Vergleich verschiedener Methoden zur Amplifikation und Detektion von Aspergillus-DNA im Blut von Patienten mit empirischer AmBisome-Therapie

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Medizin

der Medizinischen Fakultät
der Eberhard-Karls-Universität
tübingen

vorgelegt von
Sofia Paschalinou
aus Komotini
2007
Dekan : Professor Dr. I. B. Autenrieth
1. Berichtserstatter : Professor Dr. H. Einsele
2. Berichtserstatter : Frau Privatdozentin Dr. U. Schumacher
gewidmet meinen Eltern
und meiner Schwester Eleni
Inhaltsverzeichnis

Verzeichnis der verwendeten Abkürzungen ... 6

1. Einleitung .. 8
 1.1 Taxonomie und Morphologie ... 9
 1.1.1 Mikroskopische Merkmale der Aspergillus-Spezies 9
 1.1.2 Makroskopische Merkmale der Aspergillus-Spezies 10
 1.2 Epidemiologie ... 11
 1.3 Pathogenese .. 12
 1.4 Klinik ... 13
 1.5 Diagnostik .. 15
 1.6 Candida albicans ... 18
 1.7 Therapie ... 21
 1.8 Prävention ... 22
 1.9 Fragestellung und Zielsetzung ... 23

2. Patienten, Material und Methoden .. 24
 2.1 Patienten ... 24
 2.2 Materialien ... 24
 2.2.1 Untersuchungsmaterial ... 24
 2.2.2 Geräte ... 26
 2.2.3 Verbrauchsgegenstände .. 25
 2.3 Methoden .. 26
 2.3.1 DNA-Extraktion aus EDTA-Blut 26
 2.3.2 Polymerase Kettenreaktion, PCR 28
 2.3.3 PCR-ELISA ... 30
 2.3.4 Light-Cycler .. 32
 2.3.5 DNA Detection Test Strips .. 35
Verzeichnis der Abkürzungen in alphabetischer Reihenfolge.

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Aspergillus</td>
<td>Aspergillus</td>
</tr>
<tr>
<td>Abb. Abbildung</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ABTS Trademark von Roche Molecular Biochemicals</td>
<td>ABTS Trademark von Roche Molecular Biochemicals</td>
</tr>
<tr>
<td>AE Elution Buffer</td>
<td>AE Elution Buffer</td>
</tr>
<tr>
<td>AFUMSPEZ Primer spezifisch für Aspergillus fumigatus</td>
<td>AFUMSPEZ Primer spezifisch für Aspergillus fumigatus</td>
</tr>
<tr>
<td>AL Lysis Buffer</td>
<td>AL Lysis Buffer</td>
</tr>
<tr>
<td>ATL Tissue Lysis Buffer</td>
<td>ATL Tissue Lysis Buffer</td>
</tr>
<tr>
<td>AW Wash Buffer</td>
<td>AW Wash Buffer</td>
</tr>
<tr>
<td>BAL Bronchoalveoläre Lavage</td>
<td>BAL Bronchoalveoläre Lavage</td>
</tr>
<tr>
<td>C. Candida</td>
<td>Candida</td>
</tr>
<tr>
<td>CFU Colony Forming Units</td>
<td>CFU Colony Forming Units</td>
</tr>
<tr>
<td>DNA Desoxyribonukleinsäure (DNS)</td>
<td>DNA Desoxyribonukleinsäure (DNS)</td>
</tr>
<tr>
<td>d`NTP Desoxynucleotidtriphosphat</td>
<td>d`NTP Desoxynucleotidtriphosphat</td>
</tr>
<tr>
<td>EDTA Ethyldiamintetraessigsäure</td>
<td>EDTA Ethyldiamintetraessigsäure</td>
</tr>
<tr>
<td>ELISA Enzyme Linked Immuno-Sorbent Assay</td>
<td>ELISA Enzyme Linked Immuno-Sorbent Assay</td>
</tr>
<tr>
<td>fg Femptogramm</td>
<td>fg Femptogramm</td>
</tr>
<tr>
<td>FRET Fluoreszenz-Resonanz-Energie-Transfer</td>
<td>FRET Fluoreszenz-Resonanz-Energie-Transfer</td>
</tr>
<tr>
<td>GM Galactomannan</td>
<td>GM Galactomannan</td>
</tr>
<tr>
<td>GvHD Graft-vs-Host-Disease</td>
<td>GvHD Graft-vs-Host-Disease</td>
</tr>
<tr>
<td>HCl Hydroxychlorid</td>
<td>HCl Hydroxychlorid</td>
</tr>
<tr>
<td>HEPA High-Efficiency Particulate Air</td>
<td>HEPA High-Efficiency Particulate Air</td>
</tr>
<tr>
<td>H2O Wasser</td>
<td>H2O Wasser</td>
</tr>
<tr>
<td>IgE Immunglobulin E</td>
<td>IgE Immunglobulin E</td>
</tr>
<tr>
<td>IgG Immunglobulin G</td>
<td>IgG Immunglobulin G</td>
</tr>
<tr>
<td>KCl Kaliumchlorid</td>
<td>KCl Kaliumchlorid</td>
</tr>
<tr>
<td>KG Körpergewicht</td>
<td>KG Körpergewicht</td>
</tr>
<tr>
<td>kg Kilogramm</td>
<td>kg Kilogramm</td>
</tr>
<tr>
<td>KMT Knochenmarktransplantation</td>
<td>KMT Knochenmarktransplantation</td>
</tr>
<tr>
<td>LC Light Cycler</td>
<td>LC Light Cycler</td>
</tr>
<tr>
<td>LED Lichtemittierende Diode</td>
<td>LED Lichtemittierende Diode</td>
</tr>
<tr>
<td>µg Mikrogramm</td>
<td>µg Mikrogramm</td>
</tr>
<tr>
<td>mg Milligramm</td>
<td>mg Milligramm</td>
</tr>
<tr>
<td>MgCl₂ Magnesiumchlorid</td>
<td>MgCl₂ Magnesiumchlorid</td>
</tr>
<tr>
<td>ml Milliliter</td>
<td>ml Milliliter</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>NaOH</td>
<td>Natriumhydroxid</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogramm</td>
</tr>
<tr>
<td>PBPCT</td>
<td>Periphere Blutstammzelltransplantation</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerasekettenreaktion</td>
</tr>
<tr>
<td>RCLB</td>
<td>Red Cell Lysis Buffer</td>
</tr>
<tr>
<td>SCT</td>
<td>Stammzelltransplantation</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium Dodecyl Sulfate</td>
</tr>
<tr>
<td>Taq</td>
<td>Thermophilus aquatic</td>
</tr>
<tr>
<td>Tris</td>
<td>Trishydroxymethylethyldiamin</td>
</tr>
<tr>
<td>U/min</td>
<td>Umdrehungen pro Minute</td>
</tr>
<tr>
<td>WCLB</td>
<td>White Cell Lysis Buffer</td>
</tr>
</tbody>
</table>
1. Einleitung

1.1 Taxonomie und Morphologie

Tabelle 1: Taxonomische Klassifikation

<table>
<thead>
<tr>
<th>Reich</th>
<th>Fungi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abteilung</td>
<td>Ascomycota</td>
</tr>
<tr>
<td>Ordnung</td>
<td>Eurotialen</td>
</tr>
<tr>
<td>Familie</td>
<td>Trichocomaceae</td>
</tr>
<tr>
<td>Gattung</td>
<td>Aspergillus</td>
</tr>
</tbody>
</table>

Aspergillen sind filamentäre, ubiquitär vorkommende Pilze. Sie wachsen auf abgestorbenen Blättern, in gelagertem Getreide, in Komposthaufen, im Heu und generell in sich zersetzendem Pflanzenmaterial.

1.1.1 Mikroskopische Merkmale der Aspergillus-Spezies
entsteht durch Knospung die Reihe der Konidien. Dies sind asexuelle Sporen (ungeschlechtliche Sporen, als Nebenfruchtf orm) und deshalb werden Aspergillen zu den Fungi imperfecti gezählt.

Die Morphologie der Konidien und Konidienträger dient in erster Linie der Identifikation der verschiedenen Aspergillus-Spezies.

Aspergillus fumigatus z. B. als häufigste humanpathogene Aspergillus-Spezie ist gekennzeichnet durch grüne Konidien mit einem Durchmesser von 2,5 bis 3µm. Sie entstehen aus 6 bis 8 grünlichen Phialiden mit einem Durchmesser von 2 bis 3µm [11,12,13].

Tabelle 2: Mikroskopische Merkmale verschiedener Aspergillus-Spezies

<table>
<thead>
<tr>
<th>Spezies</th>
<th>Konidiophoren</th>
<th>Vesicula</th>
<th>Phialiden</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. fumigatus</td>
<td>ca.300µm lang, 5-8µm breit, farblos oder grünlich</td>
<td>säulenförmig</td>
<td>einreihig</td>
</tr>
<tr>
<td>A. flavus</td>
<td>ca.400-850µm lang, 20µm breit, farblos</td>
<td>strahlenförmig</td>
<td>ein- oder zweireihig</td>
</tr>
<tr>
<td>A. niger</td>
<td>ca.400-3000µm lang, 15-20µm breit, farblos oder bräunlich</td>
<td>strahlenförmig</td>
<td>zweireihig</td>
</tr>
<tr>
<td>A. nidulans</td>
<td>glatte Oberfläche, bräunlich</td>
<td>säulenformig</td>
<td>kurz</td>
</tr>
</tbody>
</table>

1.1.2 Makroskopische Merkmale der Aspergillus-Spezies

Zur Spezies-Identifikation gelten Wachstumsrate, Koloniefarbe und Thermotoleranz als wichtigste makroskopische Differenzierungskriterien.

Im Allgemeinen ist die Wachstumsrate der Aspergillen sehr groß. Sie können in 7 Tagen bei 25°C auf Czapek-Ager eine Größe mit einem Durchmesser von 1 bis zu 9cm erreichen. Eine Ausnahme bilden Aspergillus nidulans und Aspergillus glaucus, die unter gleichen Bedingungen 0,5 bis 1cm wachsen können.

Oberfläche und Farbe der Kolonien können ebenfalls von Spezies zu Spezies
variieren. Aspergillus fumigatus wächst in Form wattiger bis pudriger Kolonien, die je nach Alter weiß bis blaugrün gefärbt sein können.

