Aus der Universitäts-Frauenklinik mit Poliklinik Tübingen
Abteilung Allgemeine Geburtshilfe und Frauenheilkunde
Ärztlicher Direktor: Professor Dr. D. Wallwiener

Die Auswirkungen des assisted hatching auf die
Schwangerschaftsrate in der assistierten Reproduktion

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Medizin
der Medizinischen Fakultät
der Eberhard-Karls-Universität
zu Tübingen

vorgelegt von
Sabine Maria Zundel
aus
Bochum

2005
Dekan:           Professor Dr. C. D. Claussen
1. Berichterstatter:  Professor Dr. H.-R. Tinneberg
2. Berichterstatter:  Privatdozent Dr. M. Menton
Für Paul, Louis, Niklas und Lenn
Inhaltsverzeichnis

1 Einleitung .............................................................................................................. 9
   1.1 Indikationen ..................................................................................................... 11
   1.2 Geschichte der Reproduktionsmedizin .......................................................... 12
   1.3 Fragestellung ................................................................................................... 16

2 Hintergründe und aktuelle Therapie ..................................................... 17
   2.1 Therapiemöglichkeiten .................................................................................. 17
   2.2 Behandlungsablauf ......................................................................................... 21
   2.3 Therapieschema .............................................................................................. 22
   2.4 Die Rolle der Zona pellucida ........................................................................ 24
   2.5 Hintergründe des assisted hatching .............................................................. 26
   2.6 Verschiedene Methoden des assisted hatching ............................................ 28
   2.7 Embryotransfer .............................................................................................. 32

3 Patienten und Methoden ................................................................. 35
   3.1 Datenerhebung ............................................................................................... 35
   3.2 Patientinnen .................................................................................................... 36
   3.3 Ovarielle Stimulation ..................................................................................... 37
   3.4 Punktion ........................................................................................................... 37
   3.5 Spermienaufrichtung und Befruchtung ........................................................... 39
   3.6 Kultur .............................................................................................................. 40
   3.7 Assisted hatching ............................................................................................ 41
   3.8 Transfer ........................................................................................................... 42
   3.9 Schwangerschaftskontrollen ......................................................................... 43
   3.10 Statistische Analyse ....................................................................................... 43
4 Ergebnisse ........................................................................................................51
4.1 Übersicht ........................................................................................................51
4.2 Schwangerschaftsraten ..................................................................................57
4.3 Anzahl der IVF-Versuche .............................................................................64
4.4 Anzahl der transferierten Embryonen .........................................................67
4.5 Stimulationsprotokolle ..................................................................................72

5 Diskussion ....................................................................................................... 74
5.1 Diskussion der Methoden ................................................................................74
5.2 Diskussion der Ergebnisse .............................................................................81
5.3 Ausblick .........................................................................................................86

6 Zusammenfassung .......................................................................................... 88

7 Literaturverzeichnis ....................................................................................... 89

8 Anhang ............................................................................................................104
8.1 Urliste ..........................................................................................................104
8.2 Danksagung ................................................................................................116
8.3 Lebenslauf ....................................................................................................117
**Verzeichnis der Abkürzungen**

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH</td>
<td>Assisted hatching</td>
</tr>
<tr>
<td>ART</td>
<td>Assisted reproduction technologie</td>
</tr>
<tr>
<td>BIF</td>
<td>Bielefelder Institut für Fortpflanzungsmedizin</td>
</tr>
<tr>
<td>CES</td>
<td>Cumulated embryo score</td>
</tr>
<tr>
<td>DGGG</td>
<td>Deutsche Gesellschaft für Gynäkologie und Geburtshilfe</td>
</tr>
<tr>
<td>DIR</td>
<td>Deutsches IVF-Register</td>
</tr>
<tr>
<td>ESchG</td>
<td>Embryonenschutzgesetz</td>
</tr>
<tr>
<td>ESHRE</td>
<td>European Society of Human Reproduction and Embryology</td>
</tr>
<tr>
<td>ET</td>
<td>Embryotransfer</td>
</tr>
<tr>
<td>EUG</td>
<td>Extraterine Gravidität</td>
</tr>
<tr>
<td>FSH</td>
<td>Follikelstimulierendes Hormon</td>
</tr>
<tr>
<td>GH</td>
<td>Growth hormone (Wachstumshormon)</td>
</tr>
<tr>
<td>GnRH</td>
<td>Gonadotropin-releasing-Hormon (Gonadoliberin)</td>
</tr>
<tr>
<td>hCG</td>
<td>Humanes Choriongonadotropin</td>
</tr>
<tr>
<td>ICSI</td>
<td>Intracytoplasmatische Spermieninjektion</td>
</tr>
<tr>
<td>IVF</td>
<td>In-vitro-Fertilisation</td>
</tr>
<tr>
<td>LH</td>
<td>Luteinisierendes Hormon (ICSH)</td>
</tr>
<tr>
<td>MESA</td>
<td>Mikrochirurgische Aspiration von Spermien aus dem Nebenhodengewebe</td>
</tr>
<tr>
<td>PZD</td>
<td>Partial zona dissection</td>
</tr>
<tr>
<td>SSR</td>
<td>Schwangerschaftsrate</td>
</tr>
<tr>
<td>TESE</td>
<td>Extraktion von Spermien aus dem Hodengewebe</td>
</tr>
<tr>
<td>TET</td>
<td>Tubarer Embryotransfer</td>
</tr>
<tr>
<td>ZP</td>
<td>Zona pellucida</td>
</tr>
<tr>
<td>ZP1-ZP3</td>
<td>Proteinfamilien der Zona pellucida</td>
</tr>
</tbody>
</table>
Verzeichnis der Abbildungen

Abbildung 1.1: Entwicklung der assistierten Reproduktion .................. 15
Abbildung 2.1: Intrazytoplastische Spermieninjektion .......................... 19
Abbildung 2.2: Die IVF-Behandlung im Überblick ............................... 23
Abbildung 2.3: Oozyten mit sichtbaren ZP ............................................ 24
Abbildung 2.4: Die Rolle der ZP bei der Fertilisation .......................... 25
Abbildung 2.5: Mechanische Zonaeröffnung ...................................... 29
Abbildung 2.6: Schritte des AH mit saurer Tyrodelösung ...................... 30
Abbildung 2.7: Lasermikroskop ............................................................. 31
Abbildung 3.1: Follikelpunktionsnadel Modell Bielefeld ...................... 38
Abbildung 3.2: Fertilase® Workstation .................................................. 41
Abbildung 3.3: Embryo vor und nach Lasermanipulation .................... 42
Abbildung 3.4: SSR der Altersgruppe 1/IVF/ET .................................. 45
Abbildung 4.1: Altersverteilung der Patientinnen ............................... 52
Abbildung 4.2: Schwangerschaften pro Altersgruppe ............................ 52
Abbildung 4.3: SSR bei IVF und ICSI .................................................... 53
Abbildung 4.4: SSR bei ET und TET ....................................................... 54
Abbildung 4.5: Schwangerschaften in Abhängigkeit von AH ............... 55
Abbildung 4.6: SSR pro Altersgruppe AH/Kontrolle ............................. 56
Abbildung 4.7: SSR der Altersgruppe 1/IVF/ET .................................. 57
Abbildung 4.8: SSR der Altersgruppe 1/IVF/TET ................................ 57
Abbildung 4.9: SSR der Altersgruppe 1/ICSI/ET .................................. 58
Abbildung 4.10: SSR der Altersgruppe 1/ICSI/TET ............................. 58
Abbildung 4.11: SSR der Altersgruppe 2/IVF/ET .................................. 59
Abbildung 4.12: SSR der Altersgruppe 2/IVF/TET ............................. 59
Abbildung 4.13: SSR der Altersgruppe 2/ICSI/ET ................................ 60
Abbildung 4.14: SSR der Altersgruppe 2/ICSI/TET ............................. 60
Abbildung 4.15: SSR der Altersgruppe 3/IVF/ET .................................61
Abbildung 4.16: SSR der Altersgruppe 3/IVF/TET .................................61
Abbildung 4.17: SSR der Altersgruppe 3/ICSI/ET .................................62
Abbildung 4.18: SSR der Altersgruppe 3/ICSI/TET .................................62
Abbildung 4.19: Schwangerschaften mit und ohne AH ..........................63
Abbildung 4.20: Anzahl der IVF-Versuche – in Zahlen ..........................64
Abbildung 4.21: Anzahl der IVF-Versuche - graphisch ..........................65
Abbildung 4.22: Konfidenzintervallbereiche .......................................66
Abbildung 4.23: SSR in Abhängigkeit der Embryonenzahl .................68
Abbildung 4.24: Transferierte Embryonen/Altersgruppe 1 .................69
Abbildung 4.25: Transferierte Embryonen/Altersgruppe 2 .................70
Abbildung 4.26: Transferierte Embryonen/Altersgruppe 3 .................71
Abbildung 4.27: Stimulationsprotokolle ..............................................73
1 Einleitung


Im Allgemeinen wird von Sterilität gesprochen, wenn bei einem Paar mit uneingeschränktem Kinderwunsch trotz regelmäßigem Geschlechtsverkehr ohne Verwendung von Verhütungsmitteln nach ein bis zwei Jahren keine
Schwangerschaft eingetreten ist. Normalerweise wird bei Paaren mit Kinderwunsch in 60-90% der Fälle nach einem Jahr eine Schwangerschaft erreicht [TINNEBERG, 1995].


Noch in den frühen sechziger Jahren konnten kinderlose Paare nur den Weg der Adoption gehen, um ein eigenes Kind zu bekommen. Ein Kind zu adoptieren kommt für viele Paare nicht in Frage und erweist sich auch als schwierig, da auf ein zur Adoption freigegebenes Kind in Deutschland ca. 20 adoptionswillige Eltern kommen [OTTMAR, 1995].


1.1 Indikationen


Häufig kann sowohl beim Mann als auch bei der Frau keine eindeutig morphologische Begründung für die Sterilität gefunden werden. Möglicherweise spielen sterilitätserzeugende Umweltfaktoren eine Rolle. So wird zum Beispiel angenommen, dass Stress, Genuss- und Umweltgifte, Mangelernährung sowie sozioökonomische Faktoren einen Einfluß auf die Zeugungsfähigkeit, die Implantation und den Erhalt der Schwangerschaft haben. Schadstoffanreicherungen in den Reproduktionsorganen können sich ebenfalls negativ auswirken. Heute besteht eine vergleichsweise höhere

1.2 Geschichte der Reproduktionsmedizin


Seit diesem bahnbrechenden Erfolg hat sich eine neue Disziplin der Gynäkologie, die Reproduktionsmedizin, entwickelt, die eine ständig wachsende Zahl an Patienten betreut. 1999 wurden vom DIR deutschlandweit 58 388 Behandlungen in 92 Zentren bei 36 933 Frauen erfasst [DIR, 2000]. Man geht davon aus, dass weltweit 30 000 Kinder leben, die durch künstliche Befruchtung entstanden sind.


<table>
<thead>
<tr>
<th>Jahr</th>
<th>Entwicklung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>Einführung der ovariellen Stimulation mit Clomiphen</td>
</tr>
<tr>
<td>1983</td>
<td>Erste erfolgreiche Kryokonservierung von menschlichen Embryonen</td>
</tr>
<tr>
<td>1983</td>
<td>Einführung der ovariellen Stimulation mit Gonadotropinen</td>
</tr>
<tr>
<td>1984</td>
<td>Intratubarer Gametentransfer</td>
</tr>
<tr>
<td>1984</td>
<td>Ultraschallkontrollierte transvaginale Gewinnung von Eizellen</td>
</tr>
<tr>
<td>1986</td>
<td>Erste erfolgreiche Kryokonservierung von Oozyten</td>
</tr>
<tr>
<td>1986</td>
<td>Intratubarer Zygotentransfer</td>
</tr>
<tr>
<td>1988</td>
<td>Subzionale Spermieninjektion</td>
</tr>
<tr>
<td>1988</td>
<td>Mikrochirurgische Aspiration von Spermien aus dem Nebenhodengewebe</td>
</tr>
<tr>
<td>1990</td>
<td>Erstes Beschreiben des Assisted hatching</td>
</tr>
<tr>
<td>1991</td>
<td>Erste Erfahrungen mit dem Transfer von Embryonen im Blastozystenstadium</td>
</tr>
<tr>
<td>1992</td>
<td>Erste Schwangerschaft nach ICSI</td>
</tr>
<tr>
<td>1994</td>
<td>Extraktion von Spermien aus dem Hodengewebe (TESE)</td>
</tr>
</tbody>
</table>

Abbildung 1.1: Entwicklung der assistierten Reproduktion [DE GEYTER, 1999]

Trotz der ständigen Neuerungen blieben die Schwangerschaftsraten unbefriedigend niedrig. Ein Erklärungsversuch stützt sich auf die möglichen negativen Einflüsse während der In-vitro-Periode des Embryos. Aus der Hoffnung heraus, diese Schäden aufzuheben und die Entwicklungsbedingungen zu optimieren, hat sich die Technik des assisted hatching entwickelt.
1.3 Fragestellung

In der vorliegenden Arbeit wird das am Bielefelder Institut für Fortpflanzungsmedizin (BIF) durchgeführte assisted hatching analysiert.

Hierbei wird vor allem auf folgende Fragestellungen eingegangen:

- Erhöht der Einsatz von assisted hatching die Schwangerschaftsrate bei der künstlichen Befruchtung?
- Besteht ein Zusammenhang zwischen dem Alter der Patientinnen und dem erfolgreichen Anwenden des assisted hatching?
- Können unterschiedliche Ergebnisse bei den verschiedenen Therapieformen IVF bzw. ICSI dokumentiert werden?
- Inwieweit beeinflusst das assisted hatching die Schwangerschaftsraten in Abhängigkeit vom Transferverfahren?

Mit statistischen Mitteln und kritischen Betrachtungen der eigenen Ergebnisse wird Stellung genommen, inwieweit die Zahlen aussagekräftig sind, Prognosen erlauben oder auf die Grundgesamtheit übertragen werden dürfen.
2 Hintergründe und aktuelle Therapie

Die assistierte Reproduktion ist ein Bereich der Medizin, der sich derzeit sehr rasch verändert. Im Folgenden werden die zurzeit aktuellen Verfahren dargestellt. Zusätzlich werden die physiologischen Hintergründe erläutert, die es rechtfertigen, mit assisted hatching auf höhere Schwangerschaftszahlen zu hoffen.

