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Zusammenfassung 

  

Hintergrund 

Anämie ist eine der hämatologischen Dysfunktionen bei Sepsis; sie ist 

vermutlich die Folge einer beschleunigten Clearance der Erythrozyten aus dem 

Blutstrom. Die zugrunde liegenden Mechanismen wurden bisher nicht 

aufgeklärt. Kürzlich durchgeführte Untersuchungen ergaben, dass sowohl eine 

erhöhte zytosolische Ca2+-Konzentration als auch eine erhöhte Ceramid-

Konzentration das „Scrambling“ der Erythrozytenzellmembran auslösen, das 

zur Expression von Phosphatidylserin auf der Erythrozytenoberfläche führt.  

 

Methoden 

Erythrozyten gesunder Probanden wurden mit Plasma von 

Sepsispatienten bzw. dem Überstand verschiedener pathogener 

Bakterienstämme inkubiert. Anschließend wurden die 

Phosphatidylserinexpression (Annexinbindung), das Zellvolumen („forward 

scatter“), die intrazelluläre Ca2+-Aktivität (Fluo3-Fluoreszenz) sowie die 

Ceramidbildung (Anti-Ceramid-Antikörper) mittels FACS-Analyse bestimmt. 

Die Aktivität der Sphingomyelinase in den Bakterienüberständen wurde mit Hilfe 

radioaktiver Methoden gemessen.  

 

Ergebnisse 

Die Inkubation normaler Erythrozyten der Blutgruppe 0 mit Plasma von 

Sepsispatienten, nicht aber mit Plasma gesunder Probanden, löste eine 

Annexinbindung aus. Der Effekt des Patientenplasmas auf die Annexinbindung 

an die Erythrozyten ging mit der Bildung von Ceramid sowie einem signifikanten 

Anstieg der zytosolischen Ca2+-Aktivität einher. Daraus ergibt sich, dass das 

Plasma von Sepsispatienten eine oder mehrere Komponenten enthält, die 

Apoptose bei Erythrozyten (Eryptose) induzieren. 

Die Inkubation von Erythrozyten mit dem Überstand von Sepsis-auslösenden 

Pathogenen induzierte in ähnlicher Weise Eryptose, ein Effekt, der mit der 

Aktivität der Sphingomyelinase im Überstand korrelierte.  

 



 

Schlussfolgerung 

Inkubation mit Plasma von Sepsispatienten löst in Erythrozyten einen 

Ca2+-Einstrom und Ceramid-Bildung aus. Dies führt zur Schrumpfung der 

Erythrozyten, dem „Scrambling“ der Membranlipide und anschließender 

Oberflächenexpression von Phosphatidylserin. 

Die Phosphatidylserin-exprimierenden Erythrozyten können an die Gefäßwände 

adherieren und werden wahrscheinlich aus dem Blutstrom entfernt. Die 

vorliegenden Ergebnisse zeigen einen neuen pathophysiologischen 

Mechanismus auf, der bei Sepsis zu Störung der Mikrozirkulation und zu 

Anämie führt. 
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1.Summary 
 

1.1 Background  

 Anaemia is one of the haematological dysfunctions of sepsis, which 

presumably results from accelerated clearance of erythrocytes from circulating 

blood. The underlying mechanisms, however, remained hitherto elusive. Most 

recent studies disclosed that increased cytosolic Ca2+ and ceramide both trigger 

erythrocyte cell membrane scrambling leading to phosphatidylserine exposure 

at the erythrocyte surface.  

 Phosphatidylserine exposing erythrocytes may either adhere to vascular 

walls or may be engulfed by macrophages equipped with phosphatidylserine 

receptors.  

 

1.2 Methods 

  Erythrocytes from healthy volunteers were exposed to plasma of patients 

suffering from sepsis or supernatant from different strains of pathogens, and 

phosphatidylserine exposure (annexin binding), cell volume (forward scatter), 

cytosolic Ca2+ activity (Fluo3 fluorescence) and ceramide formation (anti-ceramide 

antibody) were determined by FACS analysis. 

 The sphingomyelinase activity in the bacterial supernatants was measured 

by radioactive technique. 

 

1.3 Findings  

 Exposure of healthy, blood group zero erythrocytes to plasma from sepsis 

patients but not from healthy individuals triggered annexin binding. The effect of 

patient’s plasma on erythrocyte annexin binding was paralleled by formation of 

ceramide and a significant increase of cytosolic Ca2+ activity. Thus, the plasma 

from sepsis patients contains one or more components that trigger erythrocyte 

apoptosis (eryptosis). 

 Exposure of erythrocytes to supernatant of sepsis-inducing pathogens 
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similarly induced eryptosis, an effect correlating with the sphingomyelinase activity 

in the supernatant. 

 

1.4 Interpretation  

 Exposure of erythrocytes to plasma from septic patients triggers Ca2+ entry 

and ceramide formation in erythrocytes leading to erythrocyte shrinkage, cell 

membrane lipid scrambling and subsequent phosphatidylserine exposure. 

 The phosphatidylserine exposing erythrocytes may adhere to the vascular 

wall and are presumably cleared from circulating blood. The present observations 

disclose a novel pathophysiological mechanism leading to derangement of 

microcirculation and anaemia during sepsis. 
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2. Introduction  
 

2.1 Apoptosis 

 

 Apoptosis (programmed cell death) is an important phenomenon that 

plays important physiological and pathophsiological rules, such as the 

physiological rule during the embryonic development in the  sculpturing organ 

shape and carving out the interdigital webs of the fingers and toes (Renehan, 

Booth, & Potten 2001). Apoptosis has an important role in fetal malformation 

(Norimura et al. 1996) in addition to the known role of apoptosis in the 

development of the nervous system and the immune system.  

 The pathophysiological role of apoptosis is clear through the relationship 

between much diseases and apoptosis, such as neurodegenerative diseases 

(Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis); 

ischemic injury after myocardial infarction, stroke, and reperfusion; and in 

autoimmune diseases such as hepatitis and graft versus host disease 

(Renehan, Booth, & Potten 2001), not to forget that the cell apoptotic disorders  

are often observed in much malignancies and cancer diseases (Wyllie et al. 

1999). 

 Abundant, defective or potentially harmful nucleated cells are disposed 

by apoptosis (Bergamo, Luongo, & Rossi 2004;Brand et al. 2003;Green & Reed 

1998;Gulbins et al. 2000;Long et al. 2003;Sturm et al. 2004;Wenzel & Daniel 

2004), which is triggered either by stimulation of respective death receptors such 

as CD95 (Daniel et al. 2001;Lang et al. 1999), or by cell exposure to stressors 

such as oxidants, cytostatic drugs, radiation or osmotic shock ((Bortner & 

Cidlowski 1999;Green & Reed 1998;Rosette & Karin 1996;Wieder et al. 2001), 

see also Figure.1). 



 

6 

 

 

Figure.1: Scheme of apoptotic signaling from (Strasser, O'Connor, & Dixit 

2000) The scheme shows the activation of the caspase cascade after stimulation 

of death receptors at the cell membrane (left) or after stimulation of the cytosolic 

apoptosome (right). For details see text.  

  

Typical apoptosis is paralleled by cell shrinkage, nuclear condensation, 

DNA fragmentation, mitochondrial depolarization, cell membrane blebbing and 

breakdown of phosphatidylserine asymmetry of the plasma membrane, and 

associated with a loss of intracellular potassium (Bortner & Cidlowski 2002;Bortner 

& Cidlowski 2004;Grassme et al. 2000;Green & Reed 1998;Gulbins, Jekle, 

Ferlinz, Grassme, & Lang 2000;Han et al. 2004;Lang et al. 1998;Lang et al. 

2000;Maeno et al. 2000;Myssina et al. 2004a;Okada et al. 2001;Yu 2003;Yu, 

Canzoniero, & Choi 2001;Yurinskaya et al. 2005a;Yurinskaya et al. 2005b) 

(Figure.2). Cells exposing phosphatidylserine at the cell surface are recognized 
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by macrophages which are equipped with receptors specific for 

phosphatidylserine (Fadok et al. 2000b) and rapidly engulf and degrade the 

affected cells (Boas, Forman, & Beutler 1998;Eda & Sherman 2002). Accordingly, 

apoptosis allows the elimination of those cells without release of intracellular 

proteins which would otherwise cause inflammation (Gulbins, Jekle, Ferlinz, 

Grassme, & Lang 2000). 

 

 

 

Figure.2: The morphological changes in apoptotic nucleated cells (from Bio 

Teach, Phillip Yau, and graphics: Jen Philpot, 

http://www.bioteach.ubc.ca/CellBiology/Apoptosis/index.htm). The scheme 

shows the different stages of apoptotic cell death in vitro. In vivo, apoptotic bodies 

are immediately cleared by phagocytosis. For details see text.  

 

2.2. Erythrocytes apoptosis (eryptosis) 

 

Erythrocytes are devoid of nuclei and mitochondria and thus lack crucial 
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elements in the apoptosis machinery. Thus, until recently, dying erythrocytes have 

been considered to be eliminated by mechanisms other than apoptosis. Exposure 

of erythrocytes to the Ca2+ ionophore ionomycin, however, triggers cell shrinkage, 

membrane blebbing and phosphatidylserine exposure, all typical features of 

apoptotic, nucleated cells (Berg et al. 2001;Bratosin et al. 2001;Daugas, Cande, & 

Kroemer 2001). The cell shrinkage results from activation of the Ca2+-sensitive K+ 

channels, i.e. "Gardos channels" (Lang et al. 2003c), and the phosphatidylserine 

exposure has previously been thought to result from the activation of a Ca2+-

sensitive scramblase (Dekkers et al. 2002;Woon et al. 1999;Zhou et al. 2002) 

and/or inhibition of a Ca2+-sensitive and ATP-dependent aminophospholipid 

translocase, i.e. ”flippase” (Seigneuret & Devaux 1984). 

In view of  the similarities to and differences from the apoptosis program of 

nucleated cells (for details see also Table 1), the term eryptosis has been coined 

to describe the suicidal death of erythrocytes (Lang et al. 2005a). Eryptosis may 

be distinct from the mechanisms involved in erythrocyte ageing (Arese, Turrini, & 

Schwarzer 2005;Bosman, Willekens, & Werre 2005;Kiefer & Snyder 2000) or 

neocytolysis, the death of newly formed erythrocytes (Rice & Alfrey 2005). 

