienten im Vergleich zu Gesunden

3.2.1. Unterschiede in der Gesamtheit der Lymphozytenpopulationen... S. 61

3.2.2. Identifizierung vitaler Zellen im Lymphozytengate............ S. 64

3.2.3. CD3⁺ Lymphozyten im Gate I

3.2.3.1. CD3⁺/CD4⁺ Lymphozyten im Gate I.......................... S. 66
3.2.3.2. CD3⁺/CD8⁺ Lymphozyten im Gate I.......................... S. 66
3.2.3.3. CD3⁺/CD4⁺/CD8⁺ doppelt positive Lymphozyten im Gate I.. S. 67
3.2.3.4. CD3⁺/CD4⁺/CD8⁺ doppelt negative Lymphozyten im Gate I.. S. 68

3.2.4. CD3⁻ Zellen im Gate I

3.2.4.1. CD3⁻/CD4⁺ Zellen im Gate I................................. S. 69
3.2.4.2. CD3⁻/CD8⁺ Zellen im Gate I................................. S. 70

3.2.5. CD25⁺ Lymphozyten im Gate I................................. S. 70

3.2.6. CD56⁺ Zellen im Gate I

3.2.6.1. CD3⁺/CD56⁺ NK-T-Zellen im Gate I........................ S. 72
3.2.6.2. CD3⁻/CD56⁺ NK-Zellen im Gate I............................ S. 72

3.2.7. CD28⁺ Lymphozyten im Gate I................................. S. 75

3.2.8. IFN-γ⁺ Zellen in verschiedenen Zellpopulationen

3.2.8.1. CD3⁺/IFN-γ⁺ Lymphozyten im Gate I.................... S. 77
3.2.8.2. CD3⁻/IFN-γ⁺ Zellen im Gate I............................. S. 79
3.2.8.3. CD25⁺/IFN-γ⁺ Lymphozyten im Gate I............... S. 81
3.2.8.4. CD28⁺/IFN-γ⁺ Lymphozyten im Gate I............... S. 82

3.2.9. Interleukin-17⁺ Zellen in verschiedenen Zellpopulationen

3.2.9.1. IL-17⁺ Lymphozyten im Gate I und im Gate II........ S. 85
3.2.9.2. CD3⁺/IL-17⁺ Lymphozyten im Gate I.................... S. 86
3.2.9.3. CD3⁻/IL-17⁺ Zellen im Gate I............................. S. 88
3.2.9.4. CD25⁺/IL-17⁺ Lymphozyten im Gate I............... S. 90
3.2.9.5. CD28⁺/IL-17⁺ Lymphozyten im Gate I............... S. 91
3.2.9.6. CD56⁺/IL-17⁺ Lymphozyten im Gate I............... S. 92

3.2.10. Interleukin-17⁺ Zellpopulationen
3.2.10.1. Zellpopulationen der IL-17+ Zellen im Lymphozytengate I..S. 95
3.2.10.2. Zellpopulationen der IL-17+ Zellen im Lymphozytengate II..S. 97
3.2.11. IFN-γ+ Zellpopulationen
3.2.11.1. Zellpopulationen der IFN-γ+ Zellen im Lymphozytengate I..S. 99
3.2.11.2. Zellpopulationen der IFN-γ+ Zellen im Lymphozytengate II..S. 101
3.2.12. IL-17+/IFN-γ+ doppelt positive Zellpopulationen..S. 104
3.3. Untersuchung der Interleukin-17+/CD3- Zellen..S. 106
3.4. Untersuchung von B-Zelllinien auf Interleukin-17 Expression..... S. 108
3.5. Korrelation klinischer Parameter mit der IL-17 Expression........S. 110
4. Diskussion
4.1. Interleukin-17 exprimierende Zellen in PBMC.........................S. 112
4.2. Unterschiede der Zellpopulationen bei RA-Patienten und Gesunden..................................S. 116
4.3. Unterschiede der IL-17+ Zellpopulationen bei RA-Patienten und Gesunden..........................S. 117
4.4. Stimulierbarkeit der Zellpopulation..S. 121
5. Zusammenfassung..S. 124
6. Abkürzungsverzeichnis..S. 126
7. Literaturverzeichnis..S. 129
8. Danksagung..S. 142
9. Lebenslauf...S. 143
1 Einleitung

1.1 Rheumatoide Arthritis (RA)

1.1.1. Geschichte der RA
Bei Skelettuntersuchungen an Europäern und Nordafrikanern aus der Antike fanden sich Hinweise, dass schon vor mehr als 2000 Jahren verschiedene Erkrankungen des rheumatoiden Formenkreises, wie z.B. Ostheoarthritis, Spondylitis ankylosans und Gicht auftreten.\(^1\) Typische Läsionen der rheumatoiden Arthritis, wie gelenknahe Osteoporose und Knorpeldestruktion, wurden jedoch nicht gefunden. Andere palaeontopathologische Untersuchungen einiger Jahrtausende alter nordamerikanischer Stämme ergaben klare Belege, dass die RA in diesen Bevölkerungsgruppen schon sehr früh bestand.\(^91\) Die Prävalenz der RA ist mit über 5% in einigen Bevölkerungsgruppen dieser geographischen Regionen auch heute noch außerordentlich hoch.

Erste Hinweise für ein Vorkommen der RA in Europa finden sich in Werken des niederländischen Malers Jacob Jordaens aus dem frühen 17. Jahrhundert (Abb. 1) und in einem 1676 von Sydenham veröffentlichten Fallbericht.

\underline{Abbildung 1}: „La Familia de Jordaens en un Jardín“ by Jacob Jordaens (ca.1630) (Museo del Prado, Madrid, Spanien)

Der Norweger Erik Waaler entdeckte 1940 den sog. Rheumafaktor und zeigte dass der im Serum von Rheumapatienten häufig vorkommende Antikörper zu einer Hämagglutination mit Schaferythrozyten führt (Waaler-Rose-Test).

1957 definierte Charles Short die Rheumatoide Arthritis als Krankheitsentität, die sich von den seronegativen Sponyloarthropathien, der Osteoarthritis, dem systemischen Lupus Erythematodes und vielen anderen Erkrankungen durch definierte klinische Symptome abgrenzen läßt (s.u.).

1.1.2. Klinik der Rheumatoiden Arthritis

Die Diagnose „Rheumatoide Arthritis“ kann nicht anhand einzelner klinischer, radiologischer oder serologischer Parameter gestellt werden. Zur Sicherung der Diagnose werden deshalb seit 1987 die Kriterien des „American College of Rheumatology“ (ACR)\(^6\) herangezogen:
● Morgensteifigkeit in und um die Gelenke von mehr als einer Stunde Dauer
● Synovialitis (Arthritis) in mindestens drei Gelenkbereichen
● Synovialitis (Arthritis) der Hand-, Fingergrund- und Fingermittelgelenk
● symmetrischer Gelenkbefall
● subkutane Knoten (Rheumaknoten)
● positiver Rheumafaktor
● typische radiologische Veränderungen an den Händen

Bestehen vier der sieben Kriterien, so gilt die Diagnose der rheumatoide Arthritis als gesichert. Die ersten vier Kriterien müssen mindestens über sechs Wochen bestehen.

Als extraartikuläre Erscheinungsformen können Anämie, Müdigkeit, subkutane Rheumaknoten, viszerale Organbeteiligungen, Neuropathien, Skleritis, das Sjögren Syndrom sowie eine Nierenbeteiligung im Krankheitsverlauf auftreten.

Laborparameter werden zur Diagnose, Differentialdiagnose und insbesondere zur Verlaufskontrolle herangezogen. Hierbei spielen erhöhte Akute-Phase-Proteine (BSG, CRP), der Rheumafaktor und Antikörper gegen citrullinierte Peptid-/Protein-Antigene (anti-CCP) eine wichtige Rolle.

Der Rheumafaktor ist ein Autoantikörper, meist vom IgM Typ, der gegen den Fc-Teil von IgG Immunglobulinen gerichtet ist und bei 70-80% der RA-Patienten gefunden wird. Allerdings ist der Rheumafaktor für die Rheumatoide Arthritis nicht spezifisch, sondern kommt auch gehäuft beim Sjögren Syndrom (70%), dem systemischen Lupus Erythematoses (SLE) (20-30%), bei diversen Virusinfektionen sowie bei 5-10% der Gesunden vor.
Der anti-cyclisches Citrulinpeptid (CCP) Antikörper kann mittels ELISA bei den meisten RA-Patienten nachgewiesen werden und kommt bei anderen Krankheitsbildern sehr viel seltener vor.\(^{(54)}\)

Die Akut-Phase-Proteine sind sehr unspezifisch. Sie gelten jedoch als ein guter Parameter für die Entzündungsaktivität der Erkrankung.

Zur objektiven, klinischen Beurteilung des Verlaufs der RA seit einigen Jahren in Europa der „Disease Activity Score 28“ (DAS28) verwendet. Dieser von Prevoo et al.\(^{(89)}\) modifizierte Wert berechnet sich aus folgenden für die Krankheit relevanten Aktivitätsparametern:

- Anzahl druckschmerzhafter Gelenke (dG)
- Anzahl geschwollener Gelenke (gG)
- Blutsenkungsgeschwindigkeit (BSG nach 1 Std, mm)
- Patientenurteil zur Krankheitsaktivität (VAS; mm)

Der DAS28 berechnet sich nach der Formel:

\[
\text{DAS28} = 0,56 \times \sqrt{\text{TJC 28}} + 0,28 \times \sqrt{\text{SJC 28}} + 0,70 \times \log_{10}(\text{BSG}) + 0,014 \times \text{VAS}
\]

(TJC 28 = Anzahl druckschmerzhafter Gelenke basierend auf dem 28-Gelenke-Index; SJC28 = Anzahl geschwollener Gelenke basierend auf dem 28-Gelenk-Index; VAS = Visuelle analoge Schmerzskala von 0-100 in mm)

Nach Aletha et al.\(^{(3)}\) gelten DAS28 Werte zwischen 0,4 und 2,4 als Zeichen für eine Remission, zwischen 2,4 und 3,6 für eine geringe Krankheitsaktivität, zwischen 3,6 und 5,5 für eine mittlere und >5,5 für eine hohe Krankheitsaktivität.
1.1.3 Epidemiologie und Ätiologie der Rheumatoiden Arthritis

Für das Entstehen der Rheumatoiden Arthritis sowie für deren Schweregrad sind vermutlich verschiedene exogene Umweltfaktoren sowie eine genetische Belastungen von Bedeutung.

Als endogene Risikofaktoren wurden hormonelle Faktoren identifiziert. Rauchen scheint die Entwicklung der RA zu begünstigen und den Schweregrad der RA negativ zu beeinflussen.

Vor mehr als 20 Jahren konnte ein Zusammenhang zwischen dem Auftreten der RA und dem Vorkommen des vererbaren HLA-Merkmals DR4 nachgewiesen werden. Es konnte gezeigt werden, dass die RA primär mit einer spezifischen Aminosäuresequenz in Position 70-74 der β-Kette der HLA-DR Moleküle assoziiert ist. Diese verschiedenen HLA-DR Molekülen gemeinsame Sequenz wurde als „Shared Epitope“ (SE) bezeichnet. Zu den HLA-DR Molekülen, die diese Sequenz aufweisen, zählen HLA-DR4 (HLA-DRB1*0401, *0404, *0405, *0408), HLA-DR1 (HLA-DRB1*0101, *0102) und HLA-DR10 (HLA-DRB1*1001) sowie einzelne HLA-DR14 Varianten (*1402 und *1406). Es ist jedoch noch unklar, in welchem molekularen Zusammenhang das „shared epitop“ zum Auftreten der Rheumatoiden Arthritis steht.

Eine Theorie geht davon aus, dass SE positive HLA-DR Moleküle artherogene Peptide präsentieren und zur Aktivierung autoreaktiver T-Zellen führen. Eine andere Hypothese, die des „Molekularen Mimikry“, postuliert, dass SE positive HLA-DR Moleküle Ähnlichkeit zu exogenen Antigenen aufweisen und dadurch im Rahmen der Aktivierung von Immunreaktionen gegen diese
vermeintlichen Fremdantigene zu Autoreaktionen führen.

1.1.4 Rolle der T-Zellen bei der Rheumatoiden Arthritis

Bisher konnte keine spezielle T-Zellpopulation, die für die Entstehung und Aufrechterhaltung der chronisch-fortschreitenden Entzündungsreaktion verantwortlich ist, identifiziert werden.

Früher galt die RA als eine klassische „Th1-vermittelt“ Erkrankung, die durch eine vermehrte IFN-\(\gamma\) Produktion sowie die Abwesenheit von Th2 Zytokinen charakterisiert ist. Neuere Untersuchungen zeigten, dass RA Patienten vermutlich auch ein Defizit an naiven T-Zellen aufweisen und verstärkt Effektor-T-Zellen anhäufen.

Auch CD8+-Zellen sollen, zusätzlich zu Subpopulationen, die Zytotoxizität und IFN-γ Produktion zeigen, eine immunregulatorische Subpopulation enthalten. Beschrieben wurde eine CD8+/CD28-/CD56+ Subpopulation im Blut und im Synovialgewebe von Gesunden und RA-Patienten, die eine inhibitorische Aktivität auf die CD4-T-Zell-Antworten in der Frühphase der Antigenstimulation
naïver T-Zellen sowie in der Differenzierung der CD4-Memory-Zellen besitzen soll.(19)

Als eine weitere, seit langem bekannte T-Zellabnormalität der RA kann die relative Lymphopenie angesehen werden, die sich durch eine reduzierte Zahl und Funktion von naïven CD4-Zellen auszeichnet.(30)

1.1.5 Rolle der Zytokine bei der Rheumatoiden Arthritis

Zytokine spielen eine wichtige Rolle in der Regulation von Immunreaktionen, die mit der Pathogenese der RA in Zusammenhang gebracht werden. Viele Zytokine, die chronische Entzündungen begünstigen und zur Gelenkzerstörung führen können, scheinen im Synovialraum und im Blut von RA-Patienten vermehrt exprimiert und im Vergleich zu Gesunden dysreguliert zu sein.

Dazu zählen vor allem die Zytokine TNF-α und IL-1, die wichtige Regulatormoleküle verschiedener angeborener Immunreaktionen sind. Eine weitere wichtige Rolle in der Aktivierung und Funktion spezifischer T-Zellpopulationen spielen IFN-γ, IL-15 und IL-17. Während TNF-α, IL-15, IL-17 bei RA-Patienten in der Synovialflüssigkeit und im Gewebe erhöht exprimiert werden, scheint IFN-γ im entzündeten Gewebe nur in geringen Mengen vorzukommen.

Der Tumor-Nekrose Faktor alpha (TNF-α) ist wegen der erhöhten Expression im Blut und im entzündeten Gewebe bei RA-Patienten heute ein wichtiges Ziel in der Therapie der Rheumatoiden Arthritis.(107) Die TNF-α-Blockade-Therapie erwies sich im Tierexperiment und auch beim Menschen als sehr effizient in der Hemmung der spezifischen Entzündungsprozesse.(105)

Die Hoffnung, weitere Mitglieder der TNF-Familie als therapeutische Zielstruktur zu etablieren, hat sich bisher nicht erfüllt. Die Blockade des viel versprechenden

Antagonisten gegen weitere Zytokine, vor allem gegen IL-1 und IL-6, befinden sich in vielversprechenden klinischen Versuchsphasen oder sind auch schon zugelassen.

IL-32 gehört zu den neueren, bisher wenig erforschten Zytokinen, die bei der RA dysreguliert zu sein scheinen. In immunhistochemischen Analysen konnte eine signifikant erhöhte Expression von IL-32 bei RA, nicht jedoch bei Osteoarthritis-Patienten gezeigt werden. In murinen Experimenten der RA zeigte sich eine Korrelation der Expression von IL-32, TNF-α, IL-6 und IL-1. Der Einsatz von TNF-α-Antagonisten führte auch zu einer deutlichen Reduktion von IL-32. Dies deutet auf eine TNF-α-abhängige Regulation von IL-32 hin.

Eine weitere wichtige Rolle bei der RA scheint auch die Interleukin-10 Familie zu spielen. Die neusten Mitglieder dieser Zytokinfamilie IL-20 und IL-22, gelten im Unterschied zu IL-10, als proinflammatorische Zytokine. Es konnte gezeigt werden, dass bei RA Patienten und im Mausmodell (CIA) sowohl IL-20 als auch seine 3 Rezeptoren erhöht in der Synovialmembran und in synovialen
Fibroblasten exprimiert werden. Hsu et al. vermuten, dass IL-20 durch autokrine Stimulation von Fibroblasten und Makrophagen die Sekretion chemotaktischer Faktoren induziert, die ein Einwandern von Leukozyten begünstigen und die Entzündung voranschreiten lassen.

In neueren Studien wird IL-17 als zentrales Zytokin beschrieben, dem eine wichtige Rolle in der Induktion von pathologischen Autoimmunreaktionen bei verschiedenen Autoimmunerkrankungen zukommen soll. Es wird von spezialisierten T-Zellpopulationen produziert, durch IL-6, TGF-β, IL-23 sowie durch IL-1 induziert und durch IFN-γ und IL-4 gehemmt (Kap. 1.2.5.).
1.2 Interleukin-17

1.2.1 Entdeckung des Interleukin-17
Interleukin-17 (IL-17) repräsentiert eine Zytokinfamilie, der 6 verschiedene Zytokine (IL17 A-F) angehören. Erstbeschrieben und kloniert wurde IL-17A 1993 von der Arbeitsgruppe um Rouvier. Zunächst wurde dieses Zytokin unter der Bezeichnung CTLA8 als Produkt einer Hybridomazelle aus einer zytotoxischen T-Zelle der Maus und einer T-Zelle der Ratte identifiziert. Das dafür codierende Gen wurde von der Arbeitsgruppe um Rouvier in der Maus auf dem Chromosomen 1A und beim Menschen auf dem Chromosomen 6p12 (Tab. 1) lokalisiert.

In der genannten Arbeit beschrieben Rouvier et al. auch eine Sequenzähnlichkeit von CTLA-8 mit dem offenen Leserahmen 13 des T-lymphotropen Herpesvirus Saimiri (HVS). Die Sequenzhomologie zwischen IL-17 und HVS 13 führte zur Hypothese, dass das Virus einen Teil des humanen IL-17 Gens sich zu eigen gemacht hat, um damit einen Überlebensvorteil im infizierten Wirt zu gewinnen.

In der Folge wurden fünf weitere IL-17 Familienmitglieder identifiziert. Zwischen den einzelnen Mitgliedern der IL-17 Familie besteht eine große Homologie. Dabei sind sich IL-17A und IL-17F am ähnlichersten. IL-17E (IL-25) hingegen, das unabhängig von den anderen Zytokinen entdeckt und zunächst IL-25 genannt wurde, hat eine Strukturhomologie von nur 16% der primären Aminosäuren zum IL-17A der Maus und Ratte. Die IL-17-Zytokine zeigen keine Homologien zu anderen Proteinen von Säugetieren und bilden deshalb eine eigenständige Zytokinfamilie.
1.2.2 Rezeptoren der IL-17 Familie

IL-17 Rezeptoren wurden auf sehr vielen, unterschiedlichen humanen Zellen, wie z.B. NK-Zellen, Vorhautfibroblasten und auch B-Zellen identifiziert, so dass man das Vorkommen des Rezeptors als nahezu ubiquitär bezeichnen kann.\(^{(123)}\)

Die IL-17 Rezeptoren gehören zu den Typ I Transmembranproteinen, die keinerlei Ähnlichkeit mit anderen bekannten Zytokinrezeptoren haben. Bis heute konnten fünf verschiedene IL-17 Rezeptoren identifiziert werden: IL-17R (bzw. IL-17RA), IL-17RH\(^{1(94)}\) und IL-17RL (receptor like)\(^{(35)}\), sowie IL-17RD und IL-17RE.\(^{(72)}\)

1.2.3 Charakteristika der Mitglieder der IL-17 Familie

Aufgrund der sehr großen Ähnlichkeit sowohl bezüglich der Sequenz als auch des Vorkommens werden IL-17A und IL-17F häufig gemeinsam behandelt. Im weiteren Text dieser Arbeit wird IL-17 äquivalent zu IL-17A benutzt.

