
UAV–Based Maritime Search and
Rescue Missions: An End-to-End

Approach

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Martin Meßmer

aus Wangen im Allgäu

Tübingen

2024

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 10.12.2024

Dekan: Prof. Dr. Thilo Stehle

1. Berichterstatter: Prof. Dr. Andreas Zell

2. Berichterstatter: Prof. Dr. Thomas Linkugel

Of course it is happening inside your head, Harry,
but why on earth should that mean that it is not real?

ALBUS DUMBLEDORE

Abstract
Unmanned Aerial Vehicles (UAVs) have become important tools in various vision-based
fields due to their comparably low cost, cheap maintenance, versatility, and ease of use,
one of which being search and rescue (SAR) missions. Despite these advancements,
automating aerial robots to enable them to detect distressed humans below or even find
the most promising flight trajectory to maximize detection probability remains an open
challenge.

This dissertation presents various approaches to enhancing UAV-based maritime search
and rescue (mSAR) operations in the areas of computer vision, UAV path planning, and
the technical implementation of SAR missions.

In the field of computer vision, we studied how domain variations, such as flight al-
titude or capture angle, affect the performance of object detectors. Building on that, we
developed object detectors capable of overcoming these challenges. By identifying that
the bird’s eye view poses significant difficulties and creating a dedicated strategy to ad-
dress this issue, we showed that object detectors can benefit from engineering tailored to
specific domains. Addressing the shortage of data in the maritime UAV computer vision
community, we have recorded and released a large-scale data set, which includes dense
meta-data labels like capture-altitude and capture-angle. It features single-object track-
ing, multi-object tracking, and object detection. In the context of UAV flight trajectory
planning we explored algorithms incorporating environmental data, such as water current
and wind flow, as well as some which do not incorporate this knowledge. Based on these
finding, we developed a trajectory planning algorithm based on branch-and-bound algo-
rithms. Additionally, we investigated various techniques for efficiently predicting regions
of interest onboard the drone. This enables our newly developed and published mSAR
software framework to selectively stream video footage, thereby conserving bandwidth.

The experiments presented in this dissertation show that the proposed methods effec-
tively improve the capabilities of maritime search and rescue drones, both in the field of
flight trajectory planning and the detection of humans or vessels in distress. The promis-
ing nature of these results suggest interesting future research endeavors. These include,
but are not limited to, exploring coordinated multi-UAV missions, incorporating capture-
angle information deterministically into the detection pipeline, and expanding data sets
to include more diverse scenarios or sensors.

v

Kurzfassung
Drohnen (UAVs) sind aufgrund ihrer vergleichsweise geringen Kosten, ihrer billigen
Wartung, ihrer Vielseitigkeit und ihres einfachen Einsatzes zu wichtigen Werkzeugen
in verschiedenen kamerabasierten Bereichen geworden, darunter auch bei Such- und
Rettungseinsätzen (SAR). Trotz dieser Fortschritte ist es weiterhin ein offenes Problem,
Flugroboter so zu automatisieren, dass sie in Not geratene Menschen erkennen oder so-
gar die beste Flugbahn zur Optimierung der Auffindewahrscheinlichkeit selbst planen
können. In dieser Dissertation werden verschiedene Ansätze zur Verbesserung von UAV-
basierten Seenotrettungseinsätzen (mSAR) in den Bereichen Computer Vision, UAV-
Pfadplanung, und ihrer technische Umsetzung vorgestellt und diskutiert.

Auf dem Gebiet der Mustererkennung haben wir untersucht, wie sich Variationen in
einem bestimmten Bereich, z. B. die Flughöhe oder der Aufnahmewinkel, auf die Leis-
tung von Objektdetektoren auswirken. Aufbauend darauf haben wir Objektdetektoren
entwickelt, für die diese Variationen keine Probleme darstellen. Da wir dabei festgestellt
haben, dass die Vogelperspektive erhebliche Schwierigkeiten mit sich bringt, entwickel-
ten wir eine spezielle Strategie, um dieses Problem zu lösen. Um gegen den Datenman-
gel in der Gemeinschaft der Forschenden in maritimer Drohnenmustererkennung zu ar-
beiten, haben wir einen umfangreichen Datensatz aufgezeichnet und veröffentlicht, der
vollständige Metadaten wie Erfassungshöhe und Erfassungswinkel für jedes Bild ent-
hält. Er stellt Einzelobjektverfolgung, Multiobjektverfolgung, und Objekterkennung zur
Verfügung. Im Zusammenhang mit der Flugpfadplanung von UAVs untersuchten wir Al-
gorithmen, die Umweltdaten wie Wasserströmung und Windfluss berücksichtigen, sowie
solche, die dieses Wissen nicht einbeziehen. Auf der Grundlage dieser Erkenntnisse ha-
ben wir einen Algorithmus zur Flugbahnplanung entwickelt, der auf Verzweigen-und-
Begrenzen-Algorithmen basiert. Außerdem untersuchten wir verschiedene Techniken
zur effizienten Detektion interessanter Regionen an Bord der Drohne. Dies ermöglicht
unserem neu entwickelten und veröffentlichten mSAR-Softwareframework, Videomate-
rial selektiv zu streamen und so Bandbreite einzusparen.

Die in dieser Dissertation vorgestellten Experimente zeigen, dass die vorgeschlagenen
Methoden die Fähigkeiten maritimer Such- und Rettungsdrohnen sowohl im Bereich
der Flugpfadplanung als auch bei der Erkennung von Menschen in Not oder havarierten
Schiffen verbessern. Die vielversprechenden Ergebnisse zeigen interessante zukünftige
Forschungsvorhaben auf. Dazu gehören unter anderem die Erforschung koordinierter
Multi-UAV-Einsätze, die deterministische Einbeziehung von Aufnahmewinkelinforma-
tionen in Erkennungsalgorithmen, und die Erweiterung von Datensätzen, um mehr un-
terschiedliche Szenarien oder Sensoren abzubilden.

vii

Contents

1 Introduction 1
1.1 UAV Computer Vision . 2
1.2 mSAR Path Planning . 4
1.3 Contribution and Outline . 6

2 A Holistic Approach to UAV-Assisted Maritime Search and Rescue 9
2.1 Choosing the Right Drone for mSAR Missions 11
2.2 Software Solution for SAR Drones . 14
2.3 Region of Interest Proposer Methods 18
2.4 Experiments . 19
2.5 Conclusion . 24

3 Leveraging Domain Labels in Object Detection on UAVs 27
3.1 Introduction . 27
3.2 Analyzing Domain Imbalances . 30

3.2.1 Domain Imbalances in the Training Set 30
3.2.2 Domain Imbalances in the Testing Set 31

3.3 Multi-Domain Learning Approach . 33
3.3.1 Simplified Training Realization 35
3.3.2 Introducing a Multi-Modal Data Set 35

3.4 Experimental Results and Ablations 37
3.4.1 VisDrone . 37
3.4.2 UAVDT . 40
3.4.3 POG: Baseline and Expert Results 41

3.5 Conclusion and Limitations . 42

4 Gaining Scale Invariance in UAV Object Detection by Adaptive Resizing 43
4.1 Introduction . 43
4.2 Method . 46

4.2.1 Building a Detector for Embedded Deployment 48
4.3 Proof of Concept on Synthetic Data 50
4.4 Experiments on Real Data . 52

4.4.1 Results on bird’s eye view Portions 53
4.4.2 Effects of Cutting the Feature Pyramid Network 54
4.4.3 Results on the complete UAVDT data set 55

ix

Contents

4.4.4 Time benchmarks . 56
4.4.5 Height Transfer . 58

4.5 Conclusion . 58

5 A Maritime Benchmark for Detecting Humans in Open Water 61
5.1 Introduction . 61
5.2 Data Set Generation . 66

5.2.1 Meta Data Collection . 67
5.2.2 Annotation Method . 68
5.2.3 Data Set Split . 68

5.3 Data Set Tasks . 70
5.3.1 Object Detection . 70
5.3.2 Single-Object Tracking . 71
5.3.3 Multi-Object Tracking . 72
5.3.4 Multi-Spectral Footage . 72

5.4 Evaluations . 72
5.4.1 Object Detection . 73
5.4.2 Single-Object Tracking . 77
5.4.3 Multi-Object Tracking . 77
5.4.4 Meta-Data-Aware Object Detector 78

5.5 Conclusions . 78

6 UAV Path Planning Algorithms for Maritime Search and Rescue Missions 81
6.1 Introduction . 81
6.2 Related Work . 83
6.3 Method . 84

6.3.1 Background – Branch and Bound for Path Planning Problems . 84
6.3.2 Solving the mSAR Path Planning Problem 90
6.3.3 Particle Filter with negative Measurements 93
6.3.4 Search Targets’ Movement Model 94

6.4 Experiments . 96
6.5 Conclusion and Outlook . 100

7 Conclusion 103

Bibliography 105

x

Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs) equipped with cameras have become invaluable as-
sets in various fields, including agriculture, delivery, surveillance, and search and rescue
(SAR) missions (Adão et al. (2017); San et al. (2018); Geraldes et al. (2019)). UAVs
are particularly effective in SAR missions due to their rapid deployment and versatility,
providing comprehensive scene overviews (Mishra et al. (2020); Karaca et al. (2018);
Albanese et al. (2020)). In maritime scenarios, where vast areas must be explored and
searched quickly, the efficient use of autonomous UAVs is crucial (Yeong et al. (2015))
for various reasons; they provide the beneficial bird’s eye view similar to that of aircraft
and helicopters, while causing significantly lower cost to maintain and operate. The most
significant challenges in this application include the detection and localization of people
in open water (Gallego et al. (2019); Nasr et al. (2019)), as well as the path planning of
the UAV to maximize the probability of detecting all distressed humans (Sato (2008)).

Additionally, over the last decade, the field of deep learning research has undergone a
revolution regarding its capabilities, the problems it can solve, and the applications it is
applied to. This so-called ’third wave’ (Emmert-Streib et al. (2020)) of neural networks,
initiated by the introduction of AlexNet (Krizhevsky et al. (2012)) in 2012 led to various
deep learning based breakthroughs in diverse fields, like image generation (Goodfellow
et al. (2020); Rombach et al. (2022)), strategic two player games (Silver et al. (2016)), or
natural language processing (Vaswani et al. (2017)), to only name a few. Most relevant to
this dissertation are the advancements in computer vision, in particular object detection
(Girshick (2015); Jiang et al. (2022)), which will be further discussed in Section 1.1 later
in this chapter.

In parallel to these developments, since the beginning of the so-called refugee crisis
in 2014, we have seen a steep increase of refugee movements from Africa to Europe
across the Mediterranean sea (Frontex (2024)). For a variety of reasons, many of these
journeys take place under perilous conditions, often resulting in tragic fatalities as boats
capsize (IOM (2024)). On the other hand, the sea has become increasingly crowded due
to the ongoing rise in maritime trade (UN Trade and Development (2023)), potentially
also leading to more incidents at sea requiring maritime search and rescue (mSAR) for
humans in distress at sea. We argue that these developments call for intelligent strategies
to improve sea-monitoring efforts.

1

Chapter 1 Introduction

In this dissertation, we will address these developments by presenting approaches to
tackle the challenges posed by the increased demand for maritime search and rescue. We
will demonstrate that UAVs utilizing deep learning models on mobile GPUs can be an
integral part of an mSAR pipeline. The remainder of this chapter is dedicated to giving
an introduction to (UAV) computer vision and an outline of the rest of this work.

1.1 UAV Computer Vision

(a) high, 90◦, fog (b) high, 70◦, night

(c) low, 30◦, day (d) medium, 90◦, night

Figure 1.1: This Figure illustrates the different ways a picture from a UAV data set could
look like. Below the images, the sensor and lighting conditions are displayed. The
categories for the flight altitude are broad categories, as for these data sets there is no
dense meta information per image available. Images are taken from UAVDT (Du et al.
(2018)) and VisDrone (Du et al. (2019)).

Since computer vision in general – particularly deep learning-based computer vision
– is such a heavily researched field (Papers with Code (2024b)), the question arises as to
why further investigation into the topic is necessary. UAV computer vision faces distinct
challenges and advantages compared to generic computer vision tasks.

One of the primary challenges in UAV object detection is the need to detect and rec-
ognize objects that can vary significantly in size due to the drone’s flight altitude and
viewing angle. Unlike generic computer vision tasks, which mostly operate at relatively

2

1.1 UAV Computer Vision

consistent distances and angles, UAVs can encounter objects that appear very small when
viewed from high altitudes. Even when flying close to the ground, these objects will
merely reach the size of the smallest objects in generic object detection data sets like
COCO (Common Objects in Context) (Lin et al. (2014)). Figure 1.1 and 1.2 illustrate
these appearance differences. The former shows typical examples from UAV object de-
tection data sets, while the later shows examples sampled from COCO.

Another distinct challenge in UAV object detection is the gap in data set sizes. Generic
object detection tasks have benefited immensely from large-scale datasets such as COCO
(Common Objects in Context), ImageNet (Deng et al. (2009)), and Open Images Dataset
(Kuznetsova et al. (2020)), to only name a few. They consist of roughly 200 thousand,
14 million, and 1.9 million labeled images, respectively. In contrast, UAV-specific data
sets are significantly smaller. For example, UAVDT (Du et al. (2018)) and VisDrone (Du
et al. (2019)) contain roughly 41,000 and 7,000 labeled UAV images, respectively.

Figure 1.2: Some example images from the data set common objects in context Lin et al.
(2014), mostly containing humans. Clearly, the objects present in the images are a lot
larger than for Figure 1.1, even for the humans with a comparably high distance to the
camera.

3

Chapter 1 Introduction

These two issues amplify each other. When a lot of different scales are scattered
across fewer images, the detector has fewer examples to learn from per domain. This
hampers detection accuracy, as deep learning based detectors are well known for their
data hunger. Additionally, the techniques developed to address the problem of differ-
ently scaled objects in generic computer vision, most notably Feature Pyramid Networks
(FPNs) (Lin et. al. (2017)), unfortunately, fail for UAV object detection. This is primar-
ily due to two reasons: First, FPNs introduce new weights to the detector network, each
dedicated to specific object scales. Intuitively, when there is less data to learn from, these
newly introduced weights will not perform as well. Second, the scales most frequently
occurring in everyday objects, and therefore present in generic object detection data sets
are hardcoded as biases in FPNs. Consequently, FPNs are inherently not designed for
UAV imagery.

An additional obstacle for UAV object detection is given by the weight and energy
consumption constraints on the payload. Instead of full-fledged Graphics Processing
Units (GPUs), UAVs usually utilize small, embedded GPUs such as the NVIDIA Jetson
Series (Orin (2020)). This constraint limits the size and capability of the neural networks
that can be deployed, making it challenging to achieve high performance with computa-
tionally intensive state-of-the-art deep learning models.

Despite these challenges, UAV computer vision also has one unique advantage com-
pared to generic computer vision: UAVs are equipped with additional sensors such as
GPS, IMU, and barometers. These sensors provide contextual information about the
drone’s position, most valuable its flight altitude, and its orientation. This additional data
can be leveraged to improve the accuracy and robustness of computer vision algorithms.
For example, knowing the UAV’s altitude and angle can help in estimating the scale of
objects more accurately and adjusting the processing algorithms accordingly.

These distinct challenges and advantages give rise to an extensive discussion in Chap-
ters 3, 4, and 5. Computer vision can determine whether there are humans in distress
at the current location. However, to conduct a meaningful search, the next section will
discuss the field of path planning and its importance to mSAR missions.

1.2 mSAR Path Planning
Path planning is a well-established problem in robotics and navigation. Traditional path
planning algorithms, such as A* or Dijkstra (Russell (2010)), are designed to find the
cheapest path between two points within a defined space according to some cost func-
tion. Importantly, these algorithms are designed for path finding settings where the start
and goal are fixed positions, and obstacles are static. However, the trajectory planning
problem in the context of maritime search and rescue missions diverges from these strong
assumptions by being highly dynamic, requiring specialized planners.

In mSAR operations, the objective is to maximize the probability of detecting dis-
tressed individuals or vessels within a vast and non-static maritime environment. Here,

4

1.2 mSAR Path Planning

the location of the search targets (the distressed individuals or vessels) is unknown and
can vary significantly over time due to confounders such as water currents and wind
flow, the two main factors for the search targets’ movement. This uncertainty introduces
a layer of complexity that traditional path planning algorithms are not equipped to han-
dle. Unlike common planners, there is a lack of a meaningful heuristics like, for example,
the euclidean norm to the goal node most frequently used in A*. Additionally, the search
area in mSAR missions is typically much larger and less structured compared to the ones
in classical robotics or navigation. Mostly, it is open sea, which has virtually neither lim-
its nor obstacles. These two factors cause the search graph to grow exponentially with
the number of steps taken. Figure 1.3 showcases the search problem at hand.

Figure 1.3: Example of a distribution modeling the estimated position of multiple search
targets. It results from a drift simulation modeling the situation several hours after the
distress signal. See Chapter 6 for further details.

To address the mentioned challenges, we employ the well-known branch-and-bound
(B&B) algorithm to meet the specific needs of mSAR scenarios. We incorporate meteo-
rological data, such as water currents and wind flow, to model the drift of search targets
as realistically as possible, thereby improving the likelihood of detecting distressed indi-
viduals or vessels. We then compare the performance of our modified branch-and-bound

5

Chapter 1 Introduction

algorithms with environment-agnostic algorithms commonly used in practice, showcas-
ing the need to employ environmental data into mSAR trajectory planning algorithms.

Our discussion of UAV trajectory planning for mSAR missions can be found in Chap-
ter 6. The next section will summarize the contribution and outline of this dissertation
and conclude this introductory chapter.

1.3 Contribution and Outline
This work offers a thorough overview of the use of UAVs in maritime search and rescue
operations, primarily focusing on the search part. This is based on five first-author pub-
lications presented at highly ranked conferences in computer vision and robotics. These
are listed according to their order of appearance in this dissertation, with an asterisk (*)
indicating equal contributions:

1. Martin Messmer, Andreas Zell. "UAV-Assisted Maritime Search and Rescue:
A Holistic Approach". In: 2024 International Conference on Unmanned Aircraft
Systems (ICUAS), 2024.

2. Benjamin Kiefer*, Martin Messmer*, Andreas Zell. "Diminishing Domain Bias
by Leveraging Domain Labels in Object Detection on UAVs". In: Proceedings
of the IEEE 20th International Conference on Advanced Robotics (ICAR), 2021.

3. Martin Messmer*, Benjamin Kiefer*, Andreas Zell. "Gaining Scale Invariance
in UAV Bird’s Eye View Object Detection by Adaptive Resizing". In: Proceed-
ings of the IEEE 26th International Conference on Pattern Recognition (ICPR),
2022.

4. Leon Amadeus Varga*, Benjamin Kiefer*, Martin Messmer*, Andreas Zell. "Sea-
DronesSee: A Maritime Benchmark for Detecting Humans in Open Water".
In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), 2022.

5. Martin Messmer, Benjamin Kiefer, Leon Amadeus Varga, Andreas Zell. "Eval-
uating UAV Path Planning Algorithms for Realistic Maritime Search and Res-
cue Missions". In: 2024 International Conference on Unmanned Aircraft Systems
(ICUAS), 2024.

Additionally, these 3 papers will not be covered in this dissertation, since they do not fit
the scope of this work:

6. Leon Amadeus Varga, Martin Messmer, Nuri Benbarka, Andreas Zell. "Wave-
length-Aware 2D Convolutions for Hyperspectral Imaging". In: Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
2023.

6

1.3 Contribution and Outline

7. Timon Höfer, Benjamin Kiefer, Martin Messmer, Andreas Zell. "HyperPosePDF
– Hypernetworks Predicting the Probability Distribution on SO(3)". In: Pro-
ceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), 2023.

8. Benjamin Kiefer, Martin Messmer, et al. "2nd Workshop on Maritime Com-
puter Vision (MaCVi) 2024: Challenge Results". In: Proceedings of the IEEE/
CVF Winter Conference on Applications of Computer Vision (WACV), 2024.

After this introduction, the work is structured as follows:

Chapter 2 The second chapter discusses the integration of UAVs into maritime search and
rescue operations and the usefulness of various types of drones for different appli-
cations. Additionally, we introduce a specialized software framework designed to
aid the detection pipeline of maritime search and rescue operations consisting of an
onboard-part running on the UAV and a powerful GPU-server based on the ground
as its counter piece. This framework runs a region of interest proposer onboard the
drone and streams its detections along with some metadata to the ground station.
Due to the disparity in research efforts in between conventional object detection
and region of interest proposal systems, we also explore various methods for pre-
dicting regions of interest within maritime images in this chapter. Notably, we test
these methods under simulated bandwidth constraints of the radio link, which is
a realistic scenario given the remoteness of maritime environments. Chapter 2 is
based on Messmer et al. (2024).

Chapter 3 This chapter focuses on the impact of domain variations in the UAV imagery such
as altitude and camera angle and especially on their distribution across various
well known UAV data sets. We employ these observations, introducing a novel
approach to improve detection performance by incorporating domain knowledge
into the detection models, leveraging sensor data available from the UAVs like
altitude, camera angle, and time. The chapter also introduces a new data set,
PeopleOnGrass (POG), specifically created to provide detailed annotations and
domain labels for further research. Experiments demonstrate significant improve-
ments in detection performance across various data sets and metrics, suggesting
that domain-aware models can effectively reduce bias introduced by domain im-
balances. This chapter is based on our publication Kiefer et al. (2021), number
two from the enumeration.

Chapter 4 In this chapter we introduce a novel method called Adaptive Resizer designed for
bird’s eye view object detection. As this method is a preprocessing step, it is essen-
tially applicable to any object detector. By resizing images based on their capture
altitude, which is obtained from the UAV’s onboard sensors, it makes the detection
results invariant under scale variation, a problem inherent to UAV imagery. By re-
ducing images’ sizes it furthermore reduces the computational burden imposed by

7

Chapter 1 Introduction

the object detector. Additionally, the method allows for effective transfer learning,
capable of generalizing across different capture-altitudes not present during train-
ing. Finally, building on Chapter 3, we present a detector working on general UAV
images, expanding beyond the bird’s eye view imagery. The basis for this chapter
is Messmer et al. (2022), or the third item in above’s enumeration.

Chapter 5 Here, we introduce SeaDronesSee, a new benchmark data set aimed at improving
UAV-based object detection in maritime settings. The data set consists of over
54,000 frames annotated with roughly 400,000 instances of humans in the water
and boats captured from different UAVs and cameras across a variety of altitudes
and angles. The data set is fully public. By providing detailed meta-data for each
frame, we enable the development and testing of meta-data aware computer vision
techniques. We provide details about the data set’s creation, including image cap-
ture conditions and annotation process, as well as the initial evaluations of state-
of-the-art models on this data to establish baselines and their performance on the
new data set. Chapter 5 is based on our published work Varga et al. (2022), the
fourth item in the enumeration above.

Chapter 6 The final chapter discusses the development and evaluation of path planning al-
gorithms for UAVs in maritime search and rescue missions. We propose a path
planning algorithm based on branch-and-bound techniques, designed to take into
account real-world factors like water current and wind flow, which influence the
distressed search targets’ trajectories over the course of the search. It aims at bridg-
ing the gap between existing methods that already account for environmental in-
fluences but are computationally infeasible, and those that do not consider such
factors. Moreover, it provides an extensive comparison of various path planning
strategies, highlighting their strengths and limitations under simulated conditions
reflective of real-world scenarios. The framework developed for this comparison
is publicly available. This chapter is based on Messmer and Zell (2024), the last
item in the previously mentioned enumeration.

In the following, the technical set up of drones in maritime search and rescue missions
will be discussed.

8

Chapter 2

A Holistic Approach to UAV-Assisted
Maritime Search and Rescue
The vast and unpredictable nature of maritime environments presents a significant chal-
lenge for search and rescue (SAR) operations. Traditional methods, often reliant on
manned vessels and aircraft, face limitations in speed, accessibility, and risk to human
life (CCG Manual (2023)). With the advent of Unmanned Aerial Vehicles (UAVs), new
possibilities have emerged, offering enhanced efficiency, safety, and endurance in mar-
itime SAR (mSAR) missions. This chapter delves into the application of UAVs in mSAR,
specifically medium-sized fixed-wing drones and quadcopters, focusing predominantly
on their utility in search operations due to their physical constraints.

In particular, we discuss various classes of drones, including quadcopters and fixed-
wing drones of different sizes, along with their respective advantages and disadvantages.
We delve into how each type of drone could be effectively utilized at different stages of
a mSAR mission, and address the potential challenges and limitations when operating
them in such scenarios.

One key aspect of our research is the development of a comprehensive software frame-
work that enables the prediction of preliminary detection onboard the UAVs, followed
by a more capable but more compute intensive object detector on the interesting regions
of the image on a more powerful ground station (Carion et al. (2020); Girshick (2015)).

The initial detections, called Regions of Interest (RoI) (Kiefer and Zell (2023)), are in-
tended as the primary focus for both the detection system and the operator at the ground
station as they are the most likely to contain humans or vessels in distress. Additionally,
the software is designed to stream these regions of interest in their full quality, in con-
trast to the rest of the image, which is transmitted in lower quality and gray-scale (see
figure 2.6). This approach accounts for potential constraints of limited bandwidth, which
can be a significant factor when operating UAVs in remote locations or far off-shore.
Therefore, the proposals for regions of interest serve multiple purposes and are a vital
component of the overall pipeline. Hence we present an evaluation of various methods
for generating these proposals in Section 2.4 of this work. In particular, we put emphasis
on the bandwidth constraint in these experiments, evaluating the performance of each

© 2024 IEEE. Reprinted, with permission, from Messmer et al. (2024).

9

Chapter 2 A Holistic Approach to UAV-Assisted Maritime Search and Rescue

Figure 2.1: The maritime surface is captured by the drone and then, together with the
preliminary detections (RoIs) transmitted to a GPU server on the ground. This then
performs fine-grained detection on the RoIs and displays the whole scene to the SAR
operator.

algorithm under various transmission restrictions.
By advancing the integration of UAVs in mSAR missions, our research aims to signifi-

cantly enhance the efficiency and effectiveness of maritime search operations, ultimately
contributing to faster response times and increased chances of successful rescue in mar-
itime emergencies. Moreover, this software design aims to reduce the visual strain on the
drone operator on the ground by automating a portion of the decision-making process.
This aids decision making, as watching a screen extensively might lead to ’eye fatigue’
(Coles-Brennan et al. (2019); Council (2016); Sullivan (2008)), which might potentially
lead to bad decisions. Our hope is that this automation will long term lead to operators
making more accurate decisions by minimizing the chances of overlooking important
details.

In Lygouras et al. (2019) the authors propose a full system for UAV-based mSAR
missions. In contrast to the paper at hand they perform regular object detection fully
onboard the drone on a NVIDIA Jetson TX1. The work Stabernack and Steinert (2021)

10

2.1 Choosing the Right Drone for mSAR Missions

concerns itself with the stream of a low-quality video with embedded high-quality re-
gions of interests on FPGAs. In Mayer et al. (2019) the authors discuss the advantages
of using drones in SAR missions in general which lays the foundations for works like
ours. An interesting RoI proposal method is given in Kiefer and Zell (2023). However,
it requires working with video streams, which is an adequate requirement on RGB data.
Our approach, on the other hand, may also be applied to multispectral data, which can
usually only be captured at 1 Hertz, see e.g. Chapter 5. In Roberts et al. (2016) the
authors present a framework to analyze mSAR missions with UAVs. Since we were not
able to find their framework we can only estimate from their description, that its goal is
not to conduct the actual search operation but to judge whether or not the use of UAVs
make sense for the case at hand. This goal differs largely from the framework developed
(and published) in this chapter.

The remainder of the chapter is structured as follows: Section 2.1 provides an overview
of different drone classes, discussing their advantages and disadvantages. Section 2.2
discusses the software framework we propose, including both, UAV and ground station
components, while Section 2.3 discusses the RoI proposal methods and Section 2.4 de-
tails our experimental setup and the results and observations obtained. Finally, Section
2.5 concludes with a discussion of our findings and their implications.

2.1 Choosing the Right Drone for mSAR Missions
Table 2.1 shows the technical details of the DJI Matrice M210, the Quantum Systems
Trinity F90+, and the ElevonX SkyEye Sierra VTOL. All of these were used in various
capacities in our experiments regarding SAR research. Their advantages and disadvan-
tages are meant to be exemplarily for their respective classes of drones.
The DJI Matrice 210 (figure 2.2), as a quadcopter, offers excellent maneuverability and
the ability to hover in place, which is crucial for precise, targeted searches and for cap-
turing specific areas of interest. However, its flight time and speed are less than the other
two, which may limit its range and efficiency in covering large maritime areas.

The Quantum Systems Trinity F90+ (figure 2.3) is a fixed-wing VTOL (vertical take-
off and landing) that provides a longer flight time of roughly 90 minutes and a large
coverage area, making it suitable for initial wide-area searches. Its ability to carry var-
ious sensors is advantageous for generating a diverse dataset necessary for training and
refining deep learning algorithms. The fixed-wing design offers higher speed and greater
efficiency over long distances compared to quadcopters, but it lacks the ability to hover,
which can be a limitation for close inspections. Additionally, it significantly complicates
the operation of the UAV compared to quadcopters, placing a considerable demand on
the operator to maintain a flawless overview of the situation at all times and to think
ahead. Furthermore, the maneuverability is limited compared to quadcopters, resulting
in an inability to be operated in confined spaces.

