Aus der Universitätsklinik für Anaesthesiologie
und Transfusionsmedizin Tübingen
Abteilung für Anaesthesiologie und Intensivmedizin
Ärztlicher Direktor: Professor Dr. K. Unertl

Immunologische und rheologische Konsequenzen von
Leukozytenkontaminationen bei
maschineller Autotransfusion

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Medizin

der Medizinischen Fakultät
der Eberhard-Karls-Universität
zu Tübingen

vorgelegt von
Reiner Ries
aus Schrozberg

2003
Dekan: Professor Dr. C. D. Claussen

1. Berichterstatter: Professor Dr. K. Unertl

2. Berichterstatter: Privatdozentin Dr. B. Neumeister
Inhaltsverzeichnis

1. Einleitung ... 1

2. Material und Methoden .. 5
 2.1. Endothelzellkultur .. 5
 2.1.1. Nabelschnurpräparation 5
 2.1.2. Kultivierung der Endothelzellen 7
 2.2. Gewinnung der Blutproben 8
 2.2.1. Patientenauswahl ... 8
 2.2.2. Vollblut ... 9
 2.2.3. Transfusat ... 9
 2.2.4. Standardisierung und Staining 10
 2.3. Flusskammer ... 11
 2.4. Analyse der Leukozytenadhäsion 14
 2.5. Durchflußzytometrie ... 18
 2.6. Statistische Auswertung .. 22
 2.7. Materialien und Geräte .. 22

3. Ergebnisse ... 27
 3.1. Rheologie/Leukozytenadhäsion 27
 3.1.1. Sticking und Rolling .. 27
1. Einleitung

überwiegenden Mehrzahl der Publikationen mit englischsprachigen Begriffen verknüpft sind, werden diese im Folgenden beibehalten.

Da die Expression von Adhäsionsmolekülen an eine vorangehende Aktivierung der Zellen durch proinflammatorische Mediatoren gebunden ist, kann die Adhäsion somit als physiologische Reaktion bei Infektionen und Gewebeuntergang verstanden werden [43]. Darüber hinaus führt das Einwandern von Leukozyten selbst zu Gewebeschäden, da in unmittelbarer Umgebung der Leukozyten hohe Konzentrationen toxischer Substanzen wie von Zytokinen, Eicosanoiden und O$_2$-Radikalen auftreten [5;11;16;33]. Aus diesem Grund wird der Akkumulation von Leukozyten eine große pathogenetische Bedeutung für Organschäden bei Trauma, Schock, Sepsis sowie Ischämie/Reperfusion beigemessen [79;83;84].

Der Kontakt von Blutbestandteilen mit Fremdoberflächen und seine Auswirkungen sind in Studien zur Hämodialyse sowie zum extrakorporalen Kreislauf am Beispiel der Herz-Lungen-Maschine untersucht worden. Es zeigten sich neben ansteigenden Zytokinspiegeln eine Aktivierung der

2. Material und Methoden

Alle im Folgenden erwähnten Reagenzien und Geräte sind am Ende des Kapitels tabellarisch aufgelistet.

2.1. Endothelzellkultur

2.1.1. Nabelschnurpräparation

Die Nabelschnurpräparation erfolgt nach einer modifizierten Methode von Jaffe et al [35].

Transport: Transportgefäß mit 100 ml Phosphate Buffered Saline⁺ (PBS⁺) und 1% Antibiotic/ Antimycotic Solution. Bearbeitet wurden Nabelschnüre aus unauffälligen Geburten nach ausgetragenen Schwangerschaften. Das Transportgefäß steht, bei 4°C gekühlt maximal 24 h zur Verfügung.

Vorbereitung: 600-ml-Becherglas mit 300 ml Ringerlösung im Wasserbad auf 37°C erwärmen, 2 Cryo-Tubes mit je 1 ml Collagenase A bzw. 1 ml Antibiotic/Antimycotic Solution bei Raumtemperatur auftauen. Spüllösung I: 50 ml PBS mit 1% Antibiotic/ Antimycotic Solution steril abfüllen. Spüllösung II: 50 ml Medium 199 mit 10% Fetal Bovine Serum (FBS), 1% Natriumpyruvat und 1% Antibiotic/Antimycotic Solution steril abfüllen. 15 ml Endothelzellmedium im 50-ml-Röhrchen im Wasserbad erwärmen, 1 ml Collagenase A in 2-ml-Spritze aufziehen und durch Sterifilter in ein 50-ml-Röhrchen geben, anschließend mit 9 ml PBS auffüllen und im Wasserbad auf 37°C erwärmen.

Präparation:
Sämtliche Schritte der Nabelschnur-Präparation werden unter sterilen Bedingungen unter der Werkbank durchgeführt.

Nabelschnur mit Pinzette aus dem Transportgefäß nehmen, in Nierenschale legen und äußerlich mit Kompressen reinigen, Klemmarken mit Schere abschneiden und auf Punktionsstellen prüfen.

Kabelbinder auf Nabelschnur oder Schlauch aufstecken, Vene kanülieren und Kabelbinder festziehen, so daß das Schlauchende in der Vene befestigt ist.

20-ml-Spritze mit Spüllösung I an Schlauch anschließen und durchspülen, selbiges von der anderen Seite, beide Schläuche abklemmen.

37°C warme Collagenase A in 10-ml-Spritze aufziehen, auf ein Schlauchende aufstecken und durch die Nabelschnur spritzen bis am anderen Ende Flüssigkeit austritt, dann distale Klemme schließen und Vene prall füllen.

Nabelschnur mit geschlossenen Klemmen und aufgeschaubten roten Verschlusskäppchen für 5 bis 6 Minuten in 600-ml-Becherglas im Wasserbad halten, anschließend unter Werkbank 20-ml-Spritze mit Spüllösung II
aufstecken und durchspülen, in 50-ml-Röhrchen auffangen, danach nochmals mit Luft durchspritzen.

Zentrifugation bei 110 x g für 8 min (bei RT) ohne Bremse

Überstand vorsichtig abpipettieren, Pellet mit 20ml Spüllösung I I resuspendieren und erneut wie oben zentrifugieren.

Überstand abpipettieren, mit 15 ml Endothelzellmedium resuspendieren und eine 75-cm²-Zellkulturflasche befüllen. Zellen im Brutschrank bei 37°C, 100% relativer Luftfeuchtigkeit und 5% CO₂ kultivieren.

2.1.2. Kultivierung der Endothelzellen

Bei Flussskammerwells wird der Medienwechsel nach dem gleichen Prinzip durchgeführt, wobei hier 1ml PBS⁺ pro Well benötigt werden.

Nach drei Tagen bis ca. einer Woche sind die Zellen des Monolayers präkonfluent (Mikroskopkontrolle), die Passage kann erfolgen. Das verbrauchte Kulturmedium wird abpipettiert, die Flasche mit 10 ml warmem Hanks Buffered Saline (HBSS) gespült, nach 30 s abpipettiert und mit 9 ml Trypsin aufgefüllt.

Unter dem Mikroskop ist die enzymatische Ablösung des Monolayers zu verfolgen. Nach Ablösung der meisten Zellen werden zügig wiederum 9 ml Trypsin Neutralizing Solution (TNS) zugefügt. Das Gemisch wird nun in ein 50-ml-Röhrchen pipettiert, die Kulturflasche mit 4 ml HBSS nochmals nachgespült. Es folgt die Zentrifugation der Zellen bei 200 x g, 5 min bei RT mit Bremse. Anschließend wird mit Kulturmedium resuspendiert.
In zeitlicher Abstimmung mit dem Versuchstermin an der Flusskammer werden die Endothelzellen jetzt erneut in 75-cm²-Kulturflaschen oder auf Flusskammerwells passagiert. Zum Einsatz kommen ausschließlich Zellen der ersten, maximal der zweiten Passage. Hierbei befüllt man mit 15 ml Zellsuspension pro Flasche sowie 1,2 ml pro Flusskammerwell. Flusskammerwells werden aus einem Deckglas aus Borosilikat (Dicke 1.5) und selbstklebenden Silikondichtungen angefertigt. Die Dichtung (5 mm Dicke, 40° shore) wird auf das Deckglas geklebt und dieses Well autoklaviert. Nach dem Autoklavieren trägt man ein Gemisch aus 50 µl Kollagen A und 950 µl PBS⁺ zur Beschichtung der Grundfläche auf. Vor der Beschickung mit Zellsuspension wird nochmals mit 600 µl PBS⁺ gespült. Die Suspension wird vor dem Auftragen durch eine Kanüle gespritzt um einen möglichst homogenen Monolayer zu erhalten. Am ersten Tag nach Passage erfolgt ein Medienwechsel, am zweiten oder dritten Tag kann der konfluente Monolayer für den Versuch verwendet werden. Zur Stimulierung der Endothelzellen bei einzelnen Wells erfolgt 4 h vor Versuchsbeginn ein erneuter Medienwechsel mit 25ng TNFα/ml Endothelzellmedium.

