Aus der
Universitätsklinik für Zahn-, Mund- und Kieferheilkunde Tübingen
Abteilung: Klinik und Poliklinik für Mund-, Kiefer- und
Gesichtschirurgie
Ärztlicher Direktor: Professor Dr. Dr. S. Reinert

Klinische und sonographische Verlaufskontrolle
nach Verwendung resorbierbarer Osteosynthese-
materialien (PDLLA) im Gesichts- und Hirnschädelbereich

INAUGURAL - DISSERTATION
zur Erlangung des Doktorgrades der
Zahnmedizin
der
MEDIZINISCHEN FAKULTÄT
der Eberhard-Karls-Universität
zu Tübingen

vorgelegt von
Dr. med. Christian Adam
aus Stuttgart

2005
<table>
<thead>
<tr>
<th>Dekan:</th>
<th>Professor Dr. C. D. Claussen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Berichterstatter:</td>
<td>Privatdozent Dr. Dr. J. Hoffmann</td>
</tr>
<tr>
<td>2. Berichterstatter:</td>
<td>Privatdozent Dr. H.-D. Rennekampff</td>
</tr>
<tr>
<td>Kapitel</td>
<td>Titel</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>EINLEITUNG</td>
</tr>
<tr>
<td>2</td>
<td>WISSENSCHAFTLICHE ZIELSETZUNG</td>
</tr>
<tr>
<td>3</td>
<td>PATIENTENGUT, MATERIAL UND METHODE</td>
</tr>
<tr>
<td>3.1</td>
<td>Patientengut</td>
</tr>
<tr>
<td>3.2</td>
<td>Material</td>
</tr>
<tr>
<td>3.3</td>
<td>Methode</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Patientenerfassung</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Erfasste Daten</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Erfassungsmedium und Datenauswertung</td>
</tr>
<tr>
<td>4</td>
<td>ERGEBNISSE</td>
</tr>
<tr>
<td>4.1</td>
<td>Mittelgesichtsfrakturen – Klinik, Diagnostik und Therapie</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Allgemeines</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Frakturklassifizierung und –ausmaß</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Diagnostik</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Perioperativ adjuvante Therapiemaßnahmen</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Therapie</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Verlauf</td>
</tr>
</tbody>
</table>
4.2 Klinische Handhabbarkeit des resorbierbaren Osteosynthese-
 systems bei Verwendung im Mittelgesichts- und
 Hirnschädelbereich ..27
4.3 Primärstabilität und Haltekraft der Implantate ..30
4.4 Designanforderungen an Osteosyntheseplatten und -
 schrauben ..31
4.5 Sonographische Beurteilung der Implantatintegration sowie des
 Volumenverhaltens ..32
 4.5.1 In vitro Untersuchungen ..32
 4.5.2 Verlaufskontrolle der Implantatdicke ..33
 4.5.3 Verlaufskontrolle des Hämatom- und Ödemausmaßes40
 4.5.4 Periimplantäre Reizreaktion ...42
 4.5.5 Darstellung von Fragmentfehlstellungen ...42
 4.5.6 Vergleich der Implantatdarstellung durch den 13,5 MHz und
 7,5MHz Schallkopf ...45
4.6 Sozioökonomische Daten ...47

5 DISKUSSION ...49
5.1 Mittelgesichtsfrakturen – Klinik, Diagnostik, Therapie und
 Komplikationen ..49
 5.1.1 Allgemeines ...49
 5.1.2 Diagnostik ..51
 5.1.3 Therapie ..53
 5.1.4 Komplikationen ..58
5.2 Klinische Handhabbarkeit des resorbierbaren Osteosynthesesystems ..60
5.3 Primärstabilität und Haltekraft der Implantate ...64
5.4 Beurteilung des Verhaltens resorbierbarer Osteosynthesematerialien im menschlichen Körper, insbesondere durch Sonographie ...67
5.5 Operative Entfernung von Titanimplantaten und sozioökonomische Beurteilung resorbierbarer und nichtresorbierbarer Osteosynthese ...72

6 ZUSAMMENFASSUNG ...75

7 LITERATURVERZEICHNIS ..77

8 LEBENSLAUF ...81
1. Einleitung

Zusammengefasst sind metallische Osteosyntheseplatten und -schrauben nach erfolgter Frakturheilung funktionslos und somit als Fremdkörper anzusehen, deren Langzeitwirkungen lokal wie auch im gesamten Organismus derzeit noch nicht absehbar sind.

Die hieraus von den meisten deutschen Vertretern unseres Fachgebietes propagierte Notwendigkeit zur Metallentfernung birgt für den Patienten erneut alle Risiken des operativen Eingriffs und verursacht darüber hinaus erhebliche Kosten im Gesundheitssystem [3].

Aus diesen Überlegungen heraus wurden schon früh bioresorbierbare Osteosynthesematerialien generiert, bei denen viele der oben genannten Nachteile metallischer Implantate nicht auftreten sollten.

Ausgangsstoffe der resorbierbaren Osteosynthesematerialien sind Milch- und Glykolsäuren (Polylaktid bzw. Polyglykolid) und deren Kopolymere.

Seither erschien eine Vielzahl von Materialien auf dem Markt, über deren Resorbierbarkeit beim Menschen jedoch kaum nähere Untersuchungen vorliegen.

2. Wissenschaftliche Zielsetzung

2.1 Analyse der intraoperativen Handhabbarkeit des resorbierbaren Osteosynthesystems

Besondere Aufmerksamkeit im Hinblick auf die Handhabbarkeit des Systems wurde folgenden Aspekten gewidmet:

– der Adaptation der thermoplastischen Platte nach vorhergehender Erwärmung,
– der Schraubenfixierung nach Vorbohrung und Gewindeschnitt.

Angaben aus den Operationsberichten wurden durch Befragung der einzelnen Operateure bezüglich Zufriedenheit mit dem resorbierbaren Osteosynthesesystem ergänzt.

2.2 Untersuchungen zur Primärstabilität und Haltekraft

Von großer praktischer Bedeutung ist die Primärstabilität der ersten fixierten Platte bei Frakturen, die durch mehrere Platten sukzessiv stabilisiert werden müssen. Gegenstand der retrospektiven Analyse war somit die Primärstabilität sowie die Stabilität des Repositionsergebnisses.
2.3 Designanforderungen an Osteosyntheseplatten und –schrauben

2.4 Sonographische Beurteilung der weichgewebigen und knöchernen Integration sowie deren Dimensionsverhalten

Zur Beurteilung der Tauglichkeit eines biodegradierbaren Osteosynthesystems sind Kenntnisse zu dessen tatsächlicher Resorbierbarkeit unabdingbar.

Die Implantate wurden daher im Rahmen der Langzeitnachsorge sonographisch auf deren Dimensionsverhalten sowie auf die Integration im Weichgewebe und knöchernen Gewebe untersucht.

2.5 Sozioökonomische Evaluation

2.6 Klinisches Langzeitergebnis

3. Patientengut, Material und Methode

3.1 Patientengut

Patienten mit Frakturen, die zur Stabilisierung keiner Osteosynthese bedurften und Frakturen, die Kaukräften oder großen Zugkräften der Kaumuskulatur ausgesetzt waren, wurden nicht mit dem resorbierbaren Osteosynthesematerial versorgt.

3.2 Material

Die ResorbX®-Implantate (Fa. Martin, Tuttlingen) bestanden aus reinem Poly (D,L)-Laktid (PDLLA, 50:50), einem vollständig (intrinsisch) amorphem Polymer. Die Implantatschrauben wurden im Spritzgussverfahren hergestellt, die Platten wurden heißgepresst und dann gefräst [61].

Dieses Polymer werde im Körper über den Krebszyklus zu Milchsäure und letztlich zu Kohlendioxid und Wasser metabolisiert, eine Rekristallisation sei nach Herstellerangaben nicht beobachtet worden [61].

Dazu gehören folgende Indikationen:

· Fixation von Knochendeckeln nach kranialen Eingriffen,
· Frakturen in den nasoethmoidalen und infraorbitalen Bereichen,
· Frakturen der Stirnhöhlenwand,
· Mittelgesichtstraumata und Rekonstruktionen des kraniofazialen Skelettes.

3.3 Methode

3.3.1 Patientenerfassung

Die Patientenerfassung erfolgte retrospektiv anhand der Krankenakten. Sie umfasste alle in unserer Klinik stationär behandelten Patienten mit Frakturen des lateralen Mittelgesichtes und der anterioren Frontobasis, die mit dem resorbierbaren System versorgt wurden.

Nachsorge

Die Nachsorge erfolgte nach einem festen Zeitschema:

Die Abbildung 1 zeigt die zeitliche Untersuchungsabfolge. Jede Sitzung umfasste eine klinische sowie sonographische Beurteilung der Implantatregionen.
Die Ultraschalluntersuchungen wurden mit dem SONOLINE® Elegra Ultraschallsystem (Fa. Siemens) unter Anwendung eines VFX13,5 MHz Schallkopfes (Fa. Siemens) sowie eines 7,5L40 MHz Schallkopfes (Fa. Siemens) zum Qualitätsvergleich durchgeführt.

3.3.2 Erfasste Daten

Präoperativ erfaßte Daten

Anhand der Krankenakten wurden die Unfallursache, Dauer bis zur stationären Aufnahme und genaue Angaben zur operativen Versorgung dokumentiert.

Angaben im Rahmen der klinischen Untersuchung bei stationärer Aufnahme erstreckten sich im Einzelnen auf folgende Punkte:

1. Neurologische Untersuchung, insbesondere des ersten und zweiten Trigeminusastes (Nn. supraorbitales und infraorbitales) sowie der Fazialnerven,
2. Untersuchung auf Frakturzeichen (Knochenstufen, Krepitation, abnorme Fragmentbeweglichkeit),
Bildgebende Diagnostik

Bei Mittelgesichtsverletzungen umfasste die konventionelle Röntgenuntersuchung die axiale und halbaxiale Schädelaufnahme, bei Beteiligung des Unterkiefers die okzipitofrontale Aufnahme des Unterkiefers (Schädelaufnahme p.-a. 15° nach Clementschitsch) sowie die Panoramaschichtaufnahme (OPT).