Tabelle 1: Die humane IL-17 Zytokinfamilie nach Kolls et al. \(^{(47)}\)

<table>
<thead>
<tr>
<th>Zytokin</th>
<th>Weitere Namen</th>
<th>Genort</th>
<th>Homologie des humanen mit dem murinen IL-17 in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-17A</td>
<td>IL-17, CTLA-8</td>
<td>6p12</td>
<td>62</td>
</tr>
<tr>
<td>IL-17B</td>
<td>CX1 NERF</td>
<td>5q32-34</td>
<td>88</td>
</tr>
<tr>
<td>IL-17C</td>
<td>CX2</td>
<td>16q24</td>
<td>83</td>
</tr>
<tr>
<td>IL-17D</td>
<td>IL-27</td>
<td>13q11</td>
<td>78</td>
</tr>
<tr>
<td>IL-17E</td>
<td>IL-25</td>
<td>14q11.1</td>
<td>81</td>
</tr>
<tr>
<td>IL-17F</td>
<td>ML-1</td>
<td>6p12</td>
<td>77</td>
</tr>
</tbody>
</table>

Interleukin-17 A wurde ursprünglich als Botenstoff von aktivierten CD4 Memory-T-Zellen im Blut beschrieben.\(^{(122),(23)}\) Jedoch zeigten Daten, dass auch murine\(^{(33)}\) und humane\(^{(96)}\) CD8 Memory-T-Zellen (CD45RO\(^+\)) nach Stimulation genauso wie Neutrophile\(^{(21)}\) in der Lage sind IL-17A und IL-17F zu produzieren.
IL-17A und IL-17F liegen nur 46kb voneinander entfernt auf dem kurzen Arm von Chomsom 6 beim Menschen und auf Chromosom 1 bei der Maus (Tab. 1). Beide Zytokine werden von einer gemeinsamen Promoterregion reguliert und transkribiert. (2)

Interleukin-17 B wurde durch gezielte Suche nach weiteren IL-17 homologen Sequenzen in einer cDNA Datenbank identifiziert und danach kloniert. (94),(57) IL-17B wird vor allem im Pankreas, Magen und Dünndarm so wie auch im Rückenmark exprimiert. (57),(71) Weder IL-17B noch IL-17C wird von Lymphozyten sezerniert.

Interleukin-17 C wurde im menschlichen Hoden, im Thymus, in der Milz und in der Prostata gefunden. (72)

Interleukin-17 D wurde durch Klonierung von Transkripten, die zu IL-17A Homologien zeigten mit Hilfe der RACE-PCR geklonnt und identifiziert. Es wird hauptsächlich von Skelettmuskelzellen, neuronalen Zellen, Herzmuskelzellen, dem Fettgewebe, der Lunge, dem Pankreas und in geringerem Umfang von nicht aktivierten CD4-T-Zellen produziert. (101) Im Gegensatz zu IL-17A und IL-17F wird IL-17D nicht von aktivierten T-Zellen exprimiert

Interleukin-17 E (IL-25) ist das Zytokin, das sich in seiner Proteinsequenz am stärksten von den anderen Zytokinen der Familie unterscheidet. Es wird insbesondere in der Niere sowie auch in der Leber exprimiert. Geringere Mengen diese Zytokins wurden in einer Reihe weiterer peripherer Organe beschrieben. (65)

Interleukin-17 F weist ein dem IL-17A ähnliches Expressionsmuster auf. Es wird vorwiegend von aktivierten CD4 Zellen und Monozyten exprimiert. (102) Es gibt Anhaltspunkte dafür, dass IL-17F in chronischen und allergischen Entzündungsprozessen der Lunge eine Rolle spielt. (38),(121)
1.2.4 Das Th1/Th2-Paradigma

Mit der Einführung der Klonierungstechnik für T-Zellen\(^{(100)}\) fanden Forscher, dass ein Teil der antigen-stimulierten CD4-T-Zellklone den B-Zellen Hilfe zur Differenzierung zu antikörperproduzierenden Plasmazellen vermitteln können, während andere CD4-T-Zellen die Phagozytose durch Makrophagen und die Generierung von zytotoxischen T-Zellen fördern.\(^{(75)}\) Solche Funktionsunterschiede konnten auf die Produktion von unterschiedlichen Zytokinen zurückgeführt werden, die heute als Th1 bzw. Th2 Zytokine bekannt sind. Mosmann und Coffmann postulierten 1987,\(^{(73)}\) dass die CD4 T-Zellen sich aus zwei funktionell unterschiedlichen T-Zellpopulationen, den sogenannten Th1 und Th2 T-Zellen zusammensetzen. Th1-Zellen sind im Wesentlichen für die Stimulation von Hypersensitivität und Zell-vermittelten Immunantwort entsprechend einer Typ IV Reaktion nach Coombs und Gell verantwortlich, während Th2-Zellen die humoral-allergische Immunantwort stimulieren.\(^{(74)}\) Im positiven Feedback fördert dabei jede funktionelle Subpopulation ihre eigene Expansion und hemmt im negativen Feedback, die des anderen Subtyps durch die jeweilige spezifische Zytokinsekretion (Abb. 2).

Th1-Zellen definieren sich vor allem durch die Sekretion von IFN-γ, IL-12 und IL-2. IFN-γ ist für die Aktivierung der Phagozytose von Pathogenen durch Makrophagen sowie für die Generierung von zytotoxischen T-Zellen zur Eliminierung intrazellulärer Pathogene essentiell.

Th2-Zellen produzieren vor allem IL-4, IL-5, IL-6, IL-10 und IL-13, die als B-Zell Wachstums- und Differenzierungsfaktoren zur Ausreifung von Plasmazellen mit bevorzugter Synthese von IgE dienen. Th2 Zytokine fördern auch die Reifung von Eosinophilen und inhibieren die Makrophagenfunktion.
1.2.5 Die Differenzierung von naiven T-Zellen zu Th17-Zellen

IL-17 produzierende T-Zellen gelten heute als eine weitere funktionell wichtige CD4-T-Zellsubpopulation.(34) In Mausmodellen, der experimentellen autoimmunen Enzephalomyelitis (EAE) und der Kollagen induzierten Arthritis (engl. CIA) sowie der chronisch entzündlichen Darmerkrankung (CED),(11),(66) konnte gezeigt werden, dass das Ausschalten der IL-17 T-Zellpopulation zu einer Verminderung der Autoimmunphänomene führt. Zur Herkunft der IL-17 produzierenden T-Zellen wurden aus den experimentellen in vivo und in vitro Daten folgende Hypothesen entwickelt (Abb.3).

Zunächst wurde postuliert, dass Th1- und Th17-Zellen im frühen
Differenzierungsstadium eine gemeinsame Vorgängerzelle besitzen, die sich aus einer naiven CD4-Vorläuferzelle entwickelt hat. Diese „Th1-Vorgängerzelle“ oder „prä-Th1-Zelle“ soll sich je nach An- bzw. Abwesenheit von IL-12 oder IL-23 in Th1 und Th17 Zellen weiter differenzieren lassen.

Eine zweite Hypothese geht davon aus, dass sich die Th1- und Th17-CD4-Zelllinien völlig unabhängig voneinander entwickeln.\(^{(34),(84)}\)

Letztere Hypothese entspricht nach heutiger Erkenntnis am ehesten den natürlichen Gegebenheiten. So zeigten Harrington et al.\(^{(34)}\), dass polarisierte Th1-Zellen nicht mehr auf IL-23 ansprechen und dass IFN-γ, als wesentliches Zytokin der Th1 Differenzierung, ein potenter Inhibitor der Th17-Ausreifung ist. Ähnliches wurde auch für Th2-Zellen beschrieben. So lassen sich diese auch nicht durch IL-23 beeinflussen und IL-4 als Th2-Zytokin erwies sich als potenter Inhibitor der Th17-Differenzierung. Park et al.\(^{(84)}\) konnten in in-vivo

Abbildung 3: aus Wynn et al, 2005\(^{(12b)}\), das in dieser Zeichnung beschriebene IL-23 zur Differenzierung sollte um TGF-β ergänzt werden (s.u.)
Experimenten zeigen, dass die Induktion einer EAE in IFN-γ (Th1) und T-bet (Th2) defizienten Mäusen zu einer ausgeprägten Th-17 Antwort führte.

Obwohl IL-23 eine wichtige Rolle in der Th17 Differenzierung zu spielen scheint, haben mehrere Autoren auch eine IL-23 unabhängige Th17 Differenzierung beschrieben.(84),(64),(111) Alle drei Arbeitsgruppen berichteten unabhängig voneinander über TGF-β als zur Differenzierung notwendigen Faktor.

Dass in Ko-Kulturen mit LPS-aktivierten dendritischen Zellen (DC) und regulatorischen T-Zellen aus naiven T-Helfer-Zellen IL-17, nicht aber IL-4 oder IFN-γ produzierende T-Zellpopulationen generiert werden können, wurde von Veldhoen et al. gezeigt.(111) Durch Blockade von TGF-β konnte gezeigt werden, dass TGF-β ein kritischer Faktor für die Differenzierung von Th17-Zellen ist und dass regulatorische T-Zellen nicht obligat für die Differenzierung von Th17-Zellen sind.

Zusätzlich zu TGF-β werden zur Induktion und Differenzierung von Th17-Zellen noch weitere lösliche Faktoren benötigt, die von dendritischen Zellen nach Induktion über den TLR- oder MyD88-Signalweg sezerniert werden. Bei der Analyse solcher Faktoren, die für die Th17-Differenzierung besonders wichtig im Zusammenspiel mit TGF-β sind, fand sich IL-6 als kritischer Kofaktor. In Experimenten ohne APC konnte gezeigt werden, dass TGF-β und IL-6 auch alleine in der Lage sind die Th17-Differenzierung zu induzieren.(64)

Ausgehend von der Beobachtung, dass IFN-γ und IL-4 die Th17-Differenzierung inhibieren, konnten Harrington et al.(34) zeigen, dass TGF-β umgekehrt auch die Differenzierung von Th1- und Th2-Zellen inhibiert (Abb. 4).

IL-6 hingegen supprimiert die Differenzierung von naiven T-Zellen zu Foxp3* regulatorischen T-Zellen, die durch TGF-β ebenfalls induziert werden.
IL-23 hingegen ist nach heutigem Kenntnisstand wahrscheinlich nicht für die Differenzierung zu Th17 Zellen notwendig, sondern spielt eine wichtige Rolle als Schlüsselzytokin für die Expansion und das Überleben von Th17-Zellen.\cite{111}

1.2.6 Die Rolle von Interleukin-17 bei Autoimmunkrankheiten
In vitro wie auch in vivo Beobachtungen deuten darauf hin, dass IL-17 produzierende T-Lymphozyten eine eigenständige Linie proinflammatorischer T-Helfer-Zellen darstellen, die nicht nur für die Abwehr spezifischer bakterieller Infektionen von Bedeutung sind, sondern auch durch ihre entzündungsfördernde und Treg hemmende Funktionen zur Induktion von Autoimmunphänomenen führen kann. Über eine erhöhte Produktion von IL-17 wurden bei verschiedenen Autoimmunerkrankungen wie Morbus Crohn, Colitis Ulcerosa,\cite{26} der Multiplen Sklerose,\cite{65} dem systemischen Lupus erythematoses,\cite{118} der rheumatoiden Arthritis,\cite{50} aber auch bei

Abbildung 4: Vereinfachte Darstellung der Differenzierung der Th17-Zellen unter dem Einfluss verschiedener Zytokine

IL-23 hingegen ist nach heutigem Kenntnisstand wahrscheinlich nicht für die Differenzierung zu Th17 Zellen notwendig, sondern spielt eine wichtige Rolle als Schlüsselzytokin für die Expansion und das Überleben von Th17-Zellen.\cite{111}
Transplantatabstoßungsreaktionen\(^{(5)}\), der Lyme Arthritis\(^{(15)}\) und bei Asthma\(^{(53),(78)}\) berichtet.

Die Rolle von IL-17 in der Abwehr von bakteriellen Entzündungen der Atemwege konnte in Mausmodellen gezeigt werden. Mäuse mit einer homozygoten Deletion des IL-17-Rezeptorgens, die mit Klebsiella pneumoniae infiziert wurden, zeigten deutlich verminderte Chemokinspiegel und damit assoziiert eine verminderte Einwanderung von Neutrophilen in die Lunge.\(^{(124)}\)

Die Neutrophilenrekrutierung schien von der Wirkung von IL-17A und IL-17F abzuhängen.\(^{(92)}\) Als IL-17 produzierende Zellen wurden sowohl CD4+ als auch CD8+ Zellen vermutet.\(^{(33)}\) Shibata et al. \(^{(95)}\) berichteten auch über γδ-T-Zellen, die nach Stimulation mit IL-23 IL-17 produzierten.

Für die Bedeutung von IL-17 bei chronischen Atemwegserkrankungen wie der chronischen Bronchitis, dem chronisch obstruktiven pulmonalen Defizit (COPD) oder dem Asthma soll vor allem IL-17F verantwortlich sein.\(^{(38),(53),(58)}\)

IL-17E soll im Unterschied zu IL-17A zu einer vermehrten Einwanderung von Eosinophilen\(^{(45)}\) bei Entzündungen führen.

Auch Patienten mit chronisch entzündlichen Darmerkrankungen (CED) zeigen auf mRNA- und Proteinebene erhöhte IL-17 Level in der Darmmukosa\(^{(26)}\). Diese erhöhten Level waren spezifisch für Patienten mit Morbus Crohn oder Colitis Ulcerosa. Sie wurden nicht bei Infektionen des Gastrointestinal-Traktes (GIT), bei ischämischer Kolitis oder bei gesunden Personen gefunden.

1.2.7 Die Rolle von Interleukin-17 bei der Rheumatoiden Arthritis

Die rheumatoide Arthritis ist eine chronische Systemerkrankung, die durch die Einwanderung aktiverer inflammatorischer Zellen in den Gelenkspalt, das Auftreten synovialer Hyperplasie, die Gefäßeinsprossung und chronische

IL-17A wurde bei RA-Patienten spontan von kultiviertem Synovialgewebe sezerniert\(^{(16)}\) und deutlich erhöhte IL-17 Level wurden bei RA-Patienten in der Synovialflüssigkeit beobachtet\(^{(41)}\),\(^{(126)}\).

In-vitro Studien zeigten, dass IL-17 über die Aktivierung des NF\(\kappa\)B abhängigen Signaltransduktionsweges die Sekretion von IL-1, Tumor-Nekrose-Faktor-alpha (TNF-\(\alpha\)), IL-6, IL-8 und Makrophagen inflammatorisches Protein (MIP-1\(\alpha\)) aus Fibroblasten, Endothel und Epithelzellen stimuliert\(^{(122)}\),\(^{(23)}\),\(^{(43)}\). Auch soll IL-17 die Expression des Rezeptoraktivators des NF\(\kappa\)B Liganden (RANKL) induzieren, der ein wichtiger Faktor in der Osteoklastenaktivierung und der Knochendestruktion bei der RA ist\(^{(50)}\). Darüber hinaus spielen synergistische Effekte von IL-17 mit IL-1 und TNF-\(\alpha\) bei der Chemokin- und Zytokinproduktion aus kultivierten Synovialzellen\(^{(17)}\),\(^{(44)}\) sowie bei der Induktion von Knorpeldestruktion\(^{(110)}\) eine bedeutende Rolle.

In Studien am Mausmodell der Kollagen-induzierten Arthritis (CIA) konnte durch Blockade von IL-17 vor dem Ausbruch der Erkrankung sowohl die Indizidenz als auch der Schweregrad der Arthritis signifikant verringert werden\(^{(59)}\). Weitergehend führte eine Neutralisation von IL-17 nach Erkrankungsbeginn zu einer deutlichen Verlangsamung der Progression der Arthritis\(^{(60)}\). Umgekehrt führte sowohl eine lokale als auch eine systemische Überexpression von IL-17 zu einem beschleunigten Krankheitsbeginn und einer vermehrten synovialen Entzündung\(^{(59)}\). Demzufolge könnte die Modulation von IL-17 einen therapeutischen Ansatz für die Behandlung der RA bieten.
1.3 Zielsetzung

Die rheumatoide Arthritis ist eine systemische, entzündliche Gelenkerkrankung, bei deren Entstehung und Progression Zytokine wie IL-1, TNF-α, Lymphotoxin-β, IL-15, IL-17 und IL-18 eine wichtige Rolle spielen.

Bei der rheumatoiden Arthritis wird Interleukin-17 eine wichtige Rolle sowohl bei der Entstehung als auch bei der Aufrechterhaltung der Erkrankung zugeschrieben. So wurden in der Synovialflüssigkeit und im Serum von RA-Patienten deutlich höhere IL-17 Level gemessen als bei Gesunden oder Osteoarthritis-Patienten. Im Mausmodell konnte durch die Blockade von IL-17 die Inzidenz sowie die Schwere der Erkrankung deutlich gesenkt werden. Darüber hinaus zeigten in-vitro Studien auch eine unmittelbare Beteiligung von IL-17 an der Knorpeldestruktion über die Aktivierung von Osteoklasten.

Als Herkunftszellen von IL-17 wurden bisher zumeist nur CD4+ Th-17-Zellen diskutiert. Es gibt jedoch Hinweise, dass auch andere Zellen des Immunsystems IL-17 sezernieren können. So wurde über CD8+, γδ-T-Zellen und Neutrophile berichtet, die in der Lage sind, IL-17 zu sezernieren.

Ziel der Untersuchung dieser Studie war die Analyse IL-17 sezernierender Zellen im Blut der Patienten mit RA im Vergleich zu Gesunden. Im Vordergrund standen folgende Fragestellungen:
a) Welche Zellen im Blut tragen zum erhöhten Vorkommen von IL-17 bei RA Patienten bei und bestehen in der Zellspezifität und -frequenz Unterschiede zu Gesunden?

b) Lassen sich IL-17 sezernierende Zellen durch unspezifische Stimulation mit PHA und PMA/Ionomycin oder durch antigenspezifische Aktivierung mit einem Pool HLA Kl.II restringierter Peptide bei RA-Patienten aktivieren bzw. expandieren und gibt es darin Unterschiede zu Gesunden?
2. Material und Methoden

2.1 Chemikalien

Brefeldin A, Sigma Aldrich, Taufkirchen
BSA (bovines Serumalbumin), Sigma, Taufkirchen
CEF-Peptid-Pools, Panatecs, Tübingen
Cytofix/Cytoperm, BectonDickinson, Heidelberg
Dimethylformamid, Sigma Aldrich, Taufkirchen
DMSO, Sigma Aldrich, Taufkirchen
Ethidium Monoazid, Invitrogen Life Technologies, Karlsruhe
FACS-Flow, BectonDickinson, Heidelberg
FCS (fötales Kälberserum), Sigma Aldrich, Taufkirchen
Ficoll-Dichtegradient, PAA, Pasching, Österreich
Heparin, Braun, Melsungen
Ionomycin, Sigma Aldrich, Taufkirchen
Phosphate-buffered saline (PBS), Gibco, Karlsruhe
Permwash, BectonDickinson, Heidelberg
Phorbol-12-Myristat-13-Acetat (PMA), Sigma Aldrich, Taufkirchen
Phytohämagglutinin, Invitrogen Life Technologies, Karlsruhe
Polyglobin, Bayer AG, Leverkusen
Refobacin, Bayer AG, Leverkusen
RPMI-1640 Medium, Invitrogen Life Technologies, Karlsruhe
Trypanblau, Serva, Heidelberg

2.2 Material

Kryoröhrchen, Eppendorf AG, Hamburg
Eppendorfcups, Eppendorf AG, Hamburg
FACS-Röhrchen, BectonDickinson, Heidelberg
Pipettenspitzen, Eppendorf AG, Hamburg
24-Well-Platte + Deckel, Nunc GmbH, Wiesbaden
96-Well-Rundboden-Platte
Nunc GmbH, Wiesbaden

Neubauer-Zählkammer (+Deckglas)
Hecht, Sondheim

Blutentnahmenovetten
Braun, Melsungen

Nitrozelluloseplatte MAHA S4510
Millipore, Eschborn, Deutschland

Zellkulturflaschen
Nunc GmbH, Wiesbaden

2.3 Geräte

Zentrifuge
Beckman Coulter CL –GS6R (Beckmann Coulter GmbH, Krefeld)

Zentrifuge
Eppendorf Centrifuge 5402 (Eppendorf AG, Hamburg)

Inkubator
Heraeus Typ BB 6220 CU (Heraeus Holding GmbH, Hanau)

Sterilbank
LaminAir, HBB 2448 (Heraeus Holding GmbH, Hanau)

Mikroskop
Laborlux K (Leitz, Wetzlar)

Wasserbad
Wasserbad MGW Lauda M20S (LAUDA DR. R. WOBSER GMBH, Lauda-Königshofen, D)

FACS
BD LSRII mit 355nm, 405nm, 488nm, 633nm Laser (BD Bioscience, Heidelberg)

Vortexer
Vortex Mixer NeoLa (Bender & Hobein AG, Zürich, CH)

2.4 Software

FACS-Diva
Version 5.0.2.; Becton Dickinson, Franklin Lakes, NJ, USA

FlowJo
Version 7.2.1. Tree Star Inc., Ashland, OR, USA

Microsoft Excel
Office 2000, Microsoft Cooperation, USA

Prism
GraphPad Prism version 5.00 for Windows, GraphPad Software, San Diego California USA
2.5 B-Zelllinien

Tabelle 2: Verwendete B-Zelllinien und deren Herkunft

<table>
<thead>
<tr>
<th>B-Zellinie</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 OLGA</td>
<td>10th International Histocompatibility Workshop</td>
</tr>
<tr>
<td>2 Boleth</td>
<td>10th International Histocompatibility Workshop</td>
</tr>
<tr>
<td>3 AMAI</td>
<td>10th International Histocompatibility Workshop</td>
</tr>
<tr>
<td>4 WT51</td>
<td>10th International Histocompatibility Workshop</td>
</tr>
<tr>
<td>5 SA</td>
<td>10th International Histocompatibility Workshop</td>
</tr>
<tr>
<td>6 BOB</td>
<td>Sektion Transplantationsimmunologie und Immunhämatologie, Universität Tübingen</td>
</tr>
</tbody>
</table>

Wir verwendeten EBV-transformierte B-Zelllinien (Tab. 2) in einem Vorversuch zur Stimulation von T-Zellen sowie zur Testung der Zelllinien auf IL-17 Produktion.