Tabelle 3: Makroskopische Merkmale verschiedener Aspergillus-Spezies

<table>
<thead>
<tr>
<th>Spezies</th>
<th>Koloniefarbe</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. fumigatus</td>
<td>weiß bis blaugrün je nach Alter</td>
</tr>
<tr>
<td>A. flavus</td>
<td>gelb bis grün</td>
</tr>
<tr>
<td>A. niger</td>
<td>schwarz</td>
</tr>
<tr>
<td>A. nidulans</td>
<td>grün oder gelb</td>
</tr>
</tbody>
</table>

Der Bedarf an einer besseren Differenzierung der Aspergillus-Spezies führte neben den morphologischen auch zur Einführung von biochemischen und molekularen Kriterien [4]. Vor allem sekundäre Metaboliten und die Analyse von DNA haben sich als wichtige Hilfsmittel bei der Klassifizierung der Aspergillen erwiesen.

1.2 Epidemiologie
Die Aspergillose ist eine weltweit verbreitete Erkrankung. Invasive Infektionen kommen am häufigsten bei abwehrgeschwächten Patienten vor, insbesondere bei Patienten in Neutropenie und unter langdauernder immunsuppressiver Therapie [14]. Aufgrund der zunehmenden Zahl solcher Patienten und trotz signifikanten Fortschritten im Management dieser Fälle ist die Inzidenz der invasiven Aspergillose deutlich angestiegen [5,6,7,8].
Studien zufolge, die zwischen den Jahren 1978 und 1992 im Universitätsklinikum Frankfurt/Main durchgeführt wurden, stieg die Prävalenz der invasiven Mykosen von 2,2% (1978-82) und 3,2% (1983-87) zu 5,1% in den
Jahren danach. Das lag vor allem an der Zunahme der Aspergillus-Infektionen, während die Zahl der Candida-Infektionen stabil blieb oder sogar zurückgegangen ist. Die höchsten Infektionsraten fand man in aplastischen Syndromen (68%), gefolgt von akuter myeloischer Leukämie (25%) und AIDS (19%). In den meisten Fällen (76%) hing die Todesursache direkt mit der invasiven Mykose zusammen [3].

1.3 Pathogenese

1.4 Klinik
Aspergillus kann auf unterschiedliche Weise den Organismus befallen und schädigen. Eintrittspforten für den Fungus stellen der Respirationstrakt, die Haut, offene Wunden, Kornea oder die Ohren dar.

Allergische pulmonale Aspergillose. Sie ist charakterisiert durch Asthma
bronchiale und Eosinophilie, IgE-Antikörper gegen Aspergillus und flüchtigen pulmonalen Infiltraten, die infolge Verlegung der Bronchien mit zähflüssigem Schleim entstehen [33,34].

Aspergillus-Endokarditis. Die Infektion entsteht vor allem im Rahmen von Klappenersatz-Operationen. Auch Patienten mit lang liegenden Zentralvenenkatheter und Drogenabhängige sind gefährdet [35].

Aspergillus-Sinusitis. Die klinische Manifestation der Erkrankung variiert. Sie kann sich von einer oberflächlichen Infektion der Schleimhaut bis zur Invasion und lokalen Destruktion des angrenzenden Knochens mit endokraniellen und orbitalen Komplikationen oder sogar bis zur Sepsis erstrecken.

Otitis externa. Das Wachstum von Aspergillus im Cerumen und Dentritus innerhalb des äußeren Gehörganges führt zu einer Entzündung, die durch schmierige, fötide Sekretion, schmerzhafte Schwellung oder Juckreiz charakterisiert ist [31,32].
Inhalation von Aspergillus-Sporen

Kolonisation

Gesunde

Immunabgeschwächte

präformierte Lungenkavernen

Asthma

meistens invasive pulmonale Aspergillose

keine Krankheitsmanifestation

Aspergillum

allergische pulmonale Aspergillose

1.5 Diagnostik

Für die Labordiagnostik stehen mikroskopische, kulturelle, serologische und molekularbiologische Methoden zur Verfügung [36].

Untersuchungsmaterial

Mikroskopischer Erregernachweis

Kultureller Erregernachweis

Antigennachweis

Der Latex-Agglutinationstest ist allgemein verfügbar. Er erfordert den Einsatz von monoklonalen Antikörpern mit einer Spezifität für die β-D-Galactofuranosid-Seitenkette des Aspergillus-Galactomannans. Der Test ist zwar spezifisch, zeigt aber eine geringe diagnostische Sensitivität von ca. 30% [37].

Antikörpernachweis

Der Nachweis von aspergillusspezifischen IgG- und IgE-Antikörper erfolgt mittels indirekten Hämagglutinationstests oder Enzymimmunoassay. Beide Methoden weisen in erster Linie auf das Vorliegen einer allergisch bronchopulmonalen Aspergillose oder eines Aspergilloms hin und beide haben eine geringe diagnostische Spezifität und Sensitivität. Es kann vor allem bei immununsupprimierten Patienten, infolge gestörter Antikörperbildung, der Titeranstieg ausbleiben [42].

Molekularbiologische Diagnostik

Um eine invasive Aspergillose mittels PCR möglichst früh zu diagnostizieren wird der Einsatz von BAL-Proben als viel versprechend behauptet [43]. Der Grund dafür ist, dass die meisten Aspergillus-Infektionen primäre bronchopulmonale Infektionen sind, die nur sekundär, abhängig vom Immunstatus des Hosts, zu einer hämatogenen Ausstrudung führen. Da Aspergillen ubiquitär vorkommende Pilze sind, stellen Kontaminationen den wichtigsten Nachteil bei der Durchführung einer PCR mit BAL-Proben dar [44]. In der Literatur wurde eine Rate von 20% falsch positiven Ergebnissen aus Sputum Proben beschrieben.

Die PCR mit Vollblut- oder Serum-Proben zeigt sich gegenüber der mit BAL-Proben überlegen. Vollblut und Serum sind vor allem einfacher zu gewinnen. In verschiedenen Studien wurde gezeigt, dass eine solche PCR sehr große diagnostische Spezifität und Sensitivität hat. Vor allem bei PCR mit Vollblutproben, liegen Sensitivität und negativer Vorhersagewert bei 100%. Für
PCR mit Serumproben wurde von 55-70%iger Sensitivität und 23-53%igem negativem Vorhersagewert berichtet [45,46,47,48,49].

Tabelle 4: PCR-Ergebnisse aus Serum- und Blutproben in verschiedenen Studien für den Nachweis der invasiven Aspergillose

<table>
<thead>
<tr>
<th>Quellenangabe</th>
<th>Probe</th>
<th>Fälle</th>
<th>Erhebung</th>
<th>Spezifität in %</th>
<th>Sensitivität in %</th>
<th>neg. Vorhersagewert</th>
<th>pos. Vorhersagewert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yamakami [45]</td>
<td>Serum</td>
<td>20</td>
<td>retrospektiv</td>
<td>100</td>
<td>70</td>
<td>23</td>
<td>100</td>
</tr>
<tr>
<td>Einsele et al [46]</td>
<td>Blut</td>
<td>13</td>
<td>retrospektiv</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Hebart et al [48]</td>
<td>Blut</td>
<td>8</td>
<td>prospektiv</td>
<td>56</td>
<td>100</td>
<td>100</td>
<td>22</td>
</tr>
<tr>
<td>Raad et al [47]</td>
<td>Blut</td>
<td>18</td>
<td>prospektiv</td>
<td>100</td>
<td>57-100</td>
<td>92-100</td>
<td>100</td>
</tr>
</tbody>
</table>

1.6 Candida albicans

Neben Aspergillus steht auch Candida als weitverbreiteter opportunistischer Erreger mit humanmedizinischer Bedeutung im Vordergrund [72].

Mikroskopische Merkmale
Die ca 4-8µm großen Sprosspilze der Gattung Candida können grampositive ovale, rundliche oder längliche Einzelzellen sein. Sie sind in der Lage lange verzweigte Strukturen, die Pseudomycelen, zu bilden. Für C. albicans ist die Bildung von Chlamydosporen charakteristisch. Es handelt sich um runde, dickwandige Zellen, die der Austrocknung besser widerstehen [11,12,13].

Makroskopische Merkmale
Anzucht erfolgt leicht auf verschiedenen Nährböden. Sie wachsen z. B. gut auf Sabaround-Glucose-Agar bei 37°C, wobei sich nach 1-2 Tagen weiße, porzellanartige Kolonien bilden [11,12,13].

Pathogenese
Die meisten Candida-Infektionen sind endogenen Ursprungs und die Sprosspilze erlangen eine pathogene Bedeutung erst bei einer Störung der Abwehrmechanismen des Wirts.
Diese Abwehrmechanismen sind noch nicht völlig aufgeklärt. Einer Candidiasis stehen folgende Barrieren entgegen:
- Haut und Schleimhaut
- zelluläre und humorale Abwehrmechanismen.

Die Störung dieser Barrieren kann die Folge einer Therapie mit Breitspektrumantibiotika oder mit Immunsuppressiva sein. Sie kann auch Folge einer hormonellen Umstellung sein, wie das der Fall bei einer Schwangerschaft ist oder Folge einer Erkrankung wie Diabetes mellitus.

Klinik
Oberflächliche Candida-Infektionen manifestieren sich u.a. als Mundsoor, Ösophagitis, Zystitis, Pyelitis, Vaginitis, Balanitis oder als Onychomykose. Eine hämatogene Streuung kann im Prinzip jedes Organ oder Organsystem

Diagnostik

Für die Diagnose stehen mikroskopische, kulturelle und molekularbiologische Methoden zu Verfügung.

Eine Candida-Endomykose gilt bis jetzt als gesichert, wenn mindestens eines der folgenden Kriterien erfüllt ist:

- mikroskopischer oder kultureller Erregernachweis in normalerweise sterilen Flüssigkeiten
- kultureller oder histologischer Erregernachweis in Gewebebiopsien
- wiederholter Erregernachweis in Blutkulturen zu verschiedenen Zeitpunkten.

Zusätzlich zu den o.g. Nachweismethoden und obwohl sie noch nicht die gleiche Aussagekraft haben, nehmen in der Diagnostik der Candida-Infektionen folgende Nachweisverfahren eine besondere Stellung ein:

- Antigennachweis: zum Nachweis des hitzestabilen Antigens oder des Mannan-Antigens mittels Latex-Agglutination
- Antikörpernachweis: häufig verwendete Testverfahren sind die indirekte Hämagglutination, die indirekte Immunfluoreszenz und das Enzymimmunoassay
- Metabolitenachweis: im Serum können D-Mannose und D-Arabinitol als Stoffwechselprodukte von Candida nachgewiesen werden
- PCR zum Nachweis von Candida-DNA.

Der regelmäßige Einsatz dieser Nachweisverfahren kann die Überwachung von Risiko-Patienten unterstützen oder das Endomykose-Risiko erkennen [51,73].