2.2. Gewinnung der Blutproben

2.2.1. Patientenauswahl

Entzündungsreaktion stellten ein Ausschlusskriterien dar. Mit einem Patientenblatt wurden die letzte Medikation und relevante präoperative Laborparameter (Hkt, Hb, Ery, Leuko, Thr, CRP) erhoben. Insgesamt konnten somit von 27 Patienten Blutproben entnommen werden.

2.2.2. Vollblut

2.2.3. Transfusat

<table>
<thead>
<tr>
<th>Material und Methode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mindestwaschvolumen:</td>
</tr>
<tr>
<td>Reservoir:</td>
</tr>
<tr>
<td>Re-Start:</td>
</tr>
<tr>
<td>Rote Zellen:</td>
</tr>
<tr>
<td>Option kein Waschen:</td>
</tr>
<tr>
<td>Reservoirwaage:</td>
</tr>
<tr>
<td>Geschw. Regulierung:</td>
</tr>
</tbody>
</table>

Die Zentrifugation erfolgte stets in einer 125ml-Glocke. In ein 50ml-Röhrchen wurden zur Heparinisierung 120 µl Liquemin (5000U/ml) vorgelegt, nach Abschluß des Wasch- und Zentrifugationsvorganges 20 ml Retransfusat zugegeben.

2.2.4. Standardisierung und Staining

Leukozytenzählung:

Leukozyten/µl = n x 20 x 2,5
Es sind Doppelbestimmungen durchzuführen. Wenn die Ergebnisse nicht um mehr als 15% voneinander abweichen ist der Mittelwert zu bilden. Bei größeren Abweichungen ist die Zählung zu wiederholen.

Calcein-Staining:
30 min vor Beginn der Versuchsdurchführung an der Flusskammer erfolgt die Vollblut-Färbung mit Calcein. 50 µl Calcein gelöst in 50 µl DMSO ergeben eine Calcein-Lösung von 1 µg/µl. Um die angestrebte Calcein-Konzentration von 10 µg/ml Vollblut zu erreichen gibt man 10 µl Calcein-Lösung auf 1 ml Blut. Das Röhrchen mit dem Gemisch ist mit Alufolie vor Lichteinfall zu schützen. Danach 30 min Inkubation bei Raumtemperatur im Überkopfmischer (langsamt!).

2.3. Flusskammer

Der benötigte Perfusatfluss wurde in ml/min über eine Perfusor-Pumpe eingestellt. Bei definierter Kammergeometrie war die Flußgeschwindigkeit die Variable um eine gewünschte shear rate (Scherrate) zu erzeugen. Die shear rate stellt wie der shear stress (Scherkraft, Schubspannung) ein gültiges Maß für die hydrodynamischen Bedingungen im Blutstrom dar. Sie kennzeichnet das Geschwindigkeitsgefälle in Flußrichtung in Abhängigkeit vom Abstand zur Gefäßwand. Shear rate und shear stress sind daher die entscheidenden hydrodynamischen Größen, die der Leukozytenadhäsion entgegenwirken. Die shear rate ist bei Vollblutproben der Bestimmung des shear stress als viskositätsabhängiger Größe vorzuziehen; da die Berechnung des shear stress neben einer laminaren Strömung mit parabelförmigem Geschwindigkeitsprofil die Eigenschaften einer Newtonschen Flüssigkeit (konstante Viskosität bei wechselnder shear rate) voraussetzt. Vollblut zeigt jedoch zum einen ein abgeändertes Strömungsprofil, zum anderen handelt es sich bei Vollblut mit abnehmender Viskosität bei steigender shear rate nicht um eine Newtonsche Flüssigkeit. Ferner tendieren Erythrozyten zur Flussmitte hin, so dass an der Gefäßwand ein niederer Hämatokrit und in Folge dessen auch eine geringere Viskosität als erwartet beobachtet werden. Als Konsequenz dieser hydrodynamischen Eigenschaften des Vollbluts wurde von uns an der Flusskammer mit der Größe „shear rate“ gearbeitet. Die Beziehung von shear rate γ [s\(^{-1}\)] zu Flussrate Q [ml/s] ergibt sich nach folgender Formel:

$$Q = \frac{H^2 \times B \times \gamma}{6}$$

$Q = $ Flussrate [ml/s]
$H = $ Kammerhöhe [cm]
$B = $ Kammerbreite [cm]
$\gamma = $ shear rate [s\(^{-1}\)]

$$\tau = \gamma \times \mu$$

$\tau = $ shear stress [dyn/cm\(^2\)]
$\mu = $ Viskosität [P]
Durch Multiplikation $Q \text{[ml/s]} \times 60$ erhält man die bei der Programmierung von Perfusorpumpen übliche Dimension $[\text{ml/min}]$. Bei unserer Versuchs durchführung wurde über Markierungen am Schraubring eine Kammerhöhe H von 0,015 cm eingestellt. Die Breite B von 1,25 cm war durch die Silikondichtung des Flusskammerwells vorgegeben. Zur Erzeugung der gewünschten shear rate wurden daher folgende Flussraten eingesetzt:

<table>
<thead>
<tr>
<th>shear rate $[s^{-1}]$</th>
<th>flow $[\text{ml/min}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0,14</td>
</tr>
<tr>
<td>100</td>
<td>0,281</td>
</tr>
<tr>
<td>200</td>
<td>0,562</td>
</tr>
<tr>
<td>300</td>
<td>0,84</td>
</tr>
<tr>
<td>400</td>
<td>1,124</td>
</tr>
<tr>
<td>800</td>
<td>2,248</td>
</tr>
<tr>
<td>1600</td>
<td>4,496</td>
</tr>
</tbody>
</table>

Die Kammer wurde zu Beginn luftblasenfrei (!) mit raumwarmem Medium 199 (vorher 30 min bei 40°C im Ultraschallbad entgast) bei einem flow von 0,3 ml/min gefüllt. Die Einstellung des Mikroskops und der digitalen Bildverarbeitung wurde unter Durchlicht-Einstellung des Mikroskops vorgenommen. Bei Versuchsbeginn erfolgte der Wechsel der Perfusorspritze zu Vollblut bzw. Transfusat sowie die Einstellung des Mikroskops auf Fluoreszenz-Licht. Ohne Wechsel des Flusskammerwells wurden konsekutiv shear rates in abfallender Reihe ($300 \text{ s}^{-1}\text{-}200 \text{ s}^{-1}\text{-}100 \text{ s}^{-1}\text{-}50 \text{ s}^{-1}$) erzeugt. Bei jeder shear rate betrug die Perfusionszeit 5 min, anschließend wurden von 5 Bildfeldern je 2 digitalisierte Bilder im Abstand von 10 s und die dazwischenliegende Sequenz auf Videoband gespeichert. Nach Abschluß der Perfusion mit Blut folgte ein Detachment assay, in dem bei fixiertem Bildfeld die Ablösung der adhärenen Leukozyten vom Endothel beobachtet wurde. Hierbei steigerten wir die shear rates von 50 s^{-1} über 100 s^{-1}, 200 s^{-1}, 400 s^{-1}, 800 s^{-1} bis 1600 s^{-1}. Perfundiert wurde hier wieder mit Medium 199 jeweils 20 s pro shear rate mit
Material und Methoden

2.4. Analyse der Leukozytenadhäsion

Videoanalyse:
Material und Methode

Die Definition eines Rollers erfolgte nach dem von Goldman und Lawrence eingeführten Begriff der kritischen Geschwindigkeit \([25;39;40;42]\). Hiernach können Interaktionen zwischen Adhäsionsmolekülen angenommen werden, sobald sich ein Leukozyt mit max. 70% der Geschwindigkeit bewegt, die sich für einen frei beweglichen Leukozyten in derselben Entfernung von der Gefäßwand errechnen würde.

