Aus der Medizinischen Universitätsklinik und Poliklinik Tübingen Abteilung Innere Medizin III Ärztlicher Direktor: Professor Dr. L. Seipel Sektion für Nieren- und Hochdruckkrankheiten Leiter: Professor Dr. T. Risler

Vergleich von hämodynamischen Parametern und Endothelfunktion bei subtotal nephrektomierten Ratten unter Behandlung mit Endothelinrezeptorantagonisten, Angiotensin II-Rezeptorantagonist oder ß-Blocker

> INAUGURAL-DISSERTATION zur Erlangung des Doktorgrades der Medizin der

MEDIZINISCHEN FAKULTÄT der Eberhard-Karls-Universität zu Tübingen

vorgelegt von EVA ELISABETH BLOZIK, geb. HALBLAUB aus Heilbronn

2005

Dekan: Professor Dr. C. D. Claussen

1.Berichterstatter: Privatdozent Dr. B. Brehm

2.Berichterstatter: Privatdozent Dr. G. Luippold

Inhaltsverzeichnis

1. Einleitung	S.1	
1.1 Niereninsuffizienz und urämische Kardiomyopathie	S.1	
1.2 Das Gefäßendothel	S.2	
1.3 Das Endothelinsystem	S.3	
1.4 Zur Vorbehandlung eingesetzte Substanzen	S.5	
1.4.1 Die Endothelinrezeptorantagonisten	S.5	
1.4.2 Der Angiotensin II-Rezeptorantagonist Losartan	S.5	
1.4.3 Der	S.6	
1.5 Zielsetzung der Studie	S.7	
2. Material und Methoden	S.8	
2.1 Versuchstiere	S.8	
2.2 Versuchsdurchführung	S.8	
2.2.1 Voroperationen	S.8	
2.2.2 Behandlung	S.9	
2.2.3 Hämodynamische Messungen	S.10	
2.2.4 Kontraktionsversuche	S.14	
2.3 Beschreibung der eingesetzten pharmakologischen Substanzen	S.17	
2.3.1 Anästhesie und Analgesie	S.17	
2.3.2 Zur Vorbehandlung eingesetzte Substanzen	S.17	
2.3.3 Substanzen, die bei den Kontraktionsversuchen		
eingesetzt wurden	S.17	
2.4 Mathematische Herleitung von Hilfsgrößen	S.18	
2.5 Statistische Methoden		

3. Ergebnisse	S.22
3.1 Organgewichte	S.22
3.1.1 Herzgewichte	S.22
3.1.2 Nierengewicht	S.23
3.2 Auxotone Bedingungen	S.24
3.2.1 Ventrikeldruck	S.24
3.2.2 Wandspannung	S.26
3.2.3 Maximale linksventrikuläre Druckanstiegs- und	
Druckabfallsgeschwindigkeit	S.27
3.2.4 Geschwindigkeit der Spannungsentwicklung	S.29
3.2.5 Herzfrequenz	S.30
3.3 Diastolische Ausgangsbedingungen	S.31
3.3.1 Diastolische Ruhedehnungskurve	S.31
3.3.2 Diastolische Wandspannung	S.34
3.4 Isovolumetrische Bedingungen	S.37
3.4.1 Isovolumetrischer Spitzendruck	S.37
3.4.2 Isovolumetrische Druck-Volumen-Beziehung	S.38
3.4.3 Isovolumetrische linksventrikuläre	
Druckanstiegsgeschwindigkeit	S.42
3.4.4 Isovolumetrische Wandspannung	S.46
3.5 Kontraktionsversuche	S.50
3.5.1 Kontraktionskräfte nach Zugabe	
von 3x10 ⁷ mmol Noradrenalin	S.50
3.5.2 Relaxationsverhalten mit Acetylcholin	S.51
3.5.3 Relaxationsverhalten mit Natriumnitroprussid	S.56

4. Diskussion	S.59
4.1 Organgewichte	S.59
4.2 Auxotone Bedingungen	S.60
4.3 Diastolische Ausgangsbedingungen	S.63
4.4 Isovolumetrische Bedingungen	S.64
4.5 Kontraktionsversuche	S.66
4.6 Schlussfolgerung	S.69
5. Zusammenfassung	S.71
6. Anhang	S.73
6.1 Tabellen	S.73
6.2 Literaturverzeichnis	S.91
6.3 Danksagung	S.100
6.4 Lebenslauf	S.101

1. Einleitung

1.1 Niereninsuffizienz und urämische Kardiomyopathie

Die kardialen Erkrankungen bestimmen die Prognose der Patienten mit chronischer Niereninsuffizienz (23, 42). Trotz Dialysebehandlung bessern sich die kardiovaskulären Komplikationen nicht wesentlich; sie stellen mit ca. 50% die häufigste Todesursache der Dialysepatienten dar (22). Die urämische Kardiomyopathie äußert sich in einer typischen Kombination von systolischer und diastolischer Dysfunktion des Myokards. Die Systole beinhaltet Ejektion, isovolumetrische Relaxation und schnelle Füllungsphase (9). Die Diastole beginnt mit der isometrischen Relaxation und endet mit der abgeschlossenen Vorhofkontraktion (51).

Eine diastolische Dysfunktion entwickelt sich, wenn sich Verschlechterungen in der Compliance und der isovolumetrischen Relaxation aufgrund einer myokardialen Hypertrophie ergeben. Die Hypertrophie von linkem Vorhof und Ventrikel bildet sich als Folge von Hypervolämie, Hypertonie, Anämie (37, 38), symphathogener Überaktivität (10) und einem erhöhten Spiegel an Wachstumsfaktoren und Katecholaminen (14). Ob das urämische Serum bei der linksventrikulären Hypertrophie eine Rolle spielt, ist noch nicht geklärt (22). Wenn die Dehnbarkeit des Myokards nachlässt, wird der linke Ventrikel unzureichend gefüllt. Es kommt zum Vorwärts- und Rückwärtsversagen des Herzens.

Die systolische Dysfunktion lässt sich als Kardiomyopathie beschreiben. Die chronische Volumenüberladung und das erhöhte Herzzeitvolumen infolge der arteriovenösen Fistel bewirken eine Dilatation des linken Ventrikels, die gleichzeitig kompensatorisch zu einer linksventrikulären Hypertrophie führen. An Zelluntergang und Fibrosierung, die die Kontraktilität des Myokards

1

hemmen, sind ischämische Herzerkrankung und Hyperparathyreoidismus (2,59) beteiligt.

1.2 Das Gefäßendothel

Das Endothel spielt eine Schlüsselrolle bei der Regulation des Gefäßtonus. Von den Endothelzellen werden verschiedene wichtige vasodilatatorisch oder vasokonstriktorisch wirksame Substanzen gebildet. Endothelzellen reagieren rasch auf Stimuli, indem die intrazelluläre Calciumkonzentration verändert wird.

Der wichtigste Mediator endothelialer Relaxationen ist NO (63,65). NO wird aus der Aminosäure L-Arginin durch ein spezifisches Enzym (NO-Synthetase) freigesetzt (71). Wie die klinisch verwendeten Nitrate aktiviert auch NO die lösliche Guanylatcyclase in den Gefäßmuskelzellen und erhöht dadurch die intrazelluläre Konzentration an cGMP. Dies führt zu einer Verminderung der intrazellulären Calciumkonzentration und schließlich zu einer Relaxation und Vasodilatation (64).

Acetylcholin bewirkt eine Vasorelaxation, indem es die NO-Produktion im Endothel steigert und folglich der cGMP-Spiegel in den Gefäßmuskelzellen ansteigt. Natriumnitroprussid setzt spontan NO frei, was zur Aktivierung der Guanylatcyclase führt (81).

Zirkulierende Hormone wie Noradrenalin, Adrenalin und Angiotensin II, aber auch endotheliale Prostaglandine, Sauerstoffradikale oder das endotheliale Renin-Angiotensin-System führen zu einer Gefäßkontraktion (17,56). Endothelin ist einer der wirksamsten bekannten Vasokonstriktoren (31,37,50). Auf Gefäßmuskelzellen aktiviert Endothelin spezifische Rezeptoren. Über die Phospholipase C wird die intrazelluläre Calciumkonzentration erhöht und so die Gefäßkontraktion verursacht (31,56). Endothelin wirkt auch auf die Endothelzellen selbst. In vivo führen vor allem niedrige Konzentrationen von Endothelin durch eine Stimulation der endothelialen Prostacyclin- und NO-Produktion zu einer Vasodilatation (17,50).

Risikofaktoren kardiovaskulärer Krankheiten schädigen vor allem auch Endothelzellen (77). So sinkt bei nierengeschädigten Ratten die NO-Syntheserate und nimmt bei zunehmender Niereninsuffizienz weiter ab. Umgekehrt dazu steigt der Endothelinspiegel im Blut an (1). Eine Behandlung mit Endothelinrezeptorantagonisten korrigiert die NO-Synthese (1,26).

Chronisch erhöhte Endothelinspiegel erniedrigen die Sensitivität für kontraktile Substanzen wie Noradrenalin (84).

1.3 Das Endothelinsystem

Im Jahre 1988 konnten Yanagisawa et al. erstmals aus dem Überstand isolierter Endothelzellen der Schweineaorta ein bisher unbekanntes stark vasokonstriktorisches Protein isolieren, das Endothelin (ET) genannt wurde (90).

Seither wurden drei Isoformen, ET-1, ET-2 und ET-3, identifiziert (6).

ET, ein aus 21 Aminosäuren (AS) aufgebautes Peptid, wird vorwiegend intrazellulär synthetisiert (13,49). Es entsteht durch Proteolyse aus den Vorstufen prä-pro- (203 AS) und big- (oder auch pro-) ET (38/39 AS, speziesspezifisch) über ein "endothelin converting enzyme" (60,90,91). Die molekulare Sequenz stimmt weitestgehend überein mit Sarafotoxin (SRTX-a, -b, -c, -d; 21 AS), einem Bestandteil des Gifts der Erdotter (Atractaspis engaddensis) (52,77,79).

3

Es konnten mindestens zwei unterschiedliche Endothelinrezeptoren, ETA und ETB (6), gefunden werden. Andere ET-Rezeptoren, ETC, ETAX, ETBX, ETB2, deren Bedeutung noch unklar ist, wurden beschrieben (20,52,56,70).

Der ETA-Rezeptor besitzt eine höhere Affinität für ET-1 und ET-2 und eine geringere für ET-3; an den ETB-Rezeptor binden alle drei Isoformen mit annähernd gleicher Affinität (74).

ETA-Rezeptoren sind in glatten Gefäßmuskelzellen lokalisiert, wo sie Vasokonstriktion vermitteln (83). ETB-Rezeptoren auf glatten Muskelzellen bedingen ebenfalls eine Gefäßkontraktion, während sie auf Endothelzellen über eine NO-Freisetzung zu einer Gefäßrelaxation führen (24,29,40).

Nach Aktivierung beider Rezeptorsubtypen steigt der Gehalt an intrazellulären freien Kalziumionen einerseits durch Ca²⁺-Einstrom durch Kalziumkanäle. Auf der anderen Seite kommt es zur Phospholipase C und IP₃ vermittelten Ca²⁺-Freisetzung aus dem sarkoplasmatischen Retikulum der Zelle (40,55,79).

Unter normalen physiologischen Verhältnissen fehlen die Stimulatoren für die ET-Synthese, bzw. es herrschen potente Gegenmechanismen vor, so dass der ET-Spiegel im Blut gering bleibt (56). Wichtige Stimulatoren der ET-Synthese sind Thrombin (27), Angiotensin II (AT II) (53,67), Transforming-Growth-Factor- β (TGF- β) sowie physiochemische Faktoren wie z.B. Hypoxie (56).

1.4 Zur Behandlung eingesetzte Substanzen

1.4.1 Die Endothelinrezeptorantagonisten

BSF 302146 ist ein Endothelinrezeptorantagonist, der selektiv an ETA-Rezeptoren bindet.

BSF 302872 wirkt unselektiv sowohl an ETA-, als auch an ETB-Rezeptoren.

Beide Endothelinrezeptorantagonisten wurden freundlicherweise von der Fa. Knoll AG zur Verfügung gestellt. Genauere Angaben zur Bioverfügbarkeit, Kinetik und intrinsischen Aktivität behält sich die Knoll AG aus Gründen der Geheimhaltung vor.

Die Lösung und Dosierung der Stoffe erfolgte gemäß den Empfehlungen des Herstellers. Laut firmeninternen Dosisfindungsstudien werden bei 30 mg/kg Körpergewicht wirksame Plasmaspiegel erreicht.

1.4.2 Der Angiotensin II-Rezeptorantagonist Losartan

Von den Angiotensin II-Rezeptoren sind zwei Typen bekannt: AT_1 - und AT_2 -Rezeptoren. AT_1 -Rezeptoren befinden sich hauptsächlich im Gewebe von Herz und Gefäßen, aber auch in Niere, Nebenniere und Gehirn (30); über die Funktion von AT_2 -Rezeptoren in Gehirn, Niere und Nebennierenmark ist noch wenig bekannt (30). Angiotensin II verstärkt vermutlich über AT_1 -Rezeptoren die zellproliferative Wirkung von Epidermal-Growth-Factor (EGF) (71) und die vermehrte Produktion und Freisetzung von TGF- β_1 (73,89), was u.a. zur Hypertrophie glatter Gefäßmuskelzellen führt. AT_2 -Rezeptoren werden für eine antiproliferative und antimitogene Wirkung verantwortlich gemacht (12,39,86). Losartan ist der erste AT_1 -Rezeptor-Antagonist mit guter oraler Bioverfügbarkeit, der Angiotensin II kompetitiv ohne intrinsische Affinität verdrängt. Der aktive Metabolit E3174 besitzt eine 20-fach stärkere Affinität zum AT_1 -Rezeptor und ist ein nichtkompetitiver Antagonist, der nur schwer durch Angiotensin II verdrängt werden kann und für die lange Wirkung von bis zu 24h verantwortlich ist (30).

1.4.3 Der ß-Rezeptorenblocker Nebivolol

Nebivolol ist ein selektiver β_1 -Adrenorezeptorantagonist mit vasodilatierenden Eigenschaften (87). Es besteht aus einer Mischung zweier Enantiomere, der potenten selektiven d-Form und der 100fach schwächeren I-Form, die den hypotensiven Effekt von d-Nebivolol verstärkt (46). Im Gegensatz zu klassischen β -Adrenorezeptorantagonisten wie Atenolol oder Propanolol bewirkt Nebivolol einen sofortigen arteriellen Blutdruckabfall (87). Außerdem verbessert es sowohl die systolische als auch die diastolische Herzfunktion und senkt den peripheren Widerstand (34,61,81,87). Es gibt Hinweise, dass die Vasodilatation über eine NO-Freisetzung aus den Gefäßendothelzellen vermittelt wird (28,47).

1.5 Zielsetzung der Studie

Ziel dieser Studie war es, zu untersuchen, ob eine Therapie mit einem ETAbzw. ETAB-Rezeptorantagonisten, einem Angiotensin II-Rezeptor-antagonisten (Losartan) oder einem ß-Rezeptorenblocker der 3.Generation (Nebivolol) bei chronischer Niereninsuffizienz die linksventrikuläre Funktion verändert.

Es wurde geprüft, ob sich in den einzelnen Medikamentengruppen die endothelabhängige und die endothelunabhängige Funktion des Gefäßes im Vergleich zu einer unbehandelten urämischen Kontrollgruppe unterscheiden.

2. Material und Methoden

2.1 Versuchstiere

Das Regierungspräsidium Tübingen hat alle für diese Studien notwendigen Tierversuche genehmigt.

Die Durchführung der Versuche erfolgte an männlichen Sprague-Dawley-Ratten (Fa. Charles Rivers GmbH, Sulzfeld). Die Tiere wurden mit einem Gewicht von 150-170g geliefert und im Tierstall des Physiologischen Instituts der Universität Tübingen in Einzelkäfigen gehalten. In den Tierställen herrschte ein künstlicher Tag-Nacht-Rhythmus mit 12-stündiger Beleuchtung, eine Raumtemperatur von 22,5 ℃ und eine Luftfeuchtigkeit von ~60g/m³. Die Ratten hatten freien Zugang zu Trockenfutter (Fa. Altromin, Lage) und Leitungswasser, das je nach Tiergruppe mit einer der verschiedenen Substanzen (ETA-Antagonist, ETAB-Antagonist, Losartan, Nebivolol) versetzt worden war.

2.2 Versuchsdurchführung

2.2.1 Erstoperationen

Nach einwöchiger Eingewöhnungszeit wurde in Narkose (0,3ml Ketanest; 0,08ml Rompun; 0,005ml Atropin) mit einem subkostalen Flankenschnitt rechts zuerst die Haut und anschließend die Bauchmuskulatur durchtrennt. Die nun freiliegende rechte Niere wurde aus dem Bauchraum luxiert und die Nierenkapsel nach aortal abgestreift. Nach Ligatur der Nierengefäße oberhalb des Abgangs der nebennierenversorgenden Äste wurde der Gefäßstiel abgetrennt und die entnommene Niere auf einer Präzisionswaage gewogen. Die Muskulatur wurde mit einem resorbierbaren Faden (Vicryl 0, Fa. Ethicon)

geschlossen, die Hautnaht erfolgte mit einem Hautfaden (Ethilon 2/0, Fa. Ethicon).

Nach einer Erholungszeit von sieben Tagen wurde entsprechend dem Vorgehen bei der Totalnephrektomie die linke Niere präpariert und von der Kapsel befreit. Vom oberen und unteren Pol wurde unter Schonung des Nierenbeckens jeweils etwa ein Drittel der Organmasse abgenommen und gewogen. Zur Orientierung dienten das Gewicht der rechten Niere und die Größe der linken Niere, so dass die resezierte Nierenmasse ca. 2/3 der Gesamtnierenmasse entsprach.

2.2.2 Behandlung

Ab dem der zweiten Voroperation folgenden Tag wurden folgende Substanzen für eine Dauer von zwölf Wochen ins Trinkwasser gemischt:

Gruppe	Stoffgruppe	Wirksubstanz	Dosierung
SNX+ETA	ETA-Antagonist	BSF 302146	30mg/kgKG/die
SNX+ETAB	ETAB-Antagonist	BSF 302872	30mg/kgKG/die
SNX+Losartan	AT II-Antagonist	Losartan	10mg/kgKG/die
SNX+Nebivolol	β-Blocker	Nebivolol	1mg/kgKG/die
SNX	keine		

Tab. 1: Einteilung der Tiere in fünf Therapiegruppen

Die Erneuerung der Lösungen erfolgte alle zwei Tage, wobei jeweils die Trinkmenge der vergangenen beiden Tage zuzüglich einer Reserve von 30ml aufgegeben und mit der individuell berechneten Substanzlösungsmenge vermischt wurde. Die Dosis wurde durch wöchentliches Wiegen der Tiere angepasst.

2.2.3 Hämodynamische Messungen

Nach Ablauf der zwölf Behandlungswochen erfolgten die hämodynamischen Messungen. Dazu wurden die Tiere mit 1ml Urethan anästhesiert, gewogen und in Rückenlage an den Extremitäten auf einem OP-Brett fixiert. Nach Durchführung eines ca. 2,5cm langen medianen Halsschnitts wurden das Unterhautfettgewebe und die infrahyale Muskulatur stumpf durchtrennt und die Trachea freipräpariert. Durch die Inzision der Trachea zwischen zwei Knorpelspangen konnte ein flexibler Kunststofftubus (Fa. Beckton Dickinson, Madrid) ca.1,5cm weit eingeführt werden.

Anschließend wurde die linke Arteria carotis communis ebenfalls stumpf freigelegt und vorsichtig vom anliegenden Nervus Vagus befreit. Nach Unterbindung des Blutflusses nach kranial durch Ligatur und nach kaudal mittels einer kleinen Klemme, wurde die Arterie mit einer Mikrofederschere (Fa. Aesculap, Tuttlingen) inzidiert. Ein Katheter (Fa. Portex) wurde dann ca. 2,5cm weit in das Gefäß vorgeschoben, so dass er im Abgang der Aorta zu liegen kam. Die Messung des Systemdrucks erfolgte durch einen Statham P23Db Druckaufnehmer in Verbindung mit der Hellige Meßbrücke MA 83. Sämtliche Katheter wurden vor ihrer Benutzung mit 0,9% NaCl- Lösung durchgespült und mit einer mit 0,9% NaCl- Lösung gefüllten Spritze verbunden.

Dann wurde vom Processus xiphoideus bis zum bereits offenen Halsabschnitt das Fell abpräpariert und der Processus xiphoideus freigelegt. Dieser wurde mit einer chirurgischen Pinzette gefasst und dann das Sternum von kaudal nach kranial in der Medianlinie mit einer Schere durchtrennt. Beide Thoraxschnittkanten wurden mit zwei langen Klemmen abgeklemmt, einerseits um größere Blutverluste aus den Interkostalgefäßen zu verhindern und andererseits um ein ausreichend großes Operationsfeld zu schaffen.

Nach Eröffnung von Perikard und Pleura und vorsichtigem Abpräparieren des Thymus wurde die Aorta mobilisiert. Anschließend wurde der linke Ventrikel im Bereich der Herzspitze mit einer Stahlkanüle (Sterican, Fa.Braun) punktiert, die über einen Dreiwegehahn mit einem Druckaufnehmer (Statham Transducer P23 Db) verbunden war. Zur Registrierung der ersten Ableitung dp/dt wurde das Drucksignal des linken Ventrikels durch den Analog Computer BL-622 (Biotronex Laboratory, Silver Spring, Maryland) ungefiltert differenziert, zur Aufzeichnung des enddiastolischen Druckes jedoch 2,5-fach verstärkt (Hellige DC).