2.6 Patienten und Probanden

In Übereinstimmung mit den Richtlinien der Ethikkommission der Universität Tübingen (Ethikantrag-Nr: 13/2005V) und nach vorliegender Einverständniserklärung wurde RA-Patienten aus der rheumatologischen Ambulanz der Medizinischen Klinik Abteilung II der Universität Tübingen (Leitung: Prof. Dr. Ina Kötter) sowie Kontrollpersonen jeweils 50ml Blut in Heparin-Monovetten entnommen.
Tabelle 3: Geschlecht, Alter und klinische Charakteristika der untersuchten RA-Patienten (+- postitiv, - Negativ, n.v. Nicht verfügbar)

<table>
<thead>
<tr>
<th>RA-Patient</th>
<th>Alter</th>
<th>HLA</th>
<th>Dauer der RA</th>
<th>RF</th>
<th>Anti-CCP</th>
<th>CRP</th>
<th>Leukozytenzahl</th>
<th>BSG (mm/h)</th>
<th>DAS 28</th>
<th>Therapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>♂</td>
<td>n.v.</td>
<td>20 J.</td>
<td>+</td>
<td>+</td>
<td>0,87 mg/dl</td>
<td>7,580 /µl</td>
<td>77</td>
<td>3,13</td>
<td>Humira Spritzen s. c. Sandimmun 75 Prednisolon 7,5 mg</td>
</tr>
<tr>
<td>2</td>
<td>♂</td>
<td>n.v.</td>
<td><1 J.</td>
<td>+</td>
<td>+</td>
<td>0,49 mg/dl</td>
<td>9,430 /µl</td>
<td>7</td>
<td>2,34</td>
<td>Decortin H 10 mg Methotrexat 15 mg s.c.</td>
</tr>
<tr>
<td>3</td>
<td>♂</td>
<td>n.v.</td>
<td>16 J.</td>
<td>+</td>
<td>+</td>
<td>Neg</td>
<td>8,650 /µl</td>
<td>8</td>
<td>4,11</td>
<td>Prednisolon 7,5 mg/W Methotrexat 20 mg Voltaren resinat</td>
</tr>
<tr>
<td>4</td>
<td>♂</td>
<td>n.v.</td>
<td>20 J.</td>
<td>+</td>
<td>+</td>
<td>0,1 mg/dl</td>
<td>7,160 /µl</td>
<td>5</td>
<td>2,2</td>
<td>Quensyl 200 mg Prednisolon 5 mg</td>
</tr>
<tr>
<td>5</td>
<td>♂</td>
<td>A01;03 B35;58 DR*01;07</td>
<td>1 J</td>
<td>+</td>
<td>+</td>
<td>2,01 mg/dl</td>
<td>11,25 /µl</td>
<td>21</td>
<td>n.a</td>
<td>Methotrexat15mg /W Decortin H 10mg Quensyl</td>
</tr>
<tr>
<td>6</td>
<td>♂</td>
<td>A02;33 B14;44 DR*07;15</td>
<td>5 J</td>
<td>+</td>
<td>+</td>
<td>1,98 mg/dl</td>
<td>18,02 /µl</td>
<td>7</td>
<td>n.a</td>
<td>Decortin H 10mg Azathioprin50 10-1</td>
</tr>
<tr>
<td>7</td>
<td>♂</td>
<td>A02;03 B07 DR*13,15</td>
<td>8 J</td>
<td>-</td>
<td>-</td>
<td>Neg</td>
<td>6,540 /µl</td>
<td>19</td>
<td>2,7</td>
<td>Prednisolon 5 mg Lantarel 10 mg Enbrel 25 mg D</td>
</tr>
<tr>
<td>8</td>
<td>♂</td>
<td>B*27 neg</td>
<td>3 J</td>
<td>-</td>
<td>-</td>
<td>0,1 mg/dl</td>
<td>7,670 /µl</td>
<td>4</td>
<td>n.v.</td>
<td>Quensyl 200 1-0-1</td>
</tr>
<tr>
<td>9</td>
<td>♂</td>
<td>A03;25 B08;15 DR*0301 1; 0404</td>
<td>14 J</td>
<td>-</td>
<td>-</td>
<td>1,8 mg/dl</td>
<td>13,11 /µl</td>
<td>29</td>
<td>3,4</td>
<td>Prednisolon 5 mg</td>
</tr>
<tr>
<td>10</td>
<td>♂</td>
<td>A03;25 B08;15 DR*0301 1; 0404</td>
<td>14 J</td>
<td>-</td>
<td>-</td>
<td>1,8 mg/dl</td>
<td>13,11 /µl</td>
<td>29</td>
<td>3,4</td>
<td>Prednisolon 5 mg</td>
</tr>
</tbody>
</table>

26
RA-Patient 10	♂	41	J.	DRB1*04	1 J	+	+	0,89 mg/dl	6.980 µl	17 mm/h	2,4	Methotrexat 15 mg Prednisolon 7,5 mg
RA-Patient 11	♂	72	J.	n.v.	20 J	+	+	0,34 mg/dl	6.310 µl	9 mm/h	3,03	Decortin H 9mg Humira 40mg s. c. / 14d Arava 20
RA-Patient 12	♂	65	J.	A*02, B*40;44, DR*04;15	24 J	+	+	4,32 mg/dl	13.23 µl	77 mm/h	n.v.	Prednisolon 7,5
RA-Patient 13	♀	52	J.	A*01;03, B*15;35, DR*09;13	32 J	-	-	n.v.	n.v.	n.v.	n.v.	
RA-Patient 14	♂	68	J.	n.v.	1 J	+	+	1,14 mg/dl	7990 µl	14 mm/h	3,67	Prednisolon 5 mg Hydroxychloroquin 400 mg
RA-Patient 15	♀	60	J.	n.v.	2 J	+	+	0,98 mg/dl	7.610 µl	18 mm/h	2,6	Prednisolon 7,5 mg Methotrexat15mg po /d
RA-Patient 16	♂	50	J.	A*01;11, B*52;55, DR*0401;0801	12 J	-	-	0,05 mg/dl	12370 µl	2 mm/h	4,1	Decortin H 5mg
RA-Patient 17	♀	61	J.	n.v.	3 J	-	-	Neg	7.930 µl	5 mm/h	1,97	Quensyl 200 mg Decortin H 2,5 mg
RA-Patient 18	♀	51	J.	n.v.	<1J	+	+	Neg	18.07 µl	12 mm/h	1,9	Methotrexat 15mg/W Prednisolon 12,5 mg
RA-Patient 19	♂	69	J.	A*02; B*07;15, DR*07;15	10J	+	+	0,5 mg/dl	5.210 µl	28 mm/h	2,75	Methotrexat 10 mg /W
Unter den Patienten (Tab. 3) waren 5 Männer und 15 Frauen, die im Durchschnitt 56,7 Jahre (26-79 J.) alt waren und deren mittlere Erkrankungsdauer zum Zeitpunkt der Blutentnahmen 10,21 Jahre (6Mon.-36 J.) betrug. Tabelle 3 zeigt die wichtigsten Laborparameter zur Beurteilung der RA-Aktivität. Im Mittel lag das CRP bei 0,97 mg/dl (0-4,32mg/dl), die Leukozytenzahl bei 9.728 /µl (5.210-18.070/µl) und die BSG bei 19,97mm/h (2-77mm/h). Der DAS28 wurde bei 14 Patienten erhoben und lag im Mittel bei 2,89 (1,0-4,1). 16 Patienten wurden mit Kortikosteroiden, 7 mit Methotrexat und 8 Patienten mit weiteren Immunsuppressiva behandelt. Die klinischen und therapeutischen Daten von 2 Patienten waren nicht mehr verfügbar.

2.7 Isolierung mononukleärer Zellen aus Vollblut

50ml heparinisierter Vollblut wurden mit 100ml PBS verdünnt. Die mononukleären Zellen („peripheral blood mononuclear cells“, PBMC) wurden mittels Ficoll-Paque-Dichtegradientenzentrifugation isoliert.

15ml Ficoll-Dichtegradient (Dichte 1,077g/l) wurden mit 30ml vorverdünntem Blut überschichtet und bei 800g für 30 min bei Raumtemperatur ohne Bremse zentrifugiert. Anschließend wurden die PBMC über der Ficoll-Schicht sorgfältig abpipetiert und mit PBS versetzt. Zum Waschen wurden die PBMC für 5 min bei 200g zentrifugiert. Anschließend wurde der Überstand verworfen und das Zellpellet in 20ml PBS resuspendiert und erneut gewaschen.
2.8 Bestimmung der Anzahl vitaler Zellen mittels Trypanblau

10µl der isolierten PBMC Suspension wurden mit 10µl 0,04%iger Trypanblaulösung gefärbt und in einer Neubauer-Zählkammer unter dem Durchlichtmikroskop ausgezählt. Tote und beschädigte Zellen färben sich mit Trypanblau an und können so von lebenden Zellen unterschieden werden. Die gesamte Zellzahl errechnete sich folgendermaßen:
Mittelwert der Zellen in 4 Großquadranten \(\times 10^4 \) x Verdünnung x Ausgangsvolumen in ml

2.9 Kryokonserverierung der Zellen

Die gewaschenen und gezählten Zellen wurden mit „freezing medium“ (90% FCS 10% DMSO) auf 6x10⁶ Zellen/ml eingestellt. Es wurde jeweils 1ml zügig in Kryoröhrchen überführt und bei –80°C im Gefrierschrank in Styroporträngern langsam abgekühlt. Nach 24h wurden die Zellen in einen Tank mit flüssigem Stickstoff (-192°C) überführt.

2.10 Auftauen der Zellen

Bei Bedarf wurden die kryokonservierten PBMC direkt nach Entnahme aus dem flüssigen Stickstoff für 1 min in einem 38°C warmen Wasserbad angetaut und mit Kulturmedium (90% RPMI-1640 und 10% FCS) versetzt, um rasch das zelltoxische DMSO zu entfernen. Danach erfolgte ein zweimaliges Waschen der Zellen mit Kulturmedium und anschließendes Zählen der Zellen mit Bestimmung der Anzahl vitaler Zellen (Kap. 2.8.).
2.11 Stimulanzien

2.11.1 Phytohämagglutinin (PHA)
Das Mitogen Phytohämagglutinin (PHA) ist ein Glykoprotein (Lectin), dass aus der Gartenbohne Phaseolus vulgaris gewonnen wird. Ähnlich wie Con A stimuliert PHA unspezifisch vor allem humane T-Lymphozyten.\(^{(48),(119)}\)

Nach Austitrierung wurde PHA in einer Konzentration von 0,5% für 20h eingesetzt, da nach 20h die höchste Frequenz IL-17\(^+\) Zellen gemessen wurden (Kap. 3.1.2.).

2.11.2 Phorbol-12-Myristat-13-Acetat (PMA)/ Ionomycin
Phorbol-12-Myristat-13-Acetat (PMA) induziert rezeptorunabhängig eine Aktivierung der Proteinkinase C. Es wurde zusammen mit dem Calcium-Ionophor Ionomycin zur antigen-unspezifischen Aktivierung eingesetzt.\(^{106}\) Zellen wurden mit 12,5ng PMA/ 0,5µg Ionomycin für 20h stimuliert.

2.11.3 MHC Klasse II CEFT-Pool
23 Peptide mit bekannter definerter Bindungskapazität an MHC-Klasse II Moleküle wurden freundlicherweise von der Fa. Panatecs als MHC Kl. II spezifischer CEFT Pool zur Verfügung gestellt. Dieser Pool wurde in einer Konzentration von 2µg/Peptid pro 1x10\(^6\) PBMC zur Testung der IL-17 Stimulierung eingesetzt. Die Peptide repräsentieren MHC Kl.II spezifische Epitope des Influenza A Virus, des Cytomegalie-Virus (CMV), des Epstein-Barr Virus (EBV) sowie des Tetanustoxins.
Tabelle 4: Sequenzen und bindende HLA-Klasse II Moleküle der Peptide im CEFT-Pool

<table>
<thead>
<tr>
<th>SEQUENZ</th>
<th>URSPRUNG</th>
<th>bindende(s) HLA-Klasse II Molekül</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. FVFTLTVPSER</td>
<td>Influenza A</td>
<td>HLA-DR4</td>
</tr>
<tr>
<td>2. SGPLKAEIAQRLEDV</td>
<td>Influenza A</td>
<td>HLA-DR1</td>
</tr>
<tr>
<td>3. YDVPDYASLRSVASS</td>
<td>Influenza A</td>
<td>HLA-DR1</td>
</tr>
<tr>
<td>4. PYYTGEHAKAIGN</td>
<td>Influenza B</td>
<td>HLA-DR1</td>
</tr>
<tr>
<td>5. QQIGNDPNDRDL</td>
<td>Tetanus</td>
<td>HLA-DR3, -DR52c, -DR52a</td>
</tr>
<tr>
<td>6. PKYVKQNTLKL</td>
<td>Influenza A</td>
<td>HLA-DRB1*0101</td>
</tr>
<tr>
<td>7. PKYVKQNTLKLAT</td>
<td>Influenza A</td>
<td>HLA-DR4</td>
</tr>
<tr>
<td>8. DRLRRDQKS</td>
<td>Influenza A</td>
<td>HLA-DR3</td>
</tr>
<tr>
<td>9. AGLTLLVICSYLFISR</td>
<td>EBV</td>
<td>HLA-DR15</td>
</tr>
<tr>
<td>10. QYIKANSKFIGITEL</td>
<td>Tetanus</td>
<td>HLA-DR15, -DR13, -DR11, -DR9, -DR8, -DR7, -DR3</td>
</tr>
<tr>
<td>11. QYIKANSKFIGITE</td>
<td>Tetanus</td>
<td>HLA-DR5, -DR11, -DRB11302, -DRB11104</td>
</tr>
<tr>
<td>12. FNNFTVSVWLRRVPKVSASHLE</td>
<td>Tetanus</td>
<td>HLA-DR11, -DR7, -DRB1*1101, -DR5, -DPW2</td>
</tr>
<tr>
<td>13. TSLYNLRRGTALA</td>
<td>EBV</td>
<td>HLA-DR-1</td>
</tr>
<tr>
<td>14. KFIKRYTPNNEIDS</td>
<td>Tetanus</td>
<td>HLA-DRB11104, -DRB11101</td>
</tr>
<tr>
<td>15. VSIDKFRICKALNPK</td>
<td>Tetanus</td>
<td>HLA-DRB1*1101</td>
</tr>
<tr>
<td>16. VPGLYSPCRAFFNKEELL</td>
<td>EBV</td>
<td>HLA-DRB1*0701</td>
</tr>
<tr>
<td>17. DKREMWMACIKELH</td>
<td>CMV</td>
<td>HLA-DRB1*0801</td>
</tr>
<tr>
<td>18. TGHGARTSTEPPTTDY</td>
<td>EBV</td>
<td>HLA-DRB3*0201</td>
</tr>
<tr>
<td>19. KELKRSQYKLRQ</td>
<td>EBV</td>
<td>HLA-DRB30201, -DRB10301</td>
</tr>
<tr>
<td>20. RGYFKMTGKSSIMRS</td>
<td>Influenza A</td>
<td>HLA-DRB1*1001, -DQA0102</td>
</tr>
<tr>
<td>21. TVFYNIIMPL</td>
<td>EBV</td>
<td>HLA-DQ2</td>
</tr>
<tr>
<td>22. AEGLRALLARSHVE</td>
<td>EBV</td>
<td>HLA-DR4</td>
</tr>
<tr>
<td>23. PGPLRSESIVYFMVFLQTHI</td>
<td>EBV</td>
<td>HLA-DR7</td>
</tr>
</tbody>
</table>
2.12 Antikörper

Tabelle 5: Liste der verwendeten monklonalen Antikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Fluor-eszenz-Markierung</th>
<th>Menge</th>
<th>Isotyp</th>
<th>Klon</th>
<th>Katalog Nr</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-humaner CD3-Antikörper</td>
<td>FITC</td>
<td>4 µl</td>
<td>Mouse IgG1<sub>k</sub></td>
<td>UCHT1</td>
<td>555332</td>
<td>BectonDickinson Heidelberg Deutschland</td>
</tr>
<tr>
<td>anti-humaner IL-17 A Antikörper</td>
<td>PE</td>
<td>20 µl</td>
<td>Mouse IgG1<sub>k</sub></td>
<td>eBio64 CAP17</td>
<td>12-7178</td>
<td>eBioscience, San Diego, USA</td>
</tr>
<tr>
<td>anti-humaner CD4-Antikörper</td>
<td>Pacific Blue</td>
<td>4 µl</td>
<td>Mouse IgG1<sub>k</sub></td>
<td>RPA-T4</td>
<td>300521</td>
<td>BioLegend, San Diego, USA</td>
</tr>
<tr>
<td>anti-humaner CD56-Antikörper (NCAM)</td>
<td>Alexa Fluor700</td>
<td>4,5 µl</td>
<td>Mouse IgG1<sub>k</sub></td>
<td>HCD56</td>
<td>318315</td>
<td>BioLegend, San Diego, USA</td>
</tr>
<tr>
<td>anti-humaner CD25-Antikörper</td>
<td>APC-Cy7</td>
<td>20 µl</td>
<td>Mouse IgG1<sub>k</sub></td>
<td>BC96</td>
<td>302614</td>
<td>BioLegend, San Diego, USA</td>
</tr>
<tr>
<td>anti-humaner IFN-γ-Antikörper</td>
<td>PE-Cy7</td>
<td>5 µl</td>
<td>Mouse IgG1<sub>k</sub></td>
<td>B27</td>
<td>557643</td>
<td>BectonDickinson , Heidelberg Deutschland</td>
</tr>
<tr>
<td>anti-humaner CD28-Antikörper</td>
<td>APC</td>
<td>3,5 µl</td>
<td>Mouse IgG1<sub>k</sub></td>
<td>CD28.2</td>
<td>559770</td>
<td>BectonDickinson , Heidelberg Deutschland</td>
</tr>
<tr>
<td>anti-humaner CD8-Antikörper</td>
<td>PerCP</td>
<td>5 µl</td>
<td>Mouse IgG1<sub>k</sub></td>
<td>SK1</td>
<td>345774</td>
<td>BectonDickinson , Heidelberg Deutschland</td>
</tr>
</tbody>
</table>
Alle Antikörper wurden als Reagenzien mit direkter Kopplung an den jeweiligen Fluoreszenzfarbstoff (FITC, PE, Alexa-Fluor700, APC, PerCP, PE-Cy7 oder APC-Cy7) verwendet und nach Titration (Kap. 3.1.3) in den angegebenen Mengen eingesetzt.

2.13 Durchflusszytometrie

2.13.1 Grundlagen der Durchflusszytometrie

Mithilfe der Durchflusszytometrie bzw. des „Fluorescence-Activated-Cell-Sorters“ (kurz: FACS) werden Partikel in einem Flüssigkeitsstrom anhand morphologischer sowie fluoreszenzmarkierter Eigenschaften erfasst und
analysiert.