1.7 Therapie

Da Pilzinfektionen, vor allem in ihrer invasiven Form, bei Patienten in Neutropenie und nach Knochenmarktransplantation zunehmend eine wichtige
Komplikationsquelle darstellen, steht die Optimierung der Therapie und hauptsächlich der effektiven Prophylaxe solcher Infektionen an erster Stelle. Zur Verfügung stehen u.a. die Azol-Antimykotika Fluconazol, Itraconazol und Voriconazol sowie die Polyen-Antibiotika Amphotericin B, Natamycin und Neomycin.

Ergebnisse erzielte als die Standard-Therapie mit Amphotericin B. Die Erkrankung sprach besser auf das Triazol-Derivat an, die Überlebensrate war besser und schwere Nebenwirkungen traten nicht so oft auf [54,55].
Bei einer Aspergillose in den Bronchien oder in Kavernen hat die systemische antimykotische Therapie keine Wirkung. Im Falle eines Aspergilloms in der Lunge und bei nicht stark eingeschränkter Lungenfunktion kann eine Lobekтомie indiziert sein [56].

1.8 Prävention und Prophylaxe
Verschiedene präventive Strategien und prophylaktische Maßnahmen wurden in den letzten Jahren diskutiert und eingesetzt.
1.9 Fragestellung und Zielsetzung
Das Ziel dieser Arbeit ist, verschiedene Methoden zur Amplifikation und Detektion von Aspergillus-DNA im Blut von hämatologischen Patienten zu vergleichen.
Verglichen wurden drei Testverfahren, nämlich PCR-ELISA, Light-Cycler und die DNA Test Strips von Roche.
2. Patienten, Material und Methoden

2.1 Patienten
Zur effektiven Prophylaxe vor Pilzinfektionen erhielten Patienten der Kontrollgruppe das Azolantimykotikum Fluconazol (200mg/Tag) und das Polyenantibiotikum Amphotericin B (4mal tgl. 5mg/Tag). Im Falle von Fieber in der neutropenischen Phase, das auf Breitbandantibiotika auch 120 Stunden nach Therapiebeginn nicht ansprach, erhielten die Patienten für mindestens 7 Tagen AmBisome (3mg/kg KG).

2.2 Materialien

2.2.1 Untersuchungsmaterial
Die molekularbiologische Diagnostik wurde an EDTA antikoagulierten Blutproben durchgeführt. Die Probennahme erfolgte zweimal pro Woche bis zum Tag 100 nach der Stammzell-Transplantation. Die Extraktion der Pilz-DNA erfolgte am Tag der Abnahme. Anschließend wurden die extrahierten DNA-Proben bei −20°C tiefgefroren. Die Aufarbeitung der Kontrollproben erfolgte nach Tag 100, d.h. nachdem die Patienten aus der Studie waren, um eine Einflussnahme auf das Management der Therapie dieser Gruppe durch ein PCR-Resultat zu vermeiden.
2.2.2 Geräte

Biofuge 13 Heraeus, Hanau
Centrifuge 5415R Eppendorf, Hamburg
Drucker LaserJet III Hewlett Packard
ELISA-Reader Rainbow SLT, Crailsheim
ELISA-Rüttler MSI
LC Carousel Centrifuge Roche Diagnostics GmbH, Mannheim
Light-Cycler Roche Diagnostics GmbH, Mannheim
PCR-Prozessor GeneAmp 2400 Perkin Elmer, USA
GeneAmp 9600 Perkin Elmer, USA
Wärmeschrank Bachofer, Reutlingen

2.2.3 Verbrauchsgegenstände

DNA Detection Test Strips No.1 965 484 Boehringer, Mannheim
Pipetten Variopipetten Eppendorf, Hamburg
Light-Cycler Kit No.3 003 248 Roche Diagnostics GmbH, Mannheim
Lyticase SIGMA, Deisenhofen
Lyticase „rekombinant“ SIGMA, Deisenhofen
Oligonukleotiden Roth, Karlsruhe
PCR-ELISA DetectionsKit No.1 636 111 Roche Diagnostics GmbH, Mannheim
2.3 Methoden

2.3.1 DNA-Extraktion aus EDTA-Blut
Beim ersten Schritt der DNA-Extraktion werden die Erythrozyten lysiert. Zur Lyse wird das Blut mit 45 ml Red cell lysis buffer (RCLB) versetzt.
RCLB ist eine hypotone Salzlösung und weist folglich eine hämolysierende Wirkung auf. Im hypotonischen Medium strömt Flüssigkeit in den Erythrozyten ein bis ihre Membran platzt.

Tabelle 5: Zusammensetzung des RCLB.

<table>
<thead>
<tr>
<th>RCLB</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris pH 7,6</td>
<td>10 mM</td>
</tr>
<tr>
<td>Magnesiumchlorid</td>
<td>5 mM</td>
</tr>
<tr>
<td>Natriumchlorid</td>
<td>10 mM</td>
</tr>
<tr>
<td>Lagerung bei 4°C</td>
<td></td>
</tr>
</tbody>
</table>

Die mit RCLB-versetzte Blutprobe wird 10min lang auf eine Horizontalwippe bei Raumtemperatur inkubiert und anschließend 10min bei 3000U/min zentrifugiert. Der Überstand wird abgegossen und das Pellet wird erneut in 45ml RCLB aufgenommen. Die Prozedur wird insgesamt zweimal wiederholt.
Weiter wird das Pellet zur Lyse der Leukozyten mit 1ml White cell lysis buffer (WCLB) versetzt.
Tabelle 6: Zusammensetzung des WCLB.

<table>
<thead>
<tr>
<th>WCLB</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris pH 7,6</td>
<td>10 mM</td>
</tr>
<tr>
<td>EDTA pH 8</td>
<td>10 mM</td>
</tr>
<tr>
<td>Natriumchlorid</td>
<td>50 mM</td>
</tr>
<tr>
<td>SDS</td>
<td>0,2 %</td>
</tr>
<tr>
<td>Proteinase K</td>
<td>200 µg/ml</td>
</tr>
<tr>
<td>Lagerung bei –20°C</td>
<td></td>
</tr>
</tbody>
</table>

Die Probe wird für 45 min bei 65°C inkubiert und danach 10 min lang bei 4000 U/min zentrifugiert. Der Überstand wird dekantiert. Zum Pellet werden nun 500 µl rekombinante Lyticase gegeben und für 45 min bei 37°C inkubiert. Lyticase bewirkt die Bildung von kugeligen, vergrößerten Zellen, den Sphäroblasten, deren Wand weitgehend verdaut ist.

Tabelle 7: Zusammensetzung des Lyticase-Puffer

<table>
<thead>
<tr>
<th>Lyticase-Puffer</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris pH 7,5</td>
<td>50 mM</td>
</tr>
<tr>
<td>EDTA</td>
<td>1 mM</td>
</tr>
<tr>
<td>β-Mercaptoethanol</td>
<td>0,2 %</td>
</tr>
<tr>
<td>Rekombinante Lyticase</td>
<td>1 U/100µl</td>
</tr>
<tr>
<td>Lagerung bei –20°C</td>
<td></td>
</tr>
</tbody>
</table>

Anschließend wird die Probe 10 min bei 400 U/min zentrifugiert, der Überstand wird abgegossen.

Zur Sphäroblastenlyse und Isolierung von DNA wird das Pellet zunächst in 180 µl ATL-Puffer und 20 µl Proteinase K aufgenommen und für 20 min bei 56°C inkubiert. Proteinase K ist endolytische Protease, die zur Inaktivierung von DNasen bei der Isolierung von DNA eingesetzt wird. Darauf wird die Probe mit
200µl AL-Puffer versetzt und für 10min bei 70 °C inkubiert. Anschließend werden 200µl 100%iges Ethanol dazugegeben.

Die gesamte Lösung wird nun auf Qiagen-Säulen aufgetragen und bei 9000U/min 1min lang zentrifugiert. Diese Qiagen-Säulen enthalten eine Silicamembran, die in der Lage ist, DNA während der Zentrifugation zu binden. Die an der Silicamembran gebundene DNA wird nun in zwei Schritte gewaschen und zentrifugiert, erst bei 9000U/min für 1min und dann bei 13000U/min für 3min. Verwendet werden zwei verschiedene Waschpuffer, AW1 bzw. AW2, die die Reinheit der eluierten DNA signifikant verbessern. Zuletzt wird die DNA von der Silicamembran abgelöst. In einem ersten Schritt wird mit 50µl AE-Puffer eluiert und bei 9000U/min 1min lang zentrifugiert. In einem zweiten Schritt wird wiederum mit 50µl AE-Puffer eluiert und bei 13000U/min für 3min zentrifugiert. Die DNA liegt nun im Eluat gelöst vor.

2.3.2 Polymerase-Kettenreaktion, PCR

Amplifikation der Pilz-DNA zum Nachweis im ELISA
Zum Ansatz einer PCR benötigt man zunächst den sogenannten Mastermix. Dieses Reagenz enthält folgende Bestandteile, die eine spezifische Amplifikation der Zielsequenz erlauben:
1. PCR-Puffer, zur Erhaltung des richtigen pH-Werts und der Salzkonzentrationen.
2. Mg²⁺, als Enzym-Cofaktor für die Taq-Polymerase.
3. Digoxigenin-markierte Nukleotide: dig-dNTP.
4. Zwei Primer: a) AFUMSPEZ: 5´>ACT GGC TGT GGG GGG AAC <3´
 b) FUNG 2: 5´>CCG ATC CCT ATG CGG CAT <3´
5. Taq-Polymerase, als Enzym für die Replikation von DNA.
Tabelle 8: Zusammensetzung von PCR-Mastermix

<table>
<thead>
<tr>
<th>PCR-Mastermix</th>
<th>Konzentration</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>-</td>
<td>25,7µl</td>
</tr>
<tr>
<td>PCR-Puffer, 10x</td>
<td>1x</td>
<td>5,0µl</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1mM</td>
<td>2,0µl</td>
</tr>
<tr>
<td>dig-dNTP</td>
<td>200µM</td>
<td>5,0µl</td>
</tr>
<tr>
<td>AFUMSPEZ</td>
<td>25pM</td>
<td>10,0µl</td>
</tr>
<tr>
<td>FUNG 2</td>
<td>25pM</td>
<td>10,0µl</td>
</tr>
<tr>
<td>Taq-Polymerase</td>
<td>2,5U</td>
<td>0,3µl</td>
</tr>
</tbody>
</table>

Tabelle 9: Zusammensetzung von PCR-Puffer.

<table>
<thead>
<tr>
<th>PCR-Puffer</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris-HCl</td>
<td>100mM</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>15mM</td>
</tr>
<tr>
<td>KCl</td>
<td>500mM</td>
</tr>
</tbody>
</table>

Das Endvolumen für die PCR beträgt 50µl. 10µl aus der extrahierten DNA-Probe werden in einem Röhrchen mit 40µl PCR-Mastermix pipettiert. Der Prozess wird in einem Thermocycler GeneAmp 9600 oder GeneAmp 2400 von Perkin Elmer durchgeführt.

