Kultivierung von Zellen
aus Atheromen des Menschen und die
Beeinflussung ihres Wachstums

INAUGURAL - DISSERTATION
zur Erlangung des Doktorgrades
der Medizin
der
MEDIZINISCHEN FAKULTÄT
(Theoretische Medizin)
der Eberhard-Karls-Universität
zu Tübingen

vorgelegt von
DR. MED. UNIV. RAINER VOISARD
aus Augsburg

1992
Dekan: Professor Dr. med. H.-D. Wehner
1. Berichterstatter: Professor Dr. med. E. Betz
2. Berichterstatter: Professor Dr. med. K. R. Karsch

gedruckt 1992 bei Hans-Joachim Köhler, Druck & Reprografie, Tübingen
INHALTSVERZEICHNIS

A. Einleitung ... 1
1. Der Aufbau der Gefäßwand ... 1
2. Die Pathogenese der Atherosklerose 2
3. Rekanalisationstechniken ... 4
4. Kultivierung von Zellen aus atherosklerotischen Plaques 4
5. Die Thematik der vorliegenden Arbeit 5

B. Material ... 7
1. Zellkultur ... 7
 1.1. Zellausgangsmaterial .. 7
 1.2. Kulturmedien und Seren ... 7
 1.3. Temperatur, Begasung und pH-Wert 8
 1.4. Pufferlösungen .. 9
 1.5. Enzymlösungen ... 9
 1.6. Adhäsions- und Wachstumsfaktoren 10
 1.7. Testsubstanzen ... 11
 1.8. Kulturgefäße ... 12

2. Zytologie und Immunologie ... 12
 2.1. Fixative und Permeabilisierungslösungen 12
 2.2. Pufferlösungen ... 12
 2.3. Farbstoffe und Färbelösungen 13
 2.4. Erstantikörper (primäre Antikörper) 13
 2.5. Zweitantikörper (sekundäre Antikörper) und Färberagensien 14
 2.7. Einbettungsmedium .. 14

3. Mikroskopie und Mikrophotographie 14

C. Methoden .. 16
1. Etablierung von Primärkulturen 16
 1.1. Plaquezellen ... 16
 1.1.1. Feuchtgewichtbestimmung des Plaquematerials 16
 1.1.2. Zellisolierung ... 16
 1.2. Glatte Muskelzellen aus der Media 16
1.3. Endothelzellen .. 17
1.4. Fibroblasten ... 18

2. Routinekultivierung .. 18
 2.1. Routinekultivierungstechnik ... 18
 2.2. Adhäsionsfaktoren .. 18
 2.3. Konditionierte Medien .. 19
 2.4. Kryolagerung der Zellen ... 19

3. Zellkultur-Testsysteme .. 20
 3.1. Populationsdynamik und Zellstatus 20
 3.2. Klonekulturen und Klonierungseffizienz 22
 3.3. Zellmigrationstest .. 22
 3.4. Zytotoxizitätstest .. 23
 3.5. Deckglaskulturen ... 23

4. Zytologische Färbungen .. 23
 4.1. Giemsa-Färbung ... 24
 4.2. Coomassie-Giemsa-Färbung ... 24
 4.3. Fluorchromierung der DNA ... 24

5. Indirekte Immunfluoreszenztechnik 25
 5.1. Antigen-Darstellung in kultivierten Zellen 25
 5.1.1. Fixierung und Permeabilisierung 25
 5.1.2. Methodik ... 26

D. Ergebnisse ... 27
1. Kultivierung von Plaquezellen des Menschen 27
 1.1. Plaqueextraktion ... 27
 1.1.1. Simpson-Katheter (p-SAC) 27
 1.1.2. Thrombendarterektomie (OP) 28
 1.2. Aufarbeitung des Plaquematerials 33
 1.2.1. Explantat-Technik .. 33
 1.2.2. Enzymatische Dissaggregation 33
 1.3. Identifizierung der Zellen und Zytoskelett-Darstellung 35
 1.4. Morphologie der Plaquezellen 39
 1.5. Klonierungseffizienz .. 40
1.6. Wachstumsverhalten der Plaquezellen ... 41
 1.6.1. Zellgrößenverteilung ... 41
 1.6.2. Proliferative Effizienz ... 43
 1.6.3. Wachstumsraten .. 44
1.7. Migrationsverhalten der Plaquezellen ... 50
 1.7.1. Migration pro mm Wundrandlänge 50
 1.7.2 Migrationsgeschwindigkeit .. 51

2. Einflüsse auf das Wachstumsverhalten von Plaquezellen 51
 2.1. Adhäsionsfaktoren .. 51
 2.2. Serumkonzentrationen ... 53
 2.3. Konditionierte Medien .. 55
 2.4. ECGF und PDGF ... 57

3. Medikamenten-Testungen .. 59
 3.1. Thrombocytene aggregationshemmer 59
 3.1.1. Acetylsalicylsäure (ASS) .. 59
 3.1.1.1. Wirkung von ASS auf glatte Muskelzellen aus der
 unveränderten Gefäßwand .. 60
 3.1.1.2. Wirkung von ASS auf Plaquezellen aus peripheren
 Stenosen .. 60
 3.1.1.3. Wirkung von ASS auf Plaquezellen aus Primär-
 und Restenosen (Dosis-Wirkungskurve) 60
 3.1.1.4. Wirkung von ASS auf die Migration von
 Plaquezellen .. 60
 3.1.1.4.1. Zellmigration pro mm Wundrandlänge 60
 3.1.1.4.2. Migrationsgeschwindigkeit 63
 3.1.1.5. Wirkung von ASS auf die Migration und Proliferation
 von Plaquezellen (Dosis-Wirkungskurve) 63
 3.1.1.6. Wirkung von ASS auf den pH-Wert der Kulturen 65
 3.1.2. Dipyridamol (DPD) ... 65
 3.1.2.1. Wirkung von DPD auf glatte Muskelzellen aus der
 unveränderten Gefäßwand .. 67
 3.1.2.2. Wirkung von DPD auf Plaquezellen aus peripheren
 Stenosen .. 67
 3.1.2.3. Wirkung von DPD auf die Migration von Plaque-
 zellen ... 69
3.1.2.3.1. Zellmigration pro mm Wundrandlänge 69
3.1.2.3.2. Migrationsgeschwindigkeit 69
3.1.2.4. Wirkung von DPD auf die Migration und Proliferation von Plaquezellen (Dosis-Wirkungskurve) 69
3.1.3. Kombination von Acetylsalicylsäure (ASS) und Dipyridamol (DPD) 72
3.1.3.1. Wirkung von ASS und DPD auf glatte Muskelzellen aus der unveränderten Gefäßwand 72
3.1.3.2. Wirkung von ASS und DPD auf Plaquezellen aus peripheren Stenosen 72

3.2. Fibrinolytika 73
3.2.1. Streptokinase (SK) 73
3.2.1.1. Wirkung von SK auf glatte Muskelzellen aus der unveränderten Gefäßwand 73
3.2.1.2. Wirkung von SK auf Plaquezellen aus peripheren und koronaren Stenosen 73
3.2.2. Urokinase (UK) 73
3.2.2.1. Wirkung von UK auf glatte Muskelzellen aus der unveränderten Gefäßwand 75
3.2.2.2. Wirkung von UK auf Plaquezellen aus peripheren und koronaren Stenosen 75
3.2.3. Rekombinierter Plasminogen human-Aktivator (t-PA) 75
3.2.3.1. Wirkung von t-PA auf glatte Muskelzellen aus der unveränderten Gefäßwand 75
3.2.3.2. Wirkung von t-PA auf Plaquezellen aus peripheren und koronaren Stenosen 78

3.3. Beta-Blocker 78
3.3.1. Propranolol (PRO) 78
3.3.1.1. Wirkung von PRO auf Plaquezellen aus peripheren Stenosen 78
3.3.1.2. Wirkung von PRO auf Plaquezellen aus koronaren Stenosen 78

3.4. Calciumantagonisten 80
3.4.1. Diltiazem (DIL) 80
3.4.1.1. Wirkung von DIL auf primär-stenosierende Plaquezellen aus peripheren und koronaren Stenosen 80
A. Einleitung

1. Der Aufbau der Gefäßwand

2. Die Pathogenese der Atherosklerose

- Permeabilitätszunahme des Endothels für Makromoleküle aus der Blutbahn und dadurch direkter Einstrom dieser Makromoleküle in den subendothelialen Raum und zwischen die Muskelzellen der Media
- Modulation der normalen (kontraktile) SMC aus der Media zu metabolisch aktivierte SMC [186,191]
- Einwanderung (Migration) der aktivierten Zellen aus der Media in die Intima
- Migration von weißen Blutzellen in die Intima
- Vermehrung (Proliferation) der eingewanderten SMC innerhalb der Intima durch Zellteilung
- Produktion von Matrixmaterial durch die in die Intima gewanderten Zellen (SMC)
- Aufnahme von Lipiden durch die im subendothelialen Raum liegenden Zellen
- Absterben von Zellen mit Nekrose der zentralen Regionen der Plaque nach Erreichen einer bestimmten Größe
- Ablagerung von Calcium in die nekrotisierten Regionen und Calcium-Mineralisierung von kollagenen und elastischen Lamellen und kollagenen Fasern in der Gefäßwand

Von diesen zahlreichen Vorgängen wird übereinstimmend die Migration und Proliferation der SMC aus der Media in den subendothelialen Raum (Abb. 2) als die entscheidende gefäßverengende Komponente in der Frühphase der Atherogenese
Abb. 1: Darstellung des dreischichtigen Gefäßwandaufbaues: a = Endothelzellschicht, b = Lamina elastica interna, c = elastische Lamellen, d = glatte Muskelzelle, e = Lamina elastica externa, f = Kollagenbündel, g = Fibroblast/Fibrozyt.

Abb. 2: Migration und Proliferation von glatten Muskelzellen (e) aus der Media in den subendothelialen Raum (b). a = Endothelzellen, c = Lamina elastica interna, d = elastische Lamellen, f = Lamina elastica externa, g = Fibroblast/Fibrozyt, h = Kollagenbündel

3. Rekanalisierungstechniken
Da die Atherosklerose jahrzehntelang symptomlos verlaufen kann, liegen beim Auftreten der ersten Beschwerden oftmals bereits beträchtliche Gefäßeinnengungen (Stenosen) vor. Neben den etablierten operativen Techniken, bei denen das verengte Gefäß durch eine Prothese ersetzt oder das stenosierte Segment durch einen Bypass umgangen wird, besteht seit Anfang der siebziger Jahre durch die Entwicklung der perkutanen transluminalen Angioplastie durch Grüntzig eine alternative Behandlungsmethode [87].

4. Kultivierung von Zellen aus atherosklerotischen Plaques
Die technischen Möglichkeiten zur Isolierung und Kultivierung von Endothelzellen und glatten Muskelzellen bestehen seit etwa 1970 [70,159,224]. In den letzten Jahren wurden zahlreiche Berichte über Funktion [28,79,84], Differenzierung

5. Die Thematik der vorliegenden Arbeit

Im dritten Teil erfolgten Untersuchungen über den Einfluß von Medikamenten auf das Wachstumsverhalten der SMC. Nachdem auf zellulärer Ebene die Migration und Proliferation entscheidende Ereignisse der Atherogenese darstellen, besteht großes Interesse daran, diesen Prozeß medikamentös zu hemmen. Während eine primäre Prophylaxe der Atherogenese wohl nur über eine Reduktion der Risikofaktoren möglich scheint, wäre ein medikamentöser Ansatz zur Reduktion der Restenose-Raten nach Angioplastie vorstellbar. Aus diesem Grunde wurden verschiedene Medikamente, die bereits klinisch zur Vor- und Nachbehandlung bei Angioplastien eingesetzt werden, auf ihren Effekt auf kultivierte Plaquezellen überprüft.
B. Material

1. Zellkultur
1.1. Zellausgangsmaterial
Die Bereitstellung einer ausreichenden Menge von Plaquematerial zur Isolierung von glatten Muskelzellen war nur durch die enge Kooperation mit Kliniken in München, Salzburg und Ulm möglich. Im einzelnen stand stenosierendes Gewebe aus folgenden Gefäßarealen zur Verfügung:

- Stenosierendes Plaquematerial aus der A. femoralis superficialis, der A. iliacaca und der A. poplitea, welches mit einem perkutanen Simpson Atherektomie-Katheter extrahiert wurde

- Plaquegewebe aus den Koronarien, Bypassvenen-Implantaten, der A. femoralis superficialis, der A. ilica, der A. poplitea und der A. carotis, das operativ durch Thromendarterektomie entfernt wurde

1.2. Kulturmedien und Seren
Für die Anzüchtung der glatten Muskelzellen wurden folgende Kulturmedien bzw. Kulturmedienkombinationen verwendet: 1 Teil Waymouth's MB 752/1 (WM, Pulvermedium; Gibco BRL) + 1 Teil Ham F 12 Nutrient Mixture (Ham F 12, Pulvermedium; Gibco BRL).

Das Ansetzen der Medien erfolgte prinzipiell mit Ampuwa-Wasser (steril und pyrogenfrei, Fresenius); zur Pufferung in den Normalbereich wurden die notwendigen Mengen NaHCO₃ zugesetzt.

Vor Zugabe der Seren und Antibiotika wurden die Kulturmedien mit einer Sterilfiltrationsbombe SM 16 249 (Sartorius) mit Vorfilter 200S SM 13400 (Sartorius) und Hauptfilter Ultipor N₆₆ TM Nylon 66 (Pall) oder 100N SM 11 107 (Sartorius) sterilflitriert. Alternativ hierzu Sterilfiltration mit dem Sterivex Schlauchpumpen-Sterilfiltrationskit und Sterivex-GS Kerzenfilter mit Füllglocke (Millipore).

Nach Ansetzen der Medien wurden Sterilproben entnommen und 3–7 Tage bei
37°C inkubiert. Anschließend wurden die Proben auf Kontaminationen untersucht. Um die Ausbreitung eventueller bakterieller Infektionen in den Zellkulturen zu erschweren, wurde den Kulturmedien routinemäßig 100 U/ml Penicillin und 100 µg/ml Streptomycin (Pen/Strep, 100x, Gibco BRL) als Antibiotikum zugegeben. Bei Verdacht auf eine mykotische Kontamination wurde in einzelnen Fällen 2,5 µg/ml Amphotericin B (Gibco BRL und Boehringer Mannheim) als Antimykotikum zugesetzt.

Den chemisch voll definierten Kulturmedien muß ein bestimmter Anteil an Serum zugegeben werden. Das Serum liefert Hormone, Wachstumsfaktoren, Bindungs- und Adhäsionsproteine, Aminosäuren, anorganische Salze, Spurenelemente sowie Puffer- und Neutralisationssysteme. Es wurden folgende Seren verwendet:

- Fetales Kälberserum (fcs, Chargen 70 506, 70 233, 71 025, 70 918; Sebak und Charge 40G7089; Gibco BRL)
- Pferdeserum (hs, Charge 10 F0472; Gibco BRL)

Vor der Verwendung der Seren wurden diese zur Inaktivierung des Komplementsystems 30 min. lang auf 56° C erwärmt, anschließend portioniert und bei −20°C/−80°C bis zu ihrer Verwendung gelagert.

Je nach Verwendungszweck wurden den Kulturen unterschiedliche Mengen und Kombinationen von Seren sowie Puffer und Lösungsmittel zugesetzt:

- Transport und Präparationsmedium: Serumfreies Kulturmedium +15mM HEPES (sterile Pufferlösung, 1 mol/l in Wasser; Serva) + Pen/Strep + Amphotericin B
- Routinekulturmedium: Kulturmedium + 15% Serum + Pen/Strep
- Ruhekulturmedium: Kulturmedium + 1% Serum + Pen/Strep
- Einfriermedium: Kulturmedium + 20% fcs + 5% hs + 7,5% DMSO (Serva) + Pen/Strep

1.3. Temperatur, Begasung und pH-Wert
Die Zellkulturen wurden im Brutschrank (Heraeus 5060 EC/CO₂) bei 37°C in einer wasserdampfgesättigten Atmosphäre mit 7% CO₂ inkubiert. Durch den CO₂-Partialdruck wird das CO₂/HCO₃⁻ – Puffersystem der Kulturmedien (NaHCO₃
Gehalt: 1,9 g/l auf pH 7,2 – 7,4 eingestellt und konstant gehalten.

1.4. Pufferlösungen

- PBS⁻: Phosphate Buffered Saline ohne Calcium und Magnesium, pH 7,2. 8,0 g NaCl, 0,2 g KCl, 0,2 g KH₂PO₄ und 1,15 g Na₂HPO₄ (fertige Tabletten, Oxoid) ad 1000 ml Wasser.

- PBS⁺: Phosphate Buffered Saline mit Calcium und Magnesium, pH 7,2. Wie PBS⁻, zusätzlich 0,1 g/l MgCl₂ x 6 H₂O und 0,132 g/l CaCl₂ x 2 H₂O.

- Versen: EDTA-Lösung 0,02%ig, pH 7,2. 200 mg Ethylenediamintetraacetat ad 1000 ml PBS⁻.

- Heps: Pufferlösung 1 mol/l, steril, Serva Heidelberg.

1.5. Enzymlösungen
Alle Lösungen für die Zellkultur wurden grundsätzlich mit pyrogenfreiem Ampuwa-Wasser angesetzt.

- Trypsin-Versen: Trypsin–EDTA-Lösung 0,05%ig, pH 7,2. 500 mg Trypsin (1:250 aus Rinderpankreas, Aktivität 3–4 U/mg; Serva) ad 1000 ml Versenlösung. 2mg/ml Phenolrot als Indikator zugegeben und 3 h bei Raumtemperatur gerührt. Danach nochmals auf pH 7,2 eingestellt, sterilfiltriert, portio-
niert und bei -20°C gelagert.

- Dispase II: Dispase Reinheitsgrad II. Gelöst in Puck's Salzlösung, Aktivi-
tät 2,4 U/ml (Boehringer Mannheim).