Recent in vitro experiments disclosed a novel mechanism affecting 

erythrocyte survival. Erythrocytes exposed to oxidative stress, osmotic shock or 

energy depletion activate a Ca2+-permeable cation channels which are inhibited 

by amiloride (1 mM), which further blunts erythrocytes annexin binding following 

osmotic shock, oxidative stress and energy depletion (Lang, Duranton, 

Poehlmann, Myssina, Bauer, Lang, Wieder, & Huber 2003a). The activation of 

these channels will subsequently allow the entry of Ca2+ (Fig.3). Ca2+ then 

activates Ca2+-sensitive K+ channels, i.e. "Gardos channels", leading to cell 

shrinkage by the efflux of K+ which drives Cl- out of the cell. The loss of KCl with 

the osmotically obliged water then leads to the observed cell shrinkage, an effect 

that can be blunted by increasing the extracellular K+ concentration and exposing 

the cells to Gardos channel inhibitors, such as charybdotoxin or clotrimazole 

(Lang, Kaiser, Myssina, Wieder, Lang, & Huber 2003c). Increasing of cytosolic 

Ca2+ activity also leads to Ca2+-sensitive scrambling of the cell membrane (Woon, 

Holland, Kable, & Roufogalis 1999). 
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Table.1: Comparison between apoptosis in nucleated cells and 

erythrocyte programmed cell death (eryptosis). 

 

Accumulation of ceramide by Sphingomyelinase-induced ceramide (Bose et al. 1995;Hannun 

1996;Lang et al. 

Apoptosis Eryptosis Literature 

Nuclear condensation, 

DNA fragmentation 

Nothing equivalent (Wyllie 1980)  

Dissipation of the mitochondrial 

membrane potential 

Nothing equivalent (Green & Kroemer 

2004;Martinou & Green 

2001)  

 

Cellular shrinkage Cellular shrinkage (Lang, Ritter, Gamper, 

Huber, Fillon, Tanneur, 

Lepple-Wienhues, Szabo, 

& Gulbins 2000) 

Apoptotic bodies Vesiculation (Weedon, Searle, & Kerr 

1979) 

(Willekens et al. 2005) 

Activation of caspases In most cases caspase-independent 

Activation of µ-calpain 

 (Berg, Engels, Rothbart, 

Lauber, Renz, Schlosser, 

Schulze-Osthoff, & 

Wesselborg 

2001;Bratosin, Estaquier, 

Petit, Arnoult, 

Quatannens, Tissier, 

Slomianny, Sartiaux, 

Alonso, Huart, Montreuil, 

& Ameisen 2001;Lang et 

al. 2004b;Wieder, 

Essmann, Prokop, 

Schmelz, Schulze-

Osthoff, Beyaert, Dorken, 

& Daniel 2001)1) 

Phosphatidylserine exposure on 

the outer leaflet of the cell 

membrane  

Phosphatidylserine exposure on the 

outer leaflet of the erythrocyte membrane 

(Bratosin, Estaquier, 

Petit, Arnoult, 

Quatannens, Tissier, 

Slomianny, Sartiaux, 

Alonso, Huart, Montreuil, 

& Ameisen 2001;Fadok 

et al. 1992) 

Expression of different death 

receptors 

Expression of CD95/FAS (Daniel, Wieder, Sturm, & 

Schulze-Osthoff 

2001;Mandal et al. 2005) 
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sphingomyelinase-mediated 

sphingomyelin breakdown or 

enhanced ceramide synthesis 

formation 2005b;Wieder, Orfanos, & 

Geilen 1998) 

Increase of intracellular Ca2+ by 

release from the endoplasmic 

reticulum 

Activation of Ca2+-permeable cation 

channels in the erythrocyte membrane 

(Lang et al. 

2003a;Scorrano et al. 

2003) 

 

The scrambling causes transbilayer movement of plasma membrane 

phospholipids with exposure of phosphatidylserine at the erythrocyte surface 

(Lang, Duranton, Poehlmann, Myssina, Bauer, Lang, Wieder, & Huber 2003a). 

The erythrocytes are sensitized towards Ca2+ by ceramide (acylsphingosine), 

which is released following erythrocyte injury such as hyperosmotic shock which 

activates an erythrocyte sphingomyelinase which causes breakdown of 

sphingomyelin and formation of ceramide. Treatment of erythrocytes with cell-

permeable ceramides induces annexin binding of erythrocytes and cell 

shrinkage. However, ceramide does not increase Ca2+ uptake into erythrocytes, 

but sensitizes the erythrocyte scramblase for cytosolic Ca2+, thus triggering 

phosphatidylserine exposure even in the absence of Ca2+ entry (Lang, Myssina, 

Brand, Sandu, Lang, Berchtold, Huber, Lang, & Wieder 2004b). 

Enhanced eryptosis leading to a shorter life span has been found in 

different diseases accompanied with anaemia, e. g. sickle cell anaemia, 

thalassemia and glucose-6-phosphate dehydrogenase deficiency, iron deficiency 

and Pb+ intoxication (Kempe et al. 2005a;Kempe et al. 2005b;Lang et al. 2002). 

Phosphatidylserine exposing erythrocytes may adhere to endothelial cells 

of the vascular wall and thus impede microcirculation (Closse, Dachary-Prigent, & 

Boisseau 1999b). On the other hand, macrophages are equipped with receptors 

specific for phosphatidylserine (Fadok, Bratton, Rose, Pearson, Ezekewitz, & 

Henson 2000b) and erythrocytes exposing phosphatidylserine at their surface are 

recognized, engulfed and degraded (Boas, Forman, & Beutler 1998). Thus, 

erythrocytes exposing phosphatidylserine at their surface are prone to be 

eliminated from circulating blood (Lang, Lang, Bauer, Duranton, Wieder, Huber, & 

Lang 2005a) and may undergo similar but not necessarily identical changes as 

those undergoing senescence (Arese, Turrini, & Schwarzer 2005;Barvitenko, 
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Adragna, & Weber 2005;Bosman, Willekens, & Werre 2005;Lang, Lang, Bauer, 

Duranton, Wieder, Huber, & Lang 2005a;Rice & Alfrey 2005) or neocytolysis (Rice 

& Alfrey 2005) 

 

 

Scramblase

SMase

Ca2+

Ceramide

cation
channel

Annexin binding

Gardos
channel

K+

cellular stress

Shrinkage

Clearance by 

macrophages

Figure.3: Eryptosis after cellular stress. The exposing of erythrocytes to 

different types of stress (oxidative stress, osmotic stress, and energy depletion) 

causes an increase of cytosolic Ca2+ activity leading to activation of a 

scramblase and breakdown of phosphatidylserine asymmetry, thereby 

rendering the cell membrane adhesive for annexin V. Ca2+ further activates 

Gardos channels  leading to K+ efflux (cellular shrinkage). Some types of stress 

activate an erythrocytic sphingomyelinase leading to ceramide formation which 

increases phosphatidyserine exposure and sensitizes the Gardos channels for 

the  Ca2+ effect. See details (SMase, sphingomyelinase). 

 

.  
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2.3. Sepsis 

 

 Sepsis  is a life threatening condition during overwhelming infection with 

a variety of pathogens (Afessa et al. 2001;Aird 2003;Cobb & O'Keefe 

2004;Moore, Schrag, & Schuchat 2003;Napolitano 2004;Rice & Bernard 

2004;Sessler, Perry, & Varney 2004;Singer et al. 2004;Terpos et al. 2004), 

defined in 1989 by Bone  as the systemical hyperinflammatory reaction to the 

presence of the microorganisms and/or its toxins in the blood (Bone et al. 

1989), and by the American College of Chest Physicians/Society of Critical 

Care Medicine as SIRS (Systemic inflammatory Reaction Syndrome) resulting 

from infection (bacterial, viral, fungal, or parasitic) ( 1992). That the prescence 

of microorganisms (bacteria, viruses, fungi, parasites) or their products such as 

toxins, cell wall components as lipopolisaccharide (LPS), known also as 

endotoxin (Bouchon et al. 2001;Dinges & Schlievert 2001), peptidoglycan and 

lipoteichoic acids (Majcherczyk et al. 1999;Morath, Geyer, & Hartung 2001), 

and DNA fragments (Sparwasser et al. 1997). These substances activate the 

cells of the immune system to produce interleukins (IL-1, IL-12, IL-6), tumor 

necrosis factor alpha (TNF-α) (Michie et al. 1988;Thijs & Hack 1995;van 

Deventer et al. 1990;Wang et al. 2000), Interferon gamma (INF-γ) (Dinarello 

1997;Dinges & Schlievert 2001), which in turn mediate the activation of 

complement cascade (Haeney 1998) and coagulation cascade (Joost C.M; 

Sepsis 1999) leading to coagulation disorders, e. g. DIC (Disseminated 

intravascular coagulation) (Baglin 1996;Gando et al. 1996;Levi et al. 1993;Thijs 

et al. 1993;Ulevitch et al. 1975), evoking ARDS (Adult Respiratory Distress 

Syndrome) (Brandtzaeg et al. 1989;Brigham & Meyrick 1986;Macnaughton & 

Evans 1992;Martin & Silverman 1992;Parsons et al. 1989) and causing direct 

myocardial depression leading to vasodilatory shock (Landry & Oliver 2001), in 

addition to activation of production of inflammatory factors (prostaglandins, 

leukotrines) (van der 2001;van der & van Deventer 1999) which explains the 

high inflammatory state in sepsis patients. In addition,  there is an increase of 

sphingomyelinase (Smase) activity in the plasma of sepsis patients as 

compared with healthy plasma (Claus et al. 2005). Sphingomyelinase is the key 
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enzyme in the initiation of the sphingomyelin/ceramide signaling pathway 

(Pettus, Chalfant, & Hannun 2002) which has been implicated in the regulation 

 

DIC

ARDS

Dissemination 

Intravascular 

coagulation

Adult respiratory 

destress 

syndrome

Foreign antigen(cell walls of bacteria 

fungi ,bacterial DNA,viral RNA ..etc)

TNF,IL6,IL12,interferone gamma

Prostaglandines

and leukotrienes

Activation of 

Complement

cascade

Activation of 

coagulation

cascade

Endothelial cell damage

Multiple 

organs

system

failure

Immune cells 

(macrophages,monocytes,neutrophiles)

Toll- like receptors

 

 

Figure.4: The immunological haematosis and inflammatory reactions in 

sepsis patients. 

The simplified scheme shows these reactions in sepsis patients leading to the 

multiorgan damage. The pathogens or their products such as (DNA fragments 

or RNA, cell wall components such as peptidoglycan) induce immunological 

reaction leading to increasing of inflammatory factors and activation of 

coagulation and complement cascade, these reaction leads in conclusion to 

organ damage. See details (TNF, tumor necrosis factor; IL, interleukine; ARDS, 

adult respiratory distress syndrome; DIC, disseminated intra vascular 

coagulation). 
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of immunological processes during inflammation (Baumruker & Prieschl 2002) 

(see also Figure 4). 

