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SUMMARY 

The activation of the protein kinase C (PKC) family of serine/threonine kinases contributes to 

the modulation of insulin signaling and the PKC-dependent phosphorylation of IRS-1 has 

been implicated in the development of insulin resistance. Here we demonstrate Ser-357 of rat 

IRS-1 as a novel PKC-δ-dependent phosphorylation site in skeletal muscle cells upon 

stimulation with insulin and phorbol ester using phospho-Ser-357 antibodies and active and 

kinase dead mutant of PKC-δ. Phosphorylation of this site was simulated using IRS-1 Glu357 

and shown to reduce insulin-induced tyrosine phosphorylation of IRS-1, to decrease activation 

of Akt and subsequently to diminish phosphorylation of GSK-3. When the phosphorylation 

was prevented by mutation of Ser-357 to alanine, these effects of insulin were enhanced. 

When the adjacent Ser-358, present in mouse and rat IRS-1, was mutated to alanine, which is 

homologous to the human sequence, the insulin-induced phosphorylation of GSK-3 or 

tyrosine phosphorylation of IRS-1 was not increased. Moreover, both, active PKC-δ and 

phosphorylation of Ser-357 were shown to be necessary for the attenuation of 

insulinstimulated Akt phosphorylation. The phosphorylation of Ser-357 could lead to 

increased association of PKC-δ to IRS-1 upon insulin stimulation, which was demonstrated 

with IRS-1 Glu357. Together, these data suggest that phosphorylation of Ser-357 mediates at 

least in part the adverse effects of PKC-δ activation on insulin action. 
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1- INTRODUCTION 
 

1.1 Diabetes 

 Diabetes mellitus (DM) is a metabolic disorder of multiple aetiologies characterized by 

chronic hyperglycaemia with disturbances of carbohydrate, fat, and protein metabolism 

resulting from defects of insulin secretion, insulin action, or a combination of both (1). The 

epidemic of type 2 diabetes mellitus (T2DM) and impaired glucose tolerance is one of the 

main causes of morbidity and mortality worldwide (2). In 2007, it is estimated that diabetes 

currently affects 246 million people worldwide and is expected to affect 380 million by 2025 

with the most of this increase occurring in developing countries. The Western Pacific region 

and the European region have the highest number of people with diabetes, approximately 67 

and 53 million respectively. The highest rate of diabetes prevalence is to be found in the North 

American region (9.2%) followed by the European region (8.4%) (3). 

 

1.2 Insulin resistance 

The pathogenesis of type 2 diabetes involves abnormalities in both, insulin action and 

secretion (4). At the molecular level, insulin resistance, the first detectable defect in type 2 

diabetes, correlates with impaired insulin signaling in peripheral tissues (5). Clinically, the 

term insulin resistance implies that higher than normal concentrations of insulin are required 

to maintain normoglycemia. On a cellular level, this term defines an inadequate strength of 

insulin signaling from the insulin receptor downstream to the final substrates of insulin action 

involved in multiple metabolic and mitogenic aspects of cellular function (6). The earliest 

abnormality observed in insulin resistance is a decrease in insulin-induced glucose uptake in 

skeletal muscle and adipose tissue and a reduced ability of the hormone to suppress glucose 

production by the liver (2;7). At the early stage of the pathology, pancreatic ß cells first 

compensate for peripheral insulin resistance by increasing insulin secretion to maintain 

euglycemia. When chronic, this hyperinsulinemia exacerbates insulin resistance and 

contribute to ß cell failure leading to the development of impaired glucose tolerance and overt 

clinical type 2 diabetes.  

 Insulin resistance is also associated with a variety of physiological and patho-physiological 

states other then type 2 diabetes, such as hypertension, glucose intolerance, and obesity (7) 

However, understanding the molecular mechanisms that modulate insulin signaling under 
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these conditions, has proved a more difficult ‘nut to crack’; even 50 years after the discovery 

of insulin, therefore a full understanding of insulin action is still evolving (8). 

 

1.3 Insulin signaling - the basics 

The discovery of insulin in 1921 was one of the key biological and medical advances of the 

twentieth century. However, it took the rest of the century to understand how this hormone 

regulates intracellular metabolism (8). The insulin signaling system plays a significant role in 

many physiological processes, including carbohydrate and fat metabolism, reproduction, 

cellular growth, and survival (9). Nonetheless, insulin is best known for its role in the 

regulation of blood glucose, as it suppresses hepatic gluconeogenesis and promotes glycogen 

synthesis and storage in liver and muscle, triglyceride synthesis in liver and storage in adipose 

tissue, and amino acid storage in muscle (10). Thus, understanding the cellular mechanisms of 

insulin action may contribute significantly to new treatments for type 2 diabetes mellitus, 

which grounds for a cohort of systemic disorders, such as dyslipidemia, hypertension, 

cardiovascular disease, stroke, blindness, kidney disease, female infertility, and neuro-

degeneration (11).  

 

1.3.1 Insulin receptor 

In the 1970s, the insulin receptor was discovered, and 10 years later the demonstration of its 

tyrosine kinase activity pointed toward the mechanism of signal transduction (12;13). A 150-

kb gene on chromosome 19 composed of 22 exons encodes the human pro-receptor. 

Dysregulation of insulin receptor gene splicing alters fetal growth patterns and contributes to 

insulin resistance in adults (14). The insulin receptor is the prototype for a family of 

homologous integral membrane proteins composed of two extracellular α-subunits and two 

transmembrane β-subunits that have protein tyrosine-kinase activity. There are at least seven 

tyrosine autophosporylation sites in three distinct regions of the β-subunits. The holoreceptor 

has a molecular weight of 350, 000 (15). The diverse biological actions of insulin and insulin-

like growth factor I (IGF-I) are initiated by binding of the polypeptides to their respective cell 

surface tyrosine kinase receptors. Insulin binding activates an intramolecular 

autophosphorylation reaction in which one β-subunit phosphorylates the other at several sites. 

This reaction activates the tyrosine kinase activity of the receptor enabling it to recruit and 

phosphorylate cellular substrates to initiate signal transduction (2;16). 
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1.3.2 Binding partners of insulin receptor 

Auto-phosphorylation of the A loop of β-subunit of IR creates binding sites for the other 

signaling proteins that modulate kinase activity including Grb10, Dock 1 and 2, Gab1 and 2, 

Cb1, APS  and SH2B (17). Auto-phosphorylation in the juxtamembrane region of IR is 

essential for the recruitment of IRS proteins that propagate insulin signal. 

Autophosphorylation in the COOH region of IR (Tyr1314 Tyr1328) is poorly understood, 

however, it has been shown to regulate tyrosine kinase activity and receptor internalization 

(18). The activated IR subsequently phosphorylate these adaptor proteins that function as 

docking sites for effector proteins containing Src homology-2 (SH2) domains (19). 

 

1.3.3 Insulin receptor substrates (IRS) 

The first evidence for such an adaptor protein emerged when insulin was shown to stimulate 

the tyrosine phosphorylation of a 185-kDa cytosolic protein (20), now known as insulin 

receptor substrate-1 (IRS1). Insulin receptor substrate (IRS) molecules are key mediators in 

insulin signaling and play a central role in maintaining basic cellular functions such as 

growth, survival, and metabolism (21). They act as docking proteins between the insulin 

receptor and a complex network of intracellular signaling molecules containing Src homology 

2 (SH2) domains. IRS proteins have no intrinsic catalytic activity but contain several domains 

that mediate interaction with the receptor and with IRS effectors.  

 

1.3.4 Structural organization of IRS proteins  

IRS proteins are composed of multiple interaction domains and phosphorylation motifs. An 

amino-terminal pleckstrin homology (PH) domain is adjacent to a phospho-tyrosine binding 

(PTB) domain. The nonconserved 46-residue linker between these two domains is disordered 

(22). The carboxy-terminal domain of IRS protein encodes numerous tyrosine and serine 

residues prone to phosphorylation (7;23). PH and PTB domain appear to facilitate recruitment 

of IRS proteins to activated insulin receptor. The PTB domain interacts with the tyrosine 

phosphorylated sequence NPXY in the insulin and insulin-like growth factor I (IGF-I) 

receptors. Deletion of both these domains in IRS-1 and IRS-2 almost completely prevent 

insulin stimulated tyrosine phosphorylation of the tail (24). No Src homology 2 or 3 (SH2 or 

SH3) domains have been identified in IRS proteins.  
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1.3.5 IRS isoforms 

Four members (IRS-1, IRS-2, IRS-3, IRS-4) of IRS family have been identified that differ as 

to tissue distribution, subcellular localization, developmental expression, binding to the 

insulin receptor and interaction with SH2 domain containing proteins. Nevertheless, the IRS-

protein isoforms display several structural similarities. Of note, mammalian IRS-1, -2, -3, -4 

and drosophila ortholog Chico contain a NH2-terminal pleckstrin homology (PH) domain 

adjacent to a PTB domain. The structures of these domains are remarkably similar (25). 

Despite the structural similarities between these IRSs, analyses of the IRS knockout mice 

demonstrated that IRS proteins have different functions in development and metabolism 

(26;27). Moreover, analysis of the human genome sequence reveals at least two putative IRS 

proteins, IRS-5 and IRS-6 (7). 

 

1.3.5.1 Insulin receptor substrate 1 (IRS- 1) 

IRS-1 was the first substrate of insulin receptor, identified in hepatoma cells using an 

antiphosphotyrosine antibody and was subsequently identified in several tissues, including 

muscle, heart, liver, adipocyte and kidney (20;28). Discovery of IRS-1 provided the first clue 

that substrate phosphorylation together with autophosphorylation are important steps in signal 

transduction. The human IRS-1 gene is localized on chromosome 2q36–37 (29). The 

relevance of IRS-1 in insulin/IGF-I signaling was primarily suggested by in vitro studies in 

which IRS-1 was overexpressed or its levels were decreased by anti-sense ribozyme, which 

resulted in increase in insulin sensitivity and responsiveness for glucose transport and 

enhanced mitogenetic effects of insulin (30;31). IRS1 controls body growth and peripheral 

insulin action (32). Mice lacking IRS-1 are small and insulin resistant, but generally fail to 

develop diabetes owing to consistent compensatory hyperinsulinemia (26). Islets from 

knockout mice lacking IRS-1 exhibited marked defects in insulin content and the insulin 

secretory response to glucose (33). In agreement with these results, it has been shown in 

human adipocytes that IRS-1 is the main docking protein for the binding and activation of PI 

3-kinase in response to insulin.  Defects in IRS expression and function have been reported in 

target tissues of insulin action from insulin resistant subjects. In skeletal muscle strips from 

morbidly obese subjects, it was observed a significant reduction in IRS-1 content, insulin-

stimulated IRS-1 phosphorylation, and PI 3-kinase activation that was paralleled by a 

decrease in insulin-stimulated glucose uptake (34). 
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Taken together, these data indicate that IRS-1 plays a key role in mediating both metabolic 

and mitogenic effects of insulin in peripheral tissues such as muscle and adipose tissue, and 

suggest a novel important role for IRS-1 in β cell function. Thus, insulin receptor substrate 1 

is one of the  important early site of divergence in insulin signaling, which seems to be a 

relevant target for modulation of the signal (35). 

 

1.3.5.2 Insulin receptor substrate 2 (IRS-2) 

IRS-2 was cloned from a myeloid cell line and was identified as the alternative IR substrate in 

liver and muscle of IRS1-null mice (36;37). The amino acid sequence identity between IRS-1 

and IRS-2 is 43%, with some domains such as the PH and PTB domains exhibiting higher 

degrees of identity (65 and 75%, respectively) (38-40). Mice lacking IRS-2 develop diabetes 

with in 6-10 weeks of age owing to peripheral insulin resistance and ß-cell failure (26). 

Upregulation of insulin receptor substrate-2 in pancreatic beta cells prevents diabetes (41). 

IRS-2 regulates brain growth, body weight control, glucose homeostasis, and female fertility 

(42). It is clear that IRS1 and IRS2 are responsible for relaying insulin signals from the 

receptor to intracellular effectors, but, IRS1 and IRS2 differ significantly from each other 

(43). For example, it has been shown that IRS-1 and IRS-2 differ in their sub-cellular 

localization, IRS-2 is dephosphorylated more rapidly and activates PI3-kinase more 

transiently than IRS-1, thus indicating that differences in kinetics of activation may contribute 

to the diversity of the insulin signaling transduced by IRS-1 and IRS-2 (44). In fact, IRS-1 

appears to have its major role in skeletal muscle whereas IRS-2 appears to regulate hepatic 

insulin action as well as pancreatic β cell development and survival (21). 

 

1.3.5.3 Insulin receptor substrate 3 (IRS- 3) 

Rodents express IRS-3 which is largely restricted to adipose tissue where it display activity 

similar to IRS-1 (27), whereas the gene might not be active in humans (45) . Although 

disruption of IRS-3 has small effect, mice with combined deficiency of IRS-1 and IRS-3 

developed sever lipoautrophy associated with hyperglycemia, hyperinsulinemia and insulin 

resistance (27). In addition to metabolic signals, IRS-3 seems to be able to mediate mitogenic 

signals (46). 
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1.3.5.4 Insulin receptor substrate 4 (IRS- 4) 

IRS-4 expression is limited to thymus, brain, kidney and ß-cell (47). Overall, IRS-4 displays 

only 27% and 29% sequence identity with IRS-1 and IRS-2, respectively. In vitro studies with 

HEK cells confirmed that IRS-4 binds PI3-kinase and Grb-2 (48). Overexpression of IRS-4 in 

rat adipocytes led to a marked increase in the number of GLUT4 molecules recruited to the 

cell surface (27). More recently, it has been shown that IRS-3 and IRS-4 may act as negative 

regulators of IGF-I signaling by suppressing the function of IRS-1 and IRS-2 at several steps 

(46). 

 

1.3.5.5 Insulin receptor substrate 5 and 6 (IRS- 5, - 6) 

IRS-5/DOK4 and IRS-6/DOK5 were recognized in the human genome owing to their NH- 

terminal tendum PH-PTB domain (49) however, they contain very short COOH tails with a 

few tyrosine phosphorylation sites, so their function remains unknown (7). 

 

1.3.6 Binding partners of IRS-1 

The tyrosine phosphorylation sites in the COOH-terminal of each IRS protein recruit and 

regulate various downstream signaling proteins. Over 20 tyrosine phosphorylation residues 

contribute to docking sites for downstream signaling proteins. However, only a few sites that 

bind p85, Grb2, or SHP2 have been formally identified (50). Many of the tyrosine residues 

cluster in the common motifs that recruit or activate enzymes (PI3-Kinase, SHP2, fyn) or 

adaptor molecules (Grb2, nck, crk, SH2B). Grb2 and possibly SHP2 couple Grb2/SOS to IRS 

proteins, which promotes ras       raf cascade (51). All IRS proteins contain multiple p85 

binding motifs that recruit the PI3-Kinase, which is the best studied insulin signaling pathway.  

 

1.3.7 The PI3-Kinase cascade 

PI3-kinase is ubiquitous and used by nearly all receptor signaling systems to promote cell 

division survival and growth. During insulin and IGF signaling, the PI3-kinase is accessed 

through tyrosine phosphorylation of IRS- proteins (17). IRS proteins couple insulin/IGF 

receptors to the PI3-kinase and extra cellular signal-regulated kinase (ERK) cascade. Other 

signal transduction proteins interact with IRS including Grb2, an adaptor protein that contains 

SH3 domains, which in turn associates with the guanine nucleotide exchange factor son-of  
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 Fig. 1. IRS protein-dependent insulin/IGF-I-signaling cascade and various biological 

effects. 

Activation of the receptors for insulin and IGF-I results in tyrosine phosphorylation of the IRS 

proteins. The IRS proteins thereby bind PI3-kinase, Grb2/son of sevenless (SOS). The 

Grb2/SOS complex mediates the activation of p21ras, thereby activating the ras/raf/mitogen-

activated protein (MAP) kinase (MEK)/MAP kinase cascade. The activation of PI 3-kinase by 

IRS protein recruitment results in the generation of PI-3,4-diphosphate(PI3,4P2) and PI-

3,4,5-triphosphate (PI3,4,5P3). In aggregate, PI3,4P2 and PI3,4,5P3 activate a variety of 

downstream signaling kinases, including PKB. PKB regulates glycogen synthase kinase 3 

(GSK-3), which may regulate glycogen synthesis, and a variety of regulators of cell survival. 

PKB-mediated phosphorylation of the proapoptotic protein BAD inhibits apoptosis. The IRS 

proteins also interact with a variety of signaling molecules containing Src homology 2(SH2) 

domains, to regulate lipid and protein metabolism and cell growth. 
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MAPK  “mitogen activated protein kinase”  mTor  “mammaliam target of rapamycin”  
PKC  Protein kinase C  PKB/Akt  Protein kinase B  
GSK3 Glycogen synthase kinase-3 IR Insulin receptor 
IGF-R Insulin like Growth Factor receptor Ras/raf A membrane associated GTPases 

/MAP kinase kinase kinase 
  
 

sevenless (sos) and elicits activation of the MAPK cascade leading to mitogenic responses 

(52) (Fig. 1). Activation of the PI 3-kinase cascade is an important insulin/IGF-regulated 

pathway. PI3-kinase is a dimer composed of a 110-kDa catalytic subunit that is associated 

non-covalently to a 55- or 85-kDa regulatory subunit. PI3-kinase is activated when the 

phosphorylated YMXM motifs in IRS proteins occupy both src homology-2 (Sh2) domains in 

the regulatory subunit (53). Products of PI3-kinase, including phosphatidylinositol-3,4-

bisphosphate and phosphatidylinositol-3, 4, 5-trisphosphate, attract serine kinases to the 

plasma membrane, including the phosphoinositide-dependent kinase (PDK1 and PDK2) and 

at least three protein kinase B (PKB) isoforms (Fig. 1). During co-localization at the plasma 

membrane, PDK1 phosphorylates and activates PKB-1, -2, or -3. 

 

 

1.3.8 Insulin-activated AKT/PKB  

Kinase Akt is one of the best characterized insulin-stimulated enzyme as it is broadly 

implicated in growth and metabolism (54;55). The activated protein kinase B (PKB or Akt) 

phosphorylates many substrates to control various biological signaling cascades, including 

glucose transport, protein synthesis, glycogen synthesis, cell proliferation, and cell survival, in 

various cells and tissues (Fig. 1)(37;56). AKT/protein kinase B (PKB) phosphorylates 

glycogen synthase kinase-3α (GSK3α) and GSK3β at serine residues located in Arg–Xaa–

Arg–Xaa–Xaa–Ser/Thr motifs (where Xaa is any amino acid) (57). This motif is crucial for 

the specificity of AKT/PKB (8). There is also increasing evidence that phosphorylation of the 

Rab GTPase-activating protein AS160 by AKT/PKB underlies the insulin-stimulated 

translocation of the glucose transporter GLUT4 to the plasma membranes of muscle cells and 

adipocytes, a crucial event in promoting the uptake of glucose from the blood (58). 