One of the key characteristics of the Trinity F90+ is its limited adjustability, especially

11

Chapter 2 A Holistic Approach to UAV-Assisted Maritime Search and Rescue

DJI
Matrice 210

Quantum Systems
Trinity F90+

ElevonX
Skyeye Sierra VTOL

System Quadcopter VTOL Fixed Wing VTOL Fixed Wing
Weight 5 kg 5 kg 12.5 kg

Max. Payload
Weight 1.3 kg X 3 kg

Air Speed
(Range) 0−12 m/s 17−21 m/s 17−21 m/s

Min. Flight
Altitude 0 m 30 m 50 m

Max. Flight
Time 30 min. 90 min.

3 h (electric)
5 h (gas)

Command & Control
Range 8 km 7.5 km 20 km

Wingspan 89 cm 239 cm 300 cm
Number of Operators 1 1 2

Table 2.1: Technical data of the UAVs used in this research (DJI (2018); Quantum
(2020b); ElevonX (2023)). As described in the text, possible payloads for the Trinity
F90+ are limited to those offered by the manufacturer. Therefore, weight restrictions for
the payload are not a concern, as indicated by the X.

regarding payload integration. Users can choose from a range of cameras supported by
the manufacturer, including multiple different RGB and Multispectral cameras, a LiDAR
scanner, and an Oblique RGB camera (Quantum (2020a)). The latter has five lenses, each
oriented slightly differently, designed for 3D mapping. This selection caters to various
data collection needs, from detailed imagery to topographical mapping. However, the
inability to integrate custom payloads or sensors outside the manufacturer’s offerings
restricts the drone’s versatility. In particular the inability to employ onboard processing
in the form of an NVIDIA Orin (Orin (2020)) or similar.

Furthermore, the Trinity F90+ operates with a proprietary communication system that
lacks openness or user adjustability. The absence of a customizable down-link connec-
tion means that users are confined to the data transmission and control options provided
by the manufacturer. This could pose challenges in integrating the drone into a broader
system that employs deep learning algorithms. More precisely, it is impossible to stream
captured data instantaneously. This rules out online post-processing on a more powerful
GPU server on the ground.

In summary, the Trinity F90+ can play an important role in AI-aided mSAR missions
by gathering extensive amounts of high-quality aerial data necessary to train deep learn-
ing algorithms used for detection.

The ElevonX Sierra SkyEye VTOL (Fig. 2.4) combines some of the benefits of both,

12

2.1 Choosing the Right Drone for mSAR Missions

Figure 2.2: DJI Matrice 210

quadcopters and fixed-wing aircraft. It has a significant endurance of up to 3 hours with
electric propulsion, which is essential for extended missions. Similar to the Trinity F90+,
it is a VTOL UAV and therefore comes with the same advantages and disadvantages
compared to a quadcopter. The cruise speed and range are well-suited for both detailed
search operations and extensive area coverage.

The adjustability of the ElevonX drone is particularly beneficial for maritime search
and rescue. While we only used the the electric propulsion in our experiments, the avail-
ability of gas propulsion is a nice addition for operational deployment, as it offers the
longest endurance for any of the tested drones. However, the vibrations a combustion
engine produces may hamper image quality.

One drawback of the Sierra VTOL is its reduced user-friendliness, as it demands con-
tinual practice from operators due to its complex nature. Additionally, the system re-
quires two operators to function effectively, which ties up limited resources.

The payload versatility and capacity of 3 kg mean that the drone can be equipped with
various sensors, such as optical and thermal cameras, to capture a wide range of data
during both day and night operations. In particular, we were able to install an NVIDIA
Jetson Orin AGX 64 GB on the drone and connect it to our RGB camera (see Figure

13

Chapter 2 A Holistic Approach to UAV-Assisted Maritime Search and Rescue

Figure 2.3: Quantum Systems Trininty F90+

2.5) which enabled us to perform onboard processing for Region of Interest proposals,
as discussed in Section 2.3. The Sierra VTOL allows for up to 120 Watts of power within
the drone.

In summary, the DJI M210 is ideal for targeted search operations and detailed inspec-
tions, the Trinity F90+ excels in extensive area mapping and data generation, and the
ElevonX Sierra SkyEye VTOL offers a blend of endurance, adjustability, and payload
capacity while being the most complex to operate. The choice of drone would depend on
the specific phase of the mission and the mission itself. The critical considerations in this
context are: is onboard processing desired? Is there a need to capture data extensively?
Is there a focus on continuously monitoring small, specific areas, or is the objective to
search larger spaces?

2.2 Software Solution for SAR Drones
Our proposed software solution is divided into two components: the software operating
on the embedded GPU onboard the UAV, and the program running on the ground station.
In the following, we provide a concise description of the functionalities. The software,
containing both parts, is available on GitHub1. This design aims to address the challenges

1https://github.com/cogsys-tuebingen/UAV-based-maritimeSAR

14

https://github.com/cogsys-tuebingen/UAV-based-maritimeSAR

2.2 Software Solution for SAR Drones

Figure 2.4: ElevonX SkyEye Sierra VTOL.

typical in maritime mission scenarios, such as the instability of stable data links from the
drone to the ground station. In missions where drones operate multiple kilometers off
shore, stable data links like LTE coverage are generally unavailable. Consequently, to
minimize the volume of transmitted data, only selected parts of the image are streamed
in full quality, as discussed later in this section.

Onboard UAV Software
The software onboard the UAV assumes that the flight controller and path planning sys-
tem are taken care of. For example, with the UAVs discussed in section 2.1 these func-
tionalities are provided by the manufacturer. This software has, in essence, three main
tasks:

1) Running the camera: The software fetches the video stream from the connected
camera and then preprocesses this video data for both detection and streaming.

2) Region of Interest (RoI) proposal: Detect regions of interest for closer examina-
tion by the ground station software. The identified regions will be transmitted to the
ground station in full detail. However, this process might be constrained by the available

15

Chapter 2 A Holistic Approach to UAV-Assisted Maritime Search and Rescue

Figure 2.5: NVIDIA Jetson Orin AGX 64 GB built into the Sierra VTOL with 3D-printed
mount.

bandwidth.
3) Data Transmission: Establishing a connection with the ground station software

is crucial. The onboard software streams the down-scaled full image, the RoIs in full
quality, and metadata about these RoIs. This metadata includes the time stamp to align
the RoIs with the video stream. Note: The actual streaming mechanism is a topic for
potential further research work but falls outside the scope of this dissertation. Some
possible solutions involve streaming FPGAs implementing a dedicated codec for high-
quality RoIs embedded in a low-quality video stream (Stabernack and Steinert (2021)).

In our basic setup, we implemented three distinct streams: an RTSP stream for the
down-scaled2, grey-scale image, the full-quality, full-color RoIs, and the accompanying
meta-data, like position of the RoIs in the image. Each of these streams includes a
timestamp, enabling their synchronization at the ground station.

2In our implementation, we reduced the scale by a factor of 8 in both the x and y directions, resulting
in streaming every 64th pixel in total. Naturally, this scaling factor can be adjusted to fit the available
bandwidth.

16

2.2 Software Solution for SAR Drones

Ground Station Software

The receiving part of the software assumes the ground station to be a GPU server equipped
with powerful graphics cards to run demanding object detection models. This way, the
software can run these detectors on the received RoIs. Essentialy this software needs to
perform four tasks:

1) Data Streaming: This software needs to establish and maintain a connection with
the UAV software, receiving the various data streams sent by it.

2) Detailed Detection: It runs powerful object detectors on the RoIs proposed and
streamed by the drone software. For this, the software in the ground station needs to
manage the workload imposed by multiple RoIs and over multiple video frames across
all available GPUs.

3) Operator Interface: The software presents the information in a GUI to an opera-
tor at the ground station, enabling them to take action, if required, such as identifying
individuals in distress.

4) Custom RoI Requests: Additionally, the operator has the ability to request custom
RoIs if they believe the drone software may have missed something. These custom RoIs
are then transmitted back to the drone software and then are also transmitted in full
quality to the ground station.

Figure 2.6: Example footage from the GUI of the ground station software.

17

Chapter 2 A Holistic Approach to UAV-Assisted Maritime Search and Rescue

2.3 Region of Interest Proposer Methods
The first method in this chapter’s evaluation for Region of Interesent (RoI) proposals is
hugely based on Grad-CAM++ (Chattopadhay et al. (2018)). Its goal it to enhance the
understanding of how deep learning models, particularly CNNs, process and interpret
visual data. The authors do so by generating visual explanations, so called saliency
maps, for the predictions made by Convolutional Neural Networks. Figure 2.7 shows an
example of a saliency map.

In essence, this technique creates a heat map on the image, where pixels with higher
values indicate areas that the neural network relies on more for its decision-making pro-
cess. This is done by calculating higher order derivatives of the network’s classification
output in relation to specific pixels. Intuitively, this approach makes sense; examining
how altering a particular pixel influences the network’s class output of a specific bound-
ing box gives insight into the significance of that pixel in the network’s decision-making
process.

While originally developed for shedding light on the decision-making process of con-
volutional neural networks, we adapt this method in our study for class-agnostic ob-
ject detection. We achieve this by processing the output heatmap and rounding each
value to either 0 or 1, resulting in a binary map. Next, OpenCV’s (Bradski (2000))
findContours (Suzuki et al. (1985)) function, traces the outlines of the shapes in the
image that correspond to the regions marked by the value 1 in the binary map. Since the
findContours function is furthermore able to fill the interior of this outlined shape,
it can recover bounding boxes by simply fitting the smallest possible axis-aligned rect-
angular box around each connected component of the areas marked as 1 in this binary
heat map. For this approach we merely employ a generic purpose backbone frequently
used for computer vision tasks, ResNet-18 (He et al. (2016)).

The primary benefit of this method lies in its class-agnostic nature. Given that the
model isn’t specifically trained on maritime data, applying it to out-of-distribution sce-
narios poses no issue. This flexibility allows for broader applicability across various data,
even if it differs significantly from the model’s training data. In the following we call this
approach saliency detection. Figure 2.7 shows a graphical example of this algorithm.

The second method we employ for RoI proposals is YOLOv7 (Wang et al. (2023)).
Since this approach is a vanilla generic object detector, it needs training on data that is
representative of the same distribution as the test data. This is an obvious drawback in
comparison to the saliency detection method.

However, this method ranks among the most efficient and accurate object detectors
currently available to the research community. This model consistently ranks as one of
the top-performing models in relevant benchmarks for real-time object detection (Papers
with Code (2024a)), such as the MS COCO dataset (Lin et al. (2014)). Another signif-
icant advantage of YOLOv7 is its user-friendliness. Its implementation is easy to use
and operational immediately, requiring only a single line of command for retraining or
fine tuning. This feature is particularly beneficial for our application, as the model will

18

2.4 Experiments

be handed over to users who are not AI-experts. They still might need to fine tune the
model on newly gathered data.

Since the task differs slightly from standard object detection, we experimented with
two different configurations of YOLOv7. In the first (denoted by SBB later), we use it
as a conventional object detector, trained on SeaDronesSee in the usual manner3. For the
second configuration (denoted by LBB later), we modified the dataset as follows: every
bounding box in the dataset is expanded to a minimum size of 500× 500 pixels (while
images are 3840×2160). This adjustment is based on the assumption that the detection
of an individual or object might indicate the presence of additional items in its vicinity,
potentially leading to their detection as well. This modification is a significant alteration
to bounding boxes for many objects considering that a vast number of them are merely
around 20×20 pixels in size.

This strategy, in theory, might lead to a decrease in detection performance in sce-
narios with limited streaming bandwidth, but proves advantageous when the available
bandwidth is sufficiently high, see Figure 2.8.

2.4 Experiments

As object detection is studied extensively already (Carion et al. (2020); Girshick (2015);
Wang et al. (2023)) and theory and experiments on the path planning of the drone are out
of the scope of this work, we confine ourselves to exploring various proposal methods
for regions of interest predicted by the embedded GPU on the drone. This requires
algorithms have a high recall and be fast, to ensure that no objects present in the scene
are overlooked.

Data Set

We conducted evaluations of our algorithms using the test set from the second iteration
of the SeaDronesSee dataset (see Chapter 5). This test set consists of 4235 images,
while the training and validation sets contain 8125 and 1431 images, respectively. It is
composed of images featuring from 1 to 15 swimmers per image, as well as small vessels
in open water. These images were captured using multiple different drones, including the
DJI M210 and Trinity F90+ models discussed in this work. The dataset also was captured
by various cameras and diverse weather and lighting conditions, as it was gathered over
multiple days.

3https://github.com/WongKinYiu/yolov7/blob/main/data/hyp.scratch.p5.
yaml

19

https://github.com/WongKinYiu/yolov7/blob/main/data/hyp.scratch.p5.yaml
https://github.com/WongKinYiu/yolov7/blob/main/data/hyp.scratch.p5.yaml

Chapter 2 A Holistic Approach to UAV-Assisted Maritime Search and Rescue

Figure 2.7: Example of a heat map produced by our saliency detection method. The
image on the top left is from the test set of the SeaDronesSee data set, as described in
Chapter 5. The image on the top right shows the corresponding heat map. The bottom
left shows the resulting binary map after rounding each pixel to 0. and 1.. The bottom
right shows the resulting RoIs on the images, the background is in gray scale to highlight
the predictions. We can see, that all relevant instances in the image are detected. From
left to right, the bounding boxes detect a buoy, swimmers, a boat, and waves – the only
irrelevant detection.

Evaluation Metrics

To accommodate the unique requirements of the application at hand, we employ special-
ized evaluation metrics. This involves a slightly modified version of the conventional
metrics precision, recall, and the F1 score. These metrics are widely used in the field of
computer vision and machine learning to assess the accuracy of predictive models. The
necessary modification lies in how a ’True Positive’ is defined in this context.

Typically, in the process of matching predicted and ground truth bounding boxes, the
Intersection over Union (IoU) is calculated for each pair of predictions and ground truth
boxes (p j,gk) ∈ P×GT , where P is the set of predicted boxes and GT the set of ground
truth boxes. A match is established when a pair yields an IoU greater than 0.5 and also

20

2.4 Experiments

represents the highest IoU among all possible pairings, formally:

IoU(p j,gk)≥
1
2

(2.1)

IoU(p j,gk) = max
m,n

IoU(pm,gn) (2.2)

Here, the maximum in line 2.2 only is taken over all predictions pm and ground truth
boxes gn that are not yet matched. This matching process is one-to-one, linking each
ground truth box to at most one predicted box. Each prediction matched to a ground
truth box is called a True Positive.

This approach is well-suited for precise object detection, where each prediction is
expected to correspond to exactly one object within the image. However, for Region of
Interest (RoI) prediction, where the goal is to enclose all objects present in the given
scene, the matching method needs to be adjusted.

Specifically, this implies that the strict one-to-one correspondence between predic-
tions and ground truth boxes are not necessary, nor is the precise size alignment of the
predicted bounding boxes with the actual objects.

Therefore, instead of IoU we use Intersection over Ground Truth (IoGT), defined as

IoGT(p,g) :=
area(p∩g)

area(g)
∈ [0,1].

This term focuses only on the area of the actual object, rather than looking at the area
covered by both the predicted and actual object together. This way, even if a predicted
area is much larger than needed, it can still be considered a match. In the extreme case
of a predicted RoI covering the whole image, every ground truth bounding box would be
counted as a true positive. With the traditional Intersection over Union method, a very
large prediction would result in a low value, possibly missing the match. More formally,
similarly to above equations, our matching procedure is:

IoGT(p j,gk)≥
1
2

(2.3)

IoGT(p j,gk) = max
m,n

IoGT(pm,gn) (2.4)

Here, the maximum in equation 2.4 is taken over all pm and gn, regardless of whether
they were matched to some other box already or not. Each ground truth box that matches
with a predicted box is now considered a true positive.

Using this altered metric, we strive to achieve a shift in focus from accuracy on in-
dividual objects to predicted areas covering all present objects in the scene, even if it’s
not a perfect match for each one. This is the goal of region of interest prediction. We
believe, our metric achieves precisely this goal.

21

Chapter 2 A Holistic Approach to UAV-Assisted Maritime Search and Rescue

Results

To assess the performance of the discussed region proposal methods, we compute their
adapted precision, recall, and F1-score with the discussed modifications. Additionally,
we simulate a scenario with reduced bandwidth for the data link from the drone to the
ground station. In our evaluation, this is achieved by limiting the predictions generated
by the algorithm to the quantity that can feasibly be transmitted given the bandwidth
constraints. We do so as follows: given a portion r ∈ [0,1], which denotes the maximum
portion that can be streamed in full quality, and predictions P = {p1, . . . , pn}. Then, in
the case of saliency detection, where we do not have information about the quality of the
boxes, we chose a subset {pk1, . . . , pkm} ⊂ P such that area

(
pk1 ∪ . . .∪ pkm

)
is maximal

and not greater than r. For YOLOv7, where each bounding box comes with a confidence
score, we chose the boxes with the highest score until the area exceeds r. In either case,
once the bandwidth limitation is reached, we select the next bounding box in this order.
For saliency detection, we opt for the largest remaining box, assuming that it represents
the highest quality detection. We fit the largest axis-aligned box (with equal center) into
the selected box, while still accounting for the streaming restriction, and append this box
to the subset. Figures 2.8, 2.9, and 2.10 show the results of the performance under these
conditions. There, the maximum streamable percentage of the image is given by the
x-axis while the result of the algorithm in the respective metric is plotted on the y-axis.

This approach allows us to understand how the methods perform under restricted data
transmission conditions.

Figure 2.8 shows the recall of the compared algorithms, arguably the most important
metric for RoI proposal methods in mSAR missions. We observe that vanilla YOLOv7
outperformed the other models in almost all scenarios with bandwidth limitations, mak-
ing it the preferred choice under heavy bandwidth limitations. However, as the bandwidth
restriction vanishes, meaning r→ 1, the YOLO LBB variant (trained on the modified data
set with larger bounding boxes) begins to excel, surpassing the vanilla version. Similarly
but even more so, the saliency detection method surpasses both YOLOv7 variants once
the data link allows for around 60% or more of the image to be streamed. This is not
surprising, since the YOLO methods are trained to predict few false positives.

In addition, saliency detection has a unique benefit: it maintains consistent perfor-
mance even when applied to data it wasn’t trained on, unlike its counterparts, which
were explicitly trained on SeaDronesSee. An interesting observation can be made re-
garding the YOLO model with enlarged bounding boxes: the noticeable jumps upwards
in the graph occur when the bandwidth allows for one additional bounding box, leading
to more additional detections quickly. These jumps are also visible in figures 2.9 and
2.10. In graph 2.9 they look like these additional bounding boxes harmed performance
but figure 2.10 shows, that they are a net-gain for overall detection performance. The
superiority of saliency detection for a high bandwidth can also be seen in the precision
and F1-score plots, figures 2.9 and 2.10. Here, when roughly 30% of the full image can
be streamed, the figures show that saliency detection overtakes the other two algorithms

22

2.4 Experiments

Figure 2.8: Logarithmic plot of the recall on the SeaDronesSee (see Chapter 5) test set
for saliency detection and two different versions of YOLOv7 (Wang et al. (2023)). The
portion of the maximum streamable resolution in relation to the full resolution is plot-
ted on the x-axis. The different YOLO variants, YOLOv7 SBB and YOLOv7 LBB are
introduced in section 2.3.

in performance. Although a high recall is the most important aspect for RoI proposal
methods in mSAR missions, a high precision might as well be beneficial, as it reduces
the burden on the object detector or the human operator present at the ground station.

Speed Benchmarks

In order to evaluate the possibility of onboard processing for the investigated algorithms,
we conducted speed benchmarks on an NVIDIA Jetson Orin AGX 64 GB (Orin (2020)).
We averaged running times for both algorithms on the test set of the SeaDronesSee
benchmark data set. We used the TensorRT framework (Vanholder (2016)) to optimize
the ResNet and the subsequent heat map generation in the saliency detection algorithm
as discussed above. This part achieved an average processing speed of 51.0 frames per
second (FPS) on the Orin. The post processing generating bounding boxes, employing
OpenCV (Bradski (2000)), averaged 30.1 FPS. Running them in sequence hence results
in roughly 18.9 FPS, falling short of running in real time. We conclude that, since the
tasks are naturally separate, splitting the two tasks on two different processing units,
one dedicated GPU for the neural forward pass and heat map generation and one dedi-

23

Chapter 2 A Holistic Approach to UAV-Assisted Maritime Search and Rescue

Figure 2.9: Logarithmic plot of the precision on the SeaDronesSee test set for saliency
detection and the discussed versions of YOLOv7. The portion of the maximum stream-
able portion of the full resolution is plotted on the x-axis. The different YOLO variants,
YOLOv7 SBB and YOLOv7 LBB are introduced in section 2.3.

cated CPU for the OpenCV computations, would achieve real-time by being as fast as
the slower of the two operations, resulting in 30.1 FPS. On the other hand, YOLOv7
achieved an average of 45.5 FPS on the NVIDIA Jetson Orin AGX 64 GB while run-
ning natively in PyTorch (Paszke et al. (2019)). Although there is potential for further
acceleration through TensorRT optimization, we deemed it unnecessary since it already
achieved real-time performance. Since both researched YOLOv7 methods only differ in
the training of the network, inference speed is equal for both.

2.5 Conclusion
In this chapter, we highlighted some of the features and caveats about using small fixed-
wing drones and quadcopters in maritime search and rescue (mSAR) operations. Fur-
thermore, we developed and implemented a specialized software framework specifically
tailored for mSAR missions. This framework allows for models predicting regions of
interest (RoIs) onboard the UAVs and also using more powerful object detectors at a
ground station, thereby reducing the cognitive and visual load on operators. Additionally,
we evaluated various RoI proposal methods specifically focusing on different bandwidth
constraints, thereby highlighting their practicality in real-world mSAR scenarios involv-

24

2.5 Conclusion

Figure 2.10: Logarithmic plot of the F1-score on the test set of the SeaDronesSee data
set for saliency detection and two different versions of YOLOv7. The portion of the
maximum streamable portion of the full resolution is plotted on the x-axis.

ing UAVs. In contrast to this technical discussion, the next chapters will be discussing
some methods for improving object detection from UAVs.

25

Chapter 3

Leveraging Domain Labels in Object
Detection on UAVs

3.1 Introduction
As discussed in Chapter 1, generic object detection has improved drastically over the
last years (Zhao et al. (2019)), while object detection on images captured from UAVs
still poses great challenges (Zhu et al. (2020a)). In this chapter, we will highlight the
specific problem of variations across domains in UAV imagery, why this is particularly
challenging for object detectors, and some approaches to alleviate this problem algorith-
mically.

For example, an object detector encounters images taken from varying altitudes. There-
fore, the scales of objects vary enormously, often ranging from 10 pixels to over 300, see
Chapter 5. At lower altitudes, objects are captured with more detail while at higher alti-
tudes, more objects appear, but blurrier. Furthermore, modern UAVs are equipped with
so-called gimbal cameras (Rajesh and Kavitha (2015)). These allow for capturing ob-
jects with various viewing angles (pitch axis). Moreover, a UAV’s roll axis introduces
yet more variation. As a result, objects are captured with diverse aspect ratios and ori-
entations. In particular, top-down views often result in ambiguous object appearances,
such as distinguishing between a car or a van.

Many more factors influence objects’ appearances. These include but are not limited
to: variations in weather and time, both affecting the illumination of objects; GPS loca-
tion; camera sensor. Examples for the individual factors might be: images during rain
vs. at sunny weathers; at day vs. at night; different backgrounds resulting from images
taken in cities vs. rural areas; lens distortions from different cameras.

These variations become more critical when the interplay with different domains is
considered. For example, in Fig. 3.1 the very same scenery is shown from altitudes 10m
and 100m, respectively, and from viewing angles 10◦ (nearly horizontally facing) and
90◦ (top-down), respectively.

In contrast, many traditional data sets in other applications consist of less restricted-
view data, such as COCO (Lin et al. (2014)) for everyday objects, KITTI (Geiger et al.

© 2024 IEEE. Reprinted, with permission, from Kiefer et al. (2021).

27

Chapter 3 Leveraging Domain Labels in Object Detection on UAVs

Figure 3.1: Example images of the data set POG, showing the same scenery taken from
different perspectives (top: 10m, 10◦, bottom: 100m, 90◦).

(2013)) for autonomous driving and DOTA (Xia et al. (2018)) for remote sensing. There-
fore, models trained on these data sets do not have to take the aforementioned domain
variations into account.

Ultimately, the goal of object detection from UAVs is to detect objects in all of the con-
sidered domains. However, data sets are commonly unbalanced with respect to different
domains (see Figure 3.2). Therefore, trained models are biased towards over-represented
domains while failing to perform well in under-represented domains. As a result, even
state-of-the-art models are underoptimized in the latter domains, as will become clear in
Section 3.4.

In part, this is a consequence of using the commonly used metric average precision.
This domain-agnostic metric favors models, which perform well in over-represented do-
mains but may fail in others.

Motivated by these observations, we propose to leverage domain labels to alleviate
this bias. While domain information is implicitly encoded in the captured images, it
is also explicitly available from the UAVs’ sensors: the altitude of the aircraft can be
retrieved from the onboard GPS or barometer, the viewing angle from the gimbal pitch
angle of the camera, and the time from an onboard clock. We propose to use these
domain labels to train so-called expert models. These experts adapt to their respective
domains to capture the domain-specific features. This multi-domain learning approach
is in contrast to domain adaptation, which aims to eliminate these recognized types of
domain. It is furthermore different from multi-task learning as we try to solve the same
task across all domains. We show that these experts prove highly effective and efficient
across various models, data sets and metrics.

In summary, our contributions are threefold:

28

3.1 Introduction

• We analyze domain imbalance in three UAV object detection data sets and their
effects on the overall model performance. We also propose a simple domain-
sensitive metric to capture domain specific particularities.

• We propose a simple method, which leverages domain knowledge, to alleviate
domain bias. We show that using this method we can significantly outperform
domain-agnostic models without sacrificing speed. Further, we analyze the method
on two established UAV object detection data sets.

• We capture and annotate a UAV object detection data set dubbed PeopleOnGrass
(POG). We show that more precise domain labels can improve detection accuracy
even further.

Deep learning-based object detection can roughly be divided into two categories: two-
stage detectors, like Fast R-CNN or Faster R-CNN (Ren et al. (2016)), and the much
faster, but less accurate one-stage detectors such as YOLO (Farhadi and Redmon (2018))
or EfficientDet (Tan et al. (2020)). While there is a large amount of research towards
improving these object detectors, much of the research community focuses mainly on
popular benchmarks, such as MS COCO (Lin et al. (2014)).

While research fields such as remote sensing used geo-spatial image data sets (e.g.
satellite data), they are not that useful for object detection from UAVs, since they employ
very low pixel per centimeter resolutions and vary very little in their altitude and angle
information (Li et al. (2018)). Furthermore, a common practice in object detection from
UAVs is still to use off-the-shelf detectors (Zhu et al. (2018)).

With the release of the UAVDT (Du et al. (2018)) and VisDrone (Zhu et al. (2018))
data sets, several works developed models specifically aimed at object detection from
UAVs (Ševo and Avramović (2016); Sommer et al. (2017); Ding et al. (2018)). Many
works focus on detecting small or clustered objects (Hong et al. (2019); Yang et al.
(2019)).

With (Bashmal et al. (2018)), the concept of domains enters the field of object detec-
tion from UAVs, where a Siamese-GAN is introduced to learn invariant feature represen-
tations for labeled and unlabeled aerial images from two different domains. However,
such a domain adaptation method’s focus is to adapt the model from a fixed source do-
main to a fixed target domain. Fine-grained domains are utilized by (Wu et al. (2019)),
where adversarial losses are employed to disentangle domain-specific nuisances. How-
ever, the training is slow and unstable, and domain labels are ignored at test time. Expert
models are proposed in (Lee et al. (2019)) to account for objects with particular shapes
(horizontally/vertically elongated, square-like). Since no domain labels are used in this
work, they are formulated as a model ensemble too expensive to employ in multiple do-
mains. A multi-domain learning approach for object detection is investigated in (Wang
et al. (2019)), where the focus is on learning from multiple distinct data sets. Transfer
learning (Zhuang et al. (2020)) is different in that it generally aims to learn invariant

29

Chapter 3 Leveraging Domain Labels in Object Detection on UAVs

Domain type Domain name Estimated ranges

Altitude
high (H)

medium (M)
low (L)

80-100m
30-80m
0-30m

Angle
bird-view (B)

acute angle (A)
70-90◦

0-70◦

Time
day (D)

night (N)
6am-10pm
10pm-6am

Table 3.1: Available domain labels in the data sets VisDrone and UAVDT and its ranges.
Note that the ranges have been estimated by visual inspection since they have not been
reported.

representations, whereas multi-domain learning preserves the domain-specific represen-
tations.

As opposed to the aforementioned works, we aim to leverage freely available environ-
mental data from the drones’ sensors. We try to leverage these so far overlooked domain
labels at training and runtime to reduce the domain bias induced by highly imbalanced
data sets.

3.2 Analyzing Domain Imbalances
In the following two subsections, we analyze domain imbalances and their consequences
in two of the most popular UAV object detection data sets. First, we consider imbalances
in the training set and then in the testing set.

3.2.1 Domain Imbalances in the Training Set

Imbalance problems in data-driven object detection have been known for a long time.
However, most of the literature focuses on class, scale, spatial, and objective imbalances,
like how much different tasks (e.g. classification or regression in the case of object
detection) contribute to the loss function (Oksuz et al. (2020)). In contrast to many
other applications areas, data in object detection from UAVs is versatile with respect to
environmental domains.

