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Summary 
The diversity of T cell receptors (TCRs) is one of the backbones of an effective adaptive 

immune system. This diversity is generated by somatic rearrangements of gene 

segments in two separate peptide chains that dimerize to form a unique receptor that can 

specifically recognize antigens presented by major histocompatibility complexes (MHCs). 

The generative process of TCR repertoire formation is largely defined by stochastic 

events that can theoretically give rise to more than 1015 unique receptors. Strikingly, 

immune responses to common pathogens are frequently driven by identical or very similar 

TCRs. Consequently, there is significant non-random sharing of such “public” receptors 

between individuals. This has invoked the idea that genetically encoded factors contribute 

to the shaping of an individual’s TCR repertoire, but experimental validation of such 

factors has been lacking due to the technical challenge of capturing the sheer size of 

diverse TCR repertoires. 

Together with my colleagues, I have developed a single-cell and high-throughput TCR 

sequencing protocol capable of generating paired TCR sequencing data from millions of 

individual CD8+ T cells. To reveal the contribution of genetic factors in the generation of 

those TCRs, we generated TCR repertoires from 32 mice representing the reference lab 

mouse and three sister species, as well as F1 hybrids between them. Collectively, these 

mice span an evolutionary divergence time of approximately three million years and 

represent an exceptional model to study germline determinants of TCR repertoire 

formation, owing to their distinct genetic backgrounds. By conducting a comprehensive 

comparison of the variable, diversity and joining gene segments across the different 

species, we showed that despite notable evolutionary conservation at much of the loci, 

the TCR alpha variable gene segment locus has undergone a major locus expansion as 

indicated by the significantly different number of gene segments across all species. 

Following this observation, we were able to show that the usage frequencies of gene 

segments of TCRs varied significantly across species but were remarkably conserved in 

intra-species repertoires. Using F1 hybrids, we can demonstrate genetic control in usage 

for specific gene segments, because individual parental alleles retain differential usage 

frequencies despite a shared heterozygous genetic background. Further we have 
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evaluated the impact of thymic selection on the shaping of an individual’s repertoire. TCR 

repertoire diversity reduction caused by thymic selection is mostly defined by rejection of 

variable gene segments in TCR beta chains and occurs strictly through direct protein-

protein interaction with antigen-presenting major histocompatibility complex alleles. This 

has significant consequences for the sharing of identical and similar TCRs across several 

individuals. We showed that public paired TCR motifs are approximately four times more 

frequent than expected by chance but are still extremely rare compared to the sharing of 

identical single-chain motifs. Further, by comparing the frequencies of short amino acid 

motifs from the antigen-specific region of TCRs, we show that even in those regions, 

arising from seemingly random fusion of gene segments, abundances of particular amino 

acids motifs are remarkably dependent of the respective genotype of an individual. This 

work not only provides an approach to analyze TCR repertoires at unprecedented scale 

but also reveals a surprising extent of genetic contribution to the shaping of an individual’s 

TCR repertoire.   

 

 

 

 

 

 

 

 
 
 
 



  

 3 

Zusammenfassung  
Die Diversität der Rezeptoren von T Zellen (TCRs) stellt einen der wichtigsten Faktoren 

für das intakte adaptive Immunsystem dar. Diese Diversität wird in erster Linie durch die 

separate somatische Rekombination verschiedener Gensegmente in zwei Peptidketten 

generiert, die durch Dimerisierung einen einzigartigen Rezeptor bilden, der wiederum 

spezifisch die von Haupthistokompatibilitätskomplexen (MHCs) präsentierten Antigene 

erkennt. Der Prozess, durch den ein TCR-Repertoire generiert wird, ist größtenteils 

stochastischer Natur und kann potenziell bis zu 1015 verschiedene Rezeptoren 

hervorbringen. Erstaunlicherweise werden bei der individuellen Immunantwort gegen 

geläufige Pathogene häufig identische oder sehr ähnliche TCRs verwendet. Daraus 

ergibt sich die Annahme, dass solche „gebräuchlichen“ TCRs nicht auf rein zufälliger 

Basis generiert werden. Es ist deshalb die Hypothese entstanden, dass genetische 

Faktoren eine entscheidende Rolle in der Zusammensetzung eines TCR-Repertoires 

spielen. Aufgrund der schieren Größe von vollständigen TCR-Repertorien ist es bisher 

jedoch schwierig gewesen, diese Hypothese mit Hilfe von großen TCR-Datensätzen zu 

überprüfen. Zusammen mit meinen Kollegen habe ich ein Hochdurchsatz-Protokoll für 

die Analyse von mehreren Millionen einzelnen CD8+ T Zellen und deren gepaarten TCRs 

entwickelt. Um den Einfluss genetischer Faktoren in der Entstehung dieser TCRs zu 

analysieren, haben wir die Methode an 32 Mäusen angewandt, die vier verschiedenen 

Inzuchtlinien angehören, die ursprünglich aus wilden Populationen entnommen wurden. 

Unter diesen Mäusen befanden sich auch F1 Hybride aus Kreuzungen mit der häufig 

verwendeten C57BL/6 Labormauslinie. Diese Mäuse repräsentieren gemeinsam eine 

evolutionäre Divergenz von etwa drei Millionen Jahren und stellen somit, dank der 

einheitlichen genetischen Eigenschaften, ein hervorragendes Modellsystem dar, um die 

vererblichen Faktoren für die Generierung eines TCR-Repertoires zu analysieren. 

Zunächst haben wir die Gen-Loci der sogenannten variable, diversity und joining 

Gensegmente der verschiedenen Mausarten systematisch verglichen und konnten 

zeigen, dass während die Mehrheit dieser Loci konserviert sind, der Gen-Lokus der 

variablen Gensegmente des Alpha-TCRs von umfänglichen Genduplikationen betroffen 

ist. Dies hat vor allem die Konsequenz, dass sich die verschiedenen Mausarten durch 

eine sehr unterschiedliche Anzahl an variablen Gensegmenten des Alpha-TCRs 
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auszeichnen. In der Folge konnten wir zeigen, dass sich die Nutzungsfrequenz der 

verschiedenen Gensegmente zwischen den Mausarten stark unterscheidet, jedoch 

innerhalb einer Art wenig variiert. Mit Hilfe der F1 Hybride konnten wir feststellen, dass 

die Nutzung der Gensegmente einer genetischen Kontrolle unterliegt, da wir die 

parentalen Nutzungsmuster auch in dem entsprechenden heterozygoten genetischen 

Hintergrund der F1 hybride nachweisen konnten. Darüber hinaus haben wir den Einfluss 

der Selektion im Thymus auf das TCR-Repertoire analysiert. Wir haben gezeigt, dass 

sich eine selektionsbedingte Reduktion der TCR-Diversität vor allem durch den 

Ausschluss einzelner variabler Gensegmente des Beta-TCRs auszeichnet und dieser 

Ausschluss stark vom MHC-Typ eines Individuums abhängt. Diese Beobachtung hat 

auch wichtige Auswirkungen in Bezug auf die Wahrscheinlichkeit einen identischen TCR 

in zwei Individuen vorzufinden. Wir konnten nachweisen, dass diese Wahrscheinlichkeit 

etwa viermal höher ist als durch Zufall erwartet, was allerdings noch immer sehr viel 

seltener ist als das wiederholte Auffinden einer einzelnen Alpha- oder Beta-Kette in zwei 

Individuen. Darüber hinaus haben wir die Häufigkeit von Aminosäuremotiven aus der 

antigenspezifischen Region von TCRs in den verschiedenen Mausarten verglichen. 

Obwohl diese Motive hauptsächlich durch stochastische Prozesse entstehen konnten wir 

nachweisen, dass ihre Häufigkeit in bemerkenswerter Weise vom Genotyp eines 

Individuums abhängen. Diese Arbeit präsentiert nicht nur ein Verfahren, mit dem sich das 

TCR-Repertoire in nie dagewesener Tiefe analysieren lässt, sondern zeigt auch, wie sehr 

sich genetische Faktoren auf die Zusammensetzung eines TCR-Repertoires auswirken. 
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Introduction 
Selective pressure caused by the evolutionary arms race between host and infectious 

organisms has led to the development of various defense mechanisms across all 

multicellular organisms. Taking a broad view, these protective mechanisms, commonly 

referred to as an individual’s immune system, can be divided into innate and adaptive 

responses. Both types of responses are necessary to distinguish self from non-self to 

repel pathogenic challenges while preserving self-tolerance. Typically, this is 

accomplished through receptor-ligand interactions, whereby extracellular stimuli are 

transmitted into the cell to trigger an immune response. In the case of the more 

evolutionarily ancient innate immune system, receptor specificity is germline-encoded 

and has often evolved to target invariant molecular structures of pathogens, for instance 

lipopolysaccharide (LPS), a major component of the outer membrane of all gram-negative 

bacteria. One of the main types of these pattern recognition receptors (PRRs) is known 

as toll-like receptors and was first discovered in Tübingen in 1985 [1]. Critically, the innate 

immune system is limited to a set of common, recognizable pathogenic molecular 

patterns, whose diversity may seem far too low in the face of vast number of pathogens 

present in an individual’s environment. In addition, pathogens have evolved a diverse 

repertoire of counterstrategies to impair PRR-mediated signaling in the innate immune 

system (reviewed in [2]). Collectively, this has favored the evolution of a secondary 

defense strategy – the adaptive immune system. 

An adaptive immune system can be found in all vertebrates including agnathans and it is 

therefore believed to have evolved roughly 500 million years ago [3, 4]. One of its key 

features is the presence of a dichotomic cell lineage known as lymphocytes, which consist 

of B and T cells that were first described in 1965 [5]. B and T cells both express diverse 

repertoires of adaptive immune receptors that collectively can recognize a remarkably 

large number of antigens. Despite the distinct roles of B and T cells in adaptive immunity, 

the generative process of their adaptive immune receptors is very similar. Here, I will 

elaborate specifically on the generation, selection and function of T cell receptors (TCRs) 

and provide an overview of past and present TCR repertoire analysis approaches. 



Introduction 

 6 

Structure and Function of TCRs 
T cells constantly patrol the body and scan their surroundings for pathogenic infections 

or aberrant cells. Recognition of these threats is facilitated by a surface bound 

heterodimeric receptor – the T cell receptor. Its discovery dates back to the early 1980’s 

and TCRs have been subject of extensive research ever since [6, 7]. I will focus my 

discussion on the primary class of TCRs consisting of a TCRα and TCRβ chain expressed 

by approximately 95% of T cells (the rest being a second class of TCRs consisting of γ/δ-

heterodimers). Depending on the mutually exclusive expression of the co-receptor CD4 

or CD8 in the different sub-classes of T cells [8, 9], TCR recognize short peptides 

presented by major histocompatibility complexes (MHC) class I or II. The requirement for 

those short peptides (hereafter called antigens) to be presented by MHC molecules is 

referred to as MHC-restriction and depicts one of the main functional differences between 

TCRs and B cell surface receptors (BCRs) as well as their soluble form - the antibodies 

[10]. TCRs on the surface of CD8+ T cells recognize antigens presented by MHC class I 

molecules that are present on all nucleated cells. Typically, these antigens consist of 8-

10 amino acid residues [11, 12] and are generated by proteasomal degradation of 

intracellular proteins. Critically, it has been shown that MHC class I molecules can also 

be loaded with peptides derived from extracellular proteins in a process called cross-

priming, which is pivotal for the defense against tumors and viruses [13]. Activation of 

CD8+ T cells by recognition of a foreign antigen results in the release of two cytotoxic 

molecules: granzyme B and perforin, which in turn trigger apoptosis in the recognized 

infected or aberrant target cell [14]. In contrast to this, TCRs on CD4+ T cells recognize 

antigens presented by MHC class II complexes that are expressed on antigen presenting 

cells (APCs, such as B cells and dendritic cells). These antigens are slightly longer 

peptides (approximately 13-25 amino acids [15]) and critically, emerge from degradation 

of endocytosed extracellular proteins. Activated CD4+ T cells secrete various cytokines 

which in turn can activate cells of the innate immune system and fine-tune ongoing 

immune responses (reviewed here [16]). The collective set of antigens presented by both 

MHCs is referred to as the immunopeptidome and largely depends on the MHC haplotype 

of an individual. In humans, the human-leukocyte antigen (HLA, human MHC) locus is 

considered to be the most diverse region in the entire genome with several tens of 
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thousands of identified haplotypes [17-19]. Genetic MHC variation has been shown to 

directly shape the TCR repertoire [20, 21]. This phenomenon is believed to be primarily 

driven by the distinct affinity characteristics exhibited by a given TCR and the MHC 

molecules specific to the underlying MHC haplotype, a topic that will be further addressed 

in subsequent sections. The focal contact regions of a TCR to the MHC complex are three 

complementarity determining regions (CDR1-CDR3). CDR1 and CDR2 are germline-

encoded short sequences and polymorphisms in these regions have been shown to 

modify the TCRs affinity to MHC complexes [22, 23]. This led to the conclusion that CDR1 

and CDR2 are most critical for MHC-TCR contact maintenance rather than antigen 

recognition. CDR3 is the most diverse sequence and unique to every T cell because it 

consists of the junctional regions resulting from the somatic recombination of gene 

segments (described below). Crystal structures of TCR-MHC complexes have shown that 

the residues within the CDR3 region are in closest proximity to the MHC bound antigen 

[24-26]. Because of its immense diversity across TCRs and the close proximity to the 

antigen in TCR-MHC complexes, CDR3 sequences are therefore believed to primarily 

define the antigen specificity of the underlying TCR. 

The origin of MHC restriction in TCR antigen recognition remains an intensely debated 

topic with two opposing principal models. The germline model states that the ability of 

TCRs to bind to MHCs is germline-encoded and the amino acid residues that mediate 

this interaction (e.g., in CDR1 and CDR2) are conserved and have co-evolved between 

TCRs and MHCs [27]. This hypothesis is supported by multiple lines of evidence. For 

instance, the topology of many published TCR-MHC structures exhibits remarkable 

conservation [28, 29] and there is evidence for particular germline-encoded amino acid 

residues of TCRs that mediate MHC contact [30]. On the other hand, it has been 

demonstrated that both the identity of the antigen [31] as well as the identity of the CDR3 

sequence [32] can significantly alter the contact sites at which the TCR engages the MHC. 

Further, examples of autoreactive TCR that recognize self-peptide MHC complexes were 

shown to utilize uncommon MHC contact sites [33]. An important finding that conflicts with 

the germline hypothesis was that T cells that lack the germline-encoded CDR1 and CDR2 

sequences maintain full functionality, including the engagement of MHCs [34].  
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The second alternative model to explain MHC restriction of TCRs is the co-receptor 

hypothesis. It has been shown that the lineage marker co-receptors CD4 and CD8 also 

bind the MHC-TCR complex with the main task of recruiting the receptor tyrosine kinase 

Lck [35]. TCRs also form complexes with CD3 molecules, which play a crucial role in 

transmitting TCR signaling in the cytosolic portion of the complex through phosphorylation 

cascades [36]. The full assembly of these complexes leads to a phosphorylation cascade 

that is required to initiate an immune response. The co-receptor hypothesis therefore 

states that the orchestration of signaling at the immunological synapse, which 

necessitates MHC engagement by CD4 or CD8, imposes MHC restriction on the TCR. In 

support of this hypothesis, it was shown that mice lacking both CD4/CD8 and MHC-

I/MHC-II can still generate functional TCRs that can recognize specific epitopes [37]. 

However, the diversity of epitopes of such MHC-independent TCRs has yet to be shown 

to resemble the diversity observed in general pre-selection TCR repertoires. In summary, 

neither hypothesis has been convincingly rejected nor definitively proven to be correct 

thus far.    

 

Generation of a diverse TCR repertoire 
In 1957, Frank Macfarlane Burnet published a paper that introduced the clonal selection 

theory as possible explanation for the flexibility and diversity within the adaptive immune 

system [38]. In the following 20 years, evidence started to accumulate that the key to 

generation of diversity in TCRs (and B cell receptors) is their generation by somatic 

rearrangements of multiple gene segments [39]. The underlying mechanisms, known as 

V(D)J recombination was first described in 1976 [40] and explained the long-standing 

question of how millions of unique antigen receptors could be generated from a set of 

roughly 20,000 genes in human. The term V(D)J recombination relates to the underlying 

gene segments that are recombined to generate the heterodimeric α- and β-chains (or γ- 

and δ-chains) of the mature TCR. These segments consist of variable (V), diversity (D, 

exclusive to β-chains) and joining (J) gene segment distributed across hundreds of kb in 

the genomes of mice (chromosome 6 and 14) and human (chromosome 7 and 14) [41] 

(see Fig. 1). Comparative genomics of TCR loci across various vertebrate species has 
unveiled significant differences in the absolute numbers of individual gene segment [42-
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44] (elaborated later). Furthermore, many of the identified gene segments exhibit 

substantial sequence identity ranging from 70-100%, which provides evidence for their 

generation by means of gene duplication events.  

Somatic rearrangement of individual gene segments requires the precise execution of an 

ordered series of DNA double-strand breaks and subsequent DNA repair mechanisms. 

This intricate process is mediated by an enzymatic complex of two DNA recombinases, 

known as recombination activating genes-1 and -2 (Rag-1 and Rag-2) [45]. The absence 

of one of these two genes has been demonstrated to completely impair V(D)J 

recombination, leading to the arrests of T and B cell development in mice [46, 47]. 

Considering that millions of T cells perform V(D)J recombination on a daily basis and that 

it involves introducing double-strand breaks to DNA, expression of Rag1 and Rag2 needs 

to be extremely tightly regulated and highly cell- and developmental timing-specific. 

Otherwise, it can lead to highly deleterious outcomes. Indeed, it has been demonstrated 

that ubiquitous Rag1/2 expression causes severe phenotypes in mice [48]. Sequence 

analysis of Rag proteins indicates that they originate from transposons but have almost 

completely lost their transposase activity in favor of acquiring the function of a 

recombinase [49]. The Rag1/Rag2 complex (referred to as Rag-complex from now on) 

specifically targets recombination signal sequences (RSS) that are located between every 

V(D)J gene segment [50]. RSSs consist of a conserved heptamer sequence, a spacer 

sequence with a conserved length of either 12 or 23 base pairs and a conserved nonamer 

sequence. Initially, the Rag complex binds either a 12- or 23-RSS and subsequently has 

a strong preference to bind and cleave a second RSS with the respective alternative 

spacer length [51]. This specific preference of spacer length combinations is known as 

the 12/23 rule and ensures that recombination only occurs between segments of different 

spacer lengths. Accordingly, V and J gene-segments are flanked by RSSs with spacers 

of identical length with additional mechanisms in place to ensure integration of a D 

segment in TCRβ-chains [52]. Consequently, implementation of the 12/23 rule ensures 

that V(D)J recombination results in the fusion of a single V to (D) to J segment. The 

sequence identity of the RSS has been shown to impact the recombination efficiency, 

possibly through modulating the Rag-complex binding strength and thereby alter the 

usage frequencies of particular V(D)J segments [53].  
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Double-strand breaks introduced by the Rag-complex have been shown to be repaired 

by non-homologous end joining (NHEJ) [54]. Importantly, NHEJ is highly mutagenic, in 

that the ligation of accessible DNA coding ends is imprecise, leading to non-template 

insertions mediated by terminal deoxynucleotidyl transferase (TdT) [55]. Nucleotides at 

these junctional DNA overhangs can also be removed prior to final segment ligation, a 

process that is not yet fully understood. Enzymes possessing endonuclease activity (e.g., 

Artemis) and are involved in double-strand break repair have been shown to be involved 

in nucleotide deletion at the Rag recombination sites [56]. In addition to the combinatorial 

recombination of gene segments, stochastic nucleotide insertions and deletions serve as 

the primary source of TCR diversity. However, because of a lack of control over the 

number of insertions and deletions at each junction site, they pose a high risk of 

introducing frame shifts in the resulting TCR transcript. In theory, only 1/3 of TCRs should 

remain in-frame following the deletion or addition of nucleotides. In practice, out-of-frame 

TCRs are frequently observed in TCR datasets however, the reported frequencies vary 

considerably [57]. A potential reason for this variation is the effective degradation of these 

non-functional TCRs by nonsense-mediated decay, making their detection dependent on 

the type of method and its sensitivity [58]. Regardless of their precise frequency, out-of-

frame TCRs are often seen as “passengers” within T cells that ultimately rearranged a 

functional TCR from their other allele. As such, they do not undergo any TCR specificity-

driven selection and can therefore be used to compare V(D)J diversity pre and post thymic 

selection [59, 60]. 

V(D)J recombination at the TCRα and TCRβ locus occurs in a sequential, stepwise 

fashion, with TCRβ recombination occurring first. Within each individual locus, chromatin 

modifications have been shown to specifically modulate the accessibility of RSS 

sequences and thereby control the order of recombination of V, D and J segments [61, 

62]. It is currently believed that cis-acting promoters are guiding the recruitment of 

chromatin remodelers to remove nucleosomes from RSS sequences, which in turn makes 

them accessible for the Rag-complex [63]. One of such enhancers is the Eβ enhancer 

that has been shown to modulate chromatin accessibility specifically in the cluster of D- 

and J-segments [61, 64]. Consequently, in the TCRβ locus D-to-J joining precedes V-to-

DJ joining [65]. Despite the presence of two TCRβ alleles in the genome, each individual 
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T cell expresses just one cell-specific TCR. Accordingly, rearrangements and subsequent 

expression needs to be repressed on one of the two alleles, a process known as allelic 

exclusion. Once an in-frame TCRβ chains has been successfully rearranged from one 

allele, feedback inhibition inhibits further rearrangements on the respective other allele. 

The nuclear localization of alleles has been demonstrated to be of critical importance for 

mono-allelic initiation of V(D)J recombination [66]. Despite this inhibition by spatial 

localization it was also shown that TCRβ-rearrangements occur in an asynchronous 

fashion on both alleles [65]. Collectively, several mechanisms are in place to ensure 

precisely timed rearrangements and allelic exclusion in the TCRβ locus some of which 

remain to be further characterized. 

In contrast to that, rearrangements within the TCRα locus happen simultaneously on both 

alleles in a continuous fashion without strictly enforced allelic exclusion [67]. Continuous 

rearrangements of the locus lead to biases of V-J gene usage based on their respective 

location with initial recombination events preferentially incorporating 3’ Vα segments and 

5’ Jα segments [68]. Different promotors are involved in the initial and late recombination 

events that have been shown to have a distinct target range of Jα and Vα segments [69, 

70]. Collectively, this less tightly regulated V(D)J recombination enables multiple testing 

of TCRα chains in combination with the previously fixed mono-allelic expressed TCRβ 

chain during thymic selection of the assembled paired TCR [71, 72]. A relevant side-effect 

of the continuous rearrangement of both TCRα is the increased frequency of T cells that 

express two in-frame α-chains [73] with severe implications for autoimmune reactions [74, 

75]. Mice with transgenic fluorescent-TCRα reporters were used to show that 

approximately 16% of T cells express two functional TCRα chains [76].  

Apart from a potent recombination machinery, somatically rearranged immune receptors 

depend on the presence of numerous gene segments, that are combinatorically fused to 

encode a unique receptor. The number of available gene segments for V(D)J 

recombination has been shown to vary immensely across different species [43, 87]. The 

individual gene segments have been multiplied by varying extents of gene duplication. 

For instance, comparative genomics of Vα and Vβ gene segments has provided evidence 

that all current V gene segments originate from five ancestral Vα and four ancestral Vβ 

genes [87]. The expansions (and contractions) of the V(D)J gene segment loci are 
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consistent with the postulated hypothesis of birth-and-death of multigene families [88]. It 

is derived from the observation that intra-individual gene segment sequence identity is 

not necessarily larger than inter-species gene segment sequence identity. For example, 

the homology of TCR V gene families between mice and humans has been shown to be 

larger than the sequence identity across families within both species [89]. In the murine 

TCR Vα cluster, a relatively recent major duplication of roughly two-thirds of all gene 

segments has been described [41]. Little is known about the effects of those major 

rearrangements on TCR repertoire diversity. In chapters 1 and 2 of this thesis, we 

performed a detailed analysis of the TCR locus structure of wild-derived inbred mouse 

species (introduced later) as well as the associated diversity variance in their TCR 

repertoires. 

 

 
Figure 1: Schematic of V(D)J recombination. The TCRβ locus (top) contains one cluster of V gene 
segments and two clusters of J gene segments, each with a respective D gene segment and a constant 
region. TCRβ rearrangement is initiated by D-J joining, guided by the Rag-complex through recognizing a 
23-RSS motif at the 3’ end of a D segment and a 12-RSS motif at the 5’ end of a J segment. Subsequently, 
the DJ-sequence is joined to a V gene segment containing a 23-RSS motif at the 3’ end. The TCRα locus 
(bottom) only contains a cluster of V gene segments and a cluster of J gene segments alongside a constant 
region. In contrast to the TCRβ locus, the V and J segments of the TCRα locus can continuously rearrange 
until an in-frame TCR chain is generated.  
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Selection of developing T cells in the thymus 
TCRs must meet two fundamental requirements for the maintenance of their specific 

functions elaborated above. Firstly, their antigen recognition ability needs to be strictly 

limited to “foreign” antigens to prevent immune reactions directed against the host’s 

healthy tissue. Secondly, TCRs need to be able to recognize and bind to MHC complexes 

[90] due to their MHC-restricted nature of antigen recognition. Failure in one of these 

abilities can result in autoimmunity in the former case or immunodeficiency in the latter. 

The TCR of each developing T cell is tested for these requirements during the maturation 

period in the thymus. A two-step process of positive and negative selection ensures that 

TCRs of mature T cells exhibit very defined antigen binding characteristics (see Fig. 2). 
In the murine thymus a remarkably high number of up to 50 million developing T cells 

undergo these selection steps on a daily basis and about 95% do not survive the process 

[91]. In humans the rates of cells undergoing thymic selection varies significantly across 

an individual’s lifespan exhibiting a gradual decline with age [92, 93]. Decreased rates of 

T cell selection are accompanied by degeneration of the thymus known as thymic 

involution, which is believed to be one of the main causes of increased disease 

susceptibility with age [94]. In aged human individuals, T cell homeostasis is primarily 

maintained by proliferation of peripheral T cells rather than thymic output [95]. In contrast 

to that murine thymuses sustain a life-long production of new naïve T cells [96]. The 

thymic output of T cells can directly be measured by quantifying T cell receptor excision 

circles (TRECs). These short circular DNA sequences are byproducts of V(D)J 

recombination arising from the excision of DNA sequences in-between gene segments. 

Because of their high stability but incapability to multiply they are diluted in proliferating 

peripheral T cells. Consequently, high levels of TRECs are used to classify T cells as 

recent thymic emigrants [97, 98].     

After migrating to the thymus, T cells undergo a characteristic developmental program by 

migrating through different areas within the organ. A marker associated with the earliest 

stages of intra-thymic T cell development and restriction of multipotent progenitors to the 

T cell lineage is the expression of Notch1 [99]. All subsequent maturation stages are 

typically classified by the expression of the linage markers CD4 and CD8. Initially T cells 

do not express any of the two markers (double negative, DN1-DN4 stages), then become 
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double positive (DP) before eventually showing mutually exclusive expression of one of 

the two markers (CD8 single positive or CD4 single positive) [100, 101]. TCRβ 

rearrangements are initiated at the DN3 stage of T cell development and the successful 

rearrangement of a TCRβ chain is required for progression beyond the β-selection 

checkpoint. This was initially shown by the reversal of developmental arrests in Rag-

deficient mice upon expression of a transgenic rearranged TCRβ chain [102]. Passing of 

the β-selection checkpoint inhibits secondary rearrangements of the TCRβ locus, initiates 

expression of CD4 and CD8 and promotes rearrangements in the TCRα locus [103]. The 

rearranged TCRβ initially assembles in a pre-TCR complex with a pre-TCRα-chain and 

CD3 molecules [104]. This pre-complex is thought to prevent premature degradation of 

the TCRβ chain prior to the complete assembly of the full TCR. Eventually, the pre-TCRα-

chain is replaced by a fully rearranged TCRα-chain and the fully assembled TCR can 

subsequently be subject to positive selection. Positive selection is orchestrated by cortical 

epithelial cells (cTECs) that load their MHC-I complexes using peptides generated by a 

proteasome that has a unique β5t subunit [105]. Similarly, MHC-II complexes are loaded 

with peptides that are also produced by a thymus specific protease (cathepsin L and 

TSSP) [106, 107]. Consequently, the peptidome utilized for positive selection by cTECs 

consists of a unique set of peptides that differs from those presented on extra-thymal 

MHCs. Mounting evidence now suggests that the mTEC specific presented peptidome 

consists of less hydrophobic peptides which in turn might lead to reduced TCR-MHC 

binding strength during positive selection [108]. Additionally, utilizing a unique peptidome 

in this initial selection step ensures that a selected TCR does not encounter identical 

peptides in subsequent selection steps. In a period of three to four days assembled TCRs 

can audition several times to be positively selected for their ability to sufficiently bind 

MHCs. Within this timeframe, TCRβ chains can be paired with multiple different TCRα-

chains resulting from the continuous rearrangement of the locus. In this initial testing 

phase premature apoptosis is prevented by the gene Bclx [109]. Afterwards incapability 

to recognize MHCs results in a process called “death by neglect”. The small fraction of T 

cells that show appropriate self-MHC affinity, progress to migrate to the medulla. This 

relocation is mediated by chemotaxis with T cells initiating Ccr7 expression while 

medullary thymic epithelial cells (mTECs) express the corresponding ligands Ccl19 and 
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Ccl21 [110]. It has been estimated that approximately 5x105 T cells undergo negative 

selection in the murine thymus each day [111]. mTECs express a remarkably broad range 

of otherwise tissue specific antigens that seem to be unnecessary for mTEC functionality 

[112]. The expression of such tissue specific antigens is mediated by the transcriptional 

regulator Aire which was originally discovered as a gene involved in a severe autoimmune 

phenotype [113]. Aire binds to repressive elements, removes the repressive marks and 

thereby allows the expression of the underlying genes. Interestingly mTECs “hand-over” 

their antigens to APCs such as dendritic cells, which are then crucially involved in the 

negative selection process [114-116]. TCRs that violate tolerance to self-antigens 

undergo apoptosis initiated by the pro-apoptotic gene Bim that can overwrite the survival 

signals provided by Bclx [117]. The few T cells that ultimately survive both, positive and 

negative selection then finally undergo metabolic changes leading to the ability of rapid 

clonal expansion instead of induction of apoptosis after strong antigen engagement in the 

periphery [118]. Collectively, the outlined mechanisms ensure that the TCR repertoire 

consists of a diverse set of TCRs that will exclusively initiate immune responses following 

the detection of foreign antigens.   
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Figure 2: Schematic representation of T cell maturation and thymic selection. Lymphoid progenitors 
migrate to the thymic cortex and initially progress through four double negative (DN) stages. At the transition 
from DN2 to DN3 the successful rearrangement of a functional TCRβ chain is evaluated. Subsequently, 
expression of CD4 and CD8 is initiated (double positive, DP stage) and the assembled TCR is tested for its 
ability to bind to self-MHCs on the surface of cortical thymic epithelial cells (cTCEs) during positive selection. 
T cells that show no adequate MHC affinity undergo apoptosis. Afterwards, T cells commit to either the 
CD4 or CD8 lineage and become single positive (SP) for these markers. Selected T cells migrate to the 
Medulla, where they are engaged by medullary thymic epithelial cells (mTECs) that express a different set 
of self-MHCs on their surface. T cells that show strong affinity to self-MHCs undergo apoptosis. 
Alternatively, self-tolerant T cells finish the maturation process and are released from the thymus.  

 

Size estimates of TCR repertoires 
TCR diversity is mainly established through three different mechanisms during T cell 

maturation: 1) the somatic rearrangement of a diverse set of gene segments during V(D)J 

recombination 2) the imprecise joining of gene segments with nucleotide deletions and 

insertions at the segment junction sites and 3) the pairing of two unique somatically 

rearranged TCR chains. Usually, repertoire diversity is evaluated by analyzing the number 

of unique CDR3 motifs in a TCR repertoire. Estimates on the potential diversity, often 

referred to as the theoretical repertoire size, that can be generated through the above 

mechanisms vary substantially, ranging from 1015 [119] to 1061 [120]. The variance in 

these estimates depends largely on the number of nucleotide insertions and deletions 

that the underlying mathematical model accounts for. More recent estimates showed that 

Medulla

Cortex

DN1

DN2

DN3

DN4

DP

SP

CD4+/CD8+
T cell

Lymphoid
progenitor

Mature
T cell

No MHC
recognition

No Self-
tolerance

Apoptosis

Apoptosis

mTEC

cTECTCRβ 
checkpoint Positive 

Selection

Negative 
Selection

Th
ym
us



Introduction 

 17 

in humans, the CDR3β motifs alone exhibit a potential diversity of 1014 and the number 

of inserted nucleotides at the junction regions can be substantially higher than six as 

assumed by previous models [121]. Diversity calculations are further complicated by the 

fact that each unique CDR3 motif can potentially be generated through multiple different 

recombination events. These convergent recombination events are thought to be one of 

the main reasons for the emergence of public TCRs that are shared across different 

individuals at high frequency [122].  

In any case the theoretical repertoire size is several orders of magnitude larger than the 

total number of T cells present in mice (2x108 [123]) and humans (1x1012 [124]). For this 

reason, the realized repertoire represents a small fraction of the theoretical repertoire, 

especially in young individuals in which thymic output still provides a constant supply of 

new naïve T cells. In humans, the realized repertoire was estimated to consist of 1x106 

unique TCRβ chains that each pair with an average of 25 TCRα chains [124]. 

Consequently, the lower bound estimate for total diversity in the realized naïve human 

repertoire is 2.5x107 unique TCRs. Interestingly, a PCR cDNA amplification-based 

assessment of the realized diversity in murine naïve TCR repertoires has provided 

evidence that despite the very different numbers of total T cells, TCR repertoire diversity 

is remarkably similar in mice and humans. According to a study published by Casrouge 

et al. [125] the αβ-TCR diversity in mice is approximately 2x106. A possible explanation 

for this phenomenon was already postulated in 1987 by the definition of a functional unit 

termed the protecton [126]. The basic idea behind this concept is that there is a minimal 

repertoire size required for effective defense against the broad range of pathogenic 

threats and this minimal repertoire size can be defined as a unit that exists at different 

copy numbers and scales with the body size of an individual. More recent mathematical 

modeling of the required repertoire size for effective protection against a wide range of 

pathogens indeed provides evidence that the minimal diversity does not need to be much 

larger than initially hypothesized in the context of the protecton [127]. The same study 

also provides several potential explanations for the existence of a massive theoretical 

repertoire in the context of a relatively small protecton. Firstly, only about 5% of generated 

TCRs are selected during thymic selection [91] which significantly reduces the size of the 

realized repertoire. Secondly, TCRs are MHC-restricted and therefore must recognized 



Introduction 

 18 

antigens presented by MHCs generated from thousands of different MHC alleles across 

populations.    

A critical limitation of all the above size estimates of TCR diversity is their lack of 

information on the pairing dynamics of TCRα and TCRβ chains. Total diversity is 

commonly extrapolated based on bulk sequencing of single chains. The combination of 

limited throughput and/or immense costs per experiment makes the single-cell evaluation 

of entire repertoires unfeasible. The development of CITR-seq as a new method for high-

throughput single-cell TCR sequencing as part of this PhD project can overcome many of 

the above limitations and significantly improve our ability to estimate TCR repertoire 

diversity.  

 

Methods for TCR sequencing library preparation 
In the past decades, a broad range of techniques have been developed for quantitative 

and qualitative TCR diversity analysis. Pioneering studies from the pre-high-throughput 

sequencing era utilized antibodies targeting specific TCR variants in combination with 

flow cytometry to gain first quantitative insights into TCR diversity [128]. PCA-based 

amplification of the CDR3 region of TCRs was applied in a technique called CDR3 

spectratyping, in which the amplified DNA fragment-lengths were compared to quantify 

the frequency of TCR variants [129]. The development of (high-throughput) DNA 

sequencing provided access to evaluations of TCR diversity at the nucleotide level. Here, 

I will now focus on the different methods for preparation of TCR sequencing libraries. 

The first decision to make when choosing a library preparation approach is whether to 

use DNA or RNA as input material. DNA is generally less sensitive to degradation and 

can be extracted from low-quality, ancient or formalin-fixed samples. However, due to the 

presence of intronic sequences, DNA fragments covering large portions of the V(D)J gene 

segment region are significantly longer than in RNA-based approaches and require 

additional DNA fragmentation to be suitable for short-read sequencing. The most limiting 

factor of DNA-based approaches is the presence of only two copies of the targeted TCRα 

and TCRβ loci. In contrast to that, mRNA transcripts exist at very high copy numbers for 

both TCR chains in each T cell [130]. Consequently, reverse transcription primers used 

for cDNA generation from TCR mRNA have significantly more targets, yet this also 
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complicates the quantification of TCR variants since each TCR can be expressed at 

different levels across T cells. Individual mRNA transcripts can be identified by the use of 

UMIs which enable the quantification of captured transcripts per unique TCR and can 

therefore be used to normalize for expression differences [131]. Especially in large 

datasets, in which the chance of capturing highly similar TCRs on both the V(D)J gene 

segment or CDR3 sequence level, UMIs can be used to distinguish PCR or sequencing 

errors from low-frequency TCR variants. Further, quantifying TCRs on the transcript level 

rather than the sequencing read level is more precise since it is less affected by biases 

introduced through variance in amplification efficiency of particular TCR variants [132]. 

Regardless of the choice of input material, TCR cDNA or gDNA needs to be amplified to 

generate sequencing libraries. A common strategy for this amplification is multiplexed 

PCR using forwards primers that are complementary to Vα and/or Vβ gene segments and 

reverse primers that target Jα/Jβ gene segment sequences (for gDNA-based approaches 

[133, 134]) or the TCRs constant region (for cDNA-based approaches [135, 136]). The 

design of primers that target those specific TCR regions requires previous knowledge of 

the underlying DNA or RNA sequence, which might not always be available especially in 

the case of non-model organisms. During multiplexed PCR, each individual primer can 

exhibit very different amplification efficiencies, even for primers with matched annealing 

temperatures. Extensive optimizations are required to adjust the individual primer 

concentrations in the final primer pool to compensate for those amplification efficiency 

biases [137]. To some extent, these biases can be addressed by grouping sequencing 

reads at the transcript level through the usage of UMIs, as described above [138]. A critical 

limitation of multiplexed PCR is that the usage of a distinct primer pools prevents de novo 

identification of unannotated TCR gene segments. This is not the case for approaches 

that are based on rapid amplification of 5’ complementary ends (5’ RACE) [139]. These 

RNA-based methods can be used to recover full-length TCR transcripts without previous 

knowledge of any TCR sequences [140, 141]. They build on template-switching which is 

facilitated by the addition of non-template nucleotides (cytosine in most cases) by 

Moloney murine leukemia virus (MMLV) reverse transcriptases [142]. After completing 

reverse transcription of mRNA, a template-switch DNA oligo can anneal to these non-

template cytosines and the MMLV reverse transcriptase can use the oligo as new 
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template (by switching templates) to further extend 5’ cDNA ends. This introduces a 

common sequence to all cDNA 5’ ends that can be used as primer annealing site for 

subsequent cDNA amplification. The efficiency of template-switching reactions is 

generally low and depends on the precisely fine-tuned reverse transcription conditions 

with some inherent biases [143]. Collectively, the choice of multiplexed PCR or 5’ RACE 

based methods depends on the specific type and quality of input material, as well as the 

required throughput and sensitivity for the data analysis [144].            

All the above strategies can be modified to be used in single-cell TCR sequencing 

protocols. As highlighted before, single-cell sequencing of TCRs is necessary to pair 

TCRα and TCRβ chains expressed in the same original T cell. Since both TCR chains 

collectively define the antigen specificity of a given T cell, paired αβ-TCR information is 

crucial to identify target antigens of TCRs. It has been shown that different computational 

methods that aim to predict the target antigens of TCRs, perform significantly better when 

supplied with paired TCR data [145]. A common requirement for all single-cell TCR 

sequencing methods is the assignment of unique molecular barcodes to all TCR 

sequences originated from the same cell. This becomes increasingly more difficult with 

scaling numbers of T cells in an experiment. Thus, in comparison to bulk sequencing 

approaches, most single-cell methods are limited to 103 – 104 T cells in each experiment 

(reviewed here [146]). Early single-cell TCR sequencing methods separated individual 

T cells in multi-well plates using fluorescence-activated cell sorting (FACS) [147]. The 

physical separation of T cells into different wells effectively prevents cross-contamination 

leading to high confidence of αβ-TCR pairing but is very inefficient for high-throughput 

analysis and cost-intensive because all molecular reactions must be performed in 

hundreds of individual reactions. A major improvement of throughput was gained through 

the development of microfluidic systems for compartmentalized amplification reactions 

[148]. Turchaninova et al. modified this approach to first encapsulate single  

T cells in aqueous droplets in an oil emulsion and subsequently perform reverse 

transcription with barcoded primers within each droplet [149]. This way, all transcripts of 

a single cell captured in each droplet received a unique barcode that was used to pair 

TCRα and TCRβ chains. A common limitation of all microfluidic methods is the 

requirement for specialized instruments that perform the delicate cell encapsulation 
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process which is critical to the success of an experiment. Commercialized versions of 

microfluidic systems are now available and have become the dominant method of choice 

for most single-cell applications in present day studies (transcriptomic assays, 

epigenomic assays and TCR sequencing). Companies like 10x Genomics have 

developed straight-forward simple protocols for these “omics” applications, including TCR 

sequencing, that made them accessible to a broad range of laboratories, however they 

often come at immense cost. Commercial microfluidic devices and library preparation kits 

cost tens of thousands of dollars and therefore can quickly become unfeasible for many 

laboratories, despite the theoretical option of generating sequencing libraries for >105 

cells. 

The most recent expansion of throughput for single-cell applications is based on 

strategies involving molecular barcoding by combinatorial indexing of single cells. Initially 

designed for single-cell chromatin-accessibility analysis [150, 151], these methods are 

now also available for RNA sequencing [152] or even multiomic approaches capturing 

both modalities [153]. In those assays the cell itself functions as a reaction compartment 

for each molecular reaction. Molecular barcoding of single cells is achieved by a multi-

step split and pool barcode ligation procedure in individual wells of multi-well plates. The 

combinatorial power of sequential addition of barcodes ensures that every cell’s “path” 

through the different ligation reactions results in a unique cellular barcode added to all 

gDNA/cDNA molecules of a cell. A common feature of combinatorial indexing-based 

methods is that they are extremely scalable and cost-efficient because all individual 

reactions are performed in bulk. With potentially more than one million cells that can be 

processed in a single experiment, the associated sequencing cost rather than the 

experimental throughput has become the limiting factor for single-cell experiments. 

At the beginning of my PhD, we identified the potential of combinatorial indexing of single 

cells when applied in the context of TCR sequencing which led to the development of 

CITR-seq. Compared to whole-transcriptome or genome-wide chromatin accessibility 

methods, CITR-seq specifically targets just two transcripts (TCRα and TCRβ) which 

significantly reduces the required sequencing power per cell. To set this into perspective, 

in the CITR-seq data presented here, confident assignment of TCRα and TCRβ chains 

based on the presence of multiple transcripts per cell was possibly at a sequencing depth 
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of just 100 reads per T cell. In contrast to that, due to the expression of thousands of gene 

in each cell, whole transcriptome single-cell sequencing usually requires >20.000 reads 

per cell to capture a meaningful fraction of the expressed genes. On the other hand, 

based on the immense barcoding space generated by combinatorial indexing, cellular 

throughput is still in the order of hundreds of thousands of T cells in each CITR-seq 

experiment. In the course of the development of CITR-seq we evaluated the different 

library preparation approaches outlined above and integrated them into a combinatorial 

indexing framework. The final version of CITR-seq can be categorized as RNA-based 

approach that incorporates UMIs for transcript quantification. It further utilizes multiplexed 

PCR for cDNA amplification and acquires single-cell resolution through combinatorial 

indexing of individual T cells. A detailed description of the CITR-seq library preparation 

workflow is provided in the attached manuscript in chapter 2.  

 

Methods for TCR repertoire analysis and comparison 
In comparison to whole transcriptome sequencing data, the analysis of TCR sequencing 

data, often only containing information derived from just two genes, might appear to be 

much more simple. In fact, many studies that simultaneously profile the TCR repertoire 

alongside the transcriptional profile of T cells first generate whole transcriptome libraries 

and then specifically extract TCR-related reads from those libraries [154-157]. Despite 

encoding for just two genes, transcript diversity in a TCR dataset vastly outnumbers the 

diversity of protein-coding genes in mice and humans, even when isoforms are 

considered [158, 159]. This immense diversity is key to many of the challenges associated 

with TCR repertoire analysis. For example, the principle of exhaustive sequencing can 

hardly be applied in the context of evaluating repertoire completeness. Increasing the 

sequencing depth to a point at which additional sequencing reads do not yield previously 

unobserved transcripts is usually indicative of the sensitivity of underlying library 

preparation method and to some extent the completeness of the transcriptome. It has 

been shown that in two TCR libraries generated from a single human peripheral blood 

sample, about 75% of CDR3β sequences were unique to each library at saturating 

sequencing depth [160]. Especially in young individuals, in which the naïve T cell 

compartment is constantly replenished by recent thymic emigrants, TCR sequencing 
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libraries therefore represent a momentary fraction of the complete repertoire. Here, one 

can draw the first connection to ecological studies of biodiversity in distinct habitats. 

Famously known as the founder of the unseen species problem in the 1940s, Alexander 

Steven Corbet collected Butterflies in a distinct habitat in British Malaya for two years and 

wondered how many more he would identify after two years of additional collection [161]. 