 

1.3.9 Insulin-activated GSK-3 

Glycogen synthase kinase-3 (GSK-3), a serine/threonine kinase that consists of highly 

homologous α and β isoforms (59), phosphorylates and thereby inactivates glycogen synthase 
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(GS), resulting in reduced glycogenesis (57;60). Indeed, overexpression of GSK3 β in skeletal 

muscle of male mice is associated with a marked decrease in glucose tolerance (61). An 

association between skeletal muscle GSK3 and insulin resistance has been demonstrated in 

type 2 diabetes and animal models of insulin resistance (62;63). Additionally by inhibiting 

GSK-3, insulin stimulates the dephosphorylation and activation of eIF2B, contributing to an 

increased rate of protein synthesis (64). 

 

1.4 Regulatory aspects of insulin signaling: cause of type 2 diabetes  

 

1.4.1 Genetic aspects 

Polymorphisms have been identified in human genes encoding proximal insulin signaling 

components that might contribute to metabolic disease. Although insulin receptor 

polymorphism provides important insight into receptor function they fail to uncover a general 

cause of type 2 diabetes (65). A few polymorphisms in the gene of IRS-1 have been found, 

some of which are more common in type 2 diabetic patients (66), of these, the Gly to Arg 

change at codon 972 (Arg972 IRS-1) is the most common, and has been studied most 

extensively (67;68). However, they don’t reveal a simple genetic basis for insulin resistance 

(67). Thus genetic defects in the insulin signaling system validate the importance of the 

insulin signaling cascade, but they fail to explain the common cause of type2 diabetes. 

 

1.4.2 Tyrosine phosphorylation of IRS-1 proteins 

The COOH-terminal end of each IRS protein contains a set of tyrosine phosphorylation sites 

that act as on/off switches to recruit and regulate various downstream signaling proteins (7). 

Tyrosine phosphorylation of IRS-1 proteins constitutes the first event beyond activation of the 

IR tyrosine kinase that unleashes the intracellular transmission of insulin signals (69). 

Therefore,  phosphorylation of IRS1 on tyrosine residues is mandatory for insulin-stimulated 

responses (70). The IRS proteins are phosphorylated on tyrosine residues by the activated 

insulin receptor kinase (71). It results in the generation of binding sites for SH2 domain 

containing proteins. Many of the tyrosine residues cluster into common motifs that bind and 

possibly activate specific effector proteins, including enzymes, the phosphotyrosine 

phosphatases and the Src-like kinase or adapter molecules (72). At the molecular level, 
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decrease in glucose uptake is linked to a reduced tyrosine phosphorylation of IRS1 in animal 

models of insulin resistance and  in type 2 diabetic patients (21).  

While the mechanisms involved in the decrease in IRS1 tyrosine phosphorylation have not 

been completely identified, the involvement of serine phosphorylation of IRS1 (70), protein 

phosphatases (2) and polymorphism in IRS gene (73) has been pointed out over the last 

decade. 

1.4.3 Serine phosphorylation of IRS-1: Modulator of insulin signaling 

 In addition to tyrosine phosphorylation, both the insulin receptor and IRS proteins undergo 

serine phosphorylation, which may attenuate signaling by several mechanisms (74). IRS-1 

and IRS2 each contain more than 100 potential serine phosphorylation sites. Current studies 

have demonstrated hyper-serine phosphorylation of IRS-1 on Ser-302, Ser-307, Ser-612, and 

Ser-632 in several insulin-resistant rodent models (75;76), as well as in lean insulin-resistant 

offspring of type 2 diabetic parents (77). Lately a study provide evidence for inhibitory role of 

serine phosphorylation of IRS-2 in hepatic insulin signaling by indicating phosphorylation of 

serines 484/488 of IRS-2 by JNK and GSK-3 (78). While the phosphorylation of IRS1 on 

tyrosine residue is required for insulin-stimulated responses, the phosphorylation of IRS1 on 

serine residues has a dual role, either to enhance or to terminate the insulin effects (70). 

 

1.4.3.1 Serine phosphorylation as a feedback regulatory mechanism of 

insulin signaling 

Control mechanisms are essential for cellular signaling. Tyrosine phosphorylated IRS proteins 

are key players in propagating insulin signaling and are the targets of such feedback 

regulatory systems. Regulation of IRS proteins involves proteasome-mediated degradation 

(79), phosphatase mediated dephosphorylation, (80) or Ser/Thr phosphorylation. The latter is 

an attractive regulatory mechanism because it enables multilevel control of the activation of 

IRS kinases and the specific targets among potential Ser/Thr phosphorylation sites in IRS 

proteins that might play regulatory roles during the insulin response (Figure 1). Ser/Thr 

phosphorylation reduces IRS-1 ability to undergo Tyr phosphorylation by the insulin receptor 

kinase and might serve as a physiological negative feedback control mechanism to turn off 

insulin signaling by uncoupling the IRS proteins from their upstream and downstream 

effectors (Fig. 2) (81-83).  
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1.4.3.2 Serine phosphorylation of IRS proteins as a negative modulator of 

insulin signaling 

Recent studies reveal that agents that induce insulin resistance, exploit phosphorylation-based 

negative feedback control mechanisms otherwise utilized by insulin itself to uncouple the 

insulin receptor from its downstream effectors and thereby terminate insulin signal  

Fig .2. Serine phosphorylation of IRS-1 as modulator of insulin action and resistance. 

Ser/Thr phosphorylation of IRS proteins has a dual role, either to enhance or to terminate 

signaling by insulin. Ser residues of the phosphotyrosin -binding (PTB) domain of IRS-1, 

located within consensus protein kinase B (PKB) phosphorylation sites, presumably function 

as positive effectors of insulin sigailing, thus, generating a positive-feedback loop for insulin 

action. Insulin also activates mTOR and PKC, which mediate phosphorylation of Ser/Thr 

residues within the IRS protein either directly or through activation of downstream effectors 

such as IκB kinase β (IKKβ). Phosphorylation of these sites is part of the negative-feedback 

control mechanism induced by insulin that results in the termination of insulin signaling. 

Agents that abrogate insulin action, such as free fatty acids (FFA) and tumor necrosis factor 

α (TNFα), take advantage of this negative feedback control mechanism by activating Ser/Thr 

kinases (e.g. JNK, PKCs, IKKβ, mTOR, MAPK) that, by mediating phosphorylation of IRS 

proteins, inhibit the function of IRS proteins, terminate insulin action and induce insulin 

resistance (84). 
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transduction (Fig. 2) (85). The involvement of serine phosphorylation of IRS1 in the 

desensitization of insulin action has been pointed out over the last decade (21). Considerable 

data suggest that various pathological conditions associated with insulin resistance can 

promote serine phosphorylation of IRS-1 proteins. Stress-induced cytokine like TNF-α cause 

insulin resistance, at least in part, by serine phosphorylation of IRS-1. Regarding insulin 

resistance, studies have also suggested that agents, such as free fatty acids (FFA) (86;87), 

cellular stress (70), amino acids (88;89), endothelin-1 (90-92), angiotensin II (93) and 

hyperinsulinemia (94) which induce insulin resistance, can also activate serine/threonine 

kinases that phosphorylate IRS1 and inhibit its function (Fig. 2). The plasma concentrations of 

FFA (86), amino acids , angiotensin II (95;96), and endothelin-1 (97;98) are elevated in 

insulin resistant, obese and type 2 diabetic patients (99). IRS-1 Ser-312 and Ser-636  

phosphorylation increased, in the insulin-resistant offspring of parents with type 2 diabetes 

compared to the control subjects (77). Many Ser/Thr kinases phosphorylate IRS-1 including 

Raf, MEK, MAPK, P90rsk, JNK and PKC isoforms. Kinases downstream of the PI3-kinase 

cascade, PDK1, AKT, mTOR, p70S6K, and GSK-3β are also involved (100-103). 

Consequently, the inhibition of IRS1 functions could represent a unifying mechanistic link 

between all factors involved in insulin resistance. 

 

1.4.3.3 Mechanisms employed by Ser phosphorylation of IRS-1 to inhibit its 

function 

Several mechanisms have been proposed to explain how serine phosphorylation can regulate 

insulin signaling. Ser-307 phosphorylation inhibit PTB domain  function, which uncouple 

IRS-1 from insulin receptor (81). Some serine residues in IRS-1 bind 14-3-3 isoforms, which 

can target IRS-1 to sub-cellular compartments (Fig. 2) (104). Others sites might 

electrostatically block access to nearby tyrosine phosphorylation sites. Serine phosphorylation 

of IRS1 could induce conformational changes, steric hindrance, and cellular re-localization 

leading to decrease in tyrosine phosphorylation by IR, to reduce the recruitment of PI 3-kinase 

and to stimulate the IRS1 degradation pathway. Altogether, these events inhibit the IRS1 

functions and promote insulin resistance (70). 
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1.4.3.4 Serine phosphorylation as a positive modulator of insulin signaling 

The activation of PKB in response to insulin propagates insulin signaling and promotes the 

phosphorylation of IRS1 on serine residue in turn generating a positive-feedback loop for 

insulin action. Phosphorylation of Ser residues within the P-Tyr-binding (PTB) domain of 

IRS-1, by insulin-stimulated PKB, protects IRS proteins from the rapid action of PTPs, and 

enables the IRS proteins to maintain their Tyr-phosphorylated active conformation (105). 

Furthermore, activation of mTOR signaling induces Ser-302 phosphorylation and this 

positively influence signaling through the IR/IRS-1 axis (106). 

 

1.4.3.5 Important serine phosphorylation sites of IRS-1 

IRS-1 contains 232 Ser/Thr residues (23) many of which could be subjected to 

phosphorylation. Several candidate Ser residues were identified as potential targets for IRS-1 

kinases. These include Ser-24 (107), 302 (108), 307 (109), 318 (110), 332 (103), 408 (83), 

522 (111), 612 (91), 636 and 639 (112), 731 and 789 (113) ( Numbering of Ser residues of 

IRS-1 is based on the rat sequence) (Fig. 3). It is becoming apparent that Ser/Thr 

phosphorylation of IRS proteins has a dual function, serving either a positive or a negative 

modulatory role in insulin signaling. Under pathological condition, inducers of insulin 

resistance presumably trigger the phosphorylation of only the negative sites with no effects on 

the positive sites, thus preventing the propagation of insulin signals mediated by IRS proteins 

and thus causing insulin resistance (114). Furthermore, data describing one specific serine 

residue of IRS-1 either as a positive (106;115) or as a negative (116;117) regulatory 

phosphorylation site suggest a time-and-stimulus dependent function of serine 

phosphorylation of IRS-1 (110). 
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Fig. 3. Schematic diagram of rat IRS-1 serine  phosphorylation sites. 

Amino acid residues from 1 to 1235 are indicated. The N-terminal PH and PTB domains of 

IRS-1 are represented as boxes. IRS-1 serine phosphorylation sites with their relative location 

in IRS-1 are indicated. Positive, negative or dual role of the sites in insulin signaling is 

represented in different colours.  

 

1.5 Protein kinase C as modulators of insulin signal transduction 

Among IRS-1 kinases, members of the protein kinase C family of serine/threonine kinases 

have received considerable attention for their regulatory role in insulin signaling. The protein 

kinase C (PKC) family plays important roles in many intracellular signaling events, cell 

growth and differentiation (118;119). It is composed of a number of individual isoforms 

which belong to three distinct categories, conventional, novel and atypical, based upon their 

structurally distinct N-terminal regulatory domains. The major insulin-responsive tissues, 

skeletal muscle, liver and adipose tissue, express PKC isoforms from each of the categories, 

and the total number in each of these cells is in the range of 6–8 isoforms. These include 

conventional PKCs; α, βI and βII, novel PKCs; δ, ε and θ, and atypical PKCs; ζ or λ. Each of 

these isoforms has been shown to be activated by insulin stimulation or conditions important 
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for effective insulin stimulation (120;121). Most PKC isoforms have a dual action in 

stimulating insulin signaling and feeding back to induce insulin resistance in disease (122). 

 

1.5.1 PKCs mediated upregulation of insulin signaling  

There is increasing evidence that protein kinase C (PKC) isoforms modulate insulin-signaling 

pathways in both, positive and negative ways. Insulin stimulation or conditions important for 

effective insulin stimulation, activates PKCs α, βII, δ and ε in several cell types. In cultured 

mayotubes and intact muscles, it was shown that PKC βII is required for insulin-stimulated 

glucose uptake (123;124). Although PKC δ is primarily being reported as negative modulator 

of insulin signaling. But some of the reports suggest its positive effects on insulin signaling as 

well. Sampson et al (125) showed that insulin specifically induces PKC δ to associate with IR 

and that this IR-PKC δ association plays an important role in early IR signaling. In another 

study it was reported that insulin-induced GLUT4 translocation and glucose uptake was 

abrogated by inhibition of PKC δ, either pharmacologically or by overexpression of a kinase 

dead (dominant negative) PKC δ. Moreover, overexpression of WT PKC δ in the primary 

skeletal muscle cells increased GLUT4 translocation and glucose uptake in the absence of 

insulin stimulation (126).  

 A potential role of PKC ε as a transducer of insulin action was shown by its overexpression 

in NIH-3T3 fibroblasts, where the translocation of GLUT1 transporters to plasma membrane 

was greatly enhanced compared to (untransfected) cells where no translocation of GLUT1 

was detected (127).The expression of PKC ε was shown to be depressed in muscle from 

Zucker obese insulin resistant rats (128). In one of the study it was reported that 4 weeks of 

physical exercise improved insulin-signaling responses in these animals and that this was 

associated with an increase in association of PKC ε with IR (145).  

 

1.5.2 PKCs mediated downregulation of insulin signaling  

While the activation of PKC isoforms is not necessarily a negative regulation of insulin action 

(85;129;130). But PKCs have been implicated in impaired insulin signaling for over one 

decade (131-133), including classical PKC, novel (134) and more recently also atypical PKC 

isoforms (135). Knockout of PKC-α in mice enhances insulin signaling and PKC-θ-deficient 

mice are protected from fat-induced insulin resistance (136;137). Protein kinase C α, β and ζ 

are increased in the liver of humans and rats with non-insulin-dependent diabetes mellitus 
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(138). It would thus appear that the previously described positive regulation by PKC δ of IR 

signaling might involve the intervention of another protein such as Src tyrosine kinase 

(Sampson 60). PKCα, expressed in cells co-expressing either IR or IRS1 (3T3ir, HEK293, 

COSIR) induced their phosphorylation, supporting the idea that PKCα might in fact play a 

role in development of insulin-resistance (134;139). As a modulator of insulin action, PKCε 

(140) has been shown to increase the inhibitory effect of TNF-α on insulin signaling (141). In 

skeletal muscle from obese, insulin resistant patients, the decrease in PKC θ expression was 

noted (142). In summary, each of PKC isoforms has been shown one way or another to 

modify insulin-stimulated effects in one or all of the insulin-responsive tissues (143).  

 

1.5.2.1 Regulation of serine phosphorylation of IRS-1 by PKC isoforms 

In vitro and in vitro studies have shown that increased Ser/Thr phosphorylation of IRS-1 by 

protein kinase C (PKC) impairs insulin signaling (144). PKCs phosphorylates IRS proteins on 

serine residues and acts as a negative feedback control regulator that turns off insulin signals 

by inducing the dissociation of IRS proteins from IR (81). Indeed, 12-O-tetradecanoylphorbol 

13-acetate, a potent activator of various PKC isoforms, effectively inhibits both, IRS-1 

interactions with the juxta-membrane region of the insulin receptor and insulin’s ability to 

phosphorylate IRS proteins, thus implicating diacylglycerol-activated PKCs as potential 

regulators of IR-IRS interactions (81). Prolonged insulin stimulation of PKC-ζ can also 

participate in the negative regulation of insulin signaling by phosphorylating IRS-1 at serine 

residues (145). The phosphorylation of Ser-318 of IRS-1 by PKC-ζ  has been suggested to be 

involved in the negative regulation of insulin signal transduction (81;110;146). Additionally, 

PKC-θ-dependent phosphorylation of Ser-1101 of  IRS-1 has been reported  in muscle cells 

(147). 

 

1.5.2.2 PKC-δ-mediated downregulation of insulin signaling via serine 

phosphorylation of IRS-1 

As a serine–threonine kinase, PKC-δ might be expected to function primarily as a negative 

regulator of IR signaling, particularly in view of the role of serine phosphorylation on 

activities of IR and IRS (148-150). In deed many studies have shown that PKC-δ decrease 

tyrosine phosphorylation of IRS-1 and may be involved in  increase in serine phosphorylation 

of IR and IRS-1 (122;151), suggesting that the same kinases that mediate insulin signaling 
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might also play roles in negative feedback of it. PKC-δ, although presumably requiring co-

expression of IRS-1, inhibits the tyrosine kinase activity of the insulin receptor in human 

kidney embryonic cells (152) . In addition, PKC-δ has been overexpressed in CHO cells and 

when activated by phorbol esters found to increase serine phosphorylation of IRS-1 

(153;154). In the same report, it was shown in H4IIE hepatoma cells that expression of either 

constitutively active PKC-δ, or of wild type PKC-δ followed by phorbol ester stimulation, 

inhibited tyrosine phosphorylation of IRS-1 in response to insulin. Previously, PKC-δ was 

shown to phosphorylate several serine residues, including Ser-307, Ser-323 and Ser-574 

(human sequence) that inhibit IRS-1 tyrosine phosphorylation (155). It has been suggested 

that the phosphorylation of IRS-1 on serine/threonine residues is the mechanism by which 

PKCs regulate insulin action (122). A few PKC-δ-dependent phosphorylation sites had been 

identified in recent times, among them, Ser-24 (155), Ser-318 (155) are important. These 

results support the notion that insulin-activated PKC-δ serves as a negative regulator of IR 

signaling. 

 

 

1.6 Aims of the study 

Albeit Ser/Thr phosphorylation has been increasingly recognized as a negative counterbalance 

to positive IRS signaling through tyrosine phosphorylation (84) and  Ser/Thr phosphorylation 

could be a generalized mechanism for insulin resistance. But from a molecular perspective it 

has been difficult, however, to identify discrete sites that are both phosphorylated in vivo and 

when phosphorylated, have relevant functional consequences. Therefore attempts to reveal 

potential Serine phosphorylation sites in IRS-1 that regulate IRS-1 function during insulin 

simulation is worthwhile. Studies on regulation and function of novel serine phosphorylation 

sites of IRS-1 provide the rational mechanism to explain insulin resistance. 

With this background, following aims were established for the project to study the role and 

function of Ser-357 of IRS-1 in insulin signal transduction; 

 

1. To generate polyclonal phospho-site-specific Ser-357 antibody by immunizing the 

rabbits with synthetic peptide flanking phosphorylated-Ser-357. 

2. To purify the antiserum raised against phospho-Ser-357. Additionally, to eliminate 

cross reactivity of the antibody with adjacent Ser-358 by immuno-purification. 