Abbildung 5: Das optische System eines Durchflusszytometers; Quelle: BD, Heidelberg, Deutschland

Das optische System besteht aus verschiedenen Lasern, Spiegeln, Linsen, Filtern und Detektoren (Abb.5). Trifft der Laser auf eine Zelle im Probenstrom, so wird das Laserlicht in 2 Hauptidektionen deflektiert. Man bezeichnet das Licht, das im geringen Winkel (3-10°) abgelenkt wird, als Vorwärtsstreulicht oder auch Forwardscatter (FSC). Diese abgelenkten Strahlen korrelieren mit der Zellgröße. Im Gegensatz dazu spricht man bei dem im 90°-Winkel abgelenkten Licht vom Seitwärtsstreulicht, dem Sidescatter (SSC), das mit der Zellgranularität, also der intrazellulären Komplexität zellulärer Strukturen.
korreliert.

Abbildung 6: Zellen einer Vollblutprobe im FSC/SSC-Dot-Plot

An Hand von FSC und SSC können alle analysierten Zellpopulationen in einem 2-dimensionalen Dot-Plot Diagramm beschrieben (Abb.6) und durch Wahl geeigneter FSC/SSC- Werte spezifisch eingeschränkt bzw. für weitere Analysen elektronisch selektiert („elektronisches Gate“) werden.

Abbildung 7: Anregungs- und Emissionsspektren der einzelnen Fluoreszenzfarbstoffe

(Quelle: BD, Heidelberg, Germany)
Sind die Zellen mit einem oder mehreren fluorescenzgekoppelten Antikörpern direkt oder über einen Zweit-Antikörper indirekt markiert, wird ein Teil der Lichtenergie durch das entsprechende Flurochrom absorbiert und Fluoreszenzlicht unterschiedlicher Wellenlänge emittiert (Abb. 7). Da unterschiedliche Fluoreszenzfarbstoffe teilweise unterschiedliche Anregungsenergien benötigen, sind mehrere Laser für die Anregung der unterschiedlichen Fluoreszenzmarkierungen notwendig (z.B. der Argonenlaser: Wellenlänge 488nm regt u.a. FITC, PE, PerCP an).

Das durch die Fluroszenzfarbstoffe emittierte Licht (FITC: \(\lambda_{\text{max}} = 519 \text{ nm} \); Alexa Fluor 488: \(\lambda_{\text{max}} = 519 \text{ nm} \); PE: \(\lambda_{\text{max}} = 575 \text{ nm} \); PE-Cy7: \(\lambda_{\text{max}} = 785 \text{ nm} \); EMA \(\lambda_{\text{max}} = 625\text{nm} \); PerCP: \(\lambda_{\text{max}} = 678 \text{ nm} \); APC-Cy7 \(\lambda_{\text{max}} =767\text{nm} \); Alexa700 \(\lambda_{\text{max}} = 719\text{nm} \); PacificBlue \(\lambda_{\text{max}} = 455\text{nm} \)) wird durch spezifische Spiegel und Filter so auf die Photodioden weitergeleitet (Abb.5), dass jede Photodiode möglichst nur das Licht eines einzigen Fluoreszenzfarbstoffes, sprich einer Wellenlänge, registriert.

![Abbildung 8: Schaubild zur spektralen Überlappendung](image)

Da sich die Emissionsspektren einiger Fluoreszenzfarbstoffe unserer Mehrfachfärbungen überlagern (Abb.8) und somit von mehreren Photodioden erfasst werden (z.B. FL-1: detektiert Licht der Wellenlänge 530nm (grün); FL-2: detektiert Licht der Wellenlänge 542- 585 nm (orange)), ist es notwendig durch die sogenannte Kompensation Korrekturen bzw. Einschränkungen für eine selektive Detektion der Signale im Experiment einzubringen (Abb.9). Dabei wird versucht falsch positiv detektierte Signale im Bereich der Überschneidung

2.13.2 FACS Analyse von PBMC
PBMC wurden auf Expression spezifischer Oberflächenantigene und Vorkommen intrazellulärer Zytokine mit und ohne Stimulation durch Mitogene und MHC Klasse II bindende Peptid-Pools mittels Mehrfachfärbung (max. 9-fach) mit direkt gekoppelten monoklonalen Antikörpern (CD3-FITC, CD4-PacificBlue, CD8-PerCP, CD25-APC-Cy7, CD28-APC, CD56-Alexa700) und Intrazellulärfärbung (IFN-γ-PE-Cy7, IL-17-PE) gefärbt und analysiert.

Abbildung 9: Vorgang der Kompensation am Beispiel von detektierten Fluoreszenzen FL-1: CD4 FITC und FL-2: CD8 PE
Die eingefrorenen PBMC wurden zunächst aufgetaut (s.Kap. 2.10.), gezählt, mit Kulturmedium (90% RPMI-1640 medium/10% FCS/ Refobacin) auf 10^6 Zellen/ml eingestellt und steril in 12-Well-Platten überführt.
Zur Stimulation wurden jeweils 10^6 Zellen entweder nur mit 1ml Kulturmedium als Negativkontrolle, mit 12,5 ng/ml PMA und 0,5µg/ml Ionomycin, mit 0,5% PHA (5µl/ml) oder mit dem HLA Kl. II Peptid Pool (2µg pro Peptid/10^6 Zellen) für 20h im Inkubator bei 37°C und 5% CO₂ in einem Inkubationsvolumen von 1ml stimuliert.
Nach 2 Stunden wurde den Zellen 10 µg/ml Brefeldin A zugesetzt, um die Sekretion von Zytokinen aus dem Golgi Apparat zu hemmen und damit die intrazelluläre Zytokinakkumulation zu fördern.
Nach Ablauf der gesamten Inkubationzeit von 20h wurden die Zellen in 96-well Rundbodenplatten überführt, dazu nochmals gezählt und auf 10^6 Zellen pro 200µl eingestellt. Im Anschluß wurden 40µl 1%iges Polyglobin pro 1x10^6 Zellen zum Blockieren unspezifischer Fc-Bindungsstellen zugesetzt. Gleichzeitig erfolgte die Zugabe von 1µl Ethidium-Monoazid (EMA) in einer Konzentration von 0,5µg/ml. Nach 10 Minuten Inkubation im Kühlschrank wurden die Zellen 10 Minuten lang einer UV-Lichtquelle ausgesetzt. Dabei bindet EMA an die interkalierte DNA toter Zellen (Kap. 2.13.7).
Anschließend wurden die PMBC mit FACS-Waschpuffer (PBS, BSA 0,1%, Natriumazid 0,025%) gewaschen. Die Zentrifugation erfolgte hier sowie im Weiteren bei 450G für jeweils 5min. Die extrazelluläre Färbung erfolgte anschließend durch Zugabe einer definierten Mischung an Antikörpern (Mastermix) gegen verschiedene Oberflächenantigene (CD3-FITC, CD4-PacificBlue, CD8-PerCP, CD25-APC-Cy7, CD28-APC, CD56-Alexa700) (Tab. 5), wobei die optimale Konzentration der einzelnen Antikörper in einer Titrationsreihe in vorherigen Versuchen bestimmt worden war (s. Kap. 3.1.3.).
Die Inkubationszeit betrug 20min bei 4°C im Dunkeln. Nach einem weiteren Waschschritt mit FACS-Waschpuffer wurden die Zellen mit je 100µl/well Cytofix/Cytoperm-Lösung für 20min bei 4°C im Kühlschrank inkubiert. Nach dieser Fixierung und Permeabilisierung wurden die Zellen mit der PermWash/
Aqua bidest.-Lösung (Verhältnis 1:10) gewaschen. Die Zentrifugation erfolgte bei 2.500G für 4 min, da die permeabilisierten, fixierten Zellen bei geringeren Zentrifugalkräften herausgewaschen wurden. Zur intrazellulären Färbung (IFN-γ-PE-Cy7, IL-17-PE) wurden die Testantikörper sowie die Isotyper in einem Inkubationsvolumen von mind. 30µl den Zellen zugesetzt und 30min bei 4°C im Dunkeln inkubiert. Abschließend wurden die Zellen mit PermWash/Aqua bidest. gewaschen und in je 200µl FACS-Puffer in Rundboden FACS-Röhrchen gegeben. Direkt danach erfolgte die Messung aller Zellen am LSRII unter Verwendung der FACSDiva Software. Es wurde zwischen 100.000 und 800.000 Ereignissen gemessen, was einer Lymphozytenzahl im Gate I von ca. 50.000 bis 500.000 entsprach.

2.13.3 FACS-Analyse von B-Zelllinien
Zur Analyse der IL-17 Expression in anderen Zellen des Immunsystems wurden auch B-Zelllinien untersucht (s. Kap. 2.5.). Zu 10^6 Zellen der B-Zelllinien wurden für 20h 10µg Brefeldin A zur Hemmung der Zytokinsekretion zugegeben. Anschließend wurden die B-Zellen genau wie die PBMC (s. Kap. 2.13.2) mit EMA gefärbt und mit Polyglobin geblockt. Oberflächenfärbungen wurden verständlicherweise keine durchgeführt. Die B-Zellen wurden anschließend auch mit je 100µl/well Cytofix/Cytoperm-Lösung fixiert und permeabilisiert. Nach dem Waschen mit der PermWash/Aqua bidest.-Lösung (Verhältnis 1:10) wurden die Zellen entweder mit 20µ PE-gekoppelten anti-IL-17 Antikörper (Tab.5) oder mit 20µl IgG1 PE-gekoppelten Maus-Isotyp-Antikörper und 10µl Aqua bidest in einem Gesamtvolumen von 30µl 30min bei 4°C im Dunkeln inkubiert. Nach dem abschließenden Waschen mit PermWash/Aqua bidest wurden die Proben in Rundboden FACS-Röhrchen überführt und sofort am LSRII unter Verwendung der FACSDiva Software gemessen.
2.13.4 Färbung von Kontroll-BEADS zur Kompensation

Abbildung 10: Beispiel der Kompensation mit BEADS A: FSC-SSC Dot-Plot der BEADS B: Histogramm der mit anti-IL-17-PE-Antikörpern markierten BEADS im Gate aus Abbildung A
2.13.5 Messung der Zellen am LSRII

Anschließend wurde die Spannung der einzelnen Detektionsdioden anhand der ungefärbten Kontrolle so eingestellt, dass die Dioden nur ein schwaches definiertes Signal für diese Population weiterleiteten.

Die Messung von fluoreszenzmarkierten unstimulierten Zellen oder BEADS als Positivkontrolle (Kap 2.13.4.) diente als Grundlage für die Kompensation der Fluoreszenzfärbsstoffe der 9-fach markierten Zellen.

2.13.6 Ausschluß unspezifisch makierter Zellen
In den Proben wurden durch Beurteilung der EMA-Färbung die toten Zellen ausgeschlossen (Kap.2.13.7 + Abb. 11). Dazu wurden die EMA negativen, lebenden Zellen durch elektronisches Gaten selektiert und nur diese lebenden Zellen wurden in den weiteren Analysen ausgewertet.

Die makier ten lebenden Zellen einer jeden Probe und Stimulation wurden mit Hilfe des Histogramms, des Dot-Plots und des Dichteplots in positive und negative Populationen unterschieden. Zur Unterscheidung der positiven und negativen Zellen wurden sowohl die Autofluoreszenzen der ungefärbten, unstimulierten Zellen sowie die unkompensierten Einzelfärbrungen und, falls möglich, die Isotypen herangezogen. Dabei wurden Zellen als positiv erachtet,
sobald sie eine deutlich abgrenzbare Population zeigten oder eine stärkere Fluoreszenz als die Autofluoreszenz und die Isotypen aufwiesen.

2.13.7 Identifizierung lebender und toter Zellen am FACS
Ethidium-Monoazid (EMA) bindet irreversibel an interkalierte DNA und wird daher zur Unterscheidung von toten und lebenden Zellen in der FACS-Analyse verwendet. Die Färbung erfolgte in Anlehnung an das Protokoll der Arbeitsgruppe De Rosa et al.(20) Als Positivkontrolle wurden in jedem Test nicht markierte Zellproben für 45min im Wasserbad bei 52°C zur Induktion von Apoptose inkubiert und danach mit EMA markiert (Abb.11). Die Positivkontrolle diente der Kompensation der EMA-Markierung gegenüber den anderen verwendeten Fluoreszenzen und zur Definition und vergleichenden Darstellung der EMA-Fluoreszenz-Intensität toter Zellen. In jeder Probe wurden durch EMA-Markierung die toten Zellen ausgeschlossen, indem durch elektronisches Gaten EMA negative Zellen selektioniert wurden.
2.13.8 Datenauswertung

Zunächst wurden die aus den Kontrollmarkierungen der BEADS bzw. Zellen errechneten Signalkorrektur- bzw. Kompensationswerte auf die spezifisch gefärbten Zellen übertragen. Die automatisch durchgeführten Kompensationen wurden durch Vergleich aller Färbungen miteinander kontrolliert und wenn nötig manuell korrigiert. Zusätzlich wurde für die intrazellulären Messungen der Zytokine durch die unkompensierte Analyse von Einzelfärbungen der intrazellulären Zytokine ausgeschlossen, dass durch Kompensation und Mehrfachfärbung falsch positive Ergebnisse errechnet wurden (Abb. 18). Anschließend wurden wie folgend beschrieben die Gates der verschiedenen Markierungen gesetzt (Kap. 2.13.9ff). Da es sich um Mehrfachmarkierungen (9-fach) handelt, ließen sich verschiedene Zellpopulationen identifizieren und der relative Anteil der Zytokine (IL-17, IFN-γ) an diesen Populationen messen (Kap. 2.8., Kap. 2.9., Kap.2.10.). Außerdem wurde auch der relative Anteil der verschiedenen Zellpopulationen an den zytokinexprimierenden Zellen (IL-17, IFN-γ) bestimmt (Kap. 3.2.11., Kap. 3.2.12.). Diese Daten wurden in Excel®-Dateien exportiert und dort geordnet. Die statistische und grafische Auswertung der Daten erfolgte mit der Software Prism®.

2.13.9 Das Lymphozyten-Gate

Bei allen Probanden konnten an unstimulierten Zellen im Lymphozytenbereich des FSC/SSC Dot-Plots zwei Populationen unterschieden werden (Abb.12).
Gate I mit vorwiegend kleinen Zellen geringer Granularität enthält vermutlich überwiegend ruhende Lymphozyten. Während Zellen im Gate II größer und stärker granuliert sind und somit eher aktivierten Lymphozyten entsprechen.

2.13.9.1 Bewertung der CD3 Markierung

CD3-FITC gefärbte PBMC (Abb. 13) ließen sich stets eindeutig in positive und negative Populationen unterscheiden, auch wenn nach PHA-Stimulation häufig eine Herabregulierung von CD3 zu beobachten war (Kap. 3.2.3.).

Abbildung 12: Dargestellt sind unstimulierten PBMC des gesunden Probanden 7 im Pseudodotplot FSC gegen SSC.

Abbildung 13:
CD3-FITC Markierung der EMA negativen (lebenden) Zellen im Lymphozytengate Gate I des RA-Pat. 17: Darstellung des Pseudocolour-Dichteplots der CD3 FITC Werte auf der X-Achse gegen SSC auf der Y-Achse.
2.13.9.2 Bewertung von CD4⁺ bzw. CD8⁺ Zellen

Es ließen sich die CD4⁺ und die CD4⁻ Population nach PMA/Ionomycin Stimulation nicht mehr klar voneinander abgrenzen (Abb. 14B). Deshalb wurde um die CD4 positiven Zellen zu identifizieren, das CD4⁺ Gate so gesetzt, dass der CD4⁺ Anteil an den CD3⁻ Zellen kleiner als 1% war (Abb. 14C) um sicher keine falsch positiven CD4 Zellen mit ins Gating einzuschließen. Es wurden mit dieser Methode jedoch vermutlich CD4 positive Zellen ins Gate der doppelt negativen Zellen mit eingeschlossen und als falsch negativ gemessen.
2.13.9.3 Bewertung der CD28 Markierung

2.13.9.4 Bewertung der CD25 Markierung

2.13.9.5 Bewertung der CD56 Markierung

CD56 markierte Zellen wurden in eine positive und in eine negative Population unterschieden. Da diese sich teilweise nur schwer abgrenzen ließen (Abb.17A), wurden zunächst die mit PMA/Ionomycin stimulierten Zellen untersucht, bei denen sich eine getrennte, deutlich positive Population darstellte (Abb. 17B).

Abbildung 16: CD25 APC-Cy7 markierte PBMC auf der X-Achse versus SSC auf der Y-Achse des RA-Patienten 18. A: unstimulierten Lymphozyten im Gate I; B: Lymphozyten nach PHA Stimulation im Gate I; C: unstimuliert Lymphozyten im Gate IFN-γ⁺ Zellen; D: Lymphozyten nach PHA Stimulation im Gate IFN-γ⁺ Zellen
Zum Vergleich wurden auch stets die ungefärbten Zellen als Referenz für die CD56 negativen Zellen herangezogen. Eine CD56hi Population, wie sie für lymphatisches Gewebe beschrieben ist, ließ sich erwartungsgemäß im Blut nicht finden.

2.13.9.6 Bewertung der intrazellulären Markierungen von IL-17 und IFN-γ

Die Gates wurden sowohl für jeden Probanden als auch für jedes Stimulans spezifisch gesetzt.

Abbildung 18:
Vergleich von unkompensierten Einzelmarkierung zu den kompensierten Mehrfachfärbungen am Beispiel des gesunden Probanden 13

A: Unkompenzierten Einfachmarkierung von IFN-γ PE-Cy7 auf der X-Achse gegen SSC auf der Y-Achse an Lymphozyten im Gate I
B: Unkompensierte Einfachmarkierung von IL-17 PE auf der X-Achse gegen SSC auf der Y-Achse an Lymphozyten im Gate I
C: kompensierte Mehrfachmarkierung von IL-17 PE Markierung auf der X-Achse gegen IFN-γ Markierung auf der Y-Achse
2.13.9.7 Nomenklatur des Gatings

3 Ergebnisse

3.1 Standardisierung der Testreagenzien und Zytokindetektion

3.1.1 Vergleich von Brefeldin und Monensin als Inhibitor der Zytokinsekretion

Brefeldin A ist ein transporthemmendes Ionophor, das erstmalig im Pilz *Penicillium brefeldianum* beschrieben wurde. Durch die Inhibition des Proteintransports vom endoplasmatischen Retikulum in den Golgi-Aparat kommt es zu einer intrazellulären Akkumulation neu synthetisierter Proteine.\(^{(27)}\)

Eine weitere Möglichkeit der Sekretionsinhibition ist die Zugabe von Monensin, das aus dem Pilz *Streptomyces cinnamomensis* stammt. Monensin stört den intrazellulären Natrium-H\(^+\)-Gradienten, insbesondere der Golgi-Region und behindert somit die Freisetzung sekretorischer Vesikel.\(^{(70)}\)

Es wurden in einem Vergleichsexperiment 106 PMBC über Nacht mit PMA/Ionomycin (20ng PMA und 2µg Ionomycin) stimuliert und für weitere 4h entweder mit 10µg Brefeldin A oder mit 4µMol Monensin die Zytokubsekretion geblockt. Danach wurde eine intrazelluläre Anfärbung von IFN-γ und IL-17 durchgeführt, um die Potenz der Sekretionsinhibition der beiden Substanzen miteinander zu vergleichen.
Es zeigte sich, dass mit Monensin geblockte Zellen eine geringfügig höhere Menge an intrazellulärem IFN-γ sowie IL-17 aufwiesen (Abb. 19). Es wurde jedoch im Weiteren Brefeldin A als Sekretionsinhibitor verwendet, da die Unterschiede zwischen beiden Sekretionsinhibitoren gering waren. Ausschlaggebend für die Entscheidung für Brefeldin A, dass eine Inkubationen mit Monensin für mehr als 18h zu einer höheren Rate an toten Zellen führte, wie in der Literatur beschrieben,\(^{(80)}\) als die Zugabe von Brefeldin A.

3.1.2 Stimulationskinetik der PBMCs zur Optimierung der Interleukin 17 Analytik

Um den Zeitpunkt der maximalen Interleukin 17 Expression zu ermitteln wurde eine Stimulationskinetik an PBMC eines gesunden Probanden (Proband 2) durchgeführt. Die Zellen wurden zum Zeitpunkt 0h entweder mit PMA/Ionomycin (25ng/2µg), PHA (5µl/ml), HLA Kl.I Peptid Pool aus 23 Peptiden (je 2µg/Peptid) oder dem HLA Kl. II Peptid Pool (je 2µg/Peptid) pro \(10^6\) Zellen stimuliert.