Für die Messung der isovolumetrischen Druck-Volumen-Beziehung wurde dann die Aorta ascendens kurzfristig mit einer Pinzette abgeklemmt.

Zur Aufnahme der diastolischen Minimakurve wurden die Vorhöfe auf der Ebene der Vorhof-Kammer-Grenze ligiert, der rechte Ventrikel eröffnet und das im linken Ventrikel enthaltene Blut abgezogen. Je nach Größe des linken Ventrikels wurde dieser mit 0,4 bis 0,6ml Kochsalzlösung gefüllt. Das Ventrikelvolumen wurde dann in 0,05ml-Schritten vermindert, wobei der Ventrikeldruck durch Umlegen des Dreiwegehahns bei jeder Messstufe bestimmt wurde.

Zum Schluss wurde das Herz über die Kanüle geschoben und die Nulllinie über der unverändert liegende Kanüle registriert.

Nach Abschluss des Versuchs wurden Nieren, Herz und Aorta herauspräpariert. Auf einer Präzisionswaage wurden das Gewicht des gesamten Herzens, des abpräparierten linken Ventrikels und der Restniere bestimmt. Die Aorta wurde in Krebs-Henseleit-Lösung gelegt und bei 37 ℃ bis zum nächsten Versuch aufbewahrt.

Die hämodynamischen Messungen dauerten durchschnittlich 90 Minuten. Die Daten wurden mit einem Siebenkanal-Direktschreiber der Firma Hellige bei einem Papiervorschub von 250mm/sec bzw. 100mm/sec aufgezeichnet. Während der Registrierung wurde die Beatmung kurzfristig unterbrochen, um atmungsbedingte Schwankungen zu vermeiden. Vor jedem Versuch wurden der Ventrikeldruck, der enddiastolische Druck und der Systemdruck mit einem Quecksilberbarometer geeicht.

11

Abb. 1: Originalregistrierung einer hämodynamischen Untersuchung unter auxotonen Bedingungen.

Abb. 2: Originalregistrierung unter isovolumetrischen Bedingungen. Nach Abklemmen der Aorta steigt der enddiastolische Druck von Schlag zu Schlag weiter an. Die linksventrikulären systolischen Maximaldrücke steigen initial stark an und fallen bei zunehmender Ventrikelfüllung wieder etwas ab. Der arterielle Blutdruck in der A. carotis fällt kontinuierlich ab.

2.2.4 Kontraktionsversuche

Die Versuche wurden im Schuler-Organbad durchgeführt, einem Plexiglasständer, der mit maximal vier Zellen ausgerüstet ist. Jede Zelle besteht aus einem temperierten 20ml-Organbehälter, der von einem Wassermantel umgeben ist, und einem getrennten Wärmeaustauscher mit einer Kapazität von 70ml. In der Organhalterung war eine Ausströmstelle für Sauerstoff angebracht. Oberhalb jedes Organbehälters befand sich eine Messvorrichtung, die die Aufhängung für die Aortenringe führte und die den isometrischen Kraftaufnehmer trug. Der isometrische Kraftaufnehmer (Biegestab K30) war über einen Kanalbrückenverstärker (Hugo Sachs Elektronik) mit dem Rikadenki Multipen-Recorder verbunden.

Die Modifikation des Organbades nach K. Stieler bestand in einer Teflonwand in den Organbehältern, damit die aufsteigenden Gasbläschen des ausströmenden Sauerstoffes nicht mit dem Gefäßring in Kontakt kommen konnten, die Konvektion im Organbad jedoch nicht gestört wurde. Vor jedem Versuch wurde mit einem 1g schweren Eichstück geeicht, das an den Druckaufnehmer gehängt wurde.

Die in 37 ℃ warmer, modifizierter Krebs-Henseleit-Lösung aufbewahrte Aorta wurde vom adhärenten Bindegewebe befreit und es wurde vom proximalen deszendierenden Aortenabschnitt ein 3mm langer Ring abgeschnitten. Der Ring wurde zwischen zwei L-förmigen Edelstahlhaken (CrNi 18/8) in das Organbad eingehängt und mit einer Kraft von 10mN (~1g) mittels eines isometrischen Kraftaufnehmers (Isometriequotient 133µm/g) für eine Stunde vorgespannt.

Abb.3: Schuler-Organbad modifiziert nach K. Stieler

Alle Manipulationen an der Aorta wurden mit großer Vorsicht durchgeführt, um eine Schädigung des Endothels zu vermeiden.

Das Organbad war gefüllt mit modifizierter Krebs-Henseleit-Lösung (NaCl 118 mmol; KCl 4,7 mmol; CaCl₂•2H2O 2,5 mmol; MgSO₄•7H₂O 1,2 mmol; KH₂PO₄ 1,2 mmol; NaHCO₃ 24,9 mmol; Glukose 5,5 mmol, gelöst in Aqua bidest). Zusätzlich enthielt die Lösung EDTA als Oxidationsschutz. Die Badtemperatur betrug 37 °C, die Oxygenierung erfolgte mit Carbogen (95% O₂ und 5% CO₂). Der pH-Wert lag bei 7,4.

Nach der Equilibrierungszeit von einer Stunde wurden die Aortenstücke mit 3x10⁻⁷ mmol Noradrenalin kontrahiert.

Nachdem ein stabiles Kontraktionsplateau erreicht worden war, wurde eine kumulative Kammerkonzentrationsreihe von jeweils unterschiedlichen Substanzen (Acetylcholin, Isoproterenol und Nitroprussid) aufgegeben. Die Konzentrationsreihe nahm in logarithmischen Schritten zu, z.B. $3x10^{-9}$, $1x10^{-8}$, $3x10^{-8}$, $1x10^{-7}$ usw. Die nächsthöhere Konzentration wurde erst hinzugefügt, wenn sich ein Gleichgewicht zwischen Gefäßkontraktion und -relaxation eingestellt hatte. Wenn eine Substanzreihe abgeschlossen war, wurde die Badlösung mittels Spülpumpe solange ausgetauscht, bis sich das Gefäßstück wieder equilibriert hatte.

Substanz	Kammerkonzentrationen	Anzahl
Acetylcholin	3x10 ⁻⁹ bis 3x10 ⁻⁶	7
Isoproterenol	3x10 ⁻⁹ bis 1x10 ⁻⁵	8
Nitroprussid	3x10 ⁻¹⁰ bis 3x10 ⁻⁶	9

Tab. 2: Versuchsaufbau der Kontraktionsversuche

Für die Kontraktionsversuche wurden Messungen an unbehandelten, nicht voroperierten Tieren im Rahmen einer anderen Arbeitsgruppe durchgeführt. Die Ergebnisse wurden freundlicherweise von Jens Freudenberg zur Verfügung gestellt.

2.3 Beschreibung der eingesetzten pharmakologischen Substanzen

2.3.1 Anästhesie und Analgesie

Eine Narkose setzte sich zusammen aus 0,3ml Ketanest (Ketaminhydrochlorid 50mg/ml, Fa. Parke-Davis), 0,08ml Rompun (Xylazinhydrochlorid 2%,Fa. Bayer Vital) und 0,005ml Atropinsulfat (0,513mg/ml, Fa.Braun).

2.3.2 Zur Vorbehandlung eingesetzte Substanzen

Der ETA-Rezeptor-Antagonist BSF 302146 der Fa. Knoll AG, Ludwigshafen war nicht wasserlöslich und musste mit einmolarer NaOH bis zur Lösung versetzt werden. Mit einmolarer HCl wurde dann bis pH 7 zurücktitriert und mit Leitungswasser gemischt.

Der ETAB-Rezeptor-Antagonist BSF 302872 der Fa. Knoll AG musste wie der ETA-Antagonist behandelt werden.

Losartan war gut in Leitungswasser löslich.

Nebivolol (Nebivololhydrochlorid, Fa. Berlin-Chemie AG) löste sich mit Hilfe von Methylzellulose (Fa. SIGMA) in Wasser.

2.3.3 Substanzen, die bei den Kontraktionsversuchen eingesetzt wurden

(-)-Arterenol, (-)-Norepinephrine, Fa. SIGMA

Acetylcholine, Fa. SIGMA

Sodium Nitroprusside, Fa. SIGMA

2.4 Mathematische Herleitung von Hilfsgrößen

Bei den auxotonen Messungen der Hämodynamikversuche wurden folgende Parameter als Primärdaten aus der Kurve entnommen:

- Linksventrikulärer systolischer Druck (LVSP) in mmHg
- Linksventrikulärer enddiastolischer Druck (LVEDP) in mmHg
- Linksventrikuläre maximale Druckanstiegsgeschwindigkeit (dp/dt max) in mmHg/s
- Linksventrikuläre maximale Druckabfallsgeschwindigkeit (dp/dt min) in mmHg/s
- Herzfrequenz (HF) in 1/min

Aus den Primärdaten errechnen sich die Sekundärdaten wie folgt:

Die diastolische und systolische Wandspannung, sowie die Geschwindigkeit der Spannungsentwicklung im Myokard sind zum Vergleich der funktionalen Eigenschaften von Herzen mit unterschiedlicher Ventrikelgeometrie geeignet. Diese Größen sind jedoch nicht direkt bestimmbar. Als sinnvolle Annäherung ist die Berechnung der Parameter am Modell der dickwandigen Hohlkugel nach Sandler und Dodge etabliert (75) dazu benötigte Wandvolumen lässt sich aus dem Gewicht des linken Ventrikels berechnen. Für das spezifische Gewicht der Herzmuskulatur wird ein konstanter Wert von 1,05g/cm³ gesetzt.

Die tangentiale Wandspannung σ einer dickwandigen Hohlkugel wird für jeden Radius r

 $(r_i \le r \le r_a)$ durch Gleichung 1 beschrieben:

$$\sigma = \frac{P \cdot r_i}{r_a^3 - r_i^3} \cdot \left(\frac{r_a^3}{2r^3} + 1\right) \quad \text{Gl.1}$$

Für die über die Wandmitte gemittelte Wandspannung gilt:

$$\overline{\sigma} = \frac{P \cdot r_i^2}{r_a^2 - r_i^2} \qquad \text{GI.2}$$

Die messbaren Größen sind das Innenvolumen V, das Wandvolumen W und der Ventrikeldruck P.

Durch Einsetzen von:

$$r_i = \sqrt[3]{\frac{3}{4\pi} \cdot V}$$
 und $r_a = \sqrt[3]{\frac{3}{4\pi} \cdot (V+W)}$

erhält man:

$$\overline{\sigma} = \frac{P}{\left[(V+W)/V \right]^{2/3} - 1} \quad \text{GI.3}$$

Setzt man in GI.3 statt des Ventrikeldrucks dessen 1. Differentialquotienten nach der Zeit ($\Delta P/\Delta t$) ein, erhält man die Geschwindigkeit der Wandspannungsentwicklung ($\Delta \sigma/\Delta t$):

$$\frac{\Delta\sigma}{\Delta t} = \frac{\Delta P / \Delta t}{\left[(V+W) / v \right]^{\frac{2}{3}} - 1} \qquad \text{Gl.4}$$

Für die Spannung in Wandmitte σ_R gilt:

$$\sigma_{R} = \frac{VP}{W} \left\{ 1 + \frac{4(V+W)}{\left[V^{\frac{1}{3}} + (V+W)^{\frac{1}{3}}\right]^{3}} \right\}$$
GI.5

Abkürzungen:

- $r_i = Innenradius$ $r_a = Außenradius$ V = Ventrikelvolumen
- W = Wandvolumen P = Ventrikeldruck
- $\Delta P/\Delta V$ = Volumenelastizität, bestimmt als 1. Ableitung der diast. Minimakurve
- σ = über die Wand gemittelte Wandspannung
- σ_R = Wandspannung in der Wandmitte

2.5 Statistische Methoden

Für die Hilfe bei der statistischen Auswertung der Arbeit danke ich Herrn Prof. Dr. K. Dietz aus dem Institut für Medizinische Biometrie der Universität Tübingen. Zur Auswertung der Versuchsdaten wurde das Statistikprogramm JMP Version 5 (www.jmp.com) verwendet.

Zur Auswertung der hämodynamischen Parameter wurde eine Varianzanalyse und anschließend der Test nach Tukey-Kramer durchgeführt.

Für die Balken- und Kurvendiagramme wurden jeweils die Mittelwerte der einzelnen Gruppen mit SEM verwendet. Dabei wurden Tiergruppen, die sich nicht statistisch signifikant unterscheiden, mit gleichen Buchstaben bezeichnet; Tiergruppen, die sich statistisch signifikant unterscheiden, erhielten unterschiedliche Buchstaben. Mittelwerte, Standardabweichung, Standardfehler, p-Werte und Konfidenzintervalle sind in tabellarischer Form im Anhang aufgelistet.

Für die Kontraktionsversuche wurde für jeden Gefäßring einzeln die Relaxationskurve gefittet nach der Gleichung:

$$\mathbf{y}(\mathbf{K}^{\star}) = a + \frac{1-a}{1+\left(\frac{K}{K^{\star}}\right)^{c}}$$

a = Asymptote, an die sich die Kurve für $K^* \rightarrow \infty$ annähert

c = bestimmt die Steigung im Wendepunkt

K* = Wendepunkt der Kurve

Anschließend wurden die Schätzwerte für a, c und K* ermittelt. Es wurde ebenfalls eine Varianzanalyse mit anschließendem Test nach Tukey-Kramer durchgeführt.

3. Ergebnisse

3.1 Organgewichte

3.1.1 Herzgewichte

Das Gesamtherzgewicht wurde unmittelbar im Anschluss an die hämodynamischen Messungen ermittelt. Die SNX-Gruppe wies hierbei das höchste Herzgewicht auf (1511,11 \pm 71,84 mg; n=9). Die Behandlung mit ETAoder ETAB-Antagonisten sowie mit Nebivolol führte zu tendenziell geringeren Werten (ETA: 1451,50 \pm 68,57 mg, n=16; ETAB: 1373,58 \pm 51,80 mg, n=12; Nebivolol: 1413,45 \pm 61,92 mg, n=11). Am stärksten wurde das Herzgewicht mit Losartan gesenkt (1245,00 \pm 57,31 mg, n=15). Die Unterschiede waren nicht signifikant.

Abb.4: Darstellung des Herzgesamtgewichts (Mittelwerte ± SEM) A: Nach subtotaler Nephrektomie war das Herzgewicht bei den unbehandelten Tieren tendenziell am größten. Es zeigten sich keine signifikanten Unterschiede (p>0,05).

Der Vergleich der Gewichte des linken Ventrikels zeigt keine Unterschiede zwischen ETA- und ETAB-Antagonist, Nebivolol und SNX (ETA: 1066,75 \pm 45,71 mg, n=16; ETAB: 1016,00 \pm 41,41 mg, n=12; Nebivolol: 1043,27 \pm 46,57 mg, n=11; SNX: 1096,67 \pm 68,96 mg, n=9). Losartan führte zu einer leichten

Gewichtsabnahme des linken Ventrikels (913,13 \pm 48,06 mg, n=11), die aber nicht statistisch signifikant ist.

Abb.5: Darstellung des Gewichts des linken Ventrikels (Mittelwerte ± SEM) A: Es zeigen sich keine statistisch signifikaten Unterschiede im Gewicht des linken Ventrikels in den behandelten Tiergruppen im Vergleich zu SNX.

3.1.2 Nierengewicht

Abb.6 zeigt die Nierengewichte, die am Ende der hämodynamischen Versuche ermittelt wurden. Die SNX-Tiere zeigten hier mit 2211,15 \pm 143,96 mg (n=9) die höchsten Werte. Tendenziell gesenkt wurde das Nierengewicht mit ETA-Antagonist (2058,69 \pm 174,72 mg, n=16). ETAB-Antagonist (1645,00 \pm 55,00 mg, n=12), Losartan (1443,40 \pm 57,08 mg, n=15) und Nebivolol (1525,55 \pm 72,00 mg, n=11) senkten das Nierengewicht statistisch signifikant (p<0,001).

Abb.6: Darstellung der Nierengewichte (Mittelwerte ± SEM) A: Behandlung mit ETA führte im Vergleich zu SNX zu keiner signifikanten Reduktion des Nierengewichts.

B: Die Nierengewichte nach Gabe von ETA, ETAB oder Nebivolol unterscheiden sich nicht. C: Das Nierengewicht wurde mit ETAB, Losartan und Nebivolol im Vergleich zu SNX signifikant gesenkt (p<0,001).

3.2 Ergebnisse: Auxotone Bedingungen

3.2.1 Ventrikeldruck

Bei der Messung des linksventrikulären systolischen Drucks lagen ETA mit 89,7 \pm 4,02 mmHg (n=16) und Losartan mit 83,04 \pm 4,83 mmHg (n=13) auf etwa gleichem Niveau wie SNX (86,36 \pm 7,47 mmHg, n=9). ETAB indizierte höhere systolische Blutdruckwerte (93,94 \pm 6,15 mmHg, n=12). Nebivolol verursachte eine Blutdrucksenkung auf durchschnittlich 73,68 \pm 3,73 mmHg (n=11). Statistisch signifikante Unterschiede ergaben sich nicht.

Abb.7: Linksventrikulärer systolischer Druck in mmHg (Mittelwerte ± SEM) A: Die Gruppen unterschieden sich nicht signifikant (p>0,05).

Der linksventrikuläre enddiastolische Druck lag bei SNX (2,42 \pm 0,22 mmHg, n=9) über dem der behandelten Gruppen. Dabei führte die Behandlung mit ETA (1,87 \pm 0,25 mmHg, n=16) oder ETAB (1,92 \pm 0,24 mmHg, n=12) tendenziell zu einer etwa gleich starken Senkung des enddiastolischen Drucks. Losartan folgt mit 1,57 \pm 0,30 mmHg (n=11). Statistisch unterschieden sich SNX, ETA, ETAB und Losartan jedoch nicht. Die Nebivolol-Gruppe reduzierte den enddiastolischen Druck auf 1,26 \pm 0,24 mmHg (n=11) im Vergleich zur SNX-Gruppe. Diese Differenz ist statistisch signifikant (p≤0,05).

Abb.8: Linksventrikulärer enddiastolischer Druck in mmHg (Mittelwerte ± SEM)
A: ETA, ETAB und Losartan führten im Vergleich zu SNX zu einem geringen, nicht signifikanten Abfall des linksventrikulären enddiastolischen Drucks.
B: Unter Nebivololbehandlung sank der enddiastolische Druck statistisch signifikant auf etwa die Hälfte des SNX-Wertes (p ≤ 0.05).

3.2.2 Wandspannung

Vergleicht man die maximale systolische Wandspannung, so hat die Gruppe der SNX-Tiere mit 7004,72 ± 659 N/m² (n=8) den höchsten Wert. Bei den ETAund Losartanbehandelten Tieren war die durchschnittliche Wandspannung in der Systole mit 6324,61 ± 589 N/m² (n=15) bzw. 5471,81 ± 731 N/m² (n=11) um 10% bzw. 22% vermindert. Die maximale systolische Wandspannung der ETAB-Gruppe lag ca. 28% unter derjenigen der SNX-Gruppe (5072,77 ± 424,25 N/m², n=11). Die Behandlung mit Nebivolol führte zu einer etwa 40%igen, statistisch signifikanten Reduktion der Wandspannung auf 4232,4 ± 539 N/m² (n=10, p≤0,05).

Abb.9: Systolische Wandspannung in N/m² (Mittelwerte ± SEM)
A: Die systolische Wandspannung war in der SNX-Gruppe am größten. ETA, ETAB und Losartan reduzierten statistisch nicht signifikant die Wandspannungswerte.
B: In der Nebivolol-Gruppe wurde die systolische Wandspannung gegenüber der SNX-Gruppe um ca. 40% statistisch signifikant reduziert (p ≤ 0,05).

In Abb.10 sind die mittleren diastolischen Wandspannungen aufgetragen. Hier ist die Werteverteilung ähnlich wie in Abb.9 (maximale systolische Wandspannung). Wiederum wies die SNX-Gruppe den höchsten Spannungswert auf (258,03 \pm 56,19 mmHg, n=9). Im Vergleich zur Abb.9 fällt nun eine statistisch signifikante Reduktion der Wandspannung für ETAB (117,15 \pm 20,94 mmHg, n=11, p<0,001) und Nebivolol (102,6 \pm 22,01 mmHg, n=9, p<0,001) auf. Losartan (132,98 \pm 30,62 mmHg, n=9) und ETA (147,49 \pm

22,57 mmHg, n=15) führten ebenfalls zu einer Minimierung der mittleren diastolischen Wandspannung, die jedoch statistisch nicht signifikant ist. Die behandelten Tiergruppen unterscheiden sich statistisch nicht voneinander.

Abb.10: Diastolische Wandspannung in N/m² (Mittelwerte ± SEM)
A: SNX besaß den höchsten diastolischen Wandspannungswert. ETA und Losartan führten zu einer statistisch nicht signifikanten Abfall.
B: ETAB und Nebivolol führten zu einer statistisch signifikanten Reduzierung der diastolischen Wandspannung (p<0,001) im Vergleich zu SNX.

3.2.3 Maximale linksventrikuläre Druckanstiegs- und Druckabfallsgeschwindigkeit

In dieser Arbeit wurde die maximale Druckanstiegsgeschwindigkeit im linken Ventrikel zum Hauptzielparameter bestimmt. Sie erreicht ihr Maximum in der isovolumetrischen Anspannungsphase und gilt als Maß für die ventrikuläre Kontraktilität. Die Begründung liegt in der muskelphysiologischen Tatsache, dass kontraktilitätssteigernde Einflüsse bei gegebener Vordehnung des Myokards nicht nur die maximale isotonische Kraft, sondern auch die unter isotonischen Bedingungen maximal mögliche Verkürzungsgeschwindigkeit des kontraktilen Elements erhöhen.