Temperaturprofil der PCR mit 34 Zyklen:

Initialdenaturierung 94°C 4min
Denaturierung 94°C 30s
Annealing 62°C 1min
Extension 72°C 2min
Terminale Extension 72°C 5min
2.3.3 PCR-ELISA

Zur Detektion des Digoxigenin-markierten PCR-Produktes wird nun die ELISA eingesetzt.

Die für die PCR-ELISA notwendigen Reagenzien werden vom Roche Kit verwendet. Dieses enthält:
- Digoxigenin-markiertes Kontroll-PCR-Produkt, aus dem eine Verdünnungsreihe hergestellt wird: 1:1, 1:10 und 1:100
- Biotin-markierte Kontrollprobe
- Denaturierungslösung, die NaOH enthält
- Hybridisierungslösung
- Anti-Digoxigenin-Peroxidase-Konjugat zusammen mit Konjugationspuffer
- ABTS-Tabletten zusammen mit dem Puffer, in dem die Tabletten aufgelöst werden
- Waschtabletten
- Mikrotiterplatten und
- Abdeckfolien

Zusätzlich werden Biotin-markierte Oligonukleotiden benötigt:
A. fumigatus : 5´>CAT GGC CTT CAC TGG CTG TGG GGG GAA CCA
Candida: 5´>GGA CCA TCG TAA TGA TTA ATA GGG ACG

Gleich danach werden die Proben durch Zugabe von 20µl alkalischer Lösung denaturiert und für 10min bei Raumtemperatur inkubiert.

Zur Hybridisierung werden nun 200µl Hybridisierungslösung dazugegeben. Diese enthält die Biotin-markierten Oligonukleotiden.
Anschließend werden 200µl aus dem Gesamtvolumen in der Mikrotiterplatte pipettiert. Diese Mikrotiterplatte ist mit Streptavidin beschichtet, einem kleinen bakteriellen Protein, das sich mit hoher Affinität an Biotin bindet. Nun wird die Platte bei 40°C für 3h inkubiert.
2.3.4 Light-Cycler

Zum Ansatz einer Light-Cycler-PCR benötigt man 5µl DNA-Probe und 15µl Mastermix.

Tabelle 10: Light-Cycler-Sonden.

<table>
<thead>
<tr>
<th>Kanal</th>
<th>Wellenlänge</th>
<th>Farbstoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>530</td>
<td>Fluoreszein</td>
</tr>
<tr>
<td>2</td>
<td>640</td>
<td>LC Red 640</td>
</tr>
</tbody>
</table>

Tabelle 11: Light-Cycler PCR-Mastermix.

<table>
<thead>
<tr>
<th>LC-Mastermix</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>3,6µl</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>2,4µl</td>
</tr>
<tr>
<td>Primer</td>
<td>1,0µl</td>
</tr>
<tr>
<td>Fluoreszein</td>
<td>0,5µl</td>
</tr>
<tr>
<td>LC Red 640</td>
<td>0,5µl</td>
</tr>
<tr>
<td>LC-FastStart-Enzym</td>
<td>2,0µl</td>
</tr>
</tbody>
</table>

Temperaturprofil von Light-Cycler mit 45 Zyklen:

- Initialdenaturierung: 95°C, 9min
- Denaturierung: 95°C, 3s
- Annealing: 54°C, 15s
- Schmelzkurve: 50°C, 20s
- Abkühlphase: 40°C, 3min
Quantifizierung der Zielsequenz im Light-Cycler-System

Um das Gerät zu kalibrieren, stehen fünf Verdünnungsreihen des Aspergillus fumigatus in den Konzentrationen 10^1 bis 10^5 CFU, entsprechend 100fg bis 1ng DNA, als Standards zur Verfügung. Deren Fluoreszenz-Signal wird in halblogarithmischer Darstellung über der Messzyklus-Zahl dargestellt (Abb. 1). Für jede Konzentration wird diejenige Messzyklus-Zahl ermittelt, an der sich das Signal aus dem Rauschen erhebt. Auf diese Weise erhält man fünf als Crossing-Point bezeichnete Wertpaare, die vom Gerät in einem Diagramm dargestellt werden, in dem die ermittelte Messzyklus-Zahl über dem Logarithmus der Konzentration aufgetragen wird (Abb. 2). Daraus werden die Parameter der linearen Progression bestimmt, mit deren Hilfe die Konzentration in der zu messenden Probe inter- bzw. extrapoliert wird (Abb. 3).

Das Detektionslimit liegt bei diesem Verfahren bei 5 bis 10 CFU/ml Blut, also 50 bis 100fg.

Abb. 1: Logarithmische Darstellung der Fluoreszenz über der Zyklusanzahl
2.3.5 DNA Detection Test Strips

Für den DNA-Nachweis mit den Test-Strips werden benötigt 4,5µl des Digoxigenin-markierten PCR-Produktes, hybridisiert mit 0,5µl Biotin-markierten Oligonukleotiden.

Tabelle 12 : Zusammensetzung von PCR-Mix für die Test-Strips

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR-Produkt</td>
<td>4,5µl</td>
</tr>
<tr>
<td>Oligonukleotiden</td>
<td>0,5µM</td>
</tr>
<tr>
<td></td>
<td>0,5µl</td>
</tr>
</tbody>
</table>
Diese 5µl Hybridisierungslösung werden im Thermocycler zunächst bei 95°C für 5min denaturiert, anschließend bei 2000g zentrifugiert und schließlich wieder im Thermocycler 30min lang bei 40°C inkubiert.

Die Probe kann nun auf dem Test-Strip (Abb.4) appliziert werden. Ein solches Strip besteht aus:

a. dem Teil, das im chromatographischen Puffer eingetaucht wird
b. einem rot-gefärbten Polster, auf dem Anti-Digoxigenin-Monoklonale-Antikörper zu finden sind und die mit Gold-Partikeln konjugiert sind
c. dem Bereich, auf dem die Probe appliziert wird
d. einer Membran aus Nitrozellulose, die zur Immobilisierung von Digoxigenin-markiertem DNA eingesetzt wird. An dieser Membran sind zwei Linien verankert. Es handelt sich um eine Streptavidin-Linie, ein Protein mit hoher Affinität zur Biotin und um eine Linie mit polyklonalen Antikörpern
e. dem Absorptionspolster.

Abb. 4: Aufbau des Test-Strips
Das Test-Strip wird im chromatographischen Puffer eingetaucht und auf einer sauberen Fläche gelegt (Abb. 5).

Abb. 5: Verwendung des Test-Strips

Der Puffer fließt den Strip entlang zunächst durch das rote Polster und nimmt das anti-DIG-Gold-Konjugat mit. Weiter, an der Applikationsstelle, bindet sich die DNA an das Konjugat und strömt Richtung Nitrozellulose-Membran. Während die gebundene DNA dem Streptavidin entlang fließt, bindet diese das Biotin, und die konjugierten Gold-Partikel bilden hier eine erste rote Linie. Das ungebundene Anti-DIG-Gold-Konjugat wandert weiter durch das Streptavidin, bindet sich nun an den polykonalen Antikörper und bildet eine zweite rote Linie. Diese Linie dient als Kontrolle der chromatographischen Migration. Erscheint sie nicht, so ist das Resultat ungültig (Abb. 6).

Abb. 6: Auswertung des Test-Strips
3. Ergebnisse

3.1 PCR-ELISA

Im Rahmen dieser Arbeit wurden 507 Blutproben von 29 hämatologischen Patienten retrospektiv mit Hilfe der PCR-ELISA auf Aspergillus-DNA untersucht.

Tabelle 13: Demografische Daten der Patienten

<table>
<thead>
<tr>
<th>Anzahl der Patienten</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patienten mit dokumentierter Aspergillose</td>
<td>1 (3,5%)</td>
</tr>
<tr>
<td>Patienten mit Verdacht auf Aspergillose</td>
<td>6 (22,5%)</td>
</tr>
<tr>
<td>Patienten ohne dokumentierte Aspergillose</td>
<td>22 (76,0%)</td>
</tr>
<tr>
<td>Geschlecht</td>
<td></td>
</tr>
<tr>
<td>weiblich</td>
<td>13 (45,0%)</td>
</tr>
<tr>
<td>männlich</td>
<td>16 (55,0%)</td>
</tr>
<tr>
<td>Mittleres Alter (in Jahren)</td>
<td>33</td>
</tr>
<tr>
<td>Erkrankungen</td>
<td></td>
</tr>
<tr>
<td>Leukämien</td>
<td>17 (58,6%)</td>
</tr>
<tr>
<td>Lymphome</td>
<td>7 (24,0%)</td>
</tr>
<tr>
<td>solide Tumoren</td>
<td>1 (0,40%)</td>
</tr>
<tr>
<td>Andere</td>
<td>5 (17,0%)</td>
</tr>
<tr>
<td>Therapeutischer Einsatz</td>
<td></td>
</tr>
<tr>
<td>Transplantation Peripherer Blutstammzellen (PBSCT)</td>
<td>8 (28,0%)</td>
</tr>
<tr>
<td>Allogene Knochenmarktransplantation (KMT)</td>
<td>21 (72,0%)</td>
</tr>
<tr>
<td>Prophylaktische antymykotische Therapie</td>
<td>29 (100 %)</td>
</tr>
<tr>
<td>Empirische antymykotische Therapie mit Ambisome</td>
<td>10 (35,0%)</td>
</tr>
</tbody>
</table>
Abb. 7: Patienten-Gruppen mit PCR-positiven und -negativen Ergebnissen. **IA**: dokumentierte invasive Aspergillose, **mögliche IA**: Verdacht auf Aspergillose, **keine IA**: keine nachgewiesene Aspergillose

Legende Tabellen 10-21

Pat: Patienten nach allogener Knochenmarktransplantation (KMT) oder nach Transplantation peripherer Blutstammzellen (PBSCT).

Alter: Alter des Patienten im Beobachtungszeitraum, angegeben in Jahren.

Diag(nose):
- **AA**: Aplastische Anämie
- **BDA**: Blackfan Diamond Anämie
- **ALL**: Akute Lymphatische Leukämie
- **AML**: Akute Myeloische Leukämie
- **CLL**: Chronische Lymphatische Leukämie
- **CML**: Chronische Myeloische Leukämie
- **MDS**: Myelodysplastisches Syndrom
- **Osteop**: Osteopetrosis
- **Plasm**: Plasmozytom
- **Rhabdom**: Rhabdomyosarkom

Tag: Tag nach SCT.
PCR: In vitro Amplifikation eines Genabschnittes ribosomaler Pilz-
RNA mit Hilfe der Polymerase-Kettenreaktion und anschließender
Hybridisierung im ELISA: + Test durchgeführt
n.d. Test nicht durchgeführt

P-E-a: PCR-Ergebnis für Aspergillus: + positives Testergebnis mit
cut-off
: - negatives Testergebnis

Detektionslimit: 5-10 CFU/ml Blut.

