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Z U S A M M E N FA S S U N G

Von Fahrassistenzsystemen bis hin zu ChatGPT hat Machine Learning (ML), und
insbesondere die Unterdisziplin des Deep Learning (DL) die Automatisierung
von Aufgaben ermöglicht, welche bis vor kurzem noch nur von Menschen
ausgeführt werden konnten. Dieser Fortschritt wird vor allem von der Ansamm-
lung enormer Datenmengen angetrieben, welche zum Training zunehmend
größerer ML Modelle dienen. In vielen Bereichen enthalten diese Daten sensible
persönliche Informationen über Individuen, wie zum Beispiel in Patienten-
daten, Einkaufshistorien oder Chat-Logs. Da diese Modelle erwiesenermaßen
Informationen über ihre Trainingsdaten preisgeben können, entstehen so Kon-
flikte zwischen dem Schutz der Privatsphäre sensitiver Daten und dem Bedarf
an leistungsfähigen ML Modellen. Differential Privacy (DP) ermöglicht den
Schutz sensibler Informationen in den Trainingsdaten, aber erfordert, dass der
Traininsprozess durch zufälliges Rauschen erschwert wird, was zu schlechteren
Ergebnissen führt. So erfordert das Training einen Abwägungsprozess zwischen
Privatheit und Nützlichkeit des Modells. Insbesondere im Deep Learning, wo
es sich als schwer herausgestellt hat, gute Kompromisse zu finden, hat sich
bisherige Forschung oft auf schwache DP-Garantien konzentriert, welche keinen
realen Schutz bieten, weil nur so akzeptable Grade der Nützlichkeit erreichbar
waren.

Diese Dissertation erforscht DL-Methoden, welche für den Gebrauch mit
starken DP-Garantien designt sind. Spezifisch thematisiert sie zwei heraus-
fordernde Probleme in diesem Feld: Interpretierbarkeit und Generative Modelle.
Die erste Teil der Arbeit zeigt, dass Methoden, welche die Entscheidungen von
DL-Modellen erklären sollen, nicht in der Lage sind, nützliche Erklärungen
zu liefern, wenn diese Modelle mit DP-Garantien trainiert wurden. Somit er-
weitert sich der eben vorgestellte Kompromiss um eine Dimension: Privatheit,
Nützlichkeit, und Interpretierbarkeit. Als Alternative zu DL-Modellen stellt die
Arbeit das Locally Linear Maps-Modell vor, welches bessere Interpretierbarkeit
bei gleicher Privatheit und vergleichbarer Nützlichkeit bietet.

Der zweite Teil beschäftigt sich mit der Aufgabe, Datensätze mit DP Garantien
zu veröffentlichen, was mithilfe von Generativen DL-Modellen ermöglicht wird.
Die vorgestellte Methode DP Mean Embeddings with Random Features verwen-
det Approximationen von Kernel Mean Embeddings, um hochdimensionale
Zusammenfassungen von Datensätzen zu erstellen, welche effizient mit DP-
Garantien versehen werden können und dann zum Training eines Generativen
DL-Modells verwendet werden. An die erste Version dieses Ansatzes, welche
Random Fourier Features zur Approximation des Kernels verwendet, wird
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in zwei Arbeiten angeschlossen, welche stattdessen Hermite Polynomial Fea-
tures und gelernte Features aus vortrainierten DL-Modellen verwenden. Diese
Methode erreichte neue Bestwerte für DP generative Modellierung mit starken
DP-Garantien.

Beide Forschungsbeiträge bringen das Feld näher an dem Punkt, wo Differen-
tial Privacy breit in modernen Machine Learning-Methoden eingesetzt werden
kann, da es die verlässlichste Methode darstellt, die Privatsphäre sensitiver
Trainingsdaten zu schützen.



S U M M A R Y

From driver assistance in cars to ChatGPT, machine learning, and in particular
the sub-field of deep learning, has enabled the automation of tasks which,
until recently, could only be performed by humans. These advances are fueled
by the collection of vast amounts of data which serve to train increasingly
large models. In many domains, this data contains sensitive information about
individual people such as patient records, purchasing histories, or logs of online
conversations. As these models have been shown to reveal information about
the data they have been trained on, this results in a conflict between the need for
privacy of sensitive data and the demand for powerful machine learning models.
Differential Privacy (DP) provides a way to protect the sensitive information of
individuals in the training data but comes at the cost of introducing significant
amounts of detrimental noise to the training process and thus induces a trade-off
between the levels of privacy and utility that can be achieved in a given model.
In deep learning, where finding a good compromise has proven especially
difficult, past research has often focused on low levels of DP, which offer no
tangible privacy protection, to obtain acceptable levels of utility.

This thesis explores methods for DP deep learning which are designed to
function at high levels of DP. In particular, it discusses two challenging prob-
lems in this field: interpretability and generative modeling. The contribution
presented first shows that methods that provide explanations of deep learning
classifiers struggle to yield useful results on models trained with differential
privacy, establishing a trade-off between interpretability, privacy, and utility. The
work proposes Locally Linear Maps as an approach that yields better interpretabil-
ity under the same privacy constraints while maintaining similar accuracy. The
second topic considers the task of DP data release with the help of deep genera-
tive models. The proposed method DP Mean Embeddings with Random Features
uses approximations of kernel mean embeddings to create a high-dimensional
summary of a dataset which can be efficiently made DP. We then use this DP
summary to train a generative model. The initial work using random Fourier
features for kernel approximation is extended in two subsequent works using
Hermite polynomial features and perceptual features obtained from pre-trained
DL classifiers. This method obtained new state-of-the-art DP generative models
for high privacy settings.

Both contributions move the field towards enabling broad application of
differential privacy across modern machine learning methods, where it is the
safest method for preserving the privacy of sensitive training data.
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L I S T O F A C R O N Y M S

ML machine learning
DL deep learning
DP differential privacy or differentially private
DNN deep neural network
CNN convolutional neural network
SGD stochastic gradient descent
DP-SGD differentially private stochastic gradient descent
RDP Renyi differential privacy
GAN generative adversarial network
LLM locally linear maps
RFF random Fourier features
DP-MERF DP mean embeddings with random features
DP-HP DP Hermite polynomials
DP-MEPF DP mean embeddings with perceptual features
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1
I N T R O D U C T I O N

Every time we use our phones, we create data. Every time, our activity is
quantified, stored, and sent to the owner of the website we visit, the application
we use, or the phone’s operating system itself. Most of this data likely contains
benign information that we would readily share with anyone. Some of it may be
more sensitive. The omnipresence of phones in our lives is emblematic of how
commonplace data collection has become, but is only one instance among many.
Medical history, financial records, messaging logs, and photographs shared
online, all constitute potentially privacy-sensitive data that are nonetheless held
by other institutions and companies.

The collection of personal data has the potential for many beneficial effects
both in science and in our everyday lives. Medical studies, for instance, would
be impossible without patients allowing access to their data. Shared location
data allows for route planning and travel time estimation in free services such
as Google Maps [39].

The growing demand for data is amplified by the growing capacities of the
specialized algorithms used to analyze it. Machine learning and especially its
subfield deep learning have made it possible to create models that learn complex
patterns from vast quantities of data. Based on this learned information, the
models are able to perform various tasks at an unrivaled level of competence,
ranging from straightforward classification tasks to image and text generation
[19, 131, 133] and autonomous game playing [54, 140]. So, undoubtedly, the
collection of big data enables better algorithms, but whenever these data contain
sensitive information, the question arises of whether the data-holder will use it
in a responsible manner. There is always a risk of data leakage to third parties,
be it by the data holder’s intent or by error.

While ostensibly anonymized data releases have been established to leak
sensitive information (see, e.g., Narayanan and Shmatikov [108]), recent research
shows that even the publication of trained deep machine learning models can
lead to an unintended release of information about training data [24, 25, 27, 57,
139, 144]. In a recent example, Carlini et al. [25] demonstrated that they could
retrieve training data from the GPT-2 large language model [125] by, among
other strategies, prompting it with partial sentences suspected of being in the
dataset and sampling the model’s highest confidence prediction. In this way,
the model would output text containing items such as individuals’ names and
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2 introduction

contact information, social insurance number, completed URLs, and log files
found in the dataset. In the most successful setting, this method retrieved the
training sample verbatim in 67% of attempts, for samples that were verified to
be unique in a training set of 40 gigabytes of text data. While the training data
of GPT-2 was public prior to training, the same attack method could easily be
applied to models trained on privacy-sensitive data.

A second example concerns popular diffusion-based image generation mod-
els, such as Stable Diffusion [131] and IMAGEN [133]. With a membership
inference attack, Carlini et al. [27] identify which data points were in the train-
ing set for a large portion of the dataset (at a true positive rate of over 44%
with a negligible false positive rate of 0.1%). Furthermore, the authors extract
near-exact matches of several training datapoints by showing that the model oc-
casionally generates these memorized datapoints. These findings are particularly
impactful privacy breaches, in light of recent controversies around "generative
art". Several parties who claim their publicly available image data were used for
training without consent are suing the publishers of these models over issues
of copyright, after finding that the trained model would accurately copy their
art style when prompted, e.g., with their name [21, 73]. Given the findings of
Carlini et al. [27], the models may well have memorized parts of their work.

Fortunately, there is a method that can provably prevent these types of privacy
violation. The mathematical guarantee of differential privacy (DP) provides an
avenue for the privacy-preserving sharing of statistics, including trained ML
models, that are based on sensitive data. If the shared statistic is differentially
private, this ensures well-defined limits on how much information it conveys
about individuals in the underlying dataset. The research area of differentially
private machine learning attempts to combine the predictive power of machine
learning with the privacy guarantees of differential privacy. Although this work
has been quite successful in some areas of classical machine learning, the area
of deep learning has proven to be a particularly difficult match for differential
privacy. Here, private methods achieve only a fraction of the performance of
their excellent nonprivate counterparts.

The remainder of this chapter is divided into two sections. Section 1.1 pro-
vides an introduction to the notion of differential privacy and related methods
used in this thesis, providing both formal definitions of the key concepts and
some intuition about the meaning of the privacy parameters. Following that,
we discuss deep learning with DP guarantees in Section 1.2, detailing different
approaches to DP deep learning and introducing the most common approach
of differentially private stochastic gradient descent. We then present the short-
comings of the current state of DP deep learning models which motivate our
research.
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1.1 differential privacy
The concept of Differential Privacy was first proposed as ε-indistinguishability
and soon renamed in a series of papers by Cynthia Dwork, Frank McSherry,
Kobbi Nissim, Adam D. Smith, and others in 2006 [47–49] and has since become
widely accepted as a guarantee of data privacy. Informally, the goal of DP
is to limit the amount of information an adversary gains from a published
statistic about the underlying dataset. In particular, a DP statistic reveals limited
information about each individual’s data in the dataset, or even whether said
individual is part of the dataset at all. This is achieved, as the initial name
suggests, by ensuring that the statistic remains nearly indistinguishable under
small changes to the dataset. That is, each outcome of the statistic remains
about as likely if a single entry in the dataset is changed. The algorithm which
accesses the data and releases a differentially private statistic is commonly
referred to as a mechanism and may range from simple functions such as mean
computations across features to rather complex tasks such as the training of a
machine learning model on said data.

The amount of information about the data that a DP mechanism reveals
depends on the two privacy parameters ϵ ≥ 0 and δ ∈ [0, 1]. When both
parameters are set to 0, no information is revealed, ensuring perfect privacy.
Unfortunately, this also makes it impossible to learn anything from the data,
so small positive values are chosen instead. As the values increase, the privacy
guarantee weakens. The choice for ε implies that any set of outputs from the
mechanism can only become more likely by a factor of eε, which, for small
values, ensures that all outcomes remain approximately as likely under small
changes in the data. δ defines the total probability mass that does not obey the
bound defined by ε, and can be understood as the maximum probability that
the DP guarantee does not hold. As a result, δ is typically chosen to be very
small. (more on this in Section 1.1.5)

1.1.1 Formal definition of differential privacy

DP uses the notion of neighboring datasets D and D′ to indicate small changes
in the data. Two kinds of neighboring relations are typically considered in
the DP setting: in the replacement relation, the datasets differ in one data
point, that is, D ∪ {x} \ {y} = D′ for some x and some y ∈ D. In contrast, the
inclusion/exclusion relation requires that one dataset be obtained by adding
or removing one datapoint from the other, so D ∪ {x} = D′ or vice versa. For
details, see, e.g. Chatalic et al. [30]. Unless noted otherwise, this work makes
use of the replacement relation.
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Definition 1 (Differential Privacy). A mechanismM : D → o, which maps from a
dataset D to some output o is (ε, δ)-differentially private iff ε ≥ 0, δ ∈ [0, 1] and for
any subset of outputs S and any neighboring datasets D and D′, the following holds:

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ

Here, if δ = 0, one speaks of pure DP, while for δ > 0 the guarantee is called
approximate DP. To obtain a meaningful guarantee, both ε and δ should be small.
Typical choices are δ < 1/N and ε < 2, where N is the size of the dataset. The
chosen values of (ε, δ) for a dataset are called the privacy budget and state the
weakest acceptable level of DP the dataset may reach before forbidding further
access. Section 1.1.5 will elaborate on how these values should be selected.

1.1.2 Properties of differential privacy

Differential privacy possesses two properties that are particularly important for
its application: composability and invariance to post-processing.

Composability

While it is useful to have DP guarantees for individual statistics, it is rare that
a dataset is only accessed a single time. DP naturally bounds the incurred
privacy loss by accessing the same dataset multiple times with different DP
mechanisms. This even holds if one mechanism uses the output of another as
auxiliary information, which is referred to as adaptive composition. The simplest
such composition method is basic composition as defined below for illustration.
Other more advanced composition methods also exist and may achieve better
bounds in specific settings [50, 65, 107].

Theorem 1 (Basic Composition (Thm. 3.16 in [50])). Let Mi : N|X | → Ri be
an (εi, δi)-DP algorithm for i ∈ [k]. Then ifM[k](x) = (Mi(x), . . . ,Mk(x)), then
M[k] is (∑k

i=1 εi, ∑k
i=1 δi)-DP.

Post-processing invariance

Once released, the output of a differentially private mechanism cannot be
analyzed in any way to reveal more information about the underlying dataset
than the DP guarantee allows. This holds regardless of what possible auxiliary
information is available and for any computational capacity. Formally, this is
defined as follows:

Theorem 2 (Post-processing (Thm. 2.1 in [50])). Let M : N|X | → R be an
(ε, δ)-DP mechanism and let f : R→ R′ be an arbitrary randomized mapping. Then
f ◦M : N|X | → R′ is (ε, δ)-DP.
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This differentiates DP from other privacy notions such as k-anonymity [149],
which provides a degree of anonymity to individuals by ensuring that the
values of each datapoint appear at least k times in the data, but may leak
information given the right auxiliary information1. Differential privacy limits
what an adversary can learn about a datapoint even if they precisely know
the entire rest of the dataset as side information. This property allows one to
use the mechanism output in any context without worrying about unforeseen
consequences, as long as the privacy budget under which it has been released
is deemed acceptable.

1.1.3 The Gaussian mechanism

Now that several properties of Differential Privacy have been introduced, the
question arises as to how this guarantee can actually be achieved. Given that DP
is defined in terms of probability distributions, it should come as no surprise
that DP mechanisms function by introducing randomness to the otherwise often
deterministically computed statistic that will be released. There are several
known mechanisms for achieving DP such as randomized response, the expo-
nential mechanism, and the Laplace mechanism (see, e.g. [50] for details). Here,
we will focus on the Gaussian mechanism because it is the most commonly
used mechanism in DP deep learning.

For a function f : D → Rd, the L2-sensitivity ∆ f = supD,D′ ∥ f (D)− f (D′)∥2
of f describes how much the output of f may change at most between two
neighboring datasets D and D′ in terms of L2 distance. By adding Gaussian
noise Z ∼ N (0, ∆2

f σ2 I) scaled to sensitivity ∆ f and a chosen noise parameter σ,
the Gaussian mechanismM(D) = f (D) + Z makes the perturbed output of f
differentially private.

Theorem 3 (Classical Gaussian Mechanism (e.g. Thm.A.1. in [50]). For any ε, δ ∈
(0, 1), the Gaussian output perturbation mechanism with σ =

√
2 log(1.25/δ)/ε is

(ε, δ)-DP.

This classical analysis of the Gaussian mechanism has the shortcoming of
only applying to ε < 1, and has been shown to be generally suboptimal. An
improved but more complex version has been proposed by [11]. However, we
instead rely on a variant of DP called Renyi differential privacy (RDP) to track
the total privacy cost of applying the Gaussian mechanism multiple times, as it
allows for simpler composition.

1 For instance, when k− 1 identical datapoints are known background information, the final
datapoint with the same values has lost all anonymity
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1.1.4 Renyi differential privacy

In addition to the notions of pure and approximate DP, there are many related
definitions and variants (see Desfontaines and Pejó [41] for an overview). Renyi
Differential Privacy (RDP), proposed by Mironov [107], is the one variant we
introduce here, as it is used in advanced composition techniques, particularly
for the Gaussian mechanism in, e.g., DP stochastic gradient descent (see Section
1.2.1). It is defined in terms of Renyi divergence [128] as follows.

Definition 2 ((α, ε)-Renyi Differential Privacy (Def. 4 in [107])). A mechanismM
is (α, ε)-RDP with order α > 1 if for all neighboring datasets D, D′

Dα(M(D)∥M(D′)) =
1

α− 1
log Ex∼M(D′)

(M(D)(x)
M(D′)(x)

)α

≤ ε.

RDP is a relaxation of pure DP and approaches ε-DP as α → ∞. Like regu-
lar DP, RDP also allows for composition of releases and is invariant to post-
processing.

While the Gaussian mechanism provides regular DP for a set of (ε, δ) pairs
with a complicated non-linear relation between the parameters, the same mech-
anism also grants an (α, α

2σ2 )-RDP guarantee for all choices of α (Prop. 7 in
[107]), which lends itself better to analysis and optimal composition. The pri-
vacy loss in the composition of multiple Gaussian mechanism releases, as we
will encounter in DP stochastic gradient descent in Section 1.2.1, is therefore
commonly tracked using RDP. After composition, the final privacy loss can still
be presented in approximate DP using an existing conversion theorem (Prop. 3

in [107]), as approximate DP is the more common and intuitive privacy notion.

1.1.5 Choosing values for ε and δ

Depending on the choice of privacy parameters (ε, δ), the privacy protection
granted by a DP guarantee can range from perfect at ε = 0, δ = 0 to vacuous
at ε → ∞ or δ → 1. So what are the appropriate values for these parameters?
Although there are no definitive answers to this question, a closer look at the
guarantees under specific choices for ε and δ can provide some insight into the
range of appropriate values.

Choosing ε

The simplest argument for the choice of ε is to look at the bound on the
probability of a successful membership inference attack after a DP release.
This has, for instance, been illustrated by Triastcyn and Faltings [160]. In this
scenario, the adversary has observed an (ε, 0)-DP release o and is trying to
distinguish between two candidate datasets D and D′ with a uniform prior
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P(D) = P(D′) = 0.5. Without loss of generality, let D be the correct dataset,
then the adversary will infer the probability P(D|o) as

P(D|o) = P(o|D)P(D)

P(o|D)P(D) + P(o|D′)P(D′)
≤ P(o|D)

P(o|D) + e−ε · P(o|D)
=

1
1 + e−ε

,

where the inequality follows from the DP guarantee. In Table 1.1 we see
that choices of ε ≥ 1 allow for a significant improvement of the adversary’s
chances for accurate selection of D over D′, and for near certainty at ε ≥ 5.
Values around 5 ≥ ε ≥ 0.2 may be said to offer plausible deniability. While the
adversary may make the correct inference most of the time, they can never be
completely sure. Only for small values around ε ≤ 0.2 does the bound ensure
that P(D|o) stays close to 50% and little membership information is leaked.

ε choice 5 2 1 0.5 0.2 0.1
P(D|o) upper bound 99.3% 88.1% 73.1% 62.2% 55.0% 52.5%

Table 1.1: Choices for ε and corresponding confidence bound

Recent work has shown that this worst case estimate can be relaxed when
an adversary has to decide between more than two possible candidates. Guo,
Sablayrolles, and Sanjabi [67] consider cases where an adversary knows all
entries except one in a dataset Dknown = D \ {x} and is choosing between M
different candidates x ∈ {x1, . . . , xM}. As part of their results, they show that
if the candidates have uniform probability, the attacker’s advantage remains
constant for a given c when choices for M and ε follow ε ≈ c log M. For instance,
an attacker with two options who observes an (ε = 1)-DP release has about
the same chance of guessing correctly as an attacker with e5 ≈ 150 options
will, after observing an (ε = 5)-DP release. In light of this argument, even high
values of ε may lend a tangible level of privacy protection, when one can assume
that the adversary will have to choose between a large number of options. For
example, guessing a 10 digit social security number (M = 1010 options) will be
prevented even by large choices of ε.

Since well before this argument was developed, large ε values up to ε = 10
are commonly used in works on DP deep learning, where acceptable results at
high privacy levels are difficult to obtain (e.g. [33, 37, 45, 59]). In this context
of deep learning with DP, we consider ε ≤ 2 as a strong privacy guarantee,
which offers plausible deniability even in the absolute worst case and is quickly
amplified by the considerations in [67] when M > 2.

Recommendations for DP ML published by researchers at Google [124]
broadly classify ε ≤ 1 as a strong formal privacy guarantee and ε ≤ 10 as a
reasonable privacy guarantee, acknowledging that what strength is appropriate
depends on the details of the application area. Choosing such a loose bound
for the second category is justified by several factors, such as the low empirical
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success rate of realistic privacy attacks against models with weak DP guarantees
[10, 109, 123] and by the fact that many DL models only reach reasonable utility
around ε = 10.

In practical applications of the current available models, weak DP guarantees
with empirical privacy benefits are preferable to the alternative of not having
any privacy protection at all. However, in the research of new DP algorithms,
enabling stronger levels of DP with meaningful theoretical guarantees in the
future is an important goal. Therefore, it seems sensible to aim for significantly
stronger privacy than what [124] suggests as the lowest reasonable setting of
ε = 10.

Choosing δ

Since δ represents the probability of the bound defined by ε not holding, Dwork,
Roth, et al. [50] propose that a cryptographically small value should be chosen
for it. In DP machine learning, where the dataset size |D| is often in the tens of
thousands or even greater, the consensus choice is δ < 1

|D| [1, 40, 59, 68]. Since
it usually factors into analyses as log δ, the exact value of δ is not as critical.
The core intuition behind this choice, as Canonne [22] points out, is that the
mechanism that releases a single unperturbed datapoint from D at random is
(ε = 0, δ = 1

|D|)-DP. So in order to ensure that a mechanism can never simply
leak a datapoint, a smaller value for δ should be selected.

This concludes the introduction to DP. To complete the foundation of the
work presented in this thesis, the following section will provide background on
the field of Deep Learning and some relevant subfields, and then explain how
DP can be applied there.

1.2 deep learning with differential privacy
The term deep learning (DL) refers to a class of machine learning methods,
which are a big contributor to the increasingly widespread use of machine
learning applications, particularly in the domains of computer vision and
natural language processing. A key feature of DL is the hierarchical computation
of learned non-linear features. For a comprehensive introduction, refer to [62].
In a deep learning model, each individual layer typically takes the form of

gθ : x→ f (Wx + b)

where θ = {W, b} are the learned layer parameters and f is a non-linearity
such as the sigmoid or ReLU function. Depending on the data domain, θ may
exhibit additional structure. The most common examples of this are convolu-
tional layers, which apply the same transformation locally to each region of the



1.2 deep learning with differential privacy 9

input. Depending on the dimensionality of the data, convolutions may span a
single or several dimensions. For audio, image, and MRI data, 1D, 2D, and 3D
convolutions are used, respectively. State-of-the-art deep learning architectures
further include a variety of other layers, such as pooling, normalization, and
attention layers, which will be skipped for this introduction. As several such
layers are stacked, the overall model g becomes increasingly deep and capable
of learning more complex functions.

gθ = gθn ◦ · · · ◦ gθ3 ◦ gθ2 ◦ gθ1

Given an objective function L, the model gθ is then typically iteratively
trained on small minibatch sub-sets of the dataset which are sampled without
replacement going through the whole dataset, which is called an epoch, and this
process is repeated usually until some convergence criterion has been reached.
On each training step and given the current minibatch of data, the gradient of
the objective with respect to θ is calculated using the backpropagation algorithm
[132] and the model is updated using stochastic gradient descent (SGD).

In the following, we introduce two research areas in deep learning that
are particularly relevant to our contributions, interpretability and generative
modeling, before laying out how deep learning can be made differentially
private.

Interpretability in deep learning

Deep learning architectures can model high-dimensional and highly non-linear
functions, and it can thus be difficult to put into human-understandable terms
how a certain model output arises from the input. It is crucial in many applica-
tions to maintain means of understanding how a model arrives at its output,
for example, when models are used for medical imaging, autonomous driving,
or loan approval. As pointed out in a survey by Zhang et al. [172], a need for
interpretability arises in particular when models are used to inform decisions
that affect people, as these people often have ethical and legal rights to an
explanation [64] and to a guarantee that the decision was made on a fair basis.
Since such decisions are often based on sensitive personal data, the application
areas of privacy and interpretability methods naturally overlap.

In this work, we focus on passive local attribution methods, which constitute
the most actively researched class of interpretability methods for DL according
to the taxonomy put forward by [172]. To analyze the importance of individual
features, gradient attribution methods compute the gradient of the network
output with respect to the network input. By definition, this gradient shows,
for each feature, how strongly and in what direction a small change in the
feature value would affect the output. Features that elicit a larger change could
thus be said to be more important. However, due to the non-linear nature of
DL models, the gradient may be highly sensitive to small changes in the input.
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More reliable and informative attributions can be obtained through modification
of the gradient. For example, SmoothGrad [142] averages gradients of slightly
perturbed inputs by adding Gaussian noise, and Integrated Gradient [148]
averages gradients from inputs by interpolating linearly between the given
datapoint and a chosen neutral reference input.

Deep generative models

The objective of generative modeling is to train a model on a finite dataset
such that the model can produce samples that resemble the underlying data
distribution from which the training set was obtained. Samples should resemble
the data both individually and in their distribution. The measure by which the
generated distribution should approximate the true distribution is often not
clearly defined, as the distributions themselves are typically highly complex,
and no analytic definition of their ground truth exists. As a result, various
domain-specific quality metrics such as Fréchet Inception Distance [70] for
natural images and the BLEU score [117] for language data have been designed
as proxies. In the case of DP data release, where the generated data is intended
to replace training data for some downstream task, the quality of the generated
data is often measured by the performance of a model trained on generated
data, tested on real data.

Conditional generative models learn the distribution of data depending on
some associated feature. The most common example is conditioning on class
labels, but conditioning on continuous parameters such as color [20], or even
complex parameters such as picture description [131, 133] in the case of images
is equally possible.

Over the past years, some dominant approaches to deep generative modeling
have been Variational Auto-Encoders [84], Generative Adversarial Networks
(GANs) [63], flow-based models [44, 129] and most recently diffusion models
[71, 131, 143, 146, 147].

1.2.1 Making deep learning differentially private

When considering training a DNN in terms of DP, we require a mechanism
M : D → Θ that takes a data set D and releases a set of trained model
parameters θ. For M to be DP, some part the training algorithm must be
identified, which constitutes a bottleneck such that all information θ receives
about D travels through it. This bottleneck must be made DP. Jarin and Eshete
[78] distinguish between five potential choices for such bottlenecks in ML
algorithms. Of these five, three can be ruled out as infeasible for DNNs and a
fourth is only used in a special case. We will briefly discuss these four options
and then introduce one technique not mentioned in [78], which is particularly
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relevant to this work, before covering the fifth and de facto standard approach
to DP model training, DP-SGD, in greater detail.

output perturbation (infeasible) In many simpler mechanisms, includ-
ing even machine learning algorithms with convex objective functions such
as regularized logistic regression (as shown in [31]), the sensitivity of trained
weights can be quantified, so noise can be added to the weights directly. This is
not the case for DNNs due to the nonconvex optimization taking place.

input perturbation (infeasible) Adding noise to the input data is also
a viable method for convex optimization problems [58, 81], but has not found
application in DNNs, as the direct release of the data requires a high noise scale
which would erase all useful information.

objective perturbation (infeasible) Since SGD updates the model pa-
rameters with a gradient with respect to some objective function, making the
objective itself differentially private is a way of ensuring DP of the trained model.
Chaudhuri, Monteleoni, and Sarwate [31] developed this method for convex
optimization problems, where the objective itself has a bounded sensitivity. In
deep learning, this is generally infeasible due to the nonconvex objective having
intractable sensitivity.

prediction perturbation (special case) The approach of making a
nonprivately trained model DP by adding noise to its predictions during de-
ployment is generally infeasible, since, as discussed for output perturbation, the
sensitivity of the learned weights is unknown and consequently no sensitivity
for the predictions can be found either. An example where prediction pertur-
bation does achieve DP is the PATE framework [115, 116]. Here, an ensemble
of models is trained on disparate subsets of the dataset such that only one
model is affected by the change of a datapoint and the average prediction of the
ensemble has a bounded sensitivity as a result. However, this is a special case
and prediction perturbation for DP has not found wider application beyond
that.

data summary perturbation In this method, information about the train-
ing dataset is collected in some summary statistic (such as a high-dimensional
feature embedding), which is released with a DP mechanism. The training
objective does not access the data directly, but only through the DP summary,
and thus, similar to objective perturbation, the optimization of the objective is
DP. This approach is not mentioned in Jarin and Eshete [78] but is central to the
methods discussed in Sections 3.2 and 3.3.
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gradient perturbation The most common method of DP deep learning
is the DP release of the gradient update in each iteration, termed differentially
private stochastic gradient descent (DP-SGD). By aggregating the privacy loss
across all training steps, a DP guarantee is obtained for the final weights.
Since the key contributions of this work are motivated by the properties and
shortcomings of DP-SGD, we devote the remainder of this section to a detailed
introduction.

Differentially private stochastic gradient descent

After some previous work on DP-SGD [13, 145], the work by Abadi et al. [1]
added significant improvements in privacy accounting and refined the method
to the form which finds common use today. We will begin by explaining the DP
training algorithm and then discuss the equally important privacy accounting
methods of DP-SGD below.

Releasing the gradient on a given training iteration in a differentially private
way requires a bound on the gradient’s sensitivity, but no analytic bound is
generally available. DP-SGD solves this problem by computing the gradient
for each sample in the minibatch separately and clipping them to an L2-norm
of some fixed maximum value C. The sum of these per-sample gradients now
naturally has an L2-sensitivity, depending on the neighboring relation used:
sensitivity C with the inclusion/exclusion relation (adding or removing a
datapoint) and 2C with the replacement (exchanging a datapoint) relation.
Due to the defined sensitivity, the sum can be released using the Gaussian
mechanism. A precondition for DP-SGD is thus that the loss function consists
of an aggregation of per-sample losses such that the computation of per-sample
gradients makes sense. This condition is frequently satisfied in deep learning,
but is violated, for instance, by the use of batch normalization layers [74] and
objectives based on the estimation of the maximum mean discrepancy [66].
Algorithm 1 shows the DP-SGD algorithm as given in [1]. Note that sampling
and noise addition differ slightly depending on the neighboring relation, as will
be explained below.
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Algorithm 1 DP-SGD for the inclusion/exclusion relation (Alg 1 in [1])

Require: Dataset D = {x1, . . . , xN}, loss function L(θ) = 1
N ∑i L(θ, xi). Param-

eters: learning rate ηt, noise scale σ, group size L, gradient norm bound
C.
Initialize θ0 randomly
for t ∈ [T] do

Take a random sample Lt with sampling probability L/N
Compute gradient
For each i ∈ Lt, compute gt(xi)← ∇θtL(θt, xi)
Clip gradient
ḡt ← gt(xi)/ max

(
1, ∥gt(xi)∥2

C

)

Add noise
g̃t ← 1

L
(
∑i ḡt(xi) +N (0, σ2C2I)

)

Descend
θt+1 ← θt − ηtg̃t

end for
Output θT

Privacy accounting for DP-SGD

DP-SGD performs a differentially private release of the weight gradient via
the Gaussian mechanism given a minibatch of data on each iteration. The fact
that only a subset of the data is accessed at every step can be used to improve
the privacy analysis, as detailed in [9] for (ε, δ)-DP. Thus, an efficient analysis
must take advantage of this insight and then compose the resulting privacy
loss over the many training steps. Abadi et al. [1] were the first to develop a
version of this analysis specific to the Gaussian mechanism termed the Moments
Accountant. More general methods based on Renyi DP, which we introduced
in 1.1.4, have since been developed for both inclusion/exclusion [175] and
replacement [162] neighboring relations. Depending on the neighboring relation,
the analyses make use of subsampling methods, which differ from regular
minibatch sampling. Whereas in the non-DP setting one typically divides the
whole dataset into minibatches, which are then iterated over in an epoch, for the
inclusion/exclusion relation, each new batch must be sampled independently
of the previous ones without replacement. Accounting for the replacement
relation, on the other hand, [1, 175] further diverges from non-DP practice and
requires Poisson subsampling, which includes each datapoint x ∈ D in each
minibatch with some probability γ ∈ [0, 1], leading to varying minibatch sizes
during training.
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1.2.2 Current shortcomings of differentially private deep learning

Although the theoretical guarantees of DP are a good match for the privacy
issues in deep learning, in practice, enforcing the guarantees incurs a heavy
loss of utility that has so far prevented the widespread adoption of DP in deep
learning. Following their successful extraction attacks on generative diffusion
models, Carlini et al. [27] tried to train the models with DP as a countermeasure
but were unable to maintain an acceptable level of performance in this setting.
In fact, many tasks that are considered solved in nonprivate deep learning are
still major challenges in the private setting. For example, in image classification,
current state-of-the-art models obtain 99.5% [46] and 91.0% [171] test accuracy
on the datasets Cifar10 (10 classes) [86] and ImageNet (1000 classes) [38] respec-
tively. With the remaining error being due in part to false labels in the test set
[113], classification in these data sets is largely considered solved. In contrast,
without the use of auxiliary public data, De et al. [37] and Sander, Stock, and
Sablayrolles [134] obtain the best scores in the DP setting with accuracy 81.4%
on Cifar10 and 39.2% on ImageNet, respectively, at a fairly weak level of privacy
with ε = 8. The reason for these gaps can be found in several properties of deep
learning models that make differentially private training difficult:

large model size DNNs have been found to benefit from a much larger
number of learned parameters than other models without encountering the
problem of overfitting. The number of model parameters in nonprivate applica-
tions frequently ranges from several millions (e.g. AlexNet [86]: 61 million) to
billions (GPT-3 [19]: 175 billion). Each of these parameters may store information
about the dataset, so all of them must be released privately.

long iterative training SGD training takes several thousand to millions
of steps, where each individual update constitutes a separate access of the
data. The rigorous privacy analysis developed for this setting (see Section 1.2.1)
makes the high number of DP releases manageable, but does not eliminate the
fact that having fewer releases would be more efficient.

limited theoretical understanding As Ye and Shokri [167] point out,
DP-SGD provides a stricter DP guarantee than would in many cases be necessary
by making each gradient update private, where the only output that actually
requires a DP guarantee is the final trained model. Only protecting the final
output of the training algorithm should require less effort as less information
is revealed, but so far no method of conducting the necessary privacy analysis
has been found. Existing approaches that fundamentally improve on the per-
iteration privacy cost analysis of DP-SGD [6, 167] do so only under the strong
assumption of convex objective functions.
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Despite these shortcomings, DP deep learning is the most promising approach to
tackling privacy-preserving machine learning on complex and high-dimensional
data, such as images or natural language data. It is thus a primary research
objective in DP deep learning to improve the privacy-utility trade-off, so it
becomes acceptable in practice.

One successful method for improving the trade-off that has recently gained
popularity is to use auxiliary public data from the same domain as the private
data, often by pretraining a model nonprivately on those public data [28, 37, 94,
95]. A limitation of this approach is that it requires available public data that is
similar enough to the private data to contain useful information. This may be
true for natural images and text, but it is less likely to be the case for e.g. most
tabular datasets. Tramèr, Kamath, and Carlini [157] further raise concerns about
using public data scraped from the Web with insufficient curation, as many
such datasets have been found to contain sensitive data [16].

Faced with unacceptable privacy-utility trade-offs, another route taken is
to simply increase the privacy budget. Increasing ε may seem tempting, since
DP provides some theoretical level of privacy for any value of ε and there is
no strong consensus on the correct values anyway. In one of the rare cases
where the DP implementation of a company was analyzed, Tang et al. [153]
found that the privacy budget at ε = 16 per day was set so high that it offered
no formal protection. In the DP deep learning literature, similar trends occur
on tasks such as generative modeling, where models only yield acceptable
results in weak privacy settings, and all results are reported for ε ≥ 8 [33, 120,
155, 164]. We caution against this route, as raising ε quickly leads to vacuous
guarantees (see section 1.1.5). As we state in the following, our explicit focus for
this work lies on developing methods for DP deep learning that still function in
the high-privacy regime.





2
R E S E A R C H A I M

Differentially private deep learning aims to combine the expressive power
of deep models with the rigorous privacy guarantees of DP. As explained in
Section 1.2.2, the standard approach of training deep models with DP-SGD faces
several drawbacks, leading to poor performance in high-privacy settings. For the
purpose of this thesis, and in light of the illustration in Section 1.1.5, we define
high privacy as (ε, δ)-DP that requires ε ≤ 2 and δ < 1/N. The overarching
goal of this thesis is the development of differentially private machine learning
methods for high-dimensional data that retain good performance even in high-
privacy settings. Here, we focus on two important application areas which
have proven challenging in the context of DP: interpretable classification and
generative modeling.

Objective 1: Interpretable differentially private classification

As the first topic, our aim is to improve the interpretability in DP deep classifica-
tion models. Probing non-DP deep classifiers with gradient attribution methods
yields sensible explanations of their predictions. However, we find that, if the
same classifiers are trained under DP constraints, these explanations become
hard to interpret due to the added noise in the training process. This poses a
problem, as ML applications on sensitive personal data frequently require both
preservation of privacy and transparency of their decision-making process.

In manuscript 1 (Appendix A) we present the previously unexplored trade-
off between privacy, utility, and interpretability. Our objective is to improve
this trade-off by developing locally linear maps, a shallow model that preserves
better interpretability in DP settings while maintaining a reasonable level of
classification accuracy.

Objective 2: DP data release with strong privacy

For an alternative solution to the problem of lacking interpretability, we turn
to methods for DP data release as our second topic. These methods create
differentially private proxies of sensitive datasets which can be used in their
place and ensure privacy prior to model training. These methods can remove
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the need for DP model training, and thus the source of the interpretability-
privacy trade-off, but only if the released proxy data are a sufficiently good
analog for the private data. Our goal is to train a deep generative model, but
forego the need for iterative data release present in DP-SGD to obtain stronger
privacy guarantees. To this end, we experiment with releasing dataset mean
embeddings based on random Fourier features in a privacy-preserving way and
use them to train deep generative models. The resulting model is presented in
manuscript 2 (Appendix B) and is evaluated on several tabular datasets and
small image datasets. We expand on this method with the addition of Hermite
polynomial feature embeddings as an improvement on random Fourier features
in manuscript 3 (Appendix C).

Objective 3: Leverage auxiliary public data to improve DP data release

Although random Fourier and Hermite polynomial feature embeddings are
relatively successful on lower-dimensional image datasets like MNIST and
FashionMNIST, they do not scale well to more complex data. Our third objective
is therefore to explore how extracting features with a stronger domain prior can
improve our method. To this end, in manuscript 4 (Appendix D) we focus on
the setting where auxiliary public data are available and leverage features from
classifiers trained on these public data in place of random Fourier features. We
evaluated our method on the CelebA and Cifar10 image datasets, which up to
that point have been too complex for DP data release methods without the help
of public data.
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S U M M A R Y O F R E S U LT S

In this chapter, we give an overview of the presented Manuscripts, following
the order of publication. We begin with our work in interpretable DP machine
learning (Manuscript 1) in Section 3.1. Then we turn to DP generative mod-
els (Manuscripts 2 and 3) in Sections 3.2 and 3.2.3, and our follow-up work
employing auxiliary public data (Manuscript 4) in Section 3.3 .

3.1 interpretable dp prediction
In Manuscript 1, we discovered the detrimental effect of differentially private
training on interpretability in deep neural networks. We investigated this phe-
nomenon on MNIST [89], FashionMNIST [163] and the Henan Renmin Hospital
Dataset [93, 102]. We trained small DNN classifiers on each dataset, both with
and without DP guarantees, and applied the Integrated Gradient [148] and
SmoothGrad [142] gradient attribution methods. We compared the feature attri-
butions across models and found that the private models yielded noisy results
that were hard to interpret. So, in addition to the privacy-utility trade-off that is
always present in the application of DP, we found that interpretability is a third
dimension of this trade-off.

3.1.1 Method

In response to this finding, we proposed locally linear maps (LLM), a method that,
unlike DNNs, could offer good performance along all three axes. As defined
below, LLMs consist of a collection of M linear maps gk

m for each class k. Each
linear map corresponds to a part of the input space that belongs to the given
class. To classify a datapoint, its similarity with each linear filter is computed to
find the best match, and if no differentiability were required, the model would
just assign the class k = arg maxk gk

m(x) according to the most highly activated
filter. In order to make this process differentiable, we instead aggregate all filters
for each class in a class score fk(x), which computes a softmax weighted sum
of all filter activations per class, governed by an inverse temperature parameter
β. The differentiable class prediction s(x) is a softmax of these class scores:
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sk(x) =
exp fk(x)

∑K
k=1 exp fk(x)

, (3.1)

fk(x) =
M

∑
m=1

σk
m gk

m(x), (3.2)

where gk
m(x) = wk

m
⊤x + bk

m, (3.3)

and σk
m(x) =

exp
[
β · gk

m(x)
]

∑M
m=1 exp

[
β · gk

m(x)
]
.