Die maximale Druckanstiegsgeschwindigkeit im linken Ventrikel war bei der niereninsuffizienten SNX-Tieren ($3835,83 \pm 540$ mmHg/s, n=9) im Vergleich zu den behandelten Tieren deutlich geringer. Nebivolol führt nur zu einer gering

höheren Druckanstiegsgeschwindigkeit (4793,31 \pm 597 mmHg/s, n=11). Deutlich höhere Werte erreichen ETAB (7210,52 \pm 713 mmHg/s, n=10, p<0,001), Losartan (8040,91 \pm 827 mmHg/s, n=12, p<0,001) und ETA (9193,38 \pm 814 mmHg/s, n=15, p<0,001) mit etwa doppelt so hohen Werten mit statistisch signifikantem Unterschied zu SNX.

Abb.11: Maximale linksventrikuläre Druckanstiegsgeschwindigkeit in mmHg/s (Mittelwerte ± SEM)

À: ETA, ETAB und Losartan führten im Vergleich zu SNX zu einer statistisch signifikanten Erhöhung der maximalen linksventrikulären Druckanstiegsgeschwindigkeit (p<0,001).
B: ETAB und Nebivolol besitzen keine statistisch signifikant unterschiedlichen Werte.
C: Die SNX-Tiere wiesen eine statistisch signifikant niedrigere maximale Druckanstiegsgeschwindigkeit auf als ETA, ETAB und Losartan. Nebivolol veränderte die Werte im Vergleich zu SNX nicht signifikant.

In Abb.12 sind die Mittelwerte der maximalen linksventrikulären Druckabfallsgeschwindigkeit dargestellt. Hier zeigten die SNX-Tiere (2163,06 \pm 325,66 mmHg/s, n=9) ebenso wie die mit Nebivolol behandelten Tiere (2220,70 \pm 198,86 mmHg/s, n=11) geringe maximale Druckabfallsgeschwindigkeiten. ETA (3596,78 ± 332,58 mmHg/s, n=16), ETAB (2930,68 ± 391,52 mmHg/s, n=11) und Losartan (3169,61 ± 306,89 mmHg/s, n=13) wiesen dagegen höhere Werte auf. Die Unterschiede waren insgesamt nicht so deutlich wie in Abb.11. Statistisch signifikante Unterschiede zeigten sich im Vergleich von ETA mit Nebivolol und SNX ($p \le 0,01$).

Abb.12: Maximale linksventrikuläre Druckabfallsgeschwindigkeit in mmHg/s (Mittelwerte ± SEM)

A: Die ETA-Behandlung führte zu signifikant höheren Mittelwerten als keine Behandlung (SNX) oder Nebivolol (p=0,010). Signifikante Unterschiede zwischen ETA, ETAB und Losartan bestanden nicht.

B: Nebivolol führte zu keiner Änderung der linksventrikulären Druckabfallsgeschwindigkeit im Vergleich zu SNX. ETAB und Losartan führten zu einer nicht signifikanten Anhebung der linksventrikulären Druckabfallsgeschwindigkeit.

3.2.4 Geschwindigkeit der Spannungsentwicklung

Im Vergleich zu den unbehandelten SNX-Tieren (308450 \pm 50303 N/m²/s, n=8) war bei den mit ETA, ETAB bzw. Losartan behandelten Tieren die maximale Geschwindigkeit der Spannungsentwicklung tendenziell erhöht (ETA: 511143,65 \pm 69415,95 N/m²/s, n=14; ETAB: 427370,46 \pm 48408,70 N/m²/s,n=11; Losartan: 479958,51 \pm 73445,37 N/m²/s, n=10). ETA führte im Vergleich zu SNX zu einer ca. 1,6fachen, ETAB zu einer 1,4fachen und Losartan zu einer 1,5fachen Steigerung. Die Behandlung mit Nebivolol reduzierte hingegen die Geschwindigkeit der Spannungsentwicklung auf das ca. 0,6fache des SNX-Wertes (191349,45 \pm 39865,59 N/m²/s, n=11). Zwischen ETA, ETAB und Nebivolol ergaben sich statistisch signifikante Unterschiede; zwischen den behandelten Gruppen und der unbehandelten SNX-Gruppe ließ sich keine statistische Signifikanz nachweisen.

Abb.13: Maximale Geschwindigkeit der Spannungsentwicklung in N/m²/s (Mittelwerte ± SEM)
A: Im Vergleich zu SNX war unter ETA, ETAB bzw. Losartan die maximale Geschwindigkeit der Spannungsentwicklung erhöht; es bestand jedoch kein signifikanter Unterschied.
B: Nebivolol reduzierte die maximale Geschwindigkeit der Spannungsentwicklung tendenziell gegenüber SNX. Die Nebivololwerte sind signifikant niedriger als die Werte der ETA-, ETAB-oder Losartan-Gruppe (p=0,001).

3.2.5 Herzfrequenz

Beim Vergleich der mittleren Herzfrequenz ergab sich kein statistisch signifikanter Unterschied zwischen den einzelnen Gruppen. Nebivolol führte tendenziell zu einer Senkung der Herzfrequenz (Nebivolol: $287,27 \pm 15,91$, n=11; SNX: $317,78 \pm 11,94$, n=9). Die Losartan-Gruppe zeigte leicht erhöhte Frequenzwerte ($345,38 \pm 21,83$, n=13). ETA ($323,31 \pm 13,00$, n=16) und ETAB ($324,00 \pm 12,96$ n=12) veränderten die Herzfrequenz praktisch nicht.

Abb.14: Herzfrequenz in Schläge/min (Mittelwerte ± SEM) A: Die Mittelwerte der Herzfrequenzen unterschieden sich nach Medikation mit ETA, ETAB, Losartan und Nebivolol im Vergleich zu SNX nicht (p>0,05).

3.3 Ergebnisse: Diastolische Ausgangsbedingungen

3.3.1 Diastolische Ruhedehnungskurve

Abb.15 zeigt die Mittelwertskurven der am Ende jedes Versuchs aufgezeichneten diastolischen Ruhedehnungskurven. Darin lässt sich die passive Dehnbarkeit des linken Ventrikels in der Diastole ablesen.

Der Kurvenverlauf für die mit 30mg ETA-Antagonist behandelten Tiere war für kleine Volumina geringfügig nach links verlagert, ab einem Volumen von 450µl lag die Kurve der mit ETA-Antagonist behandelten Tiere unter der der ⁵/₆- nephrektomierten unbehandelten Kontrolltiere. Bei der Behandlung mit 30mg ETAB-Rezeptorantagonist bzw. mit 10mg Losartan fällt eine deutliche Linksverlagerung der Ruhedehnungskurven auf. Dies bedeutet, dass bei gegebenem enddiastolischem Volumen ein höherer enddiastolischer Druck herrscht, bzw. dass das enddiastolische Ventrikelvolumen bei gegebenem EDP in den Bereich kleinerer Volumina verschoben ist. Der Kurvenverlauf der SNX-Tiere lässt sich als exzentrische Herzhypertrophie interpretieren, die bei Behandlung mit ETAB-Antagonist und Losartan und teilweise mit ETA-
Antagonist vermindert wurde. Der Kurvenverlauf für die mit 1mg Nebivolol behandelten Tiere ist mit dem der SNX-Tiere nahezu identisch.

Abb.15: Enddiastolische Druck-Volumen-Beziehung des linken Ventrikels

EDP: enddiastolischer Druck; EDV: enddiastolisches Volumen

a): ETA hat einen schwächeren Effekt als ETAB und Losartan.

b)c): ETAB und Losartan führen zur Verschiebung der Kurve in den Bereich kleinerer Volumina.

d): Nebivolol verändert den Kurvenverlauf im Vergleich zu SNX nicht.

3.3.2 Diastolische Wandspannung

In Abb.16 wurde die diastolische Wandspannung über dem enddiastolischen Volumen aufgetragen. Die Medikamentengruppen zeigten im Vergleich zur SNX-Gruppe einen nahezu identischen Kurvenverlauf. Die behandelten Tiergruppen stiegen im Bereich höherer enddiastolischer Drücke tendenziell steiler an. Daraus folgt, dass die Wandspannung unabhängig von der Ventrikelgröße konstant bleibt. Dies lässt sich mit der kompensatorisch größeren Wanddicke bei den unbehandelten oder ineffektiv behandelten Tieren erklären.

Abb.17 verdeutlicht den Zusammenhang zwischen diastolischer Wandspannung und mittlerem Umfang. Im Vergleich zur Kurve der SNX-Gruppe sind die Kurven der mit ETAB-Antagonist, Losartan und Nebivolol behandelten Gruppen in den Bereich kleinerer Umfangswerte verschoben. Bei gegebenem Umfang konnten diese Tiere also eine größere Wandspannung aufbauen. In der ETA-Gruppe verläuft die Kurve unterhalb eines mittleren Umfangs von ca. 36mm sehr ähnlich wie die Kurve der SNX-Gruppe, oberhalb 36mm zeigt die ETA-Gruppe eine leichte Rechtsverlagerung.

σ diast.: diastolische Wandspannung; U_M: mittlerer Umfang des linken Ventrikels
a) Die Kurve der ETA-Gruppe verläuft ähnlich wie die Kurve der SNX-Gruppe.
b)c)d) Unter Behandlung mit ETAB, Losartan und Nebivolol verlagerten sich die Kurven in den Bereich kleinerer Umfangswerte.

3.4 Ergebnisse: Isovolumetrische Bedingungen

3.4.1 Isovolumetrischer Spitzendruck

Die Aufnahme der isovolumetrischen Maxima erfolgte bei abgeklemmter Aorta. Dabei steigt von Schlag zu Schlag das enddiastolische Volumen an. Durch zunehmende Vordehnung des Ventrikels kommt es über den Frank-Starling Mechanismus zu einem positiv inotropen Effekt. Vergleicht man den unter isovolumetrischen Bedingungen erreichten Spitzendruck, dann zeigt sich unter Behandlung mit ETA (265,50 \pm 10,238 mmHg, n=14), ETAB (248,60 \pm 11,50 mmHg, n=11) und Losartan (250,65 \pm 10,62 mmHg, n=13) eine signifikante Steigerung im Vergleich zu SNX (188,06 \pm 12,76 mmHg, n=9, p≤0,001). Mit Nebivolol stieg der isovolumetrische Spitzendruck ebenfalls leicht auf 227,99 \pm 11,55 mmHg an (n=11); im Vergleich zu den anderen Gruppen ergaben sich keine statistischen Signifikanzen.

Abb. 18: Isovolumetrischer Spitzendruck in mmHg (Mittelwerte ± SEM) A: ETA, ETAB und Losartan erhöhten den isovolumetrischen Spitzendruck signifikant gegenüber SNX (p≤0,001).

B: Nebivolol unterschied sich nicht signifikant von SNX.

3.4.2 Isovolumetrische Druck-Volumen-Beziehung

In Abb.19 ist die isovolumetrische systolische Druck-Volumen-Beziehung dargestellt. Im Vergleich zu den Mittelwertskurven der SNX-Tiere sind die Kurven der Medikamentengruppen alle nach links verschoben, wobei die Differenz bei ETA, ETAB und Losartan größer ist als bei Nebivolol. Besonders im Bereich kleinerer enddiastolischer Volumina verlaufen die Kurven der behandelten Tiere steiler als die der unbehandelten SNX-Tiere und sie enden insgesamt im Bereich höherer Gipfeldrücke. Auch hier ist der Unterschied zwischen ETA, ETAB bzw. Losartan und SNX größer als zwischen Nebivolol und SNX. Die behandelten Tiergruppen konnten also bei gleichem enddiastolischem Druck einen höheren systolischen Gipfeldruck aufbauen. Dabei erreichten sie auch höhere Drücke als die SNX-Tiere.

a)b)c) Die Kurven der ETA-, ETAB- und Losartan-Tiere sind im Vergleich zur SNX-Gruppe nach links verschoben.

d) Nebivolol führte im Vergleich ebenfalls zur Linksverschiebung der Kurve. Der Effekt war geringer als unter ETA, ETAB und Losartan.

Abb.20 zeigt die isovolumetrischen Druckmaxima in Abhängigkeit vom enddiastolischen Füllungsdruck. Analog zur systolischen Druck-Volumen-Beziehung weisen die Kurven der Medikamentengruppen eine Linksverschiebung auf und die Kurven verlaufen steiler. Auch hier unterscheiden sich die Mittelwertskurven im Vergleich zu SNX bei ETA und Losartan stärker als bei ETAB und Nebivolol.

3.4.3 Isovolumetrische linksventrikuläre Druckanstiegsgeschwindigkeit

Die maximale Druckanstiegsgeschwindigkeit erreichen die linken Ventrikel am Ende der Anspannungszeit, d.h. vor Öffnung der Aortenklappen. Abb.21 zeigt die maximale Druckanstiegsgeschwindigkeit in Abhängigkeit von der Vordehnung. Bei zunehmendem enddiastolischem Druck steigt dp/dt max an. Dabei entwickelten die mit ETA- und ETAB-Antagonist sowie mit Losartan behandelten Gruppen höhere Druckanstiegsgeschwindigkeiten im Vergleich zur SNX-Gruppe; ETA-Antagonist und Losartan stiegen im Bereich kleinerer Druckwerte steiler an. Mit Nebivolol ergab sich verglichen mit SNX eine nur leicht nach oben in den verschobene Mittelwertskurve. Insbesondere mit ETA-Antagonist bzw. mit Losartan behandelte Tiere konnten also bei gegebenem enddiastolischem Druck eine weitaus höhere Druckanstiegsgeschwindigkeit entwickeln.

dp/dt_{max}: maximale Druckanstiegsgeschwindigkeit; EDP: enddiastolischer Druck

a)c) ETA und Losartan führten im vergleich zu SNX zur Verschiebung der Kurven in den Bereich größerer Druckanstiegsgeschwindigkeiten.

b) Nach ETAB-Behandlung waren die Kurven ebenfalls nach links verlagert, wenn auch in geringerem Maß als nach ETA- bzw. Losartan-Behandlung.

d) Durch Nebivolol wurde die Kurve verglichen mit SNX nur minimal nach links verschoben.

Trägt man, wie in Abb.22 dargestellt, den Gipfeldruck über der maximalen Druckanstiegsgeschwindigkeit auf, dann weisen die mit ETA-Antagonist bzw. Losartan behandelten Tiere eine deutliche Rechtsverschiebung der Kurve in den Bereich höherer Druckanstiegsgeschwindigkeiten auf. Insgesamt erreichen sie im Vergleich zu SNX 75 bzw. 60mmHg höhere Gipfeldrücke. Die Behandlung mit ETAB-Antagonist führt zu einer geringeren Rechtsverschiebung; nach Nebivolol-Gabe verläuft die Kurve im Niveau der SNX-Tiere und endet lediglich bei 40 mmHg höheren Gipfeldrücken.

Abb.22: Darstellung der Beziehung zwischen dem isovolumetrischem Spitzendruck und der maximalen Druckanstiegsgeschwindigkeit

P_{max}: systolischer Gipfeldruck;dp/dt_{max}: maximale Druckanstiegsgeschwindigkeit

a)c) Unter ETA und Losartan verschoben sich die Kurven im Vergleich zu SNX nach rechts.

b) Nach ETAB-Gabe ist die Rechtsverschiebung geringer ausgeprägt.

d) Nebivolol änderte den Kurvenverlauf verglichen mit SNX kaum.

3.4.4 Isovolumetrische Wandspannung

Um von der Ventrikelgeometrie unabhängige Aussagen die über Leistungsfähigkeit des linken Ventrikels zu machen, muss die man isovolumetrischen Daten in guerschnittsbezogene Spannungswerte umrechnen. Die Abb.23 zeigt, dass die Tiere der ETA- bzw. der Losartan-Gruppe verglichen mit den SNX-Kontrollen im Bereich niedriger enddiastolischer Volumina steiler anstiegen, schneller ihre maximalen Spannungswerte erreichten und insgesamt höhere Spannungswerte aufbauen konnten. Die ETAB-Antagonisten-Gruppe verlief bis zu einem enddiastolischen Druck von etwa 6 mmHg deckungsgleich mit der SNX-Gruppe, erreichte dann aber tendenziell leicht höhere Spannungswerte. Mit Nebivololbehandlung verlagerte sich die Kurve leicht nach rechts. stiea steiler und endete bei aerina erhöhten etwas an Wandspannungswerten.

Abb.23: Isovolumetrische systolische Wandspannung in Abhängigkeit vom enddiastolischen Druck

 σ syst.: systolische Wandspannung; EDP: enddiastolischer Druck

a)c) ETA und Losartan führten verglichen mit SNX im Bereich niedriger enddiastolischer Volumina zu einem steileren Anstieg der Kurve, die auf höherem Niveau endete.

b)d) Die ETAB- und Nebivolol-Tiere erreichten im Vergleich zu SNX gering erhöhte Spannungswerte.

Trägt man die systolische Wandspannung über der diastolischen Wandspannung auf, dann stiegen auch hier die Kurven der mit ETA bzw. mit Losartan behandelten Tiere steiler in den Bereich höherer Spannungswerte. Diese Tiere konnten also bei gegebener diastolischer Wandspannung verglichen mit den SNX-Tieren eine höhere systolische Wandspannung entwickeln. Weniger deutlich war der Unterschied zu SNX bei den Nebivolol-Tieren. Nach Behandlung mit ETAB ist der Graph nur leicht nach links verlagert und nähert sich bei hoher Vordehnung wieder an die SNX-Kurve an.

Abb.24: Isovolumetrische systolische Wandspannung in Abhängigkeit von der isovolumetrischen diastolischen Wandspannung

 σ syst.: systolische Wandspannung; σ diast.: diastolische Wandspannung

a)c) Die Kurven der mit ETA bzw. mit Losartan behandelten Tiere steigen steiler in den Bereich höherer Spannungswerte als die Kurven der SNX-Tiere.

b)c) Bei ETAB und Nebivolol ist dieser Effekt weniger stark ausgeprägt als bei ETA bzw. Losartan.

3.5 Ergebnisse: Kontraktionsversuche

3.5.1 Kontraktionskräfte nach Zugabe von 3x10⁷mmol Noradrenalin

In Abb. 25 wird die Kontraktionskraft nach der ersten Gabe von Noradrenalin dargestellt. Daraus geht hervor, dass die unbehandelten 5/6-nephrektomierten Tiere am geringsten auf Noradrenalin reagierten (7,415 ± 0,694, n=10). Die Aortenringe der Kontrolltiere kontrahierten sich durchschnittlich 1,7fach stärker (9,075 ± 0,472, n=8). ETA, ETAB und Losartan lagen etwa auf dem gleichen Niveau wie die Kontrolltiere (ETA: 6,900 ± 0,834, n=15; ETAB: 10,510 ± 1,177, n=7; Losartan: 8,664 ± 0,816, n=11). Dieses Niveau unterschied sich statistisch signifikant vom Niveau der SNX-Gruppe (p<0,001). Nebivolol führte verglichen mit den Kontrollen zu einer schwächeren Kontraktion (8,360 ± 0,529, n=10).

Abb.25: Kontraktionskraft in mN nach erster Gabe von 3x10⁷mmol Noradrenalin A: Die mit ETA, ETAB oder Losartan behandelten Gruppen kontrahierten sich gleich stark wir die Kontrollen.

B: SNX kontrahierte sich signifikant geringer als die Kontroll-, ETA-, ETAB- bzw. Losartan-Gruppe (p<0,001). Nebivolol unterscheidet sich nicht signifikant von den anderen Gruppen.

3.5.2 Relaxationsverhalten mit Acetylcholin

Acetylcholin steigert die NO-Produktion im Endothel und bewirkt so eine endothelabhängige Vasorelaxation. Nach Vorkontraktion mit $3x10^7$ mmol Noradrenalin wurde auf die Aortenringe eine ansteigende Konzentrationsreihe mit Acetylcholinlösung in einer Dosierung von $3x10^{-9}$ bis $3x10^{-6}$ mmol gegeben. Acetylcholin führt über NO zu einer Endothelrelaxation.

In Abb.26 zeigt sich, dass die Aortenringe der nierengesunden Tiere am stärksten relaxierten, d.h. dass das Endothel der Kontrolltiere am besten auf Acetylcholin reagierte. Die Gefäßrelaxation der niereninsuffizienten unbehandelten SNX-Tiere fiel deutlich schwächer aus. Die Behandlung mit ETA bzw. mit Losartan brachte praktisch keine Veränderung gegenüber SNX, da die ETA- bzw. die Losartan-Kurve sehr ähnlich mit der SNX-Kurve verlaufen. Die Kurve der Nebivolol-Tiere liegt bis zur Konzentration von 1x10⁻⁶mmol Acetylcholin zwischen den Kurven von SNX und den Kontrollen, bei hohen Ach-Konzentrationen wandert sie jedoch in den Bereich der SNX-Tiere. Unter den behandelten Tiergruppen führte ETAB zur stärksten Annäherung an die Kurve

der Kontrolltiere. Die Relaxationskurve der ETAB-Tiere liegt durchgängig zwischen SNX und Kontrollen.

Abb.26: Prozentuale Relaxation nach Vorkontraktion mit 3x10⁻⁷mmol Noradrenalin und stufenweiser Gabe von Acetylcholin (Ach) in aufsteigender Dosierung (3x10⁻⁹mmol bis 3x10⁻⁶mmol)

 a)c) Losartan und ETA veränderten den Kurvenverlauf gegenüber SNX praktisch nicht.
 b)d) ETAB und Nebivolol führten zur Verschiebung der Relaxationskurven in Richtung der Kurve der Kontrolltiere.