So far, we loosely used the term ’domain’ to depict a particular environmental state
a UAV is in at the time of image capture. Some of these states give rise to some of
the imbalances mentioned above: Altitude imbalances give rise to scale imbalances as
object sizes directly correlate with the altitude an image is captured at. Also, foreground-
background imbalances are affected by the altitude. Viewing angle imbalances give rise

30

3.2 Analyzing Domain Imbalances

to spatial and aspect ratio imbalances. However, there might be many other domain im-
balances that may not directly relate to the aforementioned imbalances, such as lighting
imbalances caused by the time or weather.

However, it is not clear what separates one domain from another. In fact, many envi-
ronmental factors are continuous, such as the altitude or angle an image is captured at.
Nevertheless, in current UAV object detection data sets, only coarse domain labels are
reported. Two of the most established data sets, UAVDT and VisDrone, feature domain
labels with coarse information about altitude, viewing angle and time as depicted in Ta-
ble 3.1. Although these divisions seem arbitrary, they already help distinguish features
in different domains, as will be seen in Section 3.4.

The large amount of varying domains causes data sets to be highly unbalanced with
respect to these domains. Figure 3.2 shows the number of labeled objects in every domain
for the UAVDT and VisDrone training sets. Note that a domain is a combination of one
or more influencing variables. For example, the domain ’high’ (H) + ’bird view’ (B) +
’night’ (N) in VisDrone contains 4,120 objects. Furthermore note, that we deliberately
compared the number of objects and not the number of images because common object
detection losses are back-propagated for every object instance – as opposed to every
image.

In both data sets, many domain imbalances exist. For example, in both data sets,
there are fewer labeled objects at night than at day. Both data sets show most objects
from a horizontal viewing angle as opposed to from bird-view. These imbalances can
be quite large. For example, in VisDrone, the domain H+B+N contains roughly only
1% (≈ 4,120/343,205) of objects, whereas the domain L+A+D contains roughly 33%
(≈ 114,504/343,205). Even more extremely, in UAVDT, there are no objects in H+B.

These domain imbalances result in models being biased towards the over-represented
domains. In turn, this may hamper models to predict objects in every domain accurately.
In Section 3.3, we aim to propose a simple model family to diminish these biases.

3.2.2 Domain Imbalances in the Testing Set

While domain imbalances in the training set cause a trained model to be biased towards
the over-represented domains, domain imbalances in the testing set cause a trained model
to be rewarded for that behavior. If we want to faithfully measure the performance of an
object detector across domains equally, we ought to include this in the corresponding
metric. However, the conventional metric ’mean average precision’ (mAP) does not
capture the concept of a domain. Indeed, it is designed to be a general-purpose metric
that weighs precision and recall. It is the area under the precision-recall curve averaged

31

Chapter 3 Leveraging Domain Labels in Object Detection on UAVs

Bird Acute

Low

Medium

High

100 16 84

= day = night

41 1 0 33 7

38 5 1 28 4

21 8 1 12 2

Bird Acute

Low

Medium

High

100 37 63

= day = night

33 4 0 27 2

66 24 9 25 8

1 0 0 1 0

Figure 3.2: Distribution of objects across domains in the VisDrone (top) and UAVDT
(bottom) training set. The lower left circle represents the size of the whole data set
(100%), the other circles the relative size to it (rounded to the closest integer). The
domains are high, medium, low, bird view, acute viewing angle, day and night, and
combinations thereof.

over all classes c ∈ {1, . . . ,C} defined as follows:

mAP :=
1
C

C

∑
c=1

AP(c) :=
1
C

C

∑
c=1

∫ 1

0
pc(r)dr, (3.1)

32

3.3 Multi-Domain Learning Approach

where pc(r) denotes the precision for class c for a recall value r. True positives are
determined by measuring the intersection-over-union (IoU) of the predicted bounding
box and the ground truth. The threshold varies across data sets. Without any subscript,
the value denotes the average value over thresholds from 0.5 to 0.95 in steps of 0.05 (Lin
et al. (2014)). Because there are only finitely many predictions, the integral simplifies to
a sum over the ordered object predictions.

To illustrate the severeness of mAP being domain agnostic, consider the following toy
example: Suppose we have two distinct domains d1 and d2 in our UAV object detection
data set. Let mAPd1 and mAPd2 be the mAP scores of a model trained on all data but
evaluated only on d1 and d2, respectively. Denote by s∈ [0,1] the size of d1 relative to the
size of the whole data set d1∪d2. In Figure 3.3, we plot the mAP on d1∪d2 as a function
of s for certain fixed values of mAPd1 and mAPd2 . Note that these curves depend on the
distribution of true/false positives, true/false negatives and scores of the predictions and
are therefore not unique.

From that hypothetical example, it is evident that small domains contribute very little
to the overall mAP score. For example, consider the blue curve. In this case, mAPd1 =
0.1 and mAPd2 = 1. If the size of d1 is less than 1/4 of the whole data set size, the overall
mAP still is above 80%. This leads to overestimating models that just perform well
on over-represented domains and underestimating models that perform well on under-
represented domains.

Ideally, a UAV object detection data set is roughly balanced with respect to domains.
However, as we saw in the subsection before, this condition often is violated. Therefore,
the only way to obtain models that are robust across domains is to incorporate this domain
performance into the metric. We propose to use the simple domain-averaged metric

mAPavg :=
1
D

D

∑
j=1

mAPd j , (3.2)

where mAPd denotes the mAP on domain d ∈ {d1, . . . ,dD}. To obtain well-calibrated
models, we evaluate on both, mAP and mAPavg. Note that it is a user question of how to
weigh each domain. Non-uniform weightings of domains are possible as well. However,
we argue that a priori all domains should be weighted equally to allow for cross-domain
robust models. In the example from before, the dashed purple curve depicts mAPavg,
which is independent of the the sizes of each domain.

3.3 Multi-Domain Learning Approach
For a fixed model architecture, learning from multiple domains is inherently a trade-
off. Large domains cause the model to be biased towards these domains. Our goal
is to diminish this bias by leveraging freely available domain labels in a multi-domain
learning setting.

33

Chapter 3 Leveraging Domain Labels in Object Detection on UAVs

0.0 0.2 0.4 0.6 0.8 1.0
Size of d1 relative to d1 ∪ d2

0.2

0.4

0.6

0.8

1.0

m
A

P
[%

]

mAPd1
: 1.0 mAPd2

: 0.1

mAPd1
: 0.1 mAPd2

: 1.0

mAPd1
: 0.4 mAPd2

: 0.7

mAPd1
: 0.7 mAPd2

: 0.4

mAPavg

Figure 3.3: Hypothetical mAP values for a two-domain UAV object detection data set.
mAPavg is the average mAP over both domains as defined in equation 3.2.

In multi-domain learning, image samples {x j} with corresponding bounding box an-
notations {y j} are accompanied by a discrete domain indicator dx ∈ {d1, . . . ,dD} (which
also is available at test time), such that a training sample is (x j,dx j ,y j) and a test sample
is (x j,dx j). In particular, that means, we can leverage this domain information dx at test
time, which is the key to our expert models.

Motivated by (Caruana (1997)), we propose a multi-head architecture. Given a general
object detector model, we share earlier layers across all domains and leave later layers
domain-specific. This approach follows the empirical observations that earlier layers ex-
tract lower-level features, which are present across all domains, while later layers extract
higher-level features, which may differ substantially across domains (such as the people
in Fig. 3.1). Empirically, this is backed up by (Wang et al. (2019)), which shows that
activations in later layers differ vastly.

This approach effectively allows the heads corresponding to smaller domains to learn
domain-specific features without suffering from the domain bias induced by the domain
imbalances that are favoring larger domains. Note that earlier layers may still be biased
towards larger domains. However, as in earlier layers more general-purpose features are
extracted (Yosinski et al. (2014)), this bias is less severe than in later layers.

From preliminary experiments, we found that it is best to split models not based on
individual layers, but on groups of layers, which are known as stages or blocks (Wang
et al. (2019)). These stages are model-dependent. For example, a Faster-RCNN with a
ResNet-101 backbone consists of 5 stages prior to the region-of-interest pooling layer.
That means, we share all stages across all domains until a certain stage is reached. From
here on, we split the model into so-called experts. For simplicity, these experts are
copies of the original model. Therefore, this approach does not need a reorganization of
the model architecture and can be applied to many object detectors as will be seen from
Section 3.4.

For illustrative purposes, see Figure 3.4. Here, a Faster-RCNN with ResNet-101 back-
bone is taken as an example. The first three stages are shared across all domains. Based
on the domain label - in this case day or night - the corresponding expert branch is cho-

34

3.3 Multi-Domain Learning Approach

sen. We denote such a model as Time@3 because the available domains are based on the
attribute ’time’ and the model is shared until the third stage.

A priori, it is not clear, how many stages should be shared. We explore empirically
which stages are to be shared in Section 3.4.

While the number of parameters scales linearly with the number of domains, the in-
ference speed stays constant as only a single expert is evaluated at a time. Therefore, the
experts effectively increase a model’s capacity without hampering the inference speed.
Furthermore, the experts’ sizes are still small enough such that they all fit even in em-
bedded GPUs’ memory, as will be seen in section 3.4.

3.3.1 Simplified Training Realization
So far, the proposed approach may seem as if an adaptation to the model architecture was
necessary. However, in the following we want to demonstrate that the expert approach
can be implemented in every architecture. Furthermore, it introduces only very little
training overhead.

Given an object detector and training pipeline, we train it until an early stopping cri-
terion is met. That means, training it further would increase the validation error. Then,
similarly to what is done in transfer learning (Zhuang et al. (2020)), we freeze the shared
stages in order to transfer knowledge between domains and such that weights will not be
biased towards the over-represented domains (Oksuz et al. (2020)). This is particularly
beneficial for data sets with great domain imbalances, such as UAVDT and VisDrone.
We only train the domain-specific stages further on each respective domain. We split a
subset from the training set for that particular domain and use it as the validation set. We
train until the validation error increases again. Finally, we take the weights correspond-
ing to the lowest validation loss as our final weights for that expert. Even though the
number of trainable parameters shrinks, we want to emphasize that having a validation
set is especially critical in this case to avoid overfitting on the small domains.

Post-training the domain-specific layers on their corresponding domains introduces
little overhead to the overall pipeline. This is because only a small number of layers
needs to be trained which decreases the time for the backward pass because only parts of
the weights need to be back-propagated and the freed GPU memory space can be used
to increase the batch size. Furthermore, training for different domains can be done in
parallel. We report actual training times for various experiments in Section 3.4.

3.3.2 Introducing a Multi-Modal Data Set
Lastly, we would like to note that there are no publicly available data sets for object
detection from UAVs that include precise domain labels regarding altitude and viewing
angle. E.g. (Bozcan and Kayacan (2020)) includes limited altitude values between 0−
30 m. We argue that this is a major impediment in the development of domain-aware
models since these two factors majorly contribute to appearance changes.

35

Chapter 3 Leveraging Domain Labels in Object Detection on UAVs

Classification

Regression

Classification

Regression

Object Detection
Branch

Object Detection
Branch

Figure 3.4: Illustration of a Time@3 model with day and night experts. The time is split
into two domains, day (red) versus night (blue), where green outputs represent the shared
stages (first, second, third). Every image is passed through the shared green stages. Then
it is checked whether it is a day or night image and consequently passed through the red
or blue stages, respectively.

For that reason, we record the experimental data set PeopleOnGrass (POG) containing
2,9k images (3840× 2160 pixels resolution), showing people from various angles and
altitudes varying from 0◦ (horizontally facing) to 90◦ (top-down) and 4 m to 103 m,
respectively, each labeled with the precise altitude and angle it was captured at. See
Figure 3.5 for a distribution of objects. Further metadata, such as GPS location, UAV
speed and rotation, timestamps and others are also included. We use a DJI Matrice
210 equipped with a Zenmuse XT2. The meta data is obtained through DJI’s onboard
software developing kit. Accompanied with every frame there is a meta stamp, that is
logged at 10 Hertz. To align the video data (30 FPS) and the time stamps, a nearest
neighbor method was performed. The following data is logged and provided for every
image/frame read from the onboard clock, barometer, IMU and GPS sensor, respectively:

• current date and time of capture

• latitude, longitude and altitude of the UAV

• camera pitch, roll and yaw angle (viewing angle)

• speed along the x-, y and z-axes

We want to emphasize that the meta values lie within the error thresholds introduced by
the different sensors but an analysis is beyond the scope of this dissertation (see Sitemark
(2020) for an overview).

See Figure 3.1 for example images. We manually and carefully annotated 13,713 peo-
ple. We note that this is a simple real-world data set, suffering from fewer confounders
than large data sets, which is ideal for testing out the efficacy of multi-modal methods.

36

3.4 Experimental Results and Ablations

This data set is available to the community1 and hopefully will benefit the development
of multi-modal models.

20 40 60 80 100
Altitude[m]

0

25

50

75

A
ng

le
[d

eg
re

es
]

0

100

200

300

400

500

Figure 3.5: Distribution of objects in PeopleOnGrass (POG) across different levels of
altitude and camera pitch angles.

3.4 Experimental Results and Ablations
In the first two sets of experiments, we show how leveraging domain labels on UAVDT
and VisDrone improves multiple model architectures’ performances. Furthermore, we
investigate the effect of different splitting strategies and ablations. Lastly, we show that
finer domain splitting is possible in the case of the data set POG.

3.4.1 VisDrone
We evaluate our models using the official evaluation protocols, i.e. AP70 for UAVDT
and mAP and mAP50 for VisDrone, respectively. Furthermore, we report results on
individual domains and the domain-averaged metric from Section 3.2.2, i.e. APavg

70 and
mAPavg

50 over all respective domains to measure the universal cross-domain performance.
The subscript 50 and 70 denote the intersection-over-union (IoU) a prediction needs to
have with a ground truth bounding box in order to be counted as a true positive. Note
that we leave out the ’m’ in ’mAP’ for UAVDT since it contains only one class.

Furthermore, we report the additional training times ∆ t in percent (rounded to inte-
gers) to train a model longer than its baseline, i.e. ∆ t = 10% would mean that it takes
additional 10% to train a model further than its baseline.

The object detection track from VisDrone consists of around 10k images with 10 cate-
gories. All frames are annotated with domain labels regarding altitude (low (L), medium
(M), high (H)), viewing angle (front, side, bird (B)) and light condition (day (D), night

1https://cloud.cs.uni-tuebingen.de/index.php/s/yFztfJePREqj4om

37

https://cloud.cs.uni-tuebingen.de/index.php/s/yFztfJePREqj4om

Chapter 3 Leveraging Domain Labels in Object Detection on UAVs

L M H mAP50 mAP mAPavg
50 ∆ t

DE-FPN (Zhu et al. (2018)) 49.1 49.7 36.0 48.6 26.1 44.9 –
Altitude@0 49.4 49.6 35.5 48.3 25.9 44.8 12%
Altitude@1 49.5 49.7 35.7 48.5 25.9 45.0 11%
Altitude@2 49.5 49.9 36.1 48.7 26.1 45.2 11%
Altitude@3 50.2 50.2 36.8 49.2 26.6 45.7 10%
Altitude@4 50.7 50.2 37.5 49.9 27.4 46.1 8%
Altitude@5 50.5 50.0 37.5 49.7 27.0 46.0 7%

B A
38.0 49.0
39.6 49.8

DE-FPN (Zhu et al. (2018)) 48.6 26.1 43.5 –
Angle@4 49.4 27.0 44.7 6%

D N
48.5 52.0
49.0 52.6

DE-FPN (Zhu et al. (2018)) 48.6 26.1 50.2 –
Time@4 49.0 26.6 50.8 7%

Table 3.2: Several domain expert results for various freezing strategies on VisDrone.
Altitude@x means that all stages until the xth. stage are shared. As described in Section
3.4.1, ∆ t is the additional training time as a percentage of the time needed to train the
respective baseline model. The domains are abbreviated as follows: A = acute viewing
angle, B = bird’s-eye view, D = day, N = night, L = low capture-altitude, M = medium
capture-altitude, H = high capture-altitude.

(N)) (Wu et al. (2019)). Note that we fuse the two domains "front" and "side" into a
single domain "acute angle (A)", as, at test time, we can only distinguish between bird
view and not bird view based on the camera angle. We reimplement the best performing
single-model (no ensemble) from the workshop report, DE-FPN (Zhu et al. (2018)), i.e.
a Faster R-CNN with a ResNeXt-101 64-4d (Xie et al. (2017)) backbone (removing P6),
which was trained using color jitter and random image cropping achieving 48.7% mAP50
on the test set. To compare with Wu et al. (2019), we evaluate our models on the unseen
validation set, on which our implementation yields 48.6% mAP50.

From Table 3.2, we can make four observations: First, the altitude-experts improve
over the baseline DE-FPN on the whole validation set and on all domains individually
if the first three or more stages are shared. The performance drop of Altitude@0 and
Altitude@1 is likely caused by overfitting on the small domain H, on which the perfor-
mance drop is -0.5 mAP50. Note that Altitude@0 essentially has a separate model for
each domain. Second, there seems to be an upward trend in performance, peaking at
the fourth stage and dropping at the fifth stage. Third, improvements are seen for all
experts: +1.3, +0.8 and +0.4 mAP50 for the Altitude-, Angle- and Time-experts, respec-
tively. Furthermore, the performance improvements are also seen in the domain-sensitive
metric mAPavg

50 , yielding +1.2, +1.2 and +0.6 points for the respective experts. Fourth,

38

3.4 Experimental Results and Ablations

↓ +→ L M H mAP50 mAP mAPavg
50 ∆ t

DE-FPN
(Zhu et al. (2018))

B
A

84.6
49.1

42.5
50.0

35.6
41.2 48.6 26.1 50.5 –

Altitude-angle@4 B
A

87.4
49.7

44.8
50.1

39.6
42.2 49.0 26.3 52.3 10%

DE-FPN
(Zhu et al. (2018))

B+D
A+D
A+N

84.6
49.0
52.8

42.5
50.2
51.6

35.6
41.2

–
48.6 26.1 50.9 –

Altitude-angle-
time@4

B+D
A+D
A+N

87.5
50.1
54.4

44.8
50.6
56.5

39.6
42.2

–
49.6 26.8 52.9 11%

Table 3.3: Results in mAP50 on specific domains for multi-dimension experts on Vis-
Drone. The domains are abbreviated as in Table 3.2. For example, the Altitude-angle-
time@4-expert achieves 54.4 mAP50 on the domain L+A+N (low altitude, acute viewing
angle, and at night).

the additional training time ∆ t is low, with 8%,6%, and 7% for the most accurate domain
experts. As it yielded the best results, we always freeze until the 4th stage for VisDrone
from here on.

Table 3.3 shows that sharing along two and three domain dimensions is advantageous.
The Altitude-angle@4-experts and the Altitude-angle-time@4-experts improve DE-FPN
on all domains individually and overall. In particular, we obtain a +1.8 and +2 mAPavg

50
increase, respectively. The standard metrics mAP and mAP50 show an improvement as
well, albeit a lower one, which is attributed to the failure of these metrics to capture
domain imbalances in the validation set (see Figure 3.2).

This contrast is shown by the most significant improvements occurring in underrepre-
sented domains, suggesting a reduction in domain bias. For example, the Altitude-angle-
time@4-experts improve the performance on the domains M+A+N and H+B+D, which
only contain roughly 4% and 8% of all objects (see Figure 3.2), from 51.6 mAP50 to 56.5
mAP50 and 35.6 mAP50 to 39.6 mAP50, respectively.

mAP50 mAP mAPavg
50 ∆ t

DE-FPN (Zhu et al. (2018)) 48.6 26.1 49.7 –
Altitude-time@4 49.1 26.3 51.5 11%

DE-FPN (Zhu et al. (2018)) 48.6 26.1 50.1 –
Angle-time@4 49.2 26.4 51.9 13%

Table 3.4: Altitude-time@4 and Angle-time@4 experts on the VisDrone validation set.

39

Chapter 3 Leveraging Domain Labels in Object Detection on UAVs

B A mAP50 mAPavg
50

EfficientDet-D0 21.5 24.9 26.3 23.2
Angle@backbone 22.1 26.2 27.6 24.2

Table 3.5: EfficientDet-D0 Angle experts on VisDrone validation set.

L M H AP70 APavg
70 ∆ t

ResNet-101-FPN (Wu et al. (2019)) 61.9 58.1 24.1 49.4 48.0 –
Altitude@2 62.5 60.5 24.1 49.4 49.0 10%

B A
28.9 59.1
33.6 60.4

ResNet-101-FPN (Wu et al. (2019)) 49.4 44.0 –
Angle@2 50.4 47.0 9%

D N
51.4 50.6
53.4 54.1

ResNet-101-FPN (Wu et al. (2019)) 49.4 51.0 –
Time@2 50.1 53.8 10%

Table 3.6: Domain experts on the UAVDT test set.

Similar observations can be made from Table 3.4, where the Altitude-time@4- and
Angle-time@4-experts both improve by +1.8 mAPavg

50 .
To further test our approach in real-time scenarios, we choose the current best model

family on the COCO test-dev according to Papers with Code (2021), i.e. EfficientDet
(Tan et al. (2020)), and take the smallest model D0 as our baseline model. We em-
ploy it on the NVIDIA Jetson AGX Xavier suitable for on-board processing (Ditty et al.
(2018)). For that, we convert the trained model to half-precision using JetPack and Ten-
sorRT (Vanholder (2016)) and set the performance mode to MAX-N. The inference speed
is reported in frames per second (FPS) averaged over the validation set. Similar to (Ring-
wald et. al. (2019)), the FPS values do not include the non-maximum suppression stage
as TensorRT does not supported it yet. Keeping the image ratio, the employed longer
image side is 1408 pixels for training and testing.

We freeze the whole backbone and only leave the box-prediction net (Tan et al. (2020))
domain-specific. As shown in Table 3.5, sharing the backbone yields an improvement of
1.3 point mAP50 and 1 point mAPavg

50 for the angle experts. Both models run at 21.8 FPS,
suitable for live on-board processing. With all pre- and post-processing steps, we obtain
a frame rate of 18.1 FPS.

3.4.2 UAVDT
The UAVDT benchmark data set contains around 41k annotated frames with cars, busses
and trucks. Similar to Wu et al. (2019), we fuse all vehicle classes into a single vehicle

40

3.4 Experimental Results and Ablations

B A AP70 APavg
70

ResNet-101 (Wu et al. (2019)) 27.1 54.4 45.6 40.1
NDFT (Wu et al. (2019)) 28.8 56.0 47.9 43.4

Angle@2 31.6 58.6 48.6 45.1

Table 3.7: Results for ResNet-101 backbone on UAVDT.

AP70 FPS APavg
70

EfficientDet-D0 17.1 21.8 16.7
UAV-Net (Ringwald et. al. (2019)) 26.2 18.3 –

Altitude@backbone 38.1 21.8 37.0
Table 3.8: Altitude experts results on UAVDT test set.

class. All frames are domain-annotated like VisDrone. To compare our experts, we
trained a Faster R-CNN with ResNet-101-FPN similar to Wu et al. (2019), which report
49.1 AP70 on the testing set. We obtain 49.4 AP70 on the testing set and we compare
with that value.

As Table VI shows, the Angle@2- and Time@2-experts improve performance over
the baseline on both metrics. In particular, the Angle@2-expert improves the baseline by
+3 points APavg

70 . Furthermore note, that there is not an accuracy increase in domain H,
since there are almost no training images available (≈ 1%).

We also demonstrate that the performance gain using expert models does not vanish
as we switch to another backbone, e.g. ResNet-101. As shown in Table VII, the angle
experts yield an increase in +3 AP70 and +5 APavg

70 and even outperform NDFT (Wu et al.
(2019)), an approach using adversarial losses on domain labels.

Finally, we also test a real-time detector on UAVDT. Similar as for VisDrone, Table
VIII shows how the altitude experts with shared backbone can regain precision that has
been sacrificed to the high speed of the D0 model. The large improvement of +21.0 AP70
is likely caused by the domain bias induced by the heavy altitude imbalance of UAVDT
(see Figure 3.2), which the experts are successful to mitigate.

In particular, we set a new state-of-the-art performance for real-time detectors on em-
bedded hardware by improving upon Ringwald et. al. (2019) by +11.9 AP70, while being
3.5 FPS faster. Note that they tested on different embedded hardware.

3.4.3 POG: Baseline and Expert Results
Finally, we test the expert approach on our own captured data set POG. For future refer-
ence, we establish an EfficientDet-D0 baseline, which can run in real-time on embedded
hardware such as the Xavier board. Finally, we employ altitude experts with shared

41

Chapter 3 Leveraging Domain Labels in Object Detection on UAVs

AP50 AP APavg
50

EfficientDet-D0 82.0 36.4 82.9
3xAltitude@backbone 86.2 40.3 86.0
6xAltitude@backbone 87.9 40.8 88.1

Table 3.9: (Finer) Altitude experts results on POG test set.

backbone to showcase the effectiveness of a multi-domain learning approach on finer
domains.

We split the altitude range (4m – 103m) into three and six equidistant domains, re-
spectively. That is, our domains are

1. d1 = (4,37), d2 = [37,70), d3 = [70,103)

2. d1 = (4,20.5), d2 = [20.5,37), d3 = [37,53.5),
d4 = [53.5,70), d5 = [70,86.5), d6 = [86.5,103),

respectively. We denote the corresponding experts as 3xAltitude (1.) and 6xAlti-
tude (2.), respectively. As before, we freeze the backbone and report results for the fast
EfficientDet-D0. Table IX shows that the baseline achieves 82.0 AP50, which the experts
improve by +4.2 and +5.9 AP50, respectively, showing that experts further benefit from
finer domain splits (6xAltitude +1.7 AP50 compared to 3xAltitude).

3.5 Conclusion and Limitations
In this chapter, we successfully applied a multi-domain learning method to object detec-
tion from UAVs. We proposed and analyzed expert models, leveraging domain data at
test time. Although these expert models are conceptually simple, they achieve domain
awareness and consistently improve several heavily optimized state-of-the-art models on
multiple data sets and metrics. In particular, our EfficientDet-D0 altitude expert yields
38.1% AP70 on UAVDT, making it the new state-of-the-art real-time detector on embed-
ded hardware.

However, we believe that domain labels in UAV object detection can be exploited even
more. In particular, the assumption that domains are regarded as equally discrete may be
overly strict. An open question remains the interplay in between different domains on a
deeper level. For this matter, incorporating softer boundaries between domains could be
a promising direction. Furthermore, different sampling strategies, such as oversampling
small domains, could be investigated. An additional insight from this chapter is, that
the bird’s eye view domain is one of the most challenging. This observation serves as
a motivation for the next chapter, which specifically aims to tackle improving object
detection on this particular domain.

42

Chapter 4

Gaining Scale Invariance in UAV
Object Detection by Adaptive Resizing

4.1 Introduction

From last chapter’s Table 3.2 we observe, that the bird’s eye view domain is especially
challenging in UAV object detection data sets1. One of the main reasons for this discrep-
ancy is the versatile application areas of UAVs with mounted cameras which lead to vast
differences in the altitude above the ground of the UAV at the time of capture (capture-
altitude). For example, in traffic surveillance applications, the altitudes can vary from 5
to 100 meters (Zhu et al. (2018)), while in search and rescue tasks, the span may be as
large as 5 to 260 meters, see Chapter 5. This variance in altitudes results in a variance in
objects’ sizes. While humans are believed to have a scale-invariant perception and inter-
nal representation of objects (Han et al. (2020)), current object detectors do not. In fact,
scale variation is a major cause for poor detection (Singh and Davis (2018)). While there
is a corpus of works addressing this issue for generic object detection (Singh and Davis
(2018); Huang et al. (2019); Kokkinos and Yuille (2008); Liu et al. (2019)), it remains a
complicated problem to solve.

On the other hand, in UAV bird’s eye view object detection, objects’ sizes mainly de-
pend on the UAV’s altitude. In turn, the altitude information is freely available via the
UAV’s onboard barometer and GPS sensor. Current object detectors ignore this informa-
tion entirely. We argue that it is utterly helpful to include this valuable information as it
tells us about the objects’ sizes and how closely we have to look for objects. Analogous
to humans’ intrinsic understanding of their environment (Epstein and Baker (2019)), we
can incorporate that environmental information in the object detection pipeline to achieve
a scale-invariant understanding of the scene.

Furthermore, ignoring the scale information of objects leads to models learning differ-

1Table 3.2 also shows, that the domain of ’high’ images is a particularly difficult one for object detectors.
However, the proportion of bird’s eye view images within this domain is relatively high, as shown in
Figure 3.2. Therefore, improving the performance on the BEV portion will improve the results on
images with high capture-altitude as well.

© 2024 IEEE. Reprinted, with permission, from Messmer et al. (2022).

43

Chapter 4 Gaining Scale Invariance in UAV Object Detection by Adaptive Resizing

Figure 4.1: Example of the resizing process. On the left, we have two images from a
possible UAV data set; the top one is captured at 10m flight altitude, the bottom one
at 60m. On the right, we again have both images resized according to their respective
height. The bottom one stays roughly the same while the top one is resized by a large
factor. Note how the bounding box of the white car at the center of each respective
picture is equal in size after resizing.

ent representations of the very same objects if they are perceived at sufficiently different
altitudes (and thus scales). In turn, this results in potential redundancy among the learned
features. However, as onboard computation capabilities of UAVs are usually smaller than
those of high-end consumer graphics cards, highly condensed models (with lower capac-
ity) are needed.

Lastly, for higher altitudes, it is inevitable to provide large image resolutions to detect
smaller objects (Varga and Zell (2021)). However, these large resolutions may be redun-
dant in lower altitudes. Thus, an altitude-aware method benefits the inference time even
further.