(3.4)

The model thus functions like a mixture of experts [75] for each class, where
each expert is a linear model, and approximates a Voronoi diagram over the
input space around the filter locations.

LLMs can be interpreted as a linearization of DNN classifiers. An LLM
could thus also be obtained from an existing classifier by identifying key
points in the input space and performing first-order Taylor approximations
at those inputs, matching the local linearization which attribution methods
perform, which would yield a collection of linear maps. Since it is hard to design
this process in a privacy-preserving way, we opted to train the model from
scratch instead. However, this perspective illustrates how LLMs are particularly
suited to attribution methods, since both perform the same abstraction of a
more complex model. Whereas the linearization on DNNs may only hold
approximately in a small area around the input space due to the high non-
linearity of DNNs, for sufficiently high values of β LLMs are actually nearly
linear locally.

In order to obtain better private utility on high-dimensional data, we proposed
to use random projections [82] as a data-independent dimensionality reduction
method. The projection matrix from the data dimension d to a target dimension
d′, where each entry is drawn from N (0, 1/d′), is known to nearly preserve
the respective distances between points in the data space when mapping them
to the embedding space [80]. We find that they significantly improve accuracy
at the same levels of privacy by reducing the number of trained weights by
a factor d′/d. However, this comes at some cost to the interpretability of the
LLM features, introducing another factor in the privacy-utility-interpretability
trade-off.

LLM models provide both local and global attribution-like explanations for
classification. Given an input, the most highly activated linear filters for each
class constitute an explanation of the model behavior at that point, since it is
locally approximately linear. By design, these filters match what a gradient
attribution method applied with respect to each class logit would retrieve.
Furthermore, the model provides global interpretability, since considering the
collection of filters for each class provides a simple overview of what features the
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model is sensitive to, as long as the total number of filters remains sufficiently
small.

IG SG

CNN, ε = 2

IG SG

CNN, ε = 5.4

Figure 3.1: For 2 test inputs (left) and 3 different DP-LLM setups (groups of 3 columns),
we show the 3 highest activated filters in descending order. We look at the
default setting with random filters at D′ = 300 and ϵ = 2 (center left), the
same setting without random filters (center), and in a lower privacy ϵ = 5.2
setting (center right). Attribution plots of DP-CNNs at matching privacy
levels with the same input are shown for comparison (right). (Adapted
from Fig. 2 in Manuscript 1.)

3.1.2 Evaluation

To evaluate our method, we trained LLMs and reference DNNs on MNIST,
FashionMNIST, and a tabular dataset of hospital admissions at varying levels
of privacy. We then visually compared the inherent LLM attributions with
the gradient attributions of the DP DNN models. Figure 3.1 illustrates our
finding that LLM filters retained interpretability at high privacy, while gradient
attributions of the DNN classifier were hard to interpret.

We find that for the small image datasets M = 30 filters per class struck a
good balance between the needs for model expressiveness and low parameter
count due to DP. Adding a random projection to reduce the input dimension
from 784 to 300 significantly increased the test accuracy of LLMs from 92.2% to
94.2% at ε = 2 but at the cost of diminished interpretability. With a sufficient
number of linear maps for each class, the model incurred only a slight loss
in accuracy compared to DNN classifiers on the datasets we considered. On
MNIST for instance, LLMs achieved a test accuracy of 94.2% with (2, 10−5)-
DP and 91.8% with (0.5, 10−5)-DP, which constituted a loss of 0.8% and 0.2%
compared to state-of-the-art methods [1, 121].

The difference between LLMs and DNNs depends on the complexity of the
data, and DNNs would easily outperform LLMs in the non-DP setting. However,
since we were only interested in the DP setting, where the capacity of DNNs is
a fraction of its non-DP counterparts, DP-LLMs achieved comparable results
despite being the simpler model.

The interpretability of DP-LLMs is less strongly affected by the gradient noise
of DP-SGD than is the case for DNNs, but it still deteriorates with increasing
level of privacy. Therefore, DP-LLMs are not a perfect solution to the privacy-
utility-interpretability trade-off in DP training. In the following chapter, we
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discuss a separate topic in DP machine learning, which allows one to circumvent
the need for DP training entirely by producing training data with built-in DP
guarantees.

3.2 dp data generation via random fourier
feature embeddings

In Manuscript 2, we turn to the task of differentially private data release, which
aims to provide a DP proxy dataset that is similar to the sensitive real data
and can be used in its place without violating privacy. Having such a proxy
dataset available solves many practical issues in DP machine learning. The data
can be shared freely, and there is no need to track any further privacy loss
due to DP’s post-processing invariance. There is also no constraint on model
choice and training time, and no noisy gradient updates, which implies that the
problems we observed with attribution methods in the previous section also
disappear. In short, DP data release is an attractive concept because it separates
out the handling of privacy concerns, and no other part of the workflow needs
to change.

We approached DP data release from a deep learning perspective by training
a DP deep generative model in order to produce private samples, which could
then be used to construct a proxy dataset. In prior research, several deep gener-
ative modeling approaches had also been applied in the context of differential
privacy but had shown limited success. The initial approaches had used GANs
[33, 155, 164] and VAEs [4, 34, 120, 151] trained with DP-SGD to generate
tabular data and low-dimensional black-and-white images such as MNIST [89]
and FashionMNIST [163]. In low-privacy settings with ε ≈ 10, these methods
produced recognizable images of digits and clothing items, advancing the state
of the art. The major shortcoming of these approaches was that they did not
produce reasonable results in high-privacy settings around ε ≤ 1, as ε = 10
does not offer a tangible privacy guarantee. Furthermore, the methods left room
for improvement both in that they failed to scale to more complex datasets and
in the significant gap in quality between DP and non-DP results. The quality of
a proxy dataset was measured by training a collection of classifiers on proxy
data and reporting their test accuracy on the real data. Whereas in the non-DP
setting the proxy data were almost as good for training as using the real data
with a 1-2% decrease in accuracy, using DP proxy data led to a significant drop
in accuracy of more than 20% [33].1

1 Recent approaches based on diffusion models [45, 59] achieve significant improvements on all
the problems discussed, but did not exist at the time of this work. They are discussed in Sec.
4.2.
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3.2.1 Method

Our goal was to develop a method that could provide useful results at more
reasonable DP guarantees, addressing the central weakness of prior approaches.
To realize this, we sought a way to avoid DP-SGD altogether, as its iterative DP
releases applied to a large generative model led to an unfavorable privacy-utility
trade-off.

We achieved this goal by training our generative model with an approximation
of a Maximum Mean Discrepancy objective [66]. In this objective, we compute a
static high-dimensional mean embedding of the entire data set using random
Fourier features [126] as an embedding function, and then match this embedding
with an embedding based on generated data. This approximated objective turns
out to be particularly suited to DP training, as it neatly divides into one data-
dependent term, the dataset embedding µ̂P, and one model-dependent term,
the generated data embedding µ̂Qθ

. The generated data is produced by a
generator model with parameters θ. Given that the embedding is an average
across the entire data set D, it has significantly lower sensitivity than minibatch-
based releases. The random Fourier features have fixed norm ∥ϕ̂(·)∥2 = 1 by
construction, leading to a sensitivity of ∆µ = 2/|D|. After releasing the dataset
embedding once with the Gaussian mechanism µ̃P = µ̂P +N (0, ∆2

µσ2 I) , we
obtain the DP objective shown in Equation 3.5, which we can continuously
evaluate with different generated data embeddings for an arbitrary number
of times at no further privacy cost to optimize θ. We named this method,
summarized in Algorithm 2, Differentially Private Mean Embedding with Random
Features (DP-MERF).

M̃MD
2
r f (P, Qθ) = ∥µ̃P − µ̂Qθ

∥2
2 (3.5)

Low sensitivity and the single DP release enable good results under stronger
privacy guarantees than were possible for iterative methods. For labeled data,
we compute separate embeddings for each class and concatenate them into one
large vector. This amounts to computing a kernel product of the data kernel and
the label, for which we used a first-order polynomial kernel. While this does
not affect the sensitivity ∆µ of the release, it does increase the dimensionality of
the released vector, leading to the addition of more noise overall, compared to
the unlabeled setting. In case of class imbalance, we compute the vector of class
counts m and make it DP in a second release m̃ = m +N (0, ∆2

mσ2
m I). We then

use this vector to reweigh the objective such that each class contributes equally
to the loss, and small classes are not neglected. Since this is a relatively short
vector of large counts and the release has low sensitivity ∆m =

√
2, it can be

released with a large σm and thus comes with little additional privacy cost.
DP-MERF falls into the category of data summary perturbation approaches

to DP deep learning as described in 1.2.1. In contrast to gradient perturbation
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Algorithm 2 DP-MERF

Require: Dataset D, and a privacy level (ϵ, δ), generator parameters θ

Ensure: (ϵ, δ)-DP input output samples for all classes
Step 1. Given (ϵ, δ), compute the privacy parameter σ

Step 2. Release the mean embedding µ̃P
Step 3. Train the generator

θ∗ = arg minθM̃MD
2
r f (P, Qθ) = arg minθ

∥∥∥∥µ̃P − µ̂Qθ

∥∥∥∥
2

F
Step 4. Sample proxy dataset from generator D′ ∼ Qθ∗

methods such as DP-SGD, this has the advantage that the choice of generator
model and training setup are not constrained by DP. Unlike for DP-SGD, batch
norm and regular minibatch sampling may be used for training, and a high
number of parameters in the model does not negatively impact the privacy-
utility trade-off.

In a proof accompanying the method, we provided a bound on the expected
absolute error between the non-private kernel-based MMD estimator and our
noisy random Fourier feature approximation. By using the triangle inequality,
we obtained two terms which, respectively, account for the error due to the
random feature approximation and due to DP release. We note that, varying
only the number of features d > 0, the random feature error scales in O(

√
1/d),

while the DP release error bound scales linearly in O(d). For a given privacy
budget and dataset size, the global minimum in this bound provides a heuristic
on how to choose d to minimize the overall expected error.

3.2.2 Evaluation

We tested DP-MERF on MNIST and FashionMNIST, on several tabular datasets,
and on an illustrative two-dimensional dataset of mixtures of Gaussians. The
tabular datasets included both imbalanced and heterogeneous data. To evaluate
the quality of our trained models, we had them generate proxy datasets, which
we used to train a number of simple classifier models from the scikit-learn
library [119]. The trained models were tested on the real test set to indicate
how useful the private proxy would be in place of the real data in downstream
classification tasks. In terms of this downstream metric, DP-MERF yielded
competitive results, especially in the high privacy regime. We illustrate this
in Figure 3.3, where we show the average downstream accuracy as a function
of the size of the synthetic training set. This not only showed that MP-MERF
outperforms GAN-based methods despite a much tighter privacy budget (ε = 1),
but also provided insight about the effective dataset size for each method, which
we defined as the point at which adding more synthetic samples no longer
improved accuracy. Although both real data and synthetic data generated
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Real Data

DP-CGAN

(ϵ = 9.6)

DP-GAN

(ϵ = 9.6)

GS-WGAN

(ϵ = 10)

DP-MERF

(ϵ = 1)

DP-MERF

(ϵ = 0.2)

DP-HP

(ϵ = 1)

Figure 3.2: Generated MNIST and FashionMNIST samples from DP-MERF, DP-HP
and comparison models with different levels of privacy. (Adapted from Fig.
2 in Manuscript 2 and Fig. 4 in Manuscript 3.)

(a) MNIST (b) FashionMNIST

Figure 3.3: We compare the real data test accuracy as a function of training set size for
models trained on synthetic data from DP-HP and comparison models. The
confidence intervals show 1 standard deviation. (Adapted from Fig. 3 in
Manuscript 3.)
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from a non-DP MMD embedding showed improvements up to the full dataset
size of 60, 000, DP-MERF and GAN-based methods stopped benefiting from
additional data after around 3, 000 to 6, 000 samples on MNIST, indicating that
any additional samples were mostly redundant. On FashionMNIST DP-GAN
and DP-CGAN showed an even smaller effective dataset size between 300 and
600 samples, while GS-WGAN and DP-MERF produced redundant data after
around 1, 200 and 3, 000 samples, respectively.

While other models, such as GS-WGAN [33] shown in Figure 3.2 produced
samples of higher visual quality than DP-MERF, their downstream utility
for classification was lower. This apparent inconsistency is explained by an
experiment on 2D Gaussian mixtures data, which we display in Figure 3.4.
It shows that our method managed to cover all modes in the distribution,
while the GAN-based method DP-CGAN [155] dropped modes in high privacy
settings.

Data Samples
avg NLL ≈ 3.5

DP-CGAN (ϵ = ∞)

avg NLL ≈ 4.2
DP-CGAN (ϵ = 1)

avg NLL ≈ 5.2
DP-MERF (ϵ = 1)

avg NLL ≈ 4.2
DP-HP (ϵ = 1)

avg NLL ≈ 3.7

Figure 3.4: From left to right: 1): Data samples drawn from a Gaussian Mixture dis-
tribution (each color represents a class) to be learned. NLL denotes the
negative log likelihood of the samples given the true data distribution. 2):
CGAN (ϵ = ∞) generated data closely matches the real data. 3): DP-CGAN
at ϵ = 1, misses some modes, which is reflected in the higher NLL. 4): Syn-
thetic data samples generated by DP-MERF at ϵ = 1. DP-MERF captures all
modes at ϵ = 1, which is also reflected in NLL. 5): DP-HP shows a similar
behavior as DP-MERF, but improves NLL further. (Adapted from Fig. 1 in
Manuscript 2 and Fig. 2 in Manuscript 3.)

3.2.3 Improving DP data generation with Hermite polynomials

As an alternative to random Fourier features, we also explored kernel approxi-
mations based on Hermite polynomials. Our approach was based on the Mehler
formula [104], which allows us to approximate a one-dimensional Gaussian
kernel with a weighted sum of Hermite polynomials. These features are ordered
and require orders of magnitude fewer features to approximate a kernel to the
same quality. Since the number of features directly impacts the noise magnitude
required for DP release, HP features are a promising alternative to RFF.

In an evaluation equivalent to the one performed for DP-MERF, DP-HP
obtained significant improvements over DP-MERF both on 7 out of 8 tabular
datasets and on MNIST and FashionMNIST. For example, on MNIST, the
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average downstream accuracy over 12 models improved from 65% for DP-
MERF to 73% for DP-HP. In figure 3.3, we see that DP-HP also exhibited a larger
effective dataset size than DP-MERF on MNIST, showing improvements up to a
dataset size of around 12, 000 samples.

The main drawback of the DP-MERF and DP-HP approaches was that while
yielding good results on tabular and MNIST type data, they did not scale well to
more complex datasets. The data-independent features are a key factor limiting
the method, as they do not incorporate any kind of domain prior.

3.3 scaling dp data generation to complex
data through public features

Past research on DP deep learning has shown that access to auxiliary public
data, which is similar to the private data to some extent, but does not require
privacy-preserving treatment itself, leads to significantly better performance
[1, 37, 87, 94, 105, 156, 169, 170]. The key advantage is that this data may be
used to pretrain portions of the machine learning model without exhausting
the privacy budget. Through pre-training, the model gains a strong domain
prior, which is necessary for complex data domains such as images or natural
language. The model can then be fine-tuned on the private data using far fewer
iterations than would be necessary when training from scratch.

3.3.1 Method

We used this finding to improve our method based on mean embeddings and
scale it to more complex datasets. Rather than using public data to pre-train our
deep generative model, we used deep learning classifiers trained on public data
as feature extractors in place of the random Fourier features. Since the classifiers
were trained to distinguish data from the given domain (e.g. natural images),
they extract features from the data, which are relevant for this particular domain.

While requiring available public data in the same domain somewhat limited
the scope of our method, we showed that in the domain of natural images, where
public data is readily available at a large scale, this approach led to significant
improvements. Building on Santos et al. [135], who had previously explored
this approach in the non-private setting, we constructed dataset embeddings
from pre-trained VGG19 and ResNet18 image classifiers by gathering the first
two moments of these features. As in DP-MERF, we privately released this
embedding and trained a generator model in a minibatch fashion to match
this embedding using an MMD objective. Following [135], we used a moving
average loss to improve stability.
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After finding that the method tended to overfit to the embedding on some
datasets, we designed a DP early stopping method, which uses a second private
embedding as a proxy for the FID score and halts training when the proxy
loss increases. We allocated a small amount of our privacy budget to this
stopping criterion. Since the proposed method used perceptual features instead
of random ones, we named it DP Mean Embeddings with Perceptual Features
(DP-MEPF).

3.3.2 Evaluation

We conducted experiments on the 28× 28 pixel grayscale datasets MNIST and
FashionMNIST (784 features), as well as the significantly more complex color
image datasets Cifar10 at 32 × 32 resolution (3072 features) and CelebA at
32× 32 and 64× 64 resolution (12288 features). We evaluated our models based
on the accuracy of the downstream classification on the labeled datasets and
Fréchet Inception Distance (FID) on the color images. Due to the lack of other
published methods that used auxiliary public data for DP generative modeling,
we created our own baseline by pretraining a DC-GAN on ImageNet and fine-
tuning it with DP-SGD on Cifar10 and CelebA. Furthermore, we compared
DP-MEPF with existing methods, which did not use auxiliary data. The latter
comparisons were not on equal footing since we accessed auxiliary data, but
their purpose was to highlight the leap in scale that using these data enabled.
DP-MEPF outperformed all of our baselines, with particularly stark contrast
on the more complex color image datasets. On CelebA (32× 32) for instance,
at (ε = 1, δ = 10−6)-DP, DP-MEPF achieved an FID score of 17.2, a significant
improvement over both the 81.3 score of our pre-trained GAN baseline and
the 71.8 score of DP Diffusion Models, the highest score from a method that
does not use auxiliary data. A comparison of images generated by different
methods is shown in Figure 3.6. Cifar10 was the most challenging dataset
that we tested, as it was both more diverse and smaller than CelebA. Here, at
(ε = 1, δ = 10−5)-DP, our method fared slightly worse with an FID score of 43.0,
but it was still significantly better than the GAN baseline with a score of 74.9.
On labeled Cifar10, DP-MEPF showed worse scores of 54.0, due to computing a
separate embedding per class and thus having to privatize a higher-dimensional
overall embedding. The downstream accuracy on Cifar10 also decreased in high
privacy settings, falling from 53% at (ε = 10, δ = 10−5)-DP to only 33.2% at
(ε = 1, δ = 10−5)-DP. Generated images at different levels of DP are shown in
Figure 3.5.

Although we did test several other types of encoder networks, including
ResNet [69], ConvNext [98] and EfficientNet [152], VGG [141], and in particular
VGG19 significantly outperformed alternative models. The reason for this
remains unclear. While larger embeddings tended to perform better within the
same model class, ResNet101 and ResNet152 models yielded FID scores that
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Real Data

ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2 ϵ = ∞ ϵ = 10
DP-MEPF (ours) DP-MERF

Figure 3.5: Labeled Cifar10 samples from DP-MEPF and DP-MERF. Each row corre-
sponds to a different label. (Adapted from Fig. 5 in Manuscript 4.)

were more than 20 points higher than VGG19 despite having an equal or higher
number of features.

Our experiments demonstrated that domain-specific features allowed our
method to scale to datasets of higher complexity that were out of reach of
generative models that do not use public data. Thanks to the single mean
embedding release, we still obtained good results in the high privacy setting,
although the linear scaling of embedding size in the number of classes became
more of a problem than it was in DP-MERF, as embeddings were about one
order of magnitude larger.

We further provided a bound on the approximation error of the MMD loss,
which proves that the error introduced by the Gaussian mechanism decays at a
rate of at least O(1/n) with increasing number of samples. The approximation
error between empirical MMD and the true distribution MMD is known to
decrease at a significantly slower rate of O(1/√n) [51], indicating that for a suffi-
cient sample size, the approximation error due to privacy becomes negligible.
This proof matched our empirical findings, as utility above a certain ε value
depending on the dataset was nearly unaffected by privacy and equaled the
non-DP utility.
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Real Data DP-MERF (ϵ = 10)

DP-Sinkhorn (ϵ = 10)

Ours (ϵ = 10)

Ours (ϵ = 1)

Ours (ϵ = 0.2)

pre-trained DP-GAN (ϵ = 10)

pre-trained DP-GAN (ϵ = 1)

pre-trained DP-GAN (ϵ = 0.2)

DP-Diffusion (ϵ = 10)

Figure 3.6: Synthetic 32× 32 CelebA samples generated at different levels of privacy.
Samples for DP-MERF and DP-Sinkhorn are taken from Cao et al. [23] and
DP-Diffusion samples are taken from [45]. The pre-trained GAN is our
baseline utilizing public data. Even at ϵ = 0.2, DP-MEPF yields samples of
higher visual quality than the comparison methods. (Adapted from Fig. 2

in Manuscript 4.)



4
D I S C U S S I O N

In this chapter, we put the presented work into a broader perspective by
discussing relevant related and follow-up work, as well as limitations of our
approach and potential avenues for future research. Grouping the chapter into
two sections according to theme, we begin with our work on interpretability in
DP and then discuss our work on DP generative models.

4.1 interpretable dp machine learning

4.1.1 Related and follow-up work in context

Besides our work, the trade-off between differentially private training and
interpretability in DL models has received little direct attention in research so
far. This may stem from the fact that DP deep learning models currently do not
see much practical use and therefore the problem of limited interpretability is
largely theoretical. If DP deep models are adopted in practice, the problem will
likely become more apparent and need to be revisited.

A closely related topic is the question of how model explanations can leak
information about the model itself [5, 106] or its training data [61, 138]. In this
domain, Shokri, Strobel, and Zick [138] showed that gradient attribution expla-
nations can be used for membership inference attacks even in black-box settings
where an adversary does not have access to the trained model. In response,
Patel, Shokri, and Zick [118] designed a method to make such explanations DP.
While they provided guarantees on the quality of their explanation relative to
the non-DP counterpart, a limitation of their approach is that it only provides
DP for an explanation dataset, which may be used to generate explanations. If
the model is DP, the DP guarantee with respect to the training data is amplified
by their method, but for non-DP models, no concrete guarantee for the actual
training data can be provided. This is expected, as the explanations are applied
after training and do not quantify the sensitivity of the model with respect to
the training data. So even in this setting, where the adversary only accesses the
model through explanations, the one reliable protection of the training data
remains DP model training.

31
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Similarly to our approach in DP-LLMs, efforts to combine interpretable
machine learning with differential privacy are also presented in inherently more
interpretable models such as boosting [112] and decision trees [7, 56].

4.1.2 Limitations and future directions

While choosing inherently interpretable DP models or training non-private
models on DP proxy data are valid answers to the trade-off between privacy
and interpretability in DNNs, there are other avenues worthy of exploration.
Since the publication of our study, the state-of-the-art in DP deep learning
has advanced significantly, in particular through application to larger datasets
and the use of public data, as well as better hyperparameter choices such as
extremely large minibatch sizes. Given the improved performance shown, for
example in [37, 134], it stands to reason that these new models should learn
more useful features than those investigated in our work. It would thus be
interesting to study whether the problem of lacking interpretability persists in
these models or whether it disappears thanks to higher quality features. If the
problem is still present, however, DP-LLMs are unlikely to offer a solution, as
its shallow features will not scale well to data of this complexity.

Although gradient attribution methods are the most actively researched ap-
proach to DNN explanation according to Zhang et al. [172], they are by no
means the only ones. It is not clear from our research how private classifiers
differ from non-private ones under feature visualization [100, 114], concept
activation vectors (TCAV) [83], or surrogate models such as LIME [130]. Investi-
gating these differences is especially interesting now that DP classifiers have
been trained on natural images at ImageNet scale [37, 134], since this is the
target domain of much of the existing interpretability literature, and certain
methods such as TCAV and LIME are designed for this domain, in particular,
making use of natural concepts and image segmentation, respectively.

4.2 dp deep generative models

4.2.1 Related and follow-up work in context

When DP-MERF was published, it outperformed existing state-of-the-art GAN-
based DP generative models [155, 164]. Since then, a large variety of new
methods for DP data release have been developed, which we will discuss in the
following.

In the one extension to DP-MERF not developed by us, Liew, Takahashi,
and Ueno [96] add a critic to the model, which aims to increase the training
loss by adversarially re-weighing the importance of the randomly sampled



4.2 dp deep generative models 33

frequencies. The weighting is parameterized as a Gaussian probability density
function over the frequencies with learned parameters µ and σ. Decreasing
the weight of frequencies with small losses and increasing the weight of those
with large losses is intended to favorably rescale the loss landscape, thus
simplifying the optimization. The results in the paper, however, show only
small improvements within the margin of error (cf. Table 1 in [96]) and are
based on incomplete empirical evaluation,1 so it is not clear if the method
constitutes a real improvement.

Despite the critique raised by us and others [160], DP generative models
continue to be presented with large values chosen for ε. For example, Bie,
Kamath, and Zhang [14] significantly improve the performance of DP-GAN
models and show results for ε = 1 and ε = 10, but still only outperform
DP-MERF in the lower privacy setting. Works such as DP-Sinkhorn [23] and
DPD-fVAE [120] only publish results for ε = 10. Notably, recent work on DP
diffusion models [45] has set a new state-of-the-art for both high and low privacy
settings, publishing results for ε ∈ {0.2, 1, 10} on MNIST, which will hopefully
help to place more focus on the high privacy setting in the future. However, on
the more challenging CelebA dataset, the same work only reports results for
ε = 10. Diffusion models (DM) [147] have surpassed GANs as state-of-the-art
generative models in the non-private setting. Dockhorn et al. [45] argue that
they are also a particularly good fit for DP training with DP-SGD because DMs
already incorporate noisy updates into their training and generate samples over
multiple denoising steps, where each step is simple and easy to learn compared
to the generative process of, for example, GANs. Through pre-training diffusion
models on public data, Ghalebikesabi et al. [59] have further improved on these
results and scaled them to the low resolution natural image dataset Cifar10 [86]
and the medical histopathology dataset Camelyon17 [12]. In the low privacy
setting, this method outperforms DP-MEPF on Cifar10 by a significant margin,
obtaining an FID of 15.1 compared to 37.0 for our method at ε = 5. At ε = 1 the
difference decreases with FIDs of 25.2 and 43.0, respectively, indicating that the
diffusion model is more strongly affected by the necessary increase in noise.
Ghalebikesabi et al. [59] do not report results for smaller privacy budgets. On
MNIST and Camelyon17, the experiments were performed at ε = 10. Lyu et al.
[99] have developed a more compute-efficient alternative to [59] by using a
smaller Latent Diffusion Model [131] and only fine-tuning the attention modules
and a conditioning embedder. This significantly reduces the number of trained
parameters by around 95% and GPU hours by over 98%. While the smaller
model performs worse in low DP settings, with FID 19.2 compared to 9.8 for

1 Experiments only show "FID" and "KID" [15, 70] scores for MNIST and FashionMNIST, uncon-
ventionally not using features from the Inception DNN [150], but from a LeNet [90] classifier.
The visual similarity between the PEARL and DP-MERF samples does not support the claimed
improvement in the FID score. Down-stream accuracy evaluation is limited to two tabular
datasets, Adult and Credit.
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[59] at ε = 10 on Cifar10, reducing the number of parameters pays off in high
DP settings, where it matches the performance of [59] at ε = 1 with an FID
score of 25.2.

Another promising approach to DP data release is to forego training of a
generative model and instead directly create a small dataset of private samples.
These methods are based on recent non-DP work on dataset distillation (or
condensation) which aims to generate a small support set of samples that behave
like the full dataset when training specific models. Chen, Kerkouche, and Fritz
[32] adopt the dataset condensation approach of [173], which optimizes the
support set by matching the gradients between two versions of the same model,
where one is trained with real data and the other is trained on the support
set. The gradient of the model trained on real data is released privately with
DP-SGD. In principle, the training task on which the models should match can
be freely chosen, but published experiments use classification.

Vinaroz and Park [161] construct DP-KIP, a differentially private version
of the kernel inducing points method (KIP) [110, 111]. This method uses the
neural tangent kernel [76] of an untrained encoder network as a proxy for
the behavior of the model during training and optimizes the data on a kernel
ridge regression objective. In DP-KIP, the gradient update to the support set
can be computed per training sample and thus can be clipped to have bounded
sensitivity and released with DP-SGD. This makes the dimension of the private
release independent of the size of the DNN and instead depends on the size of
the support set, which is often significantly smaller. As a result, DP-KIP obtains
better results in downstream classification tasks.

A further detail that sets these methods apart from generative models is that
the generated datasets are created specifically for a downstream task through
the training objective. This means the generated data is trained to perform like
the real data on this one specific task, but need not resemble the real data in
other aspects. For instance, the images generated by DP-KIP look like noise
and yield a bad FID score, but can still be used to train an accurate classifier.
This focus on a specific task makes the method more narrow, but may also be
desirable in applications where the proxy data is intended to be used for a
specific, well-defined task which is known in advance.

Lin et al. [97] also circumvent the need for training a generative model and
instead construct a DP dataset by repeatedly querying large foundation models
such as Stable Diffusion [131] through an API and selecting samples through
a DP evolutionary algorithm. Unlike [32, 161], this approach implicitly relies
on public data that trained the foundation models. On datasets that contain
images close to the training data of the foundation model, such as CIFAR10, the
method achieves excellent sample quality at a small privacy budget with ε < 1.
However, the method performs significantly worse on samples that require a
domain shift away from the training data, such as Camelyon17.
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In summary, approaches to DP data release based on training deep generative
models via DP-SGD have achieved impressive improvements thanks to the
introduction of diffusion models and auxiliary data [45, 59]. However, these
methods still fare considerably worse in high DP settings due to the high
privacy cost of training a large model. Alternative methods that avoid training
a generative model [32, 161] or the use of DP-SGD all-together [97] lose less
utility in high DP settings due to more economic DP releases, but face other
limitations such as poor scaling to complex data [32, 161] or strong dependence
on similar public training data [97].

4.2.2 Limitations and future directions

Our presented line of embedding-based DP generative models faces several
challenges. We begin this section by discussing two general unsolved problems
in the field of DP machine learning, which manifest in our approach as well,
fairness and the role of public data, before going into topics that are specific to
our approach.

Research has discovered that there is a trade-off between DP and the fair
representation of minorities. This trade-off has since become an active field
of study [8, 29, 36, 43, 53, 77, 101, 136, 158, 159, 165, 174]. It has both been
shown that fairness in non-DP models can make minorities more susceptible
to membership inference attacks [29] and that unfair biases can be amplified
when a model is trained with DP guarantees [8]. This relationship follows
intuitively from the definition of DP, since the influence of minorities and
outliers in the data on the output must be limited in order to preserve their
privacy. It nevertheless poses a severe problem for DP, especially in the realm
of DP data release, as it interferes with the goal of separating DP release from
the ML workflow by providing an accurate proxy dataset. Biases which may be
corrected for in the real data are harder to correct in proxy data when the proxy
data for minorities is of lower quality. Solutions may instead require greater
effort to adequately represent minorities during data collection.

The use of auxiliary public data in DP-MEPF and DP deep learning in
general creates several unsolved questions about responsible data use which
have recently been formulated in a position paper by Tramèr, Kamath, and
Carlini [157], which we briefly touched on in Section 1.2.2 and will elaborate
here. One primary concern is that what is generally treated as public data may
nonetheless contain sensitive information, as large text or image datasets are
typically created by programs scraping the Internet without human oversight.
For this reason, they may contain data that was released involuntarily or shared
exclusively for a specific context. As such, DP deep learning may still cause
harm by revealing information that was never intended to be public. A second
concern is that for many application domains public data may not be as readily
available as for generic natural images or text. This means that experiments in
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these domains may promise better performance than can be obtained in realistic
settings, where the shift between a public source domain and the private target
domain is considerably larger. Following these arguments, the responsible
application and effectiveness of public data in DP face limitations that are not
immediately apparent. Progress on this issue requires careful development of
consensus data collection practices both for research and for deployment of DP
methods using auxiliary data. Irrespective of these hurdles, the authors in [157]
agree that public data has played a vital role in advancing DP deep learning.
The most recent works on DP generative modeling [45, 59, 97], have started to
take some of the criticisms into account by including the Camleyon17 dataset in
experiments, which requires a significantly larger domain shift than datasets
like Cifar10 or CelebA.

In addition to these two broader issues in DP deep learning, we also now
discuss three limitations of our proposed method which warrant further investi-
gation.

First, the use of the product kernel for labeled datasets, which computes a
separate embedding for each class, is a conceptually simple way to produce la-
beled data, but it comes with the downside of creating overly large embeddings
and thus a worse signal-to-noise ratio. This became particularly apparent in the
Cifar10 experiments with DP-MEPF, where the labeled data yielded significantly
worse results in the high-privacy regime due to the ten times larger embedding
it required. This prevents the method from scaling to datasets with higher class
counts, such as ImageNet (1000 classes). A possible solution to the issue may be
found in hybrid embedding approaches, where one part of the embedding is
shared across all classes to capture the common features and a second, smaller
part of the embedding is computed per class and captures the distinguishing
features of each class. In such an approach, only the second part of the embed-
ding would scale in the size of the dataset, leading to a smaller total embedding.
How the individual embeddings should be chosen and what weight should be
assigned to each in the MMD objective are empirical questions left to future
work. A potential starting point with an embedding based on DNN features
would be to share lower-layer features across classes, under the assumption that
simpler features will be widely shared across classes, and to collect features
from higher layers per class, since those features can be expected to be highly
differentiated between classes. However, brief preliminary experiments with
this setup have not yet yielded improvements.

Second, although our application of DP-MEPF was exclusive to image data
because it is the most common data domain for benchmarking DP deep gen-
erative models, the method is applicable to other domains as well, as long as
public can be utilized to learn a strong domain prior. The study of other such
data domains with active work on domain adaptation, for instance, natural
language text data [127], audio [88], or social graphs [122, 166] would be a
natural extension of our work. For image data, the abundance of pretrained
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classifiers made them a natural first choice as feature extractors, but the method
is neither limited to the domain of vision nor to the use of classifier models as
encoders.

Third, while perceptual features have shown clear improvements over data-
agnostic features, such as random Fourier features or Hermite polynomials, it is
not clear which of the features are relevant. It is, in fact, likely that some of them
are redundant or uninformative, as they were not directly optimized to encode
the target dataset. Since the feature embedding must be released privately and
the required noise scales with its dimensionality, there is a strong incentive
to reduce embedding size by removing all uninformative features. However,
estimating the importance of these features, especially in a privacy-preserving
way, is a challenging problem that needs to be addressed in future research.





5
C O N C L U S I O N

In this thesis, we have developed machine learning models for interpretable
classification and data generation under strong differential privacy guarantees.
By questioning the standard approach of training deep models with DP-SGD,
we have found methods that achieve better utility at high levels of privacy and
demonstrated that the most successful non-DP machine learning methods can
be suboptimal choices in differentially private settings.

After identifying the trade-off between utility, privacy, and interpretability
in deep classifiers, we developed DP locally linear maps as an inherently inter-
pretable alternative to DP DNNs, which we discussed in Section 3.1. With ex-
periments on MNIST, FashionMNIST, and the Henan Renmin Hospital dataset,
we demonstrated that our model preserves better interpretability at the same
levels of DP and utility. This satisfies our first research objective of improving
interpretability in DP deep classification models.

Summarized in Sections 3.2 and 3.2.3, we addressed our second research
objective of achieving DP data release without DP-SGD by designing DP Mean
Embeddings with Random Features and its extension based on Hermite polynomial
features. Our method is based on releasing dataset mean embeddings, which are
then used to train a deep generative model via a maximum mean discrepancy
objective. We evaluated our approach on several tabular datasets and small
image datasets MNIST and FashionMNIST, measuring the quality of the gen-
erated proxy data through its usefulness for training models on downstream
tasks. Compared to existing DP deep generative models, our approach yielded
state-of-the-art utility at a significantly higher level of DP, maintaining good
performance even in the high-DP regime at ε ≤ 2.

In pursuit of our third research goal of improving DP data release methods
with the help of public data, we used features of trained DNN classifiers to
construct dataset embeddings with a strong domain prior, leading us to DP
Mean Embeddings with Perceptual Features. As summarized in Section 3.3, we
evaluated our method on the image datasets CelebA, Cifar10, MNIST and
FashionMNIST and reported downstream accuracy and FID score as quality
measures. With the help of public data, our method outperforms all comparison
methods by a significant margin on the more complex datasets, including our
baseline of a pre-trained GAN with DP fine-tuning. Through the completion
of these individual objectives, we have made several significant contributions
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to our overall research aim of developing DP machine learning methods for
high-dimensional data in high-privacy settings.

As a final outlook, we now consider the general direction in which the field
of DP deep learning is heading and the positioning and contribution of our
work in these developments.

As described in [14], there are two schools of thought in DP deep learning
research, based on different intuitions about how much established knowledge
about non-DP deep learning still holds true in the private setting. The first
approach assumes that the two settings resemble each other enough, such
that the most advanced methods from non-DP deep learning will be optimal
in the private setting as well, usually with minimal modifications and by
employing DP-SGD as a straightforward means of DP release. The opposing
perspective posits that introducing DP constraints changes the demands on
model training so significantly that other methods, specifically selected for this
setting, may be more successful. Motivated by the many apparent problems with
DP-SGD, our work falls within this second line of thinking. Our approaches have
achieved state-of-the-art results in competition with DP-SGD-based methods,
demonstrating that alternative methods are viable. However, recent advances,
such as DP diffusion models [45] and ImageNet level classification [37, 134],
have shown that the inefficiencies of DP-SGD are not as much of a limiting factor
as previous results suggested. Both approaches remain in close competition,
but show different strengths. Given these trends, we expect that DP-SGD will
ultimately become a strong default option for DP deep learning in settings
where large amounts of data are available (both private and public). Tasks with
limited data or a particularly small privacy budget will continue to require
specialized solutions, such as the methods we have proposed in this work.

Despite its increasing popularity in research and recent breakthroughs, DP
is currently only deployed by a handful of companies and institutions which
possess both the required technical expertise and the vast scale of data that
make it viable, such as Google [17, 52, 103], Apple [153, 154], Microsoft [42],
Uber [79] and the US Census [2]. It does not see the widespread adoption that
would be necessary to make privacy-preserving machine learning the norm.
We believe that the practical application of DP is held back by four key factors:
organizational overhead, prohibitive utility trade-off, a missing consensus on
the correct choice for ε, and a lack of incentives. In the following, we discuss
how each factor may be addressed.

overhead. The adoption of DP introduces several new steps to the existing
machine learning workflow, adding a new layer of complexity to the manage-
ment of machine learning projects. For each dataset, a privacy budget must
be determined and divided among all individual data accesses. This requires
careful planning, as each analysis performed on the data will expend valuable
privacy budget. DP data release offers a way around many of these added
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complexities by providing a DP proxy dataset, which may be used in place
of the real data without further privacy cost or the need to change how ML
projects are organized.

utility. The perhaps most readily apparent issue holding back DP adoption
is the significant drop in utility one incurs compared to the non-DP setting. For
several years, the focus of DP ML research has been relegated to toy problems
such as MNIST, while non-DP deep learning has tackled problems of ever-
increasing complexity. Whether this performance gap will ultimately narrow
is unclear and depends, for instance, on how important memorization is for
successful deep learning models (as posited by [18, 55]). Nevertheless, the use
of public data has enabled significant leaps in scale for DP deep learning to a
point where practical application seems much more viable.

consensus on ε . Putting DP into practice, requires a consensus on what
values for (ε, δ) constitute a reasonable level of privacy for a given application.
Despite the centrality of this question, only limited research has been conducted
on the matter [3, 72, 91] and the published values in the DP ML literature vary
wildly from ε = 0.1 to ε = 10. In light of the associated privacy-utility trade-off,
one cannot expect to reach a definitive answer to this question through research
alone. We believe that standards will likely develop with the introduction of
legal privacy requirements over the coming years. Nevertheless, experts must
help inform this debate so that a meaningful level of privacy becomes the norm
and practitioners have a reliable baseline when deploying DP methods. This
effort begins with the evaluation of new models at reasonable levels of privacy,
so research results provide an accurate representation of what is possible in
practice. Dedicated research into DP relaxations (e.g. [60, 85, 160]) or guarantees
against weaker adversaries (e.g. [67, 92]) may also help in making larger ϵ-values
feasible if they can prove additional types of privacy protection that follow from
DP.

incentive. The final obstacle to the adoption of DP is the lack of legal and
economic incentives. Ensuring data privacy necessarily comes at some cost
of increased workload and diminished utility. Thanks to the aforementioned
research, these costs are becoming manageable in some application domains
and may decrease further over time, but organizations are unlikely to incur
them without a concrete reason. Researchers can raise awareness of existing
privacy issues to encourage responsible use of data [24–27, 139, 168], but the
most effective incentives are likely to come from regulation. With the Blueprint
for an AI Bill of Rights [137] in the United States and the AI Act [35] in the
European Union, both the largest and the third largest economies in the world
have submitted proposals for the regulation of AI and Machine Learning, and
both target data privacy as a central issue. If these proposals are adopted into
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laws with strong data privacy regulations, DP is poised to become a prime
technological solution to meet such privacy demands.

As we can see, all four factors which have held DP machine learning back in the
past are undergoing rapid changes that promise a partial solution. Our work
has contributed both to the goal of reducing overhead through DP generative
modeling and to the goal of better utility with improvements in interpretability
and generated data quality, including explorations of auxiliary public data.
Through our focus on the high-DP setting, we have provided results that will
remain viable when a consensus on acceptable ε values is established. As such,
DP machine learning is about to transition from a largely academic topic to
a deployed technology. This shift will likely reveal a multitude of unexplored
problems, promising an exciting future for DP in both research and application.
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Abstract

Interpretable predictions, which clarify why a machine learn-
ing model makes a particular decision, can compromise pri-
vacy by revealing the characteristics of individual data points.
This raises the central question addressed in this paper: Can
models be interpretable without compromising privacy? For
complex “big” data fit by correspondingly rich models, bal-
ancing privacy and explainability is particularly challenging,
such that this question has remained largely unexplored. In
this paper, we propose a family of simple models with the
aim of approximating complex models using several locally
linear maps per class to provide high classification accuracy,
as well as differentially private explanations on the classifica-
tion. We illustrate the usefulness of our approach on several
image benchmark datasets as well as a medical dataset.