Die Geschwindigkeit einer Zelle in Abhängigkeit vom Abstand zur Wand \((v_z)\) wird nach der folgenden Formel bestimmt:

\[
v_z = \frac{3Q}{4ab} [1-(x/a)^2]
\]

Hierbei werden die Flussgeschwindigkeit \(Q\) (ml/s), die halbe Kammerhöhe \(a\) (cm) als Flussmitte sowie die Kammerbreite \(b\) (cm) eingefügt. Definitionsgemäß stellt \(x=0\) die Kammermitte und \(x=a\) den Kammerrand dar. In unserer Anordnung wurde \(b=1,25\) cm und \(2a=0,015\) cm eingestellt. Der Zelldurchmesser eines Leukozyten wurde mit 10 µm angenommen. Für unsere Gegebenheiten ergab sich für die niedrigste Flussrate von 0,14ml/min (entspr. einer shear rate von 50 s\(^{-1}\)) somit eine theoretische kritische Geschwindigkeit von 168 µm/s. Dieses berechnete Geschwindigkeitsmaximum liegt allerdings weit über den realen Werten für adhäsente Leukozyten [42]. Wir konnten in unserem in vitro Modell Zellinteraktionen nur in einem Bereich deutlich unterhalb von 100 µm/s beobachten, so dass die Definition von Rolling bzw. Sticking in Ergänzung zu früheren Studien nach folgenden Kriterien festgelegt wurde:

Eine Zelle, die sich in 10 s um weniger als einen Zelldurchmesser fortbewegt, wurde als Sticker definiert.
Die Fortbewegung um mehr als einen Zelldurchmesser innerhalb von 10 s bis zu einer Geschwindigkeit von 100 µm/s kennzeichnet das Rolling. In die Berechnung der mittleren Rollinggeschwindigkeit gingen ausschließlich Zellen ein, die mindestens eine Sekunde beobachtet werden konnten und die in diesem Zeitraum keinen Kontakt mit anderen Leukozyten hatten.

Analysenintervalle:

Im Tracking Modul des Programmes wurden die dem Rolling zugeordneten Leukozyten über die gesamten 10 s verfolgt sowie Geschwindigkeit und Richtung bestimmt. Darüber hinaus wurden für Rolling und Sticking die jeweilige Zellkonzentration pro mm² bestimmt, woraus für jede Blutprobe und shear rate ein individuelles Adhäsionsprofil aus Rollinggeschwindigkeit, Rolling fraction und Zelldichte ermittelt werden konnte. Zusätzlich wurden im 20 s - Abstand aufgenommene Frames eines gleichbleibenden Bildfeldes als Detachment assay ausgewertet. Nach 20 s Superfusion mit Medium 199 bei 50 s⁻¹ bestimmten wir als Ausgangswert die Zahl adhärenter Leukozyten. In der Folge verdoppelten wir alle 20 s Flussgeschwindigkeit und damit auch shear rate bis auf 1600 s⁻¹. Jeweils am Intervallende wurde die Anzahl der am gleichen Ort verbliebenen Zellen bestimmt. Hierbei wurde beginnend mit der niedrigsten shear rate (50 s⁻¹) die Anzahl der fest adhärennten Zellen (Sticking) bestimmt und deren quantitative Abnahme als Maß für die Stabilität der Bindung ermittelt. Durch den zeitlich am Versuchsende positionierten Versuchsteil konnten nicht mehr bei allen Proben einwandfreie Flussbedingungen hergestellt werden (Verstopfung der Kammer).
2.5. Durchflusszytometrie

Zur Untersuchung der immunologischen Konsequenzen wurden leukozytäres Oberflächenmoleküle mittels Durchflusszytometrie analysiert.

Methodik:

Gemessene Parameter:
Bestimmt wurden jeweils die für die leukozytäre Adhäsion relevanten Oberflächenmoleküle CD62L (L-Selektin), sowie CD11b und CD18 (β2-
Material und Methoden

Markierung:
Abbildung 3: Oberflächenexpression von CD11b auf allen Leukozyten (oben links), auf PMN (oben rechts) und auf Monozyten (unten). Bestimmt wurde der Median der Fluoreszenzintensität.
2.6. Statistische Auswertung

Die statistische Bewertung erfolgte mit Hilfe des Programmes JMP® Version 3.2.2. (SAS Institute, Cary, N.C.).

Die Differenz der Expression von Oberflächenmolekülen zwischen Vollblut und Transfusat wurde mit einem 2-seitigen Ein-Stichproben t-Test überprüft. Der Einfluß der maschinellen Autotransfusion auf Leukozytenadhäsion/Fläche, Rollinggeschwindigkeit und Rolling fraction wurde in einer Covarianzanalyse untersucht. Das verwendete statistische Modell berücksichtigte darüber hinaus Effekte der shear rate, patientenabhängige Einflüsse sowie Wechselwirkungen zwischen beiden Parametern. Bei den Detachment assays wurde angenommen, daß bei jeder shear rate ein Anteil Leukozyten abgelöst wird, der nur vom Typ der Blutprobe nicht aber vom Blutspender abhängt. Für die Anzahl abgelöster Zellen wurde eine Binomialverteilung angenommen. Mittels maximum likelihood wurden die 5 Anteile (50 s⁻¹ → 100 s⁻¹,, 800 s⁻¹ → 1600 s⁻¹) jeweils für Vollblut und Transfusat ermittelt. Signifikanz wurde angenommen, wenn das 95%-Konfidenzintervall für die Differenz (Vollblut – Transfusat) der jeweiligen Anteile den Wert 0 nicht enthielten.

Im Folgenden sind die Ergebnisse als arithmetisches Mittel (MW) mit 95% Konfidenzintervallen dargestellt. Das Signifikanzniveau wurde auf $p \leq 0,01$ bzw. $p \leq 0,05$ festgelegt.

2.7. Materialien und Geräte

Tabelle 1: Monoklonale Antikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Bestell-Nr.</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-CD11b-Fluorescein-isothiocyanat (=FITC) (IgG₁, mouse anti human)</td>
<td>MHCD11b01</td>
<td>Caltag, San Francisco</td>
</tr>
<tr>
<td>Anti-CD14-Perchlorat5 (=PC5) (IgG₁, mouse anti human)</td>
<td>PNIM2640</td>
<td>Immunotech, Marseille</td>
</tr>
</tbody>
</table>
Antikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Bestell-Nr.</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-CD18-FITC (IgG₁, mouse anti human)</td>
<td>MHCD1801</td>
<td>Caltag, San Francisco</td>
</tr>
<tr>
<td>Anti-CD62L (L-Selektin)-FITC (IgG₁ mouse anti human)</td>
<td>347443</td>
<td>Becton Dickinson, San Jose CA</td>
</tr>
<tr>
<td>Isotyp Kontrolle FITC (IgG₁, mouse anti human)</td>
<td>MG101</td>
<td>Caltag, San Francisco</td>
</tr>
<tr>
<td>Isotyp Kontrolle PC5 (IgG₂a, mouse anti human)</td>
<td>PNIM2664</td>
<td>Immunotech, Marseille</td>
</tr>
</tbody>
</table>

