Orientation Selectivity and Contrast Gain
Control in Representations of Natural
Images

Dissertation

zur Erlangung des Grades eines Doktors
der Naturwissenschaften

der Mathematisch-Naturwissenschaftlichen Fakultat
und
der Medizinischen Fakultat
der Eberhard-Karls-Universitat Tiibingen

vorgelegt
von

Fabian H. Sinz
aus Straubing, Deutschland

Dezember 2011






Tag der miindlichen Priifung:

Dekan der math.-nat. Fakultat
Dekan der med. Fakultit

1. Berichterstatter:
2. Berichterstatter:

3. Berichterstatter:

Priifungskomission:

12. 6. 2012

Prof.
Prof.

Prof.
Prof.
Prof.

Prof.
Prof.
Prof.

Prof

Dr. W. Rosenstiel
Dr. I. B. Autenrieth

Dr. M. Bethge
Dr. M. Giese
R. W. Fleming, PhD

Dr. M. Bethge

Dr. A. Schilling

Dr. M. Giese

. R W. Fleming, PhD



I hereby declare that I have produced the work entitled: “Orientation Selectivity and
Contrast Gain Control in Representations of Natural Images”, submitted for the award
of a doctorate, on my own (without external help), have used only the sources and aids
indicated and have marked passages included from other works, whether verbatim or
in content, as such. I swear upon oath that these statements are true and that I have not
concealed anything. I am aware that making a false declaration under oath is punish-
able by a term of imprisonment of up to three years or by a fine.

Tiibingen,

Date Signature



Acknowledgements During my time at the Max Planck Institute of Biological Cy-
bernetics, which not only covers the time as a PhD student but also the time when I
worked there as a student, I met many people who greatly impressed and influenced
me on a scientific and personal level. Those people I would like to thank here. It is al-
most impossible to mention all of them, so I stick to the most important ones and assure
my gratitude to all the others.

First and foremost, I would like to thank my supervisor Matthias Bethge, whose
sharp thinking, brilliant intuition, and deep care for his lab members created an scien-
tific and personal environment I consider myself lucky to have enjoyed during my time
as a PhD student. A good deal of this environment was also due to the other members
of the Bethge lab who were great company, and who willingly and passionately en-
gaged in discussions about science and life in general which I consider one of the most
important parts in the creative process of science. In particular, for hours of whiteboard
freestyling, I would like to thank Sebastian Gerwinn, Lucas Theis, and Reshad Hos-
seini. For great discussions and advice about science, life, politics and philosophy, I am
particularly grateful to Philipp Berens and Ralf Héafner.

Beyond the Bethge lab, there are several persons who work or have worked at the
Max Planck Institutes, the Centre for Integrative Neuroscience or other research in-
stitutions whose company I enjoy and whose opinion I appreciate. In no particular
order, these are: Moritz Grosse-Wentrup, Lisa Smith, Dilan Gortir, Frank Jdkel, Elisa-
beth Hopp, Suvrit Sra, Roland Fleming, Daniel Holtmann-Rice, Steffi Jegelka, Florian
Steinke, Matthias Hein, Olivier Chapelle, Gunnar Rétsch, Jason Weston, Ronan Col-
lobert, Laura Busse, Steffen Katzner, Joaquin Quifionero-Candela, Peter Gehler, Jeremy
Hill, Nicole Frohlich, Matthias Franz, Alekh Agarwal, Leon Bottou, and Arthur Gret-
ton. I especially want to thank Bernhard Scholkopf because he hired and supported me
as a student assistant and thereby opened this great research environment to me.

Furthermore, I would like to acknowledge the German National Academic Foun-
dation (Studienstiftung des deutschen Volkes) for financial support and its academies
where I met many nice and inspiring people. Also, I would like to thank everyone at
the Graduate School for Neural and Behavioural Sciences who were always friendly
and very supportive.

Finally, I would like to thank all my friends and my family for their support and for
keeping my life balanced and happy.

I once attended a talk by nobel laureate Olivier Smithies who told us that everyone
needs a companion in life. Because it is so hard to find the right words to properly
express what should be said, I just want to thank mine the simplest way possible and
be sure that she knows what I intend to convey: Thank you Lisa.



Abstract This thesis explores the role of orientation selectivity and contrast gain con-
trol with respect to Barlow’s normative redundancy reduction hypothesis in simple
models of the early visual system. Our general approach uses the fact that—under the
goal of redundancy reduction—early vision models are density models on natural im-
ages. We identify and develop new classes of probabilistic models for natural image
patches that contain these early vision models. We use those classes to quantitatively
explore their parameter space around the early vision models statistically and informa-
tion theoretically with respect to the influence of filter shapes and contrast transforms
on redundancy reduction. We identify an optimal contrast gain control transform and
compare it to the standard model of cortical divisive contrast gain control, divsive nor-
malization. We also identify a new estimation method for the true redundancy of natu-
ral images.

Our main findings are that, in contrast to divisive contrast gain control, orientation
selectivity plays a minor role for redundancy reduction in the models investigated, and
that the cortical model of divisive contrast normalization is not the optimal redundancy
reducing contrast transformation on static image patches. However, we are able to
specify a dynamical model of cortical contrast gain control with strong redundancy
reduction, through extending the static model by adaptation to temporal correlations
between consecutive contrasts caused by fixations under natural viewing conditions.
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The difference in behaviour in different species reflect different ways of coping
with the environment, or with distinct niches of the environment. These different
behaviours have their material counterpart in different brains. Therefore the pecu-
liar nature of any animal brain cannot be explained from the physiological com-
ponents alone, the explanation necessarily involving causes residing outside the

animal, i.e. information derived from the environment.

from Manifesto of Brain Science by Valentino Braitenberg (1926-2011)



1 Introduction

In his book Vision David Marr emphasized that the visual system should be seen as an
information processing machine, and that its understanding requires knowledge of the
machine as well as the information processing task itself [Marr, 1983]. He distinguishes
three levels of understanding: the computational goal which determines what is to be
computed, the representation of the data and the algorithm achieving that goal, and the
specific neural implementation of the algorithm.

Representations and normative models It is not clear whether there is a single
computational goal that includes all the capabilities of the visual system like object
recognition, figure ground segregation, or stereo vision, and others. However, since
all higher visual areas in cortex obtain the visual information via the so called early vi-
sual system, which is the pathway from retina to primary visual cortex, it appears as if
all algorithms in the visual system start from the same cortical representation of data.
Since all higher visual areas get their signals via this pathway, there is hope that under-
standing the principles behind information representation in the early visual system
also reveals insights about the algorithms which use that representation. David Marr
stressed that the representation of information and the algorithm processing it are not
independent, because certain representations will make the computations easier, others
harder. Therefore, one would expect that an efficient algorithm uses a representation
that is especially tailored to it. For example, the Arabic representation of numbers is
better suited for addition or multiplication than the Roman.

Since the representation of visual information in primary visual cortex must serve
many goals further up in the visual system, it has been hypothesized that there might
be a general computational principle governing the representation of information in
that pathway. In particular, it has been proposed that the visual system is adapted to the
statistics of natural images in an information theoretic sense via the so called redundancy
reduction or efficient coding hypothesis [Barlow, 1961, Attneave, 1954]. Although the two
are closely related, they differ in important aspects. In the following, we will briefly
introduce both of them, work out the main differences, and motivate why we focus on
redundancy reduction here.

Efficient coding and redundancy reduction The number of possible input patterns
to the visual system is enormous and if each input pattern were equally likely, the
amount of neurons needed to represent visual patterns would be immense [Simoncelli
and Olshausen, 2003]. Fortunately, natural visual signals are highly structured and
only make up a very small fraction of all possible patterns. Due to that structure, cer-
tain parts of the signal can be predicted from others. For example, a simple but effective
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strategy for predicting the grayscale value of a missing pixel in an image is to use the
mean grayscale value of its neighbors. This strategy works because large parts of nat-
ural images are surfaces with similar grayscale. It would not work for white noise, for
instance. The structure in the signal can be used to design a representation that carries
as much information about the signal as possible. The idea is to spend little resources
on the part of the signal that can be predicted and spend more resources on the un-
predictable part. The efficient coding hypothesis acknowledges this fact and postulates
that the visual system makes best use of its resources and transmits information as effi-
ciently as possible [Barlow, 1961, Linsker, 1988, Atick, 1992, Nadal and Parga, 1994].

Information theory behind efficient coding Efficient coding can be cast in infor-
mation theoretic terms by considering the visual input and the neural response to be
random variables X and Y/, respectively. According to efficient coding, the visual sys-
tem tries to choose the representation Y such that the transmitted information about
X is maximized. The amount of information a neural response Y conveys about an
input pattern X is captured by the mutual information between X and Y. The mu-
tual information represents the average reduction in uncertainty about an input X if
the corresponding neural response Y is observed, or vice versa [Cover and Thomas,
2006]. The uncertainty about X is expressed in the joint entropy H [X], the uncertainty
after observing Y by the conditional entropy H[X|Y']. The difference between the two
yields the mutual information

I1lY;X] = H[X]-H[X|Y]=H[Y]- H[Y|X]. (1.0.1)

The mutual information of X and Y depends on their joint distribution. If X and Y
are independent, then H[Y'|X] = H[Y| and H[X|Y] = H[X], and the mutual infor-
mation attains zero, its lowest possible value [Cover and Thomas, 2006]. As soon as
X and Y are dependent, I [X ;Y| becomes positive. If Y is an invertible determinis-
tic function of X, the mutual information is maximal. In reality, however, the relation
between X and Y is probably neither of both since information might be discarded,
a single input might be represented by several neural signals, or simply due to noise.
After making certain assumptions about the relation between X and Y, the mutual in-
formation can be maximized via the choice of representation Y by maximizing entropy
in the responses H [Y] and minimizing the noise entropy H [Y'| X] at the same time.

Relation between efficient coding and redundancy reduction If the uncertainty
in the response Y for given X does not depend on X, for example when each neural
response is distorted with independent additive noise, then H[Y'|X] is constant, and
the maximization of the mutual information is equivalent to maximizing H [Y']. Under
certain technical conditions that exclude trivial maximizations of H [Y'], for example
by just increasing the signal variance, H [Y'] is maximized by making its single compo-
nents Y71, ..., Y, statistically independent [Bell and Sejnowski, 1997]. For neural popula-
tions this means that H [Y'| can be maximized by making the single neural responses



Y; statistically as independent, or, equivalently, as non-redundant as possible. The re-
dundancy reduction hypothesis postulates that this is the goal of populations of sensory
neurons. Since Y is thought to be a stochastic function of X, redundancy reduction
depends on the statistics of X. The information theoretic measure for redundancy is
the multi-information I [Y] =), H [Y;] — H [Y'] [Perez, 1977].

In general, redundancy reduction and efficient coding are not the same. In particular,
redundancy reduction does not take into account the role of noise or intrinsic uncer-
tainty. For instance, the value of H [Y'|X] might depend on X, or the dimensionality of
Y is larger than the dimensionality of X which generates an intrinsic uncertainty since
several values of Y correspond to a single value of X. In that case, maximization of
IY; X] will require a trade-off between maximizing H [Y'] and minimizing H [Y'| X].

Reasons for studying redundancy reduction However, there are good reasons to
focus on redundancy reduction hypothesis for the visual system over efficient coding.
In efficient coding, the maximization of transmitted information I [X;Y] = H[Y]| —
H Y |X] is a trade-off between maximizing the information contained in Y via H [Y]
and minimizing the influence of noise via H [Y'|X]. Intuitively, however, choosing
a representation Y that yields enough information to reliably decode the state of the
outside world with a limited number of neurons seems a much harder problem than
dealing with internal noise. In other words, when presented with a specific visual in-
put, e.g. a door, the hard problem is to find out that—among all possible things—it is
a door which is facing us at the moment, and not to deal with the noise that got into
the signal while it was transmitted from retina to cortex. In that sense, redundancy re-
duction concentrates on the more crucial problem by ignoring the noise H [Y|X] and
focusing on the maximization of H [Y'|. Apart from that, redundancy reduction by it-
self can be used as a strategy to achieve many potential goals the visual system might
have [Barlow, 1961, 1985, 1989, 2001, 2002] . For example, redundancy reduction could
in principle enable the visual system to learn the hidden causes for the sensory input
[Barlow, 1989, Bell and Sejnowski, 1997]: Redundancies in the sensory input are often
due to regularities in the objects causing it. For instance, one can think of a rigid object
as a collection of redundant points in space and time since their spatial configuration
is fixed. If the visual system is able to detect and remove those redundancies it effec-
tively has learnt a model of rigid objects and obtained an efficient representation of it.
Another motivation for redundancy reduction is that it can be seen as a way to build
a probabilistic model of the sensory input [Barlow, 1985]: The idea is related to a den-
sity estimation algorithm known as projection pursuit [Friedman et al., 1984] in which a
random variable X with an unknown source density is iteratively remapped into a ran-
dom variable Y that becomes more and more Gaussian after each iteration. Knowing
that, after enough iterations, the distribution of Y is Gaussian and knowing the indi-
vidual mappings effectively yields a density model for the input. If the Gaussian target
distribution is replaced with an arbitrary factorial distribution, i.e. one that has indepen-
dent marginals, then projection pursuit and redundancy reduction become equivalent.
For those reasons, this thesis focuses on redundancy reduction in the representation of
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visual input in the early visual system.

Scientific status of normative principles How can normative principles like the re-
dundancy reduction hypothesis be tested? As mentioned by Simoncelli and Olshausen
[2003], it is difficult to establish a firm link between neurophysiological response prop-
erties and natural image statistics.

Testing normative hypotheses in vivo The most direct way of testing the redun-
dancy reduction hypothesis would be to measure the statistical dependencies of neural
responses at the different stages of the visual pathway. Despite the large experimen-
tal difficulties there have been attempts to do this in the retina [Puchalla et al., 2005],
thalamus [Dan et al., 1996], and the primary as well as inferior temporal cortex [Bad-
deley et al., 1997, Vinje and Gallant, 2000]. Other studies also measured redundancies
or coding efficiency in the auditory pathway [Rieke et al., 1995, Chechik et al., 2002] or
insect visual systems [Laughlin, 1981]. While these studies indicate that the responses
of different neurons indeed become increasingly independent along sensory pathways,
neurophysiological tests still struggle with the fact that only a small portion of the en-
tire population can be observed and that the amount of data to estimate the information
theoretic measures is limited.

Testing normative hypotheses in silico Another way to test normative hypothe-
ses is to use models of the early visual system and optimize their free parameters on
large collections of natural images with respect to a statistical optimality criterion de-
fined by the normative principle [Simoncelli and Olshausen, 2003, Simoncelli, 2003]. If
the normative principle and the model are correct, then one would expect to find neu-
rophysiologically plausible features of the model at the optimum. This approach has
been very fruitful for understanding the interplay between the visual system and the
redundancy reduction hypothesis. Buchsbaum and Gottschalk [1983] as well as Ruder-
man et al. [1998] demonstrated that decorrelation of the three color channels of natural
images leads to blue-yellow, red-green and dark-bright color opponency as observed
in retinal ganglion cells. Atick and coworkers as well as van Hateren showed that
spatial and spatio-temporal decorrelation of natural images yields band-pass filters as
observed in the retina and thalamus [Atick and Redlich, 1990, 1992, Dong and Atick,
1995, van Hateren, 1992, Van Hateren, 1993]. Since removing second order correlations
does not uniquely specify the linear receptive fields of the model neurons, later stud-
ies introduced neurophysiological constraints in order to obtain localized and oriented
band-pass filters similar to the receptive fields of simple cells in primary visual cortex
[Sanger, 1989, Hancock et al., 1992, Shouval et al., 1997, Li and Atick, 1994]. Only after
the reduction of higher order redundancies was incorporated into the objective was it
possible to also obtain orientation selective filters without additional constraints [Ol-
shausen and Field, 1996, Bell and Sejnowski, 1997, Van Hateren and Van Der Schaaf,
1998, Lewicki and Olshausen, 1999]. By optimizing for independent groups of neu-
rons, Hyvérinen and coworkers reproduced orientation selective but phase invariant



groups of filters like in the energy model of complex cells [Hyvérinen and Hoyer, 2000,
Hyvirinen and Koester, 2007, Adelson and Bergen, 1985, Pollen and Ronner, 1983].
Finally, Schwartz and coworkers showed that divisive normalization, which is one of
the prominent non-linear functional properties of primary visual cortex [Albrecht and
Hamilton, 1982, Bonds, 1989, Heeger, 1992, Geisler and Albrecht, 1992, Carandini et al.,
1997], reduces higher order statistical dependencies of natural images [Schwartz and
Simoncelli, 2001, Wainwright et al., 2002].

Consistency conditions for tests in silico These results are encouraging evidence
in favor of redundancy reduction. However, in order for this evidence to be resilient,
further criteria must be met. First of all, the models used to reproduce neurophysio-
logical features and response properties from natural images must be realistic enough
to allow firm conclusions. It is possible that neural features arise in a model which is
too simple or not adequate, but these features would not be optimal in terms of redun-
dancy reduction in a more realistic model. Second, the results must be discriminative:
If there is a whole set of model parameters that performs well in terms of redundancy
reduction of which only a part is neurophysiologically reasonable, then redundancy
reduction is not a very strong explanation for the neurophysiological features. Third,
the assumptions about the statistics of natural images entering the model and the opti-
mization should be correct. Investigating whether these criteria are met is particularly
important for higher order redundancy reduction, since modeling and measuring them
is more difficult and subtle. Higher order redundancy reduction results mainly concern
features of the primary visual cortex, orientation selectivity and divisive normalization,
and are the main focus of this thesis.

Relation between neural population models and density models on natural im-
ages under redundancy reduction In terms of redundancy reduction, the algorithms
used in previous studies reproducing orientation selective filters similar to simple and
complex cells are equivalent to independent component analysis (ICA) and indepen-
dent subspace analysis (ISA) [Comon, 1994, Bell and Sejnowski, 1997, Hyvéarinen and
Hoyer, 2000]. These algorithms are in turn equivalent to minimizing the redundancy in
a population of independent linear-nonlinear (LN) neurons [Chichilnisky, 2001], since
an invertible element-wise nonlinearity like some of the ones used in LN-neurons for
turning the filter output into a firing rate does not change the redundancy, and it is
therefore sufficient to directly look at the redundancy of the filter outputs. However,
neurons in cortex are not independently wired units but ones that interact. One of the
most prominent interactions between neurons is divisive normalization [Heeger, 1992].
Over-complete linear models, like the one in the study by Olshausen and Field [1996],
also nonlinearily couple the neural response by a maximum a posteriori (MAP) estimate
of the neural response given the visual input. This nonlinearity can resemble certain
cortical features, like end-stopping, but it does not reproduce divisive normalization.
Additionally, there is also no guarantee that these MAP estimates yield statistically in-
dependent neural responses which would be necessary to agree with the redundancy
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reduction hypothesis.

Further need for quantitative evaluation of early vision models and natural image
statistics Concerning model discriminability, Bethge [2006] showed that the opti-
mum around orientation selective filters in linear ICA models for redundancy reduction
is very shallow. He demonstrated that after whitening, which is ascribed to stages ear-
lier than the cortex [Atick and Redlich, 1990, 1992, Dong and Atick, 1995, van Hateren,
1992], the particular filter shape only makes up for about 5% of the total redundancy
reduction. The small contribution of linear filters to higher order redundancy reduction
is mainly caused by the fact that natural image patches are not well modeled by a lin-
ear ICA model [Simoncelli, 1997, Eichhorn et al., 2009]. This means that the amount of
higher order redundancies removed by linear filters in these models is small and that
random whitening filters and orientation selective filters perform almost equally well.

The studies on the redundancy reducing effect of divisive normalization use a fixed
filter bank to model the receptive fields of simple cells [Schwartz and Simoncelli, 2001,
Wainwright et al., 2002]. It is not clear, however, whether optimizing a model which
includes divisive normalization still yields orientation selective filters as the optimal
filter shape for redundancy reduction and what the quantitative contributions of the
filter shape would then be. Additionally, previous work on divisive normalization and
higher order redundancy reduction visualized the higher order statistical dependen-
cies via so called bow-tie plots. A bow-tie plot shows the conditional distributions of
one filter response given the response of a neighboring filter [Schwartz and Simoncelli,
2001]. From these plots one can see that the variance of the conditional distribution
depends on the absolute value of the response on which it is conditioned. This leads
to the typical bow-tie shape of the plots and demonstrates the presence of variance cor-
relations. After divisive normalization, the bow-tie plots become flat which indicates
that variance correlations have been removed [Schwartz and Simoncelli, 2001]. How-
ever, bow-tie plots depend on binning of the signals and only depict one certain type of
higher order correlation. Although one can show that the underlying Gaussian scale mix-
ture model used in these studies has non-decreasing variance correlations as soon as the
distribution has higher order correlations [Wainwright and Simoncelli, 2000, Cambanis
et al., 2000, Kac, 1939], these correlations might be subtle and not be apparent from the
bow-tie plot. Since there was no quantitative evaluation of the multi-information, it
is not clear how much redundancy is left after divisive normalization. Furthermore,
it is not clear what the maximal amount of redundancies is that can be removed by
transformations like divisive normalization.

Contributions of this thesis The studies contained in this thesis address the afore-
mentioned consistency issues of

e discriminability of redundancy reduction for certain features

e adequacy of the statistical assumptions about natural images made by these early
vision models



e quantitative assessment of the influence of features on redundancy reduction.

Building upon the work of Bethge [2006], the shortcomings of linear ICA models on
natural image patches are investigated, and objectives other than redundancy reduc-
tion are assessed for which filters resembling receptive fields in primary visual cortex
show a clear advantage. A major objective in all the studies is to obtain quantitative
measurements which, in the end, will hopefully enable us to rule out certain models
in favor of others. Unfortunately, quantitative measurements of probabilistic and in-
formation theoretic quantities on natural images are difficult to obtain. Therefore, the
models and their extensions developed in this thesis have to make a trade-off between
tully capturing the complexity of cortical neural networks and allowing for quantitative
measurements at the same time. However, by thoroughly analyzing simpler models
tirst, it is easier to disentangle the essential mechanisms and their interplay.

The general methodological approach The common scheme in addressing the above
mentioned questions in a quantitative manner is to use the fact that, under the goal of
redundancy reduction, different neural models correspond to different statistical mod-
els on natural image patches (see Figure 1.0.1). We embed these models into a larger
class of probability distributions which allows us to explore the parameter space of
these models with information theoretic and probabilistic measures with respect to fea-
tures like filter shapes or contrast gain control. To this end, the studies in this thesis
identify and develop new classes of probability distributions that better match the reg-
ularities found in natural images. These models not only form a better basis for linking
natural image statistics to neural response properties, but also are a contribution to the
field of natural image statistics themselves.

From these classes of distributions, a unique divisive normalization mechanism is
derived that is optimal with respect to redundancy reduction. A link between the like-
lihood of natural image models and the amount of redundancy reduction they achieve
is established and used for quantitative model comparison between models with or
without divisive normalization mechanisms. A new class of probability models is de-
veloped that allows for the quantification of the relative influence of orientation selec-
tive filters on redundancy reduction in complex cell models as proposed by Hyvirinen
and coworkers [Hyvarinen and Hoyer, 2000, Hyvarinen and Koester, 2007]. By devel-
oping a new information theoretic estimation method, we get better estimates of the
true redundancy of natural images and take a first step in developing models for whole
images instead of image patches. Finally, we explore how the physiologically plausi-
ble divisive normalization model compares to the optimal transformation in terms of
redundancy reduction. It is demonstrated that a static model of cortical divisive nor-
malization is not sufficient for strong redundancy reduction but that a simple dynamic
adaptive mechanism which uses temporal correlations in the images as induced by eye
movements can significantly enhance the performance.

By developing new probability models for natural images, characterizing them math-
ematically, using them to investigate normative hypotheses for the early visual system,
and by developing new information theoretic estimation methods, this thesis provides
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Figure 1.0.1: Neural population models and their probabilistic counterpart. Since an in-

vertible element-wise non-linearity on the outputs does not change the re-
dundancy, it has no influence on the redundancy reduction results and can
also be ignored in all models. a: A population of linear-nonlinear simple
cell models for which the output is required to be statistically independent
is equivalent to an independent component analysis (ICA) model. Models
like this are the subject of Eichhorn et al. [2009]. b: A population in which
the response of oriented filters are squared and grouped by summation
correspond to the energy model of complex cells. If the outputs after sum-
mation are required to be independent, the model corresponds to an inde-
pendent subspace analysis (ISA) model. Models like this are the subject
of Sinz et al. [2009b]. ¢: A population in which the linear filter responses
are transformed by a (divisive) mechanism on the L,-norm correspond
to a population of simple cells with contrast gain control mechanism. If
the outputs are required to be statistically independent, the correspond-
ing probabilistic model belongs to the class of L,-spherically symmetric
distributions. Such models are the subject of Sinz and Bethge [2009], Sinz
et al. [2009a], and Sinz and Bethge [submitted]. d: A population in which
the response of oriented filters are raised to a positive power, grouped by
summation, and transformed by a (divisive) mechanism on the L,-norm
of the grouped responses corresponds to an energy model of complex cells
with contrast gain control. If the outputs are required to be statistically
independent, the corresponding probabilistic model belongs to the class
of Ly-nested symmetric distributions. Such models are the subject of Sinz
et al. [2009b] and Sinz and Bethge [2010].



contributions to the field of computational vision, natural image statistics, mathemati-
cal statistics and information theory.






2 Results

This section briefly presents the research questions and the results of every article in-
cluded in this thesis.

2.1 Natural Image Coding in V1: How Much Use Is
Orientation Selectivity?

Motivation Several previous studies reported that orientation selective filters yield an
additional reduction of higher order redundancies of about 20% for gray value images
and over 100% for color images when compared to decorrelating filters like the ones ob-
tained from PCA [Lewicki and Olshausen, 1999, Wachtler et al., 2001, Lee et al., 2002].
If these findings were correct, it would mean that, in contrast to what was reported in
[Bethge, 2006], the shape of the filter which is determined by the choice of an orthog-
onal transformation after whitening makes a significant difference for the reduction of
higher order redundancies.

The goal of the study was to carry out a thorough quantitative analysis of how much
higher order redundancy reduction can be achieved with orientation selective filters
resulting from ICA. To this end, we compared the ICA filters to filters from princi-
pal component analysis (PCA) and random whitening filters which only aim at re-
moving second-order correlations. In addition to redundancy measured via the multi-
information, we also evaluated two other objective functions for which orientation se-
lective receptive fields might be an advantage: the average log-loss and rate distortion
curves [Bernardo, 1979]. The average log-loss is the negative average log-likelihood.
The higher this loss is, the less a probabilistic model fits the data. Its lowest value is
the entropy of the true data distribution in the case the model matches the true distri-
bution. The use of the average log-loss is motivated by the density estimation view on
redundancy reduction (see Introduction).

Finally, we also evalutated the potential advantage of orientation selective filters in a
rate-distortion curve setting. The mere maximization of the amount of information that
is transmitted, as in the information maximization framework of redundancy reduction
[Linsker, 1988, Atick, 1992, Nadal and Parga, 1994], is agnostic to the information that
is relevant [Simoncelli and Olshausen, 2003]. Rate-distortion curves represent not only
the information that can be transmitted, but also take into account what information is
relevant through the use of a loss function. In order to evaluate whether orientation se-
lective filters might be superior in transmitting the relevant information, we resorted to
rate-distortion curves in a linear transform coding framework with mean squared error
loss [Lewicki and Olshausen, 1999, Lewicki and Sejnowski, 2000]. The mean squared
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2 Results

error is strongly related to image compression and its choice is a trade-off between
computational feasibility and capturing perceptually relevant image features.

Results For all measures evaluated, we did not find a clear advantage of ICA over
other models. We carried out the analysis on the same dataset as the studies reporting
high reductions of higher order redundancies [Wachtler et al., 2001, Lee et al., 2002].
In terms of multi-information reduction, we found that the amount of higher order
redundancies removed by ICA makes up for about 3% of the total redundancy reduc-
tion achieved. With 3.20% the reduction for color images was a bit higher than for
monochromatic images with 2.39%. We could not reproduce the previously reported
gains of 20% to 100%.

In terms of density estimation, ICA filters perform best among other factorial density
models of natural image patches which differed in the choice of filters. This is no sur-
prise since ICA filters are optimized to yield statistically independent responses. How-
ever, the difference compared to factorial models on other filter responses was small.
In particular, a simple spherically symmetric model with less degrees of freedom per-
formed significantly better. This strongly indicates that higher order correlations in
natural image patches are not well removed by any linear transformations, because
spherically symmetric models are agnostic with respect to the specific shape of the fil-
ters. Additionally, the only factorial spherically symmetric density is the Gaussian, and
it is well known that filter responses to natural images do not exhibit a Gaussian distri-
bution [Field, 1987] but shares its spherical symmetry [Zetzsche et al., 1999]. The better
performance of the non-factorial spherically symmetric density over factorial distribu-
tions in terms of average log-loss shows that (i) there are still higher order correlations
left which are not removed by ICA filters and (ii) there is no choice of filters that can re-
move those. If there were, then the density model should exhibit specific axes for which
the distribution becomes factorial. Those should be found by ICA whose density model
should then have a clear advantage over spherically symmetric models. However, the
good performance of the spherically symmetric model suggests that there are no such
axes and hence, that the choice of filter shape will probably not have much impact on
redundancy reduction or on density modeling, respectively.

The performance of orientation selective filters for rate distortion curves is even
worse than the performance of PCA filters. We carefully analyzed why this is the case
and found that the determining factor for the performance is the change of the met-
ric induced by different filter choices. Intuitively, conserving the metric means that a
square (hypercube) in the input will be mapped into a square (hypercube) in the output.
Only orthogonal linear transformations are metric preserving. Due to that, PCA filters
are the only decorrelating transform that leave the metric invariant. ICA filters are not
orthogonal, which means that the square becomes diamond shaped, and all whitening
transforms at least change the side length of the square. For that reason, PCA filters
outperform ICA filters.
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2.2 Divisive Normalization and Orientation Selectivity

Conclusions Based on the results of the study we were not able to find a single ob-
jective for which orientation selective filter shapes yield a clear advantage. The good
performance of the spherically symmetric model demonstrates the presence of higher
order redundancies that cannot be removed by a complete set of linear filters. This re-
sult holds for grayscale and for color images. This, and the insufficient performance of
the ICA model in terms of log-likelihood, demonstrates that the underlying assump-
tions about natural images that led to orientation selective filters [Bell and Sejnowski,
1997] are not justified. Therefore, strong higher order redundancy reduction requires a
more powerful nonlinear mechanism.

2.2 The Conjoint Effect of Divisive Normalization and
Orientation Selectivity on Redundancy Reduction

Motivation Based on the previous superior performance of the spherically symmetric
model, the goal of this study was to further explore the statistics of filter responses to
natural images, analyze whether there are certain filter shapes that are better suited for
density modeling, and develop nonlinear mechanisms for redundancy reduction. Since
spherically symmetric models are agnostic with respect to the particular filter shape, we
used the class of L,-spherically symmetric models as a basis for our exploration [Gupta
and Song, 1997, Song and Gupta, 1997], which contain the spherically symmetric dis-
tributions but also other models that have iso-density contours shaped like the unit
sphere in other norms (therefore the name L,,-spherically symmetric). These other iso-
density contours exhibit a symmetry breaking with respect to the filter shapes which
enables us to compare different filters via the log-likelihood.

Results We modeled the responses of whitening filters to natural image patches with
L,-spherically symmetric models. While spherically symmetric models have iso-density
contours of constant Euclidean norm, L,-spherically symmetric models have constant
density along the contours of the L,-norm ||z|, = (>_ |z;/?)/P. For p # 2 the corre-
sponding density is not invariant with respect to the filter shapes. Importantly, for a
tixed value of p, an L,-spherically symmetric distribution is completely characterized
by a univariate radial distribution. For each value of p, there is a single type of radial
distribution that corresponds to a joint factorial model called p-generalized Normal dis-
tribution [Goodman and Kotz, 1973] (see Section 2.3). We used this property to derive
a non-linear transformation on the L,-norm which transforms the radial distribution
of the data into the radial distribution of the p-generalized Normal. This mechanism
is the optimal non-linear redundancy reduction transform for L,-spherically symmet-
ric distributed data. Most importantly, this mechanism, called radial factorization, can
turn any L,-spherically symmetric source into statistically independent signals. This
nonlinear redundancy reduction mechanism can now be compared to physiologically
known nonlinear mechanisms. Furthermore, we were able to assess the relative influ-
ence of the receptive field shapes on redundancy reduction in models with or without
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the non-linear mechanism, respectively.

We evaluated the likelihood for different values of p using a flexible radial distribu-
tion. Consistent with our findings for the spherically symmetric distribution (see Sec-
tion 2.1), we found that non-factorial L,-spherically symmetric models exhibit a higher
likelihood. The L,-spherically symmetric model with ICA filters yielded the best like-
lihood and a value of p < 2. This means that the filter shape makes a difference in
performance. We also optimized the filters with respect to the log-likelihood under a
L,-spherically symmetric model and found that orientation selective filters are a stable
optimum.

For different filter shapes ranging from orientation selective to random, we com-
puted the radial factorization transform and evaluated its redundancy reduction per-
formance. To this end, we derived a connection between the log-likelihood of the L,-
spherically symmetric model and its redundancy reduction performance. We found
that radial factorization is a more powerful redundancy reduction mechanism than
ICA. Even with random filters it outperforms the ICA model. The highest redundancy
reduction was achieved with orientation selective ICA filters in combination with radial
factorization. However, when comparing the influence of the filter shape on redun-
dancy reduction, we found that the relative contribution decreases from about 5% in
models without radial factorization to less than 2% in models with radial factorization.
As in the studies by Bethge [2006] and Eichhorn et al. [2009] this indicates that orienta-
tion selectivity does not play a prominent role in these models in terms of higher order
redundancy reduction.

Since the L,-norm of the filter responses is proportional to the contrast of the image
patch and since rescaling the data radii in the L,-norm involves normalizing the fil-
ter responses and rescaling them with a transformed radius, radial factorization bears
similarity to divisive normalization contrast gain control [Albrecht and Hamilton, 1982,
Heeger, 1992, Geisler and Albrecht, 1992]. Even though the two mechanisms are mathe-
matically not equivalent, we found that in the range of values for natural image patches
both transformations are qualitatively very similar. Previous studies already motivated
a link between divisive normalization and redundancy reduction [Schwartz and Simon-
celli, 2001, Wainwright et al., 2002]. However, so far, there was no reference transforma-
tion for comparison. Since radial factorization is optimal for L,-spherically symmetric
sources and since L,-spherically symmetric distributions yield a good fit to the statis-
tics of natural image patches, the empirical similarity motivates a link between divisive
normalization and strong redundancy reduction, and offers the possibility to assess
how close to optimal the divisive normalization mechanism is (see Section 2.7).

Conclusions In a statistically more adequate model for natural images, we demon-
strated that orientation selective filters are at the optimum of the log-likelihood. How-
ever, like Bethge [2006] and Eichhorn et al. [2009], we also found that the difference
compared to other filter shapes is small. Consistent with previous results, the optimum
in the class of L,-spherically symmetric models was not a factorial model. Using prop-
erties of the L,-spherically symmetric class, we were able to derive an optimal redun-
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dancy reduction mechanism, called radial factorization. This mechanism exhibits simi-
larities to divisive normalization which is a prominent nonlinear mechanism through-
out neural sensory systems, including primary visual cortex. We also found that in
a model including the radial factorization mechanism, the relative influence of filter
shapes on redundancy reduction and likelihood becomes even less.

2.3 Characterization of the p-generalized normal distribution

Motivation Radial factorization is the optimal non-linear redundancy reduction mech-
anism for L,-spherically symmetric distributed sources. It was not clear, however,
whether this transformation is unique. This is an important question for the compar-
ison of physiological divisive normalization mechanisms to radial factorization. If it
were not unique, the visual system might just implement another strategy which per-
forms equally well.

Results We showed that for a fixed value of p, the p-generalized Normal distribution
is the only distribution with independent marginals. This theoretical result generalized
the well known theorem that the Gaussian is the only factorial spherically symmetric
distribution. The original proof for this special case is ascribed to Maxwell [Kac, 1939].
The generalization of the theorem is not a straightforward extension of the spherically
symmetric case and needs completely different proof techniques. Since radial factor-
ization maps any radial distribution into the radial distribution of the p-generalized
Normal distribution, this result implies that radial factorization is unique up to the
output scale.

Conclusions Up to scaling, radial factorization is the unique optimal redundancy
reducing mechanism for L,-spherically symmetric distributed random variables.

2.4 Hierarchical Modeling of Local Image Features through
L,-Nested Symmetric Distributions

Motivation The key idea in the analysis of Sinz and Bethge [2009] was to enlarge the
class of probabilistic models and determine the joint optimum with respect to the filter
shape and the use of a nonlinear contrast gain control mechanism (see Section 2.2). The
class of Lj-spherically symmetric distributions used in that study, however, does not
contain the independent subspace analysis (ISA) model which was used by Hyvéri-
nen and coworkers to derive a redundancy reduction complex cell model similar to the
complex cell energy model [Adelson and Bergen, 1985, Hyvarinen and Hoyer, 2000,
Hyvarinen and Koester, 2007, Pollen and Ronner, 1983]. From a natural image statistics
point of view, two observations indicate that an ISA model is better suited to model
the statistics of natural images than an ICA or L,-spherically symmetric model. First,
L,-spherically symmetric models are permutation invariant in the filter responses. This
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means that all image patches that arise from a permutation of the filter coefficients are
equally likely under the model. This is certainly not true for natural image patches.
Second, one can observe that the pairwise iso-density contour of two filter responses
changes from almost spherical for adjacent filters to L,-spherical with p < 2 for more
distant filters. Neither ICA nor an L,-spherically symmetric model can capture this
change in contour shape. An ISA model, which can have different L,-spherically sym-
metric models on each subspace, however, can reproduce this property to some extent.
Therefore, it could be the right interpolation between a completely factorial model like
ICA and non-factorial models like most L,-spherically symmetric distributions.

The motivation for this study, therefore, was to carry out an analysis similar to the
one for simple cells in Sinz and Bethge [2009]: using a larger class of probability mod-
els, embedding the existing model in it, and exploring the parameter space with respect
to redundancy reduction and likelihood. While the larger class of probability distribu-
tions, in which existing models could be integrated, was already at hand in Sinz and
Bethge [2009], we had to develop a new class of distributions that contained the com-
plex cell models (the technical details were published in an additional study which is
discussed in Section 2.5). With this new class, which we called L,,-nested symmetric dis-
tributions, we were able to quantitatively evaluate how well the ISA model fits to the
statistics of natural images, how much a nonlinear mechanism like in the L,-spherically
symmetric case can influence redundancy reduction, and whether orientation selective
filters are also at the optimum of a model that includes a nonlinear contrast gain control
mechanism.

Results The main finding of this paper is that ISA models with L,-spherically sym-
metric subspaces is not a good model on natural image patches. These ISA models are
a special case of L,-nested symmetric models. Within the class of L,-nested models,
distributions with independent subspaces yield a significantly lower likelihood than
the model that allows for dependent subspaces. In fact, the subspaces are even more
dependent than the single filter responses themselves, which is exactly opposite to the
assumptions made by ISA. We demonstrated this by deriving the marginal responses
over subspaces in the L,-nested symmetric model, which we called Dirichlet Scale Mix-
ture. However, when optimizing filter shapes with respect to the likelihood on natural
image patches, localized orientation selective filters are again at the optimum. As in the
ISA case, the filters in the maximum likelihood solution naturally split up into groups
of similar spatial frequency and orientation, but different phase.

For L,-nested symmetric distributions, one can derive a similar nonlinear redun-
dancy reduction mechanism like radial factorization, called nested radial factorization
(see Section 2.5). Since the likelihood of the model is again proportional to the re-
dundancies that can be removed by this nonlinear mechanism, the better performance
of L,-nested symmetric distributions with dependent subspaces demonstrates again
that linear filters cannot remove higher order redundancies well, even when the redun-
dancy reducing requirement is relaxed to groups of filters. A nonlinear mechanism like
nested radial factorization can significantly increase the redundancy reduction perfor-
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mance. This again highlights the importance of a divisive normalization type of mech-
anism for redundancy reduction.

Conclusions The density model used by Hyvérinen and coworkers to derive com-
plex cell properties from redundancy reduction on natural images does not capture the
statistical regularities of the patches. In fact, the opposite of the assumptions made
by the ISA model is true for natural images: the filters are less dependent than the
subspaces. This means that ISA is not a good interpolation between non-factorial L,-
spherically symmetric models and factorial ICA models for natural images.

2.5 L,-nested symmetric distributions

Motivation As mentioned in Section 2.4, the observed limitations of previous mod-
els suggested the developement of a generalized class of distributions that contained
the independent subspace analysis model for natural images as a special case. L,-
spherically symmetric models are a special case of so called v-spherically symmetric
models [Ferndndez et al., 1995]. The density of v-spherically symmetric models can be
written as p(y) = o (v (y)), where v is a positively homogeneous function of degree
one, which means that it has the property v (ay) = av(y). The normalization constant
of v-spherically symmetric distributions, which is of key importance for a quantitative
evaluation, depends on the surface area of the v-unit sphere {y € R"|v(y) = 1}. In
general, an analytical expression for the surface area is infeasible. For the special case
where v is a cascade of L,-norms we were able to compute the surface area and, there-
fore, the normalization constant for any v-spherically symmetric distribution of that
form. Since v was chosen to have the form of a nested cascade of L,-norms, we called
this class L,-nested symmetric distributions. This class is the first generalization that
contains the Gaussian, L- as well as L,,-spherically symmetric models, and the relevant
ISA model for natural images. The goal of this study was to theoretically characterize
L,-nested symmetric distributions and derive its most important properties.

Results We derived the general form of L,-nested symmetric distributions, the uni-
form distribution on the L,-nested unit sphere, and the general form of the joint dis-
tribution between variables and subspaces in an L,-nested symmetric function. While
sampling from L,,-spherically symmetric distributions is straightforward, sampling from
L)-nested symmetric distributions is not and we needed to specify an efficient and ex-
act sampling scheme.

We derived the nested generalization of radial factorization. Importantly, we showed
that every factorial L,-nested symmetric distribution must be L,-spherically symmet-
ric, and, therefore, a p-generalized Normal distribution. This shows that the nested
generalization of radial factorization necessarily needs the iterative nested structure
and cannot be resembled by a simple one-step algorithm.
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2.6 Lower bounds on the redundancy of natural images

Motivation All models discussed so far are limited to patches of natural images. While
they offer advantages in terms of analytical tractability, patch based models also have
several drawbacks. Two of them were addressed in this study. The first is that, in
terms of redundancy reduction, we are interested in the true redundancy, i.e. the multi-
information rate of natural images. Natural images clearly have dependencies beyond
the distance which is usually covered by patch based models. Therefore, in order to get
a more realistic estimate of the true redundancy, it is necessary to develop models that
cover long range dependencies beyond the extensions of patches. The second is that
receptive fields of cortical neurons are not restricted to rectangular patches but cover
the whole visual field. Therefore, an important question is how to extend models for
natural images and redundancy reducing representations of them to whole images.

This study investigates the estimation of the multi-information rate of natural im-
ages with conditional probability models. It explicitly makes use of the stationarity of
natural image statistics which yields a tighter lower bound on the multi-information
rate of natural images that can additionally be estimated with less pixels compared to
a corresponding method on the joint distribution. Additionally, our empirical results
suggest that, for the parametric models we used, describing natural images via condi-
tional distributions is superior to modeling the joint distribution of larger and larger
patches.

Results For one-dimensional stationary signals, it is well known that the conditional
entropy converges to the entropy rate for increasing neighborhood size from above
[Shannon, 1948, Cover and Thomas, 2006]. This holds for stationary random fields of
arbitrary dimensions [Follmer, 1973]. One can show that the conditional entropy of
one random variable given a neighborhood of other random variables converges faster
to the true entropy rate in the number of variables in the neighborhood than the joint
entropy divided by the number of random variables [Cover and Thomas, 2006, p. 76].
This result can be transferred to multi-information rates, which means that the mu-
tual information between one random variable and its neighborhood converges faster
to the multi-information rate than the multi-information per random variable. Using
the method relying on the mutual information between a pixel and its neighborhood,
we were able to obtain conservative estimates for the multi-information rate which ex-
ceeded the estimate of the patch based method using less pixels. Our estimated multi-
information rate exceeds the estimate by Petrov and Zhaoping [2003] by more than 20%,
but is similar to the results by Chandler and Field [2007]. It also slightly outperforms
the estimates obtained with L,-spherically symmetric distributions.

We used the negative average log-likelihood of a (conditional) Gaussian scale mix-
ture model [Wainwright and Simoncelli, 2000] to approximate the joint or conditional
entropy needed for multi- and mutual information estimates, respectively. Since the
parameters found with maximum likelihood for the joint model are not necessarily the
maximum likelihood parameters for the conditional model, we carried out separate op-
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timizations for both of them. When computing the multi-information rates with those
two models, we noticed that the estimates with the conditional method are better and
that this difference cannot be explained solely by the tighter bound that holds for the
method relying on the conditional entropy. Instead, the difference was due to a better
fit of the conditional model. This suggests that using conditional Gaussian scale mix-
tures yields a better model of natural images than increasing the dimensionality of a
joint Gaussian Scale mixture. Follow-up studies by Hosseini and Theis seem to confirm
this conjecture.

Conclusions We derived a generic method that yields a tighter lower bound on the
multi-information rate of a stationary stochastic process on a discrete lattice and also
converges faster to that bound in the number of pixels. Furthermore, our experiments
suggest that conditional Gaussian scale mixture models of one pixel given an appro-
priate neighborhood are a better description for natural images than joint models of
increasing size. In terms of redundancy reduction representations of natural images
one can also use conditional models to derive redundancy reduction schemes. The idea
is to transform one pixel given its neighbors into a signal with a standardized Gaus-
sian distribution. In this way, the pixel becomes independent of its neighborhood and
redundancies are removed. This is investigated in more detail in follow-up studies by
Hosseini and Theis.

2.7 Temporal adaptation enhances efficient contrast gain
control on natural images

Motivation Radial factorization is a very efficient nonlinear mechanism for redun-
dancy reduction which bears similarity to divisive normalization in primary visual
cortex [Sinz and Bethge, 2009, Heeger, 1992]. Previous studies have linked divisive
normalization to redundancy reduction, but not measured the residual redundancies
[Schwartz and Simoncelli, 2001, Wainwright et al., 2002]. Although the two transforms
are generally not equivalent, they might be almost identical for the empirical distribu-
tion of natural image patches. Furthermore, radial factorization represents the optimal
redundancy reduction mechanism on the Euclidean norm which allows one to evaluate
the effectiveness of divisive normalization for redundancy reduction. The goal of this
study was to compare divisive normalization and radial factorization and to specify
conditions for which the two coincide which means that divisive normalization per-
forms almost optimal in terms of redundancy reduction.

Results We used the assumption of L,-spherical symmetry to robustly measure the
residual amount of redundancies left in filter responses after divisive normalization.
We found a substantial amount of redundancies in the model responses after divisive
normalization. In order to understand this in more detail, we derived the distribution
that natural images would have if divisive normalization was the optimal redundancy
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reducing mechanism and called it Naka-Rushton distribution. After fitting that distri-
bution to natural image patches, we still found a substantial mismatch between the
model and the empirical distribution, which explained the residual redundancies after
divisive normalization. The main reason for the suboptimal performance of divisive
normalization is that the Naka-Rushton distribution expects most of the responses to
fall into a much narrower range than responses to natural images do in reality.

We investigated two possibilities to increase the degrees of freedom in divisive nor-
malization that would enhance its redundancy reduction capabilities. The first was
to introduce more parameters in a static divisive normalization transform. This leads
to a substantial increase in redundancy reduction. However, the resulting contrast re-
sponse function had a physiologically implausible shape. As an alternative option we
allowed for a temporal adaptation of the semi-saturation constant in divisive normal-
ization. Such an adaptation shifts the contrast response function along the log-contrast
axis. Such shifts are well known from physiology [Bonds, 1991], where it is thought
to adapt the dynamic range of the response curve to the ambient contrast level. In or-
der to choose a strategy for the adaptation of the semi-saturation constant, we used
the fact that consecutively viewed patches during natural viewing conditions are corre-
lated. We simulated eye movements on natural images and found a simple strategy to
adapt divisive normalization which substantially increased the redundancy reduction
performance.

Conclusions The standard model of divisive normalization does not offer enough
degrees of freedom for efficient redundancy reduction on natural images. Redundancy
reduction performance can be substantially increased by introducing an adaptation to
the current contrast level by using temporal correlations caused by eye movements.
This offers a possible functional significance of the adaptation of the contrast response
curve to the ambient contrast level in terms of redundancy reduction.

The analysis of this study did not commit to a certain physiological implementation
or biophysical constraints. However, it demonstrated that the redundancies imposed
by the contrast statistics of natural images cannot be removed by simple static divisive
normalization. From our simulations, we postulate a measure for the spread of the
joint population response that gives a general signature for the performance of early
vision models in terms of redundancy reduction. This signature can be used for future
physiological experiments to test the suggested link between redundancy reduction
and contrast gain control.
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This thesis explored the influence of orientation selectivity and contrast gain control
on redundancy reduction in simple models of the early visual system. An important
objective for the investigations were quantitative measurements of their effectiveness
for redundancy reduction. We developed new statistical models for filter responses
of whitening filters to natural image patches and used these to explore the parame-
ter space around orientation selective filters and non-linear divisive transformations
of contrast. For the quantitative evaluations we used information theoretic and prob-
abilistic measures like multi-information and log-likelihood. We also developed new
estimation methods for the multi-information rate of natural images, which led to the
insight that conditional modeling of natural images might be a particularly useful ap-
proach for obaining models for entire images.

In summary, our results for the role of orientation selectivity and contrast gain control
in natural image representations are

e Orientation selectivity plays a minor role for redundancy reduction. We also did
not find other objectives for which orientation selectivity would yield a clear ad-
vantage (Sections 2.1, 2.2 and 2.4).