3. To characterize specificity of phospho-site-specific Ser-357 in living cell. 

4. To study the stimuli which induce phosphorylation of Ser-357 in skeletal muscle. 
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5. To generate following mutants of IRS-1 by PCR site-directed mutagenesis, to study 

the function of Ser-357. 

 

a. Loss of function mutants 

i. IRS-1 Ala-357 

ii. IRS-1 Ala-357358 

b. Gain of function mutants 

i. IRS-1 Glu-357 

c. To study the single effect of Ser-357 and Ser-358  

i. IRS-1 Ala-358 

ii. IRS-1 Glu-357 Ala-358  

6. To study specific kinase involve in the phosphorylation of Ser-357. 

7. To study the function/biological relevance of Ser-357 phosphorylation in insulin 

signaling by investigation of effect of Ser-357 phosphorylation on following key 

molecules of insulin signaling; 

a. Tyrosine phosphorylation of IRS-1 

b. PKB/AKT phosphorylation 

c. GSK-3 phosphorylation 

8. To study the single function of Ser-357 and Ser-358 in insulin signaling 

9. To study the phosphorylation of Ser-357 in tissues from mice stimulated with insulin. 

10. To study the phosphorylation of Ser-357 phosphorylation in human mayotubes. 
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2- MATERIALS, SOFTWARE AND DEVICES 

2.1 Enzymes, Proteins, Nucleic acids and substrates 

λ- Protein phosphatase (λ-PPase)                      New England BioLabs, Beverly MA, USA 

λ-PPase reaction buffer                                    New England BioLabs, Beverly MA, USA 

Ligase                                                                 Roche molecular Diagnostics, Mannheim, 

Germany 

Ligase buffer                                                      Roche molecular Diagnostics, Mannheim, 

Germany 

Plasmid DNA IRS-1 (rat)                                  Lab Internal tool 

Plasmid DNA PKC-δ (mouse)                           Lab Internal tool 

Plasmid PKC ζ, PKC-θ, PKC-λ                       Lab Internal tool 

pcDNA3                                                             Lab Internal tool 

Plasmid DNA kinase-negative (KN) PKC-δ     Lab Internal tool 

Sequencing primers                                           Invitrogen, Karlsruhe, Germany 

PWO polymerase                                               peqLab GmbH, Munich, Germany 

10x Reaction buffer for Pwo polymerase  peqLab GmbH, Munich, Germany 

DNTPs peqLab GmbH, Munich, Germany 

Restriction endonuclease                                   Roche, Mannheim, Germany 

DNA-sequencing mix premix                           Perkin Elmer, Überlingen, Germany 

BamHI                                                               Roche Mannheim, Germany 

XhoI                                                                   Roche Mannheim, Germany 

 

2.2 Antibodies 

2.2.1 Antibodies against IRS-1 

IRS-1, polyclonal, against C-terminus              Dr Rainer Lehmann 

IRS-1, polyclonal, against C-terminus              Upstate, Lake Placid, USA 

IRS1 phospho-Ser 318, polyclonal                    Dr Rainer Lehmann 

 

2.2.2 Antibodies against PKCs 

Anti PKC δ, monoclonal                                   BD TransductionLaboratories, San Diego,  
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2.2.3 Antibodies against signal transduction molecules 

Anti-phospho-PKB/Akt (Ser 473)                     Cell Signaling, Frankfurt, Germany 

Anti-PKB/Akt (mouse), polyclonal                  Upstate Ltd, Wolverton, UK 

Anti-phospho-GSK-3α/β (Ser 21/9),                  
polyclonal  

Cell Signaling, Heidelberg, Germany 

Anti-GSK-3β (mouse) monoclonal                   Santa Cruz Biotechnology, USA 

Phospho-tyrosine, (P-tyr-100) (Mouse),            

monoclonal          

Cell Signaling, Frankfurt, Germany 

 

2.2.4 Secondary Antibodies 

Anti rabbit IgG HRP, goat Santa Cruz Biotechnology, USA 

Anti mouse IgG HRP, goat     Santa Cruz Biotechnology, USA 

 

 

2.3 Kits 

QIAquick Gel Extraction Kit                            Qiagen, Hilden, Germany 

Plasmid Maxi Kit (25)                                       Qiagen, Hilden, Germany 

Plasmid Mini Kit (25)                                       Qiagen, Hilden, Germany 

PCR Purification Kit (250)                                Qiagen, Hilden, Germany 

Quick change site-directed                               

mutagenesis kit 

Stratagene, Germany 

Bio-Rad-Kit                                                       Biorad, München, Germany 

 

2.4 Chemicals and solvents 

Agarose, peqGold                                               peqLab GmbH, Munich,Germany 

Ammonium persulfate (APS)                             Sigma, Steinheim, Germany 

β-Mercaptoethanol                                              Merck, Darmstadt, Germany 

BSA, bovine serum albumin                              Roche, Mannheim, Germany 

Bromophenol Blue                                              Merck, Darmstadt, Germany 

CaCl2                                                                   Sigma, Deisenhofen, Germany 
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Chloroform                                                         Merck, Darmstadt, Germany 

Dithiothreitol (DTT)                                          Sigma, Deisenhofen, Germany 

DMSO (dimethyl sulfoxide)                                 Merck, Darmstadt, Germany 

Dulbeccos-PBS                                                   Bio Whittaker, Verviers, Belgium 

EDTA                                                                 Sigma, Deisenhofen, Germany  

EGTA                                                                 Sigma, Deisenhofen, Germany  

Acetic acid                                                          Merck, Darmstadt, Germany 

Ethanol                                                                Merck, Darmstadt, Germany 

Ethidiumbromide                                                  Sigma, Deisenhofen, Germany 

Formaldehyde                                                       Aldrich, Steinheim, Germany 

FUGENE 6                                                         Roche, Mannheim, Germany 

Gelatine                                                               Merck, Darmstadt, Germany 

Glycine                                                                 Bio-Rad, Munich, Germany 

Glycerol                                                              Merck, Darmstadt, Germany 

HEPES   Sigma, Deisenhofen, Germany 

Insulin from bovine pancrease                           Sigma, Deisenhofen, Germany 

Isopropanol                                                         Merck, Darmstadt, Germany 

Rapid fixer for curix 60G354                              Agfa, USA 

Developer for curix 60A/BG153                         Agfa, USA 

Luminol (3-aminophtalhydrazide)                       Aldrich, Steinheim, Germany 

MgCl2 .6 H2O                                                      Sigma, Deisenhofen, Germany 

Sodium carbonate                                                Merck, Darmstadt, Germany 

Methanol                                                              Merck, Darmstadt, Germany 

Sodium chloride                                                   Merck, Darmstadt, Germany 

Sodium fluoride                                                     Merck, Darmstadt, Germany 

Natriumorthovanadate                                          Sigma, Deisenhofen, Germany 

Natriumpyrophosphate                                          Sigma, Deisenhofen, Germany 

p-Iodophenol                                                         Aldrich, Steinheim, Germany 

Ponceau                                                                Sigma, Deisenhofen, Germany 

Phorbol-12-myristate-13-acetate, for cell culture                      Sigma, Deisenhofen, Germany 

Protein A-Sepharose (Suspension)                     Amersham Biosciences, Freiburg, 

Germany 

Hydrochloric acid (37 %)                                    Applichem, Darmstadt, Germany 

SDS ultra pure                                                     Roth, Karlsruhe, Germany 
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Tetramethylethylenediamine (TEMED)                Roth, Karlsruhe, Germany 

Tris-(hydroxymethyl)-aminomethan                   Merck, Darmstadt, Germany 

Tris-(hydroxymethyl) aminomethan, ultrapur -                           ICN Biomedicals Inc, USA 

TritonX-100 (t-octylphenoxypolyethoxyethanol)                              Sigma, Deisenhofen, Germany 

Tryptan blue                                                       Biochrom, Berlin, Germany 

Hydrogen peroxide, 30% solution                      Aldrich, Steinheim, Germany 

Xylenecyanol                                                       Sigma, Deisenhofen, Germany 

 

 

2.5 Molecular markers 

“Low Molecular Weight” Marker                      Amersham Biosciences, Freiburg, 

Germany 

“High Molecular Weight” Marker                     Amersham Biosciences, Freiburg, 

Germany 

DNA-Molecular Weight Marker X (0.07-12.2 

kbp)                   

Roche Molecular Diagnostics, Mannheim, 

Germany 

 

 

2.6 Solutions and buffers 

All buffer substances and solvents were p.a. or better quality. Water was either Milli Q or 

HPLC-Water. 

  

Electrophoresis-running buffer: The Stock Buffer (10X) was prepared by dissolving 0.025 

M (30.3 g) Tris, 0.19 M (144 g) glycine, 0.1% (10g) SDS in 1 litrer of water, pH was adjusted 

at 8.3.  

Shortly before use stock was diluted by 1:10 with water to make 1X buffer. 

 

Separation gel buffer: 1.5 M (90.8 g) Tris, 2 % (10 g) SDS were dissolved in 500 ml H2O 

and pH was adjusted at 8.8.  

  

 

Stacking gel buffer: 0.5 M (30.3 g) Tris; 2 % (2 g) SDS were dissolved in 500 ml H2O. The 

pH was maintained with 25 % HCl at 6.8. 
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Sample buffer, Laemmli: Stock buffer (5X) was prepared by dissolving 1M Tris HCl (pH 

6.8), 10% SDS; 1% bromphenolblue, 50% glycerol and β-mercaptoethanol, volume was 

raised to 10 ml with H2O. Stock was diluted by 1:5 with protein sample. 

 

Sample buffer, for agarose gel electrophoresis: 0.1 % bromphenolblue and 0.1% 

xylenecyanol, 60 % glycerol and 2 ml of 10x TAE buffer was dissolved in H2O and volume 

was raised till 10 ml. 

 

TAE(1X) (Tris/Acetat/EDTA): To prepare TAE buffer 40 mM Tris and 2 mM EDTA were 

dissolved in 1 liter of H2O.The  pH was adjusted with natrium acetate at 8.0. 

 

KCM buffer: Stock solution (5X) of KCM buffer was prepared by dissolving 0.5M KCl, 

0.25M MgCl2 and 0.09M CaCl2 in 1 liter of H2O.  

 

Blotting buffer: Stock blotting buffer (10X) was prepared by dissolving 480 mM Tris, 390 

mM glycin and 0.4 % SDS. 

100 ml of Stock blotting buffer was diluted with 200 ml Methanol and 700 ml H2O. 

 

10 x NET “G“:  Stock solution of NET “G“  was prepared by dissolving 1.5 M NaCl, 50 mM 

EDTA, 500 mM Tris, 10% Triton X100 and  2.5 % gelatin. Shortly before use the stock 

solution was diluted by 1:10 with water and pH was adjusted at 7.4 with HCl.    

 

ECL Solutions:  

Luminol : 0.5 M Luminol was prepared by dissolving 0.885 g of Luminol in 10 ml of 

DMSO. 

p-Iodophenol : 0.5M p-iodophenol was prepared by dissolving 1.1 g of p-iodophenol in 10 

ml of DMSO. 

Luminol and p-iodophenol solutions were stored away from light, at 4 ° C, and shortly before 

preparing ECL-Solution A and B, were liquified at room temperature (RT). 

 

0.1 M Tris/HCl buffer; 12.11 g Tris was dissolved in H2O and after adjusting the pH at 9.35 

volume was raised to 1 L. 
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ECL-Solution A; 880 µl, 0.5 mol   Luminol and 864 µl, 0.5 mol p-iodophenol were 

dissolved in 100 ml of 0.1 M Tris.  

ECL-Solution B; 0.0075 % (25ul from 30%)of H2O2  was dissolved in 100 ml of 0.1 M 

Tris/HCl: 25 µl 

The ECL-solutions A and B were stored at 4°C (maximum till 2 weeks) and were used in 1:1 

ratio. 

 

Stripping-buffer: Stripping buffer was prepared by dissolving 66 mM Tris, 0.5 % β-

Mercaptoethanol and 2 % SDS in 500 ml H2O, the pH was adjusted with around 10 ml, 25 % 

HCl at 6.8 and volume was raised with H2O to 1 liter. 

 

TBS/T buffer 10X :  The stock(10X) buffer was prepared by dissolving 200 mM Tris and 

1.37 M NaCl in 1 liter H2O. 

TBS/T buffer was prepared by dissolving TBS (10X) in water at 1:10 ratio and 0.1% Tween 

20 was added.in the end  addition of 5% BSA produced complete TBST/T buffer. 

 

BBS: To prepare BBS buffer for transfection in mammalian cells, 50 mM BES, 280 mM 

NaCl-solution and 1.5 mM Na2HPO4 solution was mixed and volume was raised till 90 ml 

with H2O. Then pH was adjusted exactly at 6.96 with NaOH and volume was raised till 100 

ml with H2O. 

BBS was sterilized by passing through a 0.22 micron filter. 

BBS buffer was first tested for a transfection test before use in the experiment. 

 

Lysis buffer (A):                                                             

Lysis buffer (A) was prepared by dissolving 50mM HEPES, 150mM NaCl, 1.5mM MgCl2, 

EGTA,  10% glycerole ,1% Triton-X-100, 100mM NaF and 10mM  Na4P2O7                                

together and the volume was raised with H2O to100ml. The pH was adjusted with 37% HCl to 

7.5. 

 Phosphatase inhibitor was freshly added to the lysis buffer shortly before use. 

 

Lysis buffer (B): Lysis buffer (B) was prepared by dissolving  50 mM Tris,150 mM NaCl 

and 1 % Triton X-100 together and the volume was raised with H2O to100ml. The pH was 

adjusted with 37% HCl to 7.6. 
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Phosphatase inhibitor (10 x): Stock solution (10X) of phosphatase inhibitor was prepared 

by dissolving 100 mM sodiumfluoride (NaF), 100 mM sodiumorthovanadate (Na3VO4), 100 

mM β-glycerophosphate (glycerol-2-phosphate) (C3H7O6PNa2) and 50 mM sodium 

pyrophosphate (Na4P2O7 .10 H2O) in water and volume was raised to 100ml. 

Solution was stored at -20°C in 1ml aliquots. 

 

 25 X solution of complete protease inhibitor: 

One tablet complete protease inhibitor (Roche Germany) was dissolved in 2 ml H2O to make 

a working solution of protease inhibitor. Protease inhibitor and phosphatase inhibitor were 

freshly added to the lysis buffer (B) shortly before use. 

 

HNTG-Buffer: HNTG buffer was prepared by dissolving 20 mM HEPES, 10 mM NaF, 150 

mM NaCl, 1% TritonX 100 and 10% Glycerol in 100ml H2Oand the pH was adjusted at 7.5. 

 

 

2.7 Culture media and antibiotics 

Glucose                                                               Sigma, Deisenhofen, Germany 

L-Glutamine                                                        GIBCO, Invitrogen, Karlsruhe, Germany 

Penicillin-streptomycin (PenStrep,                    

100.000 U) 

GIBCO, Invitrogen, Karlsruhe, Germany 

LB Broth,                                                            Miller Sigma, Deisenhofen, Germany 

LB Agar (Lennox L Agar)                                  Sigma, Deisenhofen, Germany 

DMEM 1 g Glc/L, without glutamine                Bio Whittaker, Verviers, Belgium 

DMEM 4.5 g Glc/L, without glutamine                         Bio Whittaker, Verviers, Belgium 

Ampicillin GIBCO,                                            Invitrogen, Karlsruhe, Germany 

 

LB-Medium (Luria-Broth): 25 g LB was dissolved in 1 L H2O and autoclaved. 

 

LB/Amp-Medium: after autoclaving ampicilin was added in 100 µg/ml concentration in the 

LB-Medium.  

LB/Amp-agar plates: after autoclaving and cooling the LB agar to 50°C, ampicillin was added 

in 100 µg/ml end concentration.15 ml LB-agar was added in each plate. 
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Standard medium for C2C12 and BHK-IR cells: Standard growth medium for cells was 

prepared  by mixing  430 ml of DMEM with 4.5 g glucose/L (Bio Whittaker, Verviers, 

Belgium), 10%  heat inactivated FCS, 100 U Penicillin and streptomycin, 2 mM glutamine, 

1mM sodium pyruvate and 1x non-essential amino acids.    

                       

Starvation medium for C2C12 and BHK-IR cells: Standard starvation medium for cells 

was prepared by mixing 500 ml of DMEM with 1 g glucose/L (Bio Whittaker, Verviers, 

Belgium) and 2 mM glutamine. 

 

2.8 Consumable material 

Gel blotting paper                                                Schleicher & Schüll, Dassel, Germany 

Hyper cassette for the detection of                       

chemiluminescence of protein blots 

Amersham Biosciences, Freiburg, Germany 

 

Hyperfilm ECL 18 x 24 cm2                                               Amersham Biosciences, Freiburg, Germany 

Millipore Filter 0.22 µm pore size                        Millipore, Bedford, USA 

Pipette tipps                                                         Eppendorf, Hamburg, Germany 

Nitrocellulose membrane protein                         

(BA 85 0.45µm)   

Schleicher Schüll, Dassel, Germany 

 

 

2.9 Cells and Bacterial strains 

 

2.9.1 Cells 

BHK (ATCC No. CCL 10): This cell line was established in 1961 from the kidney of five  

hamsters (Mesocricetus auratus), which was one day old. This cell line was kindly provided 

by R. Lammers, Tübingen.  

BHKIR-cell line is a cell line derived from BHK-cells with a stably transfected insulin 

receptor (IR). This cell line was kindly provided by NP Møller, Novo Nordisk, Denmark. 

 

C2C12: C2C12 cells were from ATCC (Wesel, Germany). 