Tabelle 2: Reagenzien

<table>
<thead>
<tr>
<th>Reagenzien</th>
<th>Bestell-Nr.</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotic Antimycotic Solution</td>
<td>A-5955</td>
<td>Sigma, St. Louis</td>
</tr>
<tr>
<td>Calcein, AM</td>
<td>C-3100</td>
<td>MoBiTec, Göttingen</td>
</tr>
<tr>
<td>Cell wash</td>
<td>349524</td>
<td>Becton Dickinson, San Jose CA</td>
</tr>
<tr>
<td>CellFix</td>
<td>340181</td>
<td>Becton Dickinson, San Jose CA</td>
</tr>
<tr>
<td>Collagen, Type 1 5.0 mg/ml</td>
<td>354236</td>
<td>BD biosciences, Bedford, MA</td>
</tr>
<tr>
<td>Collagenase A</td>
<td>103578</td>
<td>Boehringer, Mannheim</td>
</tr>
<tr>
<td>Dimethylsulfoxid (DMSO)</td>
<td>D-5879</td>
<td>Sigma, Steinheim</td>
</tr>
<tr>
<td>Reagenzien</td>
<td>Bestell-Nr.</td>
<td>Hersteller</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Endothelial Cell Basal Medium</td>
<td>C-22110</td>
<td>PromoCell, Heidelberg</td>
</tr>
<tr>
<td>Supplemental Pack/ Endothelial Cell Growth Medium</td>
<td>C-39210</td>
<td></td>
</tr>
<tr>
<td>-FCS-10</td>
<td>C-37320</td>
<td></td>
</tr>
<tr>
<td>-ECGS/H-2</td>
<td>C-30120</td>
<td></td>
</tr>
<tr>
<td>-h EGF-0.05</td>
<td>C-30220</td>
<td></td>
</tr>
<tr>
<td>-hbFGF-0.5</td>
<td>C-30310</td>
<td></td>
</tr>
<tr>
<td>-Gentamicin-25</td>
<td>C-36030</td>
<td></td>
</tr>
<tr>
<td>-Ampho B-0.025</td>
<td>C-36040</td>
<td></td>
</tr>
<tr>
<td>FACS®Flow</td>
<td>342003</td>
<td>Becton Dickinson, San Jose CA</td>
</tr>
<tr>
<td>FACS® Lysing Solution</td>
<td>92-0002</td>
<td>Becton Dickinson, San Jose CA</td>
</tr>
<tr>
<td>FACS® Rinse</td>
<td>340346</td>
<td>Becton Dickinson, San Jose CA</td>
</tr>
<tr>
<td>FACS® Safe</td>
<td>340345</td>
<td>Becton Dickinson, San Jose CA</td>
</tr>
<tr>
<td>Hanks Buffered Saline (HBSS)</td>
<td>CC5022</td>
<td>Bio Whittacker Europe, Verviers</td>
</tr>
<tr>
<td>Liquemin® Injektionslösung N1</td>
<td>N 25000</td>
<td>Hofmann- La Roche, Grenzach-Wyhlen</td>
</tr>
<tr>
<td>Medium 199</td>
<td>M-4530</td>
<td>Sigma, St. Louis</td>
</tr>
<tr>
<td>PBS-Dulbecco’s Phosphate Buffered Saline; w/o Sodium Bicarbonate</td>
<td>14040-091</td>
<td>Gibco BRL, Life Technologies, Paisley</td>
</tr>
<tr>
<td>PBS⁺ Dulbecco’s Phosphate Buffered Saline; with Calcium, Magnesium, Sodium Bicarbonate</td>
<td>14190-094</td>
<td>Gibco BRL, Life Technologies, Paisley</td>
</tr>
<tr>
<td>Ringerlösung</td>
<td></td>
<td>Fresenius, Bad Homburg</td>
</tr>
<tr>
<td>Sodium Pyruvate</td>
<td>S-8636</td>
<td>Sigma, St. Louis</td>
</tr>
</tbody>
</table>
Materialien

<table>
<thead>
<tr>
<th>Materialien</th>
<th>Bestell-Nr.</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCUVETTE Einweg-Proben-Becher</td>
<td>9366014</td>
<td>Beckman Coulter, Krefeld</td>
</tr>
<tr>
<td>Bio Coat Collagen I Zellkulturflaschen 75 cm²</td>
<td>354462</td>
<td>Becton Dickinson, San Jose CA</td>
</tr>
<tr>
<td>Combitips plus</td>
<td></td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Falcon Blue Max Konisches Röhrchen 50 ml</td>
<td>352070</td>
<td>Becton Dickinson, San Jose CA</td>
</tr>
<tr>
<td>Flusskammer-Zubehör -Silikondichtung PCM Standard, Klebeband etc.</td>
<td></td>
<td>Physikalisch Technische Studien (PTS), Freiburg</td>
</tr>
<tr>
<td>Hämatokrit-Kapillaren heparinisiert</td>
<td>ST 06550 A</td>
<td>Bayer, Leverkusen</td>
</tr>
<tr>
<td>Neubauer Zählkammer</td>
<td></td>
<td>Assient</td>
</tr>
<tr>
<td>Pipettenspitzen</td>
<td></td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Polypropylen-Röhrchen</td>
<td>6.115201</td>
<td>Greiner, Frickenhausen</td>
</tr>
<tr>
<td>Stripetten</td>
<td></td>
<td>Costar, Cambridge</td>
</tr>
</tbody>
</table>

Reagenzien

<table>
<thead>
<tr>
<th>Reagenzien</th>
<th>Bestell-Nr.</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNS Trypsin Neutralizing Solution</td>
<td>CC-5002</td>
<td>Bio Whittacker Europe, Verviers</td>
</tr>
<tr>
<td>Trypsin/EDTA</td>
<td>CC-5012</td>
<td>Bio Whittacker Europe, Verviers</td>
</tr>
<tr>
<td>Tumor Necrosis Factor α (TNFα)</td>
<td>T-0157</td>
<td>Sigma, St. Louis</td>
</tr>
</tbody>
</table>

Tabelle 3: Materialien
Tabelle 4: Geräte

<table>
<thead>
<tr>
<th>Geräte</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brutschrank Cytoperm</td>
<td>Heraeus Instruments, Stuttgart</td>
</tr>
<tr>
<td>Cellsaver 5®</td>
<td>Haemonetics®, Braintree MA</td>
</tr>
<tr>
<td>Durchflusszytometer FACSort</td>
<td>Becton Dickinson, San Jose CA</td>
</tr>
<tr>
<td>Software Cellquest 3.1f</td>
<td></td>
</tr>
<tr>
<td>Fluoreszenz-Mikroskop Leitz DMIRB</td>
<td>Leica, Bensheim</td>
</tr>
<tr>
<td>Framegrabber CFG 512</td>
<td>Imaging Technology Inc., MA,</td>
</tr>
<tr>
<td>Hämatokrit-Microzentrifuge M1100</td>
<td>Compur Electronic GmbH, München</td>
</tr>
<tr>
<td>2/3"-s/w CCD Kamera AVT-BC 11/GR</td>
<td>Sony, Japan; modifiziert von AVT Horn, Aalen</td>
</tr>
<tr>
<td>Lichtmikroskop DM-IL</td>
<td>Leica, Bensheim</td>
</tr>
<tr>
<td>Multipette</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>PCM®-System</td>
<td>Physikalisch Technische Studien (PTS), Freiburg</td>
</tr>
<tr>
<td>Pipettboy Accu</td>
<td>Integra Biosciences, Fernwald</td>
</tr>
<tr>
<td>Spritzenpumpe Harvard Apparatus PHD</td>
<td>FMI, Seeheim/Ober-Beerbach</td>
</tr>
<tr>
<td>Programmable</td>
<td></td>
</tr>
<tr>
<td>Videorecorder Sony U-matic</td>
<td>Sony, Japan</td>
</tr>
<tr>
<td>Vortex Multi-Tube-Vortexer</td>
<td>Corning, Medfield</td>
</tr>
<tr>
<td>Vortex Genie 2</td>
<td>Scientific Industries, Bohemia</td>
</tr>
<tr>
<td>Wasserbad Typ 1083</td>
<td>Ges. f. Labortechnik, Burgwedel</td>
</tr>
<tr>
<td>Werkbank Lamin Air HB 2472 S</td>
<td>Heraeus Instruments, Stuttgart</td>
</tr>
<tr>
<td>Zentrifuge Megafuge 1.0R</td>
<td>Heraeus Instruments, Stuttgart</td>
</tr>
</tbody>
</table>

3. Ergebnisse

3.1. Rheologie/Leukozytenadhäsion

Es wurden von n=25 Patienten jeweils eine Vollblut- und eine Transfusatprobe am Flusskammermodell auf ihre rheologischen Eigenschaften hin untersucht. In sämtlichen Versuchsansätzen verglichen wir die Leukozytenadhäsion sowohl auf unstimuliertem als auch auf stimuliertem (TNFα 25 ng/ml, 4 h) Endothel. Da in den unstimulierten Ansätzen nahezu ausnahmslos keine Adhäsion zu beobachten war, sind im Folgenden nur die Ergebnisse von TNFα-stimulierten Endothelzellen dargestellt. Die Blutproben zeigten bei einem eingestellten Standard-Hämatokrit (30) folgende Leukozytenkonzentrationen:

Vollblut: 3941,20 ±211,69 Leukozyten/µl
Transfusat: 2162,96 ±147,802 Leukozyten/µl

3.1.1. Sticking und Rolling

In der Flusskammer wurden die Blutproben bei abnehmenden shear rates (300–200–100–50 s⁻¹; jeweils 5 min) über die Endothelzellen superfundiert. Diese waren zuvor 4 h mit TNFα (25 ng/ml) inkubiert worden. Hierbei unterschied sich die Leukozytenadhäsion zwischen Vollblut und Transfusat deutlich. Bei differenzierter Betrachtung (Rolling/mm² vs. Sticking/mm²) ergaben sich folgende Ergebnisse:

Während das Rolling (siehe Abbildung 5) sich lediglich bei der höchsten shear rate von 300 s⁻¹ signifikant unterschied (Vollblut 41,24 ±8,15 Leukozyten/mm²;
Ergebnisse

Transfusat 23,79 ±6,21 Leukozyten/mm²; \(p \leq 0,01 \), beobachteten wir beim Sticking (siehe Abbildung 4) signifikante Unterschiede für alle untersuchten shear rates, wobei sich sowohl absolute Zellzahlen als auch die Differenz zwischen Vollblut und Transfusat mit abnehmender shear rate vergrößerten (300 s⁻¹: Vollblut 35,81 ±9,61 Leukozyten/mm²; Transfusat 12,31 ±4,95 Leukozyten/mm²; 50 s⁻¹: Vollblut 196,74 ±36,06 Leukozyten/mm²; Transfusat 70,43 ±31,69 Leukozyten/mm²; jeweils \(p \leq 0,01 \)).

