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Abstract

Statistical human body models have proven instrumental in various computer vision and

computer graphics tasks. Despite the significant progress in statistical modeling of the

human body and its parts, current state-of-the-art models still lack realism. Several un-

resolved challenges continue to impede their realism. The lack of realism stems from

modeling assumptions and training algorithms which became a standard followed prac-

tice in constructing body models. Our goal in this thesis is to highlight the limitations of

existing practices and propose models and training algorithms that overcome the limita-

tions of existing methods.

The most widely used human body model is the SMPL body model. Despite its wide

adoption, SMPL exhibits unrealistic deformations due to learning false long-range corre-

lations from the training data. For instance, bending one elbow results in a bulge appear-

ing in the other elbow. Artifacts of this type are not limited to SMPL but are prevalent

in various other models, such as SMPL-X and GHUM. Additionally, Despite the exten-

sive research on body part models for the head and hands, current body parts models,

such as FLAME and MANO, can not capture the full range of motion of the head and

hands relative to the body. Also, no realistic articulated model of the human foot has

been developed despite its crucial role in human locomotion and footwear design. Fi-

nally, training current body models, such as SMPL, on small datasets is challenging due

ix



Abstract

to a large number of parameters, making them easily susceptible to overfitting. To avoid

overfitting, an expert must gather an extensive dataset encompassing various subjects

and carefully regularize the model during training to avoid overfitting. The necessity of

expert-guided model training and the requirement for a substantial training dataset limits

the scalability of training robust models by non-experts such as artists with a small col-

lection of 3D scans for a single character. Despite the popular demand for a robust tool

for data-efficient learning of articulated characters, such a tool does not exist to date.

The thesis results in two primary contributions, the first focusing on proposing models

and the second on proposing training algorithms. We first propose a human body called

STAR (Sparse Trained Articulated Human Body Regressor), in Chapter 3, where we in-

troduce a model formulation that results in learning strictly sparse spatial deformations.

As a result of the sparse formulation, STAR has significantly fewer parameters than

SMPL, and the deformations are more realistic. Secondly, previous body models fac-

tor pose-dependent deformations independent of the body shape while, in reality, people

with different shapes deform differently. Consequently, we learn shape-dependent pose

corrective blendshape that depend on both body pose and BMI. We show that STAR

generalizes better than SMPL when both are trained on the same training dataset, despite

STAR having 80% fewer parameters. STAR is compatible with the gaming and anima-

tion industry standards and is a drop-in replacement for the widely used SMPL body

model.

Our second contribution is identifying key limitations in current body parts models

for the head and hands, which all surprisingly fail to accurately capture the full range of

motion for these body parts relative to the rest of the body. Previous body part models

have been trained using isolated 3D scans of individual parts, which do not capture the

full range of motion for these body parts relative to the body. In contrast, full-body scans
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provide valuable information about the motion of body parts relative to the body. Con-

sequently, we propose a new learning scheme in Chapter 4 where we train an expressive

sparse human body model, SUPR (Sparse Unified Part-Based Representation), on a fed-

erated training dataset of 1.2 million body, hand, foot, and head scans. As a consequence

of the SUPR sparse formulation, we are able to separate the model into a full suite of

high-fidelity body part models of the head, hands, and foot. Unlike previous body-part

models, the separated body parts can model the body parts’ full range of motion.

We further introduce the first articulated human foot model in Chapter 5. Previous at-

tempts at creating such a model have faced challenges in accurately capturing the foot’s

complex deformations, which are influenced by many factors such as foot shape, pose,

and ground contact. To overcome these challenges, we use a custom-built 4D foot scan-

ner that captures dynamic sequences of the foot from all angles, including the foot sole,

which is visible through a transparent glass platform. Previous approaches to modeling

body deformations have only focused on either body pose or shape, which is inadequate

for accurately modeling the deformation of the human foot during ground contact. We

address this by introducing a non-linear deformation function that predicts foot defor-

mations based on foot pose, shape, and ground contact. Our foot model is trained on

356 dynamic sequences from 30 subjects, where the capturing protocol explores the full

range of motion for the toes, ankles, and foot deformations due to ground contact. Fur-

thermore, we curate additional 7000 high-resolution scans from the ANSUR-II dataset

to model foot shape variability. Through a thorough evaluation, we demonstrate the ef-

ficacy of our foot model in capturing the full range of motion for the foot, including

deformations resulting from ground contact.

Finally, we propose AVATAR (Articulated Virtual Humans Trained By Bayesian Infer-

ence From a Single Ccan) in Chapter 6, a novel data-efficient training algorithm, which
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Abstract

can learn subject-specific body models from a single scan. AVATAR is robust to over-

fitting by posing training as a Bayesian inference problem, where we can incorporate

prior distributions and reason about an entire distribution of plausible model parameters,

instead of a single point estimate like existing methods. Through extensive evaluation,

we show that AVATAR is robust to overfitting given a single training scan, and models

trained by AVATAR are able to preserve subject specific deformations, achieve higher

visual fidelity and generalization compared to SMPL. AVATAR streamlines character

creation for all users, yielding engine-compatible personalized models, which was not

possible before.

We make all the models in the thesis publicly available for research purposes. The

thesis contributions have all been licensed by industrial vendors.
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Chapter 1

Introduction

1.1 Thesis Statement

Embedding prior knowledge into statistical model’s and training

algorithms enhances model generalization and learning efficiency.

1.2 Introduction

The human body is defined by its three-dimensional form, which enables movement and

interaction with the environment. Through facial expressions and gestures, we are able to

communicate our thoughts, emotions, and intentions. Given the importance of the body

in human-environment interactions, any artificial intelligence system aiming to simulate

human behavior must have the ability to accurately perceive the three-dimensional struc-

ture of the body. This necessitates the use of high-fidelity 3D body models that capture

variations in body pose, shape, and expression. These models are essential for indus-

tries such as gaming, animation, virtual try-on, augmented and virtual reality, and virtual
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Figure 1.1: Digital Sculpting: In Digital Sculpting, a professional artist iteratively de-
forms sculpting a 3D object, such as a sphere, to create a human character. The characters
created by an artist have a realistic appearance. In the above figure the artist YanSculpts
(https://yansculpts.gumroad.com/) demonstrates digital sculpting for a female character.

telepresence. The central goal of this thesis is to create high-fidelity statistical body mod-

els on par with the fidelity produced by professional artists while eliminating the manual

labor involved in their construction.

Thesis Goal: Create high-fidelity statistical models and

training algorithms for the body and its parts that can be used by

artists and animators.

20

https://yansculpts.gumroad.com/


1.2 Introduction

1.2.1 Digital Sculpting

Digital Sculpting is the most commonly used technique by artists and game designers to

create realistic digital humans. In Digital Sculpting a trained artist creates a 3D model

of the body by iteratively sculpting a 3D object (such as a sphere) until reaching a target

reference as highlighted in Fig. 1.1. Several professional software tools such as Blender

and ZBrush offer artists the tools for digital sculpting. A character created by Digi-

tal Sculpting captures the coarse body geometry and high-frequency anatomical details;

when textured and rendered, it looks realistic. Despite providing the artist with com-

plete creative control over the graphic asset, Digital Sculpting is a labor-intensive and

time-consuming process that requires specialized expertise. Therefore, it is not a viable

solution for generating digital humans at scale. The significant inefficiency of digital

sculpting in creating a large number of digital humans has prompted a diverse range of

research efforts to find scalable alternatives.

1.2.2 Learned Body Models

Learning statistical models [7] from 3D scans emerged as a practical alternative to

Digital Sculpting. A statistical body model is trained from a collection of 3D human

scans to capture the distribution of body deformations. More formally, a statistical hu-

man body model is a parametric function defined by a pose space and a shape space.

The pose space captures the position and orientation of the body bones, and the shape

space captures variability in identity. Over the past two decades, the vision and graph-

ics communities experienced a proliferation in the number of human body proposed

[8, 9, 10, 11]. Existing human body models capture the body’s 3D geometry, soft tissue

deformations [12, 13], and expressive body models capture the human facial expressions

and the hand gestures [14, 15, 16]. Statistical models enabled numerous applications
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including reconstructing bodies from images and videos [17, 18, 19], modeling human

interactions [20], generating 3D clothed humans [21, 22, 23, 24, 25, 26, 27], or generat-

ing humans in scenes [28, 29, 30].

1.3 Problem Statement

Despite the advancements in body modeling research, current models still exhibit draw-

backs that limit their realism. To enhance the realism of human body models, several

challenges must be addressed. In the following section, we thoroughly discuss the key

challenges.

1.3.1 Game Engines Compatibility

The gaming industry is a multi-billion dollar industry [31]. Game engines provide the

ecosystem for creating interactive 3D digital experiences. Thousands of developers use

game engines such as Unity and Unreal to create interactive 3D worlds populated by 3D

characters.

Game engines have numerous scientific applications that are being explored and uti-

lized by researchers across various fields. For example in Computer Vision, game engines

are used to create synthetic datasets for a wide range of computer vision tasks. These

datasets are essential for training and evaluating algorithms such as 3D human pose esti-

mation [32].

In the gaming and animation industry, there are standard conventions for representing

articulated digital characters. These conventions are important for ensuring that different

tools in the digital production pipeline are able to work together seamlessly. This allows

artists to easily transfer their work between different software programs and maintain the
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integrity of their digital assets. The industry-wide conventions for representing digital

humans also serve to provide artists with full creative control over their graphics assets.

By adhering to these standards, artists can make detailed and precise changes to the

appearance of the digital characters.

Statistical human body models exists since the early 2000s, but they do not meet the

standards of the game and animation industry. As a consequence of the limitations of

previous statistical human body models, their utility was limited in the gaming and an-

imation industry. The introduction of the SMPL body model [33] marked a significant

milestone, enabling the utilization of statistical human body models within game en-

gines. Since then, SMPL has become the most influential human body model in both

academia and industry. Its compatibility with game engines has allowed it to be used

across different scientific disciplines.

In recent years, various representations of the human body have been explored, includ-

ing models utilizing deep architectures [34, 15]. Furthermore, numerous novel represen-

tations have been introduced such as the implicit representation [35] and the NeRF-based

representation [36]. The latter representations enables unprecedented level of detail and

realism which was not possible before. However, current approaches are not compatible

with existing game engines. A key challenge we address in this thesis is proposing a

novel suite of models for the body and its parts while complying with industry standards

to ensure their practical use in real-world applications.

1.3.2 Model Versatility

One of the fundamental concepts in computer graphics is the ability to adapt the model

to fit the computational limitation of an application. In a crowd simulation, when char-

acters are far from the camera, there is no need for precise prediction of deformations
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for all body joints, such as fingers and toes, because their small on-screen size makes it

unnecessary.

The flexibility to adjust the model’s computational footprint is a crucial aspect that is

often neglected in current statistical models. By varying the fidelity of the model, users

such as animators can control the computational footprint of the model. This is essential,

as digital characters are often part of a larger software pipeline.

While versatility is a crucial aspect in designing graphic assets, existing statistical

human body models lack this versatility. Models like SMPL [33] and SMPL-X [16] have

a huge number of parameters. SMPL for example has more than 4 million parameters

and over 200 blendshapes which are all necessary to predict how the model deforms

with changes in body pose. The large number of parameters is a bottleneck for real-time

applications, on devices with a limited computational budget (such as mobile phones).

Unlike current approaches, this thesis introduces a factorized representation of the

human body that enables adaptable models, granting users the freedom to select the

optimal number of blendshapes for their specific application.

1.3.3 Statistical Models Fidelity

In Section 1.2.1, we described that a significant portion of an artist’s time is devoted to

creating realistic deformations for a graphic asset. This process often involves using a

reference image as a guide to ensure the fidelity of the deformations. The accuracy of

the deformations is crucial for the visual fidelity of the model, as users have a strong

preconceived notion of how the human body should deform. Any deviation from this ex-

pectation can compromise the visual fidelity of the model and make it appear unrealistic.

Despite years of research in statistical modeling of the human body, current models

still exhibit artifacts, causing significant challenges for artists and animators. These ar-
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Figure 1.2: False Long Range Deformations: Bending the left elbow in SMPL results
in a bulge in the other elbow.

tifacts are related to how existing models of the body and its parts deform with changes

in pose and shape. In the following section, we will highlight the most common artifacts

found in existing models.

Pose Deformations

All current models of the human body use a pose deformation function that predicts how

the 3D surface of the body will vary based on changes in the position and orientation

of the body joints. Although the specific formulation of the pose deformation function

varies from model to model, all existing models suffer from learning false long-range

spurious correlations. Models such as SMPL [33], SMPL-X [16], and GHUM [15] ex-

hibit unrealistic deformations in response to changes in body pose due to these false

correlations. For example, moving an elbow in SMPL and SMPL-X results in a bulge in

the other elbow, as shown in Fig. 1.2. This is implausible, as human body deformations

are typically sparse and spatially local, meaning that a joint movement should only affect
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Figure 1.3: Female Subjects From the CAESAR Dataset: All female participants wore
a sports bra, which biased the female chest’s contour.

a small, local subset of the model vertices.

Shape Deformations

The CAESAR database [37] is a crucial resource for the development of statistical mod-

els aiming to capture the variability of human body shape. These models are used in a

variety of applications, such as virtual clothing fitting and body measurement analysis.

One limitation of the CAESAR database is the clothing worn by the female subjects.

Specifically, all subjects wore a sports bra, which can have a significant impact on the

shape of the chest, as shown in Fig. 1.3. As a result, existing models based on the

CAESAR database may not accurately capture the shape of the female chest. The poor

modeling of the female chest shape is problematic for applications such as virtual try-on.

The CAESAR database has limited body shape variability, as it does not accurately

represent extreme body shapes of high BMI (body mass index) subjects. This limitation

reduces the expressiveness of the models learned using the CAESAR datatset [37] for

high BMI subjects. The shape space of popular human body models such as SMPL,

SMPL-X, and GHUM are all trained on the CAESAR dataset alone, despite its known
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limitations. This reliance on a single, limited dataset hinders the accuracy and reliability

of these models in modeling a diverse range of body shapes. This limitation is partic-

ularly concerning for applications that require an accurate representation of high BMI

individuals.

Registration Model Fit Error Heatmap

FLAME

MANO

1 cm

0

Figure 1.4: Body Part Models Failure Cases: Left: Existing body part models such
as the FLAME [1] head model and the MANO [2] hand model fail to capture the corre-
sponding body part’s shape through the full range of motion. Fitting FLAME to a subject
looking left results in significant error in the neck region. Similarly, fitting MANO to
hands with a bent wrist, results in significant error at the wrist region.

Body Part Tracking

Current body part models, including those specifically designed for the head and hands,

possess certain limitations when it comes to tracking the complete range of motion exhib-
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ited by these body parts, as shown in Fig. 1.4. Despite incorporating a representation of

the human head along with a neck, these models fail to accurately simulate and emulate

the intricate movements and positional adjustments of the head and hands.

Figure 1.5: SMPL Joints: Existing kinematic tree in all body models have a limited
number of joints in the foot. For example SMPL uses only two joints in the foot region.
The limited number of joints is problematic which is insufficient to model toe articula-
tion.

1.3.4 Foot Articulation

All existing human body models lack an articulated foot, as shown in Fig. 1.5, which is a

crucial component in accurately modeling the human body. The SMPL body model, for

example, only uses two joints for the foot, which is insufficient to model the full range

of motion of the human foot including the ankle and the toes.
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Figure 1.6: SMPL Foot: The foot of SMPL fails to model deformations due to ground
contact, hence penetrating the ground.

Contact Based Deformation

In contrast to the majority of the body, the human foot undergoes soft tissue deforma-

tions. These deformations are influenced by various factors, including the position of the

foot, its shape, and the nature of its contact with the surroundings. Existing modeling

techniques commonly employed for the body focus on relating deformations to changes

in body pose [33] or a combination of body pose and shape [38]. However, the impact of

external contact on body deformation, particularly concerning the foot, has been largely

overlooked. For example, SMPL will fail to preserve the foot contact deformation as

shown in Fig. 1.6. This oversight is significant as accurately modeling the deformations

of the human foot requires accounting for their interaction with the ground.
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1.3.5 Model Training and Overfitting

Training current body models, such as SMPL, on limited datasets poses significant chal-

lenges due to the large number of model parameters, which make the models easily prone

to overfitting during the model training. To mitigate these issues, experts are required to

curate a comprehensive dataset comprising diverse subjects and employ careful regular-

ization during the model training process. However, this reliance on expert guidance

and the need for an extensive training dataset severely hampers the scalability of training

reliable models for non-experts, such as artists who may possess only a small collection

of 3D scans for a specific character.

1.4 Motivation

In this section, we highlight the various applications that are directly impacted by the

thesis’s contributions.

Health Care

Obesity is a major public health concern, as it is the biggest risk to human life expectancy.

According to a study by Rossner et al. [39], obesity is strongly correlated with heart

diseases. This is due to the excess fat accumulation in the body, which puts a strain on

the cardiovascular system, leading to an increased risk of heart attacks and strokes.

In addition to heart diseases, obesity has also been associated with an increased risk

of COVID-19 severity. A study by Kalligeros et al. [40] found that obese individuals

are more likely to experience severe symptoms and complications from COVID-19 com-

pared to those with healthy body weight. This is thought to be due to the underlying

metabolic complications of obesity, such as inflammation and impaired immune func-
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tion.

The body fat distribution is an important factor in the metabolic complications of obe-

sity. According to Jensen et al. [41], the distribution of fat in the body, particularly in

the abdominal region, is a strong predictor of metabolic health. Simple numerical mea-

surements such as body weight or body mass index are not descriptive of the body fat

distribution, and may not accurately capture an individual’s risk of metabolic complica-

tions.

Human body models, which provide dense measurements of the body’s surface, can

be used to generate a multitude of measurements that better capture fat distribution and

improve the prediction of obesity-related health risks [42].

1.4.1 Biomechanics

Biomechanics [43, 44, 45] research focuses on studying human locomotion [46, 47, 48].

This is an important area of study for the footwear industry and sport science. By under-

standing how the human body moves, researchers can develop footwear that supports and

enhances human movement, reducing the risk of injury [49, 50]. Additionally, Biome-

chanics research is also crucial for the development of robotics. Many robotic systems

are modeled after the human body, and a deep understanding of human locomotion is

essential for designing robots that can move efficiently and effectively [51].

The human foot has evolved over millions of years to assist and enable bipedal human

locomotion. This evolution has allowed us to walk, run, and jump efficiently, using the

complex structure of the foot to support our weight and provide stability while moving.

Biomechanics and sport science study the foot and its deformation due to ground contact,

looking at how the foot adapts to different surfaces and the forces involved in locomotion.

An articulated model of the human foot, with learned contact deformation, could provide
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a valuable tool for these researchers, allowing them to run simulations and gain a deeper

understanding of the foot’s function and biomechanics.

1.4.2 Motion Synthesis

One major issue with current motion synthesis techniques is the foot skating prob-

lem [52], where the human foot appears to glide or slide across the ground, rather than

realistically interacting with it. This results in implausible and unrealistic motion, which

can be detrimental for animators and game designers who are trying to create realistic

and believable animations.

All existing human body models do not accurately capture the complex interactions

between the human foot and the ground. This lack of realism hinders the development

of more convincing and natural-looking motions.

To address the foot skating issue, it is important to develop a precise human body

model that faithfully represents the dynamics of the human foot and its interactions with

the ground. Furthermore, the availability of a comprehensive dataset capturing human

foot-ground interactions holds immense potential for training and enhancing the realism

of motion synthesis algorithms.

1.4.3 AR & VR

Body and body part models are crucial for augmented reality (AR) and virtual reality

(VR) [53]. These models are used to create a realistic representation of the human body,

allowing users to better perceive their surroundings and interact with the virtual envi-

ronments. Models that can capture the full range of motion for the hand and head are

particularly important for accurate tracking of user gestures and head pose, which is

critical for a plausible user experience.
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1.4.4 Footwear Design

Footwear design is a crucial aspect of creating comfortable shoes that fit well and provide

support for the foot. Accurate models of the human foot shape variability are essential

in order to design shoes that cater to different foot shapes and sizes.

The human foot is a complex structure, with many different bones, muscles, and ten-

dons working together to support the body and allow for movement. The shape and size

of the foot can vary greatly between individuals, and it is important for shoe designers

to take these differences into account when creating their designs. By using accurate

models of the human foot shape variability, shoe designers can create shoes that fit and

provide the necessary support for different foot shapes and sizes.

