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Abstract This thesis explores the role of orientation selectivity and contrast gain con-
trol with respect to Barlow’s normative redundancy reduction hypothesis in simple
models of the early visual system. Our general approach uses the fact that—under the
goal of redundancy reduction—early vision models are density models on natural im-
ages. We identify and develop new classes of probabilistic models for natural image
patches that contain these early vision models. We use those classes to quantitatively
explore their parameter space around the early vision models statistically and informa-
tion theoretically with respect to the influence of filter shapes and contrast transforms
on redundancy reduction. We identify an optimal contrast gain control transform and
compare it to the standard model of cortical divisive contrast gain control, divsive nor-
malization. We also identify a new estimation method for the true redundancy of natu-
ral images.

Our main findings are that, in contrast to divisive contrast gain control, orientation
selectivity plays a minor role for redundancy reduction in the models investigated, and
that the cortical model of divisive contrast normalization is not the optimal redundancy
reducing contrast transformation on static image patches. However, we are able to
specify a dynamical model of cortical contrast gain control with strong redundancy
reduction, through extending the static model by adaptation to temporal correlations
between consecutive contrasts caused by fixations under natural viewing conditions.
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The difference in behaviour in different species reflect different ways of coping
with the environment, or with distinct niches of the environment. These different
behaviours have their material counterpart in different brains. Therefore the pecu-
liar nature of any animal brain cannot be explained from the physiological com-
ponents alone, the explanation necessarily involving causes residing outside the
animal, i.e. information derived from the environment.

from Manifesto of Brain Science by Valentino Braitenberg (1926-2011)



1 Introduction

In his book Vision David Marr emphasized that the visual system should be seen as an
information processing machine, and that its understanding requires knowledge of the
machine as well as the information processing task itself [Marr, 1983]. He distinguishes
three levels of understanding: the computational goal which determines what is to be
computed, the representation of the data and the algorithm achieving that goal, and the
specific neural implementation of the algorithm.

Representations and normative models It is not clear whether there is a single
computational goal that includes all the capabilities of the visual system like object
recognition, figure ground segregation, or stereo vision, and others. However, since
all higher visual areas in cortex obtain the visual information via the so called early vi-
sual system, which is the pathway from retina to primary visual cortex, it appears as if
all algorithms in the visual system start from the same cortical representation of data.
Since all higher visual areas get their signals via this pathway, there is hope that under-
standing the principles behind information representation in the early visual system
also reveals insights about the algorithms which use that representation. David Marr
stressed that the representation of information and the algorithm processing it are not
independent, because certain representations will make the computations easier, others
harder. Therefore, one would expect that an efficient algorithm uses a representation
that is especially tailored to it. For example, the Arabic representation of numbers is
better suited for addition or multiplication than the Roman.

Since the representation of visual information in primary visual cortex must serve
many goals further up in the visual system, it has been hypothesized that there might
be a general computational principle governing the representation of information in
that pathway. In particular, it has been proposed that the visual system is adapted to the
statistics of natural images in an information theoretic sense via the so called redundancy
reduction or efficient coding hypothesis [Barlow, 1961, Attneave, 1954]. Although the two
are closely related, they differ in important aspects. In the following, we will briefly
introduce both of them, work out the main differences, and motivate why we focus on
redundancy reduction here.

Efficient coding and redundancy reduction The number of possible input patterns
to the visual system is enormous and if each input pattern were equally likely, the
amount of neurons needed to represent visual patterns would be immense [Simoncelli
and Olshausen, 2003]. Fortunately, natural visual signals are highly structured and
only make up a very small fraction of all possible patterns. Due to that structure, cer-
tain parts of the signal can be predicted from others. For example, a simple but effective
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1 Introduction

strategy for predicting the grayscale value of a missing pixel in an image is to use the
mean grayscale value of its neighbors. This strategy works because large parts of nat-
ural images are surfaces with similar grayscale. It would not work for white noise, for
instance. The structure in the signal can be used to design a representation that carries
as much information about the signal as possible. The idea is to spend little resources
on the part of the signal that can be predicted and spend more resources on the un-
predictable part. The efficient coding hypothesis acknowledges this fact and postulates
that the visual system makes best use of its resources and transmits information as effi-
ciently as possible [Barlow, 1961, Linsker, 1988, Atick, 1992, Nadal and Parga, 1994].

Information theory behind efficient coding Efficient coding can be cast in infor-
mation theoretic terms by considering the visual input and the neural response to be
random variables X and Y , respectively. According to efficient coding, the visual sys-
tem tries to choose the representation Y such that the transmitted information about
X is maximized. The amount of information a neural response Y conveys about an
input pattern X is captured by the mutual information between X and Y . The mu-
tual information represents the average reduction in uncertainty about an input X if
the corresponding neural response Y is observed, or vice versa [Cover and Thomas,
2006]. The uncertainty about X is expressed in the joint entropy H [X], the uncertainty
after observing Y by the conditional entropy H[X|Y ]. The difference between the two
yields the mutual information

I [Y ;X] = H [X]−H[X|Y ] = H [Y ]−H[Y |X]. (1.0.1)

The mutual information of X and Y depends on their joint distribution. If X and Y
are independent, then H[Y |X] = H[Y ] and H[X|Y ] = H[X], and the mutual infor-
mation attains zero, its lowest possible value [Cover and Thomas, 2006]. As soon as
X and Y are dependent, I [X;Y ] becomes positive. If Y is an invertible determinis-
tic function of X , the mutual information is maximal. In reality, however, the relation
between X and Y is probably neither of both since information might be discarded,
a single input might be represented by several neural signals, or simply due to noise.
After making certain assumptions about the relation between X and Y , the mutual in-
formation can be maximized via the choice of representation Y by maximizing entropy
in the responses H [Y ] and minimizing the noise entropy H [Y |X] at the same time.

Relation between efficient coding and redundancy reduction If the uncertainty
in the response Y for given X does not depend on X , for example when each neural
response is distorted with independent additive noise, then H[Y |X] is constant, and
the maximization of the mutual information is equivalent to maximizing H [Y ]. Under
certain technical conditions that exclude trivial maximizations of H [Y ], for example
by just increasing the signal variance, H [Y ] is maximized by making its single compo-
nents Y1, ..., Yn statistically independent [Bell and Sejnowski, 1997]. For neural popula-
tions this means that H [Y ] can be maximized by making the single neural responses
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Yi statistically as independent, or, equivalently, as non-redundant as possible. The re-
dundancy reduction hypothesis postulates that this is the goal of populations of sensory
neurons. Since Y is thought to be a stochastic function of X , redundancy reduction
depends on the statistics of X . The information theoretic measure for redundancy is
the multi-information I [Y ] =

∑
iH [Yi]−H [Y ] [Perez, 1977].

In general, redundancy reduction and efficient coding are not the same. In particular,
redundancy reduction does not take into account the role of noise or intrinsic uncer-
tainty. For instance, the value of H [Y |X] might depend on X , or the dimensionality of
Y is larger than the dimensionality of X which generates an intrinsic uncertainty since
several values of Y correspond to a single value of X . In that case, maximization of
I [Y ;X] will require a trade-off between maximizing H [Y ] and minimizing H [Y |X].

Reasons for studying redundancy reduction However, there are good reasons to
focus on redundancy reduction hypothesis for the visual system over efficient coding.
In efficient coding, the maximization of transmitted information I [X;Y ] = H [Y ] −
H [Y |X] is a trade-off between maximizing the information contained in Y via H [Y ]
and minimizing the influence of noise via H [Y |X]. Intuitively, however, choosing
a representation Y that yields enough information to reliably decode the state of the
outside world with a limited number of neurons seems a much harder problem than
dealing with internal noise. In other words, when presented with a specific visual in-
put, e.g. a door, the hard problem is to find out that—among all possible things—it is
a door which is facing us at the moment, and not to deal with the noise that got into
the signal while it was transmitted from retina to cortex. In that sense, redundancy re-
duction concentrates on the more crucial problem by ignoring the noise H [Y |X] and
focusing on the maximization of H [Y ]. Apart from that, redundancy reduction by it-
self can be used as a strategy to achieve many potential goals the visual system might
have [Barlow, 1961, 1985, 1989, 2001, 2002] . For example, redundancy reduction could
in principle enable the visual system to learn the hidden causes for the sensory input
[Barlow, 1989, Bell and Sejnowski, 1997]: Redundancies in the sensory input are often
due to regularities in the objects causing it. For instance, one can think of a rigid object
as a collection of redundant points in space and time since their spatial configuration
is fixed. If the visual system is able to detect and remove those redundancies it effec-
tively has learnt a model of rigid objects and obtained an efficient representation of it.
Another motivation for redundancy reduction is that it can be seen as a way to build
a probabilistic model of the sensory input [Barlow, 1985]: The idea is related to a den-
sity estimation algorithm known as projection pursuit [Friedman et al., 1984] in which a
random variable X with an unknown source density is iteratively remapped into a ran-
dom variable Y that becomes more and more Gaussian after each iteration. Knowing
that, after enough iterations, the distribution of Y is Gaussian and knowing the indi-
vidual mappings effectively yields a density model for the input. If the Gaussian target
distribution is replaced with an arbitrary factorial distribution, i.e. one that has indepen-
dent marginals, then projection pursuit and redundancy reduction become equivalent.
For those reasons, this thesis focuses on redundancy reduction in the representation of
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1 Introduction

visual input in the early visual system.

Scientific status of normative principles How can normative principles like the re-
dundancy reduction hypothesis be tested? As mentioned by Simoncelli and Olshausen
[2003], it is difficult to establish a firm link between neurophysiological response prop-
erties and natural image statistics.

Testing normative hypotheses in vivo The most direct way of testing the redun-
dancy reduction hypothesis would be to measure the statistical dependencies of neural
responses at the different stages of the visual pathway. Despite the large experimen-
tal difficulties there have been attempts to do this in the retina [Puchalla et al., 2005],
thalamus [Dan et al., 1996], and the primary as well as inferior temporal cortex [Bad-
deley et al., 1997, Vinje and Gallant, 2000]. Other studies also measured redundancies
or coding efficiency in the auditory pathway [Rieke et al., 1995, Chechik et al., 2002] or
insect visual systems [Laughlin, 1981]. While these studies indicate that the responses
of different neurons indeed become increasingly independent along sensory pathways,
neurophysiological tests still struggle with the fact that only a small portion of the en-
tire population can be observed and that the amount of data to estimate the information
theoretic measures is limited.

Testing normative hypotheses in silico Another way to test normative hypothe-
ses is to use models of the early visual system and optimize their free parameters on
large collections of natural images with respect to a statistical optimality criterion de-
fined by the normative principle [Simoncelli and Olshausen, 2003, Simoncelli, 2003]. If
the normative principle and the model are correct, then one would expect to find neu-
rophysiologically plausible features of the model at the optimum. This approach has
been very fruitful for understanding the interplay between the visual system and the
redundancy reduction hypothesis. Buchsbaum and Gottschalk [1983] as well as Ruder-
man et al. [1998] demonstrated that decorrelation of the three color channels of natural
images leads to blue-yellow, red-green and dark-bright color opponency as observed
in retinal ganglion cells. Atick and coworkers as well as van Hateren showed that
spatial and spatio-temporal decorrelation of natural images yields band-pass filters as
observed in the retina and thalamus [Atick and Redlich, 1990, 1992, Dong and Atick,
1995, van Hateren, 1992, Van Hateren, 1993]. Since removing second order correlations
does not uniquely specify the linear receptive fields of the model neurons, later stud-
ies introduced neurophysiological constraints in order to obtain localized and oriented
band-pass filters similar to the receptive fields of simple cells in primary visual cortex
[Sanger, 1989, Hancock et al., 1992, Shouval et al., 1997, Li and Atick, 1994]. Only after
the reduction of higher order redundancies was incorporated into the objective was it
possible to also obtain orientation selective filters without additional constraints [Ol-
shausen and Field, 1996, Bell and Sejnowski, 1997, Van Hateren and Van Der Schaaf,
1998, Lewicki and Olshausen, 1999]. By optimizing for independent groups of neu-
rons, Hyvärinen and coworkers reproduced orientation selective but phase invariant
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groups of filters like in the energy model of complex cells [Hyvärinen and Hoyer, 2000,
Hyvärinen and Koester, 2007, Adelson and Bergen, 1985, Pollen and Ronner, 1983].
Finally, Schwartz and coworkers showed that divisive normalization, which is one of
the prominent non-linear functional properties of primary visual cortex [Albrecht and
Hamilton, 1982, Bonds, 1989, Heeger, 1992, Geisler and Albrecht, 1992, Carandini et al.,
1997], reduces higher order statistical dependencies of natural images [Schwartz and
Simoncelli, 2001, Wainwright et al., 2002].

Consistency conditions for tests in silico These results are encouraging evidence
in favor of redundancy reduction. However, in order for this evidence to be resilient,
further criteria must be met. First of all, the models used to reproduce neurophysio-
logical features and response properties from natural images must be realistic enough
to allow firm conclusions. It is possible that neural features arise in a model which is
too simple or not adequate, but these features would not be optimal in terms of redun-
dancy reduction in a more realistic model. Second, the results must be discriminative:
If there is a whole set of model parameters that performs well in terms of redundancy
reduction of which only a part is neurophysiologically reasonable, then redundancy
reduction is not a very strong explanation for the neurophysiological features. Third,
the assumptions about the statistics of natural images entering the model and the opti-
mization should be correct. Investigating whether these criteria are met is particularly
important for higher order redundancy reduction, since modeling and measuring them
is more difficult and subtle. Higher order redundancy reduction results mainly concern
features of the primary visual cortex, orientation selectivity and divisive normalization,
and are the main focus of this thesis.

Relation between neural population models and density models on natural im-
ages under redundancy reduction In terms of redundancy reduction, the algorithms
used in previous studies reproducing orientation selective filters similar to simple and
complex cells are equivalent to independent component analysis (ICA) and indepen-
dent subspace analysis (ISA) [Comon, 1994, Bell and Sejnowski, 1997, Hyvärinen and
Hoyer, 2000]. These algorithms are in turn equivalent to minimizing the redundancy in
a population of independent linear-nonlinear (LN) neurons [Chichilnisky, 2001], since
an invertible element-wise nonlinearity like some of the ones used in LN-neurons for
turning the filter output into a firing rate does not change the redundancy, and it is
therefore sufficient to directly look at the redundancy of the filter outputs. However,
neurons in cortex are not independently wired units but ones that interact. One of the
most prominent interactions between neurons is divisive normalization [Heeger, 1992].
Over-complete linear models, like the one in the study by Olshausen and Field [1996],
also nonlinearily couple the neural response by a maximum a posteriori (MAP) estimate
of the neural response given the visual input. This nonlinearity can resemble certain
cortical features, like end-stopping, but it does not reproduce divisive normalization.
Additionally, there is also no guarantee that these MAP estimates yield statistically in-
dependent neural responses which would be necessary to agree with the redundancy
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1 Introduction

reduction hypothesis.

Further need for quantitative evaluation of early vision models and natural image
statistics Concerning model discriminability, Bethge [2006] showed that the opti-
mum around orientation selective filters in linear ICA models for redundancy reduction
is very shallow. He demonstrated that after whitening, which is ascribed to stages ear-
lier than the cortex [Atick and Redlich, 1990, 1992, Dong and Atick, 1995, van Hateren,
1992], the particular filter shape only makes up for about 5% of the total redundancy
reduction. The small contribution of linear filters to higher order redundancy reduction
is mainly caused by the fact that natural image patches are not well modeled by a lin-
ear ICA model [Simoncelli, 1997, Eichhorn et al., 2009]. This means that the amount of
higher order redundancies removed by linear filters in these models is small and that
random whitening filters and orientation selective filters perform almost equally well.

The studies on the redundancy reducing effect of divisive normalization use a fixed
filter bank to model the receptive fields of simple cells [Schwartz and Simoncelli, 2001,
Wainwright et al., 2002]. It is not clear, however, whether optimizing a model which
includes divisive normalization still yields orientation selective filters as the optimal
filter shape for redundancy reduction and what the quantitative contributions of the
filter shape would then be. Additionally, previous work on divisive normalization and
higher order redundancy reduction visualized the higher order statistical dependen-
cies via so called bow-tie plots. A bow-tie plot shows the conditional distributions of
one filter response given the response of a neighboring filter [Schwartz and Simoncelli,
2001]. From these plots one can see that the variance of the conditional distribution
depends on the absolute value of the response on which it is conditioned. This leads
to the typical bow-tie shape of the plots and demonstrates the presence of variance cor-
relations. After divisive normalization, the bow-tie plots become flat which indicates
that variance correlations have been removed [Schwartz and Simoncelli, 2001]. How-
ever, bow-tie plots depend on binning of the signals and only depict one certain type of
higher order correlation. Although one can show that the underlying Gaussian scale mix-
ture model used in these studies has non-decreasing variance correlations as soon as the
distribution has higher order correlations [Wainwright and Simoncelli, 2000, Cambanis
et al., 2000, Kac, 1939], these correlations might be subtle and not be apparent from the
bow-tie plot. Since there was no quantitative evaluation of the multi-information, it
is not clear how much redundancy is left after divisive normalization. Furthermore,
it is not clear what the maximal amount of redundancies is that can be removed by
transformations like divisive normalization.

Contributions of this thesis The studies contained in this thesis address the afore-
mentioned consistency issues of

• discriminability of redundancy reduction for certain features

• adequacy of the statistical assumptions about natural images made by these early
vision models
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• quantitative assessment of the influence of features on redundancy reduction.

Building upon the work of Bethge [2006], the shortcomings of linear ICA models on
natural image patches are investigated, and objectives other than redundancy reduc-
tion are assessed for which filters resembling receptive fields in primary visual cortex
show a clear advantage. A major objective in all the studies is to obtain quantitative
measurements which, in the end, will hopefully enable us to rule out certain models
in favor of others. Unfortunately, quantitative measurements of probabilistic and in-
formation theoretic quantities on natural images are difficult to obtain. Therefore, the
models and their extensions developed in this thesis have to make a trade-off between
fully capturing the complexity of cortical neural networks and allowing for quantitative
measurements at the same time. However, by thoroughly analyzing simpler models
first, it is easier to disentangle the essential mechanisms and their interplay.

The general methodological approach The common scheme in addressing the above
mentioned questions in a quantitative manner is to use the fact that, under the goal of
redundancy reduction, different neural models correspond to different statistical mod-
els on natural image patches (see Figure 1.0.1). We embed these models into a larger
class of probability distributions which allows us to explore the parameter space of
these models with information theoretic and probabilistic measures with respect to fea-
tures like filter shapes or contrast gain control. To this end, the studies in this thesis
identify and develop new classes of probability distributions that better match the reg-
ularities found in natural images. These models not only form a better basis for linking
natural image statistics to neural response properties, but also are a contribution to the
field of natural image statistics themselves.

From these classes of distributions, a unique divisive normalization mechanism is
derived that is optimal with respect to redundancy reduction. A link between the like-
lihood of natural image models and the amount of redundancy reduction they achieve
is established and used for quantitative model comparison between models with or
without divisive normalization mechanisms. A new class of probability models is de-
veloped that allows for the quantification of the relative influence of orientation selec-
tive filters on redundancy reduction in complex cell models as proposed by Hyvärinen
and coworkers [Hyvärinen and Hoyer, 2000, Hyvärinen and Koester, 2007]. By devel-
oping a new information theoretic estimation method, we get better estimates of the
true redundancy of natural images and take a first step in developing models for whole
images instead of image patches. Finally, we explore how the physiologically plausi-
ble divisive normalization model compares to the optimal transformation in terms of
redundancy reduction. It is demonstrated that a static model of cortical divisive nor-
malization is not sufficient for strong redundancy reduction but that a simple dynamic
adaptive mechanism which uses temporal correlations in the images as induced by eye
movements can significantly enhance the performance.

By developing new probability models for natural images, characterizing them math-
ematically, using them to investigate normative hypotheses for the early visual system,
and by developing new information theoretic estimation methods, this thesis provides
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Figure 1.0.1: Neural population models and their probabilistic counterpart. Since an in-
vertible element-wise non-linearity on the outputs does not change the re-
dundancy, it has no influence on the redundancy reduction results and can
also be ignored in all models. a: A population of linear-nonlinear simple
cell models for which the output is required to be statistically independent
is equivalent to an independent component analysis (ICA) model. Models
like this are the subject of Eichhorn et al. [2009]. b: A population in which
the response of oriented filters are squared and grouped by summation
correspond to the energy model of complex cells. If the outputs after sum-
mation are required to be independent, the model corresponds to an inde-
pendent subspace analysis (ISA) model. Models like this are the subject
of Sinz et al. [2009b]. c: A population in which the linear filter responses
are transformed by a (divisive) mechanism on the Lp-norm correspond
to a population of simple cells with contrast gain control mechanism. If
the outputs are required to be statistically independent, the correspond-
ing probabilistic model belongs to the class of Lp-spherically symmetric
distributions. Such models are the subject of Sinz and Bethge [2009], Sinz
et al. [2009a], and Sinz and Bethge [submitted]. d: A population in which
the response of oriented filters are raised to a positive power, grouped by
summation, and transformed by a (divisive) mechanism on the Lp-norm
of the grouped responses corresponds to an energy model of complex cells
with contrast gain control. If the outputs are required to be statistically
independent, the corresponding probabilistic model belongs to the class
of Lp-nested symmetric distributions. Such models are the subject of Sinz
et al. [2009b] and Sinz and Bethge [2010].
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contributions to the field of computational vision, natural image statistics, mathemati-
cal statistics and information theory.
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2 Results

This section briefly presents the research questions and the results of every article in-
cluded in this thesis.

2.1 Natural Image Coding in V1: How Much Use Is
Orientation Selectivity?

Motivation Several previous studies reported that orientation selective filters yield an
additional reduction of higher order redundancies of about 20% for gray value images
and over 100% for color images when compared to decorrelating filters like the ones ob-
tained from PCA [Lewicki and Olshausen, 1999, Wachtler et al., 2001, Lee et al., 2002].
If these findings were correct, it would mean that, in contrast to what was reported in
[Bethge, 2006], the shape of the filter which is determined by the choice of an orthog-
onal transformation after whitening makes a significant difference for the reduction of
higher order redundancies.

The goal of the study was to carry out a thorough quantitative analysis of how much
higher order redundancy reduction can be achieved with orientation selective filters
resulting from ICA. To this end, we compared the ICA filters to filters from princi-
pal component analysis (PCA) and random whitening filters which only aim at re-
moving second-order correlations. In addition to redundancy measured via the multi-
information, we also evaluated two other objective functions for which orientation se-
lective receptive fields might be an advantage: the average log-loss and rate distortion
curves [Bernardo, 1979]. The average log-loss is the negative average log-likelihood.
The higher this loss is, the less a probabilistic model fits the data. Its lowest value is
the entropy of the true data distribution in the case the model matches the true distri-
bution. The use of the average log-loss is motivated by the density estimation view on
redundancy reduction (see Introduction).

Finally, we also evalutated the potential advantage of orientation selective filters in a
rate-distortion curve setting. The mere maximization of the amount of information that
is transmitted, as in the information maximization framework of redundancy reduction
[Linsker, 1988, Atick, 1992, Nadal and Parga, 1994], is agnostic to the information that
is relevant [Simoncelli and Olshausen, 2003]. Rate-distortion curves represent not only
the information that can be transmitted, but also take into account what information is
relevant through the use of a loss function. In order to evaluate whether orientation se-
lective filters might be superior in transmitting the relevant information, we resorted to
rate-distortion curves in a linear transform coding framework with mean squared error
loss [Lewicki and Olshausen, 1999, Lewicki and Sejnowski, 2000]. The mean squared
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error is strongly related to image compression and its choice is a trade-off between
computational feasibility and capturing perceptually relevant image features.

Results For all measures evaluated, we did not find a clear advantage of ICA over
other models. We carried out the analysis on the same dataset as the studies reporting
high reductions of higher order redundancies [Wachtler et al., 2001, Lee et al., 2002].
In terms of multi-information reduction, we found that the amount of higher order
redundancies removed by ICA makes up for about 3% of the total redundancy reduc-
tion achieved. With 3.20% the reduction for color images was a bit higher than for
monochromatic images with 2.39%. We could not reproduce the previously reported
gains of 20% to 100%.

In terms of density estimation, ICA filters perform best among other factorial density
models of natural image patches which differed in the choice of filters. This is no sur-
prise since ICA filters are optimized to yield statistically independent responses. How-
ever, the difference compared to factorial models on other filter responses was small.
In particular, a simple spherically symmetric model with less degrees of freedom per-
formed significantly better. This strongly indicates that higher order correlations in
natural image patches are not well removed by any linear transformations, because
spherically symmetric models are agnostic with respect to the specific shape of the fil-
ters. Additionally, the only factorial spherically symmetric density is the Gaussian, and
it is well known that filter responses to natural images do not exhibit a Gaussian distri-
bution [Field, 1987] but shares its spherical symmetry [Zetzsche et al., 1999]. The better
performance of the non-factorial spherically symmetric density over factorial distribu-
tions in terms of average log-loss shows that (i) there are still higher order correlations
left which are not removed by ICA filters and (ii) there is no choice of filters that can re-
move those. If there were, then the density model should exhibit specific axes for which
the distribution becomes factorial. Those should be found by ICA whose density model
should then have a clear advantage over spherically symmetric models. However, the
good performance of the spherically symmetric model suggests that there are no such
axes and hence, that the choice of filter shape will probably not have much impact on
redundancy reduction or on density modeling, respectively.

The performance of orientation selective filters for rate distortion curves is even
worse than the performance of PCA filters. We carefully analyzed why this is the case
and found that the determining factor for the performance is the change of the met-
ric induced by different filter choices. Intuitively, conserving the metric means that a
square (hypercube) in the input will be mapped into a square (hypercube) in the output.
Only orthogonal linear transformations are metric preserving. Due to that, PCA filters
are the only decorrelating transform that leave the metric invariant. ICA filters are not
orthogonal, which means that the square becomes diamond shaped, and all whitening
transforms at least change the side length of the square. For that reason, PCA filters
outperform ICA filters.
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2.2 Divisive Normalization and Orientation Selectivity

Conclusions Based on the results of the study we were not able to find a single ob-
jective for which orientation selective filter shapes yield a clear advantage. The good
performance of the spherically symmetric model demonstrates the presence of higher
order redundancies that cannot be removed by a complete set of linear filters. This re-
sult holds for grayscale and for color images. This, and the insufficient performance of
the ICA model in terms of log-likelihood, demonstrates that the underlying assump-
tions about natural images that led to orientation selective filters [Bell and Sejnowski,
1997] are not justified. Therefore, strong higher order redundancy reduction requires a
more powerful nonlinear mechanism.

2.2 The Conjoint Effect of Divisive Normalization and
Orientation Selectivity on Redundancy Reduction

Motivation Based on the previous superior performance of the spherically symmetric
model, the goal of this study was to further explore the statistics of filter responses to
natural images, analyze whether there are certain filter shapes that are better suited for
density modeling, and develop nonlinear mechanisms for redundancy reduction. Since
spherically symmetric models are agnostic with respect to the particular filter shape, we
used the class of Lp-spherically symmetric models as a basis for our exploration [Gupta
and Song, 1997, Song and Gupta, 1997], which contain the spherically symmetric dis-
tributions but also other models that have iso-density contours shaped like the unit
sphere in other norms (therefore the name Lp-spherically symmetric). These other iso-
density contours exhibit a symmetry breaking with respect to the filter shapes which
enables us to compare different filters via the log-likelihood.

Results We modeled the responses of whitening filters to natural image patches with
Lp-spherically symmetric models. While spherically symmetric models have iso-density
contours of constant Euclidean norm, Lp-spherically symmetric models have constant
density along the contours of the Lp-norm ‖x‖p = (

∑ |xi|p)1/p. For p 6= 2 the corre-
sponding density is not invariant with respect to the filter shapes. Importantly, for a
fixed value of p, an Lp-spherically symmetric distribution is completely characterized
by a univariate radial distribution. For each value of p, there is a single type of radial
distribution that corresponds to a joint factorial model called p-generalized Normal dis-
tribution [Goodman and Kotz, 1973] (see Section 2.3). We used this property to derive
a non-linear transformation on the Lp-norm which transforms the radial distribution
of the data into the radial distribution of the p-generalized Normal. This mechanism
is the optimal non-linear redundancy reduction transform for Lp-spherically symmet-
ric distributed data. Most importantly, this mechanism, called radial factorization, can
turn any Lp-spherically symmetric source into statistically independent signals. This
nonlinear redundancy reduction mechanism can now be compared to physiologically
known nonlinear mechanisms. Furthermore, we were able to assess the relative influ-
ence of the receptive field shapes on redundancy reduction in models with or without
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the non-linear mechanism, respectively.
We evaluated the likelihood for different values of p using a flexible radial distribu-

tion. Consistent with our findings for the spherically symmetric distribution (see Sec-
tion 2.1), we found that non-factorial Lp-spherically symmetric models exhibit a higher
likelihood. The Lp-spherically symmetric model with ICA filters yielded the best like-
lihood and a value of p < 2. This means that the filter shape makes a difference in
performance. We also optimized the filters with respect to the log-likelihood under a
Lp-spherically symmetric model and found that orientation selective filters are a stable
optimum.

For different filter shapes ranging from orientation selective to random, we com-
puted the radial factorization transform and evaluated its redundancy reduction per-
formance. To this end, we derived a connection between the log-likelihood of the Lp-
spherically symmetric model and its redundancy reduction performance. We found
that radial factorization is a more powerful redundancy reduction mechanism than
ICA. Even with random filters it outperforms the ICA model. The highest redundancy
reduction was achieved with orientation selective ICA filters in combination with radial
factorization. However, when comparing the influence of the filter shape on redun-
dancy reduction, we found that the relative contribution decreases from about 5% in
models without radial factorization to less than 2% in models with radial factorization.
As in the studies by Bethge [2006] and Eichhorn et al. [2009] this indicates that orienta-
tion selectivity does not play a prominent role in these models in terms of higher order
redundancy reduction.

Since the Lp-norm of the filter responses is proportional to the contrast of the image
patch and since rescaling the data radii in the Lp-norm involves normalizing the fil-
ter responses and rescaling them with a transformed radius, radial factorization bears
similarity to divisive normalization contrast gain control [Albrecht and Hamilton, 1982,
Heeger, 1992, Geisler and Albrecht, 1992]. Even though the two mechanisms are mathe-
matically not equivalent, we found that in the range of values for natural image patches
both transformations are qualitatively very similar. Previous studies already motivated
a link between divisive normalization and redundancy reduction [Schwartz and Simon-
celli, 2001, Wainwright et al., 2002]. However, so far, there was no reference transforma-
tion for comparison. Since radial factorization is optimal for Lp-spherically symmetric
sources and since Lp-spherically symmetric distributions yield a good fit to the statis-
tics of natural image patches, the empirical similarity motivates a link between divisive
normalization and strong redundancy reduction, and offers the possibility to assess
how close to optimal the divisive normalization mechanism is (see Section 2.7).

Conclusions In a statistically more adequate model for natural images, we demon-
strated that orientation selective filters are at the optimum of the log-likelihood. How-
ever, like Bethge [2006] and Eichhorn et al. [2009], we also found that the difference
compared to other filter shapes is small. Consistent with previous results, the optimum
in the class of Lp-spherically symmetric models was not a factorial model. Using prop-
erties of the Lp-spherically symmetric class, we were able to derive an optimal redun-
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dancy reduction mechanism, called radial factorization. This mechanism exhibits simi-
larities to divisive normalization which is a prominent nonlinear mechanism through-
out neural sensory systems, including primary visual cortex. We also found that in
a model including the radial factorization mechanism, the relative influence of filter
shapes on redundancy reduction and likelihood becomes even less.

2.3 Characterization of the p-generalized normal distribution

Motivation Radial factorization is the optimal non-linear redundancy reduction mech-
anism for Lp-spherically symmetric distributed sources. It was not clear, however,
whether this transformation is unique. This is an important question for the compar-
ison of physiological divisive normalization mechanisms to radial factorization. If it
were not unique, the visual system might just implement another strategy which per-
forms equally well.

Results We showed that for a fixed value of p, the p-generalized Normal distribution
is the only distribution with independent marginals. This theoretical result generalized
the well known theorem that the Gaussian is the only factorial spherically symmetric
distribution. The original proof for this special case is ascribed to Maxwell [Kac, 1939].
The generalization of the theorem is not a straightforward extension of the spherically
symmetric case and needs completely different proof techniques. Since radial factor-
ization maps any radial distribution into the radial distribution of the p-generalized
Normal distribution, this result implies that radial factorization is unique up to the
output scale.

Conclusions Up to scaling, radial factorization is the unique optimal redundancy
reducing mechanism for Lp-spherically symmetric distributed random variables.

2.4 Hierarchical Modeling of Local Image Features through
Lp-Nested Symmetric Distributions

Motivation The key idea in the analysis of Sinz and Bethge [2009] was to enlarge the
class of probabilistic models and determine the joint optimum with respect to the filter
shape and the use of a nonlinear contrast gain control mechanism (see Section 2.2). The
class of Lp-spherically symmetric distributions used in that study, however, does not
contain the independent subspace analysis (ISA) model which was used by Hyväri-
nen and coworkers to derive a redundancy reduction complex cell model similar to the
complex cell energy model [Adelson and Bergen, 1985, Hyvärinen and Hoyer, 2000,
Hyvärinen and Koester, 2007, Pollen and Ronner, 1983]. From a natural image statistics
point of view, two observations indicate that an ISA model is better suited to model
the statistics of natural images than an ICA or Lp-spherically symmetric model. First,
Lp-spherically symmetric models are permutation invariant in the filter responses. This
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means that all image patches that arise from a permutation of the filter coefficients are
equally likely under the model. This is certainly not true for natural image patches.
Second, one can observe that the pairwise iso-density contour of two filter responses
changes from almost spherical for adjacent filters to Lp-spherical with p < 2 for more
distant filters. Neither ICA nor an Lp-spherically symmetric model can capture this
change in contour shape. An ISA model, which can have different Lp-spherically sym-
metric models on each subspace, however, can reproduce this property to some extent.
Therefore, it could be the right interpolation between a completely factorial model like
ICA and non-factorial models like most Lp-spherically symmetric distributions.

The motivation for this study, therefore, was to carry out an analysis similar to the
one for simple cells in Sinz and Bethge [2009]: using a larger class of probability mod-
els, embedding the existing model in it, and exploring the parameter space with respect
to redundancy reduction and likelihood. While the larger class of probability distribu-
tions, in which existing models could be integrated, was already at hand in Sinz and
Bethge [2009], we had to develop a new class of distributions that contained the com-
plex cell models (the technical details were published in an additional study which is
discussed in Section 2.5). With this new class, which we called Lp-nested symmetric dis-
tributions, we were able to quantitatively evaluate how well the ISA model fits to the
statistics of natural images, how much a nonlinear mechanism like in the Lp-spherically
symmetric case can influence redundancy reduction, and whether orientation selective
filters are also at the optimum of a model that includes a nonlinear contrast gain control
mechanism.

Results The main finding of this paper is that ISA models with Lp-spherically sym-
metric subspaces is not a good model on natural image patches. These ISA models are
a special case of Lp-nested symmetric models. Within the class of Lp-nested models,
distributions with independent subspaces yield a significantly lower likelihood than
the model that allows for dependent subspaces. In fact, the subspaces are even more
dependent than the single filter responses themselves, which is exactly opposite to the
assumptions made by ISA. We demonstrated this by deriving the marginal responses
over subspaces in the Lp-nested symmetric model, which we called Dirichlet Scale Mix-
ture. However, when optimizing filter shapes with respect to the likelihood on natural
image patches, localized orientation selective filters are again at the optimum. As in the
ISA case, the filters in the maximum likelihood solution naturally split up into groups
of similar spatial frequency and orientation, but different phase.

For Lp-nested symmetric distributions, one can derive a similar nonlinear redun-
dancy reduction mechanism like radial factorization, called nested radial factorization
(see Section 2.5). Since the likelihood of the model is again proportional to the re-
dundancies that can be removed by this nonlinear mechanism, the better performance
of Lp-nested symmetric distributions with dependent subspaces demonstrates again
that linear filters cannot remove higher order redundancies well, even when the redun-
dancy reducing requirement is relaxed to groups of filters. A nonlinear mechanism like
nested radial factorization can significantly increase the redundancy reduction perfor-
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mance. This again highlights the importance of a divisive normalization type of mech-
anism for redundancy reduction.

Conclusions The density model used by Hyvärinen and coworkers to derive com-
plex cell properties from redundancy reduction on natural images does not capture the
statistical regularities of the patches. In fact, the opposite of the assumptions made
by the ISA model is true for natural images: the filters are less dependent than the
subspaces. This means that ISA is not a good interpolation between non-factorial Lp-
spherically symmetric models and factorial ICA models for natural images.

2.5 Lp-nested symmetric distributions

Motivation As mentioned in Section 2.4, the observed limitations of previous mod-
els suggested the developement of a generalized class of distributions that contained
the independent subspace analysis model for natural images as a special case. Lp-
spherically symmetric models are a special case of so called ν-spherically symmetric
models [Fernández et al., 1995]. The density of ν-spherically symmetric models can be
written as ρ(y) = % (ν (y)), where ν is a positively homogeneous function of degree
one, which means that it has the property ν (ay) = aν(y). The normalization constant
of ν-spherically symmetric distributions, which is of key importance for a quantitative
evaluation, depends on the surface area of the ν-unit sphere {y ∈ Rn|ν(y) = 1}. In
general, an analytical expression for the surface area is infeasible. For the special case
where ν is a cascade of Lp-norms we were able to compute the surface area and, there-
fore, the normalization constant for any ν-spherically symmetric distribution of that
form. Since ν was chosen to have the form of a nested cascade of Lp-norms, we called
this class Lp-nested symmetric distributions. This class is the first generalization that
contains the Gaussian, L2- as well asLp-spherically symmetric models, and the relevant
ISA model for natural images. The goal of this study was to theoretically characterize
Lp-nested symmetric distributions and derive its most important properties.

Results We derived the general form of Lp-nested symmetric distributions, the uni-
form distribution on the Lp-nested unit sphere, and the general form of the joint dis-
tribution between variables and subspaces in an Lp-nested symmetric function. While
sampling fromLp-spherically symmetric distributions is straightforward, sampling from
Lp-nested symmetric distributions is not and we needed to specify an efficient and ex-
act sampling scheme.

We derived the nested generalization of radial factorization. Importantly, we showed
that every factorial Lp-nested symmetric distribution must be Lp-spherically symmet-
ric, and, therefore, a p-generalized Normal distribution. This shows that the nested
generalization of radial factorization necessarily needs the iterative nested structure
and cannot be resembled by a simple one-step algorithm.
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2.6 Lower bounds on the redundancy of natural images

Motivation All models discussed so far are limited to patches of natural images. While
they offer advantages in terms of analytical tractability, patch based models also have
several drawbacks. Two of them were addressed in this study. The first is that, in
terms of redundancy reduction, we are interested in the true redundancy, i.e. the multi-
information rate of natural images. Natural images clearly have dependencies beyond
the distance which is usually covered by patch based models. Therefore, in order to get
a more realistic estimate of the true redundancy, it is necessary to develop models that
cover long range dependencies beyond the extensions of patches. The second is that
receptive fields of cortical neurons are not restricted to rectangular patches but cover
the whole visual field. Therefore, an important question is how to extend models for
natural images and redundancy reducing representations of them to whole images.

This study investigates the estimation of the multi-information rate of natural im-
ages with conditional probability models. It explicitly makes use of the stationarity of
natural image statistics which yields a tighter lower bound on the multi-information
rate of natural images that can additionally be estimated with less pixels compared to
a corresponding method on the joint distribution. Additionally, our empirical results
suggest that, for the parametric models we used, describing natural images via condi-
tional distributions is superior to modeling the joint distribution of larger and larger
patches.

Results For one-dimensional stationary signals, it is well known that the conditional
entropy converges to the entropy rate for increasing neighborhood size from above
[Shannon, 1948, Cover and Thomas, 2006]. This holds for stationary random fields of
arbitrary dimensions [Föllmer, 1973]. One can show that the conditional entropy of
one random variable given a neighborhood of other random variables converges faster
to the true entropy rate in the number of variables in the neighborhood than the joint
entropy divided by the number of random variables [Cover and Thomas, 2006, p. 76].
This result can be transferred to multi-information rates, which means that the mu-
tual information between one random variable and its neighborhood converges faster
to the multi-information rate than the multi-information per random variable. Using
the method relying on the mutual information between a pixel and its neighborhood,
we were able to obtain conservative estimates for the multi-information rate which ex-
ceeded the estimate of the patch based method using less pixels. Our estimated multi-
information rate exceeds the estimate by Petrov and Zhaoping [2003] by more than 20%,
but is similar to the results by Chandler and Field [2007]. It also slightly outperforms
the estimates obtained with Lp-spherically symmetric distributions.

We used the negative average log-likelihood of a (conditional) Gaussian scale mix-
ture model [Wainwright and Simoncelli, 2000] to approximate the joint or conditional
entropy needed for multi- and mutual information estimates, respectively. Since the
parameters found with maximum likelihood for the joint model are not necessarily the
maximum likelihood parameters for the conditional model, we carried out separate op-
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timizations for both of them. When computing the multi-information rates with those
two models, we noticed that the estimates with the conditional method are better and
that this difference cannot be explained solely by the tighter bound that holds for the
method relying on the conditional entropy. Instead, the difference was due to a better
fit of the conditional model. This suggests that using conditional Gaussian scale mix-
tures yields a better model of natural images than increasing the dimensionality of a
joint Gaussian Scale mixture. Follow-up studies by Hosseini and Theis seem to confirm
this conjecture.

Conclusions We derived a generic method that yields a tighter lower bound on the
multi-information rate of a stationary stochastic process on a discrete lattice and also
converges faster to that bound in the number of pixels. Furthermore, our experiments
suggest that conditional Gaussian scale mixture models of one pixel given an appro-
priate neighborhood are a better description for natural images than joint models of
increasing size. In terms of redundancy reduction representations of natural images
one can also use conditional models to derive redundancy reduction schemes. The idea
is to transform one pixel given its neighbors into a signal with a standardized Gaus-
sian distribution. In this way, the pixel becomes independent of its neighborhood and
redundancies are removed. This is investigated in more detail in follow-up studies by
Hosseini and Theis.

2.7 Temporal adaptation enhances efficient contrast gain
control on natural images

Motivation Radial factorization is a very efficient nonlinear mechanism for redun-
dancy reduction which bears similarity to divisive normalization in primary visual
cortex [Sinz and Bethge, 2009, Heeger, 1992]. Previous studies have linked divisive
normalization to redundancy reduction, but not measured the residual redundancies
[Schwartz and Simoncelli, 2001, Wainwright et al., 2002]. Although the two transforms
are generally not equivalent, they might be almost identical for the empirical distribu-
tion of natural image patches. Furthermore, radial factorization represents the optimal
redundancy reduction mechanism on the Euclidean norm which allows one to evaluate
the effectiveness of divisive normalization for redundancy reduction. The goal of this
study was to compare divisive normalization and radial factorization and to specify
conditions for which the two coincide which means that divisive normalization per-
forms almost optimal in terms of redundancy reduction.

Results We used the assumption of Lp-spherical symmetry to robustly measure the
residual amount of redundancies left in filter responses after divisive normalization.
We found a substantial amount of redundancies in the model responses after divisive
normalization. In order to understand this in more detail, we derived the distribution
that natural images would have if divisive normalization was the optimal redundancy
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reducing mechanism and called it Naka-Rushton distribution. After fitting that distri-
bution to natural image patches, we still found a substantial mismatch between the
model and the empirical distribution, which explained the residual redundancies after
divisive normalization. The main reason for the suboptimal performance of divisive
normalization is that the Naka-Rushton distribution expects most of the responses to
fall into a much narrower range than responses to natural images do in reality.

We investigated two possibilities to increase the degrees of freedom in divisive nor-
malization that would enhance its redundancy reduction capabilities. The first was
to introduce more parameters in a static divisive normalization transform. This leads
to a substantial increase in redundancy reduction. However, the resulting contrast re-
sponse function had a physiologically implausible shape. As an alternative option we
allowed for a temporal adaptation of the semi-saturation constant in divisive normal-
ization. Such an adaptation shifts the contrast response function along the log-contrast
axis. Such shifts are well known from physiology [Bonds, 1991], where it is thought
to adapt the dynamic range of the response curve to the ambient contrast level. In or-
der to choose a strategy for the adaptation of the semi-saturation constant, we used
the fact that consecutively viewed patches during natural viewing conditions are corre-
lated. We simulated eye movements on natural images and found a simple strategy to
adapt divisive normalization which substantially increased the redundancy reduction
performance.

Conclusions The standard model of divisive normalization does not offer enough
degrees of freedom for efficient redundancy reduction on natural images. Redundancy
reduction performance can be substantially increased by introducing an adaptation to
the current contrast level by using temporal correlations caused by eye movements.
This offers a possible functional significance of the adaptation of the contrast response
curve to the ambient contrast level in terms of redundancy reduction.

The analysis of this study did not commit to a certain physiological implementation
or biophysical constraints. However, it demonstrated that the redundancies imposed
by the contrast statistics of natural images cannot be removed by simple static divisive
normalization. From our simulations, we postulate a measure for the spread of the
joint population response that gives a general signature for the performance of early
vision models in terms of redundancy reduction. This signature can be used for future
physiological experiments to test the suggested link between redundancy reduction
and contrast gain control.

20



3 Discussion and Conclusion

This thesis explored the influence of orientation selectivity and contrast gain control
on redundancy reduction in simple models of the early visual system. An important
objective for the investigations were quantitative measurements of their effectiveness
for redundancy reduction. We developed new statistical models for filter responses
of whitening filters to natural image patches and used these to explore the parame-
ter space around orientation selective filters and non-linear divisive transformations
of contrast. For the quantitative evaluations we used information theoretic and prob-
abilistic measures like multi-information and log-likelihood. We also developed new
estimation methods for the multi-information rate of natural images, which led to the
insight that conditional modeling of natural images might be a particularly useful ap-
proach for obaining models for entire images.

In summary, our results for the role of orientation selectivity and contrast gain control
in natural image representations are

• Orientation selectivity plays a minor role for redundancy reduction. We also did
not find other objectives for which orientation selectivity would yield a clear ad-
vantage (Sections 2.1, 2.2 and 2.4).

• A non-linear rescaling of the Euclidean or Lp-norm of filter responses to natural
image patches is much more effective in reducing redundancy than the choice of
filters. Since the aforementioned norms are proportional to the contrast of image
patches, this highlights the role of contrast gain control for redundancy reduction
(Sections 2.2 and 2.4).

• There is a unique and optimal contrast gain control mechanism with respect to the
class of Lp-spherically and Lp-nested symmetric models. We called that mecha-
nism (nested) radial factorization (Sections 2.2, 2.3, and 2.7).

• The relatively small difference between the amount of redundancies estimated
with Lp-spherically symmetric models, which is usually competely removed by
radial factorization, and the estimates of our newly developed conditional infor-
mation rate estimator indicate that radial factorization is a powerful redundancy
reduction mechanism which can remove a major part of higher order redundan-
cies that can be captured with natural image models so far (Section 2.6). Since the
true redundancy of natural images is not known so far, it is currently not possible
to say what percentage of the total redundancy can be removed by radial factor-
ization. With the developement of better models for (entire) natural images, the
relative contribution will necessarily shrink. A promising way to obtain better
models of natural images is via conditional models (Section 2.6).
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Figure 3.0.1: Relative contribution of different mechanisms in the investigated early vi-
sion models to redundancy reduction: The redundancy decreases from
left to right. Setting the raw pixel representation (leftmost model) to 0%
and the best performing model with orientation selectivity and contrast
gain control (rightmost model) to 100%, the removal of the DC component
(luminance control) and 2nd order decorrelation can already account for
about 90% of the redundancy. Decorrelation together with contrast gain
control accounts for 98.5%. Therefore, the maximally possible contribu-
tion of orientation selectivity is less than 5% in the former case and less
than 2% in the more general cases including contrast gain control.

• Radial factorization is similar to the standard model of cortical contrast gain con-
trol, divisive normalization [Albrecht and Hamilton, 1982, Heeger, 1992]. The
two mechanisms are mathematically not equivalent. In fact, when comparing
them, we found that static divisive normalization leaves a significant amount of
residual higher order redundancies. However, by making divisive normalization
dynamically adapt to the current contrast level through using temporal correla-
tions caused by fixations in natural viewing conditions, we demonstrated that the
redundancy reduction performance can be greatly increased (Section 2.7).

In the following we discuss the details of our findings. Figure 3.0.1 gives an overview
of the redundancy reduction achieved with the different mechanisms.
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Orientation selectivity We found that the assumptions in the models previously used
to obtain orientation selective filters from the statistics of natural image patches do not
reflect their complex regularities and dependencies. In particular, the assumptions that
natural images can be separated in statistically independent signals or groups of signals
by linear filters, which is made by ICA and ISA models, is not well rooted in their statis-
tical nature. The fact that ICA does not yield statistically independent filter responses
on natural images had already been reported before [Simoncelli, 1997]. Bethge [2006]
performed quantitative model comparison and showed that the bulk of reduced re-
dundancies by linear filters are second order correlations. Our first study strengthened
these previous findings by showing that a spherically symmetric model has a substan-
tially better likelihood than an ICA model. Since the spherically symmetric model is
agnostic with respect to the filter shapes and since natural images cannot be spherically
symmetric and statistically independent at the same time, this means that orientation
selectivity does not show a clear advantage in terms of redundancy reduction in linear
models. Other studies, however, claimed to have found a strong influence of orienta-
tion selectivity on redundancy reduction of color image patches [Wachtler et al., 2001,
Lee et al., 2002]. Even when using the same dataset as those studies, we could not re-
produce their results. Another study by Lewicki and Olshausen [1999] arrives at an es-
timate of approximately 20% higher order redundancy reduction using over-complete
sparse linear models. However, the images in this study were pre-whitentened. This
initial loss of second order correlations leads to an overestimation of the relative por-
tion of higher order redundancies. Since we do not know the amount of second order
correlations that was removed by the pre-whitening step, we cannot properly compare
the results of Lewicki and Olshausen to ours. We also investigated whether orientation
selectivity is advantageous in terms of rate distortion curves, but found that it actually
performs worse than global PCA filters.

As discussed in more detail below, augmenting the linear model by a nonlinear con-
trast gain control step significantly increases the redundancy reduction performance.
The relative importance of filter shape, however, becomes even less [Sinz and Bethge,
2009]. Interestingly, a recent study in computer vision has also recognized the impor-
tance of nonlinear steps and the relative unimportance of filter shapes for object recog-
nition [Jarrett et al., 2009].

We also investigated whether redundancy reduction can yield an explanation for ori-
entation selectivity in complex cell models in which several filters are grouped and only
the groups are required to be independent. Here the statistics of natural images and the
assumptions by the model were even contradictory: groups of filters were even more
dependent than the individual filter responses within a group [Sinz et al., 2009b]. This
is exactly opposite to the assumption of the ISA model used for a redundancy reduc-
tion explanation of complex cell properties [Hyvärinen and Hoyer, 2000, Hyvärinen
and Koester, 2007].

A striking finding, however, is that even though orientation selectivity does not have
a great influence on redundancy reduction, it is the optimal filter shape for linear mod-
els with or without contrast gain control [Sinz and Bethge, 2009, Sinz et al., 2009b].
Therefore, it remains an open question how important orientation selectivity is for re-
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dundancy reduction. There are several ways how this could be resolved in the future.
It is possible that more realistic models of the early visual system yield a strong vote
in favor or against orientation selectivity, although we do not expect that unless these
models exhibit genuinely different nonlinear mechanisms. It might also be that there
are other objectives of the visual system which clearly favor a localized orientation se-
lective filter shape. Finally, the fact that localized oriented band-pass filters arise in so
many models might also hint at a more fundamental statistical reason for the shape
of those filters. If this is indeed the case, understanding this fundamental principle
will bring us closer to understanding the computational principles governing receptive
fields in primary visual cortex.

Contrast gain control Based on the good performance of a spherically symmetric
model in terms of likelihood we started to explore the class of Lp-spherically symmetric
models for modeling the response of whitening filters to natural image patches. Lp-
spherically symmetric models contain the spherically symmetric as well as the ICA case
for natural image patches. However, the optimum in terms of likelihood was located
at neither of them: Optimal Lp-spherically symmetric models on orientation selective
filters were non-factorial and exhibited a p of approximately 1.3. When optimizing for
the filters as well, orientation selective filters also arose as the optimal shape for this
class of distributions. However, the difference compared to other filter shapes in terms
of redundancy reduction was again marginal.

By using fundamental statistical properties of this class of distributions, we derived
an optimal mechanism for redundancy reduction based on a non-linear rescaling of the
Lp-norm, called radial factorization. Since Lp-norms are proportional to the root mean
square contrast, this mechanism is a contrast gain control transformation. We demon-
strated that radial factorization significantly outperforms the redundancy reduction
performance of linear filters. We showed that under the assumption of Lp-spherical
symmetry, radial factorization is the unique and optimal mechanism for redundancy
reduction.

By introducingLp-nested symmetric distributions, we were able to find an even more
general class of distributions that included all the models before, but also the relevant
ISA models. This allowed us to demonstrate that in this larger class there is again a
unique contrast gain control mechanism which is again of crucial importance for re-
dundancy reduction in complex cell ISA models, and that even in this larger class of
Lp-nested models orientation selectivity is again at the optimum in terms of likelihood
and, therefore, redundancy reduction.

Radial factorization and nested radial factorization are the optimal redundancy re-
duction mechanisms with respect toLp-spherically andLp-nested symmetric distributed
sources. One obvious question is, of course, how close to optimal their performance is
for natural images in general. In a separate study, we developed a new estimation
method for the multi-information rate of natural images. Comparing the estimates
from that method to estimates with Lp-spherically symmetric distributions, we find
that there is but a small difference, which indicates that radial factorization is a power-
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ful redundancy reduction mechanism even in a context which is not restricted to image
patches. However, the conditional estimation method developed by us [Hosseini et al.,
2010] is generic in the sense that better conditional models of natural images will im-
prove the lower bound on the multi-information rate. When that happens, the relative
performance of radial factorization will decrease. But from our current measurements,
the redundancy removed by radial factorization represents a substantial part of the
known higher order dependencies in natural images.

There are previous studies that have pursued a quantitative assessment redundancy
in natural images. Using non-parametric statistical methods several studies have mea-
sured the amount of higher order dependencies in natural images [Schreiber, 1956, Li
and Atick, 1994, Petrov and Zhaoping, 2003, Chandler and Field, 2007]. Our estimates
are larger than those of Petrov and Zhaoping [2003] and comparable to Chandler and
Field [2007]. The likely reason why Petrov and Zhaoping [2003] underestimated the
amount of higher order redundancies is that they restricted themselves to a very small
neighborhood which lead to an overestimation of the entropy and, therefore, an under-
estimation of the multi-information.

Radial factorization and divisive normalization—the standard model of cortical con-
trast gain control—share many properties. Since previous studies have highlighted the
possible role for divisive normalization for redundancy reduction on natural signals
[Schwartz and Simoncelli, 2001, Wainwright et al., 2002], we investigated the interre-
lation between radial factorization and divisive normalization. We found that filter
responses transformed with divisive normalization still exhibit a substantial amount of
higher order redundancies, and that the contrast distribution for which divisive nor-
malization equals radial factorization does not fit the contrast distribution of natural
images well. Nevertheless, our results are not at odds with previous work on divisive
normalization and redundancy reduction. First of all, we do find a reducing effect of
divisive normalization. Second, previous studies either looked at surrogate measures
of statistical independence [Schwartz and Simoncelli, 2001, Wainwright et al., 2002],
considered pairwise measures only [Malo et al., 2006], or were based on theoretical
analyses of probability distribution and not real data [Lyu, 2011].

The studies by Schwartz, Wainwright and Simoncelli used so called bow-tie plots to
visualize redundancy or the reduction thereof. After divisive normalization, the bow-
tie plots become flat indicating that this type of dependency has been removed. In
principle, bow-tie plots should capture the right dependencies: For the class of Gaus-
sian scale mixtures around which the work of Schwartz, Wainwright and Simoncelli
is built, one can prove that the conditional variance is non-decreasing [Cambanis et al.,
2000]. For the relevant class of models the conditional variance is even increasing which
means that higher order dependencies should show up in the bow-tie plots. The prob-
lem is, however, that bow-tie plots are not very sensitive. Both radial factorization and
divisive normalization produce a flat bow-tie plot, but significantly differ in the amount
of residual redundancies.

The study by Lyu is based on the multivariate t-model [Kotz and Nadarajah, 2004] for
which he shows mathematically that divisive normalization is an approximate radial
factorization transform. Not surprisingly, the multivariate t-model and the distribution
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for which divisive normalization and radial factorization coincide are very similar. This
means that the multivariate t-model, like the corresponding distribution for divisive
normalization (see Section 2.7), also exhibits an inferior fit to the statistics of natural
images.

Does this mean that cortical divisive contrast gain control and redundancy reduction
disagree? Not necessarily. All our previous investigations were based on models of
static image patches, randomly sampled from a large collection of images, but this is
not the way in which visual information enters the visual system under free viewing
conditions. In particular, contrasts during the fixation between two saccades are very
correlated. It is also known that the contrast response curve of simple and complex cells
shifts along the log-contrast axis to adapt to the current ambient contrast level [Ohzawa
et al., 1982, Bonds, 1991]. Using this fact, we demonstrated that the disagreement of
redundancy reduction with cortical models of contrast gain control can be resolved by
allowing divisive normalization to adapt to the ambient contrast between two saccades.
This substantially decreased the amount of residual redundancies to almost the level of
radial factorization and suggests a potential role of contrast response curve adaptation
for redundancy reduction. Our mechanism works on the short time scale between two
saccades. The adaptation mechanism via shifts of the contrast response curve is usually
thought to happen on larger time scales [Bonds, 1991]. However, those studies have
been perfomed in anasthetized cats with drifting gratings. Hence, it is not very clear
how representative these results are for natural viewing conditions. Additionally, a
recent study claims that this might have been an artifact from the stimulation protocol
and that shifts can actually occur on a much shorter time scale [Hu and Wang, 2011].