Similarly, the total number of TCRs (species) in the complete repertoire (habitat) is 

unknown and expansion of the number of sampled T cells is likely to increase the number 

of identified unique TCRs. For this reason, different diversity estimators established in 

ecology are commonly used to estimate TCR diversity. The respective indices can broadly 

be classified into measurements of α- and β-diversity (not related to the two TCR chains) 

established by Robert Whittaker in 1960 [162]. α-diversity indices can be used to describe 

the diversity of TCRs within a repertoire, while β-diversity indices evaluate the diversity 

and/or overlaps across different TCR repertoires (e.g., of different individuals or repertoire 

diversity before and after infection). Several indices exist for estimating both diversity 

types (reviewed here [163, 164]). In the present study we used a normalized version of 

the Shannon diversity index (nSDI) [165], which takes into account both the relative 

abundance and the richness (e.g. total number of CDR3s or V(D)J gene segments 

depending on the level at which diversity is evaluated) of TCRs, to evaluate diversity 

within a given repertoire. The nSDI reaches its maximum (nSDI = 1) in the case that all 

CDR3 sequences or V(D)J gene segment usage frequencies are equally distributed in 

the evaluated repertoire. A second index that was used in the attached manuscript is the 

Jaccard similarity index [166]. The Jaccard index describes the overlap between two 

samples by dividing the number of shared elements by the union size of both samples. In 

the context of repertoire overlaps it can be used to evaluate the degree of CDR3 motif 

sharing in repertoires of varying sample sizes. Critically the sharing evaluated by the 

Jaccard index is based on 100% identical CDR3 amino acid motifs, which does provide 

only a limited view of the potentially shared ability of two repertoires to recognize identical 

antigens. It has been shown that TCRs cluster in specificity groups consisting of similar 

but not necessarily identical CDR3 motifs that recognize pathogen-derived antigens [167]. 

Therefore, rather than comparing identical CDR3s, it would be preferable to compare 

similar CDR3 motifs across repertoires. Pairwise comparison of peptide similarity is 
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commonly evaluated using a Blocks Substitution Matrix (BLOSUM) [168]. These matrices 

that were originally developed to score the similarity of evolutionary divergent proteins 

have been adopted to estimate the distance between two CDR3 motifs, which is 

correlated to their likelihood of recognizing similar antigens [169]. However, pairwise 

sequence alignment quickly becomes unfeasible for large TCR datasets. The number of 

required pairwise comparison scales quadratically with the number of input sequences, 

therefore quickly exhausting the computational capacity of most systems. Several 

algorithms have been developed to overcome these limitations and most of them build on 

comparing kmers extracted from each input sequence which are comparably easier to 

handle [170, 171]. Similarly, in the attached manuscript, amino acid 4mers were used to 

evaluate repertoire similarities across the different mouse species. 

With antigen specificity being the primary focus of TCR analysis, the CDR3 regions of 

both TCR chains are the sole focus of many studies. However, as discussed before, the 

CDR1 and CDR2 regions receive increasing attention because of their postulated role in 

TCR-MHC binding modulation [22, 23, 172]. Despite the fact that those sequences are 

germline-encoded, their identification from TCR sequencing data can be difficult due to 

the high sequence identity of particular (duplicated) V gene segments even when full-

length TCR data is available [173]. D gene segments of the TCRβ chain are extremely 

short (Trbd1: 12 nt and Trbd2: 14 nt) and can deviate from the germline sequence in the 

majority of their mapped sequence due to nucleotide insertions and deletions. Further, 

these random insertions of nucleotides at the gene segment junctions are often difficult 

to distinguishing from sequencing or PCR errors. For this reason, commonly used 

alignment tools for RNA-seq data often perform poorly in TCR transcript alignment and 

specialized alignment tools have been developed [174-176]. In the present study we have 

used MiXCR [174] a Java-based software tool that uses a kaligner approach modified 

from Liao et al. [177] to map raw sequencing reads to a V(D)J gene segment reference. 

With the advent of machine learning, the available tools have also been used to predict 

TCR epitopes from (paired) CDR3 sequences and/or V(D)J gene usage [178-180]. These 

tools aim to identify the cognate antigens of large sets of TCRs, whose antigen-specificity 

has not been experimentally validated. Critically, this analysis is complicated not only by 

the diversity of TCR repertoires but also by the diversity of MHC-haplotypes responsible 
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for antigen presentation. The available approaches can be broadly classified into 

supervised and unsupervised prediction models. Supervised models are supplied with 

experimentally validated TCR-antigen pairs and base their prediction on these training 

datasets [181]. In contrast to that unsupervised models, unsupervised models apply TCR 

distance-based prediction using the algorithms described before [169, 171]. Significant 

performance differences have been seen across those prediction tools and their ability to 

infer the antigen specificity of previously unseen TCR motifs is limited (reviewed here 

[182]). We expect that high-throughput methods like CITR-seq can make important 

contribution to the training of machine learning models by supplying an extensive wealth 

of experimentally validated TCR pairs.    

 

Mouse models in studies of the adaptive immune system diversity  
The majority of studies that established the pioneering concepts and led to many 

breakthrough discoveries in the field of (adaptive) immunity were and are still conducted 

using established mouse models. Because of their easy husbandry, short generation time 

and relatively recent latest common ancestor to humans (about 85 million years ago 

[183]), mice are by far the most widely used mammalian-model system in biomedical 

research (e.g., almost 75% of all laboratory animals in 2022 in Germany [184]). Most of 

today’s laboratory mice are derived from common inbred strains that were first established 

about 100 years ago (e.g., C57BL/6 in 1920s by C.C. Little) to reduce the impact of 

genetic variance on research findings from different mouse studies. While this has 

significantly improved study reproducibility, it creates a paradox in the context of studying 

the natural diversity of adaptive immune systems. For example, while outbred populations 

of mice [185] and humans [17] display remarkable MHC-haplotype diversity, all inbred 

C57BL/6 mice share the identical MHC-haplotype H-2b. Consequently, the presented 

immunopeptidome as well as thymic selection of T cells in laboratory mice might not be 

representative of the diversity and dynamics observed in the underlying processes in 

outbred populations [20, 186]. The literature on TCR diversity in outbred mice compared 

to laboratory strains is extremely sparse [187, 188]. These studies focus on establishing 

the orthology of V(D)J gene segments in different murine sub-species. In the context of 

this PhD project, we showed frequent copy number variations (CNVs) and nucleotide 
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polymorphisms in Vα gene segments, even in closely related mouse species. In 

agreement with this, V gene segments with missing murine orthologs have also been 

identified in outbred bank vole populations [189]. The same study also reported 

remarkable inter-individual V(D)J gene segment usage biases, which are likely caused 

by the diverse MHC-haplotypes in the studied bank vole population. In conclusion, the 

severely restricted genetic diversity in inbred laboratory mice is likely to have a significant 

impact on population-scale TCR diversity studies. To date, this topic has gained very little 

attention and is therefore poorly understood. 

Apart from limited genetic variance in laboratory mice, their husbandry in specialized 

facilities creates another paradox for evaluating TCR diversity. The adaptive immune 

system has evolved to recognize an immensely diverse range of pathogenic challenges 

and establish long-term immunity against those threats following the initial encounter in 

the hosts environment. Yet, in order to minimize the impact of environmental noise, 

laboratory mice are housed in “clean” and sometimes even pathogen-free facilities. 

Accordingly, large differences in various measurements of immune functions have been 

identified when comparing “wild” mice to laboratory strains [190]. As a general trend, wild-

caught mice showed greater variance in most measurements of immune function. 

Immune challenges using sheep red blood cells in wild-caught and laboratory mice 

showed significantly more effective clearance of these cells in wild-caught mice, likely 

because their immune systems were primed from previous antigen exposures [191]. 

Differences in key immunological processes are even more pronounced when comparing 

laboratory mice to humans (reviewed here [192, 193]). These differences, along with the 

common failure to translate immunological research findings from mice to humans, has 

led to repeated questions about whether studies of the murine immune system are 

representative of human immunology. Interestingly, co-housing laboratory mice with 

pathogen-exposed pet-store mice induces changes in response to infection, T cell 

differentiation and general immune cell gene expression patterns, that more closely 

represent patterns observed in humans [194]. For example, after co-housing, the fraction 

of naïve CD8+ T cells relative to the fraction of effector CD8+ T cells was significantly 

reduced and more similar to the human fractions as a consequence of persistent 

pathogen-exposure and acquisition of a growing memory T cell compartment. Although 
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not investigated in this study, it is very likely that these shifts in T cell populations would 

also lead to significant changes in TCR repertoire diversity. In summary, there now is a 

general consensus that “naturalizing” laboratory mice [195] might alter some 

immunological functions to a state that is more representative of outbred populations of 

mice and humans. 

In contrast to that, far less attention has been paid to acknowledging the impact of limited 

genetic diversity in the adaptive immune system of laboratory mice. This gap in 

knowledge has been a substantial motivation for the presented PhD project. Studies on 

the generation of TCR diversity are either done in humans, exhibiting strong genetic 

variance especially in HLA-haplotypes, or alternatively, in a single inbred mouse line with 

almost no genetic variance across individuals. In both cases, the ability to analyze the 

impact of genetic variance on TCR repertoire selection and diversity is limited. In the 

manuscript presented in chapter two of this thesis, we used a collection of four 

evolutionary diverged inbred mouse species and their F1 hybrids, to investigate the 

dynamics of TCR repertoire generation in a distinct but much broader genetic context. 

The four respective inbred species that were originally derived from wild-caught mice are: 

PWD/PhJ (Jackson Laboratory strain ID: 004660, from now on PWD) an inbred strain of 

Mus musculus musculus caught in 1972 in the Czech Republic [196], CAST/EiJ (Jackson 

Laboratory strain ID: 000928, from now on CAST) and inbred strain of Mus musculus 

castaneus established in 1971 [197], SPRET/EiJ (Jackson Laboratory strain ID: 001146, 

from now on SPRET) an inbred strain of Mus spretus originally caught in Spain in 1978 

[198] and the most commonly used laboratory mouse strain C57BL/6J (Jackson 

Laboratory strain ID: 000664, from now on BL6). Genomic studies in C57BL/6 have 

provided evidence that the largest fraction of its genome is derived from Mus musculus 

domesticus, with smaller introgressions from Mus musculus musculus and Mus musculus 

castaneues [199]. As indicated by their names, Mus musculus domesticus, Mus musculus 

musculus and Mus musculus castaneues are subspecies of the major Mus musculus 

lineage commonly referred to as the house mouse [200, 201]. Their classification as 

separate species represents an ongoing debate based on the presence of stable hybrid 

zones in wild populations of these mice [202, 203]. Critically, all the above inbred 

laboratory strains can form viable and, in some cases fertile offspring, making it possible 
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to investigate phenotypic differences of the parental lines in a common F1 hybrid genetic 

background. Today, thanks to their fully sequenced genomes [204], these alternative 

laboratory mouse strains, provide an exceptional resource for a broad range of studies of 

speciation, adaptation and the genetic basis of complex traits (reviewed here [205, 206]). 

Several major phenotypic (immunological) differences have been identified across these 

inbred strains. Perhaps the most interesting in the context of T cell biology are major 

differences in Fas death receptor expression which is critical for T cell activation, 

proliferation and apoptosis [207], and hyperresponsiveness to high doses of tumor 

necrosis factor, a crucial pleiotropic proinflammatory cytokine [208]. These immune 

related phenotypes were further investigated in collaborative crosses of the respective 

inbred lines revealing major differences in the frequencies of specific T cell populations 

[209]. To the best of our knowledge, inbred mouse lines have never been used to reveal 

the impact of genetic factors on the generation of diverse TCR repertoires. Comparing 

their unique sets of V(D)J gene segments in terms of usage and selection has immense 

potential to expand our knowledge of TCR repertoire generation. This is especially true 

for TCR analysis in F1 hybrids, in which the different sets of parental V(D)J gene 

segments are subject to thymic selection in defined heterozygous MHC-haplotypes.         

 

Multi-omic analysis of gene regulation 
The versatile combinatorial barcoding system applied in CITR-seq has also been modified 

to be used in the much broader context of studying the regulation of gene expression. 

The development of easySHARE-seq, presented in chapter 3, allows for the simultaneous 

measurement of gene expression and chromatin accessibility at single-cell resolution. 

Here, I will now briefly introduce the advantages of utilizing such a multi-modal approach 

for analyzing the regulation of gene expression and outline the potential of its application 

in T cell biology. 

Approaches that aim to characterize the transcriptome of a single cell have now been 

available for roughly 15 years [210]. Until then, bulk sequencing of a heterozygous 

collection of cells from various tissues only provided information about the average 

expression of a gene across all cell types in the respective tissue or sample. It has been 

known for a long time, that gene expression variance in different cells is one of the main 
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sources of phenotypic variance [211, 212], especially in heterogenous tissues such as 

tumors [213]. Even with single-cell technologies at hand, that provide the power to cluster 

individual cells by cell types based on their transcriptional profiles, many fundamental 

questions regarding phenotypic variance remained unanswered. For example, while 

whole transcriptome analysis of single cells can reveal gene expression differences, the 

causes of variance in gene regulation can hardly be inferred from transcriptome data 

alone. Nonetheless, a plethora of those (non-coding) genome-transcriptome associations 

that mediate gene expression differences had been known based on individual examples 

(e.g., [214] and reviewed here [215, 216]). Consequently, the simultaneous analysis of 

additional modalities, such as epigenomics or proteomics, is required to overcome these 

limitations. Recently, chromatin accessibility has gained special attention because 

chromatin states of either hetero- or euchromatin have significant implications for 

transcriptional activity [217, 218]. Today, the state-of-the-art approach for (single-cell) 

chromatin accessibility studies is the assay for transposase-accessible chromatin (ATAC-
seq) [219]. The field of single-cell biology has rapidly accelerated and various 

combinations of sequencing methods have been integrated to into “multiomic” 

approaches (reviewed here [220]). Arguably the most widely used multiomic approach is 

the combination of ATAC- and RNA-seq and custom protocols as well as commercial 

platforms (e.g. by 10x Genomics) have been developed. For instance, SHARE-seq has 

been used to show that chromatin accessibility changes precede changes in gene 

expression during murine hair follicle differentiation [221]. In the same study a 

computational strategy was developed to reveal potential cis-mediated gene regulation 

based on cell-specific co-variance of distal ATAC-seq peaks and gene expression. This 

enables the systematic genome-wide prediction of regulatory elements driving gene 

expression variance that can subsequently be validated by functional assays at fine-

scale. EasySHARE-seq represents a refined version of the original protocol, enhancing 

flexibility and RNA-seq sensitivity. The increase in flexibility mostly relates to the 

implementation of the combinatorial barcoding system that was also utilized in CITR-seq. 

By using this system, it is now possible to multiplex easySHARE-seq libraries with other 

sequencing libraries and jointly sequence them using Illumina sequencing devices with 

standard index cycle length configurations.        
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Although not done in the scope of this PhD, the application of easySHARE-seq to various  

T cell populations in health and disease has enormous potential. For example, T cell 

lineage commitment in the thymus is characterized by the orchestrated expression of 

multiple transcription factors (reviewed here [222]). Disentangling those complex 

interactions could be achieved by tracking their expression alongside changes in 

chromatin accessibility at their potential target sites. Further, as outlined earlier in this 

introduction, V(D)J recombination order is guided by precisely timed chromatin 

remodeling, leading to accessibility changes of RSS sequences of individual gene 

segments. Multiomic assessment of the expression of genes of the core recombination 

machinery as well as changes in V(D)J gene segment chromatin accessibility is likely to 

provide further insight into the fine-scale underlying mechanisms.  
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Objectives 
 

Analysis of the TCR repertoire can provide crucial insights into the past, present and 

future immune responses of an individual following the exposure to pathogens or other 

malignancies. Technical and financial barriers of current TCR sequencing approaches are 

still limiting our ability to analyze the magnitude and diversity of TCR repertoires, as well 

as the relative contribution of stochastic and genetic factors in the generative process. 

For this thesis, I, together with my colleagues, have developed a new experimental 

protocol for the large-scale analysis of single-cell TCR repertoires. This platform allowed 

us to address some long-standing questions in TCR biology. To what extent is an 

individual’s TCR repertoire shaped by genetic factors? Could such genetic factors provide 

evidence for the co-evolution of TCRs and MHCs? What is the mechanistic basis for the 

high frequency of public TCR motifs observed between individuals? In my PhD project, I 

have utilized panels of wild-caught inbred mouse species and their F1 hybrids and took 

advantage of their distinct genetic backgrounds to address these questions.  

 

For chapter one, we have conducted a comprehensive cross-species comparison of TCR 

V(D)J gene segment loci in four murine inbred lab-strains. We highlight that gDNA-based 

gene segment annotations are often incomplete because of gaps in the respective 

genome assemblies caused by the complexity of the underlying loci. Further we highlight 

remarkable diversity in the TCRα variable gene segments across murine sub-species. 

For instance, we report a recent major locus contraction in Mus musculus castaneus 

which lead to the loss of 74 Trav gene segments. This effort also aimed to generate a 

detailed sequence library of V, D and J gene segments, which is required for the fine-

scale mapping of sequencing reads originated from TCR repertoires of the respective 

mice. 

 

In chapter two, comprising the main work of my PhD, I first elaborate on the development 

of CITR-seq, a flexible, high-throughput and single-cell TCR sequencing approach that 

allowed us to generate paired αβ-TCR repertoires from 32 individual mice. Collectively, 
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their repertoires consist of more than 5 million receptors and therefore likely represents 

the largest dataset of confidently paired TCRs analyzed in a single study to data. The 

generated species-specific V(D)J gene segment references allowed us to investigate the 

differences of their usage frequencies across the different mouse species. This revealed 

that intra-species usage frequencies are remarkably conserved. We then used in-frame 

and out-of-frame TCR receptor sequences to specifically evaluate the impact of thymic 

selection on the shaping of the TCR repertoire. Finally, the joint effects of species-specific 

generation and selection of TCRs were evaluated at the level of CDR3 sequence diversity 

and in the context of CDR3 motif sharing across different mice. 

 

Chapter three summarizes the development of easySHARE-seq, a multi-omic protocol 

that can be used to simultaneously assay the transcriptome and chromatin profile of 

single cells. I contributed to this project by participating in the development of the utilized 

single-cell barcoding system, that is similar to the barcoding approach applied in CITR-

seq. In future studies, this method offers great potential to expand the analysis conducted 

in chapter two by also integrating whole transcriptome and chromatin accessibility profiles 

in the analysis of TCR repertoires. 

 

In the discussion section, I will recapitulate the findings from all chapters, integrating them 

with recent research and current debates in TCR biology. Furthermore, I will provide an 

outlook on future research directions for TCR analysis, highlighting their potential in 

current and future medical applications to combat diseases. 
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Abstract 
T cells recognize an immense spectrum of pathogens to initiate immune responses by 

means of a large repertoire of T cell receptors (TCRs) that arise from somatic 

rearrangements of variable, diversity and joining gene segments at the TCR loci. These 

gene segments have emerged from a limited number of ancestral genes through a series 

of gene duplication events, resulting in a greatly variable number of such genes across 

different species. Apart from the complete V(D)J gene annotations in the human and 

mouse reference assemblies, little is known about the structure of TCR loci in other 

species.   

Here, we performed a comprehensive comparison of the TCRα and TCRβ gene segment 

clusters in mice and three of its closely related sister species. We show that the TCRα 

variable gene cluster is frequently rearranged, leading to deletions and sequence 

inversions in this region. The resulting complexity of TCR loci severely complicates the 

assembly of these loci and the annotation of gene segments. By jointly utilizing genomic 

and transcriptomic data, we show that in Mus musculus castaneus the variable gene 

cluster at the α locus has undergone a recent major locus contraction, leading to the loss 

of 74 variable gene segments. Additionally, we validated the expression of functional 

variable genes, including atypical ones with inverted orientation relative to other such 

segments. Disentangling the fine-scale structure of TCR loci in different species can 

provide valuable insights in the evolution and diversity of TCR repertoires. 
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Introduction 
T cells are the principal cell type underlying adaptive immunity and perform the 

remarkable task of distinguishing self from foreign to decide whether or not to initiate an 

immune response. This pivotal decision depends solely on the recognition of antigens 

presented by major histocompatibility complexes (MHCs) by the heterodimeric TCR. To 

cover the enormous space of potential pathogenic antigens, a vast diversity of specific 

TCRs is required. Most T cells express a unique TCR consisting of an α- and a β-chain 

that arise from somatic rearrangements in a process called V(D)J recombination [1]. 

Estimates of the diversity generated by this recombination process vary substantially and 

range from 1015 [2] to 1061 [3] depending on the mathematical model and the evaluated 

species. In any case, these theoretical estimates of diversity are several orders of 

magnitude larger than the observed diversity in any individual (e.g., 2x108 in mice [4] and 

1x1012 in humans [5]), due to the significantly lower number of total T cells and diversity 

reduction by selection of specific TCRs during T cell maturation. 

The building blocks of TCRs are the variable (V), diversity (D, exclusive to TCRβ) and 

joining (J) gene segments that are subject to somatic rearrangements by V(D)J 

recombination. The underlying process requires the precise execution of an ordered 

series of DNA double-strand breaks that is facilitated by the Rag1/Rag2 recombinase 

complex [6]. The respective double-strand breaks are repaired by non-homologous end 

joining (NHEJ) [7] during which random insertions and deletions of nucleotides can occur, 

which further increases TCR diversity [8]. Recombination signal sequences (RSS) that 

are interspersed between V(D)J gene segments are targeted by the Rag1/Rag2 complex 

to initiate recombination. These conserved sequences consist of a heptamer sequence, 

a spacer sequence with a conserved length of either 12 or 23 base pairs and a conserved 

nonamer sequence [9]. The so called 12/23 rule ensures that V(D)J recombination results 

in the fusion of a single V to (D) to J segment [10]. The distinctive sequence features of 

RSS’s are reminiscent of sequences of transposable elements [1]. It is therefore likely 

that an ancestral version of a TCR gene segment has been invaded by a transposon and 

subsequently the split gene had to be recombined to encode a functional protein. This 

hypothesis is supported by the presence of several TCR and BCR related genes in lower 

chordates that represent potential targets of the initial transposon invasion [11]. V and J 
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gene segment sequences have been categorized into complementarity determining 

regions (CDR) and framework regions (FR) based on the position of highly conserved 

amino acid residues in their coding sequence (e.g., cysteine at position 23 and 104 of V 

genes [12]). The germline-encoded CDR1 and CDR2 regions in the coding sequence of 

V genes have been shown to modulate TCR-MHC binding affinity [13], while the CDR3 

region that comprises the highly diverse junctional region of V(D)J gene segments mainly 

determines the antigen specificity of the TCR [14, 15].   

The distinctive features found in the coding sequence of V(D)J gene segments as well as 

in their sequence vicinity (e.g., RSS) have allowed their identification from genomic 

sequences even in the absence of detailed gene annotations [16]. These approaches 

have revealed that the number of functional V(D)J gene segments varies substantially 

across taxa and even between closely related species [17-20]. V gene segments are often 

grouped into families with one to twelve members depending on their sequence similarity 

of ~70-100% [21]. TCRβ exclusive usage D gene segments is highly conserved as well 

as an expansion of the number of J gene segments in the TCRα chain [22]. Similarly, the 

number of variable gene segments also varies among immunoglobulin heavy chains 

across different mammals [23]. Successful inference of functional gene segments, 

however, depends largely on the quality of the respective genome assembly, with 

complex loci like TCR often representing the worst assembled loci in non-model 

organisms. This has been emphasized by a recent study that identified V and J genes in 

the bank vole based on transcriptomic data and identified several additional genes that 

had not been identified from the genomic sequence [24]. In the same study, most of the 

identified TCR V and J gene segments were shown to have clear murine orthologs except 

for three of the identified V genes. In general, significantly less is known about J and D 

gene segment gene cluster variance, likely because of their relatively short sequence with 

fewer distinctive features, making it challenging to identify those genes in different 

genomes. Nonetheless, because both J and D genes contribute mainly to the antigen 

specificity rather than TCR-MHC binding, the evolution and diversification of their 

respective loci is particularly interesting in the context of host-pathogen co-evolution.   

Locus expansion and contractions of TCR gene segment regions is consistent with the 

birth-and-death hypothesis of multigene families [25, 26]. This hypothesis is derived from 
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the observation that sequence homogeneity between members of a gene segment cluster 

within a species is not necessarily higher than to gene segments of a different species 

[27-29]. It provides the mechanistic basis to explain the evolution of divergent gene 

segment families, including high frequencies of non-functional and pseudogenized genes 

following gene duplications and release of functional constraint due to redundancy. While 

initially evaluated in immunoglobulin and MHC families, subsequent comparative studies 

of TCR V gene segment families confirmed that sequence identity of homologous families 

in mice and human exhibit higher similarity than observed between intra-individuals gene 

families [30]. Later, this view was expanded by showing that divergent Vβ gene segments 

have been maintained in murine and human genomes for more than 100 million years, 

strongly indicating that the initial gene duplication events are ancient and predate the split 

between human and mice [31]. In this context it is important to highlight, that while the 

diversification of immunoglobulin receptor and TCR loci appears to be driven by similar 

mechanisms, MHC restriction of TCRs might impose that duplicated gene segments 

maintain the ability to bind to MHCs to stay functional. In contrast, immunoglobulin gene 

segments can diversify without such inherent requirements. There now is evidence that 

four ancestral Vβ and five ancestral Vα gene segments formed the original set of V genes 

at the root of all mammalian clades. These have since amplified and diverged to different 

extent in present day mammals [18]. In summary, the birth-and-death hypothesis 

therefore challenges the classical model of concerted evolution which states that 

multigene families emerge by inter-locus recombination alongside gene conversion so 

that all genes within a family cluster evolve in concert and homogenize over time [32].     

 

The murine TCR Vα locus has been subject to one of the most drastic reported locus 

expansion events in which more than two-thirds of the central locus region has become 

amplified [21]. Strikingly, this duplication was estimated to have occurred just 4-8 million 

years ago but has received little attention so far. Today we have access to the high-quality 

genome assemblies of several common inbred murine strains as well as wild-derived 

sister species of the most common C57BL/6 laboratory mouse strain [33]. These wild-

derived inbred strains share their latest common ancestor about 1-3 million years ago 

[34, 35] and therefore represent an excellent system to study the evolution of complex 
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traits (reviewed in [36]). Strikingly, the regions with the greatest sequence diversity within 

the assembled genomes of the various strains relative to the mouse reference genome 

(GRCm38/mm10) were found to be regions related to immune- or sensory-functions [37]. 

To date, most comparative studies of adaptive immunity in inbred strains or wild-caught 

mice are centered around quantifying immune cell populations or measuring differences 

in immune responses [38, 39]. In contrast, little is known about comparative genomics of 

TCR gene segment loci despite the fact that those are subject to frequent genomic 

rearrangements which likely cause significant differences in TCR diversity. Here, we 

provide a comprehensive comparison of murine TCR loci. By utilizing both, genomic and 

transcriptomic data, we highlight major rearrangements in the Trav locus of the wild-

derived inbred mouse stain CAST/EiJ relative to the mm10 reference and thus emphasize 

the variability in these loci even in closely related species.   

Results 
 
The murine TCRα and TCRβ loci in the GRCm38/mm10-based reference 
The genomic sequences of the TCR loci have been extensively studied in human and 

mouse. The gene annotations derived from these studies have been summarized in 

databases [40] which are now considered to contain all expressed V(D)J gene segments 

of both species. Here, we specifically focus on the murine TCR gene segments that are 

annotated in the IMGT database based on mouse reference genome assembly 

GRCm38/mm10 (from now on referred to as mm10 assembly). The TCR regions in this 

database are located in between genes referred to as “locus bornes” (French for 

milestone) which flank the TCR loci and display an evolutionary conserved gene order 

across taxa. These can therefore aid the localization of the respective loci. For example, 

the gene Dad1, a 3’ borne, marks the 3’ end of the TCRα loci cluster. 

Murine TCR gene segments are found in clusters of varying numbers of gene segments 

and gene segments within a cluster are further grouped into families bases on their 

sequence homology and ancestry. The current reference TCRα loci consist of a total of 

191 gene segments. These can be further divided into 130 Trav gene segments (including 

20 pseudogenes, Fig. 1A), 60 Traj gene segments (including 12 pseudogenes, Fig. 1B) 
and a single constant region. All TRCα gene segments are located on chromosome 14 
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and collectively span about 1.8 Mbp (14C1, 26.94 cM – 27.70 cM). The majority of Trav 

gene segments consist of two exons with an average span of 556 bp. About two-thirds of 

the ancestral murine Trav cluster have been triplicated in a recent gene duplication event 

[21] and all triplicated genes were annotated with a “d” or “n” in their official names to 

indicate their origin in the ancestral locus configuration. Traj gene segments are all 

encoded by a single small exon with an average length of 59 bp. The antigen-specificity 

defining CDR3 region of the TCRα chain consists of the most 3’ bases of a V gene 

segment and the most 5’ bases of a J gene segment. 

The TCRβ locus spans about 0.8 Mbp and is located on chromosome 6 (6B1, 18.93 cM 

– 19.71 cM). It consists of 35 Trbv genes (including 13 pseudogenes, Fig. S1A), 2 Trbd 
genes, 2 Trbc genes and 14 Trbj genes (including 2 pseudogenes, Fig. S1B). A unique 
feature of the TCRβ locus is the presence of an inverted V gene segment (TRBV30 in 

human and Trbv31 in mice) at the 3’ end of the locus. Both its position and orientation are 

conserved in all tetrapods [19]. Across different species the Dβ-Jβ-Cβ clusters are present 

at varying copy numbers (e.g. 2 in human and mice, 1 in chicken and 3 in swine, [41]). 

Due to the incorporation of D gene segments, the rearranged TCRβ transcript contains 

two junctional sites compared to the single junction in the rearranged TCRα transcript.    
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Figure 1: Genomic locations of V/J gene segments in the TCRα loci as annotated in the 
GRC38/mm10 based IMGT annotation. TCRα variable gene segments (130 segments, A) are clustered 
in a 1.6 Mbp genomic region on chromosome 14. A recent gene duplication event led to the triplication of 
roughly two thirds of the ancestral Trav loci (darkgrey) resulting in the d- (lightgrey) and n-block (middlegrey) 
Trav segments. Traj and Trac genes (60 Traj and 1 Trac; B) are clustered in an 80 kb window upstream of 
the Trav cluster. Gene segments annotated as pseudogenes are colored in red. 
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The evolution of murine TCR loci 
To provide an overview of the TCRα and TCRβ gene segment clusters in other murine 

species we performed a pairwise sequence alignment of V, D and J gene segments 

alongside the constant regions in four different inbred mouse lines (129S1/SvlmJ, 

PWK/PhJ, CAST/EiJ and SPRET/EiJ, from now on referred to as: 129, PWK, CAST and 

SPRET). For all four species, genome assemblies are made available by the Mouse 

Genome Project [33]. The dotplot of the local alignments of the Trav cluster confirmed the 

previously reported locus expansion by triplication of the central region of the cluster in 

129, PWK and SPRET (Fig. 2A). Strikingly, this local sequence triplication was not 
observed in the CAST genome assembly and the entire cluster was contracted to a size 

of about 0.86 Mbp. Apart from this obvious size difference, we also observed local 

sequence inversions in the Trav cluster which were most frequent in the SPRET assembly 

relative to the mm10 assembly (Fig. 2A bottom). We frequently observed gaps in local 
assemblies in the genomes of all four mouse strains within the Trav clusters, which in part 

reflects the complexity of these loci. As a first approach to transfer the reference 

annotations, we performed a sequence liftover, complemented with a six-frame 

translation BLAT to identify the chromosomal locations of annotated mm10 V(D)J genes 

in the assemblies of the four murine inbred lab species (Table 1).  
 
Table 1: Number of V(D)J gene segments (including pseudogenes) identified in the different inbred 
mouse strains. 

SEGMENT/STRAIN MM10 129 PWK CAST SPRET 
TRAV 130 80 97 45 (58) 75 
TRAJ 60 59 59 59 59 
TRAC 1 1 1 1 1 
TRBV 35 35 35 34 35 
TRBJ 14 14 14 14 14 
TRBD 2 2 2 2 2 
TRBC 2 2 2 2 2 

 

We did not observe any major locus rearrangement for Jα and Cα (Fig. 2B) as well as 
Vβ, Dβ, Jβ and Cβ clusters and the respective cluster sizes were highly similar among all 

strains (Fig. 2C and 2D). While the Trbv31 inversion was found in all four strains, we did 
not observe any further inverted segments. In the following analysis, we now specifically 
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compare TCR loci of CAST to the mm10 reference to highlight the shortcomings of 

currently available V(D)J gene segment annotations for such complex loci.    

 

 
Figure 2: Pairwise alignment dotplots of the TCR genomic regions of four inbred laboratory mouse 
strains to the respective regions in the murine mm10 reference sequence. Shaded areas illustrate the 
genomic region ranging from the most 3’ to the most 5’ gene segments. 

 

The TCRα and TCRβ locus in Mus musculus castaneus 
The majority of currently available V gene prediction tools used for the de novo annotation 

of variable gene segments in non-model organisms identify candidates by sequence 

homology to known genes and/or identification of the highly conserved RSS sequences 

in the vicinity of gene segments [42, 43]. Inherently, these approaches depend on a 

gapless assembly of the underlying loci, which is often unavailable due to the high 

complexity V regions.  
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For CAST we identified a total of 79 full-length variable gene segments mapped to the 

CAST Trav (45) and Trbv (34) region (chromosome 14: 43.65 – 44.65 Mbp, Fig. 3A for 
Trav and chromosome 6: 38.75 – 39.40 Mbp, Fig 3B for Trbv). We showed that a large 
deletion led to the loss of a total of 74 Trav gene segments in CAST relative to the mm10 

locus. The deleted Trav segments largely overlap with the triplicated segments in the 

recent murine Trav triplication event dated back to about 4 - 8 million years ago. Close 

inspection of Trav sequences alignments against its possible homologs revealed that 

some of the Trav gene segments in CAST exhibit greater similarity to the corresponding 

segment in the expanded D-block cluster than to the respective ancestral gene segment. 

For example, the CAST Trav6(d)-4 gene showed 100% sequence identity with the mm10 

Trav6d-4 but only 97.5% sequence identity with ancestral Trav6-4. Pairwise sequence 

homology comparison in the remaining Trav gene segments revealed that the deletion 

junctions are likely located in between the CAST Trav gene segments Trav7d-4 and 

Trav8-1. We therefore showed, that the “d-“ and “n-blocks” in the Trav locus were present 

in the ancestors to CAST and thus the present-day CAST Trav locus has undergone a 

secondary locus contraction, leading to the loss of the majority of the Trav segments in 

those blocks. All CAST Trav gene segments were subsequently annotated based on the 

gene segments showing the closest sequence homology in the mm10 reference. Taking 

into account the latest common ancestor [44] of 129 (Mus musculus domesticus), PWK 

(Mus musculus musculus) and CAST (Mus musculus castaneus), this contraction has 

likely happened less than 500,000 years ago. In addition, eleven Trav segments outside 

the major deletions could not be identified by lifting the genomic coordinates from mm10 

to the CAST assembly. For 9 of those Trav segments (Trav3-1, Trav13-1, Trav14-1, 

Trav12-2, Trav3-3, Trav13-3, Trav14-3, Trav3-4 and Trav13-5) we identified 

corresponding sequence fragments that were terminated by gaps in the CAST genome 

assembly. Interestingly, the identified Trav3-1 fragment, consisting of just the first exon, 

showed an inverted sequence orientation (Fig. 3B) relative to the homologous sequence 
in mm10. The two remaining Trav gene segments, Trav6d-3 and Trav16, were not found 

in the CAST Trav locus because of local sequence deletions (Fig. 3C). 
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Except for Trbv9, an ortholog of all 35 mm10 Trbv segments was successfully identified 

in the CAST Trbv locus. This was also true for all J gene segments across both loci (60 

Traj and 14 Trbj gene segments; data not shown). 

 

 
Figure 3: Comparison of the mm10 and CAST Trav gene segment loci. (A) Connected segments 
indicate full-length Trav genes that were lifted to the CAST genome and confirmed in a six-frame translation 
BLAT (45 in total). Trav gene segments that were not lifted because of gaps in the assembly (black) or are 
deleted in the CAST genomic sequence (red) lack a connecting line to their mm10 ortholog. (B) Zoom-in 
on the sequence surrounding Trav3-1 indicates a local sequence inversion in the CAST assembly. (C) 
Zoom-in on the sequence surrounding Trav16 indicates a local sequence deletion in CAST. 

 
Gene segment usage validation by gene expression analysis 
To validate our gene segment annotation and their usage in the TCR repertoire, we 

extracted CD8+ T cells from the spleen of a 10-week-old male CAST mouse (see 
methods). We then generated TCR repertoire sequencing libraries using the Chromium 
Next GEM Single Cell 5’ Kit. Critically, this kit utilizes a template-switch based library 

generation approach, such that it can recover the complete repertoire of expressed TCRs, 

regardless of the actual recombined 5’ gene segment. Next, we assembled full-length 
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TCR sequences derived from sequencing reads that shared an identical cell barcode and 

were able to recover a total of 4535 unique Trav and 5389 unique Trbv transcripts (see 
methods). To identify V gene segment alleles, we then collapsed transcripts with identical 
framework region sequences. To distinguish sequencing and PCR errors from rare 

alleles, we required each candidate allelic variant to be observed with at least two unique 

CDR3 sequences. The resulting set of V gene alleles was intersected with the 45 Trav 

and 34 Trbv sequences generated by direct liftover of mm10 V gene segment coordinates 

to the CAST genome assembly. For the Trav cluster we identified all 9 full-length coding 

sequences for the V gene segments that were not identified from the liftover approach, 

presumably because of assembly gaps in the CAST genome (see previous section). 

Accordingly, the final set of sequences consisted of 54 Trav gene segments. For all other 

gene segment loci (Jα, Vβ, Dβ, Jβ) no additional sequences were identified in the 

transcriptomic data. Next, we assembled a full TCRα and TCRβ V(D)J reference library 

using the buildLibrary function of the MiXCR software toolkit [45]. We then used this 

custom species-specific library to map the sequencing reads of the CAST TCR library, 

resulting in 86.36% of successfully aligned reads with a V-J spanning clonotype. Next, we 

analyzed the V(D)J gene segment usage frequencies across all T cells to validate the 

expression of the identified set of gene segments (Fig. 4A and Fig. 4B). For Trav genes, 
we validated the expression of 42 of the 54 V gene segments included in the CAST 

specific V(D)J reference. The 12 Trav genes that were not expressed consisted of the 9 

Trav genes which are annotated as pseudogenes in the mm10-based IMGT reference as 

well as Trav13-4-dv7, Trav13-5 and Trav18, for which we have previously validated the 

absence of expression in C57BL/6 mice (see Chapter 3, also Peters et al., 2024, 

unpublished). In TCRα chains we observed a prominent pattern of preferential pairing of 

distal Vα segments with proximal Jα segments and vice versa. This pattern has been 

described before [46] and provides further evidence for the correct annotation of the 

underlying gene segments in the TCRα locus. For Traj genes we validated the expression 

of 44 of the 60 Traj genes included in the respective reference. All of the unexpressed 

Traj genes are annotated as pseudogenes or ORFs in the mm10-based IMGT reference, 

for which we have validated the absence of their expression in C57BL/6 (see Chapter 3, 
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also Peters et al., 2024, unpublished). In summary, we were able to confirm the 

expression of 42 Trav genes and 44 Traj genes in CAST mice. 

In the TCRβ chains we observed the expression of all 22 Trbv genes that are annotated 

as functional Trbv genes in the IMGT reference as well as expression of Trbv21 which is 

annotated as ORF. We can also confirm the absence of Trbv24 expression in C57BL/6 

(see Chapter 3, also Peters et al., 2024, unpublished) and showed that this was caused 

by a SNP that introduces a premature stop codon (p.Y109X) at the 3’ end of the FR3 

region. Critically, in the CAST Trbv24 sequence this amino acid change was not observed, 

leading to the frequent utilization of this gene in expressed TCRβ chains. We also 

observed the expression of all Trbj gene segments that are annotated as functional genes 

in the IMGT reference as well as expression of Trbj1-6 which is annotated as ORF. In 

summary, we were able to confirm the expression of 23 Trbv genes and 12 Trbj genes in 

CAST mice. 
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Figure 4: V-J gene segment usage frequency (log2) in the CAST CD8+ T cell TCR repertoire. Individual 
V(D)J gene segments are represented in their chromosomal order for the TCRα (A) and TCRβ (B) chain. 
In the TCRα chain distal V segments are more frequently paired with proximal J segments and vice versa.  
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Discussion 
Diversification of immune receptors by somatic recombination is a key feature of the 

adaptive immune system. The number of available gene segments that are rearranged 

during V(D)J recombination to generate functional receptors varies significantly in the 

TCRα and TCRβ chains of different species. These differences are caused by a high 

frequency of rearrangements in the germline sequence of the underlying gene segment 

loci, which can lead to heritable locus expansions and contractions. Duplicated gene 

segments share extensive sequence homology and are therefore grouped into gene 

segment families. The murine Trav cluster has undergone a recent expansion that 

resulted in two duplicated blocks (the “d” and “n” blocks) which contain about two-thirds 

of the ancestral Trav gene segments. In this study we provide evidence for an even more 

recent rearrangement of the Trav cluster that has led to a major locus contraction in Mus 

musculus castaneus including the loss of 74 Trav gene segments relative to the other 

sub-species of Mus musculus (e.g. Mus musculus musculus and Mus musculus 

domesticus). Based on their latest common ancestor, this locus contraction is likely to 

have occurred less than 500,000 years ago. The frequent sequence duplications leading 

to highly homologous gene segment family members severely complicates the high-

quality assembly of the Trav cluster in reference genomes. At those genomic regions we 

observed large gaps in the most recent genome assemblies of the four analyzed inbred 

mouse strains and showed that those gaps often overlap with the predicted location of 

Trav gene segments. Consequently, V gene segment inference from genomic sequences 

is prone to yield incomplete gene segment repertoires due to the lack of available 

sequence information. By utilizing transcriptomic data of CAST TCR receptors, we were 

able to confirm the expression of 9 Trav gene segments that we were unable to infer from 

the respective genomic sequences. Critically, we also identified a functional Trav gene 

segment (Trav3-1) with inverted sequence orientation. To the best of our knowledge, 

functional inverted V gene segments have not been reported for the TCRα chain and 

have previously only been observed in the form of the highly conserved inverted Trbv 

gene segment (e.g. murine Trbv31 and human TRBV30) at the 3’ end of the TCRβ locus. 

Based on pairwise sequence alignments, we showed that large sequence inversions are 

also present in the Trav clusters of other inbred mouse strains (e.g. SPRET) and therefore 
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likely depict a common feature of rearranged TCR loci that can contain functional gene 

segments. 

In contrast, the remaining gene segment clusters (Jα, Vβ, Dβ, Jβ) showed significantly 

less major sequence rearrangements across the four different inbred mouse strains. 

Inference of the CDS of those gene segments from genomic sequences resulted in highly 

similar, and in most cases identical numbers of predicted functional gene segments 

across all four mouse species/strains. In line with these predictions, we were able to 

confirm the expression of all Jα, Vβ, Dβ and Jβ gene segments that are annotated as 

functional in the mm10-based IMGT V(D)J reference database.  

Based on our results, we hypothesized the Trav cluster, relative to other gene segment 

clusters, is evolutionarily favored to undergo frequent rearrangements, leading to cluster 

expansions and contractions. An excess of Trav gene segments relative to Trbv gene 

segments is observed in the majority of mammalian species alongside large numbers of 

Traj gene segments [18]. The temporally ordered generation of TCRs is initiated by TCRβ 

rearrangements, a process that is stringently controlled by restricted Rag expression and 

allelic exclusion. A specific checkpoint, termed the β-checkpoint, ensures that only T cells 

with a functional TCRβ chain progress to the DP maturation stage. In contrast, at the 

TCRα locus rearrangement is far less stringent with limited allelic exclusion and prolonged 

Rag expression leading to continuous rearrangements of TCRα chains over an extended 

period of time. The ability to “test” different TCRα rearrangements in combination with a 

pre-defined TCRβ during thymic selection, should evolutionarily favor extended periods 

of Rag expression and a larger set of Trav and Traj gene segments. Additionally, we can 

show that thymic selection is more likely to reject particular Trbv compared to Trav gene 

segments, based on their affinity to MHCs of different MHC-haplotypes (see Chapter 3, 

also Peters et al., 2024, unpublished). 

It is therefore likely that purifying selection is less strong for TCRα gene segments, and 

in fact it may be that expansion of V segments may allow more T cells to survive thymic 

selection, thus contributing to adaptive immunity. Under such a scenario, even severe 

rearrangements in the germline configuration of these loci can persist. Following this line 

of arguments, the initially assembled TCRβ chains could be under selective pressure to 

maintain a baseline TCR functionality (e.g. by showing appropriate MHC affinity), while 
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the TCRα chains exhibit greater flexibility which can facilitate the rapid adaptation to the 

exposure of varying pathogens. 

In this study, we have highlighted the immense diversity of Trav gene segments that can 

be observed even in closely related species. We showed that utilizing available genomic 

sequences of model organisms to predict the sequence of these gene segments often 

yields incomplete repertoires. This is mainly caused by the dynamic changes in the 

underlying loci including duplications, contractions and inversions which collectively result 

in frequent assembly gaps for these regions. Because V(D)J gene segments are the 

building blocks of functional TCRs, variance in available segments should have significant 

impact on the TCR diversity of an individual. Unraveling the fine-scale structure of TCR 

loci is therefore crucial to investigate the evolution and functional specifics of adaptive 

immune systems.  

Materials & Methods 
 
Mice 
All mice were housed in the animal facility of the Friedrich-Miescher Laboratory of the 

Max-Planck Society. Experiments were performed under license issued by the local 

competent authority (EB 01/21 M). Mice were originally bought from Charles River 

Laboratories (Sulzfeld, Germany). Spleens were collected from mice aged 9-11 weeks. 

The following mouse strains were used in the experiments: C57BL/6J (The Jackson 

Laboratory, Strain #: 000664), CAST/EiJ (The Jackson Laboratory, Strain #: 000928).  