2.1 Therapiemöglichkeiten


Darauf aufbauend kann eine Insemination durchgeführt werden. Es wird wie bei einer Hormonbehandlung verfahren, aber zusätzlich aufbereitetes Sperma


Führt auch die IVF nicht zur Schwangerschaft, liegt eine ausgeprägte andrologische Indikationsstellung vor oder kam es bei der IVF zu


Einige Autoren empfehlen sogar, bei allen künstlichen Befruchtungen eine ICSI durchzuführen, da eine höhere Fertilisationsrate erreicht werden kann [Fisheh et al., 2000].


Der Umgang mit menschlichen Embryonen, und damit die IVF, werfen unzählige ethische Fragen auf. Sie würden den Rahmen dieser Arbeit sprengen und werden deshalb bewusst ausgeklammert.

2.2 Behandlungsablauf


Zum Eingangsgespräch im Zentrum bringen die Patienten schon eine Anzahl von Untersuchungsbefunden, wie beispielsweise Spermiogramme, mit. Welche Untersuchungen erforderlich sind, wird zusammen mit allgemeinem Informationsmaterial vor dem Gespräch versandt. Im Gespräch wird
nochmals die Anamnese erhoben, es werden zusätzlich notwendige Untersuchungen angeordnet, eine Diagnose wird gestellt und eine spezielle, patientenindividuelle Therapie empfohlen. Der Arzt klärt über die Erfolgsaussichten und die Durchführung der Behandlung auf.
Anschließend wird ein Therapieschema aufgestellt, das sich für die IVF-Therapie aus den unten aufgeführten Schritten zusammensetzt [RABE ET AL., 1996].

2.3 Therapieschema

Das hier dargestellte Therapieschema entspricht einem Grundschema. Es kann patientenindividuell angepasst werden.
- Stimulation der Follikelreifung. Hierzu stehen zur Verfügung:
  Antiöstrogene, Gonadotropine oder GnRH Agonist oder Antagonist mit Gonadotropin. Generell kann eine IVF auch in einem nicht stimulierten Zyklus stattfinden, da allerdings unter normalen Bedingungen nur eine Oozyte reift, sind die Chancen, einen intakten Embryo transferieren zu können, eher gering.
  - Überwachung des Follikelwachstums
    1. per Ultraschall
    2. Überwachung der Werte von Estradiol (E2) und L.H.
- Induktion der Ovulation mittels einmaliger Gabe von hCG
- Ultraschallkontrollierte transvaginale Gewinnung der Oocyten. (Die laparoskopische Follikelpunktion ist heute kaum noch von Bedeutung. Der Vorteil des Einblicks in das komplettke Operationsgebiet steht dem Nachteil der Vollnarkose gegenüber.)
- Spermiengewinnung und Aufarbeitung
- Fertilisierung der Oozyten
- Kultivierung der Oozyten/der Embryonen
- Embryotransfer in die Gebärmutterhöhle (ET) oder laparoskopischer Embryotransfer (TET) in die Tube
- Unterstützung der lutealen Phase mittels Progesteron oder hCG.

Die nachstehende Graphik 2.2 zeigt den Behandlungsablauf nochmals im Überblick.

Abbildung 2.2: Die IVF-Behandlung im Überblick [ORGANON GMBH]
2.4 Die Rolle der Zona pellucida


![Abbildung 2.3: Oozyten mit sichtbaren ZP [BIF]](image)


Während ihres Bestehens hat die ZP verschiedenste Aufgaben. Die Hauptaufgabe besteht in der Einleitung der Spermien-Oozyten-Interaktion, der Akrosomenreaktion und dem Verhindern von Polyspermie (ZP2 und

Abbildung 2.4 stellt schematisch die Rolle der Zona bei der Fertilisation dar.

Abbildung 2.4: Die Rolle der ZP bei der Fertilisation [NIESCHLAG ET AL. 1992]

2.5 Hintergründe des assisted hatching

Das Schlüpfen des Embryos aus der Zona ist eine Voraussetzung für die Implantation. Ungenügendes Schlüpfen ist möglicherweise eine Erklärung für die schlechten Implantationsraten bei der IVF. 1989 haben Cohen et al. eine erhöhte Implantationsrate beobachtet, wenn vor dem Embryotransfer eine Teil der Zona manuell entfernt oder eröffnet wurde. Sie schlossen daraus, dass dieser Vorgang dem Embryo bei dem Schlüpfprozess hilft [COHEN ET AL.,
Die Manipulation wird als assisted hatching (zu Deutsch: unterstütztes Schlüpfen) bezeichnet.


Viele IVF-Zentren haben das assisted hatching seither Patientinnen mit schlechten Prognosen angeboten.

Generell wird von eher ungünstigen Prognosen gesprochen, wenn einer der folgenden Punkte zutrifft:


Zusätzlich gelten als Indikationen für assisted hatching

- Eizellen mit dicker Zonahülle [COHEN ET AL., 1990]
- Transfer von Embryonen nach Kryokonservierung [TUCKER ET AL., 1991]

2.6 Verschiedene Methoden des assisted hatching

2.6.1 Mechanisch

Mittels einer Glaskapillare wird bei dieser Methode ein Stück der ZP entfernt: Wie die folgende Skizze 2.5 zeigt, wird der Embryo von einer Haltekapillare leicht angesaugt und gedreht, bis die stärkste Stelle der Zona zu sehen ist. Dann wird der Saugdruck an der Haltekapillare verstärkt, um den Embryo während der Schneideprozedur zu fixieren. Mit der zweiten Kapillare wird mit Nähbewegungen eine Öffnung geschnitten.

Die dreidimensionale „partial zona dissection“ (PZD) ist eine Weiterentwicklung dieser Technik. Hierbei wird die ZP kreuzförmig eröffnet. Der Vorgang läuft wie oben beschrieben ab, nach dem ersten Schnitt wird die Eizelle allerdings nochmals gedreht, bis der erste Schnitt als dunkle, vertikale Linie sichtbar ist, dann wird ein zweites Mal geschnitten [CIESLAK ET AL., 1999].

Abbildung 2.5: Mechanische Zonaeröffnung [CIESLAK ET AL., 1999]
2.6.2 Chemisch mittels saurer Tyrodelösung


Abbildung 2.6: Schritte des AH mit saurer Tyrodelösung [COHEN 1991]
2.6.3 Laser


Abbildung 2.7: Lasermikroskop [PRIMI ET AL., 1998]
2.7 Embryotransfer

Bei der herkömmlichen Art des Embryotransfers (ET) werden die Embryonen mit Hilfe eines Katheters in den Uterus injiziert. Der Katheter wird dabei durch den Muttermund eingeführt und stellt damit eine wenig invasive Transfermöglichkeit dar.


Im Zusammenhang mit dem Embryotransfer muss auch auf die Anzahl der transferierten Embryonen eingegangen werden. Die Mehrlingsschwangerschaftsrate liegt bei der künstlichen Befruchtung bei ca. 20%. Das DIR verzeichnete 1998 in Deutschland bei IVF und ICSI eine Zwillingsrate von 21,4%. Das statistische Bundesamt registrierte insgesamt auf 1000 Geburten nur 15,1 Zwillinge (1,5%). Die Mehrlingsrate liegt bei der assistierten Reproduktion also deutlich höher. Dies ist der Fall, obwohl die Anzahl der transferierten Embryonen in Deutschland auf drei limitiert ist. In den USA, mit weniger strengen Reglements bezüglich des Umgangs mit Embryonen, liegen zwar höhere Schwangerschaftsichten vor (33% laut der
„Society for Assisted Reproductive Technology“, 1998), dies wird jedoch mit Mehrlingsraten von 40% begleitet.

3 Patienten und Methoden


3.1 Datenerhebung

Die Datenerhebung umfasst folgende Parameter:
- Patientenidentifikationsnummer
- Alter der Patientinnen
- durchgeführte Therapie (IVF oder ICSI)
- Anzahl der bisher durchgeführten IVF-/ICSI-Versuche
- Stimulationsprotokoll (long oder short)
- assisted hatching
- Anzahl der transferierten Embryonen
- Anzahl der Embryonen mit assisted hatching
- Embryoqualitäten der Embryonen der AH-Gruppe. (Die Embryoqualität wurde nur bei Oozyten dokumentiert, die dem assisted hatching unterzogen wurden.)
- Transferart (ET oder TET)
- klinische Schwangerschaft
- Mehrlingsschwangerschaftsanlage
- Verlauf der Schwangerschaft
- Geburt
- Mehrlingsgeburten

3.2 Patientinnen

3.3 Ovarielle Stimulation


3.4 Punktion


Abbildung 3.1: Follikelpunktionsnadel Modell Bielefeld [REPROLINE]

Während der Punktion war immer ein Narkosearzt anwesend. Die Patientinnen bekamen zur Schmerzlinderung bzw. zum Erreichen der Schmerzfreiheit Opiate (Rapifen, Firma Janssen-Cilag, Neuss, Deutschland oder Ultiva, Firma Glaxowellcome, Schönbühl, Schweiz).

Eine Sedierung, durchgeführt mit Benzodiazepinen, war nur in geringem Umfang nötig, da die Rahmenbedingungen der Punktion so freundlich wie möglich gehalten werden. Die Erfahrung hat gezeigt, dass das Quantum an Medikamenten seit Einführung der folgenden Maßnahmen erheblich zurückgegangen ist:

Die Frauen kommen stehend, in normaler Alltagskleidung in den Punktionsraum, der so wenig Ähnlichkeit mit einem Operationssaal hat wie möglich. Der Anästhesist ist im ständigen Gespräch mit der Patientin und versucht sie abzulenken. Über dem gynäkologischen Stuhl, im Blickfeld der
Frauen, befindet sich ein Bild (Fruchtbarkeitstanz von Keith Haring). Die Frauen müssen also nicht an die nackte Decke starren. Selbstverständlich kann der Partner anwesend sein.

3.5 Spermienauflbereitung und Befruchtung
Als Kulturmedium zur Spermienauflbereitung wurde Sil-Select-Plus Lower Layer der Firma FertilPro N.V. Beernem, Belgien verwendet.
Bei Patientenpaaren, die eine IVF durchführen ließen, erfolgte die Ejakulatauflbereitung mittels Dichtegradienten-Zentrifugation (45%-ige und 90%-ige Percoll-Lösung).
Zur Insemination der Eizelle wurden durchschnittlich 1,5 Mio. Spermien pro ml Medium verwendet.

Vor der Spermatozoeninjektion werden die, die Oozyte umgebenden Cumuluszellen entfernt. Die Oozyte wird dann durch eine Pipette gehalten,

3.6 Kultur
3.7 Assisted hatching


![Abbildung 3.2: Fertilase® Workstation [MTM SWITZERLAND]](image)

Das assisted hatching fand jeweils am Morgen des geplanten Transfers statt. Es wurden dabei so viele Laserimpulse auf den Embryo abgegeben, dass eine gut sichtbare Einkerbung der ZP entstanden war. Abbildung 3.3 zeigt einen Embryo vor und nach assisted hatching. Die durch den Laser entstandene Einkerbung in der Zona pellucida ist im rechten Bild durch den Pfeil gekennzeichnet.

Je nach Beschaffenheit der ZP war die Zahl der benötigten Impulse sehr unterschiedlich. Manche Embryonen wiesen schon nach zwei Impulsen eine befriedigende Veränderung auf, andere brauchten ein Vielfaches davon.
3.8 Transfer

Am zweiten Tag nach der Punktion wurden die Embryonen transferiert. Die Patientinnen hatten die Auswahl zwischen dem herkömmlichen ET und dem laparoskopisch durchgeführten TET.


3.9 Schwangerschaftskontrollen


3.10 Statistische Analyse


- Altersgruppe 1: bis einschließlich 32 Jahre
  267 Frauen, mittleres Alter: 29,48 Jahre;
  Standartabweichung: 2,34
  Die jüngste Patientin dieser Gruppe war 21 Jahre alt.

- Altersgruppe 2: 33 – 36 Jahre
  232 Frauen, mittleres Alter: 34,55 Jahre;
  Standartabweichung: 1,12

- Altersgruppe 3: ab einschließlich 37 Jahre
  241 Frauen, mittleres Alter: 39,39 Jahre;
  Standartabweichung: 2,31
  Die älteste Patientin dieser Gruppe war 47 Jahre alt.

Eine weitere Unterteilung nach Therapie- und Transferart ergibt in jeder Altersgruppe nochmals vier Untergruppen. Insgesamt entstehen so 12 Gruppen,

z.B. Altersgruppe 1:

Patientinnen mit IVF-Therapie und ET (135 Patientinnen)
Patientinnen mit IVF-Therapie und TET (13 Patientinnen)

Patientinnen mit ICSI-Therapie und ET (23 Patientinnen)
Patientinnen mit ICSI-Therapie und TET (96 Patientinnen)
Bei einem Teil der Patientinnen dieser Gruppen wurde assisted hatching durchgeführt (AH-Gruppe), die verbleibenden Patientinnen zählen zur Kontrollgruppe. Da es den Frauen selbst überlassen wurde, ob sie AH durchführen ließen, ergeben sich keine randomisierten, gleich großen Gruppen.

z.B. Altersgruppe 1/IVF/ET:

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Patientinnen</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH</td>
<td>46</td>
</tr>
<tr>
<td>Kontroll</td>
<td>89</td>
</tr>
</tbody>
</table>

Die Anzahl der Frauen dieser letztgenannten Unterscheidung, die nach der Therapie schwanger geworden sind, sind ausschlaggebend für die Schwangerschaftsrate der speziellen Therapie-Transferkombination IVF/ET

Im Beispiel sind dies:

<table>
<thead>
<tr>
<th></th>
<th>nicht schwanger</th>
<th>schwanger</th>
<th>insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH</td>
<td>34 (74%)</td>
<td>12 (26%)</td>
<td>46</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>63 (71%)</td>
<td>26 (29%)</td>
<td>89</td>
</tr>
</tbody>
</table>

Abbildung 3.4: SSR der Altersgruppe 1/IVF/ET

Aus der Tabelle ist zu entnehmen, dass 26 % aller Frauen in der AH-Gruppe schwanger geworden sind, bei der Kontrollgruppe waren es 29%.

