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Abstract

While routing optimization problems are relevant in various domains, solving them computa-
tionally is often challenging. This thesis explores Optimal Transport (OT) principles to solving
routing optimization problems, focusing on a biologically-inspired dynamical formulation. We
first explore how to translate the solutions of a dynamical system of equations into meaningful
network topologies, while preserving the important optimality properties of these solutions.
Our graph extraction method provides a valuable tool to help practitioners bridging the gap
between the abstract mathematical principles of OT and the more interpretable language of
network theory.

In addition to addressing the graph extraction problem, we explore how to find community
structures inspired by the problem of measuring the OT Wasserstein distance, combined with
the notion of geometric curvature in a graph. The proposed approach allows for tuning
between different transportation regimes, while controlling the information shared between
nodes’ neighborhoods. We evaluated our algorithm’s performance with various synthetic
and real networks, achieving comparable or superior results to other OT-based methods on
synthetic data, while identifying communities that more accurately represent node metadata
in real data.

Last, we study how our graph extraction method can be extended to designing and optimizing
urban transportation networks. We use only a limited number of origins and destination points
to generate network structures directly from a continuous space, representing the initial stage
of development of a transportation infrastructure. By tuning one parameter, we show how our
method can simulate a range of different subway, tram and train networks that can be further
used to suggest possible improvements in terms of relevant transportation properties.

In summary, this thesis investigates various applications of optimal transport principles for
solving routing optimization problems. We provide a tool to explore networks that are solutions
from a mathematical formulation of optimal transport theory, showing how it can be explored
to design more efficient urban transportation networks, and including a measure of graph
similarity which is then applied to a geometric-based community detection method.
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Zusammenfassung

Obwohl Routing-Optimierungsprobleme in verschiedenen Bereichen relevant sind, ist deren
rechnerische Losung oft eine Herausforderung. Diese Arbeit untersucht Prinzipien des Op-
timalen Transports (OT) zur Losung von Routing-Optimierungsproblemen und konzentriert
sich dabei auf eine biologisch inspirierte dynamische Formulierung. Zunéichst untersuchen
wir, wie die Losungen eines dynamischen Gleichungssystems in sinnvolle Netzwerktopologien
iibersetzen werden kénnen, wobei die wichtigen Optimalitdtseigenschaften dieser Losungen
erhalten bleiben. Unsere Methode zur Grafextraktion bietet ein wertvolles Werkzeug, die Liicke
zwischen den abstrakten mathematischen Prinzipien des OT und der besser interpretierbaren
Sprache der Netzwerktheorie zu iiberbriicken.

Neben der Behandlung des Grafextraktionsproblems untersuchen wir, wie durch das Messen
der OT-Wasserstein-Distanz inspirierte Gemeinschaftsstrukturen gefunden werden kénnen,
kombiniert mit dem Konzept der geometrischen Kriimmung in einem Graphen. Der vorgeschla-
gene Ansatz ermoglicht das Feinabstimmen zwischen verschiedenen Transporttypen, wahrend
die geteilten Informationen zwischen den Nachbarschaften der Knoten kontrolliert werden. Wir
haben die Leistung unseres Algorithmus mit verschiedenen synthetischen und realen Netzw-
erken bewertet und dabei vergleichbare oder {iberlegene Ergebnisse zu anderen OT-basierten
Methoden bei synthetischen Daten erzielt, wihrend wir Gemeinschaften identifizierten, die
die Knotendaten in realen Daten genauer darstellen.

Abschlieffend untersuchen wir, wie unsere Methode zur Grafextraktion auf die Gestaltung
und Optimierung stadtischer Verkehrsnetze erweitert werden kann. Wir verwenden nur eine
begrenzte Anzahl von Ausgangs- und Zielpunkten, um Netzwerkstrukturen direkt aus einem
kontinuierlichen Raum zu erzeugen, was die Anfangsphase der Entwicklung einer Verkehrsin-
frastruktur darstellt. Durch die Manipulationen eines Parameters zeigen wir, wie unsere
Methode eine Vielzahl unterschiedlicher U-Bahn-, Strallenbahn- und Zugnetze simulieren
kann, die weiter verwendet werden konnen, um mogliche Verbesserungen in Bezug auf
relevante Verkehrseigenschaften vorzuschlagen.

Zusammenfassend untersucht diese Arbeit verschiedene Anwendungen der Prinzipien des Op-
timalen Transports zur Losung von Routing-Optimierungsproblemen. Wir bieten ein Werkzeug,
um Netzwerke zu erkunden, die Losungen einer mathematischen Formulierung der Optimalen
Transporttheorie sind, und zeigen, wie es zur Gestaltung effizienterer stadtischer Verkehrsnetze
genutzt werden kann.
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1.1

Introduction

Motivation

Optimal Transport (OT) problems aim at answering the fundamental question of finding
the optimal way to move a certain amount of resources from one point to another. The
first mathematical formulation of it has its origins around the 18th century by the French
mathematician Gaspard Monge. He proposed a way to calculate the most effective strategies
of moving large amounts of dust from a starting to a final configuration with the least amount
of effort [1]. Around 140 years later, Kantorovich proposed a relaxed version of the original
Monge’s problem, aiming to distribute goods from factories to warehouses and stores effectively
[2]. Nowadays, these problems appear in multiple contexts and are relevant in diverse fields,
from data science and machine learning [3, 4] to economics [5] and biology [6, 7].

In the context of network science, OT problems also play an important role. For instance,
human-built systems like ground transportation, airport routes, communication or water
supply networks are designed to minimize the costs of construction and maintenance, while
ensuring the optimality of the moving resources. This is also frequently observed in natural
transportation networks, such as vascular systems in plants, river or fungi networks [8, 9]. In
both cases, finding a mathematical formulation and an efficient computational framework for
simulating these problems is fundamental to gain a better understanding of how such diverse
systems work and evolve over time.

Despite the importance and wide range of applications for these kinds of optimization prob-
lems, solving them is still very challenging computationally, in particular, due to the high
dimensionality of the data or the complexity of the mathematical formulations to model them
accurately. Numerous approximation techniques were proposed to overcome such complex-
ities, like semi-discrete methods, which reduce the number of variables to be optimized by
approximating continuous variables to discrete ones [10, 11], or linear programming [12, 13],
which imposes heuristics traffic constraints or capacity limitations in the network.

In this thesis, we explore solving routing optimization problems with an OT-based approach,
focusing on a dynamical formulation. This borrows inspiration from the dynamical networks
built by the Physarum Polycephalum (PP), a single-cell slime mold that has the remarkable
ability of building efficient tubular networks while foraging for food resources [14]. The slime
has intrigued researchers with its capacity to solve complex optimization problems through
its adaptive strategy of connecting food sources while reallocating nutrients in its body. The
proposed models to mimic the slime behavior have been used across different domains, such
as finding the shortest-path in a maze [15], nutrient balancing in distributed systems [16],
or the traveling salesman problem [17]. Here, we consider as a starting point the so-called
Dynamic Monge-Kantorovich (DMK) approach, a recent result that bridges an OT problem
formulation (the known Monge-Kantorovich equations), with a generalized dynamics of the
PP [18, 19]. This approach generalizes the original PP discrete dynamic proposed by Tero et al.
[14] to a continuous domain, mapping a computationally hard optimization problem into a
more accessible model via the asymptotic behavior of a system of dynamic partial differential
equations.



1.2

1.2.1

An important aspect of the DMK model is the possibility of recovering solutions that resemble
optimal network configurations for both congested and branched transportation problems,
via a numerically accessible and computationally efficient framework. Starting with these
solutions, we will first explore the challenging problem of translating them into meaningful
network structures, while preserving the important optimality properties. We will then use this
model to explore two parallel research directions: the problem of designing efficient urban
transportation systems and that of finding community structures.

On one hand, as transportation systems impact us daily, understanding the underlying princi-
ples that reveal how real transportation networks (like subways, buses, trains, etc.) evolve over
time is fundamental for planning and optimizing future development of such structures. Most
of the available approaches in the literature consider optimizing already existing structures,
not necessarily looking at the stage where there is no network at all. This is an important
scenario because it involves the initial design of a transportation network, where decisions
can be made to make them more efficient, resilient and sustainable over time.

On the other hand, the problem of detecting communities in a network is challenging and
relevant in many real-world applications like social, biological or ecological networks [20,
21, 22]. The existing algorithms for community detection in the literature highly depend on
the type of data and nature of the network, so choosing the most accurate method depends
on the objective of the analysis. In our case, inspired by the problem of measuring the OT
Wasserstein distance, and combining this with the notion of geometric curvatures in a graph,
we propose a method that tunes between different transportation regimes to find the number
of communities automatically from the data, in contrast to approaches that require this as
input parameter.

In summary, this thesis explores different applications of optimal transport principles for
solving routing optimization problems. It presents a new framework designed to translate
a more abstract mathematical formulation of optimal transport theory to the more concrete
and understandable language of network theory. By exploring how these principles can be
leveraged to designing more efficient urban transportation networks, and including a measure
of graph similarity which is then applied to a geometric-based community detection method,
we contribute to the broader landscape of network analysis and optimization.

Outline

This thesis is divided into two main parts. The first one is dedicated to an introduction of the
DMK model and related concepts, together with the relevant notations and motivation for the
main applications. The second part contains the main scientific contributions and discussions
of their impact, as well as future research directions. This part is based on two published
works and one preprint currently under review in a peer-reviewed journal. For each chapter
in this part (excluding Chapter 6) there is a complementary appendix containing additional
examples and discussions of the algorithmic implementations.

Detailed list of contributions

The main results detailed in this thesis are based on two published works with different
collaborators, and one preprint (currently under review in a peer-reviewed journal). Each of
the chapters from Chapter 3 to Chapter 5 are closely based on the original works, with only
minor changes made in comparison with the original texts.

Chapter 1



Chapter 3 introduces a method for extracting optimal network topologies from routing opti-
mization problems. This chapter is based on the peer-reviewed journal paper:

* Diego Baptista*, Daniela Leite*, Enrico Facca, Mario Putti, and Caterina De Bacco.
“Network extraction by routing optimization.” Scientific reports 10, no. 1 (2020): 20806.
*equal contribution

I was first author, together with Diego Baptista. My contributions included proposing insights
for the graph extraction problem, looking at the different representations one could make
from the solutions of the continuous routing optimization problem, and how to efficiently
filter possible redundancies from this representation. I also contributed to comparing the
main advantages of our formulation with using techniques for graph extraction from images,
which were important to improve our approach. Together with my coauthors, we proposed a
rigorous evaluation metric to measure the performance of the various extracted graphs. I also
contributed to the numerical implementation of our pipeline, building, for instance, a set of
configurations for sources and sinks, and developing an efficient algorithm that is open-source
and available online. All authors contributed with writing and analyzing the results. I also
worked on extending some experiments to incorporate the feedback from reviews, which
considerably improved the quality of the paper.

Chapter 4 introduces an OT method for community detection by combining the approach
presented in Chapter 3 with the geometric concept of Ollivier—Ricci curvature. The novelty
of it comes from enabling the possibility of tuning among different transportation regimes
to better control the shared information between the nodes’ neighborhoods. This chapter is
based on the peer-reviewed journal paper:

* Daniela leite*, Diego Baptista*, Abdullahi A. Ibrahim, Enrico Facca, and Caterina De
Bacco. “Community detection in networks by dynamical optimal transport formulation.”
Scientific Reports 12, no. 1 (2022): 16811.

*equal contribution

I was first author, with Diego Baptista. In addition, I took the leadership of this project in
managing the collaboration between the different authors, as each had specific tasks which
required management. The motivation came from a problem I encountered while working on
another project, where we needed to measure the similarity between two given graphs that
visually seemed to have the same topology. While this is a very natural question when working
with graphs, it is nevertheless challenging to solve it. We then worked on conceptualizing
the main ideas and developing the theory. Together with the other co-authors, we then
worked on not only generating different network structures for synthetic and semi-synthetic
data, but also on collecting real network data from opened datasets. We performed together
several experiments and implemented various other methods to compare with ours, discussing
and analyzing the results. All authors contributed to the writing, editing and incorporating
feedback from the reviewers.

Both papers were published at Scientific Reports, a peer-reviewed and open-access journal
published by the Nature Portfolio since 2011. This journal publishes original research works
from across all areas of the natural sciences, psychology, medicine and engineering. It is
considered the 5™ most cited journal in the world, receiving significant attention in policy
documents and in the media. They provide rigorous objective and constructive peer-review,
led by the same editorial and ethical guidelines as other journals from the Nature Portfolio,
ensuring that all published research maintains originality, scientific rigor and the highest
quality standards. They have adopted an open-access policy, giving researchers high visibility
for their work.

1.2 Outline 3
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Chapter 5 presents an application of the network extraction model introduced and detailed
in Chapter 3 to real public transportation systems. The main idea behind this paper was
to use the approach introduced in Chapter 3 in real-world urban transportation networks.
With only a little information in input, i.e. a small set of origin and destination points,
we generate structures that reveal a surprising similarity to those of public transportation
networks. We show that our method can simulate a range of different subway, tram and
train networks. Our model can be further used to suggest possible improvements in terms
of relevant transportation properties, ultimately contributing to the development of more
sustainable and efficient public transportation networks. This chapter is based on the following
peer-reviewed journal paper:

* Daniela Leite and Caterina De Bacco. “Similarity and economy of scale in urban trans-
portation networks and optimal transport-based infrastructures”. In: Nature Communica-
tions 15.1 (2024), p. 7981

In this work I was the first author. Together with the other author, we actively discussed the
method and details of the numerical implementation. I contributed by collecting, preprocessing
and analyzing the data from multiple transportation systems around the world, collecting
from several data sources and providing an extensive analysis in terms of network properties.
This paper significantly changed after the first round of reviews. We started looking only at
small networks like the Dublin rail or the Rome subway, but then extended to bigger and
more complex structures such as the New York subway. An interesting point raised by the
reviewers was to include information from real population data and land usage, so we looked
at the density of points of interest from some of the studied cities as a reference to build
a transportation infrastructure. I worked on these additional examples that substantially
improved the quality of our results. Overall, given the major changes made after the round
of review, the paper is substantially improved. Another important contribution of this paper
was a principled quantitative measure of similarity between two networks, which can be
used beyond transportation networks. I also co-wrote this paper and collaborated to have a
numerically efficient implementation of our algorithm.

The peer-reviewed journal Nature Communications is an open-access and multidisciplinary,
dedicated to publishing high-quality research in all areas of the biological, health, physical,
chemical, Earth, social, mathematical, applied, and engineering sciences. This journal aims
to publish papers that represent important advances of significance to specialists within each
field. It is editorially independent and makes its own decisions independently of other Nature
journals, allowing authors to decide where to submit their manuscripts based on the relevance
and potential impact of their work. It also operates as an open-access model, so all content is
freely accessible to readers.

Finally, in Chapter 6 we present a more detailed discussion of the presented methods, and
explore future research directions that can be explored from our contributions.

An additional published work during my PhD that is not included in this thesis is:

* Abdullahi Adinoyi Ibrahim, Daniela Leite, and Caterina De Bacco. “Sustainable optimal
transport in multilayer networks.” Physical Review E 105.6 (2022): 064302.

In this paper I was second author. Together with the other authors, we actively discussed the
method, numerical implementation and results. I contributed with cleaning the code, planning
the experiments and analyzing the data. I also contributed to the writing, proofreading
and incorporating feedback from the multiple rounds of review. In this paper we start from
a different scenario compared to the ones within the scope of this thesis: the congested
multilayer network case, where multiple types of transportation are treated as a different layer
in a network. We proposed an approach also based on optimal transport theory to efficiently

Chapter 1



distribute passengers along layers that are more carbon-efficient than roads, like rails for
instance. We show that our approach is more carbon efficient than shortest-path minimization.
As this paper deals with a different optimization dynamics and network type, it will not be
explored here.

This work was published at Physical Review E (PRE), a peer-reviewed, open-access and
multidisciplinary journal established in 1993. It is part of the Physical Review family, recognized
as a leading journal in the interconnected fields of statistical, nonlinear, biological, and soft
matter physics. PRE is also considered a venue for high-quality work in traditional and
emerging research areas, making it an essential resource for multiple disciplines.

1.2 Outline 5






2.1

The Dynamic Monge-Kantorovich
formulation

The slime mold has fascinating capabilities of decision-making despite not having a brain.
For instance, it always chooses the path that requires the least amount of energy to get a
sufficient amount of food when placed in mazes. This behavior has intrigued biologists and
mathematicians for many years, which then formulated the adaptation rules to describe the
slime dynamics, later using such optimization abilities to simulate the design of the railways
of Tokyo. The idea of applying Optimal Transport to understand how organisms like the
slime reallocate nutrients within their bodies comes from the observations of these resource
optimization usages to maximize survival.

In this chapter, we describe the model that is used as a basis for most of the works developed
along this thesis: the Dynamic Monge-Kantorovich (DMK) formulation, both on its continuous
and discrete versions. We start describing the dynamics of the Physarum Policephalum (PP)
in Section 2.1 and how it connects to the continuous DMK model in Section 2.2. We then
extend this problem to the discrete domain in section Section 2.3, briefly describing how we
translate its solutions to the networks language in Section 2.2.2. We will explore this model
from Chapters 3 to 5.

The Physarum Polycephalum dynamics

The Physarum Polycephalum (PP) is a slime mold that has the ability of finding shortest paths
when placed in a maze with food sources. Its veins must be efficiently routed to balance
between transportation efficiency, capacity and resilience to damage [14, 24]. The dynamics
behind such behavior was first proposed by Tero et al. [14] and later exploited by Bonifaci et
al. [25], that proved why the path described by the mold is, in fact, the shortest one. In this
section we briefly describe this model and its relevance to our work.

In the works of Tero et.al. [14], the slime is modeled as an electrical network with time-
varying resistors, where its tubular channels are represented as edges from an undirected
graph, here denoted as G = (V, E), and the places where the food is located as sy and s; (the
source and sink, respectively). For each edge e = (4, j) there is a corresponding conductivity
D;;(with (i, j) € ), which can be described as the edge capacities to transport a flow, and
for each node j there is an associated potential (or hydrostatic pressure) p; (j € V). The
model assumes Poiseuille flow (i.e., D;; x radius of the pipe). The goal is to find the optimal
distribution of the pair (D;;, p;) that satisfies the following conditions:



Fig. 2.1: Ilustration of the tubular channels of the slime as an edge e = (i, j) of a graph G.

1, if j = so,
Y Qut)y=fi=3 — 1, ifj=s, (2.1a)
¢ 0, otherwise;
D;i(t
Q1) = =1 _(_ )(pi(t) —p;(1)), (2.1b)
ij
d
7 Di (1) = 9(1Qi5]) — D (1), (2.10)

The system can be explained as follows. The first equation is the Kirchhoff’s law, stating that
the sum of in and out flows is equal to zero for all nodes except sy and s; (the flow is regulated
by the node function f;). The second equation defines the flow rate ();;, where each edge flow
is proportional to the discrete gradient of the pressure (p; — p;) multiplied by conductivity
coefficient D;;, and inversely proportional to its length L;;. The third equation governs
the system dynamics, ensuring the natural optimal allocation of fluxes. As the conductivity
evolves (positively or negatively) over time, the diameter of the pipes will adjust accordingly
to accommodate larger fluxes. Notice that the conductivity is not only proportional to the
absolute value of the flow but it is also subject to a decay, ensuring that the diameter of that
edge is decreased in case the flow is low. The last equation provides the initial configuration
of the system.

It was proven in [25] that when g(z) = x, the distribution of D;; is the shortest path in
asymptotic times for a general graph G. They also show that under the condition of

> fi=0, (2.2)

JjEV

the PP dynamics is equivalent to an Optimal Transportation Problem (OTP) in G. We can
simply reframe this problem as that of finding @;; such that

min Z QijLij, (2.32)
Qs (.4)eE
> Qi=fiVieV. (2.3b)
(i,)€E

Chapter 2



2.2

Moreover, given specific general assumptions on the graph structure, the solution of the PP
dynamics in Equation (2.1) converges to a stationary solution Q?;, that is also a solution of
the OTP in G.

*
172

Dynamic Monge-Kantorovich

The model proposed by Facca et al. [18] removes the graph structure of Equation (2.1) and
defines the problem in a continuous domain as an open and bounded subset 2 of R?. It
considers the case where g(z) = z and the continuous version of the forcing function in
Equation (2.2), an analogous of the problem described in [25]. Their model reads as follows.
Consider the system of partial differential equations:

-V (H(tv‘r)vu(tv I)) = f+(l') - f_(x) (2.4a)
—8“3;,;””#@.@ = (u(t,2)Vu(t,2))” — p(t,z) (2.4b)
(0, ) = po(z) > 0, (2.40)

complemented by zero Neumann boundary conditions [26]. Notice that V = V. In this new
scenario, the problem consists of finding a pair of functions (y, u) satisfying Equation (2.4), also
known as the continuous Dynamic Monge-Kantorovich model (DMK). This model introduces
an exponent 3 that allows the system to reach different configurations for the transportation
problem: when 8 < 1 the converged solution is such that the transported mass avoids
congestion; when S > 1 the solution has a setting from a branch transportation problem;
[ = 1 is shortest path-like, since the mass goes in a straight line from the source f*(z) to the
sink f~(z) (in this case, we have the exact continuous equivalent of Equation (2.1)).

But how does the PP dynamical problem connects with DMK?

As proposed in [18], under certain conditions, the solutions for a mold in the maze are
equivalent to an optimal transportation problem. The authors conjectured that for the case
of f = 1 in the regime of large times (¢ — oo) this solution pair (i, u) converges to the
pair (u*,u*), where p* is the transport density and «* the Kantorovich potential, a solution
pair of the Optimal Transport Problem (OTP). Having a closer look at Equation (2.1) and
Equation (2.4), we notice that the first connection reads as

D;j(t) — plt, x). (2.5)

This implies that from a discrete to a continuous case, the edges’ diameter is described by
an initial distribution u, therefore describing how the edges are changing on time until the
solution reaches convergence. As for the mass flow, the amount of mass going from node i to
node j is stored in the quantity @;;. In the continuous scenario, this is given by the product of
the density distribution p(¢, z) with the gradient of the potential Vu(z,t), which leads to

Qij(t) — u(t,x)Vu(t,x). (2.6)

The third correspondence is given by the positions of sources and sinks. The sources or sink
nodes (i or j), with associated hydrostatic pressure p; and p;, are equivalent to the source and
sink functions f(x) (respectively, f*(x) and f~(x)),

fij — f(z), with /Q fdz = 0. 2.7)

2.2 Dynamic Monge-Kantorovich 9



2.2.1

10

The last correspondence refers to the boundary conditions of each dynamics. While in the
graph, the injection term for initial times must be positive, in the continuous case, the amount
of mass that needs to be sent from a source to a sink, must also be positive. From a more
intuitive perspective, if the initial distributions are equal to zero, this means that no mass is
being transported. In this case,

Qij(t = 0) — u(0,2) = po(x) > 0. (2.8)

Among the novelties of this model, the authors proposed in [18] an algorithm for solving
this dynamics (from now labeled as the DMK solver) in which it was possible to emulate the
results found by [14] for the discrete formulation of the PP. By tuning some parameters like
the exponent 3, they were able not only to model different problems belonging to the optimal
transportation theory, but also to solve them using their mentioned tools. Each time that the
solver is executed, we find a sequence of functions (u, u;);, where p, is the transport density
at time ¢ and w; is the potential at a given time ¢. If this sequence converges, its limit is denoted

as (u*,u").

