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Zusammenfassung

Zusammenfassung

Jahrzehnte der Forschung haben gezeigt, dass uns allen ein intuitives Zahlenver-

ständnis innewohnt, das in unserem Gehirn innerhalb eines weit verteilten und doch

eng verzahnten neuronalen ‘Zahlen-Netzwerks’ fest verankert ist. Erkenntnisse über

dieses hochkomplexe System stammen im Wesentlichen aus zwei Quellen: Tiermod-

elle erlauben es, neuronale Korrelate auf der Ebene einzelner Nervenzellen zu er-

fassen; das menschliche Gehirn hingegen wird überwiegend mittels bildgebender Ver-

fahren erforscht. Im Rahmen dieser Doktorarbeit konnte ich die seltene Gelegenheit

ergreifen, die Aktivität von einzelnen Neuronen im Medialen Temporallappen (MTL)

neurologischer Patienten zu messen, und dadurch entscheidende Vorzüge der beiden

vorgenannten Ansätze vereinigen. Mittels zweier Aufgabenstellungen – die Proban-

den wurden gebeten entweder einfache Rechenaufgaben zu lösen oder die Parität

(gerade/ungerade) einer Zahl anzugeben – konnte ich verschiedene Aspekte unserer

numerischen Fähigkeiten erforschen, die den konventionellen Ansätzen bisher ver-

borgen geblieben sind.

In einem ersten entscheidenden Schritt konnte ich zeigen, dass Einzelzellen des

MTL in der Lage sind, Anzahlen und einfache arithmetische Konzepte zu kodieren.

Dabei wurden zufällige Punktmuster und Arabische Ziffern von zwei separaten

Zellpopulationen repräsentiert. Die Antwortprofile der beiden unterlagen einem ein-

heitlichen ‘Labelled-Line Code’, gleichzeitig beobachtete ich aber auch deutliche Un-

terschiede, insbesondere im Hinblick auf die Präzision der Repräsentationen. Die ge-

fundenen Zahlen- und Regelzellen könnten die fundamentalen Bausteine darstellen,

über die sich uns die Türen in die komplexe und höchst abstrakte Welt der Math-

ematik öffnen. Im Weiteren untersuchte ich das Phänomen des ‘Subitizing’: Kleine

Zahlen können ‘auf einen Blick’ erfasst werden, größere hingegen müssen langsam

gezählt oder fehleranfällig geschätzt werden. Diese Dichotomie spiegelte sich auch

im Antwortverhalten der Zellen wider und liefert einen entscheidenden Hinweis auf

das komplexe Zusammenspiel von Aufmerksamkeit, Arbeitsgedächtnis und Zahlen-

repräsentationen, dem dieses Phänomen zu Grunde zu liegen scheint. Schlussendlich

beobachtete ich, dass verschiedene Bereiche des MTL die arithmetischen Regeln auf

unterschiedliche Weise in ihren Zellpopulationen zwischenspeichern. Dieser Befund

zeigt, dass dieses hoch assoziative Areal als wesentlicher Bestandteil des kortikalen

‘Mathe-Netzwerks’ insbesondere auch in Prozessen des Arbeitsgedächtnisses eine

wichtige Rolle zu spielen scheint. All diese Erkenntnisse liefern wertvolle Puzzleteile,

die das Wissen um unser Zahlenverständnis weiter vertiefen.
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Abstract

Abstract

Decades of research have shown that animals and humans alike share an innate

‘sense of number’ that provides the cognitive start-up tool for the construction of all

formal mathematical concepts. This system is anchored in a complex, highly dis-

tributed and interconnected neuronal ‘number network’. In this thesis I could bridge

the gap between single-unit recordings in animals and macroscopic functional imag-

ing studies in humans, using the rare opportunity to record the activity of single

neurons in the medial temporal lobe (MTL) of behaving human patients. In two dif-

ferent experimental protocols, calculation task and parity judgement task, we were

able to explore several seemingly disparate aspects of numerical and mathematical

cognition, addressing questions that had yet been eluded from investigation.

As a first fundamental insight, we showed that single cells in the MTL can en-

code information about both quantities and simple arithmetic rules. These numerical

representations follow a labelled-line coding. Segregated populations of neurons that

encode numerosities and numerals with distinct tuning profiles, however, indicate dif-

ferent degrees of abstractness for nonsymbolic and symbolic stimulus formats. As a

neuronal basis of numerical and arithmetic representations these cells may ultimately

give rise to number theory and mathematics. Next, we revealed striking coding dif-

ferences between small and large numerosities, mirroring subitizing and estimation

processes that provide an intriguing link to the complex interplay of attention, work-

ing memory, and number representations. Finally, we uncovered static and dynamic

coding mechanisms in different subregions of the MTL that do not only emphasize the

MTL’s role as an integral part of a wider cortical maths network, but equally impor-

tant, highlight the substantial role this highly associative area also plays in working

memory processes. All these findings provide valuable puzzle pieces that deepen our

understanding of numerical representations constituting our ‘sense of number’.
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1.1. Representational Systems for Quantity

1. Introduction

Decades of research on numerical cognition have shown that we all share an innate

‘sense of number’ (Dehaene, 1997) which is anchored in a highly distributed and in-

terconnected neuronal ‘number network’. In combination with our ability to flexibly

adapt our behaviour according to given rules, this complex system provides the foun-

dation for the construction of all formal mathematical concepts. So far, the search

for neuronal correlates of numerical representations has spawned countless many-

faceted and most diverse findings, deepening our understanding of the underlying

brain mechanisms. At the same time, it has become more and more evident that

‘number’ is not merely an abstract concept but can only be accounted for when con-

sidering it as a unifying, overarching principle governing all cognitive domains – from

perception to action, and everything in between.

1.1. Representational Systems for Quantity

Numbers are ubiquitous: They do not only open the doors to science and technology,

but are also an integral part of our everyday life. We use them to label and distinguish

different objects or persons (for example, the shirt numbers of football players), to tell

time and date, to compare prices and discuss stock quotations, to quantify everything

imaginable. What all these examples have in common is that they usually come as

number words or Arabic digits. To represent and manipulate quantities in such a

symbolic form is a uniquely human cultural achievement that takes years of education

to master.

By the time children go to elementary school, however, they do not ‘start at zero’,

but already understand the concept of ‘cardinality’, i.e. they can assess the number of

countable elements in a set (also called numerosity), and their mathematical knowledge

includes already even more complex concepts like (approximate) addition and sub-

traction (amongst others) (Gelman and Gallistel, 1978). This indicates that symbolic

representations and fundamental arithmetic abilities build on intuitive nonsymbolic

numerical representations that do not rely on counting or number symbols.

1.1.1. Mental Number Line and Analogue Magnitude System (ANS)

One of the most fundamental assumptions about internal numerical representations

is the idea of a ‘mental number line’ on which quantities are represented according to

ordinal numerical distance. Indeed, humans seem to share the intuition that numbers

map onto space. An extensively studied example for this relationship is the ‘spatial

numerical association of response codes’ (SNARC) effect (Dehaene et al., 1993), the obser-

vation that small numbers elicit faster leftward responses and large numbers faster

rightward responses, even when magnitude is irrelevant. This effect seems to be
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1. Introduction

rather amodal (it was observed, e.g. for Arabic numbers, number words, dot patterns

or even auditory stimuli; Nuerk et al., 2005; Zhou et al., 2016), but the directionality

of mapping is strongly influenced by culture-specific experiences and the dominant

context in which numerical notations are typically presented: Dehaene et al. (1993)

observed their left-to-right mapping in Western students who usually write from left

to right, but reported reversed directionality in right-to-left writing Iranian subjects.

Hung et al. (2008) showed that Chinese students aligned Arabic numerals horizontally

from left to right, but simple Chinese number words vertically from top to bottom.

That this number-space mapping is not merely a cultural invention was convinc-

ingly demonstrated by Dehaene et al. (2008) who asked members of the Amazonian

indigenous Mundurucú group to perform a nonsymbolic number mapping task.

For that, a line segment was presented, with one dot at the left and ten dots at the

right end (left-to-right directionality was thus predetermined by the experimenters

but of no concern in this context). Then, intermediate numbers were presented and

the subjects were asked to point to the corresponding location on the line segment.

Although most of the subjects had little formal education and no access to rulers

or other measurement devices, they required only a minimal instruction period to

understand that number can be mapped onto a spatial scale.

In the ‘analogue number system’ (ANS) (see Nieder, 2016a; Feigenson et al., 2004, for

a review), numerosities are then represented as approximate, noisy estimates along

the mental number line. In other words, our brain builds mental representations like,

for example, ‘five-ish’ that are maximally activated for the (preferred) quantity ‘5’,

but to some extent also when we perceive quantities ‘4’ or ‘6’, and to an even lesser

extent for quantities ‘1’ or ‘8’. With increasing magnitudes, these estimates become

systematically less precise; when being presented with, for example, eight objects our

guesses of set size may vary between 7, 8 and 9, in contrast, when seeing 30 objects it

is more likely that our estimates come from a much broader range like 25 to 35.

Following this relationship, two phenomena are typically observed during numer-

ical judgements, both in adults (Moyer and Landauer, 1967; Buckley and Gillman,

1974) and children (Sekuler and Mierkiewicz, 1977; Duncan and McFarland, 1980) as

well as in nonhuman primates (Washburn and Rumbaugh, 1991; Dehaene et al., 1998;

Brannon and Terrace, 1998). First, as mental representations of more distant numbers

are more unequivocal, it is easier to discriminate two numerically distant numbers

(e.g. 4 – 8) than two numerically closer numbers (e.g. 7 – 8), a finding called the ‘nu-

merical distance effect’. And second, the ‘numerical size effect’, the finding that it is easier

to discriminate two small numbers (e.g. 3 – 4) than two large numbers (e.g. 9 – 10)

at a given numerical distance (1 in this example). As mental representations of large

numbers share increasingly more overlap with other nearby numbers, the likelihood

of confusion increases. Closely related to this is another critical signature of the ANS.
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1.1. Representational Systems for Quantity

Especially for large quantities that prevent exact counting, successful discrimination

does not depend on absolute numerosities but rather on the ratio by which two set

sizes differ: Although containing much more elements, comparing 100 – 200 is as dif-

ficult as 50 – 100 (both instantiate a 1:2 ratio). The finest numerical ratio that can still

be discriminated is a subjective sensation and serves as a measure for the precision of

an individual’s number system.

Although numerical judgements are clearly different from sensory processes –

when assessing numerosity, the concrete physical appearance of the stimulus is mean-

ingless –, number perception shares many similarities with lower-level sensory repre-

sentations; the magnitude effects described above are but one example (see, however,

also section 1.2.4). Like other physical magnitudes, number perception follows the

classical psychophysical Weber-Fechner law (Fechner, 1860) which postulates that a

subjective sensation S is a logarithmic function, S = k ∗ log(I), of objective stimulus

intensity I. Accordingly, the minimum amount of change ∆I between two magni-

tudes I and I + ∆I that has to occur for reliable discrimination is proportional to I

(Weber’s law), resulting in the constant Weber fraction w = ∆I/I (Weber, 1850). Indeed,

this ‘just noticeable difference’ is directly linked to the ratio-dependence discussed

above, as the Weber fraction is derived from the finest numerical ratio that can still be

discriminated.

The analogue magnitude system can be described by different mathematical

models. The ‘scalar-variability’ model assumes that the number line is linearly scaled

and each numerosity is described by a Gaussian ‘tuning function’ whose variability

scales linearly with numerosity (Meck and Church, 1983; Gallistel and Gelman, 1992).

The alternative ‘log-Gaussian’ model assumes a logarithmically compressed scaling

with Gaussian tuning functions of constant variability (corresponding to the Weber

fraction) (Nieder and Miller, 2003; Dehaene, 2007; Merten and Nieder, 2009). Indeed,

the behavioural predictions are essentially identical for both models, differing only

subtly in terms of asymmetries in the tuning curves. A (logarithmically) compressed

scaling of stimulus magnitudes following Weber’s law, however, provides consider-

able advantages in terms of neuronal processing as it enlarges the coding space to

deal also with stimuli of unlimited range (like numerosities), and is also commonly

found throughout the sensory system (Dayan and Abbott, 2005). (Although the

log-Gaussian model does not predict an upper limit for number representations,

Anobile et al., 2016, argued that the perception of textures, i.e. stimuli containing

so many and densely packed items that they cannot be individuated anymore,

poses a distinct representational regime that follows different dependencies and

psychophysical laws.)

Finally, the analogue magnitude system is characterized by another important fea-

ture: modality-independence. ‘Numerosity’ is a highly abstract quantitative concept
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1. Introduction

that can come in many different forms: four objects of whatever shape, simultane-

ously presented and enumerable at a single glance, or sequentially presented across

time; four light flashes, tones, brush strokes or taps with a finger. Additionally, we

humans have developed different symbolic notations, most dominantly digits like ‘4’

or ’IV’ (restricted to the visual modality), and number words in different languages

like ‘four’, ’vier’ or ‘quatre’ (usually encountered orally, and less frequently visually

in written form) (see also section 1.1.3). All these stimuli share the cardinality ‘four’,

irrespective of the sensory appearance of the elements.

Interestingly, numerical distance/size effects as well as ratio-dependence are

observed in countless studies using different kinds of stimuli. For example, when

asked to indicate the numerically larger of two stimuli, Buckley and Gillman (1974)

observed the numerical distance effect for symbolic Arabic numerals and nonsym-

bolic dot patterns of various configurations alike (though less pronounced for the

numerals). Whalen et al. (1999), in contrast, assessed numerosity via hand movements

(asking their subjects to press a key a specific number of times as fast as possible),

or by watching sequences of rapidly flashing lights, which required integration over

time to approximate numerosity. Arrighi et al. (2014), finally, showed that adaptation

to number (reflected in an underestimation of set sizes after adaptation to a high

numerosity) occurred across sensory modalities (auditory/visual) and presentation

formats (sequential/simultaneous).

All these studies argue for a generalized sense of number that integrates quantity

information across space, time and even modality. It must be noted, however, that

behavioural similarities do not necessarily imply a unitary and/or exclusively abstract

neuronal representation for all this different forms of representations (as discussed in

section 1.2.3), but rather highlight the origins of the nonsymbolic capabilities inherited

from our animal ancestors (see section 1.1.2).

1.1.2. The ‘Number Sense’ as Ancient Evolutionary Heritage

There is plenty of accumulating evidence that the ANS serves as a critical ontogenet-

ical building block for our later abstract mathematical abilities that is qualitatively

transformed and ‘harnessed’ when children learn mathematics in school (Piazza,

2010).

Gilmore et al. (2010), for example, showed that pre-school children succeeded in

approximately adding and comparing nonsymbolic numerical quantities, although

still lacking any relevant mathematical education. Performance, however, strongly

depended on the ratio of the two sets sizes. Most importantly, individual performance

correlated with achievements in later conducted mathematics tests and the children’s

mastery of number words and symbols, independent of achievements in reading or

general intelligence. In line with this findings, Halberda et al. (2008) reported that
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1.1. Representational Systems for Quantity

nonsymbolic estimation skills measured in 9th grade retrospectively correlated with

the children’s past scores in symbolic maths tests assessed in a longitudinal study, in

every year of testing, extending all the way back to kindergarten. Starr et al. (2013)

went even further back and showed that even in 3.5-year-olds preverbal number

sense and mathematical abilities are positively related.

Indeed, even prelinguistic infants can discriminate the numerosity of different ob-

jects. Starkey et al. (1990), for example, showed 6-month-old infants multiple displays

of two or three heterogeneous household objects. During this habituation phase, the

infants’ looking times at each display gradually decreased over time. Surprisingly,

when presenting alternating displays of either two or three objects during the sub-

sequent test phase, infants looked longer at the displays with the novel number of

objects. The authors concluded, that infants successfully responded to set size irre-

spective of other nonnumerical but perceptually salient differences.

Importantly, infants’ number discrimination abilities are not limited to small nu-

merosities (Feigenson et al., 2004; McCrink and Wynn, 2004). Using the same ha-

bituation approach but with more rigorous controls for perceptual variables, further

experiments showed that infants can discriminate even large sets of up to 32 objects.

The success, however, depended strongly on age and ratio of the set sizes: While

6-month-olds successfully discriminate numerosities with a 1:2 ratio (Xu and Spelke,

2000; Xu, 2003), only 10-month-olds succeed also with a 2:3 ratio (Xu and Arriaga,

2007). With increasing age, the ‘resolution’ of the ANS further sharpens such that

adults can reliably discriminate numerosity ratios as fine as 9:10 (van Oeffelen and

Vos, 1982; Halberda and Feigenson, 2008).

Wynn (1992), finally, showed that infants do not only understand basic numerical

relationships, but are also able to manipulate these concepts in numerically mean-

ingful ways. When 5-month-old infants observed the mathematical operation ‘1 + 1’

or ‘2 − 1’, playfully performed in a child-appropriate setting, they looked longer at

incorrect outcomes than at the correct one. These findings indicate that infants do not

simply expect an arithmetical operation to result in a numerical change, but that they

form expectations about both size and direction of change.

All these findings corroborate the idea that this intuitive understanding of a

‘number concept’ is innate, instead of merely emerging through individual learning

in the context of cultural transmission and education.

Further evidence that the analogue magnitude system is deeply rooted in our ances-

try comes from two seminal studies that showed that even indigenous people lacking

formal mathematical education and a verbal counting system are able to process large

numbers far beyond their naming range.

Gordon (2004), for example, asked members of the Amazonian Pirahã tribe to repli-
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1. Introduction

cate numerosities 2 to 10 by placing tokens in one-to-one correspondence with tokens

of the to-be-counted group. Accuracy was relatively good with up to 2 or 3 tokens, but

then deteriorated considerably with increasing numerosity, showing that this appar-

ently simple matching task posed a great challenge for the participants. Interestingly,

their attempts to get the answers correct were not random: The standard deviation of

their estimates increased proportionally with set size, resulting in a constant discrim-

ination ratio of approximately 6:7.

These results are comparable to Pica et al. (2004) who reported the classical numeri-

cal distance effect and a similar amount of imprecision in performance for Amazonian

Mundurucú people who had to compare quantities of 20 to 80 dots (thus, far beyond

anybody’s counting range) in simple number comparison and also more complex

approximate addition tasks. Interestingly, Whalen et al. (1999) who asked Western

college students to approximate numerosities either by producing target numbers of

key presses as fast as possible, or by watching sequences of rapidly flashing lights

– thus, assessing ANS precision in a less familiar way than the ‘classical’ dot array

displays – observed a discrimination ratio comparable to the indigenous people.

This indicates that ANS precision is strongly shaped by practice and increased

engagement in numerical discrimination during education of school mathematics

(Booth and Siegler, 2006; Halberda and Feigenson, 2008).

Estimation skills, finally, are ubiquitously found throughout the animal kingdom

and have been reported not only for mammals like primates, dolphins, lions and rats,

but also birds like pigeons and corvids, and even fish, amphibians, molluscs and

insects (Nieder, 2021). Clearly, the intrinsic understanding of numerosity poses an

evolutionary advantage as it allows for more informed decisions, for example, when

choosing more profitable food zones or when deciding whether to attack or retreat

from a group of competitors.

Especially in primates, number estimation has been studied extensively over the

last decades in strictly controlled experimental setups, revealing impressive numeri-

cal skills. Chimpanzee Sarah, for example, successfully matched exemplars of differ-

ent proportions and quantities, even when sample stimulus and the alternatives she

could choose from were physically highly dissimilar (e.g. food items, wooden disks

or liquid-filled jars), indicating the presence of a basic concept of numerosity and

proportion (Woodruff and Premack, 1981). Going one step further, Rumbaugh et al.

(1987) let chimpanzees choose between two trays, each of which contained two wells

with variable quantities of food items. The animals reliably chose the tray containing

the most food items, showing that the animals successfully ‘summed up’ the contents

of the food wells on each tray. These results may, to some extent, be explainable by the

extensive training these animals experienced in all kinds of cognitive tasks (Woodruff

and Premack, 1981, for example, reported that four other chimpanzees failed in their
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1.1. Representational Systems for Quantity

match-to-quantity task). But still, they show that primates possess the cognitive pre-

requisites for such advanced numerical tasks.

Brannon and Terrace (1998), finally, showed that rhesus monkeys can spontaneously

represent also abstract numerosities and apply simple ordinal rules to them. In their

seminal work, the authors first trained the animals to order stimuli of the numerosities

1 to 4; abundant controls for nonnumerical features of the stimuli (like size, equal

surface area, shape and colour) ensured that behaviour was exclusively controlled

by quantity. In a second task, the monkeys were then required to respond in an

ascending numerical order to stimulus pairs of numerosities ranging from 1 to 9.

Interestingly, the animals succeeded not only for stimuli from the familiar number

range, but also for stimulus pairs that contained novel quantities from the extended

range; an effect that cannot be attributed to prior training. Importantly, accuracy

reflected the afore-mentioned numerical distance effect. These results indicate that

the monkeys proficiently detected ordinal disparities also among novel numerosities,

and that the ordinal rule learned in training was then readily extrapolated to the

extended number range. Finally, when directly comparing monkeys’ and humans’

performance in this ordinal comparison task (using an even broader number range),

striking qualitative and quantitative similarities were observed (Cantlon and Brannon,

2006).

These impressive capabilities for numerical processing indicate not only that al-

ready our animal ancestors possessed a number sense, but also that we preserved this

cognitive tool in our evolution to culturally and scientifically advanced humans.

1.1.3. Exact Representation of Quantity

The approximate number system may be an excellent cognitive tool whenever quick,

imprecise estimates of quantities suffice to arrive at informed decisions: In the race for

the bowl with the most candies, it is irrelevant whether you fight for 19 or 20 pieces

– all that matters is that you are faster than your siblings so as not to end up with the

bowl containing only 3 or 4 pieces. In addition to this fast and error-prone estimation

process, we humans have found a way to assess also the exact cardinality of a set of

objects via slow counting routines (Gelman and Gallistel, 1978).

Although the focus of this thesis is not on counting, it should be emphasized that

this process poses a fundamentally different approach to assess set size. Studies with

indigenous people (Gordon, 2004; Pica et al., 2004) and young children (Wynn, 1990)

show that – unlike estimation (see section 1.1.2) – counting is nothing intuitive, but

needs to be learned progressively and effortfully (Carey, 2009; Carey and Barner,

2019). Furthermore, counting requires attention for the active individuation of all

elements in a set, and, subsequently, working memory capacities (especially subvo-

calization components) (Logie and Baddeley, 1987; Leybaert and van Cutsem, 2002)

to keep a running total while successively integrating them (Piazza and Izard, 2009).
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Finally, counting puts the individuated items into one-to-one correspondence with

members of a set of number tags – typically number words or digits (Gelman and

Gallistel, 1978) – and is, thus, inextricably linked to symbolic number representations.

Indeed, it was the insight that any series of identical tokens (e.g. notches on wood

or knots in a rope) can be used as number tags to represent a collection of objects of

whatever form (e.g. fruit, people, animals) exactly and durably that laid the foun-

dation for the evolution of symbolic numerical representations. And humans could

never have walked on the moon if mankind had not developed an abstract and highly

precise system of representing numbers, manipulable according to most sophisticated

and advanced sets of mathematical principles.

Most modern Western societies rely on a sophisticated symbolic enumeration system

which, upon closer inspection, poses a complex calculation in itself. The numeral

‘274’, for example, corresponds to the number word ‘two-hundred-and-seven-ty-four’,

and is a specific decomposition into the quantity 2 ∗ 100 + 7 ∗ 10 + 4 ∗ 1 following a

positional additive-multiplicative notational syntax: Different orders of magnitudes

are referred to by a fundamental ‘base’ number word; each base, in turn, is preceded

by another number word which indicates how many times the base value is counted.

In the end, all these ‘base products’ are added up to unequivocally obtain the quantity

of the given number. Verbally, this base-10 system (in its simplest form) radically

reduces the numerical lexicon to a set of basic number words for quantities 1–9 (‘one’

to ‘nine’) and some multiplier words (‘ten’ or suffix ‘-ty’, ‘hundred’, ‘thousand’, etc.).

For numerical symbols, this system was even further perfected by the introduction of

a positional notation, i.e. each base occupies a well-defined place in the multidigit

numeral (which makes it superfluous to write out the multiplier), and, importantly,

the invention of the special symbol ‘0’ serving as a placeholder that explicitly indicates

the absence of a given base (Boyer, 1944, 1968).

What may seem cumbersome at first glance is actually the result of a millenium-old

evolution of attempts to communicate about and keep permanent record of quantities,

thereby exploiting the capabilities of our cognitive system as efficiently as possible

(Dehaene, 1997). Although our long-term memory has extraordinary capacities, it is

impossible to memorize a unique number word for every single quantity. At the same

time, producing or perceiving undifferentiated series of identical tokens (probably

the first form of durable ‘symbolic’ representations) becomes very tedious and error-

prone for large magnitudes given the sharp restrictions of our visual system and

short-term memory (see also section 1.3.3). Retrieving the meaning of an arbitrary

shape, in contrast, is not only faster but also far more accurate. Thus, expressing large

nonsymbolic quantities as combinations of a few well-defined symbols corresponding

to a readily comprehensible range of small numerosities allows overcoming these

cognitive limitations.
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This excursus into the history of number shall emphasize that symbolic represen-

tations differ from nonsymbolic numerosities in two fundamental aspects: First, their

physical properties, e.g. the arbitrary shapes of Arabic digits, do not intrinsically

correlate with the quantity they denote. For example, that patterns of 19 and 20 dots

show consecutive quantities can be derived directly from the fact that the former stim-

ulus contains one more element than the latter one. In contrast, recognising that the

completely dissimilar shapes ‘19’ and ‘20’ denote also consecutive numbers requires

not only the comprehension of the semantic numerical meaning of the individual

symbols but also a full understanding of the logic behind the additive-multiplicative

enumeration system. This is an active and effortful learning process (Piazza, 2010).

Second, and probably more importantly, symbolic representations are per definition ex-

act – while the ANS representation of ‘twenty-ish’ may cover also quantities 18 to 22,

the digit ‘20’ refers exclusively to the quantity 20. These aspects should be kept in

mind when trying to explore the neuronal correlates underlying symbolic represen-

tations.

1.2. The Core Number System

We as educated human adults have extensive experience with numerical information

that we encounter daily not only as number words and symbolic numerals but also

as nonsymbolical quantities of various forms. Over the last decades, researchers have

tried to unravel how these different ‘numerical codes’ interact and are represented

internally by our brain.

1.2.1. The Triple-Code Model for Numerical Cognition

In the early 1990s, Dehaene (1992) meticulously gathered behavioural and neuropsy-

chological evidence from brain-lesioned, aphasic and healthy human adults as well as

developing children and animals, for both exact and approximate numerical abilities,

and synthesized his findings in the seminal functional triple-code model for numerical

cognition.

This model is based on two central assumptions. First, there is no single central

number representation, instead, numbers are represented in three different codes,

namely, an auditory verbal word frame (e.g. /six/), a visual Arabic number form

(e.g. ‘4’), and an analogue magnitude representation (distribution of activation over

the number line). These different cardinal representations are directly interfaced by

notation-specific input-output procedures (the verbal word frame, for example, ex-

ploits general-purpose modules for language comprehension and production), and

internally, they can be transcoded by dedicated translation paths. The second premise

states that different numerical procedures are tied to specific codes. Multi-digit calcu-

lations, for example, are postulated to be based on Arabic notations; verbal counting
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and arithmetical fact retrieval, in contrast, rely on the verbal code. The analogue

magnitude representation, finally, is required for approximate calculations and com-

parison tasks. Thus, the triple-code model describes numerical cognition as a layered

modular architecture in which approximate magnitude codes provide the fundament

for language-dependent counting abilities and symbolic manipulations processed via

verbal word and Arabic digit codes.

In the following years, Dehaene and Cohen (1995, 1997) elaborated the work, in-

troducing hypothetical anatomical substrates to some components of the triple-code

model. The authors examined numerous single-case studies from patients with ma-

jor hemispheric lesions in well-localized areas, hemispherectomies, or callosotomies

(split-brain) who suffered from severe numerical impairments like dyslexia, alexia,

or anarithmetia. Based on behavioural dissociations and deficits in relation to the

specific site of a lesion they predicted the following neuronal correlates: The verbal

code is processed in the left perisylvian areas, the Arabic code bilaterally activates in-

ferior ventral occipito-temporal areas, and activity in inferior parietal areas underlies

the magnitude code. In line with these neuropsychological results, early electroen-

cephalography (EEG) and positron emission tomography (PET) imaging studies with

healthy subjects reproducibly activated bilateral parietal and prefrontal regions in

simple numerical comparison tasks (Dehaene, 1996; Dehaene et al., 1996).

The rise of the functional magnetic resonance imaging (fMRI) technology in the

mid-90s, finally, opened completely new doors for brain research. It allowed to outline

a complex neuronal core number network in more detail, strongly pointing (amongst

others) towards the intraparietal sulcus (IPS) in posterior parietal cortex (PPC) as

one of the integral modules for processing numerical magnitude (reviewed, for ex-

ample, in Ansari, 2008; Nieder and Dehaene, 2009; Nieder, 2016a). In a quantitative

meta-analysis, Arsalidou and Taylor (2011) identified and summarized brain regions

concordantly activated among more than 50 fMRI studies using number tasks, con-

firming the inferior and superior parietal lobules (including IPS), frontal lobe areas

like inferior and middle frontal gyrus of the lateral prefrontal cortex (PFC), as well

as the cingulate gyrus of the medial PFC as primary number-related structures. As

classic interlinked association cortices that receive highly processed input from nearly

all sensory areas these regions are ideally positioned for processing numerical infor-

mation.

1.2.2. Characteristics of Neurophysiological Numerical Representations

As part of an ancient and innate preverbal system (see section 1.1.2), special focus has

been placed on the neurophysiological realization of the analogue magnitude code.

The concept of ‘numerosity’ is highly abstract, generalizing across sensory modalities

and spatial/temporal dimensions. Given the striking behavioural similarities when

dealing with various kinds of approximate quantities (as discussed in section 1.1.1),
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Dehaene (1992) assumed that different nonsymbolic numerosities converge to a

common, amodal representation (namely the analogue magnitude) underlying one

unitary neuronal basis.

Parallel to the search for neural correlates, Dehaene and Changeux (1993) devel-

oped a computational neuronal network model that accounted for elementary number

processing abilities, aiming to provide both neurobiological plausibility and testable

predictions. Core module of their architecture is the ‘numerosity detection system’

comprising several distinct layers: Visual input, in the form of ‘blobs’ of variable sizes

at different locations on a simulated ‘retina’, is first normalized for size and location

via an intermediate ‘location map’. In the next layer, ‘summation clusters’ pool the ac-

tivations over all positions of the location map. Much like an accumulator, discharge

rates of these clusters increase or decrease monotonically and respond whenever the

total activity exceeds a certain threshold. As such, they are number-sensitive, but not

number-selective. Indeed, there is also neurophysiological evidence for the plausi-

bility of such an intermediate processing stage (Romo and Salinas, 2003; Roitman et

al., 2007). These summation units, in turn, are topographically linked to ‘numeros-

ity clusters’ via centrally excited and laterally inhibited connections. As a result, the

clusters emerging due to reinforcement-based learning are maximally activated for a

preferred number and to a lesser degree also for neighbouring numbers. This non-

monotonic tuning is also termed ‘labelled-line coding’ or ‘place coding’ (Nieder and

Merten, 2007).

This simple multi-layer network captured the behavioural distance and size

effects and, indeed, proving that also neurophysiological activity is parametrically

modulated by the distance effect has nowadays become one of the most important

metrics for indexing neuronal number representations.

To account for different input modalities, Dehaene and Changeux (1993) im-

plemented an additional ‘echoic auditory memory’ in which auditory input was

preprocessed similar to visual information and which projected also to the numeros-

ity clusters. Probing modality-independence in living subjects, however, is much

more sophisticated as numerosity is intrinsically linked with physical properties

which, in turn, covary with each other. For example, a child may choose four crackers

spread out on a tray rather than a pile of five crackers because the former may

appear more numerous, given the larger area they cover. Similarly, a child’s choice

for four over three crackers may simply be based on the overall amount of ‘edible

material’ rather than numerosity. Indeed, infants chose at chance when presented

with one large cracker and two smaller ones of half the size (Feigenson et al., 2002).

These behavioural examples already illustrate how difficult it is to disentangle

numerical judgements from sensitivity to covarying sensory features. One of the key
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puzzle pieces in understanding the neuronal correlates of the magnitude code was

thus probing whether neurophysiological signals encode pure numerosities rather

than reflecting other congruent perceptual cues from which number information is

indirectly derived.

In two seminal studies, Nieder et al. (2002) and Nieder and Miller (2004) trained

rhesus monkeys to perform a delayed match-to-quantity task while recording activity

of single neurons in the anterior inferior temporal cortex (aITC) of the PPC and the

dorsolateral prefrontal cortex (dlPFC), areas which are considered homologues of the

number-responsive IPS and PFC areas in humans (Nieder, 2021). The animals had

to release a lever whenever the numerosity of a dot array test stimulus matched the

quantity of a previously shown sample stimulus. Abundant protocols that rigorously

varied one sensory parameter after another (like covered area, density, circumference,

or spatial arrangement of the dots) ensured that differential neuronal responses were

attributed only to changes in quantity information of the stimuli. Indeed, a remark-

ably high proportion of the recorded neurons responded to the numerosity, and a

substantial proportion of these cells even generalized across changes in low-level pa-

rameters of the stimuli. These ‘number neurons’ responded strongest to a preferred

numerosity and with progressively attenuated activity as distance from the preferred

quantity increased, resulting in bell-shaped Gaussian tuning curves when considering

neuronal activity as a function of sample numerosity. With increasing preferred quan-

tity, the precision of tuning decreased (reflected in increasing bandwidth of the neural

filters). Such response profiles were consistently found also for tested numerosities up

to 30 (Nieder and Merten, 2007). They provided a direct neuronal correlate to the nu-

merical distance and size effects observed in behavioural performance, and were also

strikingly similar to the artificial ‘number clusters’ following a ‘labelled-lined coding’

modelled by Dehaene and Changeux (1993). The authors had thus demonstrated the

existence of pure number neurons as a fundamental building block for the analogue

magnitude code proposed by the triple-code model (Dehaene, 1992).

Several follow-up studies using various kinds of number stimuli during delayed

match-to-quantity tasks further investigated how single neurons in PPC and PFC en-

code different types of quantity: Nieder et al. (2006) presented sample numerosities

either as multi-dot patterns showing the number of items simultaneously, or dot by

dot indicating the number of items sequentially; Nieder (2012) trained the macaques

to judge the numerosities of sequentially presented auditory and visual items; and

Tudusciuc and Nieder (2007, 2009) contrasted different line lengths (as continuous

spatial magnitude) and multi-dot arrays (as discrete numerical quantity). All these

studies revealed anatomically intermingled groups of both feature-sensitive neurons

(e.g. encoding only auditory pulses, but not visual items) as well as abstract ‘gener-

alists’ responsive to numerosity irrespective of modality or presentation mode. Im-
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portantly, neuronal representations were surprisingly similar across areas and for dif-

ferent quantities, that is, bell-shaped tuning functions peaking at a preferred quantity

and modulated by the numerical distance effect. Differences in response latencies and

increasing insensitivity to varying sensory features (reflected in higher proportions of

pure number neurons) suggested a hierarchical processing from IPS in PPC as a first

cortical hub to extract numerical information to the PFC that can then process these

information in an abstract, goal-directed way.