In this chapter, we tackle these problems by introducing a method we call Adaptive
Resizer. At its core, this is a preprocessing technique designed to ensure that two arbi-
trary instances of the same class are of the same size throughout the entire data set. We
do this by adaptively resizing each image depending on the altitude it has been captured
in a principled way before passing it to an object detector.

44

4.1 Introduction

This achieves two things: first, the object detector itself does not need to be scale-
invariant. Second, the inference is much quicker because images taken at low altitudes
are downscaled by a significant factor because they feature the largest objects.

Our approach works for the special case of bird’s eye view (BEV) images, i.e. images
facing directly downwards, which form the most challenging subset (Wu et al. (2019)).
However, we also show the usefulness in general UAV object detection. To summarize,
the key contributions of this chapter are as follows:

• We propose a novel height-adaptive image preprocessing method, which improves
UAV bird’s eye view object detection performances in both accuracy and inference
speed and is applicable to all state-of-the-art object detectors.

• We construct a fast object detector for embedded applications that builds upon this
method.

Object detectors can broadly be divided into two categories; one-stage and two-stage
detectors. Two-stage detectors (Ren et al. (2016); Girshick (2015)) are generally more
accurate and therefore occupy the first places on established leader boards (Du et al.
(2019)). However, their inference speed is generally a lot lower than that of one-stage
detectors (Redmon et. al. (2016); Zhou et al. (2019); Tian et. al. (2019); Lin et al.
(2017)), which makes the latter more suitable for onboard object detection scenarios.
Most recently, there are also transformer-based object detectors performing very well
in generic object detection (Liu et al. (2021); Zhu et al. (2020b); Carion et al. (2020)).
They have, however, not proven to be useful for UAV or BEV object detection so far.
The closest method to ours is Kim et. al. (2020). There, images are also resized in accor-
dance with the height. However, the authors resize every image to the same resolution
(an average over the data set) while we calculate an individual size for each image. Fur-
thermore, they merely test their method on class agnostic detection tasks.
While the authors in Singh and Davis (2018) analyze the problem of scale invariance in
CNN’s in great depth, their solution employs an image pyramid, which is not well-suited
for real-time detection. Another approach is presented in Yang et al. (2019), where the
authors try to detect clusters of potential targets and then predict the scale offset before
regressing the objects in each cluster more accurately. A drawback is the need for ground
truth labels of clusters. Furthermore, the sequential use of multiple different networks
is computationally expensive, while our approach estimates scales for the whole image
deterministically.
Most papers tackling real-time object detection in general (Redmon et. al. (2016);
Farhadi and Redmon (2018)) or on mobile platforms (Ringwald et. al. (2019)) design
a whole network architecture. Meanwhile, this chapter introduces a method applicable
to most modern object detectors, improving their speed and detection performance.
The authors of Wu et al. (2019) propose to apply adversarial learning techniques to the
meta-data of UAV imagery. While they achieve good results, they only use the meta-data

45

Chapter 4 Gaining Scale Invariance in UAV Object Detection by Adaptive Resizing

during training and not during validation. Also using it at test time can improve perfor-
mance even further, as we show.
One recent work exhaustively examines how feature pyramid networks work and how
object detectors (don’t) benefit from them (Chen et al. (2021)). However, compared to
their approach we can choose a rather simple method to cut the feature pyramid network
and therefore save on computational cost. That is, because the approach in (Chen et al.
(2021)) aims at generic object detection, while we go for the special case of BEV object
detection.

4.2 Method
The Adaptive Resizer is a preprocessing strategy designed to address bird’s eye view
(BEV) object detection, i.e. object detection from UAVs, where the angle of view is
pointing downwards in a right angle. The Adaptive Resizer rescales every image in a
principled manner to diminish the scale variance problem in BEV object detection. In
this section we describe how this works on a technical level.

One problem in BEV object detection is that object instances of the same class appear
in vastly different sizes; see, for example, the left two images in Figure 4.1. This scale
variance is primarily attributed to the altitude an image is captured at (capture-altitude).
A vanilla object detector is not aware of the fact that it observes instances of the same
class (or even the same object like in Figure 4.1) but at different scales (Lin et. al.
(2017)). Therefore, it learns different representations for different scales of the same
object. That means some of the capacity of the detector is tied up in learning these
different representations. One could either make use of this capacity in a different way or
use a smaller object detector to increase inference speed. Furthermore, an object detector
that can make use of differently scaled training samples of the same objects makes more
efficient use of the training samples.
However, the advantage of UAV object detection is the availability of freely available
meta-data generated by the UAV during flight. That includes data like the camera’s angle,
capture-altitude, or time-stamp. The necessary meta-data for the Adaptive Resizer is the
capture-altitude. Unique to BEV object detection is that all instances of the same class
are roughly equal in size on any single image, because all objects are about the same
distance from the camera.

Building on that, the Adaptive Resizer achieves its goal (scaling each object of the
same class to the standard size) by resizing each image according to its height. For this,
the relevant determinant is the

Ground Sample Distance (GSD)

To define the GSD of an image, let p be its centre pixel. The definition of the GSD is the
side length of the area on the ground that p depicts. For the calculation of the GSD we

46

4.2 Method

Sensor
Dimensions

Lens

Focal
Length

Flight
Altitude

Ground

Figure 4.2: Pictogram of a camera setup mounted on a UAV.

assume a fixed camera setup on the UAV. We can readily deduce the following formula
from fundamental properties of the camera geometry (see Figure 4.2).

GSD =
S
L
· A

I
. (4.1)

S refers to the optical sensor’s side length, while A denotes the capture-altitude. L refers
to the camera’s focal length, and I denotes the captured image’s side length. With a fixed
camera setup, the only varying factors in Equation (4.1) are the distance above ground
(A) and the image size (I). Therefore, if we ensure that the ratio A

I is constant over the
data set, the GSD is also constant across the entire data set. Ensuring that the GSD is
constant over the data set is just a reformulation of the Adaptive Resizer’s objective to
alleviate the scale variance problem within each class.

To implement adaptive resizing and make use of Equation (4.1), we need to fix a
reference class from the data set to determine the desired GSD, e.g. ’car’. Also, we fix a
reference area, which is the goal size for all objects of the reference class after resizing.
Then, there are two ways; ideally, we know how large the standard representative of this
reference class is. For example, if we fixed ’car’ and know that the average car in the
data set is 4m× 2m while our reference area is 32 px×32 px, we get the desired GSD
in two easy steps:
First, we compute the reference area with the same aspect ratio as the average car. Here,
this is roughly 45.25 px×22.63 px. Then the desired GSD is 4

45.25
m/px. If we plug that

into Equation (4.1), we get the image size to resize to by solving for I.
If we do not know the size of the average car in our data set, we can still apply the
Adaptive Resizer. In this case, we compute the average area of the bounding boxes of

47

Chapter 4 Gaining Scale Invariance in UAV Object Detection by Adaptive Resizing

our reference class for a given image from the data set. Then we resize the image for
this average to match our reference bounding box size. So if Ĩ is the size of the image,
M is the mean over the bounding box areas, and R is the reference area, the image size
to resize to is computed by

I =
R
M
· Ĩ. (4.2)

The second method, taking the image-wise means of the bounding boxes, works consis-
tently. However, the first method is more desirable as it filters annotation mistakes. Also,
the second method does not work for images without instances of the reference class.
For an illustration of the whole process, see Figure 4.1. This method works together with
any modern deep learning-based object detector since our approach is a preprocessing
step.

Also note that we disregard effects of lens distortion and perspective projection as, we
argue, these are minor compared to the general relation of altitude to object size.

Height Transfer

An additional feature of models employing Adaptive Resizing is their ability to general-
ize well to images captured at altitudes that were not represented in the training data. By
the above discussion, without Adaptive Resizing, a model learns different representations
for object instances with varying scales. Therefore the model learns separate represen-
tations for objects belonging to the same class but appearing on images from different
altitudes. Consequently, the objects on which the model without Adaptive Resizer did
not train can not be recognized during testing.

In contrast, a network endowed with the Adaptive Resizer learns representations for
every class at one specific scale. Therefore, the capture-altitude affects detection perfor-
mance very little as long as every image is resized like our presented method is doing.
Hence the Adaptive Resizer allows for transferring knowledge in between altitudes, for
example a network may learn from images taken between 0m and 50m above ground
and then perform well on images captured in between 50m and 100m, if they are scaled
accordingly.

This is a way to overcome data set imbalances as discussed in Chapter 3 and in partic-
ular Figure 3.2. The above discussion also shows, that the Adaptive Resizer is a highly
specialized technique for transfer learning (Weiss et al. (2016)), making it possible to
use object detection models on data, which is out of the distribution of the training data.
The claims made in this subsection are proved empirically in section 4.4.5.

4.2.1 Building a Detector for Embedded Deployment
In this section we will leverage the new features the Adaptive Resizer brings to an object
detector to build a fast detector for BEV imagery meant for embedded use. We start with

48

4.2 Method

an EfficientDet–D0 (Tan et al. (2020)) in order to have a fast state-of-the-art detector and
then omit the parts that we argue are not necessary in combination with adaptive resizing.
EfficientDet is a family of models which are building on EfficientNet-backbones (Tan
and Le (2019)) and are therefore scalable in parameters, ranging up to EfficientDet–
D7. Here, a higher number stands for the model being larger and more accurate, while
a lower number means it is faster. We choose this detector because it is the smallest
representative of its family, which in turn is the current AP50-state-of-the-art on COCO
(Papers with Code (2021)).

EfficientDet–D0 employs a Feature Pyramid Network (FPN) (Lin et. al. (2017)), as
is standard for modern object detectors (which are not transformer-based (Zhu et al.
(2020b); Carion et al. (2020))). The FPN aims at making the detector perform well on
multiple different levels of scale, because Convolutional Neural Networks (CNNs) are
not inherently scale-invariant (Singh and Davis (2018)). An FPN extracts feature repre-
sentations from the backbone network at different levels of depth, see Figure 4.5. Deeper
ones are responsible for detecting larger objects because of their bigger field view (FOV),
while earlier ones are being used to detect smaller objects. This is usually realized by
distributing a vast number of prior boxes, called anchor-boxes, each corresponding to
one feature map from the FPN. An anchor-box corresponding to a feature level of the
FPN means, that the head from this feature level is used to classify and regress this
anchor-box. In the case of EfficientDet, the FPN employs five different feature levels.
These levels are responsible for detecting objects at exponentially increasing sizes; Effi-
cientDet uses (32,64,128,256,512). Therefore EfficientDet’s anchor-boxes are of these
sizes.

While this is an appropriate choice for data sets featuring everyday objects like COCO
(Lin et al. (2014)) or Pascal VOC (Everingham et al. (2015)), in BEV object detection,
four out of these five feature levels are almost unused for each given image, see Table 4.6.
This is due to the object sizes the respective feature maps are looking for and because in
one given image from the BEV portion of a UAV data set all objects of a given class are
(roughly) equal in size.

However, the network itself does not need to be scale-invariant, if all the objects in the
data set are of the same size. For BEV images, all instances of any given class on one
single image are a priori roughly equal in size, because all of them are about the same
distance from the camera. Consequently, the only remaining problem is the objects’
difference in scale between different images, precisely what the Adaptive Resizer aims
at.

Consequently, we eliminate the feature pyramid network (FPN) from our model and
only use the earliest feature map of those extracted from the backbone network. For
an EfficientDet–D0 this reduces the number of parameters from around 4m to roughly
0.5m. This also leads to a large boost in inference speed, see section 4.5.

49

Chapter 4 Gaining Scale Invariance in UAV Object Detection by Adaptive Resizing

160 448 640 832 1024 1216 1408 1600 1792
0

50

100

150

200

250

300

350

400

450

500

550

600
nu

m
be

ro
fi

m
ag

es

160 448 640 832 1024 1216 1408 1600 1792
longer edge of image

5

10

15

20

25

30

35

40

in
fe

re
nc

e
tim

e
(m

s)

Figure 4.3: Distribution of image sizes after applying Adaptive Resizer on the UAVDT
data set and the resulting inference time. The x-axis denotes the longer edge of the image,
aspect ratios are kept during this process. The y-axis denotes the quantity in blue and the
inference time in red.

4.3 Proof of Concept on Synthetic Data

In order to prove the assertions regarding the benefits of adaptive resizing we made thus
far, we conduct experiments on a synthetic data set. The data set is supposed to contain
very simple data. To achieve this, each image within the data set is entirely black with the
exception of n objects scattered across the image in a random manner. Here, n represents
a random number drawn uniformly from {2,3,4,5}. The objects themselves are images
drawn uniformly at random from the MNIST data set (Deng (2012)). To explore the
effectiveness of adaptive resizing, the objects scattered across the image are not placed
there at their original size but instead scaled to various sizes. Within each image, the
digits are uniform in size, thereby simulating the effect of a bird’s eye view camera
mounted on the drone. Over the whole data set, there are 20 different sizes of objects
placed on the images, ranging from 28× 28 px – the original image size for MNIST –
to 112× 112 px, an up scaling by a factor of four in each dimension. This approach is
employed to emulate different flying altitudes, with larger digits on the images simulating
lower flying altitudes and smaller digits representing higher altitudes. Figure 4.4 shows
example images from this data set. In the following, we will call this data set MNIST

50

4.3 Proof of Concept on Synthetic Data

Figure 4.4: Example images from MNIST-Det. We can observe the different simulated
capture-altitudes by the size of the digits in the image, where, for example, the top left
image would be an image taken at a low altitude while the bottom right picture would be
captured at a very high altitude. The marked areas are enlarged to get better impression
of the visual data.

Detection (MNIST-Det). We observe, that the pictures are freed of the features and
details present in real-world images that amplify the complexity of computer vision tasks
such as object detection. Through this process, we generate an object detection data set
encompassing ten classes – the digits ’0’ through ’9’ as it is in MNIST. We created this
data set for the purpose of investigating adaptive resizing without complicating factors
occurring in real-world images.

Table 4.1 shows the results for an EfficientDet–D0 on the whole MNIST-Det data set,
with and without Adaptive Resizing. We observe, that the variant with Adaptive Resizing

51

Chapter 4 Gaining Scale Invariance in UAV Object Detection by Adaptive Resizing

essentially solves the task on this data set, while the vanilla detector struggles, trailing by
roughly 27 points AP50. We hypothesize that this is due to the high number of different
scales present in the data set (20, as discussed above), which pose no problem to the
Adaptive Resizer while overwhelming the limited scale-capacity of the standard object
detection model.

Table 4.2 shows the performance of both models on the height transfer task on MNIST-
Det. We can see, that the model without Adaptive Resizing virtually learns nothing. On
the other hand, the EfficientDet models aided by the Adaptive Resizer achieve almost
90 points AP50 although being only trained on one of the 20 different scale appearances
present in the data set. The decrease in performance compared to training on the whole
data set might be due to two reasons; First, because we only train on 1/20 of the data
set. With a smaller training set the model has less data to extract information from,
hence the expected decrease in performance. And second, because visual artifacts caused
by the scaling of the images might hinder the detection further. Hinting at that is the
higher number for AP50@112×112; we would expect less artifacts when shrinking large
objects to a smaller size than the other way around.

AP50
EfficientDet–D0 70.1

D0+Adaptive 97.6
Table 4.1: Results in the AP50 metric on the validation set of the MNIST-Det data set of
our baseline network EfficientDet–D0 with and without adaptive resizing.

AP50@28×28 AP50@112×112
EfficientDet–D0 0.8 6.1

D0+Adaptive 84.4 88.8
Table 4.2: Validation AP50 results on the MNIST-Det data set when training on one size
of objects only and then testing on the full validation set. The second column, @28×28,
denotes the results when training only on images with objects whose dimensions are
28×28 and analogously for @112×112.

4.4 Experiments on Real Data
We employ Faster R-CNN (Ren et al. (2016)), CenterNet (Zhou et al. (2019)), and
EfficientDet–D0 (Tan et al. (2020)) to test our approach. We chose these three to have
experiments with representatives of multiple major classes of object detectors. The first
is a well known two-stage detector which is highly adjustable, for example with different
ResNet- (He et al. (2016)) or ResNeXt (Xie et al. (2017))-backbones. The latter two are
well-known one-stage detectors. EfficientDet is an anchor-based object detector while
CenterNet is an anchor-free object detector (Zhang et al. (2020a)).

52

4.4 Experiments on Real Data

In the following, we will always report AP50 values, as is usual for UAV data sets,
except where explicitly stated otherwise.

4.4.1 Results on bird’s eye view Portions

We conduct our experiments on two well-known UAV data sets, VisDrone (Zhu et. al.
(2018)) and UAVDT (Yu et al. (2020)), and on the aforementioned People On Grass
(POG) dataset, which is publicly available2. The two former consist of around 7k and
40k images, respectively, and were both captured in major Asian cities. The latter con-
tains roughly 2.8k images, mostly showing people on a grass background. We captured
POG to test our approach on because it features accurate height information per image,
a very rare quality among UAV data sets. As mentioned earlier, we conduct our experi-
ments on each data set’s BEV portion. These subsets contain roughly 1.4k, 9.4k, and 1k
images, respectively. Following the original authors of UAVDT, we combine all classes
of their bounding box annotations into the single class ‘car‘ for our experiments due to
heavy class imbalances. Because the existing altitude annotations are too coarse for our
purposes, we generate finer height data artificially for UAVDT and VisDrone. We do so
using the second method from Section 4.2. More precisely, we generate the image sizes
by Equation (4.2). For POG, we extract the log files from the UAV. Therefore, the data
set contains meta annotations for each image, particularly altitude information, that is
accurate to within one meter (Sitemark (2020)). The data set contains images in between
10m and 110m.
The results in this section are generally lower than usually achieved on these benchmarks,
compare to Chapter 3. This is due to the BEV portions being significantly smaller than
the data sets (see e.g. Figure 3.2), which expectedly harms the detectors’ performance.
Additionally, the BEV portion is the most complex domain in UAV imagery, as discussed
in Chapter 3. Among all possible viewing angles, the least recognizable visual features
are present in the top-down view, see for example Figure 1.1.

For the experiments on one-stage detectors, we employ EfficientDet–D0 and Center-
Net as described in their respective original papers (Tan et al. (2020); Zhou et al. (2019)).
In the case of EfficientDet we fine-tuned hyper parameters like image size and anchor pa-
rameters (scales and ratios) to each data set. For CenterNet we did the same, except that
it is anchor-free and therefore does not have anchor parameters. To test our approach,
we also do experiments with both networks employing the Adaptive Resizer. We report
the results of these experiments in Table 4.3 and 4.5. For both models we observe that
employing Adaptive Resizer improves inference speed by a factor of two to three, see
also Section 4.4.4. In the case of EfficientDet (Table 4.3) we can see that employing
adaptive resizing achieves roughly an improvement of 3 points AP50 for VisDrone and
POG. For UAVDT it even boosts performance by around 25 points AP50. See below for
a discussion of this large gap in performance increase. For CenterNet (Table 4.5) the

2https://cloud.cs.uni-tuebingen.de/index.php/s/yFztfJePREqj4om

53

https://cloud.cs.uni-tuebingen.de/index.php/s/yFztfJePREqj4om

Chapter 4 Gaining Scale Invariance in UAV Object Detection by Adaptive Resizing

models employing Adaptive Resizer consistently outperform their baseline counterparts.
On UAVDT in the most extreme case even by 28 points AP50. On VisDrone, however,
the Adaptive Resizer only performs competitively with the baseline.

We also include results for the Adaptive Resizer on two-stage detectors. While these
are not relevant for onboard processing, they are still the most capable object detection
models. For UAVDT we employ the baseline from Wu et al. (2019) to compare with their
approach, as they are also using meta-information like capture-altitude. It is a Faster R-
CNN network with Resnet-101-FPN backbone (He et al. (2016)). For VisDrone, we
reimplemented DE–FPN, which is the best-performing single model of the VisDrone
Detection Challenge (Zhu et al. (2018)). We achieved 49.0 AP50 on the full validation
set compared to their 49.1 AP50 on the full test set. To compare it to our model, we train
and test it on the BEV portion, then employ this as the baseline (in both cases). From the
results in Table 4.4 we observe that employing the Adaptive Resizer improves detection
results for both data sets. While we improve by 5 AP50 points on VisDrone, we even
achieve an improvement of over 13 AP70 on UAVDT compared to our baseline. We use
the AP70 metric to compare our approach to Wu et al. (2019) and observe that our model
outperforms theirs by around 4 points.

Summarizing all experiments, we observe that the Adaptive Resizer increases detec-
tion performance in general. However, the gain in performance is most prominent on
UAVDT. We argue that this is due to the bad distribution of capture-altitudes in this data
set. We observed that capture-altitudes are on average a lot lower in the training set of
UAVDT than in its test set (which is not the case for VisDrone and POG). These are
conditions the Adaptive Resizer can cope with very well, while generic object detec-
tors’ detection performance suffers greatly, see Section 4.4.5. Additionally, employing
adaptive resizing speeds up inference by a factor of two to three on average.

VisDrone UAVDT POG FPS
D0 @ 2048 13.1 34.1 80.3 12
D0 @ 1792 17.7 30.0 74.3 15

D0+Adaptive 20.6 58.8 83.0 32
Table 4.3: AP50 results on the bev portions of the data sets. EfficientDet–D0@x is a
baseline model trained and evaluated such that the longer edge of each image is equal to
x. All FPS values are benchmarked on UAVDT and an NVIDIA GeForce RTX 2080 Ti
GPU.

4.4.2 Effects of Cutting the Feature Pyramid Network
In this section we compare the detector from Section 4.2.1, meant for fast inference and
deployment to an embedded GPU, to a full-fledged EfficientDet–D0 model with Adap-
tive Resizer. They differ in the fact that the model from Section 4.2.1 has no feature

54

4.4 Experiments on Real Data

UAVDT VisDrone
Faster R–CNN 23.0 41.0

NDFT Wu et al. (2019) 32.9 –
Adaptive 36.8 46.0

Table 4.4: AP70 results on the BEV portions of UAVDT and AP50 on VisDrone. We use
the AP70 metric to compare our approach with Wu et al. (2019).

UAVDT VisDrone FPS
CN–RN18 Baseline 33.7 23.7 20
CN–RN18 Adaptive 56.8 22.1 55
CN–RN50 Baseline 35.4 28.5 8
CN–RN50 Adaptive 63.4 26.3 23
CN–RN101 Baseline 37.6 26.3 5
CN–RN101 Adaptive 60.8 26.5 6

Table 4.5: AP50 results and frames per second (FPS) of different CenterNet-models
(Zhou et al. (2019)). They differ in their respective backbone, for example ’CN–RN101’
is a CenterNet with a ResNet101 (He et al. (2016)) backbone.

pyramid network and therefore only uses one feature map. Table 4.6 provides empirical
evidence for that measure. There, we can see the mean percentage of objects per image,
that are detected by each feature map. Being detected by a certain feature map means,
that the anchor which is selected to classify and regress the object in question (see de-
scription in Section 4.2.1 and Figure 4.5) is corresponding to this specific feature map.
We discriminate between the detection percentage by feature map before and after ap-
plying non-maximum suppression (NMS). The values before NMS give an undistorted
view of which feature maps would in principle be able to detect an object. The numbers
after NMS, however, are more relevant to the application in practice, because only here
does the detector filter predictions with poor scores; these are usually the ones which
also regress the object worse than others. In Table 4.6 we can see that, after applying
non-maximum suppression, on average less than two percent of all objects per image are
not detected by the first feature map.

4.4.3 Results on the complete UAVDT data set

To also introduce a model that works on a full UAV data set, we use a multi-domain
approach in the style of Chapter 3. More explicitly, we use the meta-data supplied by
the UAV to distinguish between bird’s eye view images and non-bird’s eye view. During
inference, we use the Adaptive Resizer model on the BEV images and a baseline model

55

Chapter 4 Gaining Scale Invariance in UAV Object Detection by Adaptive Resizing

1 2 3 4 & 5
pre NMS 92.03 % 7.95 % 0.03 % 0.00 %
post NMS 98.01 % 1.97 % 0.02 % 0.00 %

Table 4.6: Average number of objects that are detected by each feature map before and
after applying non-maximum suppresion (NMS). The average is taken over UAVDT. The
investigated model is an EfficientDet–D0 with feature pyramid network and Adaptive
Resizer.

UAVDT VisDrone POG FPS
D0–noFPN 49.3 23.6 79.2 56
D0–FPN 58.8 20.6 83.0 32

Table 4.7: AP50 results on UAVDT, VisDrone, and POG. The compared models are
EfficientDet–D0 with Adaptive Resizer. D0–noFPN is a model without FPN like de-
scribed in Section 4.2.1, D0–FPN is the standard model with Adaptive Resizer, including
feature pyramid network.

on all other images. Both are loaded before inference and available in GPU memory, so
there is little overhead added and no drop in inference time for each of the models. To
achieve the results reported in Table 4.8 on UAVDT we use the models from Table 4.4
for the two-stage detector experiments. For the experiments with EfficientDet–D0 we
use the model without FPN from Section 4.2.1 and the baseline from Table 4.3.

We observe that both models improve by circa 3 AP points. Note that we are en
par with Perreault et. al. (2020), also achieving 52.8 AP70. They give, to the best of
our knowledge, the state-of-the-art detector on UAVDT. However, they employ a vastly
more complicated method which needs short video sequences to perform well.

Faster R–CNN D0
Baseline 49.4 34.6

SpotNet (Perreault et. al. (2020)) 52.8 –
Adaptive 52.8 37.7

Table 4.8: Results on the full UAVDT data set. We use the AP70 metric to compare our
approach with the reported numbers in Perreault et. al. (2020).

4.4.4 Time benchmarks
Tables 4.3 and 4.5 show that the Adaptive Resizer makes a model two to three times
faster than its respective baseline. The reported number is the average of the inference
times over the UAVDT BEV data set. We take the mean because the inference time for

56

4.4 Experiments on Real Data

Image

F3

F4

F5

P3

P4

P5

P6

P7

P3

P4

P5

P6

P7

Classification

Regression

Figure 4.5: Schematic drawing of an EfficientDet–D0. Starting from the image, the
backbone-network extracts feature maps F3,F4,F5 (gold). Then these are input to the
feature pyramid network P3−P7 (red) and afterwards handed to the heads (anthracite).
These perform classification and regression. The object detector without FPN from Sec-
tion 4.2.1 is encircled with the dashed line.

an Adaptive Resizer model is not constant; like for every object detector the inference
time is dependant on the image size, which in turn is dependant on the capture-altitude.
We chose UAVDT to average over because it is the largest of the data sets we tested on.
Therefore, it is the least prone to statistical outliers during the benchmark test. Table 4.3
and 4.7 show, where the speed improvement of the EfficientDet–D0+Adaptive Resizer
without FPN comes from. Cutting the FPN from the model brings an improvement of 24
FPS, which is larger than expected. We argue that this is due to the convolutional layers in
the FPN, especially in later layers, having higher channel-dimensions than earlier layers
(Tan et al. (2020)). Because convolutional networks are essentially fully-connected in
the channel-dimension, cutting these brings the largest speed improvement.

Figure 4.3 explains the speed improvement when using Adaptive Resizer without any
other alterations. All images captured at low altitudes are resized to comparably small
image sizes, speeding the network up a lot, while the baseline runs at constant speed.
One could argue that the speed comparison is not fair because the baseline is employing
a larger image size. However, this is necessary; otherwise, the baseline’s AP deteriorates
(as we saw in experiments) because of the small objects in UAV data sets (Singh and
Davis (2018); Varga and Zell (2021); Unel et. al. (2019)).

We also benchmarked our EfficientDet–D0 with Adaptive Resizer and without FPN on
a Jetson AGX Xavier development board optimized with TensorRT and half-precision
FP16. There, our model achieved roughly 16 FPS averaged over UAVDT. Meanwhile,

57

Chapter 4 Gaining Scale Invariance in UAV Object Detection by Adaptive Resizing

the baseline achieved 7 and 5 FPS when resizing the image’s longer respective side to
1792 and 2048 px, respectively, as in Table 4.3. Therefore, on embedded hardware, the
Adaptive Resizer improves inference speed by a factor of two to three.

4.4.5 Height Transfer
To prove the claims made in section 4.2 about the transfer learning capabilities of our
Adaptive Resizing method on real-world imagery, we consider four different data set
splits for our experiments on height transfer. The construction of these splits is as fol-
lows: starting from the above described BEV subsets, we order the images in the data
set by their respective capture-altitude. We then use the 25 % images with the highest
capture-altitude from the training set of the BEV portion as the training set for this task.
For the validation set, we use all of the validation images from the BEV subset. Together
we call this ABOVE75. Repeating this procedure for the bottom 25 %, bottom and top
50 % of the training images yields BELOW25, BELOW50, and ABOVE50, respectively.
Note that the validation set for each of these splits is the entire validation set of the BEV
portion, including all capture-altitudes.

Constructing the data set split this way makes this experiment fit to verify the above
claims; if a model performs well on one of the above data set splits, it means that it can
generalize from the images it trained on to images with capture-altitudes it never saw
before.

Table 4.9 shows that the Adaptive Resizer models consistently outperform their re-
spective baseline counterparts in these experiments. The reported numbers on VisDrone
are generally relatively low, as expected, due to the size of the training sets, e.g. BE-
LOW25 and BELOW75 contain ≈ 300 training images. Still, in the best case, Adaptive
Resizer is three times as good as its baseline (4.9 vs 14.2 AP50).

