Aus der Radiologischen Universitätsklinik Tübingen
Abteilung Radiologische Diagnostik
Ärztlicher Direktor: Professor Dr. C. D. Claussen

RÖNTGENSICHTBARKEIT VON INTRAVASKULÄREN STENTS
IN ABHÄNGIGKEIT VON IHREM DESIGN SOWIE DEM
VERWENDETEN DURCHLEUCHTUNGSMODUS IN
PROJEKTION AUF DAS MENSCHLICHE BECKEN

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Medizin
der Medizinischen Fakultät
der Eberhard-Karls-Universität
zu Tübingen

vorgelegt von
KARIN KRÄMER
aus
Kirchheim/Teck

2004
Dekan: Professor Dr. C. D. Claussen

1. Berichterstatter: Professor Dr. S. Duda
2. Berichterstatter: Professor Dr. B. Schmidt
Gewidmet

meinen lieben Eltern
Inhaltsverzeichnis

1 EINLEITUNG ... 5

1.1 Einteilung von Stents .. 6

1.2 Röntgensichtbarkeit (Radiopazität) von Stents ... 7

1.3 Zielsetzung dieser Arbeit ... 9

2 MATERIAL UND METHODEN .. 10

2.1 Material und Probanden ... 10

2.1.1 Stents .. 10

2.1.2 Beckenphantom .. 11

2.1.3 Durchleuchtungsgerät ... 12

2.1.4 Scanner .. 12

2.1.5 Für die Bildpräsentation verwendeter PC und Monitor 12

2.1.6 Fragebogen und Auswertungstabelle ... 12

2.1.7 Reviewer .. 12

2.2 Methoden .. 13

2.2.1 Versuchsbeschreibung .. 13

2.2.2 Versuchsvorbereitung ... 14

2.2.3 Versuchsdurchführung ... 18

2.2.4 Statistische Analyse ... 19

3 ERGEBNISSE .. 20

3.1 Stentsichtbarkeit .. 20

3.1.1 Stentsichtbarkeit in den fünf verschiedenen Durchleuchtungsmodi 20

3.1.2 Sichtbarkeit der einzelnen Stents unabhängig vom Durchleuchtungsmodus 21
3.1.3 Sichtbarkeit der einzelnen Stents in Abhängigkeit vom Durchleuchtungsmodus .. 22

3.2 Qualität der Stentsichtbarkeit .. 27
 3.2.1 Qualität der Stentsichtbarkeit in den fünf Durchleuchtungsmodi ... 27
 3.2.2 Qualität der Stentsichtbarkeit der einzelnen Stents unabhängig vom Durchleuchtungsmodus ... 29
 3.2.3 Qualität der Sichtbarkeit der einzelnen Stents in Abhängigkeit vom Durchleuchtungsmodus ... 29

3.3 Stentsichtbarkeit in Abhängigkeit von der Lokalisation 45
 3.3.1 Stentsichtbarkeit in Abhängigkeit von der Lokalisation und dem Durchleuchtungsmodus ... 46
 3.3.2 Qualität der Stentsichtbarkeit in Abhängigkeit von der Lokalisation und dem Durchleuchtungsmodus ... 47

3.4 Untersuchung auf signifikante Unterschiede in der Qualität der Stentsichtbarkeit ... 50

3.5 Vergleich einzelner Stenttypen in Bezug auf ihre Sichtbarkeit 51
 3.5.1 Vergleich der Sichtbarkeit der beiden Stents Memotherm Flexx und Luminexx ... 51
 3.5.2 Vergleich der Sichtbarkeit der beiden Stents SMART und SMARTer 52

4 DISKUSSION .. 53

5 ZUSAMMENFASSUNG .. 68

6 LITERATURVERZEICHNIS .. 70

7 ANHANG .. 77
8 DANKSAGUNG ... 86
9 LEBENSLAUF ... 87
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD</td>
<td>Advanced Micro Devices (Prozessor Hersteller)</td>
</tr>
<tr>
<td>Amp.</td>
<td>Ampere</td>
</tr>
<tr>
<td>Art. Nr.</td>
<td>Artikelnummer</td>
</tr>
<tr>
<td>AVE</td>
<td>Arterial Vascular Engineering</td>
</tr>
<tr>
<td>ballonexp.</td>
<td>ballonexpandierbar</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>Corinthian 29</td>
<td>Palmaz Corinthian PQ294P</td>
</tr>
<tr>
<td>Corinthian 39</td>
<td>Palmaz Corinthian PQ394P</td>
</tr>
<tr>
<td>Cum</td>
<td>kumulative Auftretenswahrscheinlichkeit</td>
</tr>
<tr>
<td>et al</td>
<td>und andere</td>
</tr>
<tr>
<td>exp.</td>
<td>expandiert</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>kont. Durchl.</td>
<td>kontinuierliche Durchleuchtung</td>
</tr>
<tr>
<td>L5</td>
<td>Lendenwirbelkörper 5</td>
</tr>
<tr>
<td>li/o</td>
<td>links oben</td>
</tr>
<tr>
<td>li/u</td>
<td>links unten</td>
</tr>
<tr>
<td>Lok.</td>
<td>Lokalisation</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>Nr.</td>
<td>Nummer</td>
</tr>
<tr>
<td>P/s</td>
<td>Pulse pro Sekunde</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>Prob</td>
<td>Einzelwahrscheinlichkeit</td>
</tr>
<tr>
<td>PTA</td>
<td>perkutane transluminale Angioplastie</td>
</tr>
<tr>
<td>re/o</td>
<td>rechts oben</td>
</tr>
<tr>
<td>re/u</td>
<td>rechts unten</td>
</tr>
<tr>
<td>S1</td>
<td>Sakralwirbelkörper 1</td>
</tr>
<tr>
<td>selbstexp.</td>
<td>selbstexpandierend</td>
</tr>
<tr>
<td>SLM</td>
<td>Schatz Long Medium</td>
</tr>
<tr>
<td>TIFF</td>
<td>Tagged image file format</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Einteilung von Stents

Die selbstexpandierenden Endoprothesen, zu denen die Nitinol-Stents und der Wallstent gehören, öffnen sich entweder aufgrund der Federeigenschaften von Stahldraht oder der Fähigkeit von Nitinol, temperaturgetriggert eine vorgeprägte Form wieder einzunehmen (Vorwerk et al, 1993).

Ein weiteres Stentmaterial, das neben den beiden erstgenannten in der vorliegenden Studie zum Einsatz kam, ist Mediloy, was aus einer Cobalt-Chrom-Nickel-Legierung besteht. Ein Vertreter dieses Typs ist der Wallstent (Boston Scientific, Ratingen, Deutschland). Weitere mögliche Stentmaterialien sind andere Edelmetalle, wie Titan, Tantal und Niob.

1.2 Röntgensichtbarkeit (Radiopazität) von Stents

Die Röntgensichtbarkeit ist darüber hinaus bedeutend, wenn man in einem Gefäß, in das schon ein Stent eingesetzt wurde, weitere Interventionen vornimmt. Überbrückt dieser nun den Zugang zu einem Seitenast oder liegt er in einer Bifurkation, muss er in der Durchleuchtung genau erkannt werden, um das Risiko einer Beschädigung oder

Außerdem ist eine adäquate Röntgendichte wichtig, um die strukturelle Integrität einer Endoprothese beurteilen und eventuelle Schäden oder Frakturen aufdecken zu können.

Aufgrund der genannten Aspekte ist es bei der Auswahl eines Stents notwendig, auf eine bestmögliche Radiopazität zu achten.

1.3 Zielsetzung dieser Arbeit

Folgende Aspekte sollten herausgearbeitet werden:

- Untersuchung der Stentsichtbarkeit in fünf verschiedenen Durchleuchtungsmodalitäten: Spotfilm, kontinuierliche Durchleuchtung, 15, 7,5 und 3 Pulse/Sekunde

- Untersuchung der Sichtbarkeit der einzelnen Stents insgesamt und in Abhängigkeit von den fünf verschiedenen Durchleuchtungsmodi

- Untersuchung der Qualität der Stentsichtbarkeit in den einzelnen Durchleuchtungsmodalitäten

- Prüfung, ob signifikante Unterschiede in der Sichtbarkeit zwischen den einzelnen Stents und / oder zwischen den Durchleuchtungsmodi bestehen

- Untersuchung auf Sichtbarkeitsunterschiede der Stents in Abhängigkeit von der Position in Projektion auf das menschliche Becken
2 Material und Methoden

2.1 Material und Probanden

2.1.1 Stents

Folgende Stents wurden in der vorliegenden Studie eingesetzt:

Ballonexpandierbare Stents

- Palmaz Medium P394 (Cordis; Johnson & Johnson, Warren, NJ)
- Palmaz-Schatz Long-Medium PS424E (Cordis; Johnson & Johnson, Warren, NJ)
- Palmaz Corinthian PQ394P, Palmaz Corinthian PQ294P (Cordis; Johnson & Johnson)
- Guidant Megalink (Firma Guidant)
- Medtronic AVE Bridge (Medtronic AVE, Richmond, BC, Canada)
- Medtronic AVE Bridge X (Medtronic AVE, Richmond, BC, Canada)

Selbstexpandierbare Stents

- SMART (Cordis; Johnson & Johnson)
- Easy Wallstent (Boston Scientific Vascular)
- Memotherm Flexx (Angiomed/Bard, Karlsruhe, Deutschland)
- Guidant Dynalink (Firma Guidant)
- Jostent SelfX (Jomed AG, Behringen, Schweiz)

Selbstexpandierbare Stents mit sichtbarkeitsverstärkenden Markern, bzw. Doppelstents

- SMARTer (Cordis; Johnson & Johnson)
- Luminexx (Angiomed/Bard, Karlsruhe, Deutschland)
- Covent (Cordis; Johnson & Johnson), bestehend aus 2 SMART Stents und einer PTFE-Membran

Die genannten Stents sind in Tabelle 1 näher beschrieben.
Tabelle 1: Auflistung ausgewählter Stenteigenschaften (exp.=expandiert, \(\phi\)=Durchmesser, Corinthian 29= Palmaz Corinthian PQ294P, Corinthian 39=Palmaz Corinthian PQ394P), * von den Herstellern keine Angaben erhalten

<table>
<thead>
<tr>
<th>Stent</th>
<th>Material</th>
<th>(\phi) exp. [mm]</th>
<th>Länge exp. [mm]</th>
<th>Gewicht [g]</th>
<th>Implantationstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palmaz</td>
<td>316L Edelstahl</td>
<td>8</td>
<td>33</td>
<td>0,15</td>
<td>balloonexp.</td>
</tr>
<tr>
<td>Palmaz SLM</td>
<td>316L Edelstahl</td>
<td>8</td>
<td>37</td>
<td>0,17</td>
<td>balloonexp.</td>
</tr>
<tr>
<td>Corinthian 29</td>
<td>316L Edelstahl</td>
<td>8</td>
<td>21</td>
<td>0,09</td>
<td>balloonexp.</td>
</tr>
<tr>
<td>Corinthian 39</td>
<td>316L Edelstahl</td>
<td>8</td>
<td>31</td>
<td>0,16</td>
<td>balloonexp.</td>
</tr>
<tr>
<td>Megalink</td>
<td>316L Edelstahl</td>
<td>8</td>
<td>36</td>
<td>*</td>
<td>balloonexp.</td>
</tr>
<tr>
<td>AVE Bridge</td>
<td>316L Edelstahl</td>
<td>8</td>
<td>39</td>
<td>0,23</td>
<td>balloonexp.</td>
</tr>
<tr>
<td>AVE Bridge X</td>
<td>316L Edelstahl</td>
<td>8</td>
<td>36</td>
<td>0,22</td>
<td>balloonexp.</td>
</tr>
<tr>
<td>SMART</td>
<td>Nitinol</td>
<td>8</td>
<td>40</td>
<td>0,20</td>
<td>selbstexp.</td>
</tr>
<tr>
<td>SMARTer</td>
<td>Nitinol</td>
<td>8</td>
<td>43</td>
<td>0,20</td>
<td>selbstexp.</td>
</tr>
<tr>
<td>Covent</td>
<td>Nitinol</td>
<td>8</td>
<td>40</td>
<td>0,40</td>
<td>selbstexp.</td>
</tr>
<tr>
<td>Memotherm Flexx</td>
<td>Nitinol</td>
<td>8</td>
<td>40</td>
<td>0,21</td>
<td>selbstexp.</td>
</tr>
<tr>
<td>Luminexx</td>
<td>Nitinol</td>
<td>8</td>
<td>35</td>
<td>*</td>
<td>selbstexp.</td>
</tr>
<tr>
<td>Dynalink</td>
<td>Nitinol</td>
<td>8</td>
<td>40</td>
<td>*</td>
<td>selbstexp.</td>
</tr>
<tr>
<td>Jostent SelfX</td>
<td>Nitinol</td>
<td>8</td>
<td>44</td>
<td>*</td>
<td>selbstexp.</td>
</tr>
<tr>
<td>Wallstent</td>
<td>Mediloy</td>
<td>8</td>
<td>41</td>
<td>0,18</td>
<td>selbstexp.</td>
</tr>
</tbody>
</table>

2.1.2 Beckenphantom

Zur Simulation des menschlichen Körpers kam ein Beckenphantom aus Plexiglas (x-ray products 3M, Art.Nr. 7240, Firma Erl er und Zimmer, Lauf, Deutschland) zum Einsatz. Dieses besteht aus einer von Plexiglas ummantelten Nachbildung des menschlichen Skeletts, die den Bereich des ersten Lendenwirbelkörpers bis zum proximalen Femur darstellt. Es ist ca. 38 cm lang und hat im Bereich, in dem die Untersuchungen durchgeführt wurden, einen Umfang von ca. 70 cm.
2.1.3 Durchleuchtungsgerät

Die Durchleuchtung wurde mit einem Fluorospot-T.O.P.-Gerät der Firma Siemens AG, Forchheim, Deutschland vorgenommen.

2.1.4 Scanner

2.1.5 Für die Bildpräsentation verwendeter PC und Monitor

2.1.6 Fragebogen und Auswertungstabelle

Der Fragebogen und ein Exemplar der Auswertungstabelle sind in Abbildung 34 und Tabelle 8 im Anhang dargestellt.

2.1.7 Reviewer

2.2 Methoden

2.2.1 Versuchsbeschreibung

Insgesamt wurden 15 Stents in die Studie eingeschlossen. Diese wurden an der Phantomoberfläche jeweils an vier verschiedenen Positionen (Projektion auf den lumbosakralen Übergang (L5/S1) rechts und links und auf das Iliosakralgelenk rechts und links) angebracht und in fünf unterschiedlichen Modi (Spotfilm, kontinuierliche Durchleuchtung, 15 Pulse/Sekunde, 7,5 Pulse/Sekunde und 3 Pulse/Sekunde) mit einem angiographischen Fluorospot-T.O.P.-Gerät durchleuchtet. Außerdem wurden Kontrollaufnahmen, bei denen kein Stent am Beckenmodell vorhanden war, in allen fünf Modi angefertigt.

Mittels Bildschirmpräsentation am PC-Monitor wurde die Sichtbarkeit der Stents in Abhängigkeit vom Durchleuchtungsmodus und von der Position (oben/unter) anhand eines Fragebogens beurteilt.