Informationsverarbeitung Tübingen, ausgewählt. Er ist auf die kleinen Fallzahlen, die sich durch die Gruppenaufteilung ergeben, ausgelegt. Der Fischer Test ermittelt das p, die Probability. Bei einem p kleiner 0,05 kann davon ausgegangen werden, dass zwischen den Schwangerschaftsraten der verglichenen Gruppen (in diesem Fall AH-Gruppe und Kontrollgruppe) eine signifikante Differenz besteht. Ist p größer als 0,05 besteht kein statistisch auffälliger Unterschied. Ist p=1 sind die verglichenen Werte der Gruppen als identisch zu werten. Das durch den Test errechnete p im Beispiel (Altersgruppe 1/IVF/ET) beträgt 0,840. Es ist also ein Vielfaches größer als 0,05. Daraus folgt, dass zwischen der AH-Gruppe und der Kontrollgruppe kein signifikanter Unterschied der Schwangerschaftsraten besteht.

Im Idealfall sollten die Gruppen für eine vergleichende Auswertung identisch sein. Bei einer prospektiven Studie können die eingehenden Individuen entsprechend ausgewählt werden. Da es sich bei dieser Arbeit um eine retrospektive Auswertung handelt, muss ermittelt werden, inwieweit sich die oben beschriebenen Gruppen in Faktoren unterscheiden, welche die Schwangerschaftsrate beeinflussen. Zu diesen Faktoren zählen:

- Alter der Patientin (Diesem Punkt ist durch die gebildeten Altersgruppen Rechnung getragen.)
- Anzahl der bisher durchgeführten IVF-Versuche
- Anzahl der transferierten Embryonen
- Stimulationsprotokoll
3.10.1 Anzahl der IVF-Versuche


- Es wird eine Rangliste der Stichproben \( x_1, x_2, x_3, \ldots, x_n \) erstellt. 
  
  \[ n \text{ stellt die Anzahl der Werte innerhalb der Rangliste dar.} \]

- \( n_\alpha \) ist der Ranglistenplatz, dessen zugehöriger Wert die untere Intervallgrenze darstellt.

\[
 n_\alpha = \frac{n - u_{1-\alpha/2} \sqrt{n-1}}{2} \quad \text{(Gleichung 1)}
\]
- $n_o$ ist der Ranglistenplatz, dessen Wert die obere Intervallgrenze darstellt.
  \[ n_o = n - n_u + 1 \] (Gleichung 2)
- $n_{1-\alpha}$ ist in diesem Fall 1,96. Der Wert bezieht sich auf das gewünschte Intervall (hier 95% bzw. $\alpha=0,05$) und wird aus einer Tabelle abgelesen [Werner 1984].

Berechnungsbeispiel für Altersgruppe 1/IVF/ET/AH:
Insgesamt fallen 46 Behandlungen in diese Gruppe.
Es ergibt sich folgende Rangliste:

<table>
<thead>
<tr>
<th>Ranglistenplatz</th>
<th>Anzahl der IVF Versuche</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 bis 13</td>
<td>1</td>
</tr>
<tr>
<td>14 bis 25</td>
<td>2</td>
</tr>
<tr>
<td>26 bis 39</td>
<td>3</td>
</tr>
<tr>
<td>40 bis 44</td>
<td>4</td>
</tr>
<tr>
<td>45 und 46</td>
<td>5</td>
</tr>
</tbody>
</table>

Eingesetzt in Gleichung 1 ergibt sich:

\[ n_u = \frac{46 - 1,96 \cdot \sqrt{46} - 1}{2} \]
\[ n_u = 15,85 \]

Gemäß der konservativen Vorgehensweise wird abgerundet auf 15.
Aus der obigen Tabelle ergibt sich, dass bei Ranglistenplatz 15 die untere Intervallgrenze bei 2 IVF-Versuchen liegt.
Nach Gleichung 2 wird die obere Intervallgrenze berechnet:
\[ n_u = 46 - 15 + 1 = 32 \]

3.10.2 Anzahl der transferierten Embryonen

Die Anzahl der transferierten Embryonen zwischen Analyse- und Kontrollgruppe zu vergleichen, gelingt ebenfalls nicht ohne Schwierigkeiten. Der einzige statistische Test, der auf die vorliegenden, kleinen Fallzahlen ausgelegt ist, ist nur in der Lage Vierfeldertafeln auszuwerten. Durch die Möglichkeit, insgesamt drei Embryonen zu transferieren, entstehen Sechsfeldertafeln. Da der Vergleich nicht in einem Schritt durchführbar ist, wurde jeweils verglichen, ob ein statistisch relevanter Unterschied besteht zwischen dem Transfer von:
- drei Embryonen vs. zwei Embryonen,
- zwei Embryonen vs. einem Embryo und
- drei Embryonen vs. einem Embryo
Hierbei entstehen jeweils Vierfeldertafeln und eine statistische Auswertung mit Hilfe des Fischer Tests ist möglich.

3.10.3 Stimulationsprotokolle

Die Überprüfung der Häufigkeit der Verwendung der zwei verschiedenen Stimulationsprotokolle long bzw. short konnte mit Hilfe des Fischer-Tests durchgeführt werden. Von keinem statistisch signifikanten Unterschied bezüglich der Stimulation kann bei einem p größer 0,05 ausgegangen werden.
4 Ergebnisse


4.1 Übersicht

Die folgenden Zahlen dienen der Übersicht. Es werden Angaben zur Altersverteilung und zu den Häufigkeiten der verschiedenen Behandlungen des untersuchten Kollektivs gemacht.


Die Anzahl der erreichten Schwangerschaften nimmt mit zunehmendem Alter der Patientinnen ab. Abbildung 4.2 verdeutlicht diese Tendenz. In der Altersgruppe 1 betrug die Schwangerschaftsrate 27,7% (von 267 Frauen wurden 74 schwanger, 193 verblieben nicht schwanger). In Altersgruppe 2 wurden 22,8% schwanger (von 232 Frauen wurden 53 schwanger, 179
verblieben nicht schwanger). In der letzten Altersgruppe wurden nur 14,5% schwanger (von 241 Frauen wurden 35 schwanger, 206 verblieben nicht schwanger).

Abbildung 4.1: Altersverteilung der Patientinnen

Abbildung 4.2: Schwangerschaften pro Altersgruppe
4.1.1 Therapieverfahren

Die Schwangerschaftsraten nach Therapieverfahren getrennt betrachtet, wie in Abbildung 4.3 dargestellt, betrugen bei der IVF 22,7% und bei der ICSI 20,6%.


Der Unterschied ist nicht signifikant, p beträgt 0,52.

Abbildung 4.3: SSR bei IVF und ICSI
4.1.2 Transferverfahren

Betrachtet man die Schwangerschaftsraten nach Transferverfahren getrennt, so ergibt sich beim herkömmlichen Transfer eine Schwangerschaftsrate von 22,3%. Hierbei wurden von 611 Frauen 136 schwanger. Bei dem tubaren Embryotransfer (129 Behandlungen) wurden 26 schwanger, bei 103 Patientinnen blieb die Behandlung erfolglos. Dies entspricht 20,2%. Die Daten sind in Graphik 4.4 dargestellt. Eine Signifikanz konnte nicht festgestellt werden, \( p \) beträgt 0,64.

Abbildung 4.4: SSR bei ET und TET
4.1.3 Assisted hatching

Assisted hatching wurde bei 363 Zyklen durchgeführt. Dies entspricht 49,1% des Kollektivs.

71 Frauen wurden mit assisted hatching schwanger, 292 verblieben nicht schwanger. Ohne Anwendung dieser Technik waren nach Ende des Behandlungszyklus von 377 Patientinnen 91 schwanger, 286 blieben nicht schwanger (siehe Graphik 4.5). Hieraus lässt sich ableiten, dass die Schwangerschaftsrate der Frauen, die sich gegen das assisted hatching entschieden haben, mit 24,1% über der, der anderen Gruppe liegt (19,6%). Der p-Wert liegt bei 0,155. Die Schwangerschaftsraten weisen demzufolge keine statistische Signifikanz auf.

Abbildung 4.5: Schwangerschaften in Abhängigkeit von AH
Die Schwangerschaftsraten der drei Altersgruppen in Abhängigkeit von AH sind aus Abbildung 4.6 zu entnehmen. In der Altersgruppe 1 wurden in der AH-Gruppe von 96 Patientinnen 24 schwanger (25%), in der Kontrollgruppe 50 von 171 (29,2%).

In Altersgruppe 2 wurden in der AH-Gruppe 26 Frauen schwanger, 85 blieben nicht schwanger (23,4%). In der Kontrollgruppe wurden 27 schwanger, 94 verblieben nicht schwanger (22,3%).

In Altersgruppe 3 wurden von 156 Frauen 21 schwanger (13,5%), in der Kontrollgruppe von 85 Frauen 14 (16,5%). Es besteht jeweils kein signifikanter Unterschied.

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>schwanger</th>
<th>nicht schwanger</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 AH</td>
<td>24 (25%)</td>
<td>72 (75%)</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>50 (29,2%)</td>
<td>121 (70,8%)</td>
</tr>
<tr>
<td>2 AH</td>
<td>26 (23,4%)</td>
<td>85 (76,6%)</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>27 (22,3%)</td>
<td>94 (77,7%)</td>
</tr>
<tr>
<td>3 AH</td>
<td>21 (13,5%)</td>
<td>135 (86,5%)</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>14 (16,5%)</td>
<td>71 (83,5%)</td>
</tr>
</tbody>
</table>

Abbildung 4.6: SSR pro Altersgruppe AH/Kontrolle
4.2 Schwangerschaftsraten

Im Folgenden sind die erhobenen Daten tabellarisch aufgeführt. Eine kurze Beschreibung der statistischen Aussagekraft anhand des Fischer-Tests ist beigefügt. Die Gruppen sind chronologisch nach Alter aufgeführt.

4.2.1 Altersgruppe 1 (bis einschließlich 32 Jahre)

Altersgruppe 1/IVF/ET:

<table>
<thead>
<tr>
<th></th>
<th>nicht schwanger</th>
<th>schwanger</th>
<th>insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH</td>
<td>34 (74%)</td>
<td>12 (26%)</td>
<td>46</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>63 (71%)</td>
<td>26 (29%)</td>
<td>89</td>
</tr>
</tbody>
</table>

Statistische Aussage  
\( P = 0,840 \)  
Diff. nicht signifikant

Abbildung 4.7: SSR der Altersgruppe 1/IVF/ET

Altersgruppe 1/IVF/TET:

<table>
<thead>
<tr>
<th></th>
<th>nicht schwanger</th>
<th>schwanger</th>
<th>insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH</td>
<td>2 (67%)</td>
<td>1 (33%)</td>
<td>3</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>7 (70%)</td>
<td>3 (30%)</td>
<td>10</td>
</tr>
</tbody>
</table>

Statistische Aussage  
\( P = 1,000 \)  
Diff. nicht signifikant

Abbildung 4.8: SSR der Altersgruppe 1/IVF/TET

Bei der Altersgruppe der Frauen bis einschließlich 32 Jahre führt die IVF-Behandlung zu Schwangerschaftsraten zwischen 33% und 26% (158 Frauen). Bei der Durchführung des uterinen Embryotransfers ergibt sich zwischen der AH-Gruppe (46 Frauen) und der Kontrollgruppe (89 Frauen) ein Unterschied der Schwangerschaftsraten um drei Prozentpunkte. Ein statistisch
signifikanter Unterschied der Zahlen kann allerdings nicht beobachtet werden. Die Zahlen bei dem tubaren Embryotransfer unterscheiden sich ebenfalls um drei Prozentpunkte, diesmal wurden allerdings in der assisted hatching Gruppe (3 Frauen) mehr Schwangerschaften erreicht als in der Kontrollgruppe (10 Frauen) (33% vs. 30% in der Kontrollgruppe). Eine statistische Signifikanz besteht nicht.

Altersgruppe 1/ICSI/ET:

<table>
<thead>
<tr>
<th></th>
<th>nicht schwanger</th>
<th>schwanger</th>
<th>insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH</td>
<td>31 (76%)</td>
<td>10 (24%)</td>
<td>41</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>37 (67%)</td>
<td>18 (33%)</td>
<td>55</td>
</tr>
</tbody>
</table>

Statistische Aussage $P = 0.497$ Diff. nicht signifikant

Abbildung 4.9: SSR der Altersgruppe 1/ICSI/ET

Altersgruppe 1/ICSI/TET:

<table>
<thead>
<tr>
<th></th>
<th>nicht schwanger</th>
<th>schwanger</th>
<th>insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH</td>
<td>5 (83%)</td>
<td>1 (17%)</td>
<td>6</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>14 (82%)</td>
<td>3 (18%)</td>
<td>17</td>
</tr>
</tbody>
</table>

Statistische Aussage $P = 1.000$ Diff. nicht signifikant

Abbildung 4.10: SSR der Altersgruppe 1/ICSI/TET

Schwangerschaftsrate der Patientinnen, die einen tubaren Embryotransfer durchführen ließen (23 Frauen), lag bei der Kontrollgruppe ebenfalls höher als bei der AH–Gruppe. Die Differenz um einen Prozentpunkt (18% vs. 17%) ist nicht signifikant.