To explain the large improvement in the case of UAVDT, we assume that the baseline’s
improvement compared to Table 4.3 comes from UAVDT’s gap in between training and
validation images we already discussed. We perceive many more images captured at very
high altitudes in its validation set, which do not appear in the training set. The Adaptive
Resizer can handle this gap, being essentially en par with its performance on the whole
BEV split of UAVDT, e.g. 47.9 versus 49.3AP50 (see Table 4.7).

4.5 Conclusion
In this chapter, we proposed a novel preprocessing step. It adjusts the image size accord-
ing to the height in which the image was captured, solving the scale variance problem in
BEV imagery. This method significantly improves detection performance over multiple
data sets and object detectors while also improving inference speed, making it applicable
to near real-time object detection on mobile platforms. We also showed that this method
enables object detectors to generalize well to images captured in heights they have never

58

4.5 Conclusion

VisDrone UAVDT
D0 D0+Adapt. D0 D0+Adapt.

BELOW25 5.0 7.2 9.7 47.9
BELOW50 7.0 12.0 26.1 45.5
ABOVE50 4.9 14.2 32.1 45.4
ABOVE75 8.0 11.2 18.7 44.5

Table 4.9: Empirical results for height transfer on VisDrone and UAVDT. Each cell re-
ports the AP50 result of either the baseline or adaptive resizer version of an EfficientDet–
D0.

seen before. Furthermore, we used an expert-model approach as was introduced in Chap-
ter 3 to capitalize on our method on generic UAV imagery.
Since the last two chapters highlighted the importance of meta-data in UAV object de-
tection and to alleviate the lack of maritime data sets in the object detection community,
the next chapter will introduce a large-scale maritime object detection data set.

59

Chapter 5

A Maritime Benchmark for Detecting
Humans in Open Water

5.1 Introduction
Currently, the most effective algorithms for addressing the challenge of UAV object de-
tection, which is crucial for achieving effective mSAR capabilities, are implemented
using data-driven methods such as deep neural networks. Chapters 3 and 4 provide nu-
merous examples of these methods in action. These methods depend on large-scale data
sets portraying real-case scenarios to obtain realistic imagery statistics. However, there
is a great lack of large-scale data sets in maritime environments. Most data sets captured
from UAVs are land-based, often focusing on traffic environments, such as VisDrone
(Zhu et. al. (2018)) and UAVDT (Du et al. (2018)). Many of the few data sets that are
captured in maritime environments fall in the category of remote sensing, often leverag-
ing satellite-based synthetic aperture radar (Crisp (2004)). All of these are only valuable
for ship detection (Corbane et al. (2010)) as they don’t provide the resolution needed for
SAR missions. Furthermore, satellite-based imagery is susceptible to clouds and only
provides top-down views. Finally, many current approaches in the maritime setting rely
on classical machine learning methods, incapable of dealing with the large number of
influencing variables and calling for more elaborate models (Prasad et al. (2019)).

This chapter aims to close the gap between large-scale land-based data sets captured
from UAVs to maritime-based data sets. We introduce a large-scale data set of peo-
ple in open water, called SeaDronesSee. We captured videos and images of swimming
probands in open water with various UAVs and cameras. As it is especially critical
in SAR missions to detect and track objects from a large distance, we captured the
RGB footage with 3840×2160 px to 5456×3632 px resolution. We carefully anno-
tated ground-truth bounding box labels for objects of interest including swimmer, floater
(swimmer with life jacket), life jacket, swimmer† (person on boat not wearing a life
jacket), floater† (person on boat wearing a life jacket), and boat.

Moreover, we note that current data sets captured from UAVs only provide very coarse
or no meta information at all. We argue that this is a major impediment in the develop-

© 2024 IEEE. Reprinted, with permission, from Varga et al. (2022).

61

Chapter 5 A Maritime Benchmark for Detecting Humans in Open Water

ment of multi-modal systems, which take these additional information into account to
improve accuracy or speed. Recently, methods that rely on these meta data were pro-
posed. However, they note the lack of large-scaled publicly available data set in that
regime (see e.g. Wu et al. (2019) or Chapters 3 and 4 in this dissertation). Therefore, we
provide precise meta information for every frame and image including altitude, camera
angle, speed, time, and others.

In maritime settings, the use of multi-spectral cameras with Near Infrared channels to
detect humans can be advantageous (Gallego et al. (2019)). For that reason, we also cap-
tured multi-spectral images using a MicaSense RedEdge. This enables the development
of detectors taking into account the non-visible light spectra near infrared (842 nm) and
Red Edge (717 nm).

Finally, we provide detailed statistics of the data set and conduct extensive experi-
ments using state-of-the-art models and hereby establish baseline models. These serve
as a starting point for our SeaDronesSee benchmark. We release the training and valida-
tion sets with complete bounding box ground truth but only the test set’s videos/images.
The ground truth of the test set is used by the benchmark server to calculate the general-
ization power of the models. We set up an evaluation web page, where researchers can
upload their predictions and opt to publish their results on a central leader board, such
that transparent comparisons are possible. The benchmark focuses on three tasks: (i)
object detection, (ii) single-object tracking and (iii) multi-object tracking, which will be
explained in more detail in the subsequent sections. This chapter’s main contributions
are as follows:

• SeaDronesSee is the first large annotated UAV-based data set of swimmers in open
water. It can be used to further develop detectors and trackers for SAR missions.

• We provide full environmental meta information for every frame making Sea-
DronesSee the first UAV-based data set of that nature.

• We provide an evaluation server to prevent researchers from overfitting and allow
for fair comparisons.

• We perform extensive experiments on state-of-the-art object detectors and trackers
on our data set.

62

5.1 Introduction

(a)

(b)

Figure 5.1: (a) Typical image examples with varying altitudes and angles of view: 250
m, 90◦; 50 m, 30◦; 10 m, 0◦ and 20 m, 90◦ (from top left to bottom right). (b) Examples
of the Red Edge (717 nm, left) and Near Infrared (842 nm, right) light spectra of an
image captured by the MicaSense RedEdge-MX. Note the glowing appearance of the
swimmers.

63

C
hapter5

A
M

aritim
e

B
enchm

ark
forD

etecting
H

um
ans

in
O

pen
W

ater

Object detection Env. Platform Image widths Altitude Range Angle Range Other meta
DOTA (Xia et al. (2018)) cities satellite 800−20,000 – – 5 90◦ 5

UAVDT (Du et al. (2018)) traffic UAV 1,024 5 5−200 m* 5 0−90◦* 5

VisDrone (Zhu et. al. (2018)) traffic UAV 960−2,000 5 5−200 m* 5 0−90◦* 5

Airbus Ship (Airbus (2018)) maritime satellite 768 – – 5 90◦ 5

AU-AIR
(Bozcan and Kayacan (2020)) traffic UAV 1,920 X 5−30 m 5 45−90◦ X

SeaDronesSee maritime UAV 3,840−5,456 X 5−260 m X 0−90◦ X

Single-object tracking Env. #Clips Frame widths Altitude Range Angle Range Other meta
UAV123 (Mueller et al. (2016)) traffic 123 1,280 5 5−50 m* 5 0−90◦* X
DTB70 (Li and Yeung (2017)) sports 70 1,280 5 0−10 m* 5 0−90◦* 5

UAVDT-SOT (Du et al. (2018)) traffic 50 1,024 5 5−200 m* 5 0−90◦* X
VisDrone (Zhu et. al. (2018)) traffic 167 960−2,000 5 5−200 m* 5 0−90◦* X

SeaDronesSee maritime 208 3,840 X 5−150 m X 0−90◦ X

Multi-object tracking Env. #Frames Frame widths Altitude Range Angle Range Other meta
UAVDT-MOT (Du et al. (2018)) traffic 40.7 k 1,024 5 5−200 m* 5 0−90◦* X

VisDrone (Zhu et. al. (2018)) traffic 40 k 960−2,000 5 5−200 m* 5 0−90◦* X
SeaDronesSee maritime 54 k 3,840 X 5−150 m X 0−90◦ X

Table 5.1: Comparison of SeaDronesSee with the most prominent annotated aerial data sets. ’Altitude’ and ’Angle’ indicate
whether or not there are precise altitude and angle view information available. ’Other meta’ refers to time stamps, GPS, and
IMU data and in the case of object tracking can also mean attribute information about the sequences. The values with stars
have been estimated based on ground truth bounding box sizes and corresponding real world object sizes (for altitude) and
qualitative estimation of sample images (for angle). For DOTA and Airbus Ship the range of altitudes is not available because
these are satellite-based data sets, hence the ’–’-sign.

64

5.1 Introduction

In the following, we review major labeled data sets in the field of computer vision
from UAVs and in maritime scenarios which are usable for supervised learning models.

Over the last few years, quite a few data sets captured from UAVs have been published.
The most prominent are these that depict traffic situations, such as VisDrone (Zhu et. al.
(2018)) and UAVDT (Du et al. (2018)). Both data sets focus on object detection and
object tracking in unconstrained environments. In Pei et al. (2019), the authors collect
videos (Stanford Drone Dataset) showing traffic participants on campuses (mostly peo-
ple) for human trajectory prediction usable for object detection. UAV123 (Mueller et al.
(2016)) is a single-object tracking data set consisting of 123 video sequences with corre-
sponding labels. The clips mainly show traffic scenarios and common objects. In Hsieh
et al. (2017) and also Mundhenk et al. (2016), the authors capture a data set showing
parking lots for car counting tasks and constrained object detection. The authors of Li
and Yeung (2017) provide a single-object tracking data set showing traffic, wild life and
sports scenarios. Collins et al. capture a single-object tracking data set showing vehi-
cles on streets in rural areas. In Krajewski et al. (2018), the authors show vehicles on
freeways.

Another active area of research focuses on drone-based wildlife detection. The work
van Gemert et al. (2014) releases a data set for the tasks of low-altitude detection and
counting of cattle. The authors of Ofli et al. (2016) release the African Savanna data set
as part of their crowd-sourced disaster response project.

Many data sets in maritime environments are captured from satellite-based synthetic
aperture radar and therefore fall into the remote sensing category. In this category, the
airbus ship data set (Airbus (2018)) is prominent, featuring 40k images from synthetic
aperture radars with instance segmentation labels. The paper Li et al. (2018) provides
a data set of ships with images mainly taken from Google Earth, but also a few UAV-
based images. In Xia et al. (2018), the authors provide satellite-based images from
natural scenes, mainly land-based but also harbors. The most similar to our work is
Lygouras et al. (2019). They also consider the problem of human detection in open
water. However, their data mostly contains images close to shores and of swimming
pools. Furthermore, it is not publicly available.

UAVDT (Du et al. (2018)) provides coarse meta data for their object detection and
tracking data: every frame is labeled with altitude information (low, medium, high), an-
gle of view (front-view, side-view, bird-view) and light conditions (day, night, foggy).
Some additional manual work is done in Wu et al. (2019), where the authors manually
label VisDrone after its release with the same annotation information for the object detec-
tion track. Mid-Air (Fonder and Van Droogenbroeck (2019)) is a synthetic multi-modal
data set with images in nature containing precise altitude, GPS, time, and velocity data
but without annotated objects. Blackbird Antonini et al. (2018) is a real-data indoor data
set for agile perception also featuring these meta information. In Majdik et al. (2017),
street-view images with the same meta data are captured to benchmark appearance-based
localization. The paper Bozcan and Kayacan (2020) released a low-altitude (< 30 m) ob-
ject detection data set containing images showing a traffic circle and provide meta data

65

Chapter 5 A Maritime Benchmark for Detecting Humans in Open Water

Camera Resolution Video
Hasselblad L1D-20c 3,840×2,160 30 FPS

MicaSense RedEdge-MX 1,280× 960 5

Sony UMC-R10C 5,456×3,632 5

Zenmuse X5 3,840×2,160 30 FPS
Zenmuse XT2 3,840×2,160 30 FPS

Table 5.2: Overview of employed cameras.

such as altitude, GPS, and velocity but exclude the import camera angle information.
As the angle is mostly very acute (< 45 ◦), no information about object’s sizes can be
inferred from the provided meta-data.

Tracking data sets often provide meta data (or attribute information) for the clips.
However, in many cases these do not refer to the environmental state in which the image
was captured. Instead, they abstractly describe the way in which a clip was captured:
UAV123 (Mueller et al. (2016)) label their clips with information such as aspect ratio
change, background clutter, and fast motion, but do not provide frame-by-frame meta
data. The same observation can be made for the tracking track of VisDrone (Fan et al.
(2020b)). See Table 5.1 for an overview of annotated aerial data sets.

5.2 Data Set Generation
We gathered the footage on several days to obtain variance in light conditions. Taking
into account safety and environmental regulations, we asked over 20 test subjects to be
recorded in open water. Boats transported the subjects to the area of interest, where
quadcopters were launched at a safe distance from the swimmers. At the same time,
the fixed-wing UAV Trinity F90+ was launched from the shore. We used waypoints to
ensure a strict flight schedule to maximize data collection efficiency. Care was taken to
maintain a strict vertical separation of the UAVs at all times. Subjects were free to wear
life jackets, of which we provided several differently colored pieces (see also Figure 5.2).

To diminish the effect of camera biases within the data set, we used multiple cameras,
as listed in Table 5.2, mounted to the following drones: DJI Matrice 100, DJI Matrice
210, DJI Mavic 2 Pro, and a Quantum Systems Trinity F90+. With the video cameras,
we captured videos at 30 FPS. For the object detection task, we extracted at most three
frames per second of these videos to avoid having redundant occurrences of frames.
See Section 5.3 for information on the distribution of images with respect to different
cameras.

Lastly, we captured top-down looking multi-spectral imagery at 1 FPS. We used a Mi-
caSense RedEdge-MX, which records five wavelengths (475 nm, 560 nm, 668 nm, 717
nm, 842 nm). Therefore, in addition to the RGB channels, the recordings also contain a

66

5.2 Data Set Generation

Data Unit Min. value Max.value
Time since start ms 0 ∞

Date and Time ISO 8601 – –
Latitude degrees −90 +90

Longitude degrees −90 +90
Altitude meters 0 ∞

Gimbal pitch degrees 0 90
UAV roll degrees −90 +90

UAV pitch degrees −90 +90
UAV yaw degrees −180 +180

x-axis speed m/s 0 ∞

y-axis speed m/s 0 ∞

z-axis speed m/s 0 ∞

Table 5.3: Meta data that comes with every image/frame.

RedEdge and a Near Infrared channel. The camera was referenced with a white reference
before each flight. As the RedEdge-MX captures every band individually, we merge the
bands using the development kit provided by MicaSense.

5.2.1 Meta Data Collection

Accompanied with every frame there is a meta stamp, that is logged at 10 hertz. To align
the video data (30 FPS) and the time stamps, a nearest neighbor method was performed.
The data in Table 5.3 was logged and provided for every image/frame read from the
onboard clock, barometer, IMU and GPS sensor, and the gimbal, respectively.

Note that α = 90◦ corresponds to a top-down view, and α = 0◦ to a horizontally facing
camera. The date format is given in the extended form of ISO 8601. Furthermore, note
that the UAV roll/pitch/yaw-angles are of minor importance for meta-data-aware vision-
based methods as the onboard gimbal filters out movement by the drone such that the
camera pitch angle is roughly constant if it is not intentionally changed (Jedrasiak et al.
(2013)). Note that the gimbal yaw angle is not included, as we fix it to coincide with the
UAV’s yaw angle.

We need to emphasize that the meta values lie within the error thresholds introduced
by the different sensors, but an extended analysis is beyond the scope of this dissertation
(see e.g. Zimmermann et al. (2017); Sitemark (2020); Kulhavy et al. (2017) for an
overview).

67

Chapter 5 A Maritime Benchmark for Detecting Humans in Open Water

5.2.2 Annotation Method

Using the non-commercial labeling tool DarkLabel (DarkLabel (2020)), we manually
and carefully annotated all provided images and frames with the categories swimmer
(person in water without life jacket), floater (person in water with life jacket), life jacket,
swimmer† (person on boat without life jacket), floater† (person on boat with life jacket),
and boats. We note that it is not sufficient to infer the class floater by the location from
swimmer and life jacket as this can be highly ambiguous. Subsequently, all annotations
were checked by experts in aerial vision. We choose these classes as they are the hardest
and most critical to detect in SAR missions. Furthermore, we annotated regions with
other objects as ignored regions, such as boats on land. Moreover, the data set also
covers unlabeled objects, which may not be of interest, like driftwood, birds or the coast
such that detectors can be robust to distinguish from those objects. See Figure 5.2 for
examples of objects.

5.2.3 Data Set Split

Object Detection

To ensure that the training, validation, and testing set have similar statistics, we roughly
balance them such that the respective subsets have similar distributions with respect to
altitude and angle of view, two of the most important factors of appearance changes. Of
the individual images, we randomly select 4/7 and add it to the training set, add 1/7 to
the validation set and another 2/7 to the testing set. In addition to the individual images,
we randomly cut every video into three parts of length 4/7, 1/7, and 2/7 of the original
length and add every 10-th frame of the respective parts to the training, validation, and
testing set. This is done to avoid having subsequent frames in the training and testing set
such that a realistic evaluation is possible. We release the training and validation set with
all annotations and the testing set’s images, but withhold its annotations. Evaluation is
available via an evaluation server1, where the predictions on the test set can be uploaded.

Object Tracking

Similarly, we take 4/7 of our recorded clips as the training clips, 1/7 as the validation clips
and 2/7 as the testing clips. As for the object detection task, we withhold the annotations
for the testing set and provide an evaluation server1.

1https://seadronessee.cs.uni-tuebingen.de/

68

https://seadronessee.cs.uni-tuebingen.de/

5.2 Data Set Generation

Floater Floater

Floater Life jacket

Swimmer Swimmer Floater†

Swimmer Swimmer Swimmers†

Figure 5.2: Examples of objects. Note that these examples are crops from high-resolution
images. However, as the objects are small and the images taken from high altitudes, they
appear blurry.

69

Chapter 5 A Maritime Benchmark for Detecting Humans in Open Water

5.3 Data Set Tasks
There are many works on UAV-based maritime SAR missions, focusing on unified frame-
works describing the process of how to search and rescue people, for example Mishra
et al. (2020); Gallego et al. (2019); Lvsouras and Gasteratos (2020); Lygouras et al.
(2019); Queralta et al. (2020); Roberts et al. (2016); Ghazali et al. (2016). These works
answer questions corresponding to path planning, autonomous navigation and efficient
signal transmission. Most of them rely on RGB sensors and detection and tracking algo-
rithms to actually find people of interest. This commonality motivates us to extract the
specific tasks of object detection and tracking, which pose some of the most challenging
issues in this application scenario.

Maritime environments from a UAV’s perspective are difficult for a variety of rea-
sons: Reflective regions and shadows resulting from different cardinal points (such as
in Fig. 5.1) that could lead to false positives or negatives; people may be hardly visible
or occluded by waves or sea foam (see Supplementary material); typically large areas
are overseen such that objects are particularly small (Mishra et al. (2020)). We note that
these factors are on top of general UAV-related detection difficulties.

Now, we proceed to describe the specific tasks.

5.3.1 Object Detection
There are 5,630 images (training: 2,975; validation: 859; testing: 1,796). See Figure
5.3 for the distribution of images/frames with respect to cameras and the class distribu-
tion. We recorded most of the images with the L1D-20c and UMC-R10C, having the
highest resolution. Having the lowest resolution, we recorded only 432 images with
the RedEdge-MX. Note, for the Object Detection Task only the RGB-channels of the
multi-spectral images are used to support a uniform data structure.

Furthermore, the class distribution is slightly skewed towards the class ’boat’, since
safety precautions require boats to be nearby. We emphasize that this bias can easily be
diminished by blackening the respective regions, as is common for areas which are not
of interest or undesired (such as boats here; see e.g. Du et al. (2018)). Right after that,
swimmers with life jacket are the most common objects. We argue that this scenario
is very often encountered in SAR missions. This type of class is often easier to detect
than just swimmer as life jackets mostly are of contrasting color, such as red or orange
(see Fig. 5.2 as well as Tables 5.4 and 5.5). However, as it is also a likely scenario to
search for swimmers without life jacket, we included a considerable amount. There are
also several different manifestations/visual appearances of that class, which is why we
recorded and annotated swimmers with and without adequate swimwear (such as wet
suit). To be able to discriminate between humans in water and humans on boats, we
also annotated humans on boats (with and without life jackets). Lastly, we annotated a
small amount of life jackets only. However, we note that the discrimination between life
jackets and humans in life jackets can become visually ambiguous, especially at higher

70

5.3 Data Set Tasks

 Camera Type
0

250

500

750

1000

1250

1500

1750
Nu

m
be

r o
f i

m
ag

es

L1
D-

20
c

Re
dE

dg
e-

M
X

UM
C-

R1
0C

Ze
nm

us
e

X5

Ze
nm

us
e

XT
2

0 2500 5000 7500 1000012500
Number of instances

Swimmer

Floater

Life jacket

Floater

Swimmer

Boat

Figure 5.3: Distribution of training images over camera types (left) and distribution of
objects over classes (right). As mentioned in section 5.2.2, a † symbol denotes a corre-
sponding human on a boat, outside the water, as opposed to instances inside the water.

altitudes. See also Fig. 5.2.

Figure 5.4 shows the distribution of images with respect to the altitude and viewing
angle they were captured at. Roughly 50% of the images were recorded below 50 m
because lower altitudes allow for the whole range of available viewing angles (0−90◦).
That is, to cover all viewing angles, more images at these altitudes had to be taken. On
the other hand, there are many images facing downwards (90◦), because images taken at
greater altitudes tend to face downwards since acute angles yield image areas with tiny
pixel density, which is unsuitable for object detection. Nevertheless, every altitude and
angle interval is sufficiently represented.

5.3.2 Single-Object Tracking

We provide 208 short clips (>4 seconds) with a total of 393,295 frames (counting the
duplicates), including all available objects labeled. We randomly split the sequences
into 58 training, 70 validation and 80 testing sequences. We do not support long-term
tracking. The altitude and angle distributions are similar to these in the object detection
section since the origin of the images of the object detection task is the same.

71

Chapter 5 A Maritime Benchmark for Detecting Humans in Open Water

0 100 200
0

500

1000

1500

2000

2500

3000

0 25 50 75
Altitude[m] Angle[degrees]

Nu
m

be
r o

f i
m

ag
es

Figure 5.4: Distribution of images over altitudes (left) and angles (right), respectively.

5.3.3 Multi-Object Tracking

We provide 22 clips with a total of 54,105 frames and 403,192 annotated instances,
the average consists of 2,460 frames. We differentiate between two use-cases. In the
first task, only the persons in water (floaters and swimmers) are tracked, it is called
MOT-Swimmer. In the second task, all objects in water are tracked (also the boats, but
not people on boats), called MOT-All-Objects-In-Water. In both tasks, all objects are
grouped into one class. The data set split is performed as described in section 5.2.3.

5.3.4 Multi-Spectral Footage

Along with the data for the three tasks, we provide multi-spectral images. We supply
annotations for all channels of these recordings, but only the RGB-channels are currently
part of the Object Detection Task. There are 432 images with 1,901 instances. See Figure
5.1 for an example of the individual bands.

5.4 Evaluations

We evaluated current state-of-the-art object detectors and object trackers on SeaDrones-
See. All experiments can be reproduced by using our provided code available on the
evaluation server.

72

5.4 Evaluations

5.4.1 Object Detection
The detectors used can be split into two groups. The first group consists of two-stage
detectors, which are mainly built on Faster R-CNN (Girshick (2015)) and its improve-
ments. Built for optimal accuracy, these models often lack the inference speed needed for
real-time employment, especially on embedded hardware, which can be a vital use-case
in UAV-based SAR missions. For that reason, we also evaluate on one-stage detectors. In
particular, we perform experiments with the best performing single-model (no ensemble)
from the workshop report Zhu et al. (2018): a Faster R-CNN with a ResNeXt-101 64-4d
(Xie et al. (2017)) backbone with P6 removed. For large one-stage detectors, we take
the recent CenterNet (Zhou et al. (2019)). To further test an object detector in real-time
scenarios, we choose the current best model family on the COCO test-dev according
to Papers with Code (2021), i.e. EfficientDet (Tan et al. (2020)), and take the smallest
model, D0, which can run in real-time on embedded hardware, such as the Nvidia Xavier
(see e.g. Chapter 3).

Model AP AP50 AP75 AR1 AR10 FPS
F. ResNeXt-101-FPN

Xie et al. (2017) 30.4 54.7 29.7 18.6 42.6 2

F. ResNet-50-FPN
Girshick (2015) 14.2 30.1 7.2 6.4 17.7 14

CenterNet-Hourglass104
Zhou et al. (2019) 25.6 50.3 22.2 17.7 40.1 6

CenterNet-ResNet101
Zhou et al. (2019) 15.1 36.4 10.8 9.6 21.4 22

CenterNet-ResNet18
Zhou et al. (2019) 9.9 21.8 9.0 7.2 19.7 78

EfficientDet–D0
Tan et al. (2020) 20.8 37.1 20.6 11.5 29.1 26

Table 5.4: Average precision results for several baseline models. All reported FPS num-
bers are obtained on a single NVIDIA RTX 2080 Ti. The abbreviation ’F.’ stands for
Faster R-CNN.

Similar to the VisDrone benchmark (Zhu et. al. (2018)), we evaluate detectors ac-
cording to the COCO json-format (Lin et al. (2014)), i.e. average precision at certain
intersection-over-union-thresholds. More specifically, we use AP=APIoU=0.5:0.05:0.95,
AP50 =APIoU=0.5 and AP75 =APIoU=0.75. Furthermore, we evaluate the maximum re-
calls for at most 1 and 10 given detections, respectively, denoted AR1 =ARmax=1, and
AR10 =ARmax=10. All these metrics are averaged over all categories (except for "ignored
region"). We furthermore provide the class-wise average precisions. Moreover, similar
to Chapter 3, we report AP50-results on different equidistant levels of altitudes ’low’ = 5-

73

Chapter 5 A Maritime Benchmark for Detecting Humans in Open Water

Model S F S† F† B LJ FPS
F. ResNeXt-101-FPN

Xie et al. (2017) 78.1 82.4 25.9 44.3 96.7 0.6 2

F. ResNet-50-FPN
Girshick (2015) 24.6 54.1 4.9 7.5 89.2 0.3 14

CenterNet-Hourglass104
Zhou et al. (2019) 65.1 73.6 19.1 48.1 95.8 0.3 6

CenterNet-ResNet101
Zhou et al. (2019) 16.8 39.8 0.8 1.7 74.3 0 22

CenterNet-ResNet18
Zhou et al. (2019) 20.9 21.9 2.6 3.3 81.9 0.4 78

EfficientDet–D0
Tan et al. (2020) 65.3 55.1 3.1 3.3 95.5 0.1 26

Table 5.5: AP50–results for each class individually. All reported FPS numbers are ob-
tained on a single NVIDIA RTX 2080 Ti. The abbreviation ’F.’ stands for Faster R-CNN.
For visualization purposes, the classes are abbreviated as swimmer(†)→ S(†), floater(†)
→ F(†), boat→ B, life jacket→ LJ.

56 m (L), ’low-medium’ = 55-106 m (LM), ’medium’ = 106-157 m (M), ’medium-high’
= 157-208 m (MH), and ’high’ = 208-259 m (H). To measure the universal cross-domain
performance, we report the average over these domains, denoted APavg

50 . Similarly, we
report AP50-results for different angles of view: ’acute’ = 7-23◦ (A), ’acute-medium’ =
23-40◦ (AM), ’medium’ = 40-56◦ (M), ’medium-right’ = 56-73◦ (MR), and ’right’ = 73-
90◦ (R). Ultimately, it is the goal to have robust detectors across all domains uniformly,
which is better measured by the latter metrics.

Table 5.4 shows the results for all object detection models. As expected, the large
Faster R-CNN with ResNeXt-101 64-4d backbone performs best, closely followed by
CenterNet-Hourglass104. Medium-sized networks, such as the ResNet-50-FPN, and fast
networks, such as CenterNet-ResNet18 and EfficientDet-D0, expectedly perform worse.
However, the latter can run in real-time on an Nvidia Xavier (compare with Chapter 3).
Table 5.5 displays the detection results (in the AP50 metric) individually for each class.
Swimmers are detected significantly worse than floaters by most detectors. Notably, life
jackets are very hard to detect since from a far distance these are easily confused with
swimmers† (see Fig. 5.2). Since there is a heavy class imbalance with many fewer life
jackets, detectors are biased towards floaters.

Table 5.6 and 5.7 show the performances for different altitudes and angles, respec-
tively. These evaluations help assess the strength and weaknesses of individual models.
For example, although ResNeXt-101-FPN performs overall better than Hourglass104
in AP50 (54.7 vs. 50.3), the latter is better in the domain of medium angles (45.2 vs.

74

5.4 Evaluations

Model L LM M MH H APavg
50

ResNeXt-101-FPN 56.8 54.6 49.2 65 78.3 60.8
ResNet-50-FPN 32.8 29.8 23.5 40.5 48.9 35.1
Hourglass104 50.6 52.0 47.5 64.9 73.2 57.6

ResNet101 20.2 30.4 24.1 35.1 38.0 29.6
ResNet18 23.8 20.3 19.2 29.3 31.9 24.9

EfficientDet–D0 39.6 38.0 30.4 42.5 54.5 41.0
Table 5.6: Results on different altitude-domains. E.g. ResNeXt’s AP50 performance in
low-medium (LM) altitudes is 54.6 AP50.

