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Introduction
With the discovery of the Higgs boson in 2012 [1, 2], the last missing piece of the
Standard Model of particle physics (SM) was found. Since then, the paradigm within
the high-energy physics community has shifted towards precision, with the goal of
finding or constraining new-physics effects that might be hiding in the details.

In this context, Vector-Boson Scattering (VBS) is a class of processes that
represents a unique window into the electroweak (EW) sector of the SM and has
received significant attention by both theoretical and experimental physicists. As
the name suggests, these processes involve the interaction of two electroweak vector
bosons that results in the emission of two new bosons, i.e. a 2 → 2 process1. The
scattering of the vector bosons can happen by exchanging another particle or directly,
and these interactions involve the so-called triple and quartic gauge couplings (TGC
and QGC) between the bosons. Thus, VBS processes are ideal to study these SM
parameters. Furthermore, the scattering amplitude in the SM for longitudinally
polarized electroweak bosons is finite only because of the possibility of scattering
by the exchange of a Higgs boson [3], which makes the leading energy behavior of
the full matrix element constant at high energies [4]. If the contributions involving
Higgs-boson exchange were not present, the scattering amplitude of the process
would diverge linearly with the center-of-mass energy squared, which leads to the
violation of unitarity at about 1 TeV [4]. This precise cancellation would in general
be spoiled if the couplings of EW vector bosons with themselves and the Higgs
boson that are realized in nature do not exactly correspond to those of the SM [5],
i.e. if they are anomalous. If this is the case, then it must be assumed that some
new-physics mechanism that avoids the violation of unitarity is at play at high
energies. In this scenario, the cross section of VBS could increase significantly at
energies between the Higgs boson mass and the new-physics energy scale [6], before
the unitarity-restoring mechanism takes over. Such an increase could thus be an
indication of new physics. All in all, the investigation of VBS processes offers an
opportunity to to achieve an overall better understanding of the EW sector of the
SM and its electroweak symmetry breaking (EWSB) mechanism and to look for or
constrain new-physics effects. For this purpose, high precision in both calculations
and measurements are indispensable.

The Large Hadron Collider (LHC) is the most powerful particle accelerator to
date, and is the largest current laboratory in which particle physics is investigated.
It is the first particle accelerator in which VBS can be observed. At the LHC, highly
energetic protons collide and VBS is realized by the emission of a vector boson by (a
constituent of) each proton, and the subsequent scattering of the two vector bosons.
The vector bosons that result from the interaction then decay into quarks or leptons,
which ultimately give rise to the signals in the detector. At the lowest order, VBS is

1So-called Vector-Boson Fusion (VBF) processes, in which the bosons fuse to produce one single
particle (2 → 1), are sometimes considered part of the broader VBS-type of processes because they
share many common traits. We adopt this convention here.
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Introduction

Figure 1: Summary of the VBS processes observed at the LHC (left column) and
the QGC that each is sensitive to, from Ref. [15].

a purely EW process. The interacting bosons can be of several kinds and involve
different couplings. In 2014, the first hint of scattering of same-sign W bosons at
the LHC was reported by the ATLAS collaboration [7]. In the following years, this
observation was confirmed by both the CMS and ATLAS groups [8, 9], as well as the
observation of processes involving the scattering of WZ, Zγ, and ZZ [10, 11, 12].

Figure 1 summarizes some of the processes used to study VBS at the LHC
(leftmost column) and the QGC that these are able to probe (upper row). There,
each process is denoted by its final state, which contains two jets (j) in the first four
rows. These jets originate from the constituents of the proton after emitting the
vector bosons. The last row corresponds to the process observed in Refs. [13, 14], in
which the protons, while remaining intact, emit one photon each, which annihilate
into a W+W− pair. In this case, the protons are undetected and no jets are produced.
In Fig. 1, the QGC are denoted by the four bosons that participate in the interaction.

Theoretical calculations of VBS processes have been available for around 30
years [16, 17, 18]. These calculations were performed at leading order (LO) in
perturbation theory, and the most advanced ones considered the decay products of
the vector bosons as part of the final state. This has become standard practice, as
it yields a more realistic description of the signal that is experimentally observed.
In the meantime, enormous progress has been made towards results at Next-to-
Leading Order (NLO) accuracy. NLO corrections in the strong interactions (QCD
corrections) have been calculated for the scattering of W±Z, W+W−, ZZ and
W±W± [19, 20, 21, 22]. The last three fixed order calculations have subsequently
been matched to parton showers (PS) in [23, 24, 25], giving predictions at leading-
logarithmic order even before experimental observations of the processes were
available. These calculations rely on the so-called VBS approximation, in which
some contributions to the full processes are neglected. This approximation will be
discussed in detail in this work.

More recently, full calculations of the EW NLO corrections to W±W± scattering
were presented [26], and later the complete NLO corrections, which include EW, QCD
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and mixed contributions, were calculated [27, 28]. When these became available,
the quality of the VBS approximation was analyzed in Refs. [6, 28] for the process
corresponding to W+W+ scattering. There, it was found that the approximation is
justified in certain regions of the phase space. In Ref. [29], the EW NLO corrections
to W±W± scattering were matched with parton showers. Complete NLO corrections
to W±Z, ZZ and W+W− scattering have been presented more recently [30, 31, 20].

Among VBS processes, the scattering of same-sign vector bosons has been
deemed the most important production channel of four lepton final states [32]. This
was in fact the first VBS process observed at the LHC [7, 8, 9]. In Refs. [26, 20, 28],
it was shown that NLO EW corrections to W+W+ scattering are negative and their
absolute value is larger than that of QCD and mixed corrections for the leptonic
final state, which are also negative. In fact, large negative EW corrections appear
to be a common characteristic of VBS processes at the LHC, as was predicted in
Ref. [26] and confirmed in Refs. [30, 28].

Events that correspond to VBS processes in the LHC are mainly detected by
targeting leptonic decays of the vector bosons as well as the remaining jets. However,
there are other processes that lead to the same final state without involving the
scattering of vector bosons. Such background processes can be very significant, and
therefore pose a challenge for the experimental detection of VBS. To a certain extent,
the background can be filtered out by concentrating the analysis on certain kinematic
regions, where the contributions of the signal process, VBS, dominate. As will be
reviewed in this work, the ratio of signal over background is improved in regions of
the phase space with little jet activity in the central region, i.e. perpendicular to the
collision beam. The understanding of jet kinematics is therefore crucial to correctly
assess experimental results.

With this work, we aim to contribute to the understanding of a specific VBS
process at the LHC with special focus on jet kinematics. We develop a software
package to calculate the production of W+W+ associated with three jets at the
LHC, pp → W+W+jjj and its QCD corrections. This allows us to investigate the
kinematics of the third jet more precisely than previous calculations have, as well as
to describe a fourth jet, produced by real radiation at NLO, using matrix elements.
Furthermore, this calculation is matched to a parton shower using the POWHEG
method [33, 34], which complements the matrix-element description of the fourth jet.
An important difference between our fixed-order calculation and the calculations
mentioned before is that the final state of our process includes two W+ bosons,
and not their decay products. Although the decays of the vector bosons may be
simulated by the parton shower program that our fixed-order calculation is matched
to, this approach is an approximation that neglects some correlations between the
initial and full final state, i.e. the final state that includes the decay products of the
W+ bosons. This choice must be seen as a compromise that allows us to consider
three jets already at LO, in accordance with our prioritization of the description of
jet observables. Furthermore, we employ the aforementioned VBS approximation,
which will be discussed and justified further below.
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Introduction

This thesis is structured in the following way. The first section consists of a
review of Quantum Field Theory (QFT) in the context of the calculation of observ-
ables for collider experiments. In it, the notion of the cross section is introduced, and
the problem of divergences in higher-order calculations is discussed. The principle
of gauge invariance is touched upon, and the Standard Model (SM) of particle
physics is shortly introduced. We then discuss topics relevant to hadron colliders:
the concept of factorization in Quantum Chromodynamics (QCD) is outlined, and
the structure of collision events in terms of different energy scales is presented. We
end the first section by introducing the concept of jets.

Section 2 is concerned with the methods of NLO calculations and their matching
to a parton shower. After presenting the general subtraction strategy for infrared
divergences, the subtraction scheme of Frixione, Kunszt and Signer is outlined. Then,
the concept of parton showers is introduced and the matching of NLO calculations
to them using the POWHEG method is discussed.

In Sec. 3, we turn our focus to the scattering of W+ bosons at the LHC
and how it is realized within the pp → W+W+jjj process. After discussing the
contributions to the whole process at LO and NLO, we motivate and define the
VBS approximation that is employed in our calculation. The implementation of
our calculation is discussed in detail in Sec. 4. In Sec. 5, which is closely based
on Ref. [35], predictions achieved through our calculations are presented. After
assessing the nature of the QCD correction, we investigate the effects of matching
our NLO calculation with a parton shower. Finally, we summarize this work and
give an outlook of possible follow-up and complementary investigations in the last
section.
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1 Theoretical Background
In this section we broadly outline how experimental observables may be calculated
within the theoretical framework of perturbative Quantum Field Theory. We begin
with Sec. 1.1 by introducing canonically quantized, free quantum fields and their
correlation functions. Then, correlation functions of interacting fields are discussed
and related to S-matrix elements in Sec. 1.1.2, which finally allow for the calculation
of cross sections. In Sec. 1.3 we introduce the Standard Model of particle physics as
a gauge theory and shortly summarize the mechanism of Electroweak Symmetry
Breaking. Finally, in Sec. 1.4 we discuss the factorization property of QCD and the
structure of hadronic collisions, as well as the concept of jets. These notions are
crucial to understand the calculational methods that will be introduced in Sec. 2.

1.1 Quantum Field Theory

1.1.1 Fields and Green’s Functions

The mathematical framework in high-energy physics is Quantum Field Theory
(QFT). This framework combines classical field theory in its relativistic formulation
with quantum mechanics. Classical fields are functions of space-time and have a
definite behavior under Lorentz transformations. The main object in classical field
theory is the Lagrangian density L (or simply Lagrangian), a Lorentz scalar that is
a function of the fields. From it, the equations of motion of the fields it contains
can be derived via the the Euler-Lagrange equation. Physical fields are those that
fulfill the equations of motion. In this respect, a Lagrangian defines a theory. The
role of the Lagrangian density is similar for a quantum field theory.

Wether or not the equations of motion derived from a Lagrangian are solvable
depends on the terms that appear in L. Often times, a Lagrangian is divided into
a free part L0 and an interaction part LI , L = L0 + LI . The free part contains
terms that are bilinear in the fields and contain at least one derivative (kinetic
terms) as well as bilinear terms of fields of the same type without derivatives (mass
terms). The interaction part contains all other terms, which generally involve several
different field types and powers higher than two. Typically, each interaction term
carries a prefactor that includes a dimensionless coupling. The fields that fulfill
the equations of motion that arise from L0 are called free. If the terms in LI are
sufficiently small, the solutions of the equations of motion that arise from L can be
approximated using perturbation theory as series expansions truncated at a certain
order of the couplings.

In QFT, classical fields are promoted to operators (or, more precisely, operator-
valued distributions) that act on Fock space. This space of quantum mechanical
states contains free one-particle states |M, p, j, j3〉, which are characterized by a mass
M , momentum p, spin j and third component of spin j3, as well as multi-particle
states and a unique vacuum state of minimal energy.
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1 Theoretical Background

Free quantum fields have the general form

ψα(x) = 1
(2π)3

∑
j3

∫
d3p
2Ep

[
uα(p, j3) aj3(p) e−ipx + vα(p, j3) b†

j3
(p) e+ipx

]
. (1)

Here, α denotes the type of field and Ep =
√
M2 + p2 is the zeroth component of

the four momentum p. The coefficient functions uα(p, j3) and vα(p, j3), also called
wave functions, describe the polarization degrees of freedom, and uα(p, j3)e−ipx

(vα(p, j3)e+ipx) are linearly independent solutions of the corresponding equations of
motion. For scalar fields, the wave functions are unity. For spin-1/2 fields, they
are Dirac spinors. For spin-1 fields, the wave functions are the polarization vectors
εµ(p, j3). Lastly, aj3(p) is the operator that annihilates a particle with momentum p
and third component of spin j3, and b† the creation operator of the corresponding
antiparticle. These are the ladder operators from many-particle quantum theory,
which act as follows on the unique and invariant free vacuum state |0〉

a†
j3

(p) |0〉 = |M, p, j, j3〉 , aj3(p) |0〉 = 0 ,

and fulfill the (anti-)commutation relations[
a†
j3

(p), a†
j′

3
(p′)
]

±
= 0 =

[
aj3(p), aj′

3
(p′)
]

± , (2)[
aj3(p), a†

j′
3
(p′)
]

±
= 2Ep(2π)3δ(p − p′)δj3,j′

3
, (3)

where + holds for fermions and − for bosons, and similarly for b and b†. Creation and
annihilation operators of particles and antiparticles commute, as do the operators of
different particle types. Thus, particles are quanta of the fields in the sense of Eq. (1).
The commutation relations of Eqs. (2) and (3) lead to the following commutation
relations for scalar fields:

[ψα(x), ψα(x′)] = 0 =
[
ψ†
α(x), ψ†

α(x′)
]

(4)[
ψα(x), ψ†

α(x′)
]

= 1
(2π)3

∫
d3p
2Ep

(
e−ip(x−x′) − eip(x−x′)

)
(5)

The expression on the right hand side of Eq. (5) vanishes if the separation of the
points x and x′ is spacelike, which is an expression of causality. It can be rewritten
in terms of

1
(2π)4

∫
d4p

i e−ip(x−x′)

p2 −M2 + iε
=: i∆F (x− x′,M) , (6)

with a positive ε and an implicit limit limε→0+ , and where the particles corresponding
to the field ψα have a mass M . On the left hand side of Eq. (6), the zeroth component
p0 of the four-vector p is an integration variable, for which p0 = Ep does not hold.
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1.1 Quantum Field Theory

Equation (6) defines the Feynman propagator ∆F , which is a Lorentz-invariant
function of only the difference x− x′.

The vacuum expectation value of time-ordered products of n quantum fields,
each with its own spacetime argument, are called n-point (correlation) functions
or Green’s functions. They contain the physical information of a quantum field
theory. From them, quantitites can be derived that describe the scattering processes
in collision experiments. We will now broadly outline this derivation. The simplest
correlation function we can calculate is the 2-point function of a free scalar field of
mass M ,

Gfree(x1, x2) = 〈0|Tψ(x1)ψ(x2) |0〉

Here, T denotes the time ordering operator that acts like

〈0|Tψ(x1)ψ(x2) |0〉 = Θ(x0
1 − x0

2) 〈0|ψ(x1)ψ(x2) |0〉
+ Θ(x0

2 − x0
1) 〈0|ψ(x2)ψ(x1) |0〉 .

Using the representation of the Heaviside Θ function

Θ(x) = lim
ε→0+

i

2π

∫ ∞

−∞
dy e−ixy

y + iε
,

one finds

Gfree(x1, x2) = i

(2π)4

∫
d4p

1
p2 −M2 + iε

e−ip(x1−x2)

= i∆F (x1 − x2,M) ,

i.e. the free 2-point function of the scalar field is the Feynman propagator.
By Wick’s theorem [36], correlation functions for higher n can be decomposed

using the result for n = 2. The general n-point function is a sum of products of
2-point functions. For the free scalar field, it holds

Gfree(x1, . . . , xn) = in
∑
i

∆F (xi1 − xi2) ∆F (xi3 − xi4) · · · ∆F (xin−1 − xin) , (7)

where ik ∈ {1, . . . , n} and the sum runs over all distinct combinations. Similar results
can be obtained for other particle types, whose 2-point functions are proportional
to the Feynman propagator, but include other structures.

Correlation functions can be represented graphically with the following recipe.
For a given n-point function with arguments xk, k = 1, . . . , n of the fields, a field
point is drawn for each xk. Then, each pair of points is joined by a line in every
possible way, and a sum is built over all possibilities, each yielding a diagram. Each
line represents i times a propagator of the particle kind that corresponds to the

7



1 Theoretical Background

fields that are involved. For the 2-point function of the free scalar field ψa, we obtain
one diagram:

Gfree(x1, x2) = x1 x2

= i∆F (x1 − x2,M) .

Similarly, we find three diagrams for the 4-point function:

Gfree(x1, x2, x3, x4) =

x3 x4

x1 x2

+

x3 x4

x1 x2

+

x3 x4

x1 x2

= i2 (∆F (x1 − x2,M)∆F (x3 − x4,M)

+ ∆F (x1 − x3,M)∆F (x2 − x4,M)

+ ∆F (x1 − x4,M)∆F (x2 − x3,M)) .

These graphic representations are a mnemonic for the mathematical expressions
that they stand for.

For a description of real-world QFTs, we need to extend our discussion to
Green’s functions of interacting fields,

G(x1, . . . , xn) = 〈Ω|TψH(x1)ψH(x2) · · ·ψH(xn) |Ω〉 . (8)

These contain fields in Heisenberg picture ψH(x), whose time evolution is determined
by the full Hamiltonian, including the interaction terms. The expectation value in
Eq. (8) is with respect to the vacuum state |Ω〉 of the interacting theory, which is
different from |0〉. Luckily, Green’s functions of the interacting theory can be related
to those of the free theory, which we know how to calculate. This is achieved by the
theorem of Gell-Mann and Low [37], which reads

〈Ω|TψH(x1)ψH(x2) · · ·ψH(xn) |Ω〉 =
〈0|Tψ(x1)ψ(x2) · · ·ψ(xn) exp

{
i
∫

dyLI(y)
}

|0〉
〈0|T exp

{
i
∫

dyLI(y)
}

|0〉
.

(9)

The right hand side of Eq. (9) contains exponentials of the interaction lagranian LI ,
which ultimately come from the translation from the Heisenberg to the interaction
picture. A proof of the Gell-Mann and Low theorem can be found in [38], for
example. In Eq. (9), LI contains quantum fields which are also subject to the time
ordering enforced by T . The factors exp

{
i
∫

dyLI(y)
}

, understood as a series of
operator products, can be expanded to a certain order of the couplings contained in
LI to approximate the interacting Green’s function on the left hand side. Once this
has been done, the numerator on the right hand side of Eq. (9) becomes a sum of

8



1.1 Quantum Field Theory

Green’s functions. Starting with the second term, the terms that result will contain
products of fields with the same spacetime argument. We can exemplify this by
discussing a simple example of interacting scalar fields with LI = λψ4 and then
expanding the exponential in the numerator of the right-hand side of Eq. 9 to the
first order in the coupling λ:

〈0|Tψ(x1)ψ(x2) · · ·ψ(xn) exp {i ∫ dyLI(y)} |0〉 = 〈0|Tψ(x1)ψ(x2) · · ·ψ(xn) |0〉

+ iλ ∫ dy 〈0|Tψ(x1)ψ(x2) · · ·ψ(xn)ψ(y)ψ(y)ψ(y)ψ(y) |0〉 + O(λ2) . (10)

As before, Wick’s theorem can be used to decompose each term into a sum of
products of 2-point functions, which can be graphically represented by lines and
field points. An important difference to the case we have discussed before is the
presence of several fields with the same argument. The corresponding field point
is attached to more than one line. We will call these internal points or vertices,
as opposed to the external points that are only attached to one line. Each vertex
represents a factor iλ and its position is integrated over. For the term of O(λ) in
Eq. (10) with n = 2, we obtain

iλ

∫
dy 〈0|Tψ(x1)ψ(x2)ψ(y)ψ(y)ψ(y)ψ(y) |0〉 (11)

=
∫

dy

3 ×
yx1 x2

+ 12 ×
x1 x2

y


= iλ

[
i3 3
∫

dy∆F (x1 − y)∆F (y − y)∆F (y − x2) + i3 12∆F (x1 − x2)
∫

dy (∆F (y − y))2
]

The coefficients of each diagram in the second line of Eq. (11) are of combinatoric
nature. Due to the presence of four fields with the same argument y, several forms
of joining the field points and vertices lead to the same diagram. We have obtained
two qualitatively different kinds of diagrams. The first one is fully connected, all
vertices and field points are joined by at least one line to another one. The second
one is not fully connected and, most importantly, contains a part which is made of
vertices and lines that is not connected to any field point. Such parts are called
vacuum bubbles. In this example, the only disconnected diagram contains a vacuum
bubble. This is not a general property. Different interaction Lagrangians lead to
correlation functions with all kinds of diagrams, which might not be fully connected
but still not contain vacuum bubbles.

The right diagram in Eq. (11) translates to an expression in which the integrand
does not depend upon any external point, i.e. the propagator that joins external
points can be factorized. This is true for all diagrams that contain vacuum bubbles. In
this way, one can factorize all vacuum bubbles of the whole numerator in Eq. (9). As
it turns out [38], the vacuum bubbles exponentiate after being factorized. Crucially,
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1 Theoretical Background

that exponential factor is cancelled by the denominator in Eq. (9), which contains
no external points and thus can only lead to vacuum bubble diagrams. In this way,
only diagrams without vacuum bubbles remain. That is, only diagrams without
vacuum bubbles, which can be translated to products of propagators of free fields,
contribute to the correlation functions of interacting fields:

〈Ω|TψH(x1)ψH(x2) · · ·ψH(xn) |Ω〉 =
( sum of all diagrams with n

external points and no
vacuum bubbles

)
. (12)

At this point, we want to make a remark for completeness. In the last pages, we
sketched a method to construct a quantum field theory by starting with a classical
field theory and promoting the classical fields that appear in the corresponding
Lagrangian L to quantum fields. We defined free quantum fields using classical
solutions of the equations of motion derived from L and creation/annihilation
operators of particle states. This leads to certain commutation relations that the
fields fulfill. We then defined free correlation functions as vacuum expectation
values of time ordered products of said quantum fields. To calculate general n-point
functions, we decomposed them into sums of products of 2-point functions, for which
analytic expressions have to be found for each type of field. We only cited the easiest
case of a scalar particle of mass M . Then, using the Gell-Mann and Low formula,
we found a perturbative and diagrammatic way to construct Green’s functions of
interacting fields using (parts of) those of free fields. This method is commonly
called canonical quantization, and is not the only method there is to construct a
quantum field theory.

One alternative method that leads to equivalent results is the so-called path-
integral quantization, which is discussed in [39], for example. It is better suited to
quantize massless vector fields, which appear in gauge theories (see Sec. 1.3) and
contain unphysical degrees of freedom. If the massless vector field does not interact
with itself, it can be canonically quantized by the ad-hoc addition of a gauge-fixing
term to the Lagrangian density to constrain its unphysical degrees of freedom. If, on
the other hand, the massless vector field can interact with itself, then its quantization
becomes more involved and it must be done in the path-integral formalism. Thereby,
unphysical ghost fields must be introduced. The path-integral method also leads to
a closed formula for general Green’s functions of ineracting fields that is equivalent
to Eqs. (9) and (12). More formally, the quantization of gauge theories can be
achieved in the framework of Becchi-Rouet-Stora-Tyutin (BSRT) [40, 41], which
is mathematically more rigorous than the path-integral method. A discussion of
BSRT quatization is beyond the scope of this work, so we point to [38, 42] for an
introduction to the topic.

We now turn to our last step towards physical observables in collision exper-
iments, which is the discussion of the S-matrix and its relation to the Green’s
functions of interacting fields.

10



1.1 Quantum Field Theory

1.1.2 The S-matrix, Cross Sections and the Reduction Formula

The S-matrix describes the transition probabilities between two particle states in
a scenario in which the interaction between particles is only possible in a certain
region of space time, like in scattering experiments (hence the S). These states,
called in- and out-states, are asymptotically defined to have a definite number of
particles with definite momenta, along with other quantum numbers necessary to
describe the particles. They behave like systems of non-interacting particles in times
far enough from the scattering center in the past or future. Furthermore, they are
independently complete in the Hilbert space, which implies the unitarity of the
S-matrix [43].

Conventionally, the S-matrix is separated into a trivial part and a transition
part. The trivial part describes forward scattering, and contributes to the scattering
probablility when the out-state is identical to the in-state. The transition part iT
contributes if any particle undergoes real scattering. For the S-matrix element of
the in-state |α〉in and the out-state |β〉out, we have

Sβ,α = out〈β|α〉in = δβα + iTβα ,

where we have summarized all quantum numbers of the in- and out-state, which
need not be discrete, with α and β, respectively. The i factor that multiplies the
transition matrix is a convention. The scattering probability is given by |Sβ,α|2, as
in quantum mechanics.

We will concentrate on the transition matrix T . As well as S, T should reflect
momentum conservation. Thus, we can extract the corresponding δ-function and
define the invariant matrix element M as the remaining factor. For an in-state |α〉in
with two particles A and B and momenta pA and pB and an out-state |β〉out with n
particles and total momentum pf , we obtain

out〈β|α〉in − δβα = iTβα = (2π)4δ(pA + pB − pf ) iMβα . (13)

This 2 → n scattering is the situation that corresponds to scattering experiments
which we aim to describe, and we will assume it in the following discussion. Further-
more, we will assume that the spatial parts of pA and pB are parallel or antiparallel,
i.e. along the beam axis of the collision experiment.

The invariant matrix element is a function of the incoming and outgoing
momenta, as well as the other quantum numbers of the involved particles. It inherits
the interpretation of the non-trivial scattering probability from the T -matrix, and
can be used to define the differential cross section dσ as

dσ = 1
4
√

(pApB)2 −M2
AM

2
B

[
n∏
i=1

(
d3pi

(2π)32Ei

)]
(2π)4 δ

(
pA + pB −

n∑
k=1

pk

)
|Mβα|2 .

(14)

The quantity dσ represents the intrinsic probability that the in-state scatters into
an out-state with n particles, whose momenta {pi} are each within a phase-space
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1 Theoretical Background

volume d3pi

(2π)32Ei
. The prefactor divides out the incoming flux of particles, which

depends on the experimental setup, and is invariant under boosts along the beam
axis. The rest of the expression is Lorentz-invariant. It is common to abbreviate
the phase-space density in Eq. (14) with

dΦn =
n∏
i=1

(
d3pi

(2π)32Ei

)
× (2π)4 δ

(
pA + pB −

n∑
k=1

pk

)
, (15)

which is also called the Lorentz-invariant n-particle phase space. The invariant
matrix element acts as a weight in this probability distribution. In the cross section,
degrees of freedom that are not observed have to be averaged in the initial state and
summed or integrated over in the final state. The integration of dσ over a region
of phase space yields the probability of scattering into that region. These are the
quantities that can be measured in collision experiments.

Finally, we want to review the relation between the S-matrix and correla-
tion functions. It is given by the reduction formula of Lehmann, Symanzik and
Zimmermann (LSZ reduction) [44], which for a scalar field reads [42]

out〈−ps+1, . . . ,−pn|p1, . . . , ps〉in (16)
= R−n/2(−i)n (p2

1 −M2
1 ) · · · (p2

n −M2
n) G̃(p1, . . . , pn)

∣∣
p2

i =M2
i

= R+n/2 G̃−1
0 (p1,−p1) · · · G̃−1

0 (pn,−pn) G̃(p1, . . . , pn)
∣∣
p2

i =M2
i

= R+n/2 G̃trunc(p1, . . . , pn)
∣∣
p2

i =M2
i
.

The left hand side of Eq. (16) is an S-matrix element with an in-state defined by
the momenta p1, . . . , ps and and out-state defined by the momenta −ps+1, . . . ,−pn.
On the right hand side, G̃ is the Fourier-transform of the Green’s function G with
respect to all its arguments,

G̃(p1, · · · , pn) =
∫

d4x1 · · · d4xn e−i(p1x1+···+pnxn) G(x1, . . . , xn)

= (2π)4δ(p1 + · · · + pn) G̃0(p1, · · · , pn) ,

also called momentum-space Green’s function, and R−1/2 is the wave-function
renormalization constant. It is a number defined as

R = −i(p2 −M2) G̃0(p,−p)
∣∣
p2=M2 , (17)

i.e. the residue at p2 = M2 of the Fourier-transformed 2-point function of interacting
fields. This explains the second equality in Eq. (16). The third equality defines the
truncated Green’s function in momentum space, which we will discuss shortly.

We may summarize the content of the reduction formula as follows. The first
equality in Eq. (16) says that the S-matrix element is the multiple residue of the
Fourier-transformed Green’s function at the poles where p2

i = M2
i , multiplied

12



1.1 Quantum Field Theory

by the constant R−1/2 for each particle. Recall that the pi are arguments of
G̃(p1, . . . , pn) that correspond to the external points of G(x1, . . . , xn), and the p0

i

are not constrained. The limit p2
i → M2

i is called the on-shell limit, as the condition
p2 = M2, which is true for physical particles, defines a hypersurface (shell). In this
sense, the S-matrix element corresponds to a momentum-space Green’s function
where external propagators have been replaced by physical particles. For particles
with spin, the corresponding wave-functions have to be attached.

In the second equality in Eq. (16), the (p2
i − M2

i ) factors have been replaced
by inverse, fully interacting momentum-space 2-point functions, whose arguments
correspond to external field points in position space. It is useful to think of these
2-point functions in terms of diagrams. Consider first the position-space 2-point
function 〈Ω|TψH(x1)ψH(x2) |Ω〉 of the scalar field, with the interaction LI = λψ4

as an example. In Eq. (11) we have already seen the contribution of O(λ). We
now want to consider all orders, dropping the vacuum bubbles as indicated by the
Gell-Mann and Low theorem. Some of the diagrams at the lowest orders are

x1 x2
+
∫

dy
yx1 x2

+
∫

dy
∫

dz

[
x1 y z x2

+

x1 y

z

x2

+
x1 y z x2


+ O(λ3) ,

where we have omitted combinatoric prefactors. The momentum-space correlation
functions can be described by the same diagrams if we consider what happens to
the correlation function upon Fourier-transformation and adapt the interpretation
of the diagrams accordingly: Lines now represent the Fourier-transform of the free
Feynman propagator, i.e. i/[p2 −M2 + iε] (cf. Eq. (6)). The integrals over internal
positions (y and z above) yield δ-functions that reflect momentum conservation at
the vertices. These can be integrated over when building the Fourier-transform to
constrain some momenta. The integrals over unconstrained momenta remain.