Abbildung 19: Prozentualer Anteil der IFN-γ bzw. IL-17 positiven Zellen an Lymphozyten im Gate I nach PMA/Ionomycin Stimulation, die entweder mit Brefeldin A (BFA) oder mit Monensin in der Zytokinsekretion geblockt wurden
Nach Ablauf der angegeben Zeit wurden die stimulierten Zellen für weitere 4h mit Brefeldin A geblockt. Anschließend wurden die Zellen markiert (s.Kap. 2.13.2.) und sofort am FACS analysiert.

Ein Anstieg der Interleukin 17 Expression konnte nach 24h für alle verwendeten Stimulantien festgestellt werden (Abb. 20). Nach 48h war ein steiler Abfall der IL-17 Expression zu verzeichnen. Im weiteren Verlauf war nach 72h ein erneuter Anstieg zu beobachten.

3.1.3 Antikörpertitrationen
Um die optimale Antikörpermengen für die verschiedenen Fluoreszenzmarkierungen zu ermitteln, wurden alle verwendeten direkt markierten Antikörper in Vorversuchen austitriert. Zielpunkt der Titration war der Verdünnungswert, bis zu dem kein wesentlicher Abfall in der mittleren Fluoreszenz zu beobachten war. Dies soll hier am Beispiel von CD14 APC gezeigt werden.

Abbildung 20: Schaubild zur Kinetik der Interleukin 17 Expression; Zeitverlauf des Anteils IL-17⁺ Lymphozyten im Gate I des Probanden 2 in Abhängigkeit von den angegebenen Stimulantien
3.1.4 Untersuchung zum Einfluss von Einfrieren auf die FACS Detektion von Oberflächenantigenen und Interleukin-17 bzw. Interferon-γ

Um den Einfluss des Einfrierens auf die Expression der untersuchten Lymphozytenantigene und der Zytokinproduktion zu untersuchen, wurde in 2 unabhängigen Experimenten an PBMC zweier Probanden die Expression spezifischer Marker direkt nach Isolierung und nach Kryokonservierung (Kap. 2.9 & 2.10.) miteinander verglichen. Dazu wurden die frisch isolierten bzw. aufgetauten PBMC mit PMA/Ionomycin, PHA und den HLA-Klasse II Peptid Pool (in den Abbildungen CEF genannt) nach obengenannten Protokoll (Kap. 2.13.2) stimuliert.

Abbildung 22: FACS-Analyse der CD14 APC Antikörpertitration; Darstellung des SSC auf der Y-Achse gegen CD14-APC auf der X-Achse als Pseudocolor-Dotplot nach Zugabe unterschiedlicher Mengen des Antikörpers
Die kryokonservierten Zellen wiesen mehr Lymphozyten in Gate I auf als die frisch isolierten Zellen (Abb. 23). Den größten Anteil an Lymphozyten in Gate I zeigten, die frischen wie auch die aufgetauten, mit PMA/Ionomycin stimulierten PBMC. Gate II Lymphozyten scheinen durch Einfrieren und PMA/Ionomycin Stimulation bevorzugt abzusterben. Den geringsten Anteil an Lymphozyten in Gate I wiesen PBMC nach PHA Stimulation auf.

Abbildung 23: % Anteil der Zellen, die im Gate I der Lymphozyten von frisch isolierten oder aufgetauten PBMC in Abhängigkeit von der Stimulation mit PHA, PMA/Ionomycin oder dem HLA-Kl. II Peptid Pool (CEF)

Abbildung 24: % Anteil CD25^hi Zellen im Gate I der Lymphozyten von frischen und aufgetauten PBMC unstimuliert und nach verschiedenen Stimulationen

Bezüglich der Expression von CD28 unterschieden sich frisch isolierte und aufgetaute Zellen kaum voneinander.

CD 56 Expression an Lymphozyten im Gate I

Die CD56^{+} Zellen im Gate I der Lymphozyten waren nach Auftauen im Vergleich zu frisch isolierten vermehrt. Nach PHA und PMA/Ionomycin Stimulation nahm insbesondere bei den aufgetauten Zellen der Anteil CD56^{+} Zellen zu (Abb. 25).
Der Anteil der IL-17 positiven Zellen im Gate I der Lymphozyten war bei frisch isolierten Zellen im Vergleich zu aufgetauten höher (Abb.26). In beiden Vergleichsgruppen induzierte PMA/Ionomycin die Expression von IL-17 am stärksten, wobei auch hier ein Vorteil der Verwendung von frischen Zellen zu beobachten war.

Abbildung 26: % Anteil Interleukin-17 positiver Zellen im Gate I der Lymphozyten von frisch isolierten und aufgetauten PBMC, unstimuliert und nach verschiedenen Stimulationen

Abbildung 27: % Anteil IFN-γ' Zellen im Gate I der Lymphozyten von frisch isolierten und aufgetauten PBMC unstimuliert und nach verschiedenen Stimulationen
Auch die IFN-γ Expression war in frisch isolierten unstimulierten PBMC höher als in aufgetauten PBMC (Abb. 27). Die unspezifische Stimulation mit PHA und PMA/Ionomycin führte in beiden Populationen zu einem deutlich größeren Anteil IFN-γ⁺ Zellen, während bei antigen-spezifischer Aktivierung mit Klasse II restringierten CEF Pool Peptiden nur eine geringere Vermehrung verglichen zu den unstimulierten Zellen zu beobachten war.

3.2 Charakterisierung von Lymphozytenpopulationen und ihre Zytokinsekretion von RA-Patienten im Vergleich zu Gesunden

3.2.1 Unterschiede der Lymphozytenpopulationen
PBMC der RA-Patienten und gesunden Personen konnten nach Größe und Granularität in zwei Lymphozytenpopulationen, Gate I und Gate II unterschieden werden (Abb. 29 + Kap.2.13.9).
Neben einer Hauptpopulation, der Lymphozytenpopulation in Gate I, fand sich eine weitere größere und stärker granulierte Population von Lymphozyten im Gate II, die bei den einzelnen Probanden unterschiedlich stark varierte.

A: unstimulierte PBMC; B: nach PMA/Ionomycin Stimulation; C: nach PHA Stimulation;
D: nach Stimulation mit HLA Kl. II Peptiden
(Abb. 28). Es kann vermutet werden, dass es sich bei den Zellen im Gate II zum Teil um aktivierte Lymphozyten handelt. Kaum existent war diese Population nach PMA/Ionomycin Stimulation (Abb. 29), da vermutlich ein großer Teil der primär aktivierten Zellen durch die 24h-stündige Stimulation zum Absterben gebracht wurde.

RA-Patienten wiesen nach allen Stimulationen im Vergleich zu Gesunden signifikant geringere (p< 0,05) Anteile an Lymphozyten im Gate I und größere Anteile an Lymphozyten im Gate II als Gesunde auf (Abb. 29A). Besonders groß war dieser Unterschied nach Stimulation mit PHA und dem HLA Klasse II Peptid-Pool (p< 0,01).

Nach PMA/Ionomycin Stimulation lagen die meisten Lymphozyten im Gate I, da die Stimulation vermutlich eine große Anzahl der Lymphozyten im Gate II zum Absterben brachte.

Dagegen ließen sich bei RA-Patienten und Gesunden nach Stimulation mit PHA...
(p < 0,001) oder dem HLA-Klasse II Peptid-Pool (p < 0,05) signifikant weniger Lymphozyten im Gate I verglichen mit unstimulierten Zellen detektieren.

3.2.2 Identifizierung vitaler Zellen im Lymphozytengate

Um nur vitale Zellen in die Analyse einzuschließen wurden die toten Zellen, wie bereits beschrieben (Kap. 2.13.7), mit Hilfe der EMA-Färbung identifiziert und von der weiteren Analyse durch elektronisches Gating ausgeschlossen. Es konnten keinerlei Unterschiede zwischen gesunden Probanden und RA-Patienten bezüglich der Vitalität der Zellen festgestellt werden (Abb. 30).

Die Stimulation mit PMA/Ionomycin und mit PHA führte zu einer signifikant geringeren Rate an lebenden Zellen (p < 0,01) verglichen mit den unstimulierten Zellen. Nach Stimulation mit den HLA Klasse II Peptiden zeigten sich hingegen keine Unterschiede bezüglich der Vitalität der Zellen.

3.2.3 CD3⁺ Lymphozyten im Gate I

Der CD3 Komplex ist Teil des funktionellen T-Zell-Rezeptors. Während der T-Zell-Rezeptor für die Erkennung von MHC-Peptid Komplexen zuständig ist,
übernimmt der CD3-Komplex die Aufgabe der Signaltransduktion nach Ligandenbindung.

RA-Patienten und Gesunde unterschieden sich nicht signifikant in der Frequenz der CD3⁺ Lymphozyten im Gate I voneinander (Abb. 31 C). Nach Stimulation mit PHA nahm der prozentuale Anteil der CD3⁺ Lymphozyten im Gate I in beiden Gruppen signifikant (p<0,001) durch Herabregulierung von CD3 an der Oberfläche ab (Abb. 31 A+B).
3.2.3.1 CD3*/CD4* Lymphozyten im Gate I
CD4 und CD8 sind Ko-Rezeptoren der T-Zellen. Während CD4 an MHC Klasse II bindet, ist CD8 ein MHC Klasse I Ligand. Ein geringer Anteil der T-Zellen im Blut exprimiert auch beide Oberflächenproteine oder keines von beiden.\(^{(81)(86)}\)

Der Anteil der CD4⁺ Zellen an CD3⁺ Lymphozyten im Gate I war bei RA-Patienten signifikant höher als bei Gesunden (Abb. 32).
Nach Stimulation mit PMA/Ionomycin und PHA (Kap. 2.13.9.2) ließ sich eine Herabregulierung von CD4 an der Oberfläche der Lymphozyten beider Gruppen beobachten. Nach PMA/Ionomycin Stimulation war kaum ein Unterschied mehr zwischen Gesunden und RA-Patienten feststellbar.

3.2.3.2 CD3*/CD8* Lymphozyten im Gate I
Gesunde zeigten verglichen mit RA-Patienten einen signifikant größeren Anteil an CD8⁺ Lymphozyten im Gate I (Abb. 33).
RA-Patienten und Gesunde wiesen nach PHA Stimulation einen signifikant
höheren Anteil (p<0,05) CD8⁺ Lymphozyten im Gate I als unstimulierte Zellen auf und unterschieden sich nicht mehr signifikant voneinander.

Abbildung 33: Anteil der CD8⁺ Zellen an CD3⁺ Lymphozyten im Gate I. Abgebildet sind die Einzelwerte, die Mittelwerte, sowie das 95%-Konfidenzintervall (* p<0,05; **p<0,01; ns nicht signifikant)

3.2.3.3 CD3⁺/CD4⁺/CD8⁺ doppelt positive Lymphozyten im Gate I

Die Frequenz der CD4⁺/CD8⁺ doppelt positiven CD3⁺ Lymphozyten im Gate I unterschied sich nicht signifikant bei gesunden Probanden und RA-Patienten. Dennoch zeigten PBMC der RA-Patienten unstimuliert, wie auch nach Stimulation mit PMA/Ionomycin und HLA Kl.II Peptiden einen tendenziell höheren Anteil als Gesunde (Abb. 34).

Insgesamt führte die Stimulation mit PMA/Ionomycin im Vergleich zu den unstimulierten Zellen zu einem signifikanten Abfall, dieser doppelt positiven Zellen (p<0,05).

Im Gegensatz dazu erhöhte die Stimulation mit PHA in beiden Gruppen den Anteil doppelt positiver Zellen im Vergleich zu den unstimulierten Zellen, wobei sich die Gesunden signifikant (p<0,05) von den RA-Patienten unterschieden.
3.2.3.4 CD3⁺/CD4⁺/CD8⁻ doppelt negative Lymphozyten im Gate I

Der Anteil der CD4⁺/CD8⁻ doppelt negativen Zellen an den CD3⁺ Lymphozyten im Gate I war bei Gesunden signifikant größer als bei RA-Patienten (Abb. 35). Nach Stimulation mit PHA oder PMA/Ionomycin stieg die Frequenz der doppelt...
negativen Zellen verglichen mit den unstimulierten PBMC signifikant (p<0,0001) an. Dies scheint mit der Herabregulierung von CD4 durch PHA oder PMA/Ionomycin in Zusammenhang zu stehen (Kap. 2.13.9.2. und 3.2.3.1.)

3.2.4 CD3⁻ Zellen im Gate I

3.2.4.1 CD3⁻/CD4⁺ Zellen im Gate I

Der Anteil der CD4⁺-Zellen an den CD3⁻ Zellen im Gate I war bei RA-Patienten, größer als bei Gesunden (Abb.36). Signifikant war der Unterschied jedoch nur nach PHA Stimulation.

Die Anteile der CD8⁺ Zellen an den CD3⁻ Zellen zeigten keine Unterschiede zwischen Gesunden und RA-Patienten (Abb. 37). Auch zeigten sich keine signifikanten Unterschiede nach den unterschiedlichen Stimulationen, wenn gleich die Stimulation mit PHA zu einer etwas vermehrten CD8 Expression führte.

Eine CD3⁻/CD4⁺/CD8⁺ Zellpopulation im Gate I konnte nicht identifiziert werden.

3.2.5 CD25⁺ Lymphozyten im Gate I

Abbildung 38: Expression von CD25⁺ (links) und CD25⁺⁺ (rechts) auf CD3⁺ Lymphozyten im Gate I: A: CD25⁺⁺ auf CD3⁺/CD4⁺ Zellen; B: CD25⁺⁺⁺ auf CD3⁺/CD4⁺ Zellen; C: CD25⁺⁺ auf CD3⁺/CD8⁺ Zellen; D: CD25⁺⁺⁺ auf CD3⁺/CD8⁺ Zellen; E: CD25⁺⁺⁺ auf CD3⁺/CD4⁺/CD8⁺ Zellen; F: CD25⁺⁺⁺ auf CD3⁺/CD4⁺/CD8⁺ Zellen; Abbgebildet sind die Einzelwerte, die Mittelwerte, sowie das 95%-Konfidenzintervall (* p<0,05; ** p<0,01; *** p<0,001)
Ebenso verhielt sich die CD25 Expression auf den CD3⁺/CD8⁺ Lymphozyten im Gate I, wenn auch bei geringeren Frequenzen (Abb. 38 C+D).

3.2.6 CD56⁺ Zellen im Gate I

3.2.6.1 CD3⁺/CD56⁺ NK-T-Zellen im Gate I
Auch die doppelt positiven CD3⁺/CD4⁺/CD8⁺ Lymphozyten im Gate I zeigten keinen unterschiedliche CD56 Expression von RA-Patienten und Gesunden.

Abbildung 39: Expression von CD56
A: auf CD3⁺/CD4⁺ Lymphozyten im Gate I;
B: auf CD3⁺/CD8⁺ Lymphozyten im Gate I;
C: auf CD3⁺/CD4⁺/CD8⁺ Lymphozyten im Gate I
Abgebildet sind die Einzelwerte, die Mittelwerte, sowie das 95%-Konfidenzintervall (* p<0,05; **p<0,01; ***p<0,001)
3.2.6.2 CD3/CD56⁺ NK-Zellen im Gate I

Die CD3⁺/CD4⁺ Zellen im Gate I der RA-Patienten exprimierten deutlich mehr CD56 als die Gesunden (Abb. 41A). Nach Stimulation mit PHA nahm die CD56 Expression im Vergleich zu den unstimulierten Zellen signifikant (p<0,05) ab, wonach sich Gesunde und RA-Patienten nicht mehr unterschieden.

Zwischen Gesunden und RA-Patienten war kein deutlicher Unterschied in der CD56 Expression auf den CD3⁻/CD8⁺ Lymphozyten im Gate I zu beobachten (Abb. 41B). Die Stimulation mit PHA (p<0,001) und mit PMA/Ionomycin (ns) führte zu einer deutlichen Abnahme der CD56⁺ NK-Zellen in der CD3⁻/CD8⁺ Lymphozytenpopulation verglichen mit den unstimulierten Zellen.
3.2.7 CD28+ Lymphozyten im Gate I

CD28 wird als kostimulatorischer Rezeptor auf den meisten CD4+ T-Zellen exprimiert und ist durch Bindung mit CD80 bzw. CD86 auf den antigenpräsentierenden-Zellen in die T-Zell-Aktivierung involviert.

Die CD3+/CD8+ Lymphozyten der RA-Patienten wiesen unabhängig von der getesteten Stimulation signifikant mehr CD28+ Zellen als die Gesunden auf (Abb. 42B). Ebenso nahm die Frequenz der CD28+ Zellen nach Stimulation mit PHA und PMA/Ionomycin verglichen mit den unstimulierten PBMC signifikant (p<0,01) zu.
Auch bei den doppelt positiven CD3⁺/CD4⁺/CD8⁺ Lymphozyten im Gate I zeigten RA-Patienten verglichen mit den Gesunden einen erhöhten Anteil an CD28⁺ Zellen (Abb. 42C), der sich allerdings nur nach PHA Stimulation als signifikant erhöht zeigte. Es waren nur nach PMA/Ionomycin Stimulation, nicht nach PHA Stimulation, signifikant (p<0,001) mehr CD3⁺/CD4⁺/CD8⁺ Zellen CD28 negativ
als ohne Stimulation.

3.2.8 Vorkommen IFN-γ+ Zellen in verschiedenen Zellpopulationen

3.2.8.1 IFN-γ+ CD3+-Lymphozyten im Gate I

Abbildung 43: Anteil Interferon-γ+ Zellen an CD3+ Lymphozyten im Gate I; Abgebildet sind die Einzelwerte, das 95%-Konfidenzintervall und die Mittelwerte (*-p<0,05; **-p<0,01; ***-p<0,001)

Der Anteil der IFN-γ produzierenden Zellen an den CD3+ Lymphozyten im Gate I unterschied sich bei Gesunden und RA-Patienten kaum. Gesunde hatten jedoch einen geringfügig höheren Anteil IFN-γ produzierender CD3+ Zellen (Abb.43). Nach Stimulation mit PHA (p<0,01) und PMA/Ionomycin (p<0,001) nahm bei den gesunden Kontrollen sowie bei den RA-Patienten der Anteil der
IFN-γ positiven CD3⁺ höchst signifikant gegenüber den unstimulierten Zellen zu.

Abbildung 44: Anteil der Interferon-γ sezernierenden Zellen; A: an CD3⁺/CD4⁺ Lymphozyten im Gate I; B: an CD3⁺/CD8⁺ Lymphozyten im Gate I; C: an CD3⁺/CD4⁺/CD8⁺ Lymphozyten im Gate I; D: an CD3⁺/CD4⁺/CD8⁺ Lymphozyten im Gate I; Abgebildet sind die Einzelwerte, das 95%-Konfidenzintervall und die Mittelwerte (*-p<0,05; **-p<0,01; ***-p<0,001; ****-p<0,0001)

Gesunde Probanden und RA-Patienten unterschieden sich kaum in der IFN-γ Expression der unstimulierten CD3⁺/CD4⁺ Lymphozyten. Nach Stimulation mit PHA und PMA/Ionomycin zeigte sich eine höchst signifikante (p<0,001)

Im Anteil IFN-γ⁺ produzierender CD3⁺/CD4⁺/CD8⁺ Zellen unterschieden sich Gesunden kaum von RA-Patienten (Abb. 44C). In beiden Gruppen zeigte sich ein hoch signifikant höherer Anteil IFN-γ⁺ CD3⁺/CD4⁺/CD8⁺ Zellen nach Stimulation mit PHA (p<0,01) und mit PMA/Ionomycin (p<0,0001) verglichen mit den unstimulierten PBMCs.

3.2.8.2 IFN-γ⁺ CD3⁻-Zellen im Gate I

Die Anteile IFN-γ⁺ Zellen an den CD3⁻ Zellen waren bei RA-Patienten höher als bei Gesunden (Abb. 45). Nach Stimulation mit PMA/Ionomycin zeigten sich in beiden Gruppen höchst signifikant (p<0,001) höhere Frequenzen IFN-γ⁺ Zellen verglichen mit unstimulierten Zellen.
Der Anteil IFN-γ+ Zellen an CD3-/CD4+ Zellen war unstimuliert bei RA-Patienten deutlich höher (p=0,05) als bei Gesunden (Abb. 46A). Hingegen führte die Stimulation mit PMA/Ionomycin im Vergleich zu den unstimulierten Zellen nur bei den Gesunden zu einer signifikant höheren (p<0,01) Frequenz IFN-γ+ Zellen. Nach Stimulation mit HLA Kl.II Peptiden war bei beiden Gruppen der Anteil IFN-γ+ Zellen signifikant (p<0,05) höher als bei den unstimulierten Zellen. RA-Patienten zeigten nach allen Stimulationen einen deutlich höheren Anteil IFN-γ+ CD3-/CD8+ Zellen als Gesunde (Abb. 48B). Auch im Vergleich zu den unstimulierten Zellen waren die prozentualen Anteile der IFN-γ+ Zellen an den CD3-/CD8+ Zellen nach Stimulation mit PHA (p<0,01) und PMA/Ionomycin (p<0,0001) in beiden Gruppen signifikant höher.