1 Introduction

The General Data Protection Regulation (GDPR) by the
European Union imposes two important requirements on
algorithmic design, interpretability and privacy (Voigt and
Bussche 2017). These requirements introduce new standards
on future algorithmic techniques, making them of particu-
lar concern to the machine learning community (Goodman
and Flaxman 2016). This paper addresses these two require-
ments in the context of classification, and studies the trade-
off between privacy, accuracy and interpretability, see Fig. 1.

Broadly speaking, there are two options to take for gain-
ing interpretability: (i) rely on inherently interpretable mod-
els; and (ii) rely on post-processing schemes to probe trained
complex models. Inherently interpretable models are often
relatively simple and their predictions can be easily analyzed
in terms of their respective input features. For instance, in
logistic regression classifiers and sparse linear models the
coefficients represent the importance of each input feature.
However, modern “big” data typically exhibit complex pat-
terns, such that these relatively simplistic models often have
lower accuracy than more complex ones.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: Modern machine learning systems need to trade
off accuracy, privacy, and interpretability.

In order to soften this trade-off between interpretability
and accuracy (Fig. 1 B ), many post-processing schemes
aim to gain insights from complex models like deep neu-
ral networks. One prominent aspect of these approaches is
the use of gradient-based attributions (Selvaraju et al. 2016;
Ribeiro, Singh, and Guestrin 2016; Smilkov et al. 2017;
Sundararajan, Taly, and Yan 2017; Montavon et al. 2015;
Bach et al. 2015; Ancona et al. 2017).

In another line of research, many recent papers address
the concern that complex models with outstanding predic-
tive performance can expose sensitive information from the
dataset they were trained on (Carlini et al. 2018; Song, Ris-
tenpart, and Shmatikov 2017; Shokri and Shmatikov 2015;
Fredrikson, Jha, and Ristenpart 2015). To quantify privacy,
several approaches adopt the notion of differential privacy
(DP), which provides a mathematically provable definition
of privacy, and can quantify the level of privacy an algo-
rithm or a model provides (Dwork and Roth 2014). In plain
English, an algorithm is called differentially private (DP),
if its output is random enough to obscure the participation
of any single individual in the data. The randomness is typ-
ically achieved by injecting noise into the algorithm. The
amount of noise is determined by the level of privacy the
algorithm guarantees and the sensitivity, a maximum differ-
ence in its output depending on a single individual’s partic-
ipation or non-participation in the data (see Sec. 2 for the
mathematical definition of DP).

There is, however, a natural trade-off between privacy
and accuracy (Fig. 1 C ): A large amount of added noise
provides a high level of privacy but also harms prediction
accuracy. When the number of parameters is high, like in
deep neural network models, juggling this trade-off is very
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challenging, as privatizing high dimensional parameters re-
sults in a high privacy loss to meet a good prediction level
(Abadi et al. 2016). Therefore, most existing work in differ-
ential privacy literature considers relatively small networks
or assumes that some relevant data are publicly available to
train a significant part of the network without privacy vi-
olation to deal with the trade-off (see Sec. 5 for details).
However, none of the existing work takes into account the
interpretability of the learned models and this is our core
contribution described below.

Our contribution. In this paper, we study the trade-off be-
tween interpretability, privacy, and accuracy by making the
following three contributions.

• We propose a novel family of interpretable models: To
take into account privacy and interpretability (Fig. 1 A ),
we propose a family of inherently interpretable models
that can be trained privately. These models approximate
the mapping of a complex model from the input data to
class score functions, using several locally linear maps
(LLM) per class. Our formulation for LLM is inspired by
the approximation of differentiable functions as a collec-
tion of piece-wise linear functions, i.e., the first-order Tay-
lor expansions of the function at a sufficiently large num-
ber of input locations. With an adequate number of linear
maps, our local models permit a relatively slight loss in
accuracy compared to complex model counterparts. The
level of loss in prediction accuracy depends on the com-
plexity of data.

• We provide DP “local” and “global” explanations on
classification: Our model LLM, trained with the DP con-
straint, provides insights on the key features for classifica-
tion at a “local” and “global” level. A local explanation of
a model illustrates how the model behaves at and around
a specific input, showing how relevant different features
of the input were to the model decision. This is a typical
outcome one could obtain by probing a complex model
using existing attribution methods. However, our model
also provides a global explanation, illustrating how the
model functions as a whole and, in the case of classifica-
tion, what types of input the different classes are sensitive
to. This is what distinguishes our work from other existing
post-processing attribution methods.

• We propose to use random projections to better deal
with privacy and accuracy trade-off: We propose to
adopt the Johnson-Lindenstrauss transform, a.k.a., ran-
dom projection (Kenthapadi et al. 2013), to decrease the
dimensionality of each LLM and then privatize the result-
ing lower dimensional quantities. We found that exploit-
ing data-indepdent random projection achieves a signifi-
cantly better trade-off for high-dimensional image data.

We would like to emphasize that our work is the first to
address the interplay between interpretability, privacy, and
accuracy. Hence, this work presents not only a novel inher-
ently interpretable model but also an important conceptual
contribution to the field that will spur more research on this
intersection.

2 Background on Differential Privacy
We start by introducing differential privacy and a compo-
sition method that we will use in our algorithm, as well as
random projections.

Differential privacy. Consider an algorithm M and
neighboring datasets D and D′ differing by a single entry,
where the dataset D′ is obtained by excluding one datapoint
from the datasetD. In DP (Dwork and Roth 2014), the quan-
tity of interest is privacy loss, defined by

L(o) = log
Pr(M(D) = o)

Pr(M(D′) = o)
, (1)

whereM(D) andM(D′) denote the outputs of the algorithm
given D and D′, respectively. Pr(M(D) = o) denotes the
probability thatM returns a specific output o. When the two
probabilities in Eq. (1) are similar, even a strong adversary,
who knows all the datapoints in D except for one, could not
discern the one datapoint by whichD andD′ differ, based on
the output of the algorithm alone. On the other hand, when
the probabilities are very different, it would be easy to iden-
tify the exclusion of the single datapoint in D′. Hence, the
privacy loss quantifies how revealing an algorithm’s output
is about a single entry’s presence in the dataset D. Formally,
an algorithmM is called ε-DP if and only if |L(o)| ≤ ε, ∀o
and for all neighbouring datasets D,D′. A weaker version
of the above is (ε, δ)-DP, if and only if |L(o)| ≤ ε, with prob-
ability at least 1− δ.

Introducing a noise addition step is a popular way of
making an algorithm DP. The output perturbation method
achieves this by adding noise to the output h, where the noise
is calibrated to h’s sensitivity, defined by

Sh = max
D,D′,|D−D′|=1

‖h(D)− h(D)‖2, (2)

which is the maximum difference in terms of L2-norm, un-
der the one datapoint’s difference in D and D′. With the
sensitivity, we can privatize the output using the Gaus-
sian mechanism, which simply adds Gaussian noise of the
form: h̃(D) = h(D)+N (0, S2

hσ
2Ip), whereN (0, S2

hσ
2Ip)

means the Gaussian distribution with mean 0 and covariance
S2
hσ

2Ip. The resulting quantity h̃(D) is (ε, δ)-DP, where
σ ≥

√
2 log(1.25/δ)/ε (see Dwork and Roth (2014) for

a proof). In this paper, we use the Gaussian mechanism to
achieve differentially private LLM.

Properties of differential privacy. DP has two important
properties: (i) post-processing invariance and (ii) compos-
ability. Post-processing invariance states that applying any
data-independent mechanism to a DP quantity does not al-
ter the privacy level of the resulting quantity.

Composability states that combining DP quantities de-
grades privacy in a quantifiable way. The most naı̈ve way
is the linear composition (Theorem 3.14 in Dwork and Roth
(2014)), where the resulting parameter, which is often called
cumulative privacy loss (cumulative ε and δ), are linearly
summed up, ε =

∑T
t=1 εt and δ =

∑T
t=1 δt after the re-

peated use of data T times with the per-use privacy loss
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(εt, δt). Recently, Abadi et al. (2016) proposed the moments
accountant method, which provides an efficient way of com-
bining ε and δ such that the cumulative privacy loss is signif-
icantly smaller than that by other composition methods. The
resulting composition provides a better utility, meaning that
a smaller amount of noise is required to add for the same
privacy guarantee compared to other composition methods.

Random projections in the context of differential privacy
A variant of our method involves projecting each input onto
a lower-dimensional space using a Johnson-Lindenstrauss
transform (a.k.a., random projection) (Kenthapadi et al.
2013). We construct the projection matrix R by drawing
each entry from N (0, 1/D′) where D′ is the dimension of
the projected space. This projection nearly preserves the dis-
tances between two points in the data space and in the em-
bedding space, as this projection guarantees low-distortion
embeddings. Random projections have been used to ensure
DP (Blocki et al. 2012). However, here we only utilize them
as a convenient method to reduce input dimension to our
learnable linear maps. Since the random filters are data-
independent, they do not need to be privatized.

3 Our method: Locally Linear Maps (LLM)
Motivation. As mentioned earlier, complex models such
as deep neural networks tend to lack interpretability due
to their nested feature structure. Gradient-based attribution
methods can provide local explanations by computing a lin-
ear approximation of the model at a given point in the in-
put space (see Sec. 5 for more details). Such approximations
can be seen as sensitivity maps that highlight which parts of
the input affect the model decision locally. However, these
approaches lack global explanations that provide insight on
how the model works as a whole, e.g., it is not straightfor-
ward to obtain class-wise key features. Furthermore, exist-
ing methods in the DP literature do not take into account the
interpretability of learned models. In order to satisfy both in-
terpretability and privacy demands, we desire a model with
the following properties:
1. It can provide both local and global explanations.
2. It has efficient ways to limit in the number of parameters

to achieve a good privacy accuracy trade-off.
3. It is more expressive than standard linear models to cap-

ture complex patterns in the data.

Locally Linear Maps (LLM). We introduce a set of lo-
cal functions fk for each class k, and parameterize each fk
by a combination of M linear maps denoted by gkm. The M
linear maps are weighted separately for each class using the
weighting coefficients σ(x)km, which determine how impor-
tant each linear map is for classifying a given input:

fk(x) =
M∑

m=1

σ(x)km gkm(x), s.t. gkm(x) = wk
m

�x+ bk
m,

and σk
m(x) =

exp
[
β · gkm(x)

]
∑M

m=1 exp [β · gkm(x)]
. (3)

One way to choose the weighting coefficients is by assigning
a probability to each linear map using the softmax function
as in Eq. (3). We introduce a global inverse temperature pa-
rameter β in the softmax to tune the sensitivity of the relative
weighting – large β (small temperature) favors single filters;
small β (high temperature) favors several filters. The soft-
max weighting is useful for avoiding non-identifiability is-
sues of parameters in mixture models. More importantly, the
softmax weighting assigns an importance to each map par-
ticular to this example. In other words, it provides rankings
of filters for different examples even if they are classified as
the same class. We revisit this point in Sec. 4. We train the
LLM by optimizing the following (standard) cross-entropy
loss:

L(W,D) = −
N∑

n=1

K∑

k=1

yn,k log ŷn,k(W), (4)

where we denote the parameters of LLM collectively by W,
and we define the predictive class label by the mapping from
the pre-activation through another softmax function.

ŷn,k(W) = exp(fk(xn))/[
K∑

k′=1

exp(fk′(xn))] (5)

When the number of filters per class is one, this reduces to
logistic regression; increasing the number of filters adds ex-
pressive capacity to each class. The classification is approx-
imately linear at the location of the input, which means that
locally each model decision from a certain input can be ex-
plained using only the active filters, as we illustrate in the
remainder of the paper. In addition the shallow nature of the
model lends itself to global interpretability, as the filter-bank
for each class is easily accessible and provides an overview
of the inputs this class is sensitive to.

LLM as neural network approximations. One interpre-
tation of LLM is linearizations of neural networks. Sup-
pose we trained a neural network model on a K-class clas-
sification problem, where the network maps a high dimen-
sional input x ∈ RD to a class score function s(x), i.e.,
the pre-activation before the final softmax, where s(x) is a
K-dimensional vector with entries sk. Denote the mapping
φ : x �→ s(x) and the parameters of the network by θ.
We would like to find the best approximation to the func-
tion φ, which presents interpretable features for classifica-
tion and also guarantees a certain level of privacy. For this,
we take inspiration from gradient-based attribution methods
for deep neural networks (Ancona et al. 2017). These meth-
ods assume a set of attributions, at which the gradients of a
classifier with respect to the input are maximized, and that
the gradient information provides interpretability as to why
the classifier makes a certain prediction. More specifically,
these consider a first order Taylor approximation of φ,

φ(x) ≈ φ(x0) + φ′(x0)
�(x− x0) = φ′(x0)

�x+α,

where φ′(x0) =
[

∂
∂xφ(x)

]
x=x0

, and shift term α =

φ(x0)−φ′(x0)
�x0. Therefore, finding good input locations
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x0 to make the first order approximation to the function φ
and using their gradient information would reveal the dis-
criminative features of a given classifier.

There are two problems in directly using this approach.
First, it is challenging to identify which input points (and
how many of them) are informative to make an interpretable
linear approximation of the classifier. Second, directly using
φ and its gradients violates privacy, as φ contains sensitive
information about individuals from the training dataset. Pri-
vatizing φ requires computing the sensitivity, which deter-
mines an appropriate amount of noise to add (see Sec. 2). In
case of deep neural network models, we cannot analytically
identify one datapoint’s contribution to the learned function
φ appeared in Eq. (2). Thus, we cannot use the raw function
φ and its gradients, unless we privatize the parameters of
φ1. For these reasons, extracting a private approximation of
φ is difficult and we instead opt to train a model of the same
form from scratch, leading us to LLMs, as described above.

3.1 Differentially private LLM
To produce differentially private LLM parameters W̃, we
adopt the moments accountant method combined with the
gradient-perturbation technique, called, differentially pri-
vate stochastic gradient descent (DP-SGD) (Abadi et al.
2016). In our work, we perturb gradients at each learning
step when optimizing Eq. (4) for all LLM parameters W;
and compute the cumulative privacy loss using the moments
accountant method.

When we perturb the gradient, we must ensure to add the
right amount of noise. As there is no way of knowing how
much change a single datapoint would make in the gradi-
ent’s L2-norm, we rescale all the datapoint-wise gradients,
ht(xn) := ∇WL(W,Dn) for all n = {1, · · · , N}, by a
pre-defined norm clipping threshold, C, as used in (Abadi
et al. 2016), i.e., h̄t(xn) ← ht(xn)/max(1, ‖ht(xi)‖2/C).
Algorithm 1 summarizes this procedure. We formally state
that the resulting LLM is DP in Theorem 3.1.

Algorithm 1 DP-LLM for interpretable classification
Require: Dataset D, norm-clipping threshold C, privacy

parameter σ2, and learning rate ηt
Ensure: (ε, δ)-DP locally linear maps for all K classes, W̃

for number of training steps t ≤ T do
1: For each minibatch of size L, we noise up the gradi-
ent after clipping the norm of the datapoint-wise gradi-
ent via h̃t ← 1

L

[∑L
n=1 h̄t(xn) +N (0, σ2C2I)

]
.

2: Then, we make a step in the descending direction by
W̃t+1 ← W̃t − ηth̃t.

end for
Calculate the cumulative privacy loss (ε, δ) using the mo-
ments accountant.

Theorem 3.1. Algorithm 1 produces (ε, δ)-DP locally lin-
ear maps for all K classes.

1Once φ is privatized, we can safely use post-processing meth-
ods for interpretability. A comparison to this is shown in Sec. 4.

Proof: Given an initial data-independent value of W0, if
we add Gaussian noise to the norm-clipped gradient eval-
uated on the subsampled data with the sampling rate q =
L/N , then due to the Gaussian mechanism (Theorem 3.22
in (Dwork and Roth 2014)), the resulting estimate W̃1 from
a single gradient step (i.e., the step 2 in Algorithm 1) is
(ε′, δ′)-DP, where σ ≥ c · q

√
log(1/δ′)/ε′ with some con-

stant c. The cumulative privacy loss after T repetitions of
step 2 in Algorithm 1 is (ε, δ)-DP, which is a direct conse-
quence of Theorem 1 in (Abadi et al. 2016).

Improving privacy and accuracy trade-off under LLM
For high-dimensional inputs such as images, we found that
adding noise to the gradient corresponding to the full dimen-
sion of W led to very low accuracies for private training.
Therefore, we propose to incorporate the random projection
matrix Rm ∈ RD′×D with D′ � D, which is shared among
all classes k, to first decrease the dimensionality of the pa-
rameters that need to be privatized. Each LLM is therefore
parameterized as wk

m = mk
mRm, where the effective pa-

rameter for each local linear map is mk
m ∈ RD′

. We perturb
the gradient of mk

m for all k and m in each training step in
Algorithm 1 to produce DP linear maps, w̃k

m = m̃k
mRm.

Due to the post-processing invariance property, we can
use the differentially private LLM to make predictions on
test data. Here we focus on guarding the training data’s pri-
vacy and assume that the test data do not need to be priva-
tized, which is a common assumption in DP literature.

4 Experiments
In this section we evaluate the trade-off between accuracy,
privacy, and interpretability for our LLM model on several
datasets and compare to other methods where it is appropri-
ate. Our implementation is available on GitHub2.

4.1 MNIST Classification
Problem. We consider the classification of MNIST (Le-
Cun and Cortes 2010) and Fashion-MNIST (Xiao, Rasul,
and Vollgraf 2017) images with the usual train/test splits and
train a CNN3 as a baseline model, which has two convolu-
tional layers with 5x5 filters and first 20, then 50 channels
each followed by max-pooling and finally a fully connected
layer with 500 units. The model achieves 99% test accuracy
on MNIST and 87% on Fashion-MNIST.

Setup. We train several LLMs in the private and non-
private setting. By default, we use LLM models with M =
30 filters per class and random projections to D′ = 300
dimensions, which are optimized for 20 epochs using the
Adam optimizer with learning rate 0.001, decreasing by
20% every 5 epochs. On MNIST the model benefits from
a decreased inverse softmax temperature β = 1/30, while
β = 1 is optimal for Fashion-MNIST. We choose a large

2github.com/frhrdr/dp-llm
3github.com/pytorch/examples/blob/master/mnist/main.py
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CNN, ε = 2

IG SG

CNN, ε = 5.4

Figure 2: For 2 test inputs (left) and 3 different DP-LLM setups (groups of 3 columns), we show the 3 highest activated filters in
desending order. We look at the default setting with random filters at D′ = 300 and ε = 2 (center left), the same setting without
random filters (center), and at a lower privacy ε = 5.2 setting (center right). Attribution plots from DP-CNNs at matching
privacy levels on the same input are shown for comparison (right).

batch size of 500, as this improves the signal-to-noise ra-
tio of our algorithm. In the private setting we clip the per-
sample gradient norm to C = 0.001 and train with σ = 1.3,
which gives this model an (ε = 2, δ = 10−5)-DP guaran-
tee via the moments accountant. For the low privacy regime
ε ≥ 4 we train with a batch size of 1500 and for 60 epochs.

Input 98.43% 0.52% 0.34%

Input 93.86% 1.44% 0.57%

Input 58.78% 5.76% 2.06%

Input 78.40% 6.25% 1.79%

Input 58.47% 29.34% 10.51%

Input 91.32% 6.48% 1.64%

Figure 3: Top 3 filters with associated weightings for test
images from two classes. In most cases, a single filter dom-
inates the softmax selection for the class.

Input IG SG LLM top Input IG SG LLM top

Figure 4: Comparison of CNN and LLM interpretability.
left to right: input image, integrated gradient (IG) of CNN,
smoothed gradient (SG) of CNN, and the top filter of LLM.
The CNN attribution match well but aren’t as easy to inter-
pret as the simple filter.

Inherent interpretability. In order to highlight the inter-
pretability of the LLM architecture, we compare learned fil-
ters of our model to two attribution methods applied to a
neural network trained on the same data. We train a simple
CNN and an LLM on Fashion-MNIST to matching 87% test
accuracy and then visualize the CNN’s sensitivity to test im-
ages using SmoothGrad (SG) (Smilkov et al. 2017) and in-
tegrated gradients (IG) (Sundararajan, Taly, and Yan 2017)

and compare these methods to LLM filters in Fig. 4. Note
that we do not multiply the integrated gradient with the in-
put image, as Fashion-MNIST images have a mask-like ef-
fect which occludes the partial output of the method. We ob-
serve that both alternative attribution methods produce simi-
lar outputs, which are nonetheless hard to interpret, whereas
the LLM filters show simplistic prototype images of the cor-
responding classes. This is further illustrated in Fig. 3 where
we show the three highest weighted filters for test images
from three classes. The diversity of filters varies for differ-
ent class labels, as some are more varied and harder to dis-
criminate than others. For instance, while the sandal class
(right) has filters which distinguish between different types
of heels, the coat filters (left) are mostly selective in the
shoulder region and general silhouette, which is sufficient
for classifying a majority of the inputs correctly, but some
filters also track other features like arms, collar and zipper.
The relevance weights for each filter show that in most cases,
the top filter is assigned almost all the weight, indicating that
the softmax is a good approximation of the maximum and
the class features are indeed approximately linear locally.

Trade-offs with interpretability (Fig. 1 A and B ). We
investigate the learned LLM filters under increasing privacy
guarantees and increased private utility as shown in Fig. 2.
For two test inputs we plot the filters with highest activa-
tion in three DP setups. We compare the default setting with
random filters at D′ = 300 and ε = 2, the same setting with-
out random filters, and a lower privacy setting trained with
ε = 5.2. The default setting optimizes privacy and utility at
the expense of interpretability. As the figure shows, remov-
ing the random projections and reducing the level of privacy
gradually restores interpretability of the filters. On the very
right, we show attribution plots from CNNs trained with DP-
SGD at ε = 2 and ε = 5.4 on the same input for reference.
When comparing to Fig. 4, one can see that the quality of the
CNN attributions is diminished by the privacy constraints as
well, to the point where it is hard to make out any connection
to the input image.

Privacy vs. accuracy. (Fig. 1 C ) In Fig. 5 (left) we
show the trade-off of privacy strength and accuracy in our
model. Note that current privatized network methods (Abadi
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Figure 5: Accuracy of our LLM model on the MNIST testset
for different levels of privacy and different model configura-
tions in the private (orange) and non-private (blue) setting.
Errorbars are 2 stdev from 10 random restarts; dashed lines
on the right denote no random projections.

et al. 2016; Phan, Wu, and Dou 2017) achieve an accu-
racy of 95% for ε = 2 and up to 92% for ε = 0.5, which
is comparable to our mean accuracy of 94.2 ± 0.4% and
91.8 ± 0.4% respectively (on Fashion-MNIST we achieve
80.7 ± 0.6% and 83.2 ± 0.4%). However, such a privatized
network does not provide transparent explanations as op-
posed to our approach. Another popular reference model is
the PATE method (Papernot et al. 2018), which trains a stu-
dent model to 98% at ε = 2 on MNIST using an ensemble
of teachers and additional public data. We do not consider
this setup here, as the accuracy of the teacher votes alone
lies at 94.4% in the nonprivate setting, highlighting the im-
portance of the additional data. In the remainder of Fig. 5 we
study the impact of varying the number of filters per class M
(center) and the output dimensionality of the random pro-
jections D′ (right) in private and non-private LLM models.
Private LLMs deteriorate beyond a certain number of linear
maps due to the increased noise needed to privatize them,
whereas non-private models continue to benefit from addi-
tional filters. Increasing the dimensionality of the random
projections benefits private training.

4.2 Disease classification in a medical dataset
Problem. As a second task we consider disease classifi-
cation in the Henan Renmin Hospital Data (Li et al. 2017;
Maxwell et al. 2017)4. It contains 110,300 medical records
with 62 input features and 3 binary outputs. The input fea-
tures are 4 basic examinations (sex, BMI, distolic, systolic),
26 items from blood examinations, 12 items from urine ex-
aminations, and 20 items from liver function tests. The three
binary outputs denote three medical conditions – hyperten-
sion, diabetes, and fatty liver – which can also co-occur. Fol-
lowing (Maxwell et al. 2017) we transform this multi-label
task into a multi-class problem by considering the powerset
of the three binary choices as eight independent classes. Be-
cause these classes are highly imbalanced, we only retain the
four most common classes, leaving us with 100,140 records.

Setup. By default, we use an LLM model with M = 2 fil-
ters per class and no random projections, which is optimized

4downloaded from http://pinfish.cs.usm.edu/dnn/

for 20 epochs using the Adam optimizer with learning rate
0.01, decreasing by 20% every 5 epochs. We choose a batch
size of 256. In the private setting we clip the per-sample gra-
dient norm to 0.001 and train with σ = 1.25, which gives
this model an (ε ≈ 1.5, δ = 2 · 10−5)-DP guarantee.
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Figure 6: Accuracy of our LLM model on the Henan Renmin
Hospital testset for different levels of privacy and different
model configurations in the private and non-private setting.
Errorbars are 2 stdev for 10 random restarts.

We train a baseline DNN (3 dense hidden layers with 128
units each) as well as several LLMs with varying number of
linear filters per class in private and non-private settings. In
Fig. 6 we visualize the trade-off between accuracy and pri-
vacy for varying privacy losses as well as numbers of linear
maps. Like before, the accuracy deteriorates as we decrease
the privacy loss (Fig. 6 top). As the number of linear maps
per class is increased (Fig. 6 bottom), the accuracy for the
private models also drops due to the privacy budget being
spread across more parameters. We attribute the drop in per-
formance for the non-private LLM with number of maps to
optimization difficulties and local minima as well as higher
sensitivity to hyperparameters. A small number of maps (be-
tween 2 and 5) is sufficient for this datasets, especially in the
private setting. Our LLMs attain 82.8± 0.5% (non-private),
82.0±0.4% (ε ≈ 1.5), and 79.8±0.4% (ε ≈ 0.2) compared
to 84± 0.5% for a non-private DNN.

In Fig. 7 we consider an example from each class and
show the weighted linear maps by the LLM for each exam-
ple as well as its integrated gradients (IG) (Sundararajan,
Taly, and Yan 2017). For our LLM we consider the non-
private and two private cases. In general, there is good agree-
ment between all attribution methods; they are relatively
sparse and focus on a small set of features. We found that
IG varied much more between examples from the same class
than our LLM. For strong privacy (ε < 0.1), the linear maps
are much less sparse, highlighting the trade-off between in-
terpretability and privacy.

5 Related Work
Interpretability. The saliency map and gradient-based at-
tribution methods are one of the most popular explana-
tion methods that identify relevant regions and assign im-
portance to each input feature (e.g., pixel for image data)
(Selvaraju et al. 2016; Ribeiro, Singh, and Guestrin 2016;
Smilkov et al. 2017; Sundararajan, Taly, and Yan 2017;
Montavon et al. 2015; Bach et al. 2015; Ancona et al. 2017).
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Figure 7: Integrated gradient (IG) and weighted linear filters
(LLM; our method) for all 62 feature for one example from
each class from the Henan Renmin dataset. For LLM we
consider the non-private case (LLM) as well as two private
cases with strong (ε < 0.1) and weaker (ε ≈ 1.5) privacy.
Entries are normalized and colorcoded between blue = −1,
gray = 0, and red = 1.

These methods typically use first-order gradient information
of a complex model with respect to inputs, to produce maps
that indicate the relative importance of the different input
features for the classification. An obvious downside of these
approaches is that they provide explanations conditioned on
only a single input and hence it is necessary to manually
assess each input of interest in order to draw a class-wide
conclusion. In contrast, our approach can draw class-wide
conclusions without manually assessing each input, because
it outputs the most relevant explanations in terms of a col-
lection of linear maps for each class. For explanations condi-
tioned on any specific input, our model can provide an input-
dependent weighted collection of these features related to
that specific input.

Privacy. To privatize complex models, such as deep neural
networks, a popular approach is to add noise to the gradients
in the stochastic gradient descent (SGD) algorithm (Abadi
et al. 2016; Papernot et al. 2017; McMahan et al. 2017).
An alternative approach is to directly perturb the objective
with additive noise (Zhang et al. 2012; Phan et al. 2016;
Phan, Wu, and Dou 2017). In these works, the objective
function is approximated by the Taylor expansion, and the
resulting coefficients of the polynomials are perturbed be-
fore training. We found the latter approach less practical
than the former, as we need to choose which order of poly-
nomial degree to use. Typically, adding more layers intro-
duces a more nested-ness in the objective function requir-
ing a higher order polynomial for accurate approximation.

A high degree of polynomial approximation, however, in-
creases the privacy loss as the dimensionality of the coef-
ficients grow. From our perspective, the gradient perturba-
tion method is simple to use and model agnostic. Recently
proposed methods for private training through ensembles of
teacher models (Papernot et al. 2017; 2018) are less useful to
us here, as they consider a special setting where some non-
private data is available in addition to the private dataset. Our
method distinguishes itself by making interpretability a key
component of the trained model and does not rely on access
to additional public data.

Lastly, LLMs are reminiscent of Mixture of experts (ME)
models. MEs assign different specialized linear models to
different parts of input space in a discriminative task (see
Masoudnia and Ebrahimpour (2014) for an overview of ex-
isting ME models). In our case, each local expert model is
class specific and contributes to a weighted linear map for
that class. The weighting provides an input-dependent sig-
nificance for each linear map, and considering more than
one map per class increases flexibility to fit the data better.
Mixtures of factor analyzers (MFA) are also similar to ME
models, but for density estimation of high-dimensional real-
valued data (Ghahramani and Hinton 1997)

6 Conclusion and Discussion
We proposed a family of simple models which uses several
locally linear maps (LLM) per class to provide interpretable
features in a privacy-preserving manner while maintaining
high classification accuracy. Results on two image bench-
mark datasets as well as a medical dataset indicate that a
reasonable trade-off between classification accuracy, privacy
and interpretability can indeed be struck and tuned by vary-
ing the number of linear maps. Nevertheless, several open
questions for future research remain. First, the datasets in
this paper are still relatively simple, such that it would be
intriguing to see the limits of complexity the LLM model
can model with a sufficiently high accuracy. Second, the cur-
rent model does not interact with a larger and richer coun-
terpart, such as a neural network, due to privacy constraints.
It would be interesting to investigate if gaining gradient in-
formation of a more flexible model at particularly important
input points in a DP way would be possible, in order to com-
bine benefits of both models.
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Abstract

We propose a differentially private data gener-
ation paradigm using random feature represen-
tations of kernel mean embeddings when com-
paring the distribution of true data with that of
synthetic data. We exploit the random feature
representations for two important benefits. First,
we require a minimal privacy cost for training
deep generative models. This is because unlike
kernel-based distance metrics that require com-
puting the kernel matrix on all pairs of true and
synthetic data points, we can detach the data-
dependent term from the term solely dependent
on synthetic data. Hence, we need to perturb
the data-dependent term only once and then use
it repeatedly during the generator training. Sec-
ond, we can obtain an analytic sensitivity of the
kernel mean embedding as the random features
are norm bounded by construction. This removes
the necessity of hyper-parameter search for a
clipping norm to handle the unknown sensitiv-
ity of a generator network. We provide several
variants of our algorithm, differentially-private
mean embeddings with random features (DP-
MERF) to jointly generate labels and input fea-
tures for datasets such as heterogeneous tabular
data and image data. Our algorithm achieves
drastically better privacy-utility trade-offs than
existing methods when tested on several datasets.

Proceedings of the 24th International Conference on Artificial In-
telligence and Statistics (AISTATS) 2021, San Diego, California,
USA. PMLR: Volume 130. Copyright 2021 by the author(s).
* Equal contribution.

1 Introduction

Differential privacy (DP) is a gold standard privacy notion
that is widely used in many applications in machine learn-
ing. However, due to its composability, every access to
data reduces the privacy guarantee, which limits the num-
ber of times one can query sensitive data before a desired
privacy level is exceeded. Differentially private data gen-
eration solves this problem of limited access by creating a
synthetic dataset that is similar to the true dataset using DP
mechanisms. This process also comes at a privacy cost, but
afterwards, the synthetic dataset can be used in place of the
true one for unlimited time without further loss of privacy.

Classical approaches to differentially private data gen-
eration typically assume a certain class of pre-specified
queries. These DP algorithms produce a privacy-preserving
synthetic database that is similar to the privacy-sensitive
original data for that fixed query class [17, 34, 13, 40].
However, specifying a query class in advance, significantly
limits the flexibility of the synthetic data, if data analysts
hope to perform other machine learning tasks.

To overcome this inflexibility, recent papers on DP data
generation have utilized deep generative modelling. The
majority of these approaches is based on the generative ad-
versarial networks (GAN) [11] framework, where a dis-
criminator and a generator play a min-max form of game
to optimize a given distance metric between the true and
synthetic data distributions. Most approaches have used
either the Jensen-Shannon divergence [20, 30, 36], or the
Wasserstein distance [35, 9]. For more details on different
divergence metrics, see Supplementary Sec. A.

Another popular choice of distance metric for generative
modelling is Maximum Mean Discrepancy (MMD). MMD
can compare two probability measures in terms of all pos-
sible moments. Therefore, there is no information loss due
to a selection of a certain set of moments. The MMD esti-
mator is in closed form (eq. 2) and easy to compute by the
pair-wise evaluations of a kernel function using the points
drawn from the true and the generated data distributions.
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In this work, we propose to use a particular form of MMD
via random Fourier feature representations [22] of kernel
mean embeddings for DP data generation. While MMD
can be used within a GAN framework as well (see e.g. [14])
we choose a much simpler method, which is particularly
suited for training with DP constraints.

In the objective we use (eq. 3), the mean embedding of
the true data distribution (data-dependent) is separate from
the embedding of the synthetic data distribution (data-
independent). Hence, only the data-dependent term re-
quires privatization. Random features provide an analytic
sensitivity of the mean embedding, which allows us to re-
lease a DP version of this embedding through a DP mech-
anism as we explain below. With the privatized data em-
bedding and the synthetic data embedding, our objective
no longer directly accesses the data and can be optimized
freely to train a data generator. Our contributions are sum-
marized below.

(1) We provide a simple algorithm for DP data gener-
ation, which improves on existing methods both in pri-
vacy and utility.

• Simple to optimize: Since the objective of the opti-
mization contains only a specific private release of
data, there are no privacy induced constraints on
model choice and optimization method due to privacy.
In contrast, methods with private releases as part of the
training loop are generally constrained in the number
of iterations. As a specific example, DP-SGD requires
well-defined sample-wise gradients, which prohibits
the use of batch-normalization. Further, increasing
the number of trained weights raises the sensitivity of
DP-SGD [2] and with it the required strength of gra-
dient perturbation, making large networks infeasible.
Our method also avoids the cumbersome min-max op-
timization present in GAN based approaches and re-
quires only a minimal number of hyperparameters1.

• Strong privacy: Computing the sensitivity in our
method is analytically tractable due to its norm-
boundedness of random features. In fact, the norm of
random features we use is bounded by 1 by construc-
tion. The resulting sensitivity is on the order of 1 over
the number of training data points. Consequently, a
moderate size of training data can significantly reduce
the sensitivity. By requiring only a single DP-release
with such a low sensitivity, our method can provide
strong DP guarantee more easily than methods which
access the data on each training iteration.

• High utility: We show in our experiments that our
method releases private data with higher utility for
downstream tasks than comparison methods. This
contrast is particularly stark on MNIST, where our

1Hyperparameters in our method are the number of random
features, a kernel parameter, and the learning rate.

model at a strong privacy guarantee of (0.2, 10−5)-
DP outperforms all GAN-based comparison methods,
even though they are trained with much weaker pri-
vacy of at most (9.6, 10−5)-DP.

• Theoretical study: We provide an error bound on the
objective to theoretically quantify the effect of noise
added for privacy to the random feature representation
of MMD objective. This bound provides an informa-
tive way to select the random feature dimension, given
a dataset size and a desired privacy level.

(2) Our algorithm accommodates several needs in
privacy-preserving data generation.

• Generating input and output pairs jointly: We treat
both input and output to be privacy-sensitive. This is
different from the conditional-GAN type of methods,
where the class distribution is treated as non-sensitive,
which increases the risk of successful membership
inference, particularly in imbalanced datasets where
some classes contain only a small number of samples.

• Generating imbalanced and heterogeneous tabular
data: Real world datasets may exhibit large variation
in data types and class sizes. By addressing both of
these issues, we ensure that our algorithm is applica-
ble to a wide variety of datasets.

We start by describing relevant background information in
Sec. 2 before introducing our method in Sec. 3 and Sec. 4,
followed by an overview of related work in Sec. 5 and ex-
periments in Sec. 6.

2 Background

In the following, we describe the kernel mean embeddings
with random features and differential privacy, which our
model will use in Sec. 3.

2.1 Maximum Mean Discrepancy

Given a positive definite kernel k : X × X , the MMD be-
tween two distributions P,Q is defined as [12]

MMD2(P,Q) = Ex,x′∼P k(x, x′) + Ey,y′∼Qk(y, y′)

− 2Ex∼PEy∼Qk(x, y). (1)

According to the Moore–Aronszajn theorem, there exists a
unique Hilbert space H on which k defines an inner prod-
uct. Hence, we can find a feature map φ : X → H such that
k(x, y) = 〈φ(x), φ(y)〉H, where 〈·, ·〉H = 〈·, ·〉 denotes the
inner product on H. Using this fact, we can rewrite the
MMD in eq. 1 as [12]

MMD(P,Q) =
∥∥Ex∼P [φ(x)]− Ey∼Q[φ(y)]

∥∥
H,

where Ex∼P [φ(x)] ∈ H is known as the (kernel) mean em-
bedding of P , and exists if Ex∼P

√
k(x, x) <∞ [25]. The
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MMD can be interpreted as the distance between the mean
embeddings of the two distributions. If k is a characteristic
kernel [26], then P 7→ Ex∼P [φ(x)] is injective, and MMD
forms a metric, implying that MMD(P,Q) = 0, if and only
if P = Q.

Given the samples drawn from two probability distribu-
tions: Xm = {xi}mi=1 ∼ P and X ′n = {x′i}ni=1 ∼ Q,
we can estimate2 the MMD by sample averages [12]:

M̂MD
2
(Xm, X

′
n) = 1

m2

m∑

i,j=1

k(xi, xj) + 1
n2

n∑

i,j=1

k(x′i, x
′
j)

− 2
mn

m∑

i=1

n∑

j=1

k(xi, x
′
j). (2)

However, the total computational cost of M̂MD(Xm, X
′
n)

is O(mn), which is prohibitive for large-scale datasets.

2.2 Random feature mean embeddings

A fast linear-time MMD estimator can be achieved by con-
sidering an approximation to the kernel function k(x, x′)
with an inner product of finite dimensional feature vec-
tors, i.e., k(x, x′) ≈ φ̂(x)>φ̂(x′) where φ̂(x) ∈ RD and
D is the number of features. The resulting approximation
of the MMD estimator given in eq. 2 can be computed in
O(m+ n), i.e., linear in the sample size:

M̂MD
2

rf (P,Q) =

∥∥∥∥ 1
m

m∑

i=1

φ̂(xi)− 1
n

n∑

i=1

φ̂(x′i)

∥∥∥∥
2

2

, (3)

One popular approach to obtaining such φ̂(·) is based on
random Fourier features [22] which can be applied to any
translation invariant kernel, i.e., k(x, x′) = k̃(x − x′) for
some function k̃. According to Bochner’s theorem [23],
k̃ can be written as k̃(x − x′) =

∫
eiω

>(x−x′) dΛ(ω) =
Eω∼Λ cos(ω>(x − x′)), where i =

√
−1 and due to

positive-definiteness of k̃, its Fourier transform Λ is non-
negative and can be treated as a probability measure. By
drawing random frequencies {ωi}Di=1 ∼ Λ, where Λ de-
pends on the kernel, (e.g., a Gaussian kernel k corresponds
to normal distribution Λ), k̃(x − x′) can be approximated
with a Monte Carlo average. The vector of random Fourier
features is given by

φ̂(x) = (φ̂1(x), . . . , φ̂D(x))> (4)

where each coordinate is defined by

φ̂j(x) =
√

2/D cos(ωj
>x),

φ̂j+D/2(x) =
√

2/D sin(ω>j x),

for j = 1, · · · , D/2. The approximation error due to these
random features was studied in [27].

2Note that this particular MMD estimator is biased.

2.3 Differential privacy

Given privacy parameters ε ≥ 0 and δ ≥ 0, a mechanism
M is (ε, δ)-DP if and only if for all possible sets of mecha-
nism outputs S and all neighbouring datasets D, D′ differ-
ing by a single entry, the following equation holds:

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ (5)

A DP mechanism guarantees a limit on the amount of in-
formation revealed about any one individual in the dataset.
Typically this guarantee is achieved by adding random-
ness to the algorithms’ output. Let a function h : D 7→
Rp, which is computed on sensitive data D, output a p-
dimensional vector. We can add noise to h for privacy,
where the level of noise is calibrated to the global sensi-
tivity [8], ∆h, defined by the maximum difference in terms
of L2-norm ||h(D) − h(D′)||2, for neighbouring D and
D′ (i.e. D and D′ have one sample difference by replace-
ment). The Gaussian mechanism that we will use in this
paper outputs h̃(D) = h(D) + N (0, σ2∆2

hIp). The per-
turbed function h̃(D) is (ε, δ)-DP, where σ is a function
of ε and δ. For a single application of the mechanism,
σ ≥

√
2 log(1.25/δ)/ε holds for ε ≤ 1. The auto-dp pack-

age by [31] computes the relationship between ε, δ, σ nu-
merically, which we use in our method.