In terms of diagrams, the effect of dividing by the 2-point functions in the
second equality of Eq. (16) is to cut off those contributions that may be separated
from the rest of the diagram by a single cut through an external line, as well as to
eliminate diagrams with a disconnected part that only connects two external points.
The diagrams that remain define the truncated momentum-space Green’s functions
and do not contain external points.

By Eq. (16), the S-matrix element can be expanded as a series in the couplings
of the theory. The terms of the series are described by the diagrams that contribute
to the corresponding orders of the truncated Green’s function. This diagrammatic
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1 Theoretical Background

representation carries over to matrix elements M (cf. Eq. (13)). As opposed to the
case of general Green’s functions, it makes sense to say that the physical, incoming
and outgoing particles in a reaction of a collision experiment are represented by
external legs in diagrams of matrix elements. Internal lines are often denoted as
virtual particles. On the one side, the propagators that these lines represent have a
pole at the mass of the corresponding particle. They also “carry” a momentum and
other quantum numbers for which conservation laws hold. In this sense they can be
associated to a particle type. On the other hand, the energy-momentum relation
does not hold for the agument p of these propagators, as it would for particles.

The rules that prescribe how to translate between matrix elements and diagrams
are called Feynman rules, and the diagrams are commonly called Feynman diagrams.
The rules are specific to the particles and interactions that they represent, and a
list of the Feynman rules that are relevant to the process that we discuss in this
thesis will be given in Sec. 1.3. Nevertheless, we can state the following general
rules, which we have partly mentioned before:

1. External lines represent external particles and contribute the appropriate
wave-function, which is a function of the particles momentum and spin.

2. Internal lines represent propagators (in the momentum representation), which
have the general form iC/[p2 −M2 + iε]. The numerator C is particle-type
specific.

3. Lines that represent charged particles or fermions include an arrowhead that
points in the direction of particle flow.

4. Vertices contribute a factor of i times the coupling of the interaction they
represent. Momentum conservation holds at each vertex.

5. The momenta of loop propagators, i.e. those that are part of a closed loop in
the diagram, are not determined by the external momenta and momentum
conservation. These free momenta qi must each be integrated over using
(2π)−4 ∫ d4qi.

By Eq. (14), the cross section of the process α → βcan be computed in
perturbation theory by expanding the corresponding matrix element Mβα to a
certain order, building its squared absolute value and integrating over the desired
phase space. The O(k) contribution to the expansion of Mβα corresponds to the sum
of all possible diagrams connecting the particles in α and β that can be constructed
using k vertices. Since each term of the expansion of Mβα corresponds to Feynman
diagrams, it makes sense to speak about “squared diagrams” or “interferences of
diagrams”, which arise when building |Mβα|2 and have a well-defined correspondence
to mathematical expressions. We will use this terminology throughout this work.

Whether by applying the general Feyman rules cited above or by constructing
M from truncated Green’s functions, one can quickly realize that some contributions
to the matrix element diverge. By rule number 4, loop momenta are to be integrated
over all possible values, which can be problematic for very low or very large momenta.
Furthermore, the integration over phase space that is necessary to build observables
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1.2 Divergences at Next-to-Leading Order

might not be well defined either. One way in which Feynman diagrams are useful
is that they sometimes display in which regions of phase space the corresponding
(squared) matrix element might be divergent. In the next section, we will discuss
how observables can be calculated from quantum field theory despite these problems
at Next-to-Leading Order (NLO) of perturbation theory.

1.2 Divergences at Next-to-Leading Order
As mentioned in the previous section, divergent integrals are encountered when we
attempt to calculate observables in QFT. If we aim to make predictions using the
methods described above, these divergences need to be handled.

In this chapter, we want to discuss the techniques that are employed to deal
with this problem in perturbation theory, restricting our considerations to the leading
and next-to-leading orders. We will distinguish two different types of divergences,
namely ultraviolet (UV) and infrared (IR). UV divergences are those that arise from
integrals over loop momenta in regions where the components of these momenta
become very large. IR divergences encompass all other divergences, and may be
further subdivided in the soft and collinear kinds. The names of these subcategories
will become clear further below.

Conceptually, the treatment of divergences proceeds in two separate steps.
The first one is called regularization and consists of the characterization of the
divergences in a well defined manner that allows for mathematical manipulation.
There are several regularization methods, but we will only discuss the commonly used
dimensional regularization (DimReg), which is has the advantage of being Lorentz
invariant. It can be applied to regularize both types of divergences and will also be
employed in this work. In the second step, the divergences are handled differently
depending on their type. While UV divergences are absorbed by parameters of the
Lagrangian, IR divergences are partially canceled against each other. We begin our
discussion with UV divergences.

1.2.1 Loops and Ultraviolet Divergences

Before delving into the management of UV divergences, we want to say a few words
about their origin in NLO calculations. As an example, we will consider a 2 → n
process with matrix element Mn(pi) and external momenta pi. We will assume for
simplicity that only one coupling λ describes the interactions, and that vertices of
diagrams are proportional to λ. We expand Mn as

Mn =
∞∑
`=0

M(k+2`)
n , (18)

in orders of λ (M(q) ∼ λq). Furthermore, we assume that the diagrams that
contribute to the leading (lowest) order term M(k)

n are tree diagrams, i.e. they do
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not contain loops. This is often the case for simple processes. Then, diagrams with
one loop will contribute to M(k+2)

n , since two additional vertices are needed to add
an internal line. Squaring Eq. (18), as we would to calculate a cross section, we
obtain:

|Mn|2 = |M(k)
n |2 + 2 Re

{
M(k+2)

n

(
M(k)

n

)∗
}

+ O(λ2k+2) . (19)

The leading-order approximation of |Mn|2, i.e. truncating the expansion after the
first order term |M(k)

n |2, corresponds to the Born approximation from quantum
mechanics. The second term on the right hand side of Eq. (18) contributes to
|Mn|2 at next-to-leading order, and is often called the virtual correction or virtual
contribution. As one can see, the virtual correction is proportional to the interference
of a leading order and a next-to-leading order, one-loop matrix element. It is the
integrals over loop momenta contained in M(k+2)

n that can lead to UV divergences.
These divergences can be made explicit by means of dimensional regularization,
which we discuss in the following.

Dimensional regularzation relies on the fact that the analytic structure of
loop integrals allows for an analytic continuation to arbitrary complex spacetime
dimensions d [42]. Furthermore, UV divergences arise for integer values of d. Thus,
instead of performing divergent loop integrals in four dimensions, they are analytically
continued to d = 4−2ε dimensions and then performed. The quantity ε that is thereby
introduced parametrizes the departure from four dimensions and acts as a regulator.
After integration, the UV divergences manifest themselves as negative powers of
ε, so that the divergent structure is recovered in the limit ε → 0. To compensate
for the change in mass dimension that is caused by the analytic continuation, the
loop integrals are multiplied by a factor (2πµ)4−d, where the quantity µ with mass
dimension is introduced. In this way, the coupling constants that appear in the
Lagrangian remain dimensionless in d dimensions

To show this procedure in more detail, we consider the following, comparatively
simple loop integral over the momentum k with mass m in d dimensions

1
iπ2

∫
d4k

1
(k2 −m2 + iε)r → µ4−d

iπ2

∫
ddk

(2π)d−4
1

(k2 −m2 + iε)r =: A(r)
0 (m) (20)

which contains only one propagator to an arbitrary power r ≥ 1. Before performing
the integral, it is transformed from Minkowski space to Euclidean space by a Wick
rotation. The integral along the real k0 axis is substituted by an integral along
the imaginary axis, which does not change the value of the integral by Cauchy’s
theorem. Then, the integration variables are substituted as (k0,k) → (ik0

E,kE) by
the Euclidean momentum kE. This yields

A
(r)
0 (m) = µ4−d

π2

∫
ddkE

(2π)d−4
(−1)r

(k2
E +m2 − iε)r . (21)
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Then, spherical coordinates are introduced and the measure becomes

ddkE = 1
2(k2

E)(d−2)/2 dk2
E dΩd , (22)

with the solid-angle element in d dimensions dΩd. Since there is no angular depen-
dence in the integrand, the integral over dΩd can be performed, giving∫

dΩd = 2πd/2

Γ(d/2) ,

with the Gamma function Γ(z), which is defined for complex numbers z with a
positive real part by

Γ(z) =
∫ ∞

0
dt tz−1 e−t . (23)

The Gamma function generalizes the factorial to non-natural numbers and has
single poles at negative integers and zero. It also satisfies the functional equation
Γ(z + 1) = zΓ(z). After the angular integration, we arrive at

A
(r)
0 (m) = µ4−d

π2
2πd/2

Γ(d/2)
(−1)r

2(2π)d−4

∫
dk2

E

(k2
E)(d−2)/2

(k2
E +m2 − iε)r . (24)

Lastly, we make the substitution k2
E = (m2 − iε)τ(1 − τ) in the integral of Eq. (24),

which leads to

A
(r)
0 (m) = µ4−d(4π)2−d/2

Γ(d/2) (−1)r(m2 − iε)d/2−r
∫ 1

0
dτ τ d/2−1(1 − τ)(r−d/2)−1 . (25)

The remaining integral is a representation of the Beta function

B(z1, z2) =
∫ 1

0
dτ τ z1−1(1 − τ)z2−1 = Γ(z1)Γ(z2)

Γ(z1 + z2)
,

with z1 = d/2 and z2 = r − d/2. We plug the Beta function in terms of Gamma
functions back into Eq. (25) to find

A
(r)
0 (m) = (4πµ2)(4−d)/2 Γ(d/2)Γ(r − d/2)

Γ(d/2 + r − d/2)Γ(d/2) (−1)r(m2 − iε)d/2−r (26)

= (4πµ2)(4−d)/2 Γ(r − d/2)
Γ(r) (−1)r(m2 − iε)d/2−r .

At this point, we can investigate the behavior of A(r)
0 (m) close to the physical

dimension four by setting d = 4 − 2ε as mentioned before. We use the functional
equation on the Gamma function in the numerator of Eq. (25) r times to shift the
argument from r − d/2 = r − 2 + ε to ε, as

Γ(r − 2 + ε) = Γ((r − 1) − 2 + ε) 1
r − 2 + ε

= Γ(ε)
r−1∏
i=0

1
r − i− 2 + ε

.
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Then, we use the expansions for small ε

zε = 1 + ε log z + O(ε) , Γ(ε) = 1
ε

− γE + O(ε) ,

where γE ≈ 0.577 is the Euler-Mascheroni constant. For r = 1, this leads to

A
(1)
0 (m) = m2

(
1
ε

− γE + log 4π − log m
2

µ2

)
+ O(ε) . (27)

The divergence corresponding to d → 4 has been regularized and is expressed as the
pole 1

ε
.

In practice, loop integrals can be significantly more complicated than our
example. Loops that consist of several propagators yield integrands that are products
of propagators, and are often denoted by the number of edges (propagators) that
form the loop they correspond to. The integral in Eq. (20) with r = 1 corresponds
to a tadpole diagram. A loop with two propagators is called a self-energy loop,
and diagrams with higher numbers of edges are denoted as triangles for three
propagators, boxes for four, pentagons for five and so on. With a technique called
Feynman parametrization, the product in the denominator of such integrands can
be rewritten as a sum. The general relation for a product of n propagators is

1
Da1

1 D
a2
2 · · ·Dan

n

=Γ(a1 + a2 + · · · + an)
Γ(a1)Γ(a2) · · · Γ(an) (28)

×
∫ 1

0
dx1 · · ·

∫ 1

0
dxn

δ(1 − x1 − · · · − xn)xa1−1
1 · · ·xan−1

n

[x1D1 + · · · + xnDn]a1+···+an
,

where each Di is the denominator of a propagator and ai is its power. The cost of
this transformation is the introduction of n integrals over the Feynman parameters
xi. In this way, loop integrals can be brought to the form of Eq. (20) and handled
as we have seen above, with the further complication that the remaining Feynman
integrals present.

Furthermore, when propagators of particles with nonzero spin are involved
in the loop, the corresponding integrands can contain a tensorial structure from
momenta in the numerator. These tensor integrals can be decomposed as linear
combinations of basis tensors with coefficients that are scalar functions, for example
via the Passarino-Veltman reduction method [45]. These scalar coefficients are
themselves linear combinations of scalar integrals like that in Eq. (20), which contain
no momenta in the numerator and can be handled as discussed above.

1.2.2 Renormalization

As we have seen at the top of the previous subsection, the method to calculate
observable quantities can lead to divergent results when loop corrections are included.
Therefore, it is unclear how to relate these results to actual measurements of physical
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quantities without further considerations. If one were to solve for the parameters of
a theory, like masses and couplings, by equating a divergent expression calculated
to some order of perturbation theory to a (finite) measured physical quantity, the
result would be divergent parameters.

Renormalization is a procedure in which these parameters are redefined, or
renormalized. This repaarmetrization can be done by relating theoretical predictions
to physical, mesurable quantities, so that the physical interpretation of the param-
eters is more direct. Importantly, a reparametrization of a theory does not affect
the relations between physical results. For renormalizable theories, an approrpiate
reparametrization of the theory leads to theoretical predictions that are finite and
thus interpretable, it eliminates the UV divergences. The parameters of renormaliz-
able theories can be redefined in a way that eliminates the UV divergences even if
the new parameters do not have a direct physical interpretation.

Consider a theory with the unrenormalized Lagrangian L({ψ0,i}, {g0,i}), a func-
tion of fields ψ0,i and couplings g0,i, which shall also summarize any masses that
occur. Commonly, the reparametrization is done mutiplicatively using renormal-
ization constants Zψi

, Zgi
to relate bare parameters {ψ0,i}, {g0,i} to renormalized

parameters {ψi}, {gi} as

g0,i = Zgi
(gi, ε)gi , ψ0,i = Z

1/2
ψi

(gi, ε)ψi . (29)

The bare parameters appear in the Lagrangian density and are divergent, whereas
we require the renormalized parameters to be finite. Thus, the divergences are
factorized into the renormalization constants. This is made evident in our notation
by their dependence on the parameter ε from dimensional regularization. Since
UV divergences come from loop corrections, we can expand the renormalization
constants in the perturbative couplings gi, which, up to NLO, gives

Zgi
(gi, ε) = 1 + δZgi

(gi, ε) , Zψi
= 1 + δZψi

(gi, ε) . (30)

After inserting Eqs. (29) and (30) into the Lagrangian, the latter can be decomposed
as

L({ψ0,i}, {g0,i}) = L({(1 + δZψi
)ψi}, {(1 + δZgi

)gi})
= L({ψi}, {gi}) + Lct({δZψi

}, {δZgi
}, {ψi}, {gi}) . (31)

Note that no bare quantities appear on the right hand side of Eq. (31). The
functional dependence of L({ψi}, {gi}) on the renormalized quantities is as the
one of L({ψ0,i}, {g0,i}) on the bare couplings, and the counterterm Lagrangian
Lct, defined by Eq. (31), contains all divergences of L({ψ0,i}, {g0,i}). As the name
suggests, the single terms contained in Lct are called counterterms. These can be
treated as interaction terms, from which Feynman rules can be derived.

Once the UV-divergent diagrams of the theory have been identified, they can be
made finite in the following way. The right hand side of Eq. (31) is used. Although
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they are functions of renormalized parameters, the loop diagrams that result from
L({ψi}, {gi}) contain divergences that must be regularized. These contributions are
added to those that result from the new interactions in Lct. Using renormalization
conditions, the δZψi

and δZgi
are fixed in a way that cancels the UV divergences

from L({ψi}, {gi}) and renders the total result finite.
The requirement that the divergences cancel in a calculation only fixes the

definition of the renormalization constants up to finite terms. The renormalization
conditions are a set of equations that completely fix the renormalization constants,
and they define a renormalization scheme. While a renormalization scheme may be
formulated so that renormalized quantities have a direct physical interpretation, it
does not need to be the case, as mentioned before. Often, the so-called modified
minimal subtraction scheme, or MS scheme is chosen instead. In this scheme, the
renormalization constants are chosen so that terms of the form

1
ε

− γE + log 4π

are cancelled, which commonly arise in loops that have been dimensionally regular-
ized, cf. Eq. (27).

In this way, UV divergences can be cancelled not only to NLO, but to all orders
in perturbation theory. If only a finite number of counterterms is necessary to
achieve this, the theory is called renormalizable.

Before discussing IR divergences, we remark that the renormalization procedure
in the MS scheme makes the renormalized quantities dependent upon the quantity
µ of mass dimension that was introduced during dimensional regularization. For
example, for the renormalized coupling g it holds g = g(µ), which leads to the
concept of the running coupling, to which we will return in Sec. 1.3.3.

1.2.3 Infrared Divergences and the KLN Theorem

After the calculation of an observable at NLO has been freed of UV divergences via
renormalization, IR divergences might remain. These occur when virtual particles
(loop lines) are attached to external lines and in regions of the integration domain
in which the loop momentum approaches zero, in which case they are called soft, or
when the loop momentum becomes collinear to the one of an adjacent line. Soft and
collinear divergences can also overlap, and in that case they are called soft-collinear.
IR divergences are often called mass divergences as well [42], since they can only
occur if massles particles are involved in the loop. This is the case in physically
relevant theories, as we will see later. We remark that the term IR divergences is
sometimes used to refer to soft divergences only. Here, we call any divergence that
is not of UV origin IR. Similarly, the term mass divergences sometimes refers to
collinear singularities only.

Consider for simplicity a 2 → n process with external momenta k1, k2, p1, . . . , pn
and a LO matrix element M(0)

n that does not contain loops. As it turns out, the soft
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divergences that arise from a one-loop matrix element M(1)
n of the same process, its

one-loop correction, can be factorized, so that in the soft limit one can schematically
write

M(1)
n (k1, k2; p1, . . . , pn) soft

≈ Iv · M(0)
n (k1, k2; p1, . . . , pn) . (32)

Here Iv is an IR-divergent integral and M(0) is the matrix element that is obtained
from M(1) by removing the loop from which the soft divergence stems. In fact, it
can be shown [46] that this factorization property leads to an exponentiation of the
IR-divergent prefactor in the case of multiple loops whose momenta become soft, as
long as all loops are joined to an external line.

In a way similar to Eq. (32), collinear divergences can be factorized from one-
loop matrix elements. They can be regularized by giving a finite mass m to the
particles to which the loop line is attached. In this case, the divergences appear as
logarithmic prefactors of the matrix element without loop:

M(1)
n (k1, k2; p1, . . . , pn) coll.∼ log Q

2

m2 · M(0)
n (k1, k2; p1, . . . , pn) , (33)

where Q is a kinematic quantity of the process with mass dimension, and the
singularity is recovered for m → 0. Even for a finite mass, these collinear regions
are enhanced if Q2 � m2.

According to the Kinoshita-Lee-Nauenberg (KLN) theorem [47, 48], soft and
collinear divergences are cancelled in observables if the sum over initial and final
energy-degenerate states is performed in their calculation at a fixed order. These
energy-degenerate final states include states with additional soft or collinear particles
in the final state: it is impossible to distinguish a 2→ n process from a 2→ n+m
process if the m extra particles have been emitted by external particles and have an
an energy close to zero. Also, if they are produced with momenta that are collinear to
the momentum other final-state particles, each group of collinear particles would be
detected as a single particle with momentum equal to the group’s total momentum.
Observables that are constructed in a way that they are sufficiently insensitive to
soft and collinear radiation, so that the IR cancellation occurs, are called infrared
safe. The emission of extra soft or collinear particles produces IR divergences that
factorize (and exponentiate) in the same way as those from loop contributions.

The KLN cancellation holds order by order in perturbation theory. In the
context of NLO calculations, the energy-degenerate states that are to be taken into
account in order to cancel IR loop divergences are those that contain one extra soft or
collinear particle, and formally would correspond to a different, 2 → (n+ 1) process.
Thus, to construct the infrared-safe NLO cross section of a 2 → n process, it is
necessary to take into account matrix elements M(0)

n , M(1)
n and M(0)

n+1. Specifically,
the squared modulus of the n+ 1 matix element, the real (emission) contribution
|M(0)

n+1|2, is added to the Born and virtual contributions of Eq. (19).
The phase-space integrations that are necessary to calculate the cross section

from these squared matrix elements are different for the 2 → n and 2 → (n+1) parts.
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While the Born and virtual contributions need to be integrated over an n-particle
phase space, the real contribution is to be integrated over an n+ 1-particle phase
space, and only the sum of all integrals is IR-finite. A regularization method can
be used to express the IR divergences in the different integrals as 1/ε-poles and
analytically cancel the singularities. In the real contribution, they only arise upon
the integration over the phase space of the extra particle in the real correction. Thus,
a decomposition of the n + 1-particle phase space into an n-particle phase space
and a one-particle, so-called radiation phase space is necessary. This cancellation is
particularly complicated to perform in numerical calculations, and a sketch of the
method employed in this work to that end will be given in Sec. 2.1.

Before ending this section, we remark that the cancellation of IR divergences in
the sum of virtual and real contributions is not complete if the initial-state particles
are massless and can emit other particles. This is the case in physically relevant
theories, so there are methods to deal with these remaining singularities. The
left-over divergences correspond to non-soft, collinear emissions from the initial state
which are not cancelled by the corresponding IR loop divergences. The reason for
this non-cancellation can be intuitively understood after considering the factorization
properties mentioned above. The factorization properties from Eqs. (32) and (33)
lead to analogous expressions at the cross-section level for virtual and real corrections.
The real soft emission of an (n+ 1)-th particle factorizes as

σr(k1, k2; p1, · · · , pn+1)
pn+1 soft

≈ Ir · σB(k1, k2; p1, · · · , pn)

where the subindices stand for real and Born, respectively. On the right hand side,
Ir is an integral that carries the soft divergence, and the Born cross section σB that
it multiplies is a function of the momenta that remain when pn+1 goes to zero. σB
corresponds to the Born cross section that multiplies the virtual soft divergence
after factorization, cf. Eq. (32). This is independent of the origin of the soft particle.

For a collinear emission, where the emitted particle carries away a fraction x
of the energy of the emitter, this is not the case. On the contrary, the kinematics
upon which the factorized Born cross section depends are influenced by the origin of
the emission. If the (n+ 1)-th particle is emitted from the n-th final-state particle,
the underlying Born process with matrix element M(0)

n depends upon the n + 2
momenta k1, k2, p1, · · · , pn−1, p̃n where p̃n = pn + pn+1, i.e. p̃n is the momentum of
the n-th particle “before” the emission. These are also the momenta upon which
the factorized Born cross section from the virtual correction depends, where there is
no extra emission.

If, on the other hand, the (n+ 1)-th particle is emitted by the initial state, say
by the particle with momentum k1, so that pn+1 = xk1, then the factorized Born
cross section depends on the momenta (1 − x)k1, k2, p1, · · · , pn. These are not the
momenta upon which the factorized Born cross section from the virtual correction
depends, but correspond to a process with less total incoming energy. Thus, there
is a mismatch between the prefactors of the virtual and initial-state collinear, real
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divergences, and they can’t possibly cancel. A solution to this problem is presented
in Section 1.4.

1.3 Gauge Theories and the Standard Model
After a short general discussion of gauge theories, we turn to the Standard Model of
particle physics, the QFT that has been most successful in describing high-energy
phenomena. We describe the field and particle content of this theory and cite its
Lagrangian and the Feynman rules than can be derived from it for the construction
of matrix elements.

In field theory, the action S of a given theory is given by the integral of its
Lagrangian density L over the whole of spacetime, S =

∫
d4xL. The continuous

symmetries of the action are very important for the theory, because they are linked to
the existence of conservation laws by Noether’s first theorem. A symmetry is defined
as a certain transformation of the fields under which the Lagrangian L is invariant.
The action is invariant under a transformation of the fields if the corresponding
Lagrangian is invariant up to total divergences, so often the symmetries of the
Lagrangian are directly investigated. Specifically, Noether’s theorem states that if
S is invariant under a continuous global transformation of the field, described by a
set of parameters {θa}, then a set of vector quantities arises, often called currents,
which fulfill continuity equations. The zeroth components of the currents, often
called charges, are then conserved in time.

From space-time or external symmetries, i.e. the Lorentz-invariance of the
Lagrangian, the conservation of energy, momentum and angular momentum can be
derived. Similarly, the conservation of electric charge follows from the invariance of
the Lagrangian of electromagnetism under transformations that rotate the (complex-
valued) fields in the complex plane. These transformations are just the multiplication
by a complex number, belonging to the symmetry group of unitary, one-dimensional
matrices U(1).

Groups of continuous transformations are mathematically described by Lie
groups. Any one element g of a Lie group G can be written as an exponent of a
linear combination of the groups generators Qa, which are themselves elements of
the Lie algebra g. The number of generators of a group corresponds to the group’s
dimension, i.e. the number of parameters that are necessary to describe a group
element. These parameters may be chosen as the coefficients of the aforementioned
linear combination, so that

g({θa}) = exp [iθaQa] , (34)

where the factor i is a convention. The generators of a symmetry group fulfill
commutation relations [

Qa, Qb
]

= ifabcQc , (35)
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where the fabc are the group’s structure constants. Furthermore, the generators are
related to the conserved charge that arises if a Lagrangian is invariant under that
symmetry group.

The importance of global symmetries motivates the study of local symmetries,
for which the parameters that describe the field transformations are functions of pace
time, {θa(x)}. A Lagrangian that is invariant under a certain global transformation
with parameters {θa} will generally not be invariant if one simply replaces θa → θa(x).
On the other hand, the invariance can be recovered if new fields are introduced
to counteract the effects of the locality of θa(x) that arise upon a transformation.
These new fields are called gauge fields, and their introduction naturally produces
new interaction terms in the Lagrangian density. One can then add corresponding
gauge-invariant kinetic terms for the gauge fields and interpret them as particle fields.
Crucially, no gauge-invariant mass terms for the gauge fields can be introduced “by
hand”, so the corresponding particles must be massless. A local version of the U(1)
transformation mentioned above is an example of a gauge transformation, and the
electromagnetic Lagrangian is gauge invariant under it.

We now exemplify these concepts using the prototypical symmetry group
SU(N) of unitary matrices with unit determinant, which is a compact Lie group
with N2 − 1 generators T a. These generators are elements of su(N), the Lie algebra
of SU(N). We consider a set of N fields ψi(x), i = 1, . . . , N , that transforms under
the N -dimensional fundamental representation U of SU(N). For the group element
g ∈ SU(N):

ψi(x) → U(g)ijψj(x) = exp [iθaT a]ij ψj(x) . (36)

If we make the transformation local, g → g(x), then Eq. (36) becomes

ψi(x) → U(g(x))ijψj(x) = exp [iθa(x)T a]ij ψj(x) , (37)

and it is necessary to introduce a vector field Aµ(x) which transforms as

Aµ(x) → U(x)(i∂µ + Aµ(x))U−1(x) , (38)

where we have abbreviated U(x) = U(g(x)). The Lorentz components of Aµ are
elements of su(N) and can be expressed in the same representation U as a linear
combination of the generators T a:

Aµ,ij(x) = qAaµ(x)T aij . (39)

The common, constant factor q is called coupling. The N2 −1 vector fields Aaµ(x) are
the components of Aµ(x), i.e. the coefficients of the generators. The component fields
Aaµ(x) transform under the N2 − 1-dimensional adjoint representation of SU(N),
which can be constructed from the structure constants.

The gauge field Aµ(x) is introduced into the Lagrangian density via the covariant
derivative Dµ := ∂µ − iAµ(x), which in components reads

Dµ,ij := ∂µδij − igAaµ(x)T aij , (40)
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and replaces the standard derivatives ∂µ in the kinetic terms of the fields ψi(x). The
kinetic term of Aµ(x) has the form

− 1
2g Tr [Fµν(x)F µν(x)] (41)

and is given in terms of the field-strength tensor

Fµν(x) = i [Dµ(x), Dν(x)] = ∂µAν(x) − ∂νAµ(x) − i [Aµ(x), Aν(x)] , (42)

which reads in components

F a
µν(x) = ∂µA

a
ν(x) − ∂νA

a
µ(x) − igfabcAbµ(x)Acν(x) . (43)

The structure constant in the third term of the right hand side of Eq. (43) comes
from the commutator of generators that follows from Eq. (42). If the symmetry
group were commutative, this term would not arise. The presence (or absence) of
this term has important consequences for the theory. These are derived from the
fact that, when the term is present, the Lagrangian will contain self-interaction
terms of the fields Aaµ(x).

The considerations described so far apply to classical fields. While they carry
over to quantum fields, care has to be taken in the quantization of the massless vector
fields that are introduced in gauge theories, as was mentioned in Sec. 1.1.1. The
renormalizability of Yang-Mills theories, i.e. of gauge theories based on a compact Lie
group, was proved by t’Hooft in [49], and the proof was extended to spontaneously
broken Yang Mills theories shortly after [50].

1.3.1 The Standard Model

During the past century, gauge quantum field theories were developed to understand
the forces that govern particle physics. On the one hand, Quantum Chromodynamics
(QCD) was put forward as the theory of strong interactions. During its development,
a quantum number that can assume three values, called color, was introduced, which
finally gave the theory its name. Particles that are described by QCD, i.e. those that
interact strongly, are said to be color charged. In its final formulation, QCD is a
gauge theory with the underlying symmetry group SU(3), and strongly interacting
fields transform according to a representation of this group. The dimension of the
fundamental representation, 3, is often written as NC , the number of colors.