The Lyapunov cost

In [18] the authors conjectured that in the regime of asymptotic times, the solution of the
system Equation (2.4) when § = 1 is the unique minimizer of a functional that takes the form
of

Lp,u) = E(p,u) + M(p), (2.9

where the first term is interpreted as an energy functional and the second one a mass functional.
They show that the optimal transport density (x*) is the unique minimizer of a functional
with such form, and that the minimum equals the Wasserstein distance between the source
f* and the sink f~, with cost equal to the Euclidean distance. Under appropriate regularity
assumptions, it can be shown that the equilibrium solution is a minimizer of the following
form of Equation (2.9):

Lp) = %/Qulwlzda: + /Q (%) ,u%d:r. (2.10)

We empirically interpret this functional as comprising two main parts. The first one is the
transport cost, assumed to be proportional to the total dissipated energy transporting the mass
from f* to f~. The second part is the cost of building the transport infrastructure, assumed
to be a nonlinear function of the total capacity of the system. Notice that when 0 < 5 < 1 the
second term takes a convex form, penalizing the concentration of the transport density u, a
scenario that reflects congested transportation problems [27, 28]. Instead, when 1 < 5 < 2
the second term becomes concave, favoring the 4 to concentrate in branches. Notice that each
value assumed by 3 represents an optimal solution for that specific configuration, so every
time we change the forcing and the value of /3, we obtain a new optimal solution.

Chapter 2
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2.3

Outputs of the DMK solver and the Graph Extraction Problem

As the DMK solutions depend on the values of 3, we show in Figure 2.2 some examples for the
different configurations of the transportation problem. We will show examples for different
configurations later in Chapter 3.

(a) f=0.75 (b) B=1.0
e 090F
[05557 .:uﬁﬁsa
oau 0awr g gof
.uzm 0.8E 02792
01393 01306 070F 3
o S804 o G454
Wiy 00004205 Wi 1000514 0,60
0.6
050
04
0401
0.30F
0.2
0201
0.0% 0:10) L L L
00 10 10 020 0.30 0.40 0.50 0.60 070 0.80 0.9
1.0F 1.0
2 0
Imz Ism
.mae 08k .»:nm 08
s 1855
"~ 1owerta ﬁw «' ~ 100e14
Mox 238 v 748 3
e e e Vi «
o6 p < 060 -y ‘;_"(YY?'«
»
»
A .
04l 5 | ( aaf - L pehdss v,
iy -« < 4 b 14
k -
0.2+ 02
09

0.0 L . L L L L L L L
00 02 04 05 08 T0 00 02 04 06 0.8 10

Fig. 2.2: Different DMK outputs. We consider the same source/sink pairs and change the value of
(3 to obtain different structures. In (a) the converged solution is such that the mass avoids
congestion, while in (b) it converges to shortest-path. In (c) and (d), we notice the emergence
of branches. The colors indicate the distribution of p* in the grid.

The main idea behind using the DMK model here is to exploit the robustness of the topologies
of its solutions. We start with translating the solution pair (¢*, u*) into a network framework,
as detailed in Chapter 3, aiming on understanding more general transportation problems from
the network theory perspective. We will then explain how to map as a graph the solution pair
from the continuous scenario (u*, u*), like the ones in Figure 2.2. We will give in Chapter 3 a
theoretical description of how to extract the graphs given the solutions from the DMK solver
as inputs, in order to justify our adopted graph representation, highlighting the main features
of the DMK solver.

Solving OTP in graphs

In this section, we introduce a discrete version of the continuous DMK-Solver (we will refer
to it as the discrete-DMK-Solver). This formulation is a natural way of looking at solving the

2.3 Solving OTP in graphs 1
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optimal transport problem in undirected weighted graphs. In fact, it was proven in [29] that
solving the PP dynamical problem will lead to the solution of the Basis Pursuit (BP) problem
(also known as optimal transshipment problem).

We define the signed incidence matrix B € My s of a weighted graph G = (V, E, W), with
entries B, = +1 if the edge e has node ¢ as start/end point, or 0 otherwise; N = |V| the
nodes and M = |E| the edges; the vector of edge lengths ¢ = {/.}_; and f a N-dimensional
vector of source and sink values with entries satisfying >,y fi = 0. This last condition is the
discrete version of the forcing term from the continuous case (i.e., f(z)).

We then define p.(t) as the edge conductivities, and w;(¢) as the potential on the nodes, which
have the same interpretation as in the continuous problem, but are now vectors instead of
functions. We can rewrite Equation (2.4) as

fi = ZBic“ Z(t)ZBejuj(t) : (2.11)
e € j
B
fe(t) = [“2—@)IZBejug-(t)|] — pe(t) (2.12)
¢ J
pe(0) > 0 (2.13)

where |- | is the absolute value element-wise. In this new system, the first equation corresponds
to Kirchoff’s law, the second one is the discrete dynamics, with 8; a parameter controlling
for different routing optimization mechanisms (similarly to the 3 in Equation (2.4)); the last
equation is the initial condition.

This system has an interesting theoretical correspondence, as its equilibrium point corresponds
to the minimizer of a clearly-defined Lyapunov functional interpreted as the global energy, in
an analogous form of Equation (2.10), that takes the following discrete form

2
P(B)
Eﬂ(ﬂ(t)) = % Z pe(t) (% Z Be; 'U«j(:u(t))) le + % % Le, (2.14)
c e’ ° /

where P(8) = 2 — 3/8 and u(u(t)) is a function implicitly defined as the solution of Equation
(1.11). The first term is the energy dissipated during transport, which one can interpret as
the costs of operating the network, while the second term represents the cost of building the
infrastructure.

The equilibrium point of . (¢) is stationary, and for 8; = 1 it acts also as the global minimizer
of Equation (2.14) due to its convexity. When ; > 1 the energy is not convex, thus in general
the functional will present several local minima towards which the dynamics will be attracted.
The case §; < 1 encourages trajectories to spread through the network.

Similarly to the graph pre-extraction step, the filtering is also valid for networks that are not
necessarily solutions of Equation (2.4). It can be applied to more general inputs if defined
on a discrete space, for instance, images. In fact, this idea was used in [30] to develop an
efficient algorithm for extracting networks from images, as an alternative to more standard
image processing techniques, which often require domain-specific knowledge.

The discrete-DMK-Solver will be used in Chapter 3 as a fundamental step to filter possible
redundancies of the networks obtained from the graph representation of the continuous
solutions (it will be later explored in Section 3.4.1).

Chapter 2
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Network Extraction from routing
optimization

Routing optimization is a relevant problem in many contexts. Solving directly this type of
optimization problem is often computationally intractable. Recent studies suggest that one
can instead turn this problem into one of solving a dynamical system of equations, which
can instead be solved efficiently using numerical methods. This results in enabling the
acquisition of optimal network topologies from a variety of routing problems. However, the
actual extraction of the solution in terms of a final network topology relies on numerical
details which can prevent an accurate investigation of their topological properties. In fact,
in this context, theoretical results are fully accessible only to an expert audience and ready-
to-use implementations for non-experts are rarely available or insufficiently documented. In
particular, in this framework, final graph acquisition is a challenging problem in-and-of-itself.

In this chapter, we introduce a method to extract network topologies from dynamical equations
related to routing optimization under various parameters’ settings. Our method is made of
three steps: first, it extracts an optimal trajectory by solving a dynamical system in a continuous
domain. Then it pre-extracts a network with a pre-extraction step. Finally, it filters out potential
redundancies. Remarkably, we propose a principled model to address the filtering in the last
step, and give a quantitative interpretation in terms of a transport-related cost function. This
principled filtering can be applied to more general problems such as network extraction from
images, thus going beyond the scenarios envisioned in the first step.

Overall, the algorithm described in details along this chapter allows practitioners to easily
extract optimal network topologies by combining basic tools from numerical methods, opti-
mization and network theory. Thus, we provide an alternative to manual graph extraction
which allows a grounded extraction from a large variety of optimal topologies. The analysis
of these may open up the possibility to gain new insights into the structure and function of
optimal networks. We provide an open source implementation of the code at the Github
repository https://github. com/Danielaleite/NextRout.

Introduction

Investigating optimal network topologies is a relevant problem in several contexts, with
applications varying from transportation networks [31, 32, 33, 34], communication systems
[35, 36, 371, biology [38, 39] and ecology [40, 41, 42]. Depending on the specified objective
function and set of constraints of a routing optimization problem [43], optimal network
topologies can be determined by different processes ranging from energy-minimizing tree-
like structures ensuring steeper descent through a landscape as in river basins [40] to the
opposite scenario of loopy structures that favor robustness to fluctuations and damage as in
leaf venation [44, 42], the retina vascular system [45, 46] or noise-cancelling networks [37].
In many applications, optimal networks can arise from an underlying process defined on a
continuous space rather than a discrete network as in standard combinatorial optimization
routing problems [47, 48, 49, 50].

13



14

Optimal routing networks try to move resources by minimizing the transportation cost. This
cost may be taken to be a function of the traveled distance, such as in Steiner trees, or
proportional to the dissipated energy, such as optimal channel networks or resistance networks.
The common denominator of these configurations is that they have a tree-like shape, i.e.,
optimal routing networks are loopless [31, 51]. Recent developments in the mathematical
theory of optimal transport [41, 43] have proved that this is indeed the case and that complex
fractal-like networks arise from branched optimal transport problems [52]. While the theory
starts to consolidate, efficient numerical methods are still in a pre-development stage, in
particular in the case of branched transport, where only a few results are present [53, 54],
reflecting the obstacle that all these problems have an NP-hard genesis.

Recent promising results [18, 19] map a computationally hard optimization problem into
finding the long-time behavior of a system of dynamic partial differential equations, the so-
called Dynamic Monge-Kantorovich (DMK) approach, which is instead numerically accessible,
computationally efficient, and leads to network shapes that resemble optimal structures [27].

Working in discretized continuous space, and in many network-based discretizations such as
lattice-like networks as well, requires the use of threshold values for the identification of active
network edges. This has the main consequence that there might be no obvious final resulting
network, an output that would be trivial when starting from an underlying search space
formed by predefined selected network structures. For example, the output of a numerically
discretized (by, e.g., the Finite Element method) routing optimization problem in a 2D space is
a real-valued function on a set of (x, y) points defined on a grid or triangulation, which already
has a graph structure. Despite the underlying graph, this grid function contains numerous
side features, such as small loops and dangling vertices, that prevent the recognition of a
clear optimal network structure. Obtaining this requires a suitable identification of vertices
and edges that should contain the optimal network properties embedded in the underlying
continuous space. In other words, the output of a routing optimization problem in continuous
space carries unstructured information about optimality that is hard to interpret in terms of
network properties.

Extracting a network topology from this unstructured information would allow, on one hand,
better interpretability of the solution and enable the comparison with networks resulting from
discrete space. On the other hand, the use of tools from network theory to investigate the
properties related to optimality, for instance, to perform clustering or classification tasks based
on a set of network features. One can frame this problem as that of properly compressing
the information contained in the “raw” solution of a routing problem in continuous space
into an interpretable network structure while preserving the important properties connected
to optimality. This is a challenging task, as compression might result in losing important
information. The problem is made even more complex because one may not know in advance
what are the relevant properties for the problem at hand, a knowledge that could help drive
the network extraction procedure. This is the case for any real network, where the intrinsic
optimality principle is elusive and can only be speculated about by observing trajectories, an
approach adopted for instance when processing images in biological networks [55, 56, 57,
58].

Several works have been proposed to tackle domain-specific network extraction. These meth-
ods include using segmentation techniques on a set of image pixels to extract a skeleton [56,
55, 59] that is then converted into a network; a pipeline combining different segmentation
algorithms building from OpenCV, [60] which is made available with an intuitive graphical
interface [61]; graph-based techniques [62] that sample junction-points from input images;
methods that use deep convolutional neural networks [63] or minimum cost path computa-
tions [64] to extract road networks from images. These are mainly using image processing
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techniques as the input is an image or photograph, which might not necessarily be related to a
routing optimization problem.

In this chapter, we propose a new approach for the extraction of network topologies and build
a protocol to address this problem. This can take in input the numerical solution of a routing
optimization problem in continuous space as described in [18, 19, 27] and then processes
it to finally output the corresponding network topology in terms of a weighted adjacency
matrix. However, it can also be applied to more general inputs, such as images, which
may not necessarily come from the solution of an explicit routing transportation problem.
Specifically, our work features a collection of numerical routines and graph algorithms designed
to extract network structures that can then be properly analyzed in terms of their topological
properties.

The extraction pipeline consists in a sequence of three main algorithmic steps:

(i) compute the steady state solutions of the DMK equations (dmkS);

(ii) extract the optimal network solution of the routing optimization problem (graph pre-
extraction);

(iii) filter the network removing redundant structure (graph filtering).

While for this work we test and demonstrate our algorithm on routing scenarios coming from
DMK, which constitute our main motivation, we remark that only the first step is specific
to these, whereas the last two steps are applicable beyond these settings. The graph pre-
extraction step consists of a set of rules aiming at building a network from an input that is not
explicitly a topological structure made of nodes and edges. The filtering step is based on a
principled mathematical model inspired by that of the first step, which leads to an efficient
algorithmic implementation. Our network filter has a nice interpretation in terms of a cost
function that interpolates between an operating cost and an infrastructure one, contrarily to
common approaches used in image processing for filtering, which often relies on heuristics.

A successful execution will return a representation of the network in terms of an edge-weighted
undirected network. The resulting weights are related to the optimal flow, solution of the
routing problem. Once the network is obtained, practitioners can deploy arbitrary available
network analysis software [65, 66, 67, 68] or custom-written scripts to investigate properties
of the optimal topologies. While our primary goal is to provide a framework and tool to solve
the research question of how to extract network topologies resulting from routing optimization
problems in continuous space or any other image containing a network structure, we also
aim at encouraging non-expert practitioners to automatically extract networks from such
problems or from more general settings beyond that. Thus we make available an open-source
algorithmic implementation at https://github.com/Danielaleite/Nextrout.

The routing optimization problem

In this section, we describe the main ideas and refer to the frameworks introduced in Chapter 2.
We briefly introduce the dynamical system of equations corresponding to the DMK routing
optimization problem as proposed by Facca et al. [18, 19, 27]. In these works, the authors
first generalize the discrete dynamics of the slime mold Physarum Polycephalum (PP) to a
continuous domain; then they conjecture that, like its discrete counterpart, its solution tends
to an equilibrium point which is the solution of the Monge-Kantorovich optimal mass transport
[69] as time goes to infinity.

3.2 The routing optimization problem 15
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We denote the space where the routing optimization problem is set as {2 € R", an open
bounded domain that compactly contains f(z) = f*(z) — f~(z) € R, the forcing function,
describing the flow generating sources f*(z) and sinks f~(z). It is assumed that the system is
isolated, i.e., no fluxes are entering or exiting the domain from the boundary. This imposes
the constraint [, f(x)dxz = 0 to ensure mass balance. It is assumed that the flow is governed
by a transient Fick-Poiseuille type flux ¢ = —uVu, where p(t, x), u(t, z) are called conductivity
or transport density and transport potential, respectively.

The continuous set dynamical Monge-Kantorovich (DMK) equations were introduced in
Equation (2.4), with Equation (2.4a) stating the spatial balance of the Fick-Poiseuille flux
and complemented by no-flow Neumann boundary conditions; Equation (2.4b) enforcing the
system dynamics in analogy with the discrete PP model and Equation (2.4c) providing the
initial configuration of the system. The parameter 3 captures different routing transportation
mechanisms. A value of 8 < 1 enforces optimal solutions to avoid traffic congestion; 8 = 1
is shortest path-like; while 5 > 1 encourages consolidating the flow so to use a smaller
amount of network-like infrastructure, and is related to branched transport [70, 41]. Within a
network-like interpretation, qualitatively, u(x,t) describes the capacity of the network edges
[71]. Thus, its initial distribution p(«) describes how the initial capacities are distributed.

In this work, solving the routing optimization problem consists of finding the steady state solu-
tion (p*,u*) : £2 — R>o x R of Equation (2.4a), i.e. (p*(z), u*(x)) = ims—yyoo(p(t, ), u(t, x)).
Numerical solution of the above model can be obtained by means of a double discretization
in time and space [18, 19, 27]. The resulting solver (from now referred as DMK-Solver) has
been shown to be efficient, robust and capable of identifying the typically singular structures
that arise from the original problem. In Figure 3.1, some visual examples of the numerical u*
obtained for different values of /3 are shown. The same authors showed that the DMK-Solver
is able to emulate the results for the discrete formulation of the PP model proposed by Tero et
al. [14].
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Fig. 3.1: Different values of 5 in Equation (2.4b) lead to different settings of a routing optimization
problem. Colors denote different intensities of conductivity p as described by the color bar on
the left. Left: 3 < 1 enforces avoiding mass congestion; Center: 3 = 1 is shortest path-like,
the mass goes straight from source to sink; Right: 5 > 1 encourages traffic consolidation.
Red rectangle denotes the sink, green ones the four sources.

Under appropriate regularity assumptions, it can be shown [19, 27] that the equilibrium
solution of the above problem (p*(x),u*(x)) is a minimizer of the following functional:

,uP(ﬂ)
o P(B)

where P(5) = (2 — 3)/8. In words, this functional is the sum of the total energy dissipated
during transport (the first term is the Dirichlet energy corresponding to the solution of the first

L, u) = %/QMVUPdaﬁ + dz, 3.1)
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PDE) plus a nonlinear (sub-additive) function of the total capacity of the system at equilibrium.
In terms of costs, this functional can be interpreted as the cost of transport, assumed to be
proportional to the total dissipated energy, and the cost of building the transport infrastructure,
assumed to be a nonlinear function (with power 2 — 3) of the total transport capacity of the
system.

We exploit the robustness of this numerical solver to extract the solutions of DMK equations
corresponding to various routing optimization problems. We here focus on the case § > 1,
where the approximate support of p* displays a network-like structure. This is the first step
of our extraction pipeline, which we denote as DMK-Solver. The numerical solution of these
equations does not allow for a straightforward network representation. Indeed, depending on
various numerical details related to the spatial discretization and other parameters, one usually
obtains a visually well-defined network structure (see Section 3.2) whose rendering as a graph
object is however uncertain and non-unique. This in turns can hinder a proper investigation of
the topological properties associated to optimal routing optimization problems, motivating the
main contribution of our work: the proposal of a graph extraction pipeline to automatically and
robustly extract network topologies from the solutions’ output of DMK-Solver. We reinforce
that our contribution is not limited to this application, but is also able to extract network-like
shapes from any kind of image where a color or greyscale thresholds can be used to identify
the sought structure.

Our extraction pipeline then proceeds with two main steps: pre-extraction and graph filtering.
The first one tackles the problem of translating a solution from the continuous scenario into a
graph structure, while the second one addresses the problem of removing redundant graph
structure resulting from the previous step. A pseudo-code of the overall pipeline is provided in
Algorithm Line 1[72].

Algorithm 1: Generating optimal networks from solutions of dynamical systems

Input: parameters to set up network extraction problem:
i) Set the space £2: {T;}; grid triangulation and mesh-related parameters;
ii) Set up routing optimization problem: 3 > 1, uo, f*, f~, and threshold §;
iii) Set up the discrete routing optimization (graph filtering): 34, 64, and 7p¢;
Output: G(V, E, W) final network
1 Run DMK-Solver: outputs (u*, u*)
2 Graph pre-extraction: outputs G(V, E, W) with possible redundancies
3 Graph filtering: removes redundancies from G(V, E, W)

Our final goal is to translate the solution pair (u*, u*) into a proper network structure using
several techniques from graph theory. With these networks at hand, a practitioner is then
able to investigate topologies associated with this novel representation of routing optimization
solutions.

Graph preliminary extraction

In this section, we expand on the graph pre-extraction step: extracting a network representation
from the numerical solution output of the DMK-Solver. This involves a combination of
numerical methods for discretizing the space and translating the values of p*, and u* into

3.3 Graph preliminary extraction 17
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edge weights of an auxiliary network, which we denote as G = (V, E, W), where V is the set
of nodes, F the set of edges and W the set of weights.

The DMKsolver outputs the solution on a triangulation of the domain {2 (here also named
grid) and denoted as Ay = {T;};, with UT; = (2. The numerical solution, piecewise constant
on each triangle Tj, is considered assigned to the triangle barycenter (center of gravity) at
position b; = (x;,y;) € 2 [73]. This means that the result is a set of pairs {(x*(b;), u*(b;)),}
We can track any function of these two quantities. For simplicity, we use p.* (see Figure 3.1 for
various examples), but one could use u* or a function of these two. This choice does not affect
the procedure, although the resulting network might be different.

We neglect information on the triangles where the solution is smaller than a user-specified
threshold ¢ € R, in order to work only with the most relevant information. Formally, we
only keep the information on 7; such that x*(b;) > d. We observed empirically that in many
cases, several triangles contain a value of p* that is orders of magnitude smaller than others,
see for instance the scale of Figure 3.1. Since we want to build a network that connects
these barycenters, we remark that this procedure depends on the choice of the threshold §: if
d1 < 02, then G(d2) C G(d1). On one hand, the smaller 4, the more likely G is to be connected,
but at the cost of containing many possibly loop-forming edges and nodes (the extreme case
0 = 0 uses the whole grid to build the final network); on the other hand, the higher §, the
smaller the final network is (both in terms of the number of nodes and edges). Thus one needs
to tune the parameter ¢ such that resulting paths from sources to sinks are connected while
avoiding the inclusion of redundant information.

The set of relevant triangles does not correspond to a straightforward meaningful network
structure, i.e. a set of nodes and edges connecting neighboring nodes. In fact, we want to
remove as much as possible the biases introduced by the underlying triangulation and thus
we start by connecting the triangle barycenters. For this, we need rules for defining nodes,
edges and weights on the edges. Here, we propose three methods for defining the graph nodes
and edges and two functions to assign the weights. The overall graph pre-extraction routine is
given by choosing one of the former and one of the latter, and it can be applied also to more
general inputs beyond solutions of the DMK-Solver.

Rules for selecting nodes and edges

Selecting V' and F requires defining the neighborhood o(T;) of a triangle in the original
triangulation Ay, (for ¢ such that p*(b;) > §). We consider three different procedures:

(I) Edge-or-node sharing: o(T;) is the set of triangles that either share a grid edge or a grid
node with 7.

(II) Edge-only sharing: o(T;) is the set of triangles that share a grid edge with T;. Note that
lo(T;)] < 3, Vi

(II1) Original triangulation: let v, w, s be the grid nodes of 7; ; then add v,w, s to V and
(v,w), (w, s), (s,v) to E.

It is worth mentioning that since the grid Ay, is non uniform and p* is not constant, we cannot
control a priori the degree d; of a node i in the graph G generated for a particular threshold
d. We give examples of networks resulting from these three definitions in Figure 3.2 and a
pseudo-code for the first two in Line 2.
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Algorithm 2: Graph extraction

Input: (u,u) solution of the DMK-Solver, § threshold, {7;}; grid triangulation
1 Initialize: V, E = ()
2 fori s.t. u(b;) >ddo
3 V «—Vu{i}

4 | forTj;eo(T;) st. pu(bj)>ddo
5 V<~ Vu{j}
6 E <« EUe = (4,))

7 wij = f (u(bi), u(bj))

8 end

9 end

Output: a G(V, E, W) network

3.3.2 Rules for selecting weights

3.4

The weights w;; to be assigned to edges e;; := (4, j) € E should be a function of x(b;) and
p(bj), the density contained in the original triangles. We consider two possibilities for this
function:

() Average (AVG): w;; — “Cudlitbi)

(ii) Effective reweighing (ER): w;; = “(dt:") + %L) .
While using the average as in Item (i) captures the intuition, it may overestimate the contribu-
tion of a triangle when this has more than one neighbor in G with the risk of calculating a total
density larger than the original output of the DMK-Solver. To avoid this issue, we consider an
effective reweighing as in Item (ii), where each triangle contribution by the degree d; = |o;| of
anode ¢ € V is reweighted, with o; the set of neighbors of i. This guarantees the recovery of
the density obtained from DMK-Solver, since

1 1 1(bj)
52“’1‘1’ =3 Z [M(bi) +Y d—]] = p(by),
2] ? Jj€o; 7
where in the sum we neglected isolated nodes, i.e. i s.t. d; = 0. Note that in the case of
choosing the original triangulation for node and edge selection (case Item (III) above), the ER

rule does not apply; in that case, we use AVG.