There are two important properties of DP. The composabil-
ity theorem [8] states that the strength of privacy guarantee
degrades in a measurable way with repeated use of DP-
algorithms. This allows us to combine the results of dif-
ferent private mechanisms in Sec. 4.2 using the advanced
composition methods from [32]. Furthermore, the post-
processing invariance property [8] tells us that the compo-
sition of any data-independent mapping with an (ε, δ)-DP
algorithm is also (ε, δ)-DP. This ensures that no analysis
of the released synthetic data can yield more information
about the real data than what our choice of ε and δ allows.

What comes next describes our proposal for privacy-
preserving data generation. We first present the vanilla
version of our algorithm called, DP-MERF (differentially
private mean embeddings with random features).

3 Vanilla DP-MERF for unlabeled data

We first introduce the basic version of our DP-MERF algo-
rithm to learn the distribution of an unlabeled dataset. In
this setting, we obtain a data generator by minimizing the
random feature representation of MMD, given by

θ̂ = arg min
θ

M̃MD
2

rf (Px, Qx̃θ
) (6)

where Px denotes the true data distribution. The sam-
ples from Q denoted by x̃ are drawn from a generative
model x̃ = Gθ(z). The generative model Gθ is parame-
terized by θ and takes a sample z ∼ p(z) from a known,



Frederik Harder∗1,2, Kamil Adamczewski∗1,3, Mijung Park1,2

data-independent distribution as input. Using the random
Fourier features, we arrive at

M̃MD
2

rf (Px, Qx̃θ
) =

∥∥∥∥µ̃P − µ̂Q

∥∥∥∥
2

2

(7)

where the random feature mean embedding of each distri-
bution is denoted by µ̂P = 1

m

∑m
i=1 φ̂(xi), and µ̂Q =

1
n

∑n
i=1 φ̂(Gθ(zi)).

Notice that µ̂P is the only data-dependent term. Hence, we
privatize this term by applying the Gaussian mechanism,
defining µ̃P by

µ̃P = µ̂P +N (0,∆2
µ̂P
σ2I) (8)

where the privacy parameter σ is chosen as a function of
the privacy budget (ε, δ). The sensitivity of µ̂P is analyt-
ically tractable due to the triangle inequality and the fact
that ‖φ̂(·)‖2 = 1 by construction of the random feature
vector given in eq. 4:

∆µ̂P
= max
D,D′

∥∥∥∥∥
1
m

m∑

i=1

φ̂(xi)− 1
m

m∑

i=1

φ̂(x′i)

∥∥∥∥∥
2

, (9)

= max
xn,x′

n

∥∥∥ 1
m φ̂(xn)− 1

m φ̂(x′n)
∥∥∥

2
≤ 2

m , (10)

Due to the post-processing invariance of DP, we can ob-
tain differentially private generator G, since µ̂Q is data-
independent.

3.1 Bound on the expected absolute error

If we add noise to the random-feature mean embedding of
the data distribution, what is the effect of that noise on
the learned generator? Theoretically quantifying this ef-
fect is challenging under an arbitrary neural network-based
generator. Instead, we theoretically quantify the effect of
noise on the objective function. In particular, given sam-
ples x = {xi}mi=1 ∼ P and x̃ = {x̃j}nj=1 ∼ Q, we want
to bound the expected absolute error between the noisy
random-feature MMD2 (eq. 7) and the original estimator
MMD2 (eq. 2). Given the samples, the error deals with two
types of randomness. The first arises due to the random
features, φ̂. The second arises due to the noise, n, that we
add to the mean-embedding of the data distribution for pri-
vacy. The following proposition formally states the bound
to the error (See Supplementary Sec. B for proof).
Proposition 3.1. Given samples x = {xi}mi=1 ∼ P and
x̃ = {x̃j}nj=1 ∼ Q, the expected absolute error between
the noisy random-feature MMD2 given in eq. 7 and the
MMD2 given in eq. 2 is bounded by

EnEφ̂

[∣∣∣∣M̃MD
2

rf (x, x̃)− M̂MD
2
(x, x̃)

∣∣∣∣
]

(11)

≤
(

4Dσ2

m2
+

8
√

2σ

m

Γ
(
(D + 1)/2

)

Γ
(
D/2

)
)

+ 8

√
2π

D
. (12)

where Γ is the Gamma function, σ is the noise scale (in-
versely proportional to ε), m is the number of training dat-
apoints, and D is the number of features.

Remark 1. To prove Prop. 3.1, we split eq. 11 into two
terms using the triangle inequality. The first term involves
the expected absolute error between the noisy random fea-
ture MMD2 (eq. 7) and random feature MMD2 (eq. 3),
which yields the first term (inside a big parenthesis) in
eq. 12. The second term involves the expected absolute er-
ror between random feature MMD2 (eq. 3) and the MMD2

(eq. 2), which yields the second term in eq. 12. The upper
bound is intuitive in that as the number of random features
increases, the second term decreases because the random
feature MMD is getting closer to MMD, while the first term
increases because we add noise to a larger number of ran-
dom features.

Remark 2. This bound provides a guideline on how to
choose D given a desired privacy level ε and the dataset
size m. First, given m, as long as we choose D such
that m >

√
D, the error remains relatively small. How-

ever, small D can increase the error in the second term
(arising from the MMD approximation using random fea-
tures). Hence, there is a trade-off between these two terms.
In our experiments, the datasets we consider have a rela-
tively large m (see Table 2), and so choosing a large D
(D ≈ 10, 000) incurred a relatively small error for a small
value of ε.

4 Extension of the vanilla DP-MERF

After introducing the core functionality of DP-MERF, we
extend the vanilla method to cases for 1) labeled data, 2)
class-imbalanced data, and 3) heterogeneous data.

4.1 DP-MERF for labeled data

We begin by extending our method to balanced labeled
datasets with input features x and output labels y. In this
case, the generator is conditioned on the label: Gθ(z,y) 7→
x̃, where y is drawn from the uniform distribution over
classes.

We encode the class information in the MMD objective, by
constructing a kernel from a product of two existing ker-
nels, k((x,y), (x′,y′)) = kx(x,x′)ky(y,y′), where kx is
a kernel for input features and ky is a kernel for output la-
bels. We choose the Gaussian kernel3 for kx and the poly-
nomial kernel with order-1, ky(y,y′) = y>y′+ c for one-
hot-encoded labels y and set c = 0. In this case, the result-

3The optimal choice of kernel requires knowledge on the char-
acteristics of the data (see guidelines in Ch. 4 in [33]). At small
data sample sizes, a bad kernel choice will affect the efficiency of
the algorithm and can underestimate MMD if the chosen kernel
assigns small weights to the “correct” frequencies at which the
distributions differ. However, with a large enough sample, any
characteristic kernel is able to capture such differences.
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ing kernel is also characteristic, forming the corresponding
MMD as a metric, as explained in [28]. We represent the
mean embeddings using random features by

µ̂Px,y = 1
m

m∑

i=1

f̂(xi,yi), for true data (13)

µ̂Qx,y = 1
n

n∑

i=1

f̂(Gθ(zi,yi),yi), for synthetic data

where we define f̂(xi,yi) := φ̂(xi)f(yi)
>,where f(yi) =

yi for the order-1 polynomial kernel and yi is one-hot-
encoded. See Supplementary Sec. C for derivation. With
D random features and C classes, the random feature
mean embedding in eq. 13 can also be written as µ̂Px,y =[
u1, · · · , uC

]
∈ RD×C where c’th column is given by

uc =
1

m

∑

xi∈X(c)
m

φ̂(xi) (14)

where X(c)
m is the set of the datapoints that belong to the

class c. As in the unlabeled case, µ̂Px,y has sensitivity
∆µP

= 2
m and is released with the Gaussian mechanism:

µ̃Px,y = µ̂Px,y +N (0,∆2
µP
σ2ID) (15)

With the released mean embedding µ̃Px,y , we construct the
private joint maximum mean discrepancy objective:

M̃MD
2

rf (Px,y, Qx̃θ,ỹθ
) =

∥∥∥∥µ̃Px,y − µ̂Qx,y

∥∥∥∥
2

F

, (16)

where F denotes the Frobenius norm. This kind of objec-
tive has been used in the non-private setting [39, 10].

4.2 DP-MERF for imbalanced data

Building on the previous section, notice that in eq. 14 the
sum in each column is over mc, the number of instances
that belong to the particular class c, while the divisor is
the number of samples in the entire dataset, m. This
causes difficulties in learning when classes are highly im-
balanced, as for rare classes m can be significantly larger
than the sum of the corresponding column. In order to ad-
dress this problem, we release the vector of class counts,
m = [m1, · · · ,mC ] using the Gaussian mechanism:

m̃ = m +N (0,∆2
mσ

2IC) (17)

As changing a datapoint affects at most two class counts,
∆m =

√
2. We then modify the released mean embedding

by appropriately weighting the embedding for each class:

µ̃∗Px,y
=
[
m
m̃1

ũ1, · · · , m
m̃C

ũC
]

(18)

Note that we arrive at this expression of mean embedding if
we change the kernel on the labels to a weighted one, i.e.,

Algorithm 1 DP-MERF for imbalanced data

Require: Dataset D, and a privacy level (ε, δ)

Ensure: (ε, δ)-DP input output samples for all classes
Step 1. Given (ε, δ), compute the privacy parameter σ
by the RDP composition in [32] for the two uses of the
Gaussian mechanism in steps 2 and 3.
Step 2. Release the mean embedding µ̃Px,y via eq. 15
Step 3. Release the class counts m̃ using eq. 17.
Step 4. Create the weighted mean embedding µ̃∗Px,y

us-
ing eq. 18
Step 5. Train the generator by minimizing

M̃MD
2

rf (Px,y, Qx̃θ,ỹθ
) =

∥∥∥∥µ̃∗Px,y
− µ̂Qx,y

∥∥∥∥
2

F

ky(y,y′) =
∑C
c=1

m
m̃c

yc
>y′c. In the re-weighted mean

embedding each class-wise embedding m
m̃c

ũc has a similar
norm, and equally contributes to the objective loss. This en-
sures that infrequent classes are also modelled accurately.

The total privacy loss results from the composition of the
two releases of first m̃ and then µ̃Px,vy

. During training,
we sample the generated labels ỹ proportional to the class
sizes in m̃. The procedure is summarized in Algorithm 1.

4.3 DP-MERF for heterogeneous data

To handle heterogeneous data consisting of numerical vari-
ables denoted by xnum and categorical variables denoted
by xcat, we consider the sum of two existing kernels,
k((xnum,xcat), (x

′
num,x

′
cat)) = knum(xnum,x

′
num) +

kcat(xcat,x
′
cat), where knum is a kernel for numerical vari-

ables and kcat is a kernel for categorical variables. Note
that this construction of sum of two kernels does not mean
that we implicitly assume independence of the two types of
variables, for details see Supplementary Sec. I.

As before, we could use the Gaussian kernel for
knum(xnum,x

′
num) = φ̂(xnum)>φ̂(x′num) and a normal-

ized polynomial kernel with order-1, kcat(xcat,x′cat) =
1

dcat
xcat

>x′cat for one-hot-encoded values xcat and the
length of xcat being dcat. This normalization is to match
the importance of the two kernels in the resulting mean em-
beddings. Under these kernels, we define

µ̂Px = 1
m

m∑

i=1

ĥ(x(i)
num,x

(i)
cat), (19)

where we define ĥ(x
(i)
num,x

(i)
cat) :=

[
φ̂(x

(i)
num)

1√
dcat

x
(i)
cat

]
based on

the definition of kernel k (See Supplementary Sec. D for
derivation).

In summary, for generating heterogeneous data, we run Al-
gorithm 1 with three changes:

1. Redefine f̂(x,y) in eq. 13 as ĥ(xnum,xcat)f(y)>.
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Data Samples
NLL ≈ 3.1× 105

CGAN (ε = ∞)

NLL ≈ 3.8× 105
DP-CGAN (ε = 9.6)

NLL ≈ 4.2× 105
DP-CGAN (ε = 1)

NLL ≈ 4.7× 105
DP-MERF (ε = 1)

NLL ≈ 3.8× 105

Figure 1: Simulated example from a Gaussian mixture. Left: Data samples drawn from a Gaussian Mixture distribution
with 5 classes (each color represents a class). NLL denotes the negative log likelihood of the samples given the true data
distribution. Middle three: Synthetic data generated by DP-CGANs at different privacy levels. CGAN (ε =∞) performs
nearly perfectly. However, at ε = 1, some modes are dropped, which is reflected in NLL. Right: Synthetic data samples
generated by DP-MERF at ε = 1. Our method captures all modes accurately at ε = 1, which is also reflected in NLL.

2. Redefine uc in eq. 14 as 1
m

∑
i∈X(c)

m
ĥ(xi).

3. Change the sensitivity of uc to ∆uc
= 2

√
2

m (see Sup-
plementary Sec. G for proof).

5 Related work

Differentially private data release. The field of DP data
release contains several distinct lines of research. As men-
tioned previously, approaches from a learning theory per-
spective [17, 34, 13, 40] provide bounds on the utility of
the data, but contain either strong assumptions about the
types of executed queries or intractable computation, which
makes this line of research less relevant to our approach.

Among the query-independent methods, a large body of
work on DP data release focuses on discrete or possible
to discretize data. This is a relevant sub-problem in which
good results can be achieved by releasing carefully selected
marginals of feature subsets, as each feature only takes on a
finite set of values. Such approaches [38, 21, 6] have been,
for instance, been dominant among the winning entries of
the NIST 2018 Differential Privacy Synthetic Data Chal-
lenge [1], which focused on the task of releasing discrete
datasets, utilizing related publicly available data. Although
we do not compare to this line of work in the main text,
as our method deals with the general setting of DP data re-
lease, including continuous data, we show the comparison
to [38] in the Supplementary Sec. M.

The recent line of research into GAN-based private data
release [35, 30, 9, 36, 5] addresses the same general set-
ting and so we select these models for comparison. GANs
are regarded as a promising model for this task because of
their great success in non-private generative modelling and
thanks to the fact the generator network of a GAN can be
trained without direct access to the data. The GAN discrim-
inator must still be trained with privacy constraints. In most
cases, this is achieved through gradient perturbation using
DP-SGD, with the exception of PATE-GAN [36], which

is based on the Private Aggregation of Teacher Ensembles
(PATE) [19]. DP-GAN [35] and PATE-GAN [36] generate
unlabeled data and thus must train one model per class to
obtain a labeled dataset. DP-CGAN [30] and GS-WGAN
[5] generate the input features conditioning on the labels,
while they do not learn the distribution over the labels.
GS-WGAN improves on the basic DP-SGD by alleviating
the need for gradient clipping by adapting the loss func-
tion and, like PATE-GAN, employs multiple discriminator
networks trained on distinct parts of the dataset to amplify
privacy by subsampling. We compare these methods with
our approach in Sec. 6.

Random feature kernel methods with differential pri-
vacy. Some prior work has employed random feature
mean embeddings in the context of differential privacy, but
not for the purpose of generative modeling. [4] proposed
to use the reduced set method in conjunction with random
features for sharing DP mean embeddings. This method
performs poorly as the dimension of data grows, which is
also noted by the authors (see Supplementary Sec. M for
comparison to our method). [24] also used the random fea-
ture representations of mean embeddings for the DP dis-
tributed data summarization to take into account covariate
shifts.

6 Experiments

In this section, we show the robustness of our method on a
diverse range of data under strong privacy constraints. On
each dataset, we train DP-MERF and comparison methods
to obtain a set of private synthetic data samples and com-
pare, how well these emulate the original dataset. Due
to the space limit, we describe all our experimental de-
tails (e.g., architecture choices for generators, chosen num-
ber of random features, etc.) in the supplementary mate-
rial. Our code is available at https://github.com/
ParkLabML/DP-MERF.
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Table 1: Performance comparison on tabular datasets, averaged over five runs. DP-MERF achieves the best scores among
private models (bold) on the majority of datasets.

Real DP-CGAN DP-GAN DP-MERF DP-MERF
(1, 10−5)-DP (1, 10−5)-DP (1, 10−5)-DP non-DP

ROC PRC ROC PRC ROC PRC ROC PRC ROC PRC
adult 0.730 0.639 0.509 0.444 0.511 0.445 0.650 0.564 0.653 0.570
census 0.747 0.415 0.655 0.216 0.529 0.166 0.686 0.358 0.692 0.369
cervical 0.786 0.493 0.519 0.200 0.485 0.183 0.545 0.184 0.896 0.737
credit 0.923 0.874 0.664 0.356 0.435 0.150 0.772 0.637 0.898 0.774
epileptic 0.797 0.617 0.578 0.241 0.505 0.196 0.611 0.340 0.616 0.335
isolet 0.893 0.728 0.511 0.198 0.540 0.205 0.547 0.404 0.733 0.424

F1 F1 F1 F1 F1
covtype 0.643 0.285 0.492 0.467 0.513
intrusion 0.959 0.302 0.251 0.850 0.856

2D Gaussian mixtures. We begin our experiments on a
simple synthetic distribution of Gaussian mixtures which is
aligned on a 5 by 5 grid and assigned to 5 classes as shown
in Fig. 1 (left). The dataset is generated by taking 4000
samples from each Gaussian, reserving 10% for the test set,
which yields 90000 training samples from the following
distribution:

p(x,y) =
N∏

i

∑

j∈Cyi

1

C
N (xi|µj , σI2) (20)

where N = 90000, and σ = 0.2. C = 25 is the number of
clusters and Cy denotes the set of indices for means µ as-
signed to class y. Five Gaussians are assigned to each class,
which leads to a uniform distribution over y and 18000
samples per class.

We choose this dataset because knowing the true data dis-
tribution allows us to compute the negative log likelihood
(NLL) of the samples under the true distribution as a mea-
sure of the generated samples’ quality: NLL(x,y) =
− log p(x,y). Note that this is different from the other
common measure of computing the negative log-likelihood
of the true data given the learned model parameters.

A high NLL score indicates that many samples lie in low
density regions of the data distribution. In cases where
models tend to under-fit the data, a lower NLL score can
thus be regarded as better. However, a low score does not
imply that all modes are covered and may also be the result
of low sample variance, although the out-of-distribution
samples dominate the score, due to the non-linearity of the
log function.

At different levels of privacy, we train DP-CGAN on this
dataset and select the models with the fewest dropped
modes and secondarily the lowest NLL. We compare this to
a DP-MERF model for balanced datasets in Fig. 1. While
DP-CGAN in the non-private setting (ε = ∞) fits the data
well, more samples fall out of the distribution as privacy
is increased and some modes (like the green one in the top

Table 2: Tabular datasets. num refers to numerical, cat
refers to categorical, and ord refers to ordinal variables

dataset # samps # classes # features

isolet 4366 2 617 num
covtype 406698 7 10 num, 44 cat
epileptic 11500 2 178 num
credit 284807 2 29 num
cervical 753 2 11 num, 24 cat
census 199523 2 7 num, 33 cat
adult 22561 2 6 num, 8 cat
intrusion 394021 5 8 cat, 6 ord, 26 num

right corner) are dropped. DP-MERF on the other hand
preserves all modes and places few samples in low den-
sity regions as indicated by the low NLL score. This NLL
score is particularly low and on par with the non-private
DP-CGAN model, despite a slightly worse fit, because DP-
MERF seems to underestimate variance.

Real world data evaluation. In the following experi-
ments we do not know the true data distribution and thus re-
quire a different method to evaluate the quality of privately
generated datasets. Following the common approach used
in [36, 30, 5], we use the private datasets to train a selection
of 12 predictive models (see Table 5 in the Supplementary
for the models). We then evaluate these trained models on
a test set of real data, which indicates how well the models
generalize from the synthetic to the real data distribution
and thus how useful the private data would be if used in
place of the real data. Note that hyper-parameters of the
12 models differ because the exact settings used in [36]
were not available to us, which means that their scores are
not directly comparable to ours. As comparison models,
we test DP-CGAN [30], as well as our own implementa-
tion of an ensemble of 10 DP-GANs, where each model
generates data for each class. Our version of DP-GAN dif-
fers from [35] in that it uses standard DP-SGD [2] with
gradient clipping rather than weight clipping. We further
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include GS-WGAN [5] on image datasets following their
original setup. Note that our DP-GAN implementation and
GS-WGAN use the analytical moments accountant [31] via
the autodp package. DP-CGAN uses the RDP accountant
[16] from the tensorflow-privacy package, which is slightly
older but still comparable. The results in [36, 35] could not
be reproduced as the released code was incomplete.

As comparison metrics, we use ROC (area under the re-
ceiver operating characteristics curve) and PRC (area un-
der the precision recall curve) for binary-labeled data. For
multiclass-labeled data we report accuracy for balanced
and F1 score for imbalanced data. As a baseline, we also
show the performance of the models trained with the real
training data. All the numbers shown in the tables are aver-
ages over 5 independent runs.

Table 3: Test accuracy on image data experiments. DP-
MERF at ε = 0.2 outperforms other methods by a signifi-
cant margin. δ = 10−5 in all private settings.

MNIST FashionMNIST

Real data 0.87 0.78
DP-CGAN ε = 9.6 0.50 0.39
DP-GAN ε = 9.6 0.48 0.46
GS-WGAN ε = 10 0.53 0.50
DP-MERF ε = 1 0.65 0.61
DP-MERF ε = 0.2 0.61 0.53

Tabular data. We explore the extensions of DP-MERF
for imbalanced and heterogeneous data on a number of
real-world tabular datasets. These datasets contain numer-
ical features with both discrete and continuous values as
well as categorical features with either two classes (e.g.
whether a person smokes or not) or several classes (e.g.
country of origin). The output labels are also categorical
and we include datasets with both binary and multi-class
labels. Table 2 summarizes the datasets. Table 1 shows the
average across the 12 predictive models trained by the gen-
erated samples from DP-CGAN, DP-GAN and DP-MERF.
Results for the individual models can be found in Supple-
mentary Sec. K. Overall, our method achieved higher val-
ues on the evaluation metrics compared to other methods at
the same privacy level.

As a side note, the reason the non-private MERF on Cervi-
cal data outperforms the real data is due to the small size of
the dataset, which is prone to overfitting. Hence, the added
sample variance in the generated data has a regularizing ef-
fect and improves the performance.

Image data Finally, we evaluate our method on the im-
age datasets, MNIST and FashionMNIST, which are com-
mon benchmarks used in [30, 35, 5]. We apply DP-MERF
for balanced data and include convolutional layers, alter-
nating with bi-linear up-sampling, in the generator network
to take advantage of the inherent structure of image data.

Real Data

DP-CGAN

(ε = 9.6)

DP-GAN

(ε = 9.6)

GS-WGAN

(ε = 10)

DP-MERF

(ε = 1)

DP-MERF

(ε = 0.2)

Figure 2: Generated MNIST and FashionMNIST samples
from DP-MERF and comparison models with different lev-
els of privacy.

Table 3 compares the test accuracy on real data based on
generated samples from DP-CGAN, DP-GAN, GS-WGAN
and DP-MERF. Results are averaged over 12 classifiers.
For the comparison methods, we use the privacy levels
reported in the respective papers, as they do not produce
usable samples in the high privacy setting at ε ≤ 1. It
shows that DP-MERF outperforms the GAN based meth-
ods by a wide margin and maintains good performance un-
der more meaningful privacy constraints of (1, 10−5)-DP
and (0.2, 10−5)-DP. Low overall scores are largely due to
the Adaboost and decision tree models which over-fit to the
generated data while other models like logistic regression
and multi-layer-perceptrions generalize much better. De-
tailed results are shown in Supplementary Sec. L.

In the generated samples of the four tested methods in
Fig. 2, we see that the samples from DP-MERF at ε = 0.2
are noisier than those of GS-WGAN and DP-CGAN, while
still achieving higher downstream accuracy.4 This indicates
that the distinctive features of the data are preserved de-
spite the noisy appearance of the DP-MERF samples. In
addition, a loss of sample diversity may explain the worse
performance of GS-WGAN and DP-CGAN despite higher
perceived sample quality, as we already have observed DP-
CGAN dropping modes in the Gaussian data experiment.

4As opposed to the version used in [5], the DP-MERF pre-
sented here uses an improved generator architecture and privacy
analysis, and outperforms GS-WGAN in the classification tasks.
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7 Summary and Discussion

We propose a simple and practical algorithm using the
random feature representation of kernel mean embeddings
for DP data generation. Our method requires a signifi-
cantly lower privacy budget to produce quality data sam-
ples compared to GAN-based approaches, tested on a syn-
thetic dataset, 8 tabular datasets and 2 image datasets. The
metrics we use are aimed at supervised learning tasks, but
the method is not limited to this application. In the future
work, we plan to evaluate our method on a more diverse set
of tasks and expand it, to scale to more complex data.
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Supplementary Material:
Differentially Private Random Feature Mean Embeddings for

Synthetic Data Generation

A Background on distance measures for DP data generation

Many recent papers on DP data generation have utilized the generative adversarial networks (GAN) [11] framework, where
a discriminator and a generator play a min-max form of game to optimize for the Jensen-Shannon divergence between the
true and synthetic data distributions [20, 30, 36]. The Jensen-Shannon divergence belongs to the family of divergences,
known as Ali-Silvey distance, Csiszár’s φ-divergence [7], defined as Dφ(P,Q) =

∫
M
φ
(
P
Q

)
dQ where M is a measurable

space and P,Q are probability distributions. Depending on the form of φ, Dφ(P,Q) recovers popular divergences5 such
as the Kullback-Liebler (KL) divergence (φ(t) = t log t).

Another popular family of distance measure is integral probability metrics (IPMs), which is defined by D(P,Q) =
supf∈F

∣∣∫
M
fdP −

∫
M
fdQ

∣∣ where F is a class of real-valued bounded measurable functions on M . Depending on
the class of functions, there are several popular choices of IPMs. For instance, when F = {f : ‖f‖L ≤ 1}, where
‖f‖L := sup{|f(x)−f(y)|/ρ(x, y) : x 6= y ∈M} for a metric space (M,ρ), D(P,Q) yields the Kantorovich metric, and
when M is separable, the Kantorovich metric recovers the Wasserstein distance, a popular choice for generative modelling
such as Wasserstein-GAN and Wasserstein-VAE [3, 29]. The GAN framework with the Wasserstein distance was also used
for DP data generation [35, 9].

As another example of IPMs, whenF = {f : ‖f‖H ≤ 1}, i.e., the function class is a unit ball in reproducing kernel Hilbert
space (RKHS) H associated with a positive-definite kernel k, D(P,Q) yields the maximum mean discrepancy (MMD),
MMD(P,Q) = supf∈F

∣∣∫
M
fdP −

∫
M
fdQ

∣∣. In this case finding a supremum is analytically tractable and the solution
is represented by the difference in the mean embeddings of each probability measure: MMD(P,Q) = ‖µP − µQ‖H ,
where µP = Ex∼P[k(x, ·)] and µQ = Ey∼Q[k(y, ·)]. For a characteristic kernel k, the squared MMD forms a metric, i.e.,
MMD2 = 0, if and only if P = Q. MMD is also a popular choice for generative modelling in the GAN frameworks [14],
as MMD compares two probability measures in terms of all possible moments (no information loss due to a selection of a
certain set of moments); and the MMD estimator is in closed form (eq. 2) and easy to compute by the pair-wise evaluations
of a kernel function using the points drawn from P and Q.

In this work, we propose to use a particular form of MMD via random Fourier feature representations [22] of kernel mean
embeddings for DP data generation.

B Derivation of the bound on the expected absolute error

Given the samples drawn from two probability distributions: Xm = {xi}mi=1 ∼ P and X ′n = {x′i}ni=1 ∼ Q, the biased
MMD estimator is given by [12]:

M̂MD
2
(Xm, X

′
n) = 1

m2

m∑

i,j=1

k(xi, xj) + 1
n2

n∑

i,j=1

k(x′i, x
′
j)− 2

mn

m∑

i=1

n∑

j=1

k(xi, x
′
j). (21)

The MMD estimator using the D-dimensional random Fourier features φ̂ for the mean embeddings µ̂P = 1
m

∑m
i=1 φ̂(xi)

and µ̂Q = 1
n

∑n
i=1 φ̂(Gθ(zi)) is defined as

M̂MD
2

rf (P,Q) =

∥∥∥∥µ̂P − µ̂Q

∥∥∥∥
2

2

. (22)

The noisy MMD is given by

M̃MD
2

rf (Px, Qx̃θ
) =

∥∥∥∥µ̃P − µ̂Q

∥∥∥∥
2

2

, (23)

5See Table 1 in [18] for various φ divergences in the context of GANs.
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where µ̃P is given by

µ̃P = µ̂P + n (24)

where n is a draw from a Gaussian distribution n ∼ N (0,∆2
µ̂P
σ2I). Note that for the bounded kernels with bound 1,

∆µ̂P
= 2

m .

Now the proposition is given as follows.

Proposition B.1. Given samples x = {xi}mi=1 ∼ P and x̃ = {x̃j}nj=1 ∼ Q, the expected absolute error between the noisy
random-feature (squared) MMD defined in eq. 7 and the squared MMD eq. 2 is bounded by

EnEφ̂

[∣∣∣∣M̃MD
2

rf (x, x̃)− M̂MD
2
(x, x̃)

∣∣∣∣
]
, (25)

≤
(

4Dσ2

m2
+

8
√

2σ

m

Γ
(
(D + 1)/2

)

Γ
(
D/2

)
)

+ 8

√
2π

D
(26)

where Γ is the Gamma function.

To prove this proposition, we first rewrite the absolute error in terms of two terms due to the triangle inequality:

EnEφ̂

[∣∣∣∣M̃MD
2

rf (x, x̃)− M̂MD
2
(x, x̃)

∣∣∣∣
]

≤ EnEφ̂

[∣∣∣∣M̃MD
2

rf (x, x̃)− M̂MD
2

rf (x, x̃)

∣∣∣∣
]

+ Eφ̂

[∣∣∣M̂MD
2

rf (x, x̃)− M̂MD
2
(x, x̃)

∣∣∣
]
. (27)

What follows next proves each of these terms.

B.1 Randomness due to random features

We restate the result of [Sec. 3.3 of Sutherland and Schneider 2016].

Lemma B.1 (Sec. 3.3 of Sutherland and Schneider 2016). Given samples x = {xi}ni=1 ∼ P and x̃ = {x̃j}mj=1 ∼ Q,

the probabilistic bound between the approximate MMD with random features, denoted by M̂MDrf (x, x̃) and the original
MMD, denoted by M̂MD(x, x̃), holds

P
[∣∣∣M̂MD

2

rf (x, x̃)− M̂MD
2
(x, x̃)

∣∣∣ ≥ t1
]
≤ 2 exp

(
− 1

128
Dt21

)
:= U1, (28)

where the randomness comes from the random features, and Eφ̂[M̂MDrf (x, x̃)] = MMD(x, x̃).

Proof. To prove the proposition, we first consider the mean map kernel (MMK) defined by

MMK(x, x̃) =
1

nm

n∑

i=1

m∑

j=1

k(xi, x̃j) ≈ MMKφ̂(x, x̃) := φ̂(x)>φ̂(x̃), (29)

which can be approximated by the random feature representations, denoted by MMKφ̂(x, x̃). The random feature mean-

embedding of P is denoted by φ̂(x). Similarly, we can define MMK(x,x) and MMK(x̃, x̃), and define MMD in terms of
MMKs

M̂MD
2
(x, x̃) = MMK(x,x) + MMK(x̃, x̃)− 2MMK(x, x̃). (30)

Notice that when we use the cosine/sine representation of random features, changing the frequency ωk to ω̂k causes a
bounded difference in the kth coordinate of the MMK estimate, MMKφ(x, x̃):

∣∣∣∣∣∣
1

nm

n∑

i=1

m∑

j=1

2

D

[
cos((ωk

>(xi − x̃j))− cos((ω′k
>(xi − x̃j))

]
∣∣∣∣∣∣
≤ 4

D
. (31)
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Due to this bounded difference in each coordinate of random feature MMK, we can compute the tail bound using the
McDiarmid’s inequality,

Pr
[∣∣∣MMKφ̂(x, x̃)−MMK(x, x̃)

∣∣∣ ≥ t1
]
≤ 2 exp

(
−1

8
Dt21

)
. (32)

Now using the definition of MMD2 given in eq. 30, we obtain the tail bound.

Pr
[∣∣∣M̂MD

2

rf (x, x̃)− M̂MD
2
(x, x̃)

∣∣∣ ≥ t1
]
≤ 2 exp

(
− 1

128
Dt21

)
. (33)

As a result of Lemma. B.1, the expected absolute error of the random-feature MMD is bounded by

Lemma B.2 (Sec. 3.3 of Sutherland and Schneider 2016). Given samples x = {xi}ni=1 ∼ P and x̃ = {x̃j}mj=1 ∼ Q,

the probabilistic bound between the approximate MMD with random features, denoted by M̂MDrf (x, x̃) and the original
MMD, denoted by MMD(x, x̃), holds

Eφ̂

[∣∣∣M̂MD
2

rf (x, x̃)− M̂MD
2
(x, x̃)

∣∣∣
]
≤ 8
√

2π/D. (34)

Proof. For a non-negative random variable,
∣∣∣∣M̃MD

2

rf (P,Q)− M̂MD
2
(P,Q)

∣∣∣∣

Eφ̂

[∣∣∣M̂MD
2

rf (x, x̃)− M̂MD
2
(x, x̃)

∣∣∣
]

=

∫ ∞

0

Pr
[∣∣∣M̂MD

2

rf (x, x̃)− M̂MD
2
(x, x̃)

∣∣∣ ≥ t1
]
dt1, (35)

≤ 2

∫ ∞

0

exp

(
− 1

128
Dt21

)
dt1, due to Lemma. B.1, (36)

= 8

√
2π

D
, due to the Gaussian integral. (37)

B.2 Randomness due to noise for privacy

The following remark bound the first moment of the privatized MMD proxy M̃MDrf and the MMD proxy M̂MDrf .

Lemma B.3. Let M̃MDrf (x, x̃) := ‖µ̂P (x) + n − µ̂Q(x̃)‖2, where n ∼ N (0, σ2∆2
µ̂P
ID). Also, let M̂MDrf (x, x̃) :=

‖µ̂P (x)− µ̂Q(x̃)‖2. Then,

EnEφ̂

[∣∣M̃MD
2

rf (x, x̃)− M̂MD
2

rf (x, x̃)
∣∣
]
≤ Dσ2

m2
+ 4
√

2σ
Γ
(
(D + 1)/2

)

mΓ
(
D/2

) (38)

Proof.

EnEφ̂

[∣∣M̃MD
2

rf (x, x̃)− M̂MD
2

rf (x, x̃)
∣∣
]

(a)
= Eφ̂

[
En

[ ∣∣n>n + 2n>(µ̂P (x)− µ̂Q(x̃))
∣∣
]]
, (39)

(b)

≤ Eφ̂

[
En

[
n>n

]
+ 2En

[∣∣∣n>(µ̂P (x)− µ̂Q(x̃))
∣∣∣
]]
,

(c)
= Dσ2∆2

µ̂P
+ 2
√

2Eφ̂ [‖µ̂P (x)− µ̂Q(x)‖2]σ∆µ̂P

Γ
(
(D + 1)/2

)

Γ
(
D/2

) , (40)

(d)
=

Dσ2

m2
+ 4
√

2σ
Γ
(
(D + 1)/2

)

mΓ
(
D/2

) , (41)
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where (a) is by expanding two terms following their definitions: M̃MD
2

rf (x, x̃)−M̂MD
2

rf (x, x̃) = n>n+2n>(µ̂P (x)−
µ̂Q(x̃)). (b) is followed by triangle inequality. (c) is followed by the second moment of the chi-square random variable
(first term) and the first moment of the chi distribution (second term). (d) is by taking the maximum over random features.
Under the random feature representation we use in our paper, the L2-norm of random features is bounded by 1. Hence,
Eφ̂ [‖µ̂P (x)− µ̂Q(x)‖2] ≤ maxφ̂ [‖µ̂P (x)− µ̂Q(x)‖2] ≤ maxφ̂ [‖µ̂P (x)‖2 + ‖µ̂Q(x)‖2] ≤ 1 + 1 = 2.

C Derivation of feature maps for a product of two kernels

Under our assumption, we decompose the kernel below into two kernels:

k((x,y), (x′,y′))

= kx(x,x′)ky(y,y′), product of two kernels

≈
[
φ̂(x′)>φ̂(x)

] [
f(y)>f(y′)

]
, random features for kernel kx

= Tr
(
φ̂(x′)>φ̂(x)f(y)>f(y′)

)
,

= vec(φ̂(x′)f(y′)>)>vec(φ̂(x)f(y)>) = f̂(x′,y′)>f̂(x,y)

D Derivation of feature maps for a sum of two kernels

Under our assumption, we compose the kernel below from the sum of two kernels:

k((xnum,xcat), (x
′
num,x

′
cat))

= knum(xnum,x
′
num) + kcat(xcat,x

′
cat),

≈ φ̂(xnum)>φ̂(x′num) + 1√
dcat

xcat
>x′cat,

=

[
φ̂(xnum)

1√
dcat

xcat

]T [
φ̂(xnum)

1√
dcat

xcat

]

= ĥ(xnum,xcat)
T ĥ(xnum,xcat).

E Sensitivity of class counts

Consider the vector of class counts m = [m1, · · · ,mC ], where each element mc is the number of samples with class c in
the dataset. The class counts of two neighbouring datasets D and D′ = (D \ {x}) ∪ {x′} can differ in at most two entries
k, l and at most by 1 in either entry. Assuming y 6= y′, then for yk = 1, mk = m′k + 1 and for y′l = 1, m′l = ml + 1 and
mi = m′i in all other cases. If y = y′, then m = m′. Letting m and m′ denote the class counts of D and D′ respectively,
we get the following:

∆m = max
D,D′
‖m−m′‖2 = max

D,D′

√√√√
C∑

i=1

mi −m′i =
√

2 (42)

F Sensitivity of µ̂P with homogeneous data

Below, we show that the sensitivity of the data mean embedding for homogeneous labeled data is the same as for unlabeled
data. In order, we first use the fact that D and D′ are neighbouring, which implies that m − 1 of the summands on each
side cancel and we are left with the only distinct datapoints, which we denote as (x,y) and (x′,y′). We then apply the
triangle inequality and the definition of f . As y is a one-hot vector, all but one column of φ̂(x)y> are 0, so we omit them
in the next step and finally use that ‖φ̂(x)‖2 = 1.
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∆µ̂P
= max
D,D′

∥∥∥∥∥∥
1
m

∑

(xi,yi)∈D
f̂(xi,yi)− 1

m

∑

(x′
i,y

′
i)∈D′

f̂(x′i,y
′
i)

∥∥∥∥∥∥
F

(43)

= max
(x,y),(x′,y)

∥∥∥ 1
m f̂(x,y)− 1

m f̂(x′,y′)
∥∥∥
F

(44)

≤ max
(x,y)

2
m

∥∥∥f̂(x,y)
∥∥∥
F

(45)

= max
(x,y)

2
m

∥∥∥φ̂(x)y>
∥∥∥
F

(46)

= max
x

2
m

∥∥∥φ̂(x)
∥∥∥

2
(47)

=
2

m
(48)

G Sensitivity of µP with heterogeneous data

In the case of heterogeneous data, recall that ĥ(x
(i)
num,x

(i)
cat) =

[
φ̂(x

(i)
num)

1√
dcat

x
(i)
cat

]
and µP = 1

m

∑
(xi,yi)∈D ĥ(xi)yi

> where xi

is the concatenation of x(i)
num and x

(i)
cat. Analogous to the homogeneous case, we first derive that the labeled and unlabeled

embedding have the same sensitivity (in eq. 52). We apply the definition of ĥ and analyze the numerical and categorical
parts separately, using the facts that ‖φ̂(x)‖2 = 1 and, since xcat is binary, ‖xcat‖2 ≤

√
dcat.

∆µP
= max
D,D′

∥∥∥∥∥∥
1
m

∑

(xi,yi)∈D
ĥ(xi)yi

> − 1
m

∑

(x′
i,y

′
i)∈D′

ĥ(x′i)y
′
i
>

∥∥∥∥∥∥
F

(49)

= max
(x,y),(x′,y′)

∥∥∥ 1
m ĥ(xi)yi

> − 1
m ĥ(x′i)y

′
i
>
∥∥∥
F

(50)

≤ max
(x,y)

2
m

∥∥∥ĥ(x)y>
∥∥∥
F

(51)

= max
x

2
m

∥∥∥ĥ(x)
∥∥∥

2
(52)

= max
x

2
m

∥∥∥∥∥

[
φ̂(xnum)

1√
dcat

xcat

]∥∥∥∥∥
2

(53)

= max
x

2
m

√
‖φ̂(xnum)‖22 + ‖ 1√

dcat
xcat‖22 (54)

= 2
m

√
1 + dcat

dcat
(55)

=
2
√

2

m
(56)

I Variables in heterogeneous data are not treated as independent

While the impression may arise, our method does not assume independence between the continuous and the discrete vari-
ables, but models correlations between the two types of variables implicitly. With the sum of two kernels, the embedding
is a concatenation of the two: [Exφx(x), Eyφy(y)], where Ex means expectation wrt p(x) and Ey is wrt p(y). To compute
p(x), we need p(y) with which we marginalize out y, as p(x) =

∫
p(x, y)dy. This marginalization implicitly takes into

account the correlation between the two. This is less explicit than the case using the product of two kernels. However, the
sum kernel is chosen for computational tractability: a sum kernel in Fourier representation has dx + dy features while a
product kernel has dx · dy .
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K Heterogeneous and homogenous tabular data

In this section we describe the tabular datasets we have used in our experiments with their respective sources. We include
the details of data preprocessing in case it was performed on a dataset. The datasets in this form were used in all our
experiments as well as the experiments on the benchmark methods.

Credit

Credit card fraud detection dataset contains the categorized information of credit card transactions which were either
fraudelent or not. Ten dataset comes from a Kaggle competition and is available at the source, https://www.kaggle.
com/mlg-ulb/creditcardfraud. The original data has 284807 examples, of which negative samples are 284315
and positive 492. The dataset has 31 categories, 30 numerical features and a binary label. We used all but the first feature
(Time).

