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1 Summary

EN: Deep learning has become a dominant technique in machine learning and with
only a little exaggeration it became a synonym to machine learning itself. Despite its great
performance on tasks ranging from image classification to text generation, the underlying
mechanism remains largely not understood and the deep-learning systems are a black-box,
yielding some undesirable properties, such as the presence of adversarial examples. An
adversarial example is a tiny modification of an input (usually demonstrated for images)
that is imperceivable to humans and does not change the semantics of the input, however,
the classifier is fooled and changes output to some absurd value. This is of a major concern
in safety-critical applications, such as for autonomous driving where the consequence of
such adversarial manipulations are potentially catastrophic. In this thesis, we continue
in the effort to mitigate the problem.

• In the first publication, we observe that the problem is not only present for deep
learning, but also for simpler classifiers, such as nearest prototype classifiers. In
that case, we derive rigorous mathematical guarantees about the robustness and
provide tractable lower-bounds for the robustness. Despite using simpler models,
this allowed us to establish state-of-the-art results on a popular benchmark.

• Later, we focus on randomized smoothing, which is a method certifying the robust-
ness of a classifier to adversarial perturbations. In simple terms, in randomized
smoothing we add noise to the input many times and output the majority vote over
the outputs of the classifier for the noisy inputs. We present three works regarding
this topic.

– First, we show that the mathematical guarantees do not transfer to standard
computer implementations of randomized smoothing. Then we develop a
fix so that the guarantees hold not only in math, but also in the computer
implementation.

– Second, we have shown how to incorporate the domain constraints of the
input to improve the robustness certificates. Namely, that the images are
represented by pixel intensities between 0 and 1.

– Third, we have revised the statistical estimation tasks, commonly appearing
in the certification procedure. Concretely, we need to decide if the mean of
a Bernoulli distribution ( equivalently, the head probability in a coin toss)
is larger than a certain constant and we have provided an optimal (up to
constants) way to solve the problem in terms of samples required.
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1 Summary

DE: Deep Learning ist zu einer dominierenden Technik im Bereich des maschinellen Ler-
nens geworden und ist, mit nur wenig Übertreibung, zu einem Synonym für maschinelles
Lernen selbst geworden. Trotz seiner großartigen Leistung bei Aufgaben, die von der Bild-
klassifikation bis zur Textgenerierung reichen, bleibt der zugrunde liegende Mechanismus
weitgehend unverstanden, und die Deep-Learning-Systeme sind eine Black-Box, was zu
einigen unerwünschten Eigenschaften führt, wie der Präsenz von adversarialen Beispielen.
Ein adversariales Beispiel ist eine winzige Modifikation eines Inputs (in der Regel bei
Bildern demonstriert), die für Menschen nicht wahrnehmbar ist und die Semantik des
Inputs nicht verändert. Dennoch wird der Klassifikator getäuscht und gibt einen absurden
Wert aus. Dies ist von großer Bedeutung in sicherheitskritischen Anwendungen, wie z.
B. beim autonomen Fahren, wo die Konsequenzen solcher adversarialen Manipulationen
potenziell katastrophal sind. In dieser Arbeit setzen wir die Bemühungen fort, das
Problem zu mildern.

• In der ersten Veröffentlichung beobachten wir, dass das Problem nicht nur beim
Deep Learning auftritt, sondern auch bei einfacheren Klassifikatoren, wie z. B. bei
den nächstgelegenen Prototyp-Klassifikatoren. In diesem Fall leiten wir strenge
mathematische Garantien zur Robustheit ab und liefern eine berechenbare untere
Schranke für die Robustheit. Trotz der Verwendung einfacher Modelle konnten
wir damit auf einem beliebten Benchmark Ergebnisse erzielen, die dem Stand der
Technik entsprechen.

• Später konzentrieren wir uns auf Randomized Smoothing, eine Methode zur Zerti-
fizierung der Robustheit eines Klassifikators gegenüber adversarialen Störungen.
Einfach ausgedrückt fügen wir beim Randomized Smoothing dem Input mehrmals
Rauschen hinzu und geben die Mehrheitsentscheidung basierend auf den Ausgaben
des Klassifikators für die verrauschten Inputs aus. Wir präsentieren drei Arbeiten
zu diesem Thema.

– Zunächst zeigen wir, dass die mathematischen Garantien nicht auf Standard-
Computerimplementierungen von Randomized Smoothing übertragbar sind.
Dann entwickeln wir eine Lösung, damit die Garantien nicht nur mathematisch,
sondern auch in der Computerimplementierung gelten.

– Zweitens haben wir gezeigt, wie die Domänenbeschränkungen des Inputs
integriert werden können, um die Robustheitszertifikate zu verbessern. Konkret
geht es darum, dass Bilder durch Pixelintensitäten zwischen 0 und 1 dargestellt
werden.

– Drittens haben wir die statistischen Schätzaufgaben, die häufig im Zerti-
fizierungsverfahren auftreten, überarbeitet. Konkret müssen wir entscheiden,
ob der Mittelwert einer Bernoulli-Verteilung (äquivalent zur Wahrscheinlichkeit
für "Kopf" beim Münzwurf) größer als eine bestimmte Konstante ist. Wir
haben eine optimale (bis auf Konstanten) Methode zur Lösung des Problems
in Bezug auf die erforderlichen Stichproben entwickelt.

translated with the help of chatgpt.

2



Acknowledgments

I thank my family, friends, coauthors, and the members of the groups from our corridor
(Hein and von Luxburg) for many engaging discussions over the years during (and not
limited to) the reading groups.

3





2 Introduction

Let us begin with a brief introduction to supervised statistical learning. We have a set
of examples {(xi, yi)}ni=1, where xi represents an input based on which we make a decision
and yi is the corresponding decision we want to learn. For example, xi ∈ R

2 might be an
output of a sensor measuring the speed of the wind and the intensity of sunlight and yi

be a binary variable deciding if the blinds should be up or down, represented by 0 and 1

respectively. The goal is to find (learn) a function F ∶ R
2
→ {0, 1} minimizing

n

∑
i=1

(F (xi) − yi)2, (2.1)

corresponding to the number of errors it makes on our set of examples. Then, we hope
that on a fresh sample x, the output F (x) will be an accurate predictor of the correct y

and we can deploy F to control blinds. This can of course go wrong1 and it is for another
discussion when it happens.

To find a classifier F that is good on the task, we choose a set F of candidate functions
beforehand from which we pick F . Usually, the candidate set is parameterized by some
real numbers so that there is an almost everywhere differentiable function f , mapping the
parameters and inputs to a real number. The corresponding classifier is then obtained
by thresholding: Fw(x) = Jf(w, x) g 0.5K, or equivalently:

Fw(x) =
⎧⎪⎪⎨⎪⎪⎩

0, if f(w, x) < 0.5,

1, otherwise.
(2.2)

For example, one such set of functions is the set of linear classifiers. In our case, they
are parameterized by weights w ∈ R2, f(w, x) = ⟨w, xð, and the corresponding set of
functions is F = {Fw ∣ w ∈ R2}. Unfortunately, even for such a simple set of functions,
the following optimization problem of selecting the best classifier is hard2:

min
F ∈F

n

∑
i=1

(F (xi) − yi)2. (2.3)

Thus, we instead solve the following minimization problem by gradient-based methods3

and use the minimizer w and classifier Fw; we do not always find the actual minimizer,

1We possibly resort to curtains after several years of waiting.
2Arguably not hard in 2 dimensions, but NP-hard in general.
3We iteratively perform tiny updates of w, each of which decreases the objective value a bit.
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2 Introduction

but in practice, we can find good enough solutions this way.

min
w∈R2

n

∑
i=1

ℓ(f(w, xi), yi) (2.4)

Here, ℓ is a suitable loss function such that ℓ(f(w, xi), yi) g (Fw(xi) − yi)2, in which
case the minimization of (2.4) also leads to small values of (2.3). Simple examples are
the squared loss ℓ(u, v) = 4(u − v)2 and the hinge loss ℓ(u, v) = v max{0, 1 − 2u} + (1 −
v)max{0, 2u − 1}, but more complex loss functions are used in practice. If we have more
than two labels, things get slightly more complicated and we do not review it here since
the spirit stays the same.

2.1 Adversarial robustness

In modern machine learning, we work with a very complicated set of functions - neural
networks and also with very high dimensional inputs. For instance, RGB images with
resolution 224 × 224 are represented by R

150 528, since every pixel is represented by 3

intensities of red, green and blue channel; 3 ⋅ 2242
= 150 528. It follows from the learning

procedure described above that we do not have any actual control over how the classifier
behaves outside of the set of presented examples and we only hope that it will be useful
even for the unseen inputs. Luckily, this is often the case.

However, it was observed in Szegedy et al. (2014); Biggio et al. (2013) that there exist
adversarial examples, i.e., small imperceptible modifications of the input which change
the decision of the classifier. This property is of major concern in application areas where
safety and security are critical such as medical diagnosis or autonomous driving. We
illustrate this phenomenon in the following example, where a strong off-the-shelf classifier
is fooled by imperceptible noise and mistakes a penguin for a carnivorous mammal. The
image is taken from ImageNet dataset (Russakovsky et al., 2015).

king penguin

+ 0.001 ⋅

adversarial noise

=

mongoosel

This thesis deals mainly with problems related to adversarial robustness. We start
with the definitions to make things a little formal. Usually, we are interested only in the
correct predictions being robust, but for the interest of simplicity, we do not require this
in the definition. We also usually let the distance to be implicit from the context.
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2.1 Adversarial robustness

Definition 2.1. Let F ∶ R
d
→ {0, 1} be a classifier, d ∶ R

d
× R

d
→ R+ be a distance

function, and x ∈ Rd be an input.

• We say that x′ ∈ Rd is an ϵ-adversarial example if F (x) ≠ F (x′) and d(x, x′) < ϵ.

• We say that F is robust at x at radius ϵ if there is no ϵ−adversarial example.

In the literature, it is common to consider the distance to be induced by a p−norm4

with p ∈ {1, 2,∞}; e.g., d(x, x′) = ∥x − x′∥
2

and we follow this custom. We note that there
are also more exotic settings, for example where the distance measure approximates
semantic dissimilarity of images (Wong et al., 2019; Levine and Feizi, 2020; Laidlaw et al.,
2021; Voráček and Hein, 2022).

Usually, it is infeasible (co-NP hard for ReLU networks (Katz et al., 2017)) to decide
if a classifier is ϵ−robust at an input. There are two lines of research bypassing this
hardness result:

• Empirical robustness: We search for an adversarial example in the ϵ-neighborhood
of the input. If we fail to find such an adversarial example, we conclude that the
classifier is ϵ−robust here. This approach overestimates the actual robustness.

• Certified robustness: We claim that the classifier is ϵ−robust only when we can
prove it. This way, we generally underestimate the actual robustness.

In the thesis, we focus mainly on the second line - certified robustness.

2.1.1 Empirical robustness

We have already described that in this sub-field we rely on algorithms searching for
adversarial examples - we call them adversarial attacks. We consider targeted attacks,
they search for adversarial examples belonging to a certain class y. The optimization
problem for checking ϵ−robustness is very similar to the problem during learning as
in (2.4), the difference is that the parameters w are fixed and we optimize over the input
instead:

min
x′∈[0,1]d

ℓ(f(w, x′), y),
s.t. ∥x − x′∥ f ϵ.

(2.5)

We have already argued that it is infeasible to solve Problem (2.5) exactly, so we
might end up not finding the adversarial example due to optimization problems. To
present a brief historical overview, problems of the form (2.5) were first attempted by
L-BFGS (Szegedy et al., 2014). Later, Goodfellow et al. (2015) proposed to replace the
objective of Problem (2.5) by its first-order Taylor approximation and dropped the box
constraint on x′. The problem is then a maximization of a linear function in a norm-ball.
For p−norms, these problems have closed-form solutions that pop out from the standard

4∥x∥p =
p

√
∑

d
i=1
∣xi∣p for 1 ≤ p <∞ and ∥x∥

∞
=max

d
i=1 ∣xi∣.

7



2 Introduction

proof of Hölder’s inequality. Later, this approach was extended to perform multiple such
steps and use projected gradient descent (resp. ascent, called PGD) Madry et al. (2018),
and finally to use an ensemble of attacks containing PGD and other attacks not described
here Croce and Hein (2020).

On the defending side, adversarial training Kurakin et al. (2017); Madry et al. (2018)
is used to make networks resistant to adversarial attacks. The idea is that the training
is performed on the adversarially attacked (usually a few steps of PGD) examples,
highlighting the differences to standard training (2.4) in blue:

min
w∈Rn

max
x′

i
∣ ∥xi−x′

i
∥≤ϵ

n

∑
i=1

ℓ(f(w, x′i), yi). (2.6)

With this approach to adversarial robustness, it happened many times that defenses that
were considered effective later turned out to be much weaker than originally claimed (Atha-
lye et al., 2018; Croce and Hein, 2020; Tramer et al., 2020; Carlini et al., 2019); specifically,
this happened to the majority of defenses based on different ideas than adversarial train-
ing. The classifiers are made robust to the known attack, so it might happen that a new
attack will show that the networks currently considered robust in-fact are not.

2.1.2 Certified robustness

An alternative approach is to prove that a classifier is ϵ-robust at a point, but possibly be
conservative. We split the discussion here into the deterministic and stochastic solutions.

Deterministic: Recalling our notation, we have a function f(w, x) and the induced
classifier is Fw(x) = Jf(w, x) g 0.5K as in Equation (2.2). One common direction is to
control the Lipschitz constant of the underlying function. If f(w, x) is far from the
decision boundary (i.e., ∣f(w, x) − 0.5∣ is large), and the function f(w, ⋅) has a small
Lipschitz constant, then we might conclude Fw is robust at x. We make this argument
more formal.

Definition 2.2. Let h ∶ R
d
→ R. Its Lipschitz constant w.r.t. norm ∥⋅∥ is at most L if

for all distinct x, y ∈ Rd it holds that

L g
∣h(x) − h(y)∣
∥x − y∥ .

Theorem 2.3. If f(w, ⋅) has Lipschitz constant at most L > 0, then Fw is ∣f(w, x) − 0.5∣ /L
robust at x.

Proof. If ∣x′ − x∣ < ∣f(w, x) − 0.5∣ /L, then ∣f(w, x) − f(w, x′)∣ < ∣f(w, x) − 0.5∣ and so
Fw(x) = Fw(x′).

Neural network is usually a composition of simple operators; e.g., matrix multiplications,
non-linearities, or additions; the Lipschitz constant of a network is then bounded per
layer. For every operator, the Lipschitz constant is computed and their product is the

8



2.1 Adversarial robustness

upper bound on the Lipschitz constant of the network. For examples of this direction,
see Hein and Andriushchenko (2017); Li et al. (2019); Trockman and Kolter (2021); Leino
et al. (2021); Singla et al. (2022) for the ℓ2 threat model and Zhang et al. (2022) for ℓ∞.

The alternative deterministic approaches usually consider ℓ∞-norm bounded adversarial
examples and exploit the layer-wise structure of neural networks. They propagate through
the network a convex set (for example a product of intervals) that contains images of all
the possible inputs from the ϵ-neighborhood mapped through the part of the network.
possibly combined with mixed-integer linear programs or SMT; see, e.g., Katz et al.
(2017); Gowal et al. (2018); Wong et al. (2018); Balunovic and Vechev (2020).

Stochastic: A popular way to get robustness certificates is randomized smoothing
(Lecuyer et al., 2019; Cohen et al., 2019; Salman et al., 2019). Here, the intuition is that
when we add a strong, random (for example Gaussian) noise to the input, we cannot
distinguish the image from another image that differs from the original one only subtly.

We first describe smoothing with normal distribution for ℓ2 robustness. For simplicity,
we only certify class 1, the other case is symmetric. Let F ∶ R

d
→ {0, 1} be a base classifier.

Its smoothed version is h(x) = Eε∼N (0,Ã2I)F (x + ε), and the resulting hard classifier is
H(x) = Jh(x) > 0.5K. Using the Neyman-Pearson lemma the following (canonical) result
has been shown:

Theorem 2.4 ((Cohen et al., 2019)). Let F ∶ R
d
→ {0, 1} and h(x) = Eε∼N (0,Ã2I)F (x+ε),

then H(x′) = 1 for all x′ with ∥x − x′∥
2
< Ã Φ−1(h(x)), where Φ−1 is the Gaussian quantile

function.

It is generally infeasible to evaluate h(x), and in practice, we only approximate it by
Monte-Carlo sampling; here every εi is a fresh sample from N (0, Ã2I).

h(x) ≈ 1

n

n

∑
i=1

F (x + εi), (2.7)

h

⎛⎜⎜⎝
⎞⎟⎟⎠ ≈

1

n

⎛⎜⎜⎝F
⎛⎜⎜⎝

⎞⎟⎟⎠ + F

⎛⎜⎜⎝
⎞⎟⎟⎠ + F

⎛⎜⎜⎝
⎞⎟⎟⎠ + . . .

⎞⎟⎟⎠
Figure 2.1: Illustration of Equation (2.7); penguin is from ImageNet (Russakovsky et al.,

2015).

The estimation procedure is stochastic, so we cannot always correctly estimate the true
underlying probability. To obtain rigorous guarantees, we need to control the estimation
error in (2.7). If we underestimate h(x), we only provide a weaker certificate than
possible, so this type of error is not crucial. On the other hand, the overestimation of
h(x) leads to a stronger robustness claim than we can prove and this we need to control.

9



2 Introduction

Usually, we allow this probability of overestimation to be ³ = 0.001 and since in the
RHS of (2.7) we have a sum of Bernoulli random variables, we can use Clopper-Pearson
bounds to get the confidence interval at the desired level.

We obtain F in the similar way as we described earlier in Equation (2.4). The difference
is that we add noise to the training examples x, as shown below. Again, highlighting
differences in blue:

min
w∈Rd

n

∑
i=1

ℓ(f(w, xi+εi), yi), (2.8)

where εi are independent samples of N (0, Ã2I).
While randomized smoothing in Theorem 2.4 only considers additive Gaussian noise

and provides guarantees against ℓ2 perturbations, it is possible to extend this framework
to virtually any reasonable distribution and distance metric (Yang et al., 2020). In
Chapter 5, we describe the ℓ1 case.

Despite many differences in different randomized smoothing algorithms, they almost
always share the same statistical estimation task of estimating the mean of a Bernoulli
distribution and we look at this more in detail in Chapter 6.

2.2 Objectives and Outcomes

The objective of this thesis is to advance the safety of machine learning systems; namely,
to mitigate the problems caused by the presence of adversarial examples. The aim is to
advance the rigorous approaches dealing with them and we (often) do so by exploiting
the domain constraints of the images in computer representation.

The outcomes of this research are 4 papers accepted at major machine learning
conferences (ICML, ICLR and NeurIPS).

1. In Voráček and Hein (2022) (outlined in Chapter 3), we study the adversarial
robustness of nearest prototype classifiers. For example, we provide computational
complexities of the problems related to adversarial robustness.

2. In Voráček and Hein (2023b) (outlined in Chapter 4), we demonstrate that the
standard randomized smoothing certificates are no-longer valid in floating-point
arithmetic and develop a sound implementation fixing the problem.

3. In Voráček and Hein (2023a) (outlined in Chapter 5), we improve the randomized
smoothing certification procedure for ℓ1-norm bounded adversarial robustness.

4. In Voráček (2024) (outlined in Chapter 6), we study the problem of statistical
estimation deciding if the mean of a Bernoulli distribution is smaller or larger than
a certain constant, and we provide an algorithms that draws the optimal amount
(up to a constant) of samples in order to decide the task at high confidence.

10



2.3 Thesis organization

Domain constraints

An overarching topic of the presented Chapters 3, 4, 5 is the consideration of domain
constraints. We know that the images are represented by a vector of intensities x ∈ [0, 1]d.
Therefore, we are not worried about potential adversarial inputs outside of the domain,
since it is trivial to detect them and they would cause no harm. This idea is used in
Chapters 3 and 5. More specifically, we know that the images are in fact not represented
by real numbers but are quantized to 256 quantization levels, and this helped in Chapter 4
to efficiently implement certain procedures, which would take prohibitive time otherwise.

2.2.1 List of publications

This thesis contains a discussion of the following papers focusing on certifiable adversarial
robustness:

• Václav Voráček and Matthias Hein. Provably Adversarially Robust Nearest
Prototype Classifiers. In ICML, 2022

• Václav Voráček and Matthias Hein. Sound Randomized Smoothing in Floating-
Point Arithmetics. In ICLR, 2023

• Václav Voráček and Matthias Hein. Improving ℓ1-Certified Robustness via
Randomized Smoothing by Leveraging Box Constraints. In ICML, 2023

• Václav Voráček. Treatment of Statistical Estimation Problems in Randomized
Smoothing. NeurIPS, 2024

Individual contributions

Ideas often resulted from discussion and it is almost impossible (and subjective and
meaningless) to provide a concrete credit assignment. Despite this, I tried to capture the
research and writing process of every chapter in the respective backstories.

2.3 Thesis organization

We discuss 4 research papers in this thesis. We start the Chapters 3, 4, 5, 6 with a short
story from behind the scenes. Next, we introduce the studied problems and outline the
results with brief sketches of the relevant theory. These chapters are vague and imprecise
in places for the sake of simplicity and contain adapted text from the papers; in other
words, the actual papers were used as the bases of the chapters and were simplified. The
full papers follow by the end of the thesis.

11



2 Introduction

2.4 Notation

The notation is usually introduced at relevant places and its meaning is clear from the
context. Here, we highlight that we use capital letters (X) for random variables and
lower-case (x) for their realizations. If a is a vector or a sequence, then ai is its i-th

element. If instead, ai is a vector, then a
(j)
i is its j-th element. Iverson brackets JP K

evaluate to 1 if P is true and to 0 otherwise.

12



3 Provably Adversarially Robust Nearest

Prototype Classifiers

Václav Voráček and Matthias Hein. Provably Adversarially Robust Nearest Prototype
Classifiers. In ICML, 2022

3.1 Backstory

In the summer of 2021, Matthias showed me a paper (Saralajew et al., 2020) achieving
promising results despite using generic tools while specialized ones were readily available.
He also made a MATLAB implementation of initial experiments for the ℓ2 − ℓ2 case
and derived Theorem 2.4 and Proposition 3.1. I later derived the optimal solutions in
other cases and was done with the paper since I thought that we needed either proofs or
experiments. Matthias did not share this point of view with me, so we had to run some
last-minute experiments. He also wrote the majority of the main paper.

3.2 Introduction

The nearest neighbor classifier is a classic machine learning algorithm that assigns a new
sample to the same class as the closest element in the training set. The nearest prototype
classifier (NPC) generalizes the nearest neighbor classifier by also learning the set of
prototypes which replaces the training set during inference. The nearest neighbor classifier
can also be seen as NPC where one uses the training set as prototypes and thus they
are not learned. However, by training prototypes one can achieve better classification
performance, and also robustness. In this work, we derive robustness guarantees of
nearest neighbor-like classifiers and propose a training scheme yielding state-of-the-art
performance on some benchmarks, outperforming neural-net-based approaches. In this
chapter, we present some of the main ideas from the paper.

Problem Setting

We present the results here in a simplified notation compared to the actual paper which
will be sufficient to describe the ideas. We have two classes A, B respectively. For both
of them, there is a set of prototypes associated with them, {ai}ni=1 ¢ Rd and {bi}ni=1 ¢ Rd

13



3 Provably Adversarially Robust Nearest Prototype Classifiers
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Figure 3.1: Illustration of an NPC. There are 5 prototypes in total corresponding to
the red class and the blue class. The background color corresponds to the
prediction of the classifier, or equivalently to the color of the closest prototype
in Euclidean distance. We draw the largest possible circles around the
prototypes such that the decision within the circle is constant.

respectively. Additionally, dclassify(⋅, ⋅) measures distances and we denote the classifier
F ∶ R

d
→ {A, B}. An example x ∈ Rd is classified as the same class as the closest prototype

to it. Formally, we write

F (x) = ⎧⎪⎪⎨⎪⎪⎩
A, if minn

i=1 dclassify(x, ai) <minn
i=1 dclassify(x, bi),

B, otherwise.

See Figure 3.1 for an example of an NPC.

3.3 Overview of results

We are interested in certifying the robustness of F against adversarial perturbations
bounded by dadversarial(⋅, ⋅) distance. First, if dclassify(⋅, ⋅) = dadversarial(⋅, ⋅), then we call
them both d and by triangle inequality, we have the following simple bound that cannot
be improved in general.

Theorem 3.1. Let (X , d) be a semi-metric space, F is ϵ-robust at x with

ϵ = ∣minn
i=1 d(x, ai) −minn

i=1 d(x, bi)
2

∣ .

14



3.3 Overview of results

certified ball for Rd

certified ball for [0, 1]d

Figure 3.2: Illustration of NPC for two prototypes (red and blue): when considering that
the data lies in [0, 1]d, we can certify a larger ball without adversarial examples
around the input (wine) than in R

d. We let dclassify(x, y) = dadversarial(x, y) =∥x − y∥
2

This is also the result of Saralajew et al. (2020), although they provided a slightly less
general version with a semi-norm instead of a semi-metric.

We further focus on a standard setting where both dclassify(⋅, ⋅) and dadversarial(⋅, ⋅) are
induced by (possibly different) p-norms. Our primary interest is in the cases where
p ∈ {1, 2,∞}, though other cases are occasionally covered as a byproduct. Specially, let
dclassify(x, y) = ∥x − y∥p and dadversarial(x, y) = ∥x − y∥q. To avoid ambiguity, we refer to
ϵ-robustenss as ϵ

q
p-robustnes.

Next, we describe how to compute the maximum ϵ
q
p such that F is ϵ

q
p− robust. We

focus only on robustness within the [0, 1]d box, as this is the domain for images, and
points outside it are easily detected. We demonstrate in Figure 3.2 the benefits of this
constraint. Without loss of generality, assume F (x) = A. For every prototype bi, we
find the closest point x′ to x (in terms of q-norm) such that bi is closer to x′ (in terms
of p-norm) than any prototype of class A. The smallest such distance is ϵ

q
p, then F is

ϵ
q
p−robust at x. More formally, we have to solve the following optimization problem:

Proposition 3.2. Let F (x) = A and {ai}ni=1,{bi}ni=1 be the prototypes corresponding to
classes A, B respectively. Let

rq
p(x, b) = min

x′∈[0,1]d
∥x − x′∥

q
, (3.1)

sbj. to: ∥x′ − b∥
p
f ∥x′ − ai∥p , ∀i ∈ {1, . . . , n}.

then F is ϵ
q
p-robust at x where

ϵq
p(x) = n

min
i=1

rq
p(x, bi).
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3 Provably Adversarially Robust Nearest Prototype Classifiers

ℓq-threat model

ℓ p
-d

is
ta

nc
e ℓ1 ℓ2 ℓ∞

ℓ1 NP-hard NP-hard Poly
ℓ2 Poly Poly Poly
ℓ∞ NP-hard NP-hard NP-hard

Table 3.1: Computational Complexity of r
q
p(x, b).

ℓq-threat model
ℓ p

-d
is

ta
nc

e ℓ1 ℓ2 ℓ∞
ℓ1 NP-hard NP-hard O(d log(d))
ℓ2 Θ(d) Θ(d) Θ(d)
ℓ∞ Θ(d) O(d log(d)) Θ(d)

Table 3.2: Computational complexity of Ä
q
p(x, a, b).

Before we inspect the complexity of optimization Problems (3.1) more in detail, we
note that direct maximization of ϵ

q
p during training is infeasible, particularly since the

problems are non-convex whenever p ≠ 2. To address this, we propose the following
relaxed optimization problem:

Äq
p(x, a, b) = min

x′∈Rd
∥x − x′∥

q
(3.2)

sbj. to: ∥x′ − b∥
p
f ∥x′ − a∥

p

(3.3)

and it holds that
rq

p(x, b) g n
max
i=1

Äq
p(x, ai, b),

since we effectively drop all but (the strongest) constraint from Problem (3.1); and thus
we have that

ϵq
p(z) g n

min
j=1

n
max
i=1

Äq
p(x, ai, bj),

where the RHS will be maximized during training.
We now present the complexities of the Problems (3.1) and (3.2). The log factors can

be removed by techniques analogous to linear-time median computations.

Theorem 3.3. Computational complexities of optimization problems ϵ
q
p(x, b) for p, q ∈{1, 2,∞} and are summarized in Table 3.1.

Theorem 3.4. Computational complexities of optimization problems Ä
q
p(x, a, b) for

p, q ∈ {1, 2,∞} are summarized in Table 3.2.
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3.3 Overview of results

We sketch proof ideas of several entries of the tables from Theorems 3.3 and 3.4. The
other entries required individual and rather cumbersome treatment.

• In the row when p = 2, the constraint in Problem (3.2) is a linear constraint and we
need to find an ℓq projection on a hyperplane. Here, the solution follows directly
from Hölder’s inequality and we only need to compute the dual norm of a certain
vector. Similarly, Problem (3.1), reduces to projecting a point to a polytope. This
is a linear program when q ∈ {1,∞} and a quadratic program when q = 2.

• In the row for p = 1 and q ≠∞, the knapsack problem can be reduced to Problem (3.2)
implying the hardness result. For simplicity, we only present an example of the
reduction for q = 1 from which we believe the general case easily follows. Consider
an instance of a knapsack problem, having two items with prices 5, 10 and values
3, 4 respectively. The goal is to minimize the price for which we can buy value
6. We construct an instance of Problem (3.2) that is equivalent to the described
knapsack problem. Let

– x = (0, 0, 0),
– a = (5, 10, 100).
– b = (5.03, 10.04, 100.05),

In this configuration, we observe that for x′ = (0, 0, 0), the constraint ∥x′ − b∥
1
f∥x′ − a∥

1
is violated by 0.12 (we call the quantity constraint gap), corresponding to

two times our desired value. We also note that the third coordinate is a "dummy"
coordinate and in the optimal solution we will have x′(3) = 0. Both the first and
second coordinates correspond to the respective items. We interpret the quantity∣x′(1)∣ as the price we pay for the first item. If we pay less than 5, we do not
decrease the constraint gap at all (we do not buy the item in knapsack problem). If
we pay 5.03 or more. We decrease it by 0.6, corresponding to twice the value of the
first item (we buy the item in the knapsack problem) We note that by construction,
this difference between paying cost 5 and 5.03 is negligible and the reduction is
complete.

• For p = ∞, we reduce 3-SAT to the feasibility version Problem (3.1); again, on
an example. We start with a CNF formula (A ' ¬B 'C) ( (A 'C ' ¬D) and the
corresponding Problem (3.1) is given by:

– b = (0, 0, 0, 0, 3)
– a1 = (−1, 2,−1, 0, 0)
– a2 = (−1, 0,−1, 2, 0)

That is, for every clause, we have a prototype ai. The number of dimensions is by
one larger than the number of logical variables. Prototype ai contains at j − th

position one of the numbers −1, 0, 2, corresponding to j-th variable occurring in i-th
clause without negation/not occurring/occurring with negation (with lexicographic
ordering of variables). The last dimension is a dummy dimension ensuring that
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3 Provably Adversarially Robust Nearest Prototype Classifiers

∥x′ − b∥
∞
g 2 for any x′, where equality can easily be attained. Now, in order for

the problem to be feasible, we have to find an x′ such that ∥x′ − ai∥ g 2. For i = 1

this means either x′(1) = 1, or x′(2) = 0, or x′(3) = 1 - recalling x′ ∈ [0, 1]d - which
directly corresponds to the satisfying assignment of the clause A ( ¬B (C.

3.4 Conclusion

We presented a selection of theoretical results from the paper. The paper additionally
contains details on training, experimental results, extension to the perceptual-metric-
based robustness, and some implementation tricks. For example, we do not want to solve
thousands of linear/quadratic programs per one certified point as a naive application of
Proposition 3.2 would suggest. Instead, we solve roughly 2 linear/quadratic programs on
average.

The method yielded state-of-the-art robustness results on MNIST with ℓ2 threat model
and also on CIFAR10 with LPIPS threat model. This still holds.
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4 Sound Randomized Smoothing in

Floating-Point Accuracy

Václav Voráček and Matthias Hein. Sound Randomized Smoothing in Floating-Point
Accuracy. In ICLR, 2023

4.1 Backstory

In the spring of 2022, I reviewed a paper about randomized smoothing containing a
numerical integration subroutine without a convincing error analysis, which in turn
made the resulting certificates unreliable in my eyes. Then I asked myself a question, if
even the standard randomized smoothing machinery should be trusted, or is it just a
theoretical construct that cannot be reliably implemented to have the guarantees? But
the theoretical guarantees are the reason why we use randomized smoothing in the first
place! Soon after I constructed an example where the standard randomized smoothing
implementation fails completely. At that point, I was satisfied with the (negative) result
and considered it the end of the story. A week or so before the submission Matthias asked
if it could be fixed. It sounded too optimistic to realistically consider that possibility
before, but now the question was asked, I had to think about it. In the end, it could. I
wrote the majority of the paper.

4.2 Introduction

Randomized smoothing is a popular technique to certify the robustness of classifiers.
It is however not clear if the certificates also hold when they are implemented in finite
precision. We first show that it is not the case and present a simple example where
randomized smoothing certifies a radius of 1.26 around a point, even though there is
an adversarial example in the distance 0.8 and describe how this can be abused to give
false certificates for CIFAR10. In order to overcome this problem, we propose a sound
approach to randomized smoothing when using floating-point precision with essentially
equal speed for quantized inputs. It yields sound certificates for image classifiers which are
virtually equal to the unsound practice of randomized smoothing. Our only assumption
is that we have access to a fair coin. Before diving into the problem, we provide a brief
overview of floating-point representations and arithmetic.
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4 Sound Randomized Smoothing in Floating-Point Accuracy

Floating Point representation

Single-precision floating-point1 numbers are represented in memory as sequences of bits
x1x2 . . . x32. The first bit is a sign bit, the next 8 bits determine the exponent, and the
last 23 numbers determine the mantissa. The conversion in the normalized form reminds
of the scientific notation: (−1)x1 ⋅ 2x2...x9−127

⋅ 1.x10 . . . x32, or more formally:

(−1)x1 ⋅ 2(∑
9

i=2
xi⋅2

9−i)−127
⋅ (1 + 32

∑
i=10

xi ⋅ 2
9−i) .

We write the floating-point operations in circles; e.g., ⊕,⊖ instead of +,− to distinguish
them from the mathematical ones which do not suffer from rounding errors. The addition
(or analogically subtraction) of two floating-point numbers is performed in three steps:
(1) The number with the lower exponent is transformed to the higher exponent and the
superfluous mantissa bits are rounded. (2) The addition is performed, with - to simplify
presentation - infinite precision. (3) The result is rounded to fit into the floating-point
representation. Thus, the operations are commutative, but it happens that x⊕ y = x⊕ z

for any x ≠ 0 and some y ≠ z. Consequently, there will exist some w such that there is no
v for which x⊕ v = w. This is the main observation that we will exploit in the sequel.

4.3 Overview of results

In the standard randomized smoothing implementation, there are three main places
where the math and computer implementation might differ; before presenting them,
we refresh the relevant randomized smoothing mechanism for smoothing with normally
distributed smoothing distribution2. We need to evaluate the following quantity for an
arbitrary F ∶ R

d
→ {0, 1}:

h(x) = Eε∼N (0,Ã2I)F (x + ε).
Due to intractability issues, h(x) is approximated by the Monte-Carlo sampling

and a high-probability lower bound (for certifying class 1) is computed. The critical
computations3 in the standard randomized smoothing machinery are the following ones:

1. Sample noise ε >N (0, Ã2I).
2. For an input x, compute x′ = x + ε.

3. Evaluate F (x′).
Evaluating F (x′) correctly is not critical. It might happen due to floating point errors

that the output differs in the computer evaluation and in the "actual math evaluation".
However, as long as we are only interested in certifying the computer-represented function,
we do not need to worry as the method is assumption-free on the underlying classifier F .

1The other precisions only differ in the counts of mantissa and exponent bits.
2The problems and solutions for other smoothing distributions considered in the literature are analogical.
3The others can be easily performed correctly.
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4.3 Overview of results

Computations (1) and (2) are trickier. Specifically, (1) is impossible to perform exactly
due to the continuous nature of the distribution represented using discrete values, and
thus the correctness of the sampling needs to be ensured in some way.

Demonstration of wrong certificates

In the following discussion, we will be informal and will simplify examples to improve
clarity. The key observation is that random variables X = x⊕N (0, Id) and Y = y⊕N (0, Id)
with4 x, y ∈ {0/255, . . . , 255/255}d do not have completely overlapping supports and it
might happen that when observing a sample from X, we can tell that it cannot be
a sample from Y . We will demonstrate this phenomenon in one dimension, but the
problem becomes even more pronounced as the dimension grows, which is the interesting
regime as we are mainly interested in image classification. To see why, let the probability
that x > X falls outside of the support of Y be at least p when x ≠ y and d = 1. Now
consider general d and x, y differing in every position, the probability that x >X is in
the support of Y is smaller than (1 − p)d. We can empirically check that p = 0.01 is a
good bound, and for d > 1000 we already get (1 − p)d > 10−5. Therefore, by observing
samples F (X), we likely get no information about F (Y ), contrasting the intuition for
randomized smoothing.