- Kollagenase: Kollagenase CLS III Worthington (229 U/mg, Charge 45S 8973; Seromed/Biochrom); Kollagenase aus Clostridium hi-
stolytikum (0,24 U/mg, Charge 11111-7628-77; Boehringer Mannheim).

- Elastase: Elastase aus Schweinepankreas, Lyophilisat oder stabilisierte Kristallsuspension, ca. 70 U/mg, Chargen 1096 4720-01, 1153 0520-04, 10804 722-19; (Boehringer Mannheim), Lyophilisat, 22 U/mg, Charge 140 68C (Serva), Lyophilisat, 101 U/mg, Charge 310 88C (Serva). Nur die Verwendung der Elastase der Fa. Boehringer ergab einen hohen Prozentsatz vitaler Zellen.

- Dispase/Kollagenase: 1 mg Kollagenase/ml Dispase II.

- Kollagenase/Elastase: Für 10 ml gebrauchsfertige Enzymlösung in HEPES-gepuffertem Kulturmmedium: 18 mg Kollagenase, 2 mg Elastase und zur Hemmung enzymatischer Fremdaktivitäten 10 mg Trypsininhibitor aus Sojabohne (54 IU/mg Lyophilisat, ; Serva). Vor Gebrauch angesetzt und mit Einmal-Filterhalter (Porengröße 0,2 μm, FP 030/3; Schleicher & Schuell) sterilfiltriert.

1.6. Adhäsions- und Wachstumsfaktoren

- Lathyrisches Rattenkollagen Typ I:
 Gebrauchslösung: 1 mg/ml in 0,1 M Essigsäure. Lathyrisches Rattenkollagen Typ I von Boehringer Mannheim (Charge 61261 500).

Für die Zellkultur wurden die folgenden Wachstumsfaktoren verwendet. Die neu angesetzten Lösungen wurden mit DynaGard 0,2 μm-Filtern (geringes Totsvolumen; Tecnomara) sterilfiltriert.

- ECGF: Endothelial Cell Growth Factor. Charge 60 7896 00; Boehringer Mannheim. Stammlösung (20x): 1 mg/ml in PBS− [126].
1.7. Testsubstanzen

1.7.1. Acetylsalicylsäure: (Serva, Heidelberg). Lösungsmittel: 70% Ethanol. 1 molare Stammlösung: 180mg/ml.

1.7.2. Dipyridamol: (Thomae). Lösungsmittel: 99.8% Ethanol. 0,1 molare Stammlösung: 50mg/ml.

1.7.3. Acetylsalicylsäure + Dipyridamol: Lösungsmittel: 99.8% Ethanol. Stammlösung: s. 1.7.1 + 1.7.2.

1.7.4. Fibrinolytika

- Streptokinase: (Deutsche KabiVitrum GmbH, München). 50 bis 85 mg Trockensubstanz enthalten 250.000 IE Streptokinase; Lösungsmittel: Ampuwa-Wasser (Fresenius) Stammlösung: 50.000 IE/ml.

- Urokinase: (medac GmbH, Hamburg). 98,7 bis 103,5 mg Trockensubstanz enthalten 250.000 IE Urokinase; Lösungsmittel: Ampuwa-Wasser (Fresenius). Stammlösung: 50.000 IE/ml.

1.7.5. Propranolol: (Sigma Chemie, Deisenhofen). Lot. 76 F 0616. Lösungsmittel: PBS-. 0,01 molare Stammlösung: 3 mg/ml.
1.7.6. Diltiazem: (Gödecke AG, Berlin). Lösungsmittel: Ampuwa-Wasser (Fresenius). 0,01 molare Stammlösung: 5 mg/ml.

1.8. Kulturgefäße
Zellkulturgefäße für die Routinekultivierung (Primärkulturen, Massenkulturen, dünne Massenkulturen):

- Kulturschale Ø 6 cm, Wachstumsfläche 21 cm² (Falcon 3002F, Costar 3060)
- Kulturschale Ø 10 cm², Wachstumsfläche 55 cm² (Falcon 3003, Costar 3100)
- Gewebekulturflasche, Wachstumsfläche 75 cm² (Costar 3375 und 3376)

Zellkulturgefäße für Wachstumskurven und Substanz-Testungen:
- Mehrfachkulturschale (Multiplatte 6), Wachstumsfläche pro Vertiefung 9,6 cm² (Falcon 3046, Greiner 657 160, Costar 3406 und 3506)

Zellkulturgefäße für Deckglaskulturen:
- Mehrfachkulturschale (Multiplatte 12), Wachstumsfläche pro Vertiefung 4 cm² (Costar 3512)

2. Zytologie und Immunologie
Wenn nicht anders angegeben, stammen sämtliche aufgeführten Chemikalien in p.a.-Qualität von der Fa. Merck.

2.1. Fixative und Permeabilisierungslösungen
- 3,5%ige Formalinlösung in PBS⁻/PBS⁺
- 70%iges Ethanol
- Methanol p.a., gekühlt auf −20°C
- 1%iges Triton x-100 (rein; Serva) in PBS⁺

2.2. Pufferlösungen
- Phosphatpuffer nach Sörensen, pH 7,2. Lösung A: 9,08 g KH₂PO₄ ad 1000 ml Aqua dest. Lösung B: 11,88 g Na₂HPO₄ ad 1000 ml Aqua dest. Zum Gebrauch wurden 4 Teile Lösung A und 6 Teile Lösung B gemischt und der pH auf 7,2 eingestellt.
2.3. Farbstoffe und Färbelösungen
- 0,02%ige Coomassielösung (Serva Blau G; Serva) in 20%igem Methanol und 5%iger Essigsäure. Unmittelbar vor Gebrauch aus 0,2%iger Stammlösung angesetzt.
- 0,1%ige Kernechtlösung. 5 g Aluminiumsulfat ad 100 ml Aqua dest., aufgekocht und 0,1 g Kernechtrot zugegeben.
- 0,5%ige Trypanblaulösung in physiologischer Kochsalzlösung (Serva).
- DAPI (4',6-Diamidino-2-phenylindol-dihydrochlorid, Serva). Stammlösung (50x); 5 μg/ml PBS

2.4. Erstantikörper (primäre Antikörper)
Alle Antiseren wurden portioniert, bei –20°C/–80°C aufbewahrt, vor Gebrauch entsprechend mit PBS verdünnt und 10 min. mit 13 000 rpm zentrifugiert (Heraeus Sepatech Biofuge A). Deutlich bessere Ergebnisse in Bezug auf die Verminderung der unspezifischen Antikörperadsorption wurden entweder mit dem Filtrieren durch 0,2 μm-Filter (DynaGard, Tecnomara) oder durch Zentrifugation mit Mikrozentrifugengittern (Porengröße 0,22 μm; Tecnomara und Millipore) erzielt. Der optimale Antikörper–Titer wurde vor der routinemäßigen Verwendung für jedes Antiserum getrennt ermittelt.

- Antiseren gegen Aktin

- Antiseren gegen Intermediärfilamente

- Antiseren gegen Mikrotubuli

- Antiseren gegen Zelloberflächen- und Extrazellulärmatrixproteine
 - Anti-Factor VIII-related Antigen (Charge 017 065; Ortho Diagnostic Systems): Anti-Serum aus Kaninchen gegen Human-Faktor VIII, keine Verdünnung.

2.5. Zweitantikörper (sekundäre Antikörper) und Färbereagensien
Portionierung, Lagerung und Reinigung wie unter B.2.4. beschrieben.

- Anti-Kaninchen IgG (H+L) aus der Ziege, FITC-konjugiert.
 (FITC-labeled goat anti-rabbit IgG; Miles 1:50 in PBS⁻, Dianova 1:30 in PBS⁻).
- Anti-Kaninchen IgG (H+L) aus der Ziege, TRITC-konjugiert.
 (TRITC-labeled goat anti-rabbit IgG; Miles 1:80 in PBS⁻, Dianova 1:30 in PBS⁻).
- Anti-Maus IgG (H+L) aus der Ziege, FITC-konjugiert.
 (FITC-labeled goat anti-mouse IgG; Dianova 1:10 in PBS⁻, Sigma 1:30 in PBS⁻).
- Anti-Maus IgG (H+L) aus der Ziege, TRITC-konjugiert.
 (TRITC-labeled goat anti-mouse IgG; Dianova; 1:30 in PBS⁻).

2.6. Einbettungsmedium
- Mowiol 4–88 (Farbwerke Hoechst). Das Ansetzen des Einbettungsmediums erfolgte wie von Dartsch [41] beschrieben: 12 g Mowiol wurden in 30 g Glycerin (fluoreszenzfrei) unter intensivem Rühren gelöst (extrem zähflüssig). Nach Zugabe von 30 ml Aqua dest. wurde die Suspension nach kurzem Rühren 2 h bei Raumtemperatur stehen gelassen. Zugabe von 60 ml 0,2 M Tris-HCl-Puffer (2,42 g Tris ad 100 ml Aqua dest.; pH-Wert mit 0,1 N HCl auf 8,5 eingestellt) und 10 min. bei 56°C leicht gerührt. Danach für 15 min. bei 5000 g zentrifugiert (Labofuge GL; Heraeus Sepatech), den klaren Überstand portioniert und bei -20°C aufbewahrt [148].

3. Mikroskopie und Mikrofotographie
- Nikon TMS-Inversmikroskop mit ELWD-Kondensor und dem Phasenkon-
- contrast-Objektiven CF Plan Achromat 4/0,13 DL und CF Plan Achromat 10/0,3 DL.

Zusätzlich Inkubator-Set für Temperaturkonstanthaltung und Auflichtfluoreszenzeinrichtung mit Filterblöcken für Blau-, Grün- und UV-Anregung (siehe unten) und Nikon FE-2-Kameragehäuse für die Mikrofotographie.

- Nikon Optiphot-Mikroskop mit den Hellfeldobjektiven CF Planapochromat 4/0,20, CF Planapochromat 10/0,40, Plan-Neofluar 25/0,8 Öl-Wasser-Glycerin (Zeiss), CF Planapochromat 40/1,0 Oil, CF Planapochromat 60/1,4 Oil und CF Planapochromat 100/1,35 Oil.

Filterkombination für Grün-Anregung:
Erregerfilter EX 546/10, Dichroicspiegel DM 580, Sperrfilter BA 580

Filterkombination für Blau-Anregung:
Erregerfilter EX 470-490, Dichroicspiegel DM 510, Sperrfilter BA 520

Filterkombination für UV-Anregung:
Erregerfilter EX 365/10, Dichroicspiegel DM 400, Sperrfilter BA 420 (UV-1A)
Erregerfilter EX 330-380, Dichroicspiegel DM 400, Sperrfilter BA 420 (UV-2A)
Erregerfilter EX 330-380, Dichroicspiegel DM 400, Sperrfilter BA 435 (UV-2B)
C. Methoden

1. Etablierung von Primärkulturen
1.1. Plaquezellen
1.1.1. Feuchtgewichtbestimmung des Plaquematerials

1.1.2. Zellisolierung

1.2. Glatte Muskelzellen aus der Media
Für die Versuche mit glatten Muskelzellen aus der normalen Medium wurden kryo- gelagerte Zellen verwendet, die freundlicherweise von Dr. Dartsch und Dr. Roth zur Verfügung gestellt wurden.
Die Isolierung der glatten Muskelzellen erfolgte durch Dr. Dartsch und Dr. Roth nach folgendem Prinzip [48,165]:

Danach wurde die Media streifenweise von der Adventitia abgezupft und entweder als Explant ausgelegt oder, wie unter C.1.1.2 beschrieben, enzymatisch disaggregiert. Die Kultivierung der Zellen erfolgte wie in Abschnitt C.2.1. dargelegt, bei ausreichender Zellzahl wurden die Zellen kryogelagert (siehe Abschnitt C.2.4.).

1.3. Endothelzellen [224]
1.4. Fibroblasten
Nach steriler Entnahme der Hautstückchen im Verlauf von dermatologischen Eingriffen wurden die Gewebeproben in das Transportmedium (B.1.2.) überführt. Im Labor wurde das Transportmedium entfernt und mehrmals mit PBS- gespült. Mit dem Präparationsbesteck wurde das Unterhautfettgewebe sorgfältig entfernt und das Hautpräparat in etwa 1 mm³ große Würfel zerteilt. Ungefähr ein Drittel der Hautstückchen wurde nach der Explantat-Methode ausgelegt, mit den restlichen Gewebeproben wurde eine enzymatische Disaggregation durchgeführt (wie in Abschnitt C.1.1.2. beschrieben).

2. Routinekultivierung
2.1. Routinekultivierungstechnik

Sogenannte "dünn Massenkulturen" (Aussaat etwa 1.000 Zellen/cm²) wurden in einzelnen Ausnahmefällen zur routinemäßigen Überprüfung der Zellgestalt angelegt.

In Abhängigkeit von der Wachstumsfläche der Kulturschalen- oder flaschen wurden folgende Medienmengen zur routinemäßigen Zellkultivierung verwendet:
21 cm² Wachstumsfläche: 5 ml, 55 cm² Wachstumsfläche: 10 ml, 75 cm² Wachstumsfläche: 15 ml und 165 cm² Wachstumsfläche: 30 ml.

2.2. Adhäsionsfaktoren
Beschichtung der Kulturschalen mit Kollagen Typ I (lathyritisches Kollagen):
Auf dem Kulturschalenboden wurden pro cm² 0,5 µl lathyritisches Rattenhautkollagen (1 mg/ml in 0,1 M Essigsäure) mit einem Gummispatel verteilt und unter
UV-Licht etwa 30 min lang getrocknet. Bis zur Verwendung wurden die Schalen steril aufbewahrt.

2.3. Konditionierte Medien
Glatte Muskelzellen aus primär- und restenosierendem Plaquematerial wurden wie in Abschnitt C.1.1.2. beschrieben isoliert und kultiviert. In der log-Phase wurde nach zwei Tagen das Kulturmedium steril entnommen und sofort bei
\[-20^\circ \text{C} \] bis zur Verwendung gelagert.

Die Kultivierung der Fibroblasten erfolgte wie unter C.1.4. beschrieben. In der log-Phase wurde das Kulturmedium steril entnommen und bei \[-20^\circ \text{C} \] bis zur Verwendung eingelagert.

2.4. Kryolagerung der Zellen
Um für spätere Experimente gleiches Zellausgangsmaterial zu haben, wurden die nicht direkt in Experimenten eingesetzten Zellen in flüssigem Stickstoff eingefroren und bis zur Verwendung gelagert. Die Zellen wurden zunächst durch Trypsinbehandlung von der Unterlage abgelöst und ausgezählt. Nach der Zentrifugation der Zellsuspension (5 min. bei 1100 rpm = 170 g; Hettich Universal 2S) wurde der Überstand abgesaugt und die sedimentierten Zellen so in eiskaltem Einfriermedium resuspendiert, daß die Zellzahl \(1 \times 10^6 \) Zellen/ml betrug. Die Zellsuspension wurde in 1 ml-Portionen in eiskalte Einfrierrohrchen mit Schraubverschluß (Costar Bio-Freeze Vials 2328) abgefüllt. Durch einen speziell optimierten und standardisierten dreistufigen Einfrierprozeß wurden die Zellen sukzessive im Einfrieraufsatz (Handi Freezing Tray; Taylor Wharton) über flüssigem Stickstoff im Verlauf von 60 min heruntergekühlt. Danach wurden die Röhrchen direkt in flüssigem Stickstoff gelagert (Lagerungsbehälter Biogel P-40; L'Air Liquide). Die Überlebensrate der so eingefrorenen und gelagerten Zellen lag nach dem ebenfalls standardisiertem Auftauen und der Neuaussaat – unabhängig von dem in vitro-Alter, dem Zelltyp oder der Herkunft – zwischen 60% und 90%.
2. Zellkultur-Testsysteme

2.1. Populationsdynamik und Zellstatus

Das Wachstumsverhalten einer diploiden Zellkultur wird in drei Hauptphasen unterteilt [115,151]:

- **Anlaufphase (lag-Phase)**
 In dieser ersten Phase nach der Zellaussaat findet nur eine geringe Zunahme der Zellzahl statt. In dieser Periode der Adaptation setzen sich die Zellen auf dem neuen Substrat fest, breiten sich aus und beginnen zu metabolisieren.

- **Exponentielle Wachstumsphase (log-Phase)**
 Die exponentielle Wachstumsphase schließt sich direkt an die Anlaufphase an und ist durch die exponentielle Zunahme der Zellzahl aufgrund der hohen mitotischen Aktivität charakterisiert.

- **Stationäre Phase (Plateau-Phase)**
 Die exponentielle Wachstumsphase adhäsenter Zellen ist in der Regel dann beendet, wenn durch die Zellvermehrung ein einschichtiger Zellrasen (Monolayer) entstanden ist. Die Zellkultur ist konfluent, d.h. jeder verfügbare Raum des Substrates ist besetzt und alle Zellen stehen in engem Kontakt zu ihren Nachbarn.

Um den Einfluß verschiedener Substanzen auf das Proliferationsverhalten der kultivierten Zellen zu untersuchen, wurden die Testsubstanzen in einem geeigneten Lösungsmittel gelöst und nach dem ersten Mediumwechsel den Kulturen in verschiedenen Konzentrationen zugegeben. In die Kontrollschalen ohne Substanz wurde die entsprechende Menge steriles Lösungsmittel pipettiert. Bei jedem Medienwechsel wurden die Substanzen ebenfalls erneuert.