In Absprache mit dem Institut für Medizinische Biometrie der Universität Tübingen (Herr Professor Dr. K. Dietz) wurden 4 Radiologen zur Stentsichtbarkeit befragt, die jeden Stent in jedem Durchleuchtungsmodus sowohl in der unteren als auch in der oberen Position 20 mal betrachten mussten. Da das Modell symmetrisch ist, erschien es nicht als sinnvoll, bei der Beurteilung der Stentsichtbarkeit zwischen rechts und links zu unterscheiden. Trotzdem wurde den Reviewern jeweils die Hälfte der Bilder rechts, die andere Hälfte links präsentiert, damit sie nicht nur in zwei, sondern in vier Positionen einen Stent vermuten mussten und sich damit die Chance, einen solchen zufällig richtig zu lokalisieren, von 50 % auf 25 % verringerte. Insgesamt ergaben sich somit 12800 bewertete Bilder, 3200 pro Reviewer.
Das Fließschema in Abbildung 1 soll den Versuchsaufbau vereinfacht darstellen:

Abbildung 1: Fließschema zum Versuchsaufbau

2.2.2 Versuchsvorbereitung

Die Versuchsvorbereitung erfolgte in fünf Arbeitsschritten:

1) **Positionierung der Stents am Beckenphantom**

Am Beckenphantom wurden extern an der Oberfläche in Projektion auf den lumbosakralen Übergang (L5/S1) rechts und links und auf das Iliosakralgelenk rechts und links Markierungen angebracht, an denen die Stents jeweils mit durchsichtigen Klebestreifen befestigt wurden.

2) **Durchleuchtung**

Die Durchleuchtung des Phantoms, an dem die Stents angebracht waren, wurde in folgenden fünf verschiedenen Modalitäten durchgeführt: Spotfilm, kontinuierliche Durchleuchtung, 15 Pulse/Sekunde, 7,5 Pulse/Sekunde und 3 Pulse/Sekunde. Die Aufnahmen erfolgten in anterior-posteriorer Projektion. Hierfür wurde ein

Da sich der jeweilige Stent während der Durchleuchtung an der dem Bildverstärker zugewandten Oberfläche des Beckenmodells befand, wurde er im Vergleich zu einem in den Körper eingesetzten Stent etwas kleiner abgebildet. Jedoch konnte man Abhilfe schaffen, indem der maximale Röhren/Bildverstärker-Abstand gewählt und der Abstand zwischen Stent und Bildverstärker so gering wie möglich gehalten wurde.

3) Digitalisierung der Bilder

Die gewonnenen Bilder wurden auf Laserfilme gedruckt und mit Hilfe eines hochauflösenden Röntgenbildscanners (Vidar VXR12) sowie dem Programm Paint Shop Pro digitalisiert und im TIF-Format gespeichert.

4) Erstellen der Bildpräsentation

Abbildung 2: Aufbau der Bildpräsentation

5) *Fragebogen und Auswertungstabelle*

Zur Beurteilung der Stentsichtbarkeit wurde ein Fragebogen (Abbildung 34 im Anhang) entwickelt, der aus folgenden drei Fragen bestand:

1) Ist der Stent sichtbar? Ja oder Nein?

Dabei bedeutete „oben“ die Projektion auf den lumbosakralen Übergang (L5/S1) und „unten“ die Projektion auf das Iliosakralgelenk, wobei im Fragebogen aus Gründen der Vereinfachung die Präpositionen verwendet wurden.

3) Wie ist der Stent zu sehen? Sehr gut, gut, mäßig oder schlecht?
Die Dokumentation der Antworten sollte anhand eines Zahlenscores erfolgen, der folgendermaßen aussah:

Score zu Frage 1:
1 für die Aussage: Stent ist sichtbar
0 für die Aussage: kein Stent ist sichtbar

Score zu Frage 2:
1 für die richtige Lokalisierung des Stents
0 für die falsche Lokalisierung des Stents

Score zu Frage 3:
4 für **sehr gute**
3 für **gute**
2 für **mäßige**
1 für **schlechte**

Sichtbarkeit des Stents

2.2.3 Versuchsdurchführung

Jedem der vier Reviewer wurden 3200 Bilder mittels Bildschirmpräsentation des Programmes Powerpoint (2000 (9.0.2716)) zur Bewertung präsentiert. Hierfür wurden jeweils zwischen 6 und 10 Sitzungen benötigt, die sich über einen Zeitraum von drei bis vier Wochen erstreckten und in denen jeder Reviewer mindestens eine und höchstens zwei Bilderfolgen, also 320 bis 640 Bilder, betrachtete. So wurde versucht, eine zu starke Ermüdung der Beurteiler zu vermeiden und die Vergleichbarkeit der verschiedenen Bewertungen dadurch nicht zu gefährden. Außerdem war es so möglich,
entsprechend der variierenden Verfügbarkeit der Reviewer, die Sitzungen kürzer oder länger abzuhalten, was für eine reibungslose und zügige Durchführung der Studie förderlich war.

2.2.4 Statistische Analyse

3 Ergebnisse

Im Kapitel 3.1 wird auf die reine Stentsichtbarkeit, im Kapitel 3.2 zusätzlich auf deren Qualität eingegangen. Kapitel 3.3 behandelt die Stentsichtbarkeit und die Qualität abhängig von der Lokalisation, Kapitel 3.4 befasst sich mit der Frage nach signifikanten Unterschieden, Kapitel 3.5 hat den Vergleich ausgesuchter Stenttypen zum Inhalt.

3.1 Stentsichtbarkeit

Als sichtbare Stents galten diejenigen, die an der richtigen Lokalisation als Stents erkannt wurden, bei denen demnach die Fragen 1 und 2 des Fragebogens mit dem Score 1 bewertet wurden. Die Datenquelle der folgenden Auswertungen ist in Tabelle 9 im Anhang dargestellt.

3.1.1 Stentsichtbarkeit in den fünf verschiedenen Durchleuchtungsmodi

Jeder der fünf Durchleuchtungsmodi (Spotfilm, kontinuierliche Durchleuchtung, 15, 7,5 und 3 P/s) kam in der durchgeführten Versuchsreihe 2400 mal vor. Es wurde der Prozentanteil sichtbarer Stents in jedem Durchleuchtungsmodus ermittelt. Die Ergebnisse sind in Tabelle 2 aufgeführt.

Tabelle 2: Sichtbare Stents in Abhängigkeit vom Durchleuchtungsmodus

<table>
<thead>
<tr>
<th>Durchleuchtungsmodus</th>
<th>Vorkommen absolut</th>
<th>Richtig erkannte Stents absolut</th>
<th>prozentual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spotfilm</td>
<td>2400</td>
<td>2394</td>
<td>99,75%</td>
</tr>
<tr>
<td>kontinuierliche Durchleuchtung</td>
<td>2400</td>
<td>2270</td>
<td>94,58%</td>
</tr>
<tr>
<td>15 Pulse/Sekunde</td>
<td>2400</td>
<td>2169</td>
<td>90,38%</td>
</tr>
<tr>
<td>7,5 Pulse/Sekunde</td>
<td>2400</td>
<td>2128</td>
<td>88,67%</td>
</tr>
<tr>
<td>3 Pulse/Sekunde</td>
<td>2400</td>
<td>1844</td>
<td>76,83%</td>
</tr>
</tbody>
</table>
Gemäß der abnehmenden Bildqualität bei Verringerung der Durchleuchtungsfrequenzen verminderte sich auch der Anteil der sichtbaren Stents. Während beim Spotfilm fast 100% aller Stents zu sehen waren, konnte man bei 3 P/s nur noch 76,83% als solche erkennen.

3.1.2 Sichtbarkeit der einzelnen Stents unabhängig vom Durchleuchtungsmodus

Abbildung 4: Sichtbarer Anteil der einzelnen Stents in %

Am häufigsten wurden der Covent, der Bridge X, der Luminexx und der Wallstent erkannt (in mindestens 99% der Fälle). Der Jostent, SMARTer, SMART und der Bridge konnten in über 95% der Fälle als Stents identifiziert werden. Am seltensten waren der Megalink (79,00%), der Dynalink (77,00%) und der Corinthian 29 (60,25%) sichtbar.
3.1.3 Sichtbarkeit der einzelnen Stents in Abhängigkeit vom Durchleuchtungsmodus

Jeder Stent wurde insgesamt in jedem Durchleuchtungsmodus 160 mal präsentiert. Der Prozентanteil sichtbarer Stents an der im jeweiligen Modus dargebotenen Gesamtsumme wurde für jeden Stent bestimmt.

Die Abbildungen 5-9 zeigen die Ergebnisse in der Übersicht. Der Anteil erkennbarer Stents ist in Prozentzahlen angegeben.

![Diagramm](image)

Abbildung 5: Sichtbarkeit der einzelnen Stents beim Durchleuchtungsmodus Spotfilm; Anteil sichtbarer Stents in %
Abbildung 6: Sichtbarkeit der einzelnen Stents beim Durchleuchtungsmodus kontinuierliche Durchleuchtung; Anteil sichtbarer Stents in %

Abbildung 7: Sichtbarkeit der einzelnen Stents beim Durchleuchtungsmodus 15 P/s; Anteil sichtbarer Stents in %
Abbildung 8: Sichtbarkeit der einzelnen Stents beim Durchleuchtungsmodus 7,5 P/s; Anteil sichtbarer Stents in %

Abbildung 9: Sichtbarkeit der einzelnen Stents beim Durchleuchtungsmodus 3 P/s; Anteil sichtbarer Stents in %
Bei den Spotfilm-Aufnahmen waren, bis auf zwei Ausnahmen (Dynalink in 99 %, Corinthian 29 in 97 %), alle Stenttypen in 100 % der Fälle sichtbar.

Die Sichtbarkeit der Stents Wallstent, Luminexx, Jostent, Covent und Bridge X lag in allen Durchleuchtungsmodi über der 95 %-Marke. Der Luminexx wurde außer bei 3 P/s (97 %) in allen Durchleuchtungen in 100 % der Fälle gesehen. Auch der Covent war bis auf die Aufnahmen mit 7,5 P/s (99 %) in allen anderen Modalitäten immer sichtbar. Weiter gehörte der SMARTer zu den häufig erkannten Stents und wurde in allen Durchleuchtungsmodalitäten in wenigstens 92 % gesehen. Der SMART und der Bridge waren, außer bei 3 P/s (SMART 89 %, Bridge 88 %), in allen Durchleuchtungen in mehr als 90 % der Fälle erkennbar.

Der Corinthian 29 und der Dynalink, die beim Spotfilm als einzige Stents nicht in 100 % der Fälle gesehen wurden, wiesen auch in allen anderen Modi den geringsten (Corinthian 29) bzw. zweitgeringsten (Dynalink) Anteil an sichtbaren Stents auf. Eine Ausnahme bildeten die Aufnahmen mit 7,5 P/s, bei denen der Anteil der erkannten Megalink Stents (69 %) noch 7 %-Punkte unter dem des Dynalinks (76 %) lag. Der Corinthian 29 war seltener sichtbar als die restlichen Stents. Bei der kontinuierlichen Durchleuchtung, bei der bis auf den Dynalink (86 %) und den Palmaz (88 %) alle anderen Stents in 91 bis 100 % der Fälle gesehen wurden, lag der erkennbare Anteil des Corinthian 29 nur bei 76 %, bei 3 P/s bei nur 31 %.

Tabelle 3 zeigt im Überblick, wie sich die sichtbaren Anteile der einzelnen Stents mit abnehmender Bildqualität verhielten.
Tabelle 3: Anteil sichtbarer Stents in Prozent in Abhängigkeit vom Durchleuchtungsmodus

<table>
<thead>
<tr>
<th>Stent</th>
<th>Spotfilm</th>
<th>kont. Durchl.</th>
<th>15 P/s</th>
<th>7,5 P/s</th>
<th>3 P/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covent</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
<td>99 %</td>
<td>100 %</td>
</tr>
<tr>
<td>AVE Bridge X</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
<td>99 %</td>
<td>99 %</td>
</tr>
<tr>
<td>Luminexx</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
<td>97 %</td>
</tr>
<tr>
<td>Wallstent</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
<td>99 %</td>
<td>96 %</td>
</tr>
<tr>
<td>Jostent SelfX</td>
<td>100 %</td>
<td>99 %</td>
<td>99 %</td>
<td>99 %</td>
<td>97 %</td>
</tr>
<tr>
<td>SMARTer</td>
<td>100 %</td>
<td>99 %</td>
<td>98 %</td>
<td>99 %</td>
<td>92 %</td>
</tr>
<tr>
<td>SMART</td>
<td>100 %</td>
<td>99 %</td>
<td>100 %</td>
<td>93 %</td>
<td>89 %</td>
</tr>
<tr>
<td>AVE Bridge</td>
<td>100 %</td>
<td>99 %</td>
<td>99 %</td>
<td>93 %</td>
<td>88 %</td>
</tr>
<tr>
<td>Palmaz SLM</td>
<td>100 %</td>
<td>92 %</td>
<td>93 %</td>
<td>86 %</td>
<td>79 %</td>
</tr>
<tr>
<td>Corinthian 39</td>
<td>100 %</td>
<td>97 %</td>
<td>97 %</td>
<td>92 %</td>
<td>59 %</td>
</tr>
<tr>
<td>Memotherm Flexx</td>
<td>100 %</td>
<td>92 %</td>
<td>88 %</td>
<td>78 %</td>
<td>65 %</td>
</tr>
<tr>
<td>Palmaz</td>
<td>100 %</td>
<td>88 %</td>
<td>80 %</td>
<td>96 %</td>
<td>59 %</td>
</tr>
<tr>
<td>Megalink</td>
<td>100 %</td>
<td>91 %</td>
<td>80 %</td>
<td>69 %</td>
<td>55 %</td>
</tr>
<tr>
<td>Dynalink</td>
<td>99 %</td>
<td>86 %</td>
<td>78 %</td>
<td>76 %</td>
<td>47 %</td>
</tr>
<tr>
<td>Corinthian 29</td>
<td>97 %</td>
<td>76 %</td>
<td>44 %</td>
<td>53 %</td>
<td>31 %</td>
</tr>
</tbody>
</table>

100 % - 99 % 99 % - 90 % 90 % - 80 % < 80 %

Die Tabelle 3 lässt sich in eine linke obere mit besser sichtbaren und eine rechte untere Hälfte mit schlechter sichtbaren Stents aufteilen. Mit abnehmender Bildqualität wurden die Stents seltener erkannt, was besonders bei den insgesamt schlechter sichtbaren im unteren Teil der Tabelle ab dem Palmaz SLM deutlich wird. Bei diesem und den darunter folgenden waren bei 3 P/s im Gegensatz zu den anderen Stents weniger als 80 % erkennbar. Ebenso waren bei 7,5 P/s bei diesen Stents die sichtbaren Anteile kleiner als 90 %. Ausnahmen bildeten der Palmaz (96 %) und der Corinthian 39 (92 %). Der Anteil der sichtbaren Palmaz Stents war bei 7,5 P/s mit 96 % um 16 % größer als bei den Aufnahmen mit 15 P/s (80 %), die eine bessere Bildqualität erwarten ließen. Ebenso war der Corinthian 29 bei 15 P/s in 44 % der Fälle als Stent erkennbar, bei 7,5 P/s dagegen in 53 %. Auch beim SMARTer waren bei den Aufnahmen mit 7,5 P/s 1 % mehr Stents sichtbar (99 %) als bei 15 P/s (98 %).