1 import numpy as np

2 from scipy.stats import norm

3

4 sigma = 0.5; num_samples = 100000; alpha = 0.001

5 F = lambda x: (x - 210/255) + 210/255 == x

6 noise = np. random .randn( num_samples )*sigma

7

8 h0 = F(0+ noise).mean () # 0.461

9 hx = F (210/255+ noise).mean () # 1.000

10 hxlb = p2 -(-np.log(alpha)/ num_samples /2) **0.5 # 0.994

11 eps = sigma * norm.ppf(hxlb) # 1.260

Listing 4.1: Example of an incorrect randomized smoothing certificate. We compute
h(0) = Eε∼N (0,Ã2)F (0 ⊕ ε) < 0.5, and so H(0) = 0. On the other hand, we
have h(x) = Eε∼N (0,Ã2)F (210/255⊕ ε) > h(x)lower bound = 0.994 w.h.p. due to
Hoeffdings’ inequality. Thus, H is ϵ-robust at x = 210/255 for class 1 with
ϵ = ÃΦ−1(0.994) = 1.26, but 0 is an ϵ-adversarial example - a contradiction.

Now we describe the construction. In Reiser and Knuth (1975), it is shown that the
identity ((x ⊕ y) ⊖ y) ⊕ y = x ⊕ y holds for virtually every pair of x, y. On the other
hand, the equality (x⊕ y)⊖ y = x holds only sometimes. Indeed, consider x to have a
different exponent than y, then during the addition, x⊕ y, some low bits of the mantissa
are lost. We note that in the special case when x = a⊖ y for some a and y, the identity(x⊕y)⊖y = x holds true. On the other hand, all the discussed identities clearly hold when
we replace ⊕,⊖ by +,−. This difference will be exploited using the following function:

4We are interested in image classification, so we consider the standard quantization
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4 Sound Randomized Smoothing in Floating-Point Accuracy

Fa(x) = J(x⊕ a)⊖ a = xK. (4.1)

From the discussion above it follows that Fa(a ⊕ ε) = 1 for any ε, possibly yielding
arbitrarily large certified radii around a. However, when x ≠ a, then Fa(x ⊕ ε) might
equal 0. Note the sharp contrast with the exact arithmetic case, where Fa(⋅) = 1. The
implementation producing an incorrect certificate is in Listing 4.1 with a = 210/255.

Sound randomized smoothing for floating-point arithmetic

Let us now describe a sound randomized smoothing certification procedure for floating-
point arithmetic. The idea is to introduce a mapping g and replace the base classifier
F (⋅) by F (g(⋅)) and instead of evaluating F (g(x⊕ ε)) where ε >N (0, Ã2Id), we evaluate
F (t) with t > g(x + ε), ε > N (0, Ã2Id). This (seemingly useless) modification has two
advantages: (1) we no longer need to perform floating point addition x⊕ ε and (2) we do
not need to sample ε anymore, we only need to sample t which might be easy when t

follows a discrete distribution. Furthermore, if g(x) > x, then we might use an existing
base classifier F trained for the standard smoothing certification. We choose

g(x) =max{−6Ã, min{1 + 6Ã,
⌊255x,

255
}} . (4.2)

Now t follows a multinomial distribution with corresponding probabilities p1, . . . pn

(n > 103) and we can compute all of them with arbitrary precision, but not exactly as
they are some Gaussian integrals. This way, we can control the error of the sampler
and account for it. We use k uniformly random bits for sampling t. We evaluate pi

precise enough that we get an integer ai such that ai/2k
f pi f (ai + 1)/2k; we sample

the respective outcomes with probabilities ai/2k. Alternatively, we declare a failure with
probability 1−3n

i=1 ai/2k. If this failure occurs, we set F (t) = 0 (recalling we certify class
1) to be conservative. We choose k = 64 so this failure is extremely rare. All the values of
a can be precomputed before certification which takes roughly 4 minutes on a single core
of a laptop. We have conducted experiments and (perhaps unsurprisingly) found out that
replacing the trained base classifier F (⋅) (ResNet) by F (g(⋅)) with g from Equation (4.2)
yields negligible differences in certificates on CIFAR10 and ImageNet.

4.4 Conclusion

We have provided an example where the randomized smoothing certificates are incorrect
and explained how to fix it. The paper contains further arguments, insights and empirical
validation. We focused for simplicity on Gaussian noise, but the problems and fix transfer
to other smoothing distributions. We consider the results definitive and are not aware of
any new work in this direction.
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5 Improving ℓ1 Certified Robustness via

Randomized Smoothing By Leveraging

Box Constraints

Václav Voráček and Matthias Hein. Improving ℓ1-Certified Robustness via Randomized
Smoothing by Leveraging Box Constraints. In ICML, 2023.

5.1 Backstory

In January 2023, I had some theoretical results on how to incorporate image constraints
into randomized smoothing machinery and had some more ideas on how to extend them.
After a discussion with Matthias, it turned out that the curse of dimensionality kills
all the ideas and there will not be many more things that could possibly fit into the
paper. In the 4 days before the submission, I wrote the paper and did the experiments.
On the last day, Matthias focused on improving the writing (At that point, the paper
was a collection of semi-related paragraphs in a semi-random order), while it was not
yet completely clear what exactly would be in the paper. The resulting paper reads
surprisingly well and resulted in the smoothest review experience so far. Eventually, the
poster was presented by my friend Julian as I find hosting conferences in Hawaii absurd.

5.2 Introduction

The guarantees for randomized smoothing are often derived by constructing the worst-
case classifier consistent with the observed samples and then considering the worst-case
perturbation for it. However, it happens that sometimes the worst-case perturbation is
outside of the image domain and this problem was largely overlooked.

In this chapter, we show that by taking into account the box constraints of the image
domain [0, 1]d, we can certify significantly larger ℓ1 robustness than before. Specially, we
use the fact that the minimal volume of the overlap of two ℓ∞-balls when the centers
(their distance is fixed in ℓ1 norm) of the balls are restricted to [0, 1]d behaves quite
differently from the unconstrained case.
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5.3 Overview of results

In certifying ℓ1 robustness, the common starting point is the following Proposition (We
certify only class 1 to avoid notation clutter):

Proposition 5.1. Let F ∶ R
d
→ {0, 1}, Ud(¼) be the uniform distribution in ℓ∞ ball of

radius ¼ and
h(x) = E

ε∼Ud(¼)
F (x + ε).

Let B1 and B2 be the ℓ∞-balls with radius ¼ centered at x, y respectively, then

h(y) g h(x) − 1 +
V ol(B1 ∩B2)

V ol(B2) ,

where V ol(B) is volume of B.

Proof.

h(y) = ∫t∈B2
F (t)dt

V ol(B2) g
∫t∈B1∩B2

F (t)dt

V ol(B2)
=
∫t∈B1

F (t)dt − ∫t∈B18B2
F (t)dt

V ol(B2)
g
∫t∈B1

F (t)dt − V ol(B1 8B2)
V ol(B2)

= h(x) − 1 +
V ol(B1 ∩B2)

V ol(B2) ,

using V ol(B1 8B2) = V ol(B2) − V ol(B1 ∩B2) and V ol(B1) = V ol(B2).
To get certificates, it remains to find a lower bound on the volume of intersection of

two ℓ∞-balls (B1 and B2) of radii ¼ centered at x, y ∈ Rd respectively. For a fixed x (the
input point to be certified), this quantity can be expressed as

fx(y) = V ol(B1 ∩B2)
V ol(B1) =

d

/
i=1

(1 − ∣xi − yi∣
2¼

) ,

Thus, we need to find y closest to x for which we cannot certify that the class is 1; more
formally, we are looking for y ∈ Rd minimizing ∥x − y∥

1
such that h(x) − 1 + fx(y) = 1

2
. It

turns out that it is easier to solve the (somewhat equivalent) minimization of fx(y) given
the value ∥x − y∥

1
.

We claim that fx(y) is minimized when x and y differ only at a single position. To see
why, we give fx(y) a probabilistic interpretation. We have d independent events, where
the i-th event occurs with probability ∣xi−yi∣

2¼
. Then 1 − fx(y) is the probability that at

least one of them occurred. By union bound, we have

1 − fx(y) f d

∑
i=1

∣xi − yi∣
2¼

=
∥x − y∥

1

2¼
,

and thus we get the following bound
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5.3 Overview of results

Figure 5.1: Effect of box constraints on the minimal overlap of two ℓ∞ balls. The green
point is at (0.4, 0.6) while the orange one is at a distance 0.8 in ℓ1-norm. On
the left is depicted the minimal possible overlap considering box constraints
(cf. Proposition 5.4), while on the right is the minimal possible overlap
without considering box constraints (cf. Proposition 5.2)

.

Proposition 5.2. Let B1, B2 be the ℓ∞ balls with radii ¼ centered at x, y ∈ Rd Then we
get the tight bound:

V ol(B1 ∩B2)
V ol(B1) g 1 −

∥x − y∥
1

2¼
.

This lower bound is attained when x − y is a one-hot vector. Combination of Proposi-
tion 5.1 and Proposition 5.2 yields the following bound:

Corollary 5.3. Classifier H is ϵ-robust at x with

ϵ = 2¼(h(x) − 1/2).
However, as discussed, the bound in Proposition 5.2 is only attained in the case when

x − y is a one-hot vector. When ϵ g 1, then the minimizer y would be necessary outside
of the image domain and we do not need to worry about it. Therefore, we would like
to minimize fx(y) (with given ∥x − y∥

1
) and under the constraint that y ∈ [0, 1]d. We

illustrate this in Figure 5.1.
The problem can be efficiently solved in a closed form for any x since fx is Schur-

concave and so we only need to find the element of the constraint set whose vector of
differences ∣xi − yi∣ is largest w.r.t. the majorization1 order. For example, if we consider∥x − y∥ = 4.5, then the majorizing vector would be (1, 1, 1, 1, 1

2
, 0, . . . , 0). In that case, we

get the following bound:

1We say that x majorizes y when ∑
k
i=1

x↓i ≥ ∑
k
i=1

y↓i for all 1 ≤ k ≤ n, where x↓i is the i−th largest element

of vector x.
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5 Improving ℓ1 Certified Robustness via Randomized Smoothing By Leveraging Box Constraints

Proposition 5.4. Let B1, B2 be the ℓ∞ balls with radii ¼ centered at x, y ∈ [0, 1]d and⌊x, be the largest integer not larger than x. Then

V ol(B1 ∩B2)
V ol(B1) g (1 − 1

2¼
)⌊∥x−y∥

1
, (1 − ∥x − y∥

1
− ⌊∥x − y∥

1
,

2¼
) g (1 − 1

2¼
)∥x−y∥

1

.

The second inequality holds when 2¼ g 1. Both of the inequalities are attainable.

Consequently, we can combine Propositions 5.4 and 5.1 and streghten Corollary 5.3.

Corollary 5.5. Classifier H is ϵ-robust at x with

ϵ =
ln(1.5 − h(x))

ln(1 − 1

2¼
) .

We can take one step further and provide a certificate specific for x. For example, if
x = (0.5, 0.5, . . . , 0.5), then the largest element of the majorizing vector could only be 0.5.
In this case, the final expression becomes cumbersome and thus we omit it.

5.4 Conclusion

We presented the central ideas of the corresponding paper. We omitted here the experi-
mental evaluation and some further discussions mainly concerning statistical estimation.
The resulting formulas yield state-of-the-art results and have not been improved so far.
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6 Treatment of Statistical Estimation

Problems in Randomized Smoothing

Václav Voráček. Treatment of Statistical Estimation Problems in Randomized Smooth-
ing. NeurIPS, 2024

6.1 Backstory

The notorious problem of randomized smoothing is the speed. The custom is to sample
100 000 noise samples per image (taking seconds to minutes per image) and little work
was done to speed it up. I started working on the problem in the fall of 2022, with the
idea of designing a certain sequential estimation procedure. I had Walds’ Sequential
Analysis book but unfortunately, the book is not formal in many aspects and it was not
clear to me if some of the results are approximate, or can be made formal (in hindsight...
Yes, they can). In spring 2023, I presented some preliminary results in our group meeting.
Preliminary in the sense that I could not prove the correctness of the algorithm, but it
turned out to be very similar to the one I eventually used. In the fall of 2023, I found a
relevant martingale inequality that filled the gap and I could finally complete the paper.
Later I found an even simpler solution to the problem.

6.2 Introduction

The common criticism of randomized smoothing is the prohibitive time to certify the
robustness. In the standard setting, this is roughly 8 seconds per CIFAR-10 image or
2 minutes per ImageNet image. There is an inherent trade-off between the allowed
probability of incorrectly claiming robustness1 (type-1 error, ³), the probability of
incorrectly claiming non-robustness (type-2 error, ´), and the number of samples used n.
The standard practice is to set ³ = 0.001, n = 100 000, and the value of ´ is then implicit.
it might not be the most practically relevant setting since the implicitly set value of ´ is
usually exponentially small in n.

The arguably more natural setting is to set the values of ³ and ´ and leave n implicit.
This is much more challenging since it is no longer possible to draw the predetermined

1of an input for a model at a certain radius
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6 Treatment of Statistical Estimation Problems in Randomized Smoothing

number of samples and invoke a concentration inequality. We propose a new certification
procedure using confidence sequences to adaptively (and optimally) decide how many
samples to draw to address the problem.

Additionally, we show that the standard Clopper-Pearson confidence intervals - used
in virtually every randomized smoothing certification procedure - are conservative in
general and present their randomized version that has the exact coverage.

6.3 Overview of results

We recall that in randomized smoothing, we have a classifier F ∶ R
d
→ {0, 1}, its

smoothed version is h(x) = Eε∼N (0,Ã2)F (x + ε), and the resulting classifier H is ϵ-robust
with ϵ = ÃΦ−1(h(x)). Now consider the task where we want to decide if H is 1-robust.
This is equivalent to deciding if h(x) g Φ(1/Ã); in other words, if the mean of a Bernoulli
random variable given by F (x + ε) with ε >N (0, Ã2) is larger than a certain threshold.
Thus, we further consider only the statistical estimation problems regarding the mean of
a Bernoulli (resp. binomial2) random variable.

Confidence intervals

First, we have a look at the confidence intervals for binomials appearing in almost every
current randomized smoothing procedure. We introduce only the one-sided versions for
simplicity as this is the one used in randomized smoothing.

Definition 6.1 (Confidence interval for binomials). Let l be a possibly randomized
function of a binomial sample. It forms a lower confidence bound on the mean with
coverage 1 − ³ if for any p ∈ [0, 1] it holds that

PX∼B(n,p),l (p g l(X)) g 1 − ³.

• Clopper-Pearson lower confidence bound is given by

l(x) = inf{p ∣P(B(n, p) g x) > ³}.
• Randomized Clopper-Pearson lower confidence bound is given by lr(x) = l′r(x, W )

where W is uniform on the interval [0, 1] and

l′r(x, w) = inf{p ∣P(B(n, p) > x) +wP(B(n, p) = x) > ³}.
It can be checked by straightforward calculations that Randomized Clopper-Pearson

intervals have coverage exactly 1 − ³ for all values of 0 f p f 1 and that almost surely
(whenever w ≠ 0) the randomized interval is shorter. We present a classical example
implying that the standard Clopper-Pearson interval is conservative in general.

2We denote B(n, p) the binomial random variable with n trials and success probability p.
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Figure 6.1: left: Comparison of coverages of confidence intervals for the mean estimation
of B(100, p) when ³ ∶= 0.001. Actual ³ corresponds to how often is p outside
of the confidence interval. right: Comparison of robustness curves with
the standard (dashed) or the randomized (solid) Clopper-Pearson bounds
on a CIFAR-10 dataset under the standard setting, where n is the number
of samples. Point (x, y) on a curve captures the fact that the classifier is
x-robust on a y-fraction of points from the dataset.

Example 6.2. Consider samples from X > B(2, p) and ³ = 0.05. By definition, the
Clopper-Pearson upper intervals are [0, 1], [0.025, 1], [0.224, 1] for observations x = 0, 1, 2

respectively. When p = 0.1, it will be contained in the confidence interval with probability
P(X ∈ {0, 1}) = 1 − p2

= 0.99, while we required it only to be 0.95 and so the confidence
interval is unnecessarily large, yielding weaker certificates.

We compare the randomized and deterministic Clopper-Pearson intervals in Figure 6.1
and show the corresponding differences in certifying robustness.

Confidence sequences

To compute the confidence intervals presented in the previous subsection, we need to
collect samples and then run an estimation procedure once which brings certain limitations.
Consider the following two scenarios: (1) It might be the case that we do not need all
100 000 samples and after only 10 it would be enough for our purposes because we could
already conclude that the point cannot be certified here; thus, we wasted 99 990 samples.
(2) Alternatively, we could see that even 105 samples are not enough, and we need to
draw more samples. However, we have already spent our failure budget ³, so we cannot
even carry another test at all.

This motivates the introduction of confidence sequences. They generalize confidence
intervals in the way that they provide a confidence interval after every received sample
such that we control the probability that the true parameter is contained in all the
confidence intervals simultaneously.

Definition 6.3 (Confidence sequence). Let {ut, vt}∞t=1 be mappings from a sequence of
observations to a real number. They form a confidence sequence It(x∶t) = [ut(x∶t), vt(x∶t)]
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6 Treatment of Statistical Estimation Problems in Randomized Smoothing

for all t g 1 with confidence level 1 − ³ if

PX (p ∈ It(X∶t),∀t > 1) g 1 − ³

for any p ∈ [0, 1], where X is an infinite sequence of independent Bernoulli random
variables with mean p, and X∶t denotes the first t elements of the sequence X.

We present two ways how to obtain confidence sequences. The first is based on
combining confidence intervals using union bound and is easier to analyze, while the
second is based on martingale concentration, yields stronger performance, and does not
require hyperparameters.

Confidence sequences based on union bound

For any random variable with positive finite variance, the optimal width of the confidence
interval for the mean parameter scales as

√
log(1/³)/t with the increasing number of

samples t at confidence level 1−³. On the other hand, it is well known that the width of the
optimal confidence sequence scales as

√(log(1/³) + log log t)/t as t increases due to the
law of iterated logarithms. A naive use of union bound – computing a confidence interval
using failure probability at time step t, ³t =

³c
tγ for some c and µ > 1 such that 3∞i=1 ³t = ³ –

yields a confidence sequence whose width scales as
√

log(1/³t)/t ≈√(log(t) + log(1/³))/t.
We cannot choose any monotonous ³t schedule decaying slower because even for µ = 1

we still keep the log factor while the sum 3∞i=1 ¶t diverges.
Now consider non-monotonous schedules of ³t, two key ideas follows. (1) In order

to have the optimal rate log(1/³t) ≈ log(1/³) + log log t, we need log ³t ≍ log (³/ log t).
Clearly, if this holds for all t, then 3∞t=1 ³t diverges. (2) A confidence interval at time t is
also a valid confidence interval for all t′ > t. Furthermore, if t′ is not much larger than t,
it may still asymptotically have the optimal width up to a multiplicative constant.

Combining these ideas, if we compute a confidence interval after k samples whenever
k = 2i for some integer i g 1 at confidence level 1−³/(i(i+1)), they will form a confidence
sequence at confidence level ³ of asymptotically optimal width up to a constant factor.

Confidence sequences based on betting

We describe an alternative approach to confidence sequences based on a hypothetical
betting game. For the illustration, consider a fair sequential game; e.g., sequentially
betting on the outcomes of a coin. If we guess the outcome correctly, we win the staked
amount, otherwise we lose it. If the coin is fair, in expectation, our wealth stays the
same. On the other hand, if the game is not fair and the coin is biased, we can win
money. Thus, if we win lots of money, we can conclude that the game is not fair. We
instantiate a betting game for every possible mean 0 f p f 1 that would be fair if the
true mean is p. We bet on the samples of the random variable and as soon as we win
enough money, we drop that particular p from the confidence sequence since it is not
likely not the true mean. To make things formal, we introduce the necessary concepts
from probability theory. The evolution of our wealth throughout a fair game is modeled
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6.3 Overview of results

by martingales, sequences of random variables for which, independently of the past, the
expected value stays the same.

Definition 6.4 (Martingale). A sequence of random variables W1, W2, . . . is called a
martingale if for any integer n > 0, we have E(∣Wn∣) <∞ and E(Wn+1∣W1, . . . , Wn) =Wn.

In the coin-betting example, W1, W2, . . . is a martingale where Wn represents our
wealth after playing the game for n rounds. We stress that Wt g 0 for all t > 0. By
convention, we will also have W1 = 1. We further need a time-uniform generalization of
Markov’s inequality.

Proposition 6.5 (Ville’s inequality). Let W1, W2, . . . be a non-negative martingale, then
for any real a > 0

P [sup
n≥1

Wn g a] f E [W1]
a

.

Thus, whenever we play a game and earn a lot, we can — with high probability3 —
rule out the possibility that the game is fair. So far, this is still an abstract framework.
We still have to design the betting game, the betting strategy, and describe how to run
the (uncountably) infinite number of games, one for every p ∈ [0, 1].
Betting game Let 0 < p < 1. Consider a coin-betting game where we win 1/p (resp.
1/(1 − p)) multiple of the staked amount if we correctly predicted heads (resp. tails). If
the underlying heads probability is p, then regardless of our bet - in expectation - we
still have the same amount of money; thus, this game is fair. We identify heads and tails
with outcomes 1, 0 respectively.

Betting strategy We deconstruct the betting strategy into the two sub-tasks: (1) If
we know the underlying heads probability, we can design the optimal betting strategy
for any criterion. (2) Estimate the heads probability. First sub-task: Let p define the
betting game from the previous paragraph and q be the true heads probability; We bet
q-fraction of wealth to heads and 1 − q fraction to tails which is known to be optimal
due to Wald (1947). Second sub-task: we use a “regularized" sample mean and after
observing H times heads in a sequence of length T , we estimate q̂ = (H + 0.5)/(T + 1).
Parallel betting games We have described a betting game for a certain p and a betting
strategy. Employing Ville’s inequality we can reject the hypothesis that the true sampling
distribution has mean p if the corresponding wealth is high. However, we need to run the
game for all values of p ∈ [0, 1]. This is clearly impossible to do explicitly, but it turns
out that there is an elegant solution to this.

First, we note that our betting strategy does not depend on p and is only based on the
observed outcomes. Now, we express the log-wealth at time T as a function of p.

3in the frequentist sense
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6 Treatment of Statistical Estimation Problems in Randomized Smoothing

Let q̂t (resp. xt) be our estimate of q (resp. the coin-toss outcome) at time t and
H = 3T

t=1 xt, then our log-wealth at time T can be written as a function of p:

log WT (p) = log
T

/
t=1

(( q̂t

p
)xt (1 − q̂t

1 − p
)1−xt)

=

T

∑
t=1

xt log(q̂t) + (1 − xt) log(1 − q̂t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

logQ

−H log(p) − (T −H) log(1 − p)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

logP(p)

.

Specially, we note that log WT (p) is convex. Thus, we can efficiently – using binary
search – find the confidence interval in every iteration.

6.4 Conclusion

We have presented the randomized Clopper-Pearson bound and confidence sequences
based on union bound and martingale concentration. The paper contains a more formal
presentation of the topic and provides analyses of the algorithms and experiments. This
work was just published; thus, there are no follow-ups in this direction as of now.
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Provably Adversarially Robust Nearest Prototype Classifiers

Václav Voráček 1 Matthias Hein 1

Abstract

Nearest prototype classifiers (NPCs) assign to

each input point the label of the nearest proto-

type with respect to a chosen distance metric. A

direct advantage of NPCs is that the decisions are

interpretable. Previous work could provide lower

bounds on the minimal adversarial perturbation

in the ℓp-threat model when using the same ℓp-

distance for the NPCs. In this paper we provide a

complete discussion on the complexity when us-

ing ℓp-distances for decision and ℓq-threat models

for certification for p, q ∈ {1, 2,∞}. In particu-

lar we provide scalable algorithms for the exact

computation of the minimal adversarial perturba-

tion when using ℓ2-distance and improved lower

bounds in other cases. Using efficient improved

lower bounds we train our Provably adversarially

robust NPC (PNPC), for MNIST which have bet-

ter ℓ2-robustness guarantees than neural networks.

Additionally, we show up to our knowledge the

first certification results w.r.t. to the LPIPS percep-

tual metric which has been argued to be a more

realistic threat model for image classification than

ℓp-balls. Our PNPC has on CIFAR10 higher cer-

tified robust accuracy than the empirical robust

accuracy reported in (Laidlaw et al., 2021). The

code is available in our repository.

1. Introduction

The vulnerability of neural networks against adversarial ma-

nipulations (Szegedy et al., 2014; Goodfellow et al., 2015)

is a major problem for their real world deployment in safety

critical systems such as autonomous driving and medical

applications. However, the problem is not restricted to neu-

ral networks as it has been shown that basically all machine

learning algorithms are vulnerable to adversarial perturba-

tions e.g. nearest neighbor methods (NN) (Wang et al.,

1University of Tübingen, Germany. Correspondence to: Václav
Voráček <vaclav.voracek@uni-tuebingen.de>, Matthias Hein
<matthias.hein@uni-tuebingen.de>.

Proceedings of the 39
th International Conference on Machine

Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

2018), kernel SVMs (Xu et al., 2009; Biggio et al., 2013;

Russu et al., 2016; Hein & Andriushchenko, 2017), decision

trees (Papernot et al., 2016; Bertsimas et al., 2018; Chen

et al., 2019; Andriushchenko & Hein, 2019). In the area of

neural networks this lead to an arm’s race between novel

empirical defenses and attacks and even initially promising

defenses were broken later on (Athalye et al., 2018). This

still happens for papers published at top machine learning

conferences (Tramer et al., 2020; Croce & Hein, 2020a)

despite more reliable attacks for adversarial robustness eval-

uation (Croce & Hein, 2020b) and guidelines (Carlini et al.,

2019) being available.

Thus classifiers with provable adversarial robustness guaran-

tees are highly desirable. For neural networks computation

of the exact minimal perturbation turns out to be restricted

to very small networks (Tjeng & Tedrake, 2017). Instead

one derives either deterministic (Hein & Andriushchenko,

2017; Wong & Kolter, 2018; Gowal et al., 2018; Mirman

et al., 2018; Zhang et al., 2020; Lee et al., 2020; Huang

et al., 2021; Leino et al., 2021) or probabilistic guarantees

(Cohen et al., 2019; Jeong et al., 2021) on the robust ac-

curacy. We refer to (Li et al., 2020) for a recent overview.

While provable adversarial robustness has been studied ex-

tensively for neural networks, the literature for standard clas-

sifiers is scarce, e.g. decision trees (Bertsimas et al., 2018),

boosted decision stumps and trees (Chen et al., 2019; An-

driushchenko & Hein, 2019), and nearest neighbour (Wang

et al., 2018; 2019) and nearest prototype classifiers (NPC)

(Saralajew et al., 2020). NPC are also known as Learning

Vector Quantization (LVQ), see (Kohonen, 1995), and are

directly interpretable, can be used for all data where a dis-

tance function is available and have the advantage compared

to a nearest neighbour classifier that the prototypes can be

learned and thus they are more efficient and achieve typi-

cally better generalization performance. Moreover, NPC

have a maximum margin nature (Crammer et al., 2003) and

(Saralajew et al., 2020) showed recently how to derive lower

bounds on the minimal adversarial perturbation which in

turn yield lower bounds on the robust accuracy. (Wang et al.,

2019) have shown how to compute the minimal adversar-

ial perturbation for nearest neighbor classifiers using the

ℓ2-distance which applies to NPC as well.

Contributions: we show that the results of (Saralajew et al.,

2020) can be improved in various ways leading to our PNPC
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which perform better both in clean and robust accuracy.

A) We generalize the lower bounds on the minimal adver-

sarial perturbation (Saralajew et al., 2020) provided for dis-

tances induced by semi-norms to general semi-metrics, thus

improving significantly over standard ℓp-based certification.

The original proof of (Saralajew et al., 2020) used the ab-

solute homogenity of semi-norms; thus, it do not generalize

to semi-metrics.

B) For NPC using the ℓ2-distance we show that the lower

bounds of (Wang et al., 2019) can be quickly evaluated

so that training with them is feasible and show that these

bounds improve the ones of (Saralajew et al., 2020). More-

over, we improve the certification of (Wang et al., 2019)

by integrating that the domain in image classification is

[0, 1]d. For MNIST our ℓ2-PNPC has the best ℓ2-robust

accuracy even outperforming randomized smoothing for

large radii. Moreover, we show how to certify exactly ℓ1-

and ℓ∞-robustness for ℓ2-NPC and in this way can certify

multiple-norm robustness and show that our ℓ2-PNPC out-

performs the multiple-norm robustness guarantees of (Croce

& Hein, 2020a).

C) For the ℓ1-and ℓ∞-NPC we provide novel lower bounds

and analyze their complexity. For ℓ∞-NPCs we thus im-

prove over the bounds given in (Saralajew et al., 2020).

D) As the ℓp-distances are not suited for image classification

tasks, we use a neural perceptual metric (LPIPS) (Zhang

et al., 2018) as a semi-metric for the NPC and provide

robustness guarantees in the perceptual metric. We improve

both in terms of clean and certified robust accuracy over

the clean and empirical robust accuracy of the adversarially

trained ResNet 50 of (Laidlaw et al., 2021)

2. Provably Robust NPC Classifiers

Nearest prototype classifiers require for a given input space

X only a (semi)-metric. To compare with previous work,

we introduce also a (semi)-norm, which requires a vector-

space structure; thus, assuming the existence of a norm is a

stronger assumption than the assumption of the existence of

a metric.

Definition 2.1. A mapping d : X×X → R is a semi-metric

if the following properties holds for any x, y, z ∈ X :

• d(x, y) g 0 (non-negativity)

• d(x, y) = d(y, x) (symmetry)

• d(x, y) f d(x, z) + d(z, y) (triangle inequality)

If we further require that d(x, y) = 0 =⇒ x = y, then the

semi-metric becomes a metric.

Definition 2.2. A mapping ∥·∥ : X → R is a semi-norm if

the following properties holds for any x, y ∈ X , ³ ∈ R:

• ∥x∥ g 0 (non-negativity)

• ∥³x∥ = |³| ∥x∥ (absolute homogeneity)

• ∥x+ y∥ f ∥x∥+ ∥y∥ (triangle inequality)

If we further require ∥x∥ = 0 =⇒ x = 0, then the

semi-norm becomes a norm.

Note that any (semi)-norm ∥x∥ induces a (semi)-metric d
with d(x, y) = ∥x− y∥.

We denote by (wi)I the set of prototypes. Each prototype is

assigned to one class. Then z ∈ R
d is classified as

f(z) = argmin
y=1,...,K

min
i∈Iy

d(z, wi),

where Iy are the prototypes of class y. A nearest neighbor

classifier (1NN) can also be understood as NPC where one

uses the training set as prototypes and thus are not learned.

However, by training prototypes one can achieve better

classification performance, and also robustness, see Table 5,

with less prototypes meaning that NPC are significantly

more efficient than 1NN. We note that the classification for

a point z with label y is correct if

min
i∈Iy

d(z, wi)−min
j∈Ic

y

d(z, wj)<0,

where Icy is the set of all prototypes not belonging to class y
(the complement of Iy in I).

2.1. Provable robustness guarantees for semi-metrics

Next we define the minimal adversarial perturbation of a

point z for a semi-metric on X , that is the radius r of the

smallest ball Bd(z, r) = {x ∈ X | d(x, z) f r} around z
such at least one point in Bd(z, r) is classified differently

than is z. If a point z is misclassified then we define the

minimal adversarial perturbation to be zero. We assume that

there is a non-empty set of prototypes for every class; thus,

there always exists an adversarial example.

Definition 2.3. The minimal adversarial perturbation

ϵd(z) of z ∈ X of a NPC using semi-metric d is defined as

ϵd(z)=min{r| max
x∈Bd(z,r)

(

min
i∈Iy

d(x,wi)−min
j∈Ic

y

d(x,wj)
)

g0}

If min
i∈Iy

d(z, wi)−min
j∈Ic

y

d(z, wj) g 0 then we set ϵd(z) = 0.

In (Saralajew et al., 2020) they derive for semi-norms a

lower bound on ϵd and in this way get robustness certificates.

We generalize this lower bound to semi-metrics which is

considerably more general as X need not be a vector space.

It turns out that the only necessary technical requirement for

the proof is the triangle inequality. This is unlike (Saralajew

et al., 2020), where the proof also required the absolute

homogeneity of semi-norms.
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Theorem 2.4. Let (X , d) be a semi-metric space, then it

holds for the minimal adversarial perturbation ϵd(z) of

z ∈ X with correct label y:

ϵd(z) g max







0,

min
j∈Ic

y

d(z, wj)−min
i∈Iy

d(z, wi)

2







.

We note that if the semi-metric d can be written as d(x, y) =
∥x− y∥ for some semi-norm ∥·∥, then our bound is equal

to the one given in (Saralajew et al., 2020)

2.2. The minimal adversarial ℓq-perturbation of the

ℓp-NPC and lower bounds

In this section we derive the minimal adversarial ℓq-

perturbation for the ℓp-PNPC in R
d where our main interest

is p, q ∈ {1, 2,∞}. In contrast to the semi-metric case, here

we treat the case where the ℓq-metric measuring the size of

the adversarial perturbation is different from the ℓp-metric

used in the NPC. In this section we use the notation

Bq(x, r) = {z ∈ R
d | ∥z − x∥q f r}.

Thus we first define

Definition 2.5. The minimal adversarial perturbation

ϵqp(z) of x ∈ X ¢ R
d with respect to the ℓq-metric for the

ℓp-NPC is defined as:

ϵqp(z)j = min
r∈R,x∈X

r

sbj. to: ∥x− wi∥p − ∥x− wj∥p g 0

x ∈ Bq(z, r)

If min
i∈Iy

∥x− wi∥p−min
j∈Ic

y

∥x− wj∥p > 0 we set ϵqp(z)=0.

The following reformulation of the optimization problem

for the computation of the minimal adversarial perturbation

ϵqp(z) allows us to provide a generic and direct way to derive

efficiently computable lower bounds on ϵqp(z). Note that in

the following we always integrate the constraint x ∈ X as

we will see that this significantly improves the guarantees,

e.g. when X = [0, 1]d in image classification, compared

to X = R
d as done in (Saralajew et al., 2020; Wang et al.,

2019).

Theorem 2.6 (Exact computation of ϵqp(z)). Let z ∈ X ¢
R

d and denote by Iy the index set of prototypes (wj) of

class y and by Icy its complement (the index set of prototypes

not belonging to class y). Then define for every j ∈ Icy:

rqp(z)j = min
x∈Rd

∥x− z∥q (1)

sbj. to: ∥x− wi∥p − ∥x− wj∥p g 0 ∀ i ∈ Iy

x ∈ X
Then ϵqp(z) = min

j∈Ic
y

rqp(z)j .

ℓq-threat model

ℓ p
-d

is
ta

n
ce ℓ1 ℓ2 ℓ∞

ℓ1 NP-hard NP-hard O(d log(d))
ℓ2 Θ(d) Θ(d) Θ(d)
ℓ∞ Θ(d) O(d log(d)) Θ(d)

Table 1: Computational complexity of Äqp(z)i,j .

ℓq-threat model

ℓ p
-d

is
ta

n
ce ℓ1 ℓ2 ℓ∞

ℓ1 NP-hard NP-hard Poly

ℓ2 Poly Poly Poly

ℓ∞ NP-hard NP-hard NP-hard

Table 2: Computational Complexity of rqp(z) and ϵqp(z).

While the corresponding optimization problems are often

non-convex, we will see in the following that they are equiv-

alent to convex optimization problems in the case where the

ℓ2-distance is used in the NPC (p = 2). Using the formu-

lation of the exact problem as an optimization problem we

can now simply derive lower bounds on ϵqp(z) by relaxing

the optimization problem (1).

We consider for this reason the following optimization prob-

lems. For i ∈ Iy and j ∈ Icy we define:

Äqp(z)i,j = min
x∈Rd

∥x− z∥q (2)

sbj. to: ∥x− wi∥p − ∥x− wj∥p g 0

x ∈ X

In Theorem 2.7 we show that these simpler problems can

often be solved efficiently, although the computation of ϵqp
is often intractable, as we show in Theorem 2.8.

Theorem 2.7. The computational complexities of optimiza-

tion problems Äqp(z)i,j for p, q ∈ {1, 2,∞} for X = R
d are

summarized in Table 1.

Theorem 2.8. The computational complexities of opti-

mization problems rqp(z)j in (1) for p, q ∈ {1, 2,∞} and

X = [0, 1]d are summarized in Table 2.

Apart from the known ℓ2-case (see (Wang et al., 2019))

we show that also ℓ1-NPC can be certified efficiently for

the ℓ∞-threat model. Because of this theorem it is even

more important that at least for the ℓ∞-NPCs efficient lower

bounds are available for all threat models in q = {1, 2,∞}.

We note that the optimization problem for rq2(z)j in (1) is

equivalent to a quadratic program for q = 2 and to a linear

programs for q ∈ {1,∞} for both with and without box

constraints.