 

 

2.9.2 Bacterial Strains 
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Competent E. coli- XL1 Blue                             

for  transformation      

 Novagen, Madison, USA                  

 

 

2.10 Laboratory equipments 

Genesys 5 spectrophotometer                             Spectronic, Runcorn, Cheshire, England 

Sterling Diagnostic Imaging apparatus               DuPont de Nemours, Bad Homburg, 

Germany 

HP Scanjet 4600                                                  HP, USA 

Hera safe hood                                               Heraeus , Germany 

Incubators                                                            Heraeus, Germany 

Thermocycler:                                                       

• Progene Techne, Dexford-Cambridge, UK 

• Mastercycler 5330 Eppendorf, Hamburg, Germany 

 Thermomixer comfort Eppendorf, Hamburg, Germany 

Vortex-Genie 2                                                    Scientific Industries, USA 

Heating block Scientific Industries, USA 

Water bath                                                       Julabo, Seelbach, Germany 

Centrifuges:  

• Minicentrifuge                                                     Qualtron Inc., Korea 

• AvantiTM J-25 with Rotors                                 Beckman, Munich, Germany 

      JA-17and JLA-10.500                               

• Biofuge fresco                                                      Heraeus/Kendro, Hanau, Germany 

• Megafuge 2.0 R                                                     Heraeus/Kendro, Hanau, Germany 

pH-Electrode SenTix 81                                       WTW, Weilheim, Germany 

pH-Meter inoLab                                                  WTW, Weilheim, Germany 

Electrophoresis chamber for agarose                   PolyMehr, Kassel, Germany 

Electrophoresis chamber for SDS-PAGE             PolyMehr, Kassel, Germany 

(20x20cm2)  

Blotting apparatus                                                PolyMehr, kassel, Germany 

Autoklav SANOclav                                             Wolf, Geislingen, Germany 
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2.11 Software 

GelScan 5.02 BioSciTec,                                    Frankfurt am Main, Germany 

Powerpoint 2000                                                 Microsoft Corporation, USA 

Reference Manager 10.0 ISI                               ResearchSoft, USA 

Literature –data base                                           http://www.ncbi.nlm.nih 

                                                                             gov/entrez/query.fcgi 

Protein data base                                                 http://www.expasy.org/ 

                                                                             http://www.expasy.org/prosite/ 

                                                                             http://www.hprd.org 

                                                                             /PhosphoMotif_finder   
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3. METHODS 

 

3.1 Protein Biochemical Methods 

 

3.3.1 SDS- polyacrylamide gel electrophoresis (SDS-PAGE) 

To separate cell lysates and immunoprecipitated proteins, the discontinuous sodium dodecyl 

sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was used (156). SDS binds to 

hydrophobic domains of proteins and disrupts their folded structure allowing them to exist 

stable in solution. The resulting SDS-protein complex is proportional to the molecular weight 

of the protein. SDS-protein complexes have all a negative charge and can be size-separated; 

SDS-treatment masks individual charge differences of proteins. During separation, SDS-

protein complexes are attracted to the anode and separated by enforcement through the porous 

acrylamide gel. Usually, proteins are first concentrated on a stacking gel and later separated 

on a separating gel.  

In this work, a separating gel of 7.5% acrylamide was used. Protein samples were combined 

with 5x Laemmli-buffer and heated at 95 °C for 5 min. 

 

3.3.2 Dephosphorylation assay  

For dephosphorylation of phosphorylated proteins from crude extract of cells, Lambda 

Proteins Phosphatase (λ-PPase) was used in dephosphorylation assays. λ-PPase is a Mn2+ -

dependent protein phosphatase with activity towards phosphorylated serine, threonine and 

tyrosine residues (157). Immunoprecipitated IRS-1 was incubated with 100 U of λ-

phosphatase and reaction buffer for 30 min at 30°C. Protein was then separated by SDS-

PAGE and analysed for dephosphorylation by western blot. 

 

 3.3.3 Quantification of proteins 

Total protein concentrations were determined using the dye-based Bradford assay. This assay 

is also referred to as Bio-Rad assay after the company which sells the kit. Aliquots of samples 

(ranging from 1-5 µl) were diluted in water. 800 µl of sample and 200 µl of the Bio-Rad-Kit 

were added. Extinction of the contained Coomassie Brilliant Blue G-250 dye, in response to 

various concentrations of protein, was then measured after 20-30 min at 595 nm in a 

spectrophotometer.  
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A standard curve with samples of known protein concentration was prepared in parallel, to 

assess the unknown protein concentrations. Bovine serum albumin, BSA, was used as a 

standard and the following dilutions were usually used for the standard curve: 

 

                Table 1. Known protein concentrations used for the standard curve. 

Standard Protein /µg µl BSA(200µg/ml) 

1 0 0 

2 4 20 

3 8 40 

4 12 60 

5 16 80 

6 20 100 

 
                  

Extinction was measured in plastic cuvettes and linear regression was used for the calculation 

of unknown protein concentration of the sample. 

 

3.2 Immunological Methods 

 

3.2.1 Generation and purification of phospho-site-specific-Ser-357 IRS-1 (p-Ser-357) 

antibodies  

 

The antibody was generated as described in (158). Polyclonal phospho-site-specific-Ser357 

antiserum was raised against a synthetic peptide (AHRHRGpSSRLHPPLNHSRSI) flanking 

Ser357 in IRS-1 (the numbering of IRS-1 refers to the rat sequence). The peptide was 

synthesized as a single peptide and as a multiple antigen peptide (MAP) 

(AHRHRGpSSRLHPPLNHSRSI)8 -(Lys)4-(Lys)2-Lys-Gly-OH using standard Fmoc/tBu 

chemistry as described above. After purification, the peptide was coupled to keyhole limpet 

hemocycanin using the glutardialdehyde method. The antiserum was obtained after repeated 

immunization of a rabbit with a 1:1 mixture of the peptide-keyhole limpet hemocycanin 

conjugate and the MAP. This antiserum was purified by multiple purification steps using 

immuno-affinity chromatography. In the first step of purification, the antiserum was purified 

using a non-phospho-peptide affinity column to eliminate the ability of the antibody to react 

with non-phosphorylated versions of the peptide. Since antiserum was showing cross 

reactivity with adjacent Ser358 as well, consequently, this cross reactivity was removed by 

performing an additional purification step, using phosho-Ser358 peptide, through immuno-

affinity chromatography. 
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3.2.2 Enzyme-linked immunoSorbent assay (ELISA) 

The wells of the microtiter plates (Nunc Brand Products, MaxiSorb surface, Wiesbaden, 

Germany) were coated with 5 µg of different peptides, listed in Table 1, in PBS in a final 

volume of 100 µl/well at 4°C overnight. The plates were washed three times with 200 µl of 

washing buffer (PBS/0.05% Tween 20, pH 7.0) and blocked with blocking buffer (PBS/0.05% 

Tween 20, pH 7.0, containing 2% BSA) for 2 hr at 37°C. After washing, the plates were 

treated for 1 h at 37°C with purified phospho-site-specific-Ser357 antibody (diluted in 

PBS/0.05% Tween 20, pH 7.0, containing 0.5% BSA) or the phospho-site-specific-Ser357 

antiserum. After washing, the plates were incubated with HRP-conjugated goat anti-rabbit Ig 

(Dianova, Hamburg, Germany; 1:5000 diluted in PBS/0.05% Tween 20/0.5% BSA). ABTS 

(azinodiethyl-benzthiazoline-sulfonate) and H2O2 in substrate buffer (citrate buffer 100mM, 

pH 4.5) was added (100 µl/well)  and the colour development analyzed at a wavelength of 405 

nm (158). 

 

3.2.3 Immunoprecipitation (IP) 

For co-immunoprecipitation, cells were lysed in lysis buffer-1, supplemented with 

phosphatase inhibitors. Immunoprecipitation was carried out by incubating 250 µg of protein 

with 3 µl of specific antibody and 30 µl of protein A-Sepharose to capture the complexes at 

4°C for 4 hours. Immunoprecipitates were washed twice with HNTG buffer supplemented 

with phosphatase inhibitors. After washing, protein was mixed with Laemmli (5X) and 

incubated at 95°C for 5 min. Sample was run on SDS-PAGE for Western blot analysis. 

 

3.2.4 Protein transfer to nitrocellulose membranes (Western blot) 

Western Blotting has been devised for the electrophoretic transfer of proteins from 

polyacrylamide gels to nitrocellulose sheets and their subsequent detection by antibodies 

(159). This technique can give information about the size of protein (with comparison to a 

size marker or ladder in kDa), or identify the phosphorylation expression level.  

The separated protein of cellular extracts or IP from SDS-PAGE were transferred and 

immobilized to nitrocellulose membranes (0.45 µm pore size) by semi-dry Western blotting. 

Gel and membrane was placed between two blotting papers soaked in blotting buffer, to 

remove electrophoresis salts and detergents. Transfer was performed at 0.8 mA / cm2 for 2 

hours at room temperature.  

 

3.2.5 Staining of proteins on nitrocellulose membranes with Ponceau S  
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The transfer efficiency of proteins from polyacrylamide gel to nitrocellulose membrane was 

checked by Ponceau staining of the nitrocellulose membranes. It is a ready–to–use, reversible 

staining solution designed for rapid (5 minute) staining of protein bands on nitrocellulose 

membranes. Ponceau S stain is easily reversed with water washes, facilitating subsequent 

immunological detection. 

 

3.2.6 Detection of proteins by antibodies 

In a western blot, it is important to block the non-reacted sites on the membrane to reduce the 

amount of non-specific binding of proteins during subsequent steps in the assay. Therefore, 

nitrocellulose membranes were subsequently soaked with blocking agent (NET-G) in a plastic 

container. This step was repeated 3x, each time for 15 min. 

 

After the membrane was blocked, so that primary antibodies can not bind to the membrane 

non-specifically, a solution of the primary antibody or also called first antibody in NET-G 

was added and gently rocked for 2h at room temperature or overnight at 4 °C. Antibody 

solutions for Western blotting were typically diluted from 1/500 to 1/10,000. 

 

Membranes were subsequently washed in NET-G 4x, each time for 15 min (first antibody 

wash). Second antibodies were HRP-conjugate, anti-mouse or anti-rabbit, depending on the 

animal in which the primary antibody was raised (the host species). A dilution (ranging from 

1:2500 -1:5000) of the appropriate second antibody was added and incubated at room 

temperature for 30-60 min. The second antibody recognizes the Fc portion of the first 

antibody. Second antibody wash was performed four times, lasting 15 min, each.   

 

Enhanced chemiluminescence system was used for the detection of proteins of interest on 

nitrocellulose membranes. This method has become the method of choice for Western blot 

analysis because it gives several advantages over other detection methods.The membranes 

were incubated with a 1:1 (v/v) ratio of solution A and B (as described in materials) for 3 min. 

Emitted light was detected by hyperfilm ECL films. Films were developed using a Sterling 

Diagnostic Imaging apparatus  

 

3.2.7 Densitometry 

Protein images on films were scanned using a HP Scanjet (4600 Series). Densitometry was 

carried out using Gelscan professional V5.1 software. 
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3.2.8 Stripping antibodies from nitrocellulose- membranes 

Stripping is the term used to describe the removal of primary and secondary antibodies from 

the membrane. Stripping was used when more than one protein was investigated on the same 

blot or the same protein with different antibodies (for example when a phospho-specific 

antibody was probed, then the relative total amount of protein was reprobed). 

 The detection reagents from membrane was removed and membrane was washed for 15 min 

in NET”G”. The blot was incubated with stripping buffer at 56°C for exactly 30 min in a 

water bath. The membrane was blocked with NET”G” for another 15 min and incubated with 

a new antibody solution overnight.  

Membranes were stored after use in heat-sealed plastic bags at 4 °C.  

 

3.3 Molecular methods 

 

3.3.1 Cell cultivation 

All works were carried out under sterile conditions in a "Sterile Hood". 

Cryopreserved cells C2C12/BHK-IR were transferred in 15 ml DMEM (4.5g/L glucose) 

standard growth medium for C2C12/BHK-IR cells. Cells were incubated at 37 °C / 5% CO2 

either in 15 cm plates or 175 cm2 cell culture flasks. After 4 hours, the medium was changed 

and after 24 hours cells were sub-cultivated in 1:10 split ratio. 

 

3.3.2 Cell splitting/passaging  

C2C12 cells were grown for 48 hours and BHK-IR for 72 hours. As they were 80% confluent, 

they were considered ready for splitting. For splitting, first medium was removed, and then 

cells were rinsed with 5 ml of PBS. After removal of PBS, 4 ml trypsin-EDTA was added in 

the plate and incubated at 37 °C / 5% CO2 for 4 min. When cells were detached from the plate 

5 ml DMEM growth media was added to stop trypsin activity and cells were centrifuged at 

900 rpm for 4 min. The pellet was resuspended in 1ml DMEM growth media. 100 µl of cell 

suspension (1:10 split ratio) was added in a new plate containing 15 ml fresh DMEM growth 

media. Cells were incubated in 37 °C / 5% CO2 for another 48 hours. 

 

3.3.3 Cell counting 

For cell culture experiments it is necessary to determine cell concentration to use particular 

number of cells in the experiment.  
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50µl of cell suspension was mixed with 450 µl of Trypan blue. After short vortexing, 20 µl of 

this mixture was added in the Neubauer cell counting chamber. Cells were counted in four 

large corner squares. The cell number was determined by multiplying the average of four 

squares with 105 (104 chamber factor x dilution factor).  

 

3.3.4 Transfection 

Transfection is the introduction of cloned eukaryotic DNA into cultured mammalian cells. 

The most widely used method is transfection mediated by calcium phosphate, although the 

mechanism remains ambiguous, it is believed that the transfected DNA enters the cytoplasm 

of the cell by endocytosis and it is transferred to the nucleus. To transfer wild type or mutated 

IRS-1 into the cells, pRK5 was used as a vector. For transient transfection, cells were seeded 

one day before and grown to 80% confluence in 6 well plates having 1x105 cells per well in 2 

ml DMEM growth medium. All transfections were performed with standard calcium 

phosphate precipitate protocol (160). In this method,  cells were transfected with 4µg of rat 

IRS-1 cDNA in pRK5-vector or PKCs cDNA in  pLXSN (161;162). Total DNA amount used 

for transfecting one well of 6 well plate was 4 µg, while performing co-transfection of two 

different DNAs, 2 µg of each plasmid was used for each well.  DNA was mixed with 0.25 M 

CaCl2 and 2x BBS buffer and incubated to develop fine precipitates. Empty vector, pcDNA3 

was used as negative control of transfection. 

200 µl of calcium-phosphate-DNA suspension was transferred into the medium above the cell 

monolayer in dropwise fashion. Cells were incubated at 37 °C / 5% CO2 for 24 hours. At the 

end of this incubation the medium and precipitates were removed by aspiration and 2 ml of 

fresh growth medium was added. 

 

3.3.5 Stimulation and lysis of the cells 

After 48 hours of transfection, medium was changed with serum free (starvation medium) 

medium and cells were incubated with this medium for 3 hours. At the end of this incubation 

cells were stimulated with 10 nM insulin to investigate insulin signal transduction or with 0.5 

µM 12-O-tetradecanoylphorbol-13-acetate (TPA) to activate novel and classical PKCs. 

After stimulation medium was removed and cells were washed with PBS. To perform lysis of 

the cells, 200 µl of lysis buffer 1 was added in each well of six well plates and  incubated at 

4°C for 5 min. To remove cell debris, cells were harvested and centrifuged for 5 min at 13000 

rpm and 4°C.The supernatant containing proteins was either processed for IP or mixed with  
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Laemmli (5X) and incubated at 95°C for 5 min. 40µg of protein was loaded on gel for   SDS-

PAGE. 

 
 

3.3.6 Cryopreservation of mammalian cells  

Mammalian cells are cryopreserved to avoid loss by contamination, to minimize genetic 

change in continuous cell lines, and to avoid aging and transformation in finite cell 

lines.  Before cryopreservation, cells were characterized and checked for contamination. The 

media used to freeze cells included 10% DMSO and 90% FCS. Cells growing in log phase 

were detached, centrifuged, the supernatant was removed and the cell pellet was suspended in 

freezing medium to a concentration of 5x106 to 1x 107cells. For cell suspension, aliquots were 

prepared into cryogenic storage vials. First cells were placed on ice and then stored at -80°C 

in liquid nitrogen. 

 

3.3.7 Statistical analysis 

After quantifying the data in Gelscan software, it was exported to excel. All data are 

expressed as means ± SEM. The one-tailed student’s unpaired test was used for comparison of 

mean values. Statistical significance was accepted at p < 0.05. 

 

3.4 Standard DNA-methods 

 

3.4.1 “Overlap” extension polymerase chain reaction (PCR) 

The PCR is a rapid procedure for the in vitro amplification of specific segments of DNA. A 

segment of DNA is amplified using specific two single-stranded oligonucleotides (primers). 

Furthermore, a DNA polymerase, deoxyribonucleoside triphosphate (dNTPs) and a buffer 

system are needed. Denaturation (melting the DNA to single strands), annealing (flanking of 

single stranded DNA by primers) and synthesis (amplification of complementary strands to 

produce double-stranded DNA) are the three components of PCR amplification cycle. Usually 

30 cycles are performed resulting in a 228-fold amplification of a discrete product. 

Site-directed mutagenesis can be used to change particular base pairs in a piece of DNA 

(163). In this work overlap extension PCR was used to introduce site-directed mutagenesis in 

the IRS-1 wild type gene. For a typical, one site directed mutagenesis reaction, for instance 

mutation of Ser-357 of IRS-1 to Ala357, two mutagenic primers were designed containing the 

mutation and completely complementary to each other (Table 2). Each primer was used in a 

separate reaction (separate tubes, same conditions) with an outer flanking primer pRK5'PCR 
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or IRS-1-318/1 designed to one end of the IRS-1. These two reactions were given names as 

reaction for fragment A and reaction for fragment B (Table 3).The PCR program was set as 

described in Table 4. Two halves of the IRS-1, “A” and “B” were generated in this manner in 

two separate reactions. PCR products were purified by using a PCR purification kit. In the 

next step both those fragments were put together (reaction for fragment C ,Table 5), where 

they anneal in the 25-30 bp region of complementarity and prime off each other, to give the 

IRS-1 product with the mutation, Ala357, in IRS-1. This PCR product was separated on 

agarose gel and its concentration was determined. Several other mutants of IRS-1 was 

generated in the same manner. 

 

Table 2. Primers used to generate different mutants of IRS-1by site directed mutagenesis. 

Plasmid  Mutagenic 

Upstream Primer 

Sequence  

pRK5-IRS-1 WT 
 

IRS-1-Ala357 
 

cc cac gcc cat cgg cat cga ggc gcc tcc agg ttg 
cac ccc cca ctc aac cac 
 

pRK5-IRS-1 WT 
 

IRS-1-Glu357 

 
cc cac gcc cat cgg cat cga ggc gag tcc agg ttg 
cac ccc cca ctc aac cac 
 

pRK5-IRS-1 WT 
 

IRS-1-Ala357/358 
 

cc cac gcc cat cgg cat cga ggc gcc gcc agg ttg 
cac ccc cca ctc aac cac, 
 

pRK5-IRS-1 WT 
 

IRS-1-Ala 358 

 
cc cac gcc cat cgg cat cga ggc agc gcc agg ttg 
cac ccc cca ctc aac cac 

 

pRK5-IRS-1 WT 
 

IRS-1-Glu357/ Ala 
358 

 

cc cac gcc cat cgg cat cga ggc gag gcc agg ttg 
cac ccc cca ctc aac cac 

 

pRK5-IRS-1 WT pRK5’ PCR flanking 
primer 

ttg cct ttc cca cag gtg 

pRK5-IRS-1 WT IRS-1 318 1 flanking 
primer 

gct gct gct gct gtt gct ctc gta ccc ggg gta aag t 
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Table 3. Reaction conditions for the amplification of fragment A and B of IRS-1 to generate IRS -1 

Ala-357 mutant. 

 

 

Table 4. PCR program for the amplification of fragment A and B of IRS-1 to generate IRS-1 Ala- 

357 mutant. 

 
 
Table 5. Reaction conditions for the amplification of fragment C of IRS-1 to generate IRS-1 Ala-

357 mutant. 