 According to the excessive inflammatory reaction, the damage of 

endothelial cells in the different organs (Curzen, Griffiths, & Evans 

1994;Cybulsky, Chan, & Movat 1988;Hack & Zeerleder 2001;Lehr, Bittinger, & 

Kirkpatrick 2000;Mutunga et al. 2001) leads to multiple organs system failure 

(Beal & Cerra 1994;Bell et al. 1983;Fry et al. 1980). The high death percentage 

among sepsis patients reaches 30-50%, in spite of the standard supportive care 

(Angus et al. 2001;Angus & Wax 2001) (Table.2.). 

 

Table.2: Comparison of deaths associated with severe sepsis to those 

from other diseases in the United States of America (Anderson et al. 

2004;Minino et al. 2002;Minino & Smith 2001). 

 

Disease Mortality Chart Number Of Death 

Severe sepsis (Augus 2001) 215.000 

Acute Myocardial Infarction (Minino, 2002) 193.000 

Lung Cancer (Minino, 2002) 156.000 

Colon Cancer (Minino, 2002) 57.000 

Breast Cancer (Minino, 2002) 42.000 

 

2.4. Haematological sequelea of sepsis  

 

Haematologic changes are present in virtually every patient with severe 

sepsis, and it is known that patients with haematologic disorders have 

increased morbidity and mortality. The faster the  identification and treatment of 

haematologic dysfunction the better is the improvement of survival (Aird 2003). 

One characteristic of haematological dysfunction of sepsis includes rapidly 

developing anaemia which cannot be accounted for by decreased formation of 

erythrocytes but must involve accelerated clearance of erythrocytes from 
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circulating blood (Aird 2003;Napolitano 2004). 

The pathophysiology of anaemia in sepsis patients have been explained with 

the following reasons: 

• Blood loss (gastrointestinal tract bleeding, phlebotomy and clinical 

procedures) (Vincent et al. 2002;Zimmerman et al. 1997) 

• disseminated intravascular coagulation (DIC), pathogen-associated 

hemolysis, hypoadrenalism, and nutritional deficiency (Batge et al. 

1992;Campillo, Zittoun, & de Gialluly 1988;Rodriguez et al. 2001). 

• Chronic disease anemia in some sepsis patients with clinical story of 

chronic diseases (Krantz 1994) 

• reduced production of erythropoietin, impaired bone marrow response to 

erythropoietin, and decreased red blood cell survival (Jelkmann et al. 

1992;Jurado 1997;Krafte-Jacobs et al. 1994;Krafte-Jacobs 1997;Krantz 

1994;Rogiers et al. 1997;van Iperen et al. 2000). 

 

However, the decreased survival of erythrocytes may also be due to 

enhanced eryptosis and accelerated clearance of affected cells from the 

circulation. 

Several sepsis-inducing bacterial pathogens are known to produce ß–toxin 

(secretory sphingomyelinases) such as Streptococcus pyrogenic and 

Staphylococcus aureus (Barsumian et al. 1978;Bohach 1997), which might 

affect phosphatidylserine exposure of erythrocytes. In addition, data were 

provided showing an increase of SMase activity in sepsis plasma as compared 

with healthy plasma (Claus, Bunck, Bockmeyer, Brunkhorst, Losche, Kinscherf, 

& Deigner 2005). The source of this SMase, however, and whether the bacterial 

secretory SMases play a role in this increase of enzyme activity are still a 

matter of debate. 

  Staphylococcus aureus, one of the most frequent causative agents of 

sepsis, produces ß–toxin but its role in infections and septic shock has 

remained unclear (Claus, Bunck, Bockmeyer, Brunkhorst, Losche, Kinscherf, & 

Deigner 2005) 

 The present study has been performed to explore whether erythrocyte 
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phosphatidylserine exposure participates in the pathophysiology of sepsis. The 

experimental data should further shed some light on the role of bacterial SMase in 

virulence. Enzymes such as the S. aureus ß-toxin might contribute to the severity 

of sepsis by promoting erythrocyte death and anaemia.  
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3. Materials and methods  
 

3.1. Materials 

 

3.1.1 Notes on Suppliers 

 

Baxter: Unterschleissheim, Germany 

Biochrom AG: Berlin, Germany 

Abbott GmbH: Wiesbaden, Germany 

Beckman Coulter: Krefeld, Germany 

Becton Dickinson: Heidelberg, Germany 

Medical Diagnostics Marx: Butzbach, Germany 

Wescor: Logan, Utah, USA 

Sigma: Taufkirchen, Germany 

Calbiochem: Schwalbach, Germany 

Roche Diagnostics: Mannheim, Germany 

Alexis: Grünberg, Germany 

Ancell: Bayport, MN, USA 

Pharmingen: Hamburg, Germany 

Amersham Biosciences: Freiburg, Germany 

Wallac: Freiburg, Germany 

Tecan: Crailsheim, Germany 

Heraeus, Germany 

Eppendorf, Hamburg, Germany 

Sorvall, Langenselbold, Germany 

Jouan, Germany 

Roth, Karlsruhe, Germany 

Knick, Germany 

Kern, Germany 

Sartorius, Germany 

Heidolph, Germany 
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Greiner bio-one, Frickenhausen, Germany 

Millipore, Cork, Ireland 

Sarstedt, Germany 

Abimed, Germany 

Labnet, Germany 

Fresenius Kabi, Homburg, Germany 

Gib co, United Kingdom 

 Nikon, Düsseldorf, Germany 

AHF Analysentechnik, Tübingen, Germany 

Visitron Systems, Puchheim, Germany 

Invitrogen GmbH, Karlsruhe, Germany 

PAA Laboratories, Cölbe, Germany 

 

3.1.2. Equipments  

 

Coulter Epics XL (Beckman Coulter: Krefeld, Germany) 

FACS-Calibur: (Becton Dickinson: Heidelberg, Germany)  

MDM 905 electronic hematology particle counter (Medical Diagnostics Marx: 

Butzbach, Germany)  

VAPRO 5520 vapor pressure osmometer: (Wescor: Logan, Utah, USA)  

ß-Scintillation counter (Wallac: Freiburg, Germany) 

Microplate reader.Tecan Sunrise (Tecan: Crailsheim, Germany) 

Incubator (Heraeus, Germany) 

Centrifuge 5417R (Eppendorf, Hamburg, Germany) 

Centrifuge RT 6000 B (Sorvall, Langenselbold, Germany) 

Centrifuge MR 1812 (Jouan, Germany) 

Mini shaker MS1 (Roth, Karlsruhe, Germany) 

PH meter 761 Calimatic (Knick, Germany) 

Digital-PH-meter 646  (Knick, Germany) 

Balance:  (Kern, Germany), (Sartorius, Germany). 

Magnetic stirrer MR 3001 (Heidolph, Germany) 
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3.1.3. Laboratory ware 

 

OptiPure RC quadruple blood pack set (Baxter: Unterschleissheim, Germany) 

Fetal calf serum (FCS) (Biochrom AG: Berlin, Germany) 

Suspension culture plate 96 W (Greiner bio-one, Frickenhausen, Germany) 

Sterile PS-tube 4.5 ml 12.4/75 MM (Greiner bio-one, Frickenhausen, Germany) 

Falcon tubes (Greiner bio-one, Frickenhausen, Germany) 

Sterile filter (Millipore, Cork, Ireland) 

LI-Heparin tubes (Sarstedt, Germany) 

Plastic tubes (Eppendorf, Hamburg, Germany) 

Pipettes (Eppendorf, Hamburg, Germany. Abimed, Germany. Labnet, Germany) 

Tips for pipettes (Greiner bio-one, Frickenhausen, Germany) 

Scintillation tubes (Roth, Karlsruhe, Germany) 

 

3.1.4. Chemicals 

 

Ficoll (Biochrom AG: Berlin, Germany) 

TrueCount kit, Retic-COUNT (Thiazole orange) reagent (Becton Dickinson: 

Heidelberg, Germany) 

Ionomycin, acetylsalicylic acid, diclophenac, thromboxane B2, purified 

sphingomyelinase from Streptomyces sp (Sigma: Taufkirchen, Germany) 

Annexin-Fluos, ethylenediamine tetraacetic acid (EDTA) (Roche Diagnostics: 

Mannheim, Germany) 

Anti-ceramide antibody, clone MID 15B4 (Alexis: Grünberg, Germany) 

Polyclonal fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse IgG + 

IgM specific antibody (Pharmingen: Hamburg, Germany) 

 [3H] Scintillation Proximity Assay (SPA) System (Amersham Biosciences: 

Freiburg, Germany) 

Ampuva: sterile water for injection (Fresenius Kabi, Homburg, Germany) 

PBS (Phosphate buffer salin) solution (Gibco, United Kingdom) 
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3.1.5. Solutions 

 

A. Ringer solution 

•  125 mM sodium chloride NaCl. 

•  5 mM potassium chloride KCl. 

•  1 mM magnesium sulphate MgSO4. 

•  32 mM N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES). 

•  5 mM glucose. 

•  1 mM calcium chlorideCaCl2. 

•  pH=7.4. 

• Osmolarity is measured by the use of a VAPRO 5520 vapor pressure 

osmometer  

• The solution was passed through a sterile filter (Millipore, Cork, Ireland). 

 

B. Fluo3AM buffer solution 

• 123 mM NaCl, 5mM KCl. 

•  1 mM MgSO4. 

•  25 mM N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES). 

•  10 mM Glucose. 

•  2 mM CaCl2. 

•  10 mM pyruvate. 

•  pH = 7.4. 

 

C. Annexin- binding buffer  

• 125 mM NaCl. 

• 10 mM N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES). 

• 5 mM CaCl2. 

• pH=7.4. 

 

D. SMase assay buffer (10 fold) 

• 1 M Tris-HCl. 
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• 50 mM MgCl2. 

• 0.05 % NaN3. 

• pH=7.4. 

 

E. CPD buffer  

• 3.27 mg/ml citric acid 

• 26.30 mg/ml sodium citrate 

• 2.50 mg/ml sodium dihydrogenphosphate dihydrate  

• 25.50 mg/ml dextrose monohydrate. 

 

 

F. SAG-M stabilizer solution  

• 8.77 mg/ml NaCl 

• 9.00 mg/ml dextrose monohydrate 

• 0.17 mg/ml adenine  

• 5.25 mg/ml mannitol 
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3.2. Methods 

 

3.2.1. What is flow cytometry? 

 

 

 

Figure.5. BD FACSCalibur Flow Cytometer from Becton Dickinson. 
 

 Flow cytometry is the measurement and characterization of cells as they 

are flowing in a stream, and to determine their cellular constituents. This is 

achieved by focusing a laser beam on the cells. 

