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Algorithms and Combinatorics for Beyond Planar Graphs

by Maximilian Pfister

Planar graphs form a cornerstone in the area of graph drawing with a rich and di-
verse literature ranging from combinatorial results to algorithmic applications such
as the recognition problem of planar graphs or the existence of a morph between two
planar drawings. Unfortunately, these seminal results do not easily extend to most
proposed generalizations of planar graphs. In the first part of this thesis, we make
progress in this direction and provide (approximation) algorithms to efficiently test
if graphs of small pathwidth are k-planar, i.e., test if they can be drawn such that ev-
ery edge is crossed at most k times. We further describe an algorithm that computes
a morph for a meaningful family of 1-planar graphs, which is the first result in this
direction for graphs of non-constant genus. We conclude the first part by consid-
ering the containment relation of low-degree graphs in the k-bend RAC setting by
providing efficient drawing algorithms.

In the second part, we study structural properties of beyond-planar graph classes.
Motivated by the results from the previous chapter and inspired by orthogonal
drawings, we introduce a subclass of RAC graphs for which we study the recog-
nition problem, edge-density bounds and their relationship to general RAC graphs.
We next consider the class of gap-planar graphs and establish a tight upper bound
on the edge-density these graphs can obtain. We further consider fan-planar graphs,
where we show that all three forbidden patterns which are used to define fan-planar
graphs are in fact necessary (i.e., allowing or prohibiting each pattern gives rise to
distinct classes of graphs). Whereas previous work showed that this is true for two
of the three patterns, we explicitly consider the third pattern which gives rise to
weak and strong fan-planar graphs. We establish edge-density bounds for the class
of weak fan-planar graphs, thus extending previous results on strong fan-planar
ones. We finally study the maximum thickness of strong fan-planar graphs and es-
tablish the first (non-trivial) relation between the graph thickness and a beyond-
planar graph class.

In the final part of this thesis, we provide an algorithmic framework for the si-
multaneous optimization of several aesthetic criteria which are characterized to be
important in a good drawing. The main contribution of our algorithm is its ease of
extension to additional criteria, since no empirically found coefficients or (surrogate)
differentiable loss functions are required, which is common for other algorithms that
optimize many such criteria in a joint way.
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Zusammenfassung
Algorithms and Combinatorics for Beyond Planar Graphs

Planare Graphen bilden einen Eckpfeiler im Bereich der Graphenzeichnung mit einer
reichhaltigen und vielfältigen Literatur, welche von kombinatorischen Ergebnissen
bis hin zu algorithmischen Anwendungen, wie zum Beispiel dem effizienten Testen
der Planarität oder der Berechnung eines Morphs zwischen zwei planaren Zeich-
nungen, reicht. Leider lassen sich dies grundlegenden Ergebnisse nicht ohne Weit-
eres auf mögliche Verallgemeinerungen planarer Graphen übertragen. Im ersten Teil
der Arbeit befassen wir uns mit dieser Problematik und beschreiben Algorithmen,
welche für Graphen mit kleiner Pfadweite effizient testen können, ob diese eine Ze-
ichnung in der Ebene besitzen, in der jede Kante maximal k andere Kanten kreuzt.
Außerdem entwicklen wir einen Algorithmus, der einen Morph für eine bedeutende
Familie von 1-planaren Graphen berechnet (welches diesbezüglich das erste Resul-
tat für Graphen mit nicht konstantem Geschlecht ist). Desweiteren entwerfen wir
Algorithmen, welche für Graphen mit kleinem Grad eine RAC Zeichnung mit weni-
gen Knicken liefert.

Im zweiten Teil der Arbeit untersuchen wir strukturelle Eigenschaften einiger
Graphklassen im Forschungsgebiet "Beyond Planarity". Inspiriert von dem klas-
sichen orthogonalen Zeichenstil führen wir zunächst eine Unterklasse von RAC-
Graphen ein, für die wir die maximale Kantendichte, die Beziehung zu allgemeinen
RAC-Graphen sowie das zugehörige Erkennungsproblem untersuchen. Im Anschluss
zeigen wir eine obere Schranke für die Kantendichte von bipartiten gap-planaren
Graphen, welche, bis auf eine konstante Anzahl an Kanten, bestmöglich ist. Außer-
dem betrachten wir die Klasse der fan-planaren Graphen, welche durch drei ver-
botene Kreuzungskonfigurationen definiert ist. Wir zeigen, dass das Zulassen oder
Verbieten der dritten Konfiguration zu unterschiedlichen Klassen von Graphen führt
und führen in diesem Sinne die Unterscheidung zwischen schwachen- und starken
fan-planaren Graphen ein. Wir erweitern das Ergebnis der oberen Schranke der Kan-
tendichte von starken zu schwachen fan-planaren Graphen und untersuchen außer-
dem die maximale Graphendicke von starken fan-planaren Graphen, welches die
erste (nicht-triviale) Beziehung zwischen der Graphendicke und einer Graphklasse
im Gebiet "Beyond Planarity" darstellt.

Im letzten Teil der Arbeit führen wir ein algorithmisches Framework zur Visu-
alisierung von Graphen ein, welches mehrere ästhetische Kriterien simultan opti-
mieren kann. Der Hauptbeitrag unseres Frameworks besteht darin, dass es leicht
auf zusätzliche Kriterien erweitert werden kann, da, im Gegensatz zu vielen an-
deren Algorithmen dieser Art, keine empirisch gefundenen Koeffizienten oder dif-
ferenzierbare Zielfunktionen benötigt werden.
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Chapter 1

Introduction

Influenced by technical prowess and by scientific breakthroughs, particularly in the
last century, our understanding of almost every topic conceivable is ever-increasing.
Due to this deeper understanding, we uncover underlying systems that are more
and more complex; a prime example being the step from classical mechanics to quan-
tum mechanics. Many such complex systems consist of a vast number of entities
that interact with each other and hence they are destined to be modeled as graphs.
A graph G = (V, E) consists of vertices V (which can be, for example, particles)
and edges E, which are tuples of vertices (e.g., it describes the interaction between
these particles). The study of graphs forms a branch of mathematics called graph
theory, whose beginning is attributed to Leonard Euler in 1736 and his paper about
the famous “Seven bridges of Königsberg” problem [88]1. Subsequent research on
graphs is vast and concerns many different topics which are applicable to numerous
real-world problems, e.g., the electrical distribution of a system can be modeled as a
flow problem or the fastest route for a vehicle can be computed using the shortest-
path paradigm. The two most common ways for a computer to efficiently store and
query graph data is the adjacency matrix or the adjacency list. While the former has a
constant query time, it requires quadratic space in the number of vertices indepen-
dent of the number of edges - thus for sparse graphs, i.e., graphs that do not contain
“many” edges, the latter variant is usually preferred. In Fig. 1.1, we compare differ-
ent representations of the same abstract graph. Consider the task to find the shortest
path from vertex 4 to vertex 7 - it turns out that humans have to invest some effort
to obtain the desired result using either the adjacency matrix or the adjacency list,
while we (arguably) obtain the fastest result using the drawing of the graph.

1
2

3

45

6

7

Adjacency matrix Adjacency list Drawing of the graph

1 2 3 4 5 6 7
1 0 1 0 1 1 0 1
2 1 0 1 0 0 0 0
3 0 1 0 1 0 0 0
4 1 0 1 0 1 0 0
5 1 0 0 1 0 1 0
6 0 0 0 0 1 0 1
7 1 0 0 0 0 1 0

1 → 2 → 4 → 5 → 7
2 → 1 → 3
3 → 2 → 4
4 → 1 → 3 → 5
5 → 1 → 4 → 6
6 → 5 → 7
7 → 1 → 6

FIGURE 1.1: Three different representations of the same abstract
graph.

1The problem is whether the graph defined by the set of islands of Königsberg admits an Euler tour,
where two islands are connected if there exists a bridge between them



2 Chapter 1. Introduction

In a sense, this is what the field of graph drawing is all about - to create visual-
izations of graphs which are easy to read and understand for humans. Arguably
the first paper in this area dates back to 1963 [134], when Donald Knuth studied the
automatic visualization of flow charts which arise when describing computer pro-
grams. Automatic visualization of graphs can nowadays be found in a plethora
of areas such as software engineering, databases, in real-time systems including
the specification of Petri-nets or in chemistry to model chemical bonds in complex
molecules [69]. The most common style to draw graphs in the plane are node-link-
diagrams, where the vertices are represented by symbols and the edges are Jordan
arcs connecting these symbols. The drawing of our previous example had the prop-
erty that no two arcs shared a common interior point, that is, a crossing. A drawing
without any crossing is called a planar drawing and a graph which admits such a
drawing is called a planar graph. One of the earliest results for planar graphs dates
back to Euler [89], who extended the formula |V(G)| − |E(G)|+ |F(G)| = 2, which
relates the number of vertices |V(G)|, edges |E(G)| and faces2 |F(G)|, from con-
vex polyhedra to (connected) planar graphs. Euler also established that |E(G)| ≤
3|V(G)| − 6 has to hold for a graph to be planar. We refer the interested reader to
[121] for a detailed history of planar graphs.

Since the following part of the introduction will delve into more technical details,
we refer the reader to Chapter 2 for definitions.

Natural extensions beyond planar graphs The earlier mentioned condition on the
maximum number of edges that a planar graph can have gives rise to the follow-
ing question: Can we somehow generalize the notion of planarity to graphs that
have (slightly) more than 3|V(G)| − 6 edges while maintaining some of the desired
properties of planar graphs? To this end, let us consider the following possible ex-
tensions:

1. A planar subgraph G′ of G can be obtained by removing at most k vertices or
k edges from G.

2. G admits an embedding on a surface of genus k.

3. G admits a drawing in the plane with k crossings.

4. G has thickness (k + 1), i.e., the edges of G can be partitioned into (k + 1) dis-
joint sets such that the subgraphs induced by each set is planar.

5. G admits a drawing in the plane where every edge is crossed at most k times.

Clearly, a planar graph satisfies all of these properties with k = 0.
In the following, we will consider three of the most important topics that were

studied in the context of planar graphs, namely the recognition of planar graphs,
the morphing of planar drawings and the restriction to straight-line planar drawings.
For each of them, we will first consider seminal results for planar graphs, give an
overview of the related work for the aforementioned extensions and then describe
our contribution to these topics, which form the first part of the thesis.

Recognition of planar graphs The first seminal result dates back to 1930, when Ku-
ratowski’s Theorem [138] established that a graph is planar if and only if it does not
contain a subgraph H which is a subdivision of K5 or K3,3. Wagner’s Theorem [179]

2faces are bounded regions of the plane delimited by edges and vertices
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states that a graph is planar if and only if the graph does not contain a K5 or a K3,3
minor. Since any subdivision H can always be converted into a minor H′ by contract-
ing the edges along a subdivision path, while the converse is not always true [117], it
seems like the result of Kuratowski is stronger and the “only-if” direction of Wagner
might be incorrect - however, it can be shown that if a graph contains a minor of
K5 or K3,3, it also contains a subdivision of (one of) K5 or K3,3 [41] which makes the
two results equivalent. A generalization of Wagner’s Theorem is the seminal result
known as the Robertson-Seymour Theorem3 [157], which establishes that any fam-
ily of graphs that is closed under minors can be defined by a finite set of forbidden
minors (i.e., K5 and K3,3 for the case of planar graphs). Moreover, they showed that
for graphs H and G, one can verify if H is a minor of G in f (H)|V(G)|3 time [158] for
a computable function f . Combining these two results, we obtain that we can test in
O(|V(G)|3) time if a graph G belongs to a minor-closed family or not. A small caveat
here is the hidden constant: since the number of forbidden minors of a family F only
depends on F , it is treated as a constant cF with respect to the input graph G, but it
can be quite large. Further, the algorithm iterates through the set of forbidden mi-
nors and tests if the current minor Hi is a minor of the input graph G - here the costs
can be expressed as f (Hi)|V(G)|3. Again, f (Hi) does not depend on the input and
is treated as a constant, but this can be quite expensive as well. Thus, even though
necessary and sufficient conditions for a graph to be planar were established, there
was a lot of subsequent research conducted to search for algorithms which allow ef-
ficient planarity testing. In 1974, an asymptotically optimal algorithm for planarity
testing was found by Hopcroft and Tarjan [115] which verifies in O(|V(G)|) time if
a graph G is planar.

Let us take a step back and consider the recognition problem for the extensions
that we proposed earlier.

1. For a fixed k, a simple brute-force algorithm with runtime O(|V(G)|k+1) can
verify if a planar subgraph can be obtained from input graph G after removing
at most k vertices. Similarly, an algorithm with runtime O(|V(G)|2k+1) exists
for the removal of the edges. If k is part of the input, the problem is NP-hard
for both vertices [141] and edges [183].

2. Since the family of graphs of genus k for a fixed k is minor-closed (the proof is
a straight-forward generalization of the one for planar graphs, i.e., graphs of
genus zero), it follows that one can test in polynomial time whether the genus
of a graph is k or not. However, to decide for an arbitrary k and a given graph
G if the genus of G is at most k is shown to be NP-complete [173].

3. For fixed k, we can again verify if G admits a drawing in the plane with at most
k crossings in polynomial time. Namely, for any of the k crossings, we consider
all possible pairs of edges which can form this crossing. We substitute the cho-
sen pair of crossing edges with a K1,4, i.e., a degree four vertex connected to
the endpoints of the pair of crossing edges 4. Let G′ be the resulting graph
obtained by applying this procedure for any of the k crossings. If G′ is pla-
nar (which can be tested in linear time), then cr(G) ≤ k. The total runtime
for this trivial algorithm is O(|V(G)|4k+1); an optimal linear time algorithm
can be found in [131]. We remark here that, contrary to planar graphs, the
family of graphs with crossing number k for k ≥ 1 is not minor-closed [103].
Once again, the general problem of determining the crossing number of a given

3The work to prove this Theorem spawns over 20 papers and we only cite the last one here
4one can show that a crossing minimal drawing of G is simple
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graph is NP-complete [104] if k is provided as part of the input. Moreover, it
was shown [50] that the corresponding minimization problem is APX-hard, i.e,
there exists a constant c0 > 1 such that no (polynomial-time) c0-approximation
of the crossing number is possible. While it is possible that a constant ap-
proximation exists, the current best bound of order O(

√
|V(G)|) for bounded-

degree graphs [57] which uses highly non-trivial techniques may indicate the
opposite.

4. A graph G has thickness k if G is the union of at most k planar graphs. Influ-
enced by the previous extensions, one might think that for a fixed k, deciding if
a graph G has thickness k should be polynomial-time solvable - however, this
turns out to be NP-complete even for the case of k = 2 [145]. If k is fixed and
the given graph G has treewidth t ∈ O(1), then one can show that deciding if
G has thickness k can be solved in polynomial-time. While this follows directly
by a combination of known properties, we could not find this statement explic-
itly and thus provide it here for completeness. By Courcelle’s Theorem [59],
we have that if a graph property is definable in monadic second-order logic
(MSO), then it can be decided in linear time on graphs of bounded treewidth.
For our case, it is more convenient to use MSO2, which allows to quantify over
sets of edges. A statement in MSO2 can be transformed into a statement of
MSO [61] if the considered graph class C is closed under taking subgraphs and
every graph in C is sufficiently sparse, i.e., there exists a constant c such that
|E(G)| ≤ c|V(G)| for any graph G of C. The first condition is guaranteed by
the bounded treewidth, while the latter follows from the fact that, for a fixed k,
a graph G with thickness k can have at most k(3|V(G)| − 6) edges. Hence, by
setting c = 3k, the considered class of graphs is sufficiently sparse. It remains
to express the property of thickness k in a MSO formula. Here, we leverage
the fact that there exists a MSO formular ψplanar which says that a graph is
planar [60]. Thus the resulting MSO2 formula is as follows:

∃X1, . . . , ∃Xk(∀Ee → X1e ∨ · · · ∨ Xke) ∧ ψplanar(X1) ∧ · · · ∧ ψplanarXk (1.1)

Contrary to the crossing number, there exists a 3-approximation of the thick-
ness by computing the arboricity of a graph, which can be done in polynomial
time [101].

5. Testing whether G admits a drawing in the plane where every edge has at most
k crossings is NP-complete for any k ≥ 1 [178]. Moreover, the corresponding
minimization problem is APX-hard, as the existence of an approximation al-
gorithm with ratio 2− ϵ for ϵ > 0 would solve the problem in polynomial time
for k = 1, hence no such algorithm can exist. No approximation algorithms for
any k are known.

To this end, we will develop in Chapter 4 exact and approximate algorithms to test if
graphs of small pathwidth admit drawings in the plane where every edge is crossed
at most k times.

Morphing of planar drawings The study of morphs5 of planar graphs originated
almost a century ago in the work of Steinitz [49], who, fitting to the origin of pla-
nar graphs, proved that there exists a morph for 3-dimensional convex polyhedra
(which correspond to 3-connected planar graphs [184]). In 1944, Cairns showed

5For a definition of the term morph, refer to the introductory paragraph of Chapter 5.
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that a morph exists for maximal planar graphs [51], i.e., triangulations, which was
later extended by Thomassen [171] to general planar graphs, thus settling previ-
ous conjectures by Grünbaum and Shepard [109] and by Robinson [159]. Recent
results are concerned with the complexity of the morph [4] or try to maintain ad-
ditional geometric properties of the drawings throughout the morph such as con-
vexity [14, 87, 133, 171], orthogonality [32, 106] or upwardness [64]. While the algo-
rithm of Cairn computes the trajectories of the vertices explicitly, the work of Floater
and Gotsman [91], which is based on the famous barycenter method by Tutte [175]
and was later extended by Gotsman and Surazhsky [107] to all planar graphs, pro-
vides an algorithm that computes the intermediate drawing at any requested time
instance. Finally, we highlight that these rather theoretical results also find use in
practical applications, e.g., in computer vision, since a morph between two arbi-
trary shapes can be approximated by a morph between their corresponding meshes,
which in turn are just planar grid-graphs and we can use the aforementioned re-
sults [6]. For non-planar graphs, we unfortunately do not have such a rich literature.
To the best of our knowledge, there is exactly one result by Chambers et. al. [52]
which establishes a morph of graphs on the torus, i.e., a surface of genus one6. In
Chapter 5, we will present the first morphing algorithm for graphs of non-constant
genus. In particular, our algorithm computes a morph for a meaningful family of
1-planar graphs.

Straight-line planar drawings The existential proof that every planar graph ad-
mits a straight-line drawing was established independently in [100, 180] almost a
century ago. Algorithmic results which construct a straight-line (grid) drawing of a
graph G with grid-size polynomial in |V(G)| are due to [56, 97, 163]. To this end, it is
still an open question whether there exists a set of grid points S (also called universal
point set) such that |S| ∈ o(|V(G)|2). Let us again consider the natural extensions of
planar graphs (in particular, the latter three).

Graphs with crossing number larger than three may have arbitrarily many cross-
ings when the edges are restricted to straight-line segments [34].

The straight-line embedding of thickness k graphs was mostly studied for k = 2
with the additional requirement that the two planar subgraphs are crossing free in
the resulting drawing. Graphs which admit such a drawing have so called geometric
thickness two. Clearly, geometric thickness k graphs form a subclass of thickness k
graphs. The result of [80] establishes a proper containment for the case of k = 2 by
proving an upper bound on the density of geometric thickness two graphs (which is
strictly smaller than 6|V(G)| − 12)7.

Finally, there are graphs that admit drawings where every edge is crossed at most
once which do not admit straight-line drawings where every edge is crossed at most
once [172].

We observe that none of the three proposed extensions of planar graphs behaves
well when restricted to the straight-line setting. Hence, let us relax the straight-
line requirement for now and allow the edges to consist of polylines, i.e., a chain of
straight-line segments that touch at bend points. Planar graph drawings have also
been extensively studied in the presence of bends. Here, a fundamental result was

6Note that every graph with crossing number at most one admits an embedding on the torus by
definition, so it is also a small result in that direction

7In fact the proper inclusion can be shown for many examples, see [36] for a survey
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FIGURE 1.2: Orthogonal drawing of the NYC metro map by [177].

established by Tamassia [168] in the context of orthogonal graph drawings, i.e., draw-
ings in which edges are axis-aligned polylines. He suggested an approach to min-
imize the number of bends of degree-4 plane graphs using flows; we refer the in-
terested reader to [71]. The motivation behind axis-aligned polylines is not only of
theoretical nature, however. On the one hand, it is used to minimize the area in com-
puter chip design [140], on the other hand, orthogonal drawings are heavily used to
visualize graphs from many different fields of applications such as the visualiza-
tion of metro maps, see Fig. 1.2, which indicates that these drawings meet favorable
aesthetic criteria.

This brings us back to the original goal of graph drawing and the important ques-
tion - can we measure the quality of a drawing? Most results regarding this question
try to identify a set of (measureable) aesthetic criteria that characterize the quality of
a drawing. In particular, empirical studies [23, 152, 165] identified several such crite-
ria, e..g., the number of crossings, the area or the symmetry of the drawing. By def-
inition, orthogonal drawings optimize the angular resolution of the drawing, which
is defined as the minimum angle between two edges that are incident to the same
vertex. Since small angles seem to impair the readability of the drawing, orthogonal
drawings are best possible (for degree-4 graphs) since they attain exactly 90◦. While
crossings negatively affect the readability of a drawing [152], we cannot avoid them
when drawing non-planar graphs. Fortunately, there is still some hope left to obtain
relatively good drawings. The eye-tracking study of [118], where the task was to find
the shortest path between two query points, showed that crossings which occur at a
large angle only slightly impair the readability of a drawing (i.e., the response time
was only slightly slower compared to crossing-free drawings). This implies that the
crossing resolution, for which we want to maximize the minimum angle formed at a
crossing, plays an important role in the quality of a drawing. The reader can verify
this observation themselves in Fig. 1.3 - the identification of the path from vertex
1 to vertex 2 is substantially more difficult in the left drawing, which has a small
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crossing resolution, compared to the right one. This observation gives rise to the
class of right-angle crossing drawings (RAC drawings). Similar to orthogonal draw-
ings, which maximize the angular resolution, RAC drawings maximize the crossing
resolution as every crossing has to occur at a right angle. In Chapter 6, we study
low-degree graphs in the RAC setting both in the presence and absence of bends by
providing efficient constructive algorithms. Since the general problem of deciding
whether a graph admits a straight-line RAC drawing is NP-hard [16], our results
also broaden the subclass of graphs for which this question is trivial.

2

1

1

2

FIGURE 1.3: Example that visualizes the importance of crossing an-
gles, taken from [118]

Beyond planarity Besides the impact of geometric properties of crossings for the
readability of a drawing, the experiment conducted in [148] showed that drawings
with a higher crossing number but small skewness (in the experiment, the removal
of four edges makes the drawing planar) are preferred over crossing-minimal draw-
ings with higer skewness (i.e., more edges have to be removed to obtain a planar
drawing). Hence, also topological properties of the crossings play a role in determin-
ing the quality of a drawing. These observations gave rise to the field of beyond-
planarity. A graph G belongs to a beyond-planar class C (such as RAC), if G admits
a drawing which does not contain a forbidden crossing configuration defined by C -
in our example, the forbidden configuration would be of geometric nature, namely a
crossing which does not occur at a right angle. For an overview of the topic, consider
the recent survey by Didimo et. al. [77].

Recall that the fifth proposed generalization of planar graphs were graphs which
admit a drawing where every edge is crossed at most k times. Since this requirement
is of topological nature, the so called k-planar graphs also form a beyond-planarity
graph class - in fact, they form the most studied such class (in particular for k = 1).
Theoretical considerations of beyond-planar graph classes range from their recog-
nition, which for almost all classes turns out to be hard, over class-inclusion rela-
tionships to so called Turán-Type problems, which is concerned with the maximum
number of edges an n-vertex graph of this class can have.

In Chapter 7 we introduce the class of apRAC drawings which form a natural
restriction of RAC graphs inspired by orthogonal drawings. We consider the inclu-
sion relationship between apRAC and RAC graphs, provide upper bounds on the
edge-density together with (almost) matching lower-bound constructions and show
that the recognition problem remains NP-hard even in this more restrictive setting.

In Chapter 8, we restrict the input graphs to be bipartite and extend previous
work on Turán-Type problems [10] to an additional beyond-planar graph class. In
Chapter 9 we consider the class of fan-planar graphs in detail. We show that all three
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forbidden configurations which are used to define fan-planarity are in fact necessary,
as their relaxation yields a proper superclass. In the latter part of this chapter, we
investigate the maximum thickness a fan-planar graph can have. The first connec-
tion between thickness and a beyond-planar graph class was established by Kainen
in 1973 [124], who studied the relationship between the thickness of a graph and
k-planarity. He observed that a k-planar graph G has thickness at most k + 1. This
follows from the fact that G admits by definition a drawing where every edge crosses
at most k other edges, hence the edge intersection graph has maximum degree k and
admits a vertex coloring using at most k + 1 colors. Other results relating the thick-
ness and a beyond-planar graph class C can be inferred as follows. If C has bounded
edge-density, i.e., an n-vertex graph of C has at most xn many edges and if the class
C is hereditary (which is true for all common classes of beyond-planar graphs), then
the arboricity of C is at most x by [149] and consequently, by Eq. (3.7), the thickness
of C is at most x. In particular, since n-vertex k-planar graphs have at most 3.81

√
kn

edges [1], their thickness is at most O(
√

k). In the case of fan-planar graphs, the
edge-density argument yields an upper bound of five, which we improve to three
in Chapter 9.

Experimental results In the third part of the thesis, we take a step back from the
theoretical results and consider the problem of finding aesthetically pleasing draw-
ings from an algorithmic point of view. To this end, we present in Chapter 10 an
algorithmic framework that simultaneously optimizes several aesthetic criteria such
as the crossing number, the angular resolution or the stress-value of a drawing. The
benefits of our framework over previous approaches is its ease of extension to ad-
ditional aesthetic criteria. In each step, our algorithm changes the drawing locally
(by moving a single vertex) to guarantee efficient reevaluations of the optimization
function. If the considered criterion is of local nature, we identify a set of critical
vertices which are subject to change in the following iterations. To also optimize
global criteria, we alternate between specific and random choices for the next ver-
tex. Finally, in contrast to previous work that optimized several criteria at once, e.g.,
the work of Davidson and Harel [65], we do not use (empirically found) constants to
regulate the contribution of individual criteria to the global cost function, but rather
use a normalization of the values followed by an adaptive weighting scheme [112] to
guarantee that the contribution of the criteria is as uniform as possible. By construc-
tion, our algorithm is a perfect candidate to postprocess already “good” drawings,
e.g., ones obtained by stress minimization algorithms [99, 125].

Structure of the thesis Chapter 2 and Chapter 3 contain definitions and prelimi-
nary results used throughout the thesis. The first part contains algorithmic results
which extend important topics of planar graphs to non-planar ones. In the second
part, we obtain combinatorial results for a broad set of beyond-planar graph classes.
In the last part, we introduce an algorithmic framework which jointly optimizes sev-
eral aesthetic criteria. Finally, we summarize our results and provide concluding
remarks in Chapter 11. Chapter 4 to Chapter 10 are structured as follows. First, we
give a small introduction to the considered problem, which contains a related work
part and ends with a paragraph that summarizes our contribution. This paragraph
also contains references to the publications that the chapter may be based on. At the
end of every chapter, we state open problems that arise by our work.
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Chapter 2

Definitions

Most of the required definitions are stated in this chapter. Additional background in
computational geometry, mathematical logic and topology can be found in [31], in
[62] and in [146], respectively.

2.1 Graph Theory

Basic notation A graph G = (V, E) is a tuple that consists of two (disjoint) sets V
and E with E ⊆ V × V. The elements of V are called vertices, while the elements
of E are called edges. Throughout the thesis, the reader may assume that V and E
are both nonempty1. We refer to the vertices of a graph as V(G) and to the edges
of a graph as E(G) (independent of the actual names of these sets), which will be
useful once several (auxiliary) graphs are considered simultaneously. If it leads to
no confusion, we also talk about vertices (edges) of G instead of vertices (edges) of
V(G) (of E(G)). Throughout the thesis, when numbering any sort of object, we will
always assume that all arithmetic on indices is modulo the size of the considered set
of objects, which is usually self-evident.

Size and density The number of vertices (edges) of a graph G is denoted by |V(G)|
(|E(G)|). If it leads to no confusion, we will also abbreviate |V(G)| with n and |E(G)|
with m throughout the thesis. The density of a graph is simply the quotient |E(G)|

|V(G)| . If
|E(G)|
|V(G)| ∈ O(1), we call the graph sparse, otherwise we call the graph dense. The terms
denser and sparser simply refer to graphs with higher and smaller density compared
to some baseline.

Edge-vertex interaction A vertex v is incident to an edge e if v ∈ e - conversely, we
refer to the vertices u and v that are incident to e as the endpoints of e. If the graph
is undirected, then an edge of G is an unordered tuple {u, v} which will be abbrevi-
ated with uv in the following. Otherwise, if the direction of an edge is important,
the edge e = (u, v) is an ordered tuple with source u and target v. Two edges that
share (at least) one endpoint are called adjacent, otherwise they are called indepen-
dent. Similarly, two vertices connected by an edge are called adjacent or neighbors.
The neighborhood N(v) of a vertex v is the set of neighbors of v. With a slight abuse
of notation, we denote by E(v) the set of edges that is incident to vertex v. A graph
is called simple if it contains neither a self-loop, i.e., an edge where both endpoints
coincide, nor multiple edges which connect the same pair of vertices.

1In fact, for the covered topics that are concerned with non-planar graphs the interesting cases only
arise when both |V| and |E| are larger than four
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Degree The degree of a vertex v of graph G is |E(v)|, i.e., the number of incident
edges to v. A graph G is called degree-k if the maximum degree of a vertex of G
is k - if all vertices have degree exactly k then G is called k-regular - in particular, a
3-regular graph is also called a cubic graph.

Paths and cycles A path (v1, v2, . . . , vk) is a sequence of vertices such that vi and
vi+1 are adjacent for 1 ≤ i < k. The length of a path is the number of vertices in the
sequence. If additionally vk and v1 are also adjacent, the sequence is called a cycle.
A graph is called connected if, for any pair of vertices v and u, there exists a path
P such that v is the first and u is the last vertex of P, otherwise the graph is called
disconnected. A connected graph that does not contain any cycle is called a tree.

Subgraph Let G = (V, E) be a graph. Graph G′ is called a subgraph of G, denoted
by G′ ⊆ G, if V(G′) ⊆ V(G) and E(G′) ⊆ E(G) holds. If E(G′) contains all edges
uv ∈ E(G) with u ∈ V(G′) and v ∈ V(G′), then G′ is called an induced subgraph. We
denote by G[S] the induced subgraph of the vertices of S ⊆ V(G). A (sub-)graph
G is called edge-maximal with respect to a specific property x if G satisfies x, but
the addition of any edge to G yields a graph that does not satisfy x. Similarly, we
define vertex-maximality of a subgraph, i.e., for a subgraph G′ ⊆ G we have that the
addition of any vertex of V(G) \ V(G′) to G′ yields a graph that does not satisfy
the considered property. The induced subgraphs of a graph that are vertex-maximal
with respect to connectivity are called components of G. A property P of a graph G is
called hereditary, if P holds for G and in addition for every induced subgraph of G.

Subdivision and contraction The subdivision of an edge uv removes uv from the
graph, introduces a new vertex v′ and connects u and v to v′ - more formally, the
graph G′ after the subdivision of e is such that V(G′) = V(G) ∪ {v′} and E(G′) =
E(G) \ {e} ∪ {uv′, vv′}. Conversely, the contraction of an edge uv removes uv from
the graph and merges the two vertices u and v into a new vertex w. The resulting
graph G′ is such that V(G′) = V(G) \ {u, v} ∪ {w} and E(G′) = E(G) \ (E(u) ∪
E(v)) ∪ {wx | x ∈ (N(u) ∪ N(v)) \ uv)}. Graph G is a minor of graph G0 if there
exists a sequence of edge contractions of G0 which yields the intermediate graphs
G1, G2, . . . such that G ⊆ Gi.

Connectivity A graph G is k-connected, for some k > 0, if there exists no set S with
|S| ≤ k − 1 vertices such that G \ S disconnects G 2. A 2-connected (3-connected)
graph is called biconnected (triconnected). If the removal of set S disconnects G and
|S| = 1, i.e., S contains exactly one vertex, then this vertex is called a cut vertex. If
|S| = 2, then the two vertices contained in S are called a separation pair.

Coloring A vertex coloring of G with k colors is a function c : V(G) → {1, 2, . . . , k}
such that for any edge uv ∈ E(G) it holds that c(u) ̸= c(v). Similarly, an edge coloring
assigns a color to each edge such that no two adjacent edges have the same color.
Unless otherwise specified, we assume that a coloring of graph G always refers to
a vertex coloring. If we denote by S1, S2, . . . Sk the set of vertices obtained from the
coloring, we observe that G[Si] does not contain any edge by definition - we refer to
such a set as an independent set.

2It follows that 1-connected coincides with the definition of connected
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Bipartite graphs A graph that admits a two-coloring is called a bipartite graph3.
Let G = (V, E) be a bipartite graph. By definition, we have that V = A ∪ B and
A ∩ B = ∅, where A and B are called the parts of the graph. When considering
bipartite graphs in detail, we will generally denote vertices of A as ai and vertices of
B as bi.

Clique A clique S ⊆ V(G) is a set of vertices such that for any u, v ∈ S, u ̸= v we
have that uv ∈ E(G). We observe that a clique is the complement of an independent
set. If S = V(G), i.e., any two vertices of the given graph are adjacent, then G is
called a complete graph. We denote the complete graph on n vertices as Kn. The
complete bipartite graph Ka,b is a graph with V(G) = A ∪ B, |A| = a, |B| = b and
ab ∈ E(G) for any a ∈ A and any b ∈ B.

Decompositions A tree decomposition T of G is an auxiliary graph such that

1. T is a tree

2. The vertices of T are subsets of V(G) called bags

3. The endpoints of every edge of E(G) are both contained in at least one bag

4. If bag bi and bag bj contain a vertex v ∈ V(G), then there exists a path P =
(bi, . . . , bj) in T such that every bag of P contains v.

A path decomposition P of G further restricts the auxiliary graph to be a path, not an
arbitrary tree. The treewidth of T is defined as maxi |bi| − 1. The treewidth tw(G) of
a graph G is then defined as the minimum treewidth over all valid tree decomposi-
tions. The definition for the pathwidth is analogous.

Graph Isomorphism Two graphs G1 = (V1, E1) and G2 = (V2, E2) are called iso-
morphic if there exists a bijective function ϕ : V1 → V2 such that

uv ∈ E1 ⇒ ϕ(u)ϕ(v) ∈ E2

holds for any uv ∈ E1.

2.2 Graph Drawing

Drawing A drawing Γ(G) of a graph G is a continuous map of G to the Euclidean
plane R2. To be more precise, vertices of V(G) are mapped to distinct points in R2

and edges are mapped to Jordan arcs between the images of its two endpoints. Two
Jordan arcs γ1, γ2 : [0, 1] → R2 define a meet if γ1(x) = γ2(y) for some x, y ∈ [0, 1] 4.
If both x and y are not in {0, 1}, the meet does not coincide with the (images of)
the endpoints, then γ1 is crossing γ2 if the curves switch sides 5 at the meet, which
is then called a crossing point. If the meet is not internal, then the corresponding
edges are necessarily adjacent as the vertices are mapped to distinct points. We will

3Equivalently, a graph is bipartite if and only if it does not contain any odd cycle
4There could be a pair of intervals I1, I2 ⊆ [0, 1] such that γ1(I1) = γ2(I2) holds, i.e., the Jordan arcs

overlap in more than a single point - however, we will impose that this will not occur in the considered
drawings

5to be more precise, if we consider the cyclic order of the curves around the meet, a crossing occurs
if the two curves alternate
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assume from now on that any internal meet is in fact a crossing and the crossing
point between any pair of edges is distinct 6. If it leads to no confusion, we do
not differentiate between vertices (edges) and their respective images, i.e, points
(Jordan arcs) in R2. We call a drawing Γ(G) simple if (in Γ(G)) no adjacent edges
cross, no edge crosses itself and no two edges cross more than once. We will use the
term intersection and crossing interchangeably. The drawing Γ(G′) of an (induced)
subgraph G′ ⊆ G is obtained by restricting the drawing of Γ(G) to the edges of G′.

Topological equivalence A cell of Γ(G) is a connected component of the comple-
ment of the set of points and Jordan arcs onto which the vertices of G are mapped.
Such a cell c is uniquely defined by the ordered list of vertices and crossings points
which lie on the boundary δc of c. We refer to the union of these cells as the ar-
rangement of Γ. Two drawings Γ1 and Γ2 are called topologically equivalent if the two
arrangements are homemorphic, i.e., there exists a topologically preserving isomor-
phism between the arrangements of Γ1 and Γ2. If two arrangements are topologically-
equivalent, they necessarily imply the same rotation system of the vertices and cross-
ings, i.e., the cyclic order of the edge-(segments) incident to the vertices and cross-
ings is equivalent in both Γ1 and Γ2. The set of drawings with the same rotation
system form an equivalence class; we call the corresponding class a combinatorial
arrangement.

Geometric drawings A drawing Γ(G) of a graph G is called a geometric drawing if
for any edge e = uv of G we have that γe : [0, 1] → R2 with γe(0) = γu, γe(1) = γv
and γe(x) = xγe(0) + (1 − x)γe(1), i.e, γe is a straight line connecting (the images
of) u and v. A k-bend drawing of G is a polyline drawing where every edge is drawn
as a chain of at most k + 1 segments. The point in which two consecutive segments
touch is then called a bend of the edge. The area of a geometric drawing is the size
of the smallest rectangle that contains all vertices and edge segments in its interior,
where the vertices and bends must lie on integer coordinates.

If the edges of G are mapped to arbitrary Jordan arcs, then the drawing is also
called a topological drawing. In the remainder, we always assume that the described
drawing is topological unless otherwise specified.

Intersection graph and planarization Let G be a graph and Γ(G) a drawing of G
in the plane and C ⊂ E × E be the set of crossings of Γ(G). Then, the intersection
graph I of Γ(G) is such that V(I) = E(G) and E(I) = C, i.e., we have a vertex in
I for every edge of G and two vertices of I are adjacent if the two corresponding
edges cross in Γ(G). A planarization P of Γ(G) substitutes each crossing of C with a
degree-4 vertex - in particular, for a crossing between e1 and e2 this is equivalent to
subdividing e1 with vertex v1 and e2 with vertex v2 and identifying v1 = v2.

Planarity If Γ(G) is a drawing without a crossing, then Γ(G) is called an embedding
of G. A graph G is called planar if there exists an embedding of G in R2. A planar
embedding of G divides the plane into nonempty7 regions, which we denote as faces.
Observe that the faces of G form a special arrangement, as the boundary of any cell

6We remark that this is not a restriction - namely, for any internal meet I which is not a crossing
or if I is a crossing point where more than two edges intersect, we can define an ϵ-neighborhood of I
in R2 which contains only the involved edges and hence a slight perturbation of the edges inside this
neighborhood will solve the issues

7here, nonempty refers to the fact that the regions are not degenerate
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of the arrangement only contains vertices and edges. We call the equivalence class
of Γ(G) a combinatorial embedding.

The length of a face f , denoted by | f |, is equivalent to the number of vertices
of δ f . A vertex that occurs several times n δ f will contribute several times to the
length of f . The unbounded face of the drawing will be called the outer face. The set
of faces of Γ(G) will be denoted by F(Γ(G)) and from now on abbreviated as F(G) if
it leads to no confusion. If G is an edge-maximal planar graph, then we have | f | = 3
for every face f of G and G is called a triangulation.

Genus The genus y of a surface S is the maximum number of closed curves (which
are contained inside S and whose pairwise intersection is empty) such that they do
not disconnect S. For example, the genus of the plane is 0, as any closed curve
divides the plane into two disjoint regions [122]. The genus y(G) of a graph G is the
minimum number y such that G has an embedding on a surface with genus y. For
example, y(K4) = 0, while y(K5) = 1. A surface of genus one is called a torus. Unless
otherwise specified we will always assume that a graph is drawn in the plane.

Partitions The thickness of a graph G is the minimum number of subgraphs G1, . . . Gk
such that E(G) =

⋃
i E(Gi) and Gi is a planar graph for any 1 ≤ i ≤ k. The arboricity

is defined similarly, but, in addition, every subgraph Gi is required to be a forest, i.e.,
a graph where each component is a tree.

Crossing number The crossing number of a drawing Γ(G) is simply the number
of pairwise crossing edges. The crossing number of G is the minimum number of
crossings over all drawings of G. It can be shown that a drawing with the minimum
number of crossings is necessarily simple [160].

2.2.1 Beyond-planar graph classes

k-planar graphs A graph G is called k-planar if G admits a drawing Γ(G) in the
plane such that every edge is crossed at most k times. Schaefer [160] showed that,
contrary to the crossing number, k-planar graphs might require non-simple draw-
ings in order to obtain the minimum number of local crossings for k ≥ 4.

Gap-planar graphs A graph G is called k-gap-planar if G admits a drawing Γ(G)
such that there exists an assignment of the induced crossings C of Γ(G) to the edges
of G that satisfies the following properties:

1. A crossing between edges e1 and e2 is assigned to either e1 or e2.

2. Any edge of G is assigned at most k crossings.

For an alternative view, consider the intersection graph I of drawing Γ(G) . The
assignment can then be interpreted as an orientation of the edges of I such that any
vertex of I has at most k incoming edges, i.e., any vertex of I is the target of at most
k edges.

RAC graphs A graph G is a RAC (right-angle crossing) graph if G admits a geo-
metric drawing Γ(G) such that the smallest angle formed by any two crossing edges
in Γ(G) is exactly 90◦.
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2.3 Complexity Theory

We are concerned with decision problems, i.e., for any given input to the problem, the
output will either be “yes” or “no”. Fix such a decision problem A.

Computational complexity classes We say that A belongs to class P if there exists a
deterministic algorithm that can solve A in polynomial time with respect to the input
size of A. Throughout this thesis, we will consider decision problems on graphs
and assume that the input size of A is the number of vertices of the graph unless
otherwise specified.

A problem A belongs to class NP if, given a solution to a “yes”-instance of A,
we can verify in polynomial time using a deterministic algorithm if the solution is
correct. The class of NP-complete problems forms a subclass of NP. In particular,
a problem A is NP-complete if A belongs to NP and every problem A′ in NP can
be reduced to A in polynomial time (using a deterministic algorithm). Finally, a
problem A is called NP-hard if there exists an NP-complete problem A′ such that A′

can be reduced to A in polynomial time. Observe that NP-hard problems do not
necessarily have to be in NP - hence, the verification of a solution to an NP-hard
problem might be impossible in polynomial time. In fact, NP-hard problems are not
required to be decision problems, but can be optimization problems instead.

Approximations Let X be an optimization problem, in particular, assume that X is
a minimization problem. An algorithm A is called a k-approximation of X, if, for any
instance x of X, we have that the solution-value f (x) of the solution provided by A
is at most k · OPT, where OPT is the optimal solution of x. The class APX contains
all optimization problems which admit k-approximation algorithms for constant k
and polynomial running time. A polynomial-time approximation scheme (PTAS) is
an algorithm, which takes an optimization problem X and a parameter ϵ > 0 and
yields a (1 + ϵ)-approximation algorithm for X whose running time is polynomial
for a fixed value of ϵ.

If we assume that P ̸= NP, then every problem that is APX-hard does not admit a
PTAS. Similar to NP-hard problems, APX-hard problems do not necessarily belong
to APX.
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Chapter 3

Preliminaries and Tools

This chapter is supposed to list some (elementary) results for completeness and to
refer to later on. Some of them are taught in class, some of them are foundational
results and some of them can be immediately derived from the definitions.