Der Anteil IFN-γ+ CD3-/CD56+ NK-Zellen war bei RA-Patienten in der unstimulierten Lymphozytenpopulation, sowie nach Stimulation mit PHA und HLA Kl.II Peptiden höher als bei Gesunden (Abb. 46C). Die Stimulation mit PMA/Ionomycin führte zu deutlich, bei den Gesunden sogar signifikant (p<0,01), höheren Frequenzen IFN-γ+ Zellen verglichen mit den unstimulierten Zellen und es ließ sich kein Unterschied mehr zwischen RA-Patienten und Gesunden feststellen.
3.2.8.3 IFN-γ⁺ CD25⁺-Lymphozyten im Gate I

3.2.8.4 IFN-γ⁺ CD28⁻ Lymphozyten im Gate I

Abbildung 47: Anteile Interferon-γ produzierender Zellen innerhalb
B: der CD3⁺/CD8⁺/CD25⁺ Suppressor-T-Zellen im Gate I;
abgebildet sind die Einzelwerte, die Mittelwerte sowie das 95%-Konfidenzintervall; (ns- nicht signifikant; *p<0,05)

Abbildung 48: Interferon-γ sezernierende Zellen; A: innerhalb der CD3+/CD4+/CD28- Lymphozyten im Gate I; B: innerhalb der CD3+/CD8+/CD28- Lymphozyten im Gate I; dargestellt sind die Einzelwerte, die Mittelwerte sowie das 95%-Konfidenzintervall; (ns- nicht signifikant; `-p<0,05; **-p<0,01; ***-p<0,001)
3.2.9 Vorkommen IL-17⁺ Zellen in verschiedenen Zellpopulationen

3.2.9.1 IL-17⁺ Lymphozyten im Gate I und im Gate II

RA-Patienten wiesen ohne Stimulation einen größeren, jedoch nicht signifikant differenten, Anteil an IL-17⁺ Lymphozyten im Gate I als Gesunde auf (Abb. 50A). Nach Stimulation mit PHA war dieser Unterschied nicht mehr vorhanden. Durch PMA/Ionomycin Stimulation konnte bei Gesunden wie auch bei Patienten ein deutlicher Anstieg der IL-17⁺ Zellen im Gate I beobachtet werden. Weder die Stimulation mit PHA noch mit dem HLA Kl. II Peptidpool führten im Gate I oder im Gate II zu einem sichtbaren Anstieg der IL-17⁺ Zellen.

Im Gate II der Lymphozyten zeigten Gesunde generell einen größeren Anteil IL-17⁺ Zellen als RA-Patienten (Abb. 50B). Die IL-17⁺ Anteile an Lymphozyten im Gate II waren in beiden Gruppen und unabhängig von der Stimulation höher als im Gate I.

Nach PMA/Ionomycin Stimulation konnte keine Lymphozytenpopulation im Gate II beobachtet werden (Abb. 28B + Kap. 3.2.1).
3.2.9.2 IL-17⁺ CD3⁺-Lymphozyten im Gate I

Die Fraktion Interleukin-17⁺ CD3⁺ Lymphozyten im Gate I war bei RA-Patienten nach allen Stimulationen größer als bei Gesunden (Abb. 51). Eine signifikante Zunahme des Anteils IL-17⁺ Zellen an den CD3⁺ Zellen zeigte sich für beide Gruppen nach Stimulation mit PHA (p<0,001) und PMA/Ionomycin (p<0,05) verglichen mit den unstimulierten Zellen

CD3⁺/CD4⁺ T-Helfer-Zellen von RA-Patienten exprimierten geringfügig mehr Interleukin-17 als Gesunde. Nach PHA (p<0,001) und PMA/Ionomycin (p<0,01) Stimulation war der Anteil der IL-17⁺ Zellen in beiden Testgruppen signifikant gegenüber den unstimulierten Zellen erhöht (Abb. 52A).

Hingegen war die IL-17⁺ Zellfraktion der CD3⁺/CD8⁺ Lymphozyten der RA-Patienten nach Stimulation mit PHA im Vergleich zu den unstimulierten Zellen im Mittel unverändert, während sie bei Gesunden zunahm. Der Anteil der IL-17⁺ CD3⁺/CD8⁺ Zellen nahm in beiden Gruppen nach PMA/Ionomycin Stimulation

Abbildung 51: IL-17⁺ CD3⁺ Lymphozyten im Gate I; Dargestellt sind die Einzelwerte, die Mittelwerte und das 95%-Konfidenzintervall (ns-nicht signifikant; *-p<0,05; **-p<0,01; ***-p<0,001)
vergleichen mit den unstimulierten Zellen signifikant (p<0,05) zu.

Gesunde wiesen auch einen höheren Anteil IL-17⁺ Zellen an den CD3⁺/CD4⁺/CD8⁺ doppelt positiven Lymphozyten als RA-Patienten auf (Abb. 52C). Eine höchst signifikante (p<0,001) Zunahme des IL-17 Anteils an den doppelt positiven Zellen ließ sich nach Stimulation mit PHA und PMA/Ionomycin verglichen mit den unstimulierten Zellen in beiden Gruppen beobachten. Insbesamt zeigten die CD3⁺/CD4⁺/CD8⁺ Zellen beider Testgruppen sehr hohe Anteile IL-17⁺ Zellen verglichen mit den einfach positiven CD3⁺/CD4⁺ (Abb. 52A)

3.2.9.3 IL-17⁺ CD3⁻ Zellen im Gate I

RA-Patienten wiesen unstimuliert und nach allen Stimulationen, außer nach PHA, signifikant höhere IL-17⁺ Anteile an CD3⁻ Zellen als Gesunde auf (Abb. 53). Nach Stimulation mit PHA reduzierten sich diese Populationen bei beiden Gruppen verglichen mit den unstimulierten und der Anteil IL-17⁺ Zellen schien nicht mehr weit über der Hintergrund Fluoreszenz zu liegen. CD3⁻ Zellen zeigten aber nach Stimulation mit PMA/Ionomycin im Vergleich zu unstimulierten Zellen, insbesondere bei RA-Patienten, deutlich erhöhte Anteile an IL-17⁺ Zellen.

![Abbildung 53: Anteil Interleukin-17⁺ Zellen an CD3⁻ Zellen im Lymphozytengate I; Abgebildet sind die Einzelwerte, das 95%-Konfidenzintervall und die Mittelwerte (ns- nicht signifikant; *-p<0,05; **-p<0,01; ***-p<0,001)](image)

Die CD3⁺/CD4⁺ Zellen im Lymphozytengate I der RA-Patienten hatten
unstimuliert, nach Stimulation PMA/Ionomycin oder mit HLA Kl.II Peptiden einen deutlich höheren Anteil an IL-17⁺ Zellen als die gesunde Vergleichsgruppe (Abb. 54A).

Der Anteil IL-17⁺ Zellen betrug unstimuliert 3-5% der CD3⁺/CD4⁺ Zellen und stellte damit nach den CD3⁺/CD4⁺/CD8⁺ doppelt positiven Zellen die Zellpopulation mit den zweithöchsten Anteil IL-17⁺ Zellen dar. Nach Stimulation mit PHA (p<0,05) und mit PMA/Ionomycin (nicht signifikant) war in beiden Testgruppen der IL-17⁺ Anteil der CD3⁺/CD4⁺ Zellen niedriger als bei den unstimulierten.

Abbildung 54: Anteile IL-17⁺ Zellen an
A: CD3⁺/CD4⁺ Zellen im Gate I;
B: CD3⁺/CD8⁺ Zellen im Gate I;
C: CD3⁺/CD56⁺ Zellen im Gate I;
Abgebildet sind die Einzelwerte, das 95%-Konfidenzintervall und die Mittelwerte (ns- nicht signifikant; *-p<0,05; **-p<0,01; ***-p<0,001)
Unstimuliert wiesen CD3⁻/CD8⁺ Lymphozyten von RA-Patienten einen signifikant größeren Anteil IL-17⁺ Zellen (p<0,05) als Gesunde auf (Abb. 54B). Dieser Unterschied zwischen Gesunden und RA-Patienten bestand nach Stimulation nicht mehr. Nach Stimulation mit PHA fielen die IL-17⁺ Zellen verglichen mit unstimulierten Zellen sogar signifikant ab (p<0,01).

3.2.9.4 IL-17⁺ CD25⁺⁻Lymphozyten im Gate I

Die Anteile der Interleukin 17⁺ an CD3⁺/CD4⁺/CD25hi Lymphozyten im Gate I lagen für Gesunde und Patienten nach allen Stimulationen zwischen 1,8%-2,5% (Abb. 55A) und waren signifikant größer als bei den CD3⁺/CD4⁺ Lymphozyten (Abb. 52A).

IL-17 Anteile deutlich über denen der CD3⁺/CD4⁺ Zellen (Abb. 52A).

3.2.9.6 IL-17⁺ CD56⁺-Lymphozyten im Gate I

Abbildung 58: Anteil Interleukin-17⁺ Zellen A: an CD3⁺/CD4⁺/CD56⁺ Lymphozyten im Gate I; B: an CD3⁺/CD8⁺/CD56⁺ Lymphozyten im Gate I; C: an CD3⁺/CD4⁺/CD8⁺/CD56⁺ Lymphozyten im Gate I; D: an CD3⁺/CD4⁺/CD56⁺ Zellen Lymphozyten im Gate I; Abgebildet sind die Einzelwerte, die Mittelwerte, sowie das 95%-Konfidenzintervall (ns- nicht signifikant; *p<0,05; **p<0,01; ***p<0,001)

Die IL-17 Expression der CD3⁺/CD56⁺ NK-Zellen wurden oben bereits beschrieben (Kap. 3.2.9.3. & Abb. 54C).
3.2.10 Verteilung der IL-17⁺ Zellen auf verschiedene Zellpopulationen

3.2.10.1 Zellpopulationen der IL-17⁺ Zellen im Lymphozytengate I
Zunächst wurden die IL-17⁺ Zellen im Gate I bezüglich ihrer CD3 Expression miteinander verglichen.

Mit mehr als 80% war der größte Teil der IL-17⁺ Zellen im Lymphozytengate I bei Gesunden und RA-Patienten CD3 positiv. RA-Patienten zeigten nach allen Stimulationen dennoch einen höheren Anteil CD3⁻ Zellen innerhalb der IL-17⁺ Zellen als Gesunde (Abb. 59). Ein Unterschied der so bei unselektionierten Lymphozyten im Gate I (Abb. 31A) nicht bestand. Bezüglich der einzelnen Stimulantien ließen sich keine Unterschiede der CD3 Expression feststellen.

Zur weiteren Differenzierung wurden sowohl die IL17⁺/CD3⁺ als auch die IL-17⁺/CD3⁻ Zellen im Gate I der Lymphozyten auf ihre CD4 und CD8 Expression hin untersucht.

Abbildung 59: Analyse der CD3 Expression der IL-17⁺ Zellen im Gate I; abgebildet sind die Mittelwerte
Die größte Population der IL-17⁺/CD3⁺ Lymphozyten im Gate I exprimierte erwartungsgemäß CD4⁺ (Abb. 60A). Diese Population war bei RA-Patienten unstimuliert und nach allen Stimulationen größer als bei Gesunden. Dieser Unterschied war signifikant in der unstimulierten Population (p<0,01), sowie nach Stimulation mit PHA (p<0,0001) und HLA Kl.II Peptiden (p<0,01). Jedoch bestand dieser signifikante Unterschied auch bei den CD3⁺ Zellen, die kein IL-17 exprimierten (Abb.32).

Nach Stimulation mit PHA zeigte sich insbesondere bei den gesunden Probanden ein großer Anteil (~15%) doppelt positiver Zellen an den IL-17⁺/CD3⁺ Zellen im Gate I.

Den größten Anteil an IL-17⁺/CD3⁻ Zellen im Gate I stellten die doppelt negativen Zellen (Abb. 60B). Die Anteile der CD4⁺ oder CD8⁺ Zellen an IL-17⁺/CD3⁻ Lymphozyten im Gate I unterschieden sich nach den getesteten Stimulationen sowie zwischen den beiden Testgruppen nicht signifikant.

Abbildung 60: Vergleich der Anteile der CD4⁺ und CD8⁺ Zellen im Gate I A: an IL-17⁺/CD3⁺ Zellen B: an IL-17⁺/CD3⁻ Zellen; abgebildet sind die Mittelwerte
3.2.10.2 Zellpopulationen der IL-17⁺ Zellen im Lymphozytengate II

Die IL-17⁺ Zellen im Gate II wurden zunächst bezüglich ihrer CD3 Expression untersucht.

Abbildung 61: Anteil der CD3 exprimierenden Zellen an den IL-17⁺ Zellen im Gate II der Lymphozyten; abgebildet sind die Mittelwerte

Die CD3 Expression der IL-17⁺ Zellen im Gate II von Gesunden und RA-Patienten unterschied sich nicht (Abb. 61). Nach Stimulation mit PHA war der Anteil an CD3⁺ Zellen bei Gesunden und Patienten sehr signifikant (p<0,01) erhöht gegenüber den unstimulierten Zellen.

Zur weiteren Differenzierung wurden die IL-17⁺/CD3⁺ sowie die IL-17⁺/CD3⁻ Zellen im Gate II bezüglich ihrer CD4 und CD8 Expression untersucht.
Den größten Anteil an IL-17⁺/CD3⁺ Lymphozyten im Gate II hatten die CD4⁺ Zellen (Abb. 62A). Deren Anteil war bei RA-Patienten deutlich größer als bei Gesunden. Nach Stimulation mit PHA war dieser Unterschied signifikant (p<0,01). Des Weiteren verminderte sich nach Stimulation mit PHA bei RA-Patienten und Gesunden der Anteil CD4⁺ Zellen an den IL-17⁺/CD3⁺ Zellen verglichen mit den unstimulierten Zellen signifikant (p<0,05). Den zweitgrößten Anteil an den IL-17⁺/CD3⁺ Lymphozyten hatten die doppelt positiven CD4⁺/CD8⁺ Zellen. Deren Anteil erhöhte sich nach Stimulation mit PHA bei Gesunden und RA-Patienten verglichen mit den unstimulierten Zellen signifikant (p<0,01). Der Anteil CD8⁺ Zellen an den IL-17⁺/CD3⁺ Lymphozyten im Gate II wurde dagegen durch die Stimulationen nicht beeinflusst. Gesunde wiesen einen höheren Anteil CD8⁺ Zellen als RA-Patienten auf. Der Anteil doppelt negativer Zellen an IL-17⁺/CD3⁺ Lymphozyten im Gate II war bei Gesunden unstimuliert und nach allen Stimulationen deutlich größer als bei RA-Patienten.

Den größten Anteil an den IL-17⁺/CD3⁻ Zellen im Lymphozytengate II hatten die doppelt negativen Zellen (Abb. 62B). Der Anteil der CD4⁺ Zellen an den IL-17⁺/CD3⁻ Zellen war, außer nach PHA Stimulation, bei Gesunden größer als bei Gesunden unstimuliert und nach allen Stimulationen deutlich größer als bei RA-Patienten.

Abbildung 62: Vergleich der Anteile der CD4⁺ und CD8⁺ Zellen im Gate II A: die IL-17⁺/CD3⁺ Zellen B: die IL-17⁺/CD3⁻ Zellen; abgebildet sind die Mittelwerte
RA-Patienten. Im Gegensatz dazu war der Anteil der CD8⁺ Zellen an den IL-17⁺/CD3⁻ Zellen im Gate II nach allen Stimulationen bei RA-Patienten größer als bei Gesunden.

3.2.11 Verteilung der IFN-γ⁺ Zellen auf verschiedene Zellpopulationen

3.2.11.1 Zellpopulationen der IFN-γ⁺ Zellen im Lymphozytengate I
Um die IFN-γ produzierenden Zellen im Gate I der Lymphozyten weiter zu spezifizieren, wurden die IFN-γ⁺ Zellen gegated und bezüglich ihrer CD3 Expression untersucht (Abb.63).

Abbildung 63: Vergleich der Anteile der CD3 Expression der IFN-γ⁺ Zellen im Gate I; abgebildet sind die Mittelwerte

Im Weiteren wurden die IFN-γ⁺/CD3⁺ und die IFN-γ⁺/CD3⁻ Zellen im Gate I bezüglich ihrer CD4 und CD8 Expression weiter differenziert.

[Diagramm]

Abbildung 64: Vergleich der Anteile der CD4⁺ und CD8⁺ Zellen A: an IFN-γ⁺/CD3⁺ Zellen im Gate I; B: an IFN-γ⁺/CD3⁻ Zellen im Gate I; abgebildet sind die Mittelwerte

Die größte Population der IFN-γ⁺/CD3⁻ Zellen im Gate I der Lymphozyten

Doppelt positive Zellen, die CD3 negativ waren, ließen sich erwartungsgemäß, nicht detektieren.

3.2.11.2 IFN-γ⁺ Zellen im Lymphozytengate II

![Diagramm](image)

Abbildung 65: Vergleich der anteiligen CD3 Expression der IFN-γ⁺ Zellen im Gate II; abgebildet sind die Mittelwerte

Zur besseren Charakterisierung der IFN-γ⁺ Zellen im Lymphozytengate II wurden auch diese bezüglich ihrer CD3 Expression untersucht. Der überwiegende Anteil der IFN-γ⁺ Zellen im Gate II war, im Gegensatz zu den Zellen im Gate I (Abb. 63), CD3 negativ (Abb. 65). RA-Patienten hatten unstimuliert und nach PHA Stimulation einen deutlich höheren Anteil CD3⁻ IFN-
γ⁺ Zellen im Gate II als Gesunde. Nach Stimulation mit dem HLA Kl.II Peptid-Pool bestand dagegen kein Unterschied zwischen Gesunden und RA-Patienten. Die Stimulation mit PMA/Ionomycin führte vermutlich zum Absterben von Lymphozyten im Gate II, so dass diese im Gate II nach PMA/I Stimulation nicht mehr detektiert werden konnten (Kap. 3.2.2. + Abb. 28 + Abb. 30).

Zur genaueren Identifizierung der IFN-γ⁺ CD3⁺ und auch CD3⁻ Zellen im Lymphozytengate II wurde die CD4 und CD8 Expression dieser Populationen betrachtet.

![Diagramm A: CD4⁺ und CD8⁺ Expression der IFN-γ⁺/CD3⁺ Zellen im Lymphozytengate II](image1)

![Diagramm B: CD4⁺ und CD8⁺ Expression der IFN-γ⁺/CD3⁺ Zellen im Lymphozytengate II](image2)

Abbildung 66: Vergleich der Anteile der CD4⁺ und CD8⁺ Zellen im Gate II A: an IFN-γ⁺/CD3⁺ Zellen B: an IFN-γ⁺/CD3⁻ Zellen; abgebildet sind die Mittelwerte

Die CD4⁺ Zellen stellten den größten Anteil der IFN-γ⁺/CD3⁺ Lymphozyten im Gate II dar (Abb. 66A). Bei RA-Patienten war der CD4⁺ Anteil nach allen Stimulationen, wie bei den Lymphozyten im Gate I (Abb. 64A), größer als bei Gesunden.

Die CD4⁺/CD8⁻ doppelt negativen Zellen stellten mit 17-27% der IFN-γ⁺/CD3⁺ Lymphozyten im Gate II eine weitere große Population dar. Dieser Anteil an
doppelt negativen Zellen war bei Gesunden größer als bei RA-Patienten. Zwischen den einzelnen Stimulantien ließen sich keine Unterschiede in den Anteilen der doppelt negativen Zellen an den IFN-γ⁺/CD3⁺ Lymphozyten im Gate II feststellen.