Aus den so erhaltenen Daten konnten folgende charakteristische Größen für eine bestimmte Zellpopulation bzw. einen Testansatz abgeleitet werden:

- Aktueller Zellstatus, d.h. Zellgrößenverteilung und mittlere Zellgröße, Homogenität einer Population, Subpopulationen

- Aussaateffizienz in % = Anzahl der ausgebreiteten Zellen x 100/Anzahl der ausgesäten Zellen = Prozentsatz der Zellen, die sich nach 24 bzw. 48 h abgesetzt und ausgebreitet haben

- Proliferative Effizienz in % = Zahl der Gewebeproben, aus denen über 500 000 Zellen kultiviert werden können x 100/Anzahl aller aufgearbeiteten Gewebeproben

- Anzahl der Populationsverdopplungen = log Nₜ - log N₀/log 2 mit Nₜ = geerntete Zellzahl und N₀ = ausgesäte Zellzahl

- Wachstumsrate = Populationsverdopplungsrate/Tag

- Verdopplungszeit = 1/Wachstumsrate = die Zeit, in der sich eine Zellpopulation verdoppelt

- Inhibition bzw Stimulation in % = Anzahl der Zellen unter Substanzeinwirkung x 100/ Anzahl der Zellen ohne Substanzeinwirkung

- ED 50 = Konzentration eines Medikamentes in der Dosis-Wirkungskurve bei Erreichen von 50% der maximalen möglichen Wirkung

2.2. Klonkulturen und Klonierungseffizienz

2.3. Zellmigrationstest

Zur Durchführung des Migrationstests wurden die Zellen bis zur Konfluenz gezüchtet und anschließend 2 weitere Tage in Ruhekulturmedium inkubiert. Der Zellrasen wurde dann in einer Modifikation der Methode von Bürk [23] mit Hilfe einer Rasierklinge und eines Wattestäbchens "verletzt", d.h. ein zellfreier Raum geschaffen. Nach dem Waschen mit PBS+ und einem Mediumwechsel wurde für weitere 48 Stunden in 1%-igem Ruhekulturmedium plus Testsubstanz weiter in-

2.4. Zytotoxizitätstest

2.5. Deckglaskulturen
Zur Untersuchung der Zytoskelett-Strukturen in kultivierten Zellen wurden diese in einer Dichte von 1 \times 10^3 bis 1 \times 10^4 Zellen/cm² auf entfettete runde Glas-Deckgläser (Durchmesser 13 – 16 mm, Multimed) in 12-Lochplatten ausgesät. Nach 24 – 48 h, d.h. nach dem vollständigem Absetzen und Ausbreiten der Zellen, wurden die Zellen entsprechend der beabsichtigten Färbung weiter bearbeitet.

Entfetten der Deckgläser:
Deckgläser in 30%-igem wäßrigem BM-flüssig (Chromschwefelsäureersatz; Biomed) 30 min. gekocht, mindestens 1 h in fließendem Leitungswasser gespült, mit Aceton unter mehrmaligem Schütteln im Wärmeschrank getrocknet und vor der Verwendung für die Zellkultur autoklaviert.

3. Zytologische Färbungen [118,157,195]
Wenn nicht anders angegeben, wurden alle Arbeitsgänge bei Raumtemperatur und entsprechend temperierten Lösungen durchgeführt. Die Zellen wurden 15 min. mit 3,5%-iger Formalinlösung fixiert und gegebenenfalls 10 – 15 min. mit 70%-igem Ethanol nachfixiert.
3.1. Giemsa-Färbung

3.2. Coomassie-Giemsa-Färbung
Formalin- und ethanolfxierte Zellkulturen aus Aqua dest.: 2 - 5 min. in 0,02%iger Coomassielösung in 20%igem Methanol und 5%iger Essigsäure gefärbt (ständige mikroskopische Kontrolle); sorgfältig mit Aqua dest. gewaschen und ggf. luftgetrocknet; 15 min. lang mit 6%iger Giemsalösung in Söreensen-Puffer, pH 7,2, gefärbt; sorgfältig mit Aqua dest. gewaschen und luftgetrocknet. Ergebnis: Zellkern rotviolett gefärbt, Zytoplasma blauviolett.

3.3. Fluorochromierung der DNA

Formalinfixierte Zellen:
Bei gleicher Methodik wurde die DAPI-Stammlösung mit PBS anstelle von Methanol verdünnt.

Die regelmäßige Überwachung aller Human-Zellkulturen ergab keine Anhaltspunkte für Mykoplasmen-Kontaminationen.

3.6. TRITC-Phalloidin
Die giftigen Bestandteile des Knollenblätterpilzes (Amanita phalloides) sind in erster Linie die Amatoxine. Die Phalloxine sind vergleichsweise wenig toxisch und zeichnen sich bei der Mikroinjektion in lebende Zellen dadurch aus, daß sie mit hoher Affinität stöchiometrisch an das intrazelluläre, polymerisierte F-Aktin binden, dessen Struktur stabilisieren und die Polymerisation des globulären G-Aktins zum F-Aktin fördern und auch die Zellbewegung und das Zellwachstum beeinflussen [245]. Beim TRITC-Phalloidin, das in einer dreistufigen Synthese aus Phalloidin gewonnen wird, wird die Affinität zu F-Aktin durch die Einführung des Fluorophors um den Faktor 6 - 7 gegenüber der Ausgangsverbindung reduziert; seine Toxizität ist um das 50-fache geringer als das Phalloidin selbst [66,227,233].

Formalinfixierte und Triton X-100-permeabilisierte Zellen aus PBS\(^-\):
10 - 15 min. im Dunkeln mit TRITC-Phalloidin (2 µg/ml PBS\(^-\)) inkubiert, mehrmals sorgfältig mit PBS\(^-\) gewaschen, in Mowiol eingebettet und mikroskopiert mit Auflichtfluoreszenz bei Grün-Anregung. Ergebnis: Aktinfilamente ("stress fibers") fluoreszieren intensiv rot.

4. Indirekte Immunfluoreszenztechnik [33,109]
4.1. Antigen-Darstellung in kultivierten Zellen
Wenn nicht anders angegeben, wurden alle Arbeitsgänge bei Raumtemperatur und entsprechend temperierten Lösungen durchgeführt.

4.1.1. Fixierung und Permeabilisierung
a. 6 min. mit Methanol bei -20°C fixiert und permeabilisiert
b. 10 min. mit 3,5%iger Formalinlösung fixiert, danach 2 min. mit 1%iger Triton X-100-Lösung permeabilisiert
c. 10 min. mit 3,5%iger Formalinlösung fixiert, danach 6 min. mit Aceton bei
-20°C permeabilisiert
d. 15 min. mit 0,75%igem Glutaraldehyd fixiert, 2 min. mit 1%iger Triton X-100-
Lösung permeabilisiert, Aldehydgruppen mit frischer NaBH₄-Lösung reduziert
(dreimal je 4 min. unter H₂-Entwicklung). Alternativ zur NaBH₄-Reduktion:
5 min. 0,1 M Glycin in PBS⁺

Anwendung der entsprechenden Fixierungs- und Permeabilisierungsmethode zur
Darstellung von: α-Aktin: a; Vinkulin: b,c; Desmin; Vimentin: a,d; Mikrotubuli:
a, d; Fibronectin, Faktor VIII-related Antigen: a.

4.1.2. Methodik
Fixierte Zellen aus PBS⁻: 45 bis 60 min. mit dem entsprechend verdünnten spe-
zifischen Erstantikörper bei 37°C in einer feuchten Kammer im Brutschrank in-
kubiert; kurz mit PBS⁻ gewaschen; 60 bis 90 min. mit dem entsprechend ver-
dünnten FITC⁻ oder TRITC-konjugiertem Zweitantikörper bei 37°C in einer
feuchten Kammer im Brutschrank inkubierte; sorgfältig mit PBS⁻ gewaschen;
ingebettet in Mowiol und mikroskopiert mit einer Außlichtfluoreszenzeinrich-
tung.

Die gleichzeitige Mehrfachmarkierung verschiedener Proteinstrukturen mit An-
tikörpern ist nur dann möglich, wenn eine Kreuzreaktion der Erstantikörper aus-
zuschließen ist und außerdem die Zweitantikörper gegen Immunglobuline ver-
schiedener Spezies gerichtet sind. Die dargestellte Methodik wurde dahinge-
hend modifiziert, daß in Schritt 1. mit beiden spezifischen Erstantikörpern und in
Schritt 3. mit beiden spezifischen und unterschiedlich konjugierten Zweitanti-
körpern inkubierte wurde.

Wurde eine Kombination von indirekter Immunfluoreszenz mit fluoreszierenden
Farbstoffen (z.B. DAPI, TRITC-Phalloidin) vorgenommen, erfolgte die Inkubation
mit der entsprechenden Farbstofflösung als letzter Schritt vor dem Einbetten in
Mowiol.
D. Ergebnisse

1. Kultivierung von Plaquezellen des Menschen

1.1. Plaqueextraktion
1.1.1. Simpson-Katheter (p-SAC)

- A. femoralis superficialis
- A. poplitea
- A. iliaca
- A. renalis.

Bei 20 Patienten (Alter: 62 ± 13 Jahre, \bar{x} ± SD) handelte es sich um den ersten Eingriff am betreffenden Gefäßsegment und somit um primär-stenosierendes Plaquematerial (Abb. 3). Bei 6 Patienten (Alter: 66 ± 9 Jahre, \bar{x} ± SD) wurden früher bereits Manipulationen an dieser Stelle durchgeführt, somit lag in diesen Fällen re-stenosierendes Gewebe vor (Abb. 5).
Nach angiographischen Kriterien wurde der Stenosierungsgrad bei primär-stenosierenden Läsionen von 96 ± 7 % (X ± SD) auf 28 ± 19 % (X ± SD) gesenkt, bei restenosierenden Läsionen von 89 ± 7 % (X ± SD) auf 19 ± 14 % (X ± SD). Für beide Gruppen gemeinsam errechnete sich durchschnittlich vor Intervention ein Stenosierungsgrad von 95% ± 8 % (X ± SD), der nach Intervention auf 26 ± 19 % (X ± SD) reduziert wurde. Zur Überprüfung des Erfolges wurde bei fraglichen Fällen eine angioskopische Kontrolle durchgeführt [5].

Insgesamt wurden 187 Plaquezyliner aufgearbeitet, 149 aus Primärstenosen und 38 aus Restenosen. Pro Athererektomie variierte die Anzahl der entnommenen Gewebestückchen beträchtlich; sie schwankte zwischen einer und 17 Entnahmen. Bei Primärstenosen errechneten sich durchschnittlich 7.5 ± 6.0 (X ± SD) Zylinder pro Eingriff und bei Restenosen 6.3 ± 4.5 (X ± SD) Zylinder pro Eingriff. Das Gesamtgewicht des aufgearbeiteten Plaquegewebes betrug 1879 mg, hiervon entfielen 1609 mg auf Primärstenosen und 270 mg auf Restenosen. Pro Zylinder betrug das Durchschnittsgewicht bei den Primärstenosen 10.8 mg, bei den Restenosen 7.1 mg. Das Feuchtgewicht des gesamten extrahierten Plaquematerials pro Eingriff schwankte bei Primärstenosen deutlich; hier ergaben sich Werte zwischen 6 mg und 347 mg, durchschnittlich wurden 80 ± 78 mg (X ± SD) Plaquegewebe entnommen. Bei Plaquematerial aus re-stenosierenden Läsionen schwankte das Feuchtgewicht pro Eingriff zwischen 15 mg und 95 mg, durchschnittlich ergaben sich 54 ± 31 mg (X ± SD).

Die Kultivierung der Plaquezellen erfolgte durch enzymatische Disaggregation oder durch Auslegen nach der Explantat-Technik [6,7,42,49]. Durchschnittlich konnten pro 100 mg Plaquegewebe etwa 50 000 Zellen isoliert werden. Mehr als die Hälfte der isolierten Zellen setzte sich wegen irreversibler Schäden an der Zellmembran nicht auf dem Boden der Kulturschale ab.

1.1.2. Thrombendarterektomie (OP)

Das Plaquegewebe wurde im Rahmen des normalen Operationsverlaufes entfernt (Bypass-Implantation, Rekanalisation, Gefäßprothesen-Implantation), so daß dem Patienten hierdurch keine zusätzlichen Belastungen entstanden. Sofort nach Extraktion in der gefäßchirurgischen Abteilung des Klinikums Großhaderns, München und der Abteilung für Herzchirurgie der Landeskrankenanstalten Salzburg, wurde das Material unter sterilen Bedingungen in einem HEPES-gepufferten Medium (15 mM) zur Aufarbeitung ins Physiologische Institut nach Tübingen geschickt.
<table>
<thead>
<tr>
<th>Patient</th>
<th>Alter/Geschlecht</th>
<th>Stenosegrad %</th>
<th>Lokalisation</th>
<th>Plaquezyliner</th>
<th>Feuchtgewicht in mg</th>
<th>Wachstumsraten in PD/die</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. D.M.</td>
<td>73 a/w</td>
<td>95 15</td>
<td>A. fem. sup.</td>
<td>5</td>
<td>52</td>
<td>n.g.</td>
</tr>
<tr>
<td>2. P.K.</td>
<td>63 a/m</td>
<td>100 15</td>
<td>A. fem. sup.</td>
<td>14</td>
<td>184</td>
<td>n.g.</td>
</tr>
<tr>
<td>3. F.J.</td>
<td>45 a/m</td>
<td>100 30</td>
<td>A. fem. sup.</td>
<td>7</td>
<td>81</td>
<td>n.g.</td>
</tr>
<tr>
<td>4. M.E.</td>
<td>70 a/w</td>
<td>100 100</td>
<td>A. fem. sup.</td>
<td>4</td>
<td>57</td>
<td>0.188 P1</td>
</tr>
<tr>
<td>5. D.R.</td>
<td>48 a/w</td>
<td>99 10</td>
<td>A. fem. sup.</td>
<td>3</td>
<td>21</td>
<td>n.g.</td>
</tr>
<tr>
<td>6. S.M.</td>
<td>73 a/m</td>
<td>99 30</td>
<td>A. fem. sup.</td>
<td>21</td>
<td>167</td>
<td>n.g.</td>
</tr>
<tr>
<td>7. S.C.</td>
<td>64 a/w</td>
<td>99 30</td>
<td>A. fem. sup.</td>
<td>22</td>
<td>347</td>
<td>n.g.</td>
</tr>
<tr>
<td>8. S.J.</td>
<td>61 a/m</td>
<td>100 15</td>
<td>A. fem. sup.</td>
<td>7</td>
<td>51</td>
<td>n.g.</td>
</tr>
<tr>
<td>9. E.O.</td>
<td>80 a/m</td>
<td>80 30</td>
<td>A. fem. sup.</td>
<td>14</td>
<td>124</td>
<td>0.147 P1</td>
</tr>
<tr>
<td>10. T.J.</td>
<td>41 a/w</td>
<td>95 20</td>
<td>A. renalis</td>
<td>3</td>
<td>23</td>
<td>n.g.</td>
</tr>
<tr>
<td>11. R.W.</td>
<td>48 a/m</td>
<td>100 50</td>
<td>A. fem. sup.</td>
<td>5</td>
<td>43</td>
<td>n.g.</td>
</tr>
<tr>
<td>12. B.V.</td>
<td>63 a/m</td>
<td>100 30</td>
<td>A. fem. sup.</td>
<td>11</td>
<td>98</td>
<td>n.g.</td>
</tr>
<tr>
<td>13. H.F.</td>
<td>54 a/m</td>
<td>95 15</td>
<td>A. poplitea</td>
<td>1</td>
<td>6</td>
<td>n.g.</td>
</tr>
<tr>
<td>14. S.A.</td>
<td>75 a/w</td>
<td>100 30</td>
<td>A. fem. sup.</td>
<td>9</td>
<td>88</td>
<td>n.g.</td>
</tr>
<tr>
<td>15. M.F.</td>
<td>64 a/m</td>
<td>95 15</td>
<td>A. fem. sup.</td>
<td>2</td>
<td>102</td>
<td>n.g.</td>
</tr>
<tr>
<td>16. L.M.</td>
<td>38 a/w</td>
<td>100 25</td>
<td>A. fem. sup.</td>
<td>2</td>
<td>14</td>
<td>0.204 P1</td>
</tr>
<tr>
<td>17. P.H.</td>
<td>78 a/w</td>
<td>95 15</td>
<td>A. fem. sup.</td>
<td>3</td>
<td>8</td>
<td>n.g.</td>
</tr>
<tr>
<td>18. Z.C.</td>
<td>89 a/m</td>
<td>100 30</td>
<td>A. fem. sup.</td>
<td>3</td>
<td>33</td>
<td>n.g.</td>
</tr>
<tr>
<td>19. L.O.</td>
<td>60 a/m</td>
<td>70 20</td>
<td>A. fem. sup.</td>
<td>3</td>
<td>36</td>
<td>n.g.</td>
</tr>
<tr>
<td>20. B.E.</td>
<td>58 a/m</td>
<td>95 30</td>
<td>A. fem. sup.</td>
<td>10</td>
<td>74</td>
<td>0.487 P1</td>
</tr>
<tr>
<td>Patient</td>
<td>Alter/ Geschlecht</td>
<td>Lokalisation</td>
<td>Feuchtgewicht in mg</td>
<td>Wachstumsraten in PD/die</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. O.T.</td>
<td>69 a / m</td>
<td>A. fem. sup.</td>
<td>900</td>
<td>0.220 P1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. S.W.</td>
<td>57 a / m</td>
<td>Aorta abd.</td>
<td>2948</td>
<td>0.181 P1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. B.A.</td>
<td>67 a / m</td>
<td>A. fem. sup.</td>
<td>38</td>
<td>n.g.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. H.L.</td>
<td>71 a / m</td>
<td>A. carotis</td>
<td>865</td>
<td>0.281 P1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. M.K.</td>
<td>55 a / m</td>
<td>Aorta abd.</td>
<td>3204</td>
<td>n.g.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. H.S.</td>
<td>59 a / m</td>
<td>A. fem. sup.</td>
<td>727</td>
<td>n.g.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. G.W.</td>
<td>77 a / m</td>
<td>A. carotis</td>
<td>650</td>
<td>n.g.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. S.J.</td>
<td>77 a / m</td>
<td>A. fem sup.</td>
<td>842</td>
<td>n.g.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. **</td>
<td>56 a / w</td>
<td>LAD-Bypass</td>
<td>77</td>
<td>n.g.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. **</td>
<td>65 a / w</td>
<td>LCA</td>
<td>237</td>
<td>0.233 P1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. **</td>
<td>61 a / m</td>
<td>A. carotis</td>
<td>460</td>
<td>n.g.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. **</td>
<td>68 a / w</td>
<td>RCA</td>
<td>206</td>
<td>0.104 P1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. **</td>
<td>58 a / m</td>
<td>LAD-Bypass</td>
<td>50</td>
<td>n.g.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. **</td>
<td>60 a / m</td>
<td>RCA</td>
<td>685</td>
<td>n.g.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. **</td>
<td>41 a / m</td>
<td>RCA</td>
<td>362</td>
<td>n.g.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. **</td>
<td>67 a / w</td>
<td>RCA</td>
<td>165</td>
<td>n.g.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. **</td>
<td>56 a / m</td>
<td>LCA</td>
<td>52</td>
<td>n.g.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. **</td>
<td>61 a / m</td>
<td>LCA</td>
<td>67</td>
<td>n.g.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Restenosierendes Plaquematerial (p-SAC)