In Tabelle 4 sind die einzelnen Stents hinsichtlich ihrer Sichtbarkeit zur besseren Übersicht in vier Gruppen eingeteilt. Gruppe 1 enthält die Stents, die in mindestens 99 % der Fälle erkennbar waren, Gruppe 2 diejenigen, deren sichtbarer Anteil weniger als
99 %, jedoch mindestens 90 % betrug. Gruppe 3 umfasst die Gefäßprothesen, die in weniger als 90 %, aber in mindestens 80 % der Fälle zu sehen waren. In der vierten Gruppe waren weniger als 80 % erkennbar. Die Gruppeneinteilung bezieht sich hinsichtlich der Prozentwerte auf die Werte, die sich aus der Abbildung 4 ergeben, in der die Sichtbarkeit der Stents insgesamt und unabhängig vom Durchleuchtungsmodus dargestellt ist. Aber auch unter Berücksichtigung der einzelnen Durchleuchtungsqualitäten lässt sich die Einteilung tendenziell vertreten. Tabelle 4 zeigt die Gruppenzuordnung der einzelnen Stents.

Tabelle 4: Gruppeneinteilung der einzelnen Stents hinsichtlich ihrer Sichtbarkeit

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil sichtbarer Stents</td>
<td>99 % -100%</td>
<td>90% -98,9%</td>
<td>80% -89,9%</td>
<td>< 80%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stents</th>
<th>Covent</th>
<th>Jostent SelfX</th>
<th>Palmaz SLM</th>
<th>Megalink</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVE Bridge X</td>
<td>SMARTer</td>
<td>Corinthian 39</td>
<td>Dynalink</td>
<td></td>
</tr>
<tr>
<td>Luminexx</td>
<td>SMART</td>
<td>Memotherm Flexx</td>
<td>Corinthian 29</td>
<td></td>
</tr>
<tr>
<td>Wallstent</td>
<td>AVE Bridge</td>
<td>Palmaz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2 Qualität der Stentsichtbarkeit

Hier wurden die Scores der dritten Frage des Fragebogens zur Auswertung herangezogen. Beurteilt wurde die Qualität der Stentsichtbarkeit, wofür folgende Bewertungsscores zur Verfügung standen:

4 für sehr gute, 3 für gute, 2 für mäßige und 1 für schlechte Stentsichtbarkeit.

3.2.1 Qualität der Stentsichtbarkeit in den fünf Durchleuchtungsmodi

Jeder Durchleuchtungsmodus kam in der Versuchsreihe insgesamt 2400 mal vor. Es wurde zunächst, unabhängig von den Stents, für jeden Modus der Mittelwert aller
vergebenen Bewertungsscores errechnet. Dabei wurden vom Wert 2400 jeweils die Fälle abgezogen, in denen der Stent nicht an der richtigen Lokalisation erkannt wurde, also der Reviewer einen Stent bewertete, der an der vermeintlichen Position nicht existierte. Dieser Sachverhalt erklärt die unterschiedlichen Werte in der Spalte „Sichtbare Stents“ in der folgenden Tabelle. Tabelle 5 zeigt die Mittelwerte und Medianwerte der Scores für jede Durchleuchtungsmodalität.

Tabelle 5: Mittelwerte und Medianwerte der Scores für jeden Durchleuchtungsmodus

<table>
<thead>
<tr>
<th>Durchleuchtungsmodus</th>
<th>Sichtbare Stents</th>
<th>Mittelwert der Bewertungsscores</th>
<th>Medianwert der Bewertungsscores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spotfilm</td>
<td>2394</td>
<td>3,26</td>
<td>3</td>
</tr>
<tr>
<td>kont. Durchl.</td>
<td>2270</td>
<td>2,20</td>
<td>2</td>
</tr>
<tr>
<td>15 P/s</td>
<td>2169</td>
<td>2,00</td>
<td>2</td>
</tr>
<tr>
<td>7,5 P/s</td>
<td>2128</td>
<td>1,88</td>
<td>2</td>
</tr>
<tr>
<td>3 P/s</td>
<td>1844</td>
<td>1,68</td>
<td>2</td>
</tr>
</tbody>
</table>

Die Spotfilm-Aufnahmen weisen den höchsten Mittelwert auf, gefolgt von der kontinuierlichen Durchleuchtung und den Aufnahmen mit 15, 7,5 und 3 P/s. Die Differenz zwischen den Mittelwerten für den Spotfilm und die kontinuierliche Durchleuchtung ist größer als 1, dann verringern sich die Werte in Schritten zwischen 0,12 und 0,20.

Beim Medianwert wird nur ein Unterschied zwischen den Spotfilm-Aufnahmen und den übrigen Durchleuchtungsmodalitäten, welche alle denselben Medianwert aufweisen, deutlich.
3.2.2 Qualität der Stentsichtbarkeit der einzelnen Stents unabhängig vom Durchleuchtungsmodus

Es wurde für jeden Stent der Mittelwert aller vergebenen Bewertungsscores insgesamt, unabhängig vom Durchleuchtungsmodus, ermittelt. Jeder Stent wurde 800 mal präsentiert, die sichtbaren Stents sind in Tabelle 6 aufgeführt.

Tabelle 6: Mittelwerte aller Scores für jeden Stent

<table>
<thead>
<tr>
<th>Stent</th>
<th>Sichtbare Stents</th>
<th>Mittelwert aller Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covent</td>
<td>799</td>
<td>3,25</td>
</tr>
<tr>
<td>Luminexx</td>
<td>795</td>
<td>3,05</td>
</tr>
<tr>
<td>AVE Bridge X</td>
<td>798</td>
<td>2,75</td>
</tr>
<tr>
<td>Wallstent</td>
<td>792</td>
<td>2,57</td>
</tr>
<tr>
<td>AVE Bridge</td>
<td>765</td>
<td>2,30</td>
</tr>
<tr>
<td>Jostent SelfX</td>
<td>791</td>
<td>2,26</td>
</tr>
<tr>
<td>SMART</td>
<td>770</td>
<td>2,22</td>
</tr>
<tr>
<td>SMARTer</td>
<td>781</td>
<td>2,14</td>
</tr>
<tr>
<td>Corinthian 39</td>
<td>713</td>
<td>2,08</td>
</tr>
<tr>
<td>Palmaz</td>
<td>676</td>
<td>2,04</td>
</tr>
<tr>
<td>Palmaz SLM</td>
<td>718</td>
<td>1,78</td>
</tr>
<tr>
<td>Memotherm Flexx</td>
<td>677</td>
<td>1,69</td>
</tr>
<tr>
<td>Megalink</td>
<td>632</td>
<td>1,62</td>
</tr>
<tr>
<td>Dynalink</td>
<td>616</td>
<td>1,61</td>
</tr>
<tr>
<td>Corinthian 29</td>
<td>482</td>
<td>1,57</td>
</tr>
</tbody>
</table>

Nur der Covent und der Luminexx weisen einen Scoremittelwert auf, der größer als 3 ist, wobei die Werte für den Bridge X und den Wallstent näher an der 3 als an der 2 liegen. Der schlechteste Mittelwert wurde mit 1,57 für den Corinthian 29 ermittelt, bei dem, wie beim Dynalink, Megalink, Memotherm Flexx und Palmaz SLM, nur eine 1 vor dem Komma steht. Die restlichen Stents haben Scoremittelwerte um die 2.

3.2.3 Qualität der Sichtbarkeit der einzelnen Stents in Abhängigkeit vom Durchleuchtungsmodus

Um die Beurteilung der Reviewer auszuwerten, wurde eine ordinale logistische Regression durchgeführt. Es wurden für alle Stents in Abhängigkeit vom
Durchleuchtungsmodus die geschätzten Einzelwahrscheinlichkeiten, mit denen ein bestimmter Score auftrat, ermittelt. Diese wurden summiert und so die geschätzten kumulativen Wahrscheinlichkeiten (Cum), mit denen höchstens ein bestimmter Score, beispielsweise höchstens der Score 3 (Cum 3), vorkam, errechnet.

In den Abbildungen 10-24 sind diese Wahrscheinlichkeiten für die verschiedenen Stents graphisch dargestellt.

Erklärung zu den Abbildungen 10-24:

- **Cum (1):** geschätzte kumulative Wahrscheinlichkeit, mit welcher der Score 1 aufgetreten ist
- **Cum (2):** geschätzte kumulative Wahrscheinlichkeit, mit welcher die Scores 1 bis 2 aufgetreten sind; Cum (2) ergibt sich aus der Summe der geschätzten Einzelwahrscheinlichkeiten Prob (1) und Prob (2) der jeweiligen Scores
- **Cum (3):** geschätzte kumulative Wahrscheinlichkeit, mit der die Scores 1 bis 3 aufgetreten sind; Cum (3) ergibt sich aus der Summe der geschätzten Einzelwahrscheinlichkeiten Prob (1), Prob (2) und Prob (3) der jeweiligen Scores

- **Differenzen** zwischen dem y-Achsen-Wert 1 und den y-Achsen-Werten der Cum (3)-Kurve: Einzelwahrscheinlichkeiten (Prob 4) für den Score 4
- **Differenzen** der y-Achsen-Werte der Cum (3)- und der Cum (2)-Kurve: Einzelwahrscheinlichkeiten (Prob 3) für den Score 3
- **Differenzen** der y-Achsen-Werte der Cum (2)- und der Cum (1)-Kurve: Einzelwahrscheinlichkeiten (Prob 2) für den Score 2
- **Differenzen** der y-Achsen-Werte der Cum (1)-Kurve zur x-Achse: Einzelwahrscheinlichkeiten (Prob 1) für den Score 1

Die Werte 1 bis 5 auf der x-Achse entsprechen den Durchleuchtungsmodalitäten:

1 = Spotfilm, 2 = kontinuierliche Durchleuchtung, 3 = 15 P/s, 4 = 7,5 P/s, 5 = 3 P/s
Beschreibung der Diagramme:

Gruppe 1: Covent, Luminexx, AVE Bridge X, Wallstent

Die Diagramme, die sich für den Covent bzw. den Luminexx erstellen ließen, weisen einen sehr ähnlichen Verlauf auf (Abbildungen 10 und 11).

![Diagramm](image-url)

Abbildung 10: Kumulative Auftretenswahrscheinlichkeiten Cum [i] der Scores i=1; 2; 3 in Abhängigkeit von der Durchleuchtungsqualität beim Covent
Abbildung 11: Kumulative Auftretenswahrscheinlichkeiten Cum [i] der Scores i=1; 2; 3 in Abhängigkeit von der Durchleuchtungsqualität beim Luminexx

Sie zeichnen sich durch eine sehr flache Cum (1)-Kurve aus. Das heißt, selbst bei 7,5 P/s betrug die Wahrscheinlichkeit, dass die Stentsichtbarkeit mit dem Score 1 (schlecht) bewertet wurde, nur etwa 1 bis 2 % und stieg bei 3 P/s nur wenig an (Covent 3,22 %, Luminexx 7,64 %). Auch die Cum (2)-Kurve verläuft zunächst relativ flach, steigt jedoch bei 3 P/s auf einen Wert von 30,49 % (Covent) bzw. 52,11 % (Luminexx). Die Cum (3)-Kurve beginnt bei 1,89 % (Luminexx) bzw. 6,24 % (Covent), steigt dann jedoch steil an und erreicht bei der kont. Durchl. beim Covent einen Wert von 62,49 %, beim Luminexx von 73,53 %. Bei 3 P/s war die Wahrscheinlichkeit, dass höchstens der Score 3 (gut) vergeben wurde, über 93 %, dass Score 4 (sehr gut) auftrat, dagegen kleiner 10 %. Beim Spotfilm bestand für den Covent und den Luminexx eine Wahrscheinlichkeit von über 90 %, mit dem Score 4 bewertet zu werden. Bei der kont. Durchl., 15 P/s und 7,5 P/s war die Wahrscheinlichkeit, dass der Score 3 auftrat, am größten. Bei 3 P/s stieg die Wahrscheinlichkeit, dass der Score 2 (mäßig) vorkam, auf 27,27 % (Covent) bzw. auf 44,48 % (Luminexx).

Auch der Bridge X und der Wallstent weisen einen vergleichbaren Kurvenverlauf auf (Abbildungen 12 und 13).
Abbildung 12: Kumulative Auftretenswahrscheinlichkeiten Cum [i] der Scores i=1; 2; 3 in Abhängigkeit von der Durchleuchtungsqualität beim AVE Bridge X

Abbildung 13: Kumulative Auftretenswahrscheinlichkeiten Cum [i] der Scores i=1; 2; 3 in Abhängigkeit von der Durchleuchtungsqualität beim Wallstent
Für diese beiden war beim Spotfilm die Wahrscheinlichkeit, mit dem Score 4 bewertet zu werden, 89,41 % (Bridge X) bzw. 64,98 % (Wallstent). Bei der kont. Durchl. trat der Score 3 am wahrscheinlichsten auf, mit abnehmender Bildqualität nahm die Wahrscheinlichkeit für das Vorkommen von Score 2 (mäßig) zu. Erst bei den Aufnahmen mit 3 P/s stieg die Wahrscheinlichkeit für das Vorkommen des Scores 1 (schlecht) beim Bridge X auf 17,09 %, beim Wallstent auf 37,12 % an.

Gruppe 2: Jostent SelfX, SMARTer, SMART, AVE Bridge

Alle vier Stents dieser Gruppe zeigen einen ähnlichen Kurvenverlauf (Abbildungen 14-17).

![Diagramm](image.png)

Abbildung 14: Kumulative Auftretenswahrscheinlichkeiten Cum [i] der Scores i=1; 2; 3 in Abhängigkeit von der Durchleuchtungsqualität beim Jostent SelfX
Abbildung 15: Kumulative Auftretenswahrscheinlichkeiten $\text{Cum} \ [i]$ der Scores $i=1; 2; 3$ in Abhängigkeit von der Durchleuchtungsqualität beim SMARTer

Abbildung 16: Kumulative Auftretenswahrscheinlichkeiten $\text{Cum} \ [i]$ der Scores $i=1; 2; 3$ in Abhängigkeit von der Durchleuchtungsqualität beim SMART
Abbildung 17: Kumulative Auftretenswahrscheinlichkeiten Cum \([i]\) der Scores \(i=1; 2; 3\) in Abhängigkeit von der Durchleuchtungsqualität beim AVE Bridge

Die Cum (1)-Kurven steigen steiler an als bei den bisher beschriebenen Stents. Nur beim Spotfilm war die Wahrscheinlichkeit für das Auftreten des Scores 1 nahezu 0 %, stieg dann jedoch an und erreichte bei 3 P/s Werte um 50 %. Beim Spotfilm war es unwahrscheinlich, dass die Stentsichtbarkeit höchstens als mäßig eingestuft wurde (Jostent 3,51 %, SMARTer 3,55 %, SMART 5,08 %, Bridge 3,02 %). Die Scores 3 und 4 waren hier zu etwa gleichen Teilen wahrscheinlich. Nur beim SMART überwog die Wahrscheinlichkeit für den Score 3 (57,56 %) jene für Score 4 (37,36 %) deutlich um 20,20 %. In den anderen Durchleuchtungsmodi war das Vorkommen von Score 4 unwahrscheinlich.