1.5 Contributions

Our main goal is to propose high-fidelity models of the human body that are similar

to the model fidelity created by artists, while still being compatible with the game and

animation industry standards. Next, we highlight the thesis’s key contributions.

1.5.1 Diverse Dataset

Body Scans: A key challenge for creating realistic body models is that existing train-

ing datasets have limited pose and shape variability. We address this problem by curating

more than 700K full body scans for subjects in a diversity of body poses. Unlike stan-

dard datasets, the dataset includes extreme body shapes such as bodybuilders and female

anorexia nervosa women patients. The poses in the dataset are also diverse and contain

poses by professional ballerinas and yoga poses. The dataset was curated to explore

the full range of complexity of human body deformations across a wide range of body

33



Chapter 1 Introduction

shapes.

We address the limitations of the widely used CAESAR dataset for training the model

shape space by curating further datasets that better capture the female chest and human

body shape variability. To this end, we utilize the SizeUSA dataset [54] which contains

an additional 10,000 human bodies in a standard A-pose. Unlike the CAESAR dataset,

the SizeUSA dataset female subjects wore a traditional bra, hence providing more shape

variation. Additionally, SizeUSA has a much richer body shape variability. The com-

bined CAESAR and SizeUSA dataset provides valuable information for training human

body model shape space, which improves the modeling of the human body shape, par-

ticularly high BMI subjects which is crucial for applications as motivated in Section 1.4.

Head Scans: In full body scans, the resolution of the heads is typically low, rendering it

inadequate to capture and reconstruct the nuanced subtleties of human facial expressions.

To address this issue, we utilize a dedicated head scanner to obtain head scans with the

necessary detail and clarity. The data capture protocol involves sequences to explore the

human facial deformations due to facial expression space and jaw movement.

Hand Scans: In the context of full-body scanning, the hands are poorly reconstructed,

corrupted by noise, and with occasionally missing fingers. This problem primarily stems

from the substantial disparity between the full body scanner scanning volume and rela-

tive size of the human hands. Consequently, the data captured in a full-body scanner is

insufficient for the purpose of learning and developing human hand models.

To mitigate this problem and enhance the quality of our hand data, we use a dedicated

hand scanner. This specialized scanning setup allows for a more focused and detailed

reconstruction of the hands. Our data-capturing protocol incorporates a series of se-

quences specifically designed to explore the full spectrum of motion exhibited by the
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human fingers.

Foot Scans: Similar to the hand and head, we find that the reconstruction of the human

foot in full body scanners is notably challenging. Foot scans are often noisy, incomplete,

and with the individual toes fused. Additionally, the occlusion caused by the foot’s

contact with the ground prevents the reconstruction of the foot sole. This limitation

also hinders our ability to accurately track movements of individual toes and capture the

deformations the foot undergoes upon contact with the ground.

To overcome these obstacles and enable high-resolution capture of the foot, we use a

custom-built foot scanning setup designed by 3dMD. This setup allows for comprehen-

sive visibility of the foot from all angles, including the sole through a transparent glass

platform.

Furthermore, to accurately model the distribution of human foot shape variability, we

leverage over 7,000 high-resolution scans from the ANSUR-II dataset [55]. This dataset

is invaluable for creating a high-fidelity shape space that encompasses the wide range of

human foot shape variability.

The dataset compiled for this thesis is unparalleled in both its scale and diversity.

Similarly, the variety of models and algorithms employed is without precedent, a feat

achievable solely due to the extensive scope of data collection. To underscore the mag-

nitude of the data. In Fig 1.7 we compare between the scale of data utilized in training

the SUPR model, as introduced in Chapter 5, and the scale of the data used by existing

state-of-the-art models.
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Figure 1.7: Data Scale: A comparison between the scale of training datasets for recent
human body models. SUPR is trained on a order of magnitude more data compared to
the highest number of training scans report in the literature (GHUM 60k).

1.5.2 Sparse Models

A key limitation shared by existing models is the widely used modeling formulation

which relates all model joints to all model vertices and results in a range of implausible

artifacts. To address this, in Chapter 3 we propose a novel sparse formulation of hu-

man body deformations. For each body joint, we learn the sparse set of mesh vertices

influenced by that joint movement. A key component for the success of our method is

that we learn the set of vertices influenced by the joint movement, instead of using artist

predefined regions. As a consequence of the sparse formulation, the model deformation

functions are strictly sparse and spatially local.

The sparse spatially local deformation offers a number of advantages that were not

possible before with the current widely used fully connected formulation. The sparse

deformation allows for a versatile model, where an artist can exclude blendshapes that

are not relevant to their application. This allows the end-user to include or exclude model

parameters and control their computational footprint. Finally, the sparse formulation
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decreases the model parameters, compared to the existing formulation.

A second key limitation is the current body pose deformation formulation is indepen-

dent of human body shape, which is clearly not realistic. In previous approaches both the

shape and pose space were seen as independent. In contrast, we propose conditioning

the pose-corrective blendshapes on the subject shape parameters that are correlated with

the subject body mass index. Because of the conditioning of the pose space on the shape

we are able to capture subject-dependent pose deformations that are due to body shape.

Existing models such as SMPL-X have a large number of pose parameters due to the

large number of joints in the hand region, specifically because SMPL-X uses spherical

joints for all body joints, which provide redundant degrees of freedom for body parts like

the fingers. We address this issue in Chapter 4 by extending the kinematic tree to include

a mixture of joint types, including hinge joints with a single axis of rotation for joints

like the fingers and knees. Although using different types of joints in the kinematic tree

is not a new concept, it is still highly desirable for animators and game designers. For

example, to bend a finger, an artist would have to rotate the finger joints across 3 axes

in the SMPL-X model, while in our formulation, it would only require a single rotation

around a single axis.

1.5.3 Federated Training

Existing body part models, such as the human head and hand, are typically learned in

isolation from the human body. This is done by using body part scans that are captured

in a limited scanning volume focused on the specific body part. Due to the restricted

scanning volume, accurately capturing the movement of a body part in relation to the

entire body poses a significant challenge. Training body part models on body part scans

only can be problematic, as it does not accurately represent the complex interactions and
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movements of the human body.

To address this issue, in Chapter 4 we introduce a training algorithm for learning

full-body and body part models jointly. Our algorithm trains a sparse body model on a

federated training dataset and then separates the model into individual body parts. This

allows us to accurately model the movements and interactions of the body and its parts,

providing a more realistic representation of the human body.

1.5.4 Foot Model

The human foot is poorly modeled in existing human body models. Training a foot

model is challenging because the human foot is hard to capture. In Chapter 5, we capture

the human foot in a custom-built 4D scanner, where the human foot is visible from all

views, including the foot sole, which is visible through a glass platform. The scanner

features a runaway and is mechanically stable to capture motions such as walking and

running, in addition to movements such as jumping. We capture a total of 356 dynamic

sequences for 15 male and 15 female subjects perfoming a wide range of motions which

explore the human foot’s full range of motion including the movement of the ankle and

toes, in addition to foot deformation due to ground contact. This is the first dataset that

thoroughly captures and models the human foot in motion. To be able to model human

foot shape, we train the foot model on 7,000 scans from the ANSUR-II dataset [55],

which features high-resolution scans. The scale and fidelity of the ANSUR-II dataset

allows us to learn an expressive shape space of the human foot.

We propose a kinematic tree that contains 12 additional joints in the foot. This allows

us to accurately model the pose of the human foot and ankle, as well as the movement

of each individual toe. Our model is the first articulated model for the human foot. The

inclusion of these additional joints in our kinematic tree allows for a more detailed and
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precise representation of the human foot. By modeling individual toe movement, we can

capture complex movements of the foot during activities such as walking and running.

Lastly, the existing model formulation only relates the body deformation to body pose,

completely ignoring the deformation due to scene contact. The contact-based deforma-

tions are critical for application in particular for the human foot. We address this by

introducing a novel non-linear formulation that predicts the foot deformations due to

ground contact. Our network is conditioned on the foot pose, foot shape, and a ground

contact descriptor. We train the network on 356 dynamic sequences of subjects with a

diversity of human foot shapes.

1.5.5 Data Efficient Training

Learning from a limited number of scans poses a significant challenge when training

articulated virtual humans. To address this issue, in Chapter 6 we propose AVATAR (Ar-

ticulated Virtual Humans Trained By Bayesian Inference From a Single Scan), a novel

algorithm that efficiently learns subject-specific body models.

Present training algorithms for body models featuring a pose-dependent deformations

function, like SMPL, are trained by optimizing for a single-point estimate which best

fits the training data. Due to the high dimensionality of the pose-dependent deforma-

tion function parameters, model training is easily prone to overfitting, especially when

the available training dataset is small, particularly if only a single scan is available. We

propose an alternative approach to character training. Our key insight is to pose learn-

ing the pose-corrective blendshape function parameters as a Bayesian inference problem.

Within the Bayesian framework, we can reason about an entire distribution of possible

parameters instead of a single-point estimate. Additionally, we can incorporate an infor-

mative prior of possible distribution of parameters. The combination of reasoning on an
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entire distribution, in addition to the incorporation of a prior, makes AVATAR robust to

overfitting even when only a single training scan is available.

1.6 Thesis Outline

The remaining of the thesis is divided into 7 chapters.

In Chapter 2 (Related Work): We review related work in human body modeling,

specifically focusing on mesh-based models. Our analysis encompasses prior art in

model training and representation.

In Chapter 3 (Sparse Models): We describe our proposed method, STAR, which in-

troduces a state-of-the-art sparse spatially local factorization of the body pose deforma-

tion function.

In Chapter 4 (Federated Training): We describe a state-of-the-art federated training

approach where we train an expressive human body model, SUPR , on a federated dataset

and separate the model into a full suite of body parts models.

In Chapter 5 (Foot Model): We describe SUPR-Foot, an articulated foot model with

learned contact deformation.

In Chapter 6 (Data-Efficient Learning): We describe AVATAR, the Bayesian frame-

work for data-efficient learning of personalized human body models from a single scan.

In Chapter 7 (Discussion): We conclude with a discussion that summarizes the thesis

contributions and discusses future directions.
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Related Work

Our goal in this thesis is to improve the accuracy of existing models for the body and

its parts while maintaining compatibility with existing gaming and animation industry

standards. The rest of this chapter is organized as follows: in section 2.1, we formally

introduce the gaming and animation industry standards for representing articulated char-

acters, such as the human body. In section 2.2, we conduct a thorough review of the

related literature on mesh-based models for the human body. We evaluate prior art on the

basis of 1) deformation fidelity, 2) model versatility, and 3) compatibility with existing

gaming and animation pipelines. We then review prior art on existing training algorithms

for body part models in section 2.3. In section 2.4 we review prior attempts in digitiz-

ing the human foot. We conclude with a review on learning algorithms for morphable

models, with a particular emphasis on data-efficient training of human body models in

section 2.5.
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2.1 Gaming and Animation Industry Standards

Linear Blend Skinning (LBS), also known as Skeletal-Subspace Deformation (SSD) [56,

57], is a key formulation used in the gaming and animation industry for representing

articulated characters. This technique remains popular to this day due to its simplicity

and effectiveness. In LBS, a mesh is rigged with an underlying set of joints that form

a kinematic tree. Each mesh vertex is associated with a number of body joints and

corresponding skinning weights. The transformations applied to each mesh vertex are a

weighted function of the transformations of the associated joints. These skinning weights

can be defined by an artist or learned from data.

LBS is widely used in the gaming and animation industry because it is also relatively

easy to implement and computationally fast. To date, LBS remains the foundation for

many existing body models.

2.1.1 Pose-Corrective blendshapes.

The key widely known drawback of LBS is the loss of mesh volume around the joint

regions when articulated. This loss of volume occurs in the areas around joints such

as the elbows and knees. The loss of mesh volume around joint regions results in the

widely known “ candy wrapper ” effect. This term refers to the appearance of the mesh

model after the LBS algorithm has been applied, where the mesh appears to be stretched

and thinned around the joint regions, similar to how a candy wrapper might appear after

being stretched and twisted. The candy wrapper effect reduces the overall quality of the

model. Several methods have been proposed to address the drawback of LBS. Lewis [58]

introduces the pose space deformation model (PSD) where LBS is complemented with

corrective deformations. The deformations are in the form of corrective offsets added
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to the mesh vertices posed with LBS. The corrective deformations are related to the

underlying kinematic tree pose. Weighted pose deformation (WPD) [59, 60] adds pose-

corrective offsets to the base template mesh in the canonical (rest) pose before posing it

with LBS, such that final posed mesh is plausible. Typically, such correctives are artist

defined in key poses. Given a new pose, a weighted combination of correctives from

nearby key poses is applied. Allen et al. [9] are the first to learn such corrective offsets

from 3D scans of human bodies.

The combination of LBS complemented with pose-corrective blendshapes are the

gaming and animation industry standard for representing articulated human body mod-

els. Despite the widely known drawbacks of LBS, nevertheless LBS remains the defacto

representation of articulated characters in industry. The key reason LBS combined with

blendshapes remains widely adopted is, LBS is a fully interpretable representation, and

an artist can paint the weights with predictable outcome. As a consequence of the fully

interpretable representation, LBS offers the artist the full creative control over the graph-

ics asset through the full digital production cycle.

2.2 Statistical Models

There is a long literature on 3D modelling of the human body, constructed either man-

ually or using data-driven methods. We review the most related literature here with a

focus on methods that learn bodies from data, pioneered by [9, 10].

The release of the CAESAR dataset of 3D scans [37] enables researchers to train

statistical models of body shape [8, 61]. SCAPE [10] is the first model to learn a factored

representation of body shape and pose. SCAPE models body deformations due pose and

shape as triangle deformations and has been extended in many ways [62, 63, 4, 64, 65,
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66]. SCAPE has several downsides, however. It requires a least-squares solver to create

a valid mesh, has no explicit joints or skeletal structure, may not maintain limb lengths

when posed, and is not compatible with graphics pipelines and game engines.

To address these issues, Loper et al. [33] introduces SMPL, which uses vertex-based

corrective offsets. Like SCAPE, SMPL factors the body into shape dependent deforma-

tions and pose dependent deformations. The SMPL model is the first statistical human

body model, that is learned from 3D scans that is compatible with the gaming and ani-

mation pipeline. This is because SMPL adopts an LBS formulation complemented with

learned pose-corrective blendshapes which addresses the drawbacks of LBS. SMPL is

more accurate than SCAPE when trained on the same data, and to date it reamins the

defacto model of the human body. SMPL is also the first model trained using the full

CAESAR dataset [37], giving it a realistic shape space; previous methods used a subset

of CAESAR or even smaller datasets.

SMPL, similar to many subsequent models, relates all the vertices to all joints. The

SMPL model pose-corrective blendshape function is a linear function of the elements of

the part rotation matrices. This results in 207 pose blendshapes with each one having a

global effect. The SMPL formulation has a number of drawbacks. First SMPL learns

false long range spurious correlations from the training data, where bending an elbow in

SMPL results in a clearly visible bulge in the other elbow. Secondly, the formulation is

not versatile, which does not allow the artist to select a subset of the blendshape required

for their application. This results in a constant debt of 207 blendshapes and more than

4.2 ⇥ 106 parameters. Despite the many drawbacks of the fully connected formulation

introduces in SMPL, it has become an influential formulation for many subsequent body

models.

SMPL and SCAPE factors body shape and pose-dependent shape changes, but ignore
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correlations between them. Several methods model this with a tensor representation [62,

4]. This allows them to vary muscle deformation with pose depending on the muscularity

of the subject.

2.2.1 Sparse Pose-Corrective Blendshapes

In chapter 3 we introduce STAR ( Sparse Trained Articulated Human Body Regressor),

a sparse formulation of the human body deformations, where each body joint strictly in-

fluences a sparse set of the model vertices. This is because human pose deformations are

largely local in nature and, therefore, pose-corrective deformations should be similarly

local. Kry et al. [67] introduces EigenSkin to learn a localized model of pose deforma-

tions. STAR is similar to EigenSkin in that it models localized joint support, but, unlike

EigenSkin, we infer the joint support region from posed scan data without requiring a

dedicated routine of manually posing joints. Neumann et al. [68], uses sparse Principal

Component Analysis (PCA) to learn local and sparse deformations of pose-dependent

body deformations but do not learn a function mapping body pose to these deformations.

In contrast, STAR learns sparse and local pose deformations that are regressed directly

from the body pose. GHUM [15] builds on SMPL and its Rodrigues pose representation

but reduces the pose parameters (including face and hands) to a 32-dimensional latent

code.

The sparse formulation introduced by STAR is realistic, compared to existing human

body models. In addition, the representation is artist-friendly, since an artist can directly

relate any vertex deformations to a small number of blendshapes, in contrast to SMPL

where all 207 blendshape influences all the vertices. Additionally, since the sparse local

formulation allows the artist to exclude joints unnecessary to their applications. STAR

remains compatible with the gaming and animation community standards.
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The deformations resulting from body pose are influenced by both the pose itself

and body shape. Consequently, STAR incorporates the subject’s shape into the pose-

corrective blendshape function, by conditioning the pose-corrective blendshape on the

second principal component, which we show to have a strong correlation with the sub-

ject’s body mass index (BMI).

2.3 Model training

Prior to this thesis, learning body models and body part models for the head and hand

were two separate problems. Expressive body models, such as Frank [14] and SMPL-

X [16], are trained by merging a body model with body part models for the head and

hands. Frank [14] merges the body of SMPL [33] with the FaceWarehouse [69] face

model and an artist-defined hand rig. Due to the fusion of different models learned in

isolation, Frank looks unrealistic. SMPL-X [16] learns an expressive body model and

fuses the MANO hand model [2] pose blendshapes and the FLAME head model [1]

expression space. However, since MANO and FLAME are learned in isolation of the

body, they do not capture the full range of motion of the the head and hands. Thus,

fusing the parameters results in artifacts at the boundaries. In chapter 4 we address this

by introducing a holistic federated training approach for constructing models for the

body and its parts. In contrast to the construction of Frank and SMPL-X, we start with a

coherent full-body model, named SUPR (A Sparse Unified Part-Based Representation),

trained on a federated dataset of body, hand, head, and foot scans, then separate the

model into individual body parts. Xu et al. [15] proposes GHUM & GHUML, which

are trained on a federated dataset of 60K head, hand, and body scans and use a fully

connected neural network architecture to predict pose deformations. The GHUM model

cannot be separated into body parts as a result of the dense, fully connected formulation
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that relates all the vertices to all the joints in the model kinematic tree. In contrast, the

SUPR factored representation enables seamless separation of the body into head (SUPR-

Head), hand (SUPR-Hand) and foot (SUPR-Foot) models.

2.3.1 Head Models

There are many models of 3D head shape [70, 71, 72], shape and expression [73, 74, 69,

75, 76, 77, 78] or shape, pose and expression [1]. We focus here on models with a full

head template, including a neck.

The FLAME head model [1], like SMPL, uses a dense pose-corrective blendshape

formulation that relates all vertices to all joints. Xu et al. [15] also propose GHUM-

Head, where the template is based on the GHUM head with a retrained pose dependant

deformation network (PSD). Both GHUM-Head and FLAME are trained in isolation of

the body and do not have sufficient joints to model the full head degrees of freedom.

In contrast to the previous methods, SUPR-Head is trained jointly with the body on a

federated dataset of head and body meshes, which is critical to model the head full range

of motion. It also has more joints than GHUM-Head or FLAME, which we show is

crucial to model the head full range of motion.

2.3.2 Hand Models

MANO [2] is widely used and is based on the SMPL formulation where the pose-

corrective blendshapes deformations are regularised to be local. The kinematic tree of

MANO is based on spherical joints allowing redundant degrees of freedom for the fin-

gers. Xu et al. [15] introduce the GHUM-Hand model where they separate the hands

from the template mesh of GHUM and train a hand-specific pose-dependant corrector

network (PSD). Both MANO and GHUM-Hand are trained in isolation of the body and
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result in implausible deformation around the wrist area. SUPR-Hand is trained jointly

with the body and has a wrist joint which is critical to model the hands full range of

motion.

2.4 Foot Models

The importance of the foot in various applications has been overlooked by the graphics

community due to their lack of significance in animation and gaming. We examine pre-

vious research on the measurement and capture of the human foot. The deformations of

the human foot are complex and influenced by various factors, and we evaluate recent

research on modeling body deformations and their applicability to modeling the human

foot deformations. We conclude with a review of research on the dynamic morphology

of the foot in motion.