Of course, investigating number neurons in nonhuman primates is strictly limited

to nonsymbolic notations. Diester and Nieder (2007), though, showed that macaques

could successfully be trained to associate varying numbers with arbitrary shapes,

and that these semantic associations were indeed reflected in the responses of PFC

neurons, a finding that may hint at a neuronal precursor for symbolic number

encoding.

Imaging studies in human subjects outline a similar picture. Piazza et al. (2004)

presented their participants with short series of dot arrays and asked them to de-

tect deviant numbers among previously shown habituation stimuli. Expectedly, be-

havioural responses varied systematically with distance between habituation and de-

viant numerosities, resulting in the characteristic bell-shaped tuning functions. In a

separate adaptation fMRI experiment, subjects were instructed to simply fixate and

pay attention to a passively presented sequence of dot arrays. Occasionally, deviant

stimuli of different numerical value were shown amongst the habituation stimuli,

again carefully controlling for other low-level visual features. The authors observed

strong activations in the bilateral IPS, selectively in response to numerical changes (al-

though numerosity was not task-relevant). Strikingly, when considering these voxel

activations as a function of numerical distance, the resulting curves followed the same

tuning characteristics as the behavioural ones.

This anatomical and functional homology, namely, nonlinearly compressed Gaus-

sian tuning functions in aITC/IPS, strongly supports the notion of an innate nonverbal

analogue magnitude system, inherited from our nonhuman primate ancestors.

1.2.3. The Magnitude Code: Abstract or Not?

The neuroimaging studies discussed in section 1.2.2 all used nonsymbolic stimuli to

characterize the analogue magnitude code. When we talk about numbers, however,

for most of us probably digits and number words come to mind first, given their

omnipresence in our everyday life. The triple-code model postulated that these two

forms of symbolic numbers are represented by the (visual) Arabic digit code and

the (auditory) verbal word code, in separate dedicated neuronal pathways (Dehaene,

1992; Dehaene and Cohen, 1995, 1997).
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There is little disagreement that notation-specific representations and processes

are needed to account for the advanced spectrum of humans’ numerical abilities,

like arithmetic fact retrieval or sophisticated calculations (Harvey, 2016). Heated dis-

cussions (reviewed, for example, in Cohen Kadosh and Walsh, 2009), however, have

been sparked on the question whether these symbolic input notations converge to

the same abstract magnitude code underlying nonsymbolic number representations

when we ‘simply’ operate with approximate quantities (as in comparison tasks).

Behaviourally, it has been argued that the numerical distance effect is highly replica-

ble and remarkably comparable for different number notations, after ‘subtracting’ the

time required for initial notation-dependent identification processes (Dehaene, 1996).

Based on this observation, Pinel et al. (2001) introduced the term ‘semantic’ distance

effect to emphasize that performance depended only on numerical proximity, unre-

lated to the concrete appearance of the number stimuli. (That conclusions derived

purely from behavioural findings can be very delusive and need to be treated with

care, however, is very vividly demonstrated by the attempts to assess the subitizing

phenomenon, as discussed in section 1.3.)

Also neurophysiologically, substantial evidence has been accumulated for this ab-

stract view. Pinel et al. (2001), for example, asked subjects to decide whether a number

stimulus was smaller or larger than a fixed predefined reference number. Both fMRI

and high-density event-related potentials (ERPs) revealed similarly increased activa-

tions for both Arabic digits and (visually presented) number words in the ‘typical’

parietal number regions (amongst others along IPS and precuneus). Furthermore, in

some of these areas, activity varied monotonically with numerical distance, yielding

patterns directly analogous to the behavioural data.

Naccache and Dehaene (2001) used the same task design, but additionally, the num-

bers to be judged were preceded by subliminally presented prime stimuli. As ex-

pected, reaction times were faster when target and prime stimulus were identical (but

possibly in different notations), and this well-known repetition priming effect corre-

lated with activations of the bilateral IPS (reflected in reduced activity for identical

prime-target-pairs). Analogous to Pinel et al. (2001), behavioural and neurophysio-

logical effects were independent of both target and prime notations. Thus, their study

provided evidence that numbers were also genuinely processed when perceived un-

consciously.

Eger et al. (2003), finally, showed their subjects interleaved sequences of numbers,

letters, and colours, presented visually and auditorily, and asked their subjects to re-

port the occurrence of target items that were identical across modalities within each

category. This task design was very conclusive in two aspects: First, presenting stimuli

in different sensory modalities allowed the search for supramodal number represen-

tations, beyond the visual range. Second, this paradigm did not only prevent being
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biased towards any category or modality, but more intriguingly, number information

was essentially irrelevant, thereby circumventing potentially confounding task-driven

effects that might explain the activation of magnitude representations. Indeed, only

the IPS showed activations common to both modalities and specific to numbers. Fur-

ther control tasks confirmed that these implicit supramodal number representations

were colocalized with those activated during explicit numerical processing.

Taken together, these studies consistently demonstrated that the IPS is activated

similarly by symbolic number stimuli of different notations and/or sensory modal-

ities, with activations modulated by the numerical distance effect and irrespective

of whether number information is processed explicitly, implicitly or even perceived

unconsciously.

Interestingly, these findings led to the conclusion that numbers had been converted

into a common semantic quantity code. They were all based on the exploration of

symbolic stimuli, though, and neither of these studies had actually contrasted sym-

bolic and nonsymbolic number formats directly, thus leaving open the possibility of

anatomically overlapping, but functionally segregated systems.

To clarify this issue, Fias et al. (2003), for example, presented their subjects with

pairs of angles and lines of different magnitudes as well as Arabic digits, and asked

them to indicate the largest quantity. PET recordings revealed a region in left IPS that

was specifically activated by the number, irrespective of stimulus format, thus pro-

viding direct evidence for common activations. Recording ERPs during a numerical

comparison task, Libertus et al. (2007) showed that the electrophysiological correlates

of the numerical distance effect during specific ERP components were identical for

symbolic Arabic digits and nonsymbolic random dot arrays (at least, when choosing

numbers well beyond the subitizing range).

Finally, using an fMRI adaptation paradigm, Piazza et al. (2007) asked their subjects

to passively fixate on a screen and pay close attention to the quantities presented as

dot arrays or Arabic digits (thereby avoiding any decision and response confounds).

During an initial adaptation period, subjects were shown a series of approximate

quantities from within a very limited range (e.g. 17, 18, 19) of the same format.

Afterwards, deviant values of close (e.g. 20) or far (e.g. 50) numerical distance were

suddenly interspersed, with or without a concomitant change in format. During adap-

tation, IPS activity decreased continuously, but suddenly recovered once the deviant

stimulus was presented, indicating that the neuronal populations were sensitive to

the altered numerosity. These rebound effects varied in a distance-dependent fashion,

but, critically, were independent of format and changes in format.

Findings like these further corroborated the idea of an abstract magnitude rep-

resentation. Unfortunately, due to their large-scale spatial resolution, recording

methods like fMRI or EEG cannot disentangle whether the observed common effects
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for nonsymbolic and symbolic stimuli result from truly abstract number cells or arise

due to the combined recordings of anatomically intermingled subpopulations of

format-specific number neurons (as also found in monkeys; see section 1.2.2).

Indeed, there is also convincing evidence that quantities of different formats or no-

tations are encoded differently. Already Buckley and Gillman (1974) reported that

the distance effect was less pronounced for the Arabic digits than for the nonsym-

bolic stimuli. Similarly, behavioural studies with both children and adults (Holloway

and Ansari, 2009; Maloney et al., 2010) provided evidence that the numerical distance

effects elicited by nonsymbolic and symbolic stimuli, respectively, are scarcely corre-

lated, thus challenging the idea of a universal ‘semantic distance effect’ put forward

by Pinel et al. (2001). The authors argued that this lack of correlation may instead

imply different underlying neurophysiological processes.

Indeed, Cohen Kadosh et al. (2007) observed strong hemispheric differences in pari-

etal activation during cross-notational adaptation to numerals and number words (no-

tably, again two symbolic notations). Specifically, they reported adaptation in the left

IPS regardless of the stimulus notation, arguing for notation-independent represen-

tations; in the right IPS, in contrast, notation and quantity interacted significantly,

yielding adaptation effects only for Arabic numerals.

Interestingly, also Piazza et al. (2007) (who had used dot arrays and Arabic

numerals) reported and discussed hemispheric differences, specifically, in the right

IPS distance effects were independent of changes in format from target to deviant

numbers, in contrast to format-sensitive distance effects in the left IPS suggesting

higher precision of magnitude coding. Conciliating these seemingly contradictory

findings, Ansari (2007) argued that both studies hint at a specialized role of the

left IPS in the representation of encultured number symbols (numerals and number

words, as shown by Cohen Kadosh et al., 2007), also in terms of coding precision

(as shown by Piazza et al., 2007) – without ruling out the possibility of abstract

number processing –, thus shifting the focus away from the dichotomous question

of whether to where and how abstract and nonabstract number representations (co)exist.

All the studies discussed here addressed the question of representational overlap

between symbolic and nonsymbolic quantities by searching for commonly activated

regions whose activity was comparably (or differentially) modulated by different no-

tations. Similar responses as evidence for abstractness, however, need to be consid-

ered with caution as they do not necessarily imply shared neuronal representations.

To directly probe the numerical coding by distributed activity patterns in IPS, Eger

et al. (2009) recorded high-resolution fMRI data while subjects performed a delayed

match-to-numerosity task, presenting dot arrays of different dot size and luminance,

and Arabic digits as stimuli. Via multivariate pattern analysis (MVPA), the authors
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identified voxels commonly activated by all stimuli and used these data to train a

classifier to discriminate between different stimulus conditions. Within each format,

number information was significantly decoded, that is, a classifier trained on dot

arrays of different numerosities could reliably predict the numerosity of novel dot ar-

rays, and analogously for Arabic digits, yielding, however, more robust effects for the

nonsymbolic stimuli. Surprisingly, generalization performance across formats was

strongly asymmetric, that is, a classifier trained only on Arabic digits succeeded in

decoding number information of nonsymbolic dot arrays, but accuracy for the re-

versed direction (i.e. trained on dot arrays and tested on Arabic digits) was at chance

level. Interestingly, the classifiers successfully generalized across low-level features

(i.e. a classifier trained only on data from numbers of constant dot size could accu-

rately discriminate data from numbers of constant luminance, and vice versa), and

failed to discriminate differences in luminance or dot size when trained on a specific

number. Discrimination of stimulus format (dot array versus Arabic digit), however,

was highly accurate.

These findings confirmed once more, that the neuronal number codes in IPS

reflect primarily quantity rather than secondary low-level features, but revealed

again a striking sensitivity to the specific format of number. Specifically, the asym-

metry in generalization fits nicely with the idea of more narrowly tuned symbolic

representations in addition to the evolutionary older broadly tuned nonsymbolic

representations (as observed already by Piazza et al., 2007).

Such differences in coding precision are indeed in line with predictions of the

influential neuronal network model by Verguts and Fias (2004) that explicitly sim-

ulated the linkage between nonsymbolic and symbolic quantities into a common

representation. Their model starts from the presumed results of any sensory-specific

preprocessing stages, thus boiling down input to the key properties of numbers

of different formats. Centerpiece of the model is the ‘number field’ that receives

nonsymbolic input via a ‘summation field’ with similar properties as the analogue

proposed by Dehaene and Changeux (1993) (see section 1.2.2), i.e. the amount of

activated nodes corresponds to a particular quantity. In parallel, symbolic input is

provided by the ‘symbol field’ in form of an arbitrarily chosen single unit repre-

senting that very quantity, thereby accounting for the properties that symbols are

related arbitrarily to each other and their physical appearance bears no numerical

information (see section 1.1.3). During unsupervised learning, nonsymbolic and

symbolic stimuli were presented together. Afterwards, the model was given only

nonsymbolic input. Indeed, number-selective output units had emerged that were

characterized by the same critical tuning properties observed in the number neurons

of macaques Nieder et al. (2002) and predicted also by the model of Dehaene and

Changeux (1993), i.e. nonmonotonic filter functions indicative for labelled-line coding

31



1. Introduction

with increasing bandwidths. Critically, the activations of the very same units showed

remarkable differences when stimulated with symbolic input only. They maintained

their number preference, i.e. units preferring a particular numerosity were also

maximally activated by the corresponding symbol. Their bandwidths, however, were

notably smaller resulting in more ‘peaked’ curves that were hardly skewed. In other

words, symbolic representations were more precisely, but still partially inherited

some properties of the primordial nonsymbolic ones.

Altogether, both neurophysiological recordings and simulations with computa-

tional models suggest that format dependency does not pose a conceptual problem

to number coding, and that a neuronal system that is originally devoted to process

the evolutionary older nonsymbolic quantities can learn to represent also arbitrary

number symbols. The properties of the involved neuronal populations, though, may

differ depending on the input format.

1.2.4. A More General Sense of Number

Over the last few decades, the search for neuronal correlates of numerical represen-

tations has spawned numerous many-faceted and most diverse findings that further

extended the idea of an innate number sense.

Based on the observation that numerosity was strongly susceptible to adaptation

(which is assumed to be a clear signature for perceptual mechanisms; Wark et al.,

2007), Burr and Ross (2008) suggested that numerosity estimation might already take

place in the visual system, putting forward the notion of a ‘visual sense of num-

ber’. Indeed, there is evidence that both humans (Cicchini et al., 2016; Park et al.,

2016) and monkeys (Viswanathan and Nieder, 2013) can perceive and encode non-

symbolic quantities spontaneously, even in the absence of explicit number-related

task demands, and also modelling studies (Stoianov and Zorzi, 2012; Nasr et al.,

2019) show that tuned number neurons emerge spontaneously in artificial neuronal

networks merely trained on visual object recognition.

Furthermore, Harvey et al. (2013) showed that neuronal populations in the parietal

cortex were topographically organized according to numerosity. Such forms of rep-

resentations are commonly found throughout the sensory and motor cortices (Kaas,

1997), but apply also to higher-order cognitive functions (Thivierge and Marcus, 2007;

Anderson et al., 2010) (probably due to their computational efficiency; Chen et al.,

2006). Later, Harvey and Dumoulin (2017) identified an entire network of such topo-

graphic numerosity maps throughout the human association cortices, overlapping

with other brain areas involved, for example, in visual motion processing, object

recognition, attentional control, or decision making. On a single-cell level, studies

with macaques revealed causal links between the activity of cells in sensorimotor ar-
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eas and numerical information about self-generated motor actions (Sawamura et al.,

2002, 2010).

Without questioning the abstracted representations of magnitude in the higher-

order association areas, all these findings led to the idea that the ‘number sense’ com-

prises a complex, extensive ‘sensorimotor numerosity system’ that links perception,

higher cognitive functions and action (Anobile et al., 2021).

1.3. Subitizing in Enumeration Processes

Over millennia, different civilizations developed different number symbols and enu-

meration systems. A closer look at ancient numerical notations, however, reveals a

striking parallel across many (if not all) societies: The first three (or sometimes four)

numbers were almost always denoted by sets of identical tokens, e.g. Roman I, II, III

or Mayan •, ••, •••, ••••; followed by often arbitrary symbols for larger numbers,

e.g. Roman IV, V or Mayan (Ifrah, 1981). This is, however, by far no coincidence but

can be explained by the peculiarities of our cognitive system: While large nonsym-

bolic quantities need to be counted slowly and effortfully, humans can identify up to

three or four objects rapidly and accurately ‘at a single glance’.

On a scientific level, this observation has occupied the minds of philosophers and

psychologists for over a hundred years. Already in 1871, Jevons (1871) reported that

he could judge the number of beans casually thrown into a box accurately for only

up to 3 or 4 pieces, and that he made increasingly more errors for larger amounts of

beans. Kaufman et al. (1949) observed the same behavioural dichotomy between small

and large quantities when he asked subjects to count the number of briefly presented,

randomly arranged fields of dots. He termed this phenomenon ‘subitizing’, derived

from the Latin adjective ‘subitus’ (= sudden) and the medieval Latin verb ‘subitare’

(= ‘to arrive suddenly’), to describe the ‘rapid, confident, and accurate report of the

numerosity of arrays of elements presented for short durations’ (Mandler and Shebo,

1982, p. 1).

Countless subsequent studies consistently confirmed this dichotomous behavioural

response pattern, interestingly, not only for visually presented quantities, but also

for stimuli from the auditory (ten Hoopen and Vos, 1979; Repp, 2007; Camos and

Tillmann, 2008; Anobile et al., 2019) and tactile (Riggs et al., 2006; Plaisier et al., 2009)

domain. The debate on what type of process subitizing actually is, however, is still

not resolved.

1.3.1. Subitizing versus Estimation: One or Two Representational Systems?

Strongly influenced by a developmental psychological perspective, the theory of ‘core

knowledge’ (Spelke and Kinzler, 2007) proposes that humans are by birth endowed

with a few cognitive systems upon which all knowledge acquired in life is built.
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One of these systems is the ANS that serves to represent sets and their numerical

relationships of ordering, addition and subtraction (see section 1.1.1). A second one

is the ‘object tracking system’ (OTS) for object representations, following the low-level

spatio-temporal principles of cohesion (objects are connected as wholes), continuity

(they move on connected, unobstructed paths) and contact (they influence each others’

motion only when they touch). This system can be easily influenced by object-directed

attention and is as such assumed to be strictly limited in capacity (van Marle and

Scholl, 2003; Marino and Scholl, 2005).

Developmental studies revealed that infants’ performance in various numerical

tasks diverged drastically from the ratio-dependence characteristic for the ANS (see

also section 1.1.2), but rather depended strongly on the absolute number of objects

presented (Feigenson et al., 2002; Feigenson and Carey, 2003). As the observed upper-

bound of 3 nicely coincided with the limits of the subitizing range in adults (Kaufman

et al., 1949; Mandler and Shebo, 1982), the authors suggested that subitizing reflected

not the ANS but rather the OTS which would serve as a different enumeration sys-

tem, complementing the ANS and explicitly dedicated to the precise representation

of small numbers of distinct individuals (see Feigenson et al., 2004, for a review). In

a similar vein, Carey (2002) argued that the ANS might not be suited to represent

natural numbers due to its imprecision, thus, the first meaning of numerals would be

provided by the OTS.

No doubt, children start with acquiring the semantic meaning of ‘one’, then ‘two’

and ‘three’, and only once this is mastered, they move on to all other numbers in

their count list (Wynn, 1990). However, while there is substantial evidence for a

foundational role of the ANS in the acquisition of symbolic numbers and arithmetic

(see also section 1.1.2), the link between OTS/subitizing and maths seems to be

somewhat variable (Piazza, 2010; Anobile et al., 2019).

In fact, there is no reasonable explanation for why humans should have evolved

two qualitatively different systems specialized for numbers. More recently, researchers

convincingly argued that the observed behavioural discontinuities between subitizing

and estimation are simply explainable as a consequence of the nonlinear compression

of the ANS’ mental number line on which small and large numbers are continuously

represented with increasingly broader, less overlapping tuning functions (see also

section 1.1.1).

According to signal detection theory (Green and Swets, 1966; Stanislaw and

Todorov, 1999), discriminability between two adjacent numbers (as quantified by the

index d′) depends on the amount of overlap between the tuning curves. A modelling

study by Tsouli et al. (2022) showed that this relationship does not only explain the

characteristic size effect. Moreover, with d′ being very high for up to four items,

discriminability performance in the subitizing range would simply be at ceiling and

34



1.3. Subitizing in Enumeration Processes

therefore error-free.

Similarly, connecting number psychophysics and an information-theoretic mod-

elling approach, Cheyette and Piantadosi (2020) argued that different response distri-

butions for small and large numbers would naturally emerge in a single system that

efficiently exploits the nonuniformity of the ‘need probability’ of number (Anderson

and Schooler, 1991) (i.e. the fact that small numbers are more often encountered and

used than larger ones; Dehaene and Mehler, 1992) to account for its limited informa-

tional capacities, thereby meeting the constraint that internal representations should

not be more accurate than the perceptually provided information (Gallistel, 2017) and

optimizing the trade-off between processing costs and the benefits of accurate percep-

tion.

1.3.2. The Role of Nonnumerical Mechanisms in Subitizing

Not denying the obvious differences between subitizing and estimation, recent re-

search seems to consider subitizing less a separate number system but rather a phe-

nomenon manifesting within a distributed, quite general enumeration system (see

section 1.2.4) as a result of the complex interplay of many nonnumerical processes

such as attention, working memory and object tracking.

There is consistent evidence that – unlike estimation (see, however, Pomè et al., 2020,

for relativizing evidence) – subitizing strongly depends on attentional resources, as

typically manipulated in dual-task experiments (Railo et al., 2008; Burr et al., 2010;

Piazza et al., 2011). Burr et al. (2010), for example, reported small Weber fractions

(indicative for highly precise, nearly error-free responses) for small numbers in single-

task conditions. Under conditions of high attentional demands (that did not allow the

subjects to pay full attention to the numerosity stimuli), in contrast, this characteristic

signature vanished and seemed to make room for the ANS, as reflected in Weber

fractions approaching those observed also in the estimation range.

Similarly, Piazza et al. (2011) showed that individual differences in the subitizing

capacity varied systematically with differences in visual working memory capacity

(which is also limited to up to four items; Luck and Vogel, 1997), but not with dif-

ferences in large number estimation precision (Revkin et al., 2008). They argued that

these findings hint at a domain-general mechanism for parallel object individuation

(like the OTS).

Indeed, the strong impact of such visuo-spatial aspects is also reflected in the ob-

servation that subitizing effects are very pronounced when the individual items are

presented simultaneously, in different spatial locations, and pop-out from the back-

ground, and are even more enhanced for canonical configurations, (e.g. dice patterns)

(Mandler and Shebo, 1982; Krajcsi et al., 2013). They vanish, however, for complex,

less well-specified spatial arrangements, for example, when objects are tangled or

shown as transparent, but overlapping shapes, or when pop-out is prevented (e.g. de-
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tecting ‘O’s among ‘Q’s), thus involving probably also pre-attentive processes (Trick

and Pylyshyn, 1994).

Finally, subitizing limits seem to vary between different input modalities (visual

versus auditory), and within the visual domain also between simultaneously versus

sequentially presented stimuli, indicating that subitizing in itself is not a unitary thing

but may rather be subserved by several separate processes (Anobile et al., 2019).

All these examples show that subitizing taps many cognitive mechanisms to which

estimation seems to be less susceptible – disentangling the individual contributions

of the many highly interacting processes, however, turns out to be very tricky.

1.3.3. Neuronal Correlates for Subitizing

What is already highly complicated at a behavioural and conceptual level proves to

be even more intricate at a neurophysiological level.

In recent years, evidence seems to have converged to the view that the fronto-

parietal ‘core’ number network hosts representations of both small and large

numerosities alike (Piazza et al., 2002; Cai et al., 2021; Fornaciai and Park, 2021;

Tsouli et al., 2022) (see, however, Hyde and Spelke, 2009, for an opposing position).

Based on the work of Harvey et al. (2013), who had shown that neuronal popu-

lations in the human parietal cortex were topographically organized according to

numerosity, Cai et al. (2021) provided evidence that small and large numerosities

were continuously encoded within the same numerosity map that was characterized

by cortical magnification (i.e. more cortical surface area was devoted to smaller

numerosities) and a tuning precision that decreased systematically with preferred

numerosities. Tsouli et al. (2022) argued that these differences in tuning properties

and distinct proportions of neurons preferring different numbers suffice to explain

the dichotomous behavioural phenomena of subitizing and estimation.

In a similar vein, and in the light of the undeniable link to attentional and memory

processes, modern computational architectures, that combine important features of

existing number- and attention-models, show that behaviourally distinct ranges of

numbers can emerge also within the same neuronal network by flexibly adapting its

internal parameters (Stoianov and Zorzi, 2012; Sengupta et al., 2014; Knops et al.,

2014).

The neuronal network architecture developed by Dehaene and Changeux (1993)

is one of the earliest computational models of numerosity. Though not addressing

the subitizing/estimation dispute, it satisfactorily explained many characteristic be-

havioural findings (following Weber’s law), and many of its predictions concurred

with subsequently revealed neurophysiological observations – making it unquestion-

ably also one of the most influential models. Their work, however, rested on some

critical a priori assumptions that were hard-coded in the architecture (see section 1.2.2).
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Most importantly, object normalization for size and position was accomplished by a

simple inhibitory surround mechanism (i.e. recurrent self-excitation in the ‘on-centre’

and lateral inhibition by all other nodes in the ‘off-surround’) within the interme-

diate ‘location map’, thereby effectively creating spatial segregation. Almost twenty

years later, Stoianov and Zorzi (2012) observed that within a simple ‘deep’ neural

network, that was merely trained on sensory data but not on numerosity discrimina-

tion, numerosity-selective nodes emerged spontaneously, and that these nodes were

indeed characterized by surround inhibition profiles.

Interestingly, detached from numerical concepts and exclusively focusing on spa-

tial attention, Roggeman et al. (2010) developed a computational model for spatial

‘saliency maps’ (i.e. topographic maps in which neuronal activations represent salient

objects that stand out the most from the environment; Koch and Ullman, 1985) – which

are thought to be the basis of attention and working memory –, that rested also on ob-

ject segregation via surround inhibition. In their attempt to investigate the influence

of task demands on the activations of the saliency map, they showed that the level of

the lateral inhibition between the network nodes determined the capacity limit of the

saliency map.

Building on the findings of Roggeman et al. (2010) and Stoianov and Zorzi (2012),

finally, Sengupta et al. (2014) explored a simple on-centre off-surround neural net-

work with varying degrees of surround inhibition. Directly addressing the subitiz-

ing/estimation debate, they showed that the same network could account for both

small and large number processings depending on the inhibition strength; high levels

of inhibition could reliably encode small quantities, whereas networks with moder-

ate levels of inhibition accounted better for larger numerosities within the estimation

range. What may regulate the inhibition strength – pre-attentive mechanisms or rather

task-dependent top-down modulation – remains an open question, though.

Of course, such artificial neuronal network architectures are always highly simplis-

tic abstractions of the biological brain, and are as such inherently limited in their

explanatory power. All these models, however, hint at surround inhibition, which is

indeed a basic neuronal circuit operation known to be involved in shaping the tuning

of selective neurons (Hartline et al., 1956; Isaacson and Scanziani, 2011), as a critical

neuronal building block leading to the differences between subitizing and estimation.

1.4. Mathematics in the Brain

Unquestionably, even the best mathematicians started their career with learning how

to count and how to perform simple operations like addition, subtraction, multipli-

cation and division. To investigate the origins and fundamental building blocks of

mathematical concepts, most studies therefore focus on tasks requiring only basic

arithmetic as taught already at primary school. Calculation requires the identifica-

tion of two or more numbers, online maintenance of the numerical values in working
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memory, and finally the subsequent modification based on the operational function –

and disentangling the underlying cognitive processes, memory representations, and

mental components has proven to be a rather intricate challenge.

1.4.1. Core Brain Regions for Mental Arithmetic

Abundant behavioural research over the last decades provided multiple evidence for

basically two opposing key strategies to solve simple arithmetic problems, that is,

direct retrieval of rote numerical facts from declarative memory (i.e. knowing by heart

that 9+4 = 13) (Ashcraft, 1992, 1995), contrasting alternative calculation procedures,

for example, counting (e.g. 9... 10..11..12..13), transformation/decomposition (e.g. 9+4

= 9+1+3 = 10+3 = 13), or inversion (i.e. exploiting that subtraction is the opposite of

addition and, thus, 13–4 = 9 corresponds to 9+4 = 13) (LeFevre et al., 1996; Hecht,

1999; Campbell and Timm, 2000; Campbell, 2008). While addition and multiplication

seem to be primarily solved via retrieval, subtraction and division seem to rely more

on alternative strategies (Campbell and Xue, 2001).

In the triple-code model (see also section 1.2.1), the distinction between different

arithmetic operations manifested in two different proposed pathways (Dehaene and

Cohen, 1997): Addition and multiplication tables, stored as verbally encoded rote

numerical facts, were assumed to be accessed via a ‘direct asemantic route’, recruiting

the left cortico-subcortical loop through basal ganglia and thalamus. Subtractions,

in contrast, for which rote memory is usually unavailable would be processed via

an ‘indirect semantic route’ that transcodes operands into quantities for semantically

meaningful manipulations, eliciting activity in the bilateral inferior parietal cortex and

left perisylvian language network. Finally, the prefrontal cortex was proposed to be

involved in strategy choice and planning.

Since the initial conception of the triple-code model back in the 1990s, whose

suggested neurophysiological correlates stemmed primarily from single-case lesion

studies, substantial research has further deepened our understanding of the neuro-

physiological processes underlying mental arithmetic. Countless fMRI studies with

healthy subjects (see Arsalidou and Taylor, 2011; Menon, 2015, for a review) as well as

studies using intracranial electrocorticography (ECoG) in epileptic patients (Allison

et al., 1999; Shum et al., 2013; Daitch et al., 2016; Hermes et al., 2017; Pinheiro-Chagas

et al., 2018) confirmed that arithmetic operations concordantly activated regions

similar to those in pure number tasks, most importantly, ventral occipito-temporal

areas (associated primarily with the visual recognition of the stimuli) as well as the

well-known dorsal aspects of the posterior parietal cortex (that is, horizontal IPS,

angular gyrus and supramarginal gyrus). In line with such correlational evidence,

direct cortical electrostimulation (DCE) in patients undergoing awake surgery for

removal of pathological tissues revealed localized small cortical areas in the ‘classical’

core number network in which DCE stimulation provoked a temporary disruption
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of calculation performance (Roux et al., 2009; Della Puppa et al., 2013; Semenza et

al., 2017), and many of the patients in which these calculation-related areas could

not be spared for oncological reasons developed significant acalculia symptoms

postoperatively (Roux et al., 2009), confirming direct causal involvement of these

regions in mental arithmetic.

Many of these studies reported that calculation-responsive sites were differentially

activated (like the IPS) or deactivated (especially the angular gyrus) for addition,

multiplication, subtraction and division (e.g. Rosenberg-Lee et al., 2011, comparing all

four operations). This functional heterogeneity, however, seems to indicate operation-

specificity only insofar as it reflected the variable and different reliance on general

processing strategies typically associated with specific arithmetic operations (Grabner

et al., 2009; Rosenberg-Lee et al., 2011; Tschentscher and Hauk, 2014; Menon, 2015).

And indeed, strategy use differs widely across individuals and also within operations

(Campbell and Xue, 2001, for example, observed retrieval use only for 88 % of their

simple addition problems according to subjects’ verbal reports) – averaging data over

strategies, however, was proven to result in misleading conclusions (Siegler, 1987).

Thus, rather than contrasting specific operations, more recent studies focussed on the

different strategies used for mathematical problem solving (see also section 1.4.2).

Unlike number tasks that comprise counting, ranking, or comparing quantities,

calculation tasks require the identification and memorization of (at least) two numbers

and their subsequent modification based on the operational function. Pronounced

activations of more prefrontal areas (extending those activated also during number

tasks) suggest that solving arithmetic problems requires more cognitive resources like

working memory and attention (e.g. Gruber et al., 2001; Arsalidou and Taylor, 2011;

Menon, 2015). In line with this idea, prefrontal contributions were noticeably affected

by task difficulty (Menon et al., 2000; Fehr et al., 2007), for example, number of steps

required, or single- vs. two-digit calculations, an important factor that modulates also

behavioural performance (e.g. Ashcraft, 1992; Agostino et al., 2010). Furthermore,

and consistent with previous studies focussing on reasoning and working memory

tasks (Christoff and Gabrieli, 2000; Owen et al., 2005), evidence suggests that the

prefrontal cortex is involved whenever the brain has to deal with more than one item

and/or when processing involves manipulation of information according to rules, i.e.

conditional ‘if-then’ statements, as befitting its general role in executive control (Miller

and Cohen, 2001; Fuster, 2015).

1.4.2. The Medial Temporal Lobe (MTL) in Mathematical Cognition

For quite a long time, research on mental arithmetic has focused on the interplay of

the ‘domain-specific’ intuitive number sense providing semantic representations of
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quantities derived from all kinds of sensory inputs, and executive control processes

guiding planning and goal-directed decisions based on the extracted numerical infor-

mation. These processes residing in the core network of posterior parietal, occipito-

temporal and prefrontal areas (as outlined in the previous sections), however, are but

two building blocks necessary for arithmetic. Considering the importance of differ-

ent strategies used for mathematical problem solving, over the last years, the focus

of attention has shifted also to ‘domain-general’ processes relevant for various aca-

demic skills and learning in general (Menon, 2015, 2016; Peters and De Smedt, 2018).

Episodic and semantic long-term memory (LTM) systems, for example, are required

for the formation and retrieval of rote arithmetic facts; alternative strategies, in con-

trast, require the recruitment of procedural and working memory (WM) systems for

memorization, sequencing and manipulation of operands.

The medial temporal lobe (MTL) – comprising parahippocampal cortex (PHC), en-

torhinal cortex (EC), hippocampus (HIPP), and amygdala (AMY) – is well-known for

its role in declarative memory (Squire and Zola-Morgan, 1991; Tulving and Markow-

itsch, 1998), and is characterized by unique brain responses and neuroanatomical

connections (Squire et al., 2004). Recordings in human epileptic patients implanted

with depth electrodes for intracranial EEG have revealed that single units of the MTL

respond selectively to images from various categories, like faces, animals, objects or

scenes (Fried et al., 1997; Kreiman et al., 2000; Mormann et al., 2011), often showing

a high degree of visual, e.g. size or viewing angle (Quian Quiroga et al., 2005), but

also multimodal invariance, e.g. image, spoken and written name of the stimuli

(Quian Quiroga et al., 2009). The sparse, explicit and abstract representations of these

‘concept cells’ are nowadays considered crucial building blocks of declarative memory

functions (Quian Quiroga, 2012). Importantly, the highly associative brain areas are

directly and reciprocally connected with the frontal number network (Goldman-Rakic

et al., 1984). These hippocampal-neocortical pathways are involved in memory stor-

age by delivering highly processed information from dlPFC to hippocampus; return

projections, in turn, provide access to the highly associative memories stored in the

intrinsic circuits of the hippocampus.

Memory systems play the most pivotal role during ontogenetic development and

maturation in childhood, when problem solving skills are still unfolding. Over the last

years, it was shown that children indeed rely also on areas not previously recognized

in the mental ‘maths network’ (see Arsalidou et al., 2018, for a review). The MTL, in

particular, appears to be critically involved during the development of arithmetic fact

knowledge (Menon, 2016).

The acquisition of arithmetic competences is (amongst other things) characterized

by developmental shifts in the strategies used (Siegler, 1996; Jordan et al., 2003; Geary,

2011): Already before the start of formal education, children use counting to solve
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simple addition problems, often executed with the help of, for example, the fingers.

Yet progressively, the efficiency of this strategy is increased by moving to verbal count-

ing (without external manipulatives), and is further refined by starting to count from

the cardinal value of the first (e.g. 2+3 = 2... 3..4..5) or larger (e.g. 3... 4..5) number

instead of counting all elements of both numbers (e.g. 1..2... 3..4..5) (Geary et al.,

1992). In the course of maturation of general problem solving approaches, finally,

children move on to more advanced and efficient memory-based strategies (Peters

and De Smedt, 2018).