Die Relaxationskurve für jeden einzelnen Gefäßring wurde gefittet und die Parameter Asymptote, Steigung im Wendepunkt und Wendepunkt wurden miteinander verglichen. In Tab.3 sind diese Werte für den Versuch mit stufenweiser Gabe von Acetylcholin in aufsteigender Dosierung (3x10⁻⁹mmol bis 3x10⁻⁶mmol) nach Vorkontraktion mit 3x10⁻⁷mmol Noradrenalin dargestellt.

Beim Vergleich der Asymptoten ergab sich für die gesunden Kontrolltiere der niedrigste Wert (0,1774 \pm 0,069). Dies bedeutet, dass die Relaxationskurven für Acetylcholin bei den Kontrolltieren am tiefsten endeten, die Gefäßringe sich also am stärksten relaxierten. Signifikante Unterschiede gegenüber ETA, ETAB, Nebivolol und SNX, zeigten sich nicht (ETA: 0,418 \pm 0,050; ETAB: 0,291 \pm 0,079; Nebivolol: 0,389 \pm 0,059; SNX: 0,306 \pm 0,059). Die Behandlung mit Losartan führte jedoch zu einer signifikant höheren Asymptote (0,466 \pm 0,058), die Relaxationskurven endeten also auf einem höheren Niveau. Die Gefäßringe der Losartan-Tiere waren nach Aufgabe der höchsten Acetylcholin-Konzentration noch stärker kontrahiert als die Gefässringe der anderen Tiergruppen.

Beim Vergleich der Steigungen im Wendepunkt der gefitteten Kurven besaß die SNX-Gruppe signifikant geringere Steigungswerte als die ETA-, Losartan-, Nebivolol- und die Kontrollgruppe (ETA: $1,327 \pm 0,070$; Losartan: $1,471 \pm 0,082$; Nebivolol: $1,443 \pm 0,082$; Kontrolle: $1,53 \pm 0,082$; SNX: $0,795 \pm 0,096$). Zur ETAB-Gruppe ergab sich kein Unterschied ($1,080 \pm 0,111$). Die Steigungswerte der Kontrolltiere waren signifikant höher als diejenigen der unbehandelten SNX-Tiere und der ETAB-Tiere, deren Kurven im Wendepunkt also flacher verliefen. Folglich relaxierten die Aortenringe der Kontrolltiere im Bereich um den Wendepunkt der Kurve bei geringer Dosissteigerung stärker als die Aortenringe der SNX- und ETAB-Tiere im vergleichbaren Intervall.

Der Wendepunkt der gefitteten Kurve, d.h. der Punkt, an dem der halbmaximale Dosiseffekt erreicht wird, lag für ETAB, Nebivolol und Kontrollen im Bereich signifikant niedrigerer Acetylcholindosierungen (ETAB: $10^{-7,209} \pm 10^{0,144}$; Nebivolol: $10^{-7,238} \pm 10^{0,106}$; Kontrolle: $10^{-7,321} \pm 10^{0,124}$) als der Wendepunkt der SNX-Kurven ($10^{-6,658} \pm 10^{0,106}$). ETA ($10^{-7,049} \pm 10^{0,091}$) und Losartan ($10^{-7,026} \pm 10^{0,106}$) unterschieden sich weder von SNX noch von ETAB, Nebivolol und Kontrollen.

Gruppe	a Signifikanz	a Mittelwert	c Signifikanz	c Mittelwert	K* Signifikanz	K* Mittelwert
ETA	А, В	0,418	C, D	1,328	F, G	-7,049
ETAB	А, В	0,292	D, E	1,081	G	-7,209
Losartan	А	0,466	C, D	1,471	F, G	-7,027
Nebivolol	А, В	0,389	C, D	1,443	G	-7,239
Kontrolle	В	0,178	С	1,530	G	-7,321
SNX	А, В	0,306	E	0,795	F	-6,659

Tab.3: Vergleich von Asymptote (a), Steigung im Wendepunkt (c) und Wendepunkt (K*) der gefitteten Kurven für stufenweise Dosissteigerung mit Acetylcholin

Für Asymptote (a):

A: Die Asymptoten der gefitteten Kurven der Tiere, die mit ETA, ETAB, Losartan und Nebivolol behandelt wurden, und die Asymptoten der gefitteten Kurven der SNX-Tiere liegen auf einem statistisch nicht unterschiedlichen Niveau. Die Kurve der Losartantiere hat dabei das höchste Niveau.

B: Die Asymptote der Kontrolltiere liegt statistisch signifikant tiefer als die Asymptote der Losartantiere (p<0,05).

Für Steigung im Wendepunkt (c):

C: Die Steigungswerte der mit ETA, Losartan oder Nebivolol behandelten Tiere sowie der Kontrolltiere unterschieden sich nicht.

D: ETAB führte zu signifikant geringeren Steigungswerten im Vergleich zu den Kontrolltieren.

E: Die Relaxationskurven der Tiere der ETA-, Losartan-, Nebivolol- und Kontrollgruppe verliefen im Wendepunkt signifikant steiler als die Relaxationskurven der SNX-Tiere (p<0,001). Zu ETAB ergab sich kein statistisch signifikanter Unterschied.

Für Wendepunkt (K*):

F: Die Wendepunkte der gefitteten Kurven der ETA-, Losartan- und SNX-Tiere waren statistisch nicht voneinander verschieden.

G: Die Aortenringe der ETAB-, Nebivolol- und Kontrolltiere erreichten den Wendepunkt der gefitteten Kurven im Bereich statistisch signifikant niedrigerer Acetylcholindosierungen als die Aortenringe der SNX-Tiere (p<0,001). Signifikante Unterschiede zur ETA- bzw. Losartangruppe ergaben sich nicht.

3.5.3 Relaxationsverhalten mit Natriumnitroprussid

Natiumnitroprussid setzt spontan NO frei, was zu einer endothelunabhängigen Gefäßrelaxation führt. In Abb.28 ist die prozentuale Relaxation nach Gabe von Natriumnitroprussid in aufsteigender Dosierung dargestellt. Die SNX-Tiere wiesen ein diskret geringeres Relaxationsverhalten als sie anderen Gruppen auf. Die Kurven der ETA- und Losartan-Tiere lagen tendenziell leicht unter der Kurve der Kontrolltiere, d.h. sie reagierten etwas stärker auf Natriumnitroprussid. ETAB und Nebivolol verliefen nahezu identisch mit den Kontrollen. Insgesamt fällt auf, dass die Kurve der behandelten, der unbehandelten und der gesunden Tiere einen nahezu identischen Verlauf nehmen.

Abb.27: Prozentuale Relaxation nach Vorkontraktion mit 3x10⁷mmol Noradrenalin und stufenweiser Gabe von Natriumnitroprussid in aufsteigender Dosierung (3x10⁻¹⁰mmol bis 3x10⁻⁶mmol)

Im Nitroprussidversuch ergaben sich beim Vergleich der Asymptoten keine statistisch signifikanten Unterschiede zwischen den behandelten, kranken, der unbehandelten, kranken und der gesunden Kontrollgruppe. Auch hinsichtlich der Kurvenparameter Steigung im Wendepunkt und Wendepunkt der gefitteten Kurven zeigten sich keine signifikanten Differenzen.

a)b)c)d):Die Relaxationskurven von gesunden und behandelten sowie unbehandelten Tieren verlaufen annähernd gleich.

Gruppe	a Signifikanz	a Mittelwert	c Signifikanz	c Mittelwert	K* Signifikanz	K* Mittelwert
ETA	A	-0,049	В	0,851	С	-7,927
ЕТАВ	А	-0,007	В	0,921	С	-7,781
Losartan	A	-0,071	В	0,803	С	-7,952
Nebivolol	A	0,018	В	0,891	С	-7,860
Kontrolle	А	-0,013	В	0,963	С	-7,666
SNX	A	0,023	В	0,817	С	-7,525

 Tab.4: Vergleich von Asymptote (a), Steigung im Wendepunkt (c) und Wendepunkt (K*) der gefitteten Kurven für stufenweise Dosissteigerung mit Natriumnitroprussid

 A, B, C: Asymptote, Steigung im Wendepunkt und Wendepunkt der gefitteten Kurve unterscheiden sich unter den Tiergruppen nicht (p>0,05).

4.Diskussion

4.1 Organgewichte

Die bisher publizierten Daten zur Frage, ob chronische Niereninsuffizienz zur Herzhypertrophie führt, sind widersprüchlich. Nach Greene et al. tritt vier Wochen nach Niereninfarkt jedoch eine deutliche Linksherzhypertrophie auf (33).

Beim Vergleich des Herzgewichts als Maß für den Grad der Hypertrophie weist in der vorliegenden Versuchsreihe die 5/6-nephrektomierte, nicht behandelte SNX-Gruppe die höchsten Werte auf. Die Behandlung mit ETA- bzw. ETAB-Rezeptorantagonist und mit Nebivolol führen zu einer tendenziellen Senkung des Herzgewichts. Nur die Gabe von Losartan. einem AT₁-Rezeptorantagonisten, senkt nennenswert das Herzgewicht (vgl. Abb.4). Dies könnte mit der Antagonisierung der zellproliferativen Wirkung der AT₁-Rezeptoren in Zusammenhang stehen: AT₁-Rezeptoren vermitteln vermutlich Hypertrophie kardialer Myozyten und steigern die Proliferation und Kollagensynthese in kardialen Fibroblasten (45).

Vergleicht man die Nierengewichte nach subtotaler Nephrektomie nach 12 Wochen, so wird durch Behandlung mit ETAB, Losartan und Nebivolol eine übermäßige Proliferation des Nierengewebes verhindert. ETA führt dagegen zu einem geringeren Effekt (vgl. Abb.6).

Trotz intensiver morphologischer und molekularbiologischer Forschung liegen bisher keine Daten über die funktionellen Konsequenzen der Herzhypertrophie bei subtotal nephrektomierten Ratten vor. Dabei sind Informationen über die ventrikuläre Geometrie der hypertrophierten Herzen von grundlegender Bedeutung. Bei unterschiedlichen inneren Dimensionen kann der energetische und mechanische Zustand von Ventrikeln gleicher Masse völlig unterschiedlich

sein (7). Über die Aufzeichnung der Ruhedehnungskurven sind Rückschlüsse auf die Ventrikelgeometrie indirekt möglich.

4.2 Auxotone Bedingungen

Bei dieser Untersuchungsreihe bestand eine wichtige Bedingung darin, Herzveränderungen zu erfassen, die möglichst unabhängig von einer systemischen Blutdruckerhöhung auftreten. Hier wurden vereinfachend die linksventrikulären systolischen Ventrikeldrücke als Maß für den systemischen Blutdruck herangezogen, da nicht von einer signifikanten Aortenstenose auszugehen ist.

Hinsichtlich der Senkung des arteriellen Blutdrucks bei Gabe von ETA- bzw. ETAB-Antagonisten existieren unterschiedliche Daten (6,8,69). Im vorliegenden Experiment ergab sich keine signifikante Senkung des arteriellen Blutdrucks im Vergleich zu unbehandelten nephrektomierten Tieren (vgl. Abb.7). Auch die gewählte Dosierung von Losartan lag unter der blutdruckaktiven Schwelle. Trotz der niedrigen Dosierung führte die Gabe von Nebivolol zu einer diskreten Senkung des arteriellen systolischen Drucks.

Das Blutvolumen, welches pro Schlag aus dem Ventrikel ausgeworfen wird, hängt im wesentlichen von vier Determinanten ab: der Faserausgangslänge (Vorbelastung), dem Widerstand gegen den das Blut ausgeworfen werden muss (Nachlast), sowie der Kontraktilität des Ventrikels und der koordinierten Ventrikelfunktion. Über eine Zunahme des enddiastolischen Volumens oder Drucks kann eine beginnende Funktionsbeeinträchtigung des Herzens kompensiert werden. Beim Vergleich des diastolischen linksventrikulären Ventrikeldrucks fällt auf, dass die Gabe aller vier Substanzen zum Absenken der Nachlast führt (vgl. Abb.8). Nebivolol hat hier den stärksten Effekt und führt zu einer signifikanten Nachlastsenkung. Insgesamt kann die bei den SNX-Tieren höhere Nachlast als Kompensationsmechanismus einer Herzinsuffizienz interpretiert werden, der bei den behandelten Tieren nicht oder nicht so stark ausgeprägt ist.

Gemäß dem La Place´schen Gesetz ist die Wandspannung proportional zum Druck und zum Radius sowie umgekehrt proportional zur Wanddicke. Die Auswurfleistung des Herzens ist umgekehrt linear zur herrschenden systolischen Wandspannung. Druckbelastung bzw. Nachlasterhöhung führen ebenso zu einer Erhöhung der Wandspannung wie eine Volumenbelastung bzw. Dilatation des linken Ventrikels. Da ein wesentliches Ziel zur Aufrechterhaltung einer stabilen Hämodynamik die Konstanz der Wandspannung ist, wird eine Druck- oder Volumenbelastung des Ventrikels kompensatorisch durch eine Hypertrophie der Ventrikelmuskulatur beantwortet. Wird die Erhöhung der Wandspannung nicht normalisiert, so handelt es sich um eine inadäguate oder unzureichende Hypertrophie. Dies ist in Abb.9 zu beobachten: Die SNX-Tiere zeigen die höchsten svstolischen Wandspannungswerte. Mit dem B-Blocker Nebivolol erreicht man eine signifikante Reduktion der systolischen Wandspannung. Mit dem AT II-Antagonisten Losartan lässt sich die systolische Wandspannung nicht signifikant senken, obwohl die proliferationsfördernde Wirkung auf kardiale Myozyten und Fibroblasten antagonisiert wird. Die Endothelinantagonisten bewirken keine signifikante Veränderung der systolischen Wandspannung. Analog zu den systolischen Verhältnissen weisen wiederum die SNX-Tiere die höchsten diastolischen Wandspannungswerte auf. Nebivolol und ETAB führen zu einer signifikanten Senkung der diastolischen Wandspannung (vgl. Abb.10). Diese Wandspannungsreduktion in bezug auf systolische und diastolische Verhältnisse bei den therapierten Tieren kann als angemessenere und ausgewogenere Herzhypertrophie im Vergleich zu nicht therapierten Tieren interpretiert werden.

Ein wesentlicher Faktor für die effektive Herzarbeit ist die Kontraktilität, die die Fähigkeit des Ventrikels beschreibt, Kraft zu entwickeln. Die linksventrikuläre Druckanstiegsgeschwindigkeit dp/dt max wurde als Primärparameter zur Beurteilung der kontraktilen Eigenschaften aufgezeichnet (vgl. Abb.11). Im

vorliegenden Experiment führt die Verabreichung von ETA-, ETAB- Antagonist und Losartan im Vergleich mit SNX zu einer statistisch signifikant höheren maximalen Druckanstiegsgeschwindigkeit im linken Ventrikel.

Losartan hemmt die Bildung von Angiotensin II. AT II verstärkt die zellproliferative Wirkung von Epidermal-Growth-Factor (EGF) (71) und führt zur vermehrten Produktion und Freisetzung von TGF- β_1 (73,89) und bewirkt somit die Hypertrophie glatter Muskelzellen in Herz und Gefäßen (45,68). Losartan verhindert Fibrosierung und Gewebeumbau in Herz- und Gefäßmuskel und wirkt einem Verlust an kontraktilen Fasern entgegen.

Endothelin-1 ist ein potentes Mitogen für glatte Muskelzellen, Herzmuskelzellen und glomeruläre Mesangiumzellen. Endothelin führt auch über die Expression von Protoonkogenen und die Stimulation von TNF und Interleukinen zu Zellproliferation und Gewebsentzündung (36). Endothelinrezeptorantagonisten vermindern vermutlich die proliferativen Effekte, was hier die Fibrosierung und Versteifung des Myokards aufhält.

Nebivolol ist ein selektiver B₁-Adrenorezeptorantagonist mit vasodilatierenden Eigenschaften (87). Außerdem verbessert es sowohl die systolische als auch die diastolische Herzfunktion und senkt den peripheren Widerstand (34,61,82,87). In der vorliegenden Versuchsreihe scheint jedoch die negativ inotrope Wirkung von Nebivolol zu überwiegen. Die Interaktion der Aktin- und Myosinfilamente wird über die Freisetzung von Calcium nach der elektrischen Depolarisation getriggert. Negativ inotrope Substanzen üben ihren Effekt über die Calcium -vermittelte Myofilament-Interaktion aus (72).

Um Herzen mit unterschiedlichen geometrischen Dimensionen vergleichen zu können, wurde zusätzlich die intraventrikuläre Spannungsentwicklung ds/dt max berechnet. Diese war analog zur Messung der maximalen Druckanstiegsgeschwindigkeit bei den SNX-Tieren im Vergleich zu den mit ETA-, ETAB- Antagonist und Losartan behandelten Tieren massiv vermindert (vgl. Abb.13). Nebivolol führt hier zu einer Verschlechterung der Kontraktilität.

Ob die negative Inotropie von Nebivolol hier die Hauptrolle spielt, muss noch näher untersucht werden.

Hinsichtlich der Herzfrequenz ergaben sich keine signifikanten Unterschiede zwischen den medikamentenbehandelten Tiergruppen und der SNX-Gruppe (vgl. Abb.14).

4.3 Diastolische Ausgangsbedingungen

Mit dem Vergleich der Herzgewichte alleine können keine vollständigen Aussagen bezüglich der Herzhypertrophie getroffen werden. Hierbei muss die ventrikuläre Geometrie miteinbezogen werden. Bei unterschiedlichen inneren Dimensionen kann der energetische und mechanische Zustand von Ventrikeln gleicher Masse völlig unterschiedlich sein (7). Über die Aufzeichnung der Ruhedehnungskurven sind Rückschlüsse auf die Ventrikelgeometrie indirekt möglich.

In der Ruhedehnungskurve lässt sich die Abhängigkeit von Länge und Spannung des Muskels in Ruhe veranschaulichen. Mit zunehmender Vordehnung nimmt die Dehnbarkeit des Myokards ab, wobei diese durch vielfältige Faktoren, wie z.B. Aufbau der Muskulatur, Ventrikelgeometrie oder den rechtsventrikulären Druck beeinflusst wird (41).

Bei unterschiedlicher Ventrikelgeometrie eignet sich der enddiastolische Druck weniger gut zur Beschreibung der diastolischen Wandbelastung als die Wandspannung, die ein formunabhängiger Parameter ist.

Der linke Ventrikel fasst bei den SNX-Tieren im Vergleich zu den behandelten Tieren bei gleichem enddiastolischen Druck ein größeres Volumen (vgl. Abb.15). Gleichzeitig ist die Wandspannung gegenüber den behandelten Gruppen nicht verändert (vgl. Abb.16). Folglich liegt eine Dilatation des

Ventrikels vor, die über eine Zunahme der Wanddicke kompensiert wird. Dabei führt die Behandlung mit ETAB oder Losartan zum stärksten therapeutischen Effekt. ETA und Nebivolol können die Ventrikeldilatation kaum aufhalten.

Abb.17 bestätigt die Annahme der Ventrikeldilatation, da die SNX-Tiere bei gleicher diastolischer Wandspannung im Vergleich zu den behandelten Tieren einen größeren mittleren Umfang des Herzens aufweisen.

4.4 Isovolumetrische Bedingungen

Im Druck-Volumen-Diagramm ist die Distanz zwischen der Minima- und der Maximakurve ein Maß für die Arbeitskapazität des linken Ventrikels. Die isovolumetrische Maximakurve der SNX-Tiere ist ebenso wie die diastolische Minimakurve im Vergleich zu den behandelten Tieren in den Bereich größerer Volumina verlagert. Dabei erreichen sie jedoch bezogen auf das enddiastolische Volumen bzw. den enddiastolischen Druck geringere systolische Spitzendrücke (vgl. Abb.19 und 20). Gemäß dem Frank-Starlingsteigt bei Erhöhung der enddiastolischen Vordehnung Mechanismus kompensatorisch der systolische Druck (25,44). Die Ergebnisse der SNX-Tiere weisen hier also auf eine Dekompensation der Regulationsmechanismen und einen Funktionsverlust des Herzens hin. Eine medikamentöse Therapie verbessert entscheidend die Myokardfunktion. Die systolischen Spitzendrücke erreichen unter den mit ETA, ETAB und Losartan behandelten Gruppen ein im Vergleich zu den unbehandelten Tieren signifikant höheres, aber untereinander etwa gleiches Niveau. Die Behandlung mit ETA bzw. mit Losartan führt aber zu einem steileren Anstieg der Kurve, also zu einem schnelleren Anstieg des Druckes zunehmender systolischen bei Volumenbelastung im isovolumetrischen Druckversuch. Für die so therapierten Tiere ist folglich ein geringerer enddiastolischer Ausgangsdruck notwendig, um eine optimale Druckentwicklung zu erreichen.

Zur Beurteilung der myokardialen Leistungsfähigkeit müssen ebenfalls zeitabhängige Parameter herangezogen werden. Die Geschwindigkeit des intraventrikulären Druckanstiegs ist ein Maß für die Geschwindigkeit der Kraftentwicklung der Myokardfasern.

So ergibt sich beim Auftragen der maximalen Druckanstiegsgeschwindigkeit gegen die enddiastolische Wandspannung für die SNX-Gruppe im Vergleich zur ETA- und zur Losartan-Gruppe ein deutlich flacherer Kurvenverlauf mit Erreichen niedrigerer Geschwindigkeiten. Unter Therapie mit ETAB wird die isovolumetrische Spannungsentwicklung leicht, mit Nebivolol kaum verbessert (vgl. Abb.21). Auch bei Bezug auf den Gipfeldruck wird unter Behandlung mit ETA oder Losartan und in geringerem Maße mit ETAB die Kurve im Vergleich zu SNX zu höheren Geschwindigkeitswerten verlagert (vgl. Abb.22). Zusätzlich entwickeln diese Herzen höhere Spitzendrücke als die SNX- bzw. Nebivolol-Herzen, was für eine verbesserte Leistungsfähigkeit des Myokards spricht.

