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Abstract

Collective systems in nature and biology exhibit remarkable self-organizing capabilities, characterized by
complex interactions across vast scales in both time and space. Over billions of years, these systems have
proliferated and given rise to the immense diversity of life and ecology found on Earth and are now one of
the most dominant properties of our planet. The success and proliferation of life on Earth is a testament to
how powerful self-organizing processes can be, yet understanding even a subset of these complex living
systems is an extremely challenging problem. However, living systems, and even some abiotic complex
systems, share many similarities. This raises the questions as to whether there exists universal principles that
underpin the diversity of complex systems observed on Earth.

The criticality hypothesis, which views collective systems through the lens of statistical physics, seeks to
determine the existence of such universal properties. Originally rooted in the study of magnetism, the
properties of critical phenomena, which are usually detected via power-law statistics, have also been found
in a variety of biological systems. These include gene-regulatory networks, evolutionary dynamics, animal
swarms, or neural activity, suggesting the propensity for living systems to operate near a critical point. These
observations suggest that life and complexity may also be critical phenomena, where a growing body of
work is now showing how optimal computational properties emerge near critical points. However, a gap
remains between theoretical and empirical work on criticality and its application, where this dissertation
aims to explore and simulate complex systems and test their relation to criticality.

In three of the publications presented, we find that systems near critical regimes offer advantages in
aesthetics, evolutionary dynamics, and neural network optimality. For aesthetics, abstract images with slowly
decaying autocorrelations are perceived as more pleasing. In evolutionary dynamics, we demonstrate that
embodied Ising neural agents evolve faster near the critical regime but converge to sub-critical states unless
task complexity increases. For neural network optimality, we show that the best-performing models on
long-memory tasks have more slowly decaying autocorrelations, linked to a closeness to a critical state, and
that this performance is strongly influenced by the learning curriculum used.

The remaining two publications explore adaptivity and self-organization. One paper presents methods
to simulate large-scale heterogeneous cellular automata (CA), demonstrated on a plastic spiking neural
network and an adaptive Ising model. For the Ising model, we show that robust self-organized criticality
can be implemented by using heterogeneous and adaptive CA rules. The other paper on neural plasticity in
embodied agents shows that the optimality of plasticity rules depends on environmental and task conditions,
with rule specificity emerging under certain constraints.

In summary, this dissertation examines complex systems to relate function and performance in applied
settings to theoretical principles. While universal properties account for much of their behavior, they are
modified by specific constraints, suggesting these properties are useful initial conditions for adaptive systems,
which must undergo further optimization in practical applications.

Keywords

complex systems, adaptivity, self-organization, criticality, evolutionary algorithms, optimization, cellular
automata, neural networks, plasticity





Kurzfassung

Kollektive Systeme in der Natur und Biologie zeigen bemerkenswerte selbstorganisierende Fähigkeiten, die
durch komplexe Wechselwirkungen über große Zeit- und Raumskalen gekennzeichnet sind. Über Milliarden
von Jahren haben sich diese Systeme verbreitet und zur immensen Vielfalt des Lebens und der Ökologie auf
der Erde beigetragen und sind heute eine der dominierenden Eigenschaften unseres Planeten. Der Erfolg und
die Verbreitung des Lebens auf der Erde sind ein Zeugnis für die Macht selbstorganisierender Prozesse, doch
selbst ein Teilverständnis dieser komplexen lebenden Systeme stellt eine äußerst schwierige Herausforderung
dar. Allerdings teilen lebende Systeme und einige abiotische komplexe Systeme viele Ähnlichkeiten. Dies
wirft die Frage auf, ob es universelle Prinzipien gibt, die der Vielfalt der auf der Erde beobachteten komplexen
Systeme zugrunde liegen.

Die Kritikalitätshypothese, die kollektive Systeme durch die Linse der statistischen Physik betrachtet, versucht
die Existenz solcher universellen Eigenschaften zu bestimmen. Ursprünglich in der Magnetismusforschung
verwurzelt, wurden die Eigenschaften kritischer Phänomene, die üblicherweise durch Potenzgesetz-Statistiken
erkannt werden, auch in einer Vielzahl biologischer Systeme gefunden. Dazu gehören genregulatorische
Netzwerke, evolutionäre Dynamiken, Tierschwärme oder neuronale Aktivitäten, was auf die Neigung
lebender Systeme hinweist, in der Nähe eines kritischen Punktes zu operieren. Diese Beobachtungen legen
nahe, dass Leben und Komplexität ebenfalls kritische Phänomene sein könnten, wobei eine wachsende
Anzahl von Arbeiten nun zeigt, wie optimale Rechenfähigkeiten in der Nähe kritischer Punkte entstehen.
Es besteht jedoch eine Lücke zwischen theoretischer und empirischer Arbeit zur Kritikalität und ihrer
Anwendung, die diese Dissertation durch die Erforschung und Simulation komplexer Systeme und die
Überprüfung ihrer Beziehung zur Kritikalität zu schließen versucht.

In drei der präsentierten Publikationen finden wir, dass Systeme nahe kritischen Regimen Vorteile in
Bezug auf Ästhetik, evolutionäre Dynamiken und neuronale Netzwerk-Optimalität bieten. Für die Ästhetik
werden abstrakte Bilder mit langsam abklingenden Autokorrelationen als angenehmer wahrgenommen.
In den evolutionären Dynamiken zeigen wir, dass verkörperte Ising-Neuronenagenten in der Nähe des
kritischen Regimes schneller evolvieren, aber zu subkritischen Zuständen konvergieren, es sei denn, die
Aufgabekomplexität nimmt zu. Für die neuronale Netzwerk-Optimalität zeigen wir, dass die leistungsstärksten
Modelle bei Langzeitgedächtnisaufgaben langsam abklingende Autokorrelationen aufweisen, was auf eine
Nähe zu einem kritischen Zustand hinweist, und dass diese Leistung stark vom verwendeten Lernlehrplan
beeinflusst wird.

Die verbleibenden zwei Publikationen erforschen Adaptivität und Selbstorganisation. Ein Papier stellt
Methoden zur Simulation großskaliger heterogener zellulärer Automaten (CA) vor, demonstriert an einem
plastischen spikenden neuronalen Netzwerk und einem adaptiven Ising-Modell. Für das Ising-Modell
zeigen wir, dass eine robuste selbstorganisierte Kritikalität durch die Verwendung heterogener und adaptiver
CA-Regeln implementiert werden kann. Das andere Papier zur neuronalen Plastizität in verkörperten Agenten
zeigt, dass die Optimalität der Plastizitätsregeln von den Umwelt- und Aufgabenbedingungen abhängt,
wobei unter bestimmten Einschränkungen Regel-Spezifizität entsteht.

Zusammenfassend untersucht diese Dissertation komplexe Systeme, um Funktion und Leistung in ange-
wandten Kontexten mit theoretischen Prinzipien zu verknüpfen. Während universelle Eigenschaften einen
Großteil ihres Verhaltens erklären, werden sie durch spezifische Einschränkungen modifiziert, was darauf
hindeutet, dass diese Eigenschaften nützliche Ausgangsbedingungen für adaptive Systeme sind, die in
praktischen Anwendungen weiter optimiert werden müssen.
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1.1 The Emergence of Complexity in Nature

Some of the most interesting phenomena in the natural world tend to

fall into the category of complex systems, which will be the central

theme of the projects presented within this dissertation. Complex
systems, to put it broadly, are systems that are composed of many different
interacting parts whose behaviour is considerably more complicated
than its constituent parts. These are systems in which the details cannot
easily be ignored and the interactions of these distinct components are
often strongly nonlinear. As opposed to linear systems which are more
readily solvable, nonlinear systems tend to exhibit chaotic behaviours
making them difficult to study at scale. Furthermore, complex systems
can also sometimes give rise to emergent behaviours

Def.: Emergence

A phenomena that occurs when
a macroscopic system has proper-
ties its microscopic constituents
do not have [1]. Complex proper-
ties can emerge from a collective
of simple components, e.g. fractal
growth of snowflakes.

that are usually not
easily predicted from the properties of the smaller components. There
are many examples of this in nature, not least of all the emergence of
biology, life, intelligent behaviour, or consciousness1

1: How does single cellular life give rise
to multi-cellular life? How do schools of
fish or flocks of birds coordinate their
collective motion [2–5]? How easily can
we predict chemistry from the laws of
physics [6]? How does qualia (the phe-
nomena of experience) arise from biol-
ogy? These emergent phenomena are not
readily explained by studying the com-
ponents in a reductionist way.

.

In this dissertation, we explore a set of mathematical models of complex
collective systems focusing on the relationships between their func-
tional utility in applied settings, their microscopic details, and universal
properties that they may share.

The models are often (but not always) studied in relation to the criticality

hypothesis. The criticality hypothesis is a candidate theory of complex
systems which claims that the optimal state of for information processing
and performance is poised at a critical point where a second order phase
transition occurs. The relationship between performance in the biolog-
ical/evolutionary sense and performance in the information-theoretic
sense (which occurs near critical points) is still poorly understood and
remains to be verified for many real-world applications. We therefore
study if such a universal optimal state exists, if they are indeed related
to

Def.: Criticality

A phenomena characterized by
sensitivity to perturbations, diver-
gent correlation-lengths, fractal
behaviour, etc. Occurs for certain
phase-transitions that typically
separate an ordered phase from
a disordered phase. Explained in
more detail in Section 2.1 – The
Criticality Hypothesis and The
Edge of Chaos and Section 3.2
– The Ising Model, Phase Transi-
tions, and Critical Points.

criticality, and if such states would be natural attractors for evolu-
tionary/adaptive systems or if they are obfuscated by local minima or
rugged fitness landscapes. We also explore other models of complexity
that are not directly related to the criticality hypothesis but still exhibit
similar statistical properties. The models in study are as follows:

▶ Compositional Pattern-Producing Networks (CPPN): a type of
neural network that can produce textures by mapping a set of
coordinates to a vector output. We evaluate the aesthetics of the
generated images and analyzed them using autocorrelation func-
tions.

▶ Evolving Ising-Neural Agent: an embodied neural network with
Ising interactions subject to an evolutionary algorithm. We test the
hypothesis that criticality is an evolutionary attractor.

▶ Adaptive Neural Cellular Automata: a fast implementation of het-
erogeneous CA allowing for adaptive dynamics and self-organized
criticality, enabling fast prototyping and real-time interactive simu-
lations.



2 1 Introduction and Motivation

2: Reality is a bit messier where collec-
tive systems can get quite heterogeneous.
Sometimes these differences average out
to be irrelevant, other times they can
make the behaviour of the system quite
complex. It is a non-trivial problem to
distinguish between the two cases.

▶ Plastic Neural Agents: neural networks with linear reward-modulated
plasticity rules. Evolved to solve an embodied foraging task, where
we study the emergent rules after optimization. We test how topol-
ogy and task structure affect the evolved plasticity rules.

▶ Recurrent Neural Networks (RNN): trained via different curricu-
lum learning methods and back-propagation on memory tasks. We
study mechanisms for the emergence of long timescales.

1.2 Collective Systems and

Self-Organization

What connects the different projects and models studied in this disserta-
tion is that they are all models of collective systems which, under ideal
circumstances, can be optimized or self-organized in order to exhibit
some desired behaviour or function.

A collective system is simply a large number of very similar (often identi-
cal)2 components. An ocean is composed of ∼ 1044 identical molecules of
water, a neural network is made of billions of relatively similar neurons,
and a city is composed of millions of semi-individual humans.

The observation that collective systems undergo spontaneous reorgani-
zation is usually quite an intuitive experience for us as humans. From
the observation that water can be liquid, solid or gas, the metamorphosis
of a caterpillar to a butterfly, or even societal reorganizations, all these
phenomena are examples of systems whose fundamental components
are (mostly) conserved (the molecules, the biomatter, the humans) but
through their reorganization have changed their function or properties
(a phase transition). Furthermore, it has been observed that collective
systems in a broad variety of domains and scales exhibit statistical prop-
erties (e.g. 1/f noise, power-laws3

3: Mathematically, power-laws have
scale-invariant properties and tend to
show up in phenomena that are self-
similar or scale-invariant. They are there-
fore used as signatures of critical phe-
nomena and universality, though one
must be careful because scale-invariance
is not the only way to generate power-law
statistics.

) that exhibit signatures of spontaneous
self-organized criticality [7–12].

Practically and historically, models of collective systems aiming to un-
derstand these types of phase transitions need to be relatively simple
in order to be solvable. The Ising Model, which in many cases is equiv-
alent to a maximum-entropy model

Def.: Maximum Entropy Model

A statistical model that estimates
probability distributions by max-
imizing entropy subject to given
constraints, ensuring the least bi-
ased estimate on the known infor-
mation. For example, if the only
constraints are the mean activity
and pair-wise correlations of a
set of variables, the maximum-
entropy model is equivalent to an
Ising model [13, 14].

for complex systems [13, 15–17]
(and which will be introduced in more detail in Section 3.2 – The Ising
Model, Phase Transitions, and Critical Points), has exact solutions only
under very specific conditions that lend enough symmetry/simplicity
to be mathematically tractable. Even so, the discovery of critical phase
transitions in the 2D Ising model and the universality of such transitions
across different substrates has presented us with a compelling discovery.
That is, that near these critical points, many disparate systems converge
towards the same universal statistical properties and behaviours, and
furthermore, these properties are often exploitable in the context of living,
energetic, and informational beings.

To give an intuitive idea for why these systems may be evolutionarily
attractive, one can imagine two extremes of a dynamical system: one
which rapidly converges to a fixed point from any initial condition or
perturbation, versus one which either behaves completely randomly or
is so sensitive to perturbations such that it never returns to a previous
state. On the one hand, sustaining life requires homeostasis and so



1.3 Computational Neuroscience and Machine Learning 3

5: Due to the hardware capabilities and
the success of modern GPUs, the best
way to get the most bang for your buck
out of a computer is to convert your
problem into a series of matrix mul-
tiplications or to vectorize the compu-
tation. Therefore, most state-of-the-art
algorithms leverage highly optimized
MatMul operations instead of directly
modeling the processes as they occur
in the brain with spiking neurons. The
necessity of differentiating these oper-
ations for back-propagation algorithms
also strongly constrains the types of op-
erations and models used in these opti-
mization settings in silico.

having stability to perturbations is vital for survival. On the other
hand, life requires adaptability in the face of changing circumstances
or environments (e.g. seasonal changes, the precession of Earth, CO2
cycles, continental drift, meteors, etc.). It is therefore crucial that for a
living system to persist, it must be able to be structured and stable as
well as explorative, adaptive, and able to modify its behaviour in reaction
to changes in its world. A dynamical system that can easily navigate
between these different regimes of behaviour might therefore be more
capable to survive in a structured but ever-changing world.

Unfortunately, models of criticality are often forced to be relatively simple
to be tractably solved analytically. These idealized settings for which
these systems are solvable are often far removed from the rougher, more
heterogeneous edges of reality, are rarely embedded in real-world tasks or
environments and are too simple to relate practically to applied settings.
Thus, there remains a massive gap between the foundational research
on collective systems that has risen out of statistical mechanics, and the
more practical and functional side of collective systems that has risen
out of the fields of machine learning and deep learning. One of the goals
of this dissertation is to bridge this gap, and study collective systems
of optimized or functional4

4: Optimized or functional models in
this dissertation are models that are sub-
ject to optimization algorithms such as
gradient-descent via backpropagation or
evolutionary algorithms in order to ac-
complish a specific task or minimize/-
maximize an loss/objective function.

systems to better understand how natural
selection pressures or learning constrain or determine the emergent
dynamical properties of collective systems.

1.3 Computational Neuroscience and

Machine Learning

It is precisely at the intersection of computational neuroscience and
machine learning where we can search for a bridge between these
idealized systems and functional ones. Machine learning models (and
more specifically deep neural networks), were initially directly inspired by
their biological counterpart, neural networks in the brain and intelligent
behaviour. Unfortunately, the practicalities of the implementations of
these neural network models in silico very quickly forces practitioners
to adhere5 to hardware limitations in order to compute these models
efficiently. Nowadays, our best models of intelligent behaviour (e.g. vision
models or large language models) have only a limited resemblance to
their biological analogues.

There are practical engineering reasons why deep neural networks are
different than their biological counterpart. For example, most State-of-
the-Art (SOTA) models don’t spike the way real neurons do, and that’s
usually related to the lack of differentiability of spiking models, their
expensive simulation times compared to matrix multiplication, and also
the design of modern computer chips that can’t take advantage of the
energetic benefits of spiking models (although these points are slowly
changing with the continued development of neuromorphic computers).
Furthermore, difficulties with credit-assignment or backpropogation-
through-time when training on temporal tasks and the universal problem
of exploding/vanishing gradients forces very specific mathematical (and
non-biological) pipelines to ensure well-behaving gradients. Each of
these problems exposes a hurdle in our ability to emulate what nature
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does, but also allows us an opportunity to wonder how these problems
are dealt with in nature. As our electrical and compute demands grow
exponentially, we are evermore appreciative of how nature has solved
these problems with sparsely connected, spiking neural networks and
energy efficient architectures. As the memory costs and differentiation
constraints of highly nonlinear models have grown, we have begun to
appreciate more how nature has worked around this through various
plasticity mechanisms in the brain.

It is therefore clear to me that one of the most interesting frontiers
for understanding and creating intelligent collective systems is in the
intersection of computational neuroscience and machine learning where
a combination of foundational and engineering goals are intertwined
and studied in context of one another.

1.4 Contributions

In Chapter 2 – General Background, I give introductions to some of the
foundational and recurring topics in my publications. Starting from a
high-level introduction, an overview of the criticality hypothesis and its
implications for our understanding of the brain and complex systems
is given in Section 2.1 – The Criticality Hypothesis and The Edge of
Chaos. I introduce the notion of Self-Organized Criticality in Section 2.2 –
Self-Organized Criticality (SoC) to motivate the interest behind adaptive
and dynamic systems and the capacity for spontaneous organization. I
also briefly discuss the topic of the perception of aesthetics and beauty in
Section 2.3 – Beauty and Aesthetic Perception to motivate its relationship
with learning, adaptability and ultimately, criticality. In Chapter 3 –
Models, I introduce a number of candidate models of collective and
adaptive systems that I utilize in my publications that allowed us to
study the emergence of complexity, self-organization, and functional
performance.

The results of my publications as well as individual author contributions
are summarized in Chapter 4 – Publications. The publications are attached
in the Appendix in Chapter A – Publications and explore the themes of
complexity, aesthetics and correlation statistics (Section 4.1 – Assessing
Aesthetics of Generated Abstract Images Using Correlation Structure),
evolutionary optimality (Section 4.2 – When to be critical? Performance
and evolvability in different regimes of neural Ising agents), self-organized
criticality in heterogeneous cellular automata (Section 4.3 – Locally
adaptive cellular automata for goal-oriented self-organization), plasticity
and optimality (Section 4.4 – Environmental variability and network
structure determine the optimal plasticity mechanisms in embodied
agents), and lastly, the emergence of long timescales in neural networks
(Section 4.5 – Emergent mechanisms for long timescales depend on
training curriculum and affect performance in memory tasks).



General Background
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1: E.g. a computer, a collective of hu-
mans, an ensemble of pigeons detecting
cancer [35]...

2: For example in diagnosing and dis-
criminating between altered brain states
that may or may not be pathological (e. g.

paralyzed, locked-in, or vegetative pa-
tients) [36–43].

3: This challenge has attracted con-
siderable mathematical attention [51,
52], with exact solutions to more com-
plex, less symmetric and more heteroge-
neous models remaining elusive except
through numerical methods.

different microscopic details ultimately share the same asymptotic be-
haviors near their critical points. This universality means that other
systems, which are not necessarily similar to the brain at a microscopic
level1, could exhibit similar macroscopic behavior if they belong to the
same universality class. If near-critical systems are indeed necessary for
the emergence of life and intelligence, then the universality of phase
transitions indicates that there are numerous microscopic models capable
of exhibiting these properties.

The broader implications of universality extend to how we design,
maintain, and diagnose our own complex systems, whether in clinical
contexts 2 [44–47], artificial intelligence, or even more broadly in artificial
life [48, 49] or life as it could be. The diversity of life on Earth demonstrates
that there are numerous viable ’solutions’ for life across multiple scales,
many of which are subject to similar natural selection pressures (e.g., finite
resources, changing environments, competition with other organisms,
entropic decay, etc.). This degeneracy in the solution space suggests that
there are universal properties shared among all these viable solutions.
In mathematical terms, can we describe broad categories of dynamical
systems that serve as candidate solutions to life? To this end, one of the
key motivations of the projects presented in this dissertation has been to
verify if indeed systems near criticality exhibit these kinds of universally
optimal characteristics, not just in theory, but in settings that are applied,
embodied, or optimized for specific tasks.

2.2 Self-Organized Criticality (SoC)

In the realm of biology, it is known that life on earth is based on the DNA

double helix. But even though we understand perfectly the laws

governing the interaction of atoms, we cannot directly extrapolate these

laws to explain the beginning of life, or the auto-catalysis of complex

molecular networks, or why we have brains that can contemplate the

world around us. Due to the overwhelming unlikeliness of random events

leading to complex systems like ourselves, it seems as if an organizing

agent or “God” must be invoked who puts the building blocks together.

Paczuski and Bak, 1999 [50]

A dynamical system that naturally evolves to a critical state without
precise parameter tuning is said to exhibit self-organized criticality

(SoC) [7]. SoC was first hypothesized to explain the ubiquitous presence
of power-laws in natural and artificial systems. These systems are intrigu-
ing because, in contrast to finely-tuned random models, they achieve
criticality through their inherent dynamics.

In models like the 2D Ising model, critical states occur under very specific
conditions that are difficult to compute 3. Furthermore, they are often
conservative, non-driven, equilibrium systems with large separations
of timescales. However, many systems considered to exhibit critical
properties, such as earthquakes and neuronal avalanches [8–12], are
driven, out-of-equilibrium systems with numerous variables. These
should, in theory, be difficult to fine-tune, posing the question: "Why do
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themselves but a result of the mind’s ability to find a sense of order and
purpose in sensory experiences.

Figure 2.3: An illustration of the low
Kolmogorov complexity algorithm that
generated the top image. Schmidhuber
argues that in many artistic styles, cap-
turing the "essence" of a complex subject
in as simple or structured of a way is
aesthetically pleasing. He introduces his
low-complexity art style as an algorith-
mic means to this end. Figure taken from
[65].

In the early 20th century, mathematician George David Birkhoff further
developed the study of aesthetics in his 1933 book Aesthetic Measure [58].
Birkhoff proposed that the aesthetic value of an object could be quantified
as a ratio of order to complexity, suggesting that beauty arises from a
balance between these two elements. His work laid the groundwork for
a more analytical approach to aesthetics, introducing mathematical rigor
into the traditionally philosophical topic.

Following Birkhoff, various scholars contributed to expanding the idea of
quantifying beauty. In the latter half of the 20th century, researchers like
Abraham Moles [59] and Max Bense [66], inspired by the formulations
of information theory by Claude Shannon [67], integrated information
theory with aesthetics. They suggested that the aesthetic experience is
tied to the information content and entropy of an artwork. Further work
by Jürgen Schmidhuber in the 90s and early 2000s proposed that beauty is
related to the observer’s ability to compress information [68, 69], linking
the perception of beauty to curiosity, exploration and learning. More
recently, a theory of aesthetic value has been proposed that attempts to
integrate and account for patterns proposed by previous theories [70].