Graph filtering

The output of the graph extraction step is a network closer to our expectation of obtaining
an optimal network topology resulting from a routing optimization problem. However, this
network may contain redundant structures like dangling nodes or small irrelevant loops (see
Figure 3.2). These are not related to any intrinsic property of optimality, but rather are a
feature of the discretization procedure resulting from the graph pre-extraction step. It is thus
important to filter the network by removing these redundant parts. However, how to perform
this removal in an automated and principled way is not an obvious task. One has to be careful
in removing enough structure, while not compromising the core optimality properties of the
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Fig. 3.2: Graph pre-extraction rules. Left): edge-or-node sharing Item (I); center): edge-only sharing
Item (II); right): original triangulation Item (III). We monitor the conductivity ; and use
parameters py = 1, § = 1.02, § = 0.0001. Weights w;; are chosen with AVG Item (i), f is
chosen such that sources and sinks are inside green and red rectangles respectively.

network. This removal is then a problem in-and-of-itself, we name it graph filtering step. We
now proceed by explaining how we tackle it in a principled way and discuss its quantitative
interpretation in terms of minimizing a cost function interpolating between an operating and
an infrastructural cost.

The Discrete DMK-Solver

Going beyond heuristics and inspired by the problem presented in Section 3.2, we consider as
a solution for the graph filtering step, the implementation of a second routing optimization
algorithm to the network G output of the pre-extraction step, i.e. in discrete space. Several
choices for this could be drawn, for instance, from routing optimization literature [74], but
we need to make sure that this second optimization step does not modify any of the intrinsic
properties related to optimality resulting from the DMK-Solver.

We thus propose to use a discrete version of the DMK-Solver (discrete-DMK-Solver). This was
proven to be related to the Basis Pursuit (BP) optimization problem [29]. In fact, BP is
related[75] to the PP dynamical problem in discrete space and the discrete-DMK-Solver gives a
solution to the PP in discrete space[29]. The discretization results in a reduction of the compu-
tational costs for solutions of BP problems, compared to standard combinatorial optimization
approaches[29]. Being an adaptation to discrete settings of our original optimization problem,
it is a natural candidate for a graph filtering step, preserving the solution’s properties. This
dynamics was already introduced in Section 2.3, including the interpretation of the discrete
Lyapunov in Equation (2.14).

Similarly to the graph pre-extraction step, the filtering is also valid beyond networks related to
solutions of the DMK-Solver. It applies to more general inputs if defined on a discrete space,
for instance, images. Finally, notice that the filter generates a graph with a new set of nodes
and edges, both subsets of the corresponding ones in G, result of the pre-extraction. The
weights of the final graph can then be assigned with same rules as in Section 3.3.1; in addition,
one can consider as weights the values of . resulting from the BP problem (we named this
weighing method “BPW”). Alternatively, one can ignore the weights of BP and keep (for the
edges remaining after the filter) the weights as in the previous pre-extraction step (labeled as
“IBP”). Figure 3.3 shows an example of three filtering settings on the same input.
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Fig. 3.3: Graph filtering rules. Left): 5, = 1.0; center): 34 = 1.4; right): 8; = 1.8. The number on
top denote the contributions of operating and infrastructural cost to the energy. Green and
red dots represent sources and sinks respectively (rzc = 1071); blue edges are those ¢ with
wt > 1073. The filtering input is generated from DMK-Solver with 8 = 1.05. The apparent
lack of symmetry of the network’s branches is due to numerical discretization of the domain,
solver and threshold 4. As the relative size of the terminal set decreases compared to the size
of remaining part of the domain, this lack of symmetry becomes negligible.

3.4.2 Selecting sources and sinks

The discrete-DMK-Solver requires in input a set of source and sink nodes (S and S~) that
identify the support of the forcing vector f introduced in Section 3.4.1. However, the graph
pre-extraction output G might contain redundant nodes (or edges) as mentioned before. In
principle, among the nodes i € V, all of those contained in the support of f(x = b;), i.e.
contained in the supports of sources and sinks of the original routing optimization problem in
Section 2.3, are eligible to be treated as sources or sink in the resulting network. However,
several paths connecting source and sink nodes may be redundant and clearly not compatible
with an optimal routing network (see Figure 7.2 for such example). Therefore, it is important
to select “representatives” for sources and sinks, such that the final network is heuristically
closer to optimality. Here we propose a criterion to select source and sink nodes from the
eligible ones in each of the connected components {C), },,, of G, using a combination of two
network properties. Starting from the complete graph formed by all the nodes characterized
by a significant (above the threshold) density, source and sink nodes and rates are defined as
follows.

Anode i € ST, i.e. is a source f; > 0, if either i) is in the convex hull of the set of eligible
sources or ii) its betweenness centrality is smaller than a given threshold 75¢. Similarly for
sink nodes in S~. This is because, on one side, nodes in the convex hull capture the outer
shape structure of the source and sink sets defined in the continuous problem; on the other
side, nodes with small values of the betweenness centrality capture the end-points of G inside
the source and sink sets, analogously to leaves (i.e., degree-one nodes) [76]. We present more
details in Section 7.2.

Once we have identified the sets of source and sink vertices, we need to assign a proper value

/i such that Kirchhoff law is satisfied in each of the different connected components C,,. It

is reasonable to assume that each connected component is “closed”, i.e. 37, fi = 0,VCi,.

Denoting with |S| the number of elements in a set S and V(C,,) the set of nodes in C,,,
. . _ . . L 1 . +

we then distribute the mass-fluxes uniformly by setting f; = e for i € ST, and

fi= _Wl(cmﬂ for i € S~ sinks (f; = 0 otherwise) so that the total original source and sink
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flux is assigned to the overall source/sink nodes of all C),. Note that this procedure maintains
the overall system and each connected component “closed”, as stated above.

Model validation

Our extraction pipeline proceeds by compressing routing information in the raw output of the
DMEK-Solver (although what follows is not restricted to this case) on a lean network structure.
This might lead us to lose relevant information in the process. Hence, we need to devise a
posteriori estimates that provide quantitative guidance on the “leanness” and information loss
of the final network. Here we propose metrics to evaluate the compression performance of the
various graph pre-extraction and filtering protocols. The raw information is made of a set of
weights w(T;) representing the values (p*, u*) on each of the triangles T; € {2. We consider
as the truth benchmark the distribution of w, or any other quantity of interest, supported
on the subgrid A}, C Ay, formed by all triangles where w is larger than the threshold value
0, i.e., A‘}) ={T; € Ap : w(T;) > §}. We expect that a good compression scheme should
preserve both the total amount of the weights from the original solution in A¢, and the
information of where these weights are located inside the domain (2. Also, we want this
compression to be parsimonious, i.e. to store the least amount of information as possible. We
test against these two requirements by proposing two metrics that measure: i) an information
difference between the raw output of the DMK-Solver and the network extracted using our
procedure, capturing the information of where the weights are located in space; ii) the amount
of information needed to store the network.

Our first proposed metric relies in partitioning 2 in several subsets and then calculating the
difference in the extracted network weights and the uncompressed output, locally within
each subset. More precisely, we partition (2 into P non intersecting subsets C,, C (2, with
o = 1, PN P and UfC’a = (2. For example, we define C,, = [l‘i, a:H_l] X [yj, yj+1], for Tiy Tit41, Y5
and y;1, consecutive elements of N-regular partitions of [0, 1], and P = (N — 1)2. Denote
with ws(T;) the weight on the triangle T; € A, resulting from the DMK-Solver (usually a
function of x* and u*). If we denote the local weight of A(}z inside Cy, as wo = >, cc, ws(T3),
then we propose the following evaluation metric:

1
P q

b,(G) = %{Z <Z|Ha(e) we—wa|ﬂ , 3.2)

a=1 \eckE

where I, (e) is an indicator of whether an edge e = (7, j) € E is inside an element C,, of the
partition, i.e. I,(e) = 1,0,1/2 if both b;, b; are in C,, none of them are, or only one of them
is, respectively.

In words, @, (G) is a distance between the weights of the network extracted by our procedure
and the original weights output of the DMK-Solver, over each of the local subsets C,,. This
metric penalizes networks that either place large-weight edges where they were not present in
the original triangulation, or low-weight ones where they were instead present originally. In
this work we consider the Euclidean distance, i.e. ¢ = 2, but other choices are also possible.

Note that @,(G) does not say anything about how much information was required to store
the processed network. If we want to encourage parsimonious networks, i.e. networks
with few redundant structures, then we should include in the evaluation the monitoring of
L(G) = Y .cEg L, the total path length of the compressed network, where the edge length /.
can be specified based on the application. Standard choices are uniform ¢, = 1, Ve or the
Euclidean distance between b; and b;. Intuitively, networks with small values of both @, (G)
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and L(G) are both accurate and parsimonious representations of the original DMK solutions
defined on the triangulation.
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Fig. 3.4: Graph extraction performance evaluation. We plot results for different combinations of the
graph extraction rule in terms of: (left) the metric %,(G) of Eq. (3.2); (right) total network
length L(G) normalized by L,,,., the max length over the 170 networks. Each bar denotes a
possible combination as follows: roman numbers denote one of the three rules I-III (3.3.1);
first label after the number denotes one of the rules to assign weights i-ii 3.3.2), which is
applied to the output of the first step; the second (and last) label denotes the same rule but
applied after the filtering step, “None” means that nothing is done, i.e. no filter applied, “IBP”
means filter applied but with no reweighing, i.e. when an edge is removed by the filter we
simply lose information without relocating its weight. Bars are color-coded so that rules I-III
have three different primary colors and their corresponding routines have different shades of
that main color. Here, we keep track of the conductivity ;» and show medians and quartiles of
a distribution over 170 networks generated with g € {1.1, 1.2, 1.3}, 34 = 1.1 and 6 = 0.01.

We evaluate numerous graph extraction pipelines in terms of these two metrics on various
routing optimization problem settings and parameters. In Figure 3.4 we show the main results
for a distribution of 170 networks obtained with 8 € {1.1, 1.2, 1.3} and 8; = 1.1. Similar
results were obtained for other parameter settings. Networks are generated as follows: first,
we choose a set of 5 different initial transport densities 1, grouped in parabola-like, delta-like
and uniform distributions, and a set of 12 different configurations for sources/sinks (mainly
rectangles placed in different positions along the domain, see Section 7.3 for more details).
Then, for each of these setup, we run our procedure: i) first the DMK-Solver calculates the
solution of the continuous problems; ii) then we apply the graph pre-extraction procedure
according the rules of Section 3.3.1 and weights as in Section 3.3.2; iii) finally, we run the
graph filtering step and consider various weight functions, as described in Figure 3.4.

We observe that not applying the final filtering step and considering rule I with ER to build
the graph (I-ER-None), the values of w2 () are smaller than other cases. This is expected
as by filtering we remove information and thus achieve better performance with this metric
when compared to no filtering. However, we pay a price in terms of total relative length as
L(G)/Lypqy is larger for this case. When working with rule II, we notice the appearance of
many non-optimal small disconnected components and this effect deteriorates if filtering is
activated. Corresponding statistics show low values for both wy(G) and L(G)/Lmaz-

We argue that this is because rule II produces, by construction, fewer redundant objects
than rule I in the initial phase. This might have a similar effect as a filter but is done a
priori during the pre-extraction, because rule II produces in this phase a limited number of
effective neighbors. However, this comes at a price of higher variability with the sampled
networks, as the variance of w9 (G) is higher than for the other combinations. Among the
possibilities with filtering applied, we observe that rule I performs better than rule III, while
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Fig. 3.5: Network extraction example. We show a network generated from a routing optimization
problem with parameters 8. = 1.4, 84 = 1.3 and § = 0.001; (left) raw output of the
DMK-Solver; (right) final network extracted using the routine I-ER-ER.

all the weighting rules give a similar performance in terms of both metrics. Any combination
involving rule I plus filtering has a similar performance as rule II in terms of both metrics
but with smaller variability. Finally, these combinations perform differently in terms of the
number of disconnected components (not shown here), with rule II producing more spurious
splittings, as already mentioned. Depending on the application at hand, a practitioner should
select one of these combinations based on their properties as discussed in this section. We give
an example of a network generated with I-ER-ER in Figure 3.5.

Application: network analysis of a vein network

We demonstrate our protocol on a biological network of fungi foraging for resources in space.
The network structure corresponds to the fungi response to food cues while foraging [77].
Edges are veins or venules and connect adjacent nodes. This and those of other types of fungi
are well known networks typically studied using image segmentation methods [55, 56, 57,
58]. It is thus interesting to compare results found by these techniques and by our approach,
under the conjecture that the underlying dynamic driving the network structure could be the
same as the optimality principles guiding our extraction pipeline.

In particular, we are interested in analyzing the distribution P(¢) of the veins lengths, i.e. the
network edges. The benchmark P(¢) distribution obtained by Baumgarten and Hauser [55]
using image processing techniques is an exponential of the type P(¢) = Py e ‘. Accordingly,
as shown in Fig. 3.6, we find that an exponential fit (with values Py = 234.00,~v = 36.32)
well captures the left part of the distribution, i.e. short edges. Differences between fit and
observed data can be seen in the right-most tail of the graph, corresponding to longer path
lengths, where the data decay faster than the fit. However, we find that the exponential fit
is nevertheless better than other distributions, such as the gamma and log-normal proposed
in Dirnberger and Mehlhorn [78] for the P. polycephalum. Drawing definite quantitative
conclusions is beyond the scope of our work, as this example aims at a qualitative illustration
of possible applications that can be addressed with our model. In general, however, it seems
not possible to choose a single distribution that well fits both center and tails of the distribution
for various datasets of this type [78].

To conclude, we demonstrate the flexibility of our graph extraction method on a more general
input than the one extracted from DMK-Solver. Specifically, we consider as example an image
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of P. polycephalum taken from data publicly available in the Slime Mold Graph Repository
(SMGR) repository [79]. We first downsample an image of the SMGR’s KIST Europe data set,
using OpenCV (left) and a color scale defined on the pixels as an artificial u* function. We
build a graph using the graph pre-extraction and graph filtering steps as shown in Fig. 3.7.

Our protocol in its standard settings with filtering can only generate tree-like structures.
Therefore, if we want to obtain a network with loops as we did in Fig. 3.7, we should consider
a modification of our routine, which can be done in a fully automatized way, as detailed in
Section 7.4. In short, after the graph pre-extraction step, where loops are still present, we
extract a tree-like structure close to the original loopy graph and give this in input to the
filtering. We can then add a posteriori edges that connect terminals that were close by in
the graph obtained from the pre-extraction step but removed by the filter, thus recovering
loops. In case obtaining loops is not required, our routine can be used with no modifications.
Adapting our filtering model to allow for loopy structures in a principled way, analogously to
what done in Sec. 3, will be subject of future work.

— Exp. Fit
Length freq

10°

Frequency

=
2

0.00 0.02 0.04 0.06 0.08 010
Length

Fig. 3.6: Application to fungi network. We generate a synthetic network similar to the image of Fig.
la reported in Boddy et al. [58] and Fig. 4a in Obara et al. [56] for the of Phanerochaete
velutina fungus [77] and Fig. 1 in their supplementary for the Coprinus picaceus. Fitted
parameters are: Py = 234.00, v = 36.32. Here f*(z,y) = 1, if (z — 0.5)% + (y — 0.5)2 < 0.01;
fH(x,y) = 0, otherwise; f~ (x,y) = —1,if 0.01 < (2 —0.5)2+ (y—0.5)? < 0.45; f~ (x,y) =0,
otherwise. The network on the left corresponds to the filtered graph. Yellow nodes are
degree-2 nodes that we omitted when computing the length distribution. Green and red
outlines are used to denote nodes in ST and S—, respectively.

3.7 Discussion

We propose a graph extraction method for processing raw solutions of routing optimization
problems in continuous space into interpretable network topologies. The goal is to provide a
valuable tool to help practitioners bridging the gap between abstract mathematical principles
behind optimal transport theory and more interpretable and concrete principles of network
theory. While the underlying routing optimization scheme behind the first step of our routine
uses recent advances of optimal transport theory, our tool enables automatic graph extraction
without requiring expert knowledge.

We purposely provide a flexible routine for graph extraction so that it can be easily adapted
to serve the specific needs of practitioners from a wider interdisciplinary audience. We thus
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Fig. 3.7: Application to images. We take an image of the P. Polycephalum from the SMGR repository
[79].The picture used is a 1200x1200-pixel section of an original image of size 5184x3456
pixels (see Section 7.4 for details) and extract a network with step 2 and 3 of our protocol. As
a pre-processing step, we downsample the image using OpenCV (left) and use the color scale
defined on the pixels as an artificial * function. Using this information and the grid structure
associated to the image’s pixels, we first build a graph G with the graph pre-extraction step
described in Sec. 3.3; then, we obtain a graph G (right) using the graph filtering step of Sec.
3.4, for an appropriate selection of sources and sinks, and adding a correction to retrieve
loops.

encourage users to choose the parameters and details of the subroutines to suitably customize
the protocol based on the application of interest. To help guiding this choice, we provide
several examples here and in the Chapter 7.

We anticipate that this work will find applications beyond that of automating graph extraction
from routing optimization problems. We remark that two of the three steps of our protocol
apply to inputs that might not necessarily come from solutions of routing optimization. Indeed,
the pipeline can be applied to any image setting where an underlying network needs to be
extracted.

The advantage of our setting with respect to more conventional machine learning methods
is that the final structure extracted with our approach minimizes a clearly defined energy
functional, that can be interpreted as the combination of the total dissipated energy during
transport and the cost of building the transport infrastructure.

We foresee that this minimizing interpretation together with the simplification of the pipeline
from abstract modeling to final concrete network outputs will foster cross-breeding between
fields as our tool will inform network science with optimal transport principles and vice-versa.
In addition, we expect to advance the field of network science by promoting the creation of
new network databases related to routing optimization problems.
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Community Detection in networks
by Dynamical Optimal Transport
Formulation

Detecting communities in networks is important in various domains of applications. While a
variety of methods exist to perform this task, recent efforts propose Optimal Transport (OT)
principles combined with the geometric notion of Ollivier-Ricci curvature to classify nodes
into groups by rigorously comparing the information encoded into nodes’ neighborhoods. In
this chapter, we present an OT-based approach that exploits recent advances in OT theory to
allow tuning between different transportation regimes. This allows for better control of the
information shared between nodes’ neighborhoods. As a result, our model can flexibly capture
different types of network structures and thus increase performance accuracy in recovering
communities, compared to standard OT-based formulations. We test the performance of our
algorithm on both synthetic and real networks, achieving a comparable or better performance
than other OT-based methods in the former case while finding communities that better
represent node metadata in real data. This pushes further our understanding of geometric
approaches in their ability to capture patterns in complex networks.

Introduction

Complex networks are ubiquitous, hence modeling interactions between pairs of individuals
is a relevant problem in many disciplines [21, 80]. Among the variety of analyses that can
be performed on them, community detection [81, 82, 83, 84] is a popular application that
involves finding groups (or communities) of nodes that share similar properties. The detected
communities may reveal important structural properties of the underlying system. Community
detection has been used in diverse areas including, discovering potential friends on social
networks [85], evaluating social networks [86], personalized recommendation of item to user
[871, detecting potential terrorist activities on social platforms [88], fraud detection in finance
[89], study epidemic spreading process [90] and so on.

Several algorithms have been proposed to tackle this problem which utilize different ap-
proaches, such as statistical inference [91, 92], graph modularity [93], statistical physics [94],
information theory [95] and multifractal topological analysis [96]. Here, instead, we adopt
a recent approach connecting community detection with geometry, where communities are
detected using geometric methods like the Ollivier-Ricci curvature (ORC) and we exploit a
dynamical approach of optimal transport theory to calculate this efficiently and flexibly across
various transportation regimes.

In Riemannian geometry, the sign of the curvature quantifies how geodesic paths converge or
diverge. In networks, the ORC plays a similar role: edges with negative curvature are traffic
bottlenecks, whereas positively curved ones allow mass to flow more easily along the network.
Defining communities as structures that allow robust transport of information, we could cluster
edges based on their curvature: those with positive curvature can be clustered together, while
those with negative curvature may be seen as “bridges” connecting different communities. The
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idea of using Ricci curvature to find communities on networks was first proposed by Jost and
Liu [97] and then further explored in subsequent works [98, 99, 100, 101]. Our work follows
a similar approach as in [100, 101] to calculate the OR curvature, but generalizes it for the
cases of branched [41, 102] and congested [103] optimal transport problems, building from
recent results [104, 105]. Specifically, our algorithm allows to efficiently tune the sensitivity to
detecting communities in a network, through a parameter that controls the flow of information
shared between nodes. We perform a comprehensive comparison between the proposed
algorithm and existing ones on synthetic and real data. Our algorithm, named ORC-Nextrout,
detects communities in synthetic networks with similar or higher accuracy compared to other
OT-based methods in the regime where inference is not trivial, i.e. the inference problem is
neither too easy nor too difficult to solve, and thus communities are only partially retrieved.
This is also observed in a variety of real networks, where the ability to tune between different
transportation regimes allows finding at least one result that outperforms other methods,
including approaches based on statistical inference, and modularity.

Related work

The idea of exploring the geometrical properties of a graph, and in particular curvature,
has been explored in different branches of network science, ranging from biological[106] to
communication [107] networks. Intuitively, the Ricci curvature can be seen as the amount
of volume through which a geodesic ball in a curved Riemannian manifold deviates to the
standard ball in Euclidean spaces[108]. When defined in graphs, it indicates whether edges
(those with positive values for the curvature) connect nodes inside a cluster, or if they rather
bond different clusters together (those with negative values for the curvature).

Previous works [109, 110, 111, 112] extended the idea of the OR curvature. In [109], the
authors introduced the concept of “resistance curvature” for both nodes and edges. Taking
inspiration from electrical circuits, this approach assigns a resistance being applied by the
whole network from a current that flows between any two edges and correlates this to known
concepts of OR discrete curvature. The resistance curvature provides a natural way to define
the Ricci flow. In [110] the authors proposed a dynamical version of the OR curvature, where
a continuous-time diffusion process is defined for every node, at different time scales. In this
context, the dynamical perspective is used to frame probability masses at nodes in terms of
diffusion processes, e.g. those deployed in random walks.

In our work instead, the dynamics enters to solve efficiently the underlying optimization
problem required to compute the OR curvature. Regardless of the choice of the distribution
that characterizes mass on nodes, this quantity is then used to define the curvature of the
edges of the graph. Previous works have typically defined the OR curvature in terms of the
1-Wasserstein distance. In contrast, we take a more general approach and explore the usage
of the §-Wasserstein, where g8 € (0, 2], to account for a variety of OT problems, ranging from
branched to congested transportation.

Other discrete graph curvature approaches include the Ollivier-Ricci (OR) curvature based
on the Optimal Transport theory introduced by Ollivier [113, 114], and Forman-Ricci cur-
vature introduced by Forman[115]. While the graph Laplacian-based Forman curvature is
computationally fast and less geometrical, we focus on the OT-based approach due to its more
geometric nature. Some applications of the Ollivier-Ricci curvature include network alignment
[116] and community detection [101, 100, 117].

On the other hand, community detection in networks is a fundamental area of network science,
with a wide range of approaches proposed for this task [81, 82, 22]. These include methods
based on statistical mechanical models [95, 94, 118], probabilistic generative models [91, 20,
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119, 120], nonnegative matrix factorization[121], spectral methods [122, 123], multifractal
topological analysis [96] and modularity optimization [124, 125, 93]. In contrast, our work is
inspired by recent OT-based methods [101, 100] for community detection. These methods
consider the OR curvature to sequentially identify and prune negatively curved edges from a
network to identify communities. While our approach also considers OR curvature to prune
edges, it controls the flow of information exchanged between nodes by means of a traffic-
penalization parameter, making the edge pruning completely dynamic. This is detailed in
Section 4.2.

B-Wasserstein Community Detection Algorithm

In this section, we describe how our approach solves the community detection problem. As
previously stated, we rely on optimal transport principles to find the communities. To solve
the optimal transport problem applied in our analysis we use the discrete Dynamic Monge-
Kantorovich model (DMK), as proposed by Facca et al. [126, 28] to solve transportation
problems on networks.

