Wirksamkeit einer oralen Artesunat-5-Tage-Therapie der
Malaria tropica in Lambaréné, Gabun

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Medizin
der Medizinischen Fakultät
der Eberhard-Karls-Universität
zu Tübingen

vorgelegt von
Handan Brinkmann, geb. Altun
aus
Göppingen
2008
Dekan: Professor Dr.I.B. Autenrieth
1. Berichterstatter: Professor Dr.P.G. Kremsner
2. Berichterstatter: Professor Dr.H. Oßwald
Meinem Mann Martin Brinkmann gewidmet
Inhaltsverzeichnis

1 Einleitung 8
 1.1 Zur Geschichte der Malaria 8
 1.2 Problemstellung 10
 1.3 Parasitologie 11
 1.3.1 Definition der Malaria und Klassifizierung der Erreger 11
 1.3.2 Entwicklungszyklus des Parasiten 11
 1.3.2.1 Der ungeschlechtliche Zyklus 11
 1.3.2.2 Der geschlechtliche Zyklus 13
 1.3.3 Epidemiologie 13
 1.3.4 Klinik der Malaria 14
 1.3.4.1 Pathogenese von P. falciparum 15
 1.3.4.2 Komplikationen der P. falciparum-Infektion 16
 1.3.4.2.1 Laktatazidose 16
 1.3.4.2.2 Hypoglykämie 16
 1.3.4.2.3 Anämie 16
 1.3.4.2.4 Akutes Nierenversagen 16
 1.3.4.2.5 Zerebrale Malaria 16
 1.3.4.2.6 WHO-Klassifikation des Schweregrades der Malaria 17
 1.4 Diagnostik 17
 1.5 Therapie der Malaria 18
 1.5.1 Angriffspunkte im Zyklus des Parasiten 18
 1.5.2 Standardmedikamente zur Therapie der Malaria 19
 1.5.2.1 Antibiotika bei der Therapie der Malaria 20
 1.5.3 Moderne Therapieansätze 22
 1.5.3.1 Neuer Kombinationsansatz mit Antibiotika 22
 1.5.3.2 Neue Kombinationsansätze mit Artemisininderivaten 22
 1.5.3.3 Die Therapie mit Artemisininderivaten 23
1.5.3.3.1 Eigenschaften und Wirkmechanismen der Artemisininen 23
1.5.3.3.2 Vorteile der Therapie mit Artemisininderivaten .. 24
1.5.3.3.3 Nachteile der Therapie mit Artemisininderivaten ... 25
1.5.3.3.4 Beispiele zu Kombinationstherapien mit Artemisininen 26
1.5.3.3.5 Beispiele zu Monotherapien mit Artemisininen .. 27
1.6 Entscheidung für die 5-Tage-Monotherapie mit Artesunat 28
1.7 Zielsetzung .. 29

2 Patienten, Materialien und Methoden .. 31
 2.1 Studienkonzept .. 31
 2.1.1 Die SP-Studie .. 31
 2.1.1.1 Hintergründe .. 31
 2.1.1.2 Die SP-Studie in Lambaréné, Gabun .. 32
 2.1.1.3 Die 5-Tage-Monotherapie-Studie mit Artesunat .. 35
 2.1.2 Studienort ... 36
 2.2 Aufnahmekriterien und Ausschlusskriterien .. 39
 2.3 Medikamentendosierung .. 40
 2.4 Ablauf der Untersuchungstage 0, 4 und 28 .. 40
 2.5 Diagnostik .. 42
 2.5.1 Diagnostik der Malaria und Bestimmung der Parasitämie 42
 2.5.2 Biochemische Untersuchung .. 42
 2.5.3 Differentialblutbild ... 43
 2.5.4 PCR-Genotypisierung ... 43

3 Ergebnisse ... 45
 3.1 Patientendaten .. 45
 3.1.1 Von der Auswertung ausgeschlossene Fälle .. 46
 3.2 Parasitämie am Tag 4 und Tag 28, Heilungsrate .. 46
 3.3 Demographie ... 48
 3.3.1 Population ... 48
 3.3.2 Alter der Kinder mit Parasitämie .. 48
 3.3.3 Verlauf der Parasitämie ... 48
 3.3.4 Verlauf der Temperatur ... 49
<table>
<thead>
<tr>
<th>7</th>
<th>Literaturverzeichnis</th>
<th>76</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Abkürzungsverzeichnis</td>
<td>98</td>
</tr>
<tr>
<td>9</td>
<td>Publikation</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>Danksagung</td>
<td>101</td>
</tr>
<tr>
<td>11</td>
<td>Lebenslauf</td>
<td>102</td>
</tr>
</tbody>
</table>
1 Einleitung

Malaria ist einer der häufigsten Erkrankungen in den Tropen. Nicht selten verläuft die Malaria tropica tödlich. Das größte Problem bei der Behandlung der Malaria ist die schnelle Resistenzbildung der Parasiten gegenüber Medikamenten, darum sind Optimierung der Therapieschemata sowie die Entwicklung neuer Therapieansätze notwendig. Ziel dieser Studie ist die Beurteilung der Effektivität einer oralen Artesunat-5-Tage-Therapie der Malaria tropica in Lambaréné, Gabun.

1.1 Zur Geschichte der Malaria

Das Wort Malaria (mala aria) stammt aus dem Italienischen und bedeutet „schlechte Luft“. Die französische Bezeichnung lautet paludisme, abgeleitet von lat. palus, Sumpf [61].

Schon der griechische Arzt Hippocrates beschrieb um 400 v. Chr. ein intermittierendes Fieber und dessen Ansteckbarkeit, das dem Krankheitsbild der Malaria entspricht [38]. Er vermutete die Übertragung durch Luft, Wasser und Umgebung [61].

1879 berichteten Edwin Klebs und Corado Tomassi-Crudelli von der Identifikation des „Bacillus malariae“, danach löste die Aussage des französischen Militär-Chirurgen Laveran, Malaria sei von einem Parasiten verursacht, zunächst Skepsis aus [13].

Einleitung

Bis in das späte 19. Jahrhundert kam Malaria auch in Europa vor [69]. Heute verbleibt sie (siehe hierzu Abbildung 1.1) in den meisten tropischen und subtropischen Ländern endemisch [132].

Abbildung 1.1: Malariaendemiegebiete [166]
1 Einleitung

1.2 Problemstellung

Unter Anwendung von Kombinationstherapien sollte die Entstehung und Ausbreitung von resistenten Stämmen verzögert oder verhindert werden, vergleichbar den Therapiekonzepten gegen HIV und Tuberkulose [74].

Für die Therapie der Malaria empfiehlt die WHO Artemisinine in Kombination mit anderen Malaria-Medikamenten einzusetzen (ACT, Artemisinine Combination Treatment) [162], wobei es bisher an einem idealen Kombinationspartner mangelt. Eine ideale Kombination sollte effektiv gegen alle Entwicklungsstadien des Parasiten wirken, möglichst nebenwirkungsfrei bleiben, in einer Rezeptur oral, rektal und parenteral applizierbar sein, zusätzlich sich nicht anfällig für parasitäre Resistenzentwicklung zeigen und niedrige Herstellungskosten haben [82]. Weiterhin besteht die Schwierigkeit, Medikamente zu kombinieren, deren Halbwertszeiten inkompatibel sind. Außerdem sollte man besondere Vorsicht walten lassen in Bezug auf pharmakokinetische Interaktionen der Kombinationspartner, da es zu Erzeugung unvorhersehbarer Risiken und Potenzierung eventueller Nebenwirkungen kommen kann [54]. Deshalb ist es ratsam, die Vor- und Nachteile einer Kombinationstherapie gegenüber einer Monotherapie abzuwagen.

1 Einleitung

1.3 Parasitologie

1.3.1 Definition der Malaria und Klassifizierung der Erreger

Malaria ist eine parasitäre Infektionskrankheit, ausgelöst durch einzellige, obligat intrazelluläre Protozoen, die der Gattung *Plasmodium* angehören. Innerhalb des Stammes *Apicomplexa*, der Klasse der *Sporozoa*, Unterklasse *Coccidia*, gehört die Gattung *Plasmodium* zur Unterordnung der *Haemosporina* [144].

1.3.2 Entwicklungszyklus des Parasiten

Die Entwicklung aller Malariaparasiten unterteilt sich in zwei Zyklen. Der geschlechtliche Zyklus findet in der Anophelesmücke statt, der ungeschlechtliche im Menschen (siehe hierzu auch Abbildung 1.2). Den Wechsel zwischen geschlechtlichem und ungeschlechtlichem Zyklus nennt man Generationswechsel.

1.3.2.1 Der ungeschlechtliche Zyklus

Über den Speichel einer infizierten Anophelesmücke gelangen während der Blutmahlzeit Sporozoiten in den Blutstrom des Menschen. Binnen Minuten werden Leberparenchymzellen penetriert. Dort beginnt die asexuelle Teilung (Gewebschizogonie) in präerythrozytäre Schizonten unter Zerstörung der Leberzellen. Bei *P. vivax* und *P. ovale* können die Parasiten als Hypnozoiten ungeteilt im Lebergewebe verbleiben. In diesem Ruhezustand überdauern sie Monate bis Jahre. Durch einen unbekannten Stimulus reifen sie erneut zu Schizonten heran, was zu charakteristischen Rückfällen der Malaria tertiana führt.

Beim Zerfall der Schizonten werden Merozoiten in die Blutbahn freigesetzt, welche Erythrozyten befallen. Die Inkubationszeit beträgt circa 10 Tage bis mehrere Monate. Aus Endemiegebieten zurückkehrende Reisende erkranken in überwiegender Zahl binnen eines Monats [137].

Die Merozoiten beginnen innerhalb der Erythrozyten in Vakuolen zu wachsen. Beim
1 Einleitung

1.3.2.2 Der geschlechtliche Zyklus

1.3.3 Epidemiologie

Malaria ist die häufigste parasitäre Erkrankung des Menschen, weltweit erkranken jährlich schätzungsweise 300 bis 500 Millionen Menschen [158]. Bei 1-2 Millionen Menschen pro Jahr verläuft die Malariainfektion tödlich. Insgesamt leben etwa 40% der Weltbevölkerung in Malariaendemiegebieten [12] [158], 3,2 Milliarden Menschen, die sich in 107 Ländern oder Territorien aufhalten, vor allem in Afrika südlich der Sahara [118], ferner in Asien, Ozeanien, Zentral- und Südamerika und in der Karibik [161].

Neben dem Hauptübertragungsweg durch die *Anopheles*-Mücke [12], welche vor allem in der Dämmerung und nachts aktiv ist, sind Infektionen durch Blutkonserven (Transfusionsmalaria) [108], Organtransplantation [52], über infizierte Kanülen [67] und kongenital [168] möglich.

Voraussetzungen für die Komplettierung des Zyklus sind ein hohes epidemiologisch relevantes Erregerreservoir in der Bevölkerung und das Vorhandensein geeigneter Vektoren (*Anopheles*-Mücke und Mensch) [80]. Für die vektorielle Übertragung der Malaria sind hohe Luftfeuchtigkeit (z.B. in der Regenzeit) und Temperaturen von 20-30°C (anhaltende Mindesttemperaturen von 16-18°C) erforderlich [69]. Bei Höhen über 1500 m besteht in der Regel kein Malaria-Risiko, dennoch wurden immer wieder vereinzelte Epidemien auch in über 2000 m Höhe beschrieben [84]. In einigen Ländern wurde Malaria durch Roden der Wälder und Veränderungen der Agrikultur importiert (z.B. durch Fischzucht und Reisanbau).
1 Einleitung

In industrialisierten Ländern kommen die meisten Malariafälle unter Reisenden vor, dabei werden die meisten Infektionen aus West-Afrika importiert. Allein im Jahre 2001 gab es 1040 Malaria-Fälle in Deutschland, 70% verursacht durch *P. falciparum*, gefolgt von *P. vivax* mit 16% [125]. Auch unter Immigranten und Militärpersonal ist sie anzutreffen [79].

1.3.4 Klinik der Malaria

Klinische Symptome der Malaria treten vor allem durch das Freiwerden von Zytokinen bei der Freisetzung von Schizonten und Ruptur der Erythrozyten auf [104]. Sie können schleichend oder fulminant verlaufen. Die Erscheinung ist häufig unspezifisch und ähnelt einer viralen Infektion, was zu verspäteter Diagnosestellung führen kann.

Im Differentialblutbild zeigt sich häufig eine Panzytopenie. Auch Leukozytosen [129]
sind insbesondere bei hoher Parasitämie im Verlauf der Erkrankung anzutreffen. Letztere sind vermutlich durch bakterielle Superinfektionen bedingt [68].

Vorerst erscheinende Lymphozytopenien basieren vermutlich auf apoptotischen Vorgängen, die sich schnell regenerieren [70]. Weiterhin kommt es häufig zur Monozytose und milder Neutrophilie [3]. Auf die anfängliche Eosinopenie folgt Wochen nach der Infektion eine Eosinophilie [2].

1.3.4.1 Pathogenese von *P. falciparum*

Weiterhin spielen die Parasitendichte und die Virulenz eine bedeutende Rolle. Bei Malariainfektionen durch andere Plasmodienarten findet man aufgrund der fehlen-
1 Einleitung

den Sequestrierung nur selten eine Störung der Mikrozirkulation. Diese weisen daher eine geringere Pathogenität auf.