Wie bei den Lymphozyten im Gate I, zeigten Lymphozyten im Gate II von Gesunden nach allen Stimulationen einen größeren Anteil CD8⁺ an IFN-γ⁺/CD3⁺ Zellen als RA-Patienten. Nach Stimulation mit PHA zeigte sich der Anteil der CD8⁺ Zellen an den IFN-γ⁺/CD3⁺ Lymphozyten im Gate II gegenüber den unstimulierten Zellen bei Gesunden und RA-Patienten als signifikant (p<0,05) erhöht.

Der Anteil der doppelt positiven Zellen an den IFN-γ⁺/CD3⁺ Lymphozyten im Gate II unterschied sich bei Gesunden und bei RA-Patienten nicht. Allerdings konnte ein höchst signifikant (p<0,001) höherer Anteil doppelt positiver Zellen nach Stimulation mit PHA bei Gesunden und Patienten im Vergleich zu den unstimulierten Populationen festgestellt werden.

Die IFN-γ⁺/CD3⁻ Zellen im Gate II exprimierten zum größten Teil weder CD4 noch CD8 (Abb.66B).

Gesunde Probanden hatten nach allen Stimulationen verglichen mit den RA-Patienten einen etwas größeren Anteil CD4⁺ Zellen an den IFN-γ⁺/CD3⁻ Zellen im Gate II.

Der Anteil von CD8⁺ an IFN-γ⁺/CD3⁻ Zellen war sowohl bei RA-Patienten als auch bei Gesunden gering. Nach Stimulation mit PHA war der Anteil CD8⁺ Zellen an IFN-γ⁺/CD3⁻ Zellen im Gate II der Lymphozyten in beiden Testgruppen signifikant (p<0,05) größer als in der unstimulierten Population.
3.2.12 IL-17 und IFN-γ positive Zellpopulationen

Es konnten in einigen Subpopulationen Zellen detektiert werden, die sowohl IFN-γ als auch IL-17 produzierten.

Als IFN-γ⁺/IL-17⁺ doppelt positive Zellen in den unstimulierten PBMC zeigten sich in CD3⁺/CD4⁺/CD8⁺ Lymphozyten im Gate I (Abb. 67C). Nach Stimulation mit PMA/Ionomycin oder PHA nahm die IFN-γ⁺/IL-17⁺ doppelt positive Fraktion signifikant (p<0,01) im Vergleich zu den unstimulierten Zellen zu. Bei einigen Probanden waren die Anteile der IFN-γ⁺/IL-17⁺ positiver Zellen (5-40%) an den CD3⁺/CD4⁺/CD8⁺ Lymphozyten besonders hoch.

In weiteren CD3⁻ Populationen konnten keine IFN-γ⁺/IL-17⁺ doppelt positiven Zellen detektiert werden.
Abbildung 67: Anteil IL-17⁺/IFN-γ⁺ doppelt positiver Zellen im Lymphozytengate I; A: an CD3⁺/CD4⁺ Zellen; B: an CD3⁺/CD8⁺ Zellen; C: an CD3⁺/CD4⁺/CD8⁺ Zellen; D: an CD3⁺/CD4⁺ Zellen; Abgebildet sind die Einzelwerte, die Mittelwerte, sowie das 95%-Konfidenzintervall (ns: nicht signifikant; *p<0,05; **p<0,01; ***p<0,001)
3.3 Untersuchung der CD3/Interleukin-17⁺ Zellen

Da IL-17 nicht nur von CD3⁺ Zellen, sondern auch von CD3⁻ Zellen exprimiert wurde, wurde bei 2 Gesunden sowie 2 RA-Patienten untersucht, ob CD3⁺/IL-17⁺ Zellen den B-Zellmarker CD20 oder den LPS-Rezeptor CD14 exprimieren. Die ausgewählten Individuen wiesen einen hohen Anteil IL-17⁺/CD3⁻ Zellen im Lymphozytengate I auf.

CD20 wird von sich entwickelnden und reifen B-Zellen exprimiert. CD20 Oligomere bilden einen Ca²⁺-Kanal und spielen eventuell eine Rolle in der Regulation der B-Zellaktivierung.

Zunächst wurde die CD14 bzw. CD20 Expression der CD3/IL-17⁺ Zellen im Gate I und im Gate II der Lymphozyten betrachtet.

Abbildung 68: CD14 bzw. CD20 Expression der CD3/IL-17⁺ Zellen A: CD14 Expression; B: CD20 Expression; Dargestellt sind die Einzelwerte und die Mittelwerte
CD14 wurde von 50% der CD3/IL-17+ Zellen nach Stimulation mit PMA/Ionomycin exprimiert (Abb. 68A). Des Weiteren exprimierten die Zellen im Gate I der Lymphozyten mehr CD14 als Zellen im Gate II. Bemerkenswerterweise exprimierten die beiden RA-Patienten mehr CD14 als die Gesunden (nicht dargestellt).

Abbildung 69: Anteil IL-17 positiver Zellen
A: an CD3⁺ Zellen
B: an CD3⁺/CD14⁺ Zellen;
C: an CD3⁺/CD20⁺ Zellen;
Dargestellt sind die Einzelwerte sowie die Mittelwerte
Die höchsten CD20⁺ Anteile an CD3⁻/IL-17⁺ Zellen mit ~45% im Mittel, zeigten
die Zellen im Gate I der Lymphozyten ohne Stimulation (Abb. 68B). Von den
CD3⁻/IL-17⁺ Zellen im Lymphozytengate II exprimierten hingegen nur ca. 1%
CD20⁺.

Besonderes nach Stimulation mit PMA/Ionomycin zeigten CD3⁻/CD14⁺ Zellen
einen großen Anteil an IL-17 positiven Zellen im Lymphozytengate I (Abb. 69B).
Bemerkenswerterweise zeigten alle CD3⁻/CD14⁺ Zellen deutlich höhere IL-17⁺
Anteile als die unselektionierten CD3⁻ Zellen (Abb. 69A).
CD3⁻/CD20⁺ PMBC unterschieden sich bezüglich ihrer IL-17 Expression nur
geringfügig von den unselektionierten CD3⁻ Zellen (Abb. 69C). Nach
PMA/Ionomycin Stimulation zeigten sie sogar geringere IL-17 Frequenzen als
die unselektionierten CD3⁻ Zellen.

3.4 Untersuchung von B-Zelllinien auf IL-17 Expression
Da IL-17 von CD3⁻/CD20⁺ B-Zellen von Probanden exprimiert wurde, wurden
vergleichend auch EBV transformierte B-Zelllinien auf die Expression von IL-17
untersucht.

Einige B-Zelllinien, AMAI und Olga, zeigten nur sehr geringe (0,2%)
Frequenzen an IL-17⁺ Zellen (Abb. 70). Ob es sich um echt positive Zellen oder
nur um ein Hintergrundsignal handelt, sollte mit einer PCR überprüft werden.
Weitere B-Zelllinien, WT51, BOB und SA, wiesen IL-17 in Frequenzen zwischen
0,4-0,8% auf. Die Zelllinie Boleth hingegen hatte gar einen Anteil IL-17⁺ Zellen
der 4,8% betrug.
Abbildung 70: IL-17 Expression der EBV transformierten B-Zellen nach IL-17 PE Markierung (linke Spalte) und Isotypfärbungen (rechte Spalte) auf der X-Achse und EMA Färbung auf der Y-Achse.
3.5 Korrelation klinischer Parameter mit der IL-17 Expression

Da in der Pathogenese der rheumatoiden Arthritis die Expression von Interleukin-17 vor allem für das Auftreten von Knochenerosionen eine wichtige Rolle spielen soll, wurde untersucht, ob eine Korrelation zwischen den klinischen Parametern BSG, CRP, Leukozytenzahl, DAS28, der Erkrankungsduer oder dem Patientenalter und dem Anteil von IL-17 an den verschiedenen Subpopulationen bestand.

Da die IL-17 Frequenzen häufig nicht der Normalverteilung entsprachen, wurde die Berechnung mit Hilfe des Spearmans Rangkorrelationskoeffizienten durchgeführt.

Zwischen den klinischen Parametern und dem Anteil IL-17 positiver Zellen an den bezeichneten Subpopulationen konnte kein Zusammenhang festgestellt werden.

Dies mag zum einen an der eher geringen Fallzahl liegen. Andererseits muß auch bedacht werden, dass die Patienten alle therapiert werden und umso schwerer die Erkrankung ist desto intensiver ist auch die Therapie. Die in der Studie untersuchten Patienten wiesen einen Mittelwert von 2,89 des DAS28 auf (Kap.2.6.+ Tab.3). Der DAS28 lag für 14 Patienten vor, bei 6 Patienten war der DAS28 <2,6, was nach Fransen et al (25) einer klinischen Remission mit Erfüllung der ARA Kriterien entspricht. Weitere 5 Patienten wiesen einen DAS28 <3,6 auf, der nach Aletaha et al (3) als geringe Krankheitsaktivität klassifiziert wird. Nur 3 Patienten hatten einen DAS28 zwischen 3,6 und 4,1, was einer mittleren Krankheitsaktivität entspricht. Die in der Studie untersuchten Patienten waren demnach sehr gut therapiert. Berücksichtigt werden muss auch die Tatsache, dass 16 Patienten mit Kortikosteroiden, 8 Patienten immunsuppressiv und 7 weitere noch mit Methotrexate behandelt wurden. Inwieweit diese Therapien zu Veränderungen der untersuchten Lymphozytenpopulationen führten, läßt sich aus den Ergebnissen auch unter Berücksichtigung der Kontrollen nicht sicher erschließen. Chakir et al (18) konnten zeigen, dass Asthmapatienten nach einer
14-tägigen Behandlung mit Kortikosteroiden signifikant geringere Frequenzen an IL-17+ im Epithel aufwiesen als vor der Behandlung. Trotzdem waren die IL-17 Frequenzen, der behandelten Asthmapiatienten noch signifikant höher als die der Kontrollgruppe. Miranda-Carús et al.\(^\text{(69)}\) zeigten mit Hilfe der RT-PCR, dass T-Zellen von RA-Patienten, welche 3 Tage mit Medium kultiviert worden waren, signifikant höhere IL-17 mRNA Level aufwiesen als die T-Zellen, denen MTX zugegeben worden war.
4. Diskussion

Im Vordergrund dieser Untersuchung stand die Frage nach dem Phänotyp und der Frequenz IL-17 sezernierender Zellen im Blut von RA-Patienten im Vergleich zu gesunden Personen. Ferner wurde überprüft, in wieweit sich diese Zellen durch unspezifische oder antigenspezifische Stimuli beeinflussen bzw. aktivieren lassen.

4.1. Interleukin-17 exprimierende Zellen in PBMC

Mit Hilfe von „Multi-Color“ Färbungen für die ein Set von 8 direkt an Fluoreszenzfarbstoffe gekoppelte monoklonale Antikörper eingesetzt wurde, sollte in dieser Studie zunächst die Zusammensetzung der IL-17+ Zellen bei Gesunden charakterisiert werden. Dazu wurden 20 gesunde Kontrollpersonen untersucht.

Als wesentliche Interleukin-17 produzierende Zellen im Blut wurden die sogenannten Th17-Zellen identifiziert, die neben den Th1, Th2 und Treg Zellen eine neue Subpopulation der CD4+ T-Helferzellen darstellen. Es handelt sich
dabei um CD3+/CD4+ T-Helfer-Zellen, die sich von den herkömmlichen bekannten Th1/Th2 T-Helfer-Zellpopulationen(75) dadurch unterschieden, dass sie in ihrer Entwicklung durch IL-12 (Th1) sowie IL-4 (Th2) gehemmt werden und durch TGF-β gefördert werden(34)(Kap.1.2.5.).

In dieser Studie wurde ohne Stimulation IL-17 im Mittel von ca. 0,6% der CD3+ Lymphozyten der gesunden Probanden exprimiert (Abb. 51). In absoluten Zahlen entspricht dies durchschnittlich 1.186 IL-17+ Zellen pro 187.000 CD3+ Zellen von 235.000 gemessen Zellen im Lymphozytengate. Ca. 60% (≅ 718 Zellen) dieser unstimulierten CD3+/IL-17+ Zellen exprimierten gleichzeitig CD4 (Abb. 65A) und stellten somit erwartungsgemäß die größte IL-17+ Zellpopulation bei Gesunden und bei RA-Patienten dar.

Auch unter CD3⁺ Zellen im Gate I unstimulierten Lymphozyten wurden IL-17 positive Zellen identifiziert (Abb. 53). Als CD3⁺ Zellen, die eventuell Interleukin-17 sezernieren könnten diskutierten Gaston et al. und Weaver et al. NK-Zellen, Neutrophile und Granulozyten sowie Makrophagen Neutrophile und Granulozyten waren in dieser Studie in den Analysenproben nicht zu erwarten, da die PBMCs mit Lymphozyten und Monozyten von Neutrophilen und anderen polymorphkernigen Zellen über einen Ficoll-Dichtegradienten abgetrennt
Der mittlere Anteil der CD3⁺/IL-17⁺ Zellen an allen IL-17⁺ Zellen der gesunden Probanden im Gate I betrug 8,8% (≈ absolut 115 CD3⁺/IL-17⁺ Zellen von 1301 IL-17⁺ Zellen) (Abb. 64). Es konnten jedoch nicht bei allen Probanden, insbesondere bei den gesunden Kontrollen, CD3⁺/IL-17⁺ Zellen nachgewiesen werden.

Eine kleine IL-17⁺ Zellfraktion (0,59%) konnte auch innerhalb der CD3⁺/CD8⁺ Zellpopulation (Abb. 65B) identifiziert werden.

Das NK-Zellen IL-17 exprimieren können berichteten verschiedene Arbeitsgruppen. Ebenso zeigte sich in dieser Studie ein kleiner Anteil IL-17⁺ CD3⁺/CD56⁺ NK-Zellen (Abb. 54C).

Ein großer Teil (65%, Abb. 65B) der IL-17⁺ CD3⁺ Zellen exprimierte weder CD4,
CD8 noch CD56. Ein gewisser Teil dieser Zellen konnte durch weitere Mehrfachmarkierungen an einzelnen Zellproben als CD20⁺ B-Zellen (43%) und als CD14⁺ Monozyten (10%) (Abb. 68B) charakterisiert werden.

Übereinstimmend mit diesen Beobachtungen sind Berichte von Song et al.⁹⁹ sowie von Zhu et al.¹²⁵ über IL-17 sezernierende murine Makrophagen. Humane Monozyten, die IL-17 produzieren, beschrieben Starnes et al.¹⁰² sowie andere Autoren.¹¹⁵,²⁹,⁹⁹

Für ein Vorkommen von IL-17 in der B-Zellreihe sprechen in dieser Studie auch Untersuchungen an verschiedenen EBV-transformierten B-Zelllinien (Kap. 3.4). Während einige B-Zelllinien wie Olga und AMAI nahezu keine IL-17⁺ Zellfraktionen (~0,2%) über der Background Fluoreszenz aufwiesen (Abb. 70), zeigten andere B-Zelllinien geringe IL-17⁺ Zellsuppopulationen. In der B-Zelllinie Boleseth ließ sich sogar ein großer Anteil IL-17⁺ Zellen von 4,7% beobachten. Interleukin-17 ließ sich in dieser B-Zelllinien Boleseth auch durch den Nachweis entsprechender mRNA bestätigen. Welche B-Zellsubpopulation in vivo IL-17 exprimieren, müssen weitere Studien klären.

4.2. Unterschiede der Lymphozytenpopulationen bei RA-Patienten und Gesunden

Entsprechend ließen sich innerhalb der CD3⁺ Lymphozytenpopulationen der Gesunden mehr CD8⁺ (Abb. 33) und mehr CD4⁻/CD8⁻ doppelt negative (Abb. 35) Zellen als bei den RA-Patienten nachweisen. RA-Patienten hatten in allen Zellfraktionen der CD3⁺ unstimulierten

4.3. IL-17⁺ Zellpopulationen bei RA-Patienten und Gesunden
Mehrfach wurde darüber berichtet, dass RA-Patienten verglichen mit Osteoarthritis Patienten in der Synovialflüssigkeit wie auch im Überstand von dendritischen PBMC signifikant erhöhte IL-17 Spiegel im ELISA gezeigt hatten.⁵¹,¹²⁶ In dieser Studie wurde nachgewiesen, dass RA-Patienten diese erhöhten Werte im Überstand von PBMC auch mit einer erhöhten IL-17 Frequenz von IL-17⁺ Zellen im Blut der Patienten korrelieren.

117
den vorliegenden Ergebnissen und dem Tiermodell auf die Therapie zurückzuführen sind oder ob es sich um echte Unterschiede zwischen Mensch und Tiermodell handelt.

Gesunde und RA-Patienten unterschieden sich signifikant nur im Anteil der IL-17⁺ Zellen an der kleinen CD3⁺/CD4⁺/CD8⁺ doppelt positiven Lymphozytenpopulation, wobei Gesunde eine größere IL-17 Zellfraktion als RA-Patienten aufwiesen (Abb. 52C). Da diese Population jedoch sehr klein ist, beeinflusst sie die IL-17⁺ Zellfraktion an den CD3⁺ Zellen zu gunsten der Gesunden verglichen mit den RA-Patienten nur geringfügig.

Eine signifikant größere IL-17⁺ Zellfraktion zeigten RA-Patienten gegenüber gesunden Probanden an den unstimulierten CD3⁺ Zellen im Gate I (0,43% ≅ 157 Zellen vs. 0,23% ≅ 115 Zellen) (Abb. 53). Eine große IL-17 Zellfraktion zeigte dabei vor allem die CD3⁺/CD4⁺ Population, mit 5,6% bei RA-Patienten und mit 3,6% bei Gesunden (Abb. 54A). Ob es sich um die von Page et al. (82) beschriebenen Th1-Zytokin produzierenden Lymphozyten handelte, die die CD3 Expression verloren haben oder um Progenitoren von Monozyten oder anderen myelomonozytären Zellen müssen weitere Studien zeigen.