4.2.2 Altersgruppe 2 (33 bis 36 Jahre)

<table>
<thead>
<tr>
<th>Altersgruppe 2/IVF/ET:</th>
<th>nicht schwanger</th>
<th>schwanger</th>
<th>insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH</td>
<td>38 (73%)</td>
<td>14 (27%)</td>
<td>52</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>58 (77%)</td>
<td>17 (23%)</td>
<td>75</td>
</tr>
</tbody>
</table>

Statistische Aussage $P = 0,675$ Diff. nicht signifikant

Abbildung 4.11: SSR der Altersgruppe 2/IVF/ET

<table>
<thead>
<tr>
<th>Altersgruppe 2/IVF/TET:</th>
<th>nicht schwanger</th>
<th>schwanger</th>
<th>insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH</td>
<td>6 (86%)</td>
<td>1 (14%)</td>
<td>7</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>3 (75%)</td>
<td>1 (25%)</td>
<td>4</td>
</tr>
</tbody>
</table>

Statistische Aussage $P = 1,000$ Diff. nicht signifikant

Abbildung 4.12: SSR der Altersgruppe 2/IVF/TET

In der Altersgruppe 2 (33-36 Jahre) entschieden sich 138 Patientinnen für die IVF. Die 127 Frauen, die einen ET durchführen ließen, teilen sich in die AH-Gruppe (52 Patientinnen, 27% wurden schwanger) und die Kontrollgruppe (75 Patientinnen, 23% wurden schwanger) auf. Die Differenz ist nicht statistisch signifikant. Nur 11 Frauen ließen einen TET durchführen. Der Unterschied der Schwangerschaftsraten von 14% (AH-Gruppe) und 25%
(Kontrollgruppe) erweist sich durch die geringen Fallzahlen trotz der Differenz um 11 Prozentpunkte nicht als statistisch signifikant.

Altersgruppe 2/ICSI/ET:

<table>
<thead>
<tr>
<th></th>
<th>nicht schwanger</th>
<th>schwanger</th>
<th>insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH</td>
<td>25 (81%)</td>
<td>6 (19%)</td>
<td>31</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>19 (76%)</td>
<td>6 (24%)</td>
<td>25</td>
</tr>
</tbody>
</table>

Statistische Aussage  P = 0,750  Diff. nicht signifikant

Abbildung 4.13: SSR der Altersgruppe 2/ICSI/ET

Altersgruppe 2/ICSI/TET:

<table>
<thead>
<tr>
<th></th>
<th>nicht schwanger</th>
<th>schwanger</th>
<th>insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH</td>
<td>16 (76%)</td>
<td>5 (24%)</td>
<td>21</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>14 (82%)</td>
<td>3 (18%)</td>
<td>17</td>
</tr>
</tbody>
</table>

Statistische Aussage  P = 0,709  Diff. nicht signifikant

Abbildung 4.14: SSR der Altersgruppe 2/ICSI/TET

94 Patientinnen ließen eine ICSI durchführen. 56 Patientinnen entschieden sich für den ET. Hierbei wurde in der AH-Gruppe eine Schwangerschaftsrate von 19% (6 von 31 Frauen wurden schwanger) und in der Kontrollgruppe von 24% (6 von 25 Frauen wurden schwanger) erreicht. Es besteht kein statistisch signifikanter Unterschied. 38 Frauen erhielten einen TET. Hierbei lag die Schwangerschaftsrate der AH-Gruppe mit 24% (5 von 21 Frauen wurden schwanger) höher als die der Kontrollgruppe mit 18% (3 von 17 Frauen wurden schwanger). Es besteht wiederum keine statistisch signifikante Differenz.
4.2.3 Altersgruppe 3 (ab einschließlich 37 Jahre)

Altersgruppe 3/IVF/ET:

<table>
<thead>
<tr>
<th></th>
<th>nicht schwanger</th>
<th>schwanger</th>
<th>insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH</td>
<td>78 (85%)</td>
<td>14 (15%)</td>
<td>92</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>47 (82%)</td>
<td>10 (18%)</td>
<td>57</td>
</tr>
</tbody>
</table>

Statistische Aussage P = 0,819 Diff. nicht signifikant

Abbildung 4.15: SSR der Altersgruppe 3/IVF/ET

Altersgruppe 3/IVF/TET:

<table>
<thead>
<tr>
<th></th>
<th>nicht schwanger</th>
<th>schwanger</th>
<th>insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH</td>
<td>8 (80%)</td>
<td>2 (20%)</td>
<td>10</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>3 (75%)</td>
<td>1 (25%)</td>
<td>4</td>
</tr>
</tbody>
</table>

Statistische Aussage P = 1,000 Diff. nicht signifikant

Abbildung 4.16: SSR der Altersgruppe 3/IVF/TET

Altersgruppe 3/ICSI/ET:

<table>
<thead>
<tr>
<th></th>
<th>nicht schwanger</th>
<th>schwanger</th>
<th>insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH</td>
<td>31 (91%)</td>
<td>3 (9%)</td>
<td>34</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>14 (100%)</td>
<td>0</td>
<td>14</td>
</tr>
</tbody>
</table>

Statistische Aussage   P = 0,546   Diff. nicht signifikant

Abbildung 4.17: SSR der Altersgruppe 3/ICSI/ET

Altersgruppe 3/ICSI/TET:

<table>
<thead>
<tr>
<th></th>
<th>nicht schwanger</th>
<th>schwanger</th>
<th>insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH</td>
<td>18 (90%)</td>
<td>2 (10%)</td>
<td>20</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>7 (70%)</td>
<td>3 (30%)</td>
<td>10</td>
</tr>
</tbody>
</table>

Statistische Aussage   P = 0,300   Diff. nicht signifikant

Abbildung 4.18: SSR der Altersgruppe 3/ICSI/TET

78 Patientinnen der Altersgruppe 3 erhielten eine ICSI. Davon entschieden sich 48 für den ET. Hiervon wurden 9% (3 der 34 Frauen) mit assisted hatching schwanger, ohne assisted hatching konnten keine Schwangerschaften erreicht werden (14 Frauen). Beim TET wurden in der AH-Gruppe 10% der Patientinnen schwanger (2 von 20 Frauen). In der Kontrollgruppe wurde eine Schwangerschaftsrate von 30% erreicht. (3 von 10 Frauen wurden schwanger.)
Abschließend zeigt untenstehende Abbildung 4.19 graphisch die erreichten Schwangerschaftsrraten pro Gruppe. Die blauen Balken zeigen jeweils die prozentualen Schwangerschaftsraten der assisted hatching Gruppe, die grauen Balken die der Kontrollgruppen.

Abbildung 4.19: Schwangerschaften mit und ohne AH

1 ... Altersgruppe 1/IVF/ET  2 ... Altersgruppe 1/IVF/TET
3 ... Altersgruppe 1/ICSI/ET  4 ... Altersgruppe 1/ICSI/TET
5 ... Altersgruppe 2/IVF/ET  6 ... Altersgruppe 2/IVF/TET
7 ... Altersgruppe 2/ICSI/ET  8 ... Altersgruppe 2/ICSI/TET
9 ... Altersgruppe 3/IVF/ET  10 ... Altersgruppe 3/IVF/TET
11 ... Altersgruppe 3/ICSI/ET  12 ... Altersgruppe 3/ICSI/TET

Abbildung 4.19: Schwangerschaften mit und ohne AH
4.3 Anzahl der IVF-Versuche


<table>
<thead>
<tr>
<th>Anzahl der IVF-Versuche</th>
<th>Fallzahlen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>289</td>
</tr>
<tr>
<td>2</td>
<td>203</td>
</tr>
<tr>
<td>3</td>
<td>131</td>
</tr>
<tr>
<td>4</td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
</tbody>
</table>

Abbildung 4.20: Anzahl der IVF-Versuche – in Zahlen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Assisted hatching</th>
<th>Median</th>
<th>Konfidenzintervall</th>
<th>Überlappung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altersgruppe 1/IVF/ET</td>
<td>AH, 2,00</td>
<td>2...3</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kontrolle, 1,00</td>
<td>1...2</td>
<td></td>
<td>Überlappung</td>
</tr>
<tr>
<td>Altersgruppe 1/IVF/TET</td>
<td>AH, 3,00</td>
<td>2...3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kontrolle, 1,00</td>
<td>1...4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altersgruppe 1/ICSI/ET</td>
<td>AH, 2,00</td>
<td>1...3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kontrolle, 2,00</td>
<td>1...2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altersgruppe 1/ICSI/TET</td>
<td>AH, 2,50</td>
<td>1...5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kontrolle, 2,00</td>
<td>1...4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altersgruppe 2/IVF/ET</td>
<td>AH, 2,00</td>
<td>2...3</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kontrolle, 1,00</td>
<td>1...2</td>
<td></td>
<td>Überlappung</td>
</tr>
<tr>
<td>Altersgruppe 2/IVF/TET</td>
<td>AH, 3,00</td>
<td>1...4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kontrolle, 2,00</td>
<td>1...3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altersgruppe 2/ICSI/ET</td>
<td>AH, 3,00</td>
<td>2...4</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kontrolle, 2,00</td>
<td>1...2</td>
<td></td>
<td>Überlappung</td>
</tr>
<tr>
<td>Altersgruppe 2/ICSI/TET</td>
<td>AH, 3,00</td>
<td>2...3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kontrolle, 2,00</td>
<td>1...3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altersgruppe 3/IVF/ET</td>
<td>AH, 2,00</td>
<td>2...3</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kontrolle, 1,00</td>
<td>1...2</td>
<td></td>
<td>Überlappung</td>
</tr>
<tr>
<td>Altersgruppe 3/IVF/TET</td>
<td>AH, 2,50</td>
<td>1...5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kontrolle, 1,00</td>
<td>1...3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altersgruppe 3/ICSI/ET</td>
<td>AH, 2,00</td>
<td>1...3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kontrolle, 2,00</td>
<td>1...3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altersgruppe 3/ICSI/TET</td>
<td>AH, 3,00</td>
<td>1...4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kontrolle, 2,00</td>
<td>1...4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 4.22: Konfidenzintervallbereiche

4.4 Anzahl der transferierten Embryonen


Es läßt sich folgern, dass die Schwangerschaftsraten beim Transfer von zwei oder drei Embryonen nicht statistisch auffällig voneinander abweichen. Der Transfer von nur einem Embryo wirkt sich dagegen negativ auf die Schwangerschaftsrate aus.

Anzahl der transferierten Embryonen in Altersgruppe 1:

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Assisted hatching</th>
<th>1 Embryo</th>
<th>2 Embryonen</th>
<th>3 Embryonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altersgruppe 1/IVF/ET</td>
<td>AH</td>
<td>6</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Kontrolle</td>
<td>11</td>
<td>38</td>
<td>40</td>
</tr>
<tr>
<td>Altersgruppe 1/IVF/TET</td>
<td>AH</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Kontrolle</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Altersgruppe 1/ICSI/ET</td>
<td>AH</td>
<td>1</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Kontrolle</td>
<td>2</td>
<td>24</td>
<td>29</td>
</tr>
<tr>
<td>Altersgruppe 1/ICSI/TET</td>
<td>AH</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Kontrolle</td>
<td>1</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>p: 1 vs. 2</th>
<th>p: 1 vs. 3</th>
<th>p: 2 vs. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altersgruppe 1/IVF/ET</td>
<td>0,765</td>
<td>1,000</td>
<td>0,437</td>
</tr>
<tr>
<td>Altersgruppe 1/IVF/TET</td>
<td>0,333</td>
<td>1,000</td>
<td>0,491</td>
</tr>
<tr>
<td>Altersgruppe 1/ICSI/ET</td>
<td>1,000</td>
<td>1,000</td>
<td>0,197</td>
</tr>
<tr>
<td>Altersgruppe 1/ICSI/TET</td>
<td>1,000</td>
<td>1,000</td>
<td>0,616</td>
</tr>
</tbody>
</table>

Abbildung 4.24: Transferierte Embryonen/Altersgruppe 1

In allen Gruppen der Altersgruppe 1 besteht kein statistisch auffälliger Unterschied in der Anzahl der transferierten Embryonen. Es kann davon ausgegangen werden, dass in AH-Gruppe und Kontrollgruppe jeweils gleich häufig ein, zwei bzw. drei Embryonen transferiert wurden.
Anzahl der transferierten Embryonen in Altersgruppe 2:

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Assisted hatching</th>
<th>1 Embryo</th>
<th>2 Embryonen</th>
<th>3 Embryonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altersgruppe 2/IVF/ET</td>
<td>AH</td>
<td>3</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Kontrolle</td>
<td>7</td>
<td>38</td>
<td>30</td>
</tr>
<tr>
<td>Altersgruppe 2/IVF/TET</td>
<td>AH</td>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Kontrolle</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Altersgruppe 2/ICSI/ET</td>
<td>AH</td>
<td>2</td>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Kontrolle</td>
<td>1</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>Altersgruppe 2/ICSI/TET</td>
<td>AH</td>
<td>0</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Kontrolle</td>
<td>0</td>
<td>5</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>p: 1 vs. 2</th>
<th>p: 1 vs. 3</th>
<th>p: 2 vs. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altersgruppe 2/IVF/ET</td>
<td>0,733</td>
<td>0,495</td>
<td>0,574</td>
</tr>
<tr>
<td>Altersgruppe 2/IVF/TET</td>
<td>- ^1</td>
<td>-</td>
<td>0,491</td>
</tr>
<tr>
<td>Altersgruppe 2/ICSI/ET</td>
<td>0,537</td>
<td>1,000</td>
<td>0,124</td>
</tr>
<tr>
<td>Altersgruppe 2/ICSI/TET</td>
<td>-</td>
<td>-</td>
<td>0,426</td>
</tr>
</tbody>
</table>

Abbildung 4.25: Transferierte Embryonen/Altersgruppe 2

In den Gruppen der Altersgruppe 2 kam bei den beiden TET-Gruppen der Transfer von nur einem Embryo nicht vor. Diese Gruppen müssen daher nur auf statistische Unterschiede zwischen der Häufigkeit des Transfers von zwei bzw. drei Embryonen überprüft werden. Hier besteht kein Unterschied. In

^1 In den mit Strichen gekennzeichneten Gruppen ließ sich kein p errechnen, da bei den jeweiligen Gruppen der Transfer von nur einem Embryo nicht vorkam.
den verbleibenden ET-Gruppen besteht in allen Überprüfungsvarianten ebenfalls keine Differenz.