Gruppe 3: Palmaz SLM, Corinthian 39, Palmaz, Memotherm Flexx

Die Abbildungen 18-21 zeigen einen vergleichbaren Kurvenverlauf bei den verschiedenen Stents.
Abbildung 18: Kumulative Auftretenswahrscheinlichkeiten Cum [i] der Scores i=1; 2; 3 in Abhängigkeit von der Durchleuchtungsqualität beim Palmaz SLM

Abbildung 19: Kumulative Auftretenswahrscheinlichkeiten Cum [i] der Scores i=1; 2; 3 in Abhängigkeit von der Durchleuchtungsqualität beim Corinthian 39
Abbildung 20: Kumulative Auftretenswahrscheinlichkeiten Cum [i] der Scores i=1; 2; 3 in Abhängigkeit von der Durchleuchtungsqualität beim Palmaz

Abbildung 21: Kumulative Auftretenswahrscheinlichkeiten Cum [i] der Scores i=1; 2; 3 in Abhängigkeit von der Durchleuchtungsqualität beim Memotherm Flexx
Es fällt ein schnelles Ansteigen der Cum (1)-Kurven auf. Deren erste Datenpunkte, die dem Spotfilm zuzuordnen sind, liegen beim Palmaz SLM und beim Corinthian 39 bei 1,06 % bzw. 0,47 %, das heißt, es war nicht wahrscheinlich, dass die Stentsichtbarkeit hier als schlecht bewertet wurde. Jedoch war hier auch die Wahrscheinlichkeit, dass Score 4 vorkam, geringer als in den zuvor beschriebenen Gruppen (34,11 % beim Corinthian 39, 18,49 % beim Palmaz SLM). Mit abnehmender Bildqualität wurde es immer wahrscheinlicher, dass höchstens der Score 2 auftrat, immer unwahrscheinlicher das Auftreten des Scores 3. Schon bei der Kont. Durchl. lag die Wahrscheinlichkeit, die Sichtbarkeit der beiden Stents mit gut zu bewerten, nur bei 19,50 % (Corinthian 39), bzw. bei 9,24 % (Palmaz SLM). Die Kurvenverläufe beim Palmaz Stent sind den eben beschriebenen ähnlich, jedoch trat beim Spotfilm der Score 4 mit größerer Wahrscheinlichkeit auf (41,80 %).

Der Kurvenverlauf für den Memotherm Flexx unterscheidet sich von den vorhergehenden darin, dass die Wahrscheinlichkeit, mit der höchstens der Score 3 (gut) vorkam, über allen Durchleuchtungsmodi deutlich über 90 % betrug, demnach auch beim Spotfilm nur mit geringer Wahrscheinlichkeit der Score 4 vergeben wurde (7,92 %). Dafür kam der Score 1 bereits bei dieser Durchleuchtungsqualität mit einer Wahrscheinlichkeit von 2,74 % vor. Schon bei der Kont. Durchl. war es vergleichsweise unwahrscheinlich, dass der Score 3 auftrat (5,54 %).

Gruppe 4: Megalink, Dynalink, Corinthian 29

Abbildung 22: Kumulative Auftretenswahrscheinlichkeiten $\text{Cum}[i]$ der Scores $i=1;2;3$ in Abhängigkeit von der Durchleuchtungsqualität beim Megalink.

Abbildung 23: Kumulative Auftretenswahrscheinlichkeiten $\text{Cum}[i]$ der Scores $i=1;2;3$ in Abhängigkeit von der Durchleuchtungsqualität beim Dynalink.
Auch hier lag die Wahrscheinlichkeit, dass höchstens der Score 3 (gut) auftrat, bei allen Durchleuchtungsmodalitäten, einschließlich des Spotfilms, bei über 90 %. Beim Spotfilm war der Score 1 (schlecht) mit 6,35 % (Megalink) bzw. 8,89 % (Dynalink) im Vergleich zu den anderen Stents relativ wahrscheinlich. Der Score 3 (gut) war bereits bei der kontinuierlichen Durchleuchtung, verglichen mit den anderen Stents, eher unwahrscheinlich (6,78 % Megalink, 3,46 % Dynalink).

Beim Corinthian 29 (Abbildung 24) steigt die Cum (1)-Kurve sehr steil an und bereits bei der kont. Durchl. ist die Wahrscheinlichkeit, dass die Sichtbarkeit als „schlecht“ (Score 1) bewertet wurde, mit 65,81 % am größten.

Abbildung 24: Kumulative Auftretenswahrscheinlichkeiten Cum [i] der Scores i=1; 2; 3 in Abhängigkeit von der Durchleuchtungsqualität beim Corinthian 29

Bei 3 P/s war das Vorkommen der Scores 3 und 4 nahezu unwahrscheinlich, des Scores 2 nur in 0,04 % wahrscheinlich. Der Score 4 trat selbst beim Spotfilm nur mit 2,70 %-iger Wahrscheinlichkeit auf. Dagegen kam der Score 1 mit einer Wahrscheinlichkeit von 8,03 % vor. Bei allen anderen Stents, außer diesem, dem Memotherm Flexx, dem Megalink und dem Dynalink, trat der Score 1 beim Spotfilm höchstens mit einer Wahrscheinlichkeit von 1,06 % (Palmaz SLM) auf.
Die Diagramme der einzelnen Stents zeigen, dass tendenziell diejenigen, bei denen der Anteil sichtbarer Stents am größten war, bezüglich der Güte der Sichtbarkeit besser bewertet wurden als die Stents, die seltener als solche erkannt wurden. Es gab jedoch auch Ausnahmen, auf die unten noch eingegangen wird. Beim Spotfilm lag bis auf vier Stents (Corinthian 29, Memotherm Flexx, Megalink, Dynalink) bei allen anderen die Wahrscheinlichkeit, dass der Score 1 auftrat, bei 0 bis 1,06 %. Andererseits kam bei 3 P/s auch bei den am besten sichtbaren Stents, zum Beispiel dem Covent, der Score 4 (sehr gut) nur mit geringer Wahrscheinlichkeit vor (6,78 % beim Covent).

Die Kurven für die kumulativen Wahrscheinlichkeiten beim Luminexx, beim Jostent, beim Palmaz und beim Megalink bilden zwischen den Modalitäten mit 15 bzw. 7,5 P/s ein Plateau, das heißt, die Wahrscheinlichkeit, die Stentsichtbarkeit mit einem bestimmten Score zu bewerten, war bei beiden Frequenzen etwa gleich, obwohl man bei 7,5 P/s eine qualitativ schlechtere Erkennbarkeit erwarten würde. Beim Jostent war die Wahrscheinlichkeit, höchstens den Score 2 (mäßig) zu vergeben, bei 15 P/s (79,98 %) sogar geringfügig größer als bei 7,5 P/s (79,05 %). Beim Palmaz setzt die Plateaubildung bereits bei der kont. Durchl. ein. Demnach waren die Wahrscheinlichkeiten für höchstens Score 1, 2 und 3 bei der kont. Durchl. und den Frequenzen 15 und 7,5 P/s etwa gleich. Beim Dynalink bildet sich bei den Cum (2)- und Cum (3)-Kurven ebenso ein Plateau zwischen der kont. Durchl. und 15 P/s. Die Wahrscheinlichkeit, einen Stent als schlecht (Score 1) sichtbar einzustufen, war bei der kont. Durchl. (67,15 %) sogar etwas höher als bei 15 P/s (64,04 %).

Um einen besseren Überblick über die Qualität der Sichtbarkeit der Stents zu bekommen, wurde ermittelt, welcher Score, abhängig vom Durchleuchtungsmodus, bei den einzelnen Stents die größte Wahrscheinlichkeit hatte, aufzutreten. Tabelle 7 enthält die Auflistung dieser Werte.
Tabelle 7: Mit größter Wahrscheinlichkeit auftretende Scores in Abhängigkeit vom Durchleuchtungsmodus

<table>
<thead>
<tr>
<th>Stent</th>
<th>Durchleuchtungsmodus</th>
<th>Score</th>
<th>Stent</th>
<th>Durchleuchtungsmodus</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covent</td>
<td>Spotfilm</td>
<td>4</td>
<td>AVE Bridge</td>
<td>Spotfilm</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>kont. Durchl.</td>
<td>3</td>
<td></td>
<td>kont. Durchl.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>15 P/s</td>
<td>3</td>
<td></td>
<td>15 P/s</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>7,5 P/s</td>
<td>3</td>
<td></td>
<td>7,5 P/s</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3 P/s</td>
<td>3</td>
<td></td>
<td>3 P/s</td>
<td>1</td>
</tr>
<tr>
<td>AVE Bridge X</td>
<td>Spotfilm</td>
<td>4</td>
<td>Palmez SLM</td>
<td>Spotfilm</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>kont. Durchl.</td>
<td>3</td>
<td></td>
<td>kont. Durchl.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>15 P/s</td>
<td>3</td>
<td></td>
<td>15 P/s</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>7,5 P/s</td>
<td>2</td>
<td></td>
<td>7,5 P/s</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3 P/s</td>
<td>2</td>
<td></td>
<td>3 P/s</td>
<td>1</td>
</tr>
<tr>
<td>Luminexx</td>
<td>Spotfilm</td>
<td>4</td>
<td>Corinthian 39</td>
<td>Spotfilm</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>kont. Durchl.</td>
<td>3</td>
<td></td>
<td>kont. Durchl.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>15 P/s</td>
<td>3</td>
<td></td>
<td>15 P/s</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>7,5 P/s</td>
<td>3</td>
<td></td>
<td>7,5 P/s</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3 P/s</td>
<td>3</td>
<td></td>
<td>3 P/s</td>
<td>1</td>
</tr>
<tr>
<td>Wallstent</td>
<td>Spotfilm</td>
<td>4</td>
<td>Memotherm Flexx</td>
<td>Spotfilm</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>kont. Durchl.</td>
<td>3</td>
<td></td>
<td>kont. Durchl.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>15 P/s</td>
<td>3</td>
<td></td>
<td>15 P/s</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>7,5 P/s</td>
<td>2</td>
<td></td>
<td>7,5 P/s</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3 P/s</td>
<td>2</td>
<td></td>
<td>3 P/s</td>
<td>1</td>
</tr>
<tr>
<td>Jostent SelfX</td>
<td>Spotfilm</td>
<td>3</td>
<td>Palmaz</td>
<td>Spotfilm</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>kont. Durchl.</td>
<td>2</td>
<td></td>
<td>kont. Durchl.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>15 P/s</td>
<td>2</td>
<td></td>
<td>15 P/s</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>7,5 P/s</td>
<td>2</td>
<td></td>
<td>7,5 P/s</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3 P/s</td>
<td>1</td>
<td></td>
<td>3 P/s</td>
<td>1</td>
</tr>
<tr>
<td>SMARTer</td>
<td>Spotfilm</td>
<td>3</td>
<td>Megalink</td>
<td>Spotfilm</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>kont. Durchl.</td>
<td>2</td>
<td></td>
<td>kont. Durchl.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>15 P/s</td>
<td>2</td>
<td></td>
<td>15 P/s</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>7,5 P/s</td>
<td>2</td>
<td></td>
<td>7,5 P/s</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3 P/s</td>
<td>1</td>
<td></td>
<td>3 P/s</td>
<td>1</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 7: Mit größter Wahrscheinlichkeit auftretende Scores in Abhängigkeit vom Durchleuchtungsmodus

<table>
<thead>
<tr>
<th></th>
<th>Spotfilm</th>
<th>3</th>
<th>kont. Durchl.</th>
<th>3</th>
<th>15 P/s</th>
<th>2</th>
<th>7,5 P/s</th>
<th>1</th>
<th>3 P/s</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMART</td>
<td></td>
</tr>
<tr>
<td>Corinthian 29</td>
<td></td>
</tr>
</tbody>
</table>

Wie oben schon erwähnt, zeigt Tabelle 7, dass die häufig erkannten Stents hinsichtlich der Qualität ihrer Sichtbarkeit weitgehend besser abschnitten als die Stents, die seltener überhaupt als solche erkannt wurden. Eine Ausnahme bildet beispielsweise der Bridge. Bei diesem Stent war der Score 4 mit der größten Wahrscheinlichkeit auftretende Score bei den Spotfilm-Aufnahmen. Beim Jostent und beim SMARTer dagegen, die häufiger sichtbar waren (Jostent 98,88 %, SMARTer 97,63 %) als der Bridge (95,63 %), war beim Spotfilm nur der Score 3 der mit den größten Wahrscheinlichkeit auftretende. Bei den anderen Durchleuchtungsmodi waren die wahrscheinlichsten Scores für die drei Stents identisch. Auch beim Corinthian 39 und beim Palmaz, die mit 89,13 % bzw. 84,50 % seltener erkennbar waren als der Jostent und der SMARTer, waren die mit größter Wahrscheinlichkeit auftretenden Scores in allen Aufnahmemodalitäten mit denen der letztgenannten identisch.

3.3 Stentsichtbarkeit in Abhängigkeit von der Lokalisation

Die Stents wurden in folgenden vier Positionen auf dem Beckenphantom angebracht:

Oben: In Projektion auf den lumbosakralen Übergang (L5/S1) auf der rechten und linken Körperhälfte

Unten: In Projektion auf das Iliosakralgelenk auf der rechten und linken Körperhälfte

Es sollte untersucht werden, ob zwischen den oberen und den unteren Lokalisationen ein Unterschied in der Sichtbarkeit bestand. Insgesamt wurden 6000 Bilder, in denen die Stents oben lokализiert waren, und 6000 Bilder, in denen sie sich unten befanden, präsentiert. Bei der einen Hälfte der Aufnahmen waren die Stents links positioniert, bei
3.3.1 Stentsichtbarkeit in Abhängigkeit von der Lokalisation und dem Durchleuchtungsmodus

Abbildung 26: Stentsichtbarkeit in der oberen und unteren Lokalisation in Abhängigkeit vom Durchleuchtungsmodus; Anteil sichtbarer Stents in %

In allen Durchleuchtungsmodalitäten war in den oberen Positionen der Anteil sichtbarer Stents größer als in den unteren Positionen. Beim Spotfilm lag der Unterschied jedoch
nur bei 0,34 % (oben 99,92 %, unten 99,58 %). Auch bei den Aufnahmen mit 7,5 P/s war die Differenz mit 3,33 % relativ gering (oben 90,33 %, unten 87,00 %). Größer war sie bei der kont. Durchl. mit 5,50 % (oben 97,33 %, unten 91,83 %) und bei 15 P/s mit 7,09 % (oben 93,92 %, unten 86,83 %). Bei der Durchleuchtung mit 3 P/s konnten in der oberen Position deutlich mehr Stents (84,58 %) als solche erkannt werden als in der unteren (69,08 %). Hier lag der Unterschied bei 15,50 %. Der Anteil sichtbarer Stents in den oberen Lokalisationen verringerte sich mit abnehmender Bildqualität relativ gleichmäßig und in kleinen Schritten (Schritte zwischen 2,59 % und 5,75 %). Die Differenz zwischen den sichtbaren Anteilen bei den Spotfilm-Aufnahmen und denen bei 3 P/s betrug hier 15,34 %. Dieser Unterschied war in der unteren Position 30,50 %. Bei den unteren Lokalisationen fällt auf, dass der Anteil sichtbarer Stents bei 7,5 P/s (87,00 %) um 0,17 % höher war als bei 15 P/s (86,83 %).