2.4.1 Foot Measurement

Earlier measurement techniques of the human foot are based on traditional anthropome-

try [79]. A trained expert uses tools such as a caliper to take measurements. This method

of measuring the human foot was commonly used in the past, and involves a trained ex-

pert using tools such as a caliper to take measurements. This method of measuring the

human foot was not without its limitations, however. One of the main limitations of

manual foot measurement was that it relies heavily on the expertise of the practitioner.

If the individual taking the measurements was not highly trained or experienced in the

use of tools such as a caliper, the accuracy of the measurements could be compromised.

This lack of consistency in the expertise of practitioners leads to discrepancies in the

measurements taken, which can have significant implications in fields such as footwear
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design and manufacturing. Another limitation of manual foot measurement was that it

can only be used to measure the foot in a static pose. This means that the measure-

ments taken were not representative of the full range of motion and flexibility of the

human foot. This leads to footwear that was not well-suited to the dynamic movements

of the foot, resulting in discomfort and potentially even injury. Furthermore, manual foot

measurement was a time-consuming and labor-intensive process, which could be pro-

hibitively expensive for some applications. This propelled the field to investigate more

robust measurement tools for the human foot. Telfer et al. [80] present a review of digital

solutions to investigate the human foot shape. The measurements can be broadly divided

into laser-based scanning, multi-view camera systems and multi-view camera systems

combined with laser projectors. In chapter 5 we introduce an articulated foot model. Our

foot model (SUPR-Foot) is trained on 4D scans captured in a multi-view camera system

with laser projectors. Ballester et al. [81] shows that digital scanning technologies is

substantially more robust compared to manual measurements made by a human expert.

All prior scanning systems, whether manual or digital, measures the foot in a static

pose. This means that the foot were not moving or changing position during the scan-

ning process, resulting in a static image of the foot. However, the work of Bopanna et

al. [82] introduces the Dynamo system, which is a unique exception to this approach.

The Dynamo system is a low cost solution that uses Intel Sense cameras to study the

dynamic foot morphology. This means that the system is able to capture the foot in mo-

tion, allowing detailed and accurate representation of the foot. This is important because

the foot are constantly moving and changing shape, and a static image may not accu-

rately capture these changes. However, the Dynamo system has its limitations. It only

reconstructs the outer surface of the foot, and does not capture the foot sole. This is a

critical omission, as the foot sole is where many deformations occur and is important for
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reconstructing how the foot deforms. Therefore, while the Dynamo system is a valuable

tool for studying dynamic foot morphology, it is not a complete solution.

Coudert et al. [83] introduces the foot scanner consisting of 3 pairs of stereoscopic

sensors that captures the foot deformation during walking and moving sequences. The

system returns high-resolution scans; however, it has a low frame rate and still fails to

capture the foot sole.

In contrast to prior work, we use a custom built foot scanner, made by 3dMD. The foot

scanner is a mechanically stable structure that is designed to accommodate human sub-

jects weighing up to 150 kg. This is a key feature of the scanner, as it allows the capture

of data from a wide range of individuals, performing dynamic motions such as jumping

and running. The scanner features a transparent glass platform that allows the detailed

reconstruction of the foot, including the toes and foot sole. This is essential for the study

of foot deformations, including during the loading phase of a motion. The output foot

scans are high resolution, which preserves the full structure of the foot, including the

individual toes. This enables the construction of accurate detailed models.

2.4.2 Statistical Foot Models

Statistical 3D foot models are more nascent compared to the body, head, and hands.

Conard et al. [84] proposes the first statistical shape model of the human foot, which

is a PCA space learned from static foot scans. However, the human foot morphology

varies with motion dynamics, and models learned from static scans will not capture the

full complexity of the 3D foot deformations. Amstutz et al. [85] learns a low resolution

foot model from a foot database of 397 of static foot manually designed by an anatomy

specialist. They learn a PCA shape space of the foot using 12 principal components

to model the foot. Bopanna [3] captures subjects using the DynaMo system [82] and
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registers the scans to sequence where a subject is in motion, and learns a PCA model. In

contrast to all prior work, SUPR-Foot is the first articulated model for human foot that

supports the full range of motion of the human foot, including the movement of the ankle

and the individual toes.

2.4.3 Deformation Modeling

Extensive research has been conducted on modeling body deformations. Numerous stud-

ies explores various approaches to predict body deformations based on factors such as

body pose or shape. Previous work fails to model deformation due to contact, which is

particularly crucial for the human foot. This difficulty primarily arises from the complex-

ity of accurately capturing contact-induced deformations. In contrast to previous work,

in chapter 5 we present an approach using a novel neural blendshape function that es-

tablishes a correlation between foot sole deformation, foot pose, foot shape, and ground

contact. Learning this formulation is only possible due to the custom-built capture setup

that is capable of accurately capturing the human foot sole during ground contact.

2.5 Data Efficient Training

Loper et al. [33] introduces the SMPL body model, which has become the most widely

adopted human body model to date. The model is predicated on a pose blendshape for-

mulation that applies corrective offsets to counteract the well-documented limitations of

linear blend skinning. The training of a SMPL model utilizes an artist-designed prior to

guide the skinning weights and joint regressors. Although most of the SMPL parameters

reside within the pose blendshape formulation, the training process is based solely on an

L2 regularization term without the use of a specific prior. Consequently, the training of
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SMPL requires expert supervision, a substantial training dataset and manual adjustments

throughout the model training process to ensure proper regularization of the blendshapes.

Despite these efforts and the vastness of the training data, the model still tends to learn

incorrect correlations, such as the association of bending one elbow with a bulge in the

opposite elbow.

In chapter 3, we introduce the STAR model, which also demands a large dataset com-

prising multiple subject identities across various body poses to learn its sparse formula-

tion. Similarly, the SUPR model, presented in chapter 4, requires a prohibitively large

dataset of 1.2 million registrations for training. The GHUM model, as reported by Xu

et al. [15], is trained on a dataset comprising 70K registrations. The sheer scale of the

data required and the expertise needed for training these models presents a significant

challenge for artists and animators who lack machine learning expertise and access to

extensive training datasets. Zhou et al. [86] highlight the difficulty and expertise re-

quired to train the SMPL model deformation function and other similar parametric mod-

els, and instead proposed a neural architecture to disentangle pose and shape spaces, yet

the architecture is still trained on multiple subjects and requires a large training dataset

to generalize. Zeitvogel et al. [87, 88] introduce a mixed approach to learning from raw

body scans and registrations, which is useful when learning a model from a large dataset

of scans.

In chapter 6, we propose AVATAR (Articulated Virtual Humans Trained By Bayesian

Inference from a Single Scan), a novel algorithm for learning personalized human body

models based on the SMPL representation from a single scan. Traditional training al-

gorithms for body models infer a single point estimate of the model parameters, mak-

ing them susceptible to overfitting the training dataset. AVATAR, on the other hand,

approaches model training as a Bayesian inference problem. It begins with a prior dis-
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tribution of the model parameters and seeks to infer a posterior distribution of possible

model parameters, thereby enhancing the training process’s robustness against overfit-

ting. In contrast to all existing work which focuses on scaling training body models to a

large dataset of scans, in AVATAR our focus is on data-efficient learning and inference

of high-fidelity personalized mesh-based engine-ready digital characters from a single

scan.
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Chapter 3

Sparse Body Models

3.1 Introduction

Human body models are widely used to reason about 3D body pose and shape in images

and videos. While several models have been proposed [8, 10, 62, 63, 4, 64, 66, 61,

15], SMPL [33] is currently the most widely use in academia and industry. SMPL is

trained from thousands of 3D scans of people and captures the statistics of human body

shape and pose. Key to SMPL’s success is its compact and intuitive parametrization,

decomposing the 3D body into pose parameters ~q 2 R72 corresponding to axis angle

rotations of 24 joints and shape ~b 2 R10 capturing subject identity (the number of shape

parameters can be as high as 300 but most research uses only 10). This makes it useful to

reason about 3D human body pose and shape given sparse measurements, such as IMU

accelerations [89, 90, 91], sparse mocap markers [92, 93] or 2D key points in images and

videos [94, 17, 18, 19, 95, 96, 97, 98].

While SMPL is widely used, it suffers from several drawbacks. SMPL augments

traditional linear blend skinning (LBS) with pose-dependent corrective offsets that are
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Figure 3.1: False SMPL Deformations: Heat maps illustrate the magnitude of the pose-
corrective offsets. The spurious long-range correlations learned by the pose-corrective
blendshapes SMPL. Bending one elbow results in a visible bulge in the other elbow.

learned from 3D scans. Specifically, SMPL uses a pose-corrective blendshape function

BP(~q) : R|~q | ! R3N , where N is the number of mesh vertices.

The function BP predicts corrective offsets for every mesh vertex such that, when the

model is posed, the output mesh looks realistic. The function P can be viewed as a

fully connected layer (FC), that relates the corrective offsets of every mesh vertex to

the elements of the part rotation matrices of all the body joints. This dense blendshape

formulation has several drawbacks. First, it significantly inflates the number of model

parameters to > 4.2 million, making SMPL prone to overfitting during training. Even

with numerous regularization terms, the model learns spurious correlations in the training
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set, as shown in Figure 3.1; moving one elbow causes a bulge in the other elbow.

This is problematic for graphics, model fitting, and deep learning. The dense formu-

lation causes dense spurious gradients to be propagated through the model. A loss on

the mesh surface back propagates spurious gradients to geodesically distant joints. The

existing formulation of the pose-corrective blendshapes limits the model compactness

and visual realism.

To address this, we create a new compact human body model, called STAR (Sparse

Trained Articulated Regressor), that is more accurate than SMPL yet has sparse and

spatially-local blendshapes, such that a joint only influences a sparse set of vertices

that are geodesically close to it. The original SMPL paper acknowledges the problem

and proposes a model called SMPL-LBS-Sparse that restricts the pose-corrective blend-

shapes such that a vertex is only influenced by joints with the highest skinning weights.

SMPL-LBS-Sparse, however, is less accurate than SMPL.

Our key insight is that the influence of a body joint on the model vertices should be

inferred from the training data. The main challenge is formalizing a model and training

objective such that we learn meaningful joint support regions that are sparse and spatially

local as shown in Figure 3.3. To this end we formalize a differentiable thresholding

function based on the Rectified Linear Unit operator, ReLU, that learns to predict 0

activations for irrelevant vertices in the model. The output activations are used to mask

the output of the joint blendshape regressor to only influence vertices with non-zero

activations. This results in a sparse model of pose-dependent deformation.

We go further in improving the model compactness. SMPL uses a Rodrigues represen-

tation of the joint angles and has a separate pose-corrective regressor for each element of

the matrix, resulting in 9 regressors per joint. We switch to a quaternion representation

with only 4 numbers per joint, with no loss in performance. This, in combination with the

57



Chapter 3 Sparse Body Models

Figure 3.2: SMPL Deformations Limitations: Two subject registrations (show in blue)
with two different body shapes (High BMI) and (Low BMI). While both are in the same
pose, the corrective offsets should be different since body deformations are influenced
by both body pose and body shape. The SMPL pose-corrective offsets are the same
regardless of body shape.

sparsity, means that STAR has only 20% of the parameters of SMPL. We evaluate STAR

by training it on different datasets. When we train STAR on the same data as SMPL, we

find that it is more accurate on held-out test data. Note that the use of quaternions is an

internal representation change from SMPL and transparent to users who can continue to

use the SMPL pose parameters.

SMPL disentangles shape due to identity from shape due to pose. This is a strength

because it results in a simple model with additive shape functions. It is also a weakness,

however, because it cannot capture correlations between body shape and how soft tissue
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deforms with pose, as shown in Fig. 3.2. To address this we extend the existing pose-

corrective formulation by regressing the correctives using both body pose ~q and body

shape ~b . Here we use the second principal component of the of the body shape space,

which correlates highly with Body Mass Index (BMI). This change results in more real-

istic pose-based deformations.

SMPL is used in many fields such as apparel and healthcare because it captures the

statistics of human body shape. The SMPL shape space was trained using the CAESAR

database, which contains 1700 male and 2107 female subjects. CAESAR bodies, how-

ever, are distributed according to the US population in 1990 [37] and do not reflect global

body shape statistics today. Additionally, CAESAR’s capture protocol dressed all women

in the same sports-bra-type top, resulting in a female chest shape that does not reflect the

diversity of shapes found in real applications. We show that SMPL trained on CAESAR

is not able to capture the variation in the more recent, and more diverse, SizeUSA dataset

of 10,000 subjects (2845 male and 6436 female) [54], and vice versa. To address these

problems, we train STAR from the combination of CAESAR and SizeUSA scans and

show that the complementary information contained in both datasets enables STAR to

generalize better to unseen body shapes.

We summarize our contributions by organizing them around impact areas where SMPL

is currently used:

1. Computer vision: We propose a compact model that is 80% smaller than SMPL.

We achieve compactness in two ways: First, we formalize sparse corrective blend-

shapes and learn the set of vertices influenced by each joint. Second, we use quater-

nion features for offset regression. While STAR is more compact than SMPL, it

generalizes better on held-out test data.

2. Graphics: Non-local deformations make animation difficult because changing the
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pose of one body part affects other parts. Our local model fixes this problem with

SMPL.

3. Health: Realistic avatars are important in health research. We increase realism by

conditioning the pose-corrective blendshapes on body shape. Bodies with different

BMI produce different deformations.

4. Clothing Industry: Accurate body shape matters for clothing. We use the largest

training set to date to learn body shape and show that previous models are insuffi-

cient to capture the diversity of human shape.

The model is a drop-in replacement for SMPL, with the same pose and shape parametriza-

tion.

3.2 Model

STAR is a vertex-based LBS model complemented with a learned set of shape and pose-

corrective functions. Similar to SMPL, we factor the body shape into the subject’s in-

trinsic shape and pose-dependent deformations. In STAR we define a pose-corrective

function for each joint, j, in the kinematic tree. In contrast to SMPL, we condition the

pose-corrective deformation function on both body pose ~q 2 R|~q | and shape ~b 2 R|~b |.

Additionally, during training, we use a non-linear activation function, f(.), that selects

the subset of mesh vertices relevant to the joint j. The pose-corrective blendshape func-

tion makes predictions for a subset of the mesh vertices. We adopt the same notation

used in SMPL [33]. We start with an artist defined template, T 2 R3N in the rest pose ~q ⇤

(i.e. T-Pose) where N = 6890 is the number of mesh vertices. The model kinematic tree

contains K = 24 joints, corresponding to 23 body joints in addition to a root joint. The

template T is then deformed by a shape-corrective blendshape function BS that captures
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Figure 3.3: Sparse Local Pose-Correctives: STAR factors pose-dependent deformation
into a set of sparse and spatially-local pose-corrective blendshape functions, where each
joint influences only a sparse subset of mesh vertices. The white mesh is STAR fit to a 3D
scan of a professional body builder. The arrows point to joints in the STAR kinematic tree
and the corresponding predicted corrective offsets for the joint. The heat map encodes
the magnitude of the corrective offsets. The joints have no influence on the gray mesh
vertices.

the subject’s identity and a function BP that adds corrective offsets such that the mesh

looks realistic when posed.

Shape Blendshapes. The shape blendshape function BS(~b ;S) : R|~b | ! R3N maps the

identity parameters ~b to vertex offsets from the template mesh as

BS(~b ;S) =
|~b |

Â
n=1

bnSn, (3.1)
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where ~b = [b1, · · · ,b|b |] are the shape coefficients, and S = [S1, · · · ,S|b |] 2 R3N⇥|~b | are

the principal components capturing the space of human shape variability. The shape

correctives are added to the template:

~Vshaped = T +BS(~b ;S), (3.2)

where~Vshaped contains the vertices representing the subject’s physical attributes and iden-

tity.

(a) Male Subjects (b) Female Subjects

Figure 3.4: BMI and PCA: There is a strong linear relationship between the BMI of
SMPL training subjects and the second shape principal component, b2, for both the male
and female subjects.

Pose and Shape Corrective Blendshapes. The output of the shape-corrective blend-

shape function, ~Vshaped , is further deformed by a pose-corrective function. The pose-

corrective function is conditioned on both pose and shape and adds corrective offsets

such that, when the mesh is posed with LBS, it looks realistic. We denote the kinematic

tree unit quaternion vector as ~q 2 R96 (24 joints each represented with 4 parameters).

The pose-corrective function is denoted as BP(~q,b2) 2 R|~q|⇥1 ! R3N , where b2 is the

PCA coefficient of the second principal component, which highly correlates with the
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body mass index (BMI) as shown in Figure 3.4. The STAR pose-corrective function is

factored into a sum of pose-corrective functions:

BP(~q,b2;K,A) =
K�1

Â
j=1

B j
P(~qne( j),b2;K j,A j), (3.3)

where a pose-corrective function is defined for each joint in the kinematic tree excluding

the root joint. The per-joint pose-corrective function B j
P(~qne( j),b2;K j,A j) predicts cor-

rective offsets given ~qne( j) ⇢~q, where ~qne( j) is a set containing the joint j and its direct

neighbors in the kinematic tree. This formulation results in spatially local pose-corrective

deformation function compared to SMPL. K j 2R3N⇥|~qne( j)|+1 is a linear regressor weight

matrix and A j are the activation weights for each vertex, both of which are learned. Each

pose-corrective function, B j
P(~qne( j),b2) , is defined as a composition of two functions, an

activation function and a pose-corrective regressor.

Activation Function. For each joint, j, we define a learnable set of mesh vertex weights,

A j = [w1
j , · · · ,wN

j ] 2 RN , where wi
j 2 R denotes the weight of the ith mesh vertex with

respect to the j joint. The weight wi
j for each vertex i is initialized as the reciprocal of

the minimum geodesic distance to the set of vertices around joint j, normalized to the

range [0,1]. The weights are thresholded by a non-linear activation function, specifically

a rectified linear unit (ReLU):

f(wi
j) =

8
>><

>>:

0, if wi
j  0,

wi
j, otherwise,

(3.4)

such that during training, vertices with a wi
j  0 have weight 0. The remaining set of

vertices with wi
j > 0 defines the support region of joint j.
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Pose-Corrective Regressor. The pose-corrective function for each body joint is de-

fined as Pj(~qne( j)) 2 R|~qne( j)|+1 ! R3N , which regresses corrective offsets given the joint

and its direct neighbors’ quaternion values

Pj(~qne( j),b2;K j) = K j((~qne( j) �~q⇤
ne( j))

T |b2)
T , (3.5)

where ~q⇤
ne( j) is the vector of quaternion values for the set of joints ne( j) in rest pose,

and b2 is concatenated to the quaternion difference vector. K j 2 R3N⇥|~qne( j)|+1 is the

regression matrix for joint j’s pose-correctives offsets. The predicted pose-corrective

offsets in Equation (3.5) are masked by the joint activation function:

B j
P(~qne( j);A j,K j) = f(A j)�Pj(~qne( j),b2;K j), (3.6)

where ~X �~Y is the element wise Hadamard product between the vectors ~X and~Y . During

training, vertices with zero activation with respect to joint j, will have no corrective

offsets added to them. Therefore, when summing the contribution of the individual joint

pose-corrective functions in Equation (3.3), each joint only contributes pose-correctives

to the vertices for which there is support.

Blend Skinning. Finally, the mesh with the added pose and shape corrective offsets

is transformed using a standard skinning function W (T ,~J,~q ,W) around the joints, ~J 2

R3K and linearly smoothed by a learned set of blend weight parameters W 2 R6890⇥24.

The joint locations are intuitively influenced by the body shape and physical attributes.

Similar to SMPL, the joints ~J(~b ;J ,T ,S) = J (~Vshaped) are regressed from ~Vshaped by a

sparse function J : R3N ! R3K .
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To summarize, STAR is full defined by:

M(~b ,~q) =W (Tp(~b ,~q),J(~b ),~q ,W), (3.7)

where TP is defined as:

Tp(~b ,~q) = T +BS(~b )+BP(~q,b2), (3.8)

where ~q is the quaternion representation of pose ~q . The STAR model is fully parame-

terized by 72 (i.e. 24 * 3) pose parameters ~q in axis-angle representation, and up to 300

shape parameters ~b .