Auch die CD3⁺/CD8⁺ Zellen hatten bei RA-Patienten (1,17% ≅ 22 Zellen) unstimuliert einen signifikant (p<0,01) größeren Anteil IL-17⁺ Zellen als bei gesunden Probanden (0,59% ≅ 18 Zellen) (Abb. 54B). Zu einem großen Teil exprimierten diese Zellen CD56 und scheinen somit den NK-Zellen anzugehören.
Tabelle 6: Rel. Frequenzen der Interleukin-17⁺ Zellen an verschiedenen Lymphozytenpopulationen bei RA-Patienten und Kontrollen (mittlere Prozentanteile an der jeweiligen elektronisch selektionierten Zellpopulation)

<table>
<thead>
<tr>
<th></th>
<th>Unstim. Gesund</th>
<th>Unstim. RA</th>
<th>PHA Gesund</th>
<th>PHA RA</th>
<th>PMAI Gesund</th>
<th>PMAI RA</th>
<th>HLA Kl.II Gesund</th>
<th>HLA Kl.II RA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphozyten im Gate I</td>
<td>0,54</td>
<td>0,62</td>
<td>0,68</td>
<td>0,66</td>
<td>0,8</td>
<td>0,97</td>
<td>0,52</td>
<td>0,58</td>
</tr>
<tr>
<td>Lymphozyten im Gate II</td>
<td>1,04</td>
<td>0,91</td>
<td>1,01</td>
<td>0,91</td>
<td></td>
<td>0,98</td>
<td>0,84</td>
<td></td>
</tr>
<tr>
<td>CD3⁺</td>
<td>0,62</td>
<td>0,69</td>
<td>0,95</td>
<td>0,96</td>
<td>0,94</td>
<td>1,02</td>
<td>0,61</td>
<td>0,66</td>
</tr>
<tr>
<td>CD3⁺/CD4⁺</td>
<td>2,26</td>
<td>3,17</td>
<td>3,52</td>
<td>4,09</td>
<td></td>
<td>2,01</td>
<td>2,04</td>
<td></td>
</tr>
<tr>
<td>Lymphozyten im Gate I</td>
<td>0,65</td>
<td>0,71</td>
<td>1,08</td>
<td>1,24</td>
<td>1,42</td>
<td>1,5</td>
<td>0,65</td>
<td>0,7</td>
</tr>
<tr>
<td>CD3⁺/CD8⁺</td>
<td>2,32</td>
<td>3,44</td>
<td>3,18</td>
<td>4,51</td>
<td></td>
<td>2,15</td>
<td>2,22</td>
<td></td>
</tr>
<tr>
<td>CD3⁺/CD8⁺</td>
<td>0,56</td>
<td>0,61</td>
<td>0,71</td>
<td>0,61</td>
<td>0,76</td>
<td>0,83</td>
<td>0,56</td>
<td>0,55</td>
</tr>
<tr>
<td>Lymphozyten im Gate II</td>
<td>1,71</td>
<td>2,39</td>
<td>2,2</td>
<td>1,28</td>
<td></td>
<td>1,51</td>
<td>1,28</td>
<td></td>
</tr>
<tr>
<td>CD3⁺/dop pos</td>
<td>6</td>
<td>3,53</td>
<td>13,43</td>
<td>10,78</td>
<td>15,6</td>
<td>13,43</td>
<td>4,12</td>
<td>3,39</td>
</tr>
<tr>
<td>Lymphozyten im Gate I</td>
<td>4,56</td>
<td>5,44</td>
<td>7,34</td>
<td>8,45</td>
<td></td>
<td>4,02</td>
<td>5,19</td>
<td></td>
</tr>
<tr>
<td>CD3⁺/dop neg</td>
<td>0,46</td>
<td>0,57</td>
<td>0,58</td>
<td>0,49</td>
<td>0,79</td>
<td>0,84</td>
<td>0,45</td>
<td>0,52</td>
</tr>
<tr>
<td>Lymphozyten im Gate II</td>
<td>1,99</td>
<td>1,01</td>
<td>1,48</td>
<td>1,09</td>
<td></td>
<td>1,75</td>
<td>0,79</td>
<td></td>
</tr>
<tr>
<td>CD5⁺</td>
<td>0,23</td>
<td>0,43</td>
<td>0,18</td>
<td>0,19</td>
<td>0,32</td>
<td>0,7</td>
<td>0,2</td>
<td>0,35</td>
</tr>
<tr>
<td>Lymphozyten im Gate II</td>
<td>0,79</td>
<td>0,62</td>
<td>0,49</td>
<td>0,4</td>
<td></td>
<td>0,87</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>CD3⁻/CD4⁺</td>
<td>3,6</td>
<td>5,35</td>
<td>1,04</td>
<td>0,85</td>
<td>2,48</td>
<td>4,27</td>
<td>3,41</td>
<td>4,33</td>
</tr>
<tr>
<td>Lymphozyten im Gate I</td>
<td>2,04</td>
<td>2,28</td>
<td>2,56</td>
<td>1,67</td>
<td></td>
<td>1,41</td>
<td>2,04</td>
<td></td>
</tr>
<tr>
<td>CD3⁻/CD8⁺</td>
<td>0,59</td>
<td>1,17</td>
<td>0,28</td>
<td>0,34</td>
<td>1,24</td>
<td>1,15</td>
<td>0,66</td>
<td>0,66</td>
</tr>
<tr>
<td>Lymphozyten im Gate II</td>
<td>1,66</td>
<td>2,86</td>
<td>1,16</td>
<td>1,27</td>
<td></td>
<td>2,06</td>
<td>1,64</td>
<td></td>
</tr>
<tr>
<td>CD3⁻/CD56⁺</td>
<td>0,27</td>
<td>0,66</td>
<td>0,18</td>
<td>0,22</td>
<td>0,45</td>
<td>0,5</td>
<td>0,31</td>
<td>0,65</td>
</tr>
<tr>
<td>Lymphozyten im Gate I</td>
<td>0,19</td>
<td>0,33</td>
<td>0,15</td>
<td>0,22</td>
<td>0,25</td>
<td>0,51</td>
<td>0,16</td>
<td>0,27</td>
</tr>
<tr>
<td>CD3⁻/dop neg</td>
<td>0,63</td>
<td>0,52</td>
<td>0,42</td>
<td>0,31</td>
<td></td>
<td>0,73</td>
<td>0,66</td>
<td></td>
</tr>
</tbody>
</table>
Eine signifikant größere IL-17⁺ Zellfraktion fand sich bei RA-Patienten (0,66% ≈ 39 Zellen) verglichen mit Gesunden (0,27% ≈ 19 Zellen) auch in den CD3⁻/CD56⁺ NK-Zellen (Abb. 54C, Tab. 6). Ebenso berichteten in den letzten Jahren verschiedene andere Arbeitsgruppen(90),(12),(115), dass NK-Zellen in der Lage sind IL-17 zu exprimieren.

Darüber hinaus fanden sich bei Patienten und Gesunden CD3⁻ Zellen, die weder CD4, CD8 noch CD56 exprimierten. RA-Patienten (0,33%) scheinen unstimuliert eine signifikant größere IL-17⁺ Fraktion dieser Zellen als Gesunde (0,19%) aufzuweisen. In einzelnen Testproben konnte gezeigt werden, dass diese Zellen hauptsächlich CD20⁺ B-Zellen und CD14⁺ Monozyten enthielten (Kap.3.3). Bisher war über B-Zellen, die in der Lage sind IL-17 zu sezernieren in der Literatur noch nicht berichtet worden. Monozyten sollen dagegen verschiedene Arbeitsgruppen(29),(99),(102),(115) zu Folge in der Lage sein IL-17 zu sezernieren.

Inwieweit auch CD3⁻ IL-17⁺ Zellen für die Pathogenese der RA von Bedeutung sind, muss in weiteren Studien überprüft werden.

Ähnlich wie in der Studie von Yamada et al.(120) konnte auch in dieser Analyse der Frequenz an CD3⁺/CD4⁺ IL-17⁺ Zellen keine Korrelation zu den klinischen Parametern wie auch dem DAS28 gefunden werden (Kap. 3.5). Ebensowenig ergaben sich auch Korrelationen der anderen nachgewiesenen IL-17⁺ Zellpopulationen zu klinischen Parametern.

Bei der Bewertung der Ergebnisse dieser Studie muss berücksichtigt werden, dass alle untersuchten Patienten geringe oder mäßige Krankheitsaktivität aufwiesen, wie es auch in ihr niedriger DAS28 erkennen lässt (Tab.3, Kap.2.6). Es kommt hinzu, dass die Patienten verschiedene Therapien erhielten, die Einfluss auf IL-17⁺ Zellpopulationen ausüben könnten. Der Einfluss der verschiedenen Therapien auf die einzelnen IL-17⁺ Zellpopulationen konnte in
dieser Studie nicht evaluiert werden. Es konnte in verschiedenen Studien gezeigt werden, dass die Therapie mit Kortikosteroiden(18) und MTX(69) zu verringerter Frequenzen von IL-17+ Zellen führen kann.

4.4. Stimulierbarkeit der Zellpopulation

Arbeiten von Ziolkowska et al.(126) und Lenarczyk et al.(56) hatten gezeigt, dass in humane PBMC sowohl mit PHA als auch mit PMA/lonomycin die IL-17 Produktion stimuliert werden kann. In dieser Studie führte die Stimulationen mit PHA und mit PMA/lonomycin auch zu einer Zunahme der IL-17+ Zellfraktion. Dabei wurden nicht alle Subpopulationen in denen IL-17 detektiert wurde gleichermaßen durch die beiden Stimulanzien stimuliert. Ferner wurden auch Unterschiede zwischen Gesunden und RA-Patienten beobachtet.

So ließ sich die IL-17+ Zellfraktion innerhalb der CD3+ T-Zellen, wie dies auch von Lenarczyk et al.(56) beschrieben worden war, durch die unspezifische Mitogenstimulation mit PMA/lonomycin zu einem höchst signifikanten IL-17 Anstieg (p<0,0001) im Vergleich zu den unstimulierten Kontrollen stimulieren. Die Zunahme der IL-17+ CD3+/CD4+ Zellen nach Stimulation mit PHA(113),(126) oder PMA/lonomycin(63),(126) in PBMC von Gesunden in dieser Studie glichen dabei vorbeschränkten Werten. Nach PMA/lonomycin Stimulation ließen sich darüberhinaus auch IFN-\gamma+/IL-17+ doppelt positive Zellen in der Zellpopulation der CD3+/CD4+ T-Helfer-Zellen finden (Abb. 59A). Ähnlich wie für die IL-17+ CD3+/CD4+ Lymphozyten, waren nach unspezifischer Mitogenstimulation mit PMA/lonomycin auch signifikant höhere Frequenzen an IL-17+ Zellen in den CD3+/CD8+ T-Killer-Zellen (Abb. 52B) zu sehen. Ebenso konnten IFN-\gamma+/IL-17+ doppelt positiven Zellen nach PMA/lonomycin Stimulation in den CD3+/CD8+ Lymphozyten beobachtet werden (Abb. 59B).

Auch die Mitogenstimulation mit PHA führte, wie in der Literatur beschrieben,(13) zu einer signifikanten (p<0,001) Erhöhung der Frequenz doppelt positiver CD3+/CD4+/CD8+ Zellen in den PBMC (Abb. 34) Der Anteil IL-17+ Zellen an
dieser doppelt positiven Zellpopulation ließ sich durch Stimulation mit PHA (13,43% = 106 Zellen absolut IL-17+ Zellen) und mit PMA/Ionomycin (15,6% = 65 Zellen absolut IL-17+ Zellen) höchst signifikant (p<0,0001) im Vergleich zu den CD3+/CD4+/CD8+ Lymphozyten und den unstimulierten Zellen steigern (Abb. 52A+C).

Insgesamt zeigte sich damit, dass in vitro die unspezifische Aktivierung mit PMA/Ionomycin bzw. die Mitogenstimulation mit PHA zu einem Anstieg der IL-17+ Zellen in verschiedenen Subpopulationen der CD3+ T-Zellen bei Gesunden und RA-Patienten führen konnte.

Auch innerhalb der CD3+ Zellen ließ sich durch Mitogenstimulation mit PMA/Ionomycin eine Erhöhung der IL-17+ Zellen anregen (Tab.6 & Abb. 53). Hingegen war innerhalb der CD3+/CD4+ Zellen durch Stimulation mit PMA/Ionomycin eine deutliche Abnahme der IL-17+ Zellen zu beobachten. Bemerkenswerterweise stieg bei Gesunden die IL-17+ Zellfraktion in der CD3+/CD56+ NK-Zell-Population nach PMA/Ionomycin Stimulation signifikant an, während sie bei RA-Patienten abnahm.

Monozyten (CD3-/CD14+) wiesen nach PMA/Ionomycin Stimulation ein sehr viel höheren Anteil (22,3%) IL-17+ Zellen (Abb. 69B) verglichen mit den unstimulierten CD3-/CD14+ Zellen (5%) (Abb. 69B) auf. B-Zellen ließen sich nicht durch Mitogene stimulieren (Abb.69B).

Anders als die Stimulation mit PMA/Ionomycin führte PHA zu einer signifikanten Abnahme der IL-17+ Zellen an den CD3- Zellpopulationen in PBMC von Gesunden und Patienten verglichen mit den unstimulierten Zellen (Tab.6 & Abb.53). Ob dies durch eine Reduktion/Apoptose oder durch eine Stimulation bzw. Differenzierung von T-Zellen bedingt war, konnte in dieser Studie nicht geklärt werden.

Die Stimulation mit HLA Kl. II restringierten Peptiden, die vor allem aus
verschiedenen Virusproteinenn abgeleitet waren führten in vitro zu keiner Veränderung der IL-17⁺ Zellpopulationen. Dies lässt darauf schließen, dass eine HLA-abhängige antigen-spezifische Stimulation für die Aktivierung der IL-17⁺ Zellen nicht ausreicht.

Es sind weitere Studien sowohl im Menschen als auch im Mausmodell nötig um die Bedeutung von IL-17 für die rheumatoiden Arthritis zu erfassen. Bei RA-Patienten Bedarf es zusätzlicher Untersuchungen, um die IL-17 produzierenden Zellen in ihrer Funktion, Regulation und Dynamik sowie den Einfluß der Therapie weiter zu beschreiben.

5. Zusammenfassung

Diese Arbeit hatte zum Ziel, die Heterogenität Interleukin-17 produzierender Zellen bei Gesunden und RA-Patienten aufzuzeigen und nach ihrer Verteilung zu vergleichen. Darüber hinaus untersuchte diese Arbeit, ob IL-17+ Zellpopulationen von Gesunden und RA-Patienten sich durch unspezifische Mitogenstimulation mit PHA und PMA/Ionomycin und spezifische Stimulation mit HLA Kl.II restringierten Peptiden beeinflussen ließen.

Diese Studie konnte zeigen, dass nicht nur CD3+/CD4+ Th17 Zellen an der Produktion von IL-17 beteiligt sind, sondern die IL-17 produzierenden Zellen eine große Gruppe heterogener Zellen ist.

6. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb</td>
<td>Abbildung</td>
</tr>
<tr>
<td>Ak</td>
<td>Antikörper</td>
</tr>
<tr>
<td>APC</td>
<td>Allophycocyanin</td>
</tr>
<tr>
<td>BSG</td>
<td>Blutsenkungsgeschwindigkeit</td>
</tr>
<tr>
<td>BFA</td>
<td>Brefeldin A</td>
</tr>
<tr>
<td>CCP</td>
<td>zyklische citrulinierte Peptide (engl. cyclic citrullinated peptide)</td>
</tr>
<tr>
<td>CD</td>
<td>Klassifikation von Oberflächenproteinen (engl. cluster of differentiation)</td>
</tr>
<tr>
<td>CED</td>
<td>chronisch entzündliche Darmerkrankung</td>
</tr>
<tr>
<td>CIA</td>
<td>Collagen Induzierte Arthritis (Mausmodell für Rheumatoide Arthritis)</td>
</tr>
<tr>
<td>CRP</td>
<td>C-Reaktives Protein</td>
</tr>
<tr>
<td>CTLA</td>
<td>zytotoxisches T-Lymphozyten Antigen</td>
</tr>
<tr>
<td>DAS28</td>
<td>klinisches Punktesystem mit der Beurteilung von 28 Gelenken (disease activity score)</td>
</tr>
<tr>
<td>DC</td>
<td>dentritische Zellen (engl. dentritic cells)</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>EAE</td>
<td>experimentelle autoimmune Encephalomyelitis (Mausmodell für Multiple Sklerose)</td>
</tr>
<tr>
<td>e.c.</td>
<td>Extrazellulär</td>
</tr>
<tr>
<td>et al.</td>
<td>und andere (Latein: et alii)</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmatisches Reticulum</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein-Barr-Virus</td>
</tr>
<tr>
<td>EMA</td>
<td>Ethidium-Mono-Azid</td>
</tr>
<tr>
<td>FACS</td>
<td>fluoreszenzaktivierte Zellsortierung (engl. fluorescence-activated-cell-sorter)</td>
</tr>
<tr>
<td>FCS</td>
<td>fötales Kälberserum (engl. fetal calf serum)</td>
</tr>
<tr>
<td>FL</td>
<td>Fluoreszenzllicht</td>
</tr>
<tr>
<td>FSC</td>
<td>Vorwärtsstreulicht (engl. forward scatter)</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein Isothiocyanat</td>
</tr>
</tbody>
</table>
g Gramm
G Fliehkraft
GP gesunder Proband
h Stunden
HCMV humanes Cytomegalovirus
HLA humanes Leukozyten Antigen
HVS Herpes Virus Samiri
i.c. intrazellulär
IFN-γ Interferon-gamma
IL Interleukin
J Jahre
LASER light amplification by stimulated emission of radiation
LPS Lipopolysaccharid
MHC major histocompatibility complex
mAb monoklonaler Antikörper
MCP Monozyten chemotaktisches Protein
Mio. Million
min Minuten
ml Milliliter
Mon. Monate
MTX Methotrexate
µl Mikroliter
PBMC periphere mononukleäre Blutzellen "peripheral blood mononuclear cells"
PBS Phosphat-gepufferte Salzlösung "phosphat buffered saline"
PCR Polymerasekettenreaktion ("polymerase chain reaction")
pH pondus Hydogenii
PHA Phytohämagglutinin
PE Phycoerythrin
PerCP Perinidin Chlorophyll Protein
PMA phorbol-12-myristat-13-acetat
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>rheumatoide Arthritis</td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>SSC</td>
<td>Seitwärtsstreulicht (engl. sideward scatter)</td>
</tr>
<tr>
<td>TCR</td>
<td>T-Zell-Rezeptor („T-cell-Rezeptor“)</td>
</tr>
<tr>
<td>TGF</td>
<td>Tumor Wachstumsfaktor („Tumor Growth Factor“)</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor Nekrosefaktor</td>
</tr>
<tr>
<td>T_{reg}</td>
<td>regulatorische T-Zellen</td>
</tr>
<tr>
<td>TWEAK</td>
<td>TNF-artiger schwache Apoptose Auslöser (engl. TNF-like weak apoptosis inductor)</td>
</tr>
</tbody>
</table>
Literaturverzeichnis

arthritis. *Arthritis and Rheumatism* 30, 1205-1213.

41. Hwang S, K. H. (2005). Expression of il-17 homologs and their receptors in the
synovial cells of rheumatoid arthritis patients. *Mol Cells.* **19**, **180-184.**

44. Katz Y, Nadv I, Beer Y (2001). **Interleukin-17 enhances tumor necrosis factor alpha-induced synthesis of interleukins 1, 6, and 8 in skin and synovial fibroblasts: a possible role as a "fine-tuning cytokine" in inflammation processes. Arthritis and Rheumatism** **44**, **2176-2184.**

Lubberts E, Koenders MI, Oppers-Walgren B, van den Bersselaar L, Coenen-de Roo CJJ, Joosten LAB, van den Berg WB (2004). Treatment with a neutralizing anti-
murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. *Arthritis and Rheumatism* 50, 650-659.

68. Miossec, P. (2003). Interleukin-17 in rheumatoid arthritis: if T cells were to contribute to inflammation and destruction through synergy. *Arthritis and Rheumatism* 48, 594-601.

Rheumatism 54, 1151-1164.

70. Mollenhauer HH, Morré DJ, Rowe LD (1990). Alteration of intracellular traffic by monensin; mechanism, specificity and relationship to toxicity. Biochimica et Biophysica Acta 1031, 225-246.

intracellular protein expression by T cells after stimulation in the presence of monensin or brefeldin A. Clin Diagn Lab Immunol. 9, 243-250.

a novel member of the IL-17 family, stimulates cytokine production and inhibits hemopoiesis. *J Immunol.* 169, 642-646.

differentiation of IL-17-producing T cells. Immunity 24, 179-189.

118. Wong CK, Ho CY, Li EK, Lam CW (2000). Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus 9, 589-593.

122. Yao Z, Painter SL, Fanslow WC, Ulrich D, Macduff BM, Spriggs MK, Armitage

8. Danksagung

Ich möchte mich bedanken bei Frau Prof. Müller für die Vergabe des Themas, die gute Betreuung und die ständige Unterstützung durch Rat und Tat.

Ein ganz besonderer Dank gilt Frau Ingeborg Steiert, welche mich mit viel Geduld und Einsatz unterstützt hat und die viel zum Gelingen dieser Arbeit beigetragen hat.

Bedanken möchte ich mich auch bei Frau Prof. Kötter für die Kooperation und bei Schwester Gabi Reichert für die Koordination der Blutentnahmen der Patienten in der rheumatologischen Ambulanz, sowie bei den zahlreichen Patienten die sich zur Teilnahme an dieser Studie bereit erklärt haben.

Auch den Mitarbeitern der AG Pawelec und AG Klein, die für Fragen immer offen und hilfsbereit waren, gilt mein Dank.

Bedanken möchte ich mich auch bei allen freiwilligen Probanden der Sektion, die sich trotz einiger Angst der Blutentnahme stellten.

Ganz besonders bedanken möchte ich mich bei meiner geliebten Freundin Carolin Sixt für die stetige Unterstützung und Motivation.

Ein großer und besonderer Dank gilt auch meinen Eltern, die mir mein Studium ermöglichten und mich stetig unterstützt haben und mir diese Arbeit ermöglicht haben.
9. Lebenslauf

Paul Martin Schlegel
geboren am 02. August 1982
in Leipzig

Schulischer und beruflicher Werdegang:

1989 – 1993 Schiller-Grundschule in Kornwestheim
1993 – 2002 Ernst-Sigle Gymnasium in Kornwestheim
Juni 2002 Abitur am Ernst-Sigle Gymnasium, Kornwestheim

2002 – 2004 Vorklinischer Abschnitt des Medizinstudiums
 an der Eberhard-Karls-Universität zu Tübingen

September 2004 Ärztliche Vorprüfung, 1. Staatsexamen

2004 – 2007 Klinischer Abschnitt des Medizinstudiums
 an der Eberhard-Karls-Universität zu Tübingen

2007/2008 Praktisches Jahr
 1. Anästhesiologie – Universitätsklinik Tübingen
 2. Innere Medizin – Université de Genève, Schweiz
 3. Chirurgie – University of Stellenbosch, Südafrika

26. Mai 2009 Ärztliche Prüfung, 2. Staatsexamen