The following lemma shows that (2) can be used to get a

lower bound on the minimal adversarial perturbation, and
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˙ ˙

Figure 1: Illustration of the ℓq-minimal adversarial perturbations of a ℓ2-NPC for a binary classification problem. The

learned prototypes are shown as the larger red resp. blue dots. For each data point we draw the largest ℓ1-(left), ℓ2-(middle)

and ℓ∞-(right) ball which is fully classified as the same class. The radii are computed using Alg. 1. Though there is no

specific optimization for multiple-norm robustness, ℓ2-NPC possess non-trivial multiple-norm robustness.

subsequently we show that it improves on the previous

bound given in Theorem 2.4 which has been derived by

(Saralajew et al., 2020). In particular, this bound can be

tight and we show in Table 4 in Section 5 that this happens

frequently in practice and thus allows to avoid the signifi-

cantly more complex problems in (1).

Lemma 2.9. It holds

ϵqp(z) g min
j∈I

y
c

max
i∈Iy

Äqp(z)i,j .

Moreover, let (j∗, i∗) be the prototype pair in Iyc × Iy which

realizes the lower bound and denote by x∗ the minimizer of

Äqp(z)i∗,j∗ . Then if x∗ fulfills

∥x∗ − wi∥p − ∥x∗ − wj∗∥p g 0 ∀i ∈ Iy,

then ϵpq(z) = min
j∈I

y
c

max
i∈Iy

Äqp(z)i,j .

Theorem 2.10. The lower bound on ϵpp(z) of Lemma 2.9 is

at least as good as the one of Theorem 2.4. That is,

min
j∈I

y
c

max
i∈Iy

Äpp(z)i,j g min
j∈I

y
c

Äpp(z)i∗,j

gmax







0,

min
j∈Ic

y

∥z − wj∥p −min
i∈Iy

∥z − wi∥p
2







,

where i∗ ∈ argmin
i∈Iy

∥z − wi∥p.

In order to be able to use these lower bounds for certified

training of our PNPC, their efficient computation is of high

importance which we discuss next.

For better intuition we discuss some cases in more detail.

The ℓ2-NPC have a nice geometric descriptions as the set

{z| ∥z − wi∥2 = ∥z − wj∥2}

={z| ïwj − wi, zð+
∥wi∥22 − ∥wj∥22

2
= 0}

certified ball for Rd

certified ball for [0, 1]d

Figure 2: Illustration for ℓ2-NPC for two prototypes (red

and blue): when taking into account that the data lies in

[0, 1]d we can certify a larger ball than in R
d.

is a hyperplane. Thus the computation of Äq2(z)i,j for X =
R

d corresponds to the computation of the ℓq-distance of a

point to a hyperplane:

Äq2(z)i,j =
∥z − wj∥22 − ∥z − wi∥22

2 ∥wi − wj∥q∗
,

where q∗ denotes the dual norm of q. This has also been

derived in (Wang et al., 2019). As illustration how the con-

straints X = [0, 1]d, e.g. in image classification, improve

the certificates, we show in Figure 2 the ball which can be

certified in R
d resp. [0, 1]d.

2.3. How to do the certification efficiently

Table 1 shows that Äqp(z)i,j can be computed efficiently or

even given in closed form except for the two cases when

(p, q) ∈ {(1, 1), (1, 2)}. However, that would still mean
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that the lower bound of Lemma 2.9

ϵqp(z) g min
i∈Iy

max
j∈Ic

y

Äqp(z)i,j ,

would require us to solve naively |Iy||Icy| such problems.

Seemingly, the bound in Theorem 2.4 is much cheaper as it

requires only (|Iy|+ |Icy|) operations even though one has

to note that the bound only exists for the case when p = q.

i) A lower bound: Theorem 2.10 shows that when fixing

i∗ = argmin
i∈Iy

∥z − wi∥ and then computing

minj∈I
y
c
Äqp(z)i∗,j ,

yields by Lemma 2.9 a lower bound on ϵqp(z). By Theorem

2.10 this lower bound is for the case p = q still better than

the one of Theorem 2.4 while having the same complexity

of |Iy|+ |Icy| operations. Obviously, when integrating box

constraints, that is X = [0, 1]d, the gap can only become

larger between the two bounds.

ii) Using simpler lower bounds: When certifying bounds

for X = [0, 1]d we first compute the lower bounds for

X = R
d as they are often available in closed form

and are definitely lower bounds for the more restricted

case X = [0, 1]d. By fixing again i∗ we can then use

sj := Äqp(z)i∗,j and define the minimum and minimizer

as (¼, j∗) = minj∈Ic
y
Äqp(z)i∗,j . Now, let us denote by

»q
p(z)i∗,j the corresponding quantity when using X =

[0, 1]d instead of X = R
d. Then we only need to compute

»q
p(z)i∗,j if sj < »q

p(z)i∗,j∗ , which is typically satisfied for

very few instances, so most computations are pruned.

iii) Dual problems: as in (Wang et al., 2019) we use the

dual problems when computing rq2(z)j . This has three ad-

vantages. First, we always get a lower bound using weak

duality, second, we stop solving rqp(z)j when the dual value

is higher than our currently smallest upper bound and third;

empirically only few constraints of the problems become

active; thus, the solutions are dual-sparse.

Final Certification: in Algorithm 1 we sketch the certifica-

tion process. It does not include all details (see above) which

we use for speeding up the computation of lower bounds as

well as the exact minimal adversarial perturbation.

3. Perceptual Metric

The hypothesis underlying the goal of adversarial robust-

ness is that images which have the same semantic content,

should be classified the same (with the exception at the

true decision boundary). However, this would require a hu-

man oracle which judges if the semantic content is similar.

A proxy is the typical ℓp-threat model, where for suitable

chosen radius ϵp one expects that for a given image x also

Bp(x, ϵp) should be classified the same as for humans the re-

sulting images are (semantically) indistinguishable from the

Algorithm 1 Sketch of certification algorithm for correctly

classified point z

// Computation of ¼ as lower bound on ϵqp(z)
i∗ = argmin

i∈Iy

∥z − wi∥p
sj = Äqp(z)i∗,j , j ∈ Icy (sj lower bounds rqp(z)j)

(¼, j∗) = minj∈Ic
y
Äqp(z)i∗,j

if minimizer x∗ of Äqp(z)i∗,j∗ is feasible for rqp(z)j∗ then

ϵqp(z) = ¼ and return

else

¼ is lower bound on ϵpq(z)
end if

// Computation of ϵqp(z) ( p = 2 or (p, q) = (1,∞))
µ = rqp(z)j∗ // (it holds µ g ϵqp(z))
for j = 1 to |Icy| do

if sj < µ then

compute rqp(z)j
if rqp(z)j < µ then

µ = rqp(z)j
end if

end if

ϵqp(z) = µ
end for

original image. However, it is well known that pixel-based

ℓp-distances are not a good measure of image similarity. A

huge literature in computer vision discusses the construction

of metrics which better correspond to human perception of

similarity of images e.g. the SSIM metric of (Wang et al.,

2004). More recently, neural perceptual metrics, such as the

LPIPS distance, have been proposed in (Zhang et al., 2018).

The LPIPS distance is based on a feature mapping of a fixed

neural network and has been shown to correlate better with

human perception (Zhang et al., 2018; Laidlaw et al., 2021).

In (Laidlaw et al., 2021) it has been used as threat model in

adversarial training. Moreover, (Kireev et al., 2021) have

shown that the LPIPS distance better correlates with the

severity level of common corruptions than the ℓ2-distance.

Moreover, ℓp-distance based NPC are not competitive for

CIFAR10. These two aspects motivate us to investigate the

perceptual metric-based PNPC as well as novel techniques

for the certification in the LPIPS-threat model.

The perceptual metric: Given the output g(l)(x) ∈
R

Hl×Wl×Cl of the l-th layer of a fixed neural network (we

use Alexnet as suggested by (Zhang et al., 2018)) of height

Hl and width Wl and channels Cl, we define the normal-

ized output of a layer as ĝ
(l)
h,w(x) =

g
(l)
h,w

(x)
∥

∥

∥
g
(l)
h,w

(x)
∥

∥

∥

2

. The LPIPS

distance d is then defined in (Zhang et al., 2018) as

d2(x, y) =
∑

l∈IL

1

HlWl

∑

h,w

∥

∥

∥wl »
(

ĝ
(l)
h,w(x)− ĝ

(l)
h,w(y)

)∥

∥

∥

2

2
,
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where the weights wl are learned using human perception

data and IL is the index set of layers used for the metric.

We follow (Laidlaw et al., 2021) and use the unweighted

(i.e., weights perform an identity mapping) version in order

to be able to directly compare to them. However, it would

be easy to adapt our approach for the weighted version. We

define the embedding, ϕ : [0, 1]d → R
D

x 7→ ϕ(x) =

(

ĝ(l)√
HlWl

)

l∈IL

, (3)

so that the unweighted LPIPS distance can simply be written

as a standard Euclidean distance d(x, y) = ∥ϕ(x)− ϕ(y)∥2
in the embedding space.

The mapped image space ϕ(I) of all natural images I is

a subset of ϕ([0, 1]d), which can be seen as an at most d-

dimensional continuous “submanifold” of the embedding

space R
D. Thus for all points z ∈ R

D\ϕ([0, 1]d) there

exists no pre-image in [0, 1]d. However, the Euclidean dis-

tance between every mapped images x, y ∈ I corresponds

to the perceptual distance between them. Thus we train our

PNPC in the embedding space RD and certify it with respect

to the Euclidean distance which in turn yields guarantees

with respect to the LPIPS distance.

certified ball for R
d

certified ball with SC

Figure 3: The embedded data ϕ(x) lies on the intersection of

the positive orthant and the sphere (shown in black). In the

embedding space the ℓ2-metric corresponds to the percep-

tual metric. Taking these non-negative spherical constraints

(SC) into account we can certify a much larger ball than

using only the standard certification in R
d.

3.1. Certification in the Perceptual threat model

Up to our knowledge this is the first paper showing results

for certification with respect to this threat model aligned

with human vision. We can use all techniques we have

discussed in Section 2 as we are working with a Euclidean

distance in R
D. However, we have more knowledge about

ϕ([0, 1]d) as the output of each layer is normalized so that

ϕ(x) lies on a product of spheres with radius rl =
1√

HlWl

as

∥

∥

∥ϕ
(l)
h,w(x)

∥

∥

∥

2
=

∥

∥

∥

∥

∥

ĝ
(l)
h,w√
HlWl

∥

∥

∥

∥

∥

2

=
1√

HlWl

:= rl, (4)

for any l ∈ IL, h ∈ IH , w ∈ IW . Additionally, we know

due to the structure of Alexnet that ϕl(x) is non-negative

for all layers, see Figure 3 for an illustration. While we

can integrate some of the properties of the mapping ϕ into

the certification, it is computationally intractable to use as

constraint x ∈ ϕ([0, 1]d). Thus our certification works on

an overapproximation of ϕ([0, 1]d) and thus yields lower

bounds on the minimal adversarial perceptual distance.

Basically, we can write our constraints in R
D as

X =X1 × · · · × XL (5)

Xl =

(

1√
HlWl

Scl ∩ [0,∞)cl
)HlWl

, l = 1, . . . , L,

where cl is the number of channels in layer l of the out-

put of the layer l and D =
∑L

l=1 HlWlcl. We use upper

indices (e.g., x(h,w,l)) to denote slice of vector x which cor-

responds to vector of channels at position h,w in layer l.
The constants rl for 1 f l f L were defined in (4).

As we use ℓ2-NPC we have to compute:

Ä(z)i,j = min
x∈RD

∥x− z∥2 (6)

sbj. to: ïx,wj − wið+
∥wi∥22 − ∥wj∥22

2
g 0

∥

∥

∥
x(h,w,l)

∥

∥

∥

2

2
= r2l , l = 1, . . . , L

h = 1, . . . , Hl

w = 1, . . . ,Wl

xd g 0, d = 1, . . . , D.

Despite this problem is non-convex due to the quadratic

equality constraints we can derive a convex dual problem

(we derive it for an equivalent problem) which is sufficient

to provide us with lower bounds using weak duality.

Proposition 3.1. Define v = wj−wi and b =
∥wi∥2

2−∥wj∥2
2

2 .

A lower bound on the optimal value of the optimization

problem (6) is given by
√

√

√

√

√2L+ 2



max
λg0

−
∑

h,w,l

∥

∥

∥

(

z(h,w,l) − ¼v(h,w,l)
)+
∥

∥

∥

2
rl + ¼b





which can be efficiently computed using bisec-

tion. The summation
∑

h,w,l is a shortcut for
∑

1flfL

∑

1fhfHl

∑

1fwfWl
.

In the experimental results in Figure 4 one can clearly see

that using this lower bound improves significantly over the

standard lower bound of Lemma 2.9.
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4. Efficient Training of PNPC

In this section we describe the training procedure for our

PNPC. The key advantage compared to the work of (Sar-

alajew et al., 2020) is that despite our lower bounds, see

Theorem 2.10, are better and often tight, they can be com-

puted with the same time complexity as theirs if p ∈ {2,∞}.

Thus we can do efficient certified training. As objective we

use the capped sum of the lower bounds:

max
(wi)i∈I

1

n

n
∑

r=1

min
{

min
j∈Ic

y

max
i∈Iy

Äqp(zr)i,j , R
}

,

where we recall the definition of Äqp from 2:

Äqp(z)i,j = min
x∈Rd

∥x− z∥q (7)

sbj. to: ∥x− wi∥p − ∥x− wj∥p g 0

x ∈ X

and R is an upper bound on the margin we want to enforce.

The cap is introduced in order to avoid that single training

points have excessive margin at the price of many others

having small margin; in turn, it is equivalent to minimizing

hinge-loss. The loss is minimized via stochastic gradient de-

scent resp. ADAM with large batch sizes. Note further that,

for misclassified points we use a signed version of Äqp(zr)i,j
by flipping the constraint in (2) and using −Äqp(zr)j,i in-

stead, which can be interpreted as signed distance to the

decision boundary. Doing this has the advantage that we

get gradient information from all points. Maximizing our

objective has a direct interpretation in terms of maximiz-

ing robust accuracy or more precisely the area under the

robustness curve capped at radius R. This is in contrast to

(Saralajew et al., 2020) who use as loss their lower bound

divided by the sum of the distances where this interpretation

is due to the rescaling not applicable.

5. Experiments

The code for experiments is available in our repository1

where we also provide the training details. We first eval-

uate the improvements in the certification of better lower

bounds resp. exact computation compared to the ones of

(Saralajew et al., 2020) as well as (Wang et al., 2019). In a

second set of experiments we compare our ℓp-PNPC to the

ℓp-NPC of (Saralajew et al., 2020) resp. to nearest neigh-

bor classification as well as deterministic and probabilistic

certification techniques for neural networks on MNIST and

CIFAR10 (see App. H). Finally, we discuss our NPC using

1https://github.com/vvoracek/Provably-Adversarially-Robust-
Nearest-Prototype-Classifiers.

Table 3: Lower bounds on ϵqp(z). Mean of the lower bounds

of (Saralajew et al., 2020) (Theorem 2.4), the lower bounds

of (Wang et al., 2019)) in (13) (X = R
d), our lower bounds

integrating X = [0, 1]d and the exact radius on the test set

for ℓ2-NPC for ℓ1-,ℓ2- and ℓ∞-threat model.

Lower bounds Exact
Model Num. Threat Th. 2.2 Th. 2.6 Th. 2.6 radius

Proto. model R
d

R
d [0, 1]d [0, 1]d

ℓ2-PNPC
4000

ℓ1 - 9.71 11.77 12.11
ℓ2 0.39 1.86 1.96 1.99

MNIST ℓ∞ - 0.14 0.16 0.17

the perceptual metric and its certification where there is no

competitor as up to our knowledge this is the first paper

providing robustness certificates. The training time is about

a few hours on a laptop.

Comparison of our lower bounds: One of the major con-

tributions of this paper are our efficient lower bounds on the

minimal adversarial perturbation ϵqp(z). They can be com-

puted so fast that it is feasible to use them during training.

We show in Table 3 that our ℓq-bounds improve signifi-

cantly over the ones of (Saralajew et al., 2020) (Th. 2.4,

X = R
d), which only work if p = q and (Wang et al.,

2019) (Lemma 2.9, X = R
d, see (13) for p = 2) as we are

the only ones who integrate box constraints (Lemma 2.9,

X = [0, 1]d). In Table 3, we show that for the ℓ1-, ℓ2-

and ℓ∞ threat models our lower bounds are very close to

the exact values. The computation of these lower bounds

takes for the full test set of MNIST: ℓ1: 188s, ℓ2: 33s, ℓ∞:

131s. This is two orders of magnitude faster than the com-

putation of the exact bounds in Table 4. For our ℓ∞-NPC

and ℓ∞-threat model we get mean lower bounds of 0.3545
for (Saralajew et al., 2020), 0.3560 for the ones from (15)

with X = R
d, and 0.3616 for ours from Lemma 2.9 with

X = [0, 1]d in (20). Here the differences are smaller than

for the ℓ2-NPC.

Time for certification: The computation of the exact mini-

mal adversarial perturbation is only feasible for relatively

small neural networks (Tjeng & Tedrake, 2017) and for en-

semble of decision trees (Kantchelian et al., 2016). Both

use mixed-integer formulations which do not scale well. For

boosted decision stumps one can compute the exact robust

accuracy (Andriushchenko & Hein, 2019). However, the

computation of the exact robust accuracy is already consid-

erably easier than the minimal adversarial perturbation. For

ℓ2-NPC we can compute the exact adversarial perturbation

for the ℓ1-, ℓ2-, and ℓ∞-threat model. In Table 4 we report

the certification time per point and other statistics for our ℓ2-

PNPC prototypes on MNIST with 400 prototypes per class

(ppc) and the ℓ2-GLVQ -model of (Saralajew et al., 2020)

on CIFAR10 with 128 ppc. We can also produce weaker
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Table 4: Time/Statistics for exact minimal adversarial

perturbation for ℓ2-NPC

Model Num. Threat Direct Total QP/LP Cert. Time
Proto. model solved QP/LP per pt per pt

ℓ2-PNPC
4000

ℓ1 4261 (43.8%) 10195 1.86 0.54s
ℓ2 3170 (32.6%) 11630 1.77 0.49s

MNIST ℓ∞ 2073 (21.3%) 21081 2.75 1.3s

ℓ2-GLVQ
1280

ℓ1 3683 (75.8%) 1817 1.54 0.76s
ℓ2 3546 (73.0%) 1777 1.35 0.25s

CIFAR10 ℓ∞ 3511 (72.2%) 1933 1.43 0.9s

certificates faster. For instance, using Lemma 2.9, we can

certify MNIST robust accuracy 67% in under 2s instead of

the exact 73% reported in Table 5.

Regarding the model of ℓ2-GLVQ on CIFAR10, we have

an accuracy of 48.6% (which corresponds to 4859 correctly

classified test points). Of these ones we can solve between

72.2% for ℓ∞ and 75.8% for ℓ1 directly using Lemma 2.9

by checking the condition after the computation of the lower

bounds. This shows the usefulness of Lemma 2.9 as it avoids

a lot of QPs (ℓ2) rsp. LPs (ℓ1, ℓ∞) to be solved. Next we see

that the number of LPs/QPs needed to be solved per point is

less than 1.43 which has to be compared to the worst case

of |Icy| = 1152. This shows that our prior reduction using

our tight lower bounds integrating box constraints helps to

significantly reduce the number of problems rqp(z)j which

need to be solved. In total we get certification times between

0.25s (ℓ2) and 0.9s (ℓ∞) per point which allows us to do

the exact certification for all three threat models.

Evaluation of our NPC: We report certified robust accu-

racy (CRA) and upper bounds on robust accuracy (URA),

e.g. computed via an adversarial attack, on MNIST and CI-

FAR10 (in App. H) for PNPC and the GLVQ of (Saralajew

et al., 2020). For ℓ2-NPC CRA and URA are equal as we

compute exact adversarial perturbations. As an interesting

baseline, we report results for the one nearest neighbor clas-

sifier (1NN). Additionally, we compare to deterministic and

probabilistic certification techniques of neural networks.

MNIST - ℓ2-NPC: In Table 5 we show the results for the

ℓ2-threat model on MNIST. Our ℓ2-PNPC outperforms

the ℓ2-GLVQ for all ϵ2. The values for ϵ2 were chosen

according to the neural network literature. Note that our

ℓ2-PNPC outperforms all deterministic methods: GlobRob

(Leino et al., 2021), OrthConv (Singla et al., 2022), Lo-

cLip (Huang et al., 2021), BCP (Lee et al., 2020) and CAP

(Wong et al., 2018) in terms of certified robust accuracy

and often in the terms of clean accuracy. For the details on

comparison with orthogonal convolutions, see Appendix I.

The randomized smoothing approach SmoothLip of (Jeong

et al., 2021) outperforms us for Ã = 0.5 in terms of clean

accuracy and robust accuracy at ϵ2 = 1.5 but their robust

Table 5: MNIST: lower (CRA) and upper bounds (URA)

on ℓ2-robust accuracy for ℓ2-NPC

MNIST std. ϵ2 = 1.5 ϵ2 = 1.58 ϵ2 = 2
acc. CRA URA CRA URA CRA URA

ℓ2-PNPC 97.3 75.5 75.5 73.0 73.0 56.1 56.1
ℓ2-GLVQ 95.8 69.7 69.7 67.1 67.1 53.5 53.5
1-NN 96.9 52.1 52.1 47.3 47.3 23.7 23.7

GloRob 97.0 - - 62.8 81.9 - -
OrthConv 98.1 - - 61.0 75.5 - -
LocLip 96.3 - - 55.8 78.2 - -
BCP 92.4 - - 47.9 64.7 - -
CAP 88.1 - - 44.5 67.9 - -

SmoothLipσ=0.5 98.7 81.8∗ - - - 0∗ -
SmoothLipσ=1 93.7 62.7∗ - - - 44.9∗ -

Table 6: MNIST: lower (CRA) and upper bounds (URA) on

robust accuracy for multiple threat models for our ℓ2-PNPC,

the ℓ2-NPC of (Saralajew et al., 2020), a 1-NN classifier. As

comparison we show MMR-Univ of (Croce & Hein, 2020a)

which is a neural network specifically trained for certifiable

multiple-norm robustness.

MNIST std. ϵ1 = 1 ϵ2 = 0.3 ϵ∞ = 0.1 union
acc. CRA URA CRA URA CRA URA CRA URA

ℓ2-PNPC 97.3 96.2 96.2 95.6 95.6 85.8 85.8 85.8 85.8
ℓ2-GLVQ 95.8 94.2 94.2 93.2 93.2 80.9 80.9 80.9 80.9
1-NN 96.9 95.0 - 93.6 93.6 78.3 - 78.3 -

MMR-U 97.0 79.2 93.6 89.6 93.8 87.6 87.6 79.2 87.6

accuracy at ϵ2 = 2 is zero, whereas we have 56.1% exact

robust accuracy. Their second model with Ã = 1 which is

able to certify also larger radii is in all aspects worse than

our ℓ2-PNPC. This shows that our certified prototype clas-

sifiers can challenge neural networks in terms of certified

robust accuracy. Moreover, (Saralajew et al., 2020) report

for their ℓ2-GLVQ a certified robust accuracy of 34.4% at

ϵ = 1.58 whereas with our exact computation we get that

their exact robust accuracy is 67.1%. This shows the quality

of our exact certification techniques. With our certified train-

ing PNPC has 6% better robust accuracy and 1.5% better

standard accuracy (97.3% vs. 95.8%) than ℓ2-GLVQ.

The advantage of our ℓ2-NPC is that we can certify any

ℓq-threat model, especially ℓ1 and ℓ∞. This allows us to

compute the exact robust accuracy in the union of the

ℓ1-, ℓ2- and ℓ∞-balls. The only other approach which

has provided certified lower bounds (CRA) on multiple-

norm robustness is MMR-U from (Croce & Hein, 2020a)

who certify a neural network. In Table 6 we compare our

multiple-norm robust accuracy for the ϵq which were chosen

in (Croce & Hein, 2020a). Our ℓ2-PNPC outperforms MMR-

U significantly in terms of certified ℓ1-and ℓ2-robustness as

well as in the union.
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Table 7: MNIST: lower (CRA) and upper bounds (URA) on

ℓ∞-robust accuracy for ℓ∞-NPC obtained using Lemma 2.9.

MNIST std. ϵ∞ = 0.1 ϵ∞ = 0.3 ϵ∞ = 0.4
acc. CRA URA CRA URA CRA URA

ℓ∞-PNPC 94.69 91.19 91.19 78.68 78.86 65.58 65.96

ℓ∞-GLVQ 96.34 93.52 93.52 80.76 81.04 61.29 62.94

ℓ∞-neuron 98.6 - - 93.1 95.3 - -
CROWN-IBP 98.2 - - 93.0 94.0 87.4 90.4
ReLU-S 97.3 - - 80.7 92.1 - -
CAP 87.4 - - 56.9 - - -

MNIST - ℓ∞-NPC We compare our ℓ∞-PNPC to the ℓ∞-

GLVQ of (Saralajew et al., 2020). For reference we provide

the best results for the ℓ∞-certfied neural networks: ℓ∞-

neurons (Zhang et al., 2021), CROWN-IBP (Zhang et al.,

2020), as well as slightly older results; ReLU-stability (Xiao

et al., 2019) and CAP (Wong et al., 2018) to put our results

into context. We perform slightly worse than (Saralajew

et al., 2020) for small radii, but significantly better for the

bigger one. Due to our better lower bounds but also by using

AutoAttack (Croce & Hein, 2020b) for computing the upper

bounds we close the gap between upper and lower bounds

from 4.2% in (Saralajew et al., 2020) to 0.3%. To attack

the classifier with AutoAttack, we interpret the negative

distance to the closest prototype from a particular class as

the logit value.

Perceptual metric NPC As discussed in Section 3 it is

unlikely that ℓp-NPC will work for image classifcation tasks

like CIFAR10. However, with the perceptual metric LPIPS

(based on Alexnet) which corresponds to an ℓ2-metric in

the embedding space, we get much better results with our

Perceptual-PNPC (P-PNPC). In Figure 4 we show the certi-

fied robust accuracy (lower bound of Lemma 2.9) as a func-

tion of the LPIPS-radius for the standard ℓ2-lower bounds

and for the improved lower bounds taking into account the

constraints of the embedding. We have three important ob-

servations. We achieve a clean accuracy of 80.3% which is

quite remarkable for a classifier with certified robust accu-

racy. Second, this is up to our knowledge the first result on

certified robustness with respect to the LPIPS-threat model.

Third, (Laidlaw et al., 2021) who do empirical perceptual

adversarial training with a a ResNet 50 get only 71.6% clean

accuracy and only a URA of 9.8% which is more than 30%
worse than our CRA of 40.5%. Moreover, our URA com-

puted using the LPA-attack of (Laidlaw et al., 2021) is with

70.3% remarkably high. These are very promising results

justifying more research in PNPC for perceptual metrics.

On the other hand, in (Laidlaw et al., 2021) it is noted that

models trained to be robust w.r.t. LPIPS-threat model are

empirically robust also to other threat models such as ℓ2
or ℓ∞ - even though one has to state that their model has

only a robust accuracy of 9.8%. This generalization does

not hold for P-PNPC. For ℓ∞ threat model, we observed

(empirical) robust accuracies 49%, 23%, 2%, 0% for radii

1/255, 2/255, 4/255, 8/255. For ℓ2 we have robust accu-

racy 51%, 29%, 5%, 0% for radii 0.14, 0.25, 0.5, 1. While

the robust accuracies are non-trivial, they are not compara-

ble to the ones achieved in (Laidlaw et al., 2021). As our

P-PNPC is much more robust with respect to the LPIPS-

threat model than the neural network of (Laidlaw et al.,

2021), it is thus an open question if this threat model leads

indeed to a generalization to other threat models.
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Figure 4: The certified robust accuracy as a function of the

radius of the LPIPS-threat model. Integrating the spherical

plus non-negativity constraints leads to huge improvements.

The standard accuracy as well as the empirical robust accu-

racy of (Laidlaw et al., 2021) are worse than certified robust

accuracy of P-PNPC by a large margin.

6. Conclusion

We have provided theoretical foundations as well as efficient

algorithmic tools for the computation of the exact minimal

adversarial perturbation, as well as lower bounds, for near-

est prototype classifiers for several threat models, including

the perceptual metric LPIPS. We have shown SOTA per-

formance for deterministic ℓ2-certification on MNIST and

remarkably strong certified robustness results with respect

to the LPIPS metric. Thus we think that NPC deserve more

attention in our research community.
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The appendix includes the missing proofs from the paper (App. A to App. G), results for ℓ2-NPC for CIFAR10 in App. H

and comparison to orthogonal convolutions in I.

A. Proof of Theorem 2.4

Proof. We note that for any x it holds by the triangle inequality

d(x,wi) f d(z, x) + d(wi, z).

Thus it holds

d(x,wi)− d(x,wj) f d(z, wi) + d(x, z)− d(z, wj) + d(x, z),

and we get that all points in Bd(z, r) are classified the same as z if

max
x∈Bd(z,r)

(

min
i∈Iy

d(x,wi)−min
j∈Ic

y

d(x,wj)
)

f min
i∈Iy

d(z, wi)−min
j∈Ic

y

d(z, wj) + 2r f 0

This yields that

r f
min
j∈Ic

y

d(z, wj)−min
i∈Ic

d(z, wi)

2
.

B. Proof of Theorem 2.6

Proof. We define the set

U
(p)
j = {x ∈ R

n | ∥x− wi∥p − ∥x− wj∥p g 0 ∀ i ∈ Iy}.
as the set of points which are not classified as y when only the single prototype with index j ∈ Icy would be considered. We

get the full set of points not classified as y as the union
⋃

j∈Ic
y
U

(p)
j . We define rqp(z)j = min

x∈U
(p)
j

∥z − x∥q as the radius

of the largest ℓq-ball which still fits into R
d\U (p)

j and thus is fully classified as class y when only considering j ∈ Icy . Thus

the radius ϵqp(z) of the largest ℓq-ball fitting into R
d\
⋃

j∈Ic
y
U

(p)
j =

⋂

j∈Ic
y

(

R
d\U (p)

j

)

is given by

ϵqp(z) = min
j∈Ic

y

rqp(z)j ,

which can be seen using the fact that rqp(z)j is the minimal ℓq-distance to U
(p)
j .

C. Proof of Lemma 2.9

Proof. As for each i ∈ Iy the problem for Äqp(z)i,j is a relaxation of the problem for rqp(z)j (as we are omitting constraints),

it holds for each i ∈ Iy:

rqp(z)j g Äqp(z)i,j =⇒ rqp(z)j g max
i∈Iy

Äqp(z)i,j .

Thus

ϵpq(z) = minj∈Ic
y
rqp(z)j g min

j∈I
y
c

max
i∈Iy

Äqp(z)i,j .

For the second part if x∗ satisfies

∥x∗ − wi∥p − ∥x∗ − wj∗∥p g 0 ∀i ∈ Iy,

then it is a feasible point for the optimization problem of rqp(z)j∗ in (1) and thus Äqp(z)i∗,j∗ = rqp(z)j∗ . By definition and by

the just derived result it holds

Äqp(z)i∗,j∗ = rqp(z)j∗ g ϵqp(z) g Äqp(z)i∗,j∗ ,

and thus equality has to hold.
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D. Proof of Theorem 2.10

Lemma D.1. Äpp(z)i,j g
∥wj−z∥

p
−∥wi−z∥

p

2

Proof. First we restate the definition of Ä:

Äqp(z)i,j = min
x∈Rd

∥x− z∥q (8)

sbj. to: ∥x− wi∥p − ∥x− wj∥p g 0

x ∈ X

We consider p = q. By the triangle inequality the following holds for any x ∈ X , thus also for any adversarial perturbation

x for which ∥x− wi∥p − ∥x− wj∥p g 0:

∥x− wi∥p f ∥x− z∥p + ∥z − wi∥p
∥z − wj∥p f ∥x− z∥p + ∥x− wj∥p =⇒ ∥x− wj∥p g ∥z − wj∥p − ∥x− z∥p

(9)

Summing the inequalities up we get for any feasible x ∈ X satisfying the inequality constraint,

∥z − wi∥p − ∥z − wj∥+ 2 ∥x− z∥p g ∥x− wi∥p − ∥x− wj∥p g 0. (10)

which yields finally

∥x− z∥p g
∥wj − z∥

p
− ∥wi − z∥p
2

. (11)

Therefore, Äpp(z)i,j g
∥wj−z∥

p
−∥wi−z∥

p

2 .

Proof of Theorem 2.10. If z is misclassified, then it reduces to 0 g 0 which holds. Otherwise, by Lemma D.1, it holds

Äpp(z)i,j g
∥z−wj∥p

−∥z−wi∥p

2 . Then

min
j∈I

y
c

max
i∈Iy

Äpp(z)i,j g min
j∈I

y
c

Äpp(z)i∗,j

g min
j∈I

y
c

∥z − wj∥p − ∥z − wi∗∥p
2

=

min
j∈Ic

y

∥z − wj∥p −min
i∈Iy

∥z − wi∥p
2

We further show that there are cases where the inequality is strict. Consider a d-dimensional example where z = (0, . . . , 0),
{wj | j ∈ Iyc } = {(2, 0, . . . , 0)}, {wi | i ∈ Iy} = {(1, 0, . . . , 0)}. It clearly holds that min

j∈I
y
c

max
i∈Iy

Äpp(z)i,j = 1.5, while

max

{

0,
min
j∈Icy

∥z−wj∥p
−min

i∈Iy
∥z−wi∥p

2

}

= 1 for any p.

E. Proof of Theorem 2.7

Theorem 2.7 The computational complexities of optimization problems Äqp(z)i,j for p, q ∈ {1, 2,∞} for X = R
d are

summarised in Table 8.

Throughout the proof, we assume z is correctly classified, otherwise the solution is 0. We prove the theorem gradually

for cases p = 2 and any q, then q = ∞ and any p, then p = 1 and any q ̸= ∞ and finally p = ∞, q = 1, 2. For most of

the cases, we discuss the possibility of incorporating box constraints, which usually increases complexity from O(d) to

O(d log(d)). We also remark that using the median of medians algorithm, one could avoid sorting coordinates, and could

achieve Θ(d) complexities. We, for the sake of simplicity, will be sorting point for the price of log(d) factor in complexity.
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ℓq-threat model

ℓ p
-d

is
ta

n
ce ℓ1 ℓ2 ℓ∞

ℓ1 NP-hard NP-hard O(d log(d))
ℓ2 Θ(d) Θ(d) Θ(d)
ℓ∞ Θ(d) O(d log(d)) Θ(d)

Table 8: Computational complexity of Äqp(z)i,j .

Proof for case p = 2 and any q.

Äq2(z)i,j = min
x∈Rd

∥x− z∥q (12)

sbj. to: ∥x− wi∥2 − ∥x− wj∥2 g 0

x ∈ X

We equivalently rewrite the constraint in the following way:

∥x− wi∥2 − ∥x− wj∥2 g 0,

∥x− z + z − wi∥22 − ∥x− z + z − wj∥22 g 0,

∥x− z∥22 + 2 ïx− z, z − wið+ ∥z − wi∥22 −
(

∥x− z∥22 + 2 ïx− z, z − wjð+ ∥z − wj∥22
)

g 0,

2 ïx− z, wj − wið g ∥z − wj∥22 − ∥z − wi∥22 ,
2 ∥x− z∥q ∥wj − wi∥ q

q−1
g 2 ïx− z, wj − wið g ∥z − wj∥22 − ∥z − wi∥22 ,

∥x− z∥q g ∥z − wj∥22 − ∥z − wi∥22
2 ∥wj − wi∥ q

q−1

.

Since Hölder’s inequality is tight, we conclude

Äq2(z)i,j =
∥z − wj∥22 − ∥z − wi∥22

2 ∥wj − wi∥ q

q−1

. (13)

We note that analogical derivation holds for minimising ∥x− z∥ in any norm, not just for the q-norm. In that case, ∥·∥ q

q−1

is replaced with the dual norm of the considered norm. The box-constrained version of this problem can be solved in

O(d log d), see e.g., Section 4 of (Hein & Andriushchenko, 2017).

Proof for case p = q = ∞.

Ä∞p (z)i,j = min
x∈Rd

∥x− z∥∞ (14)

sbj. to: ∥x− wi∥∞ − ∥x− wj∥∞ g 0

x ∈ X

We note that whenever ∥x− wi∥∞ − ∥x− wj∥∞ g 0, then also ∥x′ − wi∥∞ − ∥x′ − wj∥∞ g 0, where x′(l) = x(l) +

³ sign(w
(l)
j −w

(l)
i ) for any positive ³ and some l = 1 . . . d, and x′(l) = x(l) for the coordinates. That is, we can move x(l) in

the direction from w
(l)
i to w

(l)
j , since if |x′(l)−w

(l)
j | > |x(l)−wj(l)|, then also |x′(l)−wl

i| > |x′(l)−wj(l)|. On the other hand,

if |x(l)−w
(l)
i | > |x′(l)−w

(l)
i |, then also |x(l)−w

(l)
i | < |x(l)−w

(l)
j |, thus l was not the maximising index of ∥x− wi∥∞, and

consequently ∥x− wi∥∞ = ∥x′ − wi∥∞. The remaining case is trivial; thus, ∥x′ − wi∥p−∥x′ − wj∥p g 0. This argument

may be repeated d times to conclude that when Ä∞∞(z)i,j = ϵ, then a minimizer of Problem 14 is x∗ = z+ ϵ sign (wj − wi).
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Therefore, the problem is to find the smallest ϵ for which ∥z + ϵ sign(wj − wi)− wi∥∞ g ∥z + ϵ sign(wj − wi)− wj∥∞.