3.2.1 Model Training

STAR training is similar to SMPL [92]. The key difference is the training of the pose-

corrective function in Equation (3.3). STAR’s pose-corrective blendshapes are trained to

minimize the vertex-to-vertex error between the model predictions and the ground-truth

registrations. A registration is a tight fit of STAR’s mesh to a raw scan. In each iteration,

the model parameters (A,K) are minimized by stochastic gradient descent across a batch

of B registrations, denoted as ~R 2 R3N . The data term is given by:

LD =
1
B

B

Â
i=1

||M(~bi,~qi)�~Ri||2. (3.9)

In addition to the data term, we regularize the pose-corrective regression weights (K)

with an L2 norm:

LB = lb

K�1

Â
i=1

||Ki||2, (3.10)
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Iteration lb lc lp ls

1 1 1e-3 50 8e2
2 1e-1 1e-4 50 8e2
3 1e-2 1e-4 50 8e2
4 1e-5 1e-5 50 8e2

Table 3.1: Annealing schedule of the regularization parameters for each training iteration.

where K is the number of joints in STAR and lb is a scalar constant. In order to induce

sparsity in the activation masks f(·), we use an L1 penalty

LA = lc||
K�1

Â
i=1

f j(A j)||1, (3.11)

where lc is a scalar constant. Similar to SMPL we use a sparsity regularizer term on the

skinning weights W and regularize the skinning weights to initial artist-defined skinning

weights, Wprior 2 RN⇥K:

LW = lp||W �Wprior||2 +ls||W||1, (3.12)

where lp and ls are scalar constants. To summarize the complete training objective is

given by

L = LD +LB +LA +LW . (3.13)

The objective in Equation (3.13) is minimized with respect to the skinning weights W ,

pose-corrective regression weights K1:24, and activation weights A1:24.

We train the model iteratively. STAR is trained for 4 iterations, in each training itera-

tion we anneal the regularization parameters as outlined in Table 3.1.
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Figure 3.5: STAR Activations: A sample of the joints activation functions output before
training and the bottom row shows the output after training (gray is zero). A joint only
predicts deformations for the mesh parts with non-zero activation.

3.3 Experiments

3.3.1 Activation

Key to learning the sparse and spatially local pose-corrective blendshapes are the joint

activation functions introduced in Equation (3.4). During training the output of the ac-

tivation functions becomes more sparse, limiting the number of vertices a joint can in-

fluence. Figure 3.5 summarizes a sample of the activation functions output before and

after training. As a result of the output of the activation functions becoming more sparse,

the number of model parameters decreases. By the end of training, the male model pose

blendshapes contains 3.37 ⇥ 105 non-zero parameters and the female model contains

3.94⇥105 non-zero parameters. In contrast to SMPL which has a dense pose-corrective

67



Chapter 3 Sparse Body Models

Figure 3.6: STAR vs SMPL Pose-Dependent Deformations: SMPL (brown) and STAR
(white) in the rest pose except for the left elbow, which is rotated. The heat map visu-
alizes the corrective offsets for each model caused by moving this one joint. Note that
unlike STAR, SMPL has spurious long-range displacements.

blendshape formulation with 4.28 ⇥ 106 parameters. At test time only the non-zero pa-

rameters need to be stored.

Figure 3.6 show a SMPL model bending an elbow resulting in a bulge in the other

elbow, as a result of the pose corrective blendshapes learning long range spurious cor-

relations from the training data. In contrast, STAR correctives are spatially local and

sparse, this is a result of the learned local sparse pose-corrective blendshape formulation

of STAR.

3.3.2 Model Generalization

While the learned activation masks are sparse and spatially local, which is good, it is

equally important that the model still generalizes to unseen bodies. To this end, we

evaluate the model generalization on held out test subjects. The test set we use contains

the publicly available Dyna dataset [99] (the same evaluation set used in evaluating the
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Figure 3.7: Generalization Accuracy: Evaluating STAR and SMPL on unseen bodies.
STAR¬b2(CAESAR) is STAR trained on CAESAR with pose-correctives depending on
pose only (i.e. independent of b2), STAR¬b2(CAESAR+SizeUSA) is STAR trained on
CAESAR and SizeUSA with pose-corrective blendshapes depending on pose only, and
STAR(CAEAR+SizeUSA) is STAR trained on CAEASAR and SizeUSA with pose and
shape dependent pose-corrective blendshapes.

SMPL model), in addition to the 3DBodyTex dataset [100], which contains static scans

for 100 male and 100 female subjects in a diversity of poses. The total test set contains

570 registered meshes of 102 male subjects and 104 female subjects. We fit the models

by minimizing the vertex to vertex mean absolute error (v2v), where the pose ~q and

shape parameters ~b are the free optimization variables. We report the mean absolute

error in (mm) as a function of the number of used shape coefficients in Figure 3.7. We

first evaluate SMPL and STAR when they are both trained using the CAESAR dataset.

In this evaluation both models are trained on the exact same pose and shape data. Since

they both share the same topology and kinematic tree, differences in the fitting results

are solely due to the different formulation of the two models. In Figure 3.7, STAR

uniformly generalizes better than SMPL on the unseen test subjects. A sample qualitative
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Figure 3.8: Qualitative Evaluation: Comparison between SMPL and STAR. The ground
truth registrations are shown in blue, the corresponding SMPL model fit meshes are
shown in brown and STAR fits are shown in white. Here, both STAR and SMPL are
trained on the CAESAR database.

comparison between SMPL and STAR fits is shown in Figure 3.8.

3.3.3 Extended Training Data

The CAESAR dataset is limited in its diversity, consequently limiting model general-

ization. Consequently, we extend the shape training database to include the SizeUSA

database [54]. SizeUSA contains low quality scans of 2845 male and 6434 females with

ages varying between 18 to 66+; a sample of the SizeUSA bodies compared to the CAE-
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SAR bodies are shown in Figure 3.9a and Figure 3.9b. We evaluate the generalization

power of models trained separately on CEASER and SizeUSA. We do so by comput-

ing the percentage of explained variance of the SizeUSA subjects given a shape space

trained on the CAESAR subjects, and vice versa. The results are shown in Figure 3.9 for

the female subjects. The key insight from this experiment is that a shape space trained

on a single data set was not sufficient to explain the variance in the other data set. This

suggests that training on both datasets should improve the model shape space expressive-

ness.

We retrain train both STAR and SMPL on the combined CAESAR and SizeUSA

datasets and evaluate the model generalization on the held out test set as a function of the

number of shape coefficient used as shown in Figure 3.7. Training on both CAESAR and

SizeUSA results in both SMPL and STAR generalizing better than when trained only on

CAESAR. We further note that STAR still uniformly generalizes better than SMPL when

both models are trained on the combined CAESAR and SizeUSA dataset. Importantly

STAR is more accurate than SMPL despite the fact that uses many fewer parameters. Fi-

nally we extend the pose-corrective blendshapes of STAR to be conditioned on both body

pose and body shape and evaluate the model on the held out set. This results in a further

improvement in the model generalization accuracy that, while modest, is consistent.

Explained Variance. Figure 3.10 shows the percentage of explained variance for male

and female subjects, for shape spaces trained on CAESAR subjects only, on SizeUSA

subjects only, or jointly on SizeUSA and CAESAR subjects. Figure 3.10 highlights that

a shape space trained on a single dataset is insufficient to explain the variance in body

shape for the other data set subjects. This emphasizes that the data is not redundant. Only

a shape space trained on both data sets is sufficient to explain the variance in body shapes

across both datasets. This observation is consistent for both male and female subjects.
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(a) Sample Females: CAESAR (b) Sample Females: SizeUSA

(c) Shape Space Trained on SizeUSA (d) Shape Space Trained on CAESAR

Figure 3.9: Explained Variance: The percentage of explained variance of SizeUSA and
CAESAR subjects when shape space is trained on SizeUSA is shown in Figure 3.9c and
when the shape space is trained on CAESAR subjects in Figure 3.9d.

Figure 3.11 highlights the most poorly reconstructed body shapes from both CAESAR

and SizeUSA when reconstructed using a shape space trained on the other dataset. The

SizeUSA dataset contains extremely obese male subjects, which are poorly reconstructed

under a CAESAR shape space, as shown in Figure 3.11c. The CAESAR female shape

space is biased to a sport’s bra chest shape, hence fails to accurately reconstructs the

SizeUSA females chest shapes as shown in Figure 3.11d.

3.4 Discussion

STAR has 93 pose-corrective blendshapes compared to 207 in SMPL and is 80% smaller

than SMPL. It is surprising that it is able to uniformly perform better than SMPL when

trained on the same data. This highlights the fact that the local and sparse assumptions
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(a) (b) (c)

(d) (e) (f)

Figure 3.10: Percentage of explained variance: Figure highlighting the percentage of
explained variance of SizeUSA and CAESAR subjects when reconstructed by a shape
space trained on CAESAR subjects (left column), SizeUSA subjects (middle column)
and both SizeUSA and CAESAR subjects (right column). Top row is for male subjects
and bottom row is female subjects. A shape space trained on either dataset is insufficient
to explain the variance in the other dataset; this is consistent for both male and female
subjects. Only a shape space trained on the combined male and female subjects was able
to adequately explain the variance for both populations.

of the pose-corrective blendshapes is indeed realistic a priori knowledge that should be

incorporated in any body model. Importantly, having fewer parameters means that STAR

is less likely to overfit, even though our non-linear model makes training more difficult.

For SMPL, the authors report that enforcing sparsity of the pose-corrective blend-

shapes results in worse results than SMPL. We adopt a different approach, where for

each body joint we learn the sparse set of model vertices influenced by the joint move-

ment. The key strength of our approach is that it is data driven.

We are able to learn spatially local and sparse joint support regions due to two key

implementation details: The initialization of the vertex weight A j with the normalized
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(a) Male CAESAR reconstructed under SizeUSA.
(b) Female CAESAR subjects reconstructed under
SizeUSA.

(c) Male SizeUSA subjects reconstructed under
CAESAR.

(d) Female SizeUSA reconstructed under CAESAR.

Figure 3.11: Reconstruction Error: Subjects with the high reconstruction error. Top
row are the most poorly reconstructed subjects in the CAESAR dataset, with a shape
space trained on SizeUSA. Bottom row are the most poorly reconstructed SizeUSA
subjects under a shape space trained on CAESAR subjects. A CAESAR shape space
is biased towards sport bras and fails to capture the female chest shape in SizeUSA.
SizeUSA includes more obese subjects that are poorly reconstructed under a CAESAR
shape space.

inverse of geodesic distance to a joint. Secondly, the pose-corrective blendshapes for

each joint are regressed from local pose information, corresponding to the joint and its

direct neighbors in the kinematic tree; this is a richer representation than SMPL. These

two factors together with the sparsity inducing L1 norm on the activation weights, act as

an inductive bias to learn a sparse set of vertices that are geodesically local to a joint.

The sparse pose-correctives formulation reduces the number of parameters and regu-

larizes the model, preventing it from learning spurious long range correlations from the

training data. Since each vertex is only influenced by a limited number of joints in the

kinematic tree, the gradients propagated through the model are sparse and the derivative

of a vertex with respect to a geodesically distant joint is 0, which is not the case in SMPL.
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3.5 Conclusion

We have introduced STAR, which has fewer parameters than SMPL yet is more accurate

and generalizes better to unseen bodies when trained on the same data. Our key insight

is that human pose deformation is local and sparse. While this observation is not new,

our formulation is. We define a non-linear (ReLU) activation function for each joint and

train the model from data to estimate both the linear corrective pose blendshapes and the

activation region on the mesh that these joints influence. We kept what is popular with

SMPL while improving on it in every sense. STAR has only 20% of the pose-corrective

parameters of SMPL. Our training method and localized model fixes a key problem of

SMPL– the spurious, long-range, correlations that result in non-local deformations. Such

artifacts make SMPL unappealing for animators. Moreover, we show that, while SMPL

is trained from thousands of scans, human bodies are more varied than the CAESAR

dataset. More training scans results in a better model. Finally we make pose-corrective

blendshapes depend on body shape, producing more realistic deformations. We make

STAR available for research with 300 shape principal components. It can be swapped in

for SMPL in any existing application since the pose and shape parameterization is the

same to the user.

STAR presents an improved formulation over SMPL, but does not represent expres-

sive faces and articulated hands, crucial for depicting emotions and gestures. Employ-

ing STAR’s framework for developing head and hand models, similar to MANO and

FLAME, would result in inheriting their limitations, notably in capturing the full range

of motion of the head and hands. How, then, can we create models that retain STAR’s

strengths but accurately track the range of movements of the head and hands? This ques-

tion guides our exploration in the following chapter.
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Chapter 4

Federated Training

4.1 Introduction

Generative 3D models of the human body and its parts play an important role in under-

standing human behaviour. Over the past two decades, numerous 3D models of the body

[101, 10, 62, 102, 103, 33, 38, 104, 105], face [73, 74, 69, 1, 75, 76, 77, 78] and hands

[106, 107, 108, 2, 109, 110] have been proposed. Such models enabled a myriad of appli-

cations ranging from reconstructing bodies [17, 18, 19], faces [111, 112, 113], and hands

[114, 115] from images and videos, modeling human interactions [20], generating 3D

clothed humans [21, 22, 23, 24, 25, 26, 27], or generating humans in scenes [28, 29, 30].

They are also used as priors for fitting models to a wide range of sensory input measure-

ments like motion capture markers [92, 6] or IMUs [116, 89, 90].

Hand [2, 117, 109, 15], head [69, 1, 15] and body [33, 38] models are typically built

independently. Heads and hands are captured with a 3D scanner in which a subject

remains static, while the face and hands are articulated. This data is unnatural as it

does not capture how the body parts move together with the body. As a consequence,
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Registration Model Fit Error Heatmap

FLAME

MANO

1 cm

0

Figure 4.1: Body Part Models Failure Cases: Left: Existing body part models such
as the FLAME [1] head model and the MANO [2] hand model fail to capture the corre-
sponding body part’s shape through the full range of motion. Fitting FLAME to a subject
looking left results in significant error in the neck region. Similarly, fitting MANO to
hands with a bent wrist, results in significant error at the wrist region.

the construction of head/hand models implicitly assumes a static body, and use simple

kinematic trees that fail to model the head/hand full degrees of freedom. For example, in

Fig. 4.1 we fit the FLAME head model [1] to a pose where the subject is looking to their

left and find that FLAME exhibits a significant error in the neck region. Similarly, we fit

the MANO [2] hand model to a hand pose where the the wrist is fully bent downwards.

MANO fails to capture the wrist deformation that results from the bent wrist. This is

a systematic limitation of existing head/hand models, which can not be addressed by

simply training on more data.
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Figure 4.2: Expressive part-based human body model. SUPR is a factored represen-
tation of the human body that can be separated into a full suite of body part models.

In contrast to the existing approaches, we propose to jointly train the full human body

and body part models together. We first train a new full-body model called SUPR , with

articulated hands and an expressive head using a federated dataset of body, hand and

head scans. This joint learning captures the full range of motion of the body parts along

with the associated deformation. Then, given the learned deformations, we separate the

body model into body part models. To enable separating SUPR into compact individual

body parts we learn a sparse factorization of the pose-corrective blendshapes function as

shown in Fig. 6.3. The factored representation of SUPR enables separating SUPR into

an entire suite of models: SUPR-Head and SUPR-Hand. A body part model is separated

by considering all the joints that influence the set of vertices defined by the body part

template mesh. We show that the learned kinematic tree structure for the head/hand

contains significantly more joints than commonly used by head/hand models. In contrast

to the existing body part models that are learned in isolation of the body, our training

algorithm unifies many disparate prior efforts and results in a suite of models that can

capture the full range of motion of the head and hands.

The training data contains extreme body shapes such as anorexia patients and body-
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builders. All subjects gave informed written consent for participation and the use of their

data. Capture protocols were reviewed by the university of Tübingen ethics board.

We quantitatively compare SUPR and the individual body-part models to existing

models including SMPL-X, GHUM, MANO, and FLAME. We find that SUPR is more

expressive, is more accurate, and generalizes better. In summary, our main contributions

are:

1. A unified framework for learning both expressive body models and a suite of high-

fidelity body part models.

2. SUPR, a sparse expressive and compact body model that generalizes better than

existing expressive human body models.

3. An entire suite of body part models for the head, hand, where the model kinematic

tree and pose deformations are learned instead of being artist defined.

4. The Tensorflow and PyTorch implementations of all the models are publicly avail-

able for research purposes.

4.2 Federated Training Dataset

SUPR is trained on a federated dataset of 3D scans. In total 4 types of scanners are used:

a full body scanner, a hand scanner, a head scanner and a foot scanner. All the scanners

are 4D scanners, capturing high resolution dynamic sequences for each body part. We

additionally leverage datasets that are either publicly available for research purposes or

commercial datasets from private vendors. In this section we describe the scanning setup

for each scanner and describe the external datasets.
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Figure 4.3: Full Body Scanner A 4D full body scanner. The system uses 22 pairs of
stereo cameras, 22 color cameras, and speckle-light projectors. The speckle patterns al-
low accurate stereo reconstruction of 3D shape. This speckle pattern alternates at 120fps
with large white-light LED panels that provide a smooth nearly uniform illumination.
Each frame is a 3D mesh with approximately 150,000 points.

4.2.1 Full Body Scans

Human bodies deform in complex ways as a result of changes in body pose and body

shape. To study and model minimally-clothed human body deformations, we use a 4D

scanner (shown in Fig. 4.3) that captures the full 3D human body shape at 60 frames per

second (fps). The full-body scanner is custom built by 3dMD (Atlanta, GA). The system

uses 22 pairs of stereo cameras, 22 color cameras, and speckle-light projectors. The

speckle patterns allow accurate stereo reconstruction of 3D shape. This speckle pattern

alternates at 120 fps with large white-light LED panels that provide a smooth nearly

uniform illumination. The scanner outputs high resolution meshes with approximately

150,000 vertices. The high resolution meshes in addition to the high frame rate (60 fps)

enable us to model the subtle deformations of the human body. The full body scanner

scanning volume is sufficient to capture poses such as a full leg split by a ballerina, or

sitting and lying down poses. Example full-body training scans are shown in Fig. 4.4
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Figure 4.4: Body Scans: Example scans captured in the full body scanner. The scans
are detailed and high-resolution. Note, however, the hands and the feet are poorly recon-
structed, and the head resolution is not sufficient to capture subtle facial expressions.
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Figure 4.5: Head Scanner: An overview of the head scanner. In contrast to the the full
body scanner, the head scanner has a limited scanning volume which is focused on the
subject head/neck region. The setup is sufficient for high-resolution capture of the human
head including subtle deformation due to facial expression. However, the scanning setup
is limited to capture the full range of motion of the head relative to the body.

4.2.2 Head Scans

The human head exhibits a range of highly dynamic deformations. When we refer to the

head we mean the face, the back of the head including the scalp and the neck. The human

head 3D deformations are due to facial expressions, jaw movement, head movement rel-

ative to the neck and body movement relative to the neck (for example when shrugging).

We use a dedicated head scanner (shown in Fig. 4.5) to complement the full body 4D

scanner. The head scanner has a significantly higher number of cameras focused on the

head region compared to the body scanner in Section 4.2.1. The scanning setup enables

us to capture the subtle facial expressions. We note, however, that the head scanner has

a limited scanning volume making it infeasible to capture the full range of motion of the

human head relative to the body.

Similar to the full body scanner, the head scanner is a 4D scanner capturing high-
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Figure 4.6: Head Scans A sample of the head scans used in training SUPR .

84



4.2 Federated Training Dataset

Figure 4.7: Hand Scans: A sample of the hand scans used to train SUPR .

resolution dynamic sequences. The scanner employs 6 pairs of stereo cameras to com-

pute shape and geometry with the assistance of custom speckle projectors. It also in-

cludes 6 color cameras and white-light panels to capture texture. The data capturing

protocol was designed by experts to capture subtle and extreme facial expressions, full

movement of the jaw, in addition to neck movement poses such as looking up, down to

the left or right. A sample of the head scans are shown in Fig. 4.6

4.2.3 Hand Scans

The reconstructed fingers in full-body scans are typically noisy and poorly reconstructed.

To better capture the hands, we use the data from the MANO hand model [2]. These

hand scans are used to learn the pose corrective blendshapes due to finger articulation. A

sample of the captured hand scans is shown in Fig. 4.7.