1.3.4.2 Komplikationen der P. falciparum-Infektion

1.3.4.2.1 Laktatazidose Komplikationen bei schwer verlaufender Malaria können in unterschiedlichen Formen auftreten und den gesamten Organismus betreffen. Die prognoserelevante Laktatazidose ist nicht nur eine Folge von Sauerstoffmangel aufgrund der Mikrozirkulationsstörung, sondern auch eine Folge des parasitären Stoffwechsels [6]. Sie kann bei Kindern und Erwachsenen zum Tode führen.

1.3.4.2.2 Hypoglykämie Eine weitere metabolische Komplikation der Malaria tropica ist die Hypoglykämiebildung. Dieser liegt ein Hyperinsulinismus zugrunde, deren Produktion durch parasitäre Produkte stimuliert wird [48]. Der plasmaglucose-senkende Einfluss von TNFα, das bei schwerer Malaria in erhöhter Konzentration vorliegt, ist umstritten [91]. Zusätzlich kann sie durch Chinin induziert werden.

1.3.4.2.4 Akutes Nierenversagen Eine weitere lebensbedrohliche Komplikation, die durch die Mikrozirkulationsstörung ausgelöst wird, ist das akute Nierenversagen (AN) [78]. AN kommt als Symptom bei älteren Kindern und nichtimmunen Erwachsenen häufiger vor als bei jüngeren Kindern (≤ 5 Jahre).

1.3.4.2.5 Zerebrale Malaria Die schwerste Verlaufsform der Malaria tropica stellt die zerebrale Malaria dar, welche fast ausschließlich durch P. falciparum verursacht wird. Sie ist die häufigste tödlich verlaufende Form [65], bei jüngeren Kindern sind Konvulsionen charakteristisch [122]. Darüber hinaus können neurologische Funktionsstörungen bei Kindern und nichtimmunen Erwachsenen verbleiben [150].
1.3.4.2.6 WHO-Klassifikation des Schweregrades der Malaria
Um die schwer verlaufende Malaria von einer milden Form zu unterscheiden sowie standardisierte Kriterien für Studien- und Therapieansätze zu gewährleisten, hat die WHO eine Klassifikation definiert.
Von der WHO werden Laborbefunde wie schwere normozytäre Anämie (Hämoglobin ≤ 5 g/dl; Hämokrit ≤ 15%), akutes Nierenversagen (Kreatinin ≥ 265 µmol/l bzw. ≥ 3 mg/dl), schwere metabolische Azidose (pH arteriell ≤ 7,25 oder Plasmabikarbonat ≤ 15 mmol/l) oder Hyperlaktazidämie (Laktat ≥ 5 mmol/l), Hyperparasitämie (≥ 5% infizierte Erythrozyten oder ≥ 100000 Parasiten/µmol/l), Serum-Bilirubin ≥ 50 µmol/l, Transaminasen im Serum mehr als 3fach erhöht und Hypoglykämie (BZ ≤ 40 mg/dl) als Kriterien für das Vorliegen einer schweren Malaria genannt. Alle diese Kriterien erfüllen bei Vorhandensein von asexuellen Plasmodienformen im Blut für sich allein bereits die Definition einer schweren Malaria [158]. Zusätzlich werden klinische Befunde wie Bewusstseinstrübungen, Ikterus, wiederholte zerebrale Krampfanfälle (≥ 3/24h), respiratorische Insuffizienz, DIC (disseminierte intravasale Gerinnung), Kreislaufinsuffizienz (systolischer Blutdruck ≤ 70 mmHg), Hyperpyrexie von ≥ 40°C, Niereninsuffizienz (≤ 400 ml/24h) und Makrohämaturie klassifiziert [158].
Als Indikatoren für eine schlechte Prognose werden gesehen: Koma, Hyperparasitämien von ≥ 500000 Parasiten/l, hohe Herz- (≥ 150/min) und Atemfrequenz (≥ 50/min) [151], Hypoglykämie (≤ 2,2 mmol/l), Ikterus [92], Hyperlaktazidämie (≥ 5 mmol/l) [6] und malarapiimenthaltige Leukozyten (≥ 5%) [87] [81].

1.4 Diagnostik
Beim Dicken Tropfen werden etwa 5-10 µl Nativblut aus Vene oder Kapillare als etwa 1 cm im Durchmesser großer Fleck auf einem Objektträger eingetrocknet, wodurch die Erreger 10-20fach angereichert werden können. Nach Lyse der Erythrozyten wird der Tropfen mit der Giemsafärbung zur mikroskopischen Betrachtung aufbereitet. Während der Nachweis von Plasmodien im Blutausstrich das Vorliegen einer Malaria sichert, schließt ein negatives Untersuchungsergebnis diese Erkrankung nicht unbedingt aus. Zu Beginn einer Malaria kann die Anzahl der Parasiten noch zu
gering sein, so dass sie im Blutausstrich nicht nachgewiesen werden können. Das diagnostische Minimum liegt bei 10-50 Trophozoiten/µl Blut [146]. Bei Verdacht auf Vorliegen einer Malaria sollten deshalb alle 6-12 Stunden erneut Kontrollen durchgeführt werden.

1.5 Therapie der Malaria

1.5.1 Angriffspunkte im Zyklus des Parasiten

<table>
<thead>
<tr>
<th>Angriffspunkte im Parasitenzyklus</th>
<th>Medikamente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewebsschizonten</td>
<td>Primaquin, Proguanil</td>
</tr>
<tr>
<td>Hypnozoiten</td>
<td>Primaquin</td>
</tr>
<tr>
<td>Blutschizonten</td>
<td>Chinin, Artemisinin, Chloroquin</td>
</tr>
<tr>
<td>Gametozyten</td>
<td>Primaquin, Chloroquin, Artemisinin</td>
</tr>
<tr>
<td>Sporozoiten</td>
<td>Pyrimethamin, Primaquin, Chinin</td>
</tr>
</tbody>
</table>

Tabelle 1.1: Angriffspunkte im Parasitenzyklus

Die sporoziden Medikamente Pyrimethamin und Primaquin sind bereits in niedriger
Dosierung wirksam gegen Sporozoiten. Dagegen ist Chinin nur in hoher Dosis sporozid. Tafenoquin, ein Primaquin-Analogon, ist einer der neueren effektiven Wirkstoffe gegen Sporozoiten [111].

1.5.2 Standardmedikamente zur Therapie der Malaria

Die Therapie der Malaria richtet sich einerseits nach der Form (Malaria tropica, Malaria tertiana oder Malaria quartana) und dem Infektionsgebiet (Resistenzen), andererseits nach einer eventuellen medikamentösen Prophylaxe und dem Schweregrad der Erkrankung (unkompliziert oder kompliziert).

Proguanil und Pyrimethamin sind Dihydrofolsäurereduktase-Hemmer und beeinflussen gemeinsam mit Sulfonamiden (Folsäureantagonisten) den Folsäurestoffwechsel. Diese Medikamente wirken blutschizontozid. Sie werden sehr gut vertragen. Pyrimethamin wird in Kombination mit Sulfonamiden wie dem Sulfadoxin (SP) eingesetzt, weil es aufgrund Resistenzentwicklungen zur Monotherapie ungeeignet ist. Dabei steigt zunehmend auch die Resistenz gegenüber SP. Sulfonamide sind Dihydropteroatsynthase-Hemmer (DHPS) und können schwere allergische Hautreak-
tionen verursachen, z.B. das Stevens-Johnson-Syndrom [135]. Während der Schwangerchaft kann SP verabreicht werden und weist einen prophylaktischen Effekt gegen Malaria-Anämie auf [115].

Proguanil (PaludrineTM) ist lediglich eine Wirkstoffvorstufe, das in der Leber zum aktiveren Metaboliten Cycloguanil metabolisiert wird. Als Kombinationspräparat mit Chloroquin kam es bisher als Prophylaxe zum Einsatz. In Kombination mit Atovaquon (MalaroneTM) ist es eines der sichersten und effektivsten aber auch teuersten Antimalariamittel, das gleichzeitig sehr gut toleriert wird [85]. Atovaquon ist ein Naphtochinonderivat und wirkt als Inhibitor des mitochondrialen Elektronentransportsystems blutschizontozid [18]. Es ist für Kinder genauso gut geeignet wie für Erwachsene. Bei schwangeren Frauen sind die Auswirkungen der Anwendung auf das ungeborene Kind noch nicht ausreichend evaluiert worden, weshalb sie hier nicht zum Einsatz kommen sollte [86]. Atovaquon in Kombination mit Proguanil kann sowohl zur Prophylaxe als auch zur Therapie eingesetzt werden.

Mefloquin (LariamTM) bewirkt häufig Dysphorie. Es kann zu neuropsychiatrischen Reaktionen wie depressive Psychosen, Koordinationsstörungen, Gleichgewichtsstörungen, Tremor, Verwirrtheit und Krämpfen führen [117] [119].

1.5.2.1 Antibiotika bei der Therapie der Malaria

Als weitere Standardmedikamente zur Therapie der Malaria werden prokaryontisch wirksame Antibiotika wie Doxycyclin und Clindamycin eingesetzt. Die blutschizontozide Wirkung dieser Antibiotika wird durch die Hemmung des endosymbiotischen Apikoplasten im Parasiten erzielt [34]. Diese kombiniert man bevorzugt mit gängigen Standardmedikamenten. Dabei kann Clindamycin im Gegensatz zu Doxycyclin auch bei Kindern und Schwangeren eingesetzt werden.
Die folgende Tabelle 1.2 stellt eine Übersicht der Standardmedikamente zur Therapie der Malaria dar.

<table>
<thead>
<tr>
<th>Medikament</th>
<th>Wirkungsmechanismus</th>
<th>Indikation</th>
<th>Nebenwirkung</th>
<th>Kontraindikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinin</td>
<td>Hemmung der Häm-Polymerase</td>
<td>komplizierte Malaria tropica</td>
<td>Herzrhythmusstörungen, neurotoxische Störungen (Erbblindung und Taubheit, selten in therapeutischer Dosis) häufig β-Zellstimulation (hyperinsulinämische Hypoglykämie), Blutbildveränderungen und Schwarzwasserfieber</td>
<td>Glucose-6-P-Dehydrogenase-Mangel und Sichelzellanämie</td>
</tr>
<tr>
<td>Chloroquin</td>
<td>Hemmung der Häm-Polymerase</td>
<td>alle Malariaformen</td>
<td>meist gering, eventuell Übelkeit und Erbrechen, sehr selten neuropsychiatrische Symptome oder zerebelläre Dysfunktion</td>
<td>Psoriasis, Porphyrie</td>
</tr>
<tr>
<td>Primaquin</td>
<td>Hemmung der Häm-Polymerase</td>
<td>Malaria tertiana (Hypnozoiten)</td>
<td>Übelkeit, Erbrechen, hämolytische Anämie bei Glucose-6-phosphat-Dehydrogenase-Mangel</td>
<td>Glucose-6-phosphat-Dehydrogenase-Mangel, Schwangerschaft und Kinder ≤ 1 Jahr</td>
</tr>
<tr>
<td>Mefloquin</td>
<td>Hemmung der Häm-Polymerase</td>
<td>unkomplizierte Malaria tropica bei Chloroquin-Resistenz</td>
<td>häufig Erbrechen, selten bradykarde Herzrhythmusstörungen und zentralnervöse Nebenwirkungen: Koordinationsstörungen, Gleichgewichtsstörungen, Tremor, Verwirrtheit, Psychosen, Krämpfe</td>
<td>Krampfanfälle, psychische Störungen in der Anamnese</td>
</tr>
<tr>
<td>Atovaquon-Proguanil</td>
<td>Atovaquon: Inhibitor des mitochondrialen Elektrodentransportsystems Proguanil: Hemmer der Dihydrofol säure-Reduktase</td>
<td>P. falciparum</td>
<td>Gastrointestinale Symptome, Husten, reversibler Transaminasen-Anstieg</td>
<td>Kreatinin-Clearance <30 ml/min, Schwangerschaft</td>
</tr>
</tbody>
</table>

Tabelle 1.2: Standardmedikamente zur Therapie der Malaria
1.5.3 Moderne Therapieansätze

1.5.3.1 Neuer Kombinationsansatz mit Antibiotika

Fosmidomycin-Clindamycin (FC) ist eine neue erfolgversprechende Kombination: Fosmidomycin interagiert am parasitären Apikoplasten und inhibiert das hier lokalisierte Enzym DOXP-Reduktioisomerase (1-Deoxy-D-Xylulose-5-Phosphat) [83]. Dieses Enzym ist für die Synthese von Isopentenylpyrophosphat und Dimethylallyl-Pyrophosphat zuständig. Aus diesen Vorstufen werden dann für den Parasiten lebenswichtige Proteine wie Hormone, Bestandteile der Zellmembran, Cholesterin etc. hergestellt. Fosmidomycin (F) wird als Monotherapie sehr gut toleriert, jedoch sollte es für eine effektive Therapie dreimal täglich für minDESTENS 4 Tage verabreicht werden [23]. In einer Studie in Gabun ließ sich nachweisen, dass eine Monotherapie mit F zwar zur schnellen Parasiteneliminierung führt, aber die Heilungsrate in Kombination mit C effektiver ist [23] [26].