Motivated by these approaches, our publication in Section 4.1 – Assessing
Aesthetics of Generated Abstract Images Using Correlation Structure
explores this tension between order and disorder in aesthetic perception
by relating it to the phenomena of criticality which shares a similar
tension. We investigate whether statistical properties, such as slower
decaying autocorrelation functions, can predict the aesthetic appeal of
images and whether universal statistical properties are present in the
perception of aesthetic visual imagery.
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This chapter introduces the various models utilized in my publications.
Each model is initially presented within its broader context and motiva-
tion, followed by a detailed technical description.

The sections are related to the following publications:

▶ Section 3.1 is relevant for the publication Section 4.1 – Assess-
ing Aesthetics of Generated Abstract Images Using Correlation
Structure.

▶ Section 3.2 is relevant for the publication Section 4.2 – When to
be critical? Performance and evolvability in different regimes of
neural Ising agents.

▶ Section 3.3 is relevant for the publication Section 4.3 – Locally
adaptive cellular automata for goal-oriented self-organization.

▶ Section 3.4 is relevant for the publications Section 4.3 – Locally
adaptive cellular automata for goal-oriented self-organization and
Section 4.4 – Environmental variability and network structure
determine the optimal plasticity mechanisms in embodied agents.

3.1 Compositional Pattern-Producing

Networks (CPPN)

How do ∼ 105 genes encode for ∼ 1012 interconnecting components,

including complex systems such as the human brain? Compositional
Pattern-Producing Networks were originally devised as an abstraction of
development by creating a mapping between genotype and phenotype
that does not require local interactions or temporal unfolding [71]. By
arguing that local processes that requires temporal unfolding can be
equivalently described by a functional description that simply outputs
the resulting final state, the authors hypothesize that models like CPPNs
can more compactly and efficiently encode complex developmental
processes. These insights have have been utilized in the construction of
hypernetworks, which are networks that describe other, usually larger,
networks as a soft form of weight-sharing [72–74].

CPPNs are a type of artificial neural network which take as input a set
of coordinates and output an =-dimensional vector. Since the output of
the network is only a function of the coordinates, different coordinates
from the same coordinate system can be computed in parallel as they
are independent. Due to this simple property that make them easily
parallelizable, they are readily adapted to image generation with GPUs
and have been found to produce a variety of aesthetic art [75–78]. We
use random CPPNs as image generators in the publication Section A.1 –
Assessing Aesthetics of Generated Abstract Images Using Correlation
Structure. In the introduction below we explore some of the properties
of CPPNs such as how the coordinate systems and architecture affect the
image output.
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implementation in PyTorch [80] we achieve this by flattening our
spatial dimensions into the batch dimension of our tensors.

vi. We can write this model in a differentiable way for optimization
purposes. In Figure 3.4 a variety of architectures are trained on
a set of target images using a mean-squared-error loss function.
Architecture choice has a very strong impact on the trainability of
these networks and also the resulting image quality1

1: We don’t train CPPNs in our publi-
cation, however it is possible to do so.
In Figure 3.4 it can be seen how differ-
ent architectures can constrain the image
properties uniquely.

.

3.1.2 Autocorrelation

Autocorrelations are the correlations a variable has with delayed (spatially
or temporally) versions of itself. Autocorrelation functions (acf.) define the
autocorrelation of a sequence or an image as a function of some distance
parameter d (e.g. radial distance 3 = A or angle 3 = �).

Let I(=, <) represent a 2D image of size = × <. Taking 3 = (ΔG,ΔH)

where ΔG and ΔH represent the number of pixels separating two points,
the acf. of this image �(ΔG,ΔH) at a specific distance is computed by
applying the expression:

�(ΔG,ΔH) =
∑

{=,<}

�(=, <) · �(< + ΔG, < + ΔH)

which sums over all possible pixels (=, <). In practice, this convolution
operation can be accomplished much faster with Fast Fourier Transforms.
By taking the Fourier transforms of the image, a multiplication with its
flipped version will compute its autocorrelation.

The function can be parameterized as a function of radial distance
r =

√
(G2 + H2) or angle � = arctan(H, G), shown in Figure 3.5 for images

generated by different architecture CPPNs. Autocorrelations of images
are used in the textile and materials industry for the analysis and quality
control of material products [81–84] and are an informative quantitative
tool for image classification.

Generally, the acf. reflects repeating statistical properties of a system and
can therefore be used in a variety of applications where spectral quantities
are important, such as frequency detection or detecting anisotropy to
name a few. Intuitively, a system that generates a quickly decaying
acf. has very little self-similarity, such as in a noisy, random or chaotic
signal versus a system that has large and slowly a slowly decaying
acf. which would have to be much more structured and change more
smoothly. The decay rate of acf. in data or nature can often be fit with
exponential functions which have characteristic timescales related to
their decay rates. However, there are some instances where systems
exhibit acfs. with no characteristic timescales which decay according
to power laws such as in the 2D Ising model at criticality [85, 86]. In
the context of CPPNs generating aesthetic imagery, we simply use the
computed acfs. as features to correlate with the aesthetic experience of an
image. Our hypothesis being that aesthetic images and experiences toe
the line between complexity and order, a property that is often associated
power-law statistics and criticality [87].
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1 2 3 4 5

Instances

Architectures

32 - 32 - 32 - 3

32 - 32 - 32 - 32 - 32 - 32 - 32 - 32 - 9 - 3 - 3

512 - 512 - 512 - 9 - 3

512 - 256 - 4 - 512 - 256 - 4 - 512 - 256 - 4 - 3

512 - 256 - 512 - 256 - 512 - 256 - 2 - 3

8 - 256 - 256 - 64 - 32 - 6 - 6 - 6 - 3

Figure 3.3: Image quality as a function of network architecture. The left-most column lists a number of selected architectures that are
used to generate a set of images with 5 random instantiations of the model. The architectures are selected to demonstrate a variety of
shapes and bottlenecks (or lack thereof) that result in diverse qualities of images. As we increase the number of neurons and layers, the
texture frequency tends to increase. Bottlenecks act as high-pass filters and seem to be one of the key ways to induce correlations and to
generate aesthetically pleasing images. Combining these motifs can form interesting structures in the resulting images.
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2: The 1D Ising model has a first-order
phase transition when the temperature
is ) = 0, whereas the 2D Ising model
has a second-order phase transition at
a critical temperature )2 ≈ 2.2691 (see
Figure 3.6.

3: The famous Stern-Gerlach experi-
ments conducted in 1922 would eventu-
ally lead to the discovery of the quantum
phenomena of spins, an intrinsic and
quantized unit of angular momentum
carried by elementary particles.

derivative that is discontinuous, it is said to have a second-order phase
transition and a critical point2. A spectrum of exotic behaviours occur
near the critical points of second-order transitions, where thermodynamic
variables such as the heat capacity or the susceptibility of a material
diverge, resulting in properties such as diverging correlation lengths and
critical slowing down. In recent decades, the anomalous behaviour of
materials near their critical points is a point of heavy interest in explaining
adaptive or computational systems. Predicting the conditions which give
rise to phase transitions has historically been a difficult task, and it is
Ernst Ising who begins to tackle this endeavor for his PhD thesis in order
to explain the behaviour of permanent magnets.

Historically, the invention of the Ising model was to explain the strange
phenomenon of ferromagnetism and to understand how bulk magnetic
properties can spontaneously emerge (or vanish) in some metals. It was
known at the time that heating a magnet past its Curie temperature
would result in a phase transition from a ferromagnetic to a paramagnetic
phase, where the material’s permanent magnetic qualities would vanish.
However, the microscopic mechanisms of this phenomenon were not
understood, and therefore a model capable of demonstrating a phase
transition was needed. The model emerged at a time when the quantum
understanding of physics was only beginning to be articulated, where
now fundamental concepts such as electron spin were still new and
poorly understood3.

Interestingly, Ernst Ising showed that no such phase transition exists
in the solution to the 1D Ising model, and that there was no non-zero
temperature where the 1D chain of spins could conspire to form an
ordered state. However, even at the time many prominent physicists
(including Wolfram Pauli) would discuss the possibility of a phase
transition to emerge if these results were to be extended to higher spatial
dimensions [52]. It would take a few more years until Lars Onsager
would analytically solve the 2D Ising model, showing it does indeed have
a phase transition and a critical point.

Initially criticized as too unphysical to model anything real [51, 52],
the Ising model has since proven to be foundational to the study of
collective phenomena. In describing systems near their critical points, it
became clear that many disparate systems of varying microscopic details
can exhibit identical bulk properties, a phenomenon called universality.
Thus, the strange properties that arose around critical points and phase
transitions could be extended to a much broader set of collective phe-
nomenon than just the specific one studied (magnetism, in the case of
the Ising model). Today, these ideas are being explored in even broader
domains, where biological systems such as gene-expression networks,
neural networks, or socio-economic networks are suspected to exhibit
properties shared by critical phenomena.

3.2.2 Model

The Ising model is composed of a set of binary nodes or spins, B8 ∈ {−1,+1}

that are arranged into a lattice. Spins interact with their nearest neigh-
bours, where the interaction strength is defined by the connectivity
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4: The partition function describes the
equilibrium behaviour of a thermody-
namic ensemble, from which many other
thermodynamic properties like entropy
or free energy can be calculated.

matrix �8 9 . Furthermore, the spins can interact with an external field, ℎ.
All together, the energy of an Ising lattice is given by:

�(B) = −
∑

⟨8 9⟩

�8 9B8B 9 − ℎ
∑

8

B8 , (3.1)

where the sum over ⟨8 9⟩ represents a sum over nearest neighbours.

▶ When �8 9 > 0, the spins interact ferromagnetically and prefer to align
themselves to their neighbours.

▶ When �8 9 < 0, the spins interact anti-ferromagnetically and prefer to
be anti-parallel to their neighbours.

▶ When �8 9 = 0, the spins do not interact and are independent from
each other.

The probability for any configuration to be observed at equilibrium is
given by the Boltzmann distribution:

?(B) =
4−��(B)

/
, (3.2)

where � =
1

:�)
is the inverse of the temperature multiplied by the

Boltzmann constant :�, and the partition function4:

/ =

∑

B

4−��(B) (3.3)

is used as a normalizing factor.

Partition Function

With the partition function (Eqn. 3.3), the expectation values of the
system’s observables can be computed. Note that

⟨�⟩ =
∑

B

?(B)�(B) (3.4)

=

∑

B

�(B)
4−��(B)

/
(3.5)

=

∑

B

− %
%�
4−��(B)

/
(3.6)

⟨�⟩ = −
%ln/

%�
. (3.7)

And in general if the energy of the system can be written in the
form of �B = �0

B + �B�, where � is a parameter we can vary (such
as the external magnetic field (ℎ) in Eqn. 3.1), then we can compute
expectation values of any property with the relation:

⟨�⟩ =
∑

B

�B?(B) (3.8)

= −
1

�

%ln/

%�
, (3.9)

and taking� to go to zero in the end. For example, in the Ising model
with an external magnetic field ℎ, the expected magnetization of
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the system with zero external field is given by:

" = −
1

�

%ln/

%ℎ

����
ℎ=0

(3.10)

which is a first-order derivative of the system.

Computing the partition function quickly becomes analytically intractable
for complex systems and computationally expensive for models with
large numbers of nodes. Instead, numerical methods exist to approximate
these equilibrium distributions iteratively. Using Monte-Carlo methods,
a random spin site B8 is chosen and the probability of its flip computed
as a function of the change in energy the flip would result in. The flip is
accepted with probability:

?(Δ�) =
1

1 + 4�Δ�
, (3.11)

when using Glauber dynamics, or

?(Δ�) =

{
1, Δ� ≤ 0

4−�Δ� , Δ� > 0
(3.12)

when using the Metropolis-Hastings algorithm. By iterating this algo-
rithm over all spin sites repeatedly, the equilibrium statistics of the model
can be computed (Figure 3.6). When simulating the Ising model or gen-
eralization thereof, it is common practice to measure its thermodynamic
properties (Figure 3.7) which are known to have interesting behaviours
near the critical point.

In general, for any model that could potentially exhibit criticality, one
typically defines an order parameter (a macroscopic quantity, usually
normalized between 0 and 1, that represents some symmetry or structure
of interest, e.g. magnetization or density) to measure as a function of a
control parameter (some externally adjustable parameter that can control
the degrees of freedom of the system, e.g. temperature or pressure).
Choosing an appropriate order/control parameter is non-trivial, where
the order parameter is ideally some value that is 0 in the disordered
state and 1 in the ordered state, and a control parameter that is capable
of changing the degrees of freedom in the system to induce a phase
transition between the disordered/ordered regimes.

In the case of the Ising model, we take the magnetization of the system
" = ⟨B8⟩ to be our ordered parameter, which is directly related to
first-order derivatives of the partition function (Eqn. 3.10).

We are interested particularly in 2nd order (continuous) phase transitions
that exhibit the interesting critical properties (discussed in Section 2.1 –
The Criticality Hypothesis and The Edge of Chaos) related to diverging
correlation lengths. The specific heat (C) and susceptibility (") are two
of the classical thermodynamic properties of a system that tend to diverge
near criticality (and are second order derivatives of the free energy of the
system). For the 2D Ising model, the susceptibility and specific heat are
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Figure 3.8: Heat capacity �()) in a maxi-
mum entropy model of neurons respond-
ing to naturalistic stimuli for subnet-
works of size # = 20, 40, 80, and 120
neurons. The peak near ) = 1 is indica-
tive that the fitted maximum entropy
model falls onto a critical point. Figure
taken from [17].

defining features are related to the properties of their divergences rather
than their microscopic details!

When utilizing maximum entropy methods to fit data, one typically
constrains the model to the mean activity and two-point correlations
of the dataset,

(
⟨B8⟩, ⟨B8B 9⟩

)
, respectively. A model constrained on these

properties will have the form:

%({B8}) =
1

/
exp [−�({B8})] (3.15)

�({B8}) = −
#∑

8 , 9=1

�8 9B8B 9 −
#∑

8

ℎ8B8 (3.16)

where ℎ8 corresponds to the mean activity of a node ⟨B8⟩ and �8 9 cor-
responds to the two-point correlation ⟨B8B 9⟩. It should be noted that
Equation 3.16 is identical in form to Equation 3.1, the energy of the Ising
model, though we no longer have a temperature ()) parameter when
we are fitting. We can, however, reintroduce this parameter in order to
make measurements of the model in the neighbourhood of the fitted
parameters in order to make a plot similar to Figure 3.7. Doing so allows
us to analyze the fitted model thermodynamically (see for example Figure
3.8 and [17]).
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6: Binary is the simplest case. There also
exist =-state CA, similar to how the Potts
model [91] generalizes Ising-like models
to more than 2 states.

7: When compared with deep networks,
NCA share most parameters and gener-
ate complexity through recurrent feed-
back. Deep networks on the other hand
often specify parameters for each com-
ponent in the computational chain.

8: Analogous to the uniformity of the
laws/parameters of physics in space.

9: The 2D Ising model introduced in the
previous section can also be considered
a (stochastic) CA.

10: The word ‘interesting’ is quite sub-
jectively loaded, but in the dynamical
systems sense, it is a system which does
not converge trivially to a static (or equiv-
alently boring, completely random) state.
Here, we are inspired by the far-from-
equilibrium properties of living systems.

3.3 Neural Cellular Automata (NCA)

In pure mathematics the really powerful methods are only effective when

one already has some intuitive connection with the subject, when one

already has, before a proof has been carried out, some intuitive insight,

some expectation which, in a majority of cases, proves to be right. In this

case one is already ahead of the game and suspects the direction in which

the result lies [90].

John Von Neumann

Neural Cellular Automata (NCA) are an extension/generalization of
Cellular Automata (CA) that utilize neural networks as the operators in
their rule set instead of (or in addition to) the logic operations that are
utilized in classical CA.

Cellular automata are mathematical models of computation, usually
composed of a 1D or 2D grid of cells of binary6 values, each of which only
interacts locally and updates its own state as a function of its neighbours
(Figure 3.9). These models are typically very simple, being describable in
just a few sentences (see below for the rules of Conway’s Game of Life),
and in the case of NCA, have a very low number of parameters7 due to the
fact that all parameters are shared across all cells in a grid8. Nowadays,
these models are used to simulate a variety of complex systems in a
range of fields, from computer science and physics9 to biology and urban
development [92–96]. Cellular automata were originally devised as a
model of self-replication by Stanslaw Ulam and John von Neumann
[90] who were interested in simulating self-replication and universal
computation in models of simple, locally interacting cells. To this day,
scientists interested in the emergence of complexity, computation or
self-organization are still utilizing CA models to understand how simple
systems can form complex structures, pattern, and ultimately, life.

3.3.1 Conway’s Game of Life (GoL)

CA were popularized in the 70s after the discovery of "Conway’s Game of
Life" by John H. Conway [98]. This 2D CA had a rule set that attempted
to achieve a balance between perpetual growth and death (which are
common states to converge upon when exploring randomly generated
CA rule sets). Conway discovered that by balancing these tendencies,
that this automaton would give rise to interesting10dynamics and com-
plex behaviour that would prove to be Turing complete. The rule set
for Conway’s Game of Life are listed below (along with their life-like
metaphor):

▶ "Death by Underpopulation": Active cells with < 2 active neigh-
bours become inactive in the next step.

▶ "Life by Balance": Active cells with 2-3 active neighbours remain
active in the next step.

▶ "Death by Overpopulation": Active cells with > 3 active neigh-
bours become inactive in the next step.

▶ "Life by Reproduction": Inactive cells with exactly 3 active neigh-
bours become active in the next step.
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update rule by introducing heterogeneous update rules. While this method
has heavier memory requirements, we generalize the implementation of
NCA to allow for adaptation and self-organization which is especially
useful in cases with local and heterogeneous driving forces. We utilize
these methods to simulate a 1000× 1000 grid of self-organized to criticality
Ising model as well as plastic spiking neural networks that run on a
laptop GPU (NVIDIA GeForce RTX 3080).
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12: There are numerous ways synap-
tic plasticity can be modulated, for
example via short-term [111] or long-
term-potentiation or depression [112], to
achieve homeostaticity, or due to spike-
timing-dependent-plasticity [112–114].

13: Unsupervised or intrinsic learning
algorithms also exist to understand mod-
els of self-organized learning [122–125].

3.4 Plasticity in Neural Networks

There are approximately 80 billion (∼ 1010) neurons in the average human
brain and as many as 100-1000 trillion (∼ 1014−1015) synapses that connect
neurons across their dendritic and axonal trees. These trees receive and
send signals, respectively, to other neurons in their vicinity. Individual
neurons propagate signals across their axons which are typically sharp
impulses or spikes, and can induce similar spikes in other neurons that
receive sufficient input from their dendrites. Models of neural networks
typically fall into one of two categories, spiking models or rate models,
where the former category details the behaviour of individual spikes in
neurons and the latter details the mean rate of firing of a neuron averaged
either over a temporal or spatial window. In order to facilitate learning
and the emergence of structured and behaviourally complex neural
networks, some mechanisms for adaptation and change are necessary to
tune these systems towards a functional or optimal state.

The brain is constantly undergoing structural changes throughout our
lifetime while we develop and learn, where numerous mechanisms for
adaptation across multiple timescales in the human brain have been
studied extensively [109, 110]. Some examples include: synaptic plasticity
which acts on the synaptic strengths between neurons F8 9

12, threshold
adaptation which controls the required amount of input signals necessary
to facilitate a spike, or neural energetic models that explicitly account
for the resource consumption and replenishment of neurons [115, 116],
to name a few. Furthermore, in light of the critical brain hypothesis
[18, 24], a growing body of work has shown dynamical synapses or
judicious combinations of plasticity rules [117] (for example a Hebbian
rule combined with an appropriate normalization) can give rise to self-
organized criticality [115, 118, 119] (or self-organized quasi-criticality [120,
121]) as measured by the avalanche statistics of these systems.

Strangely, these plasticity mechanisms do not perform competitively
when compared to current state-of-the-art machine learning models (e.g.
Transformers, MLPs, LSTMs) that do not employ plasticity mechanisms.
Instead, end-to-end differentiation utilizing back-propagation algorithms
in conjunction with gradient-descent and supervised learning13are the
methods of choice in practical settings. In other words, the synaptic
changes necessary to facilitate learning are all done offline in machine
learning, require complete knowledge of the computational graph of
the network, differentiation through these chain of operations and need
explicit objective functions/losses.

Generalized Hebbian, Oja, and STDP Rules

The most common form of synaptic plasticity is Hebbian learning,
first proposed by Donald Hebb in 1949 [126], commonly phrased
as "neurons wire together if they fire together" [127]. It can be
formalized as:

ΔF8 9 = A8 · A 9 , (3.19)

where A8 and A 9 are (functions of) the activities of neurons 8 and
9. This form of the rule is unstable and requires some external
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normalization methods to keep the weights bounded. However,
there are other variations that take this into account more explicitly,
such as Oja’s rule:

ΔF8 9 = A8 · A 9 − A2
9 · F8 9 , (3.20)

where the second term ensures the synaptic strengths don’t run-
away.

While these forms of rules connect neurons that are correlated, they
are agnostic to causal relationships which is where Spike-Timing-

Dependent Plasticity (STDP) comes in:

ΔF8 9 =





�+ exp
(
C 9−C8
�+

)
C 9 < C8

−�− exp
(
C 9−C8
�−

)
C 9 ≥ C8

(3.21)

where C8 , 9 are the latest spike-times of neurons 8 , 9, �± are the
time-constants for the potentiation/depression, and �± are the
amplitudes of the change which can be functions of the current
weights �± = �±(F8 9).

While these generalized forms already cover a wide range of
possible plasticity rules, many variants still exist, including reward-

modulated plasticity, which we discuss in Section 4.4.

Thus, there exists a major discrepancy between how learning is accom-
plished in vivo versus in silico. Although some of these discrepancies
may stem from our hardware choices for computation, the fundamental
issue remains that we are not yet able to replicate the sophisticated
levels of learning observed in the brain when using biologically plausible
models. To address this, we utilize plasticity rules in two of the projects
presented in this dissertation: fast implementations of plastic spiking and
rate neural cellular automata with heterogeneous plasticity and thresh-
old adaptation (see Section 4.3 – Locally adaptive cellular automata
for goal-oriented self-organization), and embodied and evolved plastic
neural agents that must forage to survive (see Section 4.4 – Environmen-
tal variability and network structure determine the optimal plasticity
mechanisms in embodied agents). The objectives of these studies are,
respectively, to develop fast algorithms for large-scale implementation of
plastic neural networks and to investigate the performance, convergence,
and sensitivity of plasticity rules in applied settings such as an embodied
foraging game.
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4.1 Assessing Aesthetics of Generated

Abstract Images Using Correlation

Structure

Khajehabdollahi, S., Levina, A., Martius, G. (2019). "Assessing Aes-
thetics of Generated Abstract Images Using Correlation Structure,"
2019 IEEE Symposium Series on Computational Intelligence (SSCI),
Xiamen, China, 2019, pp. 306-313 doi:10.1109/SSCI44817.2019.9002779.
arXiv:2105.08635.