Contributions to the understanding of natural image statistics While the statisti-
cal models in this thesis were important tools to understand the contribution of differ-
ent mechanisms to redundancy reduction, they also contributed to the understanding
of the statistics of natural image patches by developing state-of-the-art density mod-
els for them (see Table 3.1). Popular models for natural image patches are, for in-
stance, ICA, Gaussian scale mixtures (GSM) [Wainwright and Simoncelli, 2000], and
ISA [Hyvärinen and Hoyer, 2000, Hyvärinen and Koester, 2007]. The models used and
developed in this thesis generalize all of them: the class of Lp-spherically symmetric
models contains ICA for natural images and Gaussian scale mixtures; the class of Lp-
nested symmetric distributions contains the Lp-spherically symmetric ones and ISA on
natural images. In general, ICA and ISA are not fully contained in the Lp-spherically
symmetric or Lp-nested symmetric class, but due to the special form of the marginal
distributions of filter responses to natural image patches, the relevant cases are part of
the Lp-spherical and Lp-nested classes.

While it is apparent that ICA is not a very good model for natural image patches
[Simoncelli, 1997, Bethge, 2006, Eichhorn et al., 2009], the GSMs are among the state-of-
the-art models. They model natural image patches as a mixture of—possibly infinitely
many—Gaussians with the same mean but different scales. Since the underlying distri-
bution is spherically symmetric, the class of GSMs belongs to the spherically symmet-
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Table 3.1: Performance of different natural image models in terms of log-likelihood
compared to a factorial model on raw pixels (courtesy of all authors involved
and Lucas Theis who produced the table). Lp-spherically and Lp-nested sym-
metric models rank among the state-of-the-art models. Hierarchical deep be-
lief networks (DBN) perform even worse than ICA. The currently best per-
forming model is a mixture of Gaussian scale mixtures.
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PCA / Whitening X Bethge [2006]
Eichhorn et al. [2009] 2.7

ICA X X Bethge [2006]
Eichhorn et al. [2009] 2.92

L2-spherical model X X Eichhorn et al. [2009]
Sinz and Bethge [2009] 3.05

Lp-spherical model X X X Sinz et al. [2009b] 3.17

Lp-nested model X X X X (X) Sinz et al. [2009b]
Sinz and Bethge [2010] 3.2

Hierarchical ICA X X X Hosseini and Bethge [2009] 3.0

Deep Belief Networks X X X Theis et al. [2010] 2.9

Mixture of GSMs X X X X Bethge and Hosseini [2008] 3.3
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ric class of distributions. They are, however, only a subset since not every spherically
symmetric distribution is also a GSM. GSMs perform well at modeling the variance
correlations of natural images captured by the bow-tie plots mentioned before. Since
spherically symmetric models are invariant under orthogonal transformations of the
input, GSMs are agnostic to the particular shape of the whitening filters. Our investi-
gations with the Lp-spherically symmetric models demonstrate, however, that the filter
shape matters and that the distribution of natural image patches is not exactly spher-
ically symmetric but rather L1.3-spherically symmetric [Sinz and Bethge, 2009]. Lp-
spherically symmetric models capture variance correlations as well (see Section 4.10)
and allow a straightforward evaluation of the log-likelihood. Table 3.1 lists the im-
provement of the log-likelihood over a factorial model on raw pixels for several natural
image models. Lp-spherically symmetric models rank third.

It is not only the case that whitening filter responses to natural image patches deviate
from spherical symmetry, but also that the contour lines of the distribution can vary
depending on different features of the filters involved [Sinz et al., 2009b]. Lp-nested
symmetric distributions solve that problem by composing the contour shapes from dif-
ferent Lp-spheres while maintaining a straightforward evaluation of the log-likelihood
[Sinz and Bethge, 2010]. Among the models in Table 3.1, Lp-nested symmetric distribu-
tions rank second.

The only class of models that currently outperformsLp-spherical andLp-nested mod-
els on natural images are mixtures of GSMs [Bethge and Hosseini, 2008] which belongs
to the class of Gaussian mixture models. These models allow for modeling different
covariance structures of natural image patches, while the Lp-spherical and Lp-nested
models always assume the same covariance structure in the whitening step. Gaussian
mixture models for natural image statistics with a rich hidden structure have also been
proposed for natural image modeling by other authors [Karklin and Lewicki, 2008, Ran-
zato and Hinton, 2010, Ranzato et al., 2010]. However, these studies did not evaluate
the likelihood of their models.

An important insight that arose from the quantitative comparisons between statisti-
cal models of natural images is that hierarchical deep belief networks (DBNs) do not
rank among state-of-the-art models. In a separate study, which is not included in this
thesis, we developed an estimator for the likelihood in DBNs and used it to evaluate
the likelihood of DBNs on image patches [Theis et al., 2010, 2011]. Osindero and Hinton
[2008] reported promising results from training deep belief networks (DBN) on natural
images by presenting random samples from the model that looked very encouraging.
However, one great challenge in natural image patch modeling is to find a model that
achieves a high likelihood on unseen patches and produces realistically looking sam-
ples. While each single goal is relatively easy to accomplish, there is currently no model
that achieves both. Judging from the random samples, DBNs seemed to be a promising
density model. Unfortunately, likelihood evaluation in DBNs is very hard. The results
obtained from our likelihood estimator demonstrated that DBNs perform significantly
worse than Lp-spherical or Lp-nested models. In fact, DBNs even perform worse than
ICA which was already established to be a suboptimal model on natural image patches
(see Table 3.1). These results emphasize the importance of quantitative model compar-
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ison via the log-likelihood.

How important is redundancy reduction for the early visual system? Finally, the
question remains how important the redundancy reduction hypothesis is and how it
can take us further in understanding the early visual system. Many issues concerning
redundancy reduction and sensory systems have been discussed in excellent papers
elsewhere [Barlow, 2001, Simoncelli, 2003, Simoncelli and Olshausen, 2003]. Here, we
want to highlight a few points relevant to the current work. A frequently raised ar-
gument against redundancy reduction in cortex is the relative overcompleteness of the
number of cortical neurons compared to the number of retinal ganglion cells. This, at
first sight, indicates that the redundancy in cortex should increase instead of decrease.
However, as noted by Barlow [2001] and Simoncelli [2003], this assumes that the cod-
ing capacity (entropy) of cortical and retinal neurons is the same. Since cortical neurons
do have lower firing rates it is well possible that the coding capacity (entropy) per neu-
ron is smaller which renders their relative overcompleteness and redundancy reduction
compatible.

Another objection might be that the brain only cares about behaviorally relevant in-
formation which does not necessarily have to coincide with the information measured
in bits. Unfortunately, it is difficult to clearly state what “behaviorally relevant” exactly
means. On the other hand, it might be that an object can be defined as a collection of
incoming signals that exhibit very specific correlations in space and time. As already
mentioned in the introduction, redundancy reduction could extract exactly those corre-
lations. This means that it could serve as a feature extractor for important aspects about
the ouside world which could later be classified as behaviorally relevant or not. Recent
psychophysical studies indicate that human observers are indeed sensitive to higher
order statistical dependencies already in natural image patches of 3× 3 pixels [Gerhard
et al., 2012, in preparation]. Even though it is clearly not obvious to talk about behav-
ioral relevance at this scale, it indicates that the visual system cares about the statistical
regularities even in small natural image patches. In this study, subjects were asked to
discriminate between patches from natural images and samples that incorporated key
assumptions of statistical models for natural image patches. The likelihood of the sta-
tistical models predicted the rank order of the discrimination performance of subjects
for the different models. This indicates that the statistical regularities captured by the
models are sufficiently relevant to the visual system.

Another issue is whether the visual system should really aim at removing all redun-
dancies from natural images or whether it should just decrease them enough to achieve
an efficient information transmission but still be robust against internal noise. In a sys-
tem with internal uncertainty, a small amount of redundancy can be helpful to coun-
teract information loss due to noise. If the uncertainty is independent additive noise,
efficient coding and redundancy reduction coincide. However, even if that is not the
case, there are reasons to believe that strong redundancy reduction is a goal worth pur-
suing: First, it seems reasonable to assume that the influence of internal noise should be
small compared to the uncertainty about the stimulus. In information theoretic terms,
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this means that the mutual information I[X;Y ] = 〈H[Y ]−H[Y |x]〉X should be large
and not be dominated by the structure of the uncertaintyH[Y |x] of the neural response
given a fixed stimulus, i.e. H [Y ] � H [Y |X]. While it might be beneficial to maintain
a small amount of redundancy to account for noise, it still seems reasonable to decrease
the redundancy as much as possible in order to hit the maximum of H[Y ]. Secondly, it
is clear that the higher order dependencies in natural images, which—so far—seem to
make up for the minor part of the total dependencies [Chandler and Field, 2007, Hos-
seini et al., 2010], are the perceptually relevant part. While the content of a whitened
image with no second order correlations left can still be perceived, this is not the case for
a phase scrambled image for which all higher order correlations have been destroyed.
The visual system must have a way to extract those higher order dependencies, which
in a redundancy reduction framework means to separate them into statistically inde-
pendent signals.

Conclusion The studies in this thesis developed new statistical models, statistical
theory, and information theoretic estimation methods in order to explore the statistics
of natural image patches around the question of how important orientation selective
filters and contrast gain control mechanisms are for a factorial representation. One ma-
jor objective behind all work presented was to base our findings on a firm quantitative
ground. Our statistical models are among the state-of-the-art for natural image patches
in terms of likelihood and built the basis for state-of-the-art models on whole natural
images.

Our patch based models allowed us to disentangle the contributions of filter shape
and contrast gain control to density modeling and redundancy reduction on natural
images. We found that orientation selectivity does not play a crucial role for redun-
dancy reduction in the current standard model of visual neurons, while contrast gain
control does. The model classes also provided a framework in which we could demon-
strate that a dynamical component in the physiological standard model for contrast
gain control is crucial to achieve strong redundancy reduction on natural images.
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Abstract

Orientation selectivity is the most striking feature of simple cell coding in V1 that has been shown to emerge from the
reduction of higher-order correlations in natural images in a large variety of statistical image models. The most
parsimonious one among these models is linear Independent Component Analysis (ICA), whereas second-order
decorrelation transformations such as Principal Component Analysis (PCA) do not yield oriented filters. Because of this
finding, it has been suggested that the emergence of orientation selectivity may be explained by higher-order redundancy
reduction. To assess the tenability of this hypothesis, it is an important empirical question how much more redundancy can
be removed with ICA in comparison to PCA or other second-order decorrelation methods. Although some previous studies
have concluded that the amount of higher-order correlation in natural images is generally insignificant, other studies
reported an extra gain for ICA of more than 100%. A consistent conclusion about the role of higher-order correlations in
natural images can be reached only by the development of reliable quantitative evaluation methods. Here, we present a
very careful and comprehensive analysis using three evaluation criteria related to redundancy reduction: In addition to the
multi-information and the average log-loss, we compute complete rate–distortion curves for ICA in comparison with PCA.
Without exception, we find that the advantage of the ICA filters is small. At the same time, we show that a simple spherically
symmetric distribution with only two parameters can fit the data significantly better than the probabilistic model underlying
ICA. This finding suggests that, although the amount of higher-order correlation in natural images can in fact be significant,
the feature of orientation selectivity does not yield a large contribution to redundancy reduction within the linear filter bank
models of V1 simple cells.
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Introduction

It is a long standing hypothesis that neural representations in

sensory systems are adapted to the statistical regularities of the

environment [1,2]. Despite widespread agreement that neural

processing in the early visual system must be influenced by the

statistics of natural images, there are many different viewpoints on

how to precisely formulate the computational goal the system is

trying to achieve. At the same time, different goals might be

achieved by the same optimization criterion or learning principle.

Redundancy reduction [2], the most prominent example of such a

principle, can be beneficial in various ways: it can help to

maximize the information to be sent through a channel of limited

capacity [3,4], it can be used to learn the statistics of the input [5]

or to facilitate pattern recognition [6].

Besides redundancy reduction, a variety of other interesting

criteria such as sparseness [7,8], temporal coherence [9], predictive

information [10,11] , or bottom-up saliency [12] have been formulated.

An important commonality among all these ideas is the tight link

to density estimation of the input signal.

At the level of primary visual cortex there is a large increase in

the number of neurons. Hence, at this stage the idea of

redundancy reduction cannot be motivated by a need for

compression. However, the redundancy reduction principle is

not limited to be useful for compression only. More generally, it

can be interpreted as a special form of density estimation where

the goal is to model the statistics of the input by finding a mapping

which transforms the data into a representation with statistically

independent coefficients [5]. In statistics, this idea is known as

projection pursuit density estimation [13] where density estimation

is carried out by optimizing over a set of possible transformations

in order to match the statistics of the transformed signal as good as

possible to a pre-specified target distribution. Once the distribution

has been matched, applying the inverse transformation effectively

yields a density model for the original data. From a neurobiolog-

ical point of view, we may think of the neural response properties

as an implementation of such transformations. Accordingly, we

here think of redundancy reduction mainly in terms of projection

pursuit density estimation.

A crucial aspect of this kind of approach is the class of

transformations over which to optimize. From a statistician’s point

of view it is important to choose a regularized function space in

order to avoid overfitting. On the other hand, if the class of

possible transformations is too restricted, it may be impossible to
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find a good match to the target distribution. From a visual

neuroscientist’s point of view, the choice of transformations should

be related to the class of possible computations in the early visual

system. Here we assume the simplest case of linear transforma-

tions, optionally followed by a pointwise nonlinearity.

Intriguingly, a number of response properties of visual neurons

have been reproduced by optimizing over the class of linear

transformations on natural images for redundancy reduction (for a

review see [12,14]). For instance, Buchsbaum and Gottschalk as

well as Ruderman et al. revealed a link between the second-order

statistics of color images and opponent color coding of retinal

ganglion cells by demonstrating that decorrelating natural images

in the trichromatic color space with Principal Component Analysis

(PCA) yields the luminance, the red-green, and the blue-yellow

channel [15,16]. Atick and Redlich derived the center-surround

receptive fields by optimizing a symmetric decorrelation transfor-

mation [17]. Later, also spatio-temporal correlations in natural

images or sequences of natural images were linked to the receptive

field properties in the retina and the lateral geniculate nucleus

(LGN) [18–20].

On the way from LGN to primary visual cortex, orientation

selectivity emerges as a striking new receptive field property. A

number of researchers (e.g., [21,22]) have used the covariance

properties of natural images to derive linear basis functions that

exhibit similar properties. Decorrelation alone, however, was not

sufficient to achieve this goal. Rather, additional constraints were

necessary, such as spatial locality or symmetry.

It was not until the reduction of higher-order correlations were

taken into account that the derivation of localized and oriented band-

pass filters—resembling orientation selective receptive fields in V1—

was achieved without the necessity to assume any further constraints.

Those filters were derived with Independent Component Analysis

(ICA), a generalization of Principal Component Analysis (PCA),

which aims at reducing higher-order correlations as well [8,23].

This finding suggests that within the linear filter model,

orientation selectivity can serve as a further mechanism for

redundancy reduction. The tenability of this hypothesis can be

tested by measuring how large the advantage of orientation

selective filters is over non-oriented filter shapes. The importance

of such a quantitative assessment has first been pointed out by Li and

Atick [22] and are the main focus of several publications [12,22,24–

29]. Generally speaking, two different approaches have been taken

in the past: In the first approach, nonparametric methods such as

histograms or nearest neighbor statistics have been used with the

goal to estimate the total redundancy of natural images [22,27,29].

While this approach seeks to answer the more difficult question how

large the total redundancy of natural images is, the second approach

compares the importance of orientation selectivity for redundancy

reduction only within the class of models that are commonly used to

describe V1 simple cell responses [24–26,28].

Using histogram estimators, Zhaoping and coworkers [22,27]

argued that the contribution of higher-order correlations to the

redundancy of natural images is five times smaller than the

amount of second-order correlations. They concluded that this

amount is so small that higher-order redundancy minimization is

unlikely to be the main principle in shaping the cortical receptive

fields.

Two objections may be raised against this conclusion: First, it is

not clear how generally valid the result of [27] is. The study relies

on the assumption that higher-order dependencies at distances

beyond three pixels are negligible. More recent work based on

nearest neighbor methods [29], however, finds a substantially

larger amount of higher-order correlations when taking depen-

dencies over longer distances into account. Secondly, even if the

contribution of higher-order correlation was only 20% of the

amount of second-order correlations, this contribution is not

necessarily negligible. Several previous studies report that the

redundancy reduction achieved with ICA for gray level images is

at the same level at about 20% [24–26]. Taken together these two

findings suggest that orientation selective ICA filters can account

for virtually all higher-order correlations in natural images. If this

was true, it would strongly support the idea that redundancy

reduction could be the main principle in shaping the cortical

receptive fields.

In general, however, density estimation in high dimensions is a

hard problem and the results reported in the literature do not fit

into a consistent view. Therefore, the crucial challenge is to control

for all technical issues in order to allow for safe conclusions about

the effect of orientation selectivity on redundancy reduction. Here,

we address many such issues that have not been addressed before.

In our study, we take the second approach and focus on ‘‘linear

redundancy reduction’’—the removal of statistical dependencies

that can be achieved by linear filtering. While most studies have

been carried out for gray level images the two studies on color

images find the advantage of ICA over PCA to be many times

larger for color images than for gray level images with an

improvement of more than 100% [25,26]. Since it is not clear how

to explain the large difference between color and gray value

images, we reinvestigate the comparison between the orientation

selective ICA filters and the PCA filters for color images using the

same data set as in [25,26].

Our goal is to establish a reliable reference against which more

sophisticated image models can be compared to in the future. We

elaborate on our own previous work [28] by optimizing the ICA

algorithm for the multi-information estimators used in the

comparison. Additionally, we now test the advantage of the

resulting orientation selective ICA filters comprehensively with

three different types of analyses that are related to the notion of

redundancy reduction, density estimation, and coding efficiency:

(A) multi-information reduction, (B) average log-likelihood, and

(C) rate-distortion curves.

Our results show that orientation selective ICA filters do not

excel in any of these measures: We find that the gain of ICA in

Author Summary

Since the Nobel Prize winning work of Hubel and Wiesel it
has been known that orientation selectivity is an important
feature of simple cells in the primary visual cortex. The
standard description of this stage of visual processing is
that of a linear filter bank where each neuron responds to
an oriented edge at a certain location within the visual
field. From a vision scientist’s point of view, we would like
to understand why an orientation selective filter bank
provides a useful image representation. Several previous
studies have shown that orientation selectivity arises when
the individual filter shapes are optimized according to the
statistics of natural images. Here, we investigate quantita-
tively how critical the feature of orientation selectivity is
for this optimization. We find that there is a large range of
non-oriented filter shapes that perform nearly as well as
the optimal orientation selective filters. We conclude that
the standard filter bank model is not suitable to reveal a
strong link between orientation selectivity and the
statistics of natural images. Thus, to understand the role
of orientation selectivity in the primary visual cortex, we
will have to develop more sophisticated, nonlinear models
of natural images.

Orientation Selective Coding of Natural Images
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redundancy reduction over a random decorrelation method is only

about 3% for color and gray-value images. In terms of rate-

distortion curves, ICA performs even worse than PCA. Further-

more, we demonstrate that a simple spherically symmetric model

with only two parameters fits the filter responses significantly

better than a model that assumes marginal independence . Since

in this model the specific shape of the filters is ignored, we

conclude that it is unlikely that orientation selectivity plays a

critical role for redundancy reduction even if the class of

transformations is extended to include contrast gain control

mechanisms [30,31]. While many of the previous studies do not

provide enough detail in order to explain their different outcomes,

we provide our code and the dataset online (http://www.kyb.

tuebingen.mpg.de/bethge/code/QICA/) in order to ensure the

reproducibility and verifiability of our results.

Materials and Methods

An important difficulty in setting up a quantitative comparison

originates from the fact that it bears several issues that may be

critical for the results. In particular, choices have to be made

regarding the evaluation criteria, the image data, the estimation methods,

which linear transformations to include in the comparison, and which

particular implementation of ICA to use. The significance of the

outcome of the comparison will depend on how careful these

choices have been made. The most relevant issues will be

addressed in the following.

Notation and Nomenclature
For both, color and gray-value data, we write x to refer to single

vectors which contain the raw pixel intensities. Vectors are indicated

by bold font while the same letter in normal font with a subindex

denotes one of its components. Vectors without subindices usually

denote random variables, while subindices indicate specific

examples. In some cases it is convenient to define the corresponding

data matrix X~ x1, . . . ,xNð Þ which holds single images patches in

its columns. The letter N denotes the number of examples in the

dataset, while n is used for the dimension of a single data point.

Transformations are denoted by W , oftentimes with a subindex

to distinguish different types. The result of a transformation to

either a vector x or a data matrix X will be written as y~Wx or

Y~WX , respectively.

Probability densities are denoted with the letters p and q,

sometimes with a subindex to indicate differences between

distributions whenever it seems necessary for clarity. In general,

we use the hat symbol to distinguish between true entities and their

empirical estimates. For instance, py yð Þ~px W{1y
� �

: detWj j{1
is

the true probability density of y after applying a fixed transforma-

tion W , while p̂py yð Þ refers to the corresponding empirical estimate.

A distribution p yð Þ is called factorial, or marginally independent,

if it can be written as a product of its marginals, i.e.,

p yð Þ~Pn
i~1 pi yið Þ where pi yið Þ is obtained by integrating p yð Þ

over all components but yi.

Finally, the expectation over some entity f with respect to y
is written as E

y
f yð Þ½ �~

Ð
p yð Þf yð Þdy. Sometimes, we use the

density instead of the random variable in the subindex to

indicate the distribution, over which the expectation is taken.

If there is no risk for confusion we drop the subindex. Just as

above, the empirical expectation is marked with a hat symbol, i.e.,

ÊE f yð Þ½ �~ 1
N

PN
k~1 f ykð Þ.

How to Compare Early Vision Models?
A principal complicacy in low-level vision is the lack of a clearly

defined task. Therefore, it is difficult to compare different image

representations as it is not obvious a priori what measure should be

used.

Multi-information. The first measure we consider is the

multi-information [32], which is the original objective function that is

minimized by ICA over the choice of filters W . The multi-

information assesses the total amount of statistical dependencies

between the components yi of a filtered patch y~Wx:

I p yð Þ½ �~DKL p yð ÞjjP
j

pj yj

� �
:

� �
~ E

p
log

p yð Þ
Pjpj yj

� �" #
~

Xn

j~1

h pj yj

� �� �
{h p yð Þ½ �: ð1Þ

The terms h pj yj

� �� �
and h p yð Þ½ � denote the marginal and the joint

entropies of the true distribution, respectively. The Kullback-Leibler-

Divergence or Relative Entropy

DKL pj qj½ �~ E
p

log
p yð Þ
q yð Þ

� �
is an information theoretic dissimilarity measure between two

distributions p and q [33]. It is always non-negative and zero if and

only if p equals q. If the redundancy reduction hypothesis is taken

literally, the multi-information is the right measure to minimize,

since it measures how close to factorial the true distribution of the

image patches in the representation y really is.

The application of linear ICA algorithms to ensembles of

natural images reliably yields transformations consisting of

localized and oriented bandpass filters similar to the receptive

fields of neurons in V1. It is less clear, however, whether these

filter properties also critical to the minimization of the multi-

information? In order to assess the tenability of the idea that a V1

simple cell is adjusted to the purpose of redundancy reduction, it is

important to know whether such a tuning can—in principle—result

in a large reduction of the multi-information. One way to address

this question is to measure how much more the multi-information is

actually reduced by the ICA filters in comparison to others such as

PCA filters. This approach has been taken in [28].

One problem with estimating multi-information is that it involves

the joint entropy h p yð Þ½ � of the true distribution which is generally

hard to estimate. In certain cases, however, the problem can be

bypassed by evaluating the difference in the multi-information

between two representations x and y. In particular, if y is related to

x by the linear transformation y~Wx it follows from definition (1)

and the transformation theorem for probability densities

py yð Þ~px xð Þ det
Ly

Lx

� �				 				{1

~px W{1y
� �

: detWj j{1

that difference in multi-information can be expressed as

I p yð Þ½ �{I p xð Þ½ �~
X

k

h pk ykð Þ½ �{h p yð Þ½ �{

X
k

h pk xkð Þ½ �{h p xð Þ½ �
 !

~
X

k

h pk ykð Þ½ �{
X

k

h pk xkð Þ½ �{log detWj j:

For convenience, we chose a volume-conserving gauge [28] where

all linear decorrelation transforms are of determinant one, and

Orientation Selective Coding of Natural Images
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hence log detWj j~0. This means that differences in multi-

information are equal to differences of marginal entropies which

can be estimated robustly. Thus, our empirical estimates of the

multi-information differences are given by:

DI&
X

k

h p̂pk ykð Þ½ �{
X

k

h p̂pk xkð Þ½ � s:t: det Wð Þj j~1 ð2Þ

For estimating the entropy of the univariate marginal distributions,

we employ the OPT estimator introduced in [28] which uses the

exponential power family to fit the marginal distributions by

OPTimizing over the shape parameter. This estimator has been

shown to give highly reliable results for natural images. In particular,

it is much more robust than entropy estimators based on the sample

kurtosis which easily overestimate the multi-information.

Average log loss (ALL). As mentioned earlier, redundancy

reduction can be interpreted as a special form of density estimation

where the goal is to find a mapping which transforms the data into

a representation with statistically independent coefficients. This

means that any given transformation specifies a density model over

the data. Our second measure, the average log-loss (ALL),

evaluates the agreement of this density model with the actual

distribution of the data:

E
p

{log p̂p yð Þ½ �~{

ð
p yð Þlog p̂p yð Þdy~H p½ �zDKL pkp̂p½ � ð3Þ

The average log-loss is a principled measure quantifying how

different the model density p̂p yð Þ is from the true density p yð Þ [34].

Since the KL-divergence is positive and zero if and only if p̂p~p the

ALL is minimal only if p̂p matches the true density. Furthermore,

differences in the average log-loss correspond to differences in the

coding cost (i.e., information rate) in the case of sufficiently fine

quantization. For natural images, different image representations

have been compared with respect to this measure in [24–26].

For the estimation of the average log-loss, we compute the

empirical average

E
p

{log p̂p yð Þ½ �& ÊE
y

{log p̂p yð Þ½ �~{
1

N

XN

k~1

log p̂p ykð Þ: ð4Þ

This estimator is equivalent to the first method in Lewicki et al.

[24,35] apart from an extra term N log s in their defining

equation. This extra term is only necessary if one aims at relating

the result to a discrete entropy obtained for a particular bin width

s.

While the empirical average in Eq. 4 in principle can be prone

to overfitting, we control for this risk by evaluating all estimates on

an independent test set, whose data has not been used during the

parameter fit. Furthermore, we compare the average log-loss to

the parametric entropy estimates h p̂p½ � that we use in (A) for

estimating the multi-information changes (see Eq. 2). The

difference between both quantities has been named differential log-

likelihood [36] and can be used to assess the goodness of fit of a

model distribution:

ÊE {log p̂p½ �{h p̂p½ �~ E
p̂p

log p̂p½ �{ÊE log p̂p½ �:

The shape of the parametric model is well matched to the actual

distribution if the differential log-likelihood converges to zero with

increasing number of data points.

Rate-distortion curves. Finally, we consider efficient coding or

minimum mean square error reconstruction as a third objective. In

contrast to the previous objectives, it is now assumed that there is

some limitation of the amount of information that can be

transmitted, and the goal is to maximize the amount of relevant

information transmitted about the image. In the context of neural

coding, the redundancy reduction hypothesis has oftentimes been

motivated in terms of coding efficiency. In fact, instead of

minimizing the multi-information one can equivalently ask for the

linear transformation W which maximizes the mutual information

between its input x and its output Wxzj when additive noise j is

added to the output [3,37,38]. It is important to note, however,

that this minimalist approach of ‘‘information maximization’’ is

ignorant with respect to how useful or relevant the information is

that has been transmitted [14].

For natural images, the source signal x is a continuous random

variable which requires infinitely many bits to be specified with

unlimited precision. In reality, however, the precision is always

limited so that only a finite amount of bits can be represented.

Both, the multi-information and the average log-loss do not take

into account the problem what information should be encoded

and what information can be discarded. Therefore, it is interesting

to compare the redundancy reduction of the linear transforms with

respect to the relevant image information (while the irrelevant

information can be discarded anyway). To this end, we here resort

to the framework of linear transform coding as it has been

developed in the field of image compression [39,40], and which

constitutes the theoretical foundation of the JPEG standard.

It is clear that at the level of V1 the number of neurons,

encoding the retinal image, is substantially larger than the number

of fibers in the optic nerve. Therefore, it is not the need for

compression that makes rate distortion theory interesting at this

stage. However, Barlow’s redundancy reduction hypothesis must

not be equated with compression. In more recent work, Barlow

introduced the term ‘redundancy exploitation’ instead of ‘redun-

dancy reduction’ in order to avoid this misunderstanding [41]. But

also if we think in terms of density estimation rather than

compression, it is still important to take into account that not all

possible changes in the image pixels may be of equal importance

for inferring the content of an image. Therefore, we here want to

combine the notion of redundancy reduction with a measure for

the quality with which the image can be reconstructed from the

information that is preserved by the representation. Following

Lewicki and coworkers (method 2 in [24,35]) we will consider the

mean squared error reconstruction that can be achieved at a

certain quantization level of the transformed representation. This

objective is in fact very much related to the task of image

compression.

Clearly, we expect that the criteria for judging image

compression algorithms may not provide a good proxy to an

accurate judgement of what information is considered relevant in a

biological vision system. In particular, the existence of selective

attention suggests that different aspects of image information are

transmitted at different times depending on the behavioral goals

and circumstances [12]. That is, a biological organism can change

the relevance criteria dynamically on demand while for still image

compression algorithms it is rather necessary that this assessment is

made once and forever in a fixed and static fashion.

These issues are outside the scope of this paper. Instead we

follow the common path in the past to use the mean squared

reconstruction error for the pixel intensities. This is the measure of

choice for high-rate still image compression [42]. In particular, it is

common to report on the performance of a code by determining

its rate–distortion curve which specifies the required information
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rate for a given reconstruction error (and vice versa) [40].

Consequently, we will ask for a given information rate, how do the

image representations compare with respect to the reconstruction

error. As result, we will obtain a so-called rate–distortion curve

which displays the average reconstruction error as a function of the

information rate or vice versa. The second method used in [24,35]

is an estimate of a single point on this curve for a particular fixed

value of the reconstruction error.

The estimation of the rate–distortion curve is clearly the most

difficult task among the three criteria. The framework of transform

coding [39], which is extensively used in still image compression,

makes several simplifying assumptions that allow one to obtain a

clear picture. The encoding task is divided into two steps: First, the

image patches x are linearly transformed into y~Wx. Then the

coefficients yj are quantized independently of each other. Using

this framework, we can ask whether the use of an ICA image

transformation leads to a smaller reconstruction error after

coefficient quantization than PCA or any other transform.

As for quantizing the coefficients, we resort to the framework of

variable rate entropy coding [43]. In particular, we apply uniform

quantization, which is close to optimal for high-rate compression

[39,44]. For uniform quantization, it is only required to specify the

bin width of the coefficients. There is also the possibility to use a

different number of quantization levels for the different coeffi-

cients. The question of how to set these numbers is known as the

‘bit allocation problem’ because the amount of bits needed to

encode one coefficient will depend monotonically on the number

of quantization levels. The number of quantization levels can be

adjusted in two different but equivalent ways: One possibility is to

use a different bin width for each individual coefficient.

Alternatively, it is also possible to use the same bin width for all

coefficients and multiply all coefficients with an appropriate scale

factor before quantization. The larger the variance of an

individual coefficient, the more bits will be allocated to represent

it.

Here, we will employ the latter approach, for which the bit

allocation problem becomes an inherent part of the transforma-

tion: Any bit allocation scheme can be obtained via post-

multiplication with a diagonal matrix. Thus, in contrast to the

objective function of ICA, the rate–distortion criterion is not

invariant against post-multiplication with a diagonal matrix. For

ICA and PCA, we will determine the rate–distortion curve for

both, normalized output variances (‘‘white ICA’’ and ‘‘white

PCA’’) and normalized basis functions (‘‘normalized ICA’’ and

‘‘orthonormal PCA’’), respectively.

Decorrelation Transforms
The particular shape of the ICA basis functions is obtained by

minimization of the multi-information over all invertible linear

transforms y~Wx. In contrast, the removal of second-order

correlations alone generally does not yield localized, oriented, and

bandpass image basis functions. ICA additionally removes higher-

order correlations which are generated by linear mixing. In order

to assess the importance of this type of higher-order correlations

for redundancy reduction and coding efficiency we will compare

ICA to other decorrelating image bases.

Let C~E xxT
� �

be the covariance matrix of the data and

C~UDUT its eigen-decomposition. Then, any linear second-

order decorrelation transform can be written as

W~D2
:V :D{1=2:UT ð5Þ

where D and U are defined as above, V is an arbitrary orthogonal

matrix and D2 is an arbitrary diagonal matrix. It is easily verified

that Y~WX has diagonal covariance for all choices of V and D2,

i.e., all second-order correlations vanish. This means that any

particular choice of V and D2 determines a specific decorrelation

transform. Based on this observation we introduce a number of

linear transformations for later reference. All matrices are square

and are chosen to be of determinant lm, where m is the number of

columns (or rows) of W (i.e., l~
ffiffiffiffiffiffiffiffiffi
P li

m
p

is the geometrical mean of

the eigenvalues li,i~1, . . . ,m).

Orthogonal principal component analysis (oPCA). If the

variances of the principle components (i.e., the diagonal elements

of D) are all different, PCA is the only metric-preserving

decorrelation transform and is heavily used in digital image

coding. It corresponds to choosing V~Im as the identity matrix

and D2~lD1=2, such that WoPCA~lUT.

White principal component analysis (wPCA). Equalizing

the output variances in the PCA representation sets the stage for the

derivation of further decorrelation transforms different from PCA.

In order to assess the effect of variance equalization for coding

efficiency, we also include this ‘‘white PCA’’ representation into our

analysis: Choose V~Im as for orthonormal PCA and then set

D2~mIm with m~l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det D1=2ð Þm

p
such that WwPCA~mD{1=2UT.

Symmetric whitening (SYM). Among the non-orthogonal

decorrelation transforms, symmetric whitening stays as close to the

input representation as possible (in Frobenius norm) [45]. In terms

of early vision this may be seen as an implementation of a wiring

length minimization principle. Remarkably, the basis functions of

symmetric whitening resemble the center-surround shape of

retinal ganglion cell receptive fields when applied to the pixel

representation of natural images [17]. The symmetric whitening

transform is obtained by setting V~U and D2~mIm such that

WSYM~m UD{1=2UT.

Random whitening (RND). As a baseline which neither

exploits a special structure with respect to the input representation

nor makes use of higher-order correlations we also consider a

completely random transformation. To obtain a random orthogonal

matrix we first draw a random matrix G from a Gaussian matrix-

variate distribution and then we set VRND~ GGT
� �{1=2

G. With

D2~mIm we obtain WRND~mVRNDD{1=2UT.

White independent component analysis (wICA). Finally,

ICA is the transformation which has been suggested to explain the

orientation selectivity of V1 simple cells [8,23]. Set V~VICA for

which the multi-information I Y½ � takes a minimum. With

D2~mIm we obtain WwICA~mVICAD{1=2UT.

Normalized independent component analysis (nICA). Nor-

malized independent component analysis (nICA) differs from white

ICA (WwICA) only by a different choice of the second diagonal matrix

D2. Instead of having equal variance in each coefficient, we now

choose D2 such that the corresponding basis vector of each coefficient

has the same length in pixel space. It is easy to see that our first two

criteria, the multi-information and the negative log-likelihood, are

invariant under changes in D2. It makes a difference for the rate–

distortion curves as in our setup the variance (or, more precisely, the

standard deviation) determines the bit allocation. Practically, WnICA

can be determined by using WwICA as follows: First, we compute the

matrix inverse A : ~W{1
wICA and determine the Euclidean norm

a1, . . . ,am of the column vectors of A. With Da~diag a1, . . . ,amð Þ,
we then obtain WnICA~ 1ffiffiffiffiffiffiffiffiffiffiffiffi

det Dað Þm
p DaWwICA.

ICA Algorithm
If the true joint probability distribution is known, the

minimization of the multi-information over all linear transforma-

tions can be formulated without any assumptions about the shape

of the distribution. In practice, the multi-information has to be
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estimated from a finite amount of data which requires to make

assumptions about the underlying density.

There are many different ICA algorithms which differ in the

assumptions made and also in the optimization technique

employed. The choice of the particular ICA algorithm used here

was guided by a set of requirements that arise from the specific

problem setting. Although a wide variety of ICA algorithms has

been published, none of them fits exactly all of our requirements.

We would like to use an ICA algorithm, which gives the ICA

image basis the best chance for the comparison with other image

representations. For the comparison of the multi-information

reduction, we are using the OPT estimator introduced in [28]

which has been found to give the most reliable results. This

estimator employs a parametric estimate of the coefficient

distributions based on the exponential power family which is

known to provide an excellent fit to the coefficient distributions of

natural images [28,46]. Our ICA algorithm should make the same

assumptions about the data as we make for the final comparison of

the multi-information reduction. Therefore, we are also using the

exponential power family model for the marginal densities during

the minimization of the multi-information. In addition, we want to

have an ICA basis which is indistinguishable from the other image

representations with respect to the second-order statistics.

Therefore, we are using a pre-whitened ICA algorithm, whose

search space is restricted to the subgroup of orthogonal matrices

SO nð Þ. One of the most efficient ICA methods in the public

domain specialized to pre-whitened ICA is FastICA [47]. We use

this fixed-point algorithm as an initialization. Subsequently, the

solution is further refined by performing a gradient ascent over the

manifold of orthogonal matrices on the likelihood of the data,

when each marginal is modelled by a the exponential power

distribution as in the case of the OPT estimator.

In order to optimize the objective function over the subspace of

orthogonal matrices, we adapted the algorithms for Stiefel

manifolds proposed by Edelman et al. [48] to the simpler case

of orthogonal groups and combined it with the line-search routine

dbrent from [49] to achieve a rather straightforward gradient

descent algorithm. For the initialization with FastICA, we use the

Gaussian non-linearity, the symmetric approach and a tolerance

level of 1025.

Spherically Symmetric Model
A well known result by Maxwell [50] states that the only

factorial distribution invariant against arbitrary orthogonal

transformations is the isotropic Gaussian distribution. Natural

images exhibit marginals which are significantly more peaked than

Gaussian. Nevertheless, their distribution does share the spherical

symmetry with the Gaussian as already found by [51] for gabor

filter pairs and lately exploited by [31] for nonlinear image

representations. Therefore, it makes sense to compare the

performance of the ICA model with a spherically symmetric

model of the whitened data yw~WRNDx. Note that any

spherically symmetric model is still invariant under orthogonal

transformations while only the Gaussian additionally exhibits

marginal independence.

While the radial distribution of a Gaussian (i.e., the distribution

over the lengths of the random vectors) is a x-distribution, whose

shape and scale parameter is determined by the number of

dimensions and the variance, respectively, the spherical symmetric

model may be seen as a generalization of the Gaussian, for which

the radial distribution p rð Þ with r: ~ yk k2 can be of arbitrary

shape. The density of the spherically symmetric distribution (SSD)

is defined as py yð Þ~pr rð Þ=Sn rð Þ, where Sn rð Þ~rn{12pn=2
�

C n=2ð Þ is the surface area of a sphere in Rn with radius r. For

simplicity we will model the radial distribution with a member of

the Gamma family

p rð Þ~
ru{1exp { r

s

� �
suC uð Þ , r§0 ð6Þ

with shape parameter u and scale parameter s, which can be easily

matched to the mean and variance of the empirical distribution via

s~dVarVar r½ �
.

ÊE r½ � and u~ÊE r½ �2
.dVarVar r½ �.

Dataset
The difference in the performance between ICA and other

linear transformations clearly depends on the data. For gray-scale

images we observed in our previous study [28] that the difference

in the multi-information between ICA and any other decorrelation

transform is consistently smaller than 5%. In particular, we

controlled for the use of different pictures and for the effect of

different pre-processing steps.

Here, we resort to the dataset used in a previous study [25,26],

which among all previous studies reported the largest advantage of

ICA compared to PCA. This color image dataset is based on the

Bristol Hyperspectral Images Database [52] that contains multi-

spectral recordings of natural scenes taken in the surroundings of

Bristol, UK and in the greenhouses of Bristol Botanical Gardens.

The authors of [26] kindly provided to us a pre-processed version

of the image data where spectral radiance vectors were already

converted into LMS values. During subsequent processing the

reflectance standard was cut out and images were converted to log

intensities [26].

All images come at a resolution of 2566256 pixels. From each

image circa 5000 patches of size 767 pixels were drawn at

random locations (circa 40000 patches in total). For chromatic

images with three color channels (LMS) each patch is reshaped as

a 76763 = 147-dimensional vector. To estimate the contribution

of color information, a comparison with monochromatic images

was performed where gray-value intensities were computed as

I~log 1
3

LzMzSð Þ
� �

and exactly the same patches were used

for analysis. In the latter case, the dimensionality of a data sample

is thus reduced to 49 dimensions. All experiments are carried out

over ten different training and test sets sampled independently

from the original images.

Our motivation to chose 767 patches is to keep the same setting

as in [26] for the sake of comparability. As this patch size is rather

small, we performed the same analysis for patch sizes of 15615 as

well. All results in the paper refer to the case of 767 image

patches. The results for 15615 can be found in the supplementary

material (Text S1).

The statistics of the average illumation in the image patches, the

DC component, differs significantly from image to image.

Therefore, we first separated the DC component from the patches

before further transforming them. In order to leave the entropy of

the data unaffected, we used an orthogonal transformation. The

projector PremDC is computed such that the first (for each color

channel) component of PremDCx corresponds to the DC compo-

nent(s) of that patch. One such a possible choice is the matrix

p~

1 0 0 � � �
1 1 0 � � �
1 0 P � � �
..
.

1

266664
377775

T
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However, this is not an orthogonal transformation. Therefore, we

decompose P into P~QR where R is upper triangular and Q is an

orthogonal transform. Since P~QR, the first column of Q must be

a multiple of the vector with all coefficients equal to one (due to the

upper triangluarity of R). Therefore, the first component of QTx is a

multiple of the DC component. Since Q is an orthonomal

transform, using all but the first row of QT for PremDC projects

out the DC component. In the case of color images PremDC becomes

a block-diagonal matrix with QT as diagonal elements for each

channel.

By removing the DC component in that manner, all linear

transformations are applied in n{1 dimensions, if n denotes the

number of pixels in the original image patch. In this case the

marginal entropy of the DC-components has to be included in the

computation of the multi-information in order to ensure a valid

comparison with the original pixel basis. We use the same

estimators as in [28] to estimate the marginal entropy of DC-

component.

Results

Filter Shapes
As in previous studies [8,23] the filters derived with ICA

exhibited orientation selective tuning properties similar to those

observed for V1 simple cells (see Figure 1). For illustration, we also

show the basis functions learned with PCA and RND in Figure 1.

The basis functions A are obtained by inverting the filter matrix

W (including the DC component). The result is displayed in the

upper panel (Figure 1A–C). Following common practice, we also

visualize the basis functions after symmetric whitening (Figure 1D–

F).

The basis functions of both PCA and ICA exhibit color

opponent coding but the basis functions of ICA are additionally

localized and orientation selective. The basis functions of the

random decorrelation transform does not exhibit any regular

structure besides the fact that they are bandpass. The following

quantitative comparisons will show, however, that the distinct

shape of the ICA basis functions does not yield a clear advantage

for redundancy reduction and coding efficiency.

Multi-Information
The multi-information is the original objective function that is

minimized by ICA over all possible linear decorrelation trans-

forms. Figure 2 shows the reduction in multi-information achieved

with different decorrelation transforms including ICA for

chromatic and gray value images, respectively. For each

representation, the results are reported in bits per component,

i.e., as marginal entropies averaged over all dimensions:

ShT~
1

n

Xn

k~1

h pk ykð Þ½ � ð7Þ

Table 1 shows the corresponding values for the transformations

RND, SYM, PCA and ICA. For both chromatic images and gray-

value intensities, the lowest and highest reduction is achieved with

RND or ICA, respectively. However, the additional gain in the

multi-information reduction achieved with ICA on top of RND

constitutes only 3.20% for chromatic images and 2.39% for

achromatic in comparison with the total reduction relative to the

pixel basis (PIX). This means that only a small fraction of

redundancy reduction can actually be accounted to the removal of

higher-order redundancies with ICA.

One may argue that the relatively small patch size of 767 pixel

may be responsible for the small advantage of ICA as all

decorrelation functions already getting the benefit of localization.

In order to address the question how the patch size affects the

linear redundancy reduction, we repeated the same analysis on a

whole range of different patch sizes. Figure 3 shows the multi-

information reduction with respect to the pixel representation

(PIX) achieved by the transformations RND and ICA. The

achievable reduction quickly saturates with increasing patch size

such that its value for 767 image patches is already at about 90%

of its asymptote. In particular, one can see that the relative

advantage of ICA over other transformations is still small (,3%)

also for large patch sizes. All Tables and Figures for patch size

15615 can be found in the additional material (Text S1).

Average Log-Loss
Since redundancy reduction can also be interpreted as a special

form of density estimation we also look at the average log-loss

which quantifies how well the underlying density model of the

different transformations is matched to the statistics of the data.

Table 2 shows the average log-loss (ALL) and Table 3 the

differential log-likelihood (DLL) in bits per component. For the

average log-loss, ICA achieved an ALL of 1.78 bits per component

for chromatic images and 1.85 bits per component for achromatic

images. Compared to the ALL in the RND representation of

1.9 bits and 1.94 bits, respectively, the gain achieved by ICA is

again small. Additionally, the ALL values were very close to the

differential entropies, resulting in small DLL values. This confirms

that the exponential power distribution fits the shape of the

individual marginal coefficient distributions well. Therefore, we

can safely conclude that the advantage of ICA is small not only in

terms of redundancy reduction as measured by the multi-

information, but also in the sense of density estimation.

Comparison to a Spherical Symmetric Model. The fact

that ICA fits the distribution of natural images only marginally

better than a random decorrelation transform implies that the

generative model underlying ICA does not apply to natural

images. In order to assess the importance of the actual filter shape,

we fitted a spherically symmetric model to the filter responses. The

likelihood of such a model is invariant under post-multiplication of

an orthogonal matrix, i.e., the actual shape of the filter. Therefore,

a good fit of such a model provides strong evidence against a

critical role of certain filter shapes.

As shown in Table 2, the ALL of the SSD model is 1.67 bits per

component for chromatic images and 1.65 bits per component for

achromatic images. This is significantly smaller than the ALL of

ICA indicating that it fits the distribution of natural images much

better than ICA does. This result is particularly striking if one

compares the number of parameters fitted in the ICA model

compared to the SSD case: After whitening, the optimization in

ICA is done over the manifold of orthogonal matrices which has

m m{1ð Þ=2 free parameters (where m denotes the number of

dimensions without the DC components). The additional

optimization of the shape parameters for the exponential power

family fitted to each individual component adds another m

parameters. For the case of 767 color image patches we thus have
144:145

2
~10440 parameters. In stark contrast, there are only two

free parameters in the SSD model with a radial Gamma

distribution, the shape parameter u and the scale parameter s.

Nevertheless, for chromatic images the gain of the SSD model

relative to random whitening is almost twice as large as that of

ICA and even three and a half times as large for achromatic

images.
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Since the SSD model is completely independent of the choice of

the orthogonal transformation after whitening, its superior

performance compared with ICA provides a very strong argument

against the hypothesis that orientation selectivity plays a critical

role for redundancy reduction. In addition, it is also corroborates

earlier arguments that has been given to show that the statistics of

natural images does not conform to the generative model

underlying ICA [51,53].

Besides the better fit of the data by the SSD model, there is also

a more direct way of demonstrating the dependencies of the ICA

coefficients: If YwICA~ y1, . . . ,yNð Þ is data in the wICA

representation, then the independence assumption of ICA can

be simulated by applying independent random permutations to

the rows of YwICA. Certainly, such a shuffling procedure does not

alter the histograms of the individual coefficients but it is suited to

destroy potential statistical dependencies among the coefficients.

Subsequently, we can transform the shuffled data YsICA back to

the RND basis YsRND~WRNDW{1
wICAYsICA. If the ICA coeffi-

cients were independent, the shuffling procedure would not alter

the joint statistics, and hence, one should find no difference in the

multi-information between YsRND and YRND. But infact, we

observe a large discrepancy between the two (Figure 4). The

Figure 1. Examples for Receptive Fields of Various Image Transforms. Basis functions of a random decorrelation transform (RND), principal
component analysis (PCA) and independent component analysis (ICA) in pixel space (A–C) and whitened space (E–F). The image representation in
whitened space is obtained by left multiplication with the matrix square root of the inverse covariance matrix C{1=2 .
doi:10.1371/journal.pcbi.1000336.g001

Figure 2. Multi-Information Reduction per Dimension. Average differential entropy ShT for the pixel basis (PIX), after separation of the DC
component (DCS), and after application of the different decorrelation transforms. The difference between PIX and RND corresponds to the
redundancy reduction that is achieved with a random second-order decorrelation transform. The small difference between RND and ICA is the
maximal amount of higher-order redundancy reduction that can be achieved by ICA. Diagram (A) shows the results for chromatic images and
diagram (B) for gray value images. For both types of images, only a marginal amount can be accounted to the reduction of higher order
dependencies.
doi:10.1371/journal.pcbi.1000336.g002
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distributions of the sRND coefficients were very close to Gaussians

and the average marginal entropy of sRND yielded ShsRND{
hGaussT&{0:001 bits in contrast to ShRND{hGaussT&{0:1 bits.

In other words, the finding that for natural images the marginals of

a random decorrelation transform have Laplacian shape (a&1)

stands in clear contradiction to the generative model underlying

ICA. If the ICA model was valid, one would expect that the sum

over the ICA coefficients would yield Gaussian marginals due to

the central limit theorem. In conclusion, we have very strong

evidence that the ICA coefficients are not independent in case of

natural images.

Rate-Distortion Curves
There are different ways to account for the limited precision

that is imposed by neural noise and firing rate limitations. As

mentioned above the advantage with respect to a plain

information maximization criterion can equivalently be measured

by the multi-information criterion considered above [37,54]. In

order to additionally account for the question which representa-

tion optimally encodes the relevant image information, we also

present rate distortion curves which show the minimal recon-

struction error as a function of the information rate.

We compare the rate–distortion curves of wICA, nICA, wPCA

and oPCA (see Figure 5). Despite the fact that ICA is optimal in

terms of redundancy reduction (see Table 2), oPCA performs

optimal with respect to the rate-distortion trade-off. wPCA in turn

performes worst and remarkably similar to wICA. Since wPCA

and wICA differ only by an orthogonal transformation, both

representations are bound to the same metric. oPCA is the only

transformation which has the same metric as the pixel represen-

tation according to which the reconstruction error is determined.

By normalizing the length of the ICA basis vectors in the pixel

space, the metric of nICA becomes more similar to the pixel basis

and the performance with respect to the rate-distortion trade-off

Table 1. Comparision of the Multi-Information Reduction for
Chromatic and Achromatic Images.

Absolute Difference Relative Difference

Color Gray Color Gray

RND-PIX 24.069460.0043 23.125260.0043

SYM-RND20.059360.0004 20.025960.0006 SYM{RND
SYM{PIX

1.4460.01 0.8260.02

PCA-RND20.062760.0008 20.035360.0011 PCA{RND
PCA{PIX

1.5260.02 1.1260.03

ICA-RND 20.134560.0008 20.076760.0008 ICA{RND
ICA{PIX

3.2060.02 2.3960.02

Differences in the multi-information reduction between various decorrelation
transforms (SYM, PCA, ICA) relative to a random decorrelation transform (RND)
compared to the multi-information reduction achieved with the random
decorrelation transform relative to the original pixel basis (RND-PIX). The
absolute multi-information reduction is given in bits/component on the left
hand side. The right hand side shows how much more the special decorrelation
transforms SYM, PCA and ICA can reduce the multi-information relative to the
random (RND) one.
doi:10.1371/journal.pcbi.1000336.t001

Figure 3. Redundancy Reduction as a Function of Patch Size. The graph shows the multi-information reduction achieved by the
transformations RND and ICA for chromatic (A) and achromatic images (B). The gain quickly saturates with increasing patch size such that its value for
767 image patches is already at about 90% of its asymptote. This demonstrates that the advantage of ICA over other transformations does not
increase with increasing patch size.
doi:10.1371/journal.pcbi.1000336.g003

Table 2. Average Log-Loss (ALL) for Chromatic and
Achromatic Images.

Color Gray

ALL ALL

RND 1.948660.0035 1.941460.0044

SYM-RND 20.088160.0004 20.040260.0005

PCA-RND 20.075160.0009 20.039160.0011

ICA-RND 20.163760.0007 20.088060.0007

SSD-RND 20.276160.0025 20.286860.0032

The first row shows the average log-loss (ALL, in bits/component) of the density
model determined by the linear transformation RND. The value was obtained
by averaging over 10 separately sampled training and test sets of size 40.000
and 50.000, respectively. The following rows show the difference of the ALL of
the models SYM, PCA, ICA and of the spherically symmetric density (SSD) to the
ALL of the RND model. The smaller average log-loss of the SSD model
compared to the ICA model fundamentally contradicts the assumptions
underlying the ICA model.
doi:10.1371/journal.pcbi.1000336.t002
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improved considerably. Nevertheless, for a fixed reconstrucion

error the discrete entropy after quantization in the oPCA basis is

up to 1 bit/component smaller than for the corresponding nICA-

basis.

In order to understand this result more precisely, we analyzed

how the quantization of the coefficients affects the two variables of

the rate–distortion function, discrete entropy and reconstruction error.

Figure 6 shows an illustrative example in order to make the

following analysis more intuitive. The example demonstrates that

the quality of a transform code not only depends on the

redundancy of the coefficients but also on the shape of the

partition cells induced by the quantization. In particular, when the

cells are small (i.e., the entropy rate is high), then the

reconstruction error mainly depends on having cell shapes that

minimize the average distance to the center of the cell. Linear

transform codes can only produce partitions into parallelepipeds

(Figure 6B). The best parallelepipeds are cubes (Figure 6A). This is

why PCA yields the (close to) optimal trade-off between

minimizing the redundancy and the distortion, as it is the only

orthogonal transform that yields uncorrelated coefficients. For a

more comprehensive introduction to transform coding we refer the

reader to the excellent review by Goyal [39].

Discrete entropy. Given a uniform binning of width d the

discrete entropy Hd of a probability density p xð Þ is defined as

Hd~{
X

i

pi log pi with pi~

ð
Bi

p xð Þdx, ð8Þ

where Bi denotes the interval defined by the i-th bin. For small

bin-sizes d?0, there is a close relationship between discrete and

differential entropy: Because of the mean value theorem we can

approximate pi&p jið Þd with j[Bi, and hence

Hd&{
X

i

p jið Þd log p jið Þd½ �

~{
X

i

d p jið Þlog p jið Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
d?0

?{
Ð

p xð Þ log p xð Þ dx

{log d
X

i

p jið Þd|fflfflfflfflfflffl{zfflfflfflfflfflffl}
d?0
?1

:

Thus, we have the relationship Hd&h{log d for sufficiently small

d (i.e., high-rate quantization). In other words, Hd asymptotically

grows linearly with {log dð Þ. Therefore, we can fit a linear

function to the asymptotic branch of the function

Hd~Hd {log dð Þ which is plotted in Figure 7A (more precisely

we are plotting the average over all dimensions). If we take the

ordinate intercept of the linear approximation, we obtain a

nonparametric estimate of the differential entropy which can be

compared to the entropy estimates reported above (Those

estimates were determined with the OPT estimator).

Equivalently, one can consider the function hd {log dð Þ: ~

Hd{ {log dð Þ which gives a better visualization of the error of

the linear approximation (Figure 7, left, dashed line). For

hd {log dð Þ the differential entropy is obtained in the limit

h~lim {log dð Þ??hd~limd?0hd.

This analysis shows that differences in differential entropy in

fact translate into differences in discrete entropy after uniform

quantization with sufficiently small bins. Accordingly, the

minimization of the multi-information as proposed by the

redundancy reduction hypothesis does in fact also minimize the

discrete entropy of a uniformly quantized code. In particular, if we

look at the discrete entropy of the four different transforms, oPCA,

wPCA, wICA, nICA (Figure 7B), we find that asymptotically the

two PCA transforms require slightly more entropy than the two

ICA transforms, and there is no difference anymore between

Table 3. Differential Log-Likelihood (DLL) for Chromatic and Achromatic Images.

Color Gray

DLL SaT DLL SaT

RND 20.011360.0007 1.041360.0026 20.005760.0006 1.013260.0046

SYM 20.038860.0009 0.896160.0021 20.019560.0009 0.948660.0040

PCA 20.022460.0007 0.914560.0024 20.008760.0007 0.942560.0025

ICA 20.037860.0009 0.768760.0017 20.015460.0011 0.843460.0025

The small DLL values suggest, that the exponential power distribution fits the shape of the individual coefficient distributions well. In addition, we also report the
average exponent SaT of the exponential power family fit to the individual coefficient distributions (a~1 corresponds to a Laplacian shape).
doi:10.1371/journal.pcbi.1000336.t003

Figure 4. The Distribution of Natural Images does not Conform
with the Generative Model of ICA. In order to test for statistical
dependencies among the coefficients YwICA of whithened ICA for
single data samples, the coefficients were shuffled among the data
points along each dimension. Subsequently, we transform the resulting
data matrix YsICA into YsRND~WRNDW{1

wICAYsICA . This corresponds to
a change of basis from the ICA to the random decorrelation basis (RND).
The plot shows the log-histogram over the coefficients over all
dimensions. If the assumptions underlying ICA were correct, there
would be no difference between the histogram of YsRND and YRND.
doi:10.1371/journal.pcbi.1000336.g004
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oPCA and wPCA or wICA and nICA. This close relationship

between discrete and differential entropy for high-rate quantiza-

tion, however, is not sufficient to determine the coding

performance evaluated by the rate–distortion curve. The latter

requires to compare also the reconstruction error for the given

quantization.