Epileptic

Epileptic dataset describes brain activity with numerical features being EEG recording at a different point in time.
The dataset comes from the UCI database, https://archive.ics.uci.edu/ml/datasets/Epileptic+
Seizure+Recognition. It contains 11500 data points, and 179 categories, 178 features and a label. The original
dataset contains five different labels which we binarize into two states, seizure or no seizure. Thus, there are 9200 negative
samples and 2300 positive samples.

Census

The dataset can be downloaded by means of SDGym package, https://pypi.org/project/sdgym/. The dataset
has 199523 examples, 187141 are negative and 12382 are positive. There are 40 categories and a binary label. This dataset
contains 7 numerical and 33 categorical features.

Intrusion

The dataset was used for The Third International Knowledge Discovery and Data Mining Tools Competition held at the
Conference on Knowledge Discovery and Data Mining, 1999, and can be found at http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html. We used the file, kddcup.data 10 percent.gz. It is a multi-class dataset
with five labels describing different types of connection intrusions. The labels were first grouped into five categories and
due to few examples, we restricted the data to the top four categories.

Adult

The dataset contains information about people’s attributes and their respective income which has been thresholded and
binarized. It has 22561 examples, and 14 features and a binary label. The dataset can be downloaded by means of SDGym
package,https://pypi.org/project/sdgym/.

Isolet

The dataset contains sound features to predict a spoken letter of alphabet. The inputs are sound features and the output is a
latter. We binaried the labels into two classes, consonants and vowels. The dataset can be found at https://archive.
ics.uci.edu/ml/datasets/isolet

Cervical

This dataset is created with the goal to identify the risk factors associated with cervical cancer. It is the smallest dataset
with 858 instances, and 35 attributes, of which The data can be found at 15 are numerical 24 are categorical (bi-
nary). The dataset can be found at https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+
%28Risk+Factors%29. The data, however, contains missing data. We followed the pre-processing suggested at
https://www.kaggle.com/saflynn/cervical-cancer-lynn and further removed the data with the most
missing values and replaced the rest with the category mean value.
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Covtype

The dataset describes forest cover type from cartographic variables. The data can be found at https://archive.
ics.uci.edu/ml/datasets/covertype. It contains 53 attributes and a multi-class label with 7 classes of forest
cover types.

K.1 The training

We provide here the details of training procedure. Some of the datasets are very imbalanced, that is they contain much
more examples with one label over the others. In attempt of making categories more balanced, we undersampled the class
with the largest number of samples. The complexity of a dataset also determined the number of Fourier features we used.
We also varied the batch size (we include the fraction of dataset used in a batch), and the number of epochs in the training.
We provide the detailed parameter settings for each of the dataset in the following table.

Table 4: Parameters settings for training tabular datasets
non-private private

# mini-batch # Fourier # mini-batch # Fourier undersampling
epochs size features epochs size features rate

adult 8000 0.1 50000 8000 0.1 1000 0.4
census 200 0.5 10000 2000 0.5 10000 0.4
cervical 2000 0.6 2000 200 0.5 2000 1
credit 4000 0.6 50000 4000 0.5 5000 0.005

epileptic 6000 0.5 100000 6000 0.5 80000 1
isolet 4000 0.6 100000 4000 0.5 500 1

covtype 6000 0.05 1000 6000 0.05 1000 0.03
intrusion 10000 0.03 2000 10000 0.03 2000 0.1

K.2 Detailed results for binary class dataset

In the main text we included the details for a multi-class dataset and here we also include the results across all the clas-
sification methods for a binary dataset in Table 5 and Table 6. We also include the best and average F1-score over five
runs for the respective classification methods in Table 7 and Table 8. Notice that this average corresponds to the average
reported in Table 1 in the main text.

Table 5: Performance comparison on Credit dataset. The highest performance in five runs.
Real DP-CGAN DP-MERF DP-CGAN DP-MERF

(non-priv) (non-priv) (1, 10−5)-DP (1, 10−5)-DP

ROC PRC ROC PRC ROC PRC ROC PRC ROC PRC
Logistic Regression 0.95 0.91 0.83 0.37 0.92 0.79 0.74 0.52 0.78 0.61
Gaussian Naive Bayes 0.90 0.80 0.85 0.39 0.92 0.76 0.80 0.55 0.65 0.48
Bernoulli Naive Bayes 0.89 0.84 0.58 0.19 0.89 0.82 0.67 0.42 0.90 0.74
Linear SVM 0.92 0.89 0.84 0.48 0.91 0.65 0.78 0.45 0.64 0.38
Decision Tree 0.91 0.82 0.74 0.32 0.92 0.69 0.58 0.22 0.72 0.58
LDA 0.87 0.82 0.86 0.53 0.82 0.68 0.58 0.24 0.69 0.51
Adaboost 0.94 0.89 0.83 0.51 0.93 0.85 0.62 0.32 0.75 0.63
Bagging 0.91 0.84 0.79 0.42 0.91 0.79 0.57 0.21 0.74 0.61
Random Forest 0.93 0.90 0.82 0.54 0.92 0.86 0.63 0.31 0.75 0.62
GBM 0.94 0.89 0.85 0.54 0.94 0.85 0.58 0.22 0.74 0.61
Multi-layer perceptron 0.92 0.89 0.83 0.47 0.91 0.74 0.78 0.55 0.66 0.44
XGBoost 0.94 0.91 0.81 0.49 0.94 0.87 0.70 0.53 0.72 0.59

Average 0.91 0.86 0.80 0.44 0.91 0.78 0.67 0.38 0.73 0.57
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Table 6: Performance comparison on Credit dataset. The average performance over five runs.

DP-MERF DP-MERF
(non-private) (private)

ROC PRC ROC PRC

Logistic Regression 0.919 0.808 0.796 0.665
Gaussian Naive Bayes 0.898 0.725 0.729 0.582
Bernoulli Naive Bayes 0.879 0.791 0.752 0.586
Linear SVM 0.876 0.667 0.742 0.549
Decision Tree 0.901 0.700 0.775 0.650
LDA 0.838 0.697 0.725 0.544
Adaboost 0.912 0.828 0.787 0.689
Bagging 0.909 0.805 0.811 0.709
Random Forest 0.911 0.840 0.786 0.686
GBM 0.917 0.812 0.807 0.707
Multi-layer perceptron 0.905 0.777 0.747 0.570
XGBoost 0.915 0.837 0.812 0.716

Average 0.898 0.774 0.772 0.638

Table 7: Performance comparison on Intrusion dataset. The highest performance in five runs.

Real DP-CGAN DP-MERF DP-CGAN DP-MERF
(non-priv) (non-priv) (1, 10−5)-DP (1, 10−5)-DP

Logistic Regression 0.948 0.710 0.926 0.567 0.940
Gaussian Naive Bayes 0.757 0.503 0.804 0.215 0.736
Bernoulli Naive Bayes 0.927 0.693 0.822 0.475 0.755
Linear SVM 0.983 0.639 0.922 0.915 0.937
Decision Tree 0.999 0.496 0.862 0.153 0.952
LDA 0.990 0.224 0.910 0.652 0.950
Adaboost 0.947 0.898 0.924 0.398 0.503
Bagging 1.000 0.499 0.914 0.519 0.956
Random Forest 1.000 0.497 0.941 0.676 0.943
GBM 0.999 0.501 0.924 0.255 0.933
Multi-layer perceptron 0.997 0.923 0.933 0.733 0.957
XGBoost 0.999 0.886 0.921 0.751 0.933

Average 0.962 0.622 0.900 0.526 0.875
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Table 8: Performance comparison on Intrusion dataset. The average performance as F1 score over five runs.
DP-MERF DP-MERF

(non-private) (private)

Logistic Regression 0.891 0.928
Gaussian Naive Bayes 0.845 0.792
Bernoulli Naive Bayes 0.454 0.508
Linear SVM 0.890 0.917
Decision Tree 0.911 0.907
LDA 0.859 0.925
Adaboost 0.899 0.592
Bagging 0.926 0.922
Random Forest 0.904 0.923
GBM 0.901 0.926
Multi-layer perceptron 0.898 0.941
XGBoost 0.891 0.921

Average 0.856 0.850

L Image data

L.1 Datasets

Both digit and fashion MNIST datasets are loaded through the torchvision package and used without further preprocessing.
Both datasets of size 60000 consist of samples from 10 classes, which are close to perfectly balanced. Each sample is a
28x28 pixel image and thus of significantly higher dimensionality than the tabular data we tested.

L.2 Detailed results

A detailed version of the results summarized in Table 3 of the paper are shown below, for digit MNIST is Table 9 and
fashion MNIST in Table 10. All scores are the average of 5 independent runs of training a generator and evaluating the
synthetic data it produced. The tables show that DP-MERF consistently outperforms the other approaches across models.
The only exceptions are Gaussian Naive Bayes and XGBoost on MNIST, where GS-WGAN and DP-CGAN respectively
perform slightly better.

Table 9: Test accuracy on digit MNIST data. Average over 5 runs (data generation & model training). Best scores among
private models are bold.

Real DP-CGAN DP-GAN GS-WGAN DP-MERF DP-MERF DP-MERF
ε = 9.6 ε = 9.6 ε = 10 ε =∞ ε = 1 ε = 0.2

Logistic Regression 0.930 0.600 0.702 0.741 0.772 0.769 0.772
Random Forest 0.969 0.638 0.538 0.460 0.714 0.685 0.702
Gaussian Naive Bayes 0.560 0.310 0.364 0.576 0.527 0.545 0.539
Bernoulli Naive Bayes 0.840 0.610 0.702 0.699 0.746 0.750 0.780
Linear SVM 0.920 0.550 0.700 0.704 0.756 0.746 0.726
Decision Tree 0.880 0.340 0.255 0.326 0.443 0.456 0.346
LDA 0.879 0.590 0.694 0.732 0.789 0.793 0.753
Adaboost 0.729 0.254 0.159 0.170 0.441 0.456 0.362
MLP 0.978 0.564 0.652 0.744 0.807 0.807 0.768
Bagging 0.928 0.430 0.282 0.387 0.624 0.602 0.508
GBM 0.909 0.460 0.205 0.362 0.678 0.659 0.552
XGBoost 0.912 0.614 0.459 0.408 0.525 0.555 0.509

Average 0.870 0.500 0.476 0.526 0.652 0.652 0.610
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Table 10: Test accuracy on fashion MNIST data. Average over 5 runs (data generation & model training). Best scores
among private models are bold.

Real DP-CGAN DP-GAN GS-WGAN DP-MERF DP-MERF DP-MERF
ε = 9.6 ε = 9.6 ε = 10 ε =∞ ε = 1 ε = 0.2

Logistic Regression 0.844 0.461 0.626 0.674 0.725 0.728 0.714
Random Forest 0.875 0.482 0.573 0.498 0.657 0.684 0.553
Gaussian Naive Bayes 0.585 0.286 0.149 0.505 0.598 0.575 0.467
Bernoulli Naive Bayes 0.648 0.497 0.592 0.558 0.602 0.604 0.629
Linear SVM 0.839 0.389 0.613 0.639 0.685 0.684 0.697
Decision Tree 0.790 0.315 0.317 0.389 0.433 0.462 0.352
LDA 0.799 0.490 0.638 0.653 0.735 0.733 0.701
Adaboost 0.561 0.217 0.224 0.275 0.291 0.359 0.258
MLP 0.879 0.459 0.601 0.647 0.739 0.738 0.696
Bagging 0.841 0.309 0.410 0.413 0.576 0.593 0.372
GBM 0.834 0.331 0.254 0.352 0.626 0.624 0.429
XGBoost 0.826 0.489 0.478 0.427 0.596 0.610 0.445

Average 0.780 0.390 0.457 0.502 0.605 0.616 0.526

M Comparison with other methods

M.1 Comparison with [4].

Figure 3: Comparison to [4].

Algorithm 2 in [4] uses the random features similar to ours, while
it releases the privatized mean embedding in terms of a weighted
sum of feature maps evaluated at synthetic datapoints. The challenge
is that optimizing for the synthetic datapoints using the reduced-set
method becomes harder in high dimensions. To illustrate this point,
we took the simulated data generated from 5-dimensional mixture
of Gaussians (the dataset [4] used). Unlike [4], our method directly
trains a neural-net based generator, which can effectively approxi-
mate the privatized kernel mean embedding of the data. As a result,
our method reduces the distance (this metric [4] used) between be-
tween the true kernel mean embedding µ̂x and that of the released
dataset as we increase the number of synthetic datapoints, as shown
in Fig. 3.

M.2 Comparison with PrivBayes [38].

We compare our method to PrivBayes [38] using the published code from [15], which builds on the original code with [37]
as a wrapper. We test the model on the Adult and Census datasets used in our paper by creating a version D of the dataset
where all continuous features are discretized, and a version D∗ where the domain of all features is reduced to a max of
15 to reduce complexity. Following [38], we measure α-way marginals for varying levels of ε-DP and compare them to
DP-MERF at (ε, δ)-DP with δ = 10−5. Optimizing the ”usefulness” parameter θ, we find, as in [38], that θ = 4 is close to
optimal in most settings. Results for the best θ are shown. We observe that PrivBayes performs better at ε = 1, but is more
affected by increased noise, so at ε = 0.3 the methods are roughly tied and at ε = 0.1 DP-MERF has lower error.

2*Adult PrivBayes DP-MERF 2*Census PrivBayes DP-MERF
ε=1 ε=0.3 ε=0.1 ε=1 ε=0.3 ε=0.1 ε=1 ε=0.3 ε=0.1 ε=1 ε=0.3 ε=0.1

2*D α=3 0.275 0.446 0.577 0.348 0.405 0.480 2*D α=2 0.131 0.180 0.291 0.172 0.190 0.222
α=4 0.377 0.547 0.673 0.468 0.508 0.590 α=3 0.264 0.323 0.429 0.291 0.302 0.337

2*D∗ α=3 0.182 0.284 0.317 0.235 0.287 0.352 2*D∗ α=2 0.111 0.136 0.199 0.139 0.140 0.176
α=4 0.257 0.371 0.401 0.301 0.363 0.453 α=3 0.199 0.258 0.325 0.228 0.234 0.269

It is important to stress that our approach is more general than PrivBayes in that (i) it does not require discretization of
the data and (ii) scales to higher dimensionality and arbitrary domains. Bayesian network construction in PrivBayes for a
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k-degree graph with d nodes (i.e. features) compares up to
(
d
k

)
options on each iteration, which restricts k to small values

if d is large. This means, e.g., testing PrivBayes on binarized MNIST (d = 784) with any k > 2 is infeasible.
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Abstract
Kernel mean embedding is a useful tool to repre-
sent and compare probability measures. Despite
its usefulness, kernel mean embedding consid-
ers infinite-dimensional features, which are chal-
lenging to handle in the context of differentially
private data generation. A recent work (Harder
et al., 2021) proposes to approximate the kernel
mean embedding of data distribution using finite-
dimensional random features, which yields analyt-
ically tractable sensitivity. However, the number
of required random features is excessively high,
often ten thousand to a hundred thousand, which
worsens the privacy-accuracy trade-off. To im-
prove the trade-off, we propose to replace random
features with Hermite polynomial features. Un-
like the random features, the Hermite polynomial
features are ordered, where the features at the
low orders contain more information on the dis-
tribution than those at the high orders. Hence, a
relatively low order of Hermite polynomial fea-
tures can more accurately approximate the mean
embedding of the data distribution compared to
a significantly higher number of random features.
As demonstrated on several tabular and image
datasets, Hermite polynomial features seem bet-
ter suited for private data generation than random
Fourier features.

1. Introduction
One of the popular distance metrics for generative modelling
is Maximum Mean Discrepancy (MMD) (Gretton et al.,
2012). MMD computes the average distance between the
realizations of two distributions mapped to a reproducing
kernel Hilbert space (RKHS). Its popularity is due to several

*Equal contribution 1Max Planck Institute for Intelligent Sys-
tems, Tuebingen, Germany 2University of British Columbia, Van-
couver, Canada. CIFAR AI Chair at AMII. Correspondence to: Mi
Jung Park <mijungp@cs.ubc.ca>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

facts: (a) MMD can compare two probability measures in
terms of all possible moments (i.e., infinite-dimensional
features), resulting in no information loss due to a particular
selection of moments; and (b) estimating MMD does not
require the knowledge of the probability density functions.
Rather, MMD estimators are in closed form, which can
be computed by pair-wise evaluations of a kernel function
using the points drawn from two distributions.

However, using the MMD estimators for training a gener-
ator is not well suited when differential privacy (DP) of
the generated samples is taken into consideration. In fact,
the generated points are updated in every training step and
the pair-wise evaluations of the kernel function on gener-
ated and true data points require accessing data multiple
times. One of the key properties of DP is composability that
implies each access of data causes privacy loss. Hence, pri-
vatizing the MMD estimator in every training step – which
is necessary to ensure the resulting generated samples are
differentially private – incurs a large privacy loss.

A recent work (Harder et al., 2021), called DP-MERF, uses
a particular form of MMD via a random Fourier feature
representation (Rahimi & Recht, 2008) of kernel mean em-
beddings for DP data generation. Under this representa-
tion, one can approximate the MMD in terms of two finite-
dimensional mean embeddings (as in eq. 3), where the ap-
proximate mean embedding of the true data distribution
(data-dependent) is detached from that of the synthetic data
distribution (data-independent). Thus, the data-dependent
term needs privatization only once and can be re-used repeat-
edly during training of a generator. However, DP-MERF
requires an excessively high number of random features to
approximate the mean embedding of data distributions.

We propose to replace1 the random feature representation
of the kernel mean embedding with the Hermite polynomial
representation. We observe that Hermite polynomial fea-
tures are ordered where the features at the low orders contain
more information on the distribution than those at the high
orders. Hence, the required order of Hermite polynomial
features is significantly lower than the required number of

1There are efforts on improving the efficiency of randomized
Fourier feature maps, e.g., by using quasi-random points in (Avron
et al., 2016).
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random features, for the similar quality of the kernel approx-
imation (see Fig. 1). This is useful in reducing the effective
sensitivity of the data mean embedding. Although the sensi-
tivity is 1

m in both cases with the number of data samples m
(see Sec. 3), adding noise to a vector of longer length (when
using random features) has a worse signal-to-noise ratio, as
opposed to adding noise to a vector of shorter length (when
using Hermite polynomial features), if we require the norms
of these vectors to be the same (for a limited sensitivity).
Furthermore, the Hermite polynomial features maintain a
better signal-to-noise ratio as it contains more information
on the data distribution, even when Hermite polynomial
features are the same length as the random Fourier features

To this end, we develop a private data generation paradigm,
called differentially private Hermite polynomials (DP-HP),
which utilizes a novel kernel which we approximate with
Hermite polynomial features in the aim of effectively tack-
ling the privacy-accuracy trade-off. In terms of three dif-
ferent metrics we use to quantify the quality of generated
samples, our method outperforms the state-of-the-art private
data generation methods at the same privacy level. What
comes next describes relevant background information be-
fore we introduce our method.

2. Background
In the following, we describe the background on kernel
mean embeddings and differential privacy.

2.1. Maximum Mean Discrepancy

Given a positive definite kernel k : X × X , the MMD
between two distributions P,Q is defined as (Gret-
ton et al., 2012): MMD2(P,Q) = Ex,x′∼P k(x, x

′) +
Ey,y′∼Qk(y, y

′) − 2Ex∼PEy∼Qk(x, y). According to the
Moore–Aronszajn theorem (Aronszajn, 1950), there exists
a unique reproducing kernel Hilbert space of functions on
X for which k is a reproducing kernel, i.e., k(x, ·) ∈ H
and f(x) = ⟨f, k(x, ·)⟩H for all x ∈ X and f ∈ H,
where ⟨·, ·⟩H = ⟨·, ·⟩ denotes the inner product on H.
Hence, we can find a feature map, ϕ : X → H such that
k(x, y) = ⟨ϕ(x), ϕ(y)⟩H, which allows us to rewrite MMD
as (Gretton et al., 2012):

MMD2(P,Q) =
∥∥Ex∼P [ϕ(x)]− Ey∼Q[ϕ(y)]

∥∥2
H, (1)

where Ex∼P [ϕ(x)] ∈ H is known as the (kernel) mean
embedding of P , and exists if Ex∼P

√
k(x, x) < ∞

(Smola et al., 2007). If k is characteristic (Sriperumbudur
et al., 2011), then P 7→ Ex∼P [ϕ(x)] is injective, mean-
ing MMD(P,Q) = 0, if and only if P = Q. Hence, the
MMD associated with a characteristic kernel (e.g., Gaussian
kernel) can be interpreted as a distance between the mean
embeddings of two distributions.

Figure 1. HP VS. RF features. Dataset X contains N =
100 samples drawn from N (0, 1) and X ′ contains N =
100 samples drawn from N (1, 1). The error is defined by:
1

N2

∑N
i=1

∑N
j=1 |k(xi, x

′
j) − ϕ̂(xi)

⊤ϕ̂(x′
j)| where ϕ̂ is either

RF or HP features. Top: The error decays fast when using HP
features (eq. 6). Bottom: The plot shows the average error over
100 independent draws of RF features (eq. 4). The error decays
slowly when using RF features. The best error (black dotted line)
using 500 RF features coincides with the error using HP features
with order 2 only.

Given the samples drawn from two distributions: Xm =
{xi}mi=1 ∼ P and X ′

n = {x′i}ni=1 ∼ Q, we can estimate2

the MMD by sample averages (Gretton et al., 2012):

M̂MD
2
(Xm, X

′
n) =

1
m2

m∑

i,j=1

k(xi, xj)

+ 1
n2

n∑

i,j=1

k(x′i, x
′
j)− 2

mn

m∑

i=1

n∑

j=1

k(xi, x
′
j). (2)

However, at O(mn) the computational cost of
M̂MD(Xm, X

′
n) is prohibitive for large-scale datasets.

2.2. Kernel approximation

By approximating the kernel function k(x, x′) with an inner
product of finite dimensional feature vectors, i.e., k(x, x′) ≈
ϕ̂(x)⊤ϕ̂(x′) where ϕ̂(x) ∈ RA and A is the number of
features, the MMD estimator given in eq. 2 can be computed
in O(m+ n), i.e., linear in the sample size:

M̂MD
2
(P,Q) =

∥∥∥∥ 1
m

m∑

i=1

ϕ̂(xi)− 1
n

n∑

i=1

ϕ̂(x′i)

∥∥∥∥
2

2

. (3)

This approximation is also beneficial for private data gener-
ation: assuming P is a data distribution and Q is a synthetic
data distribution, we can summarize the data distribution in
terms of its kernel mean embedding (i.e., the first term on
the right-hand side of eq. 3), which can be privatized only

2This particular MMD estimator is biased.
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once and used repeatedly during training of the generator
which produces samples from Q.

2.3. Random Fourier features.

As an example of ϕ̂(·), the random Fourier features (Rahimi
& Recht, 2008) are derived from the following. Bochner’s
theorem (Rudin, 2013) states that for any translation in-
variant kernel, the kernel can be written as k(x, x′) =
k̃(x− x′) = Eω∼Λ cos(ω⊤(x− x′)). By drawing random
frequencies {ωi}Ai=1 ∼ Λ, where Λ depends on the kernel,
(e.g., a Gaussian kernel k corresponds to normal distribu-
tion Λ), k̃(x− x′) can be approximated with a Monte Carlo
average. The resulting vector of random Fourier features (of
length A) is given by

ϕ̂RF,ω(x) = (ϕ̂1,ω(x), . . . , ϕ̂A,ω(x))
⊤ (4)

where ϕ̂j,ω(x) =
√

2/A cos(ωj
⊤x), ϕ̂j+A/2,ω(x) =√

2/A sin(ω⊤
j x), for j = 1, · · · , A/2.

DP-MERF (Harder et al., 2021) uses this very representation
of the feature map given in eq. 4, and minimizes eq. 3 with
a privatized data mean embedding to train a generator.

2.4. Hermite polynomial features.

For another example of ϕ̂(·), one could also start with
the Mercer’s theorem (See Appendix Sec. C), which
allows us to express a positive definite kernel k in
terms of the eigen-values λi and eigen-functions fi:
k(x, x′) =

∑∞
i=1 λifi(x)f

∗
i (x

′), where λi > 0 and
complex conjugate is denoted by ∗. The resulting finite-
dimensional feature vector is simply ϕ̂(x) = ϕ̂HP (x) =
[
√
λ0f0(x),

√
λ1f1(x), · · · ,

√
λCfC(x)], where the cut-off

is made at the C-th eigen-value and eigen-function. For the
commonly-used Gaussian kernel, k(x, x′) = exp(− 1

2l2 (x−
x′)2), where l is the length scale parameter, an analytic form
of eigen-values and eigen-functions are available, where the
eigen-functions are represented with Hermite polynomials
(See Sec. 3 for definition). This is the approximation we
will use in our method.

2.5. Differential privacy

Given privacy parameters ϵ ≥ 0 and δ ≥ 0, a mechanism
M is (ϵ, δ)-DP if the following equation holds: Pr[M(D) ∈
S] ≤ eϵ · Pr[M(D′) ∈ S] + δ, for all possible sets of the
mechanism’s outputs S and all neighbouring datasets D,
D′ differing by a single entry. In this paper, we use the
Gaussian mechanism to ensure the output of our algorithm
is DP. Consider a function h : D 7→ Rp, where we add
noise for privacy and the level of noise is calibrated to the
global sensitivity (Dwork et al., 2006), ∆h, defined by the
maximum difference in terms ofL2-norm ||h(D)−h(D′)||2,
for neighbouring D and D′ (i.e. D and D′ have one sample

difference by replacement). where the output is denoted
by h̃(D) = h(D) + n, where n ∼ N (0, σ2∆2

hIp). The
perturbed function h̃(D) is (ϵ, δ)-DP, where σ is a function
of ϵ and δ and can be numerically computed using, e.g., the
auto-dp package by (Wang et al., 2019).

3. Our method: DP-HP
3.1. Approximating the Gaussian kernel using Hermite

polynomials (HP)

Using the Mehler formula3 (Mehler, 1866), for |ρ| < 1, we
can write down the Gaussian kernel4 as a weighted sum of
Hermite polynomials

exp

(
− ρ

1− ρ2 (x− y)
2

)
=

∞∑

c=0

λcfc(x)fc(y) (5)

where the c-th eigen-value is λc = (1 − ρ)ρc and the
c-th eigen-function is defined by fc, where fc(x) =

1√
Nc
Hc(x) exp

(
− ρ

1+ρx
2
)
, and Nc = 2cc!

√
1−ρ
1+ρ . Here,

Hc(x) = (−1)c exp(x2) dc

dxc exp(−x2) is the c-th order
physicist’s Hermite polynomial.

As a result of the Mehler formula, we can define aC-th order
Hermite polynomial features as a feature map (a vector of
length C + 1):

ϕ̂
(C)
HP (x) =

[√
λ0f0(x), · · · ,

√
λCfC(x)

]
, (6)

and approximate the Gaussian kernel via
exp

(
− ρ

1−ρ2 (x− y)2
)
≈ ϕ̂

(C)
HP (x)

⊤ϕ̂(C)
HP (y).

This feature map provides us with a uniform approximation
to the MMD in eq. 1, for every pair of distributions P and
Q (see Theorem C.1 and Lemma C.1 in Appendix Sec. C).

We compare the accuracy of this approximation with ran-
dom features in Fig. 1, where we fix the length scale to the
median heuristic value5 in both cases. Note that the bottom
plot shows the average error across 100 independent draws
of random Fourier features. We observe that the error decay
is significantly faster when using HPs than using RFs. For
completeness, we derive the kernel approximation error un-
der HP features and random features for 1-dimensional data
in Appendix Sec. B. Additionally, we visualize the effect of
length scale on the error further in Appendix Sec. A.

Computing the Hermite polynomial features. Hermite
polynomials follow the recursive definition: Hc+1(x) =

3This formula can be also derived from the Mercer’s theorem
as shown in (Zhu et al., 1997; Rasmussen & Williams, 2005).

4The length scale l in terms of ρ is 1
2l2

= ρ
1−ρ2

.
5Median heuristic is a commonly-used heuristic to choose a

length scale, which picks a value in the middle range (i.e., median)
of ∥xi − xj∥ for 1 ≤ i, j ≤ n for the dataset of n samples.



Hermite Polynomial Features for Private Data Generation

2xHc(x) − 2cHc−1(x). At high orders, the polynomials
take on large values, leading to numerical instability. So we
compute the re-scaled term ϕc =

√
λcfc iteratively using a

similar recursive expression given in Appendix Sec. E.

3.2. Handling multi-dimensional inputs

3.2.1. TENSOR (OR OUTER) PRODUCT KERNEL

The Mehler formula holds for 1-dimensional input space.
For D-dimensional inputs x,x′ ∈ RD, where x =
[x1, · · · , xD] and x′ = [x′1, · · · , x′D], the generalized Her-
mite Polynomials (Proposition C.3 and Remark 1 in Ap-
pendix Sec. C) allows us to represent the multivariate Gaus-
sian kernel k(x,x′) by a tensor (or outer) products of the
Gaussian kernel defined on each input dimension, where
the coordinate-wise Gaussian kernel is approximated with
Hermite polynomials:

k(x,x′) = kX1
⊗ kX2

· · · ⊗ kXD
=

D∏

d=1

kXd
(xd, x

′
d),

≈
D∏

d=1

ϕ̂
(C)
HP (xd)

⊤ϕ̂(C)
HP (xd), (7)

where ϕ̂
(C)
HP (.)

6 is defined in eq. 6. The corresponding fea-
ture map, from k(x,x′) ≈ hp(x)

⊤hp(x
′), is written as

hp(x)

= vec
[
ϕ̂

(C)
HP (x1)⊗ ϕ̂

(C)
HP (x2)⊗ · · · ϕ̂

(C)
HP (xD)

]
(8)

where ⊗ denotes the tensor (outer) product and vec is an
operation that vectorizes a tensor. The size of the feature
map is (C + 1)D, where D is the input dimension of the
data and C is the chosen order of the Hermite polynomials.
This is prohibitive for the datasets we often deal with, e.g.,
for MNIST (D = 784) with a relatively small order (say
C = 10), the size of feature map is 11784, impossible to fit
in a typical size of memory.

In order to handle high-dimensional data in a computation-
ally feasible manner, we propose the following approxima-
tion. First we subsample input dimensions where the size of
the selected input dimensions is denoted by Dprod. We then
compute the feature map only on those selected input dimen-
sions denoted by xDprod . We repeat these two steps during
training. The size of the feature map becomes (C+1)Dprod ,
significantly lower than (C + 1)D if Dprod ≪ D. What
we lose in return is the injectivity of the Gaussian kernel on
the full input distribution, as we compare two distributions

6One can let each coordinate’s Hermite Polynomials
ϕ
(C)
HP,d(xd) take different values of ρ, which determine a different

level of fall-offs of the eigen-values and a different range of values
of the eigen-functions. Imposing a different cut-off C for each
coordinate is also possible.

in terms of selected input dimensions. We need a quan-
tity that is more computationally tractable and also helps
distinguishing two distributions, which we describe next.

3.2.2. SUM KERNEL

Here, we define another kernel on the joint distribution over
(x1, · · · , xD). The following kernel is formed by defin-
ing a 1-dimensional Gaussian kernel on each of the input
dimensions:

k̃(x,x′) = 1
D [kX1(x1, x

′
1) + · · ·+ kXD

(xD, x
′
D)] ,

= 1
D

D∑

d=1

kXd
(xd, x

′
d),

≈ 1
D

D∑

d=1

ϕ̂
(C)
HP (xd)

⊤ϕ̂(C)
HP (xd), (9)

where ϕ̂(C)
HP,d(.) is given in eq. 6. The corresponding feature

map, from k̃(x,x′) ≈ hs(x)
⊤hs(x

′), is represented by

hs(x) =




ϕ̂
(C)
HP,1(x1)/

√
D

ϕ̂
(C)
HP,2(x2)/

√
D

...
ϕ̂

(C)
HP,D(xD)/

√
D



∈ R((C+1)·D)×1, (10)

where the features map is the size of (C + 1)D. For the
MNIST digit data (D = 784), with a relatively small order,
say C = 10, the size of the feature map is 11× 784 = 8624
dimensional, which is manageable compared to the size
(11784) of the feature map under the generalized Hermite
polynomials.

Note that the sum kernel does not approximate the Gaussian
kernel defined on the joint distribution over all the input
dimensions. Rather, the assigned Gaussian kernel on each
dimension is characteristic. The Lemma D.1 in Appendix
Sec. D shows that by minimizing the approximate MMD
between the real and synthetic data distributions based on
feature maps given in eq. 10, we assure that the marginal
probability distributions of the synthetic data converges to
those of the real data.

3.2.3. COMBINED KERNEL

Finally we arrive at a new kernel, which comes from a sum
of the two fore-mentioned kernels:

kc(x,x
′) = k(x,x′) + k̃(x,x′), (11)

where k(x,x′) ≈ hp(x
Dprod)⊤hp(x

′Dprod) and
k̃(x,x′) ≈ hs(x)

⊤hs(x
′), and consequently the cor-

responding feature map is given by

hc(x) =

[
hp(x

Dprod)
hs(x)

]
(12)
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where the size of the feature map is
R((C+1)Dprod+(C+1)·D))×1.

Why this kernel? When Dprod goes to D, the product
kernel itself in eq. 11 becomes characteristic, which al-
lows us to reliably compare two distributions. However,
for computational tractability, we are restricted to choose a
relatively small Dprod to subsample the input dimensions,
which forces us to lose information on the distribution over
the un-selected input dimensions. The use of sum kernel
is to provide extra information on the un-selected input di-
mensions at a particular training step. Under our kernel
in eq. 11, every input dimension’s marginal distributions
are compared between two distributions in all the training
steps due to the sum kernel, while some of the input di-
mensions are chosen to be considered for more detailed
comparison (e.g., high-order correlations between selected
input dimensions) due to the outer product kernel.

3.3. Approximate MMD for classification

For classification tasks, we define a mean embedding for
the joint distribution over the input and output pairs (x,y),
with the particular feature map given by g

µ̂Px,y(D) = 1
m

m∑

i=1

g(xi,yi). (13)

Here, we define the feature map as an outer product between
the input features represented by eq. 12 and the output labels
represented by one-hot-encoding f(yi):

g(xi,yi) = hc(xi)f(yi)
T . (14)

Given eq. 14, we further decompose eq. 13 into two, where
the first term corresponds to the outer product kernel denoted
by µ̂p

P and the second term corresponds to the sum kernel
denoted by µ̂s

P :

µ̂Px,y =

[
µ̂p

P

µ̂s
P

]
=

[
1
m

∑m
i=1 hp(x

Dprod

i )f(yi)
T

1
m

∑m
i=1 hs(xi)f(yi)

T

]
. (15)

Similarly, we define an approximate mean embedding
of the synthetic data distribution by µ̂Qx′,y′ (D′

θ) =
1
n

∑n
i=1 g(x

′
i(θ),y

′
i(θ)), where θ denotes the parameters

of a synthetic data generator. Then, the approximate

MMD is given by: M̂MD
2

HP (P,Q) = ||µ̂Px,y(D) −
µ̂Qx′,y′ (D′

θ)||22 = ||µ̂p
P − µ̂p

Qθ
||22+ ||µ̂s

P − µ̂s
Qθ
||22. In prac-

tice, we minimize the augmented approximate MMD:

min
θ

γ||µ̂p
P − µ̂p

Qθ
||22 + ||µ̂s

P − µ̂s
Qθ
||22. (16)

where γ is a positive constant (a hyperparameter) that helps
us to deal with the scale difference in the two terms (de-
pending on the selected HP orders and subsampled input

dimensions) and also allows us to give a different impor-
tance on one of the two terms. We provide the details on
how γ plays a role and whether the algorithm is sensitive
to γ in Sec. 5. Minimizing eq. 16 yields a synthetic data
distribution over the input and output, which minimizes the
discrepancy in terms of the particular feature map eq. 15
between synthetic and real data distributions.

3.4. Differentially private data samples

For obtaining privacy-preserving synthetic data, all we need
to do is privatizing µ̂p

P and µ̂s
P given in eq. 15, then training

a generator. We use the Gaussian mechanism to privatize
both terms. See Appendix Sec. F for sensitivity analysis.
Unlike µ̂s

P that can be privatized only and for all, we need
to privatize µ̂p

P every time we redraw the subsampled input
dimensions. We split a target ϵ into two such that ϵ = ϵ1+ϵ2
(also the same for δ), where ϵ1 is used for privatizing µ̂s

P

and ϵ2 is used for privatizing µ̂p
P . We further compose the

privacy loss incurred in privatizing µ̂p
P during training by

the analytic moments accountant (Wang et al., 2019), which
returns the privacy parameter σ as a function of (ϵ2, δ2). In
the experiments, we subsample the input dimensions for the
outer product kernel in every epoch as opposed to in every
training step for an economical use of ϵ2.

4. Related Work
Approaches to differentially private data release can be
broadly sorted into three categories. One line of prior work
with background in learning theory aims to provide theo-
retical guarantees on the utility of released data (Snoke &
Slavković, 2018; Mohammed et al., 2011; Xiao et al., 2010;
Hardt et al., 2012; Zhu et al., 2017). This usually requires
strong constraints on the type of data and the intended use
of the released data.

A second line of work focuses on the sub-problem of dis-
crete data with limited domain size, which is relevant to
tabular datasets (Zhang et al., 2017; Qardaji et al., 2014;
Chen et al., 2015; Zhang et al., 2021). Such approaches typ-
ically approximate the structure in the data by identifying
small sub-sets of features with high correlation and releasing
these lower order marginals in a private way. Some of these
methods have also been successful in the recent NIST 2018
Differential Privacy Synthetic Data Challenge (nis), while
these methods often require discretization of the data and
do not scale to higher dimensionality in arbitrary domains.

The third line of work aims for broad applicability without
constraints on the type of data or the kind of downstream
tasks to be used. Recent approaches attempt to leverage the
modeling power of deep generative models in the private set-
ting. While work on VAEs exists (Acs et al., 2018), GANs
are the most popular model (Xie et al., 2018; Torkzadehma-
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Data Samples
NLL ≈ 3.1× 105

DP-CGAN (ϵ = 1)

NLL ≈ 4.7× 105
DP-MERF (ϵ = 1)

NLL ≈ 4.1× 105
DP-HP (ϵ = 1)

NLL ≈ 3.7× 105

Figure 2. Simulated example from a Gaussian mixture. Left: Data samples drawn from a Gaussian Mixture distribution with 5 classes
(each color represents a class). NLL denotes the negative log likelihood of the samples given the true data distribution. Middle-Left:
Synthetic data generated by DP-CGANs at ϵ = 1, where some modes are dropped, which is reflected in poor NLL. Middle-Right:
Synthetic data samples generated by DP-MERF at ϵ = 1. Right: Synthetic data samples generated by DP-HP at ϵ = 1. Our method
captures all modes accurately at ϵ = 1, and achieves better NLL thanks to a smaller size of feature map than that of DP-MERF (see text).

hani et al., 2019; Frigerio et al., 2019; Yoon et al., 2019;
Chen et al., 2020), where most of these utilize a version of
DP-SGD (Abadi et al., 2016) to accomplish this training,
while PATE-GAN is based on the private aggregation of
teacher ensembles (PATE) (Papernot et al., 2017).

The closest prior work to the proposed method is DP-MERF
(Harder et al., 2021), where kernel mean embeddings are ap-
proximated with random Fourier features (Rahimi & Recht,
2008) instead of Hermite polynomials. Random feature ap-
proximations of MMD have also been used with DP (Balog
et al., 2018; Sarpatwar et al., 2019). A recent work utilizes
the Sinkhorn divergence for private data generation (Cao
et al., 2021), which more or less matches the results of DP-
MERF when the regularizer is large and the cost function
is the L2 distance. To our knowledge, ours is the first work
using Hermite polynomials to approximate MMD in the
context of differentially private data generation.

5. Experiments
Here, we show the performance of our method tested on sev-
eral real world datasets. Evaluating the quality of generated
data itself is challenging. Popular metrics such as inception
score and Fréchet inception distance are appropriate to use
for evaluating color images. For the generated samples for
tabular data and black and white images, we use the follow-
ing three metrics: (a) Negative log-likelihood of generated
samples given a ground truth model in Sec. 5.1; (b) α-way
marginals of generated samples in Sec. 5.2 to judge whether
the generated samples contain a similar correlation structure
to the real data; (c) Test accuracy on the real data given clas-
sifiers trained with generated samples in Sec. 5.3 to judge
the generalization performance from synthetic to real data.

As comparison methods, we tested PrivBayes (Zhang et al.,
2017), DP-CGAN (Torkzadehmahani et al., 2019), DP-
GAN (Xie et al., 2018) and DP-MERF (Harder et al.,
2021). For image datasets we also trained GS-WGAN
(Chen et al., 2020). Our experiments were implemented

in PyTorch (Paszke et al., 2019) and run using Nvidia
Kepler20 and Kepler80 GPUs. Our code is available at
https://github.com/ParkLabML/DP-HP.

5.1. 2D Gaussian mixtures

We begin our experiments on Gaussian mixtures, as shown
in Fig. 2 (left). We generate 4000 samples from each Gaus-
sian, reserving 10% for the test set, which yields 90000
training samples from the following distribution: p(x,y) =∏N

i

∑
j∈Cyi

1
CN (xi|µj , σI2) where N = 90000, and

σ = 0.2. C = 25 is the number of clusters and Cy de-
notes the set of indices for means µ assigned to class y.
Five Gaussians are assigned to each class, which leads to
a uniform distribution over y and 18000 samples per class.
We use the negative log likelihood (NLL) of the samples
under the true distribution as a score7 to measure the quality
of the generated samples: NLL(x,y) = − log p(x,y). The
lower NLL the better.