Graphs Since any edge has exactly two endpoints, the following relation immedi-
ately follows for any graph G, which is widely known as the Handshaking Lemma

∑
v∈V(G)

deg(v) = 2|E(G)| (3.1)

Planar graphs Let G be a planar graph and Γ(G) be a (planar) embedding of G.
Denote by c the number of connected components of G and let F be the set of faces of
Γ(G) . Euler’s Formula then relates the number of vertices, edges, faces and connected
components as follows.

|V(G)|+ |F(G)| − |E(G)| = c + 11 (3.2)

The formula can be for example proven using induction on the vertices. We direct
the interested reader to [85], which lists 21 different proofs of the statement. Let G be
a planar graph and let Γ(G) be an embedding of G. As any edge belongs to exactly
two facial walks, we have the following relation for planar graphs:

∑
fi∈F(G)

| fi| = 2|E(G)| (3.3)

Let G be a simple planar graph. Then,

|E(G)| ≤ 3|V(G)| − 6 (3.4)

If G is in addition bipartite, then

|E(G)| ≤ 2|V(G)| − 4 (3.5)

We provide a short proof here for completeness: Clearly, if G is not connected, the
addition of an edge to G does not break planarity (since at least one vertex of each
component is on the outer face), thus we can assume that G is connected since we
aim to provide an upper bound on the number of edges. Since G is simple, it contains
no self-loop nor multi-edges, hence any face has length at least three. Using Eq. 3.3,
we obtain 3|F(G)| ≤ 2|E(G)|. We substitute |F(G)| in Eq. 3.2 with this inequality
and obtain |V(G)| + 2

3 |E(G)| − |E(G)| ≥ 2. Solving for |E(G)| yields |E(G)| ≤
1If the given graph is connected we have c + 1 = 2.
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3|V(G)| − 6. For the bipartite case, we observe that a face of length k implies a
cycle of length k in G – it follows that a bipartite graph cannot have odd length
faces. Hence, any face has length at least four and by repeating the argument above
we obtain 4|F(G)| ≤ 2|E(G)| and |V(G)|+ 1

2 |E(G)| − |E(G)| ≥ 2 which yields the
desired result.

Crossing Lemma The famous Crossing Lemma [3] relates the number of crossings
of a graph G to its number of vertices and edges. Namely,

cr(G) ≥ |E(G)|3
c · |V(G)|2 (3.6)

We remark here that this lower bound is asymptotically tight as it can be shown
that the complete graph Kn with n vertices and Θ(n2) edges has Θ(n4) crossings.
The initial work showed the statement with the constant c = 64 for graphs where
|E(G)| ≥ 4|V(G)| holds. If we restrict the lemma to only work for denser graphs,
we can improve the leading constant. The current best constant of c ≈ 29 [1] holds
for graphs with |E(G)| ≥ 7|V(G)|.

Arboricity and thickness Let G be a graph and denote by a(G) and t(G) its ar-
boricity and thickness, respectively. Consider the following equation which relates
the arboricity and the thickness.

a(G)

3
≤ t(G) ≤ a(G) (3.7)

The upper bound for t(G) holds as any forest is a planar graph. For the lower
bound, we observe that any planar graph can be decomposed into three forests2,
hence it follows that t(G) ≥ a(G)

3 . Computing the thickness of a given graph (or
even deciding if the thickness is two or not) is in general NP-complete [145]. How-
ever, as the arboricity can be computed in polynomial time [101], there exists a 3-
approximation to the thickness. By the Nash-Williams theorem [149], the arboricity
of G is a(G) = maxS

|E(S)|
|V(S)|−1 , where S ranges over all subgraphs of G.

Rerouting of edges A common tool to slightly alter a drawing Γ is to locally change
the curve of an edge e, which will be called a rerouting of the edge e. Let S =
(e1, e2, . . . , ek) be an ordered sequence of edges and let ei = uivi. We say that an
edge e = (u, v)3 can be drawn along S if the following conditions hold:

1. u ∈ e1 ,

2. v ∈ ek and

3. for any 1 ≤ i ≤ k − 1, the edge ei shares a common point xi with ei+1 (which is
usually an intersection point).

We then draw e along S by starting at u, we follow the curve of e1 until x1, follow
the curve of e2 until x2 and repeat until we reach v.

2such a decomposition can be for example derived from [163]
3the edge e may be undirected, however, when routing an edge specifically it is easier to give it a

direction and draw it from a specified source to a target
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Part I

Algorithmic constructions
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Chapter 4

Exact and approximate k-planarity
testing for graphs of small
pathwidth

4.1 Introduction

We consider the following fundamental problem of graph theory in this chapter.
Given a graph G and a class of graphs C - can we efficiently test if G is contained in
C? As discussed in the introduction, this can be answered in the affirmative if class
C is minor-closed, e.g., if C corresponds to the class of planar graphs. Unfortunately,
many extensions of planar graphs are not minor-closed and for some the recogni-
tion problem is even known to be NP-complete. We consider in the following the
recognition problem for the class of k-planar graphs.

Related work The recognition of k-planarity was mainly studied for k = 1. It is
NP-hard [108, 136] to decide if a given graph is 1-planar. The problem remains NP-
hard for bounded pathwidth graphs [22]. Positive results were obtained for some
restricted classes of 1-planar graphs. Namely, one can test in linear time if the graph
is (i) outer-1-planar [19], (ii) optimal 1-planar [43] or (iii) maximal 1-planar if we
assume that the rotation system (i.e., the circular ordering of the edges around each
vertex) is given [82]. We remark that the assumption of a given rotation system
does not make the result trivial, as it can be shown that the recognition problem of
1-planarity remains NP-hard for 3-connected graphs even if the rotation system is
provided [20].

For general k, the work of [178] shows that the recognition of k-planarity is NP-
hard for arbitrary k. Moreover, they show that the corresponding minimization
problem is APX-hard (in fact, it can not be approximated by a constant smaller than
2 − ϵ). Regarding positive results, it can be shown [96] that simple optimal 2-planar
graphs can be recognized in linear time.

The restriction to graphs with small pathwidth was used in [170] to obtain ap-
proximation algorithms for the crossing number problem of a graph G.

Our contribution We study exact and approximate k-planarity testing for graphs
of small pathwidth. Besides providing some classes of graphs for which 1-planarity
testing can be done efficiently, we will also provide algorithms that yield so called
x-approximations to k-planarity. An x-approximation to k-planarity either yields a
drawing in which every edge is crossed at most (x · k) times - or we can certify that
the input graph cannot be k-planar.
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In Sections 4.3 and 4.4 we provide exact algorithms which recognize (in lin-
ear time) whether 3- or 4-paths, which are maximal pathwidth-3 and pathwidth-
4 graphs, respectively, are 1-planar, thus extending the class of graphs for which
testing 1-planarity can be done efficiently. In Section 4.5, we consider pathwidth-3
graphs and provide an algorithm that yields a 6-approximation to k-planarity for
k ≤ 4 and a 7-approximation for general k. Finally, in Section 4.6, we consider w-
paths for arbitrary w and provide a construction which yields a O(w)-approximation
to k-planarity.
This chapter is based on joint work with Miriam Münch and Ignaz Rutter titled “Ex-
act and approximate k-planarity testing for maximal graphs of small pathwidth”
which was recently accepted at the “50th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG2024)”.

4.2 Preliminaries

We briefly recall relevant concepts from Chapter 2. A k-planar graph G is a graph
that admits a drawing Γ such that every edge is crossed at most k times in Γ. A
path-decomposition is a sequence of subsets of vertices of G such that the endpoints
of each edge appear in one of the subsets and such that each vertex appears in a
contiguous subsequence of the subsets. The pathwidth of such a decomposition is
one less than the size of its largest set. The pathwidth pw(G) of a graph G is the
smallest width among all possible path-decompositions of G. A w-path is a graph G
of pathwidth w such that in any width-w path decomposition of G each bag forms
a clique. Adding any edge in a w-path increases its pathwidth, this is why they are
also called maximal pathwidth-w graphs. In the following, we will use a special type
of path decomposition introduced by Biedl et. al. [170]. A path decomposition P of
G of width w is alternating if P contains exactly l = 2|V(G)| − 2w − 1 bags such that
|Xi| = w + 1 if i is odd and |Xi| = w if i is even with Xi−1 ⊃ Xi ⊂ Xi+1 for every
even 1 < i < l; see Figure 4.1.

a b
c d

a b
c

a b
c e

a b
c f

a g
c f

a b
c

a f
c

C1
C2

d

a

b

c

e

f

g

(a) (b)

FIGURE 4.1: A 3-path G (a) with alternating path decomposition P of
width 3 (b). P contains two clusters C1, C2 with anchor triplet {a, b, c}

and {a, c, f }, respectively.

Let G be a graph of pathwidth w and let P = X1, . . . , Xl be an alternating path
decomposition of G. For a bag Xi with |Xi| = w, the cluster C is the maximal (con-
secutive) set of bags which all contain Xi; i.e. C = {Xp | Xi ⊆ Xp}; see Figure 4.1.
By definition, any bag Xi is contained in at most two clusters - if Xi is contained in
exactly one cluster C with anchor set Y, then we will also call Y the anchor set of Xi.
If Xi is contained in two clusters Ca and Cb with a < b, then the anchor set of Xi will
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be the anchor set of Ca (in particular, this anchor set is then Xi−1). In the special case
of w = 3, we call the anchor sets anchor triplets and denote them by T.

Lemma 1 ([170]). Let G be a graph with a path decomposition P = X1, . . . , Xl of width w
and let v ∈ X1. Then G has an alternating path decomposition P′ = X′

1, . . . , X′
k of width w

such that contains v ∈ X′
1. It can be found in O(w · |P|) time.

Let X be an arbitrary bag of size w + 1 in an alternating path decomposition of
width w of a w-path G such that Y is the anchor set of X. If vertex d ∈ V(G) is
connected to 1 ≤ k ≤ w vertices of Y, then d is called a k-stack of the set N(d) ∩ Y.
In Figure 4.1, vertex f is a 3-stack of {a, b, c}. We will call a k-stack proper, if it does
not belong to any anchor set - in our example, vertex f is not a proper 3-stack as
it is contained in the anchor set of C2, but vertex e is. Let Γ be a 1-planar drawing
of a 1-planar graph G with pathwidth w and let X1, . . . , Xl be the bags of the path
decomposition. We denote by Γ[i] the subdrawing of Γ induced by the vertices of
Xi. Moreover, we denote by Γ[i : j] the subdrawing of Γ restricted to the vertices of⋃j

s=i Xs. We write Γ[: j] for Γ[1 : j] and Γ[i :] for Γ[i : l]. Similarly we denote by G[i : j]
the subgraph of G induced by the vertices of

⋃j
s=i Xs and write G[: j] for G[1 : j] and

G[i :] for G[i : l].
In order to guarantee that a given graph cannot be k-planar, we will leverage the

following tools.

Lemma 2. K3,7k+1 is not k-planar.

Proof. The crossing number of K3,a is ⌊ a
2⌋⌊

a−1
2 ⌋ [156]. Since K3,a has 3a edges

lcr(K3,a) ≥
2
3a

· ⌊ a
2
⌋⌊ a − 1

2
⌋ =

{
2
3a ·

a
2 ·

a−2
2 = a−1

6 , if a even
2
3a ·

a−1
2 · a−1

2 = (a−1)2

6a , otherwise

Choosing a = 7k + 1 then yields the desired result.

In fact, for small k, we can obtain stronger results.

Lemma 3 ([135],[11]). K3,3+4k is not k-planar for k ≤ 4.

Lemma 4. A w-path is not k-planar if w+2
7.62 >

√
k.

Proof. A w-path G contains an induced Kw+1 by definition, which is a subgraph on
w + 1 vertices with (w+1)(w+2)

2 edges. Since an n-vertex k-planar graph has at most
3.81

√
kn edges [1], G cannot be k-planar if w+2

2 > 3.81
√

k holds.

For the special case of 1-planarity, we have stronger tools at hand.

Lemma 5 ([135]). The complete graph K7 with three missing edges which form a K3, denoted
by K−△

7 , is not 1-planar.

The following graph on 8 vertices is also not 1-planar and might be of interest
independently. Let C+

5 denote a 5-cycle with a chord and let K−
6 be the graph we

obtain from the complete graph on 6 vertices by deleting one edge. In the remainder,
let H = K8 − C+

5 , see Figure 4.2 for an illustration of H and its complement.
By construction, H consists of vertices v1,v2 and v3 with degree seven, vertices

v4,v5 and v7 of degree five and vertices v6 and v8 of degree four. Consider now the
subgraphs H1 = {v1, v2, v3, v4, v6, v7} and H2 = {v1, v2, v3, v4, v5, v7} and observe
the following properties:



22
Chapter 4. Exact and approximate k-planarity testing for graphs of small

pathwidth

v2
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v4

v5

v6

v7

v8

v1

v1

v2
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v4

v5

v6

v7

v8

FIGURE 4.2: Graph H and its complement.

• H1 and H2 are both isomorphic to K−
6

• v1, v2 and v3 are contained in both H1 and H2

• v8 ̸∈ H1 ∪ H2

• v5v8 ∈ H

• v5 ∈ H2 and v5 ̸∈ H1.

Lemma 6. The graph H = K8 − C+
5 is not 1-planar.

Proof. Since H1 = K−
6 it has exactly three 1-planar embeddings up to isomorphism

[135]; see Figure 4.3.

FIGURE 4.3: The three non-isomorphic 1-planar drawings of K−
6 . The

edge between the red vertices is missing.

To extend these embeddings to an embedding of H consider the addition of ver-
tex v5. By construction, v5 has to be connected to three black and exactly one red
vertex of Figure 4.3. One can easily see that this is impossible for the middle and the
right drawing, while we obtain six non-isomorphic 1-planar drawings after inserting
v5 in to the left drawing of H1, see Fig. 4.4.

Finally, to complete our drawing to H, we have to add vertex v8 - which is con-
nected to v5, i.e., the blue vertex and in addition to the three black neighbors of v5.
However, as shown in Fig. 4.5 we have in every case that a subset of the crossed
edges (fat in Figure) bound a region that contains neighbors of v8 both in the inte-
rior and the exterior - and since we cannot intersect the boundary of this region, we
obtain the desired result.
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FIGURE 4.4: Six non-isomorphic 1-planar drawings of H1 + v7. Vertex
v7 is drawn in blue.

FIGURE 4.5: The bold edges cannot be crossed anymore and form a
region that contains neighbors of v8 (red vertices) both in the interior

and exterior and thus no 1-planar drawing of H is possible.

4.3 3-Paths

In this section, we will provide an efficient algorithm to test if a 3-path is 1-planar.
For the remainder of this section let G be a 1-planar 3-path and let P = X1, . . . , Xl be
an alternating path decomposition of G. Let C1, . . . , Cs be the corresponding clusters
with corresponding anchor triplets T1, . . . , Ts in the order given by P. Further, let X
be the set of vertices of G that are contained in at least one anchor triplet. We call the
subgraph G[X] of G induced by X the skeleton of G.

Our first goal is to show that if G is 1-planar, then there exists a 1-planar drawing
Γ such that Γ[X] is planar. To this end, we will first establish a structural property of
low degree vertices.
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Lemma 7. Let z be a vertex of degree 3 in G such that the subgraph H induced by z ∪ N(z)
is isomorphic to K4. If Γ[H] is not planar, then there exists a 1-planar drawing Γ′ of G s.t.

(i) Γ′[H] is planar,

(ii) any two crossing edges of Γ′ cross also in Γ, and

(iii) all vertices and edges of G that are not in H are drawn in the face of Γ′[H] that is not
incident to z.

Proof. Denote the vertices of H by u, z, v, w such that uz crosses vw in Γ by assump-
tion. By 1-planarity, the cycle uvzw can be drawn without crossings in such a way
that its interior contains only the two crossing edges uz and vw. Then Γ − z contains
an empty triangular face that is incident to u, v, w and by inserting z into this face,
we obtain a 1-planar drawing Γ′ of G that satisfies all three conditions.

We will now leverage this lemma to prove the following statement.

Lemma 8. There exists a 1-planar drawing Γ of G such that Γ[i] is planar for each 1 ≤ i ≤ l.

Proof. Let Γ be a 1-planar drawing of G that minimizes the number of crossings.
Assume for the sake of contradiction that there is a bag i such that Γ[i] is non-planar.
If there is a vertex z in Xi such that Xi is the only bag that contains z, then degG(z) =
3 and the vertices of Xi induce a K4 by maximality. Hence, we can apply Lemma 7
to obtain a 1-planar drawing with fewer crossings; a contradiction.

We may hence assume that 1 < i < l and that Xi = {u, v, w, z} with z /∈ Xi−1 and
u /∈ Xi+1. Observe that z has degree 3 in G[1 : i] and by applying Lemma 7 to Γ[1 : i],
we obtain a drawing Γ1 of G[1 : i] with fewer crossings than Γ[1 : i] such that Γ1[i]
is planar and all other vertices and edges are drawn inside the face of Γ1[i] incident
to u, v, w. Likewise, u has degree 3 in G[i : l] and by applying Lemma 7 to Γ[i : l],
we obtain a drawing Γ2 of G[i : l] with fewer crossings than Γ2[i : l] such that Γ2[i]
is planar and all other vertices and edges are drawn inside the face of Γ2[i] incident
to v, w, z. Combining the drawings Γ1 and Γ2 yields a 1-planar drawing of G with
fewer crossings than Γ; a contradiction.

This observation allows us to transform an arbitrary 1-planar drawing Γ of G
into a 1-planar drawing Γ′ of G such that Γ′[i] is planar for every 1 ≤ i ≤ l and any
two crossing edges of Γ′ cross also in Γ.

Hence, we can assume from now on that Γ[i] satisfies Lemma 8 for any 1 ≤ i ≤ k.
In the next lemma, we will extend this result to Γ[X].

Lemma 9. There exists a 1-planar drawing Γ of G such that the subdrawing Γ[X] is planar.

Proof. Let Γ be a 1-planar drawing of G. By Lemma 8 we may assume that each
bag of P induces a plane drawing in Γ. Assume that edges of two distinct anchor
triplets Ti = {ai, bi, ci} and Tj = {aj, bj, cj} cross in Γ. Without loss of generality
assume i < j and that there is no index i < k < j such that Tk crosses Ti or Tj.
Note that i ̸= j − 1, since then P would contain a bag X = Ti ∪ Tj, a contradiction
to Lemma 8. Further observe that for every anchor triplet Tk in G there exists a
vertex xk ∈ G[: k] with Tk ⊆ N(xk) and there is a vertex yk ∈ G[k :] with Tk ⊆ N(y)
and xk ̸= yk. Note that xi /∈ Tj and yj /∈ Ti. We distinguish cases based on the
number of vertices shared by Ti and Tj.

First consider the case that Ti and Tj are disjoint. Up to a renaming of the vertices,
by 1-planarity Γ[Ti ∪ Tj] has to be embedded as in Fig. 4.6(a). Since both triangles Ti
and Tj have only one uncrossed edge, there is only one possible way to place xi
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(a) (b)

xiyjaj ai

bi

ci

bj

cj

FIGURE 4.6: (a) Two vertex-disjoint crossing anchor triplets. (b) The
unique 1-planar embedding of the graph induced by Ti, Tj, xi and yj.

and yj, respectively; see Fig. 4.6(b). Then, no further 3-stack to Ti or to Tj can be
added without loosing 1-planarity, hence yi ∈ Tj, xj ∈ Ti. The only vertex of Tj from
which all vertices in Ti can be reached while maintaining 1-planarity is aj. Since by
assumption there is no anchor triplet between Ti and Tj that crosses Ti or Tj, we have
Ti+1 = {aj, bi, ci}. No vertex adjacent to all vertices in Ti+1 can be added without
loosing 1-planarity, hence yi+1 ∈ Tj. But neither from bj nor from cj all vertices in
Ti+1 can be reached. Hence we may assume that Ti ∩ Tj ̸= ∅.

ci cj

ai bi

(a)

yi

xi

(b)

yi

xi

(c)

FIGURE 4.7: (a) Two crossing anchor triplets that share the purple
edge. (b), (c) The two non-isomorphic embeddings of the subgraph

induced by Ti, Tj, xi and yi.

Next we consider the case |Ti ∩ Tj| = 2. Without loss of generality assume that
ai = aj, bi = bj, ci ̸= cj; see Fig. 4.7(a). First observe that yi ∈ Tj implies yi = cj
and hence Ti+1 = {ai, bi, cj} = Tj, which contradicts i ≤ j − 1. Hence yi /∈ Tj.
Next, observe that there are only two 1-planar embeddings of G[Ti ∪ Tj ∪ {xi, yi}];
see Fig. 4.7(b), (c). Since yj has degree 3 it cannot be placed inside a triangular face
bounded by a crossing and a vertex not in Tj. Hence only the shaded faces remain,
but from none of them all vertices in Tj can be reached while maintaining 1-planarity
and we obtain a contradiction.

It remains to consider the case |Ti ∩ Tj| = 1. Without loss of generality, assume
that ai = aj and bi, bj, ci, cj are pairwise distinct. Then there are two subcases – ei-
ther (i) exactly one of the crossing edges is incident to ai; see Fig. 4.8(a), or (ii) none
of them is incident to ai; see Fig. 4.8(b).
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ai cj

bj
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(a)
ai cj
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(b)

FIGURE 4.8: (a) Two crossing anchor triplets, where exactly one of
the crossing edges is incident to the shared vertex. (b) Two crossing
anchor triplets, where none of the crossing edges is incident to the

shared vertex.
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FIGURE 4.9: The non-isomorphic embeddings of G[Ti ∪ Tj ∪ {xi, yj}]
in Case (i).

Case (i): While xi can be placed in each of the four faces of the drawing in
Fig. 4.8(a), only three of them admit a 1-planar drawing when placing yj - moreover,
each of them implies a unique routing of the edges as well as a unique placement
for yj and its incident edges; see Fig. 4.9. In neither of these drawings it is possible
to add another vertex that is adjacent to all vertices in Ti (red triangle). Thus we con-
clude yi ∈ Tj \ {aj}. Similarly we get xj ∈ Ti \ {ai}. This implies that yi and xj are
contained in every anchor triplet Tk with i < k < j. Since also ai = aj is contained in
every Tk with i < k < j it follows that i = j − 2 and Ti+1 = {ai, yi, xj}. In particular
we have yi+1 = Tj \ {aj, yi}.

We now consider the embeddings from Fig. 4.9 separately. In Fig. 4.9(a) only bj
can reach all vertices of Ti while maintaining 1-planarity, thus yi = bj. For either
choice of xj ∈ {bi, ci} we can connect cj to all vertices in Ti+1 without loosing 1-
planarity. Hence assume xj = bi without loss of generality. For no Si ∈ (Ti

2 ) it is
possible to insert a vertex adjacent to all vertices in Si ∈ (Ti

2 )∪{xi} while maintaining
1-planarity. Similarly, for no Sj ∈ (Tj

2 ) it is possible to insert a vertex adjacent to
all vertices in Sj ∈ (Tj

2 ) ∪ {yj}. Thus G is induced by Ti, Tj, xi and yj and thus can
be drawn without introducing any crossings; see Fig. 4.11. The remaining cases as
shown in Fig. 4.9(b)− (c) work analogously; i.e. we get that G is the graph induced
by Ti, Tj, xi and yj for every possible choice of yi and xj.

Case (ii): In this case, we only have two possibilities to place xi while maintain-
ing 1-planarity, see Fig. 4.10. Drawing xi only leaves one possible position for yj. In
none of the two drawings it is possible to insert a new vertex adjacent to all vertices
in Ti, thus yi ∈ Tj \ {aj}. Similarly we get xj ∈ Ti \ {ai}. This again implies that yi
and xj are contained in every anchor triplet Tk with i < k < j. Since also ai = aj is
contained in every Tk it follows that i = j − 2 and Ti+1 = {ai, yi, xj}. In particular,
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xiyi

(a)

xi

yi

(b)

FIGURE 4.10: The non-isomorphic embeddings of G[Ti ∪ Tj ∪{xi, yj}]
in Case (ii).

FIGURE 4.11: A planar drawing of G[Ti ∪ Tj ∪ {xi, yj}].

we have yi+1 = Tj \ {aj, yi}.
In Fig. 4.10(a), we can reach all vertices of Ti from both bj and cj, hence either

yi = bj or yi = cj. W.l.o.g. we assume that yi = bj, the other case is symmetric. We
observe that for either choice of xj ∈ {bi, ci} we can connect cj to all vertices in Ti+1
without loosing 1-planarity. Hence assume xj = bi without loss of generality. For
no Si ∈ (Ti

2 ) it is possible to insert a vertex adjacent to all vertices in Si ∈ (Ti
2 ) ∪ {xi}

while maintaining 1-planarity. Similarly, for no Sj ∈ (Tj
2 ) it is possible to insert a

vertex adjacent to all vertices in Sj ∈ (Tj
2 ) ∪ {yj}. Thus G is induced by Ti, Tj, xi

and yj and thus can be drawn planarly; see Fig. 4.11. The remaining case shown in
Fig. 4.10(b) works analogously; i.e. we get that G is the graph induced by Ti, Tj, xi
and yj for every possible choice of yi end xj.

Let Γ be a drawing of G whose restriction to the skeleton is planar and where
every bag is drawn planar, which exists by Lemma 9. Since the skeleton of G is
triconnected, it has a unique planar embedding. Hence we can transform Γ such
that Γ[X] remains planar and for every 1 ≤ i < s the triangle Γ[Ti+1] is drawn in the
interior (or on the boundary) of Γ[Ti]. We call a drawing with these properties nice.
For every 1 ≤ i ≤ s let i′ be the smallest (even) index such that Xi′ coincides with
Ti. A proper 3-stack v of an anchor triplet Ti is inside Ti if it is inside the triangular
region defined by Ti in Γ[i′] and it is outside Ti if it is outside Ti in Γ[i′]. Note that the
fact that Γ[i′] is planar guarantees that every 3-stack of Ti lies completely inside Ti or
completely outside of Ti.

Lemma 10. Let Ti and Ti+1 be two consecutive anchor triplets of P and let Γ be a nice
1-planar drawing of G which minimizes the number of crossing among all such drawings.
Then there is either no proper 3-stack of Ti inside Ti or no proper 3-stack of Ti+1 outside Ti+1.

Proof. Assume for the sake of contradiction that u is a 3-stack inside Ti and v is a
3-stack outside Ti+1. We distinguish cases based on whether u is drawn inside Ti+1
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Ti Ti

Tj

FIGURE 4.12: Illustrations for the proofs of Lemmas 10–12.

or not. If u is drawn inside Ti+1, then v must be drawn outside Ti; see Fig. 4.12(a).
We can then swap the positions of u and v (and reroute some edges as indicated in
Fig. 4.12(b)) to remove some crossings while maintaining 1-planarity; a contradic-
tion to our choice of Γ. Hence u must be drawn in the region between Ti and Ti+1
in Γ. A symmetric argument applies to v. However, there is no way to 1-planarly
draw u and v in this region simultaneously.

The following lemma will further restrict the number of proper 3-stacks.

Lemma 11. Let Γ be a nice drawing of a 1-planar 3-path G. Then

(i) no anchor triplet Ti with i ≥ 2 has two proper 3-stacks outside Ti and

(ii) no anchor triplet Tj with j < s has two proper 3-stacks inside Tj.

Proof. We show only (i) as (ii) follows from (i) by changing the outer face and revers-
ing the path decomposition. Assume for the sake of contradiction that there is an
anchor triplet Ti, i ≥ 2 with two proper 3-stacks u, v outside Ti. Then u, v and the
vertex x ∈ Ti−1 \ Ti are all 3-stacks of Ti that lie outside Ti, and they are hence drawn
as shown in Fig. 4.12(c). However, since Ti−1 is an anchor triplet, there needs to be
an additional 3-stack on Ti−1, which is, however, impossible to add as the vertex x is
already enclosed by a cycle of crossing edges.

Let v be a proper 3-stack. We say that v is between Ti and Ti+1 if Ti+1 is drawn
inside Ti and v is either a 3-stack inside Ti or a 3-stack outside Ti+1. Lemma 10–
11 then together imply that there is at most one proper 3-stack between any two
consecutive anchor triplets.

Lemma 12. There exists a 1-planar drawing Γ of G such that (i) no two edges of G[X] cross
each other and (ii) every edge (a, b) where a and b belong to the same anchor triplet T is
crossing-free.

Proof. By Lemma 9 there exists a nice 1-planar drawing of G which satisfies (i) and
such that every bag is drawn planar. Let Γ be the drawing that minimizes the num-
ber of crossings among all such drawings. We will now modify Γ in order to establish
(ii). We first remove all proper 3-stacks from Γ that are between two consecutive an-
chor triplets. Hence, the only proper 3-stacks left are outside T1 or inside Tl (or vice-
versa) and hence (ii) is satisfied. We then reinsert the removed proper 3-stacks and
put each 3-stack v between Ti and Ti+1 into the region that is bounded by Ti and Ti+1;
see Fig. 4.12(d). For a single proper 3-stack, this preserves 1-planarity. Since there
is at most one proper 3-stack between any two consecutive anchor triplets and since
the regions between consecutive anchor triplets in the drawing are pairwise dis-
joint, we can add all removed proper 3-stacks simultaneously without violating 1-
planarity.
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Theorem 1. There is a linear-time algorithm for testing whether a given 3-path is 1-planar.
In the affirmative case, the algorithm yields a 1-planar drawing.

Proof. If G is 1-planar, there exists a 1-planar drawing satisfying the conditions guar-
anteed by Lemma 12. We associate such a drawing with an s-dimensional vec-
tor (xi)

s
i=1 where xi is the number of proper 3-stacks of Ti that are outside Ti. The

properties from Lemma 12 give that xi ∈ {0, 1} for i ≥ 2. Moreover, clearly x1 ≤ 3.
Given two drawings Γ and Γ′ with these properties and associated vectors x =
(xi)

s
i=1 and x′ = (x′i)

s
i=1, if x is lexicographically larger than x′, let j be the first posi-

tion such that xj > x′j. If j = 1, we can simply move an additional proper 3-stack of T1

outside of T1 in Γ′ to obtain a drawing whose vector is lexicographically larger. We
therefore may assume j > 1. Then x′j = 0 and xj = 1. Moreover, xj−1 equals the num-
ber pj−1 of proper 3-stacks of Tj−1 as by Lemma 10 and 11 there can be at most one
proper 3-stack between Tj and Tj−1. By the choice of j, we find x′j−1 = xj−1 = pj−1

and hence no proper 3-stack of Tj−1 is between Tj−1 and Tj in Γ′. We can hence take a
proper 3-stack of Tj and move it between Tj and Tj−1. This gives a 1-planar drawing
with a lexicographically larger vector.

This implies that a drawing satisfying the conditions from Lemma 9 that has
the lexicographically largest vector can be found by a simple greedy algorithm that
starts with the unique planar drawing Γ′ of the skeleton with T1 on the outer face
and then iteratively adds the proper 3-stacks of Ti for i = 1, . . . , s. Everytime, we
embed as many proper 3-stacks outside Ti as possible without violating 1-planarity
and the remaining ones between Ti and Ti+1. If this process fails to produce a 1-
planar drawing, the graph is not 1-planar.

4.4 4-Paths

For the remainder of this section let G be a 4-path with path decomposition P =
X1, . . . , Xl . We begin by observing the following properties which have to be fulfilled
in order for G to be 1-planar.

Property 1. Let Y be an anchor set of G. Then there are at most two 4-stacks on Y.

Proof. Suppose for a contradiction that there exists a 1-planar 4-path where anchor
set Y = {a, b, c, d} is four-stacked three times with vertices {v1, v2, v3}. As every bag
induces a K5, we have that the subgraph induced by these seven vertices is complete
minus the set of edges defined by any pair of {v1, v2, v3} and thus the subgraph is
exactly K−△

7 which is not 1-planar by Lemma 5.

Property 2. An anchor set Yi can only be four-stacked twice if i = 1.

Proof. Suppose for a contradiction that anchor set Yi = {a, b, c, d} can be four stacked
twice with i > 1. Let e and f be the four stacks of Yi. Consider the anchor set Yi−1 and
without loss of generality assume that Yi−1 = {a, b, c, x} The last bag that belongs to
the cluster Ci−1 then necessarily contains the vertices {a, b, c, x, d}. The subgraph G′

induced by {a, b, c, d, e, f , x} has the following property by maximality. The vertices
a, b, c and d all have degree six in G′ (i.e., they are connected to all other vertices of
G′), hence G′ contains K−△

7 as a subgraph and cannot be 1-planar by Lemma 5.

Let G be a 1-planar 4-path and let P = X1, . . . , Xl be an alternating path de-
composition of G. Let C1, . . . , Cs and Y1, . . . , Ys be the corresponding clusters and
anchor sets, respectively, in the order given by P. By Properties 1 and 2 we have
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v1

v2 v3

u

x

FIGURE 4.13: According to our rules, x is placed inside the triangle
v2v3u such that xv1 crosses v2u

|C1| ∈ {5, 6} and |Ci| = 5 for every 1 < i ≤ l. Let v1
1, v1

2, v1
3, v1

4 be the first, second,
third and fourth vertex in Y1, respectively, that is forgotten in this particular order.
This implies in particular that v1

2, v1
3, v1

4 ∈ Y2. For every 1 < i < l let vi
1, vi

2, vi
3 be the

vertices in Yi ∩Yi−1 that are forgotten first, second and third. Hence, v2
1 = v1

2, v2
2 = v1

3
and v2

3 = v1
4. Finally, we denote by xi the vertex of Yi+1 \ Yi for every 1 ≤ i < l. In

the following, we will provide an iterative construction of the final drawing Γ that is
1-planar - if we fail to construct Γ we claim that G is in fact not 1-planar, which will
be shown in the subsequent lemma. The construction will maintain the following
invariant.

Invariant 1. Before inserting vertex xi, the triangular region defined by vi
2vi

3xi−1 is empty
for any 1 ≤ i ≤ l.

Algorithm For the construction, we start off with a planar drawing of a K4 induced
by vertices v1

1v1
2v1

3 and v1
4 = x0 such that v1

4 is contained in the triangular region
bounded by v1

1v1
2v1

3. If |C1| = 6, i.e., Y1 is 4-stacked twice (which is the maximum
amount by Property 1), let z be the remaining vertex in C1 \ (Y1 ∪ Y2). We place z
in the triangular region bounded by v1

1v1
2v1

4 and route the edge zv1
3 on the “outside”,

i.e., it intersects v1
1v1

2 and stays in the outer-face of the initial K4 until it reaches v1
3.

Afterwards, we place x1 inside the triangle v1
2v1

3x0 (recall that x0 = v1
4) such that

the edge x1v1
1 intersects the edge v1

3v1
4. Otherwise, |C1| = 5 and we consider the

degree of x1. If x1 only has degree 5 in G (i.e., x1 ̸∈ Y3) then we place it inside
v1

1v1
2x0 and route the edge x1v1

3 such that it intersects v1
1v1

4 which is fine since v1
1 ̸∈ Y2

by construction. Finally, if the degree of x1 is larger than five, we place it inside
v1

2v1
3x0 and route the edge x1v1

1 such that it crosses v1
2v1

4. Clearly, for every case of the
initial step, Invariant 1 is maintained. Now for every 1 < i ≤ l we place xi inside
the triangle vi

2vi
3xi−1 such that xivi

1 crosses xi−1vi
2 if possible and xi−1vi

3 otherwise;
see Figure 4.13. By routing xivi

1 according to our scheme, we can again guarantee
that Invariant 1 is maintained as the region defined by vi+1

2 = vi
3, vi+1

3 = vi
4 and xi

remains empty.

Theorem 2. Let G be a 4-path. Then, we can test in linear time whether G is 1-planar. In
the affirmative case, the algorithm yields a 1-planar drawing Γ of G.

Proof. Denote by Γ the drawing that we obtain by our construction. Clearly, if Γ is
1-planar, then it is a certificate for G. Hence it remains to show that if G is 1-planar,
then the constructed drawing Γ according to our rules is 1-planar. For the sake of
contradiction assume that the drawing Γ is not 1-planar. By Invariant 1 we have
that the triangle vi

2vi
3xi−1 is empty when drawing xi for any 1 ≤ i < l. Hence only

adding the edge xivi
1 can violate 1-planarity. By our drawing rules this is the case if

the triangles ∆i
1 = vi

1vi
2xi−1 and ∆i

2 = vi
1vi

3xi−1 are both non-empty.
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vi1

vi2 vi3

xi−1y

FIGURE 4.14: Vertex y is contained inside the triangle vi
1vi

2xi−1

Let i be the smallest index such that ∆i
1 and ∆i

2 are both non-empty when we
draw xi. We distinguish the following two cases. Either there is a vertex inside ∆i

1
or ∆i

2 or they only contain edges. First assume there is a vertex y in vi
1vi

2vi
3 outside

of vi
2vi

3xi−1. Without loss of generality assume that y lies inside ∆i
1; see Figure 4.14.

Since xi is inserted directly after xi−1 by Property 2 the vertex y was necessarily
inserted before xi−1. Assume first that i − 1 = 1. Then we have that xi−1 = x1

and since y is in the interior of vi
1vi

2vi
3, it follows that y = x0 = v1

4. However, this
is impossible as y is forgotten before vi

1 = v1
1. Hence, (i − 1) > 1 and there exists

a vertex u that is adjacent to vi
1, vi

2, vi
3 and y. Assume now that (i − 1) = 2 and

thus Y1 = {vi
1, vi

2, vi
3, u}. Since u is forgotten first, we have that u = v1

1. Recall that
y is contained inside vi

1vi
2vi

3. By our construction rule and Property 1, this is only
possible if either |C1| = 5 and the degree of y is larger than five or |Ci| = 6. For the
former case, we have that y needs to be connected to at least one more vertex besides
vi

1vi
2vi

3, u and xi−1. By Property 2 this means y would need to be part of the anchor
set of Yi, a contradiction. For the latter case, we have by construction that y = x1

and there is a vertex z connected to vi
1, vi

2, vi
3 and u. We keep this fact in mind and

take a step back to first consider the remaining case. If (i − 1) > 2, then we have
{vi

1, vi
2, vi

3, u} = Yj for some 1 < j < i. Then, there is a vertex z ∈ Yj−1 adjacent
to vi

1, vi
2, vi

3, u. Thus, in both cases we observe the following configuration. Consider
the subgraph G′ induced by the vertices {z, u, y, vi

1, vi
2, vi

3, xi−1, xi}. Vertices vi
1, vi

2 and
vi

3 have degree seven in G′, vertices u,y and xi−1 have degree five in G′ and vertices
xi and z have degree four in G′, hence G′ coincides with H, which is not 1-planar by
Lemma 6.

It remains to consider the case where there is no vertex in vi
1vi

2vi
3 outside of

vi
2vi

3xi−1. Then there are at least two edges that have an endpoint in {vi
1, vi

2, xi−1}
and {vi

1, vi
3, xi−1}, respectively and go through the corresponding triangle. But by

construction, any such edge incident to vi
1, vi

2 or vi
3 that passes through ∆i

1 or ∆i
2 nec-

essarily requires an endpoint in either ∆i
1 or ∆i

2 and we are in the previous case. Since
xi−1 contains at most one neighbor outside of the triangle {vi

1, vi
2, vi

3} by Property 2
and by construction, it follows that at most one of ∆i

1 or ∆i
2 does not contain a vertex

but is still non-empty.
Clearly, the drawing can be constructed in linear time which concludes the proof.

4.5 Pathwidth-3

In this section, we will provide approximation algorithms for testing whether a
pathwidth-3 graph is k-planar. Let G be a pathwidth-3 graph and let P = X1, X2, . . . Xl
of G be a path decomposition of G with clusters C1, . . . , Cs and corresponding anchor
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triplets T1, . . . , Ts. Our algorithm will construct the final drawing Γ of G iteratively,
such that every intermediate drawing Γ[: i] satisfies the following invariant.

Invariant 2. Let Cj be the current cluster with anchor triplet Tj = {a, b, c} and let d ∈ Xi
be a proper 2-stack connected to a and b. The region delimited by a, b and d in Γ[: i] is either
empty or it contains only other proper 2-stacks of a and b.

Algorithm Denote by S the set of vertices with degree zero or one in G. We remove
all vertices of S, compute a drawing Γ′ for G \ S which can then be completed to a
drawing Γ of G without introducing additional crossings1. In particular, this implies
that any vertex of a cluster which does not belong to an anchor triplet is a k-stack
with k ≥ 2. Consider the first bag X1 = {a, b, c, d} and assume that d ̸∈ T1. Then, we
draw the vertices of X1 such that a,b and c lie on the outer face, while d is contained
inside this triangular region. In particular, assume first that d is a 2-stack. W.l.o.g.
assume that d stacks a and b. Then, we place d ϵ-close to the edge ab, but still inside
the triangular region defined by abc - clearly Invariant 2 is maintained as d is the
first vertex which stacks a and b. If d is a 3-stack, we simply place it inside abc.
Now that we have described the initial configuration, let us consider a vertex vi that
is introduced in bag Xi with |Xi| = 4. Assume that Cj is the current cluster with
anchor triplet Tj = {a, b, c}. We distinguish between the following two cases.

1. vi is a proper 2-stack of Tj

W.l.o.g. assume that vi is a 2-stack of {a, b}. Since Invariant 2 is maintained in
Γ[: i − 1], there exists a vertex v′ such that the region abv′ is either empty or it
only contains other 2-stacks of a and b. In particular, v′ is also a 2-stack of a
and b. We place vi ϵ-close to v′ such that abvi completely contains the region
abv′ - hence Γ[: i] maintains Invariant 2.

2. vi is a proper 3-stack of Tj or vi ∈ Tj+1.

W.l.o.g. assume that c ̸∈ Tj+1. Also, denote by v′ the previous (proper) 3-stack
of Yj (if it exists). We place vi inside abc such that it is completely contained
inside the region delimited by abv′, see Fig. 4.15. If v′ does not exist, we simply
place vi inside abc. In particular, we observe that the edges abi and bvi are
crossing free in Γ[: i] by construction.

Theorem 3. Given a graph G of pathwidth 3, we can compute a 6-approximation to 1-
planarity in linear time.

Proof. Since G has pathwidth 3, we can compute in linear time [40] a path decompo-
sition of width 3 and hence also an alternating path decomposition P = X1, X2, . . . Xl
together with clusters C1, . . . , Cs and anchor triplets T1, . . . , Tr.

We first observe that edges incident to a proper 2-stack are crossing free in Γ.
Suppose the contrary and let d be a proper 2-stack of vertices a and b such that one
of ad or ab is crossed by an edge e. Then, by Invariant 2, it follows that also ab, which
belongs to the induced K3 of an anchor triplet, is crossed by e. However, as the initial
drawing is crossing free and, as shown in Case 2, the edges that belong to an anchor
triplet are crossing free when introduced and remain crossing free when inserting
2- or 3-stacks by construction, we obtain a contradiction. Thus, every crossing we
introduce occurs in Case 2. As K3,7 is not 1-planar by Lemma 3, the latter case occurs
at most 7 times, i.e., we have at most six proper 3-stacks and then have to change
the anchor triplet. We can arrange them such that every edge is crossed at most six
times, see Fig. 4.15 and hence we obtain the desired result.

1degree one vertices will be placed epsilon close to their neighbors, while singletons are trivial
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a b

vk

v1

FIGURE 4.15: Illustration of k many 3-stacks of the anchor triplet such
that every edge is crossed at most k − 1 times. In particular, the dark

blue edges are both crossed exactly k − 1 times.

Theorem 4. Given a graph G of pathwidth 3, the algorithm computes a 7k-approximation
to k-planarity in linear time.

Proof. Assume that k is fixed. We construct our drawing exactly as in the proof of
Theorem 3, hence the only interesting quantity is the number of 3-stacks for a fixed
anchor triplet. In particular, if an anchor triplet is 3-stacked more than 7k many
times, it follows by Lemma 2 that the given graph is not k-planar. Otherwise, we
can construct a subdrawing of this cluster which is 7k-planar as shown in Fig. 4.15
which concludes the proof.

By using Lemma 3, we can obtain better constants for small k.

Corollary 1. Given an input graph G of pathwidth 3, the algorithm computes a 6k-approximation
to k-planarity for k ≤ 4 in linear time.

Note that this approach also naturally extends to k-gap planarity.

Lemma 13. K3,13k+1 is not k-gap-planar.

Proof. A k-gap planar graph with m edges can contain at most km many crossings.
For K3,a we have m = 3a and thus require

k3a ≥ ·⌊ a
2
⌋⌊ a − 1

2
⌋

which implies that k ≥ ⌊ a−1
12 ⌋ which does not holds for a ≥ 13k + 1.

Corollary 2. Given an input graph G of pathwidth 3, the algorithm computes a 13k-
approximation to k-gap-planarity in linear time.

4.6 w-Paths

For the remainder of this section let G be a w-path on n vertices – without loss of
generality assume that n ≥ w + 1 and let P = X1, . . . , Xl be a path decomposition
of G. We remark here that for the case of 1-planar graphs, the 3- and 4-paths are
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FIGURE 4.16: The construction of Biedl et. al. [170] to approximate
the crossing number.

in a sense the only interesting cases of w-paths. In fact, since K7 is not 1-planar2,
there is no w-path with w ≥ 6 that is 1-planar. Regarding 5-paths, observe that a
5-path on 8 vertices has 25 > 4 · 8 − 8 edges, thus any 5-path that could be 1-planar
can have at most 7 vertices. Since K7 minus one edge is also not 1-planar [39], it
follows that there exists exactly one 5-path that is 1-planar, namely the complete
graph K6. The following theorem will show that the construction of [170], which
was used to obtain an approximation to the crossing number of w-paths (which is
quadratic in the pathwidth), in fact yields a linear approximation (in the pathwidth)
for k-planarity.