On the other hand, the electromagnetic and weak forces are both described by
the Glashow-Weinberg-Salam model, which unifies both interactions at large energies.
It is a gauge theory with the symmetry group SU(2) × U(1), but the gauge fields
that it contains are both massless and massive, as opposed to those of QCD. This is
achieved via the process of Electroweak Symmetry Breaking (EWSB), which will be
discussed further below.

The Standard Model (SM) of particle physics consists of QCD and the elec-
troweak model, and gives a description of the forces of nature, with the important
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exception of gravity. It is itself a gauge QFT with the product symmetry group
SU(3) × SU(2) × U(1).

The SM contains 12 spin-1/2 matter fields, 12 spin-1 gauge fields or force
carriers and a spin-0 scalar field, the Higgs field. These fields (or linear combinations
thereof) are associated to particles. The 12 fermions are divided into 6 quarks and 6
leptons, according to their behavior under SU(3) transformations. While both quark
and lepton fields transform non trivially under SU(2), lepton fields are singlets of
SU(3), meaning that quarks carry a color charge, while leptons do not.

Generally, a Dirac field ψ that describes a fermion can be decomposed in left- and
right-handed chirality eigenstates ψ = ψL + ψR by the projectors PL/R = (1 ∓ γ5)/2.
SU(2) transformations act differently on these left- and right-handed parts. The
left-handed parts of the lepton fields are organized in three SU(2) doublets

Ln =
(
νL,n
eL,n

)
, (44)

where n = 1, 2, 3 is the generation number, νL,n and eL,n are the left-handed parts
of the neutrino and electron-type fields νn and en, respectively. Similarly, the
left-handed parts of the quark fields form the three doublets

Qn =
(
uL,n
dL,n

)
, (45)

with the left-handed parts of the up- and down-type quark fields un and dn. The
right-handed parts of the matter fields uR,n, dR,n, and eR,n, on the other hand, are
singlets of SU(2). For the case of neutrinos, the right-handed part is not present in
the SM. The fermions of each generation have specific names. Instead of “quarks
of u-type of the first, second and third generation”, they are typically called “up,
charm and top” (u, c, t). The d-type quarks receive the names “down, strange and
bottom” (d, s, b). Similarly, the electron-type fields are called “electron, muon and
tauon” (e, µ, τ), and the corresponding neutrino-type fields are “electron-, muon-
and tauon-neutrino” (νe, νµ, ντ ). These 12 unique fermion labels are called flavors.

Before EWSB, the SM contains the components W a
µ , a = 1, 2, 3 and Bµ of the

gauge fields of SU(2) and U(1). The corresponding components of the field-strength
tensors are

F1,µν = ∂µBν − ∂νBµ , (46)
F a

2,µν = ∂µW
a
ν − ∂νW

a
µ + g2ε

abcW b
µW

c
ν , (47)

where εabc are the components of the Levi-Civita tensor, the structure constants of
SU(2). The absence of a third term in the equation for F1,µν reflects the commu-
tativity of U(1). After EWSB, combinations of W a

µ and Bµ will correspond to the
physical photon and electroweak bosons.

The remaining eight force-carrier fields are the components Ga
µ of the gauge

field of SU(3), called gluon fields, which carry a color charge themselves. Their
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field-strength tensors are

F a
s,µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν , (48)

with the structure constants of SU(3), of which only the following are non-zero:

f 123 = 1 , f 458 = f 678 =
√

3
2 , (49)

f 147 = −f 156 = f 246 = f 257 = f 345 = −f 367 = 1
2 .

The gauge fields form the covariant derivative

Dµ = ∂µ + ig1
Y

2 Bµ − ig2
τa

2 W
a
µ + igsT

bGb
µ , (50)

with the couplings g1 and g2 and the strong coupling gs. The hypercharge Y is the
generator of the U(1) symmetry group, the three τa are those of SU(2) and the
eight T a the ones of SU(3). In the fundamental representation, one chooses the
Pauli matrices for τa. The T a are represented by 1/2 times the Gell-Mann matrices
λa,

T a = λa/2 . (51)

The Gell-Mann matrices are traceless, Tr[λa] = 0 ∀a, and fulfill the relations

Tr[λaλb] = δab and (52)

(λa)ij(λa)k` = δi`δjk − 1
NC

δijδk` . (53)

The covariant derivative of Eq. (50) appears in the kinetic terms of the matter
fields

Lmatter = L̄ni /DLn + Q̄ni /DQn + ēR,ni /DeR,n + d̄R,ni /DdR,n , (54)

where L̄n, Q̄n are the Dirac adjoint fields of Ln, Qn and we have used the slash
notation /D = γµDµ. In Eq. (54), the sum over the generation index n is implicit.
Before EWSB, there are no mass terms for the matter fields. The interaction terms
between gluons and quarks that result from Lmatter are

−gs
∑
q

ψ̄q,iγ
µT aijG

a
µψq,j , (55)

where ψq,i is the Dirac spinor of a quark with flavor q and color charge i = 1, 2, 3).
This interaction involves a rotation in color space produced by T a. Unlike the other
massless gauge boson, the photon, the gluons carry a (color) charge and can interact
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with themselves. The couplings between the matter fields and the other gauge
bosons will be discussed after EWSB.

Lastly, the SM contains the Higgs complex scalar field φ which transforms as a
doublet under SU(2) and is a SU(3) singlet:

φ =
(
φ+

φ0

)
. (56)

It contributes to the Lagrangian of the SM with its kinetic and potential terms

Lφ = (Dµφ)†(Dµφ) − V (φ†φ) , (57)

where Dµ is as in Eq. (50) and the Higgs potential is given by

V (φ†φ) = λ
[
φ†φ− µ2/2λ

]2
, (58)

with the real parameters µ2 and λ, λ > 0. The Higgs field couples to the fermion
fields according to the interaction terms

LYukawa = yeijL̄i φ eR,j + ydijQ̄i φ dR,j + yuijQ̄i φ̃ uR,j + h.c. , (59)

where

φ̃ =
(
φ0∗

−φ+∗

)
(60)

and the Yukawa couplings ye, yd and yu are matrices in the space of fermion
generations.

1.3.2 Electroweak Symmetry Breaking

The electroweak SU(2) × U(1) symmetry of the SM is broken and reduced to a
U(1) symmetry via the Brout-Englert-Higgs mechanism. Thereby, mass terms for
the fermions and weak vector bosons are generated in the SM Lagrangian in a
gauge-invariant way. The mechanism consists of the introduction of the Higgs field φ
as stated above, and of the choice µ2 > 0 for the Higgs potential in Eq. (58). Then,
V is minimized by field configurations with

φ†φ = µ2/(2λ) =: v2/2 , (61)

where v is called the vacuum expectation value (vev). Then, gauge freedom can be
exploited to perform a transformation at every point in spacetime to restrict the
field φ to its lower component and rewrite

φ =
(

0
1√
2(v + h(x))

)
, (62)
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with the real excitation field h(x) around v. This choice, called unitary gauge, makes
the rest of the procedure more transparent.

Equation (62) is then inserted in Eqs. (57) and (59). The kinetic term of the
Higgs fields yields

(Dµφ)†(Dµφ) =1
2 [∂µh]2 + g2

2v
2

4
[
(W 1

µ)2 + (W 2
µ)2] (63)

+v
2

8
[
(g2W

3
µ − g1Bµ)2]+ higher orders in the fields .

Aside from the kinetic term of h(x), one can recognize the mass terms for the fields
W 1
µ and W 2

µ . Although the Higgs mechanism generates mass terms for them, the W 1
µ

and W 2
µ fields mix under electroweak transformations. Therefore, they are combined

to

W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ) , (64)

which are eigenstates of the left-over U(1)-electromagnetic symmetry, where + and
− correspond to particle and antiparticle respectively.

Equation (63) also contains a mass term for the linear combination
(g2W

3
µ − g1Bµ), suggesting that it represents a physical field. The weak mixing

angle θW is defined by

tan θW := g1/g2 (65)

and is used to parametrize the two independent linear combinations of W 3
µ and Bµ

as the new fields Zµ and Aµ, defined as(
Zµ
Aµ

)
:=
(

cos θW − sin θW
sin θW cos θW

)(
W 3
µ

Bµ

)
.

While a mass term is generated for Zµ, Aµ remains massless after EWSB. The W±
µ ,

Zµ and Aµ fields are the physical fields that correspond to the particles we observe:
the electrically charged W+ and W− bosons, the neutral Z boson and the massless
photon γ 2. These identifications are justified by the coupling of these bosons to the
matter fields, as we will se below. The mass parameters of the weak bosons then
read

MW = g2v

2 , MZ = g2v

2 cos θW
= MW

cos θW
,

and are directly proportional to the vev of the Higgs field. Among the higher-order
terms on the right hand side of Eq.(63) there are triple and quartic couplings between
the Higgs field and the weak vector bosons:

−
(
h

v
+ h2

v2

)(
2M2

WW
+µW−

µ +M2
ZZ

µZµ
)
. (66)

2While the letter A is commonly used to denote the photon field, the particle is more often
represented by the letter γ.
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Inserting Eq.(62) into the Higgs potential of Eq. 58, one obtains the self-
interaction terms of the Higgs field

λv2h2 + λvh3 + λ

4h
4 (67)

from which the Higgs boson mass can be read.

mh =
√

2λv2 . (68)

The field-strength tensors of all gauge fields are part of the Lagrangian according
to Eq.(41). In components, these terms are

Lgauge = −1
4G

a
µνG

a,µν − 1
4W

a
µνW

a,µν − 1
4BµνB

µν . (69)

The first term in Eq. (69) includes the kinetic and self-interaction terms of the gluon
field. After EWSB, the second and third terms yield the triple and quartic couplings
of the physical fields in the following combinations:

W+W−Z , W+W−A , and
W+W−W+W− , W+W−ZZ , W+W−AA , W+W−ZA .

We now turn to the Yukawa terms of Eq. (59) after Eq. (62) is used. The
Yukawa couplings ye, yu and yd can be diagonalized so that a mass term is generated
for each of the fermions, with the exception of the neutrinos. From now on, we
assume this has been done and refer to the mass eigenstates. For the first generation
of leptons, for example, one finds

ye(L̄φeR + ēRφ
†L) = ye√

2
(ēLveR + ēRveL) + ye√

2
(ēLheR + ēRheL) . (70)

The first term on the right hand side of Eq. (70) has the form of a mass term, since

mēe = mē(PL + PR)e = mē(PLeL + PReR) = m(ēReL + ēLeR) ,

so we interpret the factor yev/
√

2 as the electron mass. The second term describes
the interaction of the physical Higgs field h(x) with the fermion.

In the process of diagonalizing the Yukawa couplings, all terms in the Lagrangian
where the matter fields appear can remain unchanged except for one kind. This
exception are the interaction terms of quarks with the W± bosons which result from
the covariant derivatives in Lmatter. They are

− g2

23/2

∑
n

Q̄′
nγ

µ(W+
µ τ

+ +W−
µ τ

−)Q′
n , (71)
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where

Q′
n =

(
uL,n
d′
L,n

)
(72)

and the τ± are the weak-isospin raising and lowering operators

τ+ =
(

0 1
0 0

)
, τ− =

(
0 0
1 0

)
. (73)

The term in Eq. (71) is contained in Eq. (54). In this charged-current interaction,
it is not the mass eigenstates of the dL-type quark fields that appear, but linear
combinations of them of the form d′

L,i =
∑

j VijdL,j . The coefficients Vij are elements
of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which is described by four
physical parameters and is very close to being a unit matrix [51]. Due to the
non-diagonal elements of the CKM matrix, the charged-current interaction can
change the generation of a quark. Even for a diagonal CKM matrix, this interaction
changes the flavor of a quark within a generation, i.e. it mixes the upper and lower
components of the SU(2) doublets. In this work, we use the approximation of a
diagonal CKM matrix.

The couplings of the remaining electroweak bosons to the matter fields are not
influenced the diagonalization of the mass matrices of the fermion fields and involve
the complete Dirac fields, i.e. both the left- and right-handed field components. The
interaction terms between the electroweak boson A and the matter fields are

− g1g2√
g2

1 + g2
2

∑
f

f̄

[
τ 3

2 + Y

]
γµfAµ , (74)

where f = fL + fR stands for a fermion field and the sum runs over all flavors
and the operators τ 3 and Y act on the fermion fields. The Gell-Mann-Nishijima
formula [38] defines the square bracket in Eq. (74) as the electric charge operator

QEM = τ 3

2 + Y , (75)

which is the conserved generator of the U(1)EM symmetry that remains after EWSB.
Interpreting Eq. (74) as the fermion-photon interaction from quantum electrody-
namics, it becomes clear that QEM gives the electric charge of fermion f , i.e. the
strength of it’s interaction with the photon field in units of the combination

g1g2√
g2

1 + g2
2

=: eEM , (76)

which corresponds to the electromagnetic coupling constant, i.e. the absolute value
of the electron charge [51].
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The couplings of the Z boson and the fermions are of the form

−eEM
∑
f

f̄γµ(cV − cAγ
5)fZµ . (77)

As opposed to the charged-current interaction, this neutral-current interaction
couples only fermions of the same flavor. This interaction involves a vector coupling
and an axial coupling, with coefficients cV and cA which are operators that act on
the fermion fields given by

cV = τ 3 − 2QEM sin2 θW
2 sin θW cos θW

and cA = τ 3

2 sin θW cos θW
. (78)

For the purposes of calculations at the level of cross sections, the quantities

αem := e2
EM
4π = g2

2 sin2 θW
4π , αs := g2

s

4π (79)

are defined, and are denoted as the electromagnetic and strong coupling constants.
As we will see in Sec. 1.3.3, the coupling constants are in fact energy dependent.
Nevertheless, the strong coupling constant is generally larger than the electromagnetic
one. At an energy equivalent to the mass of the Z boson MZ = 91.1876 GeV, for
example, they are [52]

αem ≈ 1
127 ≈ 0.008 , αs ≈ 0.118 . (80)

1.3.3 The Running of αs

One consequence of the regularization and renormalization procedures that were
discussed in Sec. (1.1) is the introduction of a dependence of the renormalized
couplings of the theory upon the parameter µ. This dependence is given by the
renormalization group equation (RGE)

µ
dg
dµ

= β(g), (81)

which can be derived from the fact that renormalization does not affect the relations
between physical quantities [42]. In Eq. (81), g stands for a generic coupling and β(g)
is the beta function of the relevant theory. This beta function can be determined
to a certain order of perturbation theory, and then used to solve Eq. (81). This
gives the explicit running of the coupling, i.e. the function g(µ) to the corresponding
perturbative order. Thanks to this relation, it is possible to calculate the value of
the coupling at a certain scale µ given an initial value at a different scale µ0.

As it turns out, the lowest order of the beta function with respect to the coupling
is two. With the series expansion

−β(g) =
∞∑
n=0

βn
(4π)1+n g

2+n (82)
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from [53] and taking the lowest-order coefficient, the first-order solution of Eq. (81)
is [54]

g(µ) = g(µ0)
1 + β0 g(µ0) log µ

µ0

, (83)

with a reference scale µ0.
The beta functions that describe the running of the two couplings constants

of the SM, αem and αs, have a fundamental difference: while β0 < 0 for the
electromagnetic coupling, it is β0 > 0 for the strong coupling. More specifically, for
QCD it is

β0 = 11
3 CA − 4

3TF nf (84)

with the number of flavors nf and the group-theoretical factors of SU(N)

CA = N , TF = 1
2 (85)

with N = 3 for SU(3). Consequently β0 > 0 holds for nf < 33/2, in particular for
the SM where nf = 6.

This key difference in β0 can be traced back to the non-commutativity of SU(3),
the gauge group of QCD. In terms of the running of the couplings, this means
that they behave in opposite ways with respect to the renormalization scale. While
αem decreases for lower values of µ, αs becomes larger. For sufficiently low µ, the
strong coupling constant grows so much that perturbative methods stop being a
good approximation. On the other hand, the strong coupling constant becomes ever
smaller for growing values of µ, a phenomenon that is called asymptotic freedom.
While both couplings depend upon µ, the electromagnetic coupling is normally
regarded as constant in QCD calculations. This is justified because the αem scale
dependence is much weaker than the corresponding one for αs.

As mentioned in Sec. 1.1, the scale µ is an arbitrary quantity of mass dimen-
sion. On the other hand, it implicitly defines the point at which the subtractions
which remove the ultraviolet divergences are performed [55], hence µ is called the
renormalization scale and denoted by µr, which we will do from now on.

Quantities calculated at a given perturbative order require a choice for its
value, since the matrix elements display an explicit dependence upon it3. Often, an
adequate choice is a characteristic energy scale Q2 of the process under consideration.
This is adequate in the sense that it prevents logarithms that appear in higher-order
corrections from becoming too large and spoiling the perturbative expansion, see
Sec. 10.5 in Ref. [43], and µr is generally chosen this way. In other words, αs(µ2

r ' Q2)
is indicative of the effective strength of the strong interaction in a process with

3This dependence becomes weaker for higher orders, and it is used to estimate the size of the
uncertainty due to the truncation of the perturbative series.
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Figure 2: Comparison of indirect measurements of the strong coupling constant
against its theoretical running. The data points show values of the strong coupling
constant αs, extracted from different measurements at different energy scales Q. The
solid line shows the running of the coupling computed from the starting energy value
M2
Z . Figure taken from Ref. [52].

momentum transfer Q [52]. The asymptotic freedom of QCD ultimately allows for
the perturbative treatment of the theory of strong interactions in the high-energy
regime.

Values for αs can be extracted from measurements of observables at different
energy scales by using theoretical expressions at a certain order for those observables.
In Fig. 2, such values are displayed as points, which are in agreement with the
running of the coupling calculated from the beta function using αs extracted at
Q2 = M2

Z as an input value.

1.3.4 Lagrangian and Feynman Rules

All in all, the Lagrangian of the SM is given by

LSM = Lmatter + Lgauge + Lφ + LYukawa + Lgauge-fixing , (86)

where Lgauge-fixing compiles the gauge-fixing terms that are necessary for the quan-
tization of the gauge fields, including the ghost fields that are introduced in the
path-integral quantization of QCD. We don’t mention these terms explicitly. The
interactions contained in LSM, most of which have been discussed in this section,
give rise to Feynman rules for matrix elements. In Figs. 3 and 4 we cite some of
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1.3 Gauge Theories and the Standard Model

them, following Ref. [42], separately for particles with and without participation in
the strong interaction.

Equations (87) to (91) in Fig. 3 show some Feynman rules of QCD. The
rules in Eqs. (87) and (88) are for internal propagators and those in Eqs. (89) to
(91) are for interaction vertices. The vertices in Eqs. (90) and (91) correspond to
the self-interactions of the gluons. Here, q and g denote quark and gluon fields,
respectively. Greek characters denote Lorentz indices, while latin characters denote
fundamental (i, j) or adjoint (a, b, c, d, e) color indices. The fabc are the structure
constants of the SU(3) color group, see Eq. (49). The Dirac indices carried by
gamma matrices are suppressed. Momentum flow is indicated by a separate arrow
and fermion flow is indicated by embedded arrowheads. Rule (88) includes the gauge
parameter ξ. Common gauge choices include Feynman gauge (ξ = 1) and Lorenz
gauge (ξ = 0) [56].

Figure 4 displays some Feynman for the EW sector. There, f denotes a fermion
field and V stands for A, Z or W . In rule (93), MA = 0 for the photon V = A. As
in Eq. (88), rule (93) includes the gauge parameters ξV , which can in principle be
different for each EW vector boson V . Rule (95) has been simplified by assuming a
diagonal CKM matrix. The vector and axial couplings cV and cA of rule (96) are
defined in Eq. (78). The triple and quartic gauge couplings of rules (97) and (98)
depend upon the kind of vector bosons that are involved. Their values are given in
Table 1.

Table 1: Values of the triple and quartic EW gauge couplings for specific combinations
of vector bosons. Here, sin θW is the Weinberg angle from Eq. (65).

V1V2V3 AW+W− ZW+W−

cTGC 1 − cos θW/ sin θW

V1V2V3V4 W+W−AA W+W−ZZ W+W−AZ W+W+W−W−

cQGC −1 − sin2 θW/ cos2 θW cos θW/ sin θW 1/ sin2 θW

In Fig. 5, we show two further Feynman rules that are relevant for this work.
These describe the propagator of the Higgs boson and the interaction vertex of one
Higgs boson and two EW bosons, se also Eq.(66).

In calculations, the denominator of massive propagators is often modified to
include the decay width Γ of the associated particle as

p2 −M2 → p2 −M2 + iMΓ . (101)

The particle’s width Γ, which is a quantity that can be extracted from measurements,
regulates the pole in the propagator. The replaced denominator on the left side of
Eq. (101) leads to cross sections that behave like a Breit-Wigner distribution near
the resonance, which correctly reproduces experimental observations. On the other
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j i
p

q
= iδij

/p+m

p2 −m2 + iε
(87)

a, µ b, ν
p

g
= iδab
p2 + iε

[
−
(
gµν − pµpν

p2

)
− ξ

pµpν
p2

]
(88)

a, µ

i

j

g

q

q̄

= igsT
a
ijγ

µ (89)

a, µ

g2, b, ν

g3, c, ρ

k1

g1

k2

k3 =
gsf

abc [ gµν(k1 − k2)ρ
+ gνρ(k2 − k3)µ + gρµ(k3 − k1)ν ]

(90)

g1, a, µ

g2, b, ν

g3, c, ρ

g4, d, σ

=
−ig2

s [ fabef cde(gµρgνσ − gµσgνρ)
+ facefdbe(gµσgρν − gµνgρσ)
+ fadef bce(gµνgσν − gµρgσν)

] (91)

Figure 3: Some Feynman rules of QCD. The rules in Eqs. (87) and (88) are for
internal propagators and those in Eqs. (89) to (91) are for interaction vertices. See
text for details.
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p

f
= i

/p+m

p2 −m2 + iε
(92)

µ ν

p

V = i

p2 −M2
V + iε

[
−
(
gµν − pµpν

p2 − ξVM2
V

)
− ξV

pµpν
p2 − ξVM2

V

]
(93)

µ A

f

f̄

= −ieEMQ
f
EMγ

µ (94)

µ W

f

f̄

= ieEM√
2 sin θW

γµPL (95)

µ Z

f

f̄

= ieEMγ
µ(cfV − cfAγ

5) (96)

µ

V2, ν

V3, ρ

k1

V1

k2

k3 = ieEMcTGC (gµν(k1 − k2)ρ + gνρ(k2 − k3)µ + gρµ(k3 − k1)ν)

(97)

V1, µ

V2, ν

V3, ρ

V4, σ

= ie2
EMcQGC (2 gµνgσρ − gνρgµσ − gρµgνσ) (98)

Figure 4: Feynman rules for fields without color charge. Equations (92) and (93)
give the rules for internal leptons and EW vector bosons, respectively. Equations (94)
to (97) give rules for couplings. See text for details.
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p

h = i

p2 −m2
h + iε

(99)

h

V, µ

V, ν

= i eEM gµνMV (100)

Figure 5: Two feynman rules including the Higgs field. Equation (92) gives the rule
for the propagator of a Higgs boson and Eq. (93) gives the rules for the couplings of
two equal EW vector bosons V to the Higgs boson.

hand, the replacement of Eq. (101) arises from the theory if one considers the exact
(all-orders) propagator, see for instance Ref. [38].

We finalize this section with some remarks about the practical use of the
Feynman rules. To arrive at expressions for matrix elements of scattering processes
from Feynman diagrams, wave functions of the external particles and the Feynman
rules for internal propagators and vertices are multiplied together, for each diagram.
Thereby, the Lorentz indices in the expressions are contracted and scalar quantities
result, which possibly still depend upon polarization (or spin) and color degrees of
freedom of the attached wave functions.

In mathematical expressions of Feynman diagrams that include strongly inter-
acting particles, the color-dependent part, which arises from the δij, T aij and fabc

factors in the Feynman rules above, can be separated from the spin- and momentum-
dependent part. More generally, a matrix element at a certain order, to which
potentially many Feynman diagrams contribute, can be linearly decomposed as [57]

M =
∑
i

CiAi , (102)

where the color factors Ci summarize the color-algebra dependence and the A
are called partial or color-ordered (sub)amplitudes and carry the polarization and
kinematic dependence.

As mentioned in Sec. 1.1.1, degrees of freedom that are not observed are averaged
over when calculating observables from matrix elements. While this is always the
case for color indices, spin indices may or may not be averaged over to obtain
unpolarized or polarized observables, respectively. The observables considered in
this work are unpolarized.
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1.4 Hadron Collisions

1.4 Hadron Collisions and Factorization
Up to this point, our discussion of the theoretical calculation of collision processes
has involved only elementary particles. On the other hand, investigating processes
with strongly interacting particles in the initial state requires the collision of hadrons.
This is due to the fact that no free color-charged particles can be detected, a property
known as color confinement. While it is associated with the low-energy regime, in
which perturbative QCD breaks down due to a large strong coupling constant, it is
not entirely understood how the confinement property arises from QCD [42].

Hadrons are color-neutral bound states of quarks, which can be observed.
Historically, the quark hypothesis was put forward in 1964 to classify the hadron
spectrum in the first place [58, 59], which seemed too rich to be fundamental. Later, it
was found that the observations from experiments of Deep Inelastic Scattering (DIS),
in which a hadron is probed with a very energetic lepton, were highly compatible
with the thesis of free, point-like scattering centers inside of hadrons [60, 61, 62].
Specifically, it was shown that the so-called structure functions of hadrons follow a
specific scaling property, known as Björken scaling, to a very good approximation.
These scattering centers have the properties of quarks and were called partons by
Richard Feynman [39], who consequently formulated the parton model of hadron
scattering [63].

In the naive form of this model, hadrons in hard (i.e. highly energetic) scattering
processes act like an ensemble of free partons. The hadron momentum is distributed
over the momenta of the partons, which are themselves mostly collinear to the
hadron’s momentum. Then, the cross section of a process with hadrons h1 and h2
in the initial state and an n-parton final state is given by

σh1h2→n =
∑
a,b

∫ 1

0
dxadxb fh1

a (xa) fh2
b (xb) σ̂a,b→n(xa, xb, µr) , (103)

where a and b are partons in h1 and h2, respectively, and σ̂ab→n is the partonic cross
section, that can be computed by perturbative methods to a certain order and is
given by,

σ̂ab→n = 1
2ŝ

∫
dΦn |Ma,b→n( Φn)|2 , (104)

according to Eq. (14) for massless incoming particles. Here ŝ = xaxbs is the partonic
center of mass energy and s is its counterpart for the two-hadron system.

The fhi
j (xj) are parton distribution functions (PDFs) and describe the probability

that the j-th parton of hadron hi carries the momentum xjPhi
, which is a fraction

of the total hadron’s momentum Phi
for xj ∈ [0, 1]. The PDFs act as the weights

in the sum over partonic cross sections, and the hadronic cross section is obtained
upon integrating over all possible momentum fractions. Thus, Eq. (103) represents
the incoherent sum of interactions between the partons, i.e. a sum at cross-section
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level. This model neglects interferences and interactions between the final state
particles. Also, it assumes that parton distribution functions are universal, so that
the PDF of a hadron can be used in different processes with different partonic cross
sections, as long as that hadron is part of the initial state.

While the naive parton model is independent of QCD, the two can be connected.
Treating partons as free particles in high energy collisions is consistent with asymp-
totic freedom. Furthermore, together with perturbative QCD, the parton model can
explain the deviation to Björken scaling that is observed in experiments [56]. Also,
the gluons of QCD can be included as constituents of hadrons, i.e. as partons, to
solve the issue that the fraction of a hadron’s momentum carried by quarks and
antiquarks is significantly less than one [64].

On the other hand, Eq. (103) assumes that the hadronic process can be separated
into a hard partonic process that is calculated with perturbative methods and a
non-perturbative description of the hadrons, which is realized by the universal PDFs.
This property is called factorization, and it is not trivial to recover from QCD. It has
in fact only been shown for certain processes, DIS and the Drell-Yan process [53],
but not for general processes involving two hadrons in the initial state. Nevertheless,
the validity of factorization for such processes is often assumed. When factorization
holds, it does so up to terms that are suppressed by powers of the characteristic
hard scale of the process. Schematically, the factorization property for a process
involving hadrons can be written as [56]

σhad = f ⊗H + O
(

ΛQCD

Q

)
, (105)

where f are the PDFs, H is the perturbative hard calculation and ⊗ denotes a
convolution. In Eq. (105), ΛQCD is the scale at which perturbative QCD breaks
down and Q is a high-energy scale of the process described by σhad. Since the PDFs
describe an energy regime that cannot be treated by perturbative methods, they are
not calculated but extracted from experimental data.

The separation of scales stated by factorization offers a solution to the problem of
uncancelled collinear divergences that was illustrated in Sec. 1.2.3. These divergences
arise at NLO from collinear emissions off massless particles in the initial state, which
in the real corrections are part of what would correspond to σ̂ in Eq. (103). As
mentioned in Sec. (1.2.3), these IR divergences can be dimensionally regularized as
poles of a regulator εIR, whereby a mass scale µ is introduced. Then, the poles in εIR
themselves factorize from the underlying LO process. Such collinear emissions are to
be associated to the initial states themselves and not the hard part of the process [46].
Therefore, it is natural to shift them from σ̂ to a redefinition of the PDFs in Eq. (103),
so that the remaining hard part is free of all divergences. Schematically, this shift
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reads

σh1h2 =
∑
a,b

∫ 1

0
dxadxb fh1

a (xa) fh2
b (xb) σ̂a,b(xa, xb, µr) (106)

=
∑
a,b

∫ 1

0
dxadxb fh1

a (xa) fh2
b (xb)Ca(µf)Cb(µf) σ̂finite

a,b (xa, xb;µr, µf)

=
∑
a,b

∫ 1

0
dxadxb f̃h1

a (xa;µf) f̃h2
b (xb;µf) σ̂finite

a,b (xa, xb;µr, µf) ,

where the Ci(µr) contain the εIR poles associated to collinear emission from the
initial-state parton i and µf is the factorization scale, the mass scale introduced
during the dimensional regularization of the IR divergences.