We denote a weighted undirected graph as G = (V, E, W), where V, E, W are the set of nodes,
edges, and weights, respectively. We use the information of the neighborhood of a node i,
N(i) ={j € V|(i,j) € E}, to decide whether a node belongs to a given community. We do
this by comparing a distribution defined on N (i) with those defined on other nodes close to
1. There are several choices that can be made for this. For instance, one could frame this in
the context of diffusion processes on networks and relate the distribution to random walkers
traveling along the network with a certain jump probability[110]. Here we follow previous
work[116] and assign it as m®, where m®(k) := « if k = i and m{(k) = (1 — «)/|N(i)|
if k € N (i). Intuitively, the distribution m assigns a unit of mass to ¢ and its connections:
a controls how much weight node ¢ should have, and once this is assigned, its neighbors
receive the remaining mass in an even way. We use o = 0 in all the experiments reported in
this manuscript, i.e. the mass is equally distributed on the neighbors. This corresponds to a
one-step transition probability for a random walker in the context of diffusion processes.

The next step is to compare the distribution m$* of node i to that of its neighbors. Consider
an edge (7,7) € E and m;, the distribution defined on node j, neighbor of i. We assume
that if + and j belong to the same community, then both nodes may have several neighbors
in common and, therefore, m; and m; should be similar. Note that this is valid for both
assortative and disassortative community structures. In the former case, nodes are more
likely to interact within the same community, while in the latter case we have the opposite,
nodes are more likely to interact across communities [80, 82]. When there is a consistent
community pattern for all groups (e.g. all communities are assortative), this idea of comparing
the distributions m{' may be appropriate to detect communities. On the contrary, it may
be difficult to perform this task in networks with mixed connectivity patterns, where some
communities are assortative and others are disassortative. This makes it difficult to detect
communities as edges within an assortative community are shortened, likewise edges between
a node in a disassortative and a node in an assortative one. This may confuse the algorithm, as
both types of edges are shortened. A careful treatment of these cases is an interesting direction
for future work.

To estimate the similarity between n; and m; we use OT principles. Specifically, we compute
the cost of transforming one distribution into the other. This is related to the cost of moving the
mass from one neighborhood to the other, and it is assumed to be the weighted shortest-path
distance between nodes belonging to A/ (i) and N (j). A schematic representation of the
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m;1(0)=1/4

Fig. 4.1: Left): an example graph G where edges have unitary weights. Center): the edge (1, 5) (bold
black line) is selected to define the OT problem between m;, mj;; neighborhoods of nodes
1 and 5 are highlighted with blue and red edges and are used to build the corresponding
distributions my, ms. Right): The complete bipartite graph B;s where the OT problem is
defined. The color intensity of the edges represents the distance between the associated
nodes on the graph G, as shown by the color bar. m; and ms are both defined for o = 0, i.e.
no mass is left in 1 and 5.

algorithm can be seen in Figure 4.1. The OT problem is solved in an auxiliary graph, the
complete bipartite network B;; = (Vi;, Eij,w;;) where V;; := (V;,V;) := (N(¢) U {i} ,N(j) U
{j}), Eij is made of all the possible edges between V; and V;. The weights of the edges are
given by the weighted shortest path distance d between two nodes measured on the input
network G.

The similarity between m; and m; is the Wasserstein cost W(m;, m;,w;;) of the solution of
the transportation problem. In its standard version, this number is the inner product between
the solution @, a vector of flows defined on edges, and the cost w;;. In our case, since the
DMK model allows to control the flow of information through a hyperparameter g € (0, 2], we
define the S-Wasserstein cost, YW3(m;, m;,w;;), as the inner product of the solution Q = Q(f3)
of the DMK model and the cost w;;. For § = 1 we compute the 1—Wasserstein distance
between m; and m;, while for 3 # 1 the influence of § in the solution of the transportation
problem can be seen in Figure 4.2. When 3 < 1, more edges of B tend to be used to transport
the mass, thus we observe congested transportation [103]. When 5 > 1 fewer edges are
used, hence we observe branched transportation, and the S-Wasserstein cost coincides with a
branched transport distance [127, 102]. The idea of tuning S to interpolate between various
transportation regimes has been used in several works and engineering applications [104, 30,
128, 129, 130, 131, 132].

Calculating the Wasserstein cost is necessary to determine our main quantity of interest, the
discrete Olliver-Ricci curvature, defined as

We(mi, mj,wij)

a; , “4.1)

kg(i,j) ==1—
where d;; is the weighted shortest path distance between i and j as measured in G. Intuitively,
if i and j are in the same communities, several k£ € V; and ¢ € V; will be also directly connected.
Thus, the Wasserstein distance between m,; and m; will be shorter than d;;, yielding a positive
(1, 7). Instead, when i and j are in different communities, their respective neighbors will be
unlikely connected, hence d;; < Wgs(m;, mj,w;;), yielding a negative x3(4, j).

The Ricci flow algorithm on a network is defined by iteratively updating the weights of
the graph G [100, 101]. These are updated by combining the curvature and shortest path
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distance information [113]. We redefine these updates using our proposal for the Ollivier-Ricci
curvature: )

wit = dl) — & (0,5) Y, (4.2)
where wgﬂ) is the weight of edge (i, j) at time t, wg)) = dg.)), and dg;) is the shortest path
distance between nodes i and j at iteration ¢. At every time step ¢, the weights are normalized

by their total sum.

The algorithm ORC-Nextrout dynamically changes the weights of the graph G to isolate
communities: intra-community edges will be shortened, while inter-community ones will be
enlarged. These changes are reached after a different number of iterations of the whole routine
depending on the input data. To find the communities, we apply a network surgery criterion
on the edges based on the stabilization of the modularity of the network, as proposed by Ni et
al.[100]. Notice that our algorithm does not need prior information about the number of com-
munities: edges will be enlarged or shortened depending on the optimal transport principles,
agnostic to community labeling. The computational complexity of the algorithm is dominated
by that of solving the DMK model, which takes O(| E|?>3%) (estimated numerically) and by
computing weighted shortest path distances d;;, which costs O(|V |*log |V| + |V||E|)[133]. A
pseudo-code of the implementation is shown in Algorithm 3.

Algorithm 3: ORC-Nextrout

Input: G = (V, E, W), traffic rate 5, MaxiterNume N
Output: updated W

1 Initialize: edge weights w = W; neighborhood distributions m;
2 for t € range(MazIter Num) do
3 | Compute all-pair-shortest-path matrix d*;
4 | fore=(i,j) € Edo
5 Build B;j;
6 Get Q(8) € RIFul, Q(8) = DMK (Bij, m;, my, 8, d");
7 Compute r5(e) using d'(e) and Q(B);
8 Compute w(e) using xz(e) and d'(e);
9 end
10 Update w! = wpg;
11 end

4.3 Results on Community Detection problems

4.3.1

Synthetic Networks

To investigate the accuracy of our model in detecting communities, we consider synthetic
networks generated using the Lancichinetti-Fortunato—Radicchi (LFR) benchmark [134] and
the Stochastic Block Model (SBM) [135]. Both models provide community labels used as
ground-truth information during the classification tasks.

Lancichinetti—Fortunato—Radicchi benchmark: this benchmark generates undirected unweighted
networks G with disjoint communities. It samples node degrees and community sizes from
power law distributions, see Figure 4.4 for an example. One of its advantages is that it
generates networks with heterogeneous distributions of degrees and community sizes. The
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Fig. 4.2: Visualization of how § impacts intra-community and inter-community edge weights. (a)
Examples of intra-community (top panel) and inter-community (bottom panel) structures
between nodes 6 and 7, and nodes 5 and 15, respectively. (b) The weight of edge (6,7)
decreases when 0 < 3 < 0.6, while for 0.5 < 8 < 2.0 it reaches a minimum, and then
slightly increases again. Similar but opposite pattern is observed for the edge (5,15). (c) The
[B-Wasserstein cost: for intra-community edges, 3 > 1 consolidates traffic in the network as
the Wasserstein cost stabilizes, making it minimum for the extreme value 8 = 2, whereas it is
maximized in the case of the inter-community edge. (d-e) Example cost graphs Bg; (top)
and Bs15 (bottom) with fluxes solution of the OT problem (edge thickness is proportional to
the amount of flux) in the regimes of small (d) and high (e) values of 3.

main parameters in input are the number of nodes N, two exponents 7; and 7, for the power
law distributions of the node degree and community size respectively, the expected degree d
of the nodes, the maximum number of communities on the network K,,., and a fraction g of
inter-community edges incident to each node. To test the performance of our algorithm, we
use the set of LFR networks used and provided by the authors of [100]. We set 7, = 2, 75 = 1,
d =20, K4 = 50 and p € [0.05,0.75].

Stochastic Block Model: this model probabilistically generates networks with non-overlapping
communities. One specifies the number of nodes N and the number of communities K,
together with the expected degree d of a node and a ratio » € [0, 1]. Networks are generated
by connecting nodes with a probability r * p;,., if they belong to different communities; pinira
if they are part of the same community, where p;,1r, = d X K/N. Notice that the smaller the
ratio r is, the fewer inter-community connections would exist, which leads to networks with a
more distinct community structure. We set N = 500, K = 3, d = 15 and r € [0.01,0.5] and
generate 10 random networks per value of r.

Results

To evaluate the performance of our method in recovering the communities, we use the
Adjusted Rand Index (ARI) [136]. ARI compares the community partition obtained with the
ground truth clustering. It takes values ranging from O to 1, where ARI = 0 is equivalent to
random community assignment, and ARI = 1 denotes perfect matching with the ground truth
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Fig. 4.3: Results on LFR and SBM synthetic data. Performance in detecting ground-truth communities
is measured by the ARI score. Markers and shadows are the averages and standard deviations
over 10 network realisations with the same value of the parameter used in generation.
Markers’ shape denote different algorithms. a) LFR graph with NV = 500 nodes and different
values of K ranging from (17,22). b) SBM with N = 500 nodes, K = 3 communities and
average degree d = 15. The parameter r is the ratio of inter-community with intra-community
edges. The inset on each plot zooms in the central parts of the plots.

communities, hence the higher this value, the better the recovery of communities. A more
detailed presentation of this metric is given in Chapter 8.

We test our algorithm for different types of information spreading in our OT-based model, as
controlled by the parameter 3, using the software! developed in [137]. We used 3 = 1, i.e.,
standard Wasserstein distance; S € {0.1,0.5} for congested transportation, enforcing broad
spreading across neighbors; and 8 € {1.5,2} to favor branching schemes, where fewer edges
are used to decide which community a node should belong to. For OT-based algorithms where
we update the weights in eq. (4.2) for 15 times (M axlter Num = 15 in Algorithm 3). Since
in some cases the ARI score does not consistently increase with the number of iterations, we
show results only for the iteration that maximizes the score.

The results in Figure 4.3 show the performance on both LFR and SBM benchmarks with
OT-based methods, our method for various S and one based on the Sinkhorn algorithms
(OTDSinkhorn) [138, 139]. Our main goal is to assess the impact of tuning between different
transportation regimes (as done by ) in terms of community detection via OT principles.
Nevertheless, to better contextualize the performance of OT-based algorithms in the wide
spectrum of community detection methods, we also include comparisons with algorithms that
are not OT-based. Namely, we consider a probabilistic model with latent variables (MT)[91],
two modularity-based algorithms, Label Propagation[92] and Louvain [125], and with a
flow-based algorithm, Infomap[95].

Our algorithm outperforms OTDSinkhorn for various values of 8 in an intermediate regime
where OT-based inference is not trivial, i.e. detecting communities is neither too easy nor too
difficult. This occurs in both the LFR and SBM benchmark, as shown in Figure 4.3. For lower
and higher values of the parameters, performance is similar and close to the two extremes
of ARI = 0 and 1. OT-based methods have a similar sharp decay in performance from the
regime where inference is easy to the more difficult one, as also observed in [100]. The other

!Source code at https://gitlab.com/enrico_facca/dmk_solver
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community detection methods have smoother decay, but with lower performance in the regime
where OT-based approaches strive, except for Label Propagation and MT, which are more
robust in this sense.

In the intermediate regime where inference is not trivial (i.e. along the sharp decay of OT-based
methods), we observe that different values of 3 give higher performance than OTDSinkhornin
most cases. For SBM the highest performance is consistently achieved for high 8 = 2, while for
LFR the best 3 varies with u. A qualitative example where ORC-Nextrout is performing better
than OTDSinkhorn, in an instance of LFR of this intermediate regime, is shown in Figure 4.4.
Note that in this case, ORC-Nextrout perfectly recovers the 21 communities described by the
ground-truth network, whereas OTDSinkhorn merges three of the central communities into
one group, therefore recovering only 19 groups. These results suggest that practitioners may
choose the § that gives the best performance in detecting communities, e.g. the one that
maximizes ARI or other relevant metrics depending on the application at hand. We show
examples of this on real data in Figure 4.3.

GT ORC-Nextrout OTDSinkhorn
21 communities 21 communities 19 communities

Fig. 4.4: Example of community structure on a synthetic LFR network. The rightmost panel shows
the ground-truth community structures to be predicted in an LFR network generated using
w1 = 0.35. This network is one sample of the synthetic data used in Fig. 4.3. Square-shaped
markers denote nodes that are assigned to communities different from those in ground-
truth. In the middle and last panels, ORC-Nextrout with 3 = 2 perfectly retrieves the 21
communities, while OTDSinkhorn predicts only 19 communities with an ARI score of 0.73,
wrongly assigning ground-truth dark green and light brown (square-shaped) nodes to the
light blue community.

Real networks

Next, we evaluate our model on various real datasets[140] containing node metadata that
can be used to assess community recovery. While failing to recover communities that align
well with node metadata should not be automatically interpreted as a model’s failure [141]
(e.g. the inferred communities and the chosen node metadata may capture different aspect of
the data), having a reference community structure to compare against allows one to inspect
quantitatively difference between models. These real networks differ on structural features
like number of nodes, average degree, number of communities, and other standard network
properties as detailed in Table 4.1.

Specifically, we consider i) a network of co-appearances of characters in the novel Les Misérables
[142] (Les Miserables). Edges are built between characters that encounter each other. ii) A
network of 62 bottlenose dolphins in a community living off Doubtful Sound, in New Zealand
[143] (Dolphins). The nodes represent dolphins, and the edges indicate frequent associations
between them. This network is clustered into four groups, conjectured as clustered from one
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population and three sub-populations based on the interactions between dolphins of different
sex and ages [144]. The dolphins were observed between 1994 and 2001. iii) A network
of Division I matches of American Football during a regular season in the fall of 2000 [124]
(American football). Nodes represent teams, and edges are games between teams. Teams can
be clustered according to their football college conference memberships. iv) A network of
books on US politics published around the 2004 presidential election and sold by an online
bookseller [145] (Political books). Nodes represent the books, and the edges between books
are frequent co-purchasing of books by the same buyers. Books are clustered based on their
political spectrum as neural, liberal, or conservative.

=3 ORC-Nextrout, $=0.1
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Fig. 4.5: Results on real data. Performance in terms of recovering communities using metadata
information is calculated in terms of the ARI score. ORC-Nextrout shows competing results
against all methods with different optimal /3 across datasets.

OT-based algorithms outperform other community detection algorithms in detecting communi-
ties aligned with node metadata for two of the four studied datasets, as shown in Figure 4.5. In
particular, ORC-Nextrout has the highest accuracy performance considering the best performing
(3 in these cases. The impact of tuning this parameter is noticeable from these plots, as the
best-performing value varies across datasets. In Les Miserables and Dolphins networks, 5 < 1
has better performance, while in American Football the best performing value is for g > 1.
Performance is similar across OT-based methods in the Political books network.

In Figure 4.6 we show the communities detected by the best-performing ORC-Nextrout version
together with OTDSinkhorn and Infomap in Les Miserables and Political books (see Chapter 8 for
the remaining datasets). Focusing on Les Miserables, we see how ORC-Nextrout successfully
detects three characters in the green communities, in particular a highly connected node in
the center of the figure (in dark green). Notice that these are placed in the same community
(pink or black) by OTDSinkhorn. Thus ORC-Nextrout achieves a higher ARI than OTDSinkhorn.
Both OT-based approaches retrieve well communities exhibiting clustering patterns with many
connections within the community. Instead, they both divide the communities with a hub and
spokes structure due to the lack of common connections within the group.

The communities detected in both datasets highlight the tendency of OT-based methods to
extract a larger number of communities than those observed from node metadata. Among
these extra communities, some are made of a few nodes (e.g. the light-blue and violet),
while others are made of one isolated node each (highlighted in black). This is related
to the fact that OT-based methods perform particularly well for networks with internally
densely connected community structures, but may be weaker for community structures that
are sparsely connected [101]. One could potentially assign these nodes to larger communities,
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for instance, by preferential attachment as done in [101], thus in practice reducing the number
of communities. Devising a principled method or criterion to do this automatically is an
interesting topic for future work.

Dataset N E K AvgDeg AvgBtw AvgClust
Les Miserables 77T 254 11 6.6 0.0219 0.5731
Dolphins 62 159 4 5.1 0.0393 0.2590
American football 115 613 12 10.7 0.0133 0.4032
Political books 105 441 3 8.4 0.0202 0.4875

Tab. 4.1: Real networks description. We report statistics for the real networks used in our exper-
iments. N and E denote the number of nodes and edges, respectively. K is the number
of communities in the ground truth data. AvgDeg, AvgBtw and AvgClust are the average
degree, betweenness centrality and average clustering coefficient, respectively.

This tendency is further corroborated by the fact that OT-based algorithms recover robustly
the two communities that are mostly assortative (blue and brown in the figure) in the Political
books network, while they struggle to recover the disassortative community depicted in the
center (violet). This community has several connections with nodes in the other two commu-
nities and has been separated into smaller groups by OT-based approaches, as described above.
This also highlights the need for methods that are robust against situations where mixed
connectivity patterns arise, i.e. a combination of assortative and disassortative communities
coexisting in a network.

Two tests on semi-synthetic networks

To further investigate the different performance gaps between the various approaches, we
expand the comparison between the OT-based methods and Infomap on two semi-synthetic
scenarios generated from Les-Miserables (Figure 4.6a) and Dolphins datasets, where the
largest ARI differences were observed. Specifically, we add random noise to the existing set of
connections to understand if the performance gap can also be observed in more challenging
scenarios. We add noise to the real data in two different ways (more details can be found in
Section 8.3):

1. Flipping entries: from a given network, we generate a new one by flipping R entries of
its adjacency matrix A uniformly at random. This means that if A;; = 1, this is changed
to A;; = 0, and vice versa. The flipping of an entry A;; occurs with probability p = 0.1.

2. Removing intra-community edges: from a given network, we build a new one with the
same inter-community structure but modified intra-community one by removing R
within-community edges uniformly at random, based on the ground truth communities.
To avoid generating disconnected networks, we only sample edges that are not connected
to any leaves.

Both of these procedures make inference harder, but they act differently. The first process is
meant to add random noise independently of the community structure (flips are made uni-
formly at random), while the second aims at targeting the community structure by weakening
the assortative structure. We choose R to be r x |V |? for the first test and r x | E| for the second,
where we vary r € [0, 1] to study the impact of these parameters on inferring the communities
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Fig. 4.6: Communities in real networks. We show the communities inferred for Les Miserables (a)
and Political books (b) by ORC-Nextrout (5 = 0.5, 0.1 for top and bottom rows respectively),
OTDSinkhorn and Infomap and compare against those extracted using node attributes (GT).
The visualization layout is given by the Fruchterman-Reingold force-directed algorithm [146],
therefore, groups of well-connected nodes are located close to each other. Dark nodes
represent individual nodes who are assigned to isolated communities by OT-based methods.
Square-shaped markers denote nodes assigned to communities different from those obtained

from node metadata.
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Fig. 4.7: Removing intra-community edges test on Les Miserables data. Markers correspond to 20
instances of semi-synthetic networks generated from real data. Their (x,y) coordinates are
ARI scores of the indicated method on the axes. Colors are given by the best performing
algorithm, e.g. if x > y, the color of the associated method to « is chosen. The legend shows
the percentage of times that the corresponding method outperforms the other. The parameter
r describes the proportion of entries for the adjacency matrix A that have been changed. This
increases from left to right.

as measured by the ARI score. We generate 20 samples for each of these two mechanisms built
using the Les-Miserables dataset (|V| = 77, | E| = 254) shown in Figure 4.6a.

We show the results obtained in the test of removing intra-community edges as scatter plots
in Figure 4.7. We use these plots to compare the algorithms on trial-by-trial community
detection tasks: a point on each plot is an instance of a semi-synthetic network with (x,y)
coordinates being the ARI scores of ORC-Nextrout (y) and either OTDSinkhorn or Infomap ().
If y > 2, then ORC-Nextrout outperforms the other method in this particular dataset (blue
markers), and vice versa if < y. We then compute the percentage of times that ORC-Nextrout
outperforms the other (as indicated in the legend). We find that ORC-Nextrout outperforms
both OTDSinkhorn and Infomap clearly and consistently across different values of r ranging
from r = 0.01 (R ~ 3) to r = 0.07 (R ~ 20). In at least 70% of the cases, ORC-Nextrout gives
more accurate results than the other two algorithms. This suggests that ORC-Nextrout is more
robust against perturbations of the community structure. Similar patterns are seen in the
case where edges are removed at random and in semi-synthetic networks generated from the
Dolphins dataset, see Section 8.3.

Discussion

Community detection on networks is a relevant and challenging open area of research. Several
methods have been proposed to tackle this issue, with no “best algorithm” that fits well for every
type of data. We focused here on a recent line of work that exploits principles from Optimal
Transport theory combined with the geometric concept of Ollivier-Ricci curvature applied
to discrete graphs. Our method is flexible in that it tunes between different transportation
regimes to extract the information necessary to compute the OR curvature on edges. On
synthetic data, our model is able to identify communities more robustly than other OT-based
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methods based on the standard Wasserstein distance in the regime where inference is not
trivial. On real data, our model shows better or comparable performance in recovering
community structure aligned with node metadata compared to other approaches, thanks to
the ability to tune the parameter 3.

A relevant advantage of OT-based methods is that the number of communities is automatically
learned from data, contrarily to other approaches that need this as an input parameter. In this
respect, our model has the tendency to overestimate this number, similarly to other OT-based
methods. Understanding how to properly incorporate small-size communities into larger ones
in a principled and automatic way is an interesting topic for future work. Similarly, it would be
interesting to quantify the extent to which various g capture different network topologies. To
address this, one could, for instance, use methods to calculate the structural distance between
networks [147] and correlate this against the values of the best performing 8. Similarly, as
our approach allows obtaining different sets of weights on edges, depending on g, it would be
interesting to investigate how different values of this parameter impact network properties
that are governed by the weight distribution, such as multi-fractality [148].

An interesting research direction from this method is to account for the multilayer case.
Expanding our model to accommodate different traffic regimes for each edge type, similarly to
what proposed in [132, 149], could enhance the accuracy of the detected communities. While
in chapter 4 our focus has been on the flexibility of solving various transportation regimes to
compute the OR curvature, alternative insights could be gleaned by varying the input mass
distributions across nodes’ neighborhoods, as proposed in [110].

Methods

Optimal Transport Formulation (Wasserstein Distance)

Consider the probability distributions q that take pairs of vertices and also satisfy the constraints
>0 @i =myj, >.; qij = m;. In other words, these are the joint distributions whose marginals
are m; and m;. We call these distributions transport plans between m; and m;. The Optimal
Transport problem we are interested in is that of finding a transport plan ¢* that minimizes
the quantity }°,; gijd;;, where i ~ j means that the nodes i and j are neighbors and d;; is the
cost of transporting mass from i to j, e.g. the distance between these two nodes. The quantity
We(mi, mj,d) := 3, ; q;; dij, defined for this optimal ¢*, is the Wasserstein distance between
m; and m;j.

Ollivier-Ricci curvature

It was recently proved [126, 28] that solutions of the optimal transport problem previously
stated can be found by turning that problem into a system of differential equations. This
section is dedicated to describe this dynamical formulation.