Before we state the theorem, we provide a brief description of the construction,
refer to [170] for a more detailed discussion. Fig. 4.16 illustrates the construction.
We arrange the vertices in an order {v1, v2, . . . vn} that is determined by their first
appearance in P - while this order is well defined for the vertices which are not part
of X1, i.e., the vertices vw+2 . . . , vn we will order the vertices of X1 such that v1 is the
first vertex of X1 that is forgotten in P, v2 is the second vertex of X1 that is forgotten
in P and so on.

Vertex vj will be placed on coordinate (j, 0). We will draw G[X1], which is a
complete graph Kw+1, such that every edge is drawn as a half-circle above the x-
axis. Assume that bag Xj introduces vertex vi with i ≥ w + 2. By construction, vi is
placed to the right of all other vertices that are placed so far. Denote by pi

1, . . . , pi
w the

neighbors of vi in G[: j] such that pi
q is to the left of pi

r if q < r. We can then observe
two important properties.

One the one hand, we have that deg(pi
1) ≥ deg(pi

2) ≥ · · · ≥ deg(pi
w). On the

other hand, every neighbor of pi
r in G[: j] is also necessarily incident to pi

q for q < r.
The edge vi pi

1 is routed counterclockwise around the drawing Γ[: j], refer to the
red edge in Fig. 4.16. The other edges are routed clockwise as a bundle, refer to the
blue,gold and green edge in Fig. 4.16, each wrapping around the other vertices of Xj
so that they remain visible from the bottom.

We are now ready to state the theorem.

Theorem 5. Let G be a w-path on n vertices. We can compute in O(n) time a drawing Γ
that is a O(w)-approximation to k-planarity.

Proof. Let Γ be the drawing of G obtained by this construction. Clearly, the drawing
can be constructed in linear time. Let e be the edge of Γ that is involved in the
most crossings. Assume that e is incident to vertex vi and let Xj be the bag that
introduces vi. We will count the crossings of e in Γ[: j] and in Γ[j :] separately.
Consider first the crossings of e in Γ[: j]. If j = 1, i.e., vi belongs to X1, then e is part
of the initial Kw+1. By construction, e is crossed at most (w

2) many times. Otherwise,
if j > i, then edge e crosses the incident edges of at most w − 1 many vertices by

2which follows from a simple edge-density argument
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construction. If the maximum number of such edges incident to one vertex u is
x, then the number of crossings of e in Γ[: j] is at most (w − 1) · x ≤ wx. Since
deg(pi

a) ≥ deg(pi
b) for any a < b holds and since no edge wraps around pi

1 or pi
2 by

construction, it follows that u = p1
3. Since G is a w-path, every neighbor of pi

3 is also
a neighbor of pi

2 and pi
1 – hence, we have a K3,x−2 in G.

Consider now the crossings of e in Γ[j :]. Edge e is only crossed as long as vi is
part of the anchor set of the current cluster. Assume that e is crossed y times in Γ[j :].
For every time that e is crossed, there exists a witness vertex vr such that vi is pr

l with
r > i and l ≥ 3. Since every witness vertex contributes at most w many crossings to
e, there are at least y

w many witness vertices. Consider the last witness vertex vs of
e. Since vi = ps

l for l ≥ 3, ps
1 and ps

2 as well as vi are adjacent to all y
w many witness

vertices of e – hence they form a K3, y
w

.
Let us now consider the approximation ratio. If j = 1, then an edge e is crossed

w
2 + y times. Since G contains a Kw+1, we have that G is not k-planar for k < w2

7.622

by Lemma 4. On the other hand, G contains a K3, y
w

and thus G is not k-planar for

k < 7 y
w + 1 by Lemma 2. Hence, G is not k-planar for k < max( w2

7.622 , 7 y
w + 1) and thus

our ( w
2 + y)-planar drawing is a c · w-approximation for a constant c. If j > 1, then

e has at most wx + y crossings and we have a K3,x−2 and K3, y
w

in G, hence G is not
k-planar for k < max(7(x − 2) + 1, 7 y

w + 1) and thus our (wx + y)-planar drawing is
a c · w approximation again.

4.7 Open problems

We conclude this chapter with some open problems that arise from our work.

1. Can the result of Section 4.3 be extended to all pathwidth-3 graphs? To this
end, lets us provide a possible way to tackle the problem. Regarding the proper
2-stacks, we conjecture that every 1-planar pathwidth-3 graph admits a draw-
ing Γ that satisfies Invariant 2, i.e., the region between a proper 2-stack v of an
edge ab contains at most other proper 2-stacks of ab. We remark here that this
property will not hold for arbitrary large pathwidth-k graphs as witnessed by
Fig. 4.17.

a

b

FIGURE 4.17: Edge ab and its proper 2-stacks are colored red. We
cannot move the vertices outside of the region delimited by a, b and

the right-most 2-stack of ab and still obtain a 1-planar drawing.

If we assume that there always exists a drawing with this property, the only
case which then differs from Section 4.3 is if a vertex v is a k-stack with k ≤ 2,
but not a proper k-stack. If we assume that bag Xi introduces v, then G[Xi] is
not a K4, i.e., we can not apply Lemma 8 and hence there are more possibilities
to 3-stack the anchor triplet which contains v.
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2. Can we derive exact algorithms for w-paths analogous to Section 4.3 and Sec-
tion 4.4 for small values of k-planarity, i.e., for k = 2? This would likely require
additional results of small graphs which are not k-planar, which might be of
independent interest themselves.

3. Can k-planarity be approximated by a constant c ≥ 2?
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Chapter 5

On Morphing 1-planar graphs

The notion of topological equivalence introduced in Chapter 2 gives rise to the follow-
ing question: Assuming Γa and Γb are two topological equivalent drawings, i.e., they
belong to the same combinatorial arrangement A, is there a continuously changing
family of drawings Fi such that F0 = Γa,F1 = Γb and Fi ∈ A for any i ∈ [0, 1]?
We refer to such a family as a morph. Remark that without additional restrictions on
the (intermediate) drawings, the universal existence of such a morph can be shown
as follows: Let Pa (Pb) be the planarization of Γa and Γb, respectively. By definition,
they have the same combinatorial embedding. The morph can then be constructed
by applying Lemma 1.2 of [124] to every vertex. Hence, additional geometric re-
strictions are placed on the drawings which have to be maintained throughout the
morph. The basic requirement is that the edges are drawn as straight-line segments
throughout the morph, while additional geometric properties such as convexity or
orthogonality are sometimes enforced.

Related work Seminal results date back to Cairns [51] who showed the existence
of a morph between any two drawings of a triangulation, which was extended by
Thomassen [171] to general planar graphs. Further results were concerned with the
complexity of the morph [4, 52, 64] and applications in computer vision. However,
most of the literature is restricted to morphing planar graphs - only a few results
are known for graphs which admit embeddings on surfaces of higher (but bounded)
genus such as the torus [52].

Our contribution We present the first morphing algorithm for graphs with non-
constant genus. In particular, we show the existence of a morph between any pair of
topologically equivalent graphs for a meaningful family of 1-plane geometric graphs
by providing a constructive algorithm.
This chapter is based on joint work with Patrizio Angelini, Michael A. Bekos and
Fabrizio Montecchiani and was published in the “Journal of Computational Geom-
etry” [12].

5.1 Notation and Definitions

Before we state some specific notation that is used throughout the section, we start
with a definition which is only used in this part of the thesis. The BC-tree T of a
connected graph G represents the decomposition of G into its biconnected compo-
nents, called blocks. Namely, T has a B-node for each block of G and a C-node for each
cutvertex of G, such that each B-node is connected to the C-nodes that are part of its
block.
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FIGURE 5.1: Two topologically equivalent kite-planar 1-planar draw-
ings of the same graph.

We begin by describing a set of sufficient conditions under which any pair
(Γa(G), Γb(G)) of topologically-equivalent drawings of a 1-plane graph G admits a
morph using our algorithm. At a high level, we require that every edge is crossed
at most once, any pair of crossing edges is enclosed in a 4-cycle whose edges are
uncrossed and while such a 4-cycle can contain an arbitrary subgraph H in its inte-
rior, we require that all edges which connect the endpoints of the 4-cycle to H are
uncrossed. To be more precise, consider a K4. Up to a choice of the external cell, only
two different 1-planar drawings of K4 yield a different combinatorial arrangement,
namely, a planar drawing whose external cell is a 3-cycle, and a 1-planar drawing
such that the external cell is bounded by a 4-cycle. Let G be a 1-planar graph and let
G′ be an induced K4 of G. If the external cell of Γ(G′) is bounded by a 4-cycle, then
we call G′ a kite in Γ(G). The crossing-free edges which bound the external cell are
called kite-edges, while the remaining two edges which cross in the interior are called
crossing edges. The following relations between a kite K and a vertex u can occur:

1. u belongs to K, i.e., u is one of the four vertices that define K,

2. u is inside K, i.e., the vertex lies in the interior of the closed region defined by
the 4-cycle bounding the external cell or

3. u is outside K.

A kite is empty if it encloses no vertex; otherwise, it is non-empty. An edge uv is a
binding edge (blue in Figure 5.1) if u belongs to a non-empty kite K and v is inside K.
We can now formally introduce kite-planar 1-planar drawings.

Definition 1. A straight-line drawing is kite-planar 1-planar, or 1-kite-planar for short, if
the following properties hold:

(P.1) every edge is crossed at most once,

(P.2) every pair of crossing edges induces a kite whose kite edges are uncrossed, and

(P.3) every binding edge is uncrossed.

Moreover, these requirements allow us to partition the set of vertices into differ-
ent levels. Let Γ(G) be a 1-kite-planar drawing of G. A vertex v of G has level 0 if
no kite encloses v. Otherwise, vertex v has level i > 0 if the maximum level of the
vertices forming a kite that encloses v is i − 1. In Figure 5.1, the black (white, resp.)
vertices are of level 0 (level 1, resp.).

The following property follows from (P.3) of Definition 1.
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w

K
K′

FIGURE 5.2: Illustration for the proof of Property 3: the case in which
w belongs to K′.

Property 3. If two vertices belong to the same kite of a 1-kite-planar drawing Γ(G), then
they are of the same level.

Proof. Suppose for a contradiction that two vertices v and w which belong to a kite
K are of different level, w.l.o.g. assume that the level of v is larger than the level
of w. Then there exists a kite K′ which encloses v but not w. Assume first that vw
does not belong to K′. In this case, w is necessarily outside of K′. But then the edge
vw that belongs to kite K is necessarily intersecting a kite edge of K′ which violates
(P.2) of Definition 1. Thus, w belongs to K′, but then the crossed edge of K incident
to w is a binding edge of K′, a contradiction to (P.3) of Definition 1, see Fig. 5.2 for
an illustration. It follows that v and w are of the same level which concludes the
proof.

We are now ready to state the main result of this section.

Theorem 6. There exists a morph between any pair of topologically-equivalent kite-planar
1-planar drawings.

Theorem 27 implies that, for a fixed graph, the space of its topologically-equivalent
kite-planar 1-planar drawings is connected. The proof is constructive, although the
vertices may use trajectories of unbounded complexity.

Outline. Our proof will consist of a recursive construction based on the level ℓ of
a vertex of G. The base case will construct a morph for the vertices of level ℓ = 0,
while the recursive case will describe the trajectory of the vertices of level ℓ > 0
using the computed morph of lower level vertices. A schematized version of the
algorithm can be found in Figure 5.4. To be more precise, we will compute a morph
where the kite boundary of each kite will be drawn as a strictly-convex polygon,
which will guarantee that, throughout the morph, the corresponding edges will stay
inside the respective boundary. The main challenge is due to the fact that the interior
of the kites is not empty - to overcome this issue, we will remove the interior of
a kite (which are vertices of higher level), compute a morph which maintains the
convexity, and afterwards suitably reinsert and morph the removed subdrawing.

Key ingredients. We will heavily use the following two ingredients for intermediate
steps. The first result by Aronov et al. [18] establishes that one can compatibly trian-
gulate two topologically-equivalent planar drawings of a planar graph, which will
be used to guarantee that, after potentially removing the subgraphs inside the kites,
the resulting regions are strictly convex.

Theorem 7 (Aronov et al. [18]). Given two topologically-equivalent planar drawings
Γa(P) and Γb(P) of the same n-vertex planar graph P, it is possible to augment Γa(P)
and Γb(P) to two topologically-equivalent planar drawings Γa(P′) and Γb(P′) of the same
maximal planar graph P′ such that Γa(P) ⊆ Γa(P′), Γb(P) ⊆ Γb(P′), and the order of
P′ \ P is O(n2).
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FIGURE 5.3: Illustration of the transformations Γa(G) → Γa(P) →
Γa(P′); marked faces are light blue; edges of P′ \ P are dark blue.

The second ingredient is a result by Angelini et al. [14], which allows us to morph
a pair of strictly-convex drawings by preserving the strict convexity of the faces. The
main properties of this result are summarized in the next theorem.

Theorem 8 (Angelini et al. [14]). Let ⟨Γa(P), Γb(P)⟩ be a pair of topologically-equivalent
strictly-convex drawings of a planar graph P. There is a morph between Γa(P) and Γb(P) in
which every intermediate drawing is strictly convex. In addition, if the outer face of G has
only three vertices and each of them has the same position in Γa(P) and Γb(P), then these
three vertices do not move during this morph.

5.2 Base case

For the base case, we have that all vertices of G are of level ℓ = 0, hence every kite of
G, if any exist, are empty. Denote by P the graph obtained from G by removing both
crossing edges for every kite. Let ⟨Γa(P), Γb(P)⟩ be the restrictions of ⟨Γa(G), Γb(G)⟩
to P, respectively. Clearly, ⟨Γa(G), Γb(G)⟩ is a pair of topologically-equivalent draw-
ings of the plane subgraph P of G. Since the kite edges of each kite K of G are un-
crossed by (P.2) of Definition 1, it follows that they bound a quadrangular face fK in
P, which will be called marked. We will now compatibly triangulate ⟨Γa(G), Γb(G)⟩
by applying Theorem 7 to ⟨Γa(P), Γb(P)⟩, except for the marked faces of P. Denote
by P′ the resulting graph and by ⟨Γa(P′), Γb(P′)⟩ the resulting drawings. Clearly, we
have that ⟨Γa(P′), Γb(P′)⟩ are topologically equivalent. Moreover, every face in both
drawings is either a quadrangle (if the corresponding face in P was marked) or a
triangle.

We observe the following property regarding the convexity.

Observation 1. The pair ⟨Γa(P′), Γb(P′)⟩ consists of two strictly-convex drawings of P′.
Moreover, P′ is triconnected.

Proof. The triangular faces of P′ are trivially strictly convex. Thus let us consider
the marked faces of P′. Every corresponding kite contains two crossing edges in G,
thus the boundary is drawn strictly convex in both Γa(G) and Γb(G) and therefore
also in both Γa(P′) and Γb(P′) as they remained untouched during the application
of Theorem 7. It follows that every face of P′ is strictly convex, which implies that P′

is internally triconnected [55, Corollary 1]. Moreover, since the outer-face of P′ is a
3-cycle, P′ is in fact triconnected which concludes the proof.

Since ⟨Γa(P′), Γb(P′)⟩ is a pair of strictly-convex drawings of P′ , we can apply
Theorem 8 to compute a morph for them which maintains the strict convexity of
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FIGURE 5.4: Schematic illustration for the proof of Theorem 6
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the drawing at any time instant; in particular, this means that the marked faces stay
strictly convex during the morph. Thus, we can reinsert the crossing edges of each
kite and guarantee that they are fully contained inside the kite at any time instance.
Augmenting P′ with the crossed edges yields a supergraph of G, from which we
can easily derive the morph of G by neglecting the vertices and edges which were
introduced when applying Theorem 7. This concludes the base case of our morph,
refer to the topmost (pink) box of Figure 5.4.

5.3 Recursive case

Here, we describe the recursive case of our construction where the maximum level
ℓ of a vertex is strictly larger than zero. Refer to the middle (light blue) box of Fig-
ure 5.4 for an illustration of the main steps.

Let Q be the graph obtained by removing all the vertices of level ℓ from G, and let
⟨Γa(Q), Γb(Q)⟩ be the restriction of ⟨Γa(G), Γb(G)⟩ to Q. Clearly, the two subdraw-
ings of Q are topologically equivalent; moreover, the maximum level of a vertex is
ℓ − 1. Hence, we can recursively compute a morph of ⟨Γa(Q), Γb(Q)⟩ which pre-
scribes the trajectories of the vertices of Q. Hence, in the remainder we have to find
trajectories for the vertices of level ℓ which are compatible with the morph of Q.
It is worth observing that the natural idea of a straightforward application of re-
cursion to the subgraph contained in every triangular region defined by a kite that
is empty in ⟨Γa(Q), Γb(Q)⟩ but not in ⟨Γa(G), Γb(G)⟩ does not work, since the al-
gorithms in [14, 87] do not allow one to prescribe the trajectories of the vertices of
the outer face, which are a subset of the vertices of Q, explicitly - and thus we can
not guarantee that the morph of ⟨Γa(G), Γb(G)⟩ is compatible with the recursively
computed morph of ⟨Γa(Q), Γb(Q)⟩. Therefore, in what follows, we describe a more
elaborated approach to overcome this issue. In particular, we describe how to incor-
porate the trajectories of the level-ℓ vertices into the morph of ⟨Γa(Q), Γb(Q)⟩, so to
obtain the desired morph of ⟨Γa(G), Γb(G)⟩.

5.3.1 Setting up the morph

Recall that by Property 3, a vertex of level ℓ lies inside a kite K whose vertices are
all of level ℓ− 1. Thus, K is empty in Q but not in G. The two crossing edges of G
define four triangular regions (each bounded by two real vertices and the intersec-
tion point of the crossing edges). Since the morph of ⟨Γa(Q), Γb(Q)⟩ guarantees that
K remains strictly convex (the base case clearly has this property by Observation 1
and Theorem 8, while we will assure this in the following for the recursive case), it
follows that the triangular regions remain non-degenerate throughout the morph of
⟨Γa(Q), Γb(Q)⟩. We refer to each of these four triangular regions as a piece of a kite.
Consider such a piece △ of our kite K. The (unique) edge uv ∈ G of △ which be-
longs to the boundary of K is called the base edge. Since any piece of a kite remains
non-degenerate, we have the following property.

Property 4. Let △ be a piece of a kite with base edge uv. There exists a half-disk D that,
throughout the whole morph of ⟨Γa(Q), Γb(Q)⟩, has the following properties (see also Fig-
ure 5.5 for an illustration):

• half-disk D lies in △ and is centered at the midpoint w of uv, and

• the length of its radius is positive and it does not change.
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FIGURE 5.5: Illustration of the half-disk D of △ and its geometric
properties.

d

vu

FIGURE 5.6: Illustration of the addition of dummy vertex d and the
triangulation of H to obtain H′. Original edges are black.

We will now discuss how to define the length of the radius explicitly. Let λ be the
smallest length of the base edge (u, v) during the morph of ⟨Γa(Q), Γb(Q)⟩, let r be
the radius of half-disk D perpendicular to (u, v), and let w′ be the endpoint of r
different from the midpoint w of (u, v). Also, denote by t∗ any time instant of the
morph when the length of (u, v) equals λ, and let ϕ be the internal angle at w′ of the
triangle formed by u, w and w′ at time t∗. In particular, ϕ satisfies tan(ϕ) = λ

2 · 1
|r| .

Consider now the subgraph G \ Q which is induced by the level-ℓ vertices. In
particular, let H△ be the subgraph of this graph that lies inside △. The goal is to
compute a drawing of H△ which is small enough to fit inside D but at the same time
avoids the introduction of new crossings with the binding edges that connect u and
v to H△. For ease of notation, from now on we will refer to H△ as H. In the first
step, we have to augment H as well as its drawings in ⟨Γa(G), Γb(G)⟩ in order to
leverage our tools. In particular, we add a dummy vertex d connected to u and v,
which is placed sufficiently close to the crossing point of the two diagonal of K in
both Γa(G) and Γb(G). This ensures that the triangular region formed by u,v and d
properly contains H in both Γa(G) and Γb(G).

Next, in order to apply Theorem 8 at a later point, we want to create a strictly-
convex drawing of (a supergraph of) H. Similar to the transformation from P to P′

in Section 5.2, we remove the crossing edges of every kite of H ∪ {u, v, d}, which are
empty since any vertex contained inside such a kite would have level ℓ+ 1 and we
mark the resulting quadrangular face. Then we apply Theorem 7 to the resulting
planar subgraph of H ∪ {u, v, d} and to its drawings in ⟨Γa(G), Γb(G)⟩, except for its
marked faces, see Fig. 5.6.
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Let us denote the resulting graph as H′. By an analogous argument to Obser-
vation 1 we have that ⟨Γa(H′), Γb(H′)⟩ is a pair of topologically-equivalent strictly
convex drawings, and that H′ is triconnected. We can further make the following
observation.

Observation 2. Every face incident to u or to v in H′ is triangular.

Proof. Any face in H′ is either triangular, or quadrangular if marked and a marked
face contains a pair of crossing edges in the original graph. Thus, if u or v would
be incident to non-triangular faces, a binding edge of u or v would be crossed, a
contradiction.

We now consider the part of H′ which will be redrawn (i.e., we will describe
an appropriate morph) into D. Namely, consider the graph obtained from H′ by
removing u and v and denote by C the graph formed by the vertices and the edges
of its outer face. The following lemma will establish some properties of this graph.

Lemma 14. Graph C has the following properties:

(i) C is outerplane and connected.

(ii) Each block of C is a cycle, possibly degenerated to a single edge.

(iii) Every cutvertex of C is connected to both u and v in H′.

(iv) The BC-tree of C is a path.

(v) Every non-cutvertex of C is connected to exactly one of u and v in H′, with the ex-
ception of exactly two vertices (one of them is d) which belong to the blocks of C corre-
sponding to degree-1 B-nodes in the BC-tree of C.

Proof. By definition, C is formed by the vertices and edges of the outer face of H′ \
{u, v} and thus it is outerplane. Since H′ is triconnected as established earlier, the
removal of the two vertices u and v does not yield a disconnected graph, thus C is
connected which establishes Property (i).

Property (ii) is then immediate, as C is a connected graph which corresponds to
the outer face of H′ \ {u, v}. In order to prove Property (iii), we will in fact show a
slightly stronger statement. Namely, let c be a cutvertex of C and consider a walk δC
along the boundary of the outer face of C. We will show that any occurrence of c in
δC implies the existence of one copy of uc or vc in H′. Assuming momentarily that
this claim is true, since δC is a closed walk, we have that every cutvertex is visited
at least twice and by simplicity of H′ every cutvertex is visited exactly twice and the
result then follows. In order to prove the claim, suppose a and b are two vertices
immediately before and immediately after one occurrence of c in δC. Since c is a a
cutvertex, a and b belong to different biconnected components of C. We distinguish
between the two following cases.

• There is a face f of H′ that contains both a and b. Recall that by construction,
every face of H′ is either a triangle or a marked quadrangle. If f is a triangle,
then f has exactly a,b and c on its boundary - but then the edge ab exists, which
is a contradiction to c being a cutvertex. Otherwise, f is a marked quadrangle
that contains a, b, c and some other vertex x on its boundary. By Observation 2,
no marked quadrangle contains either u or v on its boundary, thus x belongs
to C, which is again a contradiction to the fact that c is a cutvertex.
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• There is no face of H′ that contains both a and b. Then, there exists an edge xc
which belongs to H′, such that xc does not belong to H′ \ {u, v} and hence not
to C. This means that x is either u or v as desired.

To show Property (iv) we will show that all B− and C−nodes of the BC−tree
have degree at most 2 which then implies that the BC-tree is in fact a path. To achieve
this, we prove that each cutvertex of C belongs to exactly two blocks and each block
contains at most two cutvertices. Recall that by Property (iii), every cutvertex occurs
exactly twice in δC and thus belongs to exactly two blocks. For the other part, sup-
pose for a contradiction that there exists a block that contains at least three cutver-
tices c1,c2 and c3. The boundary of C then contains three vertex-disjoint paths that
pairwise connect these cutvertices. But then since u and v are connected to all of c1, c2
and c3 by Property (iii) and since uv also belongs to H′, we have that H′ contains a
K5-minor which contradicts the planarity of H′.

Finally, concerning Property (v), we first show the existence of two non-cutvertices
of C which are connected to both u and v. By construction, vertex d is one of them.
For the other, consider the internal face of H′ which is incident to uv. Since no face
incident to u or v is marked by Observation 2, it follows that the third vertex of this
face, which we denote by d′, is necessarily connected to both u and v. Hence, all
cutvertices of C as well as d and d′ are connected to both u and v. The remaining
vertices of C are, by definition, on the outer face of H′ \ {u, v}. Again, as every face
incident to u or v is triangular by Observation 2, it follows that every such vertex
is connected to exactly one of u and v. Lastly, if d or d′ would belong to a degree-2
B-node of the BC-tree of C, then again the cutvertices of that B-node in addition to
d or d′ and u and v would form a K5-minor analogous to the proof of Property (iv)
which concludes the proof.

Motivated by (ii) and (iv) of Lemma 14, we call C a chain of cycles from now on,
where every block (even if degenerated to single edge) is a cycle. As specified in
Property (v) of Lemma 14, we refer to the non-cutvertex of C which is adjacent to
both u and v that is different from d as d′.

5.3.2 Maintaining visibility of C to u and v

Recall that the main challenge is to include the level-ℓ vertices into the recursively
computed morph of ⟨Γa(Q), Γb(Q)⟩. In this regard, we want to compute a prelimi-
nary morph of Γa(H′) to a strictly-convex drawing Γs

a(H′) that is skinny. On a high
level, this drawing maintains the visibility’s of the vertices of C to u and v which will
be guaranteed by an appropriate choice of the angle ϕ with respect to the base edge
uv, while it is small enough to fit into the disk D defined in Property 4. To be more
precise, we state the following requirements.

R.1 Every cycle of C is drawn inside the disk D.

R.2 Every cycle of C is drawn strictly convex.

R.3 The cutvertices of C, as well as d and d′, lie on the radius r of D.

R.4 For every cycle of C and for every segment on its boundary, the smallest an-
gle formed at the intersection of the line through r and the line through the
segment is smaller than ϕ.

We will show the existence of such a drawing by an explicit construction which
will leverage the properties of C described in Lemma 14.
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FIGURE 5.7: Illustration of the requirements R.R.1–R.R.4 of a skinny
drawing.

Lemma 15. There exists a drawing Γs
a(H′) that is strictly convex, skinny, and topologically

equivalent to Γa(H′).

Proof. We first give an description on how to compute the desired drawing Γs
a(H′).

Throughout this description, we will show that Γs
a(H′) is skinny, i.e., requirements

R.1–R.4 are met. In the end we will show that Γs
a(H′) is strictly convex and topo-

logically equivalent to Γa(H′), which will then guarantee the existence of a morph
between the two by Theorem 8. The construction is as follows.

• We place u and v in the same positions as they are in Γa(H′).

• We place all the vertices of C which are connected to both u and v, i.e., the
cutvertices as well as d and d′ on the radius r in the order they appear in δC
such that d′ is closer to the intersection point of r and uv than d. This obviously
fulfills R.3.

• For a cycle c of C, let x and y be the two vertices of c which are already placed
on r. Define two isosceles triangles Tu

c and Tv
c sharing the same base xy such

that the third vertex of each of them lies inside disk D on opposites sides of r
and such that the internal angle at x and y is smaller than ϕ for each of them.
For an illustration, refer to the colored triangles in Figure 5.7. In the following,
we denote by H′

c the subgraph of H′ induced by the vertices that lie on c or are
contained inside c.

– Recall that besides x and y, which are already placed on r, all remaining
vertices of c are connected to exactly one of u or v. We construct a circular
arc between x and y on each side of r which is completely contained inside
Tu

c and Tv
c , respectively. The vertices of c that are connected only to u (only

to v) are consecutive in δC and placed in this order equidistant on the
circular arc that is completely contained inside Tu

c (Tv
c ). This construction

then immediately guarantees R.1, R.2, and R.4 for the drawing of c.
– It remains to specify the position of the vertices of H′

c which are not part
of C. Here, we leverage the fact that since H′

c is drawn strictly convex in
Γa(H′), it admits a strictly-convex drawing for any given strictly-convex
drawing of its outer face [55]. Thus, we can apply the algorithm in [55] to
construct a strictly-convex drawing of H′

c, whose outer face is exactly the
drawing of c which we specified earlier.

• It remains to add the edges incident to u and v that are contained inside △ to
the resulting drawing. This completes the construction of Γs

a(H′).
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We now prove that Γs
a(H′) is strictly convex and topologically equivalent to Γa(H′).

By construction, every cycle c of C fulfills R.1–R.4, hence the drawing Γs
a(H′) is

skinny. In particular, since R.3 is fulfilled, we have by Property 4 that no two edges
incident to u or v intersect in Γs

a(H′). Since every subgraph H′
c is drawn strictly con-

vex and since all faces incident to u and v in H′ are triangular by Observation 2, it
follows that Γs

a(H′) is strictly convex. To show topological equivalence, we remark
that the algorithm in [55] as well as our construction maintain the cyclic order of
edges around each vertex and, as previously observed, we do not introduce any
crossing. Hence, Γs

a(H′) is topologically equivalent to Γa(H′) which concludes the
proof.

Now that we have established that Γs
a(H′) has all desired properties and that

there exists a morph between Γa(H′) and Γs
a(H′), we need to specify this morph

explicitly as we have some constraints that we can not ignore. Since both drawings
are strictly convex and topologically equivalent, the preconditions of the first part of
Theorem 8 are met. However, in order to perform this morph independently for each
piece of a kite, we need to guarantee that the vertices u and v do not move and that
all vertices of H′ stay inside △ throughout the whole morph. While u and v have
the same position in Γa(H′) and Γs

a(H′) by construction, the position of d (which
completes the triangular outer face) may differ. To overcome this issue, we introduce
a new vertex d∗ and place it at the same position in both Γa(H′) and Γs

a(H′). In
particular, d∗ is placed in the outer face of H′ and it is connected to u,v and d. Clearly,
the triangle defined by u, v and d∗ contains all vertices of H′ (as previously, the outer
face was bounded by u,v and d) and the edges can be drawn crossing-free. After
this augmentation, the requirements for the second part of Theorem 8 are fulfilled,
which allows us to compute the desired morph of ⟨Γa(H′), Γs

a(H′)⟩, after which we
remove d∗ from both drawings.

5.3.3 Performing the global morph

By applying the aforementioned procedure for each piece of a kite, we obtain a
drawing Γa(G′) of the supergraph G′ of G which is the union of Q and the aug-
mented graphs H′

△ that correspond to every piece of a kite △. Remark that in order
to construct such a drawing for each piece of a kite, we have to derive some param-
eters (such as the angle ϕ) from the shortest length of each base-edge throughout
the morph of ⟨Γa(Q), Γb(Q)⟩. In order to compute this length, we observe that the
only operation which changes the edge-length of our drawing is the application of
Theorem 8. In fact, the underlying algorithm is composed of a linear number of
uni-directional morphs, where all the vertices move along parallel straight-line tra-
jectories at each step. Thus it is straightforward to compute the shortest length of
each base-edge. Hence, we can now describe the complete morph. Recall that Γa(G′)
is composed of Γa(Q) and the skinny drawing Γs

a(H′
△) of every graph H′

△. By con-
struction, the vertices of Q follow the same trajectory as in the morph between Γa(Q)
and Γb(Q), which has been recursively computed. Hence it remains to describe the
trajectory of the level-ℓ vertices. Since the level-ℓ vertices of each subgraph H′

△ will
remain inside △ throughout the morph, we can consider them independently for
each piece of a kite. Thus, we will describe the trajectories for one specific subgraph
H′ in the following. We will reuse the notation introduced in Sections 5.3.1 and 5.3.2.

The trajectories of u and v are specified by the morph of ⟨Γa(Q), Γb(Q)⟩, hence
we only describe the trajectories of H′ \ {u, v} which are exactly the vertices of level-
ℓ if H′, see Fig. 5.8 for an example. The drawing of H′ \ {u, v} is a rigid copy of the
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vu

FIGURE 5.8: Computing the trajectories for the vertices of H′ \ {u, v}
based on the, already computed, trajectories of u and v. The disk is
highlighted in light blue, while the skinny drawing of H′ \ {u, v} is

dark blue

skinny drawing Γs
a(H′ \ {u, v}) rotated and translated such that the cutvertices of C

as well as d and d′ lie on the radius r of D perpendicular to the base edge uv and the
distance between the intersection of r and uv and d′ is the same as in Γs

a(H′). Clearly,
the drawing of H′ remains skinny, planar and strictly convex at every time instant
by Section 5.3.2.

Let Γb(G′) be the drawing of G′ obtained so far. It remains to undo some of
the steps in order to obtain a drawing of the base graph. In particular, we need
to transform, for each subgraph H′

△, the current skinny drawing Γs
b(H′

△) in Γb(G′)

to Γb(H′
△). By construction, Γs

b(H′
△) and Γb(H′

△) are topologically equivalent and
strictly convex. Similarly as for Γa(H′

△), we ensure that the outer face of H′
△ is drawn

the same in both Γs
b(H′

△) and Γb(H′
△) by adding an extra vertex (see Section 5.3.2,

where we introduced the auxiliary vertex d∗ to achieve this property), which allows
to apply Theorem 8 independently for each H′

△. The target drawing Γb(G) is then
obtained by removing the vertices and edges in G′ \ G and by reinserting the crossed
edges in the marked faces. This concludes the proof of Theorem 6.

5.4 Implications of Theorem 6

Here, we consider some known families of 1-planar graphs which admit 1-kite-
planar drawings and therefore we can apply the aforementioned result to them.

By [38], we know that an n-vertex 1-planar graph can have at most 4n − 8 edges.
1-planar graphs which achieve this bound are called optimal. Any 1-planar drawing
of such a graph has the following two properties. The uncrossed edges induce a
plane triconnected quadrangulation P and each pair of crossing edges of G is drawn
inside a corresponding face of P, refer to [166]. Contrary to planar graphs, however,
a corresponding result to [100] does not hold for 1-planar graphs, i.e., not every 1-
planar graph can be drawn straight-line. In fact, the maximum number of edges is
reduced to 4n − 9 by this restriction [73]. An optimal 1-planar straight-line drawing
is, similar to the general case, one in which the uncrossed edges induce a plane
triconnected graph whose inner faces are all quadrangles, while the outer face is
a triangle [73]. Clearly, this implies that each kite is empty which implies that the
binding edges can not be crossed (since they do not exist) and every kite edge is
present and uncrossed. Thus, any optimal 1-planar straight-line drawing is 1-kite-
planar.
Another notable family of 1-planar graphs are IC-planar graphs [5, 46, 63, 143]. In an
IC-planar drawing, no vertex can be incident to two crossed edges - conversely, the
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crossed edges induce a matching. It follows that both the binding edges and the kite
edges are necessarily uncrossed. Hence, if the drawing is in a sense maximal, i.e., all
the kite edges are present, it is a 1-kite-planar drawing. The class of drawings where
all kite edges are present is referred to kite-augmented [44] or locally maximal [90].
Hence, we obtain the following corollary to Theorem 27.

Corollary 3. There exists a morph between any pair of topologically-equivalent straight-line
drawings that are optimal 1-planar or kite-augmented IC-planar.

5.5 Open problems

We conclude by stating some open problems.

1. Can our algorithm be extended to all 1-planar graphs? We remark here that
by relaxing the requirement that the binding edges are uncrossed, we cannot
easily morph the interior of the kites independently anymore, hence additional
ideas will be required.

2. Can we bound the complexity, i.e., the number of linear steps which describe
the vertex trajectories?

3. What about morphing other beyond-planar graph classes? One natural can-
didate would be the class of h-framed drawings. A drawing Γ(G) is called h-
framed, if after the removal of all crossing edges from Γ(G), the remaining
drawing Γ(G′) is a simple and biconnected planar graph that spans all vertices
of G with faces of size at most h. Clearly, a 3-framed graph is a planar graph
and every 4-framed graph is kite-planar (observe that binding edges are im-
possible in 4-framed graphs). It is an interesting open question whether our
algorithm can be extended to the class of 5-framed graphs. We conjecture that
this extension is at least possible for optimal 2-planar graphs, which form a
subset of 5-framed graphs by [29].

We on purpose skipped over the elephant in the room so far.

4. Is it possible to morph all non-planar graphs?

To this end, let us consider the rather natural approach of finding a morph be-
tween two (topologically-equivalent) planarizations. The following short exhibition
will show that the additional constraint that two opposite edges of an introduced
dummy vertex have to maintain the same slope throughout the morph cannot be
(easily) incorporated into the basic morphing paradigms introduced by Cairn [51]
or Floater and Gotsman [91], respectively.

5.5.1 Algorithm of Cairn

Let G be a planar drawing and ⟨Γa(G), Γb(G)⟩ be two topologically-equivalent pla-
nar drawings of G. The following description of Cairn’s algorithm is supposed to
give a rough idea and omits several technical details to ease the presentation. First,
we can observe that in any planar graph, hence in particular in G, we can identify a
vertex u of maximum degree five, which we will contract to a neighbor v of u1 such
that v is still “visible” from its neighbors, i.e, the straight-line segment connecting

1in fact, if we place u directly on top of v this is not a proper morph, but here we just assume
sufficiently close
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the new position of v to its neighbor is not intersecting any other edge of the draw-
ing. By induction, the resulting graph G′ is planar and contains (n − 1) vertices and
we use the induction hypothesis to derive that there exists a morph of G′. Hence,
the morph of G can be described as follows.

1. Contract the edge uv (which can be done as a linear morph of only u) to obtain
G′

2. Compute the morph from Γa(G′) to Γb(G′).

3. Compute a morph from the final drawing Γb(G′) to Γb(G) in order to expand
the edge uv again2

Let us now consider the application of the algorithm to a planarization P . Since
there are non-planar graphs with minimum degree larger than five, the only vertices
of P of a suitable degree are in fact dummy vertices. Let us therefore consider the
contraction of such a dummy vertex u with neighbors v1, . . . v4 such that v1v3 crosses
v2v4 in the original drawing (of course it can be possible that one of v1, . . . v4 is a
dummy vertex as well). W.l.o.g. we contract u to v1. While one could potentially
find a position sufficiently close to v1 such that the slopes of (v1, u) and (u, v3) stay
the same, the slopes of (v2, u) and (v4, u) will necessarily differ, thus making this
rather straightforward approach infeasible.

5.5.2 Algorithm of Floater and Gotsman

The approach of Floater and Gotsman gives an explicit formula to compute the ver-
tex coordinates at any (discrete) timestep t. To this end, let us make some addi-
tional assumptions, namely assume that the planarizations are 3-connected, that the
boundary (i.e., the drawing of the outer face) of Γ′

a and Γ′
b is identical and that in Γ′

a
and Γ′

b, any face is drawn convex and two faces share at most a common vertex or a
common edge. We call such an embedding a tiling.

Under these assumptions, we can try to leverage the result of [91] who showed
that there always exist a morph between Γ′

0 and Γ′
1 which guarantees that, at any

time instance t ∈ [0, 1], Γ′
t is a tiling and has the same combinatorial embedding as

Γ′
0 and Γ′

1 which can be expressed by a convex combination of coefficients. Let us try
to find a suitable choice of coefficients such that any two non-consecutive segments
(w.r.t. the circular order) that are incident to a dummy vertex maintain the same
slope throughout the morph. In [92], Floater extended the proof of correctness of
Tutte [175] to arbitrary convex positions, i.e., for a vertex u with neighbors (v1, ..., vk)
we set

u =
k

∑
j=1

λjvj (5.1)

such that
k

∑
j=1

λj = 1 (5.2)

and
λj > 0 (5.3)

2this last part can be tricky, as u contracted to v might not be visible from its other neighbors in Γ1,
hence v has to be chosen carefully and might require an initial morph to convexify the polygon which
contains u in the inital drawing
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Hence, if our choice of coefficients satisfies Eq. (5.1)-Eq. (5.3) we are guaranteed that
we have a valid morph from Γ′

0 to Γ′
1. We will make use of the following lemma.

Lemma 16. If point p lies on the intersection between the two segments p1 p3 and p2 p4,
there exists x, y ∈ (0, 1) such that

p =
1
2
(xp1 + (1 − x)p3) +

1
2
(yp2 + (1 − y)p4) (5.4)

holds.

Proof. Since p lies on the intersection of the two segments, p lies on p1 p3 and on p2 p4.
Hence, we can express p such that

p = xp1 + (1 − x)p3

p = yp2 + (1 − y)p4

holds. Summing both equations we get 2p = xp1 + (1 − x)p3 + yp2 + (1 − y)p4 and
therefore p = 1

2 (xp1 + (1 − x)p3) +
1
2 (yp2 + (1 − y)p4) as desired.

Let t ∈ [0, 1] be an arbitrary time instance. Let u ∈ P be a dummy vertex, i.e., u
corresponds to a crossing in Γt. Clearly, deg(u) = 4. Let (u1, u2, u3, u4) be the neigh-
bors of u. Our goal is to guarantee that segments u1u and u3u as well as u2u and u4u
have the same slope in Γ′

t. Consider now Γ′
0. Note that the following construction

can be seen as analogous to [91] by restricting the technique to degenerate triangles.
The points (u1, u2, u3, u4) form a star-shaped polygon that contains u in its kernel.
Let Li be the line defined by ui and u. Clearly, Li also contains ui+2 (indices taken
modulo 4). For any such line Li (which can be interpreted as a degenerate triangle),
we can express u as the convex combination of ui and ui+2. Namely,

u = τ0
1 u1 + (1 − τ0

1 )u3

u = τ0
2 u2 + (1 − τ0

2 )u4

u = (1 − τ0
1 )u3 + τ0

1 u1

u = (1 − τ0
2 )u4 + τ0

2 u2

Note that τ0
1 , τ0

2 ∈ (0, 1). Now we define λj to be the average of how much uj con-
tributed to the four equalities and we get

λ1 =
1
4
(τ0

1 + 0 + τ0
1 + 0) =

τ0
1
2

λ2 =
τ0

2
2

λ3 =
(1 − τ0

1 )

2

λ4 =
(1 − τ0

2 )

2

Clearly, λi > 0 and ∑i λi = 1 is satisfied.

Similarly, we can repeat the procedure for Γ′
1 and obtain λ1 =

τ1
1
2 , λ2 =

τ1
2
2 , λ3 =

(1−τ1
1 )

2 and λ4 =
(1−τ1

2 )
2 .
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FIGURE 5.9: The left and the right drawing form a pair of topolog-
ically equivalent drawings. While the dummy vertex (circle) lies on
the intersection of the lines for λ = 0 (left) and λ = 1 (right), this does
not occur for λ = 0.4 (middle). Even though this difference is quite
small, it is still sufficiently big so that its cause cannot be attributed to

numerical errors.

Now, the lambda coefficients at time instance t satisfy λt
i = (1 − t)(λ0

i ) + t(λ1
i ) [91].

Hence, we express ut as

ut = λt
1ut

1 + λt
2ut

2 + λt
3ut

3 + λt
4ut

4 (5.5)

which is equivalent to

ut =
1
2
((1 − t)τ0

1 + tτ1
1 )u

t
1 +

1
2
((1 − t)τ0

2 + tτ1
2 )u

t
2+

1
2
((1 − t)(1 − τ0

1 ) + t(1 − τ1
1 ))u

t
3 +

1
2
((1 − t)(1 − τ0

2 ) + t(1 − τ1
2 ))u

t
4 (5.6)

By multiplying the last equation with 2 and rearranging we obtain

2ut = ((1 − t)τ0
1 + tτ1

1 )u
t
1 + (1 − t)(1 − τ0

1 ) + t(1 − τ1
1 ))u

t
3+

((1 − t)τ0
2 + tτ1

2 )u
t
2 + ((1 − t)(1 − τ0

2 ) + t(1 − τ1
2 ))u

t
4 (5.7)

Set x = (1 − t)τ0
1 + tτ1

1 and y = (1 − t)τ0
2 + tτ1

2 and we obtain

2ut = xut
1 + (1 − x)ut

3 + yut
2 + (1 − y)ut

4 (5.8)

xut
1 + (1− x)ut

3 expresses a point P1 which lies on the segment ut
1ut

3. Similarly, yut
2 +

(1 − y)ut
4 expresses a point P2 which lies on the segment ut

2ut
4. Hence, u = P1+P2

2 is
the midpoint of P1 and P2 - unfortunately, it does not necessarily hold that P1 = P2
holds as shown in Fig. 5.9, thus the approach is infeasible.
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Chapter 6

Low degree RAC graphs with few
bends

Cognitive experiments show that planar drawings, in particular straight-line draw-
ings of graphs, are desirable since they do not introduce crossings nor curves of
high-complexity. If no such drawing is possible, i.e., crossings cannot be avoided,
the user study of [120] establishes that large crossing-angles are preferred. This mo-
tivates the class of k-bend RAC drawings, where every edge is a poly-line with at
most k bends and the (smallest) angle of any two intersecting segments is right, i.e.,
the two crossing segments are perpendicular to each other. Since not all graphs ad-
mit k-bend RAC drawings for k ∈ {0, 1, 2}, it is natural to consider the containment
of bounded degree graphs for these values of k.