4.1.1 Summary

Are there universal statistical properties shared across aesthetic visual

stimuli? The emergence of one’s sense of beauty and aesthetics is complex
and poorly understood, but it seems certain that it is a subjective and
dynamically defined sense. This sense seems to be tightly contingent
on both our personal and cultural history, and yet there also seem to
exist universal, statistical patterns across cultures that are considered
beautiful. Some common themes that arise in the discussion of the beauty
in art are the tension, contrast, and the interplay between expectation and
surprise, or between patterns and novelty. These concepts describe the
complexity and inter-relationships of an object, some of which map to
quantifiable statistics. In this project, we explore the specific question: can
the beauty of an image be related to its correlation function? We generate
sets of random, abstract images using Compositional Pattern Producing
Networks (CPPNs), across a variety of architectures to generate a diverse
set of images. We then calculate the auto-correlation functions of these
images and measure their aesthetic score by surveying 45 volunteers.
Finally, we relate the auto-correlation functions of the images to their
aesthetic score, finding that more slowly decaying functions tend to be
selected as aesthetic more often.

Figure 4.1: Figure taken from The Book
of Shaders [128] as a caricature of how
shaders generate images in parallel as a
function of their pixel location. CPPNs
operate in a similar fashion, where each
pixel is associated with a coordinate vec-
tor and has its output values computed
as a function of this vector.

This project initially grew out of the serendipitous discovery that random
images generated with CPPNs were often perceived as beautiful abstract
images. The networks behave similarly to a shader1

1: Shaders are the bread and butter of
the computer graphics world, especially
used in video games that require real-
time rendering.

a type of software used
to quickly and procedurally generate textures for computer graphics on
GPUs, often using very simple/highly optimized code running in parallel.
Naturally, the complexity of the generated images can be controlled in
different ways by manipulating the architecture of the network (e.g.

introducing bottlenecks, varying the number of layers or number of
neurons). Now and then the generated images come out "ugly" or "boring",
while others come out "beautiful" to the eyes of many practitioners [76,
129–131]. We parameterize the architecture of the CPPN and sample
it such that we span the space of images that are subjectively deemed
"ugly" or "boring" to those that are deemed "beautiful" or "interesting".
We then design an experiment that generates a large variety of images

https://doi.org/10.1109/SSCI44817.2019.9002779
https://arxiv.org/abs/2105.08635
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2: Autocorrelations are related to
Fourier spectra and power spectral den-
sities by the Wiener–Khinchin theorem.

3: I write "slightly" because in many re-
spects, random number generators are a
key component in shaders and computer
graphics which are responsible for pro-
ducing beautiful and life-like visual ef-
fects. So perhaps ot shouldn’t be too unex-
pected given how ubiquitously modern
computer graphics utilize randomness.

which are judged by human participants on their aesthetics and collect
image statistics for aesthetic and non-aesthetic images.

A recurring phenomena in the statistics of nature and natural images is
the occurrence of power-law distributions, often in their Fourier spectra.
We therefore test if the difference between aesthetic images versus non-
aesthetic images can be predicted by their correlation functions 2 and the
similarity of these functions to those arising from natural imagery.

4.1.2 Results

Influence of network architecture on image statistics: We demonstrate
how our architecture parameterization (a set of parameters controlling the
number of layers, neurons, and shape of the neural network underlying
the CPPN) generates models that output a broad distribution of image
statistics. This is measured by their radially-averaged, grayscale, two-
point correlation function. We find that a variety of correlation functions
of different characteristic decay rates can be generated by manipulating
the location and size of bottlenecks. This finding allows us a method to
generate a variety of images to test for their aesthetic score.

Features of aesthetic images: Notably, most colour images tagged as
aesthetic were generated by the smallest architectures (fewest neurons and
layers). The grayscale images however had a slightly different distribution
of aesthetic architectures where the mean preference skewed towards
more neurons and therefore more fine-grained textures. Overall, the
images deemed aesthetic had on average more slowly decaying correlation
functions than the set of all CPPN generated images.

Comparison between generated images and natural images: Natural
images themselves have a broad distribution of statistical properties that
are a function of the scene and method of capture. We find that our
set of CPPN generated images were able to produce a similar variety
of distributions when using different architectures. For example, small,
shallow networks had properties closer to that of the LandWater category
of natural images while larger, deeper networks were more similar to
images of flower or foliage. Interestingly, many participants in our survey
reported seeing faces or animals in the random images (partially a by-
product of the use of symmetric coordinate functions as input for our
image generator, similar to the symmetric images of ink-blot tests.).

4.1.3 Discussion

This research explores the relationship between image statistics and the
human perception of aesthetics and highlights the capabilities of CPPNs
to generate a wide array of abstract images with various aesthetic and
statistical qualities. While limited by a small sample size of participants,
our study suggests that images voted as aesthetic have, on average,
auto-correlations that decay more slowly (i.e. smoother, more structured
imagery) than the full corpus of random images presented in the survey.

The ability for these randomly generated images to elicit sensations of
beauty is slightly3 unexpected for an untrained, randomly initialized
model. How is it that a series of random matrix multiplication operations
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can give rise to such patterns that the eye finds appealing? The perception
of beauty out of randomness, or random processes, is scientifically inspir-
ing because it implies that there might be mathematical and predictable
properties associated to the phenomena we tend to find beautiful. In
other words, it may be that something as personal and abstract as beauty
could have a mathematical structure.

4.1.4 Author Contributions

▶ Sina Khajehabdollahi was responsible for code required to gener-
ate models, generate images, compute auto-correlations and all the
analyses included in the paper.

▶ All authors contributed to the writing and reviewing of the paper,
figure creation and editing, and performing surveys for aesthetic
scores on images.
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4.2 When to be critical? Performance and

evolvability in different regimes of

neural Ising agents

Khajehabdollahi, S., Prosi, J., Giannakakis, E., Martius, G., Levina, A.
(2022). When to be critical? Performance and evolvability in different
regimes of neural Ising agents. Artificial Life, 28(4), 458-478. doi:10.1162/artl_-
a_00383. arXiv:2303.16195.

4.2.1 Summary

Is operating near a critical state advantageous for evolutionary sys-

tems? The hypothesis that it is has been supported by observations in
various biological systems, like gene regulatory networks, neural net-
works, cell behaviour, and agent swarms. The accumulating evidence
suggests a strong connection between criticality and optimal performance,
adaptibility, and evolvability.

By grounding the thermodynamic and mathematical concepts of criti-
cality into a functional, artificially-embodied agent learning to navigate
its environment, this project allows us to test questions about the utility
of criticality to evolutionary fitness. Is there an evolutionary attractor
towards these types of systems? Is there some privilege to being near
a critical dynamical state? Can we measure the effect the distance to
criticality has on the performance of embodied agents? We devise experi-
ments to answer these questions and test if operating near criticality is
advantageous for evolutionary systems.

4.2.2 Results

Extensive numerical experiments with evolving Ising agents are run to
test our hypothesis. The evolving agents are embodied in a 2D simulation
where they must navigate a world to find food shared by other agents. The
agents can move around by sensing their nearby world and controlling
their rotation and velocity motors. Each agent has a small Ising neural
network that controls their behaviour, and populations of agents are
instantiated across a variety of dynamical states (with the control of an
inverse-temperature parameter) and co-evolve together.

Evolution of the dynamical regime: All populations discovering solu-
tions evolved to be subcritical. Interestingly, they did not converge to a
critical state. However, initially critical populations found solutions much
faster, sometimes by orders of magnitude in training time. Populations
initialized more subcritical than the converging distance to criticality
often failed to find solutions, indicating that being subcritical is a more
difficult initialization than critical or even supercritical Ising agents,
despite the best solutions converging to subcriticality eventually.

Generalizability and Robustness: Initially critical agents maintained
their fitness level better under environmental changes and parameter
perturbations when compared to initially sub-critical (but comparably)
fit agents. We perturbed the weights of the Ising neural networks to test

https://doi.org/10.1162/artl_a_00383
https://doi.org/10.1162/artl_a_00383
https://arxiv.org/abs/2303.16195
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how sensitive/robust they were to damage. We also swapped agents
trained in one environment into a more open-ended one. In both cases,
initially critical agents sustained higher fitness when damaged and or
when placed in new environments.

Task complexity correlates with distance to criticality: We introduce a
new rule that agents must slow down to a threshold velocity in order to
consume a food particle, forcing the agents to perform more deliberate
sequences of behaviours in order to forage and attain energy and fitness.
Populations training on this harder foraging task evolved to be closer to
criticality on average than populations training on the simpler task.

4.2.3 Discussion

The study reinforces the significance of criticality in evolutionary systems.
Despite optimal behavior in simple tasks being achieved in a subcritical
regime, starting near criticality is crucial for efficiently finding solutions
for new tasks of unknown complexity. Our resilience analysis, which
showed that initially critical agents were more adaptable and robust under
change, further supports this. The study also highlights the importance
of considering task complexity in the evolutionary process, as the optimal
state of criticality varies accordingly.

4.2.4 Author Contributions

▶ Sina Khajehabdollahi made significant contributions to the code
base of this project, including its first iteration [132], as well as
running experiments and data analysis.

▶ Jan Prosi has made significant contributions to the code base,
expanding the variety of experiments and their analysis, including
making significant additions in his follow up publication [133].

▶ All authors: contributed to the writing, discussion and editing
process of this publication.
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4: The Game of Life (GoL) cellular au-
tomata popularized the capability of CA
models to exhibit life-like complexity.

4.3 Locally adaptive cellular automata for

goal-oriented self-organization

Khajehabdollahi, S., Giannakakis, E., Buendía, V., Martius, G., Lev-
ina, A. (2024). Locally adaptive cellular automata for goal-oriented
self-organization. ALIFE 2023: Ghost in the Machine: Proceedings of the
2023 Artificial Life Conference. MIT Press, 2023. doi:10.1162/isal_a_00663.
arXiv:2306.07067.

4.3.1 Summary

How can we make microscopic interactions give rise to desired col-

lective behaviour? An intriguing aspect of collective systems is that
their collective behavior often differs significantly from the properties
of their individual components. The laws of physics, chemistry, biology,
psychology, economics, and politics each operate differently, yet are
interconnected. Understanding how microscopic rules at one level lead to
emergent, qualitatively different macroscopic behavior is a fundamental
question.

This inquiry benefits greatly from models capable of such emergence.
Cellular automata (CA) are prime candidates for this purpose. CA are
simple models of computation where cells organized in a grid update
their state according to local interactions/rules. They are remarkable for
their ability to give rise to complex patterns from these simple rules4 and
some have even been proven to be Universal Turing Machines, that is,
machines capable of simulating any other machine.

However, while CA are capable of emergent complexity, this is not the
norm. Randomly chosen interaction rules often lead to simple or repetitive
behaviors. Finding rules that exhibit complexity for longer periods in time
and space is surprisingly challenging, and ‘interesting’ rules and initial
conditions are highly valued, collected and shared like rare specimens in
the community. This raises the question: can we design a CA whose rule
self-organizes to these ’interesting’ regimes?

To achieve self-organizing and adaptive capabilities, we introduce het-
erogeneity into the CA’s interaction rule, a departure from traditional
CA principles. This modification allows local neighbourhoods to have
different interaction rules based on their history, enabling systems to
self-organize from arbitrary initial states to some desired regimes. This
publication presents methods for efficiently running these heterogeneous
CA and applies them to achieve classical balanced neural networks with
excitatory and inhibitory populations as well as self-organized criticality
in Ising models.

4.3.2 Results

Efficient computation of heterogeneous CA: To incorporate heteroge-
neous interaction rules, we generalize convolutions to generic sliding-
window operations. By converting our CA grid and its update rule into
local patches, we can parameterize the rule locally and define dynamics

https://doi.org/10.1162/isal_a_00663
https://arxiv.org/abs/2306.07067
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on the rule itself with patch-wise operations. This approach signifi-
cantly enhances the expressivity of CA models with minimal impact on
computational costs.

Self-organized criticality: Using both local and global adaptation mech-
anisms, Ising models initialized arbitrarily were guided to a critical state,
as evidenced by measurements of their thermodynamic properties. Local
methods achieved the desired states faster and were more robust to a
range of initial conditions compared to global methods.

Synaptic plasticity in neural CA: Demonstrating the application of
heterogeneity, we simulated large-scale plastic neural CA, efficiently vi-
sualizing millions of plastic neurons at high frame rates. Simple plasticity
rules enabled these initially random networks to self-organize into an
asynchronous irregular state, a common dynamical regime found in
spiking networks.

4.3.3 Discussion

This research introduces adaptive CA as a significant advancement,
(or cardinality leap) in modeling complex systems. By allowing hetero-
geneity in the update rules, these models more accurately represent
natural systems with feedback mechanisms, where this feedback is key
to self-organizing systems into desired dynamical states. The enhanced
expressivity of adaptive CA, coupled with their efficiency, allows for
real-time modeling of large-scale systems—a vital aspect for prototyping
and understanding emergent behavior and self-organization in complex
systems. The findings suggest a broader applicability of these models,
extending beyond the specific systems studied to any complex system
that requires heterogeneity or feedback.

4.3.4 Contributions

▶ Sina Khajehabdollahi was responsible for writing and running
the code in this project as well as the writing and editing of the
paper.

▶ Emmanouil Giannakakis contributed to defining (and debugging)
the plastic neural CA models as well as the writing and editing of
the paper.

▶ Victor Buendía contributed to the discussion and formulation of
the self-organizing mechanisms for the Ising model.

▶ All authors: contributed to the discussion and review process of
the paper.
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5: Reward-modulated plasticity rules
are candidate models in reinforcement
learning to adapt neural circuits in
behaviourally relevant ways via local

synaptic interactions as opposed to back-
propagation.

4.4 Environmental variability and network

structure determine the optimal

plasticity mechanisms in embodied agents

Giannakakis, E., Khajehabdollahi, S., Levina, A. (2024). Environmental
variability and network structure determine the optimal plasticity mech-
anisms in embodied agents. Artificial Life Conference Proceedings 35.
Vol. 2023. No. 1. doi:10.1162/isal_a_00606. arXiv:2303.06734.

4.4.1 Summary

How does neural plasticity emerge to deal with variable environments?

How does network structure or task complexity constrain plasticity

rules? Living organisms display a remarkable ability to learn and adapt
to an uncertain and open-ended world. We hypothesize that such lifelong
learning evolves out of the necessity to constantly adapt to variability,
when it is impossible to hard-code optimal behaviour. However, it has also
been shown that there is strong redundancy in the number of plasticity
mechanisms that can achieve identical dynamics in models of brain
circuits [134], a result which complements our findings when embedding
plastic networks within larger networks. To further understand the
relationships between environmental variability, network structure and
plasticity rules, we run a variety of evolutionary simulations to discover
optimal plasticity rules in different conditions. Two types of agents are
defined, a static and an embodied moving agent. In both models, agents
are tasked with making either precise predictions (value of the food
presented) or binary decisions (eat/don’t eat) about a stimulus they
receive (a feature vector representing the ingredients of food). In the
embodied model, the agents must also navigate a 2D grid where the food
is distributed randomly.

We interpret the rules of evolved/optimized agents to compare the
different discovered solutions for each condition. The evolved parameters
(�) of each agent represent coefficients of a generalized reward-modulated
hebbian plasticity rule5 [135–137]. This parameter structure allows us to
interpret the evolved rules in terms that are linear combinations of the
input, output, and reward at each time step:

Δ,C = �?['C ·

Reward Modulated
︷ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ︸︸ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ︷
(�1-CHC + �2HC + �3-C + �4)

+ (�5-CHC + �6HC + �7-C + �8)
︸ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ︷︷ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ︸

Hebbian

]. (4.1)

4.4.2 Results

Impact of Environmental and Reward Variability on Learning Rate:

Simple ‘static’ agents tasked with identifying the value of presented food,
without the need to navigate, demonstrate that the evolved learning rate
is directly influenced by environmental variability factors. These factors

https://doi.org/10.1162/isal_a_00606
https://arxiv.org/abs/2303.06734
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include the distance between environments (characterized by the distance
between the vector of values for a given ingredient/feature in food), the
variability/uncertainty of rewards, and the frequency of environmental
change. The evolved learning rate grows with the distance between the
environments and decreases with the reward variance. The frequency
with which environments change has a non-monotonic relationship with
the learning rate showing two different solution strategies: adapting
quickly and precisely to sparsely changing environments, and adapting
slowly and more broadly to fast changing environments. Similar results
were found for the moving agents with small differences.

Evolution of Learning Rules - Decision vs. Prediction: The form of
the evolved learning rule are notably different in both static and moving
agents based on the task type imposed. In both tasks, the optimal rules
exhibit similar behaviours though they converge to different rules. In the
prediction task, where the network must output an accurate scalar value
representing the ground truth value of the food, the evolved plasticity
rule Δ,C behaves such that it converges to a mean 0 gaussian centered
on the ground truth. In the decision task where the ground truth values
are obfuscated by the step nonlinearity, a different form of the rule
evolves such that Δ,C diverges in absolute value that are nonetheless
reward-correlated.

Both plasticity rules were of a Hebbian form, coordinating between the
pre-synaptic activity (the sensory neurons -C) and the post-synaptic
activity (the output of the network HC), modulated by the reward signal
'C as a threshold. Moving agents also exhibit distinct problem-solving
approaches between tasks, with decision tasks showing a stronger evo-
lutionary bias toward a unified rule, contrasting the variety of equally
successful yet degenerate rules in prediction tasks. This highlights how
the details and feedback from a task critically shape the optimization
and evolution of the learning rules that emerge to solve these tasks.

Plasticity Rule Diversity in Embodied Agents: A key finding in the
study is the diversity of plasticity functions available to the moving
agents compared to static agents. For moving agents, plasticity does not
need to precisely decode environmental signals but instead generate
interpretable outputs for the motor network which must integrate this
signal to navigate the agent and make decisions. Consequently, a broad
spectrum of successful learning rules emerge across runs in contrast to
the strong convergence to the same rule observed for the static agents
that lack a motor network. This trend is observable in both decision and
prediction tasks.

4.4.3 Discussion

This research emphasizes the significant impact of environmental and
structural variability on the emergence of neuronal plasticity mechanisms
in artificial agents. A heterogeneous environment, a reliable sensory
system, and balanced rates of environmental change are key for effective
synaptic plasticity adaptation. These findings are extended to embodied
agents engaged in foraging tasks, demonstrating that environmental
dynamics similarly promote plasticity development. The interplay among
different network elements, such as motor and sensory networks, can
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allow for a spectrum of successful learning algorithms. The findings
suggest that the function of plasticity rules cannot be studied in isolation
but must be considered in conjunction with the connectivity and topology
of the networks they operate within as well as the form of the output
signal/task. Overall, the research presents synaptic plasticity as a versatile
tool adaptable to different environments and tasks, offering insights for
both understanding biological learning processes and developing more
adaptive and autonomous artificial systems.

4.4.4 Contributions

▶ Sina Khajehabdollahi contributed to the project formulation,
particularly of the embodied/moving agents, code base, analysis
of results and figures, as well as writing, editing and reviewing the
text.

▶ Emmanouil Giannakakis contributed to the project formulation
and design, code base for static agents, analysis of results, as well
as writing, editing and reviewing the text.

▶ Anna Levina contributed to the project discussions as well as
writing, editing and reviewing the text.
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6: Examples include: sensory perception,
motor functionality (walking, dancing,
swimming), working memory, language
(reading, writing, speech), music, goal-
setting, planning.

7: The value of # determines the num-
ber of timesteps the model must keep in
memory to solve the #-Parity or #-DMS
task.
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Khajehabdollahi, S., Zeraati, R., Giannakakis, E., Schäfer, T., Martius, G.,
Levina, A. (2024). Emergent mechanisms for long timescales depend
on training curriculum and affect performance in memory tasks. The
Twelfth International Conference on Learning Representations (ICLR
2024). OpenReview:xwKt6bUkXj (accepted). arXiv:2309.12927.

4.5.1 Summary

How do recurrent neural networks (RNNs) solve tasks with long

timescales? What mechanisms give rise to long timescales and are

there optimal strategies?

Neural networks, biological as well as in silico, are adept at exhibiting
complex, goal-oriented planning and behaviour with extended temporal
dependencies6. Tasks with temporal dependencies often demand the
network to hold information in memory or for information in distant
periods of time to interact. To accomplish this, a network must find ways
to maintain long-range correlations to allow the possibility of temporally
distant interactions, where the mechanisms by which these long-range
correlations emerge are still not fully understood. The timescales of
individual neurons are determined by both their biophysiology (for
example by its membrane time constant), as well as from network me-
diated timescales, determined by the activity of neighbouring neurons.
Understanding how the interplay between individual neuron properties
and network-mediated activity can coordinate macroscopic behaviour
with long temporal dependencies is vital for both the design and op-
timization of RNNs in machine learning and to better understand the
possible mechanisms that are at play in biological neural networks. To
this end, this study delineates the roles of single-neuron timescales (�),
network-mediated single-neuron timescales (�net), and collective popu-
lation timescales (�pop) in memory-dependent tasks, addressing a gap
in the current understanding of these mechanisms.

4.5.2 Results

Necessity of Curriculum: Training RNNs with a curriculum is necessary
to solve tasks with long memory requirements when solving the #-
Parity task or the #-DMS (delayed match-to-sample) task7. RNNs trained
without a curriculum increasingly struggle to solve long memory tasks
(# > 10) as # grows. For larger # , more training time often leads to
catastrophic forgetting or requires finely tuned schedulers to anneal
the learning rate to ensure progress. We find that introducing either a
single-head, or better yet a multi-head curriculum significantly enhances
the network’s capacity to learn tasks with larger N. The single-head
curriculum starts with a single, easy to solve task with short timescales
(# = 2) and progressively makes the task more difficult (# ← # + 1)

https://openreview.net/forum?id=xwKt6bUkXj
https://arxiv.org/abs/2309.12927
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once it achieves 98%+ accuracy. The multi-head curriculum starts the
same way, but whenever a task is solved for a particular # , a new readout
head is added to the network to solve the task for # + 1 while all the
previous readout heads must continue solving the task for their respective
#s.

Comparison of Curriculum Performance: Networks trained with a
mutli-head curriculum out-perform networks trained with a single-head
curriculum, and both are better than no curriculum. The single-head
curriculum enables the RNNs to solve tasks up to # ≈ 35 and # ≈ 90

for the #-Parity and #-DMS task respectively, whereas the multi-head
curriculum can solve for # ≥ 101 for both tasks while requiring less
training data and compute time. The single-head curriculum networks
suffer from catastrophic forgetting as # increases, whereas the multi-
head networks do not while also exhibiting much more stable training
dynamics.

Necessity of Training �: The time-constant (�8) of each neuron 8 deter-
mines how slowly the state of a neuron changes per timestep, where
larger � result in more slowly changing neurons. In single-head cur-
ricula, training individual neuron �s is crucial for performance, while
multi-head networks perform equally well with fixed � = 1, suggesting
they use other mechanisms beyond single-neuron timescales for memory
retention.