Reconstruction error. The reconstruction error is defined as

the mean squared distance in the pixel basis between the original

image and the image obtained by reconstruction from the

quantized coefficients of the considered transformation. For the

reconstruction, we simply use the inverse of the considered

transformation, which is optimal in the limit of high-rate

quantization.

When looking at the reconstruction error as a function of the

bin width (Figure 8) we can observe much more pronounced

differences between the different transformations than it was the

case for the entropy. As a consequence, the differences in the

reconstruction error turn out to be much more important for the

rate-distortion trade-off than the differences in the entropy. Only

the two transformations with exactly the same metric, wPCA and

wICA, exhibit no difference in the reconstruction error. This

suggests that minimization of the multi-information is strictly

related to efficient coding if and only if the transformation with

respect to the pixel basis is orthogonal. As we have seen that the

potential effect of higher-order redundancy reduction is rather

small, we expect that the PCA transform constitutes a close

approximation to the minimizer of the multi-information among

all orthogonal transforms because PCA is the only orthogonal

transform which removes all second-order correlations.

Discussion

The structural organization of orientation selectivity in the

primary visual cortex has been associated with self-organization

since the early seventies [55], and much progress has been made to

narrow down the range of possible models compatible with the

empirical findings (e.g., [56–58]). The link to visual information

processing, however, still remains elusive [59–61].

More abstract unsupervised learning models which obtain

orientation selective filters using sparse coding [8] or ICA [23] try

to address this link between image processing and the self-

organization of neural structure. In particular, these models not

only seek to reproduce the orientation tuning properties of V1

simple cells but they additionally address the question of how the

simple cell responses collectively can instantiate a representation

for arbitrary images. Furthermore, these image representations are

learned from an information theoretic principle assuming that the

learned filters exhibit advantageous coding properties.

The goal of this study is to quantitatively test this assumption in

the simple linear transform coding framework. To this end, we

investigated three criteria, the multi-information—i.e., the objec-

tive function of ICA—the average log-loss, and rate-distortion

curves. There are a number of previous studies which also aimed

at quantifying how large the advantage of the orientation selective

ICA filters is relative to second-order decorrelation transforma-

tions. In particular, four papers [24–26,28], are most closely

related to this study as all of them compare the average log-loss of

different transformations. However, they did not provide a

coherent answer to the question how large the advantage of

ICA is compared to other decorrelation transforms.

Lewicki and Olshausen [24] found that their learned bases show

a 15–20% improvement over traditional bases. However, their

result cannot be used to compare second-order and higher-order

redundancy reduction because the entire analysis is based on a

dataset in which all images have been preprocessed with a

bandpass filter as in olshausen:1996. Since bandpass filtering

already removes a substantial fraction of second-order correlations

in natural images, their study is likely to systematically underes-

timate the total amount of second-order correlations in natural

images.

Lee et al. [25,26] reported an advantage of over 100% percent

for ICA in the case of color images and a more moderate but

substantial gain of about 20% for gray-value images. In order to

avoid possible differences due to the choice of data set we here

used exactly the same data as in [25,26]. Very consistently, we find

only a small advantage for ICA of less than five percent for both

multi-information and the average log-loss. In particular, we are

not able to reproduce the very large difference between color and

gray-value images that they reported. Unfortunately, we cannot

pinpoint where the differences in the numbers ultimately come

from because it is not clear which estimation procedure was used

in [25,26].

The estimators used for the measurements in the present study

have been shown previously to give correct results on artificial data

[28] and we provide our code online for verification. Furthermore,

Weiss and Freeman showed for an undirected probabilistic image

model that whitening already yields 98% of the total performance

[62]. Finally, the superior performance of the simple SSD model

with only two free parameters provides a very strong explanation

for why the gain achieved with ICA is so small relative to a

random decorrelation transform: Since a spherically symmetric

model is invariant under orthogonal transformations and provides

a better fit to the data, the actual shape of the filter does not seem

to be critical. It also shows that the fundamental assumption

Figure 5. Rate-distortion Curves. Rate-distortion curve for PCA and
ICA when equalizing the output variances (wPCA and wICA) and when
equalizing the norm of the corresponding image bases in pixel space
(oPCA and nICA). The plot shows the discrete entropy Hd in bits
(averaged over all dimensions) against the log of the squared
reconstruction error s2 . oPCA outperforms all other transforms in
terms of the rate-distortion trade-off. wPCA in turn performes worst and
remarkably similar to wICA. Since wPCA and wICA differ only by an
orthogonal transformation, both representations are bound to the
same metric. oPCA is the only transformation which has the same
metric as the pixel representation according to which the reconstruc-
tion error is determined. By normalizing the length of the ICA basis
vectors in the pixel space, the metric of nICA becomes more similar to
the pixel basis and the performance with respect to the rate-distortion
trade-off can be seen to improve considerably.
doi:10.1371/journal.pcbi.1000336.g005
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underlying ICA—the data are well described by a linear

generative model with independent sources—is not justified in

the case of natural images.

From all these results, we can safely conclude that the actual

gain of ICA compared to PCA is smaller than 5% for both gray

level images and color images.

Is Smaller Than 5% Really Small?
A valid question to ask is whether comparing the amount of

higher-order correlations to the amount of second-order correla-

tions is the right thing to do. Even if the amount of higher-order

correlations may be small in comparison to the amount of second-

order correlations, we still know that higher-order correlations can

Figure 6. The Partition Cell Shape is Crucial for the Quantization Error. The quality of a source code depends on both the shapes of the
partition cells and on how the sizes of the cells vary with respect to the source density. When the cells are small (i.e., the entropy rate is high), then,
the quality mainly depends on having cell shapes that minimize the average distance to the center of the cell. For a given volume, a body in
Euclidean space that minimizes the average distance to the center is a sphere. The best packings (including the hexagonal case) cannot be achieved
with linear transform codes. Transform codes can only produce partitions into parallelepipeds, as shown here for two dimensions. The best
parallelepipeds are cubes which are only obtained in the case of orthogonal transformations. Therefore PCA yields the (close to) optimal trade-off
between minimizing the redundancy and the distortion as it is the only orthogonal decorrelation transform (see [39] for more details). The figure
shows 50.000 samples from a bivariate Gaussian random variable. Plot (A) depicts a uniform binning (bin width D~0:01, only some bin borders are
shown) induced by the only orthogonal basis for which the coefficients x1 and x2 are decorrelated. Plot (B) shows uniform binning in a decorrelated,
but not orthogonal basis (indicated by the blue lines). Both cases have been chosen such that the multi-information between the coefficients is
identical and the same entropy rate was used to encode the signal. However, due to the shape of the bins in plot (B) the total quadratic error
increases from 0.4169 to 0.9866. The code for this example can be also downloaded from http://www.kyb.tuebingen.mpg.de/bethge/code/QICA/.
doi:10.1371/journal.pcbi.1000336.g006

Figure 7. Discrete vs. Differential Entropy. (A) Relationship between discrete and differential entropy. Discrete entropy SHdT averaged over all
channels as a function of the negative log bin width. The straight lines constitute the linear approximation to the asymptotic branch of the function.
Their interception with the y-axis are visualized by the gray shaded, horizontal lines. The dashed lines represent ShdT which converge to the gray
shaded lines for d?0. (B) There are only small differences in the average discrete entropy for oPCA, wPCA, wICA, nICA as a function of the negative
log bin width. Since the discrete entropy of the DC component is the same for all transforms, it is not included in that average but plotted separately
instead.
doi:10.1371/journal.pcbi.1000336.g007
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be a critical signature of the content of an image. For example,

textures are very useful to demonstrate how changes in higher-

order correlations can change the perceptual meaning of an

image.

Our results on the rate-distortion trade-off can be taken as an

indication that the fraction of higher-order correlations captured

by ICA is perceptually less relevant. This interpretation is further

corroborated by a psychophysical comparison of the perceptual

redundancy of the ICA and the PCA basis [63]. Another

confirmation of this interpretation can be obtained if we use the

learned image representations as generative models. Perceptually

image patches sampled from the ICA model do not look more

similar to natural image patches than those sampled from the

random decorrelation basis (Figure 9). Currently, we are running

psychophysical experiments which also show quantitatively that

there is no significant difference between the ICA model and the

PCA model if the subjects have to discriminate between textures

that are generated by these models.

In summary, we were not able thus far to come up with a

meaningful interpretation for which the improvement of ICA

would be recognized as being large. On the basis of the present

study it seems rather unlikely that such a measure can be found for

linear ICA. Instead, we believe that more sophisticated, nonlinear

image models are necessary to demonstrate a clear advantage of

orientation selectivity.

What about Nonparametric Approaches?
The focus on linear redundancy reduction models in this study

is motivated by the goal to first establish a solid and reproducible

result for the simplest possible case before moving on to more

involved nonlinear transformations. Nevertheless, it is important

to discuss what we can expect if the restriction to linear

transformations is dropped. From a nonparametric analysis [27],

Petrov and Zhaoping concluded that higher-order correlations in

general contribute only very little to the redundancy in natural

images and, hence, are probably not the main cause for the

receptive field properties in V1. The empirical support for this

claim, however, is limited by the fact that their comparison is

based on mutual information estimates within a very small

neighborhood of five pixels only. This is problematic as it is known

that many kinds of higher-order correlations in natural images

become apparent only in much higher-dimensional statistics [64].

Furthermore, their estimate of the amount of second-order

correlations is not invariant against pointwise nonlinear transfor-

mations of the pixel intensities.

In a more recent non-parametric study, Chandler and Field

arrived at a very different result regarding the relative contribution

of second-order and higher-order dependencies [29]. They use

nearest-neighbor based methods to estimate the joint entropy of

natural images in comparison to ‘‘spectrum-equalized’’ noise and

white noise, where ‘‘spectrum-equalized’’ noise denotes Gaussian

noise with exactly the same spectrum as that of natural images. As

shown in Figure 18 of [29] they find a smaller difference between

spectrum-equalized noise and white noise than between natural

images and spectrum-equalized noise. Hence, from their finding, it

seems that the amount of higher-order correlations in natural

images is even larger than the amount of second-order

Figure 8. Reconstruction Error vs. Bin Width of Discrete
Entropy. Reconstruction error s2 as a function of the bin width d,
shown on a logarithmic scale. The differences between the different
transforms are relatively large. Only the two transformations with
exactly the same metric, wPCA and wICA, exhibit no difference in the
reconstruction error.
doi:10.1371/journal.pcbi.1000336.g008

Figure 9. Comparison of Patches Sampled From Different Image Models. The figure demonstrates that the perceptual similarity between
samples from the ICA image model (C) and samples from natural images (B) is not significantly increased relative to the perceptual similarity between
samples from the RND image model (A) and (B).
doi:10.1371/journal.pcbi.1000336.g009
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correlations. Also this result has to be taken with care: Reliable

non-parametric estimates in high-dimensions are difficult to obtain

even if one resorts to nearest-neighbor based methods, and the

estimate of the amount of second-order correlations in [29] is not

invariant against pointwise nonlinear transformations of the pixel

intensities, too.

In summary, the present nonparametric studies do not give a

unique answer regarding the total amount of higher-order

correlations in natural images. Since estimating the absolute

amount of multi-information is an extremely difficult task in high

dimensions, the differences in the results can easily originate from

the different assumptions and approximations made in these

studies. Consequently, it remains an open question how large the

true total redundancy of natural images is. In any case, it is clear

that there are many higher-order redundancies in natural images

that play a crucial role for visual perception. No matter how large

these redundancies are in comparison to the second-order

correlations, we need to develop better image models that have

the right structure to capture these regularities.

What about Nonlinear Image Models?
Apart from the non-parametric approaches, a large number of

nonlinear image models has been proposed over the years which

are capable to capture significantly more statistical regularities of

natural images than linear ICA can do (e.g., [62,65–72]). In fact,

Olshausen and Field [8] already used a more general model than

linear ICA when they originally derived the orientation selective

filters from higher-order redundancy reduction. In contrast to

plain ICA, they used an overcomplete generative model which

assumes more source signals than pixel dimensions. In addition,

the sources are modeled as latent variables like in a factor analysis

model. That is the data is assumed to be generated according to

x~Aszj where A denotes the overcomplete dictionary, s is

distributed according to a sparse factorial distribution, and j is a

Gaussian random variable. The early quantitative study by

Lewicki and Olshausen [24] could not demonstrate an advantage

of overcomplete coding in terms of the rate-distortion trade-off

and also the more recent work by Seeger [70] seems to confirm

this conclusion. The addition of a Gaussian random variable j to

As, however is likely to be advantageous as it may help to

interpolate betweem the plain ICA model on the one hand and the

spherically symmetric model on the other hand. A comparison of

the average log-loss between this model and plain ICA has not

been done yet but we can expect that this model can achieve a

similar or even better match to the natural image statistics as the

spherically symmetric model.

The spherical symmetric model can also be modeled by a

redundancy reduction transformation which changes the radial

component such that the output distribution is sought to match a

Gaussian distribution [31]. Hence, the redundancy reduction of

this model is very similar to the average log-loss of the spherically

symmetric distribution. From a biological vision point of view, this

type of model is particularly interesting as it allows one to draw a

link to divisive normalization, a prominent contrast gain control

mechanism observed for virtually all neurons in the early visual

system. Our own ongoing work [30] shows that this idea can be

generalized to a larger class of Lp-spherically symmetric

distributions [67]. In this way, it is possible to find an optimal

interpolation between ICA and the spherically symmetric case

[73]. That is, one can combine orientation selectivity with divisive

normalization in a joint model. Our preliminary results suggests

that optimal divisive normalization together with orientation

selectivity allows for about 10% improvement while divisive

normalization alone (i.e., the spherical symmetric model) is only

2% worse [30].

Concluding Remarks
Taken together, the effect of orientation selectivity on

redundancy reduction is very limited within the common linear

filter bank model of V1 simple cells. In contrast to Zhaoping and

coworkers, we do not claim that higher-order redundancy

minimization is unlikely to be the main constraint in shaping the

cortical receptive fields [22,27]. Our conclusion is that although

there are significant higher-order correlations in natural images,

orientation selective filtering turns out to be not very effective for

capturing these. Nevertheless, we do expect that visual represen-

tations in the brain aim to model those higher-order correlations,

because they are perceptually relevant. Therefore, we think it is

important to further explore which type of nonlinear transforma-

tions would be suitable to capture more pronounced higher-order

correlations. The objective functions studied in this paper are

related to factorial coding, density estimation and minimization of

the pixel mean square reconstruction error. Of course, there are

also other alternatives that are interesting, too. For example,

Zhaoping proposed that one possible goal of V1 is to explicitly

represent bottom-up saliency in its neural responses for visual

attentional selection [12]. As a further alternative, we are cur-

rently trying to extend the efficient coding framework to deal

with other loss functions. Obviously, the goal of the visual system

is not to preserve the pixel representation of the visual

input. Instead, seeing serves the purpose to make successful

predictions about behaviorally relevant aspects of the environment

[74]. Since 3D shape inference is necessary to almost any naturally

relevant task, it seems particularly interesting to explore the role of

orientation selectivity in the context of 3D shape inference [75].

For a quantitative account of this problem one can seek to

minimize the reconstruction error for the 3D shape rather than for

its 2D image. Certainly, this task is much more involved than

image reconstruction. Nevertheless, we need to think more about

how to tackle the problem of visual inference within the framework

of unsupervised learning in order to unravel the principles of

neural processing in the brain that are ultimately responsible for

our ability to see.

Supporting Information

Text S1 In the article we chose a patch size of 767 in order to

enhance the comparability to previous work. The supplementary

material contains all results (figures and tables) for patch size

15615.

Found at: doi:10.1371/journal.pcbi.1000336.s001 (2.82 MB PDF)
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Coding of Natural Images in V1

Additional Material

August 14, 2008

Figures and Tables for Patch Size 15×15

Figure 1: Examples for Receptive Fields of Various Image Transforms Basis
functions of a random decorrelation transform (RND), principal component
analysis (PCA) and independent component analysis (ICA) in pixel space (A-
C) and whitened space (E-F). The image representation in whitened space is
obtained by left multiplication with the matrix square root of the inverse
covariance matrix rC−1/2. This figure can only give a rough idea of the shape
of the basis functions. For a detailed inspection of the basis functions we refer
the reader to our web page http://www.kyb.mpg.de/bethge/code/QICA/

where we provide all the data and code used in this paper.
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Coding of Natural Images in V1

A B

Figure 2: Multi-Information Reduction per Dimension Average differential en-
tropy 〈h〉 for the pixel basis (PIX), after separation of the DC component
(DCS), and after application of the different decorrelation transforms. The
diagram shows the results for chromatic images (A) and the diagram for gray
value images (B). For both types of images, only a marginal amount can be
accounted to the reduction of higher order dependencies.
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Coding of Natural Images in V1

Figure 3: The Distribution of Natural Images does not Conform with the
Generative Model of ICA In order to test for statistical dependen-
cies among the coefficients YwICA of whithened ICA for single data sam-
ples, the coefficients were shuffled among the data points along each di-
mension. Subsequently, we transform the resulting data matrix YsICA into
YsRND = WRNDW

−1
wICAYsICA. This corresponds to a change of basis from

the ICA to the random decorrelation basis (RND). The plot shows the log-
histogram over the coefficients over all dimensions. If the assumptions under-
lying ICA were correct, there would be no difference between the histogram
of YsRND and YRND.
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Coding of Natural Images in V1

Figure 4: Rate-distortion Curves Rate-distortion curve for PCA and ICA when
equalizing the output variances (wPCA and wICA) and when equalizing the
norm of the corresponding image bases in pixel space (oPCA and nICA).
The plot shows the discrete entropy Hδ in bits (averaged over all dimensions)
against the log of the squared reconstruction error σ2. oPCA outperforms
all other transforms in terms of coding efficiency. wPCA in turn performed
the worst and remarkably similar to wICA. Since wPCA and wICA differ
only by an orthogonal transformation, both representations are bound to the
same metric. oPCA is the only transformation which has the same met-
ric as the pixel representation according to which the reconstruction error
is determined. By normalizing the length of the ICA basis vectors in the
pixel space, the metric of nICA becomes more similar to the pixel basis and
the performance with respect to coding efficiency can be seen to improved
considerably.
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A B

Figure 5: Discrete vs. Differential Entropy A. Relationship between discrete
and differential entropy. Discrete entropy 〈Hδ〉 averaged over all channels as a
function of the negative log-bin-width. The straight lines constitute the linear
approximation to the asymptotic branch of the function. Their interception
with the y-axis are visualized by the gray shaded, horizontal lines. The dashed
lines represent 〈hδ〉 which converge to the gray shaded lines for δ → 0. B.
There are only small differences in the average discrete entropy for oPCA,
wPCA, wICA, nICA as a function of the negative log-bin-width. Since the
discrete entropy of the DC component is the same for all transforms, it is not
included in that average but plotted separately instead.
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Coding of Natural Images in V1

Figure 6: Reconstruction Error vs. Bin Width of Discrete Entropy Re-
construction error σ2 as a function of the bin-width δ, shown on a logarith-
mic scale. The differences between the different transforms are relatively
large. Only the two transformations with exactly the same metric, wPCA
and wICA, exhibit no difference in the reconstruction error.

Absolute Difference Relative Difference

Color Gray Color Gray

RND-PIX -4.2101 ± 0.0020 -3.2901 ± 0.0019

SYM-RND -4.2915 ± 0.0023 -3.3360 ± 0.0022 SYM-RND
SYM-PIX 1.90 ± 0.01 1.37 ± 0.01

PCA-RND -4.2534 ± 0.0022 -3.3239 ± 0.0022 PCA-RND
PCA-PIX 1.02 ± 0.01 1.01 ± 0.01

ICA-RND -4.3575 ± 0.0024 -3.3921 ± 0.0026 ICA-RND
ICA-PIX 3.38 ± 0.02 3.01 ± 0.02

Table 1: Comparision of the Multi-Information Reduction for Chromatic and
Achromatic Images Differences in the multi-information reduction be-
tween various decorrelation transforms (SYM, PCA, ICA) relative to a ran-
dom decorrelation transform (RND) compared to the multi-information reduc-
tion achieved with the random decorrelation transform relative to the original
pixel basis (RND-PIX). The absolute multi-information reduction is given in
bits/component on the left hand side. How much more the special decorrela-
tion transforms SYM, PCA and ICA can reduce the multi-information relative
to the random (RND) one is given in percent on the right hand side.
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Color Gray

A ALL ALL

RND 1.9925 ± 0.0041 1.9685 ± 0.0038

SYM-RND -0.1203 ± 0.0007 -0.0682 ± 0.0005

PCA-RND -0.0511 ± 0.0004 -0.0364 ± 0.0005

ICA-RND -0.1829 ± 0.0009 -0.1191 ± 0.0010

SSD-RND -0.2461 ± 0.0022 -0.2742 ± 0.0030

B DLL 〈α〉 DLL 〈α〉
RND -0.0086 ± 0.0002 1.1273 ± 0.0039 -0.0060 ± 0.0004 1.0811 ± 0.0034

SYM -0.0472 ± 0.0005 0.9034 ± 0.0027 -0.0282 ± 0.0006 0.9535 ± 0.0032

PCA -0.0162 ± 0.0003 1.0229 ± 0.0033 -0.0085 ± 0.0005 1.0100 ± 0.0031

ICA -0.0434 ± 0.0004 0.7540 ± 0.0019 -0.0227 ± 0.0007 0.8237 ± 0.0025

Table 2: Comparision of the Average Log-Loss (ALL) and the Differential
Log-Likelihood (DLL) Chromatic and Achromatic Images A. The
first row shows the average log-loss (ALL, in bits/component) of the density
model determined by the linear transformation RND. The value was obtained
by averaging over 10 separately sampled training and test sets of size 40.000
and 50.000, respectively. The following rows shows the difference of the ALL
of the models SYM, PCA, ICA and the spherically symmetric density (SSD)
to the ALL determined by linear transformation RND. The large value for
RND−ICA fundamentally contradicts the assumptions underlying the ICA
model. B. The small DLL values suggest, that the exponential power distribu-
tion fits the shape of the individual coefficient distributions well. In addition,
we also report the average exponent 〈α〉 of the exponential power family fit
to the individual coefficient distributions (α = 1 corresponds to a Laplacian
shape).
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Multi Information for Small Patches

A B

Figure 7: Multi-Information for Small Patches A Multi-information for patch
sizes 2 × 2, 3 × 3 and 4 × 4 in the representations PIX and ICA. B Multi-
information reduction as estimated by the multi-information from the left
plot and by the differences in the marginal entropies. For patch size 4 × 4,
the estimations start to disagree. Since the multi-information is much harder
to estimate than the marginal entropies, we conclude that from patch size
4× 4 on, the multi-information estimates are not reliable anymore.

2× 2 3× 3 4× 4

PIX 2.2157 2.8193 2.9405

ICA 0.1573 0.2358 0.2622

Table 3: Multi-Information for Small Patch Sizes The table shows the multi-
information in the representations PIX and ICA in bits/pixel as computed
with the estimator from the MILCA package by Kraskov.
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Abstract

Bandpass filtering, orientation selectivity, and contrast gain control are prominent
features of sensory coding at the level of V1 simple cells. While the effect of
bandpass filtering and orientation selectivity can be assessed within a linear model,
contrast gain control is an inherently nonlinear computation. Here we employ the
class of Lp elliptically contoured distributions to investigate the extent to which
the two features—orientation selectivity and contrast gain control—are suited to
model the statistics of natural images. Within this framework we find that contrast
gain control can play a significant role for the removal of redundancies in natural
images. Orientation selectivity, in contrast, has only a very limited potential for
redundancy reduction.

1 Introduction

It is a long standing hypothesis that sensory systems are adapted to the statistics of their inputs.
These natural signals are by no means random, but exhibit plenty of regularities. Motivated by
information theoretic principles, Attneave and Barlow suggested that one important purpose of this
adaptation in sensory coding is to model and reduce the redundancies [4; 3] by transforming the
signal into a statistically independent representation.

The problem of redundancy reduction can be split into two parts: (i) finding a good statistical model
of the natural signals and (ii) a way to map them into a factorial representation. The first part
is relevant not only to the study of biological systems, but also to technical applications such as
compression and denoising. The second part offers a way to link neural response properties to
computational principles, since neural representations of natural signals must be advantageous in
terms of redundancy reduction if the hypothesis were true. Both aspects have been extensively
studied for natural images [2; 5; 8; 19; 20; 21; 24]. In particular, it has been shown that applying
Independent Component Analysis (ICA) to natural images consistently and robustly yields filters
that are localized, oriented and show bandpass characteristics [19; 5]. Since those features are also
ascribed to the receptive fields of neurons in the primary visual cortex (V1), it has been suggested
that the receptive fields of V1 neurons are shaped to form a minimally redundant representation of
natural images [5; 19].

From a redundancy reduction point of view, ICA offers a small but significant advantage over other
linear representations [6]. In terms of density estimation, however, it is a poor model for natural
images since already a simple non-factorial spherically symmetric model yields a much better fit to
the data [10].

Recently, Lyu et al. proposed a method that converts any spherically symmetric distribution into a
(factorial) Gaussian (or Normal distribution) by using a non-linear transformation of the norm of
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the image patches [17]. This yields a non-linear redundancy reduction mechanism, which exploits
the superiority of the spherically symmetric model over ICA. Interestingly, the non-linearity of this
Radial Gaussianization method closely resembles another feature of the early visual system, known
as contrast gain control [13] or divisive normalization [20]. However, since spherically symmetric
models are invariant under orthogonal transformations, they are agnostic to the particular choice of
basis in the whitened space. Thus, there is no role for the shape of the filters in this model.

Combining the observations from the two models of natural images, we can draw two conclusions:
On the one hand, ICA is not a good model for natural images, because a simple spherically sym-
metric model yields a much better fit [10]. On the other hand, the spherically symmetric model in
Radial Gaussianization cannot capture that ICA filters do yield a higher redundancy reduction than
other linear transformations. This leaves us with the questions whether we can understand the emer-
gence of oriented filters in a more general redundancy reduction framework, which also includes a
mechanism for contrast gain control.

In this work we address this question by using the more general class of Lp-spherically symmetric
models [23; 12; 15]. These models are quite similar to spherically symmetric models, but do depend
on the particular shape of the linear filters. Just like spherically symmetric models can be non-
linearly transformed into isotropic Gaussians, Lp-spherically symmetric models can be mapped into
a unique class of factorial distributions, called p-generalized Normal distributions [11]. Thus, we
are able to quantify the influence of orientation selective filters and contrast gain control on the
redundancy reduction of natural images in a joint model.

2 Models and Methods

2.1 Decorrelation and Filters

All probabilistic models in this paper are defined on whitened natural images. Let C be the co-
variance matrix of the pixel intensities for an ensemble x1, ...,xm of image patches, then C−

1
2

constitutes the symmetric whitening transform. Note that all vectors y = V C−
1
2x, with V being

an orthogonal matrix, have unit covariance. V C−
1
2 yield the linear filters that are applied to the raw

image patches before feeding them in the probabilistic models described below. Since any decorre-
lation transform can be written as V C−

1
2 , the choice of V determines the shape of the linear filters.

In our experiments, we use three different kinds of V :

SYM The simplest choice is VSYM = I , i. e. y = C−
1
2x contains the coefficients in the symmetric

whitening basis. From a biological perspective, this case is interesting as the filters resemble recep-
tive fields of retinal ganglion cells with center-surround properties.

ICA The filters VICA of ICA are determined by maximizing the non-Gaussanity of the marginal
distributions. For natural image patches, ICA is known to yield orientation selective filters in resem-
blance to V1 simple cells. While other orientation selective bases are possible, the filters defined
by VICA correspond to the optimal choice for redundancy reduction under the restriction to linear
models.

HAD The coefficients in the basis VHAD = 1√
m
HVICA, with H denoting an arbitrary Hadamard

matrix, correspond to a sum over the different ICA coefficients, each possibly having a flipped sign.
Hadamard matrices are defined by the two properties Hij = ±1 and HH> = mI . This case can
be seen as the opposite extreme to the case of ICA. Instead of running an independent search for the
most Gaussian marginals, the central limit theorem is used to produce the most Gaussian compo-
nents by using the Hadamard transformation to mix all ICA coefficients with equal weight resorting
to the independence assumption underlying ICA.

2.2 Lp-spherically Symmetric Distributions

The contour lines of spherically symmetric distributions have constant Euclidean norm. Simi-
larly, the contour lines of Lp-spherically symmetric distributions have constant p-norm1 ||y||p :=

1Note that ||y||p is only a norm in the strict sense if p ≥ 1. However, since the following considerations also
hold for 0 < p < 1, we will employ the term “p-norm” and the notation “||y||p” for notational convenience.
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p
√∑n

i=1 |yi|p The set of vectors with constant p-norm Sn−1p (r) := {y ∈ Rn : ||y||p = r, p >
0, r > 0} is called p-sphere of radius r. Different examples of p-spheres are shown along the
coordinate axis of Figure 1. For p 6= 2 the distribution is not invariant under arbitrary orthogonal
transformations, which means that the choice of the basis V can make a difference in the likelihood
of the data.

Factorial Distributions Lp Spherically Symmetric 
Distributions

Normal Distribution

p

ICA

cICA

SYM

cSYM

HAD

cHAD

p-generalized Normal Distributions

p=2: Spherically 
Symmetric Distributions

Figure 1: The spherically symmetric distributions are a subset of the Lp-spherical symmetric distri-
butions. The right shapes indicate the iso-density lines for the different distributions. The Gaussian
is the only L2-spherically symmetric distribution with independent marginals. Like the Gaussian
distribution, all p-generalized Normal distributions have independent marginals. ICA, SYM, ... de-
note the models used in the experiments below.

A multivariate random variable Y is called Lp-spherically symmetric distributed if it can be written
as a product Y = RU , where U is uniformly distributed on Sn−1p (1) and R is a univariate non-
negative random variable with an arbitrary distribution [23; 12]. Intuitively, R corresponds to the
radial component, i. e. the length ||y||p measured with the p-norm. U describes the directional com-
ponents in a polar-like coordinate system (see Extra Material). It can be shown that this definition
is equivalent to the density %(y) of Y having the form %(y) = f(||y||pp) [12]. This immediately
suggests two ways of constructing an Lp-spherically symmetric distribution. Most obviously, one
can specify a density %(y) that has the form %(y) = f(||y||pp). An example is the p-generalized
Normal distribution (gN) [11]

%(y) =
pn

Γn
(

1
p

)
(2σ2)

n
p 2n

exp

(
−
∑n
i=1 |yi|p
2σ2

)
= f(||y||pp). (1)

Analogous to the Gaussian being the only factorial spherically symmetric distribution [1], this dis-
tribution is the only Lp-spherically symmetric distribution with independent marginals [22]. For the
p-generalized Normal, the marginals are members of the exponential power family.

In our experiments, we will use the p-generalized Normal to model linear marginal independence by
fitting it to the coefficients of the various bases in whitened space. Since this distribution is sensitive
to the particular filter shapes for p 6= 2, we can assess how well the distribution of the linearly
transformed image patches is matched by a factorial model.

An alternative way of constructing an Lp-spherically symmetric distribution is to specify the radial
distribution %r. One example, which will be used later, is obtained by choosing a mixture of Log-
Normal distributions (RMixLogN). In Cartesian coordinates, this yields the density

%(y) =
pn−1Γ

(
n
p

)

2nΓn
(

1
p

)
K∑

k=1

ηk

||y||npσk
√

2π
exp

(
− (log ||y||p − µk)2

2σ2
k

)
. (2)
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An immediate consequence of any Lp-spherically symmetric distribution being specified by its ra-
dial density is the possibility to change between any two of those distributions by transforming the
radial component with (F−12 ◦ F1)(||y||p), where F1 and F2 are cumulative distribution functions
(cdf) of the source and the target density, respectively. In particular, for a fixed p, any Lp-spherically
symmetric distribution can be transformed into a factorial one by the transform

z = g(y) · y =
(F−12 ◦ F1)(||y||p)

||y||p
y.

This transform closely resembles contrast gain control models for primary visual cortex [13; 20],
which use a different gain function having the form g̃(y) = 1

c+r with r = ||y||22 [17].

We will use the distribution of equation (2) to describe the joint model consisting of a linear filtering
step followed by a contrast gain control mechanism. Once, the linear filter responses in whitened
space are fitted with this distribution, we non-linearly transform it into a the factorial p-generalized
Normal by the transformation g(y) · y = (F−1gN ◦ FRMixLogN)(||y||p)/||y||p · y.

Finally, note that because a Lp-spherically symmetric distribution is specified by its univariate radial
distribution, fitting it to data boils down to estimating the univariate density forR, which can be done
efficiently and robustly.

3 Experiments and Results

3.1 Dataset

We use the dataset from the Bristol Hyperspectral Images Database [7], which was already used in
previous studies [25; 16]. All images had a resolution of 256×256 pixels and were converted to gray
level by averaging over the channels. From each image circa 5000 patches of size 15×15 pixels were
drawn at random locations for training (circa 40000 patches in total) as well as circa 6250 patches
per image for testing (circa 50000 patches in total). In total, we sampled ten pairs of training and
test sets in that way. All results below are averaged over those. Before computing the linear filters,
the DC component was projected out with an orthogonal transformation using a QR decomposition.
Afterwards, the data was rescaled in order to make whitening a volume conserving transformation
(a transformation with determinant one) since those transformations leave the entropy unchanged.

3.2 Evaluation Measure

In all our experiments, we used the Average Log Loss (ALL) to assess the quality of the fit and
the redundancy reduction achieved. The ALL = 1

nE%[− log2 %̂(y)] ≈ 1
mn

∑m
k=1− log2 %̂(y) is

the negative mean log-likelihood of the model distribution under the true distribution. If the model
distribution matches the true one, the ALL equals the entropy. Otherwise, the difference between
the ALL and the entropy of the true distribution is exactly the Kullback-Leiber divergence between
the two. The difference between the ALLs of two models equals the reduction in multi-information
(see Extra Material) and can therefore be used to quantify the amount of redundancy reduction.

3.3 Experiments

We fitted the Lp-spherically symmetric distributions from equations (1) and (2) to the image patches
in the bases HAD, SYM, and ICA by a maximum likelihood fit on the radial component. For the
mixture of Log-Normal distributions, we used EM for a mixture of Gaussians on the logarithm of
the p-norm of the image patches.

For each model, we computed the maximum likelihood estimate of the model parameters and deter-
mined the best value for p according to the ALL in bits per component on a training set. The final
ALL was computed on a separate test set.

For ICA, we performed a gradient descent over the orthogonal group on the log-likelihood of a
product of independent exponential power distributions, where we used the result of the FastICA
algorithm by Hyvärinen et al. as initial starting point [14]. All transforms were computed separately
for each training set.
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Figure 2: ALL in bits per component as a function of p. The linewidth corresponds to the standard
deviation over ten pairs of training and test sets. Left: ALL for the bases HAD, SYM and ICA under
the p-generalized Normal (HAD, SYM, ICA) and the factorial Lp-spherically symmetric model with
the radial component modeled by a mixture of Log-Normal distributions (cHAD, cSYM, cICA).
Right: Bar plot for the different ALL indicated by horizontal lines in the left plot.

In order to compare the redundancy reduction of the different transforms with respect to the pixel
basis (PIX), we computed a non-parametric estimate of the marginal entropies of the patches before
the DC component was projected out [6]. Since the estimation is not bound to a particular parametric
model, we used the mean of the marginal entropies as an estimate of the average log-loss in the pixel
representation.

3.4 Results

Figure 2 and Table 1 show the ALL for the bases HAD, SYM, and ICA as a function of p. The
upper curve bundle represents the factorial p-generalized Normal model, the lower bundle the non-
factorial model with the radial component modeled by a mixture of Log-Normal distributions with
five mixtures. The ALL for the factorial models always exceeds the ALL for the non-factorial
models. At p = 2, all curves intersect, because all models are invariant under a change of basis for
that value. Note that the smaller ALL of the non-factorial model cannot be attributed to the mixture
of Log-Normal distributions having more degrees of freedom. As mentioned in the introduction, the
p-generalized Normal is the only factorial Lp-spherically symmetric distribution [22]. Therefore,
marginal independence is such a rigid assumption that the output scale is the only degree of freedom
left.

From the left plot in Figure 2, we can assess the influence of the different filter shapes and contrast
gain control on the redundancy reduction of natural images. We used the best ALL of the HAD
basis under the p-generalized Normal as a baseline for a whitening transformation without contrast
gain control (HAD). Analogously, we used the best ALL of the HAD basis under the non-factorial
model as a baseline for a pure contrast gain control model (cHAD). We compared these values
to the best ALL obtained by using the SYM and the ICA basis under both models. Because the
filters of SYM and ICA resemble receptive field properties of retinal ganglion cells and V1 simple
cells, respectively, we can assess their possible influence on the redundancy reduction with and
without contrast gain control. The factorial model corresponds to the case without contrast gain
control (SYM and ICA). Since we have shown that the non-factorial model can be transformed into
a factorial one by a p-norm based divisive normalization operation, these scores correspond to the
cases with contrast gain control (cSYM and cICA). The different cases are depicted by the horizontal
lines in Figure 2.

As already reported in other works, plain orientation selectivity adds only very little to the redun-
dancy reduction achieved by decorrelation and is less effective than the baseline contrast gain con-
trol model [10; 6; 17]. If both orientation selectivity and contrast gain control are combined (cICA)
it is possible to achieve about 9% extra redundancy reduction in addition to baseline whitening
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Absolute Difference [Bits/Comp.] Relative Difference [% wrt. cICA]
HAD - PIX −3.2947± 0.0018 91.0016± 0.0832

SYM- PIX −3.3638± 0.0022 92.9087± 0.0782

ICA - PIX −3.4110± 0.0024 94.2135± 0.0747

cHAD - PIX −3.5692± 0.0045 98.5839± 0.0134

cSYM - PIX −3.5945± 0.0047 99.2815± 0.0098

cICA - PIX −3.6205± 0.0049 100.0000± 0.0000

Table 1: Difference in ALL for gray value images with standard deviation over ten training and test
set pairs. The column on the left displays the absolute difference to the PIX representation. The
column on the right shows the relative difference with respect to the largest reduction achieved by
ICA with non-factorial model.
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Figure 3: The curve in the up-
per right corner depicts the trans-
formation ||z||p = (F−1gN ◦
FRMixLogN)(||y||p) of the radial
component in the ICA basis for
gray scale images. The result-
ing radial distribution over ||z||p
corresponds to the radial distribu-
tion of the p-generalized Normal.
The inset shows the gain function
g(||y||p) =

FRMixLogN(||y||p)
||y||p in log-

log coordinates. The scale parame-
ter of the p-generalized normal was
chosen such that the marginal had
unit variance.

(HAD). By setting the other models in relation to the best joint model (cICA:= 100%), we are able
to tell apart the relative contributions of bandpass filtering (HAD= 91%), particular filter shapes
(SYM= 93%, ICA= 94%), contrast gain control (cHAD= 98.6%) as well as combined models
(cSYM= 99%, cICA := 100%) to redundancy reduction (see Table 1). Thus, orientation selectivity
(ICA) contributes less to the overall redundancy reduction than any model with contrast gain control
(cHAD, cSYM, cICA). Additionally, the relative difference between the joint model (cICA) and
plain contrast gain control (cHAD) is only about 1.4%. For cSYM it is even less, about 0.7%. The
difference in redundancy reduction between center-surround filters and orientation selective filters
becomes even smaller in combination with contrast gain control (1.3% for ICA vs. SYM, 0.7% for
cICA vs. cSYM). However, it is still significant (t-test, p = 5.5217 · 10−9).

When examining the gain functions g(||y||p) =
(F−1

gN ◦FRMixLogN)(||y||p)
||y||p resulting from the transforma-

tion of the radial components, we find that they approximately exhibit the form g(||y||p) = c
||y||κp .

The inset in Figure 3 shows the gain control function g(||y||p) in a log-log plot. While standard con-
trast gain control models assume p = 2 and κ = 2, we find that κ between 0.90 and 0.93 to be opti-
mal for redundancy reduction. p depends on the shape of the linear filters and ranges from approx-
imately 1.2 to 2. In addition, existing contrast gain models assume the form g(||y||2) = 1

σ+||y||22
,

while we find that σ must be approximately zero.

In the results above, the ICA filters always achieve the lowest ALL under both p-spherically sym-
metric models. For examining whether these filters really represent the best choice, we also opti-
mized the filter shapes under the model of equation (2) via maximum likelihood estimation on the
orthogonal group in whitened space [9; 18]. Figure 4 shows the filter shapes for ICA and the ones
obtained from the optimization, where we used either the ICA solution or a random orthogonal ma-
trix as starting point. Qualitatively, the filters look exactly the same. The ALL also changed just
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Figure 4: Filters optimized for ICA (left) and for the p-spherically symmetric model with radial
mixture of Log-Normal distributions starting from the ICA solution (middle) and from a random
basis (right). The first filter corresponds to the DC component, the others to the filter shapes under
the respective model. Qualitatively the filter shapes are very similar. The ALL for the ICA basis
under the mixture of Log-Normal model is 1.6748±0.0058 bits/component (left), the ALL with the
optimized filters is 1.6716± 0.0056 (middle) and 1.6841± 0.0068 (right).

marginally from 1.6748 ± 0.0058 to 1.6716 ± 0.0056 or 1.6841 ± 0.0068, respectively. Thus, the
ICA filters are a stable and optimal solution under the model with contrast gain control, too.

4 Summary

In this report, we studied the conjoint effect of contrast gain control and orientation selectivity on
redundancy reduction for natural images. In particular, we showed how the Lp-spherically distribu-
tion can be used to tune a nonlinearity of contrast gain control to remove higher-order redundancies
in natural images.

The idea of using an Lp-spherically symmetric model for natural images has already been brought
up by Hyvärinen and Köster in the context of Independent Subspace Analysis [15]. However, they
do not use the Lp-distribution for contrast gain control, but apply a global contrast gain control filter
on the images before fitting their model. They also use a less flexible Lp-distribution since their goal
is to fit an ISA model to natural images and not to carry out a quantitative comparison as we did.

In our work, we find that the gain control function turns out to follow a power law, which parallels
the classical model of contrast gain control. In addition, we find that edge filters also emerge in the
non-linear model which includes contrast gain control. The relevance of orientation selectivity for
redundancy reduction, however, is further reduced. In the linear framework (possibly endowed with
a point-wise nonlinearity for each neuron) the contribution of orientation selectivity to redundancy
reduction has been shown to be smaller than 5% relative to whitening (i. e. bandpass filtering)
alone [6; 10]. Here, we found that the contribution of orientation selectivity is even smaller than two
percent relative to whitening plus gain control. Thus, this quantitative model comparison provides
further evidence that orientation selectivity is not critical for redundancy reduction, while contrast
gain control may play a more important role.

Acknowledgements

The authors would like to thank Reshad Hosseini, Sebastian Gerwinn and Philipp Berens for fruitful discus-
sions. This work is supported by the German Ministry of Education, Science, Research and Technology through
the Bernstein award to MB (BMBF; FKZ: 01GQ0601), a scholarship of the German National Academic Foun-
dation to FS, and the Max Planck Society.

References
[1] S. F. Arnold and J. Lynch. On Ali’s characterization of the spherical normal distribution. Journal of the

Royal Statistical Society. Series B (Methodological), 44(1):49–51, 1982.

7

74



[2] J. J. Atick. Could information theory provide an ecological theory of sensory processing? Network,
3:213–251, 1992.

[3] F. Attneave. Informational aspects of visual perception. Psychological Review, 61:183–193, 1954.

[4] H. B. Barlow. Sensory mechanisms, the reduction of redundancy, and intelligence. In The Mechanisation
of Thought Processes, pages 535–539, London: Her Majesty’s Stationery Office, 1959.

[5] A. J. Bell and T. J. Sejnowski. The “independent components” of natural scenes are edge filters. Vision
Res., 37(23):3327–38, 1997.

[6] M. Bethge. Factorial coding of natural images: How effective are linear model in removing higher-order
dependencies? J. Opt. Soc. Am. A, 23(6):1253–1268, June 2006.

[7] G. J. Brelstaff, A. Parraga, T. Troscianko, and D. Carr. Hyperspectral camera system: acquisition and anal-
ysis. In B. J. Lurie, J. J. Pearson, and E. Zilioli, editors, Proceedings of SPIE, volume 2587, pages 150–
159, 1995. The database can be downloaded from: http://psy223.psy.bris.ac.uk/hyper/.

[8] G. Buchsbaum and A. Gottschalk. Trichromacy, opponent colours coding and optimum colour informa-
tion transmission in the retina. Proceedings of the Royal Society of London. Series B, Biological Sciences,
220:89–113, November 1983.

[9] A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality constraints.
SIAM J. Matrix Anal. Appl., 20(2):303–353, 1999.

[10] J. Eichhorn, F. Sinz, and M. Bethge. Simple cell coding of natural images in V1: How much use is
orientation selectivity? (arxiv:0810.2872v1). 2008.

[11] I. R. Goodman and S. Kotz. Mutltivariate θ-generalized normal distributions. Journal of Multivariate
Analysis, 3:204–219, 1973.

[12] A. K. Gupta and D. Song. lp-norm spherical distribution. Journal of Statistical Planning and Inference,
60:241–260, 1997.

[13] D. J. Heeger. Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9:181–198, 1992.

[14] A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. John Wiley & Sons, 2001.
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4.4 Divisive Normalization and Orientation Selectivity: Supplementary Material

4.4 The Conjoint Effect of Divisive Normalization and
Orientation Selectivity on Redundancy Reduction:
Supplementary Material
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Extra Material

1. Data Preprocessing

1.1. Removing the DC Component with an Orthogonal Projection. The
projector PremDC is computed such that the �rst (for each color channel) compo-
nent of PremDCx corresponds to the DC component(s) of that patch. The transpose
of the matrix

P =


1 0 0 · · ·
1 1 0 · · ·
1 0

. . . · · ·
... 1


has exactly the required property. However, it is not an orthogonal transformation.
Therefore, we decompose P into P = QR where R is upper triangular and Q is an
orthogonal transform. Since P = QR, the �rst column of Q must be a multiple of
the vector with all coe�cients equal to one (due to the upper triangluarity of R).
Therefore, the �rst component of Q>x is a multiple of the DC component. Since Q
is an orthonomal transform, using all but the �rst row of Q> for PremDC projects
out the DC component. In case of color images the same trick is applied to each
channel by making PremDC a block-diagonal matrix with Q> as diagonal elements.

1.2. Rescaling the Data to MakeWhitening an Volume Conserving Trans-

form. Secondly, the data was scaled such that the whitening transform has deter-
minant one, i.e. that the determinant of the globally scaled data is one. This is

done by setting η =
∏
λ

1
2n
i , where λi are the eigenvalues of the covariance matrix

of the training data and n is their dimension. Therefore, the determinant of the
covariance matrix of the data after scaling with 1

η is

1
η2n

∏
λi =

∏
λi(∏

λ
1
2n
i

)2n = 1.

Since the whitening transform consist of D−
1
2U> with UDU> = C (C is the

determinant of the scaled data), the whitening must have determinant one due to

1 = det(C) = det(UDU>) = det(D−
1
2U>)2

Note, that the same scaling factor is used for the training and test set.

2. Measures Of Redundancy

Redundancies can be quanti�ed by a comparison of coding costs. According
to Shannon's channel coding theorem the entropy of a discrete random variable is
an attainable lower bound on the coding cost for error-free encoding [1]. For the
construction of such a code, it is necessary to know the true distribution of the
random variable. If the assumed distribution P̂ (k) used for the construction of an
optimal code is di�erent from the true distribution P (k), the coding cost is given
by the log-loss

EP [− log(P̂ (k))] = −
∑
k

P (k) log P̂ (k) = H[k] +DKL[P (k)||P̂ (k)] .

1
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The Kullback-Leibler divergence quanti�es the additional coding cost caused by
using a model distribution di�erent from the true one. As long as it is positive,
the representation can be still compressed further, which means that there are still
redundancies left.

For continuous random variables, the total amount of bits required for loss-less
encoding is in�nite. However, in analogy to the discrete case, we can use the
Kullback-Leibler divergence of the true distribution to a given model distribution.
The goal of redundancy reduction is to map a random variable Y to a new random
variable Z = f(Y ) such that the distribution of Z is as close to a factorial distri-
bution as possible. Thus we can use the Kullback-Leibler divergence of the true
distribution to the product of its marginals to measure redundancy. This quantity
is known as multi-information

I[ρ(z)] = DKL

[
ρ(z)||∏n

j=1ρj(zj)
]

=
∫
ρ(z) log

ρ(z)∏n
j=1 ρj(zj)

dz.

Algorithmically, redundancy can be reduced by �nding a representation Z =
f(Y ) such that a factorial model distribution ρ̂(z) =

∏n
j=1 ρ̂j(zj) is as close as

possible to the true distribution ρ(z). Since the multi-information I[ρ(z)] is hard
to estimate, one looks at the di�erence between the multi-informations of Y and
Z = f(Y ), i.e. the quantity

∆I = I[ρ(z)]− I[%(y)]
= DKL

[
ρ(z)||∏ n

j=1ρ̂j(zj)
]−DKL

[
%(y)||∏ n

j=1%̂j(yj)
]
,

where
∏

n
j=1%̂j(yj) is a factorial model distribution for the representation Y . The

following calculation shows that evaluating the redundancy reduction achieved with
a mapping z = f(y) is equivalent to evaluating the di�erence between the log-loss
of two particular model distributions.

Before doing the actual calculation, it is useful to de�ne the di�erent distributions
involved and state some interrelations between them:

(1) ρ(z) and %(y) are the true distributions of the random variables Y and
Z = f(Y ). They are related by

ρ(z)dz = ρ(f(y)) ·
∣∣∣∣det

∂zi
∂yj

∣∣∣∣ dy = %(y)dy

%(y)dy = %(f−1(z)) ·
∣∣∣∣det

∂yi
∂zj

∣∣∣∣ dz = ρ(z)dz ,

where ∂zi
∂yj

denotes the Jacobian for f and ∂yi
∂zj

the Jacobian of f−1. Note

that
∣∣∣det ∂zi∂yj

∣∣∣ =
∣∣∣det ∂yi∂zj

∣∣∣−1

.

(2) ρ̂(z) :=
∏n
j=1ρ̂j(zj), %̂f (y) and

∏
n
j=1%̂j(yj) are the model distributions.∏n

j=1%̂j(yj) is the factorial model for the representation Y . The non-

factorial model distribution %̂f (y) was chosen such that the function f
maps it into a factorial distribution, i.e.∏n

j=1ρ̂j(zj)
choice of f

= ρ̂(z)

= ρ̂f (f(y)) ·
∣∣∣∣det

∂zi
∂yj

∣∣∣∣
= %̂f (y).
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Now, we can write the di�erence in multi-information as

∆I = I[ρ(z)]− I[%(y)]

= DKL

[
ρ(z)||∏n

j=1ρ̂j(zj)
]
−DKL

[
%(y)||∏n

j=1%̂j(yj)
]

= Eρ

[
log

ρ(z)∏n
j=1ρ̂j(zj)

]
− E%

[
log

%(y)∏n
j=1%̂j(yj)

]

= E%

log
ρ(f(y)) ·

∣∣∣det ∂zi∂yj

∣∣∣
%̂f (y)

− E%

[
log

%(y)∏
n
j=1%̂j(yj)

]

= E%

log
ρ(f(y)) ·

∣∣∣det ∂zi∂yj

∣∣∣
%̂f (y)

− log
%(y)∏n

j=1%̂j(yj)



= E%


log

∏n
j=1%̂j(yj)
%̂f (y)

·

=%(y)︷ ︸︸ ︷
ρ(f(y)) ·

∣∣∣∣det
∂zi
∂yj

∣∣∣∣
%(y)


= E%

[
log

∏n
j=1%̂j(yj)
%̂f (y)

]
= E% [− log %̂f (y)]− E%

[
− log

∏n
j=1%̂j(yj)

]
.

Thus, if we have a model density which does not factorize with respect to y
and we have a (possibly nonlinear) mapping z = f(y) such that the transformed
model density with respect to z becomes factorial, we can evaluate the redundancy
reduction achieved with the mapping f simply by estimating the di�erence in the
average log-loss obtained for %̂f (y) and

∏n
j=1%̂j(yj).

In order to get a measure which is less dependent on the number of dimensions
n we de�ne the average log-loss (ALL) to be ALL = 1

nE[− log %̂(y)] for any given
model distribution %̂(y).

In practice, the ALL can estimated by with the empirial mean

1
n

E% [− log %̂f (y)] ≈ 1
n ·m

m∑
i=1

− log %̂f (yi).

3. Lp-Spherically Symmetric Distributions

3.1. De�nitions, Lemmas and Theorems. In this part, we provide the rigorous
de�nitions, lemmas and theorems used in the paper. Most results and proofs are
not new and have been collected from papers and books. Nevertheless, in many
cases we adapted the original statements to our need and provided more detailed
versions of the proofs. The original sources are mentioned at the respective lemmas
and theorems.

De�nition 1. p-Norm
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Let y ∈ Rn be an arbitrary vector. We de�ne

||y||p =

(
n∑
i=1

|yi|p
) 1
p

, p > 0

as the p-norm of y. Note, that only for p > 1, ||y||p is a norm in the strict sense.
However, we will also use the term �p-norm� even if only 0 < p.

De�nition 2. p-Sphere
The unit p-sphere Sn−1

p in n dimensions is the set of points that ful�ll

Sn−1
p := {y ∈ Rn| ||y||p = 1, p > 0}.

Lemma 3. Transformation in Radial and Spherical Coordinates [3]
Let y = (y1, ...yn)> n ≥ 2 be a vector in Rn\{0}. Consider the transformation

y 7→ (r, u1, ..., un−1) =
(
||y||p, y1

||y||p , ...,
yn−1

||y||p

)
.

The absolute value of the determinants of the transformation on the upper and

lower halfspaces

Rn+ := {y ∈ Rn| yn ≥ 0}
Rn− := {y ∈ Rn| yn < 0}

are equal and are given by

|detJ | = rn−1

(
1−

n−1∑
i=1

|ui|p
) 1−p

p

.

Proof. The proof is a more detailed version of the proof found in [3].
Let

∆i :=
{

1, ui ≥ 0
−1, ui < 0.

Then we can write |ui| = ∆iui. The above transformation is bijective on each of
the regions Rn+ and Rn−. Let σ = sign(yn), then the inverse is given by

yi = uir , 1 ≤ i ≤ n− 1

yn = σr

(
1−

n−1∑
i=1

|ui|p
) 1
p

= σr

(
1−

n−1∑
i=1

(∆iui)p
) 1
p

.

Note, that the σ = sign(yn) determines the halfspace in which the transformation
is inverted.
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First, we determine the Jacobian J . We start with computing the derivatives

∂yi
∂uj

= δijr, 1 ≤ i, j ≤ n− 1

∂yn
∂uj

= −σr
(

1−
n−1∑
i=1

|ui|p
) 1−p

p

∆p
i u
p−1
i , 1 ≤ j ≤ n− 1

∂yi
∂r

= ui, 1 ≤ i ≤ n− 1

∂yn
∂r

= σ

(
1−

n−1∑
i=1

(∆iui)p
) 1
p

.

Therefore, the Jacobian, is given by

J =


∂y1
∂u1

∂y1
∂un−1

∂y1
∂r

...
. . .

...
...

. . .
...

∂yn
∂u1

∂yn
∂un−1

∂yn
∂r



=


r 0 . . . u1

0 r u2

...
. . .

...

−σr
(

1−∑n−1
i=1 |ui|p

) 1−p
p

∆p
1u
p−1
1 . . . . . . σ

(
1−∑n−1

i=1 (∆iui)p
) 1
p

 .

Before actually computing the absolute value of the determinant |detJ |, we can
factor out r from the �rst n − 1 columns. Furthermore, we can factor out σ from
the last row. Since we take the absolute value of detJ and σ = {−1, 1}, we can
remove it completely afterwards. Now we can use Laplace's formula to expand the
determinant along the last column. With this, we get

1
rn−1

|detJ | =
n−1∑
k=1

(−1)n+k · uk · (−1)n−1−k · −∆p
ku

p−1
k ·

(
1−

n−1∑
i=1

|ui|p
) 1−p

p

+(−1)2n

(
1−

n−1∑
i=1

|ui|p
) 1
p

=
n−1∑
k=1

|uk|p
(

1−
n−1∑
i=1

|ui|p
) 1−p

p

+

(
1−

n−1∑
i=1

|ui|p
) 1
p

=

(
1−

n−1∑
i=1

|ui|p
) 1−p

p
(
n−1∑
k=1

|uk|p + 1−
n−1∑
k=1

|uk|p
)

=

(
1−

n−1∑
i=1

|ui|p
) 1−p

p

.

Resolving the result for |detJ | completes the proof. �
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Theorem 4. p-Spherical Uniform Distribution [3]
Let Y = (Y1, ..., Yn)> be a random vector. Let the Yi be i.i.d. distributed with

p.d.f.

%(y) =
p1− 1

p

2Γ
(

1
p

) exp
(
−|y|

p

p

)
, y ∈ R.

Let Ui = Yi
||Y ||p for i = 1, ..., n. Then

∑n
i=1 |Ui|p = 1 and the joint p.d.f of

U1, ..., Un−1 is

qu(u1, ..., un−1) =
pn−1Γ

(
n
p

)
2n−1Γn

(
1
p

) (1−
n−1∑
i=1

|ui|p
) 1−p

p

with −1 < ui < 1, i = 1, ..., n− 1 and
∑n−1
i=1 |ui|p < 1.