Model A AM M MR R APavg
50

ResNeXt101-FPN 68.3 55.1 45.2 63.6 51.5 56.7
ResNet50-FPN 32.8 35.5 32.7 35.7 27.6 32.9
Hourglass104 66.4 42.1 49.7 58.7 46.9 52.76

ResNet101 7.4 35.8 20.5 33.6 21.7 23.8
ResNet18 9.6 29.5 26.3 27.9 22.1 23.1

EfficientDet–D0 26.9 47.0 40.5 40.3 36.8 38.3
Table 5.7: Results on different angle-domains. For example, ResNeXt’s AP50 perfor-
mance in medium-right (MR) angles (57-73◦) is 63.6 AP50.

49.7). Furthermore, the great performance discrepancy between CenterNet-ResNet101
and CenterNet-ResNet18 in AP50 (36.4 vs. 21.8) vanishes when averaged over angle do-
mains (23.8 vs. 23.1 APavg

50) possibly indicating ResNet101’s bias towards specific angle
domains.

75

C
hapter5

A
M

aritim
e

B
enchm

ark
forD

etecting
H

um
ans

in
O

pen
W

ater

Model MOTA IDF1 MOTP MT ML FP FN Recall Prcn ID Sw. Frag
FairMOT-D34 Zhang et al. (2020b) 39.0 44.8 23.6 17 17 3,604 9,445 57.2 77.8 307 1,687
FairMOT-R34 Zhang et al. (2020b) 15.2 27.6 33.7 6 37 2,502 12,592 30.1 68.4 181 807
Tracktor++ Bergmann et al. (2019) 55.0 69.6 25.6 62 4 7,271 3,550 85.5 74.2 165 347

Table 5.8: Multi-Object Tracking evaluation results for the Swimmer task.

Model MOTA IDF1 MOTP MT ML FP FN Recall Prcn ID Sw. Frag
FairMOT-D34 Zhang et al. (2020b) 36.5 43.8 20.9 28 49 3,788 20,867 47.2 83.1 447 1,599
FairMOT-R34 Zhang et al. (2020b) 30.5 40.8 27.3 29 127 4,401 28,999 40.2 81.6 285 1,588
Tracktor++ Bergmann et al. (2019) 71.9 80.5 20.1 123 5 7,741 5,496 88.5 84.5 192 438

Table 5.9: Multi-Object Tracking evaluation results for the All-Objects-in-Water task.

Model L LM M MH H APavg
50

F. ResNet-50-FPN 32.8 29.8 23.5 40.5 48.9 35.1
5×Altitude@3 (Chapter 3) 32.8 29.9 26.2 41.5 48.9 35.9

Model A AM M MR R APavg
50

F. ResNet-50-FPN 32.8 35.5 32.7 35.7 27.6 32.9
5×Angle@3 (Chapter 3) 42.0 35.5 39.3 35.7 27.7 36.0

Table 5.10: Results on different altitude- and angle-domains. The corresponding expert models share layers up until the third
stage (@3) and are then split into 5 expert models (5×) beyond that point. For additional details, see Section 3.4.

76

5.4 Evaluations

0.0 0.2 0.4 0.6 0.8 1.0

Overlap threshold
0

20

40

60

80

100

Ov
er

la
p

Pr
ec

isi
on

 [%
]

Success plot

DiMP50 [67.3]
PrDiMP50 [67.0]
PrDiMP18 [65.9]
DiMP18 [64.6]
Atom [63.8]

0 10 20 30 40 50

Location error threshold [pixels]
0

20

40

60

80

100

Di
st

an
ce

 P
re

cis
io

n
[%

]

Precision plot

DiMP50 [86.8]
PrDiMP50 [84.9]
PrDiMP18 [83.5]
DiMP18 [82.7]
Atom [82.3]

Figure 5.5: Success and precision plots for single-object tracking task.

5.4.2 Single-Object Tracking

Like VisDrone (Zhu et al. (2020a)), we provide the success and precision curves for
single-object tracking and compare models based on a single number, the success score.
As comparison trackers, we choose the DiMP (Discriminative Model Prediction) family
(DiMP50, DiMP18, PrDiMP50, PrDiMP18) (Bhat et al. (2019); Danelljan et al. (2020))
and Atom (Danelljan et al. (2019)) because they were the foundation of many of the
submitted trackers to the 2020 VisDrone workshop (Fan et al. (2020b)).

Figure 5.5 shows that the PrDiMP- and DiMP-family expectedly outperform the older
Atom tracker in both success and precision. Surprisingly, PrDiMP50 slightly trails the
accuracy of its predecessor DiMP50. Furthermore, all trackers’ performances on Sea-
DronesSee are similar or worse than on UAV123 (e.g. Atom with 65.0 % success) (Bhat
et al. (2019); Danelljan et al. (2020, 2019)), for which they were heavily optimized. We
argue that in SeaDronesSee there is still room for improvement, especially considering
that the clips feature precise meta information that may be helpful for tracking. Further-
more, in our experiments, the faster trackers DiMP18 and Atom run at approximately
27.1 FPS on an NVIDIA RTX 2080 Ti. However, we note that they are not capable of
running in real-time on embedded hardware, a use-case especially important for UAV-
based SAR missions.

5.4.3 Multi-Object Tracking

We use a similar evaluation protocol as the MOT benchmark (Milan et al. (2016)). That
is, we report results for Multiple Object Tracking Accuracy (MOTA), Identification F1
Score (IDF1), Multiple Object Tracking Precision (MOTP), number of false positives

77

Chapter 5 A Maritime Benchmark for Detecting Humans in Open Water

(FP), number of false negatives (FN), recall (R), precision (P), ID switches (ID sw.),
fragmentation occurrences (Frag). We refer the reader to Ristani et al. (2016) for a
thorough description of the metrics.
We train and evaluate FairMOT (Zhang et al. (2020b)), a popular tracker, which is the
base of many trackers submitted to the challenge (Fan et al. (2020a)). FairMOT-D34
employs a DLA34 (Yu et al. (2018)) as its backbone while FairMOT-R34 makes use of
a ResNet34. Another SOTA tracker is Tracktor++ (Bergmann et al. (2019)), which we
also use for our experiments. It performed well on the MOT20 (Dendorfer et al. (2020))
challenge and is conceptually simple.
Surprisingly, Tracktor++ was better than FairMOT in both tasks. One reason for this may
be the used detector. Tracktor++ utilizes a Faster-R-CNN with a ResNet50 backbone.
In contrast, FairMOT is using a CenterNet with a DLA34 and a ResNet34 backbone,
respectively.

5.4.4 Meta-Data-Aware Object Detector
Developing meta-data-aware object detectors is difficult since there are no large-scale
data sets to evaluate their performances. However, some works provide promising pre-
liminary results using this metadata (e.g. Wu et al. (2019) or Chapters 3 and 4 in this
work). We provide an initial baseline from Chapter 3 incorporating the meta data. We
evaluate the performances of 5×Altitude@3- and 5×Angle@3-experts, which are con-
structed on top of a Faster R-CNN with ResNet-50-FPN, respectively. Essentially, these
experts make use of meta-data by allowing the features to adapt to their responsible spe-
cific environmental domains.

As Table 5.10 shows, meta data can enhance the accuracy of an object detector con-
siderably. For example, 5×Angle@3 outperforms its ResNet-50-FPN baseline by 3.1
APavg

50 while running at the same inference speed. The improvements are especially sig-
nificant for underrepresented domains, such as +9.2 and +6.4 APavg

50 for the acute angle
(A) and the medium angle (M), respectively, which are underrepresented as can be seen
from Fig. 5.4.

5.5 Conclusions
This chapter introduces a benchmark for UAV-based computer vision problems in mar-
itime scenarios. We built the first large-scale data set for detecting and tracking humans
in open water. Furthermore, it is the first large-scale benchmark providing full environ-
mental information for every frame, offering great opportunities in the so-far underde-
veloped area of multi-modal object detection and tracking. We offer three challenges:
object detection, single-object tracking, and multi-object tracking by providing an eval-
uation server. We hope that the development of meta-data-aware object detectors and
trackers can be accelerated by means of this benchmark. Moreover, we provide multi-

78

5.5 Conclusions

spectral imagery for detecting humans in open water. These images are very promising
in maritime scenarios, having the ability to capture wavelengths, which set objects apart
from the water background.
So far in this dissertation, we put a huge emphasis on computer vision on UAVs. Since
we want to provide a holistic approach to maritime searching of people in distress, the
next chapter deals with the trajectory planning of a drone in the presence of non-zero
water current and wind flow.

79

Chapter 6

UAV Path Planning Algorithms for
Maritime Search and Rescue Missions

6.1 Introduction

The increasing adoption of Unmanned Aerial Vehicles (UAVs) for maritime search and
rescue (SAR) missions has introduced novel operational capacities. Specifically, UAVs
provide enhanced endurance and real-time data transmission, which can complement
traditional human-led SAR efforts. Nonetheless, devising efficient path planning for
UAVs in this context remains challenging, primarily due to the variable and unpredictable
characteristics of the maritime environment.

Figure 6.1: Example of a trajectory of the branch and bound agent (which we are propos-
ing in this chapter) right after finding a search target. Here, it succeeded in doing so after
approximately 30 minutes after take-off. The search target’s position is highlighted by a
circle. The plot is taken from our framework.

81

Chapter 6 UAV Path Planning Algorithms for Maritime Search and Rescue Missions

In maritime SAR scenarios, efficient coverage of the search area and accurate target
localization are pivotal. Many popular existing path planning algorithms, like A* or Di-
jkstra (Russell (2010)), operate under the assumption of known and static environmental
conditions. These assumptions are not applicable to maritime SAR for multiple rea-
sons: Factors, such as water currents and wind dynamics, determine the search targets’
trajectory, affecting their position and velocity. However, these factors are known very
imprecisely at best. Furthermore, imprecise knowledge about locations of search targets
in distress calls for probabilistic trajectory planning algorithms.

Extensive research in the area of maritime search and rescue utilizing Unmanned
Aerial Vehicles has predominantly centered on computer vision, with a specific empha-
sis on object detection. This focus resulted in the publication of dedicated datasets (e.g.
Chapter 5 in this work), works that delve into the intricacies of detecting small objects
(Lee et al. (2018); Varga and Zell (2021)), exploration into the integration of supplemen-
tal sensor data to enhance detection efficacy (e.g. Chapters 3 and 4 in this work), and
contributions from control theory (Raap et al. (2019)).

Therefore, there is an evident need for a more adaptive approach in UAV path planning
for maritime SAR missions – one that considers both target location uncertainty and dy-
namic environmental factors. Hence, we analyze competitive path planning algorithms.
All of them integrate probabilistic models to account for target location uncertainty and
use real-time meteorological data to adapt to changing water currents and wind condi-
tions.

Furthermore, this paper introduces a novel path planning algorithm, building upon the
foundational principles of branch-and-bound (BnB) techniques (Sato (2008)). Our pro-
posed method aims to bridge the gap from theory to practical application by leveraging
the strengths of existing theory on BnB algorithms while tailoring them for real-world
application. It takes into account environmental factors, such as water current and wind
flow. Yet, in contrast to the existing literature on BnB-based path planning (Sato (2008);
Raap et al. (2017, 2019)), our approach is designed to be computationally lightweight.

The main contributions of this chapter are the following:

• We propose a novel trajectory planning algorithm that aims at bridging the gap
from easily applicable algorithms that take almost no environmental data into ac-
count to computation-heavy and theory-backed algorithms like branch-and-bound
algorithms.

• The algorithms in this chapter were evaluated using a newly developed framework
for researching and testing maritime SAR algorithms for UAVs. It is available on
GitHub1. It is fully written in Python, which makes it easy to use.

• We compare and evaluate multiple trajectory planning algorithms and discuss their
results.

© 2024 IEEE. Reprinted, with permission, from Messmer and Zell (2024).
1https://github.com/cogsys-tuebingen/pathplanningrepository

82

https://github.com/cogsys-tuebingen/pathplanningrepository

6.2 Related Work

The structure of this chapter is as follows: Section 6.2 reviews the current research in this
area. Section 6.3 explains some background and the algorithms and methods used here,
including those related to the change of search targets over time and the main trajectory
planning algorithms. Section 6.4 presents the experimental results and a subsequent
discussion. Finally, Section 6.5 discusses possible future research and the limitations of
the approaches presented in this chapter.

6.2 Related Work
In Martinez-Alpiste et al. (2021), the authors build a pipeline to perform search oper-
ations from a UAV equipped with a smartphone. They also record a dataset for the
training of their neural network. While this is interesting work towards UAV-based SAR
missions, they do not investigate the path planning problem. Similarly, there is a vast
number of publications on computer vision from UAVs (Varga and Zell (2021); Du et al.
(2019)) and also Chapters 2, 3, 4, and 5 in this work. While this is very important for
automated SAR scenarios, it doesn’t address the problem of how to compute the UAV’s
trajectory. The authors in Sato (2008) construct bounds for a branch and bound algorithm
for the search problem with a single UAV. This finds an optimal solution to the problem.
However, the algorithm works, as shown, merely on problems in the range of 10× 10
to 20×20 grids, which is far too small for any realistic application. While Morin et al.
(2010) uses an ant-colony optimization method, it suffers from the same problem. In
Berger et al. (2013) the authors propose a mixed integer linear programming approach to
solve this problem. While this also delivers exact solutions, it is again computationally
too intensive for application in practice. In Riehl et al. (2007), the authors use graph-
based model-predictive search to solve problems in the range of roughly 34× 34 grids.
That is already larger but still too small for most real-world applications. For compar-
ison, in our experiments we usually used a grid size of 2500× 2500, see section 6.4.
The authors in Dagestad et al. (2018) developed OpenDrift, a framework to efficiently
simulate drift of objects or substances in the ocean, such as oil spills, floating debris, life-
rafts or vessels in distress. We will employ this work for the latter. Similarly, Wu et al.
(2023) model the leeway drift of people in water. While this is very important, they don’t
investigate trajectory planning for maritime SAR missions. In Guoxiang and Maofeng
(2010) the authors describe a full application to plan maritime SAR missions. They use
trajectory planning methods similar to the spiral and boustrophedon search used later in
this chapter.
The authors of Ghazali et al. (2016) describe an effective use of a swarm of quadcopters
in a maritime search and rescue scenario where the wind flow and water current are un-
known. While this is also interesting in some realistic application scenarios, we prefer to
focus on the case where those are known in order to be able to develop better-informed
algorithms. In Kratzke et al. (2010), the authors describe the planner model used by the
United States Coast Guard; their environmental model is basically equal to the method

83

Chapter 6 UAV Path Planning Algorithms for Maritime Search and Rescue Missions

of OpenDrift. How the planning algorithm works, however, is not disclosed in detail,
leaving the need for further research in this field.
In Roberts et al. (2016) the authors present a framework to analyze mSAR missions
with UAVs. This might be of interest to practitioners when deciding whether or not to
dispatch UAV to aid the search. We were not able to find their framework published,
however. Furthermore, they do not develop any new path planning methods. Instead,
they re-implement the ones used by the US Coast Guard similar to the boustrophedon
and expanding spiral used later in this chapter.
In the paper Bourgault et al. (2006) the authors also address the single searcher prob-
lem using a parametric representation for the search target, which is appealing from a
theoretical perspective. However, we argue a particle-based representation provides a
more general probabilistic description of the search targets’ movements. Additionally,
the employed algorithm optimizes in a greedy manner, selecting the most favorable step
at each point in time, which may not always lead to the best overall outcome. The authors
of Li et al. (2023) investigate the sensor, communication, and control subsystems of a
UAV platform potentially employed for maritime SAR missions. This is highly relevant
for SAR missions, yet it gives no insight into path planning methods for the problem at
hand. The work Tiemann et al. (2018) investigates the problem where the search target
in distress is continuously sending a distress signal and use this to enhance the estimated
target position. While distressed ships might be able to provide such a search aid, live
rafts may not. Hence we explore the case, where the search target is not transmitting
signals.

6.3 Method
Since our proposed method employs a branch-and-bound–type algorithm, the next sub-
section aims at recalling the necessary basics. The method we propose is then introduced
in subsection 6.3.2.

6.3.1 Background – Branch and Bound for Path Planning Problems
Branch-and-bound (Land and Doig (1960)) algorithms are an abstract class of algorithms
designed to solve a wide range of optimization problems from the field of discrete op-
timization, sometimes also referred to as mixed-integer linear programming (MILP).
Some examples, which are usually solved with these algorithms, are job scheduling or
the Knapsack problem (Taha (2007)). Additionally, branch-and-bound algorithms are
applicable as well to more complex path planning problems, like the traveling salesper-
son problem (TSP) (Taha (2007)), which cannot be directly addressed by algorithms like
A* (Russell (2010)) due to its special requirement of optimizing a path rather than reach-
ing a specific goal position. Recall that other path planning algorithms like A* require
a specific start and goal node as input. This makes a branch-and-bound–type algorithm

84

6.3 Method

the preferred choice to solve the problem we are facing in the trajectory planning for
maritime search and rescue drones. Here, we also need to optimize a flight trajectory for
its probability of finding the search targets rather than compute a path from start to goal.

In the following, we will try to give an intuition of how branch-and-bound algorithms
work on a concrete example (see Figures 6.2 and 6.3) as well as pseudo-code for a
branch-and-bound algorithm adapted to path planning problems (see Algorithm 1). This
is an adapted version of the one presented in Sato (2008) which we include here to allow
for a complete understanding.

In general, any optimization problem must have the following form to be solvable
by branch-and-bound: given some objective function f : X → R and some additional
constraints represented via g : X → Rm and c ∈ Rm, find x ∈ X with

f (x) = max
z∈X

f (z),

g(x)≤ c.
(6.1)

Here, the search space X is a discrete set consisting of candidate solutions in which
the algorithm searches the optimal one. In the later path planning scenario X will be a
set of potential flight trajectories for the UAV. The objective f : X → [0,1] will map a
trajectory to the probability of finding the search target(s), and g will denote constraints
on the trajectories, like the UAV’s flight time.
Then, in a nutshell, any branch-and-bound algorithm consist of two parts:

• Branch: In the branching step, the current problem (or subproblem) is divided into
smaller, more manageable subproblems, until solving it becomes possible. The
goal is to make the subproblems simpler to solve or bound (also known as divide
and conquer). How the division is implemented depends entirely on the specific
problem.

• Bound: Calculate an upper bound for the objective function on the currently inves-
tigated subproblem. This upper bound can be compared to the best yet observed
candidate solution. If the upper bound is smaller, the subproblem under investiga-
tion can be pruned. The algorithm is able to disregard the whole branch originat-
ing from this subproblem. Like for the branching step, how to actually calculate
an upper bound, preferably computationally efficiently, is highly dependent on the
problem at hand.

These two foundational principles of the branch-and-bound algorithm make for a striking
resemblance to the well-known α-β–pruning algorithm as described in Russell (2010).
In both approaches child nodes are generated from the current node and evaluated based
on a heuristic. Subsequently, nodes yielding a low heuristic value compared to others are
pruned (i.e. not further expanded). In both cases, this pruning is central in making either

85

Chapter 6 UAV Path Planning Algorithms for Maritime Search and Rescue Missions

algorithm a preferred choice. It essentially makes the difference in between an efficient
algorithm and a brute-force one.

6 kg

v1 = 5

4 kg

v2 = 5

2 kg

v3 = 3

1 kg

v4 = 3

Figure 6.2: The Knapsack problem. What is the best way to maximize the bag’s content’s
value if the bag can hold at most Wmax kg?

To demonstrate the functionality of branch-and-bound algorithms, we illustrate its per-
formance on the well known Knapsack problem (Taha (2007)). The challenge is: Given
n ∈ N objects with weights and values w j,v j > 0 and a sack which can hold at most a
weight of Wmax > 0. How can we pack the objects such that the value of the packed items
is maximized while the total weight does not exceed the sack’s capacity?

Formally, we have X = {0,1}n =
{
(x1, . . . ,xn) : xk ∈{0,1}

}
, where each (x1, . . . ,xn)=

x ∈ X denotes the decision whether to put any of the items into the sack via a binary
representation. That means, the kth item has been placed in the sack if xk = 1 and has not
if xk = 0. Then the objective function and constraints from Equation 6.1 take the form

f (x) =
n

∑
k=1

xk · vk,

g(x) =
n

∑
k=1

xk ·wk ≤Wmax.

To provide an example, we will use Algorithm 1 to solve the problem with n = 4,
(w1, . . . ,w4) = (6,4,2,1) and (v1, . . . ,v4) = (5,5,3,3), as illustrated in Figure 6.2 and
Figure 6.3. The branch-and-bound algorithm explores branches of a decision tree, where

86

6.3 Method

each node represents a state with a subset of considered items. The decision at each
node is whether to include the current item in the knapsack. This binary choice leads to
two branches: one where the item is included and one where it is excluded. To denote
this branching, we use the notation (0,1,_,_) to indicate the state where the first item is
excluded, the second included, and the rest is not yet decided. The process begins with
the first item (k = 1). The algorithm keeps the best solution yet discovered, initialized
with an empty solution that has a total value of 0 and a total weight of 0, represented
as (_,_,_,_). At each step, the algorithm considers the next item. It generates two new
nodes:

• Include k: If adding the current item does not exceed the weight limit, create a new
node with this item included, updating the total weight and value.

• Exclude k: Create a new node where the current item is not included, keeping the
total weight and value unchanged.

This branching effectively splits the problem into two subproblems: one considering
the solution with the item and one without it. The remaining search space is {0,1}n−k,
the tail of the binary vector. For each generated node, the algorithm calculates a bound
to determine if further exploration might lead to a better solution than the best found so
far. This bound is highly problem specific. For the Knapsack problem, it makes sense
to add the values of all items that could potentially still be included, disregarding the
weight constraint. Formally, let x = (x1, . . . ,xk,_, . . . ,_) denote the state, then we define
the bound q̄(x) as

q̄(s) =
k

∑
j=1

x jv j +
n

∑
j=k+1

v j.

If the calculated bound of a node is lower than the value of the best solution found
so far, the node is pruned; that is, it is not explored further as it cannot lead to a better
solution. The algorithm iterates through all items, branching and bounding at each step.
It keeps track of the best solution encountered so far. The algorithm terminates when
all nodes have been either fully explored or pruned. The solution associated with the
highest value among the final nodes is the optimal set of items to include in the knapsack.
Figure 6.3 visually shows the entire solving process conducted by the branch-and-bound
algorithm as described here.

87

C
hapter6

U
AV

Path
Planning

A
lgorithm

s
forM

aritim
e

Search
and

R
escue

M
issions

_ _ _ _

1 _ _ _ 0 _ _ _

1 1 _ _ 1 0 _ _

1 1 0 _

1 1 0 0

1 0 0 _ 1 0 1 _

1 0 1 0 1 0 1 1

1 1 1 _

1 1 0 1

q̄ = 16
W = 6 q̄ = 11

W = 0

q̄ = 16
W = 10 q̄ = 11

W = 6

q̄ = 13
W = 10

q̄ = 10
W = 10

q̄ = 16
W = 12

q̄ = 13
W = 13

q̄ = 8
W = 6

q̄ = 11
W = 8

q̄ = 8
W = 8

q̄ = 11
W = 9

Figure 6.3: The search graph of a branch-and-bound algorithm solving the Knapsack problem from Figure 6.2 demonstrates
how the algorithm operates. By design of the bound function, it is expanding nodes that include the respective items (adding a
’1’ instead of a ’0’) until further expansion is not possible. This leads the algorithm to descend to ’1 1 0 0’ in the bottom left (the
grey nodes are invalid child nodes, as their weight is larger than 10 = Wmax). Then, it propagates the best seen solution, with
a value of q̂ = 10, back upwards as indicated by the red arrows. During backtracking, the algorithm explores the previously
ignored node ’1 0 _ _’. Here, it prunes the node ’1 0 0 _’ (because of its bound q̄(’1 0 0 _’) = 8≤ 10 = q̂) and instead explores
’1 0 1 _’. At this point, the node ’1 0 1 0’ is also pruned, as its bound is worse than the best solution observed so far, leading to
the discovery of the optimal solution ’1 0 1 1’. The best observed value is updated to q̂ = 11. This is backtracked (not shown in
the graph for simplicity) up to the root node, where the last remaining node ’0 _ _ _’ is pruned because q̄ = 11≤ 11 = q̂ and the
algorithm terminates. Observe, that the returned solution ’1 0 1 1’ has an optimal value of q̄ = 11, but it is not unique. Another
possible solution is ’0 1 1 1’, which also has a value of q̄ = 11 but a lower weight of W = 7. This solution could be found in
the pruned subtree originating from ’0 _ _ _’. However, due to the design of the branch-and-bound algorithm, it is indifferent
to the notion of a ’better’ solution based on lower weight.

88

6.3 Method

Algorithm 1 Branch and Bound Algorithm for path planning problems. This is an
adapted version of the one presented in Sato (2008).
Require: Graph (V,E), where V is the set of vertices and E is the set of edges.
Require: UAV position v0 = (x,y), maximum flight time T ∈ N.

1: t← 0, q̂← 0,Q(0)←{(v0,0,∞)},Q(t)← /0 ∀t > 0. . Initialization
2: do
3: if Q(t) is empty then . Backtracking, after full exploration at time t.
4: t← t−1
5: else
6: (vt , t, q̄(vt , t))← pop

(
Q(t)

)
. The triple with largest bound q̄ is popped.

7: if not q̄(vt , t)≤ q̂ then . Pruning, if no improvement possible.
8: if t = T then
9: q̂← q̄(vt , t) . Update best observed probability.

10: else
11: for v ∈N (vt) do . Branching; N (vt) is the set
12: Append

(
v, t +1, q̄(v, t +1)

)
to Q(t +1). . of neighbors of vt .

13: end for
14: t← t +1
15: end if
16: end if
17: end if
18: while t > 0

Unlike the simple Knapsack problem (Figure 6.2), where branches in the solution
graph (Figure 6.3) can never meet again, transpositions – such as moving left then down
resulting in the same position as moving down then left – can occur. However, in an open
maritime environment, where search targets may also be moving, differently ordered
sequences of the same movements by the drone might lead to varying probabilities of
finding all search targets. Consequently, in Algorithm 1, it is necessary to consider the
time t as well, to distinguish between different trajectories. Therefore, there is a queue
Q(t) for each point in time t. It contains triples (v, t, q̄), where v is a node in the search
graph representing a potential drone location with additional meta data like the search
target’s probability distribution at time t and its parent node. The variable t denotes
the point in time, while q̄ is the calculated bound for the detection probability on the
currently investigated trajectory. Further details on these quantities will be discussed in
the next subsection.

89

Chapter 6 UAV Path Planning Algorithms for Maritime Search and Rescue Missions

6.3.2 Solving the mSAR Path Planning Problem
To run and test the planning algorithms at hand, we first developed a framework to sim-
ulate the flight trajectory of an UAV. It is available on GitHub2. Plots produced by our
framework are shown in Figures 6.1, 6.4, and 6.7. Briefly summarized, it contains the
following features:

• The first step of every simulation in our framework is to run an OpenDrift (Dages-
tad et al. (2018)) simulation. OpenDrift (Fig. 6.5, section 6.3.4) is an open-source
framework that models drift trajectories of objects or substances in the ocean, such
as oil spills, floating debris, or in our case, targets for search and rescue (mod-
eled as life-rafts). By leveraging the capabilities of OpenDrift, our framework
distributes particles in the simulated maritime environment. These particles are a
non-parametric model of the probability distribution describing the potential loca-
tion of the search target as this is usually not precisely known for maritime SAR
missions. The distribution location of these particles is defined by the user to
model the specifics of the search scenario.

• Subsequent to the particle distribution, our framework creates a grid in the search
area. This grid serves as a defined movement space for the UAVs. The dimensions
of the grid as well as the grid tile’s size are freely specified by the user. Depending
on the sensor, larger or smaller grid tiles might be adequate for the scenario.

• The main component of our framework is its ability to constantly monitor and
update the state of each particle within the simulation. Once a particle is observed,
our framework deletes it, see section 6.3.3. That is a key feature as observed
particles need not be taken into account by the UAV for subsequent planning of
the trajectory.

We compare distinct UAV path planning strategies specifically tailored for maritime
search and rescue. Recognizing the dynamic nature of maritime environments, each
strategy under consideration incorporates varying degrees of water current and wind
information to enhance search efficiency. To provide a comprehensive evaluation, we
looked into three strategies from the literature; the first two of them are used in practice
(CCG Manual (2023); Roberts et al. (2016)), while the third is building on existing work
(Sato (2008)) and aims to bridge the gap from theory to application. Fig. 6.6 shows a
schematic drawing of their functionality.

1. Expanding Spiral Method: This strategy, already implemented by the Canadian and
US Coast Guard (CCG Manual (2023); Roberts et al. (2016)), begins its search from the
presumed location of the search target. The UAV then follows an outward spiral pattern,
progressively increasing the radius of the spiral as the search continues. The idea is to

2https://github.com/cogsys-tuebingen/pathplanningrepository

90

https://github.com/cogsys-tuebingen/pathplanningrepository

6.3 Method

Figure 6.4: Two example plots taken from our framework. The agent performs the bous-
trophedon rectangle method. On the right hand side, the agent is plotted with the trace
of its trajectory for better overview of its performance. Recently visited grid cells are
plotted in dark red while cells which were visited longer ago are lighter. On the left, the
plot contains no trace to have a better look at the particles. The legends contain position,
time, and found particles.

start the search close to the last known or estimated location and then expand outwards
in a systematic manner. Furthermore, the estimated location is computed by using the
particles, which incorporate water current and wind data to model their trajectory.