Die diastolische Wandspannung kann als Maß für die diastolische Wandbelastung aufgefasst werden. Die systolische Wandspannung spiegelt jedoch die maximale Kontraktionsfähigkeit der Muskelfasern in der Systole wider. Bei gegebenem enddiastolischem Druck führt die Therapie mit ETA oder Losartan zu einem steileren und höheren Anstieg der systolischen Wandspannung als der Verzicht auf Therapie; Nebivolol bewirkt einen etwas schwächeren Therapieeffekt. ETAB zeigt im Vergleich zu SNX einen fast identischen Kurvenverlauf (vgl. Abb.23). Analog dazu steigt die systolische Wandspannung in Bezug zur diastolischen Wandspannung bei ETA und Losartan massiv, bei ETAB und Nebivolol deutlich stärker als bei SNX an (vgl. Abb.24). Dies ist Ausdruck dafür, dass die Kontraktilität der Myokardfasern unter Therapie mit beiden Endothelinantagonisten, Losartan und Nebivolol gesteigert wird.

4.5 Kontraktionsversuche

Laut Thorin et al. erniedrigen chronisch erhöhte ET1-Levels die Sensitivität des Endothels für Kontraktionsagonisten wie Noradrenalin (84). Im vorliegenden Versuch führte die Verabreichung von ETA, ETAB und Losartan zu einer verstärkten Antwort auf Noradrenalin, während die unbehandelte SNX-Gruppe am schwächsten reagierte. Lariviere (54) beschrieb ein Absinken der ET1-Spiegel unter Losartanbehandlung bei chronisch niereninsuffizienten Ratten. Die verstärkte Kontraktion der Gefäße auf Noradrenalin sowohl in der Losartan-Gruppe als auch in der ETA- und ETAB-Gruppe würde somit darauf hindeuten, dass ETA und ETAB ebenfalls eine Senkung der ET1-Spiegel im Vergleich zu unbehandelten chronisch niereninsuffizienten Tieren bewirken.

Nebivolol führt zu einer im Vergleich zur Kontrollgruppe nur gering erniedrigten Kontraktionsstärke (vgl. Abb.25). Laut Kakoki (47) führt der β-Adrenorezeptorantagonist Nebivolol über Freisetzung von NO zu einer endothelabhängigen Vasorelaxation. Dies könnte die im Vergleich zur Kontrollgruppe geringere Gefäßkontraktion nach Gabe von Noradrenalin erklären, da sich die Gefäße der Nebivolol-Gruppe dann von einem Zustand größerer Relaxation aus kontrahieren müssten.

Nachdem Acetylcholin an einen ACh-Rezeptor gebunden hat, bewirkt es über NO-Produktion im Endothel die Erschlaffung der glatten Gefäßmuskelzellen. Somit kann durch ACh-Gabe auf die kontrahierten Aortenringe getestet werden, inwieweit das Endothel mit NO-Produktion auf einen hormonellen Reiz reagiert. Chronische Niereninsuffizienz schädigt Endothelzellen (56). So sinkt bei nierengeschädigten Ratten die NO-Syntheserate und nimmt bei zunehmender Niereninsuffizienz weiter ab. Umgekehrt dazu steigt der Endothelinspiegel im Blut an (1).

Die Aortenringe der gesunden Tiere relaxieren sich erwartungsgemäß stärker als die der unbehandelten, teilnephrektomierten Tiere. Unter ETAB nähert sich die Relaxationskurve der Kurve der gesunden Tiere an. Losartan und ETA haben auf das Ausmaß der Gefäßrelaxation bei chronischer Niereninsuffizienz keinen Einfluss; der halbmaximale Dosiseffekt liegt bei den Kontrolltieren sowie nach ETAB-Behandlung im Vergleich zur Behandlung mit Losartan oder ETA im Bereich signifikant niedrigerer Acetylcholin-Dosierungen (vgl.Abb.26 und Tab.3). Dies steht im Widerspruch zu bisher veröffentlichten Studien, wonach die Behandlung mit ETA-Rezeptor-Antagonisten die NO-Synthese korrigiert (1).

Nebivolol führt im mittleren Dosisbereich bei chronischer Niereninsuffizienz zu einem verbesserten Ansprechen des Endothels auf Acetylcholin, bei höheren Acetylcholin-Dosen nähert sich die Kurve aber wieder an die der unbehandelten SNX-Tiere an (vgl. Abb.26). Die Acetylcholin-Dosierung, die benötigt wird, um den halbmaximalen Relaxationseffekt zu erreichen, verschiebt sich unter Nebivolol in den Dosisbereich gesunder Tiere (vgl. Tab.3). Aufgrund der von vorne herein stärkeren Gefäßrelaxation unter Nebivolol könnte die Wirkung von Acetylcholin im höheren Dosisbereich bei schon weit relaxierten Gefäßen abgeschwächt sein. Insgesamt hat Nebivolol einen protektiven Effekt auf die Endothelfunktion.

Isoproterenol führt über Bindung an einen β_1 -Adrenorezeptor und Aktivierung der Muskeladenylatcyclase ebenfalls zur Gefäßrelaxration (85). Was die Abhängigkeit vom NO-System betrifft, widersprechen sich die bisher veröffentlichten Studien: Bei Untersuchungen an der thorakalen Aorta der Ratte wird die Wirkung von Isoproterenol als völlig endothelabhängig (34), teilweise endothelabhängig (16,35,48) oder endothelunabhängig (19,66,76) beschrieben. Im vorliegenden Versuch reagierten die Aortenringe der Kontrolltiere insbesondere bei niedriger und hoher Dosierung von Isoproterenol schwächer als diejenigen der SNX-Tiere (vgl. Abb.27). Eine stärkerer Reaktion auf Isoproterenol spricht prinzipiell für eine höhere β_1 -Rezeptorendichte. Eine autonome Dysfunktion wird bei chronisch niereninsuffizienten Patienten häufig beobachtet (10,92). In einem Versuch mit urämischen Ratten konnte gezeigt werden, dass nach intravenöser Gabe von Isoproterenol die Herzfrequenz signifikant weniger anstieg, als bei Kontrolltieren (58). Studien von Meggs
ergaben eine verminderte Aktivierung der Adenylat-Zyklase in den Membranen des linken Ventrikels bei subtotal nephrektomierten Ratten nach Stimulation mit Isoproterenol (63). Die β -Adrenorezeptordichte sowie die basale Affinität blieben hingegen unbeeinflusst. Eine ähnlich angelegte Studie von Dhein et. al führte zu analogen Ergebnissen (18).

Die Kurven der Medikamentengruppen unterscheiden sich untereinander kaum und sind im Vergleich zu SNX und Kontrollen insgesamt deutlich in den Bereich stärkerer Relaxation verschoben; die Asymptoten der gefitteten Kurven enden bei den niereninsuffizienten behandelten oder unbehandelten Tieren signifikant niedriger als bei den gesunden Tieren (vgl. Abb.27 und Tab.4). Dies deutet eher auf einen NO-unabhängigen Mechanismus hin. Aufgrund der Ergebnisse v.a. im Acetylcholin-Versuch ist es unwahrscheinlich, dass die Endothelfunktion unter Medikation mit ETA, ETAB, Losartan oder Nebivolol über das Niveau der Kontrollen hinaus verbessert wird. Über den genauen pathophysiologischen Hintergrund kann nur spekuliert werden.

Aus Natriumnitroprussid wird spontan NO freigesetzt, was die muskelständige Guanylatcyclase direkt stimuliert (80). Im vorliegenden Experiment weisen die SNX-Tiere ein diskret schlechteres Relaxationsverhalten als die anderen Gruppen auf. Die Kurven der ETAB- und Nebivolol-Tiere verlaufen nahezu identisch mit den Kontrollkurven. ETA- und Losartan liegen tendenziell leicht unter den Kontrolltieren, d.h. diese Tiere reagieren etwas stärker auf Natriumnitroprussid (vgl. Abb.28). Die Unterschiede können auf Muskelzellebene begründet liegen. Bei der Untersuchung der Kurvenparameter Asymptote, Steigung im Wendepunkt und Wendepunkt ergaben sich keine statistisch signifikanten Unterschiede (vgl. Tab. 5). Erwartungsgemäß liegen die Kurven insgesamt eng beieinander, da hiermit auf einen endothelunabhängigen Mechanismus zurückgegriffen wird.

4.6 Schlussfolgerung

Die Ergebnisse der vorliegenden Studie zeigen die Wirkung verschiedener Medikamente auf auxotone, isovolumetrische und diastolische Kreislaufparameter sowie auf Herz- und Nierengewicht und Endothelfunktion bei chronischer Niereninsuffizienz. Nach zwölfwöchiger Gabe führten der ETA-Rezeptorantagonist BSF 302146, der ETAB- Rezeptorantagonist BSF 302872, der Angiotensin II-Rezeptorantagonist Losartan beziehungsweise der ß-Blocker Nebivolol in unterschiedlicher Ausprägung zu therapeutischen Effekten auf Herz und Gefäße.

Nach subtotaler Nephrektomie entwickelt sich eine Herzhypertophie. In allen behandelten Tiergruppen lag das mittlere Herzgewicht tendenziell niedriger, die Behandlung mit Losartan führte zur deutlichsten Herzgewichtreduktion.

Der linksventrikuläre systolische Druck unterschied sich in allen Gruppen nicht signifikant von der SNX-Gruppe. Der linksventrikuläre enddiastolische Druck wurde durch Nebivolol jedoch signifikant gesenkt.

Bei subtotal nephrektomierten Tieren entwickelte sich sowohl unter auxotonen, als auch isovolumetrischen Bedingungen eine ausgeprägte kontraktile Dysfunktion. Die Therapie mit ETA, ETAB und Losartan verbesserte die kontraktilen Eigenschaften des linken Ventrikels signifikant.

Die Analyse der Ruhedehnungskurven lässt auf einen dilatierten und kompensatorisch wandverdickten linken Ventrikel nach subtotaler Nephrektomie schließen. Die Ventrikelgeometrie wurde durch Behandlung mit ETAB oder Losartan verbessert. ETA und Nebivolol können die Ventrikeldilatation kaum aufhalten.

Die Endothelfunktion ist bei Tieren mit unbehandelter chronischer Niereninsuffizienz geschädigt. Die Reaktion des Endothels auf kontrahierende und relaxierende Substanzen ist im Vergleich zu gesunden Tieren vermindert. Die Behandlung mit ETAB-Rezeptorantagonist führt zur Normalisierung der Gefäßfunktion. ETA und Losartan haben keinen Einfluss auf die Endothelfunktion. Nebivolol verbessert das Ansprechen des Endothels auf relaxierende Substanzen, ändert aber nicht das Kontraktionsverhalten des Gefäßes.

Zusammenfassend zeigten alle vier eingesetzten Wirkstoffe in unterschiedlicher Ausprägung protektive Effekte auf die kardiale und endotheliale Funktion: Der Angiotensin II-Rezeptorantagonist Losartan verminderte die Hypertrophie an Herz und Niere. ETA- und ETAB- Rezeptorantagonist und Losartan verhinderten insbesondere die Ausbildung einer linksventrikulären kontraktilen Dvsfunktion. Die Ventrikeldilatation wurde durch ETAB und Losartan Nebivolol aufgehalten. ETAB und führten zur Normalisierung der Gefäßendothelfunktion. Die Ergebnisse dieser Studie weisen auf eine mögliche Überlegenheit des ETAB-Antagonisten gegenüber dem ETA-Antagonisten hin.

Inwieweit sich die Effekte der Substanzen ergänzen oder potenzieren lassen und inwieweit die Dosierung eine Rolle spielt muss in weitergehenden Studien erforscht werden. Insbesondere die Kombination aus ETAB-Antagonist und Losartan erscheint sinnvoll, um die kardiovaskulären Komplikationen bei chronisch niereninsuffizienten Patienten zu minimieren.

70

5. Zusammenfassung

Kardiovaskuläre Veränderungen bestimmen die Prognose chronisch niereninsuffizienter Patienten. Die Pathogenese von Herzund Gefäßveränderungen in der Urämie ist multifaktoriell bedingt. Neben unspezifischen Faktoren wie arterielle Hypertonie, Überwässerung oder Anämie spielt die Akkumulation und Aktivierung diverser Mediatoren eine große Rolle. Dem Peptidhormon Endothelin-1 kommt im Zusammenspiel mit dem Renin-Angiotensin- Aldosteron- System eine besondere Bedeutung zu.

Die Entwicklung potenter Endothelin-Rezeptorantagonisten eröffnet möglicherweise neue Behandlungskonzepte.

Ziel der vorliegenden Arbeit war es, am Tiermodell der subtotalen Nephrektomie über einen Zeitraum von 12 Wochen nephround kardioprotektive Effekte einer Endothelinrezeptorblockade zu erforschen. Vergleichend wurden Gruppen untersucht, die mit dem Angiotensin-II-Antagonisten Losartan bzw. dem
ß-Rezeptorenblocker Nebivolol behandelt wurden. 63 männliche Sprague-Dawley-Ratten wurden 5/6-teilnephrektomiert und in fünf Gruppen eingeteilt. Vier Gruppen bekamen jeweils den Endothelin BSF A-Rezeptorantagonisten 302146. den Endothelin AB-Rezeptorantagonisten BSF 302872, den Angiotensin II-Rezeptorantagonist Losartan beziehungsweise den ß-Rezeptorenblocker Nebivolol über das Trinkwasser verabreicht; eine Gruppe erhielt keine Behandlung.

Nach 12 Wochen entwickelte sich eine Herzhypertrophie, die tendenziell durch alle Medikamente, aber insbesondere durch Losartan, vermindert wurde.

Der linksventrikuläre systolische Druck unterschied sich zwischen den Gruppen nicht signifikant. Der linksventrikuläre enddiastolische Druck wurde durch Nebivolol im Vergleich zu SNX jedoch signifikant gesenkt. Bei den SNX-Tieren zeigte sich sowohl unter auxotonen als auch unter isovolumetrischen

71

Bedingungen eine ausgeprägte kontraktile Dysfunktion. Diese zeigt sich in einer Verminderung von Druckanstiegsgeschwindigkeit, systolischer Wandspannung und intraventrikulärer Spannungsentwicklung. Die Behandlung mit ETA, ETAB und Losartan verbesserte die Kontraktilität des linken Ventrikels signifikant. Der Therapieeffekt von Nebivolol ist deutlich schwächer ausgeprägt.

Die Analyse der diastolischen Bedingungen der SNX-Tiere zeigte eine kompensatorische Dilatation und Hypertrophie des linken Ventrikels. Dies spiegelt sich in einem erhöhten enddiastolischen Volumen bei gleichem enddiastolischem Druck wider. ETA und Nebivolol verbesserten die Ventrikelgeometrie kaum. Unter Behandlung mit ETAB und Losartan wurde die Ventrikeldilatation aufgehalten.

Die Endothelfunktion ist bei Tieren mit unbehandelter chronischer Niereninsuffizienz geschädigt, was an einer verringerten endothelabhängigen Vasodilatation erkennbar ist. Bei den SNX-Tieren war die Reaktionsfähigkeit des Endothels auf Noradrenalin und Acetylcholin vermindert. Unter ETAB-Behandlung normalisierte sich die Endothelfunktion. ETA und Losartan änderten das Ausmaß der Endothelschädigung nicht. Unter Nebivolol verbesserte sich die Gefäßrelaxation, nicht jedoch die Gefäßkontraktion.

6. Anhang

6.1 Tabellen

	1			1
			Li	
Gruppe		Herz (mg)	Ventr.(mg)	Niere (mg)
ETA	MW	1451,50	1066,75	2058,69
ETA	n	16	16	16
ETA	SEM	68,57	45,71	174,72
ETAB	MW	1373,58	1016,00	1645,00
ETAB	n	12	12	12
ETAB	SEM	51,80	41,41	55,00
Losartan	MW	1245,00	913,13	1443,40
Losartan	n	15	15	15
Losartan	SEM	57,31	46,44	57,08
Nebivolol	MW	1413,45	1043,27	1525,55
Nebivolol	n	11	11	11
Nebivolol	SEM	61,92	46,57	72,00
SNX	MW	1511,11	1,10	2,21
SNX	n	9	9	8
SNX	SEM	71,84	0,07	0,14

Tab.6: Gewichte von Herz, linkem Ventrikel und Niere in mg

		LVSP	LVEDP	dp/dt max	dp/dt min
Gruppe		(mmHg)	(mmHg)	(mmHg/s)	(mmHg/s)
ETA	MW	89,717	1,866	9193,384	3596,777
ETA	n	16	16	15	16
ETA	SEM	4,689	0,229	684,590	294,180
ETA	Lower 95%	79,652	1,074	6971,078	3007,200
ETA	Upper 95%	97,949	2,156	10512,355	4186,300
ETAB	MW	93,940	1,921	7210,521	2930,679
ETAB	n	12	12	10	11
ETAB	SEM	5,415	0,25	838,450	354,790
ETAB	Lower 95%	81,583	1,171	5254,120	2219,700
ETAB	Upper 95%	103,586	2,617	8687,604	3641,700
Losartan	MW	83,037	1,572	8040,915	3169,607
Losartan	n	13	11	12	13
Losartan	SEM	5,202	0,277	765,400	326,360
Losartan	Lower 95%	72,611	0,802	6038,096	2515,600
Losartan	Upper 95%	91,327	1,857	9558,726	3823,600
Nebivolol	MW	73,677	1,263	4793,312	2220,699
Nebivolol	n	11	11	11	11
Nebivolol	SEM	5,656	0,277	799,430	354,790
Nebivolol	Lower 95%	64,150	0,613	3512,368	1509,700
Nebivolol	Upper 95%	82,300	1,424	5672,833	2931,700
SNX	MW	86,358	2,417	3835,831	2163,063
SNX	n	9	9	9	9
SNX	SEM	6,253	0,220	883,800	392,240
SNX	Lower 95%	72,711	1,459	2705,827	1377,000
SNX	Upper 95%	0,306	3,692	4598,329	2949,100

Tab.7: Auxotone Bedingungen: Linksventrikulärer systolischer Druck (LVSP) in mmHg, linksventrikulärer enddiastolischer Druck (LVEDP) in mmHg, maximale Drucksanstiegs- und Druckabfallsgeschwindigkeit (dp/dt max und min) in mmHg/s

		ds sys	ds dia	ds/dt max	ds/dt min	HF
Gruppe		(N/m ²)	(N/m²)	(N/m²/s)	(N/m²/s)	(1/min)
ETA	MW	6324,608	147,491	511143,649	264644,382	323,313
ETA	n	15	15	14	14	16
ETA	SEM	543,490	27,090	45311	44829	14,569
ETA	Lower 95%	4756,636	93,080	293697	167725	294,130
ETA	Upper 95%	7301,296	201,900	633432	332582	352,500
ETAB	MW	5072,770	117,151	427370,457	157787	324,000
ETAB	n	11	11	11	11	12
ETAB	SEM	634,660	31,635	50573	51118	16,823
ETAB	Lower 95%	3776,591	53,610	264850	91390	290,300
ETAB	Upper 95%	6228,737	180,690	573324	217470	357,700
Losartan	MW	5471,811	132,980	479958,514	184030	345,385
Losartan	n	11	9	10	12	13
Losartan	SEM	634,660	34,971	53042	48942	16,163
Losartan	Lower 95%	3814,169	62,730	277332	97858	313,010
Losartan	Upper 95%	6290,715	203,230	619583	224439	377,760
Nebivolol	MW	4232,398	102,600	191349	90367	287,273
Nebivolol	n	10	8	11	11	11
Nebivolol	SEM	665,640	31,635	50573	51118	17,571
Nebivolol	Lower 95%	2974,404	3,300	93067	42315	252,070
Nebivolol	Upper 95%	5026,897	130,380	201465	100716	322,470
SNX	MW	7004,719	258,026	308450	232073	317,778
SNX	n	8	9	8	9	9
SNX	SEM	744,221	34,974	59303	56513	19,452
SNX	Lower 95%	5026,897	187,780	180011	113946	278,860
SNX	Upper 95%	9040,657	328,270	445245	297166	356,690

Tab.8: Auxotone Bedingungen: Systolische und diastolische Wandspannung (ds sys und dia) in N/m², maximale und minimale Geschwindigkeit der Spannungsentwicklung (ds/dt max und min) in N/m²/s und Herzfrequenz (HF) in Schläge/min

		isovol P max
Gruppe		(mmHg)
ETA	MW	265,5
ETA	n	14
ETA	SEM	10,238
ETA	Lower 95%	244,970
ETA	Upper 95%	286,040
ETAB	MW	248,6
ETAB	n	11
ETAB	SEM	11,550
ETAB	Lower 95%	225,440
ETAB	Upper 95%	271,770
Losartan	MW	250,7
Losartan	n	13
Losartan	SEM	10,624
Losartan	Lower 95%	229,340
Losartan	Upper 95%	271,960
Nebivolol	MW	228,0
Nebivolol	n	11
Nebivolol	SEM	11,550
Nebivolol	Lower 95%	204,830
Nebivolol	Upper 95%	251,160
SNX	MW	188,100
SNX	n	9
SNX	SEM	12,076
SNX	Lower 95%	162,460
SNX	Upper 95%	213,680

 Tab.9:
 Isovolumetrische Bedingungen:
 Isovolumetrischer Spitzendruck in mmHg

		3x10^-7 NA
Gruppe		(mm)
ETA	MW	6,900
ETA	n	15
ETA	SEM	0,834
ETAB	MW	10,510
ETAB	n	7
ETAB	SEM	1,177
Losartan	MW	8,664
Losartan	n	11
Losartan	SEM	0,816
Nebivolol	MW	8,360
Nebivolol	n	10
Nebivolol	SEM	0,529
Kontrolle	MW	9,075
Kontrolle	n	8
Kontrolle	SEM	0,472
SNX	MW	7,415
SNX	n	10
SNX	SEM	0,694