Note that

∥z+ϵ sign(wj− wi)−wj∥∞ = max
l=1,...,d

max
{

z(l) + ϵ sign
(

w
(l)
j − w

(l)
i

)

− w
(l)
j ,−

(

z(l) + ϵ sign
(

w
(l)
j − w

(l)
i

)

− w
(l)
j

)}

;

thus, it is a maximum of 2d linear functions, each of which has slope either 1, or −1. Let ³i =
argmin sign(wj − wi)(z − wi) and ´i = argmax sign(wj − wi)(z − wi), analogously for ³j , ´j . Then

∥z + ϵ sign(wj − wi)− wi∥∞ − ∥z + ϵ sign(wj − wi)− wj∥∞ =

max
{

−ϵ− sign
(

w
(αi)
j − w

(αi)
i

)(

z(αi) − w
(αi)
i

)

, ϵ+ sign
(

w
(βi)
j − w

(βi)
i

)(

z(βi) − w
(βi)
i

)}

−

max
{

−ϵ− sign
(

w
(αj)
j − w

(αj)
i

)(

z(αj) − w
(αj)
j

)

, ϵ+ sign
(

w
(βj)
j − w

(βj)
i

)(

z(βj) − w
(βj)
j

)}

.

Moreover, we can analyse to slope of ∥z + ϵ sign(wj − wi)− wi∥∞ − ∥z + ϵ sign(wj − wi)− wj∥∞ and see that it is

non-zero only in the interval between points

ϵi =
− sign

(

w
(αi)
j − w

(αi)
i

)(

z(αi) − w
(αi)
i

)

− sign
(

w
(βi)
j − w

(βi)
i

)(

z(βi) − w
(βi)
i

)

)

2
,

and

ϵj =
− sign

(

w
(αj)
j − w

(αj)
i

)(

z(αj) − w
(αj)
j

)

− sign
(

w
(βj)
j − w

(βj)
i

)(

z(βj) − w
(βj)
j

)

)

2
,

where the slope is 2. Now it is easy to compute the value of ∥z + ϵ sign(wj − wi)− wi∥∞−∥z + ϵ sign(wj − wi)− wj∥∞
for very big (V+) and very small (V−) values of ϵ, where the active linear function is the one with negative slope. Concretely

V− = sign
(

w
(αj)
j − w

(αj)
i

)(

z(αj) − w
(αj)
j

)

− sign
(

w
(αi)
j − w

(αi)
i

)(

z(αi) − w
(αi)
i

)

,

V+ = sign
(

w
(βi)
j − w

(βi)
i

)(

z(βi) − w
(βi)
i

)

− sign
(

w
(βj)
j − w

(βj)
i

)(

z(βj) − w
(βj)
j

)

.

Now we use the fact that the slope is 2 between ϵi and ϵj to find the point where the norms are equal; Thus, we can express

Ä∞∞(z)i,j as

Ä∞∞(z)i,j = max{ϵi, ϵj} −
V+

2
,

or as

Ä∞∞(z)i,j = min{ϵi, ϵj} −
V−
2
.

We can take the mean of both expression, then we arrive at

Ä∞∞(z)i,j = ϵi + ϵj −
V− + V+

2
,

which simplifies to

Ä∞∞(z)i,j = −
sign

(

w
(αj)
j − w

(αj)
i

)(

z(αj) − w
(αj)
j

)

+ sign
(

w
(βi)
j − w

(βi)
i

)(

z(βi) − w
(βi)
i

)

2
,

and by substituting back the definitions of ³j , ´i:
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Ä∞∞(z)i,j =

max
l=1,...,d

− sign
(

w
(l)
j − w

(l)
i

)(

z(l) − w
(l)
j

)

− max
l=1,...,d

sign
(

w
(l)
j − w

(l)
i

)(

z(l) − w
(l)
i

)

2
. (15)

Proof for case q = ∞, p ̸= ∞ . The value of Ä∞p (z)i,j is the minimal non-negative ϵ for which the following maximization

problem has non-negative value.

max
x∈Rd

∥x− wi∥pp − ∥x− wj∥pp (16)

sbj. to: ∥x− z∥∞ f ϵ

x ∈ X

It can be decomposed into d independent problems indexed by l.

max
x(l)∈R

|x(l) − w
(l)
i |p − |x(l) − w

(l)
j |p (17)

sbj. to: |x(l) − z(l)| f ϵ

x(l) ∈ X (l)

Derivative of the objective function w.r.t. x(l) is p|x(l) − w
(l)
i |p−1 sign (x(l) − w

(l)
i )− p|x(l) − w

(l)
j |p−1 sign (x(l) − w

(l)
j ),

which is non-zero whenever w
(l)
i ̸= w

(l)
j . Thus, the maximum is attained at a point where a constraint is active, and the

value of the problem is |z(l) + ϵ sign (w
(l)
j − w

(l)
i )− w

(l)
i |p − |z(l) + ϵ sign (w

(l)
j − w

(l)
i )− w

(l)
j |p. When p = 2, the value

of the objective is a quadratic function in ϵ; thus, the value of the original objective is also a quadratic function in ϵ and we

can easily obtain a solution to the original problem. For the sake of completeness, we show that this approach results in the

same Ä∞2 (z)i,j as we derived before:

d
∑

l=1

(

(

z(l) + ϵ sign (w
(l)
j − w

(l)
i )− w

(l)
i

)2

−
(

z(l) + ϵ sign (w
(l)
j − w

(l)
i )− w

(l)
j

)2
)

g 0,

d
∑

l=1

(

(z(l) − w
(l)
i )2 − (z(l) − w

(l)
j )2 + 2ϵ sign (w

(l)
j − w

(l)
i )(w

(l)
j − w

(l)
i )
)

g 0,

∥z − wi∥22 − ∥z − wj∥22 + 2ϵ ∥wj − wi∥1 g 0,

ϵ g ∥z − wj∥22 − ∥z − wi∥22
2 ∥wj − wi∥1

.

(18)

If p = 1, the value of the objective is piecewise linear and non-decreasing; thus, the original objective is again, piecewise

linear and non-decreasing. Then we can order the breaking points and find the smallest admissible ϵ for the original problem

using binary search. Note that the objective is maximised not just in the aforementioned case, but also when

x(l) =

{

w
(l)
j , if |z(l) − w

(l)
j | f ϵ.

z
(l)
j + ϵ sign

(

wl
j − zl

)

, otherwise.
(19)

For other values of p, it may be difficult to solve the problem exactly. However, as we have already shown, it is easy (Θ(d))
to determine if Ä∞p (z)i,j > ϵ given an ϵ, thus the problem can be solved approximately using binary search for any p with

logarithmic complexity in accuracy.

To conclude the cases Äp∞(z)i,j , we discuss the addition of box constraints. As we have shown, a minimizer of the

problems is always x∗ = z + ϵ sign (wj − wi), and identical arguments would suggest that with box constraints, it would
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hold that x∗ = max(0,min(1, z + ϵ sign (wj − wi))). Therefore, given a radius, certification is done in O(d) even with

box constraints. Otherwise, we would need to either order coordinates according to value of ϵ when a box constraint

for x∗ = max(0,min(1, z + ϵ sign (wj − wi))) becomes active, and then perform a binary search over the constrained

problems. This adds a log(d) factor to the complexity. Note that for the case p = 1 we are already performing a binary

search, so we do them at once. Or we can do a binary search over ϵ to find a minimal one which causes

x = max(0,min(1, z + ϵ sign (wj − wi))) (20)

to be misclassified.

Proof for case p = 1, q ̸= ∞. We ave already discussed the case of Ä∞1 (z)i,j , so it is omitted here. For all other values of q,

we show its NP-hardness by reducing the knapsack problem to the decision version of problem if given ϵ > 0, Ä∞1 (z)i,j f ϵ.

Theorem E.1 (Knapsack). The following problem is NP-complete.

Given vectors w, p ∈ N
n and constants W,P . Decide if there is a vector x ∈ {0, 1}n such that ïp, xð g P and ïw, xð f W .

For the sake of clarity, we use u, v instead of wi, wj to get rid of unnecessary subscript. Let w, p,W,P describe an instance

of the knapsack problem. Let a pair of prototypes ut, vt ∈ R
n+2 be defined in the following way for some real t and

l = 1, . . . , n

u
(l)
t =

q
√

w(l),

v
(l)
t =

q
√

w(l) − p(l)

t
,

(21)

let also

u
(n+1)
t =

q
√
W +

max
(

0,
(

2P −∑n
i=1 p

(i)
))

t
,

v
(n+1)
t =

q
√
W,

u
(n+2)
t =

q
√
W,

v
(n+2)
t =

q
√
W +

max
(

0,
(
∑n

i=1 p
(i) − 2P

))

t
,

(22)

and ϵ = q
√
W . Now we show that whenever there is an allocation x ∈ {0, 1}n such that ïp, xð g P and ïw, xð f W , then

Äq1(0) f ϵ for any sufficiently large t such that the first n components of v(t) are positive. It holds that:

∥vt∥1 f
n
∑

i=1

q
√

w(i) −
n
∑

i=1

p(i)

t
+ 2

q
√
W +

max
(

0,
(
∑n

i=1 p
(i) − 2P

))

t
f

n
∑

i=1

q
√

w(i) + 2
q
√
W f ∥ut∥1 . (23)

Consider the following point

¶(k) =

{

q
√
w(k), if x(k) = 1.

0, otherwise.
(24)

It has q-norm of at most ϵ:

∥¶∥q =

(

n+2
∑

i=1

¶(i)q

)
1
q

=

(

n
∑

i=1

x(i) · w(i)

)
1
q

f q
√
W = ϵ. (25)



Provably Adversarially Robust Nearest Prototype Classifiers

Also it holds that

∥vt − ¶∥1 =
n
∑

i=1

(

x(i) · p
(i)

t
+ (1− x(i))

q
√

w(i)

)

+ 2
q
√
W +

max
(

0,
(
∑n

i=1 p
(i) − 2P

))

t
,

g
n
∑

i=1

(1− x(i))
q
√

w(i) + 2
q
√
W +

P +max
(

0,
(
∑n

i=1 p
(i) − 2P

))

t
,

g
n
∑

i=1

(1− x(i))
q
√

w(i) + 2
q
√
W +

∑n
i=1 p

(i) − P +max
(

0,
(

2P −
∑n

i=1 p
(i)
))

t
g ∥ut − ¶∥1 .

(26)

Therefore, Äq1(0) f ϵ.

Now we move on to the second direction; we show that whenever the constructed problem is feasible, then also the knapsack

problem is feasible.

Let there be a ¶ such that ∥¶∥q f ϵ and ∥vt − ¶∥ g ∥ut − ¶∥. Then we can WLoG assume ¶(n+1) = 0, and
q
√
w(l)−p(l)/t f

¶(l) f q
√
w(l) for l = 1, . . . , n. Now consider the following allocation for k = 1, . . . , n.

x(k) =

{

0, if ¶(k) = 0.

1, otherwise.
(27)

We show that if t is sufficiently large, then x is a valid allocation. First, let us look at the ïw, xð f W constraint;

n
∑

i=1

¶(i)q =

n
∑

i=1

wi · xi − o(1) = ïw, xð − o(1) f W ;

thus, ïw, xð f W for sufficiently large t.

For the other constraint, first note for l = 1, . . . , n:

(

|vt − ¶|(l) − |ut − ¶|(i)
)

=

{

p(i)/t, if x(i) = 0.

g −p(i)/t, otherwise.
(28)

Then

n
∑

i=1

(

|vt − ¶|(i) − |ut − ¶|(i)
)

g
∑n

i=1 p
(i) − 2 ïx, pð
t

, (29)

and finally

∑n
i=1 p

(i) − 2P

t
g
∑n

i=1 p
(i) − 2 ïx, pð
t

,

ïx, pð g P.

(30)

Proof for case p = ∞, q = 1.

Ä1∞(z)i,j = min
x∈Rd

∥x− z∥1 (31)

sbj. to: ∥x− wi∥∞ − ∥x− wj∥∞ g 0

x ∈ X
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Let ¶x = x − z where x ∈ argmin Ä1∞(z)i,j , We note that there exists x such that ¶x contains only a single non-zero

element. To see why, let there be some ¶x with multiple non-zero elements from which we construct ¶x′ with more zeros

such that x′ ∈ argmin Ä1∞(z)i,j . Let l∗ = argmaxl |x(l)−w
(l)
i |. Take any index k ̸= l∗ such that ¶

(k)
x ̸= 0. Then consider

a perturbation ¶x
′

¶
(l)
x′ =











¶
(l)
x + |¶(k)x | sign(x(l) − w

(l)
i ), if l = l∗.

0, if l = k.

¶
(l)
x , otherwise.

(32)

Now, ∥x′ − wi∥∞ = ∥x− wi∥∞ + |¶kx| g ∥x− wj∥∞ + |¶(l)| g ∥¶′ − wj∥∞ which concludes the argument. Now it is

sufficient to solve the problem for every coordinate separately and take the maximal value; thus, the original problem is

solved in linear time.

Proof for case p = ∞, q = 2.

Ä2∞(z)i,j = min
x∈Rd

∥x− z∥2 (33)

sbj. to: ∥x− wi∥∞ − ∥x− wj∥∞ g 0

x ∈ X

Let x be the minimizer. Then we split the proof into two cases. Either there is an index l such that ∥x− wi∥∞ =

|x(l) − w
(l)
i | = |x(l) − w

(l)
j = ∥x− wj∥∞. In that case, |z(l) − w

(l)
j | > |z(l) − w

(l)
i | and |w(l)

i − w
(l)
j | is maximal. Then

we can compute x in one pass and verify that indeed ∥x− wi∥∞ = ∥x− wj∥∞.

Otherwise, let us Assume that we know ∥x− wi∥∞ = ∥x− wj∥∞ = d for the optimal x. That is, for every coordinate l we

have to ensure that |x(l) − w
(l)
j | f d, and also that there is a coordinate k where |x(l) − w

(l)
i | = d; thus, we can construct x

minimizing ∥x− z∥2 as

x(l) =











w
(l)
j + d sign(z(l) − w

(l)
i ), if |w(l)

j − x(l)| > d.

w
(l)
i + d sign(w

(l)
j − w

(l)
i ), if l = k.

z(l), otherwise,

(34)

where k = min argmax
l

sign
(

w
(l)
j − w

(l)
i

)(

z(l) − w
(l)
i

)

.

Now we sort (so further we assume the array is sorted) the coordinates according to values of |w(l)
j − x(l)|.

Then minimum of ∥x− z∥22 is attained for some d which lies in some interval [|w(m)
j − x(m)|, |w(m+1)

j − x(m+1)|]. Inside

every such interval, ∥x− z∥22 is a quadratic expression in d. For the m-th interval, the equation is

∥x− z∥22 =
m
∑

l=1

(

z(l) − w
(l)
j + d sign(z(l) − w

(l)
i )
)2

+
(

z(l) − sign
(

w
(k)
j − w

(k)
i

)(

z(k) − w
(k)
i

))2

.

So we can minimize a quadratic function ∥x− z∥22 over an interval [|w(m)
j − x(m)|, |w(m+1)

j − x(m+1)|]. We can also see

that for the m+ 1-th equation, we only add one term to the m-th equation; thus, we can solve every interval in O(1) and

take the minimal ϵ. Consequently, the time complexity is dominated by O(d log(d)) needed for sorting which concludes the

proof.
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ℓq-threat model

ℓ p
-d

is
ta

n
ce ℓ1 ℓ2 ℓ∞

ℓ1 NP-hard NP-hard Poly

ℓ2 Poly Poly Poly

ℓ∞ NP-hard NP-hard NP-hard

Table 9: Computational Complexity of rq(z).

F. Proof of Theorem 2.8

Theorem 2.8 The computational complexities of optimization problems rqp(z)i,j in (1) for p, q ∈ {1, 2,∞} and X = [0, 1]d

are summarized in Table 9.

Proof. The Problem rq1(z)j for q ̸= ∞ cannot be easier than the problem Äq1(z)i,j , thus since the latter is NP-hard, the first

also has to be NP-hard. For the case r∞1 (z)j , we recall that the optimal argument of Ä∞1 (z)i,j was in the form

x(l) =

{

w
(l)
j , if |z(l) − w

(l)
j | f ϵ,

z
(l)
j + ϵ sign

(

wl
j − zl

)

, otherwise,
(35)

where ϵ is the value of Ä∞1 (z)i,j . Therefore, r∞1 (z)j = maxi Ä
∞
1 (z)i,j and the overall complexity is O(d log(d)|Iyc |). When

p = 2, then the problem reads as

rq2(z)j = min
x∈Rd

∥x− z∥q
sbj. to: ∥x− wi∥2 − ∥x− wj∥2 g 0 ∀ i ∈ Iy

x ∈ [0, 1]d

which is a convex optimization problem for any q and can be solved in polynomial time.

Finally, for the case p = ∞ we show that it is NP − complete to solve the feasibility problem of rqp(z)j , thus the problem

is NP-hard for any q. To shorten the notation, we consider Iy = 1, . . . , n and whenever we say that some proposition holds

for wi, then we mean it holds for any wi, i ∈ 1, . . . , n.

We show this by reducing 3-SAT to it. Let there be a formula in CNF
∧n

i=1

(

³(i) ( ´(i) ( µ(i)
)

, where all all the literals are

from a set of v variables. For the sake of brevity, we make a correspondence between the literals and indices 1, . . . , v. Also

when literal corresponding to i is negative, we will write it as −i. We will consider the following set of prototypes from

R
(v+1).

wj = (0, . . . , 0, 3)

w
(l)
i =











−1, if l ∈ {³(i), ´(i), µ(i)},
2, if −l ∈ {³(i), ´(i), µ(i)},
0, otherwise.

Clearly, for any x ∈ [0, 1]d it holds that ∥wj − x∥∞ g 2, and also ∥x− wi∥∞ f 2. Therefore, if rp∞(z) is feasible, then

∥x− wi∥∞ = 2, which is equivalent to proposition
(

x(|αi|) = 1+signαi

2

)

(
(

x(|βi|) = 1+sign βi

2

)

(
(

x(|γi|) = 1+sign γi

2

)

.

Such proposition have to be satisfied for every i, therefore it is equivalent to a formula in CNF

n
∧

i=1

((

x(|αi|) =
1 + sign³i

2

)

(
(

x(|βi|) =
1 + sign´i

2

)

(
(

x(|γi|) =
1 + sign µi

2

))

,

which is clearly equisatisfiable with the original CNF formula; thus, the feasibility problem is NP-complete.
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G. Proofs from the Perceptual Metric NPC

Here we slightly deviate from the main text, that we consider the squared objective which clearly is an equivalent problem

Ä2(z)i,j = min
x∈Rd

∥x− z∥22

sbj. to: ïx,wj − wið+
∥wi∥22 − ∥wj∥22

2
g 0

∥

∥

∥x(l)
∥

∥

∥

2

2
= r2l

x g 0,

where we use a shortcut x(l), instead of x(h,w,l), to simplify notation.

Proof of Proposition 3.1. Note that

∥x− z∥22 =
∑

l∈Il

∥

∥

∥x(l) − z(l)
∥

∥

∥

2

2
,

and as
∥

∥z(l)
∥

∥

2
= rl and we have

∥

∥x(l)
∥

∥

2
= rl as constraint, we can equivalently minimize −∑l∈IL

〈

x(l), z(l)
〉

as objective.

Let v = wj − wi and b =
∥wi∥2

2−∥wj∥2
2

2 . The Lagrangian of the non-convex problem (due to the quadratic equality

constraints) is

L(x, ¼, ³, µ)
µg0

= −
∑

l∈IL

〈

x(l), z(l)
〉

+ ¼
(

∑

l∈Il

〈

v(l), x(l)
〉

+ b
)

+
∑

l∈IL

³l

2

(∥

∥

∥x(l)
∥

∥

∥

2

2
− r2l

)

−
∑

l∈IL

〈

µ(l), x(l)
〉

We get as critical point condition:

∇x(l)L = −z(l) + ¼v(l) + ³lx
(l) − µ(l) = 0,

which yields

x(l) =
1

³l

(

z(l) − ¼v(l) + µ(l)
)

.

The dual function q(¼, ³, µ) becomes

q(¼, ³, µ) =−
∑

l∈IL

1

³l

(

∥

∥

∥
z(l)
∥

∥

∥

2

2
− ¼

〈

v(l), z(l)
〉

+
〈

µ(l), z(l)
〉

)

+ ¼

(

∑

l∈IL

1

³l

(

〈

v(l), z(l)
〉

− ¼
∥

∥

∥v(l)
∥

∥

∥

2

2
+
〈

v(l), µ(l)
〉

)

+ b

)

+
∑

l∈IL

1

2³l

(

∥

∥

∥z(l)
∥

∥

∥

2

2
+ ¼2

∥

∥

∥v(l)
∥

∥

∥

2

2
+
∥

∥

∥µ(l)
∥

∥

∥

2

2
− 2¼

〈

z(l), v(l)
〉

+ 2
〈

z(l), µ(l)
〉

− 2¼
〈

v(l), µ(l)
〉

)

−
∑

l∈IL

³lr
2
l

2
−
∑

l∈IL

1

³

(

〈

µ(l), z(l)
〉

− ¼
〈

µ(l), v(l)
〉

+
∥

∥

∥µ(l)
∥

∥

∥

2

2

)

,

which simplifies to

q(¼, ³, µ) = −
∑

l∈IL

1

2³l

∥

∥

∥
z(l) − ¼v(l) + µ(l)

∥

∥

∥

2

2
+ ¼b−

∑

l∈IL

³lr
2
l

2
.

We solve explicitly for ³ and get

³l =
1

rl

∥

∥

∥
z(l) − ¼v(l) + µ(l)

∥

∥

∥

2
.

Then we get

q(¼, µ) = −
∑

l∈IL

∥

∥

∥z(l) − ¼v(l) + µ(l)
∥

∥

∥

2
rl + ¼b.
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Table 10: CIFAR10: lower (CRA) and upper bounds (URA) on ℓ2-robust accuracy

CIFAR10 std. ϵ2 = 0.1 ϵ2 = 36/255 ϵ2 = 0.25
acc. CRA URA CRA URA CRA URA

PNPC 49.2 43.9 43.9 41.9 41.9 36.4 36.4
GLVQ 48.6 43.3 43.3 41.5 41.5 37.9 37.9
1-NN 35.7 31.2 - 29.7 29.7 25.7 -

GloRob 77.0 - - 58.4 69.2 - -
LocLip 77.4 - - 60.7 70.4 - -
BCP 65.7 - - 51.3 60.8 - -

SmoothLipσ=0.25 77.1 - - - - 67.9∗ 67.9∗

Solving explicitly for µ, we get

q(¼) = −
∑

l∈IL

∥

∥

∥

∥

(

z(l) − ¼v(l)
)+
∥

∥

∥

∥

2

rl + ¼b.

So this is a lower bound on −
∑

l∈IL

〈

x∗(l), z(l)
〉

, where x∗ is the optimal primal variable by weak duality and thus going

back to our actual objective we get using
∥

∥x∗(l)∥
∥

2
=
∥

∥z(l)
∥

∥ = rl that

∥x∗ − z∥ =

√

∥x∗ − z∥22 =

√

2
∑

l∈IL

r2l − 2
∑

l∈IL

〈

x∗(l), z(l)
〉

g

√

√

√

√2
∑

l∈IL

r2l + 2

(

max
λg0

−
∑

l∈IL

∥

∥

∥

(

z(l) − ¼v(l)
)+
∥

∥

∥

2
rl + ¼b

)

,

where we have used weak duality. Now we go back to indexing using h,w, l instead of just l. Since rl =
1√

HlWl
, it holds

that
∑

h=1,...,Hl

∑

w=1,...,Wl

r2l = 1;

thus, we can simplify the final expression as

√

√

√

√

√2L+ 2



max
λg0

−
∑

h,w,l

∥

∥

∥

(

z(h,w,l) − ¼v(h,w,l)
)+
∥

∥

∥

2
rl + ¼b



.

Thus we have a one-dimensional convex optimization problem to solve in order to get a lower bound on the original objective,

which is all we need for the certification.

H. Results for CIFAR10 with ℓ2-NPC

CIFAR10 - ℓ2-NPC In Table 10 we compare certified robust accuray (CRA) and an upper bound on the robust accuray

(URA) of several models on CIFAR10 for ℓ2-threat model. Our ℓ2-PNPC (800ppc) is slightly better than ℓ2-GLVQ (128ppc)

in terms of clean accuracy, and robust accuracy for ϵ2 ∈ {0.1, 36/255}, but ℓ2-GLVQ is better for ϵ2 = 0.25. Note that the

1-NN is significantly worse showing that learning the prototypes helps improving the performance. Nevertheless, all NPC

models are not competitive with neural networks which is to be expected as the ℓ2-distance is not a good measure for image

similarity. This is why we study PNPC with the perceptual metric which achieves to clean accuracies which are higher than

the one of neural networks with provable robustness guarantees.

Table 11 shows the performance of ℓ2-NPC for multiple threat models. ℓ2-PNPC outperforms ℓ2-GLVQ in terms of clean

accuracy, ℓ1- and ℓ2-robust accuracy but is worse for ℓ∞-robust accuracy and as this is the most difficult threat model it is

also worse in the union. MMR-U outperforms the ℓ2-NPC but the margin is relatively small.
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Table 11: CIFAR10: lower (CRA) and upper bounds (URA) on robust accuracy for multiple threat models for our ℓ2-PNPC,

the ℓ2-NPC of (Saralajew et al., 2020), a 1-NN classifier. As comparison we show MMR-Univ of (Croce & Hein, 2020a)

which is a neural network specifically trained for certifiable multiple-norm robustness.

CIFAR10 std. ϵ1 = 2 ϵ2 = 0.1 ϵ∞ = 2/255 union
acc. CRA URA CRA URA CRA URA CRA URA

ℓ2-PNPC 49.2 42.5 42.5 41.9 41.9 32.7 32.7 32.7 32.7
ℓ2-GLVQ 48.6 42.3 42.3 41.5 41.5 35.2 35.2 35.2 35.2
1-NN 35.7 30.0 - 29.7 29.7 22.5 - 22.5 -

MMR-U 53.0 36.6 43.6 46.4 48.1 36.2 36.2 35.4 36.2

Table 12: MNIST: Certified robust accuracy of networks with orthogonal convolutions. We computed robust accuracy after

every epoch and the reported numbers are the maximal ones. The radius is 1.58

blocks

µ
0 0.1 0.2 0.5 1

1 57.17 58.23 58.75 58.82 58.57

2 58.31 58.85 59.63 59.21 58.99

4 59.50 60.75 61.02 60.33 58.82

6 59.78 60.47 59.05 59.99 57.53

I. Comparison with orthogonal convolution networks

We evaluated the robustness orthogonal convolution networks on MNIST at radius 1.58. According to the evaluation

in (Singla et al., 2022), the currently best method for orthogonal convolution networks is to combine skew orthogonal

convolutions with Householder activations. According to the official repository, they suggest to choose to set the following

parameters

• --conv-layer - We chose soc because it consistently outperformed baselines in the paper.

• --activation - We chose hh1 activation, which is used in the experiments in the original paper.

• --num-blocks - We tried 1, 2, 4, 6 blocks, possible values are 1 . . . 8. In the original paper, it did not seem that

more blocks boost performance.

• --gamma - We tried 0, 0.1, 0.2, 0.5, 1. The original experiments used 0.1.

• --lln - The authors suggest to use last layer normalization when the number of classes is large, e.g., for CIFAR100,

and do not use it for CIFAR10. We also did not use it.

We padded the MNIST images by 2 black pixels, so that we can directly use the original architecture which relied on the

fact that the input images are 32× 32. We also turned off the normalization by mean and variance as it is not commonly

use for MNIST. We removed random horizontal flip from the set of possible augmentations, otherwise the setup is exactly

as recommended. We note that the padding of MNIST image by 2 pixels is likely not the optimal way how to adapt the

network to work with MNIST dataset.

The orthogonal convolutions from (Li et al., 2019) reports 56.4% certified robust accuracy. The method of (Trockman &

Kolter, 2021) yielded 54% robust accuracy with the suggested setup.

I.1. Empirical robustness

We evaluated the empirical robustness of (Singla et al., 2022) using AutoAttack which is a stronger attack than what the

competing methods used in Table 5. Thus, we don’t conclude that orthogonal convolutions are (significantly) less empirically

robust than the other evaluated methods.
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SOUND RANDOMIZED SMOOTHING IN FLOATING-

POINT ARITHMETIC

Václav Voráček, Matthias Hein
Tübingen AI Center, University of Tübingen

ABSTRACT

Randomized smoothing is sound when using infinite precision. However, we show
that randomized smoothing is no longer sound for limited floating-point precision.
We present a simple example where randomized smoothing certifies a radius of
1.26 around a point, even though there is an adversarial example in the distance
0.8 and show how this can be abused to give false certificates for CIFAR10. We
discuss the implicit assumptions of randomized smoothing and show that they do
not apply to generic image classification models whose smoothed versions are
commonly certified. In order to overcome this problem, we propose a sound
approach to randomized smoothing when using floating-point precision with es-
sentially equal speed for quantized input. It yields sound certificates for image
classifiers which for the ones tested so far are very similar to the unsound practice
of randomized smoothing. Our only assumption is that we have access to a fair
coin.

1 INTRODUCTION

Shortly after the advent of deep learning, it was observed in Szegedy et al. (2014) that there exist
adversarial examples, i.e., small imperceptible modifications of the input which change the decision
of the classifier. This property is of major concern in application areas where safety and security
are critical such as medical diagnosis or in autonomous driving. To overcome this issue, a lot of
different defenses have appeared over the years, but new attacks were proposed and could break these
defenses, see, e.g., (Athalye et al., 2018; Croce and Hein, 2020; Tramer et al., 2020; Carlini et al.,
2019). The only empirical (i.e., without guarantees) method which seems to work is adversarial
training (Goodfellow et al., 2015; Madry et al., 2018) but also there, a lot of defenses turned out to
be substantially weaker than originally thought (Croce and Hein, 2020).

Hence, there has been a focus on certified robustness. Here, the aim is to produce certificates assur-
ing no adversarial example exists in a small neighborhood of the original image. For the neighbor-
hood, typically called threat model, one often uses 3p- balls centered at the original image. How-
ever, there also exist other choices, such as Wasserstein balls (Wong et al., 2019; Levine and Feizi,
2020) or balls induced by perceptual metrics (Laidlaw et al., 2021; Voráček and Hein, 2022). The
common certification techniques include (1) Bounding the Lipschitz constant of the network,
see Hein and Andriushchenko (2017); Li et al. (2019); Trockman and Kolter (2021); Leino et al.
(2021); Singla et al. (2022) for the 32 threat model and Zhang et al. (2022) for 3>. (2) Overap-
proximating the threat model by its convex relaxation (admittedly, bounding Lipschitz constant can
also be interpreted this way), possibly combined with mixed-integer linear programs or SMT; see,
e.g., Katz et al. (2017); Gowal et al. (2018); Wong et al. (2018); Balunovic and Vechev (2020). (3)
Randomized smoothing (Lecuyer et al., 2019; Cohen et al., 2019; Salman et al., 2019), which is hith-
erto the only method scaling to ImageNet. Note that the concept of randomized smoothing may also
be interpreted as a special case of (1), see Salman et al. (2019).

All of these certificates expect that calculations can be done with unlimited precision and do not take
into account how finite precision arithmetic affects the certificates. For Lipschitz networks (1), the
round-off error is of the order of the lowest significant bits of mantissa, which we can estimate to
be in the orders of > 1028 for single-precision floating-point numbers. Thus, we should assume that
the adversary can also inject 3>-perturbation bounded by > 1028 in every layer. However, since the
networks have small Lipschitz constants by construction, those errors will not be significantly mag-

1
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nified. Although we cannot universally quantify the numerical errors of Lipschitz networks, they
will likely be very small and in particular, can be efficiently traced during the forward pass so that
the certificates can be made sound. For the verification methods from category (2), previous works
have shown that numerical errors may lead to false certificates for methods based on SMT or mixed-
integer linear programming (Jia and Rinard, 2021; Zombori et al., 2021). However, it is possible
(and often done in practice) to adapt the verification procedure to be sound w.r.t. floating-point inac-
curacies (Singh et al., 2019); thus, the problem is not fundamental, and these verification techniques
can be made sound. For randomized smoothing certificates (3), Jin et al. (2022) perform floating-
point attacks on certifiably robust networks and indicate the existence of false certificates; see Ap-
pendix F for a discussion. The recent work of Lin et al. (2021) focuses on randomized smoothing
when using only integer arithmetic in neural networks for embedded devices, so they will, by defini-
tion, not have problems with floating-point errors. On the other hand, it does not cover some modern
architectures, such as transformers. Furthermore, the way the certificates are computed is derived
from the continuous normal distribution; thus, the certificates are approximate, see Appendix G. An-
other direction is so-called derandomized smoothing - methods that remind randomized smoothing
but are deterministic. See, e.g., Levine and Feizi (2021).

In this paper, we make the following contributions1:

1. We perform a novel analysis of numerical errors in randomized smoothing approaches
when using floating-point arithmetic and identify qualitatively new problems.

2. Building on the observations, we present a simple approach for developing classifiers
whose smoothed version will provide fundamentally wrong certificates for chosen points
and discuss how this could be exploited in practice.

3. We propose a sound randomized smoothing procedure for floating-point arithmetic with
negligible computational overhead for image classification compared to the unsound prac-
tice.

While we could not find substantial differences of our sound certificates compared to the unsound
practice for our tested classifiers, a lack of a counterexample is not a proof of the correctness. The
past has shown that such gaps will be exploited by malicious actors in the future. It is to be expected
that certificates of adversarial robustness are required for classifiers used in safety-critical systems
(see European AI act European Commission (2021)) and thus will be controlled by regulatory bodies.
A malicious company could use then the problems of randomized smoothing in floating-point arith-
metic to provide fake certificates on a known/leaked test set. Since our sound randomized smoothing
procedure for floating-point arithmetic comes at essentially no additional cost for quantized input
e.g., images, we believe that using our sound procedure should always be used for such domains.

Manuscript organization: We start with the definition of randomized smoothing in Section 2,
then we continue with the introduction of floating-point arithmetic following the IEEE standard
754 (iee, 2008) in Section 3. In Section 4, we exploit the properties of floating-point arithmetic
and present a simple classifier producing wrong certificates, and we follow with the identification
of the implicit assumptions of randomized smoothing. In Section 5 we conclude the main result
by proposing a method of sound randomized smoothing in floating-point arithmetic and provide an
experimental comparison of the old unsound and the new sound certificates.

2 RANDOMIZED SMOOTHING

Throughout the paper, we consider for clarity the problem of binary classification, but every phe-
nomenon we discuss can be easily transferred to the multiclass setting. We note that the proposed
algorithmic fix, see Appendix K, as well as the experiments in A, are done for the multiclass setting.

We first introduce randomized smoothing and define certificates with respect to a norm ball.

Definition 2.1. A classifier F 6 Rd ³ {0,1} is said to be certifiably robust at point x * Rd with
radius r, w.r.t. norm ∥ç∥ if the correct label at x is y * {0,1}, and ∥x 2 x2∥ f r Ôó F (x2) = y.

1Code is available at https://github.com/vvoracek/Sound-Randomized-Smoothing

2
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One way to get such a certificate is randomized smoothing (Lecuyer et al., 2019; Cohen et al., 2019;
Salman et al., 2019) which we introduce following. We are given a base classifier F 6 Rd ³ {0,1}.
Its smoothed version is f̂(x) = E·>N(0,Ã2Id)F (x + ·), and the resulting hard classifier is F̂ (x) =
Jf̂(x) > 0.5K, where the Iverson bracket JstatementK evaluates to 1 if and only if the statement inside
holds true. Using the Neyman-Pearson lemma the following result has been shown:

Theorem 2.2 ((Cohen et al., 2019)). Let F be a deterministic or random classifier and let Φ21 be
the inverse Gaussian CDF. If

P·>N(0,Ã2I)(F (x + ·) = cA) g pA.
for some pA * ( 12 ,1], then F̂ (x + ·) = cA for all · * Rd with ∥·∥

2
< ÃΦ21(pA).

We call in the following r(x) = ÃΦ21(f̂(x)) the certified 32-radius of F̂ at x.