Proof. The joint p.d.f. of Y is given by

%(y) =
pn−

n
p

2nΓn
(

1
p

) exp

(
−1
p

n∑
i=1

|yi|p
)

with yi ∈ R and i = 1, ..., n. Applying the transformation

(y1, ..., yn) = (r, u1, ..., un−1)

from Lemma 3 and taking into account that each (u1, ..., un−1) corresponds to
(y1, ..., yn) and (y1, ...,−yn) we obtain

q(u1, ..., un−1, r) = 2 · pn−
n
p

2nΓn
(

1
p

)rn−1 exp
(
−r

p

p

)(
1−

n−1∑
i=1

|ui|p
) 1−p

p

.

By integrating out r, we obtain qu(u1, ..., un):

∫ ∞
0

q(u1, ..., un−1, r)dr =
pn−

n
p

2n−1Γn
(

1
p

) (1−
n−1∑
i=1

|ui|p
) 1−p

p ∫ ∞
0

rn−1 exp
(
−r

p

p

)
dr.

In order to compute the integral, we use the substitution z = rp

p or r = (zp)
1
p . This

yields dr = (zp)
1
p−1dz and, therefore,∫ ∞

0

rn−1 exp
(
−r

p

p

)
dr =

∫ ∞
0

(zp)
n−1
p exp(−z)(zp) 1−p

p dz

= p
n−p
p

∫ ∞
0

z
n
p−1 exp(−z)dz

= p
n−p
p Γ

(
n

p

)
.
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Hence,

qu(u1, ..., un−1) =
∫ ∞

0

q(u1, ..., un−1, r)dr

=
pn−

n
p

2n−1Γn
(

1
p

) (1−
n−1∑
i=1

|ui|p
) 1−p

p

p
n−p
p Γ

(
n

p

)

=
pn−1Γ

(
n
p

)
2n−1Γn

(
1
p

) (1−
n−1∑
i=1

|ui|p
) 1−p

p

.

�

In order to see, why qu is called uniform on Sn−1
p we must observe that qu of(

1−∑n−1
i=1 |ui|p

) 1−p
p

which is due to the coordinate transformation and
pn−1Γ(np )
2n−1Γn( 1

p )
which corresponds to twice the surface area of the p-sphere (see Lemma 5). Since
each u corresponds to two y before the coordinate transform (one on the upper
and one on the lower halfsphere), the density of u in y-coordinates corresponds to

1
Sn−1
p

where Sn−1
p =

2nΓ( 1
p )n

pn−1Γ(np ) is the surface area of the unit p-sphere (see Lemma

5).
As we will see in Lemma 7, Y

||Y ||p is independent of ||Y ||p and, therefore, the

speci�c form of the density % does not matter as long as it is p-spherically symmetric.

Lemma 5. Volume and Surface of the p-Sphere
The volume V n−1

p (r) of the p-Sphere with radius r is given by

V n−1
p (r) =

rn2nΓ( 1
p )n

npn−1Γ(np )
.

The surface Sn−1
p (r) is given by

Sn−1
p (r) =

d

dr
V n−1
p (r)

=
rn−12nΓ( 1

p )n

pn−1Γ(np )
.

As a convention, we leave out the argument of V n−1
p (r) and Sn−1

p (r) when de-

noting the volume or the surface of the unit p-sphere, i.e.

V n−1
p := V n−1

p (1)

Sn−1
p := Sn−1

p (1).

Proof. In order to compute the volume of the p-sphere in n-dimension, we must
solve the integral

∫
Sn−1
p

du. Using the volume element transformation from lemma
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3, we can transform the integral into∫
Sn−1
p

du = 2
∫ r

0

∫
rn−1

(
1−

n−1∑
i=1

|ui|p
) 1−p

p

dr du

= 2
∫ r

0

rn−1dr ·
∫ (

1−
n−1∑
i=1

|ui|p
) 1−p

p

du

=
1
n
rn · 2

∫ (
1−

n−1∑
i=1

|ui|p
) 1−p

p

du.

In theorem 4 we prove that q(u1, ..., un−1) =
pn−1Γ(np )
2n−1Γn( 1

p )

(
1−∑n−1

i=1 |ui|p
) 1−p

p

is a

probability density. In particular, this means that∫
q(u1, ..., un−1)du =

pn−1Γ
(
n
p

)
2n−1Γn

(
1
p

) ∫ (1−
n−1∑
i=1

|ui|p
) 1−p

p

du

= 1

which is equivalent to∫ (
1−

n−1∑
i=1

|ui|p
) 1−p

p

du =
2n−1Γn

(
1
p

)
pn−1Γ

(
n
p

) .
Therefore,

V n−1
p (r) =

∫
Sn−1
p

du

=
2
n
rn ·

∫ (
1−

n−1∑
i=1

|ui|p
) 1−p

p

du

=
rn2nΓn

(
1
p

)
npn−1Γ

(
n
p

)
Di�erentiation of V n−1

p (r) with respect to r yields the result for the surface area. �

De�nition 6. Lp-Spherically Symmetric Distribution [2] A random vector
Y = (Y1, ..., Yn)> is said to have a Lp-spherically symmetric distribution if Y can
be written as a product of two independent random variables Y = R · U , where R
is a non-negative univariate random variable with density qr : R+ → R+ and U is
uniformly distributed on the unit p-sphere, i.e.

qu(u1, ..., un) =
pn−1Γ

(
n
p

)
2n−1Γn

(
1
p

) (1−
n−1∑
i=1

|ui|p
) 1−p

p

(see Theorem 4).
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Lemma 7. Probability Density Functions [2]
Let Y = (Y1, ..., Yn)> be an n-dimensional random variable with P{Y = 0} = 0

and a density of the form Y ∼ %̃(||y||pp). Then the following three statements hold:

(1) The random variables R = ||Y ||p and U = Y
||Y ||p are independent.

(2) U = Y
||Y ||p is uniformly distributed on the unit p-sphere Sn−1

p .

(3) R = ||Y ||p has a density qr, where qr relates to %̃ via

qr(r) =
rn−12nΓ( 1

p )n

pn−1Γ(np )
%̃(rp)

= Sn−1
p (r)%̃(rp), r > 0.

Proof. The proof is a more detailed version of the proof found in [2].
First we transform the density of Y with the transformation of lemma 3 and

obtain the new density in spherical and radial coordinates

q(u1, ..., un−1, r) = 2

(
1−

n−1∑
i=1

|ui|p
) 1−p

p

%̃(rp)rn−1

−1 < ui < 1, 1 ≤ i ≤ n− 1,
n∑
i=1

|ui|p < 1.

Since q can be written as a product of a function of r and a function of u =
(u1, ..., un−1), U and R are independent. Thus, ||Y ||p = R and U = Y

||Y ||p are

independent as well.
In order to get qu(u1, ..., un−1), we must integrate out r. However, we do not

know the exact form of %̃. But since q is a probability density, we know that∫ ∞
0

∫
q(u1, ..., un−1, r)dudr = 1.

Since Y and R are independent, we can write this integral as∫ ∞
0

∫
q(u1, ..., un−1, r)dudr = 2

∫ (
1−

n−1∑
i=1

|ui|p
) 1−p

p

du ·
∫ ∞

0

%̃(rp)rn−1dr.

From that, we can immediately derive∫ ∞
0

%̃(rp)rn−1dr =

2
∫ (

1−
n−1∑
i=1

|ui|p
) 1−p

p

du

−1

.

In order to solve

(
2
∫ (

1−∑n−1
i=1 |ui|p

) 1−p
p

du
)−1

we can use theorem 4. In this

theorem, we showed that qu(u1, ..., un−1) =
pn−1Γ(np )
2n−1Γn( 1

p )

(
1−∑n−1

i=1 |ui|p
) 1−p

p

is the

uniform distribution on the p-unit sphere. In particular, we know that
∫
q(u1, ..., un−1)du =

1 and, therefore, ∫ (
1−∑n−1

i=1 |ui|p
) 1−p

p

du =
2n−1Γn

(
1
p

)
pn−1Γ

(
n
p

) .
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Thus,

∫ ∞
0

%̃(rp)rn−1dr =

2
∫ (

1−
n−1∑
i=1

|ui|p
) 1−p

p

du

−1

=
pn−1Γ

(
n
p

)
2nΓn

(
1
p

)
and

qu(u1, ..., un−1) =
∫ ∞

0

q(u1, ..., un−1, r)dr

=

(
1−

n−1∑
i=1

|ui|p
) 1−p

p pn−1Γ
(
n
p

)
2n−1Γn

(
1
p

) .
This shows that Y is uniformly distributed on the unit p-sphere.

The density of R can be computed by integrating out u1, ..., un−1

qr(r) =
∫
q(u1, ..., un−1, r)du

=
2nΓn

(
1
p

)
pn−1Γ

(
n
p

)rn−1%̃(rp), r > 0

by the same argument as in 2. This completes the proof. �

The next theorem tells us that Y is Lp-spherically symmetric distributed if and
only if its density has the form %̃(||y||pp).
Theorem 8. Form of Lp-Spherically Symmetric Distribution [2] Let Y =
(Y1, ..., Yn)>be an n-dimensional random variable with P{Y = 0} = 0. Then, the

density of Y has the form %̃(||y||pp), where g : R+ → R+ is a measurable function,

if and only if Y = RU is spherically symmetric distributed, with independent R and

U , where R has the density

qr(r) =
2nΓn

(
1
p

)
pn−1Γ

(
n
p

)rn−1g(rp), r > 0.

Proof. Su�ciency: Assume Y = RU with independent R and U , where U is uni-
formly distributed on the p-sphere and R has the density qr. Then the joint density
is given by (see theorem 4):

q(r, u1, ..., un−1) = qr(r)
pn−1Γ

(
n
p

)
2n−1Γn

(
1
p

) (1−
n−1∑
i=1

|ui|p
) 1−p

p

−1 < ui < 1, 1 ≤ i ≤ n− 1,
n−1∑
i=1

|ui|p < 1, r > 0.
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Now let yi = rui for 1 ≤ i ≤ n− 1 and |yn| = r
(

1−∑n−1
i=1 |ui|p

) 1
p

. We can use 3

to see that the absolute value of the determinant of the Jacobian is given byrn−1

(
1−

n−1∑
i=1

|ui|p
) 1−p

p

−1

= r1−n
(

1−
n−1∑
i=1

|ui|p
) p−1

p

.

Therefore,

p(y1, ..., yn) =
pn−1Γ

(
n
p

)
2n−1Γn

(
1
p

)qr(||y||p)||y||1−np

= %̃(||y||pp).
Necessity: Assume Y ∼ %̃(||Y ||pp). According to lemma 7 Y

||Y ||p and Y are inde-

pendent and Y
||Y ||p is uniformly distributed on the p-sphere. Again in lemma 7 we

showed that R has the density

qr(r) =
2nΓn

(
1
p

)
pn−1Γ

(
n
p

)rn−1%̃(rp), r > 0.

Therefore, Y is Lp-spherically symmetric distributed if and only if Y ∼ %̃(||Y ||pp)
for some density %̃. �

3.2. Distributions.

3.2.1. The p-Spherically Symmetric Distribution with Radial Mixture of Log-Normal

Distribution. We obtain this distribution by modeling the radial component with
a mixture of log-Normal distributions

qr(r) =
K∑
k=1

ηk

rσk
√

2π
exp

(
− (log r − µk)2

2σ2
k

)
.

Here, ηk with
∑
k ηk = 1 constitute the �prior� probability of selecting one log-

Normal distribution from the mixture, and µk and σ2
k denote the mean and the

variance of the kth mixture. Taking into account the uniform distribution on the
p-sphere, we get

q(u, r) =

(
1−

n−1∑
i=1

|ui|p
) 1−p

p pn−1Γ
(
n
p

)
2n−1Γn

(
1
p

) K∑
k=1

ηk

rσk
√

2π
exp

(
− (log r − µk)2

2σ2
k

)
.

Reversing the coordinate transform, we obtain the distribution in Euclidean coor-
dinates

%(y) =
pn−1Γ

(
n
p

)
2nΓn

(
1
p

) K∑
k=1

ηk

||y||npσk
√

2π
exp

(
− (log ||y||p − µk)2

2σ2
k

)
.

Since ||y||p being log-Normal distributed means log ||y||p being Gaussian distributed,
we can use the standard EM for a mixture of Gaussians on the log-domain to es-
timate the parameters of the mixture. This is justi�ed because log (or exp) is a
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strictly monotonic increasing (decreasing) function and the multiplicative determi-
nant of the Jacobian does not depend on the parameters. Therefore, the maximizing
parameter values for one the mixture of log-Normal distributions also maximizes
the log-likelihood of the mixture of Gaussians in the log-domain.

In order to transform the radial component into the radial component of the
p-generalized distribution, we will need the cumulative distribution function, which
is given by

F(r0) =
∫ r0

0

qr(r)dr

=
∫ r0

0

K∑
k=1

ηk

rσk
√

2π
exp

(
− (log r − µk)2

2σ2
k

)
dr

=
K∑
k=1

ηk

∫ r0

0

1
rσk
√

2π
exp

(
− (log r − µk)2

2σ2
k

)
dr

=
K∑
k=1

ηkFk(r0;µk, σk) ,

where Fk(r0;µk, σk) is simply the cumulative distribution function of the log-
Normal distribution with parameters µk and σk.

3.2.2. The p-generalized Normal distribution. The p-generalized Normal distribu-
tion is obtained by choosing Y to be a collection of n i.i.d. random variables Yi,
each distributed according to the exponential power distribution

Yi ∼ p(y) =
p

Γ
(

1
p

)
(2σ2)

1
p 2

exp
(
−|y|

p

2σ2

)

Y ∼ %(y) =
n∏
i=1

p(yi) =

 p

Γ
(

1
p

)
(2σ2)

1
p 2

n

exp
(
−
∑n
i=1 |yi|p
2σ2

)
Since %(y) has the form %̃(||y||pp), it is a proper p-spherically symmetric distribution
due to Theorem 8. Note, that for the case of p = 2, the p-generalized Normal
distribution reduces to a multivariate isotropic Gaussian. In order to compute the
contrast gain control function, we need to compute the radial distribution qr of
p(x). Transforming p according to Lemma 3 yields

q(r,u) =
pnrn−1

Γn
(

1
p

)
(2σ)

n
p 2n−1

exp
(
− r

p

2σ

)(
1−

n−1∑
i=1

|ui|p
) 1−p

p

.

By integrating over u (see lemma 5 how to carry out the integral) we get

qr(r) =
p rn−1

Γ
(
n
p

)
(2σ2)

n
p

exp
(
− rp

2σ2

)
In order to estimate the scale parameter σ from data X = {r1, ..., rm} =

{||x1||p, ..., ||xm||p}, we carry out the usual procedure for maximum likelihood es-
timation and obtain
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d

dσ
log qr(r) =

d

dσ

(
−2n
p

log(σ)− rp

2σ2

)
=

rpp− 2nσ2

pσ3

d

dσ

m∑
i=1

log qr(ri) =
m∑
i=1

rpi p− 2nσ2

pσ3

!= 0.

This yields

σ̂ =

√√√√ p

2mn

m∑
i=1

rpi .

For the transformation of the radial component, we will also need the cumulative
distribution function of

qr(r) =
p rn−1

Γ
(
n
p

)
(2σ2)

n
p

exp
(
− rp

2σ2

)
.

It can be computed via simple integration with the substitution y = rp

2σ2

FNp(a) =
∫ a

0

prn−1

Γ
(
n
p

)
(2σ2)

n
p

exp
(
− rp

2σ2

)
dr

=
p

Γ
(
n
p

)
(2σ2)

n
p

∫ a

0

rn−1 exp
(
− rp

2σ2

)
dr

=
1

Γ
(
n
p

) ∫ ap

2σ2

0

y
n
p−1 exp(−y)dy

=
Γ
(
n
p ,

ap

2σ2

)
Γ
(
n
p

) ,

where Γ (z, b) =
∫ b

0
yz−1 exp(−y)dy is the incomplete Γ-function.

4. Log-Likelihood of Filters under the Log-Normal Mixture Model

The log-likelihood of a basis W in whitened space, given a set of whitened images
X = {x1, ...,xm}, is given by

L(W|η, µ, σ) =
m∑
i=1

log p(yi|η, µ, σ,xi,W)

= m(n− 1) log p+m log Γ
(
n

p

)
−mn log 2−mn log Γ

(
1
p

)
+

m∑
i=1

log

(
K∑
k=1

ηk

||Wx||npσk
√

2π
exp

(
− (log ||Wxi||p − µk)2

2σ2
k

))
.
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Taking the derivative with respect to the jth row wj of W yields

∂

∂wj
L(W|η, µ, σ)

=
mX
i=1

∂

∂wj
log

0BBBBB@
KX
k=1

ηk

||Wxi||npσk
√

2π
exp

 
− (log ||Wxi||p − µk)2

2σ2
k

!
| {z }

=:L1(W|η,µ,σ,xi)

1CCCCCA
=

mX
i=1

L1(W|η, µ, σ,xi)−1 ·
KX
k=1

ηk

σk
√

2π

∂

∂wj

 
||Wxi||−np exp

 
− (log ||Wxi||p − µk)2

2σ2
k

!!

=
mX
i=1

L1(W|η, µ, σ,xi)−1 ×

KX
k=1

ηk

σk
√

2π
||Wxi||−(n+1)

p exp

 
− (log ||Wxi||p − µk)2

2σ2
k

! 
−n− 1

σ2
k

(log ||Wxi||p − µk)

!
∂

∂wj
||Wxi||p

=
mX
i=1

L1(W|η, µ, σ,xi)−1||Wxi||−(n+p)
p · x>i ×

KX
k=1

ηk

σk
√

2π
exp

 
− (log ||Wxi||p − µk)2

2σ2
k

! 
−n− 1

σ2
k

(log ||Wxi||p − µk)

!
∆j |wjxi|p−1 ,

since ∂
∂wj
||Wxi||p = ∂

∂wj
(
∑n
i=1 |wix|p)

1
p = ||Wxi||1−pp · ∆j |wjxi|p−1 · x>i with

∆ij := sgn(wjxi).
Therefore, the gradient ∂

∂WL(W|η, µ, σ) can be written as an product between

two matrices ∂
∂WL(W|η, µ, σ) = A ·B with

(A)ji = −∆ij |wjxi|p−1
KX
k=1

ηk

σk
√

2π
exp

 
− (log ||Wxi||p − µk)2

2σ2
k

! 
n+

1

σ2
k

(log ||Wxi||p − µk)

!
(B)i` = L1(W|η, µ, σ,xi)−1||Wxi||−(n+p)

p · xi`

=

 
||Wxi||pp

KX
k=1

ηk

σk
√

2π
exp

 
− (log ||Wxi||p − µk)2

2σ2
k

!!−1

· xi`
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Absolute Di�erence [Bits/Comp.] Relative Di�erence [% wrt. cICA]

Color Gray Color Gray

HAD - PIX −4.0778± 0.0039 −3.1275 +−0.0040 92.0797 +−0.0581 90.8566 +−0.0854

SYM - PIX −4.1665± 0.0040 −3.1697 +−0.0037 94.0826± 0.0534 92.0834 +−0.0876

ICA - PIX −4.2376± 0.0041 −3.2146 +−0.0037 95.6872± 0.0489 93.3870 +−0.0823

cHAD - PIX −4.3516± 0.0055 −3.4149± 0.0058 98.2622± 0.0086 99.2077± 0.0103

cSYM - PIX −4.3819± 0.0056 −3.4242± 0.0058 98.9454± 0.0098 99.4770± 0.0099

cICA - PIX −4.4286± 0.0057 −3.4422± 0.0059 100.0000± 0.0000 100.0000± 0.0000

Table 1. Di�erence in ALL for gray value and color images with
standard devation over ten training and test set pairs. For com-
putational e�ciency the patch size has been chosen 7 × 7. The
columns on the left display the absolute di�erence to the PIX rep-
resentation. The columns on the right show the percentual di�er-
ence with respect to the largest reduction achieved by ICA with
non-factorial model.

5. ALL Scores For Color and Gray Value Images

Figure 5.1. ALL in Bits per component as a function of p for
achromatic (right) and chromatic (left) images. For computational
e�ciency both plots have been computed on patches of size 7× 7.
The slightly brighter envelope depicts the standard deviation over
ten pairs of training and test sets. For further details see the
respective �gure in the paper.
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a b s t r a c t

It is a well known fact that invariance under the orthogonal group and marginal
independence uniquely characterizes the isotropic normal distribution. Here, a similar
characterization is provided for the more general class of differentiable bounded Lp-
spherically symmetric distributions: Every factorial distribution in this class is necessarily
p-generalized normal.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Kac’s characterization of the normal distribution [5] states that the isotropic Gaussian is the only distribution in the
intersection of the class of factorial distributions and the class of spherically symmetric distributions. A natural extension to
the latter are the Lp-spherically symmetric distributions [6,4]. A random variable X is Lp-spherically symmetric distributed
if it can be written as a product of two independent random variables R andU, where R is a univariate non-negative random
variable with an arbitrary distribution and U is uniformly distributed on the set Sn−1p := {x ∈ Rn :

∑n
i=1 |xi|

p
= 1}.

Equivalently, X is Lp-spherically distributed if its density has the form g
(∑n

i=1 |xi|
p
)
.

This class of distributions is of great practical interest: It offers more flexibility than the spherically symmetric model,
but is still easy to fit to data since it only requires estimating the univariate radial distribution. An interesting subclass is the
p-generalized Normal distribution [3]

g

(
n∑
i=1

|xi|p
)
=

pn(
20
(
1
p

)
(2σ 2)

1
p
)n e−

n∑
i=1
|xi |
p

2σ2 ,

which contains the Normal distribution as a special case for p = 2.
Note, that the p-generalized Normal distribution is factorial with marginals from the exponential power family [1]. In

that sense, the p-generalized Normal distribution is the analog of a Gaussian for Lp-spherically symmetric distributions.
Surprisingly, to the best of our knowledge, we could not find any reference that characterizes the p-generalized
Normal distribution as the only marginally independent Lp-spherically symmetric distribution. Here, we provide this
characterization for the class of differentiable and bounded Lp-spherically symmetric densities.
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E-mail addresses: fabee@tuebingen.mpg.de (F. Sinz), sgerwinn@tuebingen.mpg.de (S. Gerwinn), mbethge@tuebingen.mpg.de (M. Bethge).
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Fig. 1. Properties of the p-generalized Normal distribution. The Gaussian is the only L2-spherically symmetric distribution with independent marginals.
Like the Gaussian, all p-generalized Normal distributions have independent marginals and the property of spherical symmetry is a special case of the Lp-
spherical symmetry in this class. We prove that the p-generalized Normal distributions are the only distributions which combine these two properties
simultaneously.

2. Characterization

Theorem 1. Let g : Rn → R+ be an differentiable multivariate Lp-spherically symmetric density. If g has the following
properties:

(1) g ∈ C1(Rn)
(2) g and ∂

∂xi
g are bounded for all i = 1, . . . , n

then marginal independence, i.e. g
(∑n

i=1 |xi|
p
)
=
∏n
k=1 h(|xk|

p), implies that g is p-generalized Normal, i.e.

h(|xk|) =
p

20
(
1
p

)
(2σ 2)

1
p
exp

(
−
|xk|p

2σ 2

)
.

Proof. Let g be factorial, i.e. g
(∑n

i=1 |xi|
p
)
=
∏n
k=1 hk(|xk|

p), and let P be a permutation matrix. Since g is Lp-spherically
symmetric, g is invariant under permutation of the basis elements, i.e. g

(∑n
i=1 |xi|

p
)
= g

(∑n
i=1 |yi|

p
)
with y = Px. Choose

a v ∈ Rn for some a ∈ Rwith vj = a · δij and P such that Pv = wwithwj = a · δkj. Thus,

g

(
n∑
i=1

|vi|
p

)
= g

(
n∑
i=1

|wi|
p

)

⇒ hi(|a|p)
n∏
`=1
`6=i

h`(0) = hk(|a|p)
n∏
`=1
`6=k

h`(0)

⇒ hi(ap) = hk(ap) · c ∀a ∈ R+ with c =
hi(0)
hk(0)

.

Since all hi integrate to one, c must be one as well.
Note that none of the hi(0) can be zero because they can be written as

hi(0) =
∫
Rn−1

g

(∑
k6=i

|xk|p
)
dx1dx2 . . . dxi−1dxi+1 . . . dxn

and g a non-negative function which does not vanish everywhere. Therefore, all marginals hmust have the same form, that
is g

(∑n
i=1 |xi|

p
)
=
∏n
k=1 h(|xk|

p).
With the particular choice of v it follows g

(∑n
i=1 |vi|

p
)
= g (|a|p) = h(|a|p) · h(0)n−1 or just g(u) = h(u) · h(0)n−1 by

substitution u := |a|p. Now, choosing (a, b, 0, . . . , 0)> ∈ Rn we can write

g(|a|p + |b|p) = h(|a|p)h(|b|p)h(0)n−2
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= g(|a|p)h(0)1−n · g(|b|p)h(0)1−n · h(0)n−2

= g(|a|p)g(|b|p)h(0)−n

= g(|a|p)g(|b|p)/g(0)

or just g(u+ ε) = g(u)g(ε)/g(0) for all u, ε ∈ R+.
Thus, we obtain

g (u+ ε)− g (u) =
g (u)
g(0)

· (g (ε)− g(0))

and it follows immediately

g ′(u) =
g(u)
g(0)

g ′(0)

Solving this differential equation uniquely yields the functional form

g (u) = g(0) exp
(
g ′(0)
g(0)

· u
)

= exp(c1a+ c0).

Choosing a value for c1 corresponds to setting the scale of the distribution. Taking into account that g must integrate to one
determines c0 and yields that h is in the exponential power family. Thus, g is p-generalized Normal. �

3. Discussion

The theorem presented in this paper provides an important theoretical insight showing that the intersection between
the space of Lp-spherical distributions and the space of factorial distributions is a low-dimensional manifold known as the
family of p-generalized Normal distributions. In particular, the previous characterization of the isotropic Gaussian as the
only spherically symmetric factorial distribution can now be understood as the special case of the more general theorem
when p = 2 (see Fig. 1). Consequently, the range of potential applications is now extended from the special case of isotropic
distributions to arbitrary Lp-spherical distributions.
An immediate consequence of the theorem concerns density estimation on empirical data. Assuming marginal

independence and Lp-spherical symmetry not only implies that the marginals must be exponential power distributions, but
also decreases the degrees of freedom to the mean and the scale parameter of the p-generalized Normal. This shows that
marginal independence is a very restrictive assumption in the class of Lp-spherical symmetric distributions which turns the
infinite dimensional estimation problem of the radial distribution into a one-dimensional one.
Other consequences and applications arise from the fact that each Lp-spherically symmetric distributed random variable

X has a stochastic representation X = RU. By changing the radial component with the transform F −12 ◦ F1 : R+ → R+,
whereF1 andF2 are the cumulative distribution functions of the source and the target radial distribution, respectively, one
can change the distribution of Xwithin the class of Lp-spherically symmetric distributions for a particular fixed p.
From our theorem we know that there is a unique factorial distribution (up to a scale parameter) each Lp-spherically

symmetric distribution can be mapped into by choosing F2 to be the c.d.f. of the p-generalized Normal distribution

F2(r) = Fp(r) =
0

(
n
p ,

rp

2σ 2

)
0

(
n
p

) ,

with 0(z, a) denoting the incomplete 0-function.
Conversely, one can also use this relationship for efficient sampling fromarbitrary Lp-spherically symmetric distributions.

The idea is to first sample from a p-generalized Normal distribution and subsequently transform the radial component by
setting F1 = Fp and setting F2 equal to the c.d.f. of the radial component R of the target distribution. That is, each random

vector x sampled from the p-generalized Normal is transformed by x 7→ (F −12 ◦Fp)(r)
r x with r =

(∑n
i=1 |xi|

p
) 1
p which can be

computed very fast. Furthermore, sampling from the p-generalized Normal is easy as one can sample from the univariate
marginal distributions independently. Our theorem implies that the exponential power distribution is the only admissible
marginal distribution with which such a sampling scheme is possible.
Finally, our theorem is also useful for constructing an independence test for Lp-spherically symmetric distributed random

variables. For a given set of samples x1, . . . , xm ∈ Rn, the radial distribution

qr(r) =
p rn−1

0

(
n
p

)
(2σ 2)

n
p
e−

rp

2σ2
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of the p-generalized Normal is fitted to the radial components rk =
(∑n

i=1 |xki|
p
) 1
p , k = 1, . . . ,m of the data points.

Afterwards, a goodness of fit test (e.g. Kolmogorov–Smirnov) can be used to test whether the xk come from a factorial
Lp-spherically symmetric distribution. Since the p-generalized Normal is the only Lp-spherically symmetric distribution
with independent marginals, the test should succeed if the marginals are independent and fail if they are not. Such an
independence test can be of particular interest in the context of Independent Component Analysis [2] in order to verify
whether the data actually comply with the independence assumption underlying this method.
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Abstract

We introduce a new family of distributions, called Lp-nested symmetric distri-
butions, whose densities are expressed in terms of a hierarchical cascade of Lp-
norms. This class generalizes the family of spherically and Lp-spherically sym-
metric distributions which have recently been successfully used for natural im-
age modeling. Similar to those distributions it allows for a nonlinear mechanism
to reduce the dependencies between its variables. With suitable choices of the
parameters and norms, this family includes the Independent Subspace Analysis
(ISA) model as a special case, which has been proposed as a means of deriv-
ing filters that mimic complex cells found in mammalian primary visual cortex.
Lp-nested distributions are relatively easy to estimate and allow us to explore the
variety of models between ISA and the Lp-spherically symmetric models. By fit-
ting the generalized Lp-nested model to 8 × 8 image patches, we show that the
subspaces obtained from ISA are in fact more dependent than the individual fil-
ter coefficients within a subspace. When first applying contrast gain control as
preprocessing, however, there are no dependencies left that could be exploited by
ISA. This suggests that complex cell modeling can only be useful for redundancy
reduction in larger image patches.

1 Introduction

Finding a precise statistical characterization of natural images is an endeavor that has concerned
research for more than fifty years now and is still an open problem. A thorough understanding of
natural image statistics is desirable from an engineering as well as a biological point of view. It
forms the basis not only for the design of more advanced image processing algorithms and compres-
sion schemes, but also for a better comprehension of the operations performed by the early visual

1
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system and how they relate to the properties of the natural stimuli that are driving it. From both
perspectives, redundancy reducing algorithms such as Principal Component Analysis (PCA), Inde-
pendent Component Analysis (ICA), Independent Subspace Analysis (ISA) and Radial Factorization
[11; 21] have received considerable interest since they yield image representations that are favorable
for compression and image processing and at the same time resemble properties of the early visual
system. In particular, ICA and ISA yield localized, oriented bandpass filters which are reminiscent
of receptive fields of simple and complex cells in primary visual cortex [4; 16; 10]. Together with the
Redundancy Reduction Hypothesis by Barlow and Attneave [3; 1], those observations have given
rise to the idea that these filters represent an important aspect of natural images which is exploited
by the early visual system.

Several result, however, show that the density model of ICA is too restricted to provide a good model
for natural images patches. Firstly, several authors have demonstrated that filter responses of ICA
filters on natural images are not statistically independent [20; 23; 6]. Secondly, after whitening, the
optimum of ICA in terms of statistical independence is very shallow or, in other words, all whitening
filters yield almost the same redundancy reduction [5; 2]. A possible explanation for that finding is
that, after whitening, densities of local image features are approximately spherical [24; 23; 12; 6].
This implies that those densities cannot be made independent by ICA because (i) all whitening filters
differ only by an orthogonal transformation, (ii) spherical densities are invariant under orthogonal
transformations, and (iii) the only spherical and factorial distribution is the Gaussian. Once local
image features become more distant from each other, the contour lines of the density deviates from
spherical and become more star-shaped. In order to capture this star-shaped contour lines one can
use the more general Lp-spherically symmetric distributions which are characterized by densities of
the form ρ(y) = g(‖y‖p) with ‖y‖p = (

∑ |yi|p)1/p and p > 0 [9; 10; 21].

p=0.8 p=2 p=1.5
p=0.8

Figure 1: Scatter plots and marginal histograms of neighboring (left) and distant (right) symmetric whitening
filters which are shown at the top. The dashed Contours indicate the unit sphere for the optimal p of the best
fitting non-factorial (dashed line) and factorial (solid line) Lp-spherically symmetric distribution, respectively.
While close filters exhibit p = 2 (spherically symmetric distribution), the value of p decreases for more distant
filters.

As illustrated in Figure 1, the relationship between local bandpass filter responses undergoes a grad-
ual transition from L2-spherical for nearby to star-shaped (Lp-spherical with p < 2) for more distant
features [12; 21]. Ultimately, we would expect extremely distant features to become independent,
having a factorial density with p ≈ 0.8. When using a single Lp-spherically symmetric model for
the joint distribution of nearby and more distant features, a single value of p can only represent a
compromise for the whole variety of iso-probability contours. This raises the question whether a
combination of local spherical models, as opposed to a single Lp-spherical model, yields a better
characterization of the statistics of natural image patches. Possible ways to join several local models
are Independent Subspace Analysis (ISA) [10], which uses a factorial combination of locally Lp-
spherical densities, or Markov Random Fields (MRFs) [18; 13]. Since MRFs have the drawback
of being implicit density models and computationally very expensive for inference, we will focus
on ISA and our model. In principle, ISA could choose its subspaces such that nearby features are
grouped into a joint subspace which can then be well described by a spherical symmetric model
(p = 2) while more distant pixels, living in different subspaces, are assumed to be independent. In
fact, previous studies have found ISA to perform better than ICA for image patches as small as 8×8
and to yield an optimal p ≈ 2 for the local density models [10]. On the other hand, the ISA model
assumes a binary partition into either a Lp-spherical or a factorial distribution which does not seem
to be fully justified considering the gradual transition described above.

2
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Here, we propose a new family of hierarchical models by replacing the Lp-norms in the Lp-spherical
models by Lp-nested functions, which consist of a cascade of nested Lp-norms and therefore allow
for different values of p for different groups of filters. While this family includes the Lp-spherical
family and ISA models, it also includes densities that avoid the hard partition into either factorial
or Lp-spherical. At the same time, parameter estimation for these models can still be similarly
efficient and robust as for Lp-spherically symmetric models. We find that this family (i) fits the data
significantly better than ISA and (ii) generates interesting filters which are grouped in a sensible way
within the hierarchy. We also find that, although the difference in performance between Lp-spherical
and Lp-nested models is significant, it is small on 8× 8 patches, suggesting that within this limited
spatial range, the iso-probability contours of the joint density can still be reasonably approximated
by a single Lp-norm. Preliminary results on 16× 16 patches exhibit a more pronounced difference
between the Lp-nested and the Lp-spherically symmetric distribution, suggesting that the change in
p becomes more important for modelling densities over a larger spatial range.

2 Models

Lp-Nested Symmetric Distributions Consider the function

f(y) =



(

n1∑

i=1

|yi|p1

) p∅
p1

+ ...+




n∑

i=n1+...+n`−1+1

|yi|p`




p∅
p`




1
p∅

(1)

=
∥∥∥ (‖y1:n1

‖p1
, ..., ‖yn−n`+1:n‖p`

)
>
∥∥∥
p∅
.

We call this type of functions Lp-nested and the resulting class of distributions Lp-nested symmetric.
Lp-nested symmetric distributions are a special case of the ν-spherical distributions which have a
density characterized by the form ρ(y) = g(ν(y)) where ν : Rn → R is a positively homogeneous
function of degree one, i.e. it fulfills ν(ay) = aν(y) for any a ∈ R+ and y ∈ Rn [7]. Lp-
nested functions are obviously positively homogeneous. Of course, Lp-nested functions of Lp-
nested functions are again Lp-nested. Therefore, an Lp-nested function f in its general form can be
visualized by a tree in which each inner node corresponds to an Lp-norm while the leaves stand for
the coefficients of the vector y.

Because of the positive homogeneity it is possible to normalize a vector y with respect to ν and
obtain a coordinate respresentation x = r · u where r = ν(y) and u = y/ν(y). This implies that
the random variable Y has the stochastic representation Y .

= RU with independent U and R [7]
which makes it a generalization of the Gaussian Scale Mixture model [23]. It can be shown that
for a given ν, U always has the same distribution while the distribution %(r) of R determines the
specific ρ(y) [7]. For a general ν, it is difficult to determine the distribution of U since the partition
function involves the surface area of the ν-unit sphere which is not analytically tractable in most
cases. Here, we show that Lp-nested functions allow for an analytical expression of the partition
function. Therefore, the corresponding distributions constitute a flexible yet tractable subclass of
ν-spherical distributions.

In the remaining paper we adopt the following notational convention: We use multi-indices to index
single nodes of the tree. This means that I = ∅ denotes the root node, I = (∅, i) = i denotes
its ith child, I = (i, j) the jth child of i and so on. The function values at individual inner nodes
I are denoted by fI , the vector of function values of the children of an inner node I by fI,1:`I =
(fI,1, ..., fI,`I )>. By definition, parents and children are related via fI = ‖fI,1:`I‖pI

. The number of
children of a particular node I is denoted by `I .

Lp-nested symmetric distributions are a very general class of densities. For instance, since every Lp-
norm ‖ · ‖p is an Lp-nested function, Lp-nested distributions includes the family of Lp-spherically
symmetric distributions including (for p = 2) the family of spherically symmetric distributions.
When e.g. setting f = ‖ · ‖2 or f = (‖ · ‖p2)

1/p, and choosing the radial distribution % appropriately,
one can recover the Gaussian ρ(y) = Z−1 exp

(
−‖y‖22

)
or the generalized spherical Gaussian

ρ(y) = Z−1 exp (−‖y‖p2), respectively. On the other hand, when choosing the Lp-nested function
f as in equation (1) and % to be the radial distribution of a p-generalized Normal distribution %(r) =
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Z−1rn−1 exp (−rp∅/s) [8; 22], the inner nodes f1:`∅ become independent and we can recover an
ISA model. Note, however, that not all ISA models are also Lp-nested since Lp-nested symmetry
requires the radial distribution to be that of a p-generalized Normal.

In general, for a given radial distribution % on the Lp-nested radius f(y), an Lp-nested symmetric
distribution has the form

ρ(y) =
1

Sf (f(y))
· %(f(y)) =

1

Sf (1) · fn−1(y)
· %(f(y)) (2)

where Sf (f(y)) = Sf (1) ·fn−1(y) is the surface area of the Lp-nested sphere with the radius f(y).
This means that the partition function of a general Lp-nested symmetric distribution is the partition
function of the radial distribution normalized by the surface area of the Lp-nested sphere with radius
f(y). For a given f and a radius f∅ = f(y) this surface area is given by the equation

Sf (f∅) = fn−1∅ 2n
∏

I∈I

1

p`I−1I

`I−1∏

k=1

B

[∑k
i=1 nI,k
pI

,
nI,k+1

pI

]
= fn−1∅ 2n

∏

I∈I

∏`I
k=1 Γ

[
nI,k

pI

]

p`I−1I Γ
[
nI

pI

]

where I denotes the set of all multi-indices of inner nodes, nI the number of leaves of the subtree
under I and B [a, b] the beta function. Therefore, if the partition function of the radial distribution
can be computed easily, so can the partition function of the multivariate Lp-nested distribution.

Since the only part of equation (2) that includes free parameters is the radial distribution %, maximum
likelihood estimation of those parameters ϑ can be carried out on the univariate distribution % only,
because

argmaxϑ log ρ(y|ϑ)
(2)
= argmaxϑ (− logSf (f(y)) + log %(f(y)|ϑ)) = argmaxϑ log %(f(y)|ϑ).

This means that parameter estimation can be done efficiently and robustly on the values of the Lp-
nested function.

Since, for a given f , an Lp-nested distribution is fully specified by a radial distribution, changing
the radial distribution also changes the Lp-nested distribution. This suggests an image decomposi-
tion constructed from a cascade of nonlinear, gain-control-like mappings reducing the dependence
between the filter coefficients. Similar to Radial Gaussianization or Lp-Radial Factorization algo-
rithms [12; 21], the radial distribution %∅ of the root node is mapped into the radial distribution of
a p-generalized Normal via histogram equalization, thereby making its children exponential power
distributed and statistically independent [22]. This procedure is then repeated recursively for each
of the children until the leaves of the tree are reached.

Below, we estimate the multi-information (MI) between the filters or subtrees at different levels of
the hierarchy. In order to do that robustly, we need to know the joint distribution of their values. In
particular, we are interested in the joint distribution of the children fI,1:`I of a node I (e.g. layer 2
in Figure 2). Just from the form of an Lp-nested function one might guess that those children are
Lp-spherically symmetric distributed. However, this is not the case. For example, the children f1:`∅
of the root node (assuming that none of them is a leaf) follow the distribution

ρ(f1:`∅) =
%∅(‖f1:`∅‖p∅)

S‖·‖p∅ (‖f1:`∅‖p∅)

`∅∏

i=1

fni−1
i . (3)

This implies that f1:`∅ can be represented as a product of two independent random variables

u = f1:`∅/‖f1:`∅‖p∅ ∈ R`∅
+ and r = ‖f1:`∅‖p∅ ∈ R+ with r ∼ %∅ and

(
u
p∅
1 , ..., u

p∅
`∅

)
∼

Dir
[
n1/p∅, ..., n`∅/p∅

]
following a Dirichlet distribution (see Additional Material). We call this

distribution a Dirichlet Scale Mixture (DSM). A similar form can be shown for the joint distribution
of leaves and inner nodes (summarizing the whole subtree below them). Unfortunately, only the
children f1:`∅ of the root node are really DSM distributed. We were not able to analytically cal-
culate the marginal distribution of an arbitrary node’s children fI,1:`I , but we suspect it to have a
similar form. For that reason we fit DSMs to those children fI,1:`∅ in the experiments below and
use the estimated model to assess the dependencies between them. We also use it for measuring the
dependencies between the subspaces of ISA.
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Fitting DSMs via maximum likelihood can be carried out similarly to estimating Lp-nested distri-
butions: Since the radial variables u and r are independent, the Dirichlet and the radial distribution
can be estimated on the normalized data points {ui}mi=1 and their respective norms {ri}mi=1 inde-
pendently.

Lp-Spherically Symmetric Distributions and Independent Subspace Analysis The family of
Lp-spherically symmetric distributions are a special case of Lp-nested distributions for which
f(y) = ‖y‖p [9]. We use the ISA model by [10] where the filter responses y are modelled by
a factorial combination of Lp-spherically symmetric distributions sitting on each subspace

ρ(y) =
K∏

k=1

ρk(‖yIk‖pk
).

3 Experiments

Given an image patch x, all models used in this paper define densities over filter responses y = Wx
of linear filters. This means, that all models have the form ρ(y) = |detW |·ρ(Wx). The (n−1)×n
matrixW has the formW = QSP where P ∈ R(n−1)×n has mutually orthogonal rows and projects
onto the orthogonal complement of the DC-filter (filter with equal coefficients), S ∈ R(n−1)×(n−1)

is a whitening matrix and Q ∈ SOn−1 is an orthogonal matrix determining the final filter shapes
of W . When we speak of optimizing the filters according to a model, we mean optimizing Q over
SOn−1. The reason for projecting out the DC component is, that it can behave quite differently
depending on the dataset. Therefore, it is usually removed and modelled separately. Since the DC
component is the same for all models and would only add a constant offset to the measures we use
in our experiments, we ignore it in the experiments below.

Data We use ten pairs of independently sampled training and test sets of 8× 8 (16× 16) patches
from the van Hateren dataset, each containing 100, 000 (500, 000) examples. Hyvärinen and Köster
[10] report that ISA already finds several subspaces for 8× 8 image patches. We perform all exper-
iments with two different types of preprocessing: either we only whiten the data (WO-data), or we
whiten it and apply an additional contrast gain control step (CGC-data), for which we use the radial
factorization method described in [12; 21] with p = 2 in the symmetric whitening basis.

We use the same whitening procedure as in [21; 6]: Each dataset is centered on the mean over
examples and dimensions and rescaled such that whitening becomes volume conserving. Similarly,
we use the same orthogonal matrix to project out the DC-component of each patch (matrix P above).
On the remaining n−1 dimensions, we perform symmetric whitening (SYM) with S = C−

1
2 where

C denotes the covariance matrix of the DC-corrected data C = cov [PX].
Evaluation Measures We use the Average Log Loss per component (ALL) for assessing the qual-
ity of the different models, which we estimate by taking the empirical average over a large ensemble
of test points ALL = − 1

n−1 〈log ρ(y)〉Y ≈ − 1
m(n−1)

∑m
i=1 log ρ(yi). The ALL equals the entropy

if the model distribution equals the true distribution and is larger otherwise. For the CGC-data, we
adjust the ALL by the log-determinant of the CGC transformation [11]. In contrast to [10] this al-
lows us to quantitively compare models across the two different types of preprocessing (WO and
CGC), which was not possible in [10].

In order to measure the dependence between different random variables, we use the multi-
information per component (MI) 1

n−1

(∑d
i=1H[Yi]−H[Y ]

)
which is the difference between the

sum of the marginal entropies and the joint entropy. The MI is a positive quantity which is zero
if and only if the joint distribution is factorial. We estimate the marginal entropies by a jackknifed
MLE entropy estimator [17] (corrected for the log of the bin width in order to estimate the differen-
tial entropy) where we adjust the bin width of the histograms suggested by Scott [19]. Instead of the
joint entropy, we use the ALL of an appropriate model distribution. Since the ALL is theoretically
always larger than the true joint entropy (ignoring estimation errors) using the ALL instead of the
joint entropy should underestimate the true MI, which is still sufficient for our purpose.
Parameter Estimation For all models (ISA, DSM, Lp-spherical and Lp-nested), we estimate the
parameters ϑ for the radial distribution as described above in Section 2. For a given filter matrix
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W the values of the exponents p are estimated by minimizing the ALL at the ML estimates ϑ̂
over p = (p1, ..., pq)>. For the Lp-nested distributions, we use the Nelder-Mead [15] method for
the optimization over p = (p1, ..., pq)> and for the Lp-spherically symmetric distributions we use
Golden Search over the single p. For the ISA model, we carry out a Golden Search over p for
each subspace independently. For the Lp-spherical and the single models on the ISA subspaces,
we use a search range of p ∈ [0.1, 2.1] on p. For estimating the Dirichlet Scale Mixtures, we use
the fastfit package by Tom Minka to estimate the parameters of the Dirichlet distribution. The
radial distribution is estimated independently as described above.

When fitting the filters W to the different models (ISA, Lp-spherical and Lp-nested), we use a
gradient ascent on the log-likelihood over the orthogonal group by alternating between optimizing
the parameters p and ϑ and optimizing for W . For the gradient ascent, we compute the standard
Euclidean gradient with respect to W ∈ R(n−1)×(n−1) and project it back onto the tangent space of
SOn−1. Using the gradient ∇W obtained in that manner, we perform a line search with respect to
t using the backprojections of W + t · ∇W onto SOn−1. This method is a simplified version of the
one proposed by [14].

Experiments with Independent Subspace Analysis and Lp-Spherically Symmetric Distribu-
tions We optimized filters for ISA models with K = 2, 4, 8, 16 subspaces embracing 32, 16, 8, 4
components (one subspace always had one dimension less due to the removal of the DC component),
and for an Lp-spherically symmetric model. When optimizing for W we use a radial Γ-distribution
for the Lp-spherically symmetric models and a radial χp distribution (‖yIk‖pk

pk
is Γ-distributed) for

the models on the single single subspaces of ISA, which is closer to the one used by [10]. After
optimization, we make a final optimization for p and ϑ using a mixture of log normal distributions
(logN ) with K = 6 mixture components on the radial distribution(s).

Lp-Nested Symmetric Distributions As for theLp-spherically symmetric models, we use a radial
Γ-distribution for the optimization ofW and a mixture of logN distributions for the final fit. We use
two different kind of tree structures for our experiments with Lp-nested symmetric distributions. In
the deep tree (DT) structure we first group 2×2 blocks of four neighboring SYM filters. Afterwards,
we group those blocks again in a quadtree manner until we reached the root node (see Figure 2A).
The second tree structure (PNDk) was motivated by ISA. Here, we simply group the filter within
each subspace and joined them at the root node afterwards (see Figure 2B). In order to speed up
parameter estimation, each layer of the tree shared the same value of p.

Multi-Information Measurements For the ISA models, we estimated the MI between the filter
responses within each subspace and between the Lp-radii ‖yIk‖pk

, 1 ≤ k ≤ K. In the former case
we used the ALL of an Lp-spherically symmetric distribution with especially optimized p and ϑ, in
the latter a DSM with optimized radial and Dirichlet distribution as a surrogate for the joint entropy.
For the Lp-nested distribution, we estimate the MI between the children fI,1:`I of all inner nodes
I . In case the children are leaves, we use the ALL of an Lp-spherically symmetric distribution as
surrogate for the joint entropy, in case the children are inner nodes themselves, we use the ALL of
an DSM. The red arrows in Figure 2A exemplarily depict the entities between which the MI was
estimated.

4 Results and Discussion

Figure (2) shows the optimized filters for the DT and the PND16 tree structure (we included the
filters optimized on the first of ten datasets for all tree structures in the Additional Material). For
both tree structures, the filters on the lowest level are grouped according to spatial frequency and
orientation, whereas the variation in orientation is larger for the PND16 tree structure and some
filters are unoriented. The next layer of inner nodes, which is only present in the DT tree structure,
roughly joins spatial location, although each of those inner nodes has one child whose leaves are
global filters.

When looking at the various values of p at the inner nodes, we can observe that nodes which are
higher up in the tree usually exhibit a smaller value of p. Surprisingly, as can be seen in Figure 3
B and C, a smaller value of p does not correspond to a larger independence between the subtrees,
which are even more correlated because almost every subtree contains global filters. The small value
of p is caused by the fact that the DSM (the distribution of the subtree values) has to account for
this correlation which it can only do by decreasing the value of p (see Figure 3 and the DSM in
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Figure 2: Examples for the tree structures of Lp-nested distributions used in the experiments: (A) shows
the DT structure with the corresponding optimized values. The red arrows display examples of groups of filters
or inner nodes, respectively, for which we estimated the MI. (B) shows the PND16 tree structure with the
corresponding values of p at the inner nodes and the optimized filters.

the Additional Material). Note that this finding is exactly opposite to the assumptions in the ISA
model which can usually not generate such a behavior (Figure 3A) as it models the two subtrees to
be independent. This is likely to be one reason for the higher ALL of the ISA models (see Table 1).
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Figure 3: Independence of subspaces for WO-data not justfied: (A) Subspace radii sampled from ISA2, (B)
subspace radii of natural image patches in the ISA2 basis, (C) subtree values of the PND2 in the PND2 basis, and
(D) samples from the PND2 model. While the ISA2 model spreads out the radii almost over the whole positive
quadrant due to the independence assumption the samples from the Lp-nested subtrees are more concentrated
around the diagonal like the true data. The Lp-nested model can achieve this behavior since (i) it does not
assume a radial distribution that leads to independent radii on the subtrees and (ii) the subtree values f1 and f2
are DSM[n1/p∅, n2/p∅, ] distributed. By changing the value of p∅, the DSM model can put more mass towards
the diagonal, which produces the ”beam-like” behavior shown in the plot.

Table 1 shows the ALL and the MI measurements for all models. Except for the ISA models on
WO-data, all performances are similar, whereas the Lp-nested models usually achieve the lowest
ALL independent of the particular tree structure used. For the WO-data, the Lp-spherical and the
ISA2 model come close to the performance of the Lp-nested models. For the other ISA models on
WO-data the ALL gets worse with increasing number of subspaces (bold font number in Table 1).
This reflects the effect described above: Contrary to the assumptions of the ISA model, the responses
of the different subspaces become in fact more correlated than the single filter responses. This can
also be seen in the MI measurements discussed below.

When looking at the ALL for CGC data, on the other hand, ISA suddenly becomes competitive.
This importance of CGC for ISA has already been noted in [10]. The small differences between all
the models in the CGC case shows that the contour change of the joint density for 8×8 patches is too
small to allow for a large advantage of the Lp-nested model, because contrast gain control (CGC)
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directly corresponds to modeling the distribution with anLp-spherically symmetric distribution [21].
Preliminary results on 16 × 16 data (1.39 ± 0.003 for the Lp-nested and 1.45 ± 0.003 for the Lp-
spherical model on WO-data), however, show a more pronounced improvement with for the Lp-
nested model, indicating that a single p does not suffice anymore to capture all dependencies when
going to larger patch sizes.

When looking at the MI measurements between the filters/subtrees at different levels of the hierarchy
in the Lp-nested, Lp-spherically symmetric and ISA models, we can observe that for the WO-data,
the MI actually increases when going from lower to higher layers. This means that the MI between
the direct filter responses (layer 3 for DT and layer 2 for all others) is in fact lower than the MI
between the subspace radii or the inner nodes of the Lp-nested tree (layer 1-2 for DT, layer 1 for all
others). The highest MI is achieved between the children of the root node for the DT tree structure
(DT layer 1). As explained above this observation contradicts the assumptions of the ISA model and
probably causes it worse performance on the WO-data.

For the CGC-data, on the other hand, the MI has been substantially decreased by CGC over all levels
of the hierarchy. Furthermore, the single filter responses inside a particular subspace or subtree are
now more dependent than the subtrees or subspaces themselves. This suggests that the competitive
performance of ISA is not due to the model but only due to the fact that CGC made the data already
independent. In order to double check this result, we fitted an ICA model to the CGC-data [21] and
found an ALL of 1.41 ± 0.004 which is very close to the performance of ISA and the Lp-nested
distributions (which would not be the case for WO-data [21]).

Taken together, the ALL and the MI measurements suggest that ISA is not the best way to join
multiple local models into a single joint model. The basic assumption of the ISA model for natural
images is that filter coefficients can either be dependent within a subspace or must be independent
between different subspaces. However, the increasing ALL for an increasing number of subspaces
and the fact that the MI between subspaces is actually higher than within the subspaces, demonstrates
that this hard partition is not justified when the data is only whitened.

Family Lp-nested
Model Deep Tree PND2 PND4 PND8 PND16

ALL 1.39± 0.004 1.39± 0.004 1.39± 0.004 1.40± 0.004 1.39± 0.004
ALL CGC 1.39± 0.005 1.40± 0.004 1.40± 0.005 1.40± 0.004 1.39± 0.004
MI Layer 1 0.84± 0.019 0.48± 0.008 0.7± 0.002 0.75± 0.003 0.61± 0.0036

MI Layer 1 CGC 0.0± 0.004 0.10± 0.002 0.02± 0.003 0.0± 0.009 0.0± 0.01
MI Layer 2 0.42± 0.021 0.35± 0.017 0.33± 0.017 0.28± 0.019 0.25± 0.025

MI Layer 2 CGC 0.002± 0.005 0.01± 0.0008 0.01± 0.004 0.01± 0.006 0.02± 0.008
MI Layer 3 0.28± 0.036 - - - -

MI Layer 3 GCG 0.04± 0.005 - - - -
Family Lp-spherical ISA
Model - ISA2 ISA4 ISA8 ISA16

ALL 1.41± 0.004 1.40± 0.005 1.43± 0.006 1.46± 0.006 1.55± 0.006
ALL CGC 1.41± 0.004 1.41± 0.008 1.39± 0.007 1.40± 0.005 1.41± 0.007
MI Layer 1 0.34± 0.004 0.47± 0.01 0.69± 0.012 0.7± 0.018 0.63± 0.0039

MI Layer 1 CGC 0.00± 0.005 0.00± 0.09 0.00± 0.06 0.00± 0.04 0.00± 0.02
MI Layer 2 - 0.36± 0.017 0.33± 0.019 0.31± 0.032 0.24± 0.024

MI Layer 2 CGC - 0.004± 0.003 0.03± 0.012 0.02± 0.018 0.0006± 0.013

Table 1: ALL and MI for all models: The upper part shows the results for the Lp-nested models, the lower
part show the results for the Lp-spherical and the ISA models. The ALL for the Lp-nested models is almost
equal for all tree structures and a bit lower compared to the Lp-spherical and the ISA models. For the whitened
only data, the ALL increases significantly with the number of subspaces (bold font). For the CGC data, most
models perform similarly well. When looking at the MI, we can see that higher layers for whitened only data
are in fact more dependent than lower ones. For CGC data, the MI has dropped substantially over all layers due
to CGC. In that case, the lower layers are more independent.

In summary, our results show that Lp-nested symmetric distributions yield a good performance on
natural image patches, although the advantage over Lp-spherically symmetric distributions is fairly
small, suggesting that the distribution within these small patches (8× 8) is captured reasonably well
by a single Lp-norm. Furthermore, our results demonstrate that—at least for 8 × 8 patches—the
assumptions of ISA are too rigid for WO-data and are trivially fulfilled for the CGC-data, since
CGC already removed most of the dependencies. We are currently working to extend this study to
larger patches, which we expect will reveal a more significant advantage for Lp-nested models.
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Lp-NESTED SYMMETRIC DISTRIBUTIONS

FABIAN SINZ, EERO SIMONCELLI, MATTHIAS BETHGE

1. Introduction

A important part in statistical analysis of data is to find a class of models that
is flexible and rich enough to model the regularities in the data, but at the same
time exhibits enough symmetry and structure itself to still be computationally and
analytically tractable. One special way of introducing such a symmetry is to fix the
general form of the isodensity contour lines. This approach was taken by [2] who
modelled the contour lines by the level sets of a positively homogeneous function
of degree one. Unfortunately, in the general case it is hard to derive the normal-
ization constant for an arbitrary such function. For a special kind of ν-spherical
distributions, the Lp-spherically symmetric distributions [5; 3] this problem be-
comes tractable by restricting the contour lines to Lp-spheres, but at the prize
of introducing permutation symmetry. The Lp-spherically symmetric distribution
itself generalize the class of L2-spherically symmetric distributions which exhibit
rotational symmetry [4; 1]. In some cases permutation or even rotational symme-
try might be an appropriate assumption for the data. However, in other cases such
symmetries might actually make the model miss important structure present in the
data.