More specifically, consider the calculation of a partonic cross section σ̂a,b at
NLO. After the KLN cancellation is carried out, initial-state collinear divergences
remain. Assume that one of them originates from parton a with momentum pa
emitting a particle c, thereby retaining only the fraction z of its momentum and
possibly becoming another parton d, which then goes on to enter the hard scattering
with momentum zpa. Such a divergence takes the following form

− 1
εIR

αs

2πPda(z) σ̂
LO
d,b (zpa) , (107)

where σ̂LO corresponds to the LO hard process initiated by partons d and b and
Pda(z) is a Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) splitting function
associated to the splitting a → cd. Similar divergences associated with collinear
emissions by a can be collected as

σ̂a,b|ICdiv,a = − 1
εIR

∑
d

∫ 1

0
dz αs

2πPda(z) σ̂
LO
d,b (zpa) , (108)

where we have summed over all possible splittings and integrated over the momentum
fraction z. The NLO partonic cross section σ̂a,b then contains

σ̂a,b = σ̂LO
a,b + σ̂real

a,b

∣∣
ICdiv,a + finite terms , (109)

where the finite terms are of NLO and the remainders of the KLN cancellation.
We now go back to the first line of Eq. (106) and consider only the parts that

concern parton a, for simplicity. We insert Eq. (109), then rename the summation
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indices in the second term and then shift the integration variable to obtain

∑
a

∫ 1

0
dxafh1

a (xa) σ̂a,b(xa) (110)

=
∑
a

∫ 1

0
dxa

[
fh1
a (xa) σ̂LO

a,b (xa) − 1
εIR

∑
d

∫ 1

0
dz fh1

a (xa)
αs(µf)

2π Pda(z) σ̂LO
d,b (zxa)

]

=
∑
a

∫ 1

0
dxa

[
fh1
a (xa) σ̂LO

a,b (xa) − 1
εIR

∑
d

∫ 1

0
dz fh1

d (xa)
αs(µf)

2π Pad(z) σ̂LO
a,b (zxa)

]

=
∑
a

∫ 1

0
dxa

[
fh1
a (xa) σ̂LO

a,b (xa) − 1
εIR

∑
d

∫ 1

xa

dz
z
fh1
d (z) αs(µf)

2π Pad

(xa
z

)
σ̂LO
a,b (xa)

]

=
∑
a

∫ 1

0
dxa

[
fh1
a (xa) − 1

εIR

∑
d

∫ 1

xa

dz
z
fh1
d (z) αs(µf)

2π Pad

(xa
z

)]
σ̂LO
a,b (xa) ,

where we have suppressed the finite terms. The second-to-last equality in Eq. (110)
can be seen by inserting an integral

∫ 1
0 dy δ(y− zxa) to the second term, performing

the integral over z and then renaming xa → z and y → xa. These steps can be
equally followed for parton b in Eq. (106).

The last line of Eq. (110) suggests how to redefine the PDFs, namely

f̃h1
a (x) =

[
fh1
a (x) − 1

εIR

∑
d

∫ 1

x

dz
z
fh1
d (z) αs

2πPad
(x
z

)]
. (111)

Using the PDFs extracted from data as f̃(x), only finite terms remain in the total
hadronic cross section. Equation (111) shows that the redefinition corresponds to an
NLO correction to f(x). Thus, the product of the NLO term in f̃(x) and the NLO
terms in the finite, partonic cross section in Eq. (106) would be of orders higher
than NLO, so they are not taken into account in an NLO calculation.

Yet another way to understand the redefinition of the PDFs is that they have
been renormalized. As in UV renormalization, a divergence is subtracted from f(x).
Again, the subtraction can include finite terms, and the MS scheme is used for
PDFs to subtract the terms −γE + log 4π that arise from dimensional regularization.
The equivalent to the RGE for PDFs, which now follows from the independence of
observables from the factorization scale, are the DGLAP equations. For quarks and
gluons, they read [56]

µf
d

dµf

(
fi(x, µf)
fg(x, µf)

)
= αs

π

∑
j

∫ 1

x

dz
z

(
Pqiqj

(x/z) Pqig(x/z)
Pgqj

(x/z) Pgg(x/z)

)(
fj(z, µf)
fg(z, µf)

)
, (112)

at leading order, where the sum i and j stand for quark flavors. The splitting
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functions Pab are

Pqq(z) = CF

[
1 + z2

[1 − z]+
+ 3

2δ(1 − z)
]

(113)

Pqg(z) = TF
[
z2(1 − z2)

]
(114)

Pgq(z) = CF

[
1 + (1 − z)2

z

]
(115)

Pgg(z) = 2CA
[

z

[1 − z]+
+ 1 − z

z
+ z(1 − z)

]
+ β0

2 δ(1 − z) , (116)

with

CF = N2 − 1
N

, CA = NC , TF = 1
2 and β0 = 11

3 CA − 4
3TF nf , (117)

for NC = 3, cf. Sec. 1.3.3, and with the plus distributions [. . . ]+ that regulate the
divergences at z = 1. In general, they act as∫ 1

0
dz f(z)[g(z)]+ =

∫ 1

0
dz (f(z) − f(1))g(z) (118)

on a test function f(z) and a function g(z) that diverges at the upper integration
limit.

The splitting functions Pab from Eqs. (113)–(116) depend only on the type
of splitting they describe. This means that the PDFs remain universal after the
redefinition of Eq. (106). In an NLO calculation, the initial-state collinear emissions
that remain after the KLN cancellation are subtracted in the form of collinear
counterterms from an NLO partonic cross section. In Sec. 2.1, we describe this
subtraction procedure in more detail.

1.5 The Structure of a Collision Event
In this section, we discuss how hadron-initiated processes from collision experiments
are modeled. From the very first interaction between incoming hadrons to the very
last particle decay that occurs before particles can be detected, the process can be
thought of as a sequence of steps, each of which develops at a different energy scale.
A collision can be broken down into the following five components [53]:

1. Hard process (parton-parton collision)
2. Initial and final state radiation
3. Underlying event
4. Hadronization
5. Hadron decays
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These are ordered by momentum transfer from hardest to softest. The broad energy
spectrum that these components encompass demands the use of different models
and techniques for their simulation.

During the hard process, the largest momentum transfer occurs between partons.
This step can be described perturbatively by calculating a hadronic cross section
from matrix elements to a given order and using the the factorization discussed
in Sec. 1.4. This is called a fixed-order (FO) calculation. In practice, this means
the following: After being brought to a suitable form (see Sec. 2.1), Eq. (106) is
numerically integrated using Monte Carlo methods, and a set of external momenta
is sampled, distributed according to the cross section.

The second step in the model is the emission of secondary particles by the
particles going in and out of the hard process. These are highly energetic and can
radiate photons and gluons. Radiated gluons can themselves radiate more gluons or
produce quark-antiquark pairs. This radiation is predominantly collinear, and after
several branchings it resembles a shower. The tools used for their simulation are
denoted accordingly as parton showers (PS) or shower Monte Carlos (SMC). The
description of radiation by a PS is probabilistic and inherently approximative, but
essential for a realistic description of the collision. Such simulations are described in
some more detail in Sec. 2.2.

Besides the main hard process, secondary interactions between the remaining
incoming hadrons, i.e. the components that were ignored when choosing the specific
interacting partons of the hard process, also interact and influence the detected
final state. These other processes are called the underlying event, and cannot be
described perturbatively. After radiating away most of their kinetic energy, the
momenta of the outgoing particles become smaller, and the coupling constant grows.
At some point, the hadronization of quarks and gluons into observable, colorless
bound states takes place. Because of the energy scale, this process again can not be
described using perturbation theory. Its simulation is phenomenological, and relies
on models like the Lund string model [65]. Finally, the decay of possible excited
hadronic states can be modeled. The components of a hadron collision are shown
schematically in Fig. 6.

For this work, we have performed a simulation of the hard process using matrix
elements at NLO in QCD and interfaced the result to the PS of the PYTHIA 8.240
program [67], which takes care of the initial and final state radiation, hadronization
and decays. To control the non-perturbative physics that goes into the simulation of
the underlying event and hadronization PYTHIA employs sets of parameters, called
tunes, that have been collectively tuned to describe experimental data. We employ
the Monash 2013 tune [68], which was created using LHC data and has been the
default of PYTHIA from version 8.200 on. In Sec. 2, we discuss the techniques of
NLO calculations, as well as PS programs and the matching of the two.
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1.6 Jets

Figure 6: Graphic representation of a hadron collision event, from Ref. [66]. The
hard process is represented by the red circle in the middle, and the red lines denote
the final-state of the signal process and its radiation. The blue lines stand for the the
initial state radiation, some of which lead to the beam remnants in light blue. The
underlying event is shown in purple, while the light and dark green lines and shapes
correspond to the hadronization products and their decays respectively.

1.6 Jets
For collision processes that involve color-charged particles in the final state, the
concept of jets plays a crucial role. A physical detector in collision experiments cannot
distinguish very soft or collinear emissions by final-state particles. If a particle emits
others below a certain angle and energy threshold, mother and daughter particles
are perceived as part of the same particle. More generally, any final-state particles
than cannot be well separated are detected as a bundle. These particle bundles are
called jets, and they are part the final states of hadron collisions that are actually
detected, as opposed to single quarks and gluons. From a theoretical point of view,
the concept of jets is important for infrared safety. As we have seen in Sec. 1.2.3, the
virtual correction to the cross section of a 2 → n process must be combined with a
tree-level 2 → n+ 1 cross section to yield a finite result. Thus, an IR-safe observable
must include both 2 → n and 2 → n+ 1 contributions (below a certain threshold),
and be insensitive to soft and collinear emissions. Like a physical detector, an IR-safe
observable can measure jets but not partons.

In simulations of collision processes, jets are constructed event by event using
the momenta of the event’s final-state particles. If a PS program is employed, the
jets are constructed after the initial- and final-state radiation has been modeled by
it. The output of the PS program is a set of the momenta of all final state particles
that have been produced in the shower. This list can be considerably larger than the
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list of final-state momenta directly after the hard process. From this list, bundles of
particles can be found that correspond to the jets that are expected to be observable.

Several jet algorithms exist for the construction of the jets. In general, they
should be insensitive to soft or collinear radiation and hadronization processes,
i.e. they should return similar jets when started directly after the hard process,
after the PS process or after hadronization. Due to the soft/collinear nature of the
radiation that takes place after the hard process, this is compatible with the picture
of jets as particle bundles.

In this work, we employ the commonly used anti-kT clustering algorithm [69].
In it, every final-state particle i is called an entity, and its distances diB from the
beam axis and dij from every other particle j are defined as

diB = 1
p2
T,i

(119)

and

dij = min
(

1
p2
T,i

,
1
p2
T,j

)
∆R2

ij

R2 , (120)

where p2
T,i = p2

1,i + p2
2,i is the transverse momentum of the i-th particle and R is the

radius parameter. ∆R2
ij is the distance between the particle’s momenta in the y − φ

plane

∆R2
ij = (yi − yj)2 + (φi − φj)2 , (121)

with the rapidity

yi = ln p0,i + p3,i

p0,i − p3,i
, (122)

that measures the forwardness of the i-th particle and the azimuthal angle φi between
its momentum and the beam axis. Then, the smallest of all diB, dij for a given i is
identified. If it is a dij , i and j are combined to one entity. If it is diB, i is promoted
to a jet and removed it from the list of entities. The distances are recalculated and
the procedure repeated until no entities are left [69].

The role radius parameter R can be understood as a minimal separation between
entities, below which they are clustered together as a jet. Consider the scenario of
two entities with transverse momenta pT,1, pT,2 and pT,1 > pT,2. Then the relevant
distances according to Eqs. (119 and (120) are

d1B = 1
p2
T,1

, d2B = 1
p2
T,2

, d12 = 1
p2
T,1

∆R2
12

R2 . (123)

Following the algorithm described above, one can see that if ∆R12 < R then
min (d1B, d2B, d12) = d12 and the entities are clustered. If ∆R12 > R, then
min (d1B, d2B, d12) = d1B and entity 1 is declared a jet and taken out of the list, so
the entities are not clustered.
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2 Nex-to-leading Order Calculations and Parton
Showers

In this chapter, we review the general structure of a numerical calculation to the
next-to-leading order in QCD matched to a PS program. For the hard part of the
process, calculated at fixed order, we discuss IR subtraction, i.e. the management
of IR divergences that is necessary to realize the KLN cancellation in practice.
Then, we present the idea behind parton showers and their numerical realization.
Finally, we discuss the problem of matching an NLO calculation to a PS simulation
and conclude the section by presenting one way to deal with it, the POWHEG
method [33, 34].

2.1 Infrared Subtraction
Closely following [34], we want to outline the structure of a QCD NLO calculation
of a hadronic cross section and how the arising divergences are handled in practice
in the methods employed in this work. As discussed in Sec. 1.2.1 and 1.2.3, the
NLO calculation of a partonic cross section must include a Born, a virtual and a
real contribution. According to Eq. (14), the NLO cross section is then given by

σ̂NLO = 1
2ŝ

[∫
dΦn

[
|MBorn(Φn)|2 + 2<{MBorn(Φn) · M∗

virt(Φn)}
]

(124)

+
∫

dΦn+1 |Mreal(Φn+1)|2
]

(125)

where <{z} is the real part of z. To obtain the hadronic cross section, Eq. (124)
can be plugged into Eq. (106), which includes a sum over possible partons, an
integral over each incoming parton’s momentum fraction and the PDFs. To cancel
initial-state collinear divergences, collinear counterterms must be introduced and
redefined PDFs must be used. In the notation of [34], the hadronic cross section
then reads

σNLO =
∫

dΦn L
[
B(Φn) + Vb(Φn)

]
+
∫

dΦn+1 L R(Φn+1)

+
∫

dΦn,⊕ L G⊕,b(Φn,⊕) +
∫

dΦn,	 L G	,b(Φn,	) , (126)

where we have defined the Born, virtual and real contributions B, Vb and R. We
will assume that all contributions in Eq. (126) have been regularized, and that
the virtual term Vb has been renormalized and is UV-finite and only contains IR
divergences, which is hinted at by the “bare” subindex b. B, Vb and R include
the partonic flux factor as well as the sum over the initial-state partons, and are
functions of the momenta of the outgoing momenta ki, i = 1, . . . , n and of the
momentum fractions x⊕ and x	 of the incoming partons, whose three-momenta are
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2 NLO Calculations and Parton Showers

parallel and opposite. Additionally, R depends upon the momentum kn+1 of the
real emission. The corresponding full phase-space elements are

dΦn = dx⊕ dx	 dΦn(k⊕ + k	; k1, . . . , kn) , (127)
dΦn+1 = dx⊕ dx	 dΦn+1(k⊕ + k	; k1, . . . , kn+1) , (128)

where k⊕ = x⊕K⊕ and k	 = x	K	 denote the incoming parton momenta, derived
from the hadron momenta K⊕ and K	. The PDFs, one for each incoming parton,
have been summarized in the luminosity

L = L(x⊕, x	) = f⊕(x⊕) f	(x	) , (129)

where the scale and parton-flavor dependence of the PDFs has been suppressed. In
Eq. (126), G⊕,b and G	,b denote the the initial-state collinear counterterms, which
contain ε poles. They are functions of Φn,⊕ and Φn,	, which correspond to an (n+ 1)
phase space in the scenario of initial-state collinear emission, i.e. with the restriction
that one final-state parton is collinear to one initial-state parton, so that only the
energy of the radiated particle is a free variable. For a given infrared safe observable
O, a function of the final-state momenta, its expectation value can be written as:

〈O〉 =
∫

dΦn L On(Φn)
[
B(Φn) + Vb(Φn)

]
+
∫

dΦn+1 L On+1(Φn+1) R(Φn+1)

+
∫

dΦn,⊕ L On(Φ̄n) G⊕,b(Φn,⊕) +
∫

dΦn,	 L On(Φ̄n) G	,b(Φn,	) , (130)

where Φ̄n is the underlying Born configuration that corresponds to Φn,⊕ or Φn,	,
dΦn,± = dΦ̄n

dz
z

, in which x⊕ or x	 has been substituted by the momentum fraction
that the initial-state particle carries after the collinear emission zx±. The infrared
safety of O requires that O(Φn+1) → O(Φn) in the soft or collinear limits.

Eq. (130) is finite as a whole. Nevertheless, the fact that the divergences arise
in different phase-space integrals means that the integrals can not be carried out
separately, since they are each individually divergent. Therefore, a subtraction
method is typically employed to rewrite Eq. (126) in a way suitable for numerical
calculations. In a subtraction scheme, the soft and collinear divergences that the
real contribution R would develop upon integration are subtracted from it under
the integral (over the n + 1-particle phase space) by suitable real counterterms.
These are a set of functions C(α)(Φn+1) that have the same divergent structure
as R(Φn+1) in the soft or collinear limits and are analytically integrable over the
(one-particle) phase space of the extra emitted particle. The real counterterms are
integrated and added back to the rest of the contributions. The divergences present
in the integrated real counterterms, the bare virtual contribution and the collinear
counterterms cancel, and the integration over the n-particle phase space can be
performed. We now describe this process in a schematic way. We refer to Sec. 2.2
of [34] for a detailed discussion of the subtleties involved with the phase-space
arguments.
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2.1 Infrared Subtraction

The real contribution in Eq. (130) is rewritten as∫
dΦn+1 LOn+1(Φn+1) R(Φn+1) =

∑
α

∫
dΦn+1

[
L̃On(Φ̄n) C(Φn+1)

]
α

+
∫

dΦn+1

{
LOn+1(Φn+1) R(Φn+1) −

∑
α

[
L̃On(Φ̄n) C(Φn+1)

]
α

}
, (131)

using a real counterterm for each divergent region α, such that the second line of
Eq. (131) is finite in 4 dimensions. Here, L̃ is as L, but its arguments correspond to
the phase-space configuration that defines α.

In the next step, the first sum on the right hand side of Eq. (131) is divided in
two, one sum over the soft and final-state collinear divergences {S,FSC}, and the
other over the initial-state collinear divergences {ISC}. Then, each of these sums is
integrated over the appropriate radiation phase space, and we arrive at

〈O〉 =
∫

dΦn LOn(Φn)
[
B(Φn) + Vb(Φn)

]
+
∫

dΦn+1

{
LOn+1(Φn+1) R(Φn+1) −

∑
α

[
L̃On(Φ̄n) C(Φn+1)

]
α

}
+

∑
α∈{FSC,S}

[∫
dΦ̄n L̃On(Φ̄n) C̄(Φ̄n)

]
α

+
∑

α∈{ISC}

[∫
dΦn,± L̃On(Φ̄n) C̄(Φn,±)

]
α

+
∫

dΦn,⊕ L̃On(Φ̄n) G⊕,b(Φn,⊕) +
∫

dΦn,	 L̃On(Φ̄n) G	,b(Φn,	) . (132)

Here C̄(α) =
∫

dΦ1C(α), schematically, and these integrated counterterms contain the
divergences of the real contibution explicitly as poles in ε.

The integrated real counterterms for the initial-state collinear configurations
can be combined with the collinear counterterms

G±,b(Φn,±) +
∑

α∈{ISC}

C̄(α)(Φn,±) = G±(Φn,±) + δ(1 − z) Gdiv
± (Φ̄n) , (133)

which results in a finite part G± and a divergent part Gdiv
± , in which only soft

divergences remain4.
After plugging Eq. (133) into Eq. (132), all the remaining divergent parts can

be combined as

V(Φn) = Vb(Φn) +

 ∑
α∈{FSC,S}

C̄(α)(Φ̄n) + Gdiv
⊕ (Φ̄n) + Gdiv

	 (Φ̄n)

 , (134)

4Although this is a combination of counterterms that are associated to collinear divergences, these
can be tangled up with soft divergences. What this combination achieves is their disentanglement,
and aditionally the cancelation of the collinear part.
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2 NLO Calculations and Parton Showers

where Φ̄n is the underlying configuration of Φn for each α. In Eq. (134), all poles are
of soft or final-state collinear kind, and completely cancel due to the KLN theorem.

With this, Eq. (132) becomes

〈O〉 =
∫

dΦn On(Φn)
[
B(Φn) + V (Φn)

]
+
∫

dΦn+1 On+1(Φn+1) R̂(Φn+1)

+
∫

dΦn,⊕ On(Φ̄n)G⊕(Φn,⊕) +
∫

dΦn,	 On(Φ̄n)G	(Φn,	) , (135)

where the upright contributions stand for the corresponding calligraphic contributions
times their luminosities, and we have defined

R̂(Φn+1) =
{
On+1(Φn+1)R(Φn+1) −

∑
α

[
On(Φ̄n)C(Φn+1)

]
α

}
, (136)

i.e. the remainder of the real contribution minus the real counterterms. This
remainder can be found for each divergent region in a general way by parametrizing
the phase space of the emitted particle in that region and analyzing the singular
part of the second line of Eq. (132), which results from the integral over the emission
variables. In this way, the counterterms are automatically found, since they are
precisely those singular parts. We refer to Sec. 2.3 of [34] for details of this procedure.
All integrals in Eq. (135) are now separately finite and thus suitable for numerical
integration.

2.1.1 Frixione-Kunszt-Signer Subtraction Method

In Eq. (135), we have found an expression that is suitable for numerical integration.
Nevertheless, it remains abstract, since the counterterms have not been specified. In
an IR subtraction method, the real countertems C(α) are defined. These are fixed,
up to finite parts, by the requirement that R̂ is finite for each divergent region,
and are necessary for the calculation of the soft-virual contribution of Eq. (134).
Several subtraction methods exist, like the commonly used Catani-Seymour (CS)
dipole subtraction [70] or the Frixione-Kunszt-Singer (FKS) method [71]. In this
subsection, we briefly discuss the FKS method as used in [34]. This method has the
advantage of being process independent [53], and it is employed in this work.

As mentioned before, the real counterterms can be naturally found by analyzing
the divergent parts of R. From this point of view, constructing the counterterms
corresponds to extracting the divergences from the real contribution. To this end, it
is necessary to first disentangle the poles of R. In the FKS method, this is achieved
by decomposing the real contribution as a sum of terms that contain each at most
one collinear and one soft divergence associated with each parton

R =
∑
i

Ri +
∑
ij

Rij , (137)
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where Ri carries the divergence associated to the final-state particle i being soft
and/or collinear to an initial-state particle and Rij correspondingly for the final-
state particle i becoming soft and/or collinear to another final-state particle j. This
separation is achieved by so-called S-functions, which depend upon the external
momenta of the process. The S-functions must have the following properties:

• If particle m is soft in the present configuration, then Si = Sij = 0 if i 6= m.
• If particle m is collinear to an initial-state particle, then Sm = 1 and all other

Si vanish, as does Sij.
• If particle i is collinear to a final-state particle j, only Sij and Sij are nonzero.
•
∑

i Si +
∑

ij Sij = 1.
Thus, the S-functions act as selectors for the phase-space configuration of each
separate divergent region. With these, one defines Ri = SiR and Rij = SijR. The
precise definition of the S-functions in the framework employed in this work can be
found in [72].

Once this decomposition has taken place, the soft, initial- and final-state collinear
singularities can be extracted from R. Thereby, the finite part R̂ =

∑
i R̂i+

∑
ij R̂ij

remains, itself decomposed in (finite) contributions associated with each singular
region. The extraction of different singularities relies on the factorization properties
mentioned in Sec. 1.2.3. It is described in detail in [73] for the case of QCD emission
corrections to the production of three jets.

In a similar way, the divergences present in the bare virtual contribution can
be extracted, so that [74, 34]

Vb = N αs

2π

−
∑
i∈I

(
1
ε2Cfi

+ 1
ε
γfi

)
B + 1

ε

∑
i,j∈I
i 6=j

log
(

2 ki · kj
Q2

)
Bij + Vfin

 , (138)

with the normalization factor

N = (4π)ε
Γ(1 − ε)

(
µ2

r
Q2

)ε
. (139)

The Ellis-Sexton scale Q2 is chosen as Q = µr in the implementation of the FKS
subtraction used in this work. In Eq. (138) the sums run over all external partons I.
In the first term inside the square brackets, the Ci and γi are finite coefficients that
multiply the Born contribution B. These are related to the color properties of the
parton with flavor fi. They can be found in Ref. [34].

In the second term, ki is the momentum of the i-th parton and the Bij are
the color-correlated or color-linked Born amplitudes. Matrix elements involving
color-charged particles depend upon their color indices and can be compatible with
different sets of values of color indices. The color-correlated amplitude Bij is built
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2 NLO Calculations and Parton Showers

by multiplying the amplitude M{ck}, with color indices {ck} by the amplitude(
M†

{ck}

)
ci→c′

i
cj→c′

j

,

which is the complex conjugate of M{ck} with the color indices ci, cj substituted by
c′
i, c

′
j. Then, the sum over all spins and color configurations is performed, weighted

by appropriate color factors. The definition is

Bij = −Ncc

∑
spins

colours

M{ck}

(
M†

{ck}

)
ci→c′

i
cj→c′

j

T aci,c′
i
T acj ,c′

j
. (140)

For gluons T acb = ifcab, where fabc are the structure constants of SU(3). For incoming
quarks T aαβ = λaαβ, and for antiquarks T aαβ = −λaβα. Bij is related to the exchange
of a soft gluon between particles i and j, and appears in the soft limit of the real
matrix elements [75], so that the ε pole that it multiplies in Eq. (138) is canceled.
The prefactor Ncc includes the partonic flux factor (2ŝ)−1, as well as the color and
spin normalization. Equation (138) defines the finite part of the virtual contribution,
Vfin.

After the divergent terms of Vb have been cancelled by the real and collinear
counterterms, Eq. (134) becomes

V = αs
2π

QB +
∑
i,j∈I
i 6=j

Iij Bij + Vfin

 , (141)

where Q corresponds to the collinear remnants and the Iij to the soft remnants or
eikonal integrals. The Q and Iij are finite functions of the partons momenta and
flavors, of the factorization scale µf and the Ellis-Sexton scale Q, which is set equal
to µr. Their expressions are somewhat involved, and can be found in Sec. 2.4.2 of
Ref. [34].

2.2 Parton Showers
As mentioned in Sec. 1.5, parton showers are an important step towards a realistic
simulation of hadronic collisions. The hard scattering described by the fixed order
calculation produces highly energetic particles which radiate other particles, thereby
losing energy. After the energy of all final-state particles has decreased below a
certain level, (non-perturbative) hadronization processes ensue. A PS program
simulates these emissions and thus describes an evolution from the hard energy
scale down to the hadronization scale, at which particles are detected in collision
experiments.

From the point of view of matrix elements, the radiation off final-state particles
of a 2 → n hard process corresponds to Feynman diagrams with one more external
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2.2 Parton Showers

line per radiated particle, attached to the original n final-state lines. Consequently,
the probability for these emissions is suppressed by one factor of αs per emission.
On the other hand, according to the discussion in Sec. 1.2.3, such emissions are
enhanced in the soft and collinear regimes, and their probability even becomes
divergent in these limits if no virtual corrections are taken into account. This
enhancement is logarithmic, and can be strong enough to counteract the factor of αs
that accompanies every radiation. Thus, considering these emissions in the modeling
of hadronic collisions is necessary. This can not be achieved using matrix elements
with ever higher multiplicities, which become increasingly complicated to calculate.
Rather, the emissions are described using an approximation that is valid in the
region of phase space in which they are enhanced. This is accomplished by the PS,
which is added as an improvement on top of the calculation of a hard process. In
this way, a PS is similar to analytic resummation techniques, which are employed to
formally resum the large logarithms from soft and collinear emissions and improve
fixed order calculations.

The principle behind a PS is to model the radiation as a sequence of independent
emissions. This neglects interference effects that would be taken into account in the
matrix element approach. The probability of each emission is obtained from the
factorization property that we have previously discussed. In this context, it means
that the cross section of a 2 → (n+ 1) QCD process, where the (n+ 1)-th particle
is emitted by an external leg, can be written as [76]

dσn+1 ≈ dσn
∑
i,j

αs
2π

dθ2

θ2 Pij(z) dz , (142)

in the collinear regime. Here, σn is the cross section of the process without the
extra emission and the Pij are the Altarelli-Parisi functions introduced in Sec. 1.4.
The variables θ and z parametrize the radiation phase space dΦ1, and the sum runs
over emitters i and emitted partons j. This property is ultimately what leads to
Eq. (108), and is the first step towards the factorization theorem.

From Eq. (142), we read off that the probability of an emission in an interval
[θ, θ + dθ] is

dK(θ) = αs
2π

dθ2

θ2

∫
dzP (z) , (143)

where we have dropped the sum over partons to simplify the notation. To prevent
the collinear divergence as θ → 0, a PS considers only resolvable emissions, i.e. those
above a finite resolution threshold θmin. This threshold limits the integration over z
in Eq. (143), which becomes

dK(θ) = αs
2π

dθ2

θ2

∫ zmax

zmin

dzP (z) , (144)

with integration limits zmin/max that depend upon θmin.
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2 NLO Calculations and Parton Showers

In a PS, the emissions off a given emitter are ordered with respect to an evolution
variable t that is proportional to the invariant mass of the branching. The (i+ 1)-th
branching is forced to occur at a value of ti+1 < ti. A natural choice for the evolution
variable is the angle θ2 from Eq. (144). In fact, since dK(θ) ∼ dθ2/θ2, a PS can use
any evolution variable t with the same collinear limit for θ → 0,

dt
t

= dθ2

θ2 . (145)

Common choices besides θ are the virtuality of the emitter or the transverse momen-
tum of the radiated particle. In the following, we will use a general evolution variable
t, bounded from below by a finite tmin and from above by tmax, which corresponds
to the scale at which the hard process occurs.