We note we require that the output of the base classifier F to be independent of previous inputs
and outputs. It is easy to construct an F violating this assumption and producing false certificates,
e.g., take F that returns 0 in the first 106 calls and 1 afterwards. For the majority of classifiers, it

is intractable to evaluate f̂(x) exactly; therefore, random sampling is used to estimate it and thus
only a probabilistic certificate is possible where the probability that the certificate holds can be made
arbitrarily close to one if one uses more samples or weakens the certificate. Following the literature,

we use 100 000 samples to estimate f̂(x) and then lower bound this by p for certifying class 1 (resp.

upper bound it for class 0) so that the failure probability, that is when p > f̂(x) (resp. p < f̂(x)),
is at most 0.001. The value of p can be computed using tail bounds or classical Clopper-Pearson
confidence intervals for the binomial distribution. The actual certification procedure is described in
Algorithm 1. However, to keep the example below in Listing 1 as simple as possible, we computed
p using a simple Hoeffding bound which we derive in Appendix I. Although it produces a weaker
certificate, it is still sufficient for the demonstration.

3 COMPUTER REPRESENTATION OF FLOATING-POINT NUMBERS

In this section we briefly introduce the floating-point representation and arithmetic according to
standard IEEE-754 (iee, 2008). A detailed version with examples and treatment of other precisions
can be found in Appendix C where we present examples in a toy, 82bit, arithmetic. Here, we
introduce only single-precision floating-point numbers.

Single-precision floating-point numbers are represented in memory as sequences of bits x1x2 . . . x32.
The first bit is a sign bit, the next 8 bits determine the exponent, and the last 23 numbers determine
the mansissa. The conversion in normalized form is as follows:

(21)x1 ç 2
(39

i=2 xiç29−i)2127 ç (1 + 32∑
i=10

xi ç 2
92i) .

We will write the floating-point operations in circles; e.g., ·,¶ instead of +,2 to distinguish them
from the mathematical ones which do not suffer from rounding errors.

The addition (or analogically subtraction) of two floating-point numbers is performed in three steps.
First, the number with the lower exponent is transformed to the higher exponent; then the addition is
performed (we assume with infinite precision), and then the result is rounded to fit into the floating-
point representation. An example is provided in C.2 in Appendix C.

Thus, it happens that x· y = x· z for any x and some y b z. Consequently, there will exist some w
such that there is no v for which x· v = w. This is the main observation that we will built on and is
treated in detail in Appendix C in Example C.3.

3.1 CONNECTION TO RANDOMIZED SMOOTHING

We have identified some unpleasant properties of floating-point arithmetic that we will exploit in
sequel to provide false certificates. In particular, We will try to determine if a given number could
be a smoothed version of a specific number or not. The following observations will help us.

3
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In Reiser and Knuth (1975), it is shown that the identity ((x· y)¶ y)· y = x· y holds apart from
a single y for any x. It is further shown that the identity (((x · y) ¶ y) · y) ¶ y = (x · y) ¶ y
holds always true. On the other hand, there is no evidence that the equality (x · y)¶ y = x should
hold. Indeed, consider x to have a lower exponent than y. Then during the addition, x · y, the low
bits of the mantissa of x are lost. Similarly, if x · y has a different exponent than y, then a loss of
significance may occur during the second rounding. Finally, consider the case where x = a¶y, then
the identity (x· y)¶ y = x holds.

Our idea is to make the classifier determine if the observed value x could be a smoothed version of a.
This can be done precisely, but we only approximate this using the previous observation. The reason
is that it is sufficient for the demonstration, and the resulting function (introduced in Equation (1) in
the next section) will be simple, suggesting that the phenomenon may occur in standard networks.

3.2 FLOATING-POINT ISSUES IN THE CONTEXT OF DIFFERENTIAL PRIVACY

Randomized smoothing has been motivated by differential privacy (Lecuyer et al., 2019). In dif-
ferential privacy it has been shown in the seminal work of Mironov (2012) that the lowest bits
of mantissa can serve as a side channel which yields a substantial discrepancy between the the-
oretical properties of algorithms of differential privacy, and the properties of their naive imple-
mentations, see Mironov (2012); Jin et al. (2021); Bichsel et al. (2021). Consequently, revisions
of the standard differential privacy mechanisms accounting for the floating-point errors have ap-
peared, see, e.g., Casacuberta et al. (2022); Canonne et al. (2020), and included in the framework
OpenDP (Gaboardi et al., 2020).

In our construction, we utilize of the rounding errors of floating-point addition. On a high level, this
is similar to what Mironov (2012) exploit. However, their procedure considers Laplacian noise and
the example also exploits the Laplace distribution samplers’ properties.

4 CONSTRUCTION OF CLASSIFIERS WITH FALSE CERTIFICATES

We present an example of a function F 6 R ³ {0,1} which is prone to giving incorrect certificates
via randomized smoothing; the whole "experimental setup" is captured in Listing 1. The example is
based on the observation that we are able to determine if a floating-point number x could be a result
of floating-point addition a · n where a is known and n is arbitrary. We construct a function Fa

whose behavior we analyzed in Subsection 3.1.

Fa(x) = J(x¶ a) · a = xK. (1)

We take Fa as the base classifier and consider the smoothed classifier f̂a it induces with Ã = 0.5.

It holds that f̂a(a) j 1, therefore if we have enough samples, we may obtain a very large certified
radius. Specially, in the example considered in Listing 1 with 100 000 samples, we can certify a

32-radius of 1.26 around point a = 210/255, however 0 = F̂a(0) /= F̂a(a) = 1, and the point 0 is
nowhere near the boundary of the certified ball. In the example in 1, we use a simple Hoeffding
bound I instead of the standard bounds of Clopper-Pearson. The Clopper-Pearson bounds certify
robust radius 1.9.

1 import numpy as np

2 from scipy.stats import norm

3

4 sigma = 0.5; num_samples = 100000; alpha = 0.001

5 f = lambda x: (x - 210/255) + 210/255 == x

6 noise = np.random.randn(num_samples)*sigma

7

8 p1 = f(0+noise).sum()/num_samples # 0.46

9 p2 = f(210/255+noise).sum()/num_samples # 1.0

10 p = p2-(-np.log(alpha)/num_samples/2)**0.5

11 r = sigma * norm.ppf(p) # 1.26

Listing 1: example of an incorrect randomized smoothing certificate

4
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This construction does not rely on the fact that Fa(a + ·) = 1 for · > N(0, Ã2) with very high

probability, it only serves as a striking example. Similarly, we get 0 = F̂a(0) /= F̂a(200/255) = 1,
despite every point 0,1/255, . . . ,255/255 would be class 1 according to the certificate.

4.1 CONSEQUENCES FOR IMAGE CLASSIFIERS

We stress that the simple construction generalizes to images. For the remainder of the section, we
consider x * {0,1/255, . . .255/255}d to be a vectorized image with e.g., d = 3 ç 322 = 3072 for
CIFAR dataset. Indeed, we could employ a function

Fa,i(x) = J(xi ¶ a)· a = xiK, (2)

which takes a vectorized version of an image as an input. Using such function in Listing 1 would
certify that any image with intensity 210/255 at position i is class 1 with robust radius 1.26, while
any image with intensity 0 at position i would be classified as 0; a clear contradiction. We take one
step further. Consider a function with a parameter a * Rd:

Ga(x) =min
d
i=1J(xi ¶ ai)· ai = xiK. (3)

It holds that E·∼N(0,1)Ga(a + ·) j 1; thus, certifying "arbitrarily" high radius (to be specific, with

100 000 samples it is 3.8115 in 32 norm), and E·∼N(0,1)Ga(a2 + ·) < 0.5 for the vast majority of

inputs a b a2. We tried the following experiment; For every image a in the CIFAR10 test set, we
created an image a2 by increasing the image intensity of a by 1/255 at 512 random positions. Then
it holds that E·∼N(0,1)Ga(a2+·) f 0.2 for every CIFAR image a with high probability, even though∥a 2 a2∥

2
< 0.09.

Following this line of examples, let us introduce the base classifier:

HA(x) =maxa∈AGa(x) =maxa∈Amin
d
i=1J(xi ¶ ai)· ai = xiK, (4)

where A is a set of images. Therefore, when A is the set of CIFAR10 test set images, then we can
certify the robustness of the smoothed version of HA at every point of the CIFAR10 test set for large
radii, even though it is vulnerable even to small random perturbations. We remark that HA can be
implemented with a standard network architecture using only linear layers and ReLU non-linearities.
To conclude the examples, we state the findings in the upcoming proposition. Since we introduced
the machinery only for binary classification, we treat CIFAR10 as a binary classification dataset. For
time reasons, we (as it is common in the context of randomized smoothing) only consider 1000 test
images for the upcoming proposition; the first 500 images from the test set of both classes.

Proposition 4.1. There is a classifier with certified robust accuracy 100% on the first 1000CIFAR10
test set images X ¢ [0, 1

255
, . . . ,1]3072 (where we define class 0 to include classes 0,1,2,3,4 of

CIFAR10 and class 1 contains the other classes) with 32-robust radius of 3 and failure probability
0.001 using randomized smoothing certificates, while for every point x * X there is an adversarial
example x2 with ∥x 2 x2∥

2
f 1.

The proof can be found in Appendix D The past has shown that loopholes can and will be exploited
in the future by malicious actors trying to trick certification agencies e.g. see the diesel scandal
where car manufacturers detected the test in a lab to fake significantly better pollution values. As
the European AI act requires a certain level of adversarial robustness in safety-critical applications,
certification agency are likely to evaluate certified robustness in the future. In order to illustrate the
problem, we just sketch how the fake certificates of Proposition 4.1 could be exploited. In fact let
M be the classifier described in the proof of Proposition 4.1 and let m(x) = Eë∼N(0,Ã2Id)M(x + ë)
be the smoothed version of M . One can see that roughly m(x) j 1

2
if x + N(X), where N(X)

denotes a small neighborhood of the test set X . Given a neural network for image classification a
simple way to trick the certification agency, would be a new classifier where one uses the neural
network whenever · f m(x) f 1 2 · , e.g. · = 0.1, and otherwise the classifier M of Proposition
4.1. This classifier would inherit the strong fake robustness guarantees on the test set from M but
behave like a normal classifier on any other input. We emphasize that this problem is resolved by
our fix to randomized smoothing in floating point representation of Section 5 which has negligible
computational overhead for image classification.

5
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4.2 IMPLICIT ASSUMPTIONS OF RANDOMIZED SMOOTHING

The obvious questions after this negative result are: i) what is the key underlying problem in floating-
point arithmetic? ii) what are the implicit assumptions in randomized smoothing?, and iii) how can
we fix the problem?

The first assumption of randomized smoothing is that samples from a normal distribution are indeed
i.i.d. samples. This is not true for floating-point precision due to the rounding; Thus, the resulting
distribution from which we observe samples is uncontrolled, and for certification, we should not rely
on it. However, violation of this assumption is not the cause of the wrong certificate in Listing 1.

The intuition behind randomized smoothing is that the distributions D1 = N (x,Ã2I) and D2 =N (x + ·, Ã2I) have significant overlap for small values of ·. As a consequence, the smoothed

classifier f̂(x) = E·∼N(0,Ã2Id)F (x + ·) evaluated at x also carries information about its value at
points near x. However, the following observation will prove this wrong in floating-point arithmetic.

Roughly speaking, the supports of two high dimensional normal distributions appear to be almost
disjoint, although in one dimension the overlap may be substantial. To support this claim, We
performed the following experiment; given point a * {0,1/255, . . .255/255} and Ã > 0, find a point
b * {0,1/255, . . .255/255} such that ∣a 2 b∣ f 2/255 which minimizes the probability that for an
·1 > N (0, Ã2) there exists a number ·2 such that a · ·1 = b · ·2. For example, if a g 5/255 and
Ã = 1, then the minimized probability is less than 0.99, and for the majority of a g 5/255 it is even
smaller. In order to see that the distributions are almost disjoint, consider an image, say from a
CIFAR dataset, a * R3072 which has at least half of its channels with intensities greater than 4/255.
According to the previous observation, we can find an image a2 such that ∥a 2 a2∥> = 2/255 and
that the probability that smoothed a at any (non black) position could be a smoothed version of a2 is
at most 0.99 (this can be exploited by function Fa,i from Equation (2)). Therefore, the probability
that a smoothed version of the first image could also be a smoothed version of the second image is

at most 0.993072/2 j 2× 1027 (this can be exploited by function Ga from Equation (3)). Thus, when

we follow the standard practise and use 105 samples to estimate f̂(a) from base classifier F , the
chances that at least one of the samples belongs to the distribution from which we sample to estimate

f̂(a2) is at most in the orders 1022. Consequently, without any assumptions on the base classifier F ,

f̂(a) carries almost no information about f̂(a2).

4.3 POTENTIAL REVISIONS OF RANDOMIZED SMOOTHING

The described experiment exploits the floating-point rounding. The errors are in the order of the
least significant bits, which are in the order of 1028 for single-precision and 1024 for half-precision.
Since these numerical errors are not controlled, we should assume that the model is adversarially
attacked during smoothing, where the attacker’s budget is the possible rounding error, denoted as B;
therefore, the smoothing (for certifying class 1) should be performed as:

f̂(x) = E·∼N(0,Ã2Id)min·2∈B F (x + · + ·2).

To mitigate this problem, during estimating f̂(x), we should certify F (x + ·). Although the at-
tacker’s budget B is very small for single accuracy and possibly noticeable for the half accuracy, it
is not clear how it should be certified, since in randomized smoothing, there are no assumptions on
F .

Consider F to be a thresholded classifier F (x) = Jf(x) > 0.5K, where f is a neural network,
then we could certify that f is constant in B-neighbourhood of the smoothed image. For generic
models, this can be done by either bounding the Lipschitz constant of f (w.r.t. an 3>-like norm),
or by propagating a convex relaxation (e.g., IBP) through the network. For smoothing, there are
usually used deep models. E.g., Salman et al. (2019) used ResNet110 and ResNet50 for certifying
CIFAR10 and ImageNet respectively. The bound on the global Lipschitz constant of a deep network
by bounding the operator norms of each layer is thus very weak (j 1030 2 10130, depending on the
model) and cannot certify F (x + ·) even under such a weak threat model as the rounding errors inB.

A possible defense against this problem would be to round the input on a significantly larger scale
than B before evaluating F . Let the rounding be performed by a mapping g, then we would in

6
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fact smooth a classifier F ï g. If we consider B to be in the orders of 1028 and we would round
it to orders 1022, then the probability that x + · will be close to the boundary of rounding, i.e.,
#·2 * B 6 g(x + · + ·2) b g(x + ·) would be on the order of 1026, which is then the probability
that the attack within the threat model B could indeed change the input of F at a single position.
Consequently, the probability that there is no ·2 * B which would change the result of rounding
is very roughly j (1 2 106)3072 j 0.997 for CIFAR and j (1 2 106)150528 j 0.86 for ImageNet.
This means that for approximatelly 86% of the smoothed ImageNet images we can guarantee that
F (x + · + ·2) = F (x + ·) and for the others, we could e.g., set min·2∈B F (x + · + ·2) = 0. This
replacement of F by F ïg during smoothing seem to solve the problem for CIFAR and partially also
for ImageNet for single precision. For half precision, the problem will persist.

However, even if this adjustment solved the problem with numerical errors satisfactorily during the
addition of noise to images, the certificate will still not be sound because we are unlikely to control
the normal distribution sampler’s performance.The normal distribution samplers implementations
used in standard software libraries (e.g., Ziggurat algorithm; Box-Muller transform) transform i.i.d.
uniform distribution samples to i.i.d. normal distribution samples. While this is true in theory for
unlimited precision; here, we perform floating-point operations. Therefore, the sampling is subject
to floating-point errors and we don’t observe the actual rounded samples from normal distribution.

While we do not present any example exploiting the subtle errors of the normal distribution samplers,
relying on them only keeps a possible loophole in the procedure. As our goal is to propose a sound
randomized smoothing procedure in floating-point arithmetic, our work would be incomplete if we
addressed only some potential causes of floating-point errors and not the others, even though we
think they are harder to exploit. In particular, we note that Mironov (2012) exploited the (standard)
floating-point implementation of the Laplace distribution sampler in order to attack the guarantees
of differential privacy.

5 SOUND RANDOMIZED SMOOTHING FOR FLOATING-POINT ARITHMETIC

In this section, we will derive a sound randomized smoothing certification procedure for floating-
point arithmetic. Our only assumption is the access to i.i.d. samples of a fair coin toss, which is
equivalent to having access to samples from the uniform distribution on integers 0, . . . ,2n 2 1 for
some n. Thus, we assume to have access to uniform samples from numbers representable by Long
datatype, that is when n = 64. We further consider classification tasks where the input is quantized
as it is true for images. Throughout the section, we consider the input space to be {0,1, . . . ,255}d in
order to have clear notation. The generalization to other forms of quantized inputs is generic, but the
generalization to real-valued inputs is a bit more involved; we move the discussion to Appendix E.
The resulting algorithm is captured in Appendix K in Algorithm 2.

5.1 CERTIFICATION OF QUANTIZED INPUT

As discussed in the previous section, it is appealing to quantize the smoothed images before feeding
them into the network. Thus, we prepend a mapping gk 6 Rd ³ {2k,2k + 1, . . . , k + 255}, for some
positive integer k which rounds the input to the nearest integer from its range before the function to
be smoothed F ; therefore, the smoothed classifier (with base classifier F ï gk) is defined as:

f̂(x) = E·∼N(0,Ã2Id) F (gk(x + ·)),

which we further equivalently rewrite as

f̂(x) = Et∼gk(x+·), ·∼N(0,Ã2Id) F (t).

This treatment is crucial for the method. Instead of adding noise to the input, which is subject to
rounding errors, we sample the noised input directly.

5.2 DISCRETIZED NORMAL DISTRIBUTION

It remains to show how to obtain i.i.d. samples from the discretized normal distribution

N k
D(x,Ã

2) = gk(x + ·), · > N (0, Ã2).
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We note that the discretized normal distribution is different from the discrete Gaussian distribution
used in the context of differential privacy (Canonne et al., 2020).

As discussed in the two final paragraphs of Subsection 4.3, it is not enough to round samples from
normal distribution since we cannot guarantee the correctness of the normal sampler. The key ob-
servation is that we do not even need to obtain samples from N (0, Ã2) anymore. The resulting
distribution from which we want to sample now is discrete. Concretely, we have

Pt∼Nk
D
(x,Ã2)Jt = aK =

§««««««««««
«
«««««««««««

+ 2k+ 1

2

2>
1:
2ÃÃ2

e2
(x−u)2

2σ2 du if a = 2k,

+ a+ 1

2

a2 1

2

1:
2ÃÃ2

e2
(x−u)2

2σ2 du if 2k < a < k + 255, a * Z

+ >k+2552 1

2

1:
2ÃÃ2

e2
(x−u)2

2σ2 du if a = k + 255.

0 otherwise

Additionally, the following well-known property of normal distribution holds for the discretized
normal distribution as well.

Proposition 5.1. Let k be a positive integer and x * {0,1, . . . ,255}, then it holds thatN k
D(x,Ã

2) =max{2k,min{k + 255, t2 + x}}, t2 > N k+255
D (0, Ã2).

Thus, it is enough to have a sampler fromN k+255
D (0, Ã2). The value of k is chosen such that the vast

majority of samples from N (x,Ã2) falls into the interval [2k, k + 255]. The choice of k does not
affect the correctness of the certificates, but may affect the accuracy. In the experiments we chose
k = 6Ãmax = 6 for inputs from [0,1]d, so it corresponds to k = 6 ç 255 in the notation of this section.

5.2.1 DISCRETIZED NORMAL DISTRIBUTION SAMPLER

Let us denote the quantile function (inverse cdf) of N k
D(0, Ã

2) as Φ21D,k, then Φ21D,k transforms i.i.d.

samples from the uniform distribution on the interval [0,1) =: U(0,1) to i.i.d. samples from distribu-

tionN k
D(0, Ã

2). To sample fromN k
D(0, Ã

2), we first approximate the samples from U(0,1) by sam-
ples from the discrete uniform distribution on {0, . . . ,2n21} which we will interpret as uniform dis-

tribution on {0, 1

2n
, . . . , 2

n21
2n
} =: U(0,1). Then we only need to compute the 2k+255 probabilities

with high enough accuracy that we can claim the correctness of Φ21D,k(u) for u * {0, 1

2n
, . . . , 2

n21
2n
}.

This is ensured by using symbolic mathematical libraries allowing computations in arbitrary preci-
sion.

Since the distribution N k
D(0, Ã

2) is supported on 2k + 256 events, there will be 2k + 255 points

x * {0, 1

2n
, . . . , 2

n21
2n
} such that Φ21D,k(x) b Φ21D,k (x +

1

2n
). Now, consider the mapping between

samples from U(0,1) and U(0,1) which rounds down a sample u from the continuous real inter-

val [0,1) to the closest point v from the set {0, 1

2n
, . . . , 2

n21
2n
}. Then it holds for the probability

Φ21D,k(u) b Φ
21
D,k(v) f

255+2k
2n

f 2122n for a choice k = 7.5 × 255. The probability that a produced

sample is not the actual i.i.d. sample is thus at most 2122n at one position. Therefore, the probability
that all the smoothed images, considering ImageNet sized images with shape 3 × 224 × 224, out of
100 000 smoothed samples are indeed the correct i.i.d. samples from discrete normal distribution is
at least 1 2 2462n > 0.999996 for n = 64.

Therefore, the probability of receiving a sample that might not be the actual i.i.d. sample is negligi-
ble. Still, we can check if we receive such a potentially flawed sample x and in that case, we would
set F (x) = 0 when certifying class 1 (resp. F (x) = 1 when certifying 0) for that particular sample.

5.2.2 SAMPLING SPEED OF DISCRETIZED NORMAL DISTRIBUTION

The sampling is slightly more expensive since we need to threshold the observed uniform samples;
however, this is only an implementation issue. On the other hand, it is sufficient to sample i.i.d.
noise for just one image 100 000 times and reuse it for all the other images. The certificates will be
valid, only the case of failure for different images will not be independent, but it is not required in the
literature. As we sample just once for the whole data set, the time spent for sampling is negligible,
see Table 1. We discuss the timing in detail in Appendix A.1.
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Table 1: Time comparison of certification times per image of the standard randomized smoothing
and the proposed sound procedure with and without reusing noise. Details in Appendix A.1. For
CIFAR10 we used 100 000 random samples and for ImageNet 10 000.

dataset standard proposed w/ reusing proposed w/o reusing

CIFAR10 (ResNet-110) 9.82 s 9.87s 31.70 s
ImageNet (ResNet-50) 8.65 s 8.67 s 129 s

Table 2: Certified radii for a model F smoothed with N (0, Ã2I) on CIFAR10 test set. Evalu-
ated on 500 images from the test set highlighting the differences. The model is ResNet-110 taken
from (Salman et al., 2019), more details in Appendix A.

Sound smoothing of F ï gk via Algorithm 2 for k = 6

certified radius 0 0.1 0.25 0.5 0.75 1 1.25 1.5 2.0

Ã = 0.12 0.878 0.848 0.778 0.000 0.000 0.000 0.000 0.000 0.000
Ã = 0.25 0.836 0.808 0.746 0.600 0.466 0.000 0.000 0.000 0.000
Ã = 0.5 0.708 0.672 0.618 0.502 0.410 0.338 0.248 0.174 0.000
Ã = 1 0.512 0.492 0.448 0.380 0.316 0.278 0.230 0.182 0.112

Standard smoothing of F via Algorithm 1

certified radius 0 0.1 0.25 0.5 0.75 1 1.25 1.5 2.0

Ã = 0.12 0.880 0.848 0.778 0.000 0.000 0.000 0.000 0.000 0.000
Ã = 0.25 0.836 0.808 0.746 0.602 0.468 0.000 0.000 0.000 0.000
Ã = 0.5 0.706 0.672 0.618 0.502 0.408 0.338 0.248 0.174 0.000
Ã = 1 0.516 0.492 0.448 0.378 0.316 0.278 0.230 0.182 0.110

Finally, we wrap up the observations in the following corollary:

Corollary 5.2. Let F 6 Rd ³ {0,1} be a deterministic or a random function and gk 6 Rd ³
{ 2k
255

, 2k+1
255

, . . . k+255
255
} maps input to the closest point of its range, breaking ties arbitrarily. Then

the following two functions are identical:

f̂1(x) = E·∼N(0,Ã2Id) F (gk(x + ·)), f̂(x) = Et∼Nk
D
(x,Ã2Id) F (t).

Therefore, to certify f̂1 with base classifier F ï gk using randomized smoothing, we can esti-

mate the value of f̂ and use it for the certification. Furthermore we can get i.i.d. samples from
t > N k

D(x,Ã
2Id) with arbitrarily high precision using exact arithmetic; thus, the certificate is sound.

Remark 5.3. The empirical performance of the sound and unsound versions of randomized smooth-
ing are essentially equivalent in practice; see Table 2 and also Appendix A for the evidence. How-
ever, it no longer incorrectly certifies the example from Listing 1, where it only certifies a radius
0.6, and the points are distant 0.82 from each other. Similarly, the smoothed classifier of M from
Proposition 4.1 does not contain the universal adversarial perturbations in the certified balls around
the points. See Appendix H for more details.

To summarize: we showed how to replace sampling from the normal distribution, where one can-
not trace the numerical errors, by sampling from the uniform distribution on integers, where we
can bound the failure probability in order to obtain high probability estimates of the output of a
smoothed classifier with a prepended rounding mapping. See Algorithms 1, 2 for the comparison of
the standard and the proposed certification procedure. We also provide an empirical comparison of
the methods in Table 2 and in Appendix A.
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6 CONCLUSION

In the paper, we described multiple simple ways how to construct models that will be certifiably
robust for points of our choice using the standard randomized smoothing certification procedure,
although there will be adversarial examples in their close neighborhood.

Most importantly, we provided a sound way to do randomized smoothing in floating point represen-
tation which comes at negligible cost in image classification.
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Václav Voráček and Matthias Hein. Provably adversarially robust nearest prototype classifiers. In ICML, 2022.

Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J. Zico Kolter. Scaling provable adversarial defenses. In
NeurIPS, 2018.

Eric Wong, Frank Schmidt, and Zico Kolter. Wasserstein adversarial examples via projected sinkhorn iterations.
In ICML, 2019.

Andrew C. Yao. Theory and application of trapdoor functions. In Symposium on Foundations of Computer
Science, 1982.

Bohang Zhang, Du Jiang, Di He, and Liwei Wang. Boosting the certified robustness of l-infinity distance nets.
In ICLR, 2022.

Dániel Zombori, Balázs Bánhelyi, Tibor Csendes, István Megyeri, and Márk Jelasity. Fooling a complete
neural network verifier. In ICLR, 2021.

12



Published as a conference paper at ICLR 2023

A EXPERIMENTS

To run the experiments, we used the publicly available codebase of Salman et al. (2019) which is
distributed under MIT licence. Our modifications will be publicly available under MIT licence. The
experiments were run on a single Tesla V100 GPU. The models we evaluated were chosen arbitrarily
from the models Salman et al. (2019) provide in their repository. Their identifications are:

pretrained_models/cifar10/finetune_cifar_from_imagenetPGD2steps/PGD_10steps_30epochs_multinoise/2-
multitrain/eps_64/cifar10/resnet110/noise_Ã/checkpoint.pth.tar,

pretrained_models/cifar10/PGD_4steps/eps_255/cifar10/resnet110/noise_Ã/checkpoint.pth.tar

pretrained_models/cifar10/PGD_4steps/eps_512/cifar10/resnet110/noise_Ã/checkpoint.pth.tar

where Ã * {0.12,0.25,0.50,1.00} for tables 2, 3 and 4 respectively. In Table 2, 100 000 samples are
used, whereas for Tables 3, 4 we used only 10 000 samples to evaluate the smoothed classifier.

For Imagenet experiments, we used models:

pretrained_models/imagenet/replication/resnet50/noise_Ã/checkpoint.pth.tar,
pretrained_models/imagenet/DNN_2steps/imagenet/eps_512/resnet50/noise_Ã/checkpoint.pth.tar

where Ã * {0.25,0.50,1.00} for tables 5 and 6 respectively. Again, we used 10 000 samples to
evaluate the smoothed classifier.

A.1 SPEED

The speed is essentially equal for both of the methods, described in Algorithm 1 and 2 respectively
because we compute the noise beforehand and then we can use the same set of n noises for every
image, where n is the number of samples used to evaluate a smoothed classifier. The time needed
to generate the noise is in the order of minutes; thus, negligible compared to the time needed to run
the experiments.

To be more precise; we run the experiment on a GPU Tesla V100. For CIFAR10, The (standard)
time per image for 100 000 samples used to evaluate the classifier is 9.82± 0.05s. If we precompute
the noise batches (batch size 1000, thus we have 100 batches) and save them to files. Then with
every image and every batch we load the corresponding noise, the time is then 10.47 ± 0.03s per
image. The advantage of this approach is that the change of the codebase is minimal. In our case,
we changed two lines of code of Salman et al. (2019) and added one class. The disadvantage is that
we do a lot of unnecessary work by loading the same batch of noises multiple times. Finally, if we
compute a batch of noises and evaluate the classifier for every test-set point with this noise before
sampling a new batch, we get to average time 9.87s If we compute noises for every image separately,
the per image time is 31.70 ± 0.15. The ± denotes standard deviation of time per image. Thus, it is
not applicable for the second to last last case. The reported times are from experimental setup of 2
with Ã = 0.12, k = 1 (ResNet110). For these experiments, we used (vectorized) procedure analogical
to the one in Algorithm 2. It takes 4 minutes to compute the breaking points with SymPy library
using exact arithmetic evaluated with sufficient precision (on a single core). Here, we assumed that
torch.randint produces i.i.d. samples.

For ImageNet, we used the model from Table 5 with Ã = 0.5, k = 3 (ResNet50). We used batch size
100, 10 000 smoothed versions to evaluate the per-image times follow:. The time of the standard
method 8.65 ± 0.07s, the time of the reloading reuse is 12.36 ± 0.07s. The time when we sample
noise and evaluate every image on that noise is 8.67s. New noises for every image yields 129±1.29s.
The time to compute breaking points is about 6 minutes (again, single core).
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Table 3: Certified radii for a model F smoothed with N (0, Ã2I) on CIFAR10 test set. Evalu-
ated on 500 images from the test set highlighting the differences. The model is ResNet-110 taken
from (Salman et al., 2019). See Appendix A for the details.

Sound smoothing of F ï gk via Algorithm 2 for k = 6

certified radius 0 0.1 0.25 0.5 0.75 1 1.25 1.5 2.0

Ã = 0.12 0.714 0.678 0.630 0.000 0.000 0.000 0.000 0.000 0.000
Ã = 0.25 0.660 0.636 0.590 0.526 0.444 0.000 0.000 0.000 0.000
Ã = 0.50 0.554 0.538 0.500 0.442 0.386 0.340 0.284 0.204 0.000
Ã = 1 0.440 0.428 0.402 0.368 0.332 0.292 0.248 0.202 0.160

Standard smoothing of F via Algorithm 1

certified radius 0 0.1 0.25 0.5 0.75 1 1.25 1.5 2.0

Ã = 0.12 0.712 0.678 0.630 0.000 0.000 0.000 0.000 0.000 0.000
Ã = 0.25 0.664 0.638 0.592 0.522 0.444 0.000 0.000 0.000 0.000
Ã = 0.50 0.556 0.540 0.500 0.440 0.386 0.338 0.284 0.194 0.000
Ã = 1 0.440 0.428 0.402 0.366 0.330 0.290 0.248 0.204 0.164

Table 4: Certified radii for a model F smoothed with N (0, Ã2I) on CIFAR10 test set. Evalu-
ated on 500 images from the test set highlighting the differences. The model is ResNet-110 taken
from (Salman et al., 2019). See Appendix A for the details.

Sound smoothing of F ï gk via Algorithm 2 for k = 6

certified radius 0 0.1 0.25 0.5 0.75 1 1.25 1.5 2.0

Ã = 0.12 0.560 0.544 0.522 0.000 0.000 0.000 0.000 0.000 0.000
Ã = 0.25 0.534 0.514 0.492 0.450 0.408 0.000 0.000 0.000 0.000
Ã = 0.50 0.466 0.458 0.440 0.414 0.378 0.342 0.306 0.258 0.000
Ã = 1 0.370 0.364 0.342 0.320 0.298 0.276 0.252 0.226 0.166

Standard smoothing of F via Algorithm 1

certified radius 0 0.1 0.25 0.5 0.75 1 1.25 1.5 2.0

Ã = 0.12 0.558 0.544 0.522 0.000 0.000 0.000 0.000 0.000 0.000
Ã = 0.25 0.534 0.514 0.492 0.450 0.410 0.000 0.000 0.000 0.000
Ã = 0.50 0.464 0.458 0.440 0.414 0.380 0.340 0.308 0.264 0.000
Ã = 1 0.372 0.364 0.344 0.318 0.298 0.274 0.250 0.222 0.168
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Table 5: Certified radii for a model F smoothed with N (0, Ã2I) on Imagenet test set. Evalu-
ated on 1000 images from the test set highlighting the differences. The modelis ResNet-50 taken
from (Salman et al., 2019). See Appendix A for the details.

Sound smoothing of F ï gk via Algorithm 2 for k = 12

certified radius 0 0.1 0.25 0.5 0.75 1 1.25 1.5 2.0

Ã = 0.25 0.661 0.636 0.614 0.559 0.498 0.000 0.000 0.000 0.000
Ã = 0.50 0.597 0.586 0.549 0.509 0.460 0.428 0.383 0.330 0.000
Ã = 1 0.447 0.438 0.424 0.390 0.365 0.344 0.319 0.299 0.238

Standard smoothing of F via Algorithm 1

certified radius 0 0.1 0.25 0.5 0.75 1 1.25 1.5 2.0

Ã = 0.25 0.660 0.635 0.614 0.559 0.497 0.000 0.000 0.000 0.000
Ã = 0.50 0.598 0.584 0.548 0.507 0.459 0.429 0.385 0.323 0.000
Ã = 1 0.447 0.439 0.424 0.390 0.365 0.344 0.320 0.297 0.240

Table 6: Certified radii for a model F smoothed with N (0, Ã2I) on Imagenet test set. Evalu-
ated on 1000 images from the test set highlighting the differences. The model is ResNet-50 taken
from (Salman et al., 2019). See Appendix A for the details.

Sound smoothing of F ï gk via Algorithm 2 for k = 12

certified radius 0 0.1 0.25 0.5 0.75 1 1.25 1.5 2.0

Ã = 0.25 0.672 0.642 0.592 0.505 0.393 0.000 0.000 0.000 0.000
Ã = 0.50 0.580 0.566 0.534 0.484 0.425 0.378 0.331 0.268 0.000
Ã = 1 0.448 0.439 0.416 0.379 0.348 0.327 0.299 0.266 0.210

Standard smoothing of F via Algorithm 1

certified radius 0 0.1 0.25 0.5 0.75 1 1.25 1.5 2.0

Ã = 0.25 0.672 0.641 0.593 0.503 0.389 0.000 0.000 0.000 0.000
Ã = 0.50 0.581 0.564 0.534 0.486 0.423 0.377 0.337 0.270 0.000
Ã = 1 0.449 0.440 0.418 0.380 0.349 0.324 0.299 0.268 0.211
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B PROOF OF PROPOSITION5.1

Let us inspect the probability of observing some a * {2k + 1, . . . , k + 254}. In that case

Pt∼Nk
D
(x,Ã2)Jt = aK = + a+0.5

a20.5
1:
2ÃÃ2

e2
(x−u)2

2σ2 du. For the other distribution it holds that t2 = a 2 x

and Pt∼Nk
D
(0,Ã2)Jt = a 2 xK = + a2x+0.5

a2x20.5
1:
2ÃÃ2

e2
u2

2σ2 du and the change of the variable u ³ v 2 x
concludes the proof of this case. The other two cases are analogical.

C FLOATING-POINT NUMBERS

In this appendix, we introduce the floating-point representations and arithmetic according to stan-
dard IEEE-754 (iee, 2008). For the sake of clarity, in this section, we use 8-bit floating-point number
representation instead of the usual 16,32,64 bits, respectively for half, single, and double precision.
This appendix is self-contained and repeats the contains also (in a more detailed way) the content
presented in the main paper.

Floating-point numbers are represented in memory using three different sequences of bits. The split
is 1/3/4 for the 8-bit example, 1/5/10 for half-precision, 1/8/23 for standard single precision, and
1/11/52 for double precision. The modern GPUs use most often single-precision floating point
numbers. We will represent the binary numbers as binary strings of 8 numbers and start with an
example translating binary floating-point representation to the standard decimal one.

Example C.1. Consider the binary number 1110 1010. The first bit is the sign bit. The number is
negative iff the bit is set to 1. In our example, the bit is 1; thus, the number is negative. The next 3 bits
(110) determine the exponent. It is the integer value of this encoding minus 3, thus, in our example,
the exponent is 623 = 3. The subtraction of 3 enables that one can represent exponents23,22, . . . ,4.
The last sequence is called mantissa and encodes the number after the decimal point. There is also
an implicit (not written) 1 before it. This is a so-called normalized form. Thus, the encoded value of
the mantissa is 1.1010 in binary representation, which is 1+1ç0.5+0ç0.25+1ç0.125+0ç0.0625 = 1.625
in base 10. The represented number is thus 21.625 ç 23 = 213 in base 10.