Mechanisms Underlying Long Timescales: The study demonstrates that
the emergence of longer timescales in RNNs is curriculum-dependent.
Single-head networks rely on increasing � as # increases, whereas multi-
head networks leverage recurrent interactions, leading to more effective
learning and task-solving capabilities.

4.5.3 Discussion

This study illustrates that training RNNs with curricula that incremen-
tally increase the memory requirements of the task can lead to more
effective and robust networks which operate with much longer timescales.
Multi-head curricula, which prevent catastrophic forgetting and leverage
network interactions rather than individual neuron properties, result in
networks that are quicker to train and generalize better to tasks beyond
the training set. These findings point towards a more systematic approach
to RNN training, favoring the development of longer timescales through
network dynamics rather than individual neuron adjustments. Contrary
to previous work on the utility of heterogeneity of neuron timescales in
network dynamics [138–140], we show that such utility can be contingent
on the particular curriculum a network is utilizing during training.

4.5.4 Contributions

▶ Sina Khajehabdollahi contributed to the code base: writing the
model, the curriculum learning, a variety of experiments with
retraining; writing, editing, and figure creation for the text.

▶ Roxana Zeraati contributed to the project formulation, the code
base: timescale estimations and analysis; writing, editing, and
figure creation for the text.
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▶ Emmanouil Giannakakis contributed to the project formulation,
the connectivity analysis, running simulations, writing, editing,
and figure creation for the text.

▶ Tim Schäfer contributed to the code base: continuous models,
perturbation analysis, a variety of experiments on model variants;
writing, editing, and figure creation for the text.

▶ All authors: contributed to the discussion, writing, and review
process of the paper.
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1: Importantly, only some of the gener-
ated images were deemed aesthetically
pleasing while others were not, which is
what originally posed the question, what
separates beautiful randomness from the
non-beautiful randomness?

Conclusions 5
The projects presented in this dissertation arose from two central ques-
tions: i) Are there generic or universal properties in collective systems that
are privileged for complexity, information processing, adaptivity, and life?
ii) How can we design and build intuitions of models of self-organization
that are more inspired by nature for problem solving?

To answer the first question, our publications in Section 4.1, Section 4.2,
and Section 4.5 relate the results of our experiments to criticality through
the use of autocorrelation estimations (as is the case for Section 4.1 with
image autocorrelations and Section 4.5 with timeseries autocorrelations)
or directly by measuring the thermodynamic statistics of spin networks
(Section 4.2). These results allow us to make direct statements about the
relationship between criticality and performance and optimality within
evolutionary, perceptual, and task performance contexts, bridging the
gap between theory and application.

The second question is explored in the remaining two publications: in
Section 4.3 we demonstrate computational methods to simulate adaptive
and heterogeneous CA models at large scales, to accelerate prototyping,
intuition building, and interactivity with complex models using a novel
implementation that we had yet to see; and in Section 4.4 we demonstrate
how degeneracy and optimality in plasticity rules vary as a function
of environmental and task parameters, giving novel insights into how
plasticity rules are selected for in evolutionary and embodied contexts.

Aesthetics, beauty, and autocorrelations

In the study (Section 4.1 – Assessing Aesthetics of Generated Abstract
Images Using Correlation Structure), we observed that some1 images
generated by randomly initialized CPPNs were surprisingly beautiful.
This observation led us to ask: Are there universal statistical properties

in images that humans find aesthetically pleasing? To investigate this,
we first parameterized the architecture of the image-generating-model
(CPPN), sampling from a broad domain of image statistics as measured by
their autocorrelation function. We then generated a corpus of randomly
generated images from a variety of architectures and asked 45 subjects to
assess their aesthetic appeal. Our findings showed that images deemed
aesthetically pleasing by participants had autocorrelation functions that
decayed more slowly than the average, although the difference was subtle
yet statistically significant. This suggests that even slight variations in
the decay rate of autocorrelation functions can influence the perception
of beauty, indicating that the perception of aesthetics may be associated
with certain statistical properties.

Criticality in evolution

In our second study (Section 4.2 – When to be critical? Performance
and evolvability in different regimes of neural Ising agents), we ask
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the questions: Do evolutionary systems have attractors near critical

regimes? Is this dynamical regime privileged for life, intelligence and

complexity? To answer these questions, we designed experiments with
embodied Ising neural networks subject to evolutionary algorithms. We
begin by defining our agents as neural networks with Ising interactions
to allow measuring thermodynamic properties that display signatures
of criticality. We use these measurements to diagnose the dynamical
regime of the model throughout its evolution and map its distance to
criticality over evolutionary time. The agents must evolve to navigate a
2D environment with simple environmental sensors in order to forage for
food, where the most fit agents reproduce in the next generation using an
elitism algorithm. We found that agents that were initialized too far from
the critical point would struggle to evolve optimal foraging behaviours.
On the other hand, agents initialized near the critical point would evolve
most rapidly towards their maximum fitness. Notably, we found that
given enough time to evolve, agents would not remain at a critical point
and would instead descend into a sub-critical regime to achieve peak
performance. The descent into sub-criticality could be modulated by
modifying the task complexity, where more complex tasks remained
closer to a critical regime than simpler tasks. We summarize our findings
by suggesting that the critical regime provides evolutionary benefits by
smoothing out the fitness landscape in parameter space and allowing
easier traversal across a broader behavioural space. This benefit becomes
less relevant as agents become more fit, after which a sub-critical regime
offers more benefits in terms of having more deterministic and structured
behaviour once a global minima has already been found. We conclude
that initializing a system near its critical points offers benefits by allowing
greater evolutionary mobility.

Adaptive & hetergeneous cellular automata

In our third study (Section 4.3 – Locally adaptive cellular automata for
goal-oriented self-organization), we aimed to circumvent a computa-

tional bottleneck in modeling complex adaptive systems which are

often difficult to scale, slow, non-interactive, or over simplified. One of
the key motivations of this project was to greatly accelerate the speed
and interactiveness of these adaptive models in order to build intuitions
and heuristics that could ultimately lead to a broader understanding of
such local self-organizing models. This thinking is also largely inspired
by statements made by Von Neumann in his lectures on theories of
self-organizing automata [90] discussing the necessity for heuristics and
intuition before laying out mathematical theories. We therefore created a
novel implementation of cellular automata that allow for heterogeneous
update rules and adaptive dynamics that are both fast and scalable by uti-
lizing convolution-like operations meant for image-processing. Normally,
cellular automata are characterized by a rule set that is identical across
all cells on its grid which greatly limits the expressiveness of the models
that can be written as CA. Here, we introduce a method using patch-wise
operations that are similar to convolutions but can be generalized to more
complex operations with heterogeneous kernels. We demonstrate the
utility of our implementation with two different models: a) an adaptive
Ising model and b) a plastic integrate-and-fire neural spiking model.
For the former, it is known that tuning the Ising model to its critical
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2: This gap is slowly shrinking [141, 142],
however these models are still far from
mainstream nor have the same efficien-
cies or performance.

point is non-trivial and requires precise parameter tuning. We then
demonstrate that with simple and local adaptivity mechanisms, such a
model can self-organize to criticality robustly, even under perturbations
or by introducing cells frozen in a particular state. For the latter, it is
generally computationally expensive and often impractical to generate
large models of spiking networks, especially with plasticity mechanisms,
without highly optimized libraries at least in comparison to traditional
models of neural networks used in machine learning2. We circumvent
some of these issues with our implementation by writing our model as a
heterogeneous CA (which are by definition local) and demonstrate the
ability to simulate millions of plastic neurons with upwards of hundreds
of updates per second, allowing for real-time, interactive models to ex-
periment and prototype with much more rapidly than current optimized
libraries allow.

Plasticity in evolutionary agents

In our fourth study (Section 4.4 – Environmental variability and network
structure determine the optimal plasticity mechanisms in embodied
agents), we ask the question: How do environmental conditions and

embodiment affect optimal plasticity rules in neural networks? This
question is motivated by the observation that there is strong degeneracy
in the set of plasticity rules that converge on similar statistical outcomes,
and so it is not clear how sensitive the landscape of candidate solutions
is to actual embodied agents and why certain plasticity rules may be
privileged over others in applied settings. To answer these questions, we
embed our model of plastic neural networks into agents that must solve
a foraging task in order to survive and reproduce in the next generation.
We find that the precise details of the optimal plasticity rule are strongly
dependent on the details of the task, where the variety of optimal plasticity
rules are strongly diminished once specific design choices were made.
For example, in the normalization method, environment variability, or
whether the agent was embodied and embedded in a 2D space or not.
Furthermore, by embedding the plastic network into a larger motor
network, we found that we can reintroduce some degeneracy in the
optimal plasticity rules as the larger network can co-evolve to interpret
the outputs from the plastic sub-network. Overall, we show that optimal
plasticity rules are highly sensitive to their precise implementation details
and are strongly constrained by these design choices, which is counter to
some of the existing work showing degeneracy in plasticity rules.

Emergent timescales in memory tasks

In the fifth and final study (Section 4.5 – Emergent mechanisms for long
timescales depend on training curriculum and affect performance in
memory tasks), we ask the question: How do neural networks develop

long timescales to solve tasks that require long memory? This question
is motivated by a few observations: a) that the brain has a hierarchy of
timescales as one traverses into higher-order regions (for example from
V1 towards the hippocampus), b) that in order to survive, living creatures
have to integrate distant memories into actions and plans that can also
be extended far forward in time, and c) that in the context of the critical
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3: For example, in a simple first-order au-
toregressive model with random noisey
input �(C + 1) = � · �(C) + �, the re-
sponse of the model to activity, (e. g. a
neural spike) is given by the branching
parameter �. The autocorrelation time of
this process is then related by�:

= 4−:/�

where � = − 1
log� (where we set the lag

: = 1) [143, 144]. Thus, as we approach
� = 1, the point that separates the stable
from the unstable regime in the model,
the timescale of the autocorrelation di-
verges. We can use this relation to as-
sess the distance to criticality for data
whose underlying dynamical regime is
not known. As �→∞,�→ 1.

brain hypothesis, we expect a divergence in autocorrelation timescales3

in order to readily integrate information across all relevant timescales
where the measurements of these timescales act as a proxy to assess the
distance to criticality of the trained models.

In order to study how a neural network can maintain such a property,
we devised a set of experiments using RNNs that are trained on solv-
ing long memory tasks. Training RNNs (or any sequential model) on
long memory tasks is a difficult and open problem as current machine
learning methods often have issues with exploding or vanishing gra-
dients in time, credit assignment problems, or catastrophic forgetting
during training. We found that to ensure stability during training, it was
necessary to use curriculum learning methods and that the robustness
and performance of our networks were highly sensitive to the details of
the curriculum. Furthermore, different mechanisms were found during
training depending on the curriculum used, where there was a clear
difference in performance depending on which solution was discovered
during training. Specifically, when forcing our model to train on multiple
tasks concurrently, we found that the mechanism for developing long
memories were embedded in the connectivity structure of the network.
This was in contrast to models that were trained on one task at a time,
whose mechanism for long memories were embedded in the intrinsic
timescales of individual neurons. We hypothesize that this multi-task
training encourages the discovery of shared and repeated features in
similar tasks, giving rise to more universal features that can be reused
by different task readout heads. This was an unexpected result as there
are numerous previous studies showing how heterogeneous intrinsic
timescales in neurons offer strong performance upgrades to networks.
While our results do not negate these previous statements, we show that
there is a much stronger effect in performance and robustness when slow
timescales emerge as a result of network-mediated activity as opposed to
intrinsic slowness of neurons.

Overall, we find that depending on how tasks are presented during
training and whether or not they are solved myopically or concurrently
strongly determines the performance, transfer learning capabilities, and
robustness of RNNs training on long memory tasks, where concurrent
methods prove vastly superior. Furthermore, task performance was
directly related to the ability of the networks to generate increasing
timescales which is directly related to the model’s distance to criticality
[143, 144].

Summary

The projects in this dissertation each explore different elements of complex
systems, from their perception by human observers, the possibility of
universally optimal dynamical regimes, designing efficient and scalable
adaptive models for prototyping and interactivity, the optimality of
plasticity rules in embodied neural networks, and the emergence of
long timescales in RNNs. Each project seeks to contextualize adaptive
systems in more applied and human-interactive contexts in an effort to
bridge a gap between theoretical studies of self-organizing models and
applied methods for function and performance. In each case, we find that
certain universal properties can emerge (e.g. power-law acfs, near-critical



55

dynamical regimes) but that significant deviations from these universal
properties are strongly characterized by the details of the tasks/contexts
we embed these systems in (e.g. the degeneracy, or lack-thereof, of
plasticity rules, or mechanisms for slow dynamics/long memory). As
such, across the projects in this dissertation, we find that universal
statistical properties of complex systems can act as initializations for
systems, after which fine-tuning is necessary to align these systems to
functional or applied settings.
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pixels by 512 pixels. The architecture is illustrated in Fig. 1.

To explore a variety of image styles, the architectures of the

CPPNs are varied. To allow for a controlled generation of

architectures we parametrize different aspects with five hyper-

parameters. L ∈ {3, 5, 10} is the parameter defining the total

number of layers in the architecture and N ∈ {100, 250, 500}
is the total number of neurons, see also Fig. 1. An initial

trial-and-error search suggested that interesting results can be

obtained by varying number of neurons in each layer. Thus,

the following equation expresses the number of neurons n(l)
in layer l as:

n(l) = CNNeµl/L (α+ sin(−ωl)) . (1)

µ ∈ {−1,−0.5,−0.1, 0, 0.1, 0.5, 1} is the decay rate param-

eter that specifies how the number of neurons decreases (or

increases), ω ∈ {−2,−1,−0.5, 0, 0.5, 1, 2} is the frequency

parameter that allows us to introduce bottlenecks to the archi-

tecture, α ∈ {2, 5} is a parameter that controls the strength

of the oscillation terms, and CN is a normalizing factor that

ensures the total number of neurons in the architecture is as

close as possible to N while making sure that no layers have

less than 2 neurons (which often results in a simple, solid

coloured image).

1) Network details: The layers are fully connected and

each neuron also has a bias weight. Activation functions are

hyperbolic tangents with cubed inputs (f(z) = tanh(z3)) in

the hidden layers and a sigmoid for the output layer (for red,

green, blue colour channels). Once a network architecture is

defined, all weights are sampled from a normal distribution

with mean 0 and standard deviation 1. An image is generated

by feeding in each pixel independently in form of (x, y, r)
where x ∈ [−1, 1], y ∈ [−1, 1] are the 2D coordinates (with

(0, 0) at the center) and r =
√

x2 + y2 is the radius.

Due to the multi-layer structure and random weights the

network transforms the simple inputs and creates intricate

images. To give an intuition, a particular network might give

larger weights to the r component initially, giving rise to

images whose structures are more circular and symmetric.

Further layers act to distort the image. Stronger weights give

rise to noisier shapes and colours and smaller weights to

simple colours and shapes which tend to be smoother.

2) Generated image database: We generated a large dataset

of 35280 images, 40 images per 882 unique architectures. For

each architecture configuration, 40 images are generated by

changing the random number generator (RNG) seed. These

seeds are then re-used for different architecture configurations

to allow for easier comparison.

B. Image analysis

In the following we detail the statistical tools and methods

used to analyze both generated images as well as natural

images. The main measure of choice is the spatial correlation

function which we efficiently calculate using a convolution

method. In order to answer our research questions, we asked

45 human participants to select aesthetic images as detailed in

Sec. II-B2. The correlation functions of these aesthetic images

were then compared to both the full dataset and to more

restricted architecture subsets. Furthermore, a set of natural

images (photographs of nature, cities, animals, landscapes and

the like) are compared to the CPPN-generated dataset based in

their correlation function. To compute whether a certain set of

images has a significantly different correlation function than

another set, we are using a Welch’s test (similar to a t-test but

for samples of varying size and variance).

1) Correlation function: To calculate the correlation func-

tion, the Pearson correlation coefficient Eq. 2 of each image is

calculated as a function of pixel-wise distance using only the

luminosity information (not taking into account colours). For

example, for a distance of 1 pixel, all possible pixel pairs that

have a distance of 1 would be put into the two vectors X,Y
where the Pearson correlation coefficient is calculated as:

ρX,Y =
E [(X − µX) (Y − µY )]

σXσY

(2)

=
E[XY ]− E[X]E[Y ]

√

E [X2]− [E[X]]2
√

E [Y 2]− [E[Y ]]2
(3)

where E[X] denotes the expectation of random variable

X , µX = E[X] and σX are the mean and the standard

deviation of X . Note that the larger the distance the fewer pairs

exist. Conceptually, we will use the correlation coefficients

for a given distance, yielding a correlation function: distance

vs. correlation coefficient for each image. In the remaining of

this section we elaborate on how to make these computations

efficient. Understanding this is not essential and might be

skipped.

FFT-convolution methods can be employed to quickly cal-

culate the terms in Eq. 3 without the need to extract pairs

explicitly. In the simplest case, one can convolve an image with

its horizontally and vertically flipped version (using python

numpy syntax): convolve(image, image[::-1, ::-1]),

to obtain a non-normalized version of a correlation coefficient.

However, to obtain the Pearson correlation coefficient, nor-

malization with respect to the number of pixels involved at

each distance/angle, sample means and sample variances must

also be computed as in the terms in Eq. 3. The number of

pixels contributing to the correlation coefficient for a distance

of x and y pixels horizontally and vertically is then given by

N(x, y) = convolve(I, I) where I is a matrix of ones

the same shape as the image. The sample means are defined as

µ(x, y) = convolve(image, I)/N(x,y) where we also

compute the flipped version and denote it as µ(−x,−y). If we

let ~a = (x, y) then we can write the correlation coefficient as:

ρ(~a) =

∑(N,N)−~a
~p=(1,1) i(~p+ ~a)i(~p) +N(~a)[−µ(~a)µ(−~a)]

N(~a)σ(~a)σ(−~a)
, (4)

where i(~p) is luminescence of the image at position ~p. All

terms can be calculated using convolution operations. The out-

put of this method gives a matrix that is twice the resolution of

the input image, however due to the symmetry in translations

of a and −a we can just take the upper diagonal of this matrix,
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giving us ((1024× 1024)− 1024) /2 = 523776 correlation

coefficients per image. The correlation coefficients obtained

now have both a distance and angle to which they correspond

to. Typically we average out the angle information yielding a

single curve: distance vs. correlation coefficient.

2) Aesthetic selection: To identify ‘aesthetic’ images in

the CPPN dataset we designed the following experiment. We

consider subsets of 200 randomly sampled images, two per

participant, one coloured and one transformed into grayscale.

We recruited 45 participants, each shown a unique pair of

of set. Each participant had a maximum time of 10 minutes

to go through one set of images (20 minutes total for both

sets) where they are instructed to tag any image they deem

aesthetic/beautiful/attractive (we gave no strict criteria to the

participants inviting them to use the most appropriate syn-

onym) using the “XnView” program [8]. No other criteria was

prescribed. Participants could scroll through the set and edit

the tags as much as they wanted up to the maximal time,

or finish rating earlier. 1403 grayscale images were tagged

as aesthetic (from the 9000 grayscale images presented), and

1314 colour images were tagged as aesthetic (again from the

9000 colour images presented). A selection of tagged images

is presented in Fig. 7.

3) Natural images: To compare to natural images, we

have chosen the McGill Calibrated Colour Image Database

[9] and used the sets: Animals, Flowers, Foliage, LandWater,

ManMade, amd Snow. These images were scaled down so that

their smallest dimension was 512 pixels, and center-cropped

so that their final resolution was exactly 512 by 512 pixels.

4) Welch’s test: To answer whether the correlation func-

tions for two different image sets are significatly different a

one-sided Welch’s test was used. For presentation purposes we

averaged correlation functions from images generated by the

same architecture (see Fig. 3). In the case of the aesthetic set

we pool together all the 1403 (1314) of grayscale (coloured)

images tagged by the participants. For the natural images,

each category has anywhere from 150 up to 1112 images.

The correlation functions are then binned into 512 distance

bins such that the different orientations and discrete nature of

the square images are coalesced. We use a Bonferroni correc-

tion for multiple comparison: the threshold of significance is

divided by a factor proportional to the number of bins within

our scope of interest. When comparing the full datasets these

are the bins up to a distance of 300 and when comparing the

architecture specific datasets these are the bins up to a distance

of 100.

III. RESULTS

A. Influence of network architecture on image statistics

Using the architecture parametrization equation (Eq. 1)

882 unique architectures were defined and 40 images were

generated per architecture for a total of 35280 images. Some

architectures were found to produce images of similar quality

and statistics while others were found to be comparatively

unique in their outputs, see Fig. 7. Ultimately the parametriza-

tion prescribed in this paper allowed the CPPNs to generate

Fig. 2. Diversity of images generated by CPPNs and distribution of

aesthetic images across architectures. All possible architectures are grouped
according to their number of neurons and number of layers (N,L) parameters.
Example images (not necessarily tagged as aesthetic) are shown for 4 of these
classes. The sides of squares in the central panel are proportional to percentage
of the aesthetically tagged images that belong to this class out of all coloured
tagged images (the percentage is indicated in the middle of the square). The
largest class, (N,L) = (100, 3) contains 210 of 1314 tagged images.

a variety of patterns and forms (see Fig. 2 for examples).

Images with many layers tend to have fractal-like patterns

with sharp edges and boundaries, as if the images from an

architecture with less layers have folded in on themselves

multiple times. Images with more neurons tend to have smaller

scale patterns and clusters, and are generally noisier. However,

the distribution of neurons across the layers is found to be of

vital importance as well. For example if progressive layers in

a network had a growing number of neurons, the resulting

images it generates tends to have much smoother and simpler

shapes than an architecture with the same number of layers

and total neurons but with more neurons in its initial layers

and decreasing neurons in progressively deeper layers. The

exponential growth/decay and periodic oscillation terms in the

architecture parametrization Eq. 1 allow for the creation of a

variety of patterns for the same number of layers and neurons.