Related work In [15], the authors showed that Hamiltonian degree-3 graphs are
RAC. This result can be used, for example, to show that there exists RAC graphs
which are not k-planar for any fixed k. Namely, n-vertex cube-connected cycles
graphs are cubic and Hamiltonian[105] and therefore RAC, but they have crossing
number Ω(n2) [167] - hence in any drawing, there exists an edge with Ω(n) many
crossings. The work of [75] showed that the complete bipartite graph K4,4 does not
admit a RAC drawing, hence there exists degree-4 graphs that are not RAC. Further,
if one allows the presence of bends, it can be shown that every degree-3 graph is
1-bend RAC [13] and every degree-6 graph is 2-bend RAC [13]. If we allow even
more bends per edge, the introductory paper of the class of k-bend RAC graphs [72]
already established that every graph admits a 3-bend RAC drawing. Thus, subse-
quent research focused on the required drawing area, which was further motivated
by the fact that (0-bend) RAC drawings might require exponential area since their
recognition is hard in the existential theory of the reals [161]. The best result for
the area of 3-bend RAC drawings is cubic (in the number of vertices) due to [95].
Subcubic area can be obtained if we allow up to six bends per edge [155].

Our contribution In Section 6.2, we will show that all 3-edge colorable degree-
3 graphs admit a RAC drawing in quadratic area which can be computed in linear
time. In Section 6.3, we provide two conceptually different algorithms that, for every
degree-4 graph, compute a 1-bend RAC drawing in linear time that uses quadratic
area. Finally, in Section 6.4, we provide a linear time algorithm which computes a
2-bend RAC drawing of quadratic size for any degree-8 graph.
Section 6.2 and Section 6.3 are based on joint work with Patrizio Angelini, Michael A.
Bekos, Julia Katheder and Michael Kaufmann and was published at the “47th Inter-
national Symposium on Mathematical Foundations of Computer Science (MFCS)”
[8]. Section 6.4 is based on joint work with the aforementioned authors in addition
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to Torsten Ueckerdt which is accepted at the “European Symposium on Algorithms
(ESA) 2023”.

6.1 Preliminaries

We assume in the following that G is connected, as otherwise we will apply the
following algorithms to every component of G independently which will be easily
merged together (i.e., drawn side by side) in the resulting drawing. The algorithms
use a decomposition of the edge-set of G for their constructions. In particular, a 2-
factor of an undirected graph G is a spanning subgraph of G which consists of vertex
disjoint cycles. For a bounded degree graph, we have the following result available.

Theorem 9 (Eades, Symvonis, Whitesides [83]). Let G be an undirected graph with
maximum degree ∆ and let d = ⌈∆/2⌉. Then, there exists a directed multigraph G′ with the
following properties:

1. each vertex of G′ has indegree d and outdegree d;

2. G is a subgraph of the underlying undirected graph of G′; and

3. the edges of G′ can be partitioned into d edge-disjoint directed 2-factors.

The directed graph G′ and the d 2-factors can be computed in O(∆2|V[G]|) time.

Let F be a 2-factor of G computed by Theorem. 9. We will define a total order
≺F of the vertices of G based on F such that, for each cycle C ∈ F, the vertices
appear consecutive in ≺F according to some traversal of F. This implies that any
two vertices, which are adjacent in C, are consecutive in ≺F besides the first and the
last vertex of the traversal of C. We will call the edge between these two vertices the
closing edge of C. By construction, ≺F also implies a total order of the cycles of F.
Consider an edge uv in E \ F and let C and C′ be the two cycles of F which contain u
and v, respectively. If C = C′, i.e., u and v both belong to the same cycle C ∈ F, then
uv is called a chord of C. Otherwise, if C ̸= C′ and C ≺F C′ holds, then uv is called a
forward edge for u and a backward edge for v.

In order to control the crossing angles in the resulting drawing Γ, all crossings
that occur in our constructions will consist of pairs of edge-segments (s1, s2) such
that s1 is parallel to the x-axis, while s2 is perpendicular to the x-axis. This restricted
class of RAC drawings is formally introduced in Chapter 7, where natural questions
such as the containment relationship as well as edge-density bounds are consid-
ered. Motivated by this restriction, we can distinguish between the following type
of incidence-relations between a vertex u and an edge uv. The edge uv uses an or-
thogonal port at u if the segment of uv incident to u is either horizontal or vertical
(i.e., it could be involved in a crossing in our restricted setting), otherwise uv uses
an oblique port. We will use a natural naming scheme for the orthogonal ports at u,
i.e., we say that the segment of uv uses the N, E, S or W port at u if this segments is
above, to the right, below or to the left of u.

6.2 RAC drawings of 3-edge-colorable degree-3 graphs

In this section, we will show that 3-edge-colorable degree-3 admit a RAC drawing
of quadratic area that can be computed in linear time under the assumption that the
3-coloring of the edges is presented as part of the input, as it is NP-complete to test
if even a 3-regular graph admits such a coloring by [114].
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Theorem 10. Given a 3-edge-colorable degree-3 graph G with n vertices and a 3-edge-
coloring of G, it is possible to compute in O(n) time a RAC drawing of G with O(n2) area.

We can assume w.l.o.g. that G does not contain degree-1 vertices. Namely, as-
sume that v is a degree-1 vertex in G connected to vertex u such that uv is assigned
color one in the given 3-edge coloring. Then, we can substitute v with a 3-cycle
(v1, v2, v3) such that v1 is connected to u, the color of v1v2 is two, the color of v2v3 is
one and the color of v3v1 is three. Clearly, by applying this to every degree-1 vertex,
we obtain a 3-edge colorable graph with asymptotically the same number of vertices
(in particular, we introduce two new vertices for every degree-1 vertex in G).

Since G is 3-edge-colorable, we can decompose the edge set of G into three
matchings M1, M2 and M3. In the final drawing Γ, the edges of M1 will be drawn
vertical, the edges of M3 horizontal and the edges of M2 will be drawn crossing free
thus they do not require a particular slope. Denote by Hx and Hy the subgraphs of G
induced by M1 ∪ M2 and M2 ∪ M3, respectively. By the initial observation we have
that every vertex has degree at least two, which by definition belong to two different
matchings, thus Hx and Hy are both spanning subgraphs of G. Moreover, as Hx and
Hy are degree-two subgraphs of G, every component of Hx (Hy) is either a path or an
even-length cycle (as an odd-length cycle would imply that two consecutive edges
in a traversal of the cycle would belong to the same matching which clearly violates
the matching property). In a sense, each of Hx and Hy is a subgraph of a 2-factor of
G, however, the crucial difference is that they are not edge-disjoint as they share the
edges of M2.

The main idea of our algorithm is as follows: We will work through the com-
ponents of Hx and Hy and place them consecutively in x- or y-direction. The main
difficulty here is how to handle the closing edges for a cyclic component, as this edge
spans several coordinates. In order to guarantee that this edge is crossing free, we
have to consider a more elaborate strategy in which order we process the cycles. To
this end, we define an auxiliary bipartite graph H whose first (second) part has a
vertex for each connected component in Hx (Hy), and there is an edge between two
vertices of H if and only if the corresponding components in Hx and Hy share at
least one vertex; see Fig. 6.1. We will first establish a structural property of H. In the
following, we will always refer to the corresponding vertex of a component c in Hx
or in HY that belongs to H as vc.

Property 5. The auxiliary graph H is connected.

Proof. We suppose for a contradiction that H is not connected. Then, there exist two
vertices vc and vc′ in H which belong to different components of H. We assume that
c ∈ Hx. Let v1 and vk be two vertices of G which belong to c and c′, respectively. Since
G is connected, there exists a path P = (v1, . . . , vk) in G. By the matching property,
we have that no two consecutive edges of P can belong to the same matching. Let
(vi, vi+1) be the first edge when traversing P starting at v1 which belongs to M3.
Such an edge exists, as otherwise we would have that c = c′. Hence, vi belongs to
c and to some other component c∗ ∈ Hy, but then vc and vc∗ are connected in H by
construction. Repeating this argument until vk is reached yields a path in H from vc
to vc′ , a contradiction.

We will now use a traversal of H in order to construct two total orders ≺x and
≺y of the vertices of G which will be used to derive the final x- and y-coordinates
of them. Recall that since the edges of M1 (M3) are drawn vertical (horizontal), we
require that the endpoints of an edge of M1 (M3) are consecutive in ≺x (≺y). If we
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(a) G

c5

c4

c1

c3

c2

(b) c1, . . . , c5

c1 c4 c5

c2 c3

(c) H

FIGURE 6.1: (a) A non-planar, non-Hamiltonian, 3-edge-colorable
degree-3 example graph G. The matching M1 is drawn with dark
blue, M2 with red and M3 with light blue. (b) The components c1,
c4 and c5 of the subgraph Hx induced by M1 ∪ M2 (shaded in green)
and the components c2 and c3 of Hy induced by M2 ∪ M3 (shaded in
orange). (c) The auxiliary graph H in which the components of Hx
and Hy that share at least one vertex are connected by an edge. In this
example, one valid BFS traversal of the components of H would be

c1, c2, c3, c4, c5.

encounter a vertex of H whose corresponding component belongs to Hx (Hy) during
our traversal, we will append all its vertices to ≺x (≺y), where the exact ordering of
these vertices will be specified shortly. In a broad sense, the traversal is a simple
BFS traversal of H. To select the first vertex of the traversal of H, we choose an (al-
most) arbitrary vertex u of G. As observed earlier, every vertex, thus in particular
u, belongs to two components c and c′ of Hx and HY, respectively. If c is a path,
we require that u is the endpoint of c; in the case of c being a cycle we impose no
constraints. We call u the origin vertex of G. We start our BFS traversal of H at vc
and then move to vc′ in the second step (clearly, these vertices are connected in H
as the corresponding components both contain the origin vertex). From now on, we
continue the BFS traversal of the remaining vertices of H without any additional re-
strictions. This specific choice of the first step will be of importance for a structural
property of an edge which belongs to M2. Now that we have described a valid or-
der in which the components of Hx and Hy are processed, we turn to the ordering
of the vertices of a specific component to guarantee Property 6). Let c be the com-
ponent which corresponds to the currently visited vertex in the traversal of H. By
bipartiteness, it follows that no other component of Hx shares a vertex with c if c be-
longs to Hx. Hence, it follows that no vertex of c is already part of Hx (an analogous
statements clearly holds for Hy). If c is a path, then we append the vertices of c to
≺x (≺y) in the order defined by a walk from one endpoint of c to the other. For the
special case that c is a path and the first component in the BFS traversal of H, one of
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the endvertices of c is in fact the origin vertex by definition, which we then choose
as the start of our walk. Hence, in the remainder we have to discuss how to handle
the case where c is a cycle. The main idea is to again append the vertices to ≺x or
≺y in the order derived by a walk along c such that the closing edge of c necessarily
belongs to M2. However, the choice of the starting vertex for the walk is a bit more
involved. Suppose first that c ∈ Hx. If c is the first component of the traversal of
H, then we choose the origin vertex of G as the starting vertex and define the walk
such that the edge of M1 incident to the origin vertex is the first one. Otherwise, if c
is not the first component, some vertices of c were already placed in ≺y beforehand
(as the previous “level” of the BFS traversal considered components of Hy and at
least one of them shares a vertex with c (which is in fact the parent of c). Let v be the
first vertex of c in ≺y. We start our walk at v and again follow the edge of M1 that is
incident to v. We remark here the important property that v is the first vertex of c in
both ≺x and ≺y by construction.

Suppose now that c ∈ Hy. Then c cannot be the first component of the traversal
of H. Similar to the previous case, let v be the first vertex of c in ≺x, which is again
well defined as at least one vertex of c is already part of ≺y (i.e., the one that is shared
between c and its parent w.r.t. the traversal). We start our walk of c at v and follow
the edge of M3 that is incident to v which uniquely defines our walk of c. However,
contrary to the previous case, we will append the vertices of c to ≺y in the inverse
order that they appear in this walk. Observe that v is the first vertex of c in ≺x, but
the last vertex of c in ≺y. Again, as c has even length, we have that the closing edge
belongs to M2, see Fig. 6.2 for an illustration. Note that by construction, the closing
edge uv of any cyclic component c belongs to M2, and since one endpoint of uv was
chosen such that it is also contained inside the parent component, it follows that v
also belongs to it by definition. Moreover, we have the following property.

Property 6. The endvertices of any edge in M1 (M3) are consecutive in ≺x (≺y). The
endvertices of any edge in M2 are consecutive in ≺x (≺y) unless this edge is a closing edge
in a component of Hx (of Hy).

Computing the vertex coordinates. With the total orders ≺x and ≺y at hand, we
can now compute the explicit x- and y-coordinates of the vertices respectively. Since
our drawing is straight-line, this fully describes the final drawing Γ. We will first
describe how to assign the x-coordinates. Initially, we assign the first vertex of ≺x
the x-coordinate 1. Now, we iterate through ≺x. let v be the next vertex of the
iteration and let u be its predecessor in ≺x. Assume that the x-coordinate of u is i.
If uv ∈ M1, then v gets the same x-coordinate i as u. Otherwise, uv ∈ M2 and v
gets x-coordinate i + 1. Similarly, we iterate through ≺y, set the y-coordinate of the
first vertex to 1 and if v is the next vertex in the iteration and its predecessor u had
y-coordinate i, vertex v is assigned y-coordinate i if uv ∈ M3, and y-coordinate i + 1
otherwise. Observe that by construction, no two vertices u and v are placed on the
same positions, as otherwise they would necessarily be connected by an M1 edge
and by an M3 edge, which is impossible as the input graph is simple.

It remains to show that the computed vertex coordinates induce a straight-line
RAC drawing Γ of G with the possible exception of exactly one edge e∗. Edge e∗,
if it exists, is the edge of M2 incident to the origin vertex of G. Observe that by
construction, e∗ is the closing edge of two components, and therefore its endpoints
are neither consecutive in ≺x nor in ≺y by Property 6. We will describe how to
incorporate e∗ into the final drawing in the end, hence for now we consider graph
G∗ = G \ e∗ and compute its drawing Γ∗.



58 Chapter 6. Low degree RAC graphs with few bends

1

2 3

4

5

6

97

810

11

12

13

(a)

8

1

2

3

4

5

6

7

9

10

11

12

13

(b)

7

12

3

8

13

4

2

5

7

9

10

13

6
6

5

122
1

1
8

10
3

11
4

9
11

(c)

FIGURE 6.2: The total orders (a) ≺x for Hx that consists of the dark
blue and red edges, and (b) ≺y for Hy that consists of the light blue

and red edges. The final drawing of G is shown in (c).

Lemma 17. Let e be an edge of G∗. Then, e is drawn vertically in Γ∗ if e ∈ M1; horizontally
in Γ∗ if e ∈ M3 and crossing-free in Γ∗ if e ∈ M2.

Proof. If the edge e belongs to M1 or M3, the statement directly follows from Prop-
erty 6 and the computed vertex coordinates. Hence assume that e = uv ∈ M2 and
let cx ∈ Hx and cy ∈ Hy be the two components that contain e. Suppose for a contra-
diction that there exist an edge e′ = u′v′ which crosses e. Let us first establish some
preliminary observations about e′. If e′ ∈ M1, then both u′ and v′ belong to the same
component c′x ∈ Hx. If cx and c′x are different then by construction the vertices of cx
and c′x span different x-intervals, therefore they cannot possible intersect, thus e′ be-
longs to cx. Similarly, if e′ ∈ M1, then e′ also belongs to cy. Finally, by an analogous
argument, if e′ ∈ M2, then e′ belongs to the same component in both Hx and Hy, in
particular, e′ belongs to cx and cy. In the following case analysis, we will distinguish
base on the type of e and e′.

1. Edge e is a closing edge for neither cy nor cx.

It follows by Property 6 that u and v are consecutive in both ≺x and ≺y. In
particular, by construction, their x- and y-coordinates differ by exactly one.
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Since vertices are placed on integer coordinates, no vertical or horizontal edge
can intersect e, hence no edge of M1 or M3. Hence, e′ necessarily belongs to
M2. By construction, the x- and y-coordinates of the vertices in cy and cx are
non-decreasing along the walk that defines their order in ≺x and ≺y. Hence,
e′ cannot cross e unless it is a closing edge in either cx or cy (or both). This case
will be covered later by swapping e and e′.

2. Edge e is a closing edge for cx but not for cy.

Recall that since we argue about G∗, component cx cannot be the first compo-
nent of the BFS traversal of H as otherwise e = e∗. Since e is not closing in cy,
we have that u and v are consecutive in ≺y by Property 6. W.l.o.g. assume that
u directly precedes v in ≺y, which then implies that u is the first vertex of cx in
≺y by our construction rule, as when we are considering cx, we start our walk
at the first vertex of cx in ≺y. As the y-coordinate of u and v differs by exactly
one, it follows that e′ cannot belong to M3. If e′ belongs to M1, then one of u′

or v′, say u′ has y-coordinate smaller or equal than u. But since u and v are
consecutive in ≺y, it follows that u′ precedes u in ≺y, a contradiction to our
choice of u as u′ also belongs to cx.

3. Edge e is a closing edge for cy but not for cx.

The argumentation for this is case is symmetric to the previous one.

4. Edge e is a closing edge for both cy and cx.

In the following, we will establish that only the edge of M2 incident to the
origin vertex potentially has this property, which means this case cannot occur
in G∗. As we are considering G∗, neither cx nor cy can be the first component
in the BFS traversal of H. Recall that by definition, the vertices vcy and vcx are
adjacent in H as they share the endpoints of e. Assume that cx is visited before
cy in the BFS traversal; the other case is symmetric. While considering cx, we
start our walk from the vertex u which is by construction the first vertex of cx
in ≺y, which means u also belongs to a component c′y of Hy. As cx is a cycle
(clearly the considered case cannot occur otherwise), u is incident to an edge in
M2 which also belongs to c′y. The edge of M2 incident to cx is the closing edge
of cx, which also belongs to c′y ̸= cy by assumption. Since the components
of Hx and Hy are disjoint, it follows that the case cannot occur in G∗ which
concludes the proof.

The last case of the previous lemma shows that the edge e∗, if it exists, is the only
edge that is closing in both components which contain it.

Corollary 4. There is at most one edge in M2 that is a closing edge for two components.

We will now describe how to alter our drawing Γ∗ such that we can add the
edge e∗ and such that all the remaining edges still admit a RAC drawing. The final
drawing will be denoted by Γ. Clearly, if e∗ is missing, then Γ = Γ∗ and we are
done. Otherwise, denote by u and v the endvertices of e∗ such that u is the origin
vertex of G. As e∗ ∈ M2 and by our construction rule, both u and v are contained
in the first two components of the BFS traversal of H which we denote by c and c′.
Since u is the first vertex of ≺x, its x-coordinate is 1, i.e., u is the leftmost vertex of
Γ∗. By construction, we further have that u is the last vertex of c′ in ≺y (as we use
the inverse ordering) and since uv is also a closing edge of c′, it follows that v is
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the first vertex of c′ in ≺y and hence the first vertex of G in ≺y (as c′ is exactly the
second component in the BFS traversal after c). In particular, this implies that v has
y-coordinate 1, i.e., it is the bottom most vertex of G∗.

We will move u to the left and v to the bottom in order to add the edge e∗. In
particular, by moving u by n units to the left and v by n units to the bottom, we have
that the segment corresponding to e∗ does not intersect the quadrant R2

+, which
contains all edges of G that are not incident to u or v. Clearly, e∗ also does not cross
any edge incident to u or v. It remains to show that the incident edges to u or v are
still valid. First observe that e∗ is the only edge of M2 that is incident to u or v by
the matching property. The edge of M3 incident to u and the edge of M1 incident to
v are simply elongated and hence stay horizontal and vertical, respectively. Finally,
we consider the M1-edge e′ incident to u, the case of the M3-edge incident to v can
be argued symmetrically. We claim that e′ was crossing-free in Γ∗. To see this, we
observe that an edge crossing e′ (which is a vertical edge) is incident to a vertex that
has a strictly smaller x-coordinate than u, which is a contradiction. Thus, moving u
to the left does not introduce any new crossings. Together with Lemma 17 we obtain
that Γ is a RAC drawing of G.

It remains to discuss the time-complexity and the area requirement to compute
our drawing Γ. Recall that we assume that the 3-coloring is given as part of the
input. Then we can construct the components of Hx and Hy in linear time. As every
vertex is contained in exactly two components in Hx ∪ Hy, it follows that H has O(n)
many edges, whence the BFS traversal requires O(n) time. Choosing the origin
vertex can trivially be performed in linear time. In order to construct ≺x and ≺y,
we have to traverse every edge of G at most twice, hence this step also takes O(n)
time. Finally, with ≺x and ≺y at hand, we can compute the vertex-coordinates by
iterating through ≺x and ≺y once in O(n) time. The post-processing (i.e., potentially
adding the edge e∗) can be done in constant time. Thus, the total time-complexity to
compute Γ is O(n).

Concerning the area, we observe that the initial x and y coordinates for the ver-
tices range between 1 and n. In order to add the special edge e∗ which is incident to
the origin vertex u and vertex v, we have to move u n-units to the left and v n-units
to the bottom, thus the resulting drawing area is at most 2n × 2n.

6.3 1-bend RAC drawings of degree-4 graphs

We now turn our attention to graphs which admit 1-bend RAC drawings. In par-
ticular, we will prove that every degree-4 graph admits such drawing. To this end,
we provide two different algorithms to produce such a drawing. The first one is
based on the result derived in the previous section. The rough idea is to split ev-
ery vertex of the original graph into two to obtain a 3-colorable degree-3 graph.
We then apply Theorem 10 to this graph such that, in the final drawing, we will
place the bend-points of the edges sufficiently close to the computed position of the
split-vertex. The other approach is an extension of the result in [13], where the au-
thors show that every degree-3 graph admits a 1-bend RAC drawing. The benefit of
the latter approach is that we can guarantee a linearly sized set of edges which are
drawn straight-line, whereas in the first construction every edge requires a bend to
be drawn.

Theorem 11. Given a degree-4 graph G with n vertices, it is possible to compute in O(n)
time a 1-bend RAC drawing of G with O(n2) area.



6.3. 1-bend RAC drawings of degree-4 graphs 61

Proof. By Theorem 9, we can augment G into a directed 4-regular multigraph G′

with 2-factors F1 and F2. Recall that F1 and F2 are by construction edge disjoint. We
will now compute a split-graph Gs of G′ as follows. By definition, every vertex u of
G′ has exactly one incoming and one outgoing edge in F1 and F2, each; denote these
by (a1, u), (u, b1) ∈ F1 and (a2, u), (u, b2) ∈ F2, respectively. We add two vertices
us and ut to Gs such that us is incident to the two incoming edges of u, while ut is
incident to the two outgoing edges of u (with respect to F1 and F2). In particular,
we have (a1, us), (a2, us), (us, b1) and (us, b2). Finally, we will add the edge (us, ut)
to Gs, which is called split-edge. Clearly, GS is 3-regular by construction. To see that
Gs is also 3-edge colorable, we observe that every vertex of Gs is incident to exactly
one edge of F1, one edge of F2, and one split-edge. Hence, coloring the edges of F1,
the edges of F2 and the set of split-edges in three different colors provides a valid
3-edge coloring of Gs. Therefore, all the preconditions of Theorem 10 are met and
we can compute a RAC drawing Γs of Gs. In particular, we choose M2 to consist of
exactly the set of split-edges in Gs. It remains to transform Γs into a 1-bend drawing
of G′. To do so, we first place vertex u of G′ at the computed position of us in Γs. We
will draw every outgoing edge (u, x) of u in F1 ∪ F2 as a polyline with a bend that
is placed sufficiently close to the position of ut in Γs. Hence, the two segments of
(u, x) are close to (us, ut) and (ut, x) in Γs, respectively. Since any edge is outgoing
for exactly one of its endvertices, it follows that every edge has exactly one bend.
In the following, we will describe the exact position of such a bend point in detail.
Let us fix vertex u and describe its outgoing edges. Recall that the set of split-edges
belongs to M2, hence it corresponds either to the diagonal of a 1 × 1 grid box, or it
is a closing edge. The outgoing edges of ut belong to M1 or M3 and are therefore
drawn vertical or horizontal in Γs.

Assume first that the split-edge (us, ut) of u is the diagonal of a 1 × 1 grid box,
see Fig. 6.3a for an illustration. If the edge (ut, x) belongs to M1, i.e., it is a vertical
segment in Γs, then we place the bend either half a unit above ut if x is above ut or
half a unit below ut otherwise. Symmetrically, if (ut, x) belongs to M3, i.e., it is a
horizontal segment in Γ, then we place the bend either to the left or to the right of ut
(depending on the relative position of ut and x in x-direction).

Assume now that the split-edge of u is a closing edge in exactly one component
of Hx or Hy. We consider here the case where it is the closing edge of a cycle c ∈ Hx,
the other case is symmetric. Recall that a closing edge of a cycle in Hx necessarily
spans the whole x-interval of c. Again, we distinguish based on the type of the
edge (ut, x). If (ut, x) ∈ M1, then (ut, x) corresponds to a vertical segment in Γs by
construction, in which case we place the bend-point exactly at the position of ut in
Γs. The important observation is that x belongs to the same component C of M1 as
us, and since us is incident to the closing edge of C, we have by construction that us
is the first vertex of C in ≺y, hence x is necessarily above ut. sIf (ut, x) ∈ M3, i.e.,
(ut, x) corresponds to a horizontal segment in Γs, we place the bend-point half a unit
to the left of the position of ut in Γs if x ≺x ut; otherwise we place it half a unit to the
right, see Fig. 6.3b for an illustration.

Finally, assume that the split-edge of u corresponds to a closing edge e of a cycle
in Hx and a cycle in Hy. Recall that this edge is unique by Corollary 4. As discussed
at the end of the previous section Section 6.2, one of us and ut is the leftmost vertex,
while the other one is the bottommost vertex in Γs. W.l.o.g. assume that us is the
leftmost vertex in Γs. For this special case, we have to slightly alter the previous
scheme. Namely, let (ut, x) and (ut, y) be the two edges of M1 and M3, respectively,
that are incident to ut in Gs. By construction, if we elongate the segment of e in Gs to
a line, we have that all the vertices of Γs lie in the half-plane above e. We will place
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FIGURE 6.3: Illustration on how to place the bends in the proof of
Theorem 11. To merge the vertices us and ut of a vertex u in G′, u is
placed at the position of us. The bends of the outgoing edges at u are
placed close to the position of ut in the drawing depending on their

orientation.

the bend-point bx of (ut, x) sufficiently below ut, i.e., it has the same x-coordinate as
ut and y-coordinate −2n. If y ≺x ut, then we will place the bend-point by of (ut, y)
a unit to the left and two units above bx, otherwise, we place by a unit below bx,
see Fig. 6.3c for an illustration.. Clearly, (u, x) and (u, y) drawn by bending at bx
and by do not cross each other. Further, their first parts are fully contained in the
half-plane below e, hence they do not intersect any other edge. Finally, the second
part of (ut, x) remains vertical, while the second part of (ut, y) is crossing free since
(ut, y) was necessarily crossing free in Γs to not obtain a contradiction to ut being the
bottommost vertex of Γs.

Regarding the time complexity, we observe that we can apply Theorem 9 and
the split-operation in O(n) time. The split operation immediately yields a valid 3-
coloring of the edges, hence we can apply the algorithm of Theorem 10 to obtain Γs
in O(n) time. Finally, contracting the edges can clearly be done in O(n) time, as it
requires a constant number of operations per edge. For the area, we observe that
in order to place the bends, we have to introduce new grid-points, but we at most
double the number of points in any dimension and for the special edge, we double
the size of the grid, hence we still maintain the asymptotic quadratic area guaranteed
by Theorem 10.

We will now present the second algorithm that produces 1-bend RAC drawings
for every degree-4 graph.

Theorem 12. Given a degree-4 graph G with n vertices and m edges, it is possible to com-
pute in O(n) time a 1-bend RAC drawing of G with O(n2) area where at least m

8 edges are
drawn as straight-line segments.

Proof. By applying Theorem 9, we augment G to a directed 4-regular multigraph G′

and obtain the two edge disjoint 2-factors F1 and F2. Throughout the remainder of
the section, we will in fact assume that G and G′ are equivalent, as the drawing of G
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can easily be inherited from the computed drawing of G′. Moreover, we will also as-
sume that G is simple - while this cannot be guaranteed when applying Theorem 9 to
the input graph, we can simply omit a copy for every pair of multiple edges, which
clearly simplifies the construction. The main idea of the algorithm is to compute a
total order ≺ of the vertices of G based on F1. Afterwards, we will place vertex v with
position i in ≺ at position (i, i) in the final drawing Γ such that the edges of F1 (minus
the closing edges) can be drawn on the diagonal using straight-line segments. Each
edge of F2 will be drawn as a polyline which consists of exactly one horizontal and
one vertical segment. To be more precise, for a directed edge (u, v) ∈ F2, we have a
horizontal segment incident to u and a vertical segment incident to v. If u ≺ v, then
(u, v) will be drawn below the diagonal, i.e., the horizontal segment at u uses the
E-port of u and the vertical segment incident to v uses the S-port at v. Conversely,
if v ≺ u, then (u, v) will be drawn above the diagonal, i.e., the horizontal segment
at u uses the W-port of u and the vertical segment at v uses the N-port of v. Since
every vertex has indegree and outdegree one in F2 by construction, this scheme will
not use the same port twice for any vertex of G. Hence, it remains to incorporate the
closing edges of F1 into the drawing.

Remark 1. If G is Hamiltonian, we can already stop the description of our algorithm at this
point, since we can choose F1 such that it coincides with the Hamiltonian cycle, in which
case F1 contains exactly one closing edge between the first and the last vertex of ≺. By
construction, they are the bottommost and the rightmost vertex of our drawing and thus
they can be joined by two crossing-free segments.

Let ΓD be the induced drawing of G \ D, where D is the set of closing edges. The
following lemma follows directly from the routing-scheme of the edges of F2.

Lemma 18. Any vertex v in ΓD has two free orthogonal ports. Moreover, the free orthogonal
ports are opposite to the used ones.

Proof. By construction, we only have to consider edges of F2. Suppose first that v
uses the W- and E-port. A used E-port implies the existence of an edge (v, ui) (with
v ≺ ui), while a used W-port implies the existence of an edge (v, uj) (with uj ≺ v),
but then v has two outgoing edges in F2, a contradiction. Equivalently, a used N-
port and a used S-port each imply the existence of an incoming edge, which is a
contradiction to the definition of F2.

We will now define ≺ precisely such that it satisfies some desired properties.
In particular, we say an orthogonal port at vertex u is good with respect to an edge
(u, v), if the port can be used to “draw” the edge. More formally, if u ≺ v, then the
E-port and the N-port of u are good. Otherwise, if v ≺ u, then the W-port and the
S-port of u are good.

Lemma 19. There exists a total order ≺ on the vertices of G such that, for any cycle c of F1,
one of the two endpoints incident to the closing edge of F1 has a free good port (with respect
ot the closing edge).

Proof. In order to achieve the desired total order, we will fix an initial ordering of
the cycles C1, . . . , Ck such that all vertices of Ci appear before all vertices of Cj in ≺
if i < j. Clearly this property is maintained after a local operation which involves a
set of vertices that all belong to the same cycle. In particular, a cyclic rotation of the
vertices of a cycle C w.r.t to ≺. is such a local operation. In the following, we will
show that we can prove the lemma, i.e. construct a desired total order ≺ by only
applying cyclic rotations independently for each cycle. Hence, assume that cycle C
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does not satisfy this property, i.e., neither of the endpoints of the closing edge (with
respect to the current ≺) has a free good port. First observe that not all vertices of C
can be incident to only internal edges in F2, as otherwise G would be disconnected.
Hence, let v be a vertex that has an external edge. If this external edge is a backward
edge, then rotating C such that v is the first vertex of C in ≺ implies that either the
N-port or the E-port of v is free (as v has degree two in F2), which are both good
ports. Similarly, if it is a forward edge, rotating C such that v is the last vertex of C
in ≺ implies a free S-port or a free W-port.

We will now describe how to add the closing edges D to ΓD by leveraging Lemma 18
and Lemma 19, where the latter implies that we have at least one good port free for
any closing edge. Let C be a cycle of F1. W.l.o.g. assume that the last vertex of C in ≺
has a free S-port. The other cases are symmetrical. Let v1, v2, . . . , vk be the ordering
of the vertices of C induced by ≺. Recall that by construction, the position of vertex
vi is (i + x, i + x), where x is the total number of vertices which are contained in cy-
cles that precede C in ≺x. For the following argumentation, we will omit this offset
x when talking about the position of the vertices of C for clarity reasons, hence we
can assume that vi is at position (i, i). We will now consider the port assignment of
the edges incident to v1 which gives rise to the following cases.

a) v1 has a free E-port.

Since vk has a free S-port by assumption, we simply add the closing edge
(v1, vk) to ΓD drawn as a polyline with a horizontal segment incident to v1
and a vertical segment incident to vk. Hence, for the remainder we can assume
that the E-port of v1 is not free.

b) The E-port and the S-port of v1 are not free.

Observe that since v1 is the first vertex of C in ≺, it follows that the edge using
the S-port of v1 is a backward edge. Consider now the edge (v1, v) that incident
to v1 which is using the E-port of v1. If (v1, v) is a forward edge, then we have
that v1 ≺ v and v ̸∈ C and we move v1 to position (k, 2 − ϵ). This allows us to
draw the edge (v1, vk) using only one vertical segment that uses the N-port at
v1, which is free by Lemma 18. By assumption, since (v1, v) is a forward edge,
we still have that the x-coordinate of v is larger than the one of v1, thus the
edge (v1, v) can still be drawn such that its segment incident to v1 uses the E-
port of v1. Similarly, this holds for the backward edge whose segment incident
to v1 uses the S-port. Finally, we have to consider the edge (v1, v2) ∈ F1. We
will draw it as a polyline with a horizontal segment at v1 which uses the W-
port of v1 such that the bend occurs sufficiently close to v2; hence the segment
incident to v2 is crossing free and will not be assigned an orthogonal port, see
Fig. 6.4a for an illustration. Otherwise, (v1, v) is an internal edge. In particular,
v corresponds to a vertex vi ∈ C. We then place v1 at (i, 2 − ϵ). This allows us
to draw the edge (v1, v) using a single vertical segment that uses the N-port at
v1. Further, since vi ≺ vk, we have that vk is to the left of the new position of
v1 - thus we can draw the edge (v1, vk) as a polyline with a horizontal segment
incident to v1 that uses the E-port and a vertical segment that uses the free S-
port at vk. The edge (v1, v2) as well as the backward edge are drawn analogous
to the previous case, see Fig. 6.4b for an illustration.
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c) The E-port and the N-port of v1 are not free and at least one of the edges which
occupy these ports is external.

We first consider the case where both edges whose incident segments to v1 use
the E- and the N-port are forward edges. In this case, we place v1 at (n + ϵ, 2−
ϵ). This ensures that we can draw the edge (v1, vk) as a polyline which consists
of a non-orthogonal segment incident to v1 and a vertical segment incident to
the S-port of vk, such that its bend point is placed at (n, 2). The edge (v1, v2) is
drawn analogous to the first case and both forward edges keep the same port
at v1, see Fig. 6.4c for an illustration.

Consider now the case where the edge that is using the E-port at v1 is a forward
edge, while the edge that uses the N-port at v is internal. Let vi be the other
endpoint of this internal edge. In particular, since (v, vi) uses the N-port at v
and since v ≺ vi, it follows that (v, vi) uses the W-port at vi. By Lemma 18 we
obtain that the E-port at vi is free. We use this by placing v1 at (k − ϵ, 2 − ϵ)
which allows us to add (v1, vi) using the N-port of v1 and the E-port of vi.
Similar to the previous case, we will draw the edge (v1, vk) as a polyline such
that the segment incident to v1 is not orthogonal, while the segment incident
to vk uses the S-port at vk. The forward edge which uses the E-port of v1 will
remain unchanged, while the edge (v1, v2) will be drawn as in the previous
cases, see Fig. 6.4d.

For the last case, assume that the edge that uses the N-port at v1 is external (i.e.,
it is a forward edge), while the edge using the E-port at v1 is internal. Again,
we denote by vi the other endpoint of the internal edge. By Lemma 18, either
the W-port or the E-port of vi is free, w.l.o.g. we assume that the W-port of vi
is free, the other case is symmetric. We place v1 at (i − ϵ, 2 − ϵ). Moreover, we
will redraw the edge (vi−1, vi) as follows. Recall that initially, since (vi−1, vi)
is a non-closing edge of F1, it is drawn as a straight-line segment between vi−1
and vi and lies on the diagonal. We draw (vi−1, vi) as a polyline which, starting
at vi−1, uses no orthogonal port at vi−1, bends at point (i− 1+ ϵ, i) such that the
segment incident to vi uses the W-port of vi which is free by assumption, see
Fig. 6.4e for an illustration. In particular, since v1 is placed at x-coordinate i− ϵ,
the forward edge which uses the N-port at v1 can intersect the edge (vi−1, vi).
The remaining edges are then drawn similar to the previous cases. In Fig. 6.4f,
we show the symmetric case where the E-port of vi is free.

d) Both edges of F2 that are incident to v1 are internal.

Denote by vt (vr) the endpoint of the edge that is using the N-port (the E-port)
of v1, respectively. Observe that in the initial drawing, the edge (v1, vr) uses the
S-port at vr by construction. Moreover, we have by Lemma 18 that the E-port
of vt is free (as its W-port is used by (v1, vt)). Assume first that t < r. We place
v1 at (r − ϵ, 2 − ϵ) and draw the edge (v1, vr) such that its segment incident to
v1 is not orthogonal and the segment incident to vr still uses the S-port. Since
t < r, it follows that the new position of v1 is to the left of vt. Hence, we can
draw (v1, vt) such that it uses the N-port at v1 and the E-port at vt, where the
former is free as it was previously occupied by (v1, vr) and the latter is free as
shown earlier. The edge (v1, vk) will use the E-port at v1 and the S-port at vk.
Finally, the edge (v1, v2) will be drawn as usual, see Fig. 6.4g.

Assume now that r < t. By Lemma 18, either the W-port or the E-port of
vr is free, w.l.o.g. we assume that the E-port is free. Then, we place v1 at
(r + ϵ, 2 − ϵ). Again, we redraw the edge (vr, vr+1) such that the edge (v1, vt)
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can cross the spine; see Figs. 6.4h and 6.4i. The other edges are analogous to
the previous cases which concludes the construction.

To see that the constructed drawing is indeed 1-bend RAC, we observe that (i)
every edge consists of at most two segments, (ii) every edge-segment that is neither
horizontal nor vertical either lies on the diagonal of the drawing which is not crossed
(at this part of the drawing), or it is constructed such that it spans ϵ in one direction
and exactly 1 in the other direction which both define empty closed intervals in Γ.
Before we bound the number of edges that require a bend, we first consider the area
requirement and the time complexity to construct Γ. Applying Theorem 9 to obtain
the 2-factors can be done in O(n) time, which gives us an initial total ordering of the
vertices ≺init. Defining a feasible total order of the vertices for every cycle ≺ given
≺init can be done in (|C|) time for each cycle individually and hence in O(n) time
in total. The potential displacement of the first vertex of a cycle in ≺y requires a
constant number of operations, hence in total O(n) time. For the area, we observe
that the initial positioning on the diagonal takes n × n area (including the bends).
By setting ϵ to 1

3 , it is sufficient to scale the final drawing by a factor of 3 in order
to guarantee grid coordinates for vertices and bends, hence we obtain a quadratic
drawing area.

In order to bound the number of edges that require a bend, let C = (v1, v2, . . . , vn)
be a cycle of F1. By construction, all edges of F1 consist of one segment with the
exception of possibly (i) the first edge of C, (ii) the last (i.e., the closing edge) of C
and (iii) one intermediate edge. In the following, we will refer to the original edges
of the input graph as real edges, while the ones that were introduced by applying
Theorem 9 are called fake edges. Among the two 2-factors of G, choose F1 such that
it contains the most real edges. Let C be a cycle of F1. Denote by r(C) the number
of real edges of C and by s(C) the number of edges of C which consist of only one
segment in Γ. Clearly, if C contains a fake edge, we can rotate C such that the closing
edge corresponds to the fake edge, in which case s(C) = r(C) follows, as all vertices
of C can be placed on the diagonal. Assume now that C does not contain a fake edge.
Clearly, we have |C| ≥ 3, as we assume the initial graph to be simple. First assume
that |C| = 3. Since C cannot contain internal edges, it follows that all edges of F2
which are incident to vertices of C are external. As the vertices of C form a complete
graph, if there is a vertex v1 ∈ C incident to two forward (backward) edges, while
one of its neighbors v2 ∈ C is incident to at most one forward (backward) edge, then
we define the closing edge of C to be (v1, v2) and define ≺ such that v1 is the last
(first) vertex of C in ≺, while v2 is the first (last), which allows us to add the closing
edge without moving any vertex. Hence we now assume that all the vertices of C
have two forward edges (the case where all vertices have two backward edges is
symmetric). Consider an arbitrary ordering of the vertices v1, v2 and v3 in C, i.e.,
v1 ≺ v2 ≺ v3. Since all vertices have two forward edges, it follows that the S-
port and the W-port of all vertices is free. In particular, the S-port of v2 is free.
We will draw the closing edge (v1, v3) such that it uses the S-port of v3 and such
that it uses a non-orthogonal segment at v1. This segment spans an x-interval that
contains exactly one vertex, namely v2, in its interior. Since the S-port of v2 is free
and since v2 is not incident to any closing edge of F1, it follows that the segment
of (v1, v3) incident to v1 is crossing free. Hence, we conclude that in both cases,
s(C) = r(C)− 1. For |C| ≥ 4, at most |C| − 3 edges that belong to F1 consist of two
segments, hence we obtain s(C) ≥ r(C)

4 . By the choice of F1, we have that r(F1) ≥ m
2 ,

where m is the number of edges of the original graph. Clearly, r(F1) = ∑i r(Ci), as
the cycles are edge-disjoint by construction. If C is a cycle with a fake edge, we have
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FIGURE 6.4: Illustration of the cases in the proof of Theorem 12 to
add the closing edges in C to ΓC. The light blue lines show the initial
drawing of edges which are redrawn in order to add the closing edge.
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that s(C) = r(C), otherwise we have s(C) ≥ r(C)
4 . Hence it follows that

s(F1) ≥
r(F1)

4
≥ m

8

edges can be drawn without a bend.

6.4 2-bend RAC drawings of degree-8 graphs

In the following, we prove that degree-8 graphs admit 2-bend apRAC drawings of
quadratic area which can be computed in linear time.

Theorem 13. Given a degree-8 graph G with n vertices, it is possible to compute in O(n)
time a 2-bend apRAC drawing of G with O(n2) area.

Proof. Let G be a simple degree-8 graph with n vertices. We apply Theorem 9 to
augment G to a directed 8-regular multigraph having four edge-disjoint 2-factors
F1, F2, F3 and F4, see Fig. 6.5a for an illustrations where G corresponds to K9. Before
we present our algorithm in full detail, we provide a rough outline of the necessary
steps.

6.4.1 Outline of the algorithm

In the first step, we will construct two total orders ≺x and ≺y of the vertices of G
which will determine the x- and y-coordinates of the vertices in the final drawing.
In particular, if vertex u of G has the i-th position in ≺x and the j-th position in ≺y,
then u will be placed at point (8i, 8j) in the final drawing. We will construct these
two orders independently such that ≺x is defined by F1 ∪ F3 and ≺y is defined by
F2 ∪ F4. After the computation of ≺x and ≺y, which finalizes the position of the ver-
tices in our resulting drawing Γ, it remains to draw the edges in order to complete
our description of Γ. Every edge will be drawn as a polyline that consists of ex-
actly three segments, which are either horizontal, vertical or oblique. To ensure that
all crossings in Γ occur between horizontal and vertical segments, we will restrict
oblique segments to be short and require that they are incident to a vertex. To this
end, we will define, for each vertex u of G, a closed box B(u) centered at u of size
8 × 8. Note that by construction, the interior of two boxes do not overlap (they may
touch at a corner). Since the x-coordinate of two consecutive vertices u and v of ≺x
differs by exactly 8, there is a vertical line that is (partially) contained inside both
B(u) and B(v) (analogous for a horizontal line and consecutive vertices in ≺y). This
allows us to join u and v by an edge that consists of two oblique segments, which
is called an oblique-2 edge. If the unique orthogonal segment of an oblique-2 edge is
vertical (horizontal), we will refer to it as a vertical (horizontal) oblique-2 edge. As
oblique-2 edges do not occupy an orthogonal-port, we construct ≺x and ≺y in order
to maximize their number, i.e., consecutive vertices in ≺x (≺y) should be connected
in F1 ∪ F3 (F2 ∪ F4) as much as possible. An edge that contains exactly one oblique
segment will naturally be called an oblique-1 edge.