2. Boustrophedon Rectangle Planner: This approach entails the allocation of rectangular
search zones across areas designated as high-probability zones. The UAV then conducts
its search in a boustrophedon (back-and-forth) manner within each rectangle before mov-
ing to the next. Similar to the expanding spiral method, particles are used in tracking the
estimated position of the search targets, adjusting for the influence of water current and
wind dynamics over time. Again, this approach is already used in practice, see Kratzke
et al. (2010).

3. Global-Local Branch-and-Bound Method: Our proposed approach leverages a hybrid
model for trajectory planning. On a global scale, similar to the boustrophedon method,
this planner starts by identifying and estimating rectangular zones that encapsulate a pre-
determined portion of particles. The UAV first heads to these regions. Upon reaching
the designated area, the approach shifts to a local scale. At this level, the UAV employs
a modified version of the branch and bound algorithm (Sato (2008); Clausen (1999)),
specifically leveraging the smaller search space. This two-tier system ensures the UAV
covers vast areas quickly while maintaining the precision necessary for finer, more de-
tailed searches. A more in-depth explanation of the details will be given later in this
section.

Fig. 6.6 illustrates the first two planning methods. Specifically, the spiral planner
computes the center of gravity for each of the particle clouds. Then, it calculates the

91

Chapter 6 UAV Path Planning Algorithms for Maritime Search and Rescue Missions

shortest path visiting all of them and moves from one to the next. Given that real-world
situations typically have a small number of targets, one can comprehensively examine all
possible permutations. Once arrived, it starts searching for a search target by performing
an outward spiral until it observes a target. Next, it proceeds to the next search target.
Over time, all search targets’ estimated locations are updated according to the modeled
probability distribution given by the particles.

The boustrophedon planner acts in a similar fashion by placing rectangular search
areas on the map. For each particle cloud, it constructs a rectangle large enough to
contain a predefined portion η of each collection of particles. Later, in our experiments
(section 6.4), we chose η = 0.75, because this choice empirically gave the best results.
Once arrived at a rectangle, the UAV traverses it in a boustrophedon fashion, meaning it
is flying back and forth to cover the whole ground area in the rectangle.

Algorithm 2 Global-local Branch and Bound Planner.
Require: Number of targets n ∈ N
Require: Targets with associated particles L = {(xk,Pk)}n

k=1
Require: Containment percentage 0 < η < 1
Require: UAV position u = (x,y)

1: L← OrderedList(L) . Order L to form shortest path
2: R←{Rk}n

k=1 . Rectangles Rk enclosing η particles of Pk
3: for k ≤ n; k++ do
4: if u is at Rk then
5: u← Branch&BoundSearch(u,Rk)
6: else
7: u←Advance(u,Rk)
8: end if
9: R←UpdateSearchAreas({Rk})

10: end for

Algorithm 2 shows the pseudo code for our branch and bound planner. The subpro-
cedure ’Advance’ flies the UAV from its current position into the direction of the next
rectangle in the queue. The call to ’UpdateSearchAreas’ recalculates the rectangu-
lar search areas to account for particle drift during the course of the simulation. Finally,
’Branch&BoundSearch’ performs a branch and bound algorithm on the rectangular
search area. For details of this algorithm see Section 6.3.1 or Clausen (1999); Land and
Doig (1960), for its specific application to trajectory planning problems see Sato (2008)
and Algorithm 1.

By only applying an actual branch-and-bound search to the designated search area, like
in Algorithm 2, we reduce the search space for the problem drastically. Depending on the
chosen containment percentage η this effect can be influenced. But even for η = 1, the
effect is already remarkable: for the experiments done in Section 6.4 the grid size inside
the search rectangle could sometimes be reduced to 50× 50 tiles instead of the initial

92

6.3 Method

2500×2500. Furthermore, instead of computing a precise upper bound q in Algorithm
1 – which is computationally expensive – we employ a heuristic, accepting a possibly
sub-optimal solution while making the algorithm applicable in practice. Specifically,
the heuristic we employ merely computes a sum of the particles in a vicinity to the
investigated position weighted by their distance, achieving that locations with a higher
number of particles nearby are valued higher to the algorithm than others. This is a
greedy approach, yet it worked well in our experiments (see Section 6.4).
More formally, given a particle p = (px, py) and UAV position u = (ux,uy). Let

rp = exp(−α · |px−ux|)+ exp(−α · |py−uy|) .

Now we can define the bound as

q =
1
|P| ∑p∈P

rp,

where P is the set of all associated particles with the search target. Summarized, we sum
over the particles weighted by their distance and normalize by the number of particles.
Above, α > 0 is a hyper parameter. In our experiments, setting α = 1/2 yielded the best
results. Thus, this value was selected.

6.3.3 Particle Filter with negative Measurements
Particle filters, commonly used for state estimation, rely on representing a system’s un-
certainty through a set of N ∈ N weighted samples (particles) that collectively describe
the system’s probabilistic belief over its state, usually denotedM= {(xk,ωk)|1≤ k≤N}
(Choset et al. (2005); Elfring et al. (2021)). An integral component of the particle filter
process is the update step, where the weight ωk of each particle is adjusted based on the
likelihood of an observed measurement y given that particle’s state xk, that is

ωk← P(y|xk).

The measurement process in this work’s setup is special in the sense, that the UAV either
observes a search target in a grid cell, or it does not. This translates to a particle filter
in the following way. Assume our UAV is observing grid cell (i, j) (denoted cell(i, j)) at
time t. Then either we have y = 1, if the search target is contained in cell(i, j), or y = 0
otherwise. Hence, the relevant cases for the particle update are

P
(
y = 0|xk ∈ cell(i, j)

)
= ε, (6.2)

P
(
y = 0|xk 6∈ cell(i, j)

)
= 1− ε. (6.3)

Here 0 ≤ ε < 1 accounts for sensor detection errors. Later, in our experiments (section
6.4), we chose the flight altitude low enough that we can safely assume ε = 0. Expression

93

Chapter 6 UAV Path Planning Algorithms for Maritime Search and Rescue Missions

(6.2) equals zero, because particle xk ∈ cell(i, j) at time t, yet we observed, that no search
target is present. The weight update for particles which are not in cell(i, j) is given by
equation (6.3). In the cases, where y = 1, the UAV found the search target and we stop
searching. Therefore, in the resampling step of the particle filter, the particles contained
in cell(i, j) are resampled with probability 0, thus being erased.

6.3.4 Search Targets’ Movement Model

In examining the dynamics of distressed search targets and their movement patterns, this
study utilizes the OpenDrift framework (Dagestad et al. (2018)). This open-source tool
offers a reliable simulation platform for a variety of floating objects, like ships and life
rafts, while also including debris and oil spills in aquatic settings. Notably, OpenDrift’s
design draws from the simulation models employed by the United States Coast Guards’
planning software (Kratzke et al. (2010)). The following provides a brief summary of
the elements relevant to this research. Figure 6.5 shows examples from an OpenDrift
simulation. In maritime search and rescue operations, accurately predicting the move-
ment of search targets in the ocean is of high importance. At the beginning of a search
mission, represented as t = 0, a total of n ∈ N particles are sampled from a bivariate
Gaussian distribution surrounding the initial belief for the position of each search target.
The variance of this distribution corresponds to the inherent uncertainty in our initial be-
liefs regarding the precise location of the targets. If the uncertainty is smaller or larger,
so is the variance from which we sample the particles. To model the trajectory of these
particles over subsequent time intervals, we employ the Lagrangian movement model
(Breivik and Allen (2008)) embedded within the OpenDrift framework. This model of-
fers a robust estimation of each particle’s path, taking into account the influences of both
water currents and wind flow. To more comprehensively mirror the real-world scenario,
OpenDrift incorporates a minor diffusion factor into the trajectory of each particle. This
factor serves to simulate the progressively increasing uncertainty associated with the po-
sition of the search targets over time. The wind and water flow information is gathered
from HYCOM (2003) and Iwamoto et al. (2016), respectively. Their respective provided
resolutions are roughly 5 km2 and 67×33 km2.

94

6.3 Method

(a) At the start of the simulation. (b) After twelve hours of the simulation.

(c) After 24 hours of the simulation.

Figure 6.5: Three output plots from the OpenDrift framework. It simulates four search
targets, observable as four particle clouds in the top left image, showing the start of the
simulation. The top right and bottom images show the evolution of the simulation after
twelve and 24 hours. The background shows the underlying water flow, changing over
time. The location is roughly at 54.0 N,7.5 E.

95

Chapter 6 UAV Path Planning Algorithms for Maritime Search and Rescue Missions

UAV

(a) Example of an expanding spiral path.

UAV

(b) Example of a boustrophedon path.

UAV

(c) Schema of a possible B&B trajectory.

Figure 6.6: Schematic drawing of the three algorithms under investigation.

6.4 Experiments

The main goal of this chapter is to emulate real-world conditions as closely as possible.
We aim to bridge the significant gap between algorithms, which are good in theory but
not applicable, and their tangible, practical applications in maritime SAR operations.
The following experiments reflect that as well.

96

6.4 Experiments

One of the critical factors we had to consider was the grid tile’s size. For our simula-
tions to reflect real-life conditions, it is essential to capture the realistic surface area that
a standard optical sensor would cover when deployed on a UAV. Chapters 3 and 5 show,
that any human in the water should be detected by an object detector running on the
UAV when flying at around 100 m altitude. Therefore, we’ve determined that a square
tile measuring approximately 100 m on each side represents the area a UAV would typi-
cally survey when flying at this altitude. That ensures, that we can safely mark a particle
as observed once found in the same grid tile as the UAV.

Furthermore, the UAV’s speed is based on the capabilites of smaller fixed-wing drones.
With a modeled speed set at 18 m/s (ElevonX (2023); Quantum (2020b)), our simulations
mirror the typical operational speeds of these drones, which we argue are the most fitting
for maritime SAR mission – they are affordable, relatively easy to use, and compromise
in between the flexibility of multi copters and the endurance and speed of small air crafts
while not requiring a pilot. For further details, see the discussion in 2.

air speed altitude field of view flight time
18 m/s 100 m 100×100 m2 1−5 h

Table 6.1: Specifications of simulated UAV.

Smaller fixed-wing drones equipped with electrical engines have approximately 1−2
hours of average battery life span (ElevonX (2023); Quantum (2020b)) while employing
a combustion engine this class of UAVs can reach a flight time of 5 hours (ElevonX
(2023)). In practice, electrical engines are less error-prone and require less maintenance.
Also, in case of an accident, the environmental burden is smaller compared to engines
running on gasoline.

To cover both cases in our simulations, we conducted experiments with a battery life
span of 1,2, and 5 hours, trying to be as realistic and close to practical application as
possible. Table 6.1 shows an overview of the technical specifications of the simulated
UAV.
In all described experiments contained in this section, we used 10,000 particles per
search target for the OpenDrift simulation. They were sampled roughly 2 km around
the simulated position of each target. The grid size used is 250×250 km2 with a tile size
of 100 m, resulting in a 2500×2500 grid.
In all experiments, the UAV’s take-off area is right on shore. Precisely, it takes off at
53.722827 N,7.192965 E. Search targets were sampled at a distance of 10,20, or 30
kilometers in the sea. The experiments become more challenging for the agents as the
distance increases because the drone requires more time to reach the search area. This
delay allows the particles to disperse more before the UAV begins its search. For exam-
ple, at a speed of 18 m/s (see Table 6.1), the UAV needs roughly 9.5 minutes to fly 10
kilometers, but almost 28 minutes to travel 30 kilometers. In all experiments, there are

97

Chapter 6 UAV Path Planning Algorithms for Maritime Search and Rescue Missions

either one or two targets. First, we randomly drew whether to sample one or two targets
based on a uniform distribution. Next, we sampled the specified number of search tar-
gets at the respective distance. We report the success rates, the time to detect the first
search target, and the success rate for finding the first search target only. These metrics
are calculated as the average across all runs with identical distances to the targets. For
each table and agent, the reported numbers are averages taken over roughly 500 runs.

Of course the most important metric is the success rate, defined as the number of
found targets divided by the total number of search targets that could have been found.
The other two additional metrics provide further valuable insights. Although secondary,
it is also crucial to optimize for finding search targets quickly; for example, if the targets
are humans, a quicker detection helps prevent them from cooling down too much. The
success rate for only the first search targets, when compared with the overall success rate,
shows whether the agent was able to detect the second target as well. This comparison
is valuable because it reveals how the agents handle higher uncertainty, as these targets
have been adrift for a longer period, causing their corresponding particles to disperse
more. This is similar to the scenarios on search targets at larger distances. Roughly
equal values for ’success rate’ and ’success rate 1st’ suggest, that the agent was generally
successful in finding the second search target. On the other hand, if there is a significant
difference between the two – relative to the overall success rate – it indicates that the
second search target was often missed.

The tables are arranged in ascending order based on the distance from the UAV’s take-
off to the search targets. The lines ’Spiral’ and ’Boustrophedon’ show the results for the
respective agents as described in section 6.3. In these experiment, for the boustrophedon
agent the portion of particles that is contained in a rectangle to be searched is 0.75.
’B&B 15’, ’B&B 35’, and ’B&B 50’ denote the branch and bound planners from section
6.3; the number indicates the maximum duration, in minutes, that the UAV dedicates to
searching for a target inside a rectangle using the branch and bound method. Specifically,
the first seeks for 15 minutes, the second for up to 35 minutes, and the last for 50 minutes.
Once the UAV identifies a search target, it immediately halts the search and moves on to
the next target, indifferent to the time already spent.

Table 6.2 shows the results for the experiments where the search targets were sampled
roughly 10 km away from the UAV’s take off. Judging by their performance, it is the
easiest task for the planning algorithms. This makes sense, as the UAV does not need
to fly far before arriving at the position of the first targets. Hence the uncertainty about
the position while searching is relatively low. Especially the spiral agent profits from
that, as it starts its search at the point of highest probability, the center of the particle
cloud, making it the best performing planner in this case. Its time of success for the first
target is close to optimal. We were surprised by the boustrophedon planner’s worse per-
formance compared to the spiral. We argue that is due to the rectangular agent starting
its search at the edge of the particle cloud, a low probability area. This allows the parti-
cles to disperse before exploring areas with a higher likelihood. The branch-and-bound
agents, B&B15, B&B35, and B&B50 perform well, each outperforming the boustrophe-

98

6.4 Experiments

success rate ↑ time 1st ↓ success rate 1st ↑
Spiral 0.73 15.0 min. 0.80

Boustrophedon 0.48 46.1 min. 0.60
B&B 15 0.51 21.0 min. 0.65
B&B 35 0.52 23.0 min. 0.67
B&B 50 0.62 26.9 min. 0.72

Table 6.2: Experimental results for search targets roughly 10 km off shore. The ’time 1st’
values represent the average number of minutes for the respective agent to locate the first
search target. The values for ’success rate 1st’ indicate the success rate for finding the
first search target only. Each line shows an average over roughly 500 runs.

success rate ↑ time 1st ↓ success rate 1st ↑
Spiral 0.44 30.2 min. 0.55

Boustrophedon 0.43 54.2 min. 0.57
B&B 15 0.35 32.2 min. 0.46
B&B 35 0.44 35.9 min. 0.60
B&B 50 0.54 41.3 min. 0.68

Table 6.3: Experimental results for search targets roughly 20 km off shore. The ’time 1st’
values represent the average number of minutes for the respective agent to locate the first
search target. The values for ’success rate 1st’ indicate the success rate for finding the
first search target only. Each line shows an average over roughly 500 runs.

don planner in this scenario. However, they are unable to unfold their full potential in
the easiest scenario. This can be seen by the most capable one, B&B50, still trailing the
spiral agent by roughly 10 percentage points. In general, the success rates for the first
target are quite close to the overall success rates, indicating that all agents are generally
capable of finding the second target as well.

Table 6.3 shows the search results for targets sampled at a distance of roughly 20 km.
In these experiments, we see the spiral agents’ performance deteriorating quickly (com-
pared to Table 6.2) as the uncertainty of the search targets’ location grows. It starts
searching in the center of a particle cloud, but since this cloud’s particles already dis-
persed by the time the UAV arrives, the search target does not need to be near the center.
Therefore, in some cases, the UAV is simply not fast enough to reach the search target
because the drone works its way outward in increasingly larger circles. However, in the
successful cases, this agent is the quickest at finding the search target. Surprisingly, the
boustrophedon agent’s performance does not decrease as much. However, the time spent
on finding the first search target is significantly higher than the others, indicating that it

99

Chapter 6 UAV Path Planning Algorithms for Maritime Search and Rescue Missions

success rate ↑ time 1st ↓ success rate 1st ↑
Spiral 0.10 59.0 min. 0.14

Boustrophedon 0.17 73.8 min. 0.23
B&B 15 0.16 51.2 min. 0.23
B&B 35 0.18 51.3 min. 0.27
B&B 50 0.30 58.5 min. 0.37

Table 6.4: Experimental results for search targets roughly 30 km off shore. The ’time 1st’
values represent the average number of minutes for the respective agent to locate the first
search target. The values for ’success rate 1st’ indicate the success rate for finding the
first search target only. Each line shows an average over roughly 500 runs.

generally locates targets through persistence rather than efficiency. For the branch and
bound agents, while their performance also decreases, it is not as drastic as for the spiral
agent. Also, they deliver the best search performance for this scenario. The ratio between
success rate for the first target and overall success rate3 shows, that the spiral agent and
B&B50 are the agents with the best balance for the trade-off between searching for the
first target and giving up on it in favour of a chance on finding the second.

Table 6.4 shows the results for experiments with targets at a distance of roughly 30 km
from the UAV’s take-off position. Notably, the performance of all agents is relatively low
compared to the results shown in Tables 6.2 and 6.3, confirming the assumption, that this
is the hardest task, as the search targets are sampled at the largest distance to the take-
off position. We observe that B&B50, the agent investing the most resources in finding
each target, achieves the highest performance, both overall and for the first search target.
The ratio between success rate for the first target and overall success rate is the lowest
for B&B50, meaning that it is the agent most successful at finding the second search
targets3. That is, although it spends quite some time on the first search target, making
the agent’s belief about the second target’s location very uncertain. Notably, the spiral
agent’s search time is not the smallest for this task.

6.5 Conclusion and Outlook
We have developed an improved path planning algorithm for UAVs in maritime search
and rescue missions. Recognizing the challenges of dynamic maritime conditions and

3For each run, we sampled either one or two search targets with uniform probability. Therefore, there are
approximately as many runs with two targets as there are with one target or, roughly speaking, twice
as many first search targets as there are second search targets over all runs. Hence, for an agent never
finding the second search target, we would expect a ratio of 3/2 between ’success rate 1st’ and ’success
rate’. Conversely, an agent with comparable performance in finding both the first and the second search
targets would have a ratio close to 1 between these two quantities.

100

6.5 Conclusion and Outlook

uncertain target locations, our method integrates real-time meteorological data and prob-
abilistic models. This offers a more adaptive and effective approach than existing so-
lutions. Our research also highlighted the subtle differences of traditional particle fil-
ters when primarily faced with negative measurements in maritime contexts. Looking
forward, we aim to further refine the presented algorithms. Investigating coordinated
multi-UAV missions could also improve maritime search and rescue operations.

The next chapter gives concluding remarks for this dissertation and provides an out-
look on what steps might be interesting to take from here to extend this research.

101

Chapter 6 UAV Path Planning Algorithms for Maritime Search and Rescue Missions

Figure 6.7: An unfavorable case for boustrophedon search: The two images show two
closely consecutive moments in a target search, as can be seen by the simulation time in
the top right corner of either image. In the top image, the UAV (red and white square)
is moving north in a straight line, then turning at the northern end of the search area to
fly south afterwards – this is shown in the bottom image. The search target (red particle,
highlighted by a circle around it) moves west of the UAV’s position while the drone is
turning around at the northern edge of its rectangular search pattern. Plots are taken from
our framework.

102

Chapter 7

Conclusion

The goal of this dissertation is to improve UAV–based maritime search and rescue (mSAR)
operations, particularly the search part. In order to achieve this, we explored various top-
ics, including computer vision and path planning. The results in the different areas are
discussed in this summarizing chapter.

This work began with Chapter 2 by investigating the practical implementation of a
maritime search and rescue mission employing a UAV. Our investigation focused on
small fixed-wing drones and quadcopters to ensure the feasibility of our researched ap-
proaches for small SAR organizations operating on a tight budget. Additionally, we
developed and published a software framework designed for mSAR operations. It en-
ables preliminary detection of regions of interest onboard the drone, followed by more
powerful object detectors on a ground station. This framework is able to stream the RoIs
in high resolution while transmitting the rest of the image in lower quality, thereby ad-
dressing the challenge of limited bandwidth. Finally, we explored various RoI proposal
methods under different bandwidth constraints. The key question was, how to utilize the
limited bandwidth optimally to maximize detections.

Focusing on the computer vision aspects, Chapter 3 analyzed domain imbalances in
various popular UAV object detection data sets. We found that many data sets are heav-
ily imbalanced with respect to various environmental circumstances like altitude, view-
ing angle, and lighting conditions. We went on to show that these imbalances cause
models to perform well in certain domains while failing in others, ultimately hindering
performance. To mitigate these confounders, the chapter proposed a multi-domain learn-
ing approach that utilizes domain labels available from the UAV’s sensors. We trained
expert models on specific domains to enhance their domain-specific performance. Adap-
tively utilizing these specialized models on their corresponding domains led to an overall
increase in performance across all domains.

Learning from the last chapter that the bird’s eye view (BEV) domain is especially
hard for object detectors, Chapter 4 introduced the Adaptive Resizer, a method designed
to address scale variance in BEV imagery. This technique resizes images in a prepro-
cessing step based on the UAV’s capture altitude. This ensures that objects of the same
class appear at a consistent scale across all images, thereby simplifying the detection task
for the deep learning model. As a byproduct, the Adaptive Resizer is capable of trans-

103

Chapter 7 Conclusion

ferring knowledge between different heights, allowing models trained on images from
specific altitudes to generalize well to images captured at different altitudes. This allevi-
ates the burden of domain imbalances, as discussed in Chapter 3, while also addressing
the problem of small data sets for UAV computer vision, as discussed in Chapter 1.

To address these issues not only from the algorithmic perspective but also from the data
set side, Chapter 5 introduced the SeaDronesSee data set. It features three tracks: single-
object tracking, multi-object tracking, and object detection. With over 54,000 annotated
frames for the tracking track and over 5,500 images for the object detection challenge
featuring instances of humans and boats, this is the first UAV maritime computer vision
data set of this scale. Furthermore, it is the first to include dense meta-data gathered
from the UAV’s various sensors. We introduced baseline models for all the tracks and
provide an evaluation web server for researchers to test their models. Furthermore, we
tested some of the meta-data-aware approaches from Chapters 3 and 4 on this data set
and showed that these could enhance the results.

After focusing on the computer vision aspects in the last few chapters, Chapter 6 ex-
plores different trajectory planning techniques for UAVs in maritime search and rescue
(mSAR) missions. In particular, we present a more effective path planning strategy based
on the well-known branch-and-bound algorithm. It takes into account real-time meteo-
rological data like wind flow and water currents, and uses this data to model the search
targets’ movement employing a particle filter. Compared to environmental-agnostic plan-
ners, this approach enhances performance. To test these approaches, we again devel-
oped and published a software framework that downloads the meteorological data, runs
the path planning algorithm, and evaluates its performance using drift simulation of the
search targets.

In conclusion, this dissertation presents various approaches for enhancing UAV-based
maritime search and rescue missions. The research addressed challenges in object de-
tection, path planning, and the technical implementation, both algorithmically, through
the collection of data sets, and the development of software solutions. We achieved im-
provements in multiple aspects of mSAR operations. We emphasized the importance of
integrating environmental data in both detection and trajectory planning.

Future work could explore the coordination of multiple UAVs in mSAR missions or
develop ideas on how to integrate angle information into an adaptive detection model.

104

Bibliography
Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., and Sousa, J. J. (2017).

Hyperspectral imaging: A review on uav-based sensors, data processing and applica-
tions for agriculture and forestry. Remote Sensing, 9(11), 1110.

Airbus (2018). Airbus Ship Detection Challenge. https://www.kaggle.com/c/
airbus-ship-detection. Accessed: 2021-03-01.

Albanese, A., Sciancalepore, V., and Costa-Pérez, X. (2020). Sardo: An automated
search-and-rescue drone-based solution for victims localization. arXiv preprint
arXiv:2003.05819.

Antonini, A., Guerra, W., Murali, V., Sayre-McCord, T., and Karaman, S. (2018). The
blackbird dataset: A large-scale dataset for uav perception in aggressive flight. In
International Symposium on Experimental Robotics, pages 130–139. Springer.

Bashmal, L., Bazi, Y., AlHichri, H., AlRahhal, M. M., Ammour, N., and Alajlan, N.
(2018). Siamese-gan: Learning invariant representations for aerial vehicle image cat-
egorization. Remote Sensing, 10(2), 351.

Berger, J., Lo, N., and Noel, M. (2013). Exact solution for search-and-rescue path plan-
ning. International Journal of Computer and Communication Engineering, 2(3), 266.

Bergmann, P., Meinhardt, T., and Leal-Taixé, L. (2019). Tracking without bells and
whistles. In The IEEE International Conference on Computer Vision (ICCV).

Bhat, G., Danelljan, M., Gool, L. V., and Timofte, R. (2019). Learning discriminative
model prediction for tracking. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 6182–6191.

Bourgault, F., Furukawa, T., and Durrant-Whyte, H. F. (2006). Optimal search for a lost
target in a bayesian world. Field and Service Robotics: Recent Advances in Reserch
and Applications, pages 209–222.

Bozcan, I. and Kayacan, E. (2020). Au-air: A multi-modal unmanned aerial vehicle
dataset for low altitude traffic surveillance. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 8504–8510. IEEE.

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.

105

https://www.kaggle.com/c/airbus-ship-detection
https://www.kaggle.com/c/airbus-ship-detection

Bibliography

Breivik, Ø. and Allen, A. A. (2008). An operational search and rescue model for the
norwegian sea and the north sea. Journal of Marine Systems, 69(1-2), 99–113.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko, S. (2020).
End-to-end object detection with transformers. In European conference on computer
vision, pages 213–229. Springer.

Caruana, R. (1997). Multitask learning. Machine learning, 28(1), 41–75.

CCG Manual (2023). Canadian Coast Guard Auxiliary Search & Rescue Crew
Manual. https://ccga-pacific.org/files/library/Chapter_9_
Search.pdf. Accessed: 2023-08-16.

Chattopadhay, A., Sarkar, A., Howlader, P., and Balasubramanian, V. N. (2018). Grad-
cam++: Generalized gradient-based visual explanations for deep convolutional net-
works. In 2018 IEEE winter conference on applications of computer vision (WACV),
pages 839–847. IEEE.

Chen, Q., Wang, Y., Yang, T., Zhang, X., Cheng, J., and Sun, J. (2021). You only look
one-level feature. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 13039–13048.

Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G. A., and Burgard, W. (2005). Prin-
ciples of robot motion: theory, algorithms, and implementations. MIT press.

Clausen, J. (1999). Branch and bound algorithms-principles and examples. Department
of Computer Science, University of Copenhagen, pages 1–30.

Coles-Brennan, C., Sulley, A., and Young, G. (2019). Management of digital eye strain.
Clinical and Experimental Optometry, 102.

Corbane, C., Najman, L., Pecoul, E., Demagistri, L., and Petit, M. (2010). A complete
processing chain for ship detection using optical satellite imagery. International Jour-
nal of Remote Sensing, 31(22), 5837–5854.

Council, V. (2016). Eyes overexposed: the digital device dilemma. Alexandria, VA: The
Vision Councile.

Crisp, D. J. (2004). The state-of-the-art in ship detection in synthetic aperture radar
imagery. DSTO Information Sciences Laboratory Edinburgh, Australia.

Dagestad, K.-F., Röhrs, J., Breivik, Ø., and Ådlandsvik, B. (2018). Opendrift v1. 0: a
generic framework for trajectory modelling. Geoscientific Model Development, 11(4),
1405–1420.

106

https://ccga-pacific.org/files/library/Chapter_9_Search.pdf
https://ccga-pacific.org/files/library/Chapter_9_Search.pdf

Bibliography

Danelljan, M., Bhat, G., Khan, F. S., and Felsberg, M. (2019). Atom: Accurate tracking
by overlap maximization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4660–4669.

Danelljan, M., Gool, L. V., and Timofte, R. (2020). Probabilistic regression for visual
tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 7183–7192.

DarkLabel (2020). Darklabel video/image labeling and annotation tool. https://
github.com/darkpgmr/DarkLabel. Accessed: 2021-01-11.

Dendorfer, P., Rezatofighi, H., Milan, A., Shi, J., Cremers, D., Reid, I., Roth, S.,
Schindler, K., Leal-Taixé, L., and Taixé, T. (2020). MOT20: A benchmark for multi
object tracking in crowded scenes. Technical report.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee.

Deng, L. (2012). The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine, 29(6), 141–142.

Ding, J., Xue, N., Long, Y., Xia, G.-S., and Lu, Q. (2018). Learning roi transformer for
detecting oriented objects in aerial images. arXiv preprint arXiv:1812.00155.

Ditty, M., Karandikar, A., and Reed, D. (2018). Nvidia’s xavier soc. In Hot chips: a
symposium on high performance chips.

DJI (2018). Data Sheet DJI Matrice M210. https://shop.solectric.de/
media/pdf/5a/b4/41/spezifikation_matrice210v2.pdf. Accessed:
2023-11-02.

Du, D., Qi, Y., Yu, H., Yang, Y., Duan, K., Li, G., Zhang, W., Huang, Q., and Tian,
Q. (2018). The unmanned aerial vehicle benchmark: Object detection and tracking.
In Proceedings of the European Conference on Computer Vision (ECCV), pages 370–
386.