Here, we present a generalization of the class of Lp-spherically symmetric dis-
tribution within the class of ν-spherical distributions. Instead of using a single
Lp-norm to define the contour of the density, we use nested Lp-norms where the
coefficients, the Lp-norm is computed over, can be Lp-norms themselves—with pos-
sibly different p. This preserves positive homogeneity and replaces permutational
invariance with invariance under reflection at the coordinate axes. Due to the nested
structure, we call this new class of distributions Lp-nested symmetric distributions.
As we demonstrate below, this construction still bears enough structure to define
polar-like coordinates similar to those of [6; 3] and thereby to compute the normal-
ization constant of the distribution given an arbitrary univariate distribution on the
function values. By that construction, we can leverage most important properties
of the Lp-spherically symmetric distributions to the Lp-nested distributions.

The remaining part of the paper is structured as follows: In section 2 we intro-
duce some helpful nomenclature and define Lp-nested functions. In section 3 we
define coordinates in the spirit of [3] and derive the Jacobian of the determinant. In
section 4 we introduce the uniform distribution on the Lp-nested unit sphere which
allows us to leverage some of the results of [3] to Lp-nested symmetric distributions
in section 5. In section 6 we derive a sampling scheme for Lp-nested symmetric
distributions. We conclude by presenting a potential application for the class of
Lp-nested symmetric distributions.

Date: October 30, 2009.
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2. Nomenclature and Definitions

Definition 2.1 (Lp-nested functions). We call a function f : Rn → R+
0 Lp-nested

if f fulfills the following recursive definition:
(i) The function f : Rn → R is the Lp-norm of its ` children (f1(x1), ..., f`(x`))>:

f(x) = ||(f1(x1), ..., f`(x`))>||p,
where the xj ∈ Rnj are a partition of the vector x into ` parts.

(ii) The children fi are either Lp-nested functions themselves or compute the
absolute value of a single coefficient xi, i.e. fj(xj) = |xi| if and only if
xj = xi ∈ R.

This gives rise to a tree structure of f which is depicted in Figure 1. Note,
that every Lp-nested function is positively homogeneous by construction. In order
to present results for arbitrary Lp-nested functions, we start by introducing some
helpful notation.

f∅ = f(x) = f∅(f1:`∅) = ||f1:`∅ ||p∅

...
f1 = f1(x1) = f1(f1,1:`1) = ||f1,1:`1 ||p1

...

f`∅

f`∅,1

...

... f`∅,``∅

......

fI = fI(fI,1:`I
) = fI(xI) = fI(|yi|, ..., |yi+`I

|)

...|yi| = |yi|pI,1 = fI,1 fI,`I
= |yi+`I

| = |yi+`I
|pI,`I

Figure 1. Tree structure associated with an Lp-nested
function f : Every parent node I gets its value fI by comput-
ing the LpI

-norm of the values of its children fI,1:`I
. The leafs of

the tree correspond to the (absolute values) of the coefficients in
the vector x. The values of the p at the leaf nodes are set to the
value p = 1 by definition, e.g. pI,1 = ... = pI,`I

= 1 in the diagram.

Definition 2.2 (Notation and Conventions for Lp-nested functions). We use the
following notational conventions:
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(i) We use multi-indices to denote the different nodes of the tree corresponding
to an Lp-nested function f . The function f itself corresponds to the root
node and is denoted by f∅. The functions corresponding to its children
are denoted by f1, ..., f`∅ . The children of the ith child are denoted by
fi,1, ..., fi,`i

. In this manner, an index is added for each layer of the tree.
(ii) We always use the letter “`” to denote the total amount of children of a

node.
(iii) For notational convenience, we assign a p to each of the leaf nodes (i.e. the

absolute values |xi|) but fix their values to p = 1 by definition.
(iv) For the sake of compact notation, we denote a list of indices with a single

multi-index I = i1, ..., i`. The range of the single indices and the length
of the multi-index should be clear from the context. Multi-indices are
always denoted by upper-case letters. A concatenation I, k of a multi-
index I with another index k corresponds to adding k to the index list, i.e.
I, k = i1, ..., im, k. We use the convention that I, ∅ = I.

(v) Those coefficients of the vector x that correspond to leafs of the subtree
under a node with the index I are denoted by xI . The number of leafs in
a subtree under a node I is denoted by nI . If I denotes a leaf then nI = 1.

(vi) The Lp-nested function associated with the subtree under a node I is de-
noted by

fI(xI) = ||(fI,1(xI,1), ..., fI,`I
(xI,`I

))>||pI
.

We use sans-serif font to denote the function value fI = fI(xI) of a subtree
I. In many cases we use fI and fI(xI) interchangeably. Whether fI is to
be considered as a function of its children or merely the value of the node
I should always be clear from the context.

A vector with the function values of the children of I is denoted with
bold sans-serif font and the following index-list notation:

fI(xI) = ||(fI,1(xI,1), ..., fI,`I
(xI,`I

))>||pI

= ||(fI,1, ..., fI,`I
)>||pI

= ||fI,1:`I
||pI

(vii) The function computing the value of the `th —and therefore by convention
last—child of a node I when fixing the value fI of that node, is denoted by

gI,`I
(fI , fI,1, ..., fI,`I−1) =

(
fpI

I −
`I−1∑
k=1

fpI

I,k

) 1
pI

= gI,`I
(fI,∅:`I−1)

= gI,`I
.

Notice the small but important difference that the value fI depends only
on the values of its children fI,1, ..., fI,`I

, while the value gI,`I
depends on

the value of its neighbors fI,1, ..., fI,`I−1 and its parent fI = fI,∅.
(viii) Vectors in Rn that lie on the Lp-nested unit sphere, i.e. that fulfill f(u) = 1

are denoted by the letter u.
Vectors ũ ∈ R`I that lie on the LpI

unit sphere associated with the inner
node I, i.e. that fulfill fI:1:`I

= fI ũ are denoted by the letter ũ. Note that
the coordinates u and ũ are different: fI(ũ) = 1 while fI(uI) ≤ 1.
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When defining polar-like coordinates in section 3 only all but the last
coefficients of u or ũ are needed, since the last can be computed from the
remaining ones. We often still denote this shorter vectors by u or ũ. The
actual dimensionality should be clear from the context.

Let us demonstrate the above definitions with a simple example.

Example 2.1. Consider the Lp-nested function

f(x) =
(

(|x1|p1 + |x2|p1)
p∅
p1 + |x3|p∅

) 1
p∅

=

(((
f
p1,1
1,1

) p1
p1,1 +

(
f
p1,2
1,2

) p1
p1,2

) p∅
p1 + (fp2

2 )
p∅
p2

) 1
p∅

= (f1 (f1,1:2)p∅ + f2 (f2,1)p∅)
1

p∅

= f∅ (f1:2)

with `∅ = 2, `1 = 2 and p1,1 = p1,2 = p2 = 1 by definition. Resolving f(x1, x2, x3) =
a for |x3| yields the functions g

|x3| = g2

= g2 (f∅, f1)

=
(
f
p∅
∅ − f

p∅
1

) 1
p∅

= (ap∅ − f1 (f1,1:2)p∅)
1

p∅

=
(
ap∅ − (|x1|p1 + |x2|p1)

p∅
p1

) 1
p∅

3. Lp-nested Coordinate Transformation and the Determinant of its
Jacobian

The most important consequence of the positive homogeneity of f is that it can
be used to normalized vectors and, by that property, to generalize the polar-like
coordinates using Lp-norms of [3].

Definition 3.1 (Polar-like Coordinates). We define the following polar-like coor-
dinates for a vector x ∈ Rn:

ui =
xi

f(x)
for i = 1, ..., n− 1

r = f(x).

The inverse coordinate transformation is given by

xi = rui for i = 1, ..., n− 1
xn = r∆nun

where we define ∆n = sgnxn and un to be the value of the leaf corresponding to
|xn| when setting f∅ = 1.

The definition of the coordinates is basically equivalent to that of [3] with the
difference that the Lp-norm is replaced by an Lp-nested function. Just as in the
case of Lp-spherical coordinates, it will turn out that the Jacobian of the coordinate
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transformation does not depend on the value of ∆n. This is basically a consequence
of the invariance under reflection at the coordinate axes.

The remaining part of this section will be devoted to computing the determinant
of the Jacobian. We start by stating the general form of the determinant in terms
of the partial derivatives ∂un

∂uk
, uk and r. Afterwards we demonstrate that those

partial derivatives have a special form and that most of them cancel in the Laplace
expansion of the determinant.

Lemma 3.1 (Determinant of the Jacobian). Let r and u be defined as in Defini-
tion (3.1). The general form of the determinant of the Jacobian J of the inverse
coordinate transformation is given by

|detJ | = rn−1

(
−

n−1∑
k=1

∂un

∂uk
· uk + un

)
.(1)

Proof. The partial derivatives of the inverse coordinate transformation are given
by:

∂

∂uk
yi = δikr for 1 ≤ i, k ≤ n− 1

∂

∂uk
yn = ∆nr

∂un

∂uk
for 1 ≤ k ≤ n− 1

∂

∂r
yi = ui for 1 ≤ i ≤ n− 1

∂

∂r
yn = ∆nun.

Therefore, the structure of the Jacobian is given by

J =


r . . . 0 u1

...
. . .

...
...

0 . . . r un−1

∆nr
∂un

∂u1
. . . ∆nr

∂un

∂un−1
∆nun

 .

Since we are only interested in the absolute value of the determinant and since
∆n ∈ {−1, 1}, we can factor out ∆n and drop it. Furthermore, we can factor out r
from the first n− 1 columns which yields

|detJ | = rn−1

∣∣∣∣∣∣∣∣∣det


1 . . . 0 u1

...
. . .

...
...

0 . . . 1 un−1
∂un

∂u1
. . . ∂un

∂un−1
un


∣∣∣∣∣∣∣∣∣ .

Now we can use Laplace formula to expand the determinant with respect to the last
column. For that purpose, let Ji denote the matrix which is obtained by deleting
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the last column and the ith row from J . This matrix has the following structure

Ji =



1 0
. . . 0

1 0
... 1

0
. . .

0 1
∂un

∂u1

∂un

∂ui

∂un

∂un−1


.

We can transform Ji into a lower triangular matrix by moving the column with
all zeros and ∂un

∂ui
bottom entry to the rightmost column of Ji. Each swapping of

two columns introduces a factor of −1. In the end, we can compute the value of
detJi by simply taking the product of the diagonal entries and obtain detJi =
(−1)n−1−i ∂un

∂ui
. This yields

|detJ | = rn−1

(
n∑

k=1

(−1)n+kuk detJk

)

= rn−1

(
n−1∑
k=1

(−1)n+kuk detJk + (−1)2n ∂yn

∂r

)

= rn−1

(
n−1∑
k=1

(−1)n+kuk(−1)n−1−k ∂un

∂uk
+ un

)

= rn−1

(
−

n−1∑
k=1

uk
∂un

∂uk
+ un

)
.

�

For a given Lp-nested function f , the terms r, uk and ∂un

∂uk
needed to compute

the determinant with equation (1) can be computed easily. However, as already
mentioned, most constituents of those terms cancel each other as the following
example demonstrates. We urge the reader to follow the next example as it contains
the important ideas for the general case below.

Example 3.1. Consider the function from the previous example

f(y) =
(

(|x1|p1 + |x2|p1)
p∅
p1 + |x3|p∅

) 1
p∅ .

Setting u = x
f(x) and solving for u3 yields

f(u) = 1

⇔ u3 =
(

1− (|u1|p1 + |u2|p1)
p∅
p1

) 1
p∅

Now, let G2 and F1 denote

G2 =
(

1− (|u1|p1 + |u2|p1)
p∅
p1

) 1−p∅
p∅

F1 = (|u1|p1 + |u2|p1)
p∅−p1

p1 .
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Essentially, G2 and F1 are terms that evolve from the application from the chain
rule when computing the partial derivative. G2 originates from using the chain rule
upwards in the tree and F1 from using it downwards. The indices correspond the
multi-indices of the respective nodes. Computing the derivative yields

∂u3

∂uk
=

∂

∂uk

(
1− (|u1|p1 + |u2|p1)

p∅
p1

) 1
p∅

=
1
p∅

G2 · − ∂

∂uk
(|u1|p1 + |u2|p1)

p∅
p1

=
1
p∅

p∅
p1

G2 · −F1
∂

∂uk
|uk|p1

= −G2F1∆kuk
p1−1.

By inserting the results in equation (1) we obtain

1
r2
|J | = −

2∑
k=1

∂un

∂uk
· uk + u3

=
2∑

k=1

G2F1|uk|p1 + u3

= G2

(
2∑

k=1

F1|uk|p1 + G−1
2

(
1− (|u1|p1 + |u2|p1)

p∅
p1

) 1
p∅

)

= G2

(
2∑

k=1

F1|uk|p1 +
(

1− (|u1|p1 + |u2|p1)
p∅
p1

)− 1−p∅
p∅
(

1− (|u1|p1 + |u2|p1)
p∅
p1

) 1
p∅

)

= G2

(
2∑

k=1

F1|uk|p1 + 1− (|u1|p1 + |u2|p1)
p∅
p1

)

= G2

(
F1

2∑
k=1

|uk|p1 + 1− F1F
−1
1 (|u1|p1 + |u2|p1)

p∅
p1

)

= G2

(
F1

2∑
k=1

|uk|p1 + 1− F1 (|u1|p1 + |u2|p1)−
p∅−p1

p1 (|u1|p1 + |u2|p1)
p∅
p1

)

= G2

(
F1

2∑
k=1

|uk|p1 + 1− F1

2∑
k=1

|uk|p1

)
= G2.

In the example above, the terms from using the chain rule downwards in the tree
canceled while the terms from using the chain rule upwards remained. It will turn
out that this is true in general. Before we state the general equation we introduce
a short notation for the terms that cancel and for those that remain.
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Definition 3.2. Let I = i1, ..., ir−1. In the following, we denote

GI,`I
= g

pI,`I
−pI

I,`I

=

gpI

I −
`−1∑
j=1

fpI

I,j


pI,`I

−pI

pI

(2)

and

FI,ir = f
pI−pI,ir

I,ir

=

(∑̀
k=1

f
pI,ir

I,ir,k

) pI−pI,ir
pI,ir

.

Note that the term FI,ir
is a function of its children while GI,ir

is a function of the
parent node and all but the last children.

Before going on, let us quickly outline the essential mechanism when taking
the chain rule un

uq
. Imagine the tree corresponding to f . By definition un is the

rightmost leaf of the tree. Let L, `L be the multi-index of un. The calculation of
∂un

∂uq
will obviously involve heavy usage of the chain rule. As in the example, the

chain rule starts at the leaf un ascends in the the tree until it reaches the lowest
node whose subtree contains both, un and uq. At this point, it starts descending
the tree until it reaches the leaf uq. Depending on whether the chain rule ascends
or descends, two different forms of derivatives occur: At un = gL,`L

the chain rule
will start ascending by taking the derivative of the term

gL,`L
=

(
gpL

L −
`L−1∑
k=1

fpL

L,k

) 1
pL

which will produce a G-term and move the chain rule one step up in the tree.
If the parent of un is already the lowest node whose subtree contains uq a un,

then uq is hidden somewhere in the f-terms and the g-term is independent of uq.
However, if this node is still higher in the tree, then the situation is reversed, i.e.
the f-terms are independent of uq which is hidden in the g-term. When going on,
the chain rule will produce a G-term when ascending the tree and an F-term when
descending. The situation is depicted in Figure 2. The next lemma states a few
helpful properties of the F- and G-terms.

Lemma 3.2. Let I = i1, ..., ir−1 and fI,ir be any node of the tree associated with
an Lp-nested function f . Then the following recursions hold for the derivatives
of g

pI,ir

I,ir
and fpI

I,ir
w.r.t uq: If uq is not in the subtree under the node I, ir, i.e.

uk 6∈ fI,ir , then (remember that pI,ir = 1 for leaf nodes by notational convention):
∂

∂uq
fpI

I,ir
= 0

and

∂

∂uq
g

pI,ir

I,ir
=
pI,ir

pI
GI,ir

·


∂

∂uq
gpI

I if uq ∈ gI

− ∂
∂uq

fpI

I,j if uq ∈ fI,j
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for uq ∈ fI,j and uq 6∈ fI,k for k 6= j. Otherwise

∂

∂uq
g

pI,ir

I,ir
= 0

and
∂

∂uq
fpI

I,ir
=

pI

pI,ir

FI,ir

∂

∂uq
f
pI,ir

I,ir,s

for uq ∈ fI,ir,s and uq 6∈ fI,ir,k for k 6= s.

Proof. Both first equations are obvious, since only those nodes have a non-zero
derivative for which the subtree actually depends on uq. The second equations can
be seen by computation

∂

∂uq
g

pI,ir

I,ir
= pI,irg

pI,ir−1
I,ir

∂

∂uq
GI,ir

= pI,ir
g

pI,ir−1
I,ir

∂

∂uq

gpI

I −
`I−1∑
j=1

fpI

I,j

 1
pI

=
pI,ir

pI
g

pI,ir−1
I,ir

g1−pI

I,ir

∂

∂uq

gpI

I −
`I−1∑
j=1

fpI

I,j



=
pI,ir

pI
GI,ir ·


∂

∂uq
gpI

I if uq ∈ gI

− ∂
∂uq

fpI

I,j if uq ∈ fI,j

Similarly

∂

∂uq
fpI

I,ir
= pI f

pI−1
I,ir

∂

∂uq
fI,ir

= pI f
pI−1
I,ir

∂

∂uq

`I,ir∑
k=1

f
pI,ir

I,ir,k

 1
pI,ir

=
pI

pI,ir

fpI−1
I,ir

f
1−pI,ir

I,ir

∂

∂uq
f
pI,ir

I,ir,s

=
pI

pI,ir

FI,ir

∂

∂uq
f
pI,ir

I,ir,s

for uk ∈ fI,ir,s. �

The next lemma states the form of the derivative ∂un

∂uq
in terms of the G- and

F-terms.

Lemma 3.3. Let |uq| = f`1,...,`r,i1,...,it , |un| = f`1,...,`d
with r < d and, therefore, the

shortest path from un to uq be (`1, ..., `d), (`1, ..., `d−1), ..., (`1, ..., `r), (`1, ..., `r, i1), ..., (`1, ..., `r, i1, ..., it).
The derivative of un w.r.t. uq is given by

∂

∂uq
un = −G`1,...,`d

· ... · G`1,...,`r+1 · F`1,...,`r,i1 · F`1,...,`r,i1,...,it−1 ·∆qu
p`1,...,`r,i1,...,it−1−1
q
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with ∆q = sgnuq and |uq|p = (∆quq)p. In particular

uq
∂

∂uq
un = −G`1,...,`d

· ... · G`1,...,`r+1 · F`1,...,`r,i1 · F`1,...,`r,i1,...,it−1 · |uq|p`1,...,`r,i1,...,it−1 .

Proof. Successive application of Lemma (3.2). �

Before finally deriving the expression for the determinant, we state two more
helpful equations.

Lemma 3.4. Let I = i1, ..., ir−1, then

G−1
I,ir

g
pI,ir

I,ir
= gpI

I,ir
(3)

= gpI

I −
`I−1∑
k=1

FI,kf
pI,k

I,k(4)

and

f
pI,ir

I,ir
=

`I,ir∑
k=1

FI,ir,kf
pI,ir,k

I,ir,k(5)

Proof. First, we prove the equalities (3) and (4):

G−1
I,ir

g
pI,ir

I,ir
= g
−(pI,ir−pI)
I,ir

g
pI,ir

I,ir

= gpI

I,ir
q.e.d. (3)

=

(
gpI

I −
`I−1∑
k=1

fpI

I,k

) pI
pI

= gpI

I −
`I−1∑
k=1

f
pI−pI,k

I,k f
pI,k

I,k

= gpI

I −
`I−1∑
k=1

FI,kf
pI,k

I,k q.e.d. (4).

In a similar fashion, equality (5) can be proven by substituting definitions and
introducing one in the exponent.

�

Proposition 3.1 (Determinant of the Jacobian). Let L be the set of multi-indices of
the path from the leaf un to the root node (excluding the root node). The determinant
of the Jacobian for an Lp-nested function is given by

det |J | = rn−1
∏
L∈L

GL.

Proof. Let L = `1, ...`d−1 be the multi-index of the parent of un. We compute
1

rn−1 |detJ | and obtain the result by solving for |detJ |. As shown in Lemma (3.1)
1

rn−1 |detJ | has the form

1
rn−1

|detJ | = −
n−1∑
k=1

∂un

∂uk
· uk + un.
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By definition un = gL,`d
= g

pL,`d

L,`d
. Now, assume that ur, ..., un−1 are children of

fL, i.e. uk = fL,I,it for some I, it = i1, ..., it and r ≤ k < n. Remember, that by
Lemma (3.3) the terms uq

∂
∂uq

un for r ≤ q < n have the form

uq
∂

∂uq
un = −GL,`d

· FL,i1 · ... · FL,I · |uq|p`1,...,`d−1,i1,...,it−1 .

Now, we can expand the determinant as follows

−
n−1∑
k=1

∂un

∂uk
· uk + g

pL,`d

L,`d

= −
r−1∑
k=1

∂un

∂uk
· uk −

n−1∑
k=r

∂un

∂uk
· uk + g

pL,`d

L,`d

= −
r−1∑
k=1

∂un

∂uk
· uk + GL,`d

(
−

n−1∑
k=r

G−1
L,`d

∂un

∂uk
· uk + G−1

L,`d
g

pL,`d

L,`d

)

= −
r−1∑
k=1

∂un

∂uk
· uk + GL,`d

(
−

n−1∑
k=r

G−1
L,`d

∂un

∂uk
· uk + gpL

L −
`d−1∑
k=1

FL,kf
pL,k

L,k

)

by equality (4) of Lemma (3.4). Note that all terms G−1
L,`d

∂un

∂uk
· uk for r ≤ k < n

now have the form

G−1
L,`d

uk
∂

∂uk
un = −FL,i1 · ... · FL,I · |uq|p`1,...,`d−1,i1,...,it−1

since we constructed them to be neighbors of un. However, with equation (5) of
Lemma (3.4), we can further expand the sum

∑`d−1
k=1 FL,kf

pL,k

L,k down to the leafs
ur, ..., un−1. When doing so we end up with the same factors FL,i1 · ... · FL,I ·
|uq|p`1,...,`d−1,i1,...,it−1 as in the derivatives G−1

L,`d
uq

∂
∂uq

un. This means exactly that

−
n−1∑
k=r

G−1
L,`d

∂un

∂uk
· uk =

`d−1∑
k=1

FL,kf
pL,k

L,k

and, therefore,

= −
r−1∑
k=1

∂un

∂uk
· uk + GL,`d

(
−

n−1∑
k=r

G−1
L,`d

∂un

∂uk
· uk + gpL

L −
`d−1∑
k=1

FL,kf
pL,k

L,k

)

= −
r−1∑
k=1

∂un

∂uk
· uk + GL,`d

(
`d−1∑
k=1

FL,kf
pL,k

L,k + gpL

L −
`d−1∑
k=1

FL,kf
pL,k

L,k

)

= −
r−1∑
k=1

∂un

∂uk
· uk + GL,`d

gpL

L .

By factoring out GL,`d
from the equation, the terms ∂un

∂uk
· uk loose the GL,`d

in front and we get basically the same equation as before, only that the new leaf
(the new “un”) is gpL

L and we got rid of all the children of fL. By repeating that
procedure up to the root node, we successively factor out all GL′ for L′ ∈ L until
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all terms of the sum vanish and we are only left with f∅ = 1. Therefore, the
determinant is

1
rn−1

|detJ | =
∏
L∈L

GL

which completes the proof. �

4. Lp-nested Uniform Distribution

In analogy to [6] we define a uniform distribution on the LP -nested sphere.
Naturally, the density of this distribution is the inverse of the surface area of the
Lp-nested unit sphere. In this section we first compute the surface of the Lp-nested
sphere and then define the Lp-nested uniform distribution in terms of the polar-like
coordinates from the section before. Before we start, we start by computing the
surface and the volume of an arbitrary Lp-nested sphere.

Proposition 4.1 (Volumen and Surface of the Lp-nested Sphere). Let f be an
Lp-nested function and let I be the set of all multi-indices denoting the inner nodes
of the tree structure associated with f . Let nI denote the number of leafs contained
in the subtree under the node I (if I is a leaf already, nI = 1). The volumen Vf (R)
and the surface Sf (R) of the Lp-nested sphere with radius R is given by

Vf (R) =
Rn2n

n

∏
I∈I

1
p`I−1

I

`I−1∏
k=1

B

[∑k
i=1 nI,k

pI
,
nI,k+1

pI

]
(6)

=
Rn2n

n

∏
I∈I

∏`I

k=1 Γ
[

nI,k

pI

]
p`I−1

I Γ
[

nI

pI

](7)

Sf (R) = Rn−12n
∏
I∈I

1
p`I−1

I

`I−1∏
k=1

B

[∑k
i=1 nI,k

pI
,
nI,k+1

pI

]
(8)

= Rn−12n
∏
I∈I

∏`I

k=1 Γ
[

nI,k

pI

]
p`I−1

I Γ
[

nI

pI

](9)

Proof. We obtain the volumen by computing the integral
∫

f(x)≤R
dx. Differenti-

ation with respect to R yields the surface area. For symmetry reasons we can
compute the volume only on the positive quadrant Rn

+ and multiply the result with
2n later to obtain the full volumen and surface area. The strategy for computing
the volumen is as follows. We start off with inner nodes I that are parents of leafs
only. The value fI of such a node is simply the LpI

norm of its children. Therefore,
we can convert the integral over the children of I with the transformation of [3].
This maps the leafs fI,1:`I

into fI and “angular” variables ũ`I−1. Since integral
borders of the original integral depend only on the value of fI and not on ũ, we
can separate the variables ũ from the radial variables fI and integrate the vari-
ables ũ`I−1 separately. The integration over ũ`I−1 yields a certain factor, while
the variable fI effectively becomes a new leaf.

Now suppose I is the parent of leafs only. W.l.o.g. let the `I leafs correspond to
the last `I coefficients of x. Let x ∈ Rn

+. Carrying out the first transformation and
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integration yields

∫
f(x)≤R

dx =
∫

f(x1:n−`I ,fI
)≤R

∫
ũ`I−1∈V`I−1

+

f`I−1
I

(
1−

`I−1∑
i=1

ũpI

i

) 1−pI
pI

dfIdũ`I−1dx1:n−`I

=
∫

f(x1:n−`I ,fI
)≤R

fnI−1
I dfIdx1:n−`I

×
∫

ũ`I−1∈V`I−1
+

(
1−

`I−1∑
i=1

ũpI

i

)nI,`I
−pI

pI

dũ`I−1.

For solving the second integral we make the pointwise transformation si = ũpI

i and
obtain

∫
ũ`I−1∈V`I−1

+

(
1−

`I−1∑
i=1

ũpI

i

)nI,`I
−pI

pI

dũ`I−1 =
1

p`I−1
I

∫
P

si≤1

(
1−

`I−1∑
i=1

si

)nI,`I
pI
−1 `I−1∏

i=1

s
1

pI
−1

i ds`I−1

=
1

p`I−1
I

`I−1∏
k=1

B

[∑k
i=1 nI,k

pI
,
nI,k+1

pI

]

=
1

p`I−1
I

`I−1∏
k=1

B

[
k

pI
,

1
pI

]
by using the fact that the transformed integral has the form of an unnormalized
Dirichlet distribution and, therefore, the value of the integral must equal its nor-
malization constant.

Now, we go on with solving the integral∫
f(x1:n−`I ,fI

)≤R

fnI−1
I dfIdx1:n−`I

.(10)

We carry this out in exactly the same manner as we solved the previous integral.
We only need to make sure that we only contract nodes that have only leafs as
children (remember that radii of contracted nodes become leafs) and we need to
find a formula how the factors fnI−1

I propagate through the tree.
For the latter, we first state the formula and then prove it via induction. For

notational convenience let x̂ denote the remaining coefficients of x, f̂ the vector
of leafs resulting from contraction and J the set of multi-indices corresponding to
the contracted leafs. The integral which is left to solve after integrating over all
ũ is given by (remember that nJ denotes real leafs, i.e. the ones corresponding to
coefficients of x): ∫

f(x̂,̂f)≤R

∏
J∈J

fnJ−1
J df̂dx̂.

We already proved the first induction step by computing equation (10). For com-
puting the general induction step suppose I is an inner node whose children are leafs
or contracted leafs. Let J ′ be the set of contracted leafs under I and Ĵ = J \J ′.
Furthermore, let f̃ and x̃ be the leafs belonging to the set Ĵ . For notational con-
venience, we will denote all children of I with fI,k no matter whether they are real
leafs yi or result from a previous contraction. Transforming the children of I into
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radial coordinates by [3] yields∫
f(x̂,̂f)≤R

∏
J∈J

fnJ−1
J df̂dx̂ =

∫
f(x̂,̂f)≤R

∏
Ĵ∈Ĵ

f
nĴ−1

Ĵ

 ·( ∏
J′∈J ′

f
nJ′−1
J′

)
df̂dx̂

=
∫

f(x̃,̃f,fI)≤R

∫
ũ`I−1∈V`I−1

+

(1−
`I−1∑
i=1

ũpI

i

) 1−pI
pI

f`I−1
I

 ·
∏

Ĵ∈Ĵ
f
nĴ−1

Ĵ



×

(fI

(
1−

`I−1∑
i=1

ũpI

i

))n`I
−1

pI `I−1∏
k=1

(fI ũk)nk−1

 dx̃df̃dfIdũ`I−1

=
∫

f(x̃,̃f,fI)≤R

∫
ũ`I−1∈V`I−1

+

∏
Ĵ∈Ĵ

f
nĴ−1

Ĵ


×

f
`I−1+

P`I
i=1(ni−1)

I

(
1−

`I−1∑
i=1

ũpI

i

)n`I
−pI

pI `I−1∏
k=1

ũnk−1
k

 dx̃df̃dfIdũ`I−1

=
∫

f(x̃,̃f,fI)≤R

∏
Ĵ∈Ĵ

f
nĴ−1

Ĵ

 fnI−1
I dx̃df̃dfI

×
∫

ũ`I−1∈V`I−1
+

(
1−

`I−1∑
i=1

ũpI

i

)n`I
−pI

pI `I−1∏
k=1

ũnk−1
k dũ`I−1.

Again, by transforming it into a Dirichlet distribution, the latter integral has the
solution

∫
ũ`I−1∈V`I−1

+

(
1−

`I−1∑
i=1

ũpI

i

)n`I
−pI

pI `I−1∏
k=1

ũnk−1
k dũ`I−1 =

`I−1∏
k=1

B

[∑k
i=1 nI,k

pI
,
nI,k+1

pI

]
while the remaining former integral has the form∫

f(x̃,̃f,fI)≤R

∏
Ĵ∈Ĵ

f
nĴ−1

Ĵ

 fnI−1
I dx̃df̃dfI =

∫
f(x̂,̂f)≤R

∏
J∈J

fnJ−1
J df̂dx̂

as claimed.
By carrying out the integration up to the root node the remaining integral be-

comes ∫
f∅≤R

fn−1
∅ df∅ =

∫ R

0

fn−1
∅ df∅ =

Rn

n
.

Collecting the factors from integration over the ũ proves the equations (6) and (8).
Using B [a, b] = Γ[a]Γ[b]

Γ[a+b] yields equations (7) and (9). �

In order to clarify the proof we explicitly carry out the integration for our first
example.
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Example 4.1. Again, let the Lp-nested function be given by

f(x) =
(

(|x1|p1 + |x2|p1)
p∅
p1 + |x3|p∅

) 1
p∅ .

Let x ∈ R3
+. Carrying out the steps from the proof above yields∫

f(x)≤R

dx =
∫

f(f1,x3)≤R

∫ 1

0

(1− ũp1)
1−p1

p1 f`1−1
1 dũdf1dx3

=
∫

f(f1,x3)≤R

f`1−1
1 df1dx3 ×

∫ 1

0

(1− ũp1)
1−p1

p1 dũ

=
∫

f(f1,x3)≤R

f`1−1
1 df1dx3 × 1

p1
B

[
1
p1
,

1
p1

]
.

Solving the first integral yields∫
f(f1,x3)≤R

f`1−1
1 df1 =

∫
f∅≤R

∫ 1

0

f
`∅−1
∅ (f∅ũp0)`1−1 (1− ũp0)

1−p∅
p∅ dũdf∅

=
∫

f∅≤R

∫ 1

0

f
`∅+`1−2
∅ ũ`1−1 (1− ũp0)

1−p∅
p∅ dũdf∅

=
∫

f∅≤R

f2
∅df∅ ×

∫ 1

0

ũ (1− ũp0)
1−p∅

p∅ dũ

=
R3

3
· 1
p∅
B

[
2
p∅
,

1
p∅

]
.

Collecting all factors yields∫
f(x)≤R

dx =
R3

3
· 1
p∅

1
p1
B

[
2
p∅
,

1
p∅

]
B

[
1
p1
,

1
p1

]
.

Extending the domain such that x ∈ R3, simply introduces a factor 23. The surface
is obtained by differentiating with respect to R. This yields the final equations

Vf (R) =
R323

3
· 1
p∅

1
p1
B

[
2
p∅
,

1
p∅

]
B

[
1
p1
,

1
p1

]
Sf (R) = R223 · 1

p∅

1
p1
B

[
2
p∅
,

1
p∅

]
B

[
1
p1
,

1
p1

]
Proposition 4.2 (Lp-nested Uniform Distribution). Let f be an Lp-nested func-
tion. Let L be set set of multi-indices on the path from the root node to the leaf
corresponding to yn and let L̃ be the multi-index of xn. The uniform distribution
on the Lp-nested unit sphere, i.e. the set {x ∈ Rn|f(x) = 1} is given by

ρ(u) =

 1
2n−1

∏
I∈I

p`I−1
I

`I−1∏
k=1

B

[∑k
i=1 nI,k

pI
,
nI,k+1

pI

]−1
 · ∏

L∈L
GL

where the support of p(u) is given by

supp ρ =
{
u ∈ Rn−1|f(u, gL̃(u)) = 1

}
Proof. Since the Lp-nested sphere is a compact set, the density of the uniform
distribution is simply one over the surface area of the unit Lp-nested sphere. The
surface Sf (1) is given by Proposition 4.1. Transforming 1

Sf (1) into the coordinates
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of Definition 3.1 introduces the determinant of the Jacobian from Proposition 3.1
and an additional factor of 2 since the u ∈ Rn−1 have to account for both half-shells
of the Lp-nested unit sphere. This yields the expression above. �
Example 4.2 (Lp-spherically symmetric uniform distribution). We consider Lp-
norm as a special case of an Lp-nested function

f(x) = ||x||p =

(
n∑

i=1

|xi|p
) 1

p

.

The corresponding tree has only one single inner node, which is the root node.
Using Proposition 4.1, the surface area is given by

S||·||p = 2n 1

p
`∅−1
∅

`∅−1∏
k=1

B

[∑k
i=1 nk

p∅
,
nk+1

p∅

]

= 2n 1
pn−1

n−1∏
k=1

B

[
k

p
,

1
p

]

= 2n 1
pn−1

n−1∏
k=1

Γ
[

k
p

]
Γ
[

1
p

]
Γ
[

k+1
p

]
=

2nΓn
[

1
p

]
pn−1Γ

[
n
p

] .
The factor Gn is given by

(
1−∑n−1

i=1 |ui|p
) 1−p

p

, which together with the factor 2
yields the uniform distribution on the Lp-sphere as defined in [6]

p(u) =
pn−1Γ

[
n
p

]
2n−1Γn

[
1
p

] (1−
n−1∑
i=1

|ui|p
) 1−p

p

.

5. Lp-Nested Symmetric Distributions

Definition 5.1 (Lp-Nested Symmetric Distribution). A n-dimensional random vec-
tor X is called Lp-nested symmetrically distributed with respect to f if f is an Lp-
nested function, X = RU for two independent random variables R and U , where
R is a non-negative univariate random variable and U is a n-dimensional random
variable uniformly distributed on the Lp-nested unit sphere corresponding to f , i.e.
f(U) = 1 and U1, .., Un−1 follow the distribution of Proposition 4.2.

This definition of Lp-nested symmetric distribution is a straightforward gener-
alization of Gupta and Song’s definition of Lp-spherically symmetric distributions.
By exactly the same reasoning as their’s [3] the definition implies that f(X) ·= R

and X
f(X)

·= U and, therefore, that f(X) and X
f(X) are independent. This also

means that being able to sample from any Lp-nested symmetric distribution makes
it possible to sample from any other Lp-nested symmetric distribution as long as
the radial distribution of it is known. One simply has to normalize the samples
X from the first distribution to obtain an instance of a uniformly distributed ran-
dom variable on the Lp-unit sphere, sample a new radius and scale the normalized
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sample with it. Based on that idea, we derive a sampling scheme for Lp-nested
distributions in section 6.

Another consequence resulting from the definition of Lp-nested symmetric dis-
tributions is the following proposition, which is almost equivalent to Lemma 2.1
and Theorem 2.1 in [3] which themselves are a special case of the results in [2].

Proposition 5.1. Each Lp-nested symmetric density on Rn (with zero probability
mass at zero) has the form ρ̃(X) = ρ(f(X)) and gives rise to a univariate (radial)
density % on R+. On the other hand, each univariate density ρ on R+ gives rise to
a Lp-nested symmetric distribution on Rn. The relation between the two densities
is given by

%(r) = Sf (1)rn−1ρ(r)

= Sf (r)ρ(r)

and

ρ(x) =
1

Sf (1) · fn−1(x)
%(f(x))

=
1

Sf (f(x))
%(f(x)).

This shows again, that Lp-nested symmetric distributions are parameterized
over univariate radial distributions. The maximum likelihood estimation of the
parameters of Lp-nested symmetric distributions therefore becomes very easy since
argmaxϑ log ρ(X|ϑ) = argmaxϑ log %(f(X)|ϑ) which means that parameter estima-
tion can be carried out over a univariate instead of an n-dimensional multivariate
distribution, which is more robust and computationally efficient.

By the form of a general Lp-nested function and the corresponding symmetric
distribution, one might suspect, that the children of the root node, i.e. the f1:`∅
are Lp∅ -spherically symmetric distributed. This is actually not the case as the next
proposition shows.

Proposition 5.2. Let f be an Lp-nested function. Suppose we remove complete
subtrees (not single branches) from the tree associated with f . Let x̂ ∈ Rm denote
a subset of the coefficients of x ∈ Rn that are still part of that smaller tree and let
f̂ denote the vector of inner nodes that became new leafs. The joint distribution of
x̂ and f̂ is given by.

ρ(x̂, f̂) =
%(f(x̂, f̂))

Sf (f(x̂, f̂))

∏
J∈J

fnJ−1
J

where J is the set of multi-indices for the elements of f̂ and nJ is the number of
leafs (in the original tree) in the subtree under the node J .

Proof.

ρ(x) =
%(f(x))
Sf (f(x))

=
%(f(x1:n−`I

, fI , ũ`I−1,∆n))
Sf (f(x))

· f`I−1
I

(
1−

`I−1∑
i=1

|ũi|pI

) 1−pI
pI
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where ∆n = sign(xn). Note that f is invariant to the actual value of ∆n. However,
when integrating it out, it yields a factor of 2. Integrating out ũ`I−1 and ∆n now
yields

ρ(x1:n−`I
, fI) =

%(f(x1:n−`I
, fI))

Sf (f(x))
· f`I−1

I

2`I Γ`I

[
1
pI

]
p`I−1

I Γ
[

`I

pI

]
=

%(f(x1:n−`I
, fI))

Sf (f(x1:n−`I
, fI))

· f`I−1
I

Now, we can go on an integrate out more subtrees. For that purpose, let x̂ denote
the remaining coefficients of x, f̂ the vector of leafs resulting from the kind of
contraction just shown for fI and J the set of multi-indices corresponding to the
“new leafs”, i.e the node fI after contraction. We obtain the following equation

ρ(x̂, f̂) =
%(f(x̂, f̂))

Sf (f(x̂, f̂))

∏
J∈J

fnJ−1
J .

where nJ denotes the number of leafs in the subtree under the node J . The proof
is basically the same as the one for proposition (4.1).

�

Corollary 5.1. The children of the root node f1:`∅ = (f1, ..., f`∅)
> follow the distri-

bution

ρ(f1:`∅) =
p

`∅−1
∅ Γ

[
n
p∅

]
fn−1(f1, ..., f`∅)2m

∏`∅
k=1 Γ

[
nk

p∅

]% (f(f1, ..., f`∅)
) `∅∏

i=1

fni−1
i

where m ≤ `∅ is the number of leafs directly attached to the root node. In particular,
f1:`∅ can be written as the product RU, where R is the Lp-nested radius and the

single |Ui|p∅ are Dirichlet distributed, i.e. (|U1|p∅ , ..., |U`∅ |p∅) ∼ Dir
[

n1
p∅
, ...

n`∅
p∅

]
.

Proof. The joint distribution is simply the application of Proposition (5.2). Note
that f(f1, ..., f`∅) = ||f1:`∅ ||p∅ . Applying the pointwise transformation si = |ui|p∅
yields (|U1|p∅ , ..., |U`∅−1|p∅) ∼ Dir

[
n1
p∅
, ...

n`∅
p∅

]
(see also [6]).

�

6. Sampling from Lp-Nested Symmetric Distributions

In this section, we derive a sampling scheme for Lp-nested symmetric distribu-
tions. Since the radial and the uniform component are independent, normalizing
a the sample from any Lp-nested distribution to f -length one yields samples from
the uniform distribution on the Lp-unit sphere. By multiplying those uniform sam-
ples with new samples from another radial distribution, one obtains samples from
another Lp-nested distribution. Therefore, for each Lp-nested function f one needs
to find only a single Lp-nested distribution one is able to sample from. Sampling
from all other Lp-nested distributions with respect to f then comes for free due to
the trick just described. Gupta and Song [3] sample from the Lp-generalized Nor-
mal distribution since it has independent marginals which makes it easy to sample
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from it. Due to the tree structure of Lp-nested distributions, this is not possible
in general. Instead we choose to sample from the uniform distribution inside the
LP -nested unit ball.

From Proposition (4.1) we already know the normalization constant. Therefore,
the distribution has the form ρ(x) = 1

Vf (1) . In order to sample from that distribu-
tion, we will first only consider the uniform distribution in the positive quadrant of
the unit Lp-nested ball which has the form ρ(x) = 2n

Vf (1) . Samples from the uniform
distributions in the whole ball can be obtained by multiplying each coordinate of a
sample with independent samples from the uniform distribution in {−1, 1}.

Again, from the proof of Proposition (4.1), we are now able to derive the sampling
scheme. The idea of the proof is to successively transform the inner nodes of the
tree associated with f into Lp-radial coordinates as defined by [6]. This yields a
series of independent integrals over expressions like

∫
ũ`I−1∈V`I−1

+

(
1−

`I−1∑
i=1

ũpI

i

)n`I
−pI

pI `I−1∏
k=1

ũnk−1
k dũ`I−1

and a final integral over the radius f∅ which always is∫ 1

0

fn−1
∅ df∅.

Since all variables together integrate to one, ρ(x) is still a density on those variables.
Because we can integrate the independently, the final radial variable f∅ and the uni-
form variables are independent. Now, it is easy to see that f∅ can be drawn from a
β-distribution and the single upI can be drawn from a Dirichlet distribution. By re-
versing the transformations we obtain samples from the uniform distribution inside
the unit Lp-nested ball. Normalizing those samples yields uniformly distributed
points on the Lp-nested unit sphere which can be transformed into samples from
any Lp-nested distribution by multiplying with the appropriate radial samples.

This provides us with the following sampling scheme:

(1) Sample f∅ from a beta distribution β [n, 1].
(2) For each inner node I of the tree associated with f sample sI from a

Dirichlet distribution Dir
[

nI,1
pI
, ...,

nI,`I

pI

]
where nI,k are the number of leafs

in the subtree under node I, k. Obtain uniform coordinates on the Lp-

sphere by sk 7→ s
1

pI

k = ũk.
(3) Apply the reverse transformation to map the ũ and f∅ into Cartesian coor-

dinates x.
(4) Normalize x to get a uniform sample from the sphere z = x

f(x) .

(5) Sample a new radius f̃∅ from the radial distribution of the target Lp-nested
distribution ρ∅ and obtain the sample via x̃ = f̃∅ · z.

131



Lp-NESTED SYMMETRIC DISTRIBUTIONS 21

References

[1] K. T. Fang, S. Kotz, and K. W. Ng. Symmetric multivariate and related distri-
butions. Chapman and Hall New York, 1990. 1

[2] Carmen Fernandez, Jacek Osiewalski, and Mark F. J. Steel. Modeling and
inference with ν-spherical distributions. Journal of the American Statistical
Association, 90(432):1331–1340, Dec 1995. 1, 18

[3] A.K. Gupta and D. Song. lp-norm spherical distribution. Journal of Statistical
Planning and Inference, 60:241–260, 1997. 1, 4, 13, 15, 17, 18, 19

[4] Douglas Kelker. Distribution theory of spherical distributions and a location-
scale parameter generalization. Sankhya: The Indian Journal of Statistics,
Series A, 32(4):419–430, Dec 1970. 1

[5] Jacek Osiewalski and Mark F. J. Steel. Robust bayesian inference in lq-spherical
models. Biometrika, 80(2):456–460, Jun 1993. 1

[6] D. Song and A.K. Gupta. lp-norm uniform distribution. Proceedings of the
American Mathematical Society, 125:595–601, 1997. 1, 13, 17, 19, 20

132



1. Optimal Filters For All Different Models

Independent Subspace Models

Independent Subspace ISA for 2 Subspaces without CGC.

1
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2

Independent Subspace ISA for 4 Subspaces without CGC.
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3

Independent Subspace ISA for 8 Subspaces without CGC.
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4

Independent Subspace ISA for 16 Subspaces without CGC.
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5

Independent Subspace ISA for 2 Subspaces with CGC.
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6

Independent Subspace ISA for 4 Subspaces with CGC.
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7

Independent Subspace ISA for 8 Subspaces with CGC.
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8

Independent Subspace ISA for 16 Subspaces with CGC.
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9

Lp-nested model with DT tree structure without CGC.
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10

Lp-nested model with DT tree structure with CGC.
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11

Lp-nested model with PND2 tree structure without CGC.
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12

Lp-nested model with PND4 tree structure without CGC.
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13

Lp-nested model with PND8 tree structure without CGC.
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14

Lp-nested model with PND16 tree structure without CGC.
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15

Lp-nested model with PND2 tree structure with CGC.
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16

Lp-nested model with PND4 tree structure with CGC.
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17

Lp-nested model with PND8 tree structure with CGC.
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18

Lp-nested model with PND16 tree structure with CGC.
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Abstract

In this paper, we introduce a new family of probability densities calledLp-nested symmetric distri-
butions. The common property, shared by all members of the new class, is the same functional form
ρ(xxx) = ρ̃( f (xxx)), wheref is a nested cascade ofLp-norms‖xxx‖p = (∑ |xi |p)1/p. Lp-nested symmetric
distributions thereby are a special case ofν-spherical distributions for whichf is only required to
be positively homogeneous of degree one. While both,ν-spherical andLp-nested symmetric dis-
tributions, contain many widely used families of probability models such as the Gaussian, spher-
ically and elliptically symmetric distributions,Lp-spherically symmetric distributions, and certain
types of independent component analysis (ICA) and independent subspace analysis (ISA) models,
ν-spherical distributions are usually computationally intractable. Here we demonstrate thatLp-
nested symmetric distributions are still computationallyfeasible by deriving an analytic expression
for its normalization constant, gradients for maximum likelihood estimation, analytic expressions
for certain types of marginals, as well as an exact and efficient sampling algorithm. We discuss
the tight links ofLp-nested symmetric distributions to well known machine learning methods such
as ICA, ISA and mixed norm regularizers, and introduce the nested radial factorization algorithm
(NRF), which is a form of non-linear ICA that transforms any linearly mixed, non-factorialLp-
nested symmetric source into statistically independent signals. As a corollary, we also introduce
the uniform distribution on theLp-nested unit sphere.

Keywords: parametric density model, symmetric distribution,ν-spherical distributions, non-linear
independent component analysis, independent subspace analysis, robust Bayesian inference, mixed
norm density model, uniform distributions on mixed norm spheres, nested radial factorization

1. Introduction

High-dimensional data analysis virtually always starts with the measurement offirst and second-
order moments that are sufficient to fit a multivariate Gaussian distribution, the maximum entropy
distribution under these constraints. Natural data, however, often exhibit significant deviations from
a Gaussian distribution. In order to model these higher-order correlations, it is necessary to have
more flexible distributions available. Therefore, it is an important challenge tofind generaliza-
tions of the Gaussian distribution which are more flexible but still computationally and analytically
tractable. In particular, density models with an explicit normalization constant are desirable be-
cause they make direct model comparison possible by comparing the likelihoodof held out test

c©2010 Fabian Sinz and Matthias Bethge.

152



SINZ AND BETHGE

samples for different models. Additionally, such models often allow for a direct optimization of the
likelihood.

One way of imposing structure on probability distributions is to fix the general form of the
iso-density contour lines. This approach was taken by Fernandez et al.(1995). They modeled the
contour lines by the level sets of a positively homogeneous function of degree one, that is functions
ν that fulfill ν(a·xxx) = a·ν(xxx) for xxx∈Rn anda∈R+

0 . The resulting class ofν-spherical distributions
have the general formρ(xxx) = ρ̃(ν(xxx)) for an appropriatẽρ which causesρ(xxx) to integrate to one.
Since the only access ofρ to xxx is via ν one can show that, for a fixedν, those distributions are gen-
erated by a univariate radial distribution. In other words,ν-spherically distributed random variables
can be represented as a product of two independent random variables: one positive radial variable
and another variable which is uniform on the 1-level set ofν. This property makes this class of
distributions easy to fit to data since the maximum likelihood procedure can be carried out on the
univariate radial distribution instead of the joint density. Unfortunately, deriving the normalization
constant for the joint distribution in the general case is intractable becauseit depends on the surface
area of those level sets which can usually not be computed analytically.

Known tractable subclasses ofν-spherical distributions are the Gaussian, elliptically contoured,
andLp-spherical distributions. The Gaussian is a special case of elliptically contoured distributions.
After centering and whiteningxxx :=C−1/2(sss−E[sss]) a Gaussian distribution is spherically symmetric
and the squaredL2-norm ||xxx||22 = x2

1+ · · ·+ x2
n of the samples follow aχ2-distribution (that is, the

radial distribution is aχ-distribution). Elliptically contoured distributions other than the Gaussian
are obtained by using a radial distribution different from theχ-distribution (Kelker, 1970; Fang
et al., 1990).

The extension fromL2- to Lp-spherically symmetric distributions is based on replacing theL2-
norm by theLp-norm

ν(xxx) = ‖xxx‖p =

(
n

∑
i=1

|xi |p
) 1

p

, p> 0

in the density definition. That is, the density ofLp-spherically symmetric distributions can always
be written in the formρ(xxx) = ρ̃(||xxx||p). Those distributions have been studied by Osiewalski and
Steel (1993) and Gupta and Song (1997). We will adopt the naming convention of Gupta and
Song (1997) and call‖xxx‖p an Lp-norm even though the triangle inequality only holds forp≥ 1.
Lp-spherically symmetric distributions withp 6= 2 are no longer invariant with respect to rotations
(transformations fromSO(n)). Instead, they are only invariant under permutations of the coordinate
axes. In some cases, it may not be too restrictive to assume permutation or even rotational symmetry
for the data. In other cases, such symmetry assumptions might not be justifiedand cause the model
to miss important regularities.

Here, we present a generalization of the class ofLp-spherically symmetric distributions within
the class ofν-spherical distributions that makes weaker assumptions about the symmetriesin the
data but still is analytically tractable. Instead of using a singleLp-norm to define the contour of the
density, we use a nested cascade ofLp-norms where anLp-norm is computed over groups ofLp-
norms over groups ofLp-norms ..., each of which having a possibly differentp. Due to this nested
structure we call this new class of distributionsLp-nested symmetric distributions. The nested com-
bination ofLp-norms preserves positive homogeneity but does not require permutationinvariance
anymore. WhileLp-nested symmetric distributions are still invariant under reflections of the coordi-
nate axes, permutation symmetry only holds within the subspaces of theLp-norms at the bottom of

3410

153



Lp-NESTEDSYMMETRIC DISTRIBUTIONS

the cascade. As demonstrated in Sinz et al. (2009b), one possible application domain ofLp-nested
symmetric distributions is natural image patches. In the current paper, we would like to present a
formal treatment of this class of distributions. Readers interested in the application of these distri-
butions to natural images should refer to Sinz et al. (2009b).

We demonstrate below that the construction of the nestedLp-norm cascade still bears enough
structure to compute the Jacobian of polar-like coordinates similar to those of Song and Gupta
(1997), and Gupta and Song (1997). With this Jacobian at hand it is possible to compute the uni-
variate radial distribution for an arbitraryLp-nested symmetric density and to define the uniform
distribution on theLp-nested unit sphereLν = {xxx ∈ R

n|ν(xxx) = 1}. Furthermore, we compute the
surface area of theLp-nested unit sphere and, therefore, the general normalization constant for
Lp-nested symmetric distributions. By deriving these general relations for theclass ofLp-nested
symmetric distributions we have determined a new class of tractableν-spherical distributions which
is so far the only one containing the Gaussian, elliptically contoured, andLp-spherical distributions
as special cases.

Lp-spherically symmetric distributions have been used in various contexts in statistics and ma-
chine learning. Many results carry over toLp-nested symmetric distributions which allow a wider
application range. Osiewalski and Steel (1993) showed that the posterior on the location of aLp-
spherically symmetric distributions together with an improper Jeffrey’s prior on the scale does not
depend on the particular type ofLp-spherically symmetric distribution used. Below, we show that
this results carries over toLp-nested symmetric distributions. This means that we can robustly
determine the location parameter by Bayesian inference for a very large class of distributions.

A large class of machine learning algorithms can be written as an optimization problem on the
sum of a regularizer and a loss function. For certain regularizers and loss functions, like the sparseL1

regularizer and the mean squared loss, the optimization problem can be seenas the maximum a pos-
teriori (MAP) estimate of a stochastic model in which the prior and the likelihood are the negative
exponentiated regularizer and loss terms. Sinceρ(xxx) ∝ exp(−||xxx||pp) is anLp-spherically symmet-
ric model, regularizers which can be written in terms of a norm have a tight link toLp-spherically
symmetric distributions. In an analogous way,Lp-nested symmetric distributions exhibit a tight link
to mixed-norm regularizers which have recently gained increasing interest in the machine learn-
ing community (see, e.g., Zhao et al., 2008; Yuan and Lin, 2006; Kowalski et al., 2008).Lp-nested
symmetric distributions can be used for a Bayesian treatment of mixed-norm regularized algorithms.
Furthermore, they can be used to understand the prior assumptions made bysuch regularizers. Be-
low we discuss an implicit dependence assumption between the regularized variables that follows
from the theory ofLp-nested symmetric distributions.

Finally, the only factorialLp-spherically symmetric distribution (Sinz et al., 2009a), thep-
generalized Normal distribution, has been used as an ICA model in which themarginals follow
an exponential power distribution. This class of ICA is particularly suited for natural signals like
images and sounds (Lee and Lewicki, 2000; Zhang et al., 2004; Lewicki,2002). Interestingly,Lp-
spherically symmetric distributions other than thep-generalized Normal give rise to a non-linear
ICA algorithm called radial Gaussianization forp= 2 (Lyu and Simoncelli, 2009) or radial factor-
ization for arbitraryp (Sinz and Bethge, 2009). As discussed below,Lp-nested symmetric distribu-
tions are a natural extension of the linearLp-spherically symmetric ICA algorithm to ISA, and give
rise to a more general non-linear ICA algorithm in the spirit of radial factorization.

The remaining part of the paper is structured as follows: in Section 2 we define polar-like coordi-
nates forLp-nested symmetrically distributed random variables and present an analytical expression
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for the determinant of the Jacobian for this coordinate transformation. Using this expression, we
define the uniform distribution on theLp-nested unit sphere and the class ofLp-nested symmetric
distributions for an arbitraryLp-nested function in Section 3. In Section 4 we derive an analytical
form of Lp-nested symmetric distributions when marginalizing out lower levels of theLp-nested
cascade and demonstrate that marginals ofLp-nested symmetric distributions are not necessarily
Lp-nested symmetric. Additionally, we demonstrate that the only factorialLp-nested symmetric
distribution is necessarilyLp-spherically symmetric and discuss the implications of this result for
mixed norm regularizers. In Section 5 we propose an algorithm for fitting arbitrary Lp-nested sym-
metric models. We derive a sampling scheme for arbitraryLp-nested symmetric distributions in
Section 6. In Section 7 we generalize a result by Osiewalski and Steel (1993) on robust Bayesian
inference on the location parameter toLp-nested symmetric distributions. In Section 8 we discuss
the relationship ofLp-nested symmetric distributions to ICA and ISA, and their possible role as
priors on hidden variables in over-complete linear models. Finally, we derive a non-linear ICA al-
gorithm for linearly mixed non-factorialLp-nested symmetric sources in Section 9 which we call
nested radial factorization (NRF).

2. Lp-nested Functions, Coordinate Transformation and Jacobian

Consider the function

f (xxx) =
(
|x1|p/0 +(|x2|p1 + |x3|p1)

p/0
p1

) 1
p/0 (1)

with p/0, p1 ∈ R
+. This function is obviously a cascade of twoLp-norms and is thus positively

homogeneous of degree one. Figure 1(a) shows this function visualizedas a tree. Naturally, any
tree like the ones in Figure 1 corresponds to a function of the kind of Equation (1). In general, then
leaves of the tree correspond to then coefficients of the vectorxxx∈Rn and each inner node computes
theLp-norm of its children using its specificp. We call the class of functions which is generated
in this wayLp-nestedand the corresponding distributions, which are symmetric or invariant with
respect to it,Lp-nested symmetric distributions.