Strategy use and its gradual transition in behaviour is also reflected in developmen-

tal changes of the ‘maths network’, both in terms of function, connectivity and struc-

ture (Peters and De Smedt, 2018). De Smedt et al. (2011), for example, reported greater

hippocampal activations indicative of fact retrieval only when children solved simple

addition problems; difficult calculations and subtractions that are less well rehearsed

and more difficult to memorize, in contrast, recruited the fronto-parietal network sug-

gesting a stronger influence of procedural strategies. In line with this findings, Qin et

al. (2014), who accompanied 7–9-year old children in a longitudinal fMRI study over

a one-year period, observed that the shift from counting to arithmetic fact retrieval

was characterized by an increased engagement of hippocampal areas and decreased

activations of prefrontal-parietal regions. Strongest predictor for individual improve-

ments and gains in fact-retrieval fluency, however, was the increased connectivity in

hippocampal-neocortical circuits (Cho et al., 2012; Qin et al., 2014).

Similarly, Supekar et al. (2013) showed that the success of an intensive maths tu-

toring program with 3rd-graders was strongly correlated with individual differences

in grey matter volume of HIPP and its connectivity with PFC and basal ganglia mea-

sured before tutoring. In contrast, comparisons between typically developing children

and ones with developmental dyscalculia, who typically have difficulties retrieving

arithmetic facts from memory (Geary et al., 2004), indicated decreased grey matter

volume in several brain regions, including the PHC (Kucian et al., 2006; Rykhlevskaia

et al., 2009).

Taken together, although studies in adults scarcely report hippocampal engagement

during arithmetic tasks (which may be explained by a stronger reliance on neocortical

memory systems in the course of memory consolidation, as proposed by Eichenbaum

et al., 2007), behavioural and neuroimaging data of children provide evidence for the

causal role that the MTL plays in mathematical cognition.

1.4.3. Monkey Single Neurons Encoding Abstract Rules

Mental arithmetic is undoubtedly a hallmark of our scientifically advanced human

culture. Operating on most abstract categories and principles, exact calculations are

closely linked to the mastery of symbolic number representations and the understand-

ing of rules associated with mathematical signs.
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Interestingly, however, most studies using arithmetic tasks do not address the

‘rule-component’ of calculations explicitly. Of course, contrasting addition and

multiplication asks for the application of two different rules. However, in most

paradigms all elements of the calculation were presented simultaneously (e.g. 3+5

with or without a proposed result requesting verification or computation), which

prevents disentangling rule-specific activity from other processes relevant for calcu-

lation. Daitch et al. (2016) were one of the few who used also element-wise presented

calculations while recording ECoG in lateral parietal and ventral temporal cortex of

human subjects. And indeed, they reported differential involvement of some regions

in different stages of numerical processing; rule-specific activations, however, were

not explicitly analysed.

Mathematical and numerical capabilities of nonhuman primates, in contrast, are

strictly confined to the nonsymbolic domain of the ANS. And although its imprecise

numerical representations may suffice for approximate calculations (see section 1.1.2),

so far, the neuronal correlates of addition or subtraction have not been studied in

monkeys. However, also the standard numerical comparison task commonly used in

studies with human subjects calls for the application of a mathematical rule: In order

to decide, for example, ‘is the sample number smaller or larger than 65?’ (the task

instruction given by Pinel et al., 2001), the presented quantity X (whether exact or

approximate) first needs to be sorted according to its ordinal relationship relative to

the reference number: X<65 or X>65. In a second step, conditional ‘if-then’ statements

then determine the requested goal-directed behaviour: ‘if X<65, then press the right

key’, and ‘if X>65, then press the left key’. As already demonstrated by Brannon

and Terrace (1998) (see also section 1.1.2), these simple ordinal ‘greater/less than’ rules

underlying number comparison tasks can also be mastered by nonhuman primates.

Early studies in rhesus monkeys (White and Wise, 1999; Asaad et al., 2000) have

shown that single neurons in the PFC are not only sensitive to sensory information

like stimulus appearance and location, but that their activations can also reflect infor-

mation about the task being performed. In their experiments, stimuli and trial events

were identical across tasks, but each task asked for the application of a different rule.

Which rule, however, was not (in Asaad et al., 2000) or only indirectly (in White and

Wise, 1999) conveyed, and the monkeys had to deduce this information from the fact

that within a block of trials, the rule was always the same.

To address rule-selectivity more explicitly, Wallis et al. (2001) thus trained macaques

on a delayed match/nonmatch-to-sample task that asked for different behavioural

responses depending on two abstract rules; the ‘match’ rule required the animals to

respond when sample and test images were identical, the ‘nonmatch’ rule required

a response when the stimuli were different. In their paradigm, the current rule

varied randomly from trial to trial, and was indicated explicitly by a cue presented
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simultaneously with the sample. Two distinct cues for each rule, respectively, allowed

disentangling rule- and sensory-driven activity. Indeed, the authors recorded a

substantial proportion of PFC neurons that encoded these abstract ‘same/different’

rules, irrespective of the concrete rule cues applied.

Bongard and Nieder (2010), finally, bridged the gap between rule-selectivity and

mathematical cognition, training rhesus monkeys on a rule-based numerical discrim-

ination task (similar to Wallis et al., 2001) in which the animals had to compare nu-

merosities presented as random dot patterns, and to switch flexibly between two

mathematical rules; the ‘greater than’ rule required the monkeys to respond when the

test display showed more dots than the sample stimulus, vice versa, the ‘less than’

rule required a response when the test stimulus contained less dots than the sam-

ple. Again, two distinct cues from different sensory modalities were used for each

rule, respectively. Short delay periods between the presentation of sample, rule cue

and test stimulus, respectively, enabled the authors to analyse also activity related

to working memory processes. Behavioural performance for the task was not only

well above chance level, the animals were also able to immediately generalize the two

rules to previously unseen quantities, confirming that they had learned the abstract

mathematical principles. These were also reflected in rule-selective activations for a

substantial proportion of single neurons in the dlPFC that responded preferably to ei-

ther of the two rules, insensitive to sensory features of the rule cues. These activations

were directly correlated with behavioural responses of the monkeys: If the animals

made errors, discharge rates for the preferred rule were also markedly decreased.

As discussed in section 1.2.2, quantity information is encoded by intermingled neu-

ronal subpopulations of both ‘specialists’ that encode only one type of magnitude, and

‘generalists’ encoding quantity as an abstract concept. Similarly, Eiselt and Nieder

(2013) showed that also the majority of rule-selective cells distinguished between dif-

ferent magnitude types (i.e. they encoded ‘greater/less than’ rules either for continu-

ous line lengths or discrete dot numerosities), in addition to a significant proportion

of ‘rule generalists’ that encoded the overarching abstract concept ‘magnitude rules’.

Finally, rule-selective neurons were not confined to prefrontal areas but were also

observed in monkeys’ premotor and posterior parietal cortices (Wallis and Miller,

2003; Stoet and Snyder, 2004; Vallentin et al., 2012). Although differences in cell fre-

quencies and coding properties provide evidence for a hierarchical and specialized

involvement of different areas in task execution, this finding indicates that all task-

relevant features (like stimulus identity, current rule, and behavioural response) may

be represented to a greater or lesser degree by all brain regions along the processing

pipeline from perception to goal-directed action.
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1.5. Working Memory in the Medial Temporal Lobe

Shifting to a multisystem approach for arithmetic problem solving, recent research

also emphasized the role of working memory systems in mathematical cognition.

Traditionally, WM is defined by its functional properties as the ability to keep a re-

stricted number of events or stimuli ‘in mind’ for short periods of time (usually on

the scale of seconds) until a response is required, even when the stimuli are no longer

physically present (Baddeley and Hitch, 1974; Baddeley, 2003). As such, it is typi-

cally considered a complement to long-term memory which can durably store vast

amounts of information (Atkinson and Shiffrin, 1968; Cowan, 1988).

Multiple strands of evidence, however, are currently revolutionizing the conven-

tional conceptualization of working memory and its underlying neuronal correlates

(e.g. Kamiński and Rutishauser, 2020; Rose, 2020; Beukers et al., 2021; Foster et al., in

press).

1.5.1. Different Neuronal Codes for Memories

Neurophysiologically, it was assumed for a long time that the WM system was an-

chored primarily in parietal-frontal circuits (Curtis and D’Esposito, 2004; Funahashi,

2017), and that sustained representations in WM were indexed by single neurons with

persistently increased firing patterns throughout delay periods between stimulus pre-

sentation and response (Fuster, 1971; Golman-Rakic, 1995). Such task-specific delay

activations in WM have been reported for many kinds of memory items, including

the rule-selective single neurons found by Wallis et al. (2001) and Bongard and Nieder

(2010) (see section 1.4.3).

A growing body of evidence shows that the WM system is not restricted to frontal

areas but operates across a widely distributed cortical network. The fact that hip-

pocampus and surrounding MTL areas are critical for LTM is firmly established

(Squire and Zola-Morgan, 1991; Tulving and Markowitsch, 1998; Squire et al., 2004).

More recently, however, human single-unit recordings in MTL revealed also persis-

tently activated neurons supporting WM maintenance (Kamiński et al., 2017; Korn-

blith et al., 2017; Boran et al., 2019), and amnesia following MTL damage could re-

peatedly be associated with profoundly compromised WM functionality (Olson et al.,

2006; Konkel et al., 2008; Squire, 2017). All these findings argue for a prominent role

of MTL in both WM and LTM processing (Jeneson and Squire, 2012; Beukers et al.,

2021; Foster et al., in press).

Furthermore, substantial advances in machine-learning analyses (see King and De-

haene, 2014, for an overview) uncovered unexpected coding mechanisms at a neu-

ronal population level to which traditional univariate analyses are blind. One im-

portant puzzle piece was the finding that single cells do not necessarily need to be

persistently activated for successful online maintenance (Stokes et al., 2013; Sreeni-
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vasan et al., 2014). Instead, information may also be mediated via hidden neuronal

states as patterns of rapidly changing synaptic weights (Mongillo et al., 2008), which

is metabolically less expensive than persistent spiking and may also make memories

more robust to interference (Miller et al., 2018). Interestingly, such ‘activity-silent’ WM

representations can be reactivated, and these reactivations seem to depend on atten-

tion and current behavioural relevance (Wolff et al., 2015, 2017; Rose et al., 2016). In

line with this, also recent single-unit recordings in MTL provided evidence for such

neuronal reactivations after complete activity silence using a picture comparison WM

task (Bausch et al., 2021).

Memory contents, finally, can also be stably represented by varying subpopulations

of neurons that contribute to the task-related activity at different time courses, and

that may even change their individual tuning preferences (Murray et al., 2017; Spaak

et al., 2017). Population analyses and advanced projection techniques revealed that

such a dynamic neuronal selectivity and recruitment, which would conceal online

maintenance at a single-cell level, still allows for perfectly robust representations of

information (King and Dehaene, 2014).

1.5.2. Functional Implications

The different neuronal codes by which memoranda are expressed – sustained,

activity-silent and dynamic – may reflect different processing stages within the mem-

ory systems. The influential embedded-process model of working memory by Cowan

(1988, 1999) proposes three hierarchically arranged states of WM information, (1)

long-term memory, (2) a subset of LTM that is currently activated, and (3) the subset

of these activated memories that is currently in the focus of attention and aware-

ness. Each of this states operates within its own processing limits. LTM activation,

for example, is time-limited; the focus of attention, in contrast, is restricted to a ca-

pacity of around 4 items (Cowan, 2001). Importantly, this model incorporates not

only a close collaboration between WM and LTM system, it also emphasizes the link

between memory and attention which is assumed to be voluntarily controlled by a

central executive system (Baddeley and Hitch, 1974; Baddeley, 2012) (in addition to

an involuntary attentional orienting system).

Although attempts to find direct neuronal correlates to components of box-and-

arrow models are challenging and should always be treated with caution, the ob-

served differential neuronal mechanisms fit quite nicely into Cowan’s (1988; 1999)

proposed framework of WM. Beukers et al. (2021), for example, draw parallels be-

tween activity-silent and episodic memory (Baddeley, 2000), which is part of the LTM

and already known to be involved in rapid learning via short-term synaptic plasticity

(Zucker and Regehr, 2002). Similarly, others (Kamiński and Rutishauser, 2020; Foster

et al., in press) propose that activity-silent memories reflect an intermediate storage

in LTM, complementing the active online-maintenance of information in the focus of

45



1. Introduction

attention via persistently activated cells. Kamiński and Rutishauser (2020), finally,

suggest that dynamic activity may constitute a neuronal correlate for the central exec-

utive which is thought to control attention and the information flow between different

memory buffers.

In recent years, the research on working memory has witnessed substantial ad-

vancements. Considering WM as a complex interplay of multiple processes including

perception, attention, semantic and episodic LTM memory (Rose, 2020) has led to the

emergence of new hypotheses and theories regarding the underlying neuronal mech-

anisms. Countless complex and often seemingly contradictory patterns of behaviour

on WM tasks, however, still wait for an explanation.

1.6. Motivation

Behavioural studies with nonhuman primates, indigenous people as well as Western

infants, children and adults indicate that we all share an innate ‘number sense’ that

is deeply rooted in human ancestry. Over the decades, numerous studies outlined a

complex network encompassing ‘core number areas’ in frontal and parietal regions,

but also sensory and motor areas as well as ‘domain-general’ structures (including

the medial temporal lobe) hosting the memory systems. Valuable pieces were gath-

ered and puzzled together to unravel the neuronal correlates underlying our mental

numerical and mathematical representations.

While single-cell recordings are typically conducted in animals and as such strictly

limited to nonsymbolic stimulus formats and the simplest arithmetic rules, the techni-

cal limitations of most human recording methods prevent the detailed exploration of

our anatomical and functional units of the brain: Functional MRI measures neuronal

activity only indirectly via blood flow changes, operating on the scale of seconds and

with rather low spatial resolution (a single voxel may encompass over 600,000 neu-

rons in cortex), and ECoG, though offering a high temporal resolution, is still limited

to combined synaptic mass signals from hundreds of neurons.

In this thesis, we used the rare opportunity to record the activity of single neu-

rons in the medial temporal lobe of awake, behaving neurosurgical human patients

that were implanted with chronic intracranial depth electrodes (Fried et al., 2014) to

address the following research questions:

• Do single neurons in the human brain encode nonsymbolic and/or symbolic

information? If so, how can their tuning properties be characterized?

• Is the behavioural dichotomy observed for subitizing and estimation also re-

flected in the neuronal response profiles of cells tuned to small and large nu-

merosities?
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• How do single units encode abstract arithmetic rules? What do time-resolved

recordings in different MTL subregions reveal about the neuronal coding dy-

namics underlying working memory?

Answering these questions that have yet been eluded from investigation will deepen

our understanding of the neurophysiological realization of humans’ extraordinary

numerical competences.
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2. Main Results

2. Main Results

In this thesis, we intended to explore fundamental principles of arithmetic processing

in the human brain. To that aim, we asked neurosurgical patients that were implanted

with chronic intracerebral depth-electrodes in the medial temporal lobe (MTL) to per-

form simple behavioural tasks while recording neuronal activity of single neurons

from parahippocampal cortex (PHC), entorhinal cortex (EC), hippocampus (HIPP)

and amygdala (AMY).

In a first study, henceforth referred to as ‘calculation task’, subjects were instructed

to perform simple addition and subtraction tasks on a computer display. After a short

fixation period, stimuli were presented sequentially in the order operand 1 – operator

– operand 2, each phase being followed by a brief delay during which the stimulus

was removed. Afterwards, subjects indicated the calculation result on a number panel

on the screen. Task involvement ensured that numbers and arithmetic rules were

consciously processed. Due to the sequential task design we were able to explore

number (see section 2.1) and rule representations (see section 2.3) separately, both

during stimulus presentation and the subsequent working memory phases (delay),

respectively.

2.1. Single Neurons in the Human Brain Encode Numbers

At first, we aimed to explore how numerical quantities are represented by single neu-

rons in the MTL. Numerical values of the first operand ranged from 1 to 5, and were

presented in different formats, that is, either as nonsymbolic dot arrays or symbolic

Arabic numerals. Both formats were shown in standard and control displays (pro-

tocols) to control for nonnumerical visual parameters. Number stimuli of operand 2

ranged from 0 to 5, and were always of the same format and protocol as the operand 1

stimulus.

Number conditions varied randomly from trial to trial which allowed us to inves-

tigate neuronal responses separately for each of the formats, but also to compare

responses to both formats in an unbiased way. In order to avoid confounds with cog-

nitive factors later in the task, we focused primarily on the presentation of operand 1

and the subsequent delay 1 phase.

2.1.1. Single Neurons Respond to Nonsymbolic Numerosities

When the subjects calculated with nonsymbolic dot arrays, about 16 % of all recorded

single neurons changed their firing rates dependent on the number of dots (numeros-

ity), irrespective of stimulus appearance (protocol), during presentation of operand 1

and the following delay phase. The highest fractions of these numerosity-selective

neurons were found in PHC (29 %) and HIPP (18 %).
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For each of these number units, we calculated a tuning function by averaging the fir-

ing rates per number condition and determined the unit’s preferred numerical value

as the number that elicited the strongest average response. The selective neurons’

preference covered the entire range of tested numbers 1 to 5. Population filter func-

tions, obtained by combining the tuning curves of all numerosity-selective units pre-

ferring the same numerical value, formed overlapping bell-shaped tuning curves that

peaked for the preferred number and showed a progressive drop-off of activity the

more the number of dots deviated from the preferred value. This systematic decrease

was not observed for random tuning curves and reflects a neural correlate of the

numerical distance effect (Moyer and Landauer, 1967; Buckley and Gillman, 1974).

2.1.2. Single-Cell Responses to Symbolic Numerals

When the subjects calculated with symbolic numerals, about 3 % of all recorded neu-

rons responded selectively and exclusively to numerals during operand 1 presenta-

tion and the subsequent delay phase. Again, the highest fraction of numeral-selective

neurons was found in PHC (6 %).

A closer look at the tuning properties of these numeral-selective units revealed

striking differences compared to the encoding of numerosities. As before, the num-

ber neurons’ preference covered the entire tested range of numerical values, and their

population tuning curves formed overlapping filter functions. The decline of activ-

ity from preferred to nonpreferred numerals, however, was sharp and brisk, and did

not differ from tuning curves obtained for randomly shuffled trial labels. This ab-

sence of a neuronal distance effect suggests a higher selectivity and more categorical

representation of symbolic numbers.

So far, we have looked at each of the two formats individually. As nonsymbolic

and symbolic trials were randomly intermixed, we were also able to investigate an

individual neuron’s response to both formats. A total of 1 % of all units responded

selectively to both presentation formats, which was more than expected by chance.

Although these cells tended to prefer the same numerical value, the small sample size

did not allow the meaningful statistical evaluation of a potential correlation. Further-

more, the preferred number obtained during nonsymbolic trials was not significantly

correlated with the (non-significant) number preference during symbolic trials for all

numerosity-selective neurons, and vice versa for all numeral-selective neurons. These

findings suggest that nonsymbolic numerosities and abstract, symbolic numerals are

encoded by two largely segregated neuronal populations.

2.1.3. Neuronal Population Coding

Compared to single neurons, neuronal populations may contain additional informa-

tion about task contingencies of single neurons (Yuste, 2015; Saxena and Cunning-
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ham, 2019). Thus, we adopted a supervised machine learning approach to explore

how numerical information was encoded by the two populations of numerosity- and

numeral-selective neurons, respectively.

In a first step, support vector machine (SVM) classifiers were trained to identify

the numerical value of operand 1 in different trials of the same format, based on the

firing rates of the neuronal population at multiple time points of these trials. It was

then tested with novel data (i.e. withheld trials of the same format) from the same

population to explore how well the number shown in these test trials could be pre-

dicted based on the information extracted from the trials during training. We found

that the classifiers’ accuracy was significantly above chance level (20 % for five num-

ber classes) throughout the operand 1 and delay 1 phase for both nonsymbolic- and

symbolic-format trials, respectively, albeit with lower performance for the symbolic

numbers.

To have a closer look at the type of errors made by the classifiers, we assembled

a confusion matrix which summarizes correct and incorrect predictions, broken

down by each class. During the time interval of significant number decoding,

classifiers trained on nonsymbolic trials tended to confuse numbers that were closer

in numerical space more often than ones that were farther apart, reflecting again the

numerical distance effect. In contrast, misclassifications of symbolic numerals varied

hardly as a function of numerical distance, indicating a sharper transition from the

preferred to nonpreferred numerals.

A multi-dimensional state-space analysis, performed separately for numerosity-

and numeral-selective neurons, further confirmed these findings. Neuronal popu-

lation activity can be represented in an n-dimensional space, where each dimension

specifies the activity of a single neuron and each point in the space reflects the firing

rates of n recorded neurons at a certain time point of the trial. This results in trajecto-

ries that are traversed for different neuronal states (i.e. different numerical values) as

they evolve over time. While the absolute positions of the trajectories in the state-space

are meaningless, relative spatial distances between corresponding points of different

states reflect coding differences. Thus, we calculated the Euclidean distances between

all pairs of trajectories at a certain time point of the trial. For the nonsymbolic format,

the distances between population trajectories systematically increased with numerical

distance, starting shortly after onset of operand 1 and persisting until the end of the

delay 1 phase. This indicates that patterns of population activity were more simi-

lar, the closer two numerosities were in the numerical continuum. For the symbolic

format, trajectory differences were confined to the operand 1 phase, and much less

pronounced than for the nonsymbolic format, but likewise tended to increase with

numerical distance, which may reflect the remnants of a numerical distance effect.
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2.1.4. Number Encoding in Later Task Phases

After analysing neuronal responses to operand 1, we also examined number selectiv-

ity during the presentation of operand 2. For the nonsymbolic format, about 8 % of

all recorded neurons showed activity that varied exclusively with the numerical value

of the second operand, irrespective of the dot array layout. The highest fractions of

numerosity-selective units were again found in PHC (20 %) and HIPP (6 %). About

half of these neurons responded also selectively to the operand 1 stimulus, with a

significant proportion of units even being tuned to the same preferred numerosity.

In symbolic trials, only a chance proportion of neurons responded exclusively to the

numerical value of operand 2.

During this late trial period, neuronal activity may already strongly be modulated

by other cognitive factors, like the maintenance of operand 1 as well as the mathe-

matical rule to be applied, or motor response preparation. Still, this findings confirm

robust and stable encoding for nonsymbolic number stimuli.

2.2. Distinct Neuronal Representation of Small and Large Numbers in the Human

Medial Temporal Lobe

We have shown that the human MTL contains neurons that are selectively tuned to

number stimuli (see section 2.1). As the restricted range of small numerical values (1–

5) used in the calculation task prevented a detailed exploration of several key aspects

of numerical representations, we designed a follow-up study, henceforth referred to

as ‘parity judgement task’.

After a short fixation period, a numerosity was flashed, followed by a brief delay

during which the stimulus was removed. Afterwards, subjects decided as quickly

as possible whether the number had been even or odd by pressing a corresponding

arrow key as indicated on the screen. Numerosities ranged from 0 to 9, and again

different stimulus protocols were used to control for low-level visual features. Task

involvement ensured that the participants actively processed the numerical values.

2.2.1. Behaviour

The subjects’ performance was in line with behavioural data primarily from devel-

opmental psychology (Kaufman et al., 1949; Mandler and Shebo, 1982), showing the

typical dichotomy characteristic for subitizing versus estimation. That is, small nu-

merosities ranging from 1 to 4 were judged rapidly and effortlessly with nearly perfect

precision. In contrast, numerosities 5 and higher were judged with increasing error

rates and reaction times, arguing against serial, symbolic counting (which would be

error-free), but rather being indicative of approximate number estimation. Calculat-

ing the discontinuity point at which the slope of the behavioural response functions
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changed yielded 3.7 (for error rates) and 3.6 (for reaction times) as the average upper

boundary of the subitizing range, further bolstering our observation.

The empty set representing ‘zero’ elicited distinct behavioural effects, probably due

to its special status in number concepts (Nieder, 2016b).

2.2.2. Neuronal Responses and Tuning Characteristics

While performing the parity judgement task, a substantial number of single neurons

(15 %) was activated exclusively in response to the numerical value of the sample

stimulus, and the preference of these number neurons covered the entire range of

tested numerosities 0 to 9. The highest proportions of these numerosity-selective

neurons were found in PHC (22 %) and HIPP (15 %).

Calculating tuning functions for all individual number neurons yielded the well-

known characteristics, i.e. strongest responses to the respective preferred numerosi-

ties and a progressive decrease in firing rates with increasing numerical distance.

Interestingly, using standardized activity (i.e. z-score relative to baseline activation

during fixation) – as opposed to the min/max-normalization applied to the data re-

ported in section 2.1 – unravelled several distinguishing features in the tuning to small

versus large numbers.

First, the tuning functions of neurons preferring small numerosities 0–3 showed

a systematic surround suppression below spontaneous activity in response to non-

preferred numbers; an effect that was not observed in cells preferring large numerosi-

ties 4–9. The sharp cut in tuning-flank suppression between 3 and 4 cannot be ex-

plained by resolution issues (e.g. the curve becoming too wide to detect suppression),

but rather argues for a physiological effect. Next, we fitted Gauss-functions to the

tuning curves, and compared the amplitudes and sigmas (as a quantitative measure

for tuning width) derived for each curve. Correlating with the former finding, we

observed systematic differences in the amplitudes, i.e. significantly smaller values for

cells tuned to small versus large numbers, within the two groups, however, tuning

amplitudes were indifferent. Similarly, the sigmas for neurons preferring numbers 0–

3 were small and indifferent in value (which cannot be explained by a computational

floor effect); around preferred number 4 or 5, a turning point emerged with sigmas

increasing monotonically. This dichotomy in the response patterns of neurons across

the range of numbers parallels our behavioural findings, i.e. narrower, more selec-

tive tuning functions linked with more accurate discrimination of smaller numbers,

contrasting systematically increasing tuning widths, error rates and reaction times for

larger numbers, as expected for ratio-dependent estimation.

Finally, a representational similarity analysis (RSA) based on the correlation coeffi-

cients between all pairs of numbers revealed categorically distinct representations of

small versus large numerosities. Surprisingly, the correlation matrix suggested a rad-

ically different coding for numerosity 0 which remains to be investigated at another
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time. In line with our hypothesis, we observed that neurons tuned to the remain-

ing small numbers (1–3) showed more similar firing rates to other small numbers –

as reflected by higher correlation coefficients for number pairs from within the same

category and rather low values for across-category number pairs –, and vice versa for

larger numbers (4–9). To evaluate which number boundary (i.e. 1|2, 2|3, ..., 8|9) segre-

gated the data best into small versus large number representations, we determined the

highest and most significant difference between within- and across-category values,

which was found for the boundary 3 versus 4.

2.2.3. Coding Differences at the Population Level

To further explore potential decoding discontinuities at the level of neuronal popu-

lations, we trained an SVM classifier to discriminate the ten numerosities, based on

the firing rates of all number-selective neurons at multiple time points across trial

time. Accuracy was significantly elevated above chance level (10% for ten classes)

throughout the sample and delay period. Next, we assembled the confusion matrix

summarizing correct and incorrect predictions made by the classifier during the time

interval of significant number decoding, to have a closer look at the type of errors.

Interestingly, we observed that the classifier predominantly confused numerosities

from within the small-number category and from within the large-number category,

however, it scarcely misclassified numerosities across the two categories which were

segregated best at a boundary between numbers 4 and 5.

Finally, we performed a multi-dimensional state-space analysis that examines neu-

ronal population activity as it evolves over time (see also section 2.1). Reducing the

high-dimensional space to the three most informative dimensions allows visualizing

the neuronal trajectory that is traversed for each of the ten different numerosities (av-

eraged across trials). Spatial closeness (i.e. small distances) of the trajectories indicates

similarity in coding, whereas spatial disparity (i.e. large distances) reflects coding

dissimilarity. Visual inspection revealed trajectories that were intermingled during

fixation but then diverged during sample and delay period, representing numbers

with increasing spatial gaps according to ordinal numerical distances (as observed

already in the calculation task); an unproportionally large gap, however, segregated

the trajectories between 4 and 5.

To statistically quantify this graphical grouping effect, we performed an unsuper-

vised cluster analysis on the neural state-space considering only the time window

of significant number decoding. We first determined the optimal number of clusters

using two different measures. Although the one criterion was also defined for

clustering solutions containing only one cluster (which would be expected under the

hypothesis that there are no coding differences between small and large numbers),

both measures indicated two classes as the optimal cluster number for the dataset.
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Partitioning all trials into two classes, the algorithm detected one cluster consisting of

the state spaces for numbers 0–4, and a second cluster that comprised the state-spaces

for numbers 5–9.

Taken together, two different population-level analyses – supervised SVM classifi-

cation and unsupervised clustering in the multi-dimensional state-space – confirmed

the categorically different encoding of small versus large numerosities observed on

the single-cell level, indicating a boundary between numbers 4 and 5. Notably, when

applying z-score normalization to the number data from the calculation task, we ob-

served the same characteristic coding features distinguishing small and large num-

bers as reported above, both on single-unit- and population-level (unpublished data),

strongly corroborating the robustness of our findings.

2.3. Neuronal Codes for Arithmetic Rule Processing in the Human Brain

We have shown that single neurons in the human MTL stably represent numerical

cardinality. Calculating with numbers, however, requires not only the online main-

tenance of number information, but also of the arithmetic rules according to which

these numbers are to be manipulated. We therefore investigated whether these single

neurons and neuronal populations also encode mentally performed calculations.

In the calculation task, we applied two arithmetic rules, namely addition and sub-

traction, that were instructed either as arithmetic signs or analogous written words.

Using different rule notations (rule cues) allowed us to dissociate neural activity re-

lated to low-level visual features of the operator from the abstract rule that it repre-

sented.

2.3.1. Single Neurons Respond to Calculation Rules

At first, we identified individual neurons that selectively enhanced their neuronal

activity according to the arithmetic rule. During presentation of the operator, a small

but significant proportion (about 5 %) of all recorded neurons was modulated by

the arithmetic rule, most of these units (3.5 %) being exclusively rule-selective, i.e.

showing no effects for the notation of the rule cue or any other task-relevant factor.

A closer anatomical look showed fundamental differences in the unit proportions

across different subregions of the MTL. While EC and AMY amygdala exhibited rule-

selective neurons only as expected by chance, significant fractions of rule units were

observed in PHC (7 %) and HIPP (4 %). In PHC, in particular, a relatively large

proportion of neurons was also responsive to the rule cue.

In the subsequent rule delay period, this proportion increased to 5.3 %, significant

fractions now being observed in all subregions. Notably, a significant proportion of

HIPP units responded also to the number and format of operand 1 during this phase,
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probably reflecting active maintenance of information about both the first operand

and the arithmetic rule in working memory.

With trial progression, the proportion of rule-selective units dropped to chance

level. Instead, cells encoded the additionally introduced task factors. Both in PHC and

HIPP we found units that discharged selectively for the second operand during the

operand 2 and following delay 2 period, but also for the calculation result during the

delay 2 period, seemingly multiplexing all information necessary for the calculation.

2.3.2. Notation-Independent Representation of Addition and Subtraction Rules

Though undoubtedly the ineluctable first analysis step, focussing only on single cells

may underscore the importance of complex spatio-temporal patterns of population

activity by which information can also be represented. Using a statistical classifica-

tion approach, we therefore explored how the entire population of recorded units

encoded rule information. In order to identify potential regional differences, the four

subregions of the MTL were analysed separately. For that, we trained SVM classifiers

to discriminate between addition and subtraction trials, combining the respective cues

per rule, based on the firing rates at different time points across trial time, and then

tested the models on novel data from the same population.

Information about the arithmetic rule was successfully decoded in all MTL areas

during long time intervals of the trial period. The response patterns, however, varied

considerably between the four areas. Consistent with the single-cell analysis, effects

were strong and long-lasting in PHC and even more pronounced in HIPP. In the

PHC, accuracy ramped up shortly after presentation of the operator and again after

presentation of operand 2, but returned to chance level in between and shortly af-

ter operand 2 offset. In HIPP, classification accuracy peaked after cue presentation,

remained stable throughout the operand 2 phase, and ramped even further up until

it reached its maximum during delay 2, i.e. when all information was available to

perform the calculation. In EC and AMY, in contrast, significant effects were rather

weak and short-lived, being confined primarily to the delay 2 phase.

High classification accuracies do not imply per se that a classifier has learned to

encode ‘abstract’ rule information; comparable values might also be observed if the

classifier had learned to encode one rule cue perfectly, but remained at chance level

for the other three cues. To account for this, we looked at the classification prob-

abilities per rule cue during the previously found significant time intervals. In all

subregions, classifier performance was significant for addition and subtraction across

both rule cue notations. Moreover, classification probabilities were comparable for all

cues (except in AMY), confirming the abstractness of the encoded information.

The population analyses do not yet rule out that neurons may encode the rule

cue in addition to the rule itself. To control for this, we also investigated how cue

information was encoded, training classifiers to discriminate between the different
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cue notations (sign or verbal analogue) while combining both arithmetic rules. Reli-

able and significant decoding of the cue information was possible only in PHC, and

exclusively during the presentation of the operator. This result is in line with the ef-

fects observed in the single-cell analysis, and further corroborates our finding that the

population response patterns recorded during later task phases indeed reflect abstract

rule presentations.

2.3.3. Cross-Notation Decoding of Addition and Subtraction

The previous classification analyses indicated that arithmetic rules were encoded irre-

spective of the specific rule cue. To put this observation to the test, we finally analysed

the neuronal populations’ ability to generalize rule information across different cue

notations. For that, we performed another classification analysis, training a classifier

on trials of one rule cue, and testing the model on trials of the other rule cue, and

vice versa. Generalization was then judged successful, if (1) synchronous intervals

of significant classification were found for both directions of generalization, and if

(2) the accuracies averaged across generalization directions were significant for each

arithmetic rule in these synchronous time windows.

In PHC and HIPP, we observed significant cross-notation decoding in extended and

overlapping time windows. The temporal performance profiles were very similar for

both directions of generalization, and strongly resembled the patterns observed for

the full dataset. That is, two selective periods interrupted by a nonselective period

in PHC, and a prolonged period of significant decoding in HIPP, emerging after cue

offset and up to the end of the trial. In both areas, the accuracy of transfer was sig-

nificant for both arithmetic rules and both generalization directions. EC and AMY,

in contrast, failed to generalize across different rule cue notations. In EC, classifica-

tion accuracy reached significance briefly, but for only one test direction. In AMY,

decoding performance was at chance level throughout the whole trial for both gener-

alization directions. Thus, both areas failed our criterion for successful cross-notation

decoding.