Anzahl der transferierten Embryonen in Altersgruppe 3:

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Assisted hatching</th>
<th>1 Embryo</th>
<th>2 Embryonen</th>
<th>3 Embryonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altersgruppe 3/IVF/ET</td>
<td>AH</td>
<td>8</td>
<td>27</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Kontrolle</td>
<td>14</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td>Altersgruppe 3/IVF/TET</td>
<td>AH</td>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Kontrolle</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Altersgruppe 3/ICSI/ET</td>
<td>AH</td>
<td>6</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Kontrolle</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Altersgruppe 3/ICSI/TET</td>
<td>AH</td>
<td>1</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Kontrolle</td>
<td>0</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>p: 1 vs. 2</th>
<th>p: 1 vs. 3</th>
<th>p: 2 vs. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altersgruppe 3/IVF/ET</td>
<td>0,213</td>
<td>0,02</td>
<td>0,013</td>
</tr>
<tr>
<td>Altersgruppe 3/IVF/TET</td>
<td>0,333</td>
<td>1,000</td>
<td>0,061</td>
</tr>
<tr>
<td>Altersgruppe 3/ICSI/ET</td>
<td>1,000</td>
<td>0,679</td>
<td>0,694</td>
</tr>
<tr>
<td>Altersgruppe 3/ICSI/TET</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Abbildung 4.26: Transferierte Embryonen/Altersgruppe 3

In der Altersgruppe 3 besteht eine statistische Differenz bei der Gruppe “Altersgruppe 3/IVF/ET”. Die Gruppe der Patientinnen, die drei Embryonen transferieren ließen, fällt aus der Reihe, da dies in der AH-
Gruppe 57-mal vorkam, in der Kontrollgruppe dagegen nur 19-mal. Generell wurden in der AH-Gruppe durchschnittlich 2,5 Embryonen transferiert, in der Kontrollgruppe nur 1,7. Trotz der subjektiv schlechteren Eingangsbedingungen wurden in der Kontrollgruppe mehr Frauen schwanger (18 vs. 15%).

Bei den verbleibenden Gruppen liegen die p-Werte immer über 0,05 und es kann davon in ausgegangen werden, dass kein statistischer Unterschied bezüglich der Häufigkeit der unterschiedlichen Transferarten besteht.

4.5 Stimulationsprotokolle

## Abbildung 4.27: Stimulationsprotokolle

2 Weder bei der AH-Gruppe noch bei der Kontrollgruppe wurde das short-Protokoll verwendet
5 Diskussion


5.1 Diskussion der Methoden

5.1.1 Durchführung des AH

Im Kapitel „Hintergründe und aktuelle Therapie“ wurden die drei gängigsten Methoden des assisted hatching vorgestellt. Sowohl die mechanische als auch die chemische Zonaeröffnung werden zunehmend kritisiert [Germond et al., 1998]. Der Embryo muss während der Durchführung aus dem Kulturmedium
herausgenommen werden. Durch das Arbeiten mit zwei Instrumenten ist der Embryo einer relativ hohen mechanischen Belastung ausgesetzt. Es ist bisher nicht untersucht, inwieweit diese Irritation der Entwicklung des Embryos schadet, sie stellt aber in jedem Fall eine zusätzliche Belastung dar.


5.1.2 Auswahl der AH-Patientinnen

Assisted hatching wird von verschiedenen Autoren nur bei bestimmten Indikationen bzw. Therapieformen empfohlen [Cohen et al., 1992; Germond et al., 1998; Primi et al., 1998]. Die profitierenden Gruppen sind in den verschiedenen Studien sehr unterschiedlich beschrieben [Magli et al., 1998; Meldrum et al., 1998]. Ferner wurden sehr wenige Studien in Deutschland durchgeführt und die speziellen Bedingungen, die aufgrund des Embryonenschutzgesetzes gelten, sind nicht berücksichtigt [Ludwig et al., 2000; Michelmann, 2000]. Es hat sich gezeigt, dass das Alter der Patientinnen ein relevantes Kriterium für die Erfolgswahrscheinlichkeit der künstlichen Befruchtung ist [Magli et al., 1998]. Bei älteren Frauen liegen die Schwangerschaftsraten vergleichsweise niedrig. Verschiedene Studien haben gezeigt, dass mit assisted hatching besonders bei Kollektiven mit älteren Patientinnen eine höhere Schwangerschaftsrate als ohne assisted hatching erreicht werden konnte, die Prognose dieser Patientinnen also verbessert wurde [Meldrum et al., 1998]. Hingegen scheinen jüngere Patientinnen weniger vom assisted hatching zu profitieren [Hurst et al., 1998].


Sämtliche veröffentlichte Studien kommen zu unterschiedlichen Ergebnissen. Die genaue Definition der Patientengruppe, die vom AH profitiert, kann aus den existierenden Arbeiten nicht entnommen werden.

Die vorliegende Arbeit untersucht die Auswirkungen des AH in Abhängigkeit von verschiedenen Therapieoptionen. Es werden weniger patientenabhängige Faktoren, als vielmehr ärztliche Entscheidungen für bestimmte Therapien
berücksichtigt. Es soll geklärt werden, ob AH eher bei einer der beiden Therapien IVF oder ICSI oder bei einer der Transfermöglichkeiten ET oder TET positive Auswirkungen hat.

Befürworter des tubaren Transfers das mögliche Vorhandensein von Lysin in den Tuben ist [GORDON UND DAPUNT, 1993], welches das AH überflüssig machen könnte.

5.1.3 Statistik

Da die vorliegenden Daten retrospektiv erhoben wurden, muss die Gruppenzusammensetzung von Analyse- und Kontrollgruppe überprüft werden. Für die Interpretation der Schwangerschaftsraten ist relevant, dass sich die beiden Gruppen in keinem die Schwangerschaftsrate beeinflussenden Parameter unterscheiden.

zwei. Nach Magli et al. und Edirisinghe et al. gehören die Patientinnen der AH-Gruppe damit bereits in die Gruppe der Patientinnen mit schlechter Prognose [Edirisinghe et al., 1999; Magli et al., 1998].

Es muss akzeptiert werden, dass die höhere Schwangerschaftsrate in der Kontrollgruppe dieser Untergruppe möglicherweise auf die bessere Prognose dieser Gruppe zurückzuführen ist.

Die Inzidenz der Verwendung der zwei verschiedenen Stimulationsprotokolle ist in allen ausgewerteten Gruppen bei AH-Gruppe und Kontrollgruppe gleich.

5.2 Diskussion der Ergebnisse


Der Grund für die abweichenden Ergebnisse am Bielefelder Kollektiv kann nach Sichtung der Literatur nicht eindeutig geklärt werden. Es kann allerdings festgehalten werden, dass in der vorliegenden Arbeit ein vergleichsweise großes Patientenkollektiv untersucht wurde. Zusätzlich darf nicht in Vergessenheit geraten, dass der Erfolg des assisted hatching unabhängig von der Methode immer noch kontrovers diskutiert wird. Derzeit liegen noch keine randomisierten, prospektiven Studien vor, die das assisted hatching endgültig beurteilen.

Die Ergebnisse der Studie am Bielefelder Kollektiv sind mit keiner der aktuell verfügbaren Studien, die mit Hilfe der Lasertechnologie durchgeführt wurden, direkt vergleichbar. In der folgenden Erörterung der untersuchten Parameter werden deshalb Vergleiche mit Studien gezogen, deren assisted hatching mit Tyrodelösung oder PZD durchgeführt wurde.
5.2.1 Altersabhängigkeit

Um die altersabhängigen Schwankungen bezüglich des Gewinns durch AH auch im Bielefelder Kollektiv zu berücksichtigen, wurden bei den Auswertungen drei Altersgruppen gebildet. Es konnte erwartungsgemäß ein Abfallen der Schwangerschaftsraten mit zunehmendem Alter der Patientinnen festgestellt werden. Bei der Therapiekombination IVF/ET lag die Schwangerschaftsrate der Altersgruppe 1 bei 26,1% (AH) bzw. 29,3% (Kontrolle), während sie in der Altersgruppe 3 bei 15,2% (AH) bzw. 17,5% (Kontrolle) lag. Aus den dargelegten Zahlen ist allerdings auch ersichtlich, dass die Schwangerschaftsraten der AH-Patientinnen gegenüber denen der Kontrollpatientinnen nicht signifikant höher liegen. Dies trifft auf alle drei Altersgruppen zu.


Bider et al. führten 1997 eine Studie an Frauen über 38 Jahren durch. Sie arbeiteten gleichfalls mit Tyrodelösung und konnten keinen signifikanten Anstieg der Schwangerschaftsraten mit und ohne AH feststellen (n=385) [BIDER ET AL., 1997].
5.2.2 Assisted hatching und IVF/ICSI


Der Erfolg des assisted hatching ist demnach nicht davon abhängig, ob eine IVF- oder eine ICSI-Behandlung durchgeführt wird.

5.2.3 Assisted hatching und ET/TET

Chao et al. veröffentlichten 1997 eine Studie zum AH unter Berücksichtigung des Transferverfahrens. Sie erreichten einen starken Anstieg der Schwangerschaftsrate mit AH nach IVF-ET. Die Schwangerschaftsrate dieser Gruppe lag bei 42,2% (n=31) während die Kontrollgruppe nur eine Rate von 16,1% (n=31) erreichte.

Bei den Patientinnen der vorliegenden Studie konnten sowohl beim ET wie auch beim TET keine Vorteile durch AH im Gegensatz zu den Kontrollen gesehen werden. Wie bei der Unterscheidung nach Therapiearten trifft dies zu für ausschließlich IVF (Altersgruppe 1: n=135 vs.13; Altersgruppe 2: n=127 vs. 11; Altersgruppe 3: n=149 vs. 14), ausschließlich ICSI (Altersgruppe 1: n=96 vs.23; Altersgruppe 2: n=56 vs. 38; Altersgruppe 3: n=48 vs. 30) und IVF/ICSI gemeinsam betrachtet (Altersgruppe 1: n=231 vs. 36 Altersgruppe 2: n=183 vs. 49; Altersgruppe 3: n=197 vs. 44).

Die These der Arbeitsgruppe Chao et al., dass ein mit AH behandelter Embryo Nachteile durch den tubaren Transfer hat, konnte weder statistisch signifikant, noch als Trend nachgewiesen werden. Betrachtet man alle sechs Gruppen mit TET, so konnte keine zentrale Tendenz der Schwangerschaftsraten nach AH erkannt werden [CHAO ET AL., 1997].
5.2.4 Resümee

Zusammenfassend kann festgehalten werden, dass durch assisted hatching keine Steigerung der Schwangerschaftsrate erreicht werden konnte. Ähnlich wie in den Untersuchungen von Hurst et al., Lanzendorf et al., und Edirisinghe et al. muss sich diese negative Aussage auf die untersuchte Patienten klientel beschränken [Edirisinghe et al., 1999; Hurst et al., 1998; Lanzendorf et al., 1998]. Da wiederholt Studien einen Vorteil des assisted hatching herausgearbeitet haben, [Germond et al., 1998; Magli et al., 1998; Antinori et al., 1996; Cohen et al., 1992; Cohen et al., 1990] sind weitere Arbeiten erforderlich, um zu klären, ob eine andere Patientengruppe als die hier untersuchte vom assisted hatching profitieren kann.

5.3 Ausblick

Die Reproduktionsmedizin hat sich in den letzten Jahren rasant entwickelt [Hummel, W. P., Kettel, L.M., 1997]. Es ist anzunehmen, dass diese Tendenz, getriggert durch vermehrten Bedarf und gesteigertes öffentliches Interesse, anhält. Das assisted hatching hat den Laser in das Handwerkszeug des Reproduktionsmediziners eingeführt [Antinori et al., 1996; Germond et al., 1996]. Der Nutzen für die Steigerung der Schwangerschaftsraten ist, wie in dieser Arbeit gezeigt wurde, kritisch zu betrachten [Primi et al., 1998; Germond et al., 1998]. Inzwischen wird der Laser allerdings in anderen Prozessen innerhalb der Reproduktionsmedizin angewendet. Sein Gebrauch zur Biopsieentnahme für eine Präimplantationsdiagnostik wird wiederholt empfohlen [Montag et al., 1997; Montag et al., 1998a; Veiga et al., 1997]. Ferner ermöglicht er die Kryopreservation von Spermatozoa in einer zellfreien Zona


Ein bislang noch wenig beleuchtetes Feld, die psychologische Situation und Betreuung der Kinderwunschpaare, wird verstärkt in den Vordergrund rücken. Gegenwärtig wird eine Studie bezüglich der Lebensqualität der IVF-Patientinnen und ihrer Partner an der Universität Tübingen durchgeführt.
6 Zusammenfassung

Das Ziel dieser Studie war es, die Auswirkungen des assisted hatching auf die Schwangerschaftsrate bei IVF und ICSI zu untersuchen. Hierbei wurde besonders auf einen möglichen Zusammenhang mit der Transferart (ET oder TET) eingegangen.