We compare our method to DP-CGAN and DP-MERF at
(ϵ, δ) = (1, 10−5) in Fig. 2. Many of the generated samples
by DP-CGAN fall out of the distribution and some modes
are dropped (like the green one in the top right corner). DP-
MERF preserves all modes. DP-HP performs better than
DP-MERF by placing fewer samples in low density regions
as indicated by the low NLL. This is due to the drastic
difference in the size of the feature map. DP-MERF used
30, 000 random features (i.e., 30, 000-dimensional feature
map). DP-HP used the 25-th order Hermite polynomials on
both sum and product kernel approximation (i.e., 252+25 =
650-dimensional feature map). in this example, as the input
is 2-dimensional, it was not necessary to subsample the
input dimensions to approximate the outer product kernel.

7Note that this is different from the other common measure of
computing the negative log-likelihood of the true data given the
learned model parameters.
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Table 1. α-way marginals evaluated on generated samples with discretized Adult and Census datasets.
Adult PrivBayes DP-MERF DP-HP Census PrivBayes DP-MERF DP-HP

ϵ=0.3 ϵ=0.1 ϵ=0.3 ϵ=0.1 ϵ=0.3 ϵ=0.1 ϵ=0.3 ϵ=0.1 ϵ=0.3 ϵ=0.1 ϵ=0.3 ϵ=0.1

α=3 0.446 0.577 0.405 0.480 0.332 0.377 α=2 0.180 0.291 0.190 0.222 0.141 0.155
α=4 0.547 0.673 0.508 0.590 0.418 0.467 α=3 0.323 0.429 0.302 0.337 0.211 0.232

5.2. α-way marginals with discretized tabular data

We compare our method to PrivBayes (Zhang et al., 2017)
and DP-MERF. For PrivBayes, we used the published code
from (McKenna et al., 2019), which builds on the original
code with (Zhang et al., 2018) as a wrapper. We test the
model on the discretized Adult and Census datasets. Al-
though these datasets are typically used for classification,
we use their inputs only for the task of learning the input
distribution. Following (Zhang et al., 2017), we measure
α-way marginals of generated samples at varying levels of
ϵ-DP with δ = 10−5. We measure the accuracy of each
marginal of the generated dataset by the total variation dis-
tance between itself and the real data marginal (i.e., half of
the L1 distance between the two marginals, when both of
them are treated as probability distributions). We use the
average accuracy over all marginals as the final error metric
for α-way marginals. In Table 1, our method outperforms
other two at the stringent privacy regime. See Appendix
Sec. G.1 for hyperparameter values we used, and Appendix
Sec. G.2 for the impact of γ on the quality of the generated
samples. We also show how the selection of Dprod affects
the accuracy in Appendix Sec. G.5.

5.3. Generalization from synthetic to real data

Following (Chen et al., 2020; Torkzadehmahani et al., 2019;
Yoon et al., 2019; Chen et al., 2020; Harder et al., 2021;
Cao et al., 2021), we evaluate the quality of the (private
and non-private) generated samples from these models us-
ing the common approach of measuring performance on
downstream tasks. We train 12 different commonly used
classifier models using generated samples and then evaluate
the classifiers on a test set containing real data samples.
Each setup is averaged over 5 random seeds. The test ac-
curacy indicates how well the models generalize from the
synthetic to the real data distribution and thus, the utility of
using private data samples instead of the real ones. Details
on the 12 models can be found in Table 10.

Tabular data. First, we explore the performance of DP-
HP algorithm on eight different imbalanced tabular datasets
with both numerical and categorical input features. The
numerical features on those tabular datasets can be either
discrete (e.g. age in years) or continuous (e.g. height) and
the categorical ones may be binary (e.g. drug vs placebo
group) or multi-class (e.g. nationality). The datasets are

described in detail in Appendix Sec. G. As an evaluation
metric, we use ROC (area under the receiver characteristics
curve) and PRC (area under the precision recall curve) for
datasets with binary labels, and F1 score for dataset with
multi-class labels. Table 2 shows the average over the 12
classifiers trained on the generated samples (also averaged
over 5 independent seeds), where overall DP-HP outper-
forms the other methods in both the private and non-private
settings, followed by DP-MERF.8 See Appendix Sec. G.3
for hyperparameter values we used. We also show the non-
private MERF and HP results in Table 7 in Appendix.

Image data. We follow previous work in testing our
method on image datasets MNIST (LeCun et al., 2010)
(license: CC BY-SA 3.0) and FashionMNIST (Xiao et al.,
2017) (license: MIT). Both datasets contain 60000 images
from 10 different balanced classes. We test both fully con-
nected and convolutional generator networks and find that
the former works better for MNIST, while the latter model
achieves better scores on FashionMNIST. For the experi-
mental setup of DP-HP on the image datasets see Table 9
in Appendix Sec. H.2. A qualitative sample of the gener-
ated images for DP-HP and comparison methods is shown
in Fig. 4. While qualitatively GS-WGAN produces the
cleanest samples, DP-HP outperforms GS-WGAN on down-
stream tasks. This can be explained by a lack of sample
diversity in GS-WGAN shown in Fig. 3.

In Fig. 3, we compare the test accuracy on real image data
based on private synthetic samples from DP-GAN, DP-
CGAN, GS-WGAN, DP-MERF and DP-HP generators. As
additional baselines we include performance of real data and
of full MMD, a non-private generator, which is trained with
the MMD estimator in eq. 2 in a mini-batch fashion. DP-HP
gives the best accuracy over the other considered methods
followed by DP-MERF but with a considerable difference
especially on the MNIST dataset. For GAN-based methods,
we use the same weak privacy constraints given in the origi-
nal papers, because they do not produce meaningful samples
at ϵ = 1. Nonetheless, the accuracy these models achieve
remains relatively low. Results for individual models for

8For the Cervical dataset, the non-privately generated samples
by DP-MERF and DP-HP give better results than the baseline
trained with real data. This may be due to the fact that the dataset
is relatively small which can lead to overfitting. The generating
samples by DP-MERF and DP-HP could bring a regularizing effect,
which improves the performance as a result.
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Table 2. Performance comparison on Tabular datasets. The average over five independent runs.
Real DP-CGAN DP-GAN DP-MERF DP-HP

(1, 10−5)-DP (1, 10−5)-DP (1, 10−5)-DP (1, 10−5)-DP

adult 0.786 0.683 0.509 0.444 0.511 0.445 0.642 0.524 0,688 0,632
census 0.776 0.433 0.655 0.216 0.529 0.166 0.685 0.236 0,699 0,328
cervical 0.959 0.858 0.519 0.200 0.485 0.183 0.531 0.176 0,616 0,312
credit 0.924 0.864 0.664 0.356 0.435 0.150 0.751 0.622 0,786 0,744
epileptic 0.808 0.636 0.578 0.241 0.505 0.196 0.605 0.316 0,609 0,554
isolet 0.895 0.741 0.511 0.198 0.540 0.205 0.557 0.228 0,572 0,498

F1 F1 F1 F1 F1
covtype 0.820 0.285 0.492 0.467 0.537
intrusion 0.971 0.302 0.251 0.892 0.890

(a) MNIST (b) FashionMNIST

Figure 3. We compare the real data test accuracy as a function of training set size for models trained on synthetic data from DP-HP and
comparison models. Confidence intervals show 1 standard deviation.

Real Data

DP-CGAN [32]

(ϵ = 9.6)

DP-GAN [37]

(ϵ = 9.6)

GS-WGAN [6]

(ϵ = 10)

DP-MERF [13]

(ϵ = 1)

DP-HP (ours)

(ϵ = 1)

Figure 4. Generated MNIST and FashionMNIST samples from
DP-HP and comparison models

both image datasets are given in Appendix Sec. H.

Finally, we show the downstream accuracy for smaller gen-
erated datasets down to 60 samples (or 0.1% of original
dataset) in Fig. 3. The points, at which additional gener-
ated data does not lead to improved performance, gives us a
sense of the redundancy present in the generated data. We
observe that all generative models except full MMD see
little increase in performance as we increase the number
of synthetic data samples to train the classifiers. This indi-

cates that the effective dataset size these methods produce
lies only at about 5% (3k) to 10% (6k) of the original data.
For DP-GAN and DP-CGAN this effect is even more pro-
nounced, showing little to no gain in accuracy after the first
300 to 600 samples respectively on FashionMNIST.

6. Summary and Discussion
We propose a DP data generation framework that improves
the privacy-accuracy trade-off using the Hermite polyno-
mials features thanks to the orderedness of the polynomial
features. We chose the combination of outer product and
sum kernels computational tractability in handling high-
dimensional data. The quality of generated data by our
method is significantly higher than that by other state-of-the-
art methods, in terms of three different evaluation metrics.
In all experiments, we observed that assigning ϵ more to ϵ1
than ϵ2 and using the sum kernel’s mean embedding as a
main objective together with the outer product kernel’s mean
embedding as a constraint (weighted by γ) help improving
the performance of DP-HP.

As the size of mean embedding grows exponentially with the
input dimension under the outer product kernel, we chose
to subsample the input dimensions. However, even with the
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subsampling, we needed to be careful not to explode the
size of the kernel’s mean embedding, which limits the sub-
sampling dimension to be less than 5, in practice. This gives
us a question whether there are better ways to approximate
the outer product kernel than random sampling across all
input dimensions. We leave this for future work.
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W. and Petković, M. (eds.), Secure Data Management,
pp. 150–168, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg. ISBN 978-3-642-15546-8.

Xie, L., Lin, K., Wang, S., Wang, F., and Zhou, J. Differ-
entially private generative adversarial network. CoRR,
abs/1802.06739, 2018.



Hermite Polynomial Features for Private Data Generation

Yoon, J., Jordon, J., and van der Schaar, M. PATE-GAN:
Generating synthetic data with differential privacy guar-
antees. In International Conference on Learning Repre-
sentations, 2019.

Zhang, D., McKenna, R., Kotsogiannis, I., Hay, M.,
Machanavajjhala, A., and Miklau, G. Ektelo: A frame-
work for defining differentially-private computations.
SIGMOD, 2018.

Zhang, J., Cormode, G., Procopiuc, C. M., Srivastava,
D., and Xiao, X. Privbayes: Private data release via
bayesian networks. ACM Transactions on Database Sys-
tems (TODS), 42(4):1–41, 2017.

Zhang, Z., Wang, T., Li, N., Honorio, J., Backes, M., He, S.,
Chen, J., and Zhang, Y. Privsyn: Differentially private
data synthesis. In 30th {USENIX} Security Symposium
({USENIX} Security 21), 2021.

Zhu, H., Williams, C. K., Rohwer, R., and Morciniec, M.
Gaussian regression and optimal finite dimensional linear
models. 1997.

Zhu, T., Li, G., Zhou, W., and Yu, P. S. Differentially
private data publishing and analysis: A survey. IEEE
Transactions on Knowledge and Data Engineering, 29
(8):1619–1638, August 2017. ISSN 1041-4347. doi:
10.1109/TKDE.2017.2697856.



Hermite Polynomial Features for Private Data Generation

Appendix

A. Effect of length scale on the kernel approximation
Fig. 5 shows the effect of the kernel length scale on the kernel approximation for both HPs and RFs.

Figure 5. Comparison between HP and random features at a different length scale value. Different color indicates a different datapoint,
where four datapoints are drawn from N (0, 1). Left: With length scale l = 0.71 (relatively small compared to 1), random features (top)
at the four datapoints exhibit large variability while the Hermite polynomial features (bottom) at those datapoints decay at around order
≤ 20. Right: With l = 7.07 (large compared to 1), random features (top) exhibit less variability, while it is not clear how many features
are necessary to consider. On the other hand, the Hermite polynomial features (bottom) decay fast at around order ≤ 5 and we can make a
cut-off at that order without losing much information.

B. Approximation error under HP and Random Fourier features
In the following proposition, we provide that provably our method converges with O(ρ2C) where ρ < 1 is the constant in
the Mehler’s formula, while DP-MERF has the convergence Ω(1/C), where C is the number of features in each case.

Proposition B.1. Let X and Y be standard normal random variables. There exists a C-dimensional Hermite feature map
ϕ
(C)
HP (·) with the expected predictive error bounded as

EX,Y

[∣∣k(X,Y )− ⟨ϕ̂(C)
HP (X), ϕ̂

(C)
HP (Y )⟩

∣∣] ≤ 1

3
√
2
(
1

3
)C . (17)

However, the expected predictive error of the random feature map ϕ̂RF,ω(·) with C number of features (i.e., ω is a vector of
length C) and the same approximating kernel is equal to

Eω,X,Y

[∣∣k(X,Y )− ⟨ϕ̂RF,ω(X), ϕ̂RF,ω(Y )⟩
∣∣] ≥ 1

8C
. (18)

Proof. We start by proving eq. 17. In this case, we write the squared error term as following:

Ax,y =
∣∣k(x, y)− ⟨ϕ̂(C)

HP (x), ϕ̂
(C)
HP (y)⟩

∣∣2 (a)
=
∣∣

∞∑

C+1

λl√
Nl

Hl(x)e
− ρ

1+ρx
2 1√

Nl

Hl(y)e
− ρ

1+ρy
2 ∣∣2 (19)

=

∞∑

l,l′=C+1

λlλl′

NlNl′
Hl(x)Hl′(x)Hl(y)Hl′(y)e

− 2ρ
1+ρx

2− 2ρ
1+ρy

2

, (20)



Hermite Polynomial Features for Private Data Generation

where (a) is followed by the definition of ϕ̂(C)
HP in eq. 6 and its approximation property (i.e., Mehler’s formula eq. 5). Now,

by setting ρ = 1
3 , we have

Ax,y =
∞∑

l,l′=C+1

λlλl′

NlNl′
Hl(x)Hl′(x)Hl(y)Hl′(y)e

− 1
2x

2− 1
2y

2

. (21)

Next, we average out Ax,y for xs and ys that are drawn from a standard normal distribution as

EX,Y∼N(0,1)

[
AX,Y

]
=

∫ ∞

x,y=−∞

∞∑

l,l′=C+1

λlλl′

NlNl′
Hl(x)Hl′(x)Hl(y)Hl′(y)e

− 1
2x

2− 1
2y

2 e−
1
2x

2− 1
2y

2

2π
dxdy (22)

=

∞∑

l,l′=C+1

λlλl′

NlNl′

∫
Hl(x)Hl′(x)e

−x2

dx
∫
Hl(y)Hl′(y)e

−y2

dy

2π
(23)

(a)
=

∞∑

l=C+1

λ2l
N2

l

1

2π

√
π2ll!

√
π2ll!

(b)
=

∞∑

l=C+1

(2/3)2(1/3)2l

1
22

2l(l!)2
22l(l!)2

2
=

4

9

∞∑

l=C+1

(1/3)2l (24)

(c)
=

1

2
(1/3)2C+2, (25)

where (a) is followed by orthogonality of Hermite polynomials, (b) is followed by the definition of λl and Nl in Section 3.1,
and (c) is due to the infinite Geometric series.

As a result of eq. 25, the definition of Ax,y , and Jensen’s inequality we have

EX,Y

[
|k(X,Y )− ⟨ϕ̂(C)

HP (X), ϕ̂
(C)
HP (X)⟩|

]
≤ E1/2

X,Y

[
AX,Y

]
≤ 1

3
√
2

(1
3

)C
. (26)

For bounding the expected error of random features, we expand the squared error using the definition given in eq. 4:

Bx,y,ω =
∣∣k(x, y)− ⟨ϕRF,ω(x), ϕRF,ω(y)⟩

∣∣2 =
∣∣e−

ρ(x−y)2

1−ρ2 − 2

C

C/2∑

i=1

cosωix cosωiy −
2

C

C/2∑

i=1

sinωix sinωiy
∣∣ (27)

=
∣∣e−

ρ(x−y)2

1−ρ2 − 2

C

C/2∑

i=1

cosωi(x− y)
∣∣2

︸ ︷︷ ︸
Bx,y,ω

. (28)

Next, by setting ρ = 1
3 , we have

Bx,y,ω = e−
3
4 (x−y)2 − 4

C
e−

3
8 (x−y)2

C/2∑

i=1

cosωi(x− y)
︸ ︷︷ ︸

E1,x,y,ω

+
4

C2

( C/2∑

i=1

cosωi(x− y)
)2

︸ ︷︷ ︸
E2,x,y,ω

. (29)

Next, we calculate the average of terms E1,x,y,ω and E2,x,y,ω over ω.

Due to the Bochner’s theorem (see Theorem 3.7 of (Unser & Tafti, 2014)) that shows a shift-invariant positive kernel could
be written in the form of Fourier transform of a density function, we have

Eω

[
E1,x,y,ω

]
= Eω

[ C/2∑

i=1

cosωi(x− y)
]

(30)

=

C/2∑

i=1

Eωi

[
ejωi(x−y)

]
=
C

2
e−

3
8 (x−y)2 , (31)
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Next, we obtain the average of E2,x,y,ω as following:

Eω

[
E2,x,y,ω

]
= Eω

[ C/2∑

i,k=1

cosωi(x− y) cosωk(x− y)
]

(32)

= Eω

[ C/2∑

i,k=1

ej(ωi+ωk)(x−y) + ej(ωi−ωk)(x−y) + ej(−ωi+ωk)(x−y) + ej(−ωi−ωk)(x−y)

4

]
(33)

(a)
=

C/2∑

i,k=1,i̸=k

Eωi

[
ejωi(x−y)

]
Eωk

[
ejωk(x−y)

]
+

1

2

C/2∑

i=1

(
Eωi

[
ejωi(2x−2y)

]
+ 1
)

(34)

(b)
=
(C2

4
− C

2

)
e−

3
4 (x−y)2 +

C

4

(
e−

3
4 (x−y)2 + 1

)
(35)

=
C2

4
e−

3
4 (x−y)2 +

C

4

(
e−

3
2 (x−y)2 − 2e−

3
4 (x−y)2 + 1

)
, (36)

where (a) is due to symmetry of the normal distribution of ω, and (b) is followed by independence of ωi and ωk and their
distribution symmetry.

Substituting eq. 31 and eq. 36 in eq. 29, and using Jensen’s inequality, we have

EX,Y∼N(0,1)Eω

[
Bx,y,ω

]
=

1

C
EX,Y∼N(0,1)

[(
e−

3
4 (X−Y )2 − 1

)2] ≥ 1

C
E2
X,Y

[
e−

3
4 (x−y)2 − 1

]
(37)

=
1

C

(
EX,Y∼N(0,1)

[
e−

3
4 (X−Y )2

]
︸ ︷︷ ︸

G

−1
)2
. (38)

To calculate G, we have

G = EX,Y∼N(0,1)

[
e−

3
4 (X−Y )2

]
=

∫

x,y

e−
3
4 (x

2+y2−2xy)e−
x2

2 − y2

2

2π
dxdy (39)

=

∫

x,y

e−
5
4 (x

2+y2)+ 3
2xy

2π
dxdy (40)

=

∫

x,y

e−
5
4 (x

2− 6
5xy+

9
25y

2)+ 9
25

5
4y

2− 5
4y

2

2π
dxdy (41)

(a)
=

∫

y

e−
4
5y

2

√
2π 5

2

∫

x

e−
5
4 (x− 3

5y)
2

√
2π 2

5

dxdy (42)

=

∫

y

e−
4
5y

2

√
2π 5

2

dy =
1

2

∫

y

e−
4
5y

2

√
2π 5

8

(43)

(b)
=

1

2
, (44)

where (a) and (b) hold since for a normal distribution fa,b(x) = e−
(x−b)2

2a√
2πa

, we have
∫
x
fa,b(x)dx = 1. As a result of eq. 38

and eq. 44 we have

EX,Y,ω

[
BX,Y,ω

]
≥ 1

4C
. (45)

Finally, since 0 ≤ Bx,y,ω ≤ 4, we have

1

16C
≤ EX,Y,ω

[BX,Y,ω

4

]
≤ EX,Y,ω

[ |BX,Y,ω|1/2
2

]
=

1

2
EX,Y,ω

[∣∣k(X,Y )− ⟨ϕRF,ω(X), ϕRF,ω(Y )⟩
∣∣], (46)

which proves eq. 18.
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C. Mercer’s theorem and the generalized Hermite polynomials
We first review Mercer’s theorem, which is a fundamental theorem on how can we find the approximation of a kernel via
finite-dimensional feature maps.

Theorem C.1 ((Smola & Schölkopf, 1998) Theorem 2.10 and Proposition 2.11 ). Suppose k ∈ L∞(X 2), is a symmetric
real-valued function, for a non-empty set X , such that the integral operator Tkf(x) =

∫
X k(x, x

′)f(x′)∂µ(x′) is positive
definite. Let ψj ∈ L2(X ) be the normalized orthogonal eigenfunctions of Tk associated with the eigenvalues λj > 0, sorted
in non-increasing order, then

1. (λj)j ∈ ℓ1,

2. k(x, x′) =
∑NH

j=1 λjψj(x)ψj(x
′) holds for almost all (x, x′). Either NH ∈ N, or NH = ∞; in the latter case, the

series converge absolutely and uniformly for almost all (x, x′).

Furthermore, for every ϵ > 0, there exists n such that

|k(x, x′)−
n∑

j=1

λjψj(x)ψj(x
′)| < ϵ, (47)

for almost all x, x′ ∈ X .

This theorem states that one can define a feature map

Φn(x) =
[√

λ1ψ1(x), . . . ,
√
λnψn(x)

]T
(48)

such that the Euclidean inner product ⟨Φ(x),Φ(x′)⟩ approximates k(x, x′) up to an arbitrarily small factor ϵ.

By means of uniform convergence in Mercer’s theorem, we can prove the convergence of the approximated MMD using the
following lemma.

Lemma C.1. LetH be an RKHS that is generated by the kernel k(·, ·), and let Ĥn be an RKHS with a kernel kn(x,y) that
can uniformly approximate k(x,y). Then, for a positive real value ϵ, there exists n, such that for every pair of distributions
P,Q, we have ∣∣MMD2

H(P,Q)−MMD2
Ĥn

(P,Q)
∣∣ < ϵ. (49)

Proof. Firstly, using Theorem C.1, we can find n such that
∣∣k(x, y)− ⟨Φn(x),Φn(y)⟩

∣∣ < ϵ
4 . We define the RKHS Ĥn as

the space of functions spanned by Φn(·). Next, we rewrite MMD2
H(P,Q)−MMD2

Ĥn
(P,Q), using the definition of MMD

in Section 2.1, as

MMD2
H(P,Q)−MMD2

Ĥn
(P,Q)

= Ex,x′∼P

[
k(x, x′)

]
+ Ey,y′∼Q

[
k(y, y′)

]
− 2Ex∼P,y∼Q

[
k(x, y)

]

− Ex,x′∼P

[
⟨Φn(x),Φn(x

′)⟩
]
+ Ey,y′∼Q

[
⟨Φn(y),Φn(y

′)⟩
]
− 2Ex∼P,y∼Q

[
⟨Φn(x),Φn(y)⟩

]
(50)

Therefore, we can bound
∣∣MMD2

H(P,Q)−MMD2
Ĥn

(P,Q)
∣∣ as

∣∣MMD2
H(P,Q)−MMD2

Ĥn
(P,Q)

∣∣ (a)≤
∣∣∣∣Ex,x′∼P

[
k(x, x′)

]
− Ex,x′∼P

[〈
Φn(x),Φn(x

′)
〉]∣∣∣∣

+

∣∣∣∣Ey,y′∼Q

[
k(y, y′)

]
− Ey,y′∼P

[〈
Φn(y),Φn(y

′)
〉]∣∣∣∣+ 2

∣∣∣∣Ex,y∼P,Q

[
k(x, y)

]
− Ex,y∼P,Q

[〈
Φn(x),Φn(y)

〉]∣∣∣∣
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(b)

≤ Ex,x′∼P

[∣∣∣k(x, x′)−
〈
Φn(x),Φn(x

′)
〉∣∣∣
]
+ Ey,y′∼Q

[∣∣∣k(y, y′)−
〈
Φn(y),Φn(y

′)⟩
∣∣∣
]

+ 2Ex,y∼P,Q

[∣∣∣k(x, y)−
〈
Φn(x),Φn(y)

〉∣∣∣
]

(c)

≤ Ex,x′∼P

[ ϵ
4

]
+ Ey,y′∼Q

[ ϵ
4

]
+ 2Ex,y∼P,Q

[ ϵ
4

]
= ϵ (51)

where (a) holds because of triangle inequality, (b) is followed by Tonelli’s theorem and Jensen’s inequality for absolute
value function, and (c) is correct because of the choice of n as mentioned earlier in the proof.

As a result of the above theorems, we can approximate the MMD in RKHS Hk for a kernel k(·, ·) via MMD in RKHS
Ĥn ⊆ Rn that is spanned by the first n eigenfunctions weighted by square roots of eigenvalues of the kernel k(·, ·).
Therefore, in the following section, we focus on finding the eigenfunctions/eigenvalues of a multivariate Gaussian kernel.

C.1. Generalized Mehler’s approximation

As we have already seen in eq. 5, Mehler’s theorem provides us with an approximation of a one-dimensional Gaussian
kernel in terms of Hermite polynomials. To generalize Mehler’s theorem to a uniform covergence regime (that enables us to
approximate MMD via such feature maps as shown in Lemma C.1), and for a multivariate Gaussian kernel, we make use of
the following theorem.

Theorem C.2 ((Slepian, 1972), Section 6). Let the joint Gaussian density kernel k(x,y, C) : Rn × Rn → R be

k(x,y, C) =
1

(2π)n|C|1/2 exp
(
− 1

2
[x,−y]C−1[x,−y]T

)
(52)

where C is a positive-definite matrix as

C =

[
C11 C12

CT
12 C22

]
, (53)

in which Cij ∈ Rn×n for i, j ∈ {1, 2}, and C11 = C22. Further, let the integral operator be defined with respect to a
measure with density

w(x) =
1∫

k(x,y, C)∂y
. (54)

Then, the orthonormal eigenfunctions and eigenvalues for such kernel are

ψk(x) =
∑

l:∥l∥1=∥k∥1

(
σ∥k∥1

(P )−1
)
kl

φl(x;C11)√∏n
i=1 li!

, (55)

and

λk =
n∏

i=1

e
ki/2
i . (56)

Here, σp(A) is symmetrized Kronecker power of a matrix A, defined as

(
σ∥k∥1

(A)
)
kl

=

√√√√
n∏

i=1

ki!li!
∑

M∈Rn×n:M1n=k,1T
nM=l

∏
ij A

Mij
ij∏

ij Mij !
, (57)

for two n-dimensional vectors k and l with ∥k∥1 = ∥l∥1, the vector e (the matrix P ) is formed by eigenvalues (eigenvectors)
of C−1

11 C12, and φl(x, A) is generalized Hermite functions defined as
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φl(x, A) =
1

(2π)n/2|A|1/2
∂∥l∥1

∂x1l1 . . . ∂xnln
exp

(
− 1

2
xTA−1x

)
. (58)

The above theorem provides us with eigenfunctions/eigenvalues of a joint Gaussian density function. We utilize this theorem
to approximate Mahalanobis kernels (i.e., a generalization of Gaussian radial basis kernels where A = cIn) via Hermite
polynomials as follow.

Proposition C.3. A Mahalanobis kernel k(x,y, A) : RD × RD → R defined as

k(x,y, A) = exp
(
− (x− y)A(x− y)T

)

can be uniformly approximated as

k(x,y, A) ≃
〈
ΦN

(√α2 − 1

α

√
Ax
)
,ΦN

(√α2 − 1

α

√
Ay
)〉
, (59)

where Φ(x) ∈ ND is defined as a tensor product

ΦN (x) =
n⊗

i=1

[ϕki
(xi)]

N
ki=1, (60)

where

ϕki
(xi) =

(
(α2 − 1)α−ki

α2ki!

)1/4

exp

( −x2i
α+ 1

)
Hki

(xi) (61)

Remark 1. Using Proposition C.3 and Lemma C.1, we can show that the MMD based on the tensor feature map in eq. 60
and between any two distributions approximates the real MMD based on Gaussian kernel with Mahalanobis norm.

Proof of Proposition C.3. Let C =

[
1
2In

1
2αIn

1
2αIn

1
2In

]
, or equivalently C−1 =

[
2α2

α2−1In − 2α
α2−1In

− 2α
α2−1In

2α2

α2−1In

]
, for α ∈ [1,∞).

Since C is positive-definite, we can define a Gaussian density kernel as

k(x,y, C) =
1

(π
√
α2−1
2α )n

exp
(
− α2

α2 − 1
∥x∥2 − α2

α2 − 1
∥y∥2 + 2α

α2 − 1
y · xT

)
. (62)

Moreover, we can calculate the integration over all values of y as

∫
k(x,y, C)∂y =

∫
exp

(
− ∥x∥2

)

(π
√
α2−1
2α )n

exp
(
− ∥αy − x∥2

(α2 − 1)

)
∂y =

exp
(
− ∥x∥2

)

(π)n/2
. (63)

Next, by setting w(x) = 1∫
k(x,y,C)∂y

and using Theorem C.2, we have

∫
1

(πα2−1
α2 )n/2

ψk(x) exp
(
− ∥αy − x∥2

α2 − 1

)
∂x = λkψk(y). (64)

Now to find the eigenfunctions of the Gaussian kernel k′(x,y) = exp
(
− α∥x − y∥2

(α2−1)

)
, we let ψ′

k(x) =

ψk(x) exp
(

α
α+1∥x∥2

)
and let the weight function be w′(x) = (π)n/2 exp

(
− (α−1)

α+1 ∥x∥2
)
. As a result of such as-
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sumptions, we see that
∫
ψ′
k(x)k

′(x,y)w′(x)∂x

=

∫
(π)n/2ψk(x) exp

(
− 1

α2 − 1
∥x∥2 − α

α2 − 1
∥y∥2 + 2α

α2 − 1
x · yT

)
∂x (65)

= (π)n/2exp
( α

α+ 1
∥y∥2

) ∫
ψk(x) exp

(
− ∥αy − x∥2

α2 − 1

)
∂x (66)

(a)
= (π)n/2exp

( α

α+ 1
∥y∥2

)√
λkψk(y)

(π(α2 − 1)

α2

)n/2
(67)

(b)
= (π)n

(α2 − 1

α2

)n/2
λkψ

′
k(y), (68)

where (a) holds because of eq. 64, and (b) is followed by the definition of ψ′
k(y). As a result, ψ′

k(x) is an eigenfunction of
the integral operator with kernel k′(x,y) and with weight function w′(x).

Equation eq. 68 shows that the eigenvalue of k′(x,y) corresponding to ψk(x) is as

λ′k = (π)n
(α2 − 1

α2

)n/2
λk (69)

Now we show that such eigenfunctions are orthonormal. Deploying the idea in eq. 68, for two eigenfunctions ψ′
k(·) and

ψ′
l(·) for fixed vectors k, l ∈ Nn, we have

∫
ψ′
k(y)ψ

′
l(y)w

′(y)∂y
(a)
=

∫
ψk(y)ψl(y)

(π)n/2

exp
(
− ∥x∥2

)∂y (b)
=

∫
ψk(y)ψl(y)w(y)

(c)
= δ[l− k], (70)

where (a) is followed by the definition of eigenfunctions ψ′
k(·), ψ′

l(·) and the definition of weight function w′(x), (b) is due
to the definition of w(x) and eq. 63, and (c) holds because of orthonormality of ψks as a result of Theorem C.2.

Further, in this case we have C−1
11 C12 = 1

αIn, or equivalently P = In and e = 1
α1n. Hence, firstly using eq. 56, one can

see that
λk = α−∥k∥/2. (71)

Secondly, in finding symmetrized Kronecker power σ∥k∥1
(P ) in eq. 57, for non-diagonal matrices M , the term

∏
ij P

Mij

ij =
0. Further, for a diagonal matrix M , we have M1n = 1nM . This induces the fact that

σ∥k∥1
(P ) =

{
0 k ̸= l,
1 k = l

. (72)

This shows that

ψl(x) =
φl(x)√∏n

i=1 li!
. (73)

To find the formulation of eigenfunction ψk(x), we can rewrite the term φl(x, C11) in eq. 55 for C11 = 1
2In as

φl(x, I) =
1

(π)n/2
∂∥l∥1

∂x1l1 . . . ∂xnln
exp

(
−

n∑

i=1

x2i

)
. (74)

We note that the exponential function can be written as the product of functions that are only dependent on one variable xi
for i ∈ [n]. Hence, we can rephrase eq. 74 as a product of the derivative of each function as

φl(x, I) =
n∏

i=1

1√
π

∂li

∂lixi
exp

(
− x2i

)
. (75)
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As a result of this equation and the definition of Hermite functions in one dimension, we have

φl(x, I) =
exp(−∥x∥2)

(π)n/2

n∏

i=1

Hli(xi) (76)

Hence, we can calculate ψ′
k(x) as

ψ′
k(x) =

1√
(π)n

∏n
i=1 ki!

exp(
−∥x∥2
α+ 1

)

n∏

i=1

Hki(xi). (77)

Using above discussion, we see that k-th element [ΦN (x)]k of the tensor ΦN (x), which is defined in the proposition
statement, is equal to

[ΦN (x)]k =
√
λ′kψ

′
k(x). (78)

This fact and Theorem C.1 concludes that we can uniformly approximate k′(x,y) as

k′(x,y) = ⟨ΦN (x),ΦN (y)⟩. (79)

Further, for any positive-definite matrix A, since the singular values of
√

α2−1
α

√
A are bounded, one can uniformly

approximate k′′(x,y) := exp
(
− (x− y)A(x− y)T

)
= k′

(√
α2−1

α

√
Ax,

√
α2−1

α

√
Ay
)

as

k′′(x,y) ≃
〈
ΦN

(√α2 − 1

α

√
Ax
)
,ΦN

(√α2 − 1

α

√
Ay
)〉

(80)

D. Sum-kernel upper-bound
Instead of using Generalized Hermite mean embedding which takes a huge amount of memory, one could use an upper
bound to the joint Gaussian kernel. We use the inequality of arithmetic and geometric means to prove that.

k(x,y) = exp
(
− 1

2l2
(x− y)T (x− y)

)
= exp(− 1

2l2

D∑

d=1

(xd − yd)2
)

(81)

=
D∏

d=1

exp
(
− 1

2l2
(xd − yd)2

)
(82)

(a)

≤ 1

D

D∑

d=1

exp
(
− D

2l2
(xd − yd)2

)
(83)

=
1

D

D∑

d=1

kXd
(xd, yd), (84)

where (a) holds due to inequality of arithmetic and geometric means (AM-GM), and kXd
(·, ·) is defined as

kXd
(xd, yd) := exp

(
− D

2l2
(xd − yd)2

)
. (85)

Next, we approximate such kernel via an inner-product of the feature maps

ϕC(x) =




ϕ
(C)
HP,1(x1)/

√
D

ϕ
(C)
HP,2(x2)/

√
D

...
ϕ

(C)
HP,D(xD)/

√
D



∈ R((C+1)·D)×1. (86)
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Although such feature maps are not designed to catch correlation among dimensions, they provide us with a guarantee on
marginal distributions as follows.

Lemma D.1. Define kXi(·, ·) as in eq. 85 and define ϕC(x) as in eq. 86. For ϵ ∈ R+, there exists N such that for C ≥ N
we have

•
∥∥Ex∼P

[
ϕC(x)

]
− Ey∼Q

[
ϕC(y)

]∥∥
2
≤ ϵ⇒ MMDkXi

(Pi, Qi) ≤
√
D + 1ϵ for every i ∈ {1, . . . , D}, and

• MMDkXi
(Pi, Qi) ≤ ϵ for every i ∈ {1, . . . , D} ⇒

∥∥Ex∼P

[
ϕC(x)

]
− Ey∼Q

[
ϕC(y)

]∥∥ ≤
√
2ϵ,

where Pi and Qi are marginal probability distributions corresponding to P and Q, respectively.

Proof. Since ϕ
(C)
HPi(xi) has the certain form as in Theorem C.1, then Lemma C.1 shows that we can use such feature maps

to uniformly approximate the MMD in an RKHS based on the kernel ki(xi, yi) = exp
(
− 1

2l2 (xi − yi)2
)
. As a result, there

exists N such that for C ≥ N , we have
∣∣∣
∥∥Exi∼Pi

[
ϕ
(C)
HP,i(xi)

]
− Eyi∼Qi

[
ϕ
(C)
HP,i(yi)

]∥∥2
2
−MMD2

kXi
(Pi, Qi)

∣∣∣ ≤ Dϵ2. (87)

Now we prove the first part. Knowing
∥∥Ex∼P

[
ϕC(x)

]
− Ey∼Q

[
ϕC(y)

]∥∥
2
≤ ϵ, (88)

and by the definition of ϕC(·), we deduce that
∥∥Exi∼Pi

[
ϕ
(C)
HP,i(xi)

]
− Eyi∼Qi

[
ϕ
(C)
HP,i(yi)

]∥∥2
2
≤ ϵ2. (89)

Using this and eq. 87 we can prove the first part.

Inversely, by setting MMDkXi
(Pi, Qi) ≤ ϵ and eq. 87, one sees that

∥∥Exi∼Pi

[
ϕ
(C)
HP,i(xi)

]
− Eyi∼Qi

[
ϕ
(C)
HP,i(yi)

]∥∥
2
≤
√
2ϵ. (90)

This coupled with the definition of ΦC completes the second part of lemma.

E. ϕ Recursion

ϕk+1(x) = ((1 + ρ)(1− ρ)) 1
4

ρ
k+1
2√

2k+1(k + 1)!
Hk+1(x) exp

(
− ρ

ρ+ 1
x2
)
, by definition

= ((1 + ρ)(1− ρ)) 1
4

ρ
k+1
2√

2k+1(k + 1)!
[2xHk(x)− 2kHk−1(x)] exp

(
− ρ

ρ+ 1
x2
)
,

=

√
ρ√

2(k + 1)
2xϕk(x)−

ρ√
k(k + 1)

kϕk−1(x). (91)

F. Sensitivity of mean embeddings (MEs)
F.1. Sensitivity of ME under the sum kernel

Here we derive the sensitivity of the mean embedding corresponding to the sum kernel.

Sµ̂s
P
= max

D,D′
∥µ̂s

P (D)− µ̂s
P (D′)∥F = max

D,D′
∥ 1
m

m∑

i=1

hs(xi)f(yi)
T − 1

m

m∑

i=1

hs(x
′
i)f(y

′
i)

T ∥F

where ∥ · ∥F represents the Frobenius norm. Since D and D′ are neighbouring, then m− 1 of the summands on each side
cancel and we are left with the only distinct datapoints, which we denote as (x,y) and (x′,y′). We then apply the triangle
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inequality and the definition of f . As y is a one-hot vector, all but one column of hs(x)f(y)
⊤ are 0, so we omit them in the

next step:

Sµs
P
= max

(x,y),(x′,y′)
∥ 1
mhs(x)f(y)

T − 1
mhs(x

′)f(y′)T ∥F

≤ max
(x,y)

2
m∥hs(x)f(y)

T ∥F = max
x

2
m∥hs(x)∥2. (92)

We recall the definition of the feature map given in eq. 10,

∥hs(x)∥2 =
1√
D

(
D∑

d=1

∥ϕ(C)
HP,d(xd)∥22

) 1
2

. (93)

To bound ∥hs(x)∥2, we first prove that ∥ϕ(C)
HP,d(xd)∥22 ≤ 1. Using Mehler’s formula (see eq. 5), and by plugging in y = xd,

one can show that

1 = exp
(
− ρ

1− ρ2 (xd − xd)
2
)
=

∞∑

c=0

λcfc(xd)
2. (94)

Using this, we rewrite the infinite sum in terms of the Cth-order approximation and the rest of summands to show that

1 =
∞∑

c=0

λcf
2
c (xd)

(a)
= ∥ϕ(C)

HP,d(xd)∥22 +
∞∑

c=C+1

λcf
2
c (x)

(b)

≥ ∥ϕ(C)
HP,d(xd)∥22, (95)

where (a) holds because of the definition of ϕ(C)
HP,d(xd) in eq. 6: ∥ϕ(C)

HP,d(xd)∥22 =
∑C

c=0 λcf
2
c (xd), and (b) holds, because

λc and f2c (x) are non-negative scalars.

Finally, deploying eq. 92, eq. 93, and eq. 95, we bound the sensitivity as

SµP
≤ max

x

2
m∥hs(x)∥2 ≤ 2

m
√
D

√
D = 2

m . (96)

F.2. Sensitivity of ME under the product kernel

Similarly, we derive the sensitivity of the mean embedding corresponding to the product kernel.

Sµ̂p
P
= max

D,D′
∥µ̂p

P (D)− µ̂p
P (D′)∥F ≤ max

x

2
m∥hp(x

Dprod)∥2

Given the definition in eq. 8, the L2 norm is given by

2
m∥hp(x

Dprod)∥2 = 2
m

Dprod∏

d=1

∥ϕ(C)
HP (xd)∥2, (97)

≤ 2
m (98)

where the last line is due to eq. 95.

G. Descriptions on the tabular datasets
In this section we give more detailed information about the tabular datasets used in our experiments. Unless otherwise
stated, the datasets were obtained from the UCI machine learning repository (Dua & Graff, 2017).

Adult

Adult dataset contains personal attributes like age, gender, education, marital status or race from the different dataset
participants and their respective income as the label (binarized by a threshold set to 50K). The dataset is publicly available at
the UCI machine learning repository at the following link: https://archive.ics.uci.edu/ml/datasets/ad
ult.
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Census

The Census dataset is also a public dataset that can be downloaded via the SDGym package 9. This is a clear example of an
imbalaned dataset since only 12382 of the samples are considered positive out of a total of 199523 samples.

Cervical

The Cervical cancer dataset comprises demographic information, habits, and historic medical records of 858 patients and
was created with the goal to identify the cervical cancer risk factors. The original dataset can be found at the following link:
https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+%28Risk+Factors%29.

Covtype

This dataset contains cartographic variables from four wilderness areas located in the Roosevelt National Forest of northern
Colorado and the goal is to predict forest cover type from the 7 possible classes. The data is publicly available at
https://archive.ics.uci.edu/ml/datasets/covertype.