2.3.4. Cross-Temporal Calculation Rule Decoding

We have shown that populations of neurons in the MTL represent information about

simple arithmetic rules. More importantly, intervals of significant decoding were ob-

served not only during presentation of the operator, but also in the subsequent delay

and later task phases. This indicates that rule information was maintained actively

in working memory until all information necessary for calculation was available. To

investigate the underlying neuronal codes of arithmetic rules in more detail, we next

performed a temporal cross-training analysis.
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Traditional sliding-window decoding approaches train and test statistical classifiers

on data from identical time points across trial time. The temporal generalization

method (King and Dehaene, 2014) extends this approach by testing each model on

all time points, resulting in a temporal generalization matrix in which each row cor-

responds to the time at which the decoder was trained and each column to the time

at which it was tested. Distinct decoding patterns observed in the temporal gener-

alization matrix then allow to characterize the time course of population codes in

more detail, and to draw conclusions about differences in the underlying neuronal

codes for working memory. Persistently activated neurons manifest in a static pop-

ulation activity that is also stable over time. In other words, a classifier trained on

time t1 would still be able to decode the information when tested on time t2, result-

ing in a square-shaped decoding profile in the matrix. Alternatively, assemblies of

sequentially activated, sparsely firing neurons with rapidly changing tuning profiles

may maintain memory contents via dynamic population codes that would allow no or

only little cross-temporal generalization, as reflected by a high decoding performance

along the main diagonal of the matrix and a strong reduction of the off-diagonal

values.

In PHC, we observed high classification accuracies only along the main diagonal

of the temporal generalization matrix. That is, a model trained on the firing rates

observed, for example, during cue presentation, was able to decode rule information

only during that time window, but failed to do so when tested on activity recorded

during presentation of operand 2 or other time points. Or in other words, rule de-

coding was only successful if training and test time of the classifier were identical.

Notably, we could also identify this coding profile when testing for generalization

across cue notations (as reported above), even if only to a weaker extent. This ab-

sence of cross-temporal generalization indicates that PHC neurons rapidly change

their tuning properties with time, resulting in a dynamic neuronal population code.

A rather different picture emerged for the HIPP. We observed stable significant

cross-temporal generalization starting at the end of the rule cue period until the end

of the trial. To put it another way, a classifier trained on firing rates recorded, for

example, during cue presentation, was still able to decode the rule information when

tested on activity recorded during presentation of operand 2 or even later. Again,

this temporal coding profile was still observed when testing for generalization across

cue notations. This square-like accuracy pattern argues for a rather static neuronal

population code, probably based on cells that are persistently active across trial time.

Finally, EC showed a mild square-like accuracy pattern that emerged around the

rule delay, suggesting rather stable rule coding that vanished with presentation of

operand 2. The weak effects observed in the AMY did not allow any statements about

the underlying coding dynamics.
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3. Discussion

Decades of research on numerical and mathematical cognition have outlined a com-

plex maths network in the human brain, comprising ‘core number areas’ in frontal

and parietal regions (Arsalidou and Taylor, 2011), but also sensory and motor areas

as well as more ‘domain-general’ areas (including the medial temporal lobe) hosting,

for example, the memory systems (Menon, 2016).

In numerous studies with nonhuman primates, number- and rule-selective neu-

rons with distinctive tuning characteristics were found in these number areas (Nieder,

2016a). Although directly linking neuronal responses with behavioural judgements,

these findings are strictly limited to nonsymbolic stimuli and the simplest arithmetic

rules. In contrast, although studies with humans suggest anatomical and functional

homologues, recording methods like fMRI or ECoG do not allow the detailed explo-

ration of single neurons, leaving many important questions unanswered.

In this thesis, we bridged this gap by recording activity of single cells in the MTL

of human subjects, addressing aspects that have yet been eluded from investigation.

3.1. Number Neurons in the Human Brain

In a first study, we asked subjects to perform simple calculation tasks, aiming to

identify and characterize neurons responsive to numerical information. Display-

ing operands and operator sequentially allowed us to explore pure number repre-

sentations, detached from confounds with other task-related factors. Furthermore,

operands were presented either as nonsymbolic dot arrays or symbolic Arabic numer-

als. Randomly varying the format from trial to trial, we were able to analyse neuronal

responses to each of the formats individually. Thus, we can now compare data about

nonsymbolic number coding in humans to those of nonhuman primates. Likewise,

we can investigate how symbolic number is represented in this part of the human

brain, addressing also the still unresolved question whether neuronal responses are

abstracted beyond presentation formats.

The restricted range of numerical values (1–5) used in the calculation task prevented

the detailed exploration of several key aspects of numerical representations. Specifi-

cally, we aimed to analyse whether the behavioural dichotomy observed for subitizing

and estimation is also reflected in the neuronal response profiles of single cells tuned

to small and large numerosities. Thus, we designed a follow-up study using a simple

parity judgement task that required the subjects to indicate whether nonsymbolic dot

arrays were even or odd. In this second task, we used numerical values 0–9 to cover

both the subitizing and the estimation range.
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3.1.1. Encoding of Numerical Information by MTL Single Neurons

As the crucial first step, we showed that a substantial proportion of cells in the human

MTL responds selectively to the numerical values of number stimuli, thereby finally

providing the direct human homologue to monkeys’ number-selective neurons that

had so far only been hypothesized based on functional and (large-scale) anatomical

parallels in human imaging studies.

Among the four MTL regions we recorded from, the PHC showed the highest pro-

portions of number units, followed by the HIPP. The large fractions of number neu-

rons we found in the calculation task were comparable to the proportions observed

during the parity judgement task. This concurs also with numerical tuning of HIPP

neurons recently observed in nonhuman primates (Opris et al., 2015). These consis-

tent findings in different subject cohorts and with different task protocols indicate

that PHC and HIPP contribute significantly to numerical representations.

The PHC is highly interconnected with other polymodal association areas, includ-

ing the parieto-frontal number system (Goldman-Rakic et al., 1984; Suzuki, 2009). As

such, representations about numerical magnitudes do most likely not originate within

the PHC (or other areas of the MTL), instead, semantic information about numbers

may rather be provided via direct connections from parietal and frontal core number

areas.

The MTL is a highly associative brain area contributing to many cognitive pro-

cesses (Aminoff et al., 2013). As part of the declarative memory system, it hosts

‘concept cells’ (Quian Quiroga, 2012) characterized by remarkable selectivities to par-

ticular categories. Considering the enormous importance of quantity perception in

cognition, our finding of a neuronal substrate for the category ‘numerosity’ may thus

not be completely unexpected. Furthermore, based on observed responses to spatial

factors (Ekstrom et al., 2003; Jacobs et al., 2013) and mirror actions (Mukamel et al.,

2010), it has been speculated that the MTL may also play a role in a sensorimotor

numerosity system that links action to magnitude perception (Anobile et al., 2021).

Such speculations as well as other functional implications need yet to be explored.

3.1.2. Segregated Populations of Numerosity- and Numeral-Selective Cells

Our analyses unveiled two largely segregated populations of tuned number neurons

that process either nonsymbolic or symbolic quantity; abstract cells that encoded the

same numerical value in both formats were rarely found.

For many years, there have been heated discussions in the human functional imag-

ing literature whether neuronal representations of number in the IPS (one of the most

important number areas) were format-independent (Piazza et al., 2007; Eger et al.,

2009; Damarla et al., 2016) or -dependent (Cohen Kadosh and Walsh, 2009). Thank-

fully, in the last years research focus has finally moved away from the dichotomous
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‘abstract or not?’. Admitting coding differences without ruling out the possibility of

abstract number processings, it instead shifted more to the conciliating questions of

where and how abstract and nonabstract number representations coexist. Despite the

progress that has been made, however, the technical limitations of fMRI and ECoG

prevent answering important questions regarding the degree of abstractness. Most

critically, whether observed differential activations for nonsymbolic and symbolic

stimuli stem from different subpopulations of format-sensitive single neurons with

distinctive tuning properties, or rather from the same population of neurons that are

differentially modulated by different formats remains eluded at the macroscopic voxel

scale of these recording techniques.

Overcoming this limitation, our single-unit recordings argue for the former pos-

sibility (at least for cells in the MTL) of distinct populations of tuned neurons that

represent either nonsymbolic or symbolic numerical information. Future single-cell

recordings in human subjects, in particular in the parietal and frontal association cor-

tices, may help further resolve the question of abstract or segregated number neurons.

3.1.3. Neuronal Codes for Numbers

Irrespective of its neurophysiological realization, format dependency does not pose

a conceptual problem to number coding. Two competing hypotheses have been pro-

posed: Numbers could either be encoded by a ‘summation code’, characterized by

monotonic activations that vary as a function of quantity (Roitman et al., 2007), or by

a ‘labelled-line code’ as witnessed by numerosity-selective units tuned to preferred

numerosities (Nieder and Merten, 2007). Influential computational models of number

processing (Dehaene and Changeux, 1993; Verguts and Fias, 2004) showed that the

two codes are not mutually exclusive, but suggested summation coding only for an

intermediate processing stage.

For both numerosity- and numeral-selective neurons, we observed activations that

peaked for a preferred quantity and were systematically modulated by numerical dis-

tances. Forming overlapping tuning functions inherently ordered by ordinal numeros-

ity, these cells covered the whole investigated number space unintermittedly. These

findings show striking similarities with the tuning profiles found multiple times in

single-cell recordings of monkeys, both in trained (Nieder et al., 2002, 2006; Sawa-

mura et al., 2002; Nieder and Miller, 2004; Nieder, 2012) and numerically naive an-

imals (Viswanathan and Nieder, 2013), and even in corvid birds (Ditz and Nieder,

2015). This indicates that – at this advanced level within the cognitive processing

pipeline – number coding in the brain of humans and other animals is best captured

by a labelled-line code.
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3.1.4. Distinct Representations of Nonsymbolic and Symbolic Quantities

Interestingly, we observed also striking differences in the tuning of numerosity- and

numeral-selective neurons. One of the most important metrics for indexing neuronal

number representations is proving that neurophysiological activity is parametrically

modulated by the numerical distance effect. Indeed, in both tasks, the neuronal rep-

resentations of nonsymbolic numerosities were abundant and showed a marked dis-

tance effect. In contrast, representations of symbolic numerals were sparsely found,

and their tuning curves were rather brisk and categorical. Population analyses fur-

ther corroborated this findings. In the neuronal state-space, inter-trajectory distances

increased systematically with increasing numerical distance. These effects were very

strong and long-lasting for numerosity-selective neurons, but rather short-living and

less pronounced for numeral-selective cells, probably reflecting remnants of a distance

effect.

In order to link number neurons to numerical behaviour, neuronal responses need

to explain number judgements (Nieder and Miller, 2003; Pinel et al., 2004). Of course,

providing a direct correlate would have been very informative, unfortunately, the cal-

culation task did not ask for an explicit behavioural response to the single operands,

and our participants hardly made any mistakes precluding also the evaluation of er-

ror trials (an analysis regularly done in monkeys). Our findings are in agreement with

behavioural studies, though, that report a distance effect that is strongly pronounced

for nonsymbolic stimuli, but minute for judgements of exact number symbols (Buck-

ley and Gillman, 1974). Furthermore, we showed that numerical information was

robustly decoded by statistical classifiers from all neurons tuned to numerosities, and

with lower accuracy also from the population of numeral-selective neurons. Misclas-

sifications followed the same distinct patterns as observed for the tuning curves of

individual cells. This held true also for the entire population of recorded neurons and

irrespective of response selectivity, thus fulfilling a basic requirement to link neurons

and behaviour (Ramirez-Cardenas et al., 2016).

The capacity to represent nonsymbolic quantities traces all the way back to our

monkey ancestors who had evolved a ‘number sense’ that favoured speed over preci-

sion to gain evolutionary advantages over competitors. The highly precise symbolic

enumeration system, in contrast, is something uniquely human (Nieder, 2009) and

may as such be a special feature of the human brain. Indeed, some researchers chal-

lenge a neurobiological link between number sense and symbolic numerical abilities

(Wilkey and Ansari, 2019). There is, however, also evidence that the ANS plays an

important role in the cognitive development of symbolic numerical thinking (Hal-

berda et al., 2008; Piazza, 2010; Szkudlarek and Brannon, 2017), and the capacity to

link number to arbitrary shapes has also precursors in nonhuman primates (Diester

and Nieder, 2007, 2010; Livingstone et al., 2014). The finding of a distance effect for

both formats, together with the observed differences in coding precision – that are
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indeed in line with both human fMRI studies (e.g. Piazza et al., 2007; Eger et al.,

2009; Lyons et al., 2015) and computational models (Verguts and Fias, 2004) – thus

argue for the hypothesis that precise high-level numerical abilities are grounded in

neuronal circuits devoted to deriving precise numerical values from the evolutionary

older approximate numerosity representations (Dehaene and Cohen, 2007).

3.1.5. Coding Dichotomy for Small and Large Numerosities

In the parity judgement task, behavioural measures showed fast and error-less re-

sponses for small numbers up to four, and increasingly slower and error-prone re-

sponses for larger numerosities. The findings are perfectly in line with the well-

known dichotomous effects characteristic for subitizing versus estimation (Kaufman

et al., 1949; Mandler and Shebo, 1982).

Interestingly, we observed several distinguishing features in the tuning to small

versus large numerosities of single units that mirrored this behavioural dichotomy.

While tuning width for large numbers increased in a ratio-dependent manner indica-

tive of estimation, neuronal tuning to small numbers was more selective and ratio-

independent. This coding dichotomy was also confirmed at the population level. The

boundary in neuronal coding around number the ‘magical number 4’ (Cowan, 2001),

consistently observed across all analyses, correlated well with the behavioural tran-

sition from subitizing to estimation. This indicates that numbers in the subitizing

range may be tapped by different mechanisms in addition to that for number estima-

tion (Anobile et al., 2016).

Furthermore, neuronal tuning in the subitizing range was characterized by a dis-

tinct surround suppression below baseline activity for nonpreferred numerosities that

was not observed for large numbers. Lateral inhibition is a basic neuronal circuit op-

eration (Hartline et al., 1956), generated by excitatory neurons firing in response to

their preferred stimulus and concomitantly recruiting broadly-tuned inhibitory in-

terneurons which, in turn, suppress the firing of neurons tuned to different preferred

stimuli. It is known to increase contrast sensitivity and to shape the tuning of cortical

neurons (Isaacson and Scanziani, 2011), and could thus mechanistically explain the

more accurate number discrimination we observed in the subitizing range. Indeed, it

has been shown that inhibition via interneurons sharpened the tuning to numerosi-

ties in the animal brain (Diester and Nieder, 2008; Ditz et al., 2022). Similarly, several

computational models suggest that centre-surround selectivity profiles emerge spon-

taneously in unsupervised neural networks (Stoianov and Zorzi, 2012; Nasr et al.,

2019), and that task-dependent differences in the inhibition strength do not only give

rise to capacity limitations but can also explain the activation differences between

subitizing and estimation range (Sengupta et al., 2014; Knops et al., 2014).

Extensive research on the subitizing phenomenon suggests a pivotal role of atten-

tion and WM processes that enhance rather than replace estimation for small numbers
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(Anobile et al., 2016). In their attempts to approach neuronal correlates, however, hu-

man functional imaging studies are confined to a rather macroscopic level of spatial

resolution. To our knowledge, we are the first to provide a ‘cellular footprint’ for

subitizing directly on a single-cell level. Whether the observed tuning-flank suppres-

sion originates within the MTL or is rather transferred from other areas involved in

attention- or WM-related processes remains to be investigated. With excitatory and

inhibitory neurons identified in the human MTL (Ison et al., 2011; Gast et al., 2016;

Mosher et al., 2020), though, the necessary circuit components would readily be avail-

able to implement surround inhibition for selective coding in the subitizing range.

Future research that complements the parity judgement task with richer and more

explicit number tasks, and that directly contrast the responses of neurons with and

without attentional demands assigned to number representation will help to support

the generality of our findings.

3.2. Neuronal Codes for Abstract Arithmetic Rules

In the first experiment, the calculation task, we asked subjects to perform simple

addition and subtraction tasks. The sequential presentation of operands and operator

allowed us not only to analyse number representations, but also to explore pure rule

processing, reducing confounds with number representations of the operands and

other task-related factors. To control also for low-level visual features, arithmetic rules

were indicated by cues in two different notations (arithmetic sign or verbal analogue).

3.2.1. Single Neurons Selective for Numerical Rules

As a first step, we identified single neurons encoding the arithmetic rule, irrespective

of the concrete cues indicating that rule. A significant proportion of these exclusively

rule-selective single neurons was detected right after the presentation of the operator.

This rule-selectivity diminished with the presentation of the second operand and the

ongoing calculation in favour of other task factors.

So far, neuronal correlates of addition and subtraction have not been studied in

monkeys. Selective responses of single neurons to abstract ‘greater/less than’ rules,

though, have been found in parietal and frontal areas of rhesus monkeys (Bongard

and Nieder, 2010; Eiselt and Nieder, 2013). The PFC, in particular, is associated with

the representation of abstract rules and concepts (Mansouri et al., 2020) within the

neuronal ‘core maths network’. The MTL, however, may also have direct access to

calculation-relevant information, as it is highly interconnected with these neocortical

association areas (Goldman-Rakic et al., 1984; Suzuki, 2009). Indeed, the presence of

number-selective neurons that we observed in our study, and that was also reported

for monkey HIPP neurons (Opris et al., 2015), indicates that the MTL is suited to
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manipulate number representations. As such, it could mediate the transformation of

perceived numerical information in a working memory buffer.

The rule-selectivity reported in nonhuman primates showed a substantial degree of

specialization, responding only to rules applied to a specific magnitude type (Eiselt

and Nieder, 2013). We therefore think that the majority of our rule neurons specif-

ically and genuinely encode arithmetic rules. However, this does not rule out the

possibility that some of these neurons may not also become engaged in the encoding

of other rules (e.g. the ‘even/odd’ rule in the parity judgement task) that we have not

yet explored. Indeed, response-selectivity is not a fixed, inalterable feature of single

neurons. It has been shown that learning and memory training can alter neuronal

selectivity (Qi et al., 2011). Similarly, responses to the same stimuli may differ as a

function of task demands (White and Wise, 1999; Asaad et al., 2000; Viswanathan and

Nieder, 2015). Such dynamic changes in coding capacities were, for example, also

reflected in reduced proportions of number-selective cells in monkeys performing a

rule-based numerical discrimination task (Vallentin et al., 2012; Eiselt and Nieder,

2013), compared to the amount of number neurons recorded from the same animals

performing a simple delayed match-to-numerosity task (Nieder et al., 2002; Nieder

and Merten, 2007; Diester and Nieder, 2008). In the same vein, the top-down inter-

play with the PFC may also lead to a flexible numerical coding in the MTL, probably

explaining the diminished rule-selectivity we observed with the presentation of the

second operand and the ongoing calculation.

3.2.2. Online Maintenance of Rule Information in Working Memory

Classification analyses revealed that the entire population of recorded neurons carried

sufficient information about the arithmetic rules to discriminate between addition and

subtraction during mental calculation. Importantly, decoding generalized across dif-

ferent rule cue notations which implies an abstract and notation-independent repre-

sentation of these rules.

When people solve simple arithmetic problems, they can either retrieve rote nu-

merical facts stored in declarative memory, or they have to apply alternative strate-

gies usually involving WM processes. The restricted numerical range used in our

task, which permitted only calculation results between 0 and 9, makes it likely that

subjects retrieved their responses primarily from rote memory. The sequential stimu-

lus presentation, however, demanded the parallel maintenance of the individual task

components until all information necessary for solving the task was available, thus

recruiting also WM resources. Indeed, in PHC and HIPP, successful decoding of rule

information was observed from the beginning of the rule cue presentation until the

end of the trial, indicating that the neuronal responses were detached from the phys-

ical stimulus, instead reflecting active maintenance in WM. This finding is in line

with previous intracranial recordings in humans that reported persistent activations
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of MTL single neurons for the same preferred stimuli throughout several seconds

of temporal gaps, showing that this delay activity correlated with memory load and

predicted the successful retrieval of WM contents (see Rutishauser et al., 2021, for a

review).

3.2.3. Static and Dynamic Codes for Working Memory

Decoders applied to time-resolved recordings unveiled fundamentally different cod-

ing profiles of WM in different subregions of the MTL. In HIPP, we observed robust

across-time generalization during mental calculation characteristic for static neuronal

coding (King and Dehaene, 2014). This coding pattern may originate from persis-

tently activated MTL neurons, as reported also by other human single-unit studies

(Kamiński et al., 2017; Kornblith et al., 2017; Boran et al., 2019). In PHC, in con-

trast, decoders did not generalize across different time points, clearly indicating a

dynamic coding framework (King and Dehaene, 2014). Such a decoding pattern has

also been observed in monkeys during complex WM tasks, and may presumably be

explained by varying subpopulations of neurons with rapidly changing tuning pref-

erences (Murray et al., 2017; Spaak et al., 2017).

Static and dynamic codes are not incompatible, but may instead hint at distinct

cognitive functions in arithmetic for the two MTL subregions. A recent approach by

Kamiński and Rutishauser (2020) proposes that differential neuronal coding mech-

anisms can be associated with different components of Cowan’s embedded-process

model of WM (Cowan, 1988, 1999). Persistent activity is assumed to reflect activated

long-term memories in the current focus of attention; dynamic activity, in contrast,

indicates active processing via the central executive that is thought to implement

changes in the focus of attention. Following this logic, the dynamic coding patterns

we observed in PHC may reflect attentional shifts to short-term representations of the

arithmetic rule, whereas downstream HIPP may ‘do the maths’ based on the attended

memory contents activated from LTM in order to manipulate the operands according

to the arithmetic rule at hand. Of course, many questions are still unanswered and

more fine-grained analyses are required to decipher the individual roles of different

brain areas and neuronal mechanisms in mental arithmetic.

3.3. Conclusion

Using the rare opportunity to record the activity of single neurons in the medial tem-

poral lobe of behaving humans, we were able to bridge the gap between single-unit

recordings in animals (that inherently prevent exploring the full spectrum of humans’

cognitive abilities), and functional imaging studies in humans (whose technical limita-

tions confine probing cognition to a rather macroscopic level). Like a prism that breaks

light up into all colours of the rainbow, two different numerical tasks investigated in
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this thesis shed light on seemingly disparate aspects of numerical and mathematical

cognition:

• We proved that single cells in the MTL can encode information about both nu-

merical quantities and simple arithmetic rules, thereby finally providing the di-

rect human homologue to monkeys’ number- and rule-selective neurons that

had so far only been hypothesized based on functional and (large-scale) anatom-

ical parallels in human imaging studies.

• Numerical representations follow a labelled-line coding as observed also in

animals. The finding of segregated populations of numerosity- and numeral-

selective neurons that respond to different stimulus formats with distinct tuning

profiles, however, indicates different degrees of abstractness by which quantities

are encoded in the human number network.

• The observed coding dichotomy for small and large numerosities, mirroring

subitizing and estimation processes, provides a first ‘cellular footprint’ on that

topic which may help to better understand the neuronal computations underly-

ing the complex interplay of attention, working memory, and number represen-

tations.

• Finally, revealing static and dynamic coding mechanisms in PHC and HIPP does

not only emphasize the MTL’s role as an integral part of a wider cortical maths

network, but more importantly, it highlights the substantial role it also plays in

WM processes.

As always in science, the new discoveries raise new questions. For instance,

whether the current findings in the MTL transfer to other cortical brain regions. Taken

together, this thesis provides valuable puzzle pieces that deepen our understanding

of numerical representations constituting the ‘sense of number’.
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Abbreviations

aITC anterior inferior temporal cortex

AMY amygdala

ANS analogue number system

DCE direct cortical electrostimulation

dlPFC dorsolateral prefrontal cortex

DoG difference-of-Gaussian

EC entorhinal cortex

ECoG electrocorticography

EEG electroencephalography

ERP event-related potentials

fMRI functional magnetic resonance imaging

HIPP hippocampus

IPS intraparietal sulcus

LTM long-term memory

MTL medial temporal lobe

OTS object tracking system

PET positron emission tomography

PFC prefrontal cortex

PHC parahippocampal cortex

PPC posterior parietal cortex

RSA representational similarity analysis

SVM support vector machine

WM working memory
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SUMMARY

Our human-specific symbolic number skills that un-

derpin science and technology spring from nonsym-

bolic set size representations. Despite the signifi-

cance of numerical competence, its single-neuron

mechanisms in the human brain are unknown.

We therefore recorded from single neurons in the

medial temporal lobe of neurosurgical patients

that performed a calculation task. We found that

distinct groups of neurons represented either

nonsymbolic or symbolic number, but not both

number formats simultaneously. Numerical informa-

tion could be decoded robustly from the population

of neurons tuned to nonsymbolic number and with

lower accuracy also from the population of neurons

selective to number symbols. The tuning character-

istics of selective neurons may explain why set size

is represented only approximately in behavior,

whereas number symbols allow exact assessments

of numerical values. Our results suggest number

neurons as neuronal basis of human number repre-

sentations that ultimately give rise to number theory

and mathematics.

INTRODUCTION

Numbers are fundamental to science and technology. Despite

counting and arithmetic requiring years of training, the origins

of our symbolic number capabilities are deeply rooted in our

ancestry (Dehaene, 1997). Human adults without formal educa-

tion (Gordon, 2004; Pica et al., 2004), pre-linguistic human in-

fants (Wynn, 1992; Xu and Spelke, 2000), and nonhuman animals

(Brannon and Terrace, 1998; Scarf et al., 2011) can approxi-

mately estimate numerosity, the number of items in a set. These

intuitive nonsymbolic capabilities are harnessed and qualita-

tively transformed by children when they begin to learn symbolic

counting and mathematics in school (Halberda et al., 2008; Gil-

more et al., 2010; Starr et al., 2013). This intimate relationship be-

tween set size estimation and precise counting suggests that

symbolic arithmetic abilities build on nonsymbolic numerical

capacities.

Studies in humans (Piazza et al., 2007; Arsalidou and Taylor,

2011) and nonhuman primates (Nieder, 2016) indicated parts

of the parietal and prefrontal cortices as a core number system

that processes nonsymbolic and symbolic numerical magnitude.

However, the wider cortical number network also incorporates

areas of the medial temporal lobe (MTL) (Menon, 2016), such

as the hippocampus, parahippocampal cortex, entorhinal cor-

tex, and amygdala. The MTL comprises highly associative brain

areas that are directly and reciprocally connected with the frontal

number network (Goldman-Rakic et al., 1984), and human MTL

neurons are known for their selectivity to abstract categories

(Quiroga et al., 2005; Mormann et al., 2011). Functional imaging

studies in humans showed that the hippocampal system—

among many other functions outside of the number domain—is

also involved in learning to count and arithmetic skill acquisition,

specifically during childhood (De Smedt et al., 2011; Supekar

et al., 2013; Qin et al., 2014). Hippocampal-frontal circuit reorga-

nization plays an important role in children’s shift from effortful

counting to efficient memory-based solving of mathematical

problems (Menon, 2016).

As a neuronal correlate of numerosity representations, electro-

physiological recordings from the association cortex of monkeys

showed neurons that are tuned to a specific preferred numeros-

ity of visual and auditory items. Such number neurons have also

been postulated by neural network models (Dehaene and

Changeux, 1993; Verguts and Fias, 2004). In humans, number

neurons have been suggested based on blood flow changes in

functional imaging studies (Piazza et al., 2004; Jacob and

Nieder, 2009a), as well as the combined synaptic mass signals

from hundreds of neurons measured with electrocorticography

(ECoG) (Daitch et al., 2016). Despite the progress that has

been made using functional imaging and ECoG recordings, the

mechanism of how single neurons, the anatomical and functional

units of the brain, encode nonsymbolic or symbolic numerical in-

formation in humans remains unknown. We addressed this

question and recorded from single neurons in the MTL of neuro-

surgical patients that performed a calculation task and were im-

planted with intracranial electrodes (Fried et al., 1997; Kreiman

et al., 2000; Reber et al., 2017).

RESULTS

Participants performed simple sequential addition and sub-

traction tasks using a computer display (Figure 1A). Task

involvement ensured that numbers shown as operands were

Neuron 100, 1–9, November 7, 2018 ª 2018 Elsevier Inc. 1
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consciously processed. Numerical values of the operands

ranged from 1 to 5. In half of the shuffled trials, the numerical

values were presented nonsymbolically as the number of

randomly placed dots in an array (numerosity). In the other

half, Arabic numerals were shown as symbolic number represen-

tations. Both nonsymbolic and symbolic numbers were shown

in standard and control displays in order to control for low-level

visual features (Figure 1B; see Supplemental Information).

Arithmetic symbols or words were applied for addition and sub-

traction instructions (Figure 1C). Average performance of all

participants was close to ceiling for all tested quantities and cal-

culations (performance range 90.3%–99.8%).

We recorded from 585 single neurons in the medial temporal

lobes (153 amygdala, 126 parahippocampal cortex, 107 entorhi-

nal cortex, and 199 hippocampus) of nine human subjects per-

forming the calculation tasks. In order to explore pure number

representations, and to avoid confounds with cognitive factors

later in the task, we focus on the presentation of the first operand

(operand 1) and the subsequent working memory phase

(delay 1); the remaining task phases are considered toward the

end of the results. Random presentation of either the nonsym-

bolic or symbolic format from trial to trial allowed us to investi-

gate an individual neuron’s responses to each of the formats

individually, but also to both formats, in an unbiased way.

Single Neurons Encode Nonsymbolic Number

When the participants calculated with numerosities (nonsym-

bolic format), a substantial proportion of the tested neurons

(16%; p << 0.001 in binomial test; pchance = 0.01; see also Sup-

plemental Information for verification with shuffled data) showed

Figure 1. Behavioral Task and Example

Stimuli

(A) Experimental design of the calculation task.

After visual fixation on the screen, the first number

(operand 1) was followed by a brief delay, after

which the addition or subtraction rule was pre-

sented, followed in turn by a delay and then the

second number (operand 2). After another brief

delay, subjects were required to indicate the

calculated result (ranging from 0 to 9) on a number

panel.

(B) Example operand 1 stimuli for the nonsymbolic

and symbolic format for standard and control

protocols.

(C) Example stimuli for the different calculation

rules indicated by arithmetic symbols (‘‘+’’

and ‘‘�’’) and written words (‘‘und’’ [add] and

‘‘weniger’’ [subtract]), respectively.

activity that varied exclusively with

the number of items during operand 1

presentation and the working memory

delay 1 that followed, irrespective of

the dot array layout (2-factor sliding-

window ANOVA, with factors ‘‘numerical

value’’ 3 ‘‘protocol’’; a = 0.01; Figure S1,

left). Four of such numerosity-selective

neurons are shown in Figure 2, left col-

umn. Each cell is tuned to numerosity; it shows peak activity

for one of the numerosities, its preferred numerosity, and a sys-

tematic decrease of activity the more the number of items devi-

ates from the preferred value. The highest fraction of such

numerosity-selective neurons in the MTL was found in the para-

hippocampal cortex (29%), followed by the hippocampus (18%;

Figure 3, upper columns). The selective neurons’ preference

covered the entire tested range of numerosities, albeit with

most neurons preferring numerosity ‘‘five’’ (Figure 4A, left). The

proportion of neurons selective to nonsymbolic number for

each subject is shown in Table S1. Firing rates were generally

low in the MTL, but the firing rates of numerosity-selective neu-

rons were significantly higher compared to the non-selective

neurons (p < 0.0001; Mann-Whitney U test; Figure S2, left).

Average tuning curves were calculated by averaging the

normalized activity for all numerosity-selective neurons that

preferred a given numerosity. Neural activity formed overlapping

tuning functions with progressively reduced activity as distance

from the preferred quantity increased (Figure 4B, left). To

compare the decay of activity from the preferred quantity across

all neurons tuned to preferred numerosities 1–5, we plotted the

normalized firing rates as a function of absolute numerical dis-

tance from the preferred numerosity. For example, the normal-

ized firing rate to numerosity 2 and 4 of a cell tuned to numerosity

3 (3 therefore is absolute numerical distance 0) were plotted at

absolute numerical distance 1. The pooled function for all selec-

tive neurons compared to a function from random tuning curves

is shown in Figure 4C, left. On average, activity dropped off pro-

gressively with numerical distance across all preferred numeros-

ities, an effect that is not observed for random tuning curves. This

2 Neuron 100, 1–9, November 7, 2018
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finding reflects a neuronal correlate of the well-known ‘‘numeri-

cal distance effect,’’ the behavioral observation that discrimina-

tion progressively enhances as numerical distance between two

quantities increases (Buckley and Gillman, 1974; Merten and

Nieder, 2009). A cross-validation analysis (see Supplemental In-

formation) yielded high reproducibility of preferred numerosity

for the population of numerosity-selective units (average correla-

tion coefficient r = 0.83; p < 0.0001), indicating that the preferred

numerosity of the neurons was reliable and robust.

Single-Cell Responses to Symbolic Number

When participants calculated with Arabic numerals (symbolic

format), a smaller but significant proportion of the recorded neu-

rons (3%; p < 0.001 in binomial test; pchance = 0.01) responded

selectively to numerals during operand 1 presentation and the

subsequent working memory delay 1 (2-factor sliding-window

ANOVA, with factors numerical value 3 protocol; a = 0.01; Fig-

ure S1, right). The highest fraction of such numeral-selective

neurons in theMTLwas again found in the parahippocampal cor-

tex (6%), followed by the amygdala (4%; Figure 3, lower col-

umns). Six numeral-selective neurons (1% of all neurons) were

also tuned to nonsymbolic number, which was more than

Figure 2. Neural Responses of Number-Selective Neurons during

Presentation of Operand 1 and Delay 1

Responses of four example neurons to both nonsymbolic numerosities (left

column) and symbolic numerals (right column). The left panels depict a density

plot of the recorded action potentials (color darkness indicates number of

overlapping wave forms according to color scale at the bottom). Panels show

single-cell response rasters for many repetitions of the format (each dot rep-

resents an action potential) and averaged instantaneous firing rates below. The

first 500 ms represent the fixation period. Colors correspond to the five

different operand 1 values. Gray shaded areas represent significant number

discrimination periods according to the sliding-window ANOVA (color-coded

p values above each panel). Insets show the number tuning functions.

(A and B) Two parahippocampal neurons only responsive to nonsymbolic

number with preferred numerosity 1 (A) and 3 (B).

(C and D) Hippocampal neuron #1 (C) and neuron #2 (D) responding to both

nonsymbolic and symbolic number 5.

Figure 3. Neuronal Selectivity of MTL Single Units

Proportions of single units with significant main effects for ‘‘numerical value’’

(NUM: 1–5) or ‘‘protocol’’ (PROT: standard and control) and interactions

(NUM3 PROT) in a 2-factor ANOVA evaluated at a = 0.01, separately for each

format and MTL region (AMY, amygdala; EC, entorhinal cortex; HIPP, hippo-

campus; PHC, parahippocampal cortex). All analyses refer to exclusively

number-selective (NUM-ONLY) units, i.e., neurons with an effect for numerical

value but no concurrent effects for protocol or interaction. Numbers of sig-

nificant neurons were subjected to a Bonferroni-corrected (n = 4) binomial test;

asterisks indicate significance (*p < 0.05, **p < 0.01, and ***p < 0.001).
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expected by chance (p < 0.05 in binomial test; pchance = 0.16 3

0.03 = 0.005, or 0.5%). Of these, four neurons had identical

preferred numerical values for nonsymbolic and symbolic num-

ber. This correlation did not reach significance (Figure S3A),

possibly due to the small sample size. Next, we investigated

whether the preferred numbers of units tuned to nonsymbolic

numerosity might be correlated with their (non-significant) tuning

to symbolic numerals (Figure S3B) and vice versa (Figure S3C).