1.5.3.2 Neue Kombinationsansätze mit Artemisininederivaten

Einleitung

1.5.3.3 Die Therapie mit Artemisininderivaten

1.5.3.3.1 Eigenschaften und Wirkmechanismen der Artemisinine

Bisher sind Artemisinine in Europa für therapeutische Zwecke nicht zugelassen.
Abbildung 1.3: Chemische Struktur von Artesunat

Die folgende Tabelle 1.3 stellt eine Übersicht der Artemisinin-Derivate zur Therapie der Malaria dar.

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Löslichkeit</th>
<th>Verabreichbar</th>
<th>Aktiver Metabolit</th>
<th>Halbwertszeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artemisinin</td>
<td>wasserlöslich</td>
<td>oral, rectal</td>
<td>-</td>
<td>2-5 Stunden</td>
</tr>
<tr>
<td>Artesunat</td>
<td>wasserlöslich</td>
<td>oral, rectal, i.v.</td>
<td>Dihydroartemisinin</td>
<td>2-5 Minuten</td>
</tr>
<tr>
<td>Artemether</td>
<td>fettlöslich</td>
<td>oral, i.m.</td>
<td>Dihydroartemisinin</td>
<td>3-7 Stunden</td>
</tr>
<tr>
<td>Arteether</td>
<td>wasserlöslich, fettlöslich</td>
<td>oral, i.m., rectal</td>
<td>-</td>
<td>12-30 Stunden</td>
</tr>
<tr>
<td>DHA</td>
<td>wasserlöslich</td>
<td>oral, rectal</td>
<td>-</td>
<td>40-60 Minuten</td>
</tr>
</tbody>
</table>

Tabelle 1.3: Artemisininderivate zur Therapie der Malaria

1.5.3.3.2 Vorteile der Therapie mit Artemisininderivaten

- Die initiale Reduktion der Parasitämie ist die schnellste aller erhältlichen Antimalariamittel [149].

- Bei einer 10000-fachen Reduktion der Biomasse des Parasiten pro asexuellem Zyklus trägt es außerdem durch Gametozyteneliminierung zur Transmissionsminderung bei [156] [57] und verhindert gleichzeitig die Ausbreitung resisterter Stämme.

- Der parasitäre Metabolismus wird schneller inhibiert als bei herkömmlichen Medikamenten [55]. Außerdem können rote Blutkörperchen nach Parasiteneeliminierung erneut in den Blutkreislauf gelangen, das sogenannte „pitting“ [103].
Einleitung

- Trotz Polymorphismen im Gen für pfATPase6 gibt es weltweit keine dokumentierten Fälle von Parasitenresistenz gegenüber Artemisininen [50].

- Artemisinine können für die Behandlung sowohl der unkomplizierten als auch der komplizierten Malaria tropica eingesetzt werden. Für Kinder sind sie gut geeignet [93].

- Durch Enzyminduktion von CYP2B6 beschleunigen Artemisinine ihren Abbau [31]. Dadurch haben alle Substanzen dieser Familie eine sehr kurze Halbwertszeit und erschweren dem Parasiten die Resistenzbildung. Zudem ist die kurze HWZ präventiv gegen Akkumulation und Neurotoxizität [7].

1.5.3.3 Nachteile der Therapie mit Artemisininderivaten

Um die Therapiedauer zu verkürzen, die Heilungsrate zu erhöhen und das Resistenzrisiko zu senken, sollten Artemisininderivate mit herkömmlichen Antimalariamitteln kombiniert werden. Der optimale Kombinationspartner ist aber noch nicht bekannt. Einerseits sind die Halbwertszeiten meist nicht kompatibel (siehe dazu auch Kapitel 1.6 „Entscheidung für die 5-Tage-Monotherapie mit Artesunat“), andererseits erhöht sich die Gefahr der Nebenwirkungen durch die Kombinationspartner. Die HWZ von Artesunat beträgt 2-5 Minuten, die HWZ von Amodiaquin dagegen 7-21 Tage und von SP 3-8 Tage. Ideal wären Kombinationspartner mit ähnlicher HWZ, Verträglichkeit und Wirksamkeit.

Das Medikament wird durch aufwendige Verfahren aus dem Einjährigen Beifuß extrahiert und ist dadurch erheblich teurer als Monotherapien mit herkömmlichen Medikamenten. So wird, bei mehreren Erkrankungen im Jahr, die Therapie der Malaria für eine afrikanische Familie unbezahlbar. Dies kann durch Medikamentenaufteilung innerhalb der Familie indirekt zu einer Effektivitätsminderung führen.

1.5.3.3.4 Beispiele zu Kombinationstherapien mit Artemisininen

In Malawi wurde eine Vergleichsstudie zur Wirksamkeit zwischen einer Einmaldosis Artesunat (10 mg/kg KG rektal), gefolgt von einer Einmaldosis SP (10 mg/kg KG oral), versus einer Einmaldosis von Chinin (20 mg/kg KG intra-muskulär), gefolgt von einer Einmaldosis SP (10 mg/kg KG oral), durchgeführt. Am Tag 28 hatten 39 von 58 Kindern (67%) aus der Artesunatgruppe einen positiven Dicken Tropfen und 5 von 12 Kindern (42%) aus der Chinin-gruppe. In dieser Studie wurde nicht zwischen Rekudeszenz und Reinfektion unterschieden. Das Ergebnis dieser Studie zeigt vor allem, dass eine Einzeldosis von Artesunat, gefolgt von einer Einzeldosis SP, für eine sichere Heilung nicht ausreicht [17].

In einer placebokontrollierten Studie in Gambia wurde Kindern, die an akuter unkomplizierter Malaria tropica erkrankten, SP mit Placebo, SP gefolgt von einer Einmaldosis Artesunat (4 mg/kg KG) und SP gefolgt von Artesunat über 3 Tage (4 mg/kg KG) verabreicht. Gruppe 1 erreichte am Tag 14 eine HR von 97%, für Gruppe 2 und 3 betrug sie 96% und 98%. In dieser Studie konnte kein signifikanter Unterschied zwischen der einmaligen und dreimaligen Zugabe von Artesunat festgestellt werden. Allerdings konnte in der letzten
Gruppe ein schnellerer Rückgang der Symptome und eine geringere Transmission, verursacht durch die gametozide Wirkung von Artesunat, beobachtet werden [128].

- In einer Kombinationsstudie mit Artesunat-Amodiaquin über 3 Tage in Gabun wurde die Heilungsrate unter kontrollierter und unkontrollierter Gabe beurteilt. Eine kontrollierte Medikamenteneinnahme erbrachte eine Heilungsrate von 86%, eine unkontrollierte Medikamenteneinnahme eine Heilungsrate von 63%. Diese Studie zeigt, dass nicht nur die Kombination für den Therapieerfolg von Bedeutung ist, sondern auch die Behandlungsbedingungen [107].

- In einer Artesunat-Fosmidomycin-Kombinationsstudie in Gabun ergab die 3-Tage-Therapie der unkomplizierten Malaria tropica am Tag 28 eine Heilungsrate von 100% [25]. Die Kombination dieser Medikamente, die eine ähnlich kurze Halbwertszeit besitzen (die HWZ von Fosmidomycin beträgt etwa 1,9 Stunden) zeigt selbst mit einer kurzen Therapiedauer eine sehr gute Heilungsrate. Nachteilig wurde in dieser Studie eine vorübergehende Neutropenie beobachtet.

1.5.3.3.5 Beispiele zu Monotherapien mit Artemisininen

- In einer thailändischen Studie wurden Patienten mit Malaria tropica retrospektiv analysiert, die über 3 Tage mit einer Gesamtdosis von 600 mg Artesunat behandelt worden waren. Dabei konnte eine Heilungsrate von 71% und eine Recrudeszenzrate von 29% errechnet werden. Es wurde jedoch vermutet, dass für die Recrudeszenzrate die hohe Parasitendichte zu Beginn der Therapie und weniger die Medikamentenresistenz von bedeutend war. Weiterhin vermutete man, Reinfektionen ohne PCR-Nachweis (Polymerase-Chain- Reaction) als Rückfälle gedeutet zu haben [72].
1 Einleitung

- In einer weiteren Studie in Thailand wurde Artemether (4 mg/kg KG für die ersten 5 Tage, gefolgt von 2 mg/kg KG für weitere 2 Tage) versus Artesunat (2 mg/kg KG für die ersten 5 Tage und 1 mg/kg KG für weitere 2 Tage) über 7 Tage als Monotherapie bei multiresistenter Malaria tropica verabreicht. Dabei konnte beobachtet werden, dass die Wirkung beider Medikamente hinsichtlich der Parasitenclearance (94% nach 48 Stunden) und der Fieberclearance (93% nach 48 Stunden) gleich war. Die Heilungsrate am Tag 28 betrug für Artemether 92,2%, für Artesunat 95,4%. Die Rückfallrate einer 7-Tage-Therapie mit Artesunat war zufriedenstellend [113].

- In einer 3-Tage-Monotherapie-Studie der unkomplizierten Malaria tropica mit Artesunat (4 mg/kg KG einmal täglich oral) in Gabun kam man zum Ergebnis, dass damit keine zufriedenstellende Heilungsrate zu erzielen ist. Binnen 72 Stunden waren alle Dicken Tropfen parasitenfrei. Am Tag 14 jedoch betrug die PCR-korrigierte Heilungsrate 92%, am Tag 28 nur 72% [24].

- In Bangui, Zentralafrikanische Republik, wurde eine 7-Tage-Monotherapie der unkomplizierten Malaria tropica mit Artesunat (einmal täglich am ersten Tag 4 mg/kg KG und für weitere 6 Tage 2 mg/kg KG) durchgeführt. Die Heilungsrate für die Tage 14, 28 und 42 betrug 100%, 95% und 85% [96]. Dabei zeigte sich bei größer werdendem zeitlichen Abstand zur Therapie eine Verschlechterung der Heilungsrate.

- In Tansania wurde bei einer 5-Tage-Artesunat-Monotherapie die orale mit der intravenösen Gabe verglichen. Es konnte bei einer Heilungsrate von 80% und 84% kein signifikanter Unterschied erkannt werden [9].

1.6 Entscheidung für die 5-Tage-Monotherapie mit Artesunat

Betrachtet man die oben genannten Beispiele so fällt auf, dass die Rückfallrate bei Artesunat-Monotherapien mit kurzer Therapiedauer und niedriger Therapiedosis am höchsten ist. Zusätzlich zeigt sich, dass mit Kombinationstherapien nicht in jedem Falle eine höhere Heilungsrate zu erzielen ist. Der Therapieerfolg hängt sowohl von der Effektivität der einzelnen Kombinationspartner im Hinblick auf die Resistenzlage der Erreger, als auch von Therapiedauer und Konzentration der einzelnen Komponenten ab. Die optimale Therapiedauer und der optimale Therapiepartner für Artesunat ist jedoch für Afrika noch nicht bekannt. Ein Problem stellen

Entgegen den WHO-Empfehlungen [162], Artemisinin nur in Kombination (Artemisinine-Combination-Treatments, ACTs) als erste Wahl zur Therapie der unkomplizierten Malaria tropica einzusetzen, haben wir uns aus den oben genannten Gründen für die 5-Tage-Monotherapie entschieden. Die Wirksamkeit einer 5-Tage-Monotherapie der unkomplizierten Malaria tropica wurde in Lambaréné, Gabun, bisher noch nicht erforscht. Eine Besonderheit dieser Studie ist zudem die semi-observierte Therapie.

Um die optimale Therapiestrategie für eine Region zu finden, sind immer wieder Studien notwendig, die einerseits die Resistenzbedingungen und andererseits die Effektivität unterschiedlicher Monotherapien und Kombinationsansätzen erforschen. Zusätzlich ist die Variation der Therapiedosis und -dauer notwendig. Die Entscheidung, ob eine Monotherapie oder eine Kombinationstherapie mit Artesunat gewählt wird, sollte immer wieder neu abgewogen werden. Gerade weil sich die Resistenzzlage ändern kann, sollte die Therapiestrategie weder vereinheitlicht noch festen Schemata unterworfen sein.

1.7 Zielsetzung

Diese Arbeit dokumentiert eine semi-observierte Monotherapie-Studie mit Artesunat, die über 5 Tage bei unkomplizierter Malaria tropica an 50 gabunesische Kinder zwischen dem 2. und 18. Lebensmonat verabreicht wurde. Trotz Empfehlungen der WHO, Artemisinin und seine Derivate als ACT (Artemis-
Einleitung

2 Patienten, Materialien und Methoden

2.1 Studienkonzept

2.1.1 Die SP-Studie

2.1.1.1 Hintergründe

Die Sulfadoxin-Pyrimethamin-Studie (SP-Studie) in Lambaréné, Gabun, ist eine randomisierte, plazebo-kontrollierte und doppel-blinde Studie. Mit ihr sollte der Effekt einer intermittierenden präventiven Therapie auf die Malariaanfälligkeit und die Malariaanämie erfasst werden.

Anwendung und Eignung der eingesetzten Medikamente zu sammeln, um die WHO bei der Entwicklung der IPTi-Politik zu unterstützen. Daran beteiligte Länder sind Gabun (Lambaréné), Deutschland (Tübingen), die USA, Tansania, Kenia, Mosambik, Spanien, Sénégal, Großbritannien, Papua-Neuguinea, die Schweiz, Dänemark, Australien und Organisationen wie die WHO und das United Nations Children’s Fund (UNICEF). IPTi verfolgt die Strategie, Kindern im ersten Lebensjahr dreimal (mit 3, 9 und 15 Monaten) zu Zeiten der Routineimpfungen im Rahmen der EPI-Empfehlungen (Expanded Programme on Immunization of WHO) [160], Antimalariamittel zu verabreichen, um die Wirkung auf Anämieentwicklung und Malariainfektion ab dem 3. Lebensmonat zu beurteilen. Bei Säuglingen bis zum 3. Lebensmonat ist das Vorkommen von Parasitämie und symptomatischer Malaria selten [77].