Um positive Testergebnisse mit hoher Wahrscheinlichkeit als solche
herausfiltern zu können, wird als Schwellwert hierfür der dreifache Mittelwert
aller negativen Testergebnisse zu Grunde gelegt. In den folgenden Tabellen
bedeutet ein Wert von 1 also, dass dieser Schwellwert erreicht wurde.
Es sei \(c \) die photometrisch errechnete Konzentration einer PCR-Probe.
Der dreifache Mittelwert, auch als Cut-off-Wert bezeichnet, errechnet sich
ausschließlich unter Berücksichtigung der negativen Testergebnisse zu:
\[
c_{\text{off}} = 3 \times \frac{\sum c_i}{N}
\]
mit \(N \) als Anzahl dieser Testergebnisse.
Somit ergibt sich der Zahlenwert in den Tabellen zu \(c/c_{\text{off}} \).

P-E-c: PCR-Ergebnis für Candida: + positives Testergebnis
: - negatives Testergebnis

GM: Galactomannan-Antigentest: + positives Testergebnis
: - negatives Testergebnis
: n.d. Test nicht durchgeführt
: n.k Testergebniss nicht bekannt

Aspergillose: + nachgewiesene Aspergillose
- keine Aspergillose

Pilztherapie: + Empirische antimykotische Therapie mit AmBisome
- keine empirische Therapie mit AmBisome.
Patient mit dokumentierter Aspergillose

Die Diagnose einer Aspergillose erforderte:

• den histopathologischen und kulturrellen Erregernachweis aus Gewebeproben
• den Nachweis von typischen Infiltraten in CT- oder Röntgen-Thoraxaufnahmen in Kombination mit dem Nachweis des Aspergillus in der bronchoalveolären Lavage.

Tabelle 14: Patient 407 mit einer dokumentierten Aspergillose

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td></td>
<td></td>
<td></td>
<td>n.d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td></td>
<td></td>
<td>n.d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td>+</td>
<td></td>
<td>n.d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
<td>n.d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td>+</td>
<td></td>
<td>n.d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>n.d.</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>n.d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>+</td>
<td>+/-1.8</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
<td>n.d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>n.d.</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>n.d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>+</td>
<td>-</td>
<td>n.d.</td>
<td>+</td>
<td>+</td>
<td></td>
<td>n.d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>n.d.</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>n.d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>+</td>
<td>+/-7.9</td>
<td>-</td>
<td>n.d.</td>
<td>+</td>
<td></td>
<td>n.d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>n.d.</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>n.d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>n.d.</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>n.d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
<td>n.d.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In diesem Fall wurde die Diagnose der invasiven Aspergillose am Tag 5 nach SCT gestellt. Die PCR fiel zum ersten mal am Tag 20 positiv auf. Im Verlauf fiel die PCR ein zweites mal – am Tag 36 – positiv auf, wobei photometrisch eine höhere Pilzkonzentration festgestellt werden konnte. Eine Therapie mit

Abb. 8: Patient mit dokumentierter Aspergillose

Patienten mit Verdacht auf Aspergillose
Der Verdacht auf einer invasiven Pilzinfektion wurde gestellt:

- aufgrund der klinischen Symptomatik, den typischen Infiltraten in CT- und Röntgen-Thoraxaufnahmen und dem Fehlen eines positiven histopathologischen und kulturellen Erregernachweises
- infolge des Auftretens einer Sinusitis mit oder ohne mukösem Eiter/ Destruktion des angrenzenden Knochens/ dumpfem Schmerz/ Verdickung der Mukosa und des Fehlens von positiven histopathologischen und kulturellen Befunden unter Ausschluss einer bakteriellen Infektion
- aufgrund typischen Läsionen in CT und Ultraschall von Leber und Milz oder verdächtigen ophthalmoskopischen Befunden mit negativen Blutkulturen für den Fungus.
Tabelle 15: Patient 291 mit Verdacht auf Aspergillose

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>n.d.</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>möglich</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>n. +</td>
<td>/7.8</td>
<td>/3.1</td>
<td>-</td>
<td>möglich</td>
<td>+</td>
<td>-</td>
<td>möglich</td>
<td>+</td>
</tr>
<tr>
<td>45</td>
<td>n. +</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>möglich</td>
<td>-</td>
<td>-</td>
<td>möglich</td>
<td>-</td>
</tr>
</tbody>
</table>

Abb. 9: Patient mit Verdacht auf Aspergillose
Tabelle 16: Patient 412 mit Verdacht auf Aspergillose

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>möglich</td>
<td>+</td>
<td>n.d.</td>
<td>möglich</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td>möglich</td>
<td>+</td>
<td>n.d.</td>
<td>möglich</td>
<td>+</td>
</tr>
<tr>
<td>15</td>
<td>n.d.</td>
<td>-</td>
<td>möglich</td>
<td>+</td>
<td>n.d.</td>
<td>möglich</td>
<td>+</td>
<td>n.d.</td>
<td>möglich</td>
</tr>
<tr>
<td>29</td>
<td>+</td>
<td>+/3.4</td>
<td>-</td>
<td>-</td>
<td>möglich</td>
<td>+</td>
<td>n.d.</td>
<td>möglich</td>
<td>+</td>
</tr>
<tr>
<td>32</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>möglich</td>
<td>+</td>
<td>n.d.</td>
<td>möglich</td>
<td>+</td>
</tr>
<tr>
<td>100</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td>möglich</td>
<td>+</td>
<td>n.d.</td>
<td>möglich</td>
<td>+</td>
</tr>
</tbody>
</table>

Im Falle des Patienten 412 wurde der Verdacht auf Aspergillose am Tag 11 gestellt. Aspergillus-DNA konnte erst am Tag 29 nachgewiesen werden. Die Pilztherapie lief zwischenzeitlich 19 Tage.

Abb. 10: Patient mit Verdacht auf Aspergillose
Bei Patient 413 war sowohl die PCR als auch der Antigentest vor und kurz nach der Verdachtsstellung einer Aspergillose am Tag 13 negativ. Am Tag 35 war das PCR-Ergebnis unter AmBisome-Therapie positiv.
Tabelle 18: Patient 415 mit Verdacht auf Aspergillose

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td>+/9.6</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>n.d.</td>
<td></td>
<td>n.d.</td>
<td>möglich</td>
<td>-</td>
<td>n.d.</td>
<td>-</td>
<td>möglich +</td>
<td>+</td>
</tr>
<tr>
<td>16</td>
<td>+</td>
<td>+/1.2</td>
<td>n.d.</td>
<td>möglich</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>20</td>
<td>+</td>
<td>+/2.1</td>
<td>n.d.</td>
<td>möglich</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>29</td>
<td>+</td>
<td>+/1.1</td>
<td>n.d.</td>
<td>möglich</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>42</td>
<td>+</td>
<td>-</td>
<td>n.d.</td>
<td>möglich</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>78</td>
<td>+</td>
<td>-</td>
<td>n.d.</td>
<td>möglich</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

Abb. 12: Patient mit Verdacht auf Aspergillose
Tabelle 19: Patient 297 mit Verdacht auf Aspergillose

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n.d.</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>+/>20</td>
<td>-</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>n.d.</td>
<td>n.d.</td>
<td>möglich</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td>möglich</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>n.d.</td>
<td>-</td>
<td>möglich</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>+</td>
<td>-</td>
<td>+/1.0</td>
<td>n.d.</td>
<td>möglich</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>38</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>möglich</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td>möglich</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Im Falle des Patienten 297 kam es gleich am Tag 2 zu einem positiven PCR-Ergebnis, mit einer sehr hohen photometrischen Pilzkonzentration. Die Verdachtsdiagnose einer Aspergillose wurde am Tag 10 gestellt und sofort mit der Therapie begonnen. Im Verlauf kam es zu keinem weiteren positiven PCR-Ergebnis. Der Antigentest blieb nach wie vor negativ.

Abb. 13: Patient mit Verdacht auf Aspergillose

- **PCR-positiv**
- **PCR-negativ**
- **GM-negativ**
- **kein kultureller Erregernachweis**
- **Neutropenie**
- **CT mit pulmonalen Infiltraten**
- **Röntgen mit Pneumoniezeichen**
- **Fieber**
- **keine GvHD**
- **GvHD**
- **Verdachtsstellung einer invasiven Aspergillose**
- **Pilztherapie**
- **Tod durch interstitielle Pneumonitis**

- 47 -
Tabelle 20: Patient 411 mit Verdacht auf Aspergillose

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>40</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>+</td>
<td>-</td>
<td>+/1.8</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>+</td>
<td>-</td>
<td>+/1.7</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>46</td>
<td>+</td>
<td>+/1.0</td>
<td>-</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>82</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>möglich</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

![Diagramm: Patient mit Verdacht auf Aspergillose](image)

Abb. 14: Patient mit Verdacht auf Aspergillose
Patienten ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis

Von den 22 Patienten, die anhand des klinischen Bildes und der diagnostischen Untersuchungen keinen Anhaltspunkt für eine Aspergillose gaben, fiel bei 12 von ihnen die PCR-ELISA positiv auf.

Im Falle eines Patienten waren 4 Proben im PCR-ELISA-Verfahren positiv. Bei 5 Patienten konnten 2 Proben als positiv erwiesen werden und bei 6 Patienten war eine Probe positiv.

Tabelle 21: Patient 286 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n.d.</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>+</td>
<td>+/1.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>91</td>
<td>+</td>
<td>+/3.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>95</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 22: Patient 432 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>+</td>
<td>+/1.4</td>
<td>-</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>93</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- 49 -
Patient 432 entwickelte in der Neutropenie Fieber. Die am gleichen Tag durchgeführte PCR war positiv, die Computertomographie zeigte keine pulmonale Infiltrate.

Tabelle 23: Patient 425 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n.d.</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>+</td>
<td>+/2.8</td>
<td>-</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>n.d.</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>+</td>
<td>-</td>
<td>+/1.2</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In der Neutropenie hatte Patient 425 ein einziges für Aspergillus-DNA positives PCR-Ergebnis.

Tabelle 24: Patient 422 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n.d.</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>+</td>
<td>+/1.7</td>
<td>-</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>+</td>
<td>+/1.1</td>
<td>-</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Patient 422 mit positiven Ergebnissen in der PCR wies keine für Aspergillose typische Symptomatik auf und die weiteren diagnostischen Verfahren gaben keinen Anhalt für eine invasive Pilzinfektion.
Tabelle 25: Patient 409 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n.d.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>+</td>
<td>+/2.3</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>n.d.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>+</td>
<td>+/6.9</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>+</td>
<td>-</td>
<td>+/1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Patient 409 hatte in der Neutropenie zwei positive PCR-Ergebnisse für die Aspergillus-DNA.