In the second step, we will classify every edge of G as either an oblique-1 or
an oblique-2 edge - again this classification is done independently for F1 ∪ F3 and
F2 ∪ F4, thus we focus on the description of F1 ∪ F3, the other one is symmetric. Let
e = (u, v) be an edge of F1 ∪ F3. If u and v are consecutive in ≺x, then e is classified as
a vertical oblique-2 edge. Otherwise, e is classified as an oblique-1 edge such that the
(unique) oblique segment is incident to the target v, while the orthogonal segment
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at u uses the E-port at u if u ≺x v, otherwise it uses the W-port. Our construction
of ≺x will guarantee that a conflict-free assignment of the ports exists.

In the final step, we will specify the exact coordinates of the bend-points which is
sufficient for a description of the edges. At a high level, oblique segments (which are
by construction all incident to vertices) will end at the boundary of the correspond-
ing box, see Fig. 6.5b for a visualization. Since any vertex is incident to at most 8
edges, the size of the box is large enough to accommodate the maximum number
of bend-points on each side. The bend-points between vertical and horizontal seg-
ments are then naturally defined by the intersections of their corresponding lines.

The final drawing Γ will then satisfy the following two properties.

(i) No bend-point of an edge lies on another edge and

(ii) the edges are drawn with two bends each so that only the edge segments that
are incident to u are contained in the interior of B(u), while all the other edge
segments are either vertical or horizontal.

This will guarantee that the resulting drawing is 2-bend RAC; for an example see
Fig. 6.6. Note that (i) guarantees that no two segments have a non-degenerate over-
lap.
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FIGURE 6.5: The running example K9 (a) can be decomposed into four
directed edge-disjoint 2-factors; F1 and F3 (dashed) are shown in red,
while F2 and F4 (dotted) are shown in blue. (b) Is an example of the

box.

6.4.2 Computing ≺x and ≺y

We will now describe how to construct ≺x and ≺y explicitly. We focus on the con-
struction of ≺x which is based on F1 and F3, the order ≺y can be constructed anal-
ogously. Let C1, C2, . . . , Ck be an arbitrary ordering of the components of F1. Recall
that by definition, each such Ci is a directed cycle. Let S be a set of vertices that
contains exactly one arbitrary vertex from each cycle in F1 and let P1, P2, . . . , Pk be
the resulting directed paths obtained by restricting the cycles to V \ S. Note that
this may yield paths that are empty, i.e., when the corresponding cycle consists of a
single vertex. We construct ≺x (limited to V \ S) such that the vertices of each path
appear consecutively defined by the unique directed walk from one endpoint to the
other. The relative order between paths is P1 ≺x P2 ≺x · · · ≺x Pk. Hence it remains
to insert the vertices of S into ≺x. Throughout the algorithm, we will maintain the
following invariant which will ensure the correctness of our approach.
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I.1 Let u ∈ S be a vertex of cycle Ci. If |Ci| > 1, then u is placed next to at least
one of its neighbors in F1 ∪ F3 that belongs to Pi. Otherwise, u is placed directly
after the last vertex of Ci−1 (or as first vertex if i = 1) in ≺x.

If Invariant 1 is maintained, we can guarantee the following observation.

Observation 3. Let u ∈ Ci and v ∈ Cj be two vertices of G with i ̸= j. Then, the relative
order of u and v in ≺x is known.

Assume that each vertex in S that belongs to C1, . . . , Ci−1 has been inserted in
≺x. Let u ∈ S be the vertex that belongs to Ci \ Pi. If |Ci| ≤ 2, then we place u
immediately after the last vertex of Ci−1 in ≺x if i > 1, otherwise u is the first vertex
of ≺x. Hence, for the remainder we can assume that Ci consists of at least three
vertices. Let a, b and c be the vertices of G such that (u, a), (b, u) ∈ F1 and (u, c) ∈ F3.
Even though G is a multigraph, we have that a ̸= b since Ci contains at least three
vertices. Hence, by construction we have a ≺x b - in particular, a is the first vertex
of Pi in ≺x, while b is the last one. Let Cj (possibly j = i) be the cycle that contains c.
Note that it is possible that c ∈ S, i.e., c is not part of ≺x initially. However, as this
can only happen if i ̸= j, we know the relative position of u and c by Observation 3.
We distinguish between the following cases based on cycles Ci (which contains u)
and cycle Cj (which contains c).

1. j < i. We insert u immediately before a in ≺x such that it is the first vertex of
Ci. Clearly, this maintains Invariant 1.

2. i < j. We insert u immediately after b in ≺x such that it is the last vertex of Ci.
Clearly, this maintains Invariant 1.

3. i = j. In this case, we have that c also belongs to Ci (in particular, c belongs
to Pi and thus is already part of ≺x). If c = a or c = b, we simply omit the
edge (u, c) and proceed as in the first case, i.e., we place u as the first vertex of
Ci. Otherwise, we insert u directly before or directly after c in ≺x based on the
edge (c, d) ∈ F3. The relative order of c and d in ≺x is known by Observation 3
unless d ∈ Ci. If d ∈ Pi, the relative order between c and d is also known (as
both are already present in ≺x). If d /∈ Pi, then d = u and we can omit the
edge (u, c) ∈ F3 (because it is a copy of (c, d) ∈ F3), in which case we can again
proceed as in the first case. Hence, d ̸= u holds. If c ≺x d, we insert u directly
before c in ≺x, otherwise we insert u directly after c in ≺x. In both cases, we
maintain Invariant 1.

6.4.3 Classification of the edges and port assignment

We focus on the classification of the edges of F1 ∪ F3 and their port assignment, the
classification of the edges of F2 ∪ F4 is analogous. Our classification will maintain
the following invariants.

I.2 The endpoints of each vertical oblique-2 edge are consecutive in ≺x.

I.3 Each oblique-1 edge (u, v) ∈ F1 ∪ F3 is assigned the W-port at its source vertex
u, if v ≺x u; otherwise, it is assigned the E-port.

I.4 Every horizontal port is assigned at most once.
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FIGURE 6.6: A 2-bend apRAC drawing of K9; F1 and F3 are red; F2 and
F4 are blue. Below the drawing of K9 there is a illustration of the cycles
in F1 and the relevant edges in F3 for positioning v1 ∈ S according
to Case 3 in our previous distinction. Similarly, a visualization of
the cycles in F2 and the relevant edges in F4 is displayed to the left,

according to the Cases 1 and 2.

To this end, let us consider an edge e between vertices u and v. If u and v are con-
secutive in ≺x, then we classify e as a vertical oblique-2 edge. Since all the remaining
edges will be classified as oblique-1 edges, this clearly satisfies Invariant 2. If u and
v are not consecutive in ≺x, we will classify e as an oblique-1 edge. For any such
edge, we will, in an initial phase, assign the ports precisely as stated in Invariant 3.
In a subsequent step, we will then create an unique assignment by reorienting some
edges of F1 ∪ F3 in order to also guarantee Invariant 4. Hence, suppose that after
the initial assignment, there exists a vertex u such that one of its orthogonal ports is
assigned twice. Assume first the E-port of u is assigned to edges (u, a) and (u, b).
By construction, u has exactly one outgoing edge in F1, say (u, a), and exactly one
outgoing edge in F3, say (u, b). Let Ci be the cycle of F1 that contains both u and a
(which implies that |Ci| > 1) and let Cj be the cycle that contains b (possibly i = j).
Recall that by construction, the vertices of Pi appear consecutively in ≺x before the
insertion of the vertex v ∈ Ci \ Pi. Since u and a are not consecutive in the final ≺x,
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we either have u = v, a = v or v was inserted directly in between u and a. In the
following, we will refer to Case 1 - 3 of Section 6.4.2, where we computed the total
order ≺x.

1. u = v. Assume first that Ci ̸= Cj. Then, since u ≺x b we have i < j and thus
according to Case 2, u is placed as the last vertex of Ci in ≺x. This would imply
a ≺x u, which is a contradiction to (u, a) using the E-port at u. Hence assume
that Ci = Cj, i.e., b ∈ Ci. Then we are in Case 3. In particular, we placed u such
that u and b are consecutive, thus (u, b) is classified as an oblique-2 edge, again
a contradiction.

2. a = v. Since u ≺x a, a is not the first vertex of Ci in ≺x, thus we are in Case 2
or in Case 3. If we are in Case 2, then a is placed as the last vertex of Ci. In
particular, a is placed next to vertex v′ (i.e., the last vertex of Ci) with (v′, a) ∈ F1
by construction. But then the edge that joins u and a in F1 is directed from
a to u, as any vertex has at most one incoming edge in F1 and we obtain a
contradiction.

If we are in Case 3, then a was placed consecutive to vertex a′ with (a, a′) ∈ F3.
Moreover, by construction, a has a neighbor in F1 (i.e., the last vertex of Pi in
≺x) that is after a in ≺x. Hence, we can reorient the edge (u, a) and assign the
edge (a, u) the W-port of a conflict-free, which guarantees Invariant 4.

3. v was inserted directly in between u and a. By construction, this only occurs
in Case 3. In this instance, v was inserted in between u and a and thus either
(v, u) ∈ F3 or (v, a) ∈ F3. Suppose first the former. By our construction rule,
v is placed after u if there exists a vertex u′ such that (u, u′) ∈ F3 and u′ ≺x u.
But this is impossible, as u′ and b cannot coincide, since we have u′ ≺x u ≺x b.
Hence, v is placed before a and there exists a vertex a′ such that (a, a′) ∈ F3 with
a ≺x a′. Further, by construction, a is consecutive to one of its neighbors of F1
(the one different from u). Hence, we can again reorient e such that e = (a, u)
uses the W-port at a to guarantee Invariant 4.

Assume now that the W-port of u is assigned to edges (u, a) and (u, b) with
(u, a) ∈ F1 and (u, b) ∈ F3. The following case analysis might look symmetric to
the previous one, however there exist some subtle differences. Again, let Ci be the
cycle of F1 that contains both u and a (which implies that |Ci| > 1) and let Cj be the
cycle that contains b (possibly i = j). Since u and a are not consecutive in the final
≺x, we either have u = v, a = v or v was inserted directly in between a and u which
gives rise to the following cases.

1. u = v. Assume first that Ci ̸= Cj. Then, since b ≺x u we have j < i and thus
according to Case 1, u is placed as the first vertex of Ci in ≺x. But then u ≺x a
holds and hence (u, a) is assigned the W-port at u.

Hence assume that Ci = Cj, i.e., b ∈ Ci. Then we are in Case 3. In particular,
we placed u such that u and b are consecutive, thus (u, b) is classified as an
oblique-2 edge, again a contradiction.

2. a = v. Since a ≺x u, a is not the last vertex of Ci in ≺x, thus we are in Case 1
or in Case 3. If we are in Case 1, then a is placed as the first vertex of Ci since
there exists a vertex a′ with a′ ≺x a such that (a, a′) ∈ F3. Moreover, a is placed
next to vertex v′ (i.e., the first vertex of Ci) with (a, v′) ∈ F1 by construction.
This allows us to redirect the edge (u, a) ∈ F1 such that we can assign (a, u)
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the E-port at a which solves the conflict at u and thus guarantees Invariant 4.
If we are in Case 3, then a was placed consecutive to vertex a′ with (a, a′) ∈ F3.
Moreover, by construction, a has a neighbor in F1 (i.e., the first vertex of Pi in
≺x) that is before a in ≺x. Hence, we can reorient the edge (u, a) and assign
the edge (a, u) the E-port of a conflict-free, which guarantees Invariant 4.

3. v was inserted directly in between a and u. By construction, this only occurs
in Case 3. In this instance, v was inserted in between a and u such that a ≺x
v ≺x u holds and thus either (v, u) ∈ F3 or (v, a) ∈ F3. Suppose first the former
holds, i.e., (v, u) ∈ F3. By our construction rule, v is placed before u if there
exists a vertex u′ such that (u, u′) ∈ F3 and u ≺x u′. But this is impossible,
as u′ and b cannot coincide, since we have b ≺x u ≺x u′. Hence, v is placed
after a and there exists a vertex a′ such that (a, a′) ∈ F3 with a′ ≺x a. Further,
by construction, a is consecutive to one of its neighbors of F1 (the one different
from u). Hence, we can again reorient e such that e = (a, u) uses the E-port at
a to guarantee Invariant 4.

Observe that if an edge (u, v) was redirected, then both u and v belong to the
same cycle Ci of F1 and since this operation has to be performed at most once per cy-
cle, it follows that they can be considered independently. So far, we have computed
≺x and classified every edge of F1 ∪ F3 guaranteeing Invariants 1-4. Symmetrically,
we can compute ≺y and classify every edge of F2 ∪ F4 guaranteeing corresponding
versions of Invariants 1-4.

I.5 Let S be a set containing exactly one arbitrary vertex from each of the cycles
C1, C2, . . . , Cκ of F2 and denote by P1,P2, . . . ,Pκ the resulting paths when re-
stricting the cycles to V \ S . Let u ∈ S be a vertex of cycle Ci. If |Ci| > 1, then u
is placed next to at least one vertex of Pi in ≺y. Otherwise, u is placed directly
after the last vertex of Ci−1 (or as first vertex if i = 1) in ≺y.

I.6 The endpoints of each vertical oblique-2 edge are consecutive in ≺y.

I.7 Each oblique-1 edge (u, v) ∈ F2 ∪ F4 is assigned the S-port at its source vertex
u, if v ≺y u; otherwise, it is assigned the N-port.

I.8 Every vertical port is assigned at most once.

6.4.4 Bend placement

We begin by describing how to place the bends of the edges on each side of the
box B(u) of an arbitrary vertex u based on the type of the edge that is incident to
u, refer to Fig. 6.5b. Let (xu, yu) be the coordinates of u in Γ that are defined by
≺x and ≺y. Recall that the box B(u) has size 8 × 8. Let e be an edge incident to
u. We focus on the case in which e ∈ F1 ∪ F3, the other case in which e belongs
to F2 ∪ F4 is handled symmetrically by simply exchanging x with y, “top/bottom”
with “right/left” and “vertical” with “horizontal” from the following description.
By definition, e is either an oblique-1 edge or a vertical oblique-2 edge. Suppose first
that e is an oblique-1 edge. If e = (u, v), i.e., e is an outgoing edge of u in F1 ∪ F3,
then by Invariant 3 edge e uses either the W- or E-port at u. In the former case, the
segment of e incident to u passes through point (yu, yu − 4), while in the latter case it
passes through point (yu, yu + 4). For an example, refer to the outgoing edge (v3, v6)
of v3 in Fig. 6.6. If e = (v, u), i.e., e is an incoming edge of u in F1 ∪ F3, then by
Invariant 3 e uses a horizontal port at v and by the fact that every edge consists of
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exactly three segments, the vertical segment of e ends at the top or the bottom side of
B(u). Since any vertex has at most three incoming edges in F1 ∪ F3 by construction,
we can place the respective bends at x-coordinate xu + i with i ∈ {−2,−1, 1, 2} and
y-coordinate yu + 4 (yu − 4) for the top (bottom) side such that the assigned i-value
is unique, refer to the incoming edge (v4, v9) of v9 in Fig. 6.6, where i = −1. Once
the i-value is determined, the other bend-point of e is uniquely defined as it connects
a vertical with a horizontal segment by construction. Namely, this bend-point is at
(xu + i, yv).

Suppose now that e is a vertical oblique-2 edge. By Invariant 2, u and v are
consecutive in ≺x. If v ≺x u the x-coordinate of the bend point is xu − 4, otherwise it
is xu + 4; e.g., refer to the edges (v2, v3) and (v3, v4) of v3 in Fig. 6.6, respectively. In
order to define the y-coordinate of the bend point, we have to consider the relative
position of u and v in ≺y. If v ≺y u the y-coordinate of the bend point of e is yu − 3
and otherwise it is yu + 3. Invariant 2 implies that any vertex has at most two vertical
oblique-2 edges since no vertex has more than two direct neighbors in ≺x. From the
description of the bend-points, we can deduce the following observation.

Observation 4. Let b be a bend-point that delimits an oblique segment s which belongs to
an edge e. If s is incident to u, then b does not lie on any other edge incident to u.

6.4.5 Proof of correctness

We will show that Γ satisfies Properties (i) and (ii), which then immediately guar-
antee that Γ is a 2-bend apRAC drawing. To this end, we will introduce some ad-
ditional notation. For an edge e = (u, v), we will denote by bu the first bend-point
encountered when traversing e starting at its source u, while the second bend-point
is denoted by bv. Fix a vertex u and assume it is the i-th vertex in ≺x and the j-th
vertex in ≺y. By construction, u has coordinates (8i, 8j) in Γ. We define by H(u) the
horizontal strip [8i − 3, 8i + 3] and by V(u) the vertical strip [8j − 3, 8j + 3] of u; see
Fig. 6.5b for an illustration. By our construction we obtain the following results.

Proposition 1. Any vertical segment that belongs to an oblique-1 edge (u, v) is completely
contained in V(u) or V(v). Similarly, any horizontal segment that belongs to an oblique-1
edge (u, v) is completely contained in H(u) or H(v).

Proof. W.l.o.g. assume that e = (u, v) ∈ F1 ∪ F3, the other case is symmetric. By con-
struction, the horizontal segment is delimited by u and bu, whose coordinates are ei-
ther (xu − 4, yu) or (xu + 4, yu), thus the horizontal segment is completely contained
inside H(u). Moreover, bv has coordinates (xv + i, yv ± 4) with i ∈ {−2,−1, 1, 2}
and thus the vertical segment delimited by bu and bv is completely contained inside
V(v) as desired.

Proposition 2. For every vertex u ∈ G, any vertical (horizontal) segment contained in
V(u) (H(u)) belongs to an edge which is incident to u.

Proof. First observe that by construction, no box B(v) with v ̸= u is contained inside
V(u) or H(u). We will provide the proof of the statement for V(u), the one for H(u)
is symmetric. Suppose for a contradiction that V(u) contains a vertical segment s
which belongs to an edge e = (v, w) such that v ̸= u ̸= w. Suppose first that e is an
oblique-2 edge. Clearly, since a horizontal oblique-2 edge does not contain a vertical
segment, we can assume that e is a vertical oblique-2 edge. By Invariant 4, this im-
plies that v and w are consecutive in ≺x. Segment s of e overlaps with the boundary
of both B(v) and B(w) by construction - but then it cannot be contained inside V(u),
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as V(u) contains neither B(v) nor B(w) by the initial observation. Suppose now that
e = (v, w) is an oblique-1 edge. If e ∈ F2 ∪ F4, then s is incident to v by construction
and intersects the top/bottom side of B(v). Otherwise, if e ∈ F1 ∪ F3, b2 lies on the
bottom/top side of B(w). Since v ̸= u ̸= w holds and no other box besides B(u) is
contained inside V(u), we obtain a contradiction.

Proof that Property (i) is maintained in Γ. We leverage these propositions to show
that our drawing maintains Property (i). Again, we fix an edge e = uv and distin-
guish based on the type e.

1. e = (u, v) is an oblique-1 edge and bu or bv lie on another edge.

W.l.o.g. assume that e ∈ F1 ∪ F3 and that u ≺x v. Then, edge e uses the E-port
at u by Invariant 3 and bv is placed on the top/bottom side of B(v) (depending
on the relative order of u and v in ≺y) by construction. Since bv is contained
inside V(v) and since bu and bv are connected by a vertical segment, it follows
that also bu ∈ V(v). Now, any vertical segment contained in V(v) belongs to
an edge that is incident to v by Proposition 2 - but then Observation 4 guar-
antees that no overlap between such a segment and bv can occur and hence
neither with bu. Symmetrically, a horizontal segment overlapping bu is inside
H(u) and hence belongs to an edge that is incident to u by Proposition 2. By
Observation 4, we can then ensure no overlap between a horizontal segment
and bu. Finally, consider a horizontal segment which overlaps bv. If this seg-
ment would belong to an oblique-1 edge (u′, v′), then it is contained in H(u′) if
(u′, v′) ∈ F1 ∪ F3 or in H(v′) otherwise. But as bv lies on the boundary of B(v),
we would have that B(v) is contained in either H(u′) or H(v′), a contradiction.
Hence, this segment needs to belong to an oblique-2 edge {u, v}; in particular
to a horizontal one. By construction and Invariant 4, u′ and v′ are consecutive
in ≺y and the segment is contained in both B(u′) and B(v′). If v = u′ or v = v′,
then by Observation 4 no overlap occurs. Thus, since u′ ̸= v ̸= v′, we have
that bv ∈ H(v) and neither B(u′) nor B(v′) are contained inside H(v), so no
overlap can occur.

2. e = uv is an oblique-2 edge and bu or bv lies on another edge.

Recall that by construction, bu and bV lie on the boundary of B(u) and B(v),
respectively. Observation 4 establishes that they do not lie on edge-segments,
in particular oblique ones, whose corresponding edges are incident to u or v.
Since no two boxes overlap, it follows that bu and bv do not lie on any other
oblique segment. Suppose now that bu or bv lie on a vertical or horizontal
segment which belongs to an oblique-1 edge (u′, v′). But as bu ∈ B(u) and
bv ∈ B(v), and since these segments are always contained in the vertical or
horizontal strip of either u′ or v′, which does not contain the box of another
vertex, such an overlap would only be possible when u, v, u′ and v′ are not
pairwise disjoint. But then again, Observation 4 asserts that no such overlap
can exist. Finally, we assume that bu or bv lie on the middle part of another
oblique-2 edge e′ = u′v′. If both e and e′ are vertical/horizontal, then there
exists a pair of vertices with the same x-coordinate/y-coordinate, which is im-
possible by construction. Hence, w.l.o.g. assume that e is a vertical oblique-2
edge, while e′ is a horizontal one such that bu lies on e′, the other case is sym-
metric. By construction, the y-coordinate of bu is yu ±−3 - hence the horizontal
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segment of e′ would be contained in H(u) which is by Proposition 2 only pos-
sible if u = u′ or u = v′ holds, but then we can use Observation 4 to guarantee
that there is no overlap.

Proof that Property (ii) is maintained in Γ. It remains to show that Property (ii) is
satisfied. Consider the first part of Property (ii),i.e., only the edge-segments that are
incident to a vertex u are contained in the interior of B(u). Suppose for a contradic-
tion that there exists a segment s that is partially contained inside B(u) such that s is
not incident to u. Since by construction, any oblique segment is fully contained in-
side a box and since no two boxes overlap, s cannot be an oblique segment. Suppose
first that s belongs to an oblique-2 edge e = vw in which case s is incident to neither
v nor w. Segment s lies on the boundary of both B(v) and B(w) and cannot pass
through the interior of another box, as otherwise v and w would not be consecutive
in ≺x or ≺y, a contradiction to Invariant 4 or Invariant 6. Suppose now that s belongs
to an oblique-1 edge (v, w). Then, s is contained inside the vertical/horizontal strip
of either v or w by Proposition 1, which does not contain B(u) and we obtain a con-
tradiction. This establishes the first part of Property (ii). For the latter part, we have
to show that our description of bend points guarantees that the segments outside of
the boxes are in fact vertical or horizontal. To be more precise, we have to show for
any segment s with endpoints a and b (which can be bend points or vertices), that a
and b differ only in x- or y-coordinate. Consider an edge e = uv. Assume first that e
is a vertical oblique-2 edge such that u ≺x v. Then u and v are consecutive in ≺x by
Invariant 2. By construction, we placed bu at x-position xu + 4, while the x-position
of bv is xv − 4. As x and y are consecutive in ≺x, we have xv = xu + 8 and hence
xu + 4 = xv − 4, thus the segment is indeed vertical. Analogously, we can argue for
the case where e is a horizontal oblique-2 edge. Finally, suppose that e = (v, w) is an
oblique-1 edge. Again, we describe the case where e ∈ F1 ∪ F3 in detail, the other is
analogous. W.l.o.g. assume that v ≺x w. By Invariant 3 and construction, the seg-
ment of e incident to v uses the E-port of e. Consider a horizontal ray that is incident
to e to the right. Clearly, we can find a point on this ray, such that a perpendicular
ray to the first one either intersects either top or the bottom side B(w) at its assigned
i-value (depending on the relative order of v and w in ≺y). This intersection point
then uniquely defines bi and Property (ii) is ensured.

Space and time complexity To complete the proof of Theorem 13, we discuss the
time complexity and the required area. We apply Theorem 9 to G to obtain F1, F2,
F3 and F4 in O(n) time, as the input graph has bounded degree. For each cycle of
F1 and F2, an appropriate ordering of its internal vertices, the classification of the
incident edges and the assignment of the orthogonal ports can be computed in time
linear in the size of the cycle. Clearly, computing the bend-points can be done in
linear time in the number of edges as well. Hence we can conclude that the drawing
can be computed in O(n) time. For the area, we can observe that the size of the grid
defined by the boxes is 8n × 8n and by construction, any vertex and any bend point
is placed on a distinct point on the grid, which therefore yields quadratic area.

Remark We remark here that the produced drawing is not necessarily simple, i.e,
it is possible that two edges have more than one point in common. In particular,
it is possible that two adjacent edges cross or that two edges cross even twice. For
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most of the vertices, this could be solved in a postprocessing step (e.g., by assign-
ing the i-values in Subsection 6.4.4 carefully). However, for vertices of S (refer to
Section 6.4.2)) it is not immediate if such a postprocessing is possible with our ap-
proach and we will consider it as an open problem whether every degree-8 graph
admits a simple 2-bend RAC drawing. To this end, we remark that [7] showed that
the requirement of a simple drawing is a real restriction on the class of graphs in
the 1-bend RAC setting, i.e., they provided an infinite family of graphs which admit
non-simple 1-bend RAC drawings but do not admit simple 1-bend RAC drawings.
In fact, even the maximum edge-density of these two variants differs.

6.5 Open problems

Most of the open problems that arise by our work are the extensions of our results
to higher degrees. To this end, let us consider some upper bounds for the values
which we could attain. As discussed in the introduction of this chapter, there exists
degree four graphs which are not RAC. For 1- and 2-bend RAC the situation is not as
simple. Since there are no negative results for small graphs, we can only work with
the known edge-density results. In particular, 1-bend RAC graphs have at most
5.5n − 11 edges[7] and since K10 has 45 > 5.5 · 10− 11 edges, it follows that degree-8
is best possible. A similar bound could be obtained for 2-bend RAC graphs, but since
the upper bound is presumably far from tight, the result is not really interesting.
Hence, we post the following open problems.

1. Are all degree-3 graphs RAC? By the previous discussion, this result would be
best possible.

2. Are all degree-5 graphs 1-bend RAC? Fig. 6.7 provides 1-bend RAC drawings
of two prominent degree-5 graphs. The left side is a drawing of K5,5, the right
side is the 5-cube graph. Note that already for these rather regular graphs,
we could not identify a pattern which can be used to generalize to arbitrary
degree-5 graphs.

(a) (b)

FIGURE 6.7: 1-bend RAC drawings for (a) the K5,5 graph, and (b) the
5-cube graph.
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3. Are all degree-9 graphs 2-bend RAC? In the following, we will highlight that
such an extension is highly non-trivial. Let G be a degree-9 graph. Assume for
now we do not have to consider closing edges which can be achieved if G con-
tains two edge-disjoint Hamiltonian Cycles. Then we would have that every
vertex has exactly one vertical and exactly one horizontal port free. Further,
we assume that G is 9-edge colorable, i.e., we can partition the edges into four
2-factors and a perfect matching M. But even then, for an edge ab ∈ M, we can
not guarantee that one of the free ports at a or b can be used for the edge of M,
since this depends on their relative order in ≺x and ≺y which is fixed by the
traversal of the Hamiltonian Cycle.



79

Part II

Structural Research
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Chapter 7

Axis-parallel RAC drawings

In the previous chapter, we investigated the containment of bounded degree graphs
in the class of k-bend RAC graphs for small values of k. In fact, in order to control
the crossing-angles in our constructions, we only allowed crossings between seg-
ments that are either parallel or perpendicular to the x-axis. We remark here that
this behavior is not unique to our algorithms, as also the constructions in [13, 15, 72]
admit such restricted versions of RAC drawings. Motivated by this observation, we
introduce the class of apRAC drawings in this chapter and consider structural prop-
erties such as the relationship to general RAC drawings, edge-density results or the
complexity of the recognition problem.

Related work The work of [74] initiated the study of RAC drawings and showed
that RAC graphs with n vertices have at most 4n − 10 edges, while bipartite RAC
graphs have at most [10] 3n − 7 edges. The recognition of RAC graphs was shown
to be NP-hard [16]; in fact, it is ∃R-complete even when the embedding is fixed
and even if every edge is crossed at most ten times [161]. Besides the straight-line
setting, RAC drawings were also studied when bends are allowed. In particular,
[74] showed that every graph admits a 3-bend RAC drawing. Regarding the density,
1-bend RAC graphs can have at most 5.5n − 11 edges [7], and, interestingly, if we
require the graphs to admit simple drawings, then the corresponding bound is only
5.4n − O(1) [7]. Finally, n-vertex 2-bend RAC graphs can have at most 20n − 24
many edges [174].

Our contribution We initiate the theoretical study of apRAC drawings which form
a natural subset of RAC drawings both in the absence of bends and when bends are
allowed. In Section 7.2 we are concerned with 0-bend apRAC graphs - we establish
that an n-vertex 0-bend apRAC graph has at most 4n−

√
2
√

n− 6 edges and provide
an almost matching lower bound construction with 4n − 2

√
n − 7 edges. Since there

exists n-vertex RAC graphs with 4n − 10 edges [74], it follows that there is a proper
containment relation between 0-bend apRAC graphs and RAC graphs. Motivated
by this, we identify the smallest graph which is RAC but not 0-bend apRAC. Finally,
we translate the recognition result from general RAC graphs, i.e., we show that it is
still NP-hard to decide if a graph is 0-bend apRAC.

In Section 7.3 we prove an upper bound of 5n − 6 edges on the number of edges
of an n-vertex 1-bend apRAC graph and provide a lower-bound construction with
5n − 13 edges. Again, since there exists n-vertex 1-bend RAC graphs with 5.5n −
O(1)) edges [7], we have a proper containment relationship.

In Section 7.4 we show that n-vertex 2-bend apRAC graphs have at most 10n −
12 edges, which is tight up to an additive constant as we provide a construction
with 10n − 46 edges. We highlight here that this construction, which is also 2-bend
RAC by definition, is a substantial improvement over the current best lower-bound
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for general 2-bend RAC graphs that contains 7.62n − O(1) many edges [17]. We
further derive improved upper bounds on the edge density when restricting the
corresponding graph class to be bipartite. Finally, Section 7.5 introduces a natural
extension of the apRAC setting.
This chapter is based on joint work with Patrizio Angelini, Michael A. Bekos, Julia
Katheder, Michael Kaufmann and Torsten Ueckerdt which is accepted at the“European
Symposium on Algorithms (ESA) 2023”; a preliminary version was accepted at the
“European Workshop on Computational Geometry” [9].

7.1 Preliminaries

We begin by stating some elementary properties of 0-bend (ap)RAC drawings. Prop-
erties 7 and 8 hold for 0-bend RAC (and thus for 0-bend apRAC) drawings.

Property 7 ([74]). In a 0-bend RAC drawing no edge is crossed by two adjacent edges.

Property 8 ([74]). A 0-bend RAC drawing does not contain a triangle T formed by edges of
the graph and two edges ab and ab′, such that a lies outside T and b, b′ lie inside T.

The following two properties are limited to 0-bend apRAC drawings.

Property 9. A 0-bend apRAC drawing does not contain a triangle T formed by edges of the
graph and three vertices v1, v2, v3 incident to a vertex u, such that v1, v2, v3 lie outside T
and u lies inside T.

Proof. Assume the contrary. Then, by Property 7, no two edges incident to u can
cross the same boundary edge of T - but then every boundary edge of T is crossed
and thus T consists of three axis-parallel segments, which can not be completed to a
triangle, hence we obtain a contradiction.

Property 10. Let Γ be a 0-bend apRAC drawing containing a triangle T formed by edges
of the graph and two adjacent vertices u and v such that u is contained inside T while v is
outside T. Then, Γ cannot contain a vertex incident to u, v and all vertices of T.

Proof. Suppose for a contradiction that vertex w is incident to u, v and all vertices
of T. If w is contained inside T, then we have exactly the setting of Property 8 with
a = v, u = b and w = b′, a contradiction. Thus, w is outside T. Since vu and vw
both cross the boundary of T, we have by Property 7 that T is a right-angle triangle
with two axis-parallel legs. W.l.o.g. assume that v1v2 and v2v3 are the legs of T such
that v1v2 is horizontal, while v2v3 is vertical. W.l.o.g. we further assume that v2v3 is
crossed by the edge uw. Then, since wv1 is present, it follows that v2v3 is crossed by
uw and wv1, which is impossible by Property 7, and we obtain a contradiction.

In Theorems 16 and 20 we leverage the following property shown in [16] of the
so-called augmented square antiprism graph, depicted in Fig. 7.4a.

Property 11 ([16], Theorem 1). Any straight-line RAC drawing of the augmented square
antiprism graph has two combinatorial embeddings.

Property 12 ([16], Theorem 2). The horizontal or vertical extension of two augmented
square antiprism graphs has a unique combinatorial embedding in the straight-line RAC
setting.
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(a)

b

b′

a

a′

(b)

uv1

v2

v3

(c)

v1v2

v3

v

uw

(d)

FIGURE 7.1: Illustrations of Property 7 - Property 10. Red edges are
impossible.

7.2 0-bend apRAC graphs

In this section, we present an almost tight bound on the edge-density of 0-bend
apRAC graphs. Further, we establish the minimal example graph which separates
0-bend apRAC from 0-bend RAC graphs.

Theorem 14. A 0-bend apRAC graph with n vertices has at most 4n −
√

n − 6 edges. In
fact, there are not infinitely many values of n for which there exists n-vertex 0-bend apRAC
graphs with more than 4n −

√
2
√

n − 6 edges.
Concerning the lower bound, there exist infinitely many 0-bend apRAC graphs with n

vertices and 4n − 2⌊
√

n⌋ − 7 edges.

Proof. We will first show that n-vertex 0-bend apRAC graphs have at most 4n −√
n − 6 edges for any n. Consider an n-vertex 0-bend apRAC graph G and its corre-

sponding 0-bend apRAC drawing Γ. We can w.l.o.g assume that Γ uses at least
√

n
different x-coordinates (if Γ would use less than

√
n different coordinates in each di-

rection, we could not fit the n vertices on the implicit grid). Consider the subgraph
Gv of G defined by the set Ev of vertical edges of Γ. Gv is a forest of paths and contains
at least one component for every x-coordinate of Γ - hence at least

√
n components

in total. As the number of edges of a an n-vertex forest with c components is n − c,
it follows that |Ev| ≤ n −

√
n. Every edge of E \ Ev is either drawn horizontally or

oblique in Γ, thus G − Ev is crossing-free and has at most 3n − 6 edges, whence G
has at most 4n −

√
n − 6 edges as desired.

Now, for the second part, assume for a contradiction that there exists infinitely
many n for which there exists n-vertex 0-bend apRAC graph with at least 4n −
α
√

n − 6 for some α <
√

2. Let G = (V, E) be such a graph with |V| = n and
let Γ be a 0-bend apRAC drawing of G. We will partition the edges of G into the dis-
joint sets Ev, Eh and Eo. The edges of Ev correspond to vertical segments in Γ that are
involved in a crossing, the edges of Eh correspond to horizontal segments in Γ that
are involved in a crossing and the remaining edges are the one of Eo. By construc-
tion, we observe that the subgraphs G − Ev = Eo ∪ Eh as well as G − Eh = Eo ∪ Ev are
planar and hence contain at most 3n − 6 edges. Thus, |E| ≤ 3n − 6+max{|Ev|, |Eh|}
and hence by assumption on G we have max{|Ev|, |Eh|} ≥ n − α

√
n. Denote by C

the number of crossings in Γ. By construction, every crossing involves a horizontal
and a vertical segment, thus C ≥ max{|Ev|, |Eh|} ≥ n − α

√
n. On the other hand,

denote by Lv and Lh the set of vertical and horizontal lines that contain the vertices
of G in Γ. Now consider the induced subgraph Gv = (n, Ev). Every component of
Gv forms a path that lies on the same vertical line of Lv (note that it is possible that
we have several components on the same vertical line). Thus, Gv is a forest of paths
with at least |Lv| components and hence |Ev| ≤ n − |Lv|. Using a similar argument,
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we establish that |Eh| ≤ n − |Lh|. Finally, as every vertex and crossing lie on the
intersection of a vertical line of Lv and a horizontal line of Lh by construction, we
have |Lh| · |Lv| ≥ n + C. Hence we obtain

2n − α
√

n ≤ n + C ≤ |Lv| · |Lh| ≤ (n − |Ev|) · (n − |Eh|) ≤ α
√

n · α
√

n
⇔ (2 − α2)n ≤ α

√
n (7.1)

Now for α <
√

2 the lefthand side of (7.1) is Ω(n) while the righthand side is O(
√

n);
clearly, for sufficiently large n this yields a contradiction.

For the lower bound, consider the construction shown in Fig. 7.2. For any even
k > 0, construct a k × k grid graph Hk which contains a pair of crossing edges in
every quadrangular face. Let Gk be the graph obtained from Hk by adding two ex-
tremal adjacent vertices W and E connected to 2k − 1 consecutive boundary vertices
of Hk each (refer to the blue edges in Fig. 7.2 and observe that the edge between W
and E can be added by moving W and E upwards of Hk). If we denote by n the num-
ber of vertices of Gk, then n = k2 + 2, k =

√
n − 2 and thus m = 4n − 2⌊

√
n⌋ − 7.

W E

FIGURE 7.2: Lower bound construction for 0-bend apRAC

Corollary 5. A bipartite 0-bend apRAC graph with n vertices has at most 3n −
√

n − 4
edges.

Proof. The proof is analogous with the only crucial observation that, since a sub-
graph of a bipartite graph is necessarily bipartite, we have that |E| ≤ 2n − 4 +
max{|Ev|, |Eh|} which yields the desired result.

Corollary 6. The class of 0-bend apRAC graphs is a proper subclass of the one of 0-bend
RAC graphs. Likewise, the class of bipartite 0-bend apRAC graphs is a proper subclass of the
one of bipartite 0-bend RAC graphs.

Proof. There exists (bipartite) 0-bend RAC graphs on n vertices with (3n − 7) 4n − 10
edges. Hence, the corollary directly follows from the density bounds of Corollary 5
and Theorem 14.

In Theorem 15, we show that K6 minus one edge is the minimal separating ex-
ample; i.e., K6 minus one edge is 0-bend RAC but not 0-bend apRAC.

Theorem 15. Graph K6 − e is the minimal example separating the classes of 0-bend RAC
and 0-bend apRAC.

Proof. Let G = K6 − e. Fig. 7.3a, which is a 0-bend RAC drawing, establishes that G is
indeed RAC. Suppose for a contradiction that G admits a 0-bend apRAC drawing Γ.



7.2. 0-bend apRAC graphs 85

(a)

u

(b) (c) (d)

FIGURE 7.3: Illustrations for the proof of Theorem 15.

Since G has 6 vertices and 14 edges and since cr(G) ≥ |E[G]| − (3|V[G]| − 6) holds
(as a planar graph G can have at most 3|V[G]| − 6 edges), it follows that cr(G) ≥
14 − 12 = 2. Since the drawing consists of straight-line edges, any crossing involves
exactly four different vertices. Hence, by the pigeonhole principle, there exists a
vertex u of G which is incident to (at least) two crossing edges uv and uw in Γ.
Denote by e1 and e2 the edges that cross uv and uw in Γ, respectively. Assume first
that v, u and w are colinear. By Property 7, the endpoints of e1 and e2 are necessarily
distinct and different from u,v and w. Since G only contains six vertices, we obtain a
contradiction. Hence, one of uv and vw is horizontal, while the other is vertical and
we are in the setting of Fig. 7.3b. Since G is a complete graph minus one edge, at
least one of the blue edges is present which is impossible by Property 7. Hence, we
conclude that G is not 0-bend apRAC.

To show the minimality of G, we first observe that K5 admits a RAC drawing with
exactly one crossing [74], which is therefore also 0-bend apRAC for an appropriate
orientation of the axis. Finally, we will provide 0-bend apRAC drawings for the
two non-isomorphic graphs obtained by removing one additional edge from G =
K6 − e. In Fig. 7.3c two adjacent edges were removed from K6, while in Fig. 7.3d two
independent edges were removed from K6.

We conclude this section by studying the recognition problem of whether a graph
is 0-bend apRAC.

Theorem 16. It is NP-hard to decide whether a given graph is 0-bend apRAC.

Proof. In order to prove the statement, we adjust the NP-hardness reduction (from
3-SAT) for the general case of straight-line RAC graphs introduced in [16]. Based on
the so-called augmented square antiprism graph, which by Property 11 has two combi-
natorial embeddings in the RAC setting, the construction of the clause-gadgets, the
variable-gadgets as well as the connections between them is based on a basic building
block having the following properties: (i) It has a unique embedding, (ii) there are
four vertices properly contained in its interior, which can be connected to vertices in
its exterior by crossing a single boundary edge, (iii) no edge can (completely) pass
through it without forming a fan crossing and (iv) it can be extended horizontally or
vertically maintaining the aforementioned properties. Unfortunately, even though
the augmented square antiprism graph is in fact 0-bend apRAC, the building block
of [16] is not. In the following, we prove that the graph G of Fig. 7.4c satisfies proper-
ties (i)− (iii); thus, it can act as the building block for our reduction. Observe that G
is composed of an augmented square antiprism graph H and a 4-cycle C connected
to the blue vertices of H. Recall that, by Property 11, H has two combinatorial em-
beddings E1 and E2 in the 0-bend RAC setting and thus at most two in the 0-bend
apRAC setting; refer to shown in Figs. 7.4a and 7.4b, respectively. Since only axis-
parallel edges are involved in crossings and since each crossing-free edge of E1 and
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(a) (b) (c) (d)

FIGURE 7.4: Illustrations for the proof of Theorem 16.

E2 is not axis-parallel, it follows that the crossing-free edges of E1 and E2 cannot be
crossed in a 0-bend apRAC drawing of G. This implies that the four blue vertices
of H which are connected to C have to lie on a common face of the subgraph of H
induced by the crossing-free edges in E1 or E2. This is impossible in E1 and unique
in E2, as illustrated in Fig. 7.4c. This is enough to guarantee (i). Further, the figure
clearly asserts that (ii) and (iii) are also guaranteed. Property (iv) can be guaranteed
in the exact same way as in the original paper [16], see Fig. 7.4d. Since our build-
ing block is 0-bend apRAC and since any crossing that does not involve a building
block appears between axis-parallel edges in the original reduction, it follows that
the constructed drawing is 0-bend apRAC if and only if the input 3-SAT formula is
satisfiable.

7.3 1-bend apRAC graphs

In this section, we will establish an upper bound and an almost matching lower
bound for the class of 1-bend apRAC graphs.

Theorem 17. A 1-bend apRAC graph with n vertices has at most 5n − 8 edges. Also, there
exist infinitely many 1-bend apRAC graphs with n vertices and 5n − 13 edges.

Proof. For the upper bound, consider a 1-bend apRAC drawing Γ of an n-vertex
graph G. Each edge segment in Γ is either horizontal (h), vertical (v) or oblique (o).
For x, y ∈ {h, v, o}, let Exy be the edges of G with two edge segments of type x and
y. Then, Ehv, Eho, Evo and Eoo form a partition of the edge-set of G, assuming that
edges that consist of only one h-, v- or o-segment are counted towards Eho, Evo and
Eoo, respectively. By construction, any crossing involves exactly one vertical and one
horizontal segment. Hence, the subgraph of G induced by Eho ∪ Eoo is planar and
contains at most 3n − 6 edges. Further, as every segment is incident to a vertex and
since any vertex is incident to at most two vertical segments, we have |Evo ∪ Ehv| ≤
2n. Consider now the vertical edge-segment incident to the topmost vertex vt that
uses the N-port (if it is present). By construction, it cannot be involved in a crossing,
as otherwise it would cross a horizontal edge-segment whose endpoints would lie
above vt, a contradiction to the choice of vt. Thus, this segment can be replaced
by a steep oblique edge-segment without introducing new crossings. Analogous
observations can be made for the bottommost vertex in Γ, which implies that |Evo ∪
Ehv| ≤ 2n − 2. Thus, |E| = |Eho|+ |Evo|+ |Ehv|+ |Eoo| ≤ 5n − 8.