Credit

The Credit Card Fraud Detection dataset contains the categorized information of credit card transactions made by European
cardholders during September 2013 and the corresponding label indicating if the transaction was fraudulent or not. The
dataset can be found at: https://www.kaggle.com/mlg-ulb/creditcardfraud. The original dataset has a
total number of 284807 samples where only 492 of them are frauds. In our experiments, we descarded the feature related to
the time the transaction was done. The data is released under a Database Contents License (DbCL) v1.0.

Epileptic

The Epileptic Seizure Recognition dataset contains the brain activity measured in terms of the EEG across time. The dataset
can be found at https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition.
The original dataset contains 5 different labels that we binarized into two: seizure (2300 samples) or not seizure (9200
samples).

Intrusion

The dataset was used for The Third International Knowledge Discovery and Data Mining Tools Competition held at the
Conference on Knowledge Discovery and Data Mining, 1999, and can be found at http://kdd.ics.uci.edu/data
bases/kddcup99/kddcup99.html. We used the file named ”kddcup.data10percent.gz” that contains the 10% of the
orginal dataset. The goal is to distinguish between intrusion/attack and normal connections categorized in 5 different labels.

Isolet

The Isolet dataset contains the features sounds as spectral coefficients, contour features, sonorant features, pre-sonorant
features, and post-sonorant features of the different letters on the alphabet as inputs and the corresponding letter as the label.
The original dataset can be found at https://archive.ics.uci.edu/ml/datasets/isolet. However, in
our experiments we considered this dataset as a binary classification task as we only considered the labels as constants or
vowels.

Table 3 summarizes the number of samples, labeled classes and type of different inputs (numerical, ordinal or categorical)
for each tabular dataset used in our experiments. The content of the table reflects the results after pre-processing or binarizing
the corresponding datasets.

G.1. Hyperparameters for discrete tabular datasets

Here we include the hyperparameters used in obtaining the results obtained in Table 1. In the main text we describe
the choices of the Hermitian hyperparameters. In the separate section G.2 we present a broader view over the gamma
hyperparameter.

9SDGym package website: https://pypi.org/project/sdgym/
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Table 3. Tabular datasets. Size, number of classes and feature types descriptions.

dataset # samps # classes # features

isolet 4366 2 617 num
covtype 406698 7 10 num, 44 cat
epileptic 11500 2 178 num
credit 284807 2 29 num
cervical 753 2 11 num, 24 cat
census 199523 2 7 num, 33 cat
adult 48842 2 6 num, 8 cat
intrusion 394021 5 8 cat, 6 ord, 26 num

Table 4. Hyperparameters for discrete tabular datasets

privacy batch rate order hermite prod prod dimension gamma order hermite

ε = 0.3 0.1 10 5 1 100
ε = 0.1 0.1 5 7 1 100

ε = 0.3 0.01 5 7 0.1 100
ε = 0.1 0.01 5 7 0.1 100

A
du

lt
C

en
su

s

G.2. Gamma hyperparameter ablation study

Here we study the impact of gamma γ hyperparameter on the quality of the generated samples. Gamma describes the weight
that is given to the product kernel in relation to the sum kernel. We elaborate on the results from the Table 1 which describe
α-way marginals evaluated on generated samples with discretized Census dataset. We fix all the hyperparameters and vary
gamma. The Table 5 shows the impact of gamma. The k−way results remain indifferent for γ ≤ 1 but deterioriate for
γ > 1. In this experiment, we set ϵ1 = ϵ2 = ϵ/2. Here, “order hermite prod ” means the HP order for the outer product
kernel, “prod dimension” means the number of subsampled input dimensions, and “order hermite” means the HP order for
the sum kernel.

Table 5. The impact of gamma hyperparamer.

epsilon batch rate order hermite prod prod dimension gamma epochs 3-way 4-way

0.3 0.1 10 5 0.001 8 0.474 0.570
0.3 0.1 10 5 0.01 8 0.473 0.570
0.3 0.1 10 5 0.1 8 0.499 0.597
0.3 0.1 10 5 1 8 0.474 0.570
0.3 0.1 10 5 10 8 0.585 0.671
0.3 0.1 10 5 100 8 0.674 0.757
0.3 0.1 10 5 1000 8 0.676 0.761

G.3. Training DP-HP generator

Here we provide the details of the DP-HP training procedure we used on the tabular data experiments. Table 6 shows the
Hermite polynomial order, the fraction of dataset used in a batch, the number of epochs and the undersampling rate we used
during training for each tabular dataset.

G.4. Non-private results

We also show the non-private MERF and HP results in Table 7.
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Table 6. Tabular datasets. Hyperparameter settings for private constraints ϵ = 1 and δ = 10−5.

data name batch rate order hermite prod prod dimension order hermite gamma

adult 0.1 5 5 100 0.1
census 0.5 5 5 100 0.1
cervical 0.5 13 5 20 1
credit 0.5 7 5 20 1

epileptic 0.1 5 7 20 0.1
isolet 0.5 13 5 150 1

covtype 0.01 7 2 10 1
intrusion 0.01 5 5 7 1

Table 7. Performance comparison on Tabular datasets. The average over five independent runs.
Real DP-MERF DP-HP DP-CGAN DP-GAN DP-MERF DP-HP

(non-priv) (non-priv) (1, 10−5)-DP (1, 10−5)-DP (1, 10−5)-DP (1, 10−5)-DP

adult 0.786 0.683 0.642 0.525 0,673 0,621 0.509 0.444 0.511 0.445 0.642 0.524 0,688 0,632
census 0.776 0.433 0.696 0.244 0,707 0,32 0.655 0.216 0.529 0.166 0.685 0.236 0,699 0,328
cervical 0.959 0.858 0.863 0.607 0,823 0,574 0.519 0.200 0.485 0.183 0.531 0.176 0,616 0,312
credit 0.924 0.864 0.902 0.828 0.89 0,863 0.664 0.356 0.435 0.150 0.751 0.622 0,786 0,744
epileptic 0.808 0.636 0.564 0.236 0,602 0,546 0.578 0.241 0.505 0.196 0.605 0.316 0,609 0,554
isolet 0.895 0.741 0.755 0.461 0,789 0,668 0.511 0.198 0.540 0.205 0.557 0.228 0,572 0,498

F1 F1 F1 F1 F1 F1 F1
covtype 0.820 0.601 0.580 0.285 0.492 0.467 0.537
intrusion 0.971 0.884 0.888 0.302 0.251 0.892 0.890

G.5. The effect of subsampled input dimensions for the product kernel on Adult dataset

Table 8 shows the 3-way (Left) and 4-way (Right) marginals evaluated at different number of dimensions for the product
kernel (Dprod) where the rest of hyperparameters are fixed. The results show that increasing the number of dimensions in
the product kernel improved the result.

Table 8. Trade-off for subsampling dimensions in the product kernel for Adult dataset.
Dprod Dprod

ϵ 2 5 7 2 5 7
1 0.367 0.34 0.332 0.466 0.434 0.422

H. Image data
H.1. Results by model

In the following we provide a more detailed description of the downstreams models accuracy over the different methods
considered in the image datasets.

H.2. MNIST and fashionMNIST hyper-parameter settings

Here we give a detailed hyper-parameter setup and the architectures used for generating synthetic samples via DP-HP for
MNIST and FashionMNIST datasets in Table 9. The non-private version of our method does not exhibit a significant
accuracy difference between 2, 3 and 4 subsampled dimensions for the product kernel, so we considered product dimension
to be 2 for memory savings. Table 10 summarizes the 12 predictive models hyper-parameters setup for the image datasets
trained on the generated samples via DP-HP. In this experiment, we optimize this loss minθ ||µ̂p

P−µ̂p
Qθ
||22+γ||µ̂s

P−µ̂s
Qθ
||22,

where γ is multiplied by the sum kernel’s loss.
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(a) MNIST (b) FashionMNIST

Figure 6. We compare the real data test accuracy of models trained on synthetic data for various models: DP-HP, DP-MERF, GS-WGAN
and DP-CGAN. As baselines we also include results for real training data and a generator, which is non-privately trained with MMD,
listed as ”full MMD”. We show accuracy sorted by downstream classifier and the mean accuracy across classifiers on the right. Each
score is the average of 5 independent runs.

Table 9. Hyperparameter settings for image data experiments. All parameters not listed here are used with their default values.

MNIST FashionMNIST
(non-priv) (1, 10−5)-DP (non-priv) (1, 10−5)-DP

Hermite order (sum kernel) 100 100 100 100
Hermite order (product kernel) 20 20 20 20
kernel length (sum kernel) 0.005 0.005 0.15 0.15
kernel length (product kernel) 0.005 0.005 0.15 0.15
product dimension 2 2 2 2
subsample product dimension beginning of each epoch beginning of each epoch beginning of each epoch beginning of each epoch
gamma 5 20 20 10
mini-batch size 200 200 200 200
epochs 10 10 10 10
learning rate 0.01 0.01 0.01 0.01
architecture fully connected fully connected CNN + bilinear upsampling CNN + bilinear upsampling

Table 10. Hyperparameter settings for downstream models used in image data experiments. Models are taken from the scikit-learn 0.24.2
and xgboost 0.90 python packages and hyperparameters have been set to achieve reasonable accuracies while limiting runtimes. Paramters
not listed are kept at their default values.

Model Parameters

Logistic Regression solver: lbfgs, max iter: 5000, multi class: auto
Gaussian Naive Bayes -
Bernoulli Naive Bayes binarize: 0.5
LinearSVC max iter: 10000, tol: 1e-8, loss: hinge
Decision Tree class weight: balanced
LDA solver: eigen, n components: 9, tol: 1e-8, shrinkage: 0.5
Adaboost n estimators: 1000, learning rate: 0.7, algorithm: SAMME.R
Bagging max samples: 0.1, n estimators: 20
Random Forest n estimators: 100, class weight: balanced
Gradient Boosting subsample: 0.1, n estimators: 50
MLP -
XGB colsample bytree: 0.1, objective: multi:softprob, n estimators: 50
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Abstract

Training even moderately-sized generative models with differentially-private stochastic gradient
descent (DP-SGD) is difficult: the required level of noise for reasonable levels of privacy is simply
too large. We advocate instead building off a good, relevant representation on an informative public
dataset, then learning to model the private data with that representation. In particular, we minimize
the maximum mean discrepancy (MMD) between private target data and a generator’s distribution,
using a kernel based on perceptual features learned from a public dataset. With the MMD, we can
simply privatize the data-dependent term once and for all, rather than introducing noise at each step
of optimization as in DP-SGD. Our algorithm allows us to generate CIFAR10-level images with
ϵ ≈ 2 which capture distinctive features in the distribution, far surpassing the current state of the art,
which mostly focuses on datasets such as MNIST and FashionMNIST at a large ϵ ≈ 10. Our work
introduces simple yet powerful foundations for reducing the gap between private and non-private deep
generative models. Our code is available at https://github.com/ParkLabML/DP-MEPF.1

1 INTRODUCTION

The gold standard privacy notion, differential privacy (DP), is now ubiquitous in a diverse range of academic research,
industry products (Apple, 2017), and even government databases (National Conference of State Legislatures, 2021). DP
provides a mathematically provable privacy guarantee, which is its main strength and reason for its popularity. DP even
offers means of tracking the effect of multiple accesses to the same data on it’s overall privacy level, but with each
access, the privacy of the data gradually degrades. To guarantee a high level of privacy, one thus needs to limit access to
data, a challenge in applying DP with the usual iterative optimization algorithms used in machine learning.

Differentially private data generation solves this problem by creating a synthetic dataset that is similar to the private
dataset, in terms of some chosen similarity metric. While producing such a synthetic dataset incurs a privacy loss,
the resulting dataset can be used repeatedly without further loss of privacy. Classical approaches, however, typically
assume a certain class of pre-specified purposes on how the synthetic data can be used (Mohammed et al., 2011; Xiao
et al., 2010; Hardt et al., 2012; Zhu et al., 2017). If data analysts use the data for other tasks outside these pre-specified
purposes, the theoretical guarantees on its utility are lost.

1This is a revision of the first published version which contained erroneous FID scores. Please refer to this paper’s OpenReview page for a
clarification of our errors and the older version.
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To produce synthetic data usable for potentially any purpose, many papers on DP data generation have utilized the
recent advances in deep generative modelling. The majority of these approaches are based on the generative adversarial
network (GAN; Goodfellow et al., 2014) framework, where a discriminator and a generator play an adversarial game
to optimize a given distance metric between the true and synthetic data distributions. Most approaches under this
framework have used DP-SGD (Abadi et al., 2016), where the gradients of the discriminator (which compares generated
samples to private data) are privatized in each training step, resulting in a high overall privacy loss (Park et al., 2017;
Torkzadehmahani et al., 2019; Yoon et al., 2019; Xie et al., 2018; Frigerio et al., 2019). Another challenge is that, as
the gradients must have bounded norm to derive the DP guarantee, the amount of noise for privatization in DP-SGD
increases proportionally to the dimension of the discriminator. Hence, these methods are typically bound to relatively
small discriminators, limiting the ability to learn data distributions beyond, say, MNIST (LeCun & Cortes, 2010) or
FashionMNIST (Xiao et al., 2017).

Given these challenges, the heavy machinery such as GANs and large-scale auto-encoder-based methods – capable of
generating complex datasets in a non-private setting – fails to model datasets such as CIFAR-10 (Krizhevsky, 2009) or
CelebA (Liu et al., 2015) with a meaningful privacy guarantee (e.g., ϵ ≈ 2). Typical deep generative modeling papers
have moved well beyond these datasets, but to the best of our knowledge, currently there is no DP data generation
method that can produce reliable samples at a reasonable privacy level.

How can we reduce this huge gap between the performance of non-private deep generative models and that of private
counterparts? We argue that we can narrow this gap by using the abundant resource of public data, in line with the core
message of Tramèr & Boneh (2021): We simply need better features for differentially private learning. While Tramèr &
Boneh demonstrated this in the context of DP classification, we aim to show the applicability of this reasoning for the
more challenging problem of DP data generation, with a focus on high-dimensional image generation.

We propose to exploit public data to learn perceptual features (PFs) from public data, which we will use to compare
synthetic and real data distributions. Following dos Santos et al. (2019), we use “perceptual features” to mean the
vector of all activations of a pretrained deep network for a given data point, e.g. the hundreds of thousands of hidden
activations from applying a trained deep classifier to an image. Building on dos Santos et al. (2019), who use PFs
for transfer learning in natural image generation, our goal is to improve the quality of natural images generated with
differential privacy constraints.

We construct a kernel on images using these powerful PFs, then train a generator by minimizing the Maximum Mean
Discrepancy (MMD) (Gretton et al., 2012) between distributions (as in Harder et al., 2021; Li et al., 2015; Dziugaite
et al., 2015; dos Santos et al., 2019). This scheme is non-adversarial, leading to simpler and more stable optimization;
moreover, it allows us to privatize the mean embedding of the private dataset once, using it at each step of generator
training without incurring cumulative privacy losses.

We observe in our experiments that as long as the public data contains more complex patterns than private data, e.g.,
transferring the knowledge learned from ImageNet as public data to generate CIFAR-10 images as private data, the
learned features from public data are useful enough to generate good synthetic data. We successfully generate reasonable
samples for CIFAR-10, CelebA, MNIST, and FashionMNIST in high-privacy regimes. We also theoretically analyze
the effect of privatizing our loss function, helping understand the privacy-accuracy trade-offs in our method.

The main point of our paper is that features from public data are a key tool for improved DP data generation, a point
we think our experiments make resoundingly; this may be “obvious”, but has not been explored for image generation.
Our proposed method, in particular, is a simple (which, we think, is a good thing) initial technique exploiting this idea,
which outperforms simple pretraining of DP-GAN and DP-Sinkhorn (see Section 6). We hope this work will inspire
future work on other ways to use public features for improving image generation with differential privacy.

2 BACKGROUND

We provide background information on maximum mean discrepancy and differential privacy.

Maximum Mean Discrepancy The MMD is a distance between distributions based on a kernel kϕ(x, y) =
⟨ϕ(x), ϕ(y)⟩H, where ϕ maps data in X to a Hilbert space H (Gretton et al., 2012). One definition is

MMDkϕ
(P, Q) =

∥∥Ex∼P [ϕ(x)] − Ey∼Q[ϕ(y)]
∥∥

H,
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where µϕ(P ) = Ex∼P [ϕ(x)] ∈ H is known as the (kernel) mean embedding of P , and is guaranteed to exist if
Ex∼P

√
k(x, x) < ∞ (Smola et al., 2007). If kϕ is characteristic (Sriperumbudur et al., 2011), then P 7→ µϕ(P ) is

injective, so MMDkϕ
(P, Q) = 0 if and only if P = Q.

For a sample set D = {xi}m
i=1 ∼ P m, the empirical mean embedding µϕ(D) = 1

m

∑m
i=1 ϕ(xi) is the “plug-in”

estimator of µϕ(P ) using the empirical distribution of D. Given D̃ = {x̃i}n
i=1 ∼ Qn, we can estimate MMDkϕ

(P, Q)
as the distance between empirical mean embeddings,

MMDkϕ
(D, D̃) =

∥∥∥∥∥
1
m

m∑

i=1
ϕ(xi) − 1

n

n∑

i=1
ϕ(x̃i)

∥∥∥∥∥
H

. (1)

We would like to minimize the distance between a target data distribution P (based on samples D) and the output
distribution Qgθ

of a generator network gθ. If the feature map is finite-dimensional and norm-bounded, following
Harder et al. (2021); Vinaroz et al. (2022), we can privatize the mean embedding of the data distribution µϕ(D) with a
known DP mechanism such as the Gaussian or Laplace mechanisms, to be discussed shortly. As the summary of the
real data does not change over the course of a generator training, we only need to privatize µϕ(D) once.

Differential privacy A mechanism M is (ϵ, δ)-DP for a given ϵ ≥ 0 and δ ≥ 0 if and only if

Pr[M(D) ∈ S] ≤ eϵ · Pr[M(D′) ∈ S] + δ

for all possible sets of the mechanism’s outputs S and all neighbouring datasets D, D′ that differ by a single entry.
One of the most well-known and widely used DP mechanisms is the Gaussian mechanism. The Gaussian mechanism
adds a calibrated level of noise to a function µ : D 7→ Rp to ensure that the output of the mechanism is (ϵ, δ)-DP:
µ̃(D) = µ(D) + n, where n ∼ N (0, σ2∆2

µIp). Here, σ is often called a privacy parameter, which is a function2 of
ϵ and δ. ∆µ is often called the global sensitivity (Dwork et al., 2006), which is the maximum difference in L2-norm
given two neighbouring D and D′, ||µ(D) − µ(D′)||2. In this paper, we will use the Gaussian mechanism to ensure the
mean embedding of the data distribution is DP.

3 METHOD

In this paper, to transfer knowledge from public to private data distributions, we construct a particular kernel kΦ to use
in Equation 1 based on perceptual features (PFs).

3.1 MMD with perceptual features as a feature map

We call our proposed method Differentially Private Mean Embeddings with Perceptual Features (DP-MEPF), analogous
to the related method DP-MERF (Harder et al., 2021). We use high-dimensional, over-complete perceptual features
from a feature extractor network pre-trained on a public dataset, as illustrated in Step 1 of Figure 1. Given a vector input
x, the pre-trained feature extractor network outputs the perceptual features from each layer, where the jth layer’s PF is
denoted by ej(x). Each of the J layers’ perceptual features is of a different length, ej(x) ∈ Rdj ; the total dimension of
the perceptual feature vector is D =

∑J
j=1 dj .

As illustrated in Step 2 in Figure 1, we use those PFs to form our feature map Φ(x) := [ϕ1(x), ϕ2(x)], where the first
part comes from a concatenation of PFs from all the layers: ϕ1(x) = [e1(x), · · · , eJ(x)], while the second part comes
from their squared values: ϕ2(x) = [e2

1(x), · · · , e2
J(x)], where e2

j (x) means each entry of ej(x) is squared. Using
this feature map, we then construct the mean embedding of a data distribution given the data samples D = {xi}m

i=1:

µP (D) =
[

µϕ1
P (D)

µϕ2
P (D)

]
=
[ 1

m

∑m
i=1 ϕ1(xi)

1
m

∑m
i=1 ϕ2(xi)

]
. (2)

Lastly (Step 3 in Figure 1), we will train a generator gθ that maps latent vectors zi ∼ N (0, I) to a synthetic data sample
x̃i = gθ(zi); we need to find good parameters θ for the generator. In non-private settings, we estimate the generator’s

2The relationship can be numerically computed by packages like auto-dp (Wang et al., 2019), among other methods.
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Step 1 Step 2 Step 3

Train a feature extractor 
using public data
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Figure 1: Three steps in differentially private mean embedding with perceptual features (DP-MEPF). Step 1: We train
a feature extractor neural network, fθ̂pub

, using public data. This is a function of public data, with no privacy cost to
train. A trained fθ̂pub

maps an input x to perceptual features (in green), the outputs of each layer. Step 2: We compute
the mean embedding of the data distributions using a feature map consisting of the first and second moments (in green)
of the perceptual features, and privatize it based on the Gaussian mechanism (see text). Step 3: We train a generator gθ,
which produces synthetic data from latent codes zi ∼ N (0, I), by minimizing the privatized MMD.

parameters by minimizing an estimate of MMD2
kΦ

(P, Qgθ
), using D̃ = {x̃i} in Equation 1, similar to Dziugaite et al.

(2015); Li et al. (2015); dos Santos et al. (2019). In private settings, we privatize D’s mean embedding to µ̃ϕ(D) with
the Gaussian mechanism (details below), and minimize

M̃MD
2
kΦ(D, D̃) =

∥∥µ̃ϕ(D) − µϕ(D̃)
∥∥2

. (3)

A natural question that arises is whether the MMD using the PFs is a metric: if MMDkΦ(P, Q) = 0 only if P = Q.
As PFs have a finite-dimensional embedding, we in fact know this cannot be the case (Sriperumbudur et al., 2011).
Thus, there exists some pair of distributions which our MMD cannot distinguish. However, given that linear functions
in perceptual feature spaces can obtain excellent performance on nearly any natural image task (as observed in transfer
learning), it seems that PFs are “nearly” universal for natural distributions of images (dos Santos et al., 2019). Thus we
expect the MMD with this kernel to do a good job of distinguishing “natural” distributions from one another, though the
possibility of “adversarial attacks” perhaps remains.

A more important question in our context is whether this MMD serves as a good loss for training a generator, and
whether the resulting synthetic data samples are reasonably faithful to the original data samples. Our experiments in
Section 6, as well as earlier work by dos Santos et al. (2019) in non-private settings, imply that it is.

Privatization of mean embedding We privatize the mean embedding of the data distribution only once, and reuse
it repeatedly during the training of the generator gθ. We use the Gaussian mechanism to separately privatize the first
and second parts of the feature map. We normalize each type of perceptual features such that ∥ϕ1(xi)∥2 = 1 and
∥ϕ2(xi)∥2 = 1 for each sample xi. After this change, the sensitivity of each part of the mean embedding is

max
D,D′ s.t. |D−D′|=1

∥µϕt(D) − µϕt(D′)∥2 ≤ 2
m , (4)

where µϕt
(D) denotes the two parts of the mean embedding for t = 1, 2. Using these sensitivities, we add Gaussian

noise to each part of the mean embedding, obtaining

µ̃Φ(D) =
[

µ̃ϕ1(D)
µ̃ϕ2(D)

]
=
[ 1

m

∑m
i=1 ϕ1(xi) + n1

1
m

∑m
i=1 ϕ2(xi) + n2

]
, (5)

where nt ∼ N (0, 4σ2

m2 I) for t = 1, 2.

Since we are using the Gaussian mechanism twice, we simply compose the privacy losses from each mechanism. More
precisely, given a desired privacy level ϵ, δ, we use the package of Wang et al. (2019) to find the corresponding σ for the
two Gaussian mechanisms.
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Labeled data generation Extending our framework to generate both labels and input images is straightforward. As
done by Harder et al. (2021), we construct a separate mean embedding for each class-conditional input distribution and
then concatenate them into a single embedding

µ̃ϕt
(D) =

[ 1
m

∑
i∈C1

ϕt(xi) + nt,1 · · · 1
m

∑
i∈CK

ϕt(xi) + nt,K

]⊤
, (6)

where K is the number of classes and Ck = {i ∈ [m]|yi = k} is the set of indices belonging to class k. As a result, the
size of the final mean embedding is D × K (number of perceptual features by the number of classes) if we use only the
first moment, or 2 × D × K if we use the first two moments. This is exactly the conditional mean embedding with a
discrete kernel on the class label (Song et al., 2013). In the case of imbalanced data, an estimate of the label distribution
can be obtained at low privacy cost with a DP release of the class counts, as done in Harder et al. (2021). Since all
datasets considered in this paper are balanced, this step is not necessary in our experiments.

3.2 Differentially private early stopping

On some datasets (CelebA and Cifar10) we observe that the generated sample quality deteriorates if the model is trained
for too many iterations in high-privacy settings. This is indicated by a steady increase in FID score (Heusel et al., 2017),
and likely due to overfitting to the static noisy embedding. Since the FID score is based on the training data, simply
choosing the iteration with the best FID score after training has completed would violate privacy.

Privatizing the FID score requires privatizing the covariance of the output of the final pooling layer in the Inception
network, which is quite sensitive. Instead, we privatize the first and second moment of data embeddings as in Equation 2,
but using only the output of the final pooling layer in the Inception network. We then use this quantity as a private
proxy for FID, and select the iteration with the lowest score. To minimize the privacy cost, we choose a larger noise
parameter than for the main objective: σstopping = 10σ, where σ is the noise scale for privatizing each part of the data
mean embeddings, works well. Again, we compose these σs with the analysis of Wang et al. (2019).

4 THEORETICAL ANALYSIS

We now bound the effect of adding noise to our loss function, showing that asymptotically our noise does not hurt the
rate at which our model converges to the optimal model.

Appendix A proves full finite-sample versions of all of the following bounds, which are stated here using Op notation
for simplicity. The statment X = Op(An) essentially means that X is O(An) with probability at least 1 − ρ for any
constant choice of failure probability ρ > 0.

The full version in the supplementary material is also ambivalent to the choice of covariance for the noise variable n,
allowing in particular analysis of DP-MEPF based either on one or two moments of PFs. (The full version gives a
slightly more refined treatment of the two-moment case, but the difference is typically not asymptotically relevant.)

To begin, we use standard results on Gaussians to establish that the privatized MMD is close to the non-private MMD:

Proposition 4.1. Given datasets D and D̃, the absolute difference between the privatized and non-private squared
MMDs, a random function of only n, satisfies

∣∣M̃MD
2
kΦ(D, D̃) − MMD2

kΦ(D, D̃)
∣∣ = Op

(
σ2

m2 D + σ
m MMDkΦ(D, D̃)

)
.

One key quantity in the bound is σ/m, the ratio of the noise scale σ (inversely proportional to ε) to the number of
observed (private) data points m. Note that σ depends only on the given privacy level, not on m, so the error becomes
zero as long as m → ∞. In the second term, σ/m is multiplied by the (non-private, non-squared) MMD, which is
bounded for our features, but for good generators (where our optimization hopefully spends most of its time) this term
will also be nearly zero. The other term accounts for adding independent noise to each of the D feature dimensions;
although D is typically large, so is m2. Having m = 50K private samples, e.g. for CIFAR-10, allows for a strong error
bound as long as Dσ2 ≪ 625M.
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The above result is for a fixed pair of datasets. Because we only add noise n once, across all possible comparisons, we
can use this to obtain a bound uniform over all possible generator distributions, in particular implying that the minimizer
of the privatized MMD approximately minimizes the original, non-private MMD:
Proposition 4.2. Fix a target dataset D. For each θ in some set Θ, fix a corresponding D̃θ; in particular, Θ = Rp

could be the set of all generator parameters, and D̃θ either the outcome of running a generator gθ on a fixed set of

“seeds,” D̃θ = {gθ(zi)}n
i=1, or the full output distribution of the generator Qgθ

. Let θ̃ ∈ arg minθ∈Θ M̃MD
2
kΦ(D, D̃θ)

be the private minimizer, and θ̂ ∈ arg minθ∈Θ MMD2
kΦ

(D, D̃θ) the non-private minimizer. Then MMD2
kΦ

(D, D̃
θ̃
) −

MMD2
kΦ

(D, D̃
θ̂
) = Op

(
σ2D
m2 + σ

√
D

m

)
.

The second term of this bound will generally dominate; it arises from uniformly bounding the σ
m MMDkΦ(D, D̃θ) term

of Proposition 4.1 over all possible D̃θ. This approach, although the default way to prove this type of bound, misses
that MMDkΦ(D, D̃θ) is hopefully small for θ̃ and θ̂. We can in fact take advantage of this to provide an “optimistic”
rate (Srebro et al., 2010; Zhou et al., 2021) that achieves faster convergence if the generator is capable of matching the
target features (an “interpolating” regime):
Proposition 4.3. In the setting of Proposition 4.2,

MMD2
kΦ(D, D̃

θ̃
) − MMD2

kΦ(D, D̃
θ̂
) = Op

(
σ2D

m2 + σ
√

D

m
MMDkΦ(D, D̃

θ̂
)
)

.

Note that this bound implies the previous one, since MMDkΦ(D, D̃) is bounded. But in the case where the generator is
capable of exactly matching the features of the target distribution, the second term becomes zero, and the rate with
respect to m is greatly improved.

In either regime, our approximate minimization of the empirical MMD is far faster than the rate at which minimizing
the empirical MMD(D, Qgθ

) converges to minimizing the true, distribution-level MMD(P, Qgθ
): the known results

there (e.g. Dziugaite et al., 2015, Theorem 1) give a 1/
√

m rate, compared to our 1/m or even 1/m2.

We show that minimizing DP-MEPF’s loss actually pays no asymptotic penalty for privacy (especially when a perfect
generator exists), with the privacy loss dwarfed by the statistical error for large datasets; this essentially agrees with
experiments (see Section 6). This is not the case for all DP methods, and other DP generation papers didn’t prove any
such guarantees: DP-Sinkhorn only proved privacy, and DP-MERF showed only a much weaker guarantee (its gradient
is asymptotically unbiased).

5 RELATED WORK

Initial work on differentially private data generation assumed strong constraints on the type of data and the intended use
of the released data (Snoke & Slavković, 2018; Mohammed et al., 2011; Xiao et al., 2010; Hardt et al., 2012; Zhu et al.,
2017). While these studies provide theoretical guarantees on the utility of the synthetic data, they typically do not scale
to our goal of large-scale image data generation.

Recently, several papers focused on discrete data generation with limited domain size (Zhang et al., 2017; Qardaji
et al., 2014; Chen et al., 2015; Zhang et al., 2021). These methods learn the correlation structure of small subsets
of features and privatize them in order to produce differentially private synthetic data samples. These methods often
require discretization of the data and have limited scalability, so are also unsuitable for high-dimensional image data
generation.

More recently, however, a new line of work has emerged that adopt the core ideas from the recent advances in deep
generative models for a broad applicability of synthetic data with differential privacy constraints. The majority of this
work (Xie et al., 2018; Torkzadehmahani et al., 2019; Frigerio et al., 2019; Yoon et al., 2019; Chen et al., 2020) uses
generative adversarial networks (GANs; Goodfellow et al., 2014) along with some form of DP-SGD (Abadi et al.,
2016). Other works in this line include PATE-GAN based on the private aggregation of teacher ensembles (Papernot
et al., 2017) and variational autoencoders (Acs et al., 2018).

The closest prior work to the proposed method is DP-MERF (Harder et al., 2021), where the kernel mean embeddings
are constructed using random Fourier features (Rahimi & Recht, 2008). A recent variant of DP-MERF uses Hermite
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polynomial-based mean embeddings (Vinaroz et al., 2022). Unlike these methods, we use the perceptual features from
a pre-trained network to construct kernel mean embeddings. Neither previous method applies to the perceptual kernels
used here, so their empirical results are far worse (as we’ll see shortly). Our theoretical analysis is also much more
extensive: they only proved a bound on the expected error between the private and non-private empirical MMD for a
fixed pair of datasets.

More recently, a similar work to DP-MERF utilizes the Sinkhorn divergence for private data generation (Cao et al.,
2021), which performs similarly to DP-MERF when the cost function is the L2 distance with a large regularizer.
Another related work proposes to use the characteristic function and an adversarial re-weighting objective (Liew et al.,
2022) in order to improve the generalization capability of DP-MERF.

A majority of these related methods were evaluated only on relatively simple datasets such as MNIST and FashionMNIST.
Even so, the DP-GAN-based methods mostly require a large privacy budget of ϵ ≈ 10 to generate synthetic data samples
that are reasonably close to the real data samples. Our method goes far beyond this quality with much more stringent
privacy constraints, as we will now see.

6 EXPERIMENTS

We will now compare our method to state-of-the-art methods for DP data generation.

Table 1: Downstream accuracies by Logistic regression and MLP, evaluated on the generated data samples using
MNIST and FashionMNIST as private data and SVHN and CIFAR-10 as public data, respectively. In all cases, we set
ϵ = 10, δ = 10−5. In our method, we used both features ϕ1, ϕ2.

DP-MEPF DP-Sinkhorn GS-WGAN DP-MERF DP-HP
(Cao et al., 2021) (Chen et al., 2020) (Harder et al., 2021) (Vinaroz et al., 2022)

MNIST LogReg 83 83 79 79 81
MLP 90 83 79 78 82

F-MNIST LogReg 76 75 68 76 73
MLP 76 75 65 75 71

Datasets. We considered four image datasets3 of varying complexity. We started with the commonly used datasets
MNIST (LeCun & Cortes, 2010) and FashionMNIST (Xiao et al., 2017), where each consist of 60,000 28 × 28 pixel
grayscale images depicting hand-written digits and items of clothing, respectively, sorted into 10 classes. We also
looked at the more complex CelebA (Liu et al., 2015) dataset, containing 202,599 color images of faces which we
scale to sizes of 32 × 32 or 64 × 64 pixels and treat as unlabeled. We also study CIFAR-10 (Krizhevsky, 2009), a
50,000-sample dataset containing 32 × 32 color images of 10 classes of objects, including vehicles like ships and trucks,
and animals such as horses and birds.

Implementation. We implemented our code for all the experiments in PyTorch (Paszke et al., 2019), using the auto-dp
package4 (Wang et al., 2019) for the privacy analysis. Following Harder et al. (2021), we used the generator that
consists of two fully connected layers followed by two convolutional layers with bilinear upsampling, for generating
both MNIST and FashionMNIST datasets. For MNIST, we used the SVHN dataset as public data to pre-train ResNet18
(He et al., 2016), from which we took the perceptual features. For FashionMNIST, we used perceptual features from a
ResNet18 trained on CIFAR-10. For CelebA and CIFAR-10, we followed dos Santos et al. (2019) in using perceptual
features from a pre-trained VGG (Simonyan & Zisserman, 2014) on ImageNet, and a ResNet18-based generator. Further
implementation details are given in the supplementary material, which also studies how different public datasets and
feature extractors impact the performance.

Evaluation metric. Evaluating the quality of generated data is a challenging problem of its own. We use two conventional
measures. The first is the Frechet Inception Distance (FID) score (Heusel et al., 2017), which directly measures the
quality of the generated samples. The FID score correlates with human evaluations of visual similarity to the real

3Dataset licenses: MNIST: CC BY-SA 3.0; FashionMNIST:MIT; CelebA: see https://mmlab.ie.cuhk.edu.hk/projects/CelebA.
html; Cifar10: MIT

4https://github.com/yuxiangw/autodp
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Table 2: Downstream accuracies of our method for MNIST and FashionMNIST at varying values of ϵ.

MNIST FashionMNIST
ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.2 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.2

MLP DP-MEPF (ϕ1, ϕ2) 90 89 89 80 76 75 75 70
DP-MEPF (ϕ1) 88 88 87 77 75 76 75 69

LogReg DP-MEPF (ϕ1, ϕ2) 83 83 82 76 75 76 75 73
DP-MEPF (ϕ1) 81 80 79 72 75 76 76 72

Real Data DP-MERF (ϵ = 10)

DP-Sinkhorn (ϵ = 10)

Ours (ϵ = 10)

Ours (ϵ = 1)

Ours (ϵ = 0.2)

pre-trained DP-GAN (ϵ = 10)

pre-trained DP-GAN (ϵ = 1)

pre-trained DP-GAN (ϵ = 0.2)

DP-Diffusion (ϵ = 10)

Figure 2: Synthetic 32 × 32 CelebA samples generated at different levels of privacy. Samples for DP-MERF and
DP-Sinkhorn are taken from Cao et al. (2021) and DP-Diffusion samples are taken from Dockhorn et al. (2022). The
pre-trained GAN is our baseline utilizing public data. Even at ϵ = 0.2, DP-MEPF (ϕ1, ϕ2) yields samples of higher
visual quality than the comparison methods.

data, and is commonly used in deep generative modelling. We computed FID scores with the pytorch_fid package
(Seitzer, 2020), based on 5 000 generated samples, matching dos Santos et al. (2019). As discussed in Section 3.2, we
use a private proxy for FID for early stopping, while the FID scores we report in this section are non-DP measures
of our final model for fair comparison to other existing methods. The second metric we use is the accuracy of
downstream classifiers, trained on generated datasets and then test on the real data test sets (used by Chen et al., 2020;
Torkzadehmahani et al., 2019; Yoon et al., 2019; Chen et al., 2020; Harder et al., 2021; Cao et al., 2021). This test
accuracy indicates how well the downstream classifiers generalize from the synthetic to the real data distribution and
thus, the utility of using synthetic data samples instead of the real ones. We computed the downstream accuracy on
MNIST and FashionMNIST using the logistic regression and MLP classifiers from scikit-learn (Pedregosa et al., 2011).
For CIFAR-10, we used ResNet9 taken from FFCV5 (Leclerc et al., 2022).

In all experiments, we tested non-private training and settings with various levels of privacy, ranging from ϵ = 10
(no meaningful guarantee) to ϵ = 0.2 (strong privacy guarantee). We set δ = 10−5 for MNIST, FashionMNIST, and
Cifar10 and δ = 10−6 for CelebA. In DP-MEPF, we also tested cases based on embeddings with only the first moment,
written (ϕ1), and using the first two moments, written (ϕ1, ϕ2). Each value in all tables is an average of 3 or more
runs; standard deviations are in the supplementary material.

Since we are unaware of any prior work on DP data generation for image data using auxiliary datasets, we instead
mostly compare to recent methods which do not access auxiliary data. As expected, due to the advantage of non-private
data our approach outperforms these methods by a significant margin on the more complex datasets. As a simple
baseline based on public data, we also pretrain a GAN on a downscaled version of ImageNet, at 32 × 32, and fine-tune
this model with DP-SGD on CelebA and Cifar10. We use architectures based on ResNet9 with group normalization
(Wu & He, 2018) for both generator and discriminator. As suggested by Bie et al. (2023), we update the generator
at a lower frequency than the discriminator and use increased minibatch sizes. Further details can be found in the
supplementary material.

MNIST and FashionMNIST. We compare DP-MEPF to existing methods on the most common settings used in
the literature, MNIST and FashionMNIST at ϵ = 10, in Table 1. For an MLP on MNIST, DP-MEPF’s samples far

5https://github.com/libffcv/ffcv/blob/main/examples/cifar/train_cifar.py
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ϵ = 5

ϵ = 1

ϵ = 0.2

DP-MEPF DP-GAN

Figure 3: Synthetic 64 × 64 CelebA samples generated at different levels of privacy with DP-MEPF (ϕ1, ϕ2).

Table 3: CelebA FID scores (lower is better) for images of resolution 32 × 32 and 64 × 64. Results for DP Diffusion
(DPDM) and DP Sinkhorn taken from Dockhorn et al. (2022) and Cao et al. (2021).

ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2

32

DP-MEPF (ϕ1, ϕ2) 17.4 17.5 18.1 19.0 21.4 25.8
DP-MEPF (ϕ1) 16.3 16.9 16.5 17.2 21.8 25.5
DP-GAN (pre-trained) 58.1 66.9 67.1 81.3 109.1 192.0
DPDM (no public data) 21.2 - - 71.8 - -
DP Sinkhorn (no public data) 189.5 - - - - -

64
DP-MEPF (ϕ1, ϕ2) 18.5 19.1 18.4 19.0 21.4 26.8
DP-MEPF (ϕ1) 17.4 16.5 16.9 18.4 20.4 27.7
DP-GAN (pre-trained) 57.1 62.3 65.2 72.5 91.9 133.3

outperform other methods for logistic regression and both classifiers on FashionMNIST, scores match or slightly exceed
those of existing models. This might be because the domain shift between public dataset (CIFAR-10, color images
of scenes) and private dataset (FashionMNIST, grayscale images of fashion items) is too large, or because the task is
simple enough that random features as found in DP-MERF or DP-HP are already good enough. This will change as we
proceed to more complex datasets. Table 2 shows that downstream test accuracy only starts to drop in high privacy
regimes, ϵ < 1, due to the low sensitivity of µϕ. Samples for visual comparison between methods are included in the
supplementary material.

Figure 4: Samples from non-DP
Sinkhorn. Top: ImageNet32. Bot-
tom: CelebA after pretraining.

CelebA Figure 2 shows that previous attempts to generate CelebA samples
without auxiliary data using DP-MERF or DP-Sinkhorn have only managed to
capture very basic features of the data. Each sample depicts a face, but offers
no details or variety. DP-MEPF produces more accurate samples at the same
32 × 32 resolution, which is also reflected in improved FID scores of around 17,
while DP-Sinkhorn, as reported in Cao et al. (2021), achieves an FID of 189.5.
Table 3 gives FID scores for both resolutions at varying ϵ. DP-MEPF consistently
outperforms our pre-trained DP-GAN baseline and the scores reported for DP
diffusion Dockhorn et al. (2022), As the dataset has over 200 000 samples, the
feature embeddings have low sensitivity, and offer similar quality between ϵ = 10
and ϵ = 1, although quality begins to decline at ϵ < 1. Samples for 64 × 64 images are shown in Figure 3, with similar
quality, and a quicker loss of quality in high privacy settings due to its larger embedding. In all cases, the ϕ1 embedding
yields better results than ϕ1, ϕ2, suggesting that the second moment does not contribute useful information, perhaps
because on the limited variance of the dataset.