                                     

Figure.6 Hydrodynamic Focusing. The picture shows the flow of cells thereby 

passing the laser beam. For details see text. 
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The laser beam of the fluorescence activated cell sorter is focused on the cells 

stream flowing as a single file. The cells must be measured one at a time and to 

have accurate measurements therefore the cells should travel single-file 

through the stream at the point of laser interrogation. The method of achieving 

this ordered stream is known as hydrodynamic focusing (Fig.6). 

A. Histogram plot 

  

B. 

 

Figure.7. The forward scatter and side scatter phenomenon. As the photons 

strike the cells in the stream, the light is scattered in different angles  
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Within the flow cell, a slow-moving sample stream is injected into a faster 

moving "sheath" stream (sheath fluid or FACS Flow).  

The laser stream passes through the stream and the majority of its 

photons will pass through unobstructed. Some of these photons will diverge 

slightly, primarily via light diffraction, when these photons contact the 

membranes of passing cells. These scattered photons are then received and 

collected by a detector placed in line with the laser path (on the opposite side of 

the stream). Because of the nature of its collection, this parameter is referred to 

as Forward Scatter (FSC) (Fig. 7). The FSC is proportional to the cell size; the 

big cells will scatter more light than the small ones causing higher detected 

signal.  

On  the other side, many photons will pass through the cytoplasm. When 

they hit cellular organelles (e. g. the nucleus, the endoplasmic reticulum) they 

will be reflected at a bigger angle than the forward scatter. For that reason there 

is a second detector placed perpendicular to the laser path to collect light 

scattered in this way called as Side Scatter (SSC) (Fig. 7), a parameter 

proportional to the cell components. The cells with more organelles inside the 

cytoplasm would cause higher Side Scatter values (SSC).  

This measurement is improved by using fluorescent labelling of the cells 

by fluorescence labelled substances such as: Annexin-V FITC. As these cells 

pass through the stream, the fluorescent conjugated part, or fluorochrome is 

excited with the laser light causing emission of photons of a higher wavelength 

(FITC emits light at ~530 nm when excited by a 488 nm laser) This light is 

collected to get more information about the cellular fluorescence (a high 

Annexin-V label of the cells indicates phosphatidylserine exposure at the cell 

surface). 

All FACS measurements were done on a BD FACSCalibur Flow 

Cytometer from Becton Dickinson (see also Fig. 5). 
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3.2.2. Blood cell preparation 

A. Blood cells and purification of erythrocytes 

For erythrocyte signaling experiments highly purified erythrocyte 

concentrates were used. Human whole blood was drawn from healthy 

volunteers and erythrocyte concentrates were obtained by filtration (Lang, 

Kempe, Tanneur, Eisele, Klarl, Myssina, Jendrossek, Ishii, Shimizu, Waidmann, 

Hessler, Huber, Lang, & Wieder 2005b). 

  In any case, the purity of the erythrocyte concentrates was measured by 

different automated procedures as outlined in the protocol section. 

 Human whole blood was drawn from healthy volunteers and erythrocyte 

concentrates were obtained using the OptiPure RC quadruple blood pack set 

equipped with a soft housing red cell filter (Baxter: Unterschleissheim, Germany). 

• 500 ml of whole blood was automatically mixed with 70 ml CPD buffer.  

• Blood components were separated by centrifugation at 4795 g for 10 min 

at 22°C.  

• Plasma, buffy coat and erythrocytes were then pressed into the 

respective blood bags. 

•  During this process SAG-M stabilizer solution was added to the 

erythrocytes.  

• The erythrocytes were passed through the integrated leukocyte depletion 

filter at room temperature.  

• Aliquots of the erythrocyte concentrates were stored at 4°C until usage. 

• Alternatively (e. g. for Western blot analyses or in animal experiments), 

erythrocytes were purified by centrifugation of whole blood for 25 min., 

2000 g over Ficoll (Biochrom AG), washed 3 times in phosphate buffered 

saline (PBS) and centrifuged at 450 g for 5 min.  

• Purified erythrocytes should be immediately used for experimental 

purposes. 
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B. Analysis of blood cell numbers in whole blood and in erythrocyte 

concentrates 

Platelet numbers in whole blood and in erythrocyte concentrates as well as 

leukocytes in whole blood were measured using an automated blood cell 

counter (CellDyn3000) (Abbott GmbH: Wiesbaden, Germany).  

• The cells were identified by a combination of their optical and electrical 

properties in the appropriate counter medium.  

• Representative erythrocyte concentrates should not contain more than 3 % 

of the original platelet number of the respective whole blood samples. 

• Leukocyte numbers in erythrocyte concentrates were quantified by flow 

cytometric analysis on a Coulter Epics XL (Beckman Coulter: Krefeld, 

Germany) using the internally normalized TrueCount kit from Becton 

Dickinson. The kit is based on the detection of nucleated cells by the 

fluorescent DNA-intercalator propidium iodide. 

• Erythrocyte concentrates should contain less than 0.1 % of the original 

leukocyte number of the respective whole blood samples. 

• Furthermore, thrombocyte numbers in whole blood and in erythrocyte 

concentrates were determined by flow cytometric analysis of thiazole 

orange-stained cells (Kienast & Schmitz 1990) using the Retic-COUNT 

(Thiazole orange) reagent from Becton Dickinson according to the 

manufacturer´s instructions. 

• Measurements are performed on a FACS-Calibur from Becton Dickinson, 

and the number of cells in the thrombocyte gate of the respective forward 

scatter (FSC) versus thiazole orange-fluorescence intensity (FL-1H) dot 

plots is determined using the CellQuestTM software. 

• Erythrocytes, thrombocytes and leukocytes of whole blood and 

erythrocyte concentrates were further quantified by the use of a MDM 

905 electronic hematology particle counter (Medical Diagnostics Marx: 

Butzbach, Germany). 

• For determination of relative reticulocyte numbers 5 µl of whole blood 

was added to 1 ml Retic-COUNT (Thiazole orange) reagent from Becton 

Dickinson.  
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•   Samples were stained for 30 min. at room temperature in the dark.  

•  Then, FACS analysis of stained samples was performed according to the 

manufacturer´s instructions. 

 Forward scatter (FSC), side scatter (SSC) and thiazole orange-fluorescence 

intensity (in the fluorescence channel FL-1) of the blood cells was measured 

and the percentage of Retic-COUNT positive, gated erythrocytes was 

calculated. 

• Gating of erythrocytes was achieved by analysis of FSC vs SSC dot plots 

using the CellQuestTM software.  

 

3.2.3. Plasma of healthy volunteers and sepsis patients 

 

patient plasma

control 
erythrocytes, same 

blood group

after incubation 

Annexin binding 

indicates

PS exposure

after incubation 

patient plasma

labelled 

erythrocytes

fluorescence 

indicates

Ca2+influx

Materials and methods

 

Figure 8. Design of the study. Sepsis and/or healthy heparinized blood (from 

the same blood group) was drawn, and then centrifuged to get the heparinized 

plasma samples. Then, healthy control erythrocytes from the same blood group 

were incubated in sepsis patient’s or healthy volunteer plasma at 37°C in a 5 % 

CO2 atmosphere. After incubation, Annexin V binding, Forward scatter, Ca
2+ 
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influx and ceramide were measured as described. For details see text (PS, 

phosphatidylserine). 

 

 Heparinized plasma was isolated from healthy volunteers and from 

patients suffering from severe sepsis and maintained in the intensive care unit 

of the University hospital. Table. 3 lists the patients included in the study. The 

heparinized plasma was added to erythrocytes from healthy volunteers in vitro. 

The relatives of the patients and the volunteers providing erythrocytes gave 

informed consent. The ethics committee of the University of Tübingen has 

approved the study.  

The scheme of the experiments with sepsis patients is shown in Fig. 8. 

 

3.2.4. Bacterial supernatant preparation  

 

 The preparation of bacterial supernatant was done according to one of the 

two following protocols: 

Protocol A 

• Different bacterial strains were grown in TSB (Difco Laboratories) 

medium; pH 7.2, with 180 rpm shaking at 37°C. 

•  Media were supplemented with glucose to a final concentration of 

0.5 % (wt/vol). 

•  All ingredients were mixed prior to autoclaving, and the medium pH 

did not change after autoclaving.  

• Late-exponential-phase cultures were used to inoculate 50 ml of the 

same medium.  

• The initial O.D 578 was adjusted to 0.1.  

• After over night growth, the cells were harvested by centrifugation at 

10,000 rpm for 30 min at 4°C. 

• The culture supernatants were filter sterilized by passing through 

0.22 µm filter (Millipore) and used for further studies. 
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Bacterial 

supernatant 

Bacteria Bacterial 

culture

erythrocytes 

Bacteria 
supernatant 

Measuring forward

scatter and annexin

V- binding; 

sphingomyelinase
activity

Blood cultue 

 

Figure 9. Isolation of the pathogens from patient’s blood. The pathogens 

were grown in bacterial culture to get the supernatant that has been used later 

in the annexin binding, haemolysis and sphingomyelinase assay 

measurements. 

 

Protocol B 

 

• The isolated bacteria from the sepsis patients as shown in Fig. 9, and 

special strains of Staphylococcus aureus Wild type (8325-4) and 

Sphingomyelinase deficient S. aureus (8325-4Φ13) an isogenic 

mutant strain whose sphingomyelinase gene (hlb) is disrupted 

because of the integration of a prophage in the hlb gene (Goerke, 

Koller, & Wolz 2006). 

• The bacteria strains were grown in soy broth (CM0129; Oxid Inc). 
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• After overnight cultivation, bacterial supernatants were isolated by 

centrifugation (10 min, 5,000 rpm, 4°C) and subsequently filtrated 

(pore size 0.2 µm).  

• Bacterial supernatants were stored at -20 °C until usage.  

• Supernatants were then assayed for sphingomyelinase activity and 

for their ability to induce erythrocyte phosphatidylserine exposure 

as described below. 

 

3.2.5. Endothelial cells 

 

The effect of plasma on annexin binding of human endothelial cells (HMEC-1) 

was studied using immunofluorescence microscopy.  

 

• HMEC-1 cells were grown in MCDB131 medium (Invitrogen GmbH, 

Karlsruhe, Germany) supplemented with 15 % fetal calf serum (PAA 

Laboratories, Cölbe, Germany), 50 µg/ml endothelial cell growth 

supplement (Becton Dickinson: Heidelberg, Germany), 1 µg/ml 

hydrocortisone (Becton Dickinson: Heidelberg, Germany) and 0.5 % 

gentamicin (Sigma: Taufkirchen, Germany). 

• Cells were seeded on Poly-L-lysine-coated glass cover slips (0.01 % 

Poly-L-lysine solution (Sigma: Taufkirchen, Germany). 