A PS is required to generate emissions using Eq. (144) in a unitary way. This
means that, for a given interval in the evolution variable, we require that a branching
either happens or that it does not happen. In other words, the sum of the probability
∆(tmax, t1) that no emission occurs between tmax and t1, plus the probability that
the first splitting takes place at some value in between, must be equal to one:

1 = ∆(tmax, t1) +
∫ tmax

t1

dt∆(tmax, t) dK(t) . (146)

This equation can be solved iteratively for ∆(tmax, t1), which yields

∆(tmax, t1) = exp
{

−
∫ tmax

t1

dK(t)
}
. (147)

To simulate the first emission, we determine the probability that it occurs at
a given value t1. It is proportional to the probability ∆(tmax, t1) that no emission
happens between the values tmax and t1 times the probability that an emission occurs
exactly at t1, namely dK(t1). This means that

∆(tmax, t1) dK(t1) = d∆(tmax, t1) , (148)

according to Eq.(147). Equation (148) can be sampled to find a value for t1.
Subsequent emissions can be treated in the same way: the probability for the second
emission to occur at t2 is

d∆(t1, t2) = ∆(t1, t2) dK(t2) ,

and so on. More specifically, the scale of the i-th emission by a given emitter is found
by generating a pseudo-random number ri ∼ U(0, 1) and solving ri = ∆(ti−1, ti) for
t1. If ti < tmin, the would-be emitter is considered part of the final state and no
emission is produced. If t1 > tmin, then a splitting is triggered, and the kinematics
and final-state parton species of the 1 → 2 process are generated according to
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the Altarelli-Parisi kernels, under consideration of four-momentum conservation5.
The azimuthal angle is uniformly generated, since the underlying approximation
does not describe any angular correlations. This process is iterated until ti < tmin,
which marks the end of the emissions from this emitter. This chain of emissions is
constructed for every particle, until eventually all of them have been evolved down
to the hadronization scale.

The quantity ∆(T, t) is called Sudakov form factor, and it contains contributions
from all orders of αs. It describes the finite probability that no resolvable emission
occurs between the scales T and t, which corresponds to the sum of virtual and
soft/collinear emissions below the resolution threshold. Consequently, the description
of emission by a PS is called an all-orders calculation, as opposed to the fixed-order
calculation of the hard process. By describing the emission with the Sudakov form
factor, the logarithmic enhancement of soft and collinear branchings is taken into
account at leading-logarithmic order [53, 77].

2.3 Matching of NLO Calculations to Parton Showers
The PS approach was originally created to supplement hard processes calculated at
LO. In that case, the expectation value of an IR-safe observable is given by

〈O〉PS =
∫

dΦnB(Φn)
{
On(Φn)∆(tmax, tmin) (149)

+
∫ thard

tmin

On+1(Φn+1)∆(tmax, t(Φ1))dK(Φ1)
}
, (150)

up to one emission. Here, we have used the notation of Eq. (135) for the Born
contribution. The first term on the right hand side of Eq. (149) is associated with
the probability of no emission, and the second one the second one with that of one
emission. Because of the unitarity of the PS, the LO result for 〈O〉 is recovered
upon phase-space integration in Eq. (149).

It is desirable to combine the improved accuracy of an NLO calculation with
the resummation effect of a PS, since each provides a good description of radiation
in complementary regions of phase space. To this end, it is not possible to simply
substitute the Born contribution in Eq. (149) by some higher-order counterpart.
Ultimately, the issue boils down to the fact that the NLO cross section already
describes an extra emission with respect to the LO process, which is something that
the PS is also supposed to do. This can be seen intuitively with the help of the
diagrams shown in Fig. 7. There, the soft and/or collinear emissions, represented by

5More specifically, the parton shower must give the particle that emits, which a-priori is on-shell,
a non-zero virtuality so that it can branch into two on-shell particles. The required energy must
come from other particles involved in the event, which recoil against the splitting. The necessary
redistribution of momenta can be done in different ways, and some PS programs have different
schemes to choose from.
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2 NLO Calculations and Parton Showers

Parton Shower: + + + · · ·

NLO:

[
+

]
+
[

-

]
Figure 7: Diagrammatic sketch of the contributions taken into account by a PS
and an NLO calculation. The gray blob stands for the LO hard process. The red
gluon line stands for an emission of arbitrary hardness, while the blue ones stand for
soft/collinear ones.

blue gluon lines, are taken into account in both the PS and the NLO calculation.
Thus, care must be taken to prevent the double counting of the first emission.
A solution one might think of is to generate the first emission using the NLO
contribution only, and start the PS only from the second extra emission onwards.
Although this would achieve NLO accuracy, the description of the first emission
would not have the desired resummation effect provided by the PS. One solution to
this problem is provided by the POWHEG method [34], which stands for Positive
Weight Hardest Emission Generator. In it, the first emission, with respect to a
“core” LO process, is generated using a modified Sudakov form factor. This achieves
NLO accuracy of the result while also providing all emissions beyond LO with the
resummation effect of the PS.

The main formula of the POWHEG method can be understood by making the
following observations. First, consider the expansion up to NLO of the all-orders
expression in Eq. (149):

〈O〉PS =
∫

dΦnB(Φn)
{
On(Φn)∆(thard, tmin) (151)

+
∫
On+1(Φn+1)∆(tmax, t(Φ1))dK(Φ1)

}
=
∫

dΦnB(Φn)On(Φn)

+
∫

dΦn

∫
dK(Φ1)B(Φn) [On+1(Φn+1) −On(Φn)] + O(αk+2

s ) ,

where we plugged in ∆ = 1 −
∫

dK + O(α2
s ) and k is the order of B.
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2.3 Matching of NLO Calculations to PS

Now, we return to Eq. (135):

〈O〉NLO =
∫

dΦn On(Φn)
[
B(Φn) + V (Φn)

]
+
∫

dΦn,⊕ On(Φ̄n)G⊕(Φn,⊕) +
∫

dΦn,	 On(Φ̄n)G	(Φn,	)

+
∫

dΦn+1

{
On+1(Φn+1)R(Φn+1) −On(Φ̄n)C(Φn+1)

}
, (152)

where we have written out the R̂ contribution and we assume that here is only one
singular region for simplicity. We can rewrite Eq. (152) as

〈O〉NLO =
∫

dΦn On(Φn)
[
B(Φn) + V (Φn) +

∫
dΦ1 [R(Φn+1) − C(Φn+1)]

]
(153)

+
∫

dΦn,⊕ On(Φ̄n)G⊕(Φn,⊕) +
∫

dΦn,	 On(Φ̄n)G	(Φn,	)

+
∫

dΦn+1R(Φn+1) [On+1(Φn+1) −On(Φn)] ,

where we have used that O is an IR-safe observable, and signal with blue the terms
that cancel out to give Eq. (152). We introduce the quantity

B̄(Φn) =B(Φn) + V (Φn)

+
∫

dΦ1 [R(Φn+1) − C(Φn+1)] +
∫

dz
z

[G⊕(Φn,⊕) +G	(Φn,	)] (154)

where z is the fraction of momentum of the incoming parton after radiation
(cf. Sec. 2.1), and insert it in Eq. (153) to obtain

〈O〉NLO =
∫

dΦnB̄(Φn)O(Φn) (155)

+
∫

dΦndΦ1R(Φn,Φ1) [On+1(Φn+1) −On(Φn)] .

This equation has the same form as Eq. (151), and we can transform 〈O〉PS up
to NLO into 〈O〉NLO by making the replacements

B(Φn) → B̄(Φn) ,
dK(Φ1)B(Φn) → dΦ1R(Φn+1) ,

or equivalently

dK(Φ1) → dΦ1
R(Φn+1)
B̄(Φn)

(156)
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2 NLO Calculations and Parton Showers

where Φ1 = Φ1(t, z). This is precisely what is done in the POWHEG method, where
the expectation-value of O up to the first emission is given by

〈O〉PWG =
∫

dΦnB̄(Φn)
{
On(Φn) ∆PWG(Φn, p

min
T ) (157)

+
∫

dΦ1On+1(Φn+1)∆PWG(Φn, pT (Φn+1))
R(Φn+1)
B̄(Φn)

Θ(pT − pmin
T )

}
,

with the modified Sudakov form factor

∆PWG(Φn, pT ) = exp
{

−
∫

dΦ1
R(Φn+1)
B̄(Φn)

Θ(kT (Φn+1) − pT )
}
, (158)

where kT is a function that approaches the transverse momentum of the emitted
particle with respect to the emitter in the singular limit. The Heavyside function in
Eq. (157) enforces the infrared cut that we called tmin before.

By sampling Eq. (158) for a value of pT , the first radiation is generated in the
POWHEG method using transverse momentum as the evolution scale. This scale
is communicated to the PS program. If the shower is pT -ordered, then it simply
generates subsequent radiation respecting the POWHEG scale as its upper bound.
If the shower simulator uses a different ordering scale, then the hardest emission
produced by it might not be the first one, and a check needs to be in place to ensure
that the radiation it produces does not surpass the POWHEG radiation in pT . This
can be achieved through a veto algorithm in the PS program. To finish this section,
we remark that the name of the POWHEG method is due to the weight 〈O〉PWG
being positive whenever B̄ is, as opposed to the weight given by other commonly
used matching methods.
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Figure 8: Contributions to the W +W + → W +W + process at LO. Diagram 8(a)
represents the so-called contact interaction and is proportional to the QGC of four
W bosons. The contribution 8(b) involves the exchange of a Z boson or a photon,
and involves two triple gauge couplings. Diagram 8(c) corresponds to the exchange of
a Higgs boson, and is sensitive to the HWW coupling. The diagrams 8(b) and 8(c)
must be symmetrized with respect to the identical particles in the final state to obtain
all contributions.

3 Vector Boson Scattering and the pp → W+W+jjj

Process

In this section, we turn to the process under investigation, the scattering of two W+

bosons. We begin by considering pure VBS of on-shell bosons, W+W+ → W+W+,
and recalling the cancellation mechanism that makes VBS especially sensitive to
deviations in EWSM and the EW sector of the SM. Afterwards, we consider VBS at
the LHC and and motivate its calculation within the pp → W+W+jjj process.

As mentioned in the introduction of this thesis, delicate cancellations prevent
VBS scattering amplitudes from violating unitarity in the high-energy regime. We
now illustrate this mechanism for W+W+ scattering at LO in a schematic way
following Ref. [17]. Assuming a stable pair of W+ bosons in the initial and final
states, the process at hand receives contributions from the three Feynman diagrams
in Fig. 8, where the ki denote the momenta of the external particles. We consider
only longitudinally-polarized W+ bosons, which are responsible for the dangerous
growth of the scattering amplitude with energy6. Going to the high-energy regime,
where the center-of-mass energy s = (k1 + k2)2 � 4M2

W , the contributions of each
diagram in Fig. 8 to the matrix element read [17]

6The longitudinal polarization vector εL is proportional to the particle’s energy, while transverse
polarization vectors εT are not. Consider for example a particle with momentum p = (E, 0, 0, pz).
Then, ε

(1/2)
T = (0, 1, ±i, 0) for example, but εL = 1

m (pz, 0, 0, E). Thus, only εL → p/m at high
energies.
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(161)

up to terms of O(4M2
W

s
), where t = (k1 − k3)2 and u = (k1 − k4)2 and the expressions

for the gauge and HWW couplings have been inserted. In M(b), the contributions
of a Z-boson and of photon exchange are summarized. Evidently, M(a) and M(b)
exhibit the strongest dependence on s, which is quadratic. This dependence cancels
out upon combining contributions M(a) and M(b), as can be seen when adding
Eqs.(159) and (160), leaving only the subleading term −s/M2

W and the second line
of Eq. (160), whose terms do not grow with energy. To cancel the term of O(s) in
M(a) + M(b), the contribution due to Higgs exchange from Eq. (161) is necessary.
The full amplitude, given by M(a) + M(b) + M(c), is well-behaved in the high energy
regime. Nevertheless, terms

m2
h

M2
h

(
t

t−m2
h

+ u

u−m2
h

)
, (162)

which originate from M(c), do rise with energy if s < m2
h and are not necessarily

small and can even violate the unitarity of the S-matrix. Following this idea, the
upper bound of around 1 TeV was given for the Higgs boson mass by Lee, Quigg
and Thacker [4] 25 years before its discovery7.

After seeing this sketch of the cancellation mechanism, it becomes clear that
deviations in the SM couplings could spoil it. For example, an alteration of the QGC
that is not compensated by a corresponding change in the TGC could potentially
lead to a scattering amplitude proportional to s2. Similarly, a modified WWH
coupling could lead to an energy growth ∼ s. This would not mean that unitarity is
in fact violated, but simply that our model is incomplete and physics beyond the SM
are responsible for the finiteness of physical VBS cross sections. In modern studies,
anomalous couplings are parametrized using effective field theories (EFT), in which

7In Ref. [4], the upper bound was formulated upon investigation of neutral VBS processes, but
the reasoning is the same for W +W + scattering, see Ref. [17].
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Figure 9: 9(a): Generic diagram of W +W + scattering at the LHC induced by quarks
q1 and q2. The grey circle stands for any scattering topology, like the ones in Fig.8.
9(b): representative diagram of QCD-induced W +W +jj production at the LHC at
O(α2

emα2
s ).

new terms are added to the SM Lagrangian in a systematic way. In Ref. [78], this
approach8 was used to constrain new-physics effects using experimental data from
the LHC of all available VBS processes. We now turn to a discussion of how these
processes arise and are detected at a hadron collider.

At the LHC, VBS events occur when the EW bosons, each emitted by a parton
of each proton, scatter off each other. Figure 9(a) shows the general form of such
a process, where the grey circle stands for any pure VBS diagram. Embedding
any of the diagrams in Fig.8 in place of the grey circle of Fig. 9(a) results in a LO
contribution to VBS at the LHC. As these diagrams make clear, VBS processes occur
purely via EW interactions and their cross section is of O(α4

em). The vector bosons
in the final state are accompanied by two partons, i.e. the quarks that emitted the
vector bosons in the first place, which typically give rise to two jets. As we will see
in Sec. 3.2.1, these jets are mainly very forward and well-separated and represent
the specific signature of VBS processes.

There are also QCD-induced contributions to the production of two W+ bosons
and two jets at the LHC. These are of O(α2

emα
2
s ) at LO and cannot embed VBS. An

example diagram of such a process is shown in Fig. 9(b). Since no VBS is possible
at that order, we consider QCD-induced W+W+jj production as a different process
and do not include it in the calculations of this work. We remark that diagrams
like the one in Fig. 9(b) do not only lead to contributions to the cross section of
O(α2

emα
2
s ), but also to interference contributions of O(α3

emαs) which are neglected
too. In general, this artificial separation of contributions of different orders to the
same final state is not necessarily suitable for comparison with experimental data,
even if it is theoretically well defined by the order of the perturbative expansion.
Moreover, one generally expects that cross sections of QCD-induced processes are
larger, because the strong coupling constant is larger than the electroweak one. In

8Specifically, the Standard Model EFT was employed, in which the new operators are built of
SM fields and respect the SM symmetries.
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3 VBS and the pp → W+W+jjj Process

the present case, however, the aforementioned signature of VBS events allows for
a meaningful separation. The QCD-induced background to VBS tends to produce
more central final-state jets [5], which makes it possible to distinguish VBS events
from it by considering only some phase-space regions, namely those without central
jets.

Until now, our discussion of VBS at the LHC has been on the level of FO
calculations. As we have seen, the LO approximation describes two jets in the
final state. On the other hand, realistic events at a hadron collider can have many
jets, as we have seen in Sec. 1.6. Because of the lack of color exchange between
initial-state quarks, the additional or subleading jets in VBS processes also display a
characteristic forward behavior [5], in contrast to the subleading jets of QCD-induced
processes. This fact can be leveraged in event-selection strategies, and it lead to the
development of the central-jet-veto (CJV) technique [79, 80, 81], which is designed
to exclude events in which the rapidities of the subleading jets lie between those
of the LO jets. Although precise predictions for the additional jets are generally
desirable, understanding their behavior is especially important if the event selection
is based upon their kinematics.

To model subleading jets, one can combine a LO calculation with a PS simu-
lation. The emissions produced by the PS, see Secs. 1.5 and 2.2, are the origin of
the additional jets, which are thus described in the PS approximation. A better
description of subleading jets is achieved by first performing an NLO calculation.
Then, a third jet may arise as real radiation. In this case, the third jet is described
as tree-level only, namely by the real matrix elements. The NLO calculation can be
matched to a PS, see Sec.2, to further improve the description of the third jet by
including leading-logarithmic effects and possibly produce even more jets.

It is however possible to go a step further and achieve a full NLO description
of the third jet within the framework of NLO calculations matched to PS. For this,
one can consider EW W+W+jjj production as the LO process. Then, the third jet
is described by tree-level contributions of O(α4

emαs) as well as loop- and tree-level
ones of O(α4

emα
2
s ), and a fourth jet arises as part of the real-emission corrections.

This is the strategy that we pursue in this work.

In the remaining of this section, we discuss the scattering of two W+ bosons
associated with three jets as part of the underlying process pp → W+W+jjj. In
Sec. 3.1 we review all O(α4

emαs) contributions to the underlying process, as well
as their corrections at NLO in QCD. We present the partonic subprocesses that
contribute to the hadronic process and their characteristic Feynman diagrams. In
Sec. 3.2, we discuss how the VBS signature not only allows for the separation
from the QCD-induced background, but also for the disentanglement of different
contributions within the order α4

emαs. We then use Feynman diagrams to distinguish
the relevant classes of subprocesses and define which contributions to the underlying
process we choose to consider as VBS and why.
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3.1 Electroweak Production of W+W+jjj at the LHC
At order α4

emαs, two possible types of initial state exist, defining two types of subpro-
cesses, which we generally denote as q1q2 → W+W+q3q4g and gq1 → W+W+q2q3q4.
Here, the qi stand for arbitrary quarks or antiquarks, although actual subprocesses
of course need to respect the conservation of charge and fermion number. We now
discuss these subprocesses in some detail, with emphasis on the topologies that arise
in each case. In the following, we will often omit the W+ bosons when writing a
subprocess, and will refer to each subprocess using only the initial state when no
confusion is possible. Furthermore, we will only consider (anti)quarks of the first
and second generations in our discussion. The reasons for excluding top and bottom
quarks will become clear in the following.

We first consider the qq (q̄q̄)-type subprocesses, initiated by two (anti)quarks.
They are:

1©uc → dsg, 2© d̄s̄ → ūc̄g 3©uu → ddg (cc → ssg), 4© d̄d̄ → ūūg (s̄s̄ → c̄c̄g) .

Although there are six different ones, some of them share the same matrix ele-
ment, which we have denoted using parentheses, and only four are truly distinct.
Furthermore, 1© and 2© are related by crossing symmetry, as well as 3© and 4©.

Figure 10 depicts exemplary Feynman diagrams that contribute to these chan-
nels. In all of them, there are two (anti)quark lines connecting the initial and final
states, which we will often refer to as upper (q1 to q3) or lower (q2 to q4). These
are connected by the t-channel exchange of electroweak particles. This t-channel
might be a single propagator (Fig. 10, upper left) or contain further electroweak
vertices (Fig. 10, upper center, right and bottom row). In the former case, the W+

bosons of the final state are radiated by the quark lines, as is the gluon. In the
latter, they may also originate from the vertices between quark lines. We point out
that no s-channel topologies contribute to the qq (q̄q̄) subprocesses. Specifically, we
mean that no bosonic propagator has a vertex from which only final-state particles
originate.

The qq̄ subprocesses, initiated by a quark and an antiquark, are

5©us̄ → dc̄g (cd̄ → sūg), 6©ud̄ → sc̄g (cs̄ → dūg), 7©ud̄ → dūg (cs̄ → sc̄g) .

These are related to 1© − 4© by crossing symmetry, but we discuss them separately
for the following reason. If the incoming quark and antiquark are not of the same
generation, as in channel 5©, the Feynman diagrams that arise are of the kinds
shown in Fig. 10 and contain no s-channel. On the other hand, diagrams that
contribute to channels 6© and 7© also include s-channel topologies, with up to three
resonant propagators. Some examples are shown in Fig. 11. All in all, there are 12
LO subprocesses without gluons in the initial state.

Finally, the g(−)

q subprocesses can be obtained from some q(−)

q subprocesses by
crossing the gluon from the final to the initial state and an initial-state (anti)quark
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Figure 10: Exemplary Feynman diagrams of qq-initiated subprocesses of the process
pp → W +W +jjj at LO in QCD.
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Figure 11: Exemplary leading-order Feynman diagrams of the qq̄ subprocesses with
one, two and three resonant propagators (left to right).
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Figure 12: Exemplary leading-order Feynman diagrams of the gq-type subprocess
gu → dsc̄ with zero, one and two s-channel propagators, from left to right.

to the final state. One obtains eight distinct subprocesses, some of which have the
same matrix element:

8© gu → dsc̄ (gc → sdū), 9© gu → ddū (gc → ssc̄),
10© gd̄ → ūsc̄ (gs̄ → c̄dū), 11© gd̄ → ūdū (gs̄ → c̄sc̄) .

Processes with an initial-state gluon have diagrams with and without s-channel
topologies, even if they are related by crossing to qq (q̄q̄) subprocesses, which do not
show these topologies. Figure 12 shows some examples for the subprocess gu → dsc̄.

Before discussing the NLO corrections, we remark that the O(α4
emαs) matrix

elements of the pp → W+W+jjj process, i.e. our LO, contain infrared divergences
in regions of phase space in which one of the massless final-state particles becomes
soft or collinear to another external massless particle9. An example would be the
gluon’s (g) momentum becoming soft or collinear to that of q1 in any of the diagrams
of Fig. 10. These divergences are not canceled by the KLN mechanism, which starts
to act at NLO as described in Sec. 1.2.3. Therefore, a method is required in our
calculation to prevent unphysical predictions as a consequence of these divergences.
The details of this method will be discussed in Sec. 4.2.4.

3.1.1 One-Loop Corrections

The virtual QCD corrections, of order α4
emα

2
s , arise from the interference of LO

diagrams with one-loop diagrams of the same subprocess. These diagrams are of
order g4g3

s , and contain loops with up to seven vertices (heptagon loops).
Figure 13 depicts one-loop diagrams in which the external W+ bosons stem

from a fermion line, similar to the top-left (LO) diagram in Fig. 10, and where there
is no gluon exchange between upper and lower quark lines. These diagrams contain

9This is in contrast to the lowest order VBS processes possible at the LHC, i.e. pp → W +W +jj
at O(α4

em), for which the matrix elements are finite.
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Figure 13: Exemplary one-loop Feynman diagrams of a qq-type subprocess without
gluon exchange between the upper and lower quark lines. From top to bottom, the
lines show triangle, box, pentagon and hexagon loops.
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loops with up to six vertices. Some of these loops contain only fermion lines (see
Fig. 13 first and second lines, right), and cannot be constructed by only attaching
gluon lines to LO diagrams.

Virtual diagrams with gluon exchange between upper and lower quark lines
contain loops with at least four and up to seven vertices. Figure 14 shows some
examples for a qq-type subprocess.
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Figure 14: Exemplary one-loop Feynman diagrams of a qq-type subprocess with
gluon exchange between fermion lines. From left to right: pentagon, hexagon and
heptagon loops.

3.1.2 Real-Emission Corrections

The real-emission corrections, of order α4
emα

2
s , arise from diagrams of order g4g2

s .
There are four types of real subprocesses:

q1q2 → q3q4gg , gq1 → q2q3q4g , gg → q1q2q3q4 and q1q2 → q3q4q5q6 ,

in the notation of Sec. 3.1. The first two types contain the same subprocesses as the
corresponding LO types, with one more gluon in the final state. Accordingly, they
contain 12 and 8 subprocesseses, respectively. Their Feynman diagrams also inherit
the resonant structure of the corresponding LO diagrams.

The third type, with initial state gg, is related by crossing to the first type and
has the 3 subprocesses

gg → dūsc̄ , gg → dūdū (gg → sc̄sc̄) .

The corresponding Feynman diagrams can have up to three resonant propagators,
and some of them include a three-gluon vertex.

The fourth subprocess type has four quarks in the final state, and we will
sometimes call it the four-quark type. It has 86 subprocesses, the largest number
of all types. It also exhibits a wider variety of topologies in its Feynman diagrams,
which contain three fermion lines. Generally, the real Feynman diagrams can have
up to three s-channel electroweak boson propagators. In some diagrams, the two
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Figure 15: First row: Feynman diagrams of a real subprocess of the gg type with zero,
one and three s-channel electroweak boson propagators, from left to right. Second
row: four-quark real subprocess without (left, right) and with (center) gluon exchange
between initial-state fermion lines.

fermion lines that are part of the initial state are joined by a gluon propagator.
In such diagrams, a quark-antiquark pair necessarily originates from an s-channel
electroweak boson propagator, since the gluon exchange already requires all available
orders of the strong coupling. Some examples of Feynman diagrams of real gg and
four-quark subprocesses are shown in Fig. 15.

Some four-quark subprocess contain IR divergences that are not cancelled by
the virtual contributions that we take into account, nor by the initial-state collinear
counterterms that correspond to the PDF renormalization (see Sec.2.1). This is
because they are associated to processes with an external photon, which we do not
consider. One example of this is the diagram at the center of the second row of
Fig. 15, where the final-state quark-antiquark pair q5q6 can originate from a photon
propagator. Since the photon is massless, this γ∗ → qq̄ splitting is divergent in the
limit of a collinear quark-antiquark configuration. We remark that these splittings
appear exclusively in diagrams of real, four-quark subprocesses with gluon exchange
between initial and final-state quark lines. As we will see in Sec. 3.2, such diagrams
are not taken into account in our calculation.

Another example of a remaining singularity is given in Fig. 16. There, the
quarks q1 and q3 can become collinear, causing the internal photon propagator to
diverge. Such contributions are included in our calculation. The initial-state
collinear singularity that they contain would typically be cancelled by the initial-
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Figure 16: Feynman diagram of an all-quark real subprocess with a divergent q → qγ∗

splitting.

state collinear counterterms (see Sec. 2.1), which are proportional to a Born matrix
element of O (α3

emα
2
s ) with an initial-state photon. To be consistent with our choice of

neglecting photon-induced contributions, we instead regulate this q → qγ∗ splitting
by introducing a technical cut in our calculation that requires the photon virtuality
to be finite. Specifically, we require that (pi − pj)2 > Q2

γ,min, where i and j denote
initial- and final-state quarks respectively. This technical cut is applied only for
the real all-quark subprocesses, since they are the only ones that can present the
divergent splittings.

3.2 The Vector-Boson-Scattering Approximation
In general, the calculation of a certain process, defined by an initial and final state,
implies that all contributions to at least a certain order of perturbation theory
must be considered. In some cases, distinct subsets of contributions dominate the
cross section in certain regions of phase space. In those cases, it can be sensible to
compare only a subset of the contributions to experimental observations. If only a
subset of the contributions for a process is taken into account for a calculation, that
subset must be gauge invariant to obtain gauge-independent results.

The so-called Vector-Boson Scattering (VBS) or Vector-Boson Fusion (VBF)
approximation has been used to simplify calculations of the hadronic production of
W±W±jj, ZZjj and Hjj(j) in such a way [82, 83, 84, 85, 86]. In those processes,
there are Feynman diagrams of qq-initiated subprocesses in which the quarks scatter
off each other by the exchange of a space-like electroweak vector boson, and the
exchanged electroweak boson can radiate a a pair of electroweak bosons (VBS), see
the last three diagrams in Fig. 10, or a Higgs boson (VBF). These diagrams have a
distinct kinematic signature, i.e. they correspond to expressions that dominate certain
regions of phase space. If this set of diagrams is extended to be gauge-invariant,
then it can be used to define a subset of contributions that can be compared to
observations. In [5], this approach is taken to define the VBS/VBF process as this
subset of diagrams, as opposed to an initial and final state.

In this section, we define the VBS approximation as will be used in the present
work and argue why it is sensible and gauge invariant. We begin by discussing
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Figure 17: Characteristic Feynman diagram of Vector Boson Scattering with two
jets.

the VBS signature following [5]. Afterwards, we discuss why certain contributions
to W+W+jjj production are suppressed in the region in which the VBS signal is
largest, and thus provide the arguments for neglecting these contributions. Then,
we show why this approximation leads to a gauge-invariant result. The quality of
the VBS approximation has been recently assessed in Ref. [28], where the relative
difference with respect to the full calculation was found to be below 1.5% at the
level of integrated cross sections10.

3.2.1 The VBS Signature

We first consider VBS at LO, that is, a subset of events of the hadronic production of
W+W+jj at O(α4

em). Contributions from Feynman diagrams like the ones discussed
in Sec. 3.2, where two vector bosons scatter off each other, dominate events in which
the two final state jets, also called tagging jets, appear in the very forward regions
of the detector, as we will see shortly. This is the characteristic signature of VBS.