Lp-nested functions are much more flexible in creating different shapes of level sets than single
Lp-norms. Those level sets become the iso-density contours in the family ofLp-nested symmetric
distributions. Figure 2 shows a variety of contours generated by the simplestnon-trivial Lp-nested
function shown in Equation (1). The shapes show the unit spheres for all possible combinations
of p/0, p1 ∈ {0.5,1,2,10}. On the diagonal,p/0 andp1 are equal and therefore constituteLp-norms.
The corresponding distributions are members of theLp-spherically symmetric class.

To make general statements about generalLp-nested functions, we introduce a notation that is
suitable for the tree structure ofLp-nested functions. As we will heavily use that notation in the
remainder of the paper, we would like to emphasize the importance of the following paragraphs.
We will illustrate the notation with an example below. Additionally, Figure 1 and Table1 can be
used for reference.

We use multi-indices to denote the different nodes of the tree corresponding to anLp-nested
function f . The function f = f /0 itself computes the valuev/0 at the root node (see Figure 1).
Those values are denoted by variablesv. The functions corresponding to its children are denoted
by f1, ..., fℓ /0 , that is, f (·) = f /0(·) = ‖( f1(·), ..., fℓ /0(·))‖p/0 . We always use the letter “ℓ” indexed by
the node’s multi-index to denote the total number of direct children of that node. The functions of
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(a) Equation (1) as tree. (b) Equation (1) as tree in multi-index notation.

Figure 1: Equation (1) visualized as a tree with two different naming conventions. Figure (a) shows
the tree where the nodes are labeled with the coefficients ofxxx ∈ R

n. Figure (b) shows
the same tree in multi-index notation where the multi-index of a node describes the path
from the root node to that node in the tree. The leavesv1,v2,1 andv2,2 still correspond to
x1,x2 andx3, respectively, but have been renamed to the multi-index notation used in this
article.

f (·) = f /0(·) Lp-nested function

I = i1, ..., im Multi-index denoting a node in the tree: The single indices describe

the path from the root node to the respective nodeI .

xxxI All entries inxxx that correspond to the leaves in the subtree under

the nodeI

xxxÎ All entries inxxx that are not leaves in the subtree under

the nodeI

fI (·) Lp-nested function corresponding to the subtree under the nodeI

v/0 Function value at the root node

vI Function value at an arbitrary node with multi-indexI

ℓI The number of direct children of a nodeI

nI The number of leaves in the subtree under the nodeI

vvvI ,1:ℓI Vector with the function values at the direct children of a nodeI

Table 1: Summary of the notation used forLp-nested functions in this article.

the children of theith child of the root node are denoted byfi,1, ..., fi,ℓi and so on. In this manner,
an index is added for denoting the children of a particular node in the tree and each multi-index
denotes the path to the respective node in the tree. For the sake of compactnotation, we use upper
case letters to denote a single multi-indexI = i1, ..., iℓ. The range of the single indices and the length
of the multi-index should be clear from the context. A concatenationI ,k of a multi-indexI with
a single indexk corresponds to addingk to the index tuple, that is,I ,k = i1, ..., im,k. We use the
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Figure 2: Variety of contours created by theLp-nested function of Equation (1) for all combinations
of p/0, p1 ∈ {0.5,1,2,10}.

convention thatI , /0 = I . Those coefficients of the vectorxxx that correspond to leaves of the subtree
under a node with the indexI are denoted byxxxI . The complement of those coefficients, that is, the
ones that are not in the subtree under the nodeI , are denoted byxxxÎ . The number of leaves in a
subtree under a nodeI is denoted bynI . If I denotes a leaf thennI = 1.

TheLp-nested function associated with the subtree under a nodeI is denoted by

fI (xxxI ) = ||( fI ,1(xxxI ,1), ..., fI ,ℓI (xxxI ,ℓI ))
⊤||pI .
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Just like for the root node, we use the variablevI to denote the function valuevI = fI (xxxI ) of a subtree
I . A vector with the function values of the children ofI is denoted with bold fontvvvI ,1:ℓI where the
colon indicates that we mean the vector of the function values of theℓI children of nodeI :

fI (xxxI ) = ||( fI ,1(xxxI ,1), ..., fI ,ℓI (xxxI ,ℓI ))
⊤||pI

= ||(vI ,1, ...,vI ,ℓI )
⊤||pI = ||vvvI ,1:ℓI ||pI .

Note that we can assign an arbitraryp to leaf nodes sinceps for single variables always cancel.
For that reason we can choose an arbitraryp for convenience and fix its value top= 1. Figure 1(b)
shows the multi-index notation for our example of Equation (1).

To illustrate the notation: LetI = i1, ..., id be the multi-index of a node in the tree.i1, ..., id
describes the path to that node, that is, the respective node is theithd child of the ithd−1 child of
the ithd−2 child of the ... of theith1 child of the root node. Assume that the leaves in the subtree
below the nodeI cover the vector entriesx2, ...,x10. ThenxxxI = (x2, ...,x10), xxxÎ = (x1,x11,x12, ...),
and nI = 9. Assume that nodeI hasℓI = 2 children. Those would be denoted byI ,1 and I ,2.
The function realized by nodeI would be denoted byfI and only acts onxxxI . The value of the
function would befI (xxxI ) = vI and the vector containing the values of the children ofI would be
vvvI ,1:2 = (vI ,1,vI ,2)

⊤ = ( fI ,1(xxxI ,1), fI ,2(xxxI ,2))
⊤.

We now introduce a coordinate representation specially tailored toLp-nested symmetrically
distributed variables: One of the most important consequences of the positive homogeneity off
is that it can be used to “normalize” vectors and, by that property, createa polar like coordinate
representation of a vectorxxx. Such polar-like coordinates generalize the coordinate representation
for Lp-norms by Gupta and Song (1997).

Definition 1 (Polar-like Coordinates) We define the following polar-like coordinates for a vector
xxx∈ R

n:

ui =
xi

f (xxx)
for i = 1, ...,n−1,

r = f (xxx).

The inverse coordinate transformation is given by

xi = rui for i = 1, ...,n−1,

xn = r∆nun

where∆n = sgnxn and un =
|xn|
f (xxx) .

Note thatun is not part of the coordinate representation since normalization with 1/ f (xxx) de-
creases the degrees of freedomuuu by one, that is,un can always be computed from all otherui by
solving f (uuu) = f (xxx/ f (xxx)) = 1 for un. We use the termun only for notational simplicity. With a
slight abuse of notation, we will useuuu to denote the normalized vectorxxx/ f (xxx) or only its firstn−1
components. The exact meaning should always be clear from the context.

The definition of the coordinates is exactly the same as the one by Gupta and Song (1997)
with the only difference that theLp-norm is replaced by anLp-nested function. Just as in the case
of Lp-spherical coordinates, it will turn out that the determinant of the Jacobian of the coordinate
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transformation does not depend on the value of∆n and can be computed analytically. The deter-
minant is essential for deriving the uniform distribution on the unitLp-nested sphereL f , that is,
the 1-level set off . Apart from that, it can be used to compute the radial distribution for a given
Lp-nested symmetric distribution. We start by stating the general form of the determinant in terms
of the partial derivatives∂un

∂uk
, uk andr. Afterwards we demonstrate that those partial derivatives have

a special form and that most of them cancel in Laplace’s expansion of the determinant.

Lemma 2 (Determinant of the Jacobian) Let r and uuu be defined as in Definition 1. The general

form of the determinant of the JacobianJ =
(

∂xi
∂y j

)
i j

of the inverse coordinate transformation for

y1 = r and yi = ui−1 for i = 2, ...,n, is given by

|detJ |= rn−1

(
−

n−1

∑
k=1

∂un

∂uk
·uk+un

)
. (2)

Proof The proof can be found in the Appendix A.

The problematic parts in Equation (2) are the terms∂un
∂uk

, which obviously involve extensive usage
of the chain rule. Fortunately, most of them cancel when inserting them back into Equation (2),
leaving a comparably simple formula. The remaining part of this section is devoted to computing
those terms and demonstrating how they vanish in the formula for the determinant.Before we state
the general case we would like to demonstrate the basic mechanism through a simple example.
We urge the reader to follow this example as it illustrates all important ideas about the coordinate
transformation and its Jacobian.

Example 1 Consider an Lp-nested function very similar to our introductory example of Equation
(1):

f (xxx) =
(
(|x1|p1 + |x2|p1)

p/0
p1 + |x3|p/0

) 1
p/0 .

Setting uuu= xxx
f (xxx) and solving for u3 yields

f (uuu) = 1⇔ u3 =
(

1− (|u1|p1 + |u2|p1)
p/0
p1

) 1
p/0 . (3)

We would like to emphasize again, that u3 is actually not part of the coordinate representation and
only used for notational simplicity. By construction, u3 is always positive. This is no restriction since
Lemma 2 shows that the determinant of the Jacobian does not depend onits sign. However, when
computing the volume and the surface area of the Lp-nested unit sphere, it will become important
since it introduces a factor of2 to account for the fact that u3 (or un in general) can in principle
also attain negative values.

Now, consider

G2(uuu2̂) = g2(uuu2̂)
1−p/0 =

(
1− (|u1|p1 + |u2|p1)

p/0
p1

) 1−p/0
p/0 ,

F1(uuu1) = f1(uuu1)
p/0−p1 = (|u1|p1 + |u2|p1)

p/0−p1
p1 ,

3416

159



Lp-NESTEDSYMMETRIC DISTRIBUTIONS

where the subindices of uuu, f , g, G and F have to be read as multi-indices. The function gI computes
the value of the node I from all other leaves that are not part of the subtree under I by fixing the
value of the root node to one.

G2(uuu2̂) and F1(uuu1) are terms that arise from applying the chain rule when computing the partial

derivatives∂u3
∂uk

. Taking those partial derivatives can be thought of as peeling off layer by layer
of Equation(3) via the chain rule. By doing so, we “move” on a path between u3 and uk. Each
application of the chain rule corresponds to one step up or down in the tree.First, we move upwards
in the tree, starting from u3. This produces the G-terms. In this example, there is only one step
upwards, but in general, there can be several, depending on the depthof un in the tree. Each step
up will produce one G-term. At some point, we will move downwards in the tree to reach uk. This
will produce the F-terms. While there are as many G-terms as upward steps, there is one term less
when moving downwards. Therefore, in this example, there is one term G2(uuu2̂) which originates
from using the chain rule upwards in the tree and one term F1(uuu1) from using it downwards. The
indices correspond to the multi-indices of the respective nodes.

Computing the derivative yields

∂u3

∂uk
=−G2(uuu2̂)F1(uuu1)∆k|uk|p1−1.

By inserting the results in Equation (2) we obtain

1
r2 |J |=

2

∑
k=1

G2(uuu2̂)F1(uuu1)|uk|p1 +u3

= G2(uuu2̂)

(
F1(uuu1)

2

∑
k=1

|uk|p1 +1−F1(uuu1)F1(uuu1)
−1(|u1|p1 + |u2|p1)

p/0
p1

)

= G2(uuu2̂)

(
F1(uuu1)

2

∑
k=1

|uk|p1 +1−F1(uuu1)
2

∑
k=1

|uk|p1

)

= G2(uuu2̂).

The example suggests that the terms from using the chain rule downwards in the tree cancel
while the terms from using the chain rule upwards remain. The following proposition states that
this is true in general.

Proposition 3 (Determinant of the Jacobian) Let L be the set of multi-indices of the path from
the leaf un to the root node (excluding the root node) and let the terms GI ,ℓI (uuuÎ ,ℓI

) recursively be
defined as

GI ,ℓI (uuuÎ ,ℓI
) = gI ,ℓI (uuuÎ ,ℓI

)pI ,ℓI−pI =

(
gI (uuuÎ )

pI −
ℓ−1

∑
j=1

fI , j(uuuI , j)
pI

) pI ,ℓI
−pI

pI

where each of the functions gI ,ℓI computes the value of theℓth child of a node I as a function of its
neighbors(I ,1), ..., (I , ℓI −1) and its parent I while fixing the value of the root node to one. This
is equivalent to computing the value of the node I from all coefficients uuuÎ that are not leaves in the
subtree under I. Then, the determinant of the Jacobian for an Lp-nested function is given by

|detJ |= rn−1 ∏
L∈L

GL(uuuL̂).
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Proof The proof can be found in the Appendix A.

Let us illustrate the determinant with two examples:

Example 2 Consider a normal Lp-norm

f (xxx) =

(
n

∑
i=1

|xi |p
) 1

p

which is obviously also an Lp-nested function. Resolving the equation for the last coordinate of

the normalized vector uuu yields gn(uuun̂) = un =
(
1−∑n−1

i=1 |ui |p
) 1

p . Thus, the term Gn(uuun̂) is given by
(
1−∑n−1

i=1 |ui |p
) 1−p

p which yields a determinant of|detJ |= rn−1
(
1−∑n−1

i=1 |ui |p
) 1−p

p . This is exactly
the one derived by Gupta and Song (1997).

Example 3 Consider the introductory example

f (xxx) =
(
|x1|p/0 +(|x2|p1 + |x3|p1)

p/0
p1

) 1
p/0 .

Normalizing and resolving for the last coordinate yields

u3 =
(
(1−|u1|p/0)

p1
p/0 −|u2|p1

) 1
p1

and the terms G2(uuu2̂) and G2,2(uuu2̂,2) of the determinant|detJ |= r2G2(uuu2̂)G2,2(uuu2̂,2) are given by

G2(uuu2̂) = (1−|u1|p/0)
p1−p/0

p/0 ,

G2,2(uuu2̂,2) =
(
(1−|u1|p/0)

p1
p/0 −|u2|p1

) 1−p1
p1 .

Note the difference to Example 1 where x3 was at depth one in the tree while x3 is at depth two in
the current case. For that reason, the determinant of the Jacobian in Example 1 involved only one
G-term while it has two G-terms here.

3. Lp-Nested Symmetric andLp-Nested Uniform Distribution

In this section, we define theLp-nested symmetric and theLp-nested uniform distribution and derive
their partition functions. In particular, we derive the surface area of anarbitrary Lp-nested unit
sphereL f = {xxx ∈ R

n | f (xxx) = 1} corresponding to anLp-nested functionf . By Equation (5) of
Fernandez et al. (1995) everyν-spherical and hence anyLp-nested symmetric density has the form

ρ(xxx) =
φ( f (xxx))

f (xxx)n−1S f (1)
, (4)

whereS f is the surface area ofL f andφ is a density onR+. Thus, we need to compute the surface
area of an arbitraryLp-nested unit sphere to obtain the partition function of Equation (4).
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Proposition 4 (Volume and Surface of theLp-nested Sphere)Let f be an Lp-nested function and
let I be the set of all multi-indices denoting the inner nodes of the tree structure associated with f .
The volumeV f (R) and the surfaceS f (R) of the Lp-nested sphere with radius R are given by

V f (R) =
Rn2n

n ∏
I∈I

(
1

pℓI−1
I

ℓI−1

∏
k=1

B

[
∑k

i=1nI ,k

pI
,
nI ,k+1

pI

])
(5)

=
Rn2n

n ∏
I∈I

∏ℓI
k=1 Γ

[
nI ,k

pI

]

pℓI−1
I Γ

[
nI
pI

] , (6)

S f (R) = Rn−12n∏
I∈I

(
1

pℓI−1
I

ℓI−1

∏
k=1

B

[
∑k

i=1nI ,k

pI
,
nI ,k+1

pI

])
(7)

= Rn−12n∏
I∈I

∏ℓI
k=1 Γ

[
nI ,k

pI

]

pℓI−1
I Γ

[
nI
pI

] (8)

where B[a,b] = Γ[a]Γ[b]
Γ[a+b] denotes theβ-function.

Proof The proof can be found in the Appendix B.

Inserting the surface area in Equation 4, we obtain the general form of an Lp-nested symmetric
distribution for any given radial densityφ.

Corollary 5 (Lp-nested Symmetric Distribution) Let f be an Lp-nested function andφ a density
onR+. The corresponding Lp-nested symmetric distribution is given by

ρ(xxx) =
φ( f (xxx))

f (xxx)n−1S f (1)

=
φ( f (xxx))

2n f (xxx)n−1 ∏
I∈I


pℓI−1

I

ℓI−1

∏
k=1

B

[
∑k

i=1nI ,k

pI
,
nI ,k+1

pI

]−1

 . (9)

The results of Fernandez et al. (1995) imply that for anyν-spherically symmetric distribution,
the radial part is independent of the directional part, that is,r is independent ofuuu. The distribution
of uuu is entirely determined by the choice ofν, or by theLp-nested functionf in our case. The
distribution ofr is determined by the radial densityφ. Together, anLp-nested symmetric distribution
is determined by both, theLp-nested functionf and the choice ofφ. From Equation (9), we can see
that its density function must be the inverse of the surface area ofL f times the radial density when
transforming (4) into the coordinates of Definition 1 and separatingr anduuu (the factorf (xxx)n−1 = r
cancels due to the determinant of the Jacobian). For that reason we call the distribution ofuuu uniform
on the Lp-sphereL f in analogy to Song and Gupta (1997). Next, we state its form in terms of the
coordinatesuuu.

Proposition 6 (Lp-nested Uniform Distribution) Let f be an Lp-nested function. LetL be the
set of multi-indices on the path from the root node to the leaf correspondingto xn. The uniform
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distribution on the Lp-nested unit sphere, that is, the setL f = {xxx ∈ R
n| f (xxx) = 1} is given by the

following density over u1, ...,un−1

ρ(u1, , ...,un−1) =
∏L∈L GL(uuuL̂)

2n−1 ∏
I∈I


pℓI−1

I

ℓI−1

∏
k=1

B

[
∑k

i=1nI ,k

pI
,
nI ,k+1

pI

]−1

 .

Proof Since theLp-nested sphere is a measurable and compact set, the density of the uniformdis-
tribution is simply one over the surface area of theLp-nested unit sphere. The surfaceS f (1) is given
by Proposition 4. Transforming1

S f (1)
into the coordinates of Definition 1 introduces the determinant

of the Jacobian from Proposition 3 and an additional factor of 2 since the(u1, ...,un−1) ∈R
n−1 have

to account for both half-shells of theLp-nested unit sphere, that is, to account for the fact thatun

could have been be positive or negative. This yields the expression above.

Example 4 Let us again demonstrate the proposition at the special case where f is anLp-norm

f (xxx) = ||xxx||p = (∑n
i=1 |xi |p)

1
p . Using Proposition 4, the surface area is given by

S||·||p = 2n 1

pℓ /0−1
/0

ℓ /0−1

∏
k=1

B

[
∑k

i=1nk

p/0
,
nk+1

p/0

]
=

2nΓn
[

1
p

]

pn−1Γ
[

n
p

] .

The factor Gn(uuun̂) is given by
(
1−∑n−1

i=1 |ui |p
) 1−p

p (see the Lp-norm example before), which, after
including the factor2, yields the uniform distribution on the Lp-sphere as defined in Song and Gupta
(1997)

p(uuu) =
pn−1Γ

[
n
p

]

2n−1Γn
[

1
p

]
(

1−
n−1

∑
i=1

|ui |p
) 1−p

p

.

Example 5 As a second illustrative example, we consider the uniform density on the Lp-nested
unit ball, that is, the set{xxx∈ R

n| f (xxx)≤ 1}, and derive its radial distributionφ. The density of the
uniform distribution on the unit Lp-nested ball does not depend on xxx and is given byρ(xxx)= 1/V f (1).
Transforming the density into the polar-like coordinates with the determinant from Proposition 3
yields

1
V f (1)

=
nrn−1 ∏L∈L GL(uuuL̂)

2n−1 ∏
I∈I


pℓI−1

I

ℓI−1

∏
k=1

B

[
∑k

i=1nI ,k

pI
,
nI ,k+1

pI

]−1

 .

After separating out the uniform distribution on the Lp-nested unit sphere, we obtain the radial
distribution

φ(r) = nrn−1 for 0< r ≤ 1

which is aβ-distribution with parameters n and1.
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The radial distribution from the preceeding example is of great importance for our sampling
scheme derived in Section 6. The idea behind it is the following: First, a samplefrom a “simple”
Lp-nested symmetric distribution is drawn. Since the radial and the uniform component on theLp-
nested unit sphere are statistically independent, we can get a sample from the uniform distribution
on theLp-nested unit sphere by simply normalizing the sample from the simple distribution. After-
wards we can multiply it with a radius drawn from the radial distribution of theLp-nested symmetric
distribution that we actually want to sample from. The role of the simple distribution will be played
by the uniform distribution within theLp-nested unit ball. Sampling from it is basically done by
applying the steps in Proposition 4’s proof backwards. We lay out the sampling scheme in more
detail in Section 6.

4. Marginals

In this section we discuss two types of marginals: First, we demonstrate that, in contrast toLp-
spherically symmetric distributions, marginals ofLp-nested symmetric distributions are not nec-
essarilyLp-nested symmetric again. The second type of marginals we discuss are obtained by
collapsing all leaves of a subtree into the value of the subtree’s root node. For that case we derive
an analytical expression and show that the values of the root node’s children follow a special kind
of Dirichlet distribution.

Gupta and Song (1997) show that marginals ofLp-spherically symmetric distributions are again
Lp-spherically symmetric. This does not hold, however, forLp-nested symmetric distributions. This
can be shown by a simple counterexample. Consider theLp-nested function

f (xxx) =
(
(|x1|p1 + |x2|p1)

p/0
p1 + |x3|p/0

) 1
p/0 .

The uniform distribution inside theLp-nested ball corresponding tof is given by

ρ(xxx) =
np1p/0Γ

[
2
p1

]
Γ
[

3
p/0

]

23Γ2
[

1
p1

]
Γ
[

2
p0

]
Γ
[

1
p0

] .

The marginalρ(x1,x3) is given by

ρ(x1,x3) =
np1p/0Γ

[
2
p1

]
Γ
[

3
p/0

]

23Γ2
[

1
p1

]
Γ
[

2
p0

]
Γ
[

1
p0

]
(
(1−|x3|p/0)

p1
p/0 −|x1|p1

) 1
p1 .

This marginal is notLp-spherically symmetric. Since anyLp-nested symmetric distribution in two
dimensions must beLp-spherically symmetric, it cannot beLp-nested symmetric as well. Figure
3 shows a scatter plot of the marginal distribution. Besides the fact that the marginals are not
contained in the family ofLp-nested symmetric distributions, it is also hard to derive a general
form for them. This is not surprising given that the general form of marginals for Lp-spherically
symmetric distributions involves an integral that cannot be solved analytically ingeneral and is
therefore not very useful in practice (Gupta and Song, 1997). For that reason we cannot expect
marginals ofLp-nested symmetric distributions to have a simple form.

In contrast to single marginals, it is possible to specify the joint distribution of leaves and inner
nodes of anLp-nested tree if all descendants of their inner nodes in question have beenintegrated
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a b

c d

Figure 3: Marginals ofLp-nested symmetric distributions are not necessarilyLp-nested symmetric:
Figure (a) shows a scatter plot of the(x1,x2)-marginal of the counterexample in the text
with p/0 = 2 andp1 = 1

2. Figure (d) displays the correspondingLp-nested sphere. (b-
c) show the univariate marginals for the scatter plot. Since any two-dimensional Lp-
nested symmetric distribution must beLp-spherically symmetric, the marginals should be
identical. This is clearly not the case. Thus, (a) is notLp-nested symmetric.

out. For the simple function above (the same that has been used in Example 1),the joint distribution
of x3 andv1 = ‖(x1,x2)

⊤‖p1 would be an example of such a marginal. Since marginalization affects
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the Lp-nested tree vertically, we call this type of marginalslayer marginals. In the following, we
present their general form.

From the form of a generalLp-nested function and the corresponding symmetric distribution,
one might think that the layer marginals areLp-nested symmetric again. However, this is not the case
since the distribution over theLp-nested unit sphere would deviate from the uniform distribution in
most cases if the distribution of its children wereLp-spherically symmetric.

Proposition 7 Let f be an Lp-nested function. Suppose we integrate out complete subtrees from
the tree associated with f , that is, we transform subtrees into radial times uniform variables and
integrate out the latter. LetJ be the set of multi-indices of those nodes that have become new leaves,
that is, whose subtrees have been removed, and let nJ be the number of leaves (in the original tree)
in the subtree under the node J. Let xxxĴ ∈ R

m denote those coefficients of xxx that are still part of
that smaller tree and let vvvJ denote the vector of inner nodes that became new leaves. The joint
distribution of xxxĴ and vvvJ is given by

ρ(xxxĴ ,vvvJ ) =
φ( f (xxxĴ ,vvvJ ))

Sf ( f (xxxĴ ,vvvJ ))
∏
J∈J

vnJ−1
J . (10)

Proof The proof can be found in the Appendix C.

Equation (10) has an interesting special case when considering the joint distribution of the root
node’s children.

Corollary 8 The children of the root node vvv1:ℓ /0 = (v1, ...,vℓ /0)
⊤ follow the distribution

ρ(vvv1:ℓ /0) =
pℓ /0−1

/0 Γ
[

n
p/0

]

f (v1, ...,vℓ /0)
n−12m∏ℓ /0

k=1 Γ
[

nk
p/0

]φ( f (v1, ...,vℓ /0))
ℓ /0

∏
i=1

vni−1
i

where m≤ ℓ /0 is the number of leaves directly attached to the root node. In particular, vvv1:ℓ /0 can
be written as the product RU, where R is the Lp-nested radius and the single|Ui |p/0 are Dirichlet

distributed, that is,(|U1|p/0 , ..., |Uℓ /0 |p/0)∼ Dir
[

n1
p/0
, ...,

nℓ /0
p/0

]
.

Proof The joint distribution is simply the application of Proposition (7). Note thatf (v1, ...,vℓ /0) =
||vvv1:ℓ /0 ||p/0 . Applying the pointwise transformationsi = |ui |p/0 yields

(|U1|p/0 , ..., |Uℓ /0−1|p/0)∼ Dir

[
n1

p/0
, ...,

nℓ /0

p/0

]
.

The Corollary shows that the valuesfI (xxxI ) at inner nodesI , in particular the ones directly below
the root node, deviate considerably fromLp-spherical symmetry. If they wereLp-spherically sym-
metric, the|Ui |p should follow a Dirichlet distribution with parametersαi =

1
p as has been already

shown by Song and Gupta (1997). The Corollary is a generalization of their result.
We can use the Corollary to prove an interesting fact aboutLp-nested symmetric distributions:

The only factorialLp-nested symmetric distribution must beLp-spherically symmetric.
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Proposition 9 Let xxx be Lp-nested symmetric distributed with independent marginals. Then xxx is
Lp-spherically symmetric distributed. In particular, xxx follows a p-generalized Normal distribution.

Proof The proof can be found in the Appendix D.

One immediate implication of Proposition 9 is that there is no factorial probability model corre-
sponding to mixed norm regularizers which have the form∑k

i=1‖xxxIk‖qp where the index setsIk form
a partition of the dimensions 1, ...,n (see, e.g., Zhao et al., 2008; Yuan and Lin, 2006; Kowalski
et al., 2008). Many machine learning algorithms are equivalent to minimizing the sum of a regu-
larizerR(www) and a loss functionL(www,xxx1, ...,xxxm) over the coefficient vectorwww. If the exp(−R(www))
and exp(−L(www,xxx1, ...,xxxm)) correspond to normalizeable density models, the minimizing solution
of the objective function can be seen as the maximum a posteriori (MAP) estimate of the poste-
rior p(www|xxx1, ...,xxxm) ∝ p(www) · p(xxx1, ...,xxxm|www) = exp(−R(www)) ·exp(−L(www,xxx1, ...,xxxm)). In that sense,
the regularizer naturally corresponds to the prior and the loss function corresponds to the likeli-
hood. Very often, regularizers are specified as a norm over the coefficient vectorwww which in turn
correspond to certain priors. For example, in Ridge regression (Hoerl,1962) the coefficients are
regularized via‖www‖22 which corresponds to a factorial zero mean Gaussian prior onwww. TheL1-norm
‖www‖1 in the LASSO estimator (Tibshirani, 1996), again, is equivalent to a factorial Laplacian prior
onwww. Like in these two examples, regularizers often correspond to afactorial prior.

Mixed norm regularizers naturally correspond toLp-nested symmetric distributions. Proposition
9 shows that there is no factorial prior that corresponds to such a regularizer. In particular, it implies
that the prior cannot be factorial between groups and coefficients at the same time. This means
that those regularizers implicitly assume statistical dependencies between the coefficient variables.
Interestingly, forq= 1 andp= 2 the intuition behind these regularizers is exactly that whole groups
Ik get switched on at once, but the groups are sparse. The Proposition shows that this might not only
be due to sparseness but also due to statistical dependencies between thecoefficients within one
group. TheLp-nested symmetric distribution which implements independence between groups will
be further discussed below as a generalization of thep-generalized Normal (see Section 8). Note
that the marginals can be independent if the regularizer is of the form∑k

i=1‖xxxIk‖p
p. However, in

this casep = q and theLp-nested function collapses to a simpleLp-norm which means that the
regularizer is not mixed norm.

5. Maximum Likelihood Estimation of Lp-Nested Symmetric Distributions

In this section, we describe procedures for maximum likelihood fitting ofLp-nested symmetric dis-
tributions on data. We provide a toolbox online for fittingLp-spherically symmetric andLp-nested
symmetric distributions to data. The toolbox can be downloaded athttp://www.kyb.tuebingen.
mpg.de/bethge/code/.

Depending on which parameters are to be estimated, the complexity of fitting anLp-nested
symmetric distribution varies. We start with the simplest case and later continue withmore complex
ones. Throughout this subsection, we assume that the model has the formp(xxx) = ρ(Wxxx) · |detW|=

φ(Wxxx)
f (Wxxx)n−1S f (1)

· |detW| whereW ∈ R
n×n is a complete whitening matrix. This means that given any

whitening matrixW0, the freedom in fittingW is to estimate an orthonormal matrixQ ∈ SO(n)
such thatW = QW0. This is analogous to the case of elliptically contoured distributions where the
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distributions can be endowed with 2nd-order correlations viaW. In the following, we ignore the
determinant ofW since data points can always be rescaled such that detW = 1.

The simplest case is to fit the parameters of the radial distribution when the treestructure, the
values of thepI , andW are fixed. Due to the special form ofLp-nested symmetric distributions (4),
it then suffices to carry out maximum likelihood estimation on the radial component only, which
renders maximum likelihood estimation efficient and robust. This is because theonly remaining
parameters are the parametersϑϑϑ of the radial distribution and, therefore,

argmaxϑϑϑ logρ(Wxxx|ϑϑϑ) = argmaxϑϑϑ (− logS f ( f (Wxxx))+ logφ( f (Wxxx)|ϑϑϑ))
= argmaxϑϑϑ logφ( f (Wxxx)|ϑϑϑ).

In a slightly more complex case, when only the tree structure andW are fixed, the values of the
pI , I ∈ I andϑϑϑ can be jointly estimated via gradient ascent on the log-likelihood. The gradient for
a single data pointxxx with respect to the vectorppp that holds allpI for all I ∈ I is given by

∇ppp logρ(Wxxx) =
d
dr

logφ( f (Wxxx)) ·∇ppp f (Wxxx)− (n−1)
f (Wxxx)

∇ppp f (Wxxx)−∇ppp logS f (1).

For i.i.d. data pointsxxxi the joint gradient is given by the sum over the gradients for the single data
points. Each of them involves the gradient off as well as the gradient of the log-surface area ofL f

with respect toppp, which can be computed via the recursive equations

∂
∂pJ

vI =





0 if I is not a prefix ofJ

v1−pI
I vpI−1

I ,k · ∂
∂pJ

vI ,k if I is a prefix ofJ
vJ
pJ

(
v−pJ

J ∑ℓJ
k=1vpJ

J,k · logvJ,k− logvJ

)
if J = I

and

∂
∂pJ

logS f (1) =−
ℓJ−1

pJ
+

ℓJ−1

∑
k=1

Ψ

[
∑k+1

i=1 nJ,k

pJ

]
∑k+1

i=1 nJ,k

p2
J

−
ℓJ−1

∑
k=1

Ψ

[
∑k

i=1nJ,k

pJ

]
∑k

i=1nJ,k

p2
J

−
ℓJ−1

∑
k=1

Ψ
[

nJ,k+1

pJ

]
nJ,k+1

p2
J

,

whereΨ[t] = d
dt logΓ[t] denotes the digamma function. When performing the gradient ascent, one

needs to set 000 as a lower bound forppp. Note that, in general, this optimization might be a highly
non-convex problem.

On the next level of complexity, only the tree structure is fixed, andW can be estimated along
with the other parameters by joint optimization of the log-likelihood with respect toppp, ϑϑϑ andW.
Certainly, this optimization problem is also not convex in general. Usually, it is numerically more
robust to whiten the data first with some whitening matrixW0 and perform a gradient ascent on the
special orthogonal groupSO(n) with respect toQ for optimizingW = QW0. Given the gradient
∇W logρ(Wxxx) of the log-likelihood, the optimization can be carried out by performing line searches
along geodesics as proposed by Edelman et al. (1999) (see also Absil et al. (2007)) or by projecting
∇W logρ(Wxxx) on the tangent spaceTWSO(n)) and performing a line search alongSO(n) in that
direction as proposed by Manton (2002).
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The general form of the gradient to be used in such an optimization scheme can be defined as

∇W logρ(Wxxx)

=∇W (−(n−1) · log f (Wxxx)+ logφ( f (Wxxx)))

=− (n−1)
f (Wxxx)

·∇yyy f (Wxxx) ·xxx⊤+ d logφ(r)
dr

( f (Wxxx)) ·∇yyy f (Wxxx) ·xxx⊤,

where the derivatives off with respect toyyy are defined by recursive equations

∂
∂yi

vI =





0 if i 6∈ I

sgnyi if vI ,k = |yi |
v1−pI

I ·vpI−1
I ,k · ∂

∂yi
vI ,k for i ∈ I ,k.

Note, thatf might not be differentiable atyyy= 0. However, we can always define a sub-derivative at
zero, which is zero forpI 6= 1 and[−1,1] for pI = 1. Again, the gradient for i.i.d. data pointsxxxi is
given by the sum over the single gradients.

Finally, the question arises whether it is possible to estimate the tree structure from data as well.
A simple heuristic would be to start with a very large tree, for example, a full binary tree, and to
prune out inner nodes for which the parents and the children have sufficiently similar values for their
pI . The intuition behind this is that if they were exactly equal, they would cancel intheLp-nested
function. This heuristic is certainly sub-optimal. Firstly, the optimization will be time consuming
since there can be about as manypI as there are leaves in theLp-nested tree (a full binary tree onn
dimensions will haven−1 inner nodes) and due to the repeated optimization after the pruning steps.
Secondly, the heuristic does not cover all possible trees onn leaves. For example, if two leaves are
separated by the root node in the original full binary tree, there is no wayto prune out inner nodes
such that the path between those two nodes will not contain the root node anymore.

The computational complexity for the estimation of all other parameters despite thetree struc-
ture is difficult to assess in general because they depend, for example,on the particular radial dis-
tribution used. While the maximum likelihood estimation of a simple log-Normal distributiononly
involves the computation of a mean and a variance which are inO(m) for mdata points, a mixture of
log-Normal distributions already requires an EM algorithm which is computationally more expen-
sive. Additionally, the time it takes to optimize the likelihood depends on the starting point as well
as the convergence rate, and we neither have results about the convergence rate nor is it possible to
make problem independent statements about a good initialization of the parameters. For this reason
we state only the computational complexity of single steps involved in the optimization.

Computation of the gradient∇ppp logρ(Wxxx) involves the derivative of the radial distribution, the
computation of the gradients∇ppp f (Wxxx) and∇pppS f (1). Assuming that the derivative of the radial
distribution can be computed inO(1) for each single data point, the costly steps are the other two
gradients. Computing∇ppp f (Wxxx) basically involves visiting each node of the tree once and perform-
ing a constant number of operations for the local derivatives. Since every inner node in anLp-nested
tree must have at least two children, the worst case would be a full binarytree which has 2n− 1
nodes and leaves. Therefore, the gradient can be computed inO(nm) for m data points. For similar
reasons,f (Wxxx), ∇ppp logS f (1), and the evaluation of the likelihood can also be computed inO(nm).
This means that each step in the optimization ofppp can be doneO(nm) plus the computational costs
for the line search in the gradient ascent. When optimizing forW = QW0 as well, the computational
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costs per step increase toO(n3+ n2m) sincem data points have to be multiplied withW at each
iteration (requiringO(n2m) steps), and the line search involves projectingQ back ontoSO(n) which
requires an inverse matrix square root or a similar computation inO(n3).

For comparison, each step of fast ICA (Hyvärinen and O., 1997) for a complete demixing matrix
takesO(n2m) when using hierarchical orthogonalization andO(n2m+n3) for symmetric orthogo-
nalization. The same applies to fitting an ISA model (Hyvärinen and Hoyer, 2000; Hyvärinen
and Köster, 2006, 2007). A Gaussian Scale Mixture (GSM) model does not need to estimate an-
other orthogonal rotationQ because it belongs to the class of spherically symmetric distributions
and is, therefore, invariant under transformations fromSO(n) (Wainwright and Simoncelli, 2000).
Therefore, fitting a GSM corresponds to estimating the parameters of the scale distribution which is
O(nm) in the best case but might be costlier depending on the choice of the scale distribution.

6. Sampling from Lp-Nested Symmetric Distributions

In this section, we derive a sampling scheme for arbitraryLp-nested symmetric distributions which
can for example be used for solving integrals when usingLp-nested symmetric distributions for
Bayesian learning. Exact sampling from an arbitraryLp-nested symmetric distribution is in fact
straightforward due to the following observation: Since the radial and the uniform component are in-
dependent, normalizing a sample from anyLp-nested symmetric distribution tof -length one yields
samples from the uniform distribution on theLp-nested unit sphere. By multiplying those uni-
form samples with new samples from another radial distribution, one obtains samples from another
Lp-nested symmetric distribution. Therefore, for eachLp-nested functionf , a singleLp-nested sym-
metric distribution which can be easily sampled from is enough. Sampling from allotherLp-nested
symmetric distributions with respect tof is then straightforward due to the method we just de-
scribed. Gupta and Song (1997) sample from thep-generalized Normal distribution since it has in-
dependent marginals which makes sampling straightforward. Due to Proposition 9, no such factorial
Lp-nested symmetric distribution exists. Therefore, a sampling scheme like that for Lp-spherically
symmetric distributions is not applicable. Instead we choose to sample from the uniform distribu-
tion inside theLp-nested unit ball for which we already computed the radial distribution in Example
5. The distribution has the formρ(xxx) = 1

V f (1)
. In order to sample from that distribution, we will first

only consider the uniform distribution in the positive quadrant of the unitLp-nested ball which has
the formρ(xxx) = 2n

V f (1)
. Samples from the uniform distributions inside the whole ball can be obtained

by multiplying each coordinate of a sample with independent samples from the uniform distribution
over{−1,1}.

The idea of the sampling scheme for the uniform distribution inside theLp-nested unit ball is
based on the computation of the volume of theLp-nested unit ball in Proposition 4. The basic
mechanism underlying the sampling scheme below is to apply the steps of the proof backwards,
which is based on the following idea: The volume of theLp-unit ball can be computed by computing
its volume on the positive quadrant only and multiplying the result with 2n afterwards. The key is
now to not transform the whole integral into radial and uniform coordinates at once, but successively
upwards in the tree. We will demonstrate this through a brief example which alsoshould make the
sampling scheme below more intuitive. Consider theLp-nested function

f (xxx) =
(
|x1|p/0 +(|x2|p1 + |x3|p1)

p/0
p1

) 1
p/0 .
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To solve the integral ∫

{xxx: f (xxx)≤1 & xxx∈Rn
+}

dxxx,

we first transformx2 andx3 into radial and uniform coordinates only. According to Proposition 3 the

determinant of the mapping(x2,x3) 7→ (v1, ũ) = (‖xxx2:3‖p1,xxx2:3/‖xxx2:3‖p1) is given byv1(1− ũp1)
1−p1

p1 .
Therefore the integral transforms into

∫

{xxx: f (xxx)≤1 & xxx∈Rn
+}

dxxx=
∫

{v1,x1: f (x1,v1)≤1 & x1,v1∈R+}

∫ ∫
v1(1− ũp1)

1−p1
p1 dx1dv1dũ.

Now we can separate the integrals overx1 andv1, and the integral over ˜u, since the boundary of the
outer integral does only depend onv1 and not on ˜u:

∫

{xxx: f (xxx)≤1 & xxx∈Rn
+}

dxxx=
∫
(1− ũp1)

1−p1
p1 dũ ·

∫

{v1,x1: f (x1,v1)≤1 & x1,v1∈R+}

∫
v1dx1dv1.

The value of the first integral is known explicitly since the integrand equals the uniform distribution
on the‖ · ‖p1-unit sphere. Therefore, the value of the integral must be its normalizationconstant
which we can get using Proposition 4:

∫
(1− ũp1)

1−p1
p1 dũ=

Γ
[

1
p1

]2
· p1

Γ
[

2
p1

] .

An alternative way to arrive at this result is to use the transformations= ũp1 and to notice that the
integrand is a Dirichlet distribution with parametersαi =

1
p1

. The normalization constant of the
Dirichlet distribution and the constants from the determinant of the Jacobian of the transformation
yield the same result.

To compute the remaining integral, the same method can be applied again yielding thevolume
of theLp-nested unit ball. The important part for the sampling scheme, however, is not the volume
itself but the fact that the intermediate results in this integration process equalcertain distributions.
As shown in Example 5 the radial distribution of the uniform distribution on the unit ball is β [n,1],
and as just indicated by the example above, the intermediate results can be seen as transformed
variables from a Dirichlet distribution. This fact holds true even for more complexLp-nested unit
balls although the parameters of the Dirichlet distribution can be slightly different. Reversing the
steps leads us to the following sampling scheme. First, we sample from theβ-distribution which
gives us the radiusv/0 on the root node. Then we sample from the appropriate Dirichlet distribution
and exponentiate the samples by1

p/0
which transforms them into the analogs of the variableu from

above. Scaling the result with the samplev/0 yields the values of the root node’s children, that
is, the analogs ofx1 andv1. Those are the new radii for the levels below them where we simply
repeat this procedure with the appropriate Dirichlet distributions and exponents. The single steps
are summarized in Algorithm 1.

The computational complexity of the sampling scheme isO(n). Since the sampling procedure
is like expanding the tree node by node starting with the root, the number of inner nodes and leaves
is the total number of samples that have to be drawn from Dirichlet distributions. Every node in an
Lp-nested tree must at least have two children. Therefore, the maximal number of inner nodes and
leaves is 2n−1 for a full binary tree. Since sampling from a Dirichlet distribution is also inO(n),
the total computational complexity for one sample is inO(n).
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Algorithm 1 Exact sampling algorithm forLp-nested symmetric distributions
Input: The radial distributionφ of anLp-nested symmetric distributionρ for theLp-nested function
f .
Output: Samplexxx from ρ.
Algorithm

1. Samplev/0 from a beta distributionβ [n,1].

2. For each inner nodeI of the tree associated withf , sample the auxiliary variablesssI from

a Dirichlet distribution Dir
[

nI ,1
pI
, ...,

nI ,ℓI
pI

]
wherenI ,k are the number of leaves in the subtree

under nodeI ,k. Obtain coordinates on theLp-nested sphere within the positive orthant by

sssI 7→ sss
1
pI
I = ũuuI (the exponentiation is taken component-wise).

3. Transform these samples to Cartesian coordinates byvI · ũuuI = vvvI ,1:ℓI for each inner node, start-
ing from the root node and descending to lower layers. The components ofvvvI ,1:ℓI constitute
the radii for the layer direct below them. IfI = /0, the radius had been sampled in step 1.

4. Once the two previous steps have been repeated until no inner node is left, we have a sample
xxx from the uniform distribution in the positive quadrant. Normalizexxx to get a uniform sample
from the sphereuuu= xxx

f (xxx) .

5. Sample a new radius ˜v/0 from the radial distribution of the target radial distributionφ and
obtain the sample viãxxx= ṽ/0 ·uuu.

6. Multiply each entryxi of x̃xx by an independent samplezi from the uniform distribution over
{−1,1}.

7. Robust Bayesian Inference of the Location

ForLp-spherically symmetric distributions with a location and a scale parameter

p(xxx|µµµ,τ) = τnρ(‖τ(xxx−µµµ)‖p),

Osiewalski and Steel (1993) derived the posterior in closed form usinga priorp(µµµ,τ) = p(µ) ·c·τ−1,
and showed thatp(xxx,µµµ) does not depend on the radial distributionφ, that is, the particular type of
Lp-spherically symmetric distributions used for a fixedp. The prior onτ corresponds to an improper
Jeffrey’s prior which is used to represent lack of prior knowledge onthe scale. The main implication
of their result is that Bayesian inference of the locationµµµ under that prior on the scale does not
depend on the particular type ofLp-spherically symmetric distribution used for inference. This
means that under the assumption of anLp-spherically symmetric distributed variable, for a fixedp,
one has to know the exact form of the distribution in order to compute the location parameter.

It is straightforward to generalize their result toLp-nested symmetric distributions and, hence,
making it applicable to a larger class of distributions. Note that when using anyLp-nested symmetric
distribution, introducing a scale and a location via the transformationxxx 7→ τ(xxx− µµµ) introduces a
factor ofτn in front of the distribution.

3429

172



SINZ AND BETHGE

Proposition 10 For fixed values p/0, p1, ... and two independent priors p(µµµ,τ) = p(µµµ) · cτ−1 of the
location µ and the scaleτ where the prior onτ is an improper Jeffrey’s prior, the joint distribution
p(xxx,µµµ) is given by

p(xxx,µµµ) = f (xxx−µµµ)−n ·c· 1
Z
· p(µµµ),

where Z denotes the normalization constant of the Lp-nested uniform distribution.

Proof Given anyLp-nested symmetric distributionρ( f (xxx)), the transformation into the polar-like
coordinates yields the following relation

1=
∫

ρ( f (xxx))dxxx=
∫ ∫

∏
L∈L

GL(uuuL̂)r
n−1ρ(r)drduuu=

∫
∏
L∈L

GL(uuuL̂)duuu·
∫

rn−1ρ(r)dr.

Since∏L∈L GL(uuuL̂) is the unnormalized uniform distribution on theLp-nested unit sphere, the inte-
gral must equal the normalization constant which we denote withZ for brevity (see Proposition 6
for an explicit expression). This implies thatρ has to fulfill

1
Z
=

∫
rn−1ρ(r)dr.

Writing down the joint distribution ofxxx,µµµ andτ, and using the substitutions= τ f (xxx−µµµ) we obtain

p(xxx,µµµ) =
∫

τnρ( f (τ(xxx−µµµ))) ·cτ−1 · p(µµµ)dτ

=
∫

sn−1ρ(s) ·c· p(µµµ) f (xxx−µµµ)−nds

= f (xxx−µµµ)−n ·c· 1
Z
· p(µµµ).

Note that this result could easily be extended toν-spherical distributions. However, in this case
the normalization constantZ cannot be computed for most cases and, therefore, the posterior would
not be known explicitly.

8. Relations to ICA, ISA and Over-Complete Linear Models

In this section, we explain the relations amongLp-spherically symmetric,Lp-nested symmetric,
ICA and ISA models. For a general overview see Figure 4.

The density model underlying ICA models the joint distribution of the signalxxx as a linear
superposition of statistically independent hidden sourcesAyyy = xxx or yyy = Wxxx. If the marginals
of the hidden sources belong to the exponential power family, we obtain thep-generalized Nor-
mal which is a subset of theLp-spherically symmetric class. Thep-generalized Normal distri-
bution p(yyy) ∝ exp(−τ‖yyy‖p

p) is a density model that is often used in ICA algorithms for kurtotic
natural signals like images and sound by optimizing a demixing matrixW w.r.t. to the model
p(yyy) ∝ exp(−τ‖Wxxx‖p

p) (Lee and Lewicki, 2000; Zhang et al., 2004; Lewicki, 2002). It can be
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L
p
-nested 

symmetric
ISA

L
p
-spherically

symmetric
ICA

L
2
-spherically

symmetric

L
p
-nested ISA

p-generalized

Normal

Gaussian

Figure 4: Relations between the different classes of distributions: Arrows indicate that the child
class is a specialization (subset) of the parent class. Polygon-shaped classes are inter-
sections of those parent classes which are connected via edges with round arrow-heads.
For one-dimensional subspaces ISA is a superclass of ICA. All classes belonging to ISA
are colored white or light gray.Lp-nested symmetric distributions are a superclass ofLp-
spherically symmetric distributions. AllLp-nested symmetric models are colored dark or
light gray. Lp-nested ISA models live in the intersection ofLp-nested symmetric distri-
butions and ISA models. ThoseLp-nested ISA models that areLp-spherically symmetric
are also ICA models: This is the class ofp-generalized Normal distributions. Ifp is fixed
to two, one obtains theL2-spherically symmetric distributions. The only class of distri-
butions in the intersection between spherically symmetric distributions and ICA models
is the Gaussian.

shown that thep-generalized Normal is the only factorial model in the class ofLp-spherically sym-
metric models (Sinz et al., 2009a), and, by Proposition 9, also the only factorial Lp-nested symmetric
distribution.

An important generalization of ICA is the independent subspace analysis (ISA) proposed by
Hyvärinen and Hoyer (2000) and by Hyvärinen and K̈oster (2007) who usedLp-spherically symmet-
ric distributions to model the single subspaces, that is, eachρk below wasLp-spherically symmetric.
Like in ICA, ISA models the hidden sources of the signal as a product of multivariate distributions:

ρ(yyy) =
K

∏
k=1

ρk(yyyIk).

Here,yyy=Wxxx andIk are index sets selecting the different subspaces from the responses of W to xxx.
The collection of index setsIk forms a partition of 1, ...,n. ICA is a special case of ISA in which
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Ik = {k} such that all subspaces are one-dimensional. For the ISA models used byHyvärinen et al.
the distribution on the subspaces was chosen to be either spherically orLp-spherically symmetric.

In its general form, ISA is not a generalization ofLp-spherically symmetric distributions. The
most general ISA model for the transformed datayyy=Wxxx does not assume a certain type of distri-
bution on the single subspace like in Hyvärinen and K̈oster (2007). While one could say for any
non-factorial distribution that a factorial product over subspaces is ageneralization, this is certainly
a trivial step. Only in this particular sense is the particular ISA model by Hyvärinen and K̈oster
(2007) a generalization ofLp-spherically symmetric distributions.

In contrast to ISA,Lp-nested symmetric distributions generally do not make an independence
assumption on the “subspaces”. In fact, for most of the models the subspaces will be dependent
(see also our diagram in Figure 4). Therefore, not every ISA model isautomaticallyLp-nested
symmetric and vice versa. In fact, in Sinz et al. (2009b) we have demonstrated for natural images
that the dependenciesbetweensubspaces is stronger than the dependencieswithin subspaces on
natural image patches. This is in stark contrast to the assumptions underlyingISA.

Note also that the product ofLp-spherically symmetric distributions used by Hyvärinen and
Köster (2007) is not anLp-nested function (Equation (6) in Hyvärinen and K̈oster, 2007) since
the singlea j can be different and, therefore, the overall function is not positivelyhomogeneous in
general.

ICA and ISA have been used to infer features from natural signals, in particular from natu-
ral images. However, as mentioned by several authors (Zetzsche et al.,1993; Simoncelli, 1997;
Wainwright and Simoncelli, 2000) and demonstrated quantitatively by Bethge (2006) and Eich-
horn et al. (2009), the assumptions underlying linear ICA are not well matched by the statistics
of the pixel intensities of natural images. A reliable parametric way to assess how well the inde-
pendence assumption is met by a signal at hand is to fit a more general classof distributions that
contains factorial as well as non-factorial distributions which both can equally well reproduce the
marginals. By comparing the likelihood on held out test data between the best fitting non-factorial
and the best-fitting factorial case, one can assess how well the sourcescan be described by a facto-
rial distribution. For natural images, for example, one can use an arbitrary Lp-spherically symmetric
distributionρ(‖Wxxx‖p), fit it to the whitened data and compare its likelihood on held out test data
to the one of thep-generalized Normal distribution (Sinz and Bethge, 2009). Since any choice of
radial distributionφ determines a particularLp-spherically symmetric distribution, the idea is to ex-
plore the space between factorial and non-factorial models by using a very flexible densityφ on the
radius. Note that having an explicit expression of the normalization constant allows for particularly
reliable model comparisons via the likelihood. For many graphical models, for instance, such an
explicit and computable expression is often not available.

The same type of dependency-analysis can be carried out for ISA using Lp-nested symmetric
distributions (Sinz et al., 2009b). Figure 5 shows theLp-nested tree corresponding to an ISA with
four subspaces. In general, for such trees, each inner node—except the root node—corresponds to
a single subspace. When using the radial distribution

φ /0(v/0) =
p/0vn−1

/0

Γ
[

n
p/0

]
s

n
p/0

exp

(
−vp/0

/0
s

)
, (11)
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Figure 5: Tree corresponding to anLp-nested ISA model.

the subspacesv1, ...,vℓ /0 become independent and one obtains an ISA model of the form

ρ(yyy) =
1
Z

exp

(
− f (yyy)p/0

s

)

=
1
Z

exp

(
−∑ℓ /0

k=1‖yyyIk‖pk

s

)

=
pℓ /0

/0

s
n
p/0 ∏ℓ /0

i=1 Γ
[

ni
p/0

] exp

(
−∑ℓ /0

k=1‖yyyIk‖pk

s

)
ℓ /0

∏
k=1

pℓk−1
k Γ

[
nk
pk

]

2nkΓnk

[
1
pI

] ,

which hasLp-spherically symmetric distributions on each subspace. Note that this radial distribution
is equivalent to a Gamma distribution whose variables have been raised to the power of 1

p/0
. In the

following we will denote distributions of this type withγp(u,s), whereu ands are the shape and
scale parameter of the Gamma distribution, respectively. The particularγp distribution that results in
independent subspaces has arbitrary scale but shape parameteru= n

p/0
. When using any other radial

distribution, the different subspaces do not factorize, and the distribution is also not an ISA model.
In that senseLp-nested symmetric distributions are a generalization of ISA. Note, however,that not
every ISA model is alsoLp-nested symmetric since not every product of arbitrary distributions on
the subspaces, even if they areLp-spherically symmetric, must also beLp-nested.

It is natural to ask, whetherLp-nested symmetric distributions can serve as a prior distribution
p(yyy|ϑϑϑ) over hidden factors in over-complete linear models of the form

p(xxx|W,σ,ϑϑϑ) =
∫

p(xxx|Wyyy,σ)p(yyy|ϑϑϑ)dyyy,

wherep(xxx|Wyyy) represents the likelihood of the observed data pointxxx given the hidden factorsyyy
and the over-complete matrixW. For example,p(xxx|Wyyy,σ) =N (Wyyy,σ · I) could be a Gaussian like
in Olshausen and Field (1996). Unfortunately, such a model would suffer from the same problems
as all over-complete linear models: While sampling from the prior is straightforward sampling
from the posteriorp(yyy|xxx,W,ϑϑϑ,σ) is difficult because a whole subspace ofyyy leads to the samexxx.
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Since parameter estimation either involves solving the high-dimensional integralp(xxx|W,σ,ϑϑϑ) =∫
p(xxx|Wyyy,σ)p(yyy|ϑϑϑ)dyyy or sampling from the posterior, learning is computationally demanding in

such models. Various methods have been proposed to learnW, ranging from sampling the posterior
only at its maximum (Olshausen and Field, 1996), approximating the posterior with a Gaussian
via the Laplace approximation (Lewicki and Olshausen, 1999) or using Expectation Propagation
(Seeger, 2008). In particular, all of the above studies either do not fithyper-parametersϑϑϑ for the
prior (Olshausen and Field, 1996; Lewicki and Olshausen, 1999) or rely on the factorial structure
of it (Seeger, 2008). SinceLp-nested symmetric distributions do not provide such a factorial prior,
Expectation Propagation is not directly applicable. An approximation like in Lewicki and Olshausen
(1999) might be possible, but additionally estimating the parametersϑϑϑ of theLp-nested symmetric
distribution adds another level of complexity in the estimation procedure. Exploring such over-
complete linear models with a non-factorial prior may be an interesting direction toinvestigate, but
it will need a significant amount of additional numerical and algorithmical work to find an efficient
and robust estimation procedure.

9. Nested Radial Factorization withLp-Nested Symmetric Distributions

Lp-nested symmetric distribution also give rise to a non-linear ICA algorithm for linearly mixed
non-factorialLp-nested hidden sourcesyyy. The idea is similar to the radial factorization algorithms
proposed by Lyu and Simoncelli (2009) and Sinz and Bethge (2009). For this reason, we call it
nested radial factorization (NRF). For a one layerLp-nested tree, NRF is equivalent to radial fac-
torization as described in Sinz and Bethge (2009). If additionallyp is set top = 2, one obtains
the radial Gaussianization by Lyu and Simoncelli (2009). Therefore, NRF is a generalization of
radial Factorization. It has been demonstrated that radial factorization algorithms outperform linear
ICA on natural image patches (Lyu and Simoncelli, 2009; Sinz and Bethge, 2009). SinceLp-nested
symmetric distributions are slightly better in likelihood on natural image patches (Sinz et al., 2009b)
and since the difference in the average log-likelihood directly corresponds to the reduction in depen-
dencies between the single variables (Sinz and Bethge, 2009), NRF will slightly outperform radial
factorization on natural images. For other types of data the performance will depend on how well
the hidden sources can be modeled by a linear superposition of—possibly non-independent—Lp-
nested symmetrically distributed sources. Here we state the algorithm as a possible application of
Lp-nested symmetric distributions for unsupervised learning.