 

 

 

 

 

 

 

 

 

 

 

 

Content Reaction for 

Fragment A 

Reaction for  

Fragment B 

End concentration 

 Volume [µl]  

H2O 37.5 37.5  

10x Reaction buffer for Pwo polymerase (see 
2.1) 

2 2 1x 

pRK5'PCR primer 100 µM (see table 2) 1 - 2 µM 

IRS-1-318/1 primer 100 µM (see table 2) - 1 2 µM 

Ala 357 upstream primer 100 µM (see table 2) 
 

1 - 2 µM 

Ala 357 downstream primer 100 µM (see table 
2) 

- 1 2 µM 

Template DNA  100 ng/µL 2 2 4 ng/µL 

DNTPs 200 µM (see 2.1) 4 4 4 µM 

Pwo polymerase 1U/µL (see 2.1) 2.5 2.5 0.05 U/µL 

Segment Duration (min) Temperature cycles 

1 Denaturation 5 95°C 1x 

2 Annealing 1 55°C 

   Extension 6 72°C 

   Denaturation 1 95°C 

30x 

3 Annealing 1 55°C 

   Extension 5 72°C 

1x 

Reaction for IRS-1  

Ala 357 (Fragment C) 
End concentration Content 

Volume [µL]  

H
2
O  35.5   

10x Reaction buffer for Pwo polymerase  2  1x  

pRK5'PCR primer 100 µM  1  2 µM 

IRS-1-318/1 primer 100 µM  1  2 µM 

Fragment A ca. 100 ng/µL  2  4 ng/µL 

Fragment B ca. 100 ng/µL  2  4 ng/µL 

DNTPs 200 µM  4  4 µM  

Pwo polymerase 1 U/µL  2.5  0.05 U/µL 
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3.4.2 DNA electrophoresis in agarose gel and isolation from agarose gel 

The DNA from PCR reaction was diluted in DNA sample buffer and separated on horizontal 

agarose gels (1% agarose was prepared in 100 ml TAE buffer and 5 µl ethidium bromide (10 

mg/ml) was added). Gel was run in TAE buffer at 5 V/cm. The detection was carried out with 

a UV lamp. 

 

3.4.3 Isolation of DNA from agarose gel 

For the isolation of DNA from agarose gel, QIAquick ® Gel Extraction Kit from Qiagen was 

used. The bands were excised from the gel as closely as possible. Gel slice were dissolved in 

buffers as specified by the manufacturer. The elution was conducted in 30 µl dH2O. 

 

3.4.4 Determination of DNA concentration 

The DNA concentration was determined photometrically and calculated from the absorbance 

measured at 260 nm. Since a solution containing 50 µg per ml of double stranded DNA has an 

absorbance (optical density) of 1.0 at a wave length of 260 nm. Therefore, DNA concentration 

= absorbance (260 nm) x 50 µg/ml. DNA samples having a 260/280 ratio below 1.6 were 

discarded. 

 

3.4.5 Restriction digestion of mutated PCR product 

The PCR product containing the mutation at 357Ala of IRS-1 (fragment C) was excised from 

agarose gel and purified (3.4.3). The restriction digestion was carried out in order to separate 

the required insert containing 357 Ala mutations. 

Digestion of DNA was performed by incubating 1µl of each BamHI and XhoI restriction 

enzymes, with 3 µl of digestion buffer and 25 µl of PCR product of fragment C, at 37°C for 1 

hour. Restriction products were run on agarose gel and the 2500 bp band of interest was 

excised and purified. 

 

3.4.6 Ligation of the digested mutated product into expression vector 

The Purified restriction product was then ligated into the pRK5 IRS-1WT plasmid vector. 

Ligation reaction mixture consisted of 1 µl (10-50ng) of pRK5 IRS-1 WT (a BamHI and XhoI 

digested  fragment of the vector), 7 µl digested and mutated fragment of IRS-1 containing the 

mutation of Ala 357, 1 µl 10x of the ligation buffer and 1 µl ligase enzyme (1U/ µl). Reaction 

was set overnight at 16°C. 

 



 

 42 

3.4.7 Transformation of ligation product in Ecoli 

The transformation of plasmid DNA into E. coli was made using heat shock method. 10 µl of 

the ligation product was mixed with 20 µl of KCM 5 x buffer (see 2.6) and 100 µl H2O was 

added and incubated on ice for 5 min. 100µl of competent E-coli XL1 Blue was added in the 

KCM mixture and incubated on ice for 30 min. At the end of this incubation, temperature 

shock was given at 42°C for exactly 2 min. 1 ml of LB media (see 2.7)was added in the 

mixture and incubated at 37°C for 30 min. Centrifugation was done at 6500 rpm for 2 min. 

The pellet was resuspended and plated on LB/Amp agar plates (see 2.7) and incubated at 37°C 

for overnight.  

 

3.4.8 Miniprep for isolation of plasmid DNA from Escherichia coli  

Positive clones from LB/Amp agar plates were incubated in 2 ml LB medium with ampicillin 

overnight at 37°C under shaking at 350 rpm. Plasmid DNA was isolated from E.coli, using 

Plasmid Mini Kit from Qiagen, according to manufacturer’s instructions. 

 

3.4.9 Sequencing 

 PCR was set to verify the mutated sequence of 357A in IRS-1. The sequencing of the 

manufactured constructs was made by the chain termination method of Sanger (164). The 

Premix (BigDye ® Terminator v.1.1 Cycle Sequencing Kit) contains the dNTPs (dATP, 

dCTP, dGTP, dTTP), fluorescence labeled ddNTPs, thermostable AmpliTaq ® DNA 

polymerase, a thermostable pyrophosphatase and magnesium chloride in Tris-buffer pH 9.0. 

For 10µl reaction, 300 ng of plasmid DNA as template, 4 µl of sequencing mix, 1 pM of 

318/1 Ala primer, 1x sequencing buffer and 3 µl of double distilled H2O was used. After 1 

min of initial denaturation, the PCR mix was incubated in the thermocycler for 30 of the 

following cycles: 10 sec denaturation at 96°C, 30 sec annealing at 50°C and 4 min elongation 

at 60°C.. The sequencing reaction products were purified by gel filtration and eluates were 

analyzed by capillary electrophoresis. The evaluation was done with the help of Abi Prism 

software "Sequencing analysis 3.7". The sequence comparison was performed on the Internet 

with BLAST, which is freely available at http://www.ncbi.nlm.nih.gov/blast. 

 

3.4.10 Isolation of plasmid DNA- maxiprep 

For the preparation of large amounts of plasmid DNA with great purity for the plasmid 

transfection into the mammalian cells, Maxi kit from Qiagen was used. A single bacterial 

colony from a selective agar plate was inoculated in 100 ml LB culture medium with 
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ampicillin. Culture was grown overnight on the shaker at 150 rpm / 37°C. The bacteria were 

then distributed into two 50 ml falcon tubes and centrifuged at 4000 rpm at 4°C for 10 min. 

The purification of DNA was performed according to manufacturer’s instructions. After 

drying the pellet, the DNA was dissolved in 100 µl H2O.The DNA concentration was 

determined as described in (3.4.4). The purity of the plasmid isolation was verified by 

restriction analysis (3.4.5) and subsequent agarose gel electrophoresis (3.4.2) or by 

sequencing (3.4.9). 

Some mutants of IRS-1 were also generated by Quick Change Site-Directed Mutagenesis kit,                               

Stratagene, following the manufacturer’s instructions. 
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4. RESULTS 

 

4.1 Characterization and specificity of phospho-Ser-357 Antibody  

  

4.1.1 Initial characterisation of antiserum raised against p-Ser-357 showed cross 

reactivity with adjacent Ser-358 

To identify novel Ser /Thr phosphorylation sites in IRS-1, in vitro phosphorylation assays 

were performed with the isolated N-terminal amino acid residues 2–304 and amino acid 

residues 265–522 of GST-IRS-1 protein fragments (146;165). Upon incubation of 

recombinant IRS-1 fragments with various PKC-isoforms, Ser-357 of rat IRS-1 (Ser-362 in 

human IRS-1) was identified as an in vitro PKC phosphorylation site (data not shown). Next, 

polyclonal phospho-site-specific antibodies were generated using a phosphopeptide sequence 

corresponding to the region of rat IRS-1 surrounding Ser-357 (Fig. 4). 

 

Fig. 4. Sequence alignment of the corresponding amino acid sequences around Ser-357 

and Ser-358 of IRS-1 proteins from different species. 

 Sequence alignment of the corresponding amino acid around Ser-357 for rat, mouse and 

human IRS-1 (amino acid numbers are indicated) is shown. Only the small region of rat IRS-1 

containing the sequence AHRHRGpSSRLHPPLNHSRSI (antigenic peptide can be seen as 

shaded box, * shows phosphorylated residue) IRS-1 351–367 was used for generation of 

polyclonal phospho-site-specific Ser-357
 
antibody. 

 

The antiserum was used to test the specificity of the phospho-site-specific-Ser-357antibody. 

Mouse skeletal muscle cell line C2C12 overexpressing IRS-1 WT were stimulated with 

insulin or phorbol ester 12-O-tetradecanoyl 13-phorbolacetate (TPA), a pharmacological 

activator of classical and novel PKC isoforms for 30 min (Fig. 5). Before stimulation, the 

341    PVSPSTNRTHAHRHRGSSRLHPPLNHSRSIPMPSSRCSPS 380Rat:

341    PVSPSTNRTHAHRHRGSSRLHPPLNHSRSIPMPSSRCSPS   380Mouse:

346    PVSPSTNRTHAHRHRGSARLHPPLNHSRSIPMPASRCSPS  385 Human:

Ser357 Ser358

*
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antibody did not react with IRS-1, while insulin and TPA strongly stimulated phosphorylation 

of Ser-357, indicating that the antibody recognise phosphorylation of Ser-357. 

 

Fig. 5. Initial characterization of the antiserum raised against phospho-Ser-357. 

Antibody characterization for phospho-Ser-357 was performed in C2C12 cells transiently 

transfected with IRS-1 wild type (WT) (4 µg) and stimulated with TPA (0.5 µM) and insulin 

for 30 min. The blot was reprobed to show the expressed IRS-1 protein levels.  

 

To further verify that the antibody specifically recognises phosphorylation of Ser-357, an 

IRS-1Ala357 mutant was generated by PCR site-directed mutagenesis, to prevent 

phosphorylation at Ser-357. C2C12 cells were transiently transfected with either IRS-1 WT or 

IRS-1Ala357 mutant and stimulated with insulin or TPA for 30 min. Surprisingly,  

Fig. 6. Initial characterization of the antiserum raised against phospho-Ser-357. 

C2C12 cells were transiently transfected with either IRS-1 wild type (WT) or IRS-1 Ala357 

(4 µg each) and stimulated with insulin (10 nM) and TPA (0.5 µM) for 30 min. The blot was 

reprobed to show the expressed IRS-1 protein levels. 

 

IRS-1 WT

- ins   TPA

IRS-1 

pSer357  

IRS-1 WT IRS-1Ala357

IRS-1 

- ins       TPA

pSer357  

Con

- ins       TPA - ins    TPA



 

 46 

phosphorylation signal detected by antiserum was comparable between IRS-1Ala357 and 

IRS-1WT expressing cells (Fig. 6), indicating an unspecific binding of the antibody, possibly 

a cross reactivity with the adjacent Ser-358.  

This was itself a novel phenomenon in the development of phospho-site specific antibodies 

for IRS-1. At this point we decided to eliminate cross reactivity of the antibody with Ser-358 

to elucidate single effect  of Ser-357 of IRS-1in insulin signaling , as prior studies has already 

described Ser-358 as a functional serine site of IRS-1 (166). 

 

4.1.2 Synthesis and purification of synthetic peptides 

In an attempt to immuno-purify antiserum and to determine specificity of purified- phospho-

site-specific-Ser-357 antibody by indirect ELISA it was decided to generate chemically 

synthesized phosphopeptides as antigens. The peptides were synthesized using standard 

Fmoc/tBu chemistry (Table 6). 

Table 6. Sequences of synthetic modified IRS-1 351-377 peptides. 

Crude peptides were purified using preparative reversed-phase high-performance liquid 

chromatography (RP-HPLC) Fig 7. The integrity of the peptides and phosphopeptides was 

verified by mass spectroscopy. Table 1 lists the sequences of the synthetic peptides. Each 

peptide was 20 amino acids long. The peptides were either unphosphorylated, contained 

single phosphate groups on Ser-357 or Ser-358, or phosphates on either serines or alanine at 

position 358. 

a) IRS-1 351-377;p357                                    AHRHRG+SRLHPPLNHSRSI

b) IRS-1 351-377;p357(Ala at 358 )                    AHRHRG+ARLHPPLNHSRSI

c) IRS-1 351-377; p357p358                           AHRHRG++RLHPPLNHSRSI

d) IRS-1 351-377;p358                                    AHRHRGS+RLHPPLNHSRSI

e) IRS-1 351-377;np357np358(Ala at 358) AHRHRGSARLHPPLNHSRSI

f) IRS-1 351-377;np357np358                       A HRHRGSSRLHPPLNHSRSI

Peptide Sequence

Plus(+) sign indicates phosphorylated amino acids
p = phosphorylated

np = non phosphorylated
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Fig. 7. RP-HPLC elution profile of synthetic modified IRS-1 351-377 peptides. 

Purified peptides were separated via analytical RP-HPLC using a C8 column (150 × 2 mm, 

Reprosil 100,) with the following solvent system: (A) 0.055% (v/v) trifluoroacetic acid in H2O, 

and (B) 0.05% (v/v) trifluoroacetic acid in ACN/H2O (4:1, (v/v)). The column was eluted with 

a 10-90% gradient of solvent B for 30 min. UV detection was carried out at 214 nm (a,b,c,d,e 

and f refers to the peptide sequences in Table 6). 
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4.1.3 Immuno-purification of antiserum and determination of specificity of 

purified phospho-site-specific-Ser-357 antibody by indirect ELISA 

 

Fig. 8.  Determination of specificity of polyclonal phospho-site-specific-Ser-357 antibody by 

indirect ELISA.. The purified polyclonal phospho-site-specific-Ser-357 antibody specifically 

recognizes phospho-Ser-357 of IRS-1 peptide and gives a negative reaction towards different 

related synthetic peptides. 5 µg of different synthetic peptides were coated on an ELISA plate. 

Phospho-site-specific-Ser-357 antiserum and purified phospho-site-specific-Ser-357 
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antibodies were used for the detection at dilutions of 1: 3000 and 1: 500 respectively. (B) 

Quantification of relative binding of each polyclonal antibody to phospho-Ser-357 of IRS-1 

protein-based synthetic peptides (listed in Table 5) using the PEPSCAN-ELISA method, 

values are mean +SEM, where n = 3. 

 

The generated phospho-site-specific-Ser-357 antibody was immuno-purified by multiple 

purification steps using non-phosphorylated Ser-357 and p-Ser-358 peptide. To determine and 

compare the specificity and cross-reactivity of the antiserum and purified-p-Ser-357 antibody, 

an indirect ELISA was performed using different non-phospho and phospho-synthetic 

peptides (Table 5). The results of the indirect ELISA (Fig. 8A) showed that the purified 

antibody binds specifically to the immunogenic phosphopeptide but not to the non-

phosphorylated form of the peptide or to other phosphopeptides (Fig. 8B), suggesting that the 

antibody specifically recognized phosphorylation of Ser-357 and showed complete negative 

reaction towards phosphorylation of adjacent Ser-358. 

 

4.1.4 Final determination of the specificity of purified phospho-site-specific-Ser-

357 antibody in living cells 

 In order to establish the specificity of the antibody against phosphorylation of Ser-357 at the 

entire IRS-1 protein, two more mutants of IRS-1 were generated: IRS-1 Ala358 to prevent 

phosphorylation at Ser-358 and a double mutant IRS-1Ala357/358 to prevent phosphorylation 

at both, Ser-357 and Ser-358, simultaneously. Baby hamster kidney cells stably expressing the 

human insulin receptor (BHKIR-cells) were transiently transfected with IRS-1 WT, IRS-1 

Ala357, IRS-1 Ala358 and IRS-1 Ala357/358 and stimulated with insulin or TPA for 30 min 

(Fig. 9A).  

 

The antiserum non-specifically recognized Ser-357 phosphorylation upon stimulation with  

TPA and insulin in the cells overexpressing IRS-1 Ala357 and IRS-1 Ala357/358 comparable 

to the cells overexpressing IRS-1WT and IRS-1 Ala358 (Fig. 6A, B).Whereas with the 

purified-p-Ser-357 antibody we detected almost no or a very low signal of phosphorylation 

was detected in IRS-1 Ala357 and IRS-1 Ala357/358-transfected cells, similar to the 

immunoblots obtained with control transfected cells (Fig. 9B). 
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Fig. 9. Specificity of phospho-Ser-357 antibodies on the entire IRS-1 protein analyzed in 

cultured cells. (A) Baby hamster kidney cells stably expressing the human insulin receptor 

(BHKIR-cells) were transfected with IRS-1 WT, IRS-1 Ala357, IRS-1 Ala358, and IRS-1 

Ala357/358 (4 µg each)
 
and treated with insulin (10 nM, 30 min) or TPA (0.5 µM, 30 min). 

After stimulation, cells were lysed and analyzed by 7.5% SDS-PAGE and immunoblotted with 

phospho-site-specific-Ser-357 antiserum and purified-phosho-Ser-357 antibodies. The same 

blots were stripped and reprobed with a polyclonal IRS-1 antibody. Arrow indicates 

endogenous IRS-1 visible after long exposure.. Representative results from three independent 

experiments are shown. (B) Phosphorylation intensity of Ser-357 of IRS-1 was quantified 

based on scanning densitometry of immunoblots normalized for IRS-1 protein. (Mean +SEM, 

n = 3, *p < 0.05 IRS-1 Ala357 mutants vs. IRS-1 WT; # p < 0.05 IRS-1Ala357/358
 
mutant vs. 

IRS-1 WT). 
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The very low signal depends most likely on the endogenous IRS-1 in the transfected cells, 

which can be phosphorylated at Ser-357. These data clearly show that the immunopurified 

antibody recognizes also in vitro IRS-1 solely, when it is phosphorylated on Ser-357 without 

any cross-reactivity with the adjacent putative phosphorylation residue Ser-358. Similar 

results have been obtained using C2C12 skeletal muscle cells. 

 

4.1.5 Determination of specificity of purified phospho-site-specific-Ser-357 

antibody in living cells with dephosphorylated IRS-1 

To further confirm the specificity of the phospho-site-specific Ser-357 antibodies, C2C12 

cells were transfected with IRS-1 WT and stimulated with TPA. Immunoprecipitated IRS-1 

was incubated with λ-phosphatase at 37 °C for 30 min which led to a complete loss of the 

immunoreactivity of the antibody, indicating that dephosphorylated IRS-1 is not recognized 

(Fig. 10).  