Tab.10: Kontraktionskräfte nach Gabe von 3×10^{-7} mmol Noradrenalin in mm

Gruppe		3x10^-9	1x10^-8	3x10^-8	1x10^-7	3x10^-7	1x10^-6	3x10^-6
	N //\A/		06 330	85 61/	68 6/2	5/ 002	15 805	12 261
		33,037	30,323	05,014	00,042	34,332	40,090	42,301
EIA	n	15	15	15	15	15	15	15
ETA	SEM	0,385	0,921	2,471	3,630	3,751	4,115	4,298
ETAB	MW	92,019	84,884	75,347	58,510	43,473	35,836	32,819
ETAB	n	8	8	8	8	8	8	8
ETAB	SEM	3,568	6,240	7,213	8,863	10,446	11,224	11,142
Losartan	MW	99,228	98,011	90,604	71,288	56,338	48,817	47,164
Losartan	n	11	11	11	11	11	11	11
Losartan	SEM	0,461	0,932	2,058	3,607	3,973	4,472	4,632
Nebivolol	MW	97,889	91,764	78,292	59,751	45,798	40,491	40,153
Nebivolol	n	11	11	11	11	11	11	11
Nebivolol	SEM	0,636	2,948	4,985	5,463	4,436	3,588	3,518
Kontrolle	MW	98,629	94,037	72,048	38,283	23,714	18,536	17,284
Kontrolle	n	8	8	8	8	8	8	8
Kontrolle	SEM	0,171	0,459	1,777	2,280	2,128	2,285	2,534
SNX	MW	97,160	91,969	83,819	73,670	61,724	48,368	39,907
SNX	n	11	11	11	11	11	11	11
SNX	SEM	0,746	1,764	2,467	4,432	6,473	6,963	6,693

Tab.11: Prozentuale Relaxation nach Vorkontraktion mit 3x10⁻⁷mmol Noradrenalin und stufenweiser Gabe von Acetylcholin in aufsteigender Dosierung (3x10⁻⁹mmol bis 3x10⁻⁶mmol)

				Lower	Upper	
Gruppe	Mittelwert	n	SEM	95%	95%	р
ETA	0,418	15	0,050	0,317	0,519	0,030
ETAB	0,291	6	0,079	0,132	0,451	0,030
Losartan	0,466	11	0,059	0,349	0,584	0,030
Nebivolol	0,389	11	0,059	0,271	0,506	0,030
Kontrolle	0,177	8	0,069	0,040	0,315	0,030
SNX	0,306	11	0,059	0,188	0,423	0,030

Tab.12: Asymptoten der gefitteten Kurven nach stufenweiser Gabe von Acetylcholin

				Lower	Upper	
Gruppe	Mittelwert	n	SEM	95%	95%	р
ETA	1,328	15	0,070	1,187	1,469	<0,001
ETAB	1,081	6	0,111	0,858	1,304	<0,001
Losartan	1,471	11	0,082	1,306	1,636	<0,001
Nebivolol	1,443	11	0,082	1,278	1,608	<0,001
Kontrolle	1,530	8	0,096	1,336	1,723	<0,001
SNX	0,795	11	0,082	0,630	0,960	<0,001

Tab.13: Steigungen im Wendepunkt der gefitteten Kurven nach stufenweiser Gabe von Acetylcholin

				Lower	Upper	
Gruppe	Mittelwert	n	SEM	95%	95%	р
ETA	-7,049	15	0,091	-7,232	-6,867	0,0016
ETAB	-7,210	6	0,144	-7,498	-6,921	0,0016
Losartan	-7,027	11	0,106	-7,240	-6,813	0,0016
Nebivolol	-7,239	11	0,106	-7,452	-7,026	0,0016
Kontrolle	-7,321	8	0,125	-7,571	-7,071	0,0016
SNX	-6,659	11	0,106	-6,872	-6,445	0,0016

Tab.14: Wendepunkte der gefitteten Kurven nach stufenweiser Gabe von Acetylcholin

	3x10^-9	1x10^-8	3x10^-8	1x10^-7	3x10^-7	1x10^-6	3x10^-6	1x10^-5
MW	90,867	81,468	72,428	64,439	57,680	51,242	43,803	36,378
n	15	15	15	15	15	15	15	15
SEM	2,259	3,671	4,580	5,282	5,531	5,371	5,160	5,101
MW	90,906	82,304	76,130	67,836	58,709	50,335	40,426	29,960
n	7	7	7	7	7	7	7	7
SEM	3,590	6,050	7,201	7,830	8,117	7,768	7,168	5,726
MW	87,932	78,201	68,978	58,981	51,642	46,046	39,718	33,626
n	11	11	11	11	11	11	11	11
SEM	1,947	3,262	4,230	5,451	5,980	6,157	6,135	6,327
MW	93,818	85,817	74,000	62,680	51,638	43,693	34,312	23,937
n	11	11	11	11	11	11	11	11
SEM	1,523	2,064	2,299	3,131	3,490	3,852	3,955	3,697
MW	99,172	95,700	89,986	81,116	72,984	66,911	62,394	58,908
n	8	8	8	8	8	8	8	8
SEM	0,209	0,533	1,388	2,554	2,925	3,210	3,718	4,428
MW	90,791	84,822	80,289	77,284	72,547	66,472	51,396	36,280
n	11	11	11	11	11	11	11	11
SEM	2,424	3,548	4,312	4,858	5,655	6,017	6,436	6,385
	MW SEM MW SEM MW SEM MW SEM MW SEM MW SEM	3x10^-9 MW 90,867 n 15 SEM 2,259 MW 90,906 n 7 SEM 3,590 MW 87,932 n 11 SEM 1,947 MW 93,818 n 11 SEM 1,523 MW 99,172 n 8 SEM 0,209 MW 90,791 n 11 SEM 2,424	3x10^-9 1x10^-8 MW 90,867 81,468 n 15 15 SEM 2,259 3,671 MW 90,906 82,304 n 7 7 SEM 3,590 6,050 MW 87,932 78,201 n 11 11 SEM 1,947 3,262 MW 93,818 85,817 n 11 11 SEM 1,523 2,064 MW 99,172 95,700 n 8 8 SEM 0,209 0,533 MW 90,791 84,822 n 11 11 SEM 2,424 3,548	3x10^-9 1x10^-8 3x10^-8 MW 90,867 81,468 72,428 n 15 15 SEM 2,259 3,671 4,580 MW 90,906 82,304 76,130 n 7 7 7 SEM 3,590 6,050 7,201 MW 87,932 78,201 68,978 n 11 11 11 SEM 1,947 3,262 4,230 MW 93,818 85,817 74,000 n 11 11 11 SEM 1,523 2,064 2,299 MW 99,172 95,700 89,986 n 8 8 8 SEM 0,209 0,533 1,388 MW 90,791 84,822 80,289 n 11 11 11 SEM 2,424 3,548 4,312	3x10^-9 1x10^-8 3x10^-8 1x10^-7 MW 90,867 81,468 72,428 64,439 n 15 15 15 15 SEM 2,259 3,671 4,580 5,282 MW 90,906 82,304 76,130 67,836 n 7 7 7 7 SEM 3,590 6,050 7,201 7,830 MW 87,932 78,201 68,978 58,981 n 11 11 11 11 SEM 1,947 3,262 4,230 5,451 MW 93,818 85,817 74,000 62,680 n 11 11 11 11 SEM 1,523 2,064 2,299 3,131 MW 99,172 95,700 89,986 81,116 n 8 8 8 8 SEM 0,209 0,533 1,388 2,554	3x10^-9 1x10^-8 3x10^-8 1x10^-7 3x10^-7 MW 90,867 81,468 72,428 64,439 57,680 n 15 15 15 15 15 SEM 2,259 3,671 4,580 5,282 5,531 MW 90,906 82,304 76,130 67,836 58,709 n 7 7 7 7 7 SEM 3,590 6,050 7,201 7,830 8,117 MW 87,932 78,201 68,978 58,981 51,642 n 11 11 11 11 11 SEM 1,947 3,262 4,230 5,451 5,980 MW 93,818 85,817 74,000 62,680 51,638 n 11 11 11 11 11 SEM 1,523 2,064 2,299 3,131 3,490 MW 99,172 95,700 89,986 </td <td>3x10^-9 1x10^-8 3x10^-8 1x10^-7 3x10^-7 1x10^-6 MW 90,867 81,468 72,428 64,439 57,680 51,242 n 15 15 15 15 15 15 SEM 2,259 3,671 4,580 5,282 5,531 5,371 MW 90,906 82,304 76,130 67,836 58,709 50,335 n 7 7 7 7 7 7 SEM 3,590 6,050 7,201 7,830 8,117 7,768 MW 87,932 78,201 68,978 58,981 51,642 46,046 n 11 11 11 11 11 11 SEM 1,947 3,262 4,230 5,451 5,980 6,157 MW 93,818 85,817 74,000 62,680 51,638 43,693 n 11 11 11 11 11 1</td> <td>3x10^-9 1x10^-8 3x10^-8 1x10^-7 3x10^-7 1x10^-6 3x10^-6 MW 90,867 81,468 72,428 64,439 57,680 51,242 43,803 n 15 15 15 15 15 15 15 SEM 2,259 3,671 4,580 5,282 5,531 5,371 5,160 MW 90,906 82,304 76,130 67,836 58,709 50,335 40,426 n 7 7 7 7 7 7 7 7 SEM 3,590 6,050 7,201 7,830 8,117 7,768 7,168 MW 87,932 78,201 68,978 58,981 51,642 46,046 39,718 n 11 11 11 11 11 11 11 11 SEM 1,947 3,262 4,230 5,451 5,980 6,157 6,135 MW 93,818</td>	3x10^-9 1x10^-8 3x10^-8 1x10^-7 3x10^-7 1x10^-6 MW 90,867 81,468 72,428 64,439 57,680 51,242 n 15 15 15 15 15 15 SEM 2,259 3,671 4,580 5,282 5,531 5,371 MW 90,906 82,304 76,130 67,836 58,709 50,335 n 7 7 7 7 7 7 SEM 3,590 6,050 7,201 7,830 8,117 7,768 MW 87,932 78,201 68,978 58,981 51,642 46,046 n 11 11 11 11 11 11 SEM 1,947 3,262 4,230 5,451 5,980 6,157 MW 93,818 85,817 74,000 62,680 51,638 43,693 n 11 11 11 11 11 1	3x10^-9 1x10^-8 3x10^-8 1x10^-7 3x10^-7 1x10^-6 3x10^-6 MW 90,867 81,468 72,428 64,439 57,680 51,242 43,803 n 15 15 15 15 15 15 15 SEM 2,259 3,671 4,580 5,282 5,531 5,371 5,160 MW 90,906 82,304 76,130 67,836 58,709 50,335 40,426 n 7 7 7 7 7 7 7 7 SEM 3,590 6,050 7,201 7,830 8,117 7,768 7,168 MW 87,932 78,201 68,978 58,981 51,642 46,046 39,718 n 11 11 11 11 11 11 11 11 SEM 1,947 3,262 4,230 5,451 5,980 6,157 6,135 MW 93,818

Tab.15: Prozentuale Relaxation nach Vorkontraktion mit 3x10⁻⁷mmol Noradrenalin und stufenweiser Gabe von Isoproterenol in aufsteigender Dosierung (3x10⁻⁹mmol bis 1x10⁻⁵mmol)

				Lower	Upper	
Gruppe	Mittelwert	n	SEM	95%	95%	р
ETA	0,297	15	0,043	0,211	0,383	<0,001
ETAB	0,213	7	0,063	0,088	0,339	<0,001
Losartan	0,285	11	0,050	0,185	0,385	<0,001
Nebivolol	0,134	11	0,050	0,033	0,234	<0,001
Kontrolle	0,582	8	0,059	0,464	0,699	<0,001
SNX	0,165	11	0,050	0,065	0,265	<0,001

Tab.16: Asymptoten der gefitteten Kurven nach stufenweiser Gabe von Isoproterenol

				Lower	Upper	
Gruppe	Mittelwert	n	SEM	95%	95%	р
ETA	0,645	15	0,042	0,560	0,730	0,0035
ETAB	0,614	7	0,062	0,490	0,739	0,0035
Losartan	0,550	11	0,049	0,451	0,649	0,0035
Nebivolol	0,535	11	0,049	0,436	0,635	0,0035
Kontrolle	0,793	8	0,058	0,676	0,909	0,0035
SNX	0,487	11	0,049	0,388	0,586	0,0035

Tab.17: Steigungen im Wendepunkt der gefitteten Kurven nach stufenweiser Gabe von Isoproterenol

				Lower	Upper	
Gruppe	Mittelwert	n	SEM	95%	95%	р
ETA	-6,896	15	0,203	-7,302	-6,490	0,0291
ETAB	-6,739	7	0,297	-7,333	-6,145	0,0291
Losartan	-7,013	11	0,237	-7,487	-6,539	0,0291
Nebivolol	-6,643	11	0,237	-7,117	-6,169	0,0291
Kontrolle	-6,837	8	0,237	-7,393	-6,281	0,0291
SNX	-5,930	11	0,237	-6,404	-5,456	0,0291

Tab.18: Wendepunkte der gefitteten Kurven nach stufenweiser Gabe von Isoproterenol

		3x10^-	1x10^-	3x10^-	1x10^-	3x10^-	1x10^-	3x10^-	1x10^-	3x10^-
Gruppe		10	9	9	8	8	7	7	6	6
ETA	MW	93,335	83,905	74,025	51,621	29,441	11,436	1,572	-1,743	-2,301
ETA	n	13	13	13	13	13	13	13	13	13
ETA	SEM	1,131	2,670	3,093	4,769	4,660	3,323	1,898	1,651	1,544
ETAB	MW	94,878	89,465	81,115	61,337	37,969	17,247	6,886	2,569	0,920
ETAB	n	8	8	8	8	8	8	8	8	8
ETAB	SEM	1,924	3,349	4,287	5,001	6,386	4,490	3,164	2,670	2,233
Losartan	MW	88,809	81,522	69,968	51,884	28,865	10,325	0,518	-2,221	-3,208
Losartan	n	11	11	11	11	11	11	11	11	11
Losartan	SEM	2,878	3,570	4,400	5,649	6,045	5,007	2,300	1,847	1,873
Nebivolol	MW	92,564	87,914	78,700	60,011	34,266	17,554	8,749	5,233	4,396
Nebivolol	n	11	11	11	11	11	11	11	11	11
Nebivolol	SEM	1,941	2,634	3,068	3,891	3,695	3,609	3,607	3,566	3,684
Kontrolle	MW	98,274	94,502	85,829	67,834	41,353	17,591	5,852	1,314	0,075
Kontrolle	n	8	8	8	8	8	8	8	8	8
Kontrolle	SEM	0,108	0,495	0,413	1,124	1,793	1,055	0,574	0,262	0,070
SNX	MW	98,658	90,671	80,075	69,061	55,352	30,583	17,685	7,689	5,631
SNX	n	11	11	11	11	11	11	11	11	11
SNX	SEM	0,652	1,804	2,884	3,865	5,409	6,063	4,663	3,169	3,215
Tab.19:	Proz	entuale	Rela	xation	nach	Vorko	ontraktio	on mit	t 3x10)⁻′mmol
Noradren	alin ı	und st	ufenwe	iser _. G	abe vo	on Isoj	orotere	nol in	aufste	igender
Dosierung	g (3x1	0 ⁻¹⁰ mm	ol bis 3	x10⁻⁰m	mol)					

				Lower	Upper	
Gruppe	Mittelwert	n	SEM	95%	95%	р
ETA	-0,049	13	0,024	-0,098	-0,001	0,105
ETAB	-0,007	8	0,031	-0,069	0,055	0,105
Losartan	-0,070	11	0,027	-0,124	-0,017	0,105
Nebivolol	0,018	11	0,027	-0,036	0,071	0,105
Kontrolle	-0,013	8	0,031	-0,075	0,049	0,105
SNX	0,023	10	0,028	-0,033	0,078	0,105

Tab.20: Asymptoten der gefitteten Kurven nach stufenweiser Gabe von Natriumnitroprussid

				Lower	Upper	
Gruppe	Mittelwert	n	SEM	95%	95%	р
ETA	0,851	13	0,061	0,729	0,973	0,603
ETAB	0,921	8	0,078	0,765	1,077	0,603
Losartan	0,803	11	0,066	0,670	0,936	0,603
Nebivolo	0,891	11	0,066	0,758	1,024	0,603
Kontrolle	0,963	8	0,078	0,807	1,119	0,603
SNX	0,817	10	0,070	0,678	0,957	0,603

Tab.21: Steigungen im Wendepunkt der gefitteten Kurven nach stufenweiser Gabe von Natriumnitroprussid

				Lower	Upper	
Gruppe	Mittelwert	n	SEM	95%	95%	р
ETA	-7,927	13	0,094	-8,115	-7,739	0,045
ETAB	-7,781	8	0,120	-8,021	-7,541	0,045
Losartan	-7,952	11	0,102	-8,156	-7,747	0,045
Nebivolol	-7,860	11	0,102	-8,064	-7,655	0,045
Kontrolle	-7,666	8	0,120	-7,906	-7,426	0,045
SNX	-7,525	10	0,107	-7,739	-7,310	0,045

Tab.22: Wendepunkte der gefitteten Kurven nach stufenweiser Gabe von Natriumnitroprussid

Gruppe		500µl	450µl	400µl	350µl	300µl	250µl	200µl	150µl	100µl	50µl
ETA	MM	721,035	604,342	531,137(321,755	200,697	109,551	48,428	11,588	-13,631	-23,906
ETA	L	6	11	16	16	16	16	16	16	16	16
ETA	SEM	82,378	103,601	71,254	41,401	26,780	16,242	10,548	6,487	4,454	2,992
ETAB	MM	1148,570	862,734	826,850	555,240	320,568	187,882	90,065	22,100	-9,672	-27,874
ETAB	С	Q	9	10	12	12	12	12	12	12	11
ETAB	SEM	145,260	157,910	144,949	78,273	47,943	34,071	25,785	14,505	7,378	4,403
Losartan	MM	1519,945	1124,461	675,0224	409,404	241,272	129,281	66,604	22,823	-11,160	-10,845
Losartan	L	റ	13	14	14	14	14	13	12	12	10
Losartan	SEM	242,693	153,564	78,943	49,751	29,850	23,445	15,940	12,554	7,809	3,757
Nebivolo	MM	1122,153	754,338	478,203(300,439	189,174	105,786	42,738	5,143	-21,812	-31,545
Nebivolo	L	œ	10	10	10	10	10	10	10	10	6
Nebivolo	SEM	151,570	138,777	75,950	45,493	29,681	20,868	14,612	9,736	6,929	8,484
SNX	MM	885,062	522,347	314,926	193,112	122,292	64,314	19,359	-9,162	-22,916	-21,472
SNX	С	6	6	6	6	6	6	6	6	6	6
SNX	SEM	119,951	67,958	34,350	21,289	14,452	10,238	8,590	6,832	4,807	3,348
Tab.23:	Diastolis (che Ausga	ngsbeding	Jungen: [Diastolis	che Wan	dspannu	ng in N/n	nm²		

		D	in mmH	er Druck	astolisch	1: Enddia	lingungei	angsbed	iche Ausg	Diastolis	Tab.24:
0,218	0,195	0,182	0,290	0,321	0,365	0,406	0,570	0,935	1,269	SEM	SNX
<u>о</u>	<u>о</u>	6	6	<u>о</u>	<u>о</u>	<u>о</u>	<u>о</u>	<u>о</u>	о	c	SNX
-1,527	-0,879	-0,225	0,528	1,261	1,996	2,778	3,907	5,869	8,881	MM	SNX
0,507	0,225	0,210	0,237	0,263	0,304	0,392	0,570	0,938	1,044	ISEM	Nebivolc
10	1	.	1	,	.	,	1	1	10		Nebivolc
-2,285	-0,807	0,048	0,746	1,587	2,444	3,414	4,845	6,839	8,927	MM	Nebivolc
0,222	0,254	0,269	0,247	0,294	0,298	0,423	0,606	1,072	1,552	I SEM	Losartar
10	12	12	13	14	14	14	14	13	6		Losartar
-0,765	-0,372	0,464	1,096	1,783	2,867	4,226	6,202	9,227	11,894	MM	Losartar
0,260	0,273	0,341	0,469	0,494	0,589	0,838	1,373	1,276	1,483	SEM	ETAB
.	1	12	12	12	12	12	10	7	9	c	ETAB
-1,753	-0,411	0,436	1,556	2,816	4,127	6,276	8,441	8,718	11,889	MM	ETAB
0,187	0,161	0,164	0,204	0,243	0,329	0,437	0,671	0,798	0,784	SEM	ETA
16	16	16	16	16	16	16	16	1	6	۲	ETA
-1,496	-0,486	0,285	0,934	1,739	2,719	3,815	5,589	5,956	6,974	MM	ETA
50µl	100µl	150µl	200µl	250µl	300µl	350µl	400µl	450µl	500µl		Gruppe

				nm ni gr	er Umfar	ר: Mittler	ingunger	angsbed	che Ausg	Diastoliso	Tab.25:
0,752	0,760	0,751	0,736	0,721	0,704	0,687	0,671	0,767	0,641	SEM	SNX
σ	0	6	<u>о</u>	0	6	0	0	0	<u>о</u>	L	SNX
24,782	27,641	29,606	31,171	32,473	33,663	34,717	35,676	36,202	37,415	MM	SNX
0,327	1,034	0,970	0,918	0,874	0,837	0,803	0,774	0,747	0,807	ISEM	Nebivolo
7	10	10	10	10	10	10	10	10	6	<u>u</u>	Nebivolo
25,369	27,151	29,169	30,768	32,123	33,313	34,385	35,365	36,273	37,156	MM	Nebivolo
0,264	0,263	0,246	0,246	0,244	0,241	0,238	0,235	0,250	0,317	SEM	Losartan
10	13	14	14	14	14	14	14	13	6	C	Losartan
24,491	27,471	29,403	30,951	32,267	33,426	34,473	35,433	36,307	37,402	MM	Losartan
0,158	0,154	0,192	0,192	0,191	0,189	0,187	0,185	0,277	0,284	SEM	ETAB
<u>о</u>	11	12	12	12	12	12	12	7	5	L	ETAB
25,103	27,890	29,968	31,514	32,822	33,977	35,014	35,965	37,092	38,176	MM	ETAB
0,182	0,211	0,214	0,214	0,213	0,211	0,209	0,207	0,254	0,246	SEM	ETA
15	16	16	16	16	16	16	16	11	6	L	ETA
25,221	28,186	30,138	31,685	32,994	34,146	35,183	36,133	37,249	38,285	MM	ETA
50µl	100µ	150µl	200µl	250µl	300µ	350µl	400µl	450µl	500µ		Gruppe