C.1 SUBNORMAL NUMBERS, NANS AND INFS

We note that the introduced floating-point representation is not able to represent 0 and the smallest
representable positive number is 0000 0000 which is 0.125 in base 10. To represent even smaller
numbers, there are so-called subnormal numbers. That is, whenever the exponent consists only
of zeros, there is no implicit 1 in the mantissa, but the exponent is higher by one. That is, the
exponents represented by bits 000 and 001 both correspond to 22. If our 8 bit toy arithmetic also
used subnormal numbers, then 0000 0000 would be 0 and 000 0001 would be (0 ç 1 + 0 ç 0.5 + 0 ç
0.25 + 0 ç 0.125 + 1 ç 0.0625) ç 222 = 0.015625. We note that there is a positive and a negative zero
(and also inf).

Similarly, floating-point numbers whose exponents consist only of ones are special. If additionally
the mantissa is all zeros, then it represents inf and if the mantissa contains a non-zero bit, then it
represents not-a-number (NaN) and the set bits correspond to error messages. ¨

C.2 OPERATIONS WITH FLOATING-POINT NUMBERS

To distinguish the mathematical operations (infinite precision) from the computer arithmetic ones,
we will use ·,¶ instead of +,2 to represent floating-point operations. When writing, e.g., 5·7 = 12,
we mean that the floating-point representation of 5 added to the floating-point representation of 7
results in a floating-point 12. We also note that a·2b = a¶ b.

The addition (or analogically subtraction) of two floating-point numbers is performed in three steps.
First, the number with the lower exponent is transformed to the higher exponent; then the addition is
performed (we assume with infinite precision), and then the result is rounded to fit into the floating-
point representation. The standard allows for several rounding schemes, but the common one is to
round to the closest number breaking the ties by rounding to the number with mantissa ending with
0.
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For the sake of completeness, we also mention the multiplication of floating-point numbers. The
multiplication is done in a way that exponents are added; the mantissas are multiplied and conse-
quently normalized. We will not use (nontrivial) floating-point multiplication in our constructions.

Let us show an example of the floating-point addition.

Example C.2. Consider the addition of binary numbers, 1110 1010, and 0101 0011. The first one
we already decoded as 21.1010× 23 and the other one is 1.0011× 22; both in base 2.

1110 1010· 0101 0011 = 21.1010× 23 + 1.0011× 22 = 21.1010× 23 + 0.10011× 23,

= 21.00001× 23 j 21.0000× 23 = 1110 0000.

In base 10, we would have 213 · 4.75 = 28 due to the loss of the least significant bits. This
happened even though the exponents were different by the smallest possible difference.Consider
further 6.5· 4.75 = 11; Here, the loss of precision appeared even with equal exponents.

Unsurprisingly, it also holds that 6.5 · 4.5 = 11. Therefore, the addition to 6.5 is not injective and,
as a consequence, it is not surjective. Connecting this to randomized smoothing, we know that there
are numbers which cannot be smoothed from 6.5 as the following example shows.

Example C.3. When observing 2.125, it could not arise as 6.5·a for any a. Indeed, 6.5·24.5 = 2,
while 6.5 · 24.25 = 2.25. The representations are: 6.5 > 0101 1010, 2.125 > 0100 0001, 24.25 >
1101 0001 and 24.5 > 1101 0010. Here 24.25 is the smallest number bigger than 24.5. Note again
that the exponents of 6.5 and 2.25 differ only by the smallest possible difference.

Another consequence is that floating-point addition is not associative. That is, the following identity
does not always hold (a· b)· c = a· (b· c).
Example C.4. Consider the numbers a = 2.375 > 0100 0011, b = 3.75 > 0100 1110, and c =
3.25 > 0100 1010. Then a · b = 6 > 0101 1000 and (a · b) · c = 9 > 0110 0010. On the other
hand, b · c = 7 > 0101 1100 and a · (b · c) = 9.5 > 0110 0011; thus, the triple a, b, c serves as a
counterexample for associativity of ·.

D PROOF OF PROPOSITION 4.1

Proposition D.1. There is a classifier with certified robust accuracy 100% on the first 1000CIFAR10
test set images X ¢ [0, 1

255
, . . . ,1]3072 (where we define class 0 to include classes 0,1,2,3,4 of

CIFAR10 and class 1 contains the other classes) with 32-robust radius of 3 and failure probability
0.001 using randomized smoothing certificates, while for every point x * X there is an adversarial
example x2 with ∥x 2 x2∥

2
f 1.

Proof. We take X0 ¦X to be the set of all images from X with class 0 and X1 =X 6X0. Then we
construct a hard classifier

M(x) = {1 if HX1
(x) = 1 or (HX0

(x) = 0 and x1 >
127

255
),

0 otherwise,

where we use HA from (4). Experimentally, we conclude that for the smoothed classifier of M with
Ã = 1, randomized smoothing certifies robust radius 3 in 32 norm for every point x of the test set. At
the same time, the perturbation p = (³ ç 240

255
, 21
255

, 21
255

, . . . ) * R3072, where ³ is 1 when looking for
adversarial perturbation of class 0 and 21 otherwise are universal adversarial perturbations. It holds

for x *X that M̂(x) is correct; M̂(x) b M̂(x + p), and also ∥p∥
2
f 1.

E CERTIFICATION OF REAL-VALUED INPUTS OR DIFFERENT QUANTIZATIONS

Here we shall discuss the adaptation of the method to real-valued inputs, and also to other quantiza-
tion levels.
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E.1 GENERALIZATION TO OTHER QUANTIZATION LEVELS

We described the method assuming 256 quantization levels and later we rounded the input to exact
the same levels. This choice was arbitrary. The motivation was that the more fine-grained the levels
are, the more similar the less changes will the rounding introduce. However, when choosing the
quantization level after rounding, one should have in mind that the efficiency of the method relies on
Proposition 5.1. It is easy to see that in general, we need to compute approximately lcm(qin, qout)
integrals to be able to perform sampling, when qin, qout are the respective inverse distances between
neighbouring quantization levels of input, and after rounding. E.g., If we decided to round the input
on scale 1/256 instead of 1/255, we would need to compute 256 times more integrals than when the
quantization with the current rounding.

E.2 GENERALIZATION TO REAL-VALUED INPUTS

Here we propose two potential generalizations of the method to real-valued inputs. The first pro-
duces maximal (in the sense of NP lemma) certificates at the cost of slow execution. The other
brings no slow down, but the certificates will not be maximal.

As discussed in the previous subsection, Proposition 5.1 is crucial for the efficiency. However,
with the real-valued inputs, it cannot be taken advantage of, because the inputs will (in general)
be arbitrarily distant from 0. Thus, we would need to compute the samples from N k

D(x,Ã2Id)
independently for every input. While it is not a fundamental problem and we, in principle, can do
so, it will become slow for high-dimensional images. To soften this problem, we can decide to have
small number of quantization levels (e.g., 2) so we would need to compute just a single integral per
input dimension. Using 2 quantization levels was already considered in Levine and Feizi (2021) and
it yields the state-of-the-art 31 robustness.

Another possible solution is to round the input before the certification. Let x * Rd be the input
point, we chose a quantization grid and its closest element to x is x2. Then if we certify robust
radius r around x2, it implies that the robust radius centered at x is at least r2∥x 2 x2∥. For instance,
considering CIFAR10 dimension d = 3072 and the distance between quantization points is 1/1000,

then ∥x 2 x2∥
2
f (3072 7 1/20002)1/2 j 0.055. At the same time, we know that the certified radius

at x2 would be at-most r + ∥x 2 x2∥. Thus, the error is controlled and not significant. We can use
more fine-grained quantization to make this error even smaller.

Finally, we note that the main focus of this paper is on quantized input as used in image classifica-
tion. We expect that there are more sophisticated solutions to this problem e.g., by combining both
proposed variants with rejection sampling. We leave this to future work.

F GETTING A-ROUND GUARANTEES: FLOATING-POINT ATTACKS ON

CERTIFIED ROBUSTNESS

In this appendix we discuss the floating-point attacks on randomized smoothing certificates of
Jin et al. (2022). We could not reproduce the result which could be due to the following problems:

• The certificates of randomized smoothing are w.r.t. the smoothed classifier which is
impossible to evaluate and we approximate it by random sampling. Thus, if we certify
robust radius r at point x for classifier f , then if some x1, ∥x 2 x1∥ <= r should be
considered as an adversarial example (with high probability), we should also ensure that
f(x1) = f(x) with high probability. That is, from the certification procedure we know
f(x) with high probability, but to know f(x1) with high probability, one has to determine
confidence intervals e.g. using Clopper-Pearson or Hoeffding’s inequality. However, in
the paper, on bottom of page 13, there is written: Given an instance x, the

smoothed classifier g runs the base classifier f on M noise

corrupted instances of x, and returns the top class kA that

has been predicted by f. This suggests that only a majority vote is performed;
but to claim that one has found with high probability an adversarial samples not only the
majority vote has to be wrong but there needs a significant gap between wrong and correct
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class. Otherwise the result might just be bad luck due to random sampling and not indicate
the existence of an adversarial sample.

• During the attack, they iteratively "refine" the adversarial perturbation. Thus, they evaluate
the smoothed classifier multiple times. Since the outputs are probabilistic, when one tries
enough candidates, one should in principle (incorrectly) find a "high probability" adversar-
ial example just because one will be "lucky" with the randomness. This seems not to be
taken into account in their method.

If their method is indeed a successful attack on randomized smoothing in floating point arithmetic,
then this just emphasizes the need for a fix, which is exactly what we propose in this paper and
overcomes the possibility of such an attack.

G INTEGER-ARITHMETIC-ONLY CERTIFIED ROBUSTNESS FOR QUANTIZED

NEURAL NETWORKS

Here we describe why the technique of Lin et al. (2021) for sampling from the discrete normal
distribution and the consequent certification is not sufficient for our purposes.

The definition of the discrete normal distribution from Lin et al. (2021) (coinciding with the one
in Canonne et al. (2020)) is as follows:

Px∈NH(µ,Ã2)Jx = aK = Ze2
(a−µ)2

2σ2 ,

where Z is an appropriate normalization constant and the distribution is supported on the set of
integers. For the certification, similarly to the standard smoothing, first, the lower bound p on the
probability of the correct class for the smoothed classifier is estimated. Then, the robust radius is
computed as ÃΦ21NH

(p), where Φ21NH
is the inverse CDF of discrete Gaussian. This can be seen at the

very bottom of the second column on page 4 in Lin et al. (2021). Note, in Algorithm 1 of Lin et al.
(2021) there is written only Φ21, which according to the neighbouring discussions (and according to
Thm 3.2 there) corresponds to Φ21NH

. This certified radius is clearly not exact, because the possible
certified radii can only be Ã multiples of the quantization levels because the smoothing distribu-
tion is discrete. For Ã = 1, the possible robust radii are 0,1,2, . . . , while the actual robust radius
may clearly be non-integral which makes sense even when considering quantized inputs; e.g., con-

sider the perturbation (1,1,0, . . . ) which has distance
:
2. Therefore, the smoothing as described

in Lin et al. (2021) is restricted to certify only integer radii which is a significant restriction.

However, we were not able to verify the correctness of the method proposed in Lin et al. (2021). In
the proof of Theorem 3.1, there is: "Notice that that plbcA = P[X * SA], where SA = {z 6 ïz 2 x, ·ï f
Ã ∥·∥

2
Φ21NH
(plbCA

)}". Where plbcA is the lower bounded probability of the target class. However,

since the smoothing distribution is discrete, the function Φ21NH
is piecewise constant, therefore there

are probabilities p1 b p2 with Φ21NH
(p1) = Φ21NH

(p2), thus they will both generate the same set SA,

but using the stated fact in the proof, it would yield p1 = P[X * SA] = p2, which is absurd. Since

the (incorrect) fact (plbcA = P[X * SA], where SA = {z 6 ïz 2 x, ·ï f Ã ∥·∥
2
Φ21NH
(plbCA

)}) is given
without a proof, we cannot rely on the correctness of the method. Even assuming the correctness of
the method, the produced certificates cannot be, as discussed above, exact and are only lower-bounds
on the actual robust radius certifiable by randomized smoothing.

H DISCUSSION ON PRESENTED MALICIOUS EXAMPLES

To reproduce the malicious examples from Section 4, it is important to carry every computation in
the same precision. We tested it for both, single and double-precision, it likely holds also for the half-
precision. If some calculations are done in single, and some in double precision, then the claimed
results will probably not hold. Specially, if some calculation is performed in the single precision
(e.g., transforming images from {0,1, . . . ,255} to {0,1/255, . . . ,1}), casting it to double precision
afterwards is not sufficient because the low mantissa bits are already lost. Although the codes are
very simple, we enclose some of the snippets in the supplementary materials. Proposition 5.1 is
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verified by a C++ program. We believe that for the demonstration it is sufficient to run only 100

noises per sample. With 100 000 samples, it is sufficient to observe 99 900 successes to claim robust
radius 3 with probability 99.9%, and 50 500 successes to claim with probability 99.9% that the result
is class 1. However, the runtime is about one day on a 64 core machine.

I HOEFFDING’S BOUND

Proposition I.1 (Hoeffding’s inequality). Let X1, . . .Xn be random variables with 1

n
E[3n

i=1 Xi] =
µ and 0 fXi f 1. Then it holds that

P(( 1
n

n

∑
i=1

Xi) 2 µ g t) f e22t2n.
for any t g 0.

We rewrite the inequality as

P(( 1
n

n

∑
i=1

Xi) 2 t g µ) f e22t2n.
Now the lhs stands for the probability that when we subtract t from the average, it will still be bigger
than the mean. This is the failure case of randomized smoothing that we want to allow only with
probability ³ = 0.001. Thus, we want to compute t - how much do we subtract from the average.

e22t
2n = ³

22t2n = ln(³)
t2 =

ln(³)22n
t =

√
ln(³)22n

J PSEUDO RANDOM NUMBERS

Here we discuss the issues regarding the random number generators. In reality, we don’t have true
random number generators, we only have pseudo-random number generators. In order to estimate

the quantity f̂(x) = E·∼N(0,Ã2Id)F (x+·) with probabilistic guarantees, we need the actual random
numbers. Otherwise, the probabilistic statement does not make sense (apart from trivial cases). Thus,
a reasonable alternative is to require that no statistical test would distinguish in polynomial time
between the generated pseudo-random numbers and the actual random numbers with non-negligibly
better probability than chance. This property is guaranteed by so-called cryptographically secure
random number generators (Yao, 1982).

K ALGORITHMS

Here we compare the actual algorithms of the standard randomised smoothing in Algorithm 1, and
of the proposed method in Algorithm 2. The differences in the methods of the same name are high-
lighted by colors. The algorithms assume input to be in {0,1/255, . . . ,1}. We emphasize that our
method is a simple extension (differences highlighted) of the standard randomized smoothing, where
the two additional procedures in Algorithm 2 can be evaluated just once before the certification; thus,
they do not slow down the method, neither it decreases the accuracy.
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Algorithm 1 Randomized smoothing certification of Cohen et al. (2019)

1: procedure SAMPLEUNDERNOISE(f, x,n, Ã)
2: counts± [0,0]
3: for i± 1, n do
4: ·± N (0, Ã2I)
5: x2 ± x + ·
6: if f(x2) > 0.5 then
7: counts[1]± counts[1] + 1
8: else
9: counts[0]± counts[0] + 1

10: return counts

11: procedure CERTIFY(f, Ã, x,n0 , n,³)
12: counts0± SAMPLEUNDERNOISE(f, x,n0, Ã)
13: ĉA ± top index in counts0
14: counts± SAMPLEUNDERNOISE(f, x,n, Ã)
15: pA ± LOWERCONFBOUND(counts[ĉA], n,1 2 ³)
16: if p > 1

2
then

17: return prediction ĉA and radius ÃΦ21(p)
18: else
19: return ABSTAIN
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Algorithm 2 Sound randomized smoothing certification of F ï gk
1: procedure PRECOMPUTE ARRAY OF BREAKING POINTS(k,Ã2) · This function is evaluated

only once
2: arr± [0, . . . ,0] · Array of 2 ç 255 ç (k + 1) + 1 zeros
3: for i = 2255k 2 255,255k + 254 do

4: arr[255k 2 255 + i]± +264 + (i+0.5)/2552>
1:
2ÃÃ2

e2
x2

2σ2 dx+

5: arr[2 ç 255 ç (k + 1)]± 264

6: return arr

7: procedureN k+1
D (0, Ã2I) · This function is evaluated only on the first call with given

arguments and the result is memorized. The relevant arguments are k,Ã.
8: arr± Precomputed array of breaking points for N k

D(0, Ã2)
9: ·± [0, . . . ,0] · Array of d zeros

10: for i± 1, d do
11: t ±U(0,26421)
12: for j ± 2255(k + 1),255(k + 1) do
13: if arr[j + 255k] = t then
14: return Failure
15: else if arr[j + k] > t then
16: ·i ± j/255
17: Break
18: return ·

19: procedure SAMPLEUNDERNOISE(f, x,n, Ã, k)
20: counts± [0,0]
21: for i± 1, n do
22: ·± N k+1

D (0, Ã2)
23: if · b Failure then
24: x2 ±max{2k,min{k + 1, x + ·}}
25: if f(x2) > 0.5 then
26: counts[1]± counts[1] + 1
27: else
28: counts[0]± counts[0] + 1
29: return counts

30: procedure CERTIFY(f, Ã, x,n0 , n,³, k)
31: counts0± SAMPLEUNDERNOISE(f, x,n0, Ã, k)
32: ĉA ± top index in counts0
33: counts± SAMPLEUNDERNOISE(f, x,n, Ã, k)
34: pA ± LOWERCONFBOUND(counts[ĉA], n,1 2 ³)
35: if p > 1

2
then

36: return prediction ĉA and radius ÃΦ21(p)
37: else
38: return ABSTAIN
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Improving ℓ1-Certified Robustness via Randomized Smoothing by Leveraging

Box Constraints

Václav Voráček 1 Matthias Hein 1

Abstract

Randomized smoothing is a popular method to

certify robustness of image classifiers to adver-

sarial input perturbations. It is the only certifica-

tion technique which scales directly to datasets

of higher dimension such as ImageNet. How-

ever, current techniques are not able to utilize

the fact that any adversarial example has to lie

in the image space, that is [0, 1]d; otherwise, one

can trivially detect it. To address this suboptimal-

ity, we derive new certification formulae which

lead to significant improvements in the certified

ℓ1-robustness without the need of adapting the

classifiers or change of smoothing distributions.

Code is released at https://github.com/

vvoracek/L1-smoothing.

1. Introduction

While neural networks have demonstrated excellent perfor-

mance in a variety of tasks, they are susceptible to small

(adversarial) changes of the input (Szegedy et al., 2014; Big-

gio et al.). Such behaviour is undesired, especially in the

safety-critical applications. To mitigate the issue, initially

the focus was on constructing empirically robust classifiers,

and then check how the resulting model performs against

adversarial attacks. However, such an approach only gives

an upper bound on the actual robustness of the classifier and

many initially considered promising methods later turned

out to be broken (Athalye et al., 2018; Carlini et al., 2019;

Tramer et al., 2020) due to stronger attacks. The only seem-

ingly working method that does not produce any guarantees

is adversarial training (Madry et al., 2018); but more power-

ful attacks show that the empirical robustness of classifiers

is lower than originally claimed (Croce & Hein, 2020; Lin

et al., 2022).

1Tübingen AI Center, University of Tübingen. Correspon-
dence to: Václav Voráček <vaclav.voracek@uni-tuebingen.de>,
Matthias Hein <matthias.hein@uni-tuebingen.de>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).
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Figure 1: Certified ℓ1 robust accuracies for CIFAR-10

dataset via randomized smoothing for three different types

of noise. The curves uniform++ and split++ use the same

networks and noise as uniform and split respectively, how-

ever, with the proposed improved certification we are able to

significantly increase the certified robustness. The reported

curves are pointwise maxima of robustness curves with dif-

ferent noise magnitudes.

Thus, an alternative approach is to certify robustness. Here,

we are no longer interested in whether we can find (or fail to

find) an adversarial example in the neighbourhood (called

threat model), but rather focus on whether we can prove (or

fail to prove) that there is no adversarial example. These

methods roughly fall into three (arguably overlapping) cate-

gories:

• Propagate a “nice” set containing the threat model through

the network; see, e.g., (Gowal et al., 2018; Wong et al.,

2018).

• Force the Lipschitz constant of a model to be small; see,

e.g., (Leino et al., 2021; Trockman & Kolter, 2021; Singla

et al., 2022; Zhang et al., 2022a).

• Randomized smoothing; see, e.g., (Lecuyer et al., 2019;

Cohen et al., 2019; Salman et al., 2019; Yang et al., 2020).

The two approaches discussed yielded either an upper bound

(empirical robustness) or a lower bound (certified robust-

ness) respectively on the actual adversarial robustness and in

general, there are points for which the certification methods

1
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cannot prove that they are robust, nor the attack is able to

find an adversarial example. Although this property is unde-

sirable, it is also inevitable in practice because the problem

of finding adversarial examples even in ReLU networks is

in NP-Complete (Katz et al., 2017). Therefore, determining

the true robustness of a model is only possible for very small

networks (Tjeng & Tedrake, 2017) and simple classifiers

such as linear models, boosted decision stumps (Kantchelian

et al., 2016) , or nearest neighbour (resp. prototype) classi-

fiers (Wang et al., 2019; Saralajew et al., 2020; Voráček &

Hein, 2022). Nevertheless, there is a line of work aiming at

finding the actual robustness, or at least tightening the gap

between the certifiable lower and upper bounds; see (Zhang

et al., 2018; 2022b).

We discuss shortly the choice of the threat model. It is

the perturbation set with respect to which we want to be

robust. The common choices are the ℓp balls centered at

the input points. While the choice of a threat model is al-

ways somewhat arbitrary, if it is not directly motivated by

an application, the attacks (and defenses) to many interest-

ing threat models strongly rely on techniques developed for

the ℓp threat models for both empirical and certified robust-

ness; see (Laidlaw et al., 2021; Voráček & Hein, 2022) for a

perceptual metric threat model; (Wong et al., 2019; Levine

& Feizi, 2020) for the Wasserstein distance threat model;

(Brown et al., 2017; Metzen & Yatsura, 2021; Salman et al.,

2022) for a patch threat model, in which the attacker is al-

lowed to arbitrarily set the pixel values in a small patch. The

choice of using different ℓp norms as threat models leads to

qualitatively different adversarial perturbations. For exam-

ple, when applying the ℓ∞-threat model with a sufficiently

small radius, the changes are typically imperceptible but

affect every pixel. On the other hand, the ℓ1-threat model al-

lows for potentially significant changes in individual pixels,

although limited to only a few of them. Instead of a given

threat model, that is fixing the perturbation budget, one can

also ask for the largest radius of a ball in a given norm in

which the classifier does not change - the so called robust

radius.

Definition 1.1. A classifier f : Rd → {0, 1} is said to be

robust at x with respect to a norm ∥·∥ with robust radius r
if ∥x− y∥ f r =⇒ f(x) = f(y) for every y ∈ [0, 1]d.

The certified radii and perturbation magnitudes typically

considered in empirical robustness for the ℓ∞-norm are very

similar. However, for the ℓ1-norm, there is a significant

difference in the radii considered between certified robust-

ness and empirical defenses. For example, on ImageNet,

radii around 4 are considered for certified robustness, while

empirical defenses consider radii ranging from 60 to 255

(Croce & Hein, 2022; 2021). This suggests that there exists

a gap between what can be certifiably attained and what

appears to be empirically achievable for the ℓ1-norm.

On the other hand it has been argued by Croce & Hein

(2021) that ℓ1-attacks are much more difficult and prone

to fail compared to ℓ∞-attacks and thus it could also be an

overestimation problem. They conclude that the intersection

of the image domain [0, 1]d and the ℓ1-ball as the effective

threat model has a quite different geometry than an ℓ1-ball

and construct their attack accordingly. Thus, our motivation

is to consider the box-constraints even in the context of

certification.

Contributions: In previous work of Levine & Feizi (2021)

and Yang et al. (2020) on certified ℓ1-robustness using ran-

domized smoothing, it has been assumed that the input do-

main is Rd, even though the techniques are mainly applied

to image classifiers, where the domain is [0, 1]d. We show

in this paper that taking into account the box constraints of

the image domain [0, 1]d can be used to certify significantly

larger ℓ1-balls than previous work. Our main result is based

on the fact that the volume of the overlap of two ℓ∞-balls

when the centers of the balls are restricted to [0, 1]d behaves

quite different from the unconstrained case which leads to

an improved control of the smoothed classifier yielding the

better guarantees. Our technique can be applied when the

smoothing distribution is uniform Yang et al. (2020) as well

as for the Splitting Noise of (Levine & Feizi, 2021). We

also discuss an improved control of the failure probability

as well the better scaling of the ℓ1-certificates in the failure

probability compared to ℓ2 and ℓ∞. Finally, we show in the

experiments that our improved technique allows to certify

much larger ℓ1-radii than previous work.

1.1. Notation

Real interval between a, b is denoted [a, b]. We use Iverson

brackets JstatementK which is the indicator function of the

set for which the statement is true. The floor function, +x,
stands for the maximal integer no larger than x:

+x, = max{m ∈ Z | m f x}.
The ℓp-ball with radius ¼ centered at x ∈ R

d is denoted as

Bp(x, ¼) = {z ∈ R
d | ∥z − x∥p f ¼}.

The uniform distribution on B∞(0, ¼) in d dimensions is

denoted Ud(¼). Volume of a set A is denoted as V ol(A).
A one hot vector with 1 at position i is denoted ei and its

dimension will be clear from the context. When the meaning

is clear from context, we use f as a base classifier, q as a

smoothing distribution, h as a smoothed classifier of f and

H as the thresholded version of h as in Equation (1) and (2).

Number of samples is denoted by n and the dimension is d.

2. Randomized smoothing

For the simplicity of exposure, we introduce randomized

smoothing for the case of binary classification and discuss

2
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the multiclass setting in Section 2.4. We start by treating

the mathematical foundations of randomized smoothing and

postpone the discussion on the algorithmic implementation

to Section 2.5. We will also certify class 1 and the certifica-

tion of class 0 is symmetric.

2.1. Mathematics of Randomized Smoothing

Randomized smoothing (Lecuyer et al., 2019) is a method

that takes an arbitrary binary classifier f : R
d → [0, 1]

and a noise distribution q supported on R
d; it produces a

smoothed version h of the original classifier f :

h(x) = E
ε∼q

f(x+ ε). (1)

For the thresholded classifier H defined as

H(x) = Jh(x) > 0.5K (2)

we can certify adversarial robustness.

The intuition behind this is as follows: If the distribution q
exhibits certain desirable characteristics (such as having a

small total variation distance with its slightly shifted copy),

for example, if it represents a uniform distribution within

a hypercube with a radius larger than ∥¶∥1 for some ¶ ∈
R

d, then h(x) and h(x + ¶) are both expectations of the

same function under almost the same distribution; thus they

should be similar. Therefore, if h(x) ≈ 1, then also h(x+
¶) > 0.5 We formalize this intuition later in Proposition 2.1

for the case of ℓ1 distance.

In (Yang et al., 2020), it has been argued and supported by

both theoretical and experimental evidence that the optimal

smoothing distribution for ℓ1-robustness should have cubic

superlevel sets. That is, a smoothing distribution with den-

sity q should satisfy that the set Ut = {x ∈ R
d | q(x) g t}

is a hypercube for every t. In that case, we can express

q(x) as an (uncountable) mixture of uniform distributions

supported in ℓ∞-balls of specific radii and our proposed

method can still be applied.

Proposition 2.1. Let f : Rd → [0, 1] and

h(x) = E
ε∼Ud(λ)

f(x+ ε).

Let B1 and B2 be the ℓ∞-balls with radius ¼ centered at

x, y respectively, then

h(y) g h(x)− 1 +
V ol(B1 ∩B2)

V ol(B2)
.

Proof.

h(y) =

∫

t∈B2
f(t)dt

V ol(B2)
g
∫

t∈B1∩B2
f(t)dt

V ol(B2)

=

∫

t∈B1
f(t)dt−

∫

t∈B1\B2
f(t)dt

V ol(B2)

g
∫

t∈B1
f(t)dt− V ol(B1 \B2)

V ol(B2)

= h(x)− 1 +
V ol(B1 ∩B2)

V ol(B2)
,

using V ol(B1 \ B2) = V ol(B2) − V ol(B1 ∩ B2) and

V ol(B1) = V ol(B2).

It remains to find a lower bound on the volume of intersec-

tion of two ℓ∞-balls. For now, we present a simple bound

and will return to a proper treatment later in Proposition 2.5

and Theorem 2.8.

Proposition 2.2. Let B1, B2 be ℓ∞-balls with radii ¼ cen-

tered at x, y ∈ R
d respectively; then

V ol(B1 ∩B2)

V ol(B1)
g 1− ∥x− y∥1

2¼
.

Proof. The proof can be found in Appendix A.1.

Now we have developed the intuition and tools, we are ready

to state the foundational theorem of ℓ1 robustness.

Theorem 2.3. (Lee et al., 2019) Let f : Rd → [0, 1] be

a deterministic or random classifier. Then the smoothed

classifier defined as:

h(x) = E
ε∼Ud(λ)

[f(x+ ε)]

is 1/(2¼)-Lipschitz with respect to ℓ1-norm.

Proof. Plugging the bound from Proposition 2.2 into

Proposition 2.1 yields h(y) − h(x) f ∥x− y∥1 /(2¼)
for all x, y ∈ R

d, thus it holds that |h(y)− h(x)| f
1/(2¼) ∥x− y∥1

Theorem 2.3 allows us to directly compute the radius ¼ of

the ℓ1 ball B1(x, ¼) such that it is classified by classifier H
with the same label as H(x).

Corollary 2.4 (of Theorem 2.3). Let h be a smoothed clas-

sifier as in Theorem 2.3. Then H (thresholding h at 0.5) is

robust (for class 1) at x with certified radius

r(x) = 2¼(h(x)− 1/2).

Proof. Using h(y) g h(x) − ∥x−y∥
1

2λ > 1
2 from Theo-

rem 2.3 and solving for ∥x− y∥1 yields the result.

3
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2.2. Box Constraints

In the case of ℓ1-robustness, the most successful methods

use the uniform distribution in an ℓ∞-ball as smoothing dis-

tribution. Thus, we focus on this case first and discuss the

others later. In Proposition 2.1 we have established that the

overlap of supports of the smoothing distributions is a cru-

cial factor for the robustness certification. In the upcoming

proposition, we show that considering box-constraints gives

us a tighter upper bound on the minimal possible overlap.

Proposition 2.5. Let B1, B2 be the ℓ∞ balls with radii ¼
centered at x, y ∈ [0, 1]d; then

V ol(B1 ∩B2)

V ol(B1)
g

(

1− 1

2¼

)+∥x−y∥
1
,(

1− ∥x− y∥1 − +∥x− y∥1,
2¼

)

g
(

1− 1

2¼

)∥x−y∥
1

.

The very last inequality holds when 2¼ g 1. Both of the

inequalities are attainable.

Proof. The proof can be found in Appendix A.2.

The aim was to provide simple expressions in Proposi-

tion 2.5 so that we can express the certified radius in a

closed form. Specifically, we can plug the result from Propo-

sition 2.5 into Proposition 2.1, resulting in Theorem 2.6 and

Corollary 2.7. In Figure 2, we can see the improvement

achieved compared to the certificates based on Proposi-

tions 2.2 and 2.1 resulting in Corollary 2.4.

Theorem 2.6. Let f : Rd → [0, 1] be a deterministic or

random classifier. Then the smoothed classifier is defined

as:

h(x) = E
ε∼Ud(λ)

[f(x+ ε)] .

Then for x, y ∈ [0, 1]d it holds that

|h(x)− h(y)| f 1−
(

1− 1

2¼

)∥x−y∥
1

.

Proof. Plugging the bound from Proposition 2.5 into Propo-

sition 2.1.

Corollary 2.7 (of Theorem 2.6). Let h be a smoothed clas-

sifier as in Theorem 2.6. Then H (thresholding h at 0.5) is

robust (for class 1) at x with certified radius

r(x) =
ln(1.5− h(x))

ln(1− 1
2λ )

.

Proof. Using h(x)− 1
2 f 1−

(

1− 1
2λ

)∥x−y∥
1 from Theo-

rem 2.6 and solving for ∥x− y∥1 yields the result.
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Figure 2: Conversion of top class probability of a smoothed

classifier to the ℓ1 certifiable robust radius for different noise

magnitudes ¼ used for smoothing. The dashed lines are via

Corollary 2.4 and the solid ones are via our Corollary 2.7.

We can further utilize the fact that the maximal possible dif-

ference between a potential adversarial example and the orig-

inal image x at position i is at most di = max{xi, 1− xi}.
In Proposition 2.5, we used an upper bound of di f 1. How-

ever, the following theorem establishes that for an image

x ∈ [0, 1]d, we can find an image y ∈ [0, 1]d that mini-

mizes the intersection of B∞(x, ¼) and B∞(y, ¼) under the

constraint ∥x− y∥1 f c through a greedy coordinate-wise

minimization approach. The improvements in certification

are demonstrated in Example 2.9 and Figure 3.

Theorem 2.8. Let x ∈ [0, 1]d. Let Ãi be an ordering in-

duced by how far is xi from boundary. That is:

i f j =⇒ min(xσi
, 1− xσi

) f min(xσj
, 1− xσj

).

Then for any c > 0 such that there exists y ∈ [0, 1]d with

∥x− y∥1 = c it holds that

inf
y∈[0,1]d∩B1(x,c)

V ol(B∞(x, ¼) ∩ B∞(y, ¼))

V ol(B∞(x, ¼))

=

(

T
∏

i=1

(

1− max{xσi
, 1− xσi

}
2¼

))(

1− U

2¼

)

where

T = max
k∈N

s.t.

i=k
∑

i=1

max(xσi
, 1− xσi

) f c,

and

U = c−
i=T
∑

i=1

max(xσi
, 1− xσi

).

Proof. The proof can be found in Appendix A.3

Theorem 2.8 is a clear generalization of Proposition 2.5

when we choose x = 0 in Theorem 2.8. Similarly, Proposi-

tion 2.2 can be seen as another corollary with a minor effort.
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Figure 3: Effect of box constraints on the minimal overlap

of two ℓ∞ balls. The green point is at (0.4, 0.6) while the

orange one is at a distance 0.8 in ℓ1-norm. On the left is

depicted the minimal possible overlap considering box con-

straints (cf. Theorem 2.8), while on the right is the minimal

possible overlap without considering box constraints (cf.

Proposition 2.2). See Example 2.9 for further discussion.

Therefore, the proofs involve subtle variations of the same

underlying idea.

Theorem 2.8 can be used for certification with Proposi-

tion 2.1. The certified radius cannot be expressed in a closed

form but can be efficiently computed after sorting the coor-

dinates since the volume of the intersection is an increasing

piecewise-linear function of the robust radius.

Example 2.9. Consider a point x = (0.4, 0.6) and a smooth-

ing distribution uniform in B∞(0, 1), that is ¼ = 1. We want

to certify the thresholded version of h when h(x) = 0.88.

If we don’t consider the box constraints, we can only cer-

tify robust radius via Corollary 2.4: 2¼(0.88− 0.5) < 0.8.

However, if we consider the box constraints, we can certify

robust radius 0.8 via Proposition 2.1 and Theorem 2.8. This

is a consequence of the fact that the lower bound on the vol-

ume of intersections of two ℓ∞ balls in Proposition 2.2 (in

this case 0.6) is weaker than the (exact one) in Theorem 2.8

(in this case 0.63), see Figure 3 for the illustration.

2.3. Smoothing with Splitting Noise

An alternative ℓ1-certification method proposed by Levine

& Feizi (2021) uses a splitting noise. We show that if the

splitting noise is independent in every dimension, then our

certification from Corollary 2.7 can be directly applied here.

For the simplicity, we introduce only the splitting noise with

¼ g 0.5 since the general version is more complicated and

0 < ¼ < 0.5 can only be used to certify small radii; thus

we do not improve the certification for that case. The fun-

damental concept behind the splitting noise is that, at every

coordinate, we have two options: either we add uniform

noise from the interval [0, 1], or we set the value at that

coordinate to 1. The strength of the noise ¼ determines the

frequency at which each of these procedures occurs.

Theorem 2.10 (Theorem 2 of Levine & Feizi (2021)). For

any f : R
d → [0, 1], and ¼ g 0.5 let s ∈ [0, 2¼]d be

a random variable whose (not necessarily independent)

marginals follow the uniform distribution on [0, 2¼]. Then

define

x̃i(si) = min(si, 1) + Jxi > siK, ∀i
h(x) = E

s
[f(x̃(s))] .

Then, h(·) is (1/2¼)-Lipschitz with respect to the ℓ1-norm.

Let us take a closer look at the distribution x̃(s) for some

x ∈ [0, 1] and s uniformly drawn from interval [0, 2¼]. We

split the inspection in three cases:

1. With probability x/(2¼): s f x, then s f 1 and

x̃(s) = 1 + s.

2. With probability (1 − x)/(2¼): x f s f 1, then

x̃(s) = s.

3. With probability 1− 1/(2¼): 1 f s, then x̃(s) = 1.

Thus, x̃(s) is a mixture of a uniform distribution on [x, 1+x]
and a constant random variable at 1 with respective mixture

coefficients 1/(2¼) and 1−1/(2¼) respectively. Thus, when

¼ = 0.5, the splitting noise distribution and uniform dis-

tribution in B∞(x, ¼) are equal. Given this observation, it

comes at no surprise that the techniques we used to improve

the certification in the case of uniform noise in B∞(x, ¼),
resulting in Corollary 2.7, can be used also in the case of

splitting noise.