<table>
<thead>
<tr>
<th>Patient</th>
<th>Alter/ Geschlecht</th>
<th>Stenosegrad %</th>
<th>Lokalisation</th>
<th>Plaquezylinder</th>
<th>Feuchtgewicht in mg</th>
<th>Wachstumsraten in PD/die</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. B. *</td>
<td>73 a / w</td>
<td>90</td>
<td>0</td>
<td>A. fem. sup.</td>
<td>6</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.525 P1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.493 P2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.245 P6</td>
</tr>
<tr>
<td>2. B.S.</td>
<td>52 a / w</td>
<td>99</td>
<td>10</td>
<td>A. fem. sup.</td>
<td>15</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.750 P2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.798 P3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.000 P5</td>
</tr>
<tr>
<td>3. F.G.</td>
<td>59 a / m</td>
<td>80</td>
<td>35</td>
<td>A. fem. sup.</td>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n.g.</td>
</tr>
<tr>
<td>4. M.A.</td>
<td>75 a / m</td>
<td>85</td>
<td>30</td>
<td>A. iliaca</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n.g.</td>
</tr>
<tr>
<td>5. D.M.</td>
<td>75 a / w</td>
<td>*</td>
<td>*</td>
<td>A. fem. sup.</td>
<td>6</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n.g.</td>
</tr>
<tr>
<td>6. **</td>
<td>62 a / m</td>
<td>*</td>
<td>*</td>
<td>A. fem. sup.</td>
<td>8</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.500 P0</td>
</tr>
</tbody>
</table>

Restenosierendes Plaquematerial (OP)

<table>
<thead>
<tr>
<th>Patient</th>
<th>Alter/ Geschlecht</th>
<th>Lokalisation</th>
<th>Feuchtgewicht in mg</th>
<th>Wachstumsraten in PD/die</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. P.F.</td>
<td>55 a / m</td>
<td>A. fem. sup.</td>
<td>2534</td>
<td>0.495 P1</td>
</tr>
<tr>
<td>2. R.C.</td>
<td>64 a / w</td>
<td>A. carotis</td>
<td>103</td>
<td>0.332 P1</td>
</tr>
<tr>
<td>3. **</td>
<td>69 a / m</td>
<td>RCA</td>
<td>199</td>
<td>0.698 P1</td>
</tr>
</tbody>
</table>
Durch dieses Verfahren wurde primär-stenosierendes Plaquematerial von 18 Patienten (Alter: \(63 \pm 9\) Jahre) und re-stenosierendes Plaquematerial von 3 Patienten (Alter: \(63 \pm 6\) Jahre) extrahiert (Abb. 4, Abb. 5). Die Entnahme erfolgte aus folgenden Gefäßlokalisationen:

- A. femoralis superficialis
- Aorta abdominalis
- A. carotis
- Aortocoronare Venenbypass
- Aa. coronariae (RCA, LCA)

Bei der operativen Entnahme war die Ausbeute an Plaquematerial deutlich höher als bei der perkutanen Intervention. Das Gesamt-Feuchtgewicht des extrahierten Gewebes lag bei \(15\ 371\) mg, auf Primärstenosen entfielen \(12\ 535\) mg, auf Restenosen \(2\ 836\) mg.

Das Gewicht des extrahierten Plaquematerials pro Eingriff schwankte extrem und reichte von \(38\) mg bis \(3\ 204\) mg, das durchschnittliche Gewicht bei operativer Entnahmen betrug \(732 \pm 935\) mg (\(\bar{x} \pm SD\)).

Erwartungsgemäß zeigte sich eine klare Korrelation zwischen dem Gefäßkaliber und dem pro Eingriff entnommenem Plaquematerial:

<table>
<thead>
<tr>
<th>Gefäß</th>
<th>Gewicht ((\bar{x} \pm SD))</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. coronaria</td>
<td>(219 \pm 176) mg</td>
</tr>
<tr>
<td>A. carotis</td>
<td>(519 \pm 280) mg</td>
</tr>
<tr>
<td>A. fem. sup.</td>
<td>(1008 \pm 823) mg</td>
</tr>
<tr>
<td>Aorta abd.</td>
<td>(3076 \pm 128) mg</td>
</tr>
</tbody>
</table>

Ebenso wie beim perkutan extrahierten Gewebe konnten aus 100 mg Plaquegewebe etwa 50 000 Zellen isoliert werden. Die Zahl der Zellen, die sich nicht auf dem Substrat absetzen konnten lag deutlich über 50\%.
1.2. Aufarbeitung des Plaquematerials
Um aus dem extrahierten Plaquematerial Zellen zu gewinnen wurden zwei Techniken angewendet (Übersichtsdarstellung in Abb. 6):
1. Die Explantat-Technik
2. Die enzymatische Disaggregation

1.2.1. Explantat-Technik

Der Prozeß des Auswachsens aus dem Explantat gliedert sich in Migration und Proliferation. Teilweise handelt es sich hierbei somit um eine Wiederholung des Vorgangs bei der Atherogenese, da die Zellen in der Plaque bereits von der Media in den subendothelialen Raum ausgewandert sind, nachdem sie die Transformation vom kontraktilen Mediamyzyten zum metabolisch aktiven Myozyten durchgemacht haben.

1.2.2. Enzymatische Disaggregation
Bei dieser Technik werden alle Zellen, die im Verlauf der Atherogenese einmal die Migration und Proliferation aus der Media in den subendothelialen Raum durchgeführt haben, aus der atherosklerotischen Plaque isoliert.

Da die Lösung aus dem Plaquegewebe für alle Zellen gleichzeitig erfolgt, haben alle Zellen das gleiche in vitro Alter. Allenfalls wäre eine gewisse Selektion von

Zellen zu diskutieren, die gegen die Enzymlösung resistent sind. Im Gegensatz zur Explantat-Methode müssen diese Zellen nicht ein zweites Mal die Migration durchführen.

Diese Zellen sind sehr gut für Proliferationsstudien in vitro geeignet.

1.3. Identifizierung der Zellen und Zytoskelett – Darstellung
Jede eukaryontische Zelle ist von einem komplexen Netzwerk aus Proteinfasern durchzogen. Dieses sogenannte Zytoskelett spielt eine wichtige Rolle bei intrazellulären Transportvorgängen, Zellbewegung, Zellteilung und der Aufrechterhaltung der Zellgestalt. Im Einzelnen unterscheidet man drei Hauptbestandteile:

- Aktin-haltige Mikrofilamente mit einer Dicke von 6 nm
- Intermediäre Filamente mit einer Dicke von 7–11 nm
- Mikrotubuli mit einer Dicke von etwa 20 nm

Bei der Gruppe der intermediären Filamente lassen sich drei Gruppen unterscheiden [121,122,193].

Die Mehrheit der isolierten SMC zeigte eine positive Reaktion mit Antikörpern gegen Vimentin (Abb. 10). Die Vimentinfasern durchzogen als wellenförmige Fasern mit strahlenförmigem Verlauf das Zytoplasma, wie bereits für 3T3-Zellen beschrieben [72]. Nur etwa 1% der kultivierten SMC reagierte positiv mit Antikörpern gegen Desmin. Die Mikrotubuli ordneten sich als "Microtubule Organizing Centers" um den Zellkern an und strahlten als Netzwerk bis in die kleinsten Zellausläufer (Abb. 11).

1.4. Morphologie der Plaquezellen

Ein weiteres typisches Merkmal von kultivierten SMC ist in der Bildung von "nODULES" (Abb. 15, Abb. 16) zu sehen. Hierunter versteht man lokale Übereinanderschichtungen der Zellen bereits vor Erreichen der Konfluenz. Sowohl die Bildung der "hill and valley"-Strukturen als auch die Bildung der "nODULES" sind typisch für SMC, die zusätzlich zur indirekten Immunfluoreszenz-Mikroskopie zur Zellidentifikation herangezogen werden können.

1.5. Klonierungseffizienz

1.6. Wachstumsverhalten der Plaquezellen
1.6.1. Zellgrößenverteilung

Ein weiterer wichtiger Unterschied zu SMC aus der gesunden Gefäßwand wurde bei der Zellgrößenverteilung der isolierten Plaquezellen deutlich. Während bei SMC aus der unveränderten Gefäßwand lediglich eine Häufung der Zelldurchmesser beobachtet wurde, konnten bei allen Plaquezellen zwei Durchmessersmaxima beschrieben werden (Abb. 17). Unter der Vorstellung, daß es sich hierbei
um zwei Subpopulationen handeln könnte, wurden die beiden Maxima SP-1 und SP-2 genannt. Für die SMC aus Plaquematerial, das mit dem p-SAC extrahiert wurde (p-SAC-SMC), ergaben 18.6 ± 5 μm (X ± SD) für die SP-1 und 27.1 ± 3 μm (X ± SD) für die SP-2. Obwohl auch bei Plaquezellen aus primär-stenosierenden Läsionen die Mehrheit der Zellen zur SP-1 gehörte (Abb. 17 A), war bei Plaquezellen aus restenosierendem Gewebe dieser Prozentsatz noch höher (Abb. 17 B).

Abb. 17: Darstellung der Zellgrößenverteilung von glatten Muskelzellen aus primär-stenosierendem (A) und aus re-stenosierendem Plaquematerial (B). Es können zwei Subpopulationen (SP-1 und SP-2) unterschieden werden.
1.6.2. Proliferative Effizienz
Die Kultivierung von Plaquezellen erwies sich erwartungsgemäß als schwierig. Obwohl es in fast allen Fällen gelang, einige SMC zu isolieren und in die Kulturschale zu transferieren, war es nur wenigen Zellen möglich, sich auf dem Substrat abzusetzen und mit der Proliferation zu beginnen.

In den Fällen, in denen die Proliferation begonnen wurde, kam es in einigen Fällen zum spontanen Einstellen der mitotischen Tätigkeit, bevor genügend Zellen für die Aussaat einer Wachstumskurve vorlagen. Um eine Wachstumskurve über den Zeitraum von etwa 14 Tagen mit Doppel- bzw. Dreifach-Kontrollen durchführen zu können, werden bei der angestrebten Aussaatdichte von 2000–3000 Zellen/cm² etwa 500 000 bis 750 000 Zellen benötigt.

Die proliferative Effizienz "E" in Prozent wurde definiert als die Anzahl der Gewebeproben, aus denen sich über 500 000 Zellen züchten ließen / Gesamtzahl der aufgearbeiteten Proben x 100. Sie gibt somit den Prozentsatz der Gewebeproben an, aus denen sich eine Wachstumskurve etablieren ließ.

Im Einzelnen wurden folgende Ergebnisse errechnet:
Für die gesamte Patientengruppe ohne weitere Einschränkung ergab sich eine proliferative Effizienz von 34%. Hierbei machte es keinen nennenswerten Unterschied, ob das Plaquematerial mit dem p-SAC oder intraoperativ entfernt wurde: 30% proliferative Effizienz in der p-SAC-Gruppe, 38% in der OP-Gruppe.

Interessant war die Untergliederung der gesamten Patientengruppe nach Primärstenosen und nach Restenosen. Bei primär-stenosierendem Plaquematerial betrug die proliferative Effizienz 24%, bei re-stenosierendem Plaquematerial jedoch 77%. Dieses Ergebnis weist auf einen aktivierten Zustand der Plaquezellen aus restenosierendem Plaquematerial hin.

Die weitere Untergliederung der Primärstenosen und Restenosen, je nachdem welche Technik zur Extraktion des Plaquematerial angewendet wurde, bestätigte bei beiden Techniken den aktivierten Zustand der SMC aus restenosierendem Plaquematerial:

Zusammenfassend war bei restenosierendem Plaquematerial die proliferative Effizienz mit 77% signifikant erhöht im Vergleich zu primärstenosierendem Plaquematerial mit 24%. Bei operativer Plaqueextraktion lagen die Werte jeweils höher als bei Plaqueextraktion mit dem p-SAC.

Ein Einfluß des Patientenalters auf die proliferative Effizienz des Plaquematerials wurde nicht beobachtet. Sowohl bei Primärstenosen wie bei Restenosen lag das Patientenalter durchschnittlich immer zwischen 60 und 70 Jahren.

1.6.3. Wachstumsraten
Trotz optimierter Kulturbedingungen konnte nur aus einem relativ geringen Teil der aufgearbeiteten Proben genügend Zellen für einen Proliferationstest gezüchtet werden. Um die Wachstumsraten der SMC aus atherosklerotischem Plaquematerial (Plaque-SMC) einordnen zu können, bietet sich der Vergleich mit SMC aus der unveränderten Gefäßwand (Media-SMC) an. Die Wachstumsraten für Media-SMC werden mit etwa 0.35 PD/Tag angegeben [40], bei eigenen Untersuchungen erreichten Media-SMC ein Wachstum von 0.4 PD/Tag (siehe Abschnitt D.2.1.).

Ohne Berücksichtigung der Extraktionstechnik ergaben sich für alle vorliegenden Wachstumskurven von Primär-SMC in der ersten Passage ein Wachstum von 0.220 ± 0.1 PD/Tag ($\bar{x} \pm SD$). Diese Zahl liegt unter der Wachstumsgeschwindigkeit der SMC aus der unveränderten Gefäßwand. Aus Abb. 3 geht hervor, daß bei einem Patienten die Primär-SMC ein Wachstum von 0.487 PD/Tag aufwiesen. Bei diesem 58 jährigem Patienten wurde die Plaqueextraktion mit dem p-SAC

Bei SMC aus restenosierenden Läsionen zeigte sich ein deutlich erhöhtes Wachstum der Zellen [44,49,51,53,213]. Aus den graphischen Darstellungen (Abb. 18, Abb. 19) wird das unterschiedliche Wachstum besonders deutlich. Bei Zugrundelegung aller verfügbaren Kurven ohne Unterscheidung zwischen p-SAC-Extraktion und operativer Extraktion des Plaquematerials ergab sich durchschnittlich in der ersten und zweiten Passage ein Wachstum von 0.550 ± 0.1 PD/Tag (x ± SD). Diese Rate liegt klar über den durchschnittlichen Raten für Primär-SMC und für SMC aus der unveränderten Gefäßwand. In einem Fall (siehe Tabelle) eines 52 jährigen Patienten war das Wachstum der Plaquezellen so extrem gesteigert (0.750 PD/Tag), daß fast die Wachstumsgeschwindigkeit von malignen Tumorzellen erreicht wurde (die Fibrosarkom-Zelllinie "SSK 2" erreichte im Labor beispielsweise eine Wachstumsrate von 0.8 PD/Tag).

Die weitere Untergliederung der Primär-SMC und der Re-SMC nach der angewendeten Extraktionstechnik lieferte ähnliche Ergebnisse: Soweit es sich um primärstenosierendes Plaquematerial handelte, lagen die durchschnittlichen Wachstumsraten für p-SAC-SMC mit 0.257 ± 0.1 PD/Tag (x ± SD) etwas über den durchschnittlichen Wachstumsraten für OP-SMC mit 0.191 ± 0.05 PD/Tag (x ± SD). In beiden Fällen sind die Wachstumsraten wieder deutlich erniedrigt im Vergleich zu den SMC aus der unveränderten Gefäßwand.

Wenn restenosierendes Plaquegewebe kultiviert wurde, betrugen die Wachstumsraten für p-SAC-SMC 0.592 ± 0.1 PD/Tag (x ± SD) und für OP-SMC 0.508 ± 0.2 PD/Tag (x ± SD) und lagen somit unabhängig von der Extraktionsmethode deutlich im stimulierten Bereich. Die Methode der Plaqueextraktion spielte weder bei Primär-SMC noch bei Re-SMC eine Rolle. Immer waren die Primär-SMC in ihrem Wachstum deutlich verlangsamt, die Re-SMC klar stimuliert.

Das extrem gesteigerte Wachstum der Re-SMC blieb über mehrere Passagen erhalten, bevor die Wachstumsraten sich wieder verlangsamen und schließlich

eine Seneszenz der Re-SMC zu beobachten war. Dieser Ablauf kann anhand der Tabelle nachvollzogen werden: Bei p-SAC Restenose Pat. Nr. 1 betrug das Wachstum in der ersten Passage 0.525 PD/Tag, in der zweiten Passage 0.499 PD/Tag und in der sechsten Passage 0.245 PD/Tag. Eine Seneszenz der Zellen trat erst in der zehnten Passage auf.

Bei den untersuchten SMC aus restenosierendem Plaquematerial trat die Seneszenz der Plaquezellen um so früher auf, je schneller das Wachstum in den frühen Passagen war. Während bei p-SAC Restenose Pat. Nr. 1 mit einer maximalen Wachstumsrate von 0.525 PD/Tag die Seneszenz erst in der zehnten Passage erreicht wurde, trat sie bei p-SAC Restenose Pat. Nr. 2 mit einer maximalen Wachstumsrate von 0.798 PD/Tag bereits in der fünften Passage auf. Diese Zusammenhänge müssen sicherlich noch an einer größeren Anzahl von Restenosen untersucht werden.