Ein vergleichbares Resultat ergab sich bei der Analyse der Rolling fraction (siehe Abbildung 6), dem Anteil des Rolling an der Gesamtheit adhäsenter Leukozyten. Bei Vollblut wies die Rolling fraction mit zunehmender shear rate einen Anstieg von 29,6 ±4,6 % bei 50 s⁻¹ bis 55,9 ±5,9 % bei 300 s⁻¹ auf. Transfusat stieg ebenfalls zunächst von 60,8 ±9,6 % (50 s⁻¹) auf 72,5 ±8,7 % (200 s⁻¹) an um bei der höchsten shear rate mit 69,7 ±7,6 % (300 s⁻¹) annähernd konstant zu bleiben. Auch hier waren die Werte von Vollblut und Transfusat signifikant unterschiedlich (\(p \leq 0,01 \)), die Differenzen nahmen mit abnehmender shear rate zu.
Abbildung 4: Sticking; fest adhäsente Leukozyten pro mm² bei steigender shear rate. ◆ Vollblut; □ Transfusat. Es sind Mittelwerte und 95%-Konfidenzintervalle dargestellt. * p ≤ 0,01 im Vergleich zu Vollblut
Abbildung 5: Rolling; rollende Leukozyten pro mm² in Abhängigkeit der shear rate. ◦ Vollblut; □ Transfusat. Es sind Mittelwerte und 95% -Konfidenzintervalle dargestellt. * p ≤ 0,01 im Vergleich zu Vollblut
Abbildung 6: Rolling fraction; Anteil der rollenden Leukozyten an allen adhärenten Leukozyten. ◆ Vollblut; □ Transfusat. Es sind Mittelwerte und 95%-Konfidenzintervalle angegeben. * $p \leq 0.01$ im Vergleich zu Vollblut
3.1.2. Geschwindigkeit des Rolling

In n=25 Versuchen wurde mit Hilfe der Software CellTracker die Geschwindigkeit rollender Leukozyten bei den shear rates 300–200–100–50 s\(^{-1}\) (jeweils 5 min) bestimmt. Es resultierte folgendes Geschwindigkeitsprofil (siehe Abbildung 7): Bei niedrigster shear rate (50 s\(^{-1}\)) bewegten sich die rollenden Leukozyten im Transfusat mit 11,91 ± 2,30 µm/s signifikant schneller als im Vollblutansatz mit 7,34 ±1,09 µm/s (p ≤0,01). Bei shear rates von 100 bis 300 s\(^{-1}\) beobachteten wir Geschwindigkeiten auf vergleichbarem Niveau ohne signifikante Unterschiede zwischen den beiden Blutproben.

Abbildung 7: Geschwindigkeit des Rolling in Abhängigkeit der shear rate.

*Vollblut; □ Transfusat. Es sind Mittelwerte und 95% - Konfidenzintervalle angegeben. * p ≤0,01 im Vergleich zu Vollblut
3.1.3. Detachment assay

Zum Abschluß jedes Versuchsansatzes an der Flusskammer untersuchten wir im Detachment assay die Bindungsfestigkeit des Sticking bei ansteigenden shear rates von 50 s$^{-1}$ bis 1600 s$^{-1}$. Es fanden nur Versuche mit einem minimalen Ausgangswert von 3 Stickern Eingang in die statistische Bewertung. Daraus resultierte die Grundgesamtheit von n=11 Probenpaaren.

Die Bindung Leukozyt-Endothelzelle erwies sich bei den Transfusatversuchen als weniger stabil (siehe Abbildung 8). Bei den shear rates 100, 200 und 800 s$^{-1}$ stellten wir eine signifikant ($p \leq 0,05$) erhöhte Rate an abgelösten Zellen im Vergleich zum Vollblutansatz fest. Bei den shear rates 400 und 1600 s$^{-1}$ zeigte der Vergleich keine signifikanten Unterschiede, was bei der folgenden Abbildung an den bei diesen Werten parallel verlaufenden Kurven (gleicher Wert für die Kurvensteigung) nachzu vollziehen ist. Die Verlaufskurven veranschaulichen den Anteil fest adhärent verbliebener Zellen.
Abbildung 8: Detachment assay; Rate der verbliebenen Sticker von 100 % bei 50 s⁻¹. ◆ Vollblut; □ Transfusat. * p ≤ 0,01 im Vergleich zu Vollblut.
3.2. Immunologie/Expression der Oberflächenmerkmale

Die Expression der für die Adhäsion am Endothel relevanten Integrine CD11b und CD18, sowie L-Selektin (CD62L) wurden durch Durchflusszytometrie bestimmt. In den resultierenden dot plots differenzierten wir die Expression auf allen Leukozyten, sowie auf den Subpopulationen PMN (polymorphonuclear leucocytes) und Monozyten. Bei jeder Probe ermittelten wir den Median der Fluoreszenzintensität aus 10000 gemessenen Zellen, die Ergebnisse des Gesamtkollektives sind als Mittelwert mit 95%-Konfidenzintervall angegeben.

3.2.1. CD11b

Zur Ermittlung der Oberflächenexpression von CD11b wurden n=24 Probenpaare herangezogen. Dabei war von Vollblut zu Transfusat ein signifikanter Anstieg der Fluoreszenz zu beobachten (siehe Abbildung 9). Gesamtleukozyten (+210%) sowie PMN (+189%) zeigten im Transfusat etwa eine Verdreifachung gegenüber Vollblut ($p \leq 0,01$), während die Expression auf Monozyten um 26 % stieg ($p \leq 0,05$).
Abbildung 9: CD11b; Median der Fluoreszenzintensität (MFI) als Maß für die Oberflächenexpression auf Leukozyten und Subpopulationen. ■ Vollblut; □ Transfusat. * p ≤ 0,01 im Vergleich zu Vollblut (Monozyten p ≤ 0,05).
3.2.2. CD18

Die Werte beim untersuchten Integrin CD18 ergaben bei Leukozyten und PMN im Transfusat ein leichtes Absinken der Expression (keine statistische Signifikanz). Auf der Monozyten-Subpopulation im Transfusat stellten wir einen Abfallen um 34 % fest ($p \leq 0.05$) (siehe Abbildung 10).

Abbildung 10: CD18; Median der Fluoreszenzintensität (MFI) als Maß für die Oberflächenexpression auf Leukozyten und Subpopulationen. ■ Vollblut; □ Transfusat. * $p \leq 0.05$ im Vergleich zu Vollblut.
3.2.3. CD62L

Die Oberflächenexpression von L-Selektin sank bei den Leukozyten im Transfusat um 40% signifikant ab ($p \leq 0.01$), PMN zeigten um 33% reduzierte Werte. Bei Monozyten war die Veränderung hier mit -84% am deutlichsten ausgeprägt (siehe Abbildung 11).

Abbildung 11: CD62L; Median der Fluoreszenzintensität (MFI) als Maß für die Oberflächenexpression auf Leukozyten und Subpopulationen. ■ Vollblut, □ Transfusat. * $p \leq 0.01$ im Vergleich zu Vollblut.
4. Diskussion

4.1. Methodik

die wichtige immunologische Funktion der beteiligten Leukozyten und deren Subpopulationen gewährleistet [72;74]. Den beschriebenen Mechanismen werden auch erhebliche Einflüsse auf Mikro- und Makrozirkulation bei Sepsis und Schock bei kritisch Kranken beigemessen, wobei gewebsschädigende Effekte der Leukozytenakkumulation nachgewiesen wurden [31;33;34;61;79]. So führen Endotoxinämie und Sepsis zu einer gesteigerten Expression von CD11b, was im Zusammenhang mit den erwähnten Gewebeschäden den Ansatz einer „antiadhäsiven Therapie“ aufkommen ließ [66;67]. Auch bei Ischämie /Reperfusion zeigen sich endothelial-leukozytäre Interaktionen auf molekularer und zellulärer Ebene, die entscheidende Bedeutung für den späteren Reperfusionsschaden des Gewebes besitzen [22;73;83].