For the upcoming lower bound construction, refer to Fig. 7.6 for an illustration
of the base construction with n = 20. For arbitrary n, we arrange n − 4 vertices
in the shape of a triangle with an empty base such that there are an (almost) equal
number of vertices on each side which are joined by a y-monotone path (of size
n − 7) in addition to the cycle of size n − 4 (inner black edges in Fig. 7.6). All n − 4
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N

FIGURE 7.5: Basic lower bound construction for the class of 1-bend
apRAC graphs.

W

S

N

E

FIGURE 7.6: Augmented construction for the lower bound. Note that
the dotted rays of the same color will intersect and thus define 1-bend

edges

(interior) vertices are connected to two universal vertices N and S above and below
the triangle (edges in purple), while the universal vertices W and E to the left and
to the right of the triangle are connected only to the inner vertices which lie on their
respective side of the triangle (edges in turquoise). The exception is the vertex placed
at the top of the triangle, which can be connected to both W and E. Finally, one can
add five edges between the universal vertices (edges in black) which gives a total of
n − 4 + n − 7 + 3(n − 4) + 1 + 5 = 5n − 17 edges for the base construction. With
a more elaborate positioning of the extremal vertices, one can add four additional
edges to obtain the desired bound of 5n − 13 edges, refer to Fig. 7.6.

Corollary 7. Bipartite 1-bend apRAC graphs with n vertices have at most 4n − 6 edges.

Since there exists 1-bend RAC graphs with 5.5n − 72 edges [7], the following
corollary is immediate.

Corollary 8. The class of 1-bend apRAC graphs is a proper subclass of the one of 1-bend
RAC graphs.
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7.4 2-bend apRAC graphs

In Theorems 18 and 19 we give upper and lower bounds on the edge-density of
2-bend apRAC graphs, respectively.

Theorem 18. A 2-bend apRAC graph with n vertices G has at most 10n − 12 edges.

Proof. Consider a 2-bend apRAC drawing Γ of an n-vertex graph G. Each edge-
segment in Γ is either horizontal (h) or vertical (v) or oblique (o). Denote by S the
set of edges that contain at least one segment in {h,v} incident to a vertex. Since any
vertex is incident to at most two vertical and at most two horizontal segments, it
follows that |S| ≤ 4n. Let Eh, Ev and Eo be the set of edges of E \ S whose middle-
part is h, v and o, respectively. Assuming that an edge of E \ S consisting of less
than three segments belongs to Eo, it follows that Eh, Ev and Eo form a partition of
E \ S. Observe that the edges of Eo cannot be involved in any crossing in Γ, as all
of its segments are oblique. Further, no two edges of Eh or Ev can cross. Hence, the
subgraphs induced by Eh ∪ Eo and Ev ∪ Eo are planar and contain at most 3n − 6
edges each. Recall that |S| ≤ 4n and thus |E| ≤ |S|+ |Eh|+ |Ev|+ 2|Eo| ≤ 4n + 3n −
6 + 3n − 6 = 10n − 12.

Corollary 9. Bipartite 2-bend apRAC graphs with n vertices have at most 8n − 8 edges.

Theorem 19. There exist infinitely many 2-bend apRAC graphs with n vertices and 10n −
46 edges.

Proof. For the following construction, we refer to Fig. 7.7 for an illustration - a full
example can be found in Fig. 7.8.

Fix an integer k ≥ 6 and consider a set S of k2 points that form a k× k square grid.
However, the grid is not axis-parallel, but slightly rotated, say counterclockwise,
such that the points in each column have consecutive x-coordinates, while the points
in each row have consecutive y-coordinates. We will define two distance-functions.
Namely, distx(p, q) is the number of points whose x-coordinates lie in between the x-
coordinates of p and q, while disty(p, q) is the number of points whose y-coordinates
lie in between the y-coordinates of p and q. Then we obtain the following important
property by construction.

For any p ̸= q ∈ S we have distx(p, q) + disty(p, q) ≥ k − 1 ≥ 5. (7.2)

To see that this holds, suppose for a contradiction that there exists a pair of points
p, q ∈ S such that distx(p, q) + disty(p, q) < k − 1 holds. W.l.o.g. assume that p
belongs to the i-th row and the j-th column of our grid. If q does not belong to row
i − 1, i or i + 1, then by construction we already have disty(p, q) >= k − 1. At the
same time, q has to belong to column j − 1, j or j + 1. Since p ̸= q, q differs from
p in at least one of row and column. If it differs in exactly one, then the distance is
k by construction - if it differs in both, we have distance k + 1, hence we obtain a
contradiction.

Between any p, q ∈ S which are consecutive in x-coordinate, i.e., distx(p, q) = 0,
we will add a 2-bend edge whose middle-segment is vertical and that has two (short)
oblique segments incident to its endpoint. Analogously, we add a 2-bend edge
whose middle-segment is horizontal between any pair of vertices that is consecutive
in y-coordinate. Clearly, we do not introduce any multiple edges by this construc-
tion as no two vertices are consecutive in x- and y-coordinate by (7.2). In total, we
have 2(k2 − 1) such edges.
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N

E

S

W

FIGURE 7.7: Illustration of the construction in Theorem 19 with k = 6.
Edges with two slanted segments are indicated in pink for vertical
middle segment and in blue for horizontal middle segments. Edges

using the horizontal or vertical ports are omitted for readability.

For the next step, we will add four universal vertices N, E, S and W to the top,
right, bottom and left of all points of S, respectively. Every point of p will be con-
nected to N by a 2-bend edge that starts with a short oblique segment at p, followed
by a vertical middle-segment which ends with an oblique segment (which is almost
horizontal) at N, consider the red edges in Fig. 7.8 for an illustration. Similarly, we
add an edge from every point p to S using a vertical middle-segment and to each
of W and E an edge with a horizontal middle-segment (blue in Fig. 7.8). In total,
we added 4k2 many edges such that only the middle-segments of the edges are in-
volved in a crossing (to see the local routing of the short oblique segments, consider
the right side of Fig. 7.7). Hence, so far we did not use any orthogonal port at the
points of S. We will leverage these free ports to add four more 2-bend edges for
(almost) each point of S. First, consider for each point p ∈ S the point q ∈ S below
p such that disty(p, q) = 1. We draw a 2-bend edge from p to q that starts with a
vertical segment at p which uses the S-port of p. This segment almost reaches the
y-coordinate of q, where we continue with a horizontal middle-segment until we
almost reach the x-coordinate of q and we end the construction of the edge with a
short oblique segment incident to q (this segment can be made arbitrarily short as
we are close in x- and y-direction after the previous two segments). Similarly, we
use the N-port of p for an edge to point q′ that is above p with disty(p, q′) = 2. Here,
we use distance two in order to avoid the introduction of a parallel edge. Symmet-
rically, we will draw the two edges at p which use the horizontal ports. Recall that
we add these edges to almost all points of S. In particular, if point p belongs to the
two bottommost vertices of S, then the point q below p such that disty(p, q) = 1 is
undefined. Moreover, if p belongs to the three topmost vertices, then the point q′

above p such that disty(p, q′) = 2 holds is undefined. Hence, we loose five edges per
direction, and we added a total of 4k2 − 10 edges. Again, we can observe that the
only crossings that occur are due to horizontal and vertical segments. To complete
the description, it is easy to create a K4 on the universal vertices without interfering
with the remainder of the drawing. In summation, we have constructed a 2-bend
apRAC drawing with n = k2 + 4 vertices and

2(k2 − 1) + 4k2 + (4k2 − 10) + 6 = 10k2 − 6 = 10n − 46

edges, which concludes the proof.
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FIGURE 7.8: Full example for the construction in Theorem 19 .
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7.5 Generalization of apRAC

A natural generalization of apRAC drawings is a drawing where each edge segment
involved in a crossing is parallel or perpendicular to a line having one out of s dif-
ferent slopes. We denote the class of graphs admitting such a drawing with k bends
as k-bend s-RAC graphs. Clearly, k-bend 1-RAC graphs coincide with the previously
covered k-bend apRAC graphs. In the following, we establish a proper inclusion of
0-bend s-RAC graphs with respect to the general 0-bend RAC graphs for any sublin-
ear s.

(a) (b)

FIGURE 7.9: (a) Graph G which has a unique combinatorial embed-
ding in the 0-bend RAC setting by Property 12 (b) Graph G6 used in

Theorem 20

Theorem 20. There exist 0-bend RAC graphs on n vertices which are not 0-bend s-RAC for
any s ∈ o(n).

Proof. Let G be the extension of two augmented square antiprism graphs, which has
a unique combinatorial embedding by [16]; see Fig. 7.9a. The final graph Gk consists
of k copies of G, namely G1, . . . , Gk such that Gi and Gi+1 (modulo k) are connected
by an additional edge (red in Fig. 7.9b) and all copies of G share one vertex V (center
in Fig. 7.9b). In Fig. 7.9b a RAC drawing of G6 is shown. Clearly, this drawing can be
extended to any k mod 2 = 0. Since the red edges form a horizontal extension the
embedding of Gk is unique. But then vertex v is necessarily incident to 2k crossing
edges whose angle formed with the x-axis is pairwise different. Hence, in order
to admit a 0-bend s-RAC drawing, s has to be at least k

2 . But clearly, k ∈ Ω(n), a
contradiction.

We now turn our attention to 2-bend s-RAC graphs. In particular, we establish
an upper bound dependent on s which is better than the one for general 2-bend RAC
graphs for small s.

Theorem 21. A 2-bend s-RAC graph G with n vertices has at most min{(6 + 4s)n −
12, 20n − 24} edges.

Proof. For s ≥ 4, the current best upper bound for 2-bend RAC graphs [174] holds.
Therefore let G be an optimal 2-bend s-RAC graph and Γ a valid drawing of G with
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s < 4. There are at most four edge segments incident to every vertex for every line
l of unique slope, namely two edge segments parallel to l and two edge segments
perpendicular to l. Hence, in total we have at most 4sn many edge segments incident
to the n vertices that can be involved in a crossing by definition. Denote the edges
which contain at least one such segment as I. Clearly, |I| ≤ 4sn and E \ I is a set of
edges where only the middle segment of the edges can be involved in any crossing.
Denote by D the subdrawing of Γ restricted to the edges of E \ I. We claim that the
intersection graph I of D is bipartite. Before we proof the claim, we will show that
it yields the desired result. Namely, since I is bipartite, there exists a two coloring
such that in D, no two edges of the same color intersect. Thus, the subdrawing of
D restricted to each of the two colors is planar and contains at most 3n − 6 edges,
hence |E \ I| ≤ 6n − 12 and thus |E| = |E \ I|+ |I| ≤ 6n − 12+ 4sn = (6+ 4s)n − 12
as desired. It remains to proof the claim. Recall that only the middle segments of the
edges of E \ I are involved in crossings in D. Subdividing the edges at the bends and
then restricting D to only contain the edges which corresponded to middle segments
in D yields a straight-line RAC drawing D′ such that the crossing graph of D and
of D′ coincide. Since D′ is a 0-bend RAC drawing, we have that the crossing graph
of D′ is bipartite [76], and hence the crossing graph of D is as well, which concludes
the proof.

7.6 Open problems

We state the following open problem raised by our work.

1. Close the gap of the edge-density (at least up to an additive constant) for the
case of 0-bend apRAC graphs. We conjecture that the provided lower bound
is best possible (up to an additive constant).

2. The proofs for the upper bound of the edge-density for k ∈ {1, 2} were not con-
cerned with the simplicity of the drawing - does the maximum edge-density
differ significantly if we enforce the drawing to be simple, such as in the case
of 1-bend RAC drawings [7]? At least for k = 1, our lower bound construction
(which is a simple drawing) whose number of edges is tight up to a small con-
stant indicates that the bounds may be the same - however, our lower bound
construction for k = 2 contains many adjacent edges that intersect (and it is
not obvious how to resolve this issue). Hence, a natural question would be if
there exists graphs which admit a k-bend apRAC drawing, but not a k-bend
apRAC simple drawing for k ∈ {1, 2}.

3. Do the classes of 2-bend apRAC and 2-bend RAC coincide?

4. What is the edge-density of 2-bend RAC graphs? In particular, is it larger than
the one of 2-bend apRAC graphs?

5. Is the recognition problem for k-bend apRAC graphs hard for k ∈ {1, 2}? This
is most likely true, however most known reduction techniques require gadget
graphs with a unique embedding, which is difficult to guarantee in the pres-
ence of bends.
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Chapter 8

Bipartite gap-planar graphs

Introduction This chapter is concerned with the study of k-gap-planar graphs. The
motivation for this beyond-planar graph class is twofold. On the one hand, it can
be seen as an asymmetric version of k-planarity, as any crossing is charged to ex-
actly one of the two edges which are involved in the crossing in the k-gap-planar
setting, while the crossing is charged to both edges in the k-planar one. On the other
hand, k-gap-planarity is motivated by a drawing paradigm which was developed in
order to avoid the visual clutter introduced by many edge-crossings in straight-line
drawings. The rough idea is to simply omit the part of the edge-segment where the
crossings occurs to improve readability. So called partial edge drawings (PED) [48]
are drawings where the middle-part of every edge-segment is omitted, such that the
remaining segments (which are also called stubs) that are incident to the vertices
are crossing-free. While this paradigm is optimal w.r.t. the number of crossings,
the omitted middle-parts often form the majority of the edge-segments, which un-
fortunately impairs readability. To deal with this issue while still avoiding cross-
ings, the method of edge casing was introduced in [86]. In a cased (straight-line)
drawing, every edge-crossing is solved by locally interrupting one of the two edge-
segments which forms the crossing, see the left side of Fig. 8.1 for an example. The
idea is that such an interruption only impairs the readability of the interrupted edge.
Hence, if the problem that we try to visualize yields a ranking of importance on the
edges, we can ensure that important edges are readable even if they are involved in
many crossings (by simply interrupting all the other edges which cross the impor-
tant ones).

Related work k-gap-planar graphs were introduced in [21]. The authors studied
inclusion relationships with other beyond-planar graph classes (in particular, they
showed that every 2k-planar graph is k-gap-planar, while the converse is not neces-
sarily true). Further, they established a tight density bound for the case of general
1-gap-planar graphs and provided an upper bound on the edge-density of k-gap-
planar graphs with the use of the crossing lemma. Bipartite 1-gap-planar graphs
were considered by [162], who gave an upper bound of the edge-density which de-
pends on the number of so called critical components of the crossing graph, which can
be linearly (in the number of vertices) many.

Our contribution In the following, we will drop this dependence on the number
of critical components and show that an n-vertex bipartite 1-gap planar graph has at
most 4n − 8 edges. In fact, we will show a slightly stronger statement, namely that
n-vertex bipartite 1-gap-planar non-homotopic multigraphs contain at most 4n −
8 edges. This chapter is part of the joint work with Aaron Büngener titled “On
the edge density of bipartite 3-planar and bipartite gap-planar graphs” which was



94 Chapter 8. Bipartite gap-planar graphs

recently accepted at the “32nd International Symposium on Graph Drawing and
Network Visualization (GD2024)”.

8.1 Edge-density of bipartite gap-planar graphs

In the remainder of this chapter, we will abbreviate 1-gap-planarity with gap-planarity.
Denote by G the set of all tuples (G, Γ) where G is a bipartite graph of n vertices and
Γ is a gap-planar drawing of G where any two copies of an edge are non-homotopic.
Let G ′ ⊂ G consist of all elements (G, Γ) such that G has the maximum number of
edges. Finally, let G ′′ ⊂ G ′ consist of all elements (G, Γ) such that Γ has the least
number of crossings. For the remainder, we fix such a tuple (G, Γ) ∈ G ′′.

We leverage the following result which holds for any 1-gap planar drawing,
hence in particular for Γ.

Lemma 20 ([21]). The crossing graph I of Γ is a pseudoforest.

In order to show that G has at most 4n− 8 edges, we want to find a set of edges of
G, denoted by P, such that no two edges of P are crossing in Γ and such that |P| ≥ m

2 .
The result then follows immediately since P induces a bipartite planar subgraph

of G, hence |E[P]| ≤ 2n − 4 and thus |E[G]| ≤ 4n − 8 follows. In order to define P,
we will consider the individual components of the intersection graph I . Recall that
by definition, no two edges that belong to different components of I do intersect,
thus we can consider the components separately.

Lemma 21. Let X be an arbitrary component of I . X contains an independent set of size at
least |X|

2 if X

• is a tree,

• contains an even-length cycle or

• contains an odd-length cycle C and at least one path (that is edge-disjoint from C) of
odd length rooted at a vertex of C.

Proof. In the first two cases, any cycle (if it exists) has even length by Lemma 20,
hence X is bipartite and it admits a 2-coloring. Clearly, both colors are independent
sets by definition, and one of the color classes contains at least |X|

2 nodes. For the
third case, let C = (v1, v2, . . . , vk) and w.l.o.g. assume that the path (u1, u2, . . . , u2j+1)
is rooted at v1 such that v1u1 ∈ X. Coloring ui with i odd implies that we have
colored j + 1 vertices in one color, which is enough to accommodate for all vertices
of the path in addition to v1. Clearly, the only vertex that is not on the path which is
influenced by the coloring is v1. Removing v1 (and the whole path) from X yields a
tree since C is the unique cycle of X, which has an independent set of the desired size
as shown in the previous case. Combining both independent sets then concludes the
proof.

The remainder of the components that are not included in the aforementioned
cases will be called critical components. These components are pseudotrees, i.e., trees
that contain exactly one cycle - which in our case is necessarily odd and any path
rooted at the vertices of the cycle has even length (the size of such a path can be
0). For the critical components, we can not directly find an independent set in I of
appropriate size. To be more precise, we can only find an independent set of size
|X|
2 − 1. To overcome this issue, we will show that for any such component, there

exists sufficiently many uncrossed edges in Γ (which correspond to singletons in I).
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e′

e′′
e1 e′

e′′

e1

FIGURE 8.1: Example of a critical component. The maximum inde-
pendent set (vertices in red) is not sufficiently large.

Lemma 22. Let e1 = a1b1 and e2 = a2b2 be two edges of G that intersect in Γ. Then, either
a1b2 or a2b1 is present in G drawn along e1 and e2.

Proof. Suppose for a contradiction that neither a1b2 nor a2b1 exist in G drawn along
e1 and e2. Denote by x the intersection point between e1 and e2. W.l.o.g. assume
that the crossing between e1 and e2 was assigned to e1 in Γ. This implies that no
crossing on the (open) segments a1x and xb1 can be assigned to e1. Moreover, at
most one crossing is assigned to e2 by definition - w.l.o.g. assume this crossing is
due to an edge that intersects e2 on the segment a2x. Now, consider the graph G′ =
G \ {a1b1, a2b2} ∪ {a1b2, a2b1} with corresponding drawing Γ′ where the drawing of
all edges but a1b2 and a2b1 is inherited from Γ, while the edges a1b2 and a2b1 are
drawn along (the original curves of) e1 and e2, refer to Fig. 8.2a. First observe that G′

is a non-homotopic multigraph, as neither a1b2 nor a2b1 drawn along e1 and e2 were
present by assumption. Further, Γ′ is a valid gap-planar drawing as we do not need
to assign a1b2 any crossing, while a2b1 is assigned at most one crossing. But then we
obtain a contradiction to our choice of G and Γ, as G′ contains the same number of
edges as G, but Γ′ contains strictly less crossings than Γ.

We can now turn our attention to the critical components. As we will argue
about graph G and its intersection graph I simultaneously, we will assume in the
following that an edge ei of G corresponds to a vertex vi of I . Let X be a critical
component in I and let C = (v1, v2, . . . , v2j+1) be its unique odd cycle in I . Pick two
adjacent vertices v1 and v2 of C and assume that e1 = a1b1 and e2 = a2b2. Recall that
Lemma 22 guarantees that one of a1b2 or a2b1 exists in G such that its curve follows e1
and e2 in Γ. W.l.o.g. assume that a1b2 exists and denote by v the corresponding vertex
of a1b2 in I . We distinguish between the following two cases based on whether a1b2
intersects an edge of C or not.

Assume first that a1b2 intersects an edge of C. As a1b2 is drawn along e1 and
e2, this edge is either e2j+1 or e3 by construction. Note that a1b2 cannot intersect
both of these edges, as otherwise X is not a pseudoforest. W.l.o.g assume that a1b2
crosses e3, the other case is symmetric. If there is an additional edge e′ besides e3
that is crossing a1b2, then e′ also crosses either e1 or e2 as a1b2 is drawn along e1 and
e2, but then X is not a pseudoforest as this crossing would close another cycle. In
particular, if it crosses e1, then we obtain the cycle (e1, e2, e3, a1b2, e′), and otherwise
we obtain (e2, e3, a1b2, e′). Hence, a1b2 only crosses e3 - but then we have an odd-
length path rooted at v3 in I (that only contains vertex v), in which case X is not
critical, a contradiction.

Thus we can assume from now on that a1b2 intersects no other edge correspond-
ing to a vertex of C. This means that either a1b2 is planar, or there is an edge e′ that
intersects a1b2 and therefore either e1 or e2. We keep the former case in mind and
consider the latter case. W.l.o.g. assume that e′ intersects e1, the other case is sym-
metric. Denote by v′ the corresponding vertex of e′ in I . Now, in I , we have a path
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rooted at v1, that continues with v′ and v. Denote this path by (u1, . . . , uk) such that
u1 = v′ and u2 = v. Observe that uk = u2 = v is possible.

a1 b1

a2

b2
(a)

a b
e1

e2

e3

(b)

FIGURE 8.2: (A) Illustration for Lemma 22. (B) Subgraph formed by
edges ei, e′1 for i ≤ 3. The blue edge is a non-homotopic copy of the

red ones.

By construction, the corresponding edge akbk of uk in Γ has only one crossing
with the corresponding edge ak−1bk−1 of uk−1. Hence, if we denote by x the intersec-
tion point of these two edges, we have that the segment akx as well as the segment
bkx is crossing free in Γ. Moreover, as uk−1 has exactly two crossings by construction,
one of the segments ak−1x or bk−1x is crossing free, w.l.o.g. assume the former. Then,
there exists a (non-homotopic) planar (copy of the) edge ak−1bk in Γ by maximality.
Hence in both cases, we find an uncrossed edge for a fixed pair of consecutive ver-
tices. By repeating this argumentation for any two consecutive vertices of C, we can
find a set of edges S with |S| = |C| ≥ 3 such that any edge in S is uncrossed in Γ. It
remains to consider the interaction of different components of I . Given two compo-
nents X and Y of I , it is possible that an edge ab occurs in both SX and SY. We claim
the following: any non-homotopic copy of an edge ab occurs in at most two such
sets. Assuming we have this claim at hand, the total number of uncrossed edges in
Γ is at least

1
2

j

∑
i=1

Xi ≥
1
2

j

∑
i=1

3 =
3j
2

≥ j

, since any cycle of G has size at least 3. Hence, there exists an assignment of the
uncrossed edges of Γ (which corresponds to singletons in I) to the critical compo-
nents of I such that every critical component gets at least one uncrossed edge and
every such edge is assigned at most once. We refer to the resulting components as
augmented components of I . It remains to prove the claim. Suppose for a contra-
diction that one copy of the edge ab belongs to at least three (critical) components
X1, X2 and X3 of I . Denote by ei and e′i the two edges of Xi where ab is drawn along.
By definition, no edge of Xi crosses an edge of Xj for i ̸= j. But then e1 and e′1, e2 and
e′2 and e3 and e′3 need to bound the same cell of Γ which is impossible, as e1, e2 and e3
are all incident to a, while e′1, e′2 and e′3 are all incident to b and we have the setting
illustrated in Fig. 8.2b.

Corollary 10. Every (augmented) component X of I has an independent set of size at least
|X|
2 .

Theorem 22. An n-vertex bipartite gap-planar non-homotopic multigraph has at most 4n−
8 edges.

Proof. Let P be the union of the maximum independent sets of every (augmented)
component X of I . Corollary 10 guarantees that |P| ≥ m

2 . Clearly, no two edges
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of P intersect in I , hence the edges of P induce a planar bipartite multi-graph GP.
Since GP does not contain any homotopic-multiedges by construction, it still holds
that any face of GP has length at least four. Since Euler’s formula can also be applied
to non-simple graphs, we obtain Eq. (3.5) i.e., GP has at most 2n − 4 edges, and thus
m ≤ 4n − 8 which concludes the proof.

In [162], the author provided a lower bound example for the class of bipartite
gap-planar graphs with n vertices and 4n− 16 edges, hence the derived upper bound
is tight up to an additive constant.
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Chapter 9

Fan-planarity

Introduction Another common tool to avoid clutter in dense graphs is the method
of edge-bundling, where edges that travel in the same direction are grouped into so
called bundles, which are usually visualized as one thicker edge [53]. Inspired by
this technique, we can define the notion of fan-planar drawings. At a high level, fan-
planar drawings have the topological property that all edges that cross a common
edge have to be incident to the same vertex - moreover, these crossings have to occur
“from the same side”. Equivalently, one can formulate this requirement in terms of
two forbidden patterns (I) and (II) shown in Fig. 9.1. In pattern (I), the edge e is
crossed by two independent edges, while in pattern (II), e is crossed by two adjacent
edges from different sides 1. As we will discuss in the related work paragraph, some
definitions of fan-planarity also require an additional forbidden pattern (III).

e e e

(I) (II) (III)

FIGURE 9.1: The three forbidden patterns in strongly fan-planar
drawings.

Let us turn to a more formal definition of these patterns. Pattern (I) shows two
independent edges crossing the edge e. Pattern (I I) and (I I I) can be described as
follows: Let e1 and e2 be the edges that cross e and let γ1, γ2 and γ be the correspond-
ing Jordan arcs. By assumption, there exists x, y, z, z′ ∈ [0, 1] such that γ(x) = γ1(z)
and γ(y) = γ2(z′). Moreover, as e1 and e2 are not independent, we can w.l.o.g.
assume that γ1(0) = γ2(1). Hence, the Jordan arc γ∗ defined by concatenating
[γ1([0, z]), γ([x, y]), γ2([z′, 1])) is in fact a Jordan curve, i.e., γ∗(0) = γ∗(1). By [122],
curve γ∗ separates the plane into two connected components such that the interior
one is bounded while the exterior one is unbounded. In pattern (I I), one endpoint
of e lies in the interior component while in pattern (I I I) both endpoints of e are
contained in the interior component. A drawing Γw is called weakly fan-planar if pat-
tern (I) and (I I) do not occur in Γw, while a drawing Γs is called strongly fan-planar
if pattern (I),(I I) and (I I I) do not occur in Γs

2. In the following, we will refer to
these patterns as (I), (II), and (III), respectively. Pattern (I) requires that all edges that

1the precise definition follows shortly
2We observe here that the class of fan-planar drawings is the only topological class introduced in

this thesis which can only be defined in the plane and not on the sphere S2, as the notion of interior
and exterior component is undefined in S2
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intersect an edge e are incident to a common vertex v. In this case, v will be called
the anchor of e.

Related work Fan-planarity was introduced in 2014 by Kaufmann and Ueckerdt [128]
as drawings which do not admit (I) or (II), i.e., they considered weak fan-planarity.
Consequent work used this notion of fan-planarity, an overview can be found in the
recent survey by Bekos and Grilli [26].

However, it turned out that the initial work of [128], which showed that n-vertex
fan-planar graphs can have at most 5n− 10 edges, required (III) in order to allow the
proof to go through - which was thus added in a subsequent journal version [129];
hence the upper bound in fact only holds for strong fan-planar graphs. For all inter-
mediate work on fan-planarity, one has to carefully read the assumptions on whether
weak or strong fan-planarity was considered. In particular, the result of Branden-
burg [45] is influenced by this correction. He studied a version of fan-planarity
where only (I) is forbidden - which he refers to as adjacency crossings graphs. He
establishes that weak fan-planar graphs form a proper subset of adjacency cross-
ing graphs which motivates the existence of (II)3. Further, he “shows” that n-vertex
adjacency-crossing graphs have at most 5n − 10 edges. This result is obtained by a
construction which transforms any adjacency-crossing graph into a weak fan-planar
graph with the same number of edges. And here is the issue - at the time of publi-
cation, the upper bound of 5n − 10 edges was assumed to hold for weak fan-planar
graphs - but in fact, we do not have an upper bound on the edge-density of weak
fan-planar graphs to date.

Our Contribution We show in Section 9.1 that pattern (III) is not redundant. Namely,
we show that there exists graphs which are weakly fan-planar but not strongly fan-
planar. On the other hand, we will show in Section 9.2 that the density results for
(bipartite) strongly fan-planar graphs derived in ([10]) [129] also hold for (bipartite)
weakly fan-planar graphs. Our result ensures that the upper bound for the edge
density of adjacency-crossing graphs derived in [45] is in fact correct. In Section 9.3
we will establish that (bipartite) strongly fan-planar graphs have thickness at most
(two) three by a complete characterization of odd cycles that can occur in the inter-
section graph of any fan-planar drawing.
Section 9.1 and Section 9.2 is based on joint work with Otfried Cheong, Henry Förster,
Julia Katheder and Lena Schlipf which appeared at the “31st International Sympo-
sium on Graph Drawing”. Section 9.3 is based on joint work with Otfried Cheong
and Lena Schlipf which was published at the “30th International Symposium on
Graph Drawing” [54].

9.1 Weak vs strong fan-planarity

In this section, we will establish that strongly fan-planar graphs form a proper subset
of weak fan-planar graphs.

Theorem 23. There exists a weakly fan-planar graph that does not admit a strongly fan-
planar drawing.

Proof. Let Γ be a weakly fan-planar drawing of graph G which does not admit a
strong fan-planar drawing. Clearly, any (weakly) fan-planar drawing, and hence Γ,

3obviously, (I) is a necessity to define fan-planartiy, as otherwise every geometric drawing is feasible
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contains at least one forbidden pattern (III). In order to guarantee the existence of at
least one pattern (III) in any valid fan-planar drawing of G, we will use the following
key idea. We start with a planar graph with a unique embedding. We will then make
every edge of this planar graph “uncrossable” by replacing it with a suitable gadget
introduced by [35]. Afterwards, we insert into every face of the planar graph a small
gadget graph (shown in Fig. 9.2a) which can only be drawn if we allow (III). In order
to achieve our goal, we will leverage the following lemma.

Lemma 23 ([35]). Let P be the planarization of any (weakly) fan-planar drawing of K7.
Then, between any pair of (real) vertices of P , there exists a path which does not contain a
real edge of G.

We are now ready for the detailed version of the proof of Theorem 23. Let Gq be
a 3-connected planar quadrangulation (e.g., one that is obtained by the construction
in [47]). Note that by construction, Gq is bipartite and Gq has a unique embedding in
S2 [182]. In the next step, we insert a copy of our gadget graph H shown in Fig. 9.2a
into every face f of Gq by identifying the outer cycle of H with the facial cycle of f .
Denote by G+

q this supergraph of Gq. We use the color scheme of Fig. 9.2a to color
all edges of G+

q - in particular, the edges of Gq form a subset of the red edges of
G+

q . In the next step, we will substitute every red edge of G+
q with a K7 and denote

the resulting graph by Gs. We claim that Gs is weakly fan-planar, but not strongly
fan-planar. The first statement is true since K7 admits a fan-planar drawing, see
Fig. 9.2b, while Fig. 9.2a shows a weakly fan-planar drawing of gadget graph H -
thus Gs admits a weakly fan-planar drawing. Consider now the second statement.
Let G be the set of all tuples (Gs, Γ) where Γ is a weakly fan-planar drawing of Gs. Let
G ′ ⊆ G be the set of tuples (Gs, Γ) where Γ contains the least number of patterns (III)
and finally let G ′′ ⊆ G ′ be the set of tuples (Gs, Γ) where Γ contains the least number
of crossings. In the remainder, we fix such a tuple (Gs, Γ) ∈ G ′′. We will prove that Γ
contains at least one pattern (III) and hence every weakly fan-planar drawing of Gs
requires at least one pattern (III) by our choice of Γ. Consider a red edge ab ∈ G+

q
and denote by a = v1, . . . , v7 = b the vertices of the K7 which substitute ab in Gs. By
Lemma 23, there exists a sequence of crossed edges S from a to b. By (I), no edge
which is not incident to one of v1, . . . , v7 can intersect S. By construction, the only
edges incident to vertices v2, . . . , v6 are the ones contained in the K7. Hence, the only
edges that potentially intersect S and interact with the remainder of Gs are incident
to either a = v1 or b = v7. Suppose for a contradiction that there exists an edge
incident to a or b that crosses S in Γ such that its other endpoint does not belong to
the vertices of the K7. But then we can easily reroute the edge such that its crossing
with S can be avoided, see Fig. 9.2c, and we obtain a contradiction to our choice of Γ.
Hence, with a slight abuse of notation, we conclude that the red edges are uncrossed
in Γ.

Recall that Gq has a unique embedding in S2, and hence a unique embedding
in the plane after we fix the outer-face. Since H is inserted into every face of Gq, it
is ensured that for some face f of Gq, the four vertices that bound f , which were
identified with the outer cycle of our gadget graph H, indeed form a facial walk
that contains H in its interior. Denote by u and u′ the two vertices of f that are of
the same partition. By 3-connectivity, the only face in Gq where both u and u′ are
part of a facial cycle is f . Since the red edges are uncrossed, it follows that for any
green/blue edge contained in the gadget, both endpoints belong to the same face
of the subgraph induced by the red edges. In particular, this implies that vertices
v, v′, w, w′ and z, refer to Fig. 9.2a, lie on a common face of the red subgraph. Further,
the edge (u, z′) implies that the gadget can not be mirrored on the horizontal axis,
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u′

u

v v′w w′

z

z′

(a)

a b

(b)

ba

(c)

FIGURE 9.2: (A) Gadget graph H. (B) A fan-planar drawing of K7, the
fat edges form a path from a to b that contains no uncrossed edge. (C)
An edge incident to a that crosses the K7 can be rerouted in order to

avoid this crossing.

as otherwise the red edge (u, z′) would intersect either (u′, v) or (u′, v′). Hence,
the shown embedding is unique (up to a mirroring on the vertical axis, which is
symmetric). Now it is easy to verify that the edges (u, w), (u, w′) and (v, v′) always
form (I I I), which concludes the proof.

9.2 Density of weakly fan-planar graphs

In this section, we will show that the density results for strongly fan-planar graphs
also transfer to the weakly fan-planar one. Let us call a triple e, e1, e2 of edges in a
weakly fan-planar drawing a heart if e1 and e2 share an endpoint u, both cross e such
that they form pattern (III), and the part of e between the crossings with e1 and e2
is not crossed by any edge of the graph, see Fig. 9.3a. We start with the following
observation:

Lemma 24. Let Γ be a weakly fan-planar drawing that is not strongly fan-planar. Then Γ
contains a heart.

Proof. By assumption, Γ contains three edges e, e1, e2 that form pattern (III), where e1
and e2 share endpoint u and cross e. Let E′ be the set of edges that cross e. By (I)
and (II), any edge e′ ∈ E′ must be incident to u, and by (II) it must cross e from the
same side as e1 and e2. The edges of E′ cannot cross each other since they share an
endpoint, and each edge e′ ∈ E′ forms pattern (III) either with e and e2, or with e
and e1. Let E1 ⊂ E′ be the set of edges of the first kind, E2 = E′ \ E1 the second
kind. If we order E′ by their crossing point with e along e, then we first encounter
all elements of E1, then all elements of E2. Picking the last element of E1 and the first
element of E2 together with e is the heart we are looking for.

We will call the sets E1 and E2 as defined in the previous proof left valve and right
valve of a heart. We also call a weakly fan-planar drawing Γ of a graph G minimal if
it contains the smallest possible number of triples of edges that form pattern (III).

The following lemma provides an important observation for minimal weakly
fan-planar drawings.
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FIGURE 9.3: (A) A heart. (B) Illustration of the setting of Lemma 25.

Lemma 25. Let e, e1, e2 be a heart in a minimal weakly fan-planar drawing Γ. Then there is
no edge e′ ̸= e in Γ that crosses both e1 and e2.

Proof. The proof of Lemma 25 is quite technical and will cover several pages; hence,
after introducing some required notation, we will give a brief outline of the proof
before diving into the technical details. Let u be the common endpoint of e1 and e2,
let e = (w, w′), and assume there exists an edge e′ ̸= e that intersects both e1 and e2.
Denote by x1 and x2 the intersection point of e1 and e and e2 and e, respectively. By (I),
e and e′ share an endpoint, say w. This implies by (I) and (II) that every edge which
crosses e1 or e2 is incident to w. W.l.o.g. assume that x1 is encountered before x2
when traversing e starting at w. We will define four sets of edges that will be helpful
for the remainder of the proof. In particular, we construct these sets based on the
edge routing in the original drawing Γ - while some of the edges may be redrawn at
a later time, they will belong to their initially assigned set throughout the proof. Let
E1 and E2 be the sets of edges that correspond to the left valve and the right valve
of the heart induced by e1, e2, e - in particular, e1 ∈ E1 and e2 ∈ E2. Further, let Eb be
the set of edges which cross both e1 and e2 before e, that is, for an edge eb ∈ Eb, the
intersection point of e1 and eb (e2 and eb) is encountered before x1 (before x2), when
traversing e1 (e2) starting at u. Symmetrically, let Ea be the set of edges which cross
both e1 and e2 after e. Note that by (I) and (II), any edge that intersects both e1 and e2
is either part of Eb ∪ Ea or coincides with e. Further, all edges of Eb ∪ Ea are incident
to w by (I). Finally, we observe that the existence of e′ ensures that at least one of Ea
or Eb is nonempty. For an illustration, see Fig. 9.3b.

Outline Let us layout the rough idea of the proof before we dive into the technical
details. In the first step, we will “flip” all edges of E1 to the other side as illustrated
in Fig. 9.4 to obtain the intermediate drawing Γ′. The crucial observation is that
Γ′ does not contain any pattern (III) introduced by two edges of E1 ∪ E2 and an
edge of Ea + {e}, while Γ contains at least one such pattern (induced by e1, e2 and
e). Unfortunately, we are not done after this initial step, as the flip-operation may
induce two types of pattern (III) in Γ′ which were not present in Γ - one that consists
of an edge of Ea, an edge of Eb and an edge e′′ incident to u which does not cross e
(and hence belongs to neither E1 nor E2), see Fig. 9.5, while the other one consists of
an edge of Eb, an edge of Ea and an edge of E1, see Fig. 9.6 for an illustration.

We will solve both these issues by rerouting the edges of Eb as shown in Fig. 9.7
which will yield the final drawing Γ′′.
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FIGURE 9.4: Transformation from Γ to Γ′
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FIGURE 9.5: Fat lines form (III) which completely contains the red
endpoints in its interior
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FIGURE 9.6: Fat lines form (III) which completely contains the red
endpoints in its interior

Flipping the edges of E1 Refer to Fig. 9.4 for a visualization. Let e1
1, e1

2, . . . e1
k be the

edges of E1 in the order that they intersect edge e in Γ starting at w, which implies
that e1

k coincides with e1. We consider the edges in reverse order and start with
e1

k = e1. The curve of e1
k in Γ′ follows the curve of e2 slightly outside until x2, then it

follows e until x1, where the curve intersects e and afterwards it inherits its original
curve in Γ. The curve of e1

k−1 again follows the curve of e2 (slightly outside the new
curve of e1

k = e1) until x2, where it follows e until the intersection point of e1
k−1 with e

in Γ. Here, the curve intersects e and then again inherits its original curve in Γ until
it reaches its endpoint different from u. We repeat this procedure for all edges of E1
to obtain the intermediate drawing Γ′.

Γ′ is weakly fan-planar Let us first assert that Γ′ is weakly fan-planar. Fix an edge
e1

i ∈ E1 and consider its curve γ in Γ′. Curve γ consists of three parts - the first part
follows e2 starting at u until x2, the second part follows e until the intersection point
of e1

i and e in Γ and the last part is inherited from Γ. Clearly, any additional crossing
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FIGURE 9.7: Transformation from Γ′ to Γ′′

that we introduce may only occur on the first or second part of γ. By construction,
however, the second part is crossing free, as the segment of e between x1 and x2 in
Γ is crossing-free since e1, e2 and e form a heart; and since we consider the edges in
the reverse order that they intersect e (starting at w), they do not intersect each other.
Let us now consider the first part of γ. By construction, any edge that intersects this
first part in Γ′ also intersects e2 and is therefore incident to w by (I).

Thus, if we manage to show that any crossings of the third part of γ are due to
edges which are incident to w, we neither introduce pattern (I) nor (II) by the flip-
operation, as the latter would require a nonempty region between two first-parts
of such curves, which is a contradiction to our construction. To prove the claim,
consider the closed region R defined by w, x1 and the intersection of e1 and e′ in the
original drawing Γ. Suppose first that the intersection with e is encountered before
the intersection with e′ when traversing e1 starting at u, see Fig. 9.8 for an illustration
of this case.

u

w

w′e

e2e1
e′

R

FIGURE 9.8: Any edge of E1 that enters region R has w as its anchor.

By definition, every edge in E1 besides e1 enters R over e. If such an edge is
leaving R, then it has to also cross e′ by simplicity, but then its anchor is w and by
(I) it can only be crossed by edges that are incident to w. Suppose now an edge
of E1 ends in R, but its anchor is not w. Since the edge intersects e, its anchor is
therefore w′. But no edge incident to w′ can enter R, since it would either cross e1,
whose anchor is w and hence it would coincide with e = (w, w′), it cannot cross e by
simplicity and if it crosses e′, then it has to be incident to the anchor of e′, which is u,
but then the curve has to intersect the boundary of R twice which is impossible.

Suppose now that the intersection of e with e′ is encountered before e. All edges
of E1 cross e by definition. Further, no two edges of E1 can intersect each other
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by simplicity. Hence, since the edges of E1 intersect e on the segment that bounds
R, it follows that they also intersect e′, and hence their anchor is w. Thus, we have
established that Γ′ is indeed weakly fan-planar and we can now consider the number
of patterns (III).

Number of patterns (III) Clearly, in any new pattern (III) in Γ′, at least one edge
of E1 is involved. Assume that ei ∈ E1 is involved in a new pattern (III) which is
not present in Γ. Suppose first that two edges incident to u are involved in this new
pattern. Any such pattern contains an edge e∗ incident to w and an edge e′′ ̸∈ E1
incident to u which was not flipped, i.e., its first part follows the first part of the
curve of e1 in Γ. Assume that e∗ ∈ Ea. In order for e′′ to cross e∗, it also has to cross
e and hence belongs to E1, a contradiction. Hence, e∗ ∈ Eb has to hold. We refer
to this pattern as type-one, which is illustrated in Fig. 9.5. Suppose now that two
edges incident to w and one edge of E1 form a new pattern (III). We observe that the
incident edges to w cannot both belong to Eb or Ea - hence any such pattern consists
of one edge of Ea, one edge of Eb and one edge of E1, which we call type-two, which
is illustrated in Fig. 9.6.

Rerouting the edges of Eb We will construct a drawing Γ′′ that avoids all pat-
terns of type-one or type-two by rerouting the edges of Eb as shown in Fig. 9.7. Let
eb

1, eb
2, . . . eb

k be the edges of Eb in the order that they intersect edge e2 in Γ starting at u.
We consider the edges in reverse order and start with eb

k. The curve of eb
k in Γ′ follows

the curve of e slightly outside until x2, then it follows e2 until the intersection point
of eb

k with e2 in Γ, and then it inherits its original curve in Γ. Similar to the flip oper-
ation of E1, we repeat this procedure for all edges of Eb to obtain our final drawing
Γ′′. Clearly, no two edges of Eb cross each other in Γ′′. Consider an edge eb

i ∈ Eb with
curve γb in Γ′′. The first part of γb only crosses edges which also cross the edge e -
as e is not involved in any pattern (III) in Γ′, neither is the first part of γb. Recall that
type-one patterns required our edge eb

i to intersect an edge e′′ which was not part
of E1, i.e., which did not intersect e. Hence, γ does not intersect e′′ in Γ′ and thus
we resolve all type-one patterns. Moreover, e and and the first part of γb cross all
these edges from the same side - hence, (I) and (II) are maintained so far. Consider
now the second part of γb which follows e2 starting at x2 until the intersection point
of eb

i and e2 in Γ and suppose there is an edge that crosses it. By construction, this
edge also crosses e2 and thus is incident to w by (I). Moreover, this edge was already
present in Γ (as no edge of E1 nor Eb, which are the only edges that differ from Γ to
Γ′′, actually cross the second part of γb) and has to intersect e2 from the same side
as eb

i in Γ to not violate (II)- but then this edge necessarily belongs to Eb and thus
does not cross eb

i in Γ′′. In particular, this resolves all patterns of type-two. Thus,
both the first and the second part of γb are crossing free - since the third part of γb is
inherited from Γ, we do not introduce additional crossings and hence no edge of Eb
is involved in a pattern (III) in Γ′′. To conclude, Γ′′ is a weakly fan-planar drawing
whose set of patterns (III) forms a proper subset of the one of Γ, since the triplet e1, e2
and e does not induce (III) in Γ′′ and we obtain a contradiction.