¢ A non-linear rescaling of the Euclidean or L,-norm of filter responses to natural
image patches is much more effective in reducing redundancy than the choice of
filters. Since the aforementioned norms are proportional to the contrast of image
patches, this highlights the role of contrast gain control for redundancy reduction
(Sections 2.2 and 2.4).

e There is a unique and optimal contrast gain control mechanism with respect to the
class of L,-spherically and L,-nested symmetric models. We called that mecha-
nism (nested) radial factorization (Sections 2.2, 2.3, and 2.7).

e The relatively small difference between the amount of redundancies estimated
with L,-spherically symmetric models, which is usually competely removed by
radial factorization, and the estimates of our newly developed conditional infor-
mation rate estimator indicate that radial factorization is a powerful redundancy
reduction mechanism which can remove a major part of higher order redundan-
cies that can be captured with natural image models so far (Section 2.6). Since the
true redundancy of natural images is not known so far, it is currently not possible
to say what percentage of the total redundancy can be removed by radial factor-
ization. With the developement of better models for (entire) natural images, the
relative contribution will necessarily shrink. A promising way to obtain better
models of natural images is via conditional models (Section 2.6).
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Figure 3.0.1: Relative contribution of different mechanisms in the investigated early vi-
sion models to redundancy reduction: The redundancy decreases from
left to right. Setting the raw pixel representation (leftmost model) to 0%
and the best performing model with orientation selectivity and contrast
gain control (rightmost model) to 100%, the removal of the DC component
(luminance control) and 2nd order decorrelation can already account for
about 90% of the redundancy. Decorrelation together with contrast gain
control accounts for 98.5%. Therefore, the maximally possible contribu-
tion of orientation selectivity is less than 5% in the former case and less

In the following we discuss the details of our findings. Figure 3.0.1 gives an overview
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than 2% in the more general cases including contrast gain control.

e Radial factorization is similar to the standard model of cortical contrast gain con-
trol, divisive normalization [Albrecht and Hamilton, 1982, Heeger, 1992]. The
two mechanisms are mathematically not equivalent. In fact, when comparing
them, we found that static divisive normalization leaves a significant amount of
residual higher order redundancies. However, by making divisive normalization
dynamically adapt to the current contrast level through using temporal correla-
tions caused by fixations in natural viewing conditions, we demonstrated that the

redundancy reduction performance can be greatly increased (Section 2.7).

of the redundancy reduction achieved with the different mechanisms.
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Orientation selectivity We found that the assumptions in the models previously used
to obtain orientation selective filters from the statistics of natural image patches do not
reflect their complex regularities and dependencies. In particular, the assumptions that
natural images can be separated in statistically independent signals or groups of signals
by linear filters, which is made by ICA and ISA models, is not well rooted in their statis-
tical nature. The fact that ICA does not yield statistically independent filter responses
on natural images had already been reported before [Simoncelli, 1997]. Bethge [2006]
performed quantitative model comparison and showed that the bulk of reduced re-
dundancies by linear filters are second order correlations. Our first study strengthened
these previous findings by showing that a spherically symmetric model has a substan-
tially better likelihood than an ICA model. Since the spherically symmetric model is
agnostic with respect to the filter shapes and since natural images cannot be spherically
symmetric and statistically independent at the same time, this means that orientation
selectivity does not show a clear advantage in terms of redundancy reduction in linear
models. Other studies, however, claimed to have found a strong influence of orienta-
tion selectivity on redundancy reduction of color image patches [Wachtler et al., 2001,
Lee et al.,, 2002]. Even when using the same dataset as those studies, we could not re-
produce their results. Another study by Lewicki and Olshausen [1999] arrives at an es-
timate of approximately 20% higher order redundancy reduction using over-complete
sparse linear models. However, the images in this study were pre-whitentened. This
initial loss of second order correlations leads to an overestimation of the relative por-
tion of higher order redundancies. Since we do not know the amount of second order
correlations that was removed by the pre-whitening step, we cannot properly compare
the results of Lewicki and Olshausen to ours. We also investigated whether orientation
selectivity is advantageous in terms of rate distortion curves, but found that it actually
performs worse than global PCA filters.

As discussed in more detail below, augmenting the linear model by a nonlinear con-
trast gain control step significantly increases the redundancy reduction performance.
The relative importance of filter shape, however, becomes even less [Sinz and Bethge,
2009]. Interestingly, a recent study in computer vision has also recognized the impor-
tance of nonlinear steps and the relative unimportance of filter shapes for object recog-
nition [Jarrett et al., 2009].

We also investigated whether redundancy reduction can yield an explanation for ori-
entation selectivity in complex cell models in which several filters are grouped and only
the groups are required to be independent. Here the statistics of natural images and the
assumptions by the model were even contradictory: groups of filters were even more
dependent than the individual filter responses within a group [Sinz et al., 2009b]. This
is exactly opposite to the assumption of the ISA model used for a redundancy reduc-
tion explanation of complex cell properties [Hyvérinen and Hoyer, 2000, Hyvérinen
and Koester, 2007].

A striking finding, however, is that even though orientation selectivity does not have
a great influence on redundancy reduction, it is the optimal filter shape for linear mod-
els with or without contrast gain control [Sinz and Bethge, 2009, Sinz et al., 2009b].
Therefore, it remains an open question how important orientation selectivity is for re-
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dundancy reduction. There are several ways how this could be resolved in the future.
It is possible that more realistic models of the early visual system yield a strong vote
in favor or against orientation selectivity, although we do not expect that unless these
models exhibit genuinely different nonlinear mechanisms. It might also be that there
are other objectives of the visual system which clearly favor a localized orientation se-
lective filter shape. Finally, the fact that localized oriented band-pass filters arise in so
many models might also hint at a more fundamental statistical reason for the shape
of those filters. If this is indeed the case, understanding this fundamental principle
will bring us closer to understanding the computational principles governing receptive
fields in primary visual cortex.

Contrast gain control Based on the good performance of a spherically symmetric
model in terms of likelihood we started to explore the class of L,-spherically symmetric
models for modeling the response of whitening filters to natural image patches. L,-
spherically symmetric models contain the spherically symmetric as well as the ICA case
for natural image patches. However, the optimum in terms of likelihood was located
at neither of them: Optimal L,-spherically symmetric models on orientation selective
filters were non-factorial and exhibited a p of approximately 1.3. When optimizing for
the filters as well, orientation selective filters also arose as the optimal shape for this
class of distributions. However, the difference compared to other filter shapes in terms
of redundancy reduction was again marginal.

By using fundamental statistical properties of this class of distributions, we derived
an optimal mechanism for redundancy reduction based on a non-linear rescaling of the
L,-norm, called radial factorization. Since L,-norms are proportional to the root mean
square contrast, this mechanism is a contrast gain control transformation. We demon-
strated that radial factorization significantly outperforms the redundancy reduction
performance of linear filters. We showed that under the assumption of L,-spherical
symmetry, radial factorization is the unique and optimal mechanism for redundancy
reduction.

By introducing L,-nested symmetric distributions, we were able to find an even more
general class of distributions that included all the models before, but also the relevant
ISA models. This allowed us to demonstrate that in this larger class there is again a
unique contrast gain control mechanism which is again of crucial importance for re-
dundancy reduction in complex cell ISA models, and that even in this larger class of
L,-nested models orientation selectivity is again at the optimum in terms of likelihood
and, therefore, redundancy reduction.

Radial factorization and nested radial factorization are the optimal redundancy re-
duction mechanisms with respect to L,-spherically and L,-nested symmetric distributed
sources. One obvious question is, of course, how close to optimal their performance is
for natural images in general. In a separate study, we developed a new estimation
method for the multi-information rate of natural images. Comparing the estimates
from that method to estimates with L,-spherically symmetric distributions, we find
that there is but a small difference, which indicates that radial factorization is a power-
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ful redundancy reduction mechanism even in a context which is not restricted to image
patches. However, the conditional estimation method developed by us [Hosseini et al.,
2010] is generic in the sense that better conditional models of natural images will im-
prove the lower bound on the multi-information rate. When that happens, the relative
performance of radial factorization will decrease. But from our current measurements,
the redundancy removed by radial factorization represents a substantial part of the
known higher order dependencies in natural images.

There are previous studies that have pursued a quantitative assessment redundancy
in natural images. Using non-parametric statistical methods several studies have mea-
sured the amount of higher order dependencies in natural images [Schreiber, 1956, Li
and Atick, 1994, Petrov and Zhaoping, 2003, Chandler and Field, 2007]. Our estimates
are larger than those of Petrov and Zhaoping [2003] and comparable to Chandler and
Field [2007]. The likely reason why Petrov and Zhaoping [2003] underestimated the
amount of higher order redundancies is that they restricted themselves to a very small
neighborhood which lead to an overestimation of the entropy and, therefore, an under-
estimation of the multi-information.

Radial factorization and divisive normalization—the standard model of cortical con-
trast gain control—share many properties. Since previous studies have highlighted the
possible role for divisive normalization for redundancy reduction on natural signals
[Schwartz and Simoncelli, 2001, Wainwright et al., 2002], we investigated the interre-
lation between radial factorization and divisive normalization. We found that filter
responses transformed with divisive normalization still exhibit a substantial amount of
higher order redundancies, and that the contrast distribution for which divisive nor-
malization equals radial factorization does not fit the contrast distribution of natural
images well. Nevertheless, our results are not at odds with previous work on divisive
normalization and redundancy reduction. First of all, we do find a reducing effect of
divisive normalization. Second, previous studies either looked at surrogate measures
of statistical independence [Schwartz and Simoncelli, 2001, Wainwright et al., 2002],
considered pairwise measures only [Malo et al., 2006], or were based on theoretical
analyses of probability distribution and not real data [Lyu, 2011].

The studies by Schwartz, Wainwright and Simoncelli used so called bow-tie plots to
visualize redundancy or the reduction thereof. After divisive normalization, the bow-
tie plots become flat indicating that this type of dependency has been removed. In
principle, bow-tie plots should capture the right dependencies: For the class of Gaus-
sian scale mixtures around which the work of Schwartz, Wainwright and Simoncelli
is built, one can prove that the conditional variance is non-decreasing [Cambanis et al.,
2000]. For the relevant class of models the conditional variance is even increasing which
means that higher order dependencies should show up in the bow-tie plots. The prob-
lem is, however, that bow-tie plots are not very sensitive. Both radial factorization and
divisive normalization produce a flat bow-tie plot, but significantly differ in the amount
of residual redundancies.

The study by Lyu is based on the multivariate t-model [Kotz and Nadarajah, 2004] for
which he shows mathematically that divisive normalization is an approximate radial
factorization transform. Not surprisingly, the multivariate ¢-model and the distribution
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3 Discussion and Conclusion

for which divisive normalization and radial factorization coincide are very similar. This
means that the multivariate ¢-model, like the corresponding distribution for divisive
normalization (see Section 2.7), also exhibits an inferior fit to the statistics of natural
images.

Does this mean that cortical divisive contrast gain control and redundancy reduction
disagree? Not necessarily. All our previous investigations were based on models of
static image patches, randomly sampled from a large collection of images, but this is
not the way in which visual information enters the visual system under free viewing
conditions. In particular, contrasts during the fixation between two saccades are very
correlated. It is also known that the contrast response curve of simple and complex cells
shifts along the log-contrast axis to adapt to the current ambient contrast level [Ohzawa
et al.,, 1982, Bonds, 1991]. Using this fact, we demonstrated that the disagreement of
redundancy reduction with cortical models of contrast gain control can be resolved by
allowing divisive normalization to adapt to the ambient contrast between two saccades.
This substantially decreased the amount of residual redundancies to almost the level of
radial factorization and suggests a potential role of contrast response curve adaptation
for redundancy reduction. Our mechanism works on the short time scale between two
saccades. The adaptation mechanism via shifts of the contrast response curve is usually
thought to happen on larger time scales [Bonds, 1991]. However, those studies have
been perfomed in anasthetized cats with drifting gratings. Hence, it is not very clear
how representative these results are for natural viewing conditions. Additionally, a
recent study claims that this might have been an artifact from the stimulation protocol
and that shifts can actually occur on a much shorter time scale [Hu and Wang, 2011].

Contributions to the understanding of natural image statistics While the statisti-
cal models in this thesis were important tools to understand the contribution of differ-
ent mechanisms to redundancy reduction, they also contributed to the understanding
of the statistics of natural image patches by developing state-of-the-art density mod-
els for them (see Table 3.1). Popular models for natural image patches are, for in-
stance, ICA, Gaussian scale mixtures (GSM) [Wainwright and Simoncelli, 2000], and
ISA [Hyvérinen and Hoyer, 2000, Hyvéarinen and Koester, 2007]. The models used and
developed in this thesis generalize all of them: the class of L,-spherically symmetric
models contains ICA for natural images and Gaussian scale mixtures; the class of L,-
nested symmetric distributions contains the L,-spherically symmetric ones and ISA on
natural images. In general, ICA and ISA are not fully contained in the L,-spherically
symmetric or L,-nested symmetric class, but due to the special form of the marginal
distributions of filter responses to natural image patches, the relevant cases are part of
the L,-spherical and L,-nested classes.

While it is apparent that ICA is not a very good model for natural image patches
[Simoncelli, 1997, Bethge, 2006, Eichhorn et al., 2009], the GSMs are among the state-of-
the-art models. They model natural image patches as a mixture of—possibly infinitely
many—Gaussians with the same mean but different scales. Since the underlying distri-
bution is spherically symmetric, the class of GSMs belongs to the spherically symmet-
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Table 3.1: Performance of different natural image models in terms of log-likelihood
compared to a factorial model on raw pixels (courtesy of all authors involved
and Lucas Theis who produced the table). L,-spherically and L,-nested sym-
metric models rank among the state-of-the-art models. Hierarchical deep be-
lief networks (DBN) perform even worse than ICA. The currently best per-
forming model is a mixture of Gaussian scale mixtures.
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3 Discussion and Conclusion

ric class of distributions. They are, however, only a subset since not every spherically
symmetric distribution is also a GSM. GSMs perform well at modeling the variance
correlations of natural images captured by the bow-tie plots mentioned before. Since
spherically symmetric models are invariant under orthogonal transformations of the
input, GSMs are agnostic to the particular shape of the whitening filters. Our investi-
gations with the L,-spherically symmetric models demonstrate, however, that the filter
shape matters and that the distribution of natural image patches is not exactly spher-
ically symmetric but rather L; 3-spherically symmetric [Sinz and Bethge, 2009]. L,-
spherically symmetric models capture variance correlations as well (see Section 4.10)
and allow a straightforward evaluation of the log-likelihood. Table 3.1 lists the im-
provement of the log-likelihood over a factorial model on raw pixels for several natural
image models. L,-spherically symmetric models rank third.

It is not only the case that whitening filter responses to natural image patches deviate
from spherical symmetry, but also that the contour lines of the distribution can vary
depending on different features of the filters involved [Sinz et al., 2009b]. L,-nested
symmetric distributions solve that problem by composing the contour shapes from dif-
ferent L,-spheres while maintaining a straightforward evaluation of the log-likelihood
[Sinz and Bethge, 2010]. Among the models in Table 3.1, L,-nested symmetric distribu-
tions rank second.

The only class of models that currently outperforms L,-spherical and L,-nested mod-
els on natural images are mixtures of GSMs [Bethge and Hosseini, 2008] which belongs
to the class of Gaussian mixture models. These models allow for modeling different
covariance structures of natural image patches, while the L,-spherical and L,-nested
models always assume the same covariance structure in the whitening step. Gaussian
mixture models for natural image statistics with a rich hidden structure have also been
proposed for natural image modeling by other authors [Karklin and Lewicki, 2008, Ran-
zato and Hinton, 2010, Ranzato et al., 2010]. However, these studies did not evaluate
the likelihood of their models.

An important insight that arose from the quantitative comparisons between statisti-
cal models of natural images is that hierarchical deep belief networks (DBNs) do not
rank among state-of-the-art models. In a separate study, which is not included in this
thesis, we developed an estimator for the likelihood in DBNs and used it to evaluate
the likelihood of DBNs on image patches [Theis et al., 2010, 2011]. Osindero and Hinton
[2008] reported promising results from training deep belief networks (DBN) on natural
images by presenting random samples from the model that looked very encouraging.
However, one great challenge in natural image patch modeling is to find a model that
achieves a high likelihood on unseen patches and produces realistically looking sam-
ples. While each single goal is relatively easy to accomplish, there is currently no model
that achieves both. Judging from the random samples, DBNs seemed to be a promising
density model. Unfortunately, likelihood evaluation in DBNs is very hard. The results
obtained from our likelihood estimator demonstrated that DBNs perform significantly
worse than L,-spherical or L,-nested models. In fact, DBNs even perform worse than
ICA which was already established to be a suboptimal model on natural image patches
(see Table 3.1). These results emphasize the importance of quantitative model compar-
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ison via the log-likelihood.

How important is redundancy reduction for the early visual system? Finally, the
question remains how important the redundancy reduction hypothesis is and how it
can take us further in understanding the early visual system. Many issues concerning
redundancy reduction and sensory systems have been discussed in excellent papers
elsewhere [Barlow, 2001, Simoncelli, 2003, Simoncelli and Olshausen, 2003]. Here, we
want to highlight a few points relevant to the current work. A frequently raised ar-
gument against redundancy reduction in cortex is the relative overcompleteness of the
number of cortical neurons compared to the number of retinal ganglion cells. This, at
first sight, indicates that the redundancy in cortex should increase instead of decrease.
However, as noted by Barlow [2001] and Simoncelli [2003], this assumes that the cod-
ing capacity (entropy) of cortical and retinal neurons is the same. Since cortical neurons
do have lower firing rates it is well possible that the coding capacity (entropy) per neu-
ron is smaller which renders their relative overcompleteness and redundancy reduction
compatible.

Another objection might be that the brain only cares about behaviorally relevant in-
formation which does not necessarily have to coincide with the information measured
in bits. Unfortunately, it is difficult to clearly state what “behaviorally relevant” exactly
means. On the other hand, it might be that an object can be defined as a collection of
incoming signals that exhibit very specific correlations in space and time. As already
mentioned in the introduction, redundancy reduction could extract exactly those corre-
lations. This means that it could serve as a feature extractor for important aspects about
the ouside world which could later be classified as behaviorally relevant or not. Recent
psychophysical studies indicate that human observers are indeed sensitive to higher
order statistical dependencies already in natural image patches of 3 x 3 pixels [Gerhard
et al., 2012, in preparation]. Even though it is clearly not obvious to talk about behav-
ioral relevance at this scale, it indicates that the visual system cares about the statistical
regularities even in small natural image patches. In this study, subjects were asked to
discriminate between patches from natural images and samples that incorporated key
assumptions of statistical models for natural image patches. The likelihood of the sta-
tistical models predicted the rank order of the discrimination performance of subjects
for the different models. This indicates that the statistical regularities captured by the
models are sufficiently relevant to the visual system.

Another issue is whether the visual system should really aim at removing all redun-
dancies from natural images or whether it should just decrease them enough to achieve
an efficient information transmission but still be robust against internal noise. In a sys-
tem with internal uncertainty, a small amount of redundancy can be helpful to coun-
teract information loss due to noise. If the uncertainty is independent additive noise,
efficient coding and redundancy reduction coincide. However, even if that is not the
case, there are reasons to believe that strong redundancy reduction is a goal worth pur-
suing: First, it seems reasonable to assume that the influence of internal noise should be
small compared to the uncertainty about the stimulus. In information theoretic terms,
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this means that the mutual information /[ X ;Y] = (H[Y| — H[Y |z]) x should be large
and not be dominated by the structure of the uncertainty H[Y |z] of the neural response
given a fixed stimulus, i.e. H [Y] > H [Y'|X]. While it might be beneficial to maintain
a small amount of redundancy to account for noise, it still seems reasonable to decrease
the redundancy as much as possible in order to hit the maximum of H[Y']. Secondly, it
is clear that the higher order dependencies in natural images, which—so far—seem to
make up for the minor part of the total dependencies [Chandler and Field, 2007, Hos-
seini et al., 2010], are the perceptually relevant part. While the content of a whitened
image with no second order correlations left can still be perceived, this is not the case for
a phase scrambled image for which all higher order correlations have been destroyed.
The visual system must have a way to extract those higher order dependencies, which
in a redundancy reduction framework means to separate them into statistically inde-
pendent signals.

Conclusion The studies in this thesis developed new statistical models, statistical
theory, and information theoretic estimation methods in order to explore the statistics
of natural image patches around the question of how important orientation selective
filters and contrast gain control mechanisms are for a factorial representation. One ma-
jor objective behind all work presented was to base our findings on a firm quantitative
ground. Our statistical models are among the state-of-the-art for natural image patches
in terms of likelihood and built the basis for state-of-the-art models on whole natural
images.

Our patch based models allowed us to disentangle the contributions of filter shape
and contrast gain control to density modeling and redundancy reduction on natural
images. We found that orientation selectivity does not play a crucial role for redun-
dancy reduction in the current standard model of visual neurons, while contrast gain
control does. The model classes also provided a framework in which we could demon-
strate that a dynamical component in the physiological standard model for contrast
gain control is crucial to achieve strong redundancy reduction on natural images.
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Introduction

It is a long standing hypothesis that neural representations in
sensory systems are adapted to the statistical regularities of the
environment [1,2]. Despite widespread agreement that neural
processing in the early visual system must be influenced by the
statistics of natural images, there are many different viewpoints on
how to precisely formulate the computational goal the system is
trying to achieve. At the same time, different goals might be
achieved by the same optimization criterion or learning principle.
Redundancy reduction [2], the most prominent example of such a
principle, can be beneficial in various ways: it can help to
maximize the information to be sent through a channel of limited
capacity [3,4], it can be used to learn the statistics of the input [5]
or to facilitate pattern recognition [6].

Besides redundancy reduction, a variety of other interesting
criteria such as sparseness [7,8], temporal coherence 9], predictive
information [10,11] , or bottom-up saliency [12] have been formulated.
An important commonality among all these ideas is the tight link
to density estimation of the input signal.

At the level of primary visual cortex there is a large increase in
the number of neurons. Hence, at this stage the idea of
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redundancy reduction cannot be motivated by a need for
compression. However, the redundancy reduction principle is
not limited to be useful for compression only. More generally, it
can be interpreted as a special form of density estimation where
the goal is to model the statistics of the input by finding a mapping
which transforms the data into a representation with statistically
independent coefficients [5]. In statistics, this idea is known as
projection pursuit density estimation [13] where density estimation
is carried out by optimizing over a set of possible transformations
in order to match the statistics of the transformed signal as good as
possible to a pre-specified target distribution. Once the distribution
has been matched, applying the inverse transformation effectively
yields a density model for the original data. From a neurobiolog-
ical point of view, we may think of the neural response properties
as an implementation of such transformations. Accordingly, we
here think of redundancy reduction mainly in terms of projection
pursuit density estimation.

A crucial aspect of this kind of approach is the class of
transformations over which to optimize. From a statistician’s point
of view it is important to choose a regularized function space in
order to avoid overfitting. On the other hand, if the class of
possible transformations is too restricted, it may be impossible to
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Author Summary

Since the Nobel Prize winning work of Hubel and Wiesel it
has been known that orientation selectivity is an important
feature of simple cells in the primary visual cortex. The
standard description of this stage of visual processing is
that of a linear filter bank where each neuron responds to
an oriented edge at a certain location within the visual
field. From a vision scientist’s point of view, we would like
to understand why an orientation selective filter bank
provides a useful image representation. Several previous
studies have shown that orientation selectivity arises when
the individual filter shapes are optimized according to the
statistics of natural images. Here, we investigate quantita-
tively how critical the feature of orientation selectivity is
for this optimization. We find that there is a large range of
non-oriented filter shapes that perform nearly as well as
the optimal orientation selective filters. We conclude that
the standard filter bank model is not suitable to reveal a
strong link between orientation selectivity and the
statistics of natural images. Thus, to understand the role
of orientation selectivity in the primary visual cortex, we
will have to develop more sophisticated, nonlinear models
of natural images.

find a good match to the target distribution. From a visual
neuroscientist’s point of view, the choice of transformations should
be related to the class of possible computations in the early visual
system. Here we assume the simplest case of linear transforma-
tions, optionally followed by a pointwise nonlinearity.

Intriguingly, a number of response properties of visual neurons
have been reproduced by optimizing over the class of linear
transformations on natural images for redundancy reduction (for a
review see [12,14]). For instance, Buchsbaum and Gottschalk as
well as Ruderman et al. revealed a link between the second-order
statistics of color images and opponent color coding of retinal
ganglion cells by demonstrating that decorrelating natural images
in the trichromatic color space with Principal Component Analysis
(PCA) yields the luminance, the red-green, and the blue-yellow
channel [15,16]. Atick and Redlich derived the center-surround
receptive fields by optimizing a symmetric decorrelation transfor-
mation [17]. Later, also spatio-temporal correlations in natural
images or sequences of natural images were linked to the receptive
field properties in the retina and the lateral geniculate nucleus
(LGN) [18-20].

On the way from LGN to primary visual cortex, orientation
selectivity emerges as a striking new receptive field property. A
number of researchers (e.g., [21,22]) have used the covariance
properties of natural images to derive linear basis functions that
exhibit similar properties. Decorrelation alone, however, was not
sufficient to achieve this goal. Rather, additional constraints were
necessary, such as spatial locality or symmetry.

It was not until the reduction of higher-order correlations were
taken into account that the derivation of localized and oriented band-
pass filters—resembling orientation selective receptive fields in V1—
was achieved without the necessity to assume any further constraints.
Those filters were derived with Independent Component Analysis
(ICA), a generalization of Principal Component Analysis (PCA),
which aims at reducing higher-order correlations as well [8,23].

This finding suggests that within the linear filter model,
orientation selectivity can serve as a further mechanism for
redundancy reduction. The tenability of this hypothesis can be
tested by measuring how large the advantage of orientation
selective filters is over non-oriented filter shapes. The importance
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of such a quantitative assessment has first been pointed out by Li and
Atick [22] and are the main focus of several publications [12,22,24—
29]. Generally speaking, two different approaches have been taken
in the past: In the first approach, nonparametric methods such as
histograms or nearest neighbor statistics have been used with the
goal to estimate the total redundancy of natural images [22,27,29].
‘While this approach seeks to answer the more difficult question how
large the total redundancy of natural images is, the second approach
compares the importance of orientation selectivity for redundancy
reduction only within the class of models that are commonly used to
describe V1 simple cell responses [24-26,28].

Using histogram estimators, Zhaoping and coworkers [22,27]
argued that the contribution of higher-order correlations to the
redundancy of natural images is five times smaller than the
amount of second-order correlations. They concluded that this
amount is so small that higher-order redundancy minimization is
unlikely to be the main principle in shaping the cortical receptive
fields.

Two objections may be raised against this conclusion: First, it is
not clear how generally valid the result of [27] is. The study relies
on the assumption that higher-order dependencies at distances
beyond three pixels are negligible. More recent work based on
nearest neighbor methods [29], however, finds a substantially
larger amount of higher-order correlations when taking depen-
dencies over longer distances into account. Secondly, even if the
contribution of higher-order correlation was only 20% of the
amount of second-order correlations, this contribution is not
necessarily negligible. Several previous studies report that the
redundancy reduction achieved with ICA for gray level images is
at the same level at about 20% [24-26]. Taken together these two
findings suggest that orientation selective ICA filters can account
for virtually all higher-order correlations in natural images. If this
was true, it would strongly support the idea that redundancy
reduction could be the main principle in shaping the cortical
receptive fields.

In general, however, density estimation in high dimensions is a
hard problem and the results reported in the literature do not fit
into a consistent view. Therefore, the crucial challenge is to control
for all technical issues in order to allow for safe conclusions about
the effect of orientation selectivity on redundancy reduction. Here,
we address many such issues that have not been addressed before.
In our study, we take the second approach and focus on “linear
redundancy reduction”—the removal of statistical dependencies
that can be achieved by linear filtering. While most studies have
been carried out for gray level images the two studies on color
images find the advantage of ICA over PCA to be many times
larger for color images than for gray level images with an
improvement of more than 100% [25,26]. Since it is not clear how
to explain the large difference between color and gray value
images, we reinvestigate the comparison between the orientation
selective ICA filters and the PCA filters for color images using the
same data set as in [25,26].

Our goal is to establish a reliable reference against which more
sophisticated image models can be compared to in the future. We
elaborate on our own previous work [28] by optimizing the ICA
algorithm for the multi-information estimators used in the
comparison. Additionally, we now test the advantage of the
resulting orientation selective ICA filters comprehensively with
three different types of analyses that are related to the notion of
redundancy reduction, density estimation, and coding efficiency:
(A) multi-information reduction, (B) average log-likelihood, and
(C) rate-distortion curves.

Our results show that orientation selective ICA filters do not
excel in any of these measures: We find that the gain of ICA in
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redundancy reduction over a random decorrelation method is only
about 3% for color and gray-value images. In terms of rate-
distortion curves, ICA performs even worse than PCA. Further-
more, we demonstrate that a simple spherically symmetric model
with only two parameters fits the filter responses significantly
better than a model that assumes marginal independence . Since
in this model the specific shape of the filters is ignored, we
conclude that it is unlikely that orientation selectivity plays a
critical role for redundancy reduction even if the class of
transformations is extended to include contrast gain control
mechanisms [30,31]. While many of the previous studies do not
provide enough detail in order to explain their different outcomes,
we provide our code and the dataset online (http://www.kyb.
tuebingen.mpg.de/bethge/code/QICA/) in order to ensure the

reproducibility and verifiability of our results.

Materials and Methods

An important difficulty in setting up a quantitative comparison
originates from the fact that it bears several issues that may be
critical for the results. In particular, choices have to be made
regarding the evaluation criteria, the image data, the estimation methods,
which linear transformations to include in the comparison, and which
particular implementation of ICA to use. The significance of the
outcome of the comparison will depend on how careful these
choices have been made. The most relevant issues will be
addressed in the following.

Notation and Nomenclature

For both, color and gray-value data, we write X to refer to single
vectors which contain the raw pixel intensities. Vectors are indicated
by bold font while the same letter in normal font with a subindex
denotes one of its components. Vectors without subindices usually
denote random variables, while subindices indicate specific
examples. In some cases it is convenient to define the corresponding
data matrix X' =(xi,...,Xy) which holds single images patches in
its columns. The letter N denotes the number of examples in the
dataset, while 7 is used for the dimension of a single data point.

Transformations are denoted by W, oftentimes with a subindex
to distinguish different types. The result of a transformation to
either a vector X or a data matrix X will be written as y= WX or
Y = WX, respectively.

Probability densities are denoted with the letters p and ¢,
sometimes with a subindex to indicate differences between
distributions whenever it seems necessary for clarity. In general,
we use the hat symbol to distinguish between true entities and their
empirical estimates. For instance, py(y) =px(W"y)-\det W|71 is
the true probability density of y after applying a fixed transforma-
tion W, while py(y) refers to the corresponding empirical estimate.

A distribution p(y) is called factorial, or marginally independent,
if it can be written as a product of its marginals, iec.,
p(y)=II"_, pi(yi) where p;(;) is obtained by integrating p(y)
over all components but y;.

Finally, the expectation over some entity f with respect to y
is written as E[f(y)]= [p(y)f(y)dy. Sometimes, we use the
density instead® of the random variable in the subindex to
indicate the distribution, over which the expectation is taken.
If there is no risk for confusion we drop the subindex. Just as
above, the empirical expectation is marked with a hat symbol, i.c.,

Elf(9)]= %501 f (vo)-

How to Compare Early Vision Models?
A principal complicacy in low-level vision is the lack of a clearly
defined task. Therefore, it is difficult to compare different image
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representations as it is not obvious a priori what measure should be
used.

Multi-information. The first measure we consider is the
mulli-information [32], which is the original objective function that is
minimized by ICA over the choice of filters W. The multi-
information assesses the total amount of statistical dependencies
between the components y; of a filtered patch y = Wx:

Tp(y)]=Dxe {p(y)llr}m(y/)-] = %[log%} =

S oy ()] —Hp)] (1)

=1

The terms & [pj (y/)] and /[p(y)] denote the marginal and the joint
entropies of the true distribution, respectively. The Rullback-Leibler-
Divergence or Relative Entropy

D lplldl= ﬂlog%}

is an information theoretic dissimilarity measure between two
distributions p and ¢ [33]. It is always non-negative and zero if and
only if p equals ¢. If the redundancy reduction hypothesis is taken
literally, the multi-information is the right measure to minimize,
since it measures how close to factorial the true distribution of the
image patches in the representation y really is.

The application of linear ICA algorithms to ensembles of
natural images reliably yields transformations consisting of
localized and oriented bandpass filters similar to the receptive
fields of neurons in V1. It is less clear, however, whether these
filter properties also critical to the minimization of the mult-
information? In order to assess the tenability of the idea that a V1
simple cell is adjusted to the purpose of redundancy reduction, it is
important to know whether such a tuning can—in principle—result
in a large reduction of the multi-information. One way to address
this question is to measure kow much more the multi-information is
actually reduced by the ICA filters in comparison to others such as
PCA filters. This approach has been taken in [28].

One problem with estimating multi-information is that it involves
the joint entropy A[p(y)] of the true distribution which is generally
hard to estimate. In certain cases, however, the problem can be
bypassed by evaluating the difference in the multi-information
between two representations X and y. In particular, if'y is related to
X by the linear transformation y = W it follows from definition (1)
and the transformation theorem for probability densities

- -1
py(y)=px(x) det(%)’ =px(W™y)|detw| !

0.

that difference in multi-information can be expressed as

IpW)=1p(x)]= D _ hlpk (i) = hlp(y)]
k

(Z h[.”k(-"k)]*/l[P(X)])

%

= Z hlpr(vi)] — Z hlpi(xx)] —log|detW|.
k k

For convenience, we chose a volume-conserving gauge [28] where
all linear decorrelation transforms are of determinant one, and
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hence log|detW|=0. This means that differences in multi-
information are equal to differences of marginal entropies which
can be estimated robustly. Thus, our empirical estimates of the
multi-information differences are given by:

AL S Hp )] = S ke s.tldet(W)| =1 (2)
k k

For estimating the entropy of the univariate marginal distributions,
we employ the OPT estimator introduced in [28] which uses the
exponential power family to fit the marginal distributions by
OPTimizing over the shape parameter. This estimator has been
shown to give highly reliable results for natural images. In particular,
it is much more robust than entropy estimators based on the sample
kurtosis which easily overestimate the multi-information.

Average log loss (ALL). As mentioned earlier, redundancy
reduction can be interpreted as a special form of density estimation
where the goal is to find a mapping which transforms the data into
a representation with statistically independent coefficients. This
means that any given transformation specifies a density model over
the data. Our second measure, the average log-loss (ALL),
evaluates the agreement of this density model with the actual
distribution of the data:

E[~logp(y)] =~ [ p(¥)logply)dy=Hlpl + Dislpll] ()

The average log-loss is a principled measure quantifying how
different the model density p(y) is from the true density p(y) [34].
Since the KL-divergence is positive and zero if and only if p=p the
ALL is minimal only if p matches the true density. Furthermore,
differences in the average log-loss correspond to differences in the
coding cost (i.e., information rate) in the case of sufficiently fine
quantization. For natural images, different image representations
have been compared with respect to this measure in [24-26].

For the estimation of the average log-loss, we compute the
empirical average

.
E[—logp(y)]~ El~logh(y)| =~ > logpv).  (4)
k=1

This estimator is equivalent to the first method in Lewicki et al.
[24,35] apart from an extra term Nlogo in their defining
equation. This extra term is only necessary if one aims at relating
the result to a discrete entropy obtained for a particular bin width
a.

While the empirical average in Eq. 4 in principle can be prone
to overfitting, we control for this risk by evaluating all estimates on
an independent test set, whose data has not been used during the
parameter fit. Furthermore, we compare the average log-loss to
the parametric entropy estimates /[p] that we use in (A) for
estimating the multi-information changes (see Eq. 2). The
difference between both quantities has been named differential log-
likelihood [36] and can be used to assess the goodness of fit of a
model distribution:

E[—log | —[p] = Ellog 5| ~Ellog |

The shape of the parametric model is well matched to the actual
distribution if the differential log-likelihood converges to zero with
increasing number of data points.
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Rate-distortion curves. Finally, we consider ¢fficient coding or
minimum mean square error reconstruction as a third objective. In
contrast to the previous objectives, it is now assumed that there is
some limitation of the amount of information that can be
transmitted, and the goal is to maximize the amount of relevant
information transmitted about the image. In the context of neural
coding, the redundancy reduction hypothesis has oftentimes been
motivated in terms of coding efficiency. In fact, instead of
minimizing the multi-information one can equivalently ask for the
linear transformation W which maximizes the mutual information
between its input X and its output Wx+ ¢ when additive noise ¢ is
added to the output [3,37,38]. It is important to note, however,
that this minimalist approach of “information maximization” is
ignorant with respect to how useful or relevant the information is
that has been transmitted [14].

For natural images, the source signal X is a continuous random
variable which requires infinitely many bits to be specified with
unlimited precision. In reality, however, the precision is always
limited so that only a finite amount of bits can be represented.
Both, the multi-information and the average log-loss do not take
into account the problem what information should be encoded
and what information can be discarded. Therefore, it is interesting
to compare the redundancy reduction of the linear transforms with
respect to the relevant image information (while the irrelevant
information can be discarded anyway). To this end, we here resort
to the framework of linear transform coding as it has been
developed in the field of image compression [39,40], and which
constitutes the theoretical foundation of the JPEG standard.

It is clear that at the level of V1 the number of neurons,
encoding the retinal image, is substantially larger than the number
of fibers in the optic nerve. Therefore, it is not the need for
compression that makes rate distortion theory interesting at this
stage. However, Barlow’s redundancy reduction hypothesis must
not be equated with compression. In more recent work, Barlow
introduced the term ‘redundancy exploitation’ instead of ‘redun-
dancy reduction’ in order to avoid this misunderstanding [41]. But
also if we think in terms of density estimation rather than
compression, it is still important to take into account that not all
possible changes in the image pixels may be of equal importance
for inferring the content of an image. Therefore, we here want to
combine the notion of redundancy reduction with a measure for
the quality with which the image can be reconstructed from the
information that is preserved by the representation. Following
Lewicki and coworkers (method 2 in [24,35]) we will consider the
mean squared error reconstruction that can be achieved at a
certain quantization level of the transformed representation. This
objective is in fact very much related to the task of image
compression.

Clearly, we expect that the criteria for judging image
compression algorithms may not provide a good proxy to an
accurate judgement of what information is considered relevant in a
biological vision system. In particular, the existence of selective
attention suggests that different aspects of image information are
transmitted at different times depending on the behavioral goals
and circumstances [12]. That is, a biological organism can change
the relevance criteria dynamically on demand while for still image
compression algorithms it is rather necessary that this assessment is
made once and forever in a fixed and static fashion.

These issues are outside the scope of this paper. Instead we
follow the common path in the past to use the mean squared
reconstruction error for the pixel intensities. This is the measure of
choice for high-rate still image compression [42]. In particular, it is
common to report on the performance of a code by determining
its rate—distortion curve which specifies the required information

April 2009 | Volume 5 | Issue 4 | e1000336

43



rate for a given reconstruction error (and vice versa) [40].
Consequently, we will ask for a given information rate, how do the
image representations compare with respect to the reconstruction
error. As result, we will obtain a so-called rate—distortion curve
which displays the average reconstruction error as a function of the
information rate or vice versa. The second method used in [24,35]
is an estimate of a single point on this curve for a particular fixed
value of the reconstruction error.

The estimation of the rate—distortion curve is clearly the most
difficult task among the three criteria. The framework of transform
coding [39], which is extensively used in still image compression,
makes several simplifying assumptions that allow one to obtain a
clear picture. The encoding task is divided into two steps: First, the
image patches X are linearly transformed into y= WX. Then the
coefficients y; are quantized independently of each other. Using
this framework, we can ask whether the use of an ICA image
transformation leads to a smaller reconstruction error after
coefficient quantization than PCA or any other transform.

As for quantizing the coefficients, we resort to the framework of
variable rate entropy coding [43]. In particular, we apply uniform
quantization, which is close to optimal for high-rate compression
[39,44]. For uniform quantization, it is only required to specify the
bin width of the coefficients. There is also the possibility to use a
different number of quantization levels for the different coeffi-
cients. The question of how to set these numbers is known as the
‘bit allocation problem’ because the amount of bits needed to
encode one coefficient will depend monotonically on the number
of quantization levels. The number of quantization levels can be
adjusted in two different but equivalent ways: One possibility is to
use a different bin width for each individual coefficient.
Alternatively, it is also possible to use the same bin width for all
coefficients and multiply all coefficients with an appropriate scale
factor before quantization. The larger the variance of an
individual coeflicient, the more bits will be allocated to represent
it.

Here, we will employ the latter approach, for which the bit
allocation problem becomes an inherent part of the transforma-
tion: Any bit allocation scheme can be obtained via post-
multiplication with a diagonal matrix. Thus, in contrast to the
objective function of ICA, the rate-distortion criterion is not
invariant against post-multiplication with a diagonal matrix. For
ICA and PCA, we will determine the rate—distortion curve for
both, normalized output variances (“white ICA” and ‘“white
PCA”) and normalized basis functions (“normalized ICA” and
“orthonormal PCA”), respectively.

Decorrelation Transforms

The particular shape of the ICA basis functions is obtained by
minimization of the multi-information over all invertible linear
transforms y= WX. In contrast, the removal of second-order
correlations alone generally does not yield localized, oriented, and
bandpass image basis functions. ICA additionally removes higher-
order correlations which are generated by linear mixing. In order
to assess the importance of this type of higher-order correlations
for redundancy reduction and coding efficiency we will compare
ICA to other decorrelating image bases.

Let C =|E[XXT] be the covariance matrix of the data and
C=UDU" its eigen-decomposition. Then, any linear second-
order decorrelation transform can be written as

W=Dy V-D~'/2U" (5)

where D and U are defined as above, V' is an arbitrary orthogonal
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matrix and Dj is an arbitrary diagonal matrix. It is easily verified
that ¥'= WX has diagonal covariance for all choices of V" and D,,
ie., all second-order correlations vanish. This means that any
particular choice of V' and D; determines a specific decorrelation
transform. Based on this observation we introduce a number of
linear transformations for later reference. All matrices are square
and are chosen to be of determinant 4™, where m is the number of
columns (or rows) of W (i.e., A= {/I1 J; is the geometrical mean of
the eigenvalues 4;,i=1,...,m).

Orthogonal principal p analysis (oPCA). If the
variances of the principle components (i.e., the diagonal elements
of D) are all different, PCA is the only metric-preserving
decorrelation transform and is heavily used in digital image
coding. It corresponds to choosing V' =1, as the identity matrix
and Dy =AD", such that Wypca =AUT.

White principal component analysis (WPCA). Equalizing
the output variances in the PCA representation sets the stage for the
derivation of further decorrelation transforms different from PCA.
In order to assess the effect of variance equalization for coding
efficiency, we also include this “white PCA” representation into our
analysis: Choose V' =1, as for orthonormal PCA and then set
Dy =, with = 2%/det(D'/72) such that Wypca =D~ 2 UT.

Symmetric whitening (SYM). Among the non-orthogonal
decorrelation transforms, symmetric whitening stays as close to the
input representation as possible (in Frobenius norm) [45]. In terms
of early vision this may be seen as an implementation of a wiring
length minimization principle. Remarkably, the basis functions of
symmetric whitening resemble the center-surround shape of
retinal ganglion cell receptive fields when applied to the pixel
representation of natural images [17]. The symmetric whitening
transform is obtained by setting V'=U and D, = ul,, such that
Wsym=p UD~'2UT.

Random whitening (RND).
exploits a special structure with respect to the input representation
nor makes use of higher-order correlations we also consider a
completely random transformation. To obtain a random orthogonal
matrix we first draw a random matrix G from a Gaussian matrix-
variate distribution and then we set Vrnp = (GGT) -1z G. With
Dy =ul,, we obtain Wynp = uVanp D~ 2UT.

White independent component analysis (WICA). Finally,
ICA is the transformation which has been suggested to explain the
orientation selectivity of V1 simple cells [8,23]. Set V' = Vica for
which the multi-information /[Y] takes a minimum. With
D, =/.t1m we obtain Wyica =,LLV|CAD71/2 UT.

Normalized independ p analysis (nICA). Nor-
malized independent component analysis (nICA) differs from white
ICA (Wyica) only by a different choice of the second diagonal matrix
D;. Instead of having equal variance in each coefficient, we now
choose D, such that the corresponding basis vector of each coefficient
has the same length in pixel space. It is easy to see that our first two
criteria, the multi-information and the negative log-likelihood, are
invariant under changes in D5. It makes a difference for the rate—
distortion curves as in our setup the variance (or, more precisely, the
standard deviation) determines the bit allocation. Practically, Whica
can be determined by using Wyica as follows: First, we compute the
matrix inverse A4 : = w’lé A and determine the Euclidean norm
ai, . .. ,ay of the column vectors of A. With D, =diag(ay, . .. ,an),

we then obtain Whica = WDG Wyica.

As a baseline which neither

ICA Algorithm

If the true joint probability distribution is known, the
minimization of the multi-information over all linear transforma-
tions can be formulated without any assumptions about the shape
of the distribution. In practice, the multi-information has to be
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estimated from a finite amount of data which requires to make
assumptions about the underlying density.

There are many different ICA algorithms which differ in the
assumptions made and also in the optimization technique
employed. The choice of the particular ICA algorithm used here
was guided by a set of requirements that arise from the specific
problem setting. Although a wide variety of ICA algorithms has
been published, none of them fits exactly all of our requirements.

We would like to use an ICA algorithm, which gives the ICA
image basis the best chance for the comparison with other image
representations. For the comparison of the multi-information
reduction, we are using the OPT estimator introduced in [28]
which has been found to give the most reliable results. This
estimator employs a parametric estimate of the coefficient
distributions based on the exponential power family which is
known to provide an excellent fit to the coefficient distributions of
natural images [28,46]. Our ICA algorithm should make the same
assumptions about the data as we make for the final comparison of
the multi-information reduction. Therefore, we are also using the
exponential power family model for the marginal densities during
the minimization of the multi-information. In addition, we want to
have an ICA basis which is indistinguishable from the other image
representations with respect to the second-order statistics.
Therefore, we are using a pre-whitened ICA algorithm, whose
search space is restricted to the subgroup of orthogonal matrices
SO(n). One of the most efficient ICA methods in the public
domain specialized to pre-whitened ICA is FastICA [47]. We use
this fixed-point algorithm as an initialization. Subsequently, the
solution is further refined by performing a gradient ascent over the
manifold of orthogonal matrices on the likelihood of the data,
when each marginal is modelled by a the exponential power
distribution as in the case of the OPT estimator.

In order to optimize the objective function over the subspace of
orthogonal matrices, we adapted the algorithms for Stefel
manifolds proposed by Edelman et al. [48] to the simpler case
of orthogonal groups and combined it with the line-search routine
dbrent from [49] to achieve a rather straightforward gradient
descent algorithm. For the initialization with FastICA, we use the
Gaussian non-linearity, the symmetric approach and a tolerance
level of 107°.

Spherically Symmetric Model

A well known result by Maxwell [50] states that the only
factorial distribution invariant against arbitrary orthogonal
transformations is the isotropic Gaussian distribution. Natural
images exhibit marginals which are significantly more peaked than
Gaussian. Nevertheless, their distribution does share the spherical
symmetry with the Gaussian as already found by [51] for gabor
filter pairs and lately exploited by [31] for nonlinear image
representations. Therefore, it makes sense to compare the
performance of the ICA model with a spherically symmetric
model of the whitened data Yy, =WgrnpX. Note that any
spherically symmetric model is still invariant under orthogonal
transformations while only the Gaussian additionally exhibits
marginal independence.

While the radial distribution of a Gaussian (i.e., the distribution
over the lengths of the random vectors) is a y-distribution, whose
shape and scale parameter is determined by the number of
dimensions and the variance, respectively, the spherical symmetric
model may be seen as a generalization of the Gaussian, for which
the radial distribution p(r) with r: =||y||, can be of arbitrary
shape. The density of the spherically symmetric distribution (SSD)
is defined as py(y)=pr(r)/Su(r), where S,(r)=r""12a"2/
I'(n/2) is the surface area of a sphere in R" with radius r. For
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simplicity we will model the radial distribution with a member of
the Gamma family

rlexp(— )

ST r>0 (6)

p()=

with shape parameter # and scale parameter s, which can be easily
matched to the mean and variance of the empirical distribution via

s:Va?r[r]/[E[r] and u:[‘E[r]z/%\r[r].

Dataset

The difference in the performance between ICA and other
linear transformations clearly depends on the data. For gray-scale
images we observed in our previous study [28] that the difference
in the multi-information between ICA and any other decorrelation
transform is consistently smaller than 5%. In particular, we
controlled for the use of different pictures and for the effect of
different pre-processing steps.

Here, we resort to the dataset used in a previous study [25,26],
which among all previous studies reported the largest advantage of
ICA compared to PCA. This color image dataset is based on the
Bristol Hyperspectral Images Database [52] that contains multi-
spectral recordings of natural scenes taken in the surroundings of
Bristol, UK and in the greenhouses of Bristol Botanical Gardens.
The authors of [26] kindly provided to us a pre-processed version
of the image data where spectral radiance vectors were already
converted into LMS values. During subsequent processing the
reflectance standard was cut out and images were converted to log
intensities [26].

All images come at a resolution of 256 X256 pixels. From each
image circa 5000 patches of size 7x7 pixels were drawn at
random locations (circa 40000 patches in total). For chromatic
images with three color channels (LMS) each patch is reshaped as
a 7x7x3 = 147-dimensional vector. To estimate the contribution
of color information, a comparison with monochromatic images
was performed where gray-value intensities were computed as
I=log(}(L+M+S)) and exactly the same patches were used
for analysis. In the latter case, the dimensionality of a data sample
is thus reduced to 49 dimensions. All experiments are carried out
over ten different training and test sets sampled independently
from the original images.

Our motivation to chose 7 x7 patches is to keep the same setting
as in [26] for the sake of comparability. As this patch size is rather
small, we performed the same analysis for patch sizes of 15x15 as
well. All results in the paper refer to the case of 7x7 image
patches. The results for 15x15 can be found in the supplementary
material (Text SI).

The statistics of the average illumation in the image patches, the
DC  component, differs significantly from image to image.
Therefore, we first separated the DC component from the patches
before further transforming them. In order to leave the entropy of
the data unaffected, we used an orthogonal transformation. The
projector Prempc is computed such that the first (for each color
channel) component of PempcX corresponds to the DC compo-
nent(s) of that patch. One such a possible choice is the matrix

T
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However, this is not an orthogonal transformation. Therefore, we
decompose P into P= QR where R is upper triangular and Q is an
orthogonal transform. Since P= QR, the first column of Q must be
a multiple of the vector with all coefficients equal to one (due to the
upper triangluarity of R). Therefore, the first component of QTx is a
multiple of the DC component. Since Q is an orthonomal
transform, using all but the first row of QT for Prempc projects
out the DC component. In the case of color images Prempc becomes
a block-diagonal matrix with QT as diagonal elements for each
channel.

By removing the DC component in that manner, all linear
transformations are applied in #—1 dimensions, if # denotes the
number of pixels in the original image patch. In this case the
marginal entropy of the DC-components has to be included in the
computation of the multi-information in order to ensure a valid
comparison with the original pixel basis. We use the same
estimators as in [28] to estimate the marginal entropy of DC-
component.

Results

Filter Shapes

As in previous studies [8,23] the filters derived with ICA
exhibited orientation selective tuning properties similar to those
observed for V1 simple cells (see Figure 1). For illustration, we also
show the basis functions learned with PCA and RND in Figure 1.
The basis functions 4 are obtained by inverting the filter matrix
W (including the DC component). The result is displayed in the
upper panel (Figure 1A-C). Following common practice, we also
visualize the basis functions after symmetric whitening (Figure 1D—
F).
The basis functions of both PCA and ICA exhibit color
opponent coding but the basis functions of ICA are additionally
localized and orientation selective. The basis functions of the
random decorrelation transform does not exhibit any regular
structure besides the fact that they are bandpass. The following
quantitative comparisons will show, however, that the distinct
shape of the ICA basis functions does not yield a clear advantage
for redundancy reduction and coding efficiency.

Multi-Information

The multi-information is the original objective function that is
minimized by ICA over all possible linear decorrelation trans-
forms. Figure 2 shows the reduction in multi-information achieved
with different decorrelation transforms including ICA for
chromatic and gray value images, respectively. For each
representation, the results are reported in bits per component,
i.e., as marginal entropies averaged over all dimensions:

=13 i) )

Table 1 shows the corresponding values for the transformations
RND, SYM, PCA and ICA. For both chromatic images and gray-
value intensities, the lowest and highest reduction is achieved with
RND or ICA, respectively. However, the additional gain in the
multi-information reduction achieved with ICA on top of RND
constitutes only 3.20% for chromatic images and 2.39% for
achromatic in comparison with the total reduction relative to the
pixel basis (PIX). This means that only a small fraction of
redundancy reduction can actually be accounted to the removal of
higher-order redundancies with ICA.
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One may argue that the relatively small patch size of 7x7 pixel
may be responsible for the small advantage of ICA as all
decorrelation functions already getting the benefit of localization.
In order to address the question how the patch size affects the
linear redundancy reduction, we repeated the same analysis on a
whole range of different patch sizes. Figure 3 shows the multi-
information reduction with respect to the pixel representation
(PIX) achieved by the transformations RND and ICA. The
achievable reduction quickly saturates with increasing patch size
such that its value for 7 x7 image patches is already at about 90%
of its asymptote. In particular, one can see that the relative
advantage of ICA over other transformations is still small (~3%)
also for large patch sizes. All Tables and Figures for patch size
15x15 can be found in the additional material (Text SI).