Theorem 2.11. Let the assumptions be as in Theorem 2.10

and additionally let the marginals of s be independent. Then

Proposition 2.1 holds when the uniform noise is replaced by

the splitting noise.

Proof. Take x, y ∈ R
d and a noise sample s ∈ Ud(¼). At

every position we have

x̃i(si) = min(si, 1) + Jxi > siK,

thus, in order to x̃i(si) ̸= ỹi(si), it has to be the case that

Jxi > siK ̸= Jyi > siK

which happens with probability
|xi−yi|

2λ . Let R ¢ [0, 2¼]d

such that for every s ∈ R we have x̃(s) = ỹ(s). The

probability that x̃(s) and ỹ(s) are equal is exactly

V ol(R)

(2¼)d
=

d
∏

i=1

(

1− |xi − yi|
2¼

)

=
V ol(B∞(x, ¼) ∩ B∞(y, ¼))

V ol(B∞(x, ¼))

5
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since s has independent marginals. Then we mimick the

proof of Proposition 2.1:

h(y) =

∫

s∈[0,2λ]d
f(ỹ(s))ds

(2¼)d
g
∫

s∈R
f(ỹ(s))ds

(2¼)d

=

∫

s∈R
f(x̃(s))ds

(2¼)d

=

∫

s∈[0,2λ]d
f(x̃(s))ds−

∫

s∈[0,2λ]d\R
f(x̃(s))ds

(2¼)d

g h(x)− (2¼)d − V ol(R)

(2¼)d

= h(x)− 1 +
V ol(B∞(x, ¼) ∩ B∞(y, ¼))

V ol(B∞(x, ¼))
.

Theorem 2.11 shows that smoothing with both uniform and

splitting noise are captured by Proposition 2.1. Thus, the

certification methods from Corollaries 2.4 and 2.7 developed

for uniform noise can be also used for the splitting noise

and for the clarity, we will keep using uniform noise in the

discussions.

2.3.1. DETERMINISTIC SPLITTING NOISE

The splitting noise has another useful property. If the noise

in different coordinates is not independent, then we can

evaluate the expectation exactly using 2q¼ evaluations of

the base classifier, where q here stands for the number of

quantization levels which is commonly 256. We refer the

reader to Levine & Feizi (2021) for the details. This has

two benefits; one, the provided certificates are deterministic

and second, they are faster to compute - although this is not

inherent. We can use less samples to estimate the expecta-

tion of the base classifier under the smoothing noise. See

Subsection 2.7 and Figure 4 for more details. Our method

cannot be applied in this deterministic case because we can

no longer rely on the independence of the splitting noise

across different coordinates.

2.4. Multiclass Classification

We introduced the randomized smoothing machinery for

the task of binary classification. In the K-class setting we

define randomized smoothing as follows; let f : R
d →

{e1, e2, . . . eK} where ei are one-hot vectors with 1 at po-

sition i be the base classifier. The smoothed classifier is

then

h(x) = E
ε∼q

f(x+ ε)

and we certify robustness for its thresholded version; i.e.,

for

H(x) = argmaxKi=1 h(x)i.

A possible approach to the multiclass setting is straightfor-

ward; just consider all the other classes as a one big class.

That is, treat the multiclass classifier f(x) as if it would

be a binary classifier f(x)y when certifying class y. This

approach is commonly taken in the randomized smoothing

literature (Salman et al., 2019; Cohen et al., 2019) to avoid

problems with estimation of class probabilities. Thus, we

can directly use all the theory we have developed so far

for the binary classification. However, this simplification

may come at a high cost. Consider for example a classifi-

cation task with k = 1000 classes with h(x)1 = 0.4 and

h(x)i < 0.001 for the other classes. Then with the dis-

cussed conversion we are not able to certify class 1. How-

ever, as we will see, H can be moderately robust at x.

Proposition 2.12. Let f : R
d → {e1, e2, . . . eK} be a

base classifier, its smoothed version be h and H be the

thresholded version of h and the smoothing distribution be

Ud(¼). Let also H(x) = A. Then for any point y it holds

that

h(y)A − h(y)B
2

g h(x)A − h(x)B
2

− 1+
V ol(B1 ∩B2)

V ol(B2)

where B is an arbitrary class and B1 = B∞(x, ¼) and

B2 = B∞(y, ¼),

Proof. We subtract the inequalities from Proposition 2.1

applied to h(·)A and h(·)B .

In order to certify the thresholded classifier in the multiclass

setting, we have to ensure that
h(y)A−h(y)B

2 g 0 in the

notation of Proposition 2.12.

Corollary 2.13 (of Proposition 2.12 and 2.2). Let the nota-

tion be as in Proposition 2.12. Then H is certifiably robust

at x with robust radius

r(x) = ¼ (h(x)A − h(x)B) ,

where H(x) = A and B is the runner-up class.

Corollary 2.14 (of Proposition 2.12 and 2.5). Let the nota-

tion be as in Proposition 2.12. Then H is certifiably robust

at x with robust radius

r(x) =
ln
(

1− h(x)A−h(x)B
2

)

ln
(

1− 1
2λ

)

where H(x) = A and B is the runner-up class.

2.5. Algorithmic Implementation

We have covered the mathematical foundations of random-

ized smoothing. However, the exact expectation in Equation

(1) is usually intractable to evaluate; therefore, Monte Carlo

6
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sampling is used to estimate it (whence randomized smooth-

ing). As a consequence, the technique is stochastic and

we cannot guarantee that it will always produce a valid ra-

dius. Still, we can control the probability of bad luck during

sampling and the certificates are (by design) computed so

that they are correct with 1− ³ = 99.9% probability. We

discuss the procedure in Section 2.6. We emphasize that

the certificates are for the actual classifier induced by h de-

fined using an expectation. For the same reason, we should

be careful with querying the classifier h - it brings another

source of randomness. To control all this randomness, one

commonly uses n = 100 000 samples to estimate h(x) in

Equation (1) which leads to long certification and inference

times. However, it is not necessary as we will discuss in

Section 2.7

The choice of a smoothing distribution q is crucial for the

performance. Some popular choices are normal distribution

(for ℓ2- and ℓ∞-threat models) and uniform distributions in

ℓp balls; see (Yang et al., 2020) for a thorough inspection

of many smoothing distributions and respective certifica-

tions or (Dvijotham et al., 2020) for a general certification

framework that is applicable for virtually any smoothing dis-

tribution. Specially, for smoothing with normal distribution

with covariance matrix Ã2Id, it was shown by Cohen et al.

(2019) that h is robust at a with radius ÃΦ−1(h(a)) under

the ℓ2-threat model, where Φ−1 is the quantile function of

standard normal distribution. For the ℓ∞-threat model the

radius ÃΦ−1(h(a))/
√
d can be certified as it fits into a

ℓ2-ball of radius ÃΦ−1(h(a)).

2.6. Controlling Failure Probability

In order to provide high probability certificates, we need

to estimate some of the class probabilities. A standard

way to perform certification is by first evaluating a few

(usually n0 = 64, however, we use 256 in the experiments)

noisy samples to estimate the top-1 class of h(x) that is

certified in a second step via one-versus-all approach as

discussed in Section 2.4. This approach has the benefit

that one only needs to estimate the parameter of a binomial

distribution and one can easily control the failure probability

via Clopper-Pearson tail bounds. However, this approach

has its downsides pointed out in Subsection 2.4. Thus, we

will follow Proposition 2.12 for the certification. We need

to estimate not just top-1 class probability, but also the top-2
class probability. We use the standard Bonferroni correction

to estimate them. That is, we estimate both, top-1 and top-2
class probability with allowed failure probability ³/2 via

Clopper-Pearson tail bounds. Therefore, by a union bound,

both of the estimated values are simultaneously correct with

probability at least 1− ³.

See Algorithm 1 for the actual certification via Corol-

lary 2.14. We note that there is no guarantee that Â nor

Algorithm 1 Randomized Smoothing Certification

procedure SAMPLEUNDERNOISE(f, x, n, ¼)

counts← [0, 0, . . . , 0]
for i← 1, n do

x′ ← noise(x, ¼)
counts← counts+ f(x′)

return counts

procedure CERTIFY(f, x, n0, n, ¼, ³)

counts0← SAMPLEUNDERNOISE(f, x, n0, ¼)
Â← top index in counts0

counts← SAMPLEUNDERNOISE(f, x, n, ¼)
B̂ ← top index in counts but not Â
pA ← LOWCONFBOUND(counts[Â], n, ³/2)
pB ← UPPCONFBOUND(counts[B̂], n, ³/2)
if pA > pB then

return prediction Â and radius

ln
(

1− pA−pB

2

)

ln
(

1− 1
2λ

)

else

return ABSTAIN

B̂ correspond to the actual two most probable classes. How-

ever, it does not matter. The value pA does not exceed

h(x)A with probability at least 1−³/2; thus, it also cannot

exceed maxk h(x)k. Similarly, even if the actual top-2 class

is not B̂, then pB is overestimating h(x)B with probability

at least 1− ³/2. Thus, the failure probability is at most ³.

The function LOWCONFBOUND (resp. UPPCONFBOUND)

computes lower (resp. upper) confidence interval for h(x)A
(resp. h(x)B). We discuss its implementation in Subsec-

tion 3.2.

2.7. Influence of the Number of Samples

We discuss the influence of the number of samples used to

estimate the output of a smoothed classifier and the required

confidence on the certified accuracy. In the ℓ1-case that we

have covered, certification using Corollaries 2.4, 2.7 and

their multiclass counterparts scales roughly linearly in the

estimated probability

ln

(

3

2
− h(x)− ϵ

)

g ln

(

3

2
− h(x)

)

− 2ϵ

for ϵ > 0 and h(x) + ϵ f 1. We used that

supx∈[ 1
2
, 3
2
] ln

′(x) = 2. The width of confidence intervals

(for p g 0.5) when p ≈ 1 scales roughly as
− ln(α)

n
for

confidence level ³, while when p ̸≈ 1, the width scales as
√

− ln(α)
n

as follows from the Bennett’s inequality. A (sub

7
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Figure 4: Effect of the choice of ³ (on the left; n = 10 000)

and of n (on the right; ³ = 0.001) on the ℓ1-robustness

curve. Experiment is on CIFAR10 with ¼ = 6.92 and

certification according to Corollary 2.7.

optimal) universal bound by Hoeffding’s inequality yields

t =

√

ln(³)

−2n
as a width of the (one-sided) confidence interval; see Ap-

pendix B for the derivation. Thus, the estimation error of the

robust radius gecreases at least as

√

− lnα
n

and significantly

faster when the estimated probability is close to 1.

In practice, it might not be necessary to push for the largest

n possible. See Figure 4 for certification with different

choices of numbers of noise samples and choices of ³ to

get an impression of how much the robustness curves are

influenced by these hyperparameters.

We note that this finding does not transfer to ℓ2- and ℓ∞-

smoothing where the normal distribution is dominantly

used as a smoothing distribution. This is because for

these cases the certificates are not linear in the estimated

probability. They are computed as ÃΦ−1(p), where Φ−1

grows arbitrarily steeply as p approaches 1. For exam-

ple, if we have a constant base classifier, Ã = 1, and

n ∈ {10 000, 100 000, 1 000 000}, then we can certify

radii 3.20, 3.81 and 4.35 respectively which makes a huge

difference. See Figure 8 of (Cohen et al., 2019) for more

details. To conclude this subsection, we demonstrated that

ℓ1 certification via randomized smoothing requires signifi-

cantly less samples than in the ℓ2 and ℓ∞ cases in order to

reasonably controll the estimation error of a robust radius.

3. Experiments

We performed an extensive evaluation on CIFAR-

10 (Krizhevsky et al., 2009) and ImageNet-1k (Russakovsky

et al., 2015) and demonstrate the improvements compar-

ing to (Levine & Feizi, 2021) and (Yang et al., 2020).

To ensure a fairness of the evaluation, we follow the ex-

perimental setup that is identical in both mentioned pa-

pers but we perform it over a wider range of smooth-

ing distribution parameters. Following previous work,

we report standard deviations of the distribution instead

of the ¼ parameter that we have used throughout the

paper. The conversion is that Ã corresponds to ¼ :=√
3Ã. Namely, for CIFAR-10, we evaluated on Ã ∈
{0.15, 0.25, . . . 3.5, . . . 8, 9, 10, 12}, where in the first gap,

the spacing is 0.25 and in the second it is 0.5 and for Ima-

geNet we used Ã ∈ {0.5, 1.25, 2, 2.75, 3.5, 4.5, 5.5}.

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0
split derandomized σ=1.25

split++ (ours) σ=1.25

split derandomized σ=2.0

split++ (ours) σ=2.0

split derandomized σ=2.75

split++ (ours) σ=2.75

0 1 2 3 4 5 6

robust radius

0.0

0.2

0.4

0.6

0.8

1.0
split derandomized σ=0.5

split++ (ours) σ=0.5

split derandomized σ=1.25

split++ (ours) σ=1.25

split derandomized σ=2.0

split++ (ours) σ=2.0

ro
b
u
st

a
c
c
u
ra
c
y

Figure 5: Comparison of certification using deterministic

splitting noise and with independent splitting noise and our

improved certification. The models were trained with stabil-

ity training. ImageNet is shown in the top figure, CIFAR-10

in the bottom figure.

3.1. Training

For ImageNet we used a ResNet-50 trained for 30 epochs;

and for CIFAR-10 we used a WideResNet-40-2 trained for

120 epochs. The optimizer is SGD with learning rate 0.1,

Nesterov momentum 0.9 and weight decay 0.0001 with

cosine annealing learning rate schedule and batch size is 64
for both models. We experimented with the two following

types of training (with a slight abuse of notation in the case

of splitting noise):
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1. standard training with cross entropy loss

L(x, y) = − log
(

f(x+ ¶)y
)

, ¶ ∼ q

on noise-augmented data points as suggested in (Co-

hen et al., 2019).

2. stability training (Li et al., 2019) (is roughly twice as

expensive) with loss

L(x, y) =C ·KL
(

f(x+ ¶1) ∥ f(x+ ¶2)
)

− log
(

f(x+ ¶1)y
)

, ¶1, ¶2 ∼ q

where C is a hyperparameter chosen as C = 6 follow-

ing (Carmon et al., 2019).

In the case when the smoothing distribution q is a uniform

distribution, upgrading standard training to stability training

helps significantly as observed by Levine & Feizi (2021)

and Yang et al. (2020). However, for the splitting noise

the benefits are less apparent and sometimes it even hurts.

Nevertheless, according to our experiments, for every radius

at which we evaluate robustness, the best performing model

was trained with stability training.

3.2. Certification Results

Following the literature, we set the probability of certificate

being incorrect to be at most ³ = 0.001 for all methods.

The only exception is smoothing with deterministic splitting

noise which is always correct. Unless stated otherwise, we

use 10 000 noise samples for the certification and 256 to esti-

mate the top-1 class. The confidence intervals are computed

using Python function proportion confint from

package statsmodels.stats.proportion imple-

menting the Clopper-Pearson method. We call the method

with ³ = 0.002 because the confidence interval returned

is central and the coverage is 1 − ³/2 in both tails. For

CIFAR-10 dataset we certify 2 000 images from the test

set, while for ImageNet we certify the same subset of 500
images as Cohen et al. (2019) and Levine & Feizi (2021).

In Figure 5 we empirically demonstrate that with the im-

proved certification we are able to certify significantly larger

ℓ1-radii both on ImageNet and CIFAR-10. In Appendix C,

there is an additional extensive comparison of the proposed

method with the current state of the art.

In Figure 6 we show how the choice of the certification

scheme (binary or multiclass) affects the robustness curve.

This explains why we observe a similar performance of

splitting noise method with its derandomized counterpart,

while Levine & Feizi (2021) (who used the binary certifica-

tion scheme) observed significantly weaker performance.
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Figure 6: Comparison of the robustness curves for the binary

(Corollary 2.7) and multiclass (Corollary 2.14) certification

approach. Note that the multiclass approach (almost strictly)

outperforms the binary one. Certification was done by our

methods, but the conclusion holds for the standard bounds

from Corollary 2.4 and 2.13 as well. The setting is standard

training, CIFAR-10, Ã = 2.5.

4. Conclusions

In this paper we have shown that incorporating the constraint

of image classifiers that input points have to lie in the image

domain [0, 1]d leads to significantly improved certified ℓ1-

radii. The application of our framework is essentially for

free and can be directly applied to randomized smoothing

using uniform or splitting noise. Our experiments show

that we can certify significantly larger ℓ1-radii than previous

work but there still remains a gap to what seems possible in

empirical ℓ1-robustness which is an interesting question for

future research for both empirical and certified robustness.
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A. Proofs of Proposition 2.2,2.5 and Theorem 2.8

The central quantity in the proofs is

V ol(B∞(0, ¼) ∩ B∞(z, ¼))

V ol(B∞(0, ¼))
=

d
∏

i=1

(

2¼− zi
2¼

)

=

d
∏

i=1

(

1− zi
2¼

)

(3)

for z ∈ [0, 2¼]d. We show that (3) is a Schur-concave function and is therefore minimized by a maximal element w.r.t. the

majorization order. The following definitions and propositions are adopted from Steele (2004).

Definition A.1. Let x, y ∈ R
d. We write x ° y (x weakly majorizes y) if for all 1 f k f d it holds that

k
∑

i=1

xi g
k
∑

i=1

yi.

If further
∑d

i=1 xi =
∑d

i=1 yi, we write x { y (x majorizes y).

Definition A.2. A function f : X → R is said to be Schur-concave if for all x, y ∈ X such that x { y it holds that

f(x) f f(y).

Proposition A.3. Let f : X → R be a differentiable symmetric function. Then it is Schur-concave if

(xi − xj)

(

∂f

∂xi

− ∂f

∂xj

)

f 0.

Proposition A.4. Function (3) is Schur-concave. It further holds that for all x, y such that x ° y, f(x) g f(y).

Proof. Let X = (0, 2¼)d. Function f is positive; thus is Schur-concave on X if and only if g(x) = log(f(x)) is

Schur-concave since log is an increasing function. Then

(xi − xj)

(

∂g

∂xi

− ∂g

∂xj

)

= (xi − xj)

(

1

xi − 2¼
− 1

xj − 2¼

)

f 0

because xi g xj ⇐⇒ 0 > xi − 2¼ g xj − 2¼ ⇐⇒ 1
xi−2λ f 1

xj−2λ .

Since f is continuous on X and symmetric, f is Schur-concave on [0, 2¼]d. The second claim follows since f is a decreasing

function in every coordinate on [0, 2¼]d.

A.1. Proof of Proposition 2.2

Proposition A.5. Let B1, B2 be ℓ∞-balls with radii ¼ centered at x, y ∈ R
d respectively; then

V ol(B1 ∩B2)

V ol(B1)
g 1− ∥x− y∥1

2¼
.

Proof. Let x, y ∈ R
d and c = ∥x− y∥1. It holds that

inf
z∈Rd

+
∩ï1,zðfc

d
∏

i=1

(

1− zi
2¼

)

= inf
u,v∈Rd∩∥u−v∥

1
fc

d
∏

i=1

(

1− |ui − vi|
2¼

)

f
d
∏

i=1

(

1− |xi − yi|
2¼

)

=
V ol(B∞(x, ¼) ∩ B∞(y, ¼))

V ol(B∞(x, ¼))

=
V ol(B1 ∩B2)

V ol(B1)
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so it is sufficient to show that

inf
z∈Rd

+
∩ï1,zðfc

d
∏

i=1

(

1− zi
2¼

)

= 1− ∥x− y∥1
2¼

. (4)

The objective of optimization problem in (4) equals to (3) and is Schur-concave according to Proposition A.4. Thus is

minimized by (e.g.,) z = (c, 0, 0, . . . ). In that case, the value of the objective is 1− c
2λ = 1− ∥x−y∥

1

2λ .

A.2. Proof of Proposition 2.5

Proposition A.6. Let B1, B2 be the ℓ∞ balls with radiii ¼ centered at x, y ∈ [0, 1]d; then

V ol(B1 ∩B2)

V ol(B1)
g

(

1− 1

2¼

)+∥x−y∥
1
,(

1− ∥x− y∥1 − +∥x− y∥1,
2¼

)

g
(

1− 1

2¼

)∥x−y∥
1

.

The very last inequality holds when 2¼ g 1. Both of the inequalities are attainable.

Proof. Let x, y ∈ [0, 1]d and c = ∥x− y∥1. It holds that

inf
z∈[0,1]d∩ï1,zðfc

d
∏

i=1

(

1− zi
2¼

)

= inf
u,v∈[0,1]d∩∥u−v∥

1
fc

d
∏

i=1

(

1− |ui − vi|
2¼

)

f
d
∏

i=1

(

1− |xi − yi|
2¼

)

=
V ol(B∞(x, ¼) ∩ B∞(y, ¼))

V ol(B∞(x, ¼))

=
V ol(B1 ∩B2)

V ol(B1)

so it is sufficient to show that

inf
z∈Rd

+
∩ï1,zðfc

d
∏

i=1

(

1− zi
2¼

)

=

(

1− 1

2¼

)+∥x−y∥
1
,(

1− ∥x− y∥1 − +∥x− y∥1,
2¼

)

. (5)

The objective of optimization problem in (5) equals to (3) and is Schur-concave according to Proposition A.4. Thus, it is

minimized by a vector z such that zi = 1 at +c, positions and zi = c− +c, at another position which is clearly a maximal

element w.r.t. the majorization order. In that case, the value of the objective is

(

1− 1

2¼

)+c,(

1− c− +c,
2¼

)

.

If x = 0 and y = z, the inequality is tight. Furthermore, due to the convexity of the exponential function, we have for a g 1
and 0 f x f 1 that

(

1− 1

a

)x

f 1− x

a
.

Thus, we can simplify (5) to

inf
z∈Rd

+
∩ï1,zðfc

d
∏

i=1

(

1− zi
2¼

)

g
(

1− 1

2¼

)∥x−y∥
1

finishing the proof.
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A.3. Proof of Theorem 2.8

Theorem A.7. Let x ∈ [0, 1]d. Let Ãi be an ordering induced by how far is xi from boundary. That is;

i f j =⇒ min(xσi
, 1− xσi

) f min(xσj
, 1− xσj

).

Then for any c > 0 such that there exists y ∈ [0, 1]d with ∥x− y∥1 = c it holds that

inf
y∈[0,1]d∩B1(x,c)

V ol(B∞(x, ¼) ∩ B∞(y, ¼))

V ol(B∞(x, ¼))

=

(

T
∏

i=1

(

1− max{xσi
, 1− xσi

}
2¼

))(

1− U

2¼

)

where

T = max
k∈N

s.t.

i=k
∑

i=1

max(xσi
, 1− xσi

) f c,

and

U = c−
i=T
∑

i=1

max(xσi
, 1− xσi

).

Proof. We equivalently rewrite the problem as

inf
z∈X∩ï1,zð=c

V ol(B∞(x, ¼) ∩ B∞(y, ¼))

V ol(B∞(x, ¼))
(6)

where X =×d

i=1
[0,max{xi, 1 − xi}] so that from z we recover y as yi = xi ± zi where either 0 f xi + zi f 1 or

0 f xi − zi f 1.

The objective of the optimization problem (6) is again (3). Thus, we only need to find a maximizing element w.r.t. the

majorization order and the Theorem describes how to find it. To see that, we notice that every 1 f k f d, the sequence

zi =











max{xi, 1− xi}, if Ã−1
i < T + 1

U, if Ã−1
i = T + 1

0, if Ã−1
i > T + 1

where Ã−1
i is the inverse ordering, that is, Ãσ

−1

i
= i, maximizes

∑k

i=1 zi under the constraint
∑d

i=1 zi = c.

B. Hoeffding’s bound

Theorem B.1 (Hoeffding’s inequality). Let X1, . . . Xn be random variables with 1
n
E[
∑n

i=1 Xi] = µ and 0 f Xi f 1.

Then it holds that

P

((

1

n

n
∑

i=1

Xi

)

− µ g t

)

f e−2t2n.

for any t g 0.

We rewrite the inequality as

P

((

1

n

n
∑

i=1

Xi

)

− t g µ

)

f e−2t2n f ³.

We want to compute t - that is, how much do we need to subtract from the average so that the probability that the result of

the subtraction will be larger than the mean is small.

e−2t2n = ³ =⇒ t =

√

ln(³)

−2n

C. Ablations
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Figure 7: Robustness curves on CIFAR-10 for different methods. The noise magnitudes differ in rows and the training

method differ in columns.
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Figure 8: Robustness curves on CIFAR-10 for different methods. The noise magnitudes differ in rows and the training

method differ in columns.
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Figure 9: Robustness curves on CIFAR-10 for different methods. The noise magnitudes differ in rows and the training

method differ in columns.
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Figure 10: Robustness curves on CIFAR-10 for different methods. The noise magnitudes differ in rows and the training

method differ in columns.
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Figure 11: Robustness curves on CIFAR-10 for different methods. The noise magnitudes differ in rows and the training

method differ in columns.
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Figure 12: Robustness curves on CIFAR-10 for different methods. The noise magnitudes differ in rows and the training

method differ in columns.
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Figure 13: Robustness curves on CIFAR-10 for different methods. The noise magnitudes differ in rows and the training

method differ in columns. Note that the uniform noise training sometimes converges to an (apparently) constant classifier
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Figure 14: Robustness curves on CIFAR-10 for different methods. The noise magnitudes differ in rows and the training

method differ in columns. Note that the uniform noise training sometimes converges to an (apparently) constant classifier
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Figure 15: Robustness curves on CIFAR-10 for different methods. The noise magnitudes differ in rows and the training

method differ in columns. Note that the uniform noise training converges to an (apparently) constant classifier
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Figure 16: Robustness curves on ImageNet for different methods. The noise magnitudes differ in rows and the training

method differ in columns.
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Treatment of Statistical Estimation Problems in

Randomized Smoothing for Adversarial Robustness

Václav Voráček
Tübingen AI center, University of Tübingen
vaclav.voracek@uni-tuebingen.de

Abstract

Randomized smoothing is a popular certified defense against adversarial attacks.
In its essence, we need to solve a problem of statistical estimation which is usually
very time-consuming since we need to perform numerous (usually 105) forward
passes of the classifier for every point to be certified. In this paper, we review
the statistical estimation problems for randomized smoothing to find out if the
computational burden is necessary. In particular, we consider the (standard)
task of adversarial robustness where we need to decide if a point is robust at a
certain radius or not using as few samples as possible while maintaining statistical
guarantees. We present estimation procedures employing confidence sequences
enjoying the same statistical guarantees as the standard methods, with the optimal
sample complexities for the estimation task and empirically demonstrate their good
performance. Additionally, we provide a randomized version of Clopper-Pearson
confidence intervals resulting in strictly stronger certificates. The code can be
found at https://github.com/vvoracek/RS_conf_seq.

We encourage the readers only interested in statistics to start at Subsection 2.1.

1 Introduction

Adversarial robustness: It is well known that a tiny, adversarial, perturbation of the input can
change the output of basically any undefended machine learning model (Biggio et al., 2013; Szegedy
et al., 2014); this is unpleasant and we continue in the mitigation of the problem. There are two main
lines of work tackling this problem: (1) Empirical: the standard approach here is to use adversarial
training (Madry et al., 2018; Goodfellow et al., 2014) where the model is trained on adversarial
examples. This approach does not provide guarantees, only empirical evidence suggesting that the
model may be robust. With stronger attacks, we might (yet again) realize it is not the case. (2)
Certified: with formal robustness guarantees for the model. We will focus on this, and in particular on
randomized smoothing (Lecuyer et al., 2019) which is currently the strongest certification method1.
We will not cover other certification methods and we refer the reader to the survey Li et al. (2023)
instead. We consider the standard task of certified robustness; the goal is to decide if the decision of a
classifier F at a particular input x is robust against additive perturbations ¶ such that ∥¶∥ f r for
some norm ∥·∥. Formally, we ask if F (x) = F (x′) whenever ∥x− x′∥ f r.

Randomized smoothing is a framework providing state of the art formal guarantees on the adver-
sarial robustness for many datasets. One of its benefits lies in the fact that there are no assumptions on
the model, making it possible to readily transfer the methods from defending image classifiers against
sparse pixel changes to different modalities; e.g., defending large language models against change of

1see leaderboard https://sokcertifiedrobustness.github.io/leaderboard/

38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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some letters/words/tokens. Randomized smoothing transforms any undefended classifier F : Rd → Y
by a smoothing distribution φ into a smoothed classifier Hϕ(x) = argmaxy∈Y Pδ∼ϕJF (x+¶) = yK
for which robustness guarantees exist. We postpone the details for later. During the certification
process, we need to estimate the maximum probability of a multinomial distribution from samples as
the exact computation is intractable. This statistical estimation problem is the focus of this paper.

Speed issues: The main weakness of randomized smoothing is the extensive time required for both
prediction and certification, making it troublesome for real-world applications. There is an inherent
trade-off between the allowed probability of incorrectly claiming robustness2 (type-1 error, ³), the
probability of incorrectly claiming non-robustness (type-2 error, ´), and the number of samples used
n. The standard practice is to set ³ = 0.001, n = 100 000 and the value of ´ is then implicit. it
might not be the most practically relevant setting since the implicitly set value of ´ is exponentially
small in n when the sample is not close to the threshold. The claim is made precise in Example A.1.

The arguably more relevant setting is to set the values of ³ and ´ and leave n implicit. This is much
more challenging since it is no longer possible to draw the predetermined number of samples and
use a favourite concentration inequality. We propose a new certification procedure using confidence
sequences to adaptively (and optimally) deciding how many samples to draw addressing the problem.

Contributions:

• We introduce a new, strictly better version of Clopper-Pearson confidence intervals for
estimating the class probabilities in Subsection 2.1. The presented interval is optimal, and
thus is the ultimate solution to the canonical statistical estimation of randomized smoothing.

• We propose new methods for the certification utilizing confidence sequences (instead of
confidence intervals) in Subsection 2.2. This allows us to draw just enough samples to
certify robustness of a point; greatly decreasing the number of samples needed.

• We provide a complete theoretical analysis of the proposed certification procedures. In
particular, we provide matching (up to a constant factor) lower-bounds and upper-bounds
for the width of the respective confidence intervals. We invert the bound and show that the
certification procedure has the optimal sample-complexity in an adaptive estimation task.

• We provide empirical validation of the proposed methods confirming the theory.

Notation: Bernoulli random variable with mean p is denoted as B(p) and binomial random variable
is B(n, p). Random variables are in capitals (X) and the realizations are lowercase (x). We type
sequences in bold and denote x:t first t elements of x. We write a ≲ b if there exists a universal
constant C > 0 such that a f Cb. If a ≲ b and b ≲ a, then we write a ≍ b. Iverson bracket JΦK
evaluates to 1 if Φ is true and to 0 otherwise.

1.1 Paper organization

First, in Section 2 we introduce randomized smoothing, then, in Subsection 2.1, we introduce
Clopper-Pearson confidence intervals, show that they are conservative and propose their improved
(optimal) randomized version. In Subsection 2.2 we discuss shortcomings of confidence intervals and
introduce confidence sequences and provide lower and upper bounds for their performance. We use
the confidence sequences in Section 3 and benchmark them on a sequential estimation task.

2 Randomized Smoothing

As outlined in Introduction, consider a classifier F : Rd → Y and let the class probabilities under
additive noise φ be hϕ(x)y = Pδ∼ϕ[F (x+ ¶) = y]. Denote the highest probability (breaking ties
arbitrarily) class in the original point A = argmaxy∈Y hϕ(x)y and the second-highest probability
class B = argmaxy∈Y\A hϕ(x)y. Let the corresponding probabilities be pA and pB respectively.
Recalling that Hϕ(x) = argmaxy∈Y hϕ(x)y , then for a certain function r : [0, 1]2 → R+ we have

∥x− x′∥ f r(pA, pB) =⇒ Hϕ(x) = Hϕ(x
′).

2of an input for a model at a certain radius
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This r depends on the smoothing distribution φ and the considered norm. For example, if the
considered norm is ℓ2 and φ is isotropic Gaussian with standard deviation Ã, then r(pA, pB) =
σ
2 (Φ

−1(pA)− Φ−1(pB)) where Φ−1 is Gaussian quantile function Cohen et al. (2019). Note that in
general, r(·, ·) is increasing in the first coordinate and decreasing in the second one. The intuition is
that the larger the value of pA at x, the larger it will be also in the neighborhood of x; similarly for
pB . It is common in the literature to use the bound pB f 1− pA and thus certify r(pA, 1− pA). We
stick to the convention in the paper and discuss the topic in more details in Appendix B.

Statistical estimation: The crux of the paper lies in the statistical estimation problems for random-
ized smoothing. We consider the abstract framework for randomized smoothing, so the proposed
techniques can be used as a drop-in replacement in all randomized smoothing works with a statistical-
estimation component (i.e., not in the de-randomized ones such as Levine & Feizi (2021)). We do not
only propose methods that work good empirically, we also provide theoretical analysis suggesting
that we solve the problems optimally in a certain strong sense. The main focus is on the following
two constructs.

1. Confidence intervals: A standard component of randomized smoothing pipelines is the
Clopper-Pearsons confidence interval. It is known to be conservative3; thus, the certification
procedures are unnecessarily underestimating the certified robustness. We provide the
optimal confidence interval for binomial random variables, resolving this issue completely.

2. Confidence sequences: In the standard randomized smoothing practice, we draw a certain,
predetermined, number of samples and then we compute the certified radius on a confidence
level 1− ³. We improve on this by allowing for adaptive estimation procedures employing
confidence sequences; We demonstrate the performance in the standard task of adversarial
robustness, where we want to decide if a point is robust at radius r with type-1 (resp. 2)
error rates ³ (resp. ´) using as few samples as possible.

Literature review of randomized smoothing: The most relevant related works are Horváth et al.
(2022); Chen et al. (2022) and they are discussed in Section 3. Here we briefly summarize literature
relevant to randomized smoothing in general. The choice of the smoothing distribution φ is a crucial
decision determined mainly by the threat model with respect to which we want to be robust. For
example, if we are after certifying ℓ1 robustness, we choose a uniform distribution in a d−dimensional
ℓ∞ ball (Lee et al., 2019; Yang et al., 2020), or better, splitting noise (Levine & Feizi, 2021), but we do
not go into details here. Alternatively, for p−norms, p g 2 one would usually use a d−dimensional
normal distribution Lecuyer et al. (2019); Cohen et al. (2019). The variance of the distribution
based on how large perturbations do we allow in our threat model. We refer the reader to Yang
et al. (2020) for a broader discussion on the smoothing distributions. It is possible to use methods
in the spirit of randomized smoothing to certify other threat models, such as patch attacks Levine
& Feizi (2020) and sparse attack Bojchevski et al. (2020), which can be readily extended to other
modalities. Sometimes, the "smoothing" distribution can be made supported on a small, discrete set
and then we can evaluate the expectation exactly, yielding deterministic certification (often called
de-randomized smoothing (Levine & Feizi, 2021)). See also Kumari et al. (2023) for a survey on
randomized smoothing containing examples of when the certification is beyond additive ℓp-norm
threat model; even such techniques use the Bernoulli estimation subroutine.

2.1 Confidence Intervals

We do not have access to the class A probability pA and only have to estimate it from binomial
samples; hence, the name randomized smoothing. Because of the randomness, we can only provide
probabilistic statements about the robustness of a classifier in the following spirit "with probability
at least 1 − ³, robust radius is at least r" for a small ³, usually 0.001. This failure probability
corresponds to the event of overestimating pA and we control it with the help of confidence intervals.

The standard choice for calculating the upper confidence interval is the Clopper-Pearson interval,
sometimes called exact. Regardless of this pseudonym, it is in reality conservative. In this subsection,
we introduce the Clopper-Pearson confidence interval for the mean of binomial random variables,
demonstrate its limitations and introduce its (better) randomized version.

3See https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval.
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Definition 2.1 (Confidence interval for binomials). Let u, v map sample to a real number. They
form a (possibly randomized) confidence interval I(x) = [u(x), v(x)] with coverage 1− ³ if for any
p ∈ [0, 1] it holds that

PX∼B(n,p),I (p ∈ I(X)) g 1− ³.

We will mainly use one-sided confidence intervals; that is, u(·) = 0 (lower confidence interval) or
v(·) = 1 (upper confidence interval). When we will talk about probability of confidence interval
containing the parameter, it will be in the frequentist sense, keeping in mind that confidence intervals
provide no guarantees post-hoc for any individual estimation.

Clearly, if I(x) = [0, 1] regardless of x, it will be a valid confidence interval but rather useless; thus
we aim for short intervals. Ideally it would hold for every p that PX(p ̸∈ I(X)) = ³, otherwise,
some values are included in the confidence intervals unnecessarily often they can be shortened. In the
following we introduce the standard Clopper-Pearson confidence intervals Clopper & Pearson (1934).