The idea is based on the observation that the choice of the radial distributionφ already deter-
mines the type ofLp-nested symmetric distribution. This also means that by changing the radial dis-
tribution by remapping the data, the distribution could possibly be turned in a factorial one. Radial
factorization algorithms fit anLp-spherically symmetric distribution with a very flexible radial dis-
tribution to the data and map this radial distributionφs (s for source) into the one of ap-generalized
Normal distribution by the mapping

yyy 7→ (F −1
⊥⊥ ◦Fs)(‖yyy‖p)

‖yyy‖p
·yyy, (12)

whereF⊥⊥ andFs are the cumulative distribution functions of the two radial distributions involved.
The mapping basically normalizes the demixed sourceyyy and rescales it with a new radius that has
the correct distribution.
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Exactly the same method cannot work forLp-nested symmetric distributions since Proposition
9 states that there is no factorial distribution into which we could map the data by merely changing
the radial distribution. Instead we have to remap the data in an iterative fashion beginning with
changing the radial distribution at the root node into the radial distribution ofthe Lp-nested ISA
shown in Equation (11). Once the nodes are independent, we repeat thisprocedure for each of
the child nodes independently, then for their child nodes and so on, until only leaves are left. The
rescaling of the radii is a non-linear mapping since the transform in Equation(12) is non-linear.
Therefore, NRF is a non-linear ICA algorithm.

Figure 6: Lp-nested non-linear ICA for the tree of Example 6: For an arbitraryLp-nested symmetric
distribution, using Equation (12), the radial distribution can be remapped such that the
children of the root node become independent. This is indicated in the plot viadotted
lines. Once the data have been rescaled with that mapping, the children of root node can
be separated. The remaining subtrees are againLp-nested symmetric and have a particular
radial distribution that can be remapped into the same one that makes their rootnodes’
children independent. This procedure is repeated until only leaves are left.

We demonstrate this with a simple example.

Example 6 Consider the function

f (yyy) =

(
|y1|p/0 +

(
|y2|p/0,2 +(|y3|p2,2 + |y4|p2,2)

p/0,2
p2,2

) p/0
p/0,2

) 1
p/0

for yyy = Wxxx where W has been estimated by fitting an Lp-nested symmetric distribution with a
flexible radial distribution to Wxxx as described in Section 5. Assume that the data has already been
transformed once with the mapping of Equation(12). This means that the current radial distribution
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is given by (11) where we chose s= 1 for convenience. This yields a distribution of the form

ρ(yyy) =
p/0

Γ
[

n
p/0

] exp

(
−|y1|p/0−

(
|y2|p/0,2 +(|y3|p2,2 + |y4|p2,2)

p/0,2
p2,2

) p/0
p/0,2

)

× 1
2n ∏

I∈I
pℓI−1

I

Γ
[

nI
pI

]

∏ℓI
k=1 Γ

[
nI ,k

pI

] .

Now we can separate the distribution of y1 from the distribution over y2, ...,y4. The distribution of
y1 is a p-generalized Normal

p(y1) =
p/0

2Γ
[

1
p/0

] exp(−|y1|p/0) .

Thus the distribution of y2, ...,y4 is given by

ρ(y2, ...,y4) =
p/0

Γ
[

n/0,2
p/0

] exp

(
−
(
|y2|p/0,2 +(|y3|p2,2 + |y4|p2,2)

p/0,2
p2,2

) p/0
p/0,2

)

× 1
2n−1 ∏

I∈I\ /0
pℓI−1

I

Γ
[

nI
pI

]

∏ℓI
k=1 Γ

[
nI ,k

pI

] .

By using Equation (9) we can identify the new radial distribution to be

φ(v/0,2) =
p/0vn−2

/0,2

Γ
[

n/0,2
p/0

] exp
(
−vp/0

/0,2

)
.

Replacing this distribution by the one for the p-generalized Normal (for data we would use the
mapping in Equation (12)), we obtain

ρ(y2, ...,y4) =
p/0,2

Γ
[

n/0,2
p/0,2

] exp

(
−|y2|p/0,2− (|y3|p2,2 + |y4|p2,2)

p/0,2
p2,2

)

× 1
2n−1 ∏

I∈I\ /0
pℓI−1

I

Γ
[

nI
pI

]

∏ℓI
k=1 Γ

[
nI ,k

pI

] .

Now, we can separate out the distribution of y2 which is again p-generalized Normal. This leaves
us with the distribution for y3 and y4

ρ(y3,y4) =
p/0,2

Γ
[

n2,2
p/0,2

] exp

(
−(|y3|p2,2 + |y4|p2,2)

p/0,2
p2,2

)
1

2n−2 ∏
I∈I\{ /0,( /0,2)}

pℓI−1
I

Γ
[

nI
pI

]

∏ℓI
k=1 Γ

[
nI ,k

pI

] .

For this distribution we can repeat the same procedure which will also yield p-generalized Normal
distributions for y3 and y4.

3436

179



Lp-NESTEDSYMMETRIC DISTRIBUTIONS

Algorithm 2 Recursion NRF(yyy, f ,φs)
Input: Data pointyyy, Lp-nested functionf , current radial distributionφs,
Output: Non-linearly transformed data pointyyy
Algorithm

1. Set the target radial distribution to beφ⊥⊥← γp


 n/0

p/0
,

Γ
[

1
p/0

] p/0
2

Γ
[

3
p/0

] p/0
2




2. Setyyy← F −1
⊥⊥ (Fs( f (yyy)))

f (yyy) ·yyy whereF denotes the cumulative distribution function of the respective
φ.

3. For all childreni of the root node that are not leaves:

(a) Setφs← γp


n/0,i

p/0
,

Γ
[

1
p/0

] p/0
2

Γ
[

3
p/0

] p/0
2




(b) Setyyy/0,i ← NRF(yyy/0,i , f /0,i ,φs). Note that in the recursion/0, i will become the new/0.

4. Returnyyy

This non-linear procedure naturally carries over to arbitraryLp-nested trees and distributions,
thus yielding a general non-linear ICA algorithm for linearly mixed non-factorial Lp-nested sym-
metric sources. For generalizing Example 6, note the particular form of the radial distributions
involved. As already noted above, the distribution (11) on the root node’s values that makes its
children statistically independent is that of a Gamma distributed variable with shape parametern/0

p/0

and scale parameters which has been raised to the power of1
p/0

. In Section 8 we denoted this class
of distributions withγp [u,s], whereu and s are the shape and the scale parameter, respectively.
Interestingly, the radial distributions of the root node’s children are alsoγp except that the shape pa-
rameter isn/0,i

p/0
. The goal of the radial remapping of the children’s values is hence just changing the

shape parameter fromn/0,i
p/0

to n/0,i
p/0,i

. Of course, it is also possible to change the scale parameter of the
single distributions during the radial remappings. This will not affect the statistical independence
of the resulting variables. In the general algorithm, that we describe now,we choosessuch that the
transformed data is white.

The algorithm starts with fitting a generalLp-nested model of the formρ(Wxxx) as described in
Section 5. Once this is done, the linear demixing matrixW is fixed and the hidden non-factorial
sources are recovered viayyy=Wxxx. Afterwards, the sourcesyyy are non-linearly made independent by
calling the recursion specified in Algorithm 2 with the parametersWxxx, f andφ, whereφ is the radial
distribution of the estimated model.

The computational complexity for transforming a single data point isO(n2) because of the ma-
trix multiplicationWxxx. In the non-linear transformation, each single data dimension is not rescaled
more thatn times which means that the rescaling is certainly also inO(n2).

An important aspect of NRF is that it yields a probabilistic model for the transformed data.
This model is simply a product ofn independent exponential power marginals. Since the radial
remappings do not change the likelihood, the likelihood of the non-linearly separated data is the
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same as the likelihood of the data underLp-nested symmetric distribution that was fitted to it in
the first place. However, in some cases, one might like to fit a different distribution to the outcome
of Algorithm 2. In that case the determinant of the transformation is necessary to determine the
likelihood of the input data—and not the transformed one—under the model. The following lemma
provides the determinant of the Jacobian for the non-linear rescaling.

Lemma 11 (Determinant of the Jacobian)Let zzz= NRF(Wxxx, f ,φs) as described above. Let ttt I

denote the values of Wxxx below the inner node I which have been transformed with Algorithm 2
up to node I. Let gI (r) = (Fφ⊥⊥ ◦Fφs)(r) denote the radial transform at node I in Algorithm 2.
Furthermore, letI denote the set of all inner nodes, excluding the leaves. Then, the determinant of

the Jacobian
(

∂zi
∂x j

)
i j

is given by

∣∣∣∣det
∂zi

∂x j

∣∣∣∣= |detW| ·∏
I∈I

∣∣∣∣
gI ( fI (ttt I ))

nI−1

fI (ttt I )nI−1 · φs( fI (ttt I ))

φ⊥⊥(gI ( fI (ttt I )))

∣∣∣∣

Proof The proof can be found in the Appendix E.

10. Conclusion

In this article we presented a formal treatment of the first tractable subclassof ν-spherical distribu-
tions which generalizes the important family ofLp-spherically symmetric distributions. We derived
an analytical expression for the normalization constant, introduced a coordinate system particularly
tailored toLp-nested functions, and computed the determinant of the Jacobian for the correspond-
ing coordinate transformation. Using these results, we introduced the uniform distribution on the
Lp-nested unit sphere and the general form of anLp-nested symmetric distribution for arbitrary
Lp-nested functions and radial distributions. We also derived an expression for the joint distribu-
tion of inner nodes of anLp-nested tree and derived a sampling scheme for an arbitraryLp-nested
symmetric distribution.

Lp-nested symmetric distributions naturally provide the class of probability distributions corre-
sponding to mixed norm priors, allowing full Bayesian inference in the corresponding probabilistic
models. We showed that a robustness result for Bayesian inference ofthe location parameter known
for Lp-spherically symmetric distributions carries over to theLp-nested symmetric class. We dis-
cussed the relationship ofLp-nested symmetric distributions to indepedent component (ICA) and
independent subspace Analysis (ISA), as well as its applicability as a prior distribution in over-
complete linear models. Finally, we showed howLp-nested symmetric distributions can be used to
construct a non-linear ICA algorithm called nested radial factorization (NRF).

The application ofLp-nested symmetric distribution has been presented in a previous conference
paper (Sinz et al., 2009b). Code for training this class of distribution is provided online under
http://www.kyb.tuebingen.mpg.de/bethge/code/.
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Appendix A. Determinant of the Jacobian

Proof [Lemma 2] The proof is very similar to the one in Song and Gupta (1997). To derive Equation
(2) one needs to expand the Jacobian of the inverse coordinate transformation with respect to the
last column using the Laplace’s expansion of the determinant. The term∆n can be factored out of
the determinant and cancels due to the absolute value around it. Therefore, the determinant of the
coordinate transformation does not depend on∆n.

The partial derivatives of the inverse coordinate transformation are given by:

∂
∂uk

xi = δikr for 1≤ i,k≤ n−1

∂
∂uk

xn = ∆nr
∂un

∂uk
for 1≤ k≤ n−1

∂
∂r

xi = ui for 1≤ i ≤ n−1

∂
∂r

xn = ∆nun.

Therefore, the structure of the Jacobian is given by

J =




r . . . 0 u1
...

. . .
...

...
0 . . . r un−1

∆nr ∂un
∂u1

. . . ∆nr ∂un
∂un−1

∆nun


 .

Since we are only interested in the absolute value of the determinant and since∆n ∈ {−1,1}, we
can factor out∆n and drop it. Furthermore, we can factor outr from the firstn−1 columns which
yields

|detJ |= rn−1

∣∣∣∣∣∣∣∣∣
det




1 . . . 0 u1
...

. . .
...

...
0 . . . 1 un−1

∂un
∂u1

. . . ∂un
∂un−1

un




∣∣∣∣∣∣∣∣∣
.

Now we can use the Laplace’s expansion of the determinant with respect tothe last column. For
that purpose, letJi denote the matrix which is obtained by deleting the last column and theith row
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from J . This matrix has the following structure

Ji =




1 0
... 0

1 0
... 1

0
...

0 1
∂un
∂u1

∂un
∂ui

∂un
∂un−1




.

We can transformJi into a lower triangular matrix by moving the column with all zeros and∂un
∂ui

bottom entry to the rightmost column ofJi . Each swapping of two columns introduces a factor of
−1. In the end, we can compute the value of detJi by simply taking the product of the diagonal
entries and obtain detJi = (−1)n−1−i ∂un

∂ui
. This yields

|detJ |= rn−1

(
n

∑
k=1

(−1)n+kuk detJk

)

= rn−1

(
n−1

∑
k=1

(−1)n+kuk detJk+(−1)2n∂xn

∂r

)

= rn−1

(
n−1

∑
k=1

(−1)n+kuk(−1)n−1−k ∂un

∂uk
+un

)

= rn−1

(
−

n−1

∑
k=1

uk
∂un

∂uk
+un

)
.

Before proving Proposition 3 stating that the determinant only depends on the termsGI (uuuÎ )
produced by the chain rule when used upwards in the tree, let us quickly outline the essential mech-
anism when taking the chain rule for∂un

∂uq
: Consider the tree corresponding tof . By definitionun is

the rightmost leaf of the tree. LetL, ℓL be the multi-index ofun. As in the example, the chain rule
starts at the leafun and ascends in the tree until it reaches the lowest node whose subtree contains
both,un anduq. At this point, it starts descending the tree until it reaches the leafuq. Depending
on whether the chain rule ascends or descends, two different forms ofderivatives occur: while as-
cending, the chain rule producesGI (uuuÎ )-terms like the one in the example above. At descending,
it producesFI (uuuI )-terms. The general definitions of theGI (uuuÎ )- andFI (uuuI )-terms are given by the
recursive formulae

GI ,ℓI (uuuÎ ,ℓI
) = gI ,ℓI (uuuÎ ,ℓI

)pI ,ℓI−pI =

(
gI (uuuÎ )

pI −
ℓI−1

∑
j=1

fI , j(uuuI , j)
pI

) pI ,ℓI
−pI

pI
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and

FI ,ir (uuuI ,ir ) = fI ,ir (uuuI ,ir )
pI−pI ,ir =

(
ℓI ,ir

∑
k=1

fI ,ir ,k(uuuI ,ir ,k)
pI ,ir

) pI−pI ,ir
pI ,ir

.

The next two lemmata are required for the proof of Proposition 3. We use thesomewhat sloppy
notationk∈ I , ir if the variableuk is a leaf in the subtree belowI , ir . The same notation is used forÎ .

Lemma 12 Let I= i1, ..., ir−1 and I, ir be any node of the tree associated with an Lp-nested function
f . Then the following recursions hold for the derivatives of gI ,ir (uuuÎ ,ir

)pI ,ir and fpI
I ,ir (uuuI ,ir ) w.r.t uq: If

uq is not in the subtree under the node I, ir , that is, k6∈ I , ir , then

∂
∂uq

fI ,ir (uuuI ,ir )
pI = 0

and

∂
∂uq

gI ,ir (uuuÎ ,ir
)pI ,ir =

pI ,ir

pI
GI ,ir (uuuÎ ,ir

) ·





∂
∂uq

gI (uuuÎ )
pI if q ∈ I

− ∂
∂uq

fI , j(uuuI , j)
pI if q ∈ I , j

for q∈ I , j and q 6∈ I ,k for k 6= j. Otherwise

∂
∂uq

gI ,ir (uuuÎ ,ir
)pI ,ir = 0 and

∂
∂uq

fI ,ir (uuuI ,ir )
pI =

pI

pI ,ir
FI ,ir (uuuI ,ir )

∂
∂uq

fI ,ir ,s(uuuI ,ir ,s)
pI ,ir

for q∈ I , ir ,s and q6∈ I , ir ,k for k 6= s.

Proof Both of the first equations are obvious, since only those nodes have a non-zero derivative for
which the subtree actually depends onuq. The second equations can be seen by direct computation

∂
∂uq

gI ,ir (uuuÎ ,ir
)pI ,ir = pI ,ir gI ,ir (uuuÎ ,ir

)pI ,ir−1 ∂
∂uq

GI ,ir (uuuÎ ,ir
)

= pI ,ir gI ,ir (uuuÎ ,ir
)pI ,ir−1 ∂

∂uq

(
gI (uuuÎ )

pI −
ℓI−1

∑
j=1

fI , j(uuuI , j)
pI

) 1
pI

=
pI ,ir

pI
gI ,ir (uuuÎ ,ir

)pI ,ir−1gI ,ir (uuuÎ ,ir
)1−pI

∂
∂uq

(
gI (uuuÎ )

pI −
ℓI−1

∑
j=1

fI , j(uuuI , j)
pI

)

=
pI ,ir

pI
GI ,ir (uuuÎ ,ir

) ·





∂
∂uq

gI (uuuÎ )
pI if q∈ I

− ∂
∂uq

fI , j(uuuI , j)
pI if q∈ I , j
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Similarly

∂
∂uq

fI ,ir (uuuI ,ir )
pI = pI fI ,ir (uuuI ,ir )

pI−1 ∂
∂uq

fI ,ir (uuuI ,ir )

= pI fI ,ir (uuuI ,ir )
pI−1 ∂

∂uq

(
ℓI ,ir

∑
k=1

fI ,ir ,k(uuuI ,ir ,k)
pI ,ir

) 1
pI ,ir

=
pI

pI ,ir
fI ,ir (uuuI ,ir )

pI−1 fI ,ir (uuuI ,ir )
1−pI ,ir

∂
∂uq

fI ,ir ,s(uuuI ,ir ,s)
pI ,ir

=
pI

pI ,ir
FI ,ir (uuuI ,ir )

∂
∂uq

fI ,ir ,s(uuuI ,ir ,s)
pI ,ir

for k∈ I , ir ,s.

The next lemma states the form of the whole derivative∂un
∂uq

in terms of theGI (uuuÎ )- andFI (uuuI )-terms.

Lemma 13 Let |uq|= vℓ1,...,ℓm,i1,...,it , |un|= vℓ1,...,ℓd with m< d. The derivative of un w.r.t. uq is given
by

∂
∂uq

un =−Gℓ1,...,ℓd(uuu ̂ℓ1,...,ℓd
) · ... ·Gℓ1,...,ℓm+1(uuu ̂ℓ1,...,ℓm+1

)

×Fℓ1,...,ℓm,i1(uuuℓ1,...,ℓm,i1) ·Fℓ1,...,ℓm,i1,...,it−1(uuuℓ1,...,ℓm,i1,...,it−1) ·∆q|uq|pℓ1,...,ℓm,i1,...,it−1−1

with ∆q = sgnuq and|uq|p = (∆quq)
p. In particular

uq
∂

∂uq
un =−Gℓ1,...,ℓd(uuu ̂ℓ1,...,ℓd

) · ... ·Gℓ1,...,ℓm+1(uuu ̂ℓ1,...,ℓm+1
)

×Fℓ1,...,ℓm,i1(uuu1) ·Fℓ1,...,ℓm,i1,...,it−1(uuuℓ1,...,ℓm,i1) · |uq|pℓ1,...,ℓm,i1,...,it−1 .

Proof Successive application of Lemma (12).

Proof [Proposition 3] Before we begin with the proof, note thatFI (uuuI ) andGI (uuuÎ ) fulfill following
equalities

GI ,im(uuuÎ ,im
)−1gI ,im(uuuÎ ,im

)pI ,im = gI ,im(uuuÎ ,im
)pI

= gI (uuuÎ )
pI −

ℓI−1

∑
k=1

FI ,k(uuuI ,k) fI ,k(uuuI ,k)
pI ,k (13)

and

fI ,im(uuuI ,im)
pI ,im =

ℓI ,im

∑
k=1

FI ,im,k(uuuI ,im,k) fI ,im,k(uuuI ,im,k)
pI ,im,k. (14)

Now let L = ℓ1, ..., ℓd−1 be the multi-index of the parent ofun. We compute 1
rn−1 |detJ | and

obtain the result by solving for|detJ |. As shown in Lemma (2) 1
rn−1 |detJ | has the form

1
rn−1 |detJ | = −

n−1

∑
k=1

∂un

∂uk
·uk+un.
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By definitionun = gL,ℓd(uuuL̂,ℓd
) = gL,ℓd(uuuL̂,ℓd

)pL,ℓd . Now, assume thatum, ...,un−1 are children ofL,
that is,uk = vL,I ,it for someI , it = i1, ..., it andm≤ k< n. Remember, that by Lemma (13) the terms
uq

∂
∂uq

un for m≤ q< n have the form

uq
∂

∂uq
un =−GL,ℓd(uuuL̂,ℓd

) ·FL,i1(uuuL,i1) · ... ·FL,I (uuuL,I ) · |uq|pℓ1,...,ℓd−1,i1,...,it−1 .

Using Equation (13), we can expand the determinant as follows

−
n−1

∑
k=1

∂un

∂uk
·uk+gL,ℓd(uuuL̂,ℓd

)pL,ℓd

=−
m−1

∑
k=1

∂un

∂uk
·uk−

n−1

∑
k=m

∂un

∂uk
·uk+gL,ℓd(uuuL̂,ℓd

)pL,ℓd

=−
m−1

∑
k=1

∂un

∂uk
·uk

+GL,ℓd(uuuL̂,ℓd
)

(
−

n−1

∑
k=m

GL,ℓd(uuuL̂,ℓd
)−1∂un

∂uk
·uk+GL,ℓd(uuuL̂,ℓd

)−1gL,ℓd(uuuL̂,ℓd
)pL,ℓd

)

=−
m−1

∑
k=1

∂un

∂uk
·uk

+GL,ℓd(uuuL̂,ℓd
)

(
−

n−1

∑
k=m

GL,ℓd(uuuL̂,ℓd
)−1∂un

∂uk
·uk+gL(uuuL̂)

pL−
ℓd−1

∑
k=1

FL,k(uuuL,k) fL,k(uuuL,k)
pL,k

)
.

Note that all termsGL,ℓd(uuuL̂,ℓd
)−1 ∂un

∂uk
·uk for m≤ k< n now have the form

GL,ℓd(uuuL̂,ℓd
)−1uk

∂
∂uk

un =−FL,i1(uuuL,i1) · ... ·FL,I (uuuL,I ) · |uq|pℓ1,...,ℓd−1,i1,...,it−1

since we constructed them to be neighbors ofun. However, with Equation (14), we can fur-
ther expand the sum∑ℓd−1

k=1 FL,k(uuuL,k) fL,k(uuuL,k)
pL,k down to the leavesum, ...,un−1. When doing so

we end up with the same factorsFL,i1(uuuL,i1) · ... ·FL,I (uuuL,I ) · |uq|pℓ1,...,ℓd−1,i1,...,it−1 as in the derivatives
GL,ℓd(uuuL̂,ℓd

)−1uq
∂

∂uq
un. This means exactly that

−
n−1

∑
k=m

GL,ℓd(uuuL̂,ℓd
)−1∂un

∂uk
·uk =

ℓd−1

∑
k=1

FL,k(uuuL,k) fL,k(uuuL,k)
pL,k
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and, therefore,

−
m−1

∑
k=1

∂un

∂uk
·uk

+GL,ℓd(uuuL̂,ℓd
)

(
−

n−1

∑
k=m

GL,ℓd(uuuL̂,ℓd
)−1∂un

∂uk
·uk+gL(uuuL̂)

pL−
ℓd−1

∑
k=1

FL,k(uuuL,k) fL,k(uuuL,k)
pL,k

)

=−
m−1

∑
k=1

∂un

∂uk
·uk

+GL,ℓd(uuuL̂,ℓd
)

(
ℓd−1

∑
k=1

FL,k(uuuL,k) fL,k(uuuL,k)
pL,k +gL(uuuL̂)

pL−
ℓd−1

∑
k=1

FL,k(uuuL,k) fL,k(uuuL,k)
pL,k

)

=−
m−1

∑
k=1

∂un

∂uk
·uk+GL,ℓd(uuuL̂,ℓd

)gL(uuuL̂)
pL .

By factoring outGL,ℓd(uuuL̂,ℓd
) from the equation, the terms∂un

∂uk
·uk loose theGL,ℓd in front and

we get basically the same equation as before, only that the new leaf (the new“un”) is gL(uuuL̂)
pL and

we got rid of all the children ofL. By repeating that procedure up to the root node, we successively
factor out allGL′(uuuL̂′) for L′ ∈ L until all terms of the sum vanish and we are only left withv/0 = 1.
Therefore, the determinant is

1
rn−1 |detJ |= ∏

L∈L
GL(uuuL̂)

which completes the proof.

Appendix B. Volume and Surface of theLp-Nested Unit Sphere

Proof [Proposition 4] We obtain the volume by computing the integral
∫

f (xxx)≤Rdxxx. Differentiation
with respect toRyields the surface area. For symmetry reasons we can compute the volume only on
the positive quadrantRn

+ and multiply the result with 2n later to obtain the full volume and surface
area. The strategy for computing the volume is as follows. We start with inner nodesI that are
parents of leaves only. The valuevI of such a node is simply theLpI norm of its children. Therefore,
we can convert the integral over the children ofI with the transformation of Gupta and Song (1997).
This maps the leavesvvvI ,1:ℓI into vI and “angular” variables̃uuu. Since integral borders of the original
integral depend only on the value ofvI and not oñuuu, we can separate the variablesũuu from the radial
variablesvI and integrate the variablesũuu separately. The integration overũuu yields a certain factor,
while the variablevI effectively becomes a new leaf.
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Now supposeI is the parent of leaves only. Without loss of generality let theℓI leaves correspond
to the lastℓI coefficients ofxxx. Letxxx∈Rn

+. Carrying out the first transformation and integration yields

∫

f (xxx)≤R
dxxx=

∫

f (xxx1:n−ℓI ,vI )≤R

∫

ũuu∈V ℓI−1
+

vℓI−1
I

(
1−

ℓI−1

∑
i=1

ũpI
i

) 1−pI
pI

dvI dũuudxxx1:n−ℓI

=
∫

f (xxx1:n−ℓI ,vI )≤R
vnI−1

I dvI dxxx1:n−ℓI ×
∫

ũuu∈V ℓI−1
+

(
1−

ℓI−1

∑
i=1

ũpI
i

) nI ,ℓI
−pI

pI

dũuu.

whereV+ denotes the intersection of the positive quadrant and theLpI -norm unit ball. For solving
the second integral we make the pointwise transformationsi = ũpI

i and obtain

∫

ũuu∈V ℓI−1
+

(
1−

ℓI−1

∑
i=1

ũpI
i

) nI ,ℓI
−pI

pI

dũuu=
1

pℓI−1
I

∫

∑si≤1

(
1−

ℓI−1

∑
i=1

si

) nI ,ℓI
pI
−1

ℓI−1

∏
i=1

s
1
pI
−1

i dsssℓI−1

=
1

pℓI−1
I

ℓI−1

∏
k=1

B

[
∑k

i=1nI ,k

pI
,
nI ,k+1

pI

]

=
1

pℓI−1
I

ℓI−1

∏
k=1

B

[
k
pI
,

1
pI

]

by using the fact that the transformed integral has the form of an unnormalized Dirichlet distribution
and, therefore, the value of the integral must equal its normalization constant.

Now, we solve the integral

∫

f (xxx1:n−ℓI ,vI )≤R
vnI−1

I dvI dxxx1:n−ℓI . (15)

We carry this out in exactly the same manner as we solved the previous integral.We need only
to make sure that we only contract nodes that have only leaves as children(remember that radii of
contracted nodes become leaves) and we need to find a formula describinghow the factorsvnI−1

I
propagate through the tree.

For the latter, we first state the formula and then prove it via induction. For notational conve-
nience letJ denote the set of multi-indices corresponding to the contracted leaves,xxxĴ the remaining
coefficients ofxxx andvvvJ the vector of leaves resulting from contraction. The integral which is left to
solve after integrating over allũuu is given by (remember thatnJ denotes real leaves, that is, the ones
corresponding to coefficients ofxxx):

∫

f (xxx
Ĵ
,vvvJ )≤R

∏
J∈J

vnJ−1
J dvvvJdxxxĴ .

We already proved the first induction step by computing Equation (15). Forcomputing the general
induction step supposeI is an inner node whose children are leaves or contracted leaves. LetJ ′

be the set of contracted leaves underI andK = J \J ′. Transforming the children ofI into radial
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coordinates by Gupta and Song (1997) yields

∫

f (xxx
Ĵ
,vvvJ )≤R

∏
J∈J

vnJ−1
J dvvvJdxxxĴ =

∫

f (xxx
Ĵ
,vvvJ )≤R

(
∏

K∈K
vnK−1

K

)
·
(

∏
J′∈J ′

v
nJ′−1
J′

)
dvvvJdxxxĴ

=
∫

f (xxx
K̂
,vvvK ,vI )≤R

∫

ũuuℓI−1∈V ℓI−1
+



(

1−
ℓI−1

∑
i=1

ũpI
i

) 1−pI
pI

vℓI−1
I


 ·
(

∏
K∈K

vnK−1
K

)

×





vI

(
1−

ℓI−1

∑
i=1

ũpI
i

) 1
pI




nℓI−1
ℓI−1

∏
k=1

(vI ũk)
nk−1


dxxx

K̂
dvvvK dvI dũuuℓI−1

=
∫

f (xxx
K̂
,vvvK ,vI )≤R

∫

ũuuℓI−1∈V ℓI−1
+

(
∏

K∈K
vnK−1

K

)

×


v

ℓI−1+∑ℓI
i=1(ni−1)

I

(
1−

ℓI−1

∑
i=1

ũpI
i

) nℓI
−pI
pI ℓI−1

∏
k=1

ũnk−1
k


dxxx

K̂
dvvvK dvI dũuuℓI−1

=
∫

f (xxx
K̂
,vvvK ,vI )≤R

(
∏

K∈K
vnK−1

K

)
vnI−1

I dxxx
K̂

dvvvK dvI

×
∫

ũuuℓI−1∈V ℓI−1
+

(
1−

ℓI−1

∑
i=1

ũpI
i

) nℓI
−pI
pI ℓI−1

∏
k=1

ũnk−1
k dũuuℓI−1.

Again, by transforming it into a Dirichlet distribution, the latter integral has the solution

∫

ũuuℓI−1∈V ℓI−1
+

(
1−

ℓI−1

∑
i=1

ũpI
i

) nℓI
−pI
pI ℓI−1

∏
k=1

ũnk−1
k dũuuℓI−1 =

ℓI−1

∏
k=1

B

[
∑k

i=1nI ,k

pI
,
nI ,k+1

pI

]

while the remaining former integral has the form

∫

f (xxx
K̂
,vvvK ,vI )≤R

(
∏

K∈K
vnK−1

K

)
vnI−1

I dxxx
K̂

dvvvK dvI =
∫

f (xxx
Ĵ
,vvvJ )≤R

∏
J∈J

vnJ−1
J dvvvJdxxxĴ

as claimed.
By carrying out the integration up to the root node, the remaining integral becomes

∫

v/0≤R
vn−1

/0 dv/0 =
∫ R

0
vn−1

/0 dv/0 =
Rn

n
.

Collecting the factors from integration over theũuu proves the Equations (5) and (7). UsingB[a,b] =
Γ[a]Γ[b]
Γ[a+b] yields Equations (6) and (8).
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Appendix C. Layer Marginals

Proof [Proposition 7]

ρ(xxx) =
φ( f (xxx))
S f ( f (xxx))

=
φ( f (xxx1:n−ℓI ,vI , ũuuℓI−1,∆n))

S f ( f (xxx))
·vℓI−1

I

(
1−

ℓI−1

∑
i=1

|ũi |pI

) 1−pI
pI

where∆n = sign(xn). Note thatf is invariant to the actual value of∆n. However, when integrating
it out, it yields a factor of 2. Integrating outũuuℓI−1 and∆n now yields

ρ(xxx1:n−ℓI ,vI ) =
φ( f (xxx1:n−ℓI ,vI ))

S f ( f (xxx))
·vℓI−1

I

2ℓI ΓℓI

[
1
pI

]

pℓI−1
I Γ

[
ℓI
pI

]

=
φ( f (xxx1:n−ℓI ,vI ))

S f ( f (xxx1:n−ℓI ,vI ))
·vℓI−1

I

Now, we can go on and integrate out more subtrees. For that purpose, let xxxĴ denote the remaining
coefficients ofxxx, vvvJ the vector of leaves resulting from the kind of contraction just shown forvI , and
J the set of multi-indices corresponding to the “new leaves”, that is, nodevI after contraction. We
obtain the following equation

ρ(xxxĴ ,vvvJ ) =
φ( f (xxxĴ ,vvvJ ))

Sf ( f (xxxĴ ,vvvJ ))
∏
J∈J

vnJ−1
J .

wherenJ denotes the number of leaves in the subtree under the nodeJ. The calculations for the
proof are basically the same as the one for proposition (4).

Appendix D. Factorial Lp-Nested Distributions

Proof [Proposition 9] Since the singlexi are independent,f1(xxx1), ..., fℓ /0(xxxℓ /0) and, therefore,v1, ...,vℓ /0

must be independent as well (xxxi are the elements ofxxx in the subtree below theith child of the root
node). Using Corollary 8 we can write the density ofv1, ...,vℓ /0 as (the function nameg is unrelated
to the usage of the functiong above)

ρ(vvv1:ℓ /0) =
ℓ /0

∏
i=1

hi(vi) = g(‖vvv1:ℓ /0‖p/0)
ℓ /0

∏
i=1

vni−1
i

with

g(‖vvv1:ℓ /0‖p/0) =
pℓ /0−1

/0 Γ
[

n
p/0

]

‖vvv1:ℓ /0‖n−1
p/0 2m∏ℓ /0

k=1 Γ
[

nk
p/0

]φ(‖vvv1:ℓ /0‖p/0)
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Since the integral overg is finite, it follows from Sinz et al. (2009a) thatghas the formg(‖vvv1:ℓ /0‖p/0)=
exp(a/0‖vvv1:ℓ /0‖p/0

p/0 +b/0) for appropriate constantsa/0 andb/0. Therefore, the marginals have the form

hi(vi) = exp(a/0vp/0
i +c/0)v

ni−1
i . (16)

On the other hand, the particular form ofg implies that the radial density has the formφ( f (xxx)) ∝
f (xxx)(n−1)exp(a/0 f (xxx)p/0 +b/0)

p/0 . In particular, this implies that the root node’s childrenfi(xxxi) (i =
1, ..., ℓ /0) are independent andLp-nested symmetric again. With the same argument as above, it fol-

lows that their childrenvvvi,1:ℓi follow the distributionρ(vi,1, ...,vi,ℓi)= exp(ai‖vvvi,1:ℓi‖pi
pi +bi)∏ℓi

j=1v
ni, j−1
i, j .

Transforming that distribution toLp-spherically symmetric polar coordinatesvi = ‖vvvi,1:ℓi‖pi and
ũuu= vvvi,1:ℓi−1/‖vvvi,1:ℓi‖pi as in Gupta and Song (1997), we obtain the form

ρ(vi , ũuu) = exp(aiv
pi
i +bi)v

ℓi−1
i

(
1−

ℓi−1

∑
j=1

|ũ j |pi

) 1−pi
pi


vi

(
1−

ℓi−1

∑
j=1

|ũ j |pi

) 1
pi




ni,ℓi−1
ℓi−1

∏
j=1

(ũ jvi)
ni, j−1

= exp(aiv
pi
i +bi)v

ni−1
i

(
1−

ℓi−1

∑
j=1

|ũ j |pi

) ni,ℓi
−pi

pi ℓi−1

∏
j=1

ũ
ni, j−1
j ,

where the second equation follows the same calculations as in the proof of Proposition 4. After in-
tegrating out̃uuu, assuming that thexi are statistically independent, we obtain the density ofvi which
is equal to (16) if and only ifpi = p/0. However, if p/0 and pi are equal, the hierarchy of theLp-
nested function shrinks by one layer sincepi andp/0 cancel themselves. Repeated application of the
above argument collapses the completeLp-nested tree until one effectively obtains anLp-spherical
function. Since the only factorialLp-spherically symmetric distribution is thep-generalized Normal
(Sinz et al., 2009a) the claim follows.

Appendix E. Determinant of the Jacobian for NRF

Proof [Lemma 11] The proof is a generalization of the proof of Lyu and Simoncelli (2009). Due
to the chain rule the Jacobian of the entire transformation is the multiplication of the Jacobians
for each single step, that is, the rescaling of a subset of the dimensions for one single inner node.
The Jacobian for the other dimensions is simply the identity matrix. Therefore, the determinant of
the Jacobian for each single step is the determinant for the radial transformation on the respective
dimensions. We show how to compute the determinant for a single step.

Assume that we reached a particular nodeI in Algorithm 2. The leaves, which have been
rescaled by the preceding steps, are calledttt I . Let ξξξI =

gI ( fI (ttt I ))
fI (ttt I ))

· ttt I with gI (r) = (F −1
⊥⊥ ◦Fs)(r). The

general form of a single Jacobian is

∂ξξξI

∂ttt I
= ttt I ·

∂
∂ttt I

(
gI ( fI (ttt I ))

fI (ttt I )

)
+

gI ( fI (ttt I ))

fI (ttt I )
InI ,

where

∂
∂ttt I

(
gI ( fI (ttt I ))

fI (ttt I )

)
=

(
g′I ( fI (ttt I ))

fI (ttt I )
− gI ( fI (ttt I ))

fI (ttt I )2

)
∂

∂ttt I
fI (ttt I ).
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Let yi be a leave in the subtree underI and letI ,J1, ...,Jk be the path of inner nodes fromI to yi ,
then

∂
∂yi

fI (ttt I ) = v1−pI
I v

pI−pJ1
J1

· ... ·vpJk−1−pJk
k |yi |pJk−1 ·sgnyi .

If we denoter = fI (ttt I ) andζi = v
pI−pJ1
J1

· ... · vpJk−1−pJk
k |yi |pJk−1 · sgnyi for the respectiveJk, we

obtain

det

(
ttt I ·

∂
∂ttt I

(
gI ( fI (ttt I ))

fI (ttt I )

)
+

gI ( fI (ttt I ))

fI (ttt I )
InI

)
= det

((
g′I (r)−

gI (r)
r

)
r−pI ttt I ·ζζζ⊤+

gI (r)
r

InI

)
.

Now we can use Sylvester’s determinant formula det(In+bttt I ζζζ
⊤
) = det(1+bttt⊤I ζζζ) = 1+bttt⊤I ζζζ

or equivalently

det(aIn+bttt I ζζζ
⊤
) = det

(
a·
(

In+
b
a

ttt I ζζζ
⊤
))

= andet

(
In+

b
a

ttt I ζζζ
⊤
)

= an−1(a+bttt⊤I ζζζ),

as well asttt⊤I ζζζ = fI (ttt I )
pI = r pI to see that

det

((
g′I (r)−

gI (r)
r

)
r−pI ttt I ·ζζζ⊤+

gI (r)
r

In

)
=

gI (r)n−1

rn−1 det

((
g′I (r)−

gI (r)
r

)
r−pI ttt⊤I ·ζζζ+

gI (r)
r

)

=
gI (r)n−1

rn−1 det

(
g′I (r)−

gI (r)
r

+
gI (r)

r

)

=
gI (r)n−1

rn−1

d
dr

gI (r).

d
dr gI (r) is readily computed viad

dr gI (r) = d
dr (F

−1
⊥⊥ ◦Fs)(r) =

φs(r)
φ⊥⊥(gI (r))

.
Multiplying the single determinants along with detW for the final step of the chain rule com-

pletes the proof.
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a b s t r a c t

The light intensities of natural images exhibit a high degree of redundancy. Knowing the exact amount of
their statistical dependencies is important for biological vision as well as compression and coding appli-
cations but estimating the total amount of redundancy, the multi-information, is intrinsically hard. The
common approach is to estimate the multi-information for patches of increasing sizes and divide by the
number of pixels. Here, we show that the limiting value of this sequence—the multi-information rate—
can be better estimated by using another limiting process based on measuring the mutual information
between a pixel and a causal neighborhood of increasing size around it. Although in principle this method
has been known for decades, its superiority for estimating the multi-information rate of natural images
has not been fully exploited yet. Either method provides a lower bound on the multi-information rate, but
the mutual information based sequence converges much faster to the multi-information rate than the con-
ventional method does. Using this fact, we provide improved estimates of the multi-information rate of
natural images and a better understanding of its underlying spatial structure.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Natural images contain an abundance of structure and regular-
ities which can be quantified as statistical dependencies or redun-
dancy between image pixels. Coding and compression algorithms
for photographic images exploit these dependencies for achieving
a good performance. Besides technical applications, the statistical
regularities in natural images also play an important role for our
understanding of sensory coding in the mammalian brain. In a
wide range of studies it has been shown that many response prop-
erties of neurons in the early visual system such as color oppo-
nency, bandpass filtering, contrast gain control and orientation
selectivity can be interpreted as mechanisms for removing these
redundancies in natural images (Atick & Redlich, 1992; Barlow,
1959; Buchsbaum & Gottschalk, 1983; Karklin & Lewicki, 2008;
Linsker, 1990; Olshausen & Field, 1996; Schwartz & Simoncelli,
2001; Simoncelli & Olshausen, 2001; Sinz & Bethge, 2009; Sriniva-
san, Laughlin, & Dubs, 1982). Quantitative comparisons have
shown that these response properties are not all equally effective
in removing statistical dependencies. Mechanisms removing sec-
ond-order correlations in natural images such as color opponency
and bandpass filtering yield a large reduction of redundancy. Less
pronounced but still substantial is the effect of contrast gain con-
trol (Lyu & Simoncelli, 2009; Sinz & Bethge, 2009). For orientation
selectivity, however, the potential for redundancy reduction turns
out to be much smaller (Bethge, 2006). Since the emergence of ori-

entation selectivity is the most prominent difference in the re-
sponse properties of V1 neurons compared to the retina it can
serve as an important witness on whether neural response proper-
ties in cortex can still be interpreted convincingly in terms of
redundancy reduction (Eichhorn, Sinz, & Bethge, 2009).

An important unknown that is critical to judging this case is the
true total amount of redundancy in natural images. A principled
way of quantifying redundancy is to measure the multi-information
of a distribution (Perez, 1977). The multi-information of a multi-
variate random variable is the difference between the sum of its
marginal entropies and its joint entropy

I½X1 : . . . : Xn� ¼
Xn

i¼1

H½Xi� � H½X1; . . . ;Xn�:

It equals zero if and only if the individual components are sta-
tistically independent and is positive otherwise. It measures the
information gain caused by statistical dependencies between the
single variables. Unlike differential entropy, the multi-information
is invariant against arbitrary component-wise transformations
both for linear mappings, such as scaling, and nonlinear mappings,
such as taking the logarithm.

The conventional approach for estimating the redundancy per
pixel—the multi-information rate—is to estimate the multi-informa-
tion for patches of increasing sizes and divide by the number of
pixels (Bethge, 2006; Chandler & Field, 2007; Eichhorn et al.,
2009; Lee, Wachtler, & Sejnowski, 2002; Lewicki & Olshausen,
1999; Lewicki & Sejnowski, 2000; Lyu & Simoncelli, 2009; Sinz &
Bethge, 2009; Wachtler, Lee, & Sejnowski, 2001). In this way we

0042-6989/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.visres.2010.07.025
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obtain a monotonically increasing sequence converging to the mul-
ti-information rate

I1 ¼ lim
n!1

1
n

I½X1 : . . . : Xn�:

There is an important trade-off between two different kinds of
errors that affect the outcome of this limiting process: On the
one hand, the earlier we stop the sequence of increasing patch
sizes, the more we ignore long-range dependencies between image
pixels and, hence, underestimate the redundancy of natural
images. On the other hand, the larger the patch sizes get, the more
difficult it becomes to estimate the multi-information reliably due
to the increase in dimensionality. Multi-information estimation
strongly resembles the problem of estimating the joint density
and similarly suffers from the curse of dimensionality: The number
of states that need to be estimated grows exponentially with the
number of dimensions. This means that more and more regulariza-
tion is needed to avoid overfitting in high dimensions. As a conse-
quence, with increasing dimensionality it becomes increasingly
unlikely to capture all the structure of the density.

The trade-off between ignoring long range correlations for small
n and the increasing difficulty to estimate I[X1:. . .:Xn] for large n
suggests that the estimation of the multi-information rate can be
improved substantially if one manages to construct sequences
other than 1

n I½X1 : . . . : Xn�
� �1

n¼1 which converge faster to the same
limiting value I1.

In this paper, we show that it is possible to construct such a se-
quence. The basic idea can be illustrated in the case of one-dimen-
sional stationary stochastic processes. From information theory it
is known that the conditional entropy converges to the entropy
rate of such processes1 (Cover & Thomas, 2006; Shannon, 1948)

lim
n!1

1
n

H½X1; . . . ;Xn� ¼ lim
n!1

H½XnjXn�1; . . . ;X1�:

Multiplying this equation by (�1) and adding the marginal en-
tropy of the stationary process H½X1� ¼ 1

n

Pn
k¼1H½Xk� at both sides,

yields an analogous relationship for the multi-information rate

I1 ¼ lim
n!1

1
n

I½X1 : . . . : Xn� ¼ lim
n!1

I½Xn : Xn�1; . . . ;X1�

¼ lim
n!1

H½Xn� � H½XnjXn�1; . . . ;X1�: ð1Þ

Note that the sequence on the left hand side of Eq. (1) reflects
the multi-information2 between all the variables X1, . . . , Xn while
the sequence on the right hand side reflects the mutual information
between Xn and (X1, . . . , Xn�1). The mutual information is the special
case of the multi-information which measures the statistical depen-
dencies between two random variables only, while it is possible that
the dimensionality of the two random variables is different. For
example, in our case Xn is a univariate random variable and
(X1, . . . , Xn�1) is (n � 1)-dimensional. The chain rule for the multi-
information (Cover & Thomas, 2006)

I½X1 : . . . : Xn� ¼
Xn

k¼2

I½Xk : Xk�1; . . . ;X1�;

shows that the multi-information can be decomposed into a sum of
mutual information terms. This suggests that the mutual informa-
tion based sequence Iinc

n

n o1
n¼1

with Iinc
n :¼ I½Xn : Xn�1; . . . ;X1� quanti-

fies the asymptotic increment in the multi-information while the
conventionally used multi-information based sequence Icum

n

� �1
n¼1

with Icum
n :¼ 1

n I½Xn : . . . : X1� constitutes a cumulative approach which
averages over these increments.

Inspired by an early study in the fifties (Schreiber, 1956), an
incremental approach for estimating I1 has already been used be-
fore in Petrov and Zhaoping (2003) but did not reveal its full poten-
tial. Our work elucidates a couple of points that have not been
addressed in those papers: First, we revise the mathematical justi-
fication for using the incremental approach in case of two-dimen-
sional random fields rather than one-dimensional processes as it is
necessary for modeling images. Second, we show that the mutual
information based method yields significantly better estimates of
I1 than the conventional method does while Petrov and Zhaoping
(2003) did not provide any comparisons with previous methods.
Third, we show how particularly reliable multi-information esti-
mators can be constructed for the incremental approach such that
one obtains conservative lower bounds to the multi-information
rate. This allows us, fourth, to systematically investigate how the
two approaches perform on natural images for different number
of dimensions n also far beyond the case of n = 7 pixels that was
studied in Petrov and Zhaoping (2003). Our best lower bound on
the multi-information rate for the van Hateren data set exceeds
their estimate by more than 20% and slightly outperforms the
bound obtained with the Lp-spherical model (Sinz & Bethge,
2009). It is obtained when using a causal neighborhood of only
25 pixels.

The remaining part of the paper is structured as follows: In Sec-
tion 2, we introduce the multi-information based and the mutual
information based method for estimating the multi-information
rate. In particular, we present a proof for the convergence of the
two methods to the same limiting value I1 for two-dimensional sta-
tionary stochastic processes. In Section 3, we perform experiments
on artificial images in order to demonstrate the validity of the meth-
od, and apply it to natural images afterwards. Our results show that
the incremental method based on conditional distributions per-
forms significantly better and indicates that the multi-information
rate of natural images contains a substantial contribution from high-
er-order moments. We further corroborate this finding by a second
set of experiments where we first pre-whiten the images before we
fit the local image statistics. In this way, we not only confirm our pre-
vious estimates for the multi-information rate but we can also show
that the predominant statistical dependencies captured by current
models of natural images are of very limited spatial extent. In partic-
ular, the increase in the multi-information rate observed for the
cumulative method for increasing patch size does not reflect a
meaningful contribution of long range correlations but rather an
artifact caused by the pixels at the boundary. Finally, in Section 5,
we discuss the significance of our results and compare them to exist-
ing work.

2. Methods

In order to describe the statistical regularities of natural images,
they are often modeled as two-dimensional stationary random
fields. For the present study, stationarity is crucial as it is provides
the critical link between the cumulative and the incremental meth-
od for computing the multi-information rate. Stationarity means
that the random field is invariant under translations with respect
to the x- and y-coordinates of the image intensities. In the follow-
ing, we will first depict the mathematical underpinnings for using
the incremental approach in case of two-dimensional stationary
random fields. After that we will show that the incremental meth-
od is generally superior to the cumulative method, and then we
will describe how to construct reliable multi-information and
mutual information estimators for the cumulative and the incre-
mental method, respectively. In particular, we will construct con-
servative estimators such that also the empirical quantities
become reliable lower bounds to the multi-information rate.

1 For continuous random variables it is necessary to additionally assume that the
limit exists.

2 More precisely the multi-information divided by n.
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2.1. Mathematical underpinnings

Throughout the paper, we use uppercase letters to denote ran-
dom variables, bold font to indicate vectors sometimes equipped
with an subindex denoting the dimensionality. In particular, we
write I[X1:n] to refer to the multi-information I[X1: . . . : Xn] and
I[X1:X2:n] to refer to the mutual information between X1 and
(X2, . . . , Xn).

For the incremental method, we estimate the multi-information
rate I1 via the mutual information between Xn and X1:(n�1) for
increasing n

Iinc
n ¼ I½Xn : X1:ðn�1Þ� ¼ H½Xn� � H½XnjX1:ðn�1Þ�: ð2Þ

As mentioned in the introduction, Iinc
n and Icum

n converge to the
true multi-information rate I1 for one-dimensional stationary sto-
chastic processes. One subtle complication, hidden in the expres-
sion H[XnjX1:(n�1)], is that the proof for the one-dimensional case
(see Cover & Thomas, 2006) uses stationarity to replace all condi-
tional entropy terms H[XkjX1:k�1] in the chain rule decomposition
of the joint entropy

H½X1:n� ¼ H½X1� þ
Xn

k¼2

H½XkjX1:k�1� ¼ H½Xn� þ
Xn

k¼2

H½XnjXn�kþ1:n�1�;

with shifted versions H[XnjXn�k+1:n�1] where the index of each com-
ponent is shifted by (n � k). For two-dimensional Markov chains,
however, the two-dimensional shape of the causal neighborhood
(see Fig. 1) implies that there are always conditional entropy terms
H[XkjX1:k�1] that cannot be matched by index shifting. Nevertheless,

it is possible to show that Iinc
n

n o1
n¼1

converges to the same limiting

value I1 as Icum
n

� �1
n¼1 for all stationary random fields of arbitrary

dimensions (Föllmer, 1973). In order to make this theorem more
assessable we provide a simple proof for the special case of two
dimensions in Appendix A.

2.2. Superiority of the incremental approach over the cumulative
approach

Both types of limiting processes, the cumulative, multi-informa-
tion based sequence Icum

n

� �1
n¼1 and the incremental, mutual infor-

mation based sequence Iinc
n

n o1
n¼1

, grow monotonically with n and

converge to the true multi-information rate from below. In other
words, each sequence defines a lower bound on the multi-informa-
tion rate that becomes increasingly tighter for large n and in the
limit converges to the same value for the multi-information rate.
Using the chain rule for the multi-information together with the
fact that conditioning reduces entropy we further obtain the fol-
lowing relations

Icum
n ¼ 1

n
I½X1:n� <

1
n� 1

I½X1:n� � Icum�
n ¼ 1

n� 1

Xn

k¼2

I½Xk : X1:k�1�

6
1

n� 1

Xn

k¼2

I½Xn : X1:n�1� ¼ Iinc
n 6 I1: ð3Þ

First, this demonstrates that Icum�
n , for which the total multi-

information is divided by (n � 1), is a uniformly better approxima-
tion to I1 than the conventionally used Icum

n , for which the multi-
information is divided by n. While the difference between the
two sequences decays very fast, Icum�

n � Icum
n

� �
� 1=n2, the difference

between the cumulative and the incremental sequence

Iinc
n � Icum�

n ¼ 1
n� 1

Xn

k¼2

I½Xn : X1:n�1� � I½Xk : X1:k�1�ð Þ;

can be quite substantial also for moderately large n. It is zero if and
only if I[Xn:X1:n�1] = I[Xn�1:X1:n�2] = � � � = I[X2:X1] which is equiva-
lent to saying that the process is a stationary Markov process of or-
der one. For all other processes, both cumulative sequences, Icum

n and
Icum�
n , always underestimate the true multi-information rate for any

finite n. In contrast, for the incremental, mutual information based

sequence Iinc
n

n o1
n¼1

it holds Iinc
n ¼ I1 for any Markov chain model if

only the neighborhood X1:n�1 is sufficiently large (i.e. Xn condi-
tioned on X1:n�1 is statistically independent of all other variables).
In summary, for any given number of dimensions n, the incremen-
tal, mutual information based sequence in general yields better
estimates of I1 than the cumulative, multi-information based one.

2.3. Cumulative (multi-information based) method

The cumulative method is commonly used for estimating the
multi-information rate of natural images. For the sequence of the
multi-information of image patches of increasing size we have

Icum
n ¼ 1

n
I½X1:n� ¼

1
n

Xn

i¼1

H½Xi� � H½X1:n�

¼ H½X1� þ
1
n

log pðx1:nÞh iX1:n

P �hlog pðx1ÞiX1
þ 1

n
hlog p̂ðx1:nÞiX1:n

� bIcum
n ; ð4Þ

where p̂ denotes a particular model distribution.
In order to obtain an empirical estimate of Icum

n we use the lower
bound given by Eq. (4). The first term is the entropy H[Xi] of the
univariate marginal distribution over the pixel intensities which
is the same for all i = 1, . . . , n due to stationarity. Since the problem
of estimating this term is identical for both cases, the cumulative
as well as the incremental approach, we will discuss it separately
at the end of the method section.

The second term in the definition of our estimator bIcum
n reflects

the average log-loss (Bernardo, 1979)

�hlog p̂ðxÞiX1:n
¼ H½X1:n� þ DKL½pkp̂�P H½X1:n�;

where DKL denotes the Kullback–Leibler divergence, a positive
quantity that measures the mismatch between the true and the
model distribution. Therefore, the average log-loss has the desirable
property that any systematic mismatch between the model distri-
bution p̂ and the true distribution p will lead to overestimation of
the joint entropy. In this way, we obtain a conservative estimate
of the true multi-information rate I1.

For estimating the average log-loss, we follow (Eichhorn et al.,
2009; Lewicki & Olshausen, 1999; Lewicki & Sejnowski, 2000)
and use Monte-Carlo sampling

1 ...2

nn-1...

1 ...2

nn-1...

(a) (b)

Fig. 1. Illustration of the shape of the image regions for the two different entropy
estimation methods: (a) The square shaped patch used for estimating Icum

n . (b) The
causal neighborhood used for estimating Iinc

n . In this approach we compute the
conditional distribution of the white pixel given the gray ones.
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�hlog p̂ðxÞiX1:n
� � 1

m

Xm

i¼1

log p̂ðxiÞ;

over a large ensemble of m samples xi which differs from the train-
ing set used for fitting the parameters of p̂.

2.4. Incremental (mutual information based) method

For the incremental approach we employ the same strategy as
for the cumulative method: We use the average log-loss of a para-
metric density for estimating the conditional entropy in Eq. (2) in
order to obtain a conservative estimator for Iinc

n . In principle, it
would be nice to rewrite the conditional entropy in terms of the
joint entropy again

H½XnjX1:ðn�1Þ� ¼ H½X1:n� � H½X1:ðn�1Þ�

� 1
n
hlog p̂ðx1:ðn�1ÞÞiX1:ðn�1Þ

� 1
n
hlog p̂ðx1:nÞiX1:n

;

as it would allow one to use exactly the same parametric density
model like in the cumulative method to estimate the joint entro-
pies. The caveat, however, is that the upward bias in the error in-
duced by using the average log-loss when estimating entropies
can now occur in both directions.

Therefore, we resort to a different strategy, using the average
log-loss directly for estimating the conditional entropy which
again yields a lower boundbIinc

n � H½Xn� þ hlog p̂ðxnjx1:ðn�1ÞÞiX1:n
ð5Þ

6 H½Xn� � H½XnjX1:ðn�1Þ� ¼ Iinc
n : ð6Þ

Therefore, we have to fit a conditional density model
p̂ðxnjx1:ðn�1ÞÞ rather than a joint density model p̂ðx1:nÞ like in the
cumulative approach.

2.5. Parametric density model

For the sake of better comparison, we will use the same Gauss-
ian scale mixture (GSM) model to serve as the parametric model
for the average log-loss estimators in both approaches. The GSM
model is a rich subfamily of elliptical contoured distributions
(Wainwright & Simoncelli, 2000) which have recently been dem-
onstrated to provide a good fit to local patches of natural images
(Eichhorn et al., 2009; Lyu & Simoncelli, 2009).