Average Log-Loss

Since redundancy reduction can also be interpreted as a special
form of density estimation we also look at the average log-loss
which quantifies how well the underlying density model of the
different transformations is matched to the statistics of the data.
Table 2 shows the average log-loss (ALL) and Table 3 the
differential log-likelihood (DLL) in bits per component. For the
average log-loss, ICA achieved an ALL of 1.78 bits per component
for chromatic images and 1.85 bits per component for achromatic
images. Compared to the ALL in the RND representation of
1.9 bits and 1.94 bits, respectively, the gain achieved by ICA is
again small. Additionally, the ALL values were very close to the
differential entropies, resulting in small DLL values. This confirms
that the exponential power distribution fits the shape of the
individual marginal coefficient distributions well. Therefore, we
can safely conclude that the advantage of ICA is small not only in
terms of redundancy reduction as measured by the multi-
information, but also in the sense of density estimation.

Comparison to a Spherical Symmetric Model. The fact
that ICA fits the distribution of natural images only marginally
better than a random decorrelation transform implies that the
generative model underlying ICA does not apply to natural
images. In order to assess the importance of the actual filter shape,
we fitted a spherically symmetric model to the filter responses. The
likelihood of such a model is invariant under post-multiplication of
an orthogonal matrix, i.c., the actual shape of the filter. Therefore,
a good fit of such a model provides strong evidence against a
critical role of certain filter shapes.

As shown in Table 2, the ALL of the SSD model is 1.67 bits per
component for chromatic images and 1.65 bits per component for
achromatic images. This is significantly smaller than the ALL of
ICA indicating that it fits the distribution of natural images much
better than ICA does. This result is particularly striking if one
compares the number of parameters fitted in the ICA model
compared to the SSD case: After whitening, the optimization in
ICA is done over the manifold of orthogonal matrices which has
m(m—1)/2 free parameters (where m denotes the number of
dimensions without the DC  components). The additional
optimization of the shape parameters for the exponential power
family fitted to each individual component adds another m
parameters. For the case of 77 color image patches we thus have
% =10440 parameters. In stark contrast, there are only two
free parameters in the SSD model with a radial Gamma
distribution, the shape parameter # and the scale parameter s.
Nevertheless, for chromatic images the gain of the SSD model
relative to random whitening is almost twice as large as that of
ICA and even three and a half times as large for achromatic
images.
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Figure 1. Examples for Receptive Fields of Various Image Transforms. Basis functions of a random decorrelation transform (RND), principal
component analysis (PCA) and independent component analysis (ICA) in pixel space (A-C) and whitened space (E-F). The image representation in
whitened space is obtained by left multiplication with the matrix square root of the inverse covariance matrix C~1/2,

doi:10.1371/journal.pcbi.1000336.9001

Since the SSD model is completely independent of the choice of
the orthogonal transformation after whitening, its superior
performance compared with ICA provides a very strong argument
against the hypothesis that orientation selectivity plays a critical
role for redundancy reduction. In addition, it is also corroborates
carlier arguments that has been given to show that the statistics of
natural images does not conform to the generative model
underlying ICA [51,53].

Besides the better fit of the data by the SSD model, there is also
a more direct way of demonstrating the dependencies of the ICA
coefficients: If Yyica=(yy,...,¥yy) is data in the wICA

A Decorrelation transforms on chromatic images B
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representation, then the independence assumption of ICA can
be simulated by applying independent random permutations to
the rows of Yyica. Certainly, such a shuffling procedure does not
alter the histograms of the individual coefficients but it is suited to
destroy potential statistical dependencies among the coefficients.
Subsequently, we can transform the shuffled data Ygca back to
the RND basis Ysenp = WrND W;I}:A Yica. If the ICA coeffi-
cients were independent, the shuffling procedure would not alter
the joint statistics, and hence, one should find no difference in the
multi-information between Ygrnp and Yrnp. But infact, we
observe a large discrepancy between the two (Figure 4). The

Decorrelation transforms on gray images

3.1252 bits

0.076652 bits

—>

PIX DCS

RND SYM PCA ICA

Figure 2. Multi-Information Reduction per Dimension. Average differential entropy </1) for the pixel basis (PIX), after separation of the DC
component (DCS), and after application of the different decorrelation transforms. The difference between PIX and RND corresponds to the
redundancy reduction that is achieved with a random second-order decorrelation transform. The small difference between RND and ICA is the
maximal amount of higher-order redundancy reduction that can be achieved by ICA. Diagram (A) shows the results for chromatic images and
diagram (B) for gray value images. For both types of images, only a marginal amount can be accounted to the reduction of higher order
dependencies.

doi:10.1371/journal.pcbi.1000336.9g002
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Table 1. Comparision of the Multi-Information Reduction for
Chromatic and Achromatic Images.

Orientation Selective Coding of Natural Images

Table 2. Average Log-Loss (ALL) for Chromatic and
Achromatic Images.

Absolute Difference Relative Difference

Color Gray Color Gray

RND-PIX —4.0694+0.0043 —3.1252+0.0043

SYM-RND—0.0593+0.0004 —0.0259+0.0006 W 1.44+0.01 0.82+0.02
PCA-RND —0.0627+0.0008 —0.0353=0.0011 W 1.52+0.02 1.12+0.03
ICA-RND —0.13450.0008 —0.07670.0008 W 3.20+0.02 2.39+0.02

Differences in the multi-information reduction between various decorrelation
transforms (SYM, PCA, ICA) relative to a random decorrelation transform (RND)
compared to the multi-information reduction achieved with the random
decorrelation transform relative to the original pixel basis (RND-PIX). The
absolute multi-information reduction is given in bits/component on the left
hand side. The right hand side shows how much more the special decorrelation
transforms SYM, PCA and ICA can reduce the multi-information relative to the
random (RND) one.

doi:10.1371/journal.pcbi.1000336.t001

distributions of the sSRND coefficients were very close to Gaussians
and the average marginal entropy of sRND yielded <{Asrnp —
hGaussy & —0.001 bits in contrast to {irNp — AGauss & — 0.1 bits.
In other words, the finding that for natural images the marginals of
a random decorrelation transform have Laplacian shape (x~1)
stands in clear contradiction to the generative model underlying
ICA. If the ICA model was valid, one would expect that the sum
over the ICA coefficients would yield Gaussian marginals due to
the central limit theorem. In conclusion, we have very strong
evidence that the ICA coefficients are not independent in case of
natural images.

Rate-Distortion Curves

There are different ways to account for the limited precision
that is imposed by neural noise and firing rate limitations. As
mentioned above the advantage with respect to a plain
information maximization criterion can equivalently be measured

A B
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Color Gray

ALL ALL
RND 1.9486+0.0035 1.9414+0.0044
SYM-RND —0.0881+0.0004 —0.0402+0.0005
PCA-RND —0.0751%0.0009 —0.0391£0.0011
ICA-RND —0.1637+0.0007 —0.08800.0007
SSD-RND —0.2761£0.0025 —0.2868+0.0032

The first row shows the average log-loss (ALL, in bits/component) of the density
model determined by the linear transformation RND. The value was obtained
by averaging over 10 separately sampled training and test sets of size 40.000
and 50.000, respectively. The following rows show the difference of the ALL of
the models SYM, PCA, ICA and of the spherically symmetric density (SSD) to the
ALL of the RND model. The smaller average log-loss of the SSD model
compared to the ICA model fundamentally contradicts the assumptions
underlying the ICA model.

doi:10.1371/journal.pcbi.1000336.t002

by the multi-information criterion considered above [37,54]. In
order to additionally account for the question which representa-
tion optimally encodes the relevant image information, we also
present rate distortion curves which show the minimal recon-
struction error as a function of the information rate.

We compare the rate—distortion curves of wICA, nICA, wPCA
and oPCA (see Figure 5). Despite the fact that ICA is optimal in
terms of redundancy reduction (see Table 2), oPCA performs
optimal with respect to the rate-distortion trade-off. wPCA in turn
performes worst and remarkably similar to wICA. Since wPCA
and wlICA differ only by an orthogonal transformation, both
representations are bound to the same metric. oPCA is the only
transformation which has the same metric as the pixel represen-
tation according to which the reconstruction error is determined.
By normalizing the length of the ICA basis vectors in the pixel
space, the metric of nICA becomes more similar to the pixel basis
and the performance with respect to the rate-distortion trade-off

8 10 12
Patch Size

Figure 3. Redundancy Reduction as a Function of Patch Size. The graph shows the multi-information reduction achieved by the
transformations RND and ICA for chromatic (A) and achromatic images (B). The gain quickly saturates with increasing patch size such that its value for
7 x7 image patches is already at about 90% of its asymptote. This demonstrates that the advantage of ICA over other transformations does not

increase with increasing patch size.
doi:10.1371/journal.pcbi.1000336.9g003
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Table 3. Differential Log-Likelihood (DLL) for Chromatic and Achromatic Images.

Color Gray

DLL (a)y DLL ()
RND —0.0113£0.0007 1.041320.0026 —0.0057+0.0006 1.013220.0046
SYM —0.0388+0.0009 0.8961+0.0021 —0.0195+0.0009 0.9486+0.0040
PCA —0.0224+0.0007 0.9145+0.0024 —0.0087+0.0007 0.9425+0.0025
ICA —0.0378+0.0009 0.7687+0.0017 —0.0154%0.0011 0.8434+0.0025

doi:10.1371/journal.pcbi.1000336.t003

improved considerably. Nevertheless, for a fixed reconstrucion
error the discrete entropy after quantization in the oPCA basis is
up to 1 bit/component smaller than for the corresponding nICA-
basis.

In order to understand this result more precisely, we analyzed
how the quantization of the coefficients affects the two variables of
the rate—distortion function, discrete entropy and reconstruction error.

Figure 6 shows an illustrative example in order to make the
following analysis more intuitive. The example demonstrates that
the quality of a transform code not only depends on the
redundancy of the coefficients but also on the shape of the
partition cells induced by the quantization. In particular, when the
cells are small (ie., the entropy rate is high), then the
reconstruction error mainly depends on having cell shapes that
minimize the average distance to the center of the cell. Lincar
transform codes can only produce partitions into parallelepipeds
(Figure 6B). The best parallelepipeds are cubes (Figure 6A). This is
why PCA vyields the (close to) optimal trade-off between
minimizing the redundancy and the distortion, as it is the only
orthogonal transform that yields uncorrelated coefficients. For a
more comprehensive introduction to transform coding we refer the
reader to the excellent review by Goyal [39].

Discrete entropy. Given a uniform binning of width 0 the
discrete entropy Hj of a probability density p(x) is defined as

Hy=—" pilogp; with Pi=J p(x)dx, ®)
7 B

where B; denotes the interval defined by the i-th bin. For small
bin-sizes 0—0, there is a close relationship between discrete and
differential entropy: Because of the mean value theorem we can
approximate p; ~p(&;)0 with éeB;, and hence

Hs~ — Zp(é,)élog[p(g“,-)ﬁ]
== 0 p(&logp(&) —logs D p(&)o.

N—_——
-0
-1

-0
- J p(x)logp(x) dx

Thus, we have the relationship Hs ~h—log 6 for sufficiently small
0 (i.e., high-rate quantization). In other words, H;s asymptotically
grows linearly with (—logd). Therefore, we can fit a linear
the  asymptotic the  function
Hs=Hs(—logd) which is plotted in Figure 7A (more precisely
we are plotting the average over all dimensions). If we take the
ordinate intercept of the linear approximation, we obtain a

function  to branch  of
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The small DLL values suggest, that the exponential power distribution fits the shape of the individual coefficient distributions well. In addition, we also report the
average exponent {u) of the exponential power family fit to the individual coefficient distributions (=1 corresponds to a Laplacian shape).

nonparametric estimate of the differential entropy which can be
compared to the entropy estimates reported above (Those
estimates  were  determined with the OPT  estimator).
Equivalently, one can consider the function hs(—logd): =
Hs—(—logd) which gives a better visualization of the error of
the linear approximation (Figure 7, left, dashed line). For
hs(—logd) the differential entropy is obtained in the limit
h= lim(,logé)ﬂx hg = lim(sﬁ,()hg,.

This analysis shows that differences in differential entropy in
fact translate into differences in discrete entropy after uniform
quantization with sufficiently small bins. Accordingly, the
minimization of the multi-information as proposed by the
redundancy reduction hypothesis does in fact also minimize the
discrete entropy of a uniformly quantized code. In particular, if we
look at the discrete entropy of the four different transforms, oPCA,
wPCA, wlCA, nICA (Figure 7B), we find that asymptotically the
two PCA transforms require slightly more entropy than the two
ICA transforms, and there is no difference anymore between

Marginal Distribution of coefficients

107 . . .
—i—wICA
—e—RND
5 ——sRND
10°F = »Gauss|]
5
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=
a
10°} 3
10° '
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10% 1
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Figure 4. The Distribution of Natural Images does not Conform
with the Generative Model of ICA. In order to test for statistical
dependencies among the coefficients Yyica of whithened ICA for
single data samples, the coefficients were shuffled among the data
points along each dimension. Subsequently, we transform the resulting
data matrix Ygca into Ysrnp = Wenp W‘Q'CA Ysica- This corresponds to
a change of basis from the ICA to the random decorrelation basis (RND).
The plot shows the log-histogram over the coefficients over all
dimensions. If the assumptions underlying ICA were correct, there
would be no difference between the histogram of Yrnp and Yrp.
doi:10.1371/journal.pcbi.1000336.9004

April 2009 | Volume 5 | Issue 4 | e1000336

49



Reconstruction-error vs. Discrete Entropy
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Figure 5. Rate-distortion Curves. Rate-distortion curve for PCA and
ICA when equalizing the output variances (WPCA and wICA) and when
equalizing the norm of the corresponding image bases in pixel space
(oPCA and nICA). The plot shows the discrete entropy H; in bits
(averaged over all dimensions) against the log of the squared
reconstruction error 2. oPCA outperforms all other transforms in
terms of the rate-distortion trade-off. wPCA in turn performes worst and
remarkably similar to wiCA. Since wPCA and wlICA differ only by an
orthogonal transformation, both representations are bound to the
same metric. oPCA is the only transformation which has the same
metric as the pixel representation according to which the reconstruc-
tion error is determined. By normalizing the length of the ICA basis
vectors in the pixel space, the metric of nICA becomes more similar to
the pixel basis and the performance with respect to the rate-distortion
trade-off can be seen to improve considerably.
doi:10.1371/journal.pcbi.1000336.9g005

oPCA and wPCA or wlCA and nICA. This close relationship
between discrete and differential entropy for high-rate quantiza-
tion, however, is not sufficient to determine the coding
performance evaluated by the rate—distortion curve. The latter
requires to compare also the reconstruction error for the given
quantization.

Reconstruction error. The reconstruction error is defined as
the mean squared distance in the pixel basis between the original
image and the image obtained by reconstruction from the
quantized coefficients of the considered transformation. For the
reconstruction, we simply use the inverse of the considered
transformation, which is optimal in the limit of high-rate
quantization.

When looking at the reconstruction error as a function of the
bin width (Figure 8) we can observe much more pronounced
differences between the different transformations than it was the
case for the entropy. As a consequence, the differences in the
reconstruction error turn out to be much more important for the
rate-distortion trade-off than the differences in the entropy. Only
the two transformations with exactly the same metric, wPCA and
wlCA, exhibit no difference in the reconstruction error. This
suggests that minimization of the multi-information is strictly
related to efficient coding if and only if the transformation with
respect to the pixel basis is orthogonal. As we have seen that the
potential effect of higher-order redundancy reduction is rather
small, we expect that the PCA transform constitutes a close
approximation to the minimizer of the multi-information among
all orthogonal transforms because PCA is the only orthogonal
transform which removes all second-order correlations.
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Discussion

The structural organization of orientation selectivity in the
primary visual cortex has been associated with self-organization
since the early seventies [55], and much progress has been made to
narrow down the range of possible models compatible with the
empirical findings (e.g., [56-58]). The link to visual information
processing, however, still remains elusive [59-61].

More abstract unsupervised learning models which obtain
orientation selective filters using sparse coding [8] or ICA [23] try
to address this link between image processing and the self-
organization of neural structure. In particular, these models not
only seek to reproduce the orientation tuning properties of V1
simple cells but they additionally address the question of how the
simple cell responses collectively can instantiate a representation
for arbitrary images. Furthermore, these image representations are
learned from an information theoretic principle assuming that the
learned filters exhibit advantageous coding properties.

The goal of this study is to quantitatively test this assumption in
the simple linear transform coding framework. To this end, we
investigated three criteria, the multi-information—i.e., the objec-
tive function of ICA-—the average log-loss, and rate-distortion
curves. There are a number of previous studies which also aimed
at quantifying how large the advantage of the orientation selective
ICA filters is relative to second-order decorrelation transforma-
tions. In particular, four papers [24-26,28], are most closely
related to this study as all of them compare the average log-loss of
different transformations. However, they did not provide a
coherent answer to the question how large the advantage of
ICA is compared to other decorrelation transforms.

Lewicki and Olshausen [24] found that their learned bases show
a 15-20% improvement over traditional bases. However, their
result cannot be used to compare second-order and higher-order
redundancy reduction because the entire analysis is based on a
dataset in which all images have been preprocessed with a
bandpass filter as in olshausen:1996. Since bandpass filtering
already removes a substantial fraction of second-order correlations
in natural images, their study is likely to systematically underes-
timate the total amount of second-order correlations in natural
images.

Lee et al. [25,26] reported an advantage of over 100% percent
for ICA in the case of color images and a more moderate but
substantial gain of about 20% for gray-value images. In order to
avoid possible differences due to the choice of data set we here
used exactly the same data as in [25,26]. Very consistently, we find
only a small advantage for ICA of less than five percent for both
multi-information and the average log-loss. In particular, we are
not able to reproduce the very large difference between color and
gray-value images that they reported. Unfortunately, we cannot
pinpoint where the differences in the numbers ultimately come
from because it is not clear which estimation procedure was used
in [25,26].

The estimators used for the measurements in the present study
have been shown previously to give correct results on artificial data
[28] and we provide our code online for verification. Furthermore,
Weiss and Freeman showed for an undirected probabilistic image
model that whitening already yields 98% of the total performance
[62]. Finally, the superior performance of the simple SSD model
with only two free parameters provides a very strong explanation
for why the gain achieved with ICA is so small relative to a
random decorrelation transform: Since a spherically symmetric
model is invariant under orthogonal transformations and provides
a better fit to the data, the actual shape of the filter does not seem
to be critical. It also shows that the fundamental assumption
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Figure 6. The Partition Cell Shape is Crucial for the Quantization Error. The quality of a source code depends on both the shapes of the
partition cells and on how the sizes of the cells vary with respect to the source density. When the cells are small (i.e,, the entropy rate is high), then,
the quality mainly depends on having cell shapes that minimize the average distance to the center of the cell. For a given volume, a body in
Euclidean space that minimizes the average distance to the center is a sphere. The best packings (including the hexagonal case) cannot be achieved
with linear transform codes. Transform codes can only produce partitions into parallelepipeds, as shown here for two dimensions. The best
parallelepipeds are cubes which are only obtained in the case of orthogonal transformations. Therefore PCA yields the (close to) optimal trade-off
between minimizing the redundancy and the distortion as it is the only orthogonal decorrelation transform (see [39] for more details). The figure
shows 50.000 samples from a bivariate Gaussian random variable. Plot (A) depicts a uniform binning (bin width 4=0.01, only some bin borders are
shown) induced by the only orthogonal basis for which the coefficients x; and x, are decorrelated. Plot (B) shows uniform binning in a decorrelated,
but not orthogonal basis (indicated by the blue lines). Both cases have been chosen such that the multi-information between the coefficients is
identical and the same entropy rate was used to encode the signal. However, due to the shape of the bins in plot (B) the total quadratic error
increases from 0.4169 to 0.9866. The code for this example can be also downloaded from http://www.kyb.tuebingen.mpg.de/bethge/code/QICA/.

doi:10.1371/journal.pcbi.1000336.9006

underlying ICA—the data are well described by a linear
generative model with independent sources—is not justified in
the case of natural images.

From all these results, we can safely conclude that the actual
gain of ICA compared to PCA is smaller than 5% for both gray
level images and color images.

A

Discrete entropy vs. bin-width
[~-wrca
5H 2 wICA |

(H, }inbits

0
-log(®)

{ Hs ) in bits

Is Smaller Than 5% Really Small?

A valid question to ask is whether comparing the amount of
higher-order correlations to the amount of second-order correla-
tions is the right thing to do. Even if the amount of higher-order
correlations may be small in comparison to the amount of second-
order correlations, we still know that higher-order correlations can

Discrete entropy vs. bin-width

Figure 7. Discrete vs. Differential Entropy. (A) Relationship between discrete and differential entropy. Discrete entropy (H;) averaged over all
channels as a function of the negative log bin width. The straight lines constitute the linear approximation to the asymptotic branch of the function.
Their interception with the y-axis are visualized by the gray shaded, horizontal lines. The dashed lines represent {/;;) which converge to the gray
shaded lines for 6—0. (B) There are only small differences in the average discrete entropy for oPCA, wPCA, wiICA, nICA as a function of the negative
log bin width. Since the discrete entropy of the DC component is the same for all transforms, it is not included in that average but plotted separately

instead.
doi:10.1371/journal.pcbi.1000336.9007
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Figure 8. Reconstruction Error vs. Bin Width of Discrete
Entropy. Reconstruction error ¢> as a function of the bin width J,
shown on a logarithmic scale. The differences between the different
transforms are relatively large. Only the two transformations with
exactly the same metric, WPCA and wiCA, exhibit no difference in the
reconstruction error.

doi:10.1371/journal.pcbi.1000336.9g008

be a critical signature of the content of an image. For example,
textures are very useful to demonstrate how changes in higher-
order correlations can change the perceptual meaning of an
image.

Our results on the rate-distortion trade-off can be taken as an
indication that the fraction of higher-order correlations captured
by ICA is perceptually less relevant. This interpretation is further
corroborated by a psychophysical comparison of the perceptual
redundancy of the ICA and the PCA basis [63]. Another
confirmation of this interpretation can be obtained if we use the
learned image representations as generative models. Perceptually
image patches sampled from the ICA model do not look more
similar to natural image patches than those sampled from the
random decorrelation basis (Figure 9). Currently, we are running
psychophysical experiments which also show quantitatively that

Orientation Selective Coding of Natural Images

there is no significant difference between the ICA model and the
PCA model if the subjects have to discriminate between textures
that are generated by these models.

In summary, we were not able thus far to come up with a
meaningful interpretation for which the improvement of ICA
would be recognized as being large. On the basis of the present
study it seems rather unlikely that such a measure can be found for
linear ICA. Instead, we believe that more sophisticated, nonlinear
image models are necessary to demonstrate a clear advantage of
orientation selectivity.

What about Nonparametric Approaches?

The focus on linear redundancy reduction models in this study
is motivated by the goal to first establish a solid and reproducible
result for the simplest possible case before moving on to more
involved nonlinear transformations. Nevertheless, it is important
to discuss what we can expect if the restriction to linear
transformations is dropped. From a nonparametric analysis [27],
Petrov and Zhaoping concluded that higher-order correlations in
general contribute only very little to the redundancy in natural
images and, hence, are probably not the main cause for the
receptive field properties in V1. The empirical support for this
claim, however, is limited by the fact that their comparison is
based on mutual information estimates within a very small
neighborhood of five pixels only. This is problematic as it is known
that many kinds of higher-order correlations in natural images
become apparent only in much higher-dimensional statistics [64].
Furthermore, their estimate of the amount of second-order
correlations is not invariant against pointwise nonlinear transfor-
mations of the pixel intensities.

In a more recent non-parametric study, Chandler and Field
arrived at a very different result regarding the relative contribution
of second-order and higher-order dependencies [29]. They use
nearest-neighbor based methods to estimate the joint entropy of
natural images in comparison to “spectrum-equalized” noise and
white noise, where “spectrum-equalized” noise denotes Gaussian
noise with exactly the same spectrum as that of natural images. As
shown in Figure 18 of [29] they find a smaller difference between
spectrum-equalized noise and white noise than between natural
images and spectrum-equalized noise. Hence, from their finding, it
scems that the amount of higher-order correlations in natural
images is even larger than the amount of second-order

Figure 9. Comparison of Patches Sampled From Different Image Models. The figure demonstrates that the perceptual similarity between
samples from the ICA image model (C) and samples from natural images (B) is not significantly increased relative to the perceptual similarity between

samples from the RND image model (A) and (B).
doi:10.1371/journal.pcbi.1000336.9009
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correlations. Also this result has to be taken with care: Reliable
non-parametric estimates in high-dimensions are difficult to obtain
even if one resorts to nearest-neighbor based methods, and the
estimate of the amount of second-order correlations in [29] is not
invariant against pointwise nonlinear transformations of the pixel
intensities, too.

In summary, the present nonparametric studies do not give a
unique answer regarding the total amount of higher-order
correlations in natural images. Since estimating the absolute
amount of multi-information is an extremely difficult task in high
dimensions, the differences in the results can easily originate from
the different assumptions and approximations made in these
studies. Consequently, it remains an open question how large the
true total redundancy of natural images is. In any case, it is clear
that there are many higher-order redundancies in natural images
that play a crucial role for visual perception. No matter how large
these redundancies are in comparison to the second-order
correlations, we need to develop better image models that have
the right structure to capture these regularities.

What about Nonlinear Image Models?

Apart from the non-parametric approaches, a large number of
nonlinear image models has been proposed over the years which
are capable to capture significantly more statistical regularities of
natural images than linear ICA can do (e.g., [62,65-72]). In fact,
Olshausen and Field [8] already used a more general model than
linear ICA when they originally derived the orientation selective
filters from higher-order redundancy reduction. In contrast to
plain ICA, they used an overcomplete generative model which
assumes more source signals than pixel dimensions. In addition,
the sources are modeled as latent variables like in a factor analysis
model. That is the data is assumed to be generated according to
X=As+¢ where 4 denotes the overcomplete dictionary, s is
distributed according to a sparse factorial distribution, and ¢ is a
Gaussian random variable. The early quantitative study by
Lewicki and Olshausen [24] could not demonstrate an advantage
of overcomplete coding in terms of the rate-distortion trade-off
and also the more recent work by Seeger [70] seems to confirm
this conclusion. The addition of a Gaussian random variable ¢ to
As, however is likely to be advantageous as it may help to
interpolate betweem the plain ICA model on the one hand and the
spherically symmetric model on the other hand. A comparison of
the average log-loss between this model and plain ICA has not
been done yet but we can expect that this model can achieve a
similar or even better match to the natural image statistics as the
spherically symmetric model.

The spherical symmetric model can also be modeled by a
redundancy reduction transformation which changes the radial
component such that the output distribution is sought to match a
Gaussian distribution [31]. Hence, the redundancy reduction of
this model is very similar to the average log-loss of the spherically
symmetric distribution. From a biological vision point of view, this
type of model is particularly interesting as it allows one to draw a
link to divisive normalization, a prominent contrast gain control
mechanism observed for virtually all neurons in the early visual
system. Our own ongoing work [30] shows that this idea can be
generalized to a larger class of L,-spherically symmetric
distributions [67]. In this way, it is possible to find an optimal
interpolation between ICA and the spherically symmetric case
[73]. That is, one can combine orientation selectivity with divisive
normalization in a joint model. Our preliminary results suggests
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that optimal divisive normalization together with orientation
selectivity allows for about 10% improvement while divisive
normalization alone (i.c., the spherical symmetric model) is only
2% worse [30].

Concluding Remarks

Taken together, the effect of orientation selectivity on
redundancy reduction is very limited within the common linear
filter bank model of V1 simple cells. In contrast to Zhaoping and
coworkers, we do not claim that higher-order redundancy
minimization is unlikely to be the main constraint in shaping the
cortical receptive fields [22,27]. Our conclusion is that although
there are significant higher-order correlations in natural images,
orientation selective filtering turns out to be not very effective for
capturing these. Nevertheless, we do expect that visual represen-
tations in the brain aim to model those higher-order correlations,
because they are perceptually relevant. Therefore, we think it is
important to further explore which type of nonlinear transforma-
tions would be suitable to capture more pronounced higher-order
correlations. The objective functions studied in this paper are
related to factorial coding, density estimation and minimization of
the pixel mean square reconstruction error. Of course, there are
also other alternatives that are interesting, too. For example,
Zhaoping proposed that one possible goal of V1 is to explicitly
represent bottom-up saliency in its neural responses for visual
attentional selection [12]. As a further alternative, we are cur-
rently trying to extend the efficient coding framework to deal
with other loss functions. Obviously, the goal of the visual system
is not to preserve the pixel representation of the visual
input. Instead, seeing serves the purpose to make successful
predictions about behaviorally relevant aspects of the environment
[74]. Since 3D shape inference is necessary to almost any naturally
relevant task, it seems particularly interesting to explore the role of
orientation selectivity in the context of 3D shape inference [75].
For a quantitative account of this problem one can seek to
minimize the reconstruction error for the 3D shape rather than for
its 2D image. Certainly, this task is much more involved than
image reconstruction. Nevertheless, we need to think more about
how to tackle the problem of visual inference within the framework
of unsupervised learning in order to unravel the principles of
neural processing in the brain that are ultimately responsible for
our ability to see.

Supporting Information

Text 81 In the article we chose a patch size of 7x7 in order to
enhance the comparability to previous work. The supplementary
material contains all results (figures and tables) for patch size
15x15.

Found at: doi:10.1371/journal.pcbi.1000336.s001 (2.82 MB PDF)
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Additional Material

August 14, 2008

Figures and Tables for Patch Size 15x15

Figure 1: Examples for Receptive Fields of Various Image Transforms  Basis
functions of a random decorrelation transform (RND), principal component
analysis (PCA) and independent component analysis (ICA) in pixel space (A-
C) and whitened space (E-F). The image representation in whitened space is
obtained by left multiplication with the matrix square root of the inverse
covariance matrix rC'~/2. This figure can only give a rough idea of the shape
of the basis functions. For a detailed inspection of the basis functions we refer
the reader to our web page http://www.kyb.mpg.de/bethge/code/QICA/
where we provide all the data and code used in this paper.
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Decorrelation transforms on chromatic images Decorrelation transforms on gray images
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Differential Entropy in bits/component
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PIX DCS RND SYM PCA ICA PIX DCS RND SYM PCA ICA

Multi-Information Reduction per Dimension Average differential en-
tropy (h) for the pixel basis (PIX), after separation of the DC component
(DCS), and after application of the different decorrelation transforms. The
diagram shows the results for chromatic images (A) and the diagram for gray
value images (B). For both types of images, only a marginal amount can be
accounted to the reduction of higher order dependencies.
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Marginal Distribution of coefficients
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Figure 3: The Distribution of Natural Images does not Conform with the
Generative Model of ICA  In order to test for statistical dependen-
cies among the coefficients Yyica of whithened ICA for single data sam-
ples, the coefficients were shuffled among the data points along each di-
mension. Subsequently, we transform the resulting data matrix Ygca into
YsrND = WRNDWUTIIC 4Ysica. This corresponds to a change of basis from
the ICA to the random decorrelation basis (RND). The plot shows the log-
histogram over the coefficients over all dimensions. If the assumptions under-
lying ICA were correct, there would be no difference between the histogram
of Ysrnp and YRND.-
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Reconstruction—error vs. Discrete Entropy
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Figure 4: Rate-distortion Curves Rate-distortion curve for PCA and ICA when

equalizing the output variances (wPCA and wICA) and when equalizing the
norm of the corresponding image bases in pixel space (0PCA and nICA).
The plot shows the discrete entropy Hy in bits (averaged over all dimensions)
against the log of the squared reconstruction error 2. oPCA outperforms
all other transforms in terms of coding efficiency. wPCA in turn performed
the worst and remarkably similar to wICA. Since wPCA and wICA differ
only by an orthogonal transformation, both representations are bound to the
same metric. oPCA is the only transformation which has the same met-
ric as the pixel representation according to which the reconstruction error
is determined. By normalizing the length of the ICA basis vectors in the
pixel space, the metric of nICA becomes more similar to the pixel basis and
the performance with respect to coding efficiency can be seen to improved
considerably.
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Figure 5:

62

Discrete entropy vs. bin-width B Discrete entropy vs. bin-width

6
wPCA
5H=#=WwICA

( H‘i ) in bits
(Hy ) in bits

Discrete vs. Differential Entropy A. Relationship between discrete
and differential entropy. Discrete entropy (Hj) averaged over all channels as a
function of the negative log-bin-width. The straight lines constitute the linear
approximation to the asymptotic branch of the function. Their interception
with the y-axis are visualized by the gray shaded, horizontal lines. The dashed
lines represent (hs) which converge to the gray shaded lines for 6 — 0. B.
There are only small differences in the average discrete entropy for oPCA,
wPCA, wICA, nICA as a function of the negative log-bin-width. Since the
discrete entropy of the DC component is the same for all transforms, it is not
included in that average but plotted separately instead.
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Reconstruction-error vs. bin—width
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Figure 6: Reconstruction Error vs. Bin Width of Discrete Entropy Re-

construction error o2 as a function of the bin-width d, shown on a logarith-

mic scale. The differences between the different transforms are relatively
large. Only the two transformations with exactly the same metric, wPCA
and wICA, exhibit no difference in the reconstruction error.

Absolute Difference H Relative Difference
Color Gray Color Gray
RND-PIX | -4.2101 + 0.0020 | -3.2901 + 0.0019
SYM-RND | -4.2015 % 0.0023 | -3.3360 = 0.0022 || SXMERED 19,90 + 0.01 | 1.37 + 0.01
PCA-RND | -4.2534 4+ 0.0022 | -3.3239 + 0.0022 % 1.02 £ 0.01 | 1.01 + 0.01
ICA-RND | -4.3575 £ 0.0024 | -3.3921 £ 0.0026 %%% 3.38 £ 0.02 | 3.01 £ 0.02

Table 1: Comparision of the Multi-Information Reduction for Chromatic and

Achromatic Images

Differences in the multi-information reduction be-

tween various decorrelation transforms (SYM, PCA, ICA) relative to a ran-
dom decorrelation transform (RND) compared to the multi-information reduc-
tion achieved with the random decorrelation transform relative to the original
pixel basis (RND-PIX). The absolute multi-information reduction is given in
bits/component on the left hand side. How much more the special decorrela-
tion transforms SYM, PCA and ICA can reduce the multi-information relative
to the random (RND) one is given in percent on the right hand side.
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Color Gray
A ALL ALL
RND 1.9925 £ 0.0041 1.9685 + 0.0038
SYM-RND -0.1203 + 0.0007 -0.0682 4+ 0.0005
PCA-RND -0.0511 4+ 0.0004 -0.0364 + 0.0005
ICA-RND -0.1829 + 0.0009 -0.1191 + 0.0010
SSD-RND -0.2461 + 0.0022 -0.2742 + 0.0030
B DLL () DLL ()
RND -0.0086 + 0.0002 | 1.1273 4+ 0.0039 | -0.0060 £ 0.0004 | 1.0811 + 0.0034
SYM -0.0472 £+ 0.0005 | 0.9034 4+ 0.0027 | -0.0282 + 0.0006 | 0.9535 + 0.0032
PCA -0.0162 £ 0.0003 | 1.0229 4+ 0.0033 | -0.0085 + 0.0005 | 1.0100 £ 0.0031
ICA -0.0434 £+ 0.0004 | 0.7540 4+ 0.0019 | -0.0227 £ 0.0007 | 0.8237 £ 0.0025

Table 2: Comparision of the Average Log-Loss (ALL) and the Differential

Log-Likelihood (DLL) Chromatic and Achromatic Images A. The
first row shows the average log-loss (ALL, in bits/component) of the density
model determined by the linear transformation RND. The value was obtained
by averaging over 10 separately sampled training and test sets of size 40.000
and 50.000, respectively. The following rows shows the difference of the ALL
of the models SYM, PCA, ICA and the spherically symmetric density (SSD)
to the ALL determined by linear transformation RND. The large value for
RND—ICA fundamentally contradicts the assumptions underlying the ICA
model. B. The small DLL values suggest, that the exponential power distribu-
tion fits the shape of the individual coefficient distributions well. In addition,
we also report the average exponent (a) of the exponential power family fit
to the individual coefficient distributions (e = 1 corresponds to a Laplacian
shape).
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Figure 7: Multi-Information for Small Patches

MI Reduction in Bits/Component

MI Reduction in Bits/Component

= Difference of Marginal Entropies (OPT & NPL)
== Difference in M (Milca Estimator)

28 3 32 a4 36 38 g
Patch Size

A Multi-information for patch

sizes 2 X 2, 3 x 3 and 4 X 4 in the representations PIX and ICA. B Multi-
information reduction as estimated by the multi-information from the left
plot and by the differences in the marginal entropies. For patch size 4 x 4,
the estimations start to disagree. Since the multi-information is much harder
to estimate than the marginal entropies, we conclude that from patch size
4 x 4 on, the multi-information estimates are not reliable anymore.

‘2><2‘3><3‘4><4‘

PIX | 2.2157

2.8193

2.9405

ICA | 0.1573

0.2358

0.2622

Table 3: Multi-Information for Small Patch Sizes

The table shows the multi-

information in the representations PIX and ICA in bits/pixel as computed
with the estimator from the MILCA package by Kraskov.
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4.3 The Conjoint Effect of Divisive Normalization and
Orientation Selectivity on Redundancy Reduction:
Original Article
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Abstract

Bandpass filtering, orientation selectivity, and contrast gain control are prominent
features of sensory coding at the level of V1 simple cells. While the effect of
bandpass filtering and orientation selectivity can be assessed within a linear model,
contrast gain control is an inherently nonlinear computation. Here we employ the
class of L, elliptically contoured distributions to investigate the extent to which
the two features—orientation selectivity and contrast gain control—are suited to
model the statistics of natural images. Within this framework we find that contrast
gain control can play a significant role for the removal of redundancies in natural
images. Orientation selectivity, in contrast, has only a very limited potential for
redundancy reduction.

1 Introduction

It is a long standing hypothesis that sensory systems are adapted to the statistics of their inputs.
These natural signals are by no means random, but exhibit plenty of regularities. Motivated by
information theoretic principles, Attneave and Barlow suggested that one important purpose of this
adaptation in sensory coding is to model and reduce the redundancies [4; 3] by transforming the
signal into a statistically independent representation.

The problem of redundancy reduction can be split into two parts: (i) finding a good statistical model
of the natural signals and (ii) a way to map them into a factorial representation. The first part
is relevant not only to the study of biological systems, but also to technical applications such as
compression and denoising. The second part offers a way to link neural response properties to
computational principles, since neural representations of natural signals must be advantageous in
terms of redundancy reduction if the hypothesis were true. Both aspects have been extensively
studied for natural images [2; 5; 8; 19; 20; 21; 24]. In particular, it has been shown that applying
Independent Component Analysis (ICA) to natural images consistently and robustly yields filters
that are localized, oriented and show bandpass characteristics [19; 5]. Since those features are also
ascribed to the receptive fields of neurons in the primary visual cortex (V1), it has been suggested
that the receptive fields of V1 neurons are shaped to form a minimally redundant representation of
natural images [5; 19].

From a redundancy reduction point of view, ICA offers a small but significant advantage over other
linear representations [6]. In terms of density estimation, however, it is a poor model for natural
images since already a simple non-factorial spherically symmetric model yields a much better fit to
the data [10].

Recently, Lyu et al. proposed a method that converts any spherically symmetric distribution into a
(factorial) Gaussian (or Normal distribution) by using a non-linear transformation of the norm of



the image patches [17]. This yields a non-linear redundancy reduction mechanism, which exploits
the superiority of the spherically symmetric model over ICA. Interestingly, the non-linearity of this
Radial Gaussianization method closely resembles another feature of the early visual system, known
as contrast gain control [13] or divisive normalization [20]. However, since spherically symmetric
models are invariant under orthogonal transformations, they are agnostic to the particular choice of
basis in the whitened space. Thus, there is no role for the shape of the filters in this model.

Combining the observations from the two models of natural images, we can draw two conclusions:
On the one hand, ICA is not a good model for natural images, because a simple spherically sym-
metric model yields a much better fit [10]. On the other hand, the spherically symmetric model in
Radial Gaussianization cannot capture that ICA filters do yield a higher redundancy reduction than
other linear transformations. This leaves us with the questions whether we can understand the emer-
gence of oriented filters in a more general redundancy reduction framework, which also includes a
mechanism for contrast gain control.

In this work we address this question by using the more general class of L,-spherically symmetric
models [23; 12; 15]. These models are quite similar to spherically symmetric models, but do depend
on the particular shape of the linear filters. Just like spherically symmetric models can be non-
linearly transformed into isotropic Gaussians, L,,-spherically symmetric models can be mapped into
a unique class of factorial distributions, called p-generalized Normal distributions [11]. Thus, we
are able to quantify the influence of orientation selective filters and contrast gain control on the
redundancy reduction of natural images in a joint model.

2 Models and Methods

2.1 Decorrelation and Filters

All probabilistic models in this paper are defined on whitened natural images. Let C be the co-
variance matrix of the pixel intensities for an ensemble x1, ..., z,, of image patches, then Ccz
constitutes the symmetric whitening transform. Note that all vectors y = VC~ iz, with V being
an orthogonal matrix, have unit covariance. V.C -3 yield the linear filters that are applied to the raw
image patches before feeding them in the probabilistic models described below. Since any decorre-
lation transform can be written as VC~ %, the choice of V' determines the shape of the linear filters.
In our experiments, we use three different kinds of V':

SYM The simplest choice is Vsym = I, i.e. y = C~ 3z contains the coefficients in the symmetric
whitening basis. From a biological perspective, this case is interesting as the filters resemble recep-
tive fields of retinal ganglion cells with center-surround properties.

ICA The filters Vica of ICA are determined by maximizing the non-Gaussanity of the marginal
distributions. For natural image patches, ICA is known to yield orientation selective filters in resem-
blance to V1 simple cells. While other orientation selective bases are possible, the filters defined
by Vica correspond to the optimal choice for redundancy reduction under the restriction to linear
models.

HAD The coefficients in the basis Vyap = ﬁH Vica, with H denoting an arbitrary Hadamard

matrix, correspond to a sum over the different ICA coefficients, each possibly having a flipped sign.
Hadamard matrices are defined by the two properties H;; = 1 and HH T = . This case can
be seen as the opposite extreme to the case of ICA. Instead of running an independent search for the
most Gaussian marginals, the central limit theorem is used to produce the most Gaussian compo-
nents by using the Hadamard transformation to mix all ICA coefficients with equal weight resorting
to the independence assumption underlying ICA.

2.2 L,-spherically Symmetric Distributions

The contour lines of spherically symmetric distributions have constant Euclidean norm. Simi-
larly, the contour lines of L,-spherically symmetric distributions have constant p-norm' ||y||, :=

"Note that ||y||, is only a norm in the strict sense if p > 1. However, since the following considerations also
hold for 0 < p < 1, we will employ the term “p-norm” and the notation “||y||,” for notational convenience.
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/i1 lys|P The set of vectors with constant p-norm Sp~'(r) := {y € R" : |ly[|, = r, p >
0, r > 0} is called p-sphere of radius 7. Different examples of p-spheres are shown along the
coordinate axis of Figure 1. For p # 2 the distribution is not invariant under arbitrary orthogonal
transformations, which means that the choice of the basis V' can make a difference in the likelihood
of the data.

p-generalized Normal Distributions

e
Factorial Distributions L, Spherically Symmetric :
Distributions °
ICA :
SYm
HAD <>
oCICA a
oCSYM O
p=2: Spherically
Normal Distribution | Symmetric Distributions _cHAD O
. A )l

Figure 1: The spherically symmetric distributions are a subset of the L,-spherical symmetric distri-
butions. The right shapes indicate the iso-density lines for the different distributions. The Gaussian
is the only Lo-spherically symmetric distribution with independent marginals. Like the Gaussian
distribution, all p-generalized Normal distributions have independent marginals. ICA, SYM, ... de-
note the models used in the experiments below.

A multivariate random variable Y is called L,,-spherically symmetric distributed if it can be written
as a product Y = RU, where U is uniformly distributed on Sg’l(l) and R is a univariate non-
negative random variable with an arbitrary distribution [23; 12]. Intuitively, R corresponds to the
radial component, i. e. the length ||y||, measured with the p-norm. U describes the directional com-
ponents in a polar-like coordinate system (see Extra Material). It can be shown that this definition
is equivalent to the density o(y) of Y having the form o(y) = f(||y|[5) [12]. This immediately
suggests two ways of constructing an L,-spherically symmetric distribution. Most obviously, one
can specify a density o(y) that has the form o(y) = f(||y|[5). An example is the p-generalized
Normal distribution (gN) [11]

n n | P
p ——exp <_ Zl:l‘zybl
rn (1) (202)7 27 20

P
Analogous to the Gaussian being the only factorial spherically symmetric distribution [1], this dis-

tribution is the only L,,-spherically symmetric distribution with independent marginals [22]. For the
p-generalized Normal, the marginals are members of the exponential power family.

o(y) ) = F(lwlz). W

In our experiments, we will use the p-generalized Normal to model linear marginal independence by
fitting it to the coefficients of the various bases in whitened space. Since this distribution is sensitive
to the particular filter shapes for p # 2, we can assess how well the distribution of the linearly
transformed image patches is matched by a factorial model.

An alternative way of constructing an L,,-spherically symmetric distribution is to specify the radial
distribution o,.. One example, which will be used later, is obtained by choosing a mixture of Log-
Normal distributions (RMixLogN). In Cartesian coordinates, this yields the density

n—1 n
P F<5) < T (log [lyllp — px)?
oly) = exp (7 . ) ()
npn (Il) ,; llyllzon/2m 20}
3



An immediate consequence of any L,,-spherically symmetric distribution being specified by its ra-
dial density is the possibility to change between any two of those distributions by transforming the
radial component with (F; * o F1)(||y||,), where F; and F» are cumulative distribution functions
(cdf) of the source and the target density, respectively. In particular, for a fixed p, any L,-spherically
symmetric distribution can be transformed into a factorial one by the transform

(F5 " o F)(llyllp)

z=g(y)-y=—"—7 7Y
[lyllp
This transform closely resembles contrast gain control models for primary visual cortex [13; 20],
which use a different gain function having the form g(y) = ﬁ% with r = ||y||3 [17].

‘We will use the distribution of equation (2) to describe the joint model consisting of a linear filtering
step followed by a contrast gain control mechanism. Once, the linear filter responses in whitened
space are fitted with this distribution, we non-linearly transform it into a the factorial p-generalized
Normal by the transformation g(y) - y = (]—'g’,\‘1 o FrmixLogN) ([|Yl1p)/[¥llp - ¥-

Finally, note that because a L,-spherically symmetric distribution is specified by its univariate radial
distribution, fitting it to data boils down to estimating the univariate density for R, which can be done
efficiently and robustly.

3 Experiments and Results

3.1 Dataset

‘We use the dataset from the Bristol Hyperspectral Images Database [7], which was already used in
previous studies [25; 16]. All images had a resolution of 256 x 256 pixels and were converted to gray
level by averaging over the channels. From each image circa 5000 patches of size 15 x 15 pixels were
drawn at random locations for training (circa 40000 patches in total) as well as circa 6250 patches
per image for testing (circa 50000 patches in total). In total, we sampled ten pairs of training and
test sets in that way. All results below are averaged over those. Before computing the linear filters,
the DC component was projected out with an orthogonal transformation using a QR decomposition.
Afterwards, the data was rescaled in order to make whitening a volume conserving transformation
(a transformation with determinant one) since those transformations leave the entropy unchanged.

3.2 Evaluation Measure

In all our experiments, we used the Average Log Loss (ALL) to assess the quality of the fit and
the redundancy reduction achieved. The ALL = 1E,[—log, o(y)] = = > i, —log, d(y) is
the negative mean log-likelihood of the model distribution under the true distribution. If the model
distribution matches the true one, the ALL equals the entropy. Otherwise, the difference between
the ALL and the entropy of the true distribution is exactly the Kullback-Leiber divergence between
the two. The difference between the ALLs of two models equals the reduction in multi-information
(see Extra Material) and can therefore be used to quantify the amount of redundancy reduction.

3.3 Experiments

We fitted the L,,-spherically symmetric distributions from equations (1) and (2) to the image patches
in the bases HAD, SYM, and ICA by a maximum likelihood fit on the radial component. For the
mixture of Log-Normal distributions, we used EM for a mixture of Gaussians on the logarithm of
the p-norm of the image patches.

For each model, we computed the maximum likelihood estimate of the model parameters and deter-
mined the best value for p according to the ALL in bits per component on a training set. The final
ALL was computed on a separate test set.

For ICA, we performed a gradient descent over the orthogonal group on the log-likelihood of a
product of independent exponential power distributions, where we used the result of the FastiICA
algorithm by Hyviérinen et al. as initial starting point [14]. All transforms were computed separately
for each training set.
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Figure 2: ALL in bits per component as a function of p. The linewidth corresponds to the standard
deviation over ten pairs of training and test sets. Left: ALL for the bases HAD, SYM and ICA under
the p-generalized Normal (HAD, SYM, ICA) and the factorial L,-spherically symmetric model with
the radial component modeled by a mixture of Log-Normal distributions (cHAD, cSYM, cICA).
Right: Bar plot for the different ALL indicated by horizontal lines in the left plot.

In order to compare the redundancy reduction of the different transforms with respect to the pixel
basis (PIX), we computed a non-parametric estimate of the marginal entropies of the patches before
the DC component was projected out [6]. Since the estimation is not bound to a particular parametric
model, we used the mean of the marginal entropies as an estimate of the average log-loss in the pixel
representation.

3.4 Results

Figure 2 and Table 1 show the ALL for the bases HAD, SYM, and ICA as a function of p. The
upper curve bundle represents the factorial p-generalized Normal model, the lower bundle the non-
factorial model with the radial component modeled by a mixture of Log-Normal distributions with
five mixtures. The ALL for the factorial models always exceeds the ALL for the non-factorial
models. At p = 2, all curves intersect, because all models are invariant under a change of basis for
that value. Note that the smaller ALL of the non-factorial model cannot be attributed to the mixture
of Log-Normal distributions having more degrees of freedom. As mentioned in the introduction, the
p-generalized Normal is the only factorial L,-spherically symmetric distribution [22]. Therefore,
marginal independence is such a rigid assumption that the output scale is the only degree of freedom
left.

From the left plot in Figure 2, we can assess the influence of the different filter shapes and contrast
gain control on the redundancy reduction of natural images. We used the best ALL of the HAD
basis under the p-generalized Normal as a baseline for a whitening transformation without contrast
gain control (HAD). Analogously, we used the best ALL of the HAD basis under the non-factorial
model as a baseline for a pure contrast gain control model (cHAD). We compared these values
to the best ALL obtained by using the SYM and the ICA basis under both models. Because the
filters of SYM and ICA resemble receptive field properties of retinal ganglion cells and V1 simple
cells, respectively, we can assess their possible influence on the redundancy reduction with and
without contrast gain control. The factorial model corresponds to the case without contrast gain
control (SYM and ICA). Since we have shown that the non-factorial model can be transformed into
a factorial one by a p-norm based divisive normalization operation, these scores correspond to the
cases with contrast gain control (cSYM and cICA). The different cases are depicted by the horizontal
lines in Figure 2.

As already reported in other works, plain orientation selectivity adds only very little to the redun-
dancy reduction achieved by decorrelation and is less effective than the baseline contrast gain con-
trol model [10; 6; 17]. If both orientation selectivity and contrast gain control are combined (cICA)
it is possible to achieve about 9% extra redundancy reduction in addition to baseline whitening



Absolute Difference [Bits/Comp.] ‘ Relative Difference [% wrt. cICA] ‘

HAD - PIX | —3.2947 £ 0.0018 91.0016 £ 0.0832
SYM-PIX | —3.3638 4 0.0022 92.9087 £ 0.0782
ICA - PIX —3.4110 4+ 0.0024 94.2135 £+ 0.0747
cHAD - PIX | —3.5692 £ 0.0045 98.5839 £ 0.0134
cSYM - PIX | —3.5945 £ 0.0047 99.2815 £ 0.0098
cICA -PIX | —3.6205 £ 0.0049 100.0000 =+ 0.0000

Table 1: Difference in ALL for gray value images with standard deviation over ten training and test
set pairs. The column on the left displays the absolute difference to the PIX representation. The
column on the right shows the relative difference with respect to the largest reduction achieved by
ICA with non-factorial model.