 

Isolation of CD8a+ T-cells 
Spleens of euthanized mice were collected and placed on a 40µm cell-strainer. Spleens 

were then pressed through the strainer using the backside of a syringe plunger. After 

thorough rising of the cell-strainer using ice-cold PBS, the flow-through was centrifuged 

at 400xg 4°C for 10 minutes in a swing-bucket centrifuge. Afterwards, supernatant was 

carefully discarded, and the cell pellet was resuspended in 1ml ice-cold PBS + 2% FBS. 

Isolation of CD8a+ T-cells was then done using the “Dynabeads™ FlowComp™ Mouse 

CD8 Kit” (Invitrogen, 11462D) according to the manufacturer’s instructions. 
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Single-cell TCR sequencing library preparation 
After isolation of CAST T cells, TCR sequencing libraries were generated using the 10x 

Genomics Immune Profiling platform (Chromium Next GEM Single Cell 5' Kit v2) 

according to the manufacturer’s instructions. T cells were processed in two separate 

reactions (two wells of a 10x chip), each with 2.500 input cells. V(D)J sequencing libraries 

were sequenced at 5.000 reads/cell. Sequencing was done on the Nova-seq 6000 

platform by Illumina using S4 2x150bp v1.5 kits with the following sequencing-cycle set-

up: R1: 150 cycles, i7 index: 10 cycles, i5 index: 10 cycles, R2: 150 cycles. 

 

TCR sequencing data processing 
Raw fastq-files were processed using the cellranger vdj software toolkit provided by 10x 

Genomics with the built-in mm10 based VDJ-reference (GRCm38-ensemble-7.0.0). In 

this pipeline fragmented reads are combined into full length contigs based on sequence 

overlaps in reads and matching cellular barcodes. Importantly, high-quality base call 

polymorphisms relative to the provided V(D)J reference remain unmodified, so that the 

generated filtered_contig.fastq files contain species-specific allelic variants of these gene 

segments. 

 

Species-specific V(D)J reference libraries 
The generated filtered_contig.fastq files were directly passed to the MiXCR alignment 

step (“align”, --species mmu, --preset generic-amplicon --floating-left-alignment-boundary 

--floating-right-alignment-boundary C --rna) to generate binary vdjca-files. We then used 

mixcr exportAlignments (--dont-impute-germline-on-export -allNFeatures UTR5Begin 

FR3End) to extract gene-features so that SNPs in candidate-alleles are not modified to 

match the provided reference. For each candidate V(D)J-allele we then used the 

extremely unique combination of associated UMI and CDR3 sequences to distinguish 

low-frequency alleles from alleles generated by sequencing or PCR errors by requiring 

each allele to be identified with at least two unique CDR3/UMI combinations. The list of 

identified V, D and J segment alleles was then used to generate a MiXCR compatible 

reference libraries for each species using the buildLibrary function implemented in 

MiXCR. Since the underlying RNA-based input libraries are generated using template-
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switching rather than multiplex-PCR, they allow for the discovery of de novo V(D)J-

segments since template-switch based cDNA libraries do not require previous knowledge 

of the entire set of gene-segments for amplification. 

 

Alignment of sequencing reads using MiXCR 
Raw fastq-files containing TCR sequencing reads were integrated into a custom MiXCR 

pipeline (MiXCR version 4.5.0) using the following steps: 

 
1) mixcr align 

-- preset generic-ht-single-cell-amplicon-with-umi 
-- library Species Specific custom library (see above) 
-- tag-pattern ^(CELL:N(16))(UMI:N(10))(R1:*)\^(R2:*) 
-- floating-left-alignment-boundary 
-- floating-right-alignment-boundary C 
-  OvParameters.geneFeatureToAlign=VRegionWithP 
-  OminSumScore=100 
 

2) mixcr refineTagsAndSort 
 

3) mixcr assemble 
-- assemble-clonotypes-by CDR3 
-- cell-level 
 

We then used mixcr exportClones to extract the required information for all downstream 

analysis (e.g., cellular barcodes, transcript counts, V(D)J segments, CDR3 amino acid 

and nucleotide sequence etc.). 

    

Reference genome assemblies 
All assembled murine reference genomes were received from the Ensemble database 

(release 102). The following reference genomes were used: mus_musculus_129s1svimj, 

mus_musculus_pwkphj, mus_musculus_casteij, mus_spretus and the standard 

GRCm38 (mm10) mouse reference genome. 

 

Pairwise alignment of genomic sequences 
We performed a local pairwise alignment of genomic sequences of the TCR loci across 

all analyzed mice by using minimap2 [47] with the following parameters: “-PD -k19  
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-w19 -m200 -t48”. The resulting pairwise alignment files (.paf) were then used to plot 

alignment dotplots using the R package pafr [48]. 

 

Liftover of gene coordinates and genome track visualization 
Coordinates of the annotated V(D)J gene segments in the GRCm38/mm10 genome were 

lifted to the genome assembly of the alternative mouse strains using GTF files 

downloaded from the Ensemble database (e.g. Mus_musculus.GRCm38.102.gtf) and the 

corresponding “UCSC Chain Files” (e.g. mm10ToGCA_001624445.1.over.chain.gz). The 

generated GTF files contained the chromosomal locations of the lifted gene segments. 

These locations were used to generate bed-interval files that were visualized using the 

Integrative Genomics Viewer [49]. 
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Supplement 

 
Supplementary Figure 1: Genomic locations of V/D/J gene segments in the TCRβ loci as annotated 
in the GRC38/mm10 based IMGT annotation. (A) TCRβ variable genes (35 total Trav segments) are 
located in an 800 kb window on chromosome 6. Trbv31 is located upstream of the D/J/C clusters in an 
inverted sequence orientation. (B) The D/J/C loci consist of two blocks of a single D gene segment 7 J gene 
segments and a constant region located upstream of Trbv1-Trbv30 in a 20 kb window. 

 

0 25 50 75 100 125 150 175 200 kb

Trb
v1

Chr 6

40.8 Mb

41.0 Mb

41.2 Mb

41.4 Mb

Trb
v3

Trb
v2

Trb
v4
Trb
v5
Trb
v6

Trb
v7
Trb
v8
Trb
v9
Trb
v1
0

Trb
v1
1

Trb
v1
2-1

Trb
v1
3-1

Trb
v1
2-2

Trb
v1
3-2

Trb
v1
2-3

Trb
v1
3-3

Trb
v1
4

Trb
v1
5

Trb
v1
6

Trb
v1
7

Trb
v1
8

Trb
v1
9

Trb
v2
0

Trb
v2
1

Trb
v2
2

Trb
v2
3

Trb
v2
4

Trb
v2
5

Trb
v2
6

Trb
v2
7

Trb
v2
8

Trb
v2
9

Trb
v3
0

0 2.5 5.0 7.5 10 12.5 15 17.5 20 kb

Trb
v3
1

Trb
d1

Trb
j1-
1

Trb
j1-
2

Trb
j1-
3

Trb
j1-
4

Trb
j1-
5

Trb
j1-
6

Trj
1-7

Trb
c1

Trb
d2

Trb
j2-
1

Trb
j2-
2

Trb
j2-
3

Trb
j2-
4

Trb
j2-
5

Trb
j2-
6

Trb
j2-
7

Trb
c2

41.53 Mb

Trbv-Segment Trbj-Segment Trbc-Segment Pseudogenized-SegmentTrbd-Segment

Inverted Segment

B: Trbd + Trbj + Trbc Loci

A: Trbv Loci



Chapter 1 

 56 

 
Supplementary Figure 2: Comparison of the mm10 and CAST Trbv gene segment loci. Trbv gene 
segments that were lifted to the CAST genome at full-length are connected to their mm10 ortholog. Similar 
to their location in mm10 Trbv1 is located downstream and Trbv31 is located upstream of main Trbv cluster. 
A homologous sequence of the mm10 Trbv9 pseudogene could not be identified on chromosome 6 of CAST. 
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Abstract 
The adaptive immune system’s efficacy relies on the diversity of T cell receptors and the 

ability to distinguish between self and foreign antigens. Analysis of the paired 

heterodimeric αβ-TCR chains of individual T cells requires single-cell resolution, but 

existing single-cell approaches offer limited coverage of the vast TCR repertoire diversity. 

Here we introduce CITR-seq, a novel, instrument-free, high-throughput method for single-

cell TCR sequencing with >88% αβ-TCR pairing precision.  

We analyzed the TCR repertoires of CD8+ T cells originated from 32 inbred mice using 

CITR-seq, comprising four evolutionary divergent sister species and their F1 hybrids. 

Overall, we identified more than 5 million confidently paired TCRs. We found that V(D)J 

gene usage patterns are highly specific to the genotype and that Vβ-gene usage is 

strongly impacted by thymic selection. Using F1 hybrids, we show that differences in gene 

segment usage across species are likely caused by cis-acting factors prior to thymic 

selection, which imposed strong allelic biases. At the greatest divergence, this led to 

increased rates of TCR depletion through rejection of particular Vβ-genes. TCR repertoire 

overlap analysis across all mice revealed that sharing of identical paired CDR3 amino 

acid motifs is four times more frequent than predicted by random pairing of TCRα and 

TCRβ chains, with significantly increased sharing rates among related individuals. 

Collectively, we show that beyond the stochastic nature of TCR repertoire generation, 

genetic factors contribute significantly to the shape of an individual’s repertoire.         
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Introduction 
Adaptive immunity relies on the recognition of antigens presented on the surface of 

virtually all nucleated cells through class I and II major histocompatibility complexes 

(MHC). These MHC-bound antigens are recognized by T cell receptors (TCRs) expressed 

on the surface of T cells, which collectively possess the remarkable ability to discriminate 

between antigens of “self” and “foreign” origin. This is critical for preserving self-tolerance, 

thereby preventing autoimmunity, while also enabling the identification of pathogen-

infected or malignant cells to initiate an immune response [1]. The nature of an immune 

response depends largely on whether an antigen is presented via class I or class II MHC 

complexes, which are targeted by CD8+ cytotoxic T cells [2] or CD4+ helper T cells [3], 

respectively. The former can induce apoptosis in targeted cells while the latter can trigger 

secondary immune cascades involving B-lymphocytes and cells of the innate immune 

system. In both cases, TCRs are the key molecules that mediate signaling and enable a 

broad spectrum of immune responses. 

TCRs are primarily composed of two heterodimeric chains, TCRα and TCRβ, both of 

which arise from somatic rearrangements of gene segments during T cell development. 

This rearrangement process, known as V(D)J recombination, generates diversity through 

joining variable (V), diversity (D, exclusive to TCRβ) and joining (J) gene segments to a 

constant region, thereby generating a unique TCR receptor in each individual T cell [4]. 

Additional diversity is introduced through nucleotide insertions and deletions at each 

junction during V(D)J recombination [5]. In the expressed TCRα and TCRβ chains, the 

resulting highly polymorphic junctional region is situated in closest proximity to antigens 

presented by MHCs to serve as a binding pocket [6] and is termed complementarity-

determining region 3 (CDR3). The other CDRs, 1 and 2, constitute germline encoded 

regions within the V-segments of TCR chains and are believed to primarily facilitate TCR-

MHC binding and are less relevant for antigen recognition [7, 8] (Fig. 1A).    
The antigen specificity of each rearranged TCR as well as its affinity to MHCs is evaluated 

in a key multi-step process called thymic selection. It takes place during T cell maturation 

which is generally classified by the intra-thymic progression from the CD8/CD4 double 

negative (DN) stages of lymphoid precursors to the single positive stage (SP) of mature 
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T cells. The selection process is initiated at the so called β-checkpoint [9], at which the 

successful rearrangement of an in-frame TCRβ chain is controlled. Afterwards, the fully 

assembled αβ-TCR is tested for its affinity to MHCs during positive selection and its 

specificity to presented self-antigens during negative selection. Both processes are 

chronologically and spatially separated: Positive selection occurs in the cortex through 

interactions with cortical thymic epithelial cells (cTECs), whereas the subsequent 

negative selection occurs in the medulla through interactions with medullary thymic 

epithelial cells (mTECs)  (reviewed here [10]). Overall, only about 5% of T cell precursors 

survive thymic selection of their TCRs by demonstrating adequate affinity to MHC 

complexes while simultaneously exhibiting tolerance towards the broad spectrum of 

presented self-antigens and thus thymic selection significantly decreases the diversity in 

the TCR repertoire (Fig. 1B). 
In our current understanding, nucleotide insertions and deletions, V(D)J-segment usage 

and αβ-TCR pairing are mostly seen as stochastic events that give rise to highly unique 

and dynamic TCR repertoires within and across individuals [11]. However, recent work 

increasingly suggests that the diversity of TCR repertoires also relies on genetically 

encoded differences across individuals [12-15]. For example, V-segment usage in 

identical twins exhibits much greater similarity compared to unrelated individuals [16]. 

Notably, this provides evidence that genetics may operate at two different levels: V(D)J 

recombination as well as thymic selection, as indicated by the fact that identical twins also 

share the same set of MHC class I and II (also known as human leukocyte antigen, or 

HLA) alleles. This observation, and the multi-level genetic determinants that collectively 

shape TCR diversity, are the focus of at least two debates: one concerning the existence 

of a co-evolutionary feedback process between TCR and MHC binding [17-21], and the 

other on whether MHC heterozygosity is evolutionarily optimal due to the presentation of 

a broader immunopeptidome [22, 23], or alternatively, deleterious due to a high frequency 

of presented self-peptides, leading to increased depletion of autoreactive TCRs [24, 25].  

The extreme diversity of both binding partners, TCR and MHC, makes answering these 

questions extremely challenging. By contrast, panels of inbred mouse lines spanning 

within- and across-species diversity, along with their F1 hybrids, provide a tractable setup 
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to address the question regarding the role of MHC alleles in shaping repertoire diversity 

during thymic selection.     

Estimates on the theoretical αβ-TCR diversity vary greatly by species as well as 

methodology. Initial theoretical estimates on αβ-TCR diversity were approximately 1015 in 

mice [4] and 1018 [26] – 1020 [27] in humans. More recent calculations now greatly exceed 

those estimates and range up to 1061 [28]. However this needs context: the number of 

theoretical αβ-TCRs vastly outnumbers the actually realized TCRs in the repertoire of an 

individual, primarily because the number of present T cells of an individual (1012 [29] in 

humans and 108 [30] in mice) is several orders of magnitude smaller at any given time.  

Interestingly, despite the great difference in number of total T cells across different species 

(e.g. more than 1000x more T cells in humans than in mice), the diversity within the 

realized TCR repertoire has shown to be much more similar across species [30, 31]. This 

observation gave rise to the idea of a minimally required repertoire size defined as a 

functional unit of the “protecton” which is simply multiplied in species with larger numbers 

of total T cells [32]. Experimental validation of TCR repertoire diversity estimates still 

suffers from the limitations of current methodologies. While bulk assays can now feasibly 

analyze entire repertoires across many individuals [33-35], they leave out the critical 

pairing between TCRα and TCRβ chains within individual cells. Paired TCR analysis 

requires molecular barcoding of single cells, but existing methods often rely on pre-

existing single-cell workflows, restricting analysis to thousands of T cells rather than entire 

repertoires [36-38]. These protocols typically utilize fluorescence-activated cell sorting 

(FACS), or microfluidic platforms to isolate individual cells and therefore require 

specialized equipment. The recent development of SPLiT-seq [39] has expanded the 

scope of single-cell whole transcriptome experiments to up to 106 cells per experiment by 

using combinatorial indexing to molecularly barcode each individual cell. Despite this 

increase in throughput, the associated sequencing cost still substantially limits the 

feasibility of these methods for assessing large TCR repertoires, especially across 

multiple individuals.     

Here, we investigate repertoires of paired αβ-TCRs from cytotoxic CD8+ T cells by 

developing a targeted TCR sequencing protocol called CITR-seq (Combinatorial Indexing 
T cell Receptor sequencing) to analyze TCR repertoires at low cost and large scale. We 
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apply CITR-seq to 32 individual mice from 4 distinct inbred sister species (C57BL/6J, 

CAST/EiJ, PWD/PhJ, SPRET/EiJ, abbreviated as BL6, CAST, PWD and SPRET, 

respectively) and their F1 hybrids with BL6, spanning an evolutionary divergence of 

approximately 3 million years [40-42] (Fig. 1C). The diverged but controlled genetic 
backgrounds provide a unique opportunity to determine the respective impact of TCR 

locus structure, the V, D and J gene segment usage frequency, TCR/MHC allele co-

evolution via thymic selection and ultimately the joint effects on CDR3 diversity (Fig. 1D).  
 

 
Figure 1: Introduction to T cell receptors and overview of the study design 

(A) Heterodimeric αβ-TCR consisting of a V-, D- (exclusive to TCRβ) and J-gene alongside the 
constant (C) region. The junctional region of V(D)J genes marks the CDR3 sequence that is in the 
closest proximity to the antigen in the TCR-MHC complex. CDR1 and CDR2 are germline-encoded 
sequences of V-genes that contribute to TCR-MHC binding. 

(B) T cell maturation in the thymus. Intra-thymic T cells are classified by the expression of the lineage-
markers CD4 and CD8 (double negative: DN, double positive: DP and single positive: SP). T cells 
that successfully rearranged a functional TCRβ chain can pass the β-checkpoint. Subsequent 
continuous rearrangements of the TCRα chain leads to transition to the DP stage. T cells with a 
fully assembled αβ-TCR that is capable of binding self-MHCs on the surface of cTECs survive 
positive selection. Selected T cells migrate to the medulla and undergo negative selection, during 
which T cells that strongly bind self-MHCs on the surface of mTECs are rejected. T cells that survive 
both selection steps are released from the thymus. 
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(C) Phylogenetic tree showing the evolutionary divergence of inbred mouse species used in this study. 
(D) The different aspects of TCR generation and selection analyzed in the course of this study.       
 

Results 
 
CITR-seq design and validation 
To generate TCR repertoires we built on SPLiT-seq [39] to develop CITR-seq and modify 

the approach to generate RNA-based targeted paired αβ-TCR libraries (Fig. 2A). We first 
isolated CD8+ T cells from spleens of 10-week-old mice by using anti-CD8 magnetic 

beads and subsequent purification by FACS (Fig. S1A). Purified CD8+ T cells were either 
used directly or were transferred to anti-CD3 and anti-CD28 coated tissue culture plates 

for a 20-hour activation period before the library preparation (see Suppl. Table 1 for 
detailed sample list; note that we limited the activation to 20 hours to avoid cell doubling). 

Primary or activated T cells were fixed and permeabilized and a set of barcoded TCRα 

and TCRβ constant-region primers was used to perform in situ reverse transcription (RT) 

inside individual cells (see Suppl. Table 2 for a list of all primers and barcoding DNA-
oligos). All RT-primers contain a unique molecular identifier (UMI) and a ligation overhang 

for single-cell barcoding. Here, cells are distributed in two split-and-pool cycles across 

two 96-well plates, such that the RT-primer overhangs are ligated to oligos carrying 

barcode segments. The split-and-pool approach allows all reactions to be performed in 

bulk, while giving each cell an effectively unique barcode (calculated barcode collision 

rate: 1.67%; see methods). Afterwards up to 10,000 cells are merged into sub-samples 
and reverse crosslinking is done to make the barcoded cDNA accessible for amplification. 

Second strand synthesis is done in a multiplex-PCR setup using 54 primers targeting the 

5’ ends of TCR V-segments. In a final index-PCR another DNA barcode is added to each 

sub-sample, which expands the total barcoding space to up to 28 million unique cellular 

barcodes. Subsamples can then be pooled to generate the final sequencing-ready library 

which is compatible with standard Illumina workflows and can be further multiplexed with 

other sequencing libraries (Fig. 2B). This process is cost efficient (see methods) and 
does not require specialized instrumentation. 
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Using CITR-seq, we profiled TCR repertoires from a total of 9,113,392 CD8+ T cells 

(hereafter referred to as “T cells”) across all 32 individuals. Paired TCRα and TCRβ chains 

were successfully recovered in 75.8% of T cells, 55.4% of which carried exactly one α- 

and β-chain (Fig. 2C). To the best of our knowledge, this dataset of 5,049,334 singly α/β-
paired T cells represents the largest set of paired TCRs analyzed in a single study to date 

(Fig. 2D). To assess pairing precision, we determined the rate of repeated observations 
of identical Vβ-Jβ-CDR3β and Vα-Jα-CDR3α mates (or “clonotypes”) in a sample of 

150,000 T cells that underwent clonal expansion for 72h in tissue culture. Clonal 

expansion through prolonged tissue culture allowed us to enrich for cells carrying the 

same α/β-chain pairing, the recovery of which would have been unlikely under our 

standard protocol. TCRβ chains that were observed at least twice in this repertoire were 

seen with identical TCRα chains in 88% of cells, thus representing T cells with identical 

clonotypes. This rate marks the lower-bound pairing precision, since with 150,000 T cells, 

we expect a low, but non-negligible chance of recovering the same Vβ-Jβ-CDR3β chain 

from two non-clonal T cells which should therefore pair with a different TCRα chain. In 

agreement with this high pairing precision, we observed few cells with more than two 

TCRα (1.4%) or TCRβ (0.5%) chains across all 32 CITR-seq samples, which is 

biologically implausible because of the presence of just two alleles for each chain in each 

T cell (Fig. S2A).  
 

We then compared transcripts (UMIs) per cell counts at saturating read coverage (mean 

reads/cell: 184.57; Fig. S2B) in activated and primary T cells in CITR-seq. Activated T 
cells had a significantly higher UMI/cell count (14.81) compared to primary T cells (5.9, 

pairwise t-test; P < 0.01; Fig. 2E). We compared these values to two publicly available 
human TCR sequencing datasets (Parse Bioscience; see methods), in which 72h 
activated T cells also showed significantly higher average UMI per cell count (18.44 

UMIs/cell) than primary T cells (4.69 UMIs/cell). As a further benchmarking effort, we 

generated complementary datasets for each of the four inbred mouse species from 

primary T cells using the Chromium Next GEM Single Cell 5’ platform by 10x Genomics 

(see methods). For these, we recovered 10.1 UMIs/cell on average across samples  
(Fig. 2E).  
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We evaluated whether activation of T cells biases the recovered TCR repertoire by 

comparing V-J usage (discussed below) and clonal abundance in samples of primary and 

activated T cells, each down-sampled to 150,000 cells. To do so, we first compared the 

frequency of multiple observations of identical TCRα and TCRβ as well as full clonotypes 

(defined by identical V+J+CDR3 amino acid motif) across cells (Fig. S2C). In TCR 
repertoires of primary T cells and T cells that were activated for 20h, most αβ-TCR pairs 

were exclusive to a single cell (93% and 96.7% respectively). This is in contrast to αβ-

TCR pairs in TCR repertoires of cells that were activated for 72 hours, in which less than 

half (48%) of pairs are exclusive to a single cell with all other pairs being observed multiple 

times. We therefore conclude, that in agreement with previous studies [79] the 20h 

activation protocol did exclude clonal expansion of T cells. 

 

Validation of CITR-seq against 10x Genomics commercial platform 
To validate complete coverage of all the functional V/J genes, we compared V-J gene 

usage frequencies from data generated using CITR-seq and 10x Genomics Immune 

Profiling. We find high correlation of V-J usage frequencies (Pearson: BL6 r = 0.91) across 

both methods (Fig. S3C). Additionally, the highly correlated V-J usage frequencies 
provide further evidence for the unbiased repertoire representation of 20h activated 

(CITR-seq) compared to primary (10x Genomics Immune Profiling) T cells. 

To evaluate the coverage of cross-species repertoires, we analyzed CDR3 amino acid 

motif diversity in α- and β-chains both individually and jointly (Fig. 2F). In the 5,049,334 
T cells from across all 32 samples, we detect 719,976 (14.26%) unique TCRα and 

1,725,631 (34.18%) unique TCRβ chains. If analyzed jointly, 95.6% of these (4,826,991) 

represent unique αβ-TCR pairs. In contrast, in 9,445 paired T cells in our Chromium Next 

GEM Single Cell 5’ datasets, we found 85% and 94.9% unique TCRα and TCRβ chains, 

respectively (n = 8,021 and 8,963), and nearly all (98.6%, or 9,313 T cells) represent 

unique αβ-TCR pairs (Fig. S2D). Taken together, we interpret this data to show the 
remarkable diversity, especially across paired TCRs: even with the throughput of CITR-

seq at 5 million cells, we were not close to sampling T cell clonotypes to saturation, let 

alone using much more limited platforms. This further emphasizes the need for high-

throughput methods to gain reasonable insight into the diversity of TCR repertoires. 



Chapter 2 

 65 

 

 
Figure 2: CITR-seq allows for the analysis of millions of confidently paired αβ-TCRs 

(A) Workflow for generating paired αβ-TCR sequencing libraries using CITR-seq. Isolated T cells are 
fixed and permeabilized. TCRα and TCRβ are in-situ reverse transcribed using barcoded primers 
targeting both TCR constant regions. Afterwards, T cells are distributed across 96-well plates and 
well-specific barcodes are ligated to the cDNA. This process is repeated once by pooling all T cells 
and redistributing them to a second set of barcoding plates. T cells are then pooled again and split 
into sub-samples before reverse crosslinking. Second strand cDNA is generated in a multiplex-
PCR with primers targeting the 5’ region of Vα- and Vβ-genes. In a final Index-PCR a fourth barcode 
is added.   

(B) Barcode and sequencing adapter structure in CITR-seq libraries. The different combinations of all 
four barcodes provide a barcoding space of more than 28 million possible barcodes. Sequencing 
reads fully cover CDR3α and CDR3β sequences. 
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(C) Pairing rate across all CITR-seq samples in this study. Fraction of the 9.113.392 total T cells that 
were assigned to a TCRα (93%, red), a TCRβ (83%, blue), at least one TCRα and TCRβ (76%, 
green) or exactly one TCRα and TCRβ chain (55%, violet).  

(D) Total number of paired αβ-TCRs analyzed in different studies and publicly available datasets 
generated with different methods. Emulsion RT-PCT [14], PairSeq (plate-based) [43], two publicly 
available datasets generated with combinatorial indexing (Parse Bioscience) [44] and microfluidics 
(10x Genomics) [45]. 

(E) Mean number of TCRα and TCRβ transcripts (UMIs) per cell-barcode in primary and activated T 
cells in CITR-seq samples (primary and 20h activated mouse T cells), across all 10x Genomics 
Single-Cell Immune Profiling libraries (primary mouse T cells) and in two publicly available datasets 
from Parse Bioscience (primary and 72h activated human T cells) [44, 46]. 

(F) Total number of unique CDR3α, CDR3β or paired CDR3αβ amino acid motifs relative to the number 
of T cells across all 32 CITR-seq samples.      

 
Distinct V-J usage patterns across mouse species 
To compare V-J segment usage across the different mouse species, we first constructed 

species-specific V(D)J-segment references (see methods). Across all samples, mapping 
against the corresponding species-specific reference showed a slight increase in the total 

number of successfully aligned sequencing reads (PWD: +0.07%, CAST: +0.07% and 

SPRET: + 0.1% total reads; Fig. S3A) and per segment alignment scores (data not 
shown), relative to mapping against an mm10-based V(D)J reference provided in the 

MiXCR software [47]. Local alignment of TCR loci to the mm10 reference genome 

(GRCm38/mm10) revealed one-to-one orthology in Vβ-, Jβ- and Jα-segments. In 

contrast, we found extensive rearrangements, including inversions and gene-cluster 

triplications in the Vα cluster between the four mouse species (Fig S3B). For instance, 
the central region of the Vα cluster (Vα gene families 3-15) is triplicated in BL6, PWD and 

SPRET relative to the CAST Vα cluster. This results in a Vα locus size reduction of ~0.6 

Mb and approximately 70 fewer Vα genes in CAST. In a given species, sequence identity 

across Vα paralogues is extremely high (e.g., in BL6 Trav11 and Trav11D are 100% 

identical on the nucleotide level; for details see [48]). For this reason, and to properly 

handle multiple Vα read mapping, we grouped Vα genes into their respective gene 

families for cross-species comparison. 

We compared the mean of intra-species V/J gene segment usage across BL6, PWD, 

CAST and SPRET mice (Fig. 3A). Consistent with previous studies [33, 49], V/J segment 
usage within an individual typically spanned several orders of magnitude in both TCRα 

and TCRβ chains. For example, in BL6 TCR repertoires Trbv12-1 and Trbj2-7 were found 

in 2.37% of likely productive, in-frame, TCRβ chains, while the combination of Trbv21 and 
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Trbj1-5 was only present in 0.0003% of in-frame TCRβ chains. Across species, segment 

usage frequencies are broadly similar, with some notable and extreme exceptions, mostly 

in Vβ-Segments (e.g. Trbv13-2 is used in 7.75% of BL6 TCRβ chains compared to only 

0.14% in SPRET). Consistent with previous studies [50] we observe decreased pairing of 

proximal Vα and distal Jα as well as distal Vα and proximal Jα segments. The only 

exception to this rule is CAST, where we observed significantly higher usage frequencies 

of the most distal Vα gene (Trav1 and Trav2; chi-squared test; ** P < 0.01; Fig S3D). In 
laboratory mice, it has been shown that TCRα V-J recombination proceeds progressively 

from 3’ (proximal) Vα genes towards more 5’ (distal) Vα genes [51]. We therefore 

hypothesize, that the significantly higher usage of distal Vα genes in CAST is linked to its 

contracted Vα locus. As a general trend, we found that the average variance in V-

segments usage frequency (var(Vβ) = 12.44, var(Vα) = 5.95) was higher compared to the 

average variance in J-segment usage frequency (var(Jβ) = 4.91, var(Jα) = 0.48) when 

compared across all species. This indicates that species-specific differences in V(D)J 

usage mostly arise from biases in V-segment usage rather than J-segment usage.   

Further to the previous validation effort, we have also generated matching V(D)J usage 

profiles using the commercial 10x platform. Similar to BL6 mice, we observed excellent 

correlation of V-J gene usage frequencies in both approaches (Pearson correlation: PWD 

r = 0.89, CAST r = 0.88, SPRET r = 0.92) and only identified two V-gene segments that 

were not recovered in the CITR-seq dataset compared to the 10x dataset (Trbv-31 in 

PWD, and Trbv-24 in CAST/SPRET). The main difference between the platforms is that 

with CITR-seq we recovered on average ~160,000 T cells carrying a productive and 

paired TCR per experiment vs. 2,300 using the 10x platform.    

Next, we performed principal component analysis (PCA) on combined TCRα and TCRβ 

V-J pairings across all CITR-seq replicates from each species alongside the 4 samples 

generated using 10x Genomics Immune Profiling, subsampling each sample to 5,000 

TCRα and TCRβ chains each due to the lower throughput of the latter (see methods). 
Overall, samples are clustered strongly by species (PC1-PC3; Fig. 3B, Fig S3E) with only 
6% of cross-sample variance explained by the technique (PC4, Fig. S3E). Mean intra-
species V-J usage was highly correlated across samples for both TCRα and TCRβ 

(Pearson: r = 0.987 +/- 0.052 stdev vs. r = 0.991 +/- 0.044 stdev) (Fig. 3D). Across 
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samples the average V-J segment usages were more correlated for TCRα chains (r = 

0.83 +/- 0.119 stdev) than TCRβ chains (r = 0.59 +/- 0.244 stdev) which is consistent with 

the difference in overall diversity across both chains described earlier (Fig. 2E). 
Therefore, we conclude that in the four different mouse species, V-J usage showed 

distinct genotype specific patterns primarily in Vβ-genes. 
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Figure 3: Species-specific V- and J-gene usage patterns in different mouse species 

(A) V-J usage frequency heatmaps. Heatmap shows the frequency (log2) of Vα-family + Jα-gene (left) 
and Vβ-gene + Jβ gene (right) usage of all functional TCRs in T cells across the four different 
mouse species (intra-species mean). Red boxes contain V-genes with one-to-one orthology in all 
four mouse species. J-genes are displayed in the order of their location within the locus (3’ to 5’; 
see methods for full list). In PWD Trbv31 is excluded due to failure of amplification during multiplex 
PCR. 

(B) Principal component analysis (PCA) of combined Vα-Jα and Vβ-Jβ usage across all four mouse 
species in different samples generated using CITR-seq (empty circles) or 10x Genomics Single 
Cell Immune Profiling (filled circles). Samples generated using both methods cluster by genotype. 

(C) Pearson correlation of inter-individual V-J gene usage in TCRα and TCRβ chains in all 32 
individuals analyzed using CITR-seq in this study.  

    
 
Thymic selection shapes TCR repertoire V-segment usage 
Thymic selection ensures that T cells expressing TCRs with either too weak (positive 

selection) or to strong (negative selection) self-MHC binding properties fail to progress in 

the maturation process and are thus depleted from the repertoire. In effect, by collecting 

TCRs from peripheral (e.g., spleen-derived) T cell populations for CITR-seq, we report 

here the mature TCR repertoire after thymic selection. Here, we also emphasize a 

distinction between functional vs. non-functional TCR chains. This is because during 

V(D)J recombination, random insertions and deletions of nucleotides at gene-segment 

junctions, often introduce frameshifts or premature stop-codons. These result in 

transcripts representing non-functional TCRs. However, mature T cells with an in-frame 

(IF) TCR often still retain active transcription of an out-of-frame (OOF) TCR from its 

second allele that is ultimately degraded, e.g., via non-sense mediated decay [52, 53]. 

This presented us with an opportunity to estimate the generative usage probability of gene 

segments, independent from the effects of positive or negative thymic selection (see also 

[54]). Crucially, our use of an inbred panel of species should result in an unchanged, 

homozygous MHC background resulting in a consistent thymic selection regime.  

Across all 32 CITR-seq sample we found 4.58x106 (24.4% of total transcripts) transcripts 

that contain frameshifts or premature stop-codons with an average per transcript UMI 

count of 1.78 (compared to 4.87, two-sample t-test, P < 0.001). To evaluate the effect of 

thymic selection on TCR repertoires across the different species, we compared V- and J-

gene usage in OOF (pre-selection) and IF (post-selection) TCRs (Fig. 4A). We observed 
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that most V(D)J genes show similar frequencies in pre- and post-selection repertoires, 

summarized by normalized Shannon diversity index (nSDI, see methods), a measure of 
entropy (Vα (BL6 and PWD) as well as Jα (no significant changes) and Jβ (PWD and 

SPRET; Fig. S4B)). Again, the strong exceptions reside mostly within Vβ-genes: we 
observed significant differences in Vβ gene usage frequencies in all four species (Fig. 
4B, paired t-test P < 0.05). The strongest absolute reduction of nSDI was observed in 
SPRET (-0.15) and PWD (-0.06), indicating significantly biased Vβ-segment usage in 

post-selection repertoires. For specific Vβ-segments, we found striking differences 

between pre- and post-selection repertoires, e.g., an average ~60-fold reduction in 

Trbv13-2 usage frequency in SPRET post-selection repertoires (Fig. 4C). Notably, these 
extreme fold changes were mostly present in Vβ genes that showed strong cross-species 

frequency difference (e.g. Trbv-2, Trbv12-2, Trbv13-2, Trbv17, Trbv21) as shown before 

(Fig. 3A). We interpret the striking reduction in usage for these Vβ segments to be 
strongly suggestive of segment rejection during thymic selection.  

While the most extreme differences in Vβ-segment usage tend to be species-specific, we 

also observed common trends shared across all four species. For instance, we observed 

Trbv-2 frequencies to be consistently lower in post-selection than pre-selection 

repertoires across all species (log2 FC IF/OOF; BL6: -1.2, PWD -1.3, CAST -0.5, SPRET 

-4.4). While thymic selection acts only to remove T cells from maturation, such that the 

absolute number of TCRs containing a particular gene segment only decrease from pre- 

to post-selection repertoires, in relative terms, a given segment can be overrepresented 

in the final, mature repertoire through thymic selection. One such example was Trbv-14 

whose relative contribution to the TCR repertoire was higher in all post-selection 

repertoires across species (log2 FC IF/OOF; BL6: 1.3, PWD 1.8, CAST 1.24, SPRET 

1.38). 

In summary, we show that thymic selection exerts an effect on the composition of the TCR 

repertoire by distorting usage frequencies in all segments across all four species, but its 

effect is most notable in Vβ-genes, in particular in the reduction of particular Vβ-genes 

(e.g. Trbv13-2, Trbv2, Trbv12-2 etc.) in PWD and SPRET, likely due to strong rejection 

during positive thymic selection. 
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Figure 4: Thymic selection shapes V-gene usage 

(A) Vα family (left) and Vβ gene (right) usage frequency (log2) heatmaps. Heatmaps show the mean 
intra-species V-usage in in-frame (IF) and out-of-frame (OOF) TCRs across all T cells. 

(B) Mean intra-species entropy in Vα-usage (top) and Vβ-usage (bottom) distributions calculated using 
the normalized Shannon diversity index (nSDI) for OOF and IF TCRs (error bars indicate the 
standard deviation in species replicates, significance calculated using a paired t-test, * P-value < 
0.05). 

(C) Log2 fold-changes (log2FC) in Vβ gene usage frequencies between IF and OOF TCRs across the 
different mouse species (error bars indicate the standard deviation in species replicates).       
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Allele-specific V/J segment usage in F1 Hybrids revealed by patterns of 
thymic selection 
In contrast to outbred individuals, assaying V(D)J gene usage in inbred mouse strains 

benefits from consistent thymic selection, thanks to the homozygous MHC-allele 

background. If so, the observed OOF-IF profile should shift in individuals carrying 

alternative MHC-haplotypes (see also [55, 56]). This raises further the tantalizing 

possibility that, depending on the actual MHC-haplotype, there may be different outcomes 

associated with positive vs. negative thymic selection. To test our hypothesis, we 

generated F1 hybrids from crosses of BL6 with each of the three other mouse species 

(BL6xPWD, BL6xCAST, BL6xSPRET). This gave us a powerful tool to track how the two 

otherwise distinct sets of species-specific V(D)J gene repertoires may be shaped by 

thymic selection in the respective heterozygous MHC allele state. 

We first compared V(D)J usage frequencies in F1 hybrids with the respective frequencies 

in the parental species (Fig. 5A for V-genes and Fig. S5A for J-genes). Similar to our 
previous analysis, we see the most differences across Vβ-genes, in both directions: Vβ-

genes can be significantly more abundant (e.g., Trbv1) or less abundant in F1 hybrids 

than in either parent (e.g., Trbv12-1 and Trbv12-2; Wald-test; P < 0.01; Fig. S6A-D). To 
analyze the general trends across Vα, Jα, Vβ and Jβ frequencies between parental lines 

and their F1 hybrids, we classified their relative V(D)J gene usage frequencies into five 

broad categories: conserved, additive, dominant, over- and under-dominant (Fig. 5B, see 
methods). In Vα and Jα genes, 78.6% of genes only show modest frequency changes 
(<1%) relative to both parents. Over- and underdominance (>1% higher/lower frequency 

than both parents, respectively) are only seen in genes in the TCRβ chain and mostly in 

Vβ-genes. Notably, we observe overlaps in the identity of over-dominant (e.g., Trbv1) and 

under-dominant (e.g., Trbv12-1) Vβ-genes across all three hybrids. Collectively, V(D)J 

gene frequency changes between F1 hybrids and the parental lines are predominantly 

observed in the TCRβ chain.   

We then calculated the nSDI for pre- and post-selection repertoires in the F1 hybrids and 

compared them to the previously calculated nSDI values in the parental species (Trav 

and Trbv Fig. 5C Traj and Trbj Fig. S5B). Across all F1 hybrids, we see significantly 
reduced nSDI values for Vβ-gene frequencies (P < 0.05; paired t-test). The increase in 
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unevenness between pre- and post-selection repertoires are consistently greater in F1 

hybrids compared to their parental species, suggesting that thymic selection introduces 

stronger biases on Vβ-gene usage in F1 hybrids relative to their respective parental 

species. Interestingly, we observed a constant increase of nSDI values in post-selection 

compared to pre-selection Vα gene frequencies in F1 hybrids (P < 0.05 in BL6xCAST and 

BL6xSPRET).      

Next, we took advantage of our ability to assign V(D)J genes in F1 hybrids in an allele-

specific manner to identify potential biases towards usage of one parental allele. We 

compared the allelic ratios of V(D)J genes in pre- and post-selection repertoires (V genes: 

Fig 5D, Fig S5D and J genes: Fig S5C). We found significant allelic biases in Vβ-genes 
in post-selection repertoires that were not observed in the pre-selection repertoire. For 

example, in pre-selection repertoires of BL6xSPRET hybrids, ~60% of Trbv13-2 usage 

was assigned to the SPRET allele, whereas in post-selection repertoires this rate dropped 

to ~1%. Therefore, while in BL6xSPRET hybrids the Trbv13-2 allele was frequently 

recombined during V(D)J recombination, it was almost completely rejected during thymic 

selection. The almost exclusive selection of one parental allele in a heterozygous MHC 

haplotype and a common trans-environment, provides strong evidence that this selection 

process is primarily determined by genetically encoded polymorphisms in the underlying 

Vβ gene. Similarly, we saw that while Traj35 pre-selection frequencies are balanced 

between parental alleles (Percent of BL6 alleles: PWD 49%, CAST 44%, SPRET 50%), 

the BL6 allele was substantially less frequent in post-selection repertoires (Percent of BL6 

alleles: PWD 25%, CAST 26%, SPRET 25%; Fig S5C).  
Apart from these strong exceptions, allelic bias is strongly correlated in pre- and post-

selection repertoires for most V(D)J genes (see Pearson correlation in Fig. 5D and S5C). 
Genes that show strong frequency differences between both parental species (Trav16 

and Trbv21 in BL6/CAST, Trav18 in BL6/SPRET or Trbv17 in BL6/PWD) often show 

strong F1 allelic bias towards usage of the respective parental allele that had a higher 

frequency in the pure contrast (Fig. 5D). We therefore conclude that the (generative) pre-
selection biases observed between species are primarily controlled by linked factors 

acting in cis, e.g., polymorphisms in the RSS sequences that influence the recombination 

likelihood of a particular gene during V(D)J recombination.            
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Figure 5: V-gene usage is more restricted in F1 hybrids and shows allele specific 
usage biases 

(A) Vα family (left) and Vβ gene (right) usage frequency (log2) heatmaps of in-frame TCRs in F1 hybrids 
and their respective parental species. 

(B) Relative frequency changes of V(D)J gene usage in F1 hybrids and the respective parental species 
(x-axis: F1 hybrid – BL6 and y-axis: F1 hybrid – PWD, CAST or SPRET) categorized into mode of 
inheritance. Conserved (center), dominant (grey area), additive (top left and bottom right quadrant), 
under-dominant (bottom left quadrant) and over-dominant (top right quadrant; see methods). Each 
circle represents a Vα-family, Jα-gene, Vβ-gene or Jβ-gene. 
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(C) Comparison of entropy of V-usage distribution in F1 hybrids and the respective parental species 
calculated using the normalized Shannon diversity index (nSDI) for OOF (left) and IF (right) TCRs 
(error bars indicate the standard deviation in species replicates, significance tested for F1 hybrid 
IF vs OOF contrast using paired t-tests, P-value < 0.05). 

(D) Analysis of biased V gene allele usage in F1 hybrids. Plots show the percentage of BL6 Vα family 
alleles and Vβ gene alleles in post- (x-axis) and pre-selection (y-axis) TCRs. Each circle represents 
a Vα-family (top) or Vβ-gene (bottom). Pearson-correlation was calculated for post- and pre-
selection V gene usage.     

 
Composition and diversity of the paired CDR3αβ repertoire depends on an 
individual’s genotype  
Next, we addressed CDR3 diversity 32 samples, representing seven different genotypes. 

We reasoned that given the cumulative bias in gene segment usage, availability, as well 

as genetic differences, we should observe distinct CDR3 amino acid motif repertoires. To 

test this hypothesis, we first compared the CDR3α, CDR3β and CDR3αβ diversity in a 

set of 100,000 T cells sampled randomly from each individual (Fig. 6A). We found that, 
across all comparisons, F1 hybrids show an increased number of unique CDR3 

sequences relative to their respective parental species. In single CDR3α motifs, we see 

significant differences in diversity within the parental species, which is in line with the 

observed differences in locus structure of the TCRα loci across these mice (e.g., ~50 

fewer Vα segments in CAST compared to all other species; pairwise t-test; ** = P < 0.01; 

* = P < 0.05). These parental diversity differences are not recapitulated in the F1 hybrids. 

Instead, the absolute diversity increases with the increasing evolutionary divergence of 

the parental species.  

A strikingly different picture emerged for the CDR3β motifs. Importantly, V(D)J segments 

in the TCRβ locus follow a strict one-to-one orthology across all parental species. 