3.3.2 Qualität der Stentsichtbarkeit in Abhängigkeit von der Lokalisation und dem Durchleuchtungsmodus

Für alle Durchleuchtungsqualitäten sind die Mittelwerte für die obere Position höher als für die untere. Beim Spotfilm ist der Unterschied mit einem Wert von 0,11 am geringsten.

Die Medianwerte für oben und unten unterscheiden sich nur bei der kont. Durchl. (oben 3, unten 2) und bei 3 P/s (oben 2, unten 1) um jeweils 1, wobei auch hier der höhere Wert für oben ermittelt wurde. Bei den drei anderen Modi sind die Medianwerte jeweils oben und unten gleich (3 beim Spotfilm, 2 bei 15 und 7,5 P/s).

Abbildung 28: Mittelwerte der Bewertungsscores der Stents in Abhängigkeit von der Lokalisation

Bei allen Stents, mit Ausnahme des Memotherm Flexx (Mittelwert für die untere Position um 0,01 höher als für die obere), sind die Mittelwerte der Scores für die obere Position höher als für die untere.
Die Medianwerte der Scores sind bei den meisten Stents oben und unten gleich, beim Bridge, Megalink, Memotherm Flexx, Palmaz, Palmaz SLM und Wallstent jeweils für die obere Position um eins höher als für die untere. Ein höherer Medianwert für unten tritt bei keinem Stent auf.

3.4 Untersuchung auf signifikante Unterschiede in der Qualität der Stentsichtbarkeit

Um zu prüfen, ob die Unterschiede in den Bewertungen für die verschiedenen Durchleuchtungsmodalitäten signifikant sind, wurde der Tukey-Test verwendet und die geschätzten Mittelwerte der Scores miteinander verglichen. Tabelle 12 im Anhang zeigt, dass sich die Sichtbarkeitsqualitäten aller Durchleuchtungsvarianten signifikant voneinander unterscheiden.

Unter Anwendung des paarigen t-tests wurde festgestellt, dass die Stentsichtbarkeit in allen Durchleuchtungsmodalitäten in Projektion auf den lumbosakralen Übergang signifikant besser bewertet wurde als in Projektion auf das Iliosakralgelenk (Tabelle 18 im Anhang).

Signifikante Unterschiede wurden jeweils für einen p-Wert < 0,0001 angenommen.

3.5 Vergleich einzelner Stenttypen in Bezug auf ihre Sichtbarkeit

3.5.1 Vergleich der Sichtbarkeit der beiden Stents *Memotherm Flexx* und *Luminexx*

Bei 7,5 P/s beispielsweise war der Luminexx als einziger Stent in 100 % der Fälle sichtbar, der Memotherm Flexx nur in 78 %. Bei 3 P/s betrug die Differenz der beiden Stents 32 % (Luminexx in 97 % sichtbar, Memotherm Flexx in 65 %).
Auch in der Qualität ihrer Sichtbarkeit unterschieden sich die beiden Modelle. Der Luminexx wurde in allen Durchleuchtungsqualitäten signifikant besser bewertet als der Memotherm Flexx (Tabellen 13-17 im Anhang). Beim Memotherm Flexx trat der Score 3 (gut) in den Spotfilm-Aufnahmen mit größter Wahrscheinlichkeit auf, während bei den anderen Modi der Score 1 (schlecht) am wahrscheinlichsten vorkam. Der Luminexx wurde beim Spotfilm mit größter Wahrscheinlichkeit mit dem Score 4 (sehr gut) bewertet, bei den übrigen Durchleuchtungsmodalitäten mit dem Score 3 (Tabelle 7). Diese Differenzen werden auch deutlich, wenn man sich die Diagramme, die die kumulativen Auftretenswahrscheinlichkeiten der Scores beschreiben, betrachtet (Abbildungen 11 und 21).

3.5.2 Vergleich der Sichtbarkeit der beiden Stents SMART und SMARTer

Auch diese beiden sind selbstexpandierende Nitinolstents, wobei der SMARTer an jedem Ende mit sechs Tantalköpfchen, die an speziellen Öffnungen angebracht sind, ausgestattet ist. Abbildung 4 zeigt, dass der Anteil sichtbarer Stents beim SMARTer mit 97,63 % nur um 1,38 % höher war als beim SMART (96,25 %). Bei 7,5 P/s (SMARTer 99 %, SMART 93 %) und bei 3 P/s (SMARTer 92 %, SMART 89 %) war der SMARTer häufiger sichtbar als der SMART, beim Spotfilm und bei der kont. Durchl. waren sie gleich häufig, bei 15 P/s war der SMART mit 100 % öfters zu sehen als der SMARTer mit 98 %. Die Qualität der Stentsichtbarkeit wurde nur beim Spotfilm und bei 7,5 P/s beim SMARTer höher bewertet als beim SMART, wobei die Unterschiede nicht signifikant waren. Andererseits schien der SMART bei der kont. Durchl. und bei 15 P/s signifikant besser sichtbar zu sein als der SMARTer (Tabellen 13-16 im Anhang). Die mit größter Wahrscheinlichkeit vorkommenden Scores bei den einzelnen Durchleuchtungsmodi unterschieden sich nur bei der kontinuierlichen Durchleuchtung (3 beim SMART, 2 beim SMARTer) und bei 7,5 P/s (1 beim SMART, 2 beim SMARTer), wobei einmal der SMART und einmal der SMARTer besser abschnitt (Tabelle 7). Auch die vergleichbaren Kurvenverläufe beider Stents in den Abbildungen 15 und 16 zeigen keine deutlichen Vorteile für den SMARTer.
4 Diskussion

Aus dem oben erwähnten lässt sich leicht ableiten, dass die Röntgensichtbarkeit in hohem Maße von der gewählten Durchleuchtungsmodalität abhängt. Bei Reduzierung der Frequenz der Röntgenstrahlimpulse nahm die Sichtbarkeit der Stents insgesamt ab (Tabelle 2). Tabelle 3 zeigt, dass die Stents, die sich in der durchgeführten Studie als schlecht sichtbar erwiesen, mit abnehmender Bildqualität in höherem Grade an Erkennbarkeit verloren als die insgesamt gut sichtbaren Stents. Während der Corinthian 29 bei 3 P/s um 66 % seltener sichtbar war als beim Spotfilm, betrug die Differenz zwischen diesen beiden Durchleuchtungsmodalitäten beispielsweise beim Luminexx
nur 3 %, beim Bridge X sogar nur 1 %. Nicht nur der Anteil sichtbarer Stents nahm mit Verminderung der Pulsfrequenz ab, sondern auch die Güte der Sichtbarkeit, was die Mittelwerte der Bewertungsscores für die einzelnen Modi (Tabelle 5) oder die mit größter Wahrscheinlichkeit vorkommenden Scores bei den fünf Durchleuchtungen (Tabelle 7) zeigen. Zwischen allen fünf Durchleuchtungsmodalitäten waren die Qualitätsunterschiede signifikant (Tabelle 12 im Anhang). Reduziert man die Pulsfrequenz, so verschwimmen die digitalisierten Bilder immer mehr, was das Auffinden der Stents erschwert. Besonders schwierig wird dies in Körperregionen mit knöchernen Strukturen, deren Schatten die Stents noch zusätzlich überlagern, was zum Beispiel im Bereich des menschlichen Beckens der Fall ist.

Die Abbildungen 30 und 31 zeigen zwei Aufnahmen des Covents, einmal im Spotfilm-Modus und einmal in der Durchleuchtung mit 3 P/s, im Vergleich. Bei der Spotfilm-Aufnahme ist der Stent deutlich schärfer sichtbar.

Abbildung 30: Spotfilm-Aufnahme vom Covent
Weiter spielt die **Stentlänge** eine zentrale Rolle bei der Röntgensichtbarkeit von Stents. Es wurden zwei Versionen des Palmaz Corin-thian untersucht, die sich hinsichtlich ihrer Bauweise nur in der Länge unterscheiden. Der Corin-thian 39 ist, expandiert auf 8 mm im Durchmesser, 31 mm lang, der Corin-thian 29, expandiert auf denselben Durchmesser, nur 21 mm. Der Corin-thian 39 war in 89,13 % der Fälle sichtbar, der Corin-thian 29 nur in 60,25 % (Abbildung 4). Diese erhebliche Differenz wird noch deutlicher, wenn man sich die sichtbaren Anteile der beiden Stents abhängig vom Durchleuchungsmodus in den Abbildungen 5-9 betrachtet. Auch in der Qualität der Sichtbarkeit wurde der Corin-thian 39 in allen Durchleuchtungen signifikant besser eingeschätzt als der Corin-thian 29 (Tabellen 13-17 im Anhang). Der Mittelwert der Bewertungsscores beträgt beim Corin-thian 39 2,08, beim Corin-thian 29 jedoch nur 1,57 (Tabelle 6). Der Corin-thian 39 ist mit 31 mm Länge allerdings kürzer als die meisten anderen untersuchten Stents, die größtenteils eine Länge zwischen 36 und 44 mm im expandierten Zustand aufweisen. Dies könnte erklären, dass auch die 31 mm-Version des Corin-thian zu den schlechtesten Stents der Studie gehört und sich, wenn man Tabelle 4 betrachtet, in der dritten, also vorletzten Gruppe hinsichtlich der Sichtbarkeit, befindet. In derselben Gruppe ist auch der Palmaz Medium vertreten, der auch nur 33 mm lang ist. Er war insgesamt in 84,50 % der Fälle erkennbar. Der Mittelwert der

Abbildung 31: Aufnahme vom Covent mit 3 Pulsen pro Sekunde
Scores beträgt 2,04, welcher der sechst schlechteste Wert aller erhaltenen Werte ist. Interessant ist, dass der Palmaz SLM, der mit 37 mm 4 mm länger ist als der Palmaz Medium, mit 1,78 einen schlechteren Mittelwert der Scores aufweist als die kürzere Version (Tabelle 6). Mit 89,75 % war der Palmaz SLM zwar insgesamt häufiger sichtbar als der Palmaz Medium (Abbildung 4), jedoch waren bei den Aufnahmen mit 7,5 P/s 96 % der präsentierten Palmaz Medium Stents und nur 86 % der Palmaz SLM Stents sichtbar (Abbildung 8). Auch wenn man die kumulativen Auftretenswahrscheinlichkeiten der Scores betrachtet (Abbildungen 18 und 20), zeigen sich Vorteile für den Palmaz Medium.

Ein anderer wichtiger Einflussfaktor auf die Röntgensichtbarkeit von Stents ist die Stentmasse. Der Covent Stent besteht aus zwei in einer doppelwandigen Sandwich-Konstruktion angeordneten SMART Stents, zwischen denen sich eine PTFE-Membran befindet. Der Covent hat somit bei vergleichbarer Länge mit ca. 0,40 g eine doppelt so große Masse wie der SMART Stent (ca. 0,20 g). Der Covent war mit einer Sichtbarkeitswahrscheinlichkeit von 99,88 % der am häufigsten erkennbare Stent dieser Studie (Abbildung 4). Der SMART war in 96,25 % der Fälle sichtbar, der SMARTer (eine verbesserte Version des SMARTs mit sechs röntgendichten Tantalmarkern an den Stentendten bei sonst gleichen Produkteigenschaften) in 97,63 %. Der Covent war bis auf die Aufnahmen mit 7,5 P/s in allen Durchleuchtungsmodi in 100 % der Fälle zu sehen. Er war in allen Durchleuchtungen signifikant besser sichtbar als der SMART und der SMARTer (Tabellen 13-17 im Anhang). Selbst bei 7,5 P/s, der Standardfrequenz, wurde die Sichtbarkeit mit einer Wahrscheinlichkeit von 88,42 % mit gut oder sehr gut bewertet. Beim SMART war diese nur 7,58 %, beim SMARTer 10,57 %. Auch bei 3 P/s wurde der Covent immerhin noch mit einer Wahrscheinlichkeit von 69,51 % gut oder sehr gut gesehen. Diese war beim SMART und beim SMARTer 6,35 % (Abbildungen 10, 15 und 16). Der Mittelwert aller Bewertungsscores ist beim Covent mit 3,25 der höchste unter allen untersuchten Stents. Beim SMART beträgt dieser Wert 2,22, beim SMARTer 2,14 (Tabelle 6).

Ein weiteres Beispiel für den Einfluss der Stentmasse auf die Sichtbarkeit stellen der AVE Bridge und seine schwerere Version, der AVE Bridge X, dar. Mit einem Gewicht von 0,22 g hat der Bridge X, bezogen auf eine Länge von 36 mm, eine deutlich höhere Masse als der Bridge, der 0,23 g wiegt, jedoch 39 mm lang ist. Der Bridge X war in
allen Durchleuchtungsmodalitäten, mit Ausnahme des Spotfilms (beide Stents in 100 % der Fälle sichtbar), häufiger sichtbar als der Bridge (Abbildungen 5-9), insgesamt war er in 4,12 % häufiger zu erkennen als der Bridge (Abbildung 4). In allen Durchleuchtungsmodalitäten waren die geschätzten Mittelwerte für den Bridge X signifikant höher als für den Bridge (Tabellen 13-17 im Anhang). Die Wahrscheinlichkeit, dass der Stent gut oder sehr gut gesehen wurde, war für den Bridge X bei allen Durchleuchtungen höher als für den Bridge (Abbildungen 12 und 17). Beim Spotfilm betrug die Wahrscheinlichkeit für sehr gute Sichtbarkeit 89,41 % beim Bridge X, beim Bridge nur 50,59 %.

Vergleicht man den AVE Bridge X mit dem Palmaz SLM, die sich in der Länge nur wenig unterscheiden (AVE Bridge X 36 mm, Palmaz SLM 37 mm) und beide aus rostfreiem Stahl aufgebaut sind, könnte die bessere Sichtbarkeit des AVE Bridge X eventuell durch die größere Masse (Bridge X 0,22 g, Palmaz SLM 0,17 g) mitbewirkt sein. Der AVE Bridge X gehörte mit einem sichtbaren Anteil von 99,75 % in die Spitzengruppe, der Palmaz SLM mit 89,75 % nur in die dritte Gruppe (Tabelle 4). In allen Durchleuchtungsmodalitäten, mit Ausnahme des Spotfilms (beide Stents wurden in 100 % der Fälle gesehen), wurde der AVE Bridge X häufiger gesehen, selbst bei 3 P/s waren es noch 99 %, beim Palmaz SLM dagegen nur noch 79 % (Abbildung 9). Auch war die Qualität der Sichtbarkeit bei allen Durchleuchtungen beim Bridge X signifikant höher als beim Palmaz SLM (Tabellen 13-17 im Anhang). Betrachtet man die Abbildungen 12 und 18, fällt auf, dass die Wahrscheinlichkeit, beim Spotfilm sehr gut gesehen werden, beim Bridge X immerhin 89,41 % betrug, beim Palmaz SLM nur 18,49 %. Die Wahrscheinlichkeit, dass die Sichtbarkeit höchstens mäßig war, stieg beim Palmaz SLM schon bei der kont. Durchl. auf ca. 90 %, wobei diese beim Bridge X selbst bei 3 P/s erst knapp über 70 % lag. Die Mittelwerte aller Scores (Bridge X 2,75, Palmaz SLM 1,78) unterstreichen die deutlich bessere Sichtbarkeit des AVE Bridge X Stents.