• The cells were then treated for 24 h in HMEC-1 growth medium 

containing either 50 % healthy control plasma or 50 % sepsis plasma. 

• The cells were incubated for 24 h at 37°C in a 5 % CO2 atmosphere. 

• Tthe cells were washed twice with annexin-binding buffer, stained with 

Annexin-V-Fluos in annexin-binding buffer (1:50 dilution), and washed 

again. 

• Finally, the cells were analyzed using a fluorescence microscope (Nikon, 

Düsseldorf, Germany. AHF Analysentechnik, Tübingen, Germany) with 

440/480 nm excitation and 535/550-nm emission wavelength. 

• Digital pictures were taken using a digital imaging system (Visitron 

Systems, Puchheim, Germany) equipped with the Metaview software. 
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3.2.6. Sphingomyelinase (SMase) assay 

 

SMase content in bacterial supernatants was measured using the 

Sphingomyelinase [3H] SPA (scintillation proximity assay) enzyme assay (code 

TRKQ7140) from Amersham Biosciences according to the manufacturer´s 

protocol. Briefly,  

• Every sample was prepared by adding: 

� 10 µl bacterial supernatant (or 10 µl of medium) 

� 10 µl of 10-fold- enzyme buffer containing 1 M Tris-HCl (pH 7.4), 

50 mM MgCl2 and 0.05 % NaN3 (the final volume of the sample 

will be 100 µl, this means 10 times dilution of this 10-fold buffer) 

� 70 µl distilled water  

� 10 µl tracer solution (biotinylated [3H]-labelled sphingomyelin)  

� The samples were mixed carefully using the pipette (no vortexing). 

� All the last steps were done on ice (4 C°) 

• After addition of the tracer (the radioactive substance), the samples were 

incubated at 37˚C with soft shaking for 30 - 60 min. 

• Then, the reaction was stopped by adding 20 µl of stop reagent 

containing 

�  2 M Glycin-HCl (pH 3.6) 

�  0.05 M ethylenediamine tetraacetic acid (EDTA), 

�  0.2 % Triton X-100 and 

�  0.05 % (w/v) NaN3  

� Streptavidin-coated tritium silicate SPA beads 

� Before adding the stop reagent it should be shaken carefully to 

achieve a homogenous cloudy form of the suspended beads. 

� When adding this stop reagent to the samples it should be mixed 

carefully using the pipette. 

• Finally, the samples were counted in a ß-scintillation counter (Wallac: 

Freiburg, Germany)  

• The activity of SMase in the samples was calculated from a SMase 
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calibration curve (0.3 - 80 mU/tube), which was run in parallel (Fig. 11). 

 

Sphingomyelin substrate

Sphingomyelinase

Add bead and stop 

the reaction

[3H] phosphocholine

Biotin

Scintillation counter

The sphingomyelinase assay concept

 

Figure.10 Sphingomyelinase assay technique used to determine the 

sphingomyelinase activity in the bacterial supernatant. 

 The binding of the [3H] biotinylated sphingomyelin substrate to the streptavidin-

coated tritium silicate SPA bead brings the isotope into close enough proximity 

to allow b-particles released from the tritium to excite the bead. The cleaved 

product of the sphingomyelinase activity containing the tritiated/labelled 

component is not close enough to the scintillant to allow this energy transfer, so 

no signal is generated. In addition, nonbiotinylated substrate does not bind to 

the bead. For details see the text. 
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Figure.11 The Sphingomyelinase standard curve measured using different 

concentrations of Sphingomyelinase (0.3 - 80 mU/tube). See Fig.10. 

 

3.2.7. FACS  

 

A. Determination of phosphatidylserine exposure by flow cytometry 

 

Fluorescence activated cell sorting (FACS) analysis is performed 

essentially as described elsewhere (Andree et al. 1990) with some 

modifications to adapt the method to erythrocyte research (Lang, Roll, Myssina, 

Schittenhelm, Scheel-Walter, Kanz, Fritz, Lang, Huber, & Wieder 2002;Lang, 

Duranton, Poehlmann, Myssina, Bauer, Lang, Wieder, & Huber 2003a). 

• Erythrocyte concentrates (3µl erythrocytes in 1ml plasma, 0.3 % 

hematocrit) are incubated with healthy and /or sepsis volunteer’s plasma 

for 24 hours. 
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• After incubation, cells are washed in annexin-binding buffer containing (in 

mM) 125 NaCl, 10 HEPES; pH 7.4 and 5 CaCl2 as following. 

• The tubes containing the erythrocytes incubated in plasma were 

vortexed, and then 50µl of the suspension was added to 350µl annexin-

binding buffer and centrifuged 5 minutes, 3500 rpm at room temperature. 

• The supernatant was removed after that. 

• The erythrocytes pellet was stained with the fluorescein-conjugated 

anticoagulant Annexin-Fluos® (Roche Diagnostics: Mannheim, Germany) 

at a 1:50 dilution (20µl of Annexin-Fluos® was diluted with 980µl annexin-

binding buffer and vortexed, then for every sample 50µl of this diluted 

Annexin-Fluos® was added). 

• After 15 min, samples were diluted 1:5 by adding annexin-binding buffer 

(200µl to each sample) and measured by flow cytometric analysis on a 

FACS-Calibur. 

• Annexin-fluorescence intensity was measured in FL-1 with an excitation 

wavelength of 488 nm and an emission wavelength of 530 nm. 

 

B. Determination of cell volume by flow cytometry 

 

To determine the cell volume of stressed erythrocytes, the forward 

scatter of unlabelled cells is measured and analysed on a FACS-Calibur (Lang, 

Duranton, Poehlmann, Myssina, Bauer, Lang, Wieder, & Huber 2003a). 

In case that the cells have been incubated in healthy or sepsis patient plasma, 

forward scatter analysis can also be accomplished with Annexin-stained 

erythrocytes. 

 

C. Determination of cellular ceramide levels by flow cytometry  

 

For determination of ceramide, a monoclonal antibody-based assay was used 

(Bieberich et al. 2003;Grassme et al. 2002). 

The measurement was done as follows: 

• 3 µl of erythrocyte concentrate were incubated for 24 hours in 1 ml plasma 
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of healthy and/or sepsis patient (0.3 % hematocrit)  

• The positive control was prepared by incubation the erythrocytes for 24 

hours in Ringer. Then, the cells were treated with Ringer solution 

containing 0.1 U/ml purified sphingomyelinase from Streptomyces sp. 

(Sigma: Taufkirchen, Germany) for 5 min. 

Ceramide

Anti-Ceramide 

antibody

(FITC)-conjugated goat anti-mouse

IgG + IgM specific antibody 

FITC

 

 

Figure 12: Principle of ceramide measurement by flow cytometry.  

The anti-ceramide antibody (first antibody) binds to ceramide in the outer leaflet of 

the membrane and the secondary FITC-conjugated (fluorescent) antibody then 

binds to the Fc part of the anti-ceramide antibody. FITC, (Fluorescein 

Isothiocyanate). 

 

• 150 µl of the erythrocyte suspension was transferred to a plastic tube 

containing 1 ml PBS. 

• The erythrocytes were washed 3 times with PBS by centrifuging at 3000 

rpm for 5 min at 4C° and removing the supernatant. 

• The pellet was suspended in 40 µl PBS and incubated for 1 hour at 4°C 
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with 1 µg/ml anti-ceramide antibody (clone MID 15B4) (Alexis: Grünberg, 

Germany) or 1 µg/ml isotype matched pure mouse IgM antibody (Ancell: 

Bayport, MN, USA) in PBS containing 1 % fetal calf serum (FCS) at a 

dilution of 1:5 as described (Lang et al. 2004a). 

• After the incubation, the erythrocytes were washed three times with 

PBS/1% FCS and the supernatant was removed. 

• The cells were stained with polyclonal fluorescein isothiocyanate (FITC)-

conjugated goat anti-mouse IgG + IgM specific antibody (Pharmingen: 

Hamburg, Germany) in PBS/1% FCS at a dilution of 1:50 for 30 min.  

• After the second incubation, the unbound secondary antibody was 

removed by repeated washing with PBS/1% FCS three to four times. 

• The samples were analysed by flow cytometric analysis on a FACS-

Calibur. Mean values of FITC-fluorescence intensity in the fluorescence 

channel FL-1 were determined using the CellQuestTM software.  

• Isotype matched pure mouse antibody should not display increased 

fluorescence intensity in FL-1 as compared with the negative control (which 

was prepared by adding PBS containing 1% FCS instead of the anti-

ceramide antibody). In contrast, SMase-treated erythrocytes should show 

enhanced fluorescence (positive control). Figure 12 depicts a simplified 

scheme of the principles of the assay. 

 

D. Measurement of intracellular Ca2+ activity by flow cytometry 

 

1-[2-Amino-5-(2,7-dichloro-6-hydroxy-3-oxo-3H-xanthen-9-yl)]-2-(2′-amino-5′ -

methylphenoxy) ethane-N, N, N′, N′-tetraacetic acid pentaacetoxymethyl ester 

(Fluo3AM) is a Ca2+ indicator which is membrane permeable until it is hydrolyzed 

inside the cell by cellular esterases. Fluo3AM is almost non-fluorescent at resting 

levels of calcium but the fluorescence becomes 40-times more intense when it 

binds to intracellular calcium, and its excitation maximum 506 nm and emission 

maximum is 526 nm is in the prescence of high and low concentrations of calcium.  

In the present study, intracellular Ca2+ measurements were performed as 

described earlier (Andrews, Yang, & Low 2002).  
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• 3 µl erythrocytes were suspended in 1 ml Fluo-3/AM buffer (0.3 % 

hematocrit). 

• The erythrocytes were loaded with Fluo-3/AM (Calbiochem: Schwalbach, 

Germany) by addition of 2 µl of a Fluo-3/AM stock solution (1 mM in 

dimethyl sulfoxide [DMSO]) to 1 ml erythrocyte suspension. 

• The cells were incubated at 37 °C for 15 min under vigorous shaking and 

protection from light.  

• An additional 2 µl of Fluo-3/AM stock solution (1 mM) was added, and 

incubation was carried out for 25 min.  

• Fluo-3-AM-loaded erythrocytes were centrifuged at 1800 rpm for 5 min. 

at 22 °C and the supernatant was removed. 

• The erythrocytes were washed two times with Ringer solution containing 

1 % FCS and once with Ringer.  

• For flow cytometry, 1.5 µl of Fluo-3/AM-loaded erythrocytes were 

resuspended in 0.5 ml plasma (0.3 % hematocrit) and incubated in a CO2 

incubator at 37°C. 