Gruppe													
ETA MV	ۍ ۲	35,885 1	135,018	177,361	204,889	235,891	249,995	257,177	259,933	262,707	263,819	265,219	266,048
ETA n		+ 4	14	14	14	14	14	14	14	14	14	14	14
ETA SE	Σ	6,856	12,118	15,008	14,673	12,440	10,260	9,136	8,591	8,160	8,073	8,142	7,992
ETAB MV	ن >	1 ,625 ¹	107,985	126,111	151,555	181,144	205,176	223,311	234,490	240,076	241,475	243,571	243,920
ETAB n		.	1	11	11	11	1	11	11	1	1	1	1
ETAB SE	Σ	7,094	9,586	10,323	14,159	17,828	19,506	20,241	20,283	20,636	20,384	19,710	19,553
Losartan MV	۲ <u>۲</u>	79,967	93,254	120,755	157,617	195,227	217,494	233,574	243,197	248,182	249,362	249,657	
Losartan n		13	13	13	13	13	13	13	13	13	13	13	
Losartan SE	Σ	4,657	6,789	7,957	10,033	11,267	8,789	6,986	6,303	6,638	7,028	6,941	
NebivololMV	1	78,842	89,479	112,455	137,950	164,514	192,466	205,548	214,461	222,653	226,874	229,331	231,106
Nebivololn		.	11	11	11	11	1	1	11	1	1	11	1
Nebivolol SE	Σ	4,579	4,635	6,756	7,926	7,837	8,400	9,376	8,092	6,919	6,148	5,806	5,360
SNX MV	۲ 8	30,589	89,909	108,254	123,039	142,887	159,834	172,777	178,574	184,784	187,466		
SNX n		<u>о</u>	6	6	6	6	6	6	6	6	<u>о</u>		
SNX SE	Σ	6,246	5,806	8,015	10,389	10,752	11,094	11,598	12,165	12,499	13,389		
ETA MV	V 26	36,8772	267,160	267,444									
ETA n		14	14	14									
ETA SE	Σ	7,885	7,963	8,050									
ETAB MV	V 24	14,2692	244,619	244,968									
ETAB n		.	11	11									
ETAB SE	Z	9,402	19,255	19,114									
NebivololMV	V 23	31,8132	232,160										
Nebivololn		.	11										
Nebivolol SE.	N	5,303	5,373										
Tab.26: Isov	olumetr	ische A	Ausgang	sbedingı	Ingen: S	ystolisch	ier Gipfel	druck in	mmHg				

Gruppe											
ETA N	ΜN	7689,664	8112,569	8420,305	9611,609	10688,130	11149,540	11418,010	11685,730	11686,490	11877,930
ETA r	_	14	14	14	14	14	14	14	14	14	14
ETA 6	SEM	927,168	977,896	885,732	944,535	964,037	956,972	917,560	843,814	897,044	853,306
ETAB N	ΝN	6402,229	6499,786	6646,840	7087,047	7625,287	7918,438	8603,735	8945,426	9286,161	9243,695
ETAB n	_	11	11	1	11	11	11	11	11	11	11
ETAB 5	SEM	1022,801	964,607	1020,337	961,910	954,590	977,389	1123,582	1156,410	1166,508	1268,486
Losartan N	NΝ	7570,485	8020,835	8600,734	9176,478	9835,824	10908,540	11686,100	12821,320	13068,080	13109,560
Losartan r	_	13	13	13	13	13	13	13	13	13	13
Losartan S	SEM	880,242	873,255	916,544	981,873	1048,157	1045,768	906,717	1187,260	1182,049	1179,248
Nebivolol	ΝN	4125,889	4514,207	4853,986	5533,546	5727,705	6310,183	6504,342	6941,203	6989,742	7038,281
Nebivolol	_	11	11	1	11	11	11	11	11	11	11
Nebivolol 5	SEM	388,320	525,936	559,789	628,774	660,214	674,687	719,308	627,648	617,048	605,874
SNX N	NΝ	3633,947	3922,354	4268,445	4729,899	5422,078	5998,895	6114,258	6402,666	6575,711	6633,393
SNX	_	໑	0	თ	<u>о</u>	თ	б	б	о	о	თ
SNX 6	SEM	605,658	612,486	657,673	650,039	784,026	956,107	981,860	1211,315	1297,837	1288,511
ETA N	NΝ	11954,960	11993,470								
ETA	_	14	14								
ETA 5	SEM	858,531	864,635								
ETAB N	ΝN	9578,356	9626,896								
ETAB n	_	11	11								
ETAB 5	SEM	1126,845	1118,801								
Nebivolol	MM	7135,361	7183,900								
Nebivolol	_	11	11								
Nebivolol 5	SEM	620,476	608,203								
Tab.27: Is	ovolum	etrische Aus	saanasbedi	ingungen:	Linksvent	rikuläre Dru	uckanstieds	aeschwindi	iakeit in mr	1Ha/s	

א ת 202 ק מ ກົ , N

Guppe Example Sint	1,013	0,988	0,978	1,004	1,070	1,078	0,903	0,823	0,719	0,694	SEM	Nebivolol
Gruppe Gruppe 5,16 5,516 5,826 6,154 ETA MW 2,049 2,374 3,591 4,688 5,181 5,516 5,826 6,154 ETA NW 2,049 2,379 4,125 5,151 5,865 6,788 7,753 8,543 9,329 ETAB NW 2,586 2,970 3,379 4,125 5,151 5,865 6,788 7,753 8,543 9,329 ETAB NW 2,586 2,970 3,379 4,125 5,151 5,865 6,788 7,753 8,543 9,329 ETAB NW 1,826 0,285 0,583 0,513 0,313 13	11	11	11	11	1	11	11	11	11	11	c	Nebivolol
Gruppe All Corrupe S,516 5,592 5,826 6,154 ETA NW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 ETA N 2,049 2,370 0,222 0,284 0,425 0,504 0,470 0,487 0,504 0,506 0,506 0,506 0,506 0,506 0,505 0,505	10,385	10,223	10,062	9,867	10,049	9,775	9,165	8,553	7,867	7,235	MM	Nebivolol
Gruppe ETA MW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 TA NW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 1,41 1					0,921	0,914	0,916	0,887	0,820	0,807	SEM	Losartan
Gruppe ETA MW 2.049 2.354 2.971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 ETA NW 2.049 2.354 2.971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 0,544 0,544 0,544 0,541 0,541 0,541 0,541 0,541 0,541 0,541 0,543 0,543 0,543 0,543 0,543 0,543 0,543 0,543 0,541 0,541 0,11 11					13	13	13	13	13	13	Ч	Losartan
Gruppe ETA MW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 ETA N 2,049 2,354 2,971 3,591 4,688 5,181 5,692 5,826 6,154 14 ETA N 2,586 2,970 3,379 4,125 5,151 5,865 6,788 7,753 8,543 9,329 ETAB NW 2,586 2,970 3,379 4,125 5,151 5,865 6,788 7,753 8,543 9,329 ETAB NW 1,825 2,190 2,852 3,522 3,612 4,161 5,234 5,679 6,222 6,766 Losartan N 1,31 11					7,778	7,732	7,662	7,470	7,178	7,010	MM	Losartan
Gruppe MW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 ETA NW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 16 <td< td=""><td>1,727</td><td>1,725</td><td>1,697</td><td>1,685</td><td>1,640</td><td>1,610</td><td>1,639</td><td>1,690</td><td>1,595</td><td>1,471</td><td>SEM</td><td>ETAB</td></td<>	1,727	1,725	1,697	1,685	1,640	1,610	1,639	1,690	1,595	1,471	SEM	ETAB
Gruppe MW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 ETA n 14 16 16 6	1	1	1	11	11	11	1	1	11	11	Ц	ETAB
Gruppe MW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 ETA n 14 14 14 14 14 14 14 ETA n 14 11	13,757	13,698	13,577	13,486	13,212	12,941	12,137	11,362	10,632	9,934	MM	ETAB
Gruppe MW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 ETA MW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 14 ETA n 14 14 14 14 14 14 14 ETA SEM 0,328 0,320 0,252 0,284 0,470 0,487 0,504 0,547 ETAB MW 2,586 2,970 3,379 4,125 5,151 5,865 6,788 7,753 8,543 9,329 ETAB MW 1,1 11				0,454	0,467	0,483	0,486	0,496	0,511	0,535	SEM	ETA
Gruppe MW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 ETA NW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 ETA n 14 14 14 14 14 14 14 ETA NW 2,586 2,970 3,379 4,125 5,151 5,865 6,788 7,753 8,543 9,329 ETAB NW 2,586 2,970 3,379 4,125 5,151 5,865 6,788 7,753 8,543 9,329 ETAB NW 1,825 2,190 2,852 3,612 4,161 5,234 5,679 6,766 6,766 Losartan NW 1,825 2,919 2,852 3,523 3,737 4,348 4,872 5,442 6,051 6,665 Losartan NW 1,11 11 11				14	14	14	14	14	14	14	Ц	ETA
Gruppe MW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 ETA NW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 11 11 11 11 11 11 11 11 11 11 <td< td=""><td></td><td></td><td></td><td>6,810</td><td>6,756</td><td>6,701</td><td>6,688</td><td>6,661</td><td>6,606</td><td>6,381</td><td>MM</td><td>ETA</td></td<>				6,810	6,756	6,701	6,688	6,661	6,606	6,381	MM	ETA
Gruppe ETA MW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,826 6,154 ETA NW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 ETA n 14 14 14 14 14 14 14 ETA NW 2,586 2,970 3,379 4,125 5,151 5,865 6,788 7,753 8,543 9,329 ETAB NW 2,586 2,970 3,379 4,125 5,151 5,865 6,788 7,753 8,543 9,329 ETAB NW 11	1,299	1,218	1,121	1,042	0,671	0,572	0,417	0,362	0,261	0,257	SEM	SNX
Gruppe ETA MW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 ETA MW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 ETA n 14 14 14 14 14 14 14 ETA NW 2,049 2,379 4,125 5,151 5,865 6,788 7,753 8,543 9,329 ETAB MW 2,366 0,252 0,284 0,425 0,504 0,547 0,504 0,547 ETAB MW 11 <td>6</td> <td>б</td> <td>6</td> <td>6</td> <td>6</td> <td>6</td> <td>6</td> <td>6</td> <td>6</td> <td>0</td> <td>Ц</td> <td>SNX</td>	6	б	6	6	6	6	6	6	6	0	Ц	SNX
Gruppe MW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 ETA n 14 14 14 14 14 14 14 ETA n 14	10,774	9,358	8,254	7,367	5,986	4,793	3,553	2,709	2,291	1,906	MM	SNX
Gruppe MW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 ETA NW 2,049 2,354 2,971 3,591 4,688 5,181 5,692 5,826 6,154 ETA n 14 14 14 14 14 14 14 14 ETA n 11 11 11 11 14 11 </td <td>0,621</td> <td>0,595</td> <td>0,525</td> <td>0,485</td> <td>0,453</td> <td>0,389</td> <td>0,331</td> <td>0,339</td> <td>0,356</td> <td>0,371</td> <td>SEM</td> <td>Nebivolol</td>	0,621	0,595	0,525	0,485	0,453	0,389	0,331	0,339	0,356	0,371	SEM	Nebivolol
Gruppe MW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 ETA MW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 ETA n 14 14 14 14 14 14 14 ETA n 0,328 0,320 0,252 0,284 0,425 0,470 0,487 0,504 0,547 ETAB MW 2,586 2,970 3,379 4,125 5,151 5,865 6,778 0,504 0,547 ETAB MW 2,586 2,970 3,379 4,125 5,161 1,1 11	1	1	11	11	11	11	11	11	11	11	Ч	Nebivolol
Gruppe MW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 ETA n 14 14 14 14 14 14 14 ETA n 14 14 14 14 14 14 14 ETA n 14 14 14 14 14 14 14 14 ETA 0 0,328 0,252 0,284 0,425 0,504 0,487 0,504 0,547 ETAB MW 2,586 2,970 3,379 4,125 5,151 5,865 6,788 7,753 8,543 9,329 ETAB NW 11 <	6,665	6,051	5,442	4,872	4,348	3,737	3,008	2,476	2,094	1,715	MM	Nebivolol
GruppeMW2,0492,3542,9713,5914,6885,1815,5165,6925,8266,154ETAn141414141414141414ETAn1414141414141414ETAn1414141414141414ETAn1414141414141414ETASEM0,3280,2520,2840,4250,4700,4870,5040,547ETABMW2,5862,9703,3794,1255,1515,8656,7887,7538,5439,329ETABn1111111111111111111111ETABNW2,5862,9703,3794,1255,1515,8656,7887,7538,5439,329ETABNW1,8252,1902,8523,5124,1615,2345,6796,2226,766LosartanNW1,8252,1902,8523,5124,1615,2345,6796,2226,766Losartann131313131313131313131313	0,791	0,729	0,733	0,748	0,545	0,563	0,785	0,652	0,420	0,349	SEM	Losartan
GruppeCruppeNW2,0492,3542,9713,5914,6885,1815,5165,6925,8266,154ETANW2,0492,3542,9713,5914,6885,1815,5165,6925,8266,154ETAn14141414141414141414ETAn141414141414141414ETANW2,5862,9703,3794,1255,1515,8656,7887,7538,5439,329ETABNW2,5862,9703,3794,1255,1515,8656,7887,7538,5439,329ETABN1111111111111111111111ETABN0,3060,2660,2770,3960,5840,6860,8361,0041,1761,301ETABNW1,8252,1902,8523,5223,6124,1615,2345,6796,2226,766	13	13	13	13	13	13	13	13	13	13	Ч	Losartan
Gruppe Curppe Signe <	6,766	6,222	5,679	5,234	4,161	3,612	3,522	2,852	2,190	1,825	MM	Losartan
Gruppe Curppe Signe <	1,301	1,176	1,004	0,836	0,686	0,584	0,396	0,277	0,266	0,306	SEM	ETAB
Gruppe Cruppe S,516 S,516 S,692 S,826 6,154 ETA MW 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 ETA n 14 14 14 14 14 14 14 ETA n 0,328 0,252 0,284 0,425 0,504 0,487 0,504 0,547 ETA SEM 0,320 0,252 0,284 0,425 0,504 0,487 0,504 0,547 ETA MW 2,586 2,970 3,379 4,125 5,151 5,865 6,788 7,753 8,543 9,329	11	=	11	11	11	11	11	11	11	11	Ч	ETAB
Gruppe Gruppe Signe <	9,329	8,543	7,753	6,788	5,865	5,151	4,125	3,379	2,970	2,586	MM	ETAB
Gruppe Curppe State 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 ETA NN 2,049 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154 ETA n 14 14 14 14 14 14 14 14	0,547	0,504	0,487	0,470	0,504	0,425	0,284	0,252	0,320	0,328	SEM	ETA
Gruppe Gruppe 2,354 2,971 3,591 4,688 5,181 5,516 5,692 5,826 6,154	14	14	14	14	14	14	14	14	14	14	Ц	ETA
Gruppe	6,154	5,826	5,692	5,516	5,181	4,688	3,591	2,971	2,354	2,049	MM	ETA
												Gruppe

SNX	MM	11,752	12,310	12,912	13,439	13,659	13,820	
SNX	L	ი	<u>о</u>	6	<u>б</u>	6	6	
SNX	SEM	1,390	1,332	1,320	1,284	1,286	1,268	
ETAB	MM	13,846	13,875	13,935				
ETAB	L	=	1	1				
ETAB	SEM	1,734	1,737	1,745				
Nebivolol	MW	10,492	10,625	10,706				
Nebivolol	c	=	1	=				
Nebivolol	SEM	1,035	1,070	1,093				
Tab.28: Is	ovolumetrisc	the Ausgan	asbedina	ungen: En	ddiastolis	cher Druch	c in mmHa	

nmHg
k in r
Druc
scher
astoli
Enddi
 gen: F
ingun
 gsbed
 Isgan(
 he Au
etrisc
volum
 8: Iso
 ^{ab.2}

Gruppe											
ETA	MM	6.586	9.419	13.988	17.463	21.779	23.580	24.671	25.089	25.563	25.932
ETA	c	14	14	14	14	14	14	14	14	14	14
ETA	SEM	960	942	1.275	1.571	1.951	1.766	1.641	1.592	1.539	1.507
ETAB	MW	5.692	7.207	8.805	11.332	14.560	17.245	19.518	21.033	21.808	22.019
ETAB	L	11	1	=	11	11		=	=	1	11
ETAB	SEM	634	798	864	1.201	1.635	1.964	2.167	2.269	2.347	2.361
Losartan	MM	5.567	6.968	9.813	14.113	17.985	20.846	23.217	24.755	25.707	26.016
Losartan	۲	13	13	13	13	13	13	13	13	13	13
Losartan	SEM	861	1.069	1.480	1.984	1.904	1.667	1.583	1.519	1.438	1.449
Nebivolol	MM	4.738	5.999	8.282	11.151	14.344	17.640	19.479	20.935	22.483	23.366
Nebivolol	۲	11	1	=	11	11	11	=	=	1	11
Nebivolol	SEM	724	724	741	774	772	918	992	942	994	833
SNX	MM	6.396	7.562	9.226	11.098	13.784	16.350	18.359	19.224	19.960	20.206
SNX	L	Ø	8	œ	8	8	Ø	œ	8	œ	8
SNX	SEM	604	610	867	1.247	1.542	168	1.889	1.849	1.699	1.657

N/m	innung in	Wandspa	/stolische	Jungen: Sy	ngsbeding	che Ausgai	ovolumetrise	Tab.29: Is
					1.652	1.654	SEM	SNX
					8	8	۲	SNX
					20.353	20.259	MM	SNX
			800	748	737	752	SEM	Nebivolol
			11	1	11	11	۲	Nebivolol
			24.598	24.487	24.301	23.829	MM	Nebivolol
						1.440	SEM	Losartan
						13	c	Losartan
						26.064	MM	Losartan
		2.172	2.232	2.313	2.348	2.366	SEM	ETAB
		1	11	11	11	11	c	ETAB
		22.755	22.514	22.279	22.194	22.151	MM	ETAB
	1.371	1.376	1.381	1.396	1.431	1.483	SEM	ETA
	14	14	14	14	14	14	۲	ETA
	26.515	26.493	26.472	26.417	26.307	26.144	MM	ETA

	N/m²
	nnung in
	Wandspa
	Systolische
	gungen: S
1000	Ingsbedin
- >>	e Ausga
	Isovolumetrisch
	Fab.29:

Gruppe FTA	MM	160 605	186.941	243 250	314 565	440 521	512 305	548 932	571 359	588.917	630 447
ETA		14	14	14	14	14	14	14	14	14	14
ETA	SEM	29,942	29,895	27,284	34,897	63,407	87,341	85,093	85,915	87,368	91,349
ETAB	MM	169,000	200,933	237,397	310,286	417,599	495,342	602,336	713,982	810,559	906,684
ETAB	c	11	11	11	1	11	11	1	1	11	1
ETAB	SEM	30,907	27,534	27,208	39,922	61,438	74,425	97,653	119,758	143,701	161,306
Losartan	MM	150,887	194,061	281,579	366,102	452,136	514,549	578,549	636,896	710,365	789,888
Losartan	c	13	13	13	13	13	13	13	13	13	13
Losartan	SEM	42,625	55,060	95,588	121,311	123,488	119,612	118,721	118,146	119,952	131,308