Die anderen beiden zu vergleichenden Stents waren der SMARTer und sein vorhergehendes Modell, der SMART. Auch diese beiden sind Nitinolstents, wobei der SMARTer an jedem Ende sechs Mikromarker aus Tantal trägt, die in speziellen Löchern angebracht sind. Im Gegensatz zu den zwei oben beschriebenen Stents waren in der vorliegenden Studie keine eindeutigen Vorteile für den SMARTer zu erkennen. Der SMARTer war zwar insgesamt um 1,38 % häufiger erkennbar (Abbildung 4), jedoch wurde die Qualität der Sichtbarkeit des SMARTers nur beim Spotfilm und bei 7,5 P/s höher eingeschätzt als die des SMARTs, wobei die Unterschiede nicht signifikant waren. Bei der kont. Durchl. und bei 15 P/s schien der SMART allerdings signifikant besser sichtbar zu sein als der SMARTer (Tabellen 14 und 15 im Anhang).

Bei 3 P/s war die Sichtbarkeit beider Stents schlecht (Abbildungen 15 und 16), wobei der SMART wiederum besser eingeschätzt wurde. Der Mittelwert der Scores ist beim SMART mit 2,22 geringfügig höher als beim SMARTer (2,14).

Der Luminexx war in allen Durchleuchtungsmodalitäten signifikant besser sichtbar als der SMARTer (Tabellen 13-17 im Anhang). Wie bereits erwähnt, war der Luminexx selbst bei 3 P/s noch mit einer Wahrscheinlichkeit von fast 50 % gut oder sehr gut sichtbar, wobei diese beim SMARTer nur bei ca. 6 % lag (Abbildungen 11 und 15).
Auch die Scoremittelwerte verdeutlichen die Überlegenheit des Luminexx (3,05 beim Luminexx, 2,14 beim SMARTer). Nun haben diese beiden Stents eine vergleichbare Länge und sind beide mit Tantalkörnern ausgestattet. Die trotzdem bestehenden erheblichen Sichtbarkeitsunterschiede könnten dadurch erklärt werden, dass die Marker beim Luminexx größer sind und dem Auge damit mehr röntgendiffuses Material angeboten wird als bei den kleinen Mikromarkern des SMARTers.

Man sieht, dass in der Literatur hinsichtlich der Frage, welches Stentmaterial die bessere Röntgensichtbarkeit aufweist, Uneinigkeit zwischen den Autoren besteht. Auch in der vorliegenden Studie konnte kein eindeutiger Vorteil für das eine oder andere Material gefunden werden. Betrachtet man die Tabelle 6 mit den Bewertungsmittelwerten oder Tabelle 7 oder auch die Spitzengruppe in Tabelle 4, die den Covent, den Bridge X, den Luminexx und den Wallstent enthält, besteht zwar nur der AVE Bridge X aus rostfreiem Stahl, jedoch ist die gute Sichtbarkeit beispielsweise beim Covent seiner großen
Stentmasse zuzuschreiben oder beim Luminexx seinen Tantalmarkern. Die Tabellen und auch das Cluster in Abbildung 25 zeigen, dass in beiden Materialgruppen gut, mittel und schlecht sichtbare Stents vorkamen.

Vergleicht man den Dynalink aus rostfreiem Stahl und den Megalink aus Nitinol, die beide vom selben Hersteller stammen, jedoch aus unterschiedlichem Material bestehen, schneiden in dieser Arbeit beide Stents ähnlich schlecht ab. Insgesamt war der Megalink in 79,00 % der Fälle sichtbar, der Dynalink in 77,00 % (Abbildung 4). Bei beiden Stents war der mit größter Wahrscheinlichkeit auftretende Score in allen Durchleuchtungen, bis auf den Spotfilm, nur der Score 1 (Tabelle 7). Die Unterschiede zwischen den geschätzten Mittelwerten der Scores waren in keiner Aufnahmequalität signifikant (Tabellen 13-17 im Anhang).

Bewertungen beträgt für den Wallstent 2,57 und wird nur von den Mittelwerten für den Bridge X (2,75), den Memoflex L (3,05) und den Covent (3,25) übertriffen.

Diskussion der Testmethode. In der vorliegenden Arbeit wurde eine in vitro-Testmethode angewendet, wobei die Untersuchungsbedingungen in vitro nie genau denen in vivo entsprechen können. Das eingesetzte Beckenphantom stellt zwar größenmäßig ein menschliches Becken und die enthaltenen knöchernen Strukturen realitätsgetreu dar, jedoch kann die Plexiglasmasse die Gegebenheiten in einem echten

Zu erwähnen ist auch, dass die Testreihe mittels Bildschirmpräsentation durchgeführt wurde und die Bilder somit nicht am Röntgenschirm betrachtet wurden. Jedoch geht die Entwicklung ohnehin in diese Richtung und digitalisierte Bilder, die auf dem Bildschirm betrachtet werden können, werden höchstwahrscheinlich auf lange Sicht die klassischen Röntgenbilder ersetzen.

In der klinischen Routine dienen 7,5 P/s als Standardfrequenz und die Radiologen sind diese Bildqualität aus dem Alltag gewöhnt. Dies könnte erklären, dass einige Stents bei 7,5 P/s häufiger (Palmaz um 16 %, Corinthian 29 um 9 %, SMARTer um 1 %) sichtbar waren als bei 15 P/s, die eine bessere Bildqualität erwarten ließen (Tabelle 3). Auch die Kurven für die kumulativen Wahrscheinlichkeiten, die zeigen, mit welcher Wahrscheinlichkeit die Stentsichtbarkeit mit einem bestimmten Score bewertet wurde, bilden beim Luminexx, beim Jostent, beim Palmaz und beim Megalink zwischen 15 und 7,5 P/s ein Plateau (Abbildungen 11, 14, 20 und 22).
Schlussfolgerung. In der vorliegenden Arbeit wird deutlich, dass die Stentsichtbarkeit von mehreren Faktoren beeinflusst wird.

1. Durch *Erhöhung der Pulsfrequenz* verbessern sich die Bildqualität und Bildschärfe signifikant.

2. Weiter wird mit zunehmender *Stenträge* die Sichtbarkeit signifikant verbessert, was durch den Vergleich des Palmaz Corinthian 39 mit dem Palmaz Corinthian 29, die sich nur in der Länge unterscheiden, verdeutlicht wird.

3. Ebenso ist ein Stent um so besser sichtbar, je größer seine *Masse* ist. Dies zeigen die signifikant besseren Ergebnisse des Covent, der aus zwei SMART Stents besteht, die in einer doppelwandigen Sandwich-Konstruktion angeordnet sind, verglichen mit dem SMART, der ca. nur die Hälfte der Masse des Covents aufweist. Auch der AVE Bridge X schneidet signifikant besser ab als der AVE Bridge, der eine geringere Masse aufweist.

Jedoch sollten die Marker eine gewisse Größe aufweisen. Der SMARTer, der mit kleinen Mikromarkern aus Tantal versehen ist, wurde in dieser Studie nicht wesentlich besser bewertet als sein markerloser Vorgänger SMART.

Folglich erscheint die Anwendung geeigneter röntgendichter Marker als die erfolgversprechendste Alternative, um das Problem der schlechten Röntgensichtbarkeit der meisten derzeit erhältlichen intravaskulären Stents zu lösen.

Es ist aber zu beachten, dass es im menschlichen Körper Gegebenheiten gibt, die die Sichtbarkeit verschlechtern, jedoch nicht beeinflussbar sind. In dieser Studie hat sich gezeigt, dass die Stents, die sich in Projektion auf den lumbosakralen Übergang befanden, signifikant besser zu sehen waren als jene, die in Projektion auf das Iliosakralgelenk angebracht waren. Begründet werden kann dies durch die knöchernen Überlagerungen, die im Bereich des Iliosakralgelenks besonders stark ausgeprägt sind und durch ihre Schattengebung die Stentsichtbarkeit einschränken.
5 Zusammenfassung

Invasiv implantierbare vaskuläre Stents eignen sich zur Therapie von arteriellen Verschlüssen und Stenosen, die durch eine alleinige perkutane transluminale Angioplastie (PTA) nicht ausreichend behandelt werden können. Weiter kann man sie bei Rezidivstenosen oder Komplikationen nach PTA einsetzen. Besondere Bedeutung hat dieses Verfahren in den Beckenarterien.

Zur Überwachung der Stentimplantation und zur postinterventionellen Lagekontrolle wird die Röntgendurchleuchtung eingesetzt, weshalb die Stents eine adäquate Röntgendiagnose aufweisen sollten.

Die Bewertungen wurden mit Hilfe einfaktorieller Varianzanalysen, des Tukey-Tests sowie einer ordinalen logistischen Regression analysiert.

Die Studie zeigt, dass die Röntgensichtbarkeit von Metallgitterprothesen von folgenden Faktoren beeinflusst wird:

1. **Durchleuchtungsmodus.** Durch Erhöhung der Pulsfrequenz lässt sich die Bildqualität und Bildschärfe signifikant verbessern.

2. **Stentlänge.** Der Vergleich zwischen dem Corinthian 29 und dem Corinthian 39, die sich nur in der Länge unterscheiden, zeigt, dass sich die Stentsichtbarkeit mit zunehmender Länge signifikant verbessert.
3. *Stentmasse.* Durch Vergrößerung der Stentmasse lässt sich die Röntgensichtbarkeit optimieren, was die signifikant besseren Ergebnisse des AVE Bridge X im Gegensatz zum AVE Bridge und die des Coverts, verglichen mit dem SMART, verdeutlichen. Der Covent besteht aus zwei in einer Sandwich-Konstruktion angeordneten SMART Stents und weist ca. die doppelte Masse des einfachen SMARTs auf.

4. *Sichtbarkeitsverstärkende Marker.* Der Luminexx, der mit Tantalkern ausgestattet ist, war in dieser Studie signifikant besser sichtbar als sein Vorgängermodell Memotherm Flexx, was den Vorteil röntgendichter Marker hervorhebt.

5. *Lokalisation des Stents im menschlichen Becken.* Die Stents waren in Projektion auf den lumbosakralen Übergang signifikant besser sichtbar als in Projektion auf das Iliosakralgelenk, wo schattenbildende knöcherne Überlagerungen besonders stark ausgeprägt sind.

Beim Versuch, die Stentsichtbarkeit zu optimieren, muss man jedoch bedenken, dass man aufgrund der resultierenden höheren Strahlenbelastung die Pulsfrequenz nicht beliebig steigern kann. Weiter sind die Erhöhung von Stentlänge und Stentmasse durch daraus folgende wachsende Thrombogenität Grenzen gesetzt. Daher scheinen röntgendichte Marker am ehesten dafür geeignet zu sein, das Problem der schlechten Röntgensichtbarkeit derzeit verfügbarer intravaskulärer Stents zu lösen.
6 Literaturverzeichnis

Studies on a new radiopaque polymeric biomaterial
Biomaterials, 15, 14, 1122-1128

A versatile three-iodine molecular building block leading to new radiopaque polymeric biomaterials
Journal of Biomedical Materials Research, 32, 459-466

In vitro model to test the thrombogenicity of coronary stents
Thromb Res, 75, 6, 581-590

Initial Clinical Results with the Wiktor Stent: A New Balloon-Expandable Coronary Stent
Clin. Cardiol., 14, 374-379

Lower-Extremity Arterial Endovascular Stenting
Surgical Clinics of North America, 78, 4, 617-629

Nonsurgical Placement of Arterial Endoprostheses: A New Technique Using Nitinol Wire
Radiology, 147, 261-263

Nitinol Intravascular Stent: Results of Preclinical Evaluation
Radiology, 189, 775-778

Therapie von Beckenarterienläsionen mit einem neuen vormontierten ballonexpandierbaren Stent („Flexible Iliac Bridge Stent“)
Fortschr. Röntgenstr., 172, 911-917
Transluminally-placed Coilspring Endarterial Tube Grafts
Long-term Patency in Canine Popliteal Artery
Invest Radiol, 4, 329-332

Transluminal Expandable Nitinol Coil Stent Grafting: Preliminary Report
Radiology, 147, 259-260

Physical Properties of Endovascular Stents: An Experimental Comparison
JVIR, 11, 645-654

The Use of Superelasticity in Medicine
Metall, 50, 9, 569-574

Mechanical Properties of Metallic Stents: How Do These Properties Influence the Choice of Stent for Specific Lesions?
Cardiovasc Intervent Radiol, 23, 47-54

Gold-Coated NIR Stents in Porcine Coronary Arteries
Circulation, 103, 429-434

Elastic Characteristics of the Self-expanding Metallic Stents
Invest Radiol, 23, 370-376

Palliation of Inoperable Esophageal Carcinoma With the Wallstent Endoprosthesis
Ann Thorac Surg, 62, 1603-1607

Visible Stents: All That Glitters ... Is it Gold?
The Journal of Invasive Cardiology, 12, 5, 233-235

Strength, Elasticity and Plasticity of Expandable Metal Stents: In Vitro Studies with Three Types of Stress
JVIR, 5, 745-750

Vascular Stent Prototype: Results of Preclinical Evaluation
JVIR, 7, 29-34
Erste klinische Erfahrung mit einem neuen Nitinolstent im biliären System
Fortschr. Röntgenstr., 162, 5, 429-435

Perkutane Implantation von Gefäßendoprothesen (Stents) in Becken- und Oberschenkelarterien
Dtsch. med. Wschr.114, 1517-1523

Iliac Artery Stenting - Clinical Experience With The Palmaz Stent, Wallstent, And Strecker Stent
Acta Radiologica, 33, 292-296

Erste Erfahrungen mit gepulster Durchleuchtung an einer multifunktionellen Durchleuchtungsanlage
Fortschr. Röntgenstr., 165,5, 475-479

The PARAGON Stent Study: A Randomized Trial of a New Martensitic Nitinol Stent Versus the Palmaz-Schatz Stent for Treatment of Complex Native Coronary Arterial Lesions
Am J Cardiol, 86, 1073-1079

Studies on two new radiopaque polymeric biomaterials
Journal of Biomedical Materials Research, 28, 1259-1266

Creation of Transjugular Intrahepatic Portosystemic Shunts with the Wallstent Endoprosthesis: Results in 100 Patients
Radiology, 187, 413-420

Placement and Angiographic Patency of the Strecker Coronary Stent
Catheterization and Cardiovascular Diagnosis, 31, 322-329

Comparison of Mechanical Deformation Properties of Metallic Stents with Use of Stress-Strain Analysis
JVIR, 5, 341-349
Ergebnisse nach Memotherm-Stent-Implantation in Becken- und Leistenarterien
Fortschr. Röntgenstr., 173, 240-244

MR Imaging-guided Stent Placement in Iliac Arterial Stenoses: A Feasibility Study
Radiology, 219, 527-534

Mansour, M.A. (1999)
The New Operating Room Environment
Surgical Clinics of North America, 79, 3, 477-487

Erste Ergebnisse nach Implantation des neuen ballonexpandierbaren Bridge™ - Stents in die Beckenarterien
Fortschr. Röntgenstr., 172, 836-841

Effects of Vascular Stent Surface Area and Hemodynamics on Intimal Thickening
JVIR, 7, 387-393

Practical Clinical Evaluation of Stents
J Interven Cardiol, 11, 5, [Suppl.], 101-110

Expandable Intraluminal Graft: A Preliminary Study
Radiology, 156, 73-77

Die intraluminale Stent-Implantation nach Palmaz
Erster klinischer Fallbericht über eine ballonexpandierte Gefäßprothese
Radiologe, 27, 560-563