Theorem 24. A weakly fan-planar graph G with n vertices has at most 5n − 10 edges.

Proof. We proceed by induction on the number of edge triples forming pattern (III)
in a minimal weakly fan-planar drawing Γ of graph G. In the base case, this number
is zero, so Γ is strongly fan-planar. Then G is strongly fan-planar, and has at most
5n − 10 edges by [129]. For the induction step, we have by Lemma 24 that Γ contains
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a heart H formed by the edges e, e1 and e2, see Fig. 9.3a. Let xi be the crossing point
of ei and e, for i = 1, 2, and denote by L the closed curve that consists of the partial
curves of the edges e1, e2 and e up to the crossing points x1 and x2. Denote by G1
the subgraph of G consisting of those vertices and edges of G that lie (entirely) in
the closed region bounded by L. In particular, the vertices u, w, v, v′, and w′, and the
edges e1,e2, and e all belong to G1. Similarly, let G2 be the subgraph of G consisting of
those vertices and edges of G that lie entirely in the unbounded closed region defined
by L. In particular, vertex u ∈ G2, but none of the edges e, e1, e2 is in G2. Let |V[G2]| =
r and thus |V[G1]| = n − (r − 1), as u is part of both G1 and G2.

Edges that are in neither G1 or G2. Denote by Eext the set of edges that belong to
neither G1 nor G2 and consider an edge e′ ∈ Eext. Clearly, e′ must cross L. This
crossing cannot be on e by the heart property, so it must be on e1 or e2. The edge e′

cannot cross both e1 and e2 by Lemma 25, so e′ either crosses e1 and must be incident
to w or crosses e2 and must then be incident to w′ by (I). We claim that e′ can only
cross edges incident to u outside of L. To see this, suppose for a contradiction that
e′ is crossed by an edge e′′ outside of L which is not incident to u. W.l.o.g. assume
that e′ is incident to w and crosses e1, the other case is symmetric. By (I), edge e′′

is then necessarily incident to v, which is contained inside L. Since the intersection
point x of e′ and e′′ lies outside of L by assumption, if we follow the curve of e′′

starting at v until x we necessarily have to exit L, i.e., intersect either e, e1 or e2. If e′′

would intersect e, then it is necessarily also incident to u by (I), a contradiction to our
assumption. Further, e′′ cannot intersect e1 by simplicity as they share the common
vertex v. If e′′ intersects e2, then by (I) its other endpoint (different from v) is v′ which
is contained inside L as well. This implies that e′′ has to leave and reenter L - but as
previously observed, it cannot cross either e or e1, so it would cross e2 twice, which
is a contradiction to simplicity.

In the following, we will distinguish two cases based on the number of common
neighbors between w and w′ (restricted to the edges of Eext).

w and w′ have at least two common neighbors. In this case, we will construct a
(weakly) fan-planar graph G′ from G with the same number of vertices and edges
as G such that G′ contains strictly less patterns (III) then G, and hence by induction
the desired result holds. This will be achieved by exchanging the edge e of H with
a suitable edge (yK, yL) /∈ E, where yK and yL will be defined in the following. To
this end, assume w.l.o.g. that H is chosen so that L does not completely contain any
other heart H′. We aim to find a sequence of curve-segments in Γ, along which we
can insert the edge (yK, yL) without introducing (I), (II) or (III). We will refer to this
constructed curve as γ. Refer to Fig. 9.9a for the following case analysis.

Denote by p1 and p2 two common neighbors of w and w′. Since the edges of w
and w′ to p1 and p2 both cross edges incident to u (as they exit L) they cannot cross
each other. Hence there exists a proper nesting of p1 and p2, w.l.o.g. assume that
p1 is contained in the region delimited by e,e1,e2,(w, p2) and (w′, p2), which will be
called K. Further, denote by wp and ws the predecessor and successor of the edge e
at w restricted to the edges incident to w that cross e1, i.e., the edge ep = (w, wp)
crosses e1 immediately before e and es = (w, ws) immediately after e when following
e1 starting at u. Note that, it is possible that wp coincides with p1 and ws does not
necessarily exist.

We first identify a suitable vertex yK and a crossing-free subcurve of γ that con-
nects yK with the segment of e between x1 and x2. Consider wp. By Lemma 25,
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FIGURE 9.9: (a) Regions K and L and vertices wp and ws. (b) Replace-
ment of e.

ew w′

p1

p2

K

wp = yK

e1

γp
xp

(a)

ew w′

p1

p2

K
e1

xp

γ′
w′ = yK

wpx′

(b)

FIGURE 9.10: Identification of yK.

(w, wp) cannot cross both e1 and e2, hence wp lies outside of L 4. Further, since edges
of w and w′ do not intersect, wp is necessarily contained inside K. Let xp be the
crossing point of ep and e1 in Γ. Observe that as ep is the predecessor of e, the curve-
segment of e1 between x1 and xp is crossing-free, hence we add it to γ. To identify
the endpoint y, consider the curve-segment γp of ep between xp and wp.

First, assume that γp is crossing-free. In this case, we identify yK with wp and
append γp to γ; see Fig. 9.10a.

Second, assume that γp has at least one crossing. Let e′ be the first edge crossing
ep when traversing γp from xp. Let x′ be the intersection of e′ and ep. Observe that the
segment from x′ to xp on ep is crossing-free and hence can be appended to γ. Since
(x1, x2) is crossing-free by the heart property, the anchor of ep must be u. Hence, e′

also intersects the edge (w, p2), its anchor is w, and its endpoint w′ lies inside K (its
other endpoint is u). Finally, we observe that the curve γ′ of e′ between x′ and w′ is
crossing free, since otherwise (w, wp) is not the predecessor of e at w. Thus, we fix
w′ as yK and append γ′ to γ; see Fig. 9.10b.

Observe that in both cases yK lies in K. Also note that yK can only be adjacent
to w and w′ inside L as the segment of e between x1 and x2 is uncrossed whereas w
and w′ are the anchors of e1 and e2, respectively. Hence, we can be sure that (yK, yL)
does not exist in G yet as long as yL /∈ {w, w′, u} and yL lies in L; see Fig. 9.9b. Thus,

4by simplicity, it can neither cross e nor e1 a second time
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FIGURE 9.11: Identification of yL.

it remains to extend γ starting from its intersection with e to a suitable vertex yL that
is contained in L.

Let v be the endpoint of e1 different from u. Consider the curve γ1 of e1 from x1
to v. First, if γ1 is crossing-free, we identify yL with v and add γ1 to γ; see Fig. 9.11a.

Otherwise, γ1 contains a crossing. Assume momentarily that γ1 is crossed by
an edge incident to w′. In this case, we switch w and w′ and observe that this case
cannot occur for w′ at the same time by (I). Thus, we conclude that es must be present.
Denote by xs the crossing between e1 and es. We add the curve segment between x1
and xs to γ. If the curve of es between ws and xs is crossing-free, we add it to γ and
identify ws with yL; see Fig. 9.11b.

Note that in all cases discussed so far, γ is crossing-free when removing e. Thus,
when replacing e with (yK, yL), the number of (I) stays at most the same while the
number of (III) decreases by at least 1; see Fig. 9.9b (in this case the dotted edge at w
does not exist).

Finally, it remains to consider the case where there is an edge e′′ crossing es. We
choose e′′ such that it is the first edge crossing es after xs when traversing es from
xs to ws. Note that the anchor of es is either v or u. If it is u, we observe that e1,
es and e′′ form a heart inside L (see Fig. 9.11c); a contradiction to the choice of H.
Thus, the anchor of es must be v. In this case, we again choose yL = v and append
the segment between xs and v to γ. In this case γ will cross (w, ws). However, the
anchor of (w, ws) is yL = v so the number of (III) is maintained. Moreover, since γ
intersects (w, ws) in between e1 and e′′ the number of (III) still decreases by at least 1
when replacing e with (yK, yL); see Fig. 9.9b, which concludes our description of G′.
Now, induction easily yields the desired result.

w and w′ have at most one common neighbor. Let us now consider the case where
w and w′ share at most one common neighbor. Recall that by definition, Γ restricted
to G2 is weakly fan-planar and does not contain the pattern (III) formed by H, hence
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the inductive assumption applies and we have

|E(G2)| ≤ 5|V(G2)| − 10.

More work is required for G1. We need to create a new weakly fan-planar draw-
ing Γ′ for G1 that has at least one fewer edge triple forming pattern (III). Let E1 and
E2 be the left valve and the right valve of our heart, respectively, such that e1 ∈ E1
and e2 ∈ E2 holds. Recall that G1 lies entirely in the bounded region L defined by the
partial curves of e1, e2 and e up to their respective intersection points. In particular,
this implies that the partial curve of e1 between u and x1 is crossing free. Moreover,
the partial curve of e between x1 and x2 is also crossing free as e1, e2 and e form a
heart. We will use these two observations to “flip” all edges of E1 as follows. The
attentive reader may already guess that this flip-operation is equivalent to the one
performed in the proof of Lemma 25, hence refer to Fig. 9.4 for an illustration.

Flipping the edges of E1. Let e1
1, e1

2, . . . e1
k be the edges of E1 in the order that they

intersect edge e in Γ starting at w, which implies that e1
k coincides with e1. We con-

sider the edges in reverse order and start with e1
k = e1. The curve of e1

k in Γ′ follows
the curve of e2 slightly outside until x2, then it follows e until x1, where the curve
intersects e and afterwards it inherits its original curve in Γ. The curve of e1

k−1 again
follows the curve of e2 (slightly outside the new curve of e1

k = e1) until x2, where it
follows e until the intersection point of e1

k−1 with e in Γ. Here, the curve intersects e
and then again inherits its original curve in Γ until it reaches its endpoint different
from u. We repeat this procedure for all edges of E1 to obtain drawing Γ′.

Γ′ is weakly fan-planar and contains less pattern (III). To show that Γ′ is weakly-
fan-planar and contains at least one pattern (III) less than the drawing of G1 in Γ, fix
an edge e1

i ∈ E1 and let γ be its curve in Γ′. Observe that by construction, the part
of γ starting at u until the intersection point of e1

i with e in Γ is crossing free in Γ′,
as no two edges of E1 intersect in Γ′ by construction and any other edge that would
intersect γ would also cross either e2 or e in Γ and thus be contained both inside and
outside L. Hence, all crossings of e1

i ∈ E1 are on the part of γ which was inherited
from Γ; it follows that (I) is maintained in Γ′.

Suppose now that e1
i is part of a pattern (II) or (III) in Γ′, which was not present

in Γ. Suppose first that only one edge of this pattern is incident to u, i.e., e1
i uniquely

defines this edge. Recall that the only part of γ that can be involved in crossings is
the one inherited from the curve of e1

i in Γ - but then clearly the pattern was already
present in Γ, a contradiction.

Suppose now that two edges of this pattern are incident to u. Again, since the
only part of the curve of ei

i which is different from Γ′ to Γ is uncrossed, the exis-
tence of (II) in Γ′ would imply the existence of (II) in Γ, a contradiction since Γ is
weakly fan-planar. It remains to consider the case where two edges ex and ey that
are incident to u form (III) together with an edge e′. Clearly, at least one of ex and ey
belongs to E1, as otherwise the pattern was already present in Γ. First observe that
by construction we have e′ ̸= e. As there is no edge in G1 which crosses an edge of
E1 and an edge of E2 besides e by Lemma 25, such a pattern could only occur be-
tween two edges of E1. But as this pattern was not present in Γ by assumption and
since the closed region defined by the partial curves of the edges until their intersec-
tion points with e contains no endpoint, and thus in particular no endpoint of e′, it
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follows that they do not form (III) in Γ′. Hence, our new weakly fan-planar draw-
ing Γ′ has |E1| × |E2| ≥ 1 patterns (III) less than Γ and we can apply the inductive
assumption to get

|E(G1)| ≤ 5|V(G1)| − 10.

It remains to consider the edges of Eext. Assume that |Eext| = k. By assumption,
the edges of Eext are incident to at least k − 1 vertices outside of L. To make up
for these edges, we construct a new graph G′

2 from G2 as follows. Recall that the
drawing Γ[G2] derived from Γ contains an empty region inside L. We insert a single
vertex v∗ inside this region and connect it to the (at least) k − 1 neighbors of w and
w′ as well as to u. Recall that any edge of Eext only crossed edges incident to u
outside of L and therefore (I) and (I I) is maintained. Moreover, since the new edges
are routed along the curves of the removed ones, any pattern (III) was necessarily
already present in Γ. Hence, we augmented G2 to the weakly fan-planar graph G′

2
with r + 1 vertices and at least one pattern (II) less than G (the one formed by e,e1
and e2) and hence we can apply the induction hypothesis:

|E[G]| ≤ |E(G1)|+ |E(G2)|+ k
≤ |E(G1)|+ (|E(G′

2)| − k) + k
≤ 5(n − r + 1)− 10 + 5(r + 1)− 10
= 5n − 10,

which concludes the proof.

For bipartite graphs, we proceed in a similar way.

Theorem 25. An n-vertex bipartite weakly fan-planar graph has at most 4n − 12 edges.

Proof. Let Γ be a weakly-fan planar drawing of G with the least number of forbidden
patterns (I I I). Denote this number by i. We proceed by induction on i. For the base
case, we have that i = 0, but then Γ is also strongly fan-planar and hence G has
at most 4n − 12 edges by [10]. For the induction step, we proceed as in the second
case of the proof of Theorem 24 with two main differences. Instead of inserting
a single vertex v∗, we have to insert two vertices va and vb in order to guarantee
bipartiteness. Note that in the bipartite case, we have exactly k neighbors (and not
possibly less than that) of w and w′ in G2, as a common neighbor among w and w′

would imply a 3-cycle. Further, we can add the edge (va, vb) as well as one of (u, va)
or (u, vb). In total, we get

|E[G]| ≤ |E(G1)|+ |E(G2)|+ k
≤ |E(G1)|+ (|E(G′

2)| − (k + 2)) + k
≤ 4(n − r + 1)− 12 + 4(r + 2)− 12 − 2
≤ 4n − 12,

which concludes the proof.
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9.3 Thickness of strongly fan-planar graphs

In this section, we will proof that the thickness of strongly fan-planar graphs is at
most three. For bipartite strongly fan-planar graphs, we derive the tight bound of
two (which is witnessed for example by a straight-line drawing of K4,n−4). In fact,
we prove a slightly stronger statement, namely that any strongly fan-planar drawing
can be colored with at most three colors such that no two edges of the same color
cross (respectively, two colors are sufficient for any strongly fan-planar drawing of
a bipartite graph). Previously, the best upper bound for the thickness of (bipartite)
strongly fan-planar graphs were derived by a combination of their maximum edge-
density, Inequality 3.7 and by applying [149] using the fact that (bipartite) strongly
fan-planar graphs are hereditary, which gave thickness four and five, respectively.

Our result is obtained by a complete characterization of odd cycles in the inter-
section graph of a strongly fan-planar drawing, which should be of interest itself.

We begin by describing some specific notation for the remainder of the section.

Definitions We assume that any graph G and its corresponding fan-planar draw-
ing Γ are simple. Recall that this implies that G has no self-loops or multiple edges,
while in Γ no two adjacent edges cross, any two edges cross at most once and no
three edges cross in the same point. We will refer to all of these properties as (S).

Let G be a strongly fan-planar graph with a strongly fan-planar drawing Γ. Since
we only consider strong fan-planarity in this section, which implies that none of
the patterns shown in Fig. 9.1 occur in Γ, we will simply abbreviate “strongly fan-
planar” with “fan-planar” from now to improve the readability. For an edge ei, we
will always denote the anchor of ei as vi unless otherwise specified. As stated earlier,
we will fully characterize odd cycles in the intersection graph I of G. In particular,
we will consider chordless cycles of I , which are cycles without diagonals. Such
a chordless cycle C in I corresponds to a sequence of edges e1, . . . , ek, such that ei
and ei+1 intersect, but there are no other intersections between the edges of C in G.
We will refer to this property as (M). For a fixed chordless cycle C, we will define
a local orientation of the edges. Namely, we denote by xi the intersection point
between ei−1 and ei and by ai and bi the endpoints of ei such that aixixi+1bi appear
in this order on ei. Vertex ai is then called the source of ei and bi the target of ei (with
respect to C). Further we denote by êi the oriented segment of ei from xi to xi+1 which
will be called the base of ei. By concatenating the bases êi in order, we obtain a closed
loop which will be called L. By (M) we have that êi and êj do not intersect - thus
L forms a closed Jordan Curve which partitions the plane into two regions. Since
the edges ei and ei+2 both cross ei+1, they share a common endpoint by (I) which is
the anchor vi+1 of ei+1. Further, we denote by GC the subgraph of G induced by the
edges of C. An edge ei of a chordless cycle is called canonical if the anchor vi of ei
is the target of ei−1 and the source of ei+1, i.e., bi−1 = ai+1. If additionally no other
edge of C is incident to vi, i.e., vi is a degree two vertex in GC, then ei is called strictly
canonical. Fig. 9.12 shows a sequence of canonical edges, however some endpoints
of the edges can potentially coincide as shown in Fig. 9.15. For a canonical edge ei,

e3

a3 b3
x3 y3

v3

S3

FIGURE 9.12: A sequence of canonical edges.

we will call the triangular region Si with corners xi, xi+1, vi and delimited by the
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(a) (b)

FIGURE 9.13: (a) The only possible cycle of length four, and (b) fully
canonical cycles for k = 5, 8, 11.

edges ei−1, ei, and ei+1 the spike of ei, refer to the shaded region in Fig. 9.12. If a
chordless cycle C only contains canonical edges, then C is called fully canonical.

Such cycles can be created for example for any k ≥ 5 by taking the corners of a
regular k-gon and connecting every other corner with an edge, see Fig. 9.13(b). Note
that such a fully canonical cycle in I corresponds to a single closed trail of length k
in G for odd k, but to two closed trails of length k/2 for even k. These closed trails
inG are not necessarily cycles, as the anchors of the edges of a fully canonical cycle
can coincide as discussed earlier, see e.g. Fig. 9.14(left).

A

BC

D

FIGURE 9.14: Chordless cycles can intersect and share edges.

9.3.1 Characterizing chordless cycles

In the following, we provide a full characterization of chordless cycles which is a
key ingredient for the main result of this section. Before going into the technical
details of the section, let us first consider some examples how chordless cycles of
the intersection graph can interact with each other. Fig. 9.14 shows two examples
of fan-planar graphs whose intersection graphs have several chordless cycles that
cross and share edges. The graph on the left has 25 = 32 distinct chordless cycles,
as for each of the five red edges we can instead traverse the corresponding blue
edges. In the graph on the right, the boundaries of the faces labeled A, B, C are loops
of chordless cycles of length 11. There is a chordless cycle of length 9 surrounding
face D, there is a chordless cycle of length 30 surrounding all four faces, and there are
three chordless cycles of length 23 surrounding ABD, BCD, and CAD, respectively.

We first observe that by (I), no two independent edges can cross a common edge.
Moreover, by (S), no two adjacent edges cross and therefore I does not contain
cycles of length three. Cycles of length four have a unique shape, see Fig. 9.13(a).
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Hence, it remains to study chordless cycles of length at least five. The following
lemma guarantees that the anchors of a small number of consecutive canonical edges
are different.

Lemma 26. Let e1, . . . , e5 be five consecutive canonical edges of a chordless cycle. Then the
anchors of the five edges are distinct.

Proof. Recall that vi is the anchor of ei. Since v2 is incident to e1, it follows by (S) that
v2 ̸= v1. Since e1, . . . , e5 are canonical, it follows that v1 and v3 are the endpoints
of e2 and since G contains no self-loop we have that v1 ̸= v3. If v1 = v4 would
hold, then e2 and e3 would share an endpoint (as v1 = a2 and v4 = b3) but also
cross by assumption, a contradiction to (S). Finally, if v1 = v5, then e2 = (v1, v3)
and e4 = (v3, v5) would be parallel edges, a contradiction to (S). Using analogous
arguments, we can derive the remaining inequalities which concludes the proof.

v1 v2 v3 v4 v5

FIGURE 9.15: The anchors of canonical edges can coincide, but only
after at least four distinct anchors.

The following lemma ensures that an anchor vi cannot be the source/target for
both ei−1 and ei+1 simultaneously.

Lemma 27. Let C = (e1, . . . ek) be a chordless cycle in I with k ≥ 5. Then, bi−1 ̸= bi+1
and ai−1 ̸= ai+1 for 1 ≤ i ≤ k.

Proof. Suppose for a contradiction that there exists an index i such that bi−1 = bi+1.
By applying a cyclic renumbering of the indices, we can assume that b1 = v2 =
b3. Due to the orientation of the edges with respect to C, we have that x4 lies on
the segment x3b3 = x3v2, while x1 lies on the segment a1x2, refer to Fig. 9.16 for
an illustration of the steps throughout the proof. The edge e4 which contains x4 is
by definition incident to v3. If v3 = a2 would hold, then either e4 would cross e1,
which is not allowed by (M), or e3 would form (II) together with e2 and e4 - hence
v3 = b2 holds. Consider the region R bounded by v2x2x3. The (open) segments
v2x2 and x2x3 do not cross any edge of C by (M) and segment x3v2 only crosses e4 in
x4. Hence, the other endpoint of e4 different from v3 lies inside R. The intersection
point x5 cannot lie inside R, as otherwise the closed curve L, which has to return to
x1, would necessarily intersect R again, which is impossible as established earlier.
Thus, x5 which lies on the segment x4b4 of e4 lies outside R and hence b2 = v3 = b4.
Repeating this same argument would imply b5 = b3 = b1, b6 = b4 = b2, and so on.
Consider now the final edge ek of C. By construction, ek contains x1 and therefore it
cannot be incident to b1 by (S). Thus, it is incident to b2 and xk lies on the edge ek−1
incident to b1 since they are required to alternate. Since x1 lies on ek on the segment
xkbk with bk = b2, we get two possibilities for drawing ek, the matching part of
both curves is drawn solid, while the diverging parts are drawn dashed and dotted
in Fig. 9.16. The dotted version violates (III) for ek−1 (with ek−2 and ek) while the
dashed version violates (III) for ek (with e1 and ek−1) and we obtain a contradiction.

We now assume that ai−1 = ai+1 holds for some i for our chordless cycle C. We
denote by C′ = (ek, . . . , e1) the chordless cycle which is obtained by reversing C. In
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particular, this reversing flips the source and target for each edge, so C′ now has an
index j (which is in fact k − i) where bj−1 = bj+1 which we already showed cannot
exist.

v2 = b1 = b3

e2

e1

x2
x3

b2R
e3

x1
ek

xk

a1

x4

a2

ek−2

ek−1

FIGURE 9.16: The cycle cannot be closed.

Corollary 11. Let ei be a non-canonical edge of a chordless cycle C. Then ai−1 = vi = bi+1.

Proof. Anchor vi is by (I) a common endpoint of ei−1 and ei+1. Since ei is not canonical
by assumption, we have that bi−1 ̸= ai+1. By Lemma 27 we have bi−1 ̸= bi+1 and
ai−1 ̸= ai+1, which then implies vi = ai−1 = bi+1.

The last technical lemma of this subsection verifies the existence of a sequence of
consecutive canonical edges in every sufficiently large chordless cycle.

Lemma 28. A chordless cycle of length at least five has at least four consecutive canonical
edges.

Proof. Let C = (e1, . . . ek) be a chordless cycle of length k ≥ 5 such that e1, . . . , em is a
longest consecutive sequence of canonical edges in C, and assume for a contradiction
that m < 4. Based on the value of m, we distinguish the following cases, which are
visualized in Fig. 9.17.

e1

ek−1

e3 b1a1

e1

ek−1e4

e2 e1

ek−1b1 = a3

e2 e3

a2 b1

(b)

(c) (d)

(a)

e1a1 = b3

e3

e2

x3

a2 = b4

x2

b2

x4

xk x3

ek

xk
x4

ek

xk

x5

e5

ek

FIGURE 9.17: (a) m = 0, (b) m = 1, (c) m = 2 and (d) m = 3.
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• m = 0

This implies that C does not contain any canonical edge. By Corollary 11 it
follows that a1 = v2 = b3 and a2 = v3 = b4. By definition, we have that x4
lies on the segment x3b3 and it is contained in e4 whose endpoint is b4 = a2.
However, e4 cannot intersect e1 by (M), and it cannot intersect e2 by (S). But
then it necessarily forms (II) with e2 and e3, see Fig. 9.17(a).

• m = 1

Assume w.l.o.g. that e1 is canonical. Then, e2 and ek are not canonical by as-
sumption. Corollary 11 then establishes that a1 = b3 and ak−1 = b1. Since e3
does not cross ek and e2 does not cross ek−1 by (M) and since xk is contained
in ek−1 and x3 ∈ e3, we have exactly the situation shown in Fig. 9.17(b) by (II)
and (III). But then e3 and ek−1 necessarily cross and thus k = 5 has to hold to
not obtain a contradiction to (M). As both e3 and e5 cross e4 by construction,
they have a common endpoint. This common endpoint cannot be a1, as clearly
e1, which is crossed by e5, is also incident to a1 which violates (S). The other
endpoint of e5 is contained in a region delimited by e3ek−1eke1 - if e3 would try
to enter this region it would either cross itself, cross ek−1 twice, cross ek or cross
e1 which is also incident to a1, hence in any case we violate (S) or (M).

• m = 2

W.l.o.g. assume that e1 and e2 are canonical. Since e3 and ek are then not canon-
ical, by Corollary 11 we have a2 = b4 and b1 = ak−1. Similar to the previous
case, ek−1 and e3 do not cross and since xk ∈ ek−1 and x4 ∈ e4 we have the
situation of Fig. 9.17(c). In particular, e4 and ek−1 cross which implies k = 6.
But then e4, e5 and e6 form (II), a contradiction.

• m = 3

Again, assume w.l.o.g. that e1, e2 and e3 are canonical, which implies by as-
sumption that e4 and ek are not canonical. By Corollary 11 we have that a3 = b5
and b1 = ak−1. The edge e2 is canonical and thus ak−1 = b1 = a3 = b5 which
implies that e5 and ek−1 cannot cross, hence k ̸= 5. If k = 6, then a5 = b5, which
is impossible, hence k ≥ 7. By (M) we have that e5 does not cross {e1, e2, e3, ek}
while ek−1 does not cross {e1, e2, e3, e4}. Therefore xk ∈ ek−1 and x5 ∈ e5 implies
that we have the situation of Fig. 9.17(d). But here we have that e5 and ek−1
cross, a contradiction which concludes the proof.

With these tools at hand, we are ready to state the main result of this subsection
which is the characterization of chordless cycles that are not fully canonical.

Theorem 26. If a chordless cycle of length k ≥ 5 is not fully canonical, then k ≥ 9,
edges e1, . . . , ek−1 are canonical, anchors v2 = vk−2 coincide so that b1 = a3 = bk−3 = ak−1,
and bk−1 and a1 are vertices of degree one in GC.

Proof. Let C = (e1, . . . , ek) be a chordless cycle of length k ≥ 5 which is not fully
canonical and let e1, . . . , em−1 be the longest sub-sequence of C which consists of
canonical edges. Lemma 28 establishes that m ≥ 5. Since em is not canonical, Corol-
lary 11 implies that am−1 = bm+1. Recall that by definition, em+1 crosses em in xm+1
and no other edge besides em+2 by (M). Denote by R the region enclosed by êm and
the edges em−1 and em+1. As R cannot contain an endpoint of em since (II) and (III)



9.3. Thickness of strongly fan-planar graphs 117

are not allowed, it follows that we have the situation shown in Fig. 9.18(a), where
the region R is shaded in yellow.
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FIGURE 9.18: Proof of Theorem 26.

By (M), it follows that the closed curve L of C lies entirely in R with the exception
of the bases êm − 1, êm and êm + 1 which lie on its boundary. We want to establish
that k = m. Clearly, k ≥ m has to hold, thus assume for a contradiction that k > m
If k = m + 1, we have ek = em+1. Since ek is not canonical (as otherwise, the sub-
sequence ek, e1, . . . , em−1) would be the maximal one), it follows that ak−1 = am = b1
and e1 intersects ek between xm+1 and bm+1 = am−1. As e1 cannot intersect em−1 by
(M), the crossing between e1 and ek would violate either (II) or (III).

If k = m + 2, then ek−1 = em+1 in Fig. 9.18(a), xk lies on em+1 on the boundary
of R, and êk lies (except for its endpoint xk) in the interior of R (in particular, x1).
Again, since ek is not canonical, we have ak+1 = b1 by Corollary 11 and since e1 does
not cross the boundary of R, it cannot contain x1 which lies in the interior of R

Assume now that k > m + 2. Then, êk is completely contained in the interior of
R Since ek is not canonical, we have ak−1 = b1. Symmetrically to the previous argu-
ment, the edge ek−1 must be such that the region R′ formed by êk, ek−1, and e1 con-
tains no endpoint of ek to avoid (II) and (III), so we are in the situation of Fig. 9.18(b).
Again, the loop L lies in R′, with only êk−1, êk, ê1 on the boundary of R′. In partic-
ular, êm lies in the interior of R′. Thus we have the following situation. Base êm lies
in the interior of R′ but on the boundary of R and base êk lies in the interior of R
but on the boundary of R′. This implies that the boundaries of R and R′ must inter-
sect. The boundary of R consists of em−1, êm, and em+1, the boundary of R′ consists
of ek−1, êk, and e1. By (M), the only allowed edge crossing occurs when k = m + 3
such that em+1 and em+2 = ek−1 cross - however since the two closed curves R and
R′ need to cross an even number of times (hence, at least twice) and since any pair
of edges crosses at most once by (S), it follows that R and R′ require a common ver-
tex for the other “intersection” and thus am−1 = b1. But then, em−1 and ek−1 share a
common vertex and thus cannot cross at all by (S).
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It follows that our assumption that k > m is false, and so k = m holds. After an
appropriate relabeling of the indices modulo k, we obtain the situation of Fig. 9.18(c).
Recall that so far we established that C has exactly one edge em which is not canoni-
cal. Since e1 is canonical by assumption we have bm = a2. Thus, the source of e2 is bm
and it enters region R through e1. By (M), e2 crosses neither em−1 nor em, so its other
endpoint b2 necessarily lies in the interior of R. As the sub-sequence of e2, . . . , ek−1
is canonical, we end up with the situation shown in Fig. 9.18(d).

Since v2 = b1 = ak−1 = vk−2, Lemma 26 implies that k − 2 ≥ 7, so k ≥ 9.
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b1 = a3 = bk−3 = ak−1

FIGURE 9.19: A non-canonical chordless cycle.

Fig. 9.19 is an alternative drawing of the non-canonical chordless cycle of Fig. 9.18(d),
showing the symmetry in the characterization. We also remark the following obser-
vation, which will be important for the proof of Corollary 12.

Observation 5. Any odd cycle in I implies an odd-length cycle in G

Proof. The statement is obvious if the odd cycle is fully canonical. For a non-canonical
cycle C = (e1, . . . , ek), we can observe by the characterization derived in Theorem26
that there is a cycle of length k − 2 which consists of all edges of C except for ek−1
and e1. In particular, the cycle is e2, e4, e6, . . . , ek−3, e3, e5, . . . , ek−2. Since k is by as-
sumption odd, the result follows.

We can now derive the first major result of this section.

Corollary 12. The edges of a strongly fan-planar drawing of a bipartite graph G can be
colored using two colors such that no edges of the same color cross. As a consequence, a
bipartite, strongly fan-planar graph has thickness at most two.

Proof. We show that I is bipartite. Assume otherwise: then I has an odd cycle,
which contains a chordless odd cycle C of length k. By Observation 5, this implies
an odd cycle in G, hence G is not bipartite and we obtain contradiction.

We remark here the the bound on the thickness is tight as witnessed for example
by the non-planar graph K3,3 which admits a drawing with one crossing and it is
therefore also strongly fan-planar.

For the remainder of this subsection, with the full characterization at hand, we
will study additional properties of chordless cycles. In particular, we are concerned
with the interaction of the region induced by the closed curve L and the spikes Si
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with other edges which are not part of C. Recall that the closed curve L partitions
the plane into two regions. If C is fully canonical, then one of these regions is empty
in GC—this could be either the bounded or the unbounded region of the plane de-
limited by L. Otherwise, C has exactly one non-canonical edge by Theorem 26 and
the bounded region delimited by L is empty in GC, i.e., it contains no vertices of GC.
With a slight abuse of notation, we will in both cases denote the empty region that
is delimited by L by L as well. By construction, for each base êi of a canonical edge
ei, we have that the (empty) region defined by spike Si is adjacent to L.

v3v2v1

e3e2e1
x2

u

S2

x3

v3v2v1

e3e2e1

S3

e4

v4

e

e
(a) (b)

FIGURE 9.20: (a) u must lie in S2 or e = e2, and (b) e starting in v1
cannot enter S3.

The following three lemmas consider the interaction between spikes and addi-
tional edges.

Lemma 29. Let e1, e2, e3 be three consecutive canonical edges of a chordless cycle C. Let
e = (v1, u) be an edge that crosses e1 in the relative interior of the segment x2v2, i.e., e ̸∈ C.
Then u is contained in S2.

Proof. Traversing e from v1 to u, e enters S2 by crossing the segment x2v2 by assump-
tion see Fig. 9.20(a). Edge e cannot cross e2 or cross e1 again by (S), hence it could
only leave S2 through the segment v2x3. But then e has to be incident to v3, which
by Lemma 26 is different from v1. Thus, u = v3 which implies by (S) that e = e2, a
contradiction as e2 does not intersect the relative interior of x2v2.

Lemma 30. Let e1, e2, e3, e4 be four consecutive canonical edges of a chordless cycle. Let
e = (v1, u) be an edge incident to v1. Then e does not enter the interior of S3.

Proof. Recall that by definition, S3 is delimited by v2x3, ê3 and v3x4, see Fig. 9.20(b).
By (S) e, which is incident to v1 = a2, cannot cross e2, hence in order to enter the
spike it has to intersect either ê3 or v3x4. In order to cross ê3, e has to be incident
to v3. Since v1 ̸= v3 by Lemma 26, it follows that e = (v1, v3) = e2 by (S), which
does not intersect the interior of S3 by definition. Finally, if e intersects e4, we have
that e is incident to v4. Since v1 ̸= v4 holds by Lemma 26, we have e = (v1, v4). By
construction, vertex v4 lies outside S3, hence e would have to cross e4 again which is
a contradiction to (S).

Lemma 31. Let C be a chordless cycle of length at least five, and let e be an edge not part of C
such that e intersects the loop L of C. Then e starts in the anchor vi of a canonical edge ei
of C, passes through the spike Si, crosses the base êi, and either (1) ends in L; or (2) crosses
the base êj of another canonical edge ej of C, then passes through Sj and terminates in vj; or
(3) crosses the base of the non-canonical edge ej of C, never enters L again, and terminates in
a vertex that is not a vertex of C. The second and third case can only happen if ei and ej share
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an endpoint. In particular, (2) cannot happen when ei−1 and ei+1 are strictly canonical, and
(3) implies that i ∈ {j − 2, j + 2}.

Proof. We begin with a preliminary observation. If an edge e intersects the closed
curve L in a point p on a canonical edge ei, such that p ∈ êi, then we have by (I) that
the anchor vi of ei must be an endpoint of e. Further, we have by (S) and (II) that the
part of e between vi and p lies completely in the spike Si.

We first consider the case where e does not cross a non-canonical edge. If we
assume that e crosses L exactly one in a canonical edge ei, then by the observation
above we necessarily have the following situation: e starts in vi, passes through Si,
crosses êi and its other endpoint lies inside L. If e crosses the curve L more than
once, say it crosses edge ej in addition to ei,then by assumption it follows that ej
is also canonical. But then we can repeat the initial observation and obtain that e
starts in vi, passes through Si, crosses êi, passes through L, crosses base êj, passes
through Sj, and ends in vj. Since e intersects both ei and ej, we have by (I) that they
share a common endpoint.

If e crosses L more than once, then by the above this must be in two canonical
edges ei and ej. Then we are in case (2): e starts in vi, passes through Si, crosses êi,
passes through L, crosses base êj, passes through Sj, and ends in vj. Since e inter-
sects ei and ej, (I) implies that ei and ej have a common endpoint. If ei−1 and ei+1
are strictly canonical, then we have that the endpoints of ei are the anchors of ei−1
and ei+1 and both these vertices have degree two in GC; thus we would have that
j ∈ {i − 2, i + 2}. But then e is identical to either ei−1 or ei+1, a contradiction which
ensures the latter part of statement (2).

Now we consider the case where e crosses the non-canonical edge ej of C in a
point q. By (I) we have that the anchor vj is an endpoint of e. Moreover, (II) implies
that the part of e connecting vj and q has to lie inside the region delimited by ej − 1, êj
and ej+1, refer to Fig. 9.19 with j = k. But then this part passes through L, hence it
has to cross another edge ei of C which is canonical. By using the initial observation
once again, we have the situation that e starts in vi, passes through Si, crosses êi,
passes through L, and crosses êj. Clearly, e cannot cross êj again by (S) and it cannot
cross another canonical edge, hence e does not enter L again. In particular, this
implies that vi = vj has to hold. Similar to the previous case, ei and ej, which are
both crossed by e, need to have a common endpoint by (I). By Theorem 26, the only
edges that share an endpoint with the non-canonical edge ej are ej−2 and ej+2 which
establishes i ∈ {j − 2, j + 2}.

Finally, we will show that the other endpoint of e different from vi = vj is not
part of C. Once e leaves L by crossing êj, it can only reach (i) the endpoints of ej,
which is a contradiction to (S), (ii) the anchor vj of ej but then ej would be a self-loop
or (iii) the endpoints bj−1 and aj+1, again, refer to Fig. 9.19 with j = k. In the last
case, we observe that since vi = vj = aj−1 = bj+1 as ej is not canonical, it follows
that e = (aj−1, bj−1) or e = (bj+1, aj+1), but then e is identical to either ej−1 or ej+1, a
contradiction.
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9.3.2 Coloring with Three Colors

With most of the technical tools at hand, we can now state the main theorem of
this section, which directly implies the desired result. To enable an easy cross-
referencing, we will reuse “strongly fan-planar” for the following statements.

Theorem 27. In every strongly fan-planar drawing of a graph G there is a set S of edges
such that (1) S is independent in I , that is, no two edges in S cross; and (2) every odd cycle
in I contains an edge in S.

Corollary 13. The edges of a strongly fan-planar drawing of a graph G can be colored using
three colors such that no two edges of the same color cross. As a consequence, a strongly
fan-planar graph has thickness at most three.

Proof. Pick the set of edges S according to Theorem 27 and color the edges of S using
one color. Then, I \ S contains no odd cycles and hence admits a proper coloring
using the two remaining colors.

In the following, we will describe the construction of such a set S for the proof of
Theorem 27 which makes use of the following lemma.

Lemma 32. Let C be a chordless cycle of length at least five. Then C contains an edge ei
such that

• ei−2, ei−1, ei, ei+1, ei+2 are all canonical in C and

• ei−1, ei, ei+1 are all strictly canonical in C.

Proof. If C is fully canonical, any edge satisfies the aforementioned criteria as every
edge is canonical and by Lemma 26 we have that the anchors of a canonical sequence
can only coincide if they are sufficiently far apart. If C is not canonical, by Theo-
rem 26 we have that the sub-sequence e2, . . . , ek−2 fulfills the following properties.
On the one hand, we have v2 = vk−2. On the other hand, the spikes S3,S4, . . . ,Sk−3
are completely contained in the region delimited by e1, êk and ek−1. Since spikes can-
not intersect (they can only potentially touch at the anchors) by (I), we have that the
corresponding anchors form a nested structure - pick the innermost interval ej, . . . , eℓ
such that vj = vℓ. Since this is the innermost interval, the anchors vj, . . . , vℓ−1 are
not involved in a nesting and therefore distinct. By Lemma 26 we necessarily have
that ℓ − j ≥ 5. Thus by choosing i = j + 2 we can satisfy the requirements of the
lemma.

For any chorldess cycle C, we will pick an edge e of C which satisfies the proper-
ties of Lemma 32. Edge e will be called the ground edge of C. The set s of Theorem 27
will contain exactly a subset of all these ground edges. In particular, the following
key lemma establishes that if two such ground edges intersect (i.e., they would be
adjacent in I) then they actually belong to the other chordless cycle, hence it is suffi-
cient to simply select one of them to break both cycles. As usual, the proof requires
some technical arguments and relies on the following two lemmas which we have
to establish before.

Lemma 33. Let C and C′ be two chordless odd cycles with ground edges e and e′ and such
that e and e′ cross in a point z. Then z does not lie in the relative interior of the base ê.

Proof. Denote the edges of C by e1 . . . ek and the edges of C′ by e′1, . . . , e′ℓ. After a
cyclic renumbering, we can assume that the ground edges e and e′ coincide with e3
and e′3, respectively.
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Assume for a contradiction that point z lies in the interior of ê3. Since e3 is strictly
canonical, it follows by Lemma 31 that e′3 starts at v3, passes through S3, crosses ê3
and its other endpoint lies inside L without crossing it again (note that (2) and (3)
cannot occur as e3 is a ground edge). On the other hand, since e3 crosses e′3, one
endpoint of e3 is v′3. We assume that b3 = v4 = v′3, the other case is symmetric.
We can further assume w.l.o.g that v3 is the source a′3 of e′3, the other case can be
handled by simply reversing the orientation of C′. Consider the edge e′4, which starts
at v′3 = v4. By definition, e′3 and e′4 intersect in x′4 that lies on the edge e′3, hence either
inside L or inside S3. For the former case, we observe that e′4 must intersect e4 to
enter L by Lemma 31, as it is incident to b3 = v4. For the latter case, we can observe
that e′4 cannot enter S3 by crossing e2, as otherwise e2, e3 and e′4 would form (II).
Hence, it also to cross e4 in order to enter. But then the crossing of e4 and e′4 implies
that v′4 is an endpoint of e4. Recall that we assumed that v3 = a′3 and thus it follows
that v3 = v′2. Since v′2 ̸= v′4 by Lemma 26, it follows that e4 = (v′2, v′4) = e′3. But then
z = e3 ∩ e′3 = e3 ∩ e4 = x4 which means that z does not lie in the relative interior of ê,
a contradiction.

The following lemma now establishes that such an intersection point z in fact has
to lie in base ê which then together with Lemma 33 implies that e′ coincides with an
edge of C.

Lemma 34. Let C and C′ be two chordless odd cycles with ground edges e and e′ and such
that e and e′ cross in a point z. Then z lies in base ê.

To make the following proof more readable, we again proof a rather technical
lemma, whose setting is visualized in Fig. 9.21, beforehand.
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FIGURE 9.21: Proof of Lemma 35.

Lemma 35. Let C and C′ be two chordless odd cycles with ground edges e3 and e′3. Suppose
that v3 = v′2, v4 = v′3, that e′3 intersects x4v4 such that b′3 ∈ S4, and that x′3 ∈ S4. Then
the entire loop L′ of C′ lies in S4.

Proof. Assume for a contradiction that L’ contains a point outside of S4. Follow the
closed curve of L′ starting at x′4, which lies (strictly) inside S4 as it is contained in the
segment zb′3 where b′3 is inside S4 by assumption and since z, by definition, lies on
the boundary of S4. Denote by e′m the first edge of C′ such that x′m is still inside S4,
but ê′m intersects the boundary of S4. Since S4 is bounded by e3, e4 and e5, the edge
e′m has to intersect one of them, see Fig. 9.21.