Alle Patienten wurden computertomographisch untersucht – im konventionellen 1- oder 4-Zeilen-Computertomographen mit koronarer und axialer Schichtführung oder im 16-Zeilen-Computertomographen mit primär axialer Schichtführung und koronarer sowie sagittaler Rekonstruktion.

Keiner der Patienten musste zusätzlich kernspintomographisch untersucht werden. Eine sonographische Ausgangsuntersuchung fand ebenfalls nicht statt.

Intraoperativ erfasst Daten

Postoperativ erfasste Daten

Die Nachuntersuchungen umfassten jeweils die Befragung des Patienten nach Beschwerden, eine eingehende klinische Untersuchung des Patienten im Kopf-Hals-Bereich sowie eine anschließende sonographische Beurteilung der Implantatregionen.

Die Patienten wurden dabei insbesondere nach Schmerzen, Fremdkörpergefühl und thermischen Missemmpfindungen in der Implantatregion sowie dem Ausmaß der subjektiven Schwellung im Gesichtsbereich befragt.

Im Rahmen der ärztlichen Nachuntersuchung wurde zunächst eine neurologische Begutachtung durchgeführt - das Hauptaugenmerk war auf Sensibilitätsstörungen im Versorgungsgebiet des ersten und zweiten Trigeminusastes gerichtet, weiterhin auf Funktionsstörungen der Fazialnerven – dem schloss sich die Suche nach Entzündungszeichen wie Rötung, Schwellung, Schmerzen oder Überwärmung der Implantatregion an.

3.3.3 Erfassungsmedium und Datenauswertung

Die Erfassung der Daten erfolgte retrospektiv mit einer dazu entworfenen Filemaker-Datenbank (Filmaker Pro 5.5©, Fa.).

In Abbildung Nr. 2 ist ein Auszug aus der Dokumentation zu sehen. Für statistische Auswertungen wurde das Programm JMP® (Fa.) zur Hilfe gezogen.
Sämtliche klinische als auch sonographische Nachuntersuchungen wurden durch eine Person durchgeführt. Hierdurch sollte eine Standardisierung erreicht werden, systematische Fehler waren jedoch nicht auszuschließen.
4. Ergebnisse

4.1 Mittelgesichtsfrakturen – Klinik, Diagnostik und Therapie

4.1.1 Allgemeines

Im Zeitraum vom 01.04.2002 bis zum 01.04.2003 wurde das oben beschriebene resorbierbare Osteosynthesematerial bei insgesamt 30 Patienten bei unterschiedlichen Indikationen angewendet.

In 26 Fällen wurde eine Jochbeinfraktur, in 2 Fällen eine Stirnhöhlenvorderwandfraktur operativ versorgt. In je einem Fall führten wir die osteosynthetische Fixierung nach einer Le-Fort-I Osteotomie und einer Kraniosynostose-Operation durch (Abb. 3).

Fallverteilung

Abb. 3.: Fallverteilung im Patientenkollektiv (n=30)
Die Patienten, 26 männlich und 4 weiblich, waren zwischen 0,5 und 72,2 Jahren alt, im Durchschnitt 33,6 Jahre alt.

In 9 Fällen war die Ursache der Jochbeinfraktur ein Sportunfall, in 7 Fällen ein Sturz ohne Fremdeinwirkung, in je 5 Fällen war ein Rohheitsdelikt oder Verkehrsunfall für die Verletzung verantwortlich (Tab. 1).

<table>
<thead>
<tr>
<th>Ursache</th>
<th>Anzahl</th>
<th>Anteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sportunfall</td>
<td>9</td>
<td>9/26 = 34,6%</td>
</tr>
<tr>
<td>Sturz</td>
<td>7</td>
<td>7/26 = 26,9%</td>
</tr>
<tr>
<td>Rohheitsdelikt</td>
<td>5</td>
<td>5/26 = 19,2%</td>
</tr>
<tr>
<td>Verkehrsunfall</td>
<td>5</td>
<td>5/26 = 19,2%</td>
</tr>
</tbody>
</table>

Tab. 1: Ursachen der Jochbeinfrakturen (n = 26)

4.1.2 Frakturklassifizierung und –ausmaß

Weiterhin wurde eine Beurteilung des Orbitabodens abgegeben und bei Fraktur ebenfalls die Unterteilung in stark, mäßig oder nicht dislozierte Orbitabodenfrakturen getroffen.

Bei sieben stark dislozierten Jochbeinfrakturen fanden sich intraoperativ mehrere knöcherne Zwischenfragmente. In 5 weiteren Fällen zeigte sich ein oder kein Zwischenfragment.
Erwartungsgemäß waren bei nicht dislozierten Jochbeinfrakturen keine Zwischenfragmente zu finden (Tab. 2).

<table>
<thead>
<tr>
<th>Dislokationsgrad</th>
<th>Fragmentationsgrad</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jochbein</td>
<td>mehrere ZF</td>
<td>ein ZF</td>
</tr>
<tr>
<td>stark</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>mäßig</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>keine</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tab. 2: Dislokations- und Fragmentationsgrad der Jochbeinfrakturen

Abk.: ZF=Zwischenfragment

In Tab. 3 ist die Korrelation des Dislokationsgrades von Orbitaboden- und Jochbeinfrakturen zu sehen. Bei stark dislozierten Jochbeinfrakturen lag auch intraoperativ in 6 Fällen eine starke Dislokation des Orbitabodens vor.

Aus dieser Tabelle ist weiterhin ersichtlich, dass die Operationsindikation in 3 Fällen einer nicht dislozierten Jochbeinfraktur aufgrund eines mäßig bis stark dislozierten Orbitabodens gestellt wurde.

<table>
<thead>
<tr>
<th>Dislokationsgrad</th>
<th>Dislokationsgrad Orbitaboden</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jochbein</td>
<td>stark</td>
<td>mäßig</td>
</tr>
<tr>
<td>stark</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>mäßig</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>keine</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Tab. 3: Korrelation des Dislokationsgrades von Jochbeinfraktur und Orbitabodenfraktur
4.1.3 Diagnostik

Durch uns angeordnete, im Universitätsklinikum Tübingen durchgeführte computertomographische Untersuchungen fanden stets mit dem 16-Zeilen-CT statt. Die Patienten erhielten damit eine primär axiale Aufnahme mit folgenden coronaren und sagittalen Rekonstruktionen. Somit war das Frakturausmaß in allen drei Ebenen genau beurteilbar ohne den Patienten dabei durch zusätzliche primäre Ebenen weiterer Strahlung auszusetzen.

Die klinische Untersuchung richtete sich bei Patienten mit Mittelgesichtsfrakturen standardmäßig nach sicheren und unsicheren Frakturzeichen (Knochenstufen, Krepitation, abnorme Fragmentbeweglichkeit / Hypästhesie im Versorgungsbereich des N. infraorbitalis).

Bei 22 Patienten ließen sich Knochenstufen als sicheres Frakturzeichen palpieren. Am häufigsten gelang das Auffinden eines Knochenversatzes infraorbital (20/22), gefolgt von der lateroorbitalen Lokalisation und der Crista zygomatico-alveolaris (jeweils 6/22) (Tab. 4).
Tab. 4: Korrelation des Tastbefundes mit intraoperativem Dislokationsgrad des Jochbeins

<table>
<thead>
<tr>
<th>Palpation</th>
<th>Dislokationsgrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knochenstufe</td>
<td>keine</td>
</tr>
<tr>
<td>ja</td>
<td>1</td>
</tr>
<tr>
<td>nein</td>
<td>2</td>
</tr>
</tbody>
</table>

In keinem Fall einer stark dislozierten Jochbeinfraktur fiel der Palpationsbefund negativ aus, allerdings wurden 2 mäßig dislozierte Jochbeinfrakturen palpatorisch nicht erkannt. In einem Fall wurde bei fehlender Dislokation fälschlicher Weise eine Knochenstufe gedeutet.

Krepitation sollte im Falle von Jochbeinfrakturen zu deren Diagnostizierung nicht zwingend provoziert werden, die damit einhergehenden Schmerzen rechtfertigen den Stellenwert dieses sicheren Frakturzeichens nicht. Im Rahmen der Suche nach Fragmentbeweglichkeit stellten wir in einem Fall Krepitation des frakturierten Jochbeinkörpers im infraorbitalen Bereich fest. Insgesamt war bei 2 Patienten eine erhöhte Beweglichkeit des Jochbeinkörpers festzustellen.

Ein unsicheres Frakturzeichen, jedoch mit hoher Aussagekraft im Hinblick auf eine Orbitaboden- oder Jochbeinfraktur, stellt die Hypästhesie im Versorgungsbereich des Nervus infraorbitalis dar. Sowohl bei isolierten Orbitabodenfrakturen als auch Jochbeinfrakturen kommt es durch die Fragmentdislokation zur Nervenkompresion mit Hypästhesien im sensibel versorgten Haut-Schleimhaut-Bereich.

Mit Hilfe eines ausgezogenen Watteträgers diagnostizierten wir bei 20 Patienten mit Jochbeinfraktur eine Hypästhesie im Versorgungsbereich des N. infraorbitalis.

Im Verlauf kam es bei allen Patienten zu einer Verminderung der Hypästhesie. 9 Patienten stellten noch 12 Monaten nach dem Unfallereignis eine Gefühlsverminderung fest. Eine über 24 Monate persistierende Sensibilitätsstörung sahen wir in 11,5%.

Eine Übersicht über die Dauer der Nervschädigungen erlaubt Tabelle 5.