Abb. 20: Wachstumskurve für SMC aus primär-stenosierenden Plaquematerial der A. fem. sup.. Das Wachstum beider Subpopulationen (SP-1 und SP-2) ist vermindert.

Abb. 21: Wachstumskurve für SMC aus restenosierendem Plaquematerial der A. fem. sup.. Beide Subpopulationen zeigen ein deutlich gesteigertes Wachstum.

1.7. Migrationsverhalten der Plaquezellen
SMC wurden aus restenosierendem Plaquematerial der A. fem. sup. isoliert und
kultiviert. In der sechsten Passage wurden sie für den Migrationstest in 6-Loch-
schalen ausgesät und bis zur Konfluenz angezüchtet. Der Migrationstest wurde
wie in Abschnitt C 2.3 beschrieben durchgeführt.

1.7.1. Migration pro mm Wundrandlänge
Die Ermittlung der Zellmigration pro mm Wundrandlänge erfolgte durch Auszäh-
len der gefärbten Zellkerne nach einer Migrationszeit von 48 Std (Abb. 24). Im
ersten Versuch schwankte die Zellzahl/mm zwischen 95 und 166, durchschnitt-
llich ergaben sich 125 ± 26 Zellen/mm Wundrandlänge. Im zweiten Versuch lag
der niedrigste Wert bei 63 Zellen, der höchste bei 126 Zellen, durchschnittlich
bedeutete dies eine Migration von 96 ± 20 Zellen/mm Wundrandlänge. Beim
dritten Ansatz schwankte die Zellzahl/mm zwischen 79 und 158, durchschnitt-
llich ergab dies 111 ± 27 Zellen/mm Wundrandlänge. Bei allen durchgeführten
Versuchen zusammengerechnet schwankte die Zellzahl der pro mm ausgewan-
derten Zellen zwischen 63 und 158, der Mittelwert ergab 111 ± 27 Zellen/mm
Wundrandlänge.

Abb. 24: Migration von glatten Muskelzellen über den künstlich geschaffenen
Wundrand (WR) in den zellfreien Raum (ZFR), Migrationszeit 48 Std.
1.7.2. Migrationsgeschwindigkeit
Für die Berechnung der Migrationsgeschwindigkeit wurde die von der vordersten Zellfront zurückgelegte Strecke auf die Zeit seit Beginn der Migration bezogen.

Im ersten Versuch betrug die durchschnittliche Migrationsgeschwindigkeit der Zellen 20.7 ± 1.6 μm/Std (x ± SD). Die Geschwindigkeit der schnellsten Zellfront betrug 23 μm/Std, die der langsamsten 19 μm/Std. Der zweite Versuch lag in der Durchschnittsgeschwindigkeit mit 18.4 ± 1.4 μm/Std (x ± SD) etwas unter dem ersten Versuch, die Geschwindigkeiten der einzelnen Fronten schwankten zwischen 16 und 20 μm/Std. Beim dritten Versuch betrug die Durchschnittsgeschwindigkeit der Zellen 16.9 ± 1.8 μm/Std (x ± SD), die schnellste Front bewegte sich mit 20 μm/Std, die langsamste mit 15 μm/Std. Im vierten Versuch lag die Durchschnittsgeschwindigkeit bei 15.3 ± 1.1 μm/Std (x ± SD), die Geschwindigkeiten der einzelnen Fronten variierten zwischen 14 und 17 μm/Std.

Bei allen durchgeführten Versuchen zusammen betrug die durchschnittliche Migrationsgeschwindigkeit 17.9 ± 2.5 μm/Std (x ± SD); die schnellste Zellfront migrierte mit 23 μm/Std, die langsamste mit 14 μm/Std.

2. Einflüsse auf das Wachstumsverhalten
2.1. Adhäsionsfaktoren

SMC aus atherosklerotischem Plaqugewebe (Re-SMC) und SMC aus der unveränderten Gefäßwand wurden auf Kollagen Typ I beschichteten Kulturschalen kultiviert. Hierbei zeigte sich, daß Re-SMC auf den kollagenbeschichteten Platten ein reduziertes Wachstum hatten (Abb. 25). Bei SMC aus der unveränderten Gefäßwand (Abb. 26) hatte die Kollagenbeschichtung keinen Einfluß auf die Zellproliferation [49].
Abb. 25: Kultivierung von glatten Muskelzellen aus restenosierendem Plaquematerial auf unbeschichteten Kulturschalen und auf Kulturschalen, die mit lathyritischen Rattenkollagen Typ I beschichtet wurden.

Abb. 26: Kultivierung von glatten Muskelzellen aus der unveränderten Gefäßwand auf unbeschichteten Kulturschalen und auf Kulturschalen, die mit lathyritischem Rattenkollagen Typ I beschichtet wurden.
2.2. Serumkonzentrationen

In der Literatur [164] wurde berichtet, daß Plaquezellen aus primärstenosierenden Läsionen der A. fem. sup. nicht auf verschiedene Serumkonzentrationen von 1 - 10% reagieren. In unseren Experimenten zeigte sich jedoch sowohl bei Primär-SMC, als auch bei Re-SMC eine klare Abhängigkeit der Zellproliferation von der Konzentration des zugegebenen Serums (Abb. 27).

Aus der Darstellung der Populationsverdopplungsraten/Tag in Abhängigkeit von der Serumkonzentration (Abb. 28) kann man ablesen, daß sowohl bei Primär-SMC, wie auch bei Re-SMC eine Sättigungsgrenze der Stimulierbarkeit erreicht wird. Die Steigerung von 15% Serumgehalt auf 20% bewirkt nur noch eine relativ geringe Erhöhung der Zellproliferation. Die Sättigungsgrenze dürfte im dargestellten Versuch für Primär-SMC etwa bei 0.31 PD/Tag liegen, für Re-SMC mehr als doppelt so hoch bei 0.66 PD/Tag.

Im Einzelnen wurden folgende Werte für die Populationsverdopplungsraten/Tag errechnet:

<table>
<thead>
<tr>
<th>Serumkonzentration</th>
<th>Primär-SMC</th>
<th>Re-SMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>Absterben der Zellen</td>
<td>0.039 PD/Tag</td>
</tr>
<tr>
<td>1%</td>
<td>0.075 PD/Tag</td>
<td>0.099 PD/Tag</td>
</tr>
<tr>
<td>5%</td>
<td>0.143 PD/Tag</td>
<td>0.443 PD/Tag</td>
</tr>
<tr>
<td>10%</td>
<td>0.267 PD/Tag</td>
<td>0.557 PD/Tag</td>
</tr>
<tr>
<td>15%</td>
<td>0.307 PD/Tag</td>
<td>0.640 PD/Tag</td>
</tr>
<tr>
<td>20%</td>
<td>0.312 PD/Tag</td>
<td>0.658 PD/Tag</td>
</tr>
</tbody>
</table>

Die Wachstumsraten der Re-SMC lagen bei allen Serumkonzentrationen deutlich über den Wachstumsraten für Primär-SMC. Ohne Serumzusatz zeigten nur die Re-SMC ein geringes Wachstum, die Primär-SMC vermehrten sich überhaupt nicht, sondern gingen sogar langsam zu Grunde. Bei einer Serumkonzentration von 1% lagen die Wachstumsraten für Primär-SMC und Re-SMC relativ dicht beieinander, die PD/Tag der Re-SMC betrug nur 1.3 x des Wertes für Primär-SMC. Die größten Unterschiede wurden bei 5% Serum erzielt: Die PD/Tag für Re-SMC war 3.1 x so hoch wie die der Primär-SMC. Bei einer Serumkonzentra-
Abb. 27: Darstellung der Auswirkung verschiedener Serumkonzentrationen auf das Wachstum von SMC aus primär-stenosierenden (A) und re-stenosierenden Läsionen (B).
tration von 10%, 15% und 20% lag die Wachstumsrate der Re-SMC konstant 2,1 x höher als die der Primär-SMC.

Ein weiterer interessanter Befund war, daß mit Zunahme der Serumkonzentration die prozentuale Steigerung der Populationsverdopplungsrate/Tag immer geringer wurde. Im Einzelnen zeigten sich folgende Werte:

Relative Steigerung der PD/Tag in Prozent bei Erhöhung der Serumkonzentration ('Wachstumsbeschleunigung'):

<table>
<thead>
<tr>
<th>Serumkonzentration</th>
<th>Primär-SMC</th>
<th>Re-SMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>von 0% auf 1%</td>
<td>keine Steigerung</td>
<td>+ 154%</td>
</tr>
<tr>
<td>von 1% auf 5%</td>
<td>+ 91%</td>
<td>+ 347%</td>
</tr>
<tr>
<td>von 5% auf 10%</td>
<td>+ 87%</td>
<td>+ 26%</td>
</tr>
<tr>
<td>von 10% auf 15%</td>
<td>+ 15%</td>
<td>+ 15%</td>
</tr>
<tr>
<td>von 15% auf 20%</td>
<td>+ 2%</td>
<td>+ 2%</td>
</tr>
</tbody>
</table>

Wie bereits angedeutet, nahm der Effekt der Serumkonzentrationserhöhung bei höheren Serumkonzentrationen bei Primär-SMC und bei Re-SMC ab, bei 15% und 20% sind die Werte sogar identisch. Re-SMC reagierten bereits bei geringen Serumkonzentrationen vehement, die Steigerung von 1% auf 5% bewirkte eine Steigerung der PD/Tag um enorme 347%. Die PD/Tag steigt zwar noch an bei Erhöhung der Serumkonzentration, aber die Steigerungsraten sind relativ gering mit 26%, 15% und 2%.

Bei Primär-SMC sind die Steigerungsraten insgesamt niedriger, das Maximum der Wachstumsratensteigerung wird aber ebenfalls bei der Erhöhung der Serumkonzentration von 1% auf 5% erreicht, hält aber nahezu unverändert beim Erhöhen der Serumkonzentration von 5% auf 10% an.

2.3. Konditionierte Medien
In mehreren Publikationen wurde berichtet, daß von Plaquezellen eine mitogene Aktivität ins Kulturmedium sezerniert wird [125,133,141]. Wie in Abschnitt D. 1.6.3. dargestellt, zeigten Re-SMC ein signifikant höheres Wachstum als Primär-SMC. Um zu untersuchen, ob von den schnell wachsenden SMC eine mitogene Aktivität ins Kulturmedium sezerniert wird, entnahmen wir Kulturmedium
Abb. 28: Vergleich der Populationsverdopplungsraten von SMC aus primär-stenosierendem und re-stenosierendem Plaquematerial bei unterschiedlichen Serumkonzentrationen. Bei 5% Serumanteil ist der Unterschied am größten.

Abb. 29: Der Einfluß konditionierter Medien auf das Zellwachstum. Das Medium von Kulturen mit SMC aus restenosierenden Läsionen stimuliert das Wachstum von SMC aus primärstenosierenden Läsionen. Das Medium von Fibroblasten-Kulturen inhibiert das Wachstum der SMC.

Wie bereits in der Einleitung erläutert wurde, scheinen auf zellulärer Ebene die Migration und Proliferation die zentralen Ereignisse bei der Atherogenese zu sein. Interessanterweise erfolgt die Migration der SMC jedoch immer in Richtung Endothel bzw. Gefäßlumen.

2.4. ECGF und PDGF

Wachstumsfaktoren scheint eine wichtige Rolle bei der Atherogenese zuzukommen. Daher wurde im folgenden der Einfluß von ECGF und PDGF auf kultivierte Plaquezellen aus primär- und restenosierendem Plaquematerial untersucht. Die Konzentration des ECGF betrug 100 μg/ml, des PDGF 5 ng/ml. Unter der Einwir-
Abb. 30: Der Einfluß von ECGF nach 5-tägiger Kultivierung auf primär-stenosierende SMC, re-stenosierende SMC und seneszenten re-stenosierende SMC. Nur Plaquezellen aus restenosierendem Plaquematerial waren in ihrem Wachstum stimulierbar; bei seneszenten SMC verminderte sich die Stimulierbarkeit.

Abb. 31: Die Wirkung von PDGF nach 5-tägiger Kultivierung auf primärstenosierende SMC, restenosierende SMC und seneszenten, restenosierende SMC. Während primärstenosierende SMC nicht stimuliert wurden, konnte bei SMC aus restenosierendem Plaquematerial eine deutliche Stimulation erreicht werden. Seneszenten SMC ließen sich in geringerem Ausmaß stimulieren.
kung von Wachstumsfaktoren wurde über einen Zeitraum von 6 Tagen kultiviert, bei jedem Medienwechsel wurden auch die Wachstumsfaktoren erneuert. Nach 6 Tagen wurde die Zellzahl mit dem Zellzählgerät analysiert, in Abb. 30 u. 31 sind die relativen Zellzahlen in % angegeben (Kontrolle = 100%).

Primär-SMC ließen sich weder durch ECGF noch durch PDGF stimulieren. Im Gegensatz hierzu konnte das Wachstum der Re-SMC durch PDGF um das 2.7-fache, durch ECGF fast um das 4-fache gesteigert werden. Mit zunehmendem in vitro-Alter der Re-SMC in höheren Passagen nahm jedoch auch die Stimulationsfähigkeit ab. Das Wachstum der seneszenten Re-SMC wurde durch PDGF nur noch um das 1.9 fache, durch ECGF um das 1.6 fache gesteigert.

3. Medikamenten-Testungen
Durch die wichtige Rolle, die der SMC-Migration und Proliferation bei der Athrogenese zukommt, besteht ein klinisches Interesse an einer medikamentösen Beeinflussbarkeit dieser Prozesse [12,13,14,15,16,40,165,166,212,216]. Das extrem gesteigerte Wachstum der SMC aus restenosierenden Läsionen in vitro könnte das in vivo-Äquivalent zu den hohen Restenosерaten nach Angioplastie in vivo sein.

Eine effektive medikamentöse Inhibition der Zellmigration und Zellproliferation und/oder zumindest die Vermeidung von stimulierenden Substanzen wäre sicherlich anzustreben. Interessante Zusatzinformationen zur Auswahl geeigneter Substanzen können durch die Etablierung von in vitro-Zellkultur-Testsystemen erreicht werden [165,166].

3.1. Thrombozytenaggregationshemmer
3.1.1. Acetylsalicylsäure (ASS)
SMC aus der unveränderten Gefäßwand des Menschen und SMC aus intraoperativ und perkutan entferntem Plaquelgewebe wurden in einer Dichte von 2000 -3000 Zellen/cm² in 6-Lochschalen ausgesät. Nach dem ersten Mediumwechsel erfolgte die Zugabe von reiner ASS in Konzentrationen von 10⁻² bis 10⁻⁷ mol/l. Da ASS in 100% Ethanol gelöst werden mußte, wurde in die Kontrollschalen ebenfalls eine entsprechende Menge Ethanol pipettiert. Bei jedem Medium-
wechsel wurden die Substanzen ebenfalls erneuert. Nach 8 Tagen erfolgte die Analyse der Zellzahlen mit dem Zellcounter.

3.1.1.1. Wirkung von ASS auf glatte Muskelzellen aus der unveränderten Gefäßwand (Abb. 32)

Bei einer ASS-Konzentration von 10^{-7} mol/l bis 10^{-3} mol/l zeigte sich keine relevante Änderung der Zellzahl. Erst bei einer toxischen Dosierung von 10^{-2} mol/l starben fast alle Zellen ab (98%).

3.1.1.2. Wirkung von ASS auf Plaquezellen aus peripheren Stenosen (Abb.33,34)

Der Effekt von ASS auf kultivierte SMC aus intraoperativ entferntem, primär-stenosierendem Plaquematerial der A. fem. sup. ist in Abb 33 dargestellt. Eine geringe Proliferationshemmung durch ASS um 28% konnte bereits ab einer Konzentration von 10^{-7} mol/l nachgewiesen werden. Die Erhöhung der Konzentration auf 10^{-6} mol/l, 10^{-5} mol/l und 10^{-4} mol/l führte zu keiner weiteren Zunahme der Inhibition. Bei SMC aus restenosierendem Plaquematerial, welches mit dem p-SAC extrahiert wurde (Abb. 34), kam es bei den Konzentrationen bis 10^{-4} mol/l nur zu Schwankungen um den Nullwert. Erst bei der toxischen Konzentration von 10^{-2} mol/l ASS kam es bei beiden Testreihen zu einer deutlichen Abnahme der Zellzahl, bei 10^{-2} mol/l betrug die Abnahme über 95%.

3.1.1.3. Wirkung von ASS auf Plaquezellen aus Primär- und Restenosen (Dosis-Wirkungskurve, Abb. 35)

3.1.1.4. Wirkung von ASS auf die Migration von Plaquezellen

Die meisten Zelltypen sind in der Lage, sich aktiv auf einer Unterlage fortzubewegen. Im Rahmen der Atherogenese werden die Mediazellen durch exogene Stimuli zur Migration angeregt. Für den Migrationstest wurden SMC aus restenosierendem Plaquematerial der A. fem. sup. (5. Passage) bis zur Konfluenz an-
Abb. 32: Der Effekt von Acetylsalizylsäure auf die Proliferation von glatten Muskelzellen aus der unveränderten Gefäßwand nach 5-tägiger Kultivierung.

Abb. 33: Der Effekt von Acetylsalizylsäure auf die Proliferation von primär-stenosierenden SMC aus der A. fem. sup. nach 5-tägiger Kultivierung. Eine geringe Hemmung der Zellproliferation liegt bereits bei einer Konzentration von 10^{-7} mol/l vor.
Abb. 34: Der Effekt von Acetylsalicylsäure auf die Proliferation von SMC aus re-stenosierendem Plaquematerial nach fünf tägiger Kultivierung; eine signifikante Reduktion der Zellzahl erfolgte erst im toxischen Bereich.

Abb. 35: Darstellung des Effektes von Acetylsalicylsäure auf primär- und re-stenosierende SMC der A. fem. sup. nach 5-tägiger Kultivierung als Dosis-Wirkungskurve. Die ED 50 wird erst im toxischen Bereich erreicht.
gezüchtet. Die Durchführung der Migration erfolgte wie in Abschnitt C. 2.3. beschrieben.