[zl = (Fn' © Fraixtogn) 11y )

Figure 3: The curve in the up-
per right corner depicts the trans-
formation |[|z||, = (]—'g’,\‘1 o
FrmixLogN)(|[y]|p) of the radial
component in the ICA basis for
gray scale images. The result-
ing radial distribution over ||z||,
corresponds to the radial distribu-
tion of the p-generalized Normal.

The inset shows the gain function

FRMix p) -
g(llyll,) = Zeeseanlivlie) in jog-

log coordinates. The scale parame-
ter of the p-generalized normal was
chosen such that the marginal had

= unit variance.
[lyllp

(HAD). By setting the other models in relation to the best joint model (cICA:= 100%), we are able
to tell apart the relative contributions of bandpass filtering (HAD= 91%), particular filter shapes
(SYM= 93%, ICA= 94%), contrast gain control (cHAD= 98.6%) as well as combined models
(cSYM= 99%, cICA := 100%) to redundancy reduction (see Table 1). Thus, orientation selectivity
(ICA) contributes less to the overall redundancy reduction than any model with contrast gain control
(cHAD, c¢SYM, cICA). Additionally, the relative difference between the joint model (cICA) and
plain contrast gain control (¢cHAD) is only about 1.4%. For cSYM it is even less, about 0.7%. The
difference in redundancy reduction between center-surround filters and orientation selective filters
becomes even smaller in combination with contrast gain control (1.3% for ICA vs. SYM, 0.7% for
cICA vs. cSYM). However, it is still significant (t-test, p = 5.5217 - 1079).

FoloF y )
w resulting from the transforma-
Y

tion of the radial components, we find that they approximately exhibit the form g(||y||,) =

When examining the gain functions g(||yl|,) =

IR
The inset in Figure 3 shows the gain control function g(||y||,) in a log-log plot. While standard con-
trast gain control models assume p = 2 and x = 2, we find that x between 0.90 and 0.93 to be opti-
mal for redundancy reduction. p depends on the shape of the linear filters and ranges from approx-
imately 1.2 to 2. In addition, existing contrast gain models assume the form g(||y||2) = W

2
while we find that 0 must be approximately zero.

In the results above, the ICA filters always achieve the lowest ALL under both p-spherically sym-
metric models. For examining whether these filters really represent the best choice, we also opti-
mized the filter shapes under the model of equation (2) via maximum likelihood estimation on the
orthogonal group in whitened space [9; 18]. Figure 4 shows the filter shapes for ICA and the ones
obtained from the optimization, where we used either the ICA solution or a random orthogonal ma-
trix as starting point. Qualitatively, the filters look exactly the same. The ALL also changed just
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Figure 4: Filters optimized for ICA (left) and for the p-spherically symmetric model with radial
mixture of Log-Normal distributions starting from the ICA solution (middle) and from a random
basis (right). The first filter corresponds to the DC component, the others to the filter shapes under
the respective model. Qualitatively the filter shapes are very similar. The ALL for the ICA basis
under the mixture of Log-Normal model is 1.6748 4= 0.0058 bits/component (left), the ALL with the
optimized filters is 1.6716 % 0.0056 (middle) and 1.6841 + 0.0068 (right).

marginally from 1.6748 £ 0.0058 to 1.6716 & 0.0056 or 1.6841 % 0.0068, respectively. Thus, the
ICA filters are a stable and optimal solution under the model with contrast gain control, too.

4 Summary

In this report, we studied the conjoint effect of contrast gain control and orientation selectivity on
redundancy reduction for natural images. In particular, we showed how the L,,-spherically distribu-
tion can be used to tune a nonlinearity of contrast gain control to remove higher-order redundancies
in natural images.

The idea of using an L,-spherically symmetric model for natural images has already been brought
up by Hyvirinen and Koster in the context of Independent Subspace Analysis [15]. However, they
do not use the L,,-distribution for contrast gain control, but apply a global contrast gain control filter
on the images before fitting their model. They also use a less flexible L,,-distribution since their goal
is to fit an ISA model to natural images and not to carry out a quantitative comparison as we did.

In our work, we find that the gain control function turns out to follow a power law, which parallels
the classical model of contrast gain control. In addition, we find that edge filters also emerge in the
non-linear model which includes contrast gain control. The relevance of orientation selectivity for
redundancy reduction, however, is further reduced. In the linear framework (possibly endowed with
a point-wise nonlinearity for each neuron) the contribution of orientation selectivity to redundancy
reduction has been shown to be smaller than 5% relative to whitening (i.e. bandpass filtering)
alone [6; 10]. Here, we found that the contribution of orientation selectivity is even smaller than two
percent relative to whitening plus gain control. Thus, this quantitative model comparison provides
further evidence that orientation selectivity is not critical for redundancy reduction, while contrast
gain control may play a more important role.
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4.4 The Conjoint Effect of Divisive Normalization and
Orientation Selectivity on Redundancy Reduction:
Supplementary Material
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Extra Material

1. DATA PREPROCESSING

1.1. Removing the DC Component with an Orthogonal Projection. The
projector Prempce is computed such that the first (for each color channel) compo-
nent of P,..;mpex corresponds to the DC component(s) of that patch. The transpose
of the matrix
1 0 0
11 0
P=11 0

1

has exactly the required property. However, it is not an orthogonal transformation.
Therefore, we decompose P into P = QR where R is upper triangular and @ is an
orthogonal transform. Since P = QR, the first column of () must be a multiple of
the vector with all coefficients equal to one (due to the upper triangluarity of R).
Therefore, the first component of QT x is a multiple of the DC component. Since Q
is an orthonomal transform, using all but the first row of Q' for P.mpc projects
out the DC component. In case of color images the same trick is applied to each
channel by making Pienpc a block-diagonal matrix with QT as diagonal elements.

1.2. Rescaling the Data to Make Whitening an Volume Conserving Trans-
form. Secondly, the data was scaled such that the whitening transform has deter-
minant one, i.e. that the determinant of the globally scaled data is one. This is

1
done by setting 7 = [T A", where \; are the eigenvalues of the covariance matrix
of the training data and n is their dimension. Therefore, the determinant of the
covariance matrix of the data after scaling with % is

ﬂiHA"(Hl};)z”l

Since the whitening transform consist of D=3U ' with UDU' = C (C is the
determinant of the scaled data), the whitening must have determinant one due to
1 =det(C) = det(UDUT) = det(D~3UT)?

Note, that the same scaling factor is used for the training and test set.

2. MEASURES OF REDUNDANCY

Redundancies can be quantified by a comparison of coding costs. According
to Shannon’s channel coding theorem the entropy of a discrete random variable is
an attainable lower bound on the coding cost for error-free encoding [1]. For the
construction of such a code, it is necessary to know the true distribution of the
random variable. If the assumed distribution ﬁ(k) used for the construction of an
optimal code is different from the true distribution P(k), the coding cost is given
by the log-loss

Ep[—log(P(k))] = =Y P(k)logP(k) = H[k] + Dxr[P(k)||P(k)].
k

1



The Kullback-Leibler divergence quantifies the additional coding cost caused by
using a model distribution different from the true one. As long as it is positive,
the representation can be still compressed further, which means that there are still
redundancies left.

For continuous random variables, the total amount of bits required for loss-less
encoding is infinite. However, in analogy to the discrete case, we can use the
Kullback-Leibler divergence of the true distribution to a given model distribution.
The goal of redundancy reduction is to map a random variable Y to a new random
variable Z = f(Y') such that the distribution of Z is as close to a factorial distri-
bution as possible. Thus we can use the Kullback-Leibler divergence of the true
distribution to the product of its marginals to measure redundancy. This quantity
is known as multi-information

' p(z)
1@) = Dra [p@ITes(z)] = [ plo)iog e da.
g=178 . [T pi(25)

Algorithmically, redundancy can be reduced by finding a representation Z =
f(Y) such that a factorial model distribution p(z) = H;‘Zl pj(z;) is as close as
possible to the true distribution p(z). Since the multi-information I[p(z)] is hard
to estimate, one looks at the difference between the multi-informations of Y and
Z = f(Y), i.e. the quantity

Al = Ip(z)] = Io(y)]
= Dxu [p@)IIT]7=15i(z)] — Dxv [eO)ITT =185(y;)]

where J]7_,0;(y;) is a factorial model distribution for the representation Y. The
following calculation shows that evaluating the redundancy reduction achieved with
a mapping z = f(y) is equivalent to evaluating the difference between the log-loss
of two particular model distributions.

Before doing the actual calculation, it is useful to define the different distributions
involved and state some interrelations between them:

(1) p(z) and o(y) are the true distributions of the random variables Y and
Z = f(Y). They are related by

Oz,;
p(z)dz = p(f(y))-|det o dy = o(y)dy
j
_ -1 Oyi _
o(y)dy = o(f™ () |det 7= dz = p(z)dz ,
%
where g;j denotes the Jacobian for f and 2—‘;] the Jacobian of f~!. Note
that ‘detg—; = \detg% -

(2) p(z) = Ij_16;(2), 65(y) and []}_,;(y;) are the model distributions.
H?:1@j(?/j) is the factorial model for the representation Y. The non-
factorial model distribution 07(y) was chosen such that the function f
maps it into a factorial distribution, i.e.

i) MO i)
A 0z
= ps(f(y)) - |det a9,
= 05(y)-
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Now, we can write the difference in multi-information as
Al = p(z)] - Ie(y)]
= Diw [p@)TT-15i ()] — Dicw oI5 (v5)]

_ _rE) | g g2
= E, _log IT—165(2) Fe |02 H.?léj(yj)}
) [ p(f(y)) - |det o o(y)
= E, BTy —E logl_l?lé_;'(yj)}
[ pf ) ‘det o oy)
= E, |log a7 (y) N [T 05(y;)
- =o(y)
M) ") |t 5
= B lg =5y o(y)
= B |lee =5 ) }

= E,[~logos(y)] ~ E, [~ logTT}_,4;(uy)] -

Thus, if we have a model density which does not factorize with respect to y
and we have a (possibly nonlinear) mapping z = f(y) such that the transformed
model density with respect to z becomes factorial, we can evaluate the redundancy
reduction achieved with the mapping f simply by estimating the difference in the
average log-loss obtained for ¢;(y) and H;L:1@j(yj)-

In order to get a measure which is less dependent on the number of dimensions
n we define the average log-loss (ALL) to be ALL = 1E[—log 4(y)] for any given
model distribution 9(y).

In practice, the ALL can estimated by with the empirial mean

1 R
~Eo[~logos(y)] ~

3. L,-SPHERICALLY SYMMETRIC DISTRIBUTIONS

3.1. Definitions, Lemmas and Theorems. In this part, we provide the rigorous
definitions, lemmas and theorems used in the paper. Most results and proofs are
not new and have been collected from papers and books. Nevertheless, in many
cases we adapted the original statements to our need and provided more detailed
versions of the proofs. The original sources are mentioned at the respective lemmas
and theorems.

Definition 1. p-Norm



Let y € R™ be an arbitrary vector. We define

n 3
lIyll, = (Zwl”) ,p>0
1=1

as the p-norm of y. Note, that only for p > 1, ||y||, is a norm in the strict sense.
However, we will also use the term “p-norm” even if only 0 < p.

Definition 2. p-Sphere
The unit p-sphere Sg’l in n dimensions is the set of points that fulfill

Spt = {yeR"[lyll,=1,p>0}.

Lemma 3. Transformation in Radial and Spherical Coordinates [3|
Lety = (y1,...yn) " n > 2 be a vector in R"\{0}. Consider the transformation

_ Y1 Yn—1
y = (run e Un1) = IIYIIztuH Tyl )
P »

The absolute value of the determinants of the transformation on the upper and
lower halfspaces

RY = {yeR"|y,>0}
R? = {y € R"|y, <0}

are equal and are given by

n—1 5t
|det 7| = "1 (1—Z|ui|”) .
i=1

Proof. The proof is a more detailed version of the proof found in [3].
Let

Ai — 1, U > 0
-1, u; <O0.

Then we can write |u;| = A;u;. The above transformation is bijective on each of
the regions R} and R”. Let o = sign(yy), then the inverse is given by

vy = wr,1<i<n-1

1
n—1 »
Yn = ar(lZuiV’)

i=1

=or (1 - Z(Alm)p) .

i=1

Note, that the o = sign(y,) determines the halfspace in which the transformation
is inverted.

81



82

o

First, we determine the Jacobian J. We start with computing the derivatives

Ky
ai’v = oy 1<ij<n—1
J
9y nt =
31_;; = —or (12%‘7) Afuf71,1§j§n71
i=1
i
ayl — u,l<i<n-1
r
oy ( n—1 H
n
or P
Therefore, the Jacobian, is given by
y1 9y1 Oy
Ouq OUp 1 or
J =
% ay; %
duy OUp—1 or
r 0 e Uy
0 r U
. 1-p 1
—or (1 - Z?;ll \u1|7’> i Aﬁ)ulffl ee ... O (1 — E?:_ll(AﬂLi)p) !

Before actually computing the absolute value of the determinant | det J|, we can
factor out r from the first n — 1 columns. Furthermore, we can factor out o from
the last row. Since we take the absolute value of det J and o = {—1,1}, we can
remove it completely afterwards. Now we can use Laplace’s formula to expand the
determinant along the last column. With this, we get

1-p
ol n—1 T
L n n—1—*k _
crldet T = 3T s (<) A <1 -2 >
k=1 i=1
n—1 %
+(=1)% (1 — Z up>
i=1
—=r 1
n—l1 n—-1 P n—1 P
= S (1-Sr) (1S
k=1 i=1 i1
1-p
n—1 P n—1 n—1
= (1—Z|uip> <Z|Ukp+1—2|ukp>
i=1 k=1 1
1-p
n—1 P
= (1 - |“z‘p> .
i=1
Resolving the result for | det J| completes the proof. O



Theorem 4. p-Spherical Uniform Distribution 3|
Let Y = (Y1,...,Y,,) " be a random vector. Let the Y; be i.i.d. distributed with

p-d.f.

1—1
pr ylP
oly) = exp (f%) ,y €R.

Let U; = HYHp fori = 1,..,n. Then 3! |Ui|° = 1 and the joint p.d.f of

U,y Un—q is
n P
Qu(U1, ey Up—1) = ; :;f()) (1—2% >

with =1 <wu; <1, i=1,...,n—1 and Y77 |w|P < 1.
Proof. The joint p.d.f. of Y is given by

Q(y) = ( > exXp (Zyl )
with y; € R and ¢ = 1,...,n. Applying the transformation

(W1, yn) = (Hut, ., Un—1)

from Lemma 3 and taking into account that each (uq,...,u,—1) corresponds to
(Y15 -+ yn) and (y1, ..., —yn) We obtain

1-p

pn,—% P nil P
Uy oty _1,7) = 2- ——— " lexp <7—> 1-— [ui|?
’ onTn (%) P Py

By integrating out r, we obtain g, (u1, ..., up):

lfp
oo oo D
P n—1 r
q(u1y ooy Up—1,7)dr = 1- s P / " exp <7—> dr.
\/()' on—1T'n (,) ( Z 0 V4

In order to compute the integral, we use the substitution z = % orr = (zp)%. This

yields dr = (zp) ~1dz and, therefore,

o0 »
/ " Lexp (—T—) dr
0 p

/ " (op) " exp(—2)(p) T dz

n—p

o
= pT/ 27 Lexp(—2)dz
0

n—p n
pr I <7> .
p
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Hence,
oo
qu(ulv--wunfl) = / q(ulv---,un—lvT)dT
0
1-p
pn,% n—1 C n
= -2 _[1- s |P pr F<7>
on—1T'n (l) @:Zl 14
P
n—1 n — e
p F(E) n—1 5
= —— 5 1= |wlf .
Qn—1Tn (%) ;

O

In order to see, why g, is called uniform on Sg’l we must observe that g, of

»r(y)
Qu—lpn(%)
which corresponds to twice the surface area of the p-sphere (see Lemma 5). Since
each u corresponds to two y before the coordinate transform (one on the upper
and one on the lower halfsphere), the density of u in y-coordinates corresponds to
2" () .
ﬁ where S;’l = w%rp()l) is the surface area of the unit p-sphere (see Lemma
I P

5).

As we will see in Lemma 7, ﬁ is independent of ||Y||, and, therefore, the

P

specific form of the density ¢ does not matter as long as it is p-spherically symmetric.

1-p
(1 - Z;:ll |ui|p> " which is due to the coordinate transformation and

Lemma 5. Volume and Surface of the p-Sphere
The volume Vp”_l(r) of the p-Sphere with radius r is given by

7,712711'1(%)71

WO = ey
P

The surface S;’l(r) is given by

_ d
s = )
-1 1
rn 2711’\(;)71
—i(n
p"(S)
As a convention, we leave out the argument of V"~ (r) and Sp~'(r) when de-
noting the volume or the surface of the unit p-sphere, i.e.

n—1 R n—1

A A ¢)
n—1 . n—1

Spt o= s,

Proof. In order to compute the volume of the p-sphere in n-dimension, we must
solve the integral fan du. Using the volume element transformation from lemma
P



3, we can transform the integral into

1-p

7 n—1 P
/ du = 2/ /r"’l (1 - Z |uip> drdu
Sn—l 0 .

P

1-p

r n—1 P
= 2/ r"‘_ldr~/<1—2uz‘”> du
0

1-p

n—1

1, ' o)
- I - . du.
o 2/ (1 Z|ut> u

i=1

n—lp(n _ 1-p i
In theorem 4 we prove that q(uy, ..., un—1) = % <1 . |ui\f’) "isa
P

probability density. In particular, this means that

/q(ul,..wun—l)du = M/Gguw) g du

=1

which is equivalent to

1-p
n—1 o gn—1pn (1
/(llel”) O
i=1 P %

Therefore,

Vp"_l(r) = /nildu
ST’
1-p

2 n—1 P
(1G] "
nonyn (1
r2"T (5)
n-1p (n
np" 1T (p)
Differentiation of V"~ (r) with respect to r yields the result for the surface area. O

Definition 6. L,-Spherically Symmetric Distribution [2] A random vector
Y = (Y1,..,Y,)" is said to have a L,-spherically symmetric distribution if ¥ can
be written as a product of two independent random variables Y = R - U, where R
is a non-negative univariate random variable with density ¢. : R* — R* and U is
uniformly distributed on the unit p-sphere, i.e.

" i n—1 1;”
ISP T

(see Theorem 4).
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Lemma 7. Probability Density Functions |2|
Let Y = (Yi,...,Y,)" be an n-dimensional random variable with P{Y = 0} =0
and a density of the form Y ~ o(||y[|5). Then the following three statements hold:

1) The random variables R = ||Y||, and U = < are independent.
P Y1y

(2) U= ﬁ is uniformly distributed on the unit p-sphere S;"l.

(3) R=|Y]||p has a density g, where g, relates to g via
B r"’IZ”F(%)" .
q(r) = WQ(T )
= S;L71(7‘)§(7"’), r> 0.

Proof. The proof is a more detailed version of the proof found in [2].
First we transform the density of ¥ with the transformation of lemma 3 and
obtain the new density in spherical and radial coordinates

—p

n—1 P
q(uh ‘Hyun—lyr) = 2 <1 - Z uip> é('r‘p)rnil

i=1

n
“l<u <, 1<i<n—1, ) |ul" < 1.

i=1
Since ¢ can be written as a product of a function of r and a function of u =
(u1,...,;un—1), U and R are independent. Thus, ||Y||, = R and U = H;H are
independent as well.

In order to get gy (u1,...,un—1), we must integrate out r. However, we do not

know the exact form of g. But since ¢ is a probability density, we know that

{o e}
/ /q(ul,...,un,l,r)dudr = 1.
0

Since Y and R are independent, we can write this integral as
1-p

oS} n—1 p o
/ /q(ul7 iy Up—1,7)dudr = 2/ (1 - Z |uip> du / a(rP)r"~Ldr.
0 pt 0

From that, we can immediately derive

P

1-p

oo n—1 P
/ o(rPyrtdr = 2/ (1 - Z |uzp> du
0 i=1

1-p -1
In order to solve <2 J (1 - Z?:_ll \uz|f'> ! du) we can use theorem 4. In this
P (%) n—1 5
theorem, we showed that g, (uy,...,up—1) = m (1 -y |ui|p> is the
»

uniform distribution on the p-unit sphere. In particular, we know that [ q(u1, ..., up—1)du =

1 and, therefore,
1p 2nflrn (l)
/ (1- S5 ul) " du = R

()
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Thus,
1p -1
o0 n—1 7
/ o(rPyrntar = 2/ <1 — Zu,;|”> du
0 i=1
" (3)
- 1
2n1"n (;)
and

o0
Gu(U1, ey in_1) = / q(ut, ooy Up—1,7)dr
0

This shows that Y is uniformly distributed on the unit p-sphere.
The density of R can be computed by integrating out uq, ..., un—1

qT‘(r) = /Q(uh "'7un—1a74)du
onpn (%)
= — L"), r >0
n—1T (1
prir (P)
by the same argument as in 2. This completes the proof. O

The next theorem tells us that Y is Lj-spherically symmetric distributed if and
only if its density has the form o(||y|[5).

Theorem 8. Form of L,-Spherically Symmetric Distribution [2] Let Y =
(Y1, ..., Yn) T be an n-dimensional random variable with P{Y = 0} = 0. Then, the
density of Y has the form o(||y||5), where g : Ry — Ry is a measurable function,
if and only if Y = RU is spherically symmetric distributed, with independent R and
U, where R has the density
o)
p n—1

q-(r) = ———757r""g(r?), r>0.
n—1ip (1
p F(P)

Proof. Sufficiency: Assume Y = RU with independent R and U, where U is uni-
formly distributed on the p-sphere and R has the density ¢,. Then the joint density
is given by (see theorem 4):

P

q(ryur, ey tn_1) = q( )w <1nzlui|p> '
i=1

qr\7T
2n—11“n <l)
P
n—1
“l<u; <1, 1<i<n—1, 3 |wl’ <1,7>0.
i=1

87
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1
Now let y; = ru; for 1 <i<n—1and |y,| =7 (1 — Z;:]] \ui|p) ", We can use 3
to see that the absolute value of the determinant of the Jacobian is given by

L, -1 _
n—1 1Tp n—1 Lpl
it <1 — Z u,;|p> = pln <1 - Z uﬁ’)

Therefore,

poir (2

Pt m) = ———a(lyllp)lyl ™"
on—1T'n (l)

]

= alllyllp)-
Necessity: Assume Y ~ o(||[Y|B). According to lemma 7 ﬁ and Y are inde-

pendent and ﬁ is uniformly distributed on the p-sphere. Again in lemma 7 we
showed that R has the density
onpn <l)
p n—1

a(r) = mr a(rP), r > 0.

Therefore, Y is L,-spherically symmetric distributed if and only if Y" ~ o(|[Y[[5)
for some density g. O

3.2. Distributions.

3.2.1. The p-Spherically Symmetric Distribution with Radial Mizture of Log-Normal
Distribution. We obtain this distribution by modeling the radial component with
a mixture of log-Normal distributions

a(r) = f: L exp<—(10gr_uk)2>
! roRV2m 202 )

k=1

Here, nj, with >, 7, = 1 constitute the “prior” probability of selecting one log-
Normal distribution from the mixture, and s and o} denote the mean and the
variance of the kth mixture. Taking into account the uniform distribution on the
p-sphere, we get

n—1 ¢ prIr (%) o (logr — p1x)?
) = (1 - ; Ui|p> on—1Tn (%) ; ro/2r P (7 207, > '

Reversing the coordinate transform, we obtain the distribution in Euclidean coor-
dinates

G OB (- Cosll =)

oly) = : exp .
npn (Il) = lyllpowv2r 20}

Since ||y||, being log-Normal distributed means log ||y ||, being Gaussian distributed,
we can use the standard EM for a mixture of Gaussians on the log-domain to es-
timate the parameters of the mixture. This is justified because log (or exp) is a
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strictly monotonic increasing (decreasing) function and the multiplicative determi-
nant of the Jacobian does not depend on the parameters. Therefore, the maximizing
parameter values for one the mixture of log-Normal distributions also maximizes
the log-likelihood of the mixture of Gaussians in the log-domain.

In order to transform the radial component into the radial component of the
p-generalized distribution, we will need the cumulative distribution function, which

is given by
o
[ atryar
0

ro K 2
Mk (logr — i) )
E exp | — dr
/o = ropV2r P < 202

3 [ ( (1ogr—uk>2) p
exp | — r
k:177k 0 ToRV2m P 202

K
> mFr(ro; s ox)
k=1

F(ro)

where Fj,(ro; g, 0x) is simply the cumulative distribution function of the log-
Normal distribution with parameters py and oy.

3.2.2. The p-generalized Normal distribution. The p-generalized Normal distribu-
tion is obtained by choosing Y to be a collection of n i.i.d. random variables Y;,
each distributed according to the exponential power distribution

Yi~p(y) = WM@)

Y ~oly) = ;ljp(?/z) = m exp (—%)

Since o(y) has the form g(||y|[}), it is a proper p-spherically symmetric distribution
due to Theorem 8. Note, that for the case of p = 2, the p-generalized Normal
distribution reduces to a multivariate isotropic Gaussian. In order to compute the
contrast gain control function, we need to compute the radial distribution g, of
p(x). Transforming p according to Lemma 3 yields

qg(r,u) = —————————exp (72—> 1- Z s |P .
Tn (%) (20) 7 2n-1 o Pt

By integrating over u (see lemma 5 how to carry out the integral) we get

) = e (-1)
T rz)emi o\ %

In order to estimate the scale parameter o from data X = {ry,...r,} =
{lIx1llps s [|Xm||p}> we carry out the usual procedure for maximum likelihood es-
timation and obtain

89
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d d 2n rP
— log g, = — [-=1 -
toxa() = o (~2osto) - 5 )
_ rPp— 2no?
= =
d & " rPp — 2no?
LN log () = nip = eno
. ; 08 (i) ; o3
<0

This yields

For the transformation of the radial component, we will also need the cumulative
distribution function of

qr(r) et e p< - )
r = —exp | — .
O

It can be computed via simple integration with the substitution y = %

a n—1 p
F,(a) = / [)7‘7" exp <— 27‘ 2> dr
0 r(g) (202)% o

_ p a,n—l P d
YA R A Wl
F(;) (202)» Jo

1 2.,

= 7/ yr exp(—y)dy
r(;)
P

n a?
NGED

')

where T (2,b) = fob y*~Lexp(—y)dy is the incomplete T-function.

4. LOG-LIKELIHOOD OF FILTERS UNDER THE LOG-NORMAL MIXTURE MODEL

The log-likelihood of a basis W in whitened space, given a set of whitened images
X = {le "'7Xm}7 is given by

LWn, o) = D logp(yiln, m, o, %, W)
i=1
n 1
= m(n—1)logp+ mlogl <5> —mnlog2 —mnlogI’ (;)

m K

Mk (log [[Wxi||p — p1)?

log exp <7 .

; (; [[Wx|[now V2 2072
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Taking the derivative with respect to the jth row w; of W yields

14]
Fw LW, s 0)
W

m K P
2 Mk (log || Wxi|p — px)?
= — lo, exp | —
D D

i=1 k=1

=Ly (W]n,p,0,%;)

m K .
- o - (log ||[Wx;||p — pu1,)?
= L1(Wn, g, 0,%;) "L - M 9 (1wl _LO0e U WRillp = Bk
> Li(Wln, p, 0, %) > ey W, [[Wxil|, ™ exp 252

i=1 k=1 k

m
= Y LWl pmoxi) Tt x

i=1
i T 1wy ™Y exp _ (log [|Wxillp — px)* *"*L(IOEHWX‘H ~ k) iHWX'H
i okV2m e 207 o2 illp = Mk ow; o
= > LW ox) THIWil ;TP xT
i=1
K 2
Mk (log [|Wxillp — pi) 1 .
exp | — —n — — (log ||[Wx;||p — pr) | Ajlw;ix;|P R
,;Ukm ( 20_2 Gﬁ( g || llp — 1k) 51w
. ) o) n 5 1-p 1T s
since 5= [Wxillp = 5o Qi [wix[P)? = [[Wxil[,77 - Ajwyxi|P™ - x; with

Ajj = sgn(w;x;).
Therefore, the gradient %E(W\n, i, 0) can be written as an product between
two matrices 59 L(W|n, 1, 0) = A - B with

K
o log [[Wxil[p — px)? 1
A); = —Ayilwix|P! Tk ex 7( L n + — (log ||Wx;||, —
( )_}l Ul j il kz::lak\/ﬂ P 20_; U}i( g || illp — 1)
B)ie = L1(Wln,m,0,x:) " W[, "y

K o\ !
Mk (log [[Wxillp — pi)
= Wx;||b g exp | — - @y
<H l‘lpk 1 okV2m P < 202 i
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Absolute Difference [Bits/Comp.] ‘ Relative Difference [% wrt. cICA]

‘ Color ‘ Gray ‘ Color Gray

HAD - PIX ‘ —4.0778 £ 0.0039 ‘ —3.1275 + —0.0040 ‘ 92.0797 + —0.0581 | 90.8566 + —0.0854

ICA - PIX ‘ —4.2376 £ 0.0041 ‘ —3.2146 + —0.0037 ‘ 95.6872 £ 0.0489 93.3870 + —0.0823

cHAD - PIX ‘ —4.3516 £ 0.0055 —3.4149 + 0.0058 98.2622 £ 0.0086 99.2077 £ 0.0103

SYM - PIX ‘ —4.1665 % 0.0040 ‘ —3.1607 + —0.0037 ‘ 94.0826 + 0.0534 ‘ 92.0834 + —0.0876
—3.4242+0.0058 | 98.9454 % 0.0098 ‘ 99.4770 + 0.0099

¢SYM - PIX ‘ ~4.3819 + 0.0056

100.0000 + 0.0000 100.0000 =+ 0.0000

ICA - PIX ‘ —4.4286 + 0.0057 ‘ ~3.4422 + 0.0059

TABLE 1. Difference in ALL for gray value and color images with
standard devation over ten training and test set pairs. For com-
putational efficiency the patch size has been chosen 7 x 7. The
columns on the left display the absolute difference to the PIX rep-
resentation. The columns on the right show the percentual differ-
ence with respect to the largest reduction achieved by ICA with
non-factorial model.

5. ALL ScOrEs FOR COLOR AND GRAY VALUE IMAGES

7 7
L] L]
= HAD vs. SICA: 0.0770 bits = cHAD vs. ICA; 0.0073 bite
T T
%3 PIX vs, HAD: 4.0778 bits %3 PIX vs. HAD: 3.1275 bits
@ ©HAD vs. ¢SYM: 0.0303 bits @ CHAD vs. CSYM: 0.0093 bifs
£ 2
ot ot
§ HAD va. cHAD: 0.2728 bita § HAD vs. cHAD: 0.2675 bits
> >
EE EE
? ?
s s
4 4
g2 22
< I I < I I
1 1

=

PIX HAD SYM ICA cHAD  £SYMclCA PIX HAD SYM ICA cHAD  E£SYMcICA

Average Log-Lose in bits/component
Average Log-Lose in bits/component

FI1GURE 5.1. ALL in Bits per component as a function of p for
achromatic (right) and chromatic (left) images. For computational
efficiency both plots have been computed on patches of size 7 x 7.
The slightly brighter envelope depicts the standard deviation over
ten pairs of training and test sets. For further details see the
respective figure in the paper.
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1. Introduction

Kac’s characterization of the normal distribution [5] states that the isotropic Gaussian is the only distribution in the
intersection of the class of factorial distributions and the class of spherically symmetric distributions. A natural extension to
the latter are the L,-spherically symmetric distributions [6,4]. A random variable X is L,-spherically symmetric distributed
if it can be written as a product of two independent random variables R and U, where R is a univariate non-negative random
variable with an arbitrary distribution and U is uniformly distributed on the set 51’,'*1 = {x e R": Z?:l %P = 1}
Equivalently, X is L,-spherically distributed if its density has the form g (ZLI |xi|P).

This class of distributions is of great practical interest: It offers more flexibility than the spherically symmetric model,
but is still easy to fit to data since it only requires estimating the univariate radial distribution. An interesting subclass is the
p-generalized Normal distribution [3]

n n i xilP
p _i=1

g (Z |Xi|p> = — 7w
= (2r (;) (202)5)

which contains the Normal distribution as a special case for p = 2.

Note, that the p-generalized Normal distribution is factorial with marginals from the exponential power family [1]. In
that sense, the p-generalized Normal distribution is the analog of a Gaussian for L,-spherically symmetric distributions.
Surprisingly, to the best of our knowledge, we could not find any reference that characterizes the p-generalized
Normal distribution as the only marginally independent L,-spherically symmetric distribution. Here, we provide this
characterization for the class of differentiable and bounded L,-spherically symmetric densities.
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E-mail addresses: fabee@tuebingen.mpg.de (F. Sinz), sgerwinn@tuebingen.mpg.de (S. Gerwinn), mbethge@tuebingen.mpg.de (M. Bethge).
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http://www.kyb.tuebingen.mpg.de/~mbethge (M. Bethge).

0047-259X/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
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Normal distribution

e \\ e N
L, -spherical

[
distributions

factorial distributions Lp-spherical distributions

A AN J

I

p-generalized Normal distributions

Fig. 1. Properties of the p-generalized Normal distribution. The Gaussian is the only L,-spherically symmetric distribution with independent marginals.
Like the Gaussian, all p-generalized Normal distributions have independent marginals and the property of spherical symmetry is a special case of the L-
spherical symmetry in this class. We prove that the p-generalized Normal distributions are the only distributions which combine these two properties
simultaneously.

2. Characterization

Theorem 1. Let g : R" — R, be an differentiable multivariate L,-spherically symmetric density. If g has the following
properties:

(1) g e C'(RM
(2) gand B%ig are bounded foralli=1,...,n

then marginal independence, i.e. g (Zle |x,-|P) = ]_[Z:1 h(|xk|P), implies that g is p-generalized Normal, i.e.

h(x]) =

p exp(_}xup)
1 2 ]
2r (1) o> 20

Proof. Let g be factorial, i.e. g (ZL] |xi|") = ]_[L] hi(|x|P), and let P be a permutation matrix. Since g is L,-spherically
symmetric, g is invariant under permutation of the basis elements, i.e.g (Y1, |xi|?) = g (3", lyilP) withy = Px. Choose
av € R" for some a € R with v; = a - §; and P such that Pv = w with w; = a - §;. Thus,

g (i |Ui|p> =g (; Iwilp>

= hi(laP) [ The(0) = he(lal’) [ [ he(0)

G ik
hi(0)
(0)’

Since all h; integrate to one, c must be one as well.
Note that none of the h;(0) can be zero because they can be written as

h;(0) = / ! g Z |Xk|p) dxqdx, . .. de,]de+1 L.odxy
R ki

and g a non-negative function which does not vanish everywhere. Therefore, all marginals h must have the same form, that
isg (i 1xil?) = [Teey h(xelP).

With the particular choice of v it follows g (3", [vilP) = g (|lal’) = h(alP) - h(0)""" or just g(u) = h(u) - h(0)"~' by
substitution u := |a|P. Now, choosing (a, b, 0, ..., 0)" e R" we can write

g(lal” + IbI") = h(ja/P)h(IbI")h(0)" "

= hij(@”) = h(a’) - ¢ Va € Ry withc =

97
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= g(la)h(0)'~" - g(|b[P)h(0)'~" - h(0)"?
= g(lal)g(Ib))h(O)™"
= g(la")g(|bI")/g(0)
orjustg(u+e€) =g(u)g(e)/g(0) forallu, € € R,.
Thus, we obtain

gute—gw=2" (ge -g0)
£0)

and it follows immediately

, g(u) ,
=250
g (u) - (O)g( )

Solving this differential equation uniquely yields the functional form

2(0) exp (‘& . u>

g 2(0)

= exp(cia + cp).

Choosing a value for c; corresponds to setting the scale of the distribution. Taking into account that g must integrate to one
determines co and yields that h is in the exponential power family. Thus, g is p-generalized Normal. O

3. Discussion

The theorem presented in this paper provides an important theoretical insight showing that the intersection between
the space of L,-spherical distributions and the space of factorial distributions is a low-dimensional manifold known as the
family of p-generalized Normal distributions. In particular, the previous characterization of the isotropic Gaussian as the
only spherically symmetric factorial distribution can now be understood as the special case of the more general theorem
when p = 2 (see Fig. 1). Consequently, the range of potential applications is now extended from the special case of isotropic
distributions to arbitrary L,-spherical distributions.

An immediate consequence of the theorem concerns density estimation on empirical data. Assuming marginal
independence and L,-spherical symmetry not only implies that the marginals must be exponential power distributions, but
also decreases the degrees of freedom to the mean and the scale parameter of the p-generalized Normal. This shows that
marginal independence is a very restrictive assumption in the class of L,-spherical symmetric distributions which turns the
infinite dimensional estimation problem of the radial distribution into a one-dimensional one.

Other consequences and applications arise from the fact that each L,-spherically symmetric distributed random variable
X has a stochastic representation X = RU. By changing the radial component with the transform T{l o1 : Ry — Ry,
where F; and %, are the cumulative distribution functions of the source and the target radial distribution, respectively, one
can change the distribution of X within the class of L,-spherically symmetric distributions for a particular fixed p.

From our theorem we know that there is a unique factorial distribution (up to a scale parameter) each L,-spherically
symmetric distribution can be mapped into by choosing ¥, to be the c.d.f. of the p-generalized Normal distribution

n P
r(3 o)
r(s)
p

with I'(z, a) denoting the incomplete I'-function.

Conversely, one can also use this relationship for efficient sampling from arbitrary L,-spherically symmetric distributions.
The idea is to first sample from a p-generalized Normal distribution and subsequently transform the radial component by
setting 1 = ¥, and setting %, equal to the c.d.f. of the radial component R of the target distribution. That is, each random

vector x sampled from the p-generalized Normal is transformed by x — mx withr = (Z?:l |xi\P)% which can be
computed very fast. Furthermore, sampling from the p-generalized Normal is easy as one can sample from the univariate
marginal distributions independently. Our theorem implies that the exponential power distribution is the only admissible
marginal distribution with which such a sampling scheme is possible.

Finally, our theorem is also useful for constructing an independence test for L,-spherically symmetric distributed random

For) = Fp(r) =

variables. For a given set of samples x1, ..., X, € R", the radial distribution
1 P
() = — e
r(2) o
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1
of the p-generalized Normal is fitted to the radial components r, = (Z?:l |xki|")5 ,k = 1,...,m of the data points.
Afterwards, a goodness of fit test (e.g. Kolmogorov-Smirnov) can be used to test whether the x;, come from a factorial
L,-spherically symmetric distribution. Since the p-generalized Normal is the only L,-spherically symmetric distribution
with independent marginals, the test should succeed if the marginals are independent and fail if they are not. Such an
independence test can be of particular interest in the context of Independent Component Analysis [2] in order to verify
whether the data actually comply with the independence assumption underlying this method.
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Abstract

We introduce a new family of distributions, called L,-nested symmetric distri-
butions, whose densities are expressed in terms of a hierarchical cascade of L,-
norms. This class generalizes the family of spherically and L,,-spherically sym-
metric distributions which have recently been successfully used for natural im-
age modeling. Similar to those distributions it allows for a nonlinear mechanism
to reduce the dependencies between its variables. With suitable choices of the
parameters and norms, this family includes the Independent Subspace Analysis
(ISA) model as a special case, which has been proposed as a means of deriv-
ing filters that mimic complex cells found in mammalian primary visual cortex.
Ly-nested distributions are relatively easy to estimate and allow us to explore the
variety of models between ISA and the L,,-spherically symmetric models. By fit-
ting the generalized L,-nested model to 8 x 8 image patches, we show that the
subspaces obtained from ISA are in fact more dependent than the individual fil-
ter coefficients within a subspace. When first applying contrast gain control as
preprocessing, however, there are no dependencies left that could be exploited by
ISA. This suggests that complex cell modeling can only be useful for redundancy
reduction in larger image patches.

1 Introduction

Finding a precise statistical characterization of natural images is an endeavor that has concerned
research for more than fifty years now and is still an open problem. A thorough understanding of
natural image statistics is desirable from an engineering as well as a biological point of view. It
forms the basis not only for the design of more advanced image processing algorithms and compres-
sion schemes, but also for a better comprehension of the operations performed by the early visual



system and how they relate to the properties of the natural stimuli that are driving it. From both
perspectives, redundancy reducing algorithms such as Principal Component Analysis (PCA), Inde-
pendent Component Analysis (ICA), Independent Subspace Analysis (ISA) and Radial Factorization
[11; 21] have received considerable interest since they yield image representations that are favorable
for compression and image processing and at the same time resemble properties of the early visual
system. In particular, ICA and ISA yield localized, oriented bandpass filters which are reminiscent
of receptive fields of simple and complex cells in primary visual cortex [4; 16; 10]. Together with the
Redundancy Reduction Hypothesis by Barlow and Attneave [3; 1], those observations have given
rise to the idea that these filters represent an important aspect of natural images which is exploited
by the early visual system.

Several result, however, show that the density model of ICA is too restricted to provide a good model
for natural images patches. Firstly, several authors have demonstrated that filter responses of ICA
filters on natural images are not statistically independent [20; 23; 6]. Secondly, after whitening, the
optimum of ICA in terms of statistical independence is very shallow or, in other words, all whitening
filters yield almost the same redundancy reduction [5; 2]. A possible explanation for that finding is
that, after whitening, densities of local image features are approximately spherical [24; 23; 12; 6].
This implies that those densities cannot be made independent by ICA because (i) all whitening filters
differ only by an orthogonal transformation, (ii) spherical densities are invariant under orthogonal
transformations, and (iii) the only spherical and factorial distribution is the Gaussian. Once local
image features become more distant from each other, the contour lines of the density deviates from
spherical and become more star-shaped. In order to capture this star-shaped contour lines one can
use the more general L,,-spherically symmetric distributions which are characterized by densities of

the form p(y) = g([[ylly) with [|ly[l, = (3 [y:|*)"/” and p > 0[9; 10; 21].

| |

p=08" T,

Figure 1: Scatter plots and marginal histograms of neighboring (leff) and distant (right) symmetric whitening
filters which are shown at the top. The dashed Contours indicate the unit sphere for the optimal p of the best
fitting non-factorial (dashed line) and factorial (solid line) Ly-spherically symmetric distribution, respectively.
While close filters exhibit p = 2 (spherically symmetric distribution), the value of p decreases for more distant
filters.

As illustrated in Figure 1, the relationship between local bandpass filter responses undergoes a grad-
ual transition from Lo-spherical for nearby to star-shaped (L,,-spherical with p < 2) for more distant
features [12; 21]. Ultimately, we would expect extremely distant features to become independent,
having a factorial density with p ~ 0.8. When using a single L,-spherically symmetric model for
the joint distribution of nearby and more distant features, a single value of p can only represent a
compromise for the whole variety of iso-probability contours. This raises the question whether a
combination of local spherical models, as opposed to a single L,,-spherical model, yields a better
characterization of the statistics of natural image patches. Possible ways to join several local models
are Independent Subspace Analysis (ISA) [10], which uses a factorial combination of locally L,-
spherical densities, or Markov Random Fields (MRFs) [18; 13]. Since MRFs have the drawback
of being implicit density models and computationally very expensive for inference, we will focus
on ISA and our model. In principle, ISA could choose its subspaces such that nearby features are
grouped into a joint subspace which can then be well described by a spherical symmetric model
(p = 2) while more distant pixels, living in different subspaces, are assumed to be independent. In
fact, previous studies have found ISA to perform better than ICA for image patches as small as 8 x 8
and to yield an optimal p =~ 2 for the local density models [10]. On the other hand, the ISA model
assumes a binary partition into either a L,-spherical or a factorial distribution which does not seem
to be fully justified considering the gradual transition described above.
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Here, we propose a new family of hierarchical models by replacing the L;,-norms in the L,,-spherical
models by L,,-nested functions, which consist of a cascade of nested L,-norms and therefore allow
for different values of p for different groups of filters. While this family includes the L,,-spherical
family and ISA models, it also includes densities that avoid the hard partition into either factorial
or Ly-spherical. At the same time, parameter estimation for these models can still be similarly
efficient and robust as for L,-spherically symmetric models. We find that this family (i) fits the data
significantly better than ISA and (ii) generates interesting filters which are grouped in a sensible way
within the hierarchy. We also find that, although the difference in performance between L,,-spherical
and L,-nested models is significant, it is small on 8 x 8 patches, suggesting that within this limited
spatial range, the iso-probability contours of the joint density can still be reasonably approximated
by a single L,-norm. Preliminary results on 16 x 16 patches exhibit a more pronounced difference
between the L,-nested and the L,-spherically symmetric distribution, suggesting that the change in
p becomes more important for modelling densities over a larger spatial range.

2 Models

Ly,-Nested Symmetric Distributions Consider the function
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We call this type of functions L,,-nested and the resulting class of distributions L,-nested symmetric.
L,-nested symmetric distributions are a special case of the v-spherical distributions which have a
density characterized by the form p(y) = g(v(y)) where v : R™ — R is a positively homogeneous
function of degree one, i.e. it fulfills v(ay) = av(y) forany a € Ry and y € R" [7]. L,-
nested functions are obviously positively homogeneous. Of course, Lj,-nested functions of L,,-
nested functions are again L,-nested. Therefore, an L,-nested function f in its general form can be
visualized by a tree in which each inner node corresponds to an L,-norm while the leaves stand for
the coefficients of the vector y.

Because of the positive homogeneity it is possible to normalize a vector y with respect to v and
obtain a coordinate respresentation z = r - w where r = v(y) and u = y/v(y). This implies that
the random variable Y has the stochastic representation Y = RU with independent U and R [7]
which makes it a generalization of the Gaussian Scale Mixture model [23]. It can be shown that
for a given v, U always has the same distribution while the distribution o(r) of R determines the
specific p(y) [7]. For a general v, it is difficult to determine the distribution of U since the partition
function involves the surface area of the v-unit sphere which is not analytically tractable in most
cases. Here, we show that L,-nested functions allow for an analytical expression of the partition
function. Therefore, the corresponding distributions constitute a flexible yet tractable subclass of
v-spherical distributions.

In the remaining paper we adopt the following notational convention: We use multi-indices to index
single nodes of the tree. This means that I = () denotes the root node, I = (,7) = 4 denotes
its 5" child, I = (4,7) the 4" child of i and so on. The function values at individual inner nodes
I are denoted by f;, the vector of function values of the children of an inner node I by f; 1., =
(fr.1, - f1.0;) 7. By definition, parents and children are related via f; = ||f; 1., |,,- The number of
children of a particular node [ is denoted by ¢;.

Ly, -nested symmetric distributions are a very general class of densities. For instance, since every L,,-
norm || - ||, is an Ly-nested function, L,-nested distributions includes the family of L,-spherically
symmetric distributions including (for p = 2) the family of spherically symmetric distributions.
Whene.g. setting f = || ||z or f = (|| - |\§)l/p, and choosing the radial distribution p appropriately,
one can recover the Gaussian p(y) = Z 'exp (7Hy\|§) or the generalized spherical Gaussian
p(y) = Z 1 exp (—|y||5), respectively. On the other hand, when choosing the L,-nested function
f as in equation (1) and  to be the radial distribution of a p-generalized Normal distribution o(r) =



Z~rn=lexp (—rP? /s) [8; 22], the inner nodes f1.¢, become independent and we can recover an
ISA model. Note, however, that not all ISA models are also L,-nested since L,-nested symmetry
requires the radial distribution to be that of a p-generalized Normal.

In general, for a given radial distribution ¢ on the L,-nested radius f(y), an L,-nested symmetric
distribution has the form

1 1
p(y) = 50w o(f(y) = S0 iy o(f(y)) (2)

where S¢(f(y)) = Sy(1)- "~ (y) is the surface area of the L,-nested sphere with the radius f(y).
This means that the partition function of a general L,,-nested symmetric distribution is the partition
function of the radial distribution normalized by the surface area of the L -nested sphere with radius
f(y). For a given f and a radius fy = f(y) this surface area is given by the equation
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where Z denotes the set of all multi-indices of inner nodes, n; the number of leaves of the subtree
under I and B [a, b] the beta function. Therefore, if the partition function of the radial distribution
can be computed easily, so can the partition function of the multivariate L,,-nested distribution.

Since the only part of equation (2) that includes free parameters is the radial distribution o, maximum
likelihood estimation of those parameters ¥ can be carried out on the univariate distribution g only,
because

argmax g log p(y|9) = argmax, (— log S (f(y)) + log o( £ (y)|9)) = argmax s log o(f(y)[9).

This means that parameter estimation can be done efficiently and robustly on the values of the L,-
nested function.

Since, for a given f, an L,-nested distribution is fully specified by a radial distribution, changing
the radial distribution also changes the L,,-nested distribution. This suggests an image decomposi-
tion constructed from a cascade of nonlinear, gain-control-like mappings reducing the dependence
between the filter coefficients. Similar to Radial Gaussianization or L,-Radial Factorization algo-
rithms [12; 21], the radial distribution gy of the root node is mapped into the radial distribution of
a p-generalized Normal via histogram equalization, thereby making its children exponential power
distributed and statistically independent [22]. This procedure is then repeated recursively for each
of the children until the leaves of the tree are reached.

Below, we estimate the multi-information (MI) between the filters or subtrees at different levels of
the hierarchy. In order to do that robustly, we need to know the joint distribution of their values. In
particular, we are interested in the joint distribution of the children f; .., of a node I (e.g. layer 2
in Figure 2). Just from the form of an L,,-nested function one might guess that those children are
Ly-spherically symmetric distributed. However, this is not the case. For example, the children fy.4,
of the root node (assuming that none of them is a leaf) follow the distribution
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This implies that f1.,, can be represented as a product of two independent random variables
¢ .
u = fro/[Ifrgllp, € RY and r = |[fig,ll,, € Ry with 7 ~ gg and (uf"’,“.,u%’) ~

Dir [nl /Do - Tty /pm} following a Dirichlet distribution (see Additional Material). We call this
distribution a Dirichlet Scale Mixture (DSM). A similar form can be shown for the joint distribution
of leaves and inner nodes (summarizing the whole subtree below them). Unfortunately, only the
children fy.¢, of the root node are really DSM distributed. We were not able to analytically cal-
culate the marginal distribution of an arbitrary node’s children f; ;.,,, but we suspect it to have a
similar form. For that reason we fit DSMs to those children f; 1.4, in the experiments below and
use the estimated model to assess the dependencies between them. We also use it for measuring the
dependencies between the subspaces of ISA.
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Fitting DSMs via maximum likelihood can be carried out similarly to estimating L,-nested distri-
butions: Since the radial variables w and r are independent, the Dirichlet and the radial distribution
can be estimated on the normalized data points {u;}, and their respective norms {r;}™; inde-
pendently.

L,-Spherically Symmetric Distributions and Independent Subspace Analysis The family of
L,-spherically symmetric distributions are a special case of L,-nested distributions for which
f(y) = |lyllp [9]. We use the ISA model by [10] where the filter responses y are modelled by
a factorial combination of L,-spherically symmetric distributions sitting on each subspace

K
p(y) = H pk(”yh Hi)k)'
k=1

3 Experiments

Given an image patch x, all models used in this paper define densities over filter responses y = Wx
of linear filters. This means, that all models have the form p(y) = | det W|-p(Wz). The (n—1) xn
matrix W has the form W = QSP where P € R("~1*" has mutually orthogonal rows and projects
onto the orthogonal complement of the DC-filter (filter with equal coefficients), S € R(»—1)x(n=1)
is a whitening matrix and Q € SO,,_; is an orthogonal matrix determining the final filter shapes
of W. When we speak of optimizing the filters according to a model, we mean optimizing ) over
SO,,—1. The reason for projecting out the DC component is, that it can behave quite differently
depending on the dataset. Therefore, it is usually removed and modelled separately. Since the DC
component is the same for all models and would only add a constant offset to the measures we use
in our experiments, we ignore it in the experiments below.