 

 Fig. 10. Specificity of phospho-Ser-357-antibodies in cultured cells. 

C2C12 cells were transfected with IRS-1 WT (4 µg) and stimulated for 30 min with TPA 

(0.5µM). IRS-1 was immunoprecipitated with a polyclonal IRS-1 antibody and 

immunoprecipitates (IP) were incubated with buffer alone or with buffer and λ PPase (100 U) 

for 30 min at 30 °C and immunoblotted (IB) with the phospho-site-specific Ser-357 antibody. 

Addition of buffer without incubation at 30 °C served as another control. The same blot was 

stripped and reprobed with a polyclonal IRS-1 antibody. 
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4.1.6 Determination of specificity of phospho-Ser-357-antibodies in cultured cells 

with endogenous IRS-1 

Fig. 11. Specificity of phospho-Ser-357-antibodies in cultured cells with endogenous IRS-1. 

C2C12 cells were stimulated with insulin (10 nM, 30 min) or TPA (0.5 µM, 30 min). IRS-1 

was immunoprecipitated and immunoblotted with site-specific Ser-357 antibody and reprobed 

with a polyclonal IRS-1 antibody. 

 

In another set of experiments, we analyzed non-transfected C2C12 cells for phosphorylation 

of Ser-357. As shown in Fig. 11, phosphorylation of Ser-357 of endogenous IRS-1 was 

detected after stimulation with insulin or TPA. 

 

4.2 Phosphorylation of Ser-357 of IRS-1 in insulin signaling 

 

4.2.1 Insulin-stimulated phosphorylation of Ser-357 in C2C12 cells: Insulin dose 

kinetics    

In order to examine the effect of insulin on the phosphorylation of Ser-357, time- and dose 

response curves of insulin-stimulated phosphorylation of Ser-357 were studied. C2C12 cells 

overexpressing IRS-1 WT were treated with various insulin concentrations for 30 min. A dose 

dependent increase in Ser-357 phosphorylation after 30 min of insulin stimulation was 

observed (Fig. 12). 

 

 

 

 

 

 



 

 53 

0       0         5        10       20      60    

pSer-357

IRS-1

p
S

e
r3

57
/I
R

S
-1

*
*

* *

IRS-1 WTcon

(min) ins

0          5        10        20        60

0.0

0.2

0.4

0.6

Fig. 12.  Insulin dose kinetics of Ser-357 phosporylation in muscle cells. 

C2C12 cells were transfected with IRS-1 wild type and treated with the indicated doses of 

insulin for 30 min and analyzed by immunoblotting with site-specific- Ser-357- antibody and 

reprobed with a polyclonal IRS-1 antibody. 

 

4.2.2 Insulin-stimulated phosphorylation of Ser-357 in C2C12 cells: Insulin time 

kinetics    

Fig. 13. Insulin-stimulated time kinetics of phosphorylation of Ser-357 in C2C12 cells.  

 The time course of insulin action on the phosphorylation of Ser-357 was investigated by 

stimulation of C2C12 cells transfected with IRS-1 wild type (IRS-1 WT) (4 µg) with 10 nM 

insulin for indicated time points. “Con” indicates cells transfected with empty vector. Cell 

lysates were analyzed by 7.5% SDS-PAGE. A representative immunoblot of three independent 

experiments with the site-specific Ser-357 antibody and reprobe of the same blot with the 

polyclonal IRS-1 antibody are shown. Densitometric quantification of the increase of Ser-357 

phosphorylation after insulin stimulation (mean +SEM, n = 3, *p < 0.05 vs. unstimulated 

cells.) 
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In order to examine the effect of insulin on the phosphorylation of Ser-357 observed in figure 

5, the time-response curve of insulin-stimulated phosphorylation of Ser-357 was studied. The 

phosphorylation kinetics of Ser-357 phosphorylation was performed using 10nM insulin for 

various time points. It was found that insulin induced significant phosphorylation of Ser-357 

after 5 minutes of stimulation with a maximum increase after 20 minutes. The site remained 

strongly phosphorylated until 60 minutes of insulin stimulation (Fig. 13A and B) implicating a 

potential role in an early and late phase of insulin signaling. 

 

4.2.3 PKC-δ mediates IRS-1 Ser-357 phosphorylation in C2C12 cells 

Ser-357 is located at putative phosphorylation motif for PKC (RXS/ SXR/ RXSXR) a family 

of Ser kinases whose novel and atypical isoforms (e.g. PKC-δ and PKC-ζ) have been 

described as potential IRS-1 kinases that modulate IRS-1 function (85;162;167). Since the 

novel isoform PKC-δ was able to phosphorylate Ser-357 in the in vitro phosphorylation assays 

(data not shown) and treatment with TPA as an activator of classical and novel PKCs resulted 

in the pronounced phosphorylation of Ser-357 (Fig. 5) we focused on the role of PKC-δ in 

Ser-357 phosphorylation in muscle cells. C2C12 cells transiently co-transfected with PKC–δ 

and IRS-1 WT and stimulated by insulin and TPA, showed significant increase in the 

phosphorylation of Ser-357 in comparison to cells transfected with IRS-1WT alone (Fig. 

14A). Phosphorylation of Ser-357 in unstimulated co-transfected cells was also observed, 

which might be due to basal activitiy of the cotransfected PKC-δ. Because TPA may have 

cellular targets other than PKC-δ, we co-transfected cells with IRS-1 and PKC-δ kinase 

negative mutant (KN). Phosphorylation of Ser-357 in unstimulated, insulin- and TPA-treated 

cells was significantly abrogated when PKC–δ-KN mutant was used (Fig. 14B). These 

findings suggest that the insulin and TPA-induced phosphorylation of Ser-357 required PKC-δ 

activity.  
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Fig. 14. PKC-δ-mediated IRS-1 Ser-357 phosphorylation in C2C12 cells. (A) C2C12 cells 

were transfected with IRS-1 wild type (WT), co-transfected with PKC-δ and IRS-1 WT or 

kinase-dead mutant of PKC-δ (PKC-δ KN) and IRS-1 WT (2 µg  each). Cells were stimulated 

with either 10 nM insulin or 0.5 µM TPA for 30 min. A representative immunoblot with the 

phospho-site-specific Ser-357 antibody and PKC–δ and reprobe of the same blot with the 

polyclonal IRS-1 antibody is shown. (B) Ser-357 phosphorylation intensity was quantified 

based on scanning densitometry of the immunoblots (means +SEM, n=3, * p < 0.05 PKC δ 

cotransfected cells vs. cells transfected with IRS-1 WT alone; # p < 0.05 PKC δ KN 

cotransfected cells vs. PKC δ cotransfected cells). 

 

4.2.4 Insulin induces the phosphorylation of Ser-357 in skeletal muscle of mice 

The rapid phosphorylation of Ser-357 during acute insulin stimulation might contribute to an 

early modulation of the insulin response. To determine whether insulin-stimulated 
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phosphorylation of IRS-1 on Ser-357 occurs in the whole organism, skeletal muscle from 

male mice was isolated after 5 min of insulin stimulation (4 IU/mouse, intravenously). 

Immunoblotting with the Ser (P) 357-specific antibody revealed a very rapid (within 5min) 

insulin-stimulated phosphorylation of Ser-357 in skeletal muscle from these mice (Fig. 15), 

similar to the results obtained in cell culture. The data indicate that insulin also stimulates the 

phosphorylation of IRS-1 Ser-357 in skeletal muscle tissue within minutes. 

 

Fig. 15. Insulin-stimulated phosphorylation of Ser-357 in vitro.  

Male CH3 mice were fasted overnight and subsequently intravenously injected with 4 IU of 

insulin into the inferior vena cava. Muscle samples were obtained after 5 min of insulin 

treatment. Shown are immunoblots of muscle tissue of 3 control and 3 insulin-treated mice. 

Ser357 phosphorylation intensity was quantified based on scanning densitometry of the 

immunoblots (means +SEM, n=7, * p < 0.05 insulin-treated mice vs. control). 

 

4.3 Functional role of phosphorylation of Ser-357 of IRS-1 in insulin-

stimulated signal transduction.  

 

4.3.1 The phosphorylation of Ser-357 of IRS-1 leads to reduced phosphorylation 

of Akt in skeletal muscle cells 

Next, the functional role of phosphorylation of Ser-357 in insulin signal transduction was 

investigated. The kinase PKB/AKT is an important insulin signaling molecule, shown to 

transduce the metabolic actions of insulin, including increases in transport and storage of 

glucose in muscle, and its activation is largely controlled by IRS-1 during insulin action 
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(47;168). Therefore, we studied the influence of Ser-357 of IRS-1 on the insulin-induced 

time-dependent phosphorylation of Akt. To examine a possible influence of the adjacent Ser-

358 residue, C2C12 cells were transiently transfected with IRS-1 WT, IRS-1 Ala357, and 

IRS-1 Ala358 and IRS-1 Ala357/358 and stimulated for various time points with 10 nM 

insulin (Fig. 16A).  
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Fig. 16. The phosphorylation of Ser-357 of IRS-1 leads to reduced phosphorylation of Akt 

in skeletal muscle cells. (A, B) C2C12 cells, transiently transfected with IRS-1 WT, IRS-1 

Ala357, IRS-1 Ala358, and IRS-1 Ala357/358
 
(A) or IRS-1 WT and IRS-1 Glu357(4 µg each) 

(B) were stimulated for 5, 10, and 60 min with 10 nM insulin. Cell lysates were analyzed with 

7.5% SDS-PAGE, and after Western blotting the phosphorylation of Ser-473 of Akt was 

investigated. The same blot was stripped and reprobed with an Akt protein antibody. The IRS-

1 amount was analyzed using a polyclonal IRS-1 antibody. (C) Phosphorylation intensity of 

Ser-473 of PKB/Akt was quantified based on scanning densitometry of immunoblots 

normalized for PKB/Akt protein. (Mean +SEM, n = 3,*p < 0.05 IRS-1 Ala mutants vs. IRS-1 

WT; # p < 0.05 IRS-1 Glu mutant vs. IRS-1 WT.) 

 

To mimick a permanent phosphorylation of Ser-357, cells also were transfected with IRS-1 

Glu357 (Fig. 12B). The insulin-dependent increase in Ser-473 phosphorylation of Akt was  

markedly increased in IRS-1 Ala357, IRS-1 Ala358 and IRS-1 Ala357/358 expressing cells 

after 10 and 60 min of insulin stimulation compared with cells expressing wild-type IRS-1   

(Fig. 12C). Of note, phosphorylation of Ser-357 and Ser-358 appeared to have similar 

negative effects on Akt phosphorylation with no additive effect when phosphorylation at both 

sites was prevented in the IRS-1 Ala357/358 mutant (Fig. 12C). 
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The possible negative role of Ser-357 phosphorylation in insulin action was further 

demonstrated in IRS-1 Glu357 expressing cells, which exhibited a significantly diminished 

Ser-473 phosphorylation of Akt after 10 and 60 min of insulin stimulation compared with 

wild-type expressing cells. Since we did not observe any difference of the two alanine mutants 

(Ala357 and Ala357/358) on insulin signal transduction we used in further experiments only 

IRS-1 Ala357/358. 

 

4.3.2 Insulin-stimulated phosphorylation of GSK-3α in skeletal muscle cells is 

modulated by Ser-357 phosphorylation of IRS-1. 

The sustained effect of Ser-357 phosphorylation on Akt suggests a physiological function of 

this site in downstream insulin signaling. Thus we asked whether the possible regulation of 

Akt activity was reflected by a modulation of its downstream effector GSK-3. C2C12 cells 

were transiently transfected with IRS-1 WT, IRS-1 Ala357/358 or IRS-1 Glu357 and 

stimulated for various time points with 10 nM insulin (Fig. 17A). The increase in Ser-21 

phosphorylation of GSK-3α was more pronounced in IRS-1 Ala357/358 expressing cells after 

10 and 60 min of insulin stimulation compared with cells expressing IRS-1 WT, while 

expression of IRS-1 Glu357 resulted in a clear decrease in this phosphorylation (Fig. 17B). 

Thus, the negative effect of Ser-357 phosphorylation on insulin signaling could also be 

demonstrated at the level of GSK-3. While both isoforms α and ß of GSK-3 were present in 

C2C12 cells (data not shown), we observed insulin-induced phosphorylation only at Ser21 of 

GSK-3α. These findings are in agreement with previous studies (169) which reported that the 

α-isoform of GSK-3 was more responsive to insulin as compared to GSK-3β and had a 

stronger association with parameters of insulin resistance. 
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Fig. 17. Insulin-stimulated phosphorylation of GSK-3α in skeletal muscle cells is 

modulated by Ser-357 phosphorylation of IRS-1. 

 (A) C2C12 cells were transfected with IRS-1 WT, IRS-1 Ala357/358
 
or IRS-1 Glu357. Cells 

were incubated with 10 nM insulin for the indicated times (0, 5, 10 and 60 min). Cell lysates 

were resolved by 7.5% SDS-PAGE and immunoblotted with Ser 21 of GSK-3α. The same blot 

was stripped and reprobed with a GSK-3α protein antibody. The IRS-1 amount was analyzed 

using a polyclonal IRS-1 antibody. (B) Phosphorylation intensity of Ser21 of GSK-3 was 

quantified based on scanning densitometry of immunoblots normalized for GSK-3α protein. 

(Mean +SEM, n = 3,* p < 0.05 IRS-1 Ala357/358 vs. IRS-1 WT; # p < 0.05 IRS-1 Glu357 vs. 

IRS-1 WT. 
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4.3.3 Effect of Ser-357 phosphorylation on insulin-stimulated Tyr 

phosphorylation of IRS-1.  

Fig.18. Effect of Ser-357 phosphorylation on insulin-stimulated Tyr phosphorylation of 

IRS-1.  

(A) C2C12 cells were transfected with IRS-1 WT, IRS-1 Ala357/358
 
or IRS-1 Glu357 (4 µg 

each). Cells were incubated with 10 nM insulin for the indicated times (0, 5, 10 and 60 min). 

IRS-1 was immunoprecipitated with a polyclonal IRS-1 antibody (IP) and immunoblotted (IB) 

with the phospho-tyrosine antibody. The same blot was stripped and reprobed with a 

polyclonal IRS-1 antibody. (B) Tyrosine phosphorylation of immunoprecipitated IRS-1 was 

quantified based on scanning densitometry of immunoblots normalized for IRS-1. (Mean ± SE, 

n = 3,*p < 0.05 IRS-1 Ala357/358 vs. IRS-1 WT; # p < 0.05 IRS-1 Glu357 vs. IRS-1 WT). 
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Among several mechanisms by which serine phosphorylation of IRS-1 modulates insulin 

signaling altered tyrosine phosphorylation of IRS-1 is a very obvious one (70) and it also been 

implicated in the negative effects of PKC-δ on insulin signal transduction (170). Therefore we 

investigate whether phosphorylation of Ser-357 of IRS-1 could reduce the proximal insulin 

signaling by preventing or mimicking phosphorylation at Ser-357 in C2C12 cells expressing 

IRS-1 WT, IRS-1 Ala357/358 or IRS-1 Glu357 (Fig. 18).  

Consistent with an inhibitory role of phosphorylation of Ser-357, insulin-stimulated tyrosine 

phosphorylation of IRS-1 was enhanced using IRS-1 Ala357/358 after 5 and 10 min of insulin 

stimulation, while it was reduced in IRS-1 Glu357 expressing cells after all time points of 

insulin stimulation studied (Fig. 18B). Together these experiments suggest that IRS-1 tyrosine 

phosphorylation was altered by Ser-357, and that phosphorylation of this residue can attenuate 

IRS-1 mediated insulin signaling cascade in muscle cells. 

 

4.3.4 Inhibition of the PKC-δ-induced downregulation of PKB/Akt 

phosphorylation by IRS-1 Ala357/358  

Activation of PKC isoforms leads to enhanced Ser/Thr phosphorylation of IRS-1 and thus is 

implicated in impaired insulin signal transduction (155). To illustrate this concept further, we 

focused on the inhibitory effect of PKC-δ in downstream insulin signaling i.e. on Akt 

phosphorylation and the potential role of Ser-357 hereby.  

TPA-pretreatment of C2C12 cells expressing PKC-δ and IRS-1 WT led to clear 

downregulation of the insulin-induced phosphorylation of Ser-473 of Akt, an effect prevented 

by co-transfection of PKC-δ KN indicating the inhibitory effect of PKC-δ on insulin action 

(Fig. 19A). Moreover, co-transfection of IRS-1 Ala357/358 could clearly reduce the 

inhibitory action of PKC-δ on insulin-induced Akt phosphorylation (Fig. 19B). Thus we 

conclude that phosphorylation of Ser-357, by PKC-δ at least partially mediates the adverse 

effects of PKC-δ on insulin signaling. 
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Fig. 19. PKC-δ and Ser-357 phosphorylation of IRS-1 mediated downregulation of insulin-

induced phosphorylation of Akt. (A) C2C12 cells were co-transfected with PKC δ and IRS-1 

WT, kinase-dead mutant of PKC δ (PKC δ KN) and IRS-1 WT or PKC δ and IRS-1 

WT357/358 Ala. Cells were stimulated with 10 nM insulin for 10 min (ins) or preincubated 

with 0.5 µM TPA for 20 min before insulin stimulation (TPA+ins). A representative 

immunoblot demonstrating the phosphorylation of Ser-473 of Akt and the reprobe of the same 

blot with an Akt protein antibody is shown. (B) Ser-473 phosphorylation intensity was 

quantified based on scanning densitometry of immunoblots ((means+SEM, n=3, # p < 0.05 

TPA + insulin vs. insulin alone in cells cotransfected with IRS-1 WT andPKC-δ, § p< 0.05 vs. 

IRS-1 WT and PKC-δ transfected cells.) 
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4.3.5 Influence of the phosphorylation of Ser-357 on the interaction of PKC-δ and 

IRS-1 

Fig. 20.  Influence of the Phosphorylation of Ser-357 on the Interaction of PKC-δ and IRS-

1. (A) C2C12 cells were transfected with IRS-1 WT, IRS-1 Glu357 or IRS-1 Ala357/358 (4 µg 

each). Cells were incubated with 10 nM insulin for the indicated times (0, 5, 10 and 60 min). 

PKC-δ was immunoprecipitated and co-precipitated IRS-1 was detected by immunoblotting. 

(B) Quantification based on scanning densitometry is shown as histogram. (Mean + SEM, n 

=4,*p < 0.05 IRS-1 Glu357 vs. IRS-1 WT; coprecipitated IRS-1 WT after 5 min of insulin 

stimulation was set as 1). 