85



Chapter 4 Federated Training

4.3 Model

We describe the formulation of SUPR in Section 4.3.1, followed by how we separate

SUPR into body parts models in Section 4.3.2.

SMPL-X SUPR

Figure 4.8: SUPR Kinematic Tree: The kinematic tree of SUPR . The green sphere is
the model root joint, the red spheres are spherical joints.

4.3.1 SUPR

SUPR is a vertex-based 3D model with linear blend skinning (LBS) and learned blend-

shapes. The blendshapes are decomposed into 3 types: Shape Blendshapes to capture the

subject identity, Pose-Corrective Blendshapes to correct for the widely-known LBS arti-

facts, and Expression Blendshapes to model facial expressions. The SUPR mesh topol-

ogy and kinematic tree are based on the SMPL-X topology. The template mesh T N⇥3

contains N = 10,475 vertices and K = 75 joints. The SUPR kinematic tree is shown in

Fig. 4.8. In contrast to existing body models, the SUPR kinematic tree contains sig-
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nificantly more joints in the foot, ankle and toes as shown in Fig. 4.8. Following the

notation of SMPL, SUPR is defined by a function M(~q ,~b ,~y), where ~q 2 R75⇥3 are the

pose parameters corresponding to the individual bone rotations, ~b 2 R300 are the shape

parameters corresponding to the subject identity, ~y 2R100 are the expression parameters

controlling facial expressions. Formally, SUPR is defined as

M(~q ,~b ,~y) =W (Tp(~q ,~b ,~y),J(~b ),~q ;W), (4.1)

where the 3D body, Tp(~q ,~b ,~y), is transformed around the joints J by the linear-blend-

skinning function W (.), parameterized by the skinning weights W 2 R10475⇥75. The

cumulative corrective blendshapes term are defined as

Tp(~q ,~b ,~y) = T +BS(~b ;S)+BP(~q ;~K,A)+BE(~y;E), (4.2)

where T 2 R10475⇥3 is the template of the mean body shape, which is deformed by:

BS(~b ;S), the shape blendshape function capturing a PCA space of body shapes; BP(~q ;~K,A),

the pose-corrective blendshapes based on STAR formulation introduced in Chapter 3,

that address the LBS artifacts; and BE(~y;E), a PCA space of facial expressions.

Sparse Pose Blendshapes

In order to separate SUPR into body parts, each joint should strictly influence a subset

of the template vertices T . To this end, we base the pose-corrective blendshapes Bp(.)

in Eq. (4.2) on the STAR model discussed in chapter 3. The pose-corrective blendshape

function is factored into per-joint pose-corrective blendshape functions

BP(~q,K,A) =
K�1

Â
j=1

B j
P(~qne( j);K j;A j), (4.3)
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where the pose-corrective blendshapes are sum of K � 1 sparse spatially-local pose-

corrective blend-shape functions. Each joint-based corrective blendshape B j
P(.), predicts

corrective offsets for a sparse set of the model vertices, defined by the learned joint acti-

vation weights A j 2 R10475. Each A j is a sparse vector defining the sparse set of vertices

influenced by the jth joint blendshape B j
p(.). The joint corrective blendshape function

is conditioned on the normalized unit quaternions ~qne( j) of the jth joint’s direct neigh-

bouring joints’ pose parameters. We note that the SUPR pose blend-shape formulation

in Eq. (4.3) is not conditioned on body shape, unlike STAR, since the additional body-

shape blendshape is not sparse and, hence, can not be factored into body parts. Since

the skinning weights in Eq. (4.1) and the pose-corrective blend-shape formulation in

Eq. (4.3) are sparse, each vertex in the model is related to a small subset of the model

joints. This sparse formulation of the pose space is key to separating the model into

compact body part models.

4.3.2 Body Part Models

In traditional body part models like FLAME and MANO, the kinematic tree is designed

by an artist and the models are learned in isolation of the body. In contrast, here the pose-

corrective blendshapes of the hand (SUPR-Hand) and head (SUPR-Head) are trained

jointly with the body on a federated dataset. The kinematic tree of each part model

is inferred from SUPR rather than being artist defined. To separate a body part, we

first define the subset of mesh vertices of the body part T bp from the SUPR template

T bp 2 T . Since the learned SUPR skinning weights and pose-corrective blendshapes are

strictly sparse, any subset of the model vertices T bp is strictly influenced by a subset of

the model joints. More formally, a joint ~j is deemed to influence a body part defined by
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Figure 4.9: Separated Body Part Models: The kinematic tree of the separated body
parts. The top row compares the kinematic tree of SUPR-Head and Flame. The bottom
row compares the kinematic tree of SUPR-Hand and MANO. The green sphere is a
model root joint, the red spheres are spherical joints. Note that the SUPR-Head and
SUPR-Hand have substantially more joints compared to Flame and MANO.

the template T bp if:

I
�
Tbp,~j

�
=

8
>><

>>:

1 if ÂW
�
T bp,~j

�
6= 0 or ÂA j

�
T bp

�
6= 0

0 othewise,
(4.4)

where I(., .) is an indicator function, W
�
T bp,~j

�
is a subset of the SUPR learned skin-

ning weights matrix, where the rows are defined by the vertices of T bp, the columns

correspond to the jth joint, ~j, A j(T bp) corresponds to the learned activation for the jth

joint and the rows defined by vertices T bp. The indicator function I returns 1 if a joint ~j

has non-zero skinning weights or a non-zero activation for the vertices defined by T bp.

Therefore the set of joints Jbp that influences the template T bp is defined by:

Jbp =
n
I(T bp, j) = 1 8 j 2 {1, . . . ,K}

o
. (4.5)
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The kinematic tree defined for the body part models in Eq. (4.5) is implicitly defined by

the learned skinning weights W and the per joint activation weights A j. The resulting

kinematic tree of the separated models is shown in Fig. 4.9. Surprisingly, the head is

influenced by substantially more joints than in the artist-designed kinematic tree used

in FLAME. Similarly, SUPR-Hand has an additional wrist joint compared to MANO.

We note here that the additional joints in SUPR-Head and SUPR-Hand are outside the

head/hand mesh. The additional joints for the head and the hand are beyond the scanning

volume of a body part head/hand scanner. This means that it is not possible to learn the

influence of the shoulder and spine joints on the neck from head scans alone.

The skinning weights for a separated body are defined by Wbp = W
�
T bp,Jbp

�
, where

W
�
T bp,Jbp

�
is the subset of the SUPR skinning weights defined by the rows correspond-

ing to the vertices of T bp and the columns defined by Jbp. Similarly, the pose corrective

blendshapes are defined by Bbp =Bp
�
T bp,Jbp

�
where Bp

�
T bp,Jbp

�
corresponds to a sub-

set of SUPR pose blendshapes defined by the vertices of T bp and the quaternion features

for the set of joints Jbp. The skinning weights Wbp and blendshapes Bbp are based on

the SUPR learned blendshapes and skinning weights, which are trained on a federated

dataset that explores each body part’s full range of motion relative to the body. We ad-

ditionally train a joint regressor Jbp, to regress the joints Jbp : T bp ! Jbp. We learn a

local body part shape space BS(~bbp;Sbp), where Sbp represents the body part PCA shape

components. For the head, we use the SUPR learned expression space BE(y;E).

4.4 Constrained SUPR

The SUPR kinematic tree introduced in Section 4.3 is based on spherical joints. Each

spherical joint j is parameterized by ~q j 2 R3. The spherical joints allow redundant de-
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SUPRConstrained SUPR

Figure 4.10: Constrained SUPR Kinematic Tree: SUPR is based on spherical joints
which allow redundant degrees of freedom for body parts such as the fingers. The con-
strained SUPR kinematic tree contains a mixture of joints: Spherical joints (shown in
red), Hinge Joints (shown in beige) and double hinge joints (shown in blue).

grees of freedom for some body parts such as the fingers. For the fingers, for example,

the axes of rotation are not bone-aligned. In order to simply bend a finger we have to

control 3 axis-angle rotations. This is problematic to use by animators and for archi-

tectures that regress hand pose parameters from images. In this section we describe a

constrained version of SUPR that uses hinge/double hinge joints in contrast to spherical

joints.

4.4.1 Constrained Kinematic Tree Formulation

The kinematic tree of the constrained version of SUPR (shown in Fig. 4.10) uses hinge

and double hinge joints. A hinge joint is fully parameterized by an axis of rotation~a 2R3

and a pose parameter ~q 2 R. A double hinge joint is defined by two axes of rotation and

pose parameters ~q 2 R2. The axes of rotation for the hinge and double hinge joints
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are orthogonal to the bone. Therefore, to simply bend a finger in SUPR requires only

controlling or regressing one or two scalars. This compact representation is convenient

for artists and regression tasks and is more anatomically plausible.

Specifically, this version of SUPR is defined by Eq. (4.6):

M(~q ,~b ,~y) =W (Tp(~q ,~b ,~y),J(~b ),AX ,~q ,W), (4.6)

where AX 2 R30⇥3 is the axis matrix for the hinge and double hinge joints. The key dif-

ference between Eq. (4.1) and Equation (4.6) is the bone transformation rotation matrix.

The rotation matrix for a hinge joint is a constrained rotation matrix, which only allows

a single degree of freedom with respect to the rotation axis ~a. A constrained rotation

matrix is defined by:

2

66664

a2
x + cq (1�a2

x) axay(1� cq )+azsq axaz(1� cq )�aysq

axay(1� cq )�azsq a2
y + cq (1�a2

y) ayaz(1� cq )+azsq

axaz(1� cq )+aysq ayaz(1� cq )�axsq a2
z + cq (1�a2

z )

3

77775

where ax, ay, az are the x, y and z coordinates of the axis of rotation ~a. cq and sq are

cos(q) and sin(q) correspondingly.

The constrained version of SUPR only limits the bones’ degrees of freedom, by con-

straining the rotation matrices of the corresponding joints.

4.5 Federated Training

The fundamental insight enabling the segmentation of SUPR into high fidielty body part

models lies in the STAR formulation of the pose-corrective blendshape. This approach

ensures that a singular joint impacts a select group of model vertices, facilitating the
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smooth division of the model into distinct body parts. Each part is influenced by a spe-

cific subset of the SUPR kinematic tree. Furthermore, training with a federated dataset

guarantees that we learn from body part scans that capture the subtle deformations of

individual body parts. This is in addition to the information obtained from full-body

scans, which captures how each body’s parts deform in relation to the entire body. In this

section, we provide a detailed explanation of the federated training process for the SUPR

pose space.

We train SUPR model parameters to minimize reconstruction error on a federated

dataset of hand, head and body scans. The full body dataset meshes are based on the

SUPR template topology. For the head dataset, the meshes is based on a topology that

is a subset of the SUPR full body mesh topology. Likewise, the hand dataset meshes

are based on a topology that is also a subset of the complete SUPR mesh topology. In

this section, we simplify our terminology by referring to datasets and models associated

with the right hand and left hand collectively as hands. All meshes have been aligned to

high-resolution 3D scans [118]. We refer to aligned meshes as registrations.

We train SUPR by minimizing the standard vertex-to-vertex loss between SUPR and

the federated dataset of 3D registrations, because there exists a vertex-to-vertex corre-

spondence between all the dataset and the SUPR mesh topology. Our goal is to train

the SUPR parameters F = {W,J ,K,A} by minimizing the reconstruction error on the

federated datasets. We first train {J ,W,K,A} using our multi-pose federated dataset.

We refer to head registration as V Hi
j corresponding to the jth registration for the

ith subject in the head dataset and the corresponding subset of SUPR (SUPR-Head) is

MHead. Similarly, we refer to the hand registrations VAi
j corresponding to the jth regis-

tration for the ith subject in the hands datasets and the corresponding hand part of SUPR

(SUPR-Hand) is defined as MHand. For the body dataset, we refer to a body registration
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as V i
j corresponding to the jth registration for the ith subject in the body registration

and the corresponding full SUPR model as M. During training, we estimate three type

of parameters: registration specific parameters, subject specific parameters and global

model parameters. The registration specific parameters are the SUPR pose parameters

~q i
j corresponding to the SUPR pose parameters for the ith subject jth registration. The

subject-specific parameters are the personalized template and personalized joints T i and

Ji corresponding to the jth subject subject specific template and subject specific joints.

We train SUPR by iteratively alternating between estimating registration specific param-

eters, subject specific parameters and the model global parameters.

Estimating Pose Parameters For all training registrations, we first estimate the pose

parameters ~q for each registration in the training dataset. We minimize an objective

function consisting of a data term, ED which penalizes the squared Euclidean distance

between the registration vertices and the corresponding model vertices more formally.

ED =

NHead

Â
j=1

||VHi
j �MHead(~q i

j,T
i,Ji)||2 +

NHand

Â
j=1

||VAi
j �MHand(~q i

j,T
i,Ji)||2 +

NBody

Â
j=1

||Vi
j �M(~q i

j,T
i,Ji)||2

where the data term is a federated euclidean loss between the registrations and the

corresponding SUPR part of the model. Nhead is the number of head registrations, Nhand

is the number of hand registrations and Nbody is number of full body registrations. The

data term is minimized with respect to the SUPR parameters ~q i
j.

Estimating Template and Joints For each subject i we further estimate a subject-

specific template and a subject-specific joints. To this end we further minimize the data

term in Eq. 4.5, with respect to each subject template T i and joints Ji. To make the

estimation well behaved, we define a regularization term by making several assumptions.
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A symmetry regularization term, EY , penalizes the left-right asymmetry

EY =
PHead

Â
i=1

lH
��Ji �U

�
Ji���2

+
��T i �U

�
T i���2

+
PBody

Â
i=1

lB
��Ji �U

�
Ji���2

+
��T i �U

�
T i���2

where lH = 10 and lB = 4 , PHead is the total number of subjects in the head dataset,

PBody is the total number of subjects in the full body dataset and where U(T ) finds a

mirror image of vertices T , by flipping across the sagittal plane and swapping symmet-

ric vertices. This term encourages symmetric template meshes and, more importantly,

symmetric joint locations. We note here that the symmetry regularization term is only

used for the head and body, and not for the hands. The final objective of estimating the

template and joints is defined by:

ET = ED +EY (4.7)

where we minimize the objective with respect to the subjects template T i and joints Ji.

Skinning Weights The skinning weights, W , are further refined by minimizing the

federated data term in Eq. 4.5. In addition to the data term, we use a regularization term

defined by:

EW = lp||W �Wprior||2 +ls||W||1, (4.8)

where Wprior is an artist prior. The regularization term regularizes the skinning weights

towards an artist defined prior in addition to L1 sparsity inducing loss. The sparsity of

the skinning weights is crucial such that each joints only influences a sparse set of the

model vertices. The complete objective to train the skinning weights is defined by:
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E = ED +EW (4.9)

where we the optimization free variable is the model skinning weights W .

Pose Corrective Blendshapes Finally, the pose-corrective blendshapes are based on

STAR introduced in chapter 3. We further minimize the federated euclidean loss between

the model and the corresponding registrations. In addition to the data term, we use a

reguarlization with the activation function:

EA = lc||
K�1

Â
i=1

f j(~A j)||1 (4.10)

where lc is 1e � 6, K is the total number of joints, f(.) is the ReLU function, A are the

per-joint activation. The full objective function is defined by:

E = ED +EA (4.11)

where the optimization free variables are the pose corrective blendshapes activation A

and the model pose-corrective blendshapes K.

4.6 Experiments

Our goal is to evaluate the generalization of SUPR and the separated head and hand mod-

els to unseen test subjects. We first evaluate the full SUPR body model against existing

state of the art expressive human body models SMPL-X and GHUM (Section 4.6.1), then

we evaluate the separated SUPR-Head model against existing head models FLAME and

GHUM-Head (Section 4.6.3), and compare the hand model to GHUM-Hand and MANO
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(a) Head Evaluation (b) Hand Evaluation (c) Body Evaluation

Figure 4.11: Quantitative Evaluation: Evaluating the generalization of SUPR and the
separated head and hand models from SUPR against: GHUM-HEAD and FLAME for
the head (Fig. 4.11a), GHUM-HAND and MANO (Fig. 4.11b) and GHUM (Fig. 4.11c).
We report the vertex-to-vertex error (mm) as a function of the number of the shape coef-
ficients used when fitting each model to the test set.

(Section 4.6.2).

4.6.1 Full-Body Evaluation

We use the publicly available 3DBodyTex dataset [100], which includes 100 male and

100 female subjects. We register the GHUM template and the SMPL-X template to

all the scans; note SMPL-X and SUPR share the same mesh topology. We visually

inspected all registered meshes for quality control. Given registered meshes, we fit each

model by minimizing the vertex-to-vertex loss (v2v) between the model surface and the

corresponding registration. The free optimization parameters for all models are the pose

parameters ~q and the shape parameters ~b . Note that, for fair comparison with GHUM,

we only report errors for up to 16 shape components for all models since this is the

maximum in the GHUM release. SUPR includes 300 shape components and using all

of those would reduce the errors significantly. We follow the 3DBodyTex evaluation

protocol and exclude the face and the hands when reporting the mean absolute error
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(a) 3DBodyTex scans.
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Figure 4.12: Body Qualitative Evaluation: We evaluate SUPR on the 3DBodyTex
dataset in Fig. 4.12a against GHUM, SMPL-X and SUPR using 16 shape components.
The corresponding model fits are shown in Fig. 4.12b

(mabs). We report the mean absolute error of each model on both male and female

registrations. For the GHUM model, we use the PCA-based shape and expression space.

We report the model generalization error in Fig. 4.11c and show a qualitative sample of

the model fits in Fig. 4.12b. SUPR uniformly exhibits a lower error than SMPL-X and
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GHUM.

S
ca
ns

M
A
N
O

S
U
P
R
-H
A
N
D

Figure 4.13: Hand Qualitative Evaluation: Evaluation of SUPR-Hand against MANO
using 8 shape components.

4.6.2 Hand Evaluation

We use the publicly available MANO test set [2]. Since both SUPR-Hand and MANO

share the same topology, we used the MANO test registrations provided by the authors

to evaluate both models. To evaluate GHUM-Hand, we register the model to the MANO

test set. We fit all models to the corresponding registrations using a standard v2v loss.

For GHUM-Hand, we fit the model only to the selected hand vertices. The optimization

free variables are the model pose and shape parameters. Fig. 4.11b shows generalization

as a function of the number of shape parameters, where SUPR-Hand uniformly exhibits a
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lower error compared to both MANO and GHUM-Hand. A sample qualitative evaluation

of MANO and SUPR-Hand is shown in Fig. 4.13. In addition to a lower overall fitting

error, SUPR-Hand has a lower error around the wrist region than MANO.
S
ca
ns

FL
A
M
E

S
U
P
R
-H
E
A
D

Figure 4.14: Head Qualitative Evaluation: We evaluate SUPR-Head against FLAME
using 16 shape components

4.6.3 Head Evaluation

The head evaluation test set contains a total of 3 male and 3 female subjects, with se-

quences containing extreme facial expression, jaw movement and neck movement. As

for the full body, we register the GHUM-Head model and the FLAME template to the

test scans, and use these registered meshes for evaluation. For the GHUM-Head model,

we use the linear PCA expression and shape space. We evaluate all models using a
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standard v2v objective, where the optimization free variables are the model pose, shape

parameters, and expression parameters. We use 16 expression parameters when fitting

all models. For GHUM-Head we exclude the internal head geometry (corresponding to

a tongue-like structure) when reporting the v2v error. Fig. 4.11a shows the model gen-

eralization as a function of the number of shape components. We show a sample of the

model fits in Fig. 4.14. FLAME fails to capture head-to-neck rotations plausibly, despite

each featuring a full head mesh including a neck. This is clearly highlighted by the sys-

tematic error around the neck region in Fig. 4.14. In contrast, SUPR-Head captures the

head deformations and the neck deformations plausibly and uniformly generalizes better.

Figure 4.15: A comparison between SUPR and existing body models.

4.7 Model Comparison

SUPR is trained on a federated dataset of head, body and head registrations. As a con-

sequence of the sparse factorization of the pose space, we are able to separate the model

into body part models. A comparison between SUPR and existing body models is shown

in Fig 4.15.
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Model # Pose # Joints # Blendshapes
SUPR 225 75 296
SMPL-X [16] 165 55 486
GHUM [15] 124 63 -

Table 4.1: Body Models Comparison: Comparing existing expressive human body
models according to the number of pose parameters, number of joints and number of
pose corrective blendshapes.