Eine IPTi-Studie in Tansania zeigte, dass das Vorkommen von Malaria und schwerer Anämie bei der Behandlung mit SP signifikant gesunken ist [124]. In Ghana zeigte der Einsatz von SP ebenfalls eine Reduktion der Malaria und der schweren Anämie und damit auch der Morbidität [100]. Eine weitere IPTi-Studie mit SP in Mosambik wies Besserungen in der Inzidenz von Malaria und der Hospitalisation auf. Es konnte jedoch kein signifikanter Unterschied zum Vorkommen schwerer Malaria festgestellt werden [88]. In der SP-Studie in Lambaréné, Gabun, konnte eine reduzierende Wirkung von IPTi mit SP auf die Anämieentwicklung beobachtet werden. Auf die Erkrankung mit Malaria nahm es jedoch nur einen geringen Einfluss [59].

Das IPTi-Verfahren besitzt die Potenz, zur Hauptstrategie der Malariakontrolle zu werden [123]. Unterstützend wirken dabei in Afrika die bereits etablierten Hauptimpfungen der EPI, die eine der bestfunktionierenden Kontaktgelegenheiten zu afrikanischen Kindern bieten, um gesundheitliche Kontrollen durchzuführen. Das Konsortium erstellt über die IPTi ein Konzept, das zur Beurteilung durch die WHO ansteht. Hierbei sollten einige Nachteile der IPTi bedacht werden. Erstens der „post-therapie-rebound“ mit schwerer Malariaanämie und hoher Parasitämie, insbesondere bei Kindern, die IPTi erhielten. Zweitens die steigende Resistenzbildung und Beeinflussung der natürlichen Immunitätsentwicklung [97].

2.1.1.2 Die SP-Studie in Lambaréné, Gabun

Die Sulfadoxin-Pyrimethamin-Studie (SP-Studie) in Lambaréné, Gabun, ist eine randomisierte, placebo-kontrollierte und doppel-blinde Studie zur Erfassung der

Primäre Ziele der SP-Studie:

- Zweites Ziel war es, die Verträglichkeit von SP zu überprüfen. Dies wurde am Anteil der Kinder, die mindestens eine Nebenwirkung (adverse event, AE) zeigten, bemessen.

Sekundäre Ziele der SP-Studie:

- Erfassung des Anteils der Kinder mit mindestens einer Episode schwerer Anämie.
- Erfassung des Anteils der hospitalisierten Kinder mit Anämie.
- Erfassung des Anteils der hospitalisierten Kinder mit Malaria.
- Erfassung des Anteils der hospitalisierten Kinder, die anderweitig erkrankten.

Um die Effektivität und die Rückfälle zu beurteilen, wurden monatlich aktive Kontrollvisiten (follow-ups) bei allen rekrutierten Kindern durchgeführt. Bei den monatlichen Kontrollvisiten wurden die Kinder zu Hause aufgesucht, klinisch untersucht und mittels eines Dicken Tropfen auf die Infektion mit \textit{P. falciparum} untersucht. Zusätzlich wurden die Eltern der Studienkinder vom Studienpersonal dazu angehalten, im Falle einer Erkrankung des Kindes mit Fieber, Durchfall, allergischen Hauterscheinungen, Husten oder sonstigen Änderungen des Allgemeinzustandes, auch an nicht eingeplanten Studientagen, das Studienzentrum im Albert-Schweitzer-Hospital (Hôpital Albert-Schweitzer, HAS) aufzusuchen. Bei Verdacht auf eine Malariainfektion erfolgten Kontrolluntersuchungen mit einem Dicken Tropfen. In diesem Rahmen
erfolgten passive Kontrollen. Sie wurden für Sicherheit und Effektivität der Studienmedikation während der gesamten Studienzeitdauer durchgeführt.

Um die Sicherheit und Verträglichkeit der Studienmedikation zu beurteilen wurden die Studienkinder während und nach der medikamentösen Behandlung an einheitlich definierten Studientagen klinisch und laborchemisch über 28 Tage hinweg untersucht. Dafür erfolgten aktive Kontrollvisiten an den Tagen 0, 7 und 28.

Laboruntersuchungen wurden an den Therapietagen und an Tagen der Folgevisiten durchgeführt. Diese beinhalteten hämatologische Werte der roten sowie der weißen Zellreihe mit einem Differentialblutbild. Zusätzlich wurden Biochemieparameter (ALAT und Kreatinin) zur Leber- und Nierenfunktionskontrolle untersucht.

Nach dem doppel-blind Verfahren wurden weder der Studienteilnehmer noch die Studienmitarbeiter darüber informiert, welche der jeweiligen Studienmedikationen der Studienteilnehmer erhielt. Für den Fall eines Notfalles konnte die verborgene Codenummer durch Aufkratzen aufgedeckt werden. Es existierten zwei Kopien, die nur für den Hauptverantwortlichen oder einen Deligierten zugänglich waren.
2.1.1.3 Die 5-Tage-Monotherapie-Studie mit Artesunat

In dieser Studie geht es um die Therapie der Probanden, die während ihrer Teilnahme an der oben beschriebenen IPTi-Studie mit SP rekrutiert wurden und an unkomplizierter Malaria tropica erkrankten. Für den Zeitraum von Dezember 2002 bis Mitte August 2004 wurde für die Therapie der unkomplizierten Malaria Artesunat einmal täglich als Monotherapie über 5 Tage verabreicht. Dabei erhielten die Patienten initial eine Dosis von 4 mg/kg KG durch die Studienmitarbeiter (observiert). Für die nächsten 4 Tage wurde die tägliche Medikation mit einer Dosis von 2 mg/kg KG in Folienpäckchen verschweißt und der begleitenden Aufsichtsperson mitgegeben. An diesen Tagen stand die Medikamentengabe nicht mehr unter Aufsicht der Studienmitarbeiter (nicht observiert). Bei der Monotherapie mit Artesunat handelte es sich darum nicht um eine randomisierte, doppelt-blinde oder placebo-kontrollierte Studie.

Die in die Artesunat-Therapie einbegriffenen Probanden wurden somit ebenfalls an Wöchnerinnenabteilungen des HAS und dem Hôpital Regional im Rahmen der oben beschriebenen SP-Studie rekrutiert.

Primäre Ziele der Studie der 5-Tage-Artesunat-Monotherapie:

- Als ein primäres Ziel wurde vor Studienbeginn die Wirksamkeit der Therapie, belegt durch komplette Parasiteneliminierung und klinische Heilung am Tag 28 nach Beginn der Behandlung, definiert.

- Weiterhin wurde die Verträglichkeit und Sicherheit der Therapie beurteilt, d.h. leichte und schwere Nebenwirkungen durch Anamnese, klinische Untersuchung und Kontrolle relevanter Laborparameter im Verlauf der Studie erfasst.

Sekundäre Ziele der Studie der 5-Tage-Artesunat-Monotherapie:

- Als ein sekundäres Ziel der Studie wurde die klinische Besserung der Patienten erfasst, d.h. die Anzahl der Patienten, die am Tag 4 nach der Therapie mit Artesunat fieberfrei, parasitenfrei und klinisch unauffällig waren.

- Weiterhin wurde der Verlauf des Blutbildes, ALAT- und Kreatininwertes (zur Beurteilung der Leber- und Nierenfunktion), kontrolliert.

In den Fällen, bei denen erneut asexuelle Plasmodien-Parasiten im Blutausstrich zwischen dem Zeitraum von Tag 4 bis Tag 28 festgestellt worden waren, wurden die Erregerstämmen mittels PCR-Genotypisierung näher bestimmt, um Neuinfektionen
von Reinfektionen unterscheiden zu können.
Als Neuinfektion wurden die Fälle gewertet, in denen ein anderer oder mehrere andere Genotypen des Parasiten festgestellt wurden. Als Reinfektion oder Therapieversagen wurde der erneute Nachweis desselben Erregers gewertet.

Als Rückfall wurde definiert:

• Präsentation des Kindes zwischen der ersten Therapiedosis und Tag 4 mit einer höheren Parasitämie
• das Vorhandensein von asexuellen Parasiten am Tag 4
• asexuelle Parasiten zwischen Tag 4 und 28

Die Durchführung der Studie wurde vom Ethikkomitee der internationalen Stiftung des HAS überprüft und genehmigt. Die schriftlich oder mündlich bezeugte Einverständniserklärung der Eltern oder der jeweiligen Erziehungsberechtigten wurde im Rahmen der SP-Studie erhalten.

2.1.2 Studienort

Es liegen ein Jahresmittel von 3000 mm Niederschlag und eine Jahresdurchschnittstemperatur von 25°C sowie eine Luftfeuchtigkeit von 90% vor. Dabei sind 4 Perioden mit unterschiedlichem Regenverhalten zu beobachten.

Am HAS wurde von 1924 an, nur wenige Kilometer vom Stadtzentrum entfernt, gebaut. Es umfasst neben dem Forschungslabor Abteilungen für Chirurgie (36 Betten), Innere Medizin (28 Betten), Pädiatrie (30 Betten und 10 Ersatzbetten), Frauenheilkunde (27 Betten), Zahnheilkunde, die PMI (Protection Maternelle et Infantile) sowie ein Informationsbüro für HIV-Infizierte. In Lambaréné und Umgebung, woher die rekrutierten Patienten stammen, wird Malaria ganzjährig übertragen [49]. Es handelt sich um ein für *P. falciparum*-Malaria hyperendemisches Gebiet [140]. Dabei ist in etwa 95% der Fälle *P. falciparum* für die Malariaepisoden verantwortlich. Die übrigen Malariafälle sind durch *P. malariae* und *P. ovale* bedingt. Da *P. vivax* nur „Duffy“-positive Blutkörperchen befallt, diese aber in West-Afrika nicht vorkommen, zählt es nicht zum Erregerspektrum in Lambaréné [99]. Die Hauptvektoren sind *Anopheles gambiae* und *Anopheles moucheti* [141].

Die Transmissionsrate schwankt regional und saisonal. Während in der kurzen Regenperiode von Oktober bis Dezember die höchste Transmissionsrate zu beobachten ist, werden in der langen Regenperiode und den Trockenperioden eher geringe Transmissionsraten registriert [164]. Die EIR (Entomological Inoculation Rate, infektiöse Mückenstiche/Person/Jahr) ist in Gabun je nach Region unterschiedlich. Sie ist für den Campus des HAS aufgrund besserer hygienischer Verhältnisse mit einem Wert von 23 niedriger als in umgebenden Orten wie Tchad (EIR=61) und Bellevue (EIR=53). Im Schnitt liegt die EIR in Lambaréné bei 50 [140]. Nach weitläufigen Chloroquinresistenzen werden zunehmend auch Resistenzen gegen SP beobachtet [142].
Abbildung 2.1: Karte von Gabun [75]
2.2 Aufnahmekriterien und Ausschlusskriterien

In die Artesunat-Studie aufgenommen wurden Kinder, die bereits für die SP-Longitudinalstudie rekrutiert wurden und während dieser im Zeitraum von Dezember 2002 bis Mitte August 2004 an einer unkomplizierten Malaria tropica erkrankten [59]. In diesem Zeitraum erkrankte Studienkinder wurden mit einer Artesunat-5-Tage-Monotherapie behandelt. Voraussetzung für alle teilnehmenden Kinder war die Einverständniserklärung der Eltern bzw. der Sorgeberechtigten.

In die Analyse einbezogen wurden nur Kinder, von denen eine Nachuntersuchung mit einem Dicken Tropfen am Tag 28 vorlag. Bei den meisten Kindern sind auch Nachuntersuchungen am Tag 4 erfolgt.

Ausschlusskriterien waren Zeichen einer schweren Malaria [158] mit Hospitalisation, d.h.:

- schwere Anämie mit einem Hämatokrit \(\leq 15\% \) oder einem Hb \(\leq 5 \text{ g/dl} \) [109]
- akutes Nierenversagen mit einem Kreatinin \(\geq 3 \text{ mg/dl} \) [78]
- Hypoglykämie mit Blutzucker \(\leq 40 \text{ mg/dl} \) [48]
- metabolische Azidose pH \(\leq 7,25 \) [6]
- Ikterus mit Serumbilirubin \(\geq 3 \text{ mg/dl} \) [92]
- Lungenödem [122]
- zerebrale Malaria mit wiederholten Krampfanfällen [65]
- zirkulatorischer Schock
- signifikante Elektrolytverschiebungen
- DIC (disseminierte intravasale Gerinnung) mit spontanen Blutungen [53]
- Makrohämaturie

Weitere Ausschlussgründe waren:

- Verabreichung von anderen malarialwirksamen Medikamenten durch Eltern, medizinische Einrichtungen wie „dispensaires“ (lokale Ambulanz), Hôpital Regional und HAS
- Gabe der Studienmedikation SP am selben Tag vor der Artesunatgabe
Dabei wurde die Fremdmedikation vor Präsentation im Studienzentrum und auch während der nachfolgenden 28 Tage, soweit anamnestisch eruierbar, berücksichtigt.