• As a positive control, Fluo3-labelled erythrocytes were suspended in 1 ml 

Ringer (3µl erythrocytes in 1 ml, 0.3 % hematocrit) supplemented with 

the Ca2+ ionophor ionomycin (1 µM) (Sigma: Taufkirchen, Germany). As 

a negative control, erythrocytes were incubated in Ringer solution 

containing vehicle (0.1 % DMSO) alone and incubated for different time 

periods at 37°C in a CO2 incubator with light protection. 

• For the measurement 100 µl of the erythrocyte suspension was diluted 

with 200 µl of plasma (when it is suspended plasma) or 200 µl Ringer for 

the positive control . 

• Then, Ca2+-dependent fluorescence intensity was measured in 

fluorescence channel FL-1 with an excitation wavelength of 488 nm and 

an emission wavelength of 530 nm. 
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3.2.8. Statistics 

 

 Erythrocytes from different donors show a relatively high degree of 

variability. Thus, all experiments were repeated with several blood samples from 

different individuals as indicated. Data are expressed as arithmetic means ± 

S.E.M. and statistical analyses were made by paired or unpaired t-test, or ANOVA 

using Dunnett´s or Tukey´s test as post hoc test, where appropriate.  
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4. Results 
 

4.1. Age, sex and clinical condition of the patients included in 

the study 

 

 Eleven patients who had septic shock diagnosed according to the 

recommendations of the German society of sepsis and accepted in the 

intensive care unit of the Hospital of Tübingen University have been included in 

the study. As shown in Table 3, these patients had differences and diverse 

degrees of concomitant diseases, variable sources of infection, a broad range 

of sepsis severity and clinical background. Those parameters predisposed them 

to have septic shock. 4 patients were female and 7 patients were male, their 

age varied between 36-79 years. 

 

Table.3 

Clinical data of patients 

 

No. 

 

 

Age 

(Years) 

Sex Septic focus Microbiology ICU 

stay 

(days) 

APACHE 

II score * 

 

Outcome 

1 

 

51 F Crohn disease, 

abdominal 

abscess 

Not identified 2 

 

17 

 

Survived 

 

2 

 

36 

 

F Pneumonia 

 

Mycoplasma 

pneumoniae 

3 

 

21 

 

Survived 

3 

 

35 

 

M 

 

Crohn disease, 

Port infection 

 

Staph. Epi 3 

 

11 

 

Survived 

4 

 

70 

 

F Agranulocytosis, 

necrotic fasciitis 

Not identified 

 

23 

 

17 

 

Survived 

5 

 

70 

 

F Necrotic fasciitis 

 

Not identified 

 

1 26 

 

Survived 

6 65 M Pneumonia Not identified 9 24 Exitus 



 

40 

   letalis 

7 

 

79 M Urosepsis 

 

 

E. coli 

 

3 27 

 

Survived 

 

8 

 

39 M Non-Hodgkin-

Lymphome, 

Sepsis in 

aplasia 

 

Staph. epi, 

 

 

1 30 

 

Exitus 

letalis 

9 

 

54 M Pacemaker 

infection 

Staph. aureus 

 

1 21 

 

Survived 

10 

 

49 M Toxic shock 

syndrome 

 

Staph. aureus 

 

35 13 

 

Survived 

11 

 

64 M Unknown 

focus 

 

Bact. fragilis 3 14 

 

Survived 

 

*APACHE II score is given in points. 

 

4.2. Blood cell counts in healthy individuals and sepsis patients  

 

 The blood cell count of these patients showed that they suffered from 

severe anemia: the patients haemoglobin was 10.48±0.57 g/dl (n=11) 

comparing to the healthy volunteers 14.5±0.34 g/dl (n=12), and the hematocrit 

was 42±0.97% (n=12) and 30.5±1.48% (n=11) for healthy volunteers and sepsis 

patients, respectively (see Table 4). 

 

Table 4:  

Blood cell count in healthy individuals and patients with sepsis. 

Arithmetic means ± SEM (n = 12 control, 11 patients) of leukocyte number and 

classification, thrombocytes number, of erythrocyte number, packed cell volume 

(hematocrit), haemoglobin concentration, mean corpuscular haemoglobin 

(MCH), mean corpuscular volume (MCV), and reticulocyte count. 
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Controls 

 

Patients 

 

P 

Leukocytes *1000 6018±357 10162±2363 n.s 

Neutrophils% 57.88±2.37 76.84±12.77 n.s 

Eosinophils% 1.99±0.43 0.64±0.15 <0.05 

Basophils% 0.74±0.11 0.67±0.41 n.s 

Lymphocytes% 31.12±2.14 12.6±6.63 <0.01 

Monocytes% 6.4±0.43 2.24±0.48 <0.001 

Unclassified% 1.86±0.14 6.8±5.88 n.s 

Erythrocytes*million 4.72±0.12 3.33±0.17 <0.001 

Hematocrit% 42±0.97 30.5±1.48 <0.001 

HB (g/dl) 14.5±0.34 10.48±0.57 <0.001 

MCH (pg) 30.74±0.37 33±1.12 <0.05 

MCHC (g/dl) 34.49±0.1 34.65±0.39 n.S 

Hypochrom erys(%) 1.4±0.2 1 n.S 

MCV(fl) 89.14±1.09 93.04±3.03 n.S 

Thrombocytes*1000 292±12.38 141.7±23.37 <0.001 

 

 

4.3. Sepsis patient plasma induces apoptotic morphology and 

PS exposure in human endothelial cells 

 

 Because sepsis induces endothelial cells damage leading to endothelial 

cells apoptosis (Curzen, Griffiths, & Evans 1994;Cybulsky, Chan, & Movat 

1988;Hack & Zeerleder 2001;Lehr, Bittinger, & Kirkpatrick 2000;Mutunga, 

Fulton, Bullock, Batchelor, Gascoigne, Gillespie, & Baudouin 2001) the 

apoptotic effect of sepsis patient plasma was investigated. For this, the effect of 

plasma on annexin binding of human endothelial cells (HMEC-1) was studied 

using immunofluorescence microscopy.  

The endothelial cells were incubated for 24 h in HMEC-1 growth medium 

containing either 50 % healthy control plasma or 50 % sepsis plasma. Exposure 
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to the sepsis plasma led to a high apoptosis incidence as demonstrated by the 

appearance of apoptotic morphology (shrinkage, detachment and rounding up 

of the cells)  in light microscopy (Fig. 13A). Additionally, the sepsis plasma- 

treated cells were Annexin V positive when analysed by fluorescence 

microscopy (Fig. 13B). 

 

A)

B)

Control plasma Sepsis plasma

Control plasma Sepsis plasma

Annexin V-FITC

Transmission light

 

Figure.13. Sepsis patient plasma induces apoptotic morphology and PS 

exposure in human endothelial cells 

Analysis of morphological changes (A) and annexin binding (B) in endothelial 

cells incubated in healthy plasma (left panel) or in sepsis patients plasma (right 

panel). Pictures were taken under a transmission light (A) or fluorescence 

microscope (B). 
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4.4. Stimulation of phosphatidylserine exposure at the 

erythrocyte surface by plasma of septic patients  
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Fig.14. Stimulation of phosphatidylserine exposure at the erythrocyte 

surface by plasma of septic patients  

A. Histograms of annexin binding in a representative experiment of erythrocytes 

from healthy volunteers incubated for 24 hours in plasma from a septic patient 

(right panel) or from a healthy volunteer (left panel). 

B. Arithmetic means ± SEM (n = 12) of annexin binding of erythrocytes 

incubated for 24 hours in plasma from septic patients (right, black column) or 

from healthy volunteers (left white column). * Indicates significant difference 

between the plasma from septic patients and plasma from healthy volunteers 

(unpaired t-test P ≤ 0.05). 
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C. Arithmetic means ± SEM (n = 4) of annexin binding of erythrocytes from a 

septic patient (right, black column) or from a healthy volunteer (left white 

column) both incubated for 24 hours in Ringer.  

 Accelerated clearance of erythrocytes could result from increasing of the  

phosphatidylserine exposure of erythrocytes. Phosphatidylserine exposing 

erythrocytes are then recognized by macrophages, thus leading to phagocytosis 

and engulfment of affected erythrocytes (Kempe, Lang, Eisele, Klarl, Wieder, 

Huber, Duranton, & Lang 2005b;Lang, Lang, Bauer, Duranton, Wieder, Huber, 

& Lang 2005a). 

As shown in Fig. 14, erythrocytes of healthy volunteers from the same blood 

group were exposed to the plasma of healthy individuals or sepsis patients’ 

plasma for 24 hours. This incubation led to marked stimulation of 

phosphatidylserine exposure at the erythrocyte surface. The values were 3.75% 

± 0.4% ( n=12) and 13.7% ± 1.4% ( n=11) in healthy and sepsis plasma 

respectively, which is significantly different (Fig. 14 A, B).  

To exclude defects in the erythrocyte populations of sepsis patients, 

phosphatidylserine exposure of their erythrocytes was analysed. However, 

following exposure of erythrocytes from either healthy individuals or sepsis 

patients to Ringer solution, the percentage of annexin binding erythrocytes 

remained low (1.15%± 0.18% and 1.2%± 0.23% for healthy and sepsis 

erythrocytes, respectively) (Fig. 14C). Moreover, no significant difference of 

annexin binding was observed between erythrocytes from healthy people and 

erythrocytes from sepsis patients. 

  Thus, plasma of sepsis patients indeed contains a component, which 

triggers phosphatidylserine exposure of healthy erythrocytes. 

  

4.5. Decrease of erythrocyte forward scatter following exposure 

to plasma of septic patients 

 

 The phosphatidylserine exposure of suicidal erythrocytes is usually 

paralleled by cellular shrinkage which should lead to a corresponding decrease 

of the forward scatter in flow cytometry (Lang, Kaiser, Myssina, Wieder, Lang, & 
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Huber 2003c;Myssina, Lang, Kempe, Kaiser, Huber, Wieder, & Lang 2004a). As 

shown in Fig. 15, the exposure of erythrocytes from healthy volunteers to 

heparinized plasma of septic patients for 24 hours indeed led to marked 

decrease of forward scatter (424.8± 7.7 arbitrary unit and 396.6± 5.99 arbitrary 

unit, in healthy and sepsis plasma, respectively ) (Fig. 15 A, B).  
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Fig. 15: Decrease of erythrocyte forward scatter following exposure to 

plasma of septic patients  

A. Histograms of forward scatter in a representative experiment of erythrocytes 

from a healthy volunteer incubated for 24 hours in plasma from a septic patient 

(right panel) or from a healthy volunteer (left panel). 