4.7.1 SUPR

SUPR is a compact model that is compatible with the existing gaming and animation

industry standards. The number of parameters of SUPR compared to existing expressive

human body models is summarised in Table 4.1.

Comparison with SMPL-X: SUPR has 30% fewer pose-corrective blendshapes, de-

spite having significantly more joints compared to SMPL-X. This is because of the

Quaternion-based representation, which is significantly more compact compared to the

Rodrigues representation used by SMPL-X. However, despite SUPR ’s compactness, it

uniformly generalizes better than SMPL-X. The shape space of SMPL-X is trained on

the CAESAR dataset [37], while SUPR is trained on 15,000 registrations from both

CAESAR and SizeUSA [54]. The pose space of SMPL-X is trained on 2000 full body

registrations. In contrast, SUPR ’s pose space is trained on a federated dataset of 1.2

million registrations of head, hand and body registrations.

SMPL-X’s pose blendshape formulation is based on SMPL. As a result, SMPL-X

suffers from the same drawbacks of SMPL, namely SMPL-X also learns false long range

spurious correlations; e.g. bending one elbow results in a bulge in the other elbow.

102



4.7 Model Comparison

Comparison with GHUM: The GHUM model [15] pose-space deformation function

(PSD) is modeled by a neural network, which is not compatible with the gaming and ani-

mation industry standards. SUPR ’s learned blendshapes are linearly related to the model

pose parameters, and hence the formulation is fully compatible with the gaming and an-

imation industry standards. While both SUPR and GHUM are trained on a federated

dataset, and the GHUM authors propose a separated suite of models (GHUM-Head and

GHUM-Hand), there are key important differences. The GHUM shape space is trained

only on the CAESAR data (5K subjects), while the SUPR shape space is trained on both

CAESAR and SizeUSA, for a combined total of 15K registrations. On the other hand, the

pose space of GHUM is trained on a dataset of 60K head, hand and body registrations,

while the SUPR pose space is trained on 1.2 million body, head and hand registrations.

The GHUM PSD formulation is a dense non-linear formulation, where all the joints

are related to all the vertices using a VAE [119]. As a result the body pose-space for-

mulation of GHUM can not be separated into compact body parts. To define separate

body part models, the GHUM authors segment the mesh and re-train the PSD function

of the separated parts. The proposed head and hand models for GHUM fail to capture

the full degrees of freedom of the head. SUPR and the separated head/hand models are

jointly trained once. In contrast to GHUM, the SUPR pose-space formulation is strictly

sparse, where each joint only influences a sparse set of the model vertices. As a result,

SUPR can be separated into a suite of compact models. The learned kinematic tree of

SUPR-Head has significantly more joints (neck and shoulders).

4.7.2 SUPR-Head

The SUPR-Head has a pose, shape and expression space. We train 3 head models: fe-

male, male and a gender neutral model. The pose blendshape function is a subset of the
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learned SUPR pose corrective blendshapes, which are also sparse and spatially local. A

comparison between and existing full head models is shown in Table 4.2.

Model # Pose # Joints # Blendshapes
SUPR-Head 29 10 40
FLAME [16] 12 4 36
GHUM-Head [15] 23 10 -

Table 4.2: Head Models Comparison: Comparing existing head models models accord-
ing to the number of pose parameters, number of joints and number of pose corrective
blendshapes.

4.7.3 SUPR-Hand

We train a single gender-neutral SUPR-Hand model. SUPR-Hand has a pose and shape

space. A comparison between SUPR-Hand and existing hand models is shown in Ta-

ble 4.3. In comparison to MANO, SUPR-Hand has an additional wrist joint, which is

necessary to model the hand deformations as a result of the wrist movement. A compar-

ison between SUPR-Hand and existing hand models is shown in Table 4.3.

Model # Pose # Joints # Blendshapes

SUPR-Hand 102 32 120
MANO [16] 90 30 270
GHUM-Hand [15] 18 36 -

Table 4.3: Hand Models Comparison: Comparing existing hand models according to
the number of pose parameters, number of joints and number of pose corrective blend-
shapes.
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4.8 Conclusion

We present a novel training algorithm for jointly learning high-fidelity expressive full-

body and body parts models. We highlight a critical drawback in existing body part

models such as FLAME and MANO, which fail to model the full range of motion of

the head/hand. We identify that the issue stems from the current practice in which body

parts are modeled with a simplified kinematic tree in isolation from the body. Alterna-

tively, we propose a holistic approach where the body and body parts are jointly trained

on a federated dataset that contains the body parts’ full range of motion relative to the

body. We train SUPR with a federated dataset of 1.2 million scans of the body, hands,

and head. The sparse formulation of SUPR enables separating the model into an en-

tire suite of body-part models. Surprisingly, we show that the head and hand models

are influenced by significantly more joints than commonly used in existing models. We

thoroughly compare SUPR and the separated models against SMPL-X, GHUM, MANO

and FLAME and show that the models uniformly generalize better and have a signifi-

cantly lower error when fitting test data. The pose-corrective blendshapes of SUPR and

the separated body part models are linearly related to the kinematic tree pose parame-

ters, therefore our new formulation is fully compatible with the existing animation and

gaming industry standards. A Tensorflow and PyTorch implementation of SUPR and the

separated head (SUPR-Head) and hand (SUPR-Hand) is publicly available for research

purposes. SUPR is compatible with the gaming and animation industry standards.

This chapter presents a comprehensive suite of models dedicated to the body, head,

and hands. Notably, SUPR advances the modeling of the foot by incorporating a greater

number of joints, thereby capturing its entire range of motion. However, the challenge of

training SUPR for the foot lies in the poor foot reconstructions obtained from body scans.

Moreover, since SUPR’s deformation are derived from STAR, it is limited to modeling
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deformations related to body pose, which, although sufficient for modeling general body

deformations, fall short in accurately modelling the deformations of the foot caused by

ground contact. The quest for enhancing the foot model’s fidelity requires exploring

novel data sources and developing formulations that specifically address contact-based

foot deformations. What strategies might we employ to further enhance modeling the

foot? Insights into this question are offered in the next chapter.
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Human Foot Model

5.1 Introduction

The human foot is a complex structure containing muscles, soft tissue and a quarter of

the bones in the skeleton [120, 121]. The evolution of the foot over a period exceeding

1 million years was crucial for enabling locomotion activities associated with an upright

posture, including walking, running, and jumping. [122]. In all existing human body

models [10, 38, 33, 16, 15, 14] the foot kinematic tree is modeled with significantly

fewer joints than in the human foot as shown in Fig. 5.1. In comparison to the human

foot the existing kinematic tree can not model the full range of motion of the human

foot bones, such as toe articulation. The movement of the toes is critical for human lo-

comotion and balancing. The simplistic modeling of the human foot in existing models

limits their application in Biomechanicas and Physics-based modeling of human loco-

motion. Displicines such as Biomechanicas research require a more faithful modeling of

the human foot.

The human foot deformations are distinctly different from the rest of the human body.
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Human Foot Foot in existing body models

Figure 5.1: Human Foot Kinematic Tree: The human foot is a complex structure con-
taining joints, bones, muscles and soft tissue. Each human foot contains more than 30
joints, 26 bones and more than 100 muscles (as shown on the right), however existing
body models such as SMPL and SMPL-X use only two joints for the foot (as shown on
the left).

This is because, the human foot is in frequent contact with the ground as we walk and

move. The deformations due to contact are correlated with foot shape (over weight

subjects have more soft-tissue on the foot, which deforms with scene contact), foot pose

and scene contact. All existing body deformations are related to the bone rotations/body

pose (such as SMPL [33] and SMPL-X [16]), or body pose, shape (such as in STAR

[38]). The existing formulations completely ignore the body interaction with the scene.

This simplified approach is typically satisfactory for the remaining regions of the body,

but it is suboptimal for the human foot, which maintains nearly continuous contact with

the surrounding environment.
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Figure 5.2: Foot in Full Body Scans: Human foot is typically poorly reconstructed in
a full body scanner. The foot region is low resolution compared to the rest of the body,
due to the limited number of cameras focused on the foot. The individual toes are often
merged in the scans and the scans are often corrupted by noise and missing toes. The
foot sole is not captured, since it is invisible to the cameras.

(a) Foot model. (b) A Scan from the DynaMo system.

Figure 5.3: DynaMo System: Bopanna et al. [3] foot model based on Principal Compo-
nent Analysis shown in Fig. 5.3a. The model is trained on dynamic foot scans captured
by the DynaMo system in Fig. 5.3b. The scans and the model do not contain toes or a
foot sole.

109



Chapter 5 Human Foot Model

5.2 Problem Statement

There are two primary challenges that must be addressed when modeling the human

foot. First, there is the issue of under articulation, which affects the ability to accurately

represent the intricate movements of the foot. Second, accurately modeling the contact

deformations between the human foot and the surrounding scene presents another sig-

nificant challenge. A major obstacle in achieving more precise human body models is

the lack of available data. In human body scans, the foot is often poorly reconstructed

compared to the rest of the body, as depicted in Fig. 5.2. Capturing the human foot in

motion is particularly challenging with current scanning solutions, as shown in Fig. 5.3,

where the scans are noisy and the foot sole is poorly reconstructed. Previous setups

for capturing feet only allow for static poses, thereby limiting the representation of foot

shape variations. In full body scans, the foot sole is typically occluded and inadequately

reconstructed due to the limited number of cameras focused on the foot.

5.3 Foot Scanner

To enable capturing the full range of the human foot deformations, we use a custom

built scanner designed for the foot. The scanner is designed to be mechanically stable to

capture dynamic poses such as walking, running or jumping. The output scans are high

resolution and can capture the movement of the toes. The scanner floor is a transparent

glass platform (which can support subjects up to 150 kg), which enables us to capture

the foot sole deformation due to ground contact.

An overview of the foot scanner is shown in Figure 5.4. The scanner setup features

a runway for the subjects to run or walk. In Figure 5.4b, we show raw scanner images,

where the foot is visible from all views, including the foot sole. The scanner uses 10
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(a) Scanner setup

(b) Raw scanner images

Figure 5.4: Overview of the Foot Scanner: A 3dMD foot scanner using 10 pairs of
stereo cameras (Fig. 5.4a), including dedicated cameras capturing the bottom of the foot
through a transparent glass platform(Fig. 5.4b). The scanner features a runway to capture
dynamic sequences such as walking.

pairs of stereo cameras, including dedicated cameras capturing the bottom of the foot.

The frame rate of the scanner is 10 fps. The output scans contain on average 30,000

points.
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Figure 5.5: Foot Scans: A sample of the foot scans. The foot is fully reconstructed
including the toes and the foot sole.

Data Capture Protocol

We capture a total of 30 subjects, 15 female and 15 male subjects with a total of 70,000

scans. The data capture protocol is designed by experts to explore the space of human

foot deformations. The capture protocol is divided into two main parts: 1) Non-Contact
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sequences, and 2) Contact Sequences. In the non-contact sequences, the subject foot

is not in contact with the glass platform. The data capture protocol for such sequences

is designed to explore the degrees of freedom of the toes and the ankle. In the contact

sequences, the subject’s foot is partially or in full contact with the glass platform. The

contact sequences include motions such as walking/running and jumping. In total we

capture 356 dynamic sequences. An overview of the captured scans is shown in Fig-

ure 5.5

(a) Cropped Foot from full body scans

(b) High resolution Foot Scans

Figure 5.6: Scans Comparison: Comparing reconstructed Foot from a full body scanner
(Fig. 5.6a) with curated high resolution foot scans (Fig. 5.6b). We curate a total of
7,000 high-resolution foot scans. The curated scans have 10x the resolution of foot
scans captured in a body scanner and preserve the individual toe geometry.
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Foot Shape Scans

The 30 subjects captured in the dynamic foot scanner do not represent the diversity of

human foot shape. Accurate modeling of the human foot shape is crucial for the footwear

industry. The Foot in the CAESAR and SizeUSA scans, shown in Figure 5.6a, are noisy,

missing, and are not good enough to learn a statistical shape model. To accurately model

the diversity of the human foot shapes, we acquired an additional 7,000 high resolu-

tion foot scans from the ANSUR-II database collected by the United States army [55].

Figure 5.6 compares the curated high resolution foot scans in comparison to CAESAR

and SizeUSA foot scans. In contrast to CAESAR and SizeUSA, the curated dataset of

foot scans is significantly less noisy, with, on average, 10x the resolution of a foot scans

from CAESAR/SizeUSA. The high resolution foot scans preserve the 3D geometry of

the individual toes. We use this data in learning the the local shape space of SUPR-Foot.

5.4 Model Formulation

SUPR-Foot is a vertex-based 3D model with linear blend skinning (LBS) and learned

blendshapes. The blendshapes are decomposed into 3 types: Shape blendshapes to cap-

ture the subject identity, Pose-Corrective blendshapes to correct for the widely-known

LBS artifacts. To obtain an initial foot model, we further include a dataset of foot scans

not in contact with the ground to SUPR introduced in Chapter 4, then separated the foot

model. As result, the SUPR-Foot mesh topology and kinematic tree are based on Foot

of the SUPR model topology. The template mesh contains N = 267 vertices and K = 12

joints. The SUPR-Foot kinematic tree is shown in Figure 5.7. We note, in contrast to

existing body models like SMPL and SMPL-X, the SUPR-Foot kinematic tree contains

significantly more joints in the foot, ankle and toes. Following the notation of SUPR,
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Figure 5.7: Foot Kinematic Tree: The kinematic tree of the Foot Model SUPR-Foot
model for the right and left foot. The green sphere is the model root joint, and the red
spheres are spherical joints.

SUPR-Foot is defined by a function M(~q ,~b ), where ~q 2 R12⇥3 are the pose parame-

ters corresponding to the individual bone rotations, ~b 2 R100 are the shape parameters.

Formally, SUPR-Foot is defined as

M(~q ,~b ) =W (Tp(~q ,~b ),J(~b ),~q ;W), (5.1)

where the template mesh, Tp(~q ,~b ), is transformed around the joints J by the linear-

blend-skinning function W (.), parameterized by the skinning weights W 2R267⇥12. The

cumulative corrective blendshapes term is defined as

Tp(~q ,~b ) = T +BS(~b ;S)+BP(~q ;P) (5.2)
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Figure 5.8: Foot Shape Space: Visualizing the first 6 principal components of the foot
shape space learned from high resolution 3D scans. Upper row is 4 standard deviations
from the mean, and the bottom row is �4 standard deviation from the mean. The first
principal components (starting from the left) capture variations in the overall foot shape,
while later principle components capture variations in the toe appearance

While the separated foot from SUPR have sufficient joints to capture the foot full range

of articulation, the formulation still only relates the deformation of the foot to body pose,

which is insufficient to model the foot deformation due to ground contact. We train the

separated foot, SUPR-Foot shape space on the ANSUR-II dataset. The shape space of

SUPR-Foot is shown in Fig. 5.8.

5.4.1 Foot deformation Network

The foot body part model, separated from SUPR , is defined by the pose parameters

~q f oot 2 ~q , corresponding to the ankle and toe pose parameters in addition to ~b f oot ,

the PCA coefficients of the local foot shape space. We extend the pose blendshapes

in Eq. (5.2) to include a deep corrective deformation term for the foot vertices defined

by T foot 2 T . With a slight abuse of notation, we will refer to the deformation function

Tp(~q ,~b ) in Eq. (5.2) as Tp for simplicity. The foot deformation function is defined by:

T 0
p(~q ,~b ,~c) = Tp +BF(~qfoot,~bfoot,~c;F), (5.3)
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where BF(.) is a multilayer perceptron-based deformation function parameterized by

F , conditioned on the foot pose parameters ~qfoot, foot shape parameters ~bfoot and foot

contact state ~c. The foot contact state variable is a binary vector ~c 2 {0,1}267 defining

the contact state of each vertex in the foot template mesh, a vertex is represented by a 1

if it is in contact with the ground, and 0 otherwise.

Implementation details. The foot contact deformation network is based on an encoder-

decoder architecture. The input feature, ~f 2R320, to the encoder is a concatenated feature

of the foot pose, shape and contact vector. The foot pose is represented with a normalised

unit quaternion representation, shape is encoded with the first two PCA coefficients of

the local foot shape space. The input feature ~f is encoded into a latent vector~z 2 R16

using fully connected layers with a leaky LReLU as an activation function with a slope

of 0.1 for negative values. The latent embedding~z is decoded to predict deformations for

each vertex using fully connected layers with LReLU activation.

We train a deformation network for each foot separately. Below we describe the net-

work for the right foot. We first introduce the notation we use:

• BP: is the linear pose corrective blendshape.

• BC: are the predicted deformations for the foot related to pose, contact and foot

shape.

• ~c: is a binary vector of which vertices are in contact with the glass platform.

• ~z: is a latent code vector.

• ~q : are the foot pose parameters.

• ~b : are the foot shape parameters.

• ~f : is a concatenated vector of the pose, shape and contact vector.
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• LReLU: leaky rectified linear units with a slope of 0.1 for negative values.

• FCm: fully connected layer with output dimension m.

Feature Representation

The input ~f to the network is a concatenated feature representation of the foot pose, foot

shape and contact. The foot pose representation is based on normalized unit quaternion

representation defined by:

F(~q) = Q(~q)�Q(~q ⇤) (5.4)

where Q(.) : R3 ! R4 is a function computing the quaterion representation of the input

axis angle rotation, q ⇤ is the foot in the rest pose. The feature representation in Equa-

tion (5.4) will evaluate to 0 when the foot is in the rest pose. The foot template mesh

T f oot 2 R267⇥3 is a high dimensional representation to represent the foot shape. We rep-

resent the foot shape using the first two principal components which roughly correspond

to the foot length and foot volume. We experimented with different numbers of coeffi-

cients, and the first two principal components result in the lowest generalization error on

the validation set. The state of foot contact with the scene is represented using~c. More

formally the input feature to our network:

{F(~q),~b1,~b2,~c}
concat���! ~f 2 R320, (5.5)

where ~b1,~b2 are the first two PCA components and the concat operator is a standard

vector concatenation operator.
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5.4.2 Network Architecture

The architecture is an encoder-decoder fully-connected network, with non-linear activa-

tions based on LReLUs. Encoder:

~f 2 R320 ! FC256 !

! FC128 ! FC64 !

! FC32 !~z 2 R16

The dimensionality of the latent code ~z was chosen by grid search. We experimented

with dimensionality 64, 32 and 16. A latent code with dimensionality 16 result in the

lowest generalization error of the validation set. The decoder is described by:

~z 2 R16 ! FC32 !

! FC64 ! FC128 ! FC266 ! BC

where BC is added to the linear blendshape BP as shown in Equation (5.3).

5.5 Evaluation

5.5.1 Model Generalization

We evaluate SUPR-Foot generalization on a test set of held-out subjects. The test set

contains 120 registrations for 5 subjects that explore the foot’s full range of motion, such

as ankle and toe movements. We extract the foot from the SMPL-X body model as a
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(a) Registrations

(b) SMPL-X-Foot

1 cm

0

(c) SUPR-Foot

Figure 5.9: Foot Evaluation: Evaluating SUPR-Foot against SMPL-X-Foot.

baseline and refer to it as SMPL-X-Foot. We register the SUPR-Foot template to the test

scans and fit the SUPR-Foot and SMPL-X-Foot to the registrations using a standard v2v

objective. For SUPR-Foot, the optimization free variables are the model pose and shape

parameters, while for SMPL-X-Foot the optimization free variables are the foot joints

and the SMPL-X shape parameters. We report the models’ generalization as a function

of the number of shape components in Fig. 5.10. A sample of the model fits is shown in

Fig. 5.9. SUPR-Foot better captures the degrees of freedom of the foot, such as moving

the ankle, curling the toes, and contact deformations.

We evaluate SUPR-Foot against SMPL-X-Foot on a held out test set of contact and

non-contact foot scans. We further break down the evaluation in Figure 5.11. We report

the model mean absolute error as a function of the number of shape components used on

non-contact frames in Figure 5.11a and contact frames in Figure 5.11b.
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Figure 5.10: Foot Model Generalization: Evaluating the Generalization of SUPR-Foot
against the SMPL-X Foot on a held out test set of dynamic human foot registrations.
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(a) Non-Contact (b) Contact

Figure 5.11: Foot Qunatative Evaluation: Evaluating SUPR-Foot on frames where the
foot was not in contact with the glass platform shown in Figure 5.11a, and frames where
the foot was partially or fully in contact with the glass platform in Figure 5.11b.