Data We use ten pairs of independently sampled training and test sets of 8 x 8 (16 x 16) patches
from the van Hateren dataset, each containing 100, 000 (500, 000) examples. Hyvérinen and Koster
[10] report that ISA already finds several subspaces for 8 x 8 image patches. We perform all exper-
iments with two different types of preprocessing: either we only whiten the data (WO-data), or we
whiten it and apply an additional contrast gain control step (CGC-data), for which we use the radial
factorization method described in [12; 21] with p = 2 in the symmetric whitening basis.

We use the same whitening procedure as in [21; 6]: Each dataset is centered on the mean over
examples and dimensions and rescaled such that whitening becomes volume conserving. Similarly,
we use the same orthogonal matrix to project out the DC-component of each patch (matrix P above).
On the remaining n — 1 dimensions, we perform symmetric whitening (SYM) with S = C' ~% where
C' denotes the covariance matrix of the DC-corrected data C' = cov [PX].

Evaluation Measures We use the Average Log Loss per component (ALL) for assessing the qual-
ity of the different models, which we estimate by taking the empirical average over a large ensemble
of test points ALL = — nil (log p(y))y =~ 7ﬁ Y- log p(y;). The ALL equals the entropy
if the model distribution equals the true distribution and is larger otherwise. For the CGC-data, we
adjust the ALL by the log-determinant of the CGC transformation [11]. In contrast to [10] this al-
lows us to quantitively compare models across the two different types of preprocessing (WO and
CGC), which was not possible in [10].

In order to measure the dependence between different random variables, we use the multi-
information per component (MI) —1 (fozl HY;)-H [Y]) which is the difference between the
sum of the marginal entropies and the joint entropy. The MI is a positive quantity which is zero
if and only if the joint distribution is factorial. We estimate the marginal entropies by a jackknifed
MLE entropy estimator [17] (corrected for the log of the bin width in order to estimate the differen-
tial entropy) where we adjust the bin width of the histograms suggested by Scott [19]. Instead of the
joint entropy, we use the ALL of an appropriate model distribution. Since the ALL is theoretically
always larger than the true joint entropy (ignoring estimation errors) using the ALL instead of the
joint entropy should underestimate the true MI, which is still sufficient for our purpose.

Parameter Estimation For all models (ISA, DSM, L,-spherical and L,-nested), we estimate the
parameters ¥ for the radial distribution as described above in Section 2. For a given filter matrix



W the values of the exponents p are estimated by minimizing the ALL at the ML estimates 9
over p = (p1, ..., pq)T. For the L,-nested distributions, we use the Nelder-Mead [15] method for
the optimization over p = (py, ..., pq)T and for the L,,-spherically symmetric distributions we use
Golden Search over the single p. For the ISA model, we carry out a Golden Search over p for
each subspace independently. For the L, -spherical and the single models on the ISA subspaces,
we use a search range of p € [0.1,2.1] on p. For estimating the Dirichlet Scale Mixtures, we use
the fastfit package by Tom Minka to estimate the parameters of the Dirichlet distribution. The
radial distribution is estimated independently as described above.

When fitting the filters W to the different models (ISA, L,-spherical and L,-nested), we use a
gradient ascent on the log-likelihood over the orthogonal group by alternating between optimizing
the parameters p and ¥ and optimizing for W. For the gradient ascent, we compute the standard
Euclidean gradient with respect to W € R("~1)*("=1) and project it back onto the tangent space of
SO,,—1. Using the gradient VIV obtained in that manner, we perform a line search with respect to
t using the backprojections of W +t - VW onto SO,,_;. This method is a simplified version of the
one proposed by [14].

Experiments with Independent Subspace Analysis and L,,-Spherically Symmetric Distribu-
tions We optimized filters for ISA models with K = 2,4, 8,16 subspaces embracing 32, 16, 8,4
components (one subspace always had one dimension less due to the removal of the DC component),
and for an L,,-spherically symmetric model. When optimizing for W we use a radial I'-distribution
for the L,-spherically symmetric models and a radial x? distribution (||yr, |[5* is T-distributed) for
the models on the single single subspaces of ISA, which is closer to the one used by [10]. After
optimization, we make a final optimization for p and 1 using a mixture of log normal distributions
(log NV) with K = 6 mixture components on the radial distribution(s).

Ly,-Nested Symmetric Distributions  As for the L,,-spherically symmetric models, we use a radial
I-distribution for the optimization of W and a mixture of log A" distributions for the final fit. We use
two different kind of tree structures for our experiments with L,,-nested symmetric distributions. In
the deep tree (DT) structure we first group 2 x 2 blocks of four neighboring SYM filters. Afterwards,
we group those blocks again in a quadtree manner until we reached the root node (see Figure 2A).
The second tree structure (PNDy,) was motivated by ISA. Here, we simply group the filter within
each subspace and joined them at the root node afterwards (see Figure 2B). In order to speed up
parameter estimation, each layer of the tree shared the same value of p.

Multi-Information Measurements For the ISA models, we estimated the MI between the filter
responses within each subspace and between the Ly-radii ||y, ||, 1 < k < K. In the former case
we used the ALL of an L,-spherically symmetric distribution with especially optimized p and 9, in
the latter a DSM with optimized radial and Dirichlet distribution as a surrogate for the joint entropy.
For the L,-nested distribution, we estimate the MI between the children f; .., of all inner nodes
1. In case the children are leaves, we use the ALL of an L,-spherically symmetric distribution as
surrogate for the joint entropy, in case the children are inner nodes themselves, we use the ALL of
an DSM. The red arrows in Figure 2A exemplarily depict the entities between which the MI was
estimated.

4 Results and Discussion

Figure (2) shows the optimized filters for the DT and the PND;; tree structure (we included the
filters optimized on the first of ten datasets for all tree structures in the Additional Material). For
both tree structures, the filters on the lowest level are grouped according to spatial frequency and
orientation, whereas the variation in orientation is larger for the PND;¢ tree structure and some
filters are unoriented. The next layer of inner nodes, which is only present in the DT tree structure,
roughly joins spatial location, although each of those inner nodes has one child whose leaves are
global filters.

‘When looking at the various values of p at the inner nodes, we can observe that nodes which are
higher up in the tree usually exhibit a smaller value of p. Surprisingly, as can be seen in Figure 3
B and C, a smaller value of p does not correspond to a larger independence between the subtrees,
which are even more correlated because almost every subtree contains global filters. The small value
of p is caused by the fact that the DSM (the distribution of the subtree values) has to account for
this correlation which it can only do by decreasing the value of p (see Figure 3 and the DSM in
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Figure 2: Examples for the tree structures of L, -nested distributions used in the experiments: (A) shows
the DT structure with the corresponding optimized values. The red arrows display examples of groups of filters
or inner nodes, respectively, for which we estimated the MI. (B) shows the PND;¢ tree structure with the
corresponding values of p at the inner nodes and the optimized filters.

the Additional Material). Note that this finding is exactly opposite to the assumptions in the ISA
model which can usually not generate such a behavior (Figure 3A) as it models the two subtrees to
be independent. This is likely to be one reason for the higher ALL of the ISA models (see Table 1).
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Figure 3: Independence of subspaces for WO-data not justfied: (A) Subspace radii sampled from ISAz, (B)
subspace radii of natural image patches in the ISA, basis, (C) subtree values of the PND> in the PND basis, and
(D) samples from the PND2 model. While the ISA2 model spreads out the radii almost over the whole positive
quadrant due to the independence assumption the samples from the L,-nested subtrees are more concentrated
around the diagonal like the true data. The L,-nested model can achieve this behavior since (i) it does not
assume a radial distribution that leads to independent radii on the subtrees and (ii) the subtree values f; and f;
are DSM[n1 /pg, n2/pg, ] distributed. By changing the value of py, the DSM model can put more mass towards
the diagonal, which produces the “beam-like” behavior shown in the plot.

Table 1 shows the ALL and the MI measurements for all models. Except for the ISA models on
WO-data, all performances are similar, whereas the L,-nested models usually achieve the lowest
ALL independent of the particular tree structure used. For the WO-data, the L,,-spherical and the
ISA; model come close to the performance of the L, -nested models. For the other ISA models on
WO-data the ALL gets worse with increasing number of subspaces (bold font number in Table 1).
This reflects the effect described above: Contrary to the assumptions of the ISA model, the responses
of the different subspaces become in fact more correlated than the single filter responses. This can
also be seen in the MI measurements discussed below.

When looking at the ALL for CGC data, on the other hand, ISA suddenly becomes competitive.
This importance of CGC for ISA has already been noted in [10]. The small differences between all
the models in the CGC case shows that the contour change of the joint density for 8 x 8 patches is too
small to allow for a large advantage of the L,,-nested model, because contrast gain control (CGC)



directly corresponds to modeling the distribution with an L ,-spherically symmetric distribution [21].
Preliminary results on 16 x 16 data (1.39 + 0.003 for the L,-nested and 1.45 + 0.003 for the L,-
spherical model on WO-data), however, show a more pronounced improvement with for the L,-
nested model, indicating that a single p does not suffice anymore to capture all dependencies when
going to larger patch sizes.

‘When looking at the MI measurements between the filters/subtrees at different levels of the hierarchy
in the L,-nested, L ,-spherically symmetric and ISA models, we can observe that for the WO-data,
the MI actually increases when going from lower to higher layers. This means that the MI between
the direct filter responses (layer 3 for DT and layer 2 for all others) is in fact lower than the MI
between the subspace radii or the inner nodes of the L,,-nested tree (layer 1-2 for DT, layer 1 for all
others). The highest MI is achieved between the children of the root node for the DT tree structure
(DT layer 1). As explained above this observation contradicts the assumptions of the ISA model and
probably causes it worse performance on the WO-data.

For the CGC-data, on the other hand, the MI has been substantially decreased by CGC over all levels
of the hierarchy. Furthermore, the single filter responses inside a particular subspace or subtree are
now more dependent than the subtrees or subspaces themselves. This suggests that the competitive
performance of ISA is not due to the model but only due to the fact that CGC made the data already
independent. In order to double check this result, we fitted an ICA model to the CGC-data [21] and
found an ALL of 1.41 £ 0.004 which is very close to the performance of ISA and the L,-nested
distributions (which would not be the case for WO-data [21]).

Taken together, the ALL and the MI measurements suggest that ISA is not the best way to join
multiple local models into a single joint model. The basic assumption of the ISA model for natural
images is that filter coefficients can either be dependent within a subspace or must be independent
between different subspaces. However, the increasing ALL for an increasing number of subspaces
and the fact that the MI between subspaces is actually higher than within the subspaces, demonstrates
that this hard partition is not justified when the data is only whitened.

[ Family i L, -nested |
Model Deep Tree PND» PND, PNDg PND;¢
ALL 1.39 £ 0.004 1.39 £ 0.004 1.39 £0.004 1.40 £ 0.004 1.39 £ 0.004
ALL CGC 1.39 £ 0.005 1.40 £ 0.004 1.40 £ 0.005 1.40 £ 0.004 1.39 £ 0.004
MI Layer 1 0.84 £0.019 0.48 £0.008 0.7 £0.002 0.75 £0.003 0.61 £ 0.0036
MI Layer 1 CGC 0.0 £+ 0.004 0.10 £+ 0.002 0.02 £+ 0.003 0.0 £+ 0.009 0.0+ 0.01
MI Layer 2 0.42 £0.021 0.35 £0.017 0.33£0.017 0.28 £0.019 0.25 £0.025
MI Layer 2 CGC || 0.002 4 0.005 | 0.01 #0.0008 | 0.01 £ 0.004 0.01 + 0.006 0.02 + 0.008
MI Layer 3 0.28 £ 0.036 - - - -
MI Layer 3 GCG 0.04 + 0.005 - - - -
[ Family [[ Lp-spherical ]| ISA |
Model - ISA, ISA, ISAg ISA 6
ALL 1.41 +£0.004 1.40+£0.005 | 1.43+0.006 | 1.46 +=0.006 1.55 £ 0.006
ALL CGC 1.41 £ 0.004 1.41 £ 0.008 1.39 £ 0.007 1.40 £ 0.005 1.41 £ 0.007
MI Layer 1 0.34 £0.004 0.47 £0.01 0.69 £0.012 0.7£0.018 0.63 £ 0.0039
MI Layer 1 CGC 0.00 + 0.005 0.00 £ 0.09 0.00 + 0.06 0.00 £ 0.04 0.00 £ 0.02
MI Layer 2 - 0.36 £ 0.017 0.33£0.019 0.31 £0.032 0.24 £0.024
MI Layer 2 CGC - 0.004 £+ 0.003 0.03 £ 0.012 0.02 +0.018 0.0006 + 0.013

Table 1: ALL and MI for all models: The upper part shows the results for the L,-nested models, the lower
part show the results for the L,-spherical and the ISA models. The ALL for the L,-nested models is almost
equal for all tree structures and a bit lower compared to the L-spherical and the ISA models. For the whitened
only data, the ALL increases significantly with the number of subspaces (bold font). For the CGC data, most
models perform similarly well. When looking at the MI, we can see that higher layers for whitened only data
are in fact more dependent than lower ones. For CGC data, the MI has dropped substantially over all layers due
to CGC. In that case, the lower layers are more independent.

In summary, our results show that L,,-nested symmetric distributions yield a good performance on
natural image patches, although the advantage over L,-spherically symmetric distributions is fairly
small, suggesting that the distribution within these small patches (8 x 8) is captured reasonably well
by a single L,-norm. Furthermore, our results demonstrate that—at least for 8 x 8 patches—the
assumptions of ISA are too rigid for WO-data and are trivially fulfilled for the CGC-data, since
CGC already removed most of the dependencies. We are currently working to extend this study to
larger patches, which we expect will reveal a more significant advantage for L,-nested models.
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L,-NESTED SYMMETRIC DISTRIBUTIONS

FABIAN SINZ, EERO SIMONCELLI, MATTHIAS BETHGE

1. INTRODUCTION

A important part in statistical analysis of data is to find a class of models that
is flexible and rich enough to model the regularities in the data, but at the same
time exhibits enough symmetry and structure itself to still be computationally and
analytically tractable. One special way of introducing such a symmetry is to fix the
general form of the isodensity contour lines. This approach was taken by [2] who
modelled the contour lines by the level sets of a positively homogeneous function
of degree one. Unfortunately, in the general case it is hard to derive the normal-
ization constant for an arbitrary such function. For a special kind of v-spherical
distributions, the L,-spherically symmetric distributions [5; 3] this problem be-
comes tractable by restricting the contour lines to Ly,-spheres, but at the prize
of introducing permutation symmetry. The L,-spherically symmetric distribution
itself generalize the class of Lo-spherically symmetric distributions which exhibit
rotational symmetry [4; 1]. In some cases permutation or even rotational symme-
try might be an appropriate assumption for the data. However, in other cases such
symmetries might actually make the model miss important structure present in the
data.

Here, we present a generalization of the class of L,-spherically symmetric dis-
tribution within the class of v-spherical distributions. Instead of using a single
Ly-norm to define the contour of the density, we use nested L,-norms where the
coefficients, the L,-norm is computed over, can be L,-norms themselves—with pos-
sibly different p. This preserves positive homogeneity and replaces permutational
invariance with invariance under reflection at the coordinate axes. Due to the nested
structure, we call this new class of distributions L,-nested symmetric distributions.
As we demonstrate below, this construction still bears enough structure to define
polar-like coordinates similar to those of [6; 3] and thereby to compute the normal-
ization constant of the distribution given an arbitrary univariate distribution on the
function values. By that construction, we can leverage most important properties
of the Ly-spherically symmetric distributions to the L,-nested distributions.

The remaining part of the paper is structured as follows: In section 2 we intro-
duce some helpful nomenclature and define Ljy-nested functions. In section 3 we
define coordinates in the spirit of [3] and derive the Jacobian of the determinant. In
section 4 we introduce the uniform distribution on the Ly-nested unit sphere which
allows us to leverage some of the results of [3] to L,-nested symmetric distributions
in section 5. In section 6 we derive a sampling scheme for L,-nested symmetric
distributions. We conclude by presenting a potential application for the class of
Ly-nested symmetric distributions.

Date: October 30, 2009.
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2. NOMENCLATURE AND DEFINITIONS
Definition 2.1 (L,-nested functions). We call a function f : R* — R L,-nested
if f fulfills the following recursive definition:
(i) The function f : R® — Ris the L,-norm of its ¢ children (f1(x1), ..., fe(x¢)) T

F&) = (Fa(x0), ooy fe(x0) lp,

where the x; € R™ are a partition of the vector x into ¢ parts.

(ii) The children f; are either L,-nested functions themselves or compute the
absolute value of a single coefficient z;, i.e. f;j(x;) = |z;| if and only if
Xj = € R.

This gives rise to a tree structure of f which is depicted in Figure 1. Note,
that every Lj-nested function is positively homogeneous by construction. In order
to present results for arbitrary L,-nested functions, we start by introducing some
helpful notation.

() = fo(Frey) = |IFr:e, |lpy

/\

fi=fiGx) = filfie) = [[f1e s

N

foo1 f,, y

SR

fr=fr(fre,) = fi(xr) = f1(lyil, - [Yire, )
VRN

lyil = |yl =fr1 - fre, = Wiver| = Wi, [PH4

FIGURE 1. Tree structure associated with an L,-nested
function f: Every parent node I gets its value f; by comput-
ing the L,,-norm of the values of its children f; .,. The leafs of
the tree correspond to the (absolute values) of the coefficients in
the vector x. The values of the p at the leaf nodes are set to the
value p = 1 by definition, e.g. p;1 = ... = pr ¢, = 1 in the diagram.

Definition 2.2 (Notation and Conventions for Ly-nested functions). We use the
following notational conventions:
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L,-NESTED SYMMETRIC DISTRIBUTIONS 3

‘We use multi-indices to denote the different nodes of the tree corresponding
to an L,-nested function f. The function f itself corresponds to the root
node and is denoted by fp. The functions corresponding to its children
are denoted by fi,..., fr,- The children of the it" child are denoted by
fi1s s fie;- In this manner, an index is added for each layer of the tree.
We always use the letter “¢” to denote the total amount of children of a
node.

For notational convenience, we assign a p to each of the leaf nodes (i.e. the
absolute values |z;|) but fix their values to p = 1 by definition.

For the sake of compact notation, we denote a list of indices with a single
multi-index I = iy,...,4.. The range of the single indices and the length
of the multi-index should be clear from the context. Multi-indices are
always denoted by upper-case letters. A concatenation I,k of a multi-
index I with another index k corresponds to adding k to the index list, i.e.
I,k =14y,...,im, k. We use the convention that I,() = I.

Those coefficients of the vector x that correspond to leafs of the subtree
under a node with the index I are denoted by x;. The number of leafs in
a subtree under a node I is denoted by nj. If I denotes a leaf then n; = 1.
The Ly-nested function associated with the subtree under a node I is de-
noted by

Frn) = 1(FraGera), o fre (xne)) ;-

We use sans-serif font to denote the function value f; = fr(x;) of a subtree
I. In many cases we use f; and f(xy) interchangeably. Whether f; is to
be considered as a function of its children or merely the value of the node
I should always be clear from the context.

A vector with the function values of the children of I is denoted with
bold sans-serif font and the following index-list notation:

Jixn) = 1(fraxr)y o frer %0,e0)) s
= H(fl«,lv”'vfl,ll)—rnm
= Hleithl

The function computing the value of the (" —and therefore by convention
last—child of a node I when fixing the value f; of that node, is denoted by

-1 o
gr,e, (fr,fra, 0 fre—1) = (f?l - Z fffk)
k=1

=914, (f1,0:51*1)
=8I,

Notice the small but important difference that the value f; depends only
on the values of its children f; 1, ...,f; ¢,, while the value g7, depends on
the value of its neighbors f 1, ...,fr¢,—1 and its parent f; = f; g.
Vectors in R™ that lie on the Ly,-nested unit sphere, i.e. that fulfill f(u) =1
are denoted by the letter u.

Vectors @ € R¥ that lie on the L,, unit sphere associated with the inner
node I, i.e. that fulfill f7.;.,, = fya are denoted by the letter . Note that
the coordinates u and @ are different: fr(@) =1 while fr(u;) <1.
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When defining polar-like coordinates in section 3 only all but the last
coefficients of u or u are needed, since the last can be computed from the
remaining ones. We often still denote this shorter vectors by u or @. The
actual dimensionality should be clear from the context.

Let us demonstrate the above definitions with a simple example.

Ezample 2.1. Consider the L,-nested function
1

Py P
56 = (a4 ool 5+ o) ™

+<f§2)53>

Pg Py
P

- (e )

= (f1 (FL12)™ + f2 (fz.l)pm)ﬁ
= fo (F12)

with £y =2, £1 = 2and p11 = p1,2 = p2 = 1 by definition. Resolving f(z1,z2,23) =
a for |x3| yields the functions g

lz3| = g2
= g2 (o, f1)
1
= ()
1
= (P — f1 (F11:2)")70
1
ppy L
= (@ = (la " + faaf) )"
3. Lp-NESTED COORDINATE TRANSFORMATION AND THE DETERMINANT OF ITS
JACOBIAN

The most important consequence of the positive homogeneity of f is that it can
be used to normalized vectors and, by that property, to generalize the polar-like
coordinates using Ly,-norms of [3].

Definition 3.1 (Polar-like Coordinates). We define the following polar-like coor-
dinates for a vector x € R™:

u; = ff;) fori=1,..,n—1
r=f(x).

The inverse coordinate transformation is given by
z;=ru; fori=1,..n—1
T = TApUy,
where we define A,, = sgnx,, and u, to be the value of the leaf corresponding to

|x,| when setting fy = 1.

The definition of the coordinates is basically equivalent to that of [3] with the
difference that the Ly,-norm is replaced by an Lj,-nested function. Just as in the
case of L,-spherical coordinates, it will turn out that the Jacobian of the coordinate
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transformation does not depend on the value of A,,. This is basically a consequence
of the invariance under reflection at the coordinate axes.

The remaining part of this section will be devoted to computing the determinant
of the Jacobian. We start by stating the general form of the determinant in terms
of the partial derivatives g%;, u and r. Afterwards we demonstrate that those
partial derivatives have a special form and that most of them cancel in the Laplace
expansion of the determinant.

Lemma 3.1 (Determinant of the Jacobian). Let r and u be defined as in Defini-
tion (3.1). The general form of the determinant of the Jacobian J of the inverse
coordinate transformation is given by

n—1
ou,
_ -1 n
1) [det J| =r" ( k§:1 Tu U +un> .

Proof. The partial derivatives of the inverse coordinate transformation are given
by:

—y; =0yrfor 1 <ik<n-—1
E)uk

aJ ou,,
Y =Apr— for 1<k<n-1
6uky T@uk or n

17} .

—yi=u;for 1 <i<n-—1

or

17}

Eyn = Anun

Therefore, the structure of the Jacobian is given by

r 0 [

0 L. r Up—1

. Oup ._Oup .
An7 duy s An" D1 An Up

Since we are only interested in the absolute value of the determinant and since
A, € {—1,1}, we can factor out A,, and drop it. Furthermore, we can factor out r
from the first n — 1 columns which yields

1 e 0 Uuy
|det 7| =" |det :
PN 1 Up—1
u u
Juy 0 Duny Un

Now we can use Laplace formula to expand the determinant with respect to the last
column. For that purpose, let J; denote the matrix which is obtained by deleting
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the last column and the ith row from J. This matrix has the following structure
1 0

0
1 0

Ji = o1

0 .
0 1

Oy Oup duy

Ouy Ou; O —1
We can transform J; into a lower triangular matrix by moving the column with
all zeros and %l,;’? bottom entry to the rightmost column of J;. Each swapping of
two columns introduces a factor of —1. In the end, we can compute the value of
det J; by simply taking the product of the diagonal entries and obtain det J; =
(—1)"~71 8% This yields

ol (Z(—l)"*kuk det Jk>

k=1

| det J|

n—1
_ 0y
n—1 _1\n+k ) _1\2nYIn
r ( E (=1)"Fuy, det T + (—1) B )

k=1
n—1 9u
— Tn—l -1 n+kuk 1 n—1-k n +u
(S ucyode o,
n—1
ou,,
=t - Upm— +Up | .
@ty
k=1
O
For a given L,-nested function f, the terms r, u; and gz; needed to compute

the determinant with equation (1) can be computed easily. However, as already
mentioned, most constituents of those terms cancel each other as the following
example demonstrates. We urge the reader to follow the next example as it contains
the important ideas for the general case below.

Example 3.1. Consider the function from the previous example
, . N7y
FO) = ((al? + o) 7+ faale) ™
and solving for ugz yields
flu)=1
20\ 7y
& uz = (1 — (\ul\pl + ‘uz‘pl)m)

Now, let Gy and F; denote

x

f(x)

Setting u =

1-p
rg
Gy = <17(\u1\’” +\uz\p’)”1> "

Pg—P1
Fi = (jur[" + |upfP*) "7
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Essentially, Gy and F; are terms that evolve from the application from the chain
rule when computing the partial derivative. Gs originates from using the chain rule
upwards in the tree and F; from using it downwards. The indices correspond the
multi-indices of the respective nodes. Computing the derivative yields

0U3 aJ Po ﬁ
— 2= __ (1- i1 [Pt 1o |P1) P )
T = g (L (a4 o)
1 1%} rg.
= —Gy - —— (Jur[P* + |uz|P*)™
0 "o (JuafP* + fualP")
1 17}
_ prQ —Fy = |y, P
T pem Juy,

= —GgFlAkukm 1.

By inserting the results in equation (1) we obtain

1 Ay,
Tj\j\——z SUp +us

2

= ZG2F1|uk\pl +ug

2 1
Po N\ pg
G, (Z Fifuel” + 65" (1= (el + ual?) 7 ) )
k=1

1-pg

P - P, -+
F1|Uk\p1+<1*(|u1|p1+|u2|p1)£) 7o (1(|ul|p1+|uQ|m)p?>m>

>
[V N
—

Faluf™ + 1= (jur " +Jual?) )
=1

.
(Flzuk|pl+1—F1F1 (Jua [P + uz’”)”)

Fi Z fuglP 4+ 1= Fy (fun [P+ [uaf?) ™7 (P + fualr) )

2
= G2 (Fl Z \uk|p1 +1-— F1 Z uk|”‘>
k=1 k=1

= GQ.

In the example above, the terms from using the chain rule downwards in the tree
canceled while the terms from using the chain rule upwards remained. It will turn
out that this is true in general. Before we state the general equation we introduce
a short notation for the terms that cancel and for those that remain.
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Definition 3.2. Let I =iy, ...,7,—1. In the following, we denote

_  Pre;—pr
GI~£1 = 8re;
PIe; —PI
-1 Pr
— Pr I
(2) =& _E fj,]'
j=1
and
__ (PI—PlLi,
FI,z,- - fI,i,T
PI =PI, i,

4 PI i,
_ PI, iy
- ffﬂ'rr:k
k=1

Note that the term Fy;_ is a function of its children while Gy ;, is a function of the
parent node and all but the last children.

Before going on, let us quickly outline the essential mechanism when taking
the chain rule Z; Imagine the tree corresponding to f. By definition wu,, is the
rightmost leaf of the tree. Let L,¢; be the multi-index of u,. The calculation of
g’—;’; will obviously involve heavy usage of the chain rule. As in the example, the
chain rule starts at the leaf w,, ascends in the the tree until it reaches the lowest
node whose subtree contains both, u, and u,. At this point, it starts descending
the tree until it reaches the leaf u,. Depending on whether the chain rule ascends
or descends, two different forms of derivatives occur: At w,, =g ¢, the chain rule
will start ascending by taking the derivative of the term

o1 L
8L, = (gIZL - Z fﬁ)

k=1

which will produce a G-term and move the chain rule one step up in the tree.

If the parent of w, is already the lowest node whose subtree contains ug a tuy,,
then w4 is hidden somewhere in the f-terms and the g-term is independent of u,.
However, if this node is still higher in the tree, then the situation is reversed, i.e.
the f-terms are independent of ug which is hidden in the g-term. When going on,
the chain rule will produce a G-term when ascending the tree and an F-term when
descending. The situation is depicted in Figure 2. The next lemma states a few
helpful properties of the F- and G-terms.

Lemma 3.2. Let I = iy,...,4,—1 and f1; be any node of the tree associated with
an Ly-nested function f. Then the following recursions hold for the derivatives
of g and f5, wrt ug: If ug is not in the subtree under the node I,i,, i.e.
uy, & ﬁ,ir, then (remember that pr ;. =1 for leaf nodes by notational convention):
0 i _
8—%&% =0
and

) Iy
S8 ifu €

]
J Pr,i
PrIiy 1,i
= = GI.iT .

Li, =
Oug

9_¢prI ; X
~ Bug s fug€fr
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forug € fr; and ug & fr . for k # j. Otherwise

8 gpI.,zr :0
Oug L
and
0 pr _ PrI F J 21 i
Li, — Lir Lip,s
dug B pra du, Tim

forug €1, s and ug & fr;,. 1 for k # s.

Proof. Both first equations are obvious, since only those nodes have a non-zero
derivative for which the subtree actually depends on u,. The second equations can
be seen by computation

19} 1 0
PIiy PIip
A 8ri. —PrLi.8r; = Gri,
Oug Lir trSLir Oug ¢

P -1 Pr
— prip—1 pI PI
=DP1,i.8r;, g — E fr;
, du, % .
j=1
lr—1
_ bri, gl’fanlglfpl 9 gt — Z 1
= L I, I 1,j
pr - " duy, — J
=
o . prI :
. BugBr if ug € g1
i
- TGH .
I 9 ¢pr :
i if ug € fr;
Similarly
-1 17}
7fp1 = p]fpl, 7f‘1 i
8uq 1,i, 1,i, auq sl
1
Lr iy Pl
_ Pt*li P1ip
_prI,iT o0 Iir,k
7\ k=1
_ P1 pr-11-pra, g PI,iy
=—Ti 14, 3 Toins
Pri, Duq
b1 iy J PI,ip
= i Lyip,s
Dl Qug “'r*
for uy, € fI,ir,S' O

The next lemma states the form of the derivative g% in terms of the G- and
‘q

F-terms.

Lemma 3.3. Let |ug| = fo, ... 0, i1, 505 [Un| = fey ... 0, with T < d and, therefore, the

shortest path from uy, to ug be (€1, ..., 0a), (€1, .o ba—1), ooy (Crs oo ), (C1y ey by 81)s ooy (€1, ooy Uy iy, ooy

The derivative of u, w.r.t. ug is given by

17} pe y) i -1

oottt

T B R A I
q
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with Aq = sgnug and |ug|P = (Aqug)?. In particular

A P Y

— ey,
“q%“n = =Gy oty Genytos  Feotnin * Fonstin ey g™
lq

Proof. Successive application of Lemma (3.2). O

Before finally deriving the expression for the determinant, we state two more
helpful equations.

Lemma 3.4. Let I =iq,...,9,._1, then

-1 Pri, _  _pr
(3) Gz,ngz,u = 8,
£r—1
— Pr DIk
(4) = g5 — E Frefry
k=1
and
Lri,
= DI ,ip _ . DI iy .k
(5) fI,i,. = E FIalrJffI,iT,k
k=1

Proof. First, we prove the equalities (3) and (4):

—1 _Pli, __ _<p1.1,«_PI) DI iy
1,i,.81,i. ~ 81,i, g1,

=g, aed (3)
Pr

-1 BT
R PI
=18 *E fl,k
k=1
-1
_.PI PI—PI,k ¢PI,k
=8 - § :fm fl,k
k=1
£-1

=g = > Friff" qed. (4).
k=1

In a similar fashion, equality (5) can be proven by substituting definitions and
introducing one in the exponent.

O

Proposition 3.1 (Determinant of the Jacobian). Let £ be the set of multi-indices of
the path from the leaf u,, to the root node (excluding the root node). The determinant
of the Jacobian for an Ly-nested function is given by

det | 7| = """ H Gr.
LeLl

Proof. Let L = {1,..£43—1 be the multi-index of the parent of u,. We compute
L |det J| and obtain the result by solving for | det J|. As shown in Lemma (3.1)

o
—+|det J| has the form
1 n—1 aun
det = - —u Up,.
LI
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By definition w, = gr, = g’f‘éid. Now, assume that w,,...,u,_1 are children of
fr, ie. up = fr 4, for some 1,4y = iy,...,%¢ and 7 < k < n. Remember, that by
Lemma (3.3) the terms uqﬁun for r < ¢ < n have the form

q

0
— Py, it
Ug g tin = ~GLity  Fry oo Frop - g™ famntoiom,
Uq
Now, we can expand the determinant as follows
n—1
_ Z Ou, up 4 gPL,z,,
ou d L,tq
k=1 71k
r—1 . n—1
_ C)un w aun up + g;DL.ed
= o Uk — Uk
duy, ou Lita
k=1 k=r
r—1 n—1
ou, ou
-1 n —1 PL.ey
= — — ~up + Gpy *ZG — up+G
E Our La Loba gy L,0,8L,04
— k=r
r—1 n—1 Lg—1
ou, ou
_ —1 n P PL.k
—*E o uk + GLy, *ZGdei'“kngLL*E Frufp
Quy, o Quy ’
k=1 k=r k=1

by equality (4) of Lemma (3.4). Note that all terms szzd gﬁk_' cug forr <k <n
now have the form

-1 a _ Pl g _qit,...s g
Gtk ggtin = ~Friy o P g™ famytv ot

since we constructed them to be neighbors of w,. However, with equation (5) of
Lemma (3.4), we can further expand the sum Zi”;ll Frif?"%" down to the leafs
Up, ..., Un—1. When doing so we end up with the same factors Fp; - ... -Fp -
[ug|P1r-fa=1itit-1 ag in the derivatives Gziduq Uy This means exactly that

dug

n—1 au La—1
—1 n PL.k
- E GL,ZJW cUE = E Fka‘fL,k
h=r k k=1
and, therefore,

n—1

L ou ou !
n —1 n PL PL,k
:*E — - u, +Gpryg *E Gr 7 "up+grr — E Frxf
= Oun ! k=r £t ouy - k=1 o

Su La—1 Lg—1
==Y Ju, U+ G <Z Foafit +eghr = > FL,kfif,:")
’ k=1 k=1

= ou
= 727" -uk+GL,gng£L.

By factoring out Gr 4, from the equation, the terms gzk - uy, loose the Gr g,
in front and we get basically the same equation as before, only that the new leaf
(the new “u,”) is gh* and we got rid of all the children of f;,. By repeating that

procedure up to the root node, we successively factor out all Gz, for L' € £ until
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all terms of the sum vanish and we are only left with fy = 1. Therefore, the
determinant is

|det 7| = [] Gz

rn—1
LeL

which completes the proof. |

4. L,-NESTED UNIFORM DISTRIBUTION

In analogy to [6] we define a uniform distribution on the Lp-nested sphere.
Naturally, the density of this distribution is the inverse of the surface area of the
Ly-nested unit sphere. In this section we first compute the surface of the L,-nested
sphere and then define the L,-nested uniform distribution in terms of the polar-like
coordinates from the section before. Before we start, we start by computing the
surface and the volume of an arbitrary L,-nested sphere.

Proposition 4.1 (Volumen and Surface of the L,-nested Sphere). Let f be an
Ly-nested function and let T be the set of all multi-indices denoting the inner nodes
of the tree structure associated with f. Let ny denote the number of leafs contained
in the subtree under the node I (if I is a leaf already, ny = 1). The volumen V¢(R)
and the surface Sy(R) of the Ly-nested sphere with radius R is given by

lr—1
R™2™ lek ’n[k
©) ViR =" LuimL DLk ,“}
rer P pr
o el
Iez p§1711_‘ {u}
= nrk
(®) Sp(R) = R"~'2" B| ==t ”‘“}
I T
lr NIk
(9) _ Rnflzn }C:1F [ Pr ]

Iez pf 1F[p,]

Proof. We obtain the volumen by computing the integral [ FOO<R dx. Differenti-
ation with respect to R yields the surface area. For symmetry reasons we can
compute the volume only on the positive quadrant R’} and multiply the result with
2™ later to obtain the full volumen and surface area. The strategy for computing
the volumen is as follows. We start off with inner nodes I that are parents of leafs
only. The value f; of such a node is simply the L,, norm of its children. Therefore,
we can convert the integral over the children of I with the transformation of [3].
This maps the leafs f; 1., into f; and “angular” variables w,, ;. Since integral
borders of the original integral depend only on the value of f; and not on @, we
can separate the variables @ from the radial variables f; and integrate the vari-
ables @y, _1 separately. The integration over @y, _; yields a certain factor, while
the variable f; effectively becomes a new leaf.

Now suppose [ is the parent of leafs only. W.l.o.g. let the ¢; leafs correspond to
the last {5 coefficients of x. Let x € R}. Carrying out the first transformation and
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integration yields

l-pr

lr—1 Pr
£r—1 ~ -~
/ dx = / / Lo frT e o) dfrdi dxin
f(x)<R F(X1n—eg 1) SR g 1€V =
nI,6p ~PI
lr—1 Pr
- / 1 df rdx g, X / = dig,
f(Xtm—e;6)SR g, 1€V i=1

For solving the second integral we make the pointwise transformation s; = @?” and
obtain

nI0;—PI nLep g
fr—1 b1 1 fr—1 e -1,
~Pr ~ _ - L PI
[ - 1-— E Uy duzl,lfﬁ/ 1- E Si H s,
Jig, 1€V =1 pr >si<1 i=1 i=1
fr—1 k
_ 1 i-[ B | ZizL 0k ”I,k+1}
-1 )
Dy fre} prI pI

fr—1
- 1]
Py Pt pr pr
by using the fact that the transformed integral has the form of an unnormalized
Dirichlet distribution and, therefore, the value of the integral must equal its nor-
malization constant.
Now, we go on with solving the integral

(10) / £y,
f(x1tn—ep )R

We carry this out in exactly the same manner as we solved the previous integral.
We only need to make sure that we only contract nodes that have only leafs as
children (remember that radii of contracted nodes become leafs) and we need to
find a formula how the factors 7' ~1 propagate through the tree.

For the latter, we first state the formula and then prove it via induction. For
notational convenience let X denote the remaining coeflicients of x, f the vector
of leafs resulting from contraction and J the set of multi-indices corresponding to
the contracted leafs. The integral which is left to solve after integrating over all
@ is given by (remember that n; denotes real leafs, i.e. the ones corresponding to
coefficients of x):

/' 11 77 'dfax.
F&DR jo g

We already proved the first induction step by computing equation (10). For com-
puting the general induction step suppose I is an inner node whose children are leafs
or contracted leafs. Let J’ be the set of contracted leafs under I and j =J\J".
Furthermore, let f and % be the leafs belonging to the set J. For notational con-
venience, we will denote all children of I with f; ;, no matter whether they are real
leafs y; or result from a previous contraction. Transforming the children of I into

—1-

1
dse, 1
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radial coordinates by [3] yields

/ 11 f}”’ldfdfcf/ Hf i ( 11 f?/’l) dfdx
JrEH<R jo FxH< Feq T
. -1 o )
_ 1— =PI fh*l . f’fj*
-/f<ic,f,fz>SR -/m,ﬂevif” ( Z > ! g J
g -1
£r—1 pr Lr—1 ~
( fr{1- ZW’)) I (Fraw)™ " | dxdfdf;da,
k=1
ni;—1
S senl, Il
J
f(x Upy — 1€V -t Jes
ney —PI
lr—1 Pr Lr—1 B
(Z’ LEL D) ( 3 aff) IT ap | axdfdrda,
=1 k=1

/ I I7H) fr-tagafdf,
FEEM<E A e 5

ne =PI
£r—1 rr Lr—1
fo () M
Upp — 1€VI

Again, by transforming it into a Dirichlet distribution, the latter integral has the
solution

ng,—PIr
lr—1 Pr lr—1 lr—1 n n
~ ’4 k I,k+1
/ 1 Z 1 TT & diie, 1 = H B | iz Mk Mk
ey — 1€V“ ! k1 pr

while the remaining former integral has the form

/f("?f)<R e f,'“’ldidfdﬁ:/ﬂ I f37'afax
xX,0ir)s

Jjed F&H<R JeJg

as claimed.
By carrying out the integration up to the root node the remaining integral be-

comes
R
n— n— R"
/ fy Ldfy = / fo Ydfy = e
fo<R 0 /

Collecting the factors from integration over the @ proves the equations (6) and (8).

Using B [a, b] = I;[Fa]i[ﬁ] yields equations (7) and (9). O

In order to clarify the proof we explicitly carry out the integration for our first
example.
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Ezample 4.1. Again, let the Ly-nested function be given by

1
" n
f69 = ((‘zl‘m + [z )7 + Ixs|m)pw .

Let x € Ri. Carrying out the steps from the proof above yields

1 _—
/ dx:/ / (1= @) 7 1 didfydag
f(x)<R f(fr,23)<R JO
o1

£1—1 PRSI  E
= fll dfidxs X (1 — upl) P1 di
f(f,z3)<R 0
:/ a1 df day x 1p [i, i] )
f(fr,@3)<R P1 P1 P
Solving the first integral yields

1-py

1
/ fflfldﬁ:/ / f0H (Faur) Tt (L — @) o didfy
f(fi,z3)<R fo<R JO

1 1-pg
= /f / f0 AT (1 —apo) o dadfy
9<RJO

! 1-pg
=/ fgdf@x/ (1 —aP°) 70 di
fp<R 0
31 2 1
ey
3 po Lpo po
Collecting all factors yields

311 2 1 1 1
[ e lig[2 gl
J(x)<R 3 pop1 |Po Po P1 p1

Extending the domain such that x € R3, simply introduces a factor 23. The surface
is obtained by differentiating with respect to R. This yields the final equations

323 1 1 2 1 1 1
vm =22 Ll [—,—] B [—7—]
3 pep1 [P0 Po p1p1

11 2 1 11
S;(R)=R?2%. ——B {—,—}B{—,—}
Po p1 Po Po P1

Proposition 4.2 (L,-nested Uniform Distribution). Let f be an L,-nested func-
tion. Let L be set set of multi-indices on the path from the root node to the leaf
corresponding to y, and let L be the multi-index of x,. The uniform distribution
on the Ly-nested unit sphere, i.e. the set {x € R"|f(x) = 1} is given by

1 £r—1

p(U) - on—1 Hp§171 H B
k=1

IeT

Pr pr

& -1
i1 Nk ”I,k+1} H G
- s N L

LeL
where the support of p(u) is given by
supp p = {u € R" 7! f(u,g; (u)) =1}

Proof. Since the Ly-nested sphere is a compact set, the density of the uniform

distribution is simply one over the surface area of the unit L,-nested sphere. The

surface S¢(1) is given by Proposition 4.1. Transforming sfl(l) into the coordinates
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of Definition 3.1 introduces the determinant of the Jacobian from Proposition 3.1
and an additional factor of 2 since the u € R"~! have to account for both half-shells
of the Ly-nested unit sphere. This yields the expression above. |

Ezample 4.2 (L,-spherically symmetric uniform distribution). We consider L,-
norm as a special case of an L,-nested function

F) =[xy = (Z |ﬂ%”> :

The corresponding tree has only one single inner node, which is the root node.
Using Proposition 4.1, the surface area is given by

Ly—1 k

1 ko

S, =2"5— [I B Lazi T Pkl
2=t Po Po

n—1
—on 1 B |:E l:|

e
rorls]

1-p
The factor G,, is given by (1 - 2?;11 |ui|”> ", which together with the factor 2

yields the uniform distribution on the L,-sphere as defined in [6]

o2 (0

on—17n {%] e

5. L,-NESTED SYMMETRIC DISTRIBUTIONS

Definition 5.1 (L,-Nested Symmetric Distribution). A n-dimensional random vec-
tor X is called L,-nested symmetrically distributed with respect to f if f is an L,-
nested function, X = RU for two independent random variables R and U, where
R is a non-negative univariate random variable and U is a n-dimensional random
variable uniformly distributed on the L,-nested unit sphere corresponding to f, i.e.
f(U)=1and Uy, ..,U,_; follow the distribution of Proposition 4.2.

This definition of Ly-nested symmetric distribution is a straightforward gener-
alization of Gupta and Song’s definition of L,-spherically symmetric distributions.
By exactly the same reasoning as their’s [3] the definition implies that f(X) = R
and % = U and, therefore, that f(X) and %X) are independent. This also
means that being able to sample from any L,-nested symmetric distribution makes
it possible to sample from any other L)-nested symmetric distribution as long as
the radial distribution of it is known. One simply has to normalize the samples
X from the first distribution to obtain an instance of a uniformly distributed ran-
dom variable on the L,-unit sphere, sample a new radius and scale the normalized
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sample with it. Based on that idea, we derive a sampling scheme for L,-nested
distributions in section 6.

Another consequence resulting from the definition of L,-nested symmetric dis-
tributions is the following proposition, which is almost equivalent to Lemma 2.1
and Theorem 2.1 in [3] which themselves are a special case of the results in [2].

Proposition 5.1. Each L,-nested symmetric density on R"™ (with zero probability
mass at zero) has the form p(X) = p(f(X)) and gives rise to a univariate (radial)
density o on Ry. On the other hand, each univariate density p on Ry gives rise to
a Ly-nested symmetric distribution on R™. The relation between the two densities
is given by

o(r) = Sp()r" " p(r)
=S;(r)p(r)

and

p(x) = o(f(x))

v
Sp(1) - fr7H(x)
1

= 507Gy V)

This shows again, that Lj,-nested symmetric distributions are parameterized
over univariate radial distributions. The maximum likelihood estimation of the
parameters of Ly-nested symmetric distributions therefore becomes very easy since
argmax, log p(X ) = argmax, log o( f(X)|9) which means that parameter estima-
tion can be carried out over a univariate instead of an n-dimensional multivariate
distribution, which is more robust and computationally efficient.

By the form of a general L,-nested function and the corresponding symmetric
distribution, one might suspect, that the children of the root node, i.e. the fy.p,
are L,,-spherically symmetric distributed. This is actually not the case as the next
proposition shows.

Proposition 5.2. Let f be an Ly-nested function. Suppose we remove complete
subtrees (not single branches) from the tree associated with f. Let X € R™ denote
a subset of the coefficients of x € R™ that are still part of that smaller tree and let
f denote the vector of inner nodes that became new leafs. The joint distribution of
% and f is given by.

p(}A(, f-) X f) H fn_]*l

(f (%) Jeg

where J is the set of multi-indices for the elements off and ny is the number of
leafs (in the original tree) in the subtree under the node J.

Proof.
o)
) = 5000
_ g(f(xl:nffmfla’aél*hAn)) Lr—1 _ = ;[P o
T sum " G Z'J>
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where A,, = sign(z,). Note that f is invariant to the actual value of A,,. However,
when integrating it out, it yields a factor of 2. Integrating out @y, 1 and A,, now
yields

(f (Xtm—e;5T1))  co;—1 20T [P%]
p(Xien_1,Fr) = 2 DLy
e §UG) " pein[y]

_ g(f(xli"*flaff)) gl
Sf(f(xlin*flvfl)) !

Now, we can go on an integrate out more subtrees. For that purpose, let X denote
the remaining coefficients of x, f the vector of leafs resulting from the kind of
contraction just shown for f; and J the set of multi-indices corresponding to the
“new leafs”, i.e the node f; after contraction. We obtain the following equation
(%, f) _ Q(f(xj f?) H f}z,,q_
Sp(f(%.£)) Jjeg

where n; denotes the number of leafs in the subtree under the node J. The proof
is basically the same as the one for proposition (4.1).

O

Corollary 5.1. The children of the root node f1.4, = (f1, ..., f@m)T follow the distri-
bution

Lp—1 n
n T[]

N )2 T T[22

Lo
p(fre,) = o (F(fr, i) [T 7"
pw] i=1
where m < £y is the number of leafs directly attached to the root node. In particular,
f1.e, can be written as the product RU, where R is the L,-nested radius and the

single |U;|P? are Dirichlet distributed, i.e. (|[Uy[P?,...,|Ug,[P?) ~ Dir [%, %ﬂ
Proof. The joint distribution is simply the application of Proposition (5.2). Note
that f(f1,...,fe,) = [[f1:eyllp,- Applying the pointwise transformation s; = [u;[?

yields (|U1|P, ..., |Ug—1[P?) ~ Dir {”—1 M] (see also [6]).

Po’ """ po

O

6. SAMPLING FROM L;,-NESTED SYMMETRIC DISTRIBUTIONS

In this section, we derive a sampling scheme for L,-nested symmetric distribu-
tions. Since the radial and the uniform component are independent, normalizing
a the sample from any L,-nested distribution to f-length one yields samples from
the uniform distribution on the L,-unit sphere. By multiplying those uniform sam-
ples with new samples from another radial distribution, one obtains samples from
another L,-nested distribution. Therefore, for each L,-nested function f one needs
to find only a single L,-nested distribution one is able to sample from. Sampling
from all other Ly-nested distributions with respect to f then comes for free due to
the trick just described. Gupta and Song [3] sample from the L,-generalized Nor-
mal distribution since it has independent marginals which makes it easy to sample
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from it. Due to the tree structure of L,-nested distributions, this is not possible
in general. Instead we choose to sample from the uniform distribution inside the
L p-nested unit ball.

From Proposition (4.1) we already know the normalization constant. Therefore,
the distribution has the form p(x) = % In order to sample from that distribu-
tion, we will first only consider the uniform distribution in the positive quadrant of
the unit L,-nested ball which has the form p(x) = % Samples from the uniform
distributions in the whole ball can be obtained by multiplying each coordinate of a
sample with independent samples from the uniform distribution in {—1,1}.

Again, from the proof of Proposition (4.1), we are now able to derive the sampling
scheme. The idea of the proof is to successively transform the inner nodes of the
tree associated with f into L,-radial coordinates as defined by [6]. This yields a
series of independent integrals over expressions like

nep —PI
lr—1 Pr lr—1
[ EED 32 B | o
_ -
e 1€V i=1 k=1

and a final integral over the radius fy which always is

"1
/ £ dfp.
J0

Since all variables together integrate to one, p(x) is still a density on those variables.
Because we can integrate the independently, the final radial variable fy and the uni-
form variables are independent. Now, it is easy to see that fy can be drawn from a
[-distribution and the single 4P’ can be drawn from a Dirichlet distribution. By re-
versing the transformations we obtain samples from the uniform distribution inside
the unit L,-nested ball. Normalizing those samples yields uniformly distributed
points on the Lj,-nested unit sphere which can be transformed into samples from
any L,-nested distribution by multiplying with the appropriate radial samples.
This provides us with the following sampling scheme:

(1) Sample fy from a beta distribution g [n, 1].
)

(2) For each inner node I of the tree associated with f sample s; from a
Dirichlet distribution Dir ["p’ll S ey n;—ff] where np j are the number of leafs

in the subtree under node I,k. Obtain uniform coordinates on the L,-
1

sphere by sy, — s = 1.
Apply the reverse transformation to map the w and fy into Cartesian coor-
dinates x.

(4) Normalize x to get a uniform sample from the sphere z =

(3

=

X
. &)
(5) Sample a new radius fy from the radial distribution of the target L,-nested
distribution py and obtain the sample via X = f - 2.
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1. OPTIMAL FILTERS FOR ALL DIFFERENT MODELS
INDEPENDENT SUBSPACE MODELS

Independent Subspace ISA for 2 Subspaces without CGC.
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Independent Subspace ISA for 4 Subspaces without CGC.
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Independent Subspace ISA for 8 Subspaces without CGC.
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Independent Subspace ISA for 16 Subspaces without CGC.
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Independent Subspace ISA for 2 Subspaces with CGC.