Accordingly, single-chain CDR3β diversity showed little variation across the parental 

species. In contrast, F1 hybrids showed much greater variation and generally display 

greater TCR diversity than observed in the repertoire of either parent (pairwise t-test; ** 

= P < 0.01; * = P < 0.05). A possible explanation for this is the strictly restricted selection 

of Vβ segments during thymic selection in the TCRβ chain. We observe remarkable 

diversity of paired CDR3αβ across all genotypes, with an average of 98.2% of all motifs 

being observed only once in each set of 100,000 motifs. Notably, among F1 hybrids, the 

lowest diversity is observed in BL6xSPRET hybrids despite the highest evolutionary 

divergence in the respective parental species.  
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Due to random insertions and deletions at the segment junction sites, the highest amino 

acid diversity within CDR3 motifs is observed in the central region of the peptide chains 

(Fig. S7A). It has been shown that this central region overlaps the region of highest 
antigen proximity in TCR-MHC complexes (position 107-115 according to IMGT 

nomenclature [57]) and therefore contributes most to the antigen specificity of the 

underlying TCR [6]. Further, the same study also provided evidence that antigen-

specificity is defined by specificity-groups of similar amino acid motifs within TCRs. With 

this in mind, we analyzed germline-encoded differences in the central motifs across all 

mice. Because the same antigen might be recognized by several similar TCRs rather than 

just one CDR3αβ motif we first generated amino acid 4mers from both CDR3 motifs of 

TCRs of individual cells (Fig 6B). We then identified a list of 1,201,646 common 4mers 
across all genotypes (see methods). Next, we performed PCA analysis based on the 
abundance of all 4mer pairs across all 32 individuals. We see that 4mer pairs are strictly 

clustered according to the underlying genotype of each sample (Fig. 6B). This pattern 
was also observed in the corresponding analysis on single-chain derived unpaired 4mers 

(Fig S7B). 
Comparison of TCR repertoires often involves the analysis of shared “public” CDR3 

motifs. Typically, this type of analysis addresses motif sharing within single chains across 

repertoires. While these comparisons might provide information on the generative 

probability of distinct single-chain CDR3 motifs across individuals, the missing CDR3 

motif in the second chain makes it challenging to identify potential shared TCR responses 

to antigens. Here, we utilized CITR-seq’s large set of more than 5 million paired CDR3 

motifs to analyze motif sharing across all individuals. In total, we identified 25,894 (~0.5% 

of all motifs) paired motifs with identical amino acid sequence, observed in different 

individuals. Across single chains, sharing of identical amino acid sequences was more 

common with 264,088 shared CDR3α (~36.7% of all unique motifs) and 469,827 shared 

CDR3β (~ 27.2% of all unique motifs) motifs observed in at least two individuals. Notably, 

we found 1,696 CDR3α and 644 CDR3β amino acid motifs that were observed in all 32 

individuals, while identical CDR3αβ pairs were at most observed in 12 individuals (Fig. 
S7C)   
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To test whether the extent of paired CDR3αβ motif sharing was higher than expected by 

chance, we shuffled the α- and β-chains within each individual and then re-calculated the 

count of shared motifs. We saw that the observed sharing count is about 4-fold higher 

than the mean across 100 permutations of αβ-chains shuffled samples (mean:  6182 

shared CDR3αβ motifs across shuffled pairs, permutation test P-value < 0.01). Next, we 

analyzed whether the extent of sharing in CDR3αβ motifs is dependent on the underlying 

genotype of each sample. To account for the variance in sample size across all samples, 

we calculated the Jaccard Index of repertoire sharing using paired CDR3αβ motifs (Fig. 
6C, see methods). We observed that motif sharing is significantly higher across samples 
of identical genotypes (56.7% of all shared motifs), compared to individuals with partially 

shared genotypes (F1 hybrid samples, 32.0% of all shared motifs) and especially in 

contrast to completely unrelated individuals (11.3% of all shared motifs; Wilcoxon rank 

sum test P-value < 0.01) (Fig. 6D). While we caution here that our use of inbred 
individuals may differ from the usual comparison contexts with CDR3 motifs, 

nevertheless, the extent of sharing across fully unrelated individuals led us to conclude 

that an individual’s genotype contributes significantly to the final TCR repertoire. 

Additionally, public TCR responses are far more likely to be observed across related 

individuals than unrelated individuals.                      
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Figure 6: CDR3 motif diversity and sharing depends on an individual’s genotype 

(A) Mean count of unique CDR3α (left) CDR3β (middle) and paired CDR3αβ (right) amino acid motifs 
in a set of 100,000 randomly sampled TCRs from each individual grouped by genotype (error bars 
indicate the standard deviation in species replicates, significance calculated by pairwise t-tests with 
* P-value < 0.05 and ** P-value <0.01). Single-color bars represent the parental species, diagonally 
striped bars represent the respective F1 hybrids. The phylogenetic tree (bottom) shows the 
evolutionary divergence of parental species.  

(B) Analysis of paired 4mers extracted CDR3αβ motifs. For each paired CDR3αβ amino acids 
sequence all possible 4mers were extracted and subsequently, 3 random 4mer pairs (one from the 
CDR3α and one from the CDR3β sequence) were generated (left panel). The combined filtered 
(see methods) count matrix of 4mer pairs from all 32 individuals was then used for PCA analysis. 
Samples cluster based on the sample genotype. 

(C) Overlap of paired CDR3αβ amino acid motifs between all 32 CITR-seq samples calculated using 
the Jaccard index (log2; see methods) 

(D) Based on overlap of genotypes all samples were grouped into identical genotype (within species, 
e.g., BL6F_1 and BL6M_1), hybrid genotype (50 % identical genotype, e.g., CAST and BL6xCAST) 
and different genotype (completely unrelated individuals, e.g. PWD and SPRET). Boxplot shows 
the calculated Jaccard index values (log2) in each respective group (significance tested using 
Wilcoxon rank-sum test, P-value < 0.01). 

Discussion 
Production and maintenance of large and diverse repertoire of TCRs is crucial for a 

functioning adaptive immune system. For decades researchers have now accumulated 

insights into the generative process, the size and overlap, as well as associations to 

disease states of TCR repertoires. High-throughput sequencing technologies have 

reached sufficient sensitivity and throughput to capture reasonable portions of an 

individual’s TCR repertoire. Yet, they still suffer from severe limitations in the face of the 

extreme diversity of TCR repertoires. To date, arguably the most limiting of these factors 

is the requirement for single-cell resolution to link both TCR chains of the heterodimeric 

αβ receptor to the T cell of origin. With few (mostly non-commercial) exceptions, single-

cell TCR sequencing methods suffer from low-throughput (103-105 T cells) and high cost 

(reviewed here [58]). Pit against the vast TCR repertoire diversity, especially in naïve 

repertoires, those technologies often capture only a tiny fraction of an individual’s 

repertoire.  

In this study we present CITR-seq, a high-throughput low-cost single-cell TCR 

sequencing method that overcomes many of these limitations. We use CITR-seq to 

generate TCR repertoires of four evolutionary divergent inbred mouse species and t their 

respective F1 hybrids, covering more than 9 million T cells with 76% successful αβ-pairing 

rate.  
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We first identified large differences in V(D)J gene usage across the different mouse 

species, with very high within-species consistency for both TCR chains. While the 

arrangement and number of genes in the TCRβ locus are conserved across all species, 

the TCRα locus has undergone complex rearrangements leading to triplications and 

inversions of Vα gene clusters. As a result, the number as well as their relative distance 

to Jα genes varies substantially between Vα genes of the different mouse species. We 

observed that at the TCRα locus in CAST, in which the Vα locus was contracted by 0.6 

Mb, the distal Vα genes showed significantly higher segment usage compared to the other 

species. Considering the progressive 3’ to 5’ recombination of V-J segments [59], we 

interpret this as evidence for a direct relation of gene segment locus size and 

chromosomal position dependent usage frequency.  

Due to the very conserved arrangement of TCRβ genes, the tightly enforced allelic 

exclusion as well as prevention of continuous rearrangements, the relative position of 

genes should contribute less to biases in the TCRβ gene usage across species. 

Nevertheless, we see that the relative fold-changes in gene usage of Vβ genes can be 

extreme, with up to 60-fold difference between different mouse species. 

We show that many of those extreme gene usage differences are introduced during 

thymic selection by comparing pre- vs post-selection repertoires. We use the nSDI of 

segment usage to demonstrate that thymic selection primarily acts on Vβ segments and 

show that their generative frequency immediately after V(D)J recombination is more 

similar across different mouse species than the actual usage frequencies observed in 

mature and selected TCR repertoires. Critically, we observed that many of the Vβ genes 

that are rejected during thymic selection, contribute identical amino acids to CDR3 motifs 

compared to other Vβ genes that do not significantly change in frequency in pre- vs. post-

selection repertoires. Thus, we hypothesize, that the rejection of those Vβ genes is 

unlikely to be enforced during negative selection as a consequence of strong affinity to a 

self-MHC complex. Rather, it is reflective of their particular germline-encoded ability to 

bind MHCs evaluated during positive selection. This hypothesis is further supported by 

the fact that we did not observe categorical rejection of J-segments, that are though to 

mostly contribute to the antigen specificity of a TCR rather than its ability to bind to MHCs. 



Chapter 2 

 81 

Further experiments, where both Vβ and MHC components can be experimentally 

controlled, may be able to shed light on the mechanism underlying our observation. 

We also used F1 hybrids of inbred mouse species, as a powerful tool to evaluate the 

thymic selection of TCRs in a defined heterozygous MHC haplotype. In those hybrids, 

two sets of V(D)J genes are exposed to a common trans-environment that subject both 

to a common positive and negative selection regime. As a general trend, we see that most 

V(D)J genes show conserved usage frequencies relative to the parental species, or 

alternatively, in the case of substantial differences between the parental species, exhibit 

intermediate (additive) gene usage frequencies. These general patterns are far less 

pronounced for Vβ gene usage frequencies of F1 hybrids. We see that the selection 

against particular Vβ genes mostly resembles the patterns seen in the parents, with 

additional rejections of particular genes that were frequent in both parents. By utilizing 

our species-specific V(D)J references, we were able to disentangle the usage frequencies 

of particular alleles in F1 hybrids. We provide examples of Vβ-genes with balanced allelic 

ratios in pre-selection repertoires and striking allelic biases in post-selection repertoires. 

The nearly mono-allelic usage of particular Vβ-genes as a consequence of thymic 

selection in a defined heterozygous MHC allele state in F1 hybrids, provides strong 

evidence that the rejection of particular Vβ-gene alleles is based on genetically encoded 

polymorphisms. To the best of our knowledge, such extreme cases of allele-specific Vβ-

genes selection have not been described before. This finding has important implications 

for the ongoing debate about whether binding to MHCs is an inherent and germline-

encoded feature of TCRs that progressively co-evolves, or alternatively, MHC restriction 

of TCRs is enforced by TCR co-receptor signaling involved in TCR-MHC complex 

formation. Due to the common trans-environment during thymic selection of TCRs, the 

strong allelic biases of particular Vβ genes can hardly be explained by co-receptor 

signaling and thus should reflect the inherent ability of particular Vβ gene alleles to bind 

MHCs originated from heterozygous alleles in the F1 hybrids. Consequently, we 

hypothesize that TCR-MHC binding is a co-evolutionary process mediated by changes in 

amino acid sequences of V gene regions and MHC alleles that facilitate complex 

formation. In this context, the highly variable germline-encoded CDR1 and CDR2 regions 

of TCR V-genes have been shown to be crucial for altering TCR-MHC binding strength.         
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A secondary consequence of the co-evolution of TCR-MHC binding would likely be the 

increased rate of TCRs that exhibit insufficient or overly strong affinity to MHCs in hybrids 

between highly divergent parents. Indeed, as shown in this study, thymic selection had 

the strongest effect on Vβ genes in BL6xSPRET individuals in which the respective 

parental individuals had the highest degree of evolutionary divergence. 

We further show that biases that are consistent in pre- and post-selection repertoires 

mostly reflect selection independent gene usage frequency differences observed in the 

parents. For instance, TCR consisting of Trbv21 are extremely rare in BL6 (0.03% of 

TCRs) but much more frequent in CAST (3.0% TCRs) with minor differences in pre- and 

post-selection frequency. In BL6xCAST F1 hybrids, 2.2% of all TCRs consist of Trbv21 

with an allelic ratio of 97.3% of CAST alleles and only 2.7% BL6 alleles. Therefore, gene 

segment frequency biases are mediated through cis-effects in the absence of any 

additional biases introduced by thymic selection. For instance, polymorphisms in the RSS 

in between V(D)J genes could bias the recombination efficiency of particular gene 

segments.           

 

What are the consequences of the observed frequency and selection biases across the 

different mouse species for the total diversity within the TCR repertoires? To answer this 

question, we evaluated CDR3 motif diversity in single chains as well as paired TCRs. 

CDR3α diversity varies most across the pure species, which is likely caused by the severe 

rearrangements and consequently different number of functional gene segments in the 

Vα cluster. We generally observe minor frequency changes of Vα families in pre- and 

post-selection repertoires, indicating that those gene segments are subject to less 

stringent thymic selection. As a consequence, F1 hybrids can make full use of both 

parental sets of V(D)J genes, which likely leads to the correlation of increased CDR3α 

diversity with increased evolutionary divergence of parental species. Here, we note that 

grouping of Vα genes by their respective families might mask the rejection of particular 

genes during thymic selection. While this potentially impacts the gene usage frequency 

differences across the species, it does not bias the comparison of total CDR3α diversity.  

The single-chain CDR3β motif diversity is extremely similar across pure species, which 

is in line with the one-to-one orthology of V(D)J genes in the TCRβ locus. In contrast to 
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this, we see substantial differences in CDR3β diversity in the hybrids. Based on the 

observed impact of thymic selection on Vβ genes, we hypothesize that the observed 

differences in CDR3β diversity in F1 hybrids result from a trade-off between the diversity 

of parental V(D)J gene sets and the increased likelihood of gene segment rejection during 

thymic selection, which should correlate with the increasing evolutionary divergence of 

parental species. While in this study, thymic selection is evaluated in a fixed and 

genotype-specific MHC-haplotype set-up, it has been shown that increased intra-

individual MHC diversity is associated with increased rates of T cell depletion during 

thymic selection [60, 61]. Given that HLA allele frequencies vary substantially across 

human populations [62], we assume that the general trends observed in this study would 

therefore also apply in the context of CDR3 diversity evaluation in evolutionary divergent 

outbreed populations exhibiting diverse MHC haplotypes.                        

 

To the best of our knowledge, the present study analyzes the largest set of paired αβ-

TCRs to date. Especially in the context of TCR repertoire analysis of antigen in-

experienced naïve T cells we benefit greatly from the scale of our dataset. Sharing of 

identical CDR3αβ motifs is rare but about 4-fold higher than expect by chance. 

Additionally, shared motifs are found at significantly higher rates in related individuals 

compared to unrelated individuals. Importantly, the increased sharing rate of paired 

CDR3αβ motifs analyzed in this study is not limited to the comparison of 100% identical 

motifs. Because similar CDR3αβ motifs might recognize identical antigens and similar 

antigens might be recognized by a range of similar CDR3αβ motifs we used a kmer-based 

approach to emphasize the similarity of paired CDR3αβ motifs in species of identical 

genotypes. We showed that 4mers originated from the central region of paired CDR3αβ 

motifs exhibit remarkably similar frequencies in species with identical genotypes relative 

to unrelated individuals. We therefore conclude that the combined effects of differences 

in TCR locus structure, V(D)J recombination frequencies and biases introduced by thymic 

selection, collectively shape the TCR repertoire in a genotype-specific manner.  

This also has important implications for our understanding of public TCR motifs with 

potential disease associations. The number of shared CDR3 motifs in individuals with 

diverse MHC haplotypes is representative of those TCRs, that are selected by the specific 
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set of MHCs in the sampled individuals. Public CDR3 motifs should therefore always be 

cataloged in the specific MHC haplotype context they have been observed in to allow for 

the comparison of such public motifs across different studies. Additionally, public TCR 

responses are often evaluated in common disease context, such as cytomegalovirus 

(CMV) and Epstein-Barr virus (EBV) [63-65]. Since large parts of human populations are 

persistently infected by those pathogens, a broad range of MHC haplotypes should have 

evolved to effectively present EBV- and CMV-derived peptides. Consequently, EBV- and 

CMV-associated CDR3 motifs might be more public compared to CDR3 motifs that 

specifically recognize less frequent pathogenic peptides.  

 

Immune receptor diversity is one of the most characteristic and important features of 

adaptive immunity. While the generation of diversity is in large parts driven by stochastic 

events, the present study highlights important genetic contributions to TCR diversity. We 

show that the number of functional V(D)J segments, their cis-regulated recombination 

frequency as well as MHC haplotype dependent thymic selection, collectively generates 

TCR repertoires that are significantly more similar within than across genotypes.   

           

Methods 
 
Mice 
All mice were housed in the animal facility of the Friedrich-Miescher Laboratory of the 

Max-Planck Society. Experiments were performed under license issued by the local 

competent authority (EB 01/21 M). Spleens were collected from mice aged 9-11 weeks. 

The following mouse strains were used in the experiments: C57BL/6J (The Jackson 

Laboratory, Strain #: 000664), CAST/EiJ (The Jackson Laboratory, Strain #: 000928), 

SPRET/EiJ (The Jackson Laboratory, Strain #: 001146), PWD/PhJ (The Jackson 

Laboratory, Strain #: 004660) as well as their respective F1 hybrids (C57BL/6J x 

SPRET/EiJ/CAST/EiJ/ PWD/PhJ). Male and female mice of all strains were used. 

 



Chapter 2 

 85 

Isolation of CD8a+ T-cells 
Spleens of euthanized mice were collected and placed on a 40µm cell-strainer. Spleens 

were then pressed through the strainer using the backside of a syringe plunger. After 

thorough rising of the cell-strainer using ice-cold PBS, the flow-through was centrifuged 

at 400xg 4°C for 10 minutes in a swing-bucket centrifuge. Afterwards, supernatant was 

carefully discarded, and the cell pellet was resuspended in 1ml ice-cold PBS + 2% FBS. 

Isolation of CD8a+ T-cells was then done using the “Dynabeads™ FlowComp™ Mouse 

CD8 Kit” (Invitrogen, 11462D) according to the manufacturer’s instructions. Pre-enriched 

cells were then stained using anti-CD4 BV510 (Bio Legend, 100553) and anti-CD8 

PerCP-Cy5.5 (Bio Legend, 155013) in 500µl PBS + 2% FBS for 15 minutes on ice. 

Afterwards, cells were centrifuged at 400xg 4°C for 5 minutes. Supernatant was discarded 

and cell pellet was resuspended in 500µl ice-cold PBS + 2% FBS. This washing step was 

repeated once before final resuspension in 1 ml ice-cold PBS + 2% FBS. Cells were then 

further purified by fluorescence activated cell sorting (Fig. S1A). Depending on the size 

of the spleen (approx. 20mg in SPRET and up to 100mg in BL6) between 1x106 and 5x106 

CD8+ T-cells were isolated from each spleen. Isolated T-cells were immediately 

transferred to prepared tissue culture dishes or used as primary cells for CITR-seq 

experiments. 

 

Tissue Culture 
Tissue culture of isolated CD8+ T-cells was done as described by Lewis et al. [66]. Briefly, 

6-well plates were coated with 0.5µg/ml anti-CD3 and 5µg/ml anti-CD28 in 3ml PBS at 

4°C overnight. Before seeding the isolated CD8+ T-cells, plates were washed twice with 

PBS. Cells were cultured in RPMI 1640 medium (ThermoFisher, 11875093) 

supplemented with 10% FBS, 1% GlutaMAX (ThermoFisher, 35050061), 1% 

penicillin/streptomycin (ThermoFisher, 15140122), 0.1% 2-mercaptoethanol 

(ThermoFisher, 21985023) and 0.1% human recombinant insulin (ThermoFisher, 

12585014) at 37°C, 5% CO2. After 20 hours cells were washed once with culture medium 

and then carefully detached from plate by repeatedly flushing the plates with a P1000 

pipette. The cell suspension was then centrifuged at 400xg, RT for 5 minutes. Afterwards 

cell pellet was resuspended in 1ml PBS. 
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CITR-seq protocol 
 

Oligonucleotides for barcoding  
Two rounds of barcoding, each with 192 unique DNA barcodes are performed in CITR-

seq. To prepare the barcoding plates in each well of two 96-well plates one unique round 

1 top-stand oligo and one corresponding round 1 bottom-strand oligo were diluted in 10µl 

annealing buffer (10mM Tris pH 8, 50mM NaCl and 1mM EDTA). Top-strand round 1 

oligos are partially complementary to the 5` overhang of the RT primers and anneal to the 

complementary sequence of the round 1 bottom-strand including the 7bp barcode 

sequence. Round 1 bottom-strand oligos contain a common 3bp 5` phosphorylated linker 

overhangs (“TCT”). The same procedure was repeated for two 96-well round 2 barcoding 

plates. Round 2 top-strand oligos contain a 3`-linker sequence (“AGA”) complementary 

to the 5’ linker sequence of round 1 oligos. Further, it contains another unique 7bp DNA 

barcode and the standard Illumina TrueSeq i7 sequencing adapter (Illumina, see 

document: 1000000002694). Round 2 bottom-strand oligo is complementary to its 

respective round 2 top-strand mate but lacks the 3bp linker sequence. 

Oligos are used at the following concentrations: For each well of round 1 plates: µM of 

round 1 bottom-strand and µM of round 1 top-strand. For round 2 plates: µM of round 2 

bottom-strand and µM of round 2 top-strand. Prior to each experiment round 1 and round 

2 oligo plates are annealed in a PCR machine by heating plates to 90°C and then 

decreasing the temperature by 1°C every 30 seconds until room temperature is reached.  

 

Oligonucleotides for reverse transcription  
To increase the barcoding space further, barcoded RT-primers are used. Eight pairs of 

RT-primers targeting the constant region of the TCR alpha and TCR beta locus were 

designed with a 4bp barcode and a 10bp UMI as well as a phosphorylated 5’ overhang 

complementary to the overhang of the round 1 top-strand barcoding oligo. 

 

TCR-V-segment primer pool for multiplex PCR  
Primers were initially designed by alignment of annotated C57BL/6J cDNA sequence 

(IMGT database) belonging to the same TCR-V-segment family. For each family 1-5 
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primers (depending on number and sequence similarity of TCR-V-segment families) with 

similar annealing temperature (+/- 1°C), length and G/C content were designed (see 

supplementary table X). Subsequently, C57BL/6J TCRa and TCRb loci were aligned to 

the corresponding genomic sequence in the genomes of CAST/Ei, PWK/PhJ 

(evolutionarily closest publicly available genome compared to the used PWD/PhJ mouse 

strain) and SPRET/EiJ (genome data available as part of the Mouse Genome Project 

from Sanger Institute). Candidate primers were then BLAT searched against the aligned 

genomes to rule out the presence of SNPs in the primer binding region across all strains. 

All candidate primers were individually tested to exclusively amplify the corresponding V-

segment(s) in reverse transcription reactions using RNA isolated from C57BL/6J CD8a+ 

T cells.  

The final set of TCR-V-Segment primers consists of 58 individual primers (19 Vb and 

39Va primers). Additional to the V-segment specific 3` end of the primer, each primer also 

contains a common 5` sequence used as target in the index-PCR. All V-segment primers 

were pooled at an equimolar ratio with a final concentration of 100 µM (1.72 µM of each 

primer). The primer pool was prepared once, and aliquots were frozen until used in an 

experiment to prevent biases introduced by varying primer pools across all experiments.   

 

Cell fixation  
After cell collection from tissue culture plates, 1ml of cell-suspension in PBS was added 

to 2.8ml of ice-cold PBS with 200µl of 16% PFA (ThermoFisher, 28908), for a final 

concentration of 0.8% PFA. After 10 minutes of incubation on ice 150µl 10% Triton-X was 

added to permeabilize cells and incubation on ice was continued for another 3 minutes. 

Cells were then centrifuged at 400xg 4°C for 5 minutes. Supernatant was discarded and 

the cell pellet was resuspended in 500µl 0.6M Tris-HCL pH8. Afterwards, 500µl of wash-

buffer (PBS + 2% FBS and 0.4U/µl RNAseInhibitor (JenaBioscience, PCR-392L)) was 

added and cells were centrifuged at 400xg 4°C for 5 minutes. Washing was repeated 

once with 1ml wash-buffer before cells were counted and the concentration was adjusted 

to 50.000 cells/ml with wash-buffer.  
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Reverse transcription  
10µl of fixed cells (~50.000 cells) were added to each of 8 tubes of a prepared PCR-strip 

containing 1µl 10µM barcoded TCRalpha constant region RT-primer, 1µl 10µM barcoded 

TCRbeta constant region RT-primer, 7.5µl NEB TS Buffer (NEB, B0466SVIAL) and 2µl 

10mM dNTPs (ThermoFisher, R0181). TCRalpha and TCRbeta RT-primers within each 

tube share the same tube-specific 4bp barcode. The number of reverse transcription 

reactions can be scaled up easily by increasing the number of prepared PCR strips. 

Typically, two PCRs strips for a total of 16 reverse transcription reactions were prepared 

resulting in a final cell count of ~600.000 after barcoding (during the barcoding procedure 

about 25% of cells are lost due to repeated transferring and pooling of cells). Cells were 

then heated to 55°C for 5 minutes and rapidly cooled down to 4°C to allow pre-annealing 

of the RT-oligos to their target mRNAs. Afterwards, 6.3µl water, 1.5µl Maxima H Minus 

Reverse Transcriptase (ThermoFisher, EP0751) and 1ml RNAseInhibitor 

(JenaBioscience, PCR-392L) was added to each reaction for a final reaction volume of 

30µl. Reverse transcription was carried out under the following conditions: 50°C for 10 

minutes followed by 3 cycles of (8°C for 12 s, 15°C for 45 s, 20°C for 45 s, 30°C for 30 s 

42°C for 2 minutes and 50°C for 3 minutes) and a final incubation at 50°C for 10 minutes. 

After reverse transcription cells were centrifuged at 400xg 4°C for 5 minutes. Supernatant 

was carefully discarded without disturbing the cell pellet. Cells were then resuspended in 

50µl wash-buffer per tube and pooled in one 5ml tube and washing was repeated once.  

 

Barcode ligation  
All tubes used for pooling and washing of cells were coated with PBS +2% FBS to prevent 

cells from sticking to the plastic. Cells were resuspended in 2ml ligation buffer 1 (1460 µl 

water, 400 µl 10x T4 DNA ligase reaction buffer (NEB, B0202SVIAL), 100 µl T4 DNA 

ligase (NEB, M0202LVIAL), and 40 µl 10% Tween-20). 10µl of cell suspension was 

pipetted to each well of the two 96-well round 1 barcoding plates, taking care to not touch 

the liquid at the bottom of the plate. Plates were sealed with adhesive seals 

(ThermoFisher, AB0558) and incubated on a shaker for 40 minutes at room temperature. 

Afterwards, 3.5µl blocking oligo solution (20µM blocking oligo in water) was added to each 

well of both round 1 barcoding plates and incubation was continued for additional 20 
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minutes. The blocking oligo anneals to un-ligated round 1 top-strand oligos to prevent 

undesired ligations during the first cell pooling. Using a multichannel pipette, cells from 

both round 1 barcoding plates were pooled into a reservoir and then transferred to a 5 ml 

tube. Afterwards cells were centrifuged at 750xg 4°C for 3 minutes, supernatant was 

discarded, and cells were resuspended in 5ml of ligation buffer 2 (2260 µl water, 700 µl 

T4 DNA ligase reaction buffer, 100 µl T4 DNA ligase, 1900 µl annealing buffer and 40 µl 

10% Tween-20). 25µl of cell suspension was pipetted into each well of the two 96-well 

round 2 barcoding plates, again without touching the liquid at the bottom of the wells. 

Plates were sealed and incubated for 40 minutes on a shaker at room temperature. Cells 

were then pooled as described before, centrifuged at 750xg 4°C for 3 minutes and 

resuspend in 200µl wash buffer. 1x DAPI (ThermoFisher, D1306) was added, and cells 

were counted on the Evos Countess II. The concentration of cells was adjusted to 2x106 

cells/ml and 5 µl of cell suspension was transferred to separate tubes of PCR-strips for 

the generation of sub-libraries. The number of cells in each sub-library determines the 

expected number of barcode collisions in each sub-library. The number of collisions can 

be calculated with the formular used in the birthday problem. Here the total number of 

barcodes B is 294.912 (8 reverse transcription barcodes * 192 round 1 * 192 round 2 

ligation barcodes) with a cell count of N = 10.000 cells per sub-library. The number of 

expected barcode collisions therefore is:  

 

10000 − 294912 + 294912 (
294912 − 1
294912 )

!""""

= 167 
 
With 167 barcode collisions the expected collision rate is ~1.67% in each sub-library. 
 
Reverse Crosslinking  
8 µl reverse crosslinking buffer (1% SDS, 100mM Tris-HCl pH8 and 100mM NaCl), 2 µl 

Proteinase K (Qiagen, RP107B-1) and 5 µl water was added to each tube with 5 µl sub-

library for a final volume of 20 µl per reaction. Reverse crosslinking was done at 62°C for 

2 hours on a shaker followed by a final incubation at 95°C for 15 minutes to inactivate 

Proteinase K. Afterwards, 12µl 10% Tween-20 was added to each sub-library to quench 

SDS before PCR. 



Chapter 2 

 90 

cDNA library preparation  
After reverse crosslinking and SDS quenching 48µl multiplex-PCR mix (23 µl water, 16 µl 

5x Q5 reaction buffer, 3.2 µl TrueSeq-i7-long primer, 3 µl 10mM dNTPs, 2 µl 100 µM TCR-

V-Segment primer pool and 0.8 µl Q5 DNA polymerase) was directly added to each sub-

library for a final PCR reaction volume of 80µl. PCR was done using the following 

parameters: 98°C 2min, then 10 cycles of (98°C 20 s, 63°C 30 s, 72°C 2 minutes) and a 

final incubation at 72°C for 5 minutes. After PCR amplified cDNA was purified by bead 

clean-up using custom size-selection beads at a ratio of 1.2x beads to PCR reaction (100 

µl beads) to get rid of excess primers from the multiplex PCR. During this clean-up it is 

important to not cross-contaminate different sub-libraries as they have not yet received 

their sub-library specific index.  

14.5 µl index-PCR mix (10 µl 5x Q5 reaction buffer, 2 µl TrueSeq-i7-long primer, 2 µl 

10mM dNTPs and 0.5 µl Q5 DNA polymerase) was added to each sub-library. Afterwards, 

2.5µl of a unique 10µM Nextera N5xx primer was added to each sub-library for a final 

reaction volume of 50 µl. Index PCR was done using the following parameters: 98°C 2min, 

then 12 cycles of (98°C 20 s, 63°C 30 s, 72°C 2 minutes) and a final incubation at 72°C 

for 5 minutes. After index PCR sub-libraries were purified using 1.2x size-selection beads 

as described above. cDNA concentration of each sub-library was measured, and sub-

libraries were then pooled at an equimolar ratio. Before freezing the pooled libraries until 

sequencing they were quantified using the Qubit HS dsDNA Quantification Kit and run on 

the Agilent 2100 bioanalyzer with a High Sensitivity DNA kit. 

 

DNA size selection with custom beads  
To prepare custom DNA size-selection beads, 750 µl of SPRIselect (Beckman Coulter, 

B23318) were transferred to a 1.5 ml tube and placed on a magnetic stand. Supernatant 

was discarded and beads were washed once with 1 ml Tris-HCl pH 8. Beads were then 

resuspended in 50 ml bead buffer (22 mM PEG-8000, 2.5 M NaCl, 10mM Tris HCl pH 8, 

1 mM EDTA in water).  

In general, size selection beads are added to the solution containing DNA at a defined 

ratio to bind DNA of a specific length (e.g., 1.2x beads will bind dsDNA >200bp). After 

binding DNA for 5 minutes, tubes are placed on a magnetic stand and supernatant is 
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discarded (or transferred to a different tube in case of upper cut-off size selection). Beads 

are then washed twice with 80% EtOH before DNA is eluted from the beads by adding 

the desired volume of water or 10mM Tris HCl pH 8.    

 

Sequencing  
All TCR cDNA libraries have been sequenced on the Nova-seq 6000 platform by Illumina 

using S4 2x150bp v1.5 kits with the following sequencing-cycle set-up: Read1: 150 

cycles, Index1: 17 cycles, Read2: 150 cycles and Index2: 8 cycles.  

 

Cost of CITR-seq experiments  
In CITR-seq all molecular reactions are carried out in bulk for ~5.000-50.000 cells 

depending on the protocol step. This offers significant cost advantages, especially in 

contrast to plate-based single-cell protocols in which all molecular reactions are done 

separately for each cell. Enzymes needed for one experiment (using 500.000 input cells) 

in our hands cost about 350$ (ligase, reverse-transcriptase, polymerase, RNAse inhibitor 

etc.). The required barcoding oligos can be bought in high quantities and are then 

sufficient for many CITR-seq runs bringing down the oligo costs to less than 50$ per 

experiment. Collectively, the cost for library preparation in each experiment is therefore 

roughly 400$.     

 

Analysis 
 

CITR-seq sequencing data pre-processing  
Demultiplexing of fastq-files was done using a custom script, allowing one nucleotide 

mismatch in the cellular barcode sequence (relative to the barcode whitelist). Afterwards, 

adapter sequences were trimmed from the sequencing reads using cutadapt [67]. We 

then used UMItools [68] to extract the 4bp in-line barcode sequence from each 

sequencing read. For each read the in-line barcode and the barcode sequence extracted 

from the corresponding index reads were combined. The combined barcode sequences 

were then added to the 5’ end of read1. Afterwards, the full barcode information is present 

at the beginning of read 1 (16bp) followed by the UMI (10bp) and the 150bp sequencing 
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read. Read 2 contains just the 150bp sequencing read. This pre-processing of 

sequencing reads modifies the fastq-files to be easily integrated into the subsequent 

MiXCR-pipeline. 

 

Species-specific V(D)J reference libraries 
To construct individual V(D)J reference libraries for PWD/PhJ, CAST and SPRET we built 

on the strategy used in the findAlleles function implemented in the MiXCR [47] software. 

First, we used full-length TCR sequencing data of each species generated using the 10x 

Genomics Immune Profiling Kit (see below), to assemble gene-segment candidate-

alleles: Raw sequencing fastq files were processed using Cellranger VDJ supplying the 

built-in mm10 based VDJ-reference (GRCm38-ensemble-7.0.0). In this pipeline 

fragmented reads are combined into full length contigs based on sequence overlap in 

reads and matching cellular barcodes. We used the generated “filtered_contig.fastq” 

output and passed it directly to the MiXCR alignment step (“align”, --species mmu, --

preset generic-amplicon --floating-left-alignment-boundary --floating-right-alignment-

boundary C --rna) to generate binary vdjca-files. We then used mixcr exportAlignments (-

-dont-impute-germline-on-export -allNFeatures UTR5Begin FR3End) to extract gene-

features so that SNPs in candidate-alleles are not modified to match the provided 

reference. For each candidate V(D)J-allele we then used the extremely unique 

combination of associated UMI and CDR3 sequences to distinguish low-frequency alleles 

from alleles generated by sequencing or PCR errors by requiring each allele to be 

identified with at least two unique CDR3/UMI combinations. The list of identified V,D and 

J segment alleles was then used to generate a MiXCR compatible reference libraries for 

each species using the buildLibrary function implemented in MiXCR. Since the underlying 

RNA-based input libraries are generated using template-switching rather than multiplex-

PCR, they allow for the discovery of de novo V(D)J-segments since template-switch 

based cDNA libraries do not require previous knowledge of the entire set of gene-

segments for amplification. 
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Full list of V(D)J genes/families analyzed in cross-species comparisons 
All names of V(D)J genes/families correspond to the official IMGT nomenclature [57]. 

Pseudogenes as well as extremely low-expressed genes (< 200 transcripts across all 

~5x106 T cells of all species) are excluded from the analysis. Trbv24 (all species) and 

Trbv31 (PWD) were excluded from the analysis due to failure of amplification during the 

multiplex PCR. The remaining list contains the following V(D)J genes/families:  

 
1) Trav-families: 
Trav1, Trav2, Trav3, Trav4, Trav5, Trav6, Trav7, Trav8, Trav9, Trav10, Trav11, 
Trav12, Trav13, Trav14, Trav15, Trav16, Trav17, Trav18, Trav19, Trav21 

 
2) Trbv-genes: 
Trbv1, Trbv2, Trbv3, Trbv4, Trbv5, Trbv12-1, Trbv12-2, Trbv13-1, Trbv13-2, 
Trbv13-3, Trbv14, Trbv15, Trbv16, Trbv17, Trbv19, Trbv20, Trbv21, Trbv23, 
Trbv26, Trbv29, Trbv30, Trbv31 

 
3) Traj-genes: 
Traj2, Traj4, Traj5, Traj6, Traj7, Traj9, Traj11, Traj12, Traj13, Traj15, Traj16, Traj17, 
Traj18, Traj21, Traj22, Traj23, Traj24, Traj26, Traj27, Traj28, Traj30, Traj31, Traj32, 
Traj33, Traj34, Traj35, Traj37, Traj38, Traj39, Traj40, Traj42, Traj43, Traj44, Traj45, 
Traj47, Traj48, Traj49, Traj50, Traj52, Traj53, Traj54, Traj56, Traj57, Traj58 

 
4) Trbj-genes: 
Trbj1-1, Trbj1-2, Trbj1-3, Trbj1-4, Trbj1-5, Trbj1-6, Trbj2-1, Trbj2-2, Trbj2-3,  
Trbj2-4, Trbj2-5, Trbj2-16, Trbj2-7 
 

All gene names in the generated species-specific V(D)J reference files correspond to the 

closest relative (by sequence identity) in mm10 based MiXCR reference library.   

 

Alignment of sequencing reads using MiXCR 
Sequencing reads in pre-processed fastq-format were integrated into a custom MiXCR 

pipeline (MiXCR version 4.5.0) using the following steps: 

 
4) mixcr align 

-- preset generic-ht-single-cell-amplicon-with-umi 
-- library Species Specific custom library (see above) 
-- tag-pattern ^(CELL:N(16))(UMI:N(10))(R1:*)\^(R2:*) 
-- floating-left-alignment-boundary 
-- floating-right-alignment-boundary C 
-  OvParameters.geneFeatureToAlign=VRegionWithP 
-  OminSumScore=100 
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5) mixcr refineTagsAndSort 
 

6) mixcr assemble 
-- assemble-clonotypes-by CDR3 
-- cell-level 
 

We then used mixcr exportClones to extract the required information for all downstream 

analysis (e.g., cellular barcodes, transcript counts, V(D)J segments, CDR3 amino acid 

and nucleotide sequence etc.). 

 

Construction of 10x Genomics Single Cell Immune Profiling sequencing libraries 
We generated four sequencing libraries (from 10-week-old male mice, primary CD8+ T 

cells of one of each: BL6, PWD, CAST, SPRET, see cell isolation described above) using 

the 10x Genomics Immune Profiling platform (Chromium Next GEM Single Cell 5' Kit v2) 

according to the manufacturer’s instructions. T cells from each mouse were used in two 

separate reactions, each with 2.500 input cells (eight total reactions). V(D)J sequencing 

libraries were sequenced at 5.000 reads/cell. Raw sequencing data was pre-processed 

as described above and then aligned to species-specific V(D)J references using the 

outlined MiXCR pipeline.        

 

Assignment of parental alleles in F1 hybrids 
Pre-processed fastq-files of all F1 hybrid samples were aligned using MiXCR as 

described above. Importantly, the F1 hybrid samples were aligned to both parental V(D)J 

references and the alignment scores for V- and J-genes were extracted (mixcr 

exportAlignments -vHitScore and -jHitScore). We then compared the alignment scores 

for V- and J-genes from both alignments for each sequencing read. Each gene segment 

was then assigned to one parental species based on the higher alignment score in both 

alignments. Absence of SNPs in a gene-segment lead to identical alignment scores and 

therefore the respective reads were only assigned to a parental allele if the second gene 

segment in the same read was assigned to one parental allele. Reads in which both V- 

and J-segments had identical alignment scores in both alignments (e.g. no parental SNPs 

in both gene segments) as well as reads in which V- and J-parental assignment disagreed 
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were discarded from the analysis together with all other reads sharing the respective 

identical cellular barcode.     

 

Comparison of CITR-seq data with publicly available datasets from Parse 
Bioscience and 10x Genomics 
Absolute counts of paired αβ-TCRs shown in Fig. 2D were taken from the following 
datasets: 

 
1) Parse Bioscience [44]: 
TCR Sequencing of 1 Million Primary Human T Cells in a Single Experiment 

(primary human Pan T cells, sequencing depth: 5000 reads/cell). 

 

2) 10x Genomics Single Cell Immune Profiling [45]: 
CD8+ T cells of Healthy Donor 2 (v1, 150x91), Single Cell Immune Profiling 

Dataset by Cell Ranger v3.0.2, 10x Genomics, (2019, May, 9) 

 

 

The UMI/cell recovery rates in CITR-seq were compared to the UMI/cell recovery rates in 

two publicly available datasets provided by Parse Bioscience: 

 

1) Parse Bioscience [44]: 
TCR Sequencing of 1 Million Primary Human T Cells in a Single Experiment 

(primary human Pan T cells, sequencing depth: 5000 reads/cell) 

 

2) Parse Bioscience [46]: 
Performance of Evercode TCR in Activated Human T cells 

(Pan T cells after 72h activation using CD3/CD28 beads + IL-2 supplementation, 

sequencing depth: 5000 reads/cell) 
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Datasets are available from their website (https://www.parsebiosciences.com) and the 

specific UMI/cell rates were extracted from the “TCR:Barcode Report (TSV)” tables 

(column: “transcript_count”)  

 

PCA of VJ-pairing and central CDR3 4mer abundance  
We conducted Principal Component Analysis (PCA) on two different datasets.  

 

1) V-J pairing 
The first PCA was done to compare total counts of observed V-J pairs across all sample 

down-sampled to a common cell count of 5.000 T cells (each with one associated TCRα 

and TCRβ chain). The count-tables were analyzed using DESeq2’s[69] 

varianceStabilizingTransformation (vst, blind=FALSE, nsub=300) and PCA was 

conducted on the top 300 most variable V-J pairs (plotPCA , ntop=300). Using this 

parameters PC1-4 explain approximately 67% of variance in V-J usage across samples.  

 

2) CDR3 4mers 
The second PCA analysis was done on a set of amino acid 4mers (or 4mer pairs) 

extracted from the central region of CDR3 amino acid motifs (the three most 3’ and 5’ 

amino acids were trimmed from the motif). Initially three randomly chosen 4mers were 

extracted from each trimmed CDR3 motif. For paired CDR3αβ motifs we extracted 3 

random 4mer pairs of the respective CDR3α and CDR3β motifs associated with a cellular 

barcode. Subsequently, we generated count-matrices with the total counts of each 4mer 

across the 32 individuals. We filtered the matrices to only contain 4mer/pairs that were 

observed at least once across three individuals of a specific genotype (final 4mer counts: 

39.843 CDR3α, 56.538 CDR3β and 1.201.646 CDR3αβ 4mers). The filtered count 

matrices were then analyzed following the standard DESeq2 [69] workflow for  

un-normalized count-matrix inputs. Afterwards, PCA was done on the top 5000 most 

variable 4mers using the plotPCA function.       
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Diversity and overlap indices used for repertoire comparison in CITR-seq data 
Many of the commonly used indices from the analysis of TCR repertoires within and 

across different samples, were originally developed to quantify the diversity of species in 

an ecosystem. For this reason, they are often classified as either alpha-diversity indices 

that measure species richness and/or evenness within a particular population or 

alternatively as beta-diversity indices, which evaluate differences or overlaps between 

different populations. Similar to species diversity studies in ecology, TCR repertoire 

diversity estimates suffer from inherent incompleteness of the sampled diversity, a 

problem first described as the unseen species problem [70]. The use of diversity indices 

for adaptive immune receptor analysis is reviewed here [71]. The following indices were 

used in this study: 

 
1) Shannon diversity index [72] (for proportions) 
The Shannon diversity index considers both, species richness and species 

evenness to evaluate the entropy within a distribution of species: 

 

𝐻 =	−/𝑝#log	(𝑝#)
$

#%!

 

 

With pi = the proportion (frequency) in the group k (e.g. gene segments). The index 

can be normalized by dividing it by the maximum diversity. Which then is the 

normalized Shannon diversity index (nSDI) used in this study: 

 

𝐸& =	
𝐻

log	(𝑘) 

  

In the context of gene segment usage in nSDI of 1 would indicate that all gene 

segments are used at identical frequencies in a TCR repertoire. 
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2) Jaccard index  
The Jaccard index was developed by Paul Jaccard in 1901 and is commonly used 

to calculate the overlap (of CDR3 motifs) between two samples of TCRs: 

 

𝐽(𝐴, 𝐵) = 	
𝐴	 ∩ 𝐵
𝐴	 ∪ 𝐵 

The Jaccard index calculates the intersection size divided by union size of two 

samples (A and B).  

 

Classification of relative V(D)J gene usage in parental lines and their F1 hybrids 
In classical F1 hybrid experiments, genes are often categorized into additive, dominant, 

over- and under-dominant, based on their expression in F1 hybrids relative to the parental 

individuals [73]. When adopted to V(D)J-gene usage in F1 hybrids and their parental lines 

it is important to note, that the frequency of a particular gene does not only depend on 

differences in gene expression regulation but is also influenced by biases during V(D)J 

recombination and thymic selection. We see that thymic selection introduces significant 

changes to V(D)J gene usage and therefore amplifies gene usage differences across 

species relative to the differences emerging from differential gene regulation alone. This 

effect is especially strong in F1 hybrids were almost all V(D)J genes show significantly 

different frequencies relative to the parental species (Fig S5A). Instead of using a p-value 
based classification, we therefore decided to rather compare the relative frequencies of 

V(D)J gene usage across F1 hybrids and the parental species. Accordingly, V(D)J gene 

frequencies are classified using the following criteria: 

       

1) Conserved: Gene frequency in the F1 hybrid is within 1% of the frequency in 
both parents 
 

2) Dominant: Gene frequency in the F1 hybrid is within 1% of the frequency in 
one parent and more than 1% larger or smaller than the frequency in the other 

parent. 
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3) Additive: Gene frequency in the F1 hybrid is more than 1% smaller than the 
frequency in one parent and more than 1% larger than the frequency in the 

other parent. 

 

4) Over-dominant: Gene frequency in the F1 hybrid is more than 1% larger than 
the frequency in bother parents. 

 

5) Under-dominant: Gene frequency in the F1 hybrid is more than 1% smaller 
than the frequency in bother parents. 
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Supplement 
 

 
Supplementary Figure 1: CD8+ T cells isolation strategy for all CITR-seq samples 

(A) Spleenocyte cell-suspensions were pre-enriched for CD8+ T cells by magnetic extraction of anti-
CD8 labeled cells (magnetic-activated cell sorting, MACS using Dynabeads™ FlowComp™ Mouse 
CD8 Kit). Afterwards pre-enriched cell-suspension was further purified using fluorescence activated 
cell sorting (FACS). Percentages in each quadrant of the FACS plots represent the mean 
frequencies of the respective cell population in the pre-enriched cell-suspension. CD8+ T cells in 
the top left quadrant (red box) were sorted and used for CITR-seq experiments. 
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Supplementary Figure 2: Additional analysis for CITR-seq validation 

(A) Mean fraction of T cells assigned to different numbers of distinct TCRα and TCRβ chains (error 
bars represent the standard deviation across all 32 CITR-seq samples). Most T cells (~55%) are 
associated with a single TCRα and a single TCRβ chain. Few T cells are associated with more than 
two TCRα (~1.4%) or TCRβ (~0.5%) chains, likely representing cell doublets or barcode collisions.  