Let G = (V, E, W) be a weighted graph, with N the number of nodes and F the number of
edges in G. Let B be the signed incidence matrix of G. Let f* and f~ be two N-dimensional
discrete distributions such that ;. fi = 0 for f = f* — f=; let u(t) € R¥ and u(t) € RY
be two time-dependent functions defined on edges and nodes, respectively. The discrete
Dynamical Monge-Kantorovich model can be written as:
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fi = Z B /Je(t) Z Beju; (t), (4.3)

w ;
¢

8
() = [M,;—(t) ZBerj(t)] — pe(t) (4.4)

pe(0) > 0, 4.5)

where |- | is the absolute value element-wise. Equation (4.3) corresponds to Kirchhoff’s law, Eq.
(4.4) is the discrete dynamics with 3 a traffic rate controlling the different routing optimization
mechanisms; Eq. (4.5) is the initial distribution for the edge conductivities.

For § = 1 the dynamical system described by Egs. (4.3)-(4.5) is known to reach a steady state,
i.e., the updates of u. and u, converge to stationary functions * and u* as ¢ increases. The
flux function ¢ defined as ¢ := yi;|u; — uj|/we is the solution of the optimal transport problem
presented in the previous section. Notice that y and « depend on the chosen traffic rate £,
and thus, so does ¢ = ¢(3). Therefore, we can introduce a generalized version of the distance
W:
Wp(mi, mj,w) ==Y ¢i(B) wij.
2Y)

We then redefine the proposed Ollivier-Ricci curvature as:

. Wa(my, mj, w
ka(i,7) :zl——ﬁ( (; e )
i

Probability distributions on neighborhoods

ORC-Nextrout takes in input a graph and a forcing term. While the graph encapsulates the
neighborhood information provided by the nodes i and j, the forcing function is related to
the distributions that one needs to transport. Analogously to what was proposed by [100],
we define this graph to be the weighted complete bipartite B;; = (Vi;, Ei;,w;j). The weights
in w;; change iteratively based on the curvature. Notice that a bipartite graph must satisfy
N (i) N N(j) = @, which does not hold true if + and j have common neighbors (this is always
the case since i € N(j)). Nonetheless, this condition does not have great repercussions
in the solution of the optimal transport problem since the weights corresponding to these
edges (of the form (i,7)) are equal to 0. As for the forcing function, we define it to be
f=f"=f" =mi—mj.

Other methods

To evaluate the performance of ORC-Nextrout, we compare with some of the well-established
community detection algorithms including: Infomap[95], MULTITENSOR[91] (MT), discrete
Ricci flow[100] (OTDSinkhorn), Label propagation[92] and Louvain[125]. We briefly describe
each of these algorithms as follows;

* The Discrete Ricci flow (here addressed as OTDSinkhorn) [100] is an iterative node
clustering algorithm that deforms edge weights as time progresses, by shrinking sparsely
traveled links and stretching heavily traveled edges. These edge weights are iteratively
updated based on neighborhood transportation Wasserstein costs, similarly to what is
proposed in this manuscript. After a predefined number of iterations, heavily traveled
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links are removed from the graph. Communities are then obtained as the connected
components of this modified network.

MULTITENSOR (MT) [91] is an algorithm to find communities in multilayer networks. It
is a probabilistic model with latent variables regulating community structure and runs
with a complexity of O(E K') with assortative structure (as we consider here), where K is
the number of communities. This model assumes that the nodes inside the communities
can belong to multiple groups (mixed-membership). In this implementation we use their
validity for single layer networks (a particular case of a multilayer network).

Infomap[95] employs information theoretic approach for community detection. This
method uses the map equation to attend patterns of flow on a network. This flow is
simulated using random walkers’ traversed paths. Based on the theoretic description
of these paths, nodes with quick information flow are then clustered into the same
groups. The algorithm runs in O(F). In the experiments, we fix the number of random
initialization of the random walkers to be equal to 10. The inferred partition is then the
one minimizing the entropy.

Label propagation[92] assigns each node to the same community as the majority of its
neighbors. Its working principle start by initializing each node with a distinct label and
converges when every node has same label as the majority of its neighboring node. The
algorithm has a complexity scaling as O(FE).

Louvain[125] is a fast algorithm used to find communities on networks by maximizing
the modularity of the associated partitions. It consists of two phases. First, it assigns
every node on the network into a different community. Then, it aggregates nodes and
neighbors based on gains of modularity. This last step is repeated until no further
improvement can be achieved.
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5.1

Urban transportation networks
and optimal transport-based
infrastructures: similarity and
economy of scale

Designing and optimizing the structure of urban transportation networks is a challenging task.
In this chapter, we propose a method inspired by optimal transport theory and the principle of
economy of scale that uses little information in input to generate structures that are similar
to those of public transportation networks. Contrarily to standard approaches, we do not
assume any initial backbone network infrastructure but rather extract this directly from a
continuous space using only a few origin and destination points. Analyzing a set of urban
train, tram and subway networks, we find a noteworthy degree of similarity in several of
the studied cases between simulated and real infrastructures. By tuning one parameter, our
method can simulate a range of different subway, tram and train networks that can be further
used to suggest possible improvements in terms of relevant transportation properties. Similar
to what we presented in Chapter 4, outputs of our algorithm provide naturally a principled
quantitative measure of similarity between two networks that can be used to automatize the
selection of similar simulated networks.

Introduction & Motivation

Transportation networks are a fundamental part of a city’s infrastructure. Their design impacts
the efficiency with which the system is operated, hence, they should follow optimal principles
while being constrained by limitations like budget or physical obstacles. Existing approaches
for studying the quality of network design often rely on the analysis of the topological network
properties, and relate them to optimal features like transportation cost, efficiency or robustness.
These analyses are usually made a posteriori, only once the network has been constructed,
and thus only resulting properties can be analyzed [150, 151]. A different approach is that
of posing a priori a principled optimization setup, where one defines a cost function that a
network should minimize under a set of constraints, and then searches for optimal solutions
in terms of network topologies.

Numerous studies have explored this approach in biological networks, transportation networks,
etc. [152, 153]. However, most of these methods rely on an existing backbone of a network
infrastructure that can be optimized in terms of traffic distribution [154, 155] but do not
consider the possibility of building the network from scratch, starting from a limited set of
nodes. Alternatively, as optimizing over all possible topologies is difficult, one can investigate
only various simple shapes from a predetermined set of possible geometries [156, 157, 158]
or rely on heuristics [159, 160]. Recently, Kay et al. [161] presented a two-step agent-based
model that replicates biologically-grown networks and proposes them as a template for urban
design. Further, the lack of a principled metric to measure the similarities between an observed
network and a simulated one poses the problem of making this evaluation effectively.
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In this chapter, as another important application of Nextrout, we show that urban transporta-
tion systems can exhibit underlying network topologies similar to those that follow optimality
principles as defined in optimal transport theory. Specifically, we propose a model to charac-
terize real transportation networks based on a simple optimal transport framework, similar
to what is observed in biological systems like the slime mold Physarum polycephalum, which
adapts its network structure to reach food patches in an optimal way. A previous study by Tero
et al. [162] shows how this mold forms networks with comparable optimal transportation
properties, e.g. efficiency and cost, to those of the Tokyo rail system, but provided no rigorous
quantitative definition of network similarity beyond measuring these properties. We empiri-
cally validate our approach with a systematic characterization of the structure of several urban
transportation networks and propose a rigorous definition of similarity in terms of optimal
transport theory.

Urban transportation networks often exhibit different network structures based on the goals
of network designers. For instance, some networks focus on connecting people living in the
outer layers of the city to the city core, while others prefer to develop a robust infrastructure
servicing the core [163].

Several studies have focused on analyzing properties like scaling laws and network connectivity
[164, 165, 166], which are indications of an underlying optimality mechanism that these
networks might follow to make a city efficient, both in reduced infrastructure costs per capita
and in increased productivity. However, our understanding of what optimality principles are
captured in real transportation networks is incomplete. In fact, studying network properties
could only partially explain the underlying mechanisms regulating network design, as each
property captures a different aspect.

Here, we take a different approach and build the network from scratch while comparing it with
the real ones observed from data, starting with only a few shared nodes in input. Specifically,
we model network structures observed in urban transportation networks by adapting a classical
optimal transport framework to simulate a network-design problem dependent on realistic
travel demand settings and using little information in input. We then compare the resulting
networks with those observed from real data and assess their similarity.

Importantly, the model can simulate different optimal strategies by tuning a parameter 3,
which interpolates between minimizing infrastructural and operating costs, in a similar fashion
as in the principle of economy of scale, a fundamental concept in economy that establishes
the relationship between growth and production costs. This principle affirms that, as the
quantity of produced units rises, the average cost per unit of production declines [167]. This
impacts the balance between the costs of producing and that of maintaining and operating the
network. On one hand, this allows to simulate optimal networks that resemble those observed
in real transportation systems more closely, as we tune 3. On the other hand, by comparing
the networks resulting for various values of 3 with those observed from real data, we can also
assess the impact of the two types of cost in the design of various urban infrastructures.

We use this model to analyze several transportation networks from 18 cities and a national rail
network [168, 169, 170]. Despite the complex nature of the mechanisms driving the design
of transportation networks, we observe that multiple of the studied urban transportation
networks follow a surprisingly similar topological pattern, as noticed in biological systems. We
observed that in several cases, the optimal networks obtained with our approach have similar
cost and performance to those observed in real ones.
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5.2 Modeling network design in transportation networks

Consider an urban area where a set of points of interest are located in certain positions in
space. These may correspond to a combination of central and peripheral points where people
work and live. The goal is to connect them by building a transportation network under the
perspectives of an optimality criterion, based on the minimization of a cost-based energy
functional. At this point, we do not observe any network, but are rather free to use the whole
space where the urban area is located, i.e. a 2D surface. From this, we need to select a set of
points and edges connecting them, in other words, a network. In Figure 5.1a-b we illustrate
the problem setup for the subway network in Rome, where green and red markers denote
an example set of such reference points and the lines denote edges in the observed metro
network infrastructure. In the same figure, we show how existing stations are placed across
urban areas with different population densities, as the evolution of subway networks often
reflects the evolution of population and activity densities [171].
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Fig. 5.1: Problem setup for the subway network of Rome. (a) Given a set of real latitude-longitude
coordinates denoting origins (green) and destinations (red), we aim to build a network
structure that resembles well the observed public transportation network connecting those
points, as in (b). (c)-(e) Intuitive ways to build a network structure by connecting origins
and destinations, versus networks extracted with our optimal transport-based method in
(H)-(h). The only known information is the set of six origins (O) and one destination (D). We
capture different optimization mechanisms by tuning the /5 parameter: in (f), the network
is the shortest path-like structure, while in (g) and (h) we show examples of branched
transportation schemes. This information is added to the population density across multiple
urban areas (2019) [172], where darker (lighter) colors indicate higher (lower) densities.

In general, there are many choices for designing the network. For instance, in Figure 5.1c—e
we show three examples of intuitive shortest-path-like minimization solutions for the settings
shown in Figure 5.1a. These are however quite different from the observed network in
Figure 5.1b. The question we address is what network design principle is producing simulated
networks that are more similar to those observed in real urban networks.

Optimality could be defined in various ways depending on the network engineers’ and de-
signers’ goals, but generally, it is not known what principles they used when building the
network. Instead, we want to assess this by observing real data of transportation networks and
fitting them with a flexible and computationally efficient optimization setup guided by optimal
transport theory. In this context, a well-defined cost-based functional combines aspects that
are critical for a transportation network: the cost of building the infrastructure and that of
operating the network, in terms of power dissipation. This is relevant in scenarios where
we expect infrastructures to be regulated by energy-saving requirements and the principle
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of economy of scale, where it is more convenient to consolidate traffic into fewer and larger
edges. We expect this to be a reasonable assumption in urban transportation networks.

As with any other natural or urban system, we do not know a priori what (if any) is the
functional being optimized in the network under study. In fact, many of these systems (e.g.,
metro and tram) are built in phases [163], where the design of an initial backbone structure
is followed by several expansion steps, which may lead to suboptimal structures. Howevet,
our model allows considering, among the many possible choices, a simple but yet principled
mechanism of optimality.

By measuring the degree of similarity of networks that follow these principles with existing
urban transportation networks, we can assess if the observed ones can be explained by this
simple mechanism. And if not, we can point out alternative infrastructures that can be
better in terms of certain relevant network properties, e.g. total path length. Our setting is
simple because we consider only a limited input (few nodes that need to exist, e.g. main
origin and destination stations), but otherwise do not consider any other constraint, besides
main physical laws such as conservation of mass, and let the model select nodes and edges
from a two-dimensional space where it can be optimal to drive passengers, tuning only one
parameter.

For this, we adopt the formalism recently developed by Facca et al. [18, 19, 27] that generalizes
to a continuous space the original idea of Tero et al. [14]. In particular, this allows starting
with only a set of relatively few origin and destination nodes in input, and then designing a
network by exploring the 2D surface, i.e. without the need of an initial existing backbone. The
idea is inspired by the behavior of the slime mold Physarum polycephalum, which dynamically
builds a network-like body shape when foraging. One can thus consider a dynamics for the
two main quantities involved, flows and conductivities, that implements this mechanism at
any point in space. The stationary solution of this dynamics corresponds to the minimizer of a
Lyapunov cost in a standard optimization setup, which has a nice interpretation in terms of
infrastructure and operating transportation costs.

From these solutions, one can then automatically extract optimal network structures using the
approach presented in [173]. From now onwards, we refer to the algorithmic implementation
of this approach as “Nextrout”.

Having introduced the main problem and ideas, we now briefly refer to the model. Consider a
surface in 2D and a set of points on it. Specifically, we denote a set of origins and destinations
as f* and f~, respectively. These contain the reference points where people enter and exit the
transportation network. By defining f = f* — f—, mass conservation can be enforced with
the constraint [ fdx = 0. The two main quantities of interest are denoted with p(z,t), the
transport density (or conductivity), and u(z, t) the transport potential. The former can be seen
as a quantity proportional to the size of a network edge, while the latter determines the fluxes
traveling along them. The dynamical equations in this continuous setting

V- (ult, 2)Vult,2)) = f, (5.1)
WD) — (it 29t )° — . ), 5.2)
(0, ) = po(z) > 0. (5.3)

Equation (1) determines the spatial balance of the flux, assumed to be governed by the
Fick-Poiseuille flux as ¢ = —uVu; Equation (5.2) enforces optimal solutions, and represents
the Physarum polycephalum dynamics in the continuous domain; Equation (5.3) is the initial
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condition. The parameter J captures different optimization mechanisms: § < 1 enforces
congested transportation, § = 1 is the shortest path-like and 5 > 1 is branched transportation.
In Figure 5.1f~h we show examples of different optimal configurations, with 5 =1, 3 = 1.5
and § = 2.0. Here, we consider the cases 1 < g < 2, where the approximate support
of the conductivity p displays a network-like structure. Under the lenses of a network, the
conductivities can be viewed as the traffic capacities on the edges, hence Equation (5.3) defines
how the initial traffic capacities are distributed along the network, while Eq. Equation (5.2)
describes how these capacities evolve in response to the fluxes. As time evolves (i.e., lim; ),
the equilibrium solution pair (u*, v*) is reached. In [28, 27] the authors show that under
certain assumptions, this equilibrium solution is a minimizer of the functional

2-8

L(p,u) = é/u|Vu|2d1:+/%uT. (5.4)

This can be interpreted as the network transportation cost, where the first term is a network
operating cost (or power dissipation, it is the Dirichlet energy to the solution of the first PDE),
while the second is a non-linear cost to build the infrastructure. When S > 1, this second term
corresponds to a principle of economy of scale, where it is more convenient to consolidate
traffic into fewer (but larger) edges. This is the scenario we consider here. By changing 3, one
can tune their relative contribution to the total transportation cost, thus tuning the impact of
the principle of economy of scale and how much concentrated path trajectories are. Besides
being relevant for urban transportation, this strategy seems to be a fundamental mechanism
in various natural systems, e.g., tree branches and roots, blood vessels or river networks [174,
175].

Alternative approaches can be considered to design a network infrastructure from simple
mechanisms. Examples are cost-benefit analysis [176], maximizing for efficiency [177]
accounting for paths and flows of passengers, or minimizing the total length, as in the
Euclidean minimum spanning tree problem. In discrete settings, when an initial network
backbone is given, the cost in Equation (5.4) has been shown to be implicitly related to the
total path length minimization accounting for the passengers’ trajectories [129]. One main
difference between ours and these types of approaches is that we focus on a continuous
space (as opposed to discrete settings) where the only necessary input is a set of origins and
destinations, but otherwise no initial backbone network is given. This enables the design
of a network from scratch, simulating where nodes and edges should be located in space to
minimize the cost.

Once the optimal (u*,u*) are obtained, one can then use the model described in [173] to
extract a final network structure, i.e. a set of nodes, a set of edges connecting them and their
weights proportional to the conductivities. This can then be compared with the one observed
from real data and repeated for various values of 5. An example is shown in Figure 5.5a—d,
where, as we increase 3, one can notice how the network infrastructure evolves from a shortest
path-like (8 = 1) to a branching topology, where two branches (8 = 1.5) are created to lower
the cost of building the infrastructure. In particular, the southern branch in Figure 5.5b
resembles an analogous one observed in the real subway network of Rome. As (3 increases to
2, this branch disappears to build a unique path that connects two destination points in the
southeast side of the city, further lowering the cost to build the infrastructure. However, at
this extreme value, the network is now less similar to the real one.

It is important to remark that in our setting, besides the parameter 3, the other input quantities
that need to be specified are origins and destinations via the function f. By imposing non-zero
entries to this function, a user automatically selects a set of nodes that will be necessarily
present in the output network. Otherwise, no other set of nodes or edges needs to be given,
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but is rather automatically learned by solving the optimization problem described above. This
implies that similarity between simulated and observed networks trivially increases as we add
more non-zero terms in f, as shown in Figure 5.5d. Here we consider the non-trivial scenario
where we fix only a small number of origins and destinations, as described in more detail
below.

Selecting Origin and Destination points

As we aim at extracting a network, our problem starts by defining a set of origins and
destinations (OD) points in the space with coordinates (z, y), where passengers might enter or
exit. This choice necessarily impacts the output network, as the optimization problem depends
on it. Ideally, one could reframe it by including OD pairs as variables to be optimized along
with conductivities and fluxes. But this becomes a different and more complex problem and
it is not clear how to solve it. Here instead, we focus on the optimization setting introduced
above and treat OD pairs as fixed in input. While we limit selection to a small number of
points, specifically one destination and few origins, it is important to decide where to place
these input nodes in space.

There are no universal criteria to define what are the most relevant points where city planners
should add a stop to accommodate traffic when designing a network. However, existing
infrastructures often evolve reflecting needs such as population increase or land usage [178].
With this in mind, we can assume that at least some of the existing nodes have already been
placed in positions relevant to transportation needs. Hence, we select OD pairs from important
nodes as observed in existing urban networks.

Specifically, we use centrality measures obtained from the original network: nodes with the
smallest and highest centrality are assigned as origin and destination nodes, respectively.
These measures might reflect the choice on where to place new stations that are often made
by urban planners or transportation engineers, usually based on a variety of factors, such as
population density, land use patterns or available funding [179]. For instance, in Figure 5.2a
we observe higher population density in peripheral regions, where the stations with lower
centrality are located, whereas those with higher centrality are located towards the center,
with lower population density. In the same figure, we show node sizes as proportional to the
annual traffic in each station, as measured in 2019 [180]. In this example, the highest traffic
corresponds to the station with the highest degree centrality, thus reinforcing the choice of
that node as a destination.

Another possibility is to incorporate urban features by using some measure of attractiveness,
which takes into account the densities of Points of Interest (POI) and population in a given
urban area, an approach also used in other works [177]. However, this strategy may not be
scalable, as it requires the integration of several datasets, whereas using network centralities
can be done automatically from the observed network data at no additional cost. We show
an example of this for the metro network of Rome, to assess the extent to which these two
strategies align. We notice that the high centrality nodes found by the two criteria are located
nearby geographically and yield similar simulated networks, see Figure 5.2. Hence, we
adopt the centrality criteria as a good approximation for attractiveness to select origins and
destinations in all the networks investigated here.
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Fig. 5.2: Comparing criteria to select origin and destination nodes. We compare two criteria to
select the input nodes that we give to our algorithm, one based on a topological property
(centrality) and one based on population and point-of-interest densities (ppo;). (a) Stations
with the highest and lowest annual traffic (2019), proportional to the node sizes, over the
population distribution in Rome (in multiples of 10000)). The degree centrality of nodes
in the observed is related to the traffic at stations. In particular, the central node with the
highest degree (destination), has also the highest annual traffic. (b) Density accounting for
population and distribution of points-of-interest (ppor), darker colors mean higher values, i.e.
regions of higher relevance for transportation. When accounting for the Points of Interest
(POI), we notice that the city center presents higher density (ppo;) compared to the peripheral
areas, therefore using centralities to select destinations is an approximation to real demands.

Investigating the similarity of optimal simulated networks and the
observed transportation systems

We apply the proposed dynamics to empirical data collected from 18 different cities in multiple
geographical regions around the world. For each city, we selected various available types of
public transportation systems, such as rail, subway and tram, keeping the largest connected
component. The networks considered in this chapter have a few loops, as the dynamics can
only retrieve loopless structures in the regime where network extraction is meaningful [173].
These networks could be seen as phase I in the classification of [163], i.e. the initial phase
where a backbone infrastructure is built, before a later evolution where further additional links
are added through time. We expect these to be more likely to follow a global optimization
criteria as the one formulated in our model (as opposed to other greedy heuristics for later
extension phases). We thus measure the loop ratio L., = ny/E as the number of loops
divided by the number of edges and select networks with a low ratio, i.e. with L4z, < 0.2
(see Methods for more details). One could in principle recover loopy structures by employing
numerical schemes, e.g. superposition of different outputs [30], but this is not the main focus
of this work. Instead, we point towards directions on the loop recover perspective, presented
later in this chapter, by exploring an example of a more complex network structure as the New
York subway.

The applied Optimal Transport (OT) dynamics successfully describe the transportation network
structures observed in different cities at a macroscopic level. While the selected transportation
networks have different topologies and include multiple transportation modes, the networks
reconstructed by Nextrout with only little information in input show a significant degree of
similarity with the real ones (see Figure 5.3a—c) for several of the studied cases, as evidenced
by different similarity measures that we calculated to compare the topology of the simulated
networks against the real ones, see Figure 5.4 and next sections for details. This suggests
the existence of simple universal optimality rules captured by the so-called Dynamic Monge-
Kantorovich (DMK) dynamics for the modeling of urban transportation rail networks, similar
to what has been observed for the behavior of the slime mold Physarum polycephalum. Notice
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that in principle one can increase this similarity further, by simply adding more information in
input in terms of origin and destinations (see Figure 5.5d for an example with multiple origins
and destinations). However, here we are interested in recovering macroscopic structure in a
more challenging scenario where input information is strictly limited to one central destination
and few peripheral origins.

(a) Adelaide rail (b) Bordeaux tram (<) Nantes tram

Fig. 5.3: Example of different network topologies generated by Nextrout (yellow), plotted against the
corresponding real network (blue). Green nodes represent those chosen as origins (O), whilst
red nodes correspond to the destinations (D). (a) Adelaide rail network, with N=28 nodes,
O =6and D = 1. (b) Bordeaux tram network, with N = 108 nodes, O =8 and D = 1. (¢)
Nantes tram network with N=97 nodes, O=10 and D=1.

Beyond a qualitative visual comparison, we explore how our simulated networks score in
terms of core network properties relevant for transportation compared to the real networks.
For this, we consider the cost, the total path length I, the distribution of traffic and the density
of branching points (or bifurcations; here we use the two terms interchangeably), for both
extracted and original networks. Similar to Tero [162], we define the cost as the total length
of the network (TL), i.e. the total number of edges.

Passengers may not always take the shortest path, but may rather consolidate on fewer main
arteries (e.g. to minimize the number of stops or connections) [149], a behavior that can be
captured by a DMK discrete dynamics (built-in the filtering step of nextrout) by varying 8 and
extracting the flows u. on edges, quantities proportional to the number of passengers using
an edge. Hence, we consider an alternative measure of total path length as [ := 3~ . g lo|uel,
where 1, is the Euclidean distance. This takes into account u., the flow of passengers on an
edge e, and its absolute value |u.| is proportional to the number of passengers traveling on an
edge e, i.e. how traffic is distributed, assuming that passengers follow optimality principles to
consolidate paths. This is a reasonable assumption in rail networks as the ones studied here,
where the cost to build the infrastructure can be high (and thus should be minimized) and
minimizing traffic congestion is not as relevant as in, e.g., road networks.