The decay of spatial correlations can characterize the pres-

ence of particular scales or scale-freeness [10]. We investigate

the spatial correlation of all CPPN images. We average corre-

lations of all 40 images of each network architecture and then

plot all of the correlation functions together, see Fig. 3. To

understand how particular parameters used for the architecture

generation impact the resulting correlations we colour-coded

these correlation functions according to the number of layers

(L) in their architectures. The clustering of the curves into

colour-bands indicates that the number of layers is a dictating

parameter. Larger numbers of layers generally results in faster
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Fig. 7. Selection of aesthetically tagged CPPN generated images. Top row shows grayscaled images. The last row is generated adding additional inputs
(not used in the experiments). The two outer images are using 2D Perlin noise and the remaining three use pictures of faces as additional input.
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When to Be Critical? Performance
and Evolvability in Different
Regimes of Neural Ising Agents

Abstract It has long been hypothesized that operating close to the
critical state is beneficial for natural and artificial evolutionary
systems. We put this hypothesis to test in a system of evolving
foraging agents controlled by neural networks that can adapt the
agents’ dynamical regime throughout evolution. Surprisingly, we find
that all populations that discover solutions evolve to be subcritical.
By a resilience analysis, we find that there are still benefits of starting
the evolution in the critical regime. Namely, initially critical agents
maintain their fitness level under environmental changes (for
example, in the lifespan) and degrade gracefully when their genome
is perturbed. At the same time, initially subcritical agents, even when
evolved to the same fitness, are often inadequate to withstand the
changes in the lifespan and degrade catastrophically with genetic
perturbations. Furthermore, we find the optimal distance to
criticality depends on the task complexity. To test it we introduce a
hard task and a simple task: For the hard task, agents evolve closer
to criticality, whereas more subcritical solutions are found for the
simple task. We verify that our results are independent of the
selected evolutionary mechanisms by testing them on two principally
different approaches: a genetic algorithm and an evolutionary
strategy. In summary, our study suggests that although optimal
behaviour in the simple task is obtained in a subcritical regime,
initializing near criticality is important to be efficient at finding
optimal solutions for new tasks of unknown complexity.
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1 Introduction

Operating close to the critical point at a second-order phase transition has long been associ-
ated with the optimal performance of complex systems. Several biological systems, such as gene
regulatory networks (Balleza et al., 2008; Rämö et al., 2006), neural networks (Beggs & Plenz, 2004;
Schneidman et al., 2006; Tkačik et al., 2015), collectively behaving cells (De Palo et al., 2017; Halley
et al., 2009), swarms (Cavagna et al., 2010; Chaté and Muñoz, 2014), or populations of co-evolving,
communicating agents (Hidalgo et al., 2014) have been shown to operate close to a critical point.
Criticality has been associated with an ability to solve complex tasks (Villegas et al., 2016), optimal
information transmission and sensitivity (Beggs, 2007; Bertschinger & Natschläger, 2004; Boedecker
et al., 2012; Kinouchi & Copelli., 2006), flexibility towards changes in the environment, and good
evolvability (Aldana et al., 2007) in complex living systems (Kauffman, 1993). In these models, dif-
ferent variations of the transitions and scaling exponents are considered: In the branching model
related to neuroscience, it is a transition between absorbing and active state; in the Ising-like mod-
els, a transition between ordered and disordered state. However, as long as the model presents
a second-order phase transition, most results remain qualitatively unchanged. All these optimized
properties provide an adaptive advantage in natural environments, leading to the assumption that
evolutionary dynamics push biological systems close to the critical regime.

On the other hand, it has been suggested that the ubiquitous presence of noise in nature pushes
living systems into a more robust subcritical regime. For example, in an evolutionary model of
random Boolean networks (RBNs), decreasing the system size, making the task less complex, or in-
troducing noise to the system pushes the optimal regime further into the subcritical range (Villegas
et al., 2016). Similarly Rämö et al. (2007) observed that whereas information propagation is max-
imized in critical RBNs, the optimal regime shifts slightly into the subcritical regime under the
presence of noise. In recordings from the nervous systems of different animals, slightly subcritical
behaviour was observed (Priesemann et al., 2014; Wilting & Priesemann, 2019). A related phenom-
enon has been observed on neuromorphic chips, which optimally perform in simple tasks when
in the subcritical regime, whereas harder tasks require progressively more critical dynamics (Cramer
et al., 2020). The escape dynamics of schooling fish remain in subcritical state even under pharma-
cological manipulation that increases alertness, though more alert fish self-organize closer to criti-
cal state (Poel et al., 2022). Finally, for some applications the combination of systems operating at
different distances from criticality has been shown to lead to optimal results (Zierenberg et al., 2020).
The disordered supercritical state has been universally observed to perform poorly (Kauffman,
1993; Villegas et al., 2016). There are different critical transitions in the examples mentioned above,
thus different definitions of what it means to be subcritical. For example, for the order/disorder
transition, subcritical refers to the ordered state. At the same time, for the branching network tran-
sition to an active state, subcritical means that perturbations are rapidly dying out. Interestingly, the
optimal behaviour was found in the subcritical regime for both these transition types.

The benefits of criticality for the evolvability of living systems have been associated with the
genotype–phenotype coupling. Specifically, it has been shown (De Jong, 2006) that a tight genotype–
phenotype coupling leads to optimal evolvability. Due to this coupling, the dynamical regime has
an impact on the properties of the fitness landscape. In an RBN model, the super- and subcritical re-
gimes were shown to disturb the genotype–phenotype coupling (Kauffman, 1993) and lead to either
very rugged or overly flat fitness landscapes. A rugged fitness landscape means that the evolutionary
dynamics are just a random search and thus inefficient in high dimensions (Kauffman & Levin,
1987). On the other hand, a very flat landscape dampens the optimization process. Both phenomena
result in a complexity catastrophe, where an increase of system size leads to a failure to discover sat-
isfying solutions with evolutionary search. Critical RBNs result in intermediately rugged fitness land-
scapes that allow for efficient hill climbing search and are less prone to the complexity catastrophe.
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Our previous study (Prosi et al., 2021), examined how the dynamical regime of populations of
evolving organisms influences their ability to solve a task. Our investigation used a simple foraging
game of scalable difficulty, where organisms can gain energy by eating food particles and consume
energy when moving. We optimized the Ising networks controlling the organisms using a simple ge-
netic algorithm that allowed us to analyze the changes in the dynamical regimes during evolution. In
addition, we proposed a potential answer to the question of which dynamical regime demonstrates
the best performance and stability with respect to changes in the environment. Still, this study left
unclear the extent to which the results are determined by the choice of evolutionary strategy or if
they represent a general trend regardless of which evolutionary algorithm is used for optimization.
Here, we conduct a more detailed analysis of the dynamics underlying our network model and ex-
tend the previous findings by comparing the behaviour of two distinct evolutionary strategies. Over-
all we confirm that our results are not dependent on the exact algorithm used to train the model.

2 Methods

We investigate a 2D environment where organisms controlled by individual neural networks forage
for food. Each organism gains energy by eating food particles and consumes energy by moving.
The organisms eat the food particles by running over them and share their environment with other
organisms in the same generation. This multi-agent environment is chosen to allow for the envi-
ronment to complexify as agents evolve and become more adept at their task, thereby changing
the distribution of input signals an individual experiences in its lifetime. Furthermore, this type
of multi-agent environment forces the agents into a strategic competition with themselves, which
again encourages a richer environment. Motivated by the results in Hidalgo et al. (2014) where en-
vironment complexity and the optimal dynamical state were positively correlated, we introduce a
mechanism to complexify our environment. We can increase the difficulty of the task by requiring
the organism’s velocity to be below a certain threshold when running over food in order to be able
to consume it. The fitness of an organism is determined by its average energy throughout its life-
span. We use two distinct evolutionary algorithms to optimize the network controlling the organ-
isms and compare their performance.

2.1 Organisms
The organisms in our model are controlled by an Ising neural network (INN) that has been pre-
viously used in Aguilera and Bedia (2017) as well as Khajehabdollahi and Witkowski (2020). The
Ising network consists of N neurons that can be in one of two states si ∈ {−1, 1}, i = 1, . . . , N.
All neurons are split into three classes: sensory neurons that only receive input from the sensors,
motor neurons that control the agent, and hidden units used for computations. Their connectivity is
described by the adjacency matrix A ∈ {0, 1}N×N and the weight matrix J ∈[ −2, 2]N×N, as shown
in Figure 1(b). No connections between sensor and motor neurons are allowed by the adjacency
matrix at any time. Following the Ising model, each network activation pattern (vector of states of
all neurons) has an associated energy:

e(s1, . . . , sN) = −
∑

i,j

AijJijsisj. (1)

The network stochastically minimizes the energy by following Glauber dynamics: At each network
iteration, all non-sensor neurons are updated in a random order and the state of neuron i changes
from si to −si with probability:

pi =
1

1 + eβ·�ei
, (2)

�ei = e(s1, . . . , si, . . . , sN) − e(s1, . . . , −si, . . . , sN),
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Figure 1. Snapshot of population dynamics and schematic representation of the control network. (a) Environment with
50 organisms (red circles with trails) foraging for food (green dots). (b) A network with 12 neurons: four sensory, four
hidden, and four motor neurons. All allowed edges are displayed. The exact topology and edge weights are subject to
change by the evolutionary algorithm.

where β is the inverse temperature of the network (β = 1/(T · kB); kB is the Boltzmann constant,
which we set to one and omit for simplicity; and �ei is the change in the energy of the network
that is caused by the spin-flip of the ith neuron (changing its state si to −si). The energy change
�ei is determined by the connectivity matrix J and the states of neighboring neurons. A decrease in
energy (negative energy change) leads to a greater likelihood of a flip. The parameter β > 0 controls
the likelihood of energetically unfavourable flips. A large β ≫ 1 leads to deterministic network
behaviour dominated by the connectivity, whereas a smaller β leads to more random behaviour. For
each time step in the simulation, the motor neurons of an agent are read out and apply an action, and
the sensory neurons are then updated. The model must then thermalize according to the new values
of the sensor neurons by updating its state via Equation 2. In principle, the number of iterations
required to converge to equilibrium is a function of the connectivity matrix, the temperature of the
model, and the distribution of sensor values. It is known that near the critical point it takes more
time to reach an equilibrium state. However, for practical reasons, we fix the number of iterations
to 10 thermalization steps. An analysis on the sensitivity of the model to the thermalization time is
provided in Appendix 1. In principle this hyper-parameter acts as the amount of time an agent has
to “think” about its new sensory inputs, and may be biologically constrained.

An organism has four input neurons that receive information about the angle θfood and distance
dfood from the closest food particle as well as its own velocity v and energy E (this energy is distinct
from the Ising energy e). Moreover, each organism has four output neurons that control linear
and rotational acceleration (two neurons each) and Nh hidden neurons (Figure 1(b)). For each time
step in the environment we assign a normalized real value to the sensor neurons according to
the environmental input. The hidden and motor sensors can only obtain binary states (−1, 1). We

Artificial Life Volume 28, Number 4 461

72 A Publications



S. Khajehabdollahi et al. Criticality and Evolving Systems

Algorithm 1. Evolution of agents.

1: for generation = 1to Generations do

2: Foraging Game in 2D environment

3: for t = 1to organism’s lifespan do

4: update sensor neurons(organism)
5: for iter = 1to network iterations do ⊲ Glauber update of INN

6: for non-sensor neuronin INN do

7: potential spin-flip(neuron)
8: end for

9: end for

10: read motor neurons(organism)
11: move in 2D environment(organism)
12: end for

13: Evolve(population of organisms) ⊲ Evolves J, A, and β

14: using Genetic Algorithm or Evolution Strategy
15: Reset 2D environment
16: end for

equilibrate the hidden and motor neurons for 10 iterations using a Metropolis algorithm (Metropolis
et al., 1953) that implements Equation 2 and subsequently reads the states for the motor neurons
(see Algorithm 1.). The agent accelerates in case both neurons of a motor unit are in agreement and
have positive states, decelerates in case both are in agreement and have negative states, and does
nothing if the neurons are in disagreement and have opposite states.

For most simulations we use a hidden layer with 4 neurons, (Nh = 4). Additionally, in order to
study whether our methods perform well with larger networks, we also simulate a network with
Nh = 20. At the beginning of each simulation, an organism is provided with an amount of initial
energy Einit = 2. Movement reduces energy and consuming food particles increases it. We consider
two versions of this environment: In the simple task organisms consume food when passing over
it. In the hard task organisms have to slow down and almost stop to be able to consume food.
Unless stated differently, a simulation lasts for a lifespan of t = 2, 000 time steps after which the
evolutionary algorithm is applied, and the task is simple. 50 INN-controlled organisms are placed
in a 2D environment with periodic boundaries and ever-respawning food particles, conserved to a
value of 100 (Figure 1(a)).

2.2 Evolutionary Algorithms

2.2.1 Genetic Algorithm
The genetic algorithm (GA) applied to the INNs consists of a combination of elitism, mutation, and
mating. At the end of the simulation described above, the fitness of each organism is defined as their
mean energy throughout their lifespan. Subsequently, the 20 fittest organisms continue unchanged
to the next generation; 15 more are added by duplicating the top 10 organisms with a 10% chance
of mutations. The remaining 15 are then populated by mating between the current population. The
next generation therefore consists of 20 copied organisms, 15 possibly mutated, and 15 generated by
mating. The mutation operation adds or deletes edges in A (connections not present in Figure 1(b)
cannot be added), re-samples a random edge weight in J from a uniform distribution U(−2, 2),
and perturbs the inverse temperature with multiplicative Gaussian noise β′ = β · �β, for �β ∼

N (1, 0.02). Finally, the mating operation randomly chooses two parents from the pool of the 35
individuals that either survived or were mutated duplicates, and takes a weighted average of their
connectivities J and inverse temperatures β to produce an offspring. In most of our simulations,
the GA iterates for 4,000 generations.
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2.2.2 Evolution Strategy
We verify that our results are not contingent on the specific behaviour of the GA described above,
by employing an evolution strategy (ES) from the family of natural evolution strategies (Wierstra
et al., 2008, 2014) with some modifications. In contrast to the GA these methods parametrize
the population by a distribution over the genome and adapt its parameters. The algorithm uses
a multi-variate Gaussian distribution N ( J,σI) with mean J and fixed variance σ (where I is the
identity matrix). Using a fixed variance simplifies the algorithm and was reported to work well for
neural network training (Salimans et al., 2017). The update of the mean J follows a gradient ascent on
the fitness, estimated based on the fitness of n sampled individuals. However, to make the gradient
invariant to monotonous fitness transformations, a rank-based fitness is used, as in Wierstra et al.
(2014). We start from the implementation by Najarro and Risi (2020) but add elitism in two ways to
the algorithm. We compute the gradient with respect to the best individual and keep a small fraction
of elite individuals for the next generation. The update of the mean J is given by:

Jt+1 = J⋆t +
α

nσ

n
∑

i=1

F
(

Jt + σǫi

)

· ǫ′
i , (3)

where α is the learning rate, σ is the standard deviation of our Gaussian search distribution, n

is the number of individuals generated (in our case equal to the population of the environment),
F (·) the ranked fitness (our foraging task), ǫi = N (0, 1) is a Gaussian random vector, J ⋆ is the
parameter vector of the best individual, and ǫ′

i is the random vector ǫi relative to the best, i.e., ǫ′
i =

Ji + σǫi − J ⋆
i . The values of F are computed by first ranking all fitness values and then normalizing

those ranks by subtracting their mean and dividing by their standard deviation.
We also update the inverse temperature (β) of the model in the same way; however, we let

this parameter evolve slower by setting its σ to σβ = 0.1 · σ in order to keep the ES algorithm
comparable to the GA. Further motivation for this choice is that β is a global parameter which
should change slowly relative to the connectivity parameters. Furthermore, we do not include any
decay rates in the learning rate and standard deviation in order to avoid conflating the dynamics of
a decaying learning rule with any convergences that might occur due to selection pressures.

Since each individual per generation is actually competing for the same resources as other indi-
viduals (as opposed to running in an independent, parallel simulation), we also employ the use of
elitism per generation to ensure that (6/50) previous well-performing individuals are part of the next
generation (the ǫs are computed accordingly). Furthermore, to allow for a sparse change in param-
eters during search we set 50% of entries in ǫ to zero. This parameter was introduced as a variable
to control the genetic diversity between generations, again motivated by the idea that individuals are
actually competing against one another and not running independently, and therefore should have
to compete against similarly evolved individuals.

As is commonly known, the ES is sensitive to the hyper-parameter σ. For example, in the works
of Sehnke et al. (2010) considerable work is done to ensure that the σs of different parameters
are adaptive, where ensuring that the initial σ0 is large enough to find a solution. When chosen
appropriately we found that our version of the ES optimizes the fitness of populations to values
comparable to the GA.

2.3 Defining the Dynamical Regime of an Organism
We use the approximation of the heat capacity from statistical physics to derive a measure of an
organism’s dynamical regime (sub-, super-, critical). Throughout the article, we define the state of
the organisms relative to the order/disorder transition. In our finite system, we estimate the putative
divergence point by changing the inverse temperature β multiplying it with a scaling constant cβ.
This change of temperature influences how likely the state of the neurons will flip (Equation 2),
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and thus change the equilibrium distribution of energies e (Equation 1). We search for a cβ that
maximizes value of the heat capacity CH(cβ), defined as

CH(cβ) =
1

T 2
Var(e) = c 2

ββ
2Var(e). (4)

We define the c crit
β = argmax

cβ

CH(cβ). An analogous procedure was used in Tkačik et al. (2015).

We then define the distance of the network from the critical point by the logarithm of the scaling
factor required to bring the network to criticality, δ = log(c crit

β ). In our case, due to the asymmetric
connectivity matrix and non-equilibrium nature of the system, the procedure should be seen as
an approximation of the actual heat capacity, resulting in a proxy for critical point. More details
can be found in the Results section 3.1. For unevolved organisms whose connectivity matrices
are initialized from the uniform distribution U(−1, 1) (first generation, Figure 2), the relationship
between βinit and δ can be approximated by

δ ≈ log
1

βinit
= − logβinit, βinit ∈[ 0.1, 10] . (5)

On a technical note, models in subcritical states can take increasingly large amounts of time to
escape from a local optimum into a global optima, which can result in numerical divergences in our
estimates of the specific heat CH(cβ). To avoid this issue we employ an annealing method when
calculating the specific heat at a given temperature, by first starting at a much higher temperature and
then gradually lowering it down to the target temperature. During this process the sensor neurons
are kept fixed according to values that the agents had observed and which are saved during training.
This method has the benefit of being scalable especially for larger networks, which may have very
frustrated connections that take exponentially longer to equilibriate.

During evolution, the distance from the critical point can (and will) change from its initialized
state, and we must calculate its specific heat C(β) as a function of the temperature scaling parameter
cβ in order to find its maximum and obtain an estimated distance to criticality.

3 Results

We perform extensive numerical experiments to investigate the properties of the dynamics of evolv-
ing Ising network agents and present the relationships between dynamical states, criticality, and evo-
lutionary fitness. However, before we present results on these dynamical states, we validate that our

Figure 2. The dynamical regime of a network can be calculated by finding a scaling factor cβ of the inverse temperature
that maximizes the heat capacity. Heat capacity (Equation 4) of the Ising networks (Figure 1) for 50 initially subcritical
(βinit = 10, blue), critical (βinit = 1, green), and supercritical (βinit = 0.1, red) organisms as a function of cβ. For each

organism it reaches the maximum (marked by a dot) at individual values cβ = ccrit
β . Dynamical regime δ = log(ccrit

β ) ≈

− log(βinit). The displayed populations are unevolved and the resulting dynamical regimes closely correspond to their
respective βinit.
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measures of criticality behave as expected by considering a generalized Ising model that is concep-
tually in between the classical Ising model and our Ising network agents.

3.1 Criticality in the Generalized Ising Model
While the classical 2D Ising model and its critical point and universality class are well studied, ex-
trapolating these results to different models and particularly to non-equilibrium systems is generally
not possible and has to be checked individually for every variation of the model. Particularly, in this
article, the controller of the agents is a neural network that represents a generalized Ising model with
all-to-all connectivity, as opposed to a regular lattice, and with both positive and negative real-valued
weights. Furthermore, the controller neural network receives sensory inputs that perturb the model
away from equilibrium, while being at equilibrium is the central requirement for the derivation of
the critical points in the 2D Ising model. Finally, controller networks evolve very specific connec-
tivities via the selection pressures of the world/task they are embedded in, and this precludes a
scaling analysis on the specific evolved networks to measure if their thermodynamic properties ex-
hibit scale-free, and therefore critical, behaviours. As a compromise, we instead do a scaling analysis
on random networks with an architecture similar to our controller networks. We generate ensem-
bles of random networks of sizes N = 12, 25, 100, each having one third of its neurons designated
as sensor neurons and another third as motor neurons, prohibiting connections between motor and
sensor groups. We normalize the weights by the Frobenius norm of the connectivity matrix. We
then calculate the heat capacities of these models, where the sensor neurons are given values from
the uniform distribution on [ −1, 1], shown in Figure 3(a). It can be seen that the specific heat of
these models tends to peak around β ≈ 1.5, showing that our normalization captures the changes
of the peak location with the system size. The maximum value of the specific heat is growing with
system size, implying the existence of a critical point.

The next complication in our methodology is the fact that the sensor neurons perturb the system
away from equilibrium at each time step, and therefore make our analysis of criticality more difficult.
To better understand the implications of this feature in our model, we can compare how the specific
heat of a network changes depending on the statistics of the sensory input and the possibility to
thermalize its sensor neurons. We consider the most fit agent from 54 independent simulations
of 4,000 generations evolved with the GA. We calculate their specific heats for various inverse
temperatures three different ways and average across the agents. In the first method, we thermalize
the sensor neurons and treat them identically to the rest of the neurons in the model. This results in

Figure 3. Numerical indication of the presence of the critical point in our non-equilibrium generalized Ising model. (a)
A scaling analysis is done using ensembles of random networks with a similar architecture to the evolving agents. The
peaks of the specific heat grow with the size of the system, and its location converges towards a β ≈ 1.5, a property
commonly expressed in critical systems. (b) 54 independent, fit agents, evolved for 4,000 generations. The specific heat
dependence on the inverse pseudo-temperature with thermalized sensor neurons (equilibrium model, light color), with
the sensor data clipped and drawn from the distribution gathered at the 0th generation (darker shade), and with sensor
data from the 4,000th generation (darkest line). The peak of the specific heat shifts slightly depending on the method.
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the equilibrium model that is different from the Ising model only in the features of its connectivity
matrix; see Figure 3(b) lightest curve. We repeat the same calculations with clipped sensor neurons
drawn from the distribution of sensor data gathered in its final generation (4,000), which we save
throughout the lifetime of the agents. This is the effective specific heat of the embodied model as it
interacts with its environment, and it is how we defined the state of the agents in the rest of the
article; see Figure 3(b) darkest curve. Finally, we calculate the specific heat using the sensor data from
the 0th generation, where due to the unevolved state of the agents, the sensor data are less diverse.
The difference between the thermalized specific heat and the effective specific heat is a slight shift
in the location of the peaks. Furthermore, it can be seen that the evolved agents are closer to their
maximal susceptibility when their specific heat is calculated from the environment they are actually
embedded in. In other words, if we were to calculate the specific heat of these agents using the
equilibrium model by discarding sensor data, we would systematically overestimate how subcritical
a network is due to the fact that the environment is interacting with the agent and vice versa.