Figure 17 depicts one VBS diagram with momenta labels. According to the Feyn-
man rules in Eq. (1.3), the spin-averaged square of it’s amplitude A is proportional
to

|A|2 ∝ A (p1 · p2)(p3 · p4) +B (p1 · p4)(p2 · p3)
(k2

1 −M2
W )2(k2

2 −M2
W )2 , (163)

where A and B are constant coefficients and k1 = p1 − p3, k2 = p2 − p4.
On the one side, the expression in Eq. (163) becomes large when its denominator

is small. The squared momentum of the upper virtual boson is given by

k2
1 = −2 p1 · p3 = −2E1E3(1 − cos θ1,3) ≤ 0 ,

where θ1,3 = ∠(~p1, ~p3), and similarly for k2
2. Thus the smallest possible denominator

in Eq. (163) is reached for k2
1/2 ≈ 0. For a given incoming energy E1, this is the case

10In Ref. [28], the full calculation comprised contributions to W +W +jj production at the LHC
of all possible orders, as well as leptonic decay products of the W + bosons. The employed approxi-
mation was a combination of the VBS approximation and the so-called double-pole approximation,
which neglects contributions of far off-shell W + bosons and is thus closer to our calculation.
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when either the scattering angle or E3 is small (or both). We shall assume the first
case, the reason why will become clear further below.

On the other side, the expression Eq. (163) is large if the numerator is large.
For a given squared partonic energy s = (p1 + p2)2 = 2 p1 · p2, the term proportional
to A in (163) is proportional to the squared invariant mass M2(q3, q4) = 2 p3 · p4 of
the outgoing quarks. This quantity is large for large E3 and E4, which motivates
the assumption above. Furthermore, large E3 and E4 means that the energy carried
by the virtual bosons is not much larger than the 2M2

W necessary to create the rest
of the final state. In this scenario, it holds

p1 · p4 ≈ p1 · p2 and p2 · p3 ≈ p4 · p3

so that the denominator of Eq. (163) as a whole behaves as we just described for the
part proportional to A, and we can approximately write the expression in Eq. (163)
as [87]

(A+B) (p1 · p2)(p3 · p4)
4(E1E3(1 − cos θ1,3) +M2

W )2(E2E4(1 − cos θ2,4) +M2
W )2 .

All in all, we expect the VBS contributions to be largest in regions of phase
space with two hard, forward jets with a large total invariant mass. Other types of
diagrams that contribute to W+W+jj production lack such an enhancement in this
region.

Until now, our discussion of the VBS signature has focused on VBS with two
jets. The process we study in this work contains one more jet in the final state at
LO, but the above considerations with respect to the VBS signature remain valid.
Consider, for example, the contribution of the diagram in Fig. 17 with the additional
emission of a gluon of momentum p5 by the upper quark line. If we picture the
gluon emission after the emission of the virtual boson, then the additional quark
propagator provides a factor

((p3 + p5)2)2 = E2
3E

2
5(1 − cos θ3,5)2

to the spin-averaged squared matrix element, which enhances the contribution for
small E5 and θ3,5. Such soft/collinear emissions do not significantly affect the
kinematic arguments made before for the two-jet final state, so we expect a similar
signature of VBS contributions in the three-jet case.

We now turn to the contributions which are suppressed in the regions of phase
space that correspond to the signature we just described.

3.2.2 Electroweak Propagators in the s-Channel

A class of diagrams that is neglected in the VBS approximation is composed of LO
and NLO diagrams with electroweak propagators in the s-channel. The contributions
of diagrams where the final-state quarks are the decay products of a vector boson,
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cf. the right diagram in Fig. 12, are expected to be the largest for values of the
two-jet invariant mass close to the mass of the parent vector boson. There are also
other s-channel diagrams where a quark-antiquark pair originates from a resonant
electroweak propagator and then either the quark or the antiquark emit a final state
W+ boson, cf. the center diagram in Fig. 12. These contributions are largest for
even lower values of the two-jet invariant mass, as can be seen from the following
argument. Consider the kinematics of the center diagram in Fig. 12. The Z-boson
propagator contributes with a factor[

p2
Z −M2

Z

]−2
, (164)

where pZ stands for the momentum of the Z boson and MZ for its mass. Denoting
the momenta of the final-state quarks with a subindex of the corresponding flavor
and the momentum of the lower W+ boson by pW , momentum conservation yields

p2
Z = (pc + ps + pW )2

= M(pc, ps)2 +M2
W + 2 pW · (pc + ps)

= 2 |~pc| |~ps|(1 − cos θcs) +M2
W + 2MW (|~pc| + |~ps|) , (165)

where we have taken all momenta as flowing from left to right in the diagram. In
the last step, we have chosen the center-of-mass system of the lower W+ boson and
we have written the invariant mass of the quark pair in terms of the absolute-value
of its three momenta and the angle θcs between these. We can plug Eq. (165) in the
expression from Eq. (164) and obtain[

−(M2
Z −M2

W ) + 2 |~pc| |~ps|(1 − cos θcs) + 2MW (|~pc| + |~ps|)
]−2

, (166)

which is symmetric w.r.t. the quark energies |~pi|. The expression in Eq. (166) is
maximized by setting one quark energy to zero and the other to

|~p |=
M2

Z −M2
W

2MW

≈ 12GeV.

For |~pc| = |~ps| =: |~p| and cos θcs < 1, the expression in Eq. (166) is maximized by

|~p | = 1
1 − cos θcs

[√
M2

Z +M2
W

2 − M2
Z −M2

W

2 cos θcs −MW

]
≤ M2

Z −M2
W

4MW

≈ 6GeV .

Such small typical values of the quark energies are only compatible with a
small invariant mass of the jet pair, as opposed to the large values of the VBS
signature. Thus, contributions of s-channel diagrams are kinematically distinct from
VBS contributions, and can be disentangled by implementing analysis cuts that
require a high invariant mass of the hardest jet pair.
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3.2.3 Diagrams with Gluon Exchange

As we have shown in previous sections, diagrams in which a gluon is exchanged
between external fermion lines contribute to the virtual and real corrections of
W+W+jjj production at order α4

emαs. As we will see now, these contributions are
color suppressed with respect to those of diagrams without gluon exchange and
are neglected in the VBS approximation. This means that the color parts of the
squared contribution, which result from the color factors of the matrix elements
after squaring and summing over colors, are proportional to a lower power in the
number of colors NC .

Figures 18 and 19 show some virtual contributions, i.e. the interference of a
one-loop and a LO diagram, and the color factors that these are proportional to.
Virtual contributions that contain gluon-exchange diagrams are suppressed by a

power of (NC −N−1
C ) with respect to those that do not (Fig. 18). Other interferences

vanish due to the tracelessness of the N2
C − 1 Gell-Man matrices {λa}, namely those

where only one gluon is radiated from a quark line (Fig. 19). These arguments carry
over to virtual contributions of qg-type channels with no s-channel electroweak boson
propagator. To determine the color factors, we have considered the Feynman rule of
Eq. (89) for the quark-gluon vertex, summed over colors and used the relations in
Eqs. (53) and (52).

The contributions of one-loop diagrams with gluon exchange that we neglect
contain IR divergences which, according to the KLN theorem [47, 48], would be
canceled by real-emission contributions in a full NLO calculation. Therefore, care
needs to be taken in the VBS approximation to not include the would-be remainders
of the IR subtraction. This can be accomplished by excluding the interferences
of real-emission diagrams of type qq → qqgg in which each gluon is emitted by a
different quark line in each diagram. This procedure is discussed in [82] for VBF with
three jets, where it is argued that not only do such real-emission contributions need
to be neglected for consistency reasons, but they are also kinematically suppressed.

At LO, no gluon exchange between external fermion lines can take place. On the
other hand, the QCD-induced contributions to W+W+jjj production, mentioned
at the top of this section, do contain diagrams with gluon exchange. Therefore, the
arguments about color suppression presented above also apply to the interferences
of VBS (g4gs) with QCD-induced (g2g3

s ) diagrams. This adds to the justification of
not taking the QCD-induced process into account.

Diagrams that contribute to the real-emission corrections can contain gluon
exchange only if they belong to subprocesses of the four-quark type. Furthermore,
these diagrams contain s-channel electroweak boson propagators, which, as discussed
before, leads to a signature that is different to that of VBS and are safe to be ignored
in the regions of phase space where the VBS signature is largest.
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Figure 18: Exemplary interferences of Feynman diagrams alongside the color part
of the contributions that they correspond to. In each row, the interference is di-
agrammatically represented as the product of a Feynman diagram (left) times a
complex-conjugated Feynman diagram. The first row contains a one-loop diagrams
with gluon exchange, which is neglected in the VBS approximation. The second row
contains an interference that is taken into account in the VBS approximation. The
contribution of the first row is suppressed by a power of (NC − N−1

C ) with respect to
that of the second one.
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Figure 19: Schematic representation of exemplary vanishing interferences of Feynman
diagrams and the color part of the contributions that they correspond to. Loop diagram
with (upper row) and without (lower row) gluon exchange. These interferences and all
others where only one gluon is attached to a quark line vanish due to the tracelessness
of the Gell-Man matrices.
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Figure 20: Schematic representation of exemplary interferences of Feynman diagrams
and the color part of the contributions that they correspond to. First row: t-channel
diagram squared. Second row: interference of t and u-channel diagrams, only possible
if q3 = q2. The t-u interference is suppressed by N−1

C with respect to the squared
u-channel diagram.

3.2.4 Identical-Particle Effects

One more kind of contributions that is neglected in the VBS approximation is
the interference between t and u-channels, which can occur when the initial or
final state include identical quarks. Figure 20 shows the Feynman diagrams of
one such contribution alongside its color part, together with a squared t-channel
diagram for comparison. The interference contribution is suppressed by a factor
N−1
C . The numerical studies of VBF with two jets in Ref. [88] show that t/u-

channel interferences can be safely neglected when requiring two jets, each with with
transverse momentum pT,j and rapidity yj fulfilling

pT,j > 20GeV , |yj| < 4.5 , (167)

as well as being well-separated and in opposite regions of the detector

|yj1 − yj2| > 4 , yj1 · yj2 < 0, (168)

where j1 and j2 denote the two jets, ordered by transverse momentum.
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Figure 21: Schematic representation of the structure-function approach to VBS,
taken from [90]. The hadronic part of the reaction is parametrized by the structure
functions F , while the scattering of the electroweak bosons is described by the matrix
element M .

3.2.5 The Structure-Function Approach to Vector Boson Scattering

The structure-function approach was formulated for hadronic Higgs boson production
via Vector Boson Fusion in [89] and more generally for Vector Boson Scattering
in [90]. At the lowest order, that is, with two jets in the final state, these are purely
electroweak processes. This calculational approach is based on the observation that
the NLO QCD corrections of these processes, of order αs, correspond to Feynman
diagrams in which no color exchange occurs between the quark lines that are
involved. The interference of one-loop diagrams in which a gluon is exchanged
between quark lines with LO diagrams vanishes after a sum over colors, effectively
due to the tracelessness of the Gell-Mann matrices. Therefore, the only diagrams that
contribute to these corrections correspond to QCD corrections of the electroweak qqV
vertices, where V is the electroweak boson emitted by a quark line. For this reason,
the calculation of VBS to NLO in QCD can be done in terms of structure functions
that parametrize the hadronic tensor. The corrections factorize into the corrections to
the structure functions and the corrections to the vector-boson-scattering subprocess.
This is analogous to the situation of two deep-inelastic scattering (DIS) processes in
which the photons are replaced by massive vector bosons that then fuse or scatter,
see Fig. 21. At order α2

s , which is the order of the NLO corrections to VBS with three
jets, the exact factorization is not given anymore. As it turns out, the contributions
that are neglected by employing the structure-function approach beyond O(αs) are
precisely those for which we have shown the kinematic and color suppression in the
subsections above.

The structure-function approach is equivalent to the following construction:
consider two separate, independent copies of QCD, each with their own set of colored
particles which do not interact with particles of the other set. Now, compose the
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initial state of any partonic subprocess by taking one particle from each copy of
QCD and construct all possible Feynman diagrams. Since the resulting diagrams are
all possible diagrams of our gauge independent theory, they form a gauge invariant
set.

In our case of W+W+jjj production, the construction above results in the
following. For LO qq-type subprocesses only diagrams occur in which the initial-state
particles do not belong to the same fermion line, and in which the upper and lower
fermion lines must be connected by electroweak bosons, which needs at least two
electroweak couplings. In consequence, no electroweak boson s-channel propagators
can appear, since the two remaining electroweak couplings are needed for the two
external W+ bosons.

For LO gq-type subprocesses, this means that the initial-state gluon never
couples to the fermion line to which the initial-state quark belongs. It rather creates
a quark-antiquark pair, another fermion line, which couples to the first first fermion
line via electroweak interaction. Again, only diagrams without s-channel electroweak
boson propagators arise.

The one-loop diagrams that emerge do not contain s-channels by the same
logic, and also lack gluon exchange between fermion lines: a gluon of the first copy
of QCD can not couple to the second one.

The same applies for real-emission diagrams of subprocesses of types qq → qqgg
and gq → qqqg. The interference contributions of qq → qqgg diagrams that need to
be left out for consistency, as described in Sec. 3.2.3, do not arise in this construction.

Diagrams of the type gg → qqqq contain s-channel electroweak propagators
only if there is color exchange between the initial state particles, which is forbidden
by construction. The two incoming gluons must end in some quark internal line(s),
which uses up the two available strong coupling powers. If the gluons do not each
couple to a different quark line, then the other quark line must originate from an
electroweak boson, see upper row of Fig. 15.

In diagrams of the qq → qqqq type, the forbidden color flow between the lines
of the incoming quarks coincides with the presence of s-channel electroweak boson
propagators by a similar logic, see the second row of Fig. 15. If one of the final-state
quark pairs originates from a gluon propagator, which must itself be attached to one
of the other two quark lines, then no powers of the strong coupling remain for a gluon
exchange between the initial state quarks. Diagrams in which the initial-state quarks
belong to the same fermion line are forbidden by construction. Furthermore, no
diagrams with splittings of the kind γ∗ → qq̄ are included, as discussed in Sec. 3.1.2

We define the VBS approximation, as we employ it in this work, as the cal-
culation of hadronic W+W+jjj production without the contributions discussed in
Sec. 3.2.2 through 3.2.4, which are kinematically and/or color suppressed. As we
have seen, the remaining contributions can be constructed by adopting the structure-
function approach, yielding a gauge-invariant set. We remark that no subprocesses
induced by a pair of bottom-antibottom quarks arise in our approximation as a
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consequence of the exclusion of EW propagators in the s-channel.
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4 Implementation

In this Section, we discuss our implementation of the VBS process. We begin by
discussing the framework in which the calculation is implemented, the computer
program POWHEG-BOX. We then give details about the implementation itself and the
checks that were performed on it.

4.1 POWHEG BOX

The FORTRAN computer code POWHEG-BOX is a parton-level Monte Carlo event
generator that implements the POWHEG method discussed in Sec. 2.2 and generates
events with NLO precision that can be matched to a PS program. It was first
published in [91], and has since been upgraded to a version 2 [92] and later a RES
version [72], which is the latest one and also the one we employ in this work. The
code is constructed in a general way, so that developers can implement processes by
providing only process-specific ingredients of a calculation. These are:

• The flavor structures of all partonic subprocesses that contribute to the
hadronic process at Born and real level.

• For the first and second versions of the code, a parametrization of the Born
phase-space that maps uniformly distributed variables Xborn in the unit interval
to a set of momenta of a Born configuration was necessary. In the RES version,
the phase space is automatically generated.

• The Born, virtual and real contributions B, Vfin and R introduced in Sec. 2.
• The color-correlated Born amplitudes Bij from Sec. 2, as well as the spin-

correlated Born amplitudes Bµν , which will be introduced further below.
In the initialization phase, POWHEG-BOX constructs all possible singular regions αr
that can occur due to real emission off each flavor structure fb. This is done by
taking each real flavor structure and checking if it can be realized by the branching
of an existing fb, in which case that fb is called an underlying Born structure of the
real flavor structure. This generates a list of regions {αr|fb} of each underlying Born,
which can originate from different branchings (and different real structures). This
identification of all possible singular regions is the base for the isolation of divergences
that is necessary in the FKS scheme, realized by the S-functions (cf. Sec. 2.1). Thus,
summig over the contributions of all flavor structures, Eq. (154) becomes

B̄(Φn) =
∑
fb

B̄fb(Φn) (169)
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where

B̄fb(Φn) = [B(Φn) + V (Φn)]fb
+

∑
αr∈{αr|fb}

∫ [
dΦrad R̂(Φn+1)

]Φ̄αr
n =Φn

αr

+
∑

α⊕∈{α⊕|fb}

∫
dz
z
G
α⊕
⊕ (Φn,⊕) +

∑
α	∈{α	|fb}

∫
dz

z
G
α	
	 (Φn,	) . (170)

In Eq. (170), we have adopted the context notation of references [34, 91], in which
the quantities within a square bracket that has a subindex are all relative to that
subindex. Furthermore, the square bracket under the first integral means that the
integration is carried out over the one-particle radiation phase space that describes
the branching of the current αr, keeping the underlying Born variables Φ̄αr

n fixed and
equal to Φn. The regions α	 and α	 correspond to initial-state radiation. There
might also be real flavor structures which can not lead to a divergence, and thus are
called regular.

The generation of events in POWHEG-BOX is subdivided into 4 stages, which
occur after the initialization phase mentioned above. In the first stage, importance-
sampling grids are set up to make the integration of the FO cross section more
efficient. Specifically, the function

B̃(Φn, Xrad) =
∑
fb

B̃fb(Φn, Xrad) , (171)

with

B̃fb(Φn, Xrad) = [B(Φn) + V (Φn)]fb
+

∑
αr∈{αr|fb}

[∣∣∣∣∂Φrad

∂Xrad

∣∣∣∣ R̂(Φn+1)
]Φ̄αr

n =Φn

αr

+
∑

α⊕∈{α⊕|fb}

1
z

∣∣∣∣∣ ∂z

∂X
(1)
rad

∣∣∣∣∣Gα⊕
⊕ (Φn,⊕) +

∑
α	∈{α	|fb}

1
z

∣∣∣∣∣ ∂z

∂X
(1)
rad

∣∣∣∣∣Gα	
	 (Φn,	)

(172)

is sampled to create grids that are denser where the function is larger. In Eq. (172),
the radiation phase space Φrad as well as z has been parametrized with three further
variables

Xrad =
{
X

(1)
rad, X

(2)
rad, X

(3)
rad

}
, (173)

each in the unit interval, and Φn is implicitly given by the integration variables
Xborn and an appropriate Jacobian. If regular structures exist, a separate grid is
constructed for them. Once the grids are computed, they can be visualized to check
their quality, which will greatly impact the next stages of the program. The first
stage can be iterated several times to achieve better grids.

In the second stage, B̃ is integrated according to the grids generated previously,
as well as any regular contributions that might exist. The value of the total cross
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section that results will be used to give the events, generated at a later stage, their
weight. In stage 2, also an upper bounding function of the integrand is generated.
Optionally, the user can choose to generate differential distributions during this
stage. The corresponding observables must be constructed in a user-defined analysis,
but routines to generate the histograms are provided by the program.

In the third stage, the normalization of the upper bounding function for the
generation of radiation is calculated. This normalization is necessary for the hit-
and-miss or accept-reject procedure that is performed in the next stage.

Finally, the events are generated in the fourth stage. For each event, a phase-
space point and a flavor structure are generated according to the function B̄. Then,
for each singular region αr, a Sudakov form factor is computed and a transverse
momentum pT is generated according to it as a function of the radiation phase space.
Then, the transverse momentum with the highest value is selected together with the
corresponding αr. If the selected value fulfills pT > pmin

T , where pmin
T is the resolution

threshold from Sec. 2.3, the radiation phase space is accepted and the event is saved.
Otherwise, no radiation is generated. The events, which constitute the output of
the last stage, are given out in the Les Houches Event File (LHEF) format [93, 94],
which can be read by a PS program for further treatment.

4.2 Process-Specific Parts

4.2.1 Flavor Structures

The Born and real flavor structures of the VBS process, which have been discussed
in Sec. 3, are not hard-coded but generated at the initialization stage. This is done
in the routines init_born and init_processes by iterating over all possible flavor
labels11 and accepting those that respect charge and fermion-number conservation.
Here, the assumption of a diagonal CKM matrix is taken into account. The list of
flavor structures must include permutations of the initial state if it is not composed
of identical particles. As for the final state, it must respect the following ordering:
first, particles without color charge should be listed, then come the massive quarks
and finally massless quarks and gluons. In our case, this means that the third and
fourth entries of fb are W+ bosons. The rest of the labels are as given in Sec. 3,
with the first two entries for the initial state and the entries after the fourth for the
rest of the final state. POWHEG-BOX automatically checks that no flavor structure
is defined twice according to these definitions. For calculations performed with
this implementation, we assume a perfect bottom-jet tagging and veto, i.e. that jets
stemming from bottom quarks can always be experimentally identified and excluded.
Since our VBS approximation implicitly excludes a bottom-antibottom pair in the
initial state, our calculation does not include flavor structures with any bottom
quarks.

11For the fermion labels, POWHEG-BOX employs the Monte Carlo numbering scheme, which can
be found in [52], with the exception of the use of 0 instead of 21 to denote gluons.
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After the flavor structures are generated, a second set of labels, called tags,
is created. The tags are non-physical, internal labels that prevent the mechanism
that finds singular regions from arriving at undesired regions. In practice, the tags
correspond to the fermion lines of a Feynman diagram. Particles that belong to the
same fermion line carry the same tag. Then, for example, if two fermions of a real
flavor structure, say a quark-antiquark pair, carry different tags, the region that
corresponds to the splitting g → qq̄ is not found, even if a compatible Born flavor
structure exists.

In the RES version of POWHEG-BOX, eventual resonances present in matrix ele-
ments, i.e. massive propagators in the s-channel, are taken into account as additional
information to improve the subtraction method. This functionality requires that
each flavor structure is further supplemented by its resonant histories. For each
bare flavor structure, i.e. a list of the flavor labels of the initial and final state, a
new resonant flavor structure is constructed for each possible set of intermediate
resonances. Thereby, the flavor labels of the resonances are listed in the resonant
flavor structure between the initial and final state. Furthermore, all possible asso-
ciations must be provided. These are a further set of labels that indicates which
final-state particles are the decay products of which resonances. Altogether, a full
flavor structure consists of four one-dimensional arrays (including the tags), with a
length that depends on the particular number of intermediate resonances.

POWHEG-BOX includes the general routines find_born_resonances and
find_real_resonances to construct all these arrays. In our implementation of the
VBS process, the machinery that is necessary to include resonances is not employed,
since we have explicitly excluded all resonances in our approximation. Neverthe-
less, it is our intention to extend our implementation to an exact calculation of
the pp → W+W+jjj process in further work. For this case, the general routines
find_born_resonances and find_real_resonances were not able to generate the
intended result, so we have developed our own version of them, tailored to the
pp → W+W+jjj process.

4.2.2 Matrix Elements

The matrix elements we employ to build the tree-level contributions were generated
using the computer code MadGraph5_aMC@NLO [95] in standalone mode, in its version
2.9.1512. In this program, the matrix elements are generated in a diagrammatic way,
and the user can specify which diagrams are taken into account to a certain extent13.
This is particularly useful for the purposes of the VBS implementation, since this

12POWHEG-BOX includes a part of the external code MadGraph4 [96, 97] that is used to generate
tree level matrix elements. Because of limitations in the multiplicity of the processes it can handle
and in order to have a consistent framework for tree- and loop-level contributions, we generated
instead these matrix elements using MadGraph5_aMC@NLO.

13We remark that the generation of matrix elements is only one of the many functions of this
program. In full, it can carry out NLO computations and match them to a PS program with a
method different from POWHEG, called MC@NLO.
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allows us to exclude all diagrams with electroweak bosons in the s-channel by using
the $$ notation of MadGraph5_aMC@NLO.

The matrix-element routines that are generated by MadGraph5_aMC@NLO are
mainly built to return the spin- and color-averaged square matrix elements, as they
are needed for the computation of a LO cross section. This is done in a series of
intermediate steps. The expression for each Feynman diagram is first constructed
using so-called helicity amplitudes, which are provided as FORTRAN routines by
the library HELAS [98] and encode the polarization- and kinematic-dependence of
the amplitude. These are decomposed using the color-flow formalism [99, 100] and
organized as color factors and color subamplitudes (see the end of Sec. 1.3.4) that
each correspond to a distinct color flow.

For each partonic subprocess of pp → W+W+jjj at LO, there are at most
two non-vanishing color flows, and each one corresponds to the external gluon (see
Sec. 3.1) being attached to either of the two quark lines. Thanks to this setup, we
can extract the color subamplitudes necessary to build Bij according to Eq. (140)
under consideration of our VBS approximation, which neglects color flows in which
a gluon is exchanged between different quark lines.

Similarly, we can build the spin-correlated Born amplitudes

Bµν
j = Nsc

∑
{i},sj ,s′

j

M({i}, sj) M†({i}, s′
j) (εµsj

)∗ ενs′
j
, (174)

which are one 4 × 4 matrix per external particle j, and are only non-zero if j is a
massless vector boson. In Eq. (174), M({i}, sj) is the Born amplitude, {i} are all
remaining spins and colors of the external particles, and sj represents the spin of
the j-th particle. As in Eq. (140), Nsc is the appropriate normalization factor that
accounts for color and spin degrees of freedom as well as for identical particles. The
εµsj

are polarization vectors, normalized as∑
µ,ν

gµν (εµsj
)∗ ενs′

j
= −δsjs′

j
. (175)

POWHEG-BOX has built-in checks for the correctness of Bij and Bµν , which must fulfill∑
i,i 6=j

Bij = Cfj
B , (176)

where i runs over all colored particles entering or exiting the process, Cfj
= 4/3 for

quarks and Cfj
= 3 for gluons, and∑

µ,ν

gµν Bµν
j = −B . (177)

Both Bij and Bµν are used to construct analytic approximations to the real con-
tributions in the singular regions, which ultimately enter the calculation of R̂ in
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the FKS subtraction method. A further test of the correlated amplitudes consists
in numerically checking that the approximations built with them actually coincide
with the matrix elements in the appropriate soft and/or collinear limits. Also this
check is implemented in POWHEG-BOX, and we have used it to test our routines.

The virtual corrections were generated using the code MadLoop5 [101, 102],
which is delivered as part of MadGraph5_aMC@NLO. As for the tree-level contributions,
this program allows the exclusion of electroweak propagators in the s-channel using
the $$ command. MadLoop5 includes interfaces to several other programs that handle
the tensor integral reduction and the computation of scalar integrals, cf. Sec. 1.2.2,
from which the user can choose. We have opted for the codes COLLIER [103] and
CutTools [104] for this task. The latter is used as a backup in case MadLoop5 detects
an unstable result from the first one.

4.2.3 Channel Mapping

To implement the exclusion of identical particles, which is part of our VBS approxi-
mation, only matrix elements of subchannels that involve quark lines of different
generations are called, which we call primary. This stategy requires a mapping from
the complete set of flavor structures onto the set of flavor structures of the primary
subchannels. The principle behind this mapping is to identify the fermion lines of
the matrix elements that contribute to a general flavor structure and then assign
each of those lines quark labels of the same kind but a different family. Thus, for
example, we map

(u1d̄2 → d1ū2g) 7→ (u1s̄2 → d1c̄2g) ,
where we have used subscripts as labels for each fermion line. The mapping is well
defined because we exclude electroweak bosons in the s-channel, so that an initial
state like ud̄ can not annihilate, i.e. the tags (u1d̄1 → d2ū2g) cannot be realized.
Rather, the u and the d̄ each belong to a fermion line with one end in the initial state
and the other in the final state. In the notation of Sec. 3, the primary subchannels
at Born and virtual level are:

1©uc → dsg, 2© d̄s̄ → ūc̄g, 5©us̄ → dc̄g, 8© gu → dsc̄, 10© gd̄ → ūsc̄ .

The real primary subchannels with only two fermion pairs are:
uc → dsgg, d̄s̄ → ūc̄gg, us̄ → dc̄gg, gu → dsc̄g, gd̄ → ūsc̄g gg → dūsc̄ .

To realize real primary subchannels with three fermion pairs, we employ matrix
elements that include quarks of the third generation (b and t), where we artificially
set their masses to zero. The primary structures in this case are

uc → dcbt̄ , uc → usbt̄ , uc → dsqq̄ , us → dsbt̄ ,

d̄s̄ → ūs̄bt̄ , d̄s̄ → d̄c̄bt̄ , d̄s̄ → ūc̄qq̄ , d̄c̄ → ūc̄bt̄ ,

d̄s̄ → dc̄bt̄ , uc̄ → dc̄bt̄ ,

us̄ → ds̄bt̄ , us̄ → uc̄bt̄ , us̄ → dc̄qq̄ ,
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where qq̄ = bb̄, tt̄.
Certain (non-primary) flavor structures can be mapped to more than one

primary flavor structure. This is the case for subchannels that have a qq̄ pair in the
final state and contain another femion pair of the same family. One example is

us̄ → dc̄uū ,

which can be mapped to a primary subchannel as

(u1s̄2 → d1c̄2u3ū3) → (u1s̄2 → d1c̄2t3t̄3) , (178)

as well as

(u1s̄2 → d3c̄2u1ū3) → (u1s̄2 → u1c̄2b3t̄3) . (179)

In such cases, we choose the mapping where the qq̄ pair in the final state belongs to
the same fermion line, which in our example is mapping (178). This corresponds to
fixing the Born structure that one obtains by replacing the qq̄ pair by a gluon as
the underlying Born structure. The output of mapping (178) is uniquely reached by
mapping the structure (u1s̄2 → u1c̄2d3ū3), for example. This choice is part of our
definition of the VBS approximation.

4.2.4 The Born Suppression Factor

As mentioned in Sec. 3, the LO matrix elements of the process under consideration
contain divergences that must be handled in the numerical computation to prevent
unphysical results. In fact, POWHEG-BOX includes a mechanism for this very purpose.
It employs a Born Suppression Factor (BSF) F (Φn), which is a function of the
underlying Born kinematics Φn, to weight the B̃ function at each phase-space
point. The resulting suppressed cross section is used in the intermediate steps of
the computation to prevent the importance sampling of stage 1 from focusing on
the divergent regions we want to avoid, as well as to prevent numerical instabilities
in the results of stage 2. In the end, the results of stages 2 and 4 are reweighted
using 1/F (Φn) to recover the true cross section.