Neither correlation reached significance, indicating that numer-

osity and abstract numerals are encoded by two largely distinct

neuronal populations. Two neurons tuned to the same value in

both nonsymbolic and symbolic formats are depicted in Figures

2C and 2D. The neuron in Figure 2C as well as the neuron in Fig-

ure 2D showed maximum responses to quantity 5 in both the

nonsymbolic and symbolic format. In contrast, the two neurons

shown in Figures 2A and 2B were only significantly tuned to

dot numerosities, but not to numerals. Again, a cross-validation

analysis confirmed the reliability of the preferred numeral deter-

mination (average correlation coefficient r = 0.57; p < 0.05). The

proportion of neurons selective to symbolic number for each

subject is shown in Table S1. As for nonsymbolic number, the

firing rates of numeral-selective neurons were significantly

higher compared to the non-selective neurons (p < 0.01;

Mann-Whitney U test; Figure S2, right).

Overall, the numeral-selective neurons’ preference covered

the entire range of numbers 1–5 (Figure 4A, right), and their

normalized activity for each preferred numeral formed overlap-

ping tuning functions (Figure 4B, right). The decline of activity

from the preferred to the nonpreferred numerals was brisk and

categorical, with only a mild progressive decrease with numeri-

cal distance, hardly showing a neuronal numerical distance ef-

fect (Figure 4C, right). At absolute numerical distance 1, the

normalized firing rates obtained for symbolic number (n = 16)

were significantly lower compared to nonsymbolic number (n =

92; p < 0.05; t test), indicating higher selectivity for (or sharper

tuning to) symbolic number. When comparing the neuronal la-

tencies to reach number-selectivity, neurons tuned to nonsym-

bolic (990 ms) and symbolic number (880 ms) did not differ

significantly (p = 0.23; Mann-Whitney U test).

Neuronal Population Coding

So far, our data suggest two main findings at the level of individ-

ual neurons. First, the representation of nonsymbolic number

was abundant and comparable to the core number network in

nonhuman primates (Nieder et al., 2002, 2006; Nieder and Miller,

2004), whereas the representation of symbolic numbers was

sparse in the MTL. Second, neurons responsive to nonsymbolic

or symbolic number formats are largely segregated in the MTL;

abstract neurons that encode the same numerical value in both

nonsymbolic and symbolic formats were rarely found.

We therefore explored how the two populations of numerosity-

selective and numeral-selective neurons encode numerical

values. To evaluate the neuronal populations’ information carried

about number, we first trained a multi-class support vector ma-

chine (SVM) classifier to discriminate numerical values based on

the spiking activity of selective MTL neurons (see Supplemental

Information). After training, the classifier was tested with novel

data from the same neuronal population to explore how well it

could predict number categories based on the information ex-

tracted from trials used for classifier training. Initially, we per-

formed a temporal cross-training classification to assess the

classifier’s accuracy in identifying the correct numerical values

when tested on the activity from a given time period after being

trained on other time periods of the trials. With a chance perfor-

mance of 20% (for five classes), the classifier accuracy was

significantly higher for both nonsymbolic and symbolic number

throughout the operand 1 and delay 1 phases, albeit with better

performance during the nonsymbolic-format trials (Figures 5A

and 5B).

Next, we trained and tested the classifier on the firing rates of

each neuron obtained by averaging across the time window that

had turned out significant in the cross-training classification. The

resulting confusion matrices show robust accuracy (65.6% ±

2.5%) for the five numerosities in the nonsymbolic format repre-

sented by the diagonal (Figure 5C, left). The probability of

misclassification of trials increased the closer two classes were

in the numerical space (‘‘distance effect’’; Figure 5D, left). Also

for number symbols, the numerical values could be classified

significantly above chance level but with lower accuracy

(38.8%± 2.9%; Figure 5C, right). Misclassifications hardly varied

Figure 4. Tuning Properties of Number-Selective Neurons

(A) Frequency distribution of the preferred number of neurons tuned to nu-

merosity (left) and numerals (right).

(B) Average tuning curves of neurons tuned to the five numerosities (left) and

numerals (right).

(C) Averaged normalized activity across all preferred numerosities (left) and

numerals (right) as a function of absolute numerical distance (black line). As-

terisks above the graph represent significant differences between responses

to adjacent numerical distances; asterisks below the dashed line indicate

significant differences between recorded and random tuning curves (*p < 0.05

and ***p < 0.001). Error bars denote SEM.
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as a function of numerical distance for number symbols (Fig-

ure 5D, right). At absolute numerical distances 2, 3, and 4, clas-

sification probabilities obtained for the classifiers (n = 32) trained

on nonsymbolic and symbolic number neurons were almost

identical and significantly higher for symbolic than for nonsym-

bolic number (p < 0.01; t test). This indicates a sharper transition

from the preferred to all nonpreferred numbers and thus greater

selectivity in neurons tuned to symbolic number. When applied

to the entire set of single units regardless of numerosity selec-

tivity (585 units), this analysis yielded qualitatively similar results

(Figure S4).

In addition, we analyzed the coding capacity and dynamics of

the population of number-selective neurons by performing a

multi-dimensional state-space analysis (see Supplemental Infor-

mation) for nonsymbolic and symbolic numbers separately. At

each point in time, the activity of n recorded neurons is defined

by a point in n-dimensional space, with each dimension repre-

senting the activity of a single neuron. This results in trajectories

that are traversed for different neuronal states, i.e., the five

different numerical values in the nonsymbolic (Figure 6A, left)

and symbolic format (Figure 6A, right). These trajectories reflect

the instantaneous firing rates of the respective neuronal popula-

tion as they evolve over time. To evaluate the temporal evolution

of population numerical tuning in each format, we measured

Euclidian distances between trial trajectories in the whole

Figure 5. Numerosity Decoding Using a SVM Classifier

(A) Classification accuracy for decoding numerosity information when training

a multi-class support vector machine (SVM) on instantaneous firing rates at a

given time point and testing on another one for numerosity-selective (left) and

numeral-selective (right) neurons.

(B) Accuracy for training and testing on identical time periods (main diagonal of

matrices in A). The dashed line represents chance level (20% for five classes).

Black bars above the data indicate significance (p < 0.01) when testing against

performance for SVMs trained on shuffled data in a permutation test. Shaded

areas indicate SEM.

(C) Confusion matrix derived when training an SVM on firing rates, averaged

across the significant time windows in the temporal cross-training classifica-

tion (B). Values on the main diagonal represent correct classification.

(D) Classification probability as a function of numerical distance. The dashed

line represents chance level; shaded areas indicate SEM; asterisks represent

significant differences between adjacent numerical distances ***p < 0.001).

Figure 6. Population Dynamics based on State-Space Analysis

(A) Average state-space trajectories, reduced to the three principal dimensions

for visualization, for the sub-populations of numerosity-selective (left) and

numeral-selective (right) units. Each trajectory depicts the temporal evolution

in the time window 0–1,850 ms. Circles indicate boundaries between experi-

mental periods (Cl.R., calculation rule; Del.1, delay 1; Fix., fixation; Op.1,

operand 1).

(B) Intertrajectory distances, averaged across pairs of trajectories with the

same numerical distance. Dashed lines represent the average distances for

trajectories obtained for label-shuffled data.
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population space corresponding to the activity to the five numer-

ical values. In the nonsymbolic format, the trajectory distances

systematically increasedwith numerical distance (p < 0.001; per-

mutation test for all trajectories; see Supplemental Information),

starting shortly after onset of operand 1 until the end of themem-

ory delay 1. The distances between the population trajectories

confirm the findings based on single selective neurons: the

closer two numerosities were in the numerical continuum, the

more similar were the corresponding patterns of population ac-

tivity and vice versa (Figure 6B, left). This argues for a numerical

distance effect in the population data. In the symbolic format, the

trajectory distances were much less pronounced but likewise

tended to increase with numerical distance (p < 0.001 for 1

versus 4 in a permutation test), reflecting the remnants of a dis-

tance effect (Figure 6B, right). A comparison of the trajectory dis-

tances also suggests thatMTL neurons responded longer lasting

to the nonsymbolic format and throughout the working memory

period (i.e., delay 1). In contrast, the responses to the symbolic

format were more confined to the sample phase of operand 1.

Again, this analysis yielded similar results when performed for

the whole population of single units (Figure S5).

Encoding of Number in Later Task Phases

After analysis of the responses to the operand 1, we also exam-

ined selectivity to the numerical value of operand 2 separately

for nonsymbolic and symbolic number format. For the nonsym-

bolic format, 7.7% (45/585) of the tested neurons showed ac-

tivity that varied exclusively with the number of operand 2 items

during operand 2 presentation, irrespective of the dot array

layout (5-factor sliding-window ANOVA with the factors numer-

ical value of operand 1 [1–5], numerical value of operand 2

[0–5], protocol [standard and control], ‘‘mathematical rule’’

[addition and subtraction], and ‘‘rule cue’’ [word and symbol];

a = 0.01). Twenty-two of the units selective to nonsymbolic

operand 1 (n = 92) were also tuned to nonsymbolic operand

2; of those, 9 cells had the same preferred number. Given

that 20% of the selective units are expected to share the

preferred number by chance (5 number values), this proportion

of 9 cells was significantly higher (p < 0.05 in binomial test).

The finding that cells that responded both to operand 1 and

operand 2 tended to show the same preferred numerosity

was also confirmed by a correlation analysis (Pearson’s r =

0.64; p = 0.0013; Figure S6). For the symbolic format, only a

chance proportion of 1.5% (9/585) responded exclusively to

the numerical value of the operand 2 during the presentation

of the operand 2.

The responses of a single neuron throughout thewhole trial are

shown in Figure S7. This neuron was significantly tuned to nu-

merosity 5 of operand 1 during the operand 1 phase and of

operand 2 during the operand 2 phase (Figure S7, upper histo-

grams). This neuron also showed strong responses to the nu-

merical values of the operand 2 during the symbolic format (Fig-

ure S7, lower histograms); however, it was also selective to the

numeral protocol and thus not counted as an exclusively nu-

meral-selective cell. Overall, the highest proportion of neurons

selective to the nonsymbolic numerical value of operand 2 in

the MTL was found in the parahippocampal cortex (20%), fol-

lowed by the hippocampus (6%; Figure S8).

Next, we analyzed selectivity to number in the delay 2 phase,

again separately for nonsymbolic and symbolic number format.

In the delay 2 phase, all the information necessary to solve the

calculation is available to the subjects. The delay 2 phase may

therefore be regarded as the calculation result phase. For statis-

tical analysis, we applied a sliding-window 6-factor ANOVA (with

the same factors as above, plus main factor numerical value cor-

responding to the result of the calculation [0–9]; a = 0.01). Neither

for the nonsymbolic nor for the symbolic format was the propor-

tion of neurons selective to the calculation result higher than

expected by chance (Figure S8).

Representation of Calculation Rules

Finally, we explored whether MTL neurons also encoded the

calculation rules (addition and subtraction) in an abstract

manner, independent from the rule notation (word or calculation

symbol as rule cues). Cells selective to nonsymbolic numerical

rules have been found inmonkey cortex (Vallentin et al., 2012; Ei-

selt and Nieder, 2013). We determined calculation rule-selective

units by applying a sliding-window 4-factor ANOVA (with the fac-

tors mathematical rule [addition and subtraction], rule cue [word

and symbol], numerical value of operand 1 [1–5], and format

[symbolic and nonsymbolic]; a = 0.01) during the calculation

rule phase and the rule delay phase. Figure S9 displays two

rule-selective neurons. The neuron in Figure S9A showed a

selective increase whenever an addition was required (reddish

discharges), whereas the neuron in Figure S9B selectively

enhanced discharges whenever a subtraction was cued (blueish

colors). These rule-selective response increases were abstract

and independent from the notation of the rule cue (word or sym-

bol). In total, we found only a small proportion of 2% of abstract

calculation rule cells, but this fraction was significantly larger

than expected by chance (Figure S10). In addition, a significant

fraction of 3% of the cells encoded the rule cue (calculation

word or symbol) during the calculation rule phase (Figure S10).

DISCUSSION

Using single-cell recordings in subjects performing a calculation

task, we have shown that single neurons in the MTL of humans

are tuned to numerical values in nonsymbolic dot displays and

symbolic numerals. The data about nonsymbolic number coding

from humans can now be compared to those of nonhuman pri-

mates. In addition, our MTL recordings show how the capacity

to represent symbolic number is represented in this part of our

brain. This capacity to link number to visual signs has precursors

in nonhuman primates (Diester and Nieder, 2010; Livingstone

et al., 2014), but ultimately the symbolic number system is

uniquely human (Nieder, 2009).

Functional imaging studies in humans found that areas of the

MTL—among many other functions outside of the number

domain—participate in learning arithmetic (De Smedt et al.,

2011; Supekar et al., 2013; Qin et al., 2014; Menon, 2016). Using

single-cell recordings in human subjects, we show thatMTL neu-

rons encode the numerical values in both nonsymbolic and sym-

bolic number. With 29% and 6% of all neurons being selective to

nonsymbolic and symbolic number, respectively, the parahippo-

campal cortex (PHC) shows the highest proportions of number
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neurons among the four tested MTL areas. The PHC is part of a

large network that connects regions of the temporal, parietal,

and frontal cortices and has been associated with many cogni-

tive processes (Aminoff et al., 2013), such as selectivity to pic-

tures (Kreiman et al., 2000), responses guided by familiarity (Ru-

tishauser et al., 2006), responses to spatial factors (Jacobs et al.,

2013), and responses to mirror actions (Mukamel et al., 2010).

Most likely, representations about numerical quantity do not

originate within the PHC (or other areas of the MTL) but are pro-

vided via direct anatomical connections to the parieto-frontal

core number system (Goldman-Rakic et al., 1984). Interestingly,

the PHC has prominent connections with polymodal association

areas, including the parietal lobule (Suzuki, 2009). This connec-

tion with the parietal lobule, an integral part of the core number

network (Piazza et al., 2004, 2007; Arsalidou and Taylor, 2011)

in which numerosity, but not number symbols, aremapped topo-

graphically (Harvey et al., 2013) is likely to provide the PHC with

semantic information about numerical magnitude.

We have discovered two largely segregated populations of

tuned number neurons in the human MTL that process either

nonsymbolic or symbolic numerical quantity. The representation

of nonsymbolic and symbolic number information by two distinct

populations of tuned number neurons may either be inherited

from the core number system or a special feature of the human

MTL. Neurons in the prefrontal cortex of monkeys have been

shown to respond abstractly by integrating visual and auditory

numerosity (Nieder, 2012). Of course, number neurons in

nonhuman primates operate strictly within the nonsymbolic

format, but in monkeys trained to associate visual shapes with

varying numbers of items, the responses of prefrontal neurons

to the visual shapes reflected the associated numerical value

in a behaviorally relevant way (Diester and Nieder, 2007).

Irrespective of its neurophysiological realization, format de-

pendency does not pose a conceptual problem to number cod-

ing. In the human functional imaging literature, it is debated to

what extent neural representations of number even in the human

intraparietal sulcus (IPS) are format independent (Piazza et al.,

2007; Eger et al., 2009; Jacob and Nieder, 2009b; Damarla

et al., 2016) or format dependent (Cohen Kadosh et al., 2007;

Holloway et al., 2010). There is not even consensus with regard

to the degree of abstractness of numerical representations (re-

viewed in Cohen Kadosh and Walsh, 2009). Of course, these

findings derived from blood-oxygen-level-dependent signals

might also be explained by functionally segregated circuits that

overlap at the macroscopic voxel scale. Future single-cell re-

cordings in human subjects, in particular in the parietal and fron-

tal association cortices, may help to resolve the question of

abstract or segregated number neurons. They could also provide

insights into the coding of larger numbers, the empty set, and the

special number zero (Merten and Nieder, 2012; Ramirez-Carde-

nas et al., 2016).

Our study also helps to answer the question of the neuronal

code for number. Two competing hypotheses have been pro-

posed. Numbers could either be encoded by a ‘‘summation

code,’’ as evidenced by monotonic discharges as a function of

quantity (Roitman et al., 2007), or by a ‘‘labeled-line code’’ as wit-

nessed by numerosity-selective neurons tuned to preferred nu-

merosities. In agreement with influential computational models

of number processing (Dehaene and Changeux, 1993; Verguts

and Fias, 2004), the number neurons we found in the human

MTL were tuned to their individual preferred numerical value. A

general concern of data from patients with a history of epileptic

seizures is of course that the functional properties of MTL

neurons may have affected during the course of the disease.

Moreover, eye movement that was not measured during human

recordings might have influenced the neurons’ response proper-

ties. However, such factors are unlikely responsible for our re-

sults, because the same code that we observed in MTL neurons

has been foundmultiple times in single-cell recordings of fixating

monkeys, both in trained (Nieder et al., 2002, 2006; Sawamura

et al., 2002; Nieder and Miller, 2004; Nieder, 2012) and numeri-

cally naive subjects (Viswanathan and Nieder, 2013) and even

in corvid birds (Ditz and Nieder, 2015). This coding similarity sug-

gests that our findings in the MTL are representative also for the

healthy human brain. In addition, it indicates that number coding

in humans and other animals is best captured by a labeled-line

code. Of course, because number neurons only represent a

very restricted part of the number line, only populations of num-

ber neurons, each tuned to different values, can represent the

entire ‘‘mental number line.’’

In order to link number neurons to numerical behavior,

neuronal responses need to explain number judgments (Nieder

and Miller, 2003; Pinel et al., 2004). The direct comparison of re-

sponses in error trials versus correct trials, an analysis regularly

done in nonhuman primates, would have been informative, but

the human subjects hardly made any error and thus precluded

the evaluation of error trials. However, as a basic requirement

supporting the link between neurons and behavior, we show

that nonsymbolic and symbolic numerical values can be reliably

decoded from MTL neurons (Ramirez-Cardenas et al., 2016).

This holds true for the populations of selective number neurons

but also for the entire population of recorded neurons and irre-

spective of response selectivity. In addition, the neuronal activity

can also explain the numerical distance effect, the finding that

numerically distant numbers can be better discriminated. Behav-

ioral studies and neural modeling show that the distance effect is

substantial for the comparison of nonsymbolic numerosities but

minute for judgments of exact number symbols (Buckley and

Gillman, 1974; Verguts and Fias, 2004). In agreement with this,

the accuracy of number discrimination based on the neuronal

discharges exhibited large distance effects for the populations

of broadly tuned numerosity-selective neurons but small dis-

tance effects for sharply tuned numeral-selective neurons. This

finding provides further evidence for these neurons as the phys-

iological correlate of number representations.

The distance effect for number symbols is thought to be in-

herited from more basic nonsymbolic number representations

(Moyer and Landauer, 1967; Buckley and Gillman, 1974; Piazza

et al., 2007). Its presence in human number neurons therefore

supports the hypothesis that high-level human numerical abili-

ties are rooted in biologically determined mechanisms. It sug-

gests that number symbols acquire their numerical meaning by

becoming linked to evolutionarily conserved set size representa-

tions during cognitive development (Halberda et al., 2008; Szku-

dlarek and Brannon, 2017). Symbolic number cognition thus ap-

pears to be grounded in neuronal circuits devoted to deriving
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precise numerical values from approximate numerosity repre-

sentations (Dehaene and Cohen, 2007).
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KEY RESOURCES TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by Florian Mormann (florian.mormann@

ukbonn.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Nine human subjects (4male, all right-handed,mean age 43.3 years) undergoing treatment for pharmacologically intractable epilepsy

participated in the study. Informed written consent was obtained from each patient. All studies conformed to the guidelines of the

Medical Institutional Review Board at the University of Bonn, Germany. On the level of single neurons no sex- or gender-specific dif-

ferences are to be expected; thus, the influence of sex and gender identity was not analyzed further.

METHOD DETAILS

Neurophysiological Recording

All subjects were implanted bilaterally with chronic intracerebral depth electrodes in the medial temporal lobe (MTL) to localize the

epileptic focus for possible clinical resection. The exact electrode numbers and locations varied across subjects and were based

exclusively on clinical criteria. Neuronal signals were recorded using 9–10 clinical Behnke-Fried depth electrodes (AD-TECHMedical

Instrument Corp., Racine, WI). Each electrode contained a bundle of nine platinum-iridium micro-electrodes protruding from its tip;

eight high-impedance active recording channels, and one low-impedance reference electrode. Differential neuronal signals

(recording range ± 3200 mV) were filtered (bandwidth 0.1–9,000 Hz), amplified and digitized (sampling rate 32.7 kHz) using a 256-

channel ATLAS neurophysiology system (Neuralynx Inc., Bozeman, MT). Behavioral data were synchronized with the recorded

spikes via 8-bit timestamps using the Cheetah software (Neuralynx Inc., Bozeman, MT).

After band-pass filtering the signals (bandwidth 300–3,000 Hz), spikes were detected and pre-sorted automatically using the Com-

binato software (Niediek et al., 2016). Manual verification and classification as artifact, multi or single unit was based on spike shape

and its variance, inter-spike interval distribution per cluster and the presence of a plausible refractory period. Only units that re-

sponded with an average firing rate of > 1 Hz during operand 1 and delay 1 phase for either format were included in the analyses.

Across 16 recording sessions from all nine patients, a total of 836 units (585 single and 251multi units) were identified in the amygdala

(AMY; 153 single and 63 multi units), parahippocampal cortex (PHC; 126 single and 61 multi units), entorhinal cortex (EC; 107 single

and 54 multi units) and hippocampus (HIPP; 199 single and 73 multi units) according to these criteria (see Table S1); 333 units with

firing rates < 1 Hz were excluded. Only single units were subjected to further analyses.

Stimuli

All stimuli were presented within a filled gray circle (diameter 6� of visual angle) on a black background. During fixation and delay

phases, a white fixation spot was presented in the center of the gray area. It disappeared during stimulus presentation to avoid

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Cheetah software Neuralynx Inc. https://neuralynx.com/software/cheetah

Combinato spike sorting software Niediek et al. (2016) https://github.com/jniediek/combinato

MATLAB R2017a MathWorks https://de.mathworks.com/

Psychtoolbox http://psychtoolbox.org/

LIBSVM Chang and Lin (2011) https://www.csie.ntu.edu.tw/�cjlin/libsvm/

DataHigh Yu et al. (2009) https://users.ece.cmu.edu/�byronyu/software/

DataHigh/datahigh.html

Other

Behnke-Fried depth electrodes AD-TECH Medical Instrument Corp. https://adtechmedical.com/depth-electrodes

ATLAS neurophysiology system Neuralynx Inc. https://neuralynx.com/news/techtips/atlas-

neurophysiology-system-for-cogneuro-applications
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confusion with nonsymbolic stimuli and to distinguish it clearly from the nonsymbolic zero-stimulus that was included for control

purposes as a potential operand 2-stimulus (see Experimental Task).

Number stimuli of operand 1 ranged from 1 to 5, and were either black ‘symbolic’ Arabic digits at a randomized location (‘nu-

merals’), or ‘nonsymbolic’ arrays of black dots of pseudo-randomly varied sizes and at randomized locations where the number

of dots corresponded to the respective numerical value (‘numerosities’). Number stimuli of operand 2 ranged from 0 to 5, and

were the same as for operand 1. For the nonsymbolic ‘zero’-stimulus the empty gray circle without fixation spot was presented.

Both nonsymbolic and symbolic number formats were shown in standard and control displays, or ‘protocols’ (Figure 1B). This was

done in order to control for low-level visual features. The standard nonsymbolic numerosity displays consisted of randomly placed

dots of varying sizes (diameter 0.3� to 0.8� of visual angle), whereas in the control displays the overall surface area and density of the

dots across numerosities was equated. For the Arabic numerals, different font types were used as standard (Helvetica, 34 pt) and

control (DS-Digital, 34 pt) displays. A session consisted of 50%nonsymbolic and 50%symbolic number formats.Within each format,

standard and control protocols were shown with equal probability of 50%.

Two different mathematical rules, i.e., addition and subtraction, were applied (Figure 1C). To dissociate neuronal activity related

purely to physical properties of the operator from the rule that it signifies, two distinct cues, i.e., the mathematical sign (+ or –) or

a verbal analog (‘und’ [add] and ‘weniger’ [subtract]), were used for each rule (all Helvetica, 34 pt, and presented in the center).

Experimental Task

During experimental sessions, subjects sat in bed and performed the task on a touch-screen laptop (display diagonal 11.7 in; res-

olution 1366x768 px) on which stimuli were presented at a distance of approximately 50 cm. To exclude any bias, the subjects

were not informed about the purpose or hypotheses of the experiment.

Subjects performed two calculation tasks that required them to calculate the result of a simple arithmetic problem (Figure 1A). Each

trial started with a 500ms fixation phase. Then, stimuli were presented successively in the order operand 1 – operator – operand 2 for

500ms each, followed each by 800ms delay phases. Afterward, a number pad showing the Arabic numerals 0 to 9 was presented on

the screen and subjects were instructed to touch the number matching the result of the calculation in a self-paced manner. After a

500 ms feedback display (‘richtig’ [correct] or ‘falsch’ [false]) the next trial was started automatically.

We varied five factors in this task: Format (symbolic/ nonsymbolic), numerical value (1–5), and protocol (standard/ control) for the

operand 1-stimulus, resulting in 20 different ‘number’ conditions, as well as mathematical rule (addition/ subtraction) and rule cue

(symbol/ word), resulting in four ‘operator’ conditions. Operand 2 was always of the same format and protocol as operand 1, but

with random numerical value 0–5, albeit guaranteeing calculation results between 0 and 9.

Each session comprised a total of 320 trials, plus 10 rehearsal trials at the beginning to familiarize subjects with the task that were

excluded from further analysis. A session was divided into four blocks of 80 trials each, comprising each of the 80 different conditions

in pseudo-random order, to allow for short self-paced breaks in between. Thus, every number condition (i.e., combination of number,

format and protocol) was presented 16 times, while every operator condition (i.e., combination of rule and rule cue) occurred

80 times.

QUANTIFICATION AND STATISTICAL ANALYSIS

Only single units (n = 585) were included in the following analyses. We focused on the operand 1 and delay 1 phases because these

were the only periods during which pure number information was being processed. Given that the rule to be applied was not yet

known, interference of calculation processes or motor response preparation could be excluded. Thus, all analyses were conducted

for the time window 0–1850ms (fixation onset to delay 1 offset). All subjects performed the task with high proficiency (98.5% ± 0.6%,

range 90.3%–99.8%). Therefore, we did not exclude the negligible number of error trials from the analyses.

Sliding-Window 2-Factor Analysis of Variance (ANOVA)

Due to the incomparability of the protocol conditions for the different formats, the following procedure was carried out separately for

trials of each format. For each unit, spike trains were smoothed trial-wise (Gaussian kernel, s = 150ms) within the analysis window. At

every 10-ms-step, a 2-factor ANOVA was performed on the instantaneous firing rates for the factors ‘numerical value’ (1–5) and ‘pro-

tocol’ (standard/ control) resulting in a temporal sequence of F-values for main and interaction effects. To control for multiple com-

parisons, a cluster permutation test (Maris and Oostenveld, 2007) was performed to identify temporal clusters that encoded number

information significantly. Briefly, all F-values within a cluster, i.e., an interval with only significant p-values (pclus < 0.01) for the respec-

tive effect, were summed up. Calculating multiple 2-factor ANOVAs and summing up significant F-values was repeated with

randomly shuffled trial labels (nperm = 100). A temporal cluster of the true data was then considered significant only if the percentile

rank of the summed F-values of the true data was significant across the distribution of summed F-values obtained for the shuffled

data (prank < 1%, corresponding to a nominal size of the statistical test of a = 0.01). In the following, we refer to such a significant

cluster as NUM-interval. A unit was counted as exclusively number-selective (‘number-unit’) if a significant cluster was observed be-

tween 500–1600 ms (operand 1 onset to 200 ms before delay 1 offset) for the factor ‘numerical value’ and there were no overlapping

significant clusters for the factor ‘protocol’ or the interaction (see Figure S1). As a control, we determined the proportion of significant

NUM-intervals for the shuffled data (585 single units x 100 permutations, resulting in 58,500 tests; same procedure as for the true
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data) in order to estimate the probability of false positives, i.e., the probability that a unit was classified as number-selective by

chance. For both formats, we found that 1% of these tests (nonsymbolic 493/58,500, symbolic 513/58,500) resulted in a statistically

significant result, or false positive, confirming the empirical size of the statistical test to also be at a z0.01. The probability that

neuronal selectivity occurs by chance was therefore 1%. Using a binomial test with pchance = a = 0.01, we can thus confirm that

the observed proportion of number-selective neurons cannot be explained by chance occurrences both for nonsymbolic (92/585;

pbinomial = 1.18e-77) and symbolic (16/585; pbinomial = 3.58e-4) number-selective neurons.

To compare the general response behavior of number-units and non-selective cells, we determined the maximum firing rate per

number condition for each format and cell by averaging the spike rates within the significant NUM-interval for the number-units or

across the entire operand 1 and delay 1 phase (500–1800 ms) for the non-selective units (nonsymbolic format: 92 numerosity-cells,

493 non-selective cells; symbolic format: 16 numeral-cells, 569 non-selective cells). Distributions were then compared using aMann-

Whitney-U-test (see Figure S2). The correlation between nonsymbolic and symbolic number-representations was evaluated for the

sub-populations of numerosity-selective neurons (n = 92), numeral-selective neurons (n = 16) and neurons responsive to both formats

(n = 6). For each unit of a sub-population, we calculated the preferred number for the significant format by averaging the spike rates

during the respective NUM-interval, and the preferred number for the non-significant format by averaging the spike rates across the

entire operand 1 and delay 1 phase (500–1800 ms). We then quantified the relationship by calculating Pearson’s linear correlation

coefficient (see Figure S3).

The sub-populations of nonsymbolic and symbolic number-units obtained with the sliding-window 2-factor ANOVA showed little

(although significant) overlap. Therefore, the following population analyses were performed separately for the sub-population of

nonsymbolic number-units (92 units) considering nonsymbolic trials only, and the sub-population of neurons preferring symbolic

stimuli (16 units) using symbolic trials only. For control purposes, population analyses were also performed for the whole population

of single units (585 units; see Figures S4 and S5).

Tuning Properties

For each number-unit, individual tuning curves were obtained by averaging the responses to different numerical values across trials,

during the time window of significant number-clusters (NUM-intervals). In cases where we identified multiple NUM-intervals within

the same unit, tuning curves were calculated separately for each of these intervals (3/5 nonsymbolic number-cells with multiple

NUM-intervals preferred different numerosities). They were then normalized by setting the maximum response to 100% and the min-

imum response to 0%. The preferred numerical value was determined as the number which elicited the strongest average response.

A cross-validation analysis was performed to estimate the robustness and reliability of the preferred number assessment (Nieder and

Merten, 2007). We split the data into two halves by randomly assigning the trials to either of the two sets and calculated the preferred

number for each dataset. This was done for the entire population of number-units and the relationship between preferred numbers

quantified by calculating Pearson’s linear correlation coefficient. If both datasets resulted in identical preferred numbers, the corre-

lation coefficient was 1. The correlation analysis was performed 100 times for different random partitions of the data, and the average

correlation coefficient was calculated.

Population neural filter functions were then calculated by averaging across the sub-populations of units preferring the same nu-

merical value. The activity of each number-unit was considered as a function of distance from its preferred number. Differences

between all pairs of adjacent numerical distances were separately quantified using Wilcoxon signed-rank tests. Moreover, for

each numerical distance we tested whether the obtained response differed significantly from a response pattern to be expected

in case of random tuning (obtained by repeating the analysis with shuffled labels) using a permutation test (nperm = 1000).

Multi-Class Support Vector Machine (SVM) Classification

For each unit, spike trains were trial-wise smoothed (Gaussian kernel,s = 50ms, window size 300ms) within the analysis window. For

temporal cross-training classification, amulti-class SVMclassifier (Chang and Lin, 2011) was trained on the instantaneous firing rates

at a certain time point, and then tested on firing rates at different time points (sampling interval 10 ms). We used a linear SVM-kernel

with default parameter settings and applied ‘one-versus-one’ classification to distinguish our five classes. For the 32 trials per num-

ber and format (symbolic versus nonsymbolic), we used leave-one-out cross-validation and normalized all firing rates by z-scoring

(mean and standard deviation obtained from training data only) within each cross-validation repetition. For each classifier (n = 32),

accuracy was assessed by counting the instances that a certain activity pattern was labeled correctly. To evaluate whether accuracy

differed significantly from chance level (20% for five classes) when trained and tested at the same time points, we repeated the anal-

ysis with randomly shuffled trial labels (nperm = 1000) and applied a cluster permutation test (pclus = 0.01, prank = 1%; see Sliding-

Window 2-Factor ANOVA). Finally, a multi-class SVM (with the same settings as above) was trained and tested on the firing rates

obtained by averaging across the time window that was significant in the cross-training classification, i.e., window 780–1800 ms

for the nonsymbolic number-units and 810–1370 ms for the symbolic number-cells (in cases where we obtained multiple significant

windows, we used the onset of the first cluster and the offset of the last cluster as window boundaries). In addition to the overall ac-

curacy, we assembled a confusion matrix which counted the frequency at which a trial of a certain stimulus class was assigned

different labels by the classifier (main diagonal indicating correct labeling), and calculated the classification probabilities per numer-

ical distance by averaging over the main andminor diagonals of the confusion matrix for each classifier (n = 32). Differences between

adjacent classification probabilities were evaluated using Wilcoxon signed-rank tests (n = 32).
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Population State-Space Analysis

For each unit, spike trains were averaged across conditions, normalized by z-scoring and smoothed (Gaussian kernel, s = 50 ms,

window size 300 ms). The temporal evolution of the neural activity of a population of n neurons can be represented as a trajectory

in an n-dimensional space where each axis represents the instantaneous firing rate of one neuron. In our case, we analyzed the tra-

jectories of the five different number conditions in a 92-dimensional space for the sub-population of nonsymbolic number-units, and

in a 16-dimensional space for the symbolic number-units, respectively. To evaluate population tuning in terms of numerical dis-

tances, we calculated the Euclidean distances between each pair of trajectories, and averaged across those with the same numerical

distance. This analysis was repeatedwith shuffled trial labels (nperm= 1000) to obtain intertrajectory distances that would be expected

for random numerical tuning, and evaluated using a cluster permutation test (pclus = 0.01, prank = 1%; see Sliding-Window 2-Factor

ANOVA). Solely for visualization purposes, trajectories were reduced to the top 3 (in terms of covariance they explain) orthonormal-

ized dimensions using a Gaussian-process factor analysis (Yu et al., 2009).

Other Task Phases

Number-selectivity to operand 2 was assessed by performing a sliding-window 5-factor ANOVA with the factors ‘numerical value’ of

operand 1 (1–5), ‘numerical value’ of operand 2 (0–5), ‘protocol’ (standard/ control), ‘mathematical rule’ (addition/ subtraction) and

‘rule cue’ (word/ symbol) for the operand 2 phase (analysis window 3050–3650 ms), separately for each format. We used the same

parameters and procedures as for the operand 1 phases (see Sliding-Window 2-Factor ANOVA). A unit was counted as exclusively

number-selective during the operand 2 phase if a significant cluster was observed between 3100–3400 ms (operand 2 onset to

200 ms before operand 2 offset) for the factor ‘numerical value’ of operand 2 and there were no overlapping significant clusters

for any other factor. For the population of nonsymbolic number-units responsive to both operand 1 and 2 (n = 22) we calculated

the preferred number per operand during the respective significant NUM-interval and quantified the relationship by calculating Pear-

son’s linear correlation coefficient (see Figure S6). In addition, the significance of the proportion of units preferring the same number

(k = 9) was evaluated using a binomial test (pchance = 0.2 for five numbers).