Ebenfalls ein Ausschlussgrund nach bereits begonnener Therapie war das Auftreten einer Nebenwirkung der Studienmedikation (adverse event, (AE)), welche zum Therapieabbruch führte. Evaluiert wurden die AEs an Kontrollterminen der jeweiligen Malariaattacke. Als AE wurde ein neu auftretendes Symptom oder Zeichen, eine neu hinzukommende Krankheit oder das Auftreten von pathologischen Laborwerten, welche mit der Studienmedikation im Zusammenhang stehen oder im Zusammenhang gesehen werden, definiert. Dabei werden als Nebenwirkungen Erscheinungen, welche am Tag 0 noch nicht vorhanden waren, sich jedoch im Laufe der Nachkontrollen entwickelten, oder aber am Tag 0 vorhanden waren, sich jedoch im Verlauf der Nachuntersuchungen verschlimmerten, gewertet. Als schwere Nebenwirkung wurde ein Ereignis definiert, welches tödlich oder lebensbedrohlich verlief oder zu einer stationären Krankenhausaufnahme führte.

2.3 Medikamentendosierung

2.4 Ablauf der Untersuchungstage 0, 4 und 28

Die Studiendauer erstreckte sich je Patient insgesamt über einen Zeitraum von 28 Tagen. Untersuchungen wurden jeweils zusätzlich zum Diagnosetag 0 an den Tagen 4 und 28 durchgeführt. Bei einer Verschlechterung des Gesundheitszustandes oder auch Neuerkrankung wurden zwischenzeitig zusätzliche Kontrolluntersuchun-

An definierten standardisierten Kontrolltagen 0, 4 und 28 wurden Laborparameter wie die Anzahl der weißen Blutkörperchen, der Hämaglobinwert (Hb), der Hämatokritwert (HK), das Mittlere-Korpuskular-Volumen (MCV, Mean Corpuscular Volume) und die Anzahl der Thrombozyten bestimmt. Leberfunktion und Nierenfunktion wurden durch Bestimmung von Alanin-Amino-Transferase (ALAT) und Kreatinin im Plasma kontrolliert.

Zusätzlich wurde ein Dicker Tropfen entnommen und auf Parasiten untersucht. Blut wurde auf Filterpapier zur Genotypisierung mittels PCR konserviert.

Des Weiteren wurden Aufsichtspersonen anamnestisch auf das Aufsuchen von lokalen Ärzten, Kliniken oder Apotheken und nach häuslicher Selbstmedikation befragt.
2.5 Diagnostik

2.5.1 Diagnostik der Malaria und Bestimmung der Parasitämie

Die Bestimmung der Konzentration von asexuellen *P. falciparum*-Trophozoiten wurde von mikroskopisch erfahrenen Untersuchern nach der standardisierten Lambaréné-Methode vorgenommen. Bei der dabei angewandten Giemsa-Färbung (Sigma Aldrich Chemie GmbH, Taufkirchen, Deutschland) wurde ein Blutausstrich aus dem Dicken Tropfen nach folgender Methode angefertigt und ausgewertet:

2.5.2 Biochemische Untersuchung

2.5.3 Differentialblutbild
Mittels der Abbott Celldyn-3000TM-Maschine (Abbott Diagnostics, Santa Clara, CA, USA) wurden aus EDTA-Blut (EDTA, Ethylene-Diamine-Tetraacetic-Acid) der Hämoglobin-, der Hämatokrit-, der MCV-Wert, die Anzahl der weißen Blutkörperchen und die Thrombozytenzahl ermittelt.

2.5.4 PCR-Genotypisierung

Folgende Schritte wurden zur MSA1-Genotypisierung durchgeführt:

- DNA (Desoxyribonuclein Acid) wurde mit einem speziellen DNA-Reinigungssatz aus dem angetrockneten Blut der gesammelten Filterpapiere isoliert (Qiagen, Hilden, Germany).
- Die DNA wurde mittels GenomiPhi entsprechend der Lieferanten-Gebräuchsanweisung angereichert (Amersham, Freiburg, Germany).
- MSA1-Genotypisierung wurde durch einen PCR-Thermozykler (vollautomatische Durchführung verschiedener Temperaturabhängiger Reaktionen) gemäß den üblichen Methoden mit Primern (Startpunkt für die DNA-Polymerase) durchgeführt. Als Primer dienten Lisa-1 5’-ACATGAAAGTTATCAAGAACTTGTC-3’ und Lisa 5’-TACGTCTAATTCATTTGCACGAA-3’.
- DNA-Doppelstränge wurden zu Beginn der PCR bei 95°C 5 Minuten denaturiert. Die PCR beinhaltete 35 Zyklen, Denaturierungsphasen über 10 Sekunden und Synthesisierungsphasen bei 55°C für 45 Sekunden mit einer Verlängerung von 60 Sekunden bei 70°C.
Um die unterschiedlichen Allele voneinander zu unterscheiden wurde anschließend eine sogenannte nested-PCR (verschachtelte PCR) durch einen „Rapid-Cycler™“ (Idaho Technologies, Salt Lake City, UT, USA) mit 15 Zyklen durchgeführt. Die benutzten Primer liegen dabei innerhalb der in der ersten PCR amplifizierten DNA. Der „Rapid-Cycler“ ist ein Instrument, das durch Wärmeübertragung in Form von Heißluft sehr schnelle Zyklen durchläuft. Dabei wird eine hohe Spezifität der DNA-Amplifikation erreicht. Die Temperaturen waren 94°C, 53°C und 72°C, dabei wurde die Zeit auf 0 gesetzt.

Primer T22 5’-GTTGGTTGCAAAGCCTGCAGGTGCT-3’ oder T23 5’-ACAGTGGAACAGCTGTTACAA-3’ wurde mit Lisa-2 für die Identifikation von RO33 oder MAD20 kombiniert.

K1 wurde durch die Primer Lisa-1 und T24 5’-GCATCAGCTGGAGGGCTTGACCACCAT-3’ identifiziert.

Die PCR-Produkte wurden auf ein Agarosegel aufgetragen und im Spannungsfeld ihrer Größe nach aufgetrennt. Die DNA-Fragmente wurden durch „SYBR-Green-PCR-Kit“ (Biozym, Hessisch Oldendorf, Germany) angefärbt und mit einem „Dark Reader“ (Clare Chemical Research Inc., Dolores, CO, USA) durch Fluoreszenz visualisiert.

3 Ergebnisse

3.1 Patientendaten

3.1.1 Von der Auswertung ausgeschlossene Fälle

Von der Auswertung für die Effektivitätsbeurteilung (Wirkungsbestimmung unter durchschnittlichen Alltagsbedingungen) der 5-Tage-Therapie mit Artesunat, wurden folgende Fälle ausgeschlossen, siehe hierzu auch Abbildung 3.1:

- 12 Kinder, bei denen eine Parasitämie erst nach Gabe von SP diagnostiziert wurde,
- 15 Kinder, bei denen am Tag 28 (± 1 Woche) entweder kein Dicker Tropfen vorlag oder die Folgeuntersuchung nicht stattgefunden hatte,
- 4 Kinder, die hospitalisiert wurden und das lokal gängige Chinin i.v. erhielten,
- 1 Kind, das zuhause zusätzlich zu Artesunat eine halbe Tablette SP erhalten hatte,
- 1 Kind, das am Tag der Vorstellung keine Symptome, aber eine geringe Anzahl an Gametozysten aufwies und erst nach 4 Tagen bei steigender Körpertemperatur mit Artesunat behandelt wurde.

Auf diese Weise verblieben 50 auswertbare Fälle für die Analyse der 5-Tage-Therapie mit Artesunat. Davon waren 24 Kinder männlichen und 26 Kinder weiblichen Geschlechts.

3.2 Parasitämie am Tag 4 und Tag 28, Heilungsrate

Von 50 Kindern nahmen 38 Kinder den Kontrolltermin am Tag 4 war. Im Dicken Tropfen konnte bei keinem Kind mehr Parasiten gesehen werden, sodass die Heilungsrate 100% betrug.

Am Tag 28 waren im Dicken Tropfen nur 38 Patienten von 50 parasitenfrei, d.h. 76% der Kinder blieben ohne Parasitenachweis. Eine erneute Erkrankung an Malaria mit \textit{P.f.} wurde bei 12, d.h. 24% der Kinder beobachtet. Die Differenzierung der 12 erkrankten Kinder ergab:

- Bei 7 von 12 Kindern, die bis zum Tag 28 erneut eine Infektion erlitten hatten, zeigten PCR-Analysen Parasiten unterschiedlicher MSA1-Genotypen. Diese wurden als Reinfektionen betrachtet und somit als initial geheilt erfasst.
Bei 4 von 12 Kindern zeigte die PCR-Analyse gleiche MSA1-Genotypen, was den Verdacht auf ein Therapieversagen nahelegte und so gedeutet wurde.

Bei einem Fall wurde kein Filterpapier angelegt, dieser Fall wurde ebenfalls als Therapieversagen eingestuft.

Die PCR-korrigierte Heilungsrate am Tag 28 beträgt somit 90%, d.h. 45 von 50 Patienten können als initial geheilt betrachtet werden (siehe hierzu auch Abbildung 3.2 und Tabelle 3.1).

Aufgrund der beobachteten Rückfälle unter Therapie mit Artesunat wurden die Patienten in zwei Gruppen aufgeteilt. Gruppe 1 stellt die initial geheilte Gruppe dar (45 Patienten). Gruppe 2 beinhaltet Rückfälle, d.h. Individuen, bei denen am Tag 28 eine erneute Parasitämie mit demselben MSA1-Genotypen festgestellt wurde (5 Patienten).

<table>
<thead>
<tr>
<th>Zeitpunkt nach Therapiebeginn</th>
<th>Heilungsrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag 4</td>
<td>38/38 (100%)</td>
</tr>
<tr>
<td>Tag 28 (nicht PCR korrigiert)</td>
<td>38/50 (76%)</td>
</tr>
<tr>
<td>Tag 28 (PCR korrigiert)</td>
<td>45/50 (90%)</td>
</tr>
</tbody>
</table>

Tabelle 3.1: Heilungsrate der semi-observierten 5-Tage-Artesunat-Monotherapie
3 Ergebnisse

3.3 Demographie

3.3.1 Population

3.3.2 Alter der Kinder mit Parasitämie
Das Alter der Kinder mit Parasitämie war sehr heterogen. Der jüngste Patient war 2 Monate und der älteste 13 Monate alt. Das durchschnittliche (DS) Alter der Kinder mit Parasitämie lag bei 7,7 Monaten (±3,3; n=50). Die Gruppe 1 der initial geheilten Kinder (n=45) zeigte ein durchschnittliches Alter von 7,5 (±3,2) Monaten, die Gruppe 2 der Rückfälle (n=5) ein durchschnittliches Alter von 9,7 (±3,0) Monaten.

3.3.3 Verlauf der Parasitämie
In der Gruppe der initial geheilten Kinder (n=45) betrug am Tag 0 der Median 11 200 (24-180 000) Parasiten pro µl Blut, am 28. Tag 0 (0-100 000) Parasiten pro µl Blut.
In der Rückfallgruppe (n=5) betrug der Median am Tag 0 31 000 (2 190-90 000) Parasiten pro µl Blut und am 28. Tag 52 000 (1 070-316 000) Parasiten pro µl Blut.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Tag 0</th>
<th>Tag 4</th>
<th>Tag 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
<td>11 600 (24-180 000)</td>
<td>0</td>
<td>0 (0-316 000)</td>
</tr>
<tr>
<td>Gruppe 1</td>
<td>11 200 (24-180 000)</td>
<td>0</td>
<td>0 (0-100 000)</td>
</tr>
<tr>
<td>Gruppe 2</td>
<td>31 000 (2 190-90 000)</td>
<td>0</td>
<td>52 000 (1 070-316 000)</td>
</tr>
</tbody>
</table>

Tabelle 3.2: Der Median der Parasiten/µl Blut mit Minimal- und Maximalwerten

3.3.4 Verlauf der Temperatur

Bei Vorstellung der Patienten fiel auch bei der Körpertemperatur eine hohe Variabilität auf. Manche Patienten mit Parasitämie wurden mit hohem Fieber ≥ 40°C in der Ambulanz vorgestellt, wogegen andere Kinder fieberfrei waren. Die niedrigste gemessene Temperatur am Diagnosetag betrug 36,5°C, die höchste 40,5°C. Die durchschnittliche Körpertemperatur für den Diagnosetag betrug insgesamt 38,8°C (± 1,1; n=49), in Gruppe 1 38,7°C (± 1,1; n=45), in Gruppe 2 der späteren Rückfälle 40,0°C (± 1,3; n=4). Am Tag 4 betrug sie nach der Therapie mit Artesunat im Durchschnitt 37,0°C (± 0,6; n=39), in Gruppe 1 37,0°C (± 0,6; n=35), in Gruppe 2 37,2°C (± 0,3; n=4). In Gruppe 1 hatte ein Kind aufgrund einer Otitis media Fieber entwickelt, das mit einem Antibiotikum therapiert wurde. Für den 28. Kontrolltag betrug die durchschnittliche Körpertemperatur 37,3°C (± 0,7; n=49), in Gruppe 1 37,2°C (± 0,5; n=45), in Gruppe 2 38,9°C (± 0,7; n=4). Unter den 12 Fällen mit erneuter Parasitämie am Tag 28 hatten nur 6 Kindern erneut Fieber entwickelt. Die durchschnittliche Körpertemperatur an den Tagen 0, 4 und 28, aufgeteilt in Gruppe 1 und Gruppe 2 mit der jeweiligen Standardabweichung ist zusätzlich in Abbildung 3.3 einzusehen.
3 Ergebnisse

3.4 Hämatologische Werte im Verlauf der Studie

Um die Auswirkungen der Malaria-Erkrankung und den Einfluss der Malaria-Therapie auf das hämatologische System zu erfassen, wurden venöse Blutentnahmen am Diagnosetag 0 sowie an den Kontrolltagen 4 und 28 durchgeführt. Da es bei der maschinellen Auswertung des Blutmaterials in Einzelfällen zu technischen Schwierigkeiten kam, sind nicht von allen Patienten alle Parameter vorhanden, sodass auch in den folgenden Abschnitten mit unterschiedlichen Fallzahlen gerechnet wurde.
3 Ergebnisse

Abbildung 3.4: Durchschnittliche Hb-Werte der Gruppen 1 und 2 für die Tage 0, 4 und 28 mit Standardabweichung. Einzelwerte siehe Text.