The form of the BSF is determined by the developers. Following Refs. [105, 84],
we implemented and investigated two different BSF. The first one is a multiplicative
BSF and has the form:

F1(Φn) =
3∏
j=1

(
(pT,j)2

(pT,j)2 + Λ2
1

)k 3∏
i 6=j

(
M2

ij

M2
ij + Λ2

2

)k
, (180)

where i, j index the jets and Mij is the invariant mass of the ij jet pair.
Option two is an exponential BSF, of the form

F2(Φn) = exp
{

−Λ4
1

(
3∑
j=1

1
(p2
T,j)p

+
3∑
i 6=j

1
((p2

rel(i, j))p

)}
·
(

h2

h2 + Λ2
2

)2

, (181)
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where prel(i, j) is the relative transverse momentum of jets i and j in the partonic
center-of-mass system and h =

(∑3
j=1 p

2
T,j

)
. The values of Λi and k, p can be varied

by the user. The default choices are k = 2 = p and Λ1 = Λ2 = 20 GeV for F1 and
Λ1 = 10 GeV, Λ2 = 30 GeV for F2.

4.3 Validation
In this short section, we describe which steps were taken for the validation of our
implementation.

To test that the diagram selection of MadGraph5_aMC@NLO that we employed
to exclude s-channel EW propagators produces gauge-invariant matrix elements,
we checked that these fulfill the Ward identity for external gluons [106]. This
identity states that a gauge-invariant matrix element that involves an external gauge
vector boson with momentum kµ and polarization vector εµ(k) vanishes upon the
replacement εµ(k) → kµ. We checked that this is the case for the Born, virtual
and real matrix element of one partonic subprocess of each kind. We remark that
fulfilling the Ward identity is a necessary, but not a sufficient condition for gauge
invariance. Nevertheless, the VBS approximation produces gauge-invariant matrix
elements per construction, as discussed in Sec. 3.2.5.

Our implementation was furthermore compared to the calculation of Ref. [25],
where QCD corrections to electroweak production of e+νeµ

+νµjj at the LHC was
calculated using POWHEG BOX V2 with matrix-element routines generated using the
VBFNLO code [107, 108, 109] in the VBS approximation. Specifically, the leading
order of our implementation was compared to the real QCD correction of e+νeµ

+νµjj
production, which has one more jet. This process contains the scattering of two
W+ bosons which then each decay into a charged lepton and a neutrino, but also
includes contributions in which the final-state leptons do not originate from W+

bosons. This validation check proceeded in two steps:
1. New real matrix elements for pp → e+νeµ

+νµjj were generated using
MadGraph5_aMC@NLO and integrated in the implementation of [25], which
is publicly available as a POWHEG BOX V2 process. It was confirmed that the
two sets of matrix elements coincide for a handful of phase-space points.

2. The new real matrix-element routines were modified to include only contri-
butions from Feynman diagrams with two s-channel W+-boson propagators.
With this selection, we were able to check that the leading order of our imple-
mentation does indeed correspond to the real QCD correction of e+νeµ

+νµjj
production, restricted to diagrams that are compatible with the production of
two on-shell W+ boson and three jets and for subprocesses without gluons in
the initial state.

Furthermore, some Born, real and virtual matrix elements of our implementation were
compared pointwise to corresponding matrix elements generated using the RECOLA2
program [110, 111]. This comparison is only feasible for certain subprocesses, because
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RECOLA2 does not allow the exclusion of diagrams with certain s-channel propagators,
as it is done in our implementation according to the VBS approximation. Specifically,
the comparison of virtual matrix elements of gluon-quark initiated subprocesses,
which exhibit s-channel EW propagators, can not be performed.

Finally, we corroborated that the results generated with our implementation are
insensitive to technical parameters. We varied technical cut Q2

γ,min, introduced in
Sec. 3.1.2, in the range 1-10 GeV2 and found no significative differences. Furthermore,
we checked that the results produced using the forms F1 and F2 of the BSF are
compatible. For the form F2, which we employ to generate the results of Sec. 5, we
additionally checked that varying the values of Λ1/2 yields equivalent results.
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In this section, we present the results of numerical calculations performed using
the implementation described in Sec. 4. The contents of this section are closely
based on Ref. [35], where these results were first published. We begin by giving the
input parameters and settings that we employed in Sec. 5.1. In Sec. 5.2, we discuss
fixed-order results and the effect of NLO QCD corrections. We then investigate PS
effects in Sec 5.3, where we first assess them with respect to our fixed-order NLO
calculation and then compare different settings of the PS.

5.1 Input Parameters and Analysis Setup
The results presented in this work have been obtained using the
NNPDF40_nnlo_as_01180 set [112] of parton distribution functions as imple-
mented in the LHAPDF6 library [113]. It corresponds to αs(MZ) = 0.118 and
assumes the five-flavor scheme, i.e. that all quarks apart from the top-quark are
massless.

For the EW input parameters we use the Gµ scheme where, besides the Fermi
constant Gµ, the masses of the Z and W bosons are fixed. For our study we choose
the following input values [52]:

MZ = 91.1876 GeV , MW = 80.377 GeV , Gµ = 1.1663788×10−5 GeV−2 . (182)

Other EW parameters like the electromagnetic coupling constant αem and the weak
mixing angle θW are derived via tree-level relations. The widths of the Z and W
bosons are set to [52]:

ΓZ = 2.4955 GeV , ΓW = 2.085 GeV . (183)

We set the top-quark mass and width to [52]:

mt = 172.5 GeV , Γt = 1.42 GeV , (184)

and for the mass and with of the Higgs boson we employ:

mH = 125.25 GeV , ΓH = 3.2 × 10−3 GeV . (185)

The minimal photon virtuality for the technical cut discussed in Sec. 3.1.2 is set to

Q2
γ,min = 4 GeV2 . (186)

We employ the Born suppression factor F2 from Eq. (181) with the default
values

Λ1 = 10 GeV and Λ2 = 30 GeV . (187)
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This choice is motivated by the improved grid convergence that it provides.
For the renormalization and factorization scales, we set µr = µf = µ0 with

µ0 = 1
2

(
ET,W1 + ET,W2 +

npart∑
f

pT,f

)
, (188)

following [114], where
ET,Wi

=
√
m2
W + p2

T,Wi
(189)

are the transverse energies of the W bosons and the sum in Eq. (188) includes the
transverse momenta pT,f of all npart final-state partons of a considered Born-type or
real-emission configuration.

For the results that were obtained from events, i.e. those matched to a parton
shower, we additionally perform a a seven-point scale variation to estimate the
renormalization and factorization scale uncertainty. Specifically, this is done by
setting µr = ξR µ0 and µf = ξF µ0 with variation factors ξR and ξF and independently
setting the scale factors ξF and ξR to the values 1

2 , 1 and 2 while excluding the
combinations (ξF, ξR) = (1

2 , 2) and (ξF, ξR) = (2, 1
2). This scale variation was done

using the reweighting function of POWHEG-BOX.
To define IR-safe observables, we construct jets using the anti-kT recombination

algorithm [69] as implemented in the FastJet package [115] and using the distance
parameter R = 0.4. Our phenomenological analysis imposes cuts on these jets to
define the phase-space region in which the VBS approximation is trustworthy and
where the QCD-induce background is small [116]. Three jets jk, k = 1, 2, 3 are
required with transverse momenta and rapidities such that

pT,jk ≥ 30 GeV , |yjk | ≤ 4.5 . (190)

We denote the hardest two of these jets, i.e. those with the largest transverse
momentum, as the tagging jets j1 and j2 with pT,j1 > pT,j2 , and require that they
are well separated and have a large invariant mas by fulfilling

|∆yj1,j2 | ≥ 2.5 , Mj1,j2 ≥ 500 GeV . (191)

The cuts in Eqs. (190) and (191) are enforced in all the results shown in this section.

5.2 Results at Fixed Order
For the W+W+jjj cross sections at LO and NLO QCD integrated over the phase
space within the cuts of Eqs. (190)–(191) we obtain σLO = 3.214(2) × 10−2 fb and
σNLO = 3.65(2) × 10−2 fb, respectively. The Monte Carlo integration uncertainty on
the last digit is given in parentheses. This corresponds to a relative QCD correction
on the LO result of +13.7(9)%.
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We now discuss differential cross sections with respect to several jet observables
and discuss their main features, as well as the effects of the NLO QCD corrections
on them. We distinguish the four jets that can occur in pp → W+W+jjj at NLO
in QCD by ordering them with respect to transverse momentum, and call them
j1, j2, j3, j4, where pT,j1 > pT,j2 > pT,j3 > pT,j4 . Figures 22 to 24 show distributions
at LO (blue) and NLO in QCD (red), together with their respective ratios. The
fourth jet can only arise at NLO in QCD as real emission, and is thus effectively
only described with LO accuracy. Hence, no LO curve or ratio panel is shown
in observables that concern the fourth jet. Since detectable jets cannot have an
arbitrarily small transverse momentum, we compute some distributions of the fourth
using an additional cut

pT,j4 ≥ 20 GeV , (192)

which we indicate in the respective plots. The error bars in the histograms correspond
to the Monte-Carlo uncertainty.

The transverse-momentum distributions of the four jets are shown in Fig. 22.
For the tagging jets j1 and j2, the histograms display maxima at 110–190 GeV
and 70–90 GeV, respectively. This behavior is typical for VBS processes. For WZ
scattering, for example, it was found that the two final-state quarks ar LO that
correspond to the tagging jets typically have pT,1/2 ≈ O(MW ) [18]. On the other
hand, very low values of the transverse momenta of the tagging jets are kinematically
suppressed. This is evident in the upper-row plots of Fig. 22, where the distributions
increase from the lowest allowed value 30GeV towards larger pT values until the
corresponding maximum. The reason for this behavior can be seen in the following
way. In collider coordinates, the momentum of a particle can be written as [55]

p = (mT cosh y, pT sinφ, pT cosφ, mT sinh y) (193)

in terms of its transverse momentum pT , transverse mass mT =
√
p2
T +m2, mass

m, azimuthal angle φ and rapidity y (see definition in Eq.(122)). Using these
coordinates, the invariant mass M2

ik = (pi + pk)2 of particles i and k becomes

M2
ik = m2

i +m2
k + 2 [mT,imT,k cosh ∆yik − pT,ipT,k cos ∆φik] , (194)

which follows immediately after using the addition theorems for the trigonometric
and hyperbolic functions and where ∆yik = yi − yk and ∆φik = φi − φk are the
rapidity and azimuthal-angle differences of the particles. For small particle masses,
Eq. (194) reduces to

M2
ik = m2

i +m2
k + 2 pT,i pT,k

[√
1 + mi

pT,i

√
1 + mk

pT,k
cosh ∆yik − cos ∆φik

]
= m2

i +m2
k + 2 pT,i pT,k

[(
1 + O

(
mi/k

pT,i/k

))
cosh ∆yik − cos ∆φik

]
≈ 2 pT,i pT,k [cosh ∆yik − cos ∆φik] , (195)
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Figure 22: Distributions in transverse momentum pT,ji of the four jets that can
occur in NLO W +W +jjj production at the LHC. Taken from Ref. [35].

where the last line becomes an equality for mi = mk = 0. Since their momentum can
correspond the sum of momenta of massless particles, jets generally have non-zero
masses. Nevertheless, the approximate relation in Eq. (195) can be employed if
these are not too large14, see e.g. Ref. [116]. Coming back to the tagging jets, we
can see that our rapidity-separation requirement from Eq. (191) translates Eq. (195)
into the constraint

|∆yj1,jk | > cosh−1
(

5002 GeV2

2 pT,j1 pT,j2
+ cos ∆φj1,j2

)
> cosh−1

(
5002 GeV2

2 pT,j1 pT,j2
− 1
)
, (196)

which means that if pT,j1 , pT,j2 become too small, |∆yj1,jk | is forced to take larger,
less likely values, cf. the upper-left plot in Fig. 24.

14This is the case if the angles between clustered particles are small, since for the cluster of
two massless particles with momenta p, q it is m2 = (p + q)2 = 2 |~p| |~q| cos θpq, with the angle θpq

between ~p and ~q.
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Figure 23: Distributions in the rapidities yj1 of the four jets. For the rapidity
distribution of the fourth jet the additional cut of Eq. (192) is imposed. Taken from
Ref. [35].

The transverse-momentum distributions of the subleading jets j3 and j4, which
are not constrained by an invariant-mass cut, strongly increase towards small values.
For the tagging jets, the largest QCD corrections are concentrated at low values of
pT , and they are largest for the hardest jet. This is likely due to soft and/or collinear
real emission off one of the hardest partons that is recombined with either of them
instead of giving rise to a fourth jet. In the case of the third jet, the correction is
not strongly localized but similar in size throughout the shown pT -range.

Figure 23 displays the rapidity distribution of each jet. For the three hardest
jets, the NLO corrections increase towards larger absolute values of their rapidity.
Both LO and NLO rapidity distributions of all jets assume their maximal values
between ±2 and ±2.5. As was discussed in Sec. 3, this is expected for the tagging
jets in VBS processes, which are mostly forward and back-to-back and also for the
subleading jets, which are often radiated by the tagging jets and are close to them
in position [5]. This behavior has been observed before for the third jet in VBS
processes in Refs. [84, 117]), for example, and is compatible with the distributions
of jet rapidity-differences shown in Fig. 24. The upper-left plot shows the ∆yj1,j2
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Figure 24: Distributions of the rapidity differences ∆yji,jk of the tagging jets (top
left), one tagging and one non-tagging jet (top-right, bottom-left) and non-tagging
jets (bottom right). For distributions involving the fourth jet the additional cut of
192 is imposed. Taken from Ref. [35].

distribution. The total absence of events in the range from −2.5 to 2.5 corresponds
to the separation cut of Eq. (190). The LO and NLO distributions assume their
maxima at ±3.8, and the NLO corrections slightly increase towards larger rapidity
separations. Considering that the typical rapidities of the tagging jets are around
±2.25 as shown in Fig. 23, the behavior of ∆yj1,j2 indicates that the tagging jets are
often, as expected, in opposite sides of the detector.

In contrast, the rapidity separations of a non-tagging jet to one of the tagging jets
and of the two non-tagging jets tend to be small. This corresponds to configurations
where these jets have rapidities of the same sign and similar magnitude. Instead of
peaking at 0, these distributions have two maxima at ∆yji,jk ≈ ±0.4 and display a
dip between those values. This is due to the requirement of a minimal separation
that the anti-kT clustering algorithm implies, see Sec. 1.6. The distance parameter
R = 0.4 of the recombination algorithm represents the lower bound on the separation
∆Rik of the jets ji and jk, defined in Eq. (121). To satisfy ∆Rik > R for values of
∆yik smaller than 0.4, the azimuthal-angle difference φi,k is forced to take higher
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values, which results in a phase-space suppression for such configurations. The
local maxima at rapidity-difference values of around ±4 displayed by the plots on
the top-right an bottom row of Fig. 24 correspond to configurations in which the
corresponding jets have opposite-sign rapidities of the typical magnitude 2.25. In
the bottom-left plot of Fig. 24, the QCD correction is localized around values where
the LO distribution is itself large.

5.3 Parton-Shower Results
To assess PS effects, we match our calculation to PYTHIA 8.240 using the Monash
2013 tune, see Sec. 1.5, and turn off QED showering, so that only branchings of
color-charged particles are simulated.

We begin by comparing results at fixed NLO against NLO matched to PS,
which we denote NLO+PS in the following. For this comparison, we deactivate
multi-parton interactions (MPI), which are used to describe effects of the underlying
event [67], as well as hadronization effects. Furthermore, we employ the dipole
recoil scheme of the PYTHIA initial-state shower instead of the default15 global recoil,
and denote this choice of settings the PY+DS setup. In the dipole scheme, the
recoiling system consists only of the subset of particles that are color-connected
to the emitter16, leading to a better description of color-coherence effects in the
radiation pattern [118]. These are are crucial for the correct description of DIS-like
processes, in which the fact that the color flows between initial- and final-state
partons causes a suppression of gluon radiation in the central region [119]. As
was discussed in Sec. 3, VBS is DIS-like in this respect, and it has been shown
that a dipole recoil scheme is more appropriate for describing VBF in NLO+PS
calculations [120]. Thus, we adopt the dipole recoil scheme to compare against NLO
results.

For the NLO+PS cross section integrated within the selection cuts of
Eqs. (190)-(191) we obtain σPY+DS = 3.45(1) × 10−2 fb, which represents an 8.2%
reduction with respect to the fixed-order result stated in Sec. 5.2. This is an expected
effect, since fewer events pass the selection cuts at NLO+PS level due to the energy
loss of the jets from the additional radiation generated by the PS.

We now turn to a discussion of PS effects on NLO differential distributions,
shown in Figs. 25 and 26. There, the error bars indicate the Monte-Carlo uncertainty,
while the bands indicate scale uncertainties obtained by a 7-point variation of µf
and µr. Figure 25 shows the transverse-momentum and rapidity distributions of the
tagging jets, which display only slight PS effects. The top plots of Fig. 26 shows
the pT distributions of the non-tagging jets. As is the case for the leading jets,
the pT,j3 NLO distribution is only slightly affected by the PS. On the other hand,

15For the final-state shower, we use the default, which is a dipole recoil scheme.
16The color structure of each hard event is contained in the LHEF event file produced by POWHEG

BOX. Thus, the PS knows which particles are color-connected at the beginning of the shower and it
can keep track of the color flow in subsequent splittings.
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Figure 25: Transverse momentum and rapidity distributions of the two tagging at
NLO (red) and NLO+PS (green) using the dipole shower in PYTHIA 8. Taken from
Ref. [35].

the spectrum of the fourth jet is strongly influenced in the low-pT regime. This
typical PS effect dampens the divergent behavior of very soft real emissions, and is
due to the resummation-like correction that the PS implements in the phase-space
region where perturbation theory becomes unreliable, e.g. where large logarithms
arise [121]. The description of the fourth jet, which at fixed-order is effectively only
LO accurate, is thus improved in this respect.

In order to assess the separation of a non-tagging jet i = 3, 4 from the tagging
jets, we consider its rapidity relative to the center of the tagging-jet system,

y∗
ji

= yji − yj1 + yj2
2 . (197)

The corresponding distributions are shown in the lower plots of Fig. 26. Similarly
to the pT distributions, the relative rapidity of the third jet in the PY+DS setup is
comparable to the NLO result within the estimated scale uncertainties, which. For
the fourth jet, however, we see that the PS shifts the relative rapidity away from
the central region towards higher values of |y∗

j4|. This effect is strongly dependent
upon the chosen recoil scheme, as we will see below.
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Figure 26: Transverse-momentum and relative-rapidity distributions of the non-
tagging jets at NLO and NLO+PS. For the y∗

j4
distributions the additional cut of 192

is imposed. Taken from Ref. [35].

To test our expectations on the chosen PS settings, we now consider three
additional setups. We define the PY+GS setup, in which we use the global recoil
scheme of PYTHIA 8 instead of the dipole recoil scheme. As for the PY+DS setup, MPI
and hadronization are turned off in the PY+GS setup to allow for a direct comparison
of recoil schemes. to investigate the non-perturbative effects of the PS, we also
define the PY+DS+MPI+HAD and PY+GS+MPI+HAD setups in which the dipole or global
recoil scheme is used, respectively, and additionally MPI and hadronization effects
are activated. Figure 27 displays predictions for the rapidity distributions of the
tagging jets and the rapidity-difference distributions of the subleading jets using
these four different setups.

For the distributions of the tagging jets, all predictions agree within their
scale uncertainties. On the other hand, there are deviations visible beyond the
scale uncertainty in the y∗ distributions of the subleading jets. The differences
are concentrated in the central region, where the setups that employ global recoil
scheme (orange and pink curved) evidently predict more events than those using
the dipole recoil scheme (green and purple curves). For y∗

j3 , the relative difference
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Figure 27: Rapidity distributions of the tagging jets (upper plots) and rapidity
distributions of the non-tagging jets relative to the tagging jets (lower plots) at
NLO+PS accuracy for the PY+DS (green), PY+GS (orange), and PY+DS+MPI+HAD (purple)
setups, and their ratios to the PY+DS results. For the y∗

j4
distributions the additional

cut of Eq. (192) is imposed. Based on Fig. 11 of Ref. [35].

between the PY+GS and PY+DS predictions in the bins between −0.5 and 0.5 reaches
∼ 40%, and it even exceeds 100% for y∗

j4 . For both recoil schemes, considering
MPI and hadronization effects results in a slight increase of events with low values
of y∗

j . Nevertheless, the predictions of different recoil schemes display the largest
differences. The distributions of the subleading jets as predicted by the dipole recoil
scheme lie closer to the the pure fixed-order results than the prediction using the
global recoil scheme, cf. Fig. 26. This observation is in agreement with expectations
from the literature [120] and supports the existing recommendation [119] of using a
PS algorithm that takes color-coherence into account.
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Summary and Outlook

In this thesis, we presented a calculation of the scattering of two W+ bosons at the
LHC with three jets in the final state, as well as its NLO corrections in QCD. This
was performed in the POWHEG BOX RES framework, which allows the matching to a
PS and thereby a more accurate description of collision events. Furthermore, we
present a phenomenological study in which we assess the effects on jet observables
of the different simulation layers that our calculation is capable of performing.

The first part of this thesis was devoted to a review of the theoretical framework
of perturbative calculations for collider events. There, some principles of quantum
field theory for particle physics and the SM were reviewed. We then discussed in
some detail how NLO calculations are performed in the FKS subtraction scheme
and matched to PS programs using the POWHEG method in the second part.

In the third part, we introduced the process of W+W+ scattering and highlight
its relevance as a probe for new-physics effects in the EW sector of the SM. Fur-
thermore, we discussed W+W+ scattering at the LHC and the importance of an
accurate jet description for the event selection. We then turned to the underlying
process of electroweak W+W+jjj production and the LHC, which contains VBS
scattering, and reviewed its contributions at LO and NLO. Afterwards we discussed
the VBS signature, which consists in two far-forward tagging jets with large invariant
mass and opposite-signed rapidities, and used it to motivate the VBS approximation
that we employed for our calculation. In this approximation, kinematically- and
color-suppressed contributions are excluded from the calculation. The retained
terms can be constructed by means of the structure-function approach, yielding a
theoretically well-defined set of contributions.

The fourth part of this work is concerned with the numerical implementation
of the calculation. We began by introducing the POWHEG BOX program, which is a
parton-level event generator that implements the POWHEG matching strategy. We
then detail how we construct the necessary building blocks to perform our calculation
within this framework in a way that is consistent with the VBS approximation, and
present the checks we employed to validate our implementation.

In the fifth and final section, we showed numerical studies produced with our
implementation with a focus on jet kinematics. These were performed using selection
cuts to define a phase-space region in which VBS contributions are enhanced and
the VBS approximation is expected to be valid. We first showed results at fixed
LO and NLO in QCD. We we found a 13.8% relative QCD correction for the cross
section integrated over the considered phase-space region. Furthermore, we discussed
the general features of several differential distributions, as well as the effect of the
NLO QCD corrections on these. We found typical VBS behaviors of the transverse-
momentum and rapidity distributions of jets, and NLO effects that only moderately
affect the distribution shapes. This is in particular the case for the third jet, which
is described with NLO accuracy in our FO calculation.
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Then, we compared fixed NLO results with those matched to the PS of PYTHIA 8
using the dipole recoil scheme, which is recommended for processes like VBS.
Beyond an expected reduction of the integrated cross section, we found only slight
deviations between the NLO and NLO+PS descriptions of the three hardest jets at
the differential level. For the fourth jet, whose low-energy kinematics are described
by the Sudakov form factor at the NLO+PS level, we found the expected damping of
the stark growth towards the soft region present in pT distributions of real radiation
at fixed order. Furthermore, we observed that the NLO and NLO+PS predictions
for the relative rapidity of the fourth jet differ in the central region. There, the PS
effect is a reduction of the expected events.

Finally, we compared the predictions for the rapidity distributions of the jets
produced by different PS settings. Specifically, we varied the recoil scheme and also
assessed the effects of non-perturbative parts of the PS simulation. We found that
the three studied settings produced compatible predictions for the two hardest jets.
Large differences arose between the NLO+PS predictions for the subleading jets
using the dipole or global recoil scheme. Particularly for the fourth jet, the latter
caused a significant increase in events with low |y∗

j | values, and there was a larger
difference between the corresponding distribution with respect to its fixed NLO
counterpart. This discrepancy between recoil schemes has been observed before for
VBS processes, and is due to the fact that the dipole recoil scheme considers the
color structure of the process, whereas the global scheme does not. The effect of
non-perturbative aspects of the PS was slighter than the effect of the recoil scheme,
and we concluded that our findings support the existing recommendation [119] of
using a PS algorithm that takes color-coherence into account.

Our fixed-order calculation represents an improvement upon existing VBS
studies in the sense that the description of the third jet includes NLO effects in QCD.
Furthermore, our calculation can be matched to a PS, which has significant effects
on jet observables. The improved description that our calculation offers becomes
especially relevant if central-jets are vetoed as part of selection cuts in measurements
of VBS at the LHC.

In its current state, the code we developed can be employed to perform more
detailed studies of PS effects, for example under closer consideration of the mismatch
in ordering variables between POWHEG BOX and PYTHIA 8, as suggested in Ref. [119].
Furthermore, it may be used for phenomenological studies in which the decay
products of the W+ bosons, generated by the PYTHIA 8, are taken into account.
Although our software package is fully functional, further development is necessary
to optimize it and bring it into a more user-friendly shape. Therefore, we leave its
publication for follow-up work.

In the future, it would be desirable to assess the validity of the VBS approxima-
tion we employ at this jet-multiplicity level. Non-VBS contributions could become
relevant in the VBS phase space by circumventing the selection cuts in the presence
of the extra jet. Furthermore, considering the decay products of the W+ bosons at
the level of the hard process would be interesting, also in the semi-leptonic channel
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where more jets arise already at LO. Finally, it would be very valuable to study the
impact of EW corrections to the pp → W+W+jjj process, which have been found
to be very large for VBS with two jets [26, 27, 28].

101



References

References
[1] ATLAS collaboration, G. Aad et al., Observation of a new particle in the

search for the Standard Model Higgs boson with the ATLAS detector at the
LHC, Phys. Lett. B 716 (2012) 1 [1207.7214].

[2] CMS collaboration, S. Chatrchyan et al., Observation of a New Boson at a
Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716
(2012) 30 [1207.7235].

[3] D. R. Green, P. Meade and M.-A. Pleier, Multiboson interactions at the LHC,
Rev. Mod. Phys. 89 (2017) 035008 [1610.07572].

[4] B. W. Lee, C. Quigg and H. B. Thacker, Weak interactions at very high
energies: The role of the higgs-boson mass, Phys. Rev. D 16 (1977) 1519.

[5] M. Rauch, Vector-boson fusion and vector-boson scattering, 1610.08420.
[6] A. Ballestrero et al., Precise predictions for same-sign W-boson scattering at

the LHC, Eur. Phys. J. C 78 (2018) 671 [1803.07943].
[7] ATLAS collaboration, G. Aad et al., Evidence for Electroweak Production of

W±W±jj in pp Collisions at
√
s = 8 TeV with the ATLAS Detector, Phys.

Rev. Lett. 113 (2014) 141803 [1405.6241].
[8] CMS collaboration, A. M. Sirunyan et al., Observation of electroweak

production of same-sign W boson pairs in the two jet and two same-sign
lepton final state in proton-proton collisions at

√
s = 13 TeV, Phys. Rev. Lett.

120 (2018) 081801 [1709.05822].
[9] ATLAS collaboration, M. Aaboud et al., Observation of electroweak

production of a same-sign W boson pair in association with two jets in pp
collisions at

√
s = 13 TeV with the ATLAS detector, Phys. Rev. Lett. 123

(2019) 161801 [1906.03203].
[10] ATLAS collaboration, M. Aaboud et al., Observation of electroweak W±Z

boson pair production in association with two jets in pp collisions at
√
s = 13

TeV with the ATLAS detector, Phys. Lett. B 793 (2019) 469 [1812.09740].
[11] ATLAS collaboration, G. Aad et al., Evidence for electroweak production of

two jets in association with a Zγ pair in pp collisions at
√
s = 13 TeV with

the ATLAS detector, Phys. Lett. B 803 (2020) 135341 [1910.09503].
[12] ATLAS collaboration, G. Aad et al., Observation of electroweak production

of two jets and a Z-boson pair, Nature Phys. 19 (2023) 237 [2004.10612].
[13] CMS collaboration, S. Chatrchyan et al., Study of Exclusive Two-Photon

Production of W+W− in pp Collisions at
√
s = 7 TeV and Constraints on

Anomalous Quartic Gauge Couplings, JHEP 07 (2013) 116 [1305.5596].
[14] CMS collaboration, V. Khachatryan et al., Evidence for exclusive

γγ → W+W− production and constraints on anomalous quartic gauge
couplings in pp collisions at

√
s = 7 and 8 TeV, JHEP 08 (2016) 119

[1604.04464].