Stellvertretend für die vielfältigen proinflammatorischen Stimuli, die zu einer Aktivierung des Endothels und einer Induktion endothelialer Adhäsionsmoleküle führen, setzten wir TNFα ein. Nach Bindung an den endothelialen Rezeptor führt TNFα zu einer Oberflächenexpression von Adhäsionsmolekülen auf der Endothelzelle, was eine vermehrt einsetzende Zelladhäsion zur Folge hat [7]. TNFα wurde in unserer Versuchsreihe 4 h vor Beginn der Perfusion in der Flusskammer zur Aktivierung der HUVEC-Monolayer eingesetzt. In anderen Untersuchungen bereits mehrfach in ähnlichen Versuchsaufbauten verwendet [46;49;62], erwies sich das Zytokin in unseren Experimenten als essentiell für die Leukozytenadhäsion. Auf unstimulierten Endothelzellen konnten wir keine nennenswerte Adhäsion der Leukozyten beobachten.

Unser Flusskammermodell sollte die reproduzierbare Simulation der im Kreislauf gegebenen rheologischen Verhältnisse, wie laminare Strömung, physiologische Scherkraftdimensionen sowie eine standardisierte Viskosität der eingesetzten Blutproben gewährleisten. Das vorgegebene Verhältnis von Kammerbreite zu Kammerhöhe gestattete die reproduzierbare Simulation der gewählten shear rate unter laminaren Strömungsbedingungen (Reynoldsche Zahl des Systems \(\leq 1 \)) [39]. Da die Viskosität des Vollbluts in enger Beziehung zum Gehalt an korpuskulären Teilchen und zum gemessenen Hämatokrit steht
[23;36], stellten wir den Hämatokrit in unseren Versuchen auf den Standardwert 30% ein (Verdünnung mit PBS+). Der shear stress als Größe, welche die Adhäsion determiniert, setzt sich aus shear rate und Viskosität zusammen. Der shear stress (\(\tau\)) ergibt sich aus der Formel

\[
\tau = \gamma \times \eta,
\]

wobei \(\eta\) [P] die Viskosität und \(\gamma\) [s-1] die shear rate bezeichnet. Die Gleichung setzt neben einer laminaren Strömung jedoch eine Newtonsche Flüssigkeit (konstante Viskosität bei variierenden shear rates) voraus. Diese Voraussetzung trifft für Blut nicht zu, da hierin eine abnehmende Viskosität bei steigender shear rate beobachtet werden kann [26]. Darüber hinaus tendieren Erythrozyten dazu sich in der Flussmitte zu konzentrieren, woraus wiederum für die Flüssigkeit nahe der Gefäßwand ein geringerer Hämatokrit und damit auch ein geringerer shear stress resultiert [26]. Da der shear stress an der Gefäßwand daher nur näherungsweise zu bestimmen ist, haben wir die Viskosität standardisiert (siehe oben) und geben die Flusskammer-Ergebnisse für definierte shear rates an. Mit dieser Einschränkung versehen wählten wir shear rates von 50 bis 300/s, was den Gegebenheiten in postkapillären Venolen entspricht [63;65].

Die Interaktion zwischen Leukozyten und Endothelzellen zeigt einen kaskadenartigen Ablauf [27;46]. In einem ersten Schritt führen die schnell aufbaubaren Bindungen der Selektine zu einer Annähерung der vorher frei strömenden Leukozyten an die Gefäßwand. Die Leukozyten werden abgebremst und zeigen eine intermittierende Adhäsion die als Rolling bezeichnet wird. Verantwortlich hierfür sind Bindungen von E- und P-Selektin auf aktiviertem Endothel und L-Selektin, das von nicht aktivierten Leukozyten exprimiert wird. Die Leukozyten binden mit hohen Bindungsgeschwindigkeiten an ihre Liganden auf dem jeweiligen Reaktionspartner Endothelzelle. Die Bindungen werden jedoch schnell wieder gelöst, so dass zwar eine initiale Bindung bei hoher shear rate möglich wird, die irreversible, feste Adhäsion (Sticking) jedoch weitere Bindungen erfordert [19;27;32;43;44;72;75].

Lawrence et al wiesen in ersten Studien auf die Relevanz physikalischer Parameter wie Flussrate, shear rate und shear stress für leukozytäre Adhäsionsvorgänge hin. Sie verwendeten unstimulierte PMN auf unstimulierten und IL-1-aktivierten HUVEC. Sie beobachteten unter allen Stimulationsbedingungen eine Zunahme der Adhäsion mit sinkenden Scherkräften [39-42]. Neben dem Wirkungsprofil von Selektinen und Integrinen
Diskussion

zeigt auch die Expression ihrer Liganden und die Stabilität der entstehenden Bindungen Unterschiede bei spezifischen Scherkraftverhältnissen [32;69].

Die Differenzierung eines rollenden von einem frei fließenden Leukozyten wird nach Bestimmung der kritischen Geschwindigkeit (vₖᵢᵣᵢ) durchgeführt [40]. Das parabole Geschwindigkeitsprofil in einer parallel plate flow chamber wird durch die Kammergeometrie, die Flussrate sowie die Entfernung eines Partikels von der Gefäßwand bestimmt. Lawrence et al setzten die kritische Geschwindigkeit
für das Rolling auf 70% der Geschwindigkeit eines nahe der Gefäßwand frei fließenden Leukozyten fest [39;42]. Bei diesem Wert kann von Interaktionen zwischen Leukozyten und Endothel ausgegangen werden. Unsere tatsächlich beobachteten Geschwindigkeiten lagen jedoch bedeutend niedriger, da die tatsächliche Rolling-Geschwindigkeit unterhalb des kritischen Grenzwertes von der spezifischen Dissoziationskonstante des Adhäsionsmoleküls und nicht mehr von der Hydrodynamik bestimmt wird [42;43]. Infolge dessen setzten wir in unserer computergestützten Auswertung diesen Wert auf 50% der kritischen Geschwindigkeit fest, was bei einer shear rate von 50s⁻¹ und einem angenommenen Zellradius von 5µm einer Geschwindigkeit von annähernd 100 µm/s entspricht. Dieser Wert wurde jedoch auch von sehr kurz adhärenten Zellen nicht erreicht. Da \(v_{krit} \) linear mit Erhöhung von Flußrate bzw. shear rate ansteigt, änderten wir das Limit entsprechend, obwohl nach wie vor sämtliche beobachteten Zellen mit Geschwindigkeiten < 100 µm/s gemessen wurden. Auch dies deckt sich mit den Angaben von Abbitt & Nash für eine shear rate von 70s⁻¹ [1].

4.2. Ergebnisse zur maschinellen Autotransfusion

Als Folge der Risiken von allogenen Bluttransfusionen und der beschränkten Verfügbarkeit von Blut und Blutderivaten wurden fremdblutsparende Maßnahmen entwickelt, unter denen die autologe Bluttransfusion eine
wesentliche Rolle spielt. Da Spender und Empfänger identisch sind, werden viele Risiken einer Fremdblutspende vermieden und der Bedarf an homologen Blutkomponenten deutlich vermindert [9].

Diskussion

Obwohl eine Leukozyten-Depletion des mediastinalen Wundblutes bei Operationen an der HLM benefizielle Effekte auf die pulmonale Oxygenierung zu haben scheint [8;28], ist bisher unbekannt ob die maschinelle Autotransfusion zu einer veränderten Leukozytenakkumulation im Gewebe führt. Auch die Ergebnisse aus Studien zur HLM können diesbezüglich keine validen Informationen liefern. Zum Einen handelt es sich hierbei um ungewaschenes Wundblut aus der HLM, zum Anderen beinhaltet mediastinales Blut außerordentlich hohe Zytokinkonzentrationen [24;80].