3.2 Convergence of Evolution
Populations of different initial states follow distinct evolutionary strategies and most are able to
solve the standard foraging task when evolved with the GA. Within the range of δinit ∈[ −1, 1]
as in the previous article (Prosi et al., 2021), all populations converge to a good fitness, but for
δinit ≪ −1 or δinit ≫ 1 the GA sometimes cannot find suitable solutions. We observe evolu-
tion for 4,000 generations for populations initiated between the ranges of subcritical (βinit ≈ 32,
δ ≈ −1.5), critical (βinit = 1, δ ≈ 0), and supercritical (βinit ≈ 0.03, δ ≈ 1.5) regimes. Critical pop-
ulations begin to rapidly gain fitness from the first generation in every independent simulation
run. (See Figure 4(a).) The gradual and stable increase of fitness of the initially critical popula-
tion suggests that successful hill climbing on the fitness landscape is taking place. In contrast,
for subcritical populations, fitness mainly evolves via random jumps and only about half of the
simulations reach the same fitness as the critical populations after 4,000 generations (Figure 4(a);
video: https://vimeo.com/547613948). Such fitness dynamics indicate a random search strategy
which often leads to a population getting trapped in a local maxima for extended periods of
time. Confirming the previous observations by Khajehabdollahi and Witkowski (2020), we see that

Figure 4. Critically initialized populations can be successfully evolved in different circumstances, whereas for subcritically
initialized populations, a harder task or an increased system size can significantly disrupt evolutionary dynamics. For
each panel 10 initially critical (β = 1, green, top row) or initially subcritical (β = 0.1, blue, bottom row) populations
evolve for 4,000 generations. The dashed line at fitness = 2 in the subcritical panels corresponds to the organisms’
initial energy. It can be seen in the hard task with 12 neurons (bottom right) that the network is unable to achieve a
fitness above its starting value.
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supercritical populations, after an initial random period follow the same path as the critical ones,
though highly supercritical models with δ > 1 can sometimes struggle to find solutions.

For successfully evolvable populations, moderate changes in the complexity of the control net-
work should not destroy the ability of the evolutionary algorithm to reach a good fitness. We test
the differences in evolvability for initially critical and subcritical populations by changing the size
of the network from 12 to 28 neurons. As in smaller networks, the initially critical populations
rapidly evolve for all initial conditions. By generation 4,000 they even reach a slightly higher fitness
than populations controlled by smaller networks and evolved for the same number of generations
(Figure 4(b)). However, initially subcritical populations do not reach even half of their original fit-
ness. We observe the same difference between the dynamical regimes when we increase the task’s
complexity requiring organisms to slow down to almost zero velocity in order to consume food
particles (Figure 4(c), video: https://vimeo.com/547615705). In this harder task, the evolved pop-
ulations’ maximal fitness is expected to be lower than for the simple task. For the initially criti-
cal populations, we still observe the same hill-climbing dynamics. However, the initially subcritical
populations stay at an energy level of precisely two. This signifies that they do not use the origi-
nally supplied energy for moving and remain static throughout all 4,000 generations, trapped in a
local optimum.

Overall, we see that although in simple tasks all populations can converge to approximately the
same fitness, there exists a significant difference between the initially subcritical and initially criti-
cal/supercritical populations. Specifically, the convergence of evolution for critical populations is
stable (all populations follow very similar fitness growth) and behave similarly regardless of network
size or task complexity. For subcritical populations, the evolutionary dynamics resemble random
search, which fails to find solutions in high-dimensional cases or for more complex tasks.

3.3 Evolution of the Dynamical Regime
Next, we investigate how the dynamical state of the populations changes during evolution. To do
so, we select a wide range of initial dynamical regimes (δ ∈[ −1.5, 1.5]) and examine how the dy-
namics of populations initialized in each of these regimes change throughout evolution via the GA.
Regardless of their initial dynamics, almost all populations that manage to find solutions converge to
the subcritical regime, albeit with different distances from the critical point (Figure 5). The popula-
tions that did not follow this convergence pattern were also ones that never discovered solutions to
the task. We also observe that strongly subcritical populations (δ < −1) and strongly supercritical
populations (δ > 1) generally achieve lower fitness in the simple task and are unable to solve the
hard task.

In a basin spanning the near-critical regime, from moderately subcritical to moderately super-
critical, populations rapidly change their dynamical regime and by generation 4,000 reach an inter-
mediately subcritical state, whose δ we refer to as δ∗ ≈ −0.41. This is a relatively broad dynamical
regime whose evolutionary dynamics have different characteristics than the dynamics of deeply
subcritical networks. Deeply subcritical populations with δ ≪ δ∗ remain at their initial regimes for
the GA, demonstrating a lack of evolutionary mobility and consequently are more likely to obtain
lower fitnesses, whereas subcritical populations initialized at higher 0 ≥ δ ≥ δ∗ can still approach
δ∗ which is correlated with the ability to solve the underlying task with high fitness. Similarly, deeply
supercritical populations also struggled to change their dynamical regime; however, the supercritical
populations that were able to optimize all converged to δ∗, much like the near-critical populations
(Figure 5).

Task complexity determines the dynamical regime where evolution converges to. Specifically,
when trying to solve the hard task, the agents converge to a smaller distance from criticality than
when solving the original task. We check the evolution of the dynamical regime in both simple and
hard tasks (Figure 6). We utilize the observation that almost all populations with an initial regime
δ > δ∗ converge to similar values. Thus, we consider only initially critical populations. We obtain
the distribution of dynamical states by considering 10 independent runs of evolution in both tasks
after 4,000 generations. We take the mean of the top 30 most fit agents in each simulation, and
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Figure 5. Genetic algorithm (GA): Changes in the distance to criticality over the course of evolution. 32 populations
initiated at various distances to criticality (δ between −1.5 and 1.5) and evolved on a (a) simple task and (b) hard task.
The color indicates their fitness at generation 4,000. Most populations with δ < 0 remain at fitness 2 for the hard task,
as well as a few simulations with δ > 1, signifying no evolutionary progress.

Figure 6. Genetic algorithm (GA): State dynamics of 10 populations initialized at δ = 0 and evolved on (a) a simple task
and on (b) a hard task. All population solve the corresponding task but the populations trained on the hard task evolve
to have δ values closer to criticality.

perform a Mann-Whitney U test to confirm that the δ values for the hard task are larger than the
simple task ( p < 10−5), i.e., closer to the critical value. Specifically, the harder task results seem to
consistently maintain a smaller distance to the critical point throughout evolution (Figure 9(a)).

Therefore, initiating an agent close to the critical regime is important when task complexity is
unknown. We observe that the dynamical regime never changes towards supercriticality, but the
subcritical convergence point can be at different distances from criticality. Thus, only starting near
the critical point guarantees that the optimal dynamical state can be reached by evolution.

To verify that our results are not contingent on the specific implementation of the GA, we run
the same experiment using a different optimization method—an evolution strategy, as described
in Section 2.2.2. We re-run the experiments using the ES and obtain qualitatively similar results.
In Figure 7, we observe that simulations near or above the critical point are able to discover
high-scoring solutions in both the simple and the hard task (also see Figure 8). Furthermore, we
once again observe that when initialized below a certain point, populations are unlikely to discover
a good solution using the ES (even more than we observed for the GA).

We observe that solutions to the simpler task converge to a more subcritical regime than for
the hard task. However, the ES results in larger deviations from the critical point in the converged
populations than the GA. This can be potentially attributed to the faster convergence of the dynam-
ical state allowed by the ES.

We verify that the difference in the distance to criticality between simple and hard tasks is sig-
nificant under both evolutionary algorithms, as shown in Figure 9(b). For each of the tasks, 16
independent populations of initially critical agents are evolved and the distribution of their δ val-
ues is presented. We compare the final δ values after 4,000 generations and confirm ( p < 10−2;
Mann-Whitney U test) that the simpler task converges to a more subcritical regime than the hard
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Figure 7. Evolution strategy (ES): Changes in the distance to criticality over the course of evolution. 32 populations
initiated at various distances to criticality (δ between −1.5 and 1.5) and evolved on (a) a simple task and on (b) a hard
task. The colour indicates their fitness at generation 4,000. Similar, but more dramatic than the results from the GA,
populations initialized with δ < 0 suffer greatly in their ability to discover optimal solutions in both tasks. The ES can
also be observed to have an overall tendency to become subcritical even when lacking selection pressure.

Figure 8. Evolution strategy (ES): 16 populations initialized at δ = 0 and evolved on (a) a simple task and on (b) a hard
task. The populations trained on the hard task evolve to have δ values closer to criticality, similar to the results from
the GA, albeit at larger values of δ.

Figure 9. The dynamical regime of the initially critical population remains closer to the critical regime (δ = 0) in the
harder task than in the simple task throughout evolution, for both algorithms (tested for the final generation 4,000 with
a Mann-Whitney U test, p = 2.2× 10−6 and p = 4.4× 10−3, for the GA and ES, respectively). 10 and 16 populations
for the GA (a) and ES (b), respectively, are initiated in the critical regime and evolve for 4,000 generations. The 15th
and 85th percentiles are lightly shaded, and the 33rd and 67th percentiles are more heavily shaded.

task for the ES as well. These results indicate that our findings are independent of the evolutionary
algorithm used to solve the task.

3.4 Comparison of Evolutionary Algorithms
To understand how these two different families of evolutionary algorithms function differently,
we compare their abilities in solving n-dimensional benchmark optimization problems (Rastrigin
function (Equation 6), Rosenbrock function (Equation 7), and Sphere function (Equation 8)). The
Rastrigin and Rosenbrock functions are difficult problems because of the existence of multiple
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local minima in the vicinity of the global minimum, whereas the sphere function has a unique
minimum at 0, with smooth gradients towards it. The Rosenbrock function has relatively smooth
gradients towards the broad local minima region, but it can be difficult to find the global minimum
among them.

fRastrigin(x) = An +

n
∑

i=1

[

x 2
i − A cos(2πxi)

]

(6)

fRosenbrock(x) =

n−1
∑

i=1

[

100(x i+1 − x 2
i ) + (1 − xi)

2
]

(7)

fSphere(x) =

n
∑

i=1

x 2
i (8)

To avoid any inherent biases either algorithm might have towards solutions of a particular distribu-
tion, we translate the loss function (Equations 6 to 8) in space by a random Gaussian vector. To
this end we can write the benchmark functions as a function of a new variable z, where zi = xi + ci
where ci are constants sampled from a N (0, 1) normal distribution, which results in randomization
of the optimum’s location.

Figure 10 compares the performance of the two algorithms. Due to the ES’s approximation of
the gradient, it is generally able to find the minimum of a smooth loss function faster than the GA
(e.g., for the Sphere function, see Figure 10). However, owing to a fixed variance sampling, it can
get stuck in a local solution as shown in a the Rastrigin function, where the GA surpasses the ES.
Also for the Rosenbrock function, both algorithms only converge to the local minima of ≈ 10−3.
For both the Rosenbrock and Sphere, the GA is orders of magnitude slower in finding comparable
solutions.

Taking into account the significant differences of these two evolutionary algorithms, we
strengthen the evidence for the universal utility of criticality for problem solving.

3.5 Generalizability
For successful biological systems robustness against environmental change is the paramount
feature; therefore, it can be used to determine the success of evolved artificial organisms. We pro-
pose a simple measure to investigate how the model behaves outside of its explicit training condi-
tions. Specifically, for a population trained with organism’s lifespan parameter set at ttrain we define

Figure 10. Comparisons of the loss dynamics of the ES and the GA on the Rastrigin, Rosenbrock, and Sphere func-
tions for n = 50. The ES can take advantage of functions that have smooth gradients leading to its optima (Sphere,
Rosenbrock), whereas the GA can overtake the ES for functions with multiple local optima (Rastrigin). Both algo-
rithms failed to discover the global optima of the Rosenbrock function, and instead found the easier to find local
minimum. The loss is normalized to start at 1 by dividing by the medians across independent runs, of the maximum
value obtained throughout its evolution. The 25th to the 75th percentiles across 25 independent runs are shaded.
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generalizability as the speed of growth of the average fitness if the organism’s lifespan is extended
to textend. Formally:

γt =
〈Ettrain〉/ttrain

〈Etextend〉/textend
. (9)

The stable generalizability, γt = 1 corresponds to linear growth whereas sublinear behaviour γt ≪ 1
indicates possible overfitting to the particular organism’s lifespan ttrain.

We consider initially critical (δ ≈ 0, βinit = 1) and initially subcritical (δ ≈ −1, βinit = 10) pop-
ulations evolved for 4,000 generations and then test their performance for an extended lifespan
of textend = 50,000 time steps (instead of the ttrain = 2,000). As reported in previous sections, the
critical populations evolved with the GA converge to δ ≈ −0.41, and they all have a similar fit-
ness after training. Interestingly, when increasing the organisms’ lifespan, the fitness of the critical
population continues to grow linearly, signifying almost perfect generalizability. About half of the
subcritical populations reach the same fitness level. However, the subcritical populations split up
into two clusters: cluster one with generalizability close to 0, and cluster two with generalizability
close to 1 (Figure 11(a)). Surprisingly, there is no difference in fitness between these two clusters.
We also evolve the same populations with the ES algorithm and obtain a similar picture for the
critical population: Almost all populations attain generalizability close to 1. The initially subcritical

Figure 11. Populations initialized at criticality find solutions that generalize beyond their training condition, whereas
subcritical populations often overfit and fail when the organism’s lifespan is changed. (a) 54 populations of each type
(triangles: initially critical; circles: initially subcritical). After 4,000 generations of the GA, all critical populations reach a
high fitness (indicated by colour) and nearly perfect (with one exception) generalizability γt (Equation 9). The initially
subcritical organisms split between badly generalizing cluster 1 (19 populations), generalizable cluster 2 (28 popula-
tions), and 7 populations not assigned to any cluster. This split is not predicted by their attained fitness. For the ES
(indicated by the triangles pointing down with black border) the variability of initially critical solutions is larger (13 out
of 16 are in cluster 2, one in cluster 1, and two in-between), and initially subcritical organisms βinit = 10 do not evolve
to any reasonable fitness. (b) Energy and velocity as a function of time for representative examples of the organisms
from cluster 1 and clusters 2 (marked in panel (a)). The dashed orange line denotes the training lifespan ttrain = 2, 000.
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populations (βinit = 10), however, fail to evolve to a compatible fitness, and therefore we exclude
them from the figure. Out of 16 populations, one did not generalize at all (in cluster 1) but it also
did not reach a similar fitness level (〈E〉ttrain ≈ 20), and two reach an intermediate state. Notably, the
3 populations that did not generalize for the ES were some of the most subcritical solutions found.

To understand the difference we look more precisely at both clusters (Figure 11(b)). Organisms
in cluster 1 reach their maximal fitness/average lifetime energy (sometimes higher than in cluster 2)
at the end of their lives, but often quickly lose fitness when tested beyond their training environment.
The velocity profile v offers an explanation for the bad generalization. The organisms from cluster
1 follow the strategy to increase the velocity permanently until the end of their training lifespan
(Figure 11(b)). However, moving with such a high velocity is not compatible with the energy influx
from feeding, and they break down shortly after the end of their training lifespan; this demonstrates
that these organisms overfit the training conditions. The generalizable populations (cluster 2) have a
much more complex velocity profile that accelerates and decelerates often, in contrast to its fitness,
which grows consistently and linearly beyond the lifespan of their training environment.

Overall, the initialization in the critical regime results in almost perfect generalizability of evolved
populations, whereas initially strongly subcritical populations risk overfit of their training conditions.

3.6 Effect of Genetic Perturbations on the Fitness
Next, we examine the stability of the evolved organisms to genetic perturbations. We apply genetic
perturbations of different magnitudes to the evolved organisms of initially critical βinit = 1 and
subcritical βinit populations. We perturb all weights of the connectivity matrix by randomly adding
or subtracting a number fpert and then evaluate the fitness of the resulting organism. As expected,
we find that fitness decays rapidly with perturbation magnitude for both batches of populations;
however, the subcritical ones decay much faster (Figure 12(a)). By characterizing this fitness decay,

Figure 12. Initially critical populations show larger genotypic stability than initially subcritical ones. (a) The phenotype
(fitness) as a function of the genotypic perturbation (changes in connectivity) for two initial conditions: βinit = 1 and
βinit = 10. For the initially critical model we also plot the change in fitness for the hard task (orange line). Dashed
black lines indicate exponential fit with exponent −2.26 (critical), −1.84 (critical, hard), and −5.03 (subcritical).
(b) The histograms of the fitness values for nearly fully evolved agents (between generation 3,500 and 4,000), cat-
egorized according to the last evolutionary operator (copy, mutate, or mate) that was applied to them. The βinit = 10
agents are less likely to remain fit when their genotype is changed by mutation or mating.
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we can understand better the smoothness of the genotype–phenotype map of these optimized so-
lutions and how different solutions can be found with varying degrees of robustness. We evaluate
the fitness decay by the slope of an exponential function fitted to the fitness.

For the hard task, only the fitness decay of the initially critical populations can be evaluated
(α = −1.84), as the subcritical population was unable to solve this task. For the simple task,
α = −2.26 and α = −5.03 for the initially critical and subcritical populations, respectively. The
subcritical population decays in fitness at more than double the rate than the critical population,
indicating a much higher sensitivity of subcritical systems to perturbations. Interestingly, the fitness
decay of both critical populations in the easy task and hard task are similar.

The evolutionary algorithm is a source of constant genetic perturbations that are necessary in
the beginning of evolution but can become detrimental later. We consider the individual effect of
the evolutionary operators (copy, mutate, and mate) on the resulting fitness of the organisms. The
variability of fitness for copying simply reflects the natural variability in community fitness rankings
and organism behaviour. However, both mating and mutation in fully evolved subcritical popula-
tions typically results in a fitness close to 2—signifying totally unfit organisms (Figure 12(b)). At the
same time, initially critical organisms retain diverse fitness values after mutation and mating, some
being close to the optimum. This phenotypic diversity allows the originally critical populations to
retain their evolvability as opposed to the rigid search performed by strongly subcritical populations
which have more discontinuous genotype–phenotype landscapes.

4 Discussion

We demonstrate that in various scenarios, evolving populations of agents converge to a moderately
subcritical state with the resulting deviation from criticality depending on the task’s difficulty. This
might appear to be a contradiction to the previous studies, suggesting that operating close to critical-
ity is optimal for natural systems (Mora & Bialek, 2011; Muñoz, 2018; Roli et al., 2018). However, a
recent body of research showed that for simple tasks, operating at some distance to criticality might
be an optimal solution for the sensitivity/stability tradeoff (Cramer et al., 2020; Hidalgo et al., 2014;
Tomen et al., 2014; Villegas et al., 2016).

We observe that the distance from criticality affects an agent’s ability to solve complex tasks and
to robustly evolve generalizable behaviour, validated using two different evolutionary approaches:
a genetic algorithm and an evolutionary strategy. Specifically, we observe that slightly subcritical pop-
ulations are evolvable for different complexities of the control network and task, whereas strongly

subcritical populations fail in both algorithms. Interestingly, the ES is more successful in optimizing
strongly supercritical populations but less so for strongly subcritical ones. Given that solving com-
plex tasks and being adaptive are crucial in natural environments, we propose that living systems
operate in the subcritical regime in close proximity to the critical point. Moreover, we show that
the optimal regime moves closer to criticality as we increase the task difficulty, which suggests
that the optimal distance from criticality varies. These findings are confirmed by Cramer et al.
(2020) as well as Villegas et al. (2016), who showed that the optimal distance from criticality
in the subcritical regime decreases for higher task complexity or larger system size.

We further observe that populations can only become more subcritical during evolution corre-
sponding to a more ordered phase. They fail to become more critical (more disordered) even when
this would have eventually led to superior behaviour, a phenomenon that we suspected to be an
artefact of the GA used in Prosi et al. (2021). However, this does not seem to be the case as con-
firmed here by using the ES, which replicates this phenomenon. As it is a priori unknown which
distance from criticality will be optimal when evolving for a new task, initializing at the critical point
could be the only way for the evolutionary process to descend to the optimal regime. However, in
the long run this would require some sub-populations to always maintain closeness to criticality.
How this can be achieved for neuronal networks is a subject of vivid research (for a review, see
Buendía et al., 2020; Kinouchi et al., 2020; Zeraati et al., 2021), and for the embodied Ising agents
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it remains open for further investigation. Maintaining evolvability in simpler systems was, for in-
stance, achieved by switching between different rough energy landscapes (Wang & Dai, 2019). The
inhomogeneity of the environment and coevolution can also contribute to the preservation of the
critical regime (Hidalgo et al., 2014). Overall, the maintenance of evolvability throughout evolution
is an important question beyond the embodied Ising agents studied here.

Our results extend and partly revise the earlier findings of Khajehabdollahi and Witkowski
(2020), which reported a superior evolvability of critical populations and an approximate conver-
gence to criticality during evolution. We confirm that the critical regime allows reliable evolvability,
and additionally, we extend our understanding by considering a set of tasks and architectures in the
model. However, our more precise procedure to infer the dynamical regime and the fine sampling
of initial conditions uncovered additional complex dynamics. Namely, critical populations of Ising
agents converge to the subcritical regime, and the distance to criticality depends on the task com-
plexity. We extend our earlier work (Prosi et al., 2021) and verify that the results are not contingent
on the specifics of our GA by comparing them to results generated by an ES, an instance of a
different family of evolutionary algorithms. We confirm that our major findings hold under both
optimization algorithms. The ES, however, shows stronger sensitivity to its hyper-parameters, but
optimizes the fitness faster. A future study could potentially compare these results with an algorithm
with an adaptive σ such as parameter-exploring policy gradients (Sehnke et al., 2010) or covariance
matrix adaptation evolution strategy.

We also propose a new way to investigate capabilities of the resulting organisms by defining
generalizability and genetic stability measures. Both measures reveal the benefits of staying close to
the critical state beyond a simple fitness comparison.
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Appendices

Appendix 1: Effects of Thermalization Time

The Ising networks have a time span during which the system can adapt to the new inputs—the
thermalization time. In Figure 13 we analyze the dependency of the fitness of individuals evolved
on this parameter. We find that the value of 20 yields optimal fitness; however, we have chosen
the value of 10 for computational reasons as it provides a good compromise between computa-
tional performance and achieved fitness in a given number of generations. Future investigations can
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Figure 13. Effect of thermalization time on fitness. The effect of different thermalization times (1, 5, 10, 20, and 40
thermalization steps) is tested for 5 independent populations each, evolved using the GA in the simple task.

be directed to uncover how the thermalization time influences the optimal dynamic regime after
convergence or before the beginning of the evolution.

Appendix 2: Distribution of Distances to Criticality

In section 3.3 we discuss the evolution of the dynamical regime as measured by the distance to
criticality, summarized by the parameter δ. Specifically, we compare the final values of δ after 4,000
generations of evolution, for both the ES and the GA, for the simple task and the hard task. A box
plot and histogram of the data from the final generations of these simulations are plotted here. For
each independent simulation, the top 30 most fit agents are selected and their δ values averaged. We
have 54 simulations using the GA and 16 using the ES. (In Figure 9, the lines are generated from a
data set with 10 and 16 simulations for the GA and ES, respectively. Here we use the larger data set
of 54 simulations for the GA, which only has δ calculated for its final generation.) A Mann-Whitney
U test is used to check if the δ values of the hard task are higher than the simple task. For both the
GA and ES, the test shows the hard task has larger δs than the simple task, with p = 2.2 × 10−6

and p = 4.4 × 10−3, respectively. See Figure 14 and Figure 15.