137



Independent Subspace ISA for 4 Subspaces with CGC.
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Independent Subspace ISA for 8 Subspaces with CGC.
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Independent Subspace ISA for 16 Subspaces with CGC.
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Ly-nested model with DT tree structure without CGC.
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Ly -nested model with DT tree structure with CGC.
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11

Ly-nested model with PND; tree structure without CGC.
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Ly-nested model with PND, tree structure without CGC.
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Ly-nested model with PNDg tree structure without CGC.
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Ly-nested model with PND:¢ tree structure without CGC.
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Ly-nested model with PNDs tree structure with CGC.
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Ly-nested model with PND, tree structure with CGC.
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Ly-nested model with PNDg tree structure with CGC.
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Ly,-nested model with PND:¢ tree structure with CGC.
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Abstract

In this paper, we introduce a new family of probability deiesi called.p-nested symmetric distri-
butions. The common property, shared by all members of thecteess, is the same functional form
p(x) = p(f(x)), wheref is a nested cascadelof-norms|x||p = (5 |x|P)Y/P. Lp-nested symmetric
distributions thereby are a special caseafpherical distributions for whiclf is only required to
be positively homogeneous of degree one. While betbpherical and.,-nested symmetric dis-
tributions, contain many widely used families of probailnodels such as the Gaussian, spher-
ically and elliptically symmetric distributions,,-spherically symmetric distributions, and certain
types of independent component analysis (ICA) and indegrglibspace analysis (ISA) models,
v-spherical distributions are usually computationallyractable. Here we demonstrate that
nested symmetric distributions are still computation&lgsible by deriving an analytic expression
for its normalization constant, gradients for maximum litkeod estimation, analytic expressions
for certain types of marginals, as well as an exact and effidgampling algorithm. We discuss
the tight links ofL,-nested symmetric distributions to well known machinenésy methods such
as ICA, ISA and mixed norm regularizers, and introduce trsteteradial factorization algorithm
(NRF), which is a form of non-linear ICA that transforms aiyelarly mixed, non-factoriall ,-
nested symmetric source into statistically independegitads. As a corollary, we also introduce
the uniform distribution on thi,-nested unit sphere.

Keywords: parametric density model, symmetric distributiorspherical distributions, non-linear
independent component analysis, independent subspagsianebust Bayesian inference, mixed
norm density model, uniform distributions on mixed normes@s, nested radial factorization

1. Introduction

High-dimensional data analysis virtually always starts with the measureméinstcdind second-
order moments that are sufficient to fit a multivariate Gaussian distribution, tkienona entropy
distribution under these constraints. Natural data, however, ofteniesigibificant deviations from
a Gaussian distribution. In order to model these higher-order corredaiiois necessary to have
more flexible distributions available. Therefore, it is an important challendadogeneraliza-
tions of the Gaussian distribution which are more flexible but still computationatiyaaalytically
tractable. In particular, density models with an explicit normalization constantiesirable be-
cause they make direct model comparison possible by comparing the likelifideeld out test

(©2010 Fabian Sinz and Matthias Bethge.
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samples for different models. Additionally, such models often allow for atoptimization of the
likelihood.

One way of imposing structure on probability distributions is to fix the generah fof the
iso-density contour lines. This approach was taken by Fernandez(#985b). They modeled the
contour lines by the level sets of a positively homogeneous function eédeme, that is functions
v that fulfill v(a-x) = a-v(x) for x € R" anda € IR§. The resulting class aof-spherical distributions
have the general formp(x) = p(v(x)) for an appropriat which causeg(x) to integrate to one.
Since the only access pfto X is viav one can show that, for a fixad those distributions are gen-
erated by a univariate radial distribution. In other wordspherically distributed random variables
can be represented as a product of two independent random variahke positive radial variable
and another variable which is uniform on the 1-level sev.ofThis property makes this class of
distributions easy to fit to data since the maximum likelihood procedure canrtiedcaut on the
univariate radial distribution instead of the joint density. Unfortunatelsivaig the normalization
constant for the joint distribution in the general case is intractable bedalesgends on the surface
area of those level sets which can usually not be computed analytically.

Known tractable subclassesw&pherical distributions are the Gaussian, elliptically contoured,
andLp-spherical distributions. The Gaussian is a special case of elliptically watalistributions.
After centering and whitening:= C~%/2(s— E[s]) a Gaussian distribution is spherically symmetric
and the squaret,-norm ||x||3 = 2+ --- + x2 of the samples follow g?-distribution (that is, the
radial distribution is g-distribution). Elliptically contoured distributions other than the Gaussian
are obtained by using a radial distribution different from jadistribution (Kelker, 1970; Fang
etal., 1990).

The extension fronh,- to Lp-spherically symmetric distributions is based on replacing the

norm by thel p-norm
n ’
v(x) = [Ix| =< |><ap> p>0
&

in the density definition. That is, the densitylgf-spherically symmetric distributions can always
be written in the formp(x) = p(||X||p). Those distributions have been studied by Osiewalski and
Steel (1993) and Gupta and Song (1997). We will adopt the naming otomeof Gupta and
Song (1997) and cal|x||, anLp-normeven though the triangle inequality only holds for> 1.
Lp-spherically symmetric distributions with # 2 are no longer invariant with respect to rotations
(transformations fron$Q(n)). Instead, they are only invariant under permutations of the coordinate
axes. In some cases, it may not be too restrictive to assume permutati@mootational symmetry

for the data. In other cases, such symmetry assumptions might not be justifieduse the model

to miss important regularities.

Here, we present a generalization of the classg$pherically symmetric distributions within
the class o-spherical distributions that makes weaker assumptions about the symmetties
data but still is analytically tractable. Instead of using a sihgl@orm to define the contour of the
density, we use a nested cascadd ghorms where ahp-norm is computed over groups bp-
norms over groups df,-norms ..., each of which having a possibly differgntDue to this nested
structure we call this new class of distributidnsnested symmetric distribution$he nested com-
bination ofL,-norms preserves positive homogeneity but does not require permditataiance
anymore. Whild_p-nested symmetric distributions are still invariant under reflections of thelzoo
nate axes, permutation symmetry only holds within the subspaces bf-therms at the bottom of

3410
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the cascade. As demonstrated in Sinz et al. (2009b), one possible ippladamain oflp-nested
symmetric distributions is natural image patches. In the current paper, wie Vike to present a
formal treatment of this class of distributions. Readers interested in the apphiof these distri-
butions to natural images should refer to Sinz et al. (2009b).

We demonstrate below that the construction of the nelsgetorm cascade still bears enough
structure to compute the Jacobian of polar-like coordinates similar to thosengf &d Gupta
(1997), and Gupta and Song (1997). With this Jacobian at hand it igbgoss compute the uni-
variate radial distribution for an arbitratyy,-nested symmetric density and to define the uniform
distribution on thel ,-nested unit spheri, = {x € R"|v(x) = 1}. Furthermore, we compute the
surface area of thép-nested unit sphere and, therefore, the general normalization cbifstan
Lp-nested symmetric distributions. By deriving these general relations farldiss ofL,-nested
symmetric distributions we have determined a new class of tractedpderical distributions which
is so far the only one containing the Gaussian, elliptically contouredgsgpherical distributions
as special cases.

Lp-spherically symmetric distributions have been used in various contexts irtistagisd ma-
chine learning. Many results carry overltg-nested symmetric distributions which allow a wider
application range. Osiewalski and Steel (1993) showed that the paostartbe location of d p-
spherically symmetric distributions together with an improper Jeffrey’s pricthe scale does not
depend on the particular type bf-spherically symmetric distribution used. Below, we show that
this results carries over tbp-nested symmetric distributions. This means that we can robustly
determine the location parameter by Bayesian inference for a very laggeddldistributions.

A large class of machine learning algorithms can be written as an optimizatioleproin the
sum of a regularizer and a loss function. For certain regularizers aafiinctions, like the sparte
regularizer and the mean squared loss, the optimization problem can eesgeermaximum a pos-
teriori (MAP) estimate of a stochastic model in which the prior and the likelihoedree negative
exponentiated regularizer and loss terms. Spog O exp(—||x||p) is anLp-spherically symmet-
ric model, regularizers which can be written in terms of a norm have a tight lihk-&pherically
symmetric distributions. In an analogous way;nested symmetric distributions exhibit a tight link
to mixed-norm regularizers which have recently gained increasing ihterélse machine learn-
ing community (see, e.g., Zhao et al., 2008; Yuan and Lin, 2006; KowaisHi,&2008).L ,-nested
symmetric distributions can be used for a Bayesian treatment of mixed-ngutarzed algorithms.
Furthermore, they can be used to understand the prior assumptions msuehlregularizers. Be-
low we discuss an implicit dependence assumption between the regularizadesthat follows
from the theory ol ,-nested symmetric distributions.

Finally, the only factorialL p-spherically symmetric distribution (Sinz et al., 2009a), fre
generalized Normal distribution, has been used as an ICA model in whicmahginals follow
an exponential power distribution. This class of ICA is particularly suitech&dural signals like
images and sounds (Lee and Lewicki, 2000; Zhang et al., 2004; Le\#ie@R). Interestinglyi.p-
spherically symmetric distributions other than thgeneralized Normal give rise to a non-linear
ICA algorithm called radial Gaussianization foe= 2 (Lyu and Simoncelli, 2009) or radial factor-
ization for arbitraryp (Sinz and Bethge, 2009). As discussed beloynested symmetric distribu-
tions are a natural extension of the lineéarspherically symmetric ICA algorithm to ISA, and give
rise to a more general non-linear ICA algorithm in the spirit of radial fazation.

The remaining part of the paper is structured as follows: in Section 2 weedafiar-like coordi-
nates forL,-nested symmetrically distributed random variables and present an aria@ypeassion
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for the determinant of the Jacobian for this coordinate transformation.glisis expression, we
define the uniform distribution on thg,-nested unit sphere and the clasd gfnested symmetric
distributions for an arbitrary.p-nested function in Section 3. In Section 4 we derive an analytical
form of Lp-nested symmetric distributions when marginalizing out lower levels ot theested
cascade and demonstrate that marginalsghested symmetric distributions are not necessarily
Lp-nested symmetric. Additionally, we demonstrate that the only factbgailested symmetric
distribution is necessarilyp-spherically symmetric and discuss the implications of this result for
mixed norm regularizers. In Section 5 we propose an algorithm for fittibigrary L ,-nested sym-
metric models. We derive a sampling scheme for arbitignested symmetric distributions in
Section 6. In Section 7 we generalize a result by Osiewalski and Ste33)(d8 robust Bayesian
inference on the location parameteriig-nested symmetric distributions. In Section 8 we discuss
the relationship ol ,-nested symmetric distributions to ICA and ISA, and their possible role as
priors on hidden variables in over-complete linear models. Finally, weealarivon-linear ICA al-
gorithm for linearly mixed non-factoridlp-nested symmetric sources in Section 9 which we call
nested radial factorization (NRF).

2. Lp-nested Functions, Coordinate Transformation and Jacobia

Consider the function

1

100 = (xal™ + (el + o) ) ™ o

with pg, p1 € IRT. This function is obviously a cascade of twg-norms and is thus positively
homogeneous of degree one. Figure 1(a) shows this function visualizadree. Naturally, any
tree like the ones in Figure 1 corresponds to a function of the kind of Equgt)oIn general, the
leaves of the tree correspond to theoefficients of the vectox € IR" and each inner node computes
the Lp-norm of its children using its specifis. We call the class of functions which is generated
in this way L,-nestedand the corresponding distributions, which are symmetric or invariant with
respect to itL ,-nested symmetric distributions

Lp-nested functions are much more flexible in creating different shapesedfsets than single
Lp-norms. Those level sets become the iso-density contours in the fanily-mésted symmetric
distributions. Figure 2 shows a variety of contours generated by the sinmplesdtivial L p-nested
function shown in Equation (1). The shapes show the unit spheredl foossible combinations
of pg, p1 € {0.5,1,2,10}. On the diagonalpy andp; are equal and therefore constitlignorms.
The corresponding distributions are members oflthspherically symmetric class.

To make general statements about genegatested functions, we introduce a notation that is
suitable for the tree structure bf-nested functions. As we will heavily use that notation in the
remainder of the paper, we would like to emphasize the importance of the fofqueiragraphs.
We will illustrate the notation with an example below. Additionally, Figure 1 and Taktan be
used for reference.

We use multi-indices to denote the different nodes of the tree corresgptulanL p-nested
function f. The functionf = fp itself computes the valugy at the root node (see Figure 1).
Those values are denoted by variablesThe functions corresponding to its children are denoted
by f1,..., T, thatis, f(-) = fo(-) = |[(f2(-), .-, Tee ()| po- We always use the letter™indexed by
the node’s multi-index to denote the total number of direct children of thag.n®be functions of
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pm pw

p1 P
X U1
X2 T3 V2,1 V2.2
(a) Equation (1) as tree. (b) Equation (1) as tree in multi-index notation.

Figure 1: Equation (1) visualized as a tree with two different naming cdioren Figure (a) shows
the tree where the nodes are labeled with the coefficiensscolR". Figure (b) shows
the same tree in multi-index notation where the multi-index of a node describeatthe p
from the root node to that node in the tree. The leaxeg, ; andv,, still correspond to
X1, X2 andxs, respectively, but have been renamed to the multi-index notation used in this
article.

f(-)=fo(-) Lp-nested function
| =ig,...,im Multi-index denoting a node in the tree: The single indices describe
the path from the root node to the respective node

X All entries inx that correspond to the leaves in the subtree under
the nodd

Xp All entries inx that are not leaves in the subtree under
the nodd

fi(+) Lp-nested function corresponding to the subtree under the Inode

Vo Function value at the root node

\ Function value at an arbitrary node with multi-index

4 The number of direct children of a notle

n The number of leaves in the subtree under the node

Vi1 Vector with the function values at the direct children of a nbde

Table 1: Summary of the notation used fgy-nested functions in this article.

the children of theé®™ child of the root node are denoted Hfy, ..., fi;, and so on. In this manner,
an index is added for denoting the children of a particular node in the teé@ach multi-index
denotes the path to the respective node in the tree. For the sake of comfzdictn, we use upper
case letters to denote a single multi-indexi,...,i,. The range of the single indices and the length
of the multi-index should be clear from the context. A concatendti&rof a multi-index! with

a single index corresponds to addingto the index tuple, that id, k=1, ...,im,k. We use the

3413

156



SINZ AND BETHGE

p1 = 0.5 by =10

FEEEEAR
AR

Figure 2: Variety of contours created by thgnested function of Equation (1) for all combinations
of pg, p1 € {0.5,1,2,10}.

convention that,® = |. Those coefficients of the vecta&rthat correspond to leaves of the subtree
under a node with the inddxare denoted by;. The complement of those coefficients, that is, the
ones that are not in the subtree under the nodire denoted by;. The number of leaves in a
subtree under a nodas denoted byy,. If | denotes a leaf them = 1.

Thel p-nested function associated with the subtree under a hisdégenoted by

f| (X|) = ||(f|,l(xl,1)7 ey f|,[| (X|,[|))T||p| 3
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Just like for the root node, we use the variahléo denote the function valuge = f,(x,) of a subtree
I. A vector with the function values of the children lois denoted with bold fon 1., where the
colon indicates that we mean the vector of the function values dof tbieildren of nodd :

fi(x) = [[(fa(Xi2),- fra (X.0)) lp

i
=[[(Vi25V0) o = Viz 1 lp -

Note that we can assign an arbitrgryo leaf nodes sinces for single variables always cancel.
For that reason we can choose an arbitgafgr convenience and fix its value = 1. Figure 1(b)
shows the multi-index notation for our example of Equation (1).

To illustrate the notation: Lelt = iq,...,ig be the multi-index of a node in the treé, ...,iq
describes the path to that node, that is, the respective node i§' ttigild of theil , child of
theill' , child of the ... of thei! child of the root node. Assume that the leaves in the subtree
below the nodd cover the vector entrieg, ...,x1o. Thenx; = (X, ...,X10), Xp = (X1, X11,X12; -..),
andn, = 9. Assume that node has/, = 2 children. Those would be denoted byl andl,?2.

The function realized by nodewould be denoted byf; and only acts orx. The value of the
function would bef(x;) = v; and the vector containing the values of the childrer afould be
Vito=Vi,vi2) " = (fiaxia), fia(xi2)".

We now introduce a coordinate representation specially tailordd,toested symmetrically
distributed variables: One of the most important consequences of thevpdsitnogeneity off
is that it can be used to “normalize” vectors and, by that property, ceeatdlar like coordinate
representation of a vector Such polar-like coordinates generalize the coordinate representation
for Ly-norms by Gupta and Song (1997).

Definition 1 (Polar-like Coordinates) We define the following polar-like coordinates for a vector
x e R™

The inverse coordinate transformation is given by

xi=rujfori=1..n-1
Xn = FAnUn

whereA, = sgnx, and t, = ‘(ix

Note thatuy, is not part of the coordinate representation since normalization vyiffix}. de-
creases the degrees of freedarby one, that isy, can always be computed from all othgrby
solving f(u) = f (x/f(x)) = 1 for up. We use the ternu, only for notational simplicity. With a
slight abuse of notation, we will useto denote the normalized vectef f (x) or only its firstn — 1
components. The exact meaning should always be clear from the context.

The definition of the coordinates is exactly the same as the one by Gupta agd(197)
with the only difference that thiep,-norm is replaced by ah,-nested function. Just as in the case
of Lp-spherical coordinates, it will turn out that the determinant of the Janaifithe coordinate
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transformation does not depend on the valu@&pfand can be computed analytically. The deter-
minant is essential for deriving the uniform distribution on the Wpinested spherts, that is,

the 1-level set off. Apart from that, it can be used to compute the radial distribution for angive
Lp-nested symmetric distribution. We start by stating the general form of thendant in terms

of the partial derivativegﬂ—:, ux andr. Afterwards we demonstrate that those partial derivatives have
a special form and that most of them cancel in Laplace’s expansiowe ofetterminant.

Lemma 2 (Determinant of the Jacobian) Let r andw be defined as in Definition 1. The general

form of the determinant of the Jacobian= (%‘J) of the inverse coordinate transformation for
ij

yi=randy =u_;fori=2 ..n,isgiven by

|dety| ="t —n71%~u +u )
kZl auk Kk n |-
Proof The proof can be found in the Appendix A. |

The problematic parts in Equation (2) are the tegﬁgswhich obviously involve extensive usage
of the chain rule. Fortunately, most of them cancel when inserting thef ibtx Equation (2),
leaving a comparably simple formula. The remaining part of this section is det@momputing
those terms and demonstrating how they vanish in the formula for the deternBedote we state
the general case we would like to demonstrate the basic mechanism throimgple example.
We urge the reader to follow this example as it illustrates all important ideag #®ooordinate
transformation and its Jacobian.

Example 1 Consider an l-nested function very similar to our introductory example of Equation
() 1
o E
100 = ((xalP -+ bl )7+ gl ) ™.

Settingu= %x) and solving for g yields

fW) =16 us= (1 (ul” +wlP)R ) ™. @)

We would like to emphasize again, thatisiactually not part of the coordinate representation and
only used for notational simplicity. By construction,isialways positive. This is no restriction since
Lemma 2 shows that the determinant of the Jacobian does not depeétsdsagn. However, when
computing the volume and the surface area of thenésted unit sphere, it will become important
since it introduces a factor df to account for the fact thatau(or u, in general) can in principle
also attain negative values.
Now, consider
.
GalU) = Ga(up) ™ = (L= (JualP +[ugl™) ) ™

Pp—P1
Fi(up) = f1(up)P P = (Jug|P +[up|P) =
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where the subindices of @, g, G and F have to be read as multi-indices. The functipoamputes
the value of the node | from all other leaves that are not part of the sehineler | by fixing the
value of the root node to one.

Gz(u3) and F(uy) are terms that arise from applying the chain rule when computing the partial
derlvatlvesgﬂi. Taking those partial derivatives can be thought of as peeling off laydayer
of Equation(3) via the chain rule. By doing so, we “move” on a path betwegrand . Each
application of the chain rule corresponds to one step up or down in theFest, we move upwards
in the tree, starting from 41 This produces the G-terms. In this example, there is only one step
upwards, but in general, there can be several, depending on the dépthin the tree. Each step
up will produce one G-term. At some point, we will move downwards in éeettrreach i This
will produce the F-terms. While there are as many G-terms as upward,dtegre is one term less
when moving downwards. Therefore, in this example, there is one tefa)Gvhich originates
from using the chain rule upwards in the tree and one tefifufj from using it downwards. The
indices correspond to the multi-indices of the respective nodes.

Computing the derivative yields

5U3

7 p1—-1
. Ga(Uug) Fr(ug ) Ay |uy|

By inserting the results in Equation (2) we obtain

1
r7|]| ZGZ JFL(ug) |uk| P+ ug

= Gz(Up) (Fl(ul)

M~

Po
Ju| P+ 1= Fa(ug) Fy(ug)~*(Jug ™+ [uz|P) '°1>

Py
|
st

Mr\)

2
= Gz(Up) | Fa(u1) IUk|p1+1 Fi(ug) Z Uk“)

)
|

= Ga(Uy).

The example suggests that the terms from using the chain rule downwards tie¢hcancel
while the terms from using the chain rule upwards remain. The following gitipo states that
this is true in general.

Proposition 3 (Determinant of the Jacobian) Let £ be the set of multi-indices of the path from
the leaf y to the root node (excluding the root node) and let the termg (GIE) recursively be
defined as

Py =P
ol

G (U7) =0 (u7)Pa ™ <9| (up)P Z fij(uj)

where each of the functions g computes the value of th# child of a node | as a function of its
neighbors(1,1), ..., (1,4 — 1) and its parent | while fixing the value of the root node to one. This
is equivalent to computing the value of the node | from all coefficigntisat are not leaves in the
subtree under I. Then, the determinant of the Jacobian forandsted function is given by

|dety| =r""* [ GL(up)-
LeL
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Proof The proof can be found in the Appendix A. |

Let us illustrate the determinant with two examples:

Example 2 Consider a normal p-norm

X) = <i§llmlp>é

which is obviously also ang-nested function. Resolving the equation for the last coordinate of
the normalized vectau yields g(up) = Up = (1— 37 1 |ui|P) ®. v Thus, the term gi’un) is given by

1-
(1-3y- f\u.\p) % which yields a determinant ¢lety| = r"* (1 31 |u;|P) P . This is exactly
the one derived by Gupta and Song (1997).

Example 3 Consider the introductory example

Po 1
100 = (bl =+ (el + xafP) " ) ®

Normalizing and resolving for the last coordinate yields

1
Uz = ((1, |U1|pm)% _ \Uz\m) P
and the terms gu;) and G 2(uy>) of the determinanjdety| = T262(U§)GQ<Q(U2VA2) are given by

P1-py
Ga(U3) = (1= |ug|™) ™

Gzallizy) = (21— Jual™)™ —[ug™) ™ .

Note the difference to Example 1 whegewas at depth one in the tree whilg is at depth two in
the current case. For that reason, the determinant of the Jacobiaxamiple 1 involved only one
G-term while it has two G-terms here.

3. Lp-Nested Symmetric andLp-Nested Uniform Distribution

In this section, we define thg,-nested symmetric and thg-nested uniform distribution and derive
their partition functions. In particular, we derive the surface area ddiraitrary L,-nested unit
spherells = {x € R" | f(x) = 1} corresponding to ahp-nested functionf. By Equation (5) of
Fernandez et al. (1995) evevyspherical and hence ahy-nested symmetric density has the form

«f(x)

p(X) = T 1 (1) (4)

wheres; is the surface area difi and@is a density oR™. Thus, we need to compute the surface
area of an arbitrari,-nested unit sphere to obtain the partition function of Equation (4).
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Proposition 4 (Volume and Surface of thelp-nested Sphere)Let f be an L;-nested function and
let I be the set of all multi-indices denoting the inner nodes of the tree structsmreted with f.
The volumels (R) and the surfaces (R) of the Ly-nested sphere with radius R are given by

'Vf(R) R"2" |—l < ﬂ B |:Z| 1Mk nl[;—%—l:|> (5)

R MG []
“ oo Wgra]

e ey) o

ler

(6)

Ml |5
— R ”7: . 5] ®)
ler p'~ r[%ﬂ
where Ba, b] = ]] denotes th@-function.
Proof The proof can be found in the Appendix B. |

Inserting the surface area in Equation 4, we obtain the general formlgf-aested symmetric
distribution for any given radial density

Corollary 5 (Lp-nested Symmetric Distribution) Let f be an l;-nested function ang a density
onR*. The corresponding §-nested symmetric distribution is given by

®(f(x))
P m

2nf nlﬂ( HB{ nlkn';fl}l) )

The results of Fernandez et al. (1995) imply that for argpherically symmetric distribution,
the radial part is independent of the directional part, thatis independent ofi. The distribution
of u is entirely determined by the choice of or by thelL,-nested functionf in our case. The
distribution ofr is determined by the radial densipy Together, aih. ,-nested symmetric distribution
is determined by both, the,-nested functiorf and the choice of. From Equation (9), we can see
that its density function must be the inverse of the surface arka times the radial density when
transforming (4) into the coordinates of Definition 1 and separatiaugdu (the factorf (x)" 1 =r
cancels due to the determinant of the Jacobian). For that reason weeddiitifibbution ofu uniform
on the Ly-spherell¢ in analogy to Song and Gupta (1997). Next, we state its form in terms of the
coordinatesu.

Proposition 6 (Lp-nested Uniform Distribution) Let f be an ly-nested function. Let be the
set of multi-indices on the path from the root node to the leaf corresporiding The uniform
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distribution on the ly-nested unit sphere, that is, the dlat= {x € R"|f(x) = 1} is given by the
following density overy...,un_1

‘ 1
Miez Gu(up) oot Sk N
p(ug,,...,Un_1) = 7?1 1 ID (p| k|18 = o .

Proof Since thel p-nested sphere is a measurable and compact set, the density of the ufiform
tribution is simply one over the surface area of thenested unit sphere. The surfagg1) is given
by Proposition 4. Transformin% into the coordinates of Definition 1 introduces the determinant

of the Jacobian from Proposition 3 and an additional factor of 2 sinc@ithe., u, 1) € R"* have
to account for both half-shells of thg,-nested unit sphere, that is, to account for the fact that
could have been be positive or negative. This yields the expressior.abo |

Example 4 Let us again demonstrate the proposition at the special case where flig-aorm
f(x)=1X|[p= (31 |x;|p)fl). Using Proposition 4, the surface area is given by
nrn | 1
S Sk Ml al [P]
[Ilp = ém 1 |_| -

Po ’ Po p-1r {%]

"
The factor G(up) is given by(1— zi”;ll \ui\p)Tp (see the k-norm example before), which, after
including the factog, yields the uniform distribution on thgtsphere as defined in Song and Gupta

(1997) { ]
pr-ir | o nt ¥
p(u):znlrnﬁl]] <1i§i|uip> :

Example 5 As a second illustrative example, we consider the uniform density ongtinedted
unit ball, that is, the sefx € IR"| f(x) < 1}, and derive its radial distributiorp. The density of the
uniform distribution on the unit }-nested ball does not dependxamnd is given bp(x) =1/ 74 (1).

Transforming the density into the polar-like coordinates with the determinant froposition 3

yields
1
1 :nrnilHLeLGL(u[) o= ('rllB S Mk M
(Vf (1) 2n-1 ‘|;|I ! K=1 P ' P ’

After separating out the uniform distribution on thg-hested unit sphere, we obtain the radial
distribution

or)=n"1foro<r<i

which is af3-distribution with parameters n antl
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The radial distribution from the preceeding example is of great importasrceur sampling
scheme derived in Section 6. The idea behind it is the following: First, a s&nophea “simple”
Lp-nested symmetric distribution is drawn. Since the radial and the uniform azenpon the_p-
nested unit sphere are statistically independent, we can get a sample &omiftirm distribution
on thel ,-nested unit sphere by simply normalizing the sample from the simple distributfter- A
wards we can multiply it with a radius drawn from the radial distribution oflth@ested symmetric
distribution that we actually want to sample from. The role of the simple distributibbevplayed
by the uniform distribution within thé.p-nested unit ball. Sampling from it is basically done by
applying the steps in Proposition 4’s proof backwards. We lay out the Isagrgtheme in more
detail in Section 6.

4. Marginals

In this section we discuss two types of marginals: First, we demonstrate thatntirast tol -
spherically symmetric distributions, marginals lgf-nested symmetric distributions are not nec-
essarilyL,-nested symmetric again. The second type of marginals we discuss areedhibgin
collapsing all leaves of a subtree into the value of the subtree’s root manehat case we derive
an analytical expression and show that the values of the root nodklsechfollow a special kind
of Dirichlet distribution.

Gupta and Song (1997) show that marginalk gspherically symmetric distributions are again
Lp-spherically symmetric. This does not hold, howeverlfginested symmetric distributions. This
can be shown by a simple counterexample. Considelr theested function

Po 1
100 = ((xalP+ bl )7+ g™ ) ™
The uniform distribution inside thep-nested ball corresponding fois given by
2 3
npupol [ 2] 3]
X) = 3r2 | 1 2 1]
zr2[3]r&]r 3]
The marginap(xa, X3) is given by
2 3
_ Pl Elr[3)
1 2 1

zr2[3]r[2]r (3]
This marginal is not ,-spherically symmetric. Since ary,-nested symmetric distribution in two
dimensions must bey-spherically symmetric, it cannot lg,-nested symmetric as well. Figure
3 shows a scatter plot of the marginal distribution. Besides the fact that thgan@la are not
contained in the family of ,-nested symmetric distributions, it is also hard to derive a general
form for them. This is not surprising given that the general form of inaig for L,-spherically
symmetric distributions involves an integral that cannot be solved analyticatjemeral and is
therefore not very useful in practice (Gupta and Song, 1997). Rdrréason we cannot expect
marginals ofLp-nested symmetric distributions to have a simple form.

In contrast to single marginals, it is possible to specify the joint distributionasile and inner
nodes of arLp-nested tree if all descendants of their inner nodes in question havéritegrated

P 1
plx1. Xe) (@ Pxal™)m —pal™) ™
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a b

I3 o

Figure 3: Marginals of ,-nested symmetric distributions are not necessagjtpested symmetric:
Figure @) shows a scatter plot of the, x2)-marginal of the counterexample in the text
with pp =2 andp; = % Figure () displays the correspondirig,-nested sphere.b{

c) show the univariate marginals for the scatter plot. Since any two-dimemndigna
nested symmetric distribution must bg-spherically symmetric, the marginals should be

identical. This is clearly not the case. Thua), i§ notL,-nested symmetric.

out. For the simple function above (the same that has been used in Exantpkeja)nt distribution
of x3 andvy = ||(x1,%2) || p, Would be an example of such a marginal. Since marginalization affects
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the Lp-nested tree vertically, we call this type of marginiger marginals In the following, we
present their general form.

From the form of a general,-nested function and the corresponding symmetric distribution,
one might think that the layer marginals &jgnested symmetric again. However, this is not the case
since the distribution over thg,-nested unit sphere would deviate from the uniform distribution in
most cases if the distribution of its children wergspherically symmetric.

Proposition 7 Let f be an ly-nested function. Suppose we integrate out complete subtrees from
the tree associated with f, that is, we transform subtrees into radial timesromifariables and
integrate out the latter. Let be the set of multi-indices of those nodes that have become new leaves,
that is, whose subtrees have been removed, ang le¢ the number of leaves (in the original tree)

in the subtree under the node J. betx IR™ denote those coefficients »ftlxat are still part of

that smaller tree and levydenote the vector of inner nodes that became new leaves. The joint
distribution ofx; andw; is given by

o(f (xﬁvvfl)) 1
Xo,Vy) = ———= " []VP 10
p( i ]) Sf(f(XA’v]))JZL J (10)
Proof The proof can be found in the Appendix C. |

Equation (10) has an interesting special case when considering theigtiitiution of the root
node’s children.

Corollary 8 The children of the root nodey, = (vi,...,Vy,) " follow the distribution

o T[]
T R

where m< /gy is the number of leaves directly attached to the root node. In particulaj, van
be written as the product RU, where R is thenested radius and the sing|d;|™ are Dirichlet

. . . . n,
distributed, that is(|U1|Pe, ..., |Ug,|P) ~ Dir [%,...,ﬁ}.

lo
P(Viry) = Q(f(va,...,Vgp)) .uv:”'*l

Proof The joint distribution is simply the application of Proposition (7). Note th@at, ...,vy,) =
V16| po- APPlying the pointwise transformatics = |uj|™ yields

L Ny,
Ua|P, ... |Uy,_1|™) ~ Dir {—J}
(U4 [Uge—1/™) o0’ By

The Corollary shows that the valuégx; ) at inner nodes, in particular the ones directly below
the root node, deviate considerably framgspherical symmetry. If they wels,-spherically sym-
metric, the|U;|P should follow a Dirichlet distribution with parametens = % as has been already
shown by Song and Gupta (1997). The Corollary is a generalization iof&seilt.

We can use the Corollary to prove an interesting fact abgutested symmetric distributions:
The only factorial p-nested symmetric distribution must bg-spherically symmetric.
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Proposition 9 Let x be L,-nested symmetric distributed with independent marginals. Hisn x
Lp-spherically symmetric distributed. In particulat,fallows a p-generalized Normal distribution.

Proof The proof can be found in the Appendix D. |

One immediate implication of Proposition 9 is that there is no factorial probability hcodes-
sponding to mixed norm regularizers which have the fgifny, ||, || where the index setg form
a partition of the dimensions, 1.,n (see, e.g., Zhao et al., 2008; Yuan and Lin, 2006; Kowalski
et al., 2008). Many machine learning algorithms are equivalent to minimizingutineo$ a regu-
larizer R(w) and a loss functiol.(w, X, ..., Xm) over the coefficient vectow. If the exp(—R(w))
and exg—L(w,X1,...,Xm)) correspond to normalizeable density models, the minimizing solution
of the objective function can be seen as the maximum a posteriori (MAP) éstoh¢he poste-
rior p(W|Xq,...,Xm) O p(W) - p(X1, ..., Xm|W) = exp(—R(W)) - exp(—L(W, X1, ...,Xm)). In that sense,
the regularizer naturally corresponds to the prior and the loss functisaspmnds to the likeli-
hood. Very often, regularizers are specified as a norm over théagesf vectorw which in turn
correspond to certain priors. For example, in Ridge regression (H@82) the coefficients are
regularized vig|w||3 which corresponds to a factorial zero mean Gaussian priwr. diheL;-norm
lw||1 in the LASSO estimator (Tibshirani, 1996), again, is equivalent to a fattajaacian prior
onw. Like in these two examples, regularizers often corresponddotarial prior.

Mixed norm regularizers naturally correspond.tpnested symmetric distributions. Proposition
9 shows that there is no factorial prior that corresponds to such &remgu. In particular, it implies
that the prior cannot be factorial between groups and coefficienteataime time. This means
that those regularizers implicitly assume statistical dependencies betweeareffigient variables.
Interestingly, forg= 1 andp = 2 the intuition behind these regularizers is exactly that whole groups
Ik get switched on at once, but the groups are sparse. The Propohkibiwa that this might not only
be due to sparseness but also due to statistical dependencies betweeefficeents within one
group. Thel,-nested symmetric distribution which implements independence between gridups w
be further discussed below as a generalization ofptigeneralized Normal (see Section 8). Note
that the marginals can be independent if the regularizer is of the Jrmi|x, ||. However, in
this casep = g and theLp-nested function collapses to a simplg-norm which means that the
regularizer is not mixed norm.

5. Maximum Likelihood Estimation of Lp-Nested Symmetric Distributions

In this section, we describe procedures for maximum likelihood fittingyefiested symmetric dis-
tributions on data. We provide a toolbox online for fitting-spherically symmetric and,-nested
symmetric distributions to data. The toolbox can be downloadetitat / / www. kyb. t uebi ngen.
mpg. de/ bet hge/ code/ .

Depending on which parameters are to be estimated, the complexity of fittihg-nested
symmetric distribution varies. We start with the simplest case and later continusasighcomplex
ones. Throughout this subsection, we assume that the model has the(forea p(Wx) - | detW| =
%’&(D -| detw| whereW € R™" is a complete whitening matrix. This means that given any
whitening matrix\Wp, the freedom in fittingV is to estimate an orthonormal mat@x € SQ(n)
such thatV = QWs. This is analogous to the case of elliptically contoured distributions where the
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distributions can be endowed with 2nd-order correlationsialn the following, we ignore the
determinant ofV since data points can always be rescaled such th¥ def.

The simplest case is to fit the parameters of the radial distribution when thsttneéure, the
values of thep;, andW are fixed. Due to the special form bp-nested symmetric distributions (4),
it then suffices to carry out maximum likelihood estimation on the radial compargy, which
renders maximum likelihood estimation efficient and robust. This is becaussheemaining
parameters are the paramet®rsf the radial distribution and, therefore,

argmayg logp(Wx|8) = argmaxg (—logSs (f(Wx)) + loge( f (Wx)[8))
= argmavg log@(f(Wx)|9).

In a slightly more complex case, when only the tree structuré/iade fixed, the values of the
pi, | € I and® can be jointly estimated via gradient ascent on the log-likelihood. The gttddien
a single data poirx with respect to the vectgp that holds allp, for all | € I is given by

d (n—1)
Oplogp(Wx) = ar log(f(Wx)) - Opf(Wx) — mmpf(Wx) — Oplog st (1).
For i.i.d. data pointx; the joint gradient is given by the sum over the gradients for the single data
points. Each of them involves the gradientfa@is well as the gradient of the log-surface arek of
with respect tgp, which can be computed via the recursive equations

if | is not a prefix of]

iv, — vll PPt vk if | is a prefix ofJ

opy o .
w (vJ Py Vi Iongk—Iong) ifJ=1
and
_ £-1 k+1 k+1
D logsi(1)=— 2ty g | 2Lk | Zim Mok
op; P4 [SH p3
_ Z W Z. 1an Zikzlznlk 7&_1[4} {n\]‘k+1} nJ,k2+1_
P3 &1 P P3

whereW[t] = %Iogr[t] denotes the digamma function. When performing the gradient ascent, one
needs to se® @s a lower bound fop. Note that, in general, this optimization might be a highly
non-convex problem.

On the next level of complexity, only the tree structure is fixed, \@hdan be estimated along
with the other parameters by joint optimization of the log-likelihood with respeg;, ® andW.
Certainly, this optimization problem is also not convex in general. Usually, itisearically more
robust to whiten the data first with some whitening matkixand perform a gradient ascent on the
special orthogonal grouQ(n) with respect toQ for optimizingW = QWs. Given the gradient
Ow logp(Wx) of the log-likelihood, the optimization can be carried out by performing linecbes
along geodesics as proposed by Edelman et al. (1999) (see also tAdds{807)) or by projecting
Cw logp(Wx) on the tangent spackySQ(n)) and performing a line search alo®0(n) in that
direction as proposed by Manton (2002).

3425

168



SINZ AND BETHGE

The general form of the gradient to be used in such an optimization sclentedefined as

Ow logp(Wx)
=0w (—(n—1)-log f(Wx) +log@( f (WX)))
(n—1) dlogq(r)

-— (W) Oy f (Wx) X+ ~ar (f(Wx)) - Oy f (Wx) X,

where the derivatives of with respect toy are defined by recursive equations
0 ifil
3y | SV ) if ik = [yil
v v 'aiy.vhk foriel k.

Note, thatf might not be differentiable at= 0. However, we can always define a sub-derivative at
zero, which is zero fop; # 1 and[—1,1] for p; = 1. Again, the gradient for i.i.d. data poirsis
given by the sum over the single gradients.

Finally, the question arises whether it is possible to estimate the tree structurddta as well.
A simple heuristic would be to start with a very large tree, for example, a fullritree, and to
prune out inner nodes for which the parents and the children haveisoffy similar values for their
pi. The intuition behind this is that if they were exactly equal, they would candélih p-nested
function. This heuristic is certainly sub-optimal. Firstly, the optimization will be timesconing
since there can be about as mamyas there are leaves in thg-nested tree (a full binary tree on
dimensions will have— 1 inner nodes) and due to the repeated optimization after the pruning steps.
Secondly, the heuristic does not cover all possible treasleaves. For example, if two leaves are
separated by the root node in the original full binary tree, there is natavpyune out inner nodes
such that the path between those two nodes will not contain the root ngoh®en

The computational complexity for the estimation of all other parameters despiteséhstruc-
ture is difficult to assess in general because they depend, for exaonpiee particular radial dis-
tribution used. While the maximum likelihood estimation of a simple log-Normal distribwtidy
involves the computation of a mean and a variance which aggnm for mdata points, a mixture of
log-Normal distributions already requires an EM algorithm which is computalfipmore expen-
sive. Additionally, the time it takes to optimize the likelihood depends on the stanimg as well
as the convergence rate, and we neither have results about thegmreeerate nor is it possible to
make problem independent statements about a good initialization of the paisarfetethis reason
we state only the computational complexity of single steps involved in the optimization.

Computation of the gradieffiplogp(Wx) involves the derivative of the radial distribution, the
computation of the gradientsp f(Wx) and OpSt(1). Assuming that the derivative of the radial
distribution can be computed iA(1) for each single data point, the costly steps are the other two
gradients. Computinglp f (Wx) basically involves visiting each node of the tree once and perform-
ing a constant number of operations for the local derivatives. Sirexy @ner node in ah,-nested
tree must have at least two children, the worst case would be a full biregywvhich has 2— 1
nodes and leaves. Therefore, the gradient can be computghin) for m data points. For similar
reasonsf(Wx), OplogSs (1), and the evaluation of the likelihood can also be computed(imm).
This means that each step in the optimizatiopafin be done(nm) plus the computational costs
for the line search in the gradient ascent. When optimizing\fer QW as well, the computational
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costs per step increase @(n®+ n?m) sincem data points have to be multiplied wit/ at each
iteration (requiringd(n®m) steps), and the line search involves projectnigack ontaSQ(n) which
requires an inverse matrix square root or a similar computatia?(ini).

For comparison, each step of fast ICA (Hyinen and O., 1997) for a complete demixing matrix
takesO(n?m) when using hierarchical orthogonalization ath?m-+ n®) for symmetric orthogo-
nalization. The same applies to fitting an ISA model (Hymen and Hoyer, 2000; Hyvinen
and Koster, 2006, 2007). A Gaussian Scale Mixture (GSM) model does ®at toeestimate an-
other orthogonal rotatio® because it belongs to the class of spherically symmetric distributions
and is, therefore, invariant under transformations fi®@fn) (Wainwright and Simoncelli, 2000).
Therefore, fitting a GSM corresponds to estimating the parameters of tleedsstabution which is
O(nm) in the best case but might be costlier depending on the choice of the sdelmutisn.

6. Sampling from L,-Nested Symmetric Distributions

In this section, we derive a sampling scheme for arbittganested symmetric distributions which
can for example be used for solving integrals when ugipgested symmetric distributions for
Bayesian learning. Exact sampling from an arbitrapynested symmetric distribution is in fact
straightforward due to the following observation: Since the radial andriiercn component are in-
dependent, normalizing a sample from dnynested symmetric distribution tolength one yields
samples from the uniform distribution on theg-nested unit sphere. By multiplying those uni-
form samples with new samples from another radial distribution, one obtaimgles from another
Lp-nested symmetric distribution. Therefore, for ehgimested functiorf, a singlel ,-nested sym-
metric distribution which can be easily sampled from is enough. Sampling franthaltL ,-nested
symmetric distributions with respect tbis then straightforward due to the method we just de-
scribed. Gupta and Song (1997) sample fromgtgeneralized Normal distribution since it has in-
dependent marginals which makes sampling straightforward. Due to Rfop&s no such factorial
Lp-nested symmetric distribution exists. Therefore, a sampling scheme like thaj-épherically
symmetric distributions is not applicable. Instead we choose to sample fronmifoenu distribu-
tion inside thel ,-nested unit ball for which we already computed the radial distribution imga

5. The distribution has the forp(x) = %(1) In order to sample from that distribution, we will first
only consider the uniform distribution in the positive quadrant of the lupitested ball which has
the formp(x) = %;1) Samples from the uniform distributions inside the whole ball can be obtained
by multiplying each coordinate of a sample with independent samples fromifleerlistribution
over{—1,1}.

The idea of the sampling scheme for the uniform distribution inside.farested unit ball is
based on the computation of the volume of thenested unit ball in Proposition 4. The basic
mechanism underlying the sampling scheme below is to apply the steps of tHebpobavards,
which is based on the following idea: The volume of theunit ball can be computed by computing
its volume on the positive quadrant only and multiplying the result withfferwards. The key is
now to not transform the whole integral into radial and uniform coordgatence, but successively
upwards in the tree. We will demonstrate this through a brief example whictslatadd make the
sampling scheme below more intuitive. Considerlthenested function

Po 1
100 = (Il + (el + elP) R ) .
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To solve the integral

/ dx
{x:f(X)<1&XcIRT }
we first transform, andxs into radial and uniform coordinates only. According to Proposition 3 the

1-p:
determinant of the mappinre, x3) — (i, 0) = (||X2:3]| p,, X2:3/[|X2:3]| p, ) IS given byvs (1— GF’l)PTl.
Therefore the integral transforms into

1-p
/ dx = //vl(lf GP) 7t dxydvadi.
{x:f(x)<1&xcRT} {vixif(x1.vi)<1&xg vielRy }

Now we can separate the integrals oxgandv;, and the integral ovay, Since the boundary of the
outer integral does only depend wnand not oru?

1p
/ dx:/(lfﬁpl) mldu./ /vldxldvl.
{x:f(x)<1&xeR" } {vexq:f(xg,vi)<1&xi.vieRy }

The value of the first integral is known explicitly since the integrand equelsitiform distribution
on the|| - ||p,-unit sphere. Therefore, the value of the integral must be its normalizeiostant
which we can get using Proposition 4:

2
IS [ ﬁ] P
/(1fup1) Pdl= —,T
3]

An alternative way to arrive at this result is to use the transformatioerii® and to notice that the
integrand is a Dirichlet distribution with parameters= il The normalization constant of the
Dirichlet distribution and the constants from the determinant of the Jacobihe transformation
yield the same result.

To compute the remaining integral, the same method can be applied again yieldirnduime
of theLp-nested unit ball. The important part for the sampling scheme, howevert thevolume
itself but the fact that the intermediate results in this integration process egptiaih distributions.
As shown in Example 5 the radial distribution of the uniform distribution on thiehatl is 3 [n, 1],
and as just indicated by the example above, the intermediate results cambesseansformed
variables from a Dirichlet distribution. This fact holds true even for mam@plexLy-nested unit
balls although the parameters of the Dirichlet distribution can be slightly diffef@eversing the
steps leads us to the following sampling scheme. First, we sample frofrdistribution which
gives us the radiugy on the root node. Then we sample from the appropriate Dirichlet distribution
and exponentiate the samples&ﬂywhich transforms them into the analogs of the variabfeom
above. Scaling the result with the sampigyields the values of the root node’s children, that
is, the analogs ok; andv;. Those are the new radii for the levels below them where we simply
repeat this procedure with the appropriate Dirichlet distributions andnexps. The single steps
are summarized in Algorithm 1.

The computational complexity of the sampling schemé(s). Since the sampling procedure
is like expanding the tree node by node starting with the root, the number ofrindes and leaves
is the total number of samples that have to be drawn from Dirichlet distributiEwesy node in an
Lp-nested tree must at least have two children. Therefore, the maximal nofribaer nodes and
leaves is B2 — 1 for a full binary tree. Since sampling from a Dirichlet distribution is als@{m),
the total computational complexity for one sample iifn).
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Algorithm 1 Exact sampling algorithm fdrp-nested symmetric distributions

Input: The radial distributionp of anL ,-nested symmetric distributigmfor the L p-nested function
f.

Output: Samplex from p.

Algorithm

1. Samplevp from a beta distributiof$ [n, 1].

2. For each inner node of the tree associated with, sample the auxiliary variablg from

a Dirichlet distribution Dir[%,..., n# wheren, i are the number of leaves in the subtree

under nodd ,k. Obtain coordinates on the,-nested sphere within the positive orthant by
1

S sf' = 1 (the exponentiation is taken component-wise).

3. Transform these samples to Cartesian coordinates: iy = v; 1., for each inner node, start-
ing from the root node and descending to lower layers. The componevis.gfconstitute
the radii for the layer direct below them. llIf= 0, the radius had been sampled in step 1.

4. Once the two previous steps have been repeated until no inner nofievielbave a sample
x from the uniform distribution in the positive quadrant. Normak#e get a uniform sample

from the spherel = %

5. Sample a new radiug from the radial distribution of the target radial distributiprand
obtain the sample vig = ¥ - u.

6. Multiply each entryx; of X by an independent samptefrom the uniform distribution over
{-1,1}.

7. Robust Bayesian Inference of the Location

For Lp-spherically symmetric distributions with a location and a scale parameter

PO T) =T"p([[T(X = Wlp),

Osiewalski and Steel (1993) derived the posterior in closed form asmmimr p(W, 1) = p(W)-¢- 12,
and showed thap(x, 1) does not depend on the radial distributigrthat is, the particular type of
Lp-spherically symmetric distributions used for a fix@dT he prior ort corresponds to an improper
Jeffrey’s prior which is used to represent lack of prior knowledgéerscale. The main implication
of their result is that Bayesian inference of the locatippander that prior on the scale does not
depend on the particular type bf-spherically symmetric distribution used for inference. This
means that under the assumption oflarspherically symmetric distributed variable, for a fixgd
one has to know the exact form of the distribution in order to compute the logadi@meter.

It is straightforward to generalize their resultlig-nested symmetric distributions and, hence,
making it applicable to a larger class of distributions. Note that when usinggangsted symmetric
distribution, introducing a scale and a location via the transformationt(x — ) introduces a
factor oft" in front of the distribution.
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Proposition 10 For fixed values g ps, ... and two independent priors(p, T) = p(W) - ct ! of the
location p and the scalewhere the prior ort is an improper Jeffrey’s prior, the joint distribution
p(x, ) is given by

_ 1
PO = F(x—W)™"-c- > - p(W),
where Z denotes the normalization constant of thaésted uniform distribution.

Proof Given anyLp-nested symmetric distributiop( f(x)), the transformation into the polar-like
coordinates yields the following relation

1:/p(f(x))dx:/'/LHLGL(uE)r"*lp(r)drdu:/

Since[ e, GL(up) is the unnormalized uniform distribution on thg-nested unit sphere, the inte-
gral must equal the normalization constant which we denote Zvittr brevity (see Proposition 6
for an explicit expression). This implies thahas to fulfill

%:/r”’lp(r)dr.

Writing down the joint distribution ok, p andt, and using the substitutic= 1f(x— M) we obtain

M GL(uE)du-/r”’lp(r)dr.

LeL

PO ) = [ 1P(1(x(x— ) -ct - plRct
— [$%(9) ¢ pW F(x— ) "ds
= (x4 e bl

Note that this result could easily be extended-gpherical distributions. However, in this case
the normalization consta@tcannot be computed for most cases and, therefore, the posterior would
not be known explicitly.

8. Relations to ICA, ISA and Over-Complete Linear Models

In this section, we explain the relations amdngspherically symmetricl ,-nested symmetric,
ICA and ISA models. For a general overview see Figure 4.

The density model underlying ICA models the joint distribution of the signak a linear
superposition of statistically independent hidden sousgs= x or y = Wx. If the marginals
of the hidden sources belong to the exponential power family, we obtaip-teneralized Nor-
mal which is a subset of thie,-spherically symmetric class. Thegeneralized Normal distri-
bution p(y) O exp(—1||y||p) is a density model that is often used in ICA algorithms for kurtotic
natural signals like images and sound by optimizing a demixing mé#riw.r.t. to the model
p(y) O exp(—T1|Wx]|B) (Lee and Lewicki, 2000; Zhang et al., 2004; Lewicki, 2002). It can be
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ISA Lp-nesteq
symmetric

Lp-nested ISA

) 4 Y
L -spherically
symmetric

p-generalized
Normal

Y
L,-spherically
symmetric

Figure 4: Relations between the different classes of distributions: Arindicate that the child

class is a specialization (subset) of the parent class. Polygon-shiagsdscare inter-
sections of those parent classes which are connected via edges withawwaw-heads.
For one-dimensional subspaces ISA is a superclass of ICA. All ddmsdenging to ISA
are colored white or light gray.,-nested symmetric distributions are a superclads,of
spherically symmetric distributions. Alll,-nested symmetric models are colored dark or
light gray. Lp-nested ISA models live in the intersectionlgf-nested symmetric distri-
butions and ISA models. Thosg-nested ISA models that atg-spherically symmetric
are also ICA models: This is the classmfieneralized Normal distributions. |ifis fixed

to two, one obtains the,-spherically symmetric distributions. The only class of distri-
butions in the intersection between spherically symmetric distributions and IC&lsod
is the Gaussian.

shown that thep-generalized Normal is the only factorial model in the claskg$pherically sym-
metric models (Sinz et al., 2009a), and, by Proposition 9, also the onlyitdtgmested symmetric
distribution.