B. Arithmetic means ± SEM (n = 10) of forward scatter of erythrocytes incubated 



 

46 

for 24 hours in plasma from septic patients (right, black column) or from healthy 

volunteers (left white column). * Indicates significant difference between the 

plasma from septic patients and plasma from healthy volunteers (unpaired t-test 

P ≤ 0.05). 

C. Histograms of forward scatter in a representative experiment of erythrocytes 

from a healthy volunteer (left panel) or a septic patient (right panel) incubated 

for 24 hours in Ringer. 

D. Arithmetic means ± SEM (n = 6) of forward scatter of erythrocytes from 

septic patients (right, black column) or from healthy volunteers (left white 

column) both incubated for 24 hours in Ringer. 

 

Again, the exposure of erythrocytes from healthy individuals or sepsis patients 

to Ringer solution did not significantly modify the forward scatter, and no 

significant differences between both groups of erythrocytes were measured 

(404.75± 7.23 arbitrary unit and 401.54± 8.84 arbitrary unit in healthy and 

sepsis erythrocytes, respectively) (Fig. 15 C, D).  

Thus, whereas the sepsis plasma contains a component that causes the 

shrinkage of healthy erythrocytes, the volume of circulating erythrocytes of 

sepsis patients is not significantly altered as compared with the volume of 

healthy erythrocytes. 

 

4.6. Increase of cytosolic Ca2+ activity in erythrocytes exposed 

to plasma of septic patients. 

 

 The increase of intracellular Ca2+ activity is one of the stimulators of 

phosphatidylserine exposure, as the exposure of erythrocytes to the Ca2+ 

ionophore ionomycin led to breakdown of phosphatidylserine asymmetry and 

annexin binding in addition to the shrinkage of the erythrocytes. Hyperosmotic 

stress, oxidative stress, and energy depletion activate non-selective Ca2+-

permeable cation channels, triggering the exposure of phosphatidylserine and 

erythrocyte shrinkage. These channels are inhibited by amiloride, which further 

blunts annexin binding following osmotic shock, oxidative stress and energy 
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depletion (Lang, Duranton, Poehlmann, Myssina, Bauer, Lang, Wieder, & Huber 

2003a). 

Thus, the effect of sepsis patient’s plasma on erythrocyte cytosolic Ca2+ activity 

was tested. The Fluo3-fluorescence measurements revealed that exposure of 

erythrocytes to the plasma of the sepsis patients led to a slight but significant 

increase of the number of erythrocytes with increased cytosolic Ca2+ activity 

(10.05± 0.47 arbitrary units 
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Figure.16: Increase of cytosolic Ca2+ activity in erythrocytes exposed to 

plasma of septic patients.  

A. Representative original histograms of Fluo3 fluorescence from erythrocytes 

incubated for 360 minutes in plasma of a septic patient (right panel) or from a 
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healthy volunteer (left panel).  

B. Arithmetic means ± SEM (n = 7) of Fluo3 fluorescence in erythrocytes 

incubated for 360 minutes in plasma of septic patients (black column) or from 

healthy volunteers (white column), and of erythrocytes exposed to Ca2+ 

ionophore ionomycin (1 µM, grey column) in Ringer. * Indicates significant 

difference between the value to erythrocytes exposed to plasma of healthy 

individuals (ANOVA using Dunnett´s test as post hoc test. P ≤ 0.05). 

 

and 19.71± 2.37 in healthy and sepsis plasma, respectively) (Fig.16). As a 

positive control, the Ca2+ ionophore ionomycin (1 µM) led to a marked increase 

of cytosolic Ca2+ activity in virtually all erythrocytes (127.99± 7.7 arbitrary unit). 

 

4.7. Stimulation of ceramide formation in erythrocytes exposed 

to plasma of septic patients. 

 

A further stimulator of phosphatidylserine exposure in erythrocytes is 

ceramide which is produced by sphingomyelinase activity. Thus, the effect of 

plasma of sepsis patients on ceramide formation was tested. According to flow 

cytometric ceramide measurements, exposure of erythrocytes to plasma from 

sepsis patients indeed stimulated the formation of ceramide (8.18±0.53 rbitrary 

unit and 13.08±1.82 arbitrary unit in healthy and sepsis plasma, respectively) 

(Fig. 17). As positive control, erythrocytes were incubated in Ringer solution 

containing 0.1 U/ml purified sphingomyelinase from Streptomyces sp. or from S. 

aureus for 5 min, and a significant increase of the fluorescence intensity was 

observed (Fig. 17B, grey column).  
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Figure.17: Stimulation of ceramide formation in erythrocytes exposed to 

plasma of septic patients.  

A. Left: Histograms of ceramide presenting erythrocytes in a representative 

experiment of erythrocytes incubated for 24 hours in plasma of a septic patient 

(red line, left panel) or in plasma from a healthy volunteer (black line). Right: 

Histograms of ceramide presenting erythrocytes in a representative experiment 

of erythrocytes incubated for 24 hours in Ringer without (black line) and with 0.1 

mU bacterial Sphingomyelinase (red line right panel). 

B. Arithmetic means ± SEM (n = 4) of ceramide formation in erythrocytes 

incubated for 24 hours in plasma of septic patients (black middle column), 

plasma from healthy volunteers (white left column) and with 0.1 mU bacterial 

Sphingomyelinase (grey left column). * Indicates significant difference between 

the plasma from septic patients and plasma from healthy volunteers (unpaired t-

test. P≤0.05). 
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4.8. Stimulation of phosphatidylserine exposure at the 

erythrocyte surface by supernatant from Sphingomyelinase-

producing Staphylococcus aureus 
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Figure.18: Stimulation of phosphatidylserine exposure at the erythrocyte 

surface by supernatant from Sphingomyelinase-producing Staphylococcus 

aureus  

A. Histograms of annexin binding in a representative experiment of erythrocytes 

incubated for 60 minutes in bacterial growth medium without pathogen (left 

panel) or in supernatant (middle and right panels) from wild type 

Staphylococcus aureus ATCC 8325 (middle panel) or from mutated 

Staphylococcus aureus ATCC 8325 lacking functional Sphingomyelinase (right 

panel).  

B. Arithmetic means ± SEM (n = 3) of the percentage annexin binding 

erythrocytes after incubation for 60 minutes in pathogen free medium (M) or in 
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supernatant from wild type Sphingomyelinase expressing Staphylococcus 

aureus ATCC 8325 (Wt) or from mutated Staphylococcus aureus ATCC 8325 

lacking functional Sphingomyelinase (Mt). * Indicates significant difference from 

the annexin binding cells incubated in pathogen free medium (ANOVA using 

Dunnett´s test as post hoc test. P≤0.05). 

 

 Further experiments have been performed to explore whether 

sphingomyelinase released from pathogens could trigger phosphatidylserine 

exposure of erythrocytes. To this end, erythrocytes from healthy volunteers 

have been exposed to culture medium (negative control) or to supernatant from 

sphingomyelinase-producing Staphylococcus aureus Wild type (8325-4) and 

sphingomyelinase-deficient S.aureus (8325-4Φ13)(mut), an isogenic mutant 

strain whose sphingomyelinase gene (hlb) has been knocked out. Incubation of 

erythrocytes for 60 min in supernatant from wild type S aureus (8325-4F) was 

followed by a marked phosphatidylserine exposure, while incubation in bacterial 

growth medium or in supernatant from mutated S aureus (8325-4Φ13) lacking 

functional sphingomyelinase (Goerke, Koller, & Wolz 2006) were without any 

appreciable effect (Fig.18A, B). Thus, sphingomyelinase specifically released 

from living bacteria is able to trigger phosphatidylserine exposure in previously 

healthy human erythrocytes. 

 

4.9. Annexin binding of erythrocytes and hemolysis after 

incubation in bacterial supernatant. 

 

To investigate whether the enhanced annexin binding was due to erythrocytes 

hemolysis, the cells were incubated with supernatant from S aureus (8325-4F) 

(Wt) (Fig. 19), and annexin V binding and hemolysis was measured in parallel. 

After 60 min of incubation of erythrocytes in bacterial supernatant, the dramatic 

annexin binding (86.3%±2.87) was not accompanied by hemolysis (0 %). 

However, after 24 hours of incubation hemolysis was almost 100 % and 

reached the same value as in the annexin binding assay (Fig. 19). Thus, the 

early effect on annexin binding after one hour was not due to hemolysis. Under 
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physiological conditions, these annexin-positive erythrocytes are recognized 

and engulfed by macrophages. After longer incubation periods (24 hours) and in 

the abscence of macrophages, however, all annexin-positive cells were 

hemolysed, resulting in 100% of annexin binding due to disrupture and 

exposure of the intracellular leaflet of the erythrocyte membrane. 
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Figure.19. Arithmetic means ± SEM (n=3) of the percentage of annexin 

binding erythrocytes (black circle) and percentage of hemolysis (open 

white triangle) after incubation for up to 24 hours in bacterial supernatant. 

 

4.10. Characterization of the pathogens used for the 

SMase/Annexin binding correlation 

 The isolated pathogens from the sepsis patients, and special strains of 
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Staphylococcus aureus Wild type and sphingomyelinase-deficient species, in 

addition to other different laboratory pathogens which were used in this 

measurement, are shown in Table 5. 

 

Table.5  

List of the pathogens used for the SMase/Annexin binding correlation  

 

1 Streptococcus pneumoniae 

2 Streptococcus pyogenes 

3 Staphylococcus aureus ATCC 8325 

4 Pseudomonas aeruginosa 

5 E.coli 

6 Staphylococcus aureus ATCC 8325FΦ13 

7 Salmonella 

8 Staphylococcus  carnosus TM 300 

9 Staphylococcus aureus Strain Newman 

10 S. aureus SA 113 

11 Yersinia pestis 

12 Pseudomonas aeruginosa 

13 Staphylococcus haemolyticus 

14 Shigella flexneri 

15 Shigella dysenteria 

16 Staphylococcus epidermidis 

17 Staphylococcus lugdunensis 

18 Klebsiella pneumoniae 

19 Staphylococcus lentus 

20 Serratia liquefaciens 
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4.11. Correlation between the annexin binding of treated 

erythrocytes and the sphingomyelinase activity of bacterial 

supernatants  

 The SMase (Sphingomyelinase) activity and the eryptosis-inducing 

activity in the supernatant from wild type S aureus (8325-4F) and from mutated 

S aureus (8325-4Φ13) lacking functional sphingomyelinase (Goerke, Koller, & 

Wolz 2006) and in the supernatant from the other different pathogens listed in 

Table 5 were determined in parallel. As shown in Figure 20, graphical analysis 

of the data of the different pathogens disclosed a significant correlation 

(R2=0.891) between sphingomyelinase activity and the potency to trigger 

eryptosis.  
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Figure 20. Correlation between the percentage of annexin binding 

erythrocytes and sphingomyelinase activity after incubation with bacterial 

supernatants from 20 different bacterial strains. 
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5. Discussion 
 

5.1. Erythrocytes cytoskeleton 

 

 The erythrocytes have biconcave shape with a diameter of ~7.5 µm, and 

have a lipid bilayer membrane consisting of phospholipids, cholesterol, 

carbohydrates, glycolipids and proteins. Phospholipids are approximately 40 % 

by weight, mostly: phosphatidylcholine, phosphatidylserine, phosphatidyl-

ethanolamine and phosphatidylinositol. Carbohydrates are about 10 % by 

weight, linked to lipid or protein. Glycolipids are on the outer leaflet in small 

concentrations. The proteins are about 50 % by weight, mostly 

glycoproteins(Mohandas & Evans 1994;Stokke, Mikkelsen, & Elgsaeter 

1986;Svetina & Iglic 1996). 