Neben der vermehrten Zytokinfreisetzung beschrieben Connall et al. eine gesteigerte Expression der leukozytären Adhäsionsmoleküle CD11b und CD18 [15]. Ob diese Induktion der β2-Integrine im aufgearbeiteten Wundblut auch zu einer vermehrten Leukozytenadhäsion führt, wurde in dieser Studie allerdings
nicht untersucht. Aus Untersuchungen zu den Effekten von Endotoxin auf die Leukozytenadhäsion ist vielmehr bekannt, dass die Affinität der β2-Integrine trotz gesteigerter Expression nach Zellaktivierung vermindert sein kann, so dass die Adhäsion gegenüber nicht aktivierten Leukozyten abnimmt [71]. Darüber hinaus untersuchten Connall et al. nicht die Expression von L-Selektin, das nach Zellaktivierung gewöhnlich von der Zelloberfläche abgespalten wird und eine besondere Bedeutung für die initiale Adhäsion bei hohen Strömungsgeschwindigkeiten und Scherkräften besitzt [21;43;46;75].

unserer Arbeit ergibt sich somit aus der Kombination der beiden beschriebenen Versuchsteile, die eine Beurteilung der Leukozytenaktivierung und der relevanten funktionellen Folgen unter physiologischen Strömungsbedingungen zulassen. Von herausragender Bedeutung für die funktionellen Veränderungen der leukozytären Adhäsion ist hierbei der Vollblutansatz im Flusskammerversuch.

Unsere immunologischen Bestimmungen zeigten für CD11b einen Anstieg um +210\% für alle Leukozyten (p ≤ 0,01), die Subpopulationen stiegen um +189\% (PMN; p ≤ 0,01) bzw. +26\% (Monozyten; p ≤ 0,05). Connall et al beschrieben für neutrophile Granulozyten einen 3,3-fachen Anstieg, 3,2-fach für Monozyten (p ≤ 0,05) [15]. Das von uns zusätzlich bestimmte CD62L wies einen Verlust von –40\% für alle Leukozyten, -33\% für PMN und –84\% für Monozyten(p ≤ 0,01). Dieses Molekül wurde von Connal et al nicht untersucht, der Verlauf ist jedoch typisch für Einflüsse durch Zentrifugation [15;48].

Die Fluoreszenzwerte unserer Transfusatproben für CD18 sanken bei Gesamtleukozyten und PMN geringfügig ab, ohne statistische Signifikanz. Monozyten zeigten um –34\% geringere Expression als venöses Blut (p ≤ 0,05). Hierzu im Vergleich ermittelten Connall et al einen Anstieg der CD18-Werte um das 3,2-fache bei Neutrophilen , das 2,5-fache bei Lymphozyten (jeweils p ≤ 0,05). Die Monozyten stiegen um das 4,5-fache ohne statistische Signifikanz [15].

Da L-Selektin nur bei hohen shear rates eine besondere Bedeutung für die Einleitung des Rolling besitzt [75], äußerte sich der Verlust von der Zelloberfläche nur bei einer shear rate von 300 s⁻¹. Bei niedrigen shear rates wurde der Verlust durch die Bindungen der endothelialen Selektine E- und P-Selektin kompensiert. Dies spiegelt die in früheren Untersuchungen beschriebene Redundanz der verschiedenen Selektine wider [44].

Die Vermutung, dass dem verminderten Sticking eine beeinträchtigte Effektivität der Integrin-Bindung trotz gesteigerter CD11b-Expression zu Grunde liegen muss, wird durch die Ergebnisse zur Rolling fraction und zur Rolling-Geschwindigkeit unterstützt.

Als Zeichen eines verminderten Übergangs von Selektin-abhängigem Rolling zu Integrin-abhängigem Sticking besteht in der Transfusat-Gruppe bei jeder shear rate eine signifikant höhere Rolling fraction. Diese bleibt in der Transfusat-Gruppe selbst bei deutlich erniedrigter shear rate bei 60 %, wogegen sie in der Vollblut-Kontrolle auf 29 % abnimmt. Ursache einer solchen Reduktion der Rolling fraction ist die zunehmende Dominanz Integrin-abhängiger Bindungen bei niedriger shear rate [19;41;57], die bei den aktivierten Leukozyten der Transfusat-Gruppe nicht beobachtet werden konnte. Eine vermehrte Dominanz Integrin-abhängiger Bindungen äußert sich in einer progredienten Reduktion der Rolling-Geschwindigkeit [19;43], wie auch wir sie in der Vollblut-Kontrolle
mit sinkender shear rate beobachten konnten. Ebenso wie im Falle der Rolling fraction zeigt die Konstanz der Rolling-Geschwindigkeit in der Transfusat-Gruppe, dass der Wechsel von Selektin-vermitteltem Rolling zu effektivem Integrin-vermitteltem Sticking durch die maschinelle Autotransfusion erheblich beeinträchtigt wird.

Die signifikant höhere Ablöserate im Detachment assay weist darauf hin, dass selbst die aufgebauten Integrin-Bindungen in der Transfusat-Gruppe erheblich weniger effektiv sind und einer Steigerung der shear rate nicht wirkungsvoll widerstehen können.

4.3. Schlussfolgerung

Beim Vergleich der Patienten-Blutproben aus venösem Vollblut und aufbereitetem Transfusat ermittelten wir eine Leukozytenkontamination von ca.
54% des Vollblut-Ausgangswertes im Transfusat. Wie zu erwarten zeigten die verbliebenen Leukozyten veränderte Oberflächeneigenschaften, die sich sowohl in der Adhäsion an TNFα-stimulierten HUVEC als auch in der Expression hierfür benötigter Adhäisonsmoleküle nachweisen ließen. Dies kann als Resultat der mechanischen Einwirkungen auf die Leukozyten während der Aufbereitung des Wundblutes gewertet werden. Wie in den vergleichbaren Beispielen Hämodialyse, Herz-Lungen-Maschine oder Verfahren zur Zellseparation zu beobachten [10;14;70], findet auch während der Herstellung maschinellen Retransfusates eine Aktivierung verbliebener Leukozyten statt [10;30].

Im in-vitro-Modell Flusskammer zeigten die Leukozyten des Transfusats erheblich verminderte Fähigkeit zur festen Adhäsion. Im low shear Bereich, von Integrinen vermittelt, zeigten sich erheblich geringere Zellzahlen pro Endothelfläche (Sticker), was auf eine verminderte Affinität der Integrine hinweist. Der besonderen Bedeutung des L-Selektin für die Adhäsion bei hohen shear rates entsprechend, wurde das Rolling in der Transfusat-Gruppe lediglich bei physiologischen shear rates beeinträchtigt. Eine reduzierte Rolling fraction wie auch eine bei niedrigster Flussrate höhere Geschwindigkeit des Rolling weisen wiederum auf die verminderte Affinität und Effizienz der Integrin-Bindungen hin. Die Funktionseinbuße bewirkt einen schlechteren Übergang vom Rolling zum Sticking. Die Differenzen im Adhäsionsverhalten stiegen, je geringer die einwirkenden Scherkräfte waren. Die entstandenen Bindungen zwischen Leukozyten und Endothel erwiesen sich im Ablösungsversuch (Detachment assay) als in ihrer Stabilität beeinträchtigt, was ebenfalls als verminderte Effizienz der für diesen Adhäsionsschritt entscheidenden Integrine interpretiert werden kann.

Die Untersuchung der Oberflächenmerkmale per Durchflusszytometrie ergaben die erwarteten Anzeichen der Zellaaktivierung. Während CD18 nahezu unveränderte Werte zwischen Vollblut und Transfusat aufwies, stieg das bei Aktivierung schneller reagierende CD11b bei allen untersuchten Leukozyten-
Subpopulationen signifikant an \(p \leq 0,01 \). Ebenfalls konnten bei CD62L (L-Selektin) Anzeichen der Stimulation nachgewiesen werden. Die reduzierte Expression des Moleküls nach Aktivierung wurde bei PMN und Monozyten gemessen und wird in der Literatur als shedding beschrieben [3].

Obwohl die Eigenschaften der Transfusat-Leukozyten im höheren Flussbereich weniger beeinträchtigt wurden, muss das verminderte Sticking trotz hoch reguliertem CD11b als funktionelles Defizit bei geringerer Affinität des Integrins zu seinen endothelialen Liganden interpretiert werden. Als Konsequenz ergibt sich für Empfänger von maschinellem Autotransfusat eine mögliche Beeinträchtigung der Abwehrleistung, die bei größerem Blutumsatz durchaus klinische Relevanz besitzen könnte.
5. Zusammenfassung

Da Berichte über pulmonale Funktionsstorungen, systemische Entzündungsreaktion, Herz-Kreislauf-Versagen und Schock nach Autotransfusion vorliegen, wollten wir die funktionellen und immunologischen Auswirkungen auf die Leukozyten im Transfusat näher untersuchen. Von Patienten mit orthopädischen Eingriffen, bei denen intraoperativ das Autotransfersungsgerät Cellsaver5 zum Einsatz kam, entnahmen wir eine Probe Transfusatblut und als Referenz vor Einleitung der Narkose die gleiche Menge venösen Blutes. Nachdem die Aufbereitung des Retransfusates unter
standardisierten Bedingungen durchgeführt wurde, erfolgte umgehend die experimentelle Untersuchung im Labor.