Palmaz, J.C. (1988)
Balloon-Expandable Intravascular Stent
AJR, 150, 1263-1269

Palmaz, J.C. (1992)
Intravascular Stenting: From Basic Research to Clinical Application
Cardiovasc Intervent Radiol, 15, 279-284
Reduktion der Strahlenexposition in der interventionellen Angiographie für Patient und Untersucher
Fortschr. Röntgenstr., 169, 5, 505-509

Schwere Obliteration des Harnröhrenlumens nach Wall-Stent-Implantation
Akt. Radiol., 7, 179-182

A new expandable intracoronary tantalum (Strecker) stent: Early experimental results and follow-up to twelve months
Am Heart J, 125, 2, 501-510

Die Behandlung eines akuten Beckenarterienverschlusses durch Katheterlyse, Katheterdilatation und Implantation einer neuartigen metallischen Gefäßendoprothese
Chirurg, 60, 346-351

Reduction or radiation exposure time during catheter ablation with the use of pulsed fluoroscopy
International Journal of Cardiology, 63, 71-74

Evaluation of the compressive mechanical properties of endoluminal metal stents
Cathet Cardiovasc Diagn, 44, 2, 179-187

Therapie venöser Stenosen mit Wallstents
Dtsch. med. Wschr., 121, 1383-1389

Vergleich der Strahlenexposition von Patienten bei ausgewählten interventionellen und angiographischen Maßnahmen – erste Ergebnisse
Fortschr. Röntgenstr., 170, 185-190

Intravascular Stents To Prevent Occlusion And Restenosis After Transluminal Angioplasty
N Engl J Med, 316, 12, 701-706

Characterization of radial forces in z stents
Invest Radiol, 36, 9, 521-530

Einsparungen bei der Durchleuchtungsdosis durch moderne DSA-Anlagen
Radiologe, 35, 148-151

Management of Patient Skin Dose in Fluoroscopically Guided Interventional
Procedures
JVIR, 11, 25-33

Wehrmeyer, B., Kuhn, F.-P. (1993)
Experimentelle Untersuchungen zur Druckstabilität vaskulärer Endoprothesen
Fortschr. Röntgenstr., 158, 3, 242-246

Comparison of Self-Expanding Polyethylene Terephthalate and Metallic Stents
Implanted in Porcine Iliac Arteries
Cardiovasc Intervent Radiol, 19, 176-180

Stentimplantation als palliative Therapiemaßnahme bei stenosierenden Tumoren der
zentralen Atemwege
Fortschr. Röntgenstr., 164, 6, 496-501
7 Anhang

Fragebogen zum Stent-Radiopazitäts-Projekt

Frage 1: Ist der Stent sichtbar?

<table>
<thead>
<tr>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja</td>
</tr>
<tr>
<td>Nein</td>
</tr>
</tbody>
</table>

Frage 2: Wo befindet sich der Stent?

<table>
<thead>
<tr>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richtig</td>
</tr>
<tr>
<td>Falsch</td>
</tr>
</tbody>
</table>

Frage 3: Wie ist der Stent zu sehen?

<table>
<thead>
<tr>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sehr gut</td>
</tr>
<tr>
<td>Gut</td>
</tr>
<tr>
<td>Mäßig</td>
</tr>
<tr>
<td>Schlecht</td>
</tr>
</tbody>
</table>

Abbildung 34: Fragebogen zur Versuchsreihe
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Stent</th>
<th>Aufnahme</th>
<th>Position</th>
<th>Frage 1</th>
<th>Frage 2</th>
<th>Frage 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Palmaz SLM</td>
<td>Spotfilm</td>
<td>4: re/u</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Luminexx</td>
<td>Spotfilm</td>
<td>1: li/o</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Palmaz</td>
<td>7,5 P/s</td>
<td>3: li/u</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Covent</td>
<td>Spotfilm</td>
<td>1: li/o</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>AVE Bridge</td>
<td>3 P/s</td>
<td>2: re/o</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Palmaz SLM</td>
<td>kont. Durchl.</td>
<td>1: li/o</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>SMARTer</td>
<td>Spotfilm</td>
<td>2: re/o</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Palmaz</td>
<td>3 P/s</td>
<td>4: re/u</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Jostent</td>
<td>Spotfilm</td>
<td>1: li/o</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>Memotherm Flexx</td>
<td>7,5 P/s</td>
<td>4: re/u</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Palmaz SLM</td>
<td>7,5 P/s</td>
<td>1: li/o</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Jostent</td>
<td>15 P/s</td>
<td>2: re/o</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>AVE Bridge</td>
<td>kont. Durchl.</td>
<td>2: re/o</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>Palmaz SLM</td>
<td>kont. Durchl.</td>
<td>4: re/u</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Megalink</td>
<td>15 P/s</td>
<td>1: li/o</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Palmaz SLM</td>
<td>15 P/s</td>
<td>3: li/u</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Palmaz</td>
<td>15 P/s</td>
<td>2: re/o</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Palmaz SLM</td>
<td>7,5 P/s</td>
<td>3: li/u</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>AVE Bridge</td>
<td>15 P/s</td>
<td>1: li/o</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>Palmaz SLM</td>
<td>3 P/s</td>
<td>3: li/u</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>AVE Bridge</td>
<td>7,5 P/s</td>
<td>1: li/o</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>AVE Bridge</td>
<td>kont. Durchl.</td>
<td>4: re/u</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>Wallsten</td>
<td>3 P/s</td>
<td>2: re/o</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>AVE Bridge</td>
<td>15 P/s</td>
<td>3: li/u</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>AVE Bridge X</td>
<td>7,5 P/s</td>
<td>2: re/o</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>AVE Bridge</td>
<td>3 P/s</td>
<td>4: re/u</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>AVE Bridge X</td>
<td>Spotfilm</td>
<td>1: li/o</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>AVE Bridge X</td>
<td>15 P/s</td>
<td>2: re/o</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>AVE Bridge</td>
<td>Spotfilm</td>
<td>3: li/u</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>Palmaz SLM</td>
<td>Spotfilm</td>
<td>2: re/o</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>31</td>
<td>AVE Bridge X</td>
<td>kont. Durchl.</td>
<td>3: li/u</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>32</td>
<td>Palmaz</td>
<td>7,5 P/s</td>
<td>1: li/o</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Tabelle 9: Anteil sichtbarer Stents p in Abhängigkeit vom Durchleuchtungsmodus; Spalte 0: Anzahl nicht sichtbarer Stents, Spalte 1: Anzahl sichtbarer Stents

<table>
<thead>
<tr>
<th>Stent</th>
<th>Durchleuchtungsmodus</th>
<th>0</th>
<th>1</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVE Bridge</td>
<td>15 P/s</td>
<td>2</td>
<td>158</td>
<td>0,99</td>
</tr>
<tr>
<td>AVE Bridge</td>
<td>3 P/s</td>
<td>19</td>
<td>141</td>
<td>0,88</td>
</tr>
<tr>
<td>AVE Bridge</td>
<td>7,5 P/s</td>
<td>12</td>
<td>148</td>
<td>0,93</td>
</tr>
<tr>
<td>AVE Bridge</td>
<td>Spotfilm</td>
<td>0</td>
<td>160</td>
<td>1,00</td>
</tr>
<tr>
<td>AVE Bridge</td>
<td>kont. Durchl.</td>
<td>2</td>
<td>158</td>
<td>0,99</td>
</tr>
<tr>
<td>AVE Bridge X</td>
<td>15 P/s</td>
<td>0</td>
<td>160</td>
<td>1,00</td>
</tr>
<tr>
<td>AVE Bridge X</td>
<td>3 P/s</td>
<td>1</td>
<td>159</td>
<td>0,99</td>
</tr>
<tr>
<td>AVE Bridge X</td>
<td>7,5 P/s</td>
<td>1</td>
<td>159</td>
<td>0,99</td>
</tr>
<tr>
<td>AVE Bridge X</td>
<td>Spotfilm</td>
<td>0</td>
<td>160</td>
<td>1,00</td>
</tr>
<tr>
<td>AVE Bridge X</td>
<td>kont. Durchl.</td>
<td>0</td>
<td>160</td>
<td>1,00</td>
</tr>
<tr>
<td>Corinthian 29</td>
<td>15 P/s</td>
<td>90</td>
<td>70</td>
<td>0,44</td>
</tr>
<tr>
<td>Corinthian 29</td>
<td>3 P/s</td>
<td>111</td>
<td>49</td>
<td>0,31</td>
</tr>
<tr>
<td>Corinthian 29</td>
<td>7,5 P/s</td>
<td>75</td>
<td>85</td>
<td>0,53</td>
</tr>
<tr>
<td>Corinthian 29</td>
<td>Spotfilm</td>
<td>4</td>
<td>156</td>
<td>0,97</td>
</tr>
<tr>
<td>Corinthian 29</td>
<td>kont. Durchl.</td>
<td>38</td>
<td>122</td>
<td>0,76</td>
</tr>
<tr>
<td>Corinthian 39</td>
<td>15 P/s</td>
<td>5</td>
<td>155</td>
<td>0,97</td>
</tr>
<tr>
<td>Corinthian 39</td>
<td>3 P/s</td>
<td>65</td>
<td>95</td>
<td>0,59</td>
</tr>
<tr>
<td>Corinthian 39</td>
<td>7,5 P/s</td>
<td>13</td>
<td>147</td>
<td>0,92</td>
</tr>
<tr>
<td>Corinthian 39</td>
<td>Spotfilm</td>
<td>0</td>
<td>160</td>
<td>1,00</td>
</tr>
<tr>
<td>Corinthian 39</td>
<td>kont. Durchl.</td>
<td>4</td>
<td>156</td>
<td>0,97</td>
</tr>
<tr>
<td>Covent</td>
<td>15 P/s</td>
<td>0</td>
<td>160</td>
<td>1,00</td>
</tr>
<tr>
<td>Covent</td>
<td>3 P/s</td>
<td>0</td>
<td>160</td>
<td>1,00</td>
</tr>
<tr>
<td>Covent</td>
<td>7,5 P/s</td>
<td>1</td>
<td>159</td>
<td>0,99</td>
</tr>
<tr>
<td>Covent</td>
<td>Spotfilm</td>
<td>0</td>
<td>160</td>
<td>1,00</td>
</tr>
<tr>
<td>Covent</td>
<td>kont. Durchl.</td>
<td>0</td>
<td>160</td>
<td>1,00</td>
</tr>
<tr>
<td>Dynalink</td>
<td>15 P/s</td>
<td>35</td>
<td>125</td>
<td>0,78</td>
</tr>
<tr>
<td>Dynalink</td>
<td>3 P/s</td>
<td>85</td>
<td>75</td>
<td>0,47</td>
</tr>
<tr>
<td>Dynalink</td>
<td>7,5 P/s</td>
<td>39</td>
<td>121</td>
<td>0,76</td>
</tr>
<tr>
<td>Dynalink</td>
<td>Spotfilm</td>
<td>2</td>
<td>158</td>
<td>0,99</td>
</tr>
<tr>
<td>Dynalink</td>
<td>kont. Durchl.</td>
<td>23</td>
<td>137</td>
<td>0,86</td>
</tr>
<tr>
<td>Jostent</td>
<td>15 P/s</td>
<td>1</td>
<td>159</td>
<td>0,99</td>
</tr>
<tr>
<td>Jostent</td>
<td>3 P/s</td>
<td>5</td>
<td>155</td>
<td>0,97</td>
</tr>
<tr>
<td>Jostent</td>
<td>7,5 P/s</td>
<td>2</td>
<td>158</td>
<td>0,99</td>
</tr>
<tr>
<td>Jostent</td>
<td>Spotfilm</td>
<td>0</td>
<td>160</td>
<td>1,00</td>
</tr>
<tr>
<td>Jostent</td>
<td>kont. Durchl.</td>
<td>1</td>
<td>159</td>
<td>0,99</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 9: Anteil sichtbarer Stents p in Abhängigkeit vom Durchleuchtungsmodus; Spalte 0: Anzahl nicht sichtbarer Stents, Spalte 1: Anzahl sichtbarer Stents

|---------------|---------|--------|---------|----------|--------------|---------|----------|--------------|---------|--------|---------|----------|--------------|---------|----------|--------------|---------|--------|---------|----------|--------------|---------|----------|--------------|---------|--------|---------|----------|--------------|
Tabelle 10: Mittelwerte aller Bewertungsscores abhängig vom Durchleuchtungsmodus für jeden Stent

<table>
<thead>
<tr>
<th>Stent</th>
<th>Durchleuchtungsmodus</th>
<th>Spotfilm</th>
<th>kont. Durchl.</th>
<th>15 P/s</th>
<th>7,5 P/s</th>
<th>3 P/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corinthian 29</td>
<td></td>
<td>2,40</td>
<td>1,36</td>
<td>1,07</td>
<td>1,07</td>
<td>1,00</td>
</tr>
<tr>
<td>Dynalink</td>
<td></td>
<td>2,42</td>
<td>1,35</td>
<td>1,40</td>
<td>1,30</td>
<td>1,19</td>
</tr>
<tr>
<td>Megalink</td>
<td></td>
<td>2,54</td>
<td>1,56</td>
<td>1,27</td>
<td>1,22</td>
<td>1,09</td>
</tr>
<tr>
<td>Memotherm Flexx</td>
<td></td>
<td>2,79</td>
<td>1,49</td>
<td>1,38</td>
<td>1,30</td>
<td>1,20</td>
</tr>
<tr>
<td>Palmaz SLM</td>
<td></td>
<td>3,03</td>
<td>1,67</td>
<td>1,50</td>
<td>1,29</td>
<td>1,20</td>
</tr>
<tr>
<td>Palmaz</td>
<td></td>
<td>3,36</td>
<td>1,72</td>
<td>1,66</td>
<td>1,67</td>
<td>1,39</td>
</tr>
<tr>
<td>Corinthian 39</td>
<td></td>
<td>3,26</td>
<td>1,97</td>
<td>1,75</td>
<td>1,65</td>
<td>1,47</td>
</tr>
<tr>
<td>SMARTer</td>
<td></td>
<td>3,43</td>
<td>2,17</td>
<td>1,83</td>
<td>1,72</td>
<td>1,52</td>
</tr>
<tr>
<td>SMART</td>
<td></td>
<td>3,33</td>
<td>2,50</td>
<td>2,09</td>
<td>1,57</td>
<td>1,52</td>
</tr>
<tr>
<td>Jostent SelfX</td>
<td></td>
<td>3,43</td>
<td>2,26</td>
<td>1,97</td>
<td>1,99</td>
<td>1,61</td>
</tr>
<tr>
<td>AVE Bridge</td>
<td></td>
<td>3,48</td>
<td>2,39</td>
<td>2,03</td>
<td>1,95</td>
<td>1,52</td>
</tr>
<tr>
<td>Wallstent</td>
<td></td>
<td>3,64</td>
<td>2,68</td>
<td>2,52</td>
<td>2,23</td>
<td>1,74</td>
</tr>
<tr>
<td>AVE Bridge X</td>
<td></td>
<td>3,89</td>
<td>2,87</td>
<td>2,51</td>
<td>2,36</td>
<td>2,10</td>
</tr>
<tr>
<td>Luminexx</td>
<td></td>
<td>3,97</td>
<td>3,17</td>
<td>2,85</td>
<td>2,88</td>
<td>2,39</td>
</tr>
<tr>
<td>Covent</td>
<td></td>
<td>3,94</td>
<td>3,34</td>
<td>3,16</td>
<td>3,09</td>
<td>2,73</td>
</tr>
</tbody>
</table>