7 Literaturverzeichnis


BIF, Bielefelder Institut für Fortpflanzungsmedizin Photographien aus Institutsbesitz

Brinster, R.L., Biggers, J.D. (1965) In-vitro fertilization of mouse ova within the explanted fallopian tube J Reprod Fertil, 10, 277-279
The pregnancy rates – a retrospective comparison of tubal and uterine embryo transfers
J med Assoc, 84, 247-252

Assisted hatching increases the implantation and pregnancy rate of in vitro fertilization (IVF) embryo transfer (ET) but not that of IVF-tubal ET in patients with repeated IVF failures
Fertility and Sterility, 67, 904-908

The effect of assisted hatching on pregnancy rates after frozen embryo transfer
Fertility and Sterility, 65, 254-257

Chen, C-D., Ho, H-N., Yang, Y-S. (1997)
Tubal embryo transfer improves the pregnancy rate (Letter to the editor)
Human Reproduction, 12, 629-631

Three dimensional partial zona dissection for preimplantation genetic diagnosis and assisted hatching
Fertility and Sterility, 71, 308-313

Cohen, J. (1993)
Assisted hatching

How to avoid multiple pregnancies in assisted reproduction
Human Reproduction, 13, 197-214

Implantation enhancement by selective assisted hatching using zona drilling of human embryos with poor prognosis
Human Reproduction, 7, 685-691
Impairment of the hatching process following IVF in the human and improvement of implantation by assisting hatching using micromanipulation
Human Reproduction, 5, 7-13

Videocinematography of fresh and cryopreserved embryos: a retrospective analysis of embryonic morphology and implantation
Fertility and Sterility, 51, 820-827

In-vitro fertilization and embryo transfer, a collaborative study of 1163 pregnancies
Human Reproduction, 1, 255-258

De Croo, I., Van der Elst, J., Everaert, K., De Sutter, P., Dhont, M. (2000)
Fertilisation, pregnancy and embryo implantation rates after ICSI in cases of obstructive and non-obstructive azoospermia
Human Reproduction, 15, 1383-1388

De Geyter, Ch. (1999)
20 Jahre In-vitro-Fertilisation: Was kommt danach?
Therapeutische Umschau, 56, 240-246

De Kretzer D., Dennis P., Hudson B. et al. (1973)
Transfer of a human zygote
Lancet, 2, 728-729

The ratio for using lasers in ART and principles of how a laser acts on biological tissue

Structural dynamics and function of early embryonic coats
Cell Tissues Organs, 166, 180-207
Micromanipulation of human embryos to assist hatching 
Fertility and Sterility 61, 514-520

Risk factors for ectopic pregnancy in 556 pregnancies after in-vitro fertilisation: implications for preventive management 
Fertility and Sterility 56, 686-690

A study failing to determine significant benefits from assisted hatching: Patients selected for advance age, zonal thickness of embryos and previous failed attempts 
Journal of assisted Reproduction and Genetics, 16, 294-301

Test-tube babies, 
Nature, 293, 253-256

Felberbaum, R. (1999) 
Therapieergebnisse IVF-Register, 6-12, in: Krebs, D., van der Ven, H.; Aktuelle Reproduktionsmedizin Gegenwart und Zukunft der IVF und ICSI; Thieme, Stuttgart

Should ICSI be the treatment of choice for all cases of in-vitro conception? 
Human Reproduction, 15, 1278-1283


A new mouse model for embryos with a hatching deficiency and its use to elucidate the mechanism of blastocyst hatching
Fertil Steril, 21, 333-338

Green, D.P. (1997)
Three-dimensional structure of the zona pellucida
Pec Peprod, 2, 147-156

Gück, Stefan, Zell-Kultur-Bedarf, Hildegardstr. 31 10715 Berlin 030/85730150;
(Telephonat am 26.09.2000)

Ethische und juristische Aspekte der modernen Fortpflanzungsmedizin
Thieme Stuttgart

Zygote intrafallopian transfer (ZIFT): evaluation of 42 cases
Fertility and Sterility, 48, 851-857

Harms, V. (1997)
Bionomial- und Normalverteilung;
in: Harms, V.: Biomathematik, Statistik und Dokumentation
Harms Verlag Kiel

Umwelt und Sterilität
Thieme Stuttgart
Does assisted hatching improve implantation rates after in vitro fertilization or intracytoplasmic sperm injection in all patients? A prospective randomized study
J Assist Reprod Genet, 13, 19-22

Early embryonic coats: morphology, function, practical applications. An overview
Cell Tissues Organs, 166, 233-246

Pschyrembel, Klinisches Wörterbuch
de Gruyter Berlin New York

Assisted Reproductive Technologie: The State of the ART

Assisted hatching does not enhance IVF success in good-prognosis patients
Journal of Assisted Reproduction and Genetics, 15, 62-64

Comparison of the results of human embryo biopsy and outcome of preimplantation genetic diagnosis (PGD) after zona drilling using acid Tyrode or a laser

A follow-up study of children born after non-contact laser-assisted hatching at 96 deliveries, 134 babies
Analysis of ectopic pregnancies resulting from in-vitro fertilisation and embryo transfer
Human Reproduction, 3, 446-449

Cruciate thinning of the zona pellucida for more successful enhancement of blastocyst hatching in the mouse
Human Reproduction, 7, 532-536

Gegenwärtiger Stand der medizinischen Anwendung der In-vitro-Fertilisation, 32-47,
in: Braun, V., Mieth, D., Steigleder, K.: Ethische und rechtliche Fragen der Gentechnologie und der Reproduktionsmedizin
J. Schweitzer Verlag, München

Retrograde tubal embryo transfer in natural cycle in–vitro fertilization
Human Reproduction, 12, 484-486

A prospective, randomized, double-blind study for the evaluation of assisted hatching in patients with advanced maternal age
Human Reproduction, 13, 409-413

Experience with the elective transfer of two embryos under the conditions of the German embryo protection law: results of a retrospective data analysis of 2573 transfer cycles
Human Reproduction, 15, 319-324

Rescue of implantation potential on embryos with poor prognosis by assisted zona hatching
Human Reproduction, 13, 1331-1335
Assisted hatching of embryos by micromanipulation for human in vitro 
fertilization: UAMS Experience 
Arc Med Soc, 94, 529-531

Marcus, S.F., Brinsden, P.R. (1995) 
Analysis of the incidence and risk factors associated with ectopic pregnancy 
following in-vitro fertilization and embryo transfer 
Human Reproduction, 10, 199-203

Assisted hatching reduces the age-related decline in IVF outcome in women 
younger than age 43 without Increasing miscarriage or monozygotic twinning 
Journal of Assisted Reproduction and Genetics, 15, 418-421

Enhancement of fertilization rates after sperm immobilization by laser system 
technology (Fertilase®) used during intracytoplasmic sperm injection 
technique (ICSI) 
Annual Meeting to Fertility and Sterility, Toronto, Ontario, September 25-30, 
1999

Der programmierte Misserfolg, Die Dilemmasituation der deutschen 
Reproduktionsmedizin 
Reproduktionsmedizin, 16, 181-182

Mieth, D (1995) 
Ethische Fragen der Fortpflanzungstechnologie 
Thieme Stuttgart

Laser-assisted cryopreservation of single human spermatozoa in cell-free zona 
pellucida 
Andrologia, 31, 49-53
Laser-assisted hatching in assisted reproduction
Croat Med J, 40, 398-403

Gibt es Indikationen für “assisted hatching”?
Gynäkologe, 33, 772-776

Montag, M., van der Ven, K., Delacrétaz, G., Rink, K., van der Ven, H. (1998a)
Laser-assisted microdissection of the zona pellucida facilitates polar body biopsy
Fertility and Sterility, 69, 539-542

Efficient preimplantation genetic diagnosis using laser assisted microdissection of the zona pellucida for polar body biopsy followed by primed in situ labelling (PRINS)
Second International Symposium on Preimplantation Genetics, 18-21 September 1997, Chicago

MTM Switzerland, Informationsmaterial der Firma MTM Medical Technologies Montreux SA,
(Telephonat mit Sonja Renaud, Direction Assistent, August 2000)

Clinical application of a new assisted hatching method using a piezo-micromanipulator for morphologically low-quality embryos in poor-prognosis infertile patients
Fertility and Sterility, 71, 1014-1018

The window of embryo transfer and the efficiency of human conception in vitro
Fertility and Sterility, 55, 114-118
Nieschlag, E., Weinbauer, G.F., Cooper, T.G. (1992)
Reproduktion, 480
in: Deetjen, P., Speckmann, E.-J.: Physiologie
Urban&Schwarzenberg München Wien Baltimore

Organon GmbH (Würfel, W., Kentrich, H.,)
Die IVF-Behandlung – so gehen wir vor, Ein Weg mit Chancen
in: Organon GmbH, IVF bei ungewollter Kinderlosigkeit, 25

Begriffsabgrenzung
Thieme Stuttgart

Pregnancies after intracytoplasmic injection of single spermatozoon into an oozyte
Lancet, 340, 17-18

Structure and function of the proteins of the mammalian Zona pellucida
Cells Tissues Organs, 166, 148-164

Assisted hatching

In vitro fertilization and related techniques, in New Trends
in: Broer, K.-H., Turanli, I.: Reproductive Medicine
Springer Berlin, Heidelberg
Immunologische Aspekte
Thieme Stuttgart

Reproline, Informationsmaterial der Firma Reproline medical GmbH, Rheinbach,
(Telephonat mit Jan-Robert Windgaßen, Kundenbetreuung und Marketing
August/2000)

1.48 mm diode laser micromanipulation of the zona pellucida of mouse
zygotes
Proceedings SPIE, 412-422

One year`s experience with elective transfer of two good quality embryos in
the human in-vitro fertilisation and intracytoplasmic sperm injection
programmes
Human Reproduction, 10, 3305-3312

Statistisches Bundesamt Wiesbaden 0611/752395
(Telephonat vom 16.05.2001)

Assisted hatching by partial zona dissection of human preembryos in patients
with recurrent implantation failure after in vitro fertilization.
Fertility and Sterility, 63, 838-841

Birth after the reimplantation of a human embryo (letter)
Lancet, 2, 366
Strowitzki, T. (2000a)
Indikationsbereiche IVF vs. ICSI
Der Gynäkologe, 33, 777-781

Strowitzki, T., Hepp, H., Diedrich, K., (2000b)
Assistierte Reproduktion
Der Gynäkologe, 33, 771

Reducing the risk of multiple births by transfer of two embryos after in vitro fertilization.

Sterilitätsbehandlung durch In-vitro-Fertilisation
Deutsche Krankenpflege-Zeitschrift, 45, 386-389

Gynäkologische Grundlagen der Fortpflanzungsmedizin unter Berücksichtigung möglicher Sterilitätsursachen
Thieme Stuttgart

Letter to the editor
Human Reproduction, 12, 629-631

Tournaye, H., Camus, M., Ubaldi, F. et al. (1996)
Tubal transfer: a forgotten ART?
Human Reproduction, 11, 1815-1818

Partial zona dissection of the zona pellucida of frozen thawed human embryos may enhance blastocyst hatching, implantation, and pregnancy rates
American Journal of Obstet Gynecology, 165, 341-345
Veiga, A., Sandalinas, M., Benkhalifa, M., Boada, M., Carrera, M., Santaló, J., Barri, P.N., Ménézo, Y. (1997)
Laser blastocyst biopsy for preimplantation diagnosis in the human
Zygote 5 (November) 351-354 Cambridge University Press

Analysis of the risk factors with regard to the occurrence of ectopic pregnancy after medically assisted procreation
Human Reproduction, 8, 1284-1287

Medizinische Statistik, Eine Praktische Anleitung für Studierende, Doktoranden, Ärzte und Biologen
Urban & Schwarzenberg München, Wien, Baltimore

The combination of coculture and selective assisted hatching: Results from their clinical application
Fertility and Sterility, 61, 105-110

Spezifische Emotionen und Motivationen
in: Medizinische Psychologie Medizinische Soziologie
2. Auflage, Urban & Schwarzenberg München, Wien, Baltimore

Observations on the morphology of human zygotes, pronuclei and nucleoli and implications for cryopreservation
Human Reproduction, 5, 109-115

Yang, Y.S., Melinda, S., Ho, K.N. et al. (1992)
Effect of the number and the depth of embryos transferred and unilateral or bilateral transfer in tubal embryo transfer (TET)
Journal of Assisted Reproduction and Genetics, 9, 534-538
Selective termination and elective reduction in twin pregnancies: ten years experience at a single centre  
Human Reproduction, 13, 2301-2304

Yovich, J.L., Blacklekge, D.G., Richardson, P.A. et al. (1987)  
Pregnancies following pronuclear stage tubal transfer  
Fertility and Sterility, 48, 851-857

Clinical application of nonselective assisted hatching of human embryos  
Fertility and Sterility, 66, 991-994
8 Anhang

8.1 Urliste

Als mögliche Basis für spätere Arbeiten und als Kontrollmöglichkeit ist die Urliste, in der Form wie sie im Jahre 2000 in Bielefeld erhoben wurde, aufgeführt.

Den nummerierten Spalten liegen folgende Parameter zugrunde:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Patientenidentifikationsnummer³</td>
</tr>
<tr>
<td>2</td>
<td>Alter der Patientin in Jahren</td>
</tr>
<tr>
<td>3</td>
<td>Therapieart</td>
</tr>
<tr>
<td>4</td>
<td>Anzahl der IVF-Versuche</td>
</tr>
<tr>
<td>5</td>
<td>Stimulationsprotokoll</td>
</tr>
<tr>
<td>6</td>
<td>Assisted hatching durchgeführt?</td>
</tr>
<tr>
<td>7</td>
<td>Anzahl der Embryonen</td>
</tr>
<tr>
<td>8</td>
<td>Anzahl der gehatchten Embryonen</td>
</tr>
<tr>
<td>9</td>
<td>Embryoqualität Embryo 1</td>
</tr>
<tr>
<td>10</td>
<td>Embryoqualität Embryo 2</td>
</tr>
<tr>
<td>11</td>
<td>Embryoqualität Embryo 3</td>
</tr>
<tr>
<td>12</td>
<td>Transferart</td>
</tr>
<tr>
<td>13</td>
<td>Schwangerschaft</td>
</tr>
<tr>
<td>14</td>
<td>Mehlringsschwangerschaft</td>
</tr>
<tr>
<td>15</td>
<td>Schwangerschaftsverlauf</td>
</tr>
<tr>
<td>16</td>
<td>Geburt</td>
</tr>
<tr>
<td>17</td>
<td>Mehrlingsgeburt</td>
</tr>
</tbody>
</table>