Analogously, number-selectivity to the calculation result was determined for the delay 2 phase (analysis window 3550–4450 ms;

we excluded the actual response phase in order to avoid confounds with motor responses) using a 6-factor ANOVA with the same

factors as above, plus ‘numerical value’ of calculation result (0–9). Again, we used the same parameters and procedures as for the

operand 1 phases (see Sliding-Window 2-Factor ANOVA) and counted a unit as exclusively number-selective if a significant cluster

was observed between 3600–4200 ms (delay 2 onset to 200 ms before delay 2 offset) for the factor ‘numerical value’ of calculation

result and there were no overlapping significant clusters for any other factor.

Furthermore, we determined rule-selective units by calculating a sliding-window 4-factor ANOVA with the factors ‘mathematical

rule’ (addition/ subtraction), ‘rule cue’ (word/ symbol), ‘numerical value’ of operand 1 (1–5) and ‘format’ (symbolic/ nonsymbolic),

thereby pooling over the factor ‘protocol’ (given its irrelevance for the processing of the rule cues), for the calculation rule and rule

delay phases (analysis window 1750–3150 ms). The same parameters and procedures as for the operand 1 phases (see Sliding-

Window 2-Factor ANOVA) were used. A unit was counted as exclusively rule-selective if a significant cluster was observed for the

factor ‘mathematical rule’ between 1800–2900 ms (calculation rule onset to 200 ms before rule delay offset) and there were no over-

lapping significant clusters for any other factor. Exclusive cue-selectivity was defined analogously.

DATA AND SOFTWARE AVAILABILITY

Data and analysis software for this paper are available from the lead contact upon reasonable request.
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Table S1: Related to Figure 2. Neuronal Selectivity of MTL Single Units Across 

Patients. Proportions of exclusively number-selective single units, i.e. units with a significant 

main effect for ‘numerical value’, but no concurrent main effect for ‘protocol’ or any 

interaction effect in a 2-factor ANOVA evaluated at α = 0.01, separately for each format 

(nonsymbolic vs. symbolic). 

Patient-ID Nonsymbolic Symbolic 

1 43 % (3/7) 0 % (0/7) 

2 15 % (9/63) 2 % (1/63) 

3 22 % (18/83) 2 % (1/83) 

4 17 % (1/6) 0 % (0/6) 

5   0 % (0/18) 6 % (1/18) 

6 16 % (7/44) 3 % (1/44) 

7 12 % (14/119) 2 % (2/119) 

8 15 % (23/163) 4 % (5/163) 

9 21 % (17/82) 7 % (5/82) 

TOTAL 16 % (92/585) 3% (16/585) 
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Figure S1: Related to Figure 2. Number-Encoding of MTL Single Units over Time. 
Temporal profiles of all exclusively number-selective units (proportions denoted in brackets), 
sorted by latency of number encoding, per MTL region (AMY–amygdala; PHC–
parahippocampal cortex; EC–entorhinal cortex; HIPP–hippocampus). Each row shows the -
values of a unit for the factor ‘numerical value’ in the sliding-window 2-factor ANOVA, bright 
colours corresponding to significant NUM-intervals. The coloured triangles on the right of 
each panel indicate units that responded significantly to both numerosities and numerals; 
letters A–D refer to the example units shown in Figure 2. 
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Figure S2: Related to Figure 2. Maximum Firing Rates of MTL Units. Distribution of 

maximum discharge rates for non-selective (blue) and number-selective (red) units in 

response to the presentation of nonsymbolic (left) and symbolic (right) number stimuli, 

respectively. Dotted lines represent median values. For both formats, number-selective units 

(median: nonsymbolic 6.3 Hz; symbolic 7.9 Hz) had significantly higher firing rates compared 

to non-selective units (median: nonsymbolic 3.0 Hz; symbolic 3.2 Hz) (nonsymbolic 

 < 0.0001; symbolic  < 0.01; Mann-Whitney-U-test). Discharge rates did not differ 

significantly between the sub-populations of numerosity- and numeral-selective units 

(  = 0.73). 
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Figure S3. Related to Figure 2. Correlation between Nonsymbolic and Symbolic 

Number Representations. (A) Correlation of the preferred number of neurons (  = 6) 

significantly tuned to both nonsymbolic and symbolic number (Pearson’s  = 0.083;  = 0.87). 

(B) Correlation of the preferred number of neurons significantly tuned to nonsymbolic 

numerosity (  = 92) with their (non-significant) tuning to symbolic numerals (Pearson’s 

 = 0.14;  = 0.19). (C) Correlation of the preferred number of neurons significantly tuned to 

symbolic numerals ( = 16) with their (non-significant) tuning to nonsymbolic numerosity 

(Pearson’s  = 0.23; = 0.39). 
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Figure S4: Related to Figure 5. Numerosity Decoding for the Whole Population of 
Single Units using a Support Vector Machine (SVM) Classifier. (A) Classification 
accuracy for decoding numerosity information when training a multi-class SVM on 
instantaneous firing rates at a given time point and testing on a different one. (B) Accuracy 
for training and testing on identical time periods (main diagonal of matrices in A). The dashed 
line represents chance level (20% for five classes); shaded areas indicate SEM. Black bars 
above the data indicate significance (  < 0.01) when testing against performance for SVMs 
trained on shuffled data in a permutation test. (C) Confusion matrix derived when training an 
SVM on firing rates, averaged across the significant time windows in the temporal cross-
training classification (B). Values on the main diagonal represent correct classification. (D) 
Classification probability as a function of numerical distance. The dashed line represents 
chance level; shaded areas indicate SEM. Asterisks represent significant differences 
between adjacent numerical distances (*  < 0.05, **  < 0.01, ***  < 0.001). 
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Figure S5: Related to Figure 6. Population Dynamics based on State-Space Analysis 
for the Whole Population of Single Units. Intertrajectory distances in 585-dimensional 
space, averaged across pairs of trajectories with the same numerical distance. Dashed lines 
represent the average distances for trajectories obtained for label-shuffled data. Vertical 
dotted lines indicate boundaries between experimental periods ( –fixation; –
operand 1; –delay 1). 
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Figure S6. Related to Figure 2. Correlation between Preferred Numerosities during 
Operand 1 and Operand 2 Phases. Cells that responded to nonsymbolic number for both 
operand 1 and operand 2 ( = 22) tended to show the same preferred numerosity (Pearson’s 
 = 0.64;  = 0.0013). 
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Figure S7: Related to Figure 2. Neuronal Responses of a Number-Selective Neuron 
during various Number-Related Task Phases. Responses to both nonsymbolic (upper 
row) and symbolic (lower row) number are shown. Neuronal activity is sorted according to 
the numerical value of operand 1 from fixation onset to the end of the operand 1 phase, 
according to rule cues during the calculation rule and rule delay phase, according to the 
numerical value of operand 2 during operand 2 phase, and according to the numerical value 
of the correct result of the calculation during the delay 2 phase. The left panel depicts a 
density plot of the recorded action potentials (colour darkness indicates number of 
overlapping wave forms according to color scale at the bottom). Panels show single-cell 
response rasters for many repetitions of the format (each dot represents an action potential) 
and averaged instantaneous firing rates below. Colours correspond to the different numerical 
values. Gray shaded areas represent significant number discrimination periods according to 
the respective sliding-window ANOVA (colour-coded -values above each panel). Insets 
show the number tuning functions to operand 1 (1–5) and operand 2 (0–5), respectively. 
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Figure S8: Related to Figure 3. Number Selectivity of MTL Single Units in all Number-
Related Task Phases. Proportions of significant single units for different MTL regions 
(AMY–amygdala; EC–entorhinal cortex; HIPP–hippocampus; PHC–parahippocampal cortex) 
and different number-related task phases. Operand 1 phases: 2-factor ANOVA for ‘protocol’ 
(PROT: standard/ control) and ‘numerical value’ of operand 1 (NUM1: 1–5). Operand 2 
phase: 5-factor ANOVA for ‘protocol’, ‘numerical value’ of operand 1 and operand 2 (NUM2: 
0–5), ‘mathematical rule’ (RULE: addition/ subtraction) and ‘rule cue’ (CUE: symbol/ word). 
Calculation phase (delay 2): 6-factor ANOVA for ‘protocol’, ‘numerical value’ of operand 1, 
operand 2 and calculation result (NUMR: 0–9), ‘mathematical rule’ and ‘rule cue’. Neurons 
with an effect for ‘numerical value’, but no concurrent other main effects are termed 
exclusively number-selective units (NUM-ONLY). All ANOVAs were evaluated at α = 0.01, 
and numbers of significant neurons subjected to a Bonferroni-corrected (  = 4) binomial test; 
asterisks indicate significance (*  < 0.05, **  < 0.01, ***  < 0.001). 
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Figure S9: Related to Figure 2. Neuronal Responses of Rule-Selective Neurons. 

Responses of two example neurons selective for the ‘addition’ rule (A) and the ‘subtraction’ 

rule (B). Left panels depict a density plot of the recorded action potentials (colour darkness 

indicates number of overlapping wave forms according to color scale at the bottom). Panels 

show single-cell response rasters for many repetitions of the rule cue (each dot represents 

an action potential) and averaged instantaneous firing rates below. Colours correspond to 

the four different rule cues. Insets show average activity per rule cue during the significant 

rule discrimination period according to the sliding-window ANOVA (colour-coded -values 

above each panel). 
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Figure S10: Related to Figure 3. Rule Selectivity of MTL Single Units. Proportions of 

significant single units with significant main effects for ‘mathematical rule’ (RULE: addition/ 

subtraction), ‘rule cue’ (word/ symbol), ‘numerical value’ of operand 1 (NUM: 1–5) and 

‘format’ (FORMAT: symbolic/ nonsymbolic) in a 4-factor ANOVA evaluated at α = 0.01, 

separately for each MTL region (AMY–amygdala; EC–entorhinal cortex; HIPP–hippocampus; 

PHC–parahippocampal cortex). Neurons with an effect for ‘mathematical rule’, but no 

concurrent other main effects are termed exclusively rule-selective units (RULE-ONLY), 

analogous for factor ‘rule cue’ (CUE-ONLY). Numbers of significant neurons were subjected 

to a Bonferroni-corrected (  = 4) binomial test; asterisks indicate significance (*  < 0.05, 

**  < 0.01, ***  < 0.001). 

 

116



Publication 2

Publication 2: Neuronal Codes for Arithmetic Rule Processing in the

Human Brain

Kutter E.F., Bostroem J., Elger C.E., Nieder A., & Mormann F. (2022) Neuronal Codes
for Arithmetic Rule Processing in the Human Brain. Current Biology 32(6): 1275–
1284. DOI: 10.1016/j.cub.2022.01.054

117





Article

Neuronal codes for arithmetic rule processing in the
human brain

Graphical abstract

Highlights

d Single neurons in the human MTL show abstract codes for

addition and subtraction

d Time-resolved decoding analysis shows a dynamic code in

the parahippocampal cortex

d The hippocampus shows a static code based on persistently

rule-selective neurons

d Different codes suggest different cognitive functions of MTL

regions in arithmetic

Authors

Esther F. Kutter, Jan Boström,

Christian E. Elger, Andreas Nieder,

Florian Mormann

Correspondence

andreas.nieder@uni-tuebingen.de (A.N.),

florian.mormann@ukbonn.de (F.M.)

In brief

Kutter et al. demonstrate abstract and

notation-independent codes for addition

and subtraction in neuronal populations

in the human medial temporal lobe (MTL).

A dynamic code in the parahippocampal

cortex contrasts with a static code in the

hippocampus, suggesting different

cognitive functions for these MTL regions

in arithmetic.

Kutter et al., 2022, Current Biology 32, 1275–1284

March 28, 2022 ª 2022 The Authors. Published by Elsevier Inc.

https://doi.org/10.1016/j.cub.2022.01.054 ll

119



Article

Neuronal codes for arithmetic rule processing
in the human brain

Esther F. Kutter,1,2 Jan Boström,3 Christian E. Elger,1 Andreas Nieder,2,4,* and Florian Mormann1,4,5,6,*
1Department of Epileptology, University of Bonn Medical Center, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
2Animal Physiology, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
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SUMMARY

Arithmetic is a cornerstone of scientifically and technologically advanced human culture, but its neuronal

mechanisms are poorly understood. Calculating with numbers requires temporary maintenance and manip-

ulation of numerical information according to arithmetic rules. We explored the brain mechanisms involved in

simple arithmetic operations by recording single-neuron activity from the medial temporal lobe of human

subjects performing additions and subtractions. We found abstract and notation-independent codes for

addition and subtraction in neuronal populations. The neuronal codes of arithmetic in different brain areas

differed drastically. Decoders applied to time-resolved recordings demonstrate a static code in hippocam-

pus based on persistently rule-selective neurons, in contrast to a dynamic code in parahippocampal cortex

originating from neurons carrying rapidly changing rule information. The implementation of abstract

arithmetic codes suggests different cognitive functions for medial temporal lobe regions in arithmetic.

INTRODUCTION

Mental arithmetic is an intricate skill and a hallmark of our scien-

tifically advanced culture. Calculating with numbers requires

semantic knowledge about numbers, online maintenance of

numerical values, and their goal-directed transformation accord-

ing to calculation rules. Therefore, mental arithmetic engages

multiple brain systems, including those for the semantic

representation of numeric values, the learning and memory of

mathematical principles, and the cognitive control of mental

operations.1–4

Studies in humans1,2,5 and nonhuman primates6–9 have indi-

cated parts of the parietal and prefrontal cortices as core number

representation and manipulation system. In particular, arithmet-

ically selective brain areas have been identified in the parietal

cortex of patients using intracranial electrocorticography

(ECoG) recordings that measure summed and synchronized

postsynaptic potentials (bulk tissue mass potentials).10,11 More-

over, direct electrical stimulation studies in human patients have

shown a specific arrest of counting and calculation performance

during transient perturbation of parietal and frontal regions.12–14

The latter investigations, in particular, suggest a causal involve-

ment of parietal and frontal cortical regions in mental arithmetic.

However, recent findings implicate a wider cortical number

network beyond parietal and frontal association cortices, also

integrating the temporal lobe. Direct evidence resulted from

ECoG studies in human patients; these recordings reconfirmed

the presence of addition-selective locations not only in the pos-

terior parietal cortex but also in the ventral temporal cortex.10,11

In addition, functional neuroimaging implicated medial temporal

lobe regions in the development of arithmetic fact knowl-

edge,3,15–17 including knowledge about arithmetic operators.18

Moreover, performance enhancements in arithmetic fact

retrieval are related to functional connectivity in hippocampal-

neocortical circuits, including hippocampal-frontal16,19 and hip-

pocampal-parietal16 connectivity. Hippocampal volume and

functional connectivity of the hippocampus with dorsolateral

and ventrolateral prefrontal cortices predict math tutoring suc-

cess in children,20 and reduced parahippocampal gray matter

is associated with math learning disabilities (‘‘developmental

dyscalculia’’).21 Finally, we have recently shown directly by intra-

cranial single-neuron recordings that the humanmedial temporal

lobe (MTL) contains neurons that selectively respond to numer-

ical values of different (symbolic and nonsymbolic) visual for-

mats.22 Here, we explored how single neurons in the human

MTL represent the arithmetic addition and subtraction rules pre-

sented in different symbolic notations.

As a neuronal representation of the abstract rules applied to

perceptual categories, rule-selective neurons have been identi-

fied in nonhuman primates.23 They increase firing rates when a

subject follows a specific rule but remain silent for alternative

rules.24,25 To bridge longer working memory delays necessary

for mental arithmetic, two fundamentally different neuronal co-

des are conceivable: neurons might be tuned to a specific calcu-

lation rule and maintain this representation over long time pe-

riods via persistent firing. In this case, a decoder (a statistical

classifier) trained on neuronal activity during a brief moment

can successfully generalize across different time points. This

Current Biology 32, 1275–1284, March 28, 2022 ª 2022 The Authors. Published by Elsevier Inc. 1275
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type of coding is known as static coding. Alternatively, neurons

may fire sparsely and rapidly change tuning to calculation rules

over time.26 Under this scenario, a decoder trained on neuronal

activity during one time point cannot generalize to the next. This

has become known as dynamic coding.27 By applying decoders

to time-resolved recordings, we probe the codes for abstract

arithmetic rules in the human MTL.

RESULTS

We asked nine human participants to perform simple addition

and subtraction tasks on a computer display with operand

values ranging from 0 to 5 (Figure 1A, see STAR Methods).

Both operands were displayed with equal probability either as

dot numerosities (nonsymbolic) or Arabic numerals (symbolic).

Numerosities were shown in standard (variable dot size and

arrangement) and control (constant total dot area and dot

density) displays to control for non-numerical visual parameters;

Arabic numerals were shown in two (standard and control)

font types to ensure the generalization of symbols across

visual shapes (Figure 1B). Addition and subtraction rules were

instructed by two different notations, either as arithmetic signs

(+, –) or written words (German ‘‘und’’ and ‘‘weniger,’’ indicating

‘‘add’’ and ‘‘subtract’’). The two rule notations allowed us to later

Figure 1. Behavioral task and example stimuli

(A) Experimental design of the calculation task. After visual fixation on the screen, stimuli were presented sequentially in the order operand 1—operator—operand

2. Each stimulus phase was followed by a brief delay. Afterward, the subjects were required to indicate the result of the calculation (ranging from 0 to 9) on an

Arabic numeral panel and subsequently received feedback indicating whether the result was correct (‘‘richtig’’) or false (‘‘falsch’’).

(B) Example number stimuli for the nonsymbolic (numerosity) and symbolic format (numeral) for standard and control protocols. Numerical values of operand 1

ranged from 1 to 5; those of operand 2 ranged from 0 to 5.

(C) Example stimuli for the different mathematical rules, indicated by arithmetic signs (‘‘+,’’ ‘‘–’’) and written words (‘‘und’’ [add], ‘‘weniger’’ [subtract]).
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dissociate neural activity related to the visual properties of the

cue (sign or word) from the abstract rule that it represented

(addition versus subtraction) (Figure 1C). The participants’

average performance was close to perfect (98.5% ± 0.6%) and

comparable between addition and subtraction (p = 0.97; t test).

Single neurons respond to calculation rules

We recorded the action potentials of a total of 585 single neurons

in the MTLs of the participants performing the calculation tasks:

126 neurons in parahippocampal cortex (PHC), 199 neurons in

hippocampus (HIPP), 107 neurons in entorhinal cortex (EC),

and 153 neurons in amygdala (AMY). As an obligatory but not

sufficient prerequisite for mental calculation, MTL neurons

were previously shown to represent numerical cardinality of the

first operand.22 We predicted that single neurons and neuronal

populations also encode mentally performed additions and

subtractions.

Using a multi-factor analysis of variance (ANOVA) (see STAR

Methods), we first identified rule-selective neurons that selec-

tively increased firing rates to either the addition or subtraction

rule after the instruction of the calculation (‘‘calculation rule’’)

(Figure 1A). After the presentation of the calculation rule, addi-

tion-selective neurons enhanced firing whenever an addition

was instructed (Figures 2A and 2B; reddish colors); whereas

subtraction-selective neurons showed a specific increase in

activity whenever a subtraction was cued (Figures 2C and 2D;

blueish colors).

The proportion of neurons selectively tuned to calculation

rules differed for different task periods and MTL areas (Figure 3).

In the ‘‘calculation rule’’ period, a small but significant proportion

of MTL neurons (4.8%; 28/585) was modulated by the arithmetic

rule (p < 0.001; binomial test with pchance = 0.01). Most of these

neurons (3.5%; 20/585) showed activity that varied exclusively

with the arithmetic rule (p < 0.001; binomial test), irrespective

of the cue indicating that rule (i.e., no significant main effect

for the factor cue, or any other factor) (Figure 3A, first column).

Only PHC (7%; 9/126) and HIPP (4%; 7/199), but not EC and

AMY, showed proportions of such exclusively rule-selective

neurons higher than expected by chance (p < 0.05; binomial

test with pchance = 0.01, Bonferroni-corrected for multiple tests

across areas, n = 4; Figures 3B and 3D). The overall proportion

of rule-selective neurons increased in the ‘‘rule delay’’ period in

which the value of operand 1 and the calculation instruction

needed to be held in working memory to solve the task. Here,

6.0% (35/585) of MTL neurons were modulated by the arithmetic

rule, with 5.3% (31/585) being exclusively rule-selective (both

Figure 2. Neural responses of rule-selective neurons

(A–D) Across-trial responses of four example neurons responding with increased firing rate to the ‘‘addition’’ rule (A, B) and the ‘‘subtraction’’ rule (C, D),

regardless of the concrete cue indicating the rule. The left small panels depict a density plot of the recorded action potentials (color darkness indicates the number

of overlapping wave forms according to color scale at the bottom). Top panels show single-cell dot-raster plots for many repetitions of the rule cue (each line

represents a trial and each dot represents an action potential, color coded according to the two rules and the two rule cues), and averaged instantaneous firing

rates (spike-density histograms) are shown below. Blueish colors depict subtraction (for two different rule cues); reddish colors correspond to addition. Insets

show average activity per rule cue during the rule discrimination period (gray shaded area), as defined by statistical significance in the ANOVA. Error bars denote

SEM.
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Figure 3. Neuronal selectivity of MTL single units

(A–D) Proportions of single units significant to different task factors for different MTL regions: (A) total population, (B) parahippocampal cortex, (C) entorhinal

cortex, (D) hippocampus, and (E) amygdala. ANOVAs for the different task phases were evaluated at a = 0.01. Neurons with an effect for ‘‘arithmetic rule,’’ but no

concurrent other main effects are termed ‘‘exclusively rule-selective’’ (‘‘Only Rule’’); same applies for factor ‘‘rule cue.’’ Numbers of significant neurons were

subjected to a Bonferroni-corrected (n = 4) binomial test; asterisks indicate significance (*p < 0.05, **p < 0.01, ***p < 0.001). See also Figures S1 and S2.
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p < 0.001, binomial test; Figure 3A, second column). During this

period, all MTL areas contained a significant proportion of exclu-

sively calculation-rule-selective neurons (EC: 7%, 7/107; HIPP:

5%, 10/199; PHC: 5%, 6/126; and AMY: 5%, 8/153; all

p < 0.01, Bonferroni-corrected binomial test) in addition to neu-

rons coding other task-relevant factors (Figures 3B–3E). The

proportion of rule-selective neurons dropped to chance level

in the subsequent task periods (‘‘operand 2’’ and ‘‘delay 2’’)

(Figure 3A). Instead, the neurons represented the task factors

additionally introduced with trial progression (for instance, the

numerical value of operand 2) (Figure 3, third and fourth

columns). In sum, a small but significant proportion of neurons

encoded arithmetic rules after the presentation and memoriza-

tion of the calculation rule prior to the presentation of operand

2. A separate analysis of the neurons in the left and right

hemisphere qualitatively confirmed these results for each

hemisphere in all regions (Figure S1). Note that the proportions

of neurons showing significant selectivity during different trial

periods do not generally represent the same neuronal popula-

tions (see Figure S2).

Cue-independent representation of addition and

subtraction rules

MTL neurons showed variation in the time point and duration of

rule selectivity across the task period. With increasing task

complexity later in the trial, they also exhibited selectivity to

several task factors, seeminglymultiplexing the different informa-

tion required tosolve the task.Therefore,we focusedourattention

on the collective properties of groups of neurons, or ‘‘neuronal

populations.’’ This allowed us to read out (or ‘‘decode’’) informa-

tion not only from an individual neuron but from a population of

neurons that thesubjects canbase their decisionson. Incombina-

tion with decodingmethods, such as statistical classifiers, this al-

lows to predict the accuracy and abstractness of arithmetic rule

representations on a trial-by-trial basis.

To explore whether this variable activity yielded a reliable

read-out of arithmetic rules, we adopted a machine-learning

approach. We trained support vector machine (SVM) classifiers

to discriminate between addition trials (‘‘und’’ [add] and ‘‘+’’

cues combined) and subtraction trials (‘‘weniger’’ [subtract]

and ‘‘–’’ cues combined) across trial periods based on firing rates

(see STAR Methods). The classifiers were then tested on novel

data from the same neurons to explore how well they could pre-

dict the rules based on the information extracted from trials used

during training. Cluster permutation tests (p < 0.05) were used to

identify the trial intervals of classification accuracies significantly

above chance level (50%).

We found long time intervals for which rule information could

be successfully decoded in all MTL regions (black horizontal

bars in Figures 4A–4D). Consistent with the single-cell analysis,

we observed strong and long-lasting effects in PHC (Figure 4A;

two selective periods interrupted by a non-selective period)

and HIPP (Figure 4C). In HIPP particularly, the calculation rule

was continuously decoded with high accuracy from rule onset

until the end of the trial (Figure 4C). By contrast, rather weak

and short-lived significant classification performance was

observed in EC (Figure 4B) and AMY (Figure 4D). Separate anal-

ysis of left and right hemisphere qualitatively confirmed these re-

sults for PHC and HIPP (Figure S3).

We wanted to find out whether the calculation rules could be

decoded irrespective of the rule cues, as would be expected

for abstract rule coding. Therefore, we explored classification

accuracies for individual rule cues during the previously found

significant time intervals shown in Figures 4A–4D. We trained

an SVM classifier using the firing rates combined for both rule

cues per calculation rule in the individual significant windows

for each MTL area. We then tested whether the SVM could pre-

dict the correct calculation rule from novel trials based on either

one of the two applied cues per calculation rule (i.e., signs and

words).

We found that classifier performance for addition and subtrac-

tion across word and sign rule cues was significant in all MTL

areas (p < 0.05; permutation test compared with shuffled data la-

bels). Highest classification accuracies were found in HIPP

(addition: 74% and subtraction: 73%; Figure 4G) and PHC (addi-

tion: 65% and subtraction: 68%; averaged across both signifi-

cant time windows; Figure 4E) followed by EC (addition: 65%

and subtraction: 61%; Figure 4F) and AMY (addition: 58% and

subtraction: 63%; Figure 4H). In AMY, performance was mainly

due to accurate encoding of one specific cue (the ‘‘weniger’’

[subtract] cue), whereas classification accuracies were relatively

low for the other three cues. Overall, information about the calcu-

lation rules was encoded irrespective of the rule cues prompting

addition and subtraction, respectively.

Cross-temporal calculation rule decoding (static-

dynamic)

Next, we explored the neuronal codes of arithmetic rules. By

applying decoders to time-resolved recordings, we asked

whether the code remained stable across trial time or rather

changed dynamically (Figures 4I–4L). To this end, we performed

a temporal cross-training analysis. We trained SVMclassifiers on

the firing rates from a given time point and tested them during

other time points of the trial. This analysis was again performed

separately for the four MTL areas, and the accuracy results were

plotted in a confusion matrix spanning the trial times of classifier

training against the trial times of classifier testing.

In PHC, we observed that classifiers trained during a specific

time interval after rule cue presentation were only able to decode

the arithmetic rule in the same time interval (Figure 4I). This

resulted in high classification accuracies only along the main

diagonal of the confusion matrix. The classifiers’ inability to

generalize the calculation rules across trial time periods indi-

cates a dynamic neuronal code in PHC based on neurons that

rapidly change their tuning properties with time.

A rather different picture emerged for HIPP (Figure 4K).

Significant cross-temporal generalization from the end of the

rule cue period all the way up to the end of the trial was present.

A classifier trained on firing rates observed, e.g., during the rule

delay, was still able to decode the calculation rule when tested

on activity recorded during the operand 2 or even delay 2

phases. This resulted in a square-like accuracy pattern in the

cross-temporal confusion matrix. This pattern argues for a static

neuronal code in HIPP based on tuned neurons that remained

stable across time throughout the trial.

In EC, cross-temporal generalization was weak and observed

only to a small extent (Figure 4J). A square-like accuracy pattern

emerged only around the rule delay. This suggests relatively
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stable calculation rule coding for as long as only the calculation

rule was kept in workingmemory and before the second operand

was presented. In AMY, neurons did not encode arithmetic

rules abstractly (see Figure 4H). In addition, the cross-temporal

classifier analysis showed only a mild accuracy diagonal

during the rule delay and the operand 2 periods (Figure 4L).

Both findings preclude statements about coding dynamics

in AMY.

Theobserved responsepatterns, inparticular a dynamiccode in

PHC contrasted by a static code in HIPP, were still present after

equalizing the numbers of neurons for each MTL area (Figure S4;

see STARMethods). Information about the rule cueswere only en-

coded during cue presentation in PHC (Figure S5), which further

confirmed the abstractness of the calculation rule coding.

Cross-notation decoding of addition and subtraction

The previous analyses showed that the population of neurons

differentiated between addition and subtraction rules and

indicated that calculation rules were encoded irrespective of

the rule cues. As a final step, we put this observation to the

test and explored whether MTL neurons generalize calculation

rules across rule notations.

We performed a time-resolved sliding-window decoding

analysis and trained a SVM classifier on the trials of one rule

notation and tested it on the other rule notation for the same

calculation rule. First, we used all the word trials (‘‘und’’ [add]

and ‘‘weniger’’ [subtract]) as training data and all the sign trials

[‘‘+’’ and ‘‘–’’] as test data [henceforth called ‘‘word sign’’])

and performed the same analyses as before (i.e., temporal

cross-training classification and verification via fixed-window

analysis). Then, we analyzed the generalization in the opposite

direction, i.e., using all sign trials as training data and all word

trials as test data (in the following called ‘‘sign word’’) and

repeating the whole procedure. Generalization was judged

successful if (1) synchronous intervals of significant classification

for both directions of generalization were found (Figures 5A–5D)

Figure 4. Rule decoding using a support vectormachine (SVM) classifier. Decoding performance for the four differentMTL regions (columns)

(A–D) Classification accuracy for decoding arithmetic rule information when training an SVM classifier on the instantaneous firing rates across the trial period. The

dashed line represents chance level (50% for two classes). Black bars above the data and areas shaded in gray indicate significance (p < 0.05) when testing

against performance for SVMs trained on shuffled data in a permutation test. Abbreviations at the axes indicate task phases: F, fixation;O1, operand 1;D1, delay

1; CR, calculation rule; RD, rule delay; O2, operand 2; and D2, delay 2.

(E–H) Confusion matrices derived from training an SVM classifier on firing rates averaged across the significant time windows in (A–D), respectively. (E) shows the

average of the confusion matrices obtained for each significant window (depicted in A).

(I–L) Accuracy when training an SVMclassifier at a given time point of the trial and testing on another one (themain diagonal of thematrix corresponds to the curve

in [A–D]). Black contours indicate significance (p < 0.05) in a permutation test. See also Figures S3–S5.
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and (2) performance in these synchronous intervals was signifi-

cant (permutation test, p < 0.05) for each arithmetic rule after

averaging classification accuracies across both directions of

generalization.

Significant cross-notation rule decoding was present in PHC

(Figure 5A) and HIPP (Figure 5C). In both areas, extended and

overlapping intervals of significant rule classifications for both

test directions (‘‘word sign’’ and ‘‘sign word’’) emerged af-

ter rule cue offset and up to the end of the trial (significant

phases are indicated by light and dark green horizontal bars

in Figures 5A and 5C, with synchronous intervals indicated by

gray shaded areas). In PHC, the accuracy of transfer was

57% for addition and 64% for subtraction (Figure 5A). In

HIPP, transfer was even better and reached an average accu-

racy of 73% for addition and 69% for subtraction (Figure 5C). In

both PHC and HIPP, the transfer for both calculation rules and

both test directions were individually significant and thus

pooled.

By contrast, the cross-notation decoding of calculation rules

failed in AMY and EC. In AMY, classification accuracy remained

at chance level throughout the whole trial for both directions of

generalization (Figure 5D). In EC, cross-notation decoding briefly

transferred for the direction ‘‘word sign,’’ but not for the direc-

tion ‘‘sign word,’’ and therefore failed our generalization crite-

rion (Figure 5B). Thus, activity in PHC and HIPP did generalize

arithmetic rule information across notations, whereas AMY and

EC did not.

To explore the dynamics of rule codes during cross-notation

generalization, we again employed a temporal cross-training

analysis separately for the two generalization directions. The

resulting confusion matrices confirmed the earlier findings

(albeit with weaker effect size due to the reduced data dimen-

sionality). In HIPP, they showed a static rule code for both nota-

tion generalization directions from rule cue offset to the end of

the trial (indicated by the square-like significant classification

pattern) (Figures 5G and 5K). By contrast, a dynamic code

Figure 5. Generalization between arithmetic rule notations using an SVMclassifier. Classifier performance for the four differentMTL regions

(columns)

(A–D) Classification accuracy when training an SVM on the instantaneous firing rates across the trial period for both directions of generalization. The dashed line

represents chance level (50% for two classes). Light and dark green bars above the data indicate significance (p < 0.05) in a permutation test for both test

directions (‘‘word sign’’ and ‘‘sign word,’’ respectively). The areas shaded in gray indicate the synchronous time windows used for the fixed-window

classification analysis. Abbreviations at the axes indicate task phases: F, fixation;O1, operand 1; D1, delay 1;CR, calculation rule; RD, rule delay;O2, operand 2;

and D2, delay 2.

(E–H) Accuracy in temporal cross-training analysis when a classifier is trained on trials showing word rule cues and tested on trials showing sign rule cues (the

main diagonals of thematrices correspond to the dark green curves in [A–D]). Black contours indicate significance (p < 0.05) when testing against performance for

SVMs trained on shuffled data in a permutation test.

(I–L) Accuracy in temporal cross-training analysis when a classifier is trained on trials showing sign cues and tested on trials showing word cues (the main di-

agonals of the matrices correspond to the light green curves in [A–D]). Same conventions as in (E–H).
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emerged for both notation generalization directions in PHC, as

evidenced by significant classification performance along the

main diagonal of the matrices (Figures 5E and 5I). The findings

for EC and AMY were unreliable due to the lack of rule-notation

generalization found in these areas (Figures 5B and 5D). In

summary, neuron populations in both PHC andHIPP generalized

between calculation rule notation but exhibited fundamentally

different rule codes.

DISCUSSION

Our findings demonstrate that the activity of neurons in the MTL

carries sufficient information to allow a statistical classifier to

discriminate between addition and subtraction instructions

during mental calculation. After having been trained on activity

duringmental processing of one rule notation, decoding general-

ized to another notation cueing the same arithmetic operation.

This generalization observed for arithmetic signs and words im-

plies an abstract and notation-independent representation of

arithmetic rules. Therefore, our research unveils a neuronal corre-

late for mental arithmetic, which generalizes between calculation

tasks involving learned mathematical symbols.