In our experiments, we extract optimal flows u. by running the discrete DMK dynamics on the
extracted and real networks, using the same sets of origins and destinations as used in the
original network extraction problem, setting 5 = 1.5.

This information can also be used to measure the macroscopic behavior of traffic on edges,
which can be measured using the Gini coefficient [181] (Gini(7)) on the traffic T, = |u.|. This
coefficient ranges from [0, 1], where the closer to 1, the more unequal is the traffic distribution
on the network. Finally, we calculate the percentage of bifurcations (Dpp) as the fraction
of nodes with degree equal to 3. In several cases, the simulated networks display similar
properties as those observed on the real ones, as shown in Figure 5.4. While similarity differs
depending on the property and datasets vary in their range values, we notice that most of
the datasets have at least a pair of properties that have a close value between simulated and
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Fig. 5.4: Performance measures for real and simulated networks. Each dataset is assigned to a different
color, market shapes distinguish real and simulated networks. Simulated networks are further
distinguished based on the one generated via nextrout that gives the closest point in terms
of the metrics plotted in the figure (circle) or the one corresponding to the best Wasserstein
measure (square). (a) Cost (TL) measured in both simulated and real networks, plotted
against the total path length. (b) Gini coefficient as a measure of traffic distribution, versus
the total path length. (c) Traffic distribution in terms of the Cost. (d) Density of bifurcations
plotted against the cost.

observed networks. For instance, in Figure 5.3a we notice that Adelaide rail has an intuitively
similar path length, which is confirmed in Figure 5.4a. Furthermore, the same network shows
comparable results for traffic and cost. As for the tram networks of Bordeaux and Nantes in
Figure 5.3b-c, we observe similar behavior for cost and traffic.

Automatic selection of similar simulated networks

Our method allows extracting various simulated networks by varying the parameter 5. One
can select the one that more closely resembles the observed one in terms of a particular metric
of interest, as shown in the previous section. However, different metrics may lead to different
most similar simulated networks (i.e. different ), which may not be ideal for a practitioner
willing to consider an individual simulated network that resembles well the observed one in
terms of all metrics. Hence, the need for a principle automatic selection criteria for choosing
the value of 3.
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The formalism introduced in the previous section suggests a natural way to tackle this problem
by considering the Wasserstein similarity measure, a main quantity in optimal transport theory
[43]. Given two graphs that need to be compared, intuitively, this measure captures the
minimum "effort" required to move a certain distribution of mass from one to the other.
Similar ideas based on optimal transport to measure similarity between graphs have also been
proposed in recent works [182, 183].

Here, we describe our proposal for a similarity measure and thus automatic selection of 3 in
detail. Denote the observed network with G1(V1, E1) and the one obtained from the model
introduced in previous sections with Gs(V3, E»), where V;, E; denote the set of nodes and
edges, respectively, ¢ = 1,2. We consider the union graph Gy (Vy, Ey), with sets of nodes
Vo = V1 UV, and edges Ey = E1 U FEs. One can further assign weights w. € Wy to the
edges ¢ € F, for instance using the Euclidean distance /., between the nodes i, j € Vi, where
e = (4,7), or simply binary values {0, 1}. Notice that the observed network GG; may contain
nodes that do not correspond exactly to nodes in G5, because in this continuous setting the
model uses all the 2D space where the original network is embedded. Only the input origin
and destination nodes are guaranteed to be present in both graphs, as they are given in input
to the model.

Working on this union network, we then exploit a similar setting as the one already introduced
with the model to obtain a Wasserstein-based similarity measure between G and Gs. Specifi-
cally, we denote with B the unsigned incidence matrix of Gy with entries B;, = +1 if node ¢
is a start or end point of the edge e, and 0 otherwise. Defining ¢; as an indicator vector for
the edges in Gy that are also in G}, i.e. ¢ = 1 if e € F;, and ¢;c = 0 otherwise, V e € Ey
and i = 1,2, we can set the origin and destination vectors f = f* — f~, such that fT = B¢,
and f~ = B¢, so that G; contributes to f™ and G5 to f~. By running a discrete dynamics
analogous to the continuous one described in Equations (5.1) to (5.3), which can be done
using nextrout [173], one naturally obtains our Wasserstein similarity measure defined as:

Wi(G1,G2) = Y we e, (5.5)
ecEy

where . are the optimal solutions for the conductivities on Gy and w, is the weight of edge
e = (i, ). Here, we fix this to be the Euclidean distance between nodes i and j. Examples of
how the Wasserstein measure changes depending on the different output networks are shown
in Figure 5.5i, where we show simulated networks and report their Wasserstein measure from
the observed network of the Grenoble tram (N = 80 nodes). Intuitively, the Wasserstein
similarity captures how much “cost” is “paid” to move information between G; and G5. This
means that the more similar these networks are, the lower the Wasserstein is, i.e., when
Gy = G2, W1 = 0, and if there are no nodes connecting them, W; — oo. In Figure 5.5b
we show an example where W is higher simply because there is a disruption in one of
the branches of the network, thus increasing the cost to move from the real network to
G2 = G3=1.6. Notice that if similarity is chosen to be defined in terms of the cost, the closest
network to the real one would be that with 8 = 1.4, as shown in Figure 5.5e.

We further validate this measure by comparing it with other selection criteria based on the
topological properties described above and found that the simulated graph selected with the
Wasserstein measure has, on average, higher similarity with the real networks compared to
the other selection criteria, across various properties. In other words, it shows transportation
properties that are consistently more aligned to those behold by the observed network, see
Section 9.1.
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Fig. 5.5: Wasserstein similarity measure between graphs for automatic selection of 3. (a-c): we select
the origin nodes based on those with the smallest degree, and a unique destination as the
one with the highest degree. In (d) we show how the same network changes as we set
more stations as initial input (O = 23 origins and D = 4 destinations), resulting in smaller
Wasserstein, at the cost of a higher amount of information given in input. (e-h): we compare
several network properties as measured in the observed and simulated networks. (e) The
cost (TL) against the total path length (1), highlighting the different 3 for each obtained
network. (f) Gini(7,) against /. The optimal network is equivalent to the one with minimal
Wasserstein, i.e. 5 = 2.0. (g) TL against the Gini coefficient of traffic on edges (Gini(T%)).
In this case, the optimal network corresponds to the one with 5 = 1.5. (h) TL against the
density of branching nodes. The closest network in terms of the number of bifurcations for
B = 1.4). (i) Wasserstein similarity measure for the simulated Grenoble tram networks as a
function of 3, in the setting of eight origins and one destination. The most similar network
in terms of this measure is at 5 = 2, when W (G4, G2) is minimum. The peak at 5 = 1.6
is due to the absence of a few edges in the rightmost part of the network that results in
disconnecting a small branch, thus causing the distance to increase.

5.3.2 The New York subway system: a look into more complex structures

The New York subway is one of the largest and busiest transportation systems in the world.
Due to its size and complexity, navigating through such network might be difficult for humans
[184], but understanding its properties and structure could be indicative of improvement to
city planners and urban designers.

In the scope of recovering such a complex structure, the strategy of selecting only a small
number of origins and destinations, as done for the studied networks so far, might produce
networks that are far from similar to the real one, especially given the high complexity of
this particular system (see Figure 9.9). We thus use a different approach that could be a
pointer towards recovering structures from major urban transportation systems. Each line that
comprises the subway infrastructure of New York could be seen as an independent network
itself. With this assumption, we selected four major lines (red, green, orange and yellow),
extracting the nodes with lower degree as origins and one common destinationfor all of them,
corresponding to the point with higher density of POI (see Figure 5.6).

We notice that in terms of cost (TL), our simulated networks have similar values in all
cases, with equal performance for the red line, and a small difference for all the other
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Fig. 5.6: Comparison for real and simulated networks for major lines of the subway system in New
York, with distribution of POI. We select the four major lines (left panel), here shown along
with the distribution of the density of POI (density varies as in the colorbar). We report the
cost (TL) and density of branching points (Dpp) for both real and simulated networks. Here

we set § = 1.1 for the orange line, 3 = 1.5 for both red and green lines, and 5 = 1.6 for the
yellow line.

lines. For the density of branching points (Dgp) - besides an intuitive visual similarity - we
observe comparable results. For instance, the green line (456) has similar branches both on
the north and south sides, and similar considerations apply to the red line (123) and the
north side of the yellow line (NRQW). One can also investigate how main differences are
distributed in the orange line (BDFM), where there is not much similarity between observed
and simulated infrastructures. This is because two destinations on the east side are traversed
by a unique branch in our simulated network, while the real one splits them into two branches.
Furthermore, the southern part of the network also shows a distinct behavior, where our
simulated network has two branches, the real one splits into a more complex pattern that
cannot be explained by our optimality principles. While it is not clear whether these differences
are due to different underlying optimization rules or a lack of optimality in the observed
network, our method enables practitioners to identify key insights on principled alternative

designs where optimality is clearly defined in terms of network operating and infrastructural
costs.

Initial network development: the French Railway in the 1850s

Our model builds a network backbone from scratch, with a global optimization that follows a
principle of economy of scale. This could be particularly suited to study the initial development
of a rail network infrastructure, as opposed to later stages where the network is gradually
extended. We thus study a real scenario of the French railway system where we have access
to historical information about network development in time [169], focusing on an initial
phase around the year 1850. At that stage, the network topology contains multiple connected

components but no loops - which only appear in a later stage, around several years later (see
Figure 9.10).
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We focus on the four biggest components with more interesting topologies, as the remaining
components are either too small or simple straight lines, and select the node with the highest
degree as a destination. In the biggest component, for instance, this corresponds to Paris. In
Figure 5.7 we show examples of real and simulated networks highlighting the Dpp and the
total length (L), the latter measured given the longitude and latitude coordinates mapped
into a [0, 1] system of coordinates. We note various degrees of similarity in the different
components between observed and simulated network. For instance, the biggest component
has similar Dgp but the observed network has a larger total length, mainly due to branches
taking slightly longer detours to reach the sinks and the two small branches south-west of
Paris being split from Paris onward into two in the observed network, while they are only later
split in the simulated one. A similar behavior is observed in component 3 (north-est France),
where we see the real network splitting earlier on than what simulated, thus causing a longer
total length. The other two components have higher similarity in terms of both metrics, in
particular, component 2 (south France) has a main branching point est of Nimes similarly
located in the observed and simulated network. The higher path length in this case is due to a
longer detour of the southern branch. These types of detours could be caused by geographical
obstacles that are not included in our more coarse-grained model.

Understanding the underlying optimization principles that drive how transportation net-
works changed and evolved over time might point towards creating better transportation
systems. Our approach is a pointer towards comprehending the initial stages of such evolution,
particularly suited for systems that follow the principle of economy of scale.
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Fig. 5.7: Simulating the initial French Railways in the year 1850. Left: the original observed network,
with connected components represented in different colors. Right: the networks simulated
with our model for each component, given a set of origins and one destination. On top we
report the density of branching points Dgp and the total Euclidean length L.

Improving network properties

Simulating networks that follow optimality principles and resemble well those observed in
real datasets can be used to assess how urban transportation networks perform in terms of
main transportation properties. This can guide network managers towards potential measures
directed at improving certain properties. This possibility is conveniently enabled by our
approach, as by continuously tuning the parameter § we can simulate various transportation
scenarios, thus assessing how a network can increase or decrease a certain property.

In Figure 5.8 we show the main properties in all the networks simulated with our model
and compare with those observed in real data, aiming to compare their trade-offs between
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various performance metrics. In general, we notice how simulated networks cover a wider
range of values than the real ones for the four transportation properties investigated in this
work. This allows obtaining, for instance, networks that have shorter total path length ¢ with
a comparable cost, as shown in Figure 5.8a where many simulated networks are located in
the regime 0 < TL < 200 with ¢ sharply dropping towards 0.1, while many real networks have
¢ > 0.1. A similar behavior is observed also for the traffic against TL in Figure 5.8c, where
simulated networks cover areas of the plot where traffic is less congested (smaller Gini(7¢)), in
contrast to several real networks. Among the simulated networks, those selected according to
the best Wasserstein measure tend to have lower cost and a smaller percentage of bifurcations
Dpr, indicating that this measure encourages not only the usage of a lower amount of edges,
but also nodes with low degree.
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Fig. 5.8: Comparison of simulated and observed networks. We show the values of the main trans-
portation properties investigated in this work for real and simulated networks. Simulated
networks cover a wider range of properties’ values, thus allowing in particular to select
network that have lower or comparable values of these properties than those observed in the
corresponding real networks.

Discussion

Planning transportation systems in a city is a challenging task. This study has shown that
some urban transportation systems with a small number of loops can be simulated by simple
principles based on optimal transport theory and economy of scale. Using empirical data from
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one national railway and multiple rail transportation types across 18 cities, our model provides
simulated networks obtained with little information in input and no a priori backbone network
structure, exhibiting properties that resemble those observed in real transportation systems to
various extents. Our model interpolates between various transportation regimes by tuning a
single parameter, while allowing for a natural definition of a similarity measure to compare
the simulated networks with those observed in real systems. We observed how the selected
networks with this criterion can exhibit transportation properties that on average resemble
the corresponding real networks well or point towards alternative infrastructures that improve
relevant topological properties.

A limitation of this study is that our OT-based model does not capture infrastructures with
loops, thus limiting its applicability to rail networks, or subway and rail networks with a very
small density of loops. Possible extensions of the formalism presented in this work to account
for loops are an interesting direction for future work. Besides simple heuristics and beyond
the example we presented for the New York subway, one can make other interesting modeling
choices to effectively tackle this problem. For instance, one could generalize our approach to
situations where travel demands are treated stochastically [32, 185, 42] or change in time
[131], scenarios where in certain regimes an OT-based approach can naturally lead to the
formation of loops. Similarly, loops could emerge in multicommodity settings where fluxes
of passengers are distinguished by their origin and destination stations, using an OT-based
multicommodity framework as the one proposed in [129, 130, 186]. Both directions, provided
they could be generalized to a continuous setting as the one studied here, can potentially
result in optimal simulated network infrastructures capturing properties that differ from the
ones analyzed here, e.g. robustness to disruptions.

Another limitation is the assumption that networks are static, i.e. do not change in time. It
would be interesting to compare how differences between simulated and observed networks
may arise because different network branches may have been developed in different time
periods. This could be used to study the evolution of transportation properties in time, as done
in [171, 187]. Similarly, the networks studied in this work are often one layer of a multimode
network. Integrating other transportation modes into a multilayer formalism and suitably
adapting our OT-based approach, e.g. borrowing ideas from [132], could give us a deeper
understanding of optimal network design in interconnected urban systems.

Our model takes a few inputs (origins and destinations), but it does not consider any geograph-
ical obstacle. This can result in fine-grained mismatches between simulated and observed
topologies due to longer detours in the real infrastructures to avoid these physical obstacles.
In principle, this could be incorporated into our model by properly adding extra terms in the
dynamical equations that drive flows and conductivities differently based on the location in
space. However, this would require fine-grain details to be specified in input, an information
that may not be easily available.

Here, we focus on designing a network from scratch. This is relevant in cases where infrastruc-
tures are relatively new or did not change considerably compared to their initial design, as
in the cases we investigated here. However, this may be limited to studying infrastructures
that have evolved over time. For these scenarios, it would be appropriate to consider how our
model can be adapted to study network growth, where an initial backbone is further extended
with new branches. This problem is related to the interplay between an urban transportation
network and the distribution of its underlying population, as there could be a co-evolution
between the two that should be taken into account [188].

In summary, there are many factors contributing to the development of urban transportation
networks. Our simple optimization scheme provides a principled and computationally efficient
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benchmark for comparison with real-world networks. By interpolating between different
transportation regimes, we can vary the degree of similarity between the networks simulated
by optimal transport principles and those observed in real systems. In particular, measuring
relevant topological properties on simulated network resulting from different parameters’
values against those observed in real networks can give us indications on how to improve
transportation performance when taking into account principles of optimal transport and
economy of scale.

Methods

Data collection and analysis

We collected network data from various public transportation networks from 18 different cities
[168] and one national railway [169]. Network statistics are detailed in Table 5.1. Each
city had one or multiple transportation modes available. Node ids were associated with the
longitude and latitude coordinates of real stations for multiple means of transportation, as
well as possible connections between them. Our main goal was to analyze each network
individually, therefore we did not address the multilayer case where connections among the
different means of transportation exist. For instance, if rail and subway stops have the same
coordinates, they are treated as distinct in each network.

To avoid possible redundancies or inconsistencies in the data, such as duplicated nodes or
edges that looked too long, we performed a preprocessing step. Specifically, we considered
a threshold 7 that corresponds to the minimum distance in kilometers between the pairs of
nodes that had the same node ids and no connections between them, matching features stored
in the node metadata such as names of the real stations. If the Euclidean distance d(i, j)
between nodes 7 and j was smaller than this threshold, we collapsed the two nodes into one,
i.e. © = 7. This was used to avoid those entries and exits of each station would be counted as
two distinct nodes in the same network, and possibly affecting the selection of origins and
destinations.

To match the latitude and longitude coordinates of the datasets with those in the 2-dimensional
plane that nextrout uses to solve the continuous problem, we re-scaled every pair (lon, lat) to
a (0, 1) system of coordinates. Starting with a total of 64 data points (networks), we extracted
the individual disconnected components and the number of loops for each of them. Network
extraction was performed on the biggest components only.

We extract networks using Nextrout [173], selecting 1 < 8 < 2 such that for every pair
(origins, destinations) we simulate 10 different networks. Since the extracted networks may
contain redundancies, we remove them using the graph filtering step from Nextrout. Outputs
of this step have less redundant structures and are closer to the optimal topologies.

Selecting origins and destinations with points of interest.

For the 16 studied networks, we used origins and destinations based on the degree and
betweenness centrality measures. The degree centrality d; of a given node is defined as the
number of edges connected to it. The betweenness centrality is defined as the frequency with
which a node is on the shortest path between all other nodes,

B; = Z Uik(j),
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City Trans. mode N E # Comp. Liatio o Dyq, B,y

Adelaide rail 88 116 1 0.25 6 1
Berlin rail 203 258 1 0.21 19 1
Berlin subway 169 181 1 0.072 14 1

Bordeaux tram 110 110 1 0.009 8 1

Brisbane rail 297 367 1 0.193 10 1
Dublin rail 59 73 1 0.03 10 1

Grenoble tram 80 83 1 0.048 8 1

Helsinki subway 17 16 1 0.0 4 1
Lisbon rail 48 49 2 0.041 9 1

Luxembourg rail 43 56 1 0.025 11 1
Melbourne rail 219 290 1 0.248 22 1
Nantes tram 97 96 1 0.0 10 1

New York subway 423 506 1 0.17 22 1
Paris rail 337 445 1 0.244 24 1
Prague subway 24 23 3 0.0 6 1
Rome subway 73 72 1 0.0 6 1

Toulouse subway 37 36 1 0.0 4 1
Venice tram 37 38 1 0.053 4 1

Tab. 5.1: Description of real networks considered. We report the main network statistics as the number
of nodes N, the number of edges £, the number of components # Comp, the number of
origins O, the number of destinations D, and the loops ratio L, defined as the number of
loops divided by the number of edges, and selecting networks with L4, < 0.2, as higher
values would require the recovery of loops in the extracted networks.

where oy, is the total number of shortest paths from node 7 to node k and o4 (j) those shortest
paths passing through j.

Terminals were chosen as follows: nodes with d; < 1 are assigned as origins, while those with
d; = max,, Ud,, or B; = max,, UB,, as destinations. We selected this set {origins,destinations}
to be small, in order to use the least amount of information in input. In multiple cases the set
of origins was equivalent in both centralities, with the difference being on the location of the
destinations, thus the output networks were different. In terms of final networks properties,
the results are comparable for both studied centralities (see SI for more details).

In order to account for other measures of attractiveness for the destinations and investigate the
impact of including realistic information about urban areas, we explored a different approach
for the cities of Rome and New York, by looking at a measure that accounts for both population
distribution and land usage. To do that, we collected both population and distribution of
POI from Open Street Map (OSM) data, and mapped them to an H3 tiling discretization of
the space. We then defined the density of POI as ppor = P;;W;;, where P;; is the population
density and Wj; is the number of POI for the corresponding ij cell.

Our hypothesis is that stations with higher centralities correspond to higher density cells. The
destinationis then assigned based on the center of this H3 cell with highest ppo;. In Figure 5.2
(b) we show how this new criterion generates a configuration that leads to a different optimal
network but still preserves similarity compared with the real network. We also notice that
the highest centrality node is connected to regions with higher densities compared to the
peripheral areas, where the origins are placed.
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Conclusions and Future work

In this chapter, we provide an overview of the main research directions explored throughout
this thesis. We summarize the main findings and challenges for each direction, discussing
future work and applications that go beyond those already presented in the previous chapters.
In Section 6.1 we summarize the importance of our network extraction method introduced in
Chapter 3. In Section 6.2 we explore the implications of having a geometric-based community
detection method, summarizing what we introduced in Chapter 4 and its implications. Finally,
we highlighting the contributions of Chapter 5 in Section 6.3, discussing possible extensions
of the model and how it can help practitioners to designing more efficient transportation
systems.

Network topologies from routing optimization problems

In this thesis, we investigated optimal network topologies by combining recent advances from
Optimal Transport and network theory. Specifically, in Chapter 3 we introduced a method
to extract network topologies from routing optimization problems in continuous spaces. We
described the three main steps of our method: extracting an optimal trajectory by solving
a dynamical system, pre-extracting a network, and filtering out potential redundancies. We
provided an alternative to manual graph extraction techniques, such as image processing,
where the problems might not necessarily be related to routing optimization, therefore final
output networks might contain information that is not relevant to the given application. It is
important to highlight that the optimality of the generated networks from our method is given
from the minimization of the well-defined Lyapunov functional, that can be interpreted as the
costs of building and maintaining the network. This also implies that we expect this method to
be valid to model network-like structures where this type of cost is appropriate. It may not be
valid when we expect the underline shape to follow very different rules from the one captured
by our formalism, e.g. random and noisy topologies that do not follow optimality.

Our method provides a flexible routine to extract optimal networks that can be adapted for
different applications in a wider range of disciplines. For instance, in the climate sciences
domain we can think of extending our method to extracting and understanding the dynamics of
natural transportation networks like rivers or plant roots, as suggested in [26]. River networks
have refined branching structures with significant biological implications for the stability
of their populations [189, 190, 191], so understanding the optimality principles behind its
evolution is fundamental for predicting environmental processes affecting them [192]. We can
thus use information from river sources and deltas as inputs to our graph extraction pipeline
and generate several optimal networks to compare with existing structures.

Besides only automating the graph extraction from routing optimization problems, the discrete
dynamic used in the filtering step and introduced in Section 2.3 is independent of the network
extraction step, allowing practitioners to use inputs that might not necessarily come from
solutions of routing optimization problems. For example, filtering redundancies in Internet
Protocol (IP) networks is crucial to avoid congestion and inefficiency [193, 194], as loops
might cause the data packets to circulate indefinitely. Another direct application to our filtering
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step is the use of the Wasserstein distance for graph comparison, an application explored in
Chapter 4 and Chapter 5.

We remark that the current implementation the filtering step only accounts for a single type of
flow in the network. Possible extensions of it would also account for multi-commodities or
time-dependent forcing, such as the works in [128, 130, 131]. Last, we also expect that our
method will create new network databases related to routing optimization problems, which
could be a resource for testing and validating new routing algorithms.

Community Detection from a Geometrical Perspective

Many real-world networks often exhibit intrinsic community structures. In general, they are
defined as a group of nodes that are more densely connected compared to the rest of the
network [20, 195, 21, 91]. Despite the existence of multiple algorithms to find such groups,
community detection still remains a critical and complex area of study, lacking an overall
“best” algorithm due to the large diversity of data types [196, 110], as networks can vary
significantly in size, density, and nature of the connections between nodes, thus influencing
how communities form and evolve.