 

Also it was studied whether the phosphorylation of Ser-357 could regulate the association of 

IRS-1 and PKC-δ. In IRS-1 WT-expressing cells an insulin-stimulated increase in the 

association of both proteins after 5 and 10 min of stimulation was observed (Fig. 20), similar 

to the results obtained in primary mouse skeletal muscle cells (171). The insulin-dependent 

recruitment of PKC-δ to IRS-1 appeared to be enhanced in IRS-1 Glu357 expressing cells 

after 5 min of insulin stimulation, while the mutation of Ser-357 to alanine showed similar 

effect as found for IRS-1 WT (Fig. 20).These data suggest that the phosphorylation of Ser-357 
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could be involved in the insulin-mediated regulation of the interaction of this serine kinase 

and IRS-1. 

 

4.3.6 The phosphorylation of Ser318 prevents the phosphorylation of Ser-357 of 

IRS-1 in the early phase of insulin action 

The important physiological balance between activation and termination of insulin action can 

be altered by Ser-/Thr-phosphorylation of insulin receptor substrate (IRS)-1. Phosphorylation 

of Ser318 enhances insulin signal transduction in the early phase of insulin action; while later-

on it is involved in the attenuation of the downstream insulin effects. We aimed to investigate 

the activation and interplay of Ser-318 and negative acting Ser-357. C2C12 cells were 

transiently transfected with IRS-1 WT or IRS-1 Ala318 and stimulated for various time points 

with 10 nM insulin (Fig. 21). The increase in Ser-357 phosphorylation was more pronounced 

in IRS-1 Ala318 expressing cells in basal condition and after 5 min of insulin stimulation 

compared with cells expressing IRS-1 WT. These results indicate that the phosphorylation of 

Ser-318 prevents in the early phase of insulin action the phosphorylation of Ser-357. 

Fig. 21. The phosphorylation of Ser
318

 prevents the phosphorylation of Ser-357 of IRS-1 in 

the early phase of insulin action. 

 C2C12 cells transfected with either IRS-1 wild type (WT) or IRS-1 Ala318 (4 µg of each) 

were stimulated for 5, 10 and 60 min with 10 nM insulin and the phosphorylation of Ser-357 

of IRS-1 was studied. The same blot was stripped and reprobed with a polyclonal IRS-1 

antibody. 
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Based on the very intense phosphorylation of Ser-357 by TPA, an activator of classical and 

novel PKCs (Fig.5), as well as findings of the phosphorylation of Ser-357 by the novel PKC, 

in C2C12 cells (Fig 10), and because members of all PKC classes can be activated by insulin 

Fig. 22. Effects of novel, classical and atypical PKC isoforms on phosphorylation of Ser-

357 in IRS-1. 

C2C12 cells were transfected with IRS-1 wild type (WT), co-transfected with PKC–δ and IRS-

1 WT, or PKC–θ and IRS-1 WT, or PKC–β1 and IRS-1 WT, or PKC– ζ and IRS-1 WT, or 

PKC–λ and IRS-1 WT. Cells were stimulated with either 10 nM insulin or 0.5 µM TPA for 30 

min. A representative immunoblot with the phospho-site-specific Ser-357 antibody and 

reprobe of the same blot with the polyclonal IRS-1 antibody is shown. 

 

(165;172-174), PKC isoforms other then PKC-δ were studied to see their effect on 

phosphorylation of Ser-357. C2C12 cells were transiently co-transfected with PKC–δ and 

IRS-1 WT, or PKC–θ and IRS-1 WT, or PKC–β1 and IRS-1 WT, or PKC– ζ and IRS-1 WT, 

or PKC–λ and IRS-1 WT   and stimulated by insulin and TPA. Cells expressing PKC–δ and 

IRS-1 WT   or PKC–θ and IRS-1 WT or PKC–β1 and IRS-1 WT showed significant increase 

in the phosphorylation of Ser-357 in comparison to cells transfected with PKC– ζ and IRS-1 

WT, or PKC–λ and IRS-1 WT   (Fig. 22). Taken together, these results suggest that the 

phosphorylation of Ser-357 in skeletal muscle cells is mediated by novel and classical PKCs, 

whereas atypical PKCs are not involved. 

 

4.8 Single effect of Ser 357, Ser 358 on insulin signal transduction  

 

4.8.1 Single effect of Ser-357 and Ser-358 on tyrosine phosphorylation of IRS-1 

In previous experiments, double Ala mutant (Ala 357/ Ala 358) was used to interpret the 

effect of Ser-357 phosphorylation on insulin signal transduction, these findings needed, 
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however further substantiation. Therefore, single mutants Ala357 and Ala358 of IRS-1 were 

used along with double mutant Ala357/358 to observe their single effect on insulin signal 

transduction. 

 

Fig. 23. Single effect of Ser-357
 
and Ser-358 phosphorylation on insulin-stimulated Tyr 

phosphorylation of IRS-1. (A) C2C12 cells were transfected with IRS-1 WT, IRS-1 Ala357, 

IRS-1 Ala358 and IRS-1 Ala357/358(4 µg each). Cells were incubated with 10 nM insulin for 

the indicated times (0, 5, 10 and 60 min). IRS-1 was immunoprecipitated with a polyclonal 

IRS-1 antibody (IP) and immunoblotted (IB) with the phospho-tyrosine antibody. The same 

blot was stripped and reprobed with a polyclonal IRS-1 antibody. (B) Tyrosine 

phosphorylation of immunoprecipitated IRS-1 was quantified based on scanning densitometry 

of immunoblots normalized for IRS-1. (Mean ± SE, n = 3,* p < 0.05 IRS-1 Ala357 vs. IRS-1 

WT; # p < 0.05 IRS-1 Ala357/358 vs. IRS-1 WT). 
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C2C12 cells were transfected with each construct and insulin-stimulated tyrosine 

phosphorylation was determined by immunoblotting. Substitution of Ser-357 IRS-1 by 

Ala357 IRS-1 increased short and long term insulin stimulated tyrosine phosphorylation of 

IRS-1 (Fig 23A).Unlike Ala357 IRS-1, Ala358 IRS-1 displayed normal insulin-stimulated 

tyrosine phosphorylation in C2C12 cells, whereas the double mutant also displayed increased 

insulin stimulated tyrosine phosphorylation, supporting the idea that Ser-357 plays important 

regulatory role (Fig 23B). 

These experiments maintain the conclusion that phosphorylation of Ser 357 inhibit insulin 

stimulated tyrosine phosphorylation of IRS-1 while phosphorylation of Ser-358 apparently 

has no effect. 

 

4.8.2 Single effect of Ser-357 and Ser-358 on Thr 308 phosphorylation of PKB 

Fig. 24. The phosphorylation of Ser-357 of IRS-1 leads to reduced phosphorylation of Akt 

in skeletal muscle cells. (A) C2C12 cells, transiently transfected with IRS-1 WT, IRS-1 

Ala357, IRS-1 Ala358, and IRS-1 Ala357/358
,
 (4 µg each) were stimulated for 5, 10, and 60 

min with 10 nM insulin. Cell lysates were analyzed with 7.5% SDS-PAGE, and after Western 

blotting the phosphorylation of Thr-308 of Akt was investigated. The same blot was stripped 

and reprobed with an Akt protein antibody. The IRS-1 amount was analyzed using a 

polyclonal IRS-1 antibody. (B) Phosphorylation intensity of Thr-308 of PKB/Akt was 

quantified based on scanning densitometry of immunoblots normalized for PKB/Akt protein. 

(Mean +SEM, n = 3,*p < 0.05 IRS-1 Ala mutants vs. IRS-1 WT.)  
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Previous results indicated a negative effect of Ser-358 on insulin-stimulated activation of PKB 

and since it was the only substantial effect of Ser-358 on insulin signaling molecules, 

therefore it needed further elucidation. Insulin-induced activation of AKT/PKB results from 

its phosphorylation at its two residues, Thr-308 and Ser-473 (8;175).Thus it was worthwhile 

to examine influence of Ser-357 and Ser-358 on PKB phosphorylation at Thr-308 as well. 

C2C12 cells were transiently transfected with IRS-1 WT, IRS-1 Ala357, and IRS-1 Ala358 

and IRS-1 Ala357/358 and stimulated for various time points with 10 nM insulin (Fig. 24A). 

The insulin-dependent increase in Thr-308 phosphorylation of Akt was markedly increased in 

IRS-1 Ala357 and IRS-1 Ala357/358 expressing cells after 5 and 10 min of insulin 

stimulation compared with cells expressing wild-type IRS-1 (Fig. 24B). Interestingly, cells 

expressing IRS-1 Ala358 showed comparable phosphorylation of Thr-308 as in IRS-1 WT 

leading to the conclusion that Ser-358 does not have a steady and pronounced effect on 

insulin-mediated activation of PKB. 

 

4.8.3 Single effect of Ser-357 and Ser-358 on GSK-3 phosphorylation  

 

Fig.25.  Single effect of Ser-357 and Ser-358 on GSK-3 phosphorylation of IRS-1. 

 (A) C2C12 cells were transfected with IRS-1 WT, IRS-1 Ala357/358
 
or IRS-1 Glu357. Cells 

were incubated with 10 nM insulin for the indicated times (0, 5, 10 and 60 min). Cell lysates 
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were resolved by 7.5% SDS-PAGE and immunoblotted with Ser 21 of GSK-3-3. The same blot 

was stripped and reprobed with a GSK-3α protein antibody. The IRS-1 amount was analyzed 

using a polyclonal IRS-1 antibody. (B) Phosphorylation intensity of Ser21 of GSK-3α was 

quantified based on scanning densitometry of immunoblots normalized for GSK-3α protein. 

(Mean +SEM, n = 3,* p < 0.05 IRS-1 Ala357 vs. IRS-1 WT; # p < 0.05 IRS-1 Ala357/358 vs. 

IRS-1 WT. 

The enhanced activation of PKB by Ser-357 phosphorylation was translated into higher   

phosphorylation of its downstream effectors. As shown in (Fig. 25A), GSK-3α underwent 

significantly higher phosphorylation in cells over expressing either IRS-1 Ala357 or IRS-1 

Ala357/358 as compared to cells expressing wild type IRS-1. On the contrary cells transfected 

with IRS-1 Ala358 showed insulin stimulated phosphorylation of GSK-3 to the similar extent 

as in the cells expressing IRS-1 WT. 

 

4.8.4 Phosphorylation of Ser-357 but not Ser-358 triggers deactivation of tyrosine 

phosphorylation of IRS-1, PKB and its downstream effectors ; relevance of 

phosphorylation of Ser-357 in human  

 

The main query which remained obscure and need further elucidation was, if Ser-358 is 

mutated to Ala, Ser-357 phosphorylation has a functional effect? This is important because in 

human IRS-1, Ser-558 is replaced by Ala-358. Therefore, in order to establish the functional 

effect of Ser-357 in human IRS-1, an IRS-1 mutant was constructed in which Ser-357 was 

constitutively phosphorylated, while phosphorylation at Ser-358 was permanently blocked.  

Using PCR site directed mutagenesis such mutant, IRS-1 357Glu/358Ala, was generated and 

further used to see its effect in insulin signal transduction. 

Phosphorylation of all three molecules of insulin signaling was reduced in the cells over- 

expressing either IRS-1 Glu357/Ala358 or IRS-1 Glu357 as compared to IRS-1WT 

expressing cells (Fig 26, 27, 28). These results clearly indicate that insulin stimulated 

Akt/GSK-3 phosphorylation and tyrosine phosphorylation of IRS-1 is regulated by Ser-357 

phosphorylation alone and does not effected by phosphorylation of adjacent residue Ser-358. 
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Fig. 26. Phosphorylation of Ser-357, but not Ser-358 triggers deactivation of PKB. (A) 

C2C12 cells, transiently transfected with IRS-1 WT, IRS-1 Glu-357Ala-358 and IRS-1 Glu-

357(4 µg each), were stimulated for 5, 10, and 60 min with 10 nM insulin. Cell lysates were 

analyzed with 7.5% SDS-PAGE, and after Western blotting the phosphorylation of Ser473 of 

Akt was investigated. The same blot was stripped and reprobed with an Akt protein antibody. 

The IRS-1 amount was analyzed using a polyclonal IRS-1 antibody. (B) Phosphorylation 

intensity of Ser473 of PKB/Akt was quantified based on scanning densitometry of 

immunoblots normalized for PKB/Akt protein. (Mean +SEM, n = 3,*p < 0.05 IRS-1 Glu-

357Ala-358 mutants vs. IRS-1 WT; # p < 0.05 IRS-1 Glu mutant vs. IRS-1 WT.) 
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Fig. 27. Phosphorylation of Ser-357 but not Ser-358 down regulate phosphorylation of 

GSK-3. (A) C2C12 cells, transiently transfected with IRS-1 WT, IRS-1 Glu-357Ala-358 and 

IRS-1 Glu-357(4 µg each), were stimulated for 5, 10, and 60 min with 10 nM insulin. Cell 

lysates were analyzed with 7.5% SDS-PAGE, and after Western blotting the phosphorylation 

of Ser-21 of GSK-3α was investigated. The same blot was stripped and reprobed with an 

GSK-3 protein antibody. The IRS-1 amount was analyzed using a polyclonal IRS-1 antibody. 

(C) Phosphorylation intensity of Ser-21 of GSK-3 was quantified based on scanning 

densitometry of immunoblots normalized for GSK-3 protein. (Mean +SEM, n = 3,*p < 0.05 

IRS-1 Glu-357Ala-358 mutants vs. IRS-1 WT; # p < 0.05 IRS-1 Glu mutant vs. IRS-1 WT.) 
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Fig. 28. Phosphorylation of Ser-357 but not Ser-358 down regulate tyrosine 

phosphorylation of IRS-1. (A) C2C12 cells were transfected IRS-1 WT, IRS-1 Glu-357Ala-

358 and IRS-1 Glu357. Cells were incubated with 10 nM insulin for the indicated times (0, 5, 

10 and 60 min). IRS-1 was immunoprecipitated with a polyclonal IRS-1 antibody (IP) and 

immunoblotted (IB) with the phospho-tyrosine antibody. The same blot was stripped and 

reprobed with a polyclonal IRS-1 antibody. (B) Tyrosine phosphorylation of 

immunoprecipitated IRS-1 was quantified based on scanning densitometry of immunoblots 

normalized for IRS-1. (Mean ± SE, n = 3,*p < 0.05 IRS-1 Glu357Ala358 vs. IRS-1 WT; # p < 

0.05 IRS-1 Glu357 vs. IRS-1 WT). 

 

 

IRS-1 WT Glu357

0    5   10   60

Glu357Ala358

0    5   10   60 0    5   10   60  min ins

0

0.1

0.2

0.3

A

B

0.4

IB:IRS-1

IB:p-Tyr

IP: IRS-1
p

T
y
r/

IR
S

-1

* * * #
# #

IRS-1 WT Glu357

0    5   10   60

Glu357Ala358

0    5   10   60 0    5   10   60  min ins



 

 74 

4.8.5 Insulin-induced phosphorylation of Ser-357 in human myotubes 

IRS-1 plays an essential role in peripheral insulin action and consequently in impaired insulin 

action (insulin resistance) in insulin sensitive tissues such as skeletal muscle. Therefore, 

investigation of the effects of physiologically relevant stimuli such as insulin were carried out 

on the phosphorylation of Ser-357 using human myotubes obtained from biopsies from 

quadriceps femoris. Insulin increased the phosphorylation of Ser-357 in human myotubes as 

compared to non-stimulated cells (Fig. 29). Additionally, since we observed in insulin or 

TPA-treated human myotubes enhanced phosphorylation of Ser357 of the endogenous human 

IRS-1 protein, which contain alanine instead of serine at position 358, it support the evidence 

that Ser-357 is functional site in human as well. 

 

Fig. 29.  Insulin-induced phosphorylation of Ser-357 in human myotubes. 

Human myotubes were treated with10, 100 nM insulin and 0.5 µM TPA for 30 min.IRS-1 was 

immunoprecipitated (IP) with a polyclonal IRS-1 antibody and Immunoblotted (IB) with the 

phosphorylation site-specific Ser-357 antibody.The same blot was stripped and reprobed with 

a polyclonal IRS-1 antibody. 
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5- DISCUSSION 

 The results of a number of studies have indicated that Ser/Thr phosphorylation can affect the 

ability of IRS-1 to transmit  insulin signal, most often in a negative fashion 

(83;101;103;111;165;170;176;177) ; therefore, the identification of IRS kinases and their 

target Ser phosphorylation sites is of physiological and pathological importance. Individual 

Ser-Thr phosphorylated sites of IRS-1 can make it a poor substrate for the IR kinase , 

resulting in the inhibition of downstream signaling molecules activation and insulin action 

(178). 

The family of protein kinase C (PKC) isoforms represents important modulators of signaling 

molecules which regulate among other cellular functions the metabolic and mitogenic 

properties of insulin. All classes of PKCs have been involved in this regulation, and the 

effects described so far covers the transduction of the positive effect of insulin on glucose 

uptake and insulin secretion by atypical and novel PKCs (179), the participation in the self-

induced attenuation of insulin action by atypical PKCs (173) , and the implication in lipid- 

and hyperglycemia-induced insulin resistance by classical and novel PKCs 

(142;177;180;181). These kinases are also activated by various inducers of insulin resistance, 

placing them at a point of convergence between physiological and pathological stimuli. 

 

 Data of the novel PKC isoform δ mirrored this positive and negative modulation of insulin 

signaling. PKC-δ is shown to be important for insulin stimulated glucose uptake (126), and it 

participates in the insulin-dependent activation of Akt (182). On the other hand, it has been 

shown that activation of PKC-δ by lipids and leptin is involved in the impairment of insulin 

signaling (165;183)  and in the induction of apoptosis of insulin-secreting cells (161). 

 

In addition, PKCs are involved in the subsequent downregulation of insulin signaling (155). 

PKCs may contribute to serine phosphorylation of IRS-1 in response to insulin, thereby 

involve in negative feed back of insulin signaling (170;184;185). Serine phosphorylation of 

IRS-1 appears to be a major mechanism for the adverse effects of PKC-δ on insulin action 

(155;165;170). While in vitro at least 18 PKC-δ-dependent phosphorylation sites in IRS-1 

have been identified (155), so far only two sites could be demonstrated to be phosphorylated 

in vitro and to be functionally active, these are Ser-24 and Ser-318 (165;170;186). None of 

these sites were shown to be phosphorylated upon insulin stimulation by PKC-δ, although 

insulin could activate PKC-δ and induce its association to IRS- 1 (187). 
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5.1 Characterization and specificity of phospho-Ser-357 antibody 

In the current study we could demonstrate Ser-357 of IRS-1 as a novel, genuine and PKC-δ-

dependent phosphorylation site in cells, which is phosphorylated upon insulin stimulation. 

This conclusion is based upon the fact that its phosphorylation after insulin treatment can be 

detected using phospho-site-specific antibodies that selectively recognize the phosphorylated 

form of Ser-357. 