(B) Saturation curve showing UMI/cell and clone/cell counts relative to the fraction of total sequencing 
reads. Diamonds represent the respective UMI/cell and clone/cell counts at intervals of 5% of 
sequencing reads (5% - 100% of reads) for six representative CITR-seq samples (all BL6 samples). 
The mean reads per cell are shown for the representative samples. 

(C) Clone size distributions (number of cells observed with a unique V+J+CDR3 TCR) in samples from 
primary T cells (left), 20h activated T cells (middle) and 72h activated T cells (right). The respective 
clone size distributions are shown for Vα+Jα+CDR3α TCRs (top), Vβ+Jβ+CDR3β TCRs (middle) 
or V+J+CDR3 paired αβ-TCRs (bottom). In contrast to primary and 20h activated T cells, 72h 
activated T cells show an increased clone size distribution caused by the onset of clonal expansion 
by prolonged T cell activation. 

(D) Total number of unique CDR3α, CDR3β or paired CDR3αβ amino acid motifs relative to the number 
of T cells across all 4 samples generated using the 10x Genomics Single Cell Immune Profiling Kit. 
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Supplementary Figure 3: Different structure of TCRα loci across inbred species and comparison of 
observed V-J usage frequencies in different methods 

(A) Fraction of sequencing reads that were successfully aligned to V(D)J genes using different 
reference libraries (green bars; full CDR3 coverage in brackets). Each stacked bar shows the 
mapping percentage for a representative sample from SPRET, CAST and PWD when aligned to 
the in-build mm10 based MiXCR V(D)J reference (top) and the species-specific custom V(D)J 
reference (see methods). All other colors in the stacked bar represent the reason for the failure of 
alignment. In all cases, the total fraction of successfully aligned reads is higher when using the 
species-specific custom library.  

(B) Dot plots of local alignment of genomic sequence from the GRCm38/mm10 TCR Vα locus to the 
PWK/PhJ (closest available genomic sequence to PWD, left), CAST (middle) and SPRET (right) 
genomic sequence of the TCR Vα locus. Intersections of the red lines indicate the location of the 
most distal (Trav1) and proximal (Trav21, dashed line) Vα genes. The genomic distances between 
these two Vα genes are shown. The central region of the Vα cluster is triplicated in BL6, PWK and 
SPRET relative to CAST.   

(C) Dot plots showing the mean frequency of single-chain V-J pairing in TCRα (red) and TCRβ (blue) 
chains observed in samples generated with -seq and 10x Genomics Single Cell Immune Profiling. 
The respective frequencies are shown for BL6, PWD, CAST and SPRET samples. Pearson-
correlation and the total number of detected Vα-Jα and Vβ-Jβ are shown. Boxes highlight Vβ genes 
that are almost exclusively observed in 10x Genomics samples indicating failure of amplification 
for these Vβ genes by the multiple PCR primer pool used in CITR-seq. The respective Vβ genes 
were excluded from the analysis. 

(D) Usage frequencies of distal (5’) Vα genes (Trav1, Trav2) with one-to-one orthology across all four 
species. CAST mice have significantly higher frequencies of both genes compared to all other 
species (chi-squared test, ** P-value < 0.01).  

(E) PCA of combined Vα-Jα and Vβ-Jβ gene segment usage frequencies across all species as 
observed in samples generated with CITR-seq (empty circle) or 10x Genomics Single Cell Immune 
Profiling (filled circles). PC2 and PC4 are shown. PC4 contains 6% of the total variance across 
samples and separates samples by the respective methods used to generate the data. 
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Supplementary Figure 4: Comparison of Jα and Jβ gene usage in in-frame and out-of-frame TCRs 

(A) Jα family (top) and Jβ gene (bottom) usage frequency (log2) heatmaps. Heatmaps show the mean 
intra-species J-usage in in-frame (IF) and out-of-frame (OOF) TCRs across all T cells. 

(B) Mean intra-species entropy in Jα-usage (top) and Jβ-usage (bottom) distributions calculated using 
the normalized Shannon diversity index (nSDI) for OOF and IF TCRs (error bars indicate the 
standard deviation in species replicates, significance calculated using paired t-test, * P-value < 
0.05, ** P-value < 0.01). 
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Supplementary Figure 5: Usage frequencies of Jα and Jβ genes in F1 hybrids and the impact of 
thymic selection on their abundance 

(A) Jα gene (left) and Jβ gene (right) usage frequency (log2) heatmaps of in-frame TCRs in F1 hybrids 
and their respective parental species. 

(B) Comparison of entropy of J-usage distribution in F1 hybrids and the respective parental species 
calculated using the normalized Shannon diversity index (nSDI) for OOF (left) and IF (right) TCRs 
(error bars indicate the standard deviation in species replicates, significance tested for F1 hybrid 
IF vs OOF contrast using paired t-tests). 

(C) Analysis of biased J gene allele usage in F1 hybrids. Plots show the percentage of BL6 Jα gene 
alleles and Jβ gene alleles in post- (x-axis) and pre-selection (y-axis) TCRs. Each circle represents 
a Jα-gene (top) or Jβ-gene (bottom). Pearson-correlation was calculated for post- and pre-selection 
J gene usage. Genes with substantial changes in allelic ratios in pre- and post-selection repertoires 
are highlighted (Traj35).  

(D) Detailed representation of the mean Vα-family and Vβ-gene usage frequencies in F1 hybrids in 
pre-selection (grey background) and post-selection (white background) TCRs. Stacked bars show 
the allelic ratio in the respective V-gene/family (error bars indicate the standard deviation in species 
replicates).  
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Supplementary Figure 6: P-values (-log10) of V/J gene usage frequency changes in F1 hybrids 
relative to both parents 

Adjusted P-values for V and J gene frequency changes in F1 hybrids relative to their parents. Plots show 
P-values for BL6xPWD (left), BL6xCAST (middle) and BL6xSPRET (right) for Vα-families (A), Vβ-genes 
(B), Jα-genes (C) and Jβ-genes (D). P-values have been calculated for differences in absolute count of 
TCRs with the respective V/J genes using Wald-test. Dashed red lines show that P-value cut-off of P < 
0.01. Genes with significant (P < 0.01) changes relative to both parents (empty black circles), to the BL6 
parent (empty blue circles), the respective other parent (PWD, CAST, SPRET, empty red, yellow, green 
circles) as well as genes with no differences to both parents (empty grey circles) are shown with the 
respective total counts of genes in each category. 
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Supplementary Figure 7: Comparison of single-chain CDR3α and CDR3β amino acid motifs in all 32 
CITR-seq samples 

(A) Positional diversity of amino acids in 10,000 randomly chosen CDR3α (left) and CDR3β (right) 
single-chain motifs from all 32 CITRs-eq samples. Black lines mark the central region of CDR3 
motifs. Three 4mers were randomly selected from this central region of all CDR3 sequences across 
the 32 individuals. The filtered count-matrix of 4mers (see methods) contained 39,842 unique 
CDR3α and 56,538 unique CDR3β 4mers. 

(B) PCA analysis done using the 4mer count-matrices of CDR3α 4mers (left) and CDR3β 4mers (right). 
PC1 and PC2 are shown. 4mer samples cluster by genotype of the underlying sample. 

(C) Number of TCR repertoires (of individuals) in which each unique CDR3α (red), CDR3β (blue) or 
paired CDR3αβ (purple) motif is observed. 1,696 CDR3α motifs and 644 CDR3β motifs have been 
observed in TCR repertoires of every single individual analyzed in this study. Identical CDR3αβ 
motifs have not been observed in more than 12 individuals.     

  
 

Supplementary Table 1: Detailed sample list of all 32 CITR-seq samples analyzed in the present 
study.  

 
 
 
 
 
 
 
 
 
 
 
 
 

CITRseq samples using 20h activated T cells
Sample Genotype Sequencing Reads Total Cells with productive TCRs Reads/Cell Total Cells with 1 alpha and 1 beta (paired) Mean UMI/Cell Mean Clones/Cell
BL6F_1 BL6 33459440 189870 176,22 107400 12,25 2,04
BL6F_2 BL6 62982523 482872 130,43 289492 17,16 2,25
BL6F_4 BL6 41323740 344608 119,92 191474 13,24 2,27
BL6M_3 BL6 62057819 455225 136,32 266110 13,44 2,12
BL6M_4 BL6 49440517 307496 160,78 170893 15,19 2,23
BL6M_5 BL6 41988830 655037 64,10 358823 13,29 2,27
BL6xCastF_1 BL6xCast 51747247 236169 219,11 128310 13,62 2,13
BL6xCastF_2 BL6xCast 49245000 212697 231,53 114385 12,69 2,13
BL6xCastM_2 BL6xCast 49421551 184067 268,50 98821 10,93 2,08
BL6xCastM_3 BL6xCast 57410723 231268 248,24 122758 11,75 2,14
BL6xPwdF_1 BL6xPwd 83185770 319989 259,96 181550 11,69 2,05
BL6xPwdF_2 BL6xPwd 74772578 324570 230,37 178826 11,50 2,06
BL6xPwdM_1 BL6xPwd 44688398 148795 300,34 82313 13,26 2,17
BL6xPwdM_2 BL6xPwd 81521294 320524 254,34 181847 12,26 2,06
BL6xSpretF_1 BL6xSpret 50811359 288939 175,85 165123 13,91 2,08
BL6xSpretF_2 BL6xSpret 35290223 183883 191,92 104313 15,96 2,14
BL6xSpretF_3 BL6xSpret 48325633 347321 139,14 197549 19,09 2,18
BL6xSpretM_1 BL6xSpret 25923260 259761 99,80 151176 24,33 2,18
BL6xSpretM_2 BL6xSpret 49117676 340758 144,14 188112 18,53 2,20
BL6xSpretM_3 BL6xSpret 24096366 239473 100,62 133293 21,74 2,14
CastF_7 Cast 46000265 232486 197,86 135992 15,74 2,01
CastF_8 Cast 38951285 207171 188,02 120875 16,15 2,04
CastM_1 Cast 34737464 191796 181,12 113684 19,08 2,07
CastM_2 Cast 27653742 130700 211,58 74822 15,58 2,02
CastM_3 Cast 55617482 269863 206,10 152614 15,89 2,01
PwdF_1 Pwd 52696502 297699 177,01 151241 12,61 2,08
PwdF_2 Pwd 49311832 328606 150,06 169230 12,72 2,12
PwdM_1 Pwd 84215698 440650 191,12 226863 13,51 2,14
PwdM_2 Pwd 58233463 293925 198,12 154090 12,31 2,06

184,57 14,81 2,12

CITRseq samples using Primary T cells
Sample Genotype Sequencing Reads Total Cells with productive TCRs Total Cells with 1 alpha and 1 beta (paired) Mean UMI/Cell Mean Clones/Cell
SpretF_1 Spret 40464272 275787 146,72 145865 6,52 1,88
SpretM_1 Spret 40418946 158671 254,73 80418 5,34 1,8
SpretM_2 Spret 34073895 212716 160,18 111072 5,96 1,84

187,21 5,94 1,84
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Supplementary Table 2: List of all DNA oligos and PCR primers used in the present study 

 

Target Protocol Step Sequence
Trav1 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGTTATCCTGGTACCAGCAAC
Trav2 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCAGGGACCACAGTTTATCATTC
Trav3.1 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTATCATCTGCACCTACACAGAC
Trav3.2 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTCCTCACCTGAGTGTCC
Trav4.1 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCAAGGAACAAAGGAGAATGGAAG
Trav4.2 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATTCTGTGGGTGCAGATTTGC
Trav4.3 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAGGAACAAAGGAGAATGGGAG
Trav5.1 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGAGAGAATCCTAAGCTCATCATTG
Trav5.2 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAAGCGTCTTCAGTTCATCATAGAC
Trav6.1 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGCAGAGGTTTTGAAGCTACATATG
Trav6.2 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCCTCTCAGAAGAGGACTTTC
Trav6.3 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGAGATTCCGTGACTCAAACAG
Trav6.4 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAGAAAGCCTCAGTGCAGG
Trav6.5 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAAAGGCCAACGAGAAGGG
Trav7 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGCAGAGCCCAGAATCCC
Trav8.1 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGGTGAAAGTGTCACGGTG
Trav8.1 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGGAGAAGAGAATCTTCAGGC
Trav9.1 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTCCAGTTTCTCCTCAAGTACTATTC
Trav9.2 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAGTGCTGGGGATACACTTT
Trav9.3 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACCTTATCTGTTCTGGTATGTCCA
Trav10 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAACTGCACTTACACAGATACTGC
Trav11 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAAGATGCTAAGCACAGCACG
Trav12.1 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAGACAGAAGGCCTGGTC
Trav12.2 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAGAAGGAAGGCCTGGTC
Trav12.3 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTGAACTGCACCTATCAGACT
Trav13.1 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAGCTCTTTGCACATTTCCTC
Trav13.2 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTCTTTGCACATTTCCTCCTCC
Trav13.3 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAGAACGCAGAGCTGCA
Trav13.4 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGAGAATGCAGAGCTGCAG
Trav14.1 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCTCTGACAGTCTGGGAAGG
Trav14.2 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAAGGAAGATGGACGATTCACAA
Trav15 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGGCCTTGGCTTTCTCT
Trav16.1 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTCCTTATTCGTCAGGACTCTTACA
Trav16.2 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCTGATTCTAAGCCTGTTGGG
Trav17 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTGGAGCTCAGATGCAG
Trav18 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTTTCTGAGTATCCAGGAGGG
Trav19 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCATCGCTGACTGTTCAAGAGG
Trav21 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCAATAGTATGGCTTTCCTGGC
Trav23 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCTCTGGTATAGACAAGATCTGG

Target Protocol Step Sequence
Trb1 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAGTATCCCTGGATGAGCTG
Trb2 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTATGGACAATCAGACTGCCTC
Trb3 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGATATGGGGCAGATGGTGAC
Trb4 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGACGGCTGTTTTCCAGACTC
Trb5 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCCAGAGCTCATGTTTCTCT
Trb12 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCAGCAGATTCTCAGTCCAAC
Trb13 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGTACTGGTATCGGCAGGAC
Trb14 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTCCCAGATATGCAGTCCTAC
Trb15 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGTGTGAGCCAGTTTCAGG
Trb16 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAACAAATGCTGGTGTCATCC
Trb17 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTGAACAGGGAAGCTGACAC
Trb19 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTGGTACCGACAGGATTCAG
Trb20 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGCTTGGTATCGTCAATCGC
Trb21 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAAGAAACCGGGAGAAGAACTC
Trb23 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCAACAGCCTCTTGATCAAATAGAC
Trb26 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGATGAGGTGTATCCCTGAAAAGG
Trb29 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTACTGGTATCGACAAGACCC
Trb30 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGGACATCTGTCAAAGTGGC
Trb31 Multiplex-PCR TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTAACCTCTACTGGTACTGGC

Target Protocol Step Sequence
TCR Constant Alpha Reverse Transcription /5Phos/GGGCTCGGAGATGTGTATAAGAGACAGNNNNNNNNNNAACCCACAGCAGGTTCTGGGTTCTG
TCR Constant Beta Reverse Transcription /5Phos/GGGCTCGGAGATGTGTATAAGAGACAGNNNNNNNNNNAACCTTGGGTGGAGTCACATTTCTCAGATC
TCR Constant Alpha Reverse Transcription /5Phos/GGGCTCGGAGATGTGTATAAGAGACAGNNNNNNNNNNGTCACACAGCAGGTTCTGGGTTCTG
TCR Constant Beta Reverse Transcription /5Phos/GGGCTCGGAGATGTGTATAAGAGACAGNNNNNNNNNNGTCATTGGGTGGAGTCACATTTCTCAGATC
TCR Constant Alpha Reverse Transcription /5Phos/GGGCTCGGAGATGTGTATAAGAGACAGNNNNNNNNNNTGCTCACAGCAGGTTCTGGGTTCTG
TCR Constant Beta Reverse Transcription /5Phos/GGGCTCGGAGATGTGTATAAGAGACAGNNNNNNNNNNTGCTTTGGGTGGAGTCACATTTCTCAGATC
TCR Constant Alpha Reverse Transcription /5Phos/GGGCTCGGAGATGTGTATAAGAGACAGNNNNNNNNNNCGAACACAGCAGGTTCTGGGTTCTG
TCR Constant Beta Reverse Transcription /5Phos/GGGCTCGGAGATGTGTATAAGAGACAGNNNNNNNNNNCGAATTGGGTGGAGTCACATTTCTCAGATC
TCR Constant Alpha Reverse Transcription /5Phos/GGGCTCGGAGATGTGTATAAGAGACAGNNNNNNNNNNACGACACAGCAGGTTCTGGGTTCTG
TCR Constant Beta Reverse Transcription /5Phos/GGGCTCGGAGATGTGTATAAGAGACAGNNNNNNNNNNACGATTGGGTGGAGTCACATTTCTCAGATC
TCR Constant Alpha Reverse Transcription /5Phos/GGGCTCGGAGATGTGTATAAGAGACAGNNNNNNNNNNGAAGCACAGCAGGTTCTGGGTTCTG
TCR Constant Beta Reverse Transcription /5Phos/GGGCTCGGAGATGTGTATAAGAGACAGNNNNNNNNNNGAAGTTGGGTGGAGTCACATTTCTCAGATC
TCR Constant Alpha Reverse Transcription /5Phos/GGGCTCGGAGATGTGTATAAGAGACAGNNNNNNNNNNTTGGCACAGCAGGTTCTGGGTTCTG
TCR Constant Beta Reverse Transcription /5Phos/GGGCTCGGAGATGTGTATAAGAGACAGNNNNNNNNNNTTGGTTGGGTGGAGTCACATTTCTCAGATC
TCR Constant Alpha Reverse Transcription /5Phos/GGGCTCGGAGATGTGTATAAGAGACAGNNNNNNNNNNAGTGCACAGCAGGTTCTGGGTTCTG
TCR Constant Beta Reverse Transcription /5Phos/GGGCTCGGAGATGTGTATAAGAGACAGNNNNNNNNNNAGTGTTGGGTGGAGTCACATTTCTCAGATC

Description:

T cell receptor alpha V-segment primers

T cell receptor beta V-segment primers

T cell receptor constant region primers

Barcoded RT oligos (8 different barcode pairs for alpha/beta in bold). Oligos anneal to the 5' end of TCR alpha and TCR beta constant regions
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Round1_081 /5Phos/GTGTGCTGTCTCGT TACACATCTCCGAGCCCACGAGACAGCACACTCT
Round1_082 /5Phos/CATTGCCGTCTCGT TACACATCTCCGAGCCCACGAGACGGCAATGTCT
Round1_083 /5Phos/CATGTGAGTCTCGT TACACATCTCCGAGCCCACGAGACTCACATGTCT
Round1_084 /5Phos/TGGTAACGTCTCGT TACACATCTCCGAGCCCACGAGACGTTACCATCT
Round1_085 /5Phos/ATGGAACGTCTCGT TACACATCTCCGAGCCCACGAGACGTTCCATTCT
Round1_086 /5Phos/AACGACAGTCTCGT TACACATCTCCGAGCCCACGAGACTGTCGTTTCT
Round1_087 /5Phos/GTTAACCGTCTCGT TACACATCTCCGAGCCCACGAGACGGTTAACTCT
Round1_088 /5Phos/GAACTGGGTCTCGT TACACATCTCCGAGCCCACGAGACCCAGTTCTCT
Round1_089 /5Phos/CCGATAAGTCTCGT TACACATCTCCGAGCCCACGAGACTTATCGGTCT
Round1_090 /5Phos/AGCGAAGGTCTCGT TACACATCTCCGAGCCCACGAGACCTTCGCTTCT
Round1_091 /5Phos/GAGACGTGTCTCGT TACACATCTCCGAGCCCACGAGACACGTCTCTCT
Round1_092 /5Phos/AGGCACAGTCTCGT TACACATCTCCGAGCCCACGAGACTGTGCCTTCT
Round1_093 /5Phos/AATCGGAGTCTCGT TACACATCTCCGAGCCCACGAGACTCCGATTTCT
Round1_094 /5Phos/GGCTCAAGTCTCGT TACACATCTCCGAGCCCACGAGACTTGAGCCTCT
Round1_095 /5Phos/CAGTCAGGTCTCGT TACACATCTCCGAGCCCACGAGACCTGACTGTCT
Round1_096 /5Phos/TGCTGGAGTCTCGT TACACATCTCCGAGCCCACGAGACTCCAGCATCT
Round1_097 /5Phos/AACACAGGTCTCGT TACACATCTCCGAGCCCACGAGACCTGTGTTTCT
Round1_098 /5Phos/AACGTTCGTCTCGT TACACATCTCCGAGCCCACGAGACGAACGTTTCT
Round1_099 /5Phos/AACTTCGGTCTCGT TACACATCTCCGAGCCCACGAGACCGAAGTTTCT
Round1_100 /5Phos/AAGCAAGGTCTCGT TACACATCTCCGAGCCCACGAGACCTTGCTTTCT
Round1_101 /5Phos/ACACTCTGTCTCGT TACACATCTCCGAGCCCACGAGACAGAGTGTTCT
Round1_102 /5Phos/ACAGATGGTCTCGT TACACATCTCCGAGCCCACGAGACCATCTGTTCT
Round1_103 /5Phos/ACATGAGGTCTCGT TACACATCTCCGAGCCCACGAGACCTCATGTTCT
Round1_104 /5Phos/ACGCGATGTCTCGT TACACATCTCCGAGCCCACGAGACATCGCGTTCT
Round1_105 /5Phos/ACGTCACGTCTCGT TACACATCTCCGAGCCCACGAGACGTGACGTTCT
Round1_106 /5Phos/ACTAACGGTCTCGT TACACATCTCCGAGCCCACGAGACCGTTAGTTCT
Round1_107 /5Phos/ACTAGGCGTCTCGT TACACATCTCCGAGCCCACGAGACGCCTAGTTCT
Round1_108 /5Phos/ACTTCCAGTCTCGT TACACATCTCCGAGCCCACGAGACTGGAAGTTCT
Round1_109 /5Phos/AGAACGGGTCTCGT TACACATCTCCGAGCCCACGAGACCCGTTCTTCT
Round1_110 /5Phos/AGAGCCTGTCTCGT TACACATCTCCGAGCCCACGAGACAGGCTCTTCT
Round1_111 /5Phos/AGCCATCGTCTCGT TACACATCTCCGAGCCCACGAGACGATGGCTTCT
Round1_112 /5Phos/AGCTCTGGTCTCGT TACACATCTCCGAGCCCACGAGACCAGAGCTTCT
Round1_113 /5Phos/AGGACAAGTCTCGT TACACATCTCCGAGCCCACGAGACTTGTCCTTCT
Round1_114 /5Phos/AGGTTAGGTCTCGT TACACATCTCCGAGCCCACGAGACCTAACCTTCT
Round1_115 /5Phos/AGTCCATGTCTCGT TACACATCTCCGAGCCCACGAGACATGGACTTCT
Round1_116 /5Phos/AGTGTCCGTCTCGT TACACATCTCCGAGCCCACGAGACGGACACTTCT
Round1_117 /5Phos/ATACGGCGTCTCGT TACACATCTCCGAGCCCACGAGACGCCGTATTCT
Round1_118 /5Phos/ATCCTGGGTCTCGT TACACATCTCCGAGCCCACGAGACCCAGGATTCT
Round1_119 /5Phos/ATCTAGCGTCTCGT TACACATCTCCGAGCCCACGAGACGCTAGATTCT
Round1_120 /5Phos/CAACCGTGTCTCGT TACACATCTCCGAGCCCACGAGACACGGTTGTCT
Round1_121 /5Phos/CAACTCAGTCTCGT TACACATCTCCGAGCCCACGAGACTGAGTTGTCT
Round1_122 /5Phos/CACATACGTCTCGT TACACATCTCCGAGCCCACGAGACGTATGTGTCT
Round1_123 /5Phos/CAGAAGAGTCTCGT TACACATCTCCGAGCCCACGAGACTCTTCTGTCT
Round1_124 /5Phos/CAGGACTGTCTCGT TACACATCTCCGAGCCCACGAGACAGTCCTGTCT
Round1_125 /5Phos/CCAGACAGTCTCGT TACACATCTCCGAGCCCACGAGACTGTCTGGTCT
Round1_126 /5Phos/CCTAAGTGTCTCGT TACACATCTCCGAGCCCACGAGACACTTAGGTCT
Round1_127 /5Phos/CGAATCGGTCTCGT TACACATCTCCGAGCCCACGAGACCGATTCGTCT
Round1_128 /5Phos/CGAGTATGTCTCGT TACACATCTCCGAGCCCACGAGACATACTCGTCT
Round1_129 /5Phos/CGATCTTGTCTCGT TACACATCTCCGAGCCCACGAGACAAGATCGTCT
Round1_130 /5Phos/CGTACACGTCTCGT TACACATCTCCGAGCCCACGAGACGTGTACGTCT
Round1_131 /5Phos/CGTTAAGGTCTCGT TACACATCTCCGAGCCCACGAGACCTTAACGTCT
Round1_132 /5Phos/CGTTCGAGTCTCGT TACACATCTCCGAGCCCACGAGACTCGAACGTCT
Round1_133 /5Phos/CTACTTCGTCTCGT TACACATCTCCGAGCCCACGAGACGAAGTAGTCT
Round1_134 /5Phos/CTAGGACGTCTCGT TACACATCTCCGAGCCCACGAGACGTCCTAGTCT
Round1_135 /5Phos/CTATCCGGTCTCGT TACACATCTCCGAGCCCACGAGACCGGATAGTCT
Round1_136 /5Phos/CTCATTGGTCTCGT TACACATCTCCGAGCCCACGAGACCAATGAGTCT
Round1_137 /5Phos/CTCTTCAGTCTCGT TACACATCTCCGAGCCCACGAGACTGAAGAGTCT
Round1_138 /5Phos/CTGATGCGTCTCGT TACACATCTCCGAGCCCACGAGACGCATCAGTCT
Round1_139 /5Phos/CTGGTTAGTCTCGT TACACATCTCCGAGCCCACGAGACTAACCAGTCT
Round1_140 /5Phos/CTTCTCGGTCTCGT TACACATCTCCGAGCCCACGAGACCGAGAAGTCT
Round1_141 /5Phos/CTTGCATGTCTCGT TACACATCTCCGAGCCCACGAGACATGCAAGTCT
Round1_142 /5Phos/GAACCAAGTCTCGT TACACATCTCCGAGCCCACGAGACTTGGTTCTCT
Round1_143 /5Phos/GACCTCTGTCTCGT TACACATCTCCGAGCCCACGAGACAGAGGTCTCT
Round1_144 /5Phos/GAGGATCGTCTCGT TACACATCTCCGAGCCCACGAGACGATCCTCTCT
Round1_145 /5Phos/GATGGTAGTCTCGT TACACATCTCCGAGCCCACGAGACTACCATCTCT
Round1_146 /5Phos/GCAAGCTGTCTCGT TACACATCTCCGAGCCCACGAGACAGCTTGCTCT
Round1_147 /5Phos/GCATTGTGTCTCGT TACACATCTCCGAGCCCACGAGACACAATGCTCT
Round1_148 /5Phos/GCCATAGGTCTCGT TACACATCTCCGAGCCCACGAGACCTATGGCTCT
Round1_149 /5Phos/GCCTAGAGTCTCGT TACACATCTCCGAGCCCACGAGACTCTAGGCTCT
Round1_150 /5Phos/GCTCTGAGTCTCGT TACACATCTCCGAGCCCACGAGACTCAGAGCTCT
Round1_151 /5Phos/GGAGTTGGTCTCGT TACACATCTCCGAGCCCACGAGACCAACTCCTCT
Round1_152 /5Phos/GGATGACGTCTCGT TACACATCTCCGAGCCCACGAGACGTCATCCTCT
Round1_153 /5Phos/GGCGATAGTCTCGT TACACATCTCCGAGCCCACGAGACTATCGCCTCT
Round1_154 /5Phos/GGTCCTAGTCTCGT TACACATCTCCGAGCCCACGAGACTAGGACCTCT
Round1_155 /5Phos/GTACCTGGTCTCGT TACACATCTCCGAGCCCACGAGACCAGGTACTCT
Round1_156 /5Phos/GTCATGTGTCTCGT TACACATCTCCGAGCCCACGAGACACATGACTCT
Round1_157 /5Phos/GTGCAGAGTCTCGT TACACATCTCCGAGCCCACGAGACTCTGCACTCT
Round1_158 /5Phos/GTTGCTCGTCTCGT TACACATCTCCGAGCCCACGAGACGAGCAACTCT
Round1_159 /5Phos/TACGAACGTCTCGT TACACATCTCCGAGCCCACGAGACGTTCGTATCT
Round1_160 /5Phos/TAGCTACGTCTCGT TACACATCTCCGAGCCCACGAGACGTAGCTATCT
Round1_161 /5Phos/TATCGCTGTCTCGT TACACATCTCCGAGCCCACGAGACAGCGATATCT
Round1_162 /5Phos/TCAACAGGTCTCGT TACACATCTCCGAGCCCACGAGACCTGTTGATCT
Round1_163 /5Phos/TCATTCGGTCTCGT TACACATCTCCGAGCCCACGAGACCGAATGATCT
Round1_164 /5Phos/TCCTTGCGTCTCGT TACACATCTCCGAGCCCACGAGACGCAAGGATCT
Round1_165 /5Phos/TCGACTAGTCTCGT TACACATCTCCGAGCCCACGAGACTAGTCGATCT
Round1_166 /5Phos/TCGAGACGTCTCGT TACACATCTCCGAGCCCACGAGACGTCTCGATCT
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Target Protocol Step Sequence
RT-oligo overhang Barcode Ligation GGGCTCGGAGATGTGTA

Name Bottom Strand Top Strand
Round1_001 /5Phos/GGTTAGCGTCTCGT TACACATCTCCGAGCCCACGAGACGCTAACCTCT
Round1_002 /5Phos/CACGGAAGTCTCGT TACACATCTCCGAGCCCACGAGACTTCCGTGTCT
Round1_003 /5Phos/GGACAAGGTCTCGT TACACATCTCCGAGCCCACGAGACCTTGTCCTCT
Round1_004 /5Phos/TGGAGCTGTCTCGT TACACATCTCCGAGCCCACGAGACAGCTCCATCT
Round1_005 /5Phos/TCCGTAAGTCTCGT TACACATCTCCGAGCCCACGAGACTTACGGATCT
Round1_006 /5Phos/GATAAGGGTCTCGT TACACATCTCCGAGCCCACGAGACCCTTATCTCT
Round1_007 /5Phos/TGAGCAAGTCTCGT TACACATCTCCGAGCCCACGAGACTTGCTCATCT
Round1_008 /5Phos/ATAGCAGGTCTCGT TACACATCTCCGAGCCCACGAGACCTGCTATTCT
Round1_009 /5Phos/GATCGACGTCTCGT TACACATCTCCGAGCCCACGAGACGTCGATCTCT
Round1_010 /5Phos/GGAACATGTCTCGT TACACATCTCCGAGCCCACGAGACATGTTCCTCT
Round1_011 /5Phos/GTAACGAGTCTCGT TACACATCTCCGAGCCCACGAGACTCGTTACTCT
Round1_012 /5Phos/TCTCGTGGTCTCGT TACACATCTCCGAGCCCACGAGACCACGAGATCT
Round1_013 /5Phos/AGTGGAAGTCTCGT TACACATCTCCGAGCCCACGAGACTTCCACTTCT
Round1_014 /5Phos/GATCACAGTCTCGT TACACATCTCCGAGCCCACGAGACTGTGATCTCT
Round1_015 /5Phos/TTCGGTAGTCTCGT TACACATCTCCGAGCCCACGAGACTACCGAATCT
Round1_016 /5Phos/GCCGAATGTCTCGT TACACATCTCCGAGCCCACGAGACATTCGGCTCT
Round1_017 /5Phos/TAGTGGCGTCTCGT TACACATCTCCGAGCCCACGAGACGCCACTATCT
Round1_018 /5Phos/GAGTTGAGTCTCGT TACACATCTCCGAGCCCACGAGACTCAACTCTCT
Round1_019 /5Phos/CTTACGGGTCTCGT TACACATCTCCGAGCCCACGAGACCCGTAAGTCT
Round1_020 /5Phos/AGAAGCCGTCTCGT TACACATCTCCGAGCCCACGAGACGGCTTCTTCT
Round1_021 /5Phos/GGTTCCTGTCTCGT TACACATCTCCGAGCCCACGAGACAGGAACCTCT
Round1_022 /5Phos/GCAGGAAGTCTCGT TACACATCTCCGAGCCCACGAGACTTCCTGCTCT
Round1_023 /5Phos/GTGCTATGTCTCGT TACACATCTCCGAGCCCACGAGACATAGCACTCT
Round1_024 /5Phos/GTGGCAAGTCTCGT TACACATCTCCGAGCCCACGAGACTTGCCACTCT
Round1_025 /5Phos/CGACAGAGTCTCGT TACACATCTCCGAGCCCACGAGACTCTGTCGTCT
Round1_026 /5Phos/AGCTACTGTCTCGT TACACATCTCCGAGCCCACGAGACAGTAGCTTCT
Round1_027 /5Phos/ACCATCCGTCTCGT TACACATCTCCGAGCCCACGAGACGGATGGTTCT
Round1_028 /5Phos/ATGCCTAGTCTCGT TACACATCTCCGAGCCCACGAGACTAGGCATTCT
Round1_029 /5Phos/GTCGTACGTCTCGT TACACATCTCCGAGCCCACGAGACGTACGACTCT
Round1_030 /5Phos/TACGCCTGTCTCGT TACACATCTCCGAGCCCACGAGACAGGCGTATCT
Round1_031 /5Phos/CTAAGGTGTCTCGT TACACATCTCCGAGCCCACGAGACACCTTAGTCT
Round1_032 /5Phos/TACGTGGGTCTCGT TACACATCTCCGAGCCCACGAGACCCACGTATCT
Round1_033 /5Phos/CTGACTTGTCTCGT TACACATCTCCGAGCCCACGAGACAAGTCAGTCT
Round1_034 /5Phos/CGCAATTGTCTCGT TACACATCTCCGAGCCCACGAGACAATTGCGTCT
Round1_035 /5Phos/GTAGACTGTCTCGT TACACATCTCCGAGCCCACGAGACAGTCTACTCT
Round1_036 /5Phos/TCCTGCTGTCTCGT TACACATCTCCGAGCCCACGAGACAGCAGGATCT
Round1_037 /5Phos/TTGCCAGGTCTCGT TACACATCTCCGAGCCCACGAGACCTGGCAATCT
Round1_038 /5Phos/TTCAGGCGTCTCGT TACACATCTCCGAGCCCACGAGACGCCTGAATCT
Round1_039 /5Phos/AACAGGTGTCTCGT TACACATCTCCGAGCCCACGAGACACCTGTTTCT
Round1_040 /5Phos/TTATGCCGTCTCGT TACACATCTCCGAGCCCACGAGACGGCATAATCT
Round1_041 /5Phos/CGGTATAGTCTCGT TACACATCTCCGAGCCCACGAGACTATACCGTCT
Round1_042 /5Phos/TTGCATCGTCTCGT TACACATCTCCGAGCCCACGAGACGATGCAATCT
Round1_043 /5Phos/CATACCTGTCTCGT TACACATCTCCGAGCCCACGAGACAGGTATGTCT
Round1_044 /5Phos/ATGGTGTGTCTCGT TACACATCTCCGAGCCCACGAGACACACCATTCT
Round1_045 /5Phos/GCTTATGGTCTCGT TACACATCTCCGAGCCCACGAGACCATAAGCTCT
Round1_046 /5Phos/TAATCGGGTCTCGT TACACATCTCCGAGCCCACGAGACCCGATTATCT
Round1_047 /5Phos/GTATAGGGTCTCGT TACACATCTCCGAGCCCACGAGACCCTATACTCT
Round1_048 /5Phos/CCTTCTCGTCTCGT TACACATCTCCGAGCCCACGAGACGAGAAGGTCT
Round1_049 /5Phos/CCACTAGGTCTCGT TACACATCTCCGAGCCCACGAGACCTAGTGGTCT
Round1_050 /5Phos/AATGAGCGTCTCGT TACACATCTCCGAGCCCACGAGACGCTCATTTCT
Round1_051 /5Phos/GTGATCGGTCTCGT TACACATCTCCGAGCCCACGAGACCGATCACTCT
Round1_052 /5Phos/ACCAGAAGTCTCGT TACACATCTCCGAGCCCACGAGACTTCTGGTTCT
Round1_053 /5Phos/TGACTGTGTCTCGT TACACATCTCCGAGCCCACGAGACACAGTCATCT
Round1_054 /5Phos/TGGTCCAGTCTCGT TACACATCTCCGAGCCCACGAGACTGGACCATCT
Round1_055 /5Phos/CCGAATCGTCTCGT TACACATCTCCGAGCCCACGAGACGATTCGGTCT
Round1_056 /5Phos/ACACCGAGTCTCGT TACACATCTCCGAGCCCACGAGACTCGGTGTTCT
Round1_057 /5Phos/TGTGGTTGTCTCGT TACACATCTCCGAGCCCACGAGACAACCACATCT
Round1_058 /5Phos/TCAAGGAGTCTCGT TACACATCTCCGAGCCCACGAGACTCCTTGATCT
Round1_059 /5Phos/GGTAGGAGTCTCGT TACACATCTCCGAGCCCACGAGACTCCTACCTCT
Round1_060 /5Phos/GAAGAGAGTCTCGT TACACATCTCCGAGCCCACGAGACTCTCTTCTCT
Round1_061 /5Phos/ATGTCGGGTCTCGT TACACATCTCCGAGCCCACGAGACCCGACATTCT
Round1_062 /5Phos/TATACGCGTCTCGT TACACATCTCCGAGCCCACGAGACGCGTATATCT
Round1_063 /5Phos/GCCTCTTGTCTCGT TACACATCTCCGAGCCCACGAGACAAGAGGCTCT
Round1_064 /5Phos/TGTGAGAGTCTCGT TACACATCTCCGAGCCCACGAGACTCTCACATCT
Round1_065 /5Phos/AACCGTGGTCTCGT TACACATCTCCGAGCCCACGAGACCACGGTTTCT
Round1_066 /5Phos/CAGCGTAGTCTCGT TACACATCTCCGAGCCCACGAGACTACGCTGTCT
Round1_067 /5Phos/TCGTAGTGTCTCGT TACACATCTCCGAGCCCACGAGACACTACGATCT
Round1_068 /5Phos/ATCGGATGTCTCGT TACACATCTCCGAGCCCACGAGACATCCGATTCT
Round1_069 /5Phos/GGAATGCGTCTCGT TACACATCTCCGAGCCCACGAGACGCATTCCTCT
Round1_070 /5Phos/AATGGCGGTCTCGT TACACATCTCCGAGCCCACGAGACCGCCATTTCT
Round1_071 /5Phos/CTGTGAAGTCTCGT TACACATCTCCGAGCCCACGAGACTTCACAGTCT
Round1_072 /5Phos/CGAAGAAGTCTCGT TACACATCTCCGAGCCCACGAGACTTCTTCGTCT
Round1_073 /5Phos/TCTCCACGTCTCGT TACACATCTCCGAGCCCACGAGACGTGGAGATCT
Round1_074 /5Phos/CCTCGAAGTCTCGT TACACATCTCCGAGCCCACGAGACTTCGAGGTCT
Round1_075 /5Phos/AGGAATGGTCTCGT TACACATCTCCGAGCCCACGAGACCATTCCTTCT
Round1_076 /5Phos/CTCACAAGTCTCGT TACACATCTCCGAGCCCACGAGACTTGTGAGTCT
Round1_077 /5Phos/ATGAGGAGTCTCGT TACACATCTCCGAGCCCACGAGACTCCTCATTCT
Round1_078 /5Phos/CTGTACCGTCTCGT TACACATCTCCGAGCCCACGAGACGGTACAGTCT
Round1_079 /5Phos/TGCACGTGTCTCGT TACACATCTCCGAGCCCACGAGACACGTGCATCT
Round1_080 /5Phos/CCTGAACGTCTCGT TACACATCTCCGAGCCCACGAGACGTTCAGGTCT
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Round1_167 /5Phos/TCGGAAGGTCTCGT TACACATCTCCGAGCCCACGAGACCTTCCGATCT
Round1_168 /5Phos/TCGGTTCGTCTCGT TACACATCTCCGAGCCCACGAGACGAACCGATCT
Round1_169 /5Phos/TCTTACCGTCTCGT TACACATCTCCGAGCCCACGAGACGGTAAGATCT
Round1_170 /5Phos/TGAGACGGTCTCGT TACACATCTCCGAGCCCACGAGACCGTCTCATCT
Round1_171 /5Phos/TGCAACCGTCTCGT TACACATCTCCGAGCCCACGAGACGGTTGCATCT
Round1_172 /5Phos/TGCAGAGGTCTCGT TACACATCTCCGAGCCCACGAGACCTCTGCATCT
Round1_173 /5Phos/TGGATGAGTCTCGT TACACATCTCCGAGCCCACGAGACTCATCCATCT
Round1_174 /5Phos/TGGCGAAGTCTCGT TACACATCTCCGAGCCCACGAGACTTCGCCATCT
Round1_175 /5Phos/TGTCTAGGTCTCGT TACACATCTCCGAGCCCACGAGACCTAGACATCT
Round1_176 /5Phos/TTAGAGCGTCTCGT TACACATCTCCGAGCCCACGAGACGCTCTAATCT
Round1_177 /5Phos/TTGAAGGGTCTCGT TACACATCTCCGAGCCCACGAGACCCTTCAATCT
Round1_178 /5Phos/TTGCGGTGTCTCGT TACACATCTCCGAGCCCACGAGACACCGCAATCT
Round1_179 /5Phos/CTCCGTTGTCTCGT TACACATCTCCGAGCCCACGAGACAACGGAGTCT
Round1_180 /5Phos/AGCAAGAGTCTCGT TACACATCTCCGAGCCCACGAGACTCTTGCTTCT
Round1_181 /5Phos/GAGAGAAGTCTCGT TACACATCTCCGAGCCCACGAGACTTCTCTCTCT
Round1_182 /5Phos/GCTTGATGTCTCGT TACACATCTCCGAGCCCACGAGACATCAAGCTCT
Round1_183 /5Phos/ATTGCGAGTCTCGT TACACATCTCCGAGCCCACGAGACTCGCAATTCT
Round1_184 /5Phos/GACACTAGTCTCGT TACACATCTCCGAGCCCACGAGACTAGTGTCTCT
Round1_185 /5Phos/AAGATGGGTCTCGT TACACATCTCCGAGCCCACGAGACCCATCTTTCT
Round1_186 /5Phos/GAGGTAGGTCTCGT TACACATCTCCGAGCCCACGAGACCTACCTCTCT
Round1_187 /5Phos/CCATCAAGTCTCGT TACACATCTCCGAGCCCACGAGACTTGATGGTCT
Round1_188 /5Phos/ACGCTTGGTCTCGT TACACATCTCCGAGCCCACGAGACCAAGCGTTCT
Round1_189 /5Phos/ATTCGAGGTCTCGT TACACATCTCCGAGCCCACGAGACCTCGAATTCT
Round1_190 /5Phos/TGACCTCGTCTCGT TACACATCTCCGAGCCCACGAGACGAGGTCATCT
Round1_191 /5Phos/ACGGAGAGTCTCGT TACACATCTCCGAGCCCACGAGACTCTCCGTTCT
Round1_192 /5Phos/AAGGCTGGTCTCGT TACACATCTCCGAGCCCACGAGACCAGCCTTTCT

Description:
#Round 1 barcode oligos
#Each barcode consists of one bottom strand oligo + it's matching top strand oligo which together will form the duplex
( rev. comp. part for most of the sequence, leaving some single stranded overhangs used for ligation)
#Round 1 oligos need to be phosphorylated in order to ligate the round 2 barcodes
#Round 1 barcodes are positioned in bases 1-7 of index 1, the actual barcode are the first seven bases of the oligo sequence