Among the several directions to consider when detecting communities in networks, an inter-
esting one is that of considering the network as a geometrical object, and use the geometric
concept of curvature to measure the shared information across and within communities. In
Chapter 4, inspired by the filtering step of our network extraction pipeline proposed in Chap-
ter 3, we presented an algorithm that allows us to understand how combining OT principles
and geometrical methods, as the Ollivier-Ricci curvature (ORC), can effectively detect commu-
nities in networks by controlling the flow of information shared across nodes’ neighborhoods.
A significant advantage of our method (and of OT-based approaches in general) is that it
automatically extracts the number of communities from the data, without requiring this to be
a preset input parameter, unlike statistical or combinatorial methods.

We looked into different transportation regimes in order to efficiently measure the ORC on
edges in Sections 4.2 to 4.4. In comparison with existing OT-based methods, our model
has shown more robustness in the regimes where inference is not trivial, for both synthetic
and semi-synthetic data. We performed an extensive analysis to show better or comparable
performance in recovering community structures than other geometric-based approaches.

A limitation of our model is that it tends to overestimate the number of communities, as
OT-based methods have shown better performance for networks with more densely connected
community structures [196, 101]. Future extensions of it should then focus on the case of
more sparsely connected community structures, which are characteristic of many real-world
networks [197, 198]. An additional extension to be explored is that of understanding how the
parameter (3 captures the various network topologies, for instance, by measuring structural
distances between networks and correlate these with the best-performing /5 values. Other
research directions include accounting for the multilayer case, where communities reveal the
relationships of nodes within and across layers, or incorporating a node attributes for a more
informed community detection, inspired in the works of [199, 20].

Chapter 6



6.3 Designing Optimal Transport Urban Infrastructures

Designing optimal transportation networks in urban environments is essential for not only
moving people and resources within a city efficiently, but also for saving on new construction
costs and reducing their environmental impacts. As cities tend to change over time, an optimal
transportation network should be also adaptable to compress these changes, like the different
demands. Despite the existence of several methods for studying the quality of network design,
they often depend on measuring topological properties only once the network has already
been built. One can instead look at the opposite case, where the network has not yet been
constructed. The problem then shifts to that of finding a principled optimization setup with a
defined cost function that the network should minimize under a set of constraints, and then
finding optimal solutions in terms of network topologies.

In Chapter 5 we introduced a method that does not assume an initial network structure, but
instead extracts this from a continuous space, taking advantage of the network extraction setup
presented in Chapter 3. We also explore the principle of economy of scale, that establishes
how the costs of producing and that of maintaining and operating the network should balance,
showing how our method could lead to more cost-effective designed urban transportation
networks. For each of the studied cities, we start with only a set of points that represent
regions to be connected, like the outskirts and city center, which are regions that we assume
people will need to daily commute between where they live and work. We generate optimal
network topologies and propose a method to compare their similarity with existing structures,
also measuring several network properties like average path length or traffic distribution on
the network.

By comparing different optimal networks, our method could guide urban planners and
policymakers by providing an evaluation for alternative infrastructures, and select the most
effective strategies for improving transportation systems. Our method is particularly suitable
for networks with small density of loops, so an extension of the model would include such cases,
which are often observed in more complex transportation infrastructures. Another research
direction would be generalizing our model to the multilayer case, where multiple modes of
transportation are integrated. A challenging scenario for future research includes adding real
traffic data to understand how our proposed networks would re-distribute passengers in case
of disruptions, and compare it with existing strategies. This could be useful to understand and
improve the resilience and vulnerability of transportation infrastructures.
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3.4

Mlustration of the tubular channels of the slime as an edge e = (i, j) of a graph G.

Different DMK outputs. We consider the same source/sink pairs and change the
value of /3 to obtain different structures. In (a) the converged solution is such that
the mass avoids congestion, while in (b) it converges to shortest-path. In (c) and
(d), we notice the emergence of branches. The colors indicate the distribution of
printhe grid. . . . . . . L. e e e

Different values of 5 in Equation (2.4b) lead to different settings of a routing
optimization problem. Colors denote different intensities of conductivity u as
described by the color bar on the left. Left: 8 < 1 enforces avoiding mass
congestion; Center: § = 1 is shortest path-like, the mass goes straight from
source to sink; Right: 5 > 1 encourages traffic consolidation. Red rectangle
denotes the sink, green ones the four sources. . . ... ... ... ........

Graph pre-extraction rules. Left): edge-or-node sharing Item (I); center): edge-
only sharing Item (II); right): original triangulation Item (III). We monitor the
conductivity x and use parameters po = 1, f = 1.02, 6 = 0.0001. Weights w;;
are chosen with AVG Item (i), f is chosen such that sources and sinks are inside
green and red rectangles respectively. . . . . ... ... ... ... ...

Graph filtering rules. Left): f; = 1.0; center): B4 = 1.4; right): g5 = 1.8.
The number on top denote the contributions of operating and infrastructural
cost to the energy. Green and red dots represent sources and sinks respectively
(B¢ = 1071); blue edges are those e with u? > 1073, The filtering input is
generated from DMK-Solver with 8 = 1.05. The apparent lack of symmetry of the
network’s branches is due to numerical discretization of the domain, solver and
threshold . As the relative size of the terminal set decreases compared to the
size of remaining part of the domain, this lack of symmetry becomes negligible.

Graph extraction performance evaluation. We plot results for different combi-
nations of the graph extraction rule in terms of: (left) the metric @,(G) of Eq.
(3.2); (right) total network length L(G) normalized by L,,,., the max length over
the 170 networks. Each bar denotes a possible combination as follows: roman
numbers denote one of the three rules I-III (3.3.1); first label after the number
denotes one of the rules to assign weights i-ii 3.3.2), which is applied to the
output of the first step; the second (and last) label denotes the same rule but
applied after the filtering step, “None” means that nothing is done, i.e. no filter
applied, “IBP” means filter applied but with no reweighing, i.e. when an edge is
removed by the filter we simply lose information without relocating its weight.
Bars are color-coded so that rules I-III have three different primary colors and
their corresponding routines have different shades of that main color. Here, we
keep track of the conductivity 1 and show medians and quartiles of a distribution
over 170 networks generated with g € {1.1, 1.2, 1.3}, 3y = 1.1 and § = 0.01. . .

77

8

11

16

20

21

23



78

3.5

3.6

3.7

4.1

4.2

4.3

Network extraction example. We show a network generated from a routing
optimization problem with parameters 3. = 1.4, 55 = 1.3 and § = 0.001; (left)
raw output of the DMK-Solver; (right) final network extracted using the routine

Application to fungi network. We generate a synthetic network similar to the
image of Fig. 1a reported in Boddy et al. [58] and Fig. 4a in Obara et al. [56]
for the of Phanerochaete velutina fungus [77] and Fig. 1 in their supplementary
for the Coprinus picaceus. Fitted parameters are: Py = 234.00,~ = 36.32. Here
[T (z,y) = 1,if (1—0.5)2+(y—0.5)2 < 0.01; f*(x,y) = 0, otherwise; f~(x,y) =
—1,if 0.01 < (2 —0.5)%+ (y —0.5)? < 0.45; f~ (=, y) = 0, otherwise. The network
on the left corresponds to the filtered graph. Yellow nodes are degree-2 nodes
that we omitted when computing the length distribution. Green and red outlines
are used to denote nodes in ST and S—, respectively. . . ... ... .......
Application to images. We take an image of the P. Polycephalum from the SMGR
repository [79].The picture used is a 1200x1200-pixel section of an original
image of size 5184x3456 pixels (see Section 7.4 for details) and extract a network
with step 2 and 3 of our protocol. As a pre-processing step, we downsample the
image using OpenCV (left) and use the color scale defined on the pixels as an
artificial p* function. Using this information and the grid structure associated
to the image’s pixels, we first build a graph G with the graph pre-extraction step
described in Sec. 3.3; then, we obtain a graph Gy (right) using the graph filtering
step of Sec. 3.4, for an appropriate selection of sources and sinks, and adding a
correction to retrieve loops. . . . . . .. L.

Left): an example graph G where edges have unitary weights. Center): the edge
(1,5) (bold black line) is selected to define the OT problem between m;, ms;
neighborhoods of nodes 1 and 5 are highlighted with blue and red edges and
are used to build the corresponding distributions m;, m5. Right): The complete
bipartite graph B;s where the OT problem is defined. The color intensity of the
edges represents the distance between the associated nodes on the graph G, as
shown by the color bar. m; and mgy are both defined for a = 0, i.e. no mass is left
inlandb. . ... e e
Visualization of how [ impacts intra-community and inter-community edge
weights. (a) Examples of intra-community (top panel) and inter-community
(bottom panel) structures between nodes 6 and 7, and nodes 5 and 15, respec-
tively. (b) The weight of edge (6,7) decreases when 0 < 8 < 0.6, while for
0.5 < 8 < 2.0 it reaches a minimum, and then slightly increases again. Similar
but opposite pattern is observed for the edge (5,15). (c) The S-Wasserstein
cost: for intra-community edges, 5 > 1 consolidates traffic in the network as
the Wasserstein cost stabilizes, making it minimum for the extreme value 8 = 2,
whereas it is maximized in the case of the inter-community edge. (d-e) Example
cost graphs Bgr (top) and Bsys (bottom) with fluxes solution of the OT problem
(edge thickness is proportional to the amount of flux) in the regimes of small (d)
and high (e) valuesof 8. . . . . . . . . . . .
Results on LFR and SBM synthetic data. Performance in detecting ground-truth
communities is measured by the ARI score. Markers and shadows are the averages
and standard deviations over 10 network realisations with the same value of the
parameter used in generation. Markers’ shape denote different algorithms. a)
LFR graph with N = 500 nodes and different values of K ranging from (17, 22).
b) SBM with N = 500 nodes, K = 3 communities and average degree d = 15.
The parameter r is the ratio of inter-community with intra-community edges. The
inset on each plot zooms in the central parts of the plots. . . . ... ... ...
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4.4

4.5

4.6

4.7

5.1

Example of community structure on a synthetic LFR network. The rightmost
panel shows the ground-truth community structures to be predicted in an LFR
network generated using p = 0.35. This network is one sample of the synthetic
data used in Fig. 4.3. Square-shaped markers denote nodes that are assigned
to communities different from those in ground-truth. In the middle and last
panels, ORC-Nextrout with § = 2 perfectly retrieves the 21 communities, while
OTDSinkhorn predicts only 19 communities with an ARI score of 0.73, wrongly
assigning ground-truth dark green and light brown (square-shaped) nodes to the
light blue community. . . . . . . . . . . . . i i e

Results on real data. Performance in terms of recovering communities using
metadata information is calculated in terms of the ARI score. ORC-Nextrout
shows competing results against all methods with different optimal 5 across
datasets. . . . . . e e e e e e e

Communities in real networks. We show the communities inferred for Les Mis-
erables (a) and Political books (b) by ORC-Nextrout (5 = 0.5,0.1 for top and
bottom rows respectively), OTDSinkhorn and Infomap and compare against those
extracted using node attributes (GT). The visualization layout is given by the
Fruchterman-Reingold force-directed algorithm [146], therefore, groups of well-
connected nodes are located close to each other. Dark nodes represent individual
nodes who are assigned to isolated communities by OT-based methods. Square-
shaped markers denote nodes assigned to communities different from those
obtained from node metadata. . .. ... ... ... ... ... ...

Removing intra-community edges test on Les Miserables data. Markers corre-
spond to 20 instances of semi-synthetic networks generated from real data. Their
(z,y) coordinates are ARI scores of the indicated method on the axes. Colors
are given by the best performing algorithm, e.g. if z > y, the color of the asso-
ciated method to z is chosen. The legend shows the percentage of times that
the corresponding method outperforms the other. The parameter r describes the
proportion of entries for the adjacency matrix A that have been changed. This
increases from lefttoright. . . . . ... ... ... .. L o oL

Problem setup for the subway network of Rome. (a) Given a set of real latitude-
longitude coordinates denoting origins (green) and destinations (red), we aim to
build a network structure that resembles well the observed public transportation
network connecting those points, as in (b). (c)-(e) Intuitive ways to build
a network structure by connecting origins and destinations, versus networks
extracted with our optimal transport-based method in (f)-(h). The only known
information is the set of six origins (O) and one destination (D). We capture
different optimization mechanisms by tuning the 8 parameter: in (f), the network
is the shortest path-like structure, while in (g) and (h) we show examples of
branched transportation schemes. This information is added to the population
density across multiple urban areas (2019) [172], where darker (lighter) colors
indicate higher (lower) densities. . . . . . .. . .. ... ... ... .......
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5.2

5.3

5.4

5.5

Comparing criteria to select origin and destination nodes. We compare two
criteria to select the input nodes that we give to our algorithm, one based on
a topological property (centrality) and one based on population and point-of-
interest densities (ppor). (a) Stations with the highest and lowest annual traffic
(2019), proportional to the node sizes, over the population distribution in Rome
(in multiples of 10000)). The degree centrality of nodes in the observed is related
to the traffic at stations. In particular, the central node with the highest degree
(destination), has also the highest annual traffic. (b) Density accounting for
population and distribution of points-of-interest (ppoy), darker colors mean higher
values, i.e. regions of higher relevance for transportation. When accounting for
the Points of Interest (POI), we notice that the city center presents higher density
(ppo1) compared to the peripheral areas, therefore using centralities to select
destinations is an approximation to real demands. . . . . . ... ... ... ...

Example of different network topologies generated by Nextrout (yellow), plotted
against the corresponding real network (blue). Green nodes represent those
chosen as origins (O), whilst red nodes correspond to the destinations (D). (a)
Adelaide rail network, with N=28 nodes, O = 6 and D = 1. (b) Bordeaux tram
network, with N = 108 nodes, O = 8 and D = 1. (c¢) Nantes tram network with
N=97nodes, O=10and D=1.. . . . . . . . . . . . i i i,

Performance measures for real and simulated networks. Each dataset is assigned
to a different color, market shapes distinguish real and simulated networks.
Simulated networks are further distinguished based on the one generated via
nextrout that gives the closest point in terms of the metrics plotted in the figure
(circle) or the one corresponding to the best Wasserstein measure (square). (a)
Cost (TL) measured in both simulated and real networks, plotted against the
total path length. (b) Gini coefficient as a measure of traffic distribution, versus
the total path length. (c) Traffic distribution in terms of the Cost. (d) Density of
bifurcations plotted against the cost. . . . . ... ... ... ... ........

Wasserstein similarity measure between graphs for automatic selection of 3. (a-c):
we select the origin nodes based on those with the smallest degree, and a unique
destination as the one with the highest degree. In (d) we show how the same
network changes as we set more stations as initial input (O = 23 originsand D = 4
destinations), resulting in smaller Wasserstein, at the cost of a higher amount
of information given in input. (e-h): we compare several network properties as
measured in the observed and simulated networks. (e) The cost (TL) against the
total path length (1), highlighting the different 3 for each obtained network. (f)
Gini(T,) against [. The optimal network is equivalent to the one with minimal
Wasserstein, i.e. § = 2.0. (g) TL against the Gini coefficient of traffic on edges
(Gini(T)). In this case, the optimal network corresponds to the one with 5 = 1.5.
(h) TL against the density of branching nodes. The closest network in terms of
the number of bifurcations for 5 = 1.4). (i) Wasserstein similarity measure for
the simulated Grenoble tram networks as a function of 3, in the setting of eight
origins and one destination. The most similar network in terms of this measure is
at 8 = 2, when W(Gy,Gs) is minimum. The peak at 8 = 1.6 is due to the absence
of a few edges in the rightmost part of the network that results in disconnecting
a small branch, thus causing the distance to increase. . . . . ... ... ... ..
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5.6

5.7

5.8

7.1

7.2

7.3

8.1

Comparison for real and simulated networks for major lines of the subway system
in New York, with distribution of POI. We select the four major lines (left panel),
here shown along with the distribution of the density of POI (density varies as
in the colorbar). We report the cost (TL) and density of branching points (Dzp)
for both real and simulated networks. Here we set 3 = 1.1 for the orange line,
B = 1.5 for both red and green lines, and 3 = 1.6 for the yellow line. . ... ..

Simulating the initial French Railways in the year 1850. Left: the original
observed network, with connected components represented in different colors.
Right: the networks simulated with our model for each component, given a set of
origins and one destination. On top we report the density of branching points
Dpgp and the total Euclideanlength L. . . . . ... ... ... ..........

Comparison of simulated and observed networks. We show the values of the
main transportation properties investigated in this work for real and simulated
networks. Simulated networks cover a wider range of properties’ values, thus
allowing in particular to select network that have lower or comparable values of
these properties than those observed in the corresponding real networks.

Graph pre-extraction rules for three transportation optimization problems. Left:
edge-or-node sharing; center: edge-only sharing; right: original triangulation.
We monitor the density p and use parameters: pg = 1, f = 5rch, § = 0.0001,
Wij = ER. . e e e e e e e e e

Network extraction examples for branched transportation optimization. Columns
denote a particular setup based on source/sink locations and values of 5 and 1 as
described in the sub-captions. Each column represents different initial transport
densities (parabolic, delta and uniform,respectively), while rows represent a
step of our protocol: (top) initial transport density uo(x,y) given in input to
DMK-Solver; (center) graph pre-extraction using III-AVG (left), II-AVG (center)
and I-AVG (right); (bottom) graph filtering with weight assigned with rule IBP
(left and right) and no simplification (center). The color scheme refers to the
value of u. Sources and sinks are points inside the green and red rectangles,
respectively. Note that pre-extraction rule II tends to break the network into
disconnected components. This is also the reason why this rule scores well in
terms of total path length (see Section 3.5 and Section 3.5). Since the path is
already broken and sources cannot reach the sinks, it does not make sense to
apply the filtering, hence we left the center-bottom plot empty. . ... ... ..

Choosing sources and sinks. Top-left) no selection of sources and sink (7pc = 1);
top-right) selection using betweenness centrality only (rpc = 0.01) ; bottom-
left) selection using convex hull-only (7pc = —1); bottom-right) selection with
convex-hull and betweenness centrality criteria (o = 0.01). . . .. ... ...

Communities in real networks. We show the communities for American foot-
ball (a) and Dolphins (b) inferred by ORC-Nextrout (5 = 2.0,1.5 for top and
bottom rows respectively), OTDSinkhorn and Infomap and compare against those
extracted using node attributes (GT). Dark nodes represent individual nodes
who are assigned to isolated communities by OT-based methods. Square-shaped
markers denote nodes assigned to communities different than those obtained
from node metadata. . . . .. ... ... ... e
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Adjacency matrices for original and perturbed Dolphins network. We show
the adjacency matrix of (a) the original dataset, (ii) a perturbed network built
from the previous one by flipping entries at random and (c) a perturbed graph
obtained by removing intra-community edges. We used r» = 0.05 and r = 0.15 to
generate the matrices shown in (b) and (c), respectively. Nodes are grouped by
communities to highlight the block structure. Gray lines denote the boundaries
of these blocks. Diagonal blocks represent the communities. Off-diagonal blocks
show connections between communities. Colored entries are in agreement with
those of community layout shown in Figure 8.1b. Inter-community connections
are highlighted ingray. . . .. ... . ... .. . ... .

Flipping-entries test on Les Miserables data. Markers correspond to 20 instances
of semi-synthetic networks generated from real data. Their (z,y) coordinates
are the ARI scores of the method indicated on axes. Colors are given by the best
performing algorithm, e.g. if x > y, the color of the method associated to x is
chosen. The legend shows the percentage of times that the corresponding method
outperforms the other. The parameter r describes the proportion of entries of the
adjacency matrix A that have been changed. This increases from left to right.

Flipping-entries test on Dolphins data. Markers’ description is similar as in
Figure 8.3.. . . . . . . . e

Removing intra-community edges test on Dolphins data. Markers’ description is
similar as in Figure 8.3. . . . . . . . . ... e

Counts for the metric ratios of the Wasserstein and cost (TL). Given a particular
metric (e.g. Wasserstein, first row), we select the optimal 3 for each data point
and measure the ratio across the multiple considered metrics. The red lines
highlight the average for the optimal § given by the Wasserstein measure. We
then repeat this procedure for the TL and highlight how the average of 5* = By ass
changes given other optimal 8. . . . . . .. ... ... .. ... ...

Metric ratios for the path length I, Gini and density of branching points. We
measure the ratio r, across the three metrics, highlighting how the average of
B* = Bwass - given by the red lines - changes given other optimal 3, and how it
deviates from the ‘perfect match’, i.e, whenr, =1. . ... ... ... ... ...

Optimal networks for the subway network of Berlin. In (a) the optimal £ is that
given by the Gini, which tends to favor the networks with more branches and
wider coverage to distribute the traffic; in (b) we show the optimal network as
selected by the Wasserstein measure, whilst in (c) we show the one given by the
density of branching points, which tends to favor networks with fewer branches,
sohighervaluesof 5. . . . . . . . . . . . .. e

Selecting weights for the Wasserstein similarity measure. (a) Given the source
graph (red nodes, real network) and the sink graph (green nodes, extracted
network), we observe how the optimal flux distributes along the union graph.
The euclidean length (left) distributes the flux along the more central nodes, thus
capturing more realistic scenarios, whilst unitary weights distribute more equally
along the network. We then compare in (b) how the Wasserstein measure changes
across different values of 5. We design the Wasserstein measure to capture more
realistic scenarios, thus for smaller values of 3, the networks are expected to have
more redundant nodes, so we expect this measure to be higher, and the opposite
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Measures for the studied networks. Each dataset is assigned to a different color,
market shapes distinguish real and simulated networks. The ladder are further
distinguished based on the one generated via Nextrout (having betweenness
as the destinations selection criteria) that gives the closest point in terms of
the metrics plotted in the figure (circle) or the one corresponding to the best
Wasserstein measure (square). (a) We measure Cost (TL) for both simulated and
real networks, plotted against the total path length /. (b) Gini coefficient as a
measure of traffic distribution, versus the total path length. (c) Traffic distribution
in terms of the Cost. (d) Density of bifurcations plotted against the cost.

Comparison of simulated networks using the betweenness criteria and the one
from observed data. We show the values of the main transportation properties
investigated in this work for real and simulated networks. Simulated networks
cover a wider range of properties’ values, thus allowing in particular to select
network that have lower or comparable values of these properties than those
observed in the corresponding real networks. . . . . . ... ... ... ... ..
Traffic in extracted and real networks. Using the same set of origins and destina-
tions we observe a higher distribution of traffic towards more central edges in
bothcases.. . . . . . . .
Left: Original New York subway network highlighting nodes with lower (green)
and higher degree (red). We select one node from the higher degree ones as a
sink. On the right we show the simulated network obtained with 8 = 1.9. Notice
that despite some branches cover similar areas, such as the north-left branch, the
similarity along the network is not very clear, which evidences a limitation of our
approach for selecting a single sink in larger structures. . . . . .. ... ... ..
Overlapping selected main lines from the New York subway. We have already
shown in Section 5.3.2 the network properties for each individual line. We
now build the union of these lines, noticing that this strategy might lead to the
appearance of afew loops. . . . . . . . ... L
Evolution of the French railway network over time. We show how the network
topology changes in a range of 40 years along the nineteenth century, from the
selected as an example of network evolution in the main text (1850), until the
emergence of multiple loops around 40 years later [169]. . . .. ... ... ..
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Real networks description. We report statistics for the real networks used in
our experiments. N and E denote the number of nodes and edges, respectively.
K is the number of communities in the ground truth data. AvgDeg, AvgBtw and
AvgClust are the average degree, betweenness centrality and average clustering
coefficient, respectively. . . . . . . . . . .. e

Description of real networks considered. We report the main network statistics
as the number of nodes N, the number of edges F, the number of components
# Comp, the number of origins O, the number of destinations D, and the loops
ratio Ly, defined as the number of loops divided by the number of edges, and
selecting networks with L., < 0.2, as higher values would require the recovery
of loops in the extracted networks. . . . . . ... ... ... ... ... .. ...
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Additional Material for Chapter 3

Here we provide additional material for Chapter 3.