 Passing through the narrow capillaries that have a diameter of less than 

4 µm (almost half of the erythrocyte diameter), the erythrocytes are squeezed. 

This normally does not lead to membrane disrupture due to the red blood cells 

strong and flexible plasma membrane depending on the cytoskeleton network 

that underlies the entire membrane and is attached to it at many points. The 

erythrocytes cytoskeleton is a cross-linked brushy polymer network, and the 

protein spectrin is the primary component of this network. The membrane 

proteins interactin plays an important role in its stability, as spectrin attaches to 

actin filament plus adducin, tropomyosin, and tropomodulin which makes the 

actin filaments stable by preventing their depolymerising, in addition to that 

spectrin attaches to peripheral membrane proteins. Ankyrin, another 

cytoskeleton protein connects the center of spectrin to band 3 protein, the 

anion-transporter protein in the membrane, and to Band 4.1 protein(Bennett & 

Baines 2001;Bennett & Gilligan 1993;Palek & Lambert 1990;Peters LL & 

BarkerJE 2001;Tse & Lux 1999) (Fig. 21).  

5.2. Sepsis plasma and erythrocytes 

 

The present experiments demonstrate that plasma from septic patients triggers 



 

56 

phosphatidylserine exposure of erythrocytes finally leading to suicidal 

erythrocyte death or eryptosis. 

The phosphatidylserine exposure is partially due to an increase of cytosolic 

Ca2+ activity. Besides its effect on phosphatidylserine exposure by increasing  

 

 

 

Figure. 21: The organization of the major erythrocyte cytoskeletal proteins 

and their interactions with integral membrane proteins. Hypothetical 

arrangement of the components of a junctional complex and their interactions 

with the termini of spectrin tetramers. (from “Molecular cell biology” 18.1: 

adapted from (Luna & Hitt 1992;Lux 1979). 
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erythrocyte membrane scrambling. The increase of cytosolic Ca2+ activity could 

also modify the cytoskeleton and this modification could affect the resistance 

and elasticity of the erythrocytes leading to deformation when they are 

squeezed in the capillaries. The membrane stability is regulated by membrane 

protein interactions, as demonstrated for the Ca2+-calmodulin induced 

modulation of the interaction of protein 4.1 and spectrin-like proteins. The 

increasing of Ca2+ causes a reduction of the binding between protein 4.1 and 

band 3 proteins. This binding in turn modulates ankyrin interaction with band 3, 

leading to instability of the erythrocytes cytoskeleton (Nunomura et al. 

1997;Takakuwa & Mohandas 1988). In addition, Ca2+ activates a 

transglutaminase leading to protein aggregate formation and crosslinking of 

proteins in erythrocytes membrane (Anderson, Davis, & Carraway 1977), as well 

as calpain (non-lysosomal intracellular proteinases) (Anderson, Davis, & 

Carraway 1977). The degradation of membrane proteins by calpain may 

participate in the machinery eventually leading to erythrocyte death. Ca2+ 

stimulates phospholipases leading to production of 1,2-diacylglycerol (Allan & 

Michell 1976), protein kinases and phosphatases (Cohen & Gascard 1992;Minetti 

et al. 1996) The role of protein kinases in erythrocytes apoptosis was approved, 

as glucose depletion-induced eryptosis was shown to be triggered by the 

activation of protein kinase C alpha (PKCα) (Klarl et al. 2006). 

 Moreover, Ca2+ entry activates Ca2+-sensitive K+ channels (Gardos 

channels) (Bookchin, Ortiz, & Lew 1987;Brugnara, de Franceschi, & Alper 

1993;Franco et al. 1996), which together with Cl- channels (Myssina et al. 

2004b) allow the efflux of KCl and thus lead to cell shrinkage (Lang et al. 

2003b).  

 The effect of plasma from septic patients on cytosolic Ca2+ activity is, 

however, modest and probably does not account for the strong stimulation of 

phosphatidylserine exposure. Rather, the stimulation of ceramide formation and 

its role in apoptosis signaling might be more important. In this context, the plasma 

activity of sphingomyelinase has previously been shown to be elevated in septic 

patients (Claus, Bunck, Bockmeyer, Brunkhorst, Losche, Kinscherf, & Deigner 

2005). The sphingomyelin pathway is an ubiquitous signaling system starting at 
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the plasma membrane, where both acid and neutral sphingomyelinase (SMase) 

isoforms under stress might hydrolyse the sphingomyelin leading to ceramide 

formation (Pena, Fuks, & Kolesnick 1997). Intracellular ceramides play an 

important role as second messengers in proliferation, differentiation and 

apoptosis (Hannun 1996;Spiegel, Foster, & Kolesnick 1996), and experimental 

evidence for the role of sphingomyelinase-mediated ceramide formation in 

apoptosis has been provided in different cell types, such as macrophages 

(Steinbrecher, Gomez-Munoz, & Duronio 2004), keratinocytes (Geilen et al. 

1996), melanoma cell lines(Raisova et al. 2000), prostate and colon carcinoma 

cells (von Haefen et al. 2002) and erythrocytes (Lang, Myssina, Brand, Sandu, 

Lang, Berchtold, Huber, Lang, & Wieder 2004b). 

In addition to the apoptotic effect following exposure of cells to Staphylococcus 

aureus by inducing the activation of cellular caspases and acid sphingomyelinase, 

the release of cytochrome c and stimulation of Jun NH2-terminal kinase (JNK) 

was demonstrated (Esen et al. 2001). Another example of bacteria which cause 

apoptosis accompanied by generation of ceramide through activation of acid 

sphingomyelinase is Escherichia coli (Falcone et al. 2004). Thus, the 

sphingomyelinase activation and ceramide formation could well account for the 

stimulation of phosphatidylserine exposure in erythrocytes. 

 The present study does not allow any conclusions as to the origin of the 

sphingomyelinase in the sepsis plasma. It is noteworthy, however, that the 

supernatant of pathogens contains sufficient sphingomyelinase activity to trigger 

marked phosphatidylserine exposure. The perfect linear correlation between 

phosphatidylserine exposure and sphingomyelinase activity on the one hand and 

the disappearance of phosphatidylserine exposure following loss of function by 

mutation of the bacterial Sphingomyelinase clearly demonstrate that the activity in 

the supernatant is largely due to sphingomyelinase. This observation does not 

rule out, however, that the pathogens express additional factors triggering 

phosphatidylserine exposure, which are not released into the supernatant. These 

bacterial components or other produced factors than the sphingomyelinase, e. g. 

lipopolysaccharide (LPS), bacterial lipoproteins (BLPs), peptidoglycan, pyocyanin 

and haemolysin, have been proved to induce cellular apoptosis and 
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phosphatidylserine exposure (Lang et al. 2004d;Navarre & Zychlinsky 2000). The 

observations further do not exclude the possibility that sphingomyelinase could be 

from other origin, such as leukocytes, released into the plasma of septic patients 

and contributes to the stimulation of phosphatidylserine exposure. 

 The exposure of phosphatidylserine at the cell surface favors the binding 

to respective phosphatidylserine receptors expressed by macrophages (Fadok et 

al. 2000a). Binding to those receptors triggers engulfment and subsequent 

degradation of the affected erythrocytes (Boas, Forman, & Beutler 1998). Thus, 

erythrocytes exposing phosphatidylserine at their surface will be cleared from 

circulating blood. Moreover, the erythrocytes may bind to receptors in the vascular 

wall and thus impede microcirculation (Andrews & Low 1999a;Closse, Dachary-

Prigent, & Boisseau 1999a;Closse, Dachary-Prigent, & Boisseau 1999b). Along 

those lines, we observed enhanced trapping of annexin binding erythrocytes in 

renal medulla following ischemia of the mouse kidney (Lang et al. 2004c). 

Phosphatidylserine exposing cells may further participate in hemostasis (Andrews 

& Low 1999b). This increased clearance of annexin positive erythrocytes might be 

one of the mechanisms inducing anemia in sepsis patients by shorting the lifespan 

of erythrocytes, in addition to the possible roles of many other factors, such as 

blood loss, low erythrocytes formation by bone marrow because of erythropoietin 

deficiency or impaired response, hemolysis, coagulation disorders and nutrition 

deficiency. 

 Plasmapheresis is a nonselective method by which plasma is separated 

from the blood and replaced with donor plasma and/or albumin. The theoretical 

rationale is that plasmapheresis removes the harmful mediators and replenishes 

the consumed plasma factors, thus restoring the homeostatic milieu and blood 

purification. The clinical outcome of sepsis patients, including the haematological 

disorder has been improved by removing the inflammatory factors and toxins in 

plasmapheresis (Berlot et al. 2004;Kellum & Venkataraman 2005;Kyles & 

Baltimore 2005). Thus, the plasma factor that induced erythrocytes apoptosis and  

which is possibly identical with sphingomyelinase could as well be removed as the 

plasma is exchanged. 

 The present observations may not only be relevant for anemia but as well 
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for the stimulation of thrombocytes and the pathophysiology of organ damage. 

Ceramide (Kolesnick & Golde 1994;Kolesnick & Kronke 1998;Obeid et al. 

1993;Unger 2002) and Ca2+ (Perretti & Solito 2004) have similarly been implicated 

in the triggering of apoptosis of nucleated cells and the pathogenic plasma 

component may similarly trigger apoptosis of endothelial, renal or hepatic cells 

thus leading to the pleiotropic clinical features of sepsis. 

 In conclusion, the present observations provide evidence for the stimulation 

of erythrocyte phosphatidylserine exposure by plasma of septic patients. It 

demonstrates that the effect of sepsis plasma is at least partially due to stimulation 

of Ca2+ entry and ceramide formation. The study thus reveals a novel 

pathophysiological mechanism and may open new therapeutic advents of this 

severe, life threatening disease. 
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