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Figure 1: The LED-based hyperspectral light stage can emit a different controlled spectrum from each light source direction simultaneously
enabling compressive bispectral measurements of reflectance fields. One slice showing different illumination wavelengths and directions is
shown on the right for a set of text markers. The compressive sparse and low-rank reconstruction approach robustly estimates a low-rank
approximation plus a sparse representation for the non-low-rank content for 14 wavelength bands and 196 directions from only 400 captured
samples.

Abstract

Compressive sparse and low-rank recovery (CSLR) is a novel
method for compressed sensing deriving a low-rank and a sparse
data terms from randomized projection measurements. While pre-
vious approaches either applied compressive measurements to phe-
nomena assumed to be sparse or explicitly assume and measure
low-rank approximations, CSLR is inherently robust if any such as-
sumption might be violated. In this paper, we will derive CSLR us-
ing Fixed-Point Continuation algorithms, and extend this approach
in order to exploit the correlation in high-order dimensions to fur-
ther reduce the number of captured samples. Though generally ap-
plicable, we demonstrate the effectiveness of our approach on data
sets captured with a novel hyperspectral light stage that can emit a
distinct spectrum from each of the 196 light source directions en-
abling bispectral measurements of reflectance from arbitrary view-
points. Bispectral reflectance fields and BTFs are faithfully recon-
structed from a small number of compressed measurements.

CR Categories: I.4.1 [Image Processing and Computer Vision]:
Digitization and Image Capture—Reflectance I.4.1 [Image Pro-
cessing and Computer Vision]: Digitization and Image Capture—
Sampling I.4.1 [Image Processing and Computer Vision]: Digitiza-
tion and Image Capture—Scanning

Keywords: reflectance field, multispectral acquisition, multispec-
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1 Introduction

In order to create images of a real-world scene lit using altered il-
lumination one needs to capture its reflectance field. This opera-
tion, called image-based relighting, can be mathematically defined
as follows [Peers et al. 2009; Sen and Darabi 2009]:

c = T · I, (1)

where T is the m×n matrix which describes the light transport from
n light sources of the scene to m camera pixels, I is the vector of
light source radiances of length n, and c is a vector of camera pixels
whose length is m (the outgoing radiances of the scene). Capturing
reflectance fields is a complex problem, and in order to simplify it
a common assumption is made that no fluorescent interactions are
present in the scene — wavelengths of all reflected light rays have
to match the wavelengths of incoming rays. Such an assumption
is not valid for many natural scenes, as was observed by Hullin et
al. [2010], and it is therefore important to consider capturing multi-
or bispectral reflectance.

In this paper we will present an LED-based capturing device that al-
lows for controlled hyperspectral illumination – rather than a single
wavelength each light source can emit its own sprectrum – and ar-
bitrary selection of the camera view-point. Such devices introduce
a high-dimensional sampling and reconstruction problem.

Previous approaches include compressed sensing and low-rank ma-
trix approximations. Compressed sensing [Sen and Darabi 2009;
Peers et al. 2009] is able to recover the signal using sparse sam-
pling, but it requires the signal to be sparse or compressible in
some basis. Furthermore, these approaches do not recognize corre-
lations between different dimensions. They have been extended to
address multi-dimensional correlations [Baron et al. 2009; Duarte
and Baraniuk 2010], but the sparseness or compressibility require-
ment remains.

On the other hand, low-rank matrix approximations of the light
transport operator [O’Toole and Kutulakos 2010; Wang et al. 2009]
requires that the desired signal be low-rank. These approaches are
based on symmetric setups, which are not always possible to build.
Hullin et al. [2010] presents a two-stage capture system which first
identifies the low-rank sub-space by performing dense sampling,
after which only sparse measurements are needed for the remaining
samples.

To circumvent problems present in previous approaches, we choose
to reconstruct the light transport using both sparse and low-rank
components from compressed/projected measurements. Sparse and
low-rank decomposition from complete data has been well stud-



ied [Yuan and Yang 2009; Chandrasekaran et al. 2009a], and
in [Waters et al. 2011] developed in parallel to our work a solution
for the compressed sensing setting has been proposed. Our method
differs from this work in that we do not require prior knowledge of
the rank and sparsity of matrices we are recovering. Furthermore,
we extend our approach to higher-order problems. This way, one
can exploit correlation between different dimensions, e.g. wave-
length, lighting and view directions and achieve significant savings
in acquisition cost.

The main contributions of this paper are:

• a fully automated hyperspectral light stage which allows for
mixed-spectra projected measurements;

• a novel algorithm for simultaneous sparse and low-rank ma-
trix decomposition from compressed/projected measurements
(CSLR);

• a higher-order extension of the proposed algorithm which is
able to utilize the multi-dimensional signal correlations (HO-
CSLR), resulting in even fewer images required for high-
quality reconstruction;

• comparisons of the proposed method to either sparse or low-
rank reconstructions, which shows clear improvement of the
obtained results.

Note that both algorithms presented can be applied beyond the ap-
plication proposed in this paper.

2 Previous Work

Measuring Bispectral Reflectance. A number of proposed devices
providing illumination from a sphere or a hemisphere for capturing
reflectance fields range from moving point light sources [Debevec
et al. 2000; Müller et al. 2005b] to domes with a set of discretized
light directions [Wenger et al. 2005; Müller et al. 2005a] to lin-
ear light sources [Gardner et al. 2003], to the use of curved re-
flectors and projectors to allow for illuminating with illumination
basis functions over the hemisphere rather than individual direc-
tions [Dana and Wang 2004; Ghosh et al. 2010].

The simplified multispectral BTF measurement setup presented
in [Rump and Klein 2010] attempts to deal with metamerism of
reflectance measured with standard RGB devices. Sparse spec-
tral data at individual points is captured together with dense RGB
data. By using the additional spectral information they are able to
correctly infer the color of the RGB sampled data. However, in
order for this method to work the spectra of all points exhibiting
metamerism have to be measured during scanning, which may be a
non-trivial, expensive task in certain conditions.

Hullin et al. [2010] have applied narrow-band wavelength filters in
front of the camera and in front of a white light source to measure
view and illumination dependent bispectral reflection and reradia-
tion matrices for homogeneous materials, with the primary goal of
capturing the effect of fluorescence.

Several methods have been proposed which utilize compressed
sensing in hyperspectral imaging ([Sun and Kelly 2009; Liu et al.
2010; Valiollahzadeh and Yin 2010]). The main differences to our
work is that most of these methods exploit coherence in the spatio-
spectral domain while our examples so far explicitly explore the
angle-spectral domain. Furthermore, our approach acquires bis-
pectral data and is therefore able to capture fluorescence, i.e. we
can resolve reflected wavelength depending on incident wavelength
rather than just capturing a multispectral image.

Our goal is to utilize the novel hyperspectral light stage design to
obtain dense illumination spectrum measurements from all illumi-
nation directions. We extend the setup of Debevec et al. [2002] to
include 14 different narrow band LEDs per illumination direction to
cover the entire visible spectrum. Together with a motorized RGB
camera and a turntable supporting the object in the center of the
dome, we can capture bispectral and spatially varying reflectance
data from arbitrary viewing directions, i.e. depending on incident
and reflected radiance.

Multiplexed Illumination. Illumination multiplexing [Schechner
et al. 2003] aims at improving the SNR over scanning approaches,
where the contribution of each light source is captured in a single
measurement, by always using a pseudo-random set of light sources
in each capture, followed by an inversion of the measurement ma-
trix. As the contribution of each light source is now observed in a
set of measurements the SNR typically improves. The paper pro-
poses the use of Hadamard codes, since they are optimal under
certain conditions. A deeper analysis of illumination multiplex-
ing in presence of noise and pixel saturation [Ratner and Schechner
2007] suggests that this problem is more complex than previously
thought. If photon noise is negligible compared to camera signal-
independent noise, then Hadamard codes indeed are the optimal
solution. Otherwise using Hadamard codes can even result in a de-
creased measurement SNR [Wenger et al. 2005]. In order to fight
the problem of potential pixel saturation when illuminating with
multiple lights Ratner et al. [2007] propose novel codes keeping
the measured reflectance below the saturation level.

For multispectral reflectance Park et al. [2007] derive a method
which determines the optimal multiplexing sequence for a set of
sources with known spectra and the given number of measurements
to be taken. A simple empirical linear multispectral model is used
to reconstruct the spectral data at each pixel position from the given
set of input images with multiplexed multispectral information.

Unfortunately, the common problem of quantization within the sen-
sor was not explicitly discussed in the past, namely the issue of mul-
tiplexing very dim light sources with very bright ones — in this case
the reflection from dim light sources might be hard to reconstruct
since their values might be too close to the noise floor of bright light
reflection. Codes derived using some kind of optimization to max-
imize SNR (e.g. codes from [Park et al. 2007]) could in principle
implicitly counter that problem.

Compressive Sensing and Low-rank Approximations. While
multiplexed illumination only tries to improve the SNR keeping
the same number of images as in the case of scanning, compres-
sive sensing [Candès et al. 2006; Donoho 2006; Tsaig and Donoho
2006] is a method for recovery (most often using the `1−norm)
from sparsely measured signals, assuming the signal to be recon-
structed is sparse or compressible in some basis (e.g. in Fourier
space for sound or using wavelets for images). This work is a prob-
abilistic relaxation of the Nyquist-Shannon sampling theorem —
assuming the sparsity of the signal is high enough, the exact signal
can be recovered with high probability.

Baron et al. [2009] extend the compressive sensing framework uti-
lizing multiple sensing elements. They infer that multiple sig-
nals can be recovered from sparse measurements using both inter-
and intra-signal sparsity (i.e. sparsity of each signal separately as
well as the joint sparsity of the signal ensamble). Duarte and
Baraniuk [Duarte and Baraniuk 2010] extend compressed sens-
ing to multi-dimensional scenarios using the Kronecker product.
When measurement matrices and the sparsifying basis for lower-
dimensional d-sections are known, the Kronecker product is ap-
plied to obtain the combined measurement matrix and sparsifying
basis. Such combined structures contain enough information to re-



cover the desired multi-dimensional signal. The use of the Kro-
necker product however hinders the exploitation of potential corre-
lation across different dimensions.

A problem related to compressive sensing is matrix comple-
tion [Candès and Recht 2009; Candès and Plan 2009]. It tries to
recover a full matrix from a sparse set of measured entries, assum-
ing the resulting matrix is low-rank. More generally, matrix rank
minimization [Goldfarb and Ma 2009; Ma et al. 2009] attempts to
recover the matrix assuming the measured samples have been ob-
tained after some linear mapping has been applied to the matrix
being recovered.

Sparse and low-rank matrix decomposition [Yuan and Yang 2009;
Chandrasekaran et al. 2009a; Chandrasekaran et al. 2009b] tries
to recover sparse and low-rank components of a known matrix
concurrently via convex optimization. The process implements a
robust PCA where outliers which would disturb the low-rank as-
sumption are effectively represented in a sparse matrix. Yuan and
Yang [2009] use Fixed Point Continuation methods to minimize `1
and nuclear matrix norms for the sparse and the low-rank compo-
nent respectively, while Chandrasekaran et al. [2009b] reduce the
problem of finding such matrices to a semidefinite program. Con-
ditions which have to be satisfied in order for the decomposition to
be exact are studied in detail in [Chandrasekaran et al. 2009a].

Concurrently to our work Waters et al. [2011] derived a sparse
and low-rank factorization algorithm from randomized projections,
i.e. in a compressed sensing setting. There are two major differ-
ences between this work and ours: in their work an assumption
about the sparsity and rank of the matrices being recovered needs
to be made to drive the K-term support algorithm for the sparse
component and the svd computation for the low-rank component,
whereas we do not need to make such assumptions; furthermore,
the factorization is computed on the entire image at once, which
adds correlation between neighboring pixels, but can increase the
rank of the low-rank component in certain cases — we compute the
factorization per-pixel which guarantees the lowest possible rank of
the obtained low-rank component, at the cost of increased compu-
tation time. In addition, we will derive a sparse and low-rank fac-
torization algorithm for higher-order tensors that incorporate corre-
lations across various problem dimension, drastically reducing the
required input size.

Compressive or Low-rank Light Transport. Compressive sens-
ing and the recovery of a low-rank representation have been
thoroughly investigated in the context of reflectance acquisition.
Compressive light transport sensing [Peers et al. 2009; Sen and
Darabi 2009] has been proposed with different illumination pat-
terns. While Peers et al. [2009] represent the patterns in a com-
pression basis (Haar wavelets), Sen and Darabi [2009] use a more
standard approach and project only Bernoulli patterns.

The typically encountered low-rankness of the light transport op-
erator has been explored in the Kernel Nyström method [Wang
et al. 2009] which recovers the light transport matrix by sampling
a small number of rows and columns of the matrix filling the re-
maining entries, assuming the resulting matrix has small rank. This
method incorporates nonlinear coherence of the light transport ma-
trix rows/columns. A non-linear mapping of intensities, the so-
called ”kernel-trick”, is applied to reduce the effect of non-low-rank
effects such as shadows and specular highlights. The method re-
quires a symmetric, co-axial setup of cameras and projectors prob-
ing the light transport in its original and transposed form. A sym-
metric setup is also featured by O’Toole and Kutoulakos [2010]
who implement Krylov subspace and Arnoldi methods for obtain-
ing the first eigenvectors partially in the optical domain. While both
approaches significantly reduce the number of required images for a

reasonable reconstruction they require the symmetric measurement
setup which is complicated to build. Furthermore, some of their
savings are due to restricting the illumination to be low-rank al-
ready, i.e. a projector is illuminating the scene through a diffuser
plate. Our reconstruction method does not require a symmetric
measurement setup and does not constrain the illumination.

3 Compressive Sparse and Low-rank Recov-
ery

In this section we derive mathematical equations necessary for our
decomposition approach. Based on simultaneous sparse and low-
rank decomposition [Yuan and Yang 2009; Chandrasekaran et al.
2009b] for known matrices we extend this concept towards com-
pressed sensing where only the projection of the matrix is sampled.
In order to perform the reconstruction we adapt two algorithms to
jointly work together: the Fixed Point Continuation (FPC) algo-
rithms for `1-regularized minimization [Hale et al. 2007] and the
Unconstrained Nuclear Norm Minimization (UNNM) [Ma et al.
2009], used for reconstructing sparse or low-rank matrix compo-
nents respectively. In Section 4 we will then extend our approach
to deal with higher-order tensors.

3.1 Simultaneous Sparse and Low-rank Decomposi-
tion

Let us describe simultaneous sparse and low-rank matrix decompo-
sition as proposed by Yuan and Yang [2009]. The envisioned de-
composition can be obtained with the following constrained mini-
mization to which the augmented Lagrangian method with alternat-
ing directions is applied:

min
A,B

γ||A||`1 + ||B||∗

s.t. A+B =C,
(2)

where matrix A is sparse and B is low-rank, C corresponds to the
input matrix, || · ||`1 is the `1 norm of the matrix defined by the sum
of absolute values of all entries, || · ||∗ is the nuclear norm defined
by the sum of all singular values. γ > 0 is a constant providing a
trade-off between sparse and low-rank minimization. In their work,
only decomposition of a known matrix C is discussed. Our problem
is slightly different — instead of a full matrix we have only a sparse
set of measurements

min
A,B

γ||A||`1 + ||B||∗

s.t. M(A+B) =C,
(3)

where M is the measurement matrix fulfilling the restricted isome-
try constraint, e.g. a random 0 or 1 Bernoulli matrix, C is the ma-
trix of projected measurements, and A,B are sparse and low-rank
components of the light transport matrix T 1 which is to be recon-
structed.

Following Yuan and Yang [2009], we derive the augmented La-
grangian equation for Problem 3 with Lagrangian multiplier Z:

L(A,B,Z) =γ||A||`1 + ||B||∗−〈Z,M(A+B)−C〉

+
β

2
||M(A+B)−C||2F

(4)

In the above equation, 〈·, ·〉 is the standard trace inner product and
|| · ||F is the Frobenius norm. The parameter β > 0 penalizes the
deviation from the given constraint. Minimizing this equation opti-
mizes Problem 3.



Once the augmented Lagrangian is set up we can derive an itera-
tive procedure which solves for A,B and Z in a serial fashion [Yuan
and Yang 2009]. Sequential updates for A and B are determined
using the partial derivative of the augmented Lagrangian, while the
update for Z can be derived from the classical iterative solution to
the augmented Lagrangian method [Nocedal and Wright 2006] in-
corporating the subgradients of the corresponding norms. For real
matrices M the minimum is found by utilizing the following update
steps:

0 ∈ γ∂ (||Ak+1||`1)−MT (Zk−β (M(Ak+1 +Bk)−C))

0 ∈ ∂ (||Bk+1||∗)−MT (Zk−β (M(Ak+1 +Bk+1)−C))

Zk+1 = Zk−β (M(Ak+1 +Bk+1)−C)

(5)

It turns out that these optimality conditions for matrices A and B
are known problems, and iterative schemes have been proposed
for each problem individually. Namely, the optimal matrix A can
be found using the FPC method for `1-regularized minimization,
while the optimal matrix B can be found using the FPC method for
UNNM. The two minimization problems feature almost the same
structure. Using the augmented Lagrangian approach proposed in
Eq. 5 they are combined and A and B can be jointly optimized.

3.2 FPC for `1-regularized Minimization

Assuming Bk and Zk are fixed we can easily derive the explicit up-
date step for obtaining a sparse matrix A using the Fixed Point Con-
tinuation method for `1-regularized minimization [Hale et al. 2007],
which attempts to solve the following problem

min
X
||X ||`1 s.t. M (X) = N. (6)

Here M is a linear map and N is a matrix. In the presence of noise
in N the constraint M (X) =N must be relaxed. One way to achieve
this is to use the Lagrangian form:

min
X

µ||X ||`1 +
1
2
||M (X)−N||2F . (7)

Let the set of all optimal solutions of Formula 7 be X . If X∗ ∈X
then X∗ must satisfy the following optimality condition which has
the same form as in Eq. 5.

0 ∈ µ∂ ||X∗||`1 +M T (M (X∗)−N). (8)

For any τ > 0, Equation 8 is equivalent to

0 ∈ τµ∂ ||X∗||`1 + τM T (M (X∗)−N). (9)

Using substitution we get an equivalent optimization problem

Let Y = X∗− τM T (M (X∗)−N) =⇒
0 ∈ τµ∂ ||X∗||`1 +X∗−Y =⇒

X∗ = min
X

τµ||X ||`1 +
1
2
||X−Y ||2F .

(10)

This optimization step has a closed form optimal solution, obtained
using the `1-shrinkage operator S`1

v (see [Hale et al. 2007])

X∗ = S`1
v (Y ) (11)

defined for matrices component-wise as

S`1
v (X) = sign(Xi j) max{|Xi j|− v,0}. (12)

Using substitution 10 and the closed form solution 11 an iterative
algorithm for computing X∗ can be written as

Y k = Xk− τM T (M (Xk)−N)

Xk+1 = S̃τµ (Y k).
(13)

The update step for matrix Ak+1 from Equation 5 can be rewritten
to obtain the following form

0 ∈ γ∂ (||Ak+1||`1)+βMT (MAk+1 +MBk−C− 1
β

Zk) (14)

Putting N =−(MBk−C)+ 1
β

Zk and multiplying the equation with
τ

β
we obtain the form equivalent to Equation 9. Finally, using equa-

tions 13 and 14 we can derive the formula for computing the matrix
update Ak+1 for our problem if matrices Bk and Zk are fixed:

Y k
A = Ak + τMT (Zk−β (M(Ak +Bk)−C))

Ak+1 = S̃ γτ

β

(Y k
A).

(15)

3.3 FPC for UNNM

Once A has been updated, assuming Ak+1 and Zk are fixed, an ex-
plicit minimization step for B can be derived, which uses the FPC
algorithm for unconstrained nuclear norm minimization [Ma et al.
2009]. FPC for UNNM attempts to solve the following minimiza-
tion problem:

min
X
||X ||∗ s.t. M (X) = N. (16)

Notice that Formulas 6 and 16 differ only in the choice of the norm
of matrix X . Therefore the optimal solution X∗ for the UNNM case
can be found similarly to the previously described `1 case as:

X∗ = min
X

τµ||X ||∗+
1
2
||X−Y ||2F (17)

For the matrix norm minimization the closed form optimum is ob-
tained using the matrix shrinkage operator S∗v

X∗ = S∗v(Y ). (18)

The operator applied to a matrix X whose SVD is given as X =
UDiag(σ)V T with singular values σi is defined as:

Sv(X) =UDiag(σ)V T

σi =

{
σi− v, if σi− v > 0;
0, otherwise.

(19)

Applied to our problem, Bk is updated in each iteration, assuming
fixed Ak+1 and Zk, as follows:

Y k
B = Bk + τMT (Zk−β (M(Ak+1 +Bk)−C))

Bk+1 = S∗τ
β

(Y k
B)

(20)

The complete algorithm for joint recovery of a sparse matrix A and
a norm-minimized matrix B is presented in Figure 2.



input: measurements C, projection matrix M

output:
`1-minimized A,
nuclear norm minimized B

}
s.t. M(A+B) =C

initialize A0,B0,Z0← 0
do

YA = Ak +MT (Zk−β (M(Ak +Bk)−C))

Ak+1 = S`1
γτ

β

(YA)

YB = Bk +MT (Zk−β (M(Ak+1 +Bk)−C))

Bk+1 = S∗τ
β

(YB)

Zk+1 = Zk−β (M(Ak+1 +Bk+1)−C)

until convergence

Figure 2: CSLR: Algorithm for compressive sparse and low-rank
recovery.

3.4 Choice of Parameters

In order to guarantee that the substitution in Equation 13 and 20 is a
non-expansive operator, we choose parameter τ = 1 and normalize
the linear map with the operator norm: M := M

σmax(M)
.

Furthermore, in order to simplify the choice of the parameter β we
assume the average value of C to be 1 and scale C if this condition
is not met: C := Nc

||C||`1
C, where NC is the number of entries in C.

After this normalization, in all our experiments we set parameters
β = 0.25 and γ = 0.1 (see [Yuan and Yang 2009]). In principle,
β can be increased during the optimization to yield slightly faster
convergence. A, B, and Z can be initialized arbitrarily.

As both M and C have been scaled the inverse scale has to be ap-
plied to the recovered A and B to ensure that they match.

4 Higher-order CSLR

The Compressive sparse and low-rank reconstruction method can
be extended to higher-order tensors. Operating on higher-order ten-
sors allows for exploiting the correlation between arbitrary dimen-
sions. While Vasilescu and Terzopoulos [2004] applied HO-SVD
to compress a given tensor we derive an algorithm for recovering
sparse and low-rank tensors from random projections to drastically
reduce the number of required samples. The derivation of the al-
gorithm follows the insights made in the context of tensor comple-
tion [Liu et al. 2009] and convex multilinear estimation [Signoretto
et al. 2011].

Assuming A and B are tensors several adaptation steps of the
scheme proposed in Section 3 are necessary. In our framework the
step of sparse `1 optimization of A hardly changes — the shrinkage
S`1 will simply be carried out per entry in the tensor.

Rank minimization in higher-order structures however first needs a
proper definition of the norm to be minimized. In [Liu et al. 2009;
Signoretto et al. 2011] it is shown that minimizing the rank of an n-
order tensor is required: rank(X) = ∑

N
i=1 rank(X<i>), where X<i>

corresponds to unfolding the tensor into a matrix along dimension i
and X<i> corresponds to the inverse operation of folding back to the
tensor. According to the matrix case where the nuclear norm ||A||∗
is the greatest convex minorant of the rank function, minimizing the

initialize A0,B0,Z0
1 , . . . ,Z

0
N ← 0

do

YA = Ak +MT (Zk−β (M(Ak +Bk)−C))

Ak+1 = S`1
γτ

β

(YA)

for i=1, . . . ,N

Y B
i = Bk +MT (Zk

i −β (M(Ak+1 +Bk)−C))

Bk+1
i =

(
S∗τ

β

(Y B
i,<i>)

)<i>

Zk+1
i = Zk

i −β (M(Ak+1 +Bk+1
i )−C)

end for

Bk+1 =
1
N

N

∑
i=1

Bk+1
i

Zk+1 = Zk−β (M(Ak+1 +Bk+1)−C) =
1
N

N

∑
i=1

Zk+1
i

until convergence

Figure 3: HO-CSLR: Algorithm for higher-order compressive
sparse and low-rank recovery.

rank of a tensor can be expressed by minimizing the nuclear norm
in each tensor unfolding ∑

N
i=1 ||X<i>||∗.

Consequently, our objective for the higher-order CSLR recovery is:

min
A,B

γ||A||`1 +
1
N

N

∑
i=1
||B<i>||∗

s.t. M(A+B) =C,

(21)

The augmented Lagrangian now requires a different optimizer for
each order Bi and the corresponding multiplier Zi (see [Signoretto
et al. 2011]):

L(A,B1, . . . ,BN ,Z1, . . . ,ZN) =

γ||A||`1 +
1
N

N

∑
i=1

(
||Bi,<i>||∗−〈Zi,M(A+Bi)−C〉

)
+

β

2
||M(A+B)−C||2F ,

(22)

where the optimal tensor B is obtained as the average of tensors
Bi [Liu et al. 2009]. In our case, as we do not favor minimization
in any particular order, the unweighted average is sufficient: B =
1
N ∑

N
i=1 Bi. The formulation with the augmented Lagrangian allows

one to minimize all sub problems

Bi = min
B
||B<i>||∗ s.t. M(A+Bi) =C (23)

in parallel in each iteration. The update step for Bi follows Eq. 20
where the shrinkage is performed on the unfolded tensor:

Bk+1
i = S∗τ

β

(Y k
i,<i>)

<i> (24)

The complete algorithm for tensor-based CSLR is given in Figure 3.
The choice of parameters is the same as described in Section 3. The
measurement tensor M is normalized in a similar manner as in 3.4.
However, since we cannot compute the largest singular value of the
whole tensor, normalization is performed with the average of all
largest singular values computed for each camera-view measure-
ment matrix separately.



5 Hyperspectral Light Stage

Our custom-made light stage (see Figure 4) is a spherical device
with a diameter of around 2.6m. Inside the sphere a motor-driven
camera can move on and arc around the center more than 180◦,
from the equator of the sphere on one side to below the equator on
the other side. In combination with the turntable in the center of the
sphere which supports the scene, the target can be observed from
almost any viewpoint without manual intervention.

(a) (b)

Figure 4: Each of the 196 light sources on the light stage (a) are
equipped with 14 LEDs covering the visible spectrum (b), 1 IR and
one white LED. The weaker LEDs are doubled to increase their
output.

Distributed around the sphere are 196 LED boards acting as light
sources with a very dense distribution along the main arc (56 light
sources) running just behind the camera’s path. Higher angular
sampling rate is provided in the mirroring plane of a planar target
surface, which is the most significant direction for most BRDFs.
The position of each light source is calibrated.

Each light source (Figure 4) is equipped with 14 LEDs sampling the
visible spectrum from 400 nm to 690 nm at approximately 20 nm
increments, a near-infrared LED emitting at 950 nm, and a high-
power (3 W) white LED covering most of the visible spectrum. A
holographic diffusor foil with 10◦ diffusion cone is placed in front
of the clear glass LEDs to form a rather uniform spot in the cen-
ter of the dome. For calibration purposes, we measured the emitted
spectrum of each individual LED using a photo spectrometer (Spec-
travista GER-1500). The spectral power distribution for one of our
light sources is shown in Figure 5. The slighlty irregular spacing
of the narrow-band LEDs is due to the availability on the quickly
developing LED market. Especially around 560nm no powerful
LEDs were offered. From the plot, it is obvious that the LEDs vary
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Figure 5: Spectra of all LEDs on a single board.

greatly with regards to their output power. We compensated for this
by measuring the relative power of every individual LED mounted
on the light stage using a Spectralon sphere, normalizing all mea-
surements to 99.9% reflectivity.

The lighting configuration of the whole light stage can be changed
at about 50 Hz via an I2C bus. The intensity of each LED is con-
trolled with 8 bits but in all our measurements we either turn them
on or off completely.

To minimize measurement noise, we use a DVC-4000C RGB cam-
era featuring a 4 megapixel sensor and dual-stage electrical cooling,
running the image sensor at about 40◦C below ambient tempera-
ture which is kept at a constant 18◦C. All our measurements are
recorded as high-dynamic range images based on [Hasinoff et al.
2010] and [Granados et al. 2010]. Both the exposure time and the
camera gain are varied to cover the dynamic range.

6 Experiments and Discussion

6.1 Mapping to Modes

When applying the CSLR and HO-CLSR method on data captured
with our light stage one has to determine a mapping of the degrees
of freedom in the setup to the modes of the tensor. The mea-
surement setup actually provides different kinds of measurement
modes. Similar to the list mentioned in [Duarte and Baraniuk 2010]
we distinguish

• modes that can be sensed in parallel, in our case these are the
camera pixels (x,y), as well as the pixel color vector RGB,

• modes that can only be acquired sequentially, for example the
position of the camera on the arc as well as the turntable rota-
tion angle (θo,φo), and

• finally, modes that can be acquired by random projections, in
our case the illumination direction (θi,φi) and the illuminating
wavelength λi.

As a consequence, we perform an independent reconstruction for
each color channel of each camera pixel. These reconstruction
problems are completely independent and can be computed in par-
allel. Illumination patterns will operate and simultaneously modify
the incident direction and the wavelength. The different camera
perspectives will span a higher-order tensor to be reconstructed per
point on the surface.

6.2 Illumination Patterns

The choice for the projection matrix M is actually not straight for-
ward. In a future paper we would like to thoroughly analyze the
effect of multiplexing with drastically different contributions in the
context of noise and HDR imaging. Results shown in this paper
neither made use of the white nor the IR LED, reducing the set of
different LEDs per board to 14. While we can emit arbitrary spectra
from arbitrary directions we restricted ourselves to either fully turn
on or turn off an LED, resulting in random combinations of subsets
of the 196×14 LEDs.

In our experiments, a Bernoulli matrix with 50% of the LEDs
turned on at random for each picture led to input images with very
little variation. The influence of the individual directions and the
wavelengths can hardly be discerned as approximately half of the
LEDs are on at every board. The images are pretty close to a full
white image.

Much better results we achieved by constructing the random pat-
terns as a tensor product: by first randomly selecting 50% of the



(a) Bernoulli 50% (b) Bernoulli 25% (c) tensor product

Figure 6: Comparison of a small subset of 100 images from a full
dataset (laid out as 10×10) generated by different projection pat-
terns M. Clearly, the tensor product design features the largest
differences between captured images.

(a) flowers (b) card (c) tree

Figure 7: Example scenes under white uniform illumination.

boards/directions and then randomly selecting 50% of the LEDs
on each of the selected boards. This way, in each image half of
the boards are completely off. We obtain much clearer information
about the directions. Even compared to a 25% Bernoulli pattern
the input images of our tensor product scheme feature much higher
variance between images and are thus more informative. See Fig-
ure 6 for a comparison.

6.3 Single-View CSLR

Let’s first investigate compressive sparse and low-rank recovery
for a single camera position, i.e. fixed (θo,φo). We seek matri-
ces A and B representing the 2D arrangement of 196 illumination
directions vs. 14 wavelengths (A,B ∈ R196×14). We will capture
a set of N < 196 · 14 images, each with a different illumination
as outlined in Section 6.2. The corresponding projection patterns
M ∈ RN×(196·14) produces one measurement vector C ∈ RN per
pixel (reconstruction is performed on Bayer interpolated data to re-
duce computation time and to avoid reconstructing from interpo-
lated data). To compute the product M(A+B) matrices A and B are
vectorized to R196·14.

CSLR is applied to capture the reflectance fields of fluorescent
markers (Fig. 1), flowers (Fig. 7(a), Fig. 8), a greeting card
(Fig. 7(b)) and a tree model casting a complex shadow (Fig. 7(c)).
For each particular scene we restricted the set of LEDs to those
which actually illuminate the scene.

6.4 Capturing Fluorescence

Data collected with the hyperspectral light stage measures bispec-
tral reflectance providing calibrated RGB color in dependence of
the incident wavelength. The bispectral reflectance data captures
the effect of fluorescence as visualized in Figure 1. Though il-
luminated with a narrow band LED each marker might re-emit a
different color. In the accompanying video a comparison of the re-
covered markers to ground truth is shown. They match very well,
wrongly reconstructed colors are however noticeable around 570
nm, where the illumination is very weak, and for the second left
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Figure 10: Dependence of the reconstructed RMSE on the number
of provided samples for the marker and the tree data set. At around
200− 300 images CSLR outperforms CoSaMP yielding an RMSE
which is about 2.4 times lower. Pure low-rank optimization leaving
out the sparse components increases the error again by 25%.

marker which appears blue even under red illumination. Fluores-
cence is also present in Figure 8 for a set of flowers.

Compared to Hullin et al. [2010] who measured the bispectral re-
flectance function for a single homogeneous material, the presented
setup can capture spatially varying bispectral reflectance fields and
BTFs.

6.5 Comparison to Wavelet-based Compressive Sens-
ing

For the single view CSLR the optical quality of the reconstruction
of the tree data set is compared to ground truth and to the results
obtained from a more traditional compressive sensing scheme in
Figure 9. The highly efficient Compressive Sampling Matching
Pursuit (CoSaMP) [Needell and Tropp 2009] exploits sparsity in
the wavelet domain. The recovered reflectance field is represented
using CDF-2,2 wavelets and the reconstruction is performed on
the same input data as our CSLR scheme, optimizing each pixel
independently. Given 400 input images the CSLR result is very
close to ground truth though very dim regions might be estimated to
bright. On the other hand, the CoSaMP reconstruction is still very
noisy. Even with varying numbers of estimated wavelet coefficients
CoSaMP reconstructs neighboring pixels differently indicating ei-
ther that the number of coefficients or the number of input images
is insufficient.

The dependence on the number of images of the two algorithms is
further analyzed in Figure 10. CoSaMP produces results closer to
ground truth for very few input images. As soon as sufficiently
many constraints are provided (around 300 images) the perfor-
mance of CSLR is about three times better than CoSaMP.
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Figure 8: Slices of the bispectral reflectance field of flowers. The reflectance field reconstructed from 400 images recovers the dependence
of the reflectance/re-emittance on the incident wavelength. Due to fluorescence wavelength shifts are observed. The flowers can be relit from
arbitrary directions. The high contrast around the silhouettes are due to subtle motion during acquisition.

ground truth CSLR CoSaMP 133 CoSaMP 266

Figure 9: Visual comparison of ground truth, CoSaMP and CSLR on 9 different illumination directions and 14 different wavelengths. The
CoSaMP reconstruction shows per-pixel noise and has difficulties to recover the correct color for near UV 400 nm independent of how
many wavelet coefficients are allowed. CSLR is much closer to ground truth though it partially looses contrast in the shadow region and
overestimates some of the very dim entries.

(a) A+B (b) sparse A

Figure 11: In highlight regions on the card (towards the bottom),
the recovered sparse signal typically grows stronger as highlights
partially violate the low-rank assumption. The apparent structure
is not noise but actually due to the micro geometry of the card.

6.6 Sparse vs. Low-Rank

The separation into sparse and low-rank components is essential for
the performance of the CSLR method. Only performing `1 mini-
mization in the pixel basis does not produce any reasonable results
as the intended reflectance field is not sparse at all. On the other
hand, pure nuclear norm minimization does not perform that badly.
There are subtle but important differences to the simultaneous re-
covery of both, where A will typically catch outliers. Deviations
from a low-rank model will occur for example in highlight regions
(Figure 11). As can be seen in Figure 10 omitting A in the estma-
tion would increase the error compared to the full CSLR scheme by
about 25%.

6.7 Multi-View HO-CSLR

If we add different viewing directions to the problem we can either
apply the CSLR scheme to each individual view in turn or we can
try to exploit the correlation between the views with the HO-CSLR.
In order to align the surface points in the captured views a homog-
raphy is estimated from each to the central view. Even though the
alignment might not be perfect for pixels with different depth it def-
initely increases the correlation.

If only θo is varied in the viewing directions A and B are turned into

Figure 12: Visualization of the multi-view tensor. The tensor A+
B includes 5 different view directions shown as different columns.
One clearly sees the highlight moving in the different views while
the remaining entries are highly correlated. It was reconstructed
from 5×200 input images.

3-mode tensors A,B ∈ R196×14×Nθ , where Nθ is the number differ-
ent viewing directions. We would create a 4-mode tensor accord-
ingly when θo and φo are sampled. For each view we will capture
N independent measurements (CRGB ∈RN×Nθ ), each acquired with
a different set of illumination patterns, i.e. M ∈ RN×(196·14)× Nθ .
Unlike the single-view CSLR approach, here we have to perform
the reconstruction on interpolated RGB data since different cam-
era views need to be aligned, for which Bayer pattern data is not
sufficient. In order to compute M(A+B) tensors A and B are matri-
cized into R(196·14)×Nθ ; for each view one matrix-vector product is
computed.

Multi-view reconstruction results are demonstrated on the card
scene (Figure 12). We combined only 5 different views in one
reconstruction. They were however sufficient to demonstrate the
additional savings by SLR minimization of the tensor. Compared
to reconstructing each view individually similar visual quality is
achieved with 50% of the input images. The reconstruction time of
the HO-CSLR is however currently about 10 times slower.



6.8 Savings in Acquisition Time

Besides the previously reported savings in the number of images
when comparing the CSLR or HO-CSLR to ground truth data sets
where each image is illuminated with just a single LED, also the
savings in exposure time are significant.

The chosen projection patterns typically turn on approx. 600 LEDs
on average resulting in a significantly brighter illumination com-
pared to a single LED. In the HDR sequence the longest exposure
time could therefore be reduced from 4 s with 12 dB gain to only
0.12 s with 12 db gain. The total time per HDR image changed
from 15 s to 0.5 s accordingly. Combined with the savings in the
number of images, acquisition time was reduced from about 4 hours
to 17 minutes.

6.9 Limitations

One common problem in all the presented results is the relatively
poor SNR for 574 and 590 nm where the intensity of the LEDs
is very low. In all input images their small signal is mixed with
brighter ones. A similar effect is happening in shadow regions
which move from light source to light source (see Figure 9). As
it is highly unlikely that in any illumination pattern the region is
in full shadow without being directly illuminated by another LED
the intensity might be overestimated. More research is necessary to
predict the expected loss in the recoved signal.

A more severe error occurs whenever the captured frames deviate
from the linear light transport assumption. We identified two cases:
One is due to object motion. The other appears on highly specular
surfaces where a very bright highlight is affecting a single sensor
pixel. Even if correctly exposed in the HDR sequence during de-
mosaicing its energy might spread non-linearly to neighbor pixels.
This highlight will occur whenever the corresponding illumination
direction is included in the pattern, which typically is in at least
25% of the samples.

7 Conclusion

Compressive sensing typically exploits sparseness in the model for
more efficient acquisition. Matrix and tensor completion or norm
minimization on the other hand try to find a good low-rank approx-
imation for a given data set. The proposed compressive sparse and
low-rank recovery algorithms (CSLR) optimizes both simultane-
ously on compressed input data. They take random projections
and simultaneously optimize for low-rank and sparse decomposi-
tion of the underlying model. Joint recovery of low-rank and sparse
data yields significantly better SNR at fewer input samples than
wavelet-based compressive sensing. Extending the same formal-
ism to higher-order tensors (HO-CSLR) even the correlation along
different modes is successively explored to obtain further savings
in the number of input samples.

The recovery algorithms implement relatively simple iterative
schemes follow an augmented Lagrangian approach and are based
on the shrinkage operators for the `1 and nuclear norm respectively.
At this point, we stress that the approach can be easily adapted to
other higher-order compressive sensing scenarios.

The proposed application scenario in this paper is the acquisition
of spatially varying, bispectral reflectance data captured in a LED-
based hyperspectral light stage. Reflectance fields are known to
be locally low-rank and therefore constitute a perfect match to the
proposed CSLR and HO-CSLR recovery. Most of the energy is
indeed found to be low-rank while strong view and illumination

dependent effects such as highlights are to some extend recovered
in the sparse part of the reconstruction.

The novel application of higher-order compressive sensing opens a
new set of problems to be addressed in the future. More research
is necessary to determine optimal higher-order illumination codes,
in particular in the context of HDR imaging. Another area of im-
provement is of course the computation time. Here, parallelization
on GPUs and the use of Monte Carlo SVD and alike are promising
directions.

References

BARON, D., WAKIN, M. B., DUARTE, M. F., SARVOTHAM, S.,
AND BARANIUK, R. G. 2009. Distributed compressed sensing.
Tech. rep.
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