Definition 2.2 (Clopper-Pearson intervals). One sided upper interval is defined as v(x) = 1 and

u(x) = inf{p |P(B(n, p) g x) > ³}.
The lower one is defined as u(x) = 0 and

v(x) = sup{p |P(B(n, p) f x) > ³}.

Amongst the deterministic confidence intervals, they are the shortest possible; however, they are in
general conservative. In the binomial case B(n, p), there are only n+ 1 possible outcomes; and thus
only n+ 1 possible confidence intervals suggesting that the actual coverage can be 1− ³ only for at
most n+1 values of p. The problem strikingly arises for upper confidence interval for large values of
p. When we sample from B(n, p), regardless of the outcome, all values larger than n

√
³ are contained

in the confidence interval. This is a usual problem in the context of randomized smoothing, leading to
sharp drops towards the end of robustness curves. We demonstrate this sub-optimality in the first part
of Example A.2. We mitigate this problem by introducing randomness into the confidence intervals.
They will still have the desired coverage level 1 − ³, but will be shorter. Intuitively, we do so by
“interpolating" between the deterministic confidence intervals in the spirit of Stevens (1950).

Definition 2.3 (Randomized Clopper-Pearson intervals). Let W be uniform on the interval [0, 1].
The randomized one sided upper interval is defined as vr(x) = 1 ur(x) = u′

r(x,W ) where

u′
r(x,w) = inf{p |P(B(n, p) > x) + wP(B(n, p) = x) > ³}.

The lower one is defined as ur(x) = 0 and vr(x) = v′r(x,W ) where

v′r(x,w) = sup{p |P(B(n, p) < x) + wP(B(n, p) = x) > ³}.
Proposition 2.4. Randomized Clopper-Pearson interval (IrCP) have coverage exactly 1− ³. Fur-
thermore, for any confidence interval I at level 1− ³, and any p g q ∈ [0, 1] it holds that

PX∼B(n,p)(q ∈ I(X)) g PX∼B(n,p)(q ∈ IrCP(X)).

The proof is in the Appendix D and we remark that the interval can be efficiently found by binary
search. Proposition 2.4 implies that the randomized Clopper-Pearson bounds are optimal and all
the other confidence intervals for binomial random variables are more conservative. It remains to
demonstrate the advantage of the randomized confidence intervals. We refer to Figure 1 for the
comparison of the randomized and deterministic Clopper-Pearson confidence intervals and how they
affect the robustness. We note that the most significant difference is towards the high values of p
and for certification functions r such that limp→1 r(p) =∞, such as when smoothing with normal
distribution. This explains the common sharp drop by the end of the robustness curve.

Width of confidence intervals: For the simplicity of exposition, let the width of a confidence
interval at level 1−³ with n samples be≍

√

log(1/³)/n. This way, we hide the dependency on p into
≍. In the full generality, the width of the confidence intervals exhibits many decay regimes between
the rates

√

p(1− p) log(1/³)/n (when np(1−p)k 1) and log(1/³)/n (when np(1−p) ≍ 1). Our
algorithms capture the correct scaling of the confidence intervals. See Boucheron et al. (2013) and the
discussion on Bennett’s inequality which captures the correct rates for Bernoulli mean estimation.
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Figure 1: left: Comparison of coverages of confidence intervals for the mean estimation of B(100, p)
when ³ := 0.001. Note that for p > n

√
³ ∼ 0.93, the coverage is 1. right: Comparison of ℓ2-

robustness curves with the standard (dashed) or the randomized (solid) Clopper-Pearson bounds on a
CIFAR-10 dataset under the standard setting. The experimental details are in Appendix C.

2.2 Confidence Sequences

Limitations of confidence intervals: In order to compute the confidence intervals presented in the
previous subsection, we need to collect samples and then run an estimation procedure once which
brings certain limitations. Consider the following two scenarios: (1) It might be the case that we
do not need all 100 000 samples and after only 10 it would be enough for our purposes because we
could already conclude that the point cannot be certified here; thus, we wasted 99 990 samples. (2)
Alternatively, we could see that even 105 samples are not enough, and we need to draw more samples.
However, we have already spent our failure budget ³, so we cannot even carry another test at all.

This motivates the introduction of confidence sequences. They generalize confidence intervals in
the way that they provide a confidence interval after every received sample such that we control the
probability that the underlying parameter is contained in all the confidence intervals simultaneously.

Definition 2.5 (Confidence sequence). Let {ut, vt}∞t=1 be mappings from a sequence of observations
to a real number. They form a confidence sequence It(x:t) = [ut(x:t), vt(x:t)] for all t g 1 with
confidence level 1− ³ if

P (p ∈ It(X:t), ∀t > 1) g 1− ³

for any p ∈ [0, 1], where X is an infinite sequence of Bernoulli random variables B(p).
Remark 2.6. Since we want the estimated parameter to be contained in all the confidence intervals
simultaneously, we will have by convention that It+1(x:t+1) ¦ It(x:t).

To simplify presentation, we would consider the symmetric ones; i.e., those where we consider the
two possible failures - when we overestimate or underestimate the mean - to be equal. However, they
will be constructed from two one-sided bounds, so the generalization is straightforward and will not
be discussed.

Related work: The construction of confidence sequences based on union bound employs the
doubling trick which is widely used in online learning to convert fixed-horizon algorithms to anytime
algorithms. In this direction, we refer to Mnih et al. (2008) as the direct predecessor of this work,
where they used similar techniques but did not explicitly construct confidence sequences. In the
confidence sequence literature, this technique is similar to stitching of Howard et al. (2020). The
stitched confidence intervals of Howard et al. (2020) are generally shorter by a small constant factor,
but the analysis and generalization become complicated, contrasting with our approach.

The construction based on betting is in the spirit of Orabona & Jun (2023) (the reference contains
an excellent survey on the topic). The difference mainly lies in the fact that we are interested in
Bernoulli random variables, which allows us to use specialized tools at places, as opposed to the
referred work, which considers bounded random variables. As an analogy to confidence intervals, the
previous work constructed Bernstein-type inequalities, while we constructed Clopper-Pearson-like
bounds. In Ryu & Bhatt (2024), the authors improved over Orabona & Jun (2023) in certain aspects
in the case of [0, 1]-valued random variables. Notably, in Section 3, they considered the special case -
{0, 1}-valued random variables and their results are greatly overlapping those in Section 2.4.
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2.3 Union bound confidence sequence

A natural way how to extend the confidence intervals to confidence sequences is to construct a
confidence interval at every time step and use a union bound to control the total failure probability. In
the following, we first show that a naive application of this approach is asymptotically suboptimal,
and then we provide a way how to construct optimal confidence intervals in a certain strong sense.

Intuition on the width of confidence sequences: For any random variable with finite variance,
the optimal width of the confidence interval for the mean parameter scales as

√

log(1/³)/t with
the increasing number of samples t at confidence level 1 − ³ Lugosi & Mendelson (2019). On
the other hand, it is well known that the width of the optimal confidence sequence scales as
√

(log(1/³) + log log t)/t as t increases due to the law of iterated logarithms Ledoux & Talagrand
(1991). A naive use of union bound, computing a confidence interval using failure probability at time
step t, ³t =

αc
tγ

for some c and µ > 1 such that
∑∞

i=1 ³t = ³ yields a confidence sequence whose
width scales as

√

log(1/³t)/t ≈
√

(log(t) + log(1/³))/t. We cannot choose any monotonous ³t

schedule decaying slower because even for µ = 1 we still keep the log factor while the sum
∑∞

i=1 ¶t
diverges.

Now consider non-monotonous schedules of ³t, two key ideas follows. (1) In order to have the
optimal rate log(1/³t) ≈ log(1/³) + log log t, we need ³t ≍ ³/ log t. Clearly, if this holds for all t,
then

∑∞
t=1 ³t diverges. (2) A confidence interval at time t is also a valid confidence interval for all

t′ > t. Furthermore, if t′ is not much larger than t, then it may still asymptotically have the optimal
width up to a multiplicative constant. Thus, updating the confidence sequence when t is a power of
(say) 2 result in the optimal width. This reasoning is formalized in the following theorem.

Theorem 2.7. Fix ³ > 0. Consider a sequence

³t =

{
α

k(k+1) if t = 2k for integer k,

0 otherwise.

Then Algorithm 1 produces a confidence sequence at level 1 − ³ of the following width which is
attained in the worst case

εt ≲

√

log(1/³) + log log(t)

t

where εt is U − L at time t, and the confidence intervals are randomized Clopper-Pearson intervals.

The proof is in Appendix E. We remark that the statement of Theorem 2.7 prioritizes simplicity
over its full generality. The generalization to other schedules of ³t from the second bullet point as
described in the previous paragraph is routine and described in detail in Appendix C.2.

Corollary 2.8. The asymptotic rate of 2.7 is optimal due to law-of-iterated-logarithm (Ledoux &
Talagrand, 1991) and even in the finite sample regime due to Balsubramani (2014)[Theorem 2].

2.4 Confidence sequences based on betting

A recent alternative approach to confidence sequences is based on a hypothetical betting game. For
the illustration, consider a fair sequential game; e.g., sequentially betting on outcomes of a coin. If
we guess the outcome correctly, we win the staked amount, otherwise we lose it. If the coin is fair,
in expectation, our wealth stays the same. On the other hand, if the game is not fair and the coin is
biased, we can win money. For example, if the true head-probability is 0.51, we start increasing our
wealth in an exponential fashion, see Example A.3; thus, if we win lots of money, we can conclude
that the game is not fair. We instantiate a betting game for every possible mean 0 f p f 1 that would
be fair if the true mean is p. Then we observe samples of the random variable and as soon as we win
enough money, we drop that particular p from the confidence sequence. To make things formal, we
introduce the necessary concepts from probability theory. The evolution of our wealth throughout a
fair game is modeled by martingales4, sequences of random variables for which, independently of the
past, the expected value stays the same.

4It would be historically accurate to say that martingales actually model fair games.
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Definition 2.9 (Martingale). A sequence of random variables W1,W2, . . . is called a martingale
if for any integer n > 0, we have E(|Wn|) < ∞ and E(Wn+1|W1, . . . ,Wn) = Wn. If we instead
have E(Wn+1|W1, . . . ,Wn) fWn, then the sequence is called a supermartingale.

Algorithm 1 Union-Bound Confidence Sequence

t,H,K,L, U ← 0, 0, 0, 0, 1
loop

Obtain random x
H ← H + x
t← t+ 1
if t = 2K then
K ← K + 1
³t ← ³/(K(K + 1))
L← max{L,LowConfInt(H, t, ³t)}
U ← min{U,UppConfInt(H, t, ³t)}

end if
end loop

Algorithm 2 Betting Confidence Sequence

LOGQ, t,H, L, U ← 0, 0, 0, 0, 1
loop
q̂ ← (H + 1/2)/(t+ 1)
Obtain random x
H ← H + x
t← t+ 1
LOGQ ← LOGQ+x log(q̂)+(1−x) log(1−q̂)
LOGP(p) := H log(p) + (t−H) log(1− p)
Ip ← {p|LOGQ − LOGP(p) f log(1/³)}
L← max{L,min Ip}
U ← min{U,max Ip}

end loop

In the coin-betting example, W1,W2, . . . is a martingale where Wn represents our wealth after
playing the game for n rounds. We stress that Wt g 0 for all t > 0. By convention, we will also have
W1 = 1. We further need a time-uniform generalization of Markov’s inequality.

Proposition 2.10 (Ville’s inequality Durrett (2010)). Let W1,W2, . . . be a non-negative supermartin-
gale. then for any real a > 0

P

[

sup
ng1

Wn g a

]

f E [W1]

a
.

Thus, whenever we play a game and earn a lot, we can — with high probability — rule out the
possibility that the game is fair. So far, this is still an abstract framework. We have yet to design the
betting game and the betting strategy and describe how to run the infinite number of games.

Betting game: Let5 0 < p < 1. Consider a coin-betting game where we win 1/p (resp. 1/(1− p))
multiple of the staked amount if we correctly predicted heads (resp. tails). If the underlying heads
probability is p, then regardless of our bet - in expectation - we still have the same amount of money;
thus, this game is fair. We identify heads and tails with outcomes 1, 0 respectively.

Betting strategy: We deconstruct the betting strategy into the two sub-tasks: (1) If we know the
underlying heads probability, we can design the optimal betting strategy for any criterion. (2) Estimate
the heads probability. First sub-task: Let p define the betting game from the previous paragraph and
q be the true heads probability; Optimally, bet q-fraction of wealth to heads and 1− q fraction to tails.
It maximizes the expected log-wealth, or equivalently, the expected growth-rate of our wealth and
is also known as the Kelly Criterion. This is known to be optimal for the adaptive estimation task,
see Wald (1947) under the name sequential-probability-ratio-test (SPRT). One might have expected
the optimal criterion to optimize to be the expected wealth; however, the betting strategy maximizing
the expected wealth suggest to bet all the money on one of the outcomes. This strategy, however,
leads to an eventual bankruptcy almost surely and is not recommended in this context. Second
sub-task: A natural choice is to use the running sample mean of the observations as the estimator of
q. Unfortunately, this estimator would be either 0 or 1 after the first observations, so we go bankrupt
whenever the observed sequence contains both outcomes. Thus, we use a “regularized" sample mean
and after observing H times heads in a sequence of length t, we estimate q̂ = (H+0.5)/(t+1). This
is the MAP estimate of the mean with Beta(1/2, 1/2) prior and is known as Krichevsky–Trofimov
estimator (Cesa-Bianchi & Lugosi (2006) Section 9.7), Krichevsky & Trofimov (1981) and is proven
to be successful for building confidence sequences beyond the Bernoulli case Orabona & Jun (2023).

Parallel betting games: We have described a betting game for a certain p and a betting strategy.
Employing Ville’s inequality we can possibly reject the hypothesis that the true sampling distribution

5For simplicity of exposition, similar arguments hold when p ∈ {0, 1}.
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follows p. However, we need to run the game for all values of p ∈ [0, 1] and after every observation
report the smallest interval containing all the values of p that were not rejected so far. This is clearly
impossible to do explicitly, but it turns out that the non-rejected values of p form an interval and
we can use binary search twice to find the end-points of the interval. This is a non-trivial result
and generally does not need to hold for confidence intervals constructed by betting. The first key
observations is that the betting strategy does not depend on p, so we can “play the game" just once.
The second observation is that the resulting wealth is convex in p. To see why, let q̂τ (resp. xτ ) be
our estimate of q (resp. the coin-toss outcome, for brevity 1/0 corresponds to heads/tails respectively
and H =

∑t
τ=1 xτ ), then our log-wealth at time t can be written as a function of p.

logWt(p) = log
t∏

τ=1

((
q̂τ
p

)xτ
(
1− q̂τ
1− p

)1−xτ

)

=
t∑

τ=1

xτ log(q̂τ ) + (1− xτ ) log(1− q̂τ )

︸ ︷︷ ︸

LOGQ

−H log(p)− (t−H) log(1− p)

︸ ︷︷ ︸

LOGP(p)

.

Therefore, at every time-step, we can compute the interval of values of p for which the betting game
has not concluded yet and thus form the current confidence interval. The proof is in Appendix F.

Theorem 2.11. Algorithm 2 produces a valid confidence sequence at confidence level 1− ³, where
we interpret the interval [L,U ] at iteration T of the algorithm as the confidence interval at time t
with width ε at most (which is attained in the worst case):

εt ≲

√

log(1/³) + log(t)

t
.

This is not asymptotically optimal; still, empirically it performs well, and the same techniques can be
used to obtain a confidence sequence that follows law-of-iterated-logarithms Orabona & Jun (2023).
We present a comparison of the confidence sequences in Figure 2 and conclude this subsection by an
implementation remark.
Remark 2.12. Wealth W (x:t) does not depend on the order of x:t, so we write it as W (h, t), meaning
wealth after observing h heads in the first t tosses. Now, for every time t, we can compute what is
the minimal number of observed 1 (heads) (call it H(t)) so that p is outside of the lower-confidence
interval. H(t) is clearly non-decreasing in t; also, W (h, t)) can be easily computed from W (h−1, t)
and from W (h, t−1) in constant time. The whole dynamic programming approach can be summarized
in the following scheme which is repeatedly executed starting from h = 0, t = 0.

• If W (h, t) g 1
α

: H(t) := h, t := t+ 1, compute W (h, t+ 1)

• Else: h := h+ 1, compute W (h+ 1, t).

Both lines are executed in constant time. Also, we start from W (0, 0) and h, t < N + 1. Executing a
line, either h or t increases and thus to compute the thresholds for sequence of length up to N , we
need to execute at most 2N lines of the scheme. We note that for the simplicity, we did not handle
the case when W (h, t) < 1/³. In that case we would just set H(t) = t+ 1 and increase t.

3 Experiments

Now we shall provide experimental evidence for the performance of the proposed methods. We
benchmark the confidence sequences on the Sequential decision making task, where we try to certify
a certain radius at given confidence level with as few samples as possible; the definition that follows
is general beyond randomized smoothing. We emphasize that this setting of certifying a certain
radius is by far the most common one in the robustness literature. We stress that the comparison of
the robustness curves (e.g., as in Figure 1) is vacuous, since in the adaptive task, we do not spend
samples to improve the robustness curves, beyond the certified level.

Definition 3.1 (Sequential decision making task). Let 1
2 f p, q f 1 and only p being known. Receive

samples from B(q). After every sample, either halt and declare that p > q, p < q, or request another
sample. The task is to minimize the number of samples while being wrong with frequency at-most ³.
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Figure 2: left: Comparison of widths of confidence sequences for the mean of Bernoulli B(0.1) with
³ = 0.001. The width is on top and the actual confidence sequence on the bottom. In the notation of
Algorithms 1 and 2, the sequence of U − L is in the top figure, while both sequences U and L are in
the bottom figure. Note the log-scale for t (and width on top). right : Instantiation of Task 3.1. The
goal is to decide if p = 0.91 (vertical magenta line) or not with ³ = 0.001. On top are the numbers
of samples requested for the individual methods averaged over 1000 trials for 51 equally spaced
values of p ∈ [0, 1]; on the bottom is the relative suboptimality of the individual methods; i.e., how
many times more samples did they request compared to the ideal method. Note log scales on the
y−axis. methods: UBnd-CS and Betting-CS are from Algorithm 1 and 2 respectively. Adaptive is
from Horváth et al. (2022). The ideal is the unattainable lower-bound for the two tasks. On the LHS,
it is a confidence interval on level 1− ³ computed independently at every time step. On the RHS, it
is SPRT knowing both p, q which is optimal due to Wald (1947).

3.1 Related work

We identified Horváth et al. (2022) as the most relevant work. They distinguish between samples
for which a predetermined radius r can be certified, and the samples for which it cannot. They use s
values n1 < · · · < ns ([102, 103, 104, 1.2 · 105]) sequentially as the number of samples. They try to
certify radius r with n1 samples; if it fails, then they try n2 samples etc. They employ Bonferroni
correction (union bound) and every sub-certification is allowed to fail with probability only α

s
. The

key differences (details in Appendix C.2.1) to our method are that (1) It always abstains for hard tasks.
(2) Splitting the ³ budget evenly degrades performance for small n. (3) method is only a heuristics.
See Figure 5 and Tables 1, 3, 4. For the empirical comparison.

Another relevant work is Chen et al. (2022). Here, the certification is split in two phases. (1) Mean is
crudely estimated. (2) The crude estimate selects the number of samples drawn so that the decrease
(either multiplicative or absolute) in the certified radius is heuristically approximately at most a
predetermined constant. We note that this heuristic for distributing samples can be made rigorous in a
certain sense (see Dagum et al. (1995)). This is trivial for confidence sequences, as one can stop the
estimation only as soon as they short enough and solve the task of Chen et al. (2022) with guarantees
(instead of just heuristic). In this sense, we see our methods to be more general. We benchmark this
in Table 2.

The works Seferis et al. (2023); Ugare et al. (2024) also address the speed issues of randomized
smoothing, however, they are orthogonal to our directions. In particular, Ugare et al. (2024) uses
an auxiliary network for which the certification is faster and transfer the certificates to the original
model. Seferis et al. (2023) observes that few samples are sufficient for non-trivial certificates.

4 Conclusion

In this paper, we investigated the statistical estimation procedures related to randomized smoothing
and improved them in the following two ways: (1) We have provided a strictly stronger version of
confidence intervals than the Clopper-Pearson confidence interval. (2) We have developed confidence
sequences for sequential estimation in the framework of randomized smoothing, which will greatly
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r=0.5 r=1.25 , r=2
Adaptive Horváth et al. (2022) 1976± 41 3593± 574 4623± 47
Betting CS 2 531± 157 2169± 257 2130± 339
Union bound CS 1 635± 157 2557± 234 2670± 271
Adaptive Horváth et al. (2022) 0.13± 0.006s 0.23± 0.036s 0.3± 0.003s
Betting CS 2 0.05± 0.012s 0.17± 0.019s 0.17± 0.02s
Union bound CS 1 0.05± 0.006s 0.19± 0.018s 0.21± 0.02s

Table 1: Comparison of the average number of samples (resp. time) needed to decide if a point is
certifiably robust with given radius. Cifar10, ℓ2, details are in Appendix C.2.1

ε 0.01 0.02 0.03

UB-CS 197 628 49 198 21 513
Betting-CS 199 771 47 215 20 918

Horvath 768 560 94 900 81 080
Table 2: We run the confidence sequences until the width is smaller than ε on a (both sided) confidence
level 0.999. That way we can certify certain radius knowing that the true probability is at most ε
larger. We used the same network as for the ℓ2 experiment in Table 1 (WideResnet-40 on CIFAR10,
Ã = 1). We report the average number of samples required over 500 images.

reduce the number of samples needed for adaptive estimation tasks. Additionally, we provided
matching algorithmic upper bounds with problem lower bounds for the relevant statistical estimation
task.

5 Broader Impact Statement

We hope that this paper enlarges the interest in statistical estimation within the ML community.
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Figure 3: Actual coverages for (randomized) Clopper-Pearson confidence intervals for B(2, p).

A Deferred examples

Example A.1. [implicit type-2 error is exponentially small] Let us sample from X ∼ B(p) to decide
if the mean is smaller or larger than p− ε using n = 100 000 samples. We use Hoeffdings’ inequality
to bound the probability that p is incorrectly estimated to be lower than p− ε, i.e.,

P

[

1

n

n∑

i=1

Xi f E[X]− ε

]

f e−2nε2 .

Considering ε to be a constant, we see that this probability scales as e−n. For example, when the true
probability is 0.5 and we want to decide if it is smaller or larger than 0.4, already 1000 samples make
the probability of incorrectly decision to be roughly 2 · 10−9.

Example A.2. [suboptimality of Clopper-Pearson confidence interval and optimality of the random-
ized one] Recall that the coverage for p is the probability that p is included in the confidence interval
when it is the true parameter and ³ is the allowed type-1 error and 1−³ should be the coverage. Con-
sider samples from X ∼ B(2, p) and ³ = 0.05. By definition, the Clopper-Pearson upper intervals
are [0, 1], [0.025, 1], [0.224, 1] for observations x = 0, 1, 2 respectively. Coverage for p = 0.224 is
0.95 because the event that p is outside of the confidence interval is P(X ∈ {0, 1}) = 1− p2 ≈ 0.95.
On the other hand, coverage for p = 0.1 is P(X ∈ {0, 1}) = 1− p2 = 0.99 and for all p > 0.224 it
is 1; see Figure A for the coverages. Now we turn on to the randomized Clopper-Pearson interval for
p = 0.5. Recall the definition of the upper interval,

u′
r(x,w) = inf{p |P(B(n, p) > x) + wP(B(n, p) = x) > ³}.

The randomized confidence interval for some value x interpolates between the confidence intervals
for x and x+ 1 when x < n. Thus, when x ̸= 2, p > 0.224 is always in the confidence interval (this
happens with probability 1− p2 = 0.75. Otherwise, we solve the following for w (because we set
n = 2, x = 2):

P(B(2, p) > 2) + wP(B(2, p) = 2) = ³,

0 + p2w = ³,

v = ³/p2.

Thus, p > 0.224 is not contained in the randomized confidence interval iff W f ³/p2 and X = 2.
Since these random variables are independent, the resulting probability is P(W f 0.2)P(X = 2) =
³/p2 · p2 = ³, as desired.

Example A.3 (Exponential increase of wealth for a biased coin). For simplicity of exposition we
assume that the coin falls on head 51 times from 100 tosses. To get a high probability statement
is straightforward. Let us always bet 0.51 fraction of our money to to heads and 0.49 to tails
(equivalently, just bet 0.02 of the money to the heads). If we win, we win 2% of our money, otherwise
we lose 2%. Then, our wealth after 100 tosses will be 1.0251 · 1.02−49 ∼ 1.04. Thus, every 100
tosses we multiply our wealth by the factor of 1.04 which is the desired exponential function.

B Binary or multiclass certification

Although all the standard benchmarking datasets for randomized smoothing are multiclass (cifar10
and imagenet), the commonly used randomized smoothing certification protocol is for the binary
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Figure 4: Comparison of the robustness curves for binary and multiclass certification. In the binary
case, all the failure budget ³ = 0.001 was spent on controlling the top-1 class probability. In the
multiclass setting, we spend ¼ fraction of the budget in bounding pA and the remaining 1− ¼ part
on bounding pB . Note that this has no significant effect. The average certified radius for binary
certification is 0.50, while for the multiclass it is 0.61. The experimental details are in Appendix C.
The only difference is that now Ã = 1.

setting, where we certify class A against all the other classes merged in a super class. In that case, the
certification is done using the formula r(p̂A, 1− p̂A), where we have to guarantee that pA g p̂A at
confidence level at least 1− ³. The alternative is to use multiclass certification; here, the certification
is done via formula r(p̂A, p̂B) ensuring that pA g p̂A and pB f p̂B at the same time at confidence
level at least 1 − ³. The difference between these two bounds naturally manifests in the regime
when pA is small. Strikingly, when pA < 0.5, the binary certification approach cannot certify any
robustness, while the multiclass one possible can. The cost for the multiclass procedure is only that
we have to divide the failure budget between the the two estimation procedures. This is usually
insignificant. In the ℓ2 (and thus ℓ∞ case), the role of ³ is rather minor, see Cohen et al. (2019) Figure
8. This is even more pronounced in the ℓ1 case. Here ³ plays an absolutely negligible role in the
resulting certified radius, see Voracek & Hein (2023), Subsection 2.7 for the discussion and Figures
4, 6. While this might be known to many, we believe that some readers may benefit from reading
this argument. We demonstrate the difference in certification power in Figure 4. This multiclass
certification fits in our setting effortlessly. We can run one confidence sequence for pA, and another
for pB . We do not even need to know pB and we can run it for all of them at the same time. This
means, that we run it only for the second most observed class. This second most observed class does
not need to be the actual runner-up class, but since it was possibly observed more times than the
actual runner-up class, it will also provide a wider confidence interval, so the statistical estimation is
still correct.

C Experimental details

C.1 Figure 1

The model in Figure 1 is the pretrained cifar10 model (Exactly the same model/setting from
the example in README) of Salman et al. (2019), https://github.com/Hadisalman/
smoothing-adversarial; in particular, it was ResNet-110 smoothed with Gaussian noise Ã = 0.12
for ℓ2 robustness. We set ³ = 0.001 as usual and skip every 20 images of the test dataset (using 500
images, as is the standard practice).

C.2 Parameters of union bound confidence sequences

We were enlarging the sample size by a factor of ´ = 1.1 between estimations (that is, the condition
T = 2K is replaced by T > ´K = 1.1K and our schedule is ³k = 5³/((t+ 4)(t+ 5)) The method
is not sensitive to the choice of hyperparameters, see 5. In fact, the hyperparameters ´, µ should be
selected based on what is the "interesting" regime. There is an inherent tradeoff between a good
asymptotical performance (´, µ ∼ 1) and low-sample performance (´, µ > 1). This is confirmed in

14



0.0 0.2 0.4 0.6 0.8 1.0

p

100

101

102

103

104

105

106

re
q
u
ir
e
d

s
a
m

p
le

s

γ = 1.05 β =1.1

γ = 1.05 β =1.5

γ = 1.05 β =2

γ = 1.05 β =3

γ = 1.1 β =1.1

γ = 1.1 β =1.5

γ = 1.1 β =2

γ = 1.1 β =3

γ = 1.5 β =1.1

γ = 1.5 β =1.5

γ = 1.5 β =2

γ = 1.5 β =3

γ = 2 β =1.1

γ = 2 β =1.5

γ = 2 β =2

γ = 2 β =3

used

Figure 5: Samples needed for the adaptive estimation task as in Figure 2 for different hyperparameters.
´ is the factor by which we enlarge the sample size before computing new confidence interval, µ is
the scaling of ³ as described in the main text. I.e., k−th estimation will have ³k = αc

kγ where c is the
normalization constant such that

∑∞
k=1 ³k = ³.

Figure 5. The width of the confidence interval scales as:
√

´(log(1/(µ − 1)) + log(1/³) + µ log logβ t)

t
.

This is because
∑∞

t=1
1
tγ
≍ 1

γ−1 , ³k ≍ α(γ−1)
kγ and t ≍ ´k, then k ≍ logβ t. Plugging in these

identites in
√

log(αt)
t

, and remembering that the confidence interval is recomputed only after elarging
the sample size by ´ factor, then for time t, the actual t we use in the formula can be as small as t/´.

C.2.1 Comparison with Horváth et al. (2022)

The method from Horváth et al. (2022) uses a finite collection of values of n = n1 < · · · < ns

for which the confidence intervals are computed. A direct consequence is that the hard examples
for which more than ns samples are needed cannot be certified. Additionally, due to Bonferroni
correction, with large s, the term log(s/³) appearing in the confidence interval becomes large
compared to t for small values of t (compare with the polynomial scaling that we propose where this
is not the case). Consider ni = ni

1, then the width of the confidence interval scales as (not considering
the regime when t > ns where the width is constant):

√

n1(log s+ log 1/³)

t
.

In particular, when we want to have confidence sequence up ns = N samples, then the width becomes
√

s
√
N(log s+ log 1/³)

t

and we either pay for the fact that we have large differences between the steps (
√
sN ), or for the fact

that we have lot of steps (log(s)) which is detrimental for small values of t.
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C.3 Details for 1, 3, 4

We had WideResNet-40-2 for CIFAR-10 trained for 120 epochs with SGD and learning rate 0.1,
Nesterov momentum 0.9, weight decay 0.0001 and cosine annealing. batch size 64. The loss was
the standard, noise-augmented training using the same noise as for the certification. We either used
Gaussian smoothing for ℓ2 robustness of uniform in ℓ∞ box for ℓ1 robustness.

For the certification we used batch size 100 (natural for Horváth et al. (2022)). For our method, we
had a mixed batch of data points so the data points for which we have the least amount of samples
and are not decided yet are put in the batch.

D Proof of Proposition 2.4

Proof. We show it for the upper interval, the lower is analogical. First, we note that f(p) =
P(B(n, p) g a) is non-decreasing in p for any n, a; Thus, ur(X) f p if and only if P(B(n, p) >
x) + wP(B(n, p) = x) > ³. Now, we show that P(ur(X) f p) = 1 − ³ for X ∼ B(n, p). To
shorten the notation, let ³1 = P(X g a) and ³2 = P(X > a) for such a that ³1 f ³ f ³2. We
have

P(ur(X) f p) = P(ur(X) f p | X < a)P(X < a)

+ P(ur(X) f p | X = a)P(X = a)

+ P(ur(X) f p | X > a)P(X > a),

which we evaluate to P(ur(X) f p) = (1 − ³1) + (³1 − ³2)P(ur(X) f p | X = a) + 0.
We note that given the event X = a, it holds ur(X) f p ⇐⇒ ³2 + W (³1 − ³2) > ³, so

P(ur(X) f p | X = a) = P(³2 + W (³1 − ³2) > ³) = P

(

W > α−α2

α1−α2

)

= α1−α
α1−α2

. Overall,

P(ur(X) f p) = (1− ³1) + (³1 − ³2)
α1−α
α1−α2

= 1− ³.

The second part of the statement follows from Neymann-Pearson lemma. Concretely, we consider the
following binary hypothesis testing problem from sample B(n, ¹), and we decide if ¹ = p or ¹ = q.
Both confidence intervals has size ³ and can be interpreted as binary tests – just return the indicator
function of q ∈ I(x). Neymann-Pearson lemma states that the (unique) uniformly most powerful test
is the likelihood ratio test, which is implemented by the randomized Clopper-Pearson interval.

□

E Proof of Theorem 2.7

Proof of Theorem 2.7. First,
∑∞

i=1 ³t =
∑∞

k=1
α

k(k+1) = ³; thus, by union bound, all the computed
confidence intervals are simultaneously correct at confidence level 1 − ³. Next we show that the
width is as claimed. When t = 2k, we directly have from Hoeffding’s inequality

ε ≲

√

log 1
αt

t
≍

√

log 1
α
+ log log t

t
.

Otherwise, we would use a confidence interval of some previous t′ such that t′ < t < 2t′ with width

ε ≲

√

log 1
α
+ log log t′

t′
≍

√

log 1
α
+ log log t

t
,

Noting that Clopper-Pearson’s confidence intreval is shorter than Hoeffding’s finishes the proof. □

F Proof of Theorem 2.11

Proof. First we verify that everything in the algorithm is well defined and the logarithms take positive

inputs. Now let Wt = exp
(

LOGQt

LOGPt

)

where subscript t denotes iteration of the algorithm. We show

that it is a martingale when X ∼ B(p) for 0 < p < 1. In that case,

EX [Wt] = Wt−1EX

[(
q̂t
p

)X (
1− q̂t
1− p

)1−X
]

= Wt−1

(

p
q̂

p
+ (1− p)

1− q̂

1− p

)

= Wt−1.
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r=0.5 r=1.25 , r=2
Adaptive Horváth et al. (2022) 1976± 41 3593± 574 4623± 47
Betting CS 2 531± 157 2169± 257 2130± 339
Union bound CS 1 635± 157 2557± 234 2670± 271
Adaptive Horváth et al. (2022) 0.13± 0.006s 0.23± 0.036s 0.3± 0.003s
Betting CS 2 0.05± 0.012s 0.17± 0.019s 0.17± 0.02s
Union bound CS 1 0.05± 0.006s 0.19± 0.018s 0.21± 0.02s

r=0.5 r=1.25 , r=2
Adaptive Horváth et al. (2022) 4150± 523 2266± 640 4760± 131
Betting CS 2 2206± 150 1665± 84 3932± 199
Union bound CS 1 2665± 78 1674± 37 3717± 361
Adaptive Horváth et al. (2022) 0.27± 0.04s 0.15± 0.04s 0.3± 0.009s
Betting CS 2 0.17± 0.011s 0.13± 0.006s 0.3± 0.014s
Union bound CS 1 0.2± 0.005s 0.13± 0.002s 0.28± 0.02s

Table 3: Comparison of the average number of sample needed to decide if the point is certifiably
robust with given radius in the top. The time needed is on the bottom. The upper table was in the
main paper, the bottom one is the exact same experiment but with a retrained model for ℓ2 robustness
robustness with Ã = 1.

r=0.5 r=1 , r=1.5
Adaptive Horváth et al. (2022) 423± 38 3520± 82 3823± 127
Betting CS 2 138± 28 2680± 221 3007± 122
Union bound CS 1 150± 3 2926± 18 3144± 347
Adaptive Horváth et al. (2022) 0.04± 0.006s 0.23± 0.006s 0.25± 0.009s
Betting CS 2 0.19± 0.002s 0.21± 0.017s 0.23± 0.01s
Union bound CS 1 0.016± 0.006s 0.22± 0.009s 0.25± 0.03s

r=0.5 r=1 , r=1.5
Adaptive Horváth et al. (2022) 1370± 596 4790± 50 8463± 714
Betting CS 2 592± 94 4055± 459 5822± 81
Union bound CS 1 806± 113 4327± 106 5795± 321
Adaptive Horváth et al. (2022) 0.1± 0.04s 0.30± 0.003s 0.53± 0.05s
Betting CS 2 0.05± 0.007s 0.31± 0.03s 0.44± 0.005s
Union bound CS 1 0.06± 0.008s 0.33± 0.008s 0.44± 0.02s

Table 4: Comparison of the average number of samples needed to decide if the point is certifiably
robust with given radius in the top. The time needed is on the bottom. top and bottom are again the
exact same experiment but with a retrained model for ℓ1 robustness with Ã = 1.

If p ∈ {0, 1}, then we would have a deterministic sequence and Wt f Wt−1. Thus, Wt is a
supermartingale. It is also output of the exponential function and so is non-negative. Therefore, the
assumptions of Ville’s inequality are satisfied and can be applied. Whenever p is excluded from
the confidence interval, it happened that LOGQt − LOGPt g log(1/³), or equivalently, Wt g 1/³
which can only happen with probability ³ and it is thus a valid confidence sequence. We also recall
that in the main text we have shown that Ip is a sub-level set of a convex function and is thus convex
and can be efficiently found by binary search. The width of the confidence interval follows from
the standard regret bounds for the Krichevsky–Trofimov estimator Cesa-Bianchi & Lugosi (2006)
Section 9.7; Krichevsky & Trofimov (1981). The result then follows from Orabona (2019), Subsection
12.7. It was also derived in Ryu & Bhatt (2024); see Ryu & Wornell (2024) for generalization to
vector-valued random variables.

□
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