* Section 7.1 and Section 7.2 show alternative choices for selecting the graphs on the
pre-extraction step, and several examples of resulting networks with distinct setups,
respectively.

¢ Section 7.3 details the different criteria to select sources and sinks.

* Section 7.4 describes the pipeline for graph extraction from images.

7.1 Examples of graph pre-extraction routines

We provide here several examples of networks resulting from different routing optimization
setup for each of the three graph definitions.

(a) B = 1.1: traffic consolidation
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(b) 8 = 1.0: shortest-path optimization
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Fig. 7.1: Graph pre-extraction rules for three transportation optimization problems. Left: edge-or-node
sharing; center: edge-only sharing; right: original triangulation. We monitor the density
and use parameters: po = 1, f = 5rch, § = 0.0001, w;; = ER.
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88

Additional networks and routing optimization scenarios

We show several examples of networks resulting from different routing optimization setups
for different configuration choices of our proposed routines. This should serve as an example
guideline on what parameters to choose based on the application. More specifically, we
show three different setups given in input as initial routing optimization problems to the
DMK-Solver. We consider: i) different locations of sources and sinks to show how this impacts
the formation of branches and their symmetry; ii) different values of 8 € {1.2,1.3,1.5} to show
how traffic consolidates into fewer edges as 3 grows; iii) different initial g (z,y) (parabolic,
delta-like and uniform) to show variability in the initial transport density.

(a) Parabolic, 3 =1.2 (b) Delta, 5 =1.3 (c) Uniform, 8 =1.5
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Fig. 7.2: Network extraction examples for branched transportation optimization. Columns denote a
particular setup based on source/sink locations and values of 5 and pg as described in the
sub-captions. Each column represents different initial transport densities (parabolic, delta
and uniform,respectively), while rows represent a step of our protocol: (top) initial transport
density po(z,y) given in input to DMK-Solver; (center) graph pre-extraction using III-AVG
(left), II-AVG (center) and I-AVG (right); (bottom) graph filtering with weight assigned with
rule IBP (left and right) and no simplification (center). The color scheme refers to the value
of . Sources and sinks are points inside the green and red rectangles, respectively. Note
that pre-extraction rule II tends to break the network into disconnected components. This is
also the reason why this rule scores well in terms of total path length (see Section 3.5 and
Section 3.5). Since the path is already broken and sources cannot reach the sinks, it does not
make sense to apply the filtering, hence we left the center-bottom plot empty.
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Fig. 7.3: Choosing sources and sinks. Top-left) no selection of sources and sink (75 = 1); top-right)
selection using betweenness centrality only (75 = 0.01) ; bottom-left) selection using convex
hull-only (rpc = —1); bottom-right) selection with convex-hull and betweenness centrality
criteria (7o = 0.01).

Source and sink selection

Selecting source and sink is an important task during the graph filtering step as explained in
Section 3.4.2. Here we give examples showing why this is the case. Specifically, for a particular
problem setup, we consider four cases: i) no selection of sources and sinks. This means that
we simply consider sources and sinks all the points inside the support of the forcing function
f(z), input of the DMK-Solver. In this case, the final network structure is dominated by the
many branches connecting the sources and sinks within the support of f(z), thus hindering
the contribution of the bulk of the network, the one connecting sources and sinks; ii) convex
hull-only: we set as source (or sink) all the points inside the convex hull of the set of eligible
sources (or sinks); iii) betweenness centrality-only: we set as source (or sink) all the eligible
sources (or sinks) that have betweenness centrality smaller than a threshold 0 < 7g¢ < 1.
These two criteria miss possibly relevant sub-branches, as shown in Figure 7.3 top-right and
bottom-left; iv) selection using both convex-hull and betweenness centrality criteria. In this
case, we capture the relevant sub-branches from both criteria, as shown in the bottom-right
of Figure 7.3. In Chapter 3 we always consider this final criterion as it seems to capture all
the relevant branches inside the support of f(x). However, we encourage the final user to
choose what criteria to choose based on the application. Figure 7.3 should help driving this
decision.

7.3 Source and sink selection 89



7.4 Network extraction from images

We describe here the steps followed to get the network shown in Section 3.6 in Chapter 3.
The original figure contains loops, however our protocol in its standard settings with filtering
can only generate tree-like structures. Therefore, if we want to obtain a network with loops,
we should consider a minor modification of our routine, as explained in detail below. In short,
we need to find first a tree-like network close to the original image with loops and then give
this one in input to our routine. Then, after applying our protocol, we can obtain loops by
adding edges that properly close the loops in the tree. This can all be done in an automatized
way as explained below. Otherwise, if obtaining loops is not required, our routine can be used
with no modifications. The whole procedure can be divided into 6 parts: image selection and
approximation, graph pre-extraction, tree reduction, terminal identification, graph filtering
and edge correction.

1. Image selection and approximation: this consists in choosing an image and, if desired,
mapping it into a reduced version of it. This reduction is useful when dealing with high-
resolution images. We use the resize function included in OpenCV. The pixel values for the
reduction image can be computed using different interpolation methods. We use linear
interpolation (cv.INTER_NEAREST). The original image’s dimensions are 1200x1200.
The reduced ones are 100x100.

2. Graph pre-extraction: the RGB values of the pixels are mapped into an integer in a
one-to-one way, and then they are used to define the function p* on each pixel. The
graph G is obtained using rule I-ER as defined in Section 3.3.1 of Chapter 3.

3. Tree reduction: the filtering could be applied directly on G after choosing some sources
and sinks, but this will generate a filtered tree-like network, i.e., no loops from the image
will be captured. Thus, we propose to change GG by a tree graph whose structure could
then be easily "corrected" (after the filtering step) to get the mentioned loops. This tree
is taken to be the Breadth First Search graph (Ggrg) of G from a random root.

4. Terminal identification: terminals (the union of sources and sinks) are defined using
filters, i.e., squared pieces of the image. We place terminals in the graph by counting
how many intersections are between the image and the boundary of the filter: if just
one intersection is found, then a terminal is placed in the node with the lowest closeness
centrality; if three or more intersections are found, then a terminal is placed in the node
with the highest closeness centrality. We cover the whole image by disjoint filters, thus
we do not miss the relevant parts of the image. Notice that if some parts of the image do
not have a representative in one of the two source or sink sets, then they will not be part
of the filtered graph.

5. Graph filtering: Gprg is filtered as in Section 3.4 of the Chapter 3 (to obtain a graph
G¢) by defining the source set (ST) to be a random element on the set of terminals and
the sink set (S7) to be the remaining ones; 5; = 1 in Fig 7.

6. Edge correction: to close the loops we use the following rule. For each pair of terminals
u,v € Gy, if the shortest path P3¢ on Gprs is long but the shortest path P“* on G is
short, then add P*¥ to G';. The notions of short and long paths are precisely defined by
introducing two parameters Lprg and L, respectively. We say that a path P is long, if

'We used image “IMG_0379.jpg” stored at KIST Europe_data _set/raw_images/ motion16/ inside the SMGR
repository [79]. The dimension of the original one is 5184x3456 pixels. We used a 1200x1200-pixel section
in Fig. 7. The coordinates of the bottom-left vertex of the box are (2000, 2000) (assuming (1,1) to be the
bottom-left pixel of the original image).
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l(P) > Lprg; and it is short, if [(P) < Lg, where [ is the number of nodes in the path
P; the values of Lgrg and L can be tuned based on the system size at hand.
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8.1

Additional Material for Chapter 4

Here we provide additional material for chapter Chapter 4.

* Section 8.1 has additional examples for communities obtained from real networks,
detected with the multiple community detection algorithms presented in Chapter 4.

* Section 8.2 details the ARI score, main quantity used to evaluate the performances of
the community detection algorithms.

* Section 8.3 describes additional experiments made with random networks generated
from real network structures.

Community Detection in additional Real networks

This section presents additional plots for real networks on communities detected by some
algorithms studied in Chapter 4. Figure 8.1a and Figure 8.1b exhibit the detected communities
for American football and Political books, respectively. For each dataset we compare three
algorithms with the ground truth, and with ORC-Nextrout having a single setting of .
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Fig. 8.1: Communities in real networks. We show the communities for American football (a) and
Dolphins (b) inferred by ORC-Nextrout (8 = 2.0, 1.5 for top and bottom rows respectively),
OTDSinkhorn and Infomap and compare against those extracted using node attributes (GT).
Dark nodes represent individual nodes who are assigned to isolated communities by OT-based
methods. Square-shaped markers denote nodes assigned to communities different than those
obtained from node metadata.
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ARI score

The Rand Index [136] (RI) is a measure of the similarity between two sets of clusters. Let

= {#1,%2,...,zn} be a set of n different elements, and let X = {X;. Xo,.., Xy}, X =
{X 1, Xo, s p} be two partitions of S into m and p subsets, respectlvely Intuitively, X can
thought of as the "correct" separation of S into classes, while X would be a "prediction" of
it. We would like to understand the quality of the prediction X in terms of the ground truth
community information X. Consider

* TP (true positive) is the number of times that a pair of elements (z;, z;) belonging to
the same class X}, gets assigned to the same class X.

* TN (true negative) is the number of times that a pair of elements (z;, z;) belonging to
different classses in X gets assigned to different classes in X.

* F'P (false positive) is the number of times that a pair of elements (:cz, z;) belonging to
same class X, is (falsely) assigned to different classes X; and X,,,

* FN (false negative) is the number of times that a pair of elements (z;, z;) belonging to
different classes X;, and X; is (falsely) assigned to the same class X,,.

One can think of the the words positive and negative referring to whether two elements in
S belong to the same or to different classes, respectively. The words true and false would
then judge the performance of the prediction: if it maches the nature of the elements under
inspection, then the word true is associated to it; negative, otherwise. The Rand Index is then
computed using the formula:

. TP+ TN
RI(X. X)= )
(X, X) TP+ FP+FN+TN

The Adjusted Rand Index (ARI) is the corrected for chance version of the RI:

RI — E[RI]

ARI(X,X) = TRRI]

where E[RI] is the expected value of the RI under the assumptions that the partitions X and
X are sampled from the generalized hypergeometric distribution. Closed forms for the terms
shown in the ARI formula can be computed. See [136] for a more detailed presentation of the
RI and ARI scores.

Tests on random networks generated from real structures

The pseudo-code of the random processes defined in Section 4.3.3 is shown in the Algorithm 4
and line 4. We show two examples of the outputs of these algorithms on Figure 8.2c together
with the adjacency matrix that was used to originally build them. Notice that the matrix in
panel (b) is different from that in panel (a) both in terms of intra and inter-community blocks,
whereas that in (c) only differs along the within-community entries. This indicates that the
first method alters the overall configuration of the edges in the network by adding random
noise, whereas the second changes the original network only by reducing the intra-community
relationships.
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Algorithm 4: Flipping entries of the adjacency matrix

Input: G = (V, E, W), flipping proportion r € [0, 1], flipping probability p € [0, 1]
Build adjacency matrix of G: A
Make a copy of A: A’
Compute number of nodes in G: N
for t € range(r » N?) do
for i € range(N) do
for j € range(i+ 1, N) do
Assume P;;(Afi][j]) = p
Sample A’[i][j] from P
end
end
end
Symmetrize A’
Build G’ using the connections between nodes described by A’.
Output: G' = (V, E')

O N O G W N =

o
W N = O

Algorithm 5: Removing intra-community edges

Input: G = (V, E, W), removal proportion r € [0, 1],

Build list of edges of G: F(Q)

Make a copy of E: E'(G)

Compute number of edges in G: M

Remove from E'(G) all the edges e = (4, j) such that either i or j is a leaf in G
Remove 7 x M elements from E’(G) uniformly at random

Define G’ using V and E’'(G)

Output: G' = (V, E')

A A W=

Results for Les-Miserables dataset

We show results obtained on the Les-Miserables dataset for the test where we flip at random
the entries of the adjacency matrix A (see Figure 8.3). In this case, ORC-Nextrout outperforms
Infomap only in the case where » = 0.005, i.e. when 5% of elements of A are changed. As
r increases, Infomap increases its accuracy. On the other hand, ORC-Nextrout shows a better
performance than OTDSinkhorn consistently across values of r.

Lastly, in Figure 8.4. we show the results obtained for both tests on the Dolphins dataset. It
can be seen that ORC-Nextrout outperforms OTDSinkhorn consistently across values of 7 in both
cases. On the other hand, Infomap has a higher accuracy in both tests, as expected given the
results shown in Figure 4.5 of the Chapter 4.
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Fig. 8.2:

Adjacency matrices for original and perturbed Dolphins network. We show the adjacency
matrix of (a) the original dataset, (ii) a perturbed network built from the previous one by
flipping entries at random and (c) a perturbed graph obtained by removing intra-community
edges. We used » = 0.05 and » = 0.15 to generate the matrices shown in (b) and (c),
respectively. Nodes are grouped by communities to highlight the block structure. Gray lines
denote the boundaries of these blocks. Diagonal blocks represent the communities. Off-
diagonal blocks show connections between communities. Colored entries are in agreement
with those of community layout shown in Figure 8.1b. Inter-community connections are
highlighted in gray.
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Fig. 8.3: Flipping-entries test on Les Miserables data. Markers correspond to 20 instances of semi-

synthetic networks generated from real data. Their (z,y) coordinates are the ARI scores of
the method indicated on axes. Colors are given by the best performing algorithm, e.g. if
x > y, the color of the method associated to x is chosen. The legend shows the percentage of
times that the corresponding method outperforms the other. The parameter r describes the
proportion of entries of the adjacency matrix A that have been changed. This increases from
left to right.
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Fig. 8.5: Removing intra-community edges test on Dolphins data. Markers’ description is similar as in
Figure 8.3.
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Additional Material for Chapter 5

Here we provide additional material for chapter Chapter 5.

* Section 9.1 evaluates the Wasserstein-based metrics to automatically the select networks
presented in Chapter 5.

* Section 9.2 analyses how the different weights change the final network selection.

* Section 9.3 highlights the importance of selecting the sink with different centrality
criteria, thus complementing what was presented in Chapter 5, Section 5.2.1.

* Section 9.4 shows traffic distribution for the different values of 3

* Section 9.5 and Section 9.6 highlights two important examples: the New York subway
and the evolution of the French railway system in a period of around 40 years along the
1800’s. We also highlight some limitations of the approach described in Chapter 5.

9.1 Validating the Wasserstein Metric

To evaluate how the simulated networks selected with our Wasserstein-based metric perform
in terms of the main topological properties defined in Chapter 5, we define a similarity ratio
rp for each of them. Given a particular property p, we compute the ratio between the value
measured on both simulated and observed networks. Thus, when r, = 1, the simulated
network extracted by Nextrout matches perfectly with the observed one in terms of property
p. For instance, when p is the cost, then r7;, = T Lnextrout/Z Lreal-

In Figure 9.1 and Figure 9.2 we show the ratio values for the multiple topological properties,
comparing them across different automatic selections of 5. Specifically, we obtain for each
property p the value of 3, that leads to a simulated network closer to the observed one in terms
of property p, i.e. corresponding to a r, closer to 1. By definition, the simulated graph obtained
with f3, has the best r, for property p, but this may not be true for other properties measured
on that same graph. For instance, the graph selected with 37y (second row of Figure 9.1) as
rrr, ~ 1, thus reproducing well the number of edges, but it tends to largely overestimate both
Gini(T,) and the number of bifurcations, with r, > 2 for these two properties (see Figure 9.2).
Instead, we observe that the simulated graph selected with the Wasserstein measure (first row
of Figure 9.1) has on average r, closer to 1 across various properties. In other words, it shows
transportation properties that are consistently more aligned to those behold by the observed
network.

To validate the consistency of the Wasserstein measure, we compute how each data point
in Figure 9.1 and Figure 9.2 differs from the perfect match r, = 1. Specifically, we define

1
the minimum mean displacement Dy = ; 37, (1 IS |y — 1|d) ¢, where p refers to each
considered metric ratio (|p| = 4), n = 17 is the number of data points and d = 1,2. The
closer to 0, the less the considered measure deviates from the perfect score. We found that
the Wasserstein measure deviates with D;—; = 0.5, whilst the cost has Dy—; = 0.61, the
total length Dy;—; = 0.69, the traffic D;—; = 0.35 and the density of bifurcation points has
D4—1 = 0.32. Similar results are found with the square displacement d = 2. The traffic and
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number of bifurcations have the lowest displacements, with the Wasserstein following. As the
Wasserstein tends to select networks with higher 5 (not shown here), this measure encourages
smaller cost (TL). The fact that we see a higher displacement than the one of traffic and
density of bifurcations is a sign that real networks could be further optimized in terms of
TL. Nevertheless, the gap is small and beyond problem-specific properties (as the traffic or
density of bifurcations). These results confirm the benefit of using our Wasserstein-based
similarity measure to automatically select a simulated network across different values of 3
in our Optimal Transport-based setting. More generally, it provides a robust and meaningful
measure to compare network structures that can be used in applications beyond the one
considered in this work.

Gini(T.) Dpp
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Fig. 9.1: Counts for the metric ratios of the Wasserstein and cost (TL). Given a particular metric (e.g.
Wasserstein, first row), we select the optimal 8 for each data point and measure the ratio
across the multiple considered metrics. The red lines highlight the average for the optimal g
given by the Wasserstein measure. We then repeat this procedure for the TL and highlight
how the average of 3* = By 4.5 changes given other optimal 3.

As the final optimal network changes depending on specific selected transportation properties,
a natural question is how distinct these networks are and how do such properties favor
different optimal /5. In Section 9.1 we show an example for the subway network of Berlin to
illustrate this difference. While 5* = SBin; favors a network with more branches and wider
coverage, for f* = fp,, the optimal network is that with fewer branches. This difference
is thus evaluated across multiple properties using the metric ratios. Overall, we notice that
the Wasserstein encourages smaller path length, but higher traffic and density of bifurcation
points (which is confirmed by the minimum mean displacement).
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Fig. 9.2: Metric ratios for the path length /, Gini and density of branching points. We measure the
ratio r,, across the three metrics, highlighting how the average of 5* = By .5 - given by the
red lines - changes given other optimal 3, and how it deviates from the ‘perfect match’, i.e,
when r, = 1.

Wasserstein weights

The Wasserstein similarity measure (W7) is designed to capture the amount of ‘effort’ necessary
to move information between the original network and the one extracted using our pipeline.
Since it is defined as the weighted sum of the optimal fluxes, the choice of such weights might
influence the final optimal network. We compared the differences of selecting unitary or
euclidean weights in Figure 9.4b.

Centrality criteria for selecting origins and destinations

The first step of our pipeline consists in defining the set of Origin-Destination pairs (OD) taken
from a real network. We perform a preprocessing step to remove possible redundancies found
in the original spatial data collected from [168].

9.2 Wasserstein weights 101
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Fig. 9.3: Optimal networks for the subway network of Berlin. In (a) the optimal 3 is that given by
the Gini, which tends to favor the networks with more branches and wider coverage to
distribute the traffic; in (b) we show the optimal network as selected by the Wasserstein
measure, whilst in (c) we show the one given by the density of branching points, which tends
to favor networks with fewer branches, so higher values of 3.

We map each stop, which consists in a pair longitude-latitude, to a node in a [0, 1] system
of coordinates as a starting point. We then perform the preprocessing to obtain the original
network mapping, and compute different network centralities to define the set of OD points:
nodes with lowest values of degree, betweenness and closenness centrality are set to be origins
and those with the highest values of these properties are set as destinations. In nearly all
networks we noticed that the selected nodes for betweenness and closenness were equivalent,
therefore the Nextrout generated networks would have the same set of nodes and edges
(hence the measured properties would be equivalent), so we find it enough to show the results
for networks generated using only degree and betweenness centrality.

As we have already shown results obtained for the networks with OD points selected based
on the degree in Chapter 5, we now present the network properties obtained based on the
betweenness centrality. Notice that despite the absolute number of destinations being the
same, they still differ in terms of location, which will impact the final networks generated
using our pipeline. The final betweenness properties are shown in Figures 9.5 to 9.6.

Traffic distribution

We also show how traffic is distributed along the network. We measure traffic on edges (T;) by
setting the same origins and destination nodes used on the first step of our extraction pipeline,
and running the discrete DMK-dynamics with 5 = 1.5. Figure 9.7 shows that with this setting,
both extracted and real networks tend to distribute traffic towards the more central edges,
which is usually observed in real transportation systems, where stations with more connections
register higher flow of passengers.

Limitations of our approach

In order to recover the entire structure of the New York subway system, given its size and
complexity, we first selected multiple sources (nodes with smallest degree) with one randomly
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9.6

(a) Fluxes for the different weights (5 = 2.0) (b) Wasserstein changing with the weights

w,: length w,: unit
we: length we: unit

Fig. 9.4: Selecting weights for the Wasserstein similarity measure. (a) Given the source graph (red
nodes, real network) and the sink graph (green nodes, extracted network), we observe how
the optimal flux distributes along the union graph. The euclidean length (left) distributes
the flux along the more central nodes, thus capturing more realistic scenarios, whilst unitary
weights distribute more equally along the network. We then compare in (b) how the
Wasserstein measure changes across different values of 3. We design the Wasserstein measure
to capture more realistic scenarios, thus for smaller values of 3, the networks are expected to
have more redundant nodes, so we expect this measure to be higher, and the opposite as
increases. This pattern seems to be better captured by the euclidean weights.

selected sink among the nodes with highest degree. This strategy fails as shown in Figure 9.8,
where the generated topology does not show clear similarity with the original network. This
evidences a limitation of our approach for selecting sources and sinks in more complex, bigger
structures.

The original topology contains multiple lines that can be individually seen as an independent
network itself, generating loops when superimposed. As already presented in Section 5.3.2,
each obtained network shows a higher similarity with the correspondent original line. A
comparison of the superimposed lines is shown in Figure 9.9. This strategy is particularly
suited for understanding more complex structures, specially for loop recovery, and it can be
further explored in future work.

The evolution of the French railway system

We show in Figure 9.10 how the French railways changed in a period of around 40 years. It
justifies the usage of a network from 1850 in our experiments, where the topology does not
yet contain multiple loops and it is in its initial stage.

9.6 The evolution of the French railway system 103
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Fig. 9.5: Measures for the studied networks. Each dataset is assigned to a different color, market
shapes distinguish real and simulated networks. The ladder are further distinguished based
on the one generated via Nextrout (having betweenness as the destinations selection criteria)
that gives the closest point in terms of the metrics plotted in the figure (circle) or the one
corresponding to the best Wasserstein measure (square). (a) We measure Cost (TL) for both
simulated and real networks, plotted against the total path length {. (b) Gini coefficient as a
measure of traffic distribution, versus the total path length. (c) Traffic distribution in terms
of the Cost. (d) Density of bifurcations plotted against the cost.
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Fig. 9.6: Comparison of simulated networks using the betweenness criteria and the one from observed
data. We show the values of the main transportation properties investigated in this work for
real and simulated networks. Simulated networks cover a wider range of properties’ values,
thus allowing in particular to select network that have lower or comparable values of these
properties than those observed in the corresponding real networks.

Extracted

Real

Fig. 9.7: Traffic in extracted and real networks. Using the same set of origins and destinations we
observe a higher distribution of traffic towards more central edges in both cases.

9.6 The evolution of the French railway system
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Original Network Nextrout on selected sink

Fig. 9.8: Left: Original New York subway network highlighting nodes with lower (green) and higher
degree (red). We select one node from the higher degree ones as a sink. On the right we
show the simulated network obtained with 3 = 1.9. Notice that despite some branches cover
similar areas, such as the north-left branch, the similarity along the network is not very clear,
which evidences a limitation of our approach for selecting a single sink in larger structures.

Original selected lines Nextrout results

Fig. 9.9: Overlapping selected main lines from the New York subway. We have already shown in
Section 5.3.2 the network properties for each individual line. We now build the union of
these lines, noticing that this strategy might lead to the appearance of a few loops.
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Paris w (

Fig. 9.10: Evolution of the French railway network over time. We show how the network topology
changes in a range of 40 years along the nineteenth century, from the selected as an example
of network evolution in the main text (1850), until the emergence of multiple loops around
40 years later [169].
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