Number and calculation recruit the MTL

Our discovery of arithmetic rule selectivity in MTL is in agreement

with a growing body of studies that suggests that number and

calculation recruit an interconnected network of cortical areas,

including parts of the temporal lobe. We have recently shown

directly by intracranial single-neuron recordings that the human

MTL contains a significant percentage of neurons selectively

tuned to numerical values.22 This finding in humans concurs with

the numerical tuning of hippocampal neurons in nonhuman

primates.28 Moreover, using functional imaging, the MTL has

been shown to be involved in arithmetic skill acquisition andmem-

ory-based problem-solving strategies during childhood.15,16,20

Similarly, ECoG studies in human patients reported addition-se-

lective locations not only in the posterior parietal cortex but also

in the ventral temporal cortex.10,11 Together, these data implicate

a wider cortical number network beyond parietal and frontal

association cortices, also integrating the temporal lobe.

The MTL is suited to transform and manipulate representa-

tions of incoming numerical information.22 It is highly intercon-

nected with the frontal and parietal areas29,30 that constitute

the core number system involved in perceiving the number of

sensory stimuli.2,7,31 The prefrontal lobe, in particular, is associ-

ated with representing abstract rules and concepts, information

that can be directly accessed by MTL.23 Therefore, MTL could

mediate the transformation of perceived numerical information

in a workingmemory buffer. Interestingly, as an associative brain

area, the MTL also contains sensorimotor neurons that are

activated by hand-grasping observation and execution.32 This

opens the possibility that MTL may play a role in the sensori-

motor translation of perceived and produced number,33 a

speculation yet to be explored.

Numerical rule-selective neurons

Although the observed rule-selective neurons encode arithmetic

rules, this is not to say that some of these neurons may not also

become engaged in encoding other types of rules that we have

not explored. However, recordings show that rule-selective neu-

rons in the nonhuman primate exhibit a substantial degree of

specialization and preferentially respond only to quantitative

rules applied to a specific magnitude type.34 Therefore, we think

that the majority of rule-selective neurons specifically and

genuinely encode arithmetic rules.

So far, the neuronal correlates of addition and subtraction

have not been studied in monkeys. However, what has been

investigated is how single neurons respond to more basic

mathematical operations, namely, ‘‘greater than’’ (>) and ‘‘less

than’’ (<) operations.6,24,34 In each trial, monkeys had to flexibly

switch between these two rules according to rule cues and had

to choose either a larger (in the case of the ‘‘greater than’’ rule) or

smaller numerosity (in the case of the ‘‘smaller than’’ rule) than

the one they had seen in the beginning of a trial. Recording

from frontal and parietal areas, we found single neurons that

responded selectively (by increased firing rates) to one of the

two rules. Rule selectivity was stronger and more abundant in

the frontal lobe than in the parietal lobe.24 In monkeys, the frontal

association areas are thus more important when it comes to

nonsymbolic mathematical rules. This is consistent with imaging

results in humans, where areas specific to calculation rather than

simple number comparison are primarily found in the frontal

lobe.2

The numerical coding capacities of such neurons do not seem

to be fixed. Although neurons selective to numerical rules were

recorded in brain areas in which previous studies had shown a

relatively high proportion of numerosity-selective neurons,7–9

the number of neurons representing pure numerical values

were reduced when monkeys applied numerical rules.24,34 This

indicates that the neurons in the fronto-parietal number network

dynamically encode different types of numerical information as a

function of task demands. In the same vein, flexible numerical

coding may apply to the MTL during a (top-down) interplay

with the frontal lobe, depending on the precise mathematical

task at hand.

Static and dynamic calculation codes

Mental calculation is a classic working memory task, and

although working memory has traditionally been attributed to

the prefrontal cortex,35 more recent data suggest that the MTL

may also be important in working memory tasks36–38 and that

it is part of a brain-wide network subserving working memory.39

Previous intracranial recording studies show that the delay

activity of a selection of MTL neurons correlated with memory

load and predict the successful retrieval of working memory

contents.39,40 These neurons’ persistent activation maintained

the same stimulus preference throughout several seconds of

temporal gaps. This type of activity with robust across-time

generalization is characteristic of a static code that we also

observed in the hippocampus during mental calculation.

In contrast to the static code in hippocampus, we observed

a clear dynamic code in PHC when processing calculation rules.

Such a dynamic code based on sparsely bursting neurons

supports the theory of activity-silent working memory.41 It

proposes that working memory can also be supported by

short-term changes in synaptic weights. Synaptic weight

changes are involved in episodic memory, which is why

activity-silent working memory might be reminiscent of—or

ll
OPEN ACCESS

1282 Current Biology 32, 1275–1284, March 28, 2022

Article

127



even part of—episodic memory.42 This fits with the finding

that areas of the MTL are not only critically implicated in

episodic memory but also important during working memory

tasks.36–40,43 Direct observation of neuronal reactivation after

complete activity silence has recently been reported in a

different working memory task in the human MTL.44 Static and

dynamic codes are not incompatible. Stable persistent activa-

tion with robust across-time generalization can exist in the pres-

ence of dynamically changing neuronal representations.45,46

Neuron recordings in human39,40,43 and nonhuman pri-

mates,47–49 as well as computational modeling,50–52 suggest

different cognitive functions for these two codes for working

memory: although a dynamic code seems to suffice for short

maintenance of more implicit information in memory, the intense

mental manipulation of the attended working memory contents

may require a static code. Following this logic, parahippocampal

cortexmay represent a short-termmemory of the arithmetic rule,

whereas downstream hippocampus may ‘‘do the math’’ and

process numbers according to the arithmetic rule at hand.

More fine-grained analyses, ideally combined with perturbation

approaches,53 will help to decipher the individual roles of brain

areas and neuronal codes in mental arithmetic.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to andwill be fulfilled by the lead contact, FlorianMormann (florian.

mormann@ukbonn.de).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Data and custom-built MATLAB code can be found in a GitHub repository (https://github.com/EstherKutter/Neuronal-Codes-For-

Arithmetic-Rule-Processing-In-The-Human-Brain).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Nine neurosurgical patients (4 male, all right-handed, mean age 43.3 years) undergoing treatment for pharmacologically intractable

epilepsy participated in the study. Informed written consent was obtained from each patient. All studies conformed to the guidelines

of the Medical Institutional Review Board at the University of Bonn, Germany. Other parts of the current data set were published in a

previous publication.22

METHOD DETAILS

Experimental Task and Stimuli

Subjects performed a calculation task that required them to calculate the result of a simple arithmetic problem (Figure 1A). During

experimental sessions, subjects sat in bed, facing a touch-screen laptop (display diagonal 11.7 in, resolution 1366x768 px) on

which stimuli were presented at a distance of approximately 50 cm. They were not informed about hypotheses or purposes of the

experiment, in order to avoid any bias.

Each trial began after a 500 ms fixation phase. Stimuli were presented successively in the order operand 1 – operator – operand 2,

for 500 ms each, followed each by a 800 ms delay phase. Afterwards, subjects responded in a self-paced manner by touching the

number matching the result of the calculation on a number pad showing the arabic numerals 0 to 9 that was presented on the screen.

After a 500 ms feedback display (‘richtig’ [correct] or ‘falsch’ [false]) the next trial was started automatically.

All stimuli were presented within a filled gray circle (diameter approx. 6� of visual angle) on a black background. During fixation and

delay phases, we presented a white fixation spot in the center of the gray area. During stimulus presentation, the fixation spot dis-

appeared to avoid confusion with nonsymbolic stimuli and to distinguish it clearly from the nonsymbolic ‘zero’-stimulus that was

included as a potential operand 2-stimulus for control purposes.

Numerical values of operand 1 ranged from 1 to 5, and were in two visual ‘formats’, either ‘nonsymbolic’ arrays of randomly placed

black dots of varying sizes with the number of dots corresponding to the respective numerical value (‘numerosities’), or ‘symbolic’

black Arabic digits at randomized locations (‘numerals’). Number stimuli of operand 2 ranged from 0 to 5, and were the same as for

operand 1. The nonsymbolic ‘zero’-stimulus was presented as the empty gray circle without fixation spot.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Cheetah software Neuralynx Inc. https://neuralynx.com/software/cheetah

Combinato spike sorting software Niediek et al.54 https://github.com/jniediek/combinato

MATLAB R2017a MathWorks https://de.mathworks.com/

Psychtoolbox Brainard (1997) http://psychtoolbox.org/

LIBSVM Chang and Lin2 https://www.csie.ntu.edu.tw/�cjlin/libsvm/

Other

Behnke-Fried depth electrodes AD-TECH Medical Instrument Corp. https://adtechmedical.com/depth-electrodes

ATLAS neurophysiology system Neuralynx Inc. https://neuralynx.com/news/techtips/atlas-

neurophysiology-system-for-cogneuro-applications
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We used two ‘protocols’, standard and control displays, for both nonsymbolic and symbolic number formats (Figure 1B) in order to

control for low-level visual features. The standard nonsymbolic numerosity displays consisted of dots at randomized locations and of

pseudo-randomly varied sizes (diameter 0.3� to 0.8� of visual angle); in the control displays, we equated the overall screen area and

density of the dots across numerosities. For the Arabic numerals, different fonts were used as standard (Helvetica, 34 pt) and control

(DS-Digital, 34 pt) displays. A session comprised 50% nonsymbolic and 50% symbolic stimuli. Within each format, standard and

control protocols were shown with equal probability of 50%.

We applied two different mathematical rules, i.e., addition and subtraction (Figure 1C). Two distinct cues, i.e., the mathematical

sign (‘+’ or ‘–‘) or a verbal analogue (‘und’ [add] and ‘weniger’ [subtract]), were used for each rule (all Helvetica, 34 pt, presented

in the center), in order to dissociate neuronal activity related purely to visual properties of the operator from the rule that it

represented.

Overall, the task comprised seven factors. Five of these factors were varied systematically: Format (symbolic vs. nonsymbolic),

protocol (standard vs. control) and numerical value of operand 1 (1–5), as well as mathematical rule (addition vs. subtraction) and

rule cue (sign vs. word). Operand 2 was always of the same format and protocol as operand 1, but with random numerical values

0–5, albeit guaranteeing calculation results between 0 and 9. Due to this constraint, it was impossible to balance the other two fac-

tors ‘numerical value of operand 2’ (e.g., ‘5’ is less likely to appear than ‘1’, given that ‘X–5’ is only valid for X = {5}, but ‘X-1’ is valid for

X = {1,2,3,4,5}), and ‘numerical value of calculation result’ (e.g., ‘4’ ismore likely to appear than ‘9’, given the possible combinations of

operands to obtain this result).

Each session consisted of a total of 320 trials and was divided into four blocks of 80 trials each, comprising the different conditions

in pseudo-random order. To familiarize subjects with the task, sessions started with 10 rehearsal trials that were excluded from

further analysis.

Neurophysiological Recording

To localize the epileptic focus for possible clinical resection, each subject was implanted bilaterally with chronic intracerebral

depth electrodes in the medial temporal lobe (MTL). The exact electrode locations and numbers were defined exclusively by clin-

ical criteria and varied across subjects. We used 9–10 clinical Behnke-Fried depth electrodes (AD-Tech Medical Instrument Corp.,

Racine, WI) to record neuronal signals. Each depth electrode contained a bundle of nine platinum-iridium micro-electrodes pro-

truding from its tip by approximately 4 mm. Each bundle consisted of eight high-impedance active recording channels and one

low-impedance reference electrode. A 256-channel ATLAS neurophysiology system (Neuralynx Inc., Bozeman, MT) was used

to filter (bandwidth 0.1–9,000 Hz), amplify and digitize (sampling rate 32768 Hz) the differential neuronal signals (recording

range ±3200 mV). The Cheetah software (Neuralynx Inc., Bozeman, MT) was used to synchronize the behavioral data with the re-

corded spikes via 8-bit timestamps.

Neuronal signals were band-pass filtered (bandwidth 300–3,000 Hz), then spikes were detected and pre-sorted automatically

using the Combinato software.54 Manual verification and classification as artifact, multi- or single unit was based on spike shape

and its variance, inter-spike interval distribution per cluster and the presence of a plausible refractory period. Only units that

responded with an average discharge rate of >1 Hz during stimulus presentation (fixation onset to delay 2 offset) were included in

the analyses.

QUANTIFICATION AND STATISTICAL ANALYSIS

Neuronal Analysis of Variance (ANOVA)

Only single units (n = 585) were included in the following analyses. All analyses were performed separately for each MTL area to

identify regional differences (PHC: 126 units; EC: 107 units; HIPP: 199 units; AMY: 153 units). As all participants performed the

task with high proficiency (98.5% ± 0.6%, range 90.3%–99.8%), we did not exclude the negligible number of error trials from the

analyses.

For each unit, activity was analyzed separately for the different task phases involving rule processing. For each stimulus phase

(calculation rule and operand 2 phase), discharge rates were measured in a 400 ms window starting 200 ms after stimulus onset.

For each delay phase (rule delay and delay 2 phase), activity was assessed in a 700 ms window starting 200 ms after delay onset

(latency chosen based on Mormann et al.55 In total, six factors were analyzed: ‘mathematical rule’ (addition/ subtraction) and ‘rule

cue’ (word/ sign), as well as ‘format’ (nonsymbolic/ symbolic), ‘numerical value of operand 1’ (numbers 1–5), ‘numerical value of

operand 20 (numbers 0–5), and ‘numerical value of calculation result’ (numbers 0–9). We pooled over the factor ‘protocol’ given its

incomparability for the different formats4 and its irrelevance for the processing of the rule cues. For each task phase, we performed

an ANOVA considering only those factors relevant for that phase. That is, for the calculation rule and rule delay phase, a 4-way

ANOVA with the factors ‘mathematical rule’, ‘rule cue’, ‘format’ and ‘numerical value of operand 1’ was performed. For the operand

2 and delay 2 phase, we calculated a 6-way ANOVA with the factors ‘mathematical rule’, ‘rule cue’, ‘format’, ‘numerical value of

operand 1’, ‘numerical value of operand 2’ and ‘numerical value of calculation result’. All ANOVAs were evaluated at a = 0.01. A

unit was counted as exclusively rule-selective (‘‘Only Rule’’) if a significant main effect was observed for the factor ‘mathematical

rule’, and there was no significant main effect for any other factor. Exclusive cue-selectivity (‘‘Only Cue’’) was defined analogously.
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To evaluate the significance of unit proportions, we subjected the number of significant neurons to a binomial test with an a priori

probability of p = 0.01 corresponding to the alpha level for neurons to be regarded as significant, Bonferroni-corrected for multiple

comparisons across different areas (n = 4).

Support Vector Machine (SVM) Classification

All single units were included in the following population analyses, irrespective of any selectivities found in the ANOVA. For each unit,

data were divided into two classes, assigning the label ‘addition’ to trials with the cues ‘und’ [add] and ‘+’, and the label ‘subtraction’

to the trials with the cues ‘weniger’ [subtract] and ‘–‘. With 80 trials per cue, each class comprised 160 trials. For temporal cross-

training classification, spike trains of each unit were smoothed (Gaussian kernel, s = 150 ms, window size 300 ms) trial-wise within

the trial window of 0–4500 ms (i.e., from fixation onset to 100 ms after delay 2 offset). An SVM classifier with a default linear SVM

kernel56 was then trained on the instantaneous firing rates at a certain time point, and tested on firing rates at different time points

(sampling interval 50 ms).

We applied 10-fold cross-validation, i.e., we created 10 equal-size complementary splits of our dataset, balancing conditions

within each split. Then, 9 splits were used as training set (comprising 288 trials), the remaining split was used as test set (comprising

32 trials). All firing rates were normalized by z-scoring (mean and standard deviation obtained from training data only), then we fitted

the classifier to the training data and assessed the predictive accuracy by counting the instances that a certain activity pattern of the

test data was labeled correctly. This processwas repeated 10 times, using each of the 10 splits exactly once as the validation set. The

results were then averaged across all splits.

To identify temporal clusters during which accuracy differed significantly from chance level (50% for two classes), the analysis was

repeated with randomly shuffled trial labels (nperm = 1000), and a cluster permutation test57 was performed. In short, we identified

temporal clusters of statistical significance by comparing the true accuracy values against the distribution of random ones (aclus =

0.05). The significance of these ‘candidate clusters’ was then evaluated by comparison with the clusters of the random data

(prank < 5%), using cluster size as a test statistic (i.e., number of connected significant ‘pixels’ in the cross-temporal accuracy matrix,

or cluster length for the ‘diagonal curve’ when training and test time points were identical).

High accuracy values do not imply per se that the classifier has learned to encode abstract rule information; comparable

accuracies might also be achieved if the SVM had learned to encode only one specific cue perfectly, but remained at chance level

for the other three cues. To account for this, an SVM (with the same settings as above) was trained and tested on the firing rates

obtained by averaging across the significant interval when training and testing at the same time point. In this fixed-window

analysis we used the following time windows: PHC: 1950–3000 ms and 3150–4000 ms; EC: 2200–3200 ms; HIPP: 2250–4400 ms;

AMY: 2700–3600 ms. We generated a confusion matrix which counted the frequency at which a trial of a certain rule cue was

assigned different labels by the classifier, and calculated the accuracy per mathematical rule by averaging classification probabilities

across the corresponding cues. In PHC, we trained a classifier and assembled confusion matrix and classification probabilities

separately for each of the two significant time windows. Then, we averaged across both models to obtain one overall confusion ma-

trix and overall average accuracies per rule. To evaluate significance, we repeated the analysis with shuffled labels (nperm = 1000) and

applied a permutation test (a = 0.05).

As control, we equalized population sizes by drawing a random subset of units per area (n = 107) and re-calculated all analyses.

This process was repeated 10 times, and the overall statistic was taken to be the mean of the stratified populations.

Finally, we assessed the units’ ability to distinguish the two cue types (as opposed to the arithmetic rule information) by assigning

the label ‘word’ to the ‘und’ [add] and ‘weniger’ [subtract] trials, and the label ‘sign’ to the ‘+’ and ‘–‘ trials. We then repeated the

temporal cross-training classification analysis and trained an SVM classifier on the window significant in the permutation test to

generate the confusion matrix and average accuracy per cue type. The same procedures and settings as above (except for the

labeling) were used for this control analysis.

Generalization of SVM Classification across Rule Cue Notations

To assess how well the results of the SVM classification might generalize to a different cue type, spike trains of all units were again

trial-wise smoothed within the trial window (parameters as above), and labeled as before. Data were then divided into a training and a

test set according to the rule cue.

First, all word trials (i.e., ‘und’ [add] trials labelled ‘addition’ and ‘weniger’ [subtract] trials labelled ‘subtraction’) served as training

dataset. We applied 10-fold cross-validation, i.e., we split the training data into 10 balanced subsamples and used 9 splits as training

dataset (comprising 144 trials). All sign trials (i.e., ‘+’ trials labelled ‘addition’ and ‘–‘ trials labelled ‘subtraction’) served as test dataset

(comprising 160 trials). Temporal cross-training classification was then performed using the same parameters and procedures as

before. This process was repeated 10 times, leaving out each of the 10 subsamples exactly once. The results were then averaged

across all splits. Again, significant temporal intervals were identified using a cluster permutation test (nperm = 1000; aclus = 0.05;

prank < 0.05). Generalization was analyzed also in the opposite direction, i.e., using sign trials as training dataset and word trials

as test dataset, following the same procedures and settings as above.

Next, we identified synchronous intervals, i.e., time windows for which significant classification was observed for both directions

of generalization. Intervals in which significance breaks of at most 150 ms for either one of the test directions occurred were
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considered synchronous. Based on this criterion, we identified the following time windows: PHC: 2450–2650 ms and 3250–

3950 ms; HIPP: 2950–4250 ms. For each direction, an SVM classifier (with the same settings as above) was trained on the firing

rates obtained by averaging the training data across these synchronous intervals. Then, we tested the models on the firing rates

obtained by averaging the test data across the same time window, and generated the confusion matrix. As before, in PHC, a clas-

sifier was trained for each of the two time windows. We then averaged the confusion matrices obtained for each interval to get one

overall confusion matrix.

Generalization was then judged successful if (a) we found synchronous intervals of significant classification in the temporal cross-

training analysis, and (b) performance in the fixed-window analysis was significant in a permutation test (nperm = 1000; a = 0.05) for

each arithmetic rule after averaging classification accuracies across both directions of generalization.
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Figure S1: Neuronal Selectivity of MTL Single Units per Hemisphere. Related to Figure  3. 

Proportions of single units significant to different task factors for different MTL regions and hemispheres: 

(A) total population, (B) parahippocampal cortex, (C) entorhinal cortex, (D) hippocampus, and (E) 

amygdala. Proportions of units from the right and left hemisphere are depicted in the upper and lower 

rows, respectively. ANOVAs for the different task phases were evaluated at ³ = 0.01. Neurons with an 

effect for 8arithmetic rule9, but no concurrent other main effects are termed 8exclusively rule-selective9 
(<Only Rule=); same for factor 8rule cue9. Numbers of significant neurons were subjected to a binomial 
test, Bonferroni-corrected for multiple comparisons across areas (n1 = 4) and hemispheres (n2 = 2); 

asterisks indicate significance (*p < 0.05, **p < 0.01, ***p < 0.001).  
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Figure S2: Neuronal Selectivity of MTL Single Units across Periods. Related to Figure 3. 

Proportions of single units significant in any (i.e., one or more) of the task periods (solid bars) along with 

percentages added up across the four trial periods (light bars). ANOVAs for the different task phases 

were evaluated at ³ = 0.01. Neurons with an effect for 8arithmetic rule9, but no concurrent other main 
effects are termed 8exclusively rule-selective9 (<Only Rule=). Numbers of significant neurons were 

subjected to a binomial test, Bonferroni-corrected for multiple comparisons across areas (n1 = 4) and 

task phases (n2 = 4); asterisks indicate significance (*p < 0.05, **p < 0.01, ***p < 0.001). 
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Figure S3: Rule Decoding in Different Hemispheres using an SVM Classifier. Related to Figure  4. 

Classification accuracy for decoding arithmetic rule information in (A) parahippocampal cortex: 67 units 

recorded from the right hemisphere, 59 units from the left hemisphere, and (B) hippocampus: 104 units 

recorded from the right hemisphere, 95 units from the left hemisphere. SVM classifiers were trained on 

the instantaneous firing rates across the trial period. The dashed line represents chance level (50 % for 

two classes). Light and dark blue bars above the data indicate significance (p < 0.05) in a permutation 

test for each hemisphere. Abbreviations at the axes indicate task phases: F, fixation; O1, operand 1; 

D1, delay 1; CR, calculation rule; RD, rule delay; O2, operand 2; D2, delay 2.  
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Figure S4: Rule Decoding in Sample-Equalized MTL Populations using an SVM Classifier. 

Related to Figure 4. Decoding performance when using random subsets of neurons per area, 

equalizing population size across all MTL regions (columns). (A3D) Average classification accuracy for 

decoding arithmetic rule information when training an SVM on the instantaneous firing rates across the 

trial period. The dashed line represents chance level (50 % for two classes). Black bars above the data 

and gray shaded areas indicate significance (p < 0.05) when testing against performance for SVMs 

trained on shuffled data in a permutation test. Abbreviations at the axes indicate task phases: F, fixation; 

O1, operand 1; D1, delay 1; CR, calculation rule; RD, rule delay; O2, operand 2; D2, delay 2. (E3H) 

Confusion matrix derived when training an SVM on firing rates averaged across the significant time 

window in (A3D), respectively. E shows the average of the confusion matrices obtained for each 

significant window (depicted in A). (I3L) Accuracy when training an SVM at a given time point of the trial 

and testing on another one (the main diagonals of the matrices correspond to the curves in A3D). Black 

contours indicate significance (p < 0.05) in a permutation test.   
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Figure S5: Rule Notation Decoding using an SVM Classifier. Related to Figure 4. Classifier 

performance for the four different MTL regions (columns). (A3D) Classification accuracy for decoding 

cue information when training an SVM classifier on the instantaneous firing rates across the trial period. 

The dashed line represents chance level (50 % for two classes). Black bars above the data indicate 

significance (p < 0.05) when testing against performance for SVM classifiers trained on shuffled data in 

a permutation test. Abbreviations at the axes indicate task phases: F, fixation; O1, operand 1; D1, 

delay 1; CR, calculation rule; RD, rule delay; O2, operand 2; D2, delay 2. (E,F) Confusion matrix derived 

when training an SVM on firing rates averaged across the significant time window in A and C, 

respectively. Significance was reached only in the PHC. (G3J) Accuracy when training an SVM classifier 

at a given time point of the trial and testing on another one (the main diagonals of the matrices 

correspond to the curves in A3D). Black contours indicate significance (p < 0.05) in a permutation test. 

139





Publication 3

Publication 3: Distinct Neuronal Representation of Small and Large

Numbers in the Human Medial Temporal Lobe

Kutter E.F., Dehnen G., Borger V., Surges R., Mormann F., & Nieder A. (2023) Distinct
Neuronal Representation of Small and Large Numbers in the Human Medial
Temporal Lobe. Nature Human Behaviour 7: 1998–2007. DOI: 10.1038/s41562-
023-01709-3

141





Nature Human Behaviour

nature human behaviour

https://doi.org/10.1038/s41562-023-01709-3Article

Distinct neuronal representation of small 
and large numbers in the human medial 
temporal lobe

Esther F. Kutter1,2, Gert Dehnen1, Valeri Borger)  )3, Rainer Surges)  )1, 

Florian Mormann)  )1,4  & Andreas Nieder)  )2,4 

Whether small numerical quantities are represented by a special subitizing 

system that is distinct from a large-number estimation system has been 

debated for over a century. Here we show that two separate neural 

mechanisms underlie the representation of small and large numbers. 

We performed single neuron recordings in the medial temporal lobe of 

neurosurgical patients judging numbers. We found a boundary in neuronal 

coding around number 4 that correlates with the behavioural transition 

from subitizing to estimation. In the subitizing range, neurons showed 

superior tuning selectivity accompanied by suppression efects suggestive of 

surround inhibition as a selectivity-increasing mechanism. In contrast, tuning 

selectivity decreased with increasing numbers beyond 4, characterizing a 

ratio-dependent number estimation system. The two systems with the coding 

boundary separating them were also indicated using decoding and clustering 

analyses. The identifed small-number subitizing system could be linked to 

attention and working memory that show comparable capacity limitations.

When asked to judge the number of briefly presented items in a set, 

humans show a behavioural dichotomy1. Participants respond fast 

and accurately for small numbers up to about 4 in a process termed 

8subitizing92. However, for larger numbers beyond 4, participants show 

increasingly slower and more imprecise number 8estimation9 that is 

dependent on the ratio between the numbers to be compared2–5.

On the basis of behavioural measures, it has been argued that 

the observed judgement differences arise from one and the same 

estimation system whose negligible ratio-dependent imprecision 

for small numbers gives rise to a seeming dichotomy in underlying 

mechanisms6,7. Others, in contrast, maintain that subitizing and estima-

tion reflect two distinct mechanisms for assessing small versus large 

numbers2–5. Explorations into underlying brain mechanisms using 

blood flow imaging or electroencephalography remained similarly 

inconclusive; while some studies argue for a single underlying mecha-

nism8–12, others propose two separable number systems13–15.

In this Article, to address this century-old debate about a single 

or two distinct mechanisms for number representations, we recorded 

single-neuron activity in the medial temporal lobe (MTL) of neurosurgi-

cal patients who judged numerical quantity16,17. If small and large num-

bers are represented by the same neuronal mechanism, a continuous 

code across small and large numbers is anticipated. However, if small 

and large numerosities engage distinct mechanisms, two different 

coding schemes with a discontinuity reflecting the change from one 

mechanism to the other is expected.

Results
We asked 17 human participants to quickly judge the parity (even versus 

odd) of numbers ranging from 0 to 9 shown as dot arrays on a computer 

screen. The simple parity task is suited to test a broad range of explicit 

number representations devoid of other cognitive factors (such as working 

memory), and in short time for the participants. In each trial, a numerosity 
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the tuning curves of number-selective neurons. We calculated the 

numerosity tuning functions of all numerosity-selective neurons  

using standardized activity (z-score relative to baseline activity)  

(Fig. 3c). Apart from the well-known number-tuning characteristics, 

that is, maximum activity to the preferred number and progressively 

reduced firing rates as distance from the preferred number increased, 

several distinguishing features in the tuning to small versus large 

numbers emerged.

was flashed for 500)ms after a short fixation period, followed by a brief 

delay during which the number stimulus was removed (Fig. 1a). Afterwards, 

participants decided whether the number of dots had been even or odd 

by pressing the left or right arrow key, respectively, on the keyboard as 

indicated on the response screen. The keys associated with the respective 

response were switched between blocks to control for potential motor 

bias. Different stimulus protocols were used to control for non-numerical 

visual parameters: dots were shown in a standard (variable dot size and 

arrangement) and two control displays (constant total dot area and dot 

density across numerosities, and linear arrangement) (Fig. 1b). The numer-

osity and protocol of the stimuli varied randomly from trial to trial.

Behaviour
The participants9 performance showed well-known behavioural effects 

indicative of two different representational systems. Small countable 

numerosities from 1 to 4 were equally effortlessly judged with only few 

errors (Fig. 1c) and short reaction times (RTs) (Fig. 1d), as expected for 

subitizing2–4. In contrast, numbers 5 and higher were judged with notice-

ably increasing error rates and RTs indicative of number estimation. This 

observation was bolstered by calculating the discontinuity point that 

signals a change in the slope18, which could be determined for 14 of the 

17 participants. We found average discontinuity points of 3.7 and 3.6 for 

error rates and RTs, respectively, as the upper boundary of the subitizing 

range (Fig. 1c,d). The errors seen for numbers larger than 5 argue that 

participants were not symbolically counting items as serial counting 

would be error-free and moreover has been shown to be impossible 

in afterimages19,20. Asymmetric switch cost effects for the transition 

from subitizing to estimation versus the transition from estimation to 

subitizing were not observed21,22 (Pswitch condition)=)0.88; two-factor analysis 

of variance (ANOVA) with factors 8numerical value9 (0–9))×)8switch condi-

tion9 (switch versus non-switch)). Consistent with previous reports23,24, 

the empty set (number zero) elicited distinct behavioural effects due to 

its special status as a latecomer in number concepts25.

Neuronal responses
To test the long-standing hypothesis of different enumeration systems 

for small versus large numbers, we recorded action potentials of 801 

single neurons in the MTL of the 17 participants while they performed 

the number task. Many neurons were activated in a tuned fashion to 

the numerical value of the sample stimulus. They responded strong-

est to their respective preferred numerosities and decreased their 

activity progressively with increasing numerical distance (Fig. 2a–d). 

We statistically identified number-selective neurons by applying a 

sliding-window analysis to all cells16. We combined a two-factor ANOVA 

with factors 8numerical value9 (0–9))×)8protocol9 (standard versus con-

trol) to detect tuning to numerical values, and a separate Mann–Whit-

ney U test with factor 8parity9 (even versus odd) to exclude neurons 

responsive to parity judgements (both evaluated at α)=)0.01). Across 

all four areas individually, a substantial proportion of neurons showed 

a significant main effect for the factor 8number9 (P)<)0.001; binomial 

test with Pchance)=)0.01), but no effect for the factors 8protocol9 or 8par-

ity9 (Fig. 3a). Across all four areas combined, 15.1% of MTL neurons 

(121/801) showed an exclusive significant main effect for the factor 

8number9 (Fig. 3a). Each of the tested numerosities (0–9) constituted 

the preferred numerosity of individual selective neurons (Fig. 3b); dif-

ferences in these proportions were not due to response preferences for 

specific numerosities, but consistent with random variation (P)=)0.15; 

Mantel–Haenszel test). Similarly, response latencies across the four 

MTL regions (parahippocampal cortex (PHC), entorhinal cortex (EC), 

hippocampus (HIPP) and amygdala (AMY)) did not reveal significant 

differences (P)=)0.87; Kruskal–Wallis test).

Neuronal tuning characteristics
To explore hypothesized different physiological mechanisms for 

the representation of small and large numerosities, we first analysed 
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Fig. 1 | Behavioural task, stimuli and behavioural performance. a, Parity 

judgement task. Participants were required to indicate whether the number 

of dots was even (8gerade9) or odd (8ungerade9) by pressing the left or right 

arrow key, respectively (or vice versa). b, Sample number protocols. Dot arrays 

represented numerosity. They were shown in a standard layout with variable 

dot size and position (left), in a control layout with equalized total area and 

density of the dots (middle), and additionally as linearly arranged dots (right). 

Numerical values covered the range 0–9; exemplary dot displays for numbers 4 

and 8 for each protocol are shown. c, Behavioural performance. Mean error rates 

and error bars denoting standard error of the mean (s.e.m.) are shown (n)=)17). 

Values above small horizontal bars indicate P values for pair-wise comparisons 

(two-sided, paired t-test, Bonferroni-corrected for multiple comparisons of 

numbers (n)=)9)); all other pair-wise comparisons were not different (P)>)0.05). 

The subitizing boundary (green dashed line) is defined as the intersection point 

of the tangent (black dashed line) at the inflection point (black star) of a sigmoid 

fit (blue dotted line) to the error rates (excluding zero), and the subitizing line 

(red dashed line) at which the sigmoid curve intersects the y axis. d, RTs. Median 

and error bars denoting s.e.m. are shown (n)=)17). Values above small horizontal 

bars indicate P values for pair-wise comparisons (two-sided, Wilcoxon signed 

rank test, Bonferroni-corrected for multiple comparisons of numbers (n)=)9)); all 

other pair-wise comparisons were not different (P)>)0.05). Conventions for the 

subitizing boundary as in c.
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First, tuning functions to small preferred numerosities 0–3 

showed systematic surround suppression below spontaneous activity 

to non-preferred numbers, whereas tuning functions to large numerosi-

ties 4–9 returned to spontaneous activity for non-preferred numbers 

(Fig. 3c; see also example neuron tuning functions in Fig. 2a–d). We 

compared the firing rates elicited by non-preferred numbers (that 

is, at the flanks of the tuning curves) to the neurons9 baseline activity. 

We found that firing rates at the flanks were significantly smaller than 

baseline activity in neurons tuned to each of the preferred numbers 0 to 

3 (P values numerosity 0: 1.4)×)10215; numerosity 1: 0.0024; numerosity 

2: 8.7)×)10214; numerosity 3: 0.0086; one-sided Wilcoxon signed rank 

tests), but not different from baseline in neurons tuned to each of the 

preferred numbers 4 to 9 (all P values >0.98; one-sided Wilcoxon signed 

rank tests) (Fig. 3d). The sharp cut in surround suppression between 

3 and 4 was not due to tuning functions for preferred numbers larger 

than 3 becoming too wide to detect suppression. This argues for a 

physiological effect rather than a tuning-function resolution issue.

Second, and correlating with this tuning-flank suppression, we 

observed systematic differences in the amplitudes of the tuning curves. 

We fitted Gauss functions to the tuning curves and derived the ampli-

tude value as a quantitative measure for the amplitude of the tuning 

functions25. Tuning curve amplitudes of neurons tuned to small num-

bers (0–3) were significantly smaller compared to large number (4–9) 

tuning curves (P)<)0.001; one-sided Mann–Whitney U test), whereas 

tuning amplitudes were indifferent within the groups of neurons tuned 

to small (P)=)0.38; Kruskal–Wallis test) and large numbers (P)=)0.69; 

Kruskal–Wallis test) (Fig. 3e).