Name Bottom Strand Top Strand
Round2_001 CAAGCAGAAGACGGCATACGAGATTCTGGCAAGA TGCCAGAATCTCGTATGCCGTCTTCTGCTTG
Round2_002 CAAGCAGAAGACGGCATACGAGATGAACGTTAGA AACGTTCATCTCGTATGCCGTCTTCTGCTTG
Round2_003 CAAGCAGAAGACGGCATACGAGATGAATCTCAGA GAGATTCATCTCGTATGCCGTCTTCTGCTTG
Round2_004 CAAGCAGAAGACGGCATACGAGATAGCAAGAAGA TCTTGCTATCTCGTATGCCGTCTTCTGCTTG
Round2_005 CAAGCAGAAGACGGCATACGAGATACGCTTGAGA CAAGCGTATCTCGTATGCCGTCTTCTGCTTG
Round2_006 CAAGCAGAAGACGGCATACGAGATGACTAAGAGA CTTAGTCATCTCGTATGCCGTCTTCTGCTTG
Round2_007 CAAGCAGAAGACGGCATACGAGATTCACAGGAGA CCTGTGAATCTCGTATGCCGTCTTCTGCTTG
Round2_008 CAAGCAGAAGACGGCATACGAGATGTTCCGTAGA ACGGAACATCTCGTATGCCGTCTTCTGCTTG
Round2_009 CAAGCAGAAGACGGCATACGAGATGGTGTGTAGA ACACACCATCTCGTATGCCGTCTTCTGCTTG
Round2_010 CAAGCAGAAGACGGCATACGAGATTCAGCGTAGA ACGCTGAATCTCGTATGCCGTCTTCTGCTTG
Round2_011 CAAGCAGAAGACGGCATACGAGATTAGAGTGAGA CACTCTAATCTCGTATGCCGTCTTCTGCTTG
Round2_012 CAAGCAGAAGACGGCATACGAGATCCAAGTGAGA CACTTGGATCTCGTATGCCGTCTTCTGCTTG
Round2_013 CAAGCAGAAGACGGCATACGAGATAAGTGCAAGA TGCACTTATCTCGTATGCCGTCTTCTGCTTG
Round2_014 CAAGCAGAAGACGGCATACGAGATTAAGGTCAGA GACCTTAATCTCGTATGCCGTCTTCTGCTTG
Round2_015 CAAGCAGAAGACGGCATACGAGATATGCTCCAGA GGAGCATATCTCGTATGCCGTCTTCTGCTTG
Round2_016 CAAGCAGAAGACGGCATACGAGATCTCCAAGAGA CTTGGAGATCTCGTATGCCGTCTTCTGCTTG
Round2_017 CAAGCAGAAGACGGCATACGAGATAAGATGGAGA CCATCTTATCTCGTATGCCGTCTTCTGCTTG
Round2_018 CAAGCAGAAGACGGCATACGAGATAGCCTAAAGA TTAGGCTATCTCGTATGCCGTCTTCTGCTTG
Round2_019 CAAGCAGAAGACGGCATACGAGATGGATACAAGA TGTATCCATCTCGTATGCCGTCTTCTGCTTG
Round2_020 CAAGCAGAAGACGGCATACGAGATGTTGAAGAGA CTTCAACATCTCGTATGCCGTCTTCTGCTTG
Round2_021 CAAGCAGAAGACGGCATACGAGATCGCTGATAGA ATCAGCGATCTCGTATGCCGTCTTCTGCTTG
Round2_022 CAAGCAGAAGACGGCATACGAGATTACAGCAAGA TGCTGTAATCTCGTATGCCGTCTTCTGCTTG
Round2_023 CAAGCAGAAGACGGCATACGAGATCGAGATCAGA GATCTCGATCTCGTATGCCGTCTTCTGCTTG
Round2_024 CAAGCAGAAGACGGCATACGAGATACACAACAGA GTTGTGTATCTCGTATGCCGTCTTCTGCTTG
Round2_025 CAAGCAGAAGACGGCATACGAGATTTCTCACAGA GTGAGAAATCTCGTATGCCGTCTTCTGCTTG
Round2_026 CAAGCAGAAGACGGCATACGAGATGCGTGTAAGA TACACGCATCTCGTATGCCGTCTTCTGCTTG
Round2_027 CAAGCAGAAGACGGCATACGAGATACGGAGAAGA TCTCCGTATCTCGTATGCCGTCTTCTGCTTG
Round2_028 CAAGCAGAAGACGGCATACGAGATCTAGTGGAGA CCACTAGATCTCGTATGCCGTCTTCTGCTTG
Round2_029 CAAGCAGAAGACGGCATACGAGATATTGCGAAGA TCGCAATATCTCGTATGCCGTCTTCTGCTTG
Round2_030 CAAGCAGAAGACGGCATACGAGATTTGGACAAGA TGTCCAAATCTCGTATGCCGTCTTCTGCTTG
Round2_031 CAAGCAGAAGACGGCATACGAGATATTCGAGAGA CTCGAATATCTCGTATGCCGTCTTCTGCTTG
Round2_032 CAAGCAGAAGACGGCATACGAGATAACTGACAGA GTCAGTTATCTCGTATGCCGTCTTCTGCTTG
Round2_033 CAAGCAGAAGACGGCATACGAGATAGTCAGGAGA CCTGACTATCTCGTATGCCGTCTTCTGCTTG
Round2_034 CAAGCAGAAGACGGCATACGAGATACGACCTAGA AGGTCGTATCTCGTATGCCGTCTTCTGCTTG
Round2_035 CAAGCAGAAGACGGCATACGAGATTGACCTCAGA GAGGTCAATCTCGTATGCCGTCTTCTGCTTG
Round2_036 CAAGCAGAAGACGGCATACGAGATCCTGTCTAGA AGACAGGATCTCGTATGCCGTCTTCTGCTTG
Round2_037 CAAGCAGAAGACGGCATACGAGATTGTTGCGAGA CGCAACAATCTCGTATGCCGTCTTCTGCTTG
Round2_038 CAAGCAGAAGACGGCATACGAGATCGGTTGTAGA ACAACCGATCTCGTATGCCGTCTTCTGCTTG
Round2_039 CAAGCAGAAGACGGCATACGAGATCAAGAAGAGA CTTCTTGATCTCGTATGCCGTCTTCTGCTTG
Round2_040 CAAGCAGAAGACGGCATACGAGATGCTATTCAGA GAATAGCATCTCGTATGCCGTCTTCTGCTTG
Round2_041 CAAGCAGAAGACGGCATACGAGATTAGGCGAAGA TCGCCTAATCTCGTATGCCGTCTTCTGCTTG
Round2_042 CAAGCAGAAGACGGCATACGAGATGTTGTCAAGA TGACAACATCTCGTATGCCGTCTTCTGCTTG
Round2_043 CAAGCAGAAGACGGCATACGAGATAATCCTCAGA GAGGATTATCTCGTATGCCGTCTTCTGCTTG
Round2_044 CAAGCAGAAGACGGCATACGAGATTAGTACGAGA CGTACTAATCTCGTATGCCGTCTTCTGCTTG
Round2_045 CAAGCAGAAGACGGCATACGAGATACCGCTAAGA TAGCGGTATCTCGTATGCCGTCTTCTGCTTG
Round2_046 CAAGCAGAAGACGGCATACGAGATCATAGAGAGA CTCTATGATCTCGTATGCCGTCTTCTGCTTG
Round2_047 CAAGCAGAAGACGGCATACGAGATCTTGGTGAGA CACCAAGATCTCGTATGCCGTCTTCTGCTTG
Round2_048 CAAGCAGAAGACGGCATACGAGATATACACGAGA CGTGTATATCTCGTATGCCGTCTTCTGCTTG
Round2_049 CAAGCAGAAGACGGCATACGAGATCACAACGAGA CGTTGTGATCTCGTATGCCGTCTTCTGCTTG
Round2_050 CAAGCAGAAGACGGCATACGAGATATAGGCAAGA TGCCTATATCTCGTATGCCGTCTTCTGCTTG
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Round2_051 CAAGCAGAAGACGGCATACGAGATAGACGTAAGA TACGTCTATCTCGTATGCCGTCTTCTGCTTG
Round2_052 CAAGCAGAAGACGGCATACGAGATTTCCACTAGA AGTGGAAATCTCGTATGCCGTCTTCTGCTTG
Round2_053 CAAGCAGAAGACGGCATACGAGATTATGCAGAGA CTGCATAATCTCGTATGCCGTCTTCTGCTTG
Round2_054 CAAGCAGAAGACGGCATACGAGATAGATGGTAGA ACCATCTATCTCGTATGCCGTCTTCTGCTTG
Round2_055 CAAGCAGAAGACGGCATACGAGATCTTCAGCAGA GCTGAAGATCTCGTATGCCGTCTTCTGCTTG
Round2_056 CAAGCAGAAGACGGCATACGAGATCTCCGTTAGA AACGGAGATCTCGTATGCCGTCTTCTGCTTG
Round2_057 CAAGCAGAAGACGGCATACGAGATGTCTGTGAGA CACAGACATCTCGTATGCCGTCTTCTGCTTG
Round2_058 CAAGCAGAAGACGGCATACGAGATCCATCAAAGA TTGATGGATCTCGTATGCCGTCTTCTGCTTG
Round2_059 CAAGCAGAAGACGGCATACGAGATGAGGTAGAGA CTACCTCATCTCGTATGCCGTCTTCTGCTTG
Round2_060 CAAGCAGAAGACGGCATACGAGATTGTACTGAGA CAGTACAATCTCGTATGCCGTCTTCTGCTTG
Round2_061 CAAGCAGAAGACGGCATACGAGATAGAGTGAAGA TCACTCTATCTCGTATGCCGTCTTCTGCTTG
Round2_062 CAAGCAGAAGACGGCATACGAGATTAACACCAGA GGTGTTAATCTCGTATGCCGTCTTCTGCTTG
Round2_063 CAAGCAGAAGACGGCATACGAGATATCAGCGAGA CGCTGATATCTCGTATGCCGTCTTCTGCTTG
Round2_064 CAAGCAGAAGACGGCATACGAGATAAGAACCAGA GGTTCTTATCTCGTATGCCGTCTTCTGCTTG
Round2_065 CAAGCAGAAGACGGCATACGAGATAAGGCTGAGA CAGCCTTATCTCGTATGCCGTCTTCTGCTTG
Round2_066 CAAGCAGAAGACGGCATACGAGATCTCTCGTAGA ACGAGAGATCTCGTATGCCGTCTTCTGCTTG
Round2_067 CAAGCAGAAGACGGCATACGAGATGAAGTCCAGA GGACTTCATCTCGTATGCCGTCTTCTGCTTG
Round2_068 CAAGCAGAAGACGGCATACGAGATAGGTGTCAGA GACACCTATCTCGTATGCCGTCTTCTGCTTG
Round2_069 CAAGCAGAAGACGGCATACGAGATGCACATAAGA TATGTGCATCTCGTATGCCGTCTTCTGCTTG
Round2_070 CAAGCAGAAGACGGCATACGAGATCTCGAGAAGA TCTCGAGATCTCGTATGCCGTCTTCTGCTTG
Round2_071 CAAGCAGAAGACGGCATACGAGATCGTAACAAGA TGTTACGATCTCGTATGCCGTCTTCTGCTTG
Round2_072 CAAGCAGAAGACGGCATACGAGATGTAAGAGAGA CTCTTACATCTCGTATGCCGTCTTCTGCTTG
Round2_073 CAAGCAGAAGACGGCATACGAGATAACTCGAAGA TCGAGTTATCTCGTATGCCGTCTTCTGCTTG
Round2_074 CAAGCAGAAGACGGCATACGAGATGAGAGAAAGA TTCTCTCATCTCGTATGCCGTCTTCTGCTTG
Round2_075 CAAGCAGAAGACGGCATACGAGATACAACTCAGA GAGTTGTATCTCGTATGCCGTCTTCTGCTTG
Round2_076 CAAGCAGAAGACGGCATACGAGATCGGCAATAGA ATTGCCGATCTCGTATGCCGTCTTCTGCTTG
Round2_077 CAAGCAGAAGACGGCATACGAGATCAAGCTAAGA TAGCTTGATCTCGTATGCCGTCTTCTGCTTG
Round2_078 CAAGCAGAAGACGGCATACGAGATGAATGCGAGA CGCATTCATCTCGTATGCCGTCTTCTGCTTG
Round2_079 CAAGCAGAAGACGGCATACGAGATTCGCTCAAGA TGAGCGAATCTCGTATGCCGTCTTCTGCTTG
Round2_080 CAAGCAGAAGACGGCATACGAGATTCTATGGAGA CCATAGAATCTCGTATGCCGTCTTCTGCTTG
Round2_081 CAAGCAGAAGACGGCATACGAGATCCATAGCAGA GCTATGGATCTCGTATGCCGTCTTCTGCTTG
Round2_082 CAAGCAGAAGACGGCATACGAGATGCTACAAAGA TTGTAGCATCTCGTATGCCGTCTTCTGCTTG
Round2_083 CAAGCAGAAGACGGCATACGAGATGTCCGAAAGA TTCGGACATCTCGTATGCCGTCTTCTGCTTG
Round2_084 CAAGCAGAAGACGGCATACGAGATTCCAATGAGA CATTGGAATCTCGTATGCCGTCTTCTGCTTG
Round2_085 CAAGCAGAAGACGGCATACGAGATCACTATCAGA GATAGTGATCTCGTATGCCGTCTTCTGCTTG
Round2_086 CAAGCAGAAGACGGCATACGAGATCAATGGAAGA TCCATTGATCTCGTATGCCGTCTTCTGCTTG
Round2_087 CAAGCAGAAGACGGCATACGAGATTACCAGAAGA TCTGGTAATCTCGTATGCCGTCTTCTGCTTG
Round2_088 CAAGCAGAAGACGGCATACGAGATGCGAACAAGA TGTTCGCATCTCGTATGCCGTCTTCTGCTTG
Round2_089 CAAGCAGAAGACGGCATACGAGATTAACGAGAGA CTCGTTAATCTCGTATGCCGTCTTCTGCTTG
Round2_090 CAAGCAGAAGACGGCATACGAGATGCTTGATAGA ATCAAGCATCTCGTATGCCGTCTTCTGCTTG
Round2_091 CAAGCAGAAGACGGCATACGAGATTAGCCTTAGA AAGGCTAATCTCGTATGCCGTCTTCTGCTTG
Round2_092 CAAGCAGAAGACGGCATACGAGATGTGAGTCAGA GACTCACATCTCGTATGCCGTCTTCTGCTTG
Round2_093 CAAGCAGAAGACGGCATACGAGATACTGTAGAGA CTACAGTATCTCGTATGCCGTCTTCTGCTTG
Round2_094 CAAGCAGAAGACGGCATACGAGATCATCATGAGA CATGATGATCTCGTATGCCGTCTTCTGCTTG
Round2_095 CAAGCAGAAGACGGCATACGAGATGACACTAAGA TAGTGTCATCTCGTATGCCGTCTTCTGCTTG
Round2_096 CAAGCAGAAGACGGCATACGAGATGGCATCAAGA TGATGCCATCTCGTATGCCGTCTTCTGCTTG
Round2_097 CAAGCAGAAGACGGCATACGAGATAGGACAAAGA TTGTCCTATCTCGTATGCCGTCTTCTGCTTG
Round2_098 CAAGCAGAAGACGGCATACGAGATGTCGTACAGA GTACGACATCTCGTATGCCGTCTTCTGCTTG
Round2_099 CAAGCAGAAGACGGCATACGAGATGAGACGTAGA ACGTCTCATCTCGTATGCCGTCTTCTGCTTG
Round2_100 CAAGCAGAAGACGGCATACGAGATTAGTGGCAGA GCCACTAATCTCGTATGCCGTCTTCTGCTTG
Round2_101 CAAGCAGAAGACGGCATACGAGATGTGGCAAAGA TTGCCACATCTCGTATGCCGTCTTCTGCTTG
Round2_102 CAAGCAGAAGACGGCATACGAGATTTGCATCAGA GATGCAAATCTCGTATGCCGTCTTCTGCTTG
Round2_103 CAAGCAGAAGACGGCATACGAGATCAGAAGAAGA TCTTCTGATCTCGTATGCCGTCTTCTGCTTG
Round2_104 CAAGCAGAAGACGGCATACGAGATAGAGCCTAGA AGGCTCTATCTCGTATGCCGTCTTCTGCTTG
Round2_105 CAAGCAGAAGACGGCATACGAGATGTACCTGAGA CAGGTACATCTCGTATGCCGTCTTCTGCTTG
Round2_106 CAAGCAGAAGACGGCATACGAGATTCCTTGCAGA GCAAGGAATCTCGTATGCCGTCTTCTGCTTG
Round2_107 CAAGCAGAAGACGGCATACGAGATCGATCTTAGA AAGATCGATCTCGTATGCCGTCTTCTGCTTG
Round2_108 CAAGCAGAAGACGGCATACGAGATCACGGAAAGA TTCCGTGATCTCGTATGCCGTCTTCTGCTTG
Round2_109 CAAGCAGAAGACGGCATACGAGATTGCACGTAGA ACGTGCAATCTCGTATGCCGTCTTCTGCTTG
Round2_110 CAAGCAGAAGACGGCATACGAGATAGGTTAGAGA CTAACCTATCTCGTATGCCGTCTTCTGCTTG
Round2_111 CAAGCAGAAGACGGCATACGAGATCGCAATTAGA AATTGCGATCTCGTATGCCGTCTTCTGCTTG
Round2_112 CAAGCAGAAGACGGCATACGAGATCAGTCAGAGA CTGACTGATCTCGTATGCCGTCTTCTGCTTG
Round2_113 CAAGCAGAAGACGGCATACGAGATAGTGGAAAGA TTCCACTATCTCGTATGCCGTCTTCTGCTTG
Round2_114 CAAGCAGAAGACGGCATACGAGATAACACAGAGA CTGTGTTATCTCGTATGCCGTCTTCTGCTTG
Round2_115 CAAGCAGAAGACGGCATACGAGATCGAATCGAGA CGATTCGATCTCGTATGCCGTCTTCTGCTTG
Round2_116 CAAGCAGAAGACGGCATACGAGATTGGCGAAAGA TTCGCCAATCTCGTATGCCGTCTTCTGCTTG
Round2_117 CAAGCAGAAGACGGCATACGAGATATGGAACAGA GTTCCATATCTCGTATGCCGTCTTCTGCTTG
Round2_118 CAAGCAGAAGACGGCATACGAGATCCGATAAAGA TTATCGGATCTCGTATGCCGTCTTCTGCTTG
Round2_119 CAAGCAGAAGACGGCATACGAGATGTAGACTAGA AGTCTACATCTCGTATGCCGTCTTCTGCTTG
Round2_120 CAAGCAGAAGACGGCATACGAGATGAGGATCAGA GATCCTCATCTCGTATGCCGTCTTCTGCTTG
Round2_121 CAAGCAGAAGACGGCATACGAGATGCATTGTAGA ACAATGCATCTCGTATGCCGTCTTCTGCTTG
Round2_122 CAAGCAGAAGACGGCATACGAGATCCGAATCAGA GATTCGGATCTCGTATGCCGTCTTCTGCTTG
Round2_123 CAAGCAGAAGACGGCATACGAGATACCATCCAGA GGATGGTATCTCGTATGCCGTCTTCTGCTTG
Round2_124 CAAGCAGAAGACGGCATACGAGATACTAACGAGA CGTTAGTATCTCGTATGCCGTCTTCTGCTTG
Round2_125 CAAGCAGAAGACGGCATACGAGATACTAGGCAGA GCCTAGTATCTCGTATGCCGTCTTCTGCTTG
Round2_126 CAAGCAGAAGACGGCATACGAGATTCGAGACAGA GTCTCGAATCTCGTATGCCGTCTTCTGCTTG
Round2_127 CAAGCAGAAGACGGCATACGAGATATCCTGGAGA CCAGGATATCTCGTATGCCGTCTTCTGCTTG
Round2_128 CAAGCAGAAGACGGCATACGAGATAGCGAAGAGA CTTCGCTATCTCGTATGCCGTCTTCTGCTTG
Round2_129 CAAGCAGAAGACGGCATACGAGATGTTGCTCAGA GAGCAACATCTCGTATGCCGTCTTCTGCTTG
Round2_130 CAAGCAGAAGACGGCATACGAGATCATTGCCAGA GGCAATGATCTCGTATGCCGTCTTCTGCTTG
Round2_131 CAAGCAGAAGACGGCATACGAGATGCTCTGAAGA TCAGAGCATCTCGTATGCCGTCTTCTGCTTG
Round2_132 CAAGCAGAAGACGGCATACGAGATCACATACAGA GTATGTGATCTCGTATGCCGTCTTCTGCTTG
Round2_133 CAAGCAGAAGACGGCATACGAGATCCACTAGAGA CTAGTGGATCTCGTATGCCGTCTTCTGCTTG
Round2_134 CAAGCAGAAGACGGCATACGAGATTCCGTAAAGA TTACGGAATCTCGTATGCCGTCTTCTGCTTG
Round2_135 CAAGCAGAAGACGGCATACGAGATCCTTCTCAGA GAGAAGGATCTCGTATGCCGTCTTCTGCTTG
Round2_136 CAAGCAGAAGACGGCATACGAGATGTCATGTAGA ACATGACATCTCGTATGCCGTCTTCTGCTTG
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Round2_137 CAAGCAGAAGACGGCATACGAGATTTGCGGTAGA ACCGCAAATCTCGTATGCCGTCTTCTGCTTG
Round2_138 CAAGCAGAAGACGGCATACGAGATGGTAGGAAGA TCCTACCATCTCGTATGCCGTCTTCTGCTTG
Round2_139 CAAGCAGAAGACGGCATACGAGATGGAGTTGAGA CAACTCCATCTCGTATGCCGTCTTCTGCTTG
Round2_140 CAAGCAGAAGACGGCATACGAGATCTGTGAAAGA TTCACAGATCTCGTATGCCGTCTTCTGCTTG
Round2_141 CAAGCAGAAGACGGCATACGAGATTGCTGGAAGA TCCAGCAATCTCGTATGCCGTCTTCTGCTTG
Round2_142 CAAGCAGAAGACGGCATACGAGATACACCGAAGA TCGGTGTATCTCGTATGCCGTCTTCTGCTTG
Round2_143 CAAGCAGAAGACGGCATACGAGATCGACAGAAGA TCTGTCGATCTCGTATGCCGTCTTCTGCTTG
Round2_144 CAAGCAGAAGACGGCATACGAGATCTTGCATAGA ATGCAAGATCTCGTATGCCGTCTTCTGCTTG
Round2_145 CAAGCAGAAGACGGCATACGAGATCCTAAGTAGA ACTTAGGATCTCGTATGCCGTCTTCTGCTTG
Round2_146 CAAGCAGAAGACGGCATACGAGATTCTCCACAGA GTGGAGAATCTCGTATGCCGTCTTCTGCTTG
Round2_147 CAAGCAGAAGACGGCATACGAGATTGACTGTAGA ACAGTCAATCTCGTATGCCGTCTTCTGCTTG
Round2_148 CAAGCAGAAGACGGCATACGAGATCGTTCGAAGA TCGAACGATCTCGTATGCCGTCTTCTGCTTG
Round2_149 CAAGCAGAAGACGGCATACGAGATTGTGAGAAGA TCTCACAATCTCGTATGCCGTCTTCTGCTTG
Round2_150 CAAGCAGAAGACGGCATACGAGATCGTACACAGA GTGTACGATCTCGTATGCCGTCTTCTGCTTG
Round2_151 CAAGCAGAAGACGGCATACGAGATTGTGGTTAGA AACCACAATCTCGTATGCCGTCTTCTGCTTG
Round2_152 CAAGCAGAAGACGGCATACGAGATATCTAGCAGA GCTAGATATCTCGTATGCCGTCTTCTGCTTG
Round2_153 CAAGCAGAAGACGGCATACGAGATGTAACGAAGA TCGTTACATCTCGTATGCCGTCTTCTGCTTG
Round2_154 CAAGCAGAAGACGGCATACGAGATCAGCGTAAGA TACGCTGATCTCGTATGCCGTCTTCTGCTTG
Round2_155 CAAGCAGAAGACGGCATACGAGATGTATAGGAGA CCTATACATCTCGTATGCCGTCTTCTGCTTG
Round2_156 CAAGCAGAAGACGGCATACGAGATCTAAGGTAGA ACCTTAGATCTCGTATGCCGTCTTCTGCTTG
Round2_157 CAAGCAGAAGACGGCATACGAGATCGGTATAAGA TATACCGATCTCGTATGCCGTCTTCTGCTTG
Round2_158 CAAGCAGAAGACGGCATACGAGATACACTCTAGA AGAGTGTATCTCGTATGCCGTCTTCTGCTTG
Round2_159 CAAGCAGAAGACGGCATACGAGATGCCATAGAGA CTATGGCATCTCGTATGCCGTCTTCTGCTTG
Round2_160 CAAGCAGAAGACGGCATACGAGATAGAACGGAGA CCGTTCTATCTCGTATGCCGTCTTCTGCTTG
Round2_161 CAAGCAGAAGACGGCATACGAGATTACGAACAGA GTTCGTAATCTCGTATGCCGTCTTCTGCTTG
Round2_162 CAAGCAGAAGACGGCATACGAGATGTGCAGAAGA TCTGCACATCTCGTATGCCGTCTTCTGCTTG
Round2_163 CAAGCAGAAGACGGCATACGAGATAGCTCTGAGA CAGAGCTATCTCGTATGCCGTCTTCTGCTTG
Round2_164 CAAGCAGAAGACGGCATACGAGATGGTTCCTAGA AGGAACCATCTCGTATGCCGTCTTCTGCTTG
Round2_165 CAAGCAGAAGACGGCATACGAGATCCTCGAAAGA TTCGAGGATCTCGTATGCCGTCTTCTGCTTG
Round2_166 CAAGCAGAAGACGGCATACGAGATGATCACAAGA TGTGATCATCTCGTATGCCGTCTTCTGCTTG
Round2_167 CAAGCAGAAGACGGCATACGAGATCGAGTATAGA ATACTCGATCTCGTATGCCGTCTTCTGCTTG
Round2_168 CAAGCAGAAGACGGCATACGAGATCTGGTTAAGA TAACCAGATCTCGTATGCCGTCTTCTGCTTG
Round2_169 CAAGCAGAAGACGGCATACGAGATGATAAGGAGA CCTTATCATCTCGTATGCCGTCTTCTGCTTG
Round2_170 CAAGCAGAAGACGGCATACGAGATGCTTATGAGA CATAAGCATCTCGTATGCCGTCTTCTGCTTG
Round2_171 CAAGCAGAAGACGGCATACGAGATCTAGGACAGA GTCCTAGATCTCGTATGCCGTCTTCTGCTTG
Round2_172 CAAGCAGAAGACGGCATACGAGATACATGAGAGA CTCATGTATCTCGTATGCCGTCTTCTGCTTG
Round2_173 CAAGCAGAAGACGGCATACGAGATATGTCGGAGA CCGACATATCTCGTATGCCGTCTTCTGCTTG
Round2_174 CAAGCAGAAGACGGCATACGAGATTACGTGGAGA CCACGTAATCTCGTATGCCGTCTTCTGCTTG
Round2_175 CAAGCAGAAGACGGCATACGAGATACGCGATAGA ATCGCGTATCTCGTATGCCGTCTTCTGCTTG
Round2_176 CAAGCAGAAGACGGCATACGAGATATCGGATAGA ATCCGATATCTCGTATGCCGTCTTCTGCTTG
Round2_177 CAAGCAGAAGACGGCATACGAGATAACAGGTAGA ACCTGTTATCTCGTATGCCGTCTTCTGCTTG
Round2_178 CAAGCAGAAGACGGCATACGAGATTCGGTTCAGA GAACCGAATCTCGTATGCCGTCTTCTGCTTG
Round2_179 CAAGCAGAAGACGGCATACGAGATCTACTTCAGA GAAGTAGATCTCGTATGCCGTCTTCTGCTTG
Round2_180 CAAGCAGAAGACGGCATACGAGATCTGATGCAGA GCATCAGATCTCGTATGCCGTCTTCTGCTTG
Round2_181 CAAGCAGAAGACGGCATACGAGATTCTCGTGAGA CACGAGAATCTCGTATGCCGTCTTCTGCTTG
Round2_182 CAAGCAGAAGACGGCATACGAGATTGCAACCAGA GGTTGCAATCTCGTATGCCGTCTTCTGCTTG
Round2_183 CAAGCAGAAGACGGCATACGAGATTGAGCAAAGA TTGCTCAATCTCGTATGCCGTCTTCTGCTTG
Round2_184 CAAGCAGAAGACGGCATACGAGATTGAGACGAGA CGTCTCAATCTCGTATGCCGTCTTCTGCTTG
Round2_185 CAAGCAGAAGACGGCATACGAGATTGCAGAGAGA CTCTGCAATCTCGTATGCCGTCTTCTGCTTG
Round2_186 CAAGCAGAAGACGGCATACGAGATAGGCACAAGA TGTGCCTATCTCGTATGCCGTCTTCTGCTTG
Round2_187 CAAGCAGAAGACGGCATACGAGATAGTGTCCAGA GGACACTATCTCGTATGCCGTCTTCTGCTTG
Round2_188 CAAGCAGAAGACGGCATACGAGATCAACCGTAGA ACGGTTGATCTCGTATGCCGTCTTCTGCTTG
Round2_189 CAAGCAGAAGACGGCATACGAGATGTGTGCTAGA AGCACACATCTCGTATGCCGTCTTCTGCTTG
Round2_190 CAAGCAGAAGACGGCATACGAGATCAGGACTAGA AGTCCTGATCTCGTATGCCGTCTTCTGCTTG
Round2_191 CAAGCAGAAGACGGCATACGAGATACTTCCAAGA TGGAAGTATCTCGTATGCCGTCTTCTGCTTG
Round2_192 CAAGCAGAAGACGGCATACGAGATATAGCAGAGA CTGCTATATCTCGTATGCCGTCTTCTGCTTG

Description
#Round 2 barcode oligos
#Each barcode consists of one bottom strand oligo + it's matching top strand oligo which together will form the duplex
 ( rev. comp. part for most of the sequence, leaving some single stranded overhangs used for ligation)
#Round 2 barcodes are positioned in bases 11-17 of index 1, the actual barcode are the first seven bases of the oligo sequence
#Bases 8-10 in Index1 consist of the linker sequence 'TCT'

i7-Tru-Seq-long primer Index PCR Reverse Primer CAAGCAGAAGACGGCATACGAGAT

Name Protocol Step Sequence
VS_Nextera_i5101 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAACACGGTTCGTCGGCAGCGTC
VS_Nextera_i5102 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAACAGGCATCGTCGGCAGCGTC
VS_Nextera_i5103 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAACATCGCTCGTCGGCAGCGTC
VS_Nextera_i5104 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAACCATCGTCGTCGGCAGCGTC
VS_Nextera_i5105 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAACCGAACTCGTCGGCAGCGTC
VS_Nextera_i5106 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAACGACTCTCGTCGGCAGCGTC
VS_Nextera_i5107 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAACGCATGTCGTCGGCAGCGTC
VS_Nextera_i5108 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAACGCCATTCGTCGGCAGCGTC
VS_Nextera_i5109 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAACGCTGATCGTCGGCAGCGTC
VS_Nextera_i5110 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAACGGAGTTCGTCGGCAGCGTC
VS_Nextera_i5111 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAACTCAGCTCGTCGGCAGCGTC
VS_Nextera_i5112 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAACTTGCGTCGTCGGCAGCGTC
VS_Nextera_i5113 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAAGAAGCGTCGTCGGCAGCGTC
VS_Nextera_i5114 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAAGCCAGTTCGTCGGCAGCGTC
VS_Nextera_i5115 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAAGCCTTCTCGTCGGCAGCGTC
VS_Nextera_i5116 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAAGCTCAGTCGTCGGCAGCGTC
VS_Nextera_i5117 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAAGCTGCATCGTCGGCAGCGTC

Barcoded Nextera Sequencing Primers for Index PCR (384 Primers used to barcode sub-libraries)
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VS_Nextera_i5118 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAAGGAACCTCGTCGGCAGCGTC
VS_Nextera_i5119 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAAGGCTAGTCGTCGGCAGCGTC
VS_Nextera_i5120 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAAGGTCGATCGTCGGCAGCGTC
VS_Nextera_i5121 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAAGTACGCTCGTCGGCAGCGTC
VS_Nextera_i5122 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAAGTCACGTCGTCGGCAGCGTC
VS_Nextera_i5123 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAAGTCGGATCGTCGGCAGCGTC
VS_Nextera_i5124 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAAGTGCCATCGTCGGCAGCGTC
VS_Nextera_i5125 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAATCCGCTTCGTCGGCAGCGTC
VS_Nextera_i5126 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAATCGTGGTCGTCGGCAGCGTC
VS_Nextera_i5127 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAATGACGGTCGTCGGCAGCGTC
VS_Nextera_i5128 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAATGCGTCTCGTCGGCAGCGTC
VS_Nextera_i5129 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAATGGCCTTCGTCGGCAGCGTC
VS_Nextera_i5130 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACAACTGGTCGTCGGCAGCGTC
VS_Nextera_i5131 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACAAGCGTTCGTCGGCAGCGTC
VS_Nextera_i5132 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACAAGGACTCGTCGGCAGCGTC
VS_Nextera_i5133 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACAATGCGTCGTCGGCAGCGTC
VS_Nextera_i5134 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACACAGGTTCGTCGGCAGCGTC
VS_Nextera_i5135 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACACTAGCTCGTCGGCAGCGTC
VS_Nextera_i5136 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACACTCCTTCGTCGGCAGCGTC
VS_Nextera_i5137 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACAGACACTCGTCGGCAGCGTC
VS_Nextera_i5138 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACAGCACATCGTCGGCAGCGTC
VS_Nextera_i5139 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACAGCCTTTCGTCGGCAGCGTC
VS_Nextera_i5140 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACAGGATGTCGTCGGCAGCGTC
VS_Nextera_i5141 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACATGCTCTCGTCGGCAGCGTC
VS_Nextera_i5142 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACCAACCTTCGTCGGCAGCGTC
VS_Nextera_i5143 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACCAATGCTCGTCGGCAGCGTC
VS_Nextera_i5144 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACCACAAGTCGTCGGCAGCGTC
VS_Nextera_i5145 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACCAGCAATCGTCGGCAGCGTC
VS_Nextera_i5146 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACCAGGTTTCGTCGGCAGCGTC
VS_Nextera_i5147 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACCATGGATCGTCGGCAGCGTC
VS_Nextera_i5148 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACCGAAGATCGTCGGCAGCGTC
VS_Nextera_i5149 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACCGATAGTCGTCGGCAGCGTC
VS_Nextera_i5150 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACCTAGCATCGTCGGCAGCGTC
VS_Nextera_i5151 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACCTGACTTCGTCGGCAGCGTC
VS_Nextera_i5152 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACCTTCGTTCGTCGGCAGCGTC
VS_Nextera_i5153 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACCTTGACTCGTCGGCAGCGTC
VS_Nextera_i5154 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACGCAATCTCGTCGGCAGCGTC
VS_Nextera_i5155 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACGGAGAATCGTCGGCAGCGTC
VS_Nextera_i5156 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACGGTAGTTCGTCGGCAGCGTC
VS_Nextera_i5157 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACGTATGGTCGTCGGCAGCGTC
VS_Nextera_i5158 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACGTGAACTCGTCGGCAGCGTC
VS_Nextera_i5159 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACGTTGTGTCGTCGGCAGCGTC
VS_Nextera_i5160 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACTACCACTCGTCGGCAGCGTC
VS_Nextera_i5161 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACTCACCATCGTCGGCAGCGTC
VS_Nextera_i5162 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACTCAGACTCGTCGGCAGCGTC
VS_Nextera_i5163 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACTCCAGATCGTCGGCAGCGTC
VS_Nextera_i5164 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACTCCTTGTCGTCGGCAGCGTC
VS_Nextera_i5165 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACTCGAAGTCGTCGGCAGCGTC
VS_Nextera_i5166 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACTCGGTATCGTCGGCAGCGTC
VS_Nextera_i5167 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACTGAACGTCGTCGGCAGCGTC
VS_Nextera_i5168 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACTGCGATTCGTCGGCAGCGTC
VS_Nextera_i5169 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACTGGTGTTCGTCGGCAGCGTC
VS_Nextera_i5170 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACTGTCAGTCGTCGGCAGCGTC
VS_Nextera_i5171 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACTGTGCATCGTCGGCAGCGTC
VS_Nextera_i5172 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACTTCACCTCGTCGGCAGCGTC
VS_Nextera_i5173 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACACTTGTCGTCGTCGGCAGCGTC
VS_Nextera_i5174 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGAACGGATCGTCGGCAGCGTC
VS_Nextera_i5175 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGAAGGTGTCGTCGGCAGCGTC
VS_Nextera_i5176 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGAAGTCCTCGTCGGCAGCGTC
VS_Nextera_i5177 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGAATCGGTCGTCGGCAGCGTC
VS_Nextera_i5178 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGACACAGTCGTCGGCAGCGTC
VS_Nextera_i5179 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGACATGCTCGTCGGCAGCGTC
VS_Nextera_i5180 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGAGACCATCGTCGGCAGCGTC
VS_Nextera_i5181 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGAGCTACTCGTCGGCAGCGTC
VS_Nextera_i5182 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGAGTACGTCGTCGGCAGCGTC
VS_Nextera_i5183 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGATCCTGTCGTCGGCAGCGTC
VS_Nextera_i5184 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGATCGCTTCGTCGGCAGCGTC
VS_Nextera_i5185 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGATGAGGTCGTCGGCAGCGTC
VS_Nextera_i5186 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGCACACATCGTCGGCAGCGTC
VS_Nextera_i5187 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGCATGAGTCGTCGGCAGCGTC
VS_Nextera_i5188 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGCCAATGTCGTCGGCAGCGTC
VS_Nextera_i5189 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGCCAGAATCGTCGGCAGCGTC
VS_Nextera_i5190 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGCCTCTTTCGTCGGCAGCGTC
VS_Nextera_i5191 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGCGAACTTCGTCGGCAGCGTC
VS_Nextera_i5192 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGCGGTATTCGTCGGCAGCGTC
VS_Nextera_i5193 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGCGTAACTCGTCGGCAGCGTC
VS_Nextera_i5194 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGCGTGTATCGTCGGCAGCGTC
VS_Nextera_i5195 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGCTACACTCGTCGGCAGCGTC
VS_Nextera_i5196 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGCTCTAGTCGTCGGCAGCGTC
VS_Nextera_i5197 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGCTGTTCTCGTCGGCAGCGTC
VS_Nextera_i5198 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGGAACTGTCGTCGGCAGCGTC
VS_Nextera_i5199 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGGACATCTCGTCGGCAGCGTC
VS_Nextera_i5200 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGGACCAATCGTCGGCAGCGTC
VS_Nextera_i5201 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGGAGAAGTCGTCGGCAGCGTC
VS_Nextera_i5202 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGGAGTGATCGTCGGCAGCGTC
VS_Nextera_i5203 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGGATGGTTCGTCGGCAGCGTC
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VS_Nextera_i5204 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGGCAAGATCGTCGGCAGCGTC
VS_Nextera_i5205 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGGCAGTTTCGTCGGCAGCGTC
VS_Nextera_i5206 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGGCTACTTCGTCGGCAGCGTC
VS_Nextera_i5207 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGGCTTACTCGTCGGCAGCGTC
VS_Nextera_i5208 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGGTAGAGTCGTCGGCAGCGTC
VS_Nextera_i5209 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGGTCTCATCGTCGGCAGCGTC
VS_Nextera_i5210 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGGTGGTATCGTCGGCAGCGTC
VS_Nextera_i5211 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGGTTAGCTCGTCGGCAGCGTC
VS_Nextera_i5212 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGTAGAGCTCGTCGGCAGCGTC
VS_Nextera_i5213 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGTCACTCTCGTCGGCAGCGTC
VS_Nextera_i5214 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGTCCTGTTCGTCGGCAGCGTC
VS_Nextera_i5215 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGTCGGATTCGTCGGCAGCGTC
VS_Nextera_i5216 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGTGAGGATCGTCGGCAGCGTC
VS_Nextera_i5217 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGTGCAAGTCGTCGGCAGCGTC
VS_Nextera_i5218 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGTGGCAATCGTCGGCAGCGTC
VS_Nextera_i5219 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGTGGTTGTCGTCGGCAGCGTC
VS_Nextera_i5220 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGTTACCGTCGTCGGCAGCGTC
VS_Nextera_i5221 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGTTCGACTCGTCGGCAGCGTC
VS_Nextera_i5222 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACAGTTGCGTTCGTCGGCAGCGTC
VS_Nextera_i5223 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATACCAGGTCGTCGGCAGCGTC
VS_Nextera_i5224 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATACCGCATCGTCGGCAGCGTC
VS_Nextera_i5225 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATACGGTCTCGTCGGCAGCGTC
VS_Nextera_i5226 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATACGTCGTCGTCGGCAGCGTC
VS_Nextera_i5227 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATAGGCGATCGTCGGCAGCGTC
VS_Nextera_i5228 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATAGTGCCTCGTCGGCAGCGTC
VS_Nextera_i5229 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATCAGACCTCGTCGGCAGCGTC
VS_Nextera_i5230 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATCAGTGGTCGTCGGCAGCGTC
VS_Nextera_i5231 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATCCAAGCTCGTCGGCAGCGTC
VS_Nextera_i5232 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATCCTCCATCGTCGGCAGCGTC
VS_Nextera_i5233 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATCCTGTGTCGTCGGCAGCGTC
VS_Nextera_i5234 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATCGAGGTTCGTCGGCAGCGTC
VS_Nextera_i5235 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATCGGAAGTCGTCGGCAGCGTC
VS_Nextera_i5236 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATCGGCTTTCGTCGGCAGCGTC
VS_Nextera_i5237 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATCGGTCATCGTCGGCAGCGTC
VS_Nextera_i5238 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATCTACGGTCGTCGGCAGCGTC
VS_Nextera_i5239 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATGAAGGCTCGTCGGCAGCGTC
VS_Nextera_i5240 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATGACTCGTCGTCGGCAGCGTC
VS_Nextera_i5241 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATGAGCCTTCGTCGGCAGCGTC
VS_Nextera_i5242 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATGCATCCTCGTCGGCAGCGTC
VS_Nextera_i5243 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATGCCAACTCGTCGGCAGCGTC
VS_Nextera_i5244 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATGCGATGTCGTCGGCAGCGTC
VS_Nextera_i5245 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATGCGGAATCGTCGGCAGCGTC
VS_Nextera_i5246 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATGCTCGTTCGTCGGCAGCGTC
VS_Nextera_i5247 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATGGAAGGTCGTCGGCAGCGTC
VS_Nextera_i5248 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATGGCACTTCGTCGGCAGCGTC
VS_Nextera_i5249 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATGGTCACTCGTCGGCAGCGTC
VS_Nextera_i5250 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATGTCCAGTCGTCGGCAGCGTC
VS_Nextera_i5251 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATGTGTGCTCGTCGGCAGCGTC
VS_Nextera_i5252 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATTACCGGTCGTCGGCAGCGTC
VS_Nextera_i5253 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATTAGGCGTCGTCGGCAGCGTC
VS_Nextera_i5254 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATTCCGAGTCGTCGGCAGCGTC
VS_Nextera_i5255 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATTCGCACTCGTCGGCAGCGTC
VS_Nextera_i5256 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACATTGCTGCTCGTCGGCAGCGTC
VS_Nextera_i5257 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAACACACTCGTCGGCAGCGTC
VS_Nextera_i5258 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAACCACATCGTCGGCAGCGTC
VS_Nextera_i5259 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAACCGATTCGTCGGCAGCGTC
VS_Nextera_i5260 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAAGAACGTCGTCGGCAGCGTC
VS_Nextera_i5261 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAAGCGTATCGTCGGCAGCGTC
VS_Nextera_i5262 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAAGGAACTCGTCGGCAGCGTC
VS_Nextera_i5263 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAAGTTGGTCGTCGGCAGCGTC
VS_Nextera_i5264 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAATACGGTCGTCGGCAGCGTC
VS_Nextera_i5265 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAATGCCTTCGTCGGCAGCGTC
VS_Nextera_i5266 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAATGGAGTCGTCGGCAGCGTC
VS_Nextera_i5267 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAATTGCCTCGTCGGCAGCGTC
VS_Nextera_i5268 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCACAATGGTCGTCGGCAGCGTC
VS_Nextera_i5269 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCACACCAATCGTCGGCAGCGTC
VS_Nextera_i5270 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCACAGAAGTCGTCGGCAGCGTC
VS_Nextera_i5271 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCACCAAGATCGTCGGCAGCGTC
VS_Nextera_i5272 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCACCATTCTCGTCGGCAGCGTC
VS_Nextera_i5273 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCACCTCATTCGTCGGCAGCGTC
VS_Nextera_i5274 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCACGAGAATCGTCGGCAGCGTC
VS_Nextera_i5275 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCACTCTCATCGTCGGCAGCGTC
VS_Nextera_i5276 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCACTGGTTTCGTCGGCAGCGTC
VS_Nextera_i5277 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAGAAGGTTCGTCGGCAGCGTC
VS_Nextera_i5278 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAGAGAGATCGTCGGCAGCGTC
VS_Nextera_i5279 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAGAGTTGTCGTCGGCAGCGTC
VS_Nextera_i5280 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAGATGAGTCGTCGGCAGCGTC
VS_Nextera_i5281 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAGATTCCTCGTCGGCAGCGTC
VS_Nextera_i5282 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAGCCTAATCGTCGGCAGCGTC
VS_Nextera_i5283 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAGCTAACTCGTCGGCAGCGTC
VS_Nextera_i5284 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAGGACTATCGTCGGCAGCGTC
VS_Nextera_i5285 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAGGTACATCGTCGGCAGCGTC
VS_Nextera_i5286 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAGGTGTTTCGTCGGCAGCGTC
VS_Nextera_i5287 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAGTAGCATCGTCGGCAGCGTC
VS_Nextera_i5288 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAGTCATCTCGTCGGCAGCGTC
VS_Nextera_i5289 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAGTCCATTCGTCGGCAGCGTC
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VS_Nextera_i5290 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAGTGTGTTCGTCGGCAGCGTC
VS_Nextera_i5291 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCAGTTAGGTCGTCGGCAGCGTC
VS_Nextera_i5292 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCATACACCTCGTCGGCAGCGTC
VS_Nextera_i5293 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCATATCGGTCGTCGGCAGCGTC
VS_Nextera_i5294 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCATCACCTTCGTCGGCAGCGTC
VS_Nextera_i5295 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCATCCAAGTCGTCGGCAGCGTC
VS_Nextera_i5296 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCATCGATCTCGTCGGCAGCGTC
VS_Nextera_i5297 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCATCGGAATCGTCGGCAGCGTC
VS_Nextera_i5298 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCATGAGTGTCGTCGGCAGCGTC
VS_Nextera_i5299 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCATGATGCTCGTCGGCAGCGTC
VS_Nextera_i5300 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCATGCAGATCGTCGGCAGCGTC
VS_Nextera_i5301 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCATGGTCATCGTCGGCAGCGTC
VS_Nextera_i5302 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCATTCTGGTCGTCGGCAGCGTC
VS_Nextera_i5303 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCATTGACGTCGTCGGCAGCGTC
VS_Nextera_i5304 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCATTGCACTCGTCGGCAGCGTC
VS_Nextera_i5305 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCAAGGTATCGTCGGCAGCGTC
VS_Nextera_i5306 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCAATACCTCGTCGGCAGCGTC
VS_Nextera_i5307 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCACAATGTCGTCGGCAGCGTC
VS_Nextera_i5308 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCACAGAATCGTCGGCAGCGTC
VS_Nextera_i5309 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCACGAATTCGTCGGCAGCGTC
VS_Nextera_i5310 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCAGGTAATCGTCGGCAGCGTC
VS_Nextera_i5311 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCAGTAAGTCGTCGGCAGCGTC
VS_Nextera_i5312 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCATAGCTTCGTCGGCAGCGTC
VS_Nextera_i5313 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCATATGCTCGTCGGCAGCGTC
VS_Nextera_i5314 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCATCAACTCGTCGGCAGCGTC
VS_Nextera_i5315 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCATGACATCGTCGGCAGCGTC
VS_Nextera_i5316 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCATTGGATCGTCGGCAGCGTC
VS_Nextera_i5317 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCGAATACTCGTCGGCAGCGTC
VS_Nextera_i5318 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCGACAATTCGTCGGCAGCGTC
VS_Nextera_i5319 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCGATCAATCGTCGGCAGCGTC
VS_Nextera_i5320 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCGATTGTTCGTCGGCAGCGTC
VS_Nextera_i5321 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCGCATTATCGTCGGCAGCGTC
VS_Nextera_i5322 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCGGAATTTCGTCGGCAGCGTC
VS_Nextera_i5323 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCGTAAGATCGTCGGCAGCGTC
VS_Nextera_i5324 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCGTTGATTCGTCGGCAGCGTC
VS_Nextera_i5325 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCTACATGTCGTCGGCAGCGTC
VS_Nextera_i5326 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCTACGAATCGTCGGCAGCGTC
VS_Nextera_i5327 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCTAGAACTCGTCGGCAGCGTC
VS_Nextera_i5328 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCTAGTGATCGTCGGCAGCGTC
VS_Nextera_i5329 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCTCAAGTTCGTCGGCAGCGTC
VS_Nextera_i5330 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCTCTTAGTCGTCGGCAGCGTC
VS_Nextera_i5331 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCTGACAATCGTCGGCAGCGTC
VS_Nextera_i5332 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCTTAGAGTCGTCGGCAGCGTC
VS_Nextera_i5333 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCCTTCCTATCGTCGGCAGCGTC
VS_Nextera_i5334 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGAACAAGTCGTCGGCAGCGTC
VS_Nextera_i5335 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGAAGATCTCGTCGGCAGCGTC
VS_Nextera_i5336 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGAAGCAATCGTCGGCAGCGTC
VS_Nextera_i5337 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGACACTTTCGTCGGCAGCGTC
VS_Nextera_i5338 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGACGTTATCGTCGGCAGCGTC
VS_Nextera_i5339 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGACTAGTTCGTCGGCAGCGTC
VS_Nextera_i5340 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGAGAAGATCGTCGGCAGCGTC
VS_Nextera_i5341 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGAGATAGTCGTCGGCAGCGTC
VS_Nextera_i5342 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGAGTGATTCGTCGGCAGCGTC
VS_Nextera_i5343 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGATAACCTCGTCGGCAGCGTC
VS_Nextera_i5344 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGATAGTGTCGTCGGCAGCGTC
VS_Nextera_i5345 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGATCGAATCGTCGGCAGCGTC
VS_Nextera_i5346 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGATTCAGTCGTCGGCAGCGTC
VS_Nextera_i5347 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGCAACATTCGTCGGCAGCGTC
VS_Nextera_i5348 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGCAATCATCGTCGGCAGCGTC
VS_Nextera_i5349 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGCTACTATCGTCGGCAGCGTC
VS_Nextera_i5350 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGCTCAATTCGTCGGCAGCGTC
VS_Nextera_i5351 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGCTGTAATCGTCGGCAGCGTC
VS_Nextera_i5352 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGGAAGAATCGTCGGCAGCGTC
VS_Nextera_i5353 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGGATATGTCGTCGGCAGCGTC
VS_Nextera_i5354 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGGTATTCTCGTCGGCAGCGTC
VS_Nextera_i5355 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGTACAGTTCGTCGGCAGCGTC
VS_Nextera_i5356 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGTACTTCTCGTCGGCAGCGTC
VS_Nextera_i5357 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGTAGACATCGTCGGCAGCGTC
VS_Nextera_i5358 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGTAGCTTTCGTCGGCAGCGTC
VS_Nextera_i5359 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGTAGTAGTCGTCGGCAGCGTC
VS_Nextera_i5360 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGTCAGTATCGTCGGCAGCGTC
VS_Nextera_i5361 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGTCATACTCGTCGGCAGCGTC
VS_Nextera_i5362 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGTGCTAATCGTCGGCAGCGTC
VS_Nextera_i5363 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGTGGAATTCGTCGGCAGCGTC
VS_Nextera_i5364 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGTGTATCTCGTCGGCAGCGTC
VS_Nextera_i5365 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCGTGTTGTTCGTCGGCAGCGTC
VS_Nextera_i5366 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTAACGACTCGTCGGCAGCGTC
VS_Nextera_i5367 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTAAGTGCTCGTCGGCAGCGTC
VS_Nextera_i5368 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTAATCCGTCGTCGGCAGCGTC
VS_Nextera_i5369 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTACATGGTCGTCGGCAGCGTC
VS_Nextera_i5370 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTACTGCTTCGTCGGCAGCGTC
VS_Nextera_i5371 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTAGACTCTCGTCGGCAGCGTC
VS_Nextera_i5372 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTAGAGCATCGTCGGCAGCGTC
VS_Nextera_i5373 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTAGCTGTTCGTCGGCAGCGTC
VS_Nextera_i5374 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTATCTCGTCGTCGGCAGCGTC
VS_Nextera_i5375 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTATTCGCTCGTCGGCAGCGTC
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VS_Nextera_i5376 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTCAAGTGTCGTCGGCAGCGTC
VS_Nextera_i5377 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTCACATCTCGTCGGCAGCGTC
VS_Nextera_i5378 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTCACTAGTCGTCGGCAGCGTC
VS_Nextera_i5379 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTCAGGAATCGTCGGCAGCGTC
VS_Nextera_i5380 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTCAGTCTTCGTCGGCAGCGTC
VS_Nextera_i5381 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTCTAACGTCGTCGGCAGCGTC
VS_Nextera_i5382 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTCTCAGATCGTCGGCAGCGTC
VS_Nextera_i5383 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTCTGCATTCGTCGGCAGCGTC
VS_Nextera_i5384 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTGACTGATCGTCGGCAGCGTC
VS_Nextera_i5385 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTGAGGTTTCGTCGGCAGCGTC
VS_Nextera_i5386 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTGATAGCTCGTCGGCAGCGTC
VS_Nextera_i5387 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTGCAACATCGTCGGCAGCGTC
VS_Nextera_i5388 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTGTACCTTCGTCGGCAGCGTC
VS_Nextera_i5389 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTGTCTACTCGTCGGCAGCGTC
VS_Nextera_i5390 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTGTGAAGTCGTCGGCAGCGTC
VS_Nextera_i5391 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTGTTCTGTCGTCGGCAGCGTC
VS_Nextera_i5392 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTTAGAGGTCGTCGGCAGCGTC
VS_Nextera_i5393 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTTCCACTTCGTCGGCAGCGTC
VS_Nextera_i5394 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTTCGCTATCGTCGGCAGCGTC
VS_Nextera_i5395 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTTCGTGTTCGTCGGCAGCGTC
VS_Nextera_i5396 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTTCTGGATCGTCGGCAGCGTC
VS_Nextera_i5397 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTTGACGTTCGTCGGCAGCGTC
VS_Nextera_i5398 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTTGATCGTCGTCGGCAGCGTC
VS_Nextera_i5399 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTTGCGTTTCGTCGGCAGCGTC
VS_Nextera_i5400 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACCTTGGTTCTCGTCGGCAGCGTC
VS_Nextera_i5401 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAACCAACTCGTCGGCAGCGTC
VS_Nextera_i5402 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAACGGTATCGTCGGCAGCGTC
VS_Nextera_i5403 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAACGTGTTCGTCGGCAGCGTC
VS_Nextera_i5404 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAACTTCGTCGTCGGCAGCGTC
VS_Nextera_i5405 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAAGACAGTCGTCGGCAGCGTC
VS_Nextera_i5406 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAAGCTCTTCGTCGGCAGCGTC
VS_Nextera_i5407 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAAGGACATCGTCGGCAGCGTC
VS_Nextera_i5408 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAAGGCTTTCGTCGGCAGCGTC
VS_Nextera_i5409 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAAGTGGATCGTCGGCAGCGTC
VS_Nextera_i5410 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAATAGGCTCGTCGGCAGCGTC
VS_Nextera_i5411 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAATCAGGTCGTCGGCAGCGTC
VS_Nextera_i5412 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAATGCGATCGTCGGCAGCGTC
VS_Nextera_i5413 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAATGTCCTCGTCGGCAGCGTC
VS_Nextera_i5414 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGACACAGATCGTCGGCAGCGTC
VS_Nextera_i5415 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGACAGGATTCGTCGGCAGCGTC
VS_Nextera_i5416 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGACATACGTCGTCGGCAGCGTC
VS_Nextera_i5417 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGACCTTGATCGTCGGCAGCGTC
VS_Nextera_i5418 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGACGATGTTCGTCGGCAGCGTC
VS_Nextera_i5419 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGACGGTAATCGTCGGCAGCGTC
VS_Nextera_i5420 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGACTAGAGTCGTCGGCAGCGTC
VS_Nextera_i5421 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGACTCACTTCGTCGGCAGCGTC
VS_Nextera_i5422 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGACTCTACTCGTCGGCAGCGTC
VS_Nextera_i5423 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGACTGATCTCGTCGGCAGCGTC
VS_Nextera_i5424 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAGACAAGTCGTCGGCAGCGTC
VS_Nextera_i5425 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAGAGCAATCGTCGGCAGCGTC
VS_Nextera_i5426 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAGATTGGTCGTCGGCAGCGTC
VS_Nextera_i5427 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAGCATCTTCGTCGGCAGCGTC
VS_Nextera_i5428 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAGCCATATCGTCGGCAGCGTC
VS_Nextera_i5429 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAGGAAGATCGTCGGCAGCGTC
VS_Nextera_i5430 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAGGTATGTCGTCGGCAGCGTC
VS_Nextera_i5431 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAGGTCATTCGTCGGCAGCGTC
VS_Nextera_i5432 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAGTACTGTCGTCGGCAGCGTC
VS_Nextera_i5433 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAGTCGTTTCGTCGGCAGCGTC
VS_Nextera_i5434 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAGTGTAGTCGTCGGCAGCGTC
VS_Nextera_i5435 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGAGTTGACTCGTCGGCAGCGTC
VS_Nextera_i5436 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGATACCGTTCGTCGGCAGCGTC
VS_Nextera_i5437 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGATACGTGTCGTCGGCAGCGTC
VS_Nextera_i5438 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGATAGTGCTCGTCGGCAGCGTC
VS_Nextera_i5439 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGATCAACCTCGTCGGCAGCGTC
VS_Nextera_i5440 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGATCAGGTTCGTCGGCAGCGTC
VS_Nextera_i5441 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGATCCTCATCGTCGGCAGCGTC
VS_Nextera_i5442 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGATGACCATCGTCGGCAGCGTC
VS_Nextera_i5443 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGATGCGAATCGTCGGCAGCGTC
VS_Nextera_i5444 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGATGGAAGTCGTCGGCAGCGTC
VS_Nextera_i5445 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGATGTAGCTCGTCGGCAGCGTC
VS_Nextera_i5446 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGATGTGCTTCGTCGGCAGCGTC
VS_Nextera_i5447 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGATTCCAGTCGTCGGCAGCGTC
VS_Nextera_i5448 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGATTGGCATCGTCGGCAGCGTC
VS_Nextera_i5449 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCAACATCTCGTCGGCAGCGTC
VS_Nextera_i5450 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCAACCAATCGTCGGCAGCGTC
VS_Nextera_i5451 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCAAGAAGTCGTCGGCAGCGTC
VS_Nextera_i5452 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCAAGTCTTCGTCGGCAGCGTC
VS_Nextera_i5453 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCACAAGATCGTCGGCAGCGTC
VS_Nextera_i5454 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCACATAGTCGTCGGCAGCGTC
VS_Nextera_i5455 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCACTCTATCGTCGGCAGCGTC
VS_Nextera_i5456 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCACTGATTCGTCGGCAGCGTC
VS_Nextera_i5457 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCAGAGTTTCGTCGGCAGCGTC
VS_Nextera_i5458 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCAGCTTATCGTCGGCAGCGTC
VS_Nextera_i5459 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCAGTACTTCGTCGGCAGCGTC
VS_Nextera_i5460 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCAGTTACTCGTCGGCAGCGTC
VS_Nextera_i5461 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCATAACGTCGTCGGCAGCGTC
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VS_Nextera_i5462 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCATGGAATCGTCGGCAGCGTC
VS_Nextera_i5463 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCATTGTCTCGTCGGCAGCGTC
VS_Nextera_i5464 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCCAAGAATCGTCGGCAGCGTC
VS_Nextera_i5465 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCCAGTTATCGTCGGCAGCGTC
VS_Nextera_i5466 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCCATAACTCGTCGGCAGCGTC
VS_Nextera_i5467 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCCTATTGTCGTCGGCAGCGTC
VS_Nextera_i5468 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCCTTACATCGTCGGCAGCGTC
VS_Nextera_i5469 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCGAACATTCGTCGGCAGCGTC
VS_Nextera_i5470 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCGAATCATCGTCGGCAGCGTC
VS_Nextera_i5471 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCGTAGTATCGTCGGCAGCGTC
VS_Nextera_i5472 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCGTCTAATCGTCGGCAGCGTC
VS_Nextera_i5473 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCGTGATTTCGTCGGCAGCGTC
VS_Nextera_i5474 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCGTTAAGTCGTCGGCAGCGTC
VS_Nextera_i5475 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCTAACTCTCGTCGGCAGCGTC
VS_Nextera_i5476 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCTAATGGTCGTCGGCAGCGTC
VS_Nextera_i5477 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCTACACATCGTCGGCAGCGTC
VS_Nextera_i5478 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCTAGAGTTCGTCGGCAGCGTC
VS_Nextera_i5479 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCTATGAGTCGTCGGCAGCGTC
VS_Nextera_i5480 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCTCCAATTCGTCGGCAGCGTC
VS_Nextera_i5481 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCTCGTAATCGTCGGCAGCGTC
VS_Nextera_i5482 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCTCTATGTCGTCGGCAGCGTC
VS_Nextera_i5483 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCTCTTGTTCGTCGGCAGCGTC
VS_Nextera_i5484 Index PCR Forward Primer AATGATACGGCGACCACCGAGATCTACACGCTGGATATCGTCGGCAGCGTC
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Abstract 
 