102

https://doi.org/10.1016/j.physletb.2012.08.020
https://arxiv.org/abs/1207.7214
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/j.physletb.2012.08.021
https://arxiv.org/abs/1207.7235
https://doi.org/10.1103/RevModPhys.89.035008
https://arxiv.org/abs/1610.07572
https://doi.org/10.1103/PhysRevD.16.1519
https://arxiv.org/abs/1610.08420
https://doi.org/10.1140/epjc/s10052-018-6136-y
https://arxiv.org/abs/1803.07943
https://doi.org/10.1103/PhysRevLett.113.141803
https://doi.org/10.1103/PhysRevLett.113.141803
https://arxiv.org/abs/1405.6241
https://doi.org/10.1103/PhysRevLett.120.081801
https://doi.org/10.1103/PhysRevLett.120.081801
https://arxiv.org/abs/1709.05822
https://doi.org/10.1103/PhysRevLett.123.161801
https://doi.org/10.1103/PhysRevLett.123.161801
https://arxiv.org/abs/1906.03203
https://doi.org/10.1016/j.physletb.2019.05.012
https://arxiv.org/abs/1812.09740
https://doi.org/10.1016/j.physletb.2020.135341
https://arxiv.org/abs/1910.09503
https://doi.org/10.1038/s41567-022-01757-y
https://arxiv.org/abs/2004.10612
https://doi.org/10.1007/JHEP07(2013)116
https://arxiv.org/abs/1305.5596
https://doi.org/10.1007/JHEP08(2016)119
https://arxiv.org/abs/1604.04464


References

[15] A. Collaboration, “ATLAS Feature: Unraveling Nature’s secrets – vector
boson scattering at the LHC.” 2020.

[16] V. Barger, K. Cheung, T. Han and D. Zeppenfeld, Single-forward-jet tagging
and central-jet vetoing to identify the leptonic WW decay mode of a heavy
higgs boson, Phys. Rev. D 44 (1991) 2701.

[17] V. Barger, K. Cheung, T. Han and R. J. N. Phillips, Strong W+W+

scattering signals at pp supercolliders, Phys. Rev. D 42 (1990) 3052.
[18] V. D. Barger, K.-m. Cheung, T. Han, A. Stange and D. Zeppenfeld, Full tree

level calculation of the qq → qqWZ electroweak process at hadron
supercolliders, Phys. Rev. D 46 (1992) 2028.

[19] G. Bozzi, B. Jager, C. Oleari and D. Zeppenfeld, Next-to-Leading Order QCD
Corrections to W+Z and W−Z Production via Vector-Boson Fusion, Physical
Review D 75 (2007) 073004 [hep-ph/0701105].

[20] A. Denner, R. Franken, T. Schmidt and C. Schwan, NLO QCD and EW
Corrections to Vector-Boson Scattering into W+W− at the LHC, Journal of
High Energy Physics 2022 (2022) 98 [2202.10844].

[21] B. Jager, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections
to Z boson pair production via vector-boson fusion, Phys. Rev. D 73 (2006)
113006 [hep-ph/0604200].

[22] B. Jager, C. Oleari and D. Zeppenfeld, Next-to-Leading Order QCD
Corrections to W+W+jj and W−W−jj Production via Weak-Boson Fusion,
Physical Review D 80 (2009) 034022 [0907.0580].

[23] B. Jager and G. Zanderighi, Electroweak W+W−jj Prodution at NLO in
QCD Matched with Parton Shower in the POWHEG-BOX, Journal of High
Energy Physics 2013 (2013) 24 [1301.1695].

[24] B. Jager, A. Karlberg and G. Zanderighi, Electroweak ZZjj Production in the
Standard Model and beyond in the POWHEG-BOX V2, Journal of High
Energy Physics 2014 (2014) 141 [1312.3252].

[25] B. Jager and G. Zanderighi, NLO Corrections to Electroweak and QCD
Production of W+W+ plus Two Jets in the POWHEGBOX, Journal of High
Energy Physics 2011 (2011) 55 [1108.0864].

[26] B. Biedermann, A. Denner and M. Pellen, Large electroweak corrections to
vector-boson scattering at the Large Hadron Collider, Phys. Rev. Lett. 118
(2017) 261801 [1611.02951].

[27] B. Biedermann, A. Denner and M. Pellen, Complete NLO corrections to
W+W+ scattering and its irreducible background at the LHC, JHEP 10 (2017)
124 [1708.00268].

[28] S. Dittmaier, P. Maierhöfer, C. Schwan and R. Winterhalder, Like-sign
W-boson scattering at the LHC — approximations and full
next-to-leading-order predictions, JHEP 11 (2023) 022 [2308.16716].

103

https://doi.org/10.1103/PhysRevD.44.2701
https://doi.org/10.1103/PhysRevD.42.3052
https://doi.org/10.1103/PhysRevD.46.2028
https://doi.org/10.1103/PhysRevD.75.073004
https://doi.org/10.1103/PhysRevD.75.073004
https://arxiv.org/abs/hep-ph/0701105
https://doi.org/10.1007/JHEP06(2022)098
https://doi.org/10.1007/JHEP06(2022)098
https://arxiv.org/abs/2202.10844
https://doi.org/10.1103/PhysRevD.73.113006
https://doi.org/10.1103/PhysRevD.73.113006
https://arxiv.org/abs/hep-ph/0604200
https://doi.org/10.1103/PhysRevD.80.034022
https://arxiv.org/abs/0907.0580
https://doi.org/10.1007/JHEP04(2013)024
https://doi.org/10.1007/JHEP04(2013)024
https://arxiv.org/abs/1301.1695
https://doi.org/10.1007/JHEP03(2014)141
https://doi.org/10.1007/JHEP03(2014)141
https://arxiv.org/abs/1312.3252
https://doi.org/10.1007/JHEP11(2011)055
https://doi.org/10.1007/JHEP11(2011)055
https://arxiv.org/abs/1108.0864
https://doi.org/10.1103/PhysRevLett.118.261801
https://doi.org/10.1103/PhysRevLett.118.261801
https://arxiv.org/abs/1611.02951
https://doi.org/10.1007/JHEP10(2017)124
https://doi.org/10.1007/JHEP10(2017)124
https://arxiv.org/abs/1708.00268
https://doi.org/10.1007/JHEP11(2023)022
https://arxiv.org/abs/2308.16716


References

[29] M. Chiesa, A. Denner, J.-N. Lang and M. Pellen, An event generator for
same-sign W-boson scattering at the LHC including electroweak corrections,
The European Physical Journal C 79 (2019) 788 [1906.01863].

[30] A. Denner, S. Dittmaier, P. Maierhöfer, M. Pellen and C. Schwan, QCD and
electroweak corrections to WZ scattering at the LHC, JHEP 26 (2019) 067
[1904.00882].

[31] A. Denner, R. Franken, M. Pellen and T. Schmidt, NLO QCD and EW
Corrections to Vector-Boson Scattering into ZZ at the LHC, Journal of High
Energy Physics 2020 (2020) 110 [2009.00411].

[32] J. M. Campbell and R. K. Ellis, Higgs Constraints from Vector Boson Fusion
and Scattering, JHEP 04 (2015) 030 [1502.02990].

[33] P. Nason, A New method for combining NLO QCD with shower Monte Carlo
algorithms, JHEP 11 (2004) 040 [hep-ph/0409146].

[34] S. Frixione, P. Nason and C. Oleari, Matching nlo qcd computations with
parton shower simulations: the powheg method, JHEP 11 (2007) .

[35] B. Jäger and S. L. P. Chavez, Electroweak W+W+ production in association
with three jets at NLO QCD matched with parton shower, JHEP 01 (2025)
075 [2408.12314].

[36] G. C. Wick, The evaluation of the collision matrix, Phys. Rev. 80 (1950) 268.
[37] M. Gell-Mann and F. Low, Bound states in quantum field theory, Phys. Rev.

84 (1951) 350.
[38] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory.

Addison-Wesley, Reading, USA, 1995.
[39] T. Muta, Foundations of Quantum Chromodynamics: An Introduction to

Perturbative Methods in Gauge Theories, vol. 5 of World Scientific Lecture
Notes in Physics. World Scientific, Sept., 1987, 10.1142/0022.

[40] C. Becchi, A. Rouet and R. Stora, Renormalization of Gauge Theories, Les
rencontres physiciens-mathématiciens de Strasbourg -RCP25 22 (1975) .

[41] I. V. Tyutin, Gauge Invariance in Field Theory and Statistical Physics in
Operator Formalism, 0812.0580.

[42] M. Böhm, A. Denner and H. Joos, Gauge Theories of the Strong and
Electroweak Interaction. Vieweg+Teubner Verlag, Wiesbaden, 2001,
10.1007/978-3-322-80160-9.

[43] G. Sterman, An Introduction to Quantum Field Theory. Cambridge University
Press, Cambridge, 1993, 10.1017/CBO9780511622618.

[44] H. Lehmann, K. Symanzik and W. Zimmermann, Zur Formulierung
quantisierter Feldtheorien, Il Nuovo Cimento (1955-1965) 1 (1955) 205.

[45] G. Passarino and M. J. G. Veltman, One Loop Corrections for e+ e-
Annihilation Into mu+ mu- in the Weinberg Model, Nucl. Phys. B 160 (1979)
151.

104

https://doi.org/10.1140/epjc/s10052-019-7290-6
https://arxiv.org/abs/1906.01863
https://doi.org/10.1007/JHEP06(2019)067
https://arxiv.org/abs/1904.00882
https://doi.org/10.1007/JHEP11(2020)110
https://doi.org/10.1007/JHEP11(2020)110
https://arxiv.org/abs/2009.00411
https://doi.org/10.1007/JHEP04(2015)030
https://arxiv.org/abs/1502.02990
https://doi.org/10.1088/1126-6708/2004/11/040
https://arxiv.org/abs/hep-ph/0409146
https://doi.org/10.1007/JHEP01(2025)075
https://doi.org/10.1007/JHEP01(2025)075
https://arxiv.org/abs/2408.12314
https://doi.org/10.1103/PhysRev.80.268
https://doi.org/10.1103/PhysRev.84.350
https://doi.org/10.1103/PhysRev.84.350
https://doi.org/10.1142/0022
https://arxiv.org/abs/0812.0580
https://doi.org/10.1007/978-3-322-80160-9
https://doi.org/10.1017/CBO9780511622618
https://doi.org/10.1007/BF02731765
https://doi.org/10.1016/0550-3213(79)90234-7
https://doi.org/10.1016/0550-3213(79)90234-7


References

[46] N. Agarwal, L. Magnea, C. Signorile-Signorile and A. Tripathi, The Infrared
Structure of Perturbative Gauge Theories, Dec., 2021.

[47] T. Kinoshita, Mass singularities of feynman amplitudes, Journal of
Mathematical Physics 3 (1962) 650.

[48] T. D. Lee and M. Nauenberg, Degenerate systems and mass singularities,
Phys. Rev. 133 (1964) B1549.

[49] G. ’t Hooft, Renormalization of Massless Yang-Mills Fields, Nucl. Phys. B 33
(1971) 173.

[50] G. ’t Hooft, Renormalizable Lagrangians for Massive Yang-Mills Fields, Nucl.
Phys. B 35 (1971) 167.

[51] C. Burguess and G. Moore, The Standard Model: A Primer. Cambridge
University Press, 2012.

[52] Particle Data Group collaboration, R. L. Workman et al., Review of
Particle Physics, PTEP 2022 (2022) 083C01.

[53] J. Campbell, J. Huston and F. Krauss, The black book of quantum
chromodynamics: a primer for the LHC era. Oxford University Press, 2018.

[54] W. Vogelsang, Skript zur Vorlesung Quantenfeldthorie 2, April, 2018.
[55] R. K. Ellis, W. J. Stirling and B. R. Webber, QCD and Collider Physics,

Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology.
Cambridge University Press, 1996, 10.1017/CBO9780511628788.

[56] M. D. Schwartz, Quantum Field Theory and the Standard Model. Cambridge
University Press, 2013, 10.1017/9781139540940.

[57] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5 :
Going Beyond, JHEP 06 (2011) 128 [1106.0522].

[58] G. Zweig, An SU3 model for strong interaction symmetry and itsbreaking;
Version 2, .

[59] M. Gell-Mann, A schematic model of baryons and mesons, Physics Letters 8
(1964) 214.

[60] J. D. Bjorken, Asymptotic sum rules at infinite momentum, Phys. Rev. 179
(1969) 1547.

[61] J. D. Bjorken and E. A. Paschos, Inelastic electron-proton and γ-proton
scattering and the structure of the nucleon, Phys. Rev. 185 (1969) 1975.

[62] W. Panofsky and H. Kurt, Low q electrodynamics, elastic and inelastic
electron (and muon) scattering, .

[63] R. Feynman, Photon-hadron interactions, Frontiers in Physics (1973) .
[64] J. Aubert et al., Measurements of the nucleon structure functions F2N in deep

inelastic muon scattering from deuterium and comparison with those from
hydrogen and iron, Nuclear Physics B 293 (1987) 740.

[65] B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton
fragmentation and string dynamics, Physics Reports 97 (1983) .

105

https://doi.org/10.1063/1.1724268
https://doi.org/10.1063/1.1724268
https://doi.org/10.1103/PhysRev.133.B1549
https://doi.org/10.1016/0550-3213(71)90395-6
https://doi.org/10.1016/0550-3213(71)90395-6
https://doi.org/10.1016/0550-3213(71)90139-8
https://doi.org/10.1016/0550-3213(71)90139-8
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1017/CBO9780511628788
https://doi.org/10.1017/9781139540940
https://doi.org/10.1007/JHEP06(2011)128
https://arxiv.org/abs/1106.0522
https://doi.org/10.1016/S0031-9163(64)92001-3
https://doi.org/10.1016/S0031-9163(64)92001-3
https://doi.org/10.1103/PhysRev.179.1547
https://doi.org/10.1103/PhysRev.179.1547
https://doi.org/10.1103/PhysRev.185.1975
https://doi.org/10.1016/0550-3213(87)90090-3


References

[66] T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert
et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [0811.4622].

[67] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten et al.,
An Introduction to PYTHIA 8.2, Computer Physics Communications 191
(2015) 159 [1410.3012].

[68] P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013
Tune, Eur. Phys. J. C 74 (2014) 3024 [1404.5630].

[69] M. Cacciari, G. P. Salam and G. Soyez, The Anti-Kt Jet Clustering Algorithm,
Journal of High Energy Physics 2008 (2008) 063.

[70] S. Catani and M. Seymour, A General algorithm for calculating jet
cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291
[hep-ph/9605323].

[71] S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to
next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328].

[72] T. Ježo and P. Nason, On the Treatment of Resonances in Next-to-Leading
Order Calculations Matched to a Parton Shower, Journal of High Energy
Physics 2015 (2015) 1 [1509.09071].

[73] S. Frixione, Z. Kunszt and A. Signer, Three-jet cross sections to
next-to-leading order, Nuclear Physics B 467 (1996) 399 [hep-ph/9512328].

[74] Z. Kunszt and D. E. Soper, Calculation of jet cross sections in hadron
collisions at order α3

s , Physical Review D 46 (1992) 192.
[75] R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of

next-to-leading order computations in QCD: The FKS subtraction, Journal of
High Energy Physics 2009 (2009) 003 [0908.4272].

[76] S. Gieseke, Simulation of jets at colliders, Progress in Particle and Nuclear
Physics 72 (2013) 155.

[77] F. Siegert, Monte-Carlo Event Generation for the LHC, doctoral thesis,
Durham University, 2010.

[78] J. J. Ethier, R. Gomez-Ambrosio, G. Magni and J. Rojo, Smeft analysis of
vector boson scattering and diboson data from the lhc run ii, The European
Physical Journal C 81 (2021) .

[79] V. Barger, R. Phillips and D. Zeppenfeld, Minijet veto: a tool for the heavy
higgs search at the lhc, Physics Letters B 346 (1995) 106–114.

[80] D. Rainwater, R. Szalapski and D. Zeppenfeld, Probing color-singlet exchange
in z + 2-jet events at the cern lhc, Physical Review D 54 (1996) 6680–6689.

[81] N. Kauer, T. Plehn, D. Rainwater and D. Zeppenfeld, H→ww as the
discovery mode for a light higgs boson, Physics Letters B 503 (2001) 113–120.

[82] T. Figy, V. Hankele and D. Zeppenfeld, Dominant next-to-leading order QCD
corrections to Higgs plus three jet production in vector-boson fusion, Journal
of High Energy Physics 2008 (2008) [0710.5621].

106

https://doi.org/10.1088/1126-6708/2009/02/007
https://arxiv.org/abs/0811.4622
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://doi.org/10.1140/epjc/s10052-014-3024-y
https://arxiv.org/abs/1404.5630
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1016/S0550-3213(96)00589-5
https://arxiv.org/abs/hep-ph/9605323
https://doi.org/10.1016/0550-3213(96)00110-1
https://arxiv.org/abs/hep-ph/9512328
https://doi.org/10.1007/JHEP12(2015)065
https://doi.org/10.1007/JHEP12(2015)065
https://arxiv.org/abs/1509.09071
https://doi.org/10.1016/0550-3213(96)00110-1
https://arxiv.org/abs/hep-ph/9512328
https://doi.org/10.1103/PhysRevD.46.192
https://doi.org/10.1088/1126-6708/2009/10/003
https://doi.org/10.1088/1126-6708/2009/10/003
https://arxiv.org/abs/0908.4272
https://doi.org/10.1016/j.ppnp.2013.04.001
https://doi.org/10.1016/j.ppnp.2013.04.001
https://doi.org/10.1140/epjc/s10052-021-09347-7
https://doi.org/10.1140/epjc/s10052-021-09347-7
https://doi.org/10.1016/0370-2693(95)00008-9
https://doi.org/10.1103/physrevd.54.6680
https://doi.org/10.1016/s0370-2693(01)00211-8
https://doi.org/10.1088/1126-6708/2008/02/076
https://doi.org/10.1088/1126-6708/2008/02/076
https://arxiv.org/abs/0710.5621


References

[83] B. Jager, A. Karlberg and G. Zanderighi, Electroweak $ZZjj$ production in
the Standard Model and beyond in the POWHEG-BOX V2, Journal of High
Energy Physics 2014 (2014) [1312.3252].

[84] B. Jager, F. Schissler and D. Zeppenfeld, Parton-shower effects on higgs
boson production via vector-boson fusion in association with three jets,
Journal of High Energy Physics 2014 (2014) 125 [1405.6950].

[85] J. M. Cruz-Martinez, Next-to-Next-to-Leading Order QCD Corrections to
Higgs Boson Production in Association with two Jets in Vector Boson Fusion,
.

[86] J. Cruz-Martinez, T. Gehrmann, E. W. N. Glover and A. Huss, Second-order
QCD effects in Higgs boson production through vector boson fusion, Physics
Letters B 781 (2018) 672 [1802.02445].

[87] R. Cahn and S. Dawson, Production of very massive Higgs bosons, Physics
Letters B 136 (1984) 196.

[88] M. Ciccolini, A. Denner and S. Dittmaier, Electroweak and QCD corrections
to Higgs production via vector-boson fusion at the LHC, Physical Review D 77
(2008) [0710.4749].

[89] J. Lindfors, Higgs boson production by W and Z collisions, Physics Letters B
167 (1986) .

[90] T. Han, G. Valencia and S. Willenbrock, Structure Function Approach to
Vector-Boson Scattering in pp Collisions, Physical Review Letters 69 (1992)
3274 [hep-ph/9206246].

[91] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for
implementing NLO calculations in shower Monte Carlo programs: the
POWHEG BOX, JHEP 06 (2010) 043 [1002.2581].

[92] P. Nason, The POWHEG BOX V2 framework, .
[93] E. Boos, M. Dobbs, W. Giele, I. Hinchliffe, J. Huston, V. Ilyin et al., Generic

User Process Interface for Event Generators, Sept., 2001.
10.48550/arXiv.hep-ph/0109068.

[94] J. Alwall et al., A Standard format for Les Houches event files, Comput. Phys.
Commun. 176 (2007) 300 [hep-ph/0609017].

[95] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al.,
The automated computation of tree-level and next-to-leading order differential
cross sections, and their matching to parton shower simulations, JHEP 07
(2014) 079 [1405.0301].

[96] F. Maltoni and T. Stelzer, MadEvent: Automatic event generation with
MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156].

[97] J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, F. Maltoni
et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007)
028 [0706.2334].

107

https://doi.org/10.1007/JHEP03(2014)141
https://doi.org/10.1007/JHEP03(2014)141
https://arxiv.org/abs/1312.3252
https://doi.org/10.1007/JHEP07(2014)125
https://arxiv.org/abs/1405.6950
https://doi.org/10.1016/j.physletb.2018.04.046
https://doi.org/10.1016/j.physletb.2018.04.046
https://arxiv.org/abs/1802.02445
https://doi.org/10.1016/0370-2693(84)91180-8
https://doi.org/10.1016/0370-2693(84)91180-8
https://doi.org/10.1103/PhysRevD.77.013002
https://doi.org/10.1103/PhysRevD.77.013002
https://arxiv.org/abs/0710.4749
https://doi.org/10.1016/0370-2693(86)91303-1
https://doi.org/10.1016/0370-2693(86)91303-1
https://doi.org/10.1103/PhysRevLett.69.3274
https://doi.org/10.1103/PhysRevLett.69.3274
https://arxiv.org/abs/hep-ph/9206246
https://doi.org/10.1007/JHEP06(2010)043
https://arxiv.org/abs/1002.2581
https://doi.org/10.1016/j.cpc.2006.11.010
https://doi.org/10.1016/j.cpc.2006.11.010
https://arxiv.org/abs/hep-ph/0609017
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://arxiv.org/abs/1405.0301
https://doi.org/10.1088/1126-6708/2003/02/027
https://arxiv.org/abs/hep-ph/0208156
https://doi.org/10.1088/1126-6708/2007/09/028
https://doi.org/10.1088/1126-6708/2007/09/028
https://arxiv.org/abs/0706.2334


References

[98] H. Murayama, I. Watanabe and K. Hagiwara, HELAS: HELicity amplitude
subroutines for Feynman diagram evaluations, .

[99] F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Color Flow Decomposition
of QCD Amplitudes, Phys. Rev. D 67 (2003) 014026 [hep-ph/0209271].

[100] W. Kilian, T. Ohl, J. Reuter and C. Speckner, QCD in the Color-Flow
Representation, JHEP 10 (2012) 022 [1206.3700].

[101] V. Hirschi, R. Frederix, S. Frixione, M. V. Garzelli, F. Maltoni and R. Pittau,
Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [1103.0621].

[102] V. Hirschi, New developments in MadLoop, PoS RADCOR2011 (2011) 018
[1111.2708].

[103] A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based Complex
One-Loop LIbrary in Extended Regularizations, Comput. Phys. Commun. 212
(2017) 220 [1604.06792].

[104] G. Ossola, C. G. Papadopoulos and R. Pittau, CutTools: A Program
implementing the OPP reduction method to compute one-loop amplitudes,
JHEP 03 (2008) 042 [0711.3596].

[105] A. Kardos, P. Nason and C. Oleari, Three-jet production in POWHEG, JHEP
04 (2014) 043 [1402.4001].

[106] J. Taylor, Ward identities and charge renormalization of the yang-mills field,
Nuclear Physics B 33 (1971) 436.

[107] K. Arnold et al., VBFNLO: A Parton level Monte Carlo for processes with
electroweak bosons, Comput. Phys. Commun. 180 (2009) 1661 [0811.4559].

[108] J. Baglio et al., VBFNLO: A Parton Level Monte Carlo for Processes with
Electroweak Bosons – Manual for Version 2.7.0, 1107.4038.

[109] J. Baglio et al., Release Note - VBFNLO 2.7.0, 1404.3940.
[110] S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf and S. Uccirati,

RECOLA: REcursive Computation of One-Loop Amplitudes, Comput. Phys.
Commun. 214 (2017) 140 [1605.01090].

[111] A. Denner, J.-N. Lang and S. Uccirati, Recola2: a one-loop matrix-element
generator for BSM theories and SM effective field theory, PoS
RADCOR2017 (2017) 019 [1712.04754].

[112] R. D. Ball, S. Carrazza, J. Cruz-Martinez, L. Del Debbio, S. Forte, T. Giani
et al., The Path to Proton Structure at One-Percent Accuracy, The European
Physical Journal C 82 (2022) 428 [2109.02653].

[113] A. Buckley, J. Ferrando, S. Lloyd, K. Nordstrom, B. Page, M. Ruefenacht
et al., LHAPDF6: Parton density access in the LHC precision era, The
European Physical Journal C 75 (2015) 132 [1412.7420].

[114] B. Jäger, A. Karlberg and S. Reinhardt, QCD effects in electroweak WZjj
production at current and future hadron colliders, 2403.12192.

[115] M. Cacciari, G. P. Salam and G. Soyez, FastJet user manual, The European
Physical Journal C 72 (2012) 1896 [1111.6097].

108

https://doi.org/10.1103/PhysRevD.67.014026
https://arxiv.org/abs/hep-ph/0209271
https://doi.org/10.1007/JHEP10(2012)022
https://arxiv.org/abs/1206.3700
https://doi.org/10.1007/JHEP05(2011)044
https://arxiv.org/abs/1103.0621
https://doi.org/10.22323/1.145.0018
https://arxiv.org/abs/1111.2708
https://doi.org/10.1016/j.cpc.2016.10.013
https://doi.org/10.1016/j.cpc.2016.10.013
https://arxiv.org/abs/1604.06792
https://doi.org/10.1088/1126-6708/2008/03/042
https://arxiv.org/abs/0711.3596
https://doi.org/10.1007/JHEP04(2014)043
https://doi.org/10.1007/JHEP04(2014)043
https://arxiv.org/abs/1402.4001
https://doi.org/https://doi.org/10.1016/0550-3213(71)90297-5
https://doi.org/10.1016/j.cpc.2009.03.006
https://arxiv.org/abs/0811.4559
https://arxiv.org/abs/1107.4038
https://arxiv.org/abs/1404.3940
https://doi.org/10.1016/j.cpc.2017.01.004
https://doi.org/10.1016/j.cpc.2017.01.004
https://arxiv.org/abs/1605.01090
https://doi.org/10.22323/1.290.0019
https://doi.org/10.22323/1.290.0019
https://arxiv.org/abs/1712.04754
https://doi.org/10.1140/epjc/s10052-022-10328-7
https://doi.org/10.1140/epjc/s10052-022-10328-7
https://arxiv.org/abs/2109.02653
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://arxiv.org/abs/1412.7420
https://arxiv.org/abs/2403.12192
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://arxiv.org/abs/1111.6097


References

[116] F. Campanario, M. Kerner, L. D. Ninh and D. Zeppenfeld, Next-to-leading
order QCD corrections to W+W+ and W−W− production in association with
two jets, Phys. Rev. D 89 (2014) 054009 [1311.6738].

[117] B. Jager, A. Karlberg and J. Scheller, Parton-shower effects in electroweak
WZjj production at the next-to-leading order of QCD, Eur. Phys. J. C 79
(2019) 226 [1812.05118].

[118] B. Cabouat and T. Sjöstrand, Some dipole shower studies, The European
Physical Journal C 78 (2018) .

[119] S. Höche, S. Mrenna, S. Payne, C. T. Preuss and P. Skands, A Study of QCD
Radiation in VBF Higgs Production with Vincia and Pythia, SciPost Phys. 12
(2022) 010 [2106.10987].

[120] B. Jäger, A. Karlberg, S. Plätzer, J. Scheller and M. Zaro, Parton-shower
effects in Higgs production via Vector-Boson Fusion, Eur. Phys. J. C 80
(2020) 756 [2003.12435].

[121] P. Nason and B. Webber, Next-to-Leading-Order Event Generators, Ann. Rev.
Nucl. Part. Sci. 62 (2012) 187 [1202.1251].

109

https://doi.org/10.1103/PhysRevD.89.054009
https://arxiv.org/abs/1311.6738
https://doi.org/10.1140/epjc/s10052-019-6736-1
https://doi.org/10.1140/epjc/s10052-019-6736-1
https://arxiv.org/abs/1812.05118
https://doi.org/10.1140/epjc/s10052-018-5645-z
https://doi.org/10.1140/epjc/s10052-018-5645-z
https://doi.org/10.21468/SciPostPhys.12.1.010
https://doi.org/10.21468/SciPostPhys.12.1.010
https://arxiv.org/abs/2106.10987
https://doi.org/10.1140/epjc/s10052-020-8326-7
https://doi.org/10.1140/epjc/s10052-020-8326-7
https://arxiv.org/abs/2003.12435
https://doi.org/10.1146/annurev-nucl-102711-094928
https://doi.org/10.1146/annurev-nucl-102711-094928
https://arxiv.org/abs/1202.1251

	Introduction
	Theoretical Background
	Quantum Field Theory
	Fields and Green's Functions
	The S-matrix, Cross Sections and the Reduction Formula

	Divergences at Next-to-Leading Order
	Loops and Ultraviolet Divergences
	Renormalization
	Infrared Divergences and the KLN Theorem

	Gauge Theories and the Standard Model
	The Standard Model
	Electroweak Symmetry Breaking
	The Running of s
	Lagrangian and Feynman Rules

	Hadron Collisions and Factorization
	The Structure of a Collision Event
	Jets

	Nex-to-leading Order Calculations and Parton Showers
	Infrared Subtraction
	Frixione-Kunszt-Signer Subtraction Method

	Parton Showers
	Matching of NLO Calculations to Parton Showers

	Vector Boson Scattering and the pp W+ W+ j j j Process 
	Electroweak Production of W+ W+ j j j  at the LHC
	One-Loop Corrections
	Real-Emission Corrections

	The Vector-Boson-Scattering Approximation
	The VBS Signature
	Electroweak Propagators in the s-Channel
	Diagrams with Gluon Exchange
	Identical-Particle Effects
	The Structure-Function Approach to Vector Boson Scattering


	Implementation
	POWHEG BOX
	Process-Specific Parts
	Flavor Structures
	Matrix Elements
	Channel Mapping
	The Born Suppression Factor

	Validation

	Numerical Studies
	Input Parameters and Analysis Setup
	Results at Fixed Order
	Parton-Shower Results

	Summary and Outlook