³ Aus Datenschutzgründen ist die Patientenidentifikationsnummer in der Veröffentlichung nicht enthalten.
<p>| | | | | | | | | | | | | | | | | | | | | |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| 21 | IVF | 1 | long | nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 | 23 | IVF | 1 | long | ja | 1 | 1 | 2 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 23 | IVF | 1 | long | ja | 2 | 2 | 1 | 1 | 0 | ET | nein | 0 | 0 | nein | 0 | 23 | IVF | 2 | long | nein | 1 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 24 | IVF | 4 | long | ja | 3 | 3 | 3 | 3 | 2 | ET | nein | 0 | 0 | nein | 0 | 24 | IVF | 3 | long | nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 21 | IVF | 1 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 | 24 | IVF | 4 | long | nein | 1 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 24 | IVF | 1 | long | ja | 3 | 3 | 2 | 3 | 1 | ET | nein | 0 | 0 | nein | 0 | 24 | IVF | 4 | long | ja | 1 | 1 | 2 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 25 | IVF | 3 | long | nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 | 25 | IVF | 1 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 25 | IVF | 1 | long | nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 | 25 | IVF | 1 | long | ja | 3 | 3 | 3 | 3 | 2 | ET | nein | 0 | 0 | nein | 0 |
| 25 | ICSI | 1 | long | ja | 3 | 3 | 3 | 3 | 0 | ET | nein | 0 | 0 | nein | 0 | 25 | ICSI | 2 | long | nein | 2 | 0 | 0 | 0 | 0 | TET | nein | 0 | 0 | nein | 0 |
| 25 | ICSI | 1 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 | 25 | ICSI | 1 | long | ja | 3 | 3 | 3 | 3 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 25 | IVF | 1 | long | nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 | 25 | IVF | 1 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 25 | IVF | 3 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 | 25 | IVF | 1 | long | ja | 3 | 3 | 3 | 3 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 25 | IVF | 2 | long | nein | 1 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 | 25 | IVF | 1 | long | ja | 3 | 3 | 3 | 3 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 25 | IVF | 2 | long | nein | 1 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 | 25 | IVF | 1 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 25 | IVF | 1 | long | nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 | 25 | IVF | 2 | long | nein | 1 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 28 | IVF 1 long | nein | 1 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein |
| 28 | IVF 2 long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein |
| 28 | ICSI 1 long | nein | 2 | 0 | 0 | 0 | 0 | ET | ja | 2 | normal |
| 28 | IVF 1 long | nein | 2 | 0 | 0 | 0 | 0 | ET | ja | 0 | normal |
| 28 | IVF 1 long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein |
| 28 | ICSI 2 long ja | 3 | 3 | 3 | | | | ET | nein | 0 | 0 | nein |
| 28 | ICSI 1 long nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein |
| 28 | IVF 2 short ja | 1 | 1 | 2 | 0 | 0 | ET | nein | 0 | 0 | nein |
| 28 | ICSI 1 long nein | 3 | 0 | 0 | 0 | 0 | ET | ja | 2 | normal |
| 29 | ICSI 4 long ja | 3 | 3 | 2 | 2 | 2 | ET | nein | 0 | 0 | nein |
| 29 | ICSI 3 long ja | 3 | 3 | 1 | 2 | 2 | ET | nein | 0 | 0 | nein |
| 29 | IVF 2 long nein | 1 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein |
| 29 | ICSI 3 long nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein |
| 29 | IVF 1 long nein | 3 | 0 | 0 | 0 | 0 | ET | ja | 0 | normal | nein |
| 29 | ICSI 3 long nein | 3 | 0 | 0 | 0 | 0 | ET | ja | 2 | normal | nein |
| 29 | IVF 1 long nein | 1 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein |
| 29 | IVF 1 long nein | 3 | 0 | 0 | 0 | 0 | ET | ja | 0 | normal | nein |
| 29 | ICSI 2 long nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein |
| 29 | IVF 1 long nein | 1 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein |
| 29 | IVF 2 long nein | 3 | 0 | 0 | 0 | 0 | ET | ja | 3 | normal |
| 29 | ICSI 2 long teilweise | 3 | 1 | 1 | 1 | 1 | ET | ja | 0 | normal | noch |
| 29 | ICSI 1 long nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein |
| 29 | ICSI 2 long teilweise | 3 | 1 | 3 | 0 | 0 | ET | nein | 0 | 0 | nein |
| 29 | ICSI 1 long nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein |
| 29 | IVF 1 long nein | 3 | 0 | 0 | 0 | 0 | ET | ja | 0 | normal |
| 29 | ICSI 3 long nein | 3 | 0 | 0 | 0 | 0 | ET | ja | 2 | normal |
| 30 | IVF 2 long teilweise | 3 | 1 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein |
| 30 | ICSI 4 long teilweise | 3 | 2 | 1 | 1 | 0 | ET | nein | 0 | 0 | nein |
| 30 | IVF 3 long teilweise | 2 | 1 | 2 | 0 | 0 | ET | nein | 0 | 0 | nein |
| 30 | ICSI 4 short nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein |
| 30 | IVF 4 short teilweise | 3 | 2 | 2 | 0 | 0 | ET | nein | 0 | 0 | nein |
| 30 | ICSI 1 long ja | 3 | 1 | 1 | 1 | 1 | ET | nein | 0 | 0 | nein |
| 30 | ICSI 2 long nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein |
| 30 | IVF 1 long nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein |
| 30 | ICSI 2 long teilweise | 3 | 1 | 0 | 0 | 0 | ET | ja | 2 | normal |
| 30 | IVF 1 long nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein |
| 30 | IVF 1 short nein | 2 | 0 | 0 | 0 | 0 | ET | ja | 3 | normal |
| 30 | IVF 2 short nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein |
| 30 | ICSI 1 long nein | 2 | 0 | 0 | 0 | 0 | ET | ja | 0 | abort |
| 30 | IVF 1 short nein | 2 | 0 | 0 | 0 | 0 | ET | ja | 0 | abort |
| 30 | ICSI 1 long nein | 2 | 0 | 0 | 0 | 0 | ET | ja | 0 | abort |
| 30 | IVF 1 short nein | 2 | 0 | 0 | 0 | 0 | ET | ja | 0 | abort |
| 30 | ICSI 1 long nein | 2 | 0 | 0 | 0 | 0 | ET | ja | 0 | abort |
| 30 | IVF 1 short nein | 2 | 0 | 0 | 0 | 0 | ET | ja | 0 | abort |
| 30 | ICSI 1 long nein | 2 | 0 | 0 | 0 | 0 | ET | ja | 0 | abort |
| 30 | IVF 1 short nein | 2 | 0 | 0 | 0 | 0 | ET | ja | 0 | abort |
| 30 | ICSI 1 long nein | 2 | 0 | 0 | 0 | 0 | ET | ja | 0 | abort |
| 30 | IVF 1 short nein | 2 | 0 | 0 | 0 | 0 | ET | ja | 0 | abort |
| 30 | ICSI 1 long nein | 2 | 0 | 0 | 0 | 0 | ET | ja | 0 | abort |
| 30 | IVF 1 short nein | 2 | 0 | 0 | 0 | 0 | ET | ja | 0 | abort |
| 30 | ICSI 1 long nein | 2 | 0 | 0 | 0 | 0 | ET | ja | 0 | abort |
| 30 | IVF 1 short nein | 2 | 0 | 0 | 0 | 0 | ET | ja | 0 | abort |</p>
<table>
<thead>
<tr>
<th>Datum</th>
<th>Behandlung</th>
<th>Lange</th>
<th>Patient</th>
<th>Mitarbeiter</th>
<th>Partnerschaft</th>
<th>Eierstiftung</th>
<th>Keimzellen</th>
<th>Keimzellen</th>
<th>Keimzellen</th>
<th>Keimzellen</th>
<th>Keimzellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.07.21</td>
<td>IVF 2</td>
<td>long</td>
<td>ja</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>ET</td>
<td>ja</td>
<td>0</td>
<td>normal</td>
</tr>
<tr>
<td>30.07.21</td>
<td>IVF 2</td>
<td>long</td>
<td>nein</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>30.07.21</td>
<td>ICSI 1</td>
<td>long</td>
<td>ja</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30.07.21</td>
<td>ICSI 1</td>
<td>long</td>
<td>nein</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>30.07.21</td>
<td>IVF 2</td>
<td>long</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>ja</td>
<td>3</td>
</tr>
<tr>
<td>30.07.21</td>
<td>IVF 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>30.07.21</td>
<td>ICSI 1</td>
<td>long</td>
<td>nein</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>30.07.21</td>
<td>IVF 1</td>
<td>long</td>
<td>nein</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>30.07.21</td>
<td>IVF 1</td>
<td>long</td>
<td>nein</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>30.07.21</td>
<td>IVF 1</td>
<td>short</td>
<td>nein</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>31.07.21</td>
<td>ICSI 1</td>
<td>short</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>31.07.21</td>
<td>IVF 1</td>
<td>long</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>31.07.21</td>
<td>ICSI 1</td>
<td>long</td>
<td>nein</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>ja</td>
<td>3</td>
</tr>
<tr>
<td>31.07.21</td>
<td>IVF 2</td>
<td>long</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>31.07.21</td>
<td>IVF 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>31.07.21</td>
<td>ICSI 1</td>
<td>short</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>31.07.21</td>
<td>IVF 1</td>
<td>long</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>31.07.21</td>
<td>ICSI 1</td>
<td>long</td>
<td>nein</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>31.07.21</td>
<td>ICSI 1</td>
<td>long</td>
<td>nein</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>Patient</td>
<td>Treatment</td>
<td>Outcome</td>
<td>Days</td>
<td>TET</td>
<td>Days</td>
<td>Outcome</td>
<td>Days</td>
<td>TET</td>
<td>Days</td>
<td>Outcome</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>-----</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
<td>-----</td>
<td>-------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>ICSI 1</td>
<td>long</td>
<td>nein</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ICSI 2</td>
<td>long</td>
<td>nein</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ICSI 3</td>
<td>long</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IVF 1</td>
<td>long</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ICSI 2</td>
<td>long</td>
<td>nein</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IVF 3</td>
<td>long</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IVF 4</td>
<td>short</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IVF 5</td>
<td>long</td>
<td>nein</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IVF 4</td>
<td>long</td>
<td>teilweise</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ICSI 2</td>
<td>short</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IVF 3</td>
<td>long</td>
<td>nein</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IVF 2</td>
<td>long</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ICSI 3</td>
<td>short</td>
<td>teilweise</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ICSI 2</td>
<td>long</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ICSI 1</td>
<td>long</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ICSI 2</td>
<td>long</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ICSI 3</td>
<td>long</td>
<td>nein</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>abort</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IVF 1</td>
<td>long</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>abort</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IVF 4</td>
<td>short</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>abort</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IVF 5</td>
<td>long</td>
<td>nein</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>abort</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IVF 4</td>
<td>long</td>
<td>teilweise</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>abort</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>33 IVF 2 long</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>ja</td>
<td>2</td>
<td>normal</td>
<td>0</td>
</tr>
<tr>
<td>33 ICSI 3 long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>TET</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>33 IVF 3 long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>ET</td>
<td>ja</td>
<td>2</td>
<td>normal</td>
<td>0</td>
</tr>
<tr>
<td>33 ICSI 3 long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>TET</td>
<td>ja</td>
<td>0</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>33 ICSI 2 long</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>TET</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>33 ICSI 7 long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>33 ICSI 6 long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>33 ICSI 3 long</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>TET</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>33 ICSI 4 long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>33 IVF 3 long</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>33 IVF 2 long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>33 ICSI 2 long</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>TET</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>33 ICSI 1 long</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>TET</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>33 ICSI 4 short</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>33 IVF 1 long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>ET</td>
<td>ja</td>
<td>2</td>
<td>normal</td>
<td>0</td>
</tr>
<tr>
<td>33 ICSI 3 long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>TET</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>33 ICSI 1 short</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>TET</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
</tr>
<tr>
<td>33 ICSI 4 short</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>ET</td>
<td>ja</td>
<td>2</td>
<td>normal</td>
<td>0</td>
</tr>
</tbody>
</table>