Tabelle 26: Patient 305 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n.d.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>+</td>
<td>+/2.0</td>
<td></td>
<td></td>
<td>n.d.</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>+</td>
<td>+/1.5</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>+</td>
<td>+/1.0</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>+</td>
<td>+/1.0</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bei Patient 305 fiel die PCR zunächst am Tag 23 und anschließend am Tag 27 positiv auf. Am Tag 68 entwickelte der Patient Fieber und am Tag 69 fiel die PCR erneut positiv auf. Die PCR war ein letztes mal am Tag 99 positiv.
Tabelle 27: Patient 410 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62</td>
<td>+</td>
<td>+/4.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>72</td>
<td>+</td>
<td>+/1.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Patient 410 mit zwei positiven Ergebnissen in der PCR zeigte keine für Aspergillose typische Symptomatik und die weiteren diagnostischen Verfahren gaben keinen Anhalt für eine invasive Pilzinfektion.

Tabelle 28: Patient 292 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>+</td>
<td>+/1.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>39</td>
<td>+</td>
<td>+>/20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>46</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Trotz zwei positiven Ergebnissen in der PCR bei Patient 292 gaben Symptomatik und diagnostische Verfahren keinen Anhalt für eine invasive Pilzinfektion.

Tabelle 29: Patient 426 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>+</td>
<td>+/1.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Am Tag 23 entwickelte Patient 426 in der Neutropenie Fieber. Das Fieber hielt bis zum Tag 26 an und am Tag 27 fiel die PCR für Aspergillus-DNA positiv auf.

Tabelle 30: Patient 401 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>+/-1.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Patient 401 hatte mehrere positive Ergebnisse in der PCR. Allerdings entwickelte er keine für eine Aspergillose typische Symptomatik und eine endgültige Diagnose für eine Pilzinfektion blieb aus.

Tabelle 31: Patient 295 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+/-1.9</td>
<td>-</td>
<td>n.d</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In der Neutropenie hatte Patient 295 ein einziges positives PCR-Ergebnis.
Tabelle 32: Patient 308 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31</td>
<td>+</td>
<td>-/4.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>99</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bei Patient 308 mit einem positiven Ergebnis in der PCR konnte keine invasive Pilzinfektion nachgewiesen werden.

Patienten ohne nachgewiesene Aspergillose mit negativem PCR-ELISA-Ergebnis

Bei 10 Patienten konnte in der PCR-Analyse keine Aspergillus-DNA nachgewiesen werden. Der Antigentest für Aspergillus-Galactomannan ließ sich in einem Fall als positiv erweisen.

Tabelle 33: Patient 424 ohne nachgewiesene Aspergillose mit negativem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 34: Patient 431 ohne nachgewiesene Aspergillose mit negativem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n.d.</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>+</td>
<td>-</td>
<td>+/-1.2</td>
<td>n.d.</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>83</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 35: Patient 449 ohne nachgewiesene Aspergillose mit negativem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n.d.</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>+</td>
<td>-</td>
<td>+/-1.7</td>
<td>n.d.</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 36: Patient 296 ohne nachgewiesene Aspergillose mit negativem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n.d.</td>
<td></td>
<td></td>
<td>n.d.</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 37: Patient 301 ohne nachgewiesene Aspergillose mit negativem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n.d.</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Tabelle 38: Patient 310 ohne nachgewiesene Aspergillose mit negativem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n.d.</td>
<td>n.d.</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 39: Patient 309 ohne nachgewiesene Aspergillose mit negativem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>n.k.</td>
<td>-</td>
<td>-</td>
<td>n.k.</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>n.k.</td>
<td>-</td>
<td>-</td>
<td>n.k.</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>n.k.</td>
<td>-</td>
<td>-</td>
<td>n.k.</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>18</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>n.k.</td>
<td>-</td>
<td>-</td>
<td>n.k.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 40: Patient 438 ohne nachgewiesene Aspergillose mit negativem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>n.d.</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>+</td>
<td>-</td>
<td>+/1,3</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 41: Patient 424 ohne nachgewiesene Aspergillose mit negativem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 42: Patient 421 ohne nachgewiesene Aspergillose mit negativem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.k.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>57</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.k.</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Patient 421 entwickelte in der Neutropenie Fieber und erhielt eine AmBisome-Therapie.

Tabelle 43: Patient 416 ohne nachgewiesene Aspergillose mit negativem PCR-ELISA-Ergebnis

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagn</th>
<th>Tag</th>
<th>PCR</th>
<th>P-E-a</th>
<th>P-E-c</th>
<th>GM</th>
<th>Aspergillose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.k.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.k.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Sensitivität und Spezifität der PCR-ELISA.

Tabelle 44: PCR +: positives PCR-Ergebnis, PCR -: negatives PCR-Ergebnis, IA: dokumentierte invasive Aspergillose, möglich: Verdacht auf Aspergillose, keine IA: keine nachgewiesene Aspergillose

<table>
<thead>
<tr>
<th>Patientenzahl</th>
<th>IA</th>
<th>möglich</th>
<th>keine IA</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR +</td>
<td>1</td>
<td>6</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>PCR -</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Gesamt</td>
<td>1</td>
<td>6</td>
<td>22</td>
<td>29</td>
</tr>
</tbody>
</table>

Tabelle 45: Sensitivität, Spezifität, positiver und negativer prädiktiver Wert

PPV: positiver prädiktiver Wert, NPV: negativer prädiktiver Wert

<table>
<thead>
<tr>
<th></th>
<th>IA</th>
<th>möglich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivität</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Spezifität</td>
<td>35,7%</td>
<td>45,5%</td>
</tr>
<tr>
<td>PPV</td>
<td>5,3%</td>
<td>33%</td>
</tr>
<tr>
<td>NPV</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
3.2 Light-Cycler

Tabelle 46: Patienten mit positivem Ergebnis im Light-Cycler-System

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagnose</th>
<th>Tag</th>
<th>Light-Cycler</th>
<th>P-E</th>
<th>Aspergillose</th>
</tr>
</thead>
<tbody>
<tr>
<td>415</td>
<td>29</td>
<td>AML</td>
<td>9</td>
<td>+</td>
<td>9.6</td>
<td>möglich</td>
</tr>
<tr>
<td>297</td>
<td>41</td>
<td>ALL</td>
<td>2</td>
<td>+</td>
<td>>20</td>
<td>möglich</td>
</tr>
<tr>
<td>292</td>
<td>7</td>
<td>Rhabd</td>
<td>39</td>
<td>+</td>
<td>>20</td>
<td>keine</td>
</tr>
</tbody>
</table>

Patient 415 hatte in der PCR-ELISA vier positive Resultate. Im Light-Cycler dagegen nur ein positives Ergebnis. Positiv für Aspergillus-DNA fiel in diesem Nachweisverfahren die Probe auf, die am Tag 9 nach SCT abgenommen wurde. Diese zeigte in der PCR-ELISA, im Vergleich zu den übrigen 3 Proben, die höchste photometrische Pilzkonzentration. Im Light-Cycler erreichte die Konzentration der Zielsequenz auch einen hohen Wert. Der klinische Verdacht auf eine Aspergillose wurde am Tag 10 nach SCT gestellt.

Bei Patient 297 gab es, genau wie in der PCR-ELISA, auch im Light-Cycler nur ein positives Resultat. Aspergillus-DNA konnte schon am Tag 2 nach SCT nachgewiesen werden und wie im vorigen Fall, wurde auch hier photometrisch in der ELISA eine hohe Pilzkonzentration gemessen. Im Light-Cycler wurde ebenfalls eine hohe Konzentration der Zielsequenz gemessen. Der klinische Verdacht auf Aspergillose wurde am Tag 10 nach SCT gestellt.

Im Falle des Patienten 292 konnte in der PCR-ELISA am Tag 18 und 39 die Aspergillus-DNA nachgewiesen werden. Im Light-Cycler war der DNA-Nachweis nur am Tag 39 möglich. Und wiederum handelte es sich um eine Probe mit einer hohen photometrischen Pilzkonzentration in der PCR-ELISA. Es konnte keine Aspergillose nachgewiesen werden.
3.3 DNA Detection Test Strips

Die 31 Proben mit positivem Ergebnis für Aspergillus-DNA in der PCR-ELISA, wurden weiter mit den Test-Strips von Roche aufgearbeitet.

6 von den 31 Proben fielen in diesem dritten Nachweisverfahren positiv für Aspergillus-DNA auf.

Tabelle 47: Patienten mit positivem Nachweis von Aspergillus-DNA bei den Test-Strips

<table>
<thead>
<tr>
<th>Pat</th>
<th>Alter</th>
<th>Diagnose</th>
<th>Tag</th>
<th>P-E-a</th>
<th>Test-Strips</th>
<th>Aspergilllose</th>
<th>Pilztherapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>407</td>
<td>29</td>
<td>ALL</td>
<td>20</td>
<td>1.8</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>415</td>
<td>29</td>
<td>AML</td>
<td>9</td>
<td>9.6</td>
<td>+</td>
<td>möglich</td>
<td>-</td>
</tr>
<tr>
<td>415</td>
<td>16</td>
<td></td>
<td>2.1</td>
<td>+</td>
<td>möglich</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>415</td>
<td>29</td>
<td></td>
<td>1.1</td>
<td>+</td>
<td>möglich</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>292</td>
<td>7</td>
<td>Rhabdom</td>
<td>39</td>
<td>>20</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>401</td>
<td>10</td>
<td>ALL</td>
<td>6</td>
<td>1.1</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

4. Diskussion
Aspergillen stehen zusammen mit Candida-Arten und Cryptococcus neoformans als opportunistischer Infektionserreger bei Patienten mit malignen Grundkrankungen im Vordergrund.
Trotz den signifikanten Fortschritten in der Diagnose und Therapie von Aspergillus-Infektionen steigt ihre Inzidenz weiter an und die Mortalität bleibt nach wie vor hoch, in manchen Fällen bis zu 30-50%. Dieses Phänomen kann zum Teil auf die technische und medikamentöse Entwicklung in der Medizin zurückgeführt werden, vor allem auf die intensivierten chemotherapeutischen Behandlungen mit langanhaltender Granulozytopenie, die Einführung der CD34-Selektion, die Erhöhung der Amphotericin-B-Resistenzrate oder die zunehmende Zahl der allogenen KMT mit akuten Graft-vs.-Host-Reaktionen (GvHD).
Momentan stellen Fluconazol und konventionelles Amphotericin B die Standardtherapie von Pilzinfektionen bei Patienten mit hämatologischen Erkrankungen dar. Während Fluconazol durch eine zunehmende Resistenzentwicklung, die seinen prophylaktischen Einsatz einschränkt, gekennzeichnet ist, ist konventionelles Amphotericin B durch eine hohe Nebenwirkungsrate charakterisiert. Es wurde in einer 12-wöchigen Studie eine therapeutische Überlegenheit von Voriconazol gegenüber konventionellem Amphotericin B beschrieben [54]. Die Voriconazol-Gruppe zeigte ein positives Outcome bei 52,8% der Patienten im Vergleich zu 31,6% der Amphotericin B-
Gruppe. Beim Einsatz von liposomalem Amphotericin B wird eine gute Wirksamkeit bei gleichzeitig deutlich reduziertem Nebenwirkungsspektrum beobachtet [60].