Tabelle 11: Sichtbare Stents absolut, Anteil sichtbarer Stents in %, Scoremittelwert in Abhängigkeit vom Durchleuchtungsmodus und der Lokalisation; oben = Projektion auf den lumbosakralen Übergang, unten = Projektion auf das Sakroiliakalgelenk, Lok. = Lokalisation

<table>
<thead>
<tr>
<th></th>
<th>Spotfilm</th>
<th>kont. Durchl.</th>
<th>15 P/s</th>
<th>7,5 P/s</th>
<th>3 P/s</th>
<th>Lok.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkommen</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>oben</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>unten</td>
</tr>
<tr>
<td>Sichtbare Stents</td>
<td>1199</td>
<td>1168</td>
<td>1127</td>
<td>1084</td>
<td>1015</td>
<td>oben</td>
</tr>
<tr>
<td>absolut</td>
<td>1195</td>
<td>1102</td>
<td>1042</td>
<td>1044</td>
<td>829</td>
<td>unten</td>
</tr>
<tr>
<td>Sichtbarer Anteil</td>
<td>99,92</td>
<td>97,33</td>
<td>93,92</td>
<td>90,33</td>
<td>84,58</td>
<td>oben</td>
</tr>
<tr>
<td>in %</td>
<td>99,58</td>
<td>91,83</td>
<td>86,83</td>
<td>87,00</td>
<td>69,08</td>
<td>unten</td>
</tr>
<tr>
<td>Scoremittelwert</td>
<td>3,32</td>
<td>2,41</td>
<td>2,18</td>
<td>2,03</td>
<td>1,83</td>
<td>oben</td>
</tr>
<tr>
<td></td>
<td>3,21</td>
<td>1,98</td>
<td>1,80</td>
<td>1,73</td>
<td>1,49</td>
<td>unten</td>
</tr>
</tbody>
</table>
Tabelle 12: Signifikante Unterschiede zwischen den geschätzten Scoremittelwerten für die fünf Durchleuchtungsmodalitäten; die Durchleuchtungsvarianten, die nicht durch den selben Buchstaben verbunden sind, unterscheiden sich signifikant (Tukey-Test, 95%-Konfidenzintervall, \(p < 0.0001 \), R-Quadrat: 0,33, Standardabweichung der Residuen: 0,82)

<table>
<thead>
<tr>
<th>Durchleuchtungsmodus</th>
<th>geschätzter Mittelwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spotfilm</td>
<td>A</td>
</tr>
<tr>
<td>15 P/s</td>
<td>C</td>
</tr>
<tr>
<td>7,5 P/s</td>
<td>D</td>
</tr>
<tr>
<td>3 P/s</td>
<td>E</td>
</tr>
</tbody>
</table>

Tabelle 13: Signifikante Unterschiede zwischen den geschätzten Scoremittelwerten der einzelnen Stents beim Spotfilm; Stents, die nicht durch den selben Buchstaben verbunden sind, unterscheiden sich signifikant (Tukey-Test, \(p < 0.0001 \), R-Quadrat: 0,39, Standardabweichung der Residuen: 0,63)

<table>
<thead>
<tr>
<th>Stent</th>
<th>geschätzter Mittelwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminexx</td>
<td>A</td>
</tr>
<tr>
<td>Covent</td>
<td>A</td>
</tr>
<tr>
<td>AVE Bridge X</td>
<td>A</td>
</tr>
<tr>
<td>Wallstent</td>
<td>B</td>
</tr>
<tr>
<td>AVE Bridge</td>
<td>B C</td>
</tr>
<tr>
<td>Jostent</td>
<td>B C</td>
</tr>
<tr>
<td>SMARTer</td>
<td>B C</td>
</tr>
<tr>
<td>Palmaz</td>
<td>C</td>
</tr>
<tr>
<td>SMART</td>
<td>C</td>
</tr>
<tr>
<td>Corinthian 39</td>
<td>C D</td>
</tr>
<tr>
<td>Palmaz SLM</td>
<td>C D</td>
</tr>
<tr>
<td>Memotherm Flexx</td>
<td>E</td>
</tr>
<tr>
<td>Megalink</td>
<td>F</td>
</tr>
<tr>
<td>Dynalink</td>
<td>F</td>
</tr>
<tr>
<td>Corinthian 29</td>
<td>F</td>
</tr>
</tbody>
</table>
Tabelle 14: Signifikante Unterschiede zwischen den geschätzten Scoremittelwerten der einzelnen Stents bei der kont. Durchl.; Stents, die nicht durch den selben Buchstaben verbunden sind, unterscheiden sich signifikant (Tukey-Test, \(p < 0.0001 \), R-Quadrat: 0.53, Standardabweichung der Residuen: 0.60)

<table>
<thead>
<tr>
<th>Stent</th>
<th>geschätzter Mittelwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covent</td>
<td>A</td>
</tr>
<tr>
<td>Luminexx</td>
<td>A</td>
</tr>
<tr>
<td>AVE Bridge X</td>
<td>B</td>
</tr>
<tr>
<td>Wallstent</td>
<td>B C</td>
</tr>
<tr>
<td>SMART</td>
<td>C D</td>
</tr>
<tr>
<td>AVE Bridge</td>
<td>D E</td>
</tr>
<tr>
<td>Jostent</td>
<td>E</td>
</tr>
<tr>
<td>SMARTer</td>
<td>E F</td>
</tr>
<tr>
<td>Corinthian 39</td>
<td>F</td>
</tr>
<tr>
<td>Palmaz</td>
<td>G</td>
</tr>
<tr>
<td>Palmaz SLM</td>
<td>G</td>
</tr>
<tr>
<td>Megalink</td>
<td>G H</td>
</tr>
<tr>
<td>Memotherm Flexx</td>
<td>G H</td>
</tr>
<tr>
<td>Corinthian 29</td>
<td>H</td>
</tr>
<tr>
<td>Dynalink</td>
<td>H</td>
</tr>
</tbody>
</table>

Tabelle 15: Signifikante Unterschiede zwischen den geschätzten Scoremittelwerten der einzelnen Stents bei 15 P/s; Stents, die nicht durch den selben Buchstaben verbunden sind, unterscheiden sich signifikant (Tukey-Test, \(p < 0.0001 \), R-Quadrat: 0.48, Standardabweichung der Residuen: 0.60)

<table>
<thead>
<tr>
<th>Stent</th>
<th>geschätzter Mittelwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covent</td>
<td>A</td>
</tr>
<tr>
<td>Luminexx</td>
<td>B</td>
</tr>
<tr>
<td>Wallstent</td>
<td>C</td>
</tr>
<tr>
<td>AVE Bridge X</td>
<td>C</td>
</tr>
<tr>
<td>SMART</td>
<td>D</td>
</tr>
<tr>
<td>AVE Bridge</td>
<td>D E</td>
</tr>
<tr>
<td>Jostent</td>
<td>D E F</td>
</tr>
<tr>
<td>SMARTer</td>
<td>E F G</td>
</tr>
<tr>
<td>Corinthian 39</td>
<td>F G</td>
</tr>
<tr>
<td>Palmaz</td>
<td>G H</td>
</tr>
<tr>
<td>Palmaz SLM</td>
<td>H I</td>
</tr>
<tr>
<td>Dynalink</td>
<td>I</td>
</tr>
<tr>
<td>Memotherm Flexx</td>
<td>I</td>
</tr>
<tr>
<td>Megalink</td>
<td>I J</td>
</tr>
<tr>
<td>Corinthian 29</td>
<td>J</td>
</tr>
</tbody>
</table>
Tabelle 16: Signifikante Unterschiede zwischen den geschätzten Scoremittelwerten der einzelnen Stents bei 7,5 P/s; Stents, die nicht durch den selben Buchstaben verbunden sind, unterscheiden sich signifikant (Tukey-Test, p < 0,0001, R-Quadrat: 0,50, Standardabweichung der Residuen: 0,58)

<table>
<thead>
<tr>
<th>Stent</th>
<th>geschätzter Mittelwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covent A</td>
<td>3,09</td>
</tr>
<tr>
<td>Luminexx A</td>
<td>2,88</td>
</tr>
<tr>
<td>AVE Bridge X B</td>
<td>2,36</td>
</tr>
<tr>
<td>Wallstent B</td>
<td>2,23</td>
</tr>
<tr>
<td>Jostent C</td>
<td>1,99</td>
</tr>
<tr>
<td>AVE Bridge C</td>
<td>1,95</td>
</tr>
<tr>
<td>SMARTer D</td>
<td>1,72</td>
</tr>
<tr>
<td>Palmaz D</td>
<td>1,67</td>
</tr>
<tr>
<td>Corinthian 39 D</td>
<td>1,65</td>
</tr>
<tr>
<td>SMART D</td>
<td>1,57</td>
</tr>
<tr>
<td>Dynalink E</td>
<td>1,30</td>
</tr>
<tr>
<td>Memotherm Flexx E</td>
<td>1,30</td>
</tr>
<tr>
<td>Palmaz SLM E</td>
<td>1,29</td>
</tr>
<tr>
<td>Megalink E</td>
<td>1,22</td>
</tr>
<tr>
<td>Corinthian 29 E</td>
<td>1,07</td>
</tr>
</tbody>
</table>

Tabelle 17: Signifikante Unterschiede zwischen den geschätzten Scoremittelwerten der einzelnen Stents bei 3 P/s; Stents, die nicht durch den selben Buchstaben verbunden sind, unterscheiden sich signifikant (Tukey-Test, p < 0,0001, R-Quadrat: 0,40, Standardabweichung der Residuen: 0,59)

<table>
<thead>
<tr>
<th>Stent</th>
<th>geschätzter Mittelwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covent A</td>
<td>2,73</td>
</tr>
<tr>
<td>Luminexx B</td>
<td>2,39</td>
</tr>
<tr>
<td>AVE Bridge X C</td>
<td>2,10</td>
</tr>
<tr>
<td>Wallstent D</td>
<td>1,74</td>
</tr>
<tr>
<td>Jostent D E</td>
<td>1,61</td>
</tr>
<tr>
<td>SMART D E</td>
<td>1,52</td>
</tr>
<tr>
<td>AVE Bridge D E</td>
<td>1,52</td>
</tr>
<tr>
<td>SMARTer D E</td>
<td>1,52</td>
</tr>
<tr>
<td>Corinthian 39 E F</td>
<td>1,47</td>
</tr>
<tr>
<td>Palmaz E F G</td>
<td>1,39</td>
</tr>
<tr>
<td>Memotherm Flexx F G H</td>
<td>1,20</td>
</tr>
<tr>
<td>Palmaz SLM G H</td>
<td>1,20</td>
</tr>
<tr>
<td>Dynalink F G H</td>
<td>1,19</td>
</tr>
<tr>
<td>Megalink H</td>
<td>1,09</td>
</tr>
<tr>
<td>Corinthian 29 H</td>
<td>1,00</td>
</tr>
</tbody>
</table>
Tabelle 18: Signifikante Unterschiede zwischen den beiden Positionen; oben = Projektion auf den lumbosakralen Übergang, unten = Projektion auf das Iliosakralgelenk abhängig vom Durchleuchtungsmodus (paariger t-Test, 95%-Konfidenzintervall, p < 0,0001); wenn zwischen der oberen (Upper 95%) und der unteren (Lower 95%) Grenze des Konfidenzintervalls die Null nicht enthalten ist, ist der Unterschied zwischen den Positionen signifikant.

<table>
<thead>
<tr>
<th></th>
<th>Spotfilm</th>
<th>kont. Durchl.</th>
<th>15 P/s</th>
<th>7,5 P/s</th>
<th>3 P/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>oben</td>
<td>3,322</td>
<td>2,448</td>
<td>2,243</td>
<td>2,091</td>
<td>1,977</td>
</tr>
<tr>
<td>unten</td>
<td>3,206</td>
<td>1,994</td>
<td>1,819</td>
<td>1,775</td>
<td>1,537</td>
</tr>
<tr>
<td>Mean Difference</td>
<td>0,116</td>
<td>0,454</td>
<td>0,424</td>
<td>0,316</td>
<td>0,440</td>
</tr>
<tr>
<td>Standardfehler</td>
<td>0,020</td>
<td>0,022</td>
<td>0,025</td>
<td>0,025</td>
<td>0,030</td>
</tr>
<tr>
<td>Upper 95%</td>
<td>0,155</td>
<td>0,497</td>
<td>0,473</td>
<td>0,365</td>
<td>0,500</td>
</tr>
<tr>
<td>Lower 95%</td>
<td>0,078</td>
<td>0,411</td>
<td>0,375</td>
<td>0,267</td>
<td>0,381</td>
</tr>
</tbody>
</table>
8 Danksagung

Ich bedanke mich bei Herrn Professor Claussen für das Überlassen des Arbeitsplatzes in der Radiologischen Universitätsklinik Tübingen. Ich danke Herrn Professor Duda und Herrn Dr. Wiskirchen für die zu jeder Zeit umfassende Betreuung sowie für die Anregungen zur Bearbeitung des Themas. Herrn Professor Dietz aus dem Institut für Medizinische Biometrie der Universität Tübingen danke ich für die Unterstützung bei der statistischen Analyse der Daten.

Großer Dank gebührt außerdem Herrn Dr. Pusich, Herrn Dr. Kramer, Herrn Dr. König und Herrn Dr. Trübenbach, Mitarbeitern der Radiologischen Universitätsklinik, die sich als Reviewer zur Verfügung stellten und durch deren Mitarbeit die Studie überhaupt erst durchgeführt werden konnte.

Weiter bedanke ich mich bei Herrn Matthias Maisch, der mir bei der Darstellung der Arbeit eine unentbehrliche Hilfe war.

Herrn Petrich danke ich für seinen Rat, was technische Probleme bei der Durchführung der Studie betraf.

Nicht zuletzt bedanke ich mich bei meinen Eltern, die mir durch ihre Unterstützung das Anfertigen dieser Arbeit erst ermöglichten.
9 Lebenslauf

<table>
<thead>
<tr>
<th>Geboren am</th>
<th>25.09.1976</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>Kirchheim/Teck</td>
</tr>
<tr>
<td>Eltern</td>
<td>Hermann Krämer, Dr. med.</td>
</tr>
<tr>
<td></td>
<td>Rosemarie Krämer, Hausfrau</td>
</tr>
<tr>
<td>Geschwister</td>
<td>Bruder, 28, Dr. med.</td>
</tr>
<tr>
<td></td>
<td>Schwester, 24, Studentin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Staatsangehörigkeit</th>
<th>deutsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familienstand</td>
<td>ledig</td>
</tr>
</tbody>
</table>

| Schulbildung | 1983-1987 Freihof-Grundschule, Kirchheim/Teck |
| | 1987-1996 Schloßgymnasium, Kirchheim/Teck |

| Schulabschluss | Abitur, Juni 1996 |

| Praktisches Jahr | April 2002 bis März 2003 am Klinikum am Steinenberg, Reutlingen und im Spitalzentrum Biel, Schweiz |

| 3. Staatsexamen und Abschluss des Medizinstudiums | Mai 2003 an der Universität Tübingen |

| Dissertation | Januar 2001 Aufnahme der Dissertation an der Radiologischen Universitätsklinik Tübingen |