Figure 14. Distribution of the final δ values for 54 independent simulations using the GA. Each simulation has a popu-
lation of 50, of which only the top 30 most fit individuals have their δs recorded and then averaged. The hard task has
larger δ values than the simple task with p = 2.2× 10−6 according to a Mann-Whitney U test.
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Figure 15. Distribution of the final δ values for 16 independent simulations using the ES. Each simulation has a population
of 50, of which only the top 30 most fit individuals have their δs recorded and then averaged. The hard task has larger
δ values than the simple task with p = 4.4× 10−3 according to a Mann-Whitney U test.
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Abstract

The essential ingredient for studying the phenomena of emer-
gence is the ability to generate and manipulate emergent sys-
tems that span large scales. Cellular automata are the model
class particularly known for their effective scalability but are
also typically constrained by fixed local rules. In this paper,
we propose a new model class of adaptive cellular automata
that allows for the generation of scalable and expressive mod-
els. We show how to implement computation-effective adap-
tation by coupling the update rule of the cellular automa-
ton with itself and the system state in a localized way. To
demonstrate the applications of this approach, we implement
two different emergent models: a self-organizing Ising model
and two types of plastic neural networks, a rate and spik-
ing model. With the Ising model, we show how coupling
local/global temperatures to local/global measurements can
tune the model to stay in the vicinity of the critical temper-
ature. With the neural models, we reproduce a classical bal-
anced state in large recurrent neuronal networks with exci-
tatory and inhibitory neurons and various plasticity mecha-
nisms. Our study opens multiple directions for studying col-
lective behavior and emergence.

Introduction

Cellular automata (CA) are simple models of computation

where cells organized in a regular grid update their state ac-

cording to rules that are local functions of the cell’s neigh-

borhood (von Neumann, 1966; Chopard and Droz, 1998). It

has long been observed that CAs can exhibit complex pattern

formation and highly non-trivial dynamics. The simplic-

ity of the basic concept, combined with their extreme ver-

satility make CAs a great tool for studying the phenomena

of emergence and complexity in a mathematical framework

(Wolfram, 1984). CAs have been used to model a variety of

physical (Vichniac, 1984; Toffoli, 1984), biological (Lang-

ton, 1986; Turing, 1952; Mordvintsev et al., 2020; Farner

et al., 2021), and more recently, differentiable, goal-oriented

artificial intelligence phenomena (Chan, 2020; Mordvintsev

et al., 2020; Variengien et al., 2021; Randazzo et al., 2020;

Pontes-Filho et al., 2022).

The success of CAs in modeling complex physical and

biological phenomena is perhaps in no small part due to the

model’s inherent inductive bias that reflects reality reason-

ably well. Any CA model is inherently local and computes

and distributes information locally, a constraint that also ex-

ists strongly in the real world (ignoring spooky action at a

distance). Due to this constraint, CAs optimized for certain

problems will always solve them via collective local interac-

tion. CAs, therefore, allow us to study how self-organizing

systems with only local interactions can give rise to global

structure and complexity, a key characteristic of living mat-

ter.

However, for the very reason they are efficient, the ex-

pressive capabilities of CAs are constrained by their design

principles. Namely, the homogeneity of the update rule in

space and time forces every cell in the system to update ac-

cording to the same rule. This means that CA models, which

can be thought of as mesoscopic/coarse-grained models of

phenomena, are fixed in the level of abstraction that they are

modeling. Some work on multi-scale cellular automata has

shown the capacity of such models to generate multi-scale

patterns when multiple rules are interacting or competing

(McCabe, 2010; Rampe, 2021; Slackermanz, 2021). These

systems demonstrate how context-specific heterogeneity in

the application of these CA rules can allow for another qual-

itative change in the emergent dynamics. This multi-scale

property may, in fact, be crucial to the top-down organi-

zational properties of biology (Pezzulo and Levin, 2016).

Most existing models still only have a fixed set of update

rules that are then applied selectively and cannot be flexi-

bly modified as in nature. There are variations of CAs that

address this homogeneity in different ways, such as prob-

abilistic CAs (Louis and Nardi, 2018) or models of neural

cellular automata manifolds (Hernandez et al., 2021). Here,

we present a more general description of adaptive CAs that

can be extended to a variety of domains.

Unfortunately, much of the CAs’ utility comes from their

computational efficiency and simplicity. Implementing het-

erogeneity or adaptation in CAs can make them too compu-

tationally expensive at the scales they require to become in-

teresting. Here, we propose a method for designing adaptive

cellular automata that minimizes the impact of adaptation on
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computational efficiency (Fig. 2) by taking advantage of ad-

vances in computational power. In particular, with modern

GPU hardware and fast linear algebra libraries it becomes

very cheap to write our CAs as highly parallelizable ma-

trix operations such as convolutions. In turn, this allows for

a massive increase in the scale, expressivity, interactivness

and ability to train/differentiate such models to the extent

that they can be run on personal computers with high frame

rates.

The methods discussed in this paper are meant as build-

ing blocks for designing models of collective systems that

exhibit emergence. We follow here the principle of building

intuitions about such systems through the process of con-

structing them (von Neumann, 1966). This will then further

allow us to study these systems in quantitative ways, build

better models, and guide our theories. Having toy models of

emergence that simulate or approximate the levels of emer-

gence we observe in nature is a crucial step toward expand-

ing our theories of complexity and self-organization. To that

end, we implement as adaptive CAs three known founda-

tional models of collective dynamics, the 2D Ising model,

a Wilson-Cowan rate neural network, and a leaky integrate-

and-fire spiking neural network. As these models can often

be generalized across domains as generic models of inter-

acting systems, our aim is to explore methods of local adap-

tation that can self-organize these general systems towards

desirable macroscopic states.

Method

Update rules for cellular automata are traditionally fixed and

applied identically and in parallel at every cell on the grid.

By reusing a fixed rule that is always applied identically,

CAs can take advantage of highly parallelizable algorithms

with minimal memory costs. These update rules can of-

ten be written as sequences of matrix multiplication oper-

ations, which when implemented with modern linear alge-

bra libraries and GPUs offer very efficiently computed mod-

els that scale well. In this framework, convolutions are a

natural choice to accomplish the types of local calculations

required by cellular automata (Gilpin, 2019; Mordvintsev

et al., 2020). However, 2D convolutions (Procedure 1) use a

fixed kernel, which means that a CA that makes use of these

operations will also have a fixed update rule at all times, see

Fig. 1a. However, with the relative growth of GPU memory

capacity and computational power, it has become increas-

ingly feasible to embed localized rule parameters in memory

and add a new dimension of heterogeneity to these models

(Hernandez et al., 2021).

To allow cellular automata to have adaptive update rules

that can change flexibly as the system evolves in time, we

define recursive update rules where the rule parameters are

embedded into the state of the system, see Fig. 1b (Proce-

dure 2). To do this, we can concatenate the state σi(t) of

a cell with the parameters θi(t) of a local update rule, such

that the state and update rule of a cell at time t is fully de-

fined by

si(t) = [σi(t),θi(t)]. (1)

Whereas in a classical CA, the update rule f(σi(t)) would

be fixed, with adaptive CAs, the update rule

si(t+ 1) = f(si(t)) = f(σi(t),θi(t)) (2)

is local and parameterized by θi(t). There are a number of

different ways one can parameterize a local update rule, for

example, the weights of the forces a cell feels from its neigh-

bors, a decision tree of a set of locally context-dependent

update rules, and so on. The toy models shown here are all

implemented using the PyTorch library (Paszke et al., 2019).

Procedure 1 2D Convolution

1: function CONV2D(image, kernel)

2: patches← unfold(image, patchSize)

3: for pij in patches do

4: outij ← sum(pij ⊙ kernel)

5: end for

6: return out

7: end function

Procedure 2 Generalized sliding-window function

1: function LOCAL(image, θ)

2: patches← unfold(image, patchSize)

3: Θ← unfold(image, patchSize)

4: for pij , θij in zip(patches,Θ) do

5: outij ← adaptive rule(θij)(pij)
6: end for

7: return out

8: end function

Ultimately, there is still a bedrock level in which the

model is fixed that is determined by the nature of the up-

date rule’s own update rule. However, by making the update

rule adaptive, we can allow CAs to navigate through a much

larger space of dynamical systems, giving it the possibility

to navigate its phase space according to some driving prin-

ciple or goal.

Examples

Self-organized criticality in the Ising CA

Phase transitions are fundamental phenomena in the study

of complex systems as they demonstrate how matter changes

its internal structure under varying conditions. Understand-

ing the boundaries of different phases of organization and

the conditions under which a system transitions from one

phase to another is central to the understanding of both phys-

ical and living systems. Furthermore, there is increasing

evidence that it is precisely at these boundaries between
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The energy E is tracked by a different channel and fol-

lows the equation:

τe
dE

dt
= ϵ · (E0 − E)− sc ·

∑

f

δ(t− tf ), (14)

where ϵ is an energy replenishment rate, E0 the target en-

ergy, sc the energetic cost of a spike and tf the neuron’s

spike times (tf = {t : St = 1}).
Moreover, each neuron’s spiking threshold is modified

by threshold adaptation, a homeostatic plasticity mechanism

associated with increased robustness in spiking networks

(Fontaine et al., 2014; Huang et al., 2016). Thus, a sepa-

rate CA channel tracks the spike threshold, which changes

according to the following equation:

τth
dVth

dt
= −Vth + ηth · (A− ρ0), (15)

where ηth is an adaptation rate, ρ0 is a target firing rate, and

A is the neuron’s spike trace, which is represented by a final

CA channel as:

τa
dA

dt
= −A+

∑

f

δ(t− tf ). (16)

The multiple CA channels allow an arbitrary degree of bi-

ological plausibility, with more details being potentially in-

cluded by adding new channels. For example, more detailed

voltage equations, refractoriness, and other details can be

added if necessary.

We find that the spiking network exhibits realistic popula-

tion dynamics. In particular, we see that it self-organizes in

an asynchronous irregular firing state, a commonly observed

dynamical regime in spiking networks (Brunel, 2000), see

Fig. 6 d.

Additionally, we examine whether it can encode natural

images similar to the simplified rate network. Indeed, we

find that synaptic plasticity allows the encoding of images in

the network’s connectivity. Finally, the inclusion of thresh-

old adaptation enables a short-term preservation of image

statistics in the network’s spiking activity once the stimulus

has been removed. This observation is consistent with other

findings about the relationship between short-term memory

and threshold adaptation (Itskov et al., 2011; Hu et al., 2021)

and suggests that our model can replicate different key prop-

erties of spiking networks.

Scalability and computational efficiency

We tested the performance of our method compared to the

standard neuronal activity simulator Brian2 (Stimberg et al.,

2019). On a single machine, our method allows simulating

networks that are two orders of magnitude larger, where sim-

ulation time is scaling particularly favorably for large net-

works, Fig. 2. Furthermore, the methods demonstrated in

this paper are generalizable to a much broader variety of dy-

namical systems than most specialized and highly-optimized

simulators of collective systems without too much loss of

efficiency, can run and be visualized live, and can be made

interactive with human intervention. We believe all these

properties are essential for building deeper understandings

of these emergent systems.

Conclusion

For the scientific study of the emergence and collective be-

havior in natural systems to become plausible in a system-

atic way, we first need to be able to reliably recreate and

analyze such phenomena in simpler and well-understood ar-

tificial systems. Cellular automata are a natural candidate

system for studying this kind of emergent behavior in a con-

trolled and simplified manner. Here, we explore methods to

expand the capabilities of CAs to model complex phenom-

ena by introducing heterogeneity in their update rules.

Enabling CAs to be heterogeneous massively increases

their expressivity. In fact, accurately describing any truly

complex natural system requires some kind of heterogeneity

in the modeling. Here, we demonstrate how the inclusion of

such heterogeneity in the update rules of CAs can enable the

modeling of complex natural systems in real-time on a very

large scale. We use several examples of large-scale complex

systems (Ising model, biological neural networks) that can

utilize heterogeneous update rules to self-organize towards

a desired state (critical point in the case of the Ising model,

natural image derived attractor state in the case of the rate

and spiking neural networks). As a follow-up example, one

can study the self-organization of critical-like dynamics in

neuronal networks with synaptic plasticities (Zeraati et al.,

2021), or using the scalability of the system to previously

impossible sizes to study the scaling behavior of the local

networks (Zeraati et al., 2022).

Our approach is not limited to the specific systems we

chose to model but is a general method that can be extended

to many other complex, self-organized systems that require

heterogeneous update rules. Any system with some kind

of bottom-up organizational principle (i.e., locally interact-

ing units) can potentially be modeled using locally adaptive

CAs. Thus, we propose that adaptive CAs can be a useful

tool to discover, either through experimentation or optimiza-

tion, adaptation mechanisms that can self-organize dynami-

cal systems in goal-oriented ways.
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ABSTRACT

Recurrent neural networks (RNNs) in the brain and in silico excel at solving tasks
with intricate temporal dependencies. Long timescales required for solving such
tasks can arise from properties of individual neurons (single-neuron timescale,
τ , e.g., membrane time constant in biological neurons) or recurrent interactions
among them (network-mediated timescale, τnet). However, the contribution of
each mechanism for optimally solving memory-dependent tasks remains poorly
understood. Here, we train RNNs to solve N -parity and N -delayed match-to-
sample tasks with increasing memory requirements controlled by N , by simulta-
neously optimizing recurrent weights and τs. We find that RNNs develop longer
timescales with increasing N , but depending on the learning objective, they use
different mechanisms. Two distinct curricula define learning objectives: sequen-
tial learning of a single-N (single-head) or simultaneous learning of multiple Ns
(multi-head). Single-head networks increase their τ with N and can solve large-
N tasks, but suffer from catastrophic forgetting. However, multi-head networks,
which are explicitly required to hold multiple concurrent memories, keep τ con-
stant and develop longer timescales through recurrent connectivity. We show that
the multi-head curriculum increases training speed and stability to perturbations,
and allows generalization to tasks beyond the training set. This curriculum also
significantly improves training GRUs and LSTMs for large-N tasks. Our results
suggest that adapting timescales to task requirements via recurrent interactions
allows learning more complex objectives and improves the RNN’s performance.

1 INTRODUCTION

The interaction of living organisms with their environment requires the concurrent processing of
signals over a wide range of timescales, from short timescales of coding sensory stimuli (Bathellier
et al., 2008; Panzeri et al., 2010; Safavi et al., 2023) to longer timescales of cognitive processes like
working memory (Jonides et al., 2008). The diverse timescales of these tasks are reflected in the
dynamics of the neural populations performing the corresponding computations in the brain (Mur-
ray et al., 2014; Cavanagh et al., 2020; Gao et al., 2020; Zeraati et al., 2022). At the same time,
artificial neural networks performing memory-demanding tasks (speech (Graves et al., 2013), hand-
writing (Graves, 2013), sketch (Ha & Eck, 2018), language (Bowman et al., 2015), time series
prediction (Chung et al., 2014; Torres et al., 2021), music composition (Boulanger-Lewandowski
et al., 2012)) need to process the temporal dependency of sequential data over variable timescales.
Recurrent neural networks (RNNs) (Elman, 1990; Hochreiter & Schmidhuber, 1997; Lipton et al.,
2015; Yu et al., 2019) have been introduced as a tool that can learn such temporal dependencies
using back-propagation through time.

In biological networks, diverse neural timescales emerge via a variety of interacting mechanisms.
Timescales of individual neurons in the absence of recurrent interactions are determined by cellu-
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6 RELATED WORK

Previous works independently investigated the role of neuronal and network-mediated timescales
in solving memory tasks and proposed inconsistent solutions. Studies focusing on neuronal aspect
suggested heterogeneous and adaptable neuronal properties (e.g., membrane time constant) as an
optimal mechanism (Perez-Nieves et al., 2021; Mahto et al., 2021; Smith et al., 2023a; Quax et al.,
2020). At the same time, other studies presented that network-mediated mechanisms like balanced
dynamics (Lim & Goldman, 2013), strong inhibition (Kim & Sejnowski, 2021) or homeostatic plas-
ticity (Cramer et al., 2020; 2023) can create timescales required for memory tasks. For a single
neuron modeled with multiple memory units, long timescales were shown to be instrumental in
solving memory tasks (Spieler et al., 2023). Here, we explicitly compare these mechanisms and
show that while both can be useful for learning long-memory tasks, applying network-mediated
mechanisms leads to faster training and more robust solutions.

We find that the difference between mechanisms is revealed mainly in the context of distinct learn-
ing objectives defined by curricula. This is an important distinction with previous work, since the
role of timescales has been often studied when RNNs solve a single task (e.g., single-head DMS),
without considering learning dynamics or the potential for catastrophic forgetting. We relate the
mechanisms of task-dependent timescale with the learning dynamics of RNNs across curricula. The
use of curricula in our study is inspired by previous work suggesting curriculum learning as a fitness
landscape-smoothing mechanism that can enable the gradual learning of highly complex tasks (El-
man, 1993; Bengio et al., 2009; Krueger & Dayan, 2009) and be used to uncover distinct learning
mechanisms (Kepple et al., 2022; Dekker et al., 2022). Here, we extend these findings by demon-
strating how different curricula can push networks towards adopting different strategies to develop
slow collective dynamics required for solving long-memory tasks.

7 DISCUSSION

We find that to solve long-memory tasks, RNNs develop high-dimensional activity with slow
timescales via two distinct combinations of connectivity and single-neuron timescales. While single-
head networks crucially rely on the long single-neuron timescales to perform the task, multi-head
networks prefer a constant single-neuron timescale and solve the task relying only on the long
timescales emerging from recurrent interactions. We show that developing long timescales via re-
current interactions instead of single-neuron properties is optimal for learning memory tasks and
leads to more stable and robust solutions, which can be a beneficial strategy for brain computations.

Our findings suggest that training networks on sets of related memory tasks instead of a single task
improves performance and robustness. By progressively shaping the loss function with a curriculum
to include performance evaluations on sub-tasks that are known to correlate with the desired task, we
can smooth the loss landscape of our network to allow training for difficult tasks that were previously
unsolvable. In this way, choosing an appropriate curriculum can act as a powerful regularization.

Limitations: Our study considers two relatively simple tasks with explicitly controllable mem-
ory requirements. In follow-up studies, it would be important to test our observations in more
sophisticated tasks and investigate whether our results apply to other architectures and optimizers.
Additionally, our approach is suitable only for a set of tasks with controllably increasing memory
requirements, where the different versions of the same task can be simultaneously performed on the
same data (multi-head training). This is a relatively strong constraint, and future research expand-
ing our findings could focus on generalizing the multi-head curriculum for training more realistic
tasks. Time series reconstruction is a potential task that can be used to uncover generative dynamical
systems from data (Durstewitz et al., 2023). We proposed a potential experiment in Appendix D.

Our current model is a crude approximation of biological neural networks, and more plausible archi-
tectures (spiking models, distinct neuron types) could be studied. Finally, biological neural networks
can produce long timescales via various other mechanisms we did not consider here (short-term
plasticity (Hu et al., 2021), adaptation (Salaj et al., 2021; Beiran & Ostojic, 2019), synaptic delays,
etc). A follow-up study could investigate whether our findings extend to more plausible networks
incorporating such additional mechanisms.
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Deep learning for time series forecasting: a survey. Big Data, 9(1):3–21, 2021. URL https:

//www.liebertpub.com/doi/10.1089/big.2020.0159.

Alexander van Meegen and Sacha J. van Albada. Microscopic theory of intrinsic timescales
in spiking neural networks. Physical Review Research, 3(4):043077, October 2021. doi:
10.1103/PhysRevResearch.3.043077. URL https://link.aps.org/doi/10.1103/

PhysRevResearch.3.043077.

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps
robust generalization. Advances in Neural Information Processing Systems, 33:2958–
2969, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/

1ef91c212e30e14bf125e9374262401f-Abstract.html.

Bojian Yin, Federico Corradi, and Sander M. Bohté. Effective and Efficient Computation with
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APPENDIX

A DIFFERENT TYPES AND LOCATIONS OF NONLINEARITY

In order to verify that our results are robust with respect to the type of nonlinearity used in the
network, we train RNNs using two of the most commonly used nonlinearities: ReLU and Tanh. We
find that in both cases, the training performance is similar to leaky ReLU, and the development of
single-neuron and network-mediated timescales follow the same trajectory as N increases (Fig. S7).

In some implementations of leaky-RNN, the neural self-interaction is linear and located outside of
the nonlinearity (cf. equ.1)

ri(t) =

(

1−
∆t

τi

)

·ri(t−∆t)+





∆t

τi
·





∑

i ̸=j

WR
ij · rj(t−∆t) +W I

i · S(t) + bR + bI









α

. (5)

with the explicit time discretization ∆t. The input is presented for time duration T = k∆t with
input-update time steps k. In the main text, we chose k = 1 and ∆t = 1. We discuss k > 1 in
Appendix C and ∆t < 1 in Appendix B.

We verify that training RNNs with this implementation gives similar training dynamics and trajec-
tories of τ and τnet with increasing N (Fig. S8), for both curricula. Furthermore, we find that, for
large N , ablating neurons with long τ in single-head networks and neurons with short τ in multi-
head networks reduces the performance significantly, compatible with the findings in the main text
(Fig. S9, cf. Fig. 7). We also verify that the performance of the model depends on the initialization
of τ and its trainability in the same way regardless of the location of the nonlinearity (Fig. S11, cf.
Fig. 4).

B CHANGING TIME DISCRETIZATION

In computational neuroscience, the single neuron dynamics are typically captured by the differen-
tial equations that need to be discretized for running numerical simulations and training networks.
However, the discretization can be important for stability and internal representation of the model
and the task. In the main text, we used Eq. 5 with ∆t = T = 1. For simplicity of notation, we
take in the rest of this section T = 1. We train networks with different values of ∆t (a different
∆t for each training batch), so they can perform the same task independent time discretization. We
take ∆t = 1/n with n ∈ N and train the network while keeping the duration of each stimulus
presentation in units of time constant (which means that with larger n, it would be presented for
more time steps). The flexible framework for time discretization allows us to train with multiple ∆t
simultaneously. Then, we test whether the network can solve the same task but with ∆t not included
in their training set.

We find that in networks trained with multiple ∆t, the single-neuron timescales τ follow a similar
trajectory as the results in the main text, independent of ∆t (Fig. S5a,b compared to Fig. 4b). Multi-
head networks adjust their τ to converge to n∆t = 1, while single-head networks increase their
individual neuron timescale. Moreover, the networks can generalize (without retraining) the task
to smaller ∆t than what was included in their training set, in single- and multi-head networks.
Interestingly, the performance decreases slowly when ∆t becomes smaller than the training set, but
abruptly when it becomes larger (Fig. S5c,d). The performance is best when training with multiple
∆t, but qualitatively, the result is similar for a single, small enough ∆t (Fig. S5e).

C CHANGING THE DURATION OF THE INPUT PRESENTATION

In our tasks, the input contains two timescales. First is the duration of presentation of each input
digit T = k · Tmin, with Tmin a minimal considered duration of stimulus presentation measured
in milliseconds. Second is the timescale of the task’s memory N . In the main text, we consider
the situation of k = 1, but in general, k acts as a time-rescaling parameter and defines one unit of
time for the task performance. Here, we train the RNNs with different values of k ∈ {2, 3, 5, 10}
and check the trajectories of changing τ with N depending on k. We find that similar to the case
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with k = 1, single-head networks trained with k > 1 increase their τ with N , while multi-head
networks try to keep τ close to k (Fig. S6). Moreover, tasks with k > 1 are generally more difficult
to solve since the input needs to be tracked over N · k time steps. Hence, as k grows, RNNs would
reach smaller N within the same number of training epochs. The changes in values of τ after
rescaling with k might be due to nonlinear interactions in the network arising from the combination
of different N and k.