Im Rahmen dieser Arbeit wurden retrospektiv Blutproben von 29 Patienten bis zum Tag 100 nach KMT in dem PCR-ELISA auf Aspergillus-DNA untersucht und mit zwei weiteren Nachweisverfahren, nämlich dem Light-Cycler-System und den sogenannten Aspergillus-DNA-Detection-Strips verglichen.

4.1 PCR

4.1.1 PCR im Blut

Das für die Extraktion benötigte Volumen betrug 5ml, wobei sich wahrscheinlich mit steigender Volumenmenge auch die Sensitivität der PCR steigt [61].

4.1.2 Amplifikation einer bestimmten Genregion
Im Prinzip eignet sich eine ganze Reihe von Nukleotidsequenzen für den Nachweis von Pilzen. Es sind vor allem ribosomale und mitochondriale Nukleinsäuren, die häufig in der PCR Anwendung finden. In dieser Arbeit wurde
eine PCR mit universellen Primers durchgeführt, die die Amplifikation einer Zielsequenz in der 18s rRNA Genregion erlauben. Innerhalb der 18s rRNA lassen sich hochkonservierte und variable Bereiche unterscheiden, die bei den meisten klinisch relevanten Pilz-Arten zu finden sind. Fern et al ziehen die Amplifikation einer kleinen mitochondrialen Zielregion vor, spezifisch für Aspergillus-Spezies, wodurch Kreuzreaktionen mit anderen Pilzen oder mit Human-DNA vermieden werden können [46].

4.1.3 Rolle der PCR in der Diagnostik

PCR stellt ein einfaches, nicht-invasives und reproduktives Testverfahren dar.
Es gibt aber zwei potenziell wichtige Probleme bei der Interpretation der PCR-Ergebnisse. Erstens die Signifikanz einzelner positiver Ergebnisse und zweitens das Phänomen, dass manche Patienten-Proben nur intermittierend in der PCR positive Ergebnisse ergaben [63].
Es wurde bei verschiedenen Studien beobachtet, dass in der PCR die Aspergillus-DNA oft nicht kontinuierlich nachgewiesen werden konnte. Es gab Zeitintervalle, bei denen die PCR negativ war, bevor der Test wieder positiv auffiel. Auch in dieser Arbeit war die PCR während des gesamten Beobachtungszeitraums nur intermittierend positiv.
Ansorg et al erklären die intermittierende Fungämia durch hepatische Clearance der Pilzelemente [64]. Duthie & Denning unterstreichen, dass eine Fungämia nur selten vorkommt [74]. Breatgne et al machen aufmerksam auf die kurze Halbwertszeit von zirkulierender DNA (<5min) und liefern auf diese Weise eine weitere mögliche Erklärung für die intermittierend auftretenden positiven PCR-Ergebnisse [12].
Noch unklar ist, inwieweit einzelne positive Episoden in der PCR klinisch relevant sind. Sie können Ausdruck einer subklinischen Aspergillose sein, das

Im Rahmen dieser Arbeit wurden insgesamt 21 Blutproben von 13 Patienten ohne nachgewiesene Aspergillose in der PCR-ELISA positiv getestet.

4.1.4 Therapieeinsatz und -überwachung durch die PCR

Angesichts der hohen Raten von Morbidität und Mortalität bei onkologischen Patienten in der Neutropenie und nach SCT, für die zu einem großen Teil invasive Pilzinfektionen verantwortlich sind, wurde die empirische antimykotische Therapie zur Standardtherapie bei neutropenischem Fieber, das auf Breitspektrumantibiotika nicht anspricht.

4.2 Aspergillus-Diagnostik

4.2.1 Radiologie
Hämatologische und onkologische Patienten sind einem höherem Risiko für pulmonale Komplikationen ausgesetzt und die meisten von ihnen weisen keine spezifischen radiologischen Zeichen auf. Die Computertomographie und besonders die Dünnschicht-CT (HRCT, high resolution CT) spielt eine zunehmend wichtigere Rolle in der Diagnose von Aspergillus-Infektionen [75]. Im HRCT können pulmonale Abnormalitäten dargestellt werden, auch wenn die konventionellen Röntgen-Thoraxaufnahmen keinen abnormen Befund zeigen. Besonders in den Frühstadien einer Aspergillus-Infektion ist HRCT sensitiver und spezifischer als die konventionellen Röntgen-Thoraxaufnahmen. Zwei CT-Zeichen haben sich inzwischen als hinweisend für eine invasive pulmonale Aspergillose erwiesen.

4.2.2 Labordiagnostik

Der Latex-Agglutinationstest ist eine allgemein verfügbare Nachweismethode und bei Patienten mit erhöhtem Risiko für eine invasive Aspergillose sinnvoll. Der Test ist durch eine geringe Sensitivität (ca. 50%) gekennzeichnet und liefert demzufolge positive Ergebnisse erst in einem weit fortgeschrittenen Stadium der Erkrankung. Seine Spezifität beträgt 60-100% und ist auf falsch positive Reaktionen mit anderen Pilzen zurückzuführen. Als zuverlässiges Nachweisverfahren zur Detektion von Aspergillus-GM führten Stynen et al das Sandwich-ELISA ein. In diesem Verfahren werden monoklonale Antikörper von der Ratte eingesetzt, die für die 1,5-ß-D-Galactofuropyranose-Seitenkette des Aspergillus-GM spezifisch sind. Das Detektionslimit dieser Methode im Serum liegt bei etwa 1,0ng/ml, während beim älteren Latex-Agglutinationstest das Detektionslimit bei etwa 15ng/ml eingeschätzt wird [37]. Maertans et al versuchten zum ersten mal in einer prospektiven Studie die diagnostische Wertigkeit und Präzision vom GM-ELISA-Test nachzuweisen [59]. Es wurde über eine Sensitivität von 91% und wenigen falsch-negativen Ergebnissen berichtet, wobei hier erwähnt werden muss, dass die hohe Sensitivitätsrate auch an der großen Probenanzahl für Patienten mit nachgewiesener Aspergillose und mit Verdacht auf einer Aspergillus-Infektion liegen kann. In einer Studie von Pinel et al ergab der serologische Nachweis von Aspergillusantigen eine Spezifität von 99,6% und eine Sensitivität von nur 50% [77]. Herbrecht et al berichten für das gleiche Nachweisverfahren über eine Sensitivität von 64,5% bei Patienten mit dokumentierter Aspergillose, aber nur über eine Sensitivität von 16,4% bei Patienten mit einem Verdacht auf eine invasive Aspergillus-Infektion [78].

Oft wurde in verschiedenen Studien die Sensitivität von PCR und GM-Antigentest verglichen. Becker et al behaupten in ihrer Studie, dass der Aspergillus-GM-Antigentest sensitiver als die PCR sei. Die Autoren berichten, in
einem tierexperimentellen Modell, über eine Sensitivität des GM-Antigentests von 100% gegenüber 41% der PCR, wobei hier erwähnt werden muss, dass das für die PCR eingesetzte Volumen nur 0,5ml betrug. Sie betonen, dass der Antigentest früher positiv auffiel als die PCR und dass letztere nur intermittierend positiv war [58]. Zum gleichen Ergebnis kamen 1998 Bretagne et al [79]. Hashimoto et al unterstützen in ihrer Studie die Überlegenheit von PCR als diagnostisches Verfahren gegenüber dem GM-Antigentest [80]. Yamakami et al berichten in ihrer Studie 1996 über eine Sensitivität von 71% für die PCR und 60% für den Antigentest. In diesem Fall wurden die Testverfahren in Serumproben von Patienten mit invasiver Aspergillose durchgeführt [45]. 2004 beschrieben Buchheidt et al eine Sensitivität von 63,6% für PCR und 33,3% für GM-Antigentest [81].

4.3 Das Light-Cycler-System

5. Zusammenfassung

Die definitive Diagnose einer Aspergillose erfordert den zyto- oder histopathologischen Nachweis von Hyphen, sowie den kulturellen Erregernachweis, was allerdings selten gelingt.

Beim Patienten 412, ebenfalls mit Verdacht auf Aspergillose, fiel die PCR am Tag 29 positiv auf. Der Antigen-Test, die histopathologische und kulturelle Untersuchung, das Light-Cycler-System und die Test-Strips blieben negativ.

Beim Patienten 413, mit Verdacht auf Aspergillose seit Tag 13, war die PCR erst am Tag 35 positiv. Der Antigen-Test, die histopathologische und kulturelle Untersuchung, das Light-Cycler-System und die Test-Strips blieben negativ.

Beim Patienten 415 konnte Aspergillus zum ersten Mal am Tag 9 nach SCT in der PCR, im Light-Cycler-System und mit den Test-Strips nachgewiesen werden. Der Verdacht auf Aspergillose wurde am Tag 10 gestellt. Der Antigen-Test und die histopathologische Untersuchung blieben negativ.

Beim Patienten 297 konnte am Tag 2 zum ersten Mal der Erreger in der PCR, im Light-Cycler-System und mit den Test-Strips nachgewiesen werden. Die mikroskopische und kulturelle Untersuchung auf Aspergillus, sowie der Antigen-Test waren negativ.

Beim Patient 411 war die PCR ein einziges Mal am Tag 46 positiv. Der Verdacht auf eine invasive Aspergillose wurde am Tag 77 gestellt. Die mikroskopische und kulturelle Untersuchung auf Aspergillus sowie der Antigen-Test waren negativ.