An important generalization of ICA is the independent subspace analg3 proposed by

Hyvarinen and Hoyer (2000) and by Hininen and Kster (2007) who usdd,-spherically symmet-
ric distributions to model the single subspaces, that is, pabklow wad_p-spherically symmetric.
Like in ICA, ISA models the hidden sources of the signal as a product @fvatate distributions:

K
ply) = k|lpk(y|k).

Here,y = Wx andly are index sets selecting the different subspaces from the respdndet® .
The collection of index setk forms a partition of 1...,n. ICA is a special case of ISA in which
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Ik = {k} such that all subspaces are one-dimensional. For the ISA models ussdénnen et al.
the distribution on the subspaces was chosen to be either sphericafyspherically symmetric.

In its general form, ISA is not a generalizationlgf-spherically symmetric distributions. The
most general ISA model for the transformed dgpta Wx does not assume a certain type of distri-
bution on the single subspace like in Hyinen and Kster (2007). While one could say for any
non-factorial distribution that a factorial product over subspacegé@naralization, this is certainly
a trivial step. Only in this particular sense is the particular ISA model byadpen and Kster
(2007) a generalization afp-spherically symmetric distributions.

In contrast to ISAL p-nested symmetric distributions generally do not make an independence
assumption on the “subspaces”. In fact, for most of the models the sidsspall be dependent
(see also our diagram in Figure 4). Therefore, not every ISA modaliismaticallyL ,-nested
symmetric and vice versa. In fact, in Sinz et al. (2009b) we have demtetsfax natural images
that the dependencidzetweensubspaces is stronger than the dependenitsn subspaces on
natural image patches. This is in stark contrast to the assumptions undé8ging

Note also that the product df,-spherically symmetric distributions used by Hyinen and
Koster (2007) is not aih,-nested function (Equation (6) in Hiinen and Kster, 2007) since
the singlea; can be different and, therefore, the overall function is not positikielyogeneous in
general.

ICA and ISA have been used to infer features from natural signalsaiiticplar from natu-
ral images. However, as mentioned by several authors (Zetzsche £9%8;, Simoncelli, 1997;
Wainwright and Simoncelli, 2000) and demonstrated quantitatively by Be®@@6] and Eich-
horn et al. (2009), the assumptions underlying linear ICA are not wellhedtby the statistics
of the pixel intensities of natural images. A reliable parametric way to assessvkll the inde-
pendence assumption is met by a signal at hand is to fit a more generabfcthssibutions that
contains factorial as well as non-factorial distributions which both camalbgwell reproduce the
marginals. By comparing the likelihood on held out test data between the thiest fion-factorial
and the best-fitting factorial case, one can assess how well the scarcbe described by a facto-
rial distribution. For natural images, for example, one can use an ayhiitsespherically symmetric
distributionp(||Wx|| ), fit it to the whitened data and compare its likelihood on held out test data
to the one of thep-generalized Normal distribution (Sinz and Bethge, 2009). Since angelod
radial distributionp determines a particular,-spherically symmetric distribution, the idea is to ex-
plore the space between factorial and non-factorial models by usimy 8exble densityp on the
radius. Note that having an explicit expression of the normalization cdredtaws for particularly
reliable model comparisons via the likelihood. For many graphical models, $tarioe, such an
explicit and computable expression is often not available.

The same type of dependency-analysis can be carried out for IS4 Liginested symmetric
distributions (Sinz et al., 2009b). Figure 5 shows lthenested tree corresponding to an ISA with
four subspaces. In general, for such trees, each inner nodeptake root node—corresponds to
a single subspace. When using the radial distribution

Vn—l Po
i) = 08— exp( -2 ). (1)
r Po
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Figure 5: Tree corresponding to ap-nested ISA model.

the subspaces, ..., v,, become independent and one obtains an ISA model of the form

py) = %exp<—w)
1

S

Lo
_ Lo -2 Mo
EE

/ , —1 n,
- Py exp<_ Zﬁml|ylkpk) o P T [Fﬂ
n Y] ] b
sh ;2,7 [&] S kel 2N [k [ﬂ

which had_p-spherically symmetric distributions on each subspace. Note that this resdiddation
is equivalent to a Gamma distribution whose variables have been raised tovthe gf % In the
following we will denote distributions of this type wit}}, (u,s), whereu ands are the shape and
scale parameter of the Gamma distribution, respectively. The partigudéstribution that results in
independent subspaces has arbitrary scale but shape parameémbrWhen using any other radial
distribution, the different subspaces do not factorize, and the distnbistialso not an ISA model.
In that sensé p-nested symmetric distributions are a generalization of ISA. Note, howteegnot
every ISA model is als p-nested symmetric since not every product of arbitrary distributions on
the subspaces, even if they argspherically symmetric, must also bg-nested.

It is natural to ask, whethdry-nested symmetric distributions can serve as a prior distribution
p(y|®) over hidden factors in over-complete linear models of the form

POXW,0,9) = [ p(x\Wy.0)p(y[9)dy.

where p(x|Wy) represents the likelihood of the observed data prigiven the hidden factorg
and the over-complete matin¥. For examplep(x|\Wy,c) = A (Wy,o 1) could be a Gaussian like
in Olshausen and Field (1996). Unfortunately, such a model wouldrdudi@ the same problems
as all over-complete linear models: While sampling from the prior is straighdi@hsampling
from the posteriop(y|x,W,83,0) is difficult because a whole subspaceyokads to the same.
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Since parameter estimation either involves solving the high-dimensional integtsl, o,9) =

J p(x\Wy, 0)p(y|8)dy or sampling from the posterior, learning is computationally demanding in
such models. Various methods have been proposed toWéarmnging from sampling the posterior
only at its maximum (Olshausen and Field, 1996), approximating the postetloravGaussian
via the Laplace approximation (Lewicki and Olshausen, 1999) or usimg&ation Propagation
(Seeger, 2008). In particular, all of the above studies either do noygier-parameter8 for the
prior (Olshausen and Field, 1996; Lewicki and Olshausen, 199%Ipion the factorial structure

of it (Seeger, 2008). Sindey,-nested symmetric distributions do not provide such a factorial prior,
Expectation Propagation is not directly applicable. An approximation like ind¢léand Olshausen
(1999) might be possible, but additionally estimating the paramétefsthe L ,-nested symmetric
distribution adds another level of complexity in the estimation procedure. Emglsuch over-
complete linear models with a non-factorial prior may be an interesting directiomdstigate, but

it will need a significant amount of additional numerical and algorithmicakwofind an efficient
and robust estimation procedure.

9. Nested Radial Factorization withL ,-Nested Symmetric Distributions

Lp-nested symmetric distribution also give rise to a non-linear ICA algorithm fealiy mixed
non-factoriall ,-nested hidden sourcgs The idea is similar to the radial factorization algorithms
proposed by Lyu and Simoncelli (2009) and Sinz and Bethge (2009)thioreason, we call it
nested radial factorization (NRFJor a one layel p-nested tree, NRF is equivalent to radial fac-
torization as described in Sinz and Bethge (2009). If additionally set top = 2, one obtains
the radial Gaussianization by Lyu and Simoncelli (2009). Therefore; MRa generalization of
radial Factorization. It has been demonstrated that radial factorizdgjoritms outperform linear
ICA on natural image patches (Lyu and Simoncelli, 2009; Sinz and Betl0g8) 2Since.p-nested
symmetric distributions are slightly better in likelihood on natural image patches€gat., 2009b)
and since the difference in the average log-likelihood directly correfsptarthe reduction in depen-
dencies between the single variables (Sinz and Bethge, 2009), NRF willlglautperform radial
factorization on natural images. For other types of data the performailiaepend on how well
the hidden sources can be modeled by a linear superposition of—possibipdependent-,-
nested symmetrically distributed sources. Here we state the algorithm asilelgoapgplication of
Lp-nested symmetric distributions for unsupervised learning.

The idea is based on the observation that the choice of the radial distrilquéibeady deter-
mines the type off p-nested symmetric distribution. This also means that by changing the radial dis-
tribution by remapping the data, the distribution could possibly be turned inari@mne. Radial
factorization algorithms fit ahp-spherically symmetric distribution with a very flexible radial dis-
tribution to the data and map this radial distributigy(s for source) into the one of p-generalized
Normal distribution by the mapping

(F o F5)(1Yllp)

—
y Vo

where# |, and ¥s are the cumulative distribution functions of the two radial distributions involved
The mapping basically normalizes the demixed soyraad rescales it with a new radius that has
the correct distribution.
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Exactly the same method cannot work fg-nested symmetric distributions since Proposition

9 states that there is no factorial distribution into which we could map the data tejyncbanging
the radial distribution. Instead we have to remap the data in an iterative fiasb@nning with
changing the radial distribution at the root node into the radial distributicthek -nested ISA
shown in Equation (11). Once the nodes are independent, we repeatdbedure for each of
the child nodes independently, then for their child nodes and so on, ubtileaves are left. The
rescaling of the radii is a non-linear mapping since the transform in Equét®nis non-linear.
Therefore, NRF is a non-linear ICA algorithm.

(F ' oFo)(y1:4)

Po Yia o TR Y m

Po.2 >

(Fi'oFo)(y24)
Yau o TGy Y

P22 P22
(F1'oFs ) (yas) @
Yo e, Y3 (w3

Figure 6: Lp-nested non-linear ICA for the tree of Example 6: For an arbitiagrpested symmetric
distribution, using Equation (12), the radial distribution can be remappefl that the
children of the root node become independent. This is indicated in the ploiotied
lines. Once the data have been rescaled with that mapping, the childrest abde can
be separated. The remaining subtrees are dgairested symmetric and have a particular
radial distribution that can be remapped into the same one that makes theiocsst
children independent. This procedure is repeated until only leavesfare le

We demonstrate this with a simple example.

Example 6 Consider the function

A
100 = (Il (I 2+ ey

for y = Wx where W has been estimated by fitting ganested symmetric distribution with a
flexible radial distribution to Woas described in Section 5. Assume that the data has already been
transformed once with the mapping of Equat{@2). This means that the current radial distribution
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is given by (11) where we chose=sl for convenience. This yields a distribution of the form

Po
P02\ B
ply) = P exp(ylpm(yzW-2+<|ya|P22+|y4|P2«2>P2-2) )
(7]
1

n
Po
'l
-1 P
x=—[p'" "————.
LN

Now we can separate the distribution gffyom the distribution overy ...,ys. The distribution of
y1 is a p-generalized Normal
Po

[

Thus the distribution ofy...,y, is given by

p(y1) = exp(—|y|™).
2

3|~

Po
P02\ oy
(Y2, .- Ya) = F:s_z 9XP<— (\Y2\p"”2+(|y3\p2’2+ \y4\p2’2)”2-2) 2)
%]
: "[3]
ne Mial [%]

/-1
X — pl
on-1 Iel_l
By using Equation (9) we can identify the new radial distribution to be

O(Vo2) = % exp(—vgfz) .

Replacing this distribution by the one for the p-generalized Normal (for datavauld use the
mapping in Equation (12)), we obtain

Po.2

1 -1 r [%]

X on 1 S R e I
7 P
Now, we can separate out the distribution gfwhich is again p-generalized Normal. This leaves
us with the distribution foryand y
Pp.2 r o
) B - p
P(ys,ya) = pﬁfz exp(—(\ys\pz-2+ \y4\p2-2)”2> o2 ,’l P R [ I]n. =
r {m] 1€1\{0,(0.2)} Mgl [F}

For this distribution we can repeat the same procedure which will also yiedéneralized Normal
distributions for ¢ and .

Po2 Po.2 P22 P22 y
P(yza---vw)zmexlo —ly2| ™2 — (|ya|P2 + |ya|P>?) P22
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Algorithm 2 Recursion NRR, f, ¢s)

Input: Data pointy, Lp-nested functiorf, current radial distributions,
Output: Non-linearly transformed data point

Algorithm

EN
1. Setthe target radial distribution to e, < vp | 2, P’%
rl2]z

Po

2. Sety«+ ) -ywhere# denotes the cumulative distribution function of the respective

Q.

3. For all children of the root node that are not leaves:
bk
(a) Setps ¢ yp [ 2, Lol
[3]?

(b) Setyy; < NRF(yy, foi, ®s). Note that in the recursiod, i will become the nevo.

FMI(Y,
f(y)

4. Returny

This non-linear procedure naturally carries over to arbitiginested trees and distributions,
thus yielding a general non-linear ICA algorithm for linearly mixed nortdeal L,-nested sym-
metric sources. For generalizing Example 6, note the particular form ofatfial distributions
involved. As already noted above, the distribution (11) on the root sod®ues that makes its
children statistically independent is that of a Gamma distributed variable withasmﬂamete%
and scale parametewhich has been raised to the powerﬁ%f In Section 8 we denoted this class
of distributions withy, [u,s|, whereu ands are the shape and the scale parameter, respectively.
Interestingly, the radial distributions of the root node’s children areygsxcept that the shape pa-

rameter is%‘. The goal of the radial remapping of the children’s values is hence astging the

shape parameter fro% to %. Of course, it is also possible to change the scale parameter of the
single distributions during the radial remappings. This will not affect thestitzal independence

of the resulting variables. In the general algorithm, that we describewewhooses such that the
transformed data is white.

The algorithm starts with fitting a geneta}-nested model of the form(Wx) as described in
Section 5. Once this is done, the linear demixing matvixs fixed and the hidden non-factorial
sources are recovered wa= Wx. Afterwards, the sourcgsare non-linearly made independent by
calling the recursion specified in Algorithm 2 with the parameéxs f andg, wheregis the radial
distribution of the estimated model.

The computational complexity for transforming a single data poigk(i¥’) because of the ma-
trix multiplication Wx. In the non-linear transformation, each single data dimension is not rdscale
more that times which means that the rescaling is certainly also(r?).

An important aspect of NRF is that it yields a probabilistic model for the taanséd data.
This model is simply a product af independent exponential power marginals. Since the radial
remappings do not change the likelihood, the likelihood of the non-lineapgraged data is the
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same as the likelihood of the data undgrnested symmetric distribution that was fitted to it in
the first place. However, in some cases, one might like to fit a differefritlison to the outcome
of Algorithm 2. In that case the determinant of the transformation is negetsaetermine the
likelihood of the input data—and not the transformed one—under the modelfollbwing lemma
provides the determinant of the Jacobian for the non-linear rescaling.

Lemma 11 (Determinant of the Jacobian)Let z= NRFWx, f, @) as described above. Lé&tt
denote the values of ¥Whelow the inner node | which have been transformed with Algorithm 2
up to node I. Let gr) = (¥q, o Fq)(r) denote the radial transform at node | in Algorithm 2.
Furthermore, letl denote the set of all inner nodes, excluding the leaves. Then, the detatmof

the Jacobiar(g—f])_ is given by
i

a(ht)" "  @h(t))
fit)"  @u(a(fi(t)))

Proof The proof can be found in the Appendix E. |

0z |
deta—xj' = [detwW|-[]

ler

10. Conclusion

In this article we presented a formal treatment of the first tractable sulmflasspherical distribu-
tions which generalizes the important familylgf-spherically symmetric distributions. We derived
an analytical expression for the normalization constant, introduced dinate system particularly
tailored toLp-nested functions, and computed the determinant of the Jacobian forrtiespund-
ing coordinate transformation. Using these results, we introduced themnifistribution on the
Lp-nested unit sphere and the general form ofLgmested symmetric distribution for arbitrary
Lp-nested functions and radial distributions. We also derived an expnefss the joint distribu-
tion of inner nodes of ahp-nested tree and derived a sampling scheme for an arbltgangested
symmetric distribution.

Lp-nested symmetric distributions naturally provide the class of probability ditiriigicorre-
sponding to mixed norm priors, allowing full Bayesian inference in thessponding probabilistic
models. We showed that a robustness result for Bayesian inferetiwelotation parameter known
for Lp-spherically symmetric distributions carries over to thenested symmetric class. We dis-
cussed the relationship &f,-nested symmetric distributions to indepedent component (ICA) and
independent subspace Analysis (ISA), as well as its applicability as adiswibution in over-
complete linear models. Finally, we showed hioyrnested symmetric distributions can be used to
construct a non-linear ICA algorithm called nested radial factorizatid®F)N

The application of ,-nested symmetric distribution has been presented in a previous corgferenc
paper (Sinz et al., 2009b). Code for training this class of distribution igiged online under
http: // wwv. kyb. t uebi ngen. npg. de/ bet hge/ code/ .
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Appendix A. Determinant of the Jacobian

Proof [Lemma 2] The proof is very similar to the one in Song and Gupta (1997). fieadequation
(2) one needs to expand the Jacobian of the inverse coordinate traagtm with respect to the
last column using the Laplace’s expansion of the determinant. TheAgiean be factored out of
the determinant and cancels due to the absolute value around it. Thethéodeterminant of the
coordinate transformation does not depend\gn

The partial derivatives of the inverse coordinate transformation aesdiy:

X =0kr forl<ik<n-—-1

au

aiukxn:Anrg—EEforlgkgnfl
%xi:uiforlﬁiﬁn—l
Exn:Anun‘

Therefore, the structure of the Jacobian is given by

r 0 up

J= . ' ) ’
0 r Un—1

Dpr &0 Anr 2% Anu

nou N" oun_1 n=n

Since we are only interested in the absolute value of the determinant and\gircg-1,1}, we
can factor out\, and drop it. Furthermore, we can factor odtom the firstn — 1 columns which
yields

1 e 0 Uy
|dety| = r""1|det ; '
1 Un—1
OUn Oun u
oug e Oun_1 n

Now we can use the Laplace’s expansion of the determinant with respte tast column. For
that purpose, lef; denote the matrix which is obtained by deleting the last column andfthew
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from 7. This matrix has the following structure

1 0

o

= D1
0 .
0 1
au, au, ou,
oug ou; Oun_1

We can transforny; into a lower triangular matrix by moving the column with all zeros %ﬁd
bottom entry to the rightmost column @f. Each swapping of two columns introduces a factor of
—1. In the end, we can compute the value of fléty simply taking the product of the diagonal

entries and obtain dgt= (—1)”*14%. This yields

k=1
n-1
=" Y (-1 udet + (—1)>
k=1
n-1
_rnl< (— 1)y (1)L kau”—i—un)
= du
n-1 Ju
_en-1( YHn
=r ( kzlukauk+un

Before proving Proposition 3 stating that the determinant only dependseotetimsG; (uy)
produced by the chain rule when used upwards in the tree, let us quidkilyeothe essential mech-
anism when taking the chain rule féﬁ‘ﬂ Consider the tree correspondingftoBy definitionu, is
the rightmost leaf of the tree. L&t/ be the multi-index ofi,. As in the example, the chain rule
starts at the leafi, and ascends in the tree until it reaches the lowest node whose subitamso
both,un andug. At this point, it starts descending the tree until it reaches theugabDepending
on whether the chain rule ascends or descends, two different fordesigétives occur: while as-
cending, the chain rule produc€s(u;)-terms like the one in the example above. At descending,
it producesh (uy)-terms. The general definitions of tkg(up)- andF (u;)-terms are given by the
recursive formulae

PLy P
[

GL[l(qu) =0 (u|])pl'/'_pl = (gl uA Z f| N U| ]
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and

PPy

Oy PLir
R (i) = i ()PP = (Z flﬁink(ul,ir,k)pl'ir>
(=1

The next two lemmata are required for the proof of Proposition 3. We ussthewhat sloppy
notationk € |, i, if the variableu is a leaf in the subtree belowi,. The same notation is used flor

Lemma 12 Letl=iy,...,i;_3 and i, be any node of the tree associated with grriested function
f. Then the following recursions hold for the derivatives gf(glﬁr)”‘-ir and fl’?;r(u|_i,) W.rt ug: If
Uq is not in the subtree under the nodé | that is, kZ 1 ,ir, then

0
. Y S
6Uq fl 7|r(u|,|r) 0

and

3 01 (up)® ifgel

(U, )P =BG ()

L
(3Uqg|"Ir ]

*ﬁij(uh,‘)F" ifgel,j

forqgel,jand q¢ |,k for k# j. Otherwise

0 . ) 0 .
g O™ = 0and ST i ()P = R (U)oU)

s

forqel,ir,sand gZ |,ir,k for k#s.

Proof Both of the first equations are obvious, since only those nodes have zeno derivative for
which the subtree actually dependswgn The second equations can be seen by direct computation

0 ) 4 0
ﬂgmr(uﬁr)p"” =P (U )P laiqu"i'(u'ﬁAif)

0H-1
— p|~irg|~ir(u|7,)p“rilai% <g| (ur)m _ JZX flﬁj(ul.j)n)

_ P, g ()P g (uA')l—Pli g (u)P ,hil .5 (U )P
pi AN P IR P auq | 4 NASa |

ES
P

) 309 (up)P ifqel
I.ir

P

Gii(urg,)-
—a&ﬂ,j(uu)p' ifgel,j
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Similarly
0 d
aTJqfl,ir(uLir)pl =p f'vi'(u'-‘r)plila*uqfl,ir(uu,)
1 a é\.lr m
- fii i)P T i f Prir
P |‘|r(u|,|r) aUq kzl |~'r~k(u|,lr,k)
P 1 . Py
= f o (w )P (U DL b P
P ACEY i (W) g Lirs(Uiis)
P 9 _
=—F (W)= s(u s)Pr
Dl,i,Fl"’( "")auq Lirs(Uiis)
fork e l,ir,s. .

The next lemma states the form of the whole derivagﬁgdn terms of theG (uy)- andF (u)-terms.

Lemma 13 Let|ug| = Vey,....tmi,...it» |Un| = Vey,...¢q With m< d. The derivative of gw.r.t. uqis given
by

aiuqu“ = —Gpta(Uy 7)o Cretina (U, 7 )
X Foy.tmin (Uen, - tmin) - Fero v 1 (Wer iz, ic_1) - D Ug| P fmiz-ie-a 1
with Aq = sgnug and|ug|P = (Aqug)P. In particular
UanJqUn =—Cy,., [d(uiﬁd) S cT fm(ufl,fﬁﬂ)
X Foyotmis (W) Fop,tminoie s (Wer, iy )« |Ug| P fmizeit=
Proof Successive application of Lemma (12). |

Proof [Proposition 3] Before we begin with the proof, note thgu; ) andG, (uy) fulfill following
equalities

Glin(UT) 0L (UT )P = g (U)P
= gl(Ur)p'*1211':|,k(u|k)fl,k(ULk)p"k (13)
and
i (Ut i) P = iiFLimAk(ul,im,k)fIAimAk(uI,im,k)pl'im‘K (14)

Now letL = /1,...,{4_1 be the multi-index of the parent af,. We computern%l|det]| and
obtain the result by solving fddet7|. As shown in Lemma (2},},—1| detJ| has the form

1 "1 dup,
det = — Y — U+ Upn
r“*l‘ | & 0uy kT En
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By definition u, = gL,gd(UL_/Zd) = gL/d(um)pL”d. Now, assume thaty, ..., Un_1 are children of_,
thatis,ux = v, for somel iy =ix,...,ir andm < k < n. Remember, that by Lemma (13) the terms
uq(,iuqun for m< q < n have the form

0
Uy Un = = Lo (Upz, ) Fia (Ueig) oo Py (UL ) - uig [P st
q

Using Equation (13), we can expand the determinant as follows

n—laun
_ . , __\PLy
/& Oug uk+gl"£d(ul—/fd) ¢
m-1 aun n-1 aun
=— ~Uk — — Uk + , (U— )Pl
kZl o " kgmauk O (U7,
Wlaun
-3 Uk
£, duy
k=1
L) [ =S Gyt ) 12 G G (U ) g (U )P
L,fd( L,éd) kz L'éd(uL./d) 0Uk Ui + L,fd(uL,éd) gLA,(/rd(uL/)
=m
o aun
z 0Uk
n-1 a lq—
+ G (U7,) *kz Guea(u) ™ e U+ 0 (up)™ Z FLk(UL ) fLi(u )™ ) -
=m

10un

Note that all term& , (u@)* .+ U for m < k < n now have the form

4 0
Gr(u7,) lUkaTJkUn:—|:|_,i1(UL,i1)'~~~-|:|_t,|(U|_,|) |Ug|Pi--fa-pisii-y

since we constructed them to be neighborsugf However, with Equation (14), we can fur-
ther expand the surﬂ F|_ k(UL k) fLk(uL k) P+ down to the leavesy, ...,un—1. When doing so

we end up with the same factos i, (UL j,) - ... - FLi(uy) - |uq|”f1 Jla-1i1-it-1 gs in the derivatives

GL,/d(u%)*luqa%qun. This means exactly that

n-1 10un lg—1
=Y Gru(uzg,)” T z FLi(uL k) fik(up ) Pk
k=m ' k
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and, therefore,

m-1 aun "
- A Yk
&1 duy

n-1 ou a1
+G|_.£d(U|:;d) ( kz GL.ed(U@)’la—J‘:-UkJrgL(U[)pL - kz FL k(UL k) fLk(ug k) Pex
—m =1

m-1 aUn y
= a3 Yk
&1 Uk

lg—1 lg—1
+ G (U7,) ( > k(UL fL(Ue) ™ +au(up)™ — 5 Rk(uL) fL,k(UL,k)pL‘k>
k=1 k=1

-1
:7”‘ %'UKJFGLQ(UA)QL(U[)’]L-
&1 0k T

By factoring OUtGL,/;d(UQd) from the equation, the terrr%f - Uy loose theG 4, in front and
we get basically the same equation as before, only that the new leaf (tHaugignis g (up)P and
we got rid of all the children ok. By repeating that procedure up to the root node, we successively
factor out allG(up,) for L” € £ until all terms of the sum vanish and we are only left wigh= 1.
Therefore, the determinant is

1
rldety| = [ Gulup)
LeL

which completes the proof. |

Appendix B. Volume and Surface of thel ,-Nested Unit Sphere

Proof [Proposition 4] We obtain the volume by computing the integlg@[KRdx. Differentiation
with respect tdRyields the surface area. For symmetry reasons we can compute the vollyme on
the positive quadrarR’, and multiply the result with 2later to obtain the full volume and surface
area. The strategy for computing the volume is as follows. We start with irodesh that are
parents of leaves only. The valueof such a node is simply tHg, norm of its children. Therefore,
we can convert the integral over the children efith the transformation of Gupta and Song (1997).
This maps the leaveg 1., into v, and “angular” variablei. Since integral borders of the original
integral depend only on the valuegfand not orili, we can separate the variablegom the radial
variablesv; and integrate the variablésseparately. The integration ovityields a certain factor,
while the variabley effectively becomes a new leaf.
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Now suppost is the parent of leaves only. Without loss of generality let{Heaves correspond
to the last coefficients ok. Letx € IR".. Carrying out the first transformation and integration yields

1-p

. . 4—-1 3]
dx:/ / Vit [1- S P ) dvididey,
/f<x>§R xun w)<R Jacr it i; ' e

4-1 o

- Vi Ly dxg / 1- 3 P da
/f(xl;n,;l,w)gR : EHain—a X gev! ! i; '

where?/; denotes the intersection of the positive quadrant and. gh@orm unit ball. For solving
the second integral we make the pointwise transforma{i@naip' and obtain

Ny P "Ly

0H—-1 b ] 1 4H—1 p l[|7l pifl
1- 3 P dii= 7/ 1- Vs s,
/ﬁeﬂ‘*l iZl I pt/ss<a iZiS il:lS e

1 4t Zik:j_nl,k N k1
- /'1|_IB{ PP

P k=1
1 471 Tk 1
p| k=1 p| p|

by using the fact that the transformed integral has the form of an untieed®irichlet distribution
and, therefore, the value of the integral must equal its normalization cinsta
Now, we solve the integral

/ v tdvidxgn g, (15)
Jf(Xen-g Vi) <R

We carry this out in exactly the same manner as we solved the previous intéggateed only
to make sure that we only contract nodes that have only leaves as childneember that radii of
contracted nodes become leaves) and we need to find a formula destibintye factors/"
propagate through the tree.

For the latter, we first state the formula and then prove it via induction. Ratiopal conve-
nience let denote the set of multi-indices corresponding to the contracted Ie@v&te remaining
coefficients ofx andv, the vector of leaves resulting from contraction. The integral which is left to
solve after integrating over &l is given by (remember thay denotes real leaves, that is, the ones
corresponding to coefficients &jf:

v Ldv, dx;.
/f(xﬁ,vj)gRJJ] J 7

We already proved the first induction step by computing Equation (15)cétaputing the general
induction step supposdeis an inner node whose children are leaves or contracted leaves!’ Let
be the set of contracted leaves untlend X = 7\ 7. Transforming the children df into radial
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coordinates by Gupta and Song (1997) yields

VI Ldvydx; = / Vi V) dvydxs
./f(xﬁ,v])gRD] J TR JE(%5.v5)<R J_l Jey J 75
4-1 o %\/ 1 1
= s a) vt e
g ot ( %) ) (ne)
1 nfl—l
0-1 o 2] é’|7l( )nk 1 q q dvd
vi|1l-— Gi viOk) ™ XAV av ﬁg_l
i; i kl:! KHVK |
vt
/f(xqu&w) /l.uI 16'1/ (J_l >

-

I
f 4 — p|
VIR <1 zl uip') |‘| gt | dxgdvadvdi,
i=

= Vi | VI tdx . dvgedy
f(x;,(Avi;(,v|)<R<J;|X K ) | g HVKEM

Ny Pl
4H-1 noo4-1 1
x / e [ o ity s
- -
Uy -1V = k=1

Again, by transforming it into a Dirichlet distribution, the latter integral has tiet®n

X

X

Ny P

H-1 ]
1- 5 a” “4i, .= M B i LMk Mke
'/u"leq/ill< i; I ) I_L e I_L { P

while the remaining former integral has the form

vt ) vt dvid / Vo Ldv, dx
/f(x Vi W) <R (J_l > KM= f(Xj»Vﬂ)SR_Dq ’ 7

as claimed.
By carrying out the integration up to the root node, the remaining integcalrbes

K

.R Rn
VI Ldy :/ Vi tdvy = —.
/\/@SR 0 0 0 0 0 n

Collecting the factors from integration over tligroves the Equations (5) and (7). UsiB¢p, b] =
% yields Equations (6) and (8). |
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Appendix C. Layer Marginals

Proof [Proposition 7]

o(f(x))
St(f(x))

__qu(anfh,W,ﬁﬁgi,An | | o
a St(f(x)) < Zlul|p>

whereA, = sign(x,). Note thatf is invariant to the actual value &f,. However, when integrating
it out, it yields a factor of 2. Integrating odit, -1 andA, now yields

p(X) =

@(f (Xana: Vi) n1 2urt [ﬁ]
i) T piir[a]
_ O(fOan-g, W) 4
Sf(f(xlinfﬂmw)) !

P(Xen—g V1) =

Now, we can go on and integrate out more subtrees. For that purpbx?,denote the remaining
coefficients o, v, the vector of leaves resulting from the kind of contraction just show fand
7 the set of multi-indices corresponding to the “new leaves”, that is, mpdéer contraction. We
obtain the following equation

(p(f X]7vj

p(Xj,V]) f(X V] )

wheren; denotes the number of leaves in the subtree under the hodlibe calculations for the
proof are basically the same as the one for proposition (4). |

Appendix D. Factorial Ly-Nested Distributions

Proof [Proposition 9] Since the singleare independent; (1), ..., fr,(X,) and, thereforeyy, ..., v,
must be independent as wek @re the elements of in the subtree below thieh child of the root
node). Using Corollary 8 we can write the densityvef..., v, as (the function namg is unrelated
to the usage of the functiaabove)

{

]
P(Vire) = [THi ) = o(lIVacollpo) [TV
9= [0 aeat
with
lp—1
T ()
IVaso B "2 (12

91Vl pe) =

[p;] O([IVa:to |l py)
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Since the integral oveyis finite, it follows from Sinz et al. (2009a) thghas the forng( ||V, || p,) =
exp(a@Hvl;g@Hm +bp) for appropriate constangg andby. Therefore, the marginals have the form

hi(vi) = expagvf® +co)" . (16)

On the other hand, the particular formgimplies that the radial density has the fogff (x)) O
f(x)("Y exp(agf (X)P + bp)Pe. In particular, this implies that the root node’s childrg(x;) (i =
1,...,4p) are independent arid,-nested symmetric again. With the same argument as above, it fol-

lows that their children; 1., follow the distributionp(Vi 1, ..., Vi 4 ) = exp(ai|| Vi 1:4 | P + i) [‘|J 1 ,”'J’ !
Transforming that distribution th,-spherically symmetric polar coordinates= Vi 1. |/p and

0=V 14-1/|Vi,1||p @s in Gupta and Song (1997), we obtain the form

1

1-p ng;—1
] 4i—1 P li—1
p(, 0) = explav{" + bi)y; ( Z |U1p> (Vi <1_ 2 |Uj|pi> ) I_L(Ujvi)””‘l
=1 =

Mg —Pi
4i—1

Pi
= expavP + b))V~ || P VAR
(= gor)

where the second equation follows the same calculations as in the proafpufdition 4. After in-
tegrating oufl, assuming that the are statistically independent, we obtain the density @fhich

is equal to (16) if and only ifo; = pp. However, ifpp and p; are equal, the hierarchy of thg-
nested function shrinks by one layer siqgendpp cancel themselves. Repeated application of the
above argument collapses the complggenested tree until one effectively obtains lagtspherical
function. Since the only factoridlp-spherically symmetric distribution is thegeneralized Normal
(Sinz et al., 2009a) the claim follows. |

Appendix E. Determinant of the Jacobian for NRF

Proof [Lemma 11] The proof is a generalization of the proof of Lyu and Simonc20i09). Due
to the chain rule the Jacobian of the entire transformation is the multiplication obtubidns
for each single step, that is, the rescaling of a subset of the dimensioosdaingle inner node.
The Jacobian for the other dimensions is simply the identity matrix. Therefareleterminant of
the Jacobian for each single step is the determinant for the radial traradfon on the respective
dimensions. We show how to compute the determinant for a single step.

Assume that we reached a particular ndde Algorithm 2. The leaves, which have been
rescaled by the preceding steps, are cdlledet, = 2 f<' (t)‘)) -t with gi(r) = (7,20 %5)(r). The
general form of a single Jacobian is

% 0 (gl( (b )))+gl(fl(tl))
f

at, ot \ fi(t)

where

0 (a(fitt)) _(g(ht)) a(fitt))) o
3T|( fi(t) )7(I >3t|f|(t')'
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Lety; be a leave in the subtree undaand letl, J;, ..., Jk be the path of inner nodes fronto y;,
then

aiy fi(t) = vllfplv‘ll)ll—l)h . ~V|’<)Jk fpjklyi\plk’lsgryi.
i

If we denoter = fi(t;) and{; = vJl P -vEJk*pryi\ka*l-sgryi for the respectivel, we
obtain

det(tl'6%<gl(f|fzt(|t;))>+gl(f|fzt(|t;))ln') :det((g{(r)—glfr)>r Pt .7 4 ()|n|)-

Now we can use Sylvester's determinant formulaget bt; ") = det(1+ bt ) = 1+ bt
or equivalently

detal, +bt;Z") = det(a- (In+ gtKT))
_an b .t
=a det(ln+5t|z )
=a"(a+bt),

as well ag"¢ = fi(t))P =rP to see that

det( ( gi(r)— 9(r) r P " + ( )I _9 (2271 det 1(r) — 9(r) roPg’. Z+ 1G]
((so-27) o) = e (-2 ) o 840)
= g'r(rrlnlil det<g{(r) - g.f(r) + g'—(r))

r
o (r)n—l d
rn—1 ag| (r)

L.9,(r) is readily computed vighg (r) = & (F 1o F)(r) = "sz)

(an(r
Multiplying the single determmants along with tfétfor ﬁel nal step of the chain rule com-

pletes the proof. |
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The light intensities of natural images exhibit a high degree of redundancy. Knowing the exact amount of
their statistical dependencies is important for biological vision as well as compression and coding appli-
cations but estimating the total amount of redundancy, the multi-information, is intrinsically hard. The
common approach is to estimate the multi-information for patches of increasing sizes and divide by the
number of pixels. Here, we show that the limiting value of this sequence—the multi-information rate—
can be better estimated by using another limiting process based on measuring the mutual information
between a pixel and a causal neighborhood of increasing size around it. Although in principle this method
has been known for decades, its superiority for estimating the multi-information rate of natural images
has not been fully exploited yet. Either method provides a lower bound on the multi-information rate, but
the mutual information based sequence converges much faster to the multi-information rate than the con-
ventional method does. Using this fact, we provide improved estimates of the multi-information rate of
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natural images and a better understanding of its underlying spatial structure.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Natural images contain an abundance of structure and regular-
ities which can be quantified as statistical dependencies or redun-
dancy between image pixels. Coding and compression algorithms
for photographic images exploit these dependencies for achieving
a good performance. Besides technical applications, the statistical
regularities in natural images also play an important role for our
understanding of sensory coding in the mammalian brain. In a
wide range of studies it has been shown that many response prop-
erties of neurons in the early visual system such as color oppo-
nency, bandpass filtering, contrast gain control and orientation
selectivity can be interpreted as mechanisms for removing these
redundancies in natural images (Atick & Redlich, 1992; Barlow,
1959; Buchsbaum & Gottschalk, 1983; Karklin & Lewicki, 2008;
Linsker, 1990; Olshausen & Field, 1996; Schwartz & Simoncelli,
2001; Simoncelli & Olshausen, 2001; Sinz & Bethge, 2009; Sriniva-
san, Laughlin, & Dubs, 1982). Quantitative comparisons have
shown that these response properties are not all equally effective
in removing statistical dependencies. Mechanisms removing sec-
ond-order correlations in natural images such as color opponency
and bandpass filtering yield a large reduction of redundancy. Less
pronounced but still substantial is the effect of contrast gain con-
trol (Lyu & Simoncelli, 2009; Sinz & Bethge, 2009). For orientation
selectivity, however, the potential for redundancy reduction turns
out to be much smaller (Bethge, 2006). Since the emergence of ori-

* Corresponding author.
E-mail address: mbethge@tuebingen.mpg.de (M. Bethge).

0042-6989/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.visres.2010.07.025
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entation selectivity is the most prominent difference in the re-
sponse properties of V1 neurons compared to the retina it can
serve as an important witness on whether neural response proper-
ties in cortex can still be interpreted convincingly in terms of
redundancy reduction (Eichhorn, Sinz, & Bethge, 2009).

An important unknown that is critical to judging this case is the
true total amount of redundancy in natural images. A principled
way of quantifying redundancy is to measure the multi-information
of a distribution (Perez, 1977). The multi-information of a multi-
variate random variable is the difference between the sum of its
marginal entropies and its joint entropy

IX):.. 0 Xy] = iH[Xi] —H[X1,....X,].
i=1

It equals zero if and only if the individual components are sta-
tistically independent and is positive otherwise. It measures the
information gain caused by statistical dependencies between the
single variables. Unlike differential entropy, the multi-information
is invariant against arbitrary component-wise transformations
both for linear mappings, such as scaling, and nonlinear mappings,
such as taking the logarithm.

The conventional approach for estimating the redundancy per
pixel—the multi-information rate—is to estimate the multi-informa-
tion for patches of increasing sizes and divide by the number of
pixels (Bethge, 2006; Chandler & Field, 2007; Eichhorn et al.,
2009; Lee, Wachtler, & Sejnowski, 2002; Lewicki & Olshausen,
1999; Lewicki & Sejnowski, 2000; Lyu & Simoncelli, 2009; Sinz &
Bethge, 2009; Wachtler, Lee, & Sejnowski, 2001). In this way we
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obtain a monotonically increasing sequence converging to the mul-
ti-information rate

I, = 315516 %I[Xl s Xl

There is an important trade-off between two different kinds of
errors that affect the outcome of this limiting process: On the
one hand, the earlier we stop the sequence of increasing patch
sizes, the more we ignore long-range dependencies between image
pixels and, hence, underestimate the redundancy of natural
images. On the other hand, the larger the patch sizes get, the more
difficult it becomes to estimate the multi-information reliably due
to the increase in dimensionality. Multi-information estimation
strongly resembles the problem of estimating the joint density
and similarly suffers from the curse of dimensionality: The number
of states that need to be estimated grows exponentially with the
number of dimensions. This means that more and more regulariza-
tion is needed to avoid overfitting in high dimensions. As a conse-
quence, with increasing dimensionality it becomes increasingly
unlikely to capture all the structure of the density.

The trade-off between ignoring long range correlations for small
n and the increasing difficulty to estimate I[X;:...:X,] for large n
suggests that the estimation of the multi-information rate can be
improved substantially if one manages to construct sequences
other than {1I[X; :...: X,]},, which converge faster to the same
limiting value I...

In this paper, we show that it is possible to construct such a se-
quence. The basic idea can be illustrated in the case of one-dimen-
sional stationary stochastic processes. From information theory it
is known that the conditional entropy converges to the entropy
rate of such processes' (Cover & Thomas, 2006; Shannon, 1948)

.1 .
rl]lm EH[X1,~~7XH] = rlle HXnXn1,...,X1]-
Multiplying this equation by (—1) and adding the marginal en-

tropy of the stationary process H[X;] = 1>} ;H[X.] at both sides,
yields an analogous relationship for the multi-information rate

1 .
Lo = lim I s X = m X Xy, X
= lim HX,] = HXa X 1, X3 ). 1)

Note that the sequence on the left hand side of Eq. (1) reflects
the multi-information® between all the variables X;, ..., X, while
the sequence on the right hand side reflects the mutual information
between X, and (X, ..., X,_1). The mutual information is the special
case of the multi-information which measures the statistical depen-
dencies between two random variables only, while it is possible that
the dimensionality of the two random variables is different. For
example, in our case X, is a univariate random variable and
(X1, ..., Xn_1) is (n — 1)-dimensional. The chain rule for the multi-
information (Cover & Thomas, 2006)

n
Xt Xal = ST Xicr, L X,
k=2

shows that the multi-information can be decomposed into a sum of
mutual information terms. This suggests that the mutual informa-
tion based sequence { I with If,"f = 1I[Xn : Xn_1,...,X1] quanti-
fies the asymptotic inicrentent in the multi-information while the
conventionally used multi-information based sequence {I;"}~,
with I7*™ == I[X, : ... : X;] constitutes a cumulative approach which
averages over these increments.

! For continuous random variables it is necessary to additionally assume that the
limit exists.
2 More precisely the multi-information divided by n.

Inspired by an early study in the fifties (Schreiber, 1956), an
incremental approach for estimating I, has already been used be-
fore in Petrov and Zhaoping (2003) but did not reveal its full poten-
tial. Our work elucidates a couple of points that have not been
addressed in those papers: First, we revise the mathematical justi-
fication for using the incremental approach in case of two-dimen-
sional random fields rather than one-dimensional processes as it is
necessary for modeling images. Second, we show that the mutual
information based method yields significantly better estimates of
I, than the conventional method does while Petrov and Zhaoping
(2003) did not provide any comparisons with previous methods.
Third, we show how particularly reliable multi-information esti-
mators can be constructed for the incremental approach such that
one obtains conservative lower bounds to the multi-information
rate. This allows us, fourth, to systematically investigate how the
two approaches perform on natural images for different number
of dimensions n also far beyond the case of n =7 pixels that was
studied in Petrov and Zhaoping (2003). Our best lower bound on
the multi-information rate for the van Hateren data set exceeds
their estimate by more than 20% and slightly outperforms the
bound obtained with the L,-spherical model (Sinz & Bethge,
2009). It is obtained when using a causal neighborhood of only
25 pixels.

The remaining part of the paper is structured as follows: In Sec-
tion 2, we introduce the multi-information based and the mutual
information based method for estimating the multi-information
rate. In particular, we present a proof for the convergence of the
two methods to the same limiting value I, for two-dimensional sta-
tionary stochastic processes. In Section 3, we perform experiments
on artificial images in order to demonstrate the validity of the meth-
od, and apply it to natural images afterwards. Our results show that
the incremental method based on conditional distributions per-
forms significantly better and indicates that the multi-information
rate of natural images contains a substantial contribution from high-
er-order moments. We further corroborate this finding by a second
set of experiments where we first pre-whiten the images before we
fit the local image statistics. In this way, we not only confirm our pre-
vious estimates for the multi-information rate but we can also show
that the predominant statistical dependencies captured by current
models of natural images are of very limited spatial extent. In partic-
ular, the increase in the multi-information rate observed for the
cumulative method for increasing patch size does not reflect a
meaningful contribution of long range correlations but rather an
artifact caused by the pixels at the boundary. Finally, in Section 5,
we discuss the significance of our results and compare them to exist-
ing work.

2. Methods

In order to describe the statistical regularities of natural images,
they are often modeled as two-dimensional stationary random
fields. For the present study, stationarity is crucial as it is provides
the critical link between the cumulative and the incremental meth-
od for computing the multi-information rate. Stationarity means
that the random field is invariant under translations with respect
to the x- and y-coordinates of the image intensities. In the follow-
ing, we will first depict the mathematical underpinnings for using
the incremental approach in case of two-dimensional stationary
random fields. After that we will show that the incremental meth-
od is generally superior to the cumulative method, and then we
will describe how to construct reliable multi-information and
mutual information estimators for the cumulative and the incre-
mental method, respectively. In particular, we will construct con-
servative estimators such that also the empirical quantities
become reliable lower bounds to the multi-information rate.
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2.1. Mathematical underpinnings

Throughout the paper, we use uppercase letters to denote ran-
dom variables, bold font to indicate vectors sometimes equipped
with an subindex denoting the dimensionality. In particular, we

write I[X;.,] to refer to the multi-information I[X;:...:X,] and
I[X1:X2:n] to refer to the mutual information between X; and
(XZv LR ,Xn)~

For the incremental method, we estimate the multi-information
rate I, via the mutual information between X, and Xj.,_1 for
increasing n

I = IX : X1.n-1)) = HXa] = HXa|X01))- (2)

As mentioned in the introduction, I™ and I¥'™ converge to the
true multi-information rate I, for one-dimensional stationary sto-
chastic processes. One subtle complication, hidden in the expres-
sion H[X;|Xi.(x—1)], is that the proof for the one-dimensional case
(see Cover & Thomas, 2006) uses stationarity to replace all condi-
tional entropy terms H[Xy|X;.x_1] in the chain rule decomposition
of the joint entropy

H[Xqy.) = HX:] + iH[Xklxlzk—l] =H[X;] + iH[Xn\anm n-1l;
=t =t

with shifted versions H[X;|X;_k+1:n—1] where the index of each com-
ponent is shifted by (n — k). For two-dimensional Markov chains,
however, the two-dimensional shape of the causal neighborhood
(see Fig. 1) implies that there are always conditional entropy terms
H[X|X1.,_1] that cannot be matched by index shifting. Nevertheless,

it is possible to show that {l;”‘}x1 converges to the same limiting
n=

value I, as {I;"}~  for all stationary random fields of arbitrary
dimensions (Follmer, 1973). In order to make this theorem more
assessable we provide a simple proof for the special case of two
dimensions in Appendix A.

2.2. Superiority of the incremental approach over the cumulative
approach

Both types of limiting processes, the cumulative, multi-informa-
tion based sequence {I;""}~  and the incremental, mutual infor-

n=1
0

mation based sequence {Ii,"“} v grow monotonically with n and
.

converge to the true multi-information rate from below. In other
words, each sequence defines a lower bound on the multi-informa-
tion rate that becomes increasingly tighter for large n and in the
limit converges to the same value for the multi-information rate.
Using the chain rule for the multi-information together with the
fact that conditioning reduces entropy we further obtain the fol-
lowing relations

@ ()

| n w || n

Fig. 1. Illustration of the shape of the image regions for the two different entropy
estimation methods: (a) The square shaped patch used for estimating I;"". (b) The
causal neighborhood used for estimating I;. In this approach we compute the
conditional distribution of the white pixel given the gray ones.

198

1 1 L1
L = IXn] < o X = ™ == S IXe: X
k=2

n
L > IXn : Xana] = I < . (3)
k=2

<
“n-1

First, this demonstrates that ['™, for which the total multi-
information is divided by (n — 1), is a uniformly better approxima-
tion to I than the conventionally used I}, for which the multi-
information is divided by n. While the difference between the
two sequences decays very fast, (I;"" — I"") ~ 1/n?, the difference
between the cumulative and the incremental sequence

) N 1 &
B = g D U Xan ) X ),

can be quite substantial also for moderately large n. It is zero if and
only if I[Xn:X1:n 1] = [[Xn_1:X1:n_2] =+ =1[X3:X;] which is equiva-
lent to saying that the process is a stationary Markov process of or-
der one. For all other processes, both cumulative sequences, I;"™™ and
I7™, always underestimate the true multi-information rate for any
finite n. In contrast, for the incremental, mutual information based

sequence {l‘,{'c}x1 it holds I™ = I, for any Markov chain model if
-

only the neighborhood X;.,_; is sufficiently large (i.e. X, condi-
tioned on X, 1 is statistically independent of all other variables).
In summary, for any given number of dimensions n, the incremen-
tal, mutual information based sequence in general yields better
estimates of I, than the cumulative, multi-information based one.

2.3. Cumulative (multi-information based) method

The cumulative method is commonly used for estimating the
multi-information rate of natural images. For the sequence of the
multi-information of image patches of increasing size we have

1 1
= EI[XM] =5 ZH[X,»] — HXj.0)
i=1

HIXG ]+ (logp(Xia))x,,
> —(logp(x1))y, + % (log p(xin))x,, =I5, @

where p denotes a particular model distribution.

In order to obtain an empirical estimate of I;"" we use the lower
bound given by Eq. (4). The first term is the entropy H[X;] of the
univariate marginal distribution over the pixel intensities which
is the same foralli=1, ..., n due to stationarity. Since the problem
of estimating this term is identical for both cases, the cumulative
as well as the incremental approach, we will discuss it separately
at the end of the method section.

The second term in the definition of our estimator 1™ reflects
the average log-loss (Bernardo, 1979)

—(logp(X))x,, = HX1.n] + D [plp] = H[Xu.],

where Dy; denotes the Kullback-Leibler divergence, a positive
quantity that measures the mismatch between the true and the
model distribution. Therefore, the average log-loss has the desirable
property that any systematic mismatch between the model distri-
bution p and the true distribution p will lead to overestimation of
the joint entropy. In this way, we obtain a conservative estimate
of the true multi-information rate I..

For estimating the average log-loss, we follow (Eichhorn et al.,
2009; Lewicki & Olshausen, 1999; Lewicki & Sejnowski, 2000)
and use Monte-Carlo sampling
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~(loghX))y,, =~ > loghix),
i=1

over a large ensemble of m samples x; which differs from the train-
ing set used for fitting the parameters of p.

2.4. Incremental (mutual information based) method

For the incremental approach we employ the same strategy as
for the cumulative method: We use the average log-loss of a para-
metric density for estimating the conditional entropy in Eq. (2) in
order to obtain a conservative estimator for Iﬁ,"f. In principle, it
would be nice to rewrite the conditional entropy in terms of the
joint entropy again

H[XalX1.-1)] = H[X1:n] — HX10-1)]

1 . 1 N
~a (log p(X1.n-1))x, T (log p(X1n))x, ,»

as it would allow one to use exactly the same parametric density
model like in the cumulative method to estimate the joint entro-
pies. The caveat, however, is that the upward bias in the error in-
duced by using the average log-loss when estimating entropies
can now occur in both directions.