Because DP-Sinkhorn is the best-performing method without public data, we perform experiments on DP-Sinkhorn,
pretraining it non-DP on ImageNet32 and fine-tuning with DP on CelebA (ϵ = 10). After seeing no improvement, we
tested non-DP fine-tuning and still saw no improvements beyond what is shown in Figure 4; we tried both BigGan- and
ResNet18-based generators with hyperparameter grid searches. DP-Sinkhorn only compares features at image-level,
without domain-specific priors, and it appears that even non-DP the method is not powerful enough to model image
data beyond MNIST. (A DP-MEPF analogue that extracts features learned from public data might help, but this would
be a novel method beyond scope for comparison.) DP-MERF is similarly limited by its random features, not DP noise,
as shown by non-DP versions matching ϵ = 10 performance.

Differentially private early stopping. For CelebA and Cifar10, we use DP early stopping as explained in Section 3.2
with a privacy parameter ten times larger than the σ used for the training objective. Keeping (ϵ, δ) fixed, this additional
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Table 4: Two examples of beneficial early stopping: For CelebA at 64 × 64 resolution and labeled Cifar10, DP-MEPF
(ϕ1) sample quality (measured in FID) degrades with long training in high privacy settings (here ϵ ≤ 1). This makes
the final model at the end of training a poor choice. Our DP selection of the best iteration via proxy stays close to the
optimal choice.

ϵ = 1 ϵ = 0.5 ϵ = 0.2

CelebA 64 × 64
Best FID (not DP) 17.7 20.1 27.0
DP proxy for FID 18.4 20.4 27.7
At the end of training 18.4 22.1 45.2

Cifar10 (labeled)
Best FID (not DP) 54.8 92.0 268.3
DP proxy for FID 56.5 92.0 268.3
At the end of training 198.6 267.7 357.1

Real Data

ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2 ϵ = ∞ ϵ = 10
DP-MEPF (ours) DP-MERF

Figure 5: Labeled samples from DP-MEPF (ϕ1, ϕ2) and DP-MERF (Harder et al., 2021).

release results only in a small increase in σ, and gives us a simple way for choosing the best iteration. In Table 4, we
compare the true best FID, the FID picked by our private proxy, and the FID at the end of training to illustrate the
advantage in high DP settings. FID scores were computed every 5 000 iterations, while the model trained for 200 000
iterations in total.

CIFAR-10 Finally, we investigate a dataset which has not been covered in DP data generation. While CelebA
depicts a centered face in every image, CIFAR-10 includes 10 visually distinct object classes, which raises the required
minimum quality of samples to somewhat resemble the dataset. At only 5 000 samples per class, the dataset is also
significantly smaller, which poses a challenge in the private setting.

Figure 5 shows that DP-MEPF is capable of producing labelled private data (generating both labels and input images
together) resembling the real data, but the quality does suffer in high privacy settings. This is also reflected in the FID
scores (Table 5): at ϵ ≤ 1 labeled DP-MEPF scores deteriorate at a much quicker rate than the unlabeled counterpart. As
the unlabeled embedding dimension is smaller by a factor of 10 (the number of classes), it is easier to release privately
and retains some semblance of the data even in the highest privacy settings, as shown in Figure 6. The FID scores of
our pre-trained DP-GAN baseline consistently exceed our results, usually by over 10 points. These scores are better
than the DP-GAN results for CelebA, likely because 32 × 32 ImageNet is very similar to Cifar10. Nonetheless, the
high privacy cost of DP-SGD makes DP-GAN a poor fit for a dataset of this complexity and limited size.

Table 5: FID scores for synthetic CIFAR-10 data; labeled generates both labels and images.

ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2

unlabeled
DP-MEPF (ϕ1, ϕ2) 38.8 37.0 38.7 43.0 49.4 67.3
DP-MEPF (ϕ1) 38.5 38.6 40.1 45.1 49.8 72.3
DP-GAN 54.6 54.7 62.4 74.9 62.7 73.4

labeled DP-MEPF (ϕ1, ϕ2) 29.1 30.0 39.5 54.0 76.4 226.0
DP-MEPF (ϕ1) 30.3 35.6 42.0 56.5 92.0 268.3
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ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2
DP-MEPF (ours)

ϵ = 10 ϵ = 2

DP-GAN

Figure 6: Unlabeled CIFAR-10 samples from DP-MEPF (ϕ1, ϕ2) and DP-GAN.

In Table 6 we show the test accuracy of models trained synthetic datasets applied to real data. While there is still a large
gap between the 88.3% accuracy on the real data and our results, DP-MEPF achieves nontrivial results around 50% for
ϵ = 10, which degrade as privacy is increased. While the drop in sample quality due to high privacy is quite substantial,
it is less of a problem in the unlabelled case, since our embedding dimension is smaller by a factor of 10 (the number of
classes) and thus easier to release privately.

Table 6: Test accuracies (higher is better) of ResNet9 trained on CIFAR-10 synthetic data with varying privacy
guarantees. When trained on real data, test accuracy is 88.3%

ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2
DP-MEPF (ϕ1, ϕ2) 53.0 43.9 40.0 28.5 18.0 16.2
DP-MEPF (ϕ1) 40.7 32.3 42.6 33.2 18.8 15.3
DP-MERF 13.2 13.4 13.5 13.8 13.1 10.4

7 DISCUSSION

We have demonstrated the advantage of using auxiliary public data in DP data generation. Our method DP-MEPF takes
advantage of features from pre-trained classifiers that are readily available, and allows us to tackle datasets like CelebA
and CIFAR-10, which have been unreachable for private data generation up to this point.

There are several avenues to extend our method in future work, in particular finding better options for the encoder
features: the choice of VGG19 by dos Santos et al. (2019) works well in private settings, but a lower-dimensional
embedding that still works well for training generative models – perhaps based on some kind of pruning scheme – might
help reduce the sensitivity of µϕ and improve quality.

Training other generative models such as GANs or VAEs with pretrained components is also exploring further than our
initial attempt here. It may also be possible to take a “middle ground” and introduce some adaptation for features in
DP-MEPF, to allow for more powerful, GAN-like models, without suffering too much privacy loss. In the non-private
generative modelling community, this has proved important, but the challenge will be to do so while limiting the number
of DP releases to allow modelling with, e.g., ϵ ≤ 2.
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9 BROADER IMPACT STATEMENT

Our work is motivated by the need for strong and scalable data privacy, which we expect will have mainly beneficial
societal impact. However, our work touches on two topics, which are known to contain a risk of harmful impact on
individuals and thus need to be treated with caution.

9.1 Differential privacy and fairness

Firstly, recent research has shown that DP is at odds with notions of fairness when if comes to under-represented groups
in the data. For instance Chang & Shokri (2021) show that minorities are more susceptible to membership inference
attacks in fair non-DP models (i.e. fairness reduces privacy) and Bagdasaryan et al. (2019) show the reverse effect:
when training an unfair model with strong DP guarantees, the fairness is reduced further. The dilemma is intuitive:
Fairness requires amplifying the impact of samples from minorities in the data, so they will not be ignored, while DP
needs to limit the impact each individual sample can have in order to keep sensitivity low. Since its discovery, this
trade-off has received attention both in works seeking a more detailed understanding (Cummings et al., 2019; Mangold
et al., 2022; Esipova et al., 2022; Zhong et al., 2022; Sanyal et al., 2022) and works proposing custom approaches to
DP fair machine learning (Ding et al., 2020; Xu et al., 2019; Jagielski et al., 2019; Tran et al., 2021a;b; Esipova et al.,
2022). Given that the impact of DP on fairness is an active area of research and independent of our particular approach,
we do not see the need to perform our own experiments on this matter.

We will, however, provide an intuition on how the problem manifests in DP-MEPF by looking at labelled data generation
with significant class imbalance. Assuming an imbalanced dataset with two classes and |C1| = 100 and |C2| = 10, we
obtain the following mean embedding:

µ̃ϕt(D) =
[ 1

m

∑
i∈C1

ϕt(xi) + nt,1
1
m

∑
i∈C2

ϕt(xi) + nt,2

]
. (7)

With ∥ϕt(xi)∥2 = 1, we know that the norm of the unperturbed mean embedding for class 1, given by
∥ 1

m

∑
i∈C1

ϕt(xi)∥2 ≤ 100/110, may be ten times as large as the maximum possible norm for the class 2 em-
bedding ∥ 1

m

∑
i∈C2

ϕt(xi)∥2 ≤ 10/110. Nonetheless, in order to preserve DP, both embeddings are perturbed with
noise of the same magnitude, leading to a significantly worse signal-to-noise ratio for the class 2 embedding. As a
result, the generative model trained on this embedding will produce more accurate samples for class 1 than for class 2.

9.2 Differential privacy with public data

The second issue regards the use of public data in DP. In a recent position paper, Tramèr et al. (2022) raise several
concerns about the increasing trend of using auxiliary datasets in DP research. Their critique has two main arguments,
the first being that publicly available data may still be sensitive and using such data may cause unintended privacy
violations. Given that many large datasets are scraped from the internet with limited human oversight, this data may
contain personal data that was released involuntarily or shared exclusively for a specific context. The authors suggest
that responsible use of public data requires improved curation practices, including e.g. collection of explicit consent for
data use, auditing for and removal of sensitive content, and providing channels for reporting privacy concerns.

The other main criticism raised by Tramèr et al. (2022) is that the datasets used to demonstrate the benefits of public data
in DP, such as Cifar10 or ImageNet, are poorly chosen, because they are often from nearly the same distribution as the
private data. In contrast, they argue, using public data in realistic application scenarios such as medical imaging would
likely require considerable domain shift, since no public data close to the target domain is available. This disparity
leads to overly optimistic claims, as the experiments don’t actually demonstrate good performance under significant
domain shift. They further point out that the quality of a DP method becomes difficult to measure if it builds on e.g. a
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non-privately pre-trained model, as overall improvements may stem both from either the private and the non-private
part of the method. The authors propose dedicated benchmarks for DP machine learning should be developed, in order
to obtain results which are comparable and predictive of model performance in real-world applications. They also
acknowledge that such benchmarks don’t currently exist and their design requires careful consideration.

We agree with the authors in their analysis of the challenges facing DP machine learning research and value their
proposals for future directions and experiment design. In the light of all these problems introduced by public data, one
might ask whether this is at all a research direction worth pursuing. Here, we emphasize a fact that is acknowledged in
the final paragraph of Tramèr et al. (2022): "many recent works employing public data have played an important role in
showing that differential privacy can be preserved for certain complex machine learning problems, without suffering
devastating impacts on utility." DP currently sees little to no practical application in machine learning, in large part
because the loss of utility it causes is often unacceptable. Auxiliary public data is the best candidate for achieving
sufficient utility for practical use and so, in our eyes, the potential of these approaches outweighs the complications they
introduce. It is thus vital that research in DP ML with public data is pursued further.
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Supplementary Material

A Proofs

We will conduct our analysis in terms of general noise covariance Σ for the added noise, n ∼ N (0, Σ). The results will
depend on various norms of Σ, as well as ∥Σ1/2a∥, where a = µϕ(D) − µϕ(D̃) is the difference between empirical
mean embeddings µϕ(D) = 1

|D|
∑

x∈D ϕ(x). (Recall that MMD(D, D̃) = ∥a∥.)

When we use only normalized first-moment features, the quantities appearing in the bounds are

Σ = 4σ2

m2 ID

∥Σ∥op = 4σ2

m2 ∥Σ∥F = 4σ2

m2

√
D Tr(Σ) = 4σ2

m2 D (8)

∥Σ1/2a∥2 =
√

a⊤Σa = 2σ

m
MMDkϕ

(D, D̃).

When we use first- and second-moment features with respective scales C1 and C2 (both 1 in our experiments here), we
have

Σ =
[

σ2 ( 2C1
m

)2
ID 0

0 σ2 ( 2C2
m

)2
ID

]
= 4σ2

m2

[
C2

1 ID 0
0 C2

2 ID

]

∥Σ∥op = 4σ2

m2 max(C2
1 , C2

2 ) ∥Σ∥F = 4σ2

m2 (C2
1 + C2

2 )
√

D Tr(Σ) = 4σ2

m2 (C2
1 + C2

2 ) D (9)

∥Σ1/2a∥2 =
√

a⊤Σa = 2σ

m

√
C2

1 MMD kϕ1(D, D̃)2 + C2
2 MMD kϕ2(D, D̃)2.

Note that if C1 = C2 = C, then
√

C2
1 MMD kϕ1(D, D̃)2 + C2

2 MMD kϕ2(D, D̃)2 = C MMDkΦ(D, D̃).

A.1 Mean absolute error of loss function

Proposition A.1. Given datasets D = {xi}m
i=1 and D̃ = {x̃j}n

j=1 and a kernel kϕ with a D-dimensional embedding ϕ,

let a = µϕ(D) − µϕ(D̃). Define M̃MD
2
kΦ(D, D̃) = ∥a + n∥2 for a noise vector n ∼ N (0, Σ). Introducing the noise

n affects the expected absolute error as

En
[∣∣M̃MD

2
kΦ(D, D̃) − MMD2

kΦ(D, D̃)
∣∣
]

≤ Tr(Σ) + 2
√

2
π

∥Σ1/2a∥. (10)

Proof. We have that

En
[∣∣ M̃MD

2
kΦ(D, D̃) − MMD2

kΦ(D, D̃)
∣∣
]

= En
[∣∣ ∥a + n∥2 − ∥a∥2 ∣∣

]
= En

[ ∣∣n⊤n + 2n⊤a
∣∣
]

≤ En
[
n⊤n

]
+ 2En

[∣∣∣n⊤a
∣∣∣
]
. (11)

The first term is standard:

En⊤n = ETr(n⊤n) = ETr(nn⊤) = Tr(Enn⊤) = Tr(Σ).

For the second, note that
a⊤n ∼ N (0, a⊤Σa),

and so its absolute value is
√

a⊤Σa times a χ(1) random variable. Since the mean of a χ(1) distribution is
√

2 Γ(1)
Γ(1/2) =√

2
π , we obtain the desired bound.
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A.2 High-probability bound on the error

Proposition A.2. Given datasets D = {xi}m
i=1 and D̃ = {x̃j}n

j=1, let a = µϕ(D) − µϕ(D̃), and define

M̃MD
2
kΦ(D, D̃) = ∥a + n∥2 for a noise vector n ∼ N (0, Σ). Then for any ρ ∈ (0, 1), it holds with probabil-

ity at least 1 − ρ over the choice of n that

∣∣ M̃MD
2
kΦ(D, D̃) − MMD2

kΦ(D, D̃)
∣∣

≤ Tr(Σ) +
√

2
π ∥Σ 1

2 a∥2 + 2
(

∥Σ∥F +
√

2∥Σ 1
2 a∥2

)√
log( 2

ρ ) + 2∥Σ∥op log( 2
ρ ). (12)

This implies that
∣∣ M̃MD

2
kΦ(D, D̃) − MMD2

kΦ(D, D̃)
∣∣ = Op

(
Tr(Σ) + ∥Σ1/2a∥2

)
.

Proof. Introduce z ∼ N (0, I) such that n = Σ 1
2 z into Equation 11:

∣∣ M̃MD
2
kΦ(D, D̃) − MMD2

kΦ(D, D̃)
∣∣ ≤ n⊤n + 2

∣∣∣n⊤a
∣∣∣ = z⊤Σz + 2

∣∣a⊤Σ1/2z
∣∣. (13)

For the first term, denoting the eigendecomposition of Σ as QΛQ⊤, we can write

z⊤Σz = (Q⊤z)⊤Λ(Q⊤z),

in which Q⊤z ∼ N (0, I) and Λ is diagonal. Thus, applying Lemma 1 of Laurent & Massart (2000), we obtain that
with probability at least 1 − ρ

2 ,

z⊤Σz ≤ Tr(Σ) + 2∥Σ∥F

√
log( 2

ρ ) + 2∥Σ∥op log( 2
ρ ). (14)

In the second term,
∣∣a⊤Σ 1

2 z
∣∣, can be viewed as a function of a standard normal variable z with Lipschitz constant

at most ∥Σ 1
2 a∥2. Thus, applying the standard Gaussian Lipschitz concentration inequality (Boucheron et al., 2013,

Theorem 5.6), we obtain that with probability at least 1 − ρ
2 ,

∣∣∣z⊤Σ 1
2 a
∣∣∣ ≤ E

∣∣∣z⊤Σ 1
2 a
∣∣∣+ ∥Σ 1

2 a∥2

√
2 log( 2

ρ ) = ∥Σ 1
2 a∥2

(√
2
π +

√
2 log( 2

ρ )
)

.

The first statement in the theorem follows by a union bound. The Op form follows by Lemma A.1 and the fact that
Tr(A) ≥ ∥A∥F ≥ ∥A∥op for positive semi-definite matrices A.

The following lemma shows how to convert high-probability bounds with both sub-exponential and sub-Gaussian tails
into a Op statement.

Lemma A.1. If a sequence of random variables Xn satisfies

Xn ≤ An + Bn

√
log bn

ρ
+ Cn log cn

ρ
with probability at least 1 − ρ,

then the sequence of variables Xn is

Op

(
max

(
An, Bn max(

√
log bn, 1), Cn max(log cn, 1)

))
.

Proof. The definition of a sequence of random variables Xn being Op(Qn), where Qn is a sequence of scalars, means
that the sequence Xn

Qn
is stochastically bounded: for each ρ, there is some constant Rρ such that Pr(Xn/Qn ≥ Rρ) ≤ ρ.
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Here, we have for all n with probability at least 1 − ρ that

Xn

max
(
An, Bn max(

√
log bn, 1), Cn max(log cn, 1)

) ≤
An + Bn

√
log bn

ρ + Cn log cn

ρ

max
(
An, Bn max(

√
log bn, 1), Cn max(log cn, 1)

)

=
An + Bn

√
log bn + log 1

ρ + Cn

[
log cn + log 1

ρ

]

max
(
An, Bn max(

√
log bn, 1), Cn max(log cn, 1)

)

≤
An + Bn

√
log bn + Bn

√
log 1

ρ + Cn log cn + Cn log 1
ρ

max
(
An, Bn max(

√
log bn, 1), Cn max(log cn, 1)

)

≤ 1 + 1 +
√

log 1
ρ

+ 1 + log 1
ρ

.

Thus the desired bound holds with Rρ = 3 +
√

log 1
ρ + log 1

ρ .

A.3 Quality of the private minimizer: worst-case analysis

We first show uniform convergence of the privatized MMD to the non-private MMD.

Proposition A.3. Suppose that Φ : X → RD is such that supx∥Φ(x)∥ ≤ B, and let M̃MDkΦ(D, D̃) = ∥µΦ(D) −
µΦ(D̃) + n∥ for n ∼ N (0, Σ). Then, with probability at least 1 − ρ over the choice of n,

sup
D,D̃

∣∣ M̃MD
2
kΦ(D, D̃) − MMD2

kΦ(D, D̃)
∣∣

≤ Tr(Σ) + 4B
√

Tr(Σ) + 2
(

∥Σ∥F + 2B∥Σ∥
1
2op
)√

log( 2
ρ ) + 2∥Σ∥op log( 2

ρ ) = Op

(
Tr(Σ) + B

√
Tr(Σ)

)
,

where the supremum is taken over all distributions, including the empirical distribution of datasets D, D̃ of any size.

Proof. Introducing z ∼ N (0, ID) such that n = Σ1/2z, we have that

sup
D,D̃

∣∣ M̃MD
2
kΦ(D, D̃) − MMD2

kΦ(D, D̃)
∣∣ ≤ sup

D,D̃
z⊤Σz + 2

∣∣a⊤Σ1/2z
∣∣

≤ z⊤Σz + 2 sup
a:∥a∥≤2B

∣∣a⊤Σ1/2z
∣∣

≤ z⊤Σz + 2 sup
a:∥a∥≤2B

∥a∥∥Σ1/2z∥

= z⊤Σz + 4B∥Σ1/2z∥.

To apply Gaussian Lipschitz concentration, we also need to know that

E∥Σ1/2z∥ ≤
√

E∥Σ1/2z∥2 =
√

Tr(Σ);

the exact expectation of a χ variable with more than one degree of freedom is inconvenient, but the gap is generally not
asymptotically significant. Then we get that, with probability at least 1 − ρ

2 ,

∥Σ1/2z∥ ≤
√

Tr(Σ) + ∥Σ∥1/2
op

√
2 log 2

ρ .

Again combining with the bound of Equation 14, we get the stated bound.

This bound is looser than in Proposition A.2, since the term depending on a is now “looking at” z in many directions
rather than just one: we end up with a χ(dim(Σ)) random variable instead of χ(1).

We can use this uniform convergence bound to show that the minimizer of the private loss approximately minimizes the
non-private loss:

19



Published in Transactions on Machine Learning Research (04/2023)

Proposition A.4. Fix a target dataset D. For each θ in some set Θ, fix a corresponding D̃θ; in particular, Θ = Rp

could be the set of all generator parameters, and D̃θ either the outcome of running a generator gθ on a fixed
set of “seeds,” D̃θ = {gθ(zi)}n

i=1, or the full output distribution of the generator Qgθ
. Suppose that Φ : X →

RD is such that supx∥Φ(x)∥ ≤ B, and let M̃MDkΦ(D, D̃) = ∥µΦ(D) − µΦ(D̃) + n∥ for n ∼ N (0, Σ). Let

θ̃ ∈ arg minθ∈Θ M̃MD
2
kΦ(D, D̃θ) be the private minimizer, and θ̂ ∈ arg minθ∈Θ M̃MD

2
kΦ(D, D̃θ) the non-private

minimizer. For any ρ ∈ (0, 1), with probability at least 1 − ρ over the choice of n,

MMD2
kΦ(D, D̃

θ̃
) − MMD2

kΦ(D, D̃
θ̂
)

≤ 2Tr(Σ) + 8B
√

Tr(Σ) + 4
(

∥Σ∥F + 2B∥Σ∥
1
2op
)√

log( 2
ρ ) + 4∥Σ∥op log( 2

ρ ) = Op

(
Tr(Σ) + B

√
Tr(Σ)

)
.

Proof. Let α represent the uniform error bound of Proposition A.2. Applying Proposition A.2, the definition of θ̃, then
Proposition A.2 again:

MMD2
kΦ(D, D̃

θ̃
) ≤ M̃MD

2
kΦ(D, D̃

θ̃
) + α ≤ M̃MD

2
kΦ(D, D̃

θ̂
) + α ≤ MMD2

kΦ(D, D̃
θ̂
) + 2α.

A.4 Quality of the private minimizer: “optimistic” analysis

The preceding analysis is quite “worst-case,” since we upper-bounded the MMD by the maximum possible value
everywhere. Noticing that the approximation in Proposition A.2 is tighter when ∥Σ1/2a∥ is smaller, we can instead
show an “optimistic” rate which takes advantage of this fact to show tighter approximation for the minimizer of the
noised loss. In the “interpolating” case where the generator can achieve zero empirical MMD, the convergence rate
substantially improves (generally improving the squared MMD from Op(1/m) to Op(1/m2)).

Proposition A.5. In the setup of Proposition A.4, we have with probability at least 1 − ρ over n that

MMD2
kΦ(D, D̃

θ̃
) − MMD2

kΦ(D, D̃
θ̂
)

≤ 9Tr(Σ) + 4
√

Tr(Σ) MMDkΦ(D, D̃
θ̂
)

+ 2
(

9∥Σ∥F + 2
√

2∥Σ∥op MMDkΦ(D, D̃
θ̂
)
)√

log 2
ρ

+ 18∥Σ∥op log 2
ρ

= Op

(
Tr(Σ) +

√
Tr(Σ) MMDkΦ(D, D̃

θ̂
)
)

.

Proof. Let’s use M̂MD(θ) to denote MMDkΦ(D, D̃θ), and M̃MD(θ) for M̃MDkΦ(D, D̃θ).

For all θ, we have that

∣∣ M̃MD
2
(θ) − M̂MD

2
(θ)
∣∣ ≤ z⊤Σz + 2

∣∣(µΦ(D) − µΦ(D̃))⊤Σ1/2z
∣∣

≤ z⊤Σz + 2 M̂MD(θ)∥Σ1/2z∥.

Thus, applying this inequality in both the first and third lines,

M̂MD
2
(θ̃) ≤ M̃MD

2
(θ̃) + z⊤Σz + 2 M̂MD(θ̃)∥Σ1/2z∥

≤ M̃MD
2
(θ̂) + z⊤Σz + 2 M̂MD(θ̃)∥Σ1/2z∥

≤ M̂MD
2
(θ̂) + 2z⊤Σz + 2

(
M̂MD(θ̃) + M̂MD(θ̂)

)
∥Σ1/2z∥;

in the second line we used that M̃MD(θ̃) ≤ M̃MD(θ̂). Rearranging, we get that

M̂MD
2
(θ̃) − β M̂MD(θ̃) − γ ≤ 0, (15)
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where

β = 2∥Σ1/2z∥ ≥ 0

γ = M̂MD
2
(θ̂) + 2z⊤Σz + 2 M̂MD(θ̂)∥Σ1/2z∥ ≥ 0.

The left-hand side of Equation 15 is a quadratic in M̂MD(θ̃) with positive curvature; it has two roots, at

β

2 ±
√(

β

2

)2
+ γ.

Thus the inequality Equation 15 can only hold in between the roots; the root with a minus sign is negative, and so does
not concern us since we know that M̂MD(θ) ≥ 0. Thus, for Equation 15 to hold, we must have

M̂MD(θ̃) ≤ β
2 +

√(
β
2

)2
+ γ

M̂MD
2
(θ̃) ≤ β2

4 +
(

β
2

)2
+ γ + β

√(
β
2

)2
+ γ

≤ γ + β2 + β
√

γ.

Also note that

γ = M̂MD
2
(θ̂) + 2z⊤Σz + 2 M̂MD(θ̂)∥Σ1/2z∥ ≤

(
M̂MD(θ̂) +

√
2∥Σ1/2z∥

)2
.

Thus, substituting in for β and γ then simplifying, we have that

M̂MD
2
(θ̃) ≤ M̂MD

2
(θ̂) + (6 + 2

√
2)z⊤Σz + 4∥Σ1/2z∥ M̂MD(θ̂).

Using the same bounds on z⊤Σz and ∥Σ1/2z∥ as in Proposition A.3, and 6
√

2 < 9, gives the claimed bound.

B Extended Implementation details

Repository. Our code is available at https://github.com/ParkLabML/DP-MEPF; the readme files contain
further instructions on how to run the code.

B.1 Hyperparameter settings

For each dataset, we tune the generator learning rate (LRgen) and moving average learning rate (LRmavg) from choices
10−k and 3 · 10−k with k ∈ {3, 4, 5} once for the non-private setting and once at ϵ = 2. The latter is used in all private
experiments for that dataset, as shown in 7. After some initial unstructured experimentation, hyperparameters are
chosen with identical values across dataset shown in 8

For the Cifar10 DP-MERF baseline we tested random tuned random features dimension d ∈ {10000, 50000}, random
features sampling distribution σ ∈ {100, 300, 1000}, learning rate decay by 10% every e ∈ {1000, 10000} iterations
and learning rate 10−k with k ∈ {2, 3, 4, 5, 6}. Results presented use d = 500000, σ = 1000, e = 10000, k = 3.

The DP-GAN baseline for Cifar10 and CelebA uses the same generator as DP-MEPF with 3 residual blocks and a total
of 8 convolutional layers and is paired with a ResNet9 discriminator which uses Groupnorm instead of Batchnorm to
allow for per-sample gradient computation. We pre-train the model non-privately to convergence on downsampled
imagenet in order to maintain the same resolution of 32 × 32 and then fine-tune the model for a smaller number of
epochs. In case of the CelebA 64 × 64 data we add another residual block to discriminator and generator to account
for the doubling in resolution. The base multiplier for number of feature maps is reduced from 64 to 50 to lessen the
increase in number of weights. Results are the best scores of a grid-search over the following parameters at ϵ = 2,
which is then used in all settings: number of epochs {1, 10, 30, 50} generator and discriminator learning rate separately
for 10−k and 3 · 10−k with k ∈ {3, 4, 5}, clip-norm {10−3, 10−4, 10−5, 10−6}, batch size {128, 256, 512} and, as
advised in Bie et al. (2023), number of discriminator updates per generator {1, 10, 30, 50}. The chosen values are given
in table 9.
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Table 7: Learning rate hyperparameters across datasets

Dataset ε (ϕ1, ϕ2) (ϕ1)
LRgen LRmavg LRgen LRmavg

MNIST ε = ∞ 10−5 10−3 10−5 10−3

ε < ∞ 10−5 10−4 10−5 10−4

FashionMNIST ε = ∞ 10−5 10−3 10−5 10−3

ε < ∞ 10−4 10−3 10−4 10−3

CelebA32
{∞, 10, 5} 3 · 10−4 10−4 3 · 10−4 10−4

{2, 1} 3 · 10−4 3 · 10−4 3 · 10−4 3 · 10−4

{0.5, 0.2} 10−3 3 · 10−4 ·10−3 3 · 10−4

CelebA64
{∞, 10, 5} 3 · 10−4 10−4 3 · 10−4 3 · 10−4

{2, 1} 3 · 10−4 10−3 3 · 10−4 3 · 10−4

{0.5, 0.2} 10−3 10−3 10−3 10−3

Cifar10 labeled
{∞, 10, 5} 10−3 3 · 10−4 10−3 10−4

{2, 1} 10−3 10−2 10−3 10−2

{0.5, 0.2} 10−3 10−2 10−3 10−2

Cifar10 unlabeled
{∞, 10, 5} 10−3 10−3 10−3 10−3

{2, 1} 10−3 10−3 10−3 10−3

{0.5, 0.2} 10−3 10−3 10−3 10−3

Table 8: Hyperparameters fixed across datasets

Parameter Value
(ϕ1)-bound 1
(ϕ2)-bound 1
iterations (MNIST & FashionMNIST) 100,000
batch size (MNIST and FashionMNIST) 100
iterations (Cifar10 & CelebA) 200,000
batch size (Cifar10 and CelebA) 128
seeds 1,2,3,4,5

C Detailed Tables

Below we present the results from the main paper with added a ± b notation, where a is the mean and b is the standard
deviation of the score distribution across three independent runs for MNIST and FashionMNIST and 5 independent
runs for Cifar10 and CelebA.

Table 10: Downstream accuracies of our method for MNIST at varying values of ϵ

ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.2

MLP DP-MEPF (ϕ1, ϕ2) 91.4 ± 0.3 89.8 ± 0.5 89.9 ± 0.2 89.3 ± 0.3 89.3 ± 0.6 79.9 ± 1.3
DP-MEPF (ϕ1) 88.2 ± 0.6 88.8 ± 0.1 88.4 ± 0.5 88.0 ± 0.2 87.5 ± 0.6 77.1 ± 0.4

LogReg DP-MEPF (ϕ1, ϕ2) 84.6 ± 0.5 83.4 ± 0.6 83.3 ± 0.7 82.9 ± 0.7 82.5 ± 0.5 75.8 ± 1.1
DP-MEPF (ϕ1) 81.4 ± 0.4 80.8 ± 0.9 80.8 ± 0.8 80.5 ± 0.6 79.0 ± 0.6 72.1 ± 1.4

Table 9: Hyperparameters of DP-GAN for Cifar10 and CelebA

Cifar10 CelebA 32 × 32 CelebA 64 × 64
ϵ ∈ {0.2, 0.5} ϵ = 1 ϵ = 2 ϵ ∈ {5, 10}

LRgen 10−4 3 · 10−4 3 · 10−4 3 · 10−4 3 · 10−4 3 · 10−4

LRdis 10−3 3 · 10−4 10−3 3 · 10−4 10−3 10−3

batch size 512 512 512 512 512 512
epochs 10 10 10 10 10 10
discriminator frequency 10 10 30 30 10 10
clip norm 10−5 10−4 10−5 10−5 10−4 10−5
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Table 11: Downstream accuracies of our method for FashionMNIST at varying values of ϵ

ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.2

MLP DP-MEPF (ϕ1, ϕ2) 74.4 ± 0.3 76.0 ± 0.4 75.8 ± 0.6 75.1 ± 0.3 74.7 ± 1.1 70.4 ± 1.9
DP-MEPF (ϕ1) 73.8 ± 0.5 75.5 ± 0.6 75.1 ± 0.8 75.8 ± 0.7 75.0 ± 1.8 69.0 ± 1.5

LogReg DP-MEPF (ϕ1, ϕ2) 74.3 ± 0.1 75.7 ± 1.0 75.2 ± 0.4 75.8 ± 0.4 75.4 ± 1.1 72.5 ± 1.2
DP-MEPF (ϕ1) 72.8 ± 0.5 75.5 ± 0.1 75.5 ± 0.8 76.4 ± 0.8 76.2 ± 0.8 71.7 ± 0.4

Table 12: CelebA FID scores 32 × 32 (lower is better)

ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2
DP-MEPF (ϕ1, ϕ2) 18.5 ± 0.5 17.4 ± 0.7 17.5 ± 0.6 18.1 ± 0.8 19.0 ± 0.5 21.4 ± 1.3 25.8 ± 2.1
DP-MEPF (ϕ1) 16.6 ± 0.7 16.3 ± 0.9 16.9 ± 0.5 16.5 ± 0.8 17.2 ± 0.9 21.8 ± 1.0 25.5 ± 1.1

Table 13: CelebA FID scores 64 × 64 (lower is better)

ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2
DP-MEPF (ϕ1, ϕ2) 18.6 ± 1.0 18.5 ± 1.2 19.1 ± 0.9 18.4 ± 1.0 19.0 ± 1.2 21.4 ± 1.3 26.8 ± 1.5
DP-MEPF (ϕ1) 16.3 ± 0.4 17.4 ± 1.4 16.5 ± 0.8 16.9 ± 1.1 18.4 ± 0.9 20.4 ± 0.8 27.7 ± 2.1

Table 14: FID scores for synthetic labelled CIFAR-10 data (generating both labels and input images)
ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2

DP-MEPF (ϕ1, ϕ2) 27.7 ± 3.1 29.1 ± 1.3 30.0 ± 0.8 39.5 ± 1.9 54.0 ± 1.3 76.4 ± 3.9 226.0 ± 5.4
DP-MEPF (ϕ1) 28.4 ± 2.8 30.3 ± 2.1 35.6 ± 5.8 42.0 ± 3.0 56.5 ± 3.4 92.0 ± 3.5 268.3 ± 8.5

Table 15: Test accuracies (higher better) of ResNet9 trained on CIFAR-10 synthetic data with varying privacy guarantees.
When trained on real data, test accuracy is 88.3%

ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2
DP-MEPF (ϕ1, ϕ2) 57.5 ± 3.3 53.0 ± 2.8 43.9 ± 1.2 40.0 ± 1.9 28.5 ± 4.5 18.0 ± 1.0 16.2 ± 1.8
DP-MEPF (ϕ1) 43.8 ± 3.5 40.7 ± 4.2 32.3 ± 6.2 42.6 ± 1.6 33.2 ± 2.6 18.8 ± 4.0 15.3 ± 2.5

D Encoder architecture comparison

We are testing a large collection of classifiers of different sizes from the torchvision library including VGG, ResNet,
ConvNext and EfficientNet. For each we look at unlabelled Cifar10 generation quality in the non-DP setting and at
ϵ = 0.2. In each architecture, we use all activations from convolutional layers with a kernel size greater than 1x1. We
list the number of extracted features along with the achieved FID score in table 17, where each result is the best result
obtained by tuning learning rates. As already observed in dos Santos et al. (2019), we find that VGG architectures
appear to learn particularly useful features for feature matching. We hypothesized that in the private setting other
architectures with fewer features might outperform the VGG model, but have found this to not be the case.

E Public dataset comparison

We pretrained a ResNet18 using ImageNet, CIFAR10, and SVHN as our public data, respectively. We then used the
perceptual features to train a generator using CelebA dataset as our private data at a privacy budget of ϵ = 0.2 and
obtained the scores shown in 18. These numbers reflect our intuition that as long as the public data is sufficiently similar
and contains more complex patterns than private data, e.g., transferring the knowledge learned from ImageNet as public
data to generate CelebA images as private data, the learned features from public data are useful enough to generate
good synthetic data. In addition, as the public data become more simplistic (from CIFAR10 to SVHN), the usefulness
of such features reduces in producing good CelebA synthetic samples.
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Table 16: FID scores for synthetic unlabelled CIFAR-10 data
ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2

DP-MEPF (ϕ1, ϕ2) 38.5 ± 1.5 38.8 ± 2.0 37.0 ± 1.1 38.7 ± 2.2 43.0 ± 1.1 49.4 ± 1.0 67.3 ± 2.6
DP-MEPF (ϕ1) 38.5 ± 0.6 38.5 ± 0.4 38.6 ± 1.3 40.1 ± 1.1 45.1 ± 2.4 49.8 ± 2.5 72.3 ± 4.0

Table 17: Unlabeled Cifar10 FID scores achieved with different feature extractors. VGG models yield the best results in
both non-DP and high DP settings.

Encoder model #features ϵ = ∞ ϵ = 0.2
(ϕ1, ϕ2) (ϕ1) (ϕ1, ϕ2) (ϕ1)

VGG19 303104 35.0 37.0 56.2 85.8
VGG16 276480 37.4 39.8 71.4 72.2
VGG13 249856 38.2 36.7 78.1 71.2
VGG11 151552 40.5 41.6 65.4 68.6
ResNet152 429568 71.8 70.1 88.6 87.9
ResNet101 300544 77.5 73.7 76.0 82.4
ResNet50 196096 71.5 76.3 90.0 105.1
ResNet34 72704 74.8 103.3 89.1 93.1
ResNet18 47104 84.9 85.0 104.5 95.2
ConvNext large 161280 141.9 232.0 138.2 221.6
ConvNext base 107520 142.4 248.0 157.0 200.1
ConvNext small 80640 171.7 212.3 169.9 202.9
ConvNext tiny 52992 145.6 218.2 138.8 205.8
EfficientNet L 119168 200.9 229.0 243.7 226.6
EfficientNet M 68704 185.7 177.1 218.7 227.1
EfficientNet S 47488 157.5 160.6 171.5 186.7

Table 18: FID scores achieved for CelebA 32 × 32 using a ResNet encoder with different public training sets

ImageNet Cifar10 SVHN
FID 47.6 51.2 65.2
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F Training DP-MEPF without auxiliary data

While DP-MEPF is explicitly designed to take advantage of available public data, one might wonder how the method
performs if no such data is available. The following experiment on CIFAR10 explores this scenario. We assume that a
privacy budget of ϵ = 10 is given. We use some part of the budget for feature extractor (i.e. the classifier) training and
the rest of the budget for the generator training.

For a feature extractor, we have trained ResNet-20 classifiers with DP-SGD at three different levels of ϵ ∈ {2, 5, 8} for
classifying the CIFAR10 dataset. We set the clipping norm to 0.01 and trained the classifiers for 7, 49 and 98 epochs,
respectively. Their test accuracies are 38.4%, 49.5% and 54.0% respectively. We also include scores for DP-MEPF
applied to the untrained Classifier, denoted as ϵ = 0.

Then, we train the generator using these four sets of features to generate CIFAR10 images, where each generator
training uses the rest of the budget, i.e., ϵ ∈ {8, 5, 2} and ϵ = 10 for the untrained classifier. We tune the learning rate
in each of the four settings and keep other hyperparameters at default values.

Table 19: DP-MEPF results in CIFAR10 when using a DP feature extractor (ϵ = 0 is an untrained extractor)

ϵ for feature extractor training for generator training FID
0 10 111.1
2 8 127.0
5 5 90.8
8 2 119.0

As expected, in Table 19 we see a considerable increase in the FID score, compared to DP-MEPF with public data.
A balanced allocation of privacy budget with ϵ = 5 each for classifier and generator training yields the best result at
an FID score of 90.8 and performs significantly better than just using a randomly initialized feature extractor, which
only achieves a score of 111.1. For comparison: with public data DP-MEPF achieves an FID score of 37.0 at ε = 5,
highlighting the importance of such data to our method.

G Additional Plots

Below we show samples from our generated MNIST and FashionMNIST data in Figure 7 and Figure 8 respectively.

Real Data ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.2

Figure 7: MNIST samples produced with DP-MEPF (ϕ1, ϕ2) at various levels of privacy
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Real Data ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.2

Figure 8: Fashion-MNIST samples produced with DP-MEPF (ϕ1, ϕ2) at various levels of privacy

26


	Titlepage
	Contents
	 Zusammenfassung
	 Summary
	 List of acronyms
	 List of publications and contributions
	 Acknowledgements
	1 Introduction
	1.1 Differential privacy
	1.1.1 Formal definition of differential privacy
	1.1.2 Properties of differential privacy
	1.1.3 The Gaussian mechanism
	1.1.4 Renyi differential privacy
	1.1.5 Choosing values for epsilon and delta

	1.2 Deep learning with differential privacy
	1.2.1 Making deep learning differentially private
	1.2.2 Current shortcomings of differentially private deep learning


	2 Research Aim
	3 Summary of Results
	3.1 Interpretable DP prediction
	3.1.1 Method
	3.1.2 Evaluation

	3.2 DP data generation via random Fourier feature embeddings
	3.2.1 Method
	3.2.2 Evaluation
	3.2.3 Improving DP data generation with Hermite polynomials

	3.3 Scaling DP data generation to complex data through public features
	3.3.1 Method
	3.3.2 Evaluation


	4 Discussion
	4.1 Interpretable DP machine learning
	4.1.1 Related and follow-up work in context
	4.1.2 Limitations and future directions

	4.2 DP deep generative models
	4.2.1 Related and follow-up work in context
	4.2.2 Limitations and future directions


	5 Conclusion
	 Bibliography
	A Interpretable and Differentially Private Predictions
	B DP-MERF: Differentially Private Mean Embeddings with Random Features for Practical Privacy-Preserving Data Generation
	C Hermite Polynomial Features for Private Data Generation
	D Pre-trained Perceptual Features Improve Differentially Private Image Generation