Von den insgesamt 12 Patienten mit positivem PCR-ELISA-Ergebnis und ohne nachgewiesene Aspergillose konnte bei einem Patienten im Light-Cycler-
System und mit den Test-Strips Aspergillus-DNA detektiert werden. Bei einem weiteren Patienten aus der gleichen Gruppe konnte die Pilz-DNA auch mit den Test-Strips nachgewiesen werden. Das PCR-Verfahren ist durch eine hohe diagnostische Sensitivität (100%) und eine geringe Spezifität (35,7-45,5%) charakterisiert. Der prognostische Wert der positiven PCR-Proben war mit 5,3% für eine nachgewiesene invasive Aspergillose und 33% für eine mögliche Aspergillus-Infektion gering. Der negative Vorhersagewert dagegen betrug in beiden Fällen 100%. Damit erwies sich das PCR-Verfahren im Rahmen der vorliegenden Arbeit gegenüber dem Light-Cycler-System als deutlich zuverlässiger.
6. Literaturverzeichnis

31. Sugar AM: Clinical features and diagnosis of invasive aspergillosis. Up to date, vol.11 No.3.

32. Sugar AM: Aspergilloma. Up to date, vol.11 No.3.

34. Mehlhop PD, van de Rijin M, Goldberg AB, Brewert JP, Kurup VP, Martin TR, Oetggen HC Allergen-induced bronchial hyperactivity and eosinophilic inflammation occur in the absence of IgE in a mouse model of asthma. Immunology Vol.94 pp. 1344-1349 February 1997.

Tabellenverzeichnis

<table>
<thead>
<tr>
<th>Tabelle</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabelle 1</td>
<td>Taxonomische Klassifikation</td>
<td>9</td>
</tr>
<tr>
<td>Tabelle 2</td>
<td>Mikroskopische Merkmale verschiedener Aspergillus-Spezies</td>
<td>10</td>
</tr>
<tr>
<td>Tabelle 3</td>
<td>Makroskopische Merkmale verschiedener Aspergillus-Spezies</td>
<td>11</td>
</tr>
<tr>
<td>Tabelle 4</td>
<td>PCR-Ergebnisse aus Serum- und Blutproben in verschiedenen Studien für den Nachweis von invasiver Aspergillose</td>
<td>18</td>
</tr>
<tr>
<td>Tabelle 5</td>
<td>Zusammensetzung des RCLB</td>
<td>26</td>
</tr>
<tr>
<td>Tabelle 6</td>
<td>Zusammensetzung des WCLB</td>
<td>27</td>
</tr>
<tr>
<td>Tabelle 7</td>
<td>Zusammensetzung des Lytibase-Buffer</td>
<td>27</td>
</tr>
<tr>
<td>Tabelle 8</td>
<td>Zusammensetzung von PCR-Mastermix</td>
<td>29</td>
</tr>
<tr>
<td>Tabelle 9</td>
<td>Zusammensetzung von PCR-Puffer</td>
<td>29</td>
</tr>
<tr>
<td>Tabelle 10</td>
<td>Light-Cycler-Sonden</td>
<td>33</td>
</tr>
<tr>
<td>Tabelle 11</td>
<td>Light-Cycler-PCR-Master-Mix</td>
<td>33</td>
</tr>
<tr>
<td>Tabelle 12</td>
<td>Zusammensetzung von PCR-Mix für die Test-Strips</td>
<td>35</td>
</tr>
<tr>
<td>Tabelle 13</td>
<td>Demographische Daten der Patienten</td>
<td>38</td>
</tr>
<tr>
<td>Tabelle 14</td>
<td>Patient 407 mit dokumentierter Aspergillose</td>
<td>41</td>
</tr>
<tr>
<td>Tabelle 15</td>
<td>Patient 291 mit Verdacht auf Aspergillose</td>
<td>43</td>
</tr>
<tr>
<td>Tabelle 16</td>
<td>Patient 412 mit Verdacht auf Aspergillose</td>
<td>44</td>
</tr>
<tr>
<td>Tabelle 17</td>
<td>Patient 413 mit Verdacht auf Aspergillose</td>
<td>45</td>
</tr>
<tr>
<td>Tabelle 18</td>
<td>Patient 415 mit Verdacht auf Aspergillose</td>
<td>46</td>
</tr>
<tr>
<td>Tabelle 19</td>
<td>Patient 297 mit Verdacht auf Aspergillose</td>
<td>47</td>
</tr>
<tr>
<td>Tabelle 20</td>
<td>Patient 411 mit Verdacht auf Aspergillose</td>
<td>48</td>
</tr>
<tr>
<td>Tabelle 21</td>
<td>Patient 286 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis</td>
<td>49</td>
</tr>
<tr>
<td>Tabelle 22</td>
<td>Patient 432 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis</td>
<td>49</td>
</tr>
<tr>
<td>Tabelle 23</td>
<td>Patient 425 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis</td>
<td>50</td>
</tr>
<tr>
<td>Tabelle 24</td>
<td>Patient 422 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis</td>
<td>50</td>
</tr>
<tr>
<td>Tabelle 25</td>
<td>Patient 409 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis</td>
<td>51</td>
</tr>
<tr>
<td>Tabelle 26</td>
<td>Patient 305 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis</td>
<td>51</td>
</tr>
<tr>
<td>Tabelle 27</td>
<td>Patient 410 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis</td>
<td>52</td>
</tr>
<tr>
<td>Tabelle 28</td>
<td>Patient 292 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis</td>
<td>52</td>
</tr>
<tr>
<td>Tabelle 29</td>
<td>Patient 426 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis</td>
<td>52</td>
</tr>
<tr>
<td>Tabelle 30</td>
<td>Patient 401 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis</td>
<td>53</td>
</tr>
<tr>
<td>Tabelle 31</td>
<td>Patient 295 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis</td>
<td>53</td>
</tr>
<tr>
<td>Tabelle 32</td>
<td>Patient 308 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis</td>
<td>54</td>
</tr>
</tbody>
</table>
Tabelle 33: Patient 424 ohne nachgewiesene Aspergillose mit positivem PCR-ELISA-Ergebnis 54
Tabelle 34: Patient 431 ohne nachgewiesene Aspergillose mit negativem PCR-ELISA-Ergebnis 55
Tabelle 35: Patient 449 ohne nachgewiesene Aspergillose mit negativem PCR-ELISA-Ergebnis 55
Tabelle 36: Patient 296 ohne nachgewiesene Aspergillose mit negativem PCR-ELISA-Ergebnis 55
Tabelle 37: Patient 301 ohne nachgewiesene Aspergillose mit negativem PCR-ELISA-Ergebnis 56
Tabelle 38: Patient 310 ohne nachgewiesene Aspergillose mit negativem PCR-ELISA-Ergebnis 56
Tabelle 39: Patient 309 ohne nachgewiesene Aspergillose mit negativem PCR-ELISA-Ergebnis 56
Tabelle 40: Patient 438 ohne nachgewiesene Aspergillose mit negativem PCR-ELISA-Ergebnis 57
Tabelle 41: Patient 424 ohne nachgewiesene Aspergillose mit negativem PCR-ELISA-Ergebnis 57
Tabelle 42: Patient 421 ohne nachgewiesene Aspergillose mit negativem PCR-ELISA-Ergebnis 57
Tabelle 43: Patient 416 ohne nachgewiesene Aspergillose mit negativem PCR-ELISA-Ergebnis 57
Tabelle 44: Sensitivität und Spezifität der PCR-ELISA 58
Tabelle 45: Sensitivität und Spezifität der PCR-ELISA 58
Tabelle 46: Patienten mit positivem Ergebnis im Light-Cycler-System 59
Tabelle 47: Patienten mit positivem Nachweis von Aspergillus-DNA bei den Test-Strips 60
Abbildungsverzeichnis

Abb. 1: Logarithmische Darstellung die Fluoreszenz über der Zykluszahl 34
Abb. 2: Darstellung in Log-Normalverteilung von Crossing-Points und Log-Konzentration der Standards 35
Abb. 3: Errechnete Konzentration der Proben 35
Abb. 4: Aufbau des Test-Strips 36
Abb. 5: Verwendung des Test-Strips 38
Abb. 6: Auswertung des Test-Strips 38
Abb. 7: Patienten-Gruppen mit PCR-positiven und -negativen Ergebnissen 39
Abb. 8: Patient 407 mit dokumentierter Aspergillose 42
Abb. 9: Patient 291 mit Verdacht auf Aspergillose 43
Abb. 10: Patient 412 mit Verdacht auf Aspergillose 44
Abb. 11: Patient 413 mit Verdacht auf Aspergillose 45
Abb. 12: Patient 415 mit Verdacht auf Aspergillose 46
Abb. 13: Patient 297 mit Verdacht auf Aspergillose 47
Abb. 14: Patient 411 mit Verdacht auf Aspergillose 48
Danksagung

An dieser Stelle bedanke ich mich bei allen, die zum Gelingen dieser Arbeit beigetragen haben.

An erster Stelle gilt dies für meinen Doktorvater Prof. Dr. Hermann Einsele für die Vergabe des Themas und das Interesse an der Arbeit.

Insbesondere danke ich Herrn PD Dr. Jürgen Löffler für die engagierte und motivierende Betreuung, für seine stete Bereitschaft zur wissenschaftlichen Diskussion sowie für die Durchsicht des Manuskripts.

Frau Ingrid Kumbier, Frau Ingeborg Wagner, Frau Maria Markuljin und Frau Frederike Frank danke ich für die praktische Unterstützung und Einführung in die Laborarbeit sowie für die nette Atmosphäre im Labor.

Frau Nicole Flues möchte ich für die freundschaftliche Zusammenarbeit danken.

Herrn Garbis Sahak und Frau Renate Schwedes möchte ich für die Verfügungsstellung der patientenbezogenen Daten danken.

Für die großartige Unterstützung und die Durchsicht des Manuskriptes danke ich Frau Maria Hatzigiannakoglou-Borik und Herrn Stefan Borik.

Für die technische Unterstützung und die große Hilfsbereitschaft möchte ich Frau Christina Afentoulidou danken.
Lebenslauf

Name Paschalinou
Vorname Sofia
Geburtsdatum/-ort 02.05.1977 in Komotini/Griechenland
Familienstand ledig

Schulbildung
1983-1989 Grundschule in Komotini/Griechenland
1992-1995 Lyceum in Komotini/Griechenland
1995 Abitur in Komotini/Griechenland
1995-1996 Sprachkurs Deutsch im Sprachinstitut Tübingen

Studium
ab April 1997 Studium der Humanmedizin an der Eberhard-Karls-Universität Tübingen
31.08.1999 Ärztliche Vorpüfung in Tübingen
12.04.2001 Erster Abschnitt der Ärztlichen Prüfung in Rottenburg a.N.
1. Tertial: Chirurgie, Hippokration KH der Aristotle Universität von Thessaloniki/Griechenland
2. Tertial: Anaesthesiologie und Intensivmedizin, Universitätssklinikum Tübingen
3. Tertial: Innere Medizin, Universitätssklinikum Tübingen
10/2004 Approbation als Ärztin

Berufliche Tätigkeit
seit 01.06.2004 Assistenzärztin in der Abteilung für Anaesthesiologie und Intensivmedizin, Universitätssklinikum Tübingen.