Nebivolol	MM	130,700	165,220	201,091	255,649	339,325	414,340	480,895	550,784	638,629	715,772
Nebivolol	L	11	1	1	1	1	11	11	=	1	11
Nebivolol	SEM	40,255	39,473	38,592	39,299	47,712	56,411	61,931	71,088	80,056	87,697
SNX	MM	188.750	238.750	304.125	390.625	544.000	719.000	933.625	1.051.000	1.175.500	1.260.750
SNX	c	8	8	80	80	8	8	8	8	Ø	ω
SNX	SEM	37,264	48,341	59,814	66,768	96,782	123,931	175,242	186,552	197,643	200,674
ETA	MM	622,359	686,406	691,421	695,142	706,319	713,759				
ETA	L	14	14	14	14	14	14				
ETA	SEM	91,168	90,556	89,051	88,064	85,346	83,793				
ETAB	MM	982,088	1068,983	1161,341	1255,410	1358,365	1393,934	1431,354	1442,380	1457,667	
ETAB	c	11	11	11	1	1	11	1		1	
ETAB	SEM	183,745	199,718	212,844	206,966	203,626	207,005	213,704	214,813	218,064	
Losartan	MM	824,239	849,015	893,134	922,005	932,222	939,427				
Losartan	c	13	13	13	13	13	13				
Losartan	SEM	132,712	134,436	143,095	147,378	147,618	148,783				
Nebivolol	MM	791,860	877,640	977,485	1062,126	1154,108	1202,317	1230,378	1322,884	1330,915	1343,107
Nebivolol	c	11	11	1	1	1	1	1	=	1	1
Nebivolol	SEM	99,595	104,002	119,647	133,311	164,099	162,875	162,159	197,369	197,603	198,578
SNX	MM	1.363.714	1.453.857	1.569.250	1.620.875	1.659.250	1.686.750				
SNX	c	7	7	80	80	80	8				
SNX	SEM	237,385	234,846	216,315	209,862	218,552	220,565				
Nebivolol	MM	1351,325	1363,781	1367,965							
Nebivolol	۲	11	11	=							
Nebivolol	SEM	199,653	201,910	202,834							
Tab.30: Is	ovolumetrisc	che Ausgar	ıgsbedingı	ungen: Dia	stolische V	Vandspanr	1/N ni gun	n²			

6.2 Literaturverzeichnis

- Aiello S., Remuzzi G., Noris M.: Nitric oxide / endothelin balance after nephron reduction. Kidney Int 1998; 53 (65):S63-S67
- 2. Amann K., Ritz E.: Cardic structure and function in renal disease Curr Opin Nephrol Hypertens 1996; 5:102-106
- Amann K., Neusüß R., Ritz E., Irzyniec T., Wiest G., Mall G.: Changes of vascular architecture independent of blood pressure in experimental uremia Am J Hyp 1995; 8:409-417
- 4. Anderson S., Rennke H.G., Brenner B.M.,: Therapeutic advantage of converting enzyme inhibitor in arresting progressive renal disease associated with systemic hypertension in the rat J Clin Invest 1986; 776(6):1993-2000
- Benigni A., Perico N., Gaspari F., Zoja C., Bellizzi L., Gabarelli M., Remuzzi G.: Increased renal endothelin production in rats with reduced renal mass Am J Physiol 260:F331-F339
- 6. Benigni A., Remuzzi G.: Endothelin antagonists Lancet 1999, 353:133-138
- Beyer M.E., Slesak G., Nerz S.: Effects of endothelin-1 and IRL 1620 on myocardial contractility and myocardial energy metabolism J Cardiovasc Pharmacol 1995; 26(3):S150-S152
- 8 Brown M., Chou S.-Y., Porush J.G.: Endothelins and kidney deseases Nephron 1996; 72:375-382
- 9. Brutsaert D.L., Sys S.U.: Relaxation and diastole of the heart. Physiol Rev 1989; 69: 1228-1315
- Campese V.M.: Neurogenic factors in hypertensive patients with chronic renal failure. New Engl J Med 1999; 340:1321-1328
- 11. Cheymol G., Woestenborghs R. :Pharmacokinetic study and cardiovascular monitoring of nebivolol in normal and obese subjects Eur J Clin Pharmacol 1997; 51:493-498

- Chung O., Stoll M., Unger T.: Physiologic and pharmacologic implications of AT1 versus AT2 receptors. Blood Press Suppl 1994; 2:47-52
- Clozel M., Fischli W.: Human cultured endothelial cells do secrete endothelin-1. J Cardiovasc Pharmacol 1989; 13(5):1193-1200
- Converse R.L.jr., Jacobsen T.N., Toto R.D., Jost C.M., Cosentino F., Fouad Tarazi E., Victor R.G.: Symphathetic overactivity in patients with chronic renal failure. New Engl J Med
- 15. Correa-Rotter R., Hostetter T.H., Manivel J.C., Rosenberg M.E.: Renin expression in renal ablation Hypertension 1994 Oct; 20(4):483-490
- Delpy E., Coste H., le Monnier de Gouville A.C. : Effects of cyclic GMP elevation on isoprenaline-induced increase in cyclic AMP and relaxation in rat aortic smooth muscle: role of phosphodiesterase 3 Br J Pharmacol 1996; 119:471-8
- 17. De Nucci G., Thomas R.,D'Orleans-Juste P., Antunes E., Walder C., Warner T.D., Vane J.R.: Pressor effects of circulating endothelin are limited by its removal in the pulmonary circulation and by the release of prostacyclin and endothelium-derived relaxing factor. Proc nat Acad Sci 1988; 85:9797
- Dhein S., Rohnert P., Markau S., Kotchi-Kotchi E., Becker K., Poller U., Osten B., Brodde O.E.: Cardiac beta-adrenoreceptors in chronic uremia: studies in humans and rats J Am Coll Cardiol 2000; 36(2):608-17
- Eckly A.E., Stoclet J.C., Lugnier C.: Isoprenaline induces endotheliumindependent relaxation and accumulation of cyclic nucleotides in the rat aorta Eur J Pharmacol 1994;271:237-40
- 20. Emori T., Hirata Y., Marumo F.: Specific receptors for endothelin-3 in cultured bovine endothelial cells and its molecular mechanism of action FEBS 1990; Lett 263:261-4
- 21. Faraj A.H., Morley A.R.: Remnant kidney pathology after 5/6 nephrectomy in rat APMIS 1992; 100:1097-1105

- 22. Foley R.N., Parfrey P.S., Harnett J.D., Kent G., Barre P.E.: Cardiac structure and function in patients starting end-stage renal desease therapy:prevalence and prognosis.Abstract. J Pharmacol Soc Nephrol 1993; 4:345
- 23. Foley R.N., Parfrey P.S., Hefferton D., Singh I., Simms A., Barrett B.J.: Advance prediction of early death in patients starting maintenance dialysis Amer J Kidney Dis 1994; 23:836-845
- 24. Fozard J.R., Part M.L.: The role of nitric oxide in the regional vasodilatator effects of endothelin-1 in the rat Br J Pharmacol 1992; 105:744-50
- 25. Frank O.: Zur Dynamik des Herzmuskels Z Biol 32:371-437
- Fujitani Y., Ueda H., Okada T.: A selective agonist of endothelin type B receptor, IRL 1620; stimulates cyclic GMP increase via nitric oxide formation in rat aorta J Pharmacol Exp Ther 1993; 267:683-689
- Fukunaga M., Fujiwara Y., Ochi S., Yokoyama K., Fujibayashi M., Orita Y., Fukuhara Y., Ueda N., Kamada T.: Stimulatory effect of thrombin on endothelin-1 production in isolated glomeruli and cultured mesangial cells of rats. J Cardiovasc Pharmacol 1991; 17(Suppl 7):S411-3
- 28. Gao Y., Nagao T., Bond R.A., Janssens W.J., Vanhoutte P.M.: nebivolol induces endothelium-dependent relaxations of canine coronary arteries J Cardiovasc Pharmacol 1991; 17:946-9
- 29. Ghoneim M.A., Yamamoto T., Hirose S., Nagasawa T., Hagiwara H: Endothelium localization of ETB-receptor revealed by immunohistochemistry J Cardiovasc Pharmacol 1993; 22(8):111-2
- Goa K.L., Wagstaff A.J.: Losartan potassium: A review of its pharmacology, clinical eficacy and tolerability in the management of hypertension Drug 1996; 51:820-845
- Goldberg N., Lundin A.P., Delano B., Friedman E.A., Stein R.A.: Changes in left ventricular size, wall thickness, and function in anemic patients treated with recombinant human erythropoietin. Amer Heart J 1992; 124:424-427

- Goldstein M., Vincent J.L., De Smet J.M., Barvais L., Van Nueten L., Scheijgrond H., d'Hollander A., Leclerc J.L., Kahn R.J.: Administration of nebivolol after coronary artery bypass in patients with altered left ventricular function. J Cardiovasc Pharmacol 1993; 22:253-8
- Grace G.C., Macdonald P.S., Dusting G.J.: Cyclic nucleotide interactions involved in endothelium-dependent dilatation in rat aortic rings Eur J Pharmacol 1988; 148 :17-24
- Gray D.W., Marshall I.: Novel signal transduction pathway mediating endothelium-depentent β-asrenoreceptor vasorelaxation in rat thoracic aorta Br J Pharmacol 1992; 107:684-90
- Greene E.L., Kren S., Hostetter T.H.: Role of aldosterone in the remnat kidney model in the rat J. Clin. Invest. 1996; 98(4):1063-1068
- Haynes W.G., Webb D.J.: Endothelin as a regulator of cardiovascular function in health and desease J Hypertens 1998; 16:1081-1098
- Harnett J.D., Kent K.M., Barre P.E., Taylor R., Parfrey P.S.: Risk factors for the development of left ventricular hypertrophy in a prospectively followed cohort of dialysis patients. J Am Soc Nephrol 1994; 4:1486-1490
- Harnett J.D., Kent G.M., Foley R.N., Parfrey P.S.: Cardiac function and haematocrit level.
 Am J Kidney Dis 1995; 25(suppl. 1):S3-S7
- Helin K., Stoll M., Meffert S., Stroth U., Unger T.: The role of angiotensin receptors in cardiovascular diseases. Ann Med 1997; 29(1):23-9
- Hocher B., Thöne-Reineke C., Bauer C.: The paracrin endothelin system: Pathophysiology and implications in clinical medicine Eur J Clin Chem Biochem 1997; 35(3):175-189
- Holubarsch C.H., Jacob R.: Evaluation of elastic properties of myocardium Z Kardiol 1979; 68:123-127

- 42. Hutchinson T.A., D.C. Thomas, B. MacGibbon: Predicting survival in adults with end-stage renal disease: an age equivalence index. Ann Intern Med (96) 1982; 417-423
- 43. Jackson B., Hodsman P., Johnston C.I.: Changes in the reninangiotensin system, exchangeable body sodium, and plasma and atrial content of atrial natriuretic factor durina evolution Am J Hypertens 1988; 1(3):298-300
- 44. Jacob R., Dierberger B., Gülch R., Kiessling G.: Geometric and muscle pysiological factors of the Frank Starling mechanism Basic Res Cardiol 1993; 88:86-91
- Jagadeesh G.: Angiotensin II receptors-antagonists, molecular biology, and signal transduction Ind J Exp Biol 1998; 36:1171-1194
- Janssens W.J., Xhonneux R., Janssen P.A.J. : Animal pharmacology of nebivolol. Drug Investig 1991; 3(suppl 1):13-24
- 47. Kakoki M., Hirata Y., Hayakawa H.: Effects of vasodilatatory betaadrenoreceptor antagonists on endothelium-derived nitric oxide release in rat kidney Hypertension 1999; 33 part II :467-471
- Kamata K., Miyata N., Kasuya Y.: Involvement of endothelial calls in relaxation and contraction responses of the aorta to isoproterenol in naïve and streptozotocin-induced diabetic rats. J Pharmacol Exp Ther 1989; 249: 890-4
- 49. Kanse S.M., Takahashi K., Warren J.B., Perera T., Porta M., Ghatei M., Bloom S.R.: Production of endothelin by vascular smooth muscle cells J Cardiovasc Pharmacol 1991; 17(7):113-116
- 50. Kiowski W., Lüscher T.F., Linder L. Bühler F.R.: Endothelin-1-induced vasoconstriction in man. Reversal by calcium channel blockade but not by nitrovasodilatators or endothelium-derived relaxing factor Circulation 1991; 83:469
- 51. Klug D., Robert V., Swynghedauw B.: Role of mechanical and hormonal factors in cardiac remodeling and the biologic limits of myocardial adaptation Am J Cardiol 1993; 71:46A-54A

- 52. Kumar C., Mwangi V., Nuthulaganti P., Wu H.L., Pullen M., Brun K., Aiyar H., Morris R.A., Naughton R., Nambi P.: Cloning and characterization of a novel endothelin receptor from Xenopus heart J Biol Chem 1994; 269 (18):13414-20
- Lariviere R., LebelM., Kingma I.: Effects of Losartan and Captopril on endothelin-1 production of blood vessels and glomeruli of rats with reduced renal mass. Am J Hypertens 1998; 11:989-997
- 54. Lariviere R., D'Amours M., Lebel M.: Increased immunoreactive endothelin-1 levels in blood vessels and glomeruli of rats with reduced renal mass Kidney Blood Press Res 1997; 20:372-380
- 55. Levin E.R.: Endothelins as cardiovascular peptides Am J Nephrol 1996; 16:246-251
- 56. Luscher T.F.: Endothlin, endothelin receptors, and endothelin antagonists Curr Opin Nephrol Hypertens 1994; 3(1):92-8
- 57. MacLaughlin M., Monserrat A.J., Muller A., Matoso M., Amorena C.: Role of kinins in the renoprotective effect of angiotensin converting enzyme inhibitors in experimental chronic renal failure Kidney Blood Press Res 21:329-334
- 58. Mann J.F., Hausen M., Kutter A., Sudhoff R., Ritz E.: Altered betareceptor responsiveness in uremic rats Proc Eur Dial Transplant Assoc 1983; 19:788-9
- 59. Massry S.G., Goldstein D.A.: Role of parathyroid hormone in uremic toxicity Kidney Int 1978; 13:539-542
- 60. Matsumura Y., Ikegawa R., Hisaki K., Tsukahara Y., Takaoka M., Morimoto S.: Conversion of big endothelin-1 by phosphoramidonsensitive metallo-proteinase derived from aortic endothelial cells J Cardiovasc Pharmacol 1991; 17(7):65-67
- 61. McLay J.S., Irvine N., McDevitt D.G.: Clinical pharmacology of nebivolol Drug Invest 1991; 3:S31-S32
- 62. Meggs L.G., Ben-Ari J., Gammon D.: Adaptive myocardial hypertrophy in the renal ablation model Am J Hypertens 1990; 3:33-38

- 63. Moncada S., Palmer R.M., Higgs E.A.: The discovery of nitric oxide as the endogenous vasodilatator Hypertension 1988; 12(4):365-72
- 64. Moncada S., Palmer R.M., Higgs E.A.: Nitric oxide: Physiology, pathophysiology and pharmacology Pharmacol Rev 1991; 43:109-142
- 65. Moncada S., Radomski M.W., Palmer R.M.: Endothelium-derived relaxing factor. Identification as nitric oxide and role in the control of vascular tone and platelet function Biochem Pharmacol 1988; 37(13):361-74
- 66. Moncada S., Rees D.D., Schulz R., Palmer R.M.J.: Development and mechanisms of a specific supersensitivity to nitrovasodilatators after inhibition of vascular nitric oxide synthesis in vivo. Proc Natl Acad Sci USA 1991;88:2166-70
- 67. Moreau P., D'Uscio L., Shaw S.: AngiotensinII increases tissue endothelin and induces vascular hypertrophy Circulation 1997; 96:1593-1597
- Morishita R., Gibbons G.H., Ellison K.E., Lee W., Zhang L., Yu H., Kaneda Y., Ogihara T., Dzau V.J.: Evidence for direct local effect of angiotensin in vascular hypertrophy. In vivo gene transfer of angiotensin converting enzyme. J Clin Invest 1994; 94(3):978-84
- 69 Nabokov A., Amann K., Wagner J.: Influence of specific and non-specific endothelin receptor antagonists on renal morphology in rats with surgical renal ablation Nephrol Dial Transplant 1996; 11:514-520
- 70. Nambi P., Pullen M., Kumar C.: Identification of a novel endothelin receptor in Xenopus laevis liver Neuropeptides 1994; 26(3):181-5
- Norman J., Badie-Dezfooly B., Nord E.P., Kurtz I., Schlosser J., Chaudhari A., Fine L.G.: EGF-induced mitogenesis in proximal tubular cells: potentiation by angiotensin II. Am J Physiol 1987; 253 (2Pt2):F299-309
- 72. Nwasokwa, In Duntzker D.R., Scharf S.M.: Cardiopulmonary Critical Care; 3.Auflage; Sounder Company; 145-171

- 73. Peters H., Border W.A., Noble N.A.: Angiotensin II blockade and low protein diet produce additive therapeutic effects in experimental glomerulonephritis Kidney Int 2000; 57:1493-1501
- 74. Remuzzi G., Benigni A.: Endothelins in the control of cardiovascular and renal function Lancet 1993; 342:589-93
- 75. Rossi G.P., Sacchetto A., Rizzoni D.: Blockade of Angiotensin II type 1 receptor and not of endothelin receptor prevents hypertension and cardiovascular desease in transgenic (mREN2)27 rats via adrenocortical steroid-independent mechanisms Arterioscler Thromb Vasc Biol 2000; 20:949-956
- 76. Rushmer R.F., Van Citters R.L., Franklin D.L.: Some axioms, popular notions and misconceptions regarding cardiovascular control Circ Res 1963; 27:118-141
- 77. Saito A., Shiba R., Yanagisawa M., Masaki T., Kimura S., Yamada K., Mima T., Shigeno T., Goto K.: Characterisation of the effect of endothelins in canine cerebral arteries J Cardiovasc Pharmacol 1991; 17(7):219-21
- 78. Sandler H., Dodge H.A.T.: Left ventricular tension and stress in man Circ. Res. 1963; 13:91-104
- Salisbury P.F.: Coronary artery pressure and strength of right ventricular contraction Circ Res 1955; 3:633
- 80. Schiffrin E.L., Touyz R.M.: Vascular biology of endothelin J Cardiovasc Pharmacol 1998; 32(3):S2-S13
- 81. Schröder H.: Organische Nitrate: Neue Erkenntnisse zum Wirkungsmechanismus einer alten Substanzklasse Med Monatsschr Pharm 1992; 15:134-139
- Stoleru L., Wijns W., Van Eyll C., Bouvy T., Van Nueten L., Pouleur H.: Effects of d-nebivolol and I-nebivolol on left ventricular systolic and diastolic function: comparison with d-I-nebivolol and atenolol. J Cardiovasc Pharmacol 1993; 22:183-90
- Taddei S., Vanhoutte P.M.: Role of endothelin-evoked contractions in the rat aorta Hypertension 1993; 21:9-15

- 84. Thorin E., Cernacek P., Dupuis J.:Endothelin-1 Regulates tone of isolated small arteries in the rat Hypertension 1998; 31:1035-1041
- 85. Toyoshima H., Nasa Y., Hashizume Y.: Modulation of cAMP-mediated vasorelaxation by endothelial nitric oxide and basal cGMP in vascular smooth muscle J Cardiovasc Pharmacol 1998; 32:543-551
- 86. Tsuzuki S., Eguchi S., Inagami T.: Inhibition of cell proliferation and activation of protein tyrosine phosphatase mediated by angiotensin II type 2 (AT2) receptor in r3T3 cells.
 Biochem Biophys Res Commun 1996; 228(3):825-30
- 87. Van De Water A., Janssens W.: Pharmacological and hemodynamic profile of nebivolol, a chemically novel, potent and selective beta1adrenergic antagonist J Cardiovasc Pharmacol 1988; 11:552-563
- Ward J.E., Coles P., Cox H.:Relationship between the sympatolytic action of nebivolol and hypotension J Cardiovasc Pharmacol 1992; 20:115-124
- 89. Wolf G., Mueller E., Stahl R.A., Ziyadeh F.N.: Angiotensin II-induced hypertrophy of cultured murine proximal tubular cells is mediated by endogenous transforming growth factor-beta J Clin Invest 1993; 92(3):1366-72
- Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T.: A novel potent vasoconstrictor peptide produced by vascular endothelial cells Nature 1988; 332:411-15
- 91. Yano M., Okada K., Takada J., Hioki J., Matsuyama K., Fukuroda T., Nogichi K., Nishikibe M., Ikemoto F.: Endothelin-converting enzyme and ist in vitro and in vivo inhibition. J Cardiovasc Pharmacol 1991; 17(7):16-18
- 92. Zucchelli P., Sturani A., Zuccala A., Degli Eposti E., Chiarini C.: Dysfunction of the autonomic nervous system in patients with end-stage renal failure Contrib Nephrol Basel, Karger 1985; 45:69-81

6.3 Danksagung

Herrn PD Dr. B. Brehm danke ich für die Überlassung des Themas. Ihm und Frau Dr. S. Wolf möchte ich ganz besonders für die freundliche Unterstützung während der Untersuchungen und das Engagement in Bezug auf die Auswertung und die Fertigstellung der Arbeit bedanken.

Mein besonderer Dank geht an Herrn Prof. Kissling und Herrn K. Stieler für die Einweisung und Überlassung ihrer Geräte und Räumlichkeiten.

Ich danke Herrn Prof. Dr. K. Dietz des Instituts für Medizinische Biometrie für die Erstellung der Statistik.

6.4 Lebenslauf

Eva Blozik, geb. Halblaub

12. September 1976	geboren in Heilbronn Eltern: Dr. Horst und Dr. Karola Halblaub, geb. Spoor
1982-1983	Grundschule Schwaigern
1983-1986	Grundschule Frickingen
1986-1995	Gymnasium Pfullendorf, Abschluss mit Abitur
April 1996	Beginn des Medizinstudiums an der Eberhard-Karls- Universität Tübingen
April 1998	Ärztliche Vorprüfung
1998-2000	Studium der Biochemie, Universität Tübingen, Diplom- Vorprüfungen in Botanik, Zoologie, Physik und Anorganischer Chemie
März 1999	1. Abschnitt der Ärztlichen Prüfung
April 2001	2. Abschnitt der Ärztlichen Prüfung
3. Mai 2002	3. Abschnitt der Ärztlichen Prüfung
Aug 2002- Jan 2004	Ärztin im Praktikum in der Inneren Abteilung des KKH Sigmaringen
Sept 2003	Heirat mit Michael Blozik
Seit Feb 2004	Forschungsstipendium der Robert-Bosch-Stiftung, Altersforschung Spital Bern-Ziegler, Bern