 This site was first identified by an in vitro kinase assay and verified in cell culture systems 

using phospho-specific antibodies. Cross reactivity of the phospho-Ser-357 antibody with the 

adjacent serine site was eliminated by immuno purification. The specificity of the antibody, 

after immuno-purification, was first determined by ELISA and then demonstrated after 

phosphatase-treatment and using IRS-1 Ala357, IRS-1 Ala358 and IRS-1 Ala357/358 

mutants. It was necessary to include the Ala358 mutation since this amino acid adjacent to 

Ser-357 is also a serine residue in mouse and rat IRS-1 and has been reported as a putative 

phosphorylation site  by Liu,Y.F (83).  

 Finally, to determine whether our observations in the C2C12 cells were applicable to a more 

physiological system, we examined tissues from mice for the presence of the IRS-1 Ser-357 

phosphorylation. Extracts from muscle of insulin stimulated wild type mice exhibited 

phosphorylation of Ser-357 as compared to non stimulated mice. These results are therefore 

consistent with the hypothesis that Ser-357 is an insulin stimulated phosphorylation site of 

IRS-1. 

 

5.2 PKC-δ mediated IRS-1 Ser-357 phosphorylation  

In the present study we identified Ser-357 of IRS-1 as a PKC-δ mediated novel 

phosphorylation site. IRS-1 contains several PKC substrate motifs (RXS/SXR/RXSXR) and 

Ser-357 resides in one of these motifs (RGS/SSR/RGSSR). The results implicated PKC-δ as 

the responsible serine kinase for the phosphorylation of Ser-357 since it was the kinase used 

in the in vitro phosphorylation assays, it could be activated by phorbol ester and insulin. Here, 

we provide the evidence that our results are consistent with the hypothesis that Ser-357 of 

IRS-1 is phosphorylated by PKC- δ. Two lines of evidence support the notion that Ser-357 

serve as an in vitro substrate of PKC-δ. First, overexpression of PKC-δ enhanced 

phosphorylation of Ser-357 as compared to control cells. Second, PKC-δ KN (kinase 

negative) failed to mimic the stimulatory effects of its wild-type counterpart, when transiently 

overexpressed in muscle cells. That is, phosphorylation of Ser-357 of IRS-1 in cells required 
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intact kinase activity of PKC-δ. Since overexpression strongly enhanced the phosphorylation 

of Ser-357 also in unstimulated cells and expression of a kinase dead PKC-δ blocked the 

phosphorylation almost completely, this observation supports the hypothesis that PKC-δ is 

involved in phosphorylation of Ser-357. 

Our results also suggest the likelihood of involvement of classical PKCs and novel PKC 

isoforms other then PKC-δ in the phosphorylation of Ser-357 in skeletal muscle cells which 

support the hypothesis that Ser-357 is a PKC-dependent phosphorylation site. 

Direct phosphorylation of Ser-357 is possible by PKC-δ, but we cannot rule out the role of 

other kinases as the phosphorylation motif is not completely selective for PKCs. This site is 

found in the substrate motif of PKB/Akt, and calmodulin-dependent protein kinase II; thus 

these can be possible kinases involved in phosphorylation of Ser-357. Albeit, some studies 

report that PKC-δ  negatively regulates the insulin-induced JNK activation (188), but some 

studies indicate that novel PKCs can mediate serine phosphorylation of IRS-1 by activating 

MAP kinase and JNK in kidney and skeletal muscle cells (101;189) therefore, at present, we 

cannot completely rule out the possibility that PKC-δ can mediate indirect phosphorylation of 

Ser-357 by activating MAPKinase / JNK. While GSK-3 is highly improbable to mediate 

phosphorylation of Ser-357 because this site is not in the phosphorylation motif of GSK-3, 

besides, phosphorylation of GSK-3 is inhibited by Ser-357 phosphorylation and therefore it is 

unlikely that GSK3 can mediate phosphorylation of Ser-357. Hence, our study provides 

sufficient evidence that PKC-δ is at least partly responsible for cellular phosphorylation of 

Ser-357. 

 

5.3 Functional role of phosphorylation of Ser-357 of IRS-1 in insulin-

stimulated signal transduction.  

 

5.3.1 Influence of Ser-357 and Ser-358 phosphorylation on PKB/AKT  

To investigate the biological relevance of this phosphorylation site in insulin signaling, we 

compared effects of Ser-357 phosphorylation of IRS-1 on central molecules of insulin 

signaling. The key result of our study was that IRS-1 Ala357/358 can better propagate insulin 

signal as compared to IRS-1WT, which is manifested for instance by its ability to 

dramatically enhance PKB phosphorylation. This result indicates that Ser-357 and Ser-358 of 

IRS-1 are negative regulatory sites in insulin signal transduction. Additional findings support 

this conclusion, when Ser-357 was changed to Glu to mimic phosphorylation; insulin-

stimulated PKB phosphorylation was blocked. Overexpressed IRS-1Ala357/358 enhanced 
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PKB phosphorylation to the similar extent as IRS-1 Ala357. This observation, further support 

the conclusion that mutation of both serine sites had no additive effect on insulin signal 

transduction. In order to further elucidate the single effect of these serine sites on insulin 

mediated PKB activity, regulation of phosphorylation of Thr-308 of PKB was tested with 

single mutants of IRS-1 (IRS-1 Ala357, IRS-1 Ala358 and IRS-1 Ala357/358), surprisingly it 

was observed that Ser-358 has no effect on Thr-308 phosphorylation while Ser-357 

maintained its consistent negative role in insulin signaling by down regulation of Thr-308. 

Since different kinases are involved in phosphorylation of PKB, Ser-473 being 

phosphorylated by mammalian target of rapamycin complex-2 (mTORC2) while   Thr-308 by 

PIP3-bound 3-phosphoinositide-dependent protein kinase-1 (PDK1) (8), it is likely that Ser-

357 and Ser-358 albeit being adjacent sites, exploit different pathways for the regulation of 

insulin signaling and  consequently contributed differently in down regulation of insulin 

signaling. 

 

5.3.2 Influence of Ser-357 phosphorylation on GSK-3  

Interestingly we were also able to translate this inhibitory effect of Ser-357 on the regulation 

of GSK3 activity, a downstream target of PKB. The double mutant IRS-1Ala 357/358 

displayed increase insulin stimulated Ser-21 phosphorylation of GSK-3. Conversely, 

substitution of Ser-357 with glutamic acid blunted phosphorylation of Ser-21 of GSK3-α 

during insulin stimulation indicating a constant and stable negative effect of Ser-357 in insulin 

signal transduction. 

 

5.3.3 Influence of Ser-357 phosphorylation on tyrosine phosphorylation of IRS-1 

The additional strength of our study is that our experimental data support the conclusion that 

phosphorylation of Ser-357 of IRS-1 inhibits insulin-stimulated tyrosine phosphorylation of 

IRS-1. Substitution of IRS-1WT with IRS-1Ala357/358 increased insulin-stimulated IRS-1 

tyrosine phosphorylation, whereas substitution of IRS-1Glu357 of IRS-1 decreased insulin-

stimulated IRS-1 tyrosine phosphorylation, supporting the conclusion that Ser-357 has an 

essential regulatory function in insulin signaling. Though the mechanism by which Ser-357 

blunted IRS-1 tyrosine phosphorylation of IRS-1 is not completely clear, but it might be 

possible that Ser-357 phosphorylation causes electrostatic blockade for access of IRS-1 to IR 

like other serine sites of IRS-1(44;179). Alternatively, Ser-357 phosphorylation might target 

IRS-1 to sub-cellular compartments inaccessible to the activated insulin receptor and thus 

inhibits subsequent IRS-1-mediated downstream insulin signaling. 
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5.4 Single effect of Ser 357 and Ser 358 on insulin signal transduction  

Ser-358  has  been reported to have both,  positive and negative effects on insulin signal 

cascade (177;190), but these studies were carried out  on  IRS-1 mutated at the multiple serine 

residues (IRS-1- Ala 265/302/325/336/358/407/408 mutant) and none of these studies focused 

on single effect of Ser-358 on insulin signaling.  Here a part of the studies was focused on 

IRS-1 mutated at only Ser-358. 

 

5.4.1 Single effect of Ser-357 and Ser-358 on tyrosine phosphorylation of IRS-1 

In order to confirm single effect of Ser-357 and Ser-358 on insulin signal transduction, single 

Ala mutants were used along with the double Ala to compare the effect of these serine 

residues on insulin signal transduction.In contrast to upregulation of tyrosine phosphorylation 

of IRS-1 by IRS-1 Ala357, IRS-1 Ala358 displayed normal insulin stimulated tyrosine 

phosphorylation, whereas the double Ala mutant also displayed increased insulin-stimulated 

tyrosine phosphorylation. These experiments support the conclusion that phosphorylation of 

Ser 357 inhibits insulin-stimulated proximal insulin signaling, while phosphorylation of Ser-

358 apparently had no effect on it. 

 

5.4.2 Single effect of Ser-357 and Ser-358 on GSK-3 phosphorylation of IRS-1 

To test the effect of Ser-358 on GSK-3 phosphorylation it was found that there was significant 

enhanced GSK-3 phosphorylation when Ala-357 IRS-1 was used, while Ala 358 IRS-1 

showed similar phosphorylation of GSK-3 as IRS-1WT. 

 

Over all, our data showed no effect of Ser-358 phosphorylation on insulin signaling, except at 

the level of Ser-473 phosphorylation of PKB. However, there is no effect of Ser-358 

phosphorylation on Thr-308 phosphorylation of PKB, tyrosine phosphorylation of IRS-1 and 

phosphorylation of GSK-3.  

Although in rodents both serine residues contribute to the Ser-473 phosphorylation of Akt, as 

shown by our previous experiments with cells overexpressing single mutants (Fig 16), 

nevertheless Ala 358 had no effect on Thr-308 phosphorylation of PKB, tyrosine 

phosphorylationof IRS-1 and on GSK-3 phosphorylation. On the other hand, Ser-357 

exhibited a consistent negative modulation of proximal and distal insulin signaling, as has 

been proven by using diverse loss of function and gain of function mutations at Ser-357 in 

IRS-1 molecule (IRS-1 Ala357, IRS-1 Ala358, IRS-1 Ala357/358, IRS-1 Glu357 and IRS-1 
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Glu357/Ala358). Therefore, we conclude that Ser-358 has a subordinate effect on overall 

insulin signal transduction as compared to Ser-357.  

Moreover Ser-357 has been conserved in rodents and human, while Ser-358 is absent in 

human. In the present study enough evidence was provided to support the conclusion that Ser-

357 but not Ser-358 has a conserved and putative function in insulin signal transduction. 

 

5.4.3 Phosphorylation of Ser-357,  but not Ser-358 triggers deactivation of 

tyrosine phosphorylation of IRS-1, PKB and its downstream effectors ; relevance 

of phosphorylation of Ser-357 in human  

Finally to determine whether our observations of Ser-357 phosphorylation and its impact on 

insulin signaling were applicable to human, a new mutant was generated, known as IRS-1 

357Glu/358Ala, because the human residue homologous to murine Ser-358 actually is 

alanine. Insulin-mediated phosphorylation of central molecules of insulin signaling was 

examined in C2C12 cells overexpressing IRS-1 WT or IRS-1 Glu357/Ala358 or IRS-1 Glu 

357. Tyrosine phosphorylation of IRS-1, PKB phosphorylation at Ser-473 and GSK-3 

phosphorylation at Ser-21 was reduced in the cells overexpressing either IRS-1 

357Glu/358Ala or IRS-1 Glu 357 as compared to IRS-1 WT expressing cells. These results 

clearly indicate that in human, insulin stimulated phosphorylation of these signaling 

molecules, at least in part, is regulated by Ser-357. In addition, it was also observed that in 

human mayotubes this site is phosphorylated in response to insulin and TPA. 

Therefore, Ser-357, but not Ser-358 is the primary phosphorylation site of IRS-1 both in 

rodents and human, which can modulate insulin signaling. 

 

5.4.4 The phosphorylation of Ser-318 prevents the phosphorylation of Ser-357 of 

IRS-1 in the early phase of insulin action 

To investigate the interplay of previously described phosphorylation site Ser-318 of IRS-1 

(110) and the phosphorylation of Ser-357 was of interest. It was observed that in the early 

phase of insulin action, the phosphorylated state of Ser-318 prevents the phosphorylation of 

Ser-357. Since phosphorylation of Ser-318 enhances insulin signal transduction in the early 

phase of insulin action; while later-on it is involved in the attenuation of the downstream 

insulin effects, while Ser-357 has a negative effect in insulin signal transduction, this can be 

the part of complex regulation of IRS-1 serine phosphorylation to keep a tight balance 

between activation and inhibition of insulin signal transduction. 
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5.4.5 Inhibition of the PKC-δ-induced downregulation of Akt phosphorylation by 

IRS-1 Ala357/358; potential mechanism behind downregulation of insulin 

signaling by PKC-δ  

Finally we addressed the hypothesis that insulin stimulated activation of PKC-δ may enhance 

serine phosphorylation of IRS-1 and attenuate the downstream effectors of insulin signaling. 

Prior studies have also attempted to explain the  mechanism employed by PKC-δ to down -

regulate insulin signaling, but these studies remained limited to the effect of PKC-δ on 

proximal insulin signaling/tyrosine phosphorylation of IRS-1 (155). We address the question 

about the effect of PKC-δ on distal insulin signaling.  The adverse effect of PKC-δ activation 

on insulin action was further demonstrated, when we induced the negative effect of PKC-δ by 

pre-treatment of IRS-1 WT- and PKC-δ- overexpressing cells with phorbol ester. We found 

that insulin stimulated PKB phosphorylation was blunted by PKC-δ and that PKC-δ is not 

sufficient to cause this effect independent of Ser-357 phosphorylation, supporting the idea that 

PKC-δ could mediate the physiological negative feed back of insulin signaling through 

phosphorylation of Ser-357. Thus, both, active PKC-δ and IRS-1 phosphorylated on serine 

357 are necessary for the observed adverse effects of phorbol ester-mediated PKC activation 

on insulin signaling. Taken together these results further strengthen the role of PKC-δ in 

attenuating insulin signaling via serine phosphorylation of IRS-1 and explain, at least in part, 

the inhibitory mechanism of PKC-δ in insulin signaling.  

The phosphorylation of Ser-357 did not result in the dissociation of PKC-δ and IRS-1, as it 

was e.g. reported for PKC-ζ and IRS-1 after phosphorylation of Ser318 (110), but even 

appeared to result in an enhanced recruitment. This could facilitate other serine 

phosphorylation events on IRS-1 e.g. the previously published PKC-δ-dependent sites Ser-24 

and Ser-318, or its receptor, leading to the described reduced tyrosine phosphorylation and 

attenuation of insulin signaling (170). Interestingly, the insulin-induced activation of PKC-δ 

has also been implicated in a positive modulation of insulin action. Overexpression of PKC-δ 

in mouse skeletal myotubes led to a very rapid increase in tyrosine phosphorylation of the IR 

without insulin stimulation, and overexpression of a dominant negative PKC-δ prevented the 

insulin-dependent tyrosine phosphorylation of the IR (125;187). Moreover, the insulin-

dependent activation of PKC-δ was shown to be important for a maximum stimulation of Akt 

in skeletal muscle cells (182). Thus, insulin alone might not be sufficient to induce the 

adverse effects of PKC-δ on insulin action. These effects of PKC-δ had been reported after 

pharmacological activation using phorbol ester (170), stimulation with leptin (165) or lipid 

infusion (183). Following this aspect, it must be noted that we observed an insulin-dependent 
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phosphorylation of Ser-357, but this effect was not as strong as the phosphorylation intensity 

after stimulation with phorbol ester. It could be speculated that in the pathophysiological 

situation of metabolic disturbance with hyperinsulinemia, hyperglycemia, and hyperlipidemia 

a more pronounced and sustained activation of PKC-δ occurs which then leads to a significant 

phosphorylation of Ser-357. This phosphorylation could then mediate the desensitizing effect 

on insulin action in combination with other phosphorylation events.  

 

Fig. 30. Schematic diagram outlining the role of Ser-357 of IRS-1 in insulin action in 

skeletal muscle cells. Arrow indicates change in phosphorylation. 

Insulin binding to IR results in recruitment of IRS-1 to the activated receptor and its tyrosine 

phosphorylation. Activated PKC-δ mediates Ser-357 phosphorylation of IRS-1. 

Phosphorylation of Ser-357 inhibits tyrosine phosphorylation of IRS-1 and appears to lead to 

the reduction of phosphorylation of PKB and GSK-3. This may eventually result in insulin 

resistance due to reduced glucose uptake and impaired glycogen synthesis. 

Ins Insulin  IRS-1  Insulin receptor substarte-1  

IR Insulin receptor  PKC  Protein kinase C 

PKB Protein kinase B  GSK-3 Glycogen-Synthase-Kinase 3 
P-Y Phosphorylated tyrosine  S Serine 
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Number of distinct models may explain the observed data (Fig. 30). The simplest 

interpretation is that activation of PKC phosphorylates IRS-1 at Ser-357 and possibly other 

serine residues, and this phosphorylation inhibits the subsequent ability of the IRS-1 to serve 

as a substrate for the IR tyrosine kinase and results in reducd tyrosine phosphorylation of IRS-

1. This event reduces IRS-1 ability to activate PKB and relay insulin signal further down 

stream i.e Phosphorylation of GSK-3. Deactivation of PKB and activation of GSK-3 may lead 

to reduce glucose uptake and reduced glycogen synthesis respectively which can be the basis 

of insulin resistance. Together, these data suggest that phosphorylation of Ser357 mediates at 

least in part the adverse effects of PKC-δ activation on insulin action. 

In summary, we could clearly show that the phosphorylation of Ser-357 is functional and 

resulted in impaired insulin-stimulated tyrosine phosphorylation of IRS-1, reduced activation 

of Akt and subsequently reduced phosphorylation of GSK-3. These data suggest that Ser-357 

is the primary site for the modulation of insulin signaling. Albeit, Ser-358 have an 

interchangeable and secondary function in mice and rats but in human only Ser-357 is 

functional. The substantial role of Ser-357 is underlined by the fact that in human IRS-1 Ser-

358 (position 363 in human IRS-1) is replaced by alanine and our data support the conclusion 

that this site is phosphorylated in human myotubes and still modulate insulin signaling when 

358 is Ala. In short, we identified Ser-357 as a new phosphorylation site in IRS-1 and showed 

that PKC-δ is the potential kinase involved in phosphorylation of Ser-357. Our results are 

consistent with the assumption that PKC-δ mediated phosphorylation of Ser-357 appears to be 

the part of physiological negative feedback inhibition of insulin signaling. In conclusion we 

demonstrated here a novel, functionally relevant serine residue of IRS-1, which could be 

involved upon PKC-δ-dependent phosphorylation in the attenuation of insulin signaling in the 

insulin resistant state. 

In future, the in vitro role of Ser-357 phosphorylation needs to be resolved using tissues from 

animals or humans with insulin resistance and to follow changes in the phosphorylation status 

of Ser-357 after therapeutic interventions. Additional work is needed to identify other PKC-δ 

-mediated important regulatory serine sites of IRS-1; this should help to provide a more 

complete understanding of the molecular basis of insulin resistance. 
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