Gene expression and chromatin accessibility are highly interconnected processes. 
Disentangling one without the other provides an incomplete picture of gene regulation. 
However, simultaneous measurements of RNA and accessible chromatin are technically 
challenging, especially when studying complex organs with rare cell-types. Here, we present 
easySHARE-seq, an elaboration of SHARE-seq, providing simultaneous measurements of 
ATAC- and RNA-seq within single cells, enabling identification of cell-type specific cis-
regulatory elements (CREs). easySHARE-seq retains high scalability, improves RNA-seq data 
quality while also allowing for flexible study design. Using 19,664 joint profiles from murine 
liver nuclei, we linked CREs to their target genes and uncovered complex regulation of key 
genes such as Gata4. We further identify de novo genes and cis-regulatory elements 
displaying zonation in Liver sinusoidal epithelial cells (LSECs), a challenging cell type with low 
mRNA levels, demonstrating the power of multimodal measurements. EasySHARE-seq 
therefore provides a flexible platform for investigating gene regulation across cell types and 
scale. 
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Introduction 
 
Gene expression and chromatin state together influence fundamental processes such as gene 
regulation or cell fate decisions 1–3. A better understanding of these mechanisms and their 
interactions will be a major step toward decoding developmental trajectories or reconstructing 
cellular taxonomies in both health and disease. However, to fully capture these complex 
relationships, multiple information layers need to be measured simultaneously. For example, 
prior studies have argued that chromatin state is often predictive of gene expression and can 
also prime cells toward certain lineage decisions or even induce tissue regeneration4–6. 
However, these studies depend on the computational integration of separately measured 
modalities. By assuming a shared biological state, this restricts the discovery of novel and 
potentially fine-scale differences and renders it challenging to identify the root cause of 
erroneous cell states7. 
The last decade has seen an explosive growth in single-cell methodologies, with new assays, 
increasing throughput and a suite of computational tools8. Most non-commercial high-
throughput methodologies rely on combinatorial indexing for single-cell barcoding, where 
sequential rounds of barcodes combine to create unique cellular barcode combinations 9,10. 
Compared to single-modality assays, multi-omic technologies, which capture two or more 
information layers, are relatively new. Therefore, they are still limited in sensitivity and 
throughput and commercial kits can be expensive such that multi-omic studies tend to have 
limited sample sizes 11,12.  
To address these problems, we built upon the previously published protocol called SHARE-
seq13 and developed easySHARE-seq, a protocol for simultaneously measuring gene 
expression and chromatin accessibility within single cells using combinatorial indexing. Major 
improvements include easySHARE-seq’s barcoding framework, which allows for expanded 
and flexible study design, all while being compatible with standard Illumina sequencing, 
thereby removing economic hurdles. Importantly, easySHARE-seq retains the scalability and 
improves upon RNA-seq sensitivity of the original SHARE-seq protocol.  Here, we used 
easySHARE-seq to profile 19,664 murine liver nuclei and show that we can recover high 
quality data in both RNA-seq and ATAC-seq channels, which are highly congruent and share 
equal power in classifying cell types. We then surveyed the cis-regulatory landscape of Liver 
Sinusoidal Endothelial Cells (LSECs), leveraging the simultaneous measurements of gene 
expression and chromatin accessibility and identified 40,957 links between expressed genes 
and nearby ATAC-seq peaks. Notably, genes with the highest number of links were enriched 
for transcription factors and regulators known to control important functions within LSECs. 
Lastly, we show that easySHARE-seq can be used to investigate micro-scale changes in 
accessibility and gene expression by identifying novel markers and open chromatin regions 
displaying zonation in LSECs. This technology improves our toolkit of multi-omic protocols 
needed for advancing our knowledge about gene regulation and cell fate decisions. 
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Results 
 
easySHARE-seq reliably labels both transcriptome and accessible chromatin in 
individual cells 
To develop a multi-omic single-cell (sc) RNA and scATAC-seq protocol that allows for flexible 
study design while being highly scalable, we built upon SHARE-seq13 to create easySHARE-
seq, which uses two rounds of ligation to simultaneously label cDNA and DNA fragments in 
the same cell (Fig. 1A). Due to a much more streamlined barcoding structure, easySHARE-
seq allows 300bp sequencing of the insert. This longer read-length leads to a higher recovery 
of DNA variants, thus increasing the power to detect allele-specific signals or cell-specific 
variation, e.g., in hybrids or cancer cells14. 
To generate libraries, fixed and permeabilized cells or nuclei (we will use “cells” afterwards to 
refer to both) are transposed by Tn5 transposase carrying a custom adapter with a  single-
stranded overhang (Fig. 1B). Next, mRNA is reverse transcribed (RT) using a biotinylated 
poly(T) primer with an identical overhang. Subsequently, the cells are individually barcoded in 
two rounds of combinatorial indexing with 192 barcodes in each round, creating a total of 
36,864 possible barcode combinations.The first barcode is ligated onto the already present 
overhang and itself contains a second single-stranded overhang, onto which the second 
barcode can be ligated. Importantly, in the easySHARE-seq design, we have kept the total 
length of the barcode within 17nt (“Index 1” read; Fig. 1B, Suppl. Fig. 1A), allowing for 
multiplexing of easySHARE-seq libraries with standard Illumina libraries. In contrast, in the 
original publication, SHARE-seq libraries required Index 1 lengths of 99nt, a highly custom 
configuration which would require a costly private sequencing. 
After barcoding, the cells are aliquoted into sub-libraries of approximately 3,500 cells each 
and reverse crosslinked. A streptavidin pull-down of the biotinylated RT-primer is performed 
to separate the cDNA molecules from the chromatin (“fragments”). Each sub-library is then 
prepared for sequencing and amplified using matched indexing primers to allow identification 
of paired cellular scRNA- and scATAC-seq profiles. By scaling up the numbers of sub-libraries, 
this barcoding strategy therefore allows for high-throughput experiments of hundreds of 
thousands of cells, only limited by the availability of indexing primers. For a detailed description 
of the flexibility of easySHARE-seq, instructions on how to modify and incorporate the 
framework into new designs as well as critical steps to assess when planning to use 
easySHARE-seq see Supplementary Notes. 
To evaluate the accuracy and cell-specificity of the barcoding, we first performed easySHARE-
seq on a mixed pool between human and murine cell lines (HEK and OP-9 respecitvely). This 
design allows us to identify two or more cells sharing the same barcode (‘doublets’; Fig. 1C, 
left). After sequencing, we recovered a total of 3,808 cells. Both chromatin and transcriptome 
profiles separated well within each cell (Fig. 1C, middle), with cDNA showing a lower accuracy 
with increasing transcript counts, likely due to less precise read mapping. We identified a total 
of 124 doublets (Fig, 1C, right), which gives a final doublet rate of 6.34% factoring in the 
undetectable intra-species doublets. For comparison, a 10X Chromium Next GEM experiment 
with 10,000 cells has a doublet rate of ~7.9% (www.10xgenomics.com). Importantly, 
easySHARE-seq doublet rates can be lowered further by aliquoting fewer cells within each 
sub-library. To summarise, easySHARE-seq provides a high-throughput and flexibility 
framework for accurately measuring chromatin accessibility and gene expression in single 
cells. 
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Simultaneous scATAC-seq and scRNA-seq profiling in murine primary liver cells  
To assess data quality and investigate the relationship between gene expression and 
chromatin accessibility, we focused on murine liver. The liver consists of a diverse set of 
defined primary cell types, ranging from large and potentially multinucleated hepatocytes to 
small non-parenchymal cell types such as Liver Sinusoidal Endothelial Cells15 (LSECs).  
We generated matched high-quality chromatin and gene expression profiles for 19,664 adult 
liver cells across four age-matched mice (2 male, 2 female), amounting to a recovery rate of 
70.2% (28,000 input cells). Each nuclei had on average 3,629 UMIs and 2,213 fragments 
(74% of all RNA-seq reads were cDNA, 55.9% mean ATAC-seq fragments in peaks; Suppl. 
Fig. 1B & D). In terms of UMIs per cell, easySHARE-seq therefore out-performed other 
previously published multi-omic and representative single channel assays (Fig. 2B; see figure 
legend for tissue type and study). Consistent with nuclei as input material, the majority of cDNA 
molecules were intronic (69.6%, Suppl. Fig. 1C & H). Regarding DNA fragments per cell, 
easySHARE-seq performed similarly to other published multi-omic assays (Fig. 2C) and 
scATAC-seq libraries displayed the characteristic banding pattern with reads being highly 
enriched at transcription start sites (TSS; Suppl. Fig. 1 E, F, H).  
To visualise and identify cell types, we first projected the ATAC- and RNA-seq modalities 
separately into 2D Space and then used Weighted Nearest Neighbor16 (WNN) integration to 
combine both modalities into a single UMAP visualisation (Fig. 2A). Importantly, the same 
cells independently clustered together in the scRNA- and scATAC-seq UMAPs, showcasing 
high congruence between the two modalities (Suppl. Fig. 2A&B). We then annotated 
previously published cell types based on gene expression of previously established marker 
genes 17,18. Marker gene expression was highly specific to the clusters (Fig. 2D, Suppl. Fig. 
2F) and we recovered all expected cell types (Suppl. Fig.2C). Importantly, the same cell types 
were identified using each modality independently, showcasing high congruence between the 
scATAC- and scRNA-seq modalities (Fig. 2E). Altogether, our results show that easySHARE-
seq generates high quality joint cellular profiles of chromatin accessibility and gene expression 
within primary tissue, expanding our toolkit of multi-omic protocols.   
 
Uncovering the cis-regulatory landscape of key regulators through peak-gene 
associations 
As easySHARE-seq simultaneously measures chromatin accessibility and gene expression, 
it allows to direct investigation of the relationship between them to potentially connect cis-
regulatory elements (CREs) to their target genes. To do so, we adopted the analytical 
framework from Ma et al.13, which queries if an increased expression within a cell is 
significantly correlated with chromatin accessibility at a peak while controlling for GC content 
and accessibility strength. Focusing on LSECs (1,501 cells), we calculated associations 
between putative CREs (pCREs, defined as peaks with a significant peak–gene association) 
and each expressed gene, considering all peaks within ± 500kb of the TSS. We identified 
40,957 significant peak–gene associations (45% of total peaks, P < 0.05, FDR = 0.1) with 
15,061 genes having at least one association (76.8% of all expressed genes, Suppl. Fig. 
3A,C). Conversely, some rare pCREs (2.9%) were associated with five or more genes (0.03% 
when considering only pCREs within ± 50 kb of a TSS (Suppl. Fig. 3B,D)). These pCREs 
tended to cluster to regions of higher expressed gene density (2.15 mean expressed genes 
within 50kbp vs 0.93 for all global peaks) and their associated genes were enriched for 
biological processes such as mRNA processing, histone modifications and splicing (Suppl. 
Fig. 3H), possibly reflecting loci with increased regulatory activity.  
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Focusing on genes, we ranked them based on their number of associated pCREs (Fig. 2F). 
Within the top 1% genes with the most pCRE associations were many key regulators and 
transcription factors. Examples include Taf5, which directly binds the TATA-box19 and is 
required for initiation of transcription, or Gata4, which has been identified as the master 
regulator for LSEC specification during development as well as controlling regeneration and 
metabolic maturation of liver tissue in adult mice 20,21. As such, it incorporates a variety of 
signals and its expression needs to be strictly regulated, which is reflected in its many pCREs 
associations (Fig. 2H). Similarly, Igf1 also integrates signals from many different pCREs22 
(Suppl. Fig. 3G). Notably, pCRES are significantly enriched at transcription start sites (TSS), 
even relative to background enrichment (Fig. 2G). 
To summarise, easySHARE-seq allows the direct investigation of the relationship between 
chromatin accessibility and gene expression and identify putative cis-regulatory elements at 
genomic scale, even in small cell types with relatively low mRNA contents (Suppl. Fig. 2D).  
 
De novo identification of open chromatin regions and genes displaying zonation in 
LSECs 
We next investigated the process of zonation in LSECs. The liver consists of hexagonal units 
called lobules where blood flows from the portal vein and arteries toward a central vein 23,24 
(Fig. 3A). The central–portal (CP) axis is characterised by a morphogen gradient, e.g. Wnt2, 
secreted by central vein LSECs, with the resulting micro-environment giving rise to spatial 
division of labour among hepatocytes 25–27. Studying zonation in non-parenchymal cells such 
as LSECs is challenging as these are small cells with low mRNA content (Suppl. Fig. 2D,E), 
lying below the detection limit of current spatial transcriptomic techniques. As a result, only 
very few studies assess zonation in LSECs on a genomic level 28. However, LSECs are critical 
to liver function as they line the artery walls, clear and process endotoxins, play a critical role 
in liver regeneration and secrete morphogens themselves to regulate hepatocyte gene 
expression 29–31, rendering their understanding a prerequisite for tackling many diseases.  
We therefore asked if we can recover known zonation gradients and potentially identify novel 
marker genes and open chromatin regions displaying zonation. We noticed that LSECs 
clustered in a distinct linear pattern in our UMAP projection and therefore divided them into 
equal bins along UMAP2 coordinates (Suppl. Fig. 4A, number of cells per bin 80-260, median: 
128). We then calculated mean normalised expression and mean normalised accessibility 
within each bin. This recovered gene expression and chromatin accessibility gradients for 
major known zonation marker genes28 (Fig. 3B,C). For example, Wnt2 expression decreased 
strongly along the CP axis as did chromatin accessibility of all three peaks at the Wnt2 locus 
(Fig. 3B). We also recovered the zonation profiles for the majority of known pericentral 
(increasing along the CP-axis), periportal (decrease along the CP-axis) and non-monotonic 
markers (decrease toward both ends) as well as their associated chromatin regions (Fig. 3C). 
Gene expression zonation profiles can also be recovered by ordering LSECs along 
pseudotime (Suppl. Fig. 4C,D). In contrast, simply subclustering LSECs and comparing 
expression between these clusters was too broad for the assessment of zonation (Suppl. Fig. 
4A,B). 
Next, we sought to identify novel marker genes and open chromatin regions displaying 
zonation in LSECs based on the decrease or increase of mean expression or accessibility 
along the previously established bins. In total, we classified 153 genes and 381 open 
chromatin regions as pericentral and 209 genes and 465 open chromatin regions showed 
periportal zonation profiles (Fig. 3D). The list of markers contained many genes regulating 
epithelial growth and angiogenesis (e.g. Efna1, Nrg2, Zfpm1, Zfpm2, Bmpr2)32–34, related to 
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regulating hepatocyte functions and communication (e.g. Dll4, Foxo1, Sp1, Snx3)35–37 as well 
as immunological functions (e.g. Sirt2, Cd59a)38,39, suggesting that these processes show 
variation along the PC axis. As dysregulation of LSEC zonation is implicated in multiple 
illnesses such as liver cirrhosis or non-alcoholic fatty liver disease 40,41, these genes are 
potential new biomarkers for their identification and the open chromatin regions starting points 
for investigating the role of gene regulation in their emergence.  
 
Discussion 
Understanding complex processes such as gene regulation or disease states requires the 
integration of multiple layers of information. Here, we show that easySHARE-seq provides a 
high-quality, high-throughput and flexible platform for joint profiling of chromatin accessibility 
and gene expression within single cells. We show that both modalities are highly congruent 
with one another and we leverage their simultaneous measurements to identify peak–gene 
interactions and survey the cis-regulatory landscape of LSECs. We also show that 
easySHARE-seq can be used to assess micro-scale changes such as zonation in LSECs 
across both gene expression and chromatin accessibility. These cells have low mRNA content 
and we recovered zonation profiles of many transcription factors, which are often lowly 
expressed, further demonstrating the power of easySHARE-seq. 
Besides improving upon RNA-seq data quality, we argue that easySHARE-seq has many 
advantages, especially in terms of the sequencing flexibility due to the barcode design, which 
can help remove hurdles for incorporating multi-omic single-cell assays into study designs. 
Combined with shorter experimental times (~12h total), easySHARE-seq might be particularly 
suited for studies where higher sample sizes are required or ones that rely on identification of 
genomic variants, e.g., in diverse, non-inbred individuals or in cancer. In terms of costs per 
cell, easySHARE-seq performs similarly to standard SHARE-seq with ~0.056 cents/cell, a 
fraction of the costs (<25%) of commercially available platforms, even before factoring in the 
specialized instrument costs. A comparison between technologies can be found in Table 1.  
We envision easySHARE-seq as another technological step toward ultimately understanding 
gene regulation in health and disease, surveying cis-regulatory landscapes during 
differentiation and lineage commitment and determining genetic variants affecting those 
processes. 
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Figure 2: Joint expression and chromatin accessibility profiling in primary liver nuclei 
 

(A) UMAP visualisation of WNN-integrated scRNAseq and scATACseq modalities of 
19,664 liver nuclei. Nuclei are coloured by cell types. 

(B) Comparison of UMIs/cell across different single-cell technologies. Red shading 
denotes all multi-omic technologies. Datasets are this study, SHARE-seq13 (murine 
skin cells), sci-CAR11 (murine kidney nuclei), SNARE-seq12 (adult & neonatal mouse 
cerebral cortex nuclei), 10x 3’ Expression17 (murine liver nuclei) and sci-RNAseq3 
9(E16.5 mouse embryo nuclei). 

(C) Comparison of unique fragments per cell across different single-cell technologies. 
Colouring as in (B). Datasets differing to (B) are 10x 3’scATAC42 (murine liver nuclei) 
and sciATAC-seq43 (murine liver nuclei).  

(D) Normalised gene expression of representative marker genes per cell type.  
(E) Aggregate ATAC-seq tracks at marker accessibility peaks per cell type. 
(F) Genes ranked by number of significantly correlated pCREs (P < 0.05, FDR = 0.1) per 

gene (±500kbp from TSS) in LSECs. Marked are transcription factors & regulators 
within the top 1% of genes with a critical role in LSECs.  

(G) Significantly correlated pCREs are enriched for TSS proximity. Normalised density of 
all peaks versus pCREs within ±50kbp of nearest TSS. 

(H) Aggregate scATAC-seq track of LSECs at the Gata4 locus and 500kbp upstream 
region. Loops denote pCREs significantly correlated with Gata4 and are coloured by 
Spearman correlation of respective pCRE–Gata4 comparison  
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Table 1 
 

 
 
Table 1: Comparison between different single-cell technologies 
 

COMPARISON OF SINGLE-CELL TECHNIQUES 1

Comparison of single-cell techniques

Cost / Cell Throughput Multiomic? Special equipment? Std. sequencing? Potential insert length?

This study 5.6 ct > 200.000 Yes No Yes > 200bp

SHARE-seq 4.33 ct > 200.000 Yes No No 100bp

10x Multiome 25.8 ct 80.000 Yes Yes No 100bp

sci-RNA-seq3 1 ct > 200.000 No No Yes > 200bp
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Supplementary Figure 2: easySHAREseq robustly separates cell types 
(A) UMAP visualisation of merged and integrated scRNA-seq data. Nuclei are coloured 

according to their cell type. 
(B) UMAP visualisation of merged and integrated scATAC-seq data. Nuclei are coloured 

according to their cell type. 
(C) Fraction of cell types recovered relative to total cells 
(D) Distribution of UMIs per cell split by cell type. Some cell types (e.g. LSECs) consistently 

yield less UMIs. 
(E) Distribution of unique fragments per cell split by cell types. Some cell types (e.g. 

LSECs) consistently yield less fragments. 
(F) WNN-UMAPs with cells coloured according to the mean expression strength of a given 

marker gene. Red circles indicate the position of the cell population showing elevated 
expression for this marker gene. 
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Methods  
 
Animal Model & Tissue preparation 
 
Mice 
All animal experimental procedures were carried out under the licence number EB 01-21M at 

Friedrich Miescher Laboratory of the Max Planck Society in Tübingen, Germany. The 

procedures were reviewed and approved by the Regierungspräsidium Tübingen, Germany. 

Liver was collected from both male and female wild-type C57BL/6 and PWD/PhJ mice aged 

between 9 to 11 weeks.  

 

Study design 
From each strain, we generated easySHARE-seq libraries for one male and one female mice 

from each strain (four total). For each individual, we sequenced two sub-libraries, resulting in 

8 easySHAREseq libraries.  

 
Cell Culture 
For the species-mixing experiment, HEK Cells were cultured in media containing DMEM/F-12 

with GlutaMAX™ Supplement, 10% FBS and 1% Penicillin-Streptomycin (PenStrep) at 37°C 

and 5% CO2. Cells were harvested on the day of the experiment by simply pipetting them off 

the plate and were then spun down for 5 min at 250G.  

For the second cell line, murine OP9-DL4 cells were cultured in alpha-MEM medium 

containing 5% FBS and 1% PenStrep. On the day of the experiment, the cells were harvested 

by aspirating the media and adding 4 ml of Trypsin, followed by an incubation at 37°C for 5 

min. Then, 5ml of media was added and cells were spun down for 5 min at 250G. 

After counting both cell lines using TrypanBlue and the Evos Countess II, equal cell numbers 

were mixed. 

 

Liver Nuclei  
The liver was extracted, rinsed in HBSS, cut into small pieces, frozen in liquid nitrogen and 

stored in the freezer at -80 °C for a maximum of two weeks. On the day of the experiment, 1 

ml of ice cold Lysis Solution (0.1% Triton-X 100, 1mM DTT, 10mMM Tris-HCl pH8, 0.1mM 

EDTA, 3mM Mg(Ac)2, 3mM CaCl2 and 0.32M sucrose) was added to the tube. The cell 

suspension was transferred to a pre-cooled Douncer and dounced 10x using Pestle A (loose) 

and 15x using Pestle B (tight). The solution was added to a thick wall ultracentrifuge tube on 

ice and topped up with 4ml ice cold Lysis Solution. Then 9 ml of Sucrose solution (10mM Tris-

HCl pH8.0, 3mM Mg(Ac)2, 3mM DTT, 1.8M sucrose) was carefully pipetted to the bottom of 

the tube to create a sucrose cushion. Samples were spun in a pre-cooled ultracentrifuge with 

a SW-28 rotor at 24,400rpm for 1.5 hours at 4 °C. Afterwards, all supernatant was carefully 

aspirated so as not to dislodge the pellet at the bottom and 1 ml ice cold DEPC-treated water 

supplemented with 10µl SUPERase & 15µl Recombinant RNase Inhibitor was added. Without 

resuspending, the tube was kept on ice for 20 min. The pellet was then resuspended by 

pipetting ~15 times slowly up and down followed by a 40 µm cell straining step. Counting of 

the nuclei using DAPI and the Evos Countess II was immediately followed up by fixation.  
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easySHARE-seq protocol 
 
Preparing the barcoding oligonucleotides 
There are two barcoding rounds in easySHARE-seq with 192 unique barcodes distributed 
across two 96-well plates in each round (see Suppl. Table 1 for a full list of oligonucleotide 
sequences). Each barcode (BC) is pre-annealed as a DNA duplex for improved stability. The 
first round of barcodes contains two single-stranded linker sequences at its ends as well as a 
5’ phosphate group to ligate the different barcodes together. The first single-stranded 
overhang links the barcode to a complementary overhang at the 5’ end of the cDNA molecule 
or transposed DNA molecule, which originates either from the RT primer or the Tn5 adapter. 
The second overhang (3bp) is used to ligate it to the second round of barcodes (Fig.1B). Each 
duplex needs to be annealed prior to cellular barcoding, preferably on the day of the 
experiment. No blocking oligos are needed.  
The Round1 BC plates contain 10µl of 4µM duplexes in each well and Round2 BC plates 
contain 10µl of 6µM barcode duplexes in each well, all in Annealing Buffer (10mM Tris pH8.0, 
1mM EDTA, 30mM KCl). Pre-aliquoted barcoding plates can be stored at -20 °C for at least 
three months. On the day of the experiment, the oligo plates were thawed and annealed by 
heating plates to 95 °C for 2 min, followed by cooling down the plates to 20 °C at a rate of -2 
°C per minute. Finally, the plates were spun down. Until the annealed barcoding plates are 
needed, they should be kept on ice or in the fridge. 
This barcoding scheme is very flexible and currently supports a throughput of ~350,000 cells 
(assuming 96 indexing primers) per experiment, limited only by sequencing cost and 
availability of indexing primer. The barcodes were designed to have at least a Hamming 
distance of 2. See Supplementary Notes for further details on the barcoding system and 
flexibility. 
 
Tn5 preparation 
Tn5 was expressed in-house as previously described 44. Two differently loaded Tn5 are 
needed for easySHARE-seq, one for the tagmentation, loaded with an adapter for attaching 
the first barcodes (termed Tn5-B2S), and one for library preparation with a standard illumina 
sequencing adapter (termed Tn5-A-only). See Supplementary Table 1 for all sequences.  
To assemble Tn5-B2S, two DNA duplexes were annealed: 20 µM Tn5-A oligo with 22 µM Tn5-
reverse and 20 µM Tn5-B2S with 22 µM Tn5-reverse, all in 50 mM NaCl and 10mM Tris pH8.0. 
Oligos were annealed by heating the solution to 95 °C for 30 s and cooling it down to 20 °C at 
a rate of 2 °C/min. An equal volume of duplexes was pooled and then 200 µl of unassembled 
Tn5 was mixed with 16.5 µl of duplex mix. The Tn5 was then incubated at 37 °C for 1 hour, 
followed by 4 °C overnight. The Tn5 can then be stored at -20 °C. In our hands, Tn5 did not 
show a decrease in activity after 10 months of storage.  
To assemble Tn5-A-only, 10 µM of Tn5-A and 10.5 µM Tn5-reverse was annealed using the 
same conditions as described above. Again, 200 µl of unassembled Tn5 was mixed with 16.5 
µl of Tn5-A duplex and incubated at 37 °C for 1 hour, followed by 4 °C overnight. The Tn5 can 
then be stored for later and repeated use for more than 10 months at -20 °C. 
We observed an increase in all Tn5 activity during the first months of storage, possibly due to 
continued transposome assembly in storage. 
 
Fixation 
One million liver nuclei (“cells” for short) were added to ice-cold PBS for 4 ml total. After mixing, 
87 µl 16% formaldehyde solution (0.35%; for liver nuclei) or 25 µl 16% formaldehyde solution 
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(0.1%; for HEK and OP9 cells) was added and the suspension was mixed by pipetting up and 

down exactly 3 times with a P1000 pipette set to 700 µl. The suspension was incubated at 

room temperature for 10 min. Fixation was stopped by adding ice-cold Stop-Mix (224 µl 2.5M 

glycine, 200 µl 1M Tris-HCl pH8.0, 53 µl 7.5% BSA in PBS). The suspension was mixed 

exactly 3 times with a P1000 pipette set to 850 µl and incubated on ice for 3 min followed by 

a centrifugation at 500G for 5 min at 4°C. Supernatant was removed and the pellet was 

resuspended in 1 ml Nuclei Isolation Buffer (NIB; 10mM Tris pH8.0, 10mM NaCl, 2mM MgCl2, 

0.1% NP-40) and kept on ice for 3 min followed by straining the suspension with a 40 µm cell 

strainer. It was then spun down at 500G for 3 min at 4°C and re-suspended in ~100-200µl 

PBSi (1x PBS + 0.4 U/µl Recombinant RNaseInhibitor, 0.04% BSA, 0.2 U/µl SUPERase, 

freshly added), depending on the amount of input cells. Cells were then counted using DAPI 

and the Countess II and concentration was adjusted to 2M cells/ml using PBSi. 

 

Tagmentation 
In a typical easySHARE-seq experiment for this study, 8 tagmentation reactions with 10,000 

cells each followed by 3 RT reactions were performed. This results in sequencing libraries for 

around 30,000 cells. To increase throughput, simply increase the amount of tagmentation and 

RT reactions accordingly. No adjustment is needed to the barcoding. Each tube and PCR strip 

until the step of Reverse Crosslinking was coated before use by rinsing it with PBS+0.5% 

BSA. 

For each tagmentation reaction, 5 µl of 5X TAPS-Buffer, 0.25µl 10% Tween, 0.25µl 1% 

Digitonin, 3 µl PBS, 1 µl Recombinant RNaseInhibitor and 9µl of H2O was mixed. TAPS Buffer 

was made by first making a 1M TAPS stock solution in H2O, followed by adjustment of the pH 

to 8.5 by titrating 10M NaOH. Then, 4.25ml H2O, 500µl 1M TAPS pH8.5, 250µl 1M MgCl2 and 

5ml N-N-Di-Methyl-Formamide (DMF) was mixed on ice and in order. When adding DMF, the 

buffer heats up so it is important to be kept on ice. The resulting 5X TAPS-Buffer can then be 

stored at 4°C for short term use (1-2 months) or for long-term storage at -20°C (> 6 months). 

Then, 5 µl of cell suspension at 2M cells/ml in PBSi was added to the tagmentation mix for 

each reaction, mixed thoroughly and finally 1.5µl of Tn5-B2S was added. The reaction was 

incubated on a shaker at 37°C for 30 min at 850 rpm. Afterwards, all reactions were pooled 

on ice into a pre-cooled 15ml tube. The reaction wells were washed with ~30 µl PBSi which 

was then added to the pooled suspension in order to maximize cell recovery. The suspension 

was then spun down at 500G for 3 min at 4°C. Supernatant was aspirated and the cells were 

washed with 200µl NIB followed by another centrifugation at 500G for 3 min at 4°C.  

We only observed cell pellets when centrifuging after fixation and only when using cell lines 

as input material. Therefore, when aspirating supernatant at any step it is preferable to leave 

around 20-30µl liquid in the tube. Additionally, it is recommended to pipette gently at any step 

as to not damage and fracture the cells. 

 

Reverse Transcription 
As stated above, three tagmentation reactions were combined into one RT reaction. When 

increasing cells to more than 30,000 per RT reaction, we observed a steep drop in reaction 

efficiency. 

The Master Mix for one RT reaction contained 3µl 100µM RT-primer, 2µl 10mM dNTPs, 6µl 

5X MaximaH RT Buffer, 4.5µl 50% PEG6000, 1.5 µl H2O, 1.5µl SUPERase and 1.66µl 

MaximaH RT. The RT primer contains a polyT tail, a 10bp UMI sequence, a biotin molecule 

and an adapter sequence used for ligating onto the first round of barcoding oligos. 
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The cell suspension was resuspended in 10µl NIB per RT reaction and added to the Master 
Mix for a total of 30µl. As PEG is present, it is necessary to pipette ~30 times up and down to 
ensure proper mixing. The RT reaction was performed in a PCR cycler with the following 
protocol: 52°C for 12 min; then 2 cycles of 8°C for 12s, 15°C for 45s, 20°C for 45s, 30°C for 
30s, 42°C for 2min and 50°C for 3 min. Finally, the reaction was incubated at 52°C for 5 more 
minutes. All reactions were then pooled on ice into a pre-cooled and coated 15ml tube and 
the reaction wells were washed with ~40µl NIB, which was then added to the pooled cell 
suspension in order to maximise cell recovery. The suspension was then spun down at 500G 
for 3 min at 4°C. Supernatant was aspirated and the cells were washed in 150µl NIB and spun 
down again at 500G for 3min at 4°C. This washing step was repeated once more, followed by 
resuspension of the cells in 2ml Ligation Mix (400µl 10x T4-Buffer, 40µl 10% Tween-20, 
1460µl Annealing Buffer and 100µl T4 DNA Ligase, added last). 
 