D PROPOSED ADDITIONAL TASK: TEMPORAL PATTERN GENERATION

For future research, the task variety can be extended to include the temporal pattern generation,
which is a continuous-time task that is often used to evaluate RNNs (Durstewitz et al., 2023). The
classic variation of the task involved an RNN receiving either random noise or no input and having
to produce a target time series as output (usually a sum of sine waves with different frequencies).

A variation of the task we could consider for testing our model is the following:

Single-head: On the first step of the curriculum, we train the network to produce a single sine wave
with frequency f1, setting the target sequence to be yN=1 = sin(2π · f1 · t).

Then, for each curriculum step, we complexify the target sequence by setting the new target as:

yN=m =
m
∑

i=1

sin(2π · fi · t), (6)

for f1 > f2 > · · · > fm. In this way, as the newly added frequencies decrease, a need arises for the
network to develop longer timescales.

Multi-head: Unlike the single-head network where the RNN needs to produce only one target time
series yN=m at the m-th step of the curriculum, in the multi-head curriculum, the network produces
m output time series Y = {yN=1, . . . , yN=m}.

E EFFECTS OF TRAINING WITHOUT A CURRICULUM ON THE N -DMS TASK

We investigate the negative effects of not using a curriculum during training for the N -DMS task
to extend our results from Fig. 3a. We show in Fig. S13 that similar to the N -Parity task, networks
rapidly lose the ability to solve the N -DMS task as N increases when training without a curriculum.
Interestingly, the two tasks differ in the way they fail to be solved despite using identical optimizers.
In all of our results, the N -DMS task tends to be easier to solve for larger N . However, despite the
relative success these networks have with the N -DMS task, their drop-off in training these networks
is much steeper when comparing the curves from Fig. 3a and Fig. S13. In Fig. S13, tasks N < 15
get solved in only 1 or 2 epochs, however between 15 < N < 20 the networks rapidly slow down
in their ability to train until completely failing for N > 20 even when given longer training time.
We can infer from these results that different tasks have varying degrees to which they benefit from
a particular curriculum.

F INTERMEDIATE CURRICULA: MULTI-HEAD WITH A SLIDING WINDOW

The two curricula discussed in the main text (single-head and multi-head) represent two extreme
cases. In the single-head curriculum, at each step of the curriculum, RNNs are trained to solve a
new N without requiring to remember the solution to the previous Ns. On the other hand, in the
multi-head curriculum, RNNs need to remember the solution to all the previous Ns in addition to
the new N . Here, we test the behavior of curricula that lie in between the two extreme cases.

The intermediate curricula involve the simultaneous training of multiple heads, similar to the multi-
head curriculum, but instead of adding new heads at each curriculum step, we train a fixed number
of heads and only shift the Ns, which they are trained for according to a sliding window. We
consider the number of heads to be 10, and start the training for N ∈ [2, . . . , 11]. In the next steps
of the curriculum, we use the already trained network to initialize another network which we train
for N + w (e.g., N ∈ [2 + w, . . . , 11 + w]), where w ∈ {1, 3, 5} indicates the size of the sliding
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window. For each w, we train 4 different networks (i.e., 4 different initialization). For the following
analyses, we trained the networks on the N -parity task.

We find that networks trained with the multi-head-sliding curriculum generally demonstrate an in-
between behavior compared with the extreme curricula, but the results also depend on the size of
the sliding window. Within 1000 training epochs, the maximal N these networks can solve (with
> 98% accuracy) is in between the maximal N of single- and multi-head curricula, depending
on the sliding window. Networks with a larger sliding window can solve a higher maximal N ,
indicating that a large sliding window not only does not slow down the training but also provides a
more efficient curriculum to learn higher Ns (Fig. S12a). Moreover, in multi-head-sliding networks,
single-neuron (τ ) and network-mediated (τnet) timescales have values in between single-head and
multi-head curricula (Fig. S12b). However, both τ and τnet grow with N similar to single-head
networks, with the pace of growth reducing for larger sliding windows.

Similar to the main text (Fig. 7c,d,e), we perform the perturbation and retraining analysis on multi-
head-sliding networks trained with w = 5. The relative accuracy after perturbation of recurrent
weights WR and timescales τ for these networks lies between the two extremes (Fig. S14a, b).
However, the retraining analysis suggests that multi-head-sliding networks can be retrained better
for higher new Ns (Fig. S14c,d). If the network is originally retrained for a small N (e.g., N = 16),
the retraining relative accuracy is similar between multi-head and sliding networks but is larger than
single-head networks. For networks trained for larger Ns (e.g., N = 31), sliding networks exhibit
a superior retraining ability compared to the other two curricula. These results suggest that the
curriculum with the sliding window helps multi-head networks to better adjust to new Ns.

G SINGLE- AND MULTI-HEAD CURRICULA FOR TRAINING GRU AND LSTM

The results presented in the main text were generated using a modified version of a vanilla RNN
(leaky-RNN) with an explicit definition of the timescale parameter τ . To test whether the difficulties
in training for long memory tasks without curriculum would carry over to recurrent networks that
were specifically designed for long memory tasks, we train two other architectures, an LSTM (long
short-term memory) and a GRU (gated recurrent unit) on the N -parity task for increasing N , with
and without a curriculum. Both the GRU and LSTM have similar network sizes to the RNN with 500
neurons, though they differ in their activation functions (the RNN used a single leakyReLU whereas
the GRU/LSTMs have both sigmoids and tanhs for different gates). Furthermore, in contrast with
the RNNs, an Adam optimizer is used with learning rate lr = 10−3 and the input signals to the
models take values ∈ {−1, 1} (to have a zero-mean input signal).

We find that for both architectures, training the networks without a curriculum is extremely slow
for large N and relatively unstable for small N and probably requires strict hyper-parameter tun-
ing (Fig. S15a). Without additional hyper-parameter tuning, introducing the multi-head curriculum
speeds up the training significantly, and both architectures can easily learn the N -parity task with
large N similar to the leaky-RNN (Fig. S15b). Moreover, similar to RNNs, the multi-head curricu-
lum has a higher training speed than the single-head curriculum (Fig. S16). Our results indicate
that GRUs and LSTMs are subject to similar training dynamics as RNNs used in the main text and
the multi-head curriculum is an optimal curriculum regardless of the RNN architecture. The advan-
tage of using the leaky-RNN architecture is that its parameters are easier to interpret, and it allows
us to study better the mechanisms underlying each curriculum by explicitly studying the role of
timescales.

H BACKWARD AND FORWARD RETRAINING OF NETWORKS

To understand how trained models develop their ability to create longer timescales throughout the
curriculum as well as their backward compatibility and robustness to catastrophic forgetting, we
measure the retrainability of models trained on a task with memory N on a different task with
memory N∗. We freeze all parameters of a trained network except the final readout layer weights
which are retrained on an N∗ task. Specifically, we load models trained for N ∈ [2, . . . , 19] and
retrain them on a new N∗ ∈ [2, . . . , N+2], independently for each N∗, for a maximum of 10 epochs
or until its accuracy was above 98%. Note that we retrain both single- and multi-head networks as
single-head.

17

118 A Publications



Published as a conference paper at ICLR 2024

We find that the multi-head networks exhibit near-perfect backward compatibility as well as better
forward compatibility than the single-head models (Fig. S17), while single-head networks suffer
from catastrophic forgetting. For the multi-head networks, the backward compatibility is enforced
through the loss function (as is the case in the multi-head curriculum) hence, the necessary represen-
tations for N∗ < N persist. However, the multi-head curriculum also has positive implications for
forward compatibility, which is evident in the off-diagonal entries of the accuracy where N∗ > N
(to the right of the dotted line) when compared to the single-head values.

I EMERGENCE OF CURRICULUM DURING MULTI-HEAD TRAINING

In the multi-head curriculum, the difficulty of the task increases gradually; a new head with a larger
N is added at each step of the curriculum. In the main text, we discussed that networks trained with
such a curriculum generally train well up to large Ns. Here we ask whether this optimal curriculum
can emerge by itself if we train a network with multiple heads, but without any predefined curricula.
For this analysis, we train RNNs with 19 (N ∈ [2, . . . , 20]) and 39 heads (N ∈ [2, . . . , 40]) to solve
all the available Ns simultaneously.

We find that despite the absence of an explicit curriculum, these networks learn the task by generat-
ing an internal multi-head curriculum. While all the heads contribute equally to the loss, heads with
a smaller N reach the higher accuracy faster (Fig. S18a). However, the speed of training strongly
depends on the total number of heads in each network. For the same N , the network with 19 heads
reaches the 98% accuracy faster than the network with 39 heads (Fig. S18b), but both networks have
a slower training speed when compared to the multi-head curriculum. These results suggest that the
multi-head curriculum is an optimal curriculum that can arise naturally during multi-head training
and can increase the training speed when applied explicitly.

J ROLE OF STRONG INHIBITORY CONNECTIVITY IN SINGLE-HEAD

NETWORKS

The main difference between single- and multi-head networks in terms of connectivity is the stronger
inhibitory (negative) connectivity for large N in the single-head networks compared with the rela-
tively balanced connectivity in multi-head networks (Fig. 6a). We hypothesized that larger inhibition
in single-head networks is required to keep the dynamics stable in the presence of slow single-neuron
timescales τ . To test this hypothesis, we perturb only the inhibitory connections in networks trained
with both curricula as:

WR
ij = Wij + c ·Wij , ∀ WR

ij < 0, (7)

for a given amount of c ∈ [−0.1, 0.1]. We observe that by reducing the amount of inhibition in
single-head networks, the network activity explodes even before reaching the balanced point, i.e.,
the point when the average incoming weight of neurons becomes 0 (Fig. S19a). On the contrary,
multi-head networks are significantly more robust to such perturbations and their activity remains
within a reasonable range for a broad range of inhibitory scaling (Fig. S19b).

This difference is most likely attributed to the difference in single-neuron timescales τ between
single- and multi-head networks. The single-head networks have a larger average τ compared to
the multi-head networks whose average τ ≈ 1 for large N . Longer τ leads to neurons with self-
sustaining activity, and thus, a stronger inhibition might be required to prevent the runaway activa-
tion. Such a relationship can be observed when comparing the average τ and inhibitory strength
across networks: for single-head networks as τ grows, the average weight becomes more negative
(inhibitory)(Fig. S19c), but such correlation does not exist in multi-head networks (Fig. S19d).

K DEPENDENCE OF DIMENSIONALITY OF POPULATION ACTIVITY ON N

We measure the dimensionality as the number of principal components that explain 90% of the
population activity variance. The dimensionality increases with N for both tasks and curricula, but
the increase follows a linear relation with N for N -parity task but a sub; linear relation for the
N -DMS task (Fig. 6b).
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To demonstrate this difference, we fit two separate lines for the data up to N = 20 and from N = 20
up to the largest N . We observe that for the N -parity task, the slope of two lines largely overlaps,
indicating a linear relation. However, for the N -DMS task, the second line clearly has a smaller
slope than the first one, indicating a sub-linear growth with N (Fig. S20).

L ABLATION DETAILS

To test whether neurons with fast or slow timescales (τ ) are necessary for computations in the trained
RNNs we perform the ablation analysis. For this analysis, we compute the relative accuracy of the
model (Eq. 4 in the main text) after removing a single neuron. We ablate neuron i by setting all
incoming and outgoing associated weights to zero

WR
ij ,W

R
ji = 0 ∀j

WO
i ,W I

i = 0
(8)

Here Wij refers to recurrent weights, WO
i to input weights and WO

i to readout weights. To measure
the relative accuracy, we simulate the RNN forward using random binary inputs for 1000 time steps
after 100 time steps of a burn-in period (to reach the stationary state). Then, we evaluate the accuracy
of the network at each time step. We repeat this procedure over 10 trials and compute the average
and standard deviation of the relative accuracies across trials.

M SIGNIFICANCE OF THE RESPONSES TO PERTURBATIONS OF WEIGHTS AND

RETRAINING

We investigate the significance of differences between single- and multi-head networks presented
in Fig. 7 using a t-test (two-sided, unpaired). Perturbations are computed 10 times for 4 networks
per group with results being pooled across networks. Retraining accuracy is computed once per
network. Table 1,2, and 3 indicates with stars the significance levels corresponding to p-values
below 5e−2, 1e−2, 1e−3, 1e−4, and 1e−5.

Weight Perturbation Strength p-value Significance

1.0e-02 8.8e-03 **

2.2e-02 4.5e-01 n/s

4.6e-02 2.9e-01 n/s

1.0e-01 5.1e-15 *****

2.2e-01 2.2e-39 *****

4.6e-01 8.3e-47 *****

1.0e+00 8.6e-04 ***

2.2e+00 7.6e-01 n/s

4.6e+00 6.5e-01 n/s

1.0e+01 9.0e-01 n/s

Table 1: Significance of the weights’ perturbation for different perturbation sizes Fig. 7c. Two-
sided and unpaired t-test, stars indicate p-values below 5e−2, 1e−2, 1e−3, 1e−4, and 1e−5.
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Perturbation of τ p-value Significance

1.0e-03 4.3e-01 n/s

2.2e-03 8.9e-01 n/s

4.6e-03 5.4e-01 n/s

1.0e-02 1.2e-02 *

2.2e-02 2.3e-14 *****

4.6e-02 9.1e-29 *****

1.0e-01 1.3e-50 *****

2.2e-01 4.1e-35 *****

4.6e-01 4.8e-01 n/s

1.0e+00 6.0e-01 n/s

2.2e+00 1.3e-01 n/s

Table 2: Significance of the τ ’s perturbation for different perturbation sizes Fig. 7d. Two-sided and
unpaired t-test, stars indicate p-values below 5e−2, 1e−2, 1e−3, 1e−4, and 1e−5.

retraining for N p-value Significance

17 1.7e-03 **

18 9.7e-04 ***

19 1.2e-07 *****

20 3.2e-05 ****

21 1.7e-05 ****

22 1.6e-05 ****

23 7.4e-06 *****

24 6.4e-05 ****

25 3.1e-04 ***

26 1.7e-03 **

27 1.7e-02 *

28 2.1e-03 **

29 7.5e-03 **

30 1.6e-01 n/s

31 1.5e-01 n/s

32 6.5e-01 n/s

Table 3: Significance of the retraining differences between single and multi-head, Fig. 7e. Two-
sided and unpaired t-test, stars indicate p-values below 5e−2, 1e−2, 1e−3, 1e−4, and 1e−5.

N CODE AND DATA AVAILABILITY

Codes for training and evaluating the RNNs and reproducing the experiments (e.g., measuring
timescales, performing ablations, etc.) together with example trained networks are available on
GitHub at https://github.com/LevinaLab/rnn timescale public (more details in README).
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Abstract

The evolutionary balance between innate and learned behav-
iors is highly intricate, and different organisms have found
different solutions to this problem. We hypothesize that the
emergence and exact form of learning behaviors is naturally
connected with the statistics of environmental fluctuations
and tasks an organism needs to solve. Here, we study how
different aspects of simulated environments shape an evolved
synaptic plasticity rule in static and moving artificial agents.
We demonstrate that environmental fluctuation and uncer-
tainty control the reliance of artificial organisms on plastic-
ity. Interestingly, the form of the emerging plasticity rule is
additionally determined by the details of the task the artificial
organisms are aiming to solve. Moreover, we show that co-
evolution between static connectivity and interacting plastic-
ity mechanisms in distinct sub-networks changes the function
and form of the emerging plasticity rules in embodied agents
performing a foraging task.

Introduction

One of the defining features of living organisms is their abil-

ity to adapt to their environment and incorporate new infor-

mation to modify their behavior. It is unclear how the ability

to learn first evolved (Papini, 2012), but its utility appears

evident. Natural environments are too complex for all the

necessary information to be hardcoded genetically (Snell-

Rood, 2013) and more importantly, they keep changing dur-

ing an organism’s lifetime in ways that cannot be anticipated

(Ellefsen, 2014; Dunlap and Stephens, 2016). The link be-

tween learning and environmental uncertainty and fluctua-

tion has been extensively demonstrated in both natural (Kerr

and Feldman, 2003; Snell-Rood and Steck, 2019), and arti-

ficial environments (Nolfi and Parisi, 1996).

Nevertheless, the ability to learn does not come without

costs. For the capacity to learn to be beneficial in evolu-

tionary terms, a costly nurturing period is often required,

a phenomenon observed in both biological (Thornton and

Clutton-Brock, 2011), and artificial organisms (Eskridge

and Hougen, 2012). Additionally, it has been shown that in

some complex environments, hardcoded behaviors may be

superior to learned ones given limits in the agent’s lifetime

and environmental uncertainty (Dunlap and Stephens, 2009;

Fawcett et al., 2012; Lange and Sprekeler, 2020).

The theoretical investigation of the optimal balance be-

tween learned and innate behaviors in natural and artificial

systems goes back several decades. However, it has recently

found also a wide range of applications in applied AI sys-

tems (Lee and Lee, 2020; Biesialska et al., 2020). Most AI

systems are trained for specific tasks, and have no need for

modification after their training has been completed. Still,

technological advances and the necessity to solve broad fam-

ilies of tasks make discussions about life-like AI systems rel-

evant to a wide range of potential application areas. Thus the

idea of open-ended AI agents (Open Ended Learning Team

et al., 2021) that can continually interact with and adapt to

changing environments has become particularly appealing.

Many different approaches for introducing lifelong learn-

ing in artificial agents have been proposed. Some of

them draw direct inspiration from actual biological systems

(Schmidhuber, 1987; Parisi et al., 2019). Among them, the

most biologically plausible solution is to equip artificial neu-

ral networks with some local neural plasticity (Thangarasa

et al., 2020), similar to the large variety of synaptic plastic-

ity mechanisms (Citri and Malenka, 2008; Feldman, 2009;

Caroni et al., 2012) that performs the bulk of the learning

in the brains of living organisms (Magee and Grienberger,

2020). The artificial plasticity mechanisms can be optimized

to modify the connectivity of the artificial neural networks

toward solving a particular task. The optimization can use

a variety of approaches, most commonly evolutionary com-

putation.

The idea of meta-learning or optimizing synaptic plastic-

ity rules to perform specific functions has been recently es-

tablished as an engineering tool that can compete with state-

of-the-art machine learning algorithms on various complex

tasks (Burms et al., 2015; Najarro and Risi, 2020; Pedersen

and Risi, 2021; Yaman et al., 2021). Additionally, it can be

used to reverse engineer actual plasticity mechanisms found

in biological neural networks and uncover their functions

(Confavreux et al., 2020; Jordan et al., 2021).

Here, we study the effect that different factors (environ-
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still interpret the binary sign in either of two ways, either

consuming food marked with 1 or the ones marked with 0

by the sensory network). The agents perform equally well

in this variation of the task as before (Fig. 5d), but now, the

evolved plasticity rules seem to be more structured (Fig. 6b).

Moreover, the variance of the learned weights in the best-

performing agents is significantly reduced (Fig. 6d), which

indicates that the bottleneck in the sensory network is in-

creasing selection pressure for rules that learn the environ-

ment’s food distribution accurately.

Discussion

We find that different sources of variability have a strong

impact on the extent to which evolving agents will develop

neuronal plasticity mechanisms for adapting to their envi-

ronment. A diverse environment, a reliable sensory system,

and a rate of environmental change that is neither too large

nor too small are necessary conditions for an agent to be able

to effectively adapt via synaptic plasticity. Additionally, we

find that minor variations of the task an agent has to solve

or the parametrization of the network can give rise to signif-

icantly different plasticity rules.

Our results partially extend to embodied artificial agents

performing a foraging task. We show that environmental

variability also pushes the development of plasticity in such

agents. Still, in contrast to the static agents, we find that

the interaction of a static motor network with a plastic sen-

sory network gives rise to a much greater variety of well-

functioning learning rules. We propose a potential cause of

this degeneracy; as the relatively complex motor network is

allowed to read out and process the outputs from the plas-

tic network, any consistent information coming out of these

outputs can be potentially interpreted in a behaviorally use-

ful way. Reducing the information the motor network can

extract from the sensory system significantly limits learning

rule variability.

Our findings on the effect of environmental variability

concur with the findings of previous studies (Lange and

Sprekeler, 2020) that have identified the constraints that en-

vironmental variability places on the evolutionary viability

of learning behaviors. We extend these findings in a mech-

anistic model which uses a biologically plausible learning

mechanism (synaptic plasticity). We show how a simple

evolutionary algorithm can optimize the different parame-

ters of a simple reward-modulated plasticity rule for solv-

ing simple prediction and decision tasks. Reward-modulated

plasticity has been extensively studied as a plausible mecha-

nism for credit assignment in the brain (Florian, 2007; Baras

and Meir, 2007; Legenstein et al., 2008) and has found sev-

eral applications in artificial intelligence and robotics tasks

(Burms et al., 2015; Bing et al., 2019). Here, we demon-

strate how such rules can be very well-tuned to take into

account different environmental parameters and produce op-

timal behavior in simple systems.

Additionally, we demonstrate how the co-evolution of

plasticity and static functional connectivity in different sub-

networks fundamentally changes the evolutionary pressures

on the resulting plasticity rules, allowing for greater di-

versity in the form of the learning rule and the resulting

learned connectivity. Several studies have demonstrated

how, in biological networks, synaptic plasticity heavily in-

teracts with (Butz et al., 2014; Stampanoni Bassi et al., 2019;

Bernáez Timón et al., 2022) and is driven by network topol-

ogy (Giannakakis et al., 2023). Moreover, it has been re-

cently demonstrated that biological plasticity mechanisms

are highly redundant in the sense that any observed neural

connectivity or recorded activity can be achieved with a va-

riety of distinct, unrelated learning rules (Ramesh, 2023).

This observed redundancy of learning rules in biological set-

tings complements our results and suggests that the function

of plasticity rules cannot be studied independently of the

connectivity and topology of the networks they are acting

on.

The optimization of functional plasticity in neural net-

works is a promising research direction both as a means to

understand biological learning processes and as a tool for

building more autonomous artificial systems. Our results

suggest that reward-modulated plasticity is highly adaptable

to different environments and can be incorporated into larger

systems that solve complex tasks.

Future work

This work studies a simplified toy model of neural network

learning in stochastic environments. Future work could be

built on this basic framework to examine more complex re-

ward distributions and sources of environmental variabil-

ity. Moreover, a greater degree of biological realism could

be added by studying more plausible network architectures

(possibly derived from connectomics data) and more sophis-

ticated plasticity rule parametrizations.

Additionally, our foraging simulations were constrained

by limited computational resources and were far from ex-

haustive. Further experiments can investigate environments

with different constraints, food distributions, and multiple

seasons as well as the inclusion of plasticity on the motor

parts of the artificial organisms.
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Tübingen AI Center (FKZ: 01IS18039A). AL is a member

of the Machine Learning Cluster of Excellence, EXC num-

ber 2064/1 – Project number 39072764.

138 A Publications



References
Baras, D. and Meir, R. (2007). Reinforcement Learning, Spike-

Time-Dependent Plasticity, and the BCM Rule. Neural Com-
putation, 19(8):2245–2279.
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