Du, D., Zhu, P., Wen, L., Bian, X., Lin, H., Hu, Q., Peng, T., Zheng, J., Wang, X., Zhang,
Y., et al. (2019). VisDrone-DET2019: The vision meets drone object detection in
image challenge results. In Proceedings - 2019 International Conference on Computer
Vision Workshop, ICCVW 2019, pages 213–226. Institute of Electrical and Electronics
Engineers Inc.

ElevonX (2023). Data Sheet ElevonX SkyEye. https://www.elevonx.com/
wp-content/uploads/2022/10/ElevonX.pdf. Accessed: 2023-08-17.

107

https://github.com/darkpgmr/DarkLabel
https://github.com/darkpgmr/DarkLabel
https://shop.solectric.de/media/pdf/5a/b4/41/spezifikation_matrice210v2.pdf
https://shop.solectric.de/media/pdf/5a/b4/41/spezifikation_matrice210v2.pdf
https://www.elevonx.com/wp-content/uploads/2022/10/ElevonX.pdf
https://www.elevonx.com/wp-content/uploads/2022/10/ElevonX.pdf

Bibliography

Elfring, J., Torta, E., and van de Molengraft, R. (2021). Particle filters: A hands-on
tutorial. Sensors, 21(2), 438.

Emmert-Streib, F., Yang, Z., Feng, H., Tripathi, S., and Dehmer, M. (2020). An introduc-
tory review of deep learning for prediction models with big data. Frontiers in Artificial
Intelligence, 3.

Epstein, R. A. and Baker, C. I. (2019). Scene perception in the human brain. Annual
review of vision science, 5, 373–397.

Everingham et al., M. (2015). The pascal visual object classes challenge: A retrospective.
International journal of computer vision, 111(1), 98–136.

Fan, H., Du, D., Wen, L., Zhu, P., Hu, Q., Ling, H., Shah, M., Pan, J., Schumann, A.,
Dong, B., et al. (2020a). Visdrone-mot2020: The vision meets drone multiple object
tracking challenge results. In European Conference on Computer Vision, pages 713–
727. Springer.

Fan, H., Wen, L., Du, D., Zhu, P., Hu, Q., Ling, H., Shah, M., Wang, B., Dong, B.,
Yuan, D., et al. (2020b). Visdrone-sot2020: The vision meets drone single object
tracking challenge results. In European Conference on Computer Vision, pages 728–
749. Springer.

Farhadi, A. and Redmon, J. (2018). Yolov3: An incremental improvement. Computer
Vision and Pattern Recognition.

Fonder, M. and Van Droogenbroeck, M. (2019). Mid-air: A multi-modal dataset for
extremely low altitude drone flights. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops, 2019-June, 553–562.

Frontex (2024). Detections of illegal border-crossings statis-
tics. https://www.frontex.europa.eu/what-we-do/
monitoring-and-risk-analysis/migratory-map/. Accessed: 2024-
05-21.

Gallego, A.-J., Pertusa, A., Gil, P., and Fisher, R. B. (2019). Detection of bodies in mar-
itime rescue operations using unmanned aerial vehicles with multispectral cameras.
Journal of Field Robotics, 36(4), 782–796.

Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision meets robotics: The kitti
dataset. The International Journal of Robotics Research, 32(11), 1231–1237.

Geraldes, R., Goncalves, A., Lai, T., Villerabel, M., Deng, W., Salta, A., Nakayama, K.,
Matsuo, Y., and Prendinger, H. (2019). Uav-based situational awareness system using
deep learning. IEEE Access, 7, 122583–122594.

108

https://www.frontex.europa.eu/what-we-do/monitoring-and-risk-analysis/migratory-map/
https://www.frontex.europa.eu/what-we-do/monitoring-and-risk-analysis/migratory-map/

Bibliography

Ghazali, S. N. A. M., Anuar, H. A., Zakaria, S. N. A. S., and Yusoff, Z. (2016). De-
termining position of target subjects in maritime search and rescue (msar) operations
using rotary wing unmanned aerial vehicles (uavs). In 2016 International Conference
on Information and Communication Technology (ICICTM), pages 1–4. IEEE.

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on
computer vision, pages 1440–1448.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2020). Generative adversarial networks. Communi-
cations of the ACM, 63(11), 139–144.

Guoxiang, L. and Maofeng, L. (2010). Sargis: A gis-based decision-making support sys-
tem for maritime search and rescue. In 2010 International Conference on E-Business
and E-Government, pages 1571–1574. IEEE.

Han, Y., Roig, G., Geiger, G., and Poggio, T. (2020). Scale and translation-invariance
for novel objects in human vision. Scientific reports, 10(1), 1–13.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778.

Höfer, T., Kiefer, B., Messmer, M., and Zell, A. (2023). Hyperposepdf-hypernetworks
predicting the probability distribution on so (3). In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages 2369–2379.

Hong, S., Kang, S., and Cho, D. (2019). Patch-level augmentation for object detection in
aerial images. In Proceedings of the IEEE/CVF International Conference on Computer
Vision Workshops, pages 0–0.

Hsieh, M.-R., Lin, Y.-L., and Hsu, W. H. (2017). Drone-based object counting by spa-
tially regularized regional proposal network. In Proceedings of the IEEE International
Conference on Computer Vision, pages 4145–4153.

Huang, H., Huo, C., Wei, F., and Pan, C. (2019). Rotation and scale-invariant object
detector for high resolution optical remote sensing images. In IGARSS 2019-2019
IEEE International Geoscience and Remote Sensing Symposium, pages 1386–1389.
IEEE.

HYCOM (2003). HYbrid Coordinate Ocean Model (HYCOM). https://www.
hycom.org/. Accessed: 2023-08-29.

International Organization for Migration (Missing Migrants Project) (2024). Dead
and missing by year. https://missingmigrants.iom.int/region/
mediterranean. Accessed: 2024-05-14.

109

https://www.hycom.org/
https://www.hycom.org/
https://missingmigrants.iom.int/region/mediterranean
https://missingmigrants.iom.int/region/mediterranean

Bibliography

Iwamoto, M. M., Langenberger, F., and Ostrander, C. E. (2016). Ocean observing: serv-
ing stakeholders in the pacific islands. Marine Technology Society Journal, 50(3),
47–54.

Jedrasiak, K., Bereska, D., and Nawrat, A. (2013). The prototype of gyro-stabilized uav
gimbal for day-night surveillance. In Advanced technologies for intelligent systems of
national border security, pages 107–115. Springer.

Jiang, P., Ergu, D., Liu, F., Cai, Y., and Ma, B. (2022). A review of yolo algorithm
developments. Procedia computer science, 199, 1066–1073.

Karaca, Y., Cicek, M., Tatli, O., Sahin, A., Pasli, S., Beser, M. F., and Turedi, S. (2018).
The potential use of unmanned aircraft systems (drones) in mountain search and rescue
operations. The American journal of emergency medicine, 36(4), 583–588.

Kiefer, B. and Zell, A. (2023). Fast region of interest proposals on maritime uavs.
In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages
3317–3324.

Kiefer, B., Messmer, M., and Zell, A. (2021). Diminishing domain bias by leveraging
domain labels in object detection on uavs. In 2021 20th International Conference on
Advanced Robotics (ICAR), pages 523–530. IEEE.

Kiefer, B., Žust, L., Kristan, M., Perš, J., Teršek, M., Wiliem, A., Messmer, M., Yang, C.-
Y., Huang, H.-W., Jiang, Z., et al. (2024). 2nd workshop on maritime computer vision
(macvi) 2024: Challenge results. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 869–891.

Kim et. al., S. (2020). Height-adaptive vehicle detection in aerial imagery using metadata
of eo sensor. In Automatic Target Recognition XXX, volume 11394, page 1139404.
International Society for Optics and Photonics.

Kokkinos, I. and Yuille, A. (2008). Scale invariance without scale selection. In 2008
IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE.

Krajewski, R., Bock, J., Kloeker, L., and Eckstein, L. (2018). The highd dataset: A
drone dataset of naturalistic vehicle trajectories on german highways for validation of
highly automated driving systems. In 2018 21st International Conference on Intelli-
gent Transportation Systems (ITSC), pages 2118–2125. IEEE.

Kratzke, T. M., Stone, L. D., and Frost, J. R. (2010). Search and rescue optimal planning
system. In 2010 13th International Conference on Information Fusion, pages 1–8.
IEEE.

110

Bibliography

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems,
25.

Kulhavy, D. L., Hung, I., Unger, D., Zhang, Y., et al. (2017). Accuracy assessment on
drone measured heights at different height levels. Accessed: 2024-04-09.

Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Kamali,
S., Popov, S., Malloci, M., Kolesnikov, A., et al. (2020). The open images dataset
v4: Unified image classification, object detection, and visual relationship detection at
scale. International journal of computer vision, 128(7), 1956–1981.

Land, A. H. and Doig, A. G. (1960). An automatic method of solving discrete program-
ming problems. Econometrica, 28(3), 497–520.

Lee, H., Eum, S., and Kwon, H. (2019). ME r-cnn: Multi-expert r-cnn for object detec-
tion. IEEE Transactions on Image Processing, 29, 1030–1044.

Lee, N., Ajanthan, T., and Torr, P. H. (2018). Snip: Single-shot network pruning based
on connection sensitivity. arXiv preprint arXiv:1810.02340.

Li, J., Zhang, G., Jiang, C., and Zhang, W. (2023). A survey of maritime unmanned
search system: Theory, applications and future directions. Ocean Engineering, 285,
115359.

Li, Q., Mou, L., Liu, Q., Wang, Y., and Zhu, X. X. (2018). Hsf-net: Multiscale deep
feature embedding for ship detection in optical remote sensing imagery. IEEE Trans-
actions on Geoscience and Remote Sensing, 56(12), 7147–7161.

Li, S. and Yeung, D.-Y. (2017). Visual object tracking for unmanned aerial vehicles:
A benchmark and new motion models. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 31.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and
Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-
12, 2014, Proceedings, Part V 13, pages 740–755. Springer.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017). Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer
vision, pages 2980–2988.

Lin et. al., T.-Y. (2017). Feature pyramid networks for object detection. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 2117–2125.

111

Bibliography

Liu, S., Huang, D., and Wang, Y. (2019). Learning spatial fusion for single-shot object
detection. arXiv preprint arXiv:1911.09516.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021). Swin
transformer: Hierarchical vision transformer using shifted windows. arXiv preprint
arXiv:2103.14030.

Lvsouras, E. and Gasteratos, A. (2020). A new method to combine detection and tracking
algorithms for fast and accurate human localization in uav-based sar operations. In
2020 International Conference on Unmanned Aircraft Systems (ICUAS), pages 1688–
1696. IEEE.

Lygouras, E., Santavas, N., Taitzoglou, A., Tarchanidis, K., Mitropoulos, A., and Gaster-
atos, A. (2019). Unsupervised human detection with an embedded vision system on a
fully autonomous uav for search and rescue operations. Sensors, 19(16), 3542.

Majdik, A. L., Till, C., and Scaramuzza, D. (2017). The zurich urban micro aerial vehicle
dataset. The International Journal of Robotics Research, 36(3), 269–273.

Martinez-Alpiste, I., Golcarenarenji, G., Wang, Q., and Alcaraz-Calero, J. M. (2021).
Search and rescue operation using uavs: A case study. Expert Systems with Applica-
tions, 178, 114937.

Mayer, S., Lischke, L., and Woźniak, P. W. (2019). Drones for search and rescue. In 1st
International Workshop on Human-Drone Interaction.

Messmer, M. and Zell, A. (2024). Evaluating uav path planning algorithms for realistic
maritime search and rescue missions. In 2024 International Conference on Unmanned
Aircraft Systems (ICUAS), pages 472–479. IEEE.

Messmer, M., Kiefer, B., and Zell, A. (2022). Gaining scale invariance in uav bird’s eye
view object detection by adaptive resizing. In 2022 26th International Conference on
Pattern Recognition (ICPR), pages 3588–3594. IEEE.

Messmer, M., Kiefer, B., Varga, L. A., and Zell, A. (2024). Uav-assisted maritime search
and rescue: A holistic approach. In 2024 International Conference on Unmanned
Aircraft Systems (ICUAS), pages 272–280. IEEE.

Milan, A., Leal-Taixé, L., Reid, I., Roth, S., and Schindler, K. (2016). Mot16: A bench-
mark for multi-object tracking. arXiv preprint arXiv:1603.00831.

Mishra, B., Garg, D., Narang, P., and Mishra, V. (2020). Drone-surveillance for search
and rescue in natural disaster. Computer Communications, 156, 1–10.

112

Bibliography

Morin, M., Lamontagne, L., Abi-Zeid, I., and Maupin, P. (2010). The ant search algo-
rithm: An ant colony optimization algorithm for the optimal searcher path problem
with visibility. In Advances in Artificial Intelligence: 23rd Canadian Conference on
Artificial Intelligence, Canadian AI 2010, Ottawa, Canada, May 31–June 2, 2010.
Proceedings 23, pages 196–207. Springer.

Mueller, M., Smith, N., and Ghanem, B. (2016). A benchmark and simulator for uav
tracking. In European conference on computer vision, pages 445–461. Springer.

Mundhenk, T. N., Konjevod, G., Sakla, W. A., and Boakye, K. (2016). A large contex-
tual dataset for classification, detection and counting of cars with deep learning. In
European Conference on Computer Vision, pages 785–800. Springer.

Nasr, I., Chekir, M., and Besbes, H. (2019). Shipwrecked victims localization and track-
ing using uavs. In 2019 15th International Wireless Communications & Mobile Com-
puting Conference (IWCMC), pages 1344–1348. IEEE.

Ofli, F., Meier, P., Imran, M., Castillo, C., Tuia, D., Rey, N., Briant, J., Millet, P., Rein-
hard, F., Parkan, M., et al. (2016). Combining human computing and machine learning
to make sense of big (aerial) data for disaster response. Big data, 4(1), 47–59.

Oksuz, K., Cam, B. C., Kalkan, S., and Akbas, E. (2020). Imbalance problems in object
detection: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence.

Orin, N. (2020). NVIDIA Orin NX. https://www.nvidia.com/de-de/
autonomous-machines/embedded-systems/jetson-orin/. Accessed:
2024-01-28.

Papers with Code (2021). Object Detection on COCO test-dev. https://
paperswithcode.com/sota/object-detection-on-coco. Accessed:
2021-03-01.

Papers with Code (2024a). COCO Benchmark Leader-
bord. https://paperswithcode.com/sota/
real-time-object-detection-on-coco?dimension=FPS%
20(V100%2C%20b%3D1). Accessed: 2024-01-27.

Papers with Code (2024b). Object Detection on COCO test-dev. https://
paperswithcode.com/area/computer-vision. Accessed: 2024-05-22.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
Pytorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc.

113

https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/jetson-orin/
https://paperswithcode.com/sota/object-detection-on-coco
https://paperswithcode.com/sota/object-detection-on-coco
https://paperswithcode.com/sota/real-time-object-detection-on-coco?dimension=FPS%20(V100%2C%20b%3D1)
https://paperswithcode.com/sota/real-time-object-detection-on-coco?dimension=FPS%20(V100%2C%20b%3D1)
https://paperswithcode.com/sota/real-time-object-detection-on-coco?dimension=FPS%20(V100%2C%20b%3D1)
https://paperswithcode.com/area/computer-vision
https://paperswithcode.com/area/computer-vision

Bibliography

Pei, Z., Qi, X., Zhang, Y., Ma, M., and Yang, Y.-H. (2019). Human trajectory prediction
in crowded scene using social-affinity long short-term memory. Pattern Recognition,
93, 273–282.

Perreault et. al., H. (2020). SpotNet: Self-Attention Multi-Task Network for Object
Detection. pages 230–237. Institute of Electrical and Electronics Engineers Inc.

Prasad, D. K., Dong, H., Rajan, D., and Quek, C. (2019). Are object detection assess-
ment criteria ready for maritime computer vision? IEEE Transactions on Intelligent
Transportation Systems, 21(12), 5295–5304.

Quantum, S. (2020a). Camera Overview Trinity F90+. https://t6y2v7k3.
rocketcdn.me/wp-content/uploads/2023/01/QS_Trinity_
Overview_Cameras_V01_220711.pdf. Accessed: 2023-11-02.

Quantum, S. (2020b). Data Sheet Trinity F90+. https://quantum-systems.
com/wp-content/uploads/2023/01/QS_TrinityF90_Overview_
220912.pdf. Accessed: 2023-08-20.

Queralta, J. P., Raitoharju, J., Gia, T. N., Passalis, N., and Westerlund, T. (2020).
Autosos: Towards multi-uav systems supporting maritime search and rescue with
lightweight ai and edge computing. arXiv preprint arXiv:2005.03409.

Raap, M., Zsifkovits, M., and Pickl, S. (2017). Trajectory optimization under kinematical
constraints for moving target search. Computers & Operations Research, 88, 324–331.

Raap, M., Preuß, M., and Meyer-Nieberg, S. (2019). Moving target search optimization–
a literature review. Computers & Operations Research, 105, 132–140.

Rajesh, R. and Kavitha, P. (2015). Camera gimbal stabilization using conventional pid
controller and evolutionary algorithms. In 2015 International Conference on Com-
puter, Communication and Control (IC4), pages 1–6. IEEE.

Redmon et. al., J. (2016). You only look once: Unified, real-time object detection. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
779–788.

Ren, S., He, K., Girshick, R., and Sun, J. (2016). Faster r-cnn: Towards real-time object
detection with region proposal networks. IEEE transactions on pattern analysis and
machine intelligence, 39(6), 1137–1149.

Riehl, J. R., Collins, G. E., and Hespanha, J. P. (2007). Cooperative graph-based model
predictive search. In 2007 46th IEEE Conference on Decision and Control, pages
2998–3004. IEEE.

114

https://t6y2v7k3.rocketcdn.me/wp-content/uploads/2023/01/QS_Trinity_Overview_Cameras_V01_220711.pdf
https://t6y2v7k3.rocketcdn.me/wp-content/uploads/2023/01/QS_Trinity_Overview_Cameras_V01_220711.pdf
https://t6y2v7k3.rocketcdn.me/wp-content/uploads/2023/01/QS_Trinity_Overview_Cameras_V01_220711.pdf
https://quantum-systems.com/wp-content/uploads/2023/01/QS_TrinityF90_Overview_220912.pdf
https://quantum-systems.com/wp-content/uploads/2023/01/QS_TrinityF90_Overview_220912.pdf
https://quantum-systems.com/wp-content/uploads/2023/01/QS_TrinityF90_Overview_220912.pdf

Bibliography

Ringwald et. al., T. (2019). UAV-Net: A Fast Aerial Vehicle Detector for Mobile Plat-
forms. In IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition Workshops, pages 544–552. IEEE Computer Society.

Ristani, E., Solera, F., Zou, R., Cucchiara, R., and Tomasi, C. (2016). Performance mea-
sures and a data set for multi-target, multi-camera tracking. In European conference
on computer vision, pages 17–35. Springer.

Roberts, W., Griendling, K., Gray, A., and Mavris, D. (2016). Unmanned vehicle col-
laboration research environment for maritime search and rescue. In 30th Congress of
the International Council of the Aeronautical Sciences. International Council of the
Aeronautical Sciences (ICAS) Bonn, Germany.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2022). High-
resolution image synthesis with latent diffusion models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 10684–
10695.

Russell, S. J. (2010). Artificial intelligence: a modern approach. Pearson Education,
Inc.

San, K. T., Mun, S. J., Choe, Y. H., and Chang, Y. S. (2018). Uav delivery monitoring
system. In MATEC Web of Conferences, volume 151, page 04011. EDP Sciences.

Sato, H. (2008). Path optimization for single and multiple searchers: models and algo-
rithms. Ph.D. thesis, Citeseer.

Ševo, I. and Avramović, A. (2016). Convolutional neural network based automatic object
detection on aerial images. IEEE geoscience and remote sensing letters, 13(5), 740–
744.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mas-
tering the game of go with deep neural networks and tree search. nature, 529(7587),
484–489.

Singh, B. and Davis, L. S. (2018). An Analysis of Scale Invariance in Object Detection
- SNIP. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3578–3587. IEEE Computer Society.

Sitemark (2020). Aerial data accuracy – an experiment comparing 4 drone approaches.
https://www.sitemark.com/blog/accuracy. Accessed: 2021-01-11.

Sommer, L. W., Schuchert, T., and Beyerer, J. (2017). Fast deep vehicle detection in
aerial images. In 2017 IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 311–319. IEEE.

115

https://www.sitemark.com/blog/accuracy

Bibliography

Stabernack, B. and Steinert, F. (2021). Architecture of a low latency h. 264/avc video
codec for robust ml based image classification. In Workshop on Design and Architec-
tures for Signal and Image Processing (14th edition), pages 1–9.

Sullivan, J. M. (2008). Visual fatigue and the driver. Technical report, University of
Michigan, Ann Arbor, Transportation Research Institute.

Suzuki, S. et al. (1985). Topological structural analysis of digitized binary images by
border following. Computer vision, graphics, and image processing, 30(1), 32–46.

Taha, H. A. (2007). Operations research: an introduction. Pearson Prentice Hall.

Tan, M. and Le, Q. V. (2019). EfficientNet: Rethinking model scaling for convolu-
tional neural networks. In 36th International Conference on Machine Learning, pages
10691–10700.

Tan, M., Pang, R., and Le, Q. V. (2020). Efficientdet: Scalable and efficient object de-
tection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10781–10790.

Tian et. al., Z. (2019). FCOS: Fully convolutional one-stage object detection. In Proceed-
ings of the IEEE International Conference on Computer Vision, pages 9626–9635.

Tiemann, J., Feldmeier, O., and Wietfeld, C. (2018). Supporting maritime search and
rescue missions through uas-based wireless localization. In 2018 IEEE Globecom
Workshops (GC Wkshps), pages 1–6. IEEE.

UN Trade and Development (2023). World seaborne trade by types of cargo and by group
of economies, annual. https://unctadstat.unctad.org/datacentre/
dataviewer/US.SeaborneTrade. Accessed: 2024-05-21.

Unel et. al., O. (2019). The power of tiling for small object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.

van Gemert, J. C., Verschoor, C. R., Mettes, P., Epema, K., Koh, L. P., and Wich, S.
(2014). Nature conservation drones for automatic localization and counting of ani-
mals. In European Conference on Computer Vision, pages 255–270. Springer.

Vanholder, H. (2016). Efficient inference with tensorrt. In GPU Technology Conference,
volume 1.

Varga, L. A. and Zell, A. (2021). Tackling the background bias in sparse object detection
via cropped windows. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 2768–2777.

116

https://unctadstat.unctad.org/datacentre/dataviewer/US.SeaborneTrade
https://unctadstat.unctad.org/datacentre/dataviewer/US.SeaborneTrade

Bibliography

Varga, L. A., Kiefer, B., Messmer, M., and Zell, A. (2022). Seadronessee: A maritime
benchmark for detecting humans in open water. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages 2260–2270.

Varga, L. A., Messmer, M., Benbarka, N., and Zell, A. (2023). Wavelength-aware 2d
convolutions for hyperspectral imaging. In Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision, pages 3788–3797.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,
and Polosukhin, I. (2017). Attention is all you need. Advances in neural information
processing systems, 30.

Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. (2023). Yolov7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7464–
7475.

Wang, X., Cai, Z., Gao, D., and Vasconcelos, N. (2019). Towards universal object detec-
tion by domain attention. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7289–7298.

Weiss, K., Khoshgoftaar, T. M., and Wang, D. (2016). A survey of transfer learning.
Journal of Big data, 3, 1–40.

Wu, J., Cheng, L., and Chu, S. (2023). Modeling the leeway drift characteristics of
persons-in-water at a sea-area scale in the seas of china. Ocean engineering, 270,
113444.

Wu, Z., Suresh, K., Narayanan, P., Xu, H., Kwon, H., and Wang, Z. (2019). Delving
into robust object detection from unmanned aerial vehicles: A deep nuisance disen-
tanglement approach. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 1201–1210.

Xia, G.-S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., and
Zhang, L. (2018). Dota: A large-scale dataset for object detection in aerial images.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3974–3983.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. (2017). Aggregated residual transfor-
mations for deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1492–1500.

Yang, F., Fan, H., Chu, P., Blasch, E., and Ling, H. (2019). Clustered object detection
in aerial images. In Proceedings of the IEEE International Conference on Computer
Vision, pages 8311–8320.

117

Bibliography

Yeong, S., King, L., and Dol, S. (2015). A review on marine search and rescue operations
using unmanned aerial vehicles. International Journal of Marine and Environmental
Sciences, 9(2), 396–399.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features
in deep neural networks? arXiv preprint arXiv:1411.1792.

Yu, F., Wang, D., Shelhamer, E., and Darrell, T. (2018). Deep layer aggregation. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
2403–2412.

Yu et al., H. (2020). The Unmanned Aerial Vehicle Benchmark: Object Detection, Track-
ing and Baseline. International Journal of Computer Vision, 128(5), 1141–1159.

Zhang, S., Chi, C., Yao, Y., Lei, Z., and Li, S. Z. (2020a). Bridging the gap between
anchor-based and anchor-free detection via adaptive training sample selection. In Pro-
ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 9756–9765.

Zhang, Y., Wang, C., Wang, X., Zeng, W., and Liu, W. (2020b). Fairmot: On the fairness
of detection and re-identification in multiple object tracking. arXiv e-prints, pages
arXiv–2004.

Zhao, Z.-Q., Zheng, P., Xu, S.-t., and Wu, X. (2019). Object detection with deep learning:
A review. IEEE transactions on neural networks and learning systems, 30(11), 3212–
3232.

Zhou, X., Wang, D., and Krähenbühl, P. (2019). Objects as Points.

Zhu, P., Wen, L., Du, D., Bian, X., Ling, H., Hu, Q., Nie, Q., Cheng, H., Liu, C., Liu,
X., et al. (2018). Visdrone-det2018: The vision meets drone object detection in image
challenge results. In Proceedings of the European Conference on Computer Vision
(ECCV) Workshops, pages 0–0.

Zhu, P., Wen, L., Du, D., Bian, X., Hu, Q., and Ling, H. (2020a). Vision meets drones:
Past, present and future. arXiv preprint arXiv:2001.06303.

Zhu, X., Su, W., Lu, L., Li, B., Wang, X., and Dai, J. (2020b). Deformable
detr: Deformable transformers for end-to-end object detection. arXiv preprint
arXiv:2010.04159.

Zhu et. al., P. (2018). Vision Meets Drones: A Challenge. arXiv.

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., and He, Q. (2020). A
comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1), 43–76.

118

Bibliography

Zimmermann, F., Eling, C., Klingbeil, L., and Kuhlmann, H. (2017). Precise positioning
of uavs-dealing with challenging rtk-gps measurement conditions during automated
uav flights. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information
Sciences, 4.

119

	1 Introduction
	1.1 UAV Computer Vision
	1.2 mSAR Path Planning
	1.3 Contribution and Outline

	2 A Holistic Approach to UAV-Assisted Maritime Search and Rescue
	2.1 Choosing the Right Drone for mSAR Missions
	2.2 Software Solution for SAR Drones
	2.3 Region of Interest Proposer Methods
	2.4 Experiments
	2.5 Conclusion

	3 Leveraging Domain Labels in Object Detection on UAVs
	3.1 Introduction
	3.2 Analyzing Domain Imbalances
	3.2.1 Domain Imbalances in the Training Set
	3.2.2 Domain Imbalances in the Testing Set

	3.3 Multi-Domain Learning Approach
	3.3.1 Simplified Training Realization
	3.3.2 Introducing a Multi-Modal Data Set

	3.4 Experimental Results and Ablations
	3.4.1 VisDrone
	3.4.2 UAVDT
	3.4.3 POG: Baseline and Expert Results

	3.5 Conclusion and Limitations

	4 Gaining Scale Invariance in UAV Object Detection by Adaptive Resizing
	4.1 Introduction
	4.2 Method
	4.2.1 Building a Detector for Embedded Deployment

	4.3 Proof of Concept on Synthetic Data
	4.4 Experiments on Real Data
	4.4.1 Results on bird's eye view Portions
	4.4.2 Effects of Cutting the Feature Pyramid Network
	4.4.3 Results on the complete UAVDT data set
	4.4.4 Time benchmarks
	4.4.5 Height Transfer

	4.5 Conclusion

	5 A Maritime Benchmark for Detecting Humans in Open Water
	5.1 Introduction
	5.2 Data Set Generation
	5.2.1 Meta Data Collection
	5.2.2 Annotation Method
	5.2.3 Data Set Split

	5.3 Data Set Tasks
	5.3.1 Object Detection
	5.3.2 Single-Object Tracking
	5.3.3 Multi-Object Tracking
	5.3.4 Multi-Spectral Footage

	5.4 Evaluations
	5.4.1 Object Detection
	5.4.2 Single-Object Tracking
	5.4.3 Multi-Object Tracking
	5.4.4 Meta-Data-Aware Object Detector

	5.5 Conclusions

	6 UAV Path Planning Algorithms for Maritime Search and Rescue Missions
	6.1 Introduction
	6.2 Related Work
	6.3 Method
	6.3.1 Background – Branch and Bound for Path Planning Problems
	6.3.2 Solving the mSAR Path Planning Problem
	6.3.3 Particle Filter with negative Measurements
	6.3.4 Search Targets' Movement Model

	6.4 Experiments
	6.5 Conclusion and Outlook

	7 Conclusion
	Bibliography