Single-cell barcoding 
Using a P20 pipette, 10µl of cell suspension in the ligation mix was added to each well of the 
two annealed Round1 BC plates, taking care as to not touch the liquid at the bottom of each 
well. The plates were then sealed, shaken gently by hand and quickly spun down (~ 8s) 
followed by an incubation on a shaker at 25°C for 30 min at 350 rpm. After 30 min, the cells 
from each well were pooled into a coated PCR strip using a P200 multichannel pipette set to 
30µl. In order to pool, each row was pipetted up and down three times before adding the liquid 
to the PCR strip. After 8 columns were pooled into the strip, the suspension was transferred 
into a coated 5ml tube on ice. This process was repeated until both plates were pooled, taking 
care to aspirate most liquid from the plates. The cell suspension was then spun down for 3min 
at 500G at 4°C. Supernatant was aspirated and the cells were resuspended thoroughly in 2 
ml new Ligation Mix. Now, 10µl of cell suspension was added into each well of the annealed 
Round2 barcoding plates using a P20 pipette, taking care as to not touch the liquid within each 
well. The plates were sealed, shaken gently by hand and spun down quickly followed by 
incubating them on a shaker at 25°C for 45 min at 350 rpm. The cells were then pooled again 
using the above described procedure into a new coated 15ml Tube. The cells were spun down 
at 500G for 3 min at 4°C. Supernatant was aspirated, the cells were washed with 150µl NIB 
and spun down again. Finally, the cells were resuspended in ~60µl NIB and counted. For 
counting, 5µl of cells were mixed with 5µl of NIB and 1x DAPI and counted on the Evos 
Countess II, taking the dilution into account. Sub-libraries of 3,500 cells were made and the 
volume was adjusted to 25µl by addition of NIB. 
Using 3,500 cells results in a doublet rate of ~6.3%.  The recovery rate of cells after 
sequencing depends on the input material (and QC thresholds), with cell lines recovering 
around 80% of input cells (~2,800-3,000 cells) and liver nuclei around 70% (~2,300-2,500 
cells). 
 
Reverse-Crosslinking 
To each sub-library of 3,500 cells, 30µl 2x Reverse Crosslinking (RC) Buffer (0.4% SDS, 
100mM NaCl, 100mM Tris pH8.0) as well as 5µl ProteinaseK was added. The sub-libraries 
were mixed and incubated on a shaker at 62°C for one hour at 800 rpm. Afterwards, they were 
transferred to a PCR cycler into a deep well module set to 62°C (lid to 80°C) for an additional 
hour. Afterwards, each sub-library was incubated at 80°C for 10 min and finally 5µl of 10% 
Tween-20 to quench the SDS and 35µl of NIB was added for a total volume of 100µl. 
The lysates can be stored at this point at -20°C for at least two days, which greatly simplifies 
handling many sub-libraries at once. Longer storage has not been extensively tested. 
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Streptavidin Pull-Down 
Each transcript contains a biotin molecule as the RT primers are biotinylated which is used to 
separate the scATAC-seq libraries from the scRNA-seq libraries. For each sublibrary, 50µl 
M280 Streptavidin beads were washed three times with 100µl B&W Buffer (5mM Tris pH8.0, 
1M NaCl, 0.5mM EDTA) supplemented with 0.05% Tween-20, using a magnetic stand. 
Afterwards, the beads were resuspended in 100µl 2x B&W Buffer and added to the sublibrary, 
which were then shaken at 25°C for one hour at 900 rpm. Now all cDNA molecules are 
attached to the beads whereas transposed molecules are within the supernatant. The lysate 
was put on a magnetic stand to separate supernatant and beads. 
It likely is possible to reduce the number of M280 beads in this step, significantly reducing 
overall costs. However, this has not been extensively tested. 
 
scATAC-seq library preparation 
The supernatant from each sub-library was cleaned up with a Qiagen MinElute Kit and eluted 
twice into 30µl 10mM Tris pH8.0 total. PCR Mix containing 10µl 5X Q5 Reaction Buffer, 1µl 
10mM dNTPs, 2µl 10µM  i7-TruSeq-long primer, 2µl 10µM Nextera N5XX Indexing primer, 
4.5µl H2O and 0.5µl Q5 Polymerase was added (All Oligo sequences in Suppl. Table 1). 
Importantly, in order to distinguish the samples, each sub-library needs to be indexed with a 
different N5XX Indexing primer. The fragments were amplified with the following protocol: 
72°C for 6 min, 98°C for 1 min, then cycles of 98°C for 10s, 66°C for 20s and 72°C for 45s 
followed by a final incubation at 72°C for 2 min. The number of PCR cycles strongly depends 
on input material (Liver: 17 PCR cycles, Cell Lines: 15 PCR cycles). The reactions were then 
cleaned up with custom size selection beads with 0.55X as upper cutoff and 1.4X as lower 
cutoff and eluted into 25µl 10mM Tris pH8.0. Libraries were quantified using the Qubit HS 
dsDNA Quantification Kit and run on the Agilent 2100 bioanalyzer with a High Sensitivity DNA 
Kit. 
 
cDNA library preparation 
The beads containing the cDNA molecules were washed three times with 200µl B&W Buffer 
supplemented with 0.05% Tween-20 before being resuspended in 100µl 10mM Tris ph8.0 and 
transferred into a new PCR strip. The strip was put on a magnet and the supernatant was 
aspirated. The beads were then resuspended in 50µl Template Switch Reaction Mix: 10µl 5X 
MaximaH RT Buffer, 2µl 100µM TS-oligo, 5µl 10mM dNTPs, 3µl Enzymatics RNaseIn, 15µl 
50% PEG6000, 14µl H2O and 1.25µl MaximaH RT. The sample was mixed well and incubated 
at 25°C for 30 min followed by an incubation at 42°C for 90 min. The beads were then washed 
with 100µl 10mM Tris while the strip was on a magnet and resuspended in 60µl H2O. To each 
well, 40µl PCR Mix was added containing 20µl 5X Q5 Reaction Buffer, 4µl 10µM i7-Tru-Seq-
long primer, 4µl 10µM Nextera N5XX Indexing primer, 2µl 10mM dNTPs, 9µl H2O and 2µl Q5 
Polymerase. The resulting mix can be split into two 50µl PCR reactions or run in one 100µl 
reaction. The PCR involved initial incubation at 98°C for 1 min followed by PCR cycles of 98°C 
for 10s, 66°C for 20s and 72°C for 3 min with a final incubation at 72°C for 5 min. Importantly, 
in order to distinguish the samples, each sub-library needs to be indexed with a different N5XX 
Indexing primer. The number of PCR cycles strongly depends on input material (Liver: 15 
cycles, Cell lines: 13 cycles).  
The PCR reactions were cleaned up with custom size selection beads using 0.7X as a lower 
cutoff (70µl) and eluted into 25µl 10mM Tris pH8.0. The cDNA libraries were quantified using 
the Qubit HS dsDNA Quantification Kit. 
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scRNA-seq library preparation 
As the cDNA molecules are too long for sequencing (mean length > 700bp), they need to be 
shortened on one side. To achieve this, 25ng of each cDNA library was transferred to a new 
strip and volume was adjusted to 20µl using H2O. Then 5µl 5X TAPS Buffer and 0.8µl Tn5-A-
only was added and the sample was incubated at 55°C for 10 min. To stop the reaction, 25µl 
1% SDS was added followed by another incubation at 55°C for 10 min. The sample was then 
cleaned up with custom size selection beads using a ratio of 1.3X and eluted into 30µl. Then 
20µl PCR mix was added containing 10µl 5X Q5 reaction buffer, 1µl 10mM dNTPs, 2µl 10µM 
i7-Tru-Seq-long primer, 2µl 10µM Nextera N5XX Indexing primer (note: each sample needs 
to receive the same index primer as was used in the cDNA library preparation), 4.5µl H2O and 
0.5µl Q5 Polymerase. The PCR reaction was carried out with the following protocol: 72°C for 
6 min, 98°C for 1 min, followed by 5 cycles of 98°C for 10s, 66°C for 20s and 72°C for 45s 
with a final incubation at 72°C for 2 min. Libraries were purified using custom size selection 
beads with a ratio of 0.5X as an upper cutoff and 0.8X as a lower cutoff. The final scRNA-seq 
libraries were quantified using the Qubit HS dsDNA Quantification Kit and run on the Agilent 
2100 bioanalyzer with a High Sensitivity DNA Kit. 
 
Sequencing 
Both scATAC-seq and scRNA-seq libraries were sequenced simultaneously as they were 
indexed with different Index2 indices (N5XX). All libraries were sequenced on the Nova-seq 
6000 platform (Illumina) using S4 2x150bp v1.5 kits (Read 1: 150 cycles, Index 1: 17 cycles, 
Index 2: 8 cycles, Read 2: 150 cycles). Libraries were partly multiplexed with standard Illumina 
sequencing libraries. 
 
Custom Size selection beads 
To make custom size selection beads, we washed 1ml of SpeedBeads on a magnetic stand 
in 1ml of 10mM Tris-HCl pH8.0 and re-suspended them in 50ml Bead Buffer (9g PEG8000, 
7.3g NaCl, 500ul 1M Tris HCl pH8.0, 100ul 0.5M EDTA, add water to 50ml). The beads don’t 
differ in their functionality from other commercially available ready-to-use size selection beads. 
They can be stored at 4°C for > 3 months.  
 
 
Analysis 
 
Gene annotations and Genomic variants 
The reference genome and the Ensembl gene annotation of the C57BL/6J genome (mm10) 
were downloaded from Ensembl (Version GRCm38, release 102). Gene annotations for  
PWD/PhJ mice were downloaded from Ensembl. A consensus gene annotation set in mm10 
coordinates was constructed by filtering for genes present in both gene annotations.  
 
easySHARE-RNA-seq pre-processing 
Fastq files were demultiplexed using a custom C-script, allowing one mismatch within each 
barcode segment. The reads were trimmed using cutadapt48. UMIs were then extracted from 
bases 1-10 in Read 2 using UMI-Tools45 and added to the read name. Only reads with TTTTT 
at the bases 11-15 of Read 2 were kept (> 96%), allowing one mismatch. Lastly, the barcode 
was also moved to the read name.  
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Species-Mixing Experiments 
RNA-seq reads were aligned to a composite hg38-mm10 genome using STAR46. The resulting 
bamfile was then filtered for uniquely mapping reads and reads mapping to chrM, chrY or 
unmapped scaffolds or containing unplaced barcodes were removed. Finally, the reads were 
deduplicated using UMItools45. ATAC-seq reads were also aligned to a composite genome 
using bwa47. Duplicates were removed with Picard tools and reads mapping to chrM, chrY or 
unmapped scaffolds were filtered out. Additionally, reads that were improperly paired or had 
an alignment quality < 30 were also removed.  
The reads were then split depending on which genome they mapped to and reads per barcode 
were counted. Barcodes needed to be associated with at least 700 fragments and 500 UMIs 
in order to be considered a cell for the analysis. A barcode was considered a doublet when 
either the proportion of UMIs or fragments assigned to a species was less than 75%. This 
cutoff was chosen to mitigate possible mapping bias within the data. 
 
easySHARE-RNA-seq processing and read alignment 
We only used Read 1 for all our RNA-seq analyses as sequencing quality tends to drop after 
a polyT tail is sequenced in R2. Each sample was mapped to mm10 using the twopass mode 
in STAR46 with the parameters --outFilterMultimapNmax 20 --outFilterMismatchNmax 15. We 
then processed the bamfiles further by moving the UMI and barcode from the read name to a 
bam flag, filtering out multimapping reads and reads without a definitive barcode. To determine 
if a read overlapped a transcript, we used featureCounts from the subread package48. UMI-
Tools was used to collapse the UMIs of aligned reads, allowing for one mismatch and de-
duplication of the reads. Finally, (single-cell) count matrices were created also using UMI-
Tools.  
 
easySHARE-ATAC-seq pre-processing and read alignment 
Fastq files were demultiplexed using a custom C-script, allowing one mismatch within each 
barcode segment. The paired reads were trimmed using cutadapt49 and the resulting reads 
were mapped to the mm10 genome using bwa mem47. Reads with alignment quality < Q30, 
unmapped, undetermined barcode, or mapped to mtDNA were discarded. Duplicates were 
removed using Picard tools. Open chromatin regions were called by subsampling the bamfiles 
from all samples to a common depth, merging them into a pooled bamfile and  using the peak 
caller MACS250 with the parameters -nomodel -keep-dup -min-length 100. The count matrices 
as well as the FRiP score was generated using featureCounts from the Subread package48 
together with the tissue-specific peak set.  
 
Filtering, Integration & Dimensional reduction of scRNAseq data 
The count matrices were loaded into Seurat51 and cells were then filtered for >200 detected 
genes, >500 UMIs and < 20.000 UMIs. The sub-libraries coming from the same experiment 
were then merged together and normalised. Merged experiments from the same species (one 
from male mouse, one from female mouse) were then integrated by first using SCTransform52 
to normalise the data, then finding common features between the two experiments using 
FindIntegrationAnchors() and finally integrated using IntegrateData(). Lastly, the integrated 
datasets from C57BL/6 and PWD/PhJ were again integrated using IntegrateData(). To 
visualise the data, we projected the cells into 2D space by UMAP using the first 30 principal 
components and identified clusters using FindClusters(). 
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Filtering, Integration & Dimensional reduction of scATACseq data 
Fragments per cell were counted using sinto and the resulting fragment file was loaded into 
Signac53 alongside the count matrices and the peakset. We calculated basic QC statistics 
using base Signac and cells were then filtered for a FRiP score of at least 0.3, > 300 fragments, 
< 15.000 fragments, a TSS enrichment > 2 and a nucleosome signal < 4. Again, sublibraries 
coming from the same experiment were merged. We then integrated all four experiments 
(C57BL/6 & PWD/PhJ, one male & one female mouse each) by finding common features 
across datasets using FindIntegrationAnchors() using PCs 2:30 and then integrating the data 
using IntegrateEmbeddings(). To visualise the data, we projected the cells into 2D space by 
UMAP. 
 
Weighted-Nearest-Neigbor (WNN) Analysis & Cell type identification 
In order to use data from both modalities simultaneously, we created a multimodal Seurat 
object and used WNN16 clustering to visualise and leverage both modalities for downstream 
analysis. Afterwards, we assigned cell cycle scores and excluded clusters consisting of nuclei 
solely in the G2M-phase (2 clusters, 121 nuclei total). Cell types were assigned via expression 
of previously known marker genes, which allows subsetting the data into cell types. 
 
Calculating Peak–Gene Associations 
Peak–gene associations were calculated following the framework described by Ma et al13. In 
short, Spearman correlation was calculated for every peak–gene pair within a +-500kb window 
around the TSS of the expressed gene. To obtain a background estimation, we used 
chromVAR54 (getBackgroundPeaks()) to generate 100 background peaks matched in GC bias 
and chromatin accessibility but randomly distributed throughout the genome. We calculated 
the Spearman correlation between every background-gene comparison, resulting in a null 
distribution with known population mean and standard deviation. We then calculated the z-
score for the peak–gene pair in question ((correlation - population mean)/ standard deviation) 
and used a one-sided z-test to determine the p-value. This functionality is also implemented 
in Signac under the function LinkPeaks(). Increasing the number of background peaks to 200, 
350 or 500 for each peak–gene pair does not impact the results (data not shown).  
 
Analysis of LSEC zonation markers 
To analyse gene expression and chromatin accessibility along LSEC zonation, we subsetted 
our data for LSECs only, extracted expression values and wnnUMAP coordinates and binned 
the data along the wnnUMAP_2 axis into 10 equal sized bins. We then calculated the mean 
expression/accessibility for each gene/peak in each bin, excluding cells that contained a zero 
count. To identify novel marker genes, we excluded genes with low expression and calculated 
the moving average (for three bins) across the bins. We then required the moving average to 
continuously decrease (for pericentral marker genes) or increase ( for periportal marker 
genes), allowing two exceptions. Lastly, we divided the means for each gene by their 
maximum to normalise the values. Identification of cis-regulatory elements displaying zonation 
effects had equal requirements.  
Imputation of pseudotime was performed in Monocle355 with standard parameters. Gene 
expression was smoothed over both bins and pseudotime (separately) with local polynomial 
regression fitting (loess).  
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Gene Ontology Analysis 
Gene Ontology Analysis was done using the R package clusterProfiler

56
 with standard 

parameters. 

 

Data Availability 
All data can be accessed using the accession number GSE256434. All code used in data 

analysis is available at https://github.com/vosoltys/easySHARE_seq.git. 
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Discussion 
TCR repertoire analysis has come a long way from analyzing a small collection of TCRβ 

chains to evaluating large portions of an individuals paired αβ-TCR repertoire. In the latter 

case, the repertoire data presented in this thesis is likely to represent the largest paired 

TCR dataset analyzed so far. Through the development of CITR-seq we were no longer 

limited by financial or technical constraints but rather by the amount of available input 

material (e.g. about 20mg of spleen tissue collected from SPRET mice). We reported 

remarkable TCR repertoire diversity and showed that in the joined TCR repertoire of all 

32 individual mice consisting of roughly 5 million paired TCRs, about 95% of clonotypes 

were unique. Considering the age and husbandry conditions of the studied mice, it is fair 

to assume that the overwhelming majority of the sampled CD8+ T cells were antigen-

inexperienced, naïve T cells. Our primary focus in the presented study was to investigate 

how TCR repertoires are shaped by genetic factors, beyond the classical view of diversity 

generation by stochastic effects. We leveraged the distinct genetic backgrounds of wild-

derived inbred mouse species and their F1 hybrids to provide evidence that a) genetic 

factors have a significant impact on the generative biases of particular V-J pairs during 

V(D)J recombination, that b) thymic selection can introduce additional significant biases 

to gene segment usage in a MHC-dependent manner and that c) the genetic background 

impacts the total repertoire diversity and extent of clonotype sharing between individuals. 

To the best of our knowledge, the respective wild-caught inbred mouse strains have not 

been systematically analyzed with respect to their TCR repertoires. Crucially, these mice 

can be used to evaluate TCR repertoire characteristics in the context of an evolutionary 

divergence time that is much broader than in any human study. While allelic MHC diversity 

in this setup is extremely sparse compared to outbred population, the often-overlooked 

allelic diversity of TCR loci is presumably well captured within the different species. 

Collectively, our findings provided a comprehensive view on species-specific TCR 

repertoire generation dynamics. In the following section I will discuss how our findings 

can contribute to address some of the long-standing debates in the field of TCR biology. 
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On the co-evolution of TCRs and MHCs 
A mandatory prerequisite for all functional TCRs is their ability to form complexes with 

antigen presenting MHCs [10]. Structural analysis of TCR-MHCs has shown that the 

topology of the complex is conserved in a way that positions specific germline-encoded 

V gene segment regions of the TCR in proximity of the MHC molecule (CDR1 and CDR2) 

and its bound antigen (CDR3) [25]. It is therefore tempting to conclude that this very 

specific interaction, representing a key difference to the antigen binding of BCRs and 

antibodies, is under evolutionary selective pressure to favor those (V) gene segments 

that are capable of binding MHCs. The diversity generated by germline-independent 

somatic rearrangements of the CDR3 region makes it unlikely that these sequences are 

driving the MHC binding of TCRs. Therefore, the focus has mostly been set on CDR1 and 

CDR2 sequences. While those sequences are relatively conserved in length compared 

to the corresponding sequences in immunoglobulins [223], no highly conserved amino 

acid motifs encoding for the MHC binding capability have been identified to date [89]. 

Therefore, the alternative hypothesis emerged that MHC restriction is not germline-

encoded but rather positive selection simply selects those TCRs capable of binding the 

MHC complexes. This hypothesis is challenged by the conserved TCR-MHC topology 

and studies that showed high frequencies of MHC-binding TCRs in pre-selection 

repertoires [224]. In essence, the debate on whether or not TCR-MHC binding is a co-

evolutionary process has not been settled to date.  

In this context several interesting findings can be retrieved from the present study, 

especially from the analysis of V(D)J gene segment usage in F1 hybrids. We showed that 

thymic selection can (although rarely) introduce drastic allele specific biases to Vβ gene 

segment usage in the TCR repertoire of mature T cells. These biases seem to be 

independent of the CDR3 sequence since they are not correlated with the usage of 

particular Vβ-Jβ combinations but rather the respective Vβ gene segment allele is 

rejected categorically (e.g. SPRET Trbv13-2 allele in BL6xSPRET F1 hybrids). Based on 

this observation we concluded that this categorical rejection is unlikely to be caused by 

TCR self-reactivity as evaluated during negative selection but is likely the consequence 

of inappropriate MHC binding ability as determined during positive selection. More 

specifically, we propose that in the above example, the MHC-affinity of SPRET Trbv13-2 
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V gene segment, including TCRs is too strong and therefore the respective T cells receive 

apoptotic signals and are depleted from the repertoire. This would also mean that allelic 

bias of V gene segments is not a consequence of the mostly stochastic recombination 

process but has genetically encoded origin. While mapping of those potential genetic 

variants and validation in functional assays is beyond the scope of this project, we note 

that we frequently find SNPs in the CDR1 and CDR2 sequences of Vβ genes showing 

allele-specific biases in post selection repertoires. In line with this hypothesis is the 

observation that allelic biases emerging during thymic selection are almost absent in J 

gene segments, which are more relevant in peptide recognition compared to MHC 

binding. One might argue that because of the distinct MHC-haplotypes in those F1 hybrids 

of inbred mice, the above example represents a unique MHC-haplotype dependent case. 

Strikingly across all F1 hybrids we also observed shared Vβ gene segment rejection 

patterns. For example, while all F1 hybrids frequently recombine Trbv12 family members, 

all TCRs containing these V gene segments are effectively rejected during thymic 

selection. Following the arguments outlined above, this is another strong example for 

germline encoded TCR-MHC incompatibilities. Nonetheless, to fully test this hypothesis, 

one would need to explore categorical rejection of V gene segments in an even broader 

MHC-haplotype context, for instance in F1 hybrids of a collection of wild-caught Mus 

musculus domesticus and Mus spretus individuals.      

A separate question that arises from our results is why such examples have not yet been 

observed in human TCR repertoire studies. One possible explanation is that the F1 

hybrids of wild-caught inbred mouse species evaluated in this study share their latest 

common ancestor between 0.5 and 3 million years ago. This evolutionary time span is 

much larger compared to estimates of the latest common ancestor of all living humans 

[225]. In general, categorical TCR-MHC incompatibilities in F1 hybrid mice were rare, 

limited mostly to Vβ gene segments and increased in frequency with increasing 

evolutionary divergence of the parental species. It is therefore entirely possible that V(D)J 

gene segment alleles and MHC-haplotypes across various human populations have not 

diverged enough to frequently create such incompatibilities (or they are so rare that those 

that exist have not been described yet). Marrack et al. argued, that the reason for the 

absence of a conserved germline-encoded MHC-binding motif in TCRs could be the 
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demand for a certain level of flexibility in TCR-MHC binding to compensate for CDR3 

motif (length) diversity [226]. Further, while V gene segments with the ability to bind MHCs 

might be evolutionarily favored, those that exhibit too strong MHC affinity are depleted 

from the repertoire during thymic selection. Collectively, this might lead to a situation in 

which the decisive amino acid residues encoding MHC-binding abilities are relatively 

masked in the TCR repertoires of mature T cells.     

In summary, the data presented here is more in line with the hypothesis that there is some 

form of genetically encoded ability of TCRs to bind MHC complexes. Considering the 

presented examples, it is hard to imagine that positive selection performs opportunistic 

selection of a small set of TCRs that happen to bind MHCs with just the right affinity from 

a sea of TCRs that have no pre-encoded MHC affinity at all. We see that categorical 

rejection of gene segments is limited to Vβ and happens in a strictly MHC-dependent 

manner.   

 

The effect of MHC heterozygosity on the TCR repertoire 
In the longstanding debate on whether heterozygous MHC loci confer a fitness advantage 

or disadvantage, TCR repertoire diversity can be used to provide evidence for one or the 

other. On the one hand, the TCR depletion hypothesis states that depletion of 

autoreactive TCRs is increasing with increasing levels of MHC heterozygosity leading to 

an effective size-reduction of the TCR repertoire ([227] and reviewed here [228]). 

Recently, Migalska et al. reported that the hypothesis can be applied to MHC class I but 

not class II, potentially caused by the ability of autoreactive CD4+ T cells to adapt to a 

regulatory T cell fate rather than being depleted during negative selection [229]. In this 

context, it is also remarkable that across several species the total count of different intra-

individual MHC molecules is relatively small in the face of the immense population wide 

allelic diversity. Extreme examples have been reported for the polyploid clawed toad 

(Xenopus) in which all but a single MHC locus are silenced, however these observations 

have not been associated with TCR diversity [230].    

On the other hand, several lines of evidence support the heterozygote advantage 

hypothesis, stating that a diverse set of MHC alleles leads to the presentation of a broader 

immunopeptidome [231, 232]. Heterozygous MHC allele states in these studies are often 
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evaluated by long term reproductive success, motivated by several observations that 

intermediate levels of MHC heterozygosity are most frequent in outbred populations [233] 

and seem to be the preference in mate choice experiments [234, 235]. A clear example 

of TCR-related MHC heterozygosity advantage has been reported in two coisogenic 

mouse strains with significantly different survival rates following pathogen exposure [236]. 

Empirical evidence for increased TCR diversity in heterozygous HLA type I individuals 

has also been shown in a study of 666 humans of diverse origins [21]. It is now widely 

accepted that the fundamental mechanisms supporting one or the other hypothesis jointly 

affect the TCR repertoire. Mathematical models, have provided empirical evidence that 

the trade-off between enhanced antigen-presentation and increased rates of self-reactive 

T cell depletion in individuals with varying extent of MHC-heterozygosity, favors more 

intra-individual MHC diversity than observed in humans [237]. If TCR diversity reduction 

is not a limiting factor for intra-individual MHC diversity, then why is it still frequently 

observed in various species and populations? One potential explanation is the reported 

high level of TCR cross-reactivity to different antigens [238]. Cross-reactivity is not limited 

to pathogen-derived antigens but can also invoke autoimmune responses [239]. 

Therefore, increasing the number of different intra-individual MHC molecules can 

potentially also increase the risk of triggering autoimmunity through TCR cross-reactivity.     

The inbred mice analyzed in the context of this study are nowhere close to resemble the 

MHC diversity of an outbred population, which poses a clear limitation to answer the 

above questions. However, due to the traces of co-evolution between TCRs and MHCs 

discussed above, it is likely that the sparse selection of MHC alleles can still provide 

insides in heterozygous MHC combinations and their effect on repertoire diversity. In 

general, all F1 hybrids showed greater (paired) TCR diversity (number of unique CDR3 

sequences) than both respective parents, which is in line with the heterozygote advantage 

hypothesis. However, only for the TCRα chain the diversity increase was correlated with 

increasing evolutionary divergence of the respective parental individuals. In contrast, for 

TCRβ chains as well as paired αβ-TCR chains, we saw the smallest repertoire diversity 

increase in BL6xSPRET mice in which the respective parents shared to most ancestral 

common ancestor. Considering that this particular cross of parental lines is close to the 

reported speciation barrier of mice [240], it is likely that crosses resulting in F1 hybrids 
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with decreased total TCR diversity relative to their parents fall beyond the species barrier. 

Importantly, we provide evidence (discussed in the previous section) that this diversity 

reduction is unlikely to be caused by depletion of self-reactive TCRs (as proposed by the 

TCR depletion hypothesis) but rather explained by the increased likelihood of insufficient 

TCR-MHC binding characteristics independent of the recognized antigen. We therefore 

conclude that, apart from potentially increased depletion of autoreactive TCRs, MHC 

haplotypes consisting of two highly divergent alleles have an increased chance to also 

limit the TCR repertoire diversity through categorical rejection of particular V gene 

segments. Regardless of this, even the joint TCR diversity reduction caused by both 

effects does apparently not outcompete TCR repertoire diversity increase caused by the 

presentation of a larger immunopeptidome in MHC heterozygous individuals.  

In any case, TCRs need to function in combination with an extremely broad set of potential 

MHC molecules arising from haplotype diversity across a population. This diversity has 

emerged from variance in local pathogen exposures and essentially represents a case of 

host-pathogen co-evolution [241]. To some extent the required TCR repertoire flexibility 

might be established by the immense excess of unique TCRs in the theoretical repertoire 

relative to the realized repertoire. This ensures that even with approximately 95% of TCRs 

that fail to pass thymic selection, the mature repertoire is still sufficient to mount effective 

immune responses against most pathogens. Different studies have shown that a 

reduction in TCR diversity can be associated with impaired immune responses [242, 243]. 

However, these cases evaluate diversity reductions that are much more severe than the 

reduction caused by MHC heterozygosity reported in our as well as other studies.  

 

Sharing of TCRs – How to become public 
At a first glance, the sharing of identical TCRs across several individuals or even within 

entire populations might seem extremely unlikely, given the gigantic diversity in TCR 

repertoires. Yet, shared motifs are frequently observed across various TCR datasets 

generated from different species (summarized by [244]). Likewise, in the CITR-seq data 

presented here, we identified ~260.000 (36.7% of all unique motifs) CDR3α and ~470.000 

(27.2% of all unique motifs) CDR3β single-chain amino acid motifs that were shared by 

at least two individuals. One mechanism proposed to explain the frequent observation of 
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shared CDR3 motifs is convergent recombination, stating that multiple V(D)J 

recombination events can converge to result in identical CDR3 amino acid sequences 

[122]. We provided evidence that TCR gene segment loci have been expanded by means 

of gene duplications, resulting in multiplied gene segments with high sequence identity 

(e.g., in the Vα cluster). As indicated by the difference in the number of gene family 

members, these gene duplications did not affect all V(D)J gene segments to a similar 

extent. Consequently, the high sequence identity between gene segments assigned to 

families of varying size should result in overrepresentation of particular germline-

contributed sequences in CDR3 motifs. Interestingly, we observed the highest Jaccard 

index of single-chain CDR3α sharing between individual CAST mice. Due to the absence 

of the recent major gene duplication of two-thirds of the Vα locus in CAST, those mice 

have about 70 fewer functional Vα gene segments and were also shown to lack entire Vα 

families (e.g., Trav16) in their repertoire. We therefore conclude that not only convergent 

recombination, but also significantly contracted V(D)J loci can lead to an increased rate 

of shared CDR3 motifs.  

V and J gene segment germline sequences contribute different numbers of nucleotides 

to each CDR3 motif. Critically, the average number of contributed nucleotides is higher 

for J than for V gene segments. For instance, in CDR3β sequence of all BL6 CITR-seq 

samples, the average germline sequence contribution to the CDR3 motif was 14.03 nt 

from Vβ and 18.46 nt from Jβ. Due to the lack of D gene segments, this difference is even 

higher in TCRα chains. Consequently, J gene segment sequences extend further into the 

central region of CDR3 sequences, which arguably makes them more relevant for antigen 

recognition than V gene segment derived sequences. We noticed that many of the 

differentially abundant amino acid 4mers across the different species could be traced 

back to specific positional SNPs of J gene segments. For example, the 4mer “NAET” was 

significantly more abundant in central BL6 CDR3β amino acid motifs relative to CAST 

(log2FC 6.18, Wald-test adj. p-value < 0.001). This 4mer was almost exclusively found to 

be derived from Trbj2-3 in BL6 that contains a non-synonymous SNP relative to the CAST 

Trbj2-3 (E3A). Due to the specific location at the 5’ end of the J gene segment germline 

sequence (3rd amino acid), this motif was frequently unaffected by nucleotide deletions 

during gene segment junction fusion, yet it was located in the central CDR3 sequence 



Discussion 

 159 

and therefore likely contributes to antigen specificity of the TCR. Because the number of 

Jβ genes is relatively small (12 functional genes in all species), such SNP-related motif 

differences can affect large portions of CDR3β motif repertoire and consequently increase 

the likelihood of intra-species CDR3 motif sharing. Allelic sequence variation in V(D)J 

gene segments in humans has also been shown to impact immune responses [245]. 

However, this study focused on V gene segment polymorphisms outside the 3’ coding 

end (contributing to the CDR3 motif), as a potential reason for the emergence of a disease 

associated public motif. Collectively, polymorphisms in TCR V(D)J loci have gained very 

little attention so far. Nonetheless, depending on their precise location (e.g. in the 

segment coding ends represented in CDR3 motifs), they potentially contribute to the 

increased frequency of intra-species public motifs.  

Apart from the contribution of germline sequences to CDR3 motifs, nucleotide additions 

by terminal deoxynucleotidyl transferase (TdT) significantly increase CDR3 motif diversity 

[246] and polymorphisms in its coding sequence have been shown to alter the number of 

inserted nucleotides [247]. Accordingly, CDR3 motifs of particular lengths should also be 

present at higher frequencies given their higher likelihood of generation resulting from the 

dynamics of nucleotide deletions and insertions [248]. In the presented CITR-seq data, 

unique amino acid motif length is normally distributed with a cross-species average of 

14.10 amino acids in CDR3α and 14.35 amino acids in CDR3β motifs. In line with the 

previously suggested motif length reduction, we observe a slight decrease of mean amino 

acid motif length in public CDR3 sequences (-1.4% CDR3α and -2.2% CDR3β). Strikingly, 

the 1,696 CDR3α and 644 CDR3β amino acid sequences that were present in every 

single of the 32 analyzed TCR repertoires showed a mean decrease in motif length of 

more than one amino acid relative to the total average. Nucleotide insertions are also 

biased with respect to the identity of added nucleotides, depending on the respective 

junction site and gene segment coding ends they are added to [249]. Taking into account 

the marked differences we observed in gene segment usage of post-selection repertoires 

across mouse species, those are likely to result in different abundances of coding-end 

sequences which in turn will impact nucleotide insertions by TdT and ultimately the 

likelihood of generating public CDR3 sequences. A common question that arises in this 

context is the exact stage of TCR generation at which publicness is established. The 
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impact of thymic selection on shaping the frequency of public CDR3 motifs has been 

addressed by several studies often generating contradicting results. Some studies 

provide evidence that publicness is established by biases of recombination frequencies 

of V(D)J gene segments, which is not altered in the subsequent thymic selection [244, 

250]. On the other hand, there is evidence that thymic-selection represents a diversity 

bottle-neck and the decreased diversity of post-selection repertoires potentially increases 

the chance of CDR3 motif sharing [251]. In our CITR-seq data we observed significant 

differences in V(D)J segment usage in pre-selection repertoires. These usage 

differences, combined with the previously discussed difference in gene family sizes, will 

inherently lead to the overrepresentation of specific sequences before thymic selection. 

Utilizing F1 hybrid mice we provided evidence that most of the usage biases arise through 

cis-acting factors since parental usage frequencies were frequently recapitulated by allelic 

bias of gene segment usage in F1 hybrids. Accordingly, trans-acting factors, such as 

chromatin remodelers that make gene segments accessible for the recombination 

machinery, seem to be less relevant in the establishment of biased gene segment usage. 

Although not evaluated in this study, we propose that polymorphisms in RSS sequences 

targeted by the Rag-complex could alter their likelihood of being part of an recombination 

event, turning them into potent cis-regulatory elements (also reported here [252]). We see 

that the majority of the established gene segment usage biases persist in post-selection 

repertoires. However, we report strong exceptions especially for Vβ genes. By leveraging 

the distinct MHC-haplotype background of inbred mice and their F1 hybrids we could 

show that particular Vβ genes are almost completely rejected during thymic (positive) 

selection despite their frequent incorporation during V(D)J recombination. This has 

important implications for the generation of public CDR3 motifs. The set of shared CDR3 

sequences is depleted of those motifs that were rejected during thymic selection. For 

example, in all F1 species hybrids, Vβ genes of the Trbv12 family are significantly reduced 

in post- versus pre-selection repertoires. Consequently, shared CDR3β motifs are 

depleted from sequences originated from Trbv12 coding-ends. In contrast, shared motifs 

across parental lines (that did not show thymic rejection of Trbv12 genes) did not show 

depletion of those sequences. While this only affected a small set of (mostly V) gene 

segments, we therefore propose, that publicness within a set of repertoires should always 
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be evaluated in the context of the represented MHC-haplotypes. Another important finding 

of our study was that sharing of identical paired CDR3αβ sequences is significantly higher 

in inbred individuals that share the same genotype than in unrelated individuals. This 

underscores the importance of genetic factors in generating public CDR3 motifs. We 

propose that the collection of these genetic factors includes differences in functional 

V(D)J gene segment numbers, biases in gene segment usage, as well as MHC-haplotype 

dependent characteristics of thymic selection. In conclusion, our results are in line with 

previous studies reporting that publicness is established by a combination of convergent 

recombination and cis-factor mediated biases in gene segment usage frequencies. 

However, we note that, depending on the present MHC-haplotypes, the degree of TCR 

sharing can vary. While our results indicated that rejection of particular V gene segments 

is likely to reduce the degree of motif sharing, it is also generally possible that diversity 

reduction by negative thymic selections increases the likelihood of CDR3 motif sharing.      

Another critical aspect of the analysis of public TCRs is that the degree of TCR sharing 

between two individuals is inherently biased by the union size of the sampled repertoires. 

While indices such as the Jaccard index can be used to compensate for this bias in 

multiple comparisons across several repertoires, absolute numbers of shared CDR3 

amino acid sequences need to be evaluated with caution. Further, clone-size distributions 

are important indicators for the cause of TCR sharing. The presented CITR-seq data 

consists of total CD8+ T cells and therefore includes naïve as well as memory T cell 

populations, which could not be distinguished. High-frequency clones that are shared 

across individuals might originate from memory T cell subsets resulting from previous 

clonal expansion of T cells with identical TCRs in response to the encounter of common 

antigens. It is therefore likely that exposure to common pathogens across individuals 

leads to the accumulation of public TCRs in their T cell memory compartments. It is 

important to distinguish those from public TCRs that can be found among antigen-

inexperienced T cells as those provide evidence for antigen-exposure independent 

generation of public TCRs. Mark et al. suggested that the extend of CDR3 sequencing 

sharing is higher than previously expected, but many of the shared sequences are 

“hidden” at low frequencies and are only recognized following antigen-exposure [253]. 

Considering the immense throughput and ability to pair αβ-TCRs, CITR-seq represents 
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an exceptional tool to identify those “hidden” shared CDR3 sequences when specifically 

applied to naïve T cells. 

To date, most studies of public TCRs have identified shared CDR3 amino acid motifs in 

the context of responses to common pathogens such as cytomegalovirus (CMV) and 

Epstein-Barr virus (EBV) [254-256]. Taking the latter as an example, it was shown that 

EBV viruses have evolved remarkable host specificity and have been infecting humans 

and their ancestors for approximately 80 million years [257]. Today, large portions of the 

human population are persistently infected by those pathogens and thus, loss and gain 

of particular MHC alleles should have favored those, that efficiently present peptides 

derived from these pathogens. Presumably the same is true for different sets of V(D)J 

gene segments showing varying affinity to MHC originated from the alleles under 

selective pressure. This poses the question whether public TCR motifs represent the 

outcome of the evolutionary arms race of host and pathogens that has shaped the 

collection of MHC alleles alongside V(D)J segments present in a population. In support 

of this hypothesis is the observation that many public motifs are a) mostly consisting of 

germline-contributed sequences [254]  and b) are enriched for sequences with few or no 

random nucleotide insertions at the junction sites (discussed earlier). Public CDR3 motifs 

are not only abundant in the context of common pathogen infection but are also frequently 

found in the context of autoimmunity [258]. This phenomenon, is not exclusive to TCRs 

as shown by the identification of public autoreactive antibodies [259]. Mechanistically this 

again points towards the evolution of public TCRs as a consequence of frequent antigen 

encounters that are not limited to pathogen-derived antigens. We showed that decreased 

levels of CDR3 motif sharing does correlate with decreasing levels of genotype sharing 

and increasing evolutionary divergence. This is especially relevant as we see those 

effects in paired αβ-TCR repertoires of unprecedented scale and across multiple different 

inbred mouse species.  

 

CITR-seq can be used in various research areas – an outlook  
By developing CITR-seq we have been able to analyze the murine TCR repertoire at a 

scale that presumably captures a significant fraction of the available repertoire at the time 

of sampling. While we reported clear patterns of genotype-dependent V(D)J gene 
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segment usage and CDR3 motif sharing, the proportion of unique paired TCRs indicates 

that we mostly sampled a momentary snapshot of an individual’s repertoire. Our T cell 

sampling method did not allow us to associate the evaluated TCRs with the diverse 

subclasses of CD8+ T cells, however the observed clone size distributions indicate that 

most of the analyzed T cells were naïve T cells. As such, those T cells are valuable to 

analyze pathogen exposure independent repertoire generation and maintenance 

dynamics but are less suitable to investigate common immune responses to different 

pathogens or malignancies. Nonetheless, owing to its great flexibility, CITR-seq can be 

applied to much more specific research questions. For instance, the TCR repertoire is 

often evaluated in the context of human malignancies in pre- and post-treatment samples 

(reviewed here [260]). A frequently evaluated metric in these studies is the diversity of 

TCR repertoires that can potentially function as prognostic biomarker for treatment 

outcomes [261, 262]. Similarly, the ability to reconstruct a diverse TCR repertoire after 

hematopoietic stem cell transplantation has been associated with a decreased risk of 

cancer relapse [263]. It has been shown that tumor infiltrating lymphocytes frequently 

recognize a broad range of antigens that are not necessarily specific to the respective 

tumor [264]. Consequently, TCR sequencing methods like CITR-seq that provide a high 

dynamic range to detect TCRs of different clone sizes, are crucial to identify those tumor-

neoantigen specific TCRs that might exist across different patients for specific types of 

cancer. Due to the high mutational load in various tumors at different progression stages, 

identification of common CDR3 motifs specific to tumor-antigens requires extremely large 

datasets that are often derived from heterogeneous sample collection databases [265]. 

The available datasets are often limited to single-chain TCR sequences (highly biased 

towards TCRβ chains) even though many studies have provided evidence that paired 

TCR information significantly enhances the ability to predict clinically relevant TCR 

epitopes [266-268]. When applied to different cancer-patient samples, CITR-seq can 

potentially be used to generate paired TCR repertoire data of sufficient size to confidently 

identify tumor-neoantigens present in various samples with significantly lower financial 

constraints compared to other methods. Additionally, supervised epitope-prediction 

algorithms (e.g. [181]) are dependent on large-scale TCR datasets with high αβ-TCR 

pairing accuracy, such as the data generated using CITR-seq. 
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Single-cell sequencing technologies are now rapidly moving towards simultaneously 

capturing multiple modalities (e.g. transcriptome and chromatin accessibility) in each 

individual cell. For instance, having access to the transcriptional profile of a T cell enables 

association with a specific T cell subpopulation and can therefore provide insights on 

whether an identified clinically relevant TCR is found among central memory, effector, or 

naïve T cells. Since, CITR-seq and easySHARE-seq are both based on identical single-

cell barcoding strategies, it is generally possible to merge both technologies. Importantly, 

whole transcriptome analysis requires significantly higher per cell sequencing coverage 

(at least 200-fold higher compared to CITR-seq alone) and thus the extreme throughput 

provided by both methods would still be severely limited by financial constraints. With 

improvements in throughput and cost-effectiveness of current sequencing platforms, 

these constraints are likely to be less limiting in the future.   

 

Closing Remarks 
TCRs are arguably the most effective tool common to all vertebrates to survive in an 

environment of constantly varying pathogenic threats. The tremendous diversity of TCRs 

in the repertoire of an individual has fascinated researchers for decades but also severely 

complicates their analysis. Nowadays, high-throughput sequencing paired with 

specialized sequencing library preparation protocols, such as CITR-seq, allow us to 

evaluate and compare TCR repertoires at unprecedented scale. Access to such a wealth 

of TCR repertoire data is currently only used at a fraction of its full potential, partially 

because the ability to establish links between TCRs and their cognate antigens is still 

limited. With progress in computational prediction tools and the increased availability of 

experimentally validated TCR-antigen pairs, these limitations are likely to be overcome 

soon. At that point, one could imagine that TCRs turn into modular tools of future medicine 

that can be administered to patients suffering from various diseases. The current success 

of personalized cancer immunotherapies can offer a glimpse of T cell related therapies 

that might become the default in our future.    
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Glossary 
 
aa  Amino acid 
ATAC-seq Assay for Transposase-Accessible Chromatin using sequencing 
BLOSUM Block substitution matrix 
bp  Base pair 
°C  Celsius 
CD  Cluster of differentiation 
cDNA  Complementary DNA 
CDR  Complementarity determining region 
CITR-seq Combinatorial indexing-based T cell receptor sequencing 
CMV  Cytomegalovirus 
CNV  Copy number variation 
cTEC  Cortical thymic epithelial cells 
DN  Double negative 
DNA  Deoxyribonucleic acid 
DP  Double positive 
EBV  Epstein-Barr virus 
e.g.  Exempli gratia or “for example” 
FACS  Fluorescence activated cell sorting 
FC  Fold change 
gDNA  Genomic DNA 
HLA  Human leukocyte antigen 
IF  In-frame 
LPS  Lipopolysaccharide 
MACS  Magnetic-activated cell sorting 
Mbp  Megabase pair 
MHC  Major histocompatibility complex 
min  Minutes 
MMLV  Moloney murine leukemia virus 
mRNA  Messenger RNA 
mTEC  Medullary thymic epithelial cells 
Mya  Million years ago 
NHEJ  Non-homologous end joining 
n.s.  Not significant 
nSDI  Normalized Shannon diversity index 
oligo  Oligonucleotide 
OOF  Out-of-frame 
PC  Principal component 
PCR  Polymerase chain reaction 
polyA  Poly-adenylated 
PRR  Pattern recognition receptors 
PTC  Premature termination codon 
RNA  Ribonucleic acid  
RNA-seq RNA sequencing 
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RSS  Recombination signal sequences 
RT  Reverse transcription 
SNP  Single nucleotide polymorphism 
SP  Single positive 
SPLiT-seq Split Pool Ligation-based Transcriptome sequencing 
TCR  T cell receptor 
TIR  Terminal inverted repeat 
TLR  Toll-like receptor 
TREC  T cell receptor excision cycle  
UMI  Unique molecular identifier 
V(D)J  Variable, diversity and joining gene segments 
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