Model Non-Contact
v2v (mm) #

With-Contact
v2v (mm) #

SUPR-Foot lbs 5.235 ±0.126 6.691 ±1.369
SUPR-Foot lbs+l 4.587 ±0.589 5.364 ±1.279
SUPR-Foot lbs+l+ f (q) 2.982 ±0.859 4.129 ±1.883
SUPR-Foot lbs+l+ f (q ,b ) 2.910 ±0.728 3.934 ±1.819
SUPR-Foot (ours) 2.753 ±0.821 3.122 ±1.462

Table 5.1: Foot Deformation Ablation Study. SUPR-Foot lbs corresponds to model with
linear blend skinning, no additive correctives used. SUPR-Foot lbs+l corresponds to lbs in
addition to the linear correctives, SUPR-Foot lbs+l+ f (q) adds the non-linear deformation
where the network is conditioned on pose only, SUPR-Foot lbs+l+ f (q ,~b ) the network
conditioned on pose and shape information, while SUPR-Foot is the full model.
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Deformation function: A key contribution of our work is introducing a novel defor-

mation function that relates the foot deformations to the foot pose, shape and ground

contact. We illustrate the influence of each term on the model generalization by ab-

lating the foot deformation network. We retain variations of the deformation network

from scratch and refit each model to the test set. We report the model v2v error in Ta-

ble. 5.1. The result clearly shows the vertex to vertex error decreasing on the held out

test set when adding each term in the foot deformation function across both the contact

and non-contact frames.

(a) Raw Scanner Images

(b) SUPR-Foot predicted deformations

Figure 5.12: Dynamic Evaluation: Evaluating the SUPR-Foot predicted deformations
on a dynamic sequence where the subject leans backward and forward, effectively shift-
ing their center of mass.

5.5.2 Dynamic Evaluation

We further evaluate the foot deformation network on a dynamic sequence shown in

Fig. 5.12. Fig. 5.12a shows raw scanner footage of a subject performing a body rocking
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movement, where they lean forward then backward effectively changing the body center

of mass. We visualise the corresponding SUPR-Foot fits and a heat map of the mag-

nitude of predicted deformations in Fig. 5.12b. When the subject is leaning backward

and the center of mass is directly above the ankle, the soft tissue at heel region of the

foot deforms due to contact. The SUPR-Foot network predicts significant deformations

localised around the heel region compared to the rest of the foot. However, when the

subject leans forward the center of mass is above the toes, consequently the soft tissue at

the heel is less compressed. The SUPR-Foot predicted deformations shift from the heel

towards the front of the foot.

5.6 Conclusion

The human foot plays a vital role in numerous applications and industries. In this chapter,

we introduced SUPR-Foot, a novel articulated model of the human foot with learned con-

tact deformations. The development of SUPR-Foot was made possible through several

significant contributions. Firstly, we used a custom-built Foot scanner specifically de-

signed for capturing the foot, especially during moments of contact with the surrounding

scene. Furthermore, by training a contact deformation network using the captured data,

we were able to effectively model the foot’s deformations during contact. SUPR-Foot is

publicly available for research purposes.

Throughout this thesis, we have presented a comprehensive array of body and body-

part-specific models designed for use by artists and animators. The development of these

models requires extensive datasets and the expertise of a specialist in their training. Mod-

ifying these models to adapt to new datasets requires substantial proficiency in machine

learning and computer graphics, expertise that may exceed the capabilities of most artists
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and animators. This highlights a significant gap: How can artists, with limited resources,

train a model using their own datasets? Addressing this question is the focus of the

following chapter.

125





Chapter 6

AVATAR

“ That’s what we storytellers do. We restore order with imagination. We instill hope

again and again and again.”

Walt Disney

Game engines have revolutionized storytelling [123, 124], a potent medium for ex-

pressing intricate ideas and emotions [125, 126, 127, 128]. By leveraging their sophisti-

cated rendering [129] and interactivity features, these engines craft immersive narratives

that significantly enhance audience engagement. Realistic digital characters [130, 131,

132] are a key pillar in these narratives because they deepen the experience of story-

telling, providing audiences with relatable figures to connect with. Currently, the indus-

try standard for generating realistic digital character is based on a labor-intensive digi-

tal sculpting process [133, 134, 135, 136, 137, 138]. Frequently, this entails numerous

months of time consuming labor by skilled artists for sculpting the character deforma-

tions corresponding to the character’s body pose and anatomical details. The sculpting

framework, although granting artists the complete creative control over the character, it

is labor-intensive, not scalable, and remains limited by the artist’s level of expertise.
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(a) Registration (b) SMPL fit (c) Pose deformations (d) Shape deformations

Figure 6.1: SMPL Deformations: We fit SMPL to a registration(Fig. 6.1a) from Hasler
et al. [4], and show the SMPL fit (Fig. 6.1b), and the corresponding predicted SMPL pose
dependent deformation (Fig. 6.1c) and the predicted SMPL shape dependent deformation
(Fig. 6.1d). SMPL fails to model the deformations in the abdominal, chest and hips
regions of the subject.

Statistical body models trained on human scans emerged as a scalable alternative to

constructing virtual humans [10, 4, 33, 104, 14, 16, 139, 38, 140]. Although numerous

models have been proposed, SMPL [33] is the most widely used human body model by

the computer vision and graphics communities. A substantial body of literature and

the corresponding open source tools built on SMPL exist, each streamlining numer-

ous time-consuming tasks for artists and animators, such as animating SMPL by textual

prompts [141, 142, 143, 144], estimating the pose and shape parameters of SMPL from

images and videos [145, 146, 147, 21, 95, 148, 149, 150, 151, 18, 152, 153, 154, 155,

156, 157], automated placement of SMPL in 3D scenes [158, 159, 160, 161, 162, 163],

SMPL-based motion capture datasets [6, 164, 165, 166] and automated construction of

3D scenes conditioned on the parameters of SMPL [167, 168]. Additionally, the SMPL

formulation is fully compatible with the standards of the gaming and animation industry,

where multiple plug-ins exist to insert SMPL into game engines such as Unity, Unreal,

and Blender. This synergy of the available SMPL-based tools and game engine compat-

ibility has the potential to empower artists and animators to focus more on the nuanced

and creative aspects of characters and game design. However, there are significant draw-
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backs in the deformations predicted by SMPL, which restricts its practical utility.

SMPL uses two key functions, to predict deformations related to the subject body pose

and body shape. The SMPL predicted deformation fails to preserve the subject identity

and pose deformations. In Fig. 6.1, we fit SMPL with 10 shape parameters, to a 3D

registration from the publicly available Hasler et al. [4] dataset and visualize the corre-

sponding SMPL fit and predicted deformations. The SMPL fit (Fig. 6.1b) captures the

overall coarse body geometry of the groundtruth registration (Fig. 6.1a), yet the defor-

mations are smooth and fail to preserve the subject’s identity and the rich deformations

in the subject’s hip, chest, and abdominal regions.

The smooth deformation is because SMPL is trained on a multiple identity training

dataset, and hence it learns average smooth deformations of the training subjects. Re-

training SMPL on a single subject scan can improve the model’s deformation realism.

However, SMPL has a large number of parameters (4.2 ⇥ 106), which makes it easily

prone to overfitting to small scale datasets. The large number of parameters is due to the

pose corrective blendshape function which predicts the pose-dependent deformations of

the model. In Fig. 6.2 we retrain SMPL on a single training registration for the subject in

Fig. 6.1, and evaluate on the held out registration shown in Fig. 6.1a. The corresponding

SMPL fit in Fig. 6.2a better captures the subject’s identity compared to SMPL, however,

the model suffers from clearly visible artifacts on the elbow, hip and knees. Currently,

there are no existing methods to create engine-ready personalized mesh based body mod-

els that is data efficient and can be used by users with no background in machine learning

such as artists. This is precisely the gap we address.

For a single subject, obtaining a large number of scans is challenging, as most on-

line stores have a limited number of scans for a single subject [5], which makes train-

ing SMPL based models challenging. To this end, we introduce AVATAR (Articulated
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(a) Retrained SMPL

(b) AVATAR

Figure 6.2: Retraining SMPL: We fit SMPL to a registration(Fig. 6.1a) from Hasler et
al. [4], and show the SMPL fit (Fig. 6.2a), and the corresponding AVATAR fit 6.2b.
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Figure 6.3: AVATAR: is a data efficient training algorithm to learn personalized human
body models from a single scan. Given a single scan downloaded from an online store [5]
and registered to the SMPL mesh, we are able to learn a game engine ready human body
model (on the right). The learned model can be seamlessly inserted in Blender using the
publicly available SMPL Blender plug-in.

Virtual humAns Trained by BAyesian infeRence from a Single Scan), a data efficient

training algorithms for learning personalized models based on SMPL from a single scan.

Our key insight is all existing training algorithms optimize for a single point estimate of

the model parameters, which best explains the training data, which makes learning prone

to overfitting. Instead, we formulate character learning as a Bayesian inference prob-

lem, where we use a prior distribution of possible model parameters and reason about

a distribution of possible parameters which fits the training data, instead of single point

estimate. Additionally, to learn the detailed subject shape, we perform a parameter-free

optimization to optimize for a subject specific body shape and joint location which are

reguarlized to a symmetric prior to reduce the risk of overfitting. We train a model using

AVATAR trained on a single scan and show the corresponding fit in Fig. 6.2b, compared

to SMPL fit in Fig. 6.2a, the AVATAR based model captures the subject identity and

rich deformation on the chest, abdominal region, and hips. AVATAR is an automated

algorithm that does not require fine-tuning or user intervention and can be used by artists

without requiring a background in machine learning to train a model from a single scan,

which can be imported into a game engine, as shown in Fig. 6.3.
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We note the characters trained in this chapter are based on the SMPL formulation

with all its widely known drawbacks, as discussed in Chapter 3. However, the principles

introduced in this chapter are independent of a specific representation and can be used

to train models based on any linear blend skinning formulation such as SMPL-X, STAR

and SUPR.

We evaluate the characters trained using AVATAR, and show that AVATAR characters

can generalize better than SMPL on a held out test set given a single training registra-

tion. Characters trained with AVATAR better capture intricate subject-specific deforma-

tions influenced by both body shape and pose. We evaluate AVATAR characters against

retrained personalized SMPL models, and highlight that SMPL is prone to overfitting.

Furthermore, we animate an AVATAR character using a motion capture sequence from

the AMASS dataset [6], and highlight the AVATAR deformation fidelity compared to

SMPL. To summarize AVATAR key contributions:

1. We introduce a training algorithm to learn SMPL based personalized models, from

a single scan.

2. We pose model training as a Bayesian inference problem, which is key to robustify

the training even from a single scan.

The rest of the chapter is organized as follows: Sec. 6.1 we describe the AVATAR train-

ing pipeline, Sec. 6.2 we evaluate AVATAR characters generalization, we describe the

potential negative impact of our work in Sec. 6.3, Sec. 6.4 describes future work. We

finally conclude with a discussion in Sec. 6.5.
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(a) Registration (b) Template Joints (c) Blendshapes (d) AVATAR

Figure 6.4: AVATAR Pipeline: Given a single training registration (shown in Fig. 6.4a),
we first estimate personalized subject template mesh and joints (shown in Fig. 6.4b).
Given the subject-specific template and joints we infer a distribution of pose correc-
tive deformations. The pose deformations capture subject-specific deformations such
as muscle bulges for the bodybuilder (shown in Fig. 6.4c). The template and correc-
tive blendshapes are then rotated around the personalized joints to predict the final mesh
shape (shown in Fig. 6.4d).

6.1 Method

AVATAR is a training algorithm for any vertex-based linear blend skinning model (LBS).

While we base our formulation on the SMPL body template topology and kinematic tree,

the AVATAR framework is applicable to any mesh-based LBS model.

6.1.1 Model

We start with a low-resolution template mesh T 2RN⇥3 with N = 6,890 vertices. Similar

to SMPL, the model kinematic tree contains J = 24 joints. The model is fully parameter-

ized by pose parameters ~q 2R24⇥3. To address the widely known drawbacks of standard

LBS, we use a pose-corrective blendshape function which is added to the template mesh

T such that when posed with a standard skinning function W (.), it looks realistic. More
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formally:

Tp(~q) = T +BP(~q ;P), (6.1)

where P 2 R6890⇥3⇥207 is the pose corrective blendshapes which regresses corrective

offsets related to the model joint rotations. The pose corrective blendshape includes

4.2⇥106 parameters.

The template and pose blendshapes in Eq. (6.1) is transformed around the model joints

J in the kinematic tree using standard LBS:

M(~q) =W (Tp(~q),J,W), (6.2)

where the linear blend skinning function W (.) rotates the template T and the cumulative

sum of blendshapes term Tp(~q) around the 3D model joints J, linearly smoothed with

the skinning weights W 2 R6890⇥24. We note in contrast to generic human body models

such as SMPL, in AVATAR the joints J and the template T are subject specific and are

inferred from the character training registration as shown in Fig. 6.4.

6.1.2 Model Training

Our goal in this section is to learn the model variables from a single registration. The

model trainable variables are: the personalized subject specific template T , the subject

specific joints J and subject specific pose corrective blendshapes P . The full AVATAR

training pipeline is summarized in Fig. 6.4.

AVATAR trains a model by minimizing the vertex-vertex loss between the model and

the corresponding training registration. AVATAR pose parameters, template and joints

are trained by minimising a standard vertex-to-vertex loss between the AVATAR model
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in Eq. (6.3) and the groundtruth registration:

ED(~q) = ||V �M(q ,T,J)||2, (6.3)

where V 2 R6890⇥3 is the training registration. We minimise Eq. (6.3) relative to the

model pose parameter ~q . Given the pose parameter we estimate the personalized tem-

plate T and J by minimising Eq. (6.4):

E = ED +ER (6.4)

ER = Â
j

||J �U(J)||2 + ||T �U(T )||2 (6.5)

where the data term is additionally regularized by a symmetrical prior term ER over

the joints and the template as shown in Eq. (6.5), where U(.) is a function that mirrors

the template vertices and joints across the Y-Z plane. This term encourages symmetric

template meshes and symmetric joint locations.

6.1.3 Training the Pose Blendshapes

Given the character pose parameter ~q , personalized template T and joints J we estimate

the pose corrective blendshape term, by minimizing the data term in Eq. (6.3), to obtain

corrective residuals Y 2 R6890⇥3 the residuals between the model M(q ,T,J) and the

corresponding registration. Similar to SMPL, we use the Rodrigues feature X 2 R23⇥9

as the feature representation of the model’s kinematic tree. The training data used to

infer the pose corrective blendshapes distributions is D = {Y,X}, such that:

Y = XP. (6.6)
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We infer a probability distribution over the pose corrective blendshapes P using Bayesian

linear regression [7]. In a Bayesian inference framework, we model our beliefs using a

prior distribution, and given a stream of data we update our prior beliefs to obtain a

posterior distribution. The prior distribution over the pose corrective blendshapes are

defined by:

P(P) = N (P|P0,V0) (6.7)

where N is a multivariate Gaussian distribution parameterized by a mean P0 and co-

variance matrix V0. The likelihood term of the data conditioned on the pose corrective

blendshapes is given by:

P(Y |X ,P,µ,s2) = N (Y |XP,s2), (6.8)

where s2 is the observation noise (the 4D scanner noise). The posterior distribution is

given by Eq. (6.9):

P(P|PN ,VN) µ N (P|P0,V0)N (Y |XP,s2), (6.9)

where the mean of the PN is given by:

PN =VNV �1
0 P0 +

1
s2VNXTY, (6.10)

V �1
N =V �1

0 +
1

s2 XT X , (6.11)

and the covariance VN is given by

VN = s2(s2V �1
0 +XT X)�1, (6.12)
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The posterior predictive distribution of the model vertices is derived by marginalizing

over the probability distribution of all possible P where the mean and co-variance are

defined by:

p(y|X ,D,s2) =
Z

N (y|xT P,s2)N (P|Pn,Vn)dP (6.13)

= N (y|PT
N X ,s2

N(X)) (6.14)

s2
N(X) = s2 +XTVNX (6.15)

We note that the mean of the posterior predictive distribution is still linearly related to

the Rodrigues feature representation X of the model’s kinematic tree, which is critical

for the model to be compatible with the gaming and animation industry standards.

6.1.4 Gaussian Motivation

The motivation to use the multivariate Gaussian distribution for the prior in Eq. (6.7) and

the likelihood Eq. (6.8) is that the posterior distribution has a closed-form analytic solu-

tion that is also a multivariate Gaussian distribution. The posterior is a Gaussian since

both the prior and the likelihood are Gaussians and the residuals Y are linearly related to

the feature X as shown in Eq. (6.6). The closed-form analytic solution for the posterior

simplifies the inference step for the distribution of the pose corrective blendshapes.

6.2 Experiments

Our objective in the evaluation is to assess the fidelity of the AVATAR characters and its

robustness to overfitting when trained using a single scan.

Dataset We use 9 subjects from the publicly available 3D scan dataset Hasler et al. [4].
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Figure 6.5: Registration: Sample registration for three different subject, where the
SMPL model template mesh (in pink) is tightly fit to a raw 3D scan in green.

For each subject, we use a single scan for the model training, and the remaining scans

are held out for evaluation. We register all scans to the SMPL mesh template as shown

in Fig. 6.5.

Baselines The first baseline is gendered SMPL using 10 shape components. The sec-

ond baseline is a retrained SMPL model. We retrain a personalized SMPL model, which

we refer to as SMPLR on a single training registration.

6.2.1 Characters Generalization

All the model parameters for SMPL , SMPLR and AVATAR are trained solely from a

single train registration. Then we evaluate all models on the held out test set using a

standard vertex-to-vertex (v2v) objective and report the corresponding mean absolute er-

ror(mabs) in Tab. 6.1. Characters trained using AVATAR uniformly have a lower mabs

error compared to all baselines. In Fig. 6.6, we show a qualitative comparison on the held

out test set. We note that for SMPL (Fig. 6.6b) the fits capture the overall coarse body

geometry, yet are still overly smooth and fail to capture the subject identity or deforma-

tions related to the body pose. The characters trained by our proposed method AVATAR

(Fig. 6.6c) are able to generalize better, preserve subject identity, and the deformations
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(a) Held out Registration

(b) SMPL

(c) AVATAR

Figure 6.6: Qualitative Evaluation: Qualitative comparison between characters trained
by AVATAR and baseline methods. Given a held out test set (shown in Fig. 6.6a), we fit
the publicly available gendered SMPL model with 10 shape components (Fig. 6.6b), and,
and personalized characters models trained on a single scan using AVATAR(Fig. 6.6c).
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ID SMPL [33] SMPLR AVATAR (Ours)
S1 5.49 8.41 4.90
S2 4.68 8.85 4.09
S3 4.35 8.82 3.30
S4 5.38 6.99 2.89
S5 5.23 8.83 4.43
S6 5.88 8.65 3.60
S7 4.14 7.50 3.24
S8 5.77 7.74 2.81
S9 5.23 10.32 5.06
All 4.99 8.46 3.81

Table 6.1: The per subject mean absolute error (mabs) - in mm - on the held out test set
of 10 different subjects. S1 denotes subject with ID = 1. Models trained using AVATAR
uniformly have the lowest error across all subjects.

related to the subject body pose.

6.2.2 Personalized Shape

AVATAR learns a personalized shape of the subject, by optimizing the base template.

The personalized shape captures subject-specific details which cannot be captured with

the SMPL shape space. In Fig. 6.7, we show the estimated subject shape for a sample

training registrations from the Hasler et al. [4] dataset. Using 10 shape components,

SMPL model does not adequately maintain the subject’s identity nor the high-frequency

anatomical details. On the other hand, the shape estimates produced by the AVATAR

personalized shape capture the subject shape, identity and rich anatomical details.

6.2.3 Character Ablation

The AVATAR characters feature two main types of personalized deformations: those

associated with the subject’s body shape (personalized templates and joints) and those

corresponding to deformations related to the subject’s body pose (personalized pose de-
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(a) Training registrations

(b) SMPL with 10 components shape estimate.

(c) AVATAR personalized shape estimate.