We use a variant of the GSM model which is defined as a mix-
ture of a finite number of zero mean Gaussians with differently
scaled versions of the same covariance matrix R:

pðxÞ ¼ GSMðxjs;R; kÞ ¼
XK

k¼1

kk �Nðxjsk � RÞ; k; s 2 RK ;

where the class probabilities kk sum up to one.
For parameter fitting we use an expectation maximization (EM)

algorithm. To this end, we define the hidden variable Z indicating
which scale is picked for a specific data point x:

pXjZðxjkÞ ¼Nðxjsk � RÞ and pZðkÞ ¼ kk:

For the E-step, we need to compute the probability tk
i that Z = k

given the ith data point

tk
i ¼ pZjXðkjxiÞ ¼

kkNðxijsk � RÞPK
k¼1kkNðxijsk � RÞ

:

In the M-step, for given kk and tk
i , 1 6 k 6 K, 1 6 i 6m we obtain

kk ¼
Pm

i¼1tk
iPm

i¼1

PK
k¼1tk

i

:

For computing the scales and the covariance in the M-step, we
need to maximize

Lðs;RÞ ¼
Xm

i¼1

XK

k¼1

tk
i logNðxijsk; �RÞ:

Since the maximum cannot be calculated analytically, we use a
block coordinate descent approach. In the first step, we fix s and
calculate R, in the second step, we fix R and calculate s, using
the equations

R ¼ 1
m

XK

k¼1

Xm

i¼1

tk
i

sk
xix>i and sk ¼

Pm
i¼1tk

i x>i R�1xi

K
Pm

i¼1tk
i

:

In our simulations, we find that one or two iteration are enough
for the covariance matrix and scale parameters to converge.

In order to use the same distribution for the second method, we
calculate the conditional distribution from the GSM model for fixed
parameters. This can be done analytically in the GSM model: Let
the covariance matrix of R of GSM(x1:njs, R, k) be

R ¼
R1:ðn�1Þ;1:ðn�1Þ R1:ðn�1Þ;n

R1:ðn�1Þ;n Rn;n

� �
:

Marginalizing out the random variable Xn again yields a GSM
with parameters

GSM x1:ðn�1Þjs1:ðn�1Þ;R1:ðn�1Þ;1:ðn�1Þ; k1:ðn�1Þ
� �

:

Then the conditional distribution is just the ratio between the
original joint and the marginalized distribution:

pXn jX1:ðn�1Þ
ðxnjx1:ðn�1ÞÞ ¼

GSMðx1:njs1:n;R1:n;1:n; k1:nÞ
GSMðx1:ðn�1Þjs1:ðn�1Þ;R1:ðn�1Þ;1:ðn�1Þ; k1:ðn�1ÞÞ

:

2.6. Estimation of the univariate pixel entropy

In order to minimize the risk of overestimating the univariate
marginal entropy in either of the two approaches, we aim at using
a very precise nonparametric approach. To this end we use a histo-
gram based jackknifed maximum likelihood estimator (see e.g.
Paninski, 2003). Given m samples with a marginal standard devia-
tion of r we chose the bin width D according to the heuristic pro-
posed by Scott (1979): D ¼ 3:49rm�

1
3. Since the discrete entropy

asymptotically equals the differential entropy plus �log D, we ob-
tain an estimate of the marginal entropy by adding the log of the
bin width D. Using that method we reliably obtain a value of
1.57 bits per pixel for the univariate pixel entropy. Note that this
number like all differential entropies depends on the scale of the
pixel intensities. The multi-information rate, however, is indepen-
dent of the scale as it is computed from differences between differ-
ential entropies.

3. Experiments

3.1. Experiment on artificial data

In order to illustrate the two estimation methods, we first com-
pare the cumulative and the incremental approach on an artificial
stationary Gaussian random field using the autocorrelation of
natural images. To this end, we generated 10.000 images of
60 	 60 pixels by applying a linear transformation A to Gaussian
white noise n such that the covariance matrix of the resulting
Gaussian distribution R = AA> resembles the covariance matrix of
the van Hateren data set. We estimated the covariance matrix from
samples of 60 	 60 patches using the fact that due to stationarity
the covariance between two pixels at location (x, y) and location
(x
0
, y

0
), respectively, must only depend on their relative distance
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(x � x
0
, y � y

0
), which results in a symmetric block-Toeplitz covari-

ance matrix.
From those images we sampled ten pairs of training and test

sets of 1.000.000 image patches each, for a range of different patch
sizes. Fig. 1 shows the shape of the image patch shape used in our
two approaches. For the cumulative approach, we use patch sizes
2 	 2, . . . , 12 	 12. For the incremental approach, we use causal
neighborhoods of sizes 5, 13, 25, 41, 61, 85, 113, 145. The param-
eter estimation for the models was done in exactly the same way
as for the natural images below.

As a stationary Gaussian random field is completely defined by
the autocorrelation function we can compute the multi-informa-
tion and the mutual information analytically from AA>. Fig. 2a
shows the result for the full range from 1 to 3600 pixels.

Fig. 2b shows the empirical results obtained for bIcum
n ; bIcum�

n andbIinc
n as a function of the dimension N when using the average log-

loss of a Gaussian model distribution. For comparison, the dashed
black lines indicate the true multi-information rate I1 obtained
analytically from the relevant submatrices Rcum

n and Rinc
n of the

covariance matrix C needed to compute the multi-information
bounds

Icum
n ¼ 1

2n

Xn

k¼1

log2 Rcum
n

� �
k;k � log2 det Rcum

n

� ��� �� !
;

Iinc
n ¼

1
2

log2r2
n � log2r2

nj1:ðn�1Þ

	 

;

respectively, where

r2
n :¼ Rinc

n

	 

n;n
;

r2
nj1:ðn�1Þ :¼ r2

n � Rinc
n

	 

n;1:ðn�1Þ

Rinc
n

	 
�1

1:ðn�1Þ;1:ðn�1Þ
Rinc

n

	 

1:ðn�1Þ;n

:

The example visualizes the superiority of the incremental meth-
od over the cumulative method. The agreement between the ana-
lytical and empirical curves illustrates that the difference between
the two methods is not caused by insufficient amount of data or by
wrong model assumptions but solely by an unavoidable downward
bias of the cumulative method. As apparent from Eq. (3), this
downward bias originates from the fact that pixels close to the
boundaries suffer from an incomplete neighborhood. Therefore,
they do not contribute the full amount of redundancy to the mul-
ti-information rate and it requires very large image patches until
the pixels in the interior can sufficiently outnumber the pixels at
the boundaries. Even at a patch size of 60 	 60 the cumulative
method still underestimates the asymptotic information rate of

this stationary Gaussian random field by 0.02 bits per pixel. In
other words, the convergence of the cumulative methods is extre-
mely slow even though we are using the correct density model for
the evaluation of the average log-loss.

3.2. Natural image dataset and parameter estimation

We perform two blocks of experiments with natural images. In
the first block, we use images whose pixel values encode log-inten-
sities. In the second block, we use pre-whitened images generated
by a predictive coding scheme that subtracts from each pixel the
optimal linear prediction from a causal neighborhood around it.
In order to compute the multi-information for the original pixels,
we have to account for the whitening transformation. As this
whitening step can be described by a linear transform which has
vanishing log-Jacobian in the limit, we can lower bound the mul-
ti-information rate by the difference of the marginal entropy
(1.57 bits) on the pixel domain and the ALLs on the whitened
domain:

bIinc
n ¼ H½Xn� þ hlog p̂ðynjy1:ðn�1ÞÞi
6 H½Xn� � H½YnjY1:ðn�1Þ�
6 H½Xn� � lim

k!1
H½YkjY1:ðk�1Þ�

¼ H½Xn� � lim
k!1

1
k

H½Y1:k�

log jJj ¼ 0H½Xn� � lim
k!1

1
k

H½X1:k� ¼ I1

where Y1:n denotes the whitened pixels. This lower bound is equal
to the multi-information estimate after whitening the images, plus
the difference of original marginal pixel entropy and marginal pixel
entropy of pre-whitened data, i.e.

bIinc
n ¼ H½Yn� � hlog p̂ðynjy1:ðn�1ÞÞi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

MI estimate in second layer

þ H½Xn� � H½Yn�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
marginal entropy difference

: ð7Þ

The difference between the marginal entropies for the van Hat-
eren dataset is equal to 2.9 bits.

For the experiments on natural images we used exactly the
same amount of data as in the artificial example described above.
That is for each patch size we sampled ten pairs of training and test
sets of 1.000.000 log-intensity image patches from the van Hateren
database (van Hateren & van der Schaaf, 1998). Again, for the
cumulative approach, we use patch sizes 2 	 2, . . . , 12 	 12. For
the incremental approach, we use causal neighborhoods of sizes
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Fig. 2. Verification of the estimation methods on artificial data: Multi-information rate in bits per pixel as estimated by our two methods as a function of the number of
pixels. The blue and cyan curves show the result for the cumulative method and the red curve shows the result of the incremental method which significantly outperforms
the cumulative ones. The left figure (a) shows the analytic results for the full range of up to n = 3600 dimensions using a logarithmic x-axis. The right figure (b) shows an
excellent agreement between the analytical and the empirically estimated lower bounds for both methods.
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5, 13, 25, 41, 61, 85, 113, 145. For each patch size we run different
versions of the GSM model with K = 1, 4, 7, 10 scale mixture com-
ponents. All results shown for bIcum and bIinc are evaluations on the
test set. Importantly, all evaluations on the training set yield iden-
tical results so that potential effects due to overfitting can be safely
excluded. The error bars in all figures indicate three standard devi-
ations over the ensemble of ten different test sets, apart from
Fig. 6b where we used two standard deviations because of the
smaller range of the y-axis.

4. Results

Fig. 3 shows the multi-information rate computed with the two
different methods for the SGM with K = 10 scale mixture compo-
nents. One can see from the figure that the incremental method
significantly outperforms the cumulative one and provides a tigh-
ter lower bound.

Fig. 4 shows the estimated multi-information rates for the dif-
ferent methods and different numbers of scale mixture compo-
nents. The performance seems to saturate for about seven
mixture components.

For the incremental method, the lower bound takes a maximum
at a neighborhood size of 25 pixels, whereas the cumulative meth-
od still exhibits a tiny increase of the lower bound at 144 pixels.
This raises two questions:

(1) How can it be that the amount of dependencies captured
with the incremental method is decreasing with increasing
patch size?

(2) Could it be that the cumulative method is able to better cap-
ture long range interactions between pixels and hence at
some point can yield a tighter lower bound when using very
large image patches?

The first question is motivated by the fact that Icum
n and Iinc

n can
only increase with increasing patch or neighborhood size. As one
can see from the Eqs. (4) and (5), however, the lower bounds bIcum

n

and bIinc
n can still decrease with increasing n if the inequalitiesbIcum

n 6 Icum
n and bIinc

n 6 Iinc
n become less and less tight. The differences

between the true and the estimated quantities Icum
n �bIcum

n and
Iinc
n �bIinc

n equal the Kullback–Leibler distance between the true dis-
tribution and the model distribution. If the mismatch of the model
distribution becomes larger for increasing patch size, this can re-
sult in a lower bound which decreases with increasing patch size.

This is what we see in case of the incremental method. In case of
small patch sizes, the GSM model can exploit higher-order correla-
tions to model contrast dependencies between nearby pixels. In
case of large image patches, however, the GSM model has to com-
promise between strong higher-order correlations between nearby
pixels and weak higher-order correlations between distant pixels.
Therefore, the model fit of the GSM becomes worse for larger patch
sizes which causes the decrease in bIinc

n . In other words, the limited
flexibility of the GSM model to capture the structure of higher-or-
der correlations becomes increasingly severe with increasing
dimensionality. For second-order correlations, however, this is dif-
ferent, because with a Gaussian distribution one can always fit any
possible pattern of second-order correlations. Since in contrast to a
general GSM, a single Gaussian distribution is always entirely igno-
rant against higher-order correlation, we do not see the effects of
imperfect fitting of higher-order correlations in case of K = 1. For
a Gaussian model, the lower bound can therefore only increase.
This is nicely reflected in Fig. 4b: for K = 1 the lower bound always
increases, whereas for K P 4 the lower bound decreases for large
patch sizes.

Given that we explained the decrease of the lower bound for the
incremental method with the limited flexibility of the GSM model,
why do we not see a decrease for the cumulative method? We can
explain this with the downward bias caused by the reduced contri-
bution to the multi-information from pixels close to the patch
boundaries. It is important to note that the persistent increase in
case of the cumulative method does not originate from a better im-
age model. Like in the artificial example, we fitted the same model
distribution to optimally fit the joint distribution over the image
pixels for the cumulative as well as for the incremental method.
The crucial difference lies only in the way how we compute the
lower bound to the asymptotic information rate from it. In one case
we divide the total multi-information by the number of pixels and
in the other case we compute the mutual information between one
pixel and the rest by computing the conditional from the joint
model. Therefore, the persistent increase up to N = 144 for the
cumulative method does not reflect a better fit to the data but
merely shows that the downward bias of the cumulative method
for small image patches, for which the ratio of boundary to interior
pixels is still large enough, is so substantial that it easily outbalanc-
es the decrease caused by degradation in the model fit.

Our second set of experiments on the pre-whitened images (see
Section 3) further corroborates this explanation. The redundancy
reduction caused by the pre-whitening is assessed as explained
above and is the same for both methods. Therefore, after pre-whit-
ening, all differences between the two methods can only originate
from differences in assessing the contribution of higher-order cor-
relations. Without the large contribution of second-order correla-
tions, the downward bias for the cumulative method for small
image patches becomes much smaller and hence, the effect of deg-
radation in the model fit on the lower bound becomes more visible
for the cumulative method as well. As can be seen in Fig. 5, the
cumulative method now has a maximum as well at a patch size
of 7 	 7 pixels. For the incremental method, the optimal neighbor-
hood size is further reduced to n = 13. The type of higher-order cor-
relations that can be captured by the GSM model are limited to
variance (contrast) correlations between the different pixels. The
fact that the lower bound takes its maximum for a very small
neighborhood size shows that this type of correlations can be ex-
plained (away) by short range couplings.

Note that the curves shown include the contribution of second-
order correlations that were removed during the pre-whitening
step. The second-order contribution equals the lower bound ob-
tained with the Gaussian distribution (K = 1) and is about 2.7 bits
per pixel. Remarkably, the maximum lower bound determined
with the pre-whitened images yields the same estimate for the
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Fig. 3. Comparison of the cumulative and the incremental approach on natural
images with K = 1, 4, 7, 10 scale mixture components. The blue and cyan curves
show the result for the cumulative method and the red curve shows the result of the
incremental method. Analogous to the results for artificial data, the incremental
method significantly outperforms the cumulative ones. The arrow shows the
maximum amount of multi-information estimated by the incremental method.
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multi-information rate as the maximum lower bound obtained on
the original images. This nicely underlines the reliability of our
estimates.

As a final result we show how the incremental method can be
further improved by improving the parameter fitting. As explained
in Section 2, we always optimized the likelihood for the joint dis-
tribution and not for the conditional one. However, maximizing
the likelihood for the joint model does not necessarily also maxi-
mize the likelihood for the conditional distribution which would
be equivalent to minimizing the average log-loss of the conditional
distribution. Based on Jebara’s work on conditional expectation
maximization (Jebara, 2002) we developed a new algorithm (see
Appendix B) that we used to optimize the conditional likelihood
for the GSM model. The result of this optimization is shown in
Fig. 6a. In this way we obtained our best lower bound of 3.26 bits
per pixel which is almost 0.6 bits larger than the multi-information
rate obtained for a single Gaussian.

Fig. 6b shows the residual multi-information rate (see Eq. (7))
achieved by optimizing the conditional likelihood after pre-whit-
ening (solid red). For comparison we also show the residual mul-
ti-information rate when optimizing for the joint likelihood
(dashed) and the cumulative method (solid).

The large difference between the GSM using only a single mix-
ture component and the GSMs with several ones is particularly
interesting. Since the GSM in case of K = 1 is a plain Gaussian which
is completely determined by its mean and its covariance matrix,
the entropy rate of this GSM shows the contribution of the

second-order moments to the total entropy of the signal. The fact
that this difference is large shows the highly non-Gaussian behav-
ior of natural images and, therefore, a substantial amount of high-
er-order correlations (Eichhorn et al., 2009; Chandler & Field, 2007;
Ruderman & Bialek, 1994).

5. Summary and discussion

Measuring the total redundancy of natural images is a challeng-
ing task. In this paper we showed that the conventionally used
cumulative method suffers from an unfavorable downward bias
for small image patches. This problem can be avoided by using
the incremental method. We compared the two methods for both
artificial data and natural images, and demonstrated that the incre-
mental method always yields a better lower bound on the multi-
information rate.

As our method yields a conservative lower bound on the multi-
information rate, we can safely conclude from our results that
I1P 3.26 bits per pixel for the van Hateren data set. This number
is substantially larger than the 2.7 bits per pixel previously esti-
mated by Petrov and Zhaoping (2003) who used very small neigh-
borhoods only (n = 7). While they concluded that the total amount
of higher-order correlations in natural images is small, the differ-
ence in the performance of the Gaussian model (K = 1) and the full
GSM model (K = 10) suggests that the amount of higher-order
correlations is at least 0.6 bits per pixel which we think is quite
substantial.
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Fig. 4. Comparison of the multi-information rate estimates for different numbers of components (K = 1, 4, 7, 10). (a) Multi-Information rate estimated by the cumulative
approach. (b) The same result using the incremental approach. In both cases the number of scale mixture components have similar effects and the performance seems to
saturate for seven components. The arrow indicates the maximum amount of multi-information estimated by the incremental method.
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Fig. 5. Comparison of the multi-information rate estimates for different numbers of components (K = 1, 4, 7, 10) based on pre-whitened image data set. (a) Multi-Information
rate estimated by the cumulative approach. (b) The same result using the incremental approach. Since the pre-whitening removes the downward bias of the cumulative
method for the second-order contribution to the multi-information, it now has substantially improved and its lower bound—similarly to the incremental method—now takes
a maximum for a relatively small patch size as well. The arrows indicate the maxima for both methods.
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Using a less conservative nearest neighbor estimation method,
Chandler and Field (2007) arrived at an information rate similar
to ours. Taking the difference between the data points for Gaussian
white noise and natural scenes in Fig. 14 in Chandler and Field
(2007) would yield a multi-information rate estimate of about
3.1–3.3 bits per pixel. From their extrapolation in the same figure
one obtains a multi-information rate of 3.7 bits per pixel in the
limit.

In previous studies, we used the cumulative method together
with an Lp-spherically symmetric model and an ICA model to esti-
mate the redundancy reduction achieved by different neural re-
sponse properties (Sinz & Bethge, 2009). The multi-information
reported for ICA and the Lp-spherically symmetric model are 3.41
and 3.62 bits per pixel. Given that the multi-information estimates
in Sinz and Bethge (2009) were obtained on a different dataset
(Bristol Hyperspectral), the results are reasonably similar. We re-
peated the experiments of Sinz and Bethge (2009) and computed
the values for the van Hateren dataset for 144 dimensions. We ob-
tained 2.92 bits per pixel for ICA, 3.05 bits per pixels for the joint
GSM, and 3.17 bits per pixel for the Lp-spherically symmetric mod-
el. This is better than the result of the cumulative method for the
GSM but about 0.1 bits per pixel worse than the result of the incre-
mental method. Thus, again the incremental method provides a
better bound by using only 25 dimensions. The differences be-
tween the results for the Bristol Hyperspectral dataset and the
van Hateren dataset are within the typical variations one observes
for different image libraries. They mainly originate from variations
in the second-order redundancies. In particular, the difference be-
tween the Lp-spherically symmetric model and ICA is very similar
for both data sets: 0.21 bits per pixel for Bristol Hyperspectral
and 0.25 for van Hateren.

In this study, we used the Gaussian scale mixture model for
both the cumulative and the incremental approach for the sake
of comparison. In the future we can make further advantage by
using more sophisticated conditional density models that are opti-
mally tailored to the incremental approach. It is interesting to note
that the conditional distribution has a close link to the inverse of
the auto-covariance matrix of random processes (the so called pre-
cision matrix). Typically, the precision matrix is much sparser and
hence captures the conditional dependency structures much more
efficiently than the covariance matrix (Rue & Held, 2005). In fact,
for a Gaussian Markov random field, an entry of the precision ma-
trix is non-zero if and only if the two points are conditionally
dependent. When looking at the precision matrix for natural
images, the number of components that have a value significantly

larger than zero is typically very small and restricted to a very
small neighborhood around that pixel.

In summary, we expect that the incremental method combined
with an appropriate conditional density model will lead to major
improvements in statistical modeling of natural images.
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Appendix A

Definition 1. (Causal points). Let the causal points of a particular
point in a random field be all points that are above that particular
point or at its left in the same row.

Definition 2. (Causal neighborhood of radius l). Let the causal
neighbors of radius l of a particular point be all causal points which
their horizontal and vertical distance from that particular point
being smaller or equal to l (see Fig. 1b for an example of a causal
neighborhood of radius 3).

Theorem 1. (Convergence of entropy rate for 2D stationary pro-
cess). The sequence of conditional entropies with causal neighbor-
hoods converges to the entropy rate of a stationary random process.

Proof. Consider a sequence of sections X with increasing size
which is taken from a 2D stationary process (see Fig. 7). Each sec-
tion is parametrized by a parameter l which determines the extent
of the section. The width of the section is chosen to be w = l3 and its
height is equal to h = l2 + l � 2. h

The pixels are enumerated from top-left to button-right as it is
shown in the Fig. 7. Let G and G be the sets that contain the indices
which are shaded in gray and white colors, respectively. Further-
more, let n denote the total amount of pixels in the section, and
let nG and nG be the number of pixels in the gray and white regions,
respectively.

If we let the size of the sections go to infinity by letting l go to
infinity, they will cover the whole plane and the number of white
pixels will become negligible, i.e.
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Fig. 6. Further improvement of the lower bound by optimizing the GSM model for the conditional likelihood. The arrow indicates the maximal amount of multi-information
that was estimated. (a) shows the total multi-information rate while (b) shows the residual multi-information rate after the pre-whitening step (first term of Eq. (7)). The
optimization of the conditional likelihood leads to a better fit of the conditional distribution and, hence, less degradation in the incremental method (solid vs. dashed red
curve). It further corroborates the superiority of the incremental method above the cumulative method also for the pre-whitened data (red vs. other solid curves).
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lim
l!1

nGðlÞ
nðlÞ ¼ lim

l!1

1
2 ðwðlÞ� lÞ � ðhðlÞ� lÞ

wðlÞ � lþhðlÞ � l� l2þ 1
2 ðwðlÞ� lÞ � ðhðlÞ� lÞ

¼ 1; ð8Þ

lim
l!1

nGðlÞ
nðlÞ ¼ lim

l!1

wðlÞ � lþhðlÞ � l� l2

wðlÞ � lþhðlÞ � l� l2þ 1
2 ðwðlÞ� lÞ � ðhðlÞ� lÞ

¼ 0: ð9Þ

Since the sections X will cover the whole plane in the limit, the se-
quence of entropies of the single sections converges to the entropy
of the stationary process:

h ¼ lim
l!1

1
nðlÞH½X1:nðlÞ� ¼ lim

l!1

1
nðlÞ

XnðlÞ
k¼1

H½XkjX1:k�1�:

If we split the sum into two sums for the pixels in the gray, and
white region, respectively, we obtain

h ¼ lim
l!1

1
nðlÞ

X
k2G

H½XkjX1:k�1�
 !

þ lim
l!1

1
nðlÞ

X
k2G

H½XkjX1:k�1�

0@ 1A:
ð10Þ

Define Ha[X] to be the conditional entropy of X given a causal
neighborhood of radius a (see Fig. 1b). Since conditioning de-
creases the entropy we obtain the following inequalities for sta-
tionary processes:

Hw 6 H½XkjX1:k�1� 6 Hl; 8 k 2 G;

Hw 6 H½XkjX1:k�1� 6 H0; 8 k 2 G:

Using these inequalities in Eq. (10) we obtain:

lim
l!1

HwðlÞ 6 h 6 lim
l!1

nGðlÞ
nðlÞ Hl þ lim

l!1

nGðlÞ
nðlÞ H0: ð11Þ

Using Eqs. (8) and (9) in Eq. (11) we get:

lim
l!1

HwðlÞ 6 h 6 lim
l!1

Hl:

The sequences Hw(l) and Hl will converge to the same limit, since
{Hw(l)}l=1,2,. . . is a proper subsequence of {Hl}l=1,2,. . .. Hence, using the
sandwich theorem the sequence of conditional entropies {Hl}l=1,2,. . .

converges to the true entropy rate from above.

Appendix B

Minimizing the conditional average log-loss for a given model is
equal to maximizing the conditional likelihood. Given the observed
data fxigm

i¼1, the conditional log-likelihood is given by:

Lðs;R; kÞ ¼
Xm

i¼1
log GSMðx1:n;ijs;R; kÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

L1ðs;R;kÞ

�
Xm

i¼1
log GSMðx1:ðn�1Þ;ijs;R1:ðn�1Þ;1:ðn�1Þ; kÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

L2ðs;R1:ðn�1Þ;1:ðn�1Þ ;kÞ

:

The conditional log-likelihood is the difference between the
joint log-likelihood L1 and the marginal log-likelihood L2. Com-
monly, the EM algorithm is used to estimate mixture distributions.
It constitutes a variational approach which maximizes a lower
bound on the joint log-likelihood based on the Jensen inequality.
In each iteration the maximum of the bound is computed. Since
here L2 enters the conditional log-likelihood with a negative sign,
the normal Jensen inequality is not useful to bound this function.
Jebara derived a reversed form of the Jensen inequality for the
exponential family (Jebara, 2002).

We used Jebara’s method for deriving a conditional EM algo-
rithm for the scale mixture of Gaussians. In the E-step the follow-
ing coefficients are computed:

tk
i ¼

kkNðxijsk �RÞPK
k¼1kkNðxijsk �RÞ

;

rk
i ¼

kkNðx1:ðn�1Þ;ijsk �R1:ðn�1Þ;1:ðn�1ÞÞPK
k¼1kkNðx1:ðn�1Þ;ijsk �R1:ðn�1Þ;1:ðn�1ÞÞ

;

wk
i
0 ¼max 0;

rk
i

xT
1:ðn�1Þ;is

�1
k R�1

1:ðn�1Þ;1:ðn�1Þx1:ðn�1Þ;i�1

" #
;
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i ¼2G
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i

2

� 

xT

1:ðn�1Þ;is
�1
k R�1

1:ðn�1Þ;1:ðn�1Þx1:ðn�1Þ;i�1
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� 
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GðnÞ¼
nþ 1

4logð6Þþ 25
36logð6Þ2

�1
6 if nP 1

6 ;

ðn�1Þ2

logðnÞ2
� 1

4logðnÞ if n6 1
6 :

8<: :

Using these coefficients we get the following update rule for the
scale and marginal covariance parameters.

R1:ðn�1Þ;1:ðn�1Þ ¼
1
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Fig. 7. Enumeration of the pixels in a 2D stationary process.
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The conditional prediction matrix C ¼ R�1
1:ðn�1Þ;1:ðn�1ÞR1:ðn�1Þ;n and

the conditional variance c ¼ Rn;n � Rn;1:ðn�1ÞR
�1
1:ðn�1Þ;1:ðn�1ÞR1:ðn�1Þ;n

only depend on the joint log-likelihood L1 and their estimations
in the M-step are given by:

M ¼ 1
m

XK

k¼1

Xm

i¼1

tk
i s�1

k xxT ;

C ¼M�1
1:ðn�1Þ;1:ðn�1ÞM1:ðn�1Þ;n;

c ¼ Mn;n �Mn;1:ðn�1ÞM
�1
1:ðn�1Þ;1:ðn�1ÞM1:ðn�1Þ;n:

Similar to the normal EM algorithm for optimizing the joint
likelihood of theGSM model, one needs to iterate between estimat-
ing s and R for maximizing the bound.

The derivation before was for the case of fixed weighting coef-
ficients k. For updating the weighting coefficients one can derive
another EM update rule. Define a (K � 1) 	 (K � 1) matrix N with
the following entries

Ni;j ¼
ki � k2

i if i ¼ j;
�kikj if i – j:

(
Consider a K � 1-dimensional vector zk,0 < k < K for which all

entries are zero except the kth one, which equals one. Furthermore,
let zK a zero vector with K � 1 elements. Using those vectors, we
get the following update rules for the E-step

vk
i ¼ 4Gðrk

i =2Þðzk � k1:ðK�1ÞÞT N�1ðzk � k1:ðK�1ÞÞ;

and the M-step

kk ¼
Pm

i¼1tk
i �

Pm
i¼1rk

i

mþ
PK

k¼1

Pm
i¼1vk

i

þ kk:

We observed that in practice the conditional EM algorithm con-
verges very slowly. We found out that this is because the reverse Jen-
sen inequality for the covariance is a very loose bound which
becomes even looser for higher dimensions since the coefficient w
increases rapidly with increasing dimensionality. As a consequence
of this, we observed empirically that the EM algorithm increases the
log-likelihood slower than gradient ascend with line search.

We accelerated the EM algorithm by using the Quasi-Newton
method (algorithm QN2 in Jamshidian & Jennrich, 1997). The idea
behind this method is to approximate the Newton update H�1g(h),
where H is the Hessian and g is the gradient at h with the update
ĝðhÞ � SgðhÞ where ĝ is EM gradient. In other words, the difference
of two EM steps and S is a matrix that needs to be updated as well.
The authors modify BFGS Quasi-Newton method to get the update
for S:

DS ¼ 1þ DgTDhH

DgTDh

� 

DhDhT

DgTDh
� DhHDhT þ ðDhHDhTÞT

DgTDh
:

where DhH ¼ �Dĝþ SDg while Dh and Dg show the amount of
change in variables h and g after each iteration, respectively. In
the implementation one initializes with S = 0 and then updates S
according to the update rule. If the line search is not successful S
is reset to zero.

In practice we observed that this Quasi-Newton acceleration
significantly increases the convergence speed but it still remains
slow. In the future, this may be substantially improved by exploit-
ing the Quasi-Newton and Newton method directly on the log-
likelihood.
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Divisive normalization in primary visual cortex has been linked to
adaptation to natural image statistics via Barlow’s redundancy re-
duction hypothesis. Using recent advances in natural image model-
ing, we quantify the residual redundancy after divisive normalization
in a population of linear-nonlinear neurons. We find that static di-
visive normalization is rather inefficient in reducing local contrast
correlations and demonstrate that a simple temporal contrast adap-
tation mechanism can substantially increase the efficiency. Our find-
ings highlight the importance of adaptation to the local contrast
statistics via shifts in the contrast response curve of neurons.

sensory coding | primary visual cortex | redundancy reduction | natural image

statistics

Abbreviations: V1, primary visual cortex;

It has been a long-standing hypothesis that the computa-
tional goal of the early stages of visual processing is to re-

duce the redundancies which are abundantly present in natu-
ral sensory signals [1, 2]. Redundancy reduction is a general
information theoretic principle that subsumes many possible
goals of sensory systems like maximizing the amount of infor-
mation between stimulus and neural response [3], obtaining a
probabilistic model of sensory signals [4], or learning a repre-
sentation of hidden causes [3, 5]. For a population of neurons,
redundancy reduction predicts that neuronal responses should
be statistically independent from each other [2].

Previous work has linked redundancy reduction of natural
signals to divisive normalization contrast gain control in pri-
mary visual cortex by demonstrating that correlations in the
variances of neuronal responses are removed [7, see also Fig-
ure 1a]. Divisive normalization is a nonlinear mechanism that
non-linearly rescales the response of a population of neurons
by dividing the activity yi of a single neuron by the activity
of an inhibitory pool of other neurons [6].

In this study we compare the redundancy reduction
achieved by a static divisive normalization mechanism in a
model population of V1 neurons to a recently developed opti-
mal divisive transformation, called radial factorization or ra-
dial Gaussianization [8, 9], to assess whether divisive normal-
ization is powerful enough to capture the rich dependencies of
natural images. The model population receives an input im-
age patch x which is filtered by linear receptive fields wi. The
resulting responses yi = w>i x are transformed with divisive
normalization. The essential mechanism in divisive normaliza-
tion is a rescaling ‖z‖ = κ‖y‖/

√
σ + ‖y‖2 of the norm of the

population response y. Under reasonable assumptions about
the statistics of natural image patches, radial factorization
is the optimal mechanism in terms of redundancy reduction
acting on the norm ‖y‖ (see Methods).

Experiments and Results
We compared the amount of redundancies removed by divi-
sive normalization in the response of a population of model
neurons to natural image patches to the amount removed by

radial factorization and find that divisive normalization leaves
a substantial amount of residual redundancies (Figure 1b).
While both divisive normalization and radial factorization re-
move correlations in the variances of the neural responses, the
residual amount of dependencies for divisive normalization is
still approximately 34% of the total redundancies present in
the unnormalized population response (Figure 1a-b). This
demonstrates that the underlying assumption of divisive nor-
malization about the statistics of natural image patches misses
important regularities.

To understand this in more detail, we derived what dis-
tribution the linear filter responses ‖y‖ would have if divisive
normalization were the optimal redundancy reducing mech-
anism (referred to as Naka-Rushton distribution in the fol-
lowing), and compared it to the empirical distribution rep-
resented by a large collection of uniformly sampled patches
from natural images (Figure 1c). The only free parameter of
the Naka-Rushton distribution is the semi-saturation constant
σ2 of the divisive normalization function which determines
the horizontal position of the contrast response curve in neu-
rons. We fitted σ2 via maximum likelihood (see Methods) and
found that even for the best fitting σ2 there is a substantial
mismatch. This explains the insufficient redundancy reduc-
tion because the Naka-Rushton distribution expects most of
the responses ‖y‖ to fall into a much narrower range than
responses to natural images do in reality (Figure 1c).

We explored two options how the visual system could po-
tentially increase the flexibility and, therefore, the redundancy
reduction performance of divisive normalization: enhancing
static divisive normalization with more parameters or allow-
ing for a temporal adaptation of σ2.

We find that an extended divisive normalization transform
‖z‖ = κ‖y‖ γ2 +δ/

√
σ2 + ‖y‖γ achieves substantially more re-

dundancy reduction and that its corresponding distribution
on ‖y‖ fits significantly better (Figure 1b-c). However, we
also find that the corresponding shape of the population con-
trast response exhibits a physiologically unreasonable shape
(Figure 1c inset).

Exploring the second option, we found that the distribu-
tion on ‖y‖ predicted by a temporally adapting σ2 closely
matches the empirical distribution of responses to patches
sampled with simulated eye movements, and yields a sub-
stantial reduction in redundancy (Figure 2a-b). Our tempo-
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rally adapting model relies on correlations between the con-
trast at different time steps to choose the current σ2 based
on the recent stimulation history. Previous studies on redun-
dancy reduction with divisive normalization [7, 9, 8] ignored
the structure caused by fixations between saccades in natu-
ral viewing conditions. Contrast response curves of neurons
in primary visual cortex are known to adapt to the ambient
contrast level [10] by adapting σ2. A temporally adapting
σ under redundancy reduction predicts that the joint pop-
ulation response ‖y‖ should be well modeled by a mixture
of Naka-Rushton distributions each of which corresponding
to a different value of σ2. For a fixed history of responses
Hk = (rt−1, ..., rt−k) preceding rt the normalized response

κrt/
√
σ(Hk)2 + r2t would follow a truncated χ-distribution,

which is equivalent to a Naka-Rushton distribution on rt con-
ditioned on Hk

rt|Hk ∼ ν(rt|σ(Hk)).

Averaged over all histories the distribution of rt is a mixture
of Naka-Rushton distributions

rt ∼ %(rt) =

∫
ν(rt|σ(Hk))ρ(Hk)dHk =

∫
ν(rt|σ)ρ(σ)dσ.

[1]

We used a simple model of saccades and micro-saccades
to simulate eye movements on natural images and fitted such
a mixture to the responses in our model. In order to quantify
the amount of redundancy reduction, we then estimated σ2 for
the present patch from the immediately preceding one using
this mixture of distributions. We found that a simple strat-
egy for choosing σ given the immediate history significantly
decreased the amount of residual redundancies to 1.1%.

We also verified that σ cannot be chosen randomly but the
correct utilization of temporal correlations is crucial for this
improvement. If that was the case σ could be chosen indepen-
dently of the preceding history at each time step, and be used

to transform the current response with rt 7→ κrt/
√
σ2
t + r2t

such that the result still yield a truncated χ-distribution. This
is the same as saying that a truncated χ-distribution could be
described as a mixture of the distributions that result from
transforming rt with Naka-Rushton functions with different
values of σ. We transformed the input distribution with Naka-
Rushton functions that differed in the value of σ (Figure 2c,
colored lines). Different colors in Figure 2c refer to different
values of σ. If σ could be drawn independently, a positively
weighted average of the colored distributions should be able to
yield a truncated χ-distribution (Figure 2c, dashed line). One
can immediately see that this is not possible. Every compo-
nent will either add a tail to the left of the χ-distribution or a
peak to the right of it. Since distributions can only be added
with non-negative weight in a mixture there is no way that
one distribution can make up for a tail or peak introduced by
another. Therefore, σ cannot be chosen independently of the
preceding stimulation.

Discussion
Our results suggest a very specific link between the adapta-
tion of neurons to the ambient contrast level and redundancy
reduction for natural images. Our analysis does not com-
mit to a certain physiological implementation or biophysical
constraints, but it demonstrates that the statistics of natu-
ral images require more degrees of freedom for redundancy
reduction in a population response than a static divisive nor-
malization model can offer, and that the temporal adaptation

of σ might be necessary for a flexible adaptation to the statis-
tics of natural images.

Compared to extended divisive normalization, the main
reason for the worse performance of divisive normalization
with static σ2 is that the interval containing most of the prob-
ability mass is too narrow and too close to zero compared to
the empirical distribution. To visualize that, we sought after
a general signature that could depict whether an adaptation
mechanism is powerful enough for substantial redundancy re-
duction. To that end, we plotted the median of the different
empirical distributions and the ones implied by the models
against the width of the interval between the 10% and the
90% percentile (Figure 3). We also included a dataset from
real human eye movements by Kienzle et al. to ensure the
generality of this signature [11]. Real fixations could intro-
duce a change in the statistics because real observers tend to
look at patches with higher contrasts [14]. The empirical data
and all models that yield strong redundancy reduction exhibit
a ratio greater than 1.5. This signature can be used for future
physiological experiments to test the suggested link between
redundancy reduction and contrast gain control.

Methods
The code and the data are available online under

http://www.bethgelab.org/code/sinz2012.

Data.

van Hateren data For the static experiments, we used ran-
domly sampled 17×17 patches from the van Hateren database
[12]. For all experiments we used the logarithm of the raw light
intensities. We sampled 10 pairs of training and test sets of
500, 000 patches for which we employed the preprocessing of
Eichhorn et al. by centering all patches on the pixel mean and
rescaling them such that whitening became volume conserving
[13].

For the simulated eye movements, we also used 4 pairs of
training and test sets. For the sampling procedure, we re-
peated the following steps until 500, 000 samples were drawn:
We first drew an image randomly from the van Hateren
database. For each image, we simulated ten saccades to ran-
dom locations in that image. For each saccade location which
was uniformly drawn over the entire image, we determined the
number m of patches to be sampled from around that location
by m = dν ·τe where ν = 50Hz was the assumed sampling fre-
quency and τ was a sample from an exponential distribution
with average fixation time 0.2s. The actual locations of the
patches were determined by Brownian motion with standard
deviation σ = 30 starting at the saccade location

Kienzle data While the van Hateren database is a stan-
dard dataset for static natural image statistics. To make sure
that our results also hold for real fixations, we sampled data
from the images used by Kienzle et al. [11]. We computed the
10% and 90% percentiles as well as the width of the interval
between them for both datasets for Figure 3.

We constructed two datasets: One where the patches were
uniformly drawn from the images, and one where we used
Brownian motion with standard deviation of σ ≈ 35 around
human fixation spots to simulate human fixational data. We
applied the same preprocessing as for the van Hateren data:
centering, rescaling such that whitening is volume conserving,
and whitening

Models. Both the divisive normalization model and the opti-
mal radial factorization consist of two steps: a linear filtering

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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step and a divisive normalization step (Table 1). In the fol-
lowing, we describe the different steps in more detail.

Note that, for modeling neural responses, both models’
responses would be mapped into firing rates afterwards by
an elementwise rectification step and possibly a nonlinearity.
Since the positive and the negative part of each filter response
can be encoded by two neurons with opposite rectifiers and
since elementwise nonlinearities do not change the redundancy
(i.e. the multi-information), we did not explicitly model the
rectification step in our analyses.

Filters The receptive fields of our model neurons, i.e. the
linear filters of our models, are given by the rows of a matrix

W = QΛ−
1
2U>A. A is an 288 × 289 matrix with mutually

orthogonal rows with mean zero. This matrix projects out the
DC component of the data [13]. U contains the first n = 72
principal components of Ax in its columns, and Λ is a diag-
onal matrix with the corresponding eigenvalues. Therefore,

Λ−
1
2U> is a whitening matrix. We used only n = 72 filters

corresponding to the first 72 principle components in order to
exclude high spatial frequencies.

Q is an orthogonal matrix, which was trained with in-
dependent subspace analysis with two-dimensional subspaces
[15]:

ρ(y) =

n/2∏

k=1

ρk(y2k, y2k+1|ϑk) with y = Wx [2]

where ϑ denotes the list of free parameters for each %k. This
yields filter pairs that resemble quadrature pairs like in the
energy model of complex cells [17, 18]. Each single ρk was
chosen to be a two-dimensional Lp-spherically symmetric dis-
tribution [16]

ρk(y2k:2k+1|ϑk) =
%k(‖y2k:2k+1‖p|ϑk)

‖y2k:2k+1‖K−1
p S2

p

‖y‖p =

(
2∑

i=1

|yi|p
) 1
p

, p > 0

with a radial γ-distribution %(r|u, s) = γ(u, s) with shape u
and scale s. S2

p denotes the surface area of the Lp-norm unit
sphere in two dimensions [16]. During training, we first fixed
p = u = 1; after initial convergence, we retrained the model
with free p and u.

The likelihood of the data under equation (2) was opti-
mized by alternating between optimizing Q for fixed ϑk, and
optimizing the ϑk for fixed Q. The gradient ascent on the
log-likelihood of Q over the orthogonal group used the back-
projection method by Manton [19, 20, 21].

Normalization

Optimal contrast gain control: radial factorization
Radial factorization is the optimal redundancy reduction
mechanism for Lp-spherically symmetric distributed data
[22, 16]. Lp-spherical symmetry assumes that all data points

of a given Lp-norm r = ‖y‖p =
(∑n

i=1 |yi|p
) 1
p are uniformly

distributed on the Lp-sphere with that radius. A radial dis-
tribution %(r) determines how likely it is that a data point is
drawn from an Lp-sphere with that specific radius. Since the
distribution on the sphere is always uniform, the radial dis-
tribution % determines the specific type of distribution. For
example, for p = 2 and %(r) = χ(r) one obtains a isotropic
Gaussian, since the Gaussian distribution is spherically sym-
metric (p = 2) and has a radial χ-distribution (%(r) = χ(r)).
One can show that, for a fixed value of p, there is only one

type of radial distribution such that the joint distribution is
factorial [23]. For p = 2 this radial distribution is the χ-
distribution which corresponds to a joint Gaussian distribu-
tion. For 0 < p 6= 2, the radial distribution is a generalization
of the χ-distribution and the joint distribution is the so called
p-generalized Normal [24]. Radial factorization is a mapping
on the Lp-norm ‖y‖p of the data points that transforms a
given source Lp-spherically symmetric distribution into a p-
generalized Normal. Since the p-generalized Normal is facto-
rial, radial factorization is a nonlinear redundancy reduction
mechanism.

The reason why radial factorization is a very strong re-
dundancy reduction mechanism on natural images is that the
filter responses of whitening filters to natural image patches
are well modeled by Lp-spherically symmetric distributions
[22]. It models the distribution of r = ‖y‖p with a flexible
distribution and non-linearly rescales the radius r such that
the radial distribution becomes a generalized χ-distribution
and, hence, the joint distribution becomes factorial. If the
flexible distribution is denoted by % the new χp-distributed
radius can be computed via

(
F−1
χp ◦ F%

)
(‖y‖). This mapping,

also known under the name histogram equalization, transforms
%-distributed radii in χp-distributed one. χp denotes the gen-
eralized χ-distribution and F denote cumulative distribution
functions of the respective distributions. On the joint re-
sponses y, radial factorization first divides out the radius and
rescales it with the new radius:

y 7→
(
F−1
χp ◦ F%

)
(‖y‖p)

‖y‖p
y

In our case % was chosen to be a mixture of five γ-distributions.
F−1
χp is the inverse cumulative distribution function of a χp-

distribution which is the radial distribution of a p-generalized
Normal distribution [24].

When determining the optimal redundancy reduction per-
formance on the population response, we set p = 2 in order to
use the same norm as the divisive normalization model. Only
when estimating the redundancy of the linear filter responses,
we use p = 1.3 [22].

Divisive normalization model and Naka-Rushton dis-
tribution We use the following divisive normalization
transform

‖y‖2 7→ κ‖y‖2√
σ2 + ‖y‖22

which is the standard model for neural contrast gain control
[6].

Divisive normalization acts on the Euclidean norm of the
filter responses y. While in radial factorization the target
and source distribution were fixed, and the goal was to find
a mapping that transforms one into the other, we now fix
the mapping to divisive normalization, the target distribu-
tion on the normalized response z to be Gaussian (‖z‖2 to be
χ-distributed) and search for the corresponding source distri-
bution. Since divisive normalization saturates at κ, we will
actually have to use a truncated χ-distribution on ‖z‖2. κ
becomes the truncation threshold. Note that radial trunca-
tion actually introduces some dependencies, but we keep them
small by choosing the truncation threshold κ to be the 99%
percentile of the radial χ-distribution which is approximately
κ ≈ 10.14. Note also that choosing a Gaussian target dis-
tribution does not contradict the finding that cortical firing
rates are found to be exponentially distributed [25], since each

Footline Author PNAS Issue Date Volume Issue Number 3
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single response zi can always be transformed again to be ex-
ponentially distributed without changing the redundancy of
z.

The distribution on r = ‖y‖2 such that

‖z‖2 =
κ‖y‖2√
σ2 + ‖y‖22

is truncated χ-distributed can be derived by a simple change
of variables. In the resulting distribution

% (r) =
2κnσ2rn−1

G
(
n
2
, κ

2

2s

)
Γ
(
n
2

)
(2s)

n
2 (σ2 + r2)

n+2
2

exp

(
− κ2r2

2s (σ2 + r2)

)
,

the truncation threshold κ, the semi-saturation constant σ,
and the scale of the χ-distribution become parameters of the
model. The parameter s of the Naka-Rushton distribution
controls the variance of the corresponding Gaussian and was
always chosen such that the Gaussian was white with variance
one. The only free parameter of the Naka-Rushton distribu-
tion is σ which couples shape and scale. G is the regularized-
incomplete-gamma function which accounts for the truncation
at κ. We call the distribution Naka-Rushton distribution and
denote it with ν (κ, σ, s).

To derive the distribution on ‖y‖ for which the ex-

tended divisive normalization transformation κ‖y‖
γ
2
+δ√

σ2+‖y‖γ2
yields

a (truncated) χ-distribution, the steps are exactly the same as
for the standard divisive normalization transform above. Note
that extended divisive normalization saturates only for δ = 0.
Therefore, the distribution on ‖z‖2 has to be a χ-distribution
if δ > 0 and a truncated χ-distribution if δ = 0. This yields

% (r) =
pκnr

nγ+2nδ−2
2

(
2δ
(
rγ + σ2

)
+ γσ2

)

Γ
(
n
p

)
s
n
p 2

n+p
p (rγ + σ2)

n+2
2

× exp

(
− κpr

pγ
2

+pδ

2s (σ2 + rγ)
p
2

)

for δ > 0 and

% (r) =
pκnr

nγ−2
2 γσ2

G
(
n
p
, κ

p

2s

)
Γ
(
n
p

)
s
n
p 2

n+p
p (rγ + σ2)

n+2
2

× exp

(
− κpr

pγ
2

2s (σ2 + rγ)
p
2

)

for δ = 0. The parameters of the distribution are now σ, δ, κ, γ
and s.

The parameters for all divisive normalization transforms
were estimated via maximum likelihood of the Naka-Rushton
distribution on the Euclidean norms {ri}mi=1 = {‖yi‖2}mi=1 of
the filter responses to natural image patches. We did not op-
timize for s in the extended Naka-Rushton distribution but
fixed it such that the corresponding Gaussian was white.

Dynamically adapting σ For the model with dynamically
adapting σ, we first model the Euclidean norms ri = ‖yi‖2
of the filter responses to the patches from the simulated eye
movement data with a mixture of 500 Naka-Rushton distri-
butions

%(r) =

500∑

i=1

ν(r|σi)πi,

using EM [26]. πi denotes the probability that σ = σi. The
values of σi where chosen in 500 equidistant steps from 0.01
to 12.

How much redundancy reduction can be achieved with a
dynamically adapting σ, depends on the dynamics according
to which it is selected based on the recent history. While there
might be many strategies, we chose a parsimonious one. To
that end, we evaluated the posterior

%(σ = σi|r) =
πiν(r|σi)∑500
j=1 ν(r|σj)πj

.

of the mixture distribution at 100 equidistant locations be-
tween 10−12 and 35, computed the posterior mean and stan-
dard deviation at those locations, rescaled the standard de-
viation by 1/

√
2, and fitted a piecewise linear function on

the intervals [0, 1), [1, 2), . . . , [30,∞) to each set of values. In
the first interval, the linear function was constraint to start
at zero. From these two functions µ(r) and σ(r), we com-
puted two functions for the scale θ and the shape u of a γ-
distribution

u(r) =
µ(r)2

σ(r)2
and θ(r) =

σ(r)2

µ(r)

via moment matching.
In order to obtain a value σ for the Naka-Rushton function

for transforming a value rt based on the value of its predeces-
sor rt−1, we sampled σ from a γ-distribution with shape and
scale determined by u(rt−1) and θ(rt−1).

Percentiles For the dynamically adapting σ2 in Figure 3,
we sampled from

p(r) =

∫ ∫
ν(r|σ, κ, s)γ(σ|u(ri), θ(ri))p(ri)dσdri

and computed the percentiles based on the sampled dataset.
For the sampling procedure, we drew σ from the γ-distribution
γ(σ|u(ri), θ(ri)) with shape and scale computed from ri
and then sampled r from the Naka-Rushton distribution
ν(r|σ, κ, s) with that σ. We repeated that for all ri from a
test set of simulated eye movement radii. This procedure was
carried out for all pairs of training and test sets, and the dis-
tributions fitted to them.

For the static case, we sampled data from single Naka-
Rushton distributions for different values of σ and computed
the percentiles from the samples.

Multi-information estimation We use the multi-information to
quantify the statistical dependencies between the filter re-
sponses y [27]. The multi-information is the n-dimensional
generalization of the mutual-information. It is defined as
the Kullback-Leibler divergence between the joint distribution
and the product of its marginals or, equivalently, the differ-
ence between the sum of the marginal entropies and the joint
entropy

I[Y] = DKL

(
ρ(y)‖

n∏

i=1

ρi(yi)

)
=

n∑

i=1

H[Yi]−H[Y]. [3]

The multi-information is zero if and only if the different di-
mensions of the random vector Y are independent. Since the
joint entropy H[Y] is hard to estimate we employ a semi-
parametric estimate of the multi-information that is conser-
vative in the sense that it is downward biased.

For the marginal entropies H[Yi], we use a jackknifed esti-
mator for the discrete entropy on the binned values [28]. We

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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chose the bin size with the heuristic proposed by Scott [29].
We obtain an estimate for the differential entropy by correct-
ing with the logarithm of the bin width (see e.g. [13]).

In order to estimate the joint entropy, we use the average
log-loss to get an upper bound

A[ρ̂(y)] := −〈log ρ̂(y)〉Y∼ρ(y) = H[Y] +DKL (ρ(y)‖ρ̂(y)) .

Since the average log-loss overestimates the true entropy, re-
placing the joint entropy by A in equation (3) underestimates
the multi-information. Therefore, we sometimes get estimates
smaller than zero. Since the multi-information is always pos-
itive, we set the value to zero in that case. For computing
errorbars on the multi-information estimations, we use the
negative values but a mean zero in such cases, which effec-
tively increases the standard deviation of the error.

Since we want commit ourselves as little as possible to
a particular model, we estimate A[ρ̂(y)] by making the as-
sumption that y is Lp-spherically symmetric distributed but
estimating everything else with non-parametric estimators. If
y is Lp-spherically symmetric distributed, the radial compo-
nent is independent from the directional component [16] and
we can write

Ĥ [Y] = Ĥ [R] + (n− 1) 〈log r〉R + logSp. [4]

The entropy H[R] of the radial component is again estimated
via a histogram estimator. The term (n − 1) 〈log r〉R is ap-
proximated by the empirical mean.

Putting all the equations together yields our estimator for
the multi-information under the assumption of Lp-spherically
symmetric distributed Y

Î[Y] =

n∑

i=1

Ĥ[Yi]− Ĥ [R]− (n− 1)

m

m∑

j=1

log rj − logSp,

where Ĥ[·] are the univariate entropies estimated via binning.
Since the optimal value of p for filter responses y to natu-

ral image patches is approximately p ≈ 1.3 we use that value
to estimate the multi-information of y.

When estimating the multi-information of the responses z
of either divisive normalization or radial factorization, we use
the fact that

I[Z] =

n∑

i=1

H[Zi]−H[Z] =

n∑

i=1

H[Zi]−H[Y]−
〈

log det

∣∣∣∣
dz

dy

∣∣∣∣
〉

Y

where dz
dy

is the Jacobian of the normalization transformation.

The mean is estimated by averaging over data points. The de-
terminants of radial factorization, divisive normalization, and
extended divisive normalization are given by

det

∣∣∣∣
dz

dy

∣∣∣∣ =
‖z‖n−1

p %(‖y‖p)
‖y‖n−1

p χp(‖z‖p)

det

∣∣∣∣
dz

dy

∣∣∣∣ = κn
(
σ2 + ‖y‖22

)−n+2
2 σ2

det

∣∣∣∣
dz

dy

∣∣∣∣ =
‖z‖n−1

p

‖y‖n−1
p

κr
γ
2
+δ−1

(
2δ
(
rγ + σ2

)
+ γσ2

)

2 (rγ + σ2)
3
2

.

All multi-information values were computed on test data.
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Fig. 1. a: Divisive normalization model used in this study: Natural image patches are linearly filtered. These responses are nonlinearly transformed by divisive normalization

or radial factorization (see text). After linear filtering the width of the conditional distribution p(yj |yi) of two filter responses depends on the value of yi (conditional histograms

as contour plots). This demonstrates the presence of variance correlations. These dependencies are decreased by divisive normalization and radial factorization. b: Redundancy

measured by multi-information after divisive normalization, extended divisive normalization, and radial factorization: divisive normalization leaves a substantial amount of

residual redundancy (error bars show standard deviation over different datasets). c: Distributions on the norm of the filter responses ‖y‖ for which divisive normalization (red)

and extended divisive normalization (blue) are the optimal redundancy reducing mechanisms. While extended divisive normalization achieves good redundancy reduction, it

exhibits a physiologically implausible shape of the population contrast response curve ‖y‖
γ
2
+δ/

√
σ2 + ‖y‖γ (inset, blue curve). The population contrast response curve

of divisive normalization is shown for comparison (inset, red curve).

Table 1. Model components of the divisive normalization and radial
factorization model: Natural image patches are filtered by a set of
linear oriented band-pass filters. The filter responses are normalized
and their norm is rescaled in the normalization step.

divisive normalization model radial factorization

filtering y = Wx y = Wx

normalization z =
κ‖y‖

γ
2
+δ

2√
σ2+‖y‖γ2

y
‖y‖2 z =

(
F−1
χp
◦F%

)
(‖y‖p)

‖y‖p y

(static case δ = 0 and γ = 2)
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213



a

c

b

linear responses
div. norm

.
ext. div. norm

.
adaptive  

0.0

0.1

0.2

0.3

0.4

0.5

m
ul

ti-
in

fo
rm

at
io

n 
[b

its
/c

om
po

ne
nt

] 10
0.

00
%

 I[
Y

]
32

.9
7%

 I[
Y

]
1.

82
%

 I[
Y

]

1.
10

%
 I[

Y
]

0 5 10 15 20 25
||y||

0.00

0.05

0.10

0.15

0.20

0.25

ρ(
||y

||)

adaptive  σ2

sim. eye mov. ||y||
σ 2

0 2 4 6 8 10 12
||z||

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ρ(
||z

||)

truncated χ-distribution 
transformed mixtures of
Naka-Rushton distributions

Fig. 2. a: Histogram of ‖y‖ for natural image patches sampled with simulated eye movements: The distribution predicted by the dynamically adapting model closely

matches the empirical distribution. b: Redundancy measured by multi-information between the linear filter responses y without divisive normalization, for divisive normalization

with static σ2, extended divisive normalization, and dynamically adapting σ2 for simulated eye movement data. The dynamically adapting σ2 achieves almost the same

performance as the optimal radial factorization transform. c: Each colored line is a mixture of Naka-Rushton distributions like in (a) transformed with a Naka-Rushton function.

Different colors correspond to different values of σ. The dashed curve corresponds to a truncated χ-distribution. A mixture of the colored distributions cannot resemble the

truncated χ-distribution since there will either be peaks on the left or the right of the dashed distribution that cannot be canceled by other mixture components.

0 2 4 6 8 10 12 14
median of ||y||

0

5

10

15

20

25

30

p 1
0p

-p
90

p 
of

 ||
y|

|

 

Kienzle fixation
Kienzle uniform

sim. eye mov. (van Hateren)
ext. div. normalization

adaptive σ 2

static σ 2

Fig. 3. Median vs. width of 10% to 90% percentile interval of the models from Figure

2b. The red line corresponds to a static σ2 for different values of σ2, blue corresponds to the

temporally adapting σ2, the orange markers correspond to uniformly sampled (diamond) and

fixational image patches with Brownian motion micro-saccades (circle) from Kienzle et al.[11],

the gray markers to simulated eye movement datasets from van Hateren image data [12], and

the black marker to the optimal extended divisive normalization model. All transforms that

yield a strong redundancy reduction have models that exhibit a ratio greater than 1.5 (dashed

lines).

Footline Author PNAS Issue Date Volume Issue Number 7

214