Zur Untersuchung der Zelladhäsion unter Flussbedingungen die denen im Bereich postkapillärer Venolen nahekommen, perfundierten wir Blut in einer parallel flow chamber über TNFα-stimulierte (4 h; 25 ng/ml) HUVEC. Beginnend mit hohen Flussraten strömten die Blutproben jeweils 5 min bei shear rates von 300, 200, 100 und 50 s⁻¹ über das Endothel. Die Leukozyten wurden vorher mit Calcein AM angefärbt, so dass die Adhäsion in der mikroskopierbaren Flusskammer unter Fluoreszenz-Licht sichtbar gemacht werden konnten. Im Anschluss an die 5 Versuchsminuten werteten wir von 5 Bildfeldern jeweils 10 Sekunden aus. Abschließend ermittelten wir in einem Ablösungsversuch (Detachment assay) die Stabilität der Bindungen bei steigenden Flussraten. Der gesamte Vorgang wurde über eine Kamera auf Videobändern gespeichert und digitalisiert einer Software zur Bildanalyse zugeführt. Die statistische Auswertung erfolgte mit Ein-Stichproben t-Test und Covarianzanalyse. Beim Detachment assay wurden die Ablöseraten der jeweiligen shear rates mittels maximum likelihood bestimmt.

Im Flusskammerversuch zeigten die Leukozyten im Transfusat gegenüber Vollblut-Leukozyten vor allem im Bereich niederer shear rates ein schwächer ausgeprägtes Sticking (feste Adhärenz). Die Unterschiede in Zellzahlen pro Fläche sowie der Rolling fraction waren signifikant und nahmen mit sinkender
Flussrate zu. Dieser Effekt kann durch verminderte Effizienz der in diesem Bereich entscheidenden Integrine erklärt werden. Rollende Zellen pro Fläche wurden im Transfusat lediglich bei der höchsten shear rate signifikant geringer gemessen. Dieser Scherkraftbereich stellt eine Domäne des L-Selektin dar, welches in unserer Untersuchung vermindert exprimiert wurde. Das Geschwindigkeitsprofil der rollenden Leukozyten unterschied sich bei der geringsten shear rate. Hier bewegten sich die im Transfusat verbliebenen Zellen signifikant schneller, was sich anschließend im verminderten Sticking fortsetzt. Die Stabilität der eingegangenen Bindungen zwischen Leukozyten und Endothel zeigte sich bei Transfusat-Leukozyten reduziert. Bei 100, 200 und 800 s⁻¹ löste sich jeweils ein signifikant höherer Anteil der vorher adhärenten Zellen ab was als weiterer Hinweis auf eine verminderte Integrin-Effizienz zu werten ist.

6. Literaturverzeichnis

7. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcein AM</td>
<td>Calcein-acetoxy methyl ester</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of Differentiation</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reaktives Protein</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>Ery</td>
<td>Erythrozyten</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence Activated Cell Sorting</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal Bovine Serum</td>
</tr>
<tr>
<td>FFP</td>
<td>Fresh Frozen Plasma</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescence Iso Thio Cyanat</td>
</tr>
<tr>
<td>FSC</td>
<td>Forward Scatter</td>
</tr>
<tr>
<td>Hb</td>
<td>Hämoglobin</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hanks Buffered Saline Solution</td>
</tr>
<tr>
<td>Hkt</td>
<td>Hämatokrit</td>
</tr>
<tr>
<td>HLM</td>
<td>Herz-Lungen-Maschine</td>
</tr>
<tr>
<td>HUVEC</td>
<td>Human Umbilical Vein Endothelial Cells</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>Inter cellular Adhesion Molecule-1</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>Leuko</td>
<td>Leukozyten</td>
</tr>
<tr>
<td>MFI</td>
<td>Mediane der Fluoreszenzintensität</td>
</tr>
<tr>
<td>MW</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PC5</td>
<td>Tandemkonjugat aus R-Phycoerythrin mit Cyanin-5</td>
</tr>
<tr>
<td>PECAM</td>
<td>Platelet Endothelial Cell Adhesion Molecule-1</td>
</tr>
<tr>
<td>PMN</td>
<td>Polymorphonuclear Leukocyte</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>SSC</td>
<td>Sideward Scatter</td>
</tr>
<tr>
<td>Thr</td>
<td>Thrombozyten</td>
</tr>
<tr>
<td>TNFα</td>
<td>Tumor Nekrose Faktor α</td>
</tr>
<tr>
<td>TNS</td>
<td>Trypsin Neutralizing Solution</td>
</tr>
<tr>
<td>VCAM-1</td>
<td>Vascular Cell Adhesion Molecule-1</td>
</tr>
</tbody>
</table>
8. Danksagung

Bei meinem Doktorvater, Herrn Professor Dr. med. Klaus Unertl, ärztlicher Direktor der Abteilung für Anaesthesiologie und Intensivmedizin am Universitätsklinikum Tübingen möchte ich mich ganz herzlich für die Überlassung des interessanten Themas bedanken.

Herrn Christof Zanke gebührt ebenfalls mein besonderer Dank für die stets gewährte Unterstützung im Bereich der Bild- und Datenverarbeitung sowie im technischen Bereich, Herrn Dr. rer. nat. Martin Eichner für die statistische Aufarbeitung. Bei der Patientenauswahl und –aufklärung sowie der Durchführung des klinischen Versuchsteils war mir Frau Dr. med. Annette Ploppa stets mit großem Engagement eine große Hilfe.

Für die freundliche Unterstützung bedanke ich mich ebenfalls bei Herrn Dr. med. Hans-Jürgen Dieterich, Herrn Professor Dr. rer. nat. Jürgen Tomiuk sowie Herrn Klaus Ferstl.

Ich bedanke mich bei allen weiteren Mitarbeitern des anaesthesiologischen Labors, insbesondere für die große Unterstützung von Frau Alice Mager und Frau Michaela Hoch-Gutbrod und das angenehme Arbeitsklima. Mein Dank gilt ebenso allen hier nicht erwähnten Personen, die an der Entstehung der Arbeit beteiligt waren.
9. Lebenslauf

Persönliche Daten
Name Reiner Ries
Geburtsstag 21. Februar 1965
Geburtsort Schrozberg, Lkr. Schw. Hall, (D)
Staatsangehörigkeit deutsch

Schulbildung
1971-1975 Grundschule Blaufelden
1975-1984 Gymnasium Gerabronn
1984 Allgemeine Hochschulreife

Medizinische Ausbildung
1984-1986 Medizinstudium (Vorklinik) an der Friedrich-Alexander-Universität Erlangen und Eberhard-Karls-Universität Tübingen
1986 Ärztliche Vorprüfung
1986-1987 Zivildienst an der Psychiatrischen Universitätsklinik Tübingen
1988-1990 Medizinstudium (Klinik) an der Eberhard-Karls-Universität Tübingen
1990-2002 Krankenpflegedienst an der Psychiatrischen Universitätsklinik Tübingen
1999-2000 Praktisches Jahr am Universitätsklinikum Tübingen (Anästhesie/Intensivmedizin) sowie am Kreiskrankenhaus Böblingen (Innere Medizin/Chirurgie)
10/2000 Ärztliche Prüfung
seit 8/2002 Arzt im Praktikum am Universitätsklinikum Tübingen (Anaesthesiologie/Intensivmedizin)

Promotion
seit 11/2000 „Immunologische und rheologische Konsequenzen von Leukozytenkontaminationen bei maschineller Autotransfusion“, Abteilung für Anaesthesiologie und Intensivmedizin am Universitätsklinikum Tübingen
Famulaturen

1988 Innere Medizin, Städt. Krankenhaus Stockach
1990 Chirurgie, Kreiskrankenhaus Herrenberg
1990 Anästhesie, Kreiskrankenhaus Herrenberg
1991 Anästhesie, Praxis Dr. Markovic, Stuttgart

Wissenschaftliche Tätigkeit, Auslandsaufenthalte

 Dept. of Ecology and Genetics, University of Aarhus (DK)
 Deutsches Primatenzentrum Göttingen
 Forschungscamp bei Morondava (Madagaskar)