Third, tuning selectivity showed a dichotomy between small and 

large numbers. Since small numbers in the subitizing range can be 

discriminated more accurately (Fig. 1c), and more accurate discrimina-

tion is linked to more selective (that is, narrower) tuning functions26–28, 

systematic differences in number tuning selectivity between the subi-

tizing versus estimation range are expected. Thus, we derived the 

sigma value from the Gauss fits to quantify tuning width29. The tuning 

widths for neurons tuned to numbers 0–3 were small and not different 

in value (P)=)0.9; Kruskal–Wallis test). Note that sigma as a measure of 

tuning width can be much smaller than 1, which is why the stable tun-

ing widths in the subitizing range are not due to a floor effect. Around 

preferred number 4 or 5, a turning point emerged with tuning widths 

systematically increasing in a linear fashion towards larger numbers, 

as expected for ratio-dependent estimation (Fig. 3f). The selectivity 

dichotomy of neurons across the range of numbers is in agreement 

with behavioural predictions and suggests separate mechanisms for 

the coding of small versus large numerosities.

To explore the categorically distinct representation of small versus 

large numerosities further, we performed a representational similarity 

analysis (RSA) by calculating the correlation coefficients of the z-scored 

firing rates between all pairs of numbers for number-selective neurons 

(n)=)121). We hypothesized that neurons tuned to small numbers would 

show more similar firing rates to other small numbers and thus higher 

correlation coefficients within pairs of small numbers, whereas neurons 

tuned to large numbers would show higher correlation coefficients 

within pairs of other large numbers. The resulting matrix of correlation 

coefficient values suggests radically different coding for numerosity 0 

(which was therefore excluded from this analysis), but also categorical 

differences between small and large countable numbers (Fig. 3g). We 

then quantified for which of the eight number boundaries (that is, 1|2, 

2|3, …, 8|9) the difference between within- and across-category cor-

relation values was most significant and thus best segregated these 

data into small versus large number representations. The highest and 

most significant correlation value difference between within- and 

across-categories (r)=)0.27; P)=)1.12)×)1025) was found for the boundary 

3 versus 4 (Mann–Whitney U test, Bonferroni-corrected for multiple 

comparisons of boundaries, n)=)8) (Fig. 3h). This correlation analysis 

suggests categorically different encoding of small versus large numbers 

based on the selective neurons9 firing rates. When applied to the entire 

set of single units regardless of numerosity selectivity (801 units), this 

analysis yielded qualitatively similar results (Supplementary Fig. 1).
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Fig. 2 | Responses of number-selective neurons. a, Example neuron from EC 

tuned to small number 2. Top: dot-raster histogram. Each row indicates one trial 

(colours correspond to presented numbers); each dot represents one action 

potential. Middle: corresponding mean instantaneous firing rates across trial 

time obtained by averaging responses to each number (smoothed using a 150)ms 

Gaussian kernel). Colours correspond to sample number. The horizontal dotted 

line depicts spontaneous activity (average across fixation periods). The grey 

shaded area represents the significant number-selective interval according to the 

sliding-window ANOVA (colour-coded P values above each panel). Bottom (left): 

density plot of the recorded action potentials, colour darkness indicating the 

number of overlapping wave forms according to the colour scale at the bottom. 

Bottom (right): number tuning function (average firing rate in the selective trial 

interval plotted against sample number). The horizontal dotted line indicates 

spontaneous firing rate. b, Example neuron from EC tuned to small number 3. 

Same layout as in b. c, Example neuron from PHC tuned to large number 5. Same 

layout as in b. d, Example neuron from HIPP tuned to large number 7. Same layout 

as in b.

145



Nature Human Behaviour

Article https://doi.org/10.1038/s41562-023-01709-3

Population decoding using SVM classifiers
In addition to single neurons, neural populations carry information 

about neuronal computations30. Next, we therefore explored potential 

decoding discontinuities for numbers at the level of the population of 

selective neurons (n)=)121) (Fig. 4a). Using a support vector machine 

(SVM) classifier, we first identified the time window of significant 

above-chance classification during a sliding-window classification 

analysis (60)ms to 1,200)ms after sample number onset; α)=)0.01) 

(Fig. 4b). Next, another classifier was trained with 50% of the data to 

discriminate the ten numbers, and then tested on the remaining 50% 

novel data from the same neuronal population and in the same time 

window to evaluate how well the model could decode each number 

based on information extracted from trials used during training. The 

classification probability of predicted numbers per truly presented 

number was then used to assemble a confusion matrix, with the main 

diagonal indicating correct labelling (Fig. 4c).

The classifier predominantly confused numbers from within 

the small-number category (upper-left square) and from within the 

large-number category (lower-right square), but not numbers across 

the small and large number category (in the lower-left and upper-right 

squares) (Fig. 4c). Zero was again excluded from the categorization 

analysis due to its distinctive difference relative to countable numbers. 

We quantified which of the eight number boundaries (that is, 1|2, 2|3, …, 

8|9) resulted in the largest statistically significant differences in classi-

fication probabilities. A boundary between numbers 4 and 5 resulted in 

the largest and most significant difference in classification probability 

(difference 15%) between within- and across-categories (P)=)2.22)×)1026; 

Mann–Whitney U test, Bonferroni-corrected for multiple comparisons 

of boundaries, n)=)8) (Fig. 4d). This population decoding analysis again 

indicates categorically different encoding of small versus large num-

bers, with a boundary between numbers 4 and 5. Again, this analysis 

yielded similar results when performed for the entire population of 

single units (n)=)801; Supplementary Fig. 2).

Multi-dimensional state-space analysis and cluster analysis
Finally, to explore the dynamics of neuronal coding differences 

potentially pointing to two different number systems, we per-

formed a multi-dimensional state-space analysis for the population 

of numerosity-selective neurons. At each point in trial time, the activity 

of n recorded neurons is defined by a point in n-dimensional space, 

with each dimension representing the activity of a single neuron 

(n)=)121). The multi-dimensional space (used for quantitative analy-

ses) is reduced to the three most informative dimensions for graphical 

depiction in three-dimensional (3D) state space. This results in 3D 

trajectories that are traversed for different neuronal states, that is, for 

the ten different numerical values (Fig. 5a). These trajectories reflect 
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Fig. 3 | Tuning characteristics of number-selective neurons. a, Proportions 

of neurons with a significant main effect for 8number9 (NUM), 8exclusively 

number9 (NUM-ONLY), 8number protocol9 (PROT) in a two-way ANOVA, or 8parity9 

(PAR) in a Mann–Whitney U test, evaluated at α)=)0.01, separately for each MTL 

region (number of recorded units in brackets). b, Proportion of neurons tuned 

to different preferred numbers. c, Average z-scored tuning curves of number-

selective neurons tuned to the ten numbers (colour-coded as depicted in b). 

Error bars denote standard error of the mean (s.e.m.). d, Average (z-scored) firing 

rate per preferred number (rows) colour-coded relative to baseline activity. 

Blueish colours indicate suppression; reddish colours indicate enhancement of 

firing rates relative to baseline activity. e, Average tuning amplitude per preferred 

number derived from Gauss fits to tuning curves. Standard errors denote s.e.m. 

Amplitudes did not differ for units preferring small numerosities 0–3 (n)=)55) and 

for units preferring large numerosities 4–9 (n)=)73) (Kruskal–Wallis tests; P)>)0.05, 

n.s.) but were significantly different between both groups, as indicated by the P 

value above the small horizontal bar (one-sided Mann–Whitney U test). f, Average 

tuning selectivity per preferred number as measured by sigma from Gauss fits 

to tuning curves. Error bars denote s.e.m. Sigma was small and constant for 

small numbers but increased in proportion with the value of large numbers. 

Sigmas did not differ for units preferring small numerosities 0–3 (n)=)55), but 

were significantly different between both groups, as indicated by the P value 

above the small horizontal bar (one-sided Mann–Whitney U test). g, Correlation 

coefficients of the z-scored firing rates between pairs of numbers for all number-

selective neurons (n)=)121). Firing rates were more similar (higher correlations, 

corresponding to reddish colours) for numbers from the same number (small or 

large) category (upper-left and lower-right square), compared with responses 

for numbers from a different category (lower-left and upper-right square). 

White lines depict significant number category boundaries (solid line is most 

significant), dividing correlations into small versus large number categories. 

h, Evaluation of the goodness-of-fit of different number boundaries. Orange 

values depict the differences of correlation coefficients when segregating small 

versus large number categories (excluding zero) at different boundaries. The 

corresponding P values (two-sided Mann–Whitney U test) for these coefficient 

differences are shown in blue. Boundary 3 versus 4 (asterisks) divides the data 

most significantly into two number categories. The blue dotted line indicates 

α)=)0.01, Bonferroni-corrected for multiple comparisons (n)=)8).
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the instantaneous firing rates of the population of selective neurons as 

they evolve over time. Spatial closeness (that is, small distances) of the 

trajectories represents similarity in coding for the respective numer-

osities, whereas spatial disparity (that is, large distances) reflects 

coding dissimilarity.

The spatial layout of the trajectories evolving after sample onset 

until the end of the delay period again suggests two categorically 

different state spaces for numerosities 0–4 versus numerosities 5–9 

(Fig. 5a). The trajectories representing numerosities 0–4 run in close 

vicinity to each other but (as expected) with increasing spatial gaps 

according to ordinal numerical distance. The same spatial pattern 

emerges within the group of trajectories representing numerosities 

5–9. However, both trajectory categories are spatially segregated from 

each other by a large gap.

To statistically quantify this graphical grouping effect, we per-

formed a cluster analysis on the neuronal population state space 

with averaged firing rates across the previously defined time window 

(60–1,200)ms after sample onset). The neural state space was then 

orthonormalized using principal component analysis. For visualiza-

tion, only the first two dimensions (that is, PC1 and PC2) are shown 

(Fig. 5b). We first determined the optimal number of clusters for 

the data set by applying two measures: the CaliEski–Harabasz index 

(also termed 8variance ratio criterion, VRC9)31, and the 8gap criterion9 

that determines the most dramatic decrease in error measurement 

(the 8elbow9 or 8gap9) of different cluster numbers32. Both measures 

indicated two clusters as the optimal cluster number for the dataset  

(Fig. 5c). We then applied unsupervised k-means clustering to partition 

all trials (n)=)160) into two clusters33. The clustering algorithm detected 

one cluster that comprised the state spaces for numbers 0–4, and a 

second cluster consisting of state spaces for numbers 5–9 (Fig. 5d). 

Thus, the number state space is optimally described by two clusters that 

border between number representations 4 and 5. Again, performing 

this analysis for the entire population of single units (n)=)801) yielded 

similar results (Supplementary Fig. 3).

Discussion
Our results provide evidence for two mechanisms encoding the con-

tinuous range of number. The number space from 0 to 9 was unin-

termittedly covered by single neurons9 overlapping tuning functions 

inherently ordered by number, and the activity of neuron populations 

was systematically arranged by numerical distances16,34–36. However, a 

coding dichotomy mirroring behavioural findings emerged within this 

representational continuum: neuronal tuning to small numbers in the 

subitizing range was more selective and ratio independent, whereas 

tuning widths increased in a ratio-dependent manner after a turning 

point around number 4. We also observed strong evidence for this 

coding dichotomy at the neuronal population level. This argues for a 

separate enumeration system for subitizing in addition to an estimation 

system2–5. Whether the current findings in the MTL transfer to other 

brain regions is currently not known and requires further exploration.

A defining feature of neuronal tuning in the subitizing range was 

surround suppression below baseline activity. Surround inhibition 

is a basic neuronal circuit operation37,38 known to increase contrast 

sensitivity. Here, excitatory neurons firing in response to preferred 

stimuli recruit broadly tuned inhibitory interneurons that in turn 

suppress firing of neurons tuned to different preferred stimuli. Inhibi-

tion via interneurons is supposed to shape and sharpen the tuning to 

numerosities in the animal brain39,40 and could mechanistically explain 

the more accurate number discrimination in the subitizing range. The 

time scale of surround inhibition to enable selective encoding in the 

subitizing range could be very fast. Moreover, the time delay of sur-

round suppression with respect to classical receptive field excitation 

in the primate visual system has been reported to range from 15 to 

60)ms (ref. 41), but (with a delay of 9)ms) can also act almost as sud-

denly as the direct-driving classical receptive field excitation signals42. 

Such short delays in surround inhibition are thought to emerge from a 

combination of feedforward, lateral and feedback connections to the 

target area39,43. While these mechanisms of surround suppression are 

a realistic assumption to explain the enhanced neuronal tuning in the 

subitizing range, they need direct testing in future experiments. With 

excitatory and inhibitory neurons identified in the human MTL44–46, the 

necessary circuit components would readily be available to implement 

almost instantaneous surround inhibition for selective coding in the 

subitizing range.

Subitizing has been suggested to tap a different system in addition 

to that that for number estimation5. In contrast to number estimation, 

which is unaffected by attentional manipulations, subitizing is heav-

ily dependent on attentive resources47–49. Attention-based processes 

that determine how many elements of information can be kept active 

in working memory have a very limited capacity of up to around four 

items50,51, precisely the same set-size limit found for subitizing52. The 

mechanisms we discovered for subitizing may therefore well play 

a role for other capacity-limited processes, such as attention and 

working memory49. Similar to the observed surround suppression 

in small-number tuning curves, tuning flank suppression is a known 

mechanism to contrast task-relevant and task-irrelevant stimulus fea-

tures in attention- and working-memory-related operations53–55. Here 

as well, a suppressive zone below baseline is seen in the surround of the 
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preferred stimulus parameter56–59. In intermediate-level visual area V4, 

surround suppression caused by spatial attention can be very quick and 

as early as 75)ms post stimulus onset58. The hypothesis is that with high 

attentional demand, the subitizing system overrides the estimation 

system. Thus, the subitizing system would enhance rather than replace 

estimation for small numbers5. This would also explain why estimation 

processes can in principle work also for small numbers, as seen many 

times in both human and animal brain studies7,8,12,60–63. This hypothesis 

is consistent with our current findings but needs to be tested empiri-

cally by contrasting the responses of neurons with and without atten-

tional demands assigned to number representations. Complementing 

our parity judgement task with richer and more explicit number tasks 

could also help to support the generality of findings.

Methods
Experimental model and participant details
All studies conformed to the guidelines of the Medical Institutional 

Review Board at the University of Bonn, Germany, and were approved 

by this Board (licence no. 146/19). Seventeen human participants (five 

male, mean age 37.6)years) with medically refractory focal epilepsy 

undergoing invasive pre-surgical assessment participated in the study. 

Informed written consent was obtained from each patient; participants 

received no financial compensation for participating in the study.

Neurophysiological recording
Participants were implanted bilaterally with chronic intracerebral 

depth electrodes in the MTL to localize the seizure-onset zone for pos-

sible neurosurgical resection. The implantation site of the electrodes 

was determined exclusively by clinical criteria and varied across partici-

pants. To record neuronal signals, we used 9–10 clinical Behnke–Fried 

depth electrodes (AD-Tech Medical Instrument Corp.). Each depth 

electrode contained a bundle of nine platinum–iridium micro-wires 

protruding ~4)mm from the tip of each electrode: eight high-impedance 

active recording channels, and one low-impedance reference wire. 

Using a 256-channel ATLAS neurophysiology system (Neuralynx), 

differential neuronal signals (recording range ±3,200)µV) were filtered 

(bandwidth 0.1–9,000)Hz), amplified and digitized (sampling rate 

32,768)Hz). Recorded spikes and behavioural data were synchronized 

via 64-bit timestamps using the Cheetah software (Neuralynx).

After bandpass-filtering (bandwidth 300–3,000)Hz) the local 

field potentials, spikes were automatically detected and pre-sorted 

using the Combinato package64. Classification as artefact, multi-unit 

or single unit was verified manually on the basis of spike shape and its 

variance, inter-spike-interval distribution per cluster, and the presence 

of a plausible refractory period. Only units that responded with an aver-

age firing rate of >1)Hz during stimulus presentation were included in 

the analyses. Across 28 recording sessions from all 17 participants, a 

total of 801 single units were identified in the PHC (109 units), EC (262 

units), HIPP (275 units) and AMY (155 units).

Stimuli
All stimuli were presented within a filled grey circle (diameter approxi-

mately 6° of visual angle) on a black background. During fixation and 

delay phase, a white fixation spot was presented in the centre of the grey 

area. It was removed during stimulus presentation to avoid confusion 

with non-symbolic stimuli.

Numerical values of the stimuli ranged from 0 to 9 and consisted 

of black sets of dots with the number of dots corresponding to the 

respective numerical value (8numerosities9). Given that we needed zero 

for a balanced count of even and odd numbers, and acknowledging 

that zero is a set (even if empty) and a whole number like the natural 

numbers, we included zero in the stimulus presentation. We used differ-

ent 8protocols9 to control for low-level visual features. For the standard 

protocol, diameter and location of each dot varied randomly within a 

given range (diameters of 0.3° to 0.8° of visual angle). In the control 

displays, the total dot area and dot density (mean distances between 

centres of the dots) across numerosities was equated. Additionally, 

in half of the control trials, the dots were linearly arranged. Standard 

and control protocols for the non-symbolic stimuli were shown with 

equal probability of 50%.

Experimental task
Participants performed a parity judgement task sitting in bed and fac-

ing a laptop (display diagonal 11.7)inches, resolution 1,366)×)768)px) on 

which stimuli were presented at a distance of approximately 50)cm. 

Participants were not informed about hypotheses or purposes of the 

experiment to exclude any bias.

Before the experiment, the task instruction was displayed on the 

screen in addition to verbal explanation by the experimenter, specify-

ing which numbers were 8even9 and which ones 8odd9. Furthermore, to 

reduce confusion about the 8zero9 stimulus, we added some familiari-

zation trials preceding the recordings, during which the experimenter 

pointed out, once more, that an empty grey circle represented the 

8even number zero9.
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state-space trajectories of number-selective neurons for all number conditions, 

reduced to the three principal dimensions for visualization. Each trajectory 

depicts the temporal evolution in the time window 2300 to 1,200)ms (stimulus 

onset to 100)ms after delay offset). The state space shows a gap between 

trajectories for numbers 0–4 versus 5–9. Circles indicate boundaries between 

task phases. Fix, Fixation; Smpl., Sample; Del., Delay; Resp., Response. b, Neural 

states, reduced to the two principal dimensions, after averaging firing rates 

per trial across the significant time window in the SVM classification analysis 

(60–1,200)ms). Different colours correspond to different number conditions. 

Each dot represents one trial; squares and ellipses indicate condition mean 

and covariance ellipse per condition. The colours of the dot outlines (black for 

0–4 or white for 5–9) indicate the class label assigned by the k-means classifier. 

The black and grey crosses show the centroids of each class. c, Evaluation of 

different numbers of clusters using the CaliEski–Harabasz criterion (blue) and 

the gap criterion (orange). Data are presented as mean values, error bars denote 

standard deviation (s.d.) of cross-validations (n)=)50). Asterisks indicate the 

optimal number of clusters. Note that, unlike the CaliEski–Harabasz criterion, 

the gap criterion would also be defined for clustering solutions containing only 

one cluster. d, Proportion of trials per number condition that were labelled as 

belonging to class 8small numbers9 (black) or class 8large numbers9 (white). Data 

are presented as mean values; error bars denote s.d. of cross-validations.
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Each trial started with a fixation period of 300)ms. Afterwards, a 

number stimulus was presented for 500)ms, followed by a 600)ms delay 

display. After delay offset, participants had to decide whether the num-

ber had been even or odd by pressing the left or right arrow key on the 

keyboard, respectively, as indicated on the response screen (8gerade9 

(even) or 8ungerade9 (odd)). To control for potential motor bias, the keys 

associated with the respective response were balanced and switched 

across blocks. Participants responded in a self-paced manner, but were 

asked to respond as fast and accurately as possible. After a 200)ms feed-

back display, the next trial started automatically. Each number stimulus 

was presented 16 times, resulting in 160 trials. A session was divided 

into four blocks, comprising all conditions in pseudo-random order. 

Stimuli and experimental task were programmed in MATLAB R2017a 

(The MathWorks), using the Psychtoolbox3 (refs. 65–67).

Behavioural analyses
First, we plotted the behavioural measures (error rates and RTs, aver-

aged across participants, n)=)17) as a function of numerical value of 

the stimulus. This function is characterized by a shallow, near-zero 

slope for small numbers, and a steeper slope for numbers beyond the 

subitizing range. The discontinuity point, in which the slope of this 

function changes, defines the upper boundary of the subitizing range. 

To quantify this boundary, we applied the algorithm for calculating 

individual subitizing ranges18, that is, we first fitted a sigmoid (logistic) 

function to the behavioural data:

BM = L + (U 2 L) •

1

1 + exp (2x 2 IP)

where BM is the behaviour exhibited in response to the presentation of 

numerical value x. The model coefficients lower bound L, upper bound 

U and inflection point IP were estimated in the fitting process. We then 

applied the Levenberg–Marquardt algorithm to solve this non-linear 

least-squares curve-fitting problem. Next, we fitted two linear func-

tions to the sigmoid curve. The subitizing line is equivalent to the lower 

bound L where the sigmoid curve crosses the y axis; the tangent line is 

fitted to the tangent at the inflection point IP. The intersection point 

of these two linear fits is then used as a proxy for the upper boundary 

of the subitizing range.

Neuronal analyses
Overall behavioural performance was high across all participants 

(mean)±)standard deviation: 86.4)±)3.1%). Errors occurred mainly for 

larger numbers. Because of the low error rate and the need to have bal-

anced numbers of trials across numerosities, we included both correct 

and incorrect trials into the analyses.

Tuning characteristics
Spike trains were smoothed trial-wise (Gaussian kernel with σ)=)150)ms) 

for each unit within the trial window 2300 to 1,200)ms (fixation onset 

to 100)ms after delay offset). At every 20)ms step, instantaneous firing 

rates were subjected to a two-factor ANOVA with factors 8numerical 

value9 (0–9) and 8protocol9 (standard versus control) to detect tuning 

to numerical values, and a separate Mann–Whitney U test with factor 

8parity9 (even versus odd) to exclude neurons responsive to parity 

judgements (note that we could not apply a three-factor ANOVA as 

parity is not independent from the numerical value), resulting in a 

temporal sequence of P values for each of the three factors. A cluster 

permutation test68 was then performed to identify time intervals of 

significant number encoding, thereby controlling for multiple com-

parisons across time (αclus)=)0.01; Prank)<)1%; nperm)=)100). A unit was 

termed 8exclusively number-selective9 (NUM-ONLY) if a significant 

time interval for the factor 8numerical value9 was observed between 

0)ms and 1,000)ms (stimulus onset to 100)ms before delay offset), 

and there were no overlapping significant intervals for the factors 

8protocol9 or 8parity9. These units are henceforth referred to as 8num-

ber neurons9. Proportions of these number neurons were determined 

for each MTL region and subjected to a binomial test (Pchance)=)0.01), 

Bonferroni-corrected for multiple comparisons across brain regions 

(n)=)4), to evaluate whether the observed proportions were higher than 

expected by chance.

For each number neuron, we calculated tuning functions by aver-

aging the firing rates during the significant time interval across trials 

for all numerical values. The numerical value eliciting the maximum 

response was defined as 8preferred numerosity9. To test for potential 

differences in the proportions of preferred numerosities, we applied 

the Mantel–Haenszel Χ² test69,70, a generalized version of Pearson9s Χ² 

test, for analysis of 2)×)9)×)17 contingency tables, excluding zero as an 

outlier and stratified for different participants (n)=)17).

Tuning functions were then standardized by z-scoring, that is, 

we subtracted the mean baseline activity elicited during the fixation 

periods (2300 to 0)ms) from all values and divided the difference by 

the standard deviation. In cases where multiple significant number 

intervals were identified within the same unit, we calculated separate 

tuning curves for each of these intervals (8/121 number neurons). 

Population tuning functions were then obtained by averaging across 

all units that preferred the same number.

To quantify surround suppression, we combined the firing rates to 

all non-preferred numbers for all units preferring the same numerical 

value and tested whether they were significantly smaller than spon-

taneous activity (that is, a z-score of 0) using a one-sided Wilcoxon 

signed rank test.

To estimate the tuning amplitude and width of all numerosity- 

selective neurons, we fitted a Gauss function, representing the standard 

symmetric distribution, to each individual tuning curve:

FR(x) = a exp (2

(x 2 μ)

2

2σ

2

) + o

where FR is the z-scored firing rate elicited in response to the pres-

entation of numerical value x. The mean µ was fixed to the preferred 

number; the model coefficients amplitude a, offset o, and standard 

deviation σ were estimated in the fitting process, thereby using the 

following bound constraints: a)=)[0;max(FR)], o)=)[min(FR);max(FR)] 

and σ)=)[0;Inf], to avoid implausible fitting results. We then applied the 

Levenberg–Marquardt algorithm to solve this non-linear least-squares 

curve-fitting problem.

RSA
Pearson9s correlation coefficient quantifies the strength of the linear 

relationship between two variables. To evaluate firing rate differences 

between different number conditions, we performed an RSA. We cal-

culated a correlation matrix, showing the correlations between firing 

rates in response to number i and to number j, respectively, for all 

condition pairs, based on the z-scored tuning curves of all number 

neurons. We then determined the boundary that divided the data 

best into the categories of 8small9 and 8large9 numbers. For this, we 

defined eight potential boundaries (1|2, 2|3, …, 8|9). Due to obvious 

dissimilarity, zero was excluded from this categorization analysis. A 

boundary divided the correlation matrix into four squares. Correla-

tion coefficients in the upper-left (within small-number category) 

and lower-right squares (within large-number category) of the matrix 

were then iteratively compared with the coefficients in the remaining 

upper-right and lower-left (across-category) matrix squares for differ-

ent number boundaries. For each boundary, the difference between 

within-category and across-category elements was then quantified 

using a two-sided Mann–Whitney U test (α)=)0.01, Bonferroni-corrected 

for multiple comparisons of boundaries, n)=)8). Note that the main 

diagonal was excluded as it reflects the correlation of each stimulus 

with itself, and that the correlation matrix is symmetric. Thus, only 
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values from the upper triangular portion of the correlation matrix 

were considered. For each boundary, we assessed the P value of the 

statistical test, and the average difference between within-category and 

across-category elements to evaluate how well the boundary divided 

the data into two categories. Pairs of correlation coefficients are not 

statistically independent due to their bivariate nature, which might 

bias the results of the Mann–Whitney U test. To account for this, we 

performed an additional permutation test by randomly shuffling the 

within-category and across-category labels 10,000 times and compar-

ing the test statistics of the random data to the true ones, using again 

a two-sided Mann–Whitney U test71.

SVM classification
For each unit, data were divided into ten classes according to the 

numerical value of the sample stimulus (16 trials per class) and spike 

trains per trial were smoothed (Gaussian kernel with σ)=)150)ms) within 

the analysis window 2300 to 1,200)ms (fixation onset to 100)ms after 

delay offset). A default multi-class SVM classifier53 was then trained 

and tested on the instantaneous firing rates at every 20)ms step72. We 

applied Monte-Carlo cross-validation, that is, we created multiple splits 

of our dataset (nrepetitions)=)100) by randomly sampling 50% of the trials 

as training set, balancing conditions within each split. The remaining 

50% of the trials were used as test set. Thus, each training and test set 

comprised 80 trials. For each split, we standardized all firing rates by 

z-scoring (mean and standard deviation obtained from training data 

only), fitted the classifier to the training data, and assessed predictive 

accuracy by counting the instances for which a certain activity pattern 

of the test data was labelled correctly. The results were then averaged 

over all splits. To identify temporal clusters during which accuracy dif-

fered significantly from chance level (10% for ten classes), the analysis 

was repeated with randomly shuffled trial labels (nperm)=)100), and a clus-

ter permutation test63 was performed. In short, we identified temporal 

clusters of significant values by comparing the true accuracy values 

against the distribution of random ones (αclus)=)0.01). The significance 

of these 8candidate clusters9 was then evaluated by comparison with the 

clusters of the random data (Prank)<)1 %). Next, an SVM (with the same 

settings as above) was trained and tested on the firing rates obtained 

by averaging across the significant time window (60–1,200)ms). We 

assembled a confusion matrix, which counted the frequency at which 

a trial of a certain class was assigned different labels by the classifier.

Again, we analysed which boundary divided the data best into 

the categories of 8small9 versus 8large9 numbers. As before, we defined 

eight potential boundaries (1|2 to 8|9; excluding zero). Classification 

probabilities in the upper-left (within small-number category) and 

lower-right squares of the matrix (within large-number category) 

were iteratively compared with the classification probabilities in the 

remaining (across-category) matrix squares (lower left and upper right) 

for all number boundaries. The difference between both groups was 

then quantified using a non-parametric Mann–Whitney U test (α)=)0.01; 

Bonferroni-corrected for multiple comparisons of boundaries, n)=)8). 

Note that the main diagonal was excluded as it reflects correct classi-

fications, and that the confusion matrix is not symmetric (unlike the 

correlation matrix). For each boundary, we assessed the P value of the 

statistical test and the average difference between within-category and 

across-category elements to evaluate how well the boundary divided 

the data into two categories. The results of the Mann–Whitney U test 

were again verified using a permutation test.

Multi-dimensional state-space analysis
To analyse neural activity of a neuronal population, we defined an 

n-dimensional space, where each axis represents the instantaneous fir-

ing rate of a number-selective neuron. At any given time, the population 

activity is then characterized by a single point in this space, resulting 

in a neural trajectory as the activity evolves over time. In other words, 

we calculated the trajectories for the ten different numerosities in a 

121-dimensional space after averaging across conditions and smooth-

ing (Gaussian kernel with σ)=)150)ms) spike trains for each number 

neuron. A Gaussian-process factor analysis model was then applied73, 

and the resulting neural trajectories were orthonormalized to order 

the dimensions by the amount of data covariance they explain. For 

visualization, only the top three dimensions (in terms of covariance 

explained) were considered.

Next, the neural population state was calculated by averaging 

firing rates across the significant time window (60–1,200)ms) for all 

trials. The neural state space was then orthonormalized using principal 

component analysis. For visualization, only the top two dimensions 

were displayed. We then applied unsupervised k-means clustering to 

partition all trials (n)=)160) into two clusters33. In short, k-means clus-

tering iteratively partitions the data into k distinct non-overlapping 

clusters such that the distance between all elements of the cluster and 

every cluster9s centroid is minimized. We used the squared Euclidean 

distance as a distance metric, that is, centroids are the arithmetic mean 

of the elements in that cluster and repeated the algorithm 50 times with 

new randomly chosen initial cluster centroid positions.

We applied two criteria to evaluate the optimal number of 

clusters for our data. First, we calculated the CaliEski–Harabasz 

index31, also called VRC, which is defined as the ratio between overall 

between-cluster variance and overall within-cluster variance. Maximiz-

ing the VRC value with respect to k classes yields the optimal number 

of classes. As a second criterion, we calculated the gap value32. It for-

malizes the heuristic 8elbow method9, according to which the opti-

mal number of clusters can be found by locating the most dramatic 

decrease in error measurement (the 8elbow9 or 8gap9). Note that, unlike 

the CaliEski–Harabasz criterion, the gap criterion is also defined for 

clustering solutions containing only one cluster. For cross-validation, 

the k-means clustering analysis was repeated 50 times, using only 75% 

randomly selected trials per condition for each cross-validation run.

Reporting summary
Further information on research design is available in the Nature Port-

folio Reporting Summary linked to this article.

Data availability
The data associated with this study are publicly available at https:// 

github.com/EstherKutter/Distinct-Neuronal-Representation-Of- 

Small-And-Large-Numbers-In-The-Human-MTL.

Code availability
The custom code associated with this study is publicly available at  

https://github.com/EstherKutter/Distinct-Neuronal-Representation- 

Of-Small-And-Large-Numbers-In-The-Human-MTL.
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Supplementary Figure 1: Related to Figure 3. Representational similarity analysis for the 
entire population of MTL single units.  

a) Correlation coefficients of the z-scored firing rates across the entire population of units (n = 801) 
between pairs of numbers. Firing rates were more similar (higher correlations, corresponding 
to reddish colors) for numbers from the same number category (small or large, upper-left and 
lower-right square, respectively), compared to responses for numbers from different categories 
(lower-left and upper-right square). White lines depict significant number category boundaries 
(solid line is most significant), dividing correlations into small versus large number categories. 

b) Evaluation of the goodness-of-fit of different number boundaries. Orange values depict the 
differences of correlation coefficients when segregating small versus large number categories 
(excluding zero) at different boundaries. The corresponding p-values (two-sided Mann-Whitney 
U-test) for these coefficient differences are shown in blue. Boundary 3 versus 4 (asterisks) 
divides the data most significantly into two number categories. The blue dotted line indicates 
α = 0.01, Bonferroni-corrected for multiple comparisons (n = 8).  
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 Supplementary Figure 2: Related to Figure 4: Support vector machine (SVM) classification 
analysis for the entire population of MTL single units. 

a) Classification accuracy for decoding number information after training an SVM classifier on the 
instantaneous firing rates across the trial period for all neurons (n = 801). The dashed line 
represents chance level (10 % for ten classes). The black bar above the data indicates 
significance (p < 0.01, one-sided permutation test compared to SVM trained on shuffled data).   

b) Confusion matrix derived from training an SVM classifier on firing rates averaged across the 
significant time window in the sliding-window analysis in a (60–1200 ms). White lines depict the 
significant boundaries (highest significance for the solid, thick line) that divide the number range 
into small and large number categories.   

c) Evaluation of the goodness of different number boundaries. Orange values depict the difference 
in classification probabilities when segregating small versus large number categories at 
different boundaries (excluding zero). The corresponding p-values (two-sided Mann-Whitney 
U-test) for these probability differences are shown in blue. Boundary 4 versus 5 (asterisks) 
divides the data most significantly into two number categories. The blue dotted line indicates 
α = 0.01, Bonferroni-corrected for multiple comparisons (n = 8). 
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 Supplementary Figure 3: Related to Figure 5: Population state space analysis and k-means 

clustering for the entire population of MTL single units. 

a) Averaged state-space trajectories of all neurons for all number conditions, reduced to the three 

principal dimensions for visualization. Each trajectory depicts the temporal evolution in the time 

window -300–1200 ms (stimulus onset to 100 ms after delay offset). The state-space shows a 

gap between trajectories for numbers 0–4 versus 5–9. Circles indicate boundaries between 

task phases.   

b) Neural states, reduced to the two principal dimensions, after averaging firing rates per trial 

across the significant time window in the SVM classification analysis (60–1200 ms). Different 

colors correspond to different number conditions. Each dot represents one trial; squares and 

ellipses indicate condition mean and covariance ellipse per condition. The colors of the dot 

outlines (black for 0–4 or white for 5–9) indicate the class label assigned by the k-means 

classifier. The black and gray crosses show the centroids of each class.   

c) Evaluation of different numbers of clusters using the Caliński-Harabasz criterion (blue) and the 

gap criterion (orange). Data are presented as mean values, error bars denote STD of cross-

validations (n = 50). Asterisks indicate the optimal number of clusters. Note that, unlike the 

Caliński-Harabasz criterion, the gap criterion would also be defined for clustering solutions 

containing only one cluster.   

d) Proportion of trials per number condition that were labelled as belonging to class 8small 
numbers9 (black) or class 8large numbers9 (white). Data are presented as mean values, error 

bars denote STD of cross-validations. 
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