• ê′m intersects e3 in point p

Then e′m is incident to v3 = v′2. By the choice of the ground edge e′3, we have
that e′2 is strictly canonical, hence v′2 has degree two in GC′ . Hence, e′m = e′1
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follows. Edge e′1 cannot intersect e4 by simplicity, as they are both incident to
v3 = v′2. Observe that p cannot lie on e3 between z and v4 = v′3, as otherwise
e′1 would necessarily intersect e′4, a violation of (M). It follows that point p lies
on e3 between x4 and z = e3 ∪ e′3. Further, we have that x′2 lies in the triangle
formed by e3, e4 and e′3 by (S). If x′2 and p coincide, we have e′2 = e3 which
implies that x′3 = z and then L′ does not leave S4. Otherwise, if x′2 lies strictly
outside S4, then e′2 ̸= e3 holds and thus x′3 lies strictly inside S4 by assumption.
But then the edge e′2 intersects the boundary of S4 – it cannot cross e3 or e5 by
(S) and since it contains x′3 in the interior of S4 (while x′2 ∈ e′2 lies outside S4),
it would need to intersect e4 twice, which is impossible.

• ê′m crosses e4

It follows that e′m is incident to v4 = v′3. Again by the choice of our ground
edge, v′3 has degree two in GC′ which implies that e′m = e4. Hence, e4 crosses
e′4 and is therefore incident to v′4. As v3 = v′2 ̸= v′4 holds, it follows that e4 =
(v′2, v′4) = e′3. In particular, this implies that b′3 is then not contained inside S4,
a contradiction.

• ê′m crosses e5

Again, we have that e5 is incident to v′m, i.e., v′m = a5 = v′3 or v′m = b5. For
the former case, since e′3 is strictly canonical, vertex v′3 is the anchor of exactly
one edge, and thus v′m = v′3 would follow, a contradiction. Hence, we have
v′m = b5. Observe that b5 lies outside S4. Since ê′m is the first segment of L′ that
intersects the boundary of S4, we have that x′m is still contained inside S4. As
e′m−1 contains x′m and is incident to b5 by (I), it follows that e′m−1 has to intersect
the boundary of S4. By (S) it cannot intersect e5. If e′m−1 crosses e4, then e′m−1
is also incident to v4 = a5 and hence is equivalent to e5. By construction, e5
contains no point inside S4, a contradiction. Hence, assume that e′m−1 crosses
e3. By (M), it cannot cross e′2 or e′3, so the only way to enter S4 is to cross e3
on the segment zv4. However, then the edge has to end inside the triangular
region defined by e3, e′3 and e′2. Since L does not enter this region, as it contains
no point on a′3x′3 = v3x′3 or X′

3b′2 = x′3v4, we obtain a final contradiction that
concludes the proof.

We are now ready for the main part of the proof.

Proof of Lemma 34. We will reuse the notation introduced in Lemma 33 and assume
for a contradiction that z ̸∈ ê. We further assume that z ∈ x4b3, the other case is
symmetric. Since e′3 crosses e3, e′3 has an endpoint in v3. By Lemma 29, this means
that the other endpoint u of e′3 lies in S4, see Fig. 9.22(a). As e3 crosses e′3 we have
that v′3 is an endpoint of e3 = (v2, v4). Assume first that v′3 = v2. Consider the
edges e′2 and e′4, which are both incident to v′3 = v2 by construction. Lemma 30
establishes that they cannot intersect the interior of S4, therefore x′3 and x′4 both lie
on the segment v3z. In order to not violate (II) or (III), they both need to cross e4
which implies that both are incident to v4. But then e′2 = e′4, a contradiction. Thus,
we have v′3 = v4. After a possible reorientation of C′, we can w.l.o.g. assume that v3
is the source a′3 of e′3. We now consider the order of x′3, x′4, and z on e′3. By Lemma 33,
either z occurs after x′3 and x′4 (possibly with z = x′4), or before x′3 and x′4 (possibly
with z = x′3), but not in between. We consider first that x′3 and x′4 are encountered
before z which is visualized in Fig. 9.22(a). Consider the edge e′5. By (S) it cannot
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FIGURE 9.22: Proof of Lemma 34.

cross e′3, and it cannot cross e4 as otherwise b′5 = v4 = v′3 = a′4 and thus two crossing
edges e′4 and e′5 would share a common endpoint. Since e′5 crosses e′4 on the segment
x′4b′4, which lies inside the region delimited by e′3, e4, e3, it follows that e′5 crosses e3,
but then the edge is incident to v3 and we have e′5 = e′3, a contradiction.

It follows that x′3 and x′4 are encountered after z as visualized in Fig. 9.22(b),
which is exactly the setting covered in Lemma 35. Thus we have that the entire
closed path L′ lies in S4. Consider x′2 ∈ S4. By (S), e′1 cannot cross e4 (as v3 =
a3 = v′2 = b′1) and it cannot cross e5 as otherwise e′1, e4 and e5 form (I I). Hence e′1
must cross e3 and v′1 is an endpoint of e3. Since v4 = v′3 ̸= v′1 holds, we have that
e3 = (v′1, v′3) = e′2 and z = x′3 and x′2 lie on the segment of e3 between x4 and x′3, see
Fig. 9.23.

v3 = v′2 v4 = v′3 v5v2 = v′1

e3 = e′2
e2

e4

e5

e′3

b′3

x′3

x′4

a′1e′1

x′2
x4 x′1

FIGURE 9.23: Proof of Lemma 34, having established e′2 = e3.

Let us now consider the edges e′1 and e′0. As b′1 = v3 holds, we have that a′1
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is contained inside S4 by Lemma 29. This also implies that x′1, which lies in the
interior of the segment a′1x′2, is also inside S4. Since e′1 is canonical, we have that e′0 is
incident to v′1 = a′2 = v2, but then Lemma 30 ensures implies that e′0 cannot intersect
the interior of S4, so it cannot contain x′1, a contradiction.

We can now finally the state the key lemma.

Lemma 36. Let C and C′ be two chordless odd cycles with ground edges e and e′. If e and e′

cross, then e is part of C′ and e′ is part of C.

Proof. We will reuse the notation introduced in Lemma 33. In particular, we have
e = e3 and e′ = e′3. By assumption, e3 and e′3 cross in a point z. By Lemma 34,
z ∈ ê = ê3. By Lemma 33, z does not lie inside the relative interior of ê3 - hence z is
an endpoint of ê3, which implies that e′3 = e2 or e′3 = e4 and thus e′3 ∈ C as desired.
Symmetrically, one can show that e ∈ C′.

We are now ready for the proof of the main theorem.

Proof of Theorem 27. We initialize S to be an empty set. We consider all chordless odd
cycles C in I one after the other. If S does not already contain an edge of C, we add
the ground edge of C to S. Otherwise, we skip C.

It is left to show that the set S has the desired properties. By construction, S con-
tains exactly one edge of every chordless odd cycle. Since every odd cycle contains
a chordless odd cycle as a subset, (2) follows. It remains to show (1). Suppose for a
contradiction that two ground edges e and e′ of S intersect. By construction, e and
e′ are the ground edges of some chordless odd cycle C and C′, respectively. W.l.o.g.
assume that C was considered before C′ when constructing S. By Lemma 36, it fol-
lows that e ∈ C′ in which case we would have skipped C′ and hence e′ ∈ S is a
contradiction to our construction rule which concludes the proof.

9.4 Open Problems

We conclude with some open problems:

1. Can these thickness results be extended to weakly fan-planar graphs? We re-
mark here that already in the characterization of odd chordless cycles, (III) was
heavily used - hence such an extension is highly non-trivial.

2. Are there actually strongly fan-planar graphs that have thickness three?

3. Are there strongly fan-planar graphs G such that every fan-planar drawing of G
requires three colors for the edges? In other words, are there strongly fan-
planar graphs where odd cycles in the intersection graph of its drawing are
unavoidable? Clearly, an affirmative answer to the previous question would
imply an affirmative answer to this question.

One potential candidate to answer the last two questions in the affirmative are
optimal 2-planar graphs, which have been fully characterized in [29] and which are
also fan-planar. It is know that they cannot be decomposed into a 1-plane graph and
a forest, while they can be decomposed into a 1-plane graph and a plane graph with
maximum degree 12 [25]. However, whether they can be partitioned into two plane
graphs is still an open question. At least for some instances, such a decomposition
into two plane graphs is in fact possible. Consider the following optimal 2-planar
graph with 20 vertices and 90 edges, see Fig. 9.24 for an illustration.
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(a) (b)

FIGURE 9.24: (a) The planar skeleton of an optimal 2-planar graph.
(b) The full graph, where every face of (a) is completed to a K5.

FIGURE 9.25: The edges are partitioned into blue and red edges such
that each monochrome subgraph admits a planar drawing.

Fig. 9.25 then shows a partition of the edges such that every induced subgraph
is in fact planar, which is witnessed by Fig. 9.26.

(a) (b)

FIGURE 9.26: The two subgraphs are in fact planar.

This partition was found with a rather trivial brute force approach - but maybe
there exists an underlying pattern which can be exploited to show that such a par-
tition exists for all optimal 2-planar graphs. If the thickness of the optimal 2-planar
graphs turns out to be two, then the following questions would naturally arise.

4. Are there 2-planar graphs of thickness three?

5. If there is no 2-planar graph of thickness three, what is the smallest k such that
there exists a k-planar graph of thickness three? Note that K9 is 4-planar and
requires thickness three, hence k ∈ {2, 3, 4}.



127

Part III

Experimental work
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Chapter 10

Optimizing multiple aesthetic
criteria simultaneously

In Graph Drawing, there is a rich literature and a wide range of techniques for com-
puting drawings of graphs efficiently; see, e.g., [71, 130, 169]. Most of the techniques
that have been proposed in the literature over the years exploit structural proper-
ties of the input graph to compute a drawing of it such as planarity [97, 110, 126]
or degree restriction [27, 33, 168]. To guarantee that the obtained drawings are aes-
thetically pleasant, a graph drawing algorithm optimizes (over all drawings of the
input graph) an objective function that serves as a quality measure for the produced
drawing in terms of niceness or legibility; see, e.g., [181]. Supported by empirical
and scientific evidences [118, 151, 153], several such quality measures (also called
drawing criteria) have been proposed and studied over the years.

Some examples are the number of edge crossings [84, 123, 150, 165], the angu-
lar resolution[79, 94, 144], the crossing resolution [76, 78], the edge-vertex resolu-
tion [28, 56]; see Section 10.1 for formal definitions. However, drawings of graphs
that are optimized only in terms of a single criterion may be poor with respect to
other criteria and thus may have several undesired properties (e.g., as observed
in [24], drawings that optimize the crossing resolution usually contain several ad-
jacent edges that run almost in parallel and vertices that are very close to each other,
that is, their angular and edge-vertex resolutions may be arbitrarily bad).

In general, the task of computing a drawing of a graph (especially, when it does
not have a special structural property to be exploited) that is optimal in terms of
several drawing criteria is difficult and quite challenging. Sometimes it is even im-
possible, since several criteria “contradict” each other [71]. Hence, it is commonly
accepted that aesthetically pleasant drawings of graphs are usually the result of com-
promising between different aesthetic criteria; see, e.g., [119].

Related work The established techniques that can be used in practice to produce
such drawings are usually heuristics. Huang et al. [119] presented a force-directed
approach that improves multiple aesthetic criteria (as opposed to standard spring
embedding algorithms [81, 99, 142] that usually focus on a single criterion). David-
son and Harel [65] used simulated annealing to produce aesthetically pleasing draw-
ings of small and medium-sized graphs. Even though their approach is easily adapt-
able to new quality measures in the objective function, it is unfortunately slow (es-
pecially when several criteria are taken into account). Devkota et al. [68] presented
a stress-based approach, called stress plus X, to minimize the number of edge cross-
ings and maximize the crossing resolution, while guaranteeing that the stress of the
drawing is also good. Towards a more flexible approach that can handle multiple
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drawing criteria, a super set of the authors in [68] presented a gradient descent ap-
proach, which can optimize any drawing criterion described or approximated by a
differentiable function [2].

Our contribution We generalize the winning approach of the live challenge con-
tests of GD19, GD20 and GD21 to support multiple aesthetic criteria. The algorith-
mic technique of this approach is based on randomization [116, 147] and on the
vertex movement paradigm [37, 98, 154, 176]. Initially, it was introduced to obtain
drawings of high crossing resolution [24], while more recently it was adapted to
minimize the number of crossings of upwards drawings of graphs and to minimize
the edge-length ratio of planar polyline drawings of planar graphs. The algorith-
mic idea behind this approach is rather simple and intuitive, as it mimics the way
a human would try to improve the quality of a drawing. Namely, given a drawing,
one would naturally try to identify potential bottlenecks in it (e.g., edges that are
involved in several crossings). Having identified such bottlenecks, the next natural
step is to move one of the involved vertices (chosen at random) to a new position
(chosen at random from a set of randomly generated ones in the neighborhood of
the vertex), hoping that this will lead to an improvement.

In this work, we handle any number of drawing criteria (see Figure 10.1 for sam-
ple drawings) by introducing a number of extensions to the core of the algorithm.
We implemented the extended algorithm and we compared it against the state-of-
the-art algorithms mentioned above [2, 65, 119]. Our experimental evaluation shows
that our algorithm produces drawings that are, on average, of comparable or of bet-
ter quality than the other algorithms participating in the experiment.
This chapter is based on (unpublished) joint work with Michael A. Bekos and Patrick
Laipple.

10.1 Preliminaries

As already mentioned, we seek to jointly optimize several drawing criteria. We focus
on a rich subset, which are commonly used to evaluate the quality of drawings of
graphs with up to a few hundred vertices, see [71]. In the following, we introduce
each of them together with a brief discussion of different approaches that use them.

Edge crossings. It is commonly accepted and scientifically proved [151] that cross-
ings between edges negatively affect the quality of graph drawings. However, the
corresponding crossing-minimization problem is NP-hard [113], and as a result the
known heuristics mainly focus on special cases, e.g., as in the Sugiyama framework,
where the vertices of the graph are restricted to layers [71, Ch. 9].

Crossing resolution. The negative impact of the edge crossings to the quality of a
graph drawing can be mitigated, if the angles formed at the crossings are large [120].
Hence, the problem of maximizing the minimum such angle (called crossing resolu-
tion) has received considerable attention the past decade, as it is also evident by the
fact that it has been the subject of recent graph drawing contests [67, 132]. Since the
problem is NP-hard [16], exact approaches mainly focus on instances with specific
properties (e.g., bounded degree [13, 15]), while at the same time the corresponding
heuristic approaches are significantly fewer [24, 66].

Angular resolution. Another important quality measure of a drawing of a graph,
which is one of the oldest considered in the literature [93], is its angular resolution,
that is, the minimum angle formed by the edges incident to a vertex; the higher
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Tree:
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m = 10
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K9:

n = 9

m = 36

5× 5 grid:

n = 25

m = 40
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FIGURE 10.1: Different drawings of common graphs obtained with
different parameterizations of our algorithm. Column “Random In-
put” shows the input drawings. Columns “Uniform Weight”, “To-
tal Resolution” and “Stress + Length” show the output drawings.
The first takes into account all criteria that we consider with uni-
form weights. The second is restricted to optimize only the crossing
and the angular resolution. The third optimizes stress and ideal edge

length.
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the angular resolution is, the better the drawing is expected to be. Even though
optimizing this parameter turns out to be NP-hard [93], standard spring embedder
algorithms [81, 99, 125] tend to result in drawings with good angular resolution due
to repulsive forces between pairs of vertices.

Stress and edge-vertex resolution. Standard spring embedder algorithms result in
drawings of graphs, which usually have two additional desirable properties; min-
imal stress and good edge-vertex resolution. Stress is a measure for the difference
between vertex-pair distances in a drawing and their graph-theoretic distances (aim-
ing to evaluate how well a drawing captures the graph structure), and can be seen
as a special case of a multi-dimensional scaling [137, 164]; early works date back
to Kamada and Kawai [125], who formulated stress minimization as an energy op-
timization problem, and to Gansner et al. [102], who adapted stress majorization
instead. On the other hand, the edge-vertex resolution [28, 56] is a measure for the
minimum distance between a vertex and an edge in the drawing.

Ideal edge length. While stress captures how well graph distances are realized in
a drawing, it does not always prevent the presence of edges with significantly dif-
ferent lengths. Hence we introduce an ideal edge length and we seek for drawings
in which the edges have ideally this length. Standard spring embedder algorithms
encapsulate this desire by modeling each edge as a spring whose natural length cor-
responds to its ideal edge length [81]. In other works, the deviation from the ideal
edge length is measured by the ratio of the length of the longest edge over the length
of the shortest edge in the drawing [42, 139].

10.2 The Drawing Framework

In this section, we present our framework for drawing graphs by taking into account
multiple drawing criteria. Our presentation is limited to the criteria of the previous
section, but the framework is easily extendable to others. We start with a high-level
idea of the algorithmic approach underneath. The input consists of a graph G with
n vertices and m edges, an initial drawing Γ1 of G (e.g., computed at random or by
a spring embedder [125]), a set of weights for the different drawing criteria of the
objective function ϕ and a bounding box B of width W and height H. At high level,
ϕ measures the quality of a drawing by mapping it to a number in [0, 1], such that
the better the drawing is, the closer its value to 0 is (see Section 10.2.1). In the output,
we seek for a drawing Γ of G contained in B, which ideally is optimal in terms of ϕ
(i.e., ϕ(Γ) = 0).

At the i-th iteration of the algorithm, we assume that we have computed a draw-
ing Γi of graph G. To compute the next drawing Γi+1 in the iterative approach, we
initially select a vertex v of Γi from a so-called vertex-pool. Intuitively, the vertex-pool
contains several vertices that somehow negatively affect the quality of Γi with re-
spect to the drawing criteria of ϕ (see Section 10.2.2). Then, we try to identify a new
position for vertex v in Γi that yields an improved drawing, i.e., ϕ(Γi+1) ≤ ϕ(Γi).
Of course, we cannot consider all possible positions for the vertex v; instead, we
consider a small set of randomly generated ones (see Section 10.2.3). Note that in
the i-th iteration of our algorithm, we may also decrease the quality of the drawing
(ϕ(Γi+1) > ϕ(Γi)) with a certain probability to avoid locally optimal solutions. As
expected, the efficiency of our algorithm depends on the number of drawing criteria
that contribute to ϕ, since each requires a number of computations at every iteration
of the algorithm. Hence, special care is needed to avoid unnecessary computations,
see Section 10.2.4.
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10.2.1 The Objective Function

As already mentioned, our drawing framework is easily adaptable to new drawing
criteria. This is achieved by maintaining a weighted objective function ϕ, in which
the contribution of each drawing criterion is normalized. Formally, let c be a criterion
contributing to ϕ, and denote by c(Γi) the actual value of c in Γi, e.g., if c corresponds
to the number of crossings and Γi contains 10 crossings, then c(Γi) = 10. We define
the value ϕ(Γi) of the objective function ϕ for Γi as follows:

ϕ(Γi) = ∑
criterion c

wi
c · fc(Γi)

where fc(Γi) =

{ c(Γi)
norm(c) , if c is a criterion to be minimized

1 − c(Γi)
norm(c) , if c is a criterion to be maximized

and norm(c) is an appropriately defined normalization factor, such that fc(Γi) lies in
the interval [0, 1]. Regarding the weights w, we set w0

c to correspond to the initial
weighting of the criteria that is provided as part of the input. Throughout the al-
gorithm, in order to balance out the contribution of the (normalized) criteria, we
will adopt the technique introduced in [112], which periodically (in our case, every
x = 100 iterations) updates the weights based on the average contribution of the
criteria to the objective function. Fix a criteria c. Assume that the current iteration is
i mod x = 0. In the first step, we will compute the recent (i.e., throughout the last x
iterations) rate of change of c(Γ) - in practice, we approximate this value by the finite
difference approximation si

c = c(Γi)− c(Γi−x). Then, our weight will be computed
by

wi
c =

eβsi
c

∑c′ βsi
c′

(10.1)

where c′ ranges over all criteria. The choice of β allows us some kind of flexibility.
Namely, for β = 0 we have an equal weighting of the criteria, if β < 0, then we
favor criteria with a negative rate of change, i.e., we assign more weights to criteria
that improved a lot in recent time - conversely, if β > 0, we favor criteria with a
positive rate of change, i.e., we assign more weights to criteria that did not improve
(or even decreased) in recent time. Since we aim to compute drawings where every
criterion is optimized, we prefer the latter weighting scheme and choose β = 0.1.
We remark here that we also implemented the possibility where the weights of the
user, which we denote by w′, remain unchanged throughout the algorithm and the
actual weights w∗ are then obtained by multiplying w′ and w (which is computed
using the adaptive approach) together - hence, we are free to assign more weight to
the choice of the user. Since only the relative values of the weights compared to the
other are of interest, we can normalize them such that

∑
criterion c

wc = 1,

and thus it follows that the value of the objective function is in the interval [0, 1].
Also, by definition of fc, the closer ϕ(Γi) is to 0, the better Γi is. We next describe
how the normalization factor of each considered criterion is defined.

Number of crossings. The most natural way to normalize the contribution of the
number of crossings to ϕ(Γi) is to set its normalization factor to 1

2 m(m − 1), which
is a trivial upper bound on the number of crossings of any drawing of G. However,
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in practice, this is inefficient since for drawings containing few crossings but suf-
ficiently many edges this normalization will result in a number close to 0. There-
fore, we choose as a normalization factor the maximum of the number of cross-
ings of the initial drawing Γ1 and of the current drawing Γi, that is, we set it to
max{χ(Γi), χ(Γ1)}, where χ(Γi) denotes the number of crossings of Γi.

Angular resolution. To normalize the contribution of the angular resolution to ϕ(Γi),
we set its normalization factor to 360◦

deg(G)
, where deg(G) denotes the maximum degree

of a vertex of the input graph G.

Crossing resolution. Assuming that Γi contains at least one crossing, the contri-
bution of the crossing resolution to ϕ(Γi) is computed by setting its normalization
factor to 90◦. Otherwise, this criterion will contribute 0 to ϕ(Γi).

Stress. We can normalize the contribution of stress to ϕ(Γi) by setting its normaliza-
tion factor to 1

2 n(n − 1)diag(B), where diag(B) denotes the length of the diagonal
of the bounding box B. This approach is reasonable if the Euclidean distance be-
tween each pair of vertices is approximately equal to the length of the diagonal of
Γi, which in practice is highly unlikely. Therefore we substitute diag(B) with the
maximum Euclidean distance between any two vertices in Γi.

Edge-vertex resolution. To normalize the contribution of the edge-vertex resolution
to ϕ(Γi), we set its normalization factor to the maximum distance between a vertex
and an (non-adjacent) edge in Γi.

Ideal edge length. Given an ideal edge length L, such that in the output drawing it
is desired for all edges to have length L, we measure the contribution of this criterion
by the sum of the absolute differences of the edge-lengths and L. To normalize this
contribution, we set its normalization factor to m(diag(B)− L).

10.2.2 The vertex pool

The vertex pool contains several vertices that negatively affect the quality of Γi; this
idea was introduced in [24] in which the vertex pool consisted of the endvertices of
the pair of crossing edges that formed the smallest angle at their crossing. Here, we
extend this idea (to support multiple criteria) by introducing a vertex pool, which
contains as many sub-pools as the number of criteria contributing to ϕ. In particular,
each sub-pool pc contains a set of vertices, called c-critical, that negatively affect the
quality of Γi with respect to a particular criterion c contributing to ϕ. Note that the
same vertex may potentially belong to several sub-pools (we provide details on how
to determine their content soon).

To compute the next drawing Γi+1, we need to choose, for some criterion c, a
c-critical vertex v from the vertex pool. This is done as follows. We first choose with
a certain probability a sub-pool pc out of the vertex-pool, such that the greater the
contribution wc · fc(Γi) of criterion c in ϕ is, the greater the probability to choose
sub-pool pc is. Once pc is chosen, we choose uniformly at random a vertex from
pc and we set v to be the chosen vertex; note that vertices in pc may appear with
multiplicity, i.e., such vertices are more likely to be chosen.

We are now ready to describe how the content of each sub-pool is determined.
This is done in two steps. At high-level, in the first step, we identify for each criterion
c that contributes to ϕ, a set of c-critical vertices and we add them to pc, while in the
second step, we enrich the content of pc with additional vertices that are somehow
“close” to the already added vertices. More formally, in the first step we consider
each criterion contributing to ϕ and we proceed as follows.
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Number of crossings. For an input parameter ck, we identify the ck most crossed
edges in Γi and we add their endpoints to the sub-pool with multiplicities propor-
tional to the number of crossings of their edge. This way, an endpoint of an edge
involved in several crossings is more likely to be selected.

Angular resolution. We identify the vertex u and its two incident edges e1 and e2
defining the angular resolution of Γi. Then, we add u as well as the endpoints of e1
and e2 different from u to the sub-pool. To increase the probability of selecting u, we
assume that it appears in the sub-pool with a multiplicity of 3.

Crossing resolution. As above, we identify the two edges, which define the crossing
resolution of Γi (if any), and we add their endpoints to the sub-pool.

Stress. For an input parameter sk, we identify the sk vertices that contribute the most
to the stress of Γi and we add them to the sub-pool.

Edge-vertex resolution. We identify the vertex u and the edge e that define the edge-
vertex resolution in Γi. We add u and the endpoints of e to the sub-pool.

Ideal edge length. We identify the shortest and longest edge of Γi and we add their
endpoints to the sub-pool. The idea of the second step is that one may improve
the quality of Γi, if first the location of a vertex in the neighborhood of a c-critical
vertex is changed. The algorithmic implementation of this idea is achieved by en-
riching each sub-pool with vertices that are neighboring the ones already in it, where
the neighborhood can be defined either in terms of actual geometry (i.e., Euclidean
distance), or combinatorially (i.e., graph-theoretic distance). We adopted the latter
approach for efficiency reasons. In our probabilistic selection procedure, the closer a
vertex is to the initial content of the sub-pool, the more likely it is to be chosen.

A small caveat. Empirical evaluations suggest that for a subset of the criteria, the
computational overhead of constructing the vertex pools might worsen the perfor-
mance in comparison to a random choice. In particular, we observed this behav-
ior for so called global criteria c, where the aggregation function of c(Γ) is part of
{SUM, AVG} instead of {MIN, MAX}. In particular, for our choice of criteria, this
is the case for the crossing number, the stress and the ideal edge length. Hence, we
adopted the following strategy for step i. If i is even, then we chose a random vertex
to move. Otherwise, if i is odd, then we compute the vertex-pool for the local (i.e.,
none global) criteria and choose our vertex accordingly. Clearly, instead of alternat-
ing every iteration, we could make this choice dependent on the contribution of the
local and global criteria to the loss function, their current weighting or a combination
of the two.

10.2.3 Computing the next drawing

Let v be the c-critical vertex of drawing Γi that has been chosen from sub-pool pc at
the i-th iteration of our algorithm. To compute the position of v in the next drawing
Γi+1, we adopt the successful approach of [24] with a critical modification for reasons
of efficiency. In particular, as in [24], for an input parameter ρ > 0, we consider a set
of ρ equispaced rays that all emanate from v in Γi, such that the angle formed by the
first ray and by the horizontal axis is chosen uniformly at random from the interval
[0, 2π]. The idea is to introduce a sample position along each of these rays that
is in some distance from v which is specified using randomization again; sampled
positions outside the bounding box B are disregarded. However, unlike in [24], we
do not necessarily process each of these sampled positions. Instead, we process them
in a random order and we move v to the first encountered position that improves the
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quality of Γi (if any). This yields the next drawing Γi+1, for which ϕ(Γi+1) ≤ ϕ(Γi)
holds.

On the other hand, if none of the sampled positions yields an improved drawing,
then the algorithm may reduce the quality of Γi with a certain probability, which
is a common approach for avoiding local optimal solutions. Inspired by standard
techniques from simulated annealing, the algorithm may move vertex v at the last
sampled position (for which ϕ(Γi+1) > ϕ(Γi) holds) with probability e−c/(t+1), where
c is a small constant and t is the number of iterations performed by the algorithm
without updating the drawing, e.g., for c = 10 and t = 9, the probability to reduce
the quality of the drawing is 1

e ≈ 0.368.

10.2.4 Further Insights to the Implementation

As already mentioned in the previous part, the efficiency of our approach highly de-
pends on the number of criteria that contribute to the objective function (since each
requires a number of computations) and on the approach that one adopts in order
to compute the content of each sub-pool (i.e., the c-critical vertices for each criterion
c) at every iteration of the algorithm. At the start of our algorithm, the crucial (and
unavoidable) part is to determine the value of the objective function, which naïvely
needs O(m2) time due to the computation of crossings. At every iteration, we avoid
determining from scratch the value of the objective function by maintaining addi-
tional information. By doing so, this, as well as the content of each sub-pool, can be
computed in time O(deg(v) · m), where v is the vertex that is moved. To make this
more evident, we describe at a higher level the necessary actions that need to be per-
formed both at the initialization of our algorithm and at each subsequent iteration
of it. In the former, the crucial part is to determine the value of the objective func-
tion, which is equivalent to determining the value fc(Γ1) of each criterion c in the
initial drawing Γ1. This step may be inevitably demanding. In particular, the bottle-
neck of this approach is usually related to determining the crossings of the drawing,
since a naïve approach may require O(m2) time, which is a worst-case tight bound.
In practice, however, it is too unlikely for drawing Γ1 (and for subsequent draw-
ings) to have a quadratic number of crossings. With this in mind, we adopted in
our implementation a data structure, called R-tree [30], which stores for each edge e
a minimum-area rectangle R(e) bounding e. To determine the number of crossings
of edge e using this data structure, we first report the rectangles overlapping R(e),
which can be efficiently done in time logarithmic in the size of the data structure and
linear in the size of the output. Then, the edges crossing e form a subset of the edges
associated to the reported rectangles. Even though, in worst case, this approach
is not asymptotically better than the naïve one, in practice, it turns out to be more
efficient.

At iteration i of our algorithm, it is crucial to avoid determining from scratch
the value fc(Γi) of each criterion c in Γi (since this is equally demanding as the ini-
tialization of the algorithm). To achieve this and to efficiently compute the c-critical
vertices of each criterion c, we store additional information (which we need to keep
updated throughout the algorithm):

(i) for each vertex, we store the smallest angle formed by its incident edges, as
well as the corresponding pair of edges,

(ii) for each edge, we store its length, the number of edges crossing it is part of and
the corresponding smallest crossing angle,
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(iii) for each pair of a vertex and a non-incident edge and for each pair of vertices,
we store their Euclidean distance and

(iv) for each pair of edges, we store whether they cross and the corresponding
crossing angle.

Since Γi−1 and Γi differ by the position of a single vertex v, maintaining/updating
this information can be done in time O(deg(v) · m). The real benefit of this approach
is that the c-critical vertices for each criterion c of ϕ, as well as the value of the ob-
jective function for each sample position considered for vertex v can be computed
in O(n + m) time. Hence, a single iteration of our algorithm needs O(deg(v) · m),
which, in practice, turns out to be more efficient than the naïve O(m2).

10.3 Experimental Evaluation

In this section, we describe the experiment that we conducted and present the re-
sult of our evaluation. In our experiment, we compared our algorithm against the
following algorithms:

(A) the simulated annealing based algorithm by Davidson and Harel [65],

(B) the Bigangle algorithm by Eades et al. [119], and

(C) the gradient-descent based algorithm (GD)2 by Ahmed et al. [2].

To ensure that the comparison between the algorithms is fair, besides our algorithm,
we also implemented all aforementioned algorithms in Python. Our implementa-
tion of the Bigangle algorithm is an extension of the standard spring embedder algo-
rithm by Fruchterman and Reingold [99], whose implementation we adopted from
the NetworkX [111] library. As a test set for our experiment, we used the Rome
graphs [70], which are roughly 11.500 graphs, whose number of vertices ranges from
10 to 100. In this regard, we decided to set the size of the bounding box B containing
the output drawing to 100 × 100. We remark that even though many graphs that
arise nowadays may be several magnitudes larger than the ones of our test set, the
methodology to draw graphs as a node-link diagram as well as the drawing criteria
introduced in this work do not translate well to such sizes. The results that we re-
port in this section are on average across different drawings with the same number
of vertices. The experiment was performed as follows: For every graph of the test
set, we computed an initial drawing which was the input to all algorithms of the
experiment. This initial drawing was computed using the spring embedder algo-
rithm by Kamada and Kawai [125] that is part of the NetworkX library. To ensure
a fair comparison, we set a limit for the time needed by each algorithm to com-
pute a drawing of each graph of the test set that is dependent on the number n of
its vertices. This time-limit was set to the maximum of 3 and n

10 seconds. How-
ever, since the cooling schedule of the Bigangle algorithm (that was inherited from
the one of Fruchterman and Reingold) requires to know the number of iterations
a priori, we set it to 50, which we observed to comply with our time-limit, as for
medium-size graphs (n ≈ 50), the 50 iterations needed roughly 5 seconds (note that
also the original algorithm by Fruchterman and Reingold was observed to converge
after 50 iterations [99]).
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10.3.1 Parameter choice and normalization

Since we sought to evaluate the algorithms participating in our experiment in terms
of different aesthetic criteria, we tried to weight equally the contribution of each
criterion to the objective function of each algorithm. Since in our algorithm the con-
tribution of each criterion is already normalized, we simply set its weight factor to 1
over the number of criteria. This task was not as easy for the other algorithms of the
experiment, and we next describe the encountered problems.

Davidson and Harel’s algorithm. In the original paper [65], the authors do not
describe how to normalize the contribution of the different criteria to the objective
function. Thus, we had to average and weight them by empirically found constants
to ensure that they are considered as “almost equal”.

Bigangle. In the original paper [119], the constants of the magnitudes of the force
for the crossing and for the angular resolution were not specified. We observed that
it was beneficial to dynamically set them to approximately the same magnitude as
the node-repulsion and the edge-attraction forces in every iteration.

(GD)2. As in the work by Davidson and Harel, the authors of [2] do not describe
how to normalize the contribution of the different criteria to the objective function.
Instead, in their prototype the user is responsible to find a good weighting scheme
for the criteria. To include this algorithm in our experiment, we had to adopt a
similar approach as for the algorithm by Davidson and Harel.

10.3.2 Our findings

We are now ready to discuss the actual results of the experimental evaluation; for
a summary refer to Figure 10.2, in which each curve illustrates the average values
across different drawings with the same number of vertices.

Angular and crossing resolution. Our results for the angular and the crossing res-
olution are given in Figs. 10.2a and 10.2b. It is immediate to see that our algorithm
outperforms the remaining algorithms of the experiment significantly. Up to a cer-
tain degree, this was expected since our framework builds upon the algorithm of
[24], which was explicitly configured to optimize the crossing resolution. In the mul-
ticriteria setting, we remark that the performance of the algorithm (both in terms of
angular and crossing resolution) is still good. For the remaining algorithms of the
experiment, we observe that (GD)2 yields drawings of better angular and crossing
resolution than the Bigangle and the one of Davidson and Harel for small graphs,
while this advantage seems to diminish for larger ones.

Number of crossings. Our results are shown in Fig. 10.2c. Our algorithm yields,
together with the one of Kamada and Kawai [125], the least number of crossings.
Here, Bigangle yields by far the worst solution, while the one of Davidson and Harel
performs third best.

Stress. As the algorithm by Kamada and Kawai [125], which we used to generate
the input drawings for each algorithm of the experiment, has been designed to opti-
mize stress, we decided to include its performance in all categories, in particular in
Fig. 10.2d. Here, the interesting observation is that our algorithm produces drawigs
of comparable stress to the one of Kamada and Kawai, even though we optimize for
several criteria at the same time. (GD)2 also produces good results regarding the
stress, which could maybe be attributed to the fact that the stress function is easily
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FIGURE 10.2: The results of our experimental evaluation for the Rome
graphs.

differentiable and does not require an surrogate loss function. It is interesting to ob-
serve that even though the Bigangle algorithm extends a spring embedder, which
is in practice used to minimize the stress, its performance is the worst over all - the
issue here is that the attractive and repulsive forces are very sensitive to the choice
of correct parameters, which might be the reason for its poor performance.

Ideal edge length. Since it is difficult to define a reasonable value for the ideal
edge length for graphs of different sizes, we followed the approach of [125] in our
experiment, which defines the ideal length of an edge to be min{W,H}

diam(G)
, where W and

H are the width and the height of the bounding box B, respectively, and diam(G)
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is the graph diameter of G. In Fig. 10.2e, we plot the deviation from this length on
average. We remark here that this is the only criterion where our algorithm is not
best-possible, which is to be expected as the algorithm of [125] explicitly enforces
this edge-length. However, the difference is quite small and hence a good trade-off
when compared to the performance of the other criteria.

Edge-vertex resolution. The results for the edge-vertex resolution are very compa-
rable to those for the angular resolution, see Fig. 10.2f

10.4 Sample Drawings

In this section, we present sample drawings of well-known graphs produced by our
algorithm, see Fig. 10.3. Here, we observe that weighting each criterion equally
(which follows by our choice of the adaptive weight scheme) does not necessarily
yield a drawing of good quality (as it is clear that there is room for improvement),
especially for graphs that are not symmetric. The achieved values for each criterion
are reported in Table 10.1.

(a) Bidiakis cube (b) Clebsch (c) Coxeter (d) Dürer

(e) Folkman (f) Gray (g) Hoffman (h) Nauru

(i) Payley (j) Robertson (k) Shrikhande (l) Sousselier

(m) K6 (n) K7 (o) K8 (p) K9

FIGURE 10.3: Sample drawings.

https://en.wikipedia.org/wiki/Bidiakis_cube
https://en.wikipedia.org/wiki/Clebsch_graph
https://en.wikipedia.org/wiki/Coxeter_graph
https://en.wikipedia.org/wiki/D%C3%BCrer_graph
https://en.wikipedia.org/wiki/Folkman_graph
https://en.wikipedia.org/wiki/Gray_graph
https://en.wikipedia.org/wiki/Hoffman_graph
https://en.wikipedia.org/wiki/Nauru_graph
https://en.wikipedia.org/wiki/Paley_graph
https://en.wikipedia.org/wiki/Robertson_graph
https://en.wikipedia.org/wiki/Shrikhande_graph
https://en.wikipedia.org/wiki/Sousselier_graph
https://en.wikipedia.org/wiki/Complete_graph
https://en.wikipedia.org/wiki/Complete_graph
https://en.wikipedia.org/wiki/Complete_graph
https://en.wikipedia.org/wiki/Complete_graph
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Graph n m Angular Res. Crossing Res. # Crossings Edge Length Stress Vertex Res.

Bidiakis 12 18 44◦ 89◦ 3 27 456 11
Clebsch 16 40 6◦ 38◦ 63 37 2040 0.09
Coxeter 28 42 31◦ 67◦ 19 17 5067 0.9
Dürer 12 18 55◦ 89◦ 2 19 209 7
Folkman 20 40 13◦ 72◦ 17 15 1402 3
Gray 54 81 14◦ 47◦ 72 8 14451 0.04
Hoffman 16 32 20◦ 58◦ 24 19 762 4
Nauru 24 36 34◦ 59◦ 18 17 3220 0.6
Payley 13 39 9◦ 48◦ 42 32 1071 1.3
Robertson 19 38 14◦ 46◦ 35 25 1599 0.2
Shrikhande 16 48 5◦ 40◦ 55 34 1715 0.2
Sousselier 16 27 23◦ 74◦ 11 24 888 4.6
K6 6 15 22◦ 56◦ 15 47 128 21
K7 7 21 24◦ 48◦ 35 38 243 17
K8 8 28 18◦ 40◦ 35 36 344 12
K9 9 45 15◦ 36◦ 126 34 484 9

TABLE 10.1: The values of each criterion for the drawings of Fig. 10.3

10.5 Open problems

We presented an algorithmic framework that incorporates multiple aesthetic criteria
to draw graphs. Our experimental evaluation implies that our approach outper-
forms other multi-criteria approaches from the literature in all considered criteria,
while it achieves comparable performance to single criteria optimizations. Notably,
the framework is easily extendable to new criteria, as each new criterion requires
“only” the definition of a normalization function and the classification into local or
global criteria, which usually directly follows from the criteria definition. Further,
we can also extend our algorithmic framework to other drawing constraints, such
as the presence of an underlying grid (which can be achieved by rounding the coor-
dinates to grid points) or specific directions for the edges (e.g., upwardness, which
can be achieved by adapting the sampling scheme of new point locations). Another
use case is for example to find drawings with low local crossing number. In the
following, we pose open problems raised by our work.

1. As already mentioned, we used the algorithm by Kamada and Kawai for the
input drawings. This decision was made in order to speed up the experiment,
since starting from randomly generated drawings (as, e.g., those of Fig. 10.1)
would require higher computational time to reach drawings of comparable
quality. With the time-limit that we set for our experiment, a better input usu-
ally led to a better output for all algorithms of the experiment. Hence, the
question arises whether we can find fast algorithms that attain a decent qual-
ity in many considered criteria?

2. Related to the presence of a time-limit, it is interesting to study the quality of
the drawings when no such restriction is imposed. Is there a criterion that is
not too time consuming but still admits (almost) convergence?

3. The iterative nature of the algorithm gives the impression that it has the poten-
tial to be parallelized in order to handle even larger graphs. However, several
aspects (also depending on the considered criteria) need attention, especially
when we seek to improve the quality of the drawing at each iteration.
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4. While the vertex movement paradigm is ideal for small graphs, one may con-
sider moving larger subgraphs (e.g., small cliques) for larger graphs. In partic-
ular, one interesting idea would be to optimize locally dense subgraphs sepa-
rately and in a next step join these results together.

5. As already mentioned, our algorithm is tailored to graphs of small to medium
size. This is justified both by the time complexity (which is in the worst case
quadratic in the number of edges per iteration) and by the fact that taking
into account several criteria simultaneously is on its own a difficult problem.
Identifying appropriate criteria for larger graphs and developing an efficient
framework to cope with them is a challenging task for future considerations.
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Chapter 11

Conclusions

In Chapter 1, we considered two sets of extensions to planar graphs - whereas one set
arises naturally based on the properties that planar graphs admit, the other one fol-
lows from cognitive experiments regarding the readability of a drawing. We covered
relevant notation and preliminaries in Chapter 2 and Chapter 3, before we consid-
ered three of the most researched topics of planar graphs for some of their extensions
in part one. In particular, we considered the recognition problem for k-planar graphs
in Chapter 4 and provided both exact and approximate solutions for a restricted class
of input graphs. In Chapter 5, we provided the first morphing algorithm that can
handle a (subset) of graphs of non-constant genus. In Chapter 6 we provide con-
structive algorithms that certify the containment of low-degree graphs in the class
of k-bend RAC graphs for small k. In the second part, we considered structural prop-
erties of beyond-planar graph classes. In Chapter 7 we introduced a new class called
apRAC graphs, where we study edge-density results, containment relationships and
the hardness of the recognition problem. In Chapter 8, we establish an upper-bound
on the edge-density of bipartite gap-planar graphs. We conclude this part by a study
of fan-planar graphs in Chapter 9, where we first show that the required definition
of fan-planarity in terms of three forbidden crossing configurations is in fact not
superfluous, as the removal of any such configuration yields a proper superclass
- in the latter part, we study the maximum thickness that a fan-planar graph can
have. Finally, in the last part of the thesis, we provide in Chapter 10 an algorith-
mic framework which jointly optimizes several aesthetic criteria. The framework is
easily extendable to additional criteria and the empirical performance suggests its
worth.

At the end of every chapter, we stated related open-problems to the content that
was covered.
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Appendix A

Other works of the author

The following contains a list of published collaborative work of the author which
was not covered in the thesis:

• In [10], we study Turán-Type questions for bipartite graphs in the field of
beyond-planarity. Namely, we establish upper bounds on the edge-density
of bipartite IC-, NIC-, RAC-, fan-planar and 2-planar graphs. We also develop
a Crossing Lemma (restricted to bipartite graphs) which, with the help of our
result for 2-planar graphs, establishes that n-vertex k-planar graphs can have
at most 3.005

√
kn edges, whereas the previous best upper bound was 3.81

√
kn

edges [1].

• In [58], we considered the following question. Given a geodetic graph G, i.e., a
graph where the shortest path between any two vertices is unique, is there a so
called philogeodetic drawing of G, i.e., a drawing where any two shortest paths
meet at most once. A meet is either a crossing in the drawing or a maximal in-
terval of vertices/edges that the shortest path share. We answer this question
in the negative by providing an explicit construction (a subdivision of a com-
plete graph) with the use of a charging scheme on the number of crossings. In
fact, by subdividing every edge sufficiently many times, the counter-example
has an edge-vertex-ratio of only 1+ ϵ. On the other hand, we show a diameter-
2 counterexample to the question. Finally, by combining edge-vertex-ratio and
diameter, we show that all geodetic diameter-2 graphs with edge-vertex-ratio
less than 1.5 admit a philogeodetic drawing.

• In [127], we consider the crossing-minimization problem for the simultaneous
embedding of layered trees. The problem is known to be NP-hard for linearly
many trees on two layers. Let n be the total number of vertices of all trees. We
provide an O(n2) algorithm based on dynamic programming for two trees on
arbitrary many layers and an O(nO(k)) algorithm for k-trees on 3-layers.
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