Therefore, we resort to a different strategy, using the average
log-loss directly for estimating the conditional entropy which
again yields a lower bound

T = HIX,] + (108 p (X1 0-1))x,, (5)
< H[Xa = HXo X op)] = I 6)

Therefore, we have to fit a conditional density model
P(Xn|X1.(n—1)) rather than a joint density model p(X.,,) like in the
cumulative approach.

2.5. Parametric density model

For the sake of better comparison, we will use the same Gauss-
ian scale mixture (GSM) model to serve as the parametric model
for the average log-loss estimators in both approaches. The GSM
model is a rich subfamily of elliptical contoured distributions
(Wainwright & Simoncelli, 2000) which have recently been dem-
onstrated to provide a good fit to local patches of natural images
(Eichhorn et al., 2009; Lyu & Simoncelli, 2009).

We use a variant of the GSM model which is defined as a mix-
ture of a finite number of zero mean Gaussians with differently
scaled versions of the same covariance matrix X:

K
p(X) = GSM(X|$,%,2) = > A N (X[t Z), 4,8 € R,
k=1

where the class probabilities 4, sum up to one.

For parameter fitting we use an expectation maximization (EM)
algorithm. To this end, we define the hidden variable Z indicating
which scale is picked for a specific data point x:

Pxz(X[k) = A (X|s; - Z)  and  py(k) = .

For the E-step, we need to compute the probability t* that Z =k
given the ith data point

TN (Xi|Sk - Z)
tf = pox(kx;) = ;f#
o1 e (Xilse - X)
In the M-step, for given J, and tff, 1<k <K, 1<i<mwe obtain
St
3 Ve
S ety

For computing the scales and the covariance in the M-step, we
need to maximize

2(5,2)=Y XK: tlog A (xi[sk, -X).

k=1

Since the maximum cannot be calculated analytically, we use a
block coordinate descent approach. In the first step, we fix s and
calculate X, in the second step, we fix £ and calculate s, using
the equations

)
m &

1 i

t Wi A
Lxx/ and s, _ L E %

> =
St Kyt

NgE

In our simulations, we find that one or two iteration are enough
for the covariance matrix and scale parameters to converge.

In order to use the same distribution for the second method, we
calculate the conditional distribution from the GSM model for fixed
parameters. This can be done analytically in the GSM model: Let
the covariance matrix of X of GSM(Xy.,[s, Z, 4) be

Z1 (n—1),1:(n-1) le(n—l).n
= .
21 (n-1),n z:n.n

Marginalizing out the random variable X, again yields a GSM
with parameters

GSM (X101 |S1:(n-1)> Z1:0-1),1:0-1) A1) ) -

Then the conditional distribution is just the ratio between the
original joint and the marginalized distribution:
_ GSM(XI:n‘sl:nyzl n.l:m}hln)
GSM(X1.(n-1)|81:(n-1)> Z1:1-1),1:(n-1)> A:(n-1))

DXy oy Xn[X:0-1))

2.6. Estimation of the univariate pixel entropy

In order to minimize the risk of overestimating the univariate
marginal entropy in either of the two approaches, we aim at using
a very precise nonparametric approach. To this end we use a histo-
gram based jackknifed maximum likelihood estimator (see e.g.
Paninski, 2003). Given m samples with a marginal standard devia-
tion of o we chose the bin width 4 according to the heuristic pro-
posed by Scott (1979): 4 = 3.49¢m3. Since the discrete entropy
asymptotically equals the differential entropy plus —log 4, we ob-
tain an estimate of the marginal entropy by adding the log of the
bin width 4. Using that method we reliably obtain a value of
1.57 bits per pixel for the univariate pixel entropy. Note that this
number like all differential entropies depends on the scale of the
pixel intensities. The multi-information rate, however, is indepen-
dent of the scale as it is computed from differences between differ-
ential entropies.

3. Experiments
3.1. Experiment on artificial data

In order to illustrate the two estimation methods, we first com-
pare the cumulative and the incremental approach on an artificial
stationary Gaussian random field using the autocorrelation of
natural images. To this end, we generated 10.000 images of
60 x 60 pixels by applying a linear transformation A to Gaussian
white noise & such that the covariance matrix of the resulting
Gaussian distribution = = AA" resembles the covariance matrix of
the van Hateren data set. We estimated the covariance matrix from
samples of 60 x 60 patches using the fact that due to stationarity
the covariance between two pixels at location (x,y) and location
(x,y), respectively, must only depend on their relative distance
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(x—x,y —y), which results in a symmetric block-Toeplitz covari-
ance matrix.

From those images we sampled ten pairs of training and test
sets of 1.000.000 image patches each, for a range of different patch
sizes. Fig. 1 shows the shape of the image patch shape used in our
two approaches. For the cumulative approach, we use patch sizes
2 x2,...,12 x 12. For the incremental approach, we use causal
neighborhoods of sizes 5, 13, 25, 41, 61, 85, 113, 145. The param-
eter estimation for the models was done in exactly the same way
as for the natural images below.

As a stationary Gaussian random field is completely defined by
the autocorrelation function we can compute the multi-informa-
tion and the mutual information analytically from AA'. Fig. 2a
shows the result for the full range from 1 to 3600 pixels.

Fig. 2b shows the empirical results obtained for &, Tem* and
Tj{“ as a function of the dimension N when using the average log-
loss of a Gaussian model distribution. For comparison, the dashed
black lines indicate the true multi-information rate I, obtained
analytically from the relevant submatrices =" and X of the
covariance matrix C needed to compute the multi-information
bounds

rcum 1 a cum cum
£ (S, - o et 25 ).

k=1
i 1
L= 3 (1032‘7% - IOgZUﬁu UH))v
respectively, where

at = (ETC) ,

nn

. N1 :
2 2 inc inc inc
02 1) =0 7(2 ) (2 ) (2 ) .
nf1:(n-1) n " a1y N\ - -\ " S -1y

The example visualizes the superiority of the incremental meth-
od over the cumulative method. The agreement between the ana-
lytical and empirical curves illustrates that the difference between
the two methods is not caused by insufficient amount of data or by
wrong model assumptions but solely by an unavoidable downward
bias of the cumulative method. As apparent from Eq. (3), this
downward bias originates from the fact that pixels close to the
boundaries suffer from an incomplete neighborhood. Therefore,
they do not contribute the full amount of redundancy to the mul-
ti-information rate and it requires very large image patches until
the pixels in the interior can sufficiently outnumber the pixels at
the boundaries. Even at a patch size of 60 x 60 the cumulative
method still underestimates the asymptotic information rate of

Analytical Ml for Artificial Data
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this stationary Gaussian random field by 0.02 bits per pixel. In
other words, the convergence of the cumulative methods is extre-
mely slow even though we are using the correct density model for
the evaluation of the average log-loss.

3.2. Natural image dataset and parameter estimation

We perform two blocks of experiments with natural images. In
the first block, we use images whose pixel values encode log-inten-
sities. In the second block, we use pre-whitened images generated
by a predictive coding scheme that subtracts from each pixel the
optimal linear prediction from a causal neighborhood around it.
In order to compute the multi-information for the original pixels,
we have to account for the whitening transformation. As this
whitening step can be described by a linear transform which has
vanishing log-Jacobian in the limit, we can lower bound the mul-
ti-information rate by the difference of the marginal entropy
(1.57 bits) on the pixel domain and the ALLs on the whitened
domain:

T = HIXy) + (108 pYalYrn 1)

g H[Xn] - H[Yn IYI:(n—l)]
< HIX,] = lim H[Yi[Yai ]

1
=HX,] - lim 2HY14]
logJ| = OHPX,] — lim 1 HXyi] = L.

where Y., denotes the whitened pixels. This lower bound is equal
to the multi-information estimate after whitening the images, plus
the difference of original marginal pixel entropy and marginal pixel
entropy of pre-whitened data, i.e.

I3 = H[Ya] = (l0gply1.0 1))+ HX] —HIYa] 7)
—_—

marginal entropy difference

MI estimate in second layer

The difference between the marginal entropies for the van Hat-
eren dataset is equal to 2.9 bits.

For the experiments on natural images we used exactly the
same amount of data as in the artificial example described above.
That is for each patch size we sampled ten pairs of training and test
sets of 1.000.000 log-intensity image patches from the van Hateren
database (van Hateren & van der Schaaf, 1998). Again, for the
cumulative approach, we use patch sizes 2 x 2,...,12 x 12. For
the incremental approach, we use causal neighborhoods of sizes

Comparison: Empirical vs Analytical

(b)

— Incremental Method

—— Cumulative Method [1/N]
Cumulative Method [1/(N-1)]

- - - Analytical

I
”

w

Ml rate (Bits/Pixel)
N
[$))

4 24 44 64 84 104 124 144
Image Size in Pixel

Fig. 2. Verification of the estimation methods on artificial data: Multi-information rate in bits per pixel as estimated by our two methods as a function of the number of
pixels. The blue and cyan curves show the result for the cumulative method and the red curve shows the result of the incremental method which significantly outperforms
the cumulative ones. The left figure (a) shows the analytic results for the full range of up to n=3600 dimensions using a logarithmic x-axis. The right figure (b) shows an
excellent agreement between the analytical and the empirically estimated lower bounds for both methods.
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5,13, 25, 41, 61, 85, 113, 145. For each patch size we run different
versions of the GSM model with K= 1, 4, 7, 10 scale mixture com-
ponents. All results shown for Teum and Tinc are evaluations on the
test set. Importantly, all evaluations on the training set yield iden-
tical results so that potential effects due to overfitting can be safely
excluded. The error bars in all figures indicate three standard devi-
ations over the ensemble of ten different test sets, apart from
Fig. 6b where we used two standard deviations because of the
smaller range of the y-axis.

4. Results

Fig. 3 shows the multi-information rate computed with the two
different methods for the SGM with K= 10 scale mixture compo-
nents. One can see from the figure that the incremental method
significantly outperforms the cumulative one and provides a tigh-
ter lower bound.

Fig. 4 shows the estimated multi-information rates for the dif-
ferent methods and different numbers of scale mixture compo-
nents. The performance seems to saturate for about seven
mixture components.

For the incremental method, the lower bound takes a maximum
at a neighborhood size of 25 pixels, whereas the cumulative meth-
od still exhibits a tiny increase of the lower bound at 144 pixels.
This raises two questions:

(1) How can it be that the amount of dependencies captured
with the incremental method is decreasing with increasing
patch size?

(2) Could it be that the cumulative method is able to better cap-
ture long range interactions between pixels and hence at
some point can yield a tighter lower bound when using very
large image patches?

The first question is motivated by the fact that and I™ can
only increase with increasing patch or neighborhood size. As one
can see from the Eqgs. (4) and (5), however, the lower bounds 7;‘""
and 7’,'1”5 can still decrease with increasing n if the inequalities
Tem < 1™ and Tine < [™ become less and less tight. The differences
between the true and the estimated quantities I°™ — %M and
[ _Tin equal the Kullback-Leibler distance between the true dis-
tribution and the model distribution. If the mismatch of the model
distribution becomes larger for increasing patch size, this can re-
sult in a lower bound which decreases with increasing patch size.

cum
In
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3.5
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Fig. 3. Comparison of the cumulative and the incremental approach on natural
images with K=1,4,7,10 scale mixture components. The blue and cyan curves
show the result for the cumulative method and the red curve shows the result of the
incremental method. Analogous to the results for artificial data, the incremental
method significantly outperforms the cumulative ones. The arrow shows the
maximum amount of multi-information estimated by the incremental method.

This is what we see in case of the incremental method. In case of
small patch sizes, the GSM model can exploit higher-order correla-
tions to model contrast dependencies between nearby pixels. In
case of large image patches, however, the GSM model has to com-
promise between strong higher-order correlations between nearby
pixels and weak higher-order correlations between distant pixels.
Therefore, the model fit of the GSM becomes worse for larger patch
sizes which causes the decrease in T, In other words, the limited
flexibility of the GSM model to capture the structure of higher-or-
der correlations becomes increasingly severe with increasing
dimensionality. For second-order correlations, however, this is dif-
ferent, because with a Gaussian distribution one can always fit any
possible pattern of second-order correlations. Since in contrast to a
general GSM, a single Gaussian distribution is always entirely igno-
rant against higher-order correlation, we do not see the effects of
imperfect fitting of higher-order correlations in case of K= 1. For
a Gaussian model, the lower bound can therefore only increase.
This is nicely reflected in Fig. 4b: for K =1 the lower bound always
increases, whereas for K > 4 the lower bound decreases for large
patch sizes.

Given that we explained the decrease of the lower bound for the
incremental method with the limited flexibility of the GSM model,
why do we not see a decrease for the cumulative method? We can
explain this with the downward bias caused by the reduced contri-
bution to the multi-information from pixels close to the patch
boundaries. It is important to note that the persistent increase in
case of the cumulative method does not originate from a better im-
age model. Like in the artificial example, we fitted the same model
distribution to optimally fit the joint distribution over the image
pixels for the cumulative as well as for the incremental method.
The crucial difference lies only in the way how we compute the
lower bound to the asymptotic information rate from it. In one case
we divide the total multi-information by the number of pixels and
in the other case we compute the mutual information between one
pixel and the rest by computing the conditional from the joint
model. Therefore, the persistent increase up to N=144 for the
cumulative method does not reflect a better fit to the data but
merely shows that the downward bias of the cumulative method
for small image patches, for which the ratio of boundary to interior
pixels is still large enough, is so substantial that it easily outbalanc-
es the decrease caused by degradation in the model fit.

Our second set of experiments on the pre-whitened images (see
Section 3) further corroborates this explanation. The redundancy
reduction caused by the pre-whitening is assessed as explained
above and is the same for both methods. Therefore, after pre-whit-
ening, all differences between the two methods can only originate
from differences in assessing the contribution of higher-order cor-
relations. Without the large contribution of second-order correla-
tions, the downward bias for the cumulative method for small
image patches becomes much smaller and hence, the effect of deg-
radation in the model fit on the lower bound becomes more visible
for the cumulative method as well. As can be seen in Fig. 5, the
cumulative method now has a maximum as well at a patch size
of 7 x 7 pixels. For the incremental method, the optimal neighbor-
hood size is further reduced to n = 13. The type of higher-order cor-
relations that can be captured by the GSM model are limited to
variance (contrast) correlations between the different pixels. The
fact that the lower bound takes its maximum for a very small
neighborhood size shows that this type of correlations can be ex-
plained (away) by short range couplings.

Note that the curves shown include the contribution of second-
order correlations that were removed during the pre-whitening
step. The second-order contribution equals the lower bound ob-
tained with the Gaussian distribution (K= 1) and is about 2.7 bits
per pixel. Remarkably, the maximum lower bound determined
with the pre-whitened images yields the same estimate for the
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Fig. 4. Comparison of the multi-information rate estimates for different numbers of components (K= 1,4, 7, 10). (a) Multi-Information rate estimated by the cumulative
approach. (b) The same result using the incremental approach. In both cases the number of scale mixture components have similar effects and the performance seems to
saturate for seven components. The arrow indicates the maximum amount of multi-information estimated by the incremental method.
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Fig. 5. Comparison of the multi-information rate estimates for different numbers of components (K = 1, 4, 7, 10) based on pre-whitened image data set. (a) Multi-Information
rate estimated by the cumulative approach. (b) The same result using the incremental approach. Since the pre-whitening removes the downward bias of the cumulative
method for the second-order contribution to the multi-information, it now has substantially improved and its lower bound—similarly to the incremental method—now takes
a maximum for a relatively small patch size as well. The arrows indicate the maxima for both methods.

multi-information rate as the maximum lower bound obtained on
the original images. This nicely underlines the reliability of our
estimates.

As a final result we show how the incremental method can be
further improved by improving the parameter fitting. As explained
in Section 2, we always optimized the likelihood for the joint dis-
tribution and not for the conditional one. However, maximizing
the likelihood for the joint model does not necessarily also maxi-
mize the likelihood for the conditional distribution which would
be equivalent to minimizing the average log-loss of the conditional
distribution. Based on Jebara’s work on conditional expectation
maximization (Jebara, 2002) we developed a new algorithm (see
Appendix B) that we used to optimize the conditional likelihood
for the GSM model. The result of this optimization is shown in
Fig. 6a. In this way we obtained our best lower bound of 3.26 bits
per pixel which is almost 0.6 bits larger than the multi-information
rate obtained for a single Gaussian.

Fig. 6b shows the residual multi-information rate (see Eq. (7))
achieved by optimizing the conditional likelihood after pre-whit-
ening (solid red). For comparison we also show the residual mul-
ti-information rate when optimizing for the joint likelihood
(dashed) and the cumulative method (solid).

The large difference between the GSM using only a single mix-
ture component and the GSMs with several ones is particularly
interesting. Since the GSM in case of K = 1 is a plain Gaussian which
is completely determined by its mean and its covariance matrix,
the entropy rate of this GSM shows the contribution of the

202

second-order moments to the total entropy of the signal. The fact
that this difference is large shows the highly non-Gaussian behav-
ior of natural images and, therefore, a substantial amount of high-
er-order correlations (Eichhorn et al., 2009; Chandler & Field, 2007;
Ruderman & Bialek, 1994).

5. Summary and discussion

Measuring the total redundancy of natural images is a challeng-
ing task. In this paper we showed that the conventionally used
cumulative method suffers from an unfavorable downward bias
for small image patches. This problem can be avoided by using
the incremental method. We compared the two methods for both
artificial data and natural images, and demonstrated that the incre-
mental method always yields a better lower bound on the multi-
information rate.

As our method yields a conservative lower bound on the multi-
information rate, we can safely conclude from our results that
I.. > 3.26 bits per pixel for the van Hateren data set. This number
is substantially larger than the 2.7 bits per pixel previously esti-
mated by Petrov and Zhaoping (2003) who used very small neigh-
borhoods only (n = 7). While they concluded that the total amount
of higher-order correlations in natural images is small, the differ-
ence in the performance of the Gaussian model (K = 1) and the full
GSM model (K=10) suggests that the amount of higher-order
correlations is at least 0.6 bits per pixel which we think is quite
substantial.
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Fig. 6. Further improvement of the lower bound by optimizing the GSM model for the conditional likelihood. The arrow indicates the maximal amount of multi-information
that was estimated. (a) shows the total multi-information rate while (b) shows the residual multi-information rate after the pre-whitening step (first term of Eq. (7)). The
optimization of the conditional likelihood leads to a better fit of the conditional distribution and, hence, less degradation in the incremental method (solid vs. dashed red
curve). It further corroborates the superiority of the incremental method above the cumulative method also for the pre-whitened data (red vs. other solid curves).

Using a less conservative nearest neighbor estimation method,
Chandler and Field (2007) arrived at an information rate similar
to ours. Taking the difference between the data points for Gaussian
white noise and natural scenes in Fig. 14 in Chandler and Field
(2007) would yield a multi-information rate estimate of about
3.1-3.3 bits per pixel. From their extrapolation in the same figure
one obtains a multi-information rate of 3.7 bits per pixel in the
limit.

In previous studies, we used the cumulative method together
with an L,-spherically symmetric model and an ICA model to esti-
mate the redundancy reduction achieved by different neural re-
sponse properties (Sinz & Bethge, 2009). The multi-information
reported for ICA and the L,-spherically symmetric model are 3.41
and 3.62 bits per pixel. Given that the multi-information estimates
in Sinz and Bethge (2009) were obtained on a different dataset
(Bristol Hyperspectral), the results are reasonably similar. We re-
peated the experiments of Sinz and Bethge (2009) and computed
the values for the van Hateren dataset for 144 dimensions. We ob-
tained 2.92 bits per pixel for ICA, 3.05 bits per pixels for the joint
GSM, and 3.17 bits per pixel for the L,-spherically symmetric mod-
el. This is better than the result of the cumulative method for the
GSM but about 0.1 bits per pixel worse than the result of the incre-
mental method. Thus, again the incremental method provides a
better bound by using only 25 dimensions. The differences be-
tween the results for the Bristol Hyperspectral dataset and the
van Hateren dataset are within the typical variations one observes
for different image libraries. They mainly originate from variations
in the second-order redundancies. In particular, the difference be-
tween the Ly-spherically symmetric model and ICA is very similar
for both data sets: 0.21 bits per pixel for Bristol Hyperspectral
and 0.25 for van Hateren.

In this study, we used the Gaussian scale mixture model for
both the cumulative and the incremental approach for the sake
of comparison. In the future we can make further advantage by
using more sophisticated conditional density models that are opti-
mally tailored to the incremental approach. It is interesting to note
that the conditional distribution has a close link to the inverse of
the auto-covariance matrix of random processes (the so called pre-
cision matrix). Typically, the precision matrix is much sparser and
hence captures the conditional dependency structures much more
efficiently than the covariance matrix (Rue & Held, 2005). In fact,
for a Gaussian Markov random field, an entry of the precision ma-
trix is non-zero if and only if the two points are conditionally
dependent. When looking at the precision matrix for natural
images, the number of components that have a value significantly

larger than zero is typically very small and restricted to a very
small neighborhood around that pixel.

In summary, we expect that the incremental method combined
with an appropriate conditional density model will lead to major
improvements in statistical modeling of natural images.
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Appendix A

Definition 1. (Causal points). Let the causal points of a particular
point in a random field be all points that are above that particular
point or at its left in the same row.

Definition 2. (Causal neighborhood of radius [). Let the causal
neighbors of radius | of a particular point be all causal points which
their horizontal and vertical distance from that particular point
being smaller or equal to I (see Fig. 1b for an example of a causal
neighborhood of radius 3).

Theorem 1. (Convergence of entropy rate for 2D stationary pro-
cess). The sequence of conditional entropies with causal neighbor-
hoods converges to the entropy rate of a stationary random process.

Proof. Consider a sequence of sections X with increasing size
which is taken from a 2D stationary process (see Fig. 7). Each sec-
tion is parametrized by a parameter [ which determines the extent
of the section. The width of the section is chosen to be w = > and its
height is equal to h=P+1—-2. O

The pixels are enumerated from top-left to button-right as it is
shown in the Fig. 7. Let G and G be the sets that contain the indices
which are shaded in gray and white colors, respectively. Further-
more, let n denote the total amount of pixels in the section, and
let ng and ng be the number of pixels in the gray and white regions,
respectively.

If we let the size of the sections go to infinity by letting I go to
infinity, they will cover the whole plane and the number of white
pixels will become negligible, i.e.
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Fig. 7. Enumeration of the pixels in a 2D stationary process.
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Since the sections X will cover the whole plane in the limit, the se-
quence of entropies of the single sections converges to the entropy
of the stationary process:

1 4
h = lim 2o HXuao) = lim 2o ZH[xux] s1)-
If we split the sum into two sums for the pixels in the gray, and
white region, respectively, we obtain

h=1lim —

. 1
fim 2 (%”[Xk\xmg

+11m — Zka|x1k 1]
keG

(10)

Define H,[X] to be the conditional entropy of X given a causal
neighborhood of radius « (see Fig. 1b). Since conditioning de-
creases the entropy we obtain the following inequalities for sta-
tionary processes:

H[Xk|Xi-1]
H[Xk|Xix1]

Hi,
Ho,

VkegG,
VkeG.

Hw <
<

<
<

Hy

Using these inequalities in Eq. (10) we obtain:

lim Hyy

[}

Hi-+ lim 00

Using Eqgs. (8) and (9) in Eq. (11) we get:

h<11m

[y} l) Ho.

limHyg < h

i < }lm H,.

The sequences H,y and H; will converge to the same limit, since
{Hw}i=1,2.... is a proper subsequence of {H;};-1 2. ... Hence, using the
sandwich theorem the sequence of conditional entropies {H}i12, .
converges to the true entropy rate from above.

Appendix B
Minimizing the conditional average log-loss for a given model is
equal to maximizing the conditional likelihood. Given the observed

data {x;}",, the conditional log-likelihood is given by:
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L8 Z1n-1).1:n-1)4)

The conditional log-likelihood is the difference between the
joint log-likelihood .#; and the marginal log-likelihood .#,. Com-
monly, the EM algorithm is used to estimate mixture distributions.
It constitutes a variational approach which maximizes a lower
bound on the joint log-likelihood based on the Jensen inequality.
In each iteration the maximum of the bound is computed. Since
here .#, enters the conditional log-likelihood with a negative sign,
the normal Jensen inequality is not useful to bound this function.
Jebara derived a reversed form of the Jensen inequality for the
exponential family (Jebara, 2002).

We used Jebara’s method for deriving a conditional EM algo-
rithm for the scale mixture of Gaussians. In the E-step the follow-
ing coefficients are computed:
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Using these coefficients we get the following update rule for the
scale and marginal covariance parameters.
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The conditional prediction matrix I' = % (n 1 HZ1n-1)n and
the conditional variance ) =X, —Zn1.n- ”21 (1) (1) 211
only depend on the joint log-likelihood .#; and their estimations
in the M-step are given by:

m
3 S,
k i=1
1

r= M 1:(n—1),1:(n— 1)M1 (n—1),

/ = Mnn - Mn.l:(n—l)M1;}",1).1;(",1)M1:(11—1).n-

Similar to the normal EM algorithm for optimizing the joint
likelihood of theGSM model, one needs to iterate between estimat-
ing s and X for maximizing the bound.

The derivation before was for the case of fixed weighting coef-
ficients i. For updating the weighting coefficients one can derive
another EM update rule. Define a (K — 1) x (K — 1) matrix N with
the following entries

N Ja=a =g
A i

ifi#].

Consider a K — 1-dimensional vector 2,0 < k <K for which all
entries are zero except the kth one, which equals one. Furthermore,
let zx a zero vector with K — 1 elements. Using those vectors, we
get the following update rules for the E-step

¥ = 4G(rf/2) (2 — A1) N (2 — dak),
and the M-step
it - f"lrf‘
m+2k 1Y

We observed that in practice the conditional EM algorithm con-
verges very slowly. We found out that this is because the reverse Jen-
sen inequality for the covariance is a very loose bound which
becomes even looser for higher dimensions since the coefficient w
increases rapidly with increasing dimensionality. As a consequence
of this, we observed empirically that the EM algorithm increases the
log-likelihood slower than gradient ascend with line search.

We accelerated the EM algorithm by using the Quasi-Newton
method (algorithm QN2 in Jamshidian & Jennrich, 1997). The idea
behind this method is to approximate the Newton update H 'g(6),
where H is the Hessian and g is the gradient at # with the update
£(0) — Sg(0) where g is EM gradient. In other words, the difference
of two EM steps and S is a matrix that needs to be updated as well.
The authors modify BFGS Quasi-Newton method to get the update

for S:
B AgTAO*\ AGAGT
AS = (1 *AgTA0 ) AgTA0

where A9* = —Ag + SAg while A8 and Ag show the amount of
change in variables ¢ and g after each iteration, respectively. In
the implementation one initializes with $=0 and then updates §
according to the update rule. If the line search is not successful §
is reset to zero.

In practice we observed that this Quasi-Newton acceleration
significantly increases the convergence speed but it still remains
slow. In the future, this may be substantially improved by exploit-
ing the Quasi-Newton and Newton method directly on the log-
likelihood.

+ /.

AO*AO" + (A0* AT
AgTAO
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Divisive normalization in primary visual cortex has been linked to
adaptation to natural image statistics via Barlow’s redundancy re-
duction hypothesis. Using recent advances in natural image model-
ing, we quantify the residual redundancy after divisive normalization
in a population of linear-nonlinear neurons. We find that static di-
visive normalization is rather inefficient in reducing local contrast
correlations and demonstrate that a simple temporal contrast adap-
tation mechanism can substantially increase the efficiency. Our find-
ings highlight the importance of adaptation to the local contrast
statistics via shifts in the contrast response curve of neurons.

sensory coding | primary visual cortex ‘ redundancy reduction | natural image
statistics

Abbreviations: V1, primary visual cortex;

It has been a long-standing hypothesis that the computa-
tional goal of the early stages of visual processing is to re-
duce the redundancies which are abundantly present in natu-
ral sensory signals [1, 2]. Redundancy reduction is a general
information theoretic principle that subsumes many possible
goals of sensory systems like maximizing the amount of infor-
mation between stimulus and neural response [3], obtaining a
probabilistic model of sensory signals [4], or learning a repre-
sentation of hidden causes [3, 5]. For a population of neurons,
redundancy reduction predicts that neuronal responses should
be statistically independent from each other [2].

Previous work has linked redundancy reduction of natural
signals to divisive normalization contrast gain control in pri-
mary visual cortex by demonstrating that correlations in the
variances of neuronal responses are removed [7, see also Fig-
ure 1a]. Divisive normalization is a nonlinear mechanism that
non-linearly rescales the response of a population of neurons
by dividing the activity y; of a single neuron by the activity
of an inhibitory pool of other neurons [6].

In this study we compare the redundancy reduction
achieved by a static divisive normalization mechanism in a
model population of V1 neurons to a recently developed opti-
mal divisive transformation, called radial factorization or ra-
dial Gaussianization [8, 9], to assess whether divisive normal-
ization is powerful enough to capture the rich dependencies of
natural images. The model population receives an input im-
age patch x which is filtered by linear receptive fields w;. The
resulting responses y; = w, x are transformed with divisive
normalization. The essential mechanism in divisive normaliza-
tion is a rescaling ||z|| = &||y||/+/o + |ly||? of the norm of the
population response y. Under reasonable assumptions about
the statistics of natural image patches, radial factorization
is the optimal mechanism in terms of redundancy reduction
acting on the norm |[|y|| (see Methods).

Experiments and Results

We compared the amount of redundancies removed by divi-
sive normalization in the response of a population of model
neurons to natural image patches to the amount removed by

www.pnas.org/cgi/doi/10.1073/pnas.0709640104
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radial factorization and find that divisive normalization leaves
a substantial amount of residual redundancies (Figure 1b).
While both divisive normalization and radial factorization re-
move correlations in the variances of the neural responses, the
residual amount of dependencies for divisive normalization is
still approximately 34% of the total redundancies present in
the unnormalized population response (Figure la-b). This
demonstrates that the underlying assumption of divisive nor-
malization about the statistics of natural image patches misses
important regularities.

To understand this in more detail, we derived what dis-
tribution the linear filter responses ||y|| would have if divisive
normalization were the optimal redundancy reducing mech-
anism (referred to as Naka-Rushton distribution in the fol-
lowing), and compared it to the empirical distribution rep-
resented by a large collection of uniformly sampled patches
from natural images (Figure 1c). The only free parameter of
the Naka-Rushton distribution is the semi-saturation constant
o? of the divisive normalization function which determines
the horizontal position of the contrast response curve in neu-
rons. We fitted o® via maximum likelihood (see Methods) and
found that even for the best fitting o there is a substantial
mismatch. This explains the insufficient redundancy reduc-
tion because the Naka-Rushton distribution expects most of
the responses ||y|| to fall into a much narrower range than
responses to natural images do in reality (Figure 1c).

We explored two options how the visual system could po-
tentially increase the flexibility and, therefore, the redundancy
reduction performance of divisive normalization: enhancing
static divisive normalization with more parameters or allow-
ing for a temporal adaptation of o2.

We find that an extended divisive normalization transform

x . .
llz]| = &llyll2*°/+/o2 + [ly[|" achieves substantially more re-
dundancy reduction and that its corresponding distribution
on |ly| fits significantly better (Figure 1b-c). However, we
also find that the corresponding shape of the population con-
trast response exhibits a physiologically unreasonable shape
(Figure 1c inset).

Exploring the second option, we found that the distribu-
tion on |ly|| predicted by a temporally adapting o closely
matches the empirical distribution of responses to patches
sampled with simulated eye movements, and yields a sub-
stantial reduction in redundancy (Figure 2a-b). Our tempo-
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rally adapting model relies on correlations between the con-
trast at different time steps to choose the current o based
on the recent stimulation history. Previous studies on redun-
dancy reduction with divisive normalization (7, 9, 8] ignored
the structure caused by fixations between saccades in natu-
ral viewing conditions. Contrast response curves of neurons
in primary visual cortex are known to adapt to the ambient
contrast level [10] by adapting 0% A temporally adapting
o under redundancy reduction predicts that the joint pop-
ulation response ||y|| should be well modeled by a mixture
of Naka-Rushton distributions each of which corresponding
to a different value of 0. For a fixed history of responses
Hyp = (r¢—1,...,r¢+—x) preceding r; the normalized response
kri/+/o(Hy)? + 7 would follow a truncated x-distribution,
which is equivalent to a Naka-Rushton distribution on r; con-
ditioned on Hy

re|Hy, ~ v(re|o(Hr)).

Averaged over all histories the distribution of r; is a mixture
of Naka-Rushton distributions

o~ ol = [ virlo(Hp(H)dHL = [ vlra)plo)do.
(1]

We used a simple model of saccades and micro-saccades
to simulate eye movements on natural images and fitted such
a mixture to the responses in our model. In order to quantify
the amount of redundancy reduction, we then estimated o2 for
the present patch from the immediately preceding one using
this mixture of distributions. We found that a simple strat-
egy for choosing o given the immediate history significantly
decreased the amount of residual redundancies to 1.1%.

We also verified that o cannot be chosen randomly but the
correct utilization of temporal correlations is crucial for this
improvement. If that was the case o could be chosen indepen-
dently of the preceding history at each time step, and be used
to transform the current response with 7 — kr¢/\/0? + 17
such that the result still yield a truncated x-distribution. This
is the same as saying that a truncated y-distribution could be
described as a mixture of the distributions that result from
transforming r; with Naka-Rushton functions with different
values of 0. We transformed the input distribution with Naka-
Rushton functions that differed in the value of o (Figure 2c,
colored lines). Different colors in Figure 2c refer to different
values of o. If o could be drawn independently, a positively
weighted average of the colored distributions should be able to
yield a truncated yx-distribution (Figure 2c, dashed line). One
can immediately see that this is not possible. Every compo-
nent will either add a tail to the left of the x-distribution or a
peak to the right of it. Since distributions can only be added
with non-negative weight in a mixture there is no way that
one distribution can make up for a tail or peak introduced by
another. Therefore, o cannot be chosen independently of the
preceding stimulation.

Discussion

Our results suggest a very specific link between the adapta-
tion of neurons to the ambient contrast level and redundancy
reduction for natural images. Our analysis does not com-
mit to a certain physiological implementation or biophysical
constraints, but it demonstrates that the statistics of natu-
ral images require more degrees of freedom for redundancy
reduction in a population response than a static divisive nor-
malization model can offer, and that the temporal adaptation

2 | www.pnas.org/cgi/doi/10.1073/pnas.0709640104

of o might be necessary for a flexible adaptation to the statis-
tics of natural images.

Compared to extended divisive normalization, the main
reason for the worse performance of divisive normalization
with static o2 is that the interval containing most of the prob-
ability mass is too narrow and too close to zero compared to
the empirical distribution. To visualize that, we sought after
a general signature that could depict whether an adaptation
mechanism is powerful enough for substantial redundancy re-
duction. To that end, we plotted the median of the different
empirical distributions and the ones implied by the models
against the width of the interval between the 10% and the
90% percentile (Figure 3). We also included a dataset from
real human eye movements by Kienzle et al. to ensure the
generality of this signature [11]. Real fixations could intro-
duce a change in the statistics because real observers tend to
look at patches with higher contrasts [14]. The empirical data
and all models that yield strong redundancy reduction exhibit
a ratio greater than 1.5. This signature can be used for future
physiological experiments to test the suggested link between
redundancy reduction and contrast gain control.

Methods

The code and the data are available online under
http://www.bethgelab.org/code/sinz2012.

Data.

van Hateren data For the static experiments, we used ran-
domly sampled 17 x 17 patches from the van Hateren database
[12]. For all experiments we used the logarithm of the raw light
intensities. We sampled 10 pairs of training and test sets of
500, 000 patches for which we employed the preprocessing of
Eichhorn et al. by centering all patches on the pixel mean and
rescaling them such that whitening became volume conserving
[13].

For the simulated eye movements, we also used 4 pairs of
training and test sets. For the sampling procedure, we re-
peated the following steps until 500, 000 samples were drawn:
We first drew an image randomly from the van Hateren
database. For each image, we simulated ten saccades to ran-
dom locations in that image. For each saccade location which
was uniformly drawn over the entire image, we determined the
number m of patches to be sampled from around that location
by m = [v-7] where v = 50H z was the assumed sampling fre-
quency and 7 was a sample from an exponential distribution
with average fixation time 0.2s. The actual locations of the
patches were determined by Brownian motion with standard
deviation o = 30 starting at the saccade location

Kienzle data While the van Hateren database is a stan-
dard dataset for static natural image statistics. To make sure
that our results also hold for real fixations, we sampled data
from the images used by Kienzle et al. [11]. We computed the
10% and 90% percentiles as well as the width of the interval
between them for both datasets for Figure 3.

We constructed two datasets: One where the patches were
uniformly drawn from the images, and one where we used
Brownian motion with standard deviation of o ~ 35 around
human fixation spots to simulate human fixational data. We
applied the same preprocessing as for the van Hateren data:
centering, rescaling such that whitening is volume conserving,
and whitening

Models. Both the divisive normalization model and the opti-
mal radial factorization consist of two steps: a linear filtering
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step and a divisive normalization step (Table 1). In the fol-
lowing, we describe the different steps in more detail.

Note that, for modeling neural responses, both models’
responses would be mapped into firing rates afterwards by
an elementwise rectification step and possibly a nonlinearity.
Since the positive and the negative part of each filter response
can be encoded by two neurons with opposite rectifiers and
since elementwise nonlinearities do not change the redundancy
(i.e. the multi-information), we did not explicitly model the
rectification step in our analyses.

Filters The receptive fields of our model neurons, i.e. the
linear filters of our models, are given by the rows of a matrix
W = QA’%UTA. A is an 288 x 289 matrix with mutually
orthogonal rows with mean zero. This matrix projects out the
DC component of the data [13]. U contains the first n = 72
principal components of Ax in its columns, and A is a diag-
onal matrix with the corresponding eigenvalues. Therefore,
A 30T is a whitening matrix. We used only n = 72 filters
corresponding to the first 72 principle components in order to
exclude high spatial frequencies.

Q is an orthogonal matrix, which was trained with in-
dependent subspace analysis with two-dimensional subspaces
[15]:

n/2
p(y) = [T pr(yar, y2n1[95) with y = Wx (2]
k=1
where 1 denotes the list of free parameters for each gi. This
yields filter pairs that resemble quadrature pairs like in the
energy model of complex cells [17, 18]. Each single p; was
chosen to be a two-dimensional L,-spherically symmetric dis-
tribution [16]

ok (ly2r:2k41lp )
lyar-2nir 5~ S2

2 v
lIylly = (Z \in”> ;p>0
i=1

with a radial y-distribution o(r|u,s) = y(u,s) with shape u
and scale s. S5 denotes the surface area of the L,-norm unit
sphere in two dimensions [16]. During training, we first fixed
p = u = 1; after initial convergence, we retrained the model
with free p and u.

The likelihood of the data under equation (2) was opti-
mized by alternating between optimizing @ for fixed ¥4, and
optimizing the ¥ for fixed Q. The gradient ascent on the
log-likelihood of @ over the orthogonal group used the back-
projection method by Manton [19, 20, 21].

pr(Yorakt1|0x) =

Normalization

Optimal contrast gain control: radial factorization
Radial factorization is the optimal redundancy reduction
mechanism for Ly-spherically symmetric distributed data
[22, 16]. Ly-spherical symmetry assumes that all data points

1
of a given Ly-norm r = |lyll, = (31, |:|”)” are uniformly
distributed on the Ly-sphere with that radius. A radial dis-
tribution o(r) determines how likely it is that a data point is
drawn from an Ly-sphere with that specific radius. Since the
distribution on the sphere is always uniform, the radial dis-
tribution ¢ determines the specific type of distribution. For
example, for p = 2 and o(r) = x(r) one obtains a isotropic
Gaussian, since the Gaussian distribution is spherically sym-
metric (p = 2) and has a radial x-distribution (o(r) = x(r)).
One can show that, for a fixed value of p, there is only one

Footline Author
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type of radial distribution such that the joint distribution is
factorial [23]. For p = 2 this radial distribution is the x-
distribution which corresponds to a joint Gaussian distribu-
tion. For 0 < p # 2, the radial distribution is a generalization
of the x-distribution and the joint distribution is the so called
p-generalized Normal [24]. Radial factorization is a mapping
on the Lp-norm [ly|, of the data points that transforms a
given source Ly-spherically symmetric distribution into a p-
generalized Normal. Since the p-generalized Normal is facto-
rial, radial factorization is a nonlinear redundancy reduction
mechanism.

The reason why radial factorization is a very strong re-
dundancy reduction mechanism on natural images is that the
filter responses of whitening filters to natural image patches
are well modeled by Ly-spherically symmetric distributions
[22]. It models the distribution of r = ||y, with a flexible
distribution and non-linearly rescales the radius r such that
the radial distribution becomes a generalized x-distribution
and, hence, the joint distribution becomes factorial. If the
flexible distribution is denoted by o the new x,-distributed
radius can be computed via (Fy,' o F,) (|ly|). This mapping,
also known under the name histogram equalization, transforms
o-distributed radii in x,-distributed one. x, denotes the gen-
eralized x-distribution and F denote cumulative distribution
functions of the respective distributions. On the joint re-
sponses y, radial factorization first divides out the radius and
rescales it with the new radius:

(-7:;,,1 0]:9) (HYHD)

Yy
yll»

In our case p was chosen to be a mixture of five y-distributions.
]—';pl is the inverse cumulative distribution function of a x,-
distribution which is the radial distribution of a p-generalized
Normal distribution [24].

When determining the optimal redundancy reduction per-
formance on the population response, we set p = 2 in order to
use the same norm as the divisive normalization model. Only
when estimating the redundancy of the linear filter responses,
we use p = 1.3 [22].

Divisive normalization model and Naka-Rushton dis-
tribution We use the following divisive normalization
transform

&llyll2

2 >
Wl e vm
which is the standard model for neural contrast gain control
[6].

Divisive normalization acts on the Euclidean norm of the
filter responses y. While in radial factorization the target
and source distribution were fixed, and the goal was to find
a mapping that transforms one into the other, we now fix
the mapping to divisive normalization, the target distribu-
tion on the normalized response z to be Gaussian (||z]|2 to be
x-distributed) and search for the corresponding source distri-
bution. Since divisive normalization saturates at x, we will
actually have to use a truncated x-distribution on [z|2. &
becomes the truncation threshold. Note that radial trunca-
tion actually introduces some dependencies, but we keep them
small by choosing the truncation threshold x to be the 99%
percentile of the radial x-distribution which is approximately
K =~ 10.14. Note also that choosing a Gaussian target dis-
tribution does not contradict the finding that cortical firing
rates are found to be exponentially distributed [25], since each
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single response z; can always be transformed again to be ex-
ponentially distributed without changing the redundancy of
z.

The distribution on 7 = ||y||2 such that

slyll2

Izl =
o>+ |yl

is truncated x-distributed can be derived by a simple change
of variables. In the resulting distribution
kMg 2yl
exp (

6 (2, 2)1(2)29)% (02 +72)

the truncation threshold k, the semi-saturation constant o,
and the scale of the y-distribution become parameters of the
model. The parameter s of the Naka-Rushton distribution
controls the variance of the corresponding Gaussian and was
always chosen such that the Gaussian was white with variance
one. The only free parameter of the Naka-Rushton distribu-
tion is ¢ which couples shape and scale. & is the regularized-
incomplete-gamma function which accounts for the truncation
at k. We call the distribution Naka-Rushton distribution and
denote it with v (k, 0, s).

To derive the distribution on |ly| for which the ex-
syl 240
a (truncated) x-distribution, the steps are exactly the same as
for the standard divisive normalization transform above. Note
that extended divisive normalization saturates only for § = 0.
Therefore, the distribution on ||z||2 has to be a x-distribution

if 6 > 0 and a truncated x-distribution if § = 0. This yields
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tended divisive normalization transformation yields
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for 6 = 0. The parameters of the distribution are now o, §, K,y
and s.

The parameters for all divisive normalization transforms
were estimated via maximum likelihood of the Naka-Rushton
distribution on the Euclidean norms {r;}i>; = {||yill2}i~1 of
the filter responses to natural image patches. We did not op-
timize for s in the extended Naka-Rushton distribution but
fixed it such that the corresponding Gaussian was white.

nt2
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P’ 2s
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Dynamically adapting ¢ For the model with dynamically
adapting o, we first model the Euclidean norms r; = ||y:||2
of the filter responses to the patches from the simulated eye
movement data with a mixture of 500 Naka-Rushton distri-
butions

500

> ulrlom,

=1

o(r)
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using EM [26]. 7; denotes the probability that o = ¢;. The
values of o; where chosen in 500 equidistant steps from 0.01
to 12.

How much redundancy reduction can be achieved with a
dynamically adapting o, depends on the dynamics according
to which it is selected based on the recent history. While there
might be many strategies, we chose a parsimonious one. To
that end, we evaluated the posterior

wiv(r|o:)

500
j=1Y

o7 =) = o oy

)oiC the mixture distribution at 100 equidistant locations be-
tween 107! and 35, computed the posterior mean and stan-
dard deviation at those locations, rescaled the standard de-
viation by 1/v/2, and fitted a piecewise linear function on
the intervals [0,1),[1,2),...,[30,00) to each set of values. In
the first interval, the linear function was constraint to start
at zero. From these two functions u(r) and o(r), we com-
puted two functions for the scale § and the shape u of a ~-
distribution

via moment matching.

In order to obtain a value o for the Naka-Rushton function
for transforming a value r; based on the value of its predeces-
sor 141, we sampled o from a 7-distribution with shape and
scale determined by u(r;—1) and 0(r¢—1).

Percentiles For the dynamically adapting o2 in Figure 3,
we sampled from

o) = [ [ vtrlo s snlolutr), o0))p(r)dodr

and computed the percentiles based on the sampled dataset.
For the sampling procedure, we drew o from the -distribution
Y(o|u(ri),0(r;)) with shape and scale computed from r;
and then sampled r from the Naka-Rushton distribution
v(r|o,k,s) with that o. We repeated that for all r; from a
test set of simulated eye movement radii. This procedure was
carried out for all pairs of training and test sets, and the dis-
tributions fitted to them.

For the static case, we sampled data from single Naka-
Rushton distributions for different values of ¢ and computed
the percentiles from the samples.

Multi-information estimation We use the multi-information to
quantify the statistical dependencies between the filter re-
sponses y [27]. The multi-information is the n-dimensional
generalization of the mutual-information. It is defined as
the Kullback-Leibler divergence between the joint distribution
and the product of its marginals or, equivalently, the differ-
ence between the sum of the marginal entropies and the joint
entropy

1Y] = D1 (P(Y)H Hﬂz(?ﬁ)) = ZH[YJ - H[Y]. [3]

The multi-information is zero if and only if the different di-
mensions of the random vector Y are independent. Since the
joint entropy H[Y] is hard to estimate we employ a semi-
parametric estimate of the multi-information that is conser-
vative in the sense that it is downward biased.

For the marginal entropies H|[Y;], we use a jackknifed esti-
mator for the discrete entropy on the binned values [28]. We
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chose the bin size with the heuristic proposed by Scott [29].
‘We obtain an estimate for the differential entropy by correct-
ing with the logarithm of the bin width (see e.g. [13]).

In order to estimate the joint entropy, we use the average
log-loss to get an upper bound

Ap)] = = (g A(¥))y mp(yy = HIYT+ DL (6NA(Y)) -

Since the average log-loss overestimates the true entropy, re-
placing the joint entropy by A in equation (3) underestimates
the multi-information. Therefore, we sometimes get estimates
smaller than zero. Since the multi-information is always pos-
itive, we set the value to zero in that case. For computing
errorbars on the multi-information estimations, we use the
negative values but a mean zero in such cases, which effec-
tively increases the standard deviation of the error.

Since we want commit ourselves as little as possible to
a particular model, we estimate A[p(y)] by making the as-
sumption that y is L,-spherically symmetric distributed but
estimating everything else with non-parametric estimators. If
y is Lp-spherically symmetric distributed, the radial compo-
nent is independent from the directional component [16] and
we can write

H[Y]=H[R]+ (n—1)(logr), +logS,. [4]

The entropy H[R] of the radial component is again estimated
via a histogram estimator. The term (n — 1) (logr), is ap-
proximated by the empirical mean.

Putting all the equations together yields our estimator for
the multi-information under the assumption of L,-spherically
symmetric distributed Y

i=1

i) = i - i e - P S ogr; < 10gs,,
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where H|] are the univariate entropies estimated via binning.
Since the optimal value of p for filter responses y to natu-
ral image patches is approximately p ~ 1.3 we use that value
to estimate the multi-information of y.
When estimating the multi-information of the responses z
of either divisive normalization or radial factorization, we use

the fact that
&)
dy |/ v

where g—; is the Jacobian of the normalization transformation.
The mean is estimated by averaging over data points. The de-
terminants of radial factorization, divisive normalization, and
extended divisive normalization are given by

11Z] = H[Z) - H[Z]) = H|Z:] - H[Y] - <log det

i=1 i=1

o] - Lt o)

dy | lylz ™ xe(l2ll»)
dz 2\ — 2

det‘g‘=f€ (02+\\y||§) z 52

] < I 50 050+ 2) 27
dy | |yllp~ 2(r7 + 02)3

All multi-information values were computed on test data.
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Fig. 1. a: Divisive normalization model used in this study: Natural image patches are linearly filtered. These responses are nonlinearly transformed by divisive normalization
or radial factorization (see text). After linear filtering the width of the conditional distribution p(y; |y;) of two filter responses depends on the value of g/; (conditional histograms
as contour plots). This demonstrates the presence of variance correlations. These dependencies are decreased by divisive normalization and radial factorization. b: Redundancy
measured by multi-information after divisive normalization, extended divisive normalization, and radial factorization: divisive normalization leaves a substantial amount of
residual redundancy (error bars show standard deviation over different datasets). ¢: Distributions on the norm of the filter responses ||y || for which divisive normalization (red)
and extended divisive normalization (blue) are the optimal redundancy reducing mechanisms. While extended divisive normalization achieves good redundancy reduction, it

2 . .
exhibits a physiologically implausible shape of the population contrast response curve HyH 2 +5/ o2 + HyH“’ (inset, blue curve). The population contrast response curve
of divisive normalization is shown for comparison (inset, red curve).

Table 1. Model components of the divisive normalization and radial
factorization model: Natural image patches are filtered by a set of
linear oriented band-pass filters. The filter responses are normalized
and their norm is rescaled in the normalization step.

divisive normalization model radial factorization
filtering y=Wx y=Wx
T+s —1
N 2 Frp oFe) (¥l
normalization z= ¥z ¥ z = M
Vortlylg ¥z lIyllp
(static case § = 0 and v = 2)
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Fig. 2. a: Histogram of [[y]| for natural image patches sampled with simulated eye movements: The distribution predicted by the dynamically adapting model closely
matches the empirical distribution. b: Redundancy measured by multi-information between the linear filter responses y without divisive normalization, for divisive normalization

with static 02,
performance as the optimal radial factorization transform. c: Each colored line is a mixture of Naka-Rushton distributions like in (a) transformed with a Naka-Rushton function.

Different colors correspond to different values of o. The dashed curve corresponds to a truncated X-distribution. A mixture of the colored distributions cannot resemble the
truncated X-distribution since there will either be peaks on the left or the right of the dashed distribution that cannot be canceled by other mixture components.

extended divisive normalization, and dynamically adapting o2 for simulated eye movement data. The dynamically adapting o
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Fig. 3. Median vs. width of 10% to 90% percentile interval of the models from Figure
2b. The red line corresponds to a static o2 for different values of o2, blue corresponds to the

temporally adapting o

2, the

orange markers correspond to uniformly sampled (diamond) and

fixational image patches with Brownian motion micro-saccades (circle) from Kienzle et al.[11],
the gray markers to simulated eye movement datasets from van Hateren image data [12], and
the black marker to the optimal extended divisive normalization model. All transforms that
yield a strong redundancy reduction have models that exhibit a ratio greater than 1.5 (dashed

lines).
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