3.1.1.4.1. Zellmigration pro mm Wundrandlänge (Abb. 36)
Die Anzahl der SMC, die pro mm Wundrandlänge in das entstandene zellenfreie Gebiet migrierten, wurde durch Auszählen der Zellkerne der ausgewanderten Zellen bestimmt. ASS wurde in 100% Ethanol gelöst und sofort nach Verletzung des Zellrasens in Konzentrationen von 10^{-2} mol/l bis 10^{-6} mol/l den Kulturschalen zugegeben. In die Kontrollschalen ohne Substanz wurde ebenfalls eine entsprechende Menge Ethanol pipettiert.

Das Auszählen der Zellkerne nach 2 Tagen Substanzeinwirkung ist in Abb. 36 dargestellt. ASS in Konzentrationen von 10^{-6} mol/l bis 10^{-4} mol/l beeinflußte die Anzahl der migrierten Zellen nicht. Bei der toxischen Konzentration von 10^{-3} mol/l wurde die Zahl der migrierten Zellen um 42% reduziert, bei 10^{-2} mol/l sogar um 84%.

3.1.1.4.2. Migrationsgeschwindigkeit (Abb. 37)
Für die Berechnung der Migrationsgeschwindigkeit wurde die seit Zellverletzung zurückgelegte Wegstrecke der ersten Zellfront durch die Migrationszeit dividiert. Hier zeigten sich ähnliche Ergebnisse wie bezüglich der Anzahl der migrierten Zellen. Auf die Migrationsgeschwindigkeit hatte ASS in Konzentrationen von 10^{-6} mol/l bis 10^{-4} mol/l keinen Einfluß. Bei einer Konzentration von 10^{-3} mol/l reduzierte sich die Migrationsgeschwindigkeit um 33%, bei 10^{-2} mol/l betrug sie noch 15% im Vergleich zur Kontrollschale ohne Substanz.

3.1.1.5. Wirkung von ASS auf die Migration und Proliferation von Plaquezellen (Dosis-Wirkungskurve, Abb. 38)
Als Repräsentant für die Migration wurde die Zahl der pro mm Wundrandlänge ausgewanderten Zellen verwendet und gemeinsam mit der Proliferation als Dosis-Wirkungskurve dargestellt. 100% Wirkung würde einer Reduktion der Zellzahl auf Null entsprechen, Null % Wirkung bedeutet infolgedessen die gleiche Zellzahl wie die Kontrollschalen. Aus Abb. 38 ist ersichtlich, daß im Konzentrationsbereich von 10^{-6} mol/l bis 10^{-4} mol/l kein Effekt auf die Migration und Proliferation beobachtet werden kann. Erst durch die sicherlich toxischen
Abb. 36: Zahl der pro mm Wundrandlänge unter der Einwirkung von Acetylsalicylsäure (10^{-2} mol/l bis 10^{-6} mol/l) in den zellfreien Raum migrierten Plaquezellen. Migrationsdauer 48 Std.

Abb. 37: Darstellung der Migrationsgeschwindigkeit der Plaquezellen in % unter der Einwirkung von Acetylsalicylsäure (10^{-2} mol/l bis 10^{-6} mol/l).
Konzentrationen von 10^{-3} mol/l und 10^{-2} mol/l werden beide Parameter deutlich vermindert. Bemerkenswert ist der nahezu parallele Kurvenverlauf.

3.1.1.6. Die Wirkung von ASS auf den pH-Wert der Kulturen (Abb. 39)

3.1.2. Dipyridamol (DPD)
Abb. 38: Beeinflussung der Migration und Proliferation von glatten Muskelzellen durch Acetylsalicylsäure (10^{-2} \text{ mol/l} \text{ bis } 10^{-6} \text{ mol/l}). Erst im toxischen Bereich kommt es zu einer nahezu identischen Reduktion der Zellzahl.

Abb. 39: Messung des pH-Wertes bei unterschiedlichen Konzentrationen von Acetylsalicylsäure (10^{-2} \text{ mol/l} \text{ bis } 10^{-10} \text{ mol/l}). Erst bei der höchsten Konzentration verändert sich der pH-Wert.
3.1.2.1. Wirkung von DPD auf glatte Muskelzellen aus der unveränderten Gefäßwand (Abb. 40)

Im Konzentrationsbereich von 10^{-9} mol/l bis 10^{-6} mol/l zeigte sich keine Beeinflussung der Zellproliferation. Bei der Konzentration von 10^{-5} mol/l wurde die Zellzahl um 30% reduziert. Die weitere Erhöhung der Konzentration führte zu toxischen Effekten und der Ausbildung von kristallähnlichen Strukturen in der Schale und reduzierte die Zellzahl um über 80%.

3.1.2.2. Wirkung von DPD auf Plaquezellen aus peripheren Stenosen (Abb. 41)

Der Einfluß von DPD auf kultivierte Plaque-SMC aus restenosierendem Plaquelaterial ist in Abb. 41 dargestellt, die Kontrolle ohne Substanz beträgt 100%. Im Konzentrationsbereich von 10^{-3} mol/l bis 10^{-5} mol/l zeigte sich durchwegs eine leichte Stimulation des Wachstums. Da diese aber weniger als 10% ausmachte, wurde sie als natürliche Schwankung bei Arbeiten mit biologischem Material gewertet.

3.1.2.3. Wirkung von DPD auf die Migration von Plaquezellen

SMC aus restenosierendem Gewebe der A. fem. sup. wurden bis zur Konfluenz angezüchtet und 2 Tage mit Hungermedium versorgt, um Zellteilungen auszuschließen zu können. Nach Verletzung des Zellrands (siehe Abschnitt C.2.3.) erfolgte die Zugabe von DPD in Konzentrationen von 10^{-8} mol/l bis 10^{-3} mol/l. In die Kontrollschalen ohne Substanz wurde eine entsprechenden Menge des Lösungsmittels Ethanol zugegeben. 48 Stunden später wurden die Zellen fixiert und nach Giemsa gefärbt.
Abb. 40: Der Effekt von Dipyridamol auf glatte Muskelzellen aus der unveränderten Media. Ab einer Konzentration von 10^{-5} mol/l wird die Zellproliferation gehemmt; diese Konzentration liegt gerade noch im therapeutischen Bereich.

Abb. 41: Die Wirkung von Dipyridamol auf glatte Muskelzellen aus restenosierendem Plaquematerial. Im therapeutischen Bereich zeigt sich eine geringe Inhibition der Zellproliferation.
3.1.2.3.1. Zellmigration pro mm Wundrandlänge (Abb. 42)
Für die Bestimmung der Zellmigration pro mm Wundrandlänge wurden die Zellkerne der migrierten Zellen gezählt und auf einen mm Wundrandlänge bezogen. Hierbei zeigte sich bei DPD in Konzentrationen von 10⁻⁴ mol/l bis 10⁻⁶ mol/l kein relevanter Einfluss auf die Zahl der migrierten Zellen (Abb. 42), die Stimulation bei 10⁻⁵ mol/l scheint ein Ausreißer zu sein. Eine leichte Reduktion der pro mm migrierten Zellzahl um 15% ergibt sich bei einer Konzentration DPD von 10⁻⁵ mol/l. Die Erhöhung der Dosis auf 10⁻⁴ mol/l führt zu keiner Änderung, erst die sicherlich toxische Dosierung von 10⁻³ mol/l hemmt die Zellmigration um 50%.

3.1.2.3.2. Migrationsgeschwindigkeit (Abb. 43)
Für die Berechnung der Migrationsgeschwindigkeit wurde die ab Zellverletzung zurückgelegte Wegstrecke der ersten Zellfront ermittelt und auf die Wanderungszeit bezogen. In Abb. 43 sind die Ergebnisse dargestellt. Bei den Konzentrationen von 10⁻⁸ mol/l bis 10⁻⁵ mol/l dürfte es sich um normale Schwankungen handeln, ein Trend in die eine oder andere Richtung konnte nicht beschrieben werden. Die Erhöhung der Konzentration auf 10⁻⁴ mol/l führte zu einer Reduktion der Migrationsgeschwindigkeit um 30%, bei der Konzentration von 10⁻³ mol/l um 52%.

3.1.2.4. Wirkung von DPD auf die Migration und Proliferation von Plaquezellen (Dosis-Wirkungskurve, Abb. 44)
Bei der gemeinsamen Darstellung der Migration und Proliferation wurde als Parameter für die Migration die pro mm Wundrand ausgewanderten Zellen herangezogen und der Zell-Proliferation gegenübergestellt. Im Konzentrationsbereich von 10⁻⁸ mol/l bis 10⁻⁵ mol/l zeigte sich keine verwertbare Änderung der Zellzahl. Erst bei der toxischen Konzentration von 10⁻⁴ mol/l wurde die Zellproliferation um etwas über 30% inhibiert, die Migration lediglich um 16%.

3.1.3. Kombination von Acetylsalicylsäure (ASS) und Dipyridamol (DPD)
ASS und DPD wurden getrennt in 100% Ethanol gelöst und kultivierten Zellen in Konzentrationen von 10⁻³ bis 10⁻⁴ zugewogen. Um gleiche Voraussetzungen zu schaffen wurden die Kontrollschalen ebenfalls mit der entsprechenden Menge Ethanol kultiviert. Nach einer Kulturierungsdauer unter Substanzeinwirkung von 3 Tagen wurde die Zellzahl bestimmt.
Abb. 42: Migration von Plaquezellen unter dem Einfluß von Dpyridomol (10^{-3} \text{ mol/l} \text{ bis } 10^{-8} \text{ mol/l}). Migrationsdauer 48 Std.

Abb. 43: Darstellung der Migrationsgeschwindigkeit der Plaquezellen in % unter dem Einfluß von Dpyridomol (10^{-3} \text{ mol/l} \text{ bis } 10^{-8} \text{ mol/l}).
Abb. 44: Migration und Proliferation der Plaquezellen unter dem Einfluß von Dipyridamol (10^{-3} mol/l bis 10^{-8} mol/l). Beide Parameter zeigen einen annähernd parallelen Verlauf.

Abb. 45: Der Effekt von Dipyridamol und Acetylsalicylsäure auf die Proliferation von glatten Muskelzellen aus der unveränderten Media.
3.1.3.1. Wirkung von ASS und DPD auf glatte Muskelzellen aus der unveränderten Gefäßwand (Abb. 45)

Im Konzentrationsbereich von 10^{-3} mol/l bis 10^{-5} mol/l zeigten sich starke Schwankungen der Zellzahl. Bis zur Konzentration von 10^{-5} mol/l war aber kein klarer Trend ersichtlich. Erst im toxischen Bereich von 10^{-4} mol/l und 10^{-3} mol/l wurde die Zellzahl erheblich reduziert.

3.1.3.2. Wirkung von ASS und DPD auf Plaquezellen aus peripheren Stenosen (Abb. 46)

In Abb. 46 ist dargestellt, wie SMC aus restenosierendem Plaquegewebe der A. fem. sup. (p-SAC) auf ASS + DPD reagierten (die Kontrolle ohne Substanz wurde als 100% festgesetzt). Im Konzentrationsbereich von 10^{-9} mol/l bis 10^{-5} mol/l lag die Zellzahl zwischen 5% und 15% unter den Werten für die Kontrollschale ohne Substanz. Ein klarer Trend zeichnete sich jedoch nicht ab. Bei einer Konzentration von 10^{-4} mol/l wurde die Gesamtzellzahl um 45% reduziert. Die Reduktion der Zellzahl wurde vor allem durch die SMC der SP-2 verursacht, welche um 87% im Vergleich zur SP-2 der Kontrollschalen vermindert wurde. Die Verminderung der SP-1 betrug nur 14%. Die weitere Erhöhung der Konzentration

![Relative Zellzahl [%]](image)

Abb. 46: Der Effekt von Dipyridamol und Acetylsalicylsäure auf die Proliferation von glatten Muskelzellen aus restenosierendem Plaquematerial.
auf 10^{-3} mol/l führte dann aber auch zu einem drastischen Einbruch bei der SP-1, die um weitere 43% reduziert wurde. Bei dieser hohen Konzentration zeigten sich bereits klare zytotoxische Effekte an den SMC.

3.2. Fibrinolytika

3.2.1. Streptokinase (SK)

3.2.1.1. Wirkung von SK auf glatte Muskelzellen aus der unveränderten Gefäßwand (Abb. 47)

Die Zellzahlen für kultivierte SMC aus der unveränderten Gefäßwand sind in Abb. 47 dargestellt. Die Substanz verhält sich im getesteten Konzentrationsbereich von 1 IE/ml bis 1000 IE/ml völlig neutral, das Wachstum der SMC aus der Media wird nicht verändert.

3.2.1.2. Wirkung von SK auf Plaquezellen aus peripheren und koronaren Stenosen (Abb. 48)

Die Resultate der Versuche mit SMC aus peripheren und koronaren Arterien wurden addiert, um eine kompaktere Darstellung zu erreichen. Aus Abb. 48 ist zu ersehen, daß die Zellzahl im getesteten Konzentrationsbereich zwar bis zu maximal 20% reduziert wurde, da sich aber keine klare Tendenz erkennen ließ, sind diese Befunde wohl nicht im Sinne einer relevanten Proliferationsinhibition zu werten.

3.2.2. Urokinase (UK)

Für die Untersuchungen mit Urokinase wurden ebenfalls SMC aus der unveränderten Gefäßwand des Menschen, sowie aus peripherem und koronarem Plaquematerial des Menschen in einer Aussaatdichte von 2000 bis 3000 Zellen/cm² verwendet.
Abb. 47: Der Effekt von Streptokinase (1 IE/ml bis 1000 IE/ml) auf SMC aus der unveränderten Gefäßwand nach 5-tägiger Kultivierung.

Abb. 48: Der Effekt von Streptokinase (1 IE/ml bis 1000 IE/ml) auf SMC aus restenosierendem Plaquerewebe nach 5-tägiger Kultivierung.
Urokinase wurde in Ampuwa-Wasser unter ständigem Rühren gelöst. SMC aus der unveränderten Gefäßwand und Zellen aus atherosklerotischem Plaquematerial wurden mit Urokinase in Konzentrationen von 1 IE/ml bis 1000 IE/ml kultiviert, nach 7 Tagen Kultivierung unter Substanzinwirkung erfolgte die Analyse der Zellzahl mit dem Zellcounter.

3.2.2.1. Wirkung von UK auf glatte Muskelzellen aus der unveränderten Gefäßwand (Abb. 49)

Bei den SMC aus der unveränderten Gefäßwand wurden im getesteten Konzentrationsbereich von 1 IU/ml bis 1000 IU/ml kaum Veränderungen im Vergleich zu den Kontrollschalen ohne Substanz registriert. Die höchste Zellzahl lag 4% über der Kontrollzellzahl, die niedrigste 3% darunter.

3.2.2.2. Wirkung von UK auf Plaquezellen aus peripheren und koronaren Stenosen (Abb. 50)

Die Zellzahl der SMC aus peripheren und koronaren Plaquematerial des Menschen nach 7-tägiger Kultivierung unter dem Einfluß von Urokinase ist in Abb. 50 dargestellt. Bei der Konzentration von 1 IU/ml liegt die Zellzahl 18% über der Kontrolle, die Konzentrationen von 10 IU/ml und 100 IU/ml führen zu keiner Veränderung der Zellzahl. Urokinase in einer Konzentration von 1000 IU/ml reduzierte die Zellzahl um 22%.

3.2.3. Rekombinierter Plasminogen human-Aktivator (t-PA)

3.2.3.1. Wirkung von t-PA auf glatte Muskelzellen aus der unveränderten Gefäßwand (Abb. 51)

Bei den SMC aus der unveränderten Gefäßwand des Menschen zeigte sich kein signifikantes Abweichen der Zellzahlen durch 7-tägige Kultivierung mit t-PA im Vergleich zur Kontrolle.
Abb. 49: Der Effekt von Urokinase (1 IE/ml bis 1000 IE/ml) auf SMC aus der unveränderten Gefäßwand.

Abb. 50: Der Effekt von Urokinase (1 IE/ml bis 1000 IE/ml) auf SMC aus re-stenosierendem Plaquegewebe.
Abb. 51: Der Effekt von rekombiniertem Plasminogen-Aktivator (1 IE/ml bis 1000 IE/ml) auf SMC aus der unveränderten Gefäßwand.

Abb. 52: Der Effekt von rekombiniertem Plasminogen-Aktivator (1 IE/ml bis 1000 IE/ml) auf SMC aus restenosierendem Plaquegewebe.
3.2.3.2. Wirkung von t-PA auf Plaquezellen aus peripheren und koronaren Stenosen (Abb. 52)

Die Plaquezellen aus peripheren und koronaren Stenosen des Menschen reagierte bei allen Konzentration von t-PA mit einer etwa 20%-igen Inhibition der Zellzahl. Wie in Abb. 52 dargestellt betrug sie bei den Konzentrationen von 1 IU/ml, 10 IU/ml, 100 IU/ml und 1000 IU/ml 18%, 19%, 11% und 21%.

3.3. Beta-Blocker
3.3.1. Propranolol (PRO)

3.3.1.1. Wirkung von PRO auf Plaquezellen aus peripheren Stenosen (Abb. 53)

3.3.1.2. Wirkung von PRO auf Plaquezellen aus koronaren Stenosen (Abb. 54)

Bei Kultivierung von SMC aus atherosklerotischem Plaquematerial der LCA bestätigten sich diese Ergebnisse. Die Schwankungen waren geringer, ein Trend in Richtung Stimulation oder Inhibition ließ sich nicht ablesen (Abb. 54). Bei einer Konzentration von 10⁻⁴ mol/l wurde die Zellzahl um 29% reduziert, zytotoxische Effekte wurden nicht beobachtet.
Abb. 53: Die Wirkung von Propranolol (10-4 mol/l bis 10-10 mol/l) auf die Proliferation von SMC aus primär-stenosierendem Plaquematerial aus peripheren Arterien.

Abb. 54: Die Wirkung von Propranolol (10-4 mol/l bis 10-10 mol/l) auf die Proliferation von SMC aus koronaren Arterien.
3.4 Calciumantagonisten

3.4.1. Diltiazem (DIL)

3.4.1.1. Wirkung von DIL auf primärstenosierende Plaquezellen aus peripheren und koronaren Stenosen (Abb. 55, Abb. 56)

Sowohl Primär-SMC aus peripherem Plaquematerial (Abb. 55), als auch SMC aus koronarem Plaquematerial (Abb. 56) zeigten eine klare, dosisabhängige Proliferationshemmung. Bei SMC aus Plaquematerial der A. femoralis war die erste Reduktion der Zellzahl bei einer Konzentration von 15 mg/l zu beobachten. Im therapeutischen Bereich wurde die Zellzahl um 35% gehemmt. Bei der sicherlich toxischen Dosis von 150 m/l betrug die Zellzahl nur noch 8% der Kontrolle. Die primärstenosierenden Zellen aus koronarem Plaquematerial wurden bei der Konzentration von 15 mg/l nur um 8% gehemmt. Im therapeutischen Bereich war die Hemmung ebenfalls geringer als bei den Plaquezellen der A. fem. sup: die Zellzahl wurde um 16% vermindert. Bei der höchsten getesteten Dosierung (150 mg/l) betrug die Zellzahl noch 33%. Sowohl bei peripheren, wie bei koronaren SMC wurde die SP-1 bei geringeren Konzentrationen am Wachstum gehemmt als die SP-2.

3.4.1.2. Wirkung von DIL auf restenosierende Plaquezellen aus peripheren Stenosen (Abb. 57)

Ebenso wie SMC aus primärstenosierendem Plaquematerial zeigten SMC aus restenosierendem Plaquematerial eine dosisabhängige Inhibition der Zellproliferation (Abb. 57). Im Konzentrationsbereich von 0.005 mg/l bis 5,0 mg/l erge-
Abb. 55: Der Effekt von Diltiazem (5 mg/l bis 150 mg/l) auf die Proliferation von SMC aus primär-stenosierendem Plaquematerial von peripheren Arterien.

Abb. 56: Der Effekt von Diltiazem (5 mg/l bis 150 mg/l) auf die Proliferation von SMC aus primär-stenosierendem Plaquematerial von koronaren Arterien.
ben sich lediglich Schwankungen um den Mittelwert, die, wie bereits erwähnt, bei Arbeiten mit biologischem Material einzukalkulieren sind. Bei der Konzentration von 50 mg/l wurde die Zellzahl um 24% gehemmt. Die Konzentration von 150 mg/l reduzierte die Zellzahl auf 22%. Wie bei Primär-SMC reagierte die SP-1 früher als die SP-2 mit einer Proliferationshemmung.

Abb. 57: Der Effekt von Diltiazem (0.0005 mg/l bis 150 mg/l) auf die Proliferation von SMC aus restenosierendem Plaquematerial von peripheren Arterien.
E. Diskussion

1. Kultivierung von Plaquezellen des Menschen
Aus zahlreichen Publikationen geht hervor, daß die glatten Muskelzellen eine
zebrale Rolle in der Atherogenese spielen [83,95,96,160,161,175,230]. Auf eine
Vielzahl von Reizen reagiert die Gefäßwand mit einem relativ einförmigen Ver-
haltensmuster: kontraktile glatte Muskelzellen werden aktiviert, migrieren aus
der Media in den subendothelialen Raum und entwickeln eine starke mitotische
Aktivität; falls sie bereits als neointimale Zellen (Langhans-Zellen) im subendo-
thelialen Raum liegen, können sie auch direkt mit der Proliferation beginnen.

Anhand von zahlreichen Tiermodellen wurde versucht, mit chemischen, physika-
liischen, elektrischen und immunologischen Reizungen die Vorgänge bei der
Atheromentstehung nachzu vollziehen [14,18,59,209,210,232]. Die Zellkultur er-
laubt die getrennte Untersuchung von Einzelschritten der Atherogenese. Darü-
berhinaus bietet sie die Möglichkeit, direkt mit humanem Plaquematerial arbei-
ten zu können und die Zellen zu untersuchen, welche für die Atheromentstehung
verantwortlich sind.

Der Hauptbestandteil der zellulären Komponente des aufgearbeiteten Plaque-
materials konnte eindeutig den glatten Muskelzellen zugerechnet werden; in
über 80% fand sich eine positive Reaktion mit Antikörpern gegen glattmuskulä-
res α-Aktin. Die weiteren Untersuchungen mittels indirekter Immunfluoreszenz
zeigten durchwegs positive Reaktionen mit Antikörpern gegen Vimentin und fast
ausnahmslos negative Reaktionen mit Antikörpern gegen Desmin. Diese Ergeb-
nisse decken sich mit früheren Berichten [74]. Eine Erklärung für dieses Verhal-
ten könnte sein, daß bei den Vimentin-positiven Zellen eine erheblich höhere
Migrationstendenz besteht als bei den Desmin positiven Zellen.

Da die dem Blutstrom zugewandte Seite der Gefäßwand in der Regel mit Endo-
thel ausgekleidet ist, wurden die Kulturen auf das Vorliegen von Endothelzellen
untersucht. Durch indirekte Immunfluoreszenz mit Antikörpern gegen das Fak-
tor – VIII – assoziierte Antigen können Endothelzellen nachgewiesen werden [106,

wurde vermutet, daß die I-Zellen möglicherweise eine zentrale Rolle bei der Atherogenese spielten.

Da die Vermutung nahe lag, daß es sich bei den großen Zellen der SP-2 um die seneszenten Form der SP-1 handeln könnte, wurden die Wachstumsraten der SP-1 und SP-2 getrennt analysiert. Obwohl sich in einzelnen Ansätzen durchaus unterschiedliche Wachstumsraten feststellen ließen, erbrachte die Berechnung aller verfügbaren Kurven keinen signifikanten Unterschied im Proliferationsverhalten. Ob die unterschiedlichen Größendurchmesser der Zellen in Zusammenhang mit ihrem Differenzierungsstadium [34] stehen, läßt sich zur Zeit nicht klären.

Der erste Schritt bei der experimentellen Atherogenese ist die Migration von glatten Muskelzellen aus der Media in den subendothelialen Raum. In vitro-Experimente, die diesen Schritt imitieren, sind somit sicherlich interessant. Untersuchungen über das Migrationsverhalten von glatten Muskelzellen aus tierischen Arterien wurden bereits publiziert [89,90]. In den Experimenten mit glatten Muskelzellen aus restenosierendem Plaquematerial des Menschen betrug die Migrationsgeschwindigkeit 17.9 ± 2.5 μm/Std. Der Einfluß von Acetylsalizylsäure und Dipyridamol auf das Migrationsverhalten wird im Abschnitt E 3 diskutiert.

Die zweite Häufung der Restenosierungereignisse tritt etwa 3 Monate nach Angioplastie auf. In diesem Zeitraum kommt es in ungefähr 30% der Fälle zum Auftreten von Restenosen im behandelten Segment.

Um weitere Informationen über das in vitro Verhalten der Plaquezellen zu erhalten, wurde im nächsten Kapitel der Einfluß verschiedener externer Stimuli auf die Kulturen untersucht, bevor im letzten Abschnitt auf den Einfluß von Medikamenten eingegangen wird.

2. Einflüsse auf das Wachstumsverhalten

Ein wesentlicher Einfluß auf das Proliferationsverhalten der Zellen wird durch die Konzentration des verwendeten Serums ausgeübt. So reagierten SMC aus primärstenosierenden Läsionen auf steigende Serumkonzentrationen mit einer klaren, dosisabhängigen Proliferationssteigerung [49,214,220]. Diese Befunde stehen im klaren Widerspruch zu Untersuchungen von Ross et al.[163,164], die berichteten, daß SMC aus primärstenosierenden Läsionen der A. fem. sup. keine Reaktion auf steigende Serumkonzentration von 1 % bis 10% zeigen und deshalb als seneszent anzusehen seien.
Die Populationsverdopplungsraten für glatte Muskelzellen aus restenosierenden Läsionen lagen bei den Serumkonzentrationen von 5% bis 20% mehr als doppelt so hoch wie die Vergleichsraten für SMC aus primärstenosierenden Läsionen, bei der Kultivierung mit 5% Serum betrug der Unterschied sogar mehr als das dreifache. Dieses zeigt klar die hohe Aktivierbarkeit der SMC aus restenosierenden Läsionen, die bereits auf geringe Wachstumsreize mit einer extrem hohen Populationsverdopplungsraten reagieren.

Re-SMC reagierten auf die Erhöhung der Serumkonzentration von 1% auf 5% mit einer Wachstumssteigerung um fast 350%, bei der weiteren Steigerung der Serumkonzentrationen um jeweils 5% fielen die Proliferationssteigerungen dann mit 25%, 15% und 2% deutlich geringer aus. Dies scheint darauf hinzudeuten, daß bereits von geringen Wachstumsfaktoren Re-SMC maximal zur Proliferation angeregt werden. Ob bei höheren Konzentrationen keine weitere Wachstumssteigerung erfolgt, weil alle Rezeptoren der Zelle gesättigt sind oder weil die Verdopplungszyklen einfach nicht weiter verkürzt werden können läßt sich nicht entscheiden.

Da die Steigerung der Serumkonzentration von 15% auf 20% lediglich eine Zunahme der Populationsverdopplungsraten um 2% bewirkte, kann davon ausgegangen werden, daß die routinemäßig verwendete Serumkonzentration von 15% durchwegs optimale Versuchsbedingungen gewährleistet.

In der Literatur wurde von einer mitotischen Aktivität berichtet, die von Zellen aus atheromatösen Läsionen ins Kulturmedium sezerniert wird [125,133,222]. Diese Befunde konnten durch unsere Untersuchungen eindeutig bestätigt werden. Das Wachstum der langsam proliferierenden SMC aus primärstenosierenden Läsionen wurde durch die Verwendung von konditioniertem Medium von SMC aus restenosierenden Läsionen um 60% gesteigert werden [49,214,220].

In der Frühphase der Atherogenese erfolgt die Migration der glatten Muskelzellen stets von der Media in Richtung Gefäßlumen, eine Migration in Richtung Adventitia wurde bisher nicht beschrieben. Eine Erklärung dieses Effektes ist durch chemotaktische Wirkungen der atherogenen Reize möglich. Im Elektrostimulationssmodell von Betz wird die Reizung des Gefäßes jedoch durch eine Elektrode
verursacht, die an der Gefäßaußenseite angebracht ist; die Migration der Zellen erfolgt jedoch wiederum in Richtung Gefäßlumen. Bei unseren Versuchen wurde das Wachstum von Plaquezellen durch von Fibroblasten konditioniertes Medium um nahezu die Hälfte reduziert. Dieses Ergebnis könnte durch die Sekretion einer inhibitorischen Aktivität in das Kulturmedium erklärt werden, die wiederum für das Migrationsverhalten der SMC in vivo von Bedeutung sein könnte [49].
Um den Einfluß von Wachstumsfaktoren weiter präzisieren zu können, wurden Primär-SMC und Re-SMC unter dem Einfluß von ECGF und PDGF kultiviert [49]. Während Primär-SMC sich nicht stimulieren ließen, reagierten Re-SMC mit einer deutlichen Wachstumssteigerung. Dieser Befund ist als weiterer Hinweis für die hochgradige Aktivierbarkeit der Re-SMC zu werten. Interessanterweise fiel bei Re-SMC in höheren Passagen die Stimulierbarkeit geringer aus, was auf eine beginnende Seneszenz dieser Zellen schließen läßt.
Die Stimulation der Primär-SMC gelang somit zusammenfassend durch ein Mitogengemisch, welches durch die Re-SMC in das Kulturmedium sezerniert wurde, nicht jedoch durch die alleinige Zugabe von PDGF und ECGF. Dieses deutet darauf hin, daß die Zusammensetzung des von den Re-SMC sezernierten Mitogengemisches von PDGF und ECGF verschieden sein muß.
Die weitere Aufschlüsselung dieses Mitogengemisches und die Entwicklung von Antikörpern gegen die Hauptbestandteile könnten wichtige Ansatzpunkte für weitere Untersuchungen liefern. Die Koppelung solcher Antikörper mit aggressiven Komponenten könnte eventuell selektiv dieses Mitogengemisch inaktivieren und damit einen Teil der SMC-Proliferation hemmen.

3. Medikamenten-Testungen
Interventionelle Techniken werden in immer größerem Umfang zur symptomati-
schen Behandlung von Folgeerscheinungen der Atherosklerose eingesetzt. Trotz
der Verschiedenheit der technischen Ansätze \cite{39,60,78,99,103,104,110,111,113,114,167,178,179,180,181,184,185}, liegen die Restenosierungsrate im behan-
delten Segment bei etwa 30\% \cite{61,65,87,123,130,158,196}. Die Art des athero-
gen gen Reizes, der durch die Intervention verursacht wird, spielt für die Gefäß-
wand offenbar keine Rolle, die Restenosierungsrate zeigen keine Abhängigkeit
von der angewendeten Technik.

Wie bereits ausgeführt wurde, wiesen die glatten Muskelzellen aus restenosie-
rendem Plaquematerial ein extrem gesteigertes Wachstum im Vergleich zu glat-
ten Muskelzellen aus primärstenosierendem Plaquematerial auf. Dieser Befund
scheint das in vitro-Aquivalent zu dem oftmals innerhalb von Wochen bis Mona-
ten nach Angioplastie auftretenden Restenosensein. Von Austin et al. \cite{1}
wurde bereits 1985 die Proliferation von glatten Muskelzellen als eine Erklärungsmög-
lichkeit für das Auftreten von Restenosense nach koronarer Angioplastie angese-
hen. Wenn diese Erklärung richtig ist, bestünde ein klinisches Interesse an einer
technischen oder medikamentösen Hemmung der Zellproliferation \cite{12,13,15,16,17,112,211,220}.

Zu bedenken ist bei allen Untersuchungen, daß es sich um ein in vitro-System
handelt. Die Zellen stammen zwar direkt aus stenosierendem Gewebe, inwieweit
ihre Reaktionen und ihr Wachstum in Kultur mit ihrem Verhalten in vivo vergleich-
bar ist, kann nicht abschließend beurteilt werden.

Alle Substanzen wurden einem standardisierten Proliferations-Test unterwor-
fen. Diese Methode ist sicherlich im Routine-Test-Verfahren am besten anzu-
wenden, da sie relativ einfach durchzuführen ist und bei Verwendung eines Zell-
zählerätes objektiv ausgewertet werden kann. Da vor der Zellproliferation aber
die Zellmigration erfolgen muß, ist auch die Einbeziehung der Migration in den
Testansatz wünschenswert. Vom methodischen Ansatz beinhaltet diese Technik
jedoch mehrere Unsicherheitsfaktoren, insbesondere sind hierbei die Schnitt-
führung bei der Zellverletzung und die Auswertung des Versuchs anzusprechen.
Die Migration sollte daher nur ergänzend zu einem Proliferationstest betrachtet
werden, die gemeinsame Darstellung von Migration und Proliferation in einer
Dosis-Wirkungskurve erlaubt eine schnelle Orientierung.
3.1. Thrombozytenaggregationshemmer

der Dosis-Wirkungskurve deutlich. Da der Effekt der Acetylsalicylsäure bei den primär-stenosierenden SMC jedoch nur sehr gering und nicht dosisabhängig war, dürfte die Dosis-Wirkungskurve der Re-SMC relevant sein.

Der Effekt von Dipyridamol wurde an glatten Muskelzellen aus der unveränderten Gefäßwand und aus primärstenosierendem Plaquematerial untersucht. Bei einer Konzentration von 10^{-3} mol/l bis 10^{-6} mol/l konnten weder SMC aus der unveränderten Gefäßwand noch SMC aus der atherosklerotischen Gefäßwand in ihrem Wachstum signifikant beeinflußt werden. Die Erhöhung der Konzentration auf 10^{-5} mol/l, welche in etwa einer in vivo Dosierung von 220 mg/Tag entsprechen dürfte, führte bei SMC aus der unveränderten Gefäßwand zu einer Inhibition der Zellproliferation um 30%. Bei den SMC aus der atherosklerotisch veränderten Gefäßwand wurde die Zellzahl nur um 9% gehemmt, was wiederum innerhalb der biologischen Schwankungsbreite liegen dürfte. Bezüglich der Zellproliferation ergeben sich in vitro somit keine inhibitorischen Aktivitäten von Dipyridamol.

Ergänzend zu den Befunden bezüglich der Zellproliferation läßt sich die Zahl der migrierten Zellen und die Migrationsgeschwindigkeit bestimmen. Vor allem die Auszählung der migrierten Zellen kann nicht mit der gleichen Objektivität erfolgen, wie die Auszählung der Zellen mit dem Zellcounter für den Proliferations-test. Die Zahl der migrierten Zellen wurde im therapeutischen Bereich von ungefähr 10^{-5} mol/l um 16% reduziert (Abb. 42), die Migrationsgeschwindigkeit wurde in diesem Bereich nur um 7% reduziert (Abb. 43). Eine Bewertung der Zellmigration erscheint aus den bereits genannten Gründen nur in gemeinsamer Betrachtung mit dem Effekt auf die Zellproliferation sinnvoll. Wie aus Abbildung 44 zu ersehen ist, ergeben sich somit weder für die Migration noch für die Proliferation eine Inhibition im therapeutischen Bereich.
Da im klinischen Einsatz häufig die Kombination von Acetylsalicylsäure und Dipyridamol verwendet wird, wurde auch ein Testansatz mit beiden Medikamenten durchgeführt. Ein synergistischer Effekt, wie er im tierischen Modell für die antithrombotische Wirkung beschrieben wurde [92], konnte in vitro weder für die Zellproliferation der SMC aus der unveränderten Gefäßwand, noch für SMC aus atherosklerotischen Läsionen gezeigt werden.

Die in vitro Ergebnisse geben somit keinen Anhaltspunkt für einen hemmenden Effekt von Acetylsalicylsäure und Dipyridamol als Einzelsubstanz oder als Kombinationsprodukt auf die Zellmigration und Zellproliferation von Plaquezellen.

3.2. Fibrinolytika
Seitdem nachgewiesen werden konnte, daß durch Thromben verschlossene Koronargefäße durch Streptokinase widereröffnet werden können [154], werden Fibrinolytika häufig im klinischen Alltag bei akutem Myokardinfarkt zur Thrombolyse eingesetzt [198,201,202,203,204].

Da die Proliferation von glatten Muskelzellen einen wichtigen Schritt in der Atherogenese darstellt und das atherosklerotische Plaquematerial während der Lysebehandlung mit den fibrinolytischen Substanzen in Berührung kommt, wurde der Einfluß auf das Proliferationsverhalten der Plaquezellen in vitro untersucht.

Durch die thrombolytische Therapie gelingt es jedoch nicht immer, einen ausreichenden Blutfluß zu gewährleisten [75]. In diesen Fällen bleibt im Gebiet des Verschlusses eine Reststenose zurück [57], die auf die zugrunde liegende atherosklerotische Gefäßverengung zurückzuführen ist. Diese Reststenosen können erfolgreich durch Angioplastie mechanisch dilatiert werden [54,82,93,132]. Da bereits während dieser interventionellen Therapie thrombotische Gefäßverengungen und Verschlüsse auftreten, wird die Lysetherapie bisweilen auch während des Eingriffs fortgeführt [91,197,203].

Die Fibrinolytika kommen somit in der Akutphase des Myokardinfarktes mit atherosklerotisch veränderten Gefäßen und eventuell frisch dilatierten Arealen in Kontakt. Da in dieser instabilen Situation eine Stimulation der Zellproliferation...
tion nicht ungefährlich wäre, wurde der Einfluß der Fibrinolytika auf die Proliferation von glatten Muskelzellen aus der unreformierten Gefäßwand und aus Plaquematerial von koronaren Arterien [218,219] untersucht.

Die längsten klinischen Erfahrungen liegen mit Streptokinase vor. Seit dem erstmaligen Einsatz 1959 erfolgt der klinische Einsatz bei akutem Myokardinfarkt. Es konnte klar gezeigt werden, daß durch die intravenöse Applikation von Streptokinase der das Gefäß verschließende Thrombus gelöst und die Mortalität gesenkt werden konnte [127]. Als Dosierung werden zumeist 1500 000 IE innerhalb von einer Stunde verabreicht [172]; diese Dosierung wurde auch in verschiedenen anderen Studien angewendet [127]. Es konnte allerdings gezeigt werde, daß mit 750 000 IE ähnliche Resultate erreicht werden konnten wie mit 1500 000 IE, während die Dosierung von 3 000 000 IE die besten Ergebnisse vorweisen konnte [182].

Mit den getesteten Konzentrationen von 1 IE/ml bis 1000 IE/ml wurde der therapeutische Bereich sicherlich mit abgedeckt, der in etwa zwischen 125 IE/ml und 500 IE/ml liegen dürfte. Bei den SMC aus der unreformierten Gefäßwand zeigte sich selbst bei der Konzentration von 1000 IE/ml keine Beeinflussung der Zellproliferation. SMC aus atherosklerotischem Plaquematerial koronarer Arterien wurden zwar bei der therapeutisch erreichbaren Konzentration von 100 IE/ml um 11% gehemmt. Da eine Proliferationshemmung im gleichen Ausmaß bereits auch bei 11E/ml festzustellen war, ist dieses Ergebnis wohl als nicht signifikant zu werten.

Urokinase besitzt eine geringere Antigenität als Streptokinase, wodurch weniger allergische Reaktionen ausgelöst werden. Der Einsatz von Urokinase erfolgt als Monotherapie oder in Kombination mit rekombiniertem Plasminogen Aktivator [138,204]. Die höchsten therapeutisch verabreichten Dosierungen liegen bei 3 000 000 IE [223].

Bei SMC aus der nicht atherosklerotischen Media veränderte sich das Wachstum im Vergleich zu den Kontrollen nicht wesentlich, die Schwankungen lagen nicht über ± 5 % vom Mittelwert. Ähnlich wie bei Streptokinase dürfte die therapeutische Dosierung ungefähr bei 500 IE/ml liegen. Bei SMC aus atherosklero-
tischem Plaquematerial wurde erst bei Konzentrationen deutlich über dem therapeutischen Bereich eine Inhibition der Zellproliferation erreicht.

Der rekombinierte Plasminogen human-Aktivator unterscheidet sich neben dem Wirkmechanismus durch das neuartige Herstellungsverfahren von den anderen Fibrinolytika. Durch seinen Einsatz gelang es in vielen Fällen, eine Rekanalisierung von verschlossenen Koronararterien zu erreichen, die Infarktgröße zu limitieren und die Überlebensrate zu erhöhen [17,177,198,228]. Durch die zusätzliche Durchführung einer PTCA im Anschluß an die Lysebehandlung konnten auch hier die Ergebnisse weiter verbessert werden [25,29,88,156].

Das Wachstum der SMC aus der normalen Media wurde selbst bei den höchsten Konzentrationen nicht beeinflußt. Bei den SMC aus der unveränderten Gefäßwand wurde das Wachstum zwar um durchschnittlich 20% gehemmt, da diese Hemmung jedoch nicht dosisabhängig ist und bereits bei der geringsten getesteten Konzentration vorliegt, handelt es sich in diesem Fall eher um einen Meßfehler in den Kontrollschen.

3.3. β-Rezeptorenblocker

Bei Untersuchungen am Kaninchen wurde ein antiatherogener Effekt von Propranolol diskutiert [37,226]. Zellkulturuntersuchungen an glatten Muskelzellen der Ratte führten zu keinem Effekt auf das Wachstum [22]. Andererseits berichtet Orekhov [147] von einer Stimulation des Wachstums glatter Muskelzel-

3.4. Calciumantagonisten
Der Einsatz von Diltiazem während und nach koronarer Angioplastie erfolgt in erster Linie wegen seines günstigen Effektes auf die stabile Angina pectoris [152] und bei vasospastischer Angina [98].

Im Tiermodell wurde für einige Calciumantagonisten ein hemmender Effekt auf die Entstehung der Atherosklerose nachgewiesen [140,199,208]. Speziell für Diltiazem liegen unterschiedliche Daten vor. Einerseits wurde berichtet, daß bei Cholesterolfütterten Kaninchen die Atherosklerose durch Diltiazem gehemmt werden konnte [194], andererseits wurde bei Yorkshire-Schweinen nach endothelialer Denudation mit einem Ballonkatheter die Atheroskleroseentstehung bei Cholesterolfütterung nicht gehemmt [168].

Zellkulturuntersuchungen mit Gefäßwandzellen von Tieren zeigten eine dosisabhängige Hemmung des Wachstums [14,16], die bei der Konzentration von 30 mg/l 37% betrug. Bei Untersuchungen an glatten Muskelzellen aus der unverändernten Media des Menschen wurden im therapeutischen Bereich durch Flunarizin Wachstumshemmungen um 20% erzielt [165].

4. Eine mögliche Rolle der Zellkultur in der Atheroskleroseforschung
Wie bereits ausführlich dargestellt lassen sich durch die Zellkulturtechnik Ausschlüsse über das Migrations- und Proliferationsverhalten von Plaquezellen gewinnen. Das klinische Interesse an Zellkulturexperimenten liegt jedoch in Basisuntersuchungen bezüglich einer möglichen Hemmung dieser Prozesse. Hier bietet sich die Zellkultur als standardisierbares und überschaubares Testsyste an [51,166].

Eine technisch höchst anspruchsvolle, aber sicher für Routineuntersuchungen zumindest momentan noch nicht anwendbare Methode stellen Versuche mit En-
dothelzellen und glatten Muskelzellen im Transfilter-Ko-Kultur-Modell dar [63,64]. Es gibt bereits eine Arbeitsgruppe, die versucht diese schwierigen Untersuchungen auch mit humanen Plaquezellen und Endothelzellen durchzuführen.

F. Zusammenfassung

1. Kultivierung von Plaquezellen des Menschen

2. Einflüsse auf das Wachstumsverhalten
Im Gegensatz zu glatten Muskelzellen aus der normalen Media zeigten glatte Muskelzellen aus atherosklerotischem Plaquematerial auf kollagenbeschichteten Kulturplatten (lathyrisches Rattenkollagen Typ I) ein reduziertes Wachstum. Eine Erklärung hierfür könnte sein, daß von Zellen aus intimalen Verdi-

3. Medikamenten-Testungen
Restenose-Raten nach Angioplastie bislang nicht erfolgreich. Die Ursache hierfür könnte darin zu suchen sein, daß die angewendete Dosierung noch zu gering war, um die Restenose-Raten signifikant zu verändern.

4. Eine mögliche Rolle der Zellkultur in der Atheroskleroseforschung
G. Literaturverzeichnis

76. Geer J.C. Fine structure of human aortic intimal thickening and fatty streaks. Lab Invest 14: 1764-1783 (1965)

205. Vandekerckhove J. and Weber K. At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol 126: 783–802 (1978)

222. Walker L.N., Bowen-Pope D.F. and Reidy M.A. Secretion of a platelet-deri-
ved growth factor-like activity by arterial smooth muscle cells is induced

223. Wall T.C., Philips H.R., Stack R.S., Mantell S., Aronson L., Boswick J., Sig-
mon K., DiMeo M., chaplin Don Whitcomb D., Pasi D., Zawodniak M., Hajis-
heik M., Hedge S., Barker W., Tenney R., and Califf R. Results of high dose
intravenous urokinase for acute myokardial infarction. Am J Cardiol 65:
124–131 (1990)

224. Wechezak A.R. and Mansfield P.B. Isolation and growth characteristics of
cell lines from bovine venous endothelium. In Vitro 9: 39–45 (1973)

225. Wehland J., Osborn M. and Weber K. Phalloidin-induced polymerization in
the cytoplasm of cultured cells interferes with locomotion and growth.
Proc Natl Acad Sci USA 74: 5613–5617 (1977)

226. Whittington-Coleman P.J., Carrier O. and Douglas B.H. The effects of pro-
pranolol on cholesterol-induced atheromatous lesions. Atherosclerosis 18:
337–345 (1973)

228. Wilcox R.G., Olsson C.G., Skene A.M., Vonder Lippe G., Jensen G and
Hampton G. Trial of tissue plasminogen activator for mortality reduction
in acute myocardial infarction. Anglo-Scandinavian Study of Early Throm-

D.P. Platelet accumulation in experimental angioplasty: time course and

230. Wissler R.W. The arterial medial cell, the smooth muscle cell or multifunc-

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Ausdruck</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASS</td>
<td>Acetylsalicylsäure</td>
</tr>
<tr>
<td>DAPI</td>
<td>4′,6-Diamidino-2-phenylindol-dihydrochlorid</td>
</tr>
<tr>
<td>DIL</td>
<td>Diltiazem</td>
</tr>
<tr>
<td>DPD</td>
<td>Dipyridamol</td>
</tr>
<tr>
<td>EC</td>
<td>Endothelial Cell (Endothelzelle)</td>
</tr>
<tr>
<td>ECGF</td>
<td>Endothelial Cell Growth Factor (Endothelzellwachstumsfaktor)</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetales Kälberserum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluoresceinisothiocyanat</td>
</tr>
<tr>
<td>HAM F-12</td>
<td>Nährösung nach Ham</td>
</tr>
<tr>
<td>HEPES</td>
<td>N-[(2-Hydroxyethyl)piperazin-N′-ethansulfonsäure</td>
</tr>
<tr>
<td>Media-SMC</td>
<td>SMC, die aus der Media isoliert wurden</td>
</tr>
<tr>
<td>OP-SMC</td>
<td>SMC, die durch Thrombendarterektomie während eines operativen Eingriffs entnommen wurden</td>
</tr>
<tr>
<td>PBS−</td>
<td>Phosphat-gepufferte Saline ohne Calcium und Magnesium</td>
</tr>
<tr>
<td>PD/die</td>
<td>Population Doubling (Populationsverdopplung) pro Tag</td>
</tr>
<tr>
<td>PDGF</td>
<td>Platelet-Derived Growth Factor (Plättchen-Wachstumsfaktor)</td>
</tr>
<tr>
<td>PEN/STREP</td>
<td>Penicillin/Streptomycin</td>
</tr>
<tr>
<td>Plaque-SMC</td>
<td>SMC, die aus atherosklerotischen Läsionen isoliert wurden</td>
</tr>
<tr>
<td>P−SAC</td>
<td>Perkutaner Simpson Atherektomie-Katheter. Instrument zur Exzaktion von Plaquegewebe</td>
</tr>
<tr>
<td>P−SAC−SMC</td>
<td>SMC, die aus Plaquematerial isoliert wurden, welches mit dem p−SAC extrahiert wurde</td>
</tr>
<tr>
<td>Primär-SMC</td>
<td>SMC, die aus primärstenosierendem Plaquegewebe isoliert wurden</td>
</tr>
<tr>
<td>PRO</td>
<td>Propranolol</td>
</tr>
<tr>
<td>Re-SMC</td>
<td>SMC, die aus restenosierendem Plaquegewebe isoliert wurden</td>
</tr>
<tr>
<td>SK</td>
<td>Streptokinase</td>
</tr>
<tr>
<td>SMC</td>
<td>Smooth Muscle Cell (glatte Muskelzelle)</td>
</tr>
<tr>
<td>T-PA</td>
<td>Rekombinierter Plasminogen human-Aktivator</td>
</tr>
<tr>
<td>TRITC</td>
<td>Tetrarahdaminylisothiocyanat</td>
</tr>
<tr>
<td>UK</td>
<td>Urokinase</td>
</tr>
<tr>
<td>WM</td>
<td>Waymouth’s MB 752/1-Medium</td>
</tr>
</tbody>
</table>
DANKSAGUNG

Die Experimente der vorliegenden Dissertation wurden am Physiologischen Institut der Universität Tübingen unter Leitung von Herrn Prof. Dr. E. Betz durchgeführt.

Herrn Prof. Dr. E. Betz danke ich für die Überlassung des interessanten Themas und die uneingeschränkte Unterstützung bei der Durchführung der Arbeit.

Herrn Prof. Dr. K. R. Karsch für die Übernahme des Referates der Dissertation.

Herrn Dr. P.C. Dartsch für die hervorragende fachliche Betreuung der Dissertation und die gekonnte Anfertigung der Photographien.

Herrn Dr. D. Roth für die kollegiale Zusammenarbeit und Unterstützung bei auftretenden Problemen.

Herrn Prof. Dr. B. Höfling und Herrn Dr. G. Bauriedel, Medizinische Klinik der Universität München für die Anregung zur Durchführung der Dissertation und die Zwendung von Plaquematerial aus peripheren Gefäßen von Patienten. Herrn Prof. Dr. Unger und Herrn Dr. J. Hutter, Abteilung für Herzchirurgie der Landeskrankenanstalten Salzburg und Herrn Prof. Dr. Hannekum und Herrn Dr. T. Strohschneider, Abteilung für Herzchirurgie der Universitätsklinik Ulm, für die Bereitstellung von koronarem Plaquematerial. Herrn Prof. Dr. Hoffmeister und Herrn Doz. Dr. Fenchel, Abteilung für Herz, Thorax und Gefäßchirurgie der Universitätsklinik Tübingen für das Zurverfügungstellen von Beinvenen. Herrn Prof. Dr. G. Rassner und Herrn Dr. M. Jünger für die Überlassung von dermatologischen Operationspräparaten.

Frau L. Wörner für die unermüdliche Hilfe beim Erlernen der Arbeitstechniken und das angenehme Klima bei der täglichen Laborarbeit. Herrn Dr. M. Höher für die trotz Zeitmangels übernommene Gestaltung eines Großteils der Graphiken.

Den Mitarbeitern am Physiologischen Institut für die freundliche Aufnahme und das gute Betriebsklima.

Meinen Eltern für die ideelle und materielle Unterstützung.
Von der Ethikkommission der Medizinischen Fakultät der Universität Tübingen (Vorsitz: Prof. Dr. Dr. D. Rössler) wurden die vorgestellten wissenschaftlichen Untersuchungen mit Zellen von Plaquematerial des Menschen genehmigt.

Die experimentellen Untersuchungen wurden vom Ministerium für Wissenschaft und Kunst des Landes Baden-Württemberg (Forschungsprojekt Nr. 26) und von der Braun-Melsungen AG, Melsungen, finanziell unterstützt.
Name: Rainer Voisard

Schulausbildung: 66 - 70 Volksschulbesuch in Hamburg und Gauting bei München
70 - 77 Otto-von-Taube-Gymnasium in Gauting bei München
77 - 79 Ludwigsgymnasium in München
27.6.1979 Abitur am Ludwigsgymnasium in München

Wehrdienst: 79 - 80 Grundwehrdienst bei österreichischem Bundesheer in Salzburg

Studium: 80 - 87 Studium der Humanmedizin an der Leopold-Franzens-Universität in Innsbruck
24.6.1987 Studienabschluß im Fach Humanmedizin (drittes Rigorosum der Studienrichtung Medizin gemäß § 11 des Bundesgesetzes über die Studienrichtung Medizin) an der Universität Innsbruck.
4.7.1987 Promotion zum Dr. med. univ. an der Leopold-Franzens-Universität in Innsbruck
23.7.1987 Erwerb der deutschen Staatsbürgerschaft

1.7.1989 Erteilung der Approbation als Arzt durch das Bayerische Staatsministerium des Innern
88 - 89 Vorbereitung einer Dissertation am Physiologischem Institut I der Eberhard-Karls-Universität Tübingen bei Herrn Prof. Dr. med. E. Betz mit dem Titel: "Kultivierung von Zellen aus Atheromen des Menschen und die Beeinflussung ihres Wachstums."
seit 3.1.90 Wissenschaftlicher Assistent an der Universitäts-Klinik Ulm, Innere Abteilung IV, Direktor Herr Prof. Dr. med. V. Hombach.