Figure 6.7: Shape Estimation: For each training subject in Fig. 6.7a, we show the esti-
mated subject shapes SMPL with 10 components (Fig. 6.7b) and AVATAR personalized
shape (Fig. 6.7c)
.

formations). In Tab. 6.2 we perform an ablation on each of the components of AVATAR

and report the mean absolute error on the held out test set. To ablate the deformations

related to the subject shape, we retrain characters without estimating the personalized

template and joints, and for the deformation related to subject pose, we do not update

the distribution of, hence using the prior distribution mean. Each of the ablated mod-

els was retrained from scratch and we report the mabs error on the held out test set. The

best performing AVATAR characters correspond to the subjects trained with personalized

anatomical and subject specific deformations.
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Case Personalised Shape Personalised Pose mabs (mm)
1 + + 3.81
2 - + 10.76
3 + - 4.31
4 - - 10.93

Table 6.2: Ablation of AVATAR characters for the pose prior and shape priors used during
the characters training.

6.2.4 Motion Capture Evaluation

We evaluate a bodybuilder character trained using AVATAR on a climbing motion capture

sequence from AMASS [6]. We animate the SMPL body fit to the bodybuilder and

show the results in Fig. 6.8a, and similarly we show the AVATAR character in Fig. 6.8b.

The AVATAR model is able to preserve the character muscularity and the results are

significantly more plausible and convincing. In the given scenario, it becomes evident

that as the subject’s legs are raised in the direction of the abdominal region, there is

a significant engagement of the abdominal muscles. This engagement is prominently

noticeable on the AVATAR character. On the other hand, the SMPL model mesh exhibits

a bulge that appears quite unrealistic, especially when considering a subject with an

athletic build. This implausibility in the SMPL model’s depiction stands in contrast to

the realistic muscular activation observed in the AVATAR character.

6.3 Negative Impact

AVATAR streamlines the construction of virtual humans from 3D scans. We note that

no prior methods exist to date for learning engine ready human body models. Its imple-

mentation may have negative impact for 3D artists, and potentially jeopardizing multiple

jobs. However, the primary aim of AVATAR is not to replace 3D artists, but to serve as

an AI assistant that enhances their capabilities. AVATAR is designed to be a tool that
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(a) SMPL (b) AVATAR

Figure 6.8: Motion Capture Evaluation: We animate the SMPL model (Fig. 6.8a) and
the AVATAR trained character (Fig. 6.8b) by a climbing sequence from the AMASS
dataset [6]. Unlike the SMPL mesh, the AVATAR mesh demonstrates greater plausibility,
particularly in capturing muscle bulges in the abdominal and chest areas as the subject
climbs.

augments artists, rather than replacing them. The characters created through AVATAR

are fully interpretable to artists, allowing for subsequent refinement and customization.
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(a) Registration (b) AVATAR personalized shape

(c) Top view: AVATAR personalized shape

Figure 6.9: Symmetric Training Scans: We estimate subject specific personalized tem-
plates for the subject in Fig. 6.9a. The estimated template is shown in Fig. 6.9b and
Fig. 6.9c.

This ensures that artists retain full creative control over their work while being more

productive.

6.4 Limitations and Future Work

Symmetric Training Poses AVATAR factorizes deformations into pose and shape de-

formations. Shape deformations are symmetric deformations. If a subject is in a perfect

symmetric body pose as shown in Fig. 6.9a, as a consequence the symmetric deforma-

tions related to the subject pose will be explained by the base template as shape deforma-

tion. As a result, the base template will contain deformations not related to the subject

body shape as shown in Fig. 6.9b and Fig. 6.9c, where the template contains bulges
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clearly seen around the model elbow.

Registration Currently, our method involves the registration of raw scans to a template

mesh, a step that requires expert oversight to ensure an accurate fit. This dependence on

expert input presents a challenge to the scalability and efficiency of our algorithm. Con-

sequently, a promising area for future research lies in developing techniques that reduce

or eliminate the necessity of registering scans to a template mesh. Such advances would

significantly improve the efficiency and scalability of the construction of personalized

body models.

Expressive AVATARs The AVATAR formulation is currently limited to learning the

personalized shape and pose deformation and does not consider the facial expressions

of the subject. A promising future direction is to extend the AVATAR formulation to

expressive humans, to include the development of a personalized expression space and a

specialized pose deformation space for the hands, adding further depth and expressive-

ness to the models.

6.5 Conclusion

We introduce AVATAR, a data-efficient algorithm for creating high-fidelity virtual char-

acters. We tackle two critical challenges associated with statistical human body models.

Current models, such as SMPL, are trained on multiple identity datasets with diverse

body shapes and poses. However, because of this setting, SMPL fails to capture the rich

subject-specific pose and shape deformations. When fitting SMPL to a held-out test reg-

istration, the deformations are overly smooth and unrealistic. Existing body models tend

to have a large number of parameters and are susceptible to overfitting. To address this,
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we propose a Bayesian learning training algorithm for personalized body models. We

learn subject-specific anatomical details, including joint locations, detailed body geome-

try, and subject-specific pose deformations. Rather than inferring a single-point estimate

of the model parameters, we derive a full probability distribution of possible parame-

ters to enhance the model’s robustness against overfitting. Our results demonstrate that

with only a single training registration, an AVATAR character can generalize better than

the widely used SMPL body model. No prior work has focused on developing scalable

data-efficient digital character. In this chapter, we introduce the concepts that make this

possible.
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Conclusion

The primary objective of this thesis was to highlight the limitations of existing statistical

models and training algorithms for the body and its parts and to propose alternatives that

are compatible with the existing gaming and animation industry standards. To this end,

we introduce a comprehensive set of models and algorithms. Our key hypothesis was that

the limitation of current models can be addressed by enforcing prior-domain knowledge

or alternatively leveraging large training datasets. This results in a full suite of models

and training algorithms, which can readily be integrated in an artists workflow.

7.1 Thesis Contributions

This thesis presents four key deliverables, each advancing the state-of-the-art in modeling

and training models of the human body and its individual parts.

STAR In Chapter 3, we highlight the drawbacks of a commonly used representation

that relates all body joints to all model vertices, which results in learning false long-range

spurious correlations from the training data. We address this by introducing STAR, a
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sparse representation of the human body deformations, which results in learning strictly

sparse pose deformations. Our key hypothesis in STAR was to incorporate our prior

knowledge that a single joint movement influences only a subset of the model vertices.

We adopt a learning approach to infer that the set of vertices influenced by each joint’s

movement. Additionally, we further condition the pose deformation function on the

subject body shape. Both innovations in the STAR’s corrective blend shape formulation

are grounded in domain-specific priors related to the deformation patterns of the human

body.

SUPR In Chapter 4, we show that existing models for the head and hands cannot model

the full range of motion of their corresponding body parts. We address this by introducing

a federated training algorithm for the body and its parts, which enables learning a full

suite of models. Unlike existing approaches, we start with a sparse expressive human

body model, SUPR, and train the model on a federated dataset of body, head, and hand

registrations, then separate the model into individual parts. The separated body parts

included significantly more joints compared to existing body part models, which are

critical to modeling the full range of motion of the body part. The key to the success of

SUPR is the use of a federated training dataset of head, hand, and body registrations that

allows us to learn the influence of each body joint on the separated body part models.

SUPR-Foot In Chapter 5, we introduce the first articulated model of the human foot.

Existing human-body models only use two joints to model foot articulation, which is

insufficient to capture the full range of motion of the foot. Due to the frequent ground

contact of the foot, we propose a novel neural deformation model based on the pose,

shape, and ground contact of the foot. The construction of the foot and the learning

of the contact-based neural deformation function is made possible because of the large
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registration training dataset captured by a dedicated 4D foot scanner.

AVATAR In Chapter 6, we address the problem of data-efficient learning of personal-

ized human body models. Artists typically have access to very few scans and would like

to learn a personalized subject specific model that can preserve the subject identity. All

existing models are trained on a large dataset and will fail to prepare the subject-specific

identity and pose deformations. AVATAR enables learning models from as few as a sin-

gle registration. Key to AVATAR success is a Bayesian formulation which incorporates

a prior distribution on the model pose corrective blendshapes.

In this thesis, we advance the field of human body modeling by using two principal

frameworks: those that integrate priors, namely STAR and AVATAR, and those pow-

ered by extensive datasets, such as SUPR and SUPR-Foot. This dichotomy highlights

the diverse approaches towards enhancing the state-of-the-art in human body models.

Methods incorporating prior knowledge leverage existing knowledge to improve the re-

alism of existing models, while data-driven approaches utilize large datasets to improve

accuracy and adaptability, broadening the potential applications of these models. Conse-

quently, this work sets the stage for future research to further explore the two principals

introduced to further advance realism of existing human body models.

7.2 Limitations

3D Registration Through the thesis, we use 3D Registrations to train models for the

body and its parts. We use registration as the primary method to establish ground truth.

This is because raw 3D scans, which are the starting point for generating these models,

are an unstructured data format that often contains missing parts and noise. As a result, a

registration process to fit the scans to a common template mesh and eliminate any errors
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or inconsistencies.

In Chapter 3, we use the SizeUSA dataset registrations, which allow the creation of a

more comprehensive shape space, particularly for accurately modeling the female chest

shape in a traditional bra. In Chapter 4, the federated dataset of body, head, and hand

data enables the development of a full suite of body and body part models capable of

tracking the full range of motion of each human body part. In Chapter 5, the use of foot

registrations enables the creation of a novel foot model with contact deformations.

The registration process involves a model-free optimization in which the mesh is de-

formed to fit a scan. This process is designed to correct for any discrepancies between

the two, ensuring that the resulting model is as accurate as possible. This is a computa-

tionally expensive process, as it requires computing an AABB (Axis Aligned Bounding

Box) data structure in each optimization iteration to calculate the point-to-plan distance

between each scan point and the mesh triangles. It is important to manually inspect each

registration to ensure that it is free of artifacts and can be used as a reliable source of

ground truth.

As a consequence of the manual labor, expertise required, and computational cost,

this makes 3D registrations a very time-consuming process and, if not done carefully,

will eventually introduce systematic biases in the training data, which will in turn result

in artifacts in the resulting model. 3D registration remains a key bottleneck for training

models at scale.

In future work, it is worth considering training a model directly from scanner images

rather than relying on 3D registration. This approach would eliminate the need for raw

3D scans and potentially bypass some of the challenges associated with 3D registration.

One potential benefit of this approach is that the scanner images contain both RGB cam-

eras and scattered patterns from a dedicated projector, which can provide a more detailed
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Figure 7.1: Modeling Detail: A raw scan shown on the right (in gray) and the corre-
sponding SMPL fit on the left (shown in blue). SMPL fails to capture the rich detail in
the scan.

and accurate representation of the 3D geometry.

However, training a model directly from scanner images presents its own set of chal-

lenges. One issue is that the camera views are often close up views, meaning that only

patches of the geometry are visible. This can make it difficult to accurately train a model

and may require additional computational resources or expertise. Despite these chal-

lenges, training a model directly from scanner images has the potential to significantly

improve the efficiency and accuracy of model training.

Modeling High Frequency Details All the models we propose in the thesis are based

on a low-resolution mesh. A low-resolution mesh is desirable for computational ef-

ficiency; it will fail to capture details such as wrinkles and muscle bulges, as shown

in Fig. 7.1. The lack of detail significantly compromises the model’s visual realism.

Increasing the model’s mesh resolution will enable modeling more high-frequency de-

tails; nevertheless, this will in turn significantly inflate the model’s computational foot

print. Artists typically represent details using displacement maps. Displacement maps
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Figure 7.2: Seams Artifacts: SMPL enhanced with a displacement map generated by
a variational auto-encoder presents a detailed model, yet with noticeable artifacts along
the UV seams.

are based on UV map representation. In a UV map representation, the mesh is un-

wrapped on a 2D image where there is a 1-1 correspondence between each pixel and a

point on the mesh surface. Displacements maps are gray-scale images where each pixel

encodes a displacement offset such that at run-time the displacement shader subdivides

the mesh into a high-resolution mesh and samples the displacement map for detail offsets

that when added the mesh looks realistic. The combination of a low-resolution model

and displacement maps is advantageous because only a low-resolution model needs to be

trained and the displacement map can be computed relative to the low-resolution model.

Numerous generative models for 2D images exists, which we can use to learn gener-

ative models of displacements maps. Training a generative model of displacement maps

conditioned on a low-resolution model pose and shape parameters will result in captur-

ing more details as shown in Fig. 7.2. However, a key drawback of existing generative

architecture of displacements maps is that they consistently result in clearly visible arti-
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facts on the model seams, as shown in Fig. 7.2. Future work should focus on developing

generative models for UV maps, which preserve the 3D surface properties along the UV

seams.

Topology Agnostic Modeling The models we introduce adhere to a consistent mesh

topology; the STAR model is based on the SMPL mesh, while the SUPR model utilizes

the SMPL-X mesh. However, the choice of the mesh topology is largely influenced by

the specific requirements of artists, who may prioritize different levels of detail across

various body parts, such as preferring more vertices on the hands than on the head, or

vice versa. However, our reliance on a fixed template topology is a significant constraint

within the artist’s creative workflow. Future research should explore the development of

models and training algorithms that are indifferent to the template topology, thus giving

artists the flexibility to dictate the desired structure of the model template. One poten-

tial approach can include the use of implicit representation [35], which is a continuous

representation of the model surface using a neural network. This implicit surface can

then be discretized at run-time into a template mesh, tailored to the artist’s specific mesh

requirements, thus eliminating a notable bottleneck in the artist’s creative process.

7.3 Neural Models

Recent advancements and innovations in the field of computer graphics have led to the in-

troduction of various 3D representations. Among these are implicit representation [35],

Neural Radiance Fields [36], and Gaussian splatting [169], each contributing to the

expansion of the field’s capabilities. This phase of rapid evolution has also seen the

emergence of foundational models capable of generating content of unprecedented fi-

delity. Notably, the development of technologies such as OpenAI’s Sora has facilitated
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the production of high-quality videos, while tools like DALL-E have revolutionized the

creation of realistic images, all from simple user-generated text prompts. The advent of

these novel representations and architectural advancements has significantly broadened

the horizons for achieving highly realistic and intricately detailed visual content. How

might future research endeavor to integrate the latest advances in 3D modeling into the

workflows of artists?

Artists’ primary requirement is to have complete creative authority over graphic as-

sets, entailing control at the pixel level for the asset’s visual appearance. For instance,

Linear Blend Skinning (LBS), established in the 1990s, remains the favored technique

for crafting articulated human figures, despite its acknowledged flaws and the existence

of more accurate methods. This ongoing preference is significantly attributed to the ease

with which artists can intuitively adjust skinning weights, alter joints as necessary, and

observe the immediate impact on the model’s geometry. Such a comprehensible and ma-

nipulable framework is crucial for the technology’s widespread acceptance. The demand

for creative control is a constant that transcends the boundaries of specific technologies

or methodologies.

“ I believe in creative control.

No matter what anyone makes, they should have control over it.”

David Lynch, American filmmaker

NeRFs and Gaussian splatting advances the capability to capture the realistic appearance

of scenes, though they offer limited control over graphic assets. For example, these

representations do not allow for the seamless removal of objects from a scene or the

addition of new objects. This limitation stems from the fact that the representations

are not compositional; they lack native segmentation within the 3D scene, making it

impossible to modify specific elements independently. Furthermore, there is no facility
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to relight the scene, which restricts the ability to adjust lighting conditions post-capture,

thereby diminishing the flexibility and realism that can be achieved in the final visual

output.

Radiance fields provide an excellent solution for capturing snapshots of reality, but

the future of 3D modeling and scene reconstruction lies in addressing their limitations

through the solution to inverse problems. By converting a radiance field into a native

graphic asset, including the segmentation of the scene, recovery of textures, and assign-

ment of materials, we can significantly enhance the utility and adaptability of radiance

fields for practical applications. This process involves solving complex inverse problems,

raising the critical question of how we can train models to effectively tackle such chal-

lenges. The development of models capable of solving these inverse problems will pave

the way for more dynamic, editable, and realistic representations of 3D environments,

expanding their applicability in various fields including virtual reality, film production,

and video game development. To date, the only representations that guarantee the artists

the full creative authority on an articulated graphic assets are based on the representation

presented in this thesis.
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Nowicka. New indexes of body fat distribution, visceral adiposity index, body

162



Bibliography

adiposity index, waist-to-height ratio, and metabolic disturbances in the obese.

Polish Heart Journal (Kardiologia Polska), 75(11):1185–1191, 2017.

[43] D Gordon E Robertson, Graham E Caldwell, Joseph Hamill, Gary Kamen, and

Saunders Whittlesey. Research methods in biomechanics. Human kinetics, 2013.

[44] James Hay. The biomechanics of sports techniques. Prentice-Hall, 1978.

[45] Tom F Novacheck. The biomechanics of running. Gait & posture, 7(1):77–95,

1998.

[46] Kenji Masumoto and John A Mercer. Biomechanics of human locomotion in

water: an electomyographic analysis. Exercise and sport sciences reviews,

36(3):160–169, 2008.

[47] Francesca Sylos-Labini, Francesco Lacquaniti, and Yuri P Ivanenko. Human loco-

motion under reduced gravity conditions: biomechanical and neurophysiological

considerations. BioMed research international, 2014, 2014.

[48] Yildirim Hurmuzlu and Cagatay Basdogan. On the measurement of dynamic sta-

bility of human locomotion. Journal of biomechanical engineering, 116(1):30–36,

1994.

[49] Barbara Heil. Running shoe design and selection related to lower limb biome-

chanics. Physiotherapy, 78(6):406–412, 1992.

[50] EC Frederick. Kinematically mediated effects of sport shoe design: a review.

Journal of sports sciences, 4(3):169–184, 1986.

[51] A Morecki and K Kdzior. Biomechanical aspects in robotics. In Theory and

Practice of Robots and Manipulators, pages 17–22. Springer, 1985.

163



Bibliography

[52] Yuliang Zou, Jimei Yang, Duygu Ceylan, Jianming Zhang, Federico Perazzi, and

Jia-Bin Huang. Reducing footskate in human motion reconstruction with ground

contact constraints. In Proceedings of the IEEE/CVF Winter Conference on Ap-

plications of Computer Vision, pages 459–468, 2020.

[53] Siwei Zhang, Qianli Ma, Yan Zhang, Zhiyin Qian, Taein Kwon, Marc Pollefeys,

Federica Bogo, and Siyu Tang. Egobody: Human body shape and motion of inter-

acting people from head-mounted devices. In European Conference on Computer

Vision, pages 180–200. Springer, 2022.

[54] SizeUSA. SizeUSA dataset. http://http://www.sizeusa.com/, 2020.

[55] Claire C Gordon, Cynthia L Blackwell, Bruce Bradtmiller, Joseph L Parham,

Patricia Barrientos, Stephen P Paquette, Brian D Corner, Jeremy M Carson,

Joseph C Venezia, Belva M Rockwell, et al. 2012 anthropometric survey of us

army personnel: Methods and summary statistics. Technical report, ARMY NAT-

ICK SOLDIER RESEARCH DEVELOPMENT AND ENGINEERING CENTER

MA, 2014.

[56] Nadia Magnenat-Thalmann, Richard Laperrire, and Daniel Thalmann. Joint-

dependent local deformations for hand animation and object grasping. In In Pro-

ceedings on Graphics interface’88. Citeseer, 1988.

[57] Nadia Magnenat-Thalmann and Daniel Thalmann. Human body deformations

using joint-dependent local operators and finite-element theory. Technical report,

EPFL, 1990.

[58] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose space deformation: A uni-

fied approach to shape interpolation and skeleton-driven deformation. In Pro-

164

http://http://www.sizeusa.com/


Bibliography

ceedings of the 27th Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’00, pages 165–172, New York, NY, USA, 2000. ACM

Press/Addison-Wesley Publishing Co.

[59] Tsuneya Kurihara and Natsuki Miyata. Modeling deformable human hands from

medical images. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics sym-

posium on Computer animation, pages 355–363. Eurographics Association, 2004.

[60] Taehyun Rhee, John P Lewis, and Ulrich Neumann. Real-time weighted pose-

space deformation on the gpu. In Computer Graphics Forum, volume 25, pages

439–448. Wiley Online Library, 2006.

[61] Hyewon Seo, Frederic Cordier, and Nadia Magnenat-Thalmann. Synthesizing

animatable body models with parameterized shape modifications. In ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, SCA ’03, pages 