<table>
<thead>
<tr>
<th>Versorgungsgebiet</th>
<th>N. infraorbitalis</th>
<th>N. supraorbitalis</th>
<th>N. facialis</th>
</tr>
</thead>
<tbody>
<tr>
<td>präoperativ</td>
<td>20 0</td>
<td>1 0</td>
<td>3 0</td>
</tr>
<tr>
<td>postoperativ</td>
<td>15 3</td>
<td>1 0</td>
<td>3 0</td>
</tr>
<tr>
<td>nach 1 Monat</td>
<td>16 0</td>
<td>1 0</td>
<td>2 0</td>
</tr>
<tr>
<td>nach 6 Monaten</td>
<td>13 0</td>
<td>0 0</td>
<td>1 0</td>
</tr>
<tr>
<td>nach 12 Monaten</td>
<td>9 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>nach 16 Monaten</td>
<td>4 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>nach 20 Monaten</td>
<td>3 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>nach 24 Monaten</td>
<td>3 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
</tbody>
</table>

Tab. 5: Nervschädigungen im Verlauf bei 26 Patienten mit Jochbeinfraktur
Alle Patienten wurden sowohl prä- als auch postoperativ von Kollegen der Universitätsaugenklinik untersucht. Insbesondere wurde auf Doppelbilder und Einschränkungen der Bulbusmotilität hin untersucht, wobei pathologische Befunde auf Bulbusverlagerungen im Sinne eines Exophthalmus oder Enophthalmus oder Muskelentrapment im Bereich des Orbitabodens hinweisen sollten. Weiterhin erfolgten spezifische augenärztliche Untersuchungen wie Funduskontrolle, Perimetrie und Visusbestimmung.

Präoperativ waren bei 5 Patienten Doppelbilder festzustellen. Eine Augenmotilitätsstörung war bei keinem dieser Patienten zu finden, insbesondere nicht beim Blick nach kranial als Hinweis für ein Hebungsdefizit durch Einklemmung des M. rectus inferior in den frakturierten Orbitaboden.

Lageabweichungen des Bulbus ließen sich bei keinem Patienten objektivieren.

4.1.4 Perioperative adjuvante Therapiemaßnahmen

Die Patienten wurden angehalten, ein strenges Schnäuzverbot zu befolgen, Nasenschleimhaut abschwellende Nasentropfen einzunehmen sowie die Frakturregion mit feuchter Kälte zu versorgen.

Sofern keine komplizierenden Begleitumstände vorlagen, wurde präoperativ eine Single-Shot Antibiotikaprophylaxe mit Penicillin G 10 Millionen Einheiten intravenös verabreicht, alternativ wurde im Falle einer Penicillinallergie Clindamycin 600 mg intravenös gegeben.

4.1.5 Therapie

Operationszeitpunkt und -dauer

Die Operation wurde im Durchschnitt 5,7 Tage (1-20 Tage) nach dem Frakturereignis durchgeführt. Bis zu diesem Zeitpunkt waren die insbesondere periorbital vielfach ausgeprägten hämatom- und ödembedingten Schwellungen weitgehend abgeklungen. Dies führte zu übersichtlicheren Verhältnissen im Operationsgebiet und sollte dadurch Komplikationen vermindern.
Bei polytraumatisierten Patienten erfolgte die operative Frakturversorgung nach durchschnittlich 11 Tagen wesentlich später.

Operative Zugangswege

Beim operativen Zugangsweg zum lateralen Stirnbeinpfeiler wählen wir grundsätzlich zwischen der lateralen Augenbraueninzision und der Blepharoplastikinzision aus, in allen Fällen fiel die Entscheidung jedoch zugunsten der lateralen Augenbraueninzision aus.

Tab. 6: Verteilung operativer Zugangswege bei 26 Jochbeinfrakturen

Abk.: lat. = lateroorbital, infr. = infraorbital, i.o. = intraoral

Operative Frakturversorgung

Alle Jochbeinfrakturen in dieser Studie wurden unter Sicht (meist unter perkutanem Hakenzug, selten unter Hakenzug über den intraoralen Zugang) reponiert, die Fragmentfixierung erfolgte mit resorbierbarer Osteosynthese.

Bei 12 stark dislozierten Jochbeinfrakturen wurde in 8 Fällen eine Dreipunktfixierung mit Osteosyntheseplatten in den Lokalisationen lateroorbital, infraorbital und an der Crista zygomatico-alveolaris durchgeführt (Tab. 7).

Mäßig dislozierte Jochbeinfrakturen wurden in 9 von 11 Fällen mit zwei Platten fixiert, in 2 Fällen mit drei Platten fixiert.

Nicht dislozierte Jochbeinfrakturen mussten nach Reposition in 2 Fällen mit zwei Platten, in 1 Fall mit einer Platte fixiert werden. Die Indikation für eine Operation bei den 3 nicht dislozierten Jochbeinfrakturen wurde aufgrund der begleitenden, CT-morphologisch dislozierten Orbitabodenfraktur gestellt.

<table>
<thead>
<tr>
<th>Anzahl Zugänge</th>
<th>3</th>
<th>2</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokalisation</td>
<td>lat. / infr. / i.o.</td>
<td>lat. / infr.</td>
<td>lat. / i.o.</td>
</tr>
<tr>
<td>Fallzahl</td>
<td>17</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>
Insgesamt wurden bei 26 Patienten mit Jochbeinfraktur 301 Schrauben und 62 Platten implantiert (Abb. 4), durchschnittlich wurde eine Jochbeinfraktur mit 2,3 Platten fixiert und jede Platte mit durchschnittlich 4,9 Schrauben fixiert.

Abb. 4: Anzahl der insgesamt implantierten Osteosyntheseplatten latero-, infraorbital und im Bereich der Crista zygomatico-alveolaris
<table>
<thead>
<tr>
<th>Dislokationsgrad</th>
<th>Plattenlokalisation</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lat./infr./cr.</td>
<td>lat./infr.</td>
</tr>
<tr>
<td>stark</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>mäßig</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>keine</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Tab. 7: Häufigkeitsverteilung der Plattenlokalisation bei stark, mäßig und nicht dislozierten Jochbeinfrakturen (n=26)

Abk.: lat.=lateroorbital, infr.=infraorbital, cr.=crista zygomatiko-alveolaris

Bei 2 Patienten (7,7%) wurde durch die postoperativen Röntgenkontrolle im Sinne einer halbaxialen und einer axialen Schädelaufnahme eine geringgradige Dislokation bei unzureichender Fragmentreposition festgestellt, obwohl intraoperativ jeweils eine Dreipunkt-Darstellung der Fraktur erfolgt war.

Alle weiteren 24 Patienten wiesen in der postoperativen Röntgenkontrolle eine regelrechte Fragmentposition auf.

4.1.6 Verlauf

Wundheilungsstörungen und Infektionen

Die stationären Akten wurden auf Komplikationen im Wundheilungsprozess durch Dehiszenzen oder Wundinfektionen durchgesehen.

Bei einem Patienten wurde am 10. postoperativen Tag ein Abszess im Bereich der Implantatregion am lateralen Stirnbeinpfleiler eröffnet. Die Osteosyntheseplatte fand sich unfixiert in der Wundhöhle. Frakturen aller 4 Schrauben waren aufgetreten.

Fremdkörperreaktionen

Abb. 5: Sonographische Darstellung einer periimplantären Schwellung infraorbital, 13 Monate post implantationem

Zu sehen war eine echoleere Raumforderung in direkter Beziehung zur Osteosyntheseplatte. Die Platte stellte sich erwartungsgemäß mit klar abgrenzbaren, echoreichen oberen und unteren Plattengrenzen und einer Gesamtdicke von 1,2 mm dar (sonographische Charakteristika siehe Kapitel 4.5). Die weichgewebige Perfusion war deutlich vermehrt.

Die Patientin wurde zunächst 24 Stunden i.v. antibiotisch behandelt, bei hierunter zunehmender Schwellung und Schmerzsymptomatik wurde die Indikation zur operativen Revision gestellt. Bei Inzision infraorbital im Sinne eines Unterlidmittenschnittes entleerte sich reichlich trübes, weißes bis hellbraunes Sekret. Nach Abstrichnahme bestätigte die mikrobiologische Untersuchung das Fehlen jeglicher Bakterien.

Die resorbierbare Platte ließ sich erschwert als glaskörperartig durchscheinende aber noch harte Masse auffinden. Das Material war nur in einzelnen Fragmenten entfernt (Abb. 6). Die insgesamt entnommene Implantatmenge war deutlich geringer als die 13
Monate zuvor implantierte Menge an Osteosynthesematerial. Trotz gründlicher Inspektion konnten keine verbleibenden Materialreste im Gewebe entdeckt werden.

Abb. 6: Fragmente des 13 Monate nach Primärversorgung entfernten Osteosynthesematerials

Gewebeproben wurden aus dem periimplantären Bereich entnommen und histologisch untersucht. Das Untersuchungsergebnis war jedoch unspezifisch und zeigte nur eine chronische Entzündung. Insgesamt wurde die beobachtete sterile Infektion als Fremdkörperreaktion auf das resorbierbare Osteosynthesematerial beurteilt.

Unterlidektropium

Zwei Patienten entwickelten postoperativ ein diskretes Ektropium des Unterlides. Das Ektropium entwickelte sich in beiden Fällen vollständig zurück. Der Zugang zum Infraorbitalrand war zum einen in der Art eines subziliaren Schnittes gewählt und zum anderen als Unterlidmittenschnitt.
Schmerzen im Bereich der Implantatregion

46% der Patienten verspürten bis zum 10. postoperativen Tag Druckschmerzen im Bereich der Implantatregionen. Besonders häufig waren diese am lateralen Stirnbeinpfeiler festzustellen, seltener am infraorbitalen Rand. Schmerzen im Bereich der Crista zygomatiko-alveolaris traten kaum auf (4%).

Im Verlauf der Nachsorge entwickelte sich die Druckschmerzhaftigkeit der Implantatregionen weitgehend zurück, nach 12 Monaten verspürten nur noch 2 Patienten leichten Druckschmerz. Einer dieser Patienten war bei der Untersuchung nach 16 Monaten schmerzfrei, der andere Patient gab dies erst anlässlich der 20-monatigen Nachuntersuchung an.

Sowohl klinisch als auch sonographisch konnte kein Korrelat für diese lang andauernde, geringe Überempfindlichkeit im Implantatbereich gefunden werden.

Schwellung

In den ersten postoperativen Tagen waren hämatombedingte Schwellungen im Bereich der operativen Zugangswege häufig zu sehen. Schwellungen dieser Ursache bildeten sich erfahrungsgemäß in den darauf folgenden Tagen rasch zurück.

Im Rahmen der sechsmonatigen Nachuntersuchung sahen wir in 24% der Fälle eine persistierende, leichte Schwellung im Implantatbereich latero- oder infraorbital. Klinisch konnte unter einem dünnen, bedeckenden Weichteilmantel die Osteosyntheseplatte deutlich palpiert werden.

Die Rate klinisch imponierender Schwellungen stieg bis zur Nachsorge nach 12 Monaten auf 72% an, danach folgte ein Rückgang auf 20% nach 16 Monaten und 17% nach 20 Monaten.

Initial beobachtete Schwellungen im Bereich der fazialen Kieferhöhlenwand hielten sich in den meisten Fällen längerfristig. Selbst nach 18 Monaten mussten wir bei 7 Patienten ein Volumenplus im Bereich der Wange feststellen. Sonographisch ließ sich kein Korrelat finden.
Palpabilität der Osteosyntheseplatten

Der manuellen Untersuchung gut zugänglich waren die lateroorbital sowie infraorbital gelegenen Platten. Bis zur Kontrolle nach 16 Monaten wurden palpatorisch alle Platten in diesen Lokalisationen deutlich gefunden. Niemals hingegen gelang es, palpatorisch die Platten im Bereich der fazialen Kieferhöhlenwand zu erkennen (Tab. 8).

<table>
<thead>
<tr>
<th>Platten-lokalisation</th>
<th>lateroorbital</th>
<th>infraorbital</th>
<th>Crista zygom.alv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palpabilität</td>
<td>keine</td>
<td>keine</td>
<td>keine</td>
</tr>
<tr>
<td></td>
<td>unsicher</td>
<td>unsicher</td>
<td>unsicher</td>
</tr>
<tr>
<td></td>
<td>deutl.</td>
<td>deutl.</td>
<td>deutl.</td>
</tr>
<tr>
<td>Monate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>100%</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>100%</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>100%</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>-</td>
<td>100%</td>
</tr>
<tr>
<td>20</td>
<td>33%</td>
<td>33%</td>
<td>33%</td>
</tr>
<tr>
<td>24</td>
<td>50%</td>
<td>50%</td>
<td>-</td>
</tr>
</tbody>
</table>

Tab. 8: Palpabilität der Osteosyntheseplatten in den 3 Lokalisationen im Zeitverlauf
4.2 Intraoperative Handhabbarkeit des resorbierbaren Osteosynthesystems

Handhabbarkeit des Osteosynthesystems

Die Gewindeschneider besaßen keinen definierten Tiefenan schlag, wodurch sich die Schiebevorrichtung beim Überdrehen unbemerkt verstellten konnte. Auf diese Weise konnte es vorkommen, dass tiefere Gewinde geschnitten wurden als eventuell notwendig gewesen wären.

Der Durchmesser des Gewindeschneiders für die 2,4 mm Notfallschrauben war grenzwertig groß in Anbetracht der Schraubenlöcher in den Platten. In einem Fall kam es durch eine Art Klemmpassung beim Abziehen des Schraubendrehers zum Anheben der Platte mit Fraktur einer zuvor applizierten Schraube.

Der Universalschraubendreher war kompatibel für alle Schrauben und diese wiederum waren für alle Platten verwendbar.

Adaptation der thermoplastischen Platte nach vorhergehender Erwärmung

Letztlich konnten alle Platten ausreichend der knöchernen Unterlage angepasst werden. Die Konturierbarkeit gelang jedoch subjektiv schlechter als bei Titanimplantaten, insbesondere bei Notwendigkeit zum Verdrillen der Platten (Torque).

Inkongruenzen zwischen Knochen- und Plattenkontur. In diesen Fällen wurden schließlich ebenfalls Templates als Formhilfen verwendet.

Besonders im infraorbitalen Bereich mit stark eingeschränkten Platzverhältnissen wurde das Einbringen der Templates in den Operationssitus wiederholt durch deren überproportionale Breite erschwert. Zum problemlosen Einbringen derselben wäre in einigen Fällen ein größerer operativer Zugangsweg notwendig geworden.

Schraubenfixierung nach vorhergehendem Gewindeschnitt

Gesamtbeurteilung

4.3 Primärstabilität und Haltekraft der Implantate

Gemäß der Zulassung des Systems zur Osteosynthese im Mittelgesichtsbereich und Neurokranium fand es keine Anwendung im lasttragenden Gesichtsbereich, insbesondere nicht an kaubelasteten Strukturen.

Große Bedeutung maßen wir der Stabilität der Osteosyntheseplatten und -schrauben bei.

Schraubenfrakturen

Die Hauptsorge in der Anwendung des Osteosynthesesystems bereiteten uns Schraubenbrüche. Insgesamt wurden in 30 operativ versorgten Fällen 363 Schrauben appliziert, hiervon zerbrachen 33 Stück (9,1%).

Besonders bei der Versorgung komplexer Mittelgesichtsfrakturen müssen jedoch einzelne Fragmente sukzessiv fixiert werden, kleine Stellungskorrekturen sind dabei oftmals notwendig. Im Rahmen dieser Manipulationen trat ein weiterer Großteil der Schraubenfrakturen auf.

Bruchstatistik

Von 33 Schraubenbrüchen waren 24 (72,7%) bei Schrauben des Durchmessers 1,6 mm zu beobachten, 9 (27,3%) bei Schrauben mit 2,1 mm Durchmesser. Keine der Notfallschrauben (2,4 mm Durchmesser) frakturierte. Plattenbrüche kamen in unserem Patientengut nicht vor.

4.4 Designanforderungen an Osteosyntheseplatten und –schrauben

Zur Frakturversorgung standen uns gerade 4-Loch-Platten sowie L-förmige 6-Lochplatten, jeweils mit oder ohne Steg, sowie gerade oder als Orbitaplatte gebogene 8-Loch-Platten zur Verfügung. Im Sortiment vorhanden, aber von uns keine Verwendung fanden T-Platten und Y-Platten. Die Plattenstärke betrug einheitlich 1,0 mm. Des Weiteren konnten Mesh-Platten der Größe 25x25 mm oder 50x50 mm in Dicken zu 1,0 mm oder 0,3 mm verwendet werden.

Für alle unterschiedlichen Implantatformen waren entsprechende Biegeschablonen verfügbar, die das Konturieren der Platten und Mesch-Formen erleichterten.

Die Platten waren kompatibel mit allen Schraubendurchmessern. Diese betrugen beim vorliegenden ResorbX®-System 1,6 mm (Mikro-System), 2,1 mm (Mini-System) oder 2,4 mm (Emergency-System). Die Schraubenlängen maßen 4-7 mm beim Mikro-System, beim Mini-System 5, 7 oder 9 mm und im Falle der Notfallschrauben 5 bzw. 9 mm.

4.5
Sonographische Beurteilung der Implantatintegration und des Volumenverhaltens

4.5.1 In vitro Untersuchungen

Zunächst erfolgte eine sonographische Betrachtung des Osteosynthesematerials in vitro. Resorbierbare Platten wurden hierbei in wassergefüllte Handschuhe gelegt und anschließend sonographisch untersucht. Zu sehen war die in Abb. 8 und 9 gezeigte Struktur mit echoleerem Materialkern umgeben von echoreichen Plattengrenzen, entsprechend einem echofreien Plattenzentrum mit umschließenden Plattenrändern. Das Phänomen eines Plattenkernes und Plattengrenzen ließ sich durch den hohen Impedanzsprung vom Umgebungsgewebe auf die dichten Plattenstrukturen erklären. Die Plattenstärke maß 1,0 mm.
Abb. 8 und 9: Sonographisches Bild des Osteosynthesematerials quer (oben) und längs (unten) in einem mit Wasser gefüllten Handschuh. Unten im Bild Wiederholungsartefakte

4.5.2 Verlaufskontrolle der Implantatdicke

Im Rahmen jeder sonographischen Kontrolluntersuchung wurden die Plattendicken gemessen sowie das periimplantäre Gewebe beurteilt.

Wie Abb. 10 und 11 verdeutlichen und aus in vitro Untersuchungen erwartet, stellten sich die Osteosyntheseplatten bei der ersten sonographischen Kontrolle am 10. postoperativen Tag mit einer hyperdensen oberen und unteren Begrenzung sowie einem hypodensen, echoleeren Kern dar. Dieser sich echolleer darstellende Implantatkern maß 0,5 mm, die gesamte Plattendicke von 1,0 mm wurde in allen Fällen bestätigt. Die Definierung der äußeren Plattenbegrenzung fiel mit dem 13,5 MHz Schallkopf leicht, die gemessenen Dicken betrugen stets 1,0 mm. Mit dem 7,5 MHz Schallkopf varierte die gemessene Implantatdicke zwischen 0,9 und 1,0 mm.
Abb. 10: Osteosyntheseplatte infraorbital, 10. Tag postoperativ

Die Darstellung der Platten im Bereich der fazialen Kieferhöhlenwand war deutlich schwieriger. Die Begrenzungen waren jedoch zunächst klar zu erkennen.

Abb. 11: Osteosyntheseplatte im Bereich der fazialen Kieferhöhlenwand, 10. Tag postoperativ
Bei sonographischen Kontrolluntersuchungen nach 1, 3 und 6 Monaten zeigten sich keinerlei Änderungen des Osteosynthesematerials (Abb. 12). Erst bei der Verlaufskontrolle nach 12 Monaten ergaben sich uneinheitliche Dimensionsveränderungen der Plattendicke mit Zunahmen zwischen 0 und 100%. Durchschnittlich war nach 12 Monaten eine Dickenzunahme von 136% festzustellen. Die echoreichen Plattenbegrenzungen verloren dabei nur wenig an Echogenität. Im Plattenkern ließ sich eine Zunahme der Echogenität darstellen.

Abb. 12: Osteosyntheseplatte supraorbital nach 12 Monaten

Nach 16 Monaten betrug die Varianz der Plattenstärke 2,2 bis 4,3 mm. Durchschnittlich betrug die Plattenstärke 2,8 mm. Zu diesem Zeitpunkt konnte auch eine deutlich abnehmende Echogenität der Plattergrenzen verzeichnet werden, die Abgrenzung zum umgebenden Weichgewebe wurde weniger scharf (Abb. 13). Dennoch reichte der Kontrast zur genauen Bestimmung der Plattendimension aus.
Bei der sonographischen Untersuchung 20 Monate nach Implantation ließen sich deutliche Zeichen der Materialumwandlung finden (Abb. 14).

Die Plattendicke betrug zwischen 2,2 und 4,0 mm, durchschnittlich zeigte sich eine Dicke von 3,1 mm.

Abb. 14: Osteosyntheseplatte lateroorbital nach 20 Monaten

Abb. 15: Osteosynthesematerial im Bereich der Stirn nicht mehr auffindbar bei einer 18 jährigen Patientin, 20 Monate postoperativ

Die nächste routinemäßige Ultraschallnachsorge fand 24 Monate nach Operation statt. Zu diesem Zeitpunkt war das Maximum der Plattenstärke deutlich überwunden, die Platten konnten als echoleere Gebilde wie zystische, flüssigkeitsgefüllte Strukturen ohne klare Umgrenzung ausgewiesen werden (Abb. 16). Dabei wurden Stärken zwischen 2,0 und 3,0 mm gemessen.

Abb. 16: Osteosyntheseplatte lateroorbital nach 24 Monaten

Abb. 17: Plattendicken in [%] im Verlauf; n=Anzahl der Patienten
4.5.3 Verlaufskontrolle des Hämatom- und Ödemausmaßes

Durch das Operationstrauma traten in allen Fällen grundsätzlich Hämatome oder postoperative Ödeme in sonographisch erfassbarem Ausmaß auf. Diese unterschieden sich in ihrem Ausmaß je nach Lokalisation lateroorbital, infraorbital (Abb. 19) bzw. im Bereich der Crista zygomatico-alveolaris (Abb. 18) zum Teil erheblich.

Abb. 18: Postoperatives Hämatom im Bereich der fazialen Kieferhöhlenwand

Im Durchschnitt betrug das postoperativ sonographisch darstellbare Hämatom lateroorbital 0,25 mm (0 bis 1,9 mm), infraorbital 0,7 mm (0 bis 4 mm) und 3,3 mm (0 bis 6,5 mm) im Bereich der Crista zygomatico-alveolaris. Latero- und infraorbital dehnten sich die echoleeren Bereiche im Ultraschallbild auf durchschnittlich 0,58 mm bzw. 1,23 mm nach 12 Monaten aus.
Die initial ausgeprägten Hämatome im Bereich der fazialen Kieferhöhlenwand reduzierten sich im selben Zeitraum auf 0,77 mm Dicke. Ab dem 16. Monat postoperativ wurden in keiner der drei Lokalisationen sonographisch echoleere Areale im Sinne von Hämatomen oder Ödemen gefunden.

Abb. 19: Postoperatives Hämatom infraorbital
4.5.4 Periimplantäre Reizreaktion

Periimplantäre Reizreaktionen lassen sich sonographisch vermuten, wenn periimplantäres Gewebe echoärmer als normales Umgebungsgewebe ist und sich eine verstärkte Perfusion dieses Gewebes abzeichnet. Die Differenzierung zu periimplantären Ödemen gelingt hauptsächlich über die gesteigerte Gewebeperfusion. Zeigte sich periimplantär ein echoarmer bis echoleerer Saum ohne gesteigerte Gewebeperfusion, wurde dieser als Ödem gewertet.

Bis zum 24. postoperativen Monat konnten wir sonographisch keine periimplantären Reaktionen zeigen. Sonomorphologisch differierte die periimplantäre Gewebeperfusion nicht von jener des ortsständigen Gewebes der gesunden Seite.

4.5.5 Darstellung von Fragmentfehlstellungen

Eventuell weiterhin vorhandene Fragmentfehlstellungen nach erfolgter Reposition konnten im Rahmen der postoperativen Kontrollen sonographisch visualisiert und metrisch bestimmt werden. Allerdings wurde bei der Ultraschallnachsorge nicht explizit nach solchen Knochenstufen oder Fragmenten gesucht. Vielmehr soll an dieser Stelle nur die Möglichkeit der Ultraschalldiagnostik hervorgehoben werden auch solche Veränderungen erfassen zu können (Abb. 20).

Bei drei Patienten wurde nach osteosynthetischer Frakturversorgung eine geringe Fragmentfehlstellung gefunden.

Eine Revision war jedoch bei klinischer Unauffälligkeit nach vollständiger Weichteilabschwellung nicht erforderlich und wurde von den Patienten daher nicht gewünscht.
Abb. 20: Postoperative sonographische Kontrolle nach Fragmentreposition am Infraorbitalrand

Abb. 21: Postoperative Röntgenkontrolle, resorbierbares Osteosynthesematerial nicht darstellbar
4.5.6 Vergleich der Implantatdarstellung durch den 13,5 MHz und 7,5 MHz Schallkopf

Wie Abb. Nr. 22 im Vgl. zu Abb. 10 zeigt, unterlag die Darstellbarkeit der Osteosynthesematerialien mittels 7,5 MHz Schallkopf deutlich der Visualisierung durch den 13,5 MHz Schallkopf.

Abb. 22: Implantatdarstellung mit dem 7,5 MHz Schallkopf

Größenänderungen im zehntel Millimeter Bereich waren unseres Erachtens unter Einsatz des 7,5 MHz Schallkopfes schwer zu erkennen. Die exakte Definition der Implantatgrenzen zu umgebendem Weichgewebe war hierbei wesentlich erschwert, da die oberflächlich gelegenen Platten für eine präzise Messung kaum ausreichend fokussiert werden konnten. Hierzu eignen sich 7,5 MHz Schallköpfe nicht, deren Präferenz in tiefen Gewebsschichten liegt. Die Messpunktmarkierungen konnten dadurch oft nur schätzungsweise gelegt werden.

Diese Ungenauigkeit sahen wir nicht bei Verwendung des 13,5 MHz Multifrequenzschallkopfes. Der interessierende Bildbereich konnte hierbei bis zu wenigen Millimetern unter der Hautoberfläche fokussiert werden. Standardmäßig wurde
die sonographische Eindringtiefe auf 2 cm gelegt. Eine hochwertige Auflösung wurde dabei in allen Implantatregionen bei durchschnittlicher Implantattiefe von 0,5 cm unter Hautniveau latero- und infraorbital erreicht. Im Bereich der fazialen Kieferhöhlenwand lagen die Platten durchschnittlich 1,5 cm unter Hautniveau, auch dabei überlag die Darstellbarkeit mittels des höherfrequenten Schallkopfes. Der Übergang Implantat zu Umgebung konnte stets sehr präzise erkannt und die Messpunkte dementsprechend genau gesetzt werden.
4.6 Sozioökonomische Daten

Kosten der resorbierbaren Schrauben und Platten

In Tab. 9 sind die Preise von Schrauben und Platten am Beispiel eines herkömmlichen Titan-Systems (Champy Miniplattensystem, 2.0 mm Modul) den Kosten der resorbierbaren Poly (D/L)-Laktid-Schrauben und –Platten (ResorbX®) gegenübergestellt. Hieraus lässt sich ableiten, dass Schrauben im resorbierbaren System drei- bis vierfach und Platten etwa zweifach die Kosten der vergleichbaren Titanschrauben und –platten übersteigen.

Da die Heizgeräte nicht wiederverwendbar waren, betrugen die Extrakosten für die Heizeinheit je Eingriff zusätzlich 46 Euro.

<table>
<thead>
<tr>
<th>Schraube</th>
<th>33 - 37 €</th>
<th>8 - 10 €</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Loch-Platte</td>
<td>56 €</td>
<td>25 €</td>
</tr>
<tr>
<td>8-Loch-Platte</td>
<td>66 €</td>
<td>41 €</td>
</tr>
<tr>
<td>6-Loch-L-Platte</td>
<td>83 €</td>
<td>40 €</td>
</tr>
<tr>
<td>8-Loch-Orbitaplatte</td>
<td>88 €</td>
<td></td>
</tr>
<tr>
<td>Heizgerät</td>
<td>46 €</td>
<td>0</td>
</tr>
</tbody>
</table>

Tab. 9: Kostenvergleich eines Titan-Systems mit dem resorbierbaren System

Für insgesamt 61 implantierte Platten im Rahmen dieser Studie mussten ungefähr 4000 Euro aufgewendet werden, hinzu kamen ungefähr 10500 Euro für 301 Schrauben zur Jochbeinfrakturversorgung sowie 1200 Euro für Heizgeräte. Der Materialaufwand für Titanosteosynthese hätte sich insgesamt auf ungefähr 4500 Euro belaufen.
Kosten eines operativen Zweiteingriffes

Da in unserer Klinik eine Metallentfernung in der Regel empfohlen wird, müssen deren Kosten zur Versorgung der Jochbeinfraktur mit Titanosteosynthese addiert werden und dann den Kosten nach Versorgung mit resorbierbarer Osteosynthese gegenübergestellt werden. Eine Übersicht erlaubt Tab. 9.

<table>
<thead>
<tr>
<th>Materialkosten einer operativen Versorgung</th>
<th>Resorbierbares System</th>
<th>Titan-System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materialentfernung stationär</td>
<td>entfällt</td>
<td>3000 €</td>
</tr>
<tr>
<td>Gesamtkosten</td>
<td>415 €</td>
<td>3.180 €</td>
</tr>
</tbody>
</table>

Tab. 10: Vergleich der relevanten Kosten für resorbierbare Osteosynthese sowie für Titanosteosynthese einschließlich Metallentfernung

5. Diskussion

5.1 Mittelgesichtsfrakturen – Klinik, Diagnostik, Therapie und Komplikationen

5.1.1 Allgemeines

Bedingt durch die prominente Stellung im Gesichtsschädel stellen Frakturen des Jochbeins nach den Nasenbeinfrakturen die häufigsten Frakturen des Mittelgesichtes dar.

Jochbeinfrakturen entstehen fast ausschließlich durch starke, direkte Gewalteinwirkung auf das laterale Mittelgesicht, das im Bereich seiner Schwachpunkte frakturiert. Zu diesen zählen der laterale Stirnbeinpfeiler mit der Sutura zygomatico-frontalis, der Infraorbitalrand mit der Sutura zygomatico-maxillaris, die Jochbogenverbindung zum Os parietale mit der Sutura zygomatico-parietalis sowie die vordere und hintere Kieferhöhlenwand mit der Crista zygomatico-alveolaris.

Jochbeinfrakturen bilden den Kern dieser Studie. Sie entstanden in unserem Kollektiv am häufigsten im Rahmen von Sportunfällen (34,6%, 9/26), gefolgt von Stürzen ohne Fremdeinwirkung (26,9%, 7/26) und zu gleichen Teilen als Folge von Rohheitsdelikten und Verkehrsunfällen (19,2%, je 5).

Durch den höheren Anteil der Männer an Sportunfällen, Rohheitsdelikten und Verkehrsunfällen erklärt sich bei unserem Patientengut die deutliche Dominanz des männlichen Geschlechtes mit einem Verhältnis von 14:1 gegenüber Frauen. Dieses
starke Ungleichgewicht wird in anderen Studien bestätigt, fällt jedoch nicht immer gleichermaßen drastisch wie in unserem Patientengut aus (ca. 10:1) [14, 16].

Eine regelmäßig zu beobachtendes Symptom bei Jochbeinfrakturen ist die Sensibilitätsstörung im Innervationsgebiet des Nervus infraorbitalis mit einer Häufigkeit von 70 bis 90% [14, 15]. Im eigenen Krankengut gaben 76,9% eine Gefühlsminderung an.

Eine Gefühlsminderung im Bereich der Stirn wurde bei uns nur von einem Patienten beklagt. HAGENMEIER sah in 4,4% der Fälle eine Hyp- oder Anästhesie in diesem Gebiet [14].

5.1.2 Diagnostik

Ophthalmologische Untersuchung

Die Indikation zur operativen Versorgung von Orbitabodenfrakturen ist gegeben, wenn der Orbitaboden über weite Teile frakturiert und disloziert ist, ein signifikanter Prolaps von äußerer Augenmuskulatur in die Kieferhöhle vorliegt oder peribulbäres Fettgewebe in die Kieferhöhle herniiert ist. Durch Einklemmung der Muskeln im Bereich des Orbitabodens ist deren Vernarbung und Nekrose zu befürchten, weiterhin kann es zur Fibrosierung des herniierten Fettgewebes kommen [60].
Die Computertomographie ist ein etabliertes Verfahren, um den Therapiebedarf bei Mittelgesichtsfrakturen abzuschätzen [18].

Die Computertomographie hilft, das Ausmaß der Schädigung im Bereich des Orbitatrichters zu bestimmen. Insbesondere muss die Frage beantwortet werden, ob der Orbitaboden inspiziert und damit ein operativer Zugang zum Infraorbitalrand geschaffen werden muss. Allerdings herrscht Uneinigkeit über das Ausmaß einer Orbitabodenfraktur, welches eine Revision erfordert [58].

Sollte diese nicht notwendig erscheinen, ist es häufig möglich, den operativen Zugang zum Infraorbitalrand zu vermeiden. In diesen Fällen kann die Frakturdarstellung über einen intraoralen, gegebenenfalls zusätzlich lateroorbitalen Zugang ausreichen. Risiken wie Unterlidexstropium oder Lidspaltenerweiterung können damit umgangen werden.

Weiterhin kann die Computertomographie begleitende Verletzungen ausschließen, die der klinischen Untersuchung nicht zugänglich sind.

In unserer Klinik gehört die computertomographische Diagnostik von Mittelgesichtsfrakturen zur Routinediagnostik. Auf sie wird nur in seltenen Fällen verzichtet, wenn klinisch sowie konventionell-röntgenologisch nachweisbar eine geringe Fragmentdislokation besteht.
5.1.3 Therapie

5.1.3.1 Allgemeines

Operationszeitpunkt

Die Zeitspanne, die bis zur operativen Versorgung der Patienten verging, variierte in unserer Klinik zwischen 1 Tag und 20 Tagen. Im Mittel vergingen 5,7 Tage zwischen Frakturereignis und Operation. Die in der Literatur gefundenen Zeiträume betrugen durchschnittlich 4,3 bis 7 Tage [14, 21].

Polytraumatisierung verzögerte die Behandlung der Mittelgesichtsfrakturen bei häufig schlechtem Allgemeinzustand der Patienten. Zunächst mussten wir bei 4 Patienten die Versorgung dringlicher Verletzungen sowie eine Stabilisierungsphase nach Polytrauma abwarten bis die endgültige Frakturversorgung nach durchschnittlich 11 Tagen erfolgen konnte.

Ein Patient erkannte die Behandlungsbedürftigkeit seiner mäßigen dislozierten Jochbein- und Orbitabodenfraktur nicht rechtzeitig und wurde erst mit 20-tägiger Verzögerung operiert. Trotz dieses beträchtlichen Verzuges gelang eine komplikationslose Reposition und Osteosynthese der Fraktur.

Nach DIELER T und JAIS [22] können die Fachkliniken auf die Behandlungsverzögerung, die häufig zu Spätkomplikationen und aufwendigen Operationsverfahren führt, kaum Einfluss nehmen. Sie kommen meist dadurch zustande, dass - wie in einem unserer Fälle - die Notwendigkeit zur Therapie vom Patienten nicht erkannt wird oder weitere Verletzungen bei polytraumatisierten
Patienten primär versorgt werden müssen. Speziell bei zum Teil unzureichender Diagnostik kann auch von ärztlicher Seite das Verletzungsausmaß unterschätzt werden.

5.1.3.2 Osteosynthetische Frakturversorgung

Die häufigste Indikation für die operative Versorgung von Jochbeinfrakturen stellen Gesichtsasymmetrien mit Abflachung der Jochbeinprominenz dar.

Einfache, nicht dislozierte Frakturen können gelegentlich konservativ mit sorgfältiger Beobachtung und Reevaluation nach Schwellungsrückgang behandelt werden [24].

Die Darstellung und Osteosynthese einer Jochbeinfraktur über nur einen Zugang - entweder an der Sutura fronto-zygomatika oder am Infraorbitalrand - erscheint uns in anbetracht der komplexen dreidimensionalen Orientierung des Jochbeinkörpers in vielen Fällen kritisch.
In 17 von 26 Fällen mit Jochbeinfraktur erfolgte die Frakturdarstellung an drei Pfeilern. In den verbleibenden 9 Fällen wurde nach Darstellung zweier Pfeiler die Reposition und Osteosynthese durchgeführt. In keinem Fall wurde aufgrund beschränkter Übersicht nur ein einzelner Zugang gewählt.

Bei 2 Patienten (7,7%) zeigte die postoperative, röntgenologische Stellungskontrolle eine geringe Dislokation, obwohl in beiden Fällen operativ eine Dreipunkt-Darstellung der Fraktur erfolgt war. Fehlstellungen hätten dabei gesehen werden müssen. Klinisch war allerdings nach Rückgang des postoperativen Hämatoms und Ödems bei keinem der Patienten eine Asymmetrie feststellbar. Die Beispiele zeigen, dass geringe Abweichungen in der Präzision der Reposition tolerabel und klinisch unauffällig sein können, abhängig davon wie ausgeprägt der verbleibende Dislokationsgrad und das maskierende, bedeckende Weichgewebe sind.

Beide Fälle verdeutlichen darüber hinaus die Komplexität der Jochbeinanatomie und die folgenden Schwierigkeiten einer korrekten Reposition trotz direkter, visueller Kontrolle.

In anderen Studien wurde die Inzidenz für postoperative Asymmetrien mit 10-13% beziffert [28, 29]. Zwischen den unterschiedlichen operativen Zugängen wurde dabei kein Zusammenhang gefunden.

Wir entschieden uns in 19 Fällen für den subziliaren Zugang zum Infraorbitalrand und stellten ein diskretes Ektropium in 10,5% (2 Fällen) fest. Bei sehr genauer Präparationstechnik und korrektem, mehrschichtigem Wundverschluss, bestehend aus Periostnaht, Muskelnahnt und Hautnaht sehen wir eine geringe Gefahr der Narbenbildung mit Lidspaltenerweiterung oder Ektropionierung bei gleichzeitiger Nutzung der ästhetischen Vorteile des subziliaren Zuganges. Auf die überragende Bedeutung, Weichgewebe in mehreren Schichten zu verschließen, insbesondere auf den
Einfluss einer Periostnaht zur Refixierung des Weichgewebes am Skelett, ging MANSON ausführlich ein [33].

Kontroversen zur Plattenfixation

Eines der meist kontrovers diskutierten Themen in der Traumatologie des Gesichtsschädels ist die Frage nach der notwendigen Plattenanzahl zur Verhinderung postoperativer Dislokationen des fixierten Jochbeins.

Andere Autoren berichten über Jochbeinrepositionen ohne Fixation mit guten postoperativen Ergebnissen [23, 28, 34]. ZINGG et al. bestimmten dabei durch digitalen Druck auf das reponierte Jochbein die Notwendigkeit für eine Fixation [28].

Im unserer Klinik, in der Jochbeinfrakturen überwiegend offen reponiert werden, schließt sich in aller Regel eine Osteosynthese zur Ergebnissicherung an - auch bei primär stabil erscheinenden Repositionen. In vorliegender Studie, in der nur Fälle mit (resorbierbarer) osteosynthetischer Versorgung aufgeführt sind, wurde nur ein Patient mit einer einzelnen Platte am lateralen Stirnbeinpfeiler versorgt. CHAMPY et al. [23] beschrieben die Fixierungsart mit einer lateroorbital gelegenen Platte an 342 Patienten.
mit isolierter Jochbeinfraktur und sahen nur in 1,8% (6 Patienten) ein nicht zufrieden stellendes Ergebnis.

MANSON et al. [33] sehen die Plattenosteosynthese nach Darstellung der Pfeiler und Reposition der Fraktur unter einem anderen Gesichtspunkt: Der Sicherheit und Wahrung des Ergebnisses. Es scheint daher Sinn zu machen, einen Pfeiler durch Osteosynthese zu stabilisieren, selbst wenn die Darstellung des Pfeilers anderen Zwecken als der Osteosynthese diente, z.B. der Stellungskontrolle.

Bei unserem Patientengut lagen in 11 Fällen Jochbeinfrakturen mit multiplen Zwischenfragmenten und 7 Fälle mit einem Stückfragment vor. Durch das Frakturausmaß mit einhergehend erhöhter Mobilität des Jochbeinkörpers nach Reposition erklärt sich teilweise die häufigere Verwendung von 2 Osteosyntheseplatten in 15 Fällen (57,7%) und 3 Osteosyntheseplatten in 10 Fällen (38,5%).

Bei uns wurde eine Jochbeinfraktur im Schnitt mit 2,4 Platten fixiert und jede Platte mit durchschnittlich 4,9 Schrauben besetzt. Dies entspricht dem Grundsatz, die Platten auf jeder Seite einer Fraktur mit mindestens 2 Schrauben im Knochen zu fixieren.

5.1.4 Komplikationen

Im Folgenden werden Komplikationen diskutiert, die spezifisch auf die Verwendung resorbierbarer Osteosynthese zurückzuführen sind und bei herkömmlicher Osteosynthese mit metallischen Implantaten in dieser Form nicht beobachtet werden.

Intermittierende Schwellungen und Fremdkörperreaktionen

Abweichend von diesen intermittierenden Schwellungen, die sich alle im Verlauf der Polymerdegradation komplett auflösten, beobachteten wir 13 Monate nach Frakturversorgung mit PDLLA in einem Fall eine spontane, innerhalb weniger Tage rasch zunehmende Schwellung infraorbital.
Diese, als Fremdkörperreaktion interpretiertes Ereignis war durch die außerordentliche Dynamik und Symptomatik mit Schmerzen, Überwärmung und Fluktuation im Bereich des Osteosynthesematerials gekennzeichnet und nicht mit den üblichen, vorübergehenden Schwellungen durch Wasseraufnahme vergleichbar. Eine chirurgische Intervention wurde notwendig.

Als wesentliche Ursache für Fremdkörperreaktionen wird die Bulk-Degradation betrachtet. Infolge der autokatalytischen Reaktionen im Inneren der Implantate (Bulk-Degradation) können saure Überstände aus niedermolekularen Degradationsprodukten oder Monomere nach Auflösung der Außenhüllen zu einer plötzlichen, vermehrten Freisetzung der Abbauprodukte in das Gewebe führen, was wiederum zusammen mit den nur geringfügig hydrophilen kristallinen Polymerresten eine Fremdkörperreaktion provoziert [40].

Ursächlich für die Fremdkörperreaktionen wurde daher auch eine pH-Verschiebung des Gewebes angenommen, die durch die während der Degradation der Polymere anfallenden sauren Valenzen provoziert wird [41].

Zur Vermeidung von Fremdkörperreaktionen sind daher Implantate mit überwiegender Oberflächenresorption und damit kontrollierbarer, allmählicher Freisetzung der Degradationsprodukte erwünscht [40].

Es zeigt sich, dass Fremdkörperreaktionen nach subkutaner Implantation der Polymere eher klinisch auffällig werden, wohingegen bei einer größeren bedeckenden Weichteilschicht mit einer erhöhten Aufnahme- und Pufferkapazität des Gewebes möglicherweise nur umschriebene Reaktionen zu sehen sind, die klinisch dann nicht bemerkt werden [42]. Dies könnte ein Grund für die in der Literatur gefundene geringe Rate an Fremdkörperreaktionen sein.
Infektionen

5.2 Klinische Handhabbarkeit des resorbierbaren Osteosynthesesystems

Herkömmliche Osteosynthesematerialien aus Metall müssen manuell mittels Zangen verformt und somit der Knochenkontur angeglichen werden.

Hingegen wurde bei einem Material chemisch gleicher Zusammensetzung, dem Poly (D,L)-Laktid (PDLLA Resomer 208, Boehringer Ingelheim, Deutschland) im Rahmen einer Studie zur Materialverformung eine Heizpinzette verwendet, die sowohl extrakorporal als auch in situ eingesetzt werden konnte [35]. Die Platten wurden dabei schrittweise der Anatomie des Knochens angepasst.

Mit Heizpinzetten kann die Osteosyntheseplatte in gleicher Weise wie bei herkömmlichen Titanplatten sukzessive der Unterlage angepasst werden. Dieses Prozedere scheint vielen Operateuren das geläufigere und damit angenehmere zu sein. Zudem muss der operative Zugang nur so ausgedehnt sein wie es für eine ausreichende Frakturdarstellung notwendig ist.

Beim Versuch, die nach Erwärmung plastischen Platten unmittelbar in den Operationssitus einzubringen und der knöchernen Unterlage direkt anzupassen, war ein äußerst schnelles Vorgehen notwendig, um ein vorzeitiges Erhärten der Platten zu verhindern.

Eine deutliche Erleichterung bei der Adaptation der thermoplastischen Platten an die Knochenkonturen bieten die Templates. Dies sind für alle Plattengeometrien vorhandene, wieder verwendbare und sterilisierbare Biegeschablonen. Sie werden im Operationsfeld direkt dem Knochen angebogen. Dies kann ohne Kraftaufwand
durchgeführt werden, die Templates bleiben formstabil. Dem Situs entnommen, dienen sie als Formvorlage für die Platten.

Da die erwärmten und dadurch plastisch verformbaren Platten nach wenigen Sekunden erhärten, hat es sich im Rahmen unserer Studie bewährt, die vorgeformten Templates im Heizgerät (Heater) mit zu erwärmen. Während der Plattenanpassung konnte hierdurch weiterhin Wärme vom Template der Platte zugeführt werden. Die Verarbeitungszeit verlängerte sich dadurch geringfügig.

Stattdessen empfehlen wir die Benetzung des Heizgerätebodens mit destilliertem Wasser. Die Erwärmung des Osteosynthesematerials wird hierdurch nur unwesentlich verzögert.

Sowohl ökonomisch als auch ökologisch bedenklich erschien uns weiterhin die nur einmalige Verwendbarkeit der Heizeinheit. Da das Heizgerät nicht sterilisierbar ist, wird es als Einmalprodukt hergestellt.
5.3 Primärstabilität und Haltekraft

Mit dem in unserer Studie angewendeten Poly (D,L)-Laktid wurden ebenfalls von HEIDEMANN und GERLACH [35] Erfahrungen gesammelt. Von 429 verwendeten Osteosyntheseschrauben brachen in deren Studie nur 7 (1,7%). Die Schraubendurchmesser betrugen dabei 1,6 mm oder 2,1 mm, die Plattendicken maßen zwischen 1,1 – 1,5 mm. Keine der Platten frakturierte.

In unserer Anwendung frakturierten hingegen 33 von 363 Schrauben (9,1%) bei der Versorgung von lateralen Mittelgesichtsfrakturen. Plattenbrüche gab es in unserem Patientengut ebenfalls nicht.

Wir benutzten Schrauben der Durchmesser 1,6 mm, 2,1 mm sowie 2,4 mm. Prozentual am häufigsten traten die Brüche beim 1,6 mm-System auf.

Eine Erklärung für die häufigeren Frakturereignisse in unserem Patientengut im Vergleich zur HEIDEMANN [35] lässt sich am ehesten nur in Unterschieden der Distrikationskräfte und Scherkräfte im Frakturbereich finden. So wurde bei uns das resorbierbare Osteosynthesematerial häufig bei stark dislozierten Jochbeinfrakturen angewendet.

In Fällen gering dislozierter Frakturen oder Frakturen mit geringer Rückstelltendenz der reponierten Fragmente nach deren Reposition traten Schraubenbrüche nur sehr selten und hauptsächlich in der Anfangsphase der Studie auf.

Auch bei Betrachtung der operatorabhängigen Häufigkeit von Schraubenfrakturen ist keine Regelmäßigkeit zu erkennen. Lediglich in der Anfangsphase der Systemanwendung traten operatorunabhängig gehäuft Schraubenfrakturen auf. Infolge
eines eintretenden Trainingseffektes nahmen im Verlauf der Anwendung des Materials Schraubenfrakturen ab.

Bei BESSHO et al. [46] kam es in der Anfangsphase der Anwendung von 2,0 mm PLLA-Schrauben durchschnittlich pro Patient zu 1,1 Schraubenfrakturen.

LANDES et al. [47] beklagten ebenfalls häufig Schraubenbrüche (8%) bei der Verwendung von Poly (L/DL)-Laktid (Macro-Pore und Synthes). Diese traten insbesondere bei nicht suffizient vorgebohrten Gewinden sowie bei nicht vertikaler Schraubenapplikation auf. Die Schraubendurchmesser betrugen 2 mm.

ARAUJO et al. [48] verglichen Standard Synthes 2.0 mm Titanplatten mit 2,4 mm 70:30 Poly (L/DL)-Laktid (Macro-Pore, San Diego, CA). Die biodegradierbaren Platten zeigten dabei den Titanplatten gegenüber eine deutlich erhöhte Deformation nach Kompression durch die Instron-Maschine (Instron Inc, Canton, MA) sowie Plattenbrüche und Schraubenverluste. Dennoch erschien den Autoren das resorbierbare System für geeignet zur Fixation nach Le-Fort-I Osteotomien und als ausreichend widerstandsfähig für Kräfte, die durch Mastikation auftreten.

BÄHR et al. [45] berichten über die Stabilisierung von Le-Fort-I Osteotomien bei Schafen mit 90:10 PLLA/PGA-Kopolymeren verglichen mit 2,0 mm AO-Miniplatten aus Titan. Die fixierten Fragmente erschienen unter Fixierung mit dem Kopolymer nur geringfügig weniger stabil als unter der Titanplattenfixierung.

5.4 Beurteilung des Verhaltens resorbierbarer Osteosynthese-
materialien im menschlichen Körper, insbesondere durch Sonographie

Zur Darstellung resorbierbarer Osteosynthesematerialien stehen unterschiedliche Verfahren zur Verfügung: Die Computertomographie, Magnetresonanztomographie sowie die Ultraschalldiagnostik [50]. Konventionelles Röntgen kann diese aufgrund fehlender radioopaquer Materialien in biodegradierbaren Implantaten nicht darstellen.

Die Ultraschalldiagnostik wird zum bevorzugten Verfahren für die Langzeit-Nachsorge von resorbierbaren Implantaten aufgrund zwei schwerwiegender Nachteile der beiden anderen Methoden: Der Strahlenbelastung durch die Computertomographie sowie den hohen Kosten der Kernspintomographie.

In den eigenen Untersuchungen konnten wir diese Beobachtungen weder mit einem 7,5 MHz noch mit einem 13,5 MHz Schallkopf bestätigen. Bei allen Patienten und sämtlichen untersuchten Platten wurden stets beide Plattengrenzen, die kaudale, dem Knochen anliegende, sowie die kraniale Grenze als echoreiche Doppellinie visualisiert. Es ergaben sich dabei keine Unterschiede zwischen den Doppellinien selbst in Bereichen mit Inkongruenz zur knöchernen Unterlage.

Metrische Bestimmungen des Osteosynthesematerials

In unseren eigenen Untersuchungen an 50:50 PDLLA konnten die beschriebenen Veränderungen ab dem 8. Monat nach Implantation nicht nachvollzogen werden. Es bestand bis dahin absolute Volumenstabilität sowohl lateroorbital, infraorbital als auch im Bereich der fazialen Kieferhöhlenwand. Eine Erklärung für das Ausbleiben der durch Wasseraufnahme bedingten Implantatquellung zu diesem frühen Zeitpunkt konnte nicht gefunden werden, insbesondere da es sich um chemisch identisches Material wie in o.g. Studie von HEIDEMANN [53] handelte.

Erste, allerdings uneinheitliche Materialveränderungen konnten in der Nachsorgeuntersuchung 12 Monate nach Implantation nachvollzogen werden, die Plattendicke nahm Werte zwischen unveränderten 1,0 mm und 2,0 mm an, im Durchschnitt 1,4 mm. Im günstigsten Fall erreichte die Plattenquellung nach 12 Monaten mit einer Dicke von 2 mm identische Ausmaße wie von HEIDEMANN [53] beschrieben, jedoch mit wesentlicher Varianz.

Bei der nächsten sonographischen Untersuchung um den 16. postoperativen Monat zeigten sich bei allen Patienten Veränderungen am Osteosynthesematerial. Insbesondere wurde eine Zunahme der Plattenstärke mit Werten zwischen 2,2 mm und 4,3 mm auffällig, im Durchschnitt 2,8 mm (280%).

Ab dem 22. Monat zeigte sich auch in unserer Studie eine abnehmende Plattendicke, wobei der Zeitpunkt vollständiger Resorption noch nicht einheitlich erreicht war.

Zusammenfassend stellte sich die Sonographie als einen ausgezeichnete Methode dar, um Veränderungen im Osteosynthesematerial - auch im zehntel Millimeterbereich – verlässlich zu erfassen. Sie übertrifft im Nachweis verbleibenden Restmaterials deutlich die Sensitivität der Palpation, insbesondere in tieferen Gewebeschichten oder bei dickerer, die Implantate bedeckender Cutis und Subkutis.
Vergleich der Implantatdarstellung mit dem 13,5 MHz Ultraschallkopf und dem 7,5 MHz Schallkopf

Vergleicht man die Qualität der Implantatdarstellung durch den 13,5 MHz Schallkopf mit der durch den 7,5 MHz Schallkopf wird deutlich, dass bei der oberflächlichen Lage der Implantate am Gesichtsschädelknochen dringend hochauflösende Schallköpfe mit 10-13,5 MHz empfohlen werden müssen.

In früheren Studien standen Ultraschallsonden mit Frequenzen zur Verfügung, deren Verwendung im Gesichtsschädelbereich nicht mehr zeitgerecht erscheint.

Unterschiede des Hämatom-Ödemausmaßes in Abhängigkeit von der Plattenlokalisation

5.5 Operative Entfernung von Titanimplantaten und sozioökonomische Beurteilung resorbierbarer und nichtresorbierbarer Osteosynthese

Ob sich volkswirtschaftliche Vorteile bei der Verwendung resorbierbarer Osteosynthesematerialien gegenüber metallischen Implantaten ergeben ist von der Patientenrate abhängig, bei der die metallische Osteosynthese im Rahmen eines operativen Zweiteingriffes und somit erneuten Krankenhausaufenthaltes entfernt wird [54].

Daher erfolgt zunächst eine kurze Diskussion über die Für und Wider einer Metallentfernung.

Ein Grossteil der Literatur verweist auf die hohe Gewebekompatibilität und Korrosionsbeständigkeit von Titan als Osteosynthesematerial [55, 56] und stellt damit die Basis für die Auffassung, das Material im Körper zu belassen.

Andere verweisen auf die Ablagerungen von Titan in Lunge, Milz und periimplantärem Gewebe und mögliche toxische Wirkungen und sehen damit die Indikation zur Metallentfernung gegeben [57].

Sehr häufig geht von unseren Patienten der Wunsch aus, die Entfernung der Titanplatten durchzuführen. Sie sehen darin einen Abschluss in Ihrer Gesamttherapie gegeben und müssen nicht lebenslang Residuen eines früheren Unfalles mit sich tragen.

Insbesondere verweisen wir auf die erschwerte Entfernbarkeit des Materials, wenn der Wunsch zur Entfernung oder Beschwerden erst Jahre nach Implantation auftreten.

Entscheidender Faktor in der Kostengegenüberstellung resorbierbarer zu nicht-resorbierbarer Osteosynthese ist folglich der Streitpunkt der Metallentfernung. ALPERT et al. [57] bezeichneten die von der Versicherungsindustrie zu eigenen gemachten globalen Kostenstrukturen als eine der größten Barrieren zur Metallentfernung.

Bei resorbierbarer Osteosynthese entbehrt sich ein Zweiteingriff und hiermit die erneute Arbeitsunfähigkeit der Patienten. Daraus ergeben sich betriebswirtschaftliche Nachteile bei volkswirtschaftlichen Vorteilen, denen die erhöhten Anschaffungskosten der resorbierbaren Osteosynthese gegenübergestellt werden müssen. Diese fallen dem Krankenhausträger zu Lasten.
Zwar sind die Herstellungskosten resorbierbarer Osteosynthese höher als die der herkömmlichen Osteosynthese, jedoch dürfte resorbierbare Osteosynthese volkswirtschaftlich erheblich günstiger sein als metallische Osteosynthese mit folgendem Zweiteingriff. Nicht zuletzt dieser Kostenfaktor sollte Ansporn zur Weiterentwicklung und Anwendung resorbierbarer Osteosynthese sein. Wäre nun noch die Kostenübernahme der zunächst teurer erscheinenden resorbierbaren Implantate durch die Krankenkassen geklärt, erschien deren Anwendung für den Krankenhausträger in neuem Reiz.
6. Zusammenfassung

Die in den 80er Jahren entwickelten resorbierbaren Osteosynthesematerialien sollten insbesondere durch den Wegfall des operativen Zweiteingriffes zur Materialentfernung bestechen.

Die Resorption betreffend zeigten sich äußerst unterschiedliche Verläufe mit vereinzelt sonographisch bestätigter Resorption ab dem 20 Monat nach Implantation. Im Durchschnitt lagen jedoch 20 bis 24 Monate nach Implantation sonographisch hochgradig veränderte Polymere vor, deren Resorption noch nicht abgeschlossen war. In einem Fall trat 13 Monate nach Frakturversorgung eine Fremdkörperreaktion auf, wie sie aus früheren Studien an biodegradierbarer Osteosynthese beschrieben ist.
Insgesamt stellte sich die Sonographie als eine hervorragende Methode dar, den Umwandlungsprozess der Polymere im Rahmen der Degradation zu visualisieren.

Die Stabilität der Platten und Schrauben wurde einzeln bewertet. Die Platten besaßen für Osteosynthese im nicht kaubelasteten Gesichtsschädelbereich ausreichende Stabilität und frakturierten in keinem Fall. Demgegenüber wurden in 9,1% (33/363) Schraubenfrakturen beobachtet. Diese traten hauptsächlich bei Schrauben mit Durchmesser 1,6 mm auf (72,7%), gefolgt von 2,1 mm Schrauben (27,3%). Bei Schrauben des 2,4 mm Systems lag eine ausreichende Schraubenstärke vor, wodurch Frakturen verhindert werden konnten.

7. Literaturverzeichnis

8. Lebenslauf

Dr. med. Christian Adam

Persönliche Angaben: Staatsangehörigkeit: deutsch
Geb.: 05. Mai 1975
Geburtsort: Stuttgart
Familienstand: ledig

Schulische Ausbildung:
1981- 1985: Grundschule Grötzingen, Baden- Württemberg

Universitäre Ausbildung:
01.07.2003: Approbation als Arzt
07.11.2002: Approbation als Zahnarzt

Berufliche Tätigkeit:
01.01.2002 - 31.07.2004: Arzt im Praktikum (AiP) und anschließend Assistenzarzt in der Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie am Universitätsklinikum Tübingen, Ärztl. Direktor: Prof. Dr. Dr. Reinert
Seit 01.08.2004: Assistenzarzt in der Klinik für Mund-, Kiefer- und plastische Gesichtschirurgie, Klinikum Nürnberg Süd, Chefarzt Prof. Dr. Dr. M. Farmand

Promotion zum Dr. med.: