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Summary

Explanations of human categorization behavior often invoke similarity. Stim-
uli that are similar to each other are grouped together whereas stimuli that are
very different are kept separate. Despite serious problems in defining similarity,
both conceptually and experimentally, this is the prevailing view of categorization
in prototype theories (Posner & Keele, 1968; Reed, 1972) and exemplar theories
(Medin & Schaffer, 1978; Nosofsky, 1986). This is also the prevailing approach in
machine learning. A popular class of methods in machine learning is based on the
idea of modeling the similarity of patterns by a kernel (Schölkopf & Smola, 2002).
Many of these methods are akin to exemplar models in psychology, as they also
base the categorization on a comparison with stored examples with known cate-
gory labels. In this thesis, we re-examine the notion of similarity as it is used in
models for human categorization behavior from a machine learning perspective.

Our current understanding of many machine learning methods has been deep-
ened considerably by the realization that similarity can be modeled as a so-called
positive definite kernel. One of the most commonly used similarity measures in
psychology, Shepard’s universal law of generalization (Shepard, 1987), is shown to
be such a positive definite kernel. This observation opens up the possibility to use
tools from functional analysis, that are also used in machine learning, in the analy-
sis of psychological similarity. Two important theoretical insights about similarity
are gained from such an analysis.

First, early models of similarity introduced the notion of a psychological space
with a Euclidean metric that represented the similarity of stimuli (Torgerson, 1952;
Ekman, 1954). Shepard’s early work on multidimensional scaling can be understood
as an effort to overcome the assumption that the similarity of stimuli is captured
by a Euclidean metric (Shepard, 1962). The later introduction of the universal law
of generalization was the culmination of work that happened over several decades
and summarized the relationship between similarity and metrics in many psycho-
logical spaces (Shepard, 1987). Ironically, however, this thesis demonstrates that
the universal law leads to an embedding of similarity into a Euclidean space and
therefore means a return to those roots of multidimensional scaling that Shepard
tried to overcome.

Second, models for similarity that are based on multidimensional scaling have
been heavily criticized by Tversky and coworkers (Beals, Krantz, & Tversky, 1968;
Tversky, 1977; Tversky & Gati, 1982). The most severe criticism concerns the trian-
gle inequality which all metric models of similarity assume. Despite this criticism
scaling methods have been used with great success, especially in categorization
research. Even if the criticism is acknowledged researchers usually proceed with
scaling without much hesitation (Nosofsky, 1986). Still, Tversky and Gati (1982)
reported data that seemed to show that multidimensional scaling cannot capture
many human similarity judgments. However, their tests of the triangle inequal-
ity also assumed segmental additivity. For Tversky and Gati segmental additivity
was an essential property of any geometric model of similarity and therefore also
for multidimensional scaling. Here, it is shown that there are theoretically well-
motivated metrics—induced by Shepard’s law of generalization and implicitly used
in many multidimensional scaling scenarios—that do not have the property of seg-
mental additivity. These metrics are therefore not affected by Tversky’s criticism
and provide a post-hoc justification for the use of multidimensional scaling for data
that seem to violate the triangle inequality. In fact, these metrics provide a the-
oretically well-justified model for stimulus similarity that are also bounded from
above, thereby implementing the intuition that stimulus similarity is best defined
locally (Indow, 1994).
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As Shepard’s law is used extensively in psychological models of categorization
(Nosofsky, 1986; Kruschke, 1992; Love, Medin, & Gureckis, 2004) the insight that
similarity can be modeled as a positive definite kernel can also benefit a theoretical
analysis of categorization behavior. Exemplar theories in particular make heavy use
of positive definite kernels. Here, it is shown that exemplar models in psychology
are closely related to kernel logistic regression (Hastie, Tibshirani, & Friedman,
2001). The link between kernel logistic regression and exemplar theories is their
use of radial-basis-function neural networks (Poggio & Girosi, 1989; Poggio, 1990).

A traditional concern against exemplar theories is their lack of an abstraction
mechanism that seemingly limits their generalization performance (Smith & Minda,
1998, 2000). However, kernel logistic regression is used successfully in many ap-
plications in machine learning. Using insights from kernel methods a first analysis
of the generalization ability of exemplar models is provided. It is found that ex-
emplar theories in psychology are indeed prone to overfitting, i.e. they show poor
generalization performance. However, like their relatives in machine learning ex-
emplar models can be equipped with regularization mechanisms that are known to
improve generalization performance under real-world category learning conditions.
Hence, despite concerns from prototype theorists about the generalization ability
of exemplar models, exemplar models can be made to reliably extract the structure
inherent in real-world categories by using techniques from machine learning.

viii



CHAPTER 1

Introduction

Categorization is arguably one of the most fundamental cognitive processes. It
serves, for example, as a crucial link between perception and high level cognition.
For many cognitive skills, like reasoning, induction, and language, categorization
is a prerequisite. In fact, the meaning of simple nouns, such as ‘animal’, ‘dog’,
‘apple’, or ‘psychologist’ seems to be defined by their respective categories. Even
very basic object properties, like ‘being red’, are already a categorical response to
an analogue perceptual input. Our ability to categorize allows us to partition the
world into groups of objects that can be treated alike, if only for a certain purpose.
By categorizing an animal into the category ‘dog’, many perceived details like the
exact size, color or fur are discarded and a more compact, easily transmittable
representation is obtained. Without seeing the dog one can infer that it probably
barks, has teeth, and can bite. By only knowing an object’s category label a wealth
of useful information about the object is available and predictions about its behavior
can be made.

As categorization is apparently fundamental to our cognitive world—“concepts
seem to be the very stuff of which cognitions are made” (Rey, 1983/1999, p. 279)—
it is not a big surprise that research on categorization has received a lot of attention
from philosophers, linguists and psychologists alike. Despite this attention we still
do not have a clear understanding of the psychological (not to speak of the neural)
processes underlying categorization behavior.

One of the problems of categorization research is that categorization happens at
many, if not all, cognitive levels. Even at the perceptual level there are already ef-
fects of category boundaries, e.g. in color perception or speech perception (Harnad,
1987). There are perceptual categories that seem almost atomic, not analyzable
into more basic categories—‘being red’ would be a prime example for this sort of
category. At the other extreme are ad-hoc categories such as ‘things to take with
you on a camping trip’ (Barsalou, 1983). Formation of these categories depends on
many high-level cognitive abilities, like language, imagination, knowledge, memory,
and common-sense reasoning.

In the so-called classical theory of concepts complex concepts are made up
from atomic perceptual terms by logical combination (Laurence & Margolis, 1999),
e.g. an ‘apple’ is ‘round’ and ‘red’, but some apples are ‘green’, and so on. A
possibly very long list of perceptual primitives that are combined by logical op-
erations defines a category. One big problem of this approach is that for many
concepts it proved to be incredibly hard to really specify necessary and sufficient
conditions that determine category membership. Of course, once you have defined
some concepts nothing is stopping you from using those to define more complex
concepts—and in fact it seems obvious that many concepts are composed in this
way. The principle of compositionality is at the heart of the classical theory and it
is clear that any complete theory of concepts also needs to address this aspect of
categorization. Therefore, early psychological research on categorization has often
concentrated on concepts that can be defined by logical formulas and this approach
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is still alive today (e.g. Bourne & Restle, 1959; Shepard, Hovland, & Jenkins, 1961;
Feldman, 2000).

There is, however, more to the relation between concepts than the fact that
they can be combined in an arbitrary way to compose new concepts. Many concepts
seem to form hierarchies that reflect our knowledge about the structure of the world.
Take for example biological taxonomies: Dalmatians and poodles can be grouped
into the category dogs and together with cats, dolphins, apes, etc. they form the
superordinate category of mammals. The basis for grouping all mammals together
is similar to the basis for grouping ‘things to take on a camping trip’ together: We
can find reasons why they should be grouped together. In fact, the more reasons
we can find and the better these reasons are embedded into a network of related
concepts—a theory of the objects under consideration—the more coherent a concept
appears. This account of categorization is called theory-theory (Murphy & Medin,
1985/1999).

Within a taxonomy—for example the following hierarchy of concepts: sports
car, car, vehicle—the intermediate level stands out psychologically. This is the level
at which things are usually named, where objects have many properties in common,
a similar shape, and similar motor actions associated with them. Categories at this
level have been termed basic-level categories by Rosch, Mervis, Gray, Johnson, and
Boyes-Braem (1976). At the level of basic categories it seems to be perception,
rather than theoretical reasoning, that drives categorization. Things are grouped
together because they are perceptually similar to each other. In this thesis we will
mostly deal with categorization at this level. We will analyze fairly reduced, per-
ceptually mediated categorization behavior (not all of the studies we will discuss
are strictly at the basic level but all of them are based on perceptual similarity).
While concepts that are not basic categories are certainly important for cognition
it does not seem unreasonable to us that more complicated concepts are built on
top of perceptually mediated, basic-level categories. Furthermore, very different
mechanisms, including conscious reasoning, might be needed to explain the com-
positionality and the theoretical coherence of these concepts. To avoid confusions
right from the start, in this thesis we will concentrate on the perceptual aspects of
similarity and how similarity might give rise to categorization behavior.

1. Generalization and categorization

The reason why basic-level categorization is so useful—and why it works in
the first place—is probably that there are natural categories in the world (Rosch,
1973; Anderson, 1991). Basic-level categories seem special because they are not just
mediated by our perception but also reflect the structure of the world. Basic-level
categories not only form clusters in our heads but also in the world. Of course, it
can happen that categories in our heads do not match the categories in the world.
However, a category is the more useful the more it is possible to transfer experience
with one object of a class to another object of the same class—and this is only
possible if there is some reality to the categories that we form. Also superordinate
biological categories, like mammals, are real and are therefore useful for structuring
our knowledge about the world. But mammals are not easily perceived as being
mammals (a dolphin looks like a fish and not a mammal). Instead there seems to
be a theory-driven insight at work that allows us to group all mammals together.
This is in contrast to categories at the basic level where the perceptual experiences
generalize effortlessly to other objects of the same kind. In this sense, basic-level
categorization is really about generalization of perceptual experiences.

There is a second reason why categorization and generalization are deeply in-
tertwined. Let us assume for simplicity that learning of a category proceeds by
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seeing examples of objects that either belong or do not belong to the category. The
learner tries to assign the right category label, for example by uttering the category
name. There might be a teacher who immediately corrects any wrong utterances.
Feedback might also be provided by the environment directly, for example if a poi-
sonous fruit is mistaken for an edible fruit. In any case the learner has to decide
which features of the stimuli she encounters are crucial and which are accidental.
She has to find the structure that is common to all the objects in a category. But
the learner does never encounter all instances of a category. So how can she gener-
alize from a possibly very small number of instances to the full category? This is
of course the century-old problem of induction.

2. Categorization and similarity

A common-sense answer to the problem of category induction involves simi-
larity. The reason why objects are grouped together in categories is that they are
similar to each other. However, the appeal of invoking similarity in the explanation
of categorization behavior merely stems from the need to generalize. A response
will generalize to a new stimulus if the stimulus is similar enough to a stimulus
with this response. Similar stimuli give rise to the same response. But how do
we know that stimuli are similar? They are similar because the response to one
stimulus will generalize to the other stimulus. Such a definition is of course circular
but it seems hard to define the similarity of stimuli without invoking the response
that they illicit. A definition of similarity is needed that does not depend on the
generalization of responses (Bush & Mosteller, 1951; Shepard, 1987).

Despite its intuitive appeal as an explanatory construct similarity is a slip-
pery concept and may be too flexible to provide the “glue that makes a category
learnable and useful” (Murphy & Medin, 1985/1999, p. 427). One problem is that
similarity can be extremely context and task dependent. If asked for the similarity
of two arbitrary stimuli human participants will usually wonder “in what respect”
(Medin, Goldstone, & Gentner, 1993). Still, problematic as similarity may be we
can investigate how exactly assessment of similarity changes with context and task.

In fact, similarity based models of categorization have been extremely successful
and while controversial the notion of similarity proved to be a fruitful concept to
start with (e.g. the work collected in Hahn & Ramscar, 2001). Two classes of
models about categorization stand out as relying almost completely on similarity:
Prototype models and exemplar models. In prototype models it is assumed that
subjects extract a summary representation, the prototype, from all the instances of
a category that they encounter. When categorizing a new stimulus the similarity
to this prototype is assumed to be the crucial factor. There is a plethora of studies
that used the similarity of stimuli to a learned prototype as an explanation for
categorization behavior (e.g. Posner & Keele, 1968; Franks & Bransford, 1971;
Reed, 1972; Smith & Minda, 1998; Minda & Smith, 2001). Exemplar models, on
the other hand, assume that there is no abstract representation like a prototype
but instead suggest that categorization is mediated by memorization of exemplars.
Exemplars with known category membership are stored in memory and new stimuli
are categorized by assessing their similarity to the stored exemplars (e.g. Medin &
Schaffer, 1978; Nosofsky, 1986; Kruschke, 1992). Prototype and exemplar models
both rely on similarity. One crucial ingredient for the success of exemplar models,
however, has been the realization that similarity is not a fixed concept. It varies with
task and experimental contexts. Hence, experimental studies that described such
changes were a major influence (Tversky, 1977; Nosofsky, 1986; Medin et al., 1993).
Recently, there has also been some interest in how object similarity is mediated
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by the different senses and how the different sensory modalities affect similarity
judgments and categorization (Cooke, Jäkel, Wallraven, & Bülthoff, 2007).

3. Similarity and kernels

The starting point for this thesis were two observations. First, in machine learn-
ing many methods for categorization also depend on similarity. Second, a popular
mathematical tool for describing similarity in machine learning are so-called kernels.
Incidentally, one of the most popular similarity measures in psychology, Shepard’s
universal law of generalization (Shepard, 1987), is also such a kernel. Therefore,
some of the mathematical machinery and, more importantly, some statistical in-
sights of machine learning might be applicable to the many psychological models
that are built on Shepard’s law (e.g. Nosofsky, 1986; Kruschke, 1992; Love et al.,
2004). Briefly, it turned out that especially the notions of a positive definite kernel
and of a reproducing kernel Hilbert space were useful in providing insights about
similarity. Chapter 2 of this thesis provides an in-depth introduction to the mathe-
matics involved while trying to motivate their use from a psychological and neural
networks perspective.

In order to explain what kernels can add to the understanding of similarity we
have to be a bit more specific about the actual models of similarity that we consider.
Unfortunately, there are many ways how psychological similarity can be modeled
and we are far from having reached a consensus on which model is to be preferred
in what situation (Navarro, 2002). However, we think it is fair to say that the most
influential approach has been geometrical in nature and is deeply connected with
the method of multidimensional scaling (MDS). In early studies on MDS it was as-
sumed that stimuli are represented as points in a multidimensional space and that
the similarity between stimuli can be modeled as the Euclidean distance between
the respective points (Torgerson, 1952). The closer two points are in space the more
similar are the respective stimuli. From the beginning the assumptions of a Eu-
clidean space seemed overly restrictive but they were overcome by the development
of ordinal scaling methods (Shepard, 1962; Kruskal, 1964). These methods could
deal with non-Euclidean spaces and also with a non-linear relationship between the
distance in the embedding space and the measured similarity. In a very influential
paper Shepard (1987) could unify many data-sets that were analyzed by ordinal
scaling methods by postulating an exponential relationship between the distance in
the embedding space and measured generalization performance. As generalization
performance is a popular similarity measure, especially in categorization research,
the exponential law is as much a law of generalization as it is of stimulus similarity.

In this thesis we analyze how the exponential law enters categorization models
as a measure for stimulus similarity. We find that the way similarity is modeled
gives rise to a positive definite kernel. As the similarity is a positive definite kernel
it follows that any measured similarity matrix is assumed to be positive semi-
definite. This means that the similarity matrix can be embedded in a Euclidean
space. Ironically, Shepard’s finding of the exponential as a link between similarity
and distance has led to a theory that adheres to the same restrictions of Euclidean
space that he tried to overcome by ordinal scaling methods. These theoretical
results are explained in detail in Chapter 3 of this thesis.

Geometric models of similarity based on MDS have been very popular but also
very much criticized. The most fundamental criticism has been put forward by
Tversky and coworkers (Beals et al., 1968; Tversky, 1977; Tversky & Gati, 1982).
Especially the triangle inequality—essential to MDS procedures—has been met
with considerable skepticism. By using the finding that Shepard’s law gives rise
to a positive definite kernel we give this debate a new twist. Briefly, the issue is
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that Tversky and colleagues always assumed the triangle inequality in conjunction
with a second property called segmental additivity. Our theoretical analysis shows
that there is a natural metric associated with Shepard’s law (the distance in the
respective reproducing kernel Hilbert space) that does not have this property of
segmental additivity and therefore avoids the serious criticism of the triangle in-
equality. On top of this we also find that this metric is bounded from above. This
is a highly desirable property for a psychological metric because stimuli far apart
in a psychological space can probably not get more dissimilar than “completely
different” (Indow, 1994). Furthermore, we find that our analysis leads to an inter-
pretable representation where all stimuli are represented by their similarity to all
other stimuli (Edelman, 1998). These results are also described in Chapter 3.

4. Kernels and exemplar models

The analogy between categorization models in psychology and categorization
algorithms in machine learning can be taken even a bit further than just saying
that both build on similarity. In fact, there is a formal correspondence between
exemplar models and a kernel method called kernel logistic regression.

At the very least a quantitative model for human categorization behavior needs
to be able to predict the probability that a participant will respond to a stimulus
with a certain category label. As mentioned before, a participant is assumed to
assess the similarity of a stimulus to a prototype or stored exemplars. But this
is not enough. Based on this similarity assessment a categorization decision needs
to be reached. This decision is potentially probabilistic, be it because of noise in
the similarity representation or noise in the decision process itself. In any case, a
decision making model has to be built on top of the model for stimulus similarity.
Traditionally, in exemplar theories this decision model has been implemented by
Luce’s choice rule (Shepard, 1957; Luce, 1959, 1961; Nosofsky, 1986). Luce’s choice
rule is related to logistic regression which is frequently used in psychophysics to
assess a subject’s responses (Recent methodological studies using logistic regression
and Luce’s choice rule are Jäkel & Wichmann, 2006; Kuss, Jäkel, & Wichmann,
2005). It has long been known that Luce’s choice rule can be problematic (Debreu,
1960; Tversky, 1972; Luce, 1977) especially in similarity choice situations (Krantz,
1967). However, an extension like Tversky’s elimination-by-aspects model (Tversky,
1972)—that can deal with these problems—is a lot more complicated and only
recently have suggestions for its use in practice been put forward (Görür, Jäkel, &
Rasmussen, 2006).

With Luce’s choice rule in place it becomes obvious that exemplar models per-
form a logistic regression on the exemplar similarities. As the exemplar similarities
can be modeled by kernels there is a close correspondence between exemplar models
and kernel logistic regression. The basic model underlying ALCOVE (Kruschke,
1992), a well-known exemplar model, is even formally equivalent to kernel logis-
tic regression. Interestingly, this model can be also seen as a radial-basis-function
(RBF) neural network. RBF-networks have repeatedly been advocated as models
for brain function by Poggio and coworkers (Poggio, 1990; Poggio & Edelman, 1990;
Poggio & Bizzi, 2004). The relationship between different exemplar models, kernel
logistic regression and RBF-networks is explained in the first part of Chapter 4.

5. Exemplar models and generalization

While the basic model underlying ALCOVE and kernel logistic regression is the
same there are crucial differences in how the parameters of the model are adapted
through learning. These differences can make a significant difference with regard
to the generalization performance of the model. Exemplar models usually have too
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many free parameters and any learning algorithm that such a model might possi-
bly implement is therefore prone to overfitting. As exemplar models, by definition,
are rote learners there are strong concerns about the generalization ability of these
models (Smith & Minda, 1998, 2000; Minda & Smith, 2001, 2002). If a model only
learns the labels of observed exemplars by heart how will this mechanism explain
generalization to new exemplars? As it turns out appealing to similarity is not
enough in many of the models that are usually considered. While proponents of
prototype theories argue that some abstraction mechanism accounts for the gener-
alization, here we demonstrate that exemplar models can be made to generalize well
without an explicit abstraction mechanism. For this analysis we use regularization
techniques as they are used in machine learning. These techniques are explained in
Chapter 2 and are subsequently applied to exemplar models in Chapter 4.

6. Preview

The core of this thesis consists of three chapters. Chapter 2 introduces the
mathematical apparatus of positive definite kernels and reproducing kernel Hilbert
spaces that will be used in subsequent chapters. This apparatus greatly deepened
our understanding of categorization methods in machine learning and, as it turns
out, is also useful for psychological theorizing. Chapter 3 shows that Shepard’s
universal law of generalization leads to a positive definite kernel and discusses con-
sequences of this observation. This leads to an interpretation of perceptual spaces
where stimuli are represented by their similarity to all other stimuli, the distance
between stimuli is bounded and the worrisome property of segmental additivity is
not needed. Chapter 4 draws parallels between kernel methods for categorization
and exemplar models. The generalization ability of exemplar models is analyzed
with the help of regularization techniques.
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CHAPTER 2

Kernels

Machine learning is occupied with inventing computer algorithms that are ca-
pable of learning. For example, a machine that is equipped with a digital camera is
shown instances of handwritten digits. Imagine an application where postal codes
on letters have to be recognized so that the letters can be sorted automatically.
The machine is shown many instances of each digit and has to learn to classify new
instances based on the experience with the old ones. The prospect of not having to
program a machine explicitly but rather having a machine learn from examples has
attracted engineers to study learning since the early days of artificial intelligence.
In their quest for intelligent machines early research was inspired by neural mech-
anisms and ideas from reinforcement learning. However, for practical applications
researchers in machine learning also need to take technical constraints (like scal-
ability, robustness and speed) into account. Furthermore, a good understanding
of what the algorithm does, perhaps even with performance guarantees, would be
very desirable if the algorithm was to be used in practice. Usually these constraints
require techniques and insights from statistics, optimization and complexity theory
that make the algorithm implausible as a psychological model of learning. Never-
theless, some of the methods used in machine learning are still strikingly similar
to models that are discussed in psychology. Many of the ideas about learning that
can be found in the machine learning literature are certainly based on the same
intuitions that psychologists have.

Kernel methods, in particular, can be linked to neural network models and
exemplar theories of categorization. Psychologically speaking, a kernel can often
be thought of as a measure for stimulus similarity. In a category learning task it
seems natural to assume that the transfer from old to new stimuli will depend on
their similarity. In fact, this idea can be found throughout machine learning and
psychology. As categorization is an important cognitive ability it has received a
lot of attention from machine learning and psychology. It is also in categorization
models that the similarity between machine learning methods and psychological
models becomes most obvious.

This chapter is a tutorial on kernel methods for categorization. These methods
try to tackle the same problems that human category learners face when they try
to learn a new category. Hence, we think that the mathematical tools that are
used in machine learning show a great potential to be also useful for psychological
theorizing. Even if most of the solutions that machine learning offers turned out
to be psychologically implausible, psychologists should still find it interesting to
see how a related field deals with similar problems—Especially as machine learning
methods are increasingly used for the analysis of neural and behavioral data. At the
very least, this chapter provides an introduction to these new tools for data analysis.
We find, however, that some of the methods in machine learning are closely related
to categorization models that have been suggested in psychology. Briefly, some
kernels in machine learning are akin to a class of similarity measures considered in
psychology. This class of similarity measures is based on Shepard’s universal law of

generalization and has been used extensively in exemplar models of categorization
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(Nosofsky, 1986; Kruschke, 1992). Kernel methods are also like exemplar models
in other respects: They usually store all the exemplars they have encountered
during the course of learning and they can be implemented in a neural network. In
Chapters 3 and 4 we will use some of the results presented in this chapter to clarify
the relationship between similarity and generalization in categorization models and
to resolve some conceptual problems with popular models of similarity. The other
two chapters focus on the psychological aspects of kernels, whereas in this chapter
we concentrate more on the mathematical aspects.

There are several useful introductions to kernel methods in the machine learning
literature but none of them is addressing psychological issues directly—hence this
chapter. Most of the technical material we present is based on two recent books
on kernel methods (Christianini & Shawe-Taylor, 2000; Schölkopf & Smola, 2002)
and standard results in linear algebra (e.g. Strang, 1988). We will assume that
the reader has had some previous exposure to linear algebra, for example in the
context of artificial neural networks or psychometrics. However, in order to make
the chapter accessible to a larger audience we included reminders of relevant results
throughout the text.

1. Inner products

So what is a kernel? Kernels can be regarded as a non-linear generalization of
inner products. We will take a little detour before explaining kernels and discuss
the relationship between inner products, perceptrons and prototypes. This will
set the stage on which kernels appear naturally to solve non-linear classification
problems.

1.1. Perceptrons. The perceptron can be considered the most basic of all
pattern recognition algorithms. It was conceived as a simple model for learning in
the brain (Rosenblatt, 1958). A pattern x, in the form of n real numbers x1 to xn,
is fed into a neuron. The inputs are weighted by the synaptic strengths w of the n

connections to the neuron. There are n real numbers w1 to wn that represent the
synaptic strength of each input. The neuron integrates all its weighted inputs by
summing them up:

(1) 〈w, x〉 =

n
∑

i=1

wixi.

If the excitation of the neuron is greater than a threshold value θ the neuron fires.
The excitation is a linear combination of the inputs. For this reason the perceptron
is also referred to as a linear classifier. Mathematically speaking, the neuron calcu-
lates the standard inner product, denoted with brackets 〈·, ·〉, of the vector x with
the vector w, both of which are elements in a n-dimensional vector space. Inner
products are also called dot products or scalar products in linear algebra.

A vector space with an inner product 〈·, ·〉 is a very rich representation and has
a natural measure of length and angle that conforms to intuitions about Euclidean
space. The length or norm ‖·‖ of any vector w can naturally be defined with the
help of the inner product as:

(2) ‖w‖2
=

n
∑

i=1

w2
i = 〈w, w〉 .

By using Pythagoras’ theorem one can find that this is in agreement with Euclidean
intuitions. All the familiar properties of Euclidean space can be expressed in terms
of the standard inner product. The distance d(·, ·) between two points x and y in
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the space can then be defined as the length of their difference vector

(3) d(x, y) = ‖x − y‖ =
√

〈x − y, x − y〉.
This distance can be used to define a metric on the space. Moreover, the angle α

between two vectors v and w can be expressed as

(4) cosα =
〈v, w〉
‖v‖ ‖w‖ .

In particular, two vectors are perpendicular whenever their inner product is zero.
Geometrically speaking, the weight vector together with the threshold can be

interpreted as the normal vector of a hyperplane (an ordinary plane if the dimension
of the space is three and a straight line if the dimension of the space is two).
Checking whether the inner product is bigger than the threshold is equivalent to
checking which side of the hyperplane a pattern vector x falls on. In this way a
simple classification can be implemented by separating the vector space into the
two parts on both sides of the hyperplane. This is illustrated in Figure 1. The
figure shows a two-dimensional space and each point in the space defines a possible
pattern. There are two classes of patterns (circles and crosses) and several instances
of each class are shown. A vector w pointing away from the origin is depicted
together with its hyperplane 〈w, x〉 = 0, that is the set of all points x that are
perpendicular to w. If the inner product between w and x is greater than zero the
two vectors form an angle that is less than 90 degrees, hence w and x lie on the
same side of the hyperplane. It is possible to shift the hyperplane along the vector
w by changing the threshold parameter θ. In this example we have chosen w and
θ such that the hyperplane that they define can correctly separate the circles from
the crosses. In general, the learning problem for the perceptron is to find a vector
w and a threshold θ that separates two classes of patterns as well as possible. It is
a very common view to see learning as adapting weights in a neural network. There
is a long list of learning algorithms that try to accomplish this task of which the
perceptron learning algorithm is just one.

1.2. Prototypes. Take the psychologically rather than neurally motivated
example of a prototype learner (Posner & Keele, 1968; Reed, 1972). The learning
machine is given a set of patterns A that are known to belong to one class and a
set of patterns B that are known to belong to another class. The prototype learner
is usually understood as trying to extract the central tendency of the two classes.
Hence, to separate A from B the arithmetic means of all examples in A and B

are calculated: a = 1
|A|
∑

aǫA a and b = 1
|B|
∑

bǫB a. A new pattern x is classified

as belonging to class A if it is closer to a (the mean of A) than to b (the mean
of B). We can take ‘closer’ to mean Euclidean distance in the vector space in
which the patterns are given. The Euclidean distance between two points x and y

is given by the square root of the inner product of the difference vector with itself:
〈x − y, x − y〉 (Eq. 3). Therefore, a Euclidean prototype classifier decides that a
new stimulus x belongs to class A whenever

〈

x − b̄, x − b̄
〉

> 〈x − ā, x − ā〉
〈x, x〉 − 2

〈

b̄, x
〉

+
〈

b̄, b̄
〉

> 〈x, x〉 − 2 〈ā, x〉 + 〈ā, ā〉
2 〈ā, x〉 − 2

〈

b̄, x
〉

> 〈ā, ā〉 −
〈

b̄, b̄
〉

〈

ā − b̄, x
〉

>
1

2

(

〈ā, ā〉 −
〈

b̄, b̄
〉)

〈

ā − b̄, x
〉

> θ.(5)

Remember that the definition of the inner product 〈·, ·〉 involves a sum and there-
fore it is linear in both arguments: For all x, y and z it holds that 〈x, y + z〉 =
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Figure 1. Each perceptron defines a hyperplane in a vector space.
The weight vector w is the normal vector of this hyperplane and
the threshold θ defines the offset from the origin. On one side of
the hyperplane (the side that w points to) the inner product of
all points with w is greater than θ. On the other side the inner
product is smaller than θ. In this example we have chosen w and
θ so they can separate the circles from the crosses.

〈x, y〉+ 〈x, z〉 and also that 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉. We have used this property
extensively in the above derivation. From the last line of (5) it can be seen that the
prototype classifier defines a hyperplane in the input space just as the perceptron in
Eq. (1) does. The weight vector w is given by the difference of the means ā− b̄ and
the threshold θ by the right hand side 1

2

(

〈ā, ā〉 −
〈

b̄, b̄
〉)

. However, θ is really just
a bias parameter that determines which of the two category responses is preferred
and might be chosen differently. The crucial fact is that for the prototype classifier
we take an inner product with the difference vector of the means.

1.3. Positive definite matrices. The inner product defined in Eq. (1) is
called the standard inner product because it naturally arises in the context of
Euclidean spaces. In general, an inner product 〈·, ·〉 has to fulfill three formal
properties that ensure that the norm, distance and angle will behave as in Euclidean
space. First, it has to be symmetric: For all real-valued vectors w and v it holds that
〈w, v〉 = 〈v, w〉. This reflects the fact that the (absolute) angle between two vectors
does not depend on whether it is measured from w to v or from v to w. Second, an
inner product has to be linear in its arguments, that is for a real number a and three
vectors u, v and w it holds that 〈au, v〉 = a 〈u, v〉 and 〈u + w, v〉 = 〈u, v〉 + 〈w, v〉.
Because of the symmetry an inner product is linear in both arguments. Third, an
inner product has to be positive definite. By positive it is meant that 〈w, w〉 ≥ 0 for
all w. Definiteness refers to 〈w, w〉 = 0 if and only if w = 0. Positive definiteness is
a natural requirement for a length measure. Remember that the inner product of
a vector with itself 〈w, w〉 defines the square of the length of the vector ‖w‖2 and
the squared length always has to be positive and is only zero for the zero vector.
It is easily verified that the standard inner product (Eq. 1) fulfills all three axioms.
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Figure 2. Whether a prototype classifier can separate two classes
depends also on the inner product that is chosen. The left panel
shows two classes (circles and crosses) with highly correlated
dimensions—in this case the standard inner product is not ap-
propriate. The short solid line connects the means of the category
distributions and the long solid line is the corresponding decision
bound when the standard inner product is used. The dashed line
depicts a decision bound with a different inner product. This inner
product corresponds to the standard inner product in the space de-
picted on the right that can be obtained by first rotating (central
panel) and then rescaling the original space (right panel).

The standard inner product is by no means the only interesting inner product.
A generalization that will be very important in the following is given by

(6) 〈w, v〉K =

n
∑

i=1

n
∑

j=1

wivjkij .

Taking K to be a matrix with entries kij and T to denote the transpose of a matrix
(rows and columns exchanged) the equation can be written more elegantly as a
matrix multiplication

(7) 〈w, v〉K = wT Kv.

If K is the identity matrix the standard inner product (1) is recovered. In order for
this definition to result in an inner product the three axioms have to be fulfilled.
Symmetry depends on the symmetry of K. If kij = kji for all i and j then the
definition in (6) will be symmetric. As a consequence of the linearity of the sum
it is immediately clear that (6) is always linear. It remains to demand positive
definiteness. The inner product defined in Eq. (6) is positive definite if the matrix
K is positive definite, that is for all vectors w the quadratic form that defines the

squared length of the vector ‖w‖2
is positive,

(8) wT Kw ≥ 0,

and zero if and only if w is zero. It is a standard result in linear algebra that sym-
metric positive definite matrices can be decomposed into principal components.
Principal component analysis (PCA) is used frequently in the analysis of psycho-
logical data, for example covariance matrices are positive definite and they are often
subjected to PCA. There is a rotation matrix Ψ and a diagonal matrix Λ that con-
tains only positive eigenvalues such that K = ΨT ΛΨ. With this result the inner
product (7) can be rewritten as

〈w, v〉K = wT Kv
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= wT
(

ΨT ΛΨ
)

v

= wT
(√

ΛΨ
)T (√

ΛΨ
)

v

=
(√

ΛΨw
)T (√

ΛΨv
)

=
〈√

ΛΨw,
√

ΛΨv
〉

.

Remember that for any two matrices A and B that can be multiplied (AB)T =
BT AT . By using Ψ the vectors v and w are rotated such that they coincide with the
principal components. After that they are rescaled using the diagonal matrix

√
Λ.

In this coordinate system the inner product 〈w, v〉K amounts to a standard inner
product. In order for K to implement an inner product all eigenvalues have to be
positive. Otherwise there could be vectors with a squared length smaller than zero—
clearly in contradiction with Euclidean intuitions. Note also that if some eigenvalues
were zero than there would be vectors, other than the zero vector, with a length
zero. All this illustrates the close connections between the standard inner product,
Euclidean space and positive definite matrices. Positive definite matrices can define
an inner product. If the coordinate axes are rotated and rescaled appropriately this
inner product becomes a standard inner product and therefore can induce a norm,
a metric and angles that behave like the familiar Euclidean ones.

1.4. Prototypes and orthogonality. As an example consider the following
classification problem. The left panel of Figure 2 shows two categories drawn from
two Gaussian distributions. Each point is a stimulus that is described by two
dimensions. The dimensions are highly correlated for both stimulus classes. On a
first glance a prototype learner will not find a good decision bound to separate the
two classes. The two means for the two classes are connected with a solid line and
the decision bound resulting from a prototype classifier is also shown as a solid line.
As the decision bound is orthogonal to the shortest connection between the two
means it cannot pay due respect to the correlations in the classes. On a first glance
one could think that the problem is that the prototype classifier cannot deal with
correlation and therefore such a problem cannot be solved by a prototype classifier.
However, the problem does not actually lie in the prototype classifier as such, it lies
in the inner product that is used to define orthogonality. A prototype learner that
does not fail for even the simplest category structures should take the covariance of
the stimulus dimensions into account (Reed, 1972; Fried & Holyoak, 1984; Ashby
& Gott, 1988). If we take the inner product 〈·, ·〉K to be given by a positive definite
matrix K that is the inverse of the covariance matrix of the classes we get the
right definition of orthogonality. The resulting decision bound is depicted as a
dashed line. K is the inverse of a positive definite matrix (covariance matrices are
always positive definite) and is therefore also a positive definite matrix. Hence, it
corresponds to the standard inner product after rotating and scaling the space with
the matrices Ψ and

√
Λ. The middle panel in Figure 2 shows the rotated space and

the right panel shows the space after scaling. In the transformed space the two
classes do not have correlated axes anymore and therefore the prototype classifier
with the standard inner product in this transformed space can classify all stimuli
correctly.

1.5. Non-linear classification problems. A linear classifier like the per-
ceptron is a very attractive method for classification because it builds on strong
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Figure 3. The crosses and the circles cannot be separated by a
linear perceptron in the plane.

geometric intuitions and the extremely well-developed mathematics of linear alge-
bra. However, there are problems that a linear classifier cannot solve—at least
not directly. As several psychological theories of categorization are based on linear
classifiers this issue has also attracted some attention in the psychological literature
(Medin & Schwanenflugel, 1981; Smith, Murray, & Minda, 1997). One example of
a problem that cannot be solved with a linear classifier can be seen in Figure 3.
For a long time the most popular approach to solve non-linear problems like this
one was to use a multi-layer perceptron. Multi-layer perceptrons are known to be
able to approximate any function (Hornik, Stinchcombe, & White, 1989) and can
be trained efficiently by using the backpropagation algorithm (Rumelhart, Hinton,
& Williams, 1986). The approach that will be presented here is fundamentally
different. The strategy is to use a non-linear function to map the input patterns
into a space where the problem can be solved by a linear classifier. The following
toy-example illustrates this approach.

Figure 3 shows examples from two classes (crosses and circles) that cannot be
separated by a hyperplane in the input space (i.e. a straight line in two dimensions).
Instead of trying to classify the examples in the input space that is given by the
values x1 and x2 the data are transformed in a non-linear way. Linear classification
of the data is then attempted in the transformed space. In machine learning such
a non-linear transform is called a feature map and the resulting space a feature
space. The term ‘feature’ is already heavily overloaded in psychology. Therefore
we will use the more neutral terms linearization function and linearization space
instead. The term linearization space was used in an early paper on kernel methods
(Aizerman, Braverman, & Rozonoer, 1964b). For example, consider the following
linearization function Φ : R

2 7→ R
3

(9) Φ(x) =





φ1(x)
φ2(x)
φ3(x)



 =





x2
1√

2x1x2

x2
2



 .

This transformation maps the example patterns to a three-dimensional space that
is depicted in Figure 4. The examples live on a two-dimensional manifold of this
three-dimensional space. In this space the two classes become linearly separable,
that is it is possible to find a two-dimensional plane such that the circles fall on one
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Figure 4. The crosses and circles from Figure 3 can be mapped
to a three-dimensional space in which they can be separated by a
linear perceptron.

side and the crosses on the other side. This shows that with an appropriate non-
linear transformation of the input a simple linear classifier can solve the problem.
The linearization approach is akin to transforming the data in data-analysis before
fitting a linear model. In the current example each hyperplane in the linearization
space defines a quadratic equation in the input space. Hence, it is possible to deal
with quadratic (i.e. non-linear) functions by only using linear methods. In general,
the strategy is to preprocess the data with the help of a function Φ such that a
linear perceptron model is likely to be applicable. Formally this can be expressed
as

(10) 〈w, Φ(x)〉 =

n
∑

i=1

wiφi(x),

where n is now the dimension of the linearization space and w is a weight vector in
the linearization space. It is clear that there is a wide variety of non-linear functions
that can be used to preprocess the input. In fact, this approach was very popular
in the early days of machine learning (Nilsson, 1965). The problem is of course that
the function Φ has to be chosen before learning can proceed. In our toy example we
have only shown how one can use linear methods to deal with quadratic functions
but usually one will not know in advance whether it is possible to separate the
data with a quadratic function. However, if Φ is chosen to be sufficiently flexible,
for example instead of a quadratic function with only three coefficients one could
choose a high order polynomial with many coefficients, then it may be possible
to approximate even very complicated decision functions. This comes at the cost
of increasing the dimensionality of the linearization space and the number of free
parameters. Therefore early machine learning research has tried to avoid this.

2. Kernels

The next section will introduce the kernel trick that makes it possible to work
with high dimensional and flexible linearization spaces.

2.1. The kernel trick. There is an interesting observation about the lin-
earization function that was used in the foregoing example. The standard inner
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product between two input vectors in the linearization space can be calculated
without having to explicitly map the data into the linearization space. For two
points x and y in R

2 it holds that

〈Φ(x), Φ(y)〉 = x2
1y

2
1 + 2x1x2y1y2 + x2

2y
2
2 = 〈x, y〉2 .

A more general result can be proved. For an n dimensional input space a class of
popular and flexible linearization functions is given by all monomials of degree d. A
monomial of degree d takes the product of d components of an input vector x. E.g.,
for n = 5 the following are monomials of degree d = 3: x3

1, x1x2x5 and x2
2x4. The

possible number of monomials is given by choosing d out of n with replacement. The
order does not matter because of the commutativity of the product. However, for
simplicity let us consider a linearization function that takes all nd possible ordered
monomials. Thus, x1x2x3 is a dimension in the new space but x2x3x1 would be

another dimension. For the linearization function Φ′ : R
n 7→ R

nd

that computes all
ordered monomials it holds that

〈Φ′(x), Φ′(y)〉 =

n
∑

i1=1

n
∑

i2=1

...

n
∑

id=1

xi1xi2 ...xid
yi1yi2 ...yid

=

n
∑

i1=1

xi1yi1

n
∑

i2=1

xi2yi2 ...

n
∑

id=1

xid
yid

=

(

n
∑

i=1

xiyi

)d

= 〈x, y〉d .

Calculating the inner product in the linearization space is the same as taking the in-
ner product in the original space and taking it to the power of d. Computationally,
this is an extremely attractive result. Remember that a high number of dimensions
is needed to make the linearization space sufficiently flexible to be useful. If cal-
culated naively the computational effort of the inner product in the linearization
space scales with its dimensions. However, this result shows that, in the case of a
monomial linearization function, it is not necessary to explicitly map the vectors x

and y to the nd dimensional linearization space to calculate the dot product of the
two vectors in this space. It is enough to calculate the standard inner product in
input space and take it to the power of d.

The function k(x, y) := 〈Φ(x), Φ(y)〉 = 〈x, y〉d is our first example of a kernel,
the so-called polynomial kernel. Intuitively, kernels can provide a way to efficiently
calculate inner products in higher dimensional linearization spaces. They also pro-
vide a convenient non-linear generalization of inner products. With the help of a
kernel, it is easy to build non-linear variants of simple linear algorithms that are
based on inner products. This is called the kernel trick in the machine learning
literature.

Take as an example the prototype classifier, again. Instead of taking the mean
in input space, like in Eq. (5), one can construct a prototype classifier in the lin-
earization space. We will take the threshold θ to be a free parameter that we can
tune to account for biases. For the left hand side we now want to take the mean
in the linearization space, that is the mean after we applied the mapping Φ. To
decide whether x belongs to class A we also map x to the linearization space and
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check that
*

1

|A|

X

aǫA

Φ(a) −
1

|B|

X

bǫB

Φ(b), Φ(x)

+

> θ

1

|A|

X

aǫA

〈Φ(a), Φ(x)〉 −
1

|B|

X

bǫB

〈Φ(b), Φ(x)〉 > θ

1

|A|

X

aǫA

k(a, x) −
1

|B|

X

bǫB

k(b, x) > θ,(11)

where as before A and B are sets of patterns from two classes and the linearity of
the inner product and the sum were used.

The input space could be a 16× 16 matrix of pixel values, that is a 256 dimen-
sional space. The linearization space could be all monomials of degree 10. Map-
ping the inputs to the linearization space and calculating the mean there would
be prohibitive as the mapping of each input to this space takes a large number of
dimensions. Despite the high number of dimensions it is possible to use a prototype
classifier in the linearization space by taking advantage of the kernel trick. By using
the kernel trick it is not necessary to calculate the mean in the linearization space
but a prototype classifier can still be used by using Eq. (11).

2.2. Reproducing kernel Hilbert space. Every linearization function Φ
defines a kernel function via

(12) k(x, y) = 〈Φ(x), Φ(y)〉 .

It is always possible to define a kernel by choosing a linearization function Φ and an
inner product. The function k(·, ·) can be evaluated by explicitly mapping patterns
to the linearization space and calculating the inner product in the linearization
space. However, as the example of the polynomial kernel has shown, sometimes it is
not necessary to actually compute Φ. It is natural to ask under what circumstances
does a function k(·, ·) implement an inner product in a linearization space and what
does the corresponding linearization space and linearization function look like. As
it turns out there is a well-developed branch of mathematics that deals with these
questions: Functional analysis. In short the answer is that if k(·, ·) is a symmetric
and positive definite kernel then k implements an inner product in a linearization
space. Constructing a linearization space and an inner product for a positive definite
kernel is the purpose of this section.

First, the introduction of some notation is required. For a set of patterns x1

to xN and a function k(·, ·) of two arguments the kernel matrix is the matrix that
collects all pairwise applications of k to the patterns. Let us denote this N × N

matrix with K and denote the entry in the ith row and jth column with kij then

K with kij = k(xi, xj)

is called the kernel matrix or Gram matrix for the patterns x1, ..., xN . A real and
symmetric function k(·, ·), that is a function with the property k(x, y) = k(y, x),
is called a positive definite kernel if for all choices of N points the corresponding
kernel matrix K is positive semi-definite, that is for all N -dimensional vectors w

(13) wT Kw ≥ 0.

Note that for a matrix to be positive semi-definite we do not require that equality
only holds for w = 0 (as opposed to the definition of a positive definite matrix, see
Eq. 8). As K is only positive semi-definite it can have eigenvalues that are zero
and does not have to be full rank. This definition of a positive definite kernel seems
confusing because for a kernel to be positive definite we require the corresponding
kernel matrices to be positive semi-definite. However, the definition we give is the
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usual definition used in machine learning and therefore we will use it, too (Schölkopf
& Smola, 2002).

With the definition of a positive definite kernel in mind, it is possible to con-
struct a vector space, an inner product, and a linearization function such that the
kernel condition (12) is fulfilled. In the following, these three steps are demon-
strated in a purely formal way. After that, the formal steps are illustrated by an
example, using the Gaussian kernel.

2.2.1. Step 1: Constructing a vector space. The vector space will be a space of
functions constructed from the kernel. Let k(·, x) denote a function that is taken to
be a function of its first argument with a fixed second argument. The vector space
is then defined as all functions of the form

(14) f(x) =
N
∑

i=1

wik(x, xi).

Each function in the space is a linear combinations of kernel functions k(·, xi)
and can be expressed by some set of N patterns x1, ..., xN with real coefficients
w1, ..., wN . It is important to realize that these N patterns could be different for
different functions. All functions are linear combinations of kernel functions given
by k and because they are linear combinations they define a vector space—functions
can be added and multiplied with scalars. When functions are added potentially all
the kernel functions of the two added functions need to be included in the expansion
of the summed function but the sum will still be in the vector space.

The expansion of f given in Eq. (14) might not be unique. There is no require-
ment in the definition of f that the kernel functions need to be linearly independent.
If they are not independent then the same function can be expressed in different
ways. The function space is the span of the generating system of functions. If there
is an infinite number of potential independent kernel functions then the vector space
is infinite dimensional, even though each function f can be expressed by a finite
sum.

2.2.2. Step 2: Constructing an inner product. Next we will equip this vector
space with an inner product. A possibly infinite dimensional vector space with an
inner product is called a pre-Hilbert space. If certain limit points are included in
the space it is completed and turned into Hilbert space proper. We will ignore these
technicalities here (but see Schölkopf & Smola, 2002) and simply note that Hilbert
spaces can be thought of as the infinite dimensional generalization of Euclidean
spaces. Take a function f with an expansion given by Eq. (14) and let g(x) =
∑M

i=1 vik(x, yi) be another function from this space then we can define the inner
product between the two functions f and g as

(15) 〈f, g〉H =

N
∑

i=1

M
∑

j=1

wivjk(xi, yj).

In order to distinguish the inner product in Hilbert space from the normal inner
product in Euclidean space we have added the little index H. We have to show
that this definition is indeed an inner product. First we have to show that it is
well-defined. The particular expansions of f and g that are used in the definition
might not be unique, as mentioned above. Fortunately, the definition (15) does not
depend on the particular expansions of f and g that are used to calculate the inner

product. To see this, let f(x) =
∑N ′

i=1 w′
ik(x, x′

i) and g(x) =
∑M ′

i=1 v′ik(x, y′
i) be two

new expansions of f and g that are different from the ones used in the definition
of the inner product (15). They will, however, result in the same inner product
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because
N
∑

i=1

M
∑

j=1

wivjk(xi, yj) =

N
∑

i=1

wig(xi)

=

N
∑

i=1

M ′

∑

j=1

wiv
′
jk(xi, y

′
j)

=

M ′

∑

j=1

v′jf(y′
j)

=

N ′

∑

i=1

M ′

∑

j=1

w′
iv

′
jk(x′

i, y
′
j).

(16)

Therefore, (15) is indeed well-defined. To show that it is an inner product it also has
to be symmetric, linear in its arguments and positive definite. As k is symmetric
in both arguments the above definition is also symmetric. It is obviously linear
because of the linearity of the sum. Positive definiteness means that 〈f, f〉H ≥ 0
where equality only holds for f = 0. Note that 〈f, f〉H = wT Kw by definition.
As the defining property of a positive definite kernel is that the kernel matrix K

is always positive semi-definite (Eq. 13), it is immediately clear that 〈f, f〉H ≥ 0.
Definiteness is a bit more tricky but it can be proved that for all positive definite
kernels definiteness of (15) holds (Schölkopf & Smola, 2002). Hence, all positive
definite kernels can define an inner product in the above way. This may also justify
calling these kernels positive definite.

2.2.3. Step 3: Constructing a linearization function. Each kernel k(·, x) with
a fixed x is trivially contained in the vector space. It is simply an expansion with
only one kernel function and a weight of one. Therefore, the inner product (15)
of this function with a function f that has N coefficients wi and kernel functions
k(·, xi) is

(17) 〈k(·, x), f〉H =

N
∑

i=1

wik(x, xi) = f(x),

by the definition of the function space (Eq. 14). This is a remarkable fact: The inner
product with the function k(·, x) evaluates the function f at point x. Therefore
k(·, x) is also called the representer of evaluation. Another remarkable property
directly follows from the definition of the inner product (Eq. 15)

(18) 〈k(·, x), k(·, y)〉H = k(x, y)

because each of the two kernel functions has a simple expansion with just one
summand and a coefficient of one. Due to these two properties the linear space
of functions as given in Eq. (14) with the above dot product 〈·, ·〉H is called a
reproducing kernel Hilbert space (RKHS) in functional analysis (if it is completed).

Now, a linearization function can be defined in the following way Φ(x) := k(·, x).
Because of the reproducing property the kernel condition k(x, y) = 〈Φ(x), Φ(y)〉H
holds for this linearization function. The linearization space is a space of functions
over the x. The linearization function that was constructed maps each point x in
the input space to a function k(·, x) in the linearization space.

Remember what is accomplished by this. Starting from a positive definite kernel
a vector space, an inner product and a linearization function were constructed such
that the kernel condition (12) holds. If the kernel is easy to calculate then by
means of the kernel it is possible to calculate inner products in the linearization

18



space without actually mapping the points x and y into it. Understanding this trick
opens up a box of new non-linear tools for data analysis. Any method where the
linearization space only occurs in inner products of the form (12) can benefit. In
fact, there is now a long list of familiar linear methods that have been kernelized.
This list includes kernel principal component analysis (Schölkopf, Smola, & Müller,
1998) and many others (Schölkopf & Smola, 2002).

It is often helpful (but sometimes misleading) to sharpen one’s intuitions about
Hilbert spaces by considering the finite dimensional case which reduces functional
analysis to linear algebra. We illustrate the above construction for two finite dimen-
sional examples at the end of this chapter. One of the examples uses the quadratic
kernel that we used as a motivating example for the introduction of kernels. The
other example considers the case where there are only a finite number of patterns.
Readers who do not feel comfortable with the above derivation are encouraged to
look at both examples but especially the second example might prove helpful. In
any case, the example of the Gaussian kernel may clarify the construction of a
linearization space from a kernel.

2.3. Gaussian kernel example. The Gaussian kernel has frequently been
used in psychology to model the similarity between two mental representations x

and y (Nosofsky, 1986, 1990; Ashby & Maddox, 1993). It is defined as

(19) k(x, y) = exp−‖x−y‖2

.

A standard result in functional analysis is that the Gaussian kernel is a positive
definite function and that any kernel matrix K resulting from the Gaussian kernel
is always full rank (Schoenberg, 1938; Schölkopf & Smola, 2002). We will not prove
these two facts but we will take them for granted in what follows. The fact that
the kernel matrices are always full rank and therefore positive definite (and not just
semi-definite) is important and should be kept in mind.

2.3.1. Step 1: Constructing a vector space. As a vector space we take all func-
tions that can be expressed as a linear combination of Gaussian kernel functions
(see Eq. 14). One example of such a function is shown in Figure 5. The Gaussian
functions are depicted with dotted lines. Their height is scaled with the weight
wi that each function receives in the sum. Summing the Gaussian functions re-
sults in the solid functions. It is easy to imagine that by changing the weights and
adding more Gaussian functions very different functions can be implemented or
at least approximated. While each function is a finite sum, the space includes all
functions that can be expressed in this way with infinitely many different choices
for Gaussian functions. In fact, there are uncountably many choices because each
point on the axis is a potential candidate for a Gaussian functions centered on this
point. For this reason this vector space does not have a finite dimensional basis.
It is not possible to describe all functions that are spanned by the Gaussian func-
tions with a finite number of basis functions. We have an example of an infinite
dimensional space—that however in many respects is similar to the ordinary finite
dimensional vector spaces that are the subject of linear algebra. For example, this
infinite dimensional space can also be equipped with an inner product.

2.3.2. Step 2: Constructing an inner product. Eq. (15) defines an inner product
that can be used. With the inner product on the function space it is possible to
define a norm and a metric on the space in the same way as it is done in Euclidean
spaces. One can even calculate angles between functions. Let us, for illustration,
calculate the angle between two Gaussian functions. This is done in the same way
as in Euclidean spaces (see Eq. 4). First note that each Gaussian function has a
trivial expansion in the function space. It is simply itself with a weight of one. The
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Figure 5. An example of a function from the linear function
space defined in Eq. (14). Each function in the space is a linear
combination of generating functions that are given by the kernel:

f(x) =
∑N

i wik(x, xi). Here we have depicted seven Gaussian ba-
sis functions as dotted lines. Their height is proportional to their
weight wi. The sum of these is shown with the solid line. All func-
tions that can be expressed as such a linear combination of kernel
functions are in the function space.

norm of a Gaussian function is one because

(20) ‖k(·, x)‖2
= 〈k(·, x), k(·, x)〉 = k(x, x) = exp−‖x−x‖2

= 1

which is only using the definition of the inner product (15) and the Gaussian kernel.
Therefore, the cosine of the angle between two Gaussian functions is directly given
by the inner product. As two Gaussian functions each have an expansion with
only one weight that is set to one their inner product is 〈k(·, x), k(·, x)〉 = k(x, y),
which is of course the reproducing property (18). Hence, k(x, y) can be interpreted
as the cosine of the angle between two Gaussian functions centered on x and y,
respectively. This has interesting consequences. For two non-identical points x and
y it holds that 1 > k(x, y) > 0. Therefore, the angle between two Gaussian functions
lies between 0 and 90 degrees. The further two Gaussians are apart the greater is
their angle. Functions that are far apart are almost orthogonal. This makes sense
because they span different parts of the function space. But as no two Gaussians
are completely orthogonal it also means that the Gaussian functions do certainly
not form an orthogonal basis of the function space. We have noted before that for
the Gaussian kernel the kernel matrices (that collect all pairwise inner products of
the Gaussians) are always full rank, hence any number of Gaussian functions are
always linearly independent and therefore form a basis for the subspace that they
span.

2.3.3. Step 3: Constructing a linearization function. The linearization function
Φ maps points from the space in which x is defined to a space of functions over all
possible x. In the example of the Gaussian kernel this means that we map a point
x to the function k(·, x), a Gaussian function centered on x. In a psychological
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setting imagine x to be the representation of a stimulus in some perceptual space.
Imagine further that k is interpreted as a similarity measure. The further two
stimuli are apart the less similar they are and this relationship is captured in the
Gaussian kernel. Mapping a stimulus x to the function k(·, x) means replacing a
stimulus with its similarity to all other stimuli. Representation in this RKHS is
literally representation of similarities (Edelman, 1998). In Chapter 3, on similarity,
we discuss some consequences of this observation in more detail. Here, it suffices
to say that calculating similarity by a Gaussian function is the same as taking an
inner product in the corresponding RKHS that was constructed above.

2.4. Prototypes and exemplars. Let us stay with the example of the Gauss-
ian kernel (19) for a while. Keep in mind that in a psychological setting the Gaussian
kernel k(x, y) is interpreted as the similarity between two stimuli x and y. To see
the potential of the RKHS view of the Gaussian kernel for psychological theorizing,
imagine we construct a prototype classifier in RKHS according to inequality (11).
Let us assume that the bias parameter θ is set to zero. In this case, for a prototype
classifier in the linearization space we decide that x belongs to class A and not to
class B if Φ(x) is closer to the mean of the stimuli in A than in B. This can be
done by checking that

(21)
1

|A|
∑

aǫA

k(a, x) >
1

|B|
∑

bǫB

k(b, x),

that is the mean similarity of x to all exemplars of class A is bigger than the mean
similarity to all exemplars of class B. The left side of the inequality (if appropriately
normalized) can be interpreted as a kernel-density estimate for the class density of
A (Ashby & Alfonso-Reese, 1995). It can also be interpreted as an estimate for the
degree that a new x belongs to A. In any case, this is the most basic exemplar
model of categorization, but it was derived from a prototype classifier.

2.5. Infinite dimensional perceptrons. Remember that the reason why
we introduced the kernel trick was that a flexible preprocessing is needed so that a
linear classifier can solve many non-linear categorization problems. In the previous
section we examined the prototype classifier in an infinite dimensional function
space, in this section we examine linear perceptrons in such a space. It will turn
out that a linear classifier in an infinite-dimensional space can separate all possible
stimuli in two classes.

Formally, a perceptron with a preprocessor Φ is given by an inner product of
the pattern x mapped to a linearization space and a vector w in the same space:
〈w, Φ(x)〉. Let us choose the infinite dimensional linearization space to be the
RKHS that is associated with a suitable kernel, for example the Gaussian kernel.
The perceptron in this RKHS is then defined by the inner product between two
functions. The pattern x is preprocessed by the function Φ(x) := k(·, x) which
maps x to the function that describes its similarity to all other stimuli. The role
of the weight vector w in the classical perceptron (10) is taken by the coefficients
for a function in the RKHS. Let us denote this function with f . As before—see
equation (17)—we denote the coefficients that f takes in the expansion given by
the kernel functions with w. With this notation an infinite dimensional perceptron
can be written as:

(22) 〈f, Φ(x)〉H = 〈f, k(·, x)〉H =
N
∑

i=1

wik(x, xi) = f(x).

As k(·, x) is the representer of evaluation (17), the inner product of f with the
pattern x mapped to the linearization space is just f evaluated at x. If f(x) is
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greater than a threshold the pattern x is categorized as one class otherwise as the
other class.

The learning problem for an infinite-dimensional perceptron is then to find a
suitable function f in the RKHS that can categorize the patterns under considera-
tion correctly. It may seem that this is a difficult problem because we have to find
a function in an infinite dimensional space rather than a weight vector in a finite
dimensional space as for the perceptron. However, there is a simple solution for
f . Say, a subject wants to learn to discriminate between two different categories
of stimuli. The subject is given a training set of N exemplars x1, ..., xN . Each
stimulus has a class label that we denote with y1, ..., yN . The class label yi for
pattern xi can be either +1 or −1, depending on which category xi belongs to.
We will treat the categorization problem like a regression problem. The aim of the
category learner is to find a function f defined on the perceptual space such that
f(x) is +1 whenever x belongs to one class and −1 when x is in the other class.
Instead of searching for the best function in the whole RKHS we will only consider
a subspace of all functions in the RKHS and show that in this subspace there is a
function that can solve the regression problem perfectly. The subspace we consider
is all linear combinations of the kernel functions on the exemplars:

(23) f(x) =

N
∑

i=1

wik(x, xi).

The output of this function can be thought of as calculating a weighted similarity
to all exemplars. This function is a linear combination of kernel functions. As all
kernel functions are in the RKHS their linear combinations are also in the RKHS.
Therefore, for a fixed set of N exemplars their linear combination spans a subspace
of the RKHS that is at most N -dimensional. We refer to this subspace as the span
of the exemplars. The span of the exemplars seems to be a only a small subset of
all the functions in the infinite dimensional RKHS but it contains a function that
solves the regression problem perfectly.

Finding a function f of the form (23) that solves the regression problem means
finding weights w1, ..., wN for the exemplars such that for all j: f(xj) = yj . We
introduce an N -dimensional vector y for the N labels. As we are only interested in
the values that the function f takes on the exemplars xj (with j from 1 to N) we

only need to evaluate (23) at these values:
∑N

i=1 wik(xj , xi). Let us use a vector w

for the weights and using the same notation as before we write K for the matrix
that collects all pairwise evaluations of k on the exemplars. Hence, the weights
that we seek should solve y = Kw. If K has full rank—as the Gaussian kernel for
example guarantees—then K is invertible and

(24) w = K−1y.

There is a unique vector of weights that solves the classification problem perfectly.
If K has full rank this is always possible irrespective of the set of exemplars and
their category labels1. As there is a solution in the span of the exemplars we do
not need to work with the infinite dimensional RKHS to find a solution for the
categorization problem in the RKHS.

2.6. Neural networks. The solution to the categorization problem that was
discussed in the previous section can be understood as a weighted similarity to the
exemplars. Exemplar models like this one can be implemented as a neural network.
Imagine a cell that by means of learning has become sensitive to a particular stim-
ulus y—its preferred stimulus. It will still fire if another stimulus x is sufficiently

1However, note that K might be close to singular in practice.
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Figure 6. A RBF-network calculates a weighted sum over the
responses of N cells with “tuning curves” given by k.

similar to the preferred stimulus. The way that the firing rate of the cell changes
with changes in the stimulus is described by its tuning curve that can be modeled
by a function like the Gaussian kernel2. A simple one layer neural network with
several cells that are tuned to certain exemplars, x1 to xN , is depicted in Figure
6. Each cell responds to a stimulus x according to its tuning curve, given by k.
The activity of all cells is collected by an output neuron that computes a weighted
sum of its inputs. The function that this network implements was already given in
equation (23).

In the neural network literature a function of the distance between two stimuli
is called a radial basis function (RBF) kernel. The Gaussian kernel is the most
prominent example for a radial basis function. As neural tuning curves are often
found to have a shape like a radial basis function, RBF-networks have repeatedly
been advocated as a model for brain function by Poggio and coworkers (Poggio
& Girosi, 1989; Poggio, 1990; Poggio & Bizzi, 2004). They have also studied
the link to reproducing kernel Hilbert spaces. From a mathematical view-point the
problem they are addressing is the learning of an unknown function. Their approach
motivates the use of kernels from a function approximation and regularization view.

3. Regularization

By using the exemplar network with as many free parameters as stimuli it is
always possible to find weights such that the network can classify all training stimuli
perfectly. The price for this flexibility is the danger of overfitting. A network may
learn to categorize all training stimuli perfectly but only because it has learned the
stimuli by heart. Any regularity in the data is overlooked in this way and therefore

2One important difference between tuning curves being modeled by a Gaussian and psy-
chological similarity that is often also modeled by a Gaussian is of course that similarity is
calculated between mental representations whereas tuning curves are usually based on physical
measurements.
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Figure 7. Stimuli from two categories are classified by an exem-
plar networks as given in Eq. (23) and Eq. (24). The solution is
overfitted, that is the training stimuli can be categorized perfectly
but generalization to new stimuli will be poor. The optimal deci-
sion bound for this category learning problem is shown as a dashed
line.

the network will not be able to generalize. An example for overfitting is shown in
Figure 7. Crosses and circles depict exemplars from two different categories. The
two categories are defined by two overlapping Gaussian probability distributions.
As we know the distributions that generate the stimuli we can calculate the optimal
decision bound which for two Gaussians is a quadratic function (Ashby & Maddox,
1993). The dashed line is this optimal decision bound. The grayscale values depict
the function f that was obtained by calculating exemplar weights with a Gaussian
kernel as given in Eq. (24). The solid line is the contour line where f(x) = 0.
On one side of this contour line the infinite dimensional perceptron would classify
stimuli as belonging to one class, on the other side stimuli are classified into the
other class. It can be seen that all training stimuli are categorized correctly. The
resulting decision bound is obviously not very reasonable, and also very different
from the optimal decision bound. Intuitively speaking, the decision bound that the
exemplar network calculates is too complicated. The regression function f should
not be allowed to vary so wildly and the decision bound should be smoother and
less complicated.

One popular strategy to avoid overfitting is based on regularization (Bishop,
1995; Schölkopf & Smola, 2002; Poggio & Smale, 2003). In regularization there
is an additional constraint on the function f that is sought: The function should
not only fit the data it should also be smooth and not too “complex”. To this
end a penalty term is introduced that penalizes functions for being complex. Many
modern model selection criteria can be seen as penalizing complexity (Pitt, Myung,
& Zhang, 2002). Instead of only minimizing the error on the training exemplars,
which can always be done perfectly, the error plus a penalty term is minimized.
The penalty term is also called regularizer.

Let us denote the error that a function f makes on the training exemplars with
c(f). Possible examples for such a cost function are the number of misclassifications
or the mean square error. If we denote the penalty term by Ω then the function
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that one seeks to minimize becomes

(25) L(f) = c(f) + Ω(〈f, f〉H).

The penalty term is chosen as a strictly increasing function Ω of ‖f‖2
H = 〈f, f〉H,

the squared norm of the function in the RKHS that the kernel defines. The learning
problem is now understood as trying to find a function f that minimizes L.

3.1. The representer theorem. Ideally, one would like to find the function
f that minimizes the regularized error L over all functions in the RKHS. Perhaps
surprisingly, the optimal function can be represented as an expansion of the exem-
plars as given in Eq. (23). This result is called the representer theorem. It shows
that for a large class of problems the optimal solution over all functions in the
RKHS lies in the span of the exemplars. If the aim of a function learner (be it a
brain or a machine) is to minimize a regularized loss then it makes sense to restrict
the learning mechanism to an exemplar network of the form (23). The proof that
is given by Schölkopf, Herbrich, and Smola (2001) is short, and it illustrates the
power of the RKHS-view of kernels.

As f is in the RKHS we can split it up into a part f‖ that lies in the span of
the exemplars (23) and a part f⊥ that is orthogonal to it. For the first term c(f)
in the regularized loss function L(f) we need to evaluate f = f‖ + f⊥ only on the
exemplars x1, ..., xN . Remember that k(xi, ·) is the representer of evaluation for
xi and therefore (see 17)

f(xi) = f‖(xi) + f⊥(xi) = f‖(xi) +
〈

f⊥, k(xi, ·)
〉

H .

The second term is zero because by definition f⊥ is orthogonal to k(xi, ·). Hence,
the cost function c(f) is independent of f⊥. For the penalty term note that

Ω(〈f, f〉H) = Ω
(〈

f‖, f‖
〉

H
+ 2

〈

f‖, f⊥
〉

H
+
〈

f⊥, f⊥〉
H

)

= Ω
(〈

f‖, f‖
〉

H
+
〈

f⊥, f⊥〉
H

)

.

For a minimizer of L the orthogonal part f⊥ has to be zero. To see this assume f

is a minimizer but f⊥ is not zero. As Ω is strictly increasing L can be decreased
by choosing f⊥ to be zero and hence f was not a minimizer—in contradiction to
the assumption. Therefore, the best function in the whole RKHS is given by an
expansion of the exemplars (23).

The importance of the representer theorem is that if the regularizer can be cast
as a strictly increasing function Ω of 〈f, f〉H then the optimal solution over the
whole RKHS is a linear combination of kernel functions centered on the exemplars.
Therefore, it is not necessary to work in the infinite dimensional function space to
find the best function in it. To find the best function one only has to adjust the
exemplar weights. Furthermore, the single best function can often be found ana-
lytically or with simple numerical procedures. All this makes exemplar networks
so attractive for machine learning and perhaps this can also provide a theoretical
justification for assuming a psychological mechanism that is based on storing exem-
plars. Exemplar models in psychology simply assume that all exemplars are stored
without giving a rational explanation why this should be done. If the objective of
a subject could be phrased in terms of a regularized loss of the above form (as it
is often done is statistics and machine learning) then, as we know that the optimal
solution lies in the span of the exemplars, we would have an argument for using
exemplars in the first place.
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3.2. Regularization example. To understand the rationale behind regular-
ization better and to appreciate the representer theorem it is helpful to look at a
more concrete example.

Let us assume the learning proceeds by trying to find a regression function
f that minimizes a certain loss L(f) that has two components: One component
c(f) that depends on the error on the training stimuli and a component Ω(〈f, f〉)
that penalizes the function’s complexity (see Eq. 25, above). As a measure for the
error that the learner makes on the training examples we will take the mean square

error: c(f) :=
∑N

j=1(f(xj)− yj)
2. The squared loss is not the most reasonable loss

function for a categorization problem. ALCOVE, a prominent exemplar model, for
example, uses a different loss function (Kruschke, 1992). Intuitively, it seems better
to minimize misclassifications directly and from a statistical view-point one would
want to minimize the negative log likelihood. However, we have chosen to minimize
the mean square error because it is conceptually easier. For the penalty term Ω we
have chosen the simple case where it is linear with a positive parameter λ. The loss
function (25) then becomes:

L(f) =

N
∑

j=1

(f(xj) − yj)
2 + λ 〈f, f〉H ,

where yj is the value that the function should output on exemplar xj . The param-
eter λ can be thought of as controlling the trade-off between a good fit and the
penalty.

Above we have—perhaps a bit hand-wavingly—referred to the effect of regu-
larization as penalizing “complexity”. We can understand what the regularization
in Eq. (25) does by looking at the form of the penalty term which depends on the
squared norm 〈f, f〉H of the function f . Because of the representer theorem the
optimal function is of the form (23) and we can rewrite the squared norm of the
optimal function as

〈f, f〉H =

〈

N
∑

i=1

wik(xi, ·),
N
∑

j=1

wjk(xj , ·)
〉

H

=
N
∑

i=1

N
∑

j=1

wiwj 〈k(xi, ·), k(xj , ·)〉H

=

N
∑

i=1

N
∑

j=1

wiwjk(xi, xj)

= wT Kw,

where we have used the linearity of the inner product and the reproducing property.
In the regularizer the weights of the function f are multiplied by the similarity of
the respective exemplars. In order to make two very similar exemplars output very
different function values it is necessary to use very big exemplar weights. As large
weights for similar exemplars can only be achieved at a high penalty the regularized
function respects the similarity measure better than the non-regularized solution
in Figure 7.

As we know by the representer theorem that the optimal function is of the form
(23) minimizing L(f) is equivalent to finding exemplar weights w such that

L(f) =

N
∑

j=1

(

N
∑

i=1

wik(xi, xj) − yj)
2 + λ(wT Kw)
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= (Kw − y)T (Kw − y) + λ(wT Kw)

= wT (KK + Kλ)w − 2yT Kw + yT Ky

is minimal. The optimal weights can be found analytically by differentiating this
quadratic loss function with respect to w. Setting to zero to find the optimum leads
to the following solution for w:

2(KK + Kλ)w − 2Ky = 0

(KK + Kλ)w = Ky

(K + λI)w = y

w = (K + λI)−1y.

The Hessian of the quadratic function L is given by (KK + Kλ). As the Hessian
is a sum of two positive definite matrices it is positive definite itself. Therefore,
the solution for w is the unique minimum. A regularized solution for f for the
same problem as in Figure 7 is shown in Figure 8. The regularized solution is less
complicated and looks more reasonable than the non-regularized solution.

The regularized solution is also known as ridge regression. The non-regularized
solution (24) can be recovered from ridge regression by setting the regularization
parameter λ to zero. In this case the weights are simply calculated by taking the
inverse of K. In the case where λ is large and (K+λI) is dominated by the diagonal
matrix λI the weights all have the same absolute value and only vary in their sign.
The decision bound in this case is identical to the kernel density estimators given
in Eq. (21). In this extreme the decision bound is only determined by the similarity
measure and not by the exemplar weights. Hence, the regularization parameter λ

makes it possible to choose a solution that is in-between the two extremes: A weight
based solution (24) that will always overfit and a similarity based solution (21) with
all exemplar weights set to the same value. By allowing this extra flexibility it is
often possible to achieve a better generalization performance than by relying on
similarity alone. Of course, the value of the regularization parameter λ has to be
chosen wisely. In machine learning this is considered as a model selection problem.
One way to find a suitable regularization parameter is by using cross-validation and
this is what we have done in Figure 8, too (Schölkopf & Smola, 2002; Pitt et al.,
2002). Both, the chosen kernel and the regularization parameter, will determine
how well the classifier will generalize to new patterns. It is in the construction
of the kernel, however, that engineers can use their insights about a classification
problem and their intuitions about the similarity of patterns.

4. Conclusions

We have introduced kernel methods as they are used in machine learning. The
most important results here are the kernel trick and its link to reproducing kernel
Hilbert spaces. On the way we have hinted to parallels with psychological theories.
First, kernel methods can be implemented as a one-layer neural network. Second,
the Gaussian kernel can be interpreted as a similarity measure and representation
of the stimuli in a RKHS can be seen as representing the stimuli via their similarity
to all other stimuli. Third, the most simple exemplar model of categorization is
a prototype classifier in this RKHS. Fourth, regularization can be used to avoid
overfitting. And fifth, the representer theorem shows that the best regularized
function in RKHS can often be found in the span of the exemplars.

In the next chapter (Chapter 3), we describe how the RKHS framework arises
naturally from Shepard’s universal law of generalization. Shepard’s law is closely
related to geometric models of similarity and multidimensional scaling. Geometric
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Figure 8. The same categorization problem as in Figure 7 but
this time a regularized solution is shown. The regularized decision
bound (solid line) is quite close to the optimal decision bound
(dashed line).

models have been heavily criticized by Tversky and co-workers (Beals et al., 1968;
Tversky, 1977; Tversky & Gati, 1982). One of their major criticisms concerns
the assumption of the triangle inequality that is implicit in all geometric models.
However, from the data that is available the triangle inequality is unproblematic as
an assumption as long as it is not paired with a second assumption that is known as
segmental additivity. The RKHS provides an elegant framework for metric models
without segmental additivity.

From this chapter it should be obvious that exemplar models and kernel meth-
ods are based on the same ideas. Their relationship is discussed in greater detail in
Chapter 4. Briefly, two very prominent exemplar models, the Generalized Context
Model (Nosofsky, 1986) and ALCOVE (Kruschke, 1992), both make use of kernels
but in different ways. Only ALCOVE can be mapped directly to a machine learning
method and even exhibits some regularization.

We imagine other potential uses for the mathematical tools we have presented.
First of all, we hope that this part of the thesis opens up the recent machine
learning literature for more psychologists. Many of the data analytic methods
presented in machine learning could be used in psychology—irrespective whether
they use the RKHS framework that was the focus here. For example, machine
learning methods have been used in psychophysics (Wichmann, Graf, Simoncelli,
Bülthoff, & Schölkopf, 2005; Graf, Wichmann, Bülthoff, & Schölkopf, 2006) and we
believe that many more applications will follow. With regard to the Hilbert spaces
one can be skeptic whether the infinite dimensional machinery is really necessary
for psychological modeling. However, there are many cases where the data that is
collected is in terms of functions and therefore naturally described with methods
similar to the ones described here (Ramsay & Silverman, 1997). Furthermore,
several other authors have also recently suggested to use infinite dimensional spaces
in the theoretical analysis of behavior (Drösler, 1994; Townsend, Solomon, & Smith,
2001; Zhang, 2006). In the laboratory, stimuli are almost always defined by a small
number of independent variables, and those are the stimuli that we used as examples
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in this paper. In these examples the approach was to map stimuli from a space
with a small number of dimensions to an infinite dimensional space. More realistic
stimuli will vary in a plethora of ways and not just along a small number of well-
defined dimensions. Infinite dimensional spaces could be attractive for describing
such natural stimuli—take for example the features of a face, the shape of a leaf,
or the spectrum of a light source. Also the number of channels that humans use to
analyze these stimuli might be very large—too large to enumerate them explicitly.
The tools we presented in this chapter might also be useful for this enterprise.

Appendix: More RKHS examples

This section provides more examples for the construction of reproducing kernel
Hilbert spaces.

Quadratic kernel. The quadratic kernel that we used as a motivating exam-
ple was defined as k(x, y) = 〈x, y〉2. Let us briefly check that it really satisfies the
conditions for a positive definite kernel. First note that k is real-valued and sym-
metric. We then need to check that all kernel matrices are positive semi-definite.
This can easily be done because the kernel was constructed to be the inner product
in a three-dimensional vector space. This vector space was obtained by the map Φ
as defined in Eq. (9). Let us consider N points x1, ..., xN in the original space. We
map these N points to the three-dimensional linearization space where they have
coordinates Φ(x1), ..., Φ(xN ). The coordinates of all points can be collected in a
3 × N matrix that we will just call Φ (the context should make clear whether we
mean the function or the matrix Φ). Now, the matrix K that collects all pairwise
inner products between all Φ(x1), ..., Φ(xN ) is given by the N × N matrix ΦT Φ.
This matrix is positive semi-definite because for all w it holds that

wT Kw = wT ΦT Φw = (Φw)T (Φw)T ≥ 0.

The rank of K is at most 3 and therefore the kernel matrix K does not have full rank
for N > 3. There are vectors other than the zero vector that make the quadratic
form wT Kw zero. Therefore, the kernel matrices of the quadratic kernel are only
positive semi-definite and not positive definite.

Step 1: Constructing a vector space. We already know that the quadratic kernel
is an inner product in a vector space—this is how we constructed it—but it is
instructive to derive a linearization space directly from the kernel. The purpose is to
illustrate what the construction in the main text does, and why the construction also
works for the quadratic kernel. Remember that the quadratic kernel was defined
by

k(x, y) = 〈x, y〉2 = x2
1y

2
1 +

√
2x1x2

√
2y1y2 + x2

2y
2
2 .

The function space that we will construct is given by linear combinations of different
generating functions (Eq. 14). Each function in the space is of the form f(x) =
∑N

i wik(x, xi). The space that is spanned by this generating system of kernel
functions is the three-dimensional space of all functions that are given by

(26) f(x) = x2
1u1 +

√
2x1x2u2 + x2

2u3.

There are many bases in which this space could be expressed. We have chosen
this one because it is particularly convenient as will be seen below. To show that
the space that is spanned by this basis is the same space that is spanned by the

generating system f(x) =
∑N

i wik(x, xi) we need to demonstrate that each func-
tion that can be expressed as a linear combination of generating functions is also
expressible in the suggested basis and vice versa. First, note that every possible
generating function k(·, y) can be expressed in the suggested basis with the following

coefficients: u = (y2
1 ,
√

2y1y2, y
2
2)

T , because the function f(x) = k(x, y) has these
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coefficients when interpreted as a function of x with fixed parameters y. Hence,
every function that is a linear combination of some generating functions k(·, xi)
can also be expressed in this basis. Second, every function in the suggested basis

can also be expressed as an expansion of the form f(x) =
∑N

i wik(x, xi). In fact,
each function in the suggested basis can be expressed by a set of three generating
functions that also form a basis of the space. We take k(·, a), k(·, b) and k(·, c) with
a = (1, 0)T , b = (1, 1)T and c = (0, 1)T . With this choice

f(x) = w1k(x, a) + w2k(x, b) + w3k(x, c)

= w1

(

x2
1a

2
1 + 2x1x2a1a2 + x2

2a
2
2

)

+

w2

(

x2
1b

2
1 + 2x1x2b1b2 + x2

2b
2
2

)

+

w3

(

x2
1c

2
1 + 2x1x2c1c2 + x2

2c
2
2

)

= x2
1(w1 + w2) +

√
2x1x2(

√
2w2) + x2

2(w2 + w3)

and therefore each function that is expressed with a vector u in the basis suggested
above (Eq. 26) is also expressible as a linear combination of the three functions
k(·, a), k(·, b) and k(·, c)—with

(27) A =





1 1 0

0
√

2 0
0 1 1



 and A−1 =







1 − 1√
2

0

0 1√
2

0

0 − 1√
2

1







we can change the basis by using u = Aw and w = A−1u.
Note that the the generating system of functions is very big. In fact, there are

uncountably many generating functions that could be used in an expansion of the

form f(x) =
∑N

i wik(x, xi). Recall that the arguments of k are from R
2 and hence

there are as many potential k(·, xi) as there are points in the plane. However, this
big generating system of functions only spans a three-dimensional space.

Step 2: Constructing an inner product. Now that we know what the function
space that is constructed by a linear combination of kernel functions looks like,
consider the inner product that is defined by Eq. (15). Take two functions f and
g from this space. Both have an expansion in terms of the generating functions.
Let us take expansions given by the three basis functions k(·, a), k(·, b) and k(·, c)
and denote the coefficients for f and g by v and w, respectively. For the inner
product we need the kernel matrix K that is given by all pairwise evaluations of

k(x, y) = 〈x, y〉2 on a = (1, 0)T , b = (1, 1)T and c = (0, 1)T . The inner product is
then

(28) 〈f, g〉H = wT Kv = wT





1 1 0
1 4 1
0 1 1



 v.

The inner product is the same as the standard inner product in the basis used in
Eq. (26). The matrix A, shown in Eq. (27), transforms the vectors w and v to
the basis of Eq. (26). As K = AT A, which can easily be checked, we immediately
see that wT Kv = (Aw)T (Av), and therefore K corresponds to the standard inner
product in this basis.

Step 3: Constructing a linearization function. The linearization function that
we seek is Φ(x) = k(·, x). Each point x is mapped to a function. In the ba-
sis given by Eq. (26) this function is described by three coefficients: Φ(x) =

(x2
1,
√

2x1x2, x
2
2)

T . The standard inner product in this basis implements the kernel
condition (Eq. 12). To see this take a second point y and map it to the lineariza-

tion space: Φ(y) = (y2
1 ,
√

2y1y2, y
2
2)

T . With this the inner product 〈Φ(x), Φ(y)〉 =
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Φ(x)T Φ(y) = k(x, y) directly gives the definition of the quadratic kernel. Our ex-
ample that motivated the introduction of kernels used exactly this linearization
function (Eq. 9). However, it has to be emphasized that even though the lin-
earization function and the linearization space are exactly the same as before a
new interpretation is gained. The points in the linearization space are interpreted
as coefficients for a linear combination of basis functions—each point represents a
function. The beauty of the construction of the RKHS as given in the main text
is that it does not depend on a basis for the function space. Hence, even if we did
not know that all functions can be expressed using Eq. (26) we would still be able

to map a point into the function space by using Φ(x) = k(·, x) = 〈·, x〉2, and we
would also know that k(x, y) calculates the inner product in this space. In this
example, we have just made the space and the inner product that are induced by
the quadratic kernel explicit.

A finite dimensional RKHS. The variables x and y in the construction of
the RKHS that is given in the main text are usually thought of as taken from a
real vector space. Therefore, there are uncountably many different possible values
for x. In practice there are only going to be a finite number of patterns anyway
and it is instructive to see what the RKHS looks like in this case. Consider a
finite set of patterns and number them from 1 to N . These objects need not be
taken from a vector space. Each real-valued function on these N objects can be
described by a real vector f that collects the function values f1, ..., fN . As the
RKHS that we will construct is a space of functions over the finite number of stimuli
a finite-dimensional RKHS is an N -dimensional vector space. In a slight abuse of
notation, but in order to make the parallels to the derivation in the main text more
transparent, we will sometimes use x and y as indices in place of i and j. Hence, if
we want to evaluate the the function f on a pattern x we write this as fx. Similarly,
if we evaluate f on another pattern y this is denoted as fy.

A positive definite kernel function that is defined over a finite set is completely
described by a symmetric and positive semi-definite N ×N matrix, that we denote
with K. Here, we make the stronger assumption that K has full rank and is
therefore positive definite. This makes the discussion a bit simpler and also makes
sure that we can describe all possible functions on the patterns. The task is to find
a function Φ that maps each pattern to the N -dimensional space of functions on the
patterns. The map should be such that the kernel implements the inner product
in this space (12). Let us denote the vector that is assigned to the pattern x with
Φx. For a given positive definite matrix K and all x and y it should hold that

(29) kxy = 〈Φx, Φy〉H .

This should be considered as the finite analogue of equation (12). Thus, we are
looking for an inner product and N -dimensional vectors Φ1, ..., ΦN such this holds
true. There is a straightforward solution to this. Let Φ be the N × N matrix that
is constructed by concatenation of the column vectors Φ1, ..., ΦN . If we take the
inner product to be simply the standard inner product the kernel condition can be
written as K = ΦT Φ. As K is positive definite, by assumption, it can always be
decomposed in such a way. We can, for example, use the eigenvalue decomposition
to construct a Φ. However, in this example we want to follow the construction as
it is given in the main text. For this we need to follow three steps, constructing a
vector space, an inner product and a linearization function.

Step 1: Constructing a vector space. Remember that we denoted the matrix of
all pairwise evaluations of k on N stimuli with K. First, let us make sure we define
the vector space properly. If we take as a basis the rows of K we can express any
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vector f representing any function values f1, ..., fN on the patterns as

fx =
N
∑

i=1

wikix,

that is an expansion with a vector of coefficients w. Note the relation of this
expansion to the expansion in (14). We can write this compactly as f = Kw. You
can see what would happen if we had not assumed that K is full rank. In this case
K could not span the full N -dimensional space that we need to describe all possible
function values for N patterns.

Step 2: Constructing an inner product. We define the following inner product
between a vector f with coefficients w and a vector g with coefficients v in the basis
given by the rows of K:

〈f, g〉H = 〈w, v〉K = wT Kv =
N
∑

i=1

N
∑

j=1

wivjkij ,

which clearly defines an inner product because K is, by assumption, positive defi-
nite. In the finite case the inner product defined in Eq. (15) that is defined between
functions becomes an ordinary inner product (6).

Step 3: Constructing a linearization function. Let us denote the xth column of
the identity matrix by δx (this notation should remind the reader of Dirac’s delta
distribution); it is one for the xth dimension and zero otherwise. In a further stretch
of notation let k·x denote the function that corresponds to the xth column of the
(symmetric) kernel matrix K. Hence, k·x is the representer of evaluation:

〈k·x, f〉H = 〈δx, w〉K = δT
x Kw = δT

x f = fx.

The reproducing property is also fulfilled in the basis given by K because

〈k·x, k·y〉H = 〈δx, δy〉K = δT
x Kδy = kxy.

In fact, it is trivially fulfilled because the inner product is directly given by the
positive definite matrix K.

The representation that we seek for the xth stimulus is, as before, given by the
kernel function Φx := k·x. With this choice the kernel condition (29) is satisfied.
In the basis given by K the representation for the xth stimulus is the xth column of
the identity matrix. This is, however, not the only solution. It is very instructive
to see what the inner product we defined looks like in some other bases.

4.0.1. Different bases. We can change the basis and get a different set of vec-
tors with a different inner product that still satisfy the kernel condition (29). Of
particular interest is the basis which turns the inner product as given by K into the
standard inner product. This basis can be found by the eigenvalue decomposition
of K = ΨT ΛΨ, as given in Eq. (9):

〈f, g〉H = 〈w, v〉K =
〈√

ΛΨw,
√

ΛΨv
〉

.

Hence, if we choose Φx and Φy to be the xth and yth column of
√

ΛΨ, and if we
further take the standard inner product the kernel condition kxy = 〈Φx, Φy〉 is also
satisfied.

To understand the RKHS better consider yet another basis for the functions f

on N patterns. Apart from the two bases that we have discussed so far (the basis
given by the rows of K and the one we obtained from the eigenvalue decomposition
of K) there is a third interesting basis for the function space defined on the patterns
1, ..., N . This basis is given by the standard basis where the coefficients are simply
the function values f1, ..., fN themselves. A natural question is how the inner
product as given by k acts on the actual function values. Take again the vector f
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specified in the basis given by K. Let w be the weights of f such that the vector of
function values is f = Kw and let v be the weights of another vector g such that
g = Kv. Then the inner product of f with g is

〈f, g〉H = 〈w, v〉K

= wT Kv = (K−1f)T K(K−1g)

= fK−1g = 〈f, g〉K−1 .

Hence, in the standard basis the inner product that is defined by k corresponds
to the matrix K−1 which is positive definite because it is the inverse of a positive
definite matrix. It is very important to realize that we could define many different
inner products directly on the basis in which f and g are specified, for example
one could just take the standard inner product fT g or one could use fT Kg. The
inner product that we constructed above calculates the inner product fT K−1g. It
is special in the sense that in the basis given by K the inner product is also K, and
this results in the reproducing property.
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CHAPTER 3

Similarity

If we understood the processes underlying the perception of similarity we would
have a handle on many psychological phenomena. In perceptual organization, the
Gestalt-law of similarity underlies perceptual grouping. In categorization, similar
objects form concepts. In learning, transfer depends on the similarity of training
and test items. Appealing to similarity is, of course, not enough to explain these
phenomena. We need to have a clear conception of what similarity is in order to
use it as an explanatory construct—and despite the fact that it seems intuitively
clear what is meant by similarity, some researchers have argued that the concept
is almost too flexible to be of any use. Nevertheless, similarity continues to be a
central concept in many psychological theories (Medin et al., 1993).

The most influential approach to similarity has been geometrical. The cen-
tral idea in this approach is that stimuli are represented in a perceptual space
and the distance between stimuli in this space determines their similarity. In the
simplest case the space is assumed to be Euclidean and the similarity of stimuli
decreases with their distance in the space. Multidimensional scaling (MDS) is a
class of algorithms that makes it possible to reconstruct the coordinates in the
putative perceptual space from similarity data, for example similarity ratings or
confusion probabilities. Shepard (1987) argued that the best experimental measure
for similarity are generalization gradients. He further presented several datasets
that indicated that generalization gradients are an exponential function of the dis-
tance in perceptual space. This relationship between generalization gradients and
perceptual spaces is usually referred to as Shepard’s universal law of generalization.

In a well-known series of papers Tversky and colleagues have challenged the idea
of a geometric representation (Beals et al., 1968; Tversky, 1977; Tversky & Gati,
1982). They provided convincing evidence that geometric representations cannot
account for many human similarity judgments. Even though the criticism has been
substantial, MDS has been used in practice with considerable success (Townsend &
Thomas, 1993). Categorization models in particular have relied heavily on geomet-
ric representations—seemingly unfazed by Tversky’s criticism (Nosofsky, 1986). In
this cahpter we will reconcile Tversky’s critique with Shepard’s universal law of gen-
eralization. Read carefully, Tversky’s most fundamental critique does not exclude
the possibility of a metric perceptual space, it only attacks the commonly used met-
rics with additive segments (Tversky & Gati, 1982). This class includes Euclidean
spaces, spaces with a Minkowski p-norm and curved Riemannian geometries. We
will introduce a representation of the perceptual space that arises naturally from
Shepard’s law and that is not affected by Tversky’s criticism. This representation
has several psychologically interesting properties: It does not have additive seg-
ments, it is bounded and it represents stimuli by its similarity to all other stimuli
(Edelman, 1998). It is based on the mathematical theory of reproducing kernel
Hilbert spaces that can be used to model the similarity of stimuli as inner products
(as presented in the previous chapter).
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Figure 1. An illustration of a perceptual space. Stimuli are cir-
cles with a spoke and can vary on two dimensions. Two artificial
categories are depicted, separated by a linear decision bound.

1. Perceptual spaces

1.1. Multidimensional scaling and categorization. There have been early
attempts to model similarity judgments as inner products. Ekman’s group in Stock-
holm made the assumption that stimuli are represented in the mind as vectors in a
multidimensional Euclidean space and that the similarity of the points is given by
their inner product. There are several variants that were carefully distinguished.
For example, one could take the inner product directly or, alternatively, the angle
between the vectors, or yet another possibility, the projection of one vector onto the
other. Experimentally, the latter was not considered a similarity judgment but a
containment judgment which has the interesting property that it is not symmetric
(for an overview on this approach see Gregson, 1975; Borg & Groenen, 1997).

A little earlier, Torgerson (1952) presented a method that is now widely known
as classical multidimensional scaling. Instead of requiring a direct measurement of
similarity this method indirectly determined the dissimilarity between stimuli by
using the method of triads. Under the assumption that the dissimilarity is linear
with the distance in a Euclidean space it is possible to reconstruct the coordinates
of the stimuli in the perceptual space using a procedure that was suggested by
Young and Householder (1938).

The idea that stimuli can be represented as points in a perceptual space has had
a major impact on categorization models. All the early work on MDS has assumed
that the perceptual space behaves like Euclidean space. This assumption has great
intuitive appeal because it allows researchers to visualize subjects’ presumed rep-
resentation of the stimuli. Consider, as an example, the following popular stimuli:
Circles with a spoke (Shepard, 1964). Two examples are shown as inlets in Figure
1. These stimuli can vary on two obvious dimensions. By varying the radius of
the circle stimuli of different perceived sizes are produced. By varying the angle of
the spoke stimuli of different perceived angles are generated. Figure 1 shows the
perceptual space that is defined in this way. Each point in the plane represents
the perception of one of the stimuli. The x-axis depicts the perceived angle of a
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stimulus and the y-axis depicts the perceived size of a stimulus. The perceived size
and angle are of course different from the physically specified size and angle.

To illustrate categorization in perceptual spaces we have plotted two clusters
of three stimuli each. The first cluster consists of large stimuli with spokes point-
ing to the right (crosses), whereas stimuli in the second cluster are smaller with
spokes pointing upward (circles). It is very tempting to draw a line (not necessarily
straight) that separates the two clusters in order to explain a subject’s categoriza-
tion behavior (Ashby & Gott, 1988). The perceptron, for example, implements a
linear decision rule (Rosenblatt, 1958). By comparing the similarity to the mean
of the stimuli in each cluster the prototype classifier also leads to a linear deci-
sion bound (Posner & Keele, 1968; Reed, 1972). Exemplar theories postulate a
perceptual space, too, but can explain more complicated decision rules based on
the similarity to all the stimuli that were shown to the subject (Nosofsky, 1986;
Kruschke, 1992).

1.2. Dimensions and metrics. While the idea of a perceptual space seems
intuitively plausible its theoretical foundations are far from compelling (Townsend
& Thomas, 1993). The problems already start with the definition of a dimension.
Often the dimensions are thought to be fixed by sensory processing, as if they were
direct readings of the sensors. In the case of the circles with spokes there is a
tacit agreement between experimenter and participants that size and angle are the
dimensions of interest, and not for example color. Even if the stimuli are simple
it is often not clear along which dimensions subjects perceive the stimuli. For
example, for rectangles there has been a debate whether the perceptual dimensions
follow the length of the sides or area and aspect ratio (Krantz & Tversky, 1975).
An alternative to the fixed dimensions approach would be that the features that
participants use for categorization are formed as a process of learning (Schyns,
Goldstone, & Thibaut, 1998).

Even if the dimensions on which a subject perceives some stimuli are assumed
to be known we will not know how the dimensions are combined to form an overall
percept of similarity—but this combination of dimensions is necessary to form a
decision of category membership in all the categorization models mentioned above.
A form of metric is needed that measures the closeness of stimuli in perceptual
space. Without such a metric the term perceptual space would seem to be rendered
vacuous. In Figure 1 we have depicted the perceptual space with two dimensions
in the plane. This makes it tempting to simply use Euclidean distance in the plane
as a metric. However, this choice is not justified psychologically, it is only a choice
of convenience that is made because Euclidean geometry is so intuitive.

As the two dimensions are drawn orthogonally it is also tempting to think
that the two dimensions are perceptually independent. There are many (mostly
operational) definitions of independence in the literature. Ashby and Townsend
(1986), for example, have characterized the notion of perceptual independence based
on signal detection theory and perceptual noise. Other definitions are based on the
intuition that it should be possible to change the perception on one dimension
without changing the perception on the other dimension. Two related concepts in
the literature on similarity are integral and separable dimensions. The circles with
a spoke are a typical example of separable dimensions. It is possible to attend to
each dimension alone independent of the other. For integral dimensions stimuli form
a unitary percept and the underlying dimensions cannot be attended to without
interference from variations in the other dimension. Hue and saturation in color
space are often cited as an example for integral dimensions. Incidentally, separable
dimensions have been associated with the city-block metric and integral dimension
with the Euclidean metric. While the city-block metric and the Euclidean metric
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are the most commonly used metrics they are by no means the only possible choices
(Shepard, 1964; Garner, 1974).

With the assumptions of a perceptual space in place MDS can be used to recover
underlying dimensions and the configuration of stimuli. To this end data on the
similarity of different stimuli is collected. MDS then tries to embed the stimuli in
a metric space such that the similarity relationship in the data is preserved as well
as possible: Stimuli which are measured to be highly similar should be very close
together in space, and stimuli which are measured to be very dissimilar should have
a large distance between them. In practice MDS with either the Euclidean or the
city-block metric in a low-dimensional space works surprisingly well and often leads
to interpretable results.

1.3. Experimental measures of similarity. Before an MDS analysis can
be undertaken an appropriate experimental measure of similarity needs to be found.
Direct measures can be used for this. For example, subjects can be asked to judge
the dissimilarity of stimuli on a rating scale from one to seven. Alternatively one
could use the method of triads, where participants have to choose which of two
comparison stimuli is more similar to a reference stimulus. If one has reason to
believe that one’s measure of dissimilarity is on an interval scale one can try to
directly use the dissimilarity measure (plus an additive constantd) as a distance in
a space, as it is done in classical MDS (Torgerson, 1952).

Following the lead of Shepard the categorization literature has often relied on
indirect measures of similarity. Shepard (1987) argued that generalization gradients
should be used to measure similarity and this is the stance that is taken in almost
all exemplar models. In classical conditioning generalization gradients are obtained
by conditioning on a certain stimulus and measuring the response to related, but
different, stimuli (Ghirlanda & Enquist, 2003; Mostofsky, 1965). For example, a
dog could be conditioned to salivate in response to a 1000 Hz tone. The general-
ization gradient is obtained by measuring the salivation of the dog in response to
neighboring frequencies. Not surprisingly the generalization to new stimuli is higher
the more similar the new stimuli are to the conditioned stimulus. Intuitively one
would like to explain generalization in terms of psychological similarity and indeed
researchers have tried to obtain measures of similarity that are independent of any
generalization behavior (e.g. by integrating just-noticeable differences). In animal
studies, however, this proved to be hard and led Bush and Mosteller (1951, p. 413)
to conclude: “Although there are several intuitive notions as to what is meant by
‘similarity’, one usually means the properties which give rise to generalization. We
see no alternative to using the amount of generalization as an operational definition
of degree of ‘similarity’.”

If generalization gradients were the best measure to assess similarity, Shepard
reasoned, then generalization gradients should be used in the construction of a per-
ceptual space. In psychophysics researchers tried to measure perceptual spaces in
units of just-noticeable differences, Shepard suggested to use generalization gra-
dients instead1. With overlapping measurements of generalization gradients it is
indeed possible to construct a perceptual space that is uniform with respect to
the generalization gradients (Shepard, 1965). The distance in perceptual space is
related to the similarity of stimuli by the amount of generalization exhibited. The
same distance means the same amount of generalization. Ordinal MDS procedures,
as developed by Shepard (1962) and Kruskal (1964), not only recover the coor-
dinates of the stimuli in the putative perceptual space but also the shape of the
generalization gradient. Applying ordinal MDS to many data sets Shepard (1987)

1In this context consider the following quote by Stevens (1965, p. 25): “The generalization
gradient of the animal trainers is the psychometric function of the weight lifters”.
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found a pattern that is now called Shepard’s universal law of generalization: The
amount of generalization decreases (approximately) exponentially with the distance
in perceptual space.

Shepard (1957, 1958) had used the exponential relationship already earlier to
explain identification data in humans. In an identification task participants have to
associate each stimulus in a set with a unique name. In a classical paired-associate
experiment participants are shown a stimulus on each trial and have to respond
with its name. If they do not respond with the right name they are corrected. This
procedure is repeated until a performance criterion is reached. During learning
participants confuse very similar stimuli more often than very dissimilar stimuli.
Hence, these confusions are an indirect measure of stimulus similarity. Shepard
seems to have thought that the confusions that arise during learning are reflections
of generalization gradients in humans (witness the references to the animal learning
literature in his early work). This is the reason why Shepard’s law is not referred
to as the “universal law of confusability” (Chater & Vitanyi, 2003) even though it
might be that this is what it is. Experimentally, it is often hard to tell whether
generalization gradients really reflect generalization in the literal meaning of the
word or whether they are merely a reflection of confusion in memory or perceptual
indiscriminability. Some animal learning theorists have argued that the concept of
generalization is superfluous and discrimination is the only concept that is needed
(Brown, 1965). Generalization might be only failure to discriminate. As a theo-
retical construct generalization refers to a covert process that leads a subject to
respond to a new stimulus in the same way as to a previously learned stimulus
despite the ability of the subject to tell the stimuli apart. This is the meaning
that is intended by Shepard and it is also how generalization gradients are meant
to be used in categorization research. For categorization studies the case where
participants group two stimuli together into one category just because they fail to
discriminate between them seems uninteresting. However, in some categorization
studies it was not always clear how much of the generalization gradient is really
due to generalization and how much is due to the fact that subjects cannot tell the
stimuli apart (Nosofsky, 1986; Shepard, 1986; Ennis, Palen, & Mullen, 1988). In
any case the confusions can be used as a measure of similarity.

2. Universal law of generalization

2.1. lp spaces. It is tempting to assume that the representation of a stimulus
is given as a point in a vector space. The dimension of the vector space ought to
describe the perceptual dimensions along which stimuli can vary. With respect to
the norm in this space it has become customary to use a weighted lp norm for the
length of a n-dimensional vector x:

(30) ‖x‖p =

(

n
∑

i=1

αi |xi|p
)

1

p

.

with positive weights αi. The weights are needed to allow for systematic variations
of the norm over tasks or over individuals. This norm induces a metric on the space
(which is also known as the Minkowski p-metric or power model):

(31) dp(x, y) = ‖x − y‖p =

(

n
∑

i=1

αi |xi − yi|p
)

1

p

.

On a first glance, this metric seems to be an ad-hoc choice but it is implied by a
set of desirable axioms that include the metric axioms, segmental additivity and
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conditions on the dimensions and the combination of dimensions (Tversky & Krantz,
1970).

The lp formula is a norm and induces a metric only for p ≥ 1. A metric has
to fulfill three axioms: First, it is zero only for the distance from a point to itself
(d(x, y) = 0 iff x = y). Second, it is symmetric (d(x, y) = d(y, x)) and third, it
fulfills the triangle inequality, that is the direct connection from one point to another
is at least as short as a detour over a third point (d(x, z) ≤ d(x, y) + d(y, z)). For
p < 1 equation (31) does not fulfill the triangle inequality—an issue that is crucial
for psychology and that will be discussed below. Irrespective of whether dp is a
metric or not we will call it a distance (Blumenthal, 1953). We will only call it a
metric if it also satisfies the triangle inequality (i.e. for p ≥ 1).

It has been argued that the two psychologically most interesting cases of dp are
the city-block distance (p = 1) for separable stimulus dimensions and the Euclidean
distance (p = 2) for integral stimulus dimensions (Shepard, 1964; Garner, 1974).
Separable stimuli are stimuli which can be analyzed into their dimensional parts.
It is possible to attend to just one of the dimensions without interference from the
other dimensions. For integral stimuli this is not possible. A long list of studies used
the lp norm either directly or in the form of the Euclidean or city-block metric (e.g.
Attneave, 1950; Shepard, 1964; Garner, 1974; Nosofsky, 1986; Kruschke, 1992).

2.2. Generalization gradients. If one is willing to commit oneself to a vec-
torial representation of stimuli and the distance dp on this space there is still the
question of how the distance in this space relates to the measured (dis)similarity of
the stimuli. Intuitively, similarity should decrease and dissimilarity increase with
distance.

As mentioned before, Shepard (1987) argued that the best measure for simi-
larity are generalization gradients. He analyzed several data sets with his ordinal
multidimensional scaling method and found that the non-linear relationship be-
tween the distance in the psychological lp space and the measured similarity is
generally monotonic and, in Shepard’s terms, concave upward. In its stronger ver-
sion Shepard’s claim is that the relationship is exponentially decreasing. We refer
to this exponential relationship as the universal law of generalization. Shepard’s
finding was in accordance with his much earlier suggestion of the exponential as a
link between confusion probabilities and psychological distance (Shepard, 1957) and
his diffusion model of similarity (Shepard, 1958). Furthermore, he tried to deduce
the exponential from assumptions on optimal classification performance (Shepard,
1987). His assumptions were extremely restricted but a recent rational analysis
of categorization gives a more compelling account (Tenenbaum & Griffiths, 2001).
Shepard’s work has been extremely influential and has led others to use the expo-
nential as a similarity measure (e.g. Nosofsky, 1986; Kruschke, 1992; Love et al.,
2004). A very general formulation for the similarity between two representations x

and y is:

(32) k(x, y) = exp(−dp(x, y)γ),

an exponential of the distance dp (31) raised to the power of γ. Shepard’s original
formulation did not have the exponent γ but many other authors make use of
this extra parameter. Note again that the space that x and y are defined in is a
psychological space. The coordinates of the stimuli in the psychological space is
what multidimensional scaling is trying to reconstruct from the data.

Under certain circumstances the similarity measure as given by (32) leads to a
so-called positive definite kernel and therefore opens up the rich theory of Hilbert
spaces for the analysis of similarity. Discussing the preconditions and consequences
of this observation is the purpose of this section. Finding that a symmetric, real
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Figure 2. The similarity kernel for different values of p. From
top left to right to bottom: For p = 2 a Gaussian is obtained, for
p = 1 a Laplacian is obtained, and for p = 1

2 the axes are very
prominent.

function k(x, y) is positive definite is extremely interesting from a mathematical
perspective because it means that k can be represented as an inner product in
a vector space. positive definite kernels are the infinite dimensional analogue of
positive definite matrices in finite dimensional vector spaces. In linear algebra,
each symmetric, real, and positive definite matrix can define an inner product on a
finite dimensional vector space and the corresponding statement is true for positive
definite kernels and infinite dimensional vector spaces. A complete and possibly
infinite dimensional vector space with an inner product is called a Hilbert space.
Using the techniques presented in Chapter 2 we will describe such a Hilbert space
that is associated with Shepard’s universal law of generalization. Let us briefly
remind the reader of the results of Chapter 2 that are needed here.

2.3. The similarity kernel. A real and symmetric function k(·, ·) is called a
positive definite kernel if for all choices of N points x1, ..., xN from the domain of
k, the following holds:

(33)

N
∑

i=1

N
∑

j=1

wiwjk(xi, xj) ≥ 0

for all possible real coefficients wi. If k is a psychological similarity function and
the xi are stimuli this means that for all possible stimuli the matrix of pairwise
similarities is always positive semi-definite (compare Eq. 13).

The real and symmetric function k(x, y) as given in (32) is such a positive
definite kernel only for certain choices of γ and p. The exact conditions are com-
plicated but known results are summarized by Koldobsky and Koenig (2001). For
the current discussion it is enough to restrict attention to the simpler case γ = p
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as the most widely used versions of the similarity kernel are of this form:

(34) k(x, y) = exp(−dp(x, y)p) = exp(−
n
∑

i=1

αi |xi − yi|p).

Nosofsky (1990) calls this case with γ = p “interdimensional multiplicative” because
similarities are calculated for each dimension and then multiplied. With p chosen to
be two the similarity measure has the form of a Gaussian kernel. With p chosen to
be one the function is sometimes called Laplacian. These two cases correspond to
the Euclidean and the city-block metric, respectively. Figure 2 shows the similarity
kernel for p = 2, p = 1 and p = 1

2 . Contrary to the Gaussian kernel the other two
kernels have clearly defined axes.

While the Minkowski p-metric (31) only defines a metric for p ≥ 1 the similarity
measure in (34) is a positive definite kernel for 0 < p ≤ 2. This is a classic result on
positive definite kernels (Schoenberg, 1938). To the best of our knowledge there is
no paper in psychology that claims a value for p bigger than two. Thus, the fact that
(34) is not positive definite for p > 2 appears to be no serious restriction. However,
there are several reports for a p smaller than one (Shepard, 1964; Tversky & Gati,
1982; Indow, 1994). In these cases trying to model similarity with a Minkowski
metric is problematic because (31) is not a metric if p < 1—but the axioms of a
metric space have been essential in the development of MDS. The similarity measure
is, however, still a positive definite kernel for 0 < p < 1 and therefore the kernel
framework might provide us with an alternative model.

2.4. Reproducing kernel Hilbert space, revisited. We have observed
that the above measure for similarity is a positive definite kernel. We will now
introduce a vector space using this positive definite kernel as an inner product,
following the same procedure as in Section 2.2. Let us assume, for simplicity, that
the perceptual space is R

n. The vector space H that will be constructed below is a
space of real functions defined on the perceptual space, that is a function f in the
vector space H is of the form f : R

n → R.
The crucial idea is that we identify each stimulus with its similarity to all other

stimuli (Edelman, 1998). For each stimulus x in the perceptual space there is a
function from R

n to R that captures the similarity of x to all other stimuli in the
perceptual space. This function is simply k(·, x) with a fixed x and interpreted as a
function of its first argument. This function lies in the vector space H that we will
construct. In this way, we identify each stimulus x in the perceptual space with a
function, its similarity function, in H. Instead of examining the perceptual space
directly we will analyze the space of functions t̋hat is defined on the perceptual
space and that contains all the similarity functions associated with each stimulus.
It will turn out that this space has psychologically interesting properties. We will
denote the function that maps each stimulus to its similarity function in H with
Φ : R

n → H and define it to be

(35) Φ(x) = k(·, x).

The vector space H is now defined to be the set of functions that can be
described as a finite linear combination of similarity functions. Each function f in
H, by definition, can be written as

(36) f(x) =

N
∑

i=1

wik(x, xi)

for some N and a choice of points x1, ..., xN with real coefficients w1, ..., wN . As
noted in Section 2.6, it is no coincidence that this equation looks like a one-layer
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neural network, and because it is a linear combination of kernel functions these
functions form a vector space.

There is a natural way to equip this vector space with an inner product. Let

g(x) =
∑M

i=1 vik(x, yi) be another function from the vector space. An inner product
between these functions can be defined as

(37) 〈f, g〉 =

N
∑

i=1

M
∑

j=1

wivjk(xi, yj).

This can be shown to be well-defined and it is symmetric due to the symmetry of
k. It is linear in its arguments, too, due to the linearity of the sum. To show that
it is an inner product we need to make sure that it is also positive definite, that is
〈f, f〉 ≥ 0 and equality only holds for f = 0. Positivity is guaranteed by the defining
property of a positive definite kernel k (33). Definiteness follows automatically for
positive definite kernels but is a bit more difficult to see (Schölkopf & Smola, 2002).

The vector space with the inner product that we introduced is almost a Hilbert
space. Hilbert spaces can be thought of as a generalization of Euclidean spaces
with a dimension that may be infinite. In order to be a Hilbert space the space
needs to be complete, and the space we constructed can be completed by including
certain limit points (Schölkopf & Smola, 2002). This completed space is then called
a reproducing kernel Hilbert space (RKHS). It is called reproducing because of the
following property,

(38) 〈k(·, x), f〉 =
N
∑

i=1

wik(x, xi) = f(x),

stating that the inner product between a function f and one of the basis functions
k(·, x) evaluates the function at x. Hence, when we take the inner product of two
similarity functions

(39) 〈k(·, x), k(·, y)〉 = k(x, y),

the function k(·, y) is evaluated at x.
Remember that in Eq. (35) we decided to map each stimulus x to the vector

space by applying the function Φ(x) = k(·, x), thereby identifying each stimulus
with its similarity function. Because of the reproducing property (39) the inner
product of two stimuli x and y in the RKHS is simply given by their similarity:

(40) 〈Φ(x), Φ(y)〉 = 〈k(·, x), k(·, y)〉 = k(x, y).

Calculating the similarity between two stimuli using a positive definite kernel k as
given in (34) is therefore the same as taking the inner product in the Hilbert space
that we constructed above. The similarity is given by an inner product as in the
early work of Ekman (Gregson, 1975; Borg & Groenen, 1997). Shepard’s sugges-
tion to use the exponential as a link between distance and similarity has brought
us back to the roots of MDS, the use of inner products. This is ironic because
Shepard introduced ordinal scaling methods in order to go beyond the Euclidean
case with its positive definite matrices. The introduction of the exponential as a
link between distance and similarity has reintroduced the constrained of positive
definite matrices.

2.5. The kernel metric. Like Euclidean space Hilbert space is a very rich
structure with an inner product, a norm that is induced by the inner product and a
metric that is induced by the norm. The norm of a function f in the Hilbert space

is naturally defined as the square root of the inner product with itself ‖f‖2
= 〈f, f〉.
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In particular, for the similarity kernel (34) all stimuli are mapped to the unit sphere
in Hilbert space:

(41) ‖Φ(x)‖2 = 〈Φ(x), Φ(x)〉 = k(x, x) = exp(0) = 1.

As all the points of the input space lie on the unit sphere in the Hilbert space the
inner product is the cosine of the angle between the vectors in the Hilbert space.

Given a norm a natural definition of a metric is given by the norm of the
difference vector. In the Hilbert space the distance between two functions f and g

would then be given by the metric d′p defined as d′p = ‖f − g‖. Hence, the inner
product in Hilbert space naturally induces a metric on the space via the norm.
Recall how we have arrived at this metric:

lp → dp → dp
p → k → d′p.

We started off with the lp formula (30), this naturally defined dp (31). This was
taken to the power of p, giving rise to dp

p. Taking the exponential gave rise to
the similarity kernel k (34). As this is an inner product for 0 < p ≤ 2 we could
naturally define a new metric d′p. For the similarity kernel as introduced above we
have the peculiar situation that the dissimilarity dp that is used in the definition
of the similarity kernel k is not induced by it. Instead, the inner product k induces
another metric d′p on the space. The new metric d′p is different from dp and is given
by the distance of the stimuli in Hilbert space:

d′p(x, y)2 = ‖Φ(x) − Φ(y)‖2

= 〈Φ(x) − Φ(y), Φ(x) − Φ(y)〉
= 〈Φ(x), Φ(x)〉 − 2 〈Φ(x), Φ(y)〉 + 〈Φ(y), Φ(y)〉
= 2 − 2k(x, y)(42)

where we have used that the similarity kernel k(x, x) = 1 for all x. It is very
interesting to note that this new metric is a monotone transform of dp. Recall that
in the Shepard-Kruskal multidimensional scaling procedure only ordinal properties
of the data are used and therefore this new metric space is as good a representation
for ordinal data as the lp space. The similarities stay the same, only the metric
of the space is changed. Shepard’s analysis demands that the similarities and the
metric are in a monotonically decreasing relationship—they still are for the metric
d′p. Even the coordinates of x and y stay the same. In the kernel framework, the
inner product is an inner product in a Hilbert space. In the Hilbert space the
similarity and the distance measure d′p are in a natural relationship. The distance
measure is derived from the similarity measure by using Euclidean intuitions about
angles and distances.

This new metric has another noteworthy property: It is bounded from above.
Points far apart in the space are separated by a distance which is at most

√
2

(the square of the distance as given in (42) approaches 2 if the similarity k(x, y)
approaches zero—making Φ(x) and Φ(y) orthogonal). Psychologically this is a
highly desirable property because it means that a stimulus that is already very
different from another stimulus cannot become much more different. In fact, very
often the notions of perceptual difference and similarity are only meaningful locally
and measurements of large perceptual distances are not available. An example
would be color space where it is easy to obtain local measurements of similarity,
for instance by looking at discrimination thresholds. However, global measures are
not available. If directly asked for a judgment of the dissimilarity of colors far
apart in color space, typically subjects find themselves unable to express a more
precise answer than “totally different” (Indow, 1994). This important aspect of
psychological similarity is captured naturally by the similarity kernel (34).
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3. Triangle inequality

It may seem this new metric inherits all problems of the distance dp on which
it is based—but this is not so. Of course, it has to fulfill the metric axioms. In
some cases the distance from a point to itself may not be zero and the symmetry
of the empirical distances is not warranted. These violations may not always be
explained by measurement noise and response biases. Considerable criticism of met-
ric approaches has focused on symmetry and on constant self-similarity (Tversky,
1977). Symmetry, for example, can be violated if the comparison has a direction and
one of the stimuli is more prototypical than the other, or receives more attention.
Checking for violations of symmetry is relatively easy and even if an experimental
measure is not completely symmetric, in practice it is often simply forced to be
symmetric. Similarly, constant self-similarity is simply assumed in practice. Obvi-
ous violations of constant self-similarity can however be observed in confusion data
or same-different experiments. In any case, whether one’s data shows symmetry
and constant self-similarity, at least approximately, can easily be checked. There
are many situations where both assumptions will approximately hold. For cases
where they do not hold, Dzhafarov and Colonius (2006) have recently described a
principled procedure that can convert data from same-different experiments into a
metric.

The most fundamental property of any metric model is perhaps the triangle
inequality, which states that the direct path between two points is at most as long
as any detour via a third point (Tversky & Gati, 1982). We will give a detailed
explanation why the criticism of the triangle inequality as it applies to the dp

metric does not apply to the similarity kernel approach. Briefly, the reason is that
the triangle inequality is usually paired with a second assumption, called segmental
additivity (Beals et al., 1968), that does not hold for the kernel metric.

3.1. Concave iso-similarity contours. In an early paper, Shepard noted
that concave (i.e., indented) iso-similarity contours lead to a violation of the triangle
inequality for the lp norm (Shepard, 1964). Figure 3 shows the unit “balls” for the
lp norm for different values of p assuming equal weights for both dimensions. All
points on the curves have distance one to the center (in their respective norms).
Figure 4 shows why the triangle inequality is not fulfilled for values of p < 1. For
p < 1 the unit ball becomes concave. In this case, the distance from x to y is one,
the distance from y to z is also one. Therefore, traveling from x to z via y takes two
units but traveling directly, that is on a straight line, from x to z takes more than
two units (the distance from x to w is greater than one and the distance from z to
w is also greater than one). In his paper Shepard found violations of the triangle
inequality but he could attribute them to pooling subjects with different response
strategies. He further argued that the triangle inequality should be assumed and
that violations can be explained by shifts in attention. Nevertheless, it seems
psychologically plausible, or at least possible, that two stimuli that match on one
dimension (like x and y in Figure 4) are more similar to each other than stimuli that
do not match on any dimension (like x and w in Figure 4). The intuition is that
stimuli that have matching dimensions have more in common with each other than
stimuli that do not match on any dimension. In such a case Shepard would have to
assume that dimensions that match receive greater attention than dimensions that
do not match.

3.2. Triangle inequality or segmental additivity. Tversky (1977) was
guided by the intuition of matching to develop his famous contrast model of simi-
larity. His model does not require any of the metric axioms and it works without
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Figure 3. Unit balls of the lp norm for different values of p.

positing shifts in attention. To reinforce his position Tversky and Gati (1982) con-
ducted a study that tested the triangle inequality more directly than Shepard (1964)
did. For this they sought measurements of stimulus dissimilarity for a wide vari-
ety of stimuli. Contrary to Shepard who used similarity choices they used mostly
dissimilarity judgments. The dissimilarity measurements are usually only on an
ordinal level, at most on an interval scale. With a finite set of points the triangle
inequality can always be trivially satisfied by adding a big enough constant to the
dissimilarity measures. However, together with a second assumption, called seg-
mental additivity (Beals et al., 1968), testable predictions for metric models can be
made (the so-called corner inequality which is explained below has to be fulfilled).
Tversky and Gati could show that these predictions are not met by most of their
data. This strongly suggests that either the metric axioms or segmental additivity
does not hold for most of their stimuli.

By segmental additivity they meant the following: A segment is the shortest
path between two points and a path is a sequence of points. As an example for
a path think of a morph sequence between visual stimuli. The shortest morph
sequence is called a segment. Let the points x and z be joined by the shortest
path that connects them (e.g., a straight line if the space is Euclidean) and let w

be one of the points on the way. It is tempting to make the following assumption:
The psychological distance from x to z is exactly the sum of the distances from
x to w and from w to z, d(x, z) = d(x, w) + d(w, z). This is called segmental
additivity. Implicitly we made this assumption above when we demonstrated that
the distance dp (31) does not fulfill the triangle inequality if p < 1. The assumption
of segmental additivity is so intuitive that if it were to be given up the whole idea of
representing similarity by geometric relations in a psychological space would seem
to lose its intuitive appeal. Metrics with segmental additivity are a rather wide
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Figure 4. Violation of the triangle inequality for concave unit
balls. The distances from x to y and from y to z are 1. Hence,
traveling from x to z via y takes 2 units. Traveling from x to z

directly via w takes more than 2 units as w is outside the unit balls
of x and z.

class of metrics. They include all Minkowski metrics (dp with p ≥ 1) but also
Riemannian curved geometries. Several recent scaling and embedding methods
make use of segmental additivity (Dzhafarov & Colonius, 2006; Roweis & Saul,
2000; Tenenbaum, Silva, & Langford, 2000). Tversky and Gati found however that
metrics with additive segments cannot account for their data.

But Tversky and Gati go one step further. They consider segmental additiv-
ity as essential for the enterprise of modeling similarity in perceptual spaces with
geometric relations. As their data indicate that we cannot have both, the metric
axioms and segmental additivity, they abandoned the metric approach and favored
a non-metric approach. Already earlier, Tversky (1977) had suggested a non-metric
model, implementing a matching mechanism, that can account for their data: The
contrast model. Nevertheless, they also point out that the metric approach could be
saved by sacrificing segmental additivity, only to add that this solution would not
be “compatible with lay geometric intuitions” (Tversky & Gati, 1982, p. 151). Our
new metric d′p on the psychological space does not have the property of segmental
additivity but is theoretically well motivated. We can also provide some geometric
intuitions why segmental additivity is not as crucial as it may seem. Hence, we
believe that the kernel metric gives an interesting solution that is different from the
contrast model and more in the spirit of MDS. But before we explain how the kernel
metric can account for the data of Tversky and Gati we examine their reasoning in
detail.
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Figure 5. Illustration of the corner inequality. The center path
is from x to z via w. The corner path is from x to z via y. If the
center path exceeds the corner path the corner inequality is vio-
lated.

3.3. Corner inequality or coincidence hypothesis. Consider the percep-
tual space depicted in Figure 5. It is a two-dimensional space with stimuli z and
y agreeing on the first dimension and stimuli y and x agreeing on the second di-
mension. In an experiment these dimensions could be the size and angle of a circle
with a spoke, or the two sides of a rectangle, or hue and saturation of a color
chip. In many experiments the participants are aware of the dimensions that the
experimenter manipulates, especially when the dimensions are of the separable kind
(Shepard, 1964; Garner, 1974) and the stimuli are constructed by a factorial design.
If subjects actively look for features that two objects have in common in order to
make similarity judgments then we would expect that z and y are similar because
they have the same value one of the dimensions, and for the same reason y and x

should be similar, too. As x and z have nothing in common they should be very
dissimilar. However, as x is close to y and y is close to z, x and z should not be
too far apart because of the triangle inequality. Intuitively speaking, if we assume
the triangle inequality then there is not much room for x and z to be very different
from each other. Hence, the triangle inequality, so it seems, may be inconsistent
with the idea that subjects match features in their assessment of similarity.

The above hand-waving reasoning is hard to put to test without putting con-
crete numbers on the distances between the stimuli. Unfortunately, measurements
of perceptual similarity are usually only on an ordinal scale level (at most inter-
val scale) and therefore the numbers that one would like to have are not easily
available. Tversky and Gati realized that pairing the triangle inequality with seg-
mental additivity can give ordinal predictions. The triangle inequality states that
d(x, z) ≤ d(x, y) + d(y, z), assuming that segmental additivity also holds, and that
we have a fourth stimulus w that lies on the straight line that connects x and z,
we get the following necessary condition:

(43) d(x, w) + d(w, z) ≤ d(x, y) + d(y, z).

Tversky and Gati call this condition the corner inequality. The right-hand side is
called the corner path and the left-hand side the center path, with respect to the
rectangle that is defined by the levels that the stimuli take on the dimensions (see
Figure 5). All Minkowski metrics (dp with p ≥ 1, see Eq. 31) satisfy the corner
inequality. Note that if p = 1, for the city-block metric, equality holds. As we have

47



seen in Figure 4 for p < 1 the corner inequality is violated. The corner inequality is
violated if the center path exceeds the corner path. The center path clearly exceeds
the corner path in an ordinal sense if

d(x, w) > d(x, y) and d(w, z) > d(y, z)

or

d(x, w) > d(y, z) and d(w, z) > d(x, y).

(44)

If subjects are matching the dimensions of the stimuli in their assessment of similar-
ity it could very well be that, for example, d(x, w) > d(x, y) because x and y have
the same value on one dimension and x and w are difficult to compare because they
have to be compared across two dimensions. Subjects’ sensitivity to matching di-
mensions is called the coincidence hypothesis by Tversky and Gati. The coincidence
hypothesis predicts that the corner inequality is violated. As an ordinal test for this
violation we can use condition (44). Note that this ordinal test cannot detect all
but the most grave violations of the corner inequality. Nevertheless, Tversky and
Gati found serious violations for many similarity judgments with many different
stimulus sets.

In the derivation of the ordinal test it was assumed that a rectangle is con-
structed with stimuli agreeing on some dimensions and with some stimuli being
placed on the way between other stimuli. With some stimuli, for example colors,
one cannot be sure that one really has chosen the right dimensions and it will
be hard to construct stimulus sets with triples of stimuli located on a segment in
perceptual space. It might not even be clear that the perceptual space is really
two-dimensional. However, Tversky and Gati also analyzed all their data using
ordinal multidimensional scaling procedures that estimate the coordinates of the
stimuli in perceptual space. In these procedures one usually uses the lp norm that
poses more constraints on the distances than just the metric axioms and segmental
additivity. With these methods one can obtain an estimate of the p parameter in
the lp norm. They found, if p is not restricted to be greater than one (i.e., the tri-
angle inequality is given up), the best fit for most of their data sets can be achieved
by a p < 1. Increasing the number of dimensions by one or two did not improve
the fit as much as allowing a p < 1. However, model selection for the dimensions of
a MDS solution is notoriously difficult and it is not clear how the flexibility of the
model changes when changing p at the same time. In any case, Tversky and Gati
took their analysis as an indication that similarity is boosted if stimuli agree on a
dimension.

Tversky and Gati conclude that models that assume the triangle inequality and
segmental additivity cannot account for many human similarity judgments. The
major exception was color space for which they could not reject the hypothesis that
it fulfills both, the metric axioms as well as segmental additivity. The other stimuli
were of the separable kind and interestingly the degree with which the assumptions
were violated seemed to vary with how transparent the dimensional structure of the
stimuli was to the participants. The more transparent the dimensional structure was
to the subjects the more they were inclined to base their assessments of similarity
on matching dimensions.

3.4. Non-metric or metric without segmental additivity. As mentioned
before, these results have led Tversky and Gati, and many researchers after them,
to prefer non-metric models of similarity. The contrast model (Tversky, 1977)
is the most prominent non-metric model and is explicitly built on the intuition of
matching features. Nevertheless, Tversky and Gati do acknowledge that the triangle
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inequality on its own is not constraining the class of similarity models very much.
There are metric models that can be reconciled with the coincidence hypothesis.
Those models do not have the property of additive segments that is characteristic
of basically all the intuitive geometries that have been used to model and, perhaps
more telling, to visualize similarity. There are many metrics that do not have
additive segments. For example, the so-called “metric for bounded response scales”
is even discussed in a standard reference on MDS and was introduced to deal with
exactly those issues raised by Tversky and co-workers (Borg & Groenen, 1997).
Another such metric that is of particular interest here was suggested by Tversky
and Gati themselves and is given by the lp formula (31) taken to the power of p:

(45) dp(x, y)p = ‖x − y‖p
p =

n
∑

i=1

|xi − yi|p .

This definition results in a metric for 0 < p ≤ 1, as also noted by Carroll and Wish
(1974). The triangle inequality is satisfied under these circumstances because xp is
a concave function for 0 < p ≤ 1 and positive real x:

dp(x, y)p =

n
∑

i=1

|xi − yi|p

≤
n
∑

i=1

|xi − zi|p + |zi − yi|p

= dp(x, z)p + dp(z, y)p.

(46)

Along each dimension distances do not add up unless p = 1. Let us assume p < 1.
Take three stimuli a, b and c that are identical on all but the ith dimension and with
b located between a and c, that is ai < bi < ci. For all such stimuli it holds that
d(a, c) < d(a, b) + d(b, c). We call such a metric an intradimensionally subadditive

metric. Large differences are down-weighted relative to small differences along each
dimension.

Let us re-examine the example in Figure 4. If we choose the pth power of dp

with p < 1 as a metric then the triangle inequality holds, as just shown. The direct
connection from x to z is actually equal in length to the detour via y. The distance
from x to z is d(x, z) = 1p +1p = 2 and the distance from x to y is d(x, y) = 1p = 1
and so is the distance from y to z, d(y, z) = 1. While w appears to be on the way

from x to z it turns out that the sum of d(x, w) =
(

1
2

)p
+
(

1
2

)p
= 2 ·

(

1
2

)p
and

d(w, z) = 2 ·
(

1
2

)p
is greater than d(x, z) = 2. The center path exceeds the corner

path. We have an example of a metric that is consistent with the coincidence
hypothesis

The unit ball of this metric is the same as for a lp norm with a p < 1 as depicted
in Figure 3. It is in fact possible to have an indented iso-similarity curve if the metric
does not satisfy segmental additivity (Carroll & Wish, 1974). The argument that
led to a break-down of the triangle inequality for the lp norm for p < 1, as illustrated
in Figure 4, implicitly assumed segmental additivity. In particular, it assumed that
w lies on a segment between x and z. The metric in (45) does not satisfy segmental
additivity. Recall that for two points x and z that are joined by an additive segment
it holds that for all points w that lie on the segment d(x, z) = d(x, w) + d(w, z).
Along a segment the triangle inequality becomes an equality. If there are pairs
of points in a metric space that cannot be joined by an additive segment then we
say that the metric space does not fulfill segmental additivity. Hence, a necessary
condition for segmental additivity is that there is at least one point w that lies
between any two points x and z in the sense that d(x, z) = d(x, w) + d(w, z)
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(This condition is called metric convexity by Blumenthal, 1953). For the metric in
(45) with p < 1 there are points that do not have this property. Not even pairs
of points that lie on one stimulus axis have this property because the metric is
intradimensionally subadditive.

For a metric with indented unit balls it is exceedingly difficult to interpret a
configuration of stimuli as depicted in Figure 5 as a map or any other intuitive
geometry, “despite the natural tendency to do so” (Tversky & Gati, 1982, p. 151).
The problem is that there is no natural notion of “on the way” between two points.
There is no obvious way one can construct a path, a sequence of points between
two points, in the space such that the sum of the partial distances equals the full
distance. The full distance can be shorter than the sum of the partial distances.

3.5. Kernel metric and segmental additivity. Tversky and Gati (1982,
p. 151) conclude that the choice between non-metric models and metrics without
segmental additivity is “more likely to be made on the basis of theoretical rather
than empirical considerations”. According to Tversky and Gati, the appeal of metric
models is considerably reduced if there are stimuli for which there is no easily
interpretable metric with additive segments to account for their similarity. There
is a lot to be said in favor of non-metric models that explicitly try to capture the
psychological processes underlying similarity judgments without any concern for
the metric axioms. However, the metric axioms are among the most fundamental
notions in mathematics. Giving up the metric axioms means that one cannot make
use of the sophisticated apparatus that is built upon them. The kernel metric d′p
(42) that we introduced above is, on the other hand, theoretically well-motivated
by Shepard’s law and does not have additive segments. This can be deduced from
the fact that the kernel metric is bounded by

√
2. Even though a path may become

longer and longer the maximum distance between any two points is
√

2. Thus, the
kernel metric may provide a theoretically well-founded metric alternative to the
non-metric models that Tversky and Gati favor.

Like the pth power of dp (45) the kernel metric is derived from the lp formula
(30). Note that the exponent in the definition of the kernel (34) is the pth power of
dp. The iso-similarity curves of the kernel metric are identical to the iso-similarity
curves of the lp norm (Figure 3) because the same value for the lp formula implies
the same distance in the kernel metric. Contrary to the lp norm, the kernel metric
can also have indented iso-similarity curves. It can show matching behavior in
accordance with the coincidence hypothesis with values of p < 1. In fact, it is a
metric for 0 < p ≤ 2. Furthermore, it is a metric that is derived from an inner
product, and therefore we may use some of our Euclidean intuitions in its analysis.

The metric d′p leads to segmental additivity in a higher dimensional space. The
points in the psychological space are mapped to the unit sphere in the infinite
dimensional Hilbert space (41). In Figure 6 we have depicted a three dimensional
subspace that contains the points x, w and z from Figure 5 mapped into the Hilbert
space using the mapping Φ(x) = k(·, x). As any finite dimensional subspace of a
Hilbert space is simply a Euclidean space, we can interpret the distances in Figure
6 in the normal intuitive sense. The metric d′p is the metric of the Hilbert space
in which the original psychological space is embedded and therefore the distance
between two points is given by the chord that joins them. The locations of the three
points depicted in the figure are calculated from their inner products that are given
by the similarity kernel. The similarity kernel gives the inner product between two
points and therefore determines the angle between them. As the similarity kernel
can only give values between zero and one, stimuli that are less similar to each
other are more orthogonal to each other. Hence, the maximum distance between
two stimuli is

√
2 because all stimuli lie on the unit sphere.
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Figure 6. The similarity kernel maps the stimuli x, w and z from
Figure 5 to the unit sphere in a Hilbert space. The distance from
x to z is smaller than the sum of the distances from x to w and
from w to z. The metric does not have additive segments in the
original space because the distances are computed by the shortest
connection in Hilbert space (the dotted lines).

The distance between x and z is given by the straight, dotted line that connects
the two points in the Hilbert space. Note that in the embedding space w is not on
the way from x to z. In fact, none of the points that lie on the chord that joins x and
z is a potential stimulus because we know that all stimuli from the original space lie
on the unit sphere when mapped to the Hilbert space (41). And even worse, w that
seems to lie on the way between x and z in Figure 5, lies in a different dimension
in Figure 6. As the kernel matrix of our similarity measure always has full rank
(if no two points are identical) the vectors that represent each stimulus are always
independent. The shortest path in the Hilbert space goes through points that are
no stimuli. Hence, segmental additivity does not hold in the original psychological
space which is the one depicted in Figure 5 and also the one that Tversky and Gati
examined. It is as if you can tunnel through the sphere in order to get to another
stimulus. You do not have to visit any other stimuli on the way. Any visit to
another stimulus implies a detour (even if the stimuli only differ in one dimension).
Hence, no two distinct points x and z in the original space can be joined by an
additive segment in the original space because for all other points w in the original
space it holds that d(x, z) < d(x, w) + d(w, z).

A value of p smaller than one means that either the metric axioms do not hold
or one has to look for a monotonous transform of the lp formula such that the
metric axioms hold but segmental additivity is violated. The metric d′p provides
one possible solution. But one that is well-motivated by Shepard’s law. The iso-
similarity curves can be indented because they arise from an inner product and
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not from a metric with additive segments. The similarity kernel defines an inner
product for 0 < p ≤ 2 and for p < 1 in particular. Thus, the kernel metric is
immune to the strong criticism put forward by Tversky and Gati. The argument
that showed for the lp norm that the triangle inequality is violated for p < 1 (Figure
4) does not work because in Hilbert space w does not lie on the way between x and
z.

In order to construct a metric that is consistent with the coincidence hypothesis
we have embedded the psychological space into an infinite dimensional Hilbert
space. The embedding into an infinite dimensional space seems to be a drastic
step. A finite dimensional Euclidean space with a higher dimension could also solve
the problem. In fact, this is what is usually done in multidimensional scaling: The
dimensions of the embedding space are increased until a satisfactory fit to the data
is achieved. In the paper by Tversky and Gati this possibility is rejected because
increasing the dimensions of the embedding space beyond the dimensions of the
stimulus space did not increase the goodness of the fit as much as allowing for a p

smaller than one in the lp formula (31).
In normal MDS, if the stimulus space has a smaller dimension than the per-

ceptual space then the stimuli that are presented to a subject will fall onto a (non-
linear) submanifold in the embedding space. The manifold has the dimension of
the stimulus space. A simple example for this is the color circle (Shepard, 1980).
If an experimenter chooses the one-dimensional set of stimuli that is comprised of
only monochromatic lights then these stimuli will have to be embedded on a circle
in two dimensions. The distance is given by the direct connection in the embedding
space and not by the shortest path on the stimulus manifold (that only consists of
monochromatic lights). In such a case it is no surprise that the metric does not
have additive segments. This chordal metric is in fact the standard example for a
metric without additive segments (Beals et al., 1968). The kernel metric we have
presented here is very similar to this example, it represents each stimulus on the
unit sphere in a Hilbert space.

3.6. Similarity choice and categorization. As mentioned before, even if
the stimuli are only of dimension two interpreting the kernel metric as a 2d map
is problematic—especially with p < 1. However, it is possible to get a feeling
for how such a metric behaves by looking at a simple example. Figure 7 shows
two stimuli in a perceptual space. Imagine a third stimulus that is varied in an
experiment. The purpose of the experiment is to assess the similarity of the third
stimulus to the other two stimuli and to check for subadditivity. This might be
done in several ways. We can use generalization gradients. We can count how
often the third stimulus is confused with the other two in a suitable task. We
can ask participants to use a rating scale. We could also use the method of triads
and ask participants directly which of the two exemplars depicted in Figure 7 is
more similar to the third stimulus. Probably subjects’ similarity choices will not be
deterministic and therefore we can only record the relative frequency of a choice.
It is not at all clear how, for example, similarity ratings relate to generalization
gradients unless one tries to explicitly model the psychological processes that give
rise to the subjects’ responses. In ordinal MDS one only hopes that in all tasks
subjects use the same psychological space to generate their responses and that
all these measures of similarity are merely monotone transforms of the underlying
metric. Which for choice probabilities is clearly problematic (Krantz, 1967).

Nevertheless, let us consider the scenario where a participant has to choose to
which of the two exemplars depicted in Figure 7 the third stimulus is more similar.
The gray-level in Figure 7 represents the choice probabilities of the MDS-choice
model for two stimuli and a dp with p = 1

2 . In the MDS-choice model the choice
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Figure 7. The MDS-choice model with a similarity kernel that
has an exponent smaller than one. The two axes are two perceptual
dimensions, the two points are two exemplars and the gray-level
denotes the probability that a new stimulus will be assigned to one
of the two exemplars. The solid black lines is where the probability
is one half. With an exponent smaller than one the MDS-choice
model can be made to show matching behavior. Stimuli that match
an exemplar on the perceptual axes show a high similarity.

probabilities are calculated by plugging the similarity kernel into Luce’s choice rule
(Nosofsky, 1986; Shepard, 1957). White means a high probability that the subject
assigns this point to one stimulus, black means a high probability for the other
stimulus. The two axes represent two perceptual dimensions. The similarity kernel
clearly follows these axes. The solid black lines mark the equivocality contour where
a stimulus is equally likely to be assigned to one of the two exemplars. With an
exponent smaller than one the similarity kernel shows matching behavior. If a test
stimulus matches one of the exemplars on one of the dimensions it is more likely
to be assigned to this exemplar. Even if it seems that the stimulus is closer the
other exemplar by just looking at the picture. Remember, that the similarity kernel
can be interpreted as an inner product in a Hilbert space. The two-dimensional
stimulus plane depicted in Figure 7 is mapped onto the unit-sphere in the Hilbert
space with the distance between the points given by the chord-metric (see Figure 6)
and is therefore without additive segments. What seems to be a long path to travel
in the two-dimensional plane is not the direct connection taken by the assessment
of similarity.

The MDS-choice model is the basis for the Generalized Context Model (GCM),
a prominent exemplar model of categorization that was introduced by Nosofsky
(1986). One should expect that matching effects also play a role in categorization
(Verguts, Ameel, & Storms, 2004). and therefore categorization models that are
based on metric models should have similar problems than the underlying models
for similarity. Nosofsky was well aware of Tversky’s criticism of the use of the lp
norm but he used it nevertheless. He fitted the MDS-choice model to confusion
data in an identification task. As he used stimuli with separable dimensions it
was to be expected that for his data the exponent p should equal one or even be
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smaller than one. However, this is not what he found. He found that a Gaussian
similarity kernel with a Euclidean metric could fit his identification data very well
and smaller exponents led to dramatically worse fits. The reason for this may
lie in the fact that Nosofsky’s stimuli were difficult to discriminate perceptually
(Nosofsky, 1986; Shepard, 1986; Ennis et al., 1988). His generalization gradients
are partly explained by perceptual noise. Nosofsky had to use very confusable
stimuli for the identification experiment. If the participants had been able to learn
the identification task perfectly the MDS-choice model could not have been fitted
to the data. The purpose of the study was to link confusion probabilities in an
identification task with choice probabilities in a categorization task—and confusion
probabilities can only be obtained if there is confusion to start with. Similarity
was only invoked indirectly in both tasks. Tversky, in contrast used dissimilarity
judgments of highly discriminable stimuli.

Nosofsky (1986) speculated that despite Tversky’s results the psychological
space could still be Euclidean: Participants in a more cognitive task, like dissim-
ilarity judgment, actively look for matching dimensions and hence might change
their attention weights from trial to trial. Be this as it may, our discussion of
Tversky’s criticism in the context of the similarity kernel clearly shows that catego-
rization models that use the similarity kernel do not need to be overly concerned by
Tversky’s criticism. It may turn out that an exponent smaller than one is needed
for the lp norm for some categorization data using easy to discriminate, cognitive
rather than perceptual stimuli. In any case, subadditivity can easily be incorpo-
rated in categorization models by choosing a p smaller than one. If p is simply
seen as a free model parameter then this is perhaps not surprising. However, it
is reassuring to know that this can be done without having to give up the metric
axioms. Subadditive behavior in categorization can be dealt with without explicitly
incorporating feature matching mechanisms as for example in (as for example in
Verguts et al., 2004).

4. Conclusions

We have demonstrated how the serious concerns about the triangle inequality
that accompany all metric models of similarity can be addressed in a principled
manner. It was important to realize that the experimental tests of the triangle
inequality were always in conjunction with a second assumption: segmental ad-
ditivity. Hence, the data that seemed to contradict the triangle inequality can be
explained by a metric without segmental additivity. Shepard’s law of generalization
can be used to induce an inner product in a Hilbert space which in turn induces a
metric with several psychologically appealing properties. It is does not have addi-
tive segments and avoids the serious criticism of the triangle inequality. It is also
bounded from above and therefore captures the intuition that similarity makes the
most sense locally with only small changes in the stimulus. Stimuli far apart in
perceptual space are merely completely different and more precise judgments of
similarity are difficult. Table 1 summarizes the properties of the kernel metric d′p
and compares it to the other distance functions described in this paper.

Remember that the embedding into Hilbert space—drastic as it may seem—
is just a new view on an old model of similarity and the embedding into this
Hilbert space follows naturally from the definition of the similarity measure. All
we have done is to reinterpret Shepard’s similarity measure as an inner product
in an implicitly given space. The Hilbert space does not show up explicitly in
any of the equations, neither for the inner product nor for the metric. Everything
operates in the dimensions of the original psychological space for which the lp norm
is defined. A useful way to think about these issues is that we have replaced the
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dp(x, y) (31) dp(x, y)p (45) d′p(x, y) (42)

metric p ≥ 1 p ≤ 1 p ≤ 2
inner product p = 2 p ≤ 2
segmental add. p ≥ 1 p = 1 —
intra. subadd. — p < 1 p ≤ 2
center > corner p < 1 p < 1 p < 1
bounded no no yes

Table 1. A comparison of the properties of different distances
discussed in this paper. We always implicitly assume p > 0 for
all entries in the table and d′p is the distance that is induced by
the kernel k(x, y) = exp(dp(x, y)p). The first row shows the con-
ditions under which the distances are also metrics. The second
row gives the conditions that allow a distance to be expressed as
a metric that is derived from an inner product. For dp

p we haven’t
said anything about whether it can be induced by an inner prod-
uct. The third row notes when the distance is a metric that also
fulfills segmental additivity. For the metric d′p there are no addi-
tive segments. The fourth row is concerned with metrics that are
intradimensionally subadditive. The fifth row shows under what
conditions the center path exceeds the corner path. This is the case
if the iso-dissimilarity contours are indented (Figure 4 and Figure
5). In the last row we note whether the metric is bounded.

task of choosing a metric for the psychological space (dp) and a transform between
similarity and distance (e.g. the exponential) with the task of choosing a similarity
kernel on the psychological space (the exponential of dp

p). The similarity kernel
induces a natural metric that is bounded and that circumvents the problems of
the lp norm for values of p < 1. The metric however has lost its pivotal role in
the theory. Similarity and inner product become the core concepts from which the
concepts of dissimilarity and metric are derived.

As the similarity kernel (34) is a positive definite kernel a data matrix with
similarity measures (bias corrected confusion probabilities in Shepard’s case) would
have to be positive definite up to noise, too. Thus, ironically, Shepard’s proposal
of the exponential as a transformation between measured similarity and distance
takes us back to the roots of multidimensional scaling: To the use of inner products
in a Euclidean space just like Ekman and Torgerson have pioneered it.
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CHAPTER 4

Categorization

Intuitive definitions of categorization tend to invoke similarity. Objects that are
similar are grouped together in categories. Within a category similarity is very high
whereas between categories similarity is low. Similarity is at the heart of many cate-
gorization models. Prototype theories postulate that categorization depends on the
similarity of stimuli to an abstracted idea (Posner & Keele, 1968; Reed, 1972) and
exemplar theories calculate the similarity to memory representations of previously
encountered stimuli (Medin & Schaffer, 1978; Nosofsky, 1986; Kruschke, 1992). A
potential problem for these models is that they put the burden of explanation onto
the intuitive concept of similarity. Despite serious problems in defining similarity
(Medin et al., 1993) models of categorization continue to rely on similarity.

The appeal of invoking similarity in categorization models stems from the need
to generalize. Given a stimulus that was never encountered before, how can it be
categorized correctly based on limited experience with previous stimuli? An easy
answer seems to be that a new stimulus is simply categorized in the same way as
similar stimuli before. Correct generalization to new stimuli thus depends crucially
on choosing the right similarity measure. Shepard (1987) famously has turned this
reasoning around and used generalization to measure similarity. He also tried to
deduce a similarity measure such that the generalization performance is likely to
be good (Shepard, 1987; Tenenbaum & Griffiths, 2001; Chater & Vitanyi, 2003).

In Shepard’s work the idea of a perceptual space has played a major role.
The similarity measure he suggested, Shepard’s universal law of generalization,
operates on a mental representation assumed to be a metric space. Shepard’s
work on generalization and similarity (Shepard, 1957, 1987) cannot be separated
from his work on categorization (Shepard et al., 1961; Shepard & Chang, 1963) and
multidimensional scaling (Shepard, 1962). Since the work of Shepard it has become
common for perceptual categorization models to assume a perceptual space and use
Shepard’s law as a similarity measure on this space. Exemplar models in particular
strongly rely on Shepard’s work (Nosofsky, 1986; Kruschke, 1992). These models
are very similar to a class of popular tools in machine learning and statistics: kernel
methods. This observation has first been made by Ashby and Alfonso-Reese (1995).
Here, we draw parallels between recent progress in kernel methods and exemplar
theories of categorization.

1. Kernel methods

In the past psychological theories of learning and categorization were a major
influence for engineers to build machines that are capable of intelligent behavior.
This is signified by the vast engineering literature that has been published on artifi-
cial neural networks and reinforcement learning. More recently, in machine learning
there has been an increased interest in kernel methods. Even though these methods
can be implemented in simple neural networks they are usually not psychologically
or biologically motivated but instead are seen to be grounded in statistics and func-
tional analysis. However, as will be shown here, researchers in kernel methods are
often guided by the same intuitions about similarity and generalization that also
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guide psychologists in their theories on categorization. Hence, we will argue that
theoretical progress in machine learning can also lead to new insights in psychology.

Methods that are based on kernel ideas are often found to have cutting-edge
performance in real-world applications. For example, benchmark data sets for digit
recognition are often used to compare the performance of different learning algo-
rithms. The task for a learning algorithm in this setting is to correctly classify
handwritten digits it has never seen before based on experience with a limited
number of examples. For a long time a hand-tuned neural network held the world
record on digit recognition benchmarks until a much simpler kernel method, called
support vector machine (SVM), was shown to achieve better performance with
much less effort on the side of the engineer. Today, support vector machines are
found in applications ranging from bioinformatics to machine vision (Christianini
& Schölkopf, 2002).

The successful application of kernel methods to real-world classification prob-
lems has led to an explosion of theoretical work in the field of machine learning.
While there was already a considerable amount of theory on artificial neural net-
works progress has been hindered by the complexity of the neural networks that
were used in practice. Kernel methods are built on linear methods and are there-
fore a lot easier to analyze than the non-linear neural networks (Schölkopf & Smola,
2002).

In this chapter we demonstrate that the Generalized Context Model (Nosofsky,
1986) and ALCOVE (Kruschke, 1992), two well-known exemplar models, are very
closely related to a machine learning method called kernel logistic regression (Hastie
et al., 2001). The link between the psychological models and the machine learning
method is their use of a radial-basis-function (RBF) neural network (Poggio &
Girosi, 1989; Poggio, 1990). To this end we first recaptiulate the ideas behind
kernel methods and RBF-networks that were introduced in Chapter 2. This is
followed by a section on exemplar models where we discuss their history, explain
their connection to kernel methods, and point to important differences in their
response rules that affect how Shepard’s law enters the models. The kernel-view
makes the differences between the models more transparent and it also allows an
easy comparison with methods from machine learning and statistics.

Like in psychology there is a tight relationship between similarity and gener-
alization in machine learning. However, insights from machine learning show that
while it is very important to choose the right similarity measure, this is not always
enough to be guaranteed to have a good generalization performance. More specif-
ically, if used naively kernel methods will be prone to overfitting. The section on
Generalization discusses the consequences of these insights for exemplar theories
of categorization. Exemplar theories have thus far exclusively relied on similarity
for explaining generalization. In fact, a major criticism of exemplar theories has
always been that they do not show any form of abstraction and therefore are often
thought not to be able to generalize at all. We show how related kernel methods
in machine learning assure good generalization performance by a mechanism called
regularization. We argue that similar mechanisms need to be implemented in psy-
chological models if they ought to exhibit a good generalization performance. To
demonstrate how this could be done in principle, we analyze ALCOVE’s learning
algorithm from a regularization perspective. We find that ALCOVE’s behavior can
be justified on theoretical grounds, thus providing, for the first time, an analysis of
the generalization abilities of exemplar theories.

1.1. The similarity kernel, revisited. In order to model the similarity, that
is the generalization gradient, between two stimuli x and y we first interpret x and
y as coordinates in a n-dimensional perceptual space. The perceptual distance in
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Figure 1. The similarity kernel for different values of p. For p =
2 a Gaussian is obtained (left panel), for p = 1 a Laplacian is
obtained (right panel).

this space is usually modeled as (see Eq. 31, above)

(47) dp(x, y) =

(

n
∑

i=1

αi |xi − yi|p
)

1

p

.

Most often the distance dp takes the specific form of either the city-block or the
Euclidean distance, with p chosen to be one or two, respectively. The αi are positive
weights that are needed to model the relative importance of the stimulus dimen-
sions that possibly change with the experimental context. Using Shepard’s law the
generalization gradient between x and y is modeled as

(48) k(x, y) = exp (−dp(x, y)γ) .

We refer to the function k that models the generalization gradient as the similarity

kernel. It is an exponential function of the distance dp between the two stimuli
in perceptual space. Deviating from Shepard’s original formulation, the distance
is nowadays often modified by taking it to the power of γ to give the model more
flexibility. In models of categorization one often finds that γ is chosen to be equal
to p (Nosofsky, 1990). As in Eq. (34) in Chapter 3 the similarity kernel is then
given as

(49) k(x, y) = exp(−dp(x, y)p) = exp

(

−
n
∑

i=1

αi |xi − yi|p
)

.

With p chosen to be two the similarity kernel is called a Gaussian kernel. The
Gaussian kernel is extremely popular in machine learning where it is used to model
the similarity of all sorts of things. The left panel of Figure 1 shows again a
Gaussian kernel in two dimensions. Imagine a two-dimensional perceptual space,
for example perceived size and angle of circles with a spoke. Stimulus y is fixed
at the center of the Gaussian and the height of the plot depicts the similarity of
all other stimuli in the plane to stimulus y. The generalization gradient is rotation
invariant, it falls off in the same way in all directions of space. With p chosen to
be one the similarity kernel is sometimes called a Laplacian kernel (in analogy to
the Laplacian distribution). This case is depicted in the right panel of Figure 1.
The Laplacian kernel is not rotation invariant. The generalization gradients fall off
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differently in different directions of space. In particular, along the stimulus axes
similarity fades away more slowly.

The similarity kernel as defined in equation (49) has several psychologically
and mathematically interesting properties that we explored in detail Chapters 2
and 3. Let us briefly remind the reader of the most important results: For values
of p that lie between zero and two the function k is a so-called positive definite
kernel (Schoenberg, 1938). This insight opens up a large box of mathematical
tools from functional analysis that can be used to gain a better understanding of
psychological models of similarity. In fact, the same tools have greatly deepened the
understanding of machine learning methods that also use positive definite kernels.

Instead of representing each stimulus y by its coordinates in perceptual space
we can represent each stimulus by its similarity to all other stimuli. Formally
this can be done by representing each stimulus y by a function on the perceptual
space. This function is the similarity of y to other points in the perceptual space:
k(·, y) with a fixed y and interpreted as a function of its first argument. In this
representation, representation is literally representation of similarities (Edelman,
1998). Each stimulus is represented by a function. Therefore, the distance between
stimuli can be defined as a distance between functions. It turns out that the
similarity kernel has a natural distance between functions associated with it. This
metric is for example bounded from above. The distance cannot become greater
than a certain value. Psychologically this is a very desirable property because at
some point stimuli are just completely different and they cannot be made more
different than that. Furthermore, the distance that we discussed in Chapter 3
does not have additive segments. In a series of papers Tversky and colleagues have
heavily criticized geometric representations of similarity (Beals et al., 1968; Tversky,
1977; Tversky & Gati, 1982). It often goes unnoticed that the representations that
they criticize are all based on metrics with additive segments. Metrics without this
property escape most of their criticism. The similarity kernel can be used to define
such a metric without additive segments in an elegant way.

1.2. Neural networks, revisited. The similarity kernel forms the basis of
many categorization models. As noted several times now, exemplar theories (in par-
ticular, but other methods, too) make heavy use of the similarity kernel (Nosofsky,
1986; Kruschke, 1992). The idea that underlies all exemplar models is that stimuli
are stored in memory and new stimuli are categorized based on the similarity to
the stored exemplars. This idea can be formalized in a neural network. In fact, the
ALCOVE model for categorization that will be discussed in more detail in below
is such a neural network model.

Imagine a cell that after learning is tuned to an exemplar xi. It will also respond
to other stimuli x if they are sufficiently similar to xi. To model the similarity we
use of course the similarity kernel as given in equation (32). In exemplar models the
similarity to several exemplars x1, ..., xN is usually a weighted sum of the similarity
to each exemplar:

(50) f(x) =

N
∑

i=1

wik(x, xi).

The function that this equation computes can be represented graphically as a one-
layer neural network. Figure 6 shows such a network. In the neural network liter-
ature nets with “tuning functions” similar to the similarity kernel are called radial
basis function (RBF) nets. These nets have repeatedly been advocated as a plau-
sible model for brain function by Poggio and coworkers (Poggio, 1990; Poggio &
Bizzi, 2004).
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Figure 2. The summed similarity to the exemplars of one cate-
gory is depicted with gray levels. The summed similarity is akin
to kernel density estimation in statistics.

From a theoretical viewpoint it is useful to see the function f as a linear com-
bination of basis functions k(·, xi). The basis functions are the similarity kernels
centered on the exemplars. Each exemplar is represented by its similarity to all
other stimuli in the perceptual space. The function f is composed out of these sim-
ilarity functions. Mathematically speaking the functions that can be implemented
in this way form a vector space. If k is a positive definite kernel—as are many of
the kernels that are used in psychology—this vector space can be given an inner
product and a corresponding metric. This is the kernel metric that was introduced
in Chapter 3.

For now it is enough to imagine that all weights are set to one. Figure 2 shows
again the two categories of circles with spokes that were already depicted in Figure
1 of Chapter 3 (p. 35). The summed similarities to all exemplars of one of the
categories (circles) is shown by gray levels. The more black a region of perceptual
space is the more similar stimuli in this region are to the exemplars of the category.
We have used a Gaussian kernel for illustration even though the circles with spokes
have separable dimensions. The generalization gradient of the Gaussian can be
seen very clearly for the one single stimulus close to the dashed category boundary.
The kernel is simply put on top of the exemplar. For the other two stimuli in this
category the generalization gradients overlap quite a bit and form a bigger hump.
Regions with a high density of exemplars will therefore lead to a high output of
the exemplar network (50), if all the weights are set to one. Hence, the output
of the network can be interpreted as a measure for category membership or, if
appropriately normalized, as an estimate for the probability that a stimulus from
the category lies in a certain region of space. In statistics the same idea is used in
so-called kernel density estimators (Ashby & Alfonso-Reese, 1995).

1.3. Conclusions. We have briefly recapitulated the idea of a perceptual
space and similarity measures that are based on Shepard’s universal law of gen-
eralization. We noted again that Shepard’s law is akin to what is called a kernel
in machine learning and statistics. Ashby and Alfonso-Reese (1995) have already
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compared exemplar theories of categorization to kernel density estimators. How-
ever, recently, methods based on kernels have attracted a lot of attention in machine
learning. In what follows we will first systematically compare two psychological ex-
emplar theories (GCM and ALCOVE) to a method from machine learning: kernel
logistic regression. We will then go on to address the issue of generalization from a
machine learning point of view.

2. Exemplar models

Historically, the first use of the similarity kernel was in an identification task
(Shepard, 1957). This identification task is also the theoretical backbone of one
of the most prominent exemplar models, the Generalized Context Model (GCM,
Nosofsky, 1986). ALCOVE (attention learning covering map, Kruschke, 1992), a
connectionist variant of the GCM, also makes heavy use of the similarity kernel.
In the following we will trace the development of the GCM from the identification
task and give a detailed comparison of the GCM and ALCOVE, highlighting the
differences in the use of the similarity kernel.

Taking a kernel-view onto exemplar models also reveals their relationship to
RBF-networks and machine learning methods, especially a method called kernel
logistic regression. We believe the connections between categorization models and
their heritage become clearer if they are discussed in the context of the mapping
hypothesis, and this is what we will do first.

2.1. The mapping hypothesis. In two seminal studies Shepard et al. (1961)
and Shepard and Chang (1963) examined the relationship between identification
and categorization. In identification tasks participants learn to call each of a set
of stimuli by a unique name. This may be achieved in a paired-associate paradigm
where the experimenter shows the stimuli repeatedly to the participant and asks
her for the corresponding name. If the participant calls the wrong name she is
corrected. During this process of learning stimuli that are more similar to each
other are confused more often. This is not necessarily due to their perceptual
indiscriminability. The original idea in these studies relates back to the idea of
generalization gradients: Stimuli are confused because their generalization gradients
overlap and not because they cannot be discriminated. But of course stimuli might
also be confused due to their insufficient representation in memory. Over time
the participant will have built a better representation of the stimuli and will have
associated each stimulus with its unique label—at least as far as this is possible
given memory constraints and the discriminability of the stimuli.

A very simple hypothesis about categorization suggests that categorization
might work similar to this rote-learning mechanism for identification. For each
stimulus in the set the participant has to learn a label, the only difference being
that in the categorization task labels are not uniquely identified with a stimulus. If
there are two categories then there are only two labels but many more stimuli. In
the cited studies it was hypothesized that the participants have the same pattern
of confusions as in the identification task: More similar stimuli are confused more
often. Therefore, it should have been possible to predict the errors in categorization
from the errors in identification. Confusions within a class do not lead to mistakes
but when stimuli from different classes are confused then an error is made. This
was later called the mapping hypothesis (Nosofsky, 1986).

It turned out that the mapping hypothesis is not very good at predicting cate-
gorization performance, at least not for separable dimensions (Shepard et al., 1961).
It provides a better account for integral dimensions (Shepard & Chang, 1963). One
explanation could be that categorization is more than just rote-learning and some
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sort of abstraction, like formation of a prototype (Posner & Keele, 1968), is happen-
ing. Another explanation was suggested by Shepard et al.: Even if the underlying
representation is the same in both tasks a participant’s attention might be directed
to different dimensions of the stimuli in the two tasks. For example, if one of the
dimensions of the stimuli is more diagnostic for the categories than the other dimen-
sions participants could put more attention on it. This could reduce the confusions
along this dimension. One way to achieve this is to assume that similarity is not a
unitary concept that is invariant under the different tasks. Similarity could be de-
pendent on whether the subject is performing an identification or a categorization
task. This idea is formalized in Nosofsky’s GCM (Nosofsky, 1986). In Nosofsky’s
experiments it proved to provide a better account of categorization performance
than the simple mapping hypothesis.

2.2. The MDS-choice model. As an identification model is the starting
point for the GCM, it is natural to describe the model for the identification task
first. In each trial a participant has to choose a response from a set of possible
responses. A very simple and widely-used model for choice behavior in general
was investigated by Luce (1959, 1963, 1977). The model has close connections to
the method of paired comparisons, as well as the modeling of tournaments, and,
finally, to logistic regression (Bradley, 1976; David, 1988). It is still widely used
in in psychology and economics (McFadden, 2003; Train, 2003; Kuss et al., 2005;
Wichmann & Hill, 2001; Jäkel & Wichmann, 2006) even though it is known to be
problematic in several respects (Tversky, 1972; Luce, 1977; Görür et al., 2006). For
an identification task a model in the same spirit was first discussed by Shepard
(1957). The probability of answering with response ri when the stimulus was xj is
given by Luce’s well-known choice rule

(51) P (ri|xj) =
πij

∑N
k=1 πkj

,

where the number of stimuli and responses is N . In Shepard’s identification model
πij is interpreted as the similarity between the stimuli xi and xj (with πij being
positive). This basic model is usually supplemented with response bias terms that
we will ignore for simplicity.

If no additional structure is assumed for the πij nothing is gained from this
formulation. Shepard (1957) assumed that the πij are a monotonically decreasing
function of the distance between the stimuli xi and xj in a psychological space. To
make the model feasible he also assumed that the psychological space is Euclidean
and that the relationship between similarity and distance is exponential. Shepard’s
suggestion was essentially to use equation (48), πij = k(xi, xj).

1 This model has
become to be known as the MDS-choice model (Nosofsky, 1986).

For example, imagine the psychological space to be two-dimensional. Instead
of having to estimate the N2 probabilities of confusion only the 2N coordinates
of the stimuli have to be estimated. As Shepard (1957) assumed the distances in
the similarity kernel (48) to be Euclidean he could use classical multidimensional
scaling to recover the coordinates. Later he used his ordinal scaling method to get
independent support for the shape of the similarity kernel (Shepard, 1965, 1987).
Today, the similarity kernel is usually assumed to be known and the coordinates in

1He used p = 2 together with γ = 1. Furthermore, he constrained the πkj in the denominator
to add to one so that his similarity measure is directly given by the bias corrected confusion
probabilities.
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the multidimensional space are routinely estimated by using maximum likelihood
(Nosofsky, 1986)2.

By a simple reparameterization π′
ij = log πij it is easy to see that Luce’s choice

rule (51) is identical to the multinomial logit model (Train, 2003)

(52) P (ri|xj) =
exp(π′

ij)
∑N

k=1 exp(π′
kj)

.

It is instructive to note that if π′
ij is a linear function of some observed variables

standard logistic regression is recovered. Consider the simple case where in each
trial of an experiment there are just two possible responses and just two stimuli,
e.g. a subject having to decide which of two possible weights is given into his hand.
One might want to try whether the mass m1 of stimulus x1 and the mass m2 of
stimulus x2 can be used as predictors of choice probability. With a scale parameter
β that has to be estimated (and again ignoring response biases) the probability for
the first response when the first stimulus is presented is

P (r1|x1) =
exp(βm1)

exp(βm1) + exp(βm2)

=
1

1 + exp(−β(m1 − m2))

= logistic(β(m1 − m2))

the logistic function of the difference of the masses. As weighing follows the Weber-
Fechner law it seems more appropriate to regress on the logarithm of the mass
rather than the mass. However, even if one knew on which transformation of a
variable to regress, it raises the issue whether it should be identified with πij in
Luce’s choice rule or with π′

ij in the logit model.
In the identification model we want the similarity of the stimuli to be the vari-

able that controls response probabilities. In the MDS-choice model the similarity
is identified with πij and therefore the multinomial logistic is calculated over the
logarithmic similarity. If (49) is used as a similarity measure the similarity is an
exponential of the pth power of dp, the distance in psychological space. Hence, the
logistic is calculated on the pth power of dp and not on the similarity:

P (ri|sj) =
k(xi, xj)

∑N
k=1 k(xk, xj)

=
exp(−dp(xi, xj)

p)
∑N

k=1 exp(−dp(xixj)p)
.

Hence, when interpreted as a logit model the MDS-choice model does not make use
of the similarity kernel. It is a logit model on the pth power of dp. Interestingly,
the pth power of dp is a metric for 0 < p < 1 even though dp is not a metric for
0 < p < 1. We have discussed this metric as one of the metric alternatives to
Tversky’s famous contrast model (Tversky, 1977) above, in Chapter 3.

2.3. The Generalized Context Model. Using the mapping hypothesis it
is straightforward to work out the probabilities for the category responses once
the identification model is specified. A number of categories C1, . . ., CM with
associated responses R1, . . ., RM are defined in a way that each possible stimulus
x1, . . ., xN belongs to exactly one of the categories. The probability of observing
response Rm given the stimulus was xj is then

(53) P (Rm|xj) =
∑

xiǫCm

P (ri|xj) =

∑

xiǫCm
πij

∑N
k=1 πkj

=

∑

xiǫCm
πij

∑M
m=1

∑

xiǫCm
πij

.

2A very similar procedure for dimensionality reduction has been suggested in machine learning
recently (Hinton & Roweis, 2003)
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For simplicity we have again ignored response biases. Following the MDS-choice
model, Nosofsky identified the similarity measure (32) with πij = k(xi, xj) (Nosof-
sky, 1986, 1987). He called this model the Generalized Context Model because with
a certain choice of similarity kernel it can be seen as the continuous generalization
of an earlier exemplar model with binary features that was called Context Model
(Medin & Schaffer, 1978). Note that the identification model is recovered if every
stimulus has a unique label, that is there is a different category for each stimulus.

From a statistical viewpoint the GCM is a multinomial logit model, too. Let
us introduce the shorthand

fm(x) =
∑

xiǫCm

k(x, xi)

for the sum of the similarities. This is a special RBF-network (50) with the weights
for the exemplars in a category set to one and the other weights set to zero—but
note that a later formulation of the GCM explicitly includes weights for exemplars
(Nosofsky, 1992). Consider the case with only two categories. The GCM (53) then
simplifies to

P (R1|xj) =
f1(xj)

f1(xj) + f2(xj)

=
1

1 +
f2(xj)
f1(xj)

= logistic(log f1(xj) − log f2(xj)).(54)

Nosofsky (1986) first fitted the MDS-choice model to identification data. This
resulted in a map of the stimuli in the psychological space. Ideally, from this it would
have been possible to predict the performance of participants in a categorization
task directly. However, a naive application of the mapping hypothesis does not
give accurate predictions. As mentioned before, one explanation for this failure
posits a change in the similarity measure due to attention. Nosofsky allowed the
model some extra flexibility by allowing the weights αi in the distance dp (47) to
be different in the identification and the categorization task. A higher weight for
a dimension may be interpreted as allocating more attention on this dimension.
The categorization model that is constrained in this way, with all free parameters
except the weights determined by the identification task, was able to account for
his categorization data.

2.4. ALCOVE. Inspired by the success of the GCM, and probably also by
the general excitement about neural network models at the time, Kruschke (1992)
developed a connectionist variant of the GCM. As crucial ingredients for his model
he identified the similarity measure that can be given a tuning curve interpreta-
tion and the attention weights that Nosofsky used. He formulated the model as
a network and added a backpropagation learning algorithm to account for the ad-
justment of the attention weights—hence the name ALCOVE (attention learning
covering map).

There are input nodes for each psychological dimension and they can be scaled
with the attention weights. In one version of ALCOVE, there is a neuron in the
hidden layer for each exemplar that occurs in an experiment. The activation of the
hidden layer neurons is determined by the similarity measure, that is the similarity
of the input to the stimulus they are tuned to. This version of ALCOVE is most
similar to the GCM in that both assume that there is an explicit representation
of the exemplars and only the exemplars. The “covering map” in the acronym
ALCOVE actually refers to another variant of ALCOVE where it is assumed that
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the hidden layer neurons cover the whole input space. Even before the network sees
any exemplars there are neurons tuned to parts of the input space. In both cases,
the response of a hidden neuron that is tuned to a stimulus xj to a presentation of
stimulus xi is k(xi, xj).

There are important differences between ALCOVE and the GCM. In the GCM,
as given in equation (53), the similarities to all exemplars are simply added up. In
ALCOVE the output neurons collect a weighted sum of all hidden neurons. Assume
again there are M categories C1, . . ., CM and one output neuron for each category.
The activation fm of the neuron that is responsible for category Cm is defined as a
weighted sum of the activation of the hidden layer neurons:

fm(x) =

N
∑

i=1

wmik(x, xi).

Each output neuron m has its own weights that are collected in a vector wm. Each
output neuron is an RBF-network with a kernel given by the similarity measure (see
equation (50) and Figure 6). Instead of using Luce’s choice rule and generating the
probability for the category responses with the mapping hypothesis, ALCOVE uses
the logit response rule (52) directly on the weighted similarities to the exemplars
without recourse to an identification task

P (Rm|xj) =
exp(fm(xj))

∑M
m=1 exp(fm(xj))

.

An identification task can of course be set up by having as many categories as
stimuli but the identification and the categorization task cannot be linked by the
mapping hypothesis. This important conceptual difference between the GCM and
ALCOVE should not be overlooked because the mapping hypothesis provided the
main motivation for the GCM.

For obvious reasons ALCOVE is called kernel logistic regression in machine
learning and statistics (Hastie et al., 2001). It is an RBF-network combined with
a logit model. In the important case where there are just two categories ALCOVE
reduces to

P (R1|xj) =
exp(f1(xj))

exp(f1(xj)) + exp(f2(xj))

= logistic(f1(xj) − f2(xj)).(55)

The first term in the logistic function is a non-parametric measure for the degree
that the stimulus belongs to the first category. The second term does the same for
the second category. The logistic function is simply applied to the difference of the
two category scales3.

2.5. Comparison of GCM and ALCOVE. Figure 3 shows a comparison
between ALCOVE and the GCM for a simple two category classification task. For
both models the attention and the exemplar weights are set to one. Both models
are depicted with the Euclidean and the city-block metric. On the equivocality
contour the summed similarity to all exemplars of one class equals the summed
similarity to the exemplars of the other class (Ashby & Maddox, 1993). As we
assume subjects are unbiased the probability for the subject to respond with one
class is one half. The equivocality contour is shown as a dashed line. First note
that the equivocality contour is the same for the GCM and ALCOVE. ALCOVE

3In the two-category case ALCOVE is heavily overparameterized. There is a full RBF-
network f1 with as many weights as exemplars for category one and a full network f2 for category
two. One RBF-network f = f1 − f2 with the weights set to the difference, w1i − w2i, would be
enough.
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Figure 3. A comparison of GCM and ALCOVE for the city-block
metric (p = 1) and the Euclidean metric (p = 2). Circles and
crosses depict exemplars from two classes. For both categorization
models the attention and the exemplar weights are set to one. The
grayscale shows the response probabilities that would be obtained
for a new stimulus at each position. White areas are classified
as ‘cross’ with probability one. Black areas belong to the other
class. The dashed line depicts the equal-probability contour which
is the same for the GCM and ALCOVE. Outside the generalization
gradients of the exemplars the models make very different predic-
tions.

performs logistic regression on the difference of the summed similarities (55) and
therefore the choice between Euclidean and city-block only makes a difference close
to the exemplars. Beyond the generalization gradients of the exemplars categoriza-
tion performance drops to chance level because the summed similarities go to zero.
ALCOVE and the GCM make very different predictions on stimuli that are outside
the generalization gradients for the exemplars. The GCM operates on the log of
the summed similarities (54). Therefore, points that are clearly on one side of the
decision bound are categorized more easily in the GCM.

Showing no generalization beyond its generalization gradients one could there-
fore say that ALCOVE behaves like Spence’s classic model for discrimination learn-
ing (Spence, 1937) and thus shows no “true” categorization behavior. To illustrate
this in the simplest situation possible imagine that there are just two categories
with only one stimulus each. Further assume that the perceptual space is only
one-dimensional. Such a one-dimensional space is depicted in Figure 4. The dotted
lines depict the generalization gradients for the two stimuli from the two categories.
One stimulus (with positive values on the right y-axis) is located at x1 = +1 the
other stimulus is located at x2 = −1 (with negative values on the right y-axis). The
generalization gradients of the stimuli overlap even though they belong to different
categories. Let us calculate the probability that ALCOVE will categorize a new

66



stimulus x as belonging to the same category as x1 by using equation (55) and the
similarity kernel (49):

P (R1|x) = logistic(f1(x) − f2(x))
= logistic(exp(−dp(x, x1)

p) − exp(−dp(x, x2)
p))

= logistic(exp(− |x − x1|p) − exp(− |x − x2|p)).

As before, we have simply assumed that the weights for each of the exemplars is
set to one. Therefore, the response of category scales f1 and f2 is directly given
by the generalization gradient for the two stimuli x1 and x2, respectively. The
probability that ALCOVE responds with category one (R1) is shown as a dashed
curve in Figure 4 (the scale is on the left y-axis). The Gaussian case where p = 2 is
given in the lower panel and the exponential with p = 1 is given in the top panel.
As the distance from the two categories increases towards the right or left end of
the x-axis the similarity to both stimuli goes to zero. For a new stimulus x that lies
outside the generalization gradients of both stimuli the probability of responding
with either category is close to one half.

In contrast to ALCOVE, the GCM is capable of categorization beyond its
generalization gradients. Intuitively, if a subject has really learned to categorize
the two stimuli—as opposed to only discriminate them—one would expect that
stimuli that are more extreme than the training exemplars are categorized easily.
This criterion is used in animal studies to define categorization (e.g. Ohl, Scheich, &
Freeman, 2001). In the example in Figure 4 stimuli that have a larger x-value than
x1 should be categorized easily because they are further away from zero. While
this may sound like subjects have to implement an explicit rule in order to behave
accordingly the GCM shows this behavior without representing a decision bound
explicitly. This can be illustrated in the simple one-dimensional case with only two
stimuli. Using the same assumptions as for ALCOVE in this example the GCM
(54) becomes:

P (R1|x) = logistic(log f1(x) − log f2(x))
= logistic(−dp(x, x1)

p + dp(x, x2)
p)

= logistic(− |x − x1|p + |x − x2|p).

The logistic function is calculated on the distance and not the similarity kernel
(because there is only one stimulus in this simplified example the logistic and the
exponential annihilate each other). The exact behavior of the GCM depends on the
exponent p. In our example, if p = 2 the logistic will depend on x. The bigger x

the higher the probability that a stimulus is categorized as category one. For p = 1
the response probability does not depend on x if x is bigger (smaller) than x1 and
x2.

2.6. Conclusions. We have traced the history of exemplar models and the
similarity kernel back to the work of Shepard (1957, 1958) on generalization gra-
dients and identification tasks. A bit later the idea to link identification and cate-
gorization via the mapping hypothesis was first tested experimentally (Shepard et
al., 1961; Shepard & Chang, 1963). In parallel Shepard (1962) developed his ideas
on ordinal MDS. Using the concept of attention weights Nosofsky (1986, 1987)
was able to assemble all the parts into a working model of categorization and link
it to the existing literature on exemplar based categorization (Medin & Schaffer,
1978). A bit later still, Kruschke (1992) suggested a connectionist variant of the
GCM that is closely related to RBF-networks (Poggio, 1990) and kernel logistic
regression (Hastie et al., 2001). We have seen that both, the GCM and ALCOVE,
are based on the logit rule and the use of the similarity kernel but with important
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Figure 4. A comparison of GCM and ALCOVE for the simplest
case with just one dimension and only one stimulus per category.
The dotted lines depict the generalization gradients (scale on the
right axis) for two stimuli. The stimulus for category one is cen-
tered at +1 and the stimulus for category two is centered at -1 with
negative similarity values. The probability that ALCOVE would
respond to a new stimulus with category one is given as the dashed
line (scale on the left axis). The response probability of the GCM
is given as a solid line.

differences. In contrast to the GCM, ALCOVE does not use the mapping hypoth-
esis. Also, ALCOVE does not show much categorization beyond its generalization
gradients. This demonstrates that the way the generalization gradients enter the
response rule in a categorization model has an influence on how new stimuli will
be classified. Whether this classification is likely to be correct is, however, also
influenced by other factors that we will discuss in the next section.

3. Generalization

There is an intriguing duality in fitting a categorization model to human catego-
rization responses. A subject performing a categorization task produces categorical
data that is then analyzed by fitting a categorization model, not to the category
labels that the subject learned but to the categorical responses of the subject. A
categorization model, a classifier in machine learning terms, can be applied to any
data with categorical responses—be it a problem of medical diagnosis, bioinformat-
ics, machine vision or participants pressing buttons in a psychological experiment.
A human trying to learn new categories in a categorization experiment has to solve
the same statistical problem as a machine classifier that is used to explain some
categorical data. Both, humans and machines, have to try to find a regularity in the
data they observe. Hence, the issue of generalization arises twice in psychological
categorization models. First, there is the issue whether a chosen model can explain
the category responses of subjects in an experiment and whether the model will be
able to generalize to new experimental situations. Second, there is also the issue of
whether a human subject who has learned a category according to the model would
be able to generalize to new stimuli—that is whether the category is learned well.

68



A very flexible model like kernel logistic regression will give a good statistical
description of many data-sets and will show a good generalization performance in
many applications, including psychological modeling, if it is used properly. Re-
cently, the issue of whether psychological models, and categorization models in
particular, provide a good statistical description of experimental data has received
increased attention (Pitt et al., 2002; Pitt, Kim, Navarro, & Myung, 2005). The
crucial question always is how well will the model predict future data, that is will
it generalize.

When applied to human responses in a categorization task a statistical model
like kernel logistic regression also suggests how humans perform the categorization
task. Providing a good statistical description of the experimental data alone can-
not be the hallmark of model selection in this case. It is certainly a necessary
prerequisite but the process model that is suggested by the categorization model
also has to be psychologically plausible. The development of the GCM was guided
by the mapping hypothesis. It was not just a blind application of the logit model.
Similarly, ALCOVE is not just an application of kernel logistic regression but in
addition to accounting for the response probabilities it also tries to account for
the time-course of learning. All three—the GCM, ALCOVE, and kernel logistic
regression—assume the underlying representation that the subject uses is based on
storing exemplars in memory.

While the experimental evidence for exemplar theories has been much debated,
the kernel-view gives theoretical justifications for using exemplar theories in the
first place. This section deals with the important problem of how subjects can
generalize in categorization tasks. How is it possible to assign the right category
label to a new stimulus that has never been encountered before based on the limited
experience with other stimuli of the same kind? If categorization is said to be a
useful behavior then mostly because of its role in induction and prediction (Ander-
son, 1991). Correct categorization allows organisms to apply knowledge about a
category to an individual object. Hidden properties can be inferred and interaction
with the object can be planned. In the exemplar models that we have presented
generalization is explained by appealing to similarity. Psychologically, this makes
a lot of sense because it links categorization behavior with classic work in stimu-
lus generalization for classical conditioning and discrimination learning. Based on
Shepard’s work exemplar theorists have basically completely identified similarity
with generalization. However, we will argue that exclusive reliance on similarity
will not necessarily lead to good generalization performance. There are additional
statistical considerations that need to be taken into account. This will not come as
a surprise to the critics of exemplar theories who have always doubted that merely
remembering exemplars can lead to proper categorization. This does, however, not
mean that exemplar models cannot generalize. Quite to the contrary: In machine
learning, kernel methods are among the most successful tools precisely because they
are known to generalize well—if they are used wisely. We will show how exemplar
theories can be made to reliably extract the structure underlying a category. To
this end, we will discuss how kernel methods in machine learning and statistics deal
with the problem of generalization.

3.1. Kernel density estimation. The category learning problem is often
phrased as a density estimation problem (Aizerman, Braverman, & Rozonoer,
1964a; Fried & Holyoak, 1984; Nosofsky, 1990; Ashby & Alfonso-Reese, 1995).
Imagine two classes, exemplars from each category are drawn from a probability
density function that completely determines the distribution of features within each
category. If a learner knew the distribution of features within a category she could
examine the features of a new stimulus and assign it to the category with the
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Generating model Specificity too high

Specificity too low Optimal specificity

Figure 5. A two class problem. Samples from two classes (crosses
and circles) are generated from two overlapping Normal distribu-
tions. In the upper left panel the difference of their densities is
shown as gray-levels and the optimal decision bound is shown as
a dashed line. The other panels show kernel density estimates of
the two classes with varying specificity of a Gaussian kernel and
the corresponding decision bounds.

highest likelihood of having generated this pattern of features. Hence, learning to
categorize could mean learning the distribution of features4.

The upper left panel in Figure 5 gives an example. It shows a two dimensional
stimulus space. The features of each stimulus are represented by coordinates in
the stimulus space. This space could either be a physically specified space or a
perceptual space. The difference of the densities of two overlapping Normal dis-
tributions is indicated by the gray levels. The darker regions correspond to high
density regions of one of the classes whereas the lighter regions correspond to the
other class. Probabilistic category structures similar to this one are frequently used
in experiments (Fried & Holyoak, 1984; Ashby & Gott, 1988; Ashby & Maddox,
1992; McKinley & Nosofsky, 1995, 1996). We have drawn ten exemplars from each
of the distributions for illustration (circles and crosses).

As we know the distribution of the two classes we can calculate the optimal
decision bound between the two classes which for two Normal distributions is gen-
erally quadratic (Ashby & Maddox, 1993). The optimal decision bound is shown
as a dashed line. A subject that tries to maximize performance, that is correct
responses, should place the decision criterion along the optimal decision bound.
On one side of the decision bound the subject should always choose one category
label and on the other side she should always choose the other label. This sharp
bound without probabilistic responding will give the best generalization perfor-
mance. However, subjects may not respond deterministically and different models
make different assumptions about how probabilistic decision are (Ashby & Mad-
dox, 1993). In the following we will ignore this additional complication and only

4It is, however, potentially easier to directly learn the decision function rather than trying to
solve the difficult problem of density estimation first (Vapnik, 2000).
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talk about generalization performance under the assumption of (almost) determin-
istic responding. But we want to mention that there is evidence that subjects do
respond deterministically under certain circumstances (Ashby & Gott, 1988) and
that exemplar models can be adapted to account for this (Ashby & Maddox, 1993).

Even though we can calculate the optimal decision bound for the example in
Figure 5, the subject cannot know the true distributions because all the subject has
observed is a limited number of exemplars from these two categories. Therefore,
the subject cannot respond optimally. One possible strategy in this case is to try
to estimate the two category distributions from the observed exemplars and choose
a decision bound that would be optimal for the estimated category distributions.
This can be done by assuming a particular parametric family for the category
distributions and trying to estimate their parameters. For example, a category
learner may assume that the distributions are Normal in which case she has to
estimate means and covariances (Fried & Holyoak, 1984). This strategy will work
well if the underlying category structure that she tries to learn is approximately
Normal. A more flexible category learner would, however, try to avoid making very
specific assumptions about the unknown distributions.

Exemplar models have been compared to the more flexible (non-parametric)
kernel density estimators (Ashby & Alfonso-Reese, 1995). In the simplest exemplar
model each data point is replaced by a kernel function, e.g. a Gaussian kernel.
As explained above the summed similarity to all exemplars from one class can be
seen as a density estimate. The upper right panel of Figure 5 shows such a kernel
density estimate. Black areas have a high similarity to the exemplars of one of
the classes (circles) and white regions have a high similarity to exemplars of the
other class (crosses). For the density estimator a high similarity to exemplars from
one class translates into a high likelihood that a new stimulus that falls into this
region belongs to the corresponding category. The black solid line indicates the
equivocality contour where the similarity to the exemplars from one class equals
the similarity to the exemplars from the other class. This equivocality contour
could be used as a decision bound.

3.2. Finding the right kernel. In the example in the upper right panel of
Figure 5 the specificity, that is the width, of the similarity kernel is chosen to be
too narrow. New stimuli are essentially categorized in the same way as the most
similar past exemplar. If this exemplar happens to lie on the wrong side of the
optimal decision bound it is very likely that a wrong decision will be made. The
similarity kernels of different exemplars hardly overlap and therefore generalization
to new stimuli is poor. The decision bound that the category learner chooses is
able to categorize all past exemplars perfectly but only because she has learned the
idiosyncrasies of this particular set of exemplars. This is called overfitting. The
learner has not learned anything about the structure of the categories but instead
has only learned the labels and the exemplars by heart. The bottom left panel
shows the opposite case where the specificity of the kernel is chosen to be too low.
A wide similarity kernel means that exemplars far away from a new stimulus can
influence the guess to which category it belongs. Also in this case the resulting
decision bound will be very different from the optimal decision bound. Hence,
it is important to choose the width of the similarity kernel to be appropriate for
the problem and the sample size at hand in order to assure good generalization
performance. The lower right panel of Figure 5 shows the decision bound that
results from a well-chosen kernel width.

Sometimes it may be possible for a subject to choose a reasonable kernel width
before seeing the first exemplars but in general the specificity and the relative
contribution of the attention weights have to be adapted by learning as well. In
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Overfitted Regularized

Figure 6. Unless regularized an exemplar model with exemplar
weights will overfit.

machine learning choosing a kernel and setting the parameters of the kernel is
considered to be a model selection problem. In psychological models the form of
the kernel is given but its parameters may be adapted during learning. ALCOVE
adapts its attention weights during learning but Kruschke (1992) does not directly
address generalization performance. In machine learning a common way to choose
the best parameters for the kernel is by using cross-validation procedures (see Pitt
et al., 2002, for an overview on model selection and cross-validation). Instead of
trying to minimize the error on all the known exemplars—which can always be
driven to zero by choosing a narrow enough kernel as seen in Figure 5—one tries
to obtain an estimate of the generalization error by repeatedly splitting the data
into a training and a test set. For a certain setting of the specificity one asks
how well the model uses the exemplars in the training set to predict the category
membership of the exemplars in the test set. The parameter value that gives the
lowest estimated generalization error is the one that will be used. This procedure
was applied to obtain the specificity value for the lower right panel of Figure 5. We
are not suggesting that human subjects use a procedure akin to cross-validation but
we want to point out that from a normative point of view the choice of similarity
kernel is crucial. If the similarity kernel is adaptable then subjects should pay close
attention to their generalization performance while changing it.

3.3. Overfitting with exemplar weights. The problem of overfitting be-
comes even more pressing with the introduction of exemplar weights into catego-
rization models—as already seen in Chapter 2. Both ALCOVE and a later version
of the GCM have such weights (Kruschke, 1992; Nosofsky, 1992). It is desirable to
introduce these weights for several reasons. It is unlikely that subjects are able to
remember all exemplars and be able to attach the same weight to each of them.
Probably there will be frequency and recency effects as well as forgetting. Some
of the exemplars are more representative for a category than others and may get a
greater weight. Furthermore, from a statistical point of view the exemplar weights
introduce a greater flexibility which makes it possible to learn more complicated
decision bounds. However, if these exemplar weights can be modified by learning
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it follows that each exemplar has its own free parameter—an almost sure recipe for
overfitting (Pitt et al., 2002).

Recall that ALCOVE is built on an RBF-network. The RBF-network imple-
ments a function by expressing it as a weighted sum of kernel functions centered
on the exemplars:

(56) f(x) =

N
∑

i=1

wik(x, xi).

As noted before, Poggio suggests RBF-networks as a biologically plausible model for
brain function (Poggio, 1990; Poggio & Bizzi, 2004). It is a common view to see the
brain as a supervised learning machine. The network gets some input, calculates a
function and receives feedback on the error it has made. This basic set-up is used
in most artificial neural network approaches and underlies the backpropagation
algorithm (Rumelhart et al., 1986). Hence, learning means to adapt the weights
in equation (56) such that the error is minimized. The function that ALCOVE’s
backpropagation learning algorithm is trying to learn outputs a plus one for one of
the categories and a minus one for the other category.

It is possible to give the optimal weights for this function without running a
backpropagation algorithm. Let f be a vector of the function values fi = f(xi)
that we want the function to take on the exemplars. Let K be a matrix with
entries k(xi, xj) in the ith row and jth column. This matrix is called the kernel
matrix. Let w be the vector of weights that we seek to implement the function.
With this notation we can rewrite the neural network (56) in matrix notation as
f = Kw. As shown in Chapter 2 K is positive semi-definite, if k is a positive
definite kernel. For many kernels, such as the Gaussian, K is even positive definite
and therefore invertible. Hence, we can find unique weights such that the function
f makes no error at all on the exemplars: w = K−1f . The resulting function f for
the exemplars from Figure 5 is shown in the left panel of Figure 6. This function
outputs a plus one for all exemplars from one of the categories and a minus one for
all exemplars of the other category.

The fitted function does not capture the underlying regularity well. The rea-
son for this is that by freely allowing the weights to be adapted we can override
the similarity based categorization. The exemplar weights defeat the purpose of
introducing a similarity measure for the stimuli. The similarity measure is intro-
duced because similar stimuli should be treated similarly. Very similar stimuli are
very likely to belong to the same category. However, the exemplar weights can
be adjusted in a way that even very similar stimuli belong to different categories
without interfering with each other. Imagine the case where we only have two very
similar stimuli x1 and x2 that have very different function values f(x1) = 1 and
f(x2) = −1. Say, their similarity is .99 and self-similarity is 1. In order to make
the network (56) output the the right values, the small difference of .01 between
their similarity and their self-similarity needs to be compensated by large weights
of 100 and −100.

3.4. Regularization, revisited. One way to deal with overfitting in neural
networks is regularization (Bishop, 1995; Orr & Müller, 1998). This is the approach
discussed in Chapter 2 above and it is also used for kernel logistic regression (Hastie
et al., 2001). The basic idea in regularization is that weights are not allowed to
become too big. As large weights can override the similarity based categorization
the weights should be as small as possible. This is achieved by trading-off the
error that the classifier makes with the size of the weights. Recall that learning
in the neural network setup means finding weights w such that a loss function
L(f) is minimized (where f is the function that an exemplar net with weights w
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implements). Let us call the error that the classifier makes on the training exemplars
c(f). The penalty for large weights is called a regularizer and we denote it with
Ω(〈f, f〉) here. With this notation the loss function that a regularized RBF-network
minimizes becomes (see Eq. 25 above):

(57) L(f) = c(f) + Ω(〈f, f〉).
The regularizer reflects a “complexity” constraint on the function that the net-

work implements. It is good if the the available data is fitted well but this should
not be done at all costs. The fitted function should not be too complicated because
complicated functions are more likely to overfit. Most model selection criteria trade
goodness of fit versus model complexity (Pitt et al., 2002).

The right panel of Figure 6 shows the same categorization problem as before
but this time regularization techniques were used. The gray levels code a function f

of the form (56) that minimizes L(f) in equation (25) with c chosen to be squared
error and Ω chosen to be linear in the squared length of the vector w. For this
loss function and several other interesting loss functions the optimal weights w

are unique and can be found easily (see the discussion of the representer theorem
and the regularization example in Chapter 2). Because of the regularization the
category learner did not try to fit the available exemplars perfectly but instead
traded off goodness of fit with the penalty term. Clearly, the model is closer to
the optimal decision bound than without regularization. Intuitively speaking the
regularizer penalizes large exemplar weights that are necessary to make two similar
stimuli have different category labels.

It should be emphasized again that the exemplar network by itself does not
guarantee a good generalization performance. After all, the exemplar network can
always implement a function that can fit all exemplars perfectly—no matter what
they look like. It is the joint choice of the kernel and the regularizer that determines
the generalization performance of the network. The kernel captures some assump-
tions about the category structure. The regularizer penalizes greedy optimization
of goodness of fit. Different problems require different kernels and different regular-
izers. In machine learning the kernel and the regularization parameters are usually
chosen by cross-validation.

3.5. Learning a category with ALCOVE. The learning algorithm of AL-
COVE greedily tries to minimize the classification error on the exemplars. In AL-
COVE the error can be minimized in two ways: Firstly, by adjusting the attention
parameters and therefore the generalization gradients (47) and secondly by adjust-
ing the exemplar weights (56). We have shown above that for such models there is a
danger of overfitting. If ALCOVE is shown the same exemplars over and over again
its backpropagation algorithm can find a solution that categorizes these exemplars
perfectly—no matter what the category structure is. In fact, even if ALCOVE’s
attention weights were non-adaptable there would always be a set of exemplars
weights that allows perfect classification. As ALCOVE has been quite successful in
describing subjects’ learning curves in various categorization tasks this raises the
question whether human subjects do also overfit. Considering that humans seem to
categorize new stimuli reliably in every-day life this seems, however, unlikely. But
perhaps humans do overfit in the experiments that they perform in the laboratory,
and laboratory experiments are what exemplar theories try to model.

In most of the earlier experiments in favor of exemplar theories participants
were shown a small number of exemplars over and over again. Remember that
in the classic work of Shepard et al. (1961) and Shepard and Chang (1963) the
original motivation was to see whether categorization can be described as mere
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rote-learning of labels—this was called the mapping hypothesis. Only eight stimuli
were presented to the subjects, there was no noise and there were no transfer items.
The GCM, too, was set up in order to link categorization with a rote-learning
identification task and the accompanying experiments used only a small number of
stimuli (Nosofsky, 1986). Also the experiments by Medin and Schaffer (1978), which
are widely seen to provide good evidence for exemplar theories, have recently been
criticized on the grounds that they used only few stimuli and poorly differentiated
categories (Smith & Minda, 1998, 2000). Hence, subjects are perhaps encouraged
to adopt an exemplar-memorization strategy in experiments even though they may
not do so in every-day categorization. Some of the categories used in psychological
experiments have so little structure that rote-learning of exemplars is in fact the
only strategy that will make it possible to solve the task (Shepard et al., 1961;
Feldman, 2000)5. If there are transfer items in these experiments they are only
used to assess the predictions of the model (e.g. Medin & Schaffer, 1978; Nosofsky,
1986). There is usually no right or wrong answer for the subjects. Therefore, there
is no rational strategy to which a participant’s behavior could be compared in order
to asses her generalization performance.

Other experiments have explicitly compared human performance with the per-
formance of an ideal observer (Fried & Holyoak, 1984; Ashby & Gott, 1988; Ashby
& Maddox, 1992; McKinley & Nosofsky, 1995, 1996). Those studies used over-
lapping probabilistic categories like the one shown in Figure 5. This scenario is
perhaps more akin to natural category learning. Contrary to many categories in
psychological experiments, natural categories have a structure. Presumably it is
this structure that humans learn when they learn a category. Rosch and colleagues
(Rosch & Mervis, 1975; Rosch et al., 1976) have argued that on the basic level
the stimuli within a natural category share perceptual properties and that the
distribution of the properties of a category are not completely random—but also
not deterministically defined by necessary and sufficient conditions. As very lit-
tle is known about the actual structure of natural categories we may choose to
use categories like the one shown in Figure 5 as a proxy. This has the advantage
that the number of possible exemplars is infinite and subjects never encounter the
same exemplar again. Furthermore, there is an objective way to assess a subject’s
generalization performance. Clearly, under these conditions a strategy that sim-
ply remembers all encountered exemplars seems unreasonable. Some of the above
studies have nevertheless successfully fitted exemplar models to human responses
(McKinley & Nosofsky, 1995, 1996).

Interestingly, in this scenario with overlapping probabilistic categories, AL-
COVE will not overfit as easily and its behavior results in exemplar networks that
are regularized. A subject encounters a new stimulus but does not know its cate-
gory label. She predicts the category of the stimulus based on previous exemplars.
Then she receives feedback about the true category label. It is reasonable to set the
exemplar weights to zero before an exemplar has been encountered. After ALCOVE
is given the true category label of a new exemplar it may be necessary to assign
a large weight to this exemplar in order to output the correct label. How much
the weights are allowed to change is determined by the learning rate parameter in
ALCOVE. If the learning rate does not allow big changes in the weights this is
akin to regularization that also penalizes large weights in order to avoid overfitting.
Limiting the influence of individual points has a regularizing effect by increasing
the stability of the solution. Indeed, solutions that are stable in the sense of not
depending too strongly on any individual training point can be shown to generalize

5Unless the subject redefines the perceptual dimensions as discussed by Shepard et al. (1961).
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well with high probability (Bousquet & Elisseeff, 2002; Poggio, Rifkin, Mukherjee,
& Niyogi, 2004).

Note also that the feedback that the subject receives is a direct measure of the
generalization error—similar to cross-validation. The prediction error is a direct
measure of her generalization performance because each stimulus is a new stimulus
that has never been encountered before. This is in contrast to experimental proce-
dures where the same stimuli are shown over and over again. Therefore, in the case
where each stimulus is a new stimulus ALCOVE does not try to minimize the error
on past exemplars but the prediction error on new exemplars. Early stopping in
artificial neural networks is used for the same reason (Orr & Müller, 1998). Hence,
for ALCOVE the learning rate parameter is crucial for the models generalization
performance.

3.6. Prototype vs. exemplar models. ALCOVE is prone to overfitting
when shown the same small number of stimuli over and over again. This does
not necessarily constitute an argument against ALCOVE because also human sub-
jects may simply memorize stimuli under such artificial conditions. Under more
difficult—and realistic—conditions where there are plenty of stimuli and perfect
categorization performance is not possible, ALCOVE behaves more reasonable: It
will not overfit easily because it has a built-in regularization mechanism and directly
minimizes prediction error. However, critics of exemplar theories may still object
to the idea that all exemplars have to be stored in memory. Some prototype models
view all stimuli as (random) distortions of the average stimulus of a category. In
experiments, artificial category structures have been set up that can be described
completely by the average stimulus, sometimes together with the covariance struc-
ture of the categories (Posner & Keele, 1968; Reed, 1972; Fried & Holyoak, 1984).
In such experiments the task of the subject is naturally described as trying to ab-

stract the idea that underlies the category. It is one thing to say that the category
structure that the subject is supposed to learn is well described by a prototype but
it is another thing to claim that subjects do extract the prototype when they learn
such a category. However, if subjects in a task where the category is indeed defined
by a prototype only memorize exemplars one would doubt that they understood the
gist of the category. It seems they would miss the underlying regularity that defines
the category if they only memorized the exemplars. But if real-world categories are
more complicated than the prototype view suggests subjects should really adopt a
more flexible strategy.

The prototype vs. exemplar debate can be framed in terms of mental represen-
tations. Subjects may store a summary representation of a category or they may
store exemplars of the category. The debate can also be seen as being about which
assumptions a category learner makes about the category she is learning (Ashby
& Maddox, 1993; Ashby & Alfonso-Reese, 1995; Briscoe & Feldman, 2006). Pro-
totype theories make very strong assumptions about the category structure. The
whole category structure can be summarized by the prototype. This will lead to a
good generalization performance even with only a few trials of learning if the cate-
gory structure to be learned is really so simple. Exemplar theories with exemplar
weights, like ALCOVE, are at the other extreme. They are very flexible category
learners and can learn more complicated category structures. However, it is not
true that they do not make any assumptions about the category structure. The
assumptions are only given implicitly by the choice of kernel and the way that the
learning algorithm sets the weights. Therefore, it is a lot harder to say, what it is
that these models learn from the exemplars. Nevertheless, even if they do not ab-
stract anything from the data they are able to learn something about the structure
of the category that enables them to generalize to new stimuli.
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Unless all the evidence in favor of exemplar theories is completely misleading
because of small and ill-defined categories in the experiments (Smith & Minda, 1998,
2000), one would hope that exemplar theories scale up to real-world categorization
behavior. Kernel methods in machine learning have already proven to be successful
in real-world applications. And as we have shown, these methods build on similar
intuitions as exemplar theories. In fact, kernel methods outperform other methods
with more restrictive assumptions, like prototype classifiers, on real-world data sets
(Schölkopf & Smola, 2002). This could suggest that the restrictive assumptions of
prototype theories are not met for natural categories and more flexible mechanisms,
as implemented in exemplar models, are needed to deal with real-world categories.

There remains the problem that seemingly all exemplars that are encountered
need to be stored. However, the exemplar idea might scale up to a realistic number
of stimuli if not all exemplars are remembered but only certain crucial ones. This
problem has also been addressed in machine learning where it is also desirable
to store only as few exemplars as necessary in memory. Intuitively, exemplars
with small weights can be forgotten without changing the overall performance of
the classifier. One of the reasons for the success of support vector machines in
machine learning is that most of the coefficients in the kernel expansion (56) are
indeed zero (Vapnik, 2000; Schölkopf & Smola, 2002). Hence, the corresponding
exemplars need not be remembered. Solutions that only require few exemplars
to be remembered are called sparse in machine learning. There are variants of
several kernel classifiers, including kernel logistic regression, that try to achieve
the same categorization performance with remembering fewer exemplars (Hastie et
al., 2001; Schölkopf & Smola, 2002). The idea that a few representatives may be
enough has been suggested in the object recognition literature (Poggio & Edelman,
1990) and is emphasized in several recent categorization models (Rosseel, 2002;
Verguts et al., 2004; Love et al., 2004). The interesting psychological question is
of course which exemplars are remembered and which are not. It could be a mere
question of primacy, recency and frequency but there could also be representational
considerations. On the one hand, some exemplars are simply better representatives
for a category than others. On the other hand, some exemplars are more important
to determine the decision bound between categories. Kernel methods in machine
learning could inspire new psychological models that do not have to remember all
exemplars but still achieve a good generalization performance, like the support
vector machine.

3.7. Conclusions. Generalization is central to theoretical approaches to the
statistical learning problem (Vapnik, 2000). In psychological categorization research
the problem of generalization is often hidden behind the prototype vs. exemplars
debate. Prototype theorists assume very restricted category structures and can
therefore generalize well even with very few exemplars (Smith & Minda, 1998)—
if their assumptions are true. Exemplar theories can deal with very complicated
category structures but are prone to overfitting if not regularized properly. Our
contribution here is to directly address concerns about generalization performance
of exemplar theories by demonstrating how good generalization may be achieved.
Our discussion has mainly been guided by regularization techniques as they are
used in machine learning. We demonstrated that ALCOVE has mechanisms that
are akin to regularization already built-in. The question whether humans regu-
larize in a similar way, and if they do, what their regularization looks like, opens
new directions for empirical research. There is evidence that humans cannot learn
arbitrary category structures and that some categories are harder to learn than
others (McKinley & Nosofsky, 1995; Feldman, 2000; Minda & Smith, 2001; Ashby,
2001; Alfonso-Reese, Ashby, & Brainard, 2002; Briscoe & Feldman, 2006). Such
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results potentially inform us about the restrictions within which category learning
is possible and may give hints to the assumptions (e.g., small exemplar weights are
to be preferred) on which humans base their category learning. Machine learning
methods also suggest a middle-ground between prototype and exemplar theorists
by showing that flexible categorization models are possible that do not need to
remember all exemplars but still generalize well.
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CHAPTER 5

Discussion

1. Exemplar models and object recognition

It has been noted in a recent review that there are parallels between the object
recognition and the categorization literature (Palmeri & Gauthier, 2004). In both
fields there are models that assume that the memorization of exemplars underlies
human performance in the respective tasks. In most object recognition tasks the
same object has to be recognized irrespective of view and lighting conditions. Often,
however, object recognition also refers to basic-level categorization. To recognize an
object is then the same as assigning it to the correct basic-level category. For cate-
gorization not only variations in view and lighting conditions need to be discounted
but also variations in shape. A major aspect of the object recognition literature is
that object recognition directly works on the images as an input to the recognition
system—and therefore variations in view or lighting are as important as clutter in
the visual scene. This is realistic because also the brain needs to work with the in-
put from the retina. And ultimately, of course, visual categorization needs to start
from the visual input. The models considered in this thesis, however, started from
a perceptual space that is closer to the way the experimenter conceptualizes the
stimuli. For example, if a participant categorizes rectangles the perceptual space
will only consist of rectangles parametrized, say, by perceived width and height.
As the perceptual space is a primitive in the theory nothing is said about how
the features that a subject perceives are extracted from the image. Without being
too specific about which features are extracted from an image there is evidence
that object recognition might be achieved by storing different views of objects and
is therefore similar to ideas presented in the exemplar model literature (Liter &
Bülthoff, 1998; Tarr & Bülthoff, 1998).

Like exemplar models, some models in object recognition explicitly make use of
RBF-networks (Poggio & Edelman, 1990; Bülthoff & Edelman, 1992; Riesenhuber
& Poggio, 1999). The similarity kernel in exemplar models is certainly suggestive
of a neural tuning curve in the same way as the RBF-kernels in object recognition
models are interpreted as neural tuning curves. However, the similarity kernel re-
sulted from work on multidimensional scaling and whether similarity in a perceptual
space is really the same as a neural tuning curve is at least debatable. Neverthe-
less, it is certainly a very attractive idea that object recognition and categorization
might be explained with the same mechanisms. Especially as these mechanisms
take the form RBF-networks that are theoretically elegant and not implausible
from a biological point of view.

2. Exemplar models and the brain

Given that object recognition and visual categorization are probably closely
related a neural model of visual categorization is likely to involve the same visual
areas as a model for object recognition. Current neural models of object recogni-
tion assume that the visual signal is processed along the ventral stream from V1
through V2 and V4 up to inferotemporal cortex (IT) (Riesenhuber & Poggio, 2000).
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Somewhere in this hierarchy invariance with respect to position, lighting and view
is assumed to be computed. Also the features that are used for categorization are
likely to be extracted in this hierarchy. These features might be linked to the per-
ceptual dimensions that form the basis of the categorization models discussed in
this thesis. To avoid confusion, the models discussed in this thesis are all purely
psychological. There is no need for a psychological theory to be reduced to a neural
theory. However, RBF-networks are suggestive of a possible link between psycho-
logical theories and their neural correlates—and some work along these lines has
been done already.

In object recognition, RBF-networks with their tuning curves have inspired
neurophysiological work in monkeys that has found some evidence for view-tuned
neurons (Logothetis, Pauls, Bülthoff, & Poggio, 1994; Logothetis, Pauls, & Poggio,
1995). Some neurons in IT do indeed show tuned responses to different views of the
same object and could be the neural correlate of RBF-cells in the models. On the
categorization side, ALCOVE has been used to model the behavior of neurons in IT
during a shape categorization task (Beeck, Wagemans, & Vogels, 2001, 2004). This
work is remarkable because it has tried to link multidimensional scaling results in
humans and monkeys with IT cell activity. And indeed the activity of IT neurons
seems to be related to the perceptual spaces derived from MDS. Also the GCM,
that does not lend itself easily to a neural interpretation, has inspired single cell
recordings in monkey IT (Sigala, Gabbiani, & Logothetis, 2002; Sigala & Logothetis,
2002). This work suggested that the representations in IT can be reshaped based
on the diagnosticity of the object features—perhaps implementing the changes in
similarity that are an integral part of the GCM. In general, IT seems to be a likely
candidate to look for the neural basis of visual similarity. It is known that IT
responds to “moderately complex object features” and that there is a continuous
organization with regard to some features (Tanaka, 1996, p. 109).

Neurophysiology suggests that extraction of visual features and computation
of visual similarity are processed along the ventral stream with IT at the top of
the hierarchy. However, even if exemplar similarity was reflected in IT there would
be more to a full neural description of categorization. Categorization behavior also
involves decision making, learning and memory components—visual similarity is
only one aspect of a full description of categorization. Hence, we would expect
that several non-visual areas of the brain are also involved in categorization, such
as prefrontal cortex (PFC), hippocampus and the basal ganglia. Especially PFC
seems to be a likely candidate to implement the actual decision rule and has in-
deed been implicated in visual categorization (Freedman, Riesenhuber, Poggio, &
Miller, 2001, 2003). While similarity and decision making were a major focus of
this thesis we have not discussed the role of memory in great depth—we have just
assumed that either prototypes or exemplars can be stored somehow. Without
doubt memory plays a crucial role in categorization. In analogy to implicit and
explicit memory systems, and based on neuropsychological evidence, Ashby and
colleagues have argued that there are at least two different categorization systems
(Ashby & Waldron, 1999; Ashby, Ell, & Waldron, 2003; Ashby & O’Brien, 2005).
One system, implemented by the PFC, mediates explicit categorization rules. This
system is highly flexible, categorization rules can be changed quickly, and at least in
humans these rules can be verbalized. The other system is mediated by the basal
ganglia and shows characteristics of procedural learning: Categorization is auto-
matic and unconscious. This system is not necessarily exemplar based. However,
we would expect that if categorization mechanisms are indeed exemplar based then
the retrieval of exemplars is more likely to be based on implicit memory mechanisms
than on explicit memory.
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3. Exemplar models and natural categorization

In as much as the brain is probably adapted to the environment that we live
in, the category learning mechanisms that it implements are probably also adapted
to the environment. We have emphasized throughout this thesis that a useful cat-
egory learning algorithm needs to be able to generalize. Furthermore, we have
suggested that regularization mechanisms might be used to improve the general-
ization performance of exemplar theories as these mechanisms have proved to be
successful in real-world applications in machine learning. However, it is incredibly
difficult to specify what constitutes a natural categorization task. But without an
understanding of natural categorization behavior it is impossible to judge whether
the models that are suggested would actually work in the real-world—especially as
most studies in the laboratory work with very reduced, artificial stimuli.

As a first step towards studying more realistic categorization processes in the
laboratory we have recently collected a database of images of leaves from different
trees. This database exhibits the complexity of natural stimuli with up to thirty
different categories while at the same time being suitable for psychophysical inves-
tigations in the laboratory. This database of natural categories should allow us to
tackle several crucial questions. First, we can get an idea about the actual gener-
alization abilities of human subjects. Of course we assume that generalization is
quite good under natural conditions but this needs to be checked. Second, we are
able to address some of the parameters that mediate learning. How many exem-
plars are needed until a participant reliably generalizes? Some exemplars are more
typical for a category, do they facilitate learning? How fast is categorization? All
these questions can provide constraints on potential models. Third, as we do not
have easily parametrized, artificial stimuli it is not clear what are the dimensions
and features that the subjects use. While this is problematic for modeling there
are ways to find out what features subjects use. We can of course use multidimen-
sional scaling methods. We can also try to find out which aspects of the shapes of
leaves are correlated with category decisions—for this we can even use some of the
machine learning techniques that were discussed in this thesis. Recently, this ap-
proach has proved to be successful in face perception and should also be applicable
to leaves (Graf & Wichmann, 2004; Wichmann et al., 2005; Graf et al., 2006).

4. Conclusions

While stronger connections with neuroscience and the object recognition liter-
ature may be desirable for work in categorization, this thesis is mainly concerned
with the connections to machine learning. As in psychology it is common in machine
learning to consider the problem of categorization in connection with similarity and
generalization. In psychology dissimilarity has traditionally been modeled as a dis-
tance in a multidimensional space and the same is true for machine learning. This
insight about similarity is of interest irrespective of whether one takes a prototype
or an exemplar view of categorization. Both of them rely on some sort of similarity
measure or distance in a multidimensional space. As exemplar theories often use
Shepard’s law we showed that they can be seen as kernel methods. In particular, the
model underlying ALCOVE is the same as kernel logistic regression. The exemplar
weights give the model too much flexibility and therefore the generalization ability
of ALCOVE needed to be assessed carefully. We have suggested that regularization
techniques could be employed to assure good generalization.

In the early days of machine learning, psychology and neuroscience were a
major inspiration that drove research in machine learning. Today, mainstream ma-
chine learning is far removed from psychological modeling but instead tries to build
systems that work for real-world problems. As this thesis has demonstrated, there
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are still important parallels between machine learning and psychology. Machine
learning has made great progress in recent years and results from machine learning
should feed back into psychology. Apart from the insights that we have presented
in this thesis machine learning methods can provide standards to which human
performance and model performance can be compared and they can suggest new
experiments (Graf & Wichmann, 2004; Wichmann et al., 2005; Graf et al., 2006).
More importantly, theoretical work in machine learning may offer a better under-
standing of the core problems of learning and categorization. For example, what
is the role of the complexity of the category that is to be learned (Feldman, 2000;
Alfonso-Reese et al., 2002; Fass & Feldman, 2003)? And under what circumstances
does a category learner generalize well? After all, human categorizers and machine
classifiers have to solve the same problem.
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