109
<p>| 34 | ICSI 3 | long | teilweise | 3 | 2 | 1 | 2 | T/E | ja | 0 | abort | nein | 0 |
| 34 | ICSI 2 | long | nein | 3 | 0 | 0 | 0 | 0 | T/E | ja | , | normal | nein | 0 |
| 34 | IVF 4 | long | ja | 3 | 3 | 1 | 1 | 2 | T/E | nein | 0 | 0 | nein | 0 |
| 34 | IVF 3 | long | nein | 3 | 0 | 0 | 0 | 0 | T/E | nein | 0 | 0 | nein | 0 |
| 34 | IVF 2 | long | nein | 3 | 0 | 0 | 0 | 0 | T/E | nein | 0 | 0 | nein | 0 |
| 34 | ICSI 1 | long | teilweise | 3 | 1 | 3 | 0 | ET | ja | 0 | normal | noch | 0 |
| 34 | ICSI 3 | short | ja | 3 | 3 | 3 | 3 | T/E | nein | 0 | 0 | nein | 0 |
| 34 | IVF 1 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 34 | IVF 4 | long | ja | 3 | 3 | 3 | 2 | ET | ja | 0 | normal | , | |
| 34 | IVF 2 | long | ja | 3 | 3 | 2 | 2 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 34 | IVF 3 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 34 | IVF 1 | long | nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 34 | IVF 2 | long | nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 34 | IVF 1 | long | nein | 3 | 0 | 0 | 0 | 0 | ET | ja | 2 | normal | , | |
| 34 | IVF 1 | short | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 34 | IVF 1 | long | ja | 2 | 2 | 2 | 1 | 0 | T/E | nein | 0 | 0 | nein | 0 |
| 34 | IVF 1 | short | ja | 2 | 2 | 2 | 3 | 0 | ET | ja | 0 | abort | nein | 0 |
| 34 | IVF 1 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 34 | IVF 1 | long | nein | 3 | 0 | 0 | 0 | 0 | ET | ja | 0 | normal | , | |
| 34 | IVF 2 | long | ja | 3 | 3 | 3 | 3 | ET | nein | 0 | 0 | nein | 0 |
| 34 | IVF 1 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 35 | IVF 1 | long | teilweise | 2 | 1 | 2 | 0 | ET | ja | 0 | normal | noch | 0 |
| 35 | IVF 3 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 35 | IVF 4 | long | ja | 3 | 3 | 3 | 3 | ET | nein | 0 | 0 | nein | 0 |
| 35 | IVF 2 | short | nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 35 | IVF 3 | long | nein | 3 | 0 | 0 | 0 | 0 | T/E | nein | 0 | 0 | nein | 0 |
| 35 | IVF 2 | long | ja | 3 | 3 | 2 | 2 | 0 | ET | ja | 0 | abort | nein | 0 |
| 35 | IVF 2 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 35 | IVF 1 | long | nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 35 | IVF 2 | long | ja | 3 | 3 | 2 | 2 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 35 | IVF 1 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 35 | IVF 1 | long | nein | 3 | 0 | 0 | 0 | 0 | ET | ja | 2 | normal | , | |
| 35 | IVF 1 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 35 | IVF 1 | long | ja | 2 | 2 | 2 | 4 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 35 | IVF 1 | long | nein | 1 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 35 | IVF 1 | long | nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 35 | IVF 1 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 35 | IVF 1 | long | nein | 3 | 0 | 0 | 0 | 0 | ET | ja | 0 | normal | noch | 0 |
| 35 | IVF 2 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 35 | IVF 2 | long | nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 35 | IVF 1 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 35 | IVF 2 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 35 | IVF 1 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 35 | IVF 1 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 35 | IVF 1 | long | nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 36 IVF 3 short teilweise | 3 | 2 | 1 | 1 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 36 IVF 2 long nein | 3 | 0 | 0 | 0 | 0 | TET | nein | 0 | 0 | nein | 0 |
| 36 ICSI 1 long ja | 3 | 3 | 2 | 2 | 2 | ET | nein | 0 | 0 | nein | 0 |
| 36 IVF 1 short teilweise | 2 | 1 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 36 IVF 1 long nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 36 IVF 2 long nein | 2 | 0 | 0 | 0 | 0 | ET | ja | 0 | normal | |
| 36 IVF 1 long nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 36 IVF 2 long ja | 2 | 2 | 1 | 1 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 36 IVF 2 short nein | 1 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 36 IVF 1 long nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 36 IVF 2 long nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 36 ICSI 1 long teilweise | 3 | 1 | 3 | 0 | 0 | ET | ja | 0 | normal | noch | 0 |
| 36 ICSI 1 long ja | 3 | 3 | 2 | 2 | 2 | TET | nein | 0 | 0 | nein | 0 |
| 36 IVF 4 short nein | 2 | 2 | 3 | 3 | 0 | TET | nein | 0 | 0 | nein | 0 |
| 36 IVF 1 short nein | 2 | 0 | 0 | 0 | 0 | ET | ja | 0 | abort | |
| 36 IVF 3 long teilweise | 2 | 3 | 3 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 36 ICSI 7 short teilweise | 2 | 2 | 2 | 0 | TET | nein | 0 | 0 | nein | 0 |
| 36 IVF 4 short ja | 3 | 3 | 2 | 2 | 3 | ET | nein | 0 | 0 | nein | 0 |
| 36 IVF 1 short nein | 1 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 36 ICSI 4 long ja | 3 | 3 | 1 | 2 | 4 | ET | nein | 0 | 0 | nein | 0 |
| 36 IVF 1 long ja | 2 | 2 | 2 | 3 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 37 IVF 3 long ja | 2 | 2 | 2 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 37 ICSI 2 long ja | 3 | 3 | 0 | 0 | 0 | ET | ja | 2 | normal | , |
| 37 ICSI 2 short nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 37 ICSI 1 short nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 37 ICSI 6 long ja | 3 | 3 | 2 | 2 | 2 | ET | ja | 0 | normal | noch | 0 |
| 37 ICSI 5 long ja | 3 | 3 | 2 | 3 | 3 | ET | nein | 0 | 0 | nein | 0 |
| 37 IVF 2 long ja | 2 | 2 | 3 | 3 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 37 ICSI 5 long teilweise | 3 | 2 | 2 | 2 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 37 IVF 1 long nein | 3 | 0 | 0 | 0 | 0 | ET | ja | 0 | normal | , |
| 37 ICSI 4 long nein | 3 | 0 | 0 | 0 | 0 | TET | nein | 0 | 0 | nein | 0 |
| 37 IVF 4 short ja | 3 | 3 | 2 | 2 | 3 | ET | nein | 0 | 0 | nein | 0 |
| 37 IVF 1 short nein | 2 | 0 | 0 | 0 | 0 | ET | ja | 0 | normal | , |
| 37 ICSI 3 long nein | 2 | 0 | 0 | 0 | 0 | TET | ja | 0 | abort | |
| 37 IVF 3 long teilweise | 2 | 1 | 1 | 1 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 37 ICSI 1 short teilweise | 2 | 1 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 37 ICSI 2 short nein | 1 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 37 ICSI 2 short nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 37 IVF 1 long nein | 3 | 0 | 0 | 0 | 0 | TET | ja | 0 | abort | |
| 37 IVF 1 short nein | 1 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 37 IVF 1 long ja | 3 | 3 | 2 | 2 | 3 | ET | nein | 0 | 0 | nein | 0 |
| 37 IVF 1 short nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 37 IVF 3 short teilweise | 2 | 1 | 2 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 37 ICSI 1 short teilweise | 3 | 2 | 2 | 2 | ET | nein | 0 | 0 | nein | 0 |
| 37 IVF 2 long ja | 3 | 3 | 1 | 2 | 4 | ET | nein | 0 | 0 | nein | 0 |
| 37 IVF 4 long nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 37 IVF 2 long nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 37 IVF 3 short nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 37 IVF 1 short ja | 3 | 3 | 2 | 2 | 3 | ET | nein | 0 | 0 | nein | 0 |
| 37 IVF 2 short ja | 2 | 2 | 3 | 3 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 37 IVF 1 long ja | 3 | 3 | 2 | 2 | 3 | ET | nein | 0 | 0 | nein | 0 |
| 37 | ICSI | 2 | long | nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 37 | ICSI | 1 | short | ja | 2 | 2 | 1 | 1 | 0 | TET | nein | 0 | 0 | nein | 0 |
| 37 | IVF | 2 | short | ja | 2 | 2 | 1 | 2 | 0 | ET | ja | 0 | normal | noch | 0 |
| 37 | IVF | 1 | long | ja | 2 | 2 | 4 | 2 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 37 | IVF | 1 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | ja | 2 | normal | , |
| 37 | IVF | 1 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | , |
| 37 | IVF | 1 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | ja | 0 | normal | , |
| 37 | ICSI | 1 | long | teilweise | 3 | 2 | 2 | 3 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 37 | IVF | 1 | long | ja | 2 | 2 | 2 | 2 | 0 | ET | ja | 0 | , |
| 38 | IVF | 9 | long | ja | 3 | 3 | 2 | 2 | 2 | ET | nein | 0 | 0 | nein | 0 |
| 38 | IVF | 8 | long | nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 38 | IVF | 7 | long | ja | 3 | 3 | 2 | 2 | 2 | ET | nein | 0 | 0 | nein | 0 |
| 38 | IVF | 6 | short | ja | 2 | 2 | 4 | 4 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 38 | IVF | 5 | short | nein | 1 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 38 | ICSI | 8 | short | ja | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | , |
| 38 | IVF | 2 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | , |
| 38 | IVF | 4 | long | ja | 3 | 3 | 2 | 2 | 2 | ET | nein | 0 | 0 | nein | 0 |
| 38 | IVF | 3 | long | teilweise | 3 | 2 | 1 | 1 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 38 | IVF | 2 | long | nein | 2 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 38 | ICSI | 1 | long | ja | 3 | 3 | 2 | 2 | 2 | ET | nein | 0 | 0 | nein | 0 |
| 38 | IVF | 4 | short | ja | 3 | 3 | 2 | 2 | 2 | ET | ja | 0 | abort | , |
| 38 | IVF | 3 | long | teilweise | 3 | 2 | 3 | 3 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 38 | IVF | 2 | long | ja | 2 | 2 | 3 | 2 | 0 | ET | nein | 0 | 0 | nein | , |
| 38 | IVF | 1 | short | ja | 2 | 2 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 38 | IVF | 2 | short | nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 38 | IVF | 1 | long | ja | 1 | 1 | 3 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 38 | IVF | 4 | long | ja | 3 | 3 | 1 | 2 | 2 | ET | ja | 0 | normal | ch | 0 |
| 38 | IVF | 4 | long | ja | 1 | 1 | 3 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 38 | IVF | 3 | long | ja | 3 | 3 | 2 | 2 | 2 | ET | ja | , normal | noch | , |
| 38 | IVF | 2 | long | nein | 2 | 2 | 1 | 0 | ET | ja | 0 | normal | noch | 0 |
| 38 | IVF | 2 | long | nein | 1 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 38 | IVF | 2 | long | ja | 2 | 2 | 3 | 3 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 38 | IVF | 3 | long | teilweise | 3 | 2 | 3 | 3 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 38 | IVF | 1 | short | ja | 2 | 2 | 3 | 2 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 38 | IVF | 1 | long | ja | 3 | 3 | 2 | 2 | 2 | ET | nein | 0 | 0 | nein | 0 |
| 38 | IVF | 3 | long | ja | 3 | 3 | 2 | 3 | 3 | ET | nein | 0 | 0 | nein | 0 |
| 38 | IVF | 2 | long | teilweise | 3 | 2 | 3 | 3 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 38 | IVF | 1 | long | nein | 3 | 0 | 0 | 0 | 0 | ET | nein | 0 | 0 | nein | 0 |
| 38 | IVF | 1 | long | nein | 2 | 2 | 2 | 2 | 0 | ET | ja | 0 | abort | 0 |
| 38 | IVF | 1 | long | nein | 2 | 2 | 2 | 2 | 0 | ET | ja | 0 | abort | 0 |
| 38 | IVF | 1 | long | nein | 2 | 2 | 2 | 2 | 0 | ET | ja | 0 | abort | 0 |
| 38 | IVF | 1 | long | nein | 2 | 2 | 2 | 2 | 0 | ET | ja | 0 | abort | 0 |
| 38 | IVF | 1 | long | nein | 2 | 2 | 2 | 2 | 0 | ET | ja | 0 | abort | 0 |</p>
<table>
<thead>
<tr>
<th></th>
<th>ICSI</th>
<th>IVF</th>
<th></th>
<th></th>
<th>TET</th>
<th></th>
<th>nein</th>
<th>abort</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>4 long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>TET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>2 short</td>
<td>nein</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>TET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>3 short</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>ja</td>
<td>0</td>
<td>abort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>3 long</td>
<td>ja</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>1 long</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>3 short</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>1 long</td>
<td>ja</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>2 long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>TET</td>
<td>ja</td>
<td>0</td>
<td>normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>2 short</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>3 short</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>2 long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1 long</td>
<td>nein</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2 long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3 long</td>
<td>nein</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1 short</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3 long</td>
<td>ja</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2 long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3 long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>TET</td>
<td>ja</td>
<td>0</td>
<td>normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2 short</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2 long</td>
<td>ja</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1 short</td>
<td>ja</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2 short</td>
<td>ja</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3 short</td>
<td>nein</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2 long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>ET</td>
<td>ja</td>
<td>0</td>
<td>abort</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1 long</td>
<td>nein</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1 long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2 short</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2 long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1 short</td>
<td>teilweise</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1 long</td>
<td>nein</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1 short</td>
<td>teilweise</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>ET</td>
<td>ja</td>
<td>0</td>
<td>abort</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1 long</td>
<td>nein</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1 short</td>
<td>teilweise</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IVF</td>
<td>3</td>
<td>short</td>
<td>ja</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>TET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>ICSI</td>
<td>2</td>
<td>short</td>
<td>ja</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>IVF</td>
<td>1</td>
<td>0</td>
<td>ja</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>IVF</td>
<td>1</td>
<td>long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>IVF</td>
<td>2</td>
<td>long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>IVF</td>
<td>2</td>
<td>short</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>IVF</td>
<td>1</td>
<td>short</td>
<td>ja</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>IVF</td>
<td>1</td>
<td>long</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>IVF</td>
<td>2</td>
<td>long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>IVF</td>
<td>1</td>
<td>long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>ET</td>
<td>ja</td>
<td>0</td>
<td>normal</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>IVF</td>
<td>2</td>
<td>short</td>
<td>nein</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>IVF</td>
<td>1</td>
<td>long</td>
<td>nein</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>IVF</td>
<td>1</td>
<td>long</td>
<td>nein</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>IVF</td>
<td>2</td>
<td>long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>IVF</td>
<td>1</td>
<td>short</td>
<td>ja</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>IVF</td>
<td>1</td>
<td>long</td>
<td>nein</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>IVF</td>
<td>2</td>
<td>long</td>
<td>ja</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>IVF</td>
<td>2</td>
<td>long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>IVF</td>
<td>1</td>
<td>long</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>IVF</td>
<td>6</td>
<td>long</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>IVF</td>
<td>5</td>
<td>short</td>
<td>ja</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>IVF</td>
<td>4</td>
<td>short</td>
<td>ja</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>ET</td>
<td>ja</td>
<td>0</td>
<td>abort</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>ICSI</td>
<td>3</td>
<td>short</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>IVF</td>
<td>4</td>
<td>long</td>
<td>ja</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>TET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>IVF</td>
<td>1</td>
<td>long</td>
<td>nein</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>ICSI</td>
<td>2</td>
<td>short</td>
<td>teilweise</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>IVF</td>
<td>7</td>
<td>short</td>
<td>ja</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>IVF</td>
<td>1</td>
<td>long</td>
<td>nein</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>IVF</td>
<td>8</td>
<td>short</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>ICSI</td>
<td>2</td>
<td>short</td>
<td>ja</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>IVF</td>
<td>7</td>
<td>0</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>IVF</td>
<td>8</td>
<td>0</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>IVF</td>
<td>1</td>
<td>short</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>IVF</td>
<td>2</td>
<td>short</td>
<td>ja</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>ICSI</td>
<td>1</td>
<td>short</td>
<td>ja</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>ET</td>
<td>nein</td>
<td>0</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
8.2 Danksagung

Mein herzlicher Dank gilt allen, die am Entstehen dieser Arbeit beteiligt waren. Familie und Freunde haben mich bestens unterstützt.

Ganz besonders möchte ich mich bei Herrn Professor Tinneberg für die Überlassung des Themas und die freundliche Aufnahme während der Datenerhebung in Bielefeld bedanken.

Meinem Betreuer hier in Tübingen Herrn Dr. Göhring danke für sein stets offenes Ohr für die aktuellen Probleme, die Hilfe bei der Planung der Arbeit und die wertvollen Tipps und Anregungen.

Frau Pietsch-Breitfeld, aus dem Institut für medizinische Informationsverarbeitung hat mich in allen statistischen Belangen ausführlich beraten. Sie war stets für mich zu sprechen und hat mich sehr unterstützt. Ich möchte mich auf diesem Weg herzlich bei ihr bedanken.

8.3 Lebenslauf


Meine Ausbildung verlief wie folgt:

1981 - 1985 Mörikeschule in Leonberg
1985 - 1992 Ostertag-Realschule in Leonberg
1993 - 1996 Technisches Gymnasium am Kreislichen Beruflichen Schulzentrum Leonberg
1996 Abitur
Okt. 1996 - Juli 1997 Medizinstudium an der Humbolduniversität zu Berlin
Seit Juli 1997 Medizinstudium an der Universität Tübingen
12. Mai 2005 Ärztliche Prüfung
20. Mai 2005 Approbation als Ärztin