3.4.1 Hämoglobinkonzentration im Verlauf

Die durchschnittliche Hämoglobinkonzentration (Hb) am Diagnosetag wurde von 48 Fällen ermittelt, sie betrug insgesamt 8,6 g/dl (± 1,3). Dabei fand sich in Gruppe 1 ein Durchschnitts-Hb-Wert von 8,5 g/dl (± 1,2; n=43) und in Gruppe 2 ein Wert von 9,4 g/dl (± 1,4; n=5). Am Tag 4 zeigten 37 Fälle durchschnittliche Hb-Werte von 8,4 g/dl (± 1,2), in Gruppe 1 8,3 g/dl (± 1,2; n=33), in Gruppe 2 9,2 g/dl (± 1,1; n=4). Am Tag 28 zeigten 47 Malariafälle Hb-Werte mit dem Durchschnitt von 9,2 g/dl (± 1,4). Durchschnittlich betrug der Hb-Wert am Tag 28 in Gruppe 1 9,4 g/dl (± 1,3; n=43), in Gruppe 2 7,7 g/dl (± 2,0; n=4). Die Durchschnittswerte für Gruppe 1 und 2 mit den jeweiligen Standardabweichungen für die Tage 0, 4 und 28 zeigt Abbildung 3.4.
3.4.2 Hämokrit-Werte im Verlauf

Der durchschnittliche Hämokritwert in beiden Gruppen betrug am Diagnostag 25,8 % (± 4,0), berechnet aus 48 Probandendaten, hier in Gruppe 1 25,6% (± 3,9; n=43) und in Gruppe 2 27,6% (± 4,5; n=5). Am Tag 4 betrug er durchschnittlich 24,9% (± 4,1; n=36), in Gruppe 1 24,7% (± 4,1; n=32), in Gruppe 2 27,1% (± 3,5; n=4). Am Tag 28 betrug er insgesamt 28,1% (± 4,8) in 47 Probandendaten, hier in Gruppe 1 28,1% (± 3,2; n=43) und in Gruppe 2 28,2% (± 14,8; n=4). Die Aufteilung in Gruppe 1 und 2 zeigt Abbildung 3.5.

Abbildung 3.5: Hk-Durchschnittswerte für Gruppe 1 und 2 für die Tage 0, 4 und 28 mit den jeweiligen Standardabweichungen. Einzelwerte siehe Text.
3.4.3 MCV im Verlauf

Die Entwicklung des MCV stellte sich wie folgt dar: am Diagnosetag lagen 48 Daten vor, der durchschnittliche MCV-Wert betrug 64,9 fl (± 6,8), in Gruppe 1 64,8 fl (± 7,0; n=43) und in Gruppe 2 64,5 fl (± 5,3; n=5). Am Tag 4 lagen 38 Daten vor, der durchschnittliche MCV-Wert betrug 63,7 fl (± 5,7; n=38), in Gruppe 1 63,6 fl (± 6,0; n=32), in Gruppe 2 64,2 fl (± 4,3; n=5). Am Tag 28 lagen 47 Daten mit einem Durchschnittswert von 63,4 fl (± 5,9) vor, in Gruppe 1 62,7 fl (± 5,9; n=43), in Gruppe 2 68,7 fl (± 4,0; n=4). Siehe hierzu ebenfalls Abbildung 3.6.

Abbildung 3.6: Durchschnittswerte des MCV für die Gruppen 1 und 2 an den Tagen 0, 4 und 28 mit der jeweiligen Standardabweichung. Einzelwerte siehe Text.
3.4.4 Leukozyten im Verlauf

Da sich im Rahmen der Malaria eine Panzytopenie entwickeln kann, wurden als zentraler Bestandteil des Immunsystems die Anzahl der Leukozyten erfasst. Die durchschnittliche Anzahl der 48 Malariafälle am Diagnosetag betrug 10 $K/\mu l$ (\pm 4), dabei in Gruppe 1 10 $K/\mu l$ (\pm 3; n=43), in Gruppe 2 8 $K/\mu l$ (\pm 4; n=5). Am Tag 4 betrug sie 11 $K/\mu l$ (\pm 4; n=38), in Gruppe 1 11 $K/\mu l$ (\pm 4; n=33), in Gruppe 2 7 $K/\mu l$ (\pm 3; n=5). Am Tag 28 betrug sie 10 $K/\mu l$ (\pm 4) in ebenfalls 48 Probandendaten, in Gruppe 1 10 $K/\mu l$ (\pm 4; n=44), in Gruppe 2 7 $K/\mu l$ (\pm 2; n=4). 3 Kinder zeigten am Tag 0 Leukozytopenien ≤ 6 $K/\mu l$, die ausgeprägteste Leukozytose zeigte ein Kind mit 19 $K/\mu l$. Siehe dazu auch Abbildung 3.7.

Abbildung 3.7: Durchschnittliche Leukozytenanzahl für die Gruppen 1 und 2 an den Tagen 0, 4 und 28 mit der jeweiligen Standardabweichung. Einzelwerte siehe Text.
Abbildung 3.8: Durchschnittliche Anzahl der Thrombozyten in $K/\mu l$ für Gruppe 1 und 2 an den Tagen 0, 4 und 28 mit der jeweiligen Standardabweichung. Einzelwerte siehe Text.

3.4.5 Thrombozyten im Verlauf

Im Rahmen einer möglichen Panzytopenie können auch die Thrombozyten, als wesentlicher Bestandteil der Blutgerinnung, von der Malariainfektion betroffen werden. Die durchschnittliche Thrombozytenanzahl für 48 Malariafälle lag am Diagnoseetag bei 221 $K/\mu l$ (± 120), in Gruppe 1 224 $K/\mu l$ (± 118, n=43), in Gruppe 2 210 $K/\mu l$ (± 127; n=5). Für den 4. Kontrolltag betrug sie 339 $K/\mu l$ (± 122; n=37), in Gruppe 1 337 $K/\mu l$ (± 101; n=32), in Gruppe 2 345 $K/\mu l$ (± 233; n=5). Für den Kontrolltag 28 betrug sie 397 $K/\mu l$ (± 153) mit 47 Fällen, in Gruppe 1 417 $K/\mu l$ (± 141; n=43), in Gruppe 2 183 $K/\mu l$ (± 110; n=4). Am Aufnahmetag zeigten vier der Kinder ausgeprägte Thrombozytenanämien ≤ 100 $K/\mu l$ mit einem Minimalwert von 65 $K/\mu l$. In allen vier Fällen normalisierte sich die Thrombozytenzahl unter der Therapie. Die Aufteilung in Gruppe 1 und 2 ist zusätzlich in Abbildung 3.8 dargestellt.
3.5 Biochemische Parameter im Verlauf der Studie

Um im Verlauf der Studie die Leber- und Nierenfunktion zu beurteilen, wurden die biochemischen Parameter Alanin-Amino-Transferase (ALAT) und Kreatinin aus dem gewonnenen Plasma ermittelt.

3.5.1 Alanin-Amino-Transferase (ALAT) im Verlauf

Abbildung 3.9: ALAT-Mittelwerte für Gruppe 1 und 2 an den Tagen 0, 4 und 28 mit den jeweiligen Standardabweichungen. Einzelwerte siehe Text.
3.5.2 Kreatinin im Verlauf

Als weiterer biochemischer Parameter wurde der Kreatininwert zur Beurteilung der Nierenfunktion bestimmt. Der durchschnittliche Kreatininwert am Diagnosetag betrug 39 μmol/l (\pm 7) in 42 Malariafällen, in Gruppe 1 38 μmol/l (\pm 7; n=37), in Gruppe 2 43 μmol/l (\pm 10; n=5). Am 4. Kontrolltag betrug er 37 μmol/l (\pm 5; n=30), in Gruppe 1 37 μmol/l (\pm 5; n=26), in Gruppe 2 40 μmol/l (\pm 4; n=4). Am 28. Kontrolltag betrug er 36 μmol/l (\pm 5) in 37 Probandendaten, in Gruppe 1 35 μmol/l (\pm 5; n=34), in Gruppe 2 40 μmol/l (\pm 6; n=3). Es fanden sich keine ausgeprägten Kreatininerhöhungen. Siehe hierzu auch Abbildung 3.10

Abbildung 3.10: Kreatinin-Durchschnittswerte für die Gruppen 1 und 2 an den Tagen 0, 4 und 28 mit den jeweiligen Standardabweichungen. Einzelwerte siehe Text.
3.6 Symptome bei Vorstellung und am Kontrolltag, Verträglichkeit der Studienmedikation

3.6.1 Symptome am Diagnosetag

Am Diagnosetag 0 wurden Kinder mit unterschiedlichen Symptomen im Studienzentrum vorgestellt. Die Symptome im Einzelnen und ihre Häufigkeit sind in folgender Tabelle 3.3 dargestellt.

<table>
<thead>
<tr>
<th>Symptome bei Vorstellung</th>
<th>Patientenanzahl von n=50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fieber</td>
<td>37</td>
</tr>
<tr>
<td>Durchfall</td>
<td>16</td>
</tr>
<tr>
<td>Splenomegalie</td>
<td>16</td>
</tr>
<tr>
<td>Erbrechen</td>
<td>13</td>
</tr>
<tr>
<td>Infektion der oberen Luftwege (Erkältung)</td>
<td>9</td>
</tr>
<tr>
<td>Abgeschlagenheit</td>
<td>6</td>
</tr>
<tr>
<td>Lungenentzündung</td>
<td>3</td>
</tr>
<tr>
<td>Erhöhte Atemfrequenz</td>
<td>3</td>
</tr>
<tr>
<td>Klinische Anämiezeichen</td>
<td>3</td>
</tr>
<tr>
<td>Appetitverlust</td>
<td>2</td>
</tr>
<tr>
<td>Staphylodermie</td>
<td>2</td>
</tr>
<tr>
<td>Hautmykose</td>
<td>1</td>
</tr>
<tr>
<td>Hepatomegalie</td>
<td>1</td>
</tr>
<tr>
<td>Untergewicht</td>
<td>1</td>
</tr>
<tr>
<td>Hämaturie</td>
<td>1</td>
</tr>
<tr>
<td>Scabies</td>
<td>1</td>
</tr>
<tr>
<td>Tachykardie</td>
<td>1</td>
</tr>
<tr>
<td>Blutungszeichen</td>
<td>0</td>
</tr>
<tr>
<td>Ikterus</td>
<td>0</td>
</tr>
<tr>
<td>Konvulsionen</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabelle 3.3: Symptome, die am Diagnosetag bestanden.

3.6.2 Symptome an folgenden Kontrollterminen

An den nachfolgenden Kontrollterminen wurden bei 27 Kindern klinische Erscheinungen, ähnlich denen des Diagnosetages beobachtet. Darstellung 3.4 gibt einen Überblick, welche Symptome im Nachuntersuchungszeitraum (Tag 4 und 28) dokumentiert wurden:

<table>
<thead>
<tr>
<th>Symptome an Folgeterminen</th>
<th>Patientenzahl von n=50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infektion der oberen Luftwege (Erkältung)</td>
<td>13</td>
</tr>
<tr>
<td>Durchfall</td>
<td>6</td>
</tr>
<tr>
<td>Staphylococcal Dermatitis</td>
<td>6</td>
</tr>
<tr>
<td>Skabies</td>
<td>6</td>
</tr>
<tr>
<td>Trockener Husten</td>
<td>4</td>
</tr>
<tr>
<td>Appetitverlust</td>
<td>3</td>
</tr>
<tr>
<td>Fieber</td>
<td>4</td>
</tr>
<tr>
<td>Otitis media</td>
<td>2</td>
</tr>
<tr>
<td>Hautmykose</td>
<td>2</td>
</tr>
<tr>
<td>Erbrechen</td>
<td>1</td>
</tr>
<tr>
<td>Splenomegalie</td>
<td>1</td>
</tr>
<tr>
<td>Bronchitis</td>
<td>1</td>
</tr>
<tr>
<td>Hepatosplenomegalie</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabelle 3.4: Klinische Erscheinungen, die an den folgenden Kontrollterminen (Tag 4 und 28) beobachtet wurden.

3.6.3 Verträglichkeit der Studienmedikation

4 Diskussion

4.1 Diskussion der Fragestellung/Effektivität einer 5-Tage-Monotherapie unter Alltagsbedingungen

4.1.1 Allgemeines zur Malariatherapie

Malaria ist die häufigste parasitäre Infektionskrankheit des Menschen. Eine Impfung gegen Malaria konnte bisher noch nicht entwickelt werden [40]. Da sich eine zunehmende Resistenz gegenüber herkömmlichen Antimalariamitteln zeigt, ist es notwendig, neue Behandlungsstrategien zu entwickeln.

4.1.2 Vor- und Nachteile verschiedener Behandlungsstrategien mit Artesunat

In der Medizin hat sich die Kombination aus mehreren Medikamenten zur Behandlung verschiedenster Krankheiten etabliert. Vorteile werden z.B. in kürzerer Therapiedauer, niedrigeren Medikamentenspiegeln und damit teils niedrigerer Nebenwirkungsrate und höherer Effektivität gesehen. Insgesamt kann damit eine Verbesserung

Artemisinine werden aufgrund ihres schnellen Wirkereintritts, der guten Verträglichkeit und der hohen Effizienz in Kombinationspräparaten [55], aber auch als Monotherapie eingesetzt. Bisher zeigten sich keine Resistenzen gegenüber dieser Substanzgruppe. Studien konnten keine nachteilige Wirkungen von ACTs gegenüber einer Artesunat-Monotherapie belegen. Im Tierversuch zeigte sich jedoch eine potentielle Neurotoxizität [148], welche in einer Medikamentenkombination verstärkt hervortreten könnte. Unterschiedliche Halbwertszeiten der Kombinationspartner führen zur Diskussion, ob die Resistenzentwicklung gegenüber dem Medikament mit der längeren Halbwertszeit nicht noch gefördert wird [82]. Insgesamt wurde in Studien versucht, die Therapiedauer mittels einer Kombinationstherapie zu verkürzen. So lag die Behandlungsdauer in den Studien in Malawi, Gambia, Kenia und Gabun nicht über 3 Tagen. Die erzielten Heilungsraten reichten am Tag 28 von 33% bis 100%. Studien mit Artesunat als Monotherapie wurden über einen Behandlungszeitraum von 3-7 Tagen geführt. Hier zeigten sich Heilungsraten am Tag 28 zwischen 72% und 95,4%. Die optimale Therapiedauer sowohl für die Monotherapie als auch für Kombinationstherapien ist somit weiterhin nicht bekannt. In Thailand und China wird für die Artesunatmonotherapie eine Behandlungsdauer von 5-7 Tagen empfohlen [29].

Die Studie dieser Arbeit liegt mit 5 Tagen Behandlungsdauer im Rahmen der empfohlenen Behandlungszeit. Mit 90% Heilungsrate wurde auch im Vergleich eine annehmbare Effektivität erzielt.

4.2 Diskussion der Methodik

Trotz Medikamenten hoher Effizienz (Wirksamkeit unter optimalen Bedingungen) wird die Behandlung der Malaria durch eine geringe Effektivität (Wirkung unter durchschnittlichen Alltagsbedingungen) erschwert. Es gibt Diskrepanzen zwischen offiziellen Empfehlungen und tatsächlicher Anwendungen von Antimalariamitteln [44]. Dazu gibt es örtliche Naturheilverfahren mit pflanzlichen Wirkstoffen, die mit der offiziellen Gesundheitspolitik konkurrieren.

Die meisten pharmakologischen Studien beurteilen nur die Effizienz eines Medika-

Bei pädiatrischen Patienten ist die Effektivität insbesondere von der elterlichen Mitwirkung abhängig, vor allem in nicht-/oder semi-observierten Studien. In unserer Studie wurde nur die erste Therapiedosis im Studienzentrum vom Studienpersonal verabreicht. Insbesondere unter den semiobervierten Bedingungen erfreut die hohe Heilungsrate von 90%.

Weitere Bemühungen sind notwendig, um mehr Informationen über die Effektivität gängiger Medikamente zu erhalten.

4.3 Diskussion der Ergebnisse

Als sekundäres Ziel der Studie wurde die Anzahl der Patienten erfasst, die im Verlauf der ersten 72 Stunden (Tag 4) unter Artesunat fieberfrei, parasitenfrei und klinisch unauffällig waren. Weiterhin wurden der Verlauf des Blutbildes, der ALAT- und Kreatininwerte (zur Kontrolle der Leber- und Nierenfunktion) im Verlauf der Studie beobachtet.

Zwischen Dezember 2002 und August 2004 wurden 83 unkomplizierte Malariafälle, verursacht durch *P. falciparum*, in der SP-Studie diagnostiziert und 5 Tage mit Artesunat behandelt. Die initiale Dosis betrug 4 mg/kg KG, für weitere 4 Tage wurden einmal täglich 2 mg/kg KG verabreicht. Dabei wurde die initiale Dosis unter Aufsicht, die folgenden unbeaufsichtigt eingenommen.

Nach dem Ausschluss von 33 Patienten (siehe hierzu Kapitel Ergebnisse) verblieben 50 auswertbare Fälle für die Analyse der 5-Tage-Therapie mit Artesunat.
4.3.1 Diskussion der Parasitämie

In unserer Studie hatte die initial geheilte Gruppe (Gruppe 1) am Tag 0 den Median von 11 200/µl Blut (24-180 000, mit 45 Probanden), für den Kontrolltag 28 betrug der Median 0 Parasiten/µl Blut (300-100 000, mit 45 Probanden). Die Gruppe der Rückfälle (Gruppe 2) hat am Tag 0 den Median von 31 000/µl Blut (2 190-90 000, mit 5 Probanden), für den Kontrolltag 28 betrug der Median 52 000 Parasiten/µl Blut (1 070-316 000, mit 5 Probanden).

Diese Studie bestätigt die pharmakodynamischen Eigenschaften der Artemisininderive. Bezüglich der Parasiteneliminierung waren alle Kinder am Tag 4 im Dicken Tropfen parasitenfrei (Heilungsrate von 100%). Am Tag 28 wurden 12 Kinder mit erneuter Parasitämie registriert (Heilungsrate von 76%). Davon sind nach PCR-
Korrektur 7 Fälle als Neuinfektionen und 5 als Therapieversagen zu werten. Somit errechnet sich für den Tag 28 eine PCR-korregierte Heilungsrate von 90%.

4.3.2 Diskussion des Temperaturverlaufs

4.3.3 Diskussion der Anämie bei Malaria

Diskussion

Eine intermittierende Therapie präventiv gegen Malariaanämie bei Schwangeren wirken [121]. Auch eine intermittierende Therapie mit SP wirkt präventiv gegen Malariaanämie bei Schwangeren und Kindern [115] [59]. Mit Artesunat ist bisher durch eine i.v. Therapie, im Vergleich zur oralen Therapie, eine leichte Reduktion der Erythrozytenanzahl und des Hb-Wertes beobachtet worden, die sich aber binnen der Normwerte hielten [9]. Das Vorkommen einer Anämie unter der Therapie mit Artesunat, selbst bei Vorbestehen eines Glucose-6-P-Dehydrogenasemangels oder einer Sichelzellanämie, wurde bisher nicht beschrieben. Weiterhin sind keine Hk- und MCV-Verläufe außerhalb der Normwerte registriert worden.

Im Allgemeinen unterliegen die Hb-Normwerte bei Säuglingen und Kleinkindern ohnehin großen Schwankungen. Den europäischen Richtlinien nach liegt der Hb-Wert mit 3 Monaten zwischen 9,6-12,8 g/dl, mit 2 Jahren zwischen 10,8-14,3 g/dl. Die Hk-Normwerte verhalten sich relativ konstant (Hk-Werte mit 3 Monaten bis 2 Jahren befinden sich zwischen 31 und 43%). Der Normwert für MCV beträgt mit 3 Monaten 77-103 fl, bis zum 2. Lebensjahr 74-102 fl.

In dieser Studie zeigt sich weder eine Verbesserung noch eine deutliche Verschlechterung der Hb-Werte am Tag 4 im Vergleich zum Tag 0 in beiden Gruppen. Insgesamt scheint der Hb-Wert minimal abzufallen. Am Tag 28 jedoch steigt der Hb-Mittelwert in Gruppe 1 im Vergleich zum Diagnosetag an (8,5 g/dl am Diagnosetag, 9,4 g/dl am Tag 28). In Gruppe 2 fällt der Hb-Wert im Zuge der Rückfälle noch weiter ab (9,4 g/dl am Diagnosetag, 7,7 g/dl am Tag 28). Diese Ergebnisse zeigen den positiven Einfluss von Artesunat auf die Hb-Entwicklung. MCV-Werte und Hämotokritwerte zeigen sich relativ konstant in beiden Gruppen an allen Tagen.

4 Diskussion

4.3.4 Diskussion der Leukozytopenie bei Malaria

Nach dem europäischen Standard befinden sich die Normwerte der Leukozyten für Säuglinge zwischen 9-15 K/µl, für Kinder zwischen 8-12 K/µl.

Der Verlauf der Leukozyten in dieser Studie zeigt insgesamt für alle Kontrolltermine in der Rückfallgruppe (Tag 0: 8 K/µl (± 4); Tag 4: 7 K/µl (± 3); Tag 28: 7 K/µl (± 2)) niedrigere Durchschnittswerte als in Gruppe 1 (Tag 0: 10 K/µl (± 3); Tag 4: 11 K/µl (± 4); Tag 28: 10 K/µl (± 4). Während in Gruppe 2 eine weitere Senkung der Leukozytenzahl an den Kontrollterminen nach der Therapie auftritt, bleibt sie in Gruppe 1 insgesamt konstant. Anhand dieser Ergebnisse kann keine eindeutige Beeinflussung der Leukozytenzahl durch Artesunat beobachtet werden.

4.3.5 Diskussion der Thrombozytopenie bei Malaria

Unter Normalbedingungen unterliegen die Thrombozytennormwerte für Kinder (200-350 K/µl) großen Schwankungen.

In Gruppe 1 dieser Studie ist nach Therapie der Malaria eine sprunghafte Zunahme der Thrombozyten an den folgenden Kontrolltagen zu beobachten. In Gruppe 2 steigt zwar die Thrombozytenproduktion am Tag 4 an, fällt aber am Tag 28 durch den Rückfall wieder deutlich ab. Aus diesen Ergebnissen ist ersichtlich, dass sich die Thrombozytenwerte nach Therapie sehr schnell normalisieren. Das bedeutet, dass Artesunat keinen negativen Einfluss auf die Thrombozytenproduktion zu haben scheint. Teilweise befinden sich die Werte mit einem Höchstwert von 676 K/µl weit über den Normwerten. Ob Artesunat sogar einen stimulierenden Effekt auf die Thrombozytenproduktion ausübt, sollte Gegenstand weiterer Studien sein.

4.3.6 Diskussion der Biochemischen Parameter bei Malaria

4.3.6.1 Diskussion der ALAT-Werte

4.3.6.2 Diskussion der Kreatininwerte

4.3.7 Diskussion der Therapieverträglichkeit

In unserer Studie wurde Artesunat von den Studienkindern gut vertragen. Die klinischen Erscheinungen am Tag 28 ähneln im Allgemeinen denen des Diagnosetages. So kommen z.B. Erkältung, Husten, Fieber, Durchfall, Erbrechen, Otitis media, Appetitverlust, Bronchitis und Abgeschlagenheit an beiden Tagen vor. Diese Erscheinungen können einerseits den allgemeinen Infektzeichen der Malaria ent-

4.3.8 Diskussion der Effektivität und Schlussfolgerung

Beider Entscheidung ob und welche Kombinationen oder Monotherapien angewandt werden, sollten die Richtlinien der WHO nicht unberücksichtigt bleiben. Dennoch sollten
die aktuelle Resistenzlage der jeweiligen Endemiegebiete und die Behandlungskosten bei der Wahl einer Malariatherapie berücksichtigt werden.

Um Informationen über die Effizienz (Behandlung unter optimalen Bedingungen) einer 5-Tage-Artesunat-Monotherapie bei Kindern, in Lambaréné zu erhalten, müssten in Zukunft voll-observierte Studien durchgeführt werden. Bisher wurde eine kontrollierte Artesunat-5-Tage-Monotherapie in Lambaréné noch nicht durchgeführt.
Zusammenfassung

Für den Zeitraum von Dezember 2002 bis Mitte August 2004 wurde für die Therapie der unkomplizierten Malaria den Patienten Artesunat unter semi-observierten Bedingungen einmal täglich als Monotherapie über 5 Tage verabreicht.

6 Anhang

6.1 Laborparameter

<table>
<thead>
<tr>
<th></th>
<th>Parasiten/µl Blut (Min.-Max.; n)</th>
<th>Temperatur in °C (±; n)</th>
<th>Hämoglobin in g/dl (±; n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tag 0</td>
<td>11 600 (24-180 000; 50)</td>
<td>38,8 (1,1; 49)</td>
<td>8,6 (1,3; 48)</td>
</tr>
<tr>
<td>Tag 4</td>
<td>0</td>
<td>37,0 (0,6; 39)</td>
<td>8,4 (1,2; 37)</td>
</tr>
<tr>
<td>Tag 28</td>
<td>0 (0-316 000;50)</td>
<td>37,3 (0,7; 49)</td>
<td>9,2 (1,4; 47)</td>
</tr>
<tr>
<td>Gruppe 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tag 0</td>
<td>11 200 (24-180 000; 45)</td>
<td>38,7 (1,1; 45)</td>
<td>8,5 (1,2; 43)</td>
</tr>
<tr>
<td>Tag 4</td>
<td>0</td>
<td>37,0 (0,6; 35)</td>
<td>8,3 (1,2; 33)</td>
</tr>
<tr>
<td>Tag 28</td>
<td>0 (0-100 000; 45)</td>
<td>37,2 (0,5; 45)</td>
<td>9,4 (1,3; 43)</td>
</tr>
<tr>
<td>Gruppe 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tag 0</td>
<td>31 000 (2 190-90 000; 5)</td>
<td>40,0 (1,3; 4)</td>
<td>9,4 (1,4; 5)</td>
</tr>
<tr>
<td>Tag 4</td>
<td>0</td>
<td>37,2 (0,3; 4)</td>
<td>9,2 (1,1; 4)</td>
</tr>
<tr>
<td>Tag 28</td>
<td>52 000 (1 070-316 000; 5)</td>
<td>38,9 (0,7; 4)</td>
<td>7,7 (2,0; 4)</td>
</tr>
</tbody>
</table>

Tabelle 6.1: Laborparameter (Parasiten [Median]; Temperatur, Hb [arithmetisches Mittel])

<table>
<thead>
<tr>
<th></th>
<th>Hämatomkrit in % (±; n)</th>
<th>MCV in fl (±; n)</th>
<th>Leukozyten in K/µl (±; n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tag 0</td>
<td>25,8 (4,0; 48)</td>
<td>64,9 (6,8; 48)</td>
<td>10 (4; 48)</td>
</tr>
<tr>
<td>Tag 4</td>
<td>24,9 (4,1; 36)</td>
<td>63,7 (5,7; 38)</td>
<td>11 (4; 38)</td>
</tr>
<tr>
<td>Tag 28</td>
<td>28,1 (4,8; 47)</td>
<td>63,4 (5,9; 47)</td>
<td>10 (4; 48)</td>
</tr>
<tr>
<td>Gruppe 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tag 0</td>
<td>25,6 (3,9; 43)</td>
<td>64,8 (7,0; 43)</td>
<td>10 (3; 43)</td>
</tr>
<tr>
<td>Tag 4</td>
<td>24,7 (4,1; 32)</td>
<td>63,6 (6,0; 32)</td>
<td>11 (4; 33)</td>
</tr>
<tr>
<td>Tag 28</td>
<td>28,1 (3,2; 43)</td>
<td>62,7 (5,9; 43)</td>
<td>10 (4; 44)</td>
</tr>
<tr>
<td>Gruppe 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tag 0</td>
<td>27,6 (4,5; 5)</td>
<td>64,5 (5,3; 5)</td>
<td>8 (4; 5)</td>
</tr>
<tr>
<td>Tag 4</td>
<td>27,1 (3,5; 4)</td>
<td>64,2 (4,3; 5)</td>
<td>7 (3; 5)</td>
</tr>
<tr>
<td>Tag 28</td>
<td>28,2 (14,8; 4)</td>
<td>68,7 (4,0; 4)</td>
<td>7 (2; 4)</td>
</tr>
</tbody>
</table>

Tabelle 6.2: Laborparameter (Hämatomkrit, MCV, Leukozyten [arithmetisches Mittel])
<table>
<thead>
<tr>
<th></th>
<th>Thrombozyten in K/µl (±; n)</th>
<th>ALAT in U/l (±; n)</th>
<th>Kreatinin in µmol/l (±; n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tag 0</td>
<td>221 (120; 48)</td>
<td>40 (20; 26)</td>
<td>39 (7; 42)</td>
</tr>
<tr>
<td>Tag 4</td>
<td>339 (122; 37)</td>
<td>46 (44; 22)</td>
<td>37 (5; 30)</td>
</tr>
<tr>
<td>Tag 28</td>
<td>397 (153; 47)</td>
<td>36 (20; 25)</td>
<td>36 (5; 37)</td>
</tr>
<tr>
<td>Gruppe 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tag 0</td>
<td>224 (118; 43)</td>
<td>40 (20; 23)</td>
<td>38 (7; 37)</td>
</tr>
<tr>
<td>Tag 4</td>
<td>337 (101; 32)</td>
<td>45 (47; 18)</td>
<td>37 (5; 26)</td>
</tr>
<tr>
<td>Tag 28</td>
<td>417 (141; 43)</td>
<td>37 (20; 23)</td>
<td>35 (5; 34)</td>
</tr>
<tr>
<td>Gruppe 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tag 0</td>
<td>210 (127; 5)</td>
<td>44 (21; 3)</td>
<td>43 (10; 5)</td>
</tr>
<tr>
<td>Tag 4</td>
<td>345 (233; 5)</td>
<td>53 (23; 4)</td>
<td>40 (4; 4)</td>
</tr>
<tr>
<td>Tag 28</td>
<td>183 (110; 4)</td>
<td>25 (11; 2)</td>
<td>40 (6; 3)</td>
</tr>
</tbody>
</table>

Tabelle 6.3: Laborparameter (Thrombozyten, ALAT, Kreatinin [arithmetisches Mittel])
7 Literaturverzeichnis

7 Literaturverzeichnis

Cook, G. C. ; Webb, A. J.: Perceptions of malaria transmission before Ross’

of 2 cases]. In: Med Trop (Mars) 60 (2000), Nr. 3, S. 267–70. – 0025-682x

Case Reports Journal Article

[75] WWW.ATLAS.BESTPRICETRAVEL.DE/GABUN KARTE.PHP.:

S. 1471–7. – 0140-6736 Clinical Trial Journal Article Randomized Controlled Trial

7 Literaturverzeichnis

Literaturverzeichnis

Research Support, Non-U.S. Gov’t

[161] WHO: Fact Sheet No. 94. (2005)

[166] www.wikipedia.org/wiki/Malaria:

Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Artesunat/Amodiaquin</td>
</tr>
<tr>
<td>AE</td>
<td>Adverse event</td>
</tr>
<tr>
<td>ACT</td>
<td>Artemisinine-Combination-Treatment</td>
</tr>
<tr>
<td>ACTs</td>
<td>Artemisinine-Combination-Treatments</td>
</tr>
<tr>
<td>AL</td>
<td>Artesunat/Lumefantrin</td>
</tr>
<tr>
<td>ALAT</td>
<td>Alanin-Amino-Transferase</td>
</tr>
<tr>
<td>AM</td>
<td>Artesunat/Mefloquin</td>
</tr>
<tr>
<td>AN</td>
<td>Akutes Nierenversagen</td>
</tr>
<tr>
<td>AP</td>
<td>Amodiaquin/Placebo</td>
</tr>
<tr>
<td>ASP</td>
<td>Artesunat/SP</td>
</tr>
<tr>
<td>AV-Block</td>
<td>Atrioventrikulärer Block</td>
</tr>
<tr>
<td>C</td>
<td>Clindamycin</td>
</tr>
<tr>
<td>CYP</td>
<td>Cytochrom P</td>
</tr>
<tr>
<td>DDT</td>
<td>Dichlordiphenyltrichloroethane</td>
</tr>
<tr>
<td>DIC</td>
<td>disseminierte intravasale Gerinnung</td>
</tr>
<tr>
<td>DS</td>
<td>Durchschnitt</td>
</tr>
<tr>
<td>DHA</td>
<td>Dihydroartemisinin</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonucleic Acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene-Diamine-Tetraacetic-Acid</td>
</tr>
<tr>
<td>EIR</td>
<td>Entomological Inoculation Rate</td>
</tr>
<tr>
<td>EPI</td>
<td>Expanded Programme on Immunization of WHO</td>
</tr>
<tr>
<td>F</td>
<td>Fosmidomycin</td>
</tr>
<tr>
<td>FC</td>
<td>Fosmidomycin-Clindamycin</td>
</tr>
<tr>
<td>FCT</td>
<td>Feaver Clearance Time/Entfieberungszeitpunkt</td>
</tr>
<tr>
<td>GFR</td>
<td>Glomeruläre Filtrationsrate</td>
</tr>
<tr>
<td>HAS</td>
<td>Hôpital Albert Schweitzer = Albert Schweitzer Hospital</td>
</tr>
<tr>
<td>Hb</td>
<td>Hämaglobin</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>Hk</td>
<td>Hämatokrit</td>
</tr>
<tr>
<td>HR</td>
<td>Heilungsrate</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>HUS</td>
<td>Hämolytisch-urämisches Syndrom</td>
</tr>
<tr>
<td>HWZ</td>
<td>Halbwertszeit</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon-γ</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunglobulin-G</td>
</tr>
<tr>
<td>IPTi</td>
<td>Intermittent Preventive Treatment of Infants</td>
</tr>
<tr>
<td>IPTp</td>
<td>Intermittent Preventive Treatment in Pregnancy</td>
</tr>
<tr>
<td>i.v.</td>
<td>intra-venös</td>
</tr>
<tr>
<td>i.m.</td>
<td>intra-muskulär</td>
</tr>
<tr>
<td>KG</td>
<td>Körpergewicht</td>
</tr>
<tr>
<td>KI</td>
<td>Kontraindikation</td>
</tr>
<tr>
<td>Krea</td>
<td>Kreatinin</td>
</tr>
<tr>
<td>LDH</td>
<td>Laktat-Dehydrogenase</td>
</tr>
<tr>
<td>MCV</td>
<td>Mean Corpuscular Volume</td>
</tr>
<tr>
<td>Min.</td>
<td>Minimum</td>
</tr>
<tr>
<td>Max.</td>
<td>Maximum</td>
</tr>
<tr>
<td>MSA1</td>
<td>Merozoite-Surface-Antigen-1</td>
</tr>
<tr>
<td>NW</td>
<td>Nebenwirkung</td>
</tr>
<tr>
<td>OH-Radikale</td>
<td>Hydroxyl-Radikale</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase-Chain-Reaction</td>
</tr>
<tr>
<td>PCT</td>
<td>Parasite Clearance Time/Parasiteneliminationszeit</td>
</tr>
<tr>
<td>P.</td>
<td>Plasmodium</td>
</tr>
<tr>
<td>P.f.</td>
<td>Plasmodium falciparum</td>
</tr>
<tr>
<td>PfEMP1</td>
<td>Plasmodium falciparum Erythrocyte-Membrane-Protein-1</td>
</tr>
<tr>
<td>PfATPase6</td>
<td>Plasmodium falciparum Adenosin-Triphosphatase-6</td>
</tr>
<tr>
<td>PMI</td>
<td>Protection Maternelle et Infantile</td>
</tr>
<tr>
<td>SA</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>SP</td>
<td>Sulfadoxin-Pyrimethamin</td>
</tr>
<tr>
<td>TNFα</td>
<td>Tumor-Nekrose-Faktor-α</td>
</tr>
<tr>
<td>UNICEF</td>
<td>United Nations Children’s Fund</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>
9 Publikation

Aus dieser Arbeit hervorgegangene Veröffentlichung:

10 Danksagung

Mein besonderer Dank gilt Herrn Prof. Dr. Peter. G. Kremsner für die Möglichkeit, diese Dissertation bei ihm zu schreiben, und für die Betreuung der Arbeit.

Ebenfalls besonderen Dank gebührt Herrn Prof. Dr. Martin Grobusch für die Betreuung und Unterstützung während und nach der Zeit in Gabun.

Ich danke all meinen Kollegen und Freunden in Lambaréné für die freundschaftliche Zusammenarbeit und die fachliche Unterstützung, insbesondere Anna Klöpfer, Daniela Schütte, Norbert Schwarz, Marc Pötschke, Benjamin Gläser, Sunny Oyakhirom, Dr. Sadou, Andrea Kreidenweiss, Rolf Fendel und allen Laborassistenten.

Ein besonderer Dank den Kindern aus Lambaréné und deren Eltern, die an dieser Studie teilgenommen haben.

Ich danke meiner Schwester Elveda Altun für die finanzielle Unterstützung während meiner Doktorarbeit.

Meinem Mann Martin Brinkmann danke ich für die seelische Unterstützung.
11 Lebenslauf

Persönliche Daten
Name: Handan Brinkmann (geb. Altun)
Geburtstag: 03.10.1973
Geburtsort: Göppingen

Schulbildung
John-F.-Kennedy-Schule in Esslingen, Abitur 1994

Soziales Jahr

Studium
WS 1994, Studium der Soziologie und Philosophie, Tübingen
WS 1996 - WS 2004, Studium der Medizin in Rostock und Tübingen
Frühjahr 2000, Ärztliche Vorprüfung
Frühjahr 2002, Erster Abschnitt der Ärztlichen Prüfung
Frühjahr 2003, Zweiter Abschnitt der Ärztlichen Prüfung
10.Mai 2005, Dritter Abschnitt der Ärztlichen Prüfung
Praktisches Jahr

2003 - 2004, Praktisches Jahr, erster Teil in Reutlingen (Chirurgie), Deutschland, zweiter Teil in Lambaréné (Innere Medizin), Gabun, dritter Teil in Lambaréné (Pädiatrie), Gabun

Nach dem Studium, Beruf

Mai 2006, Geburt des ersten Kindes
Okt. 2006 - Sept. 2007, Assistenzärztin in der Kinder- und Jugendpsychiatrie, Mariaberg
Dez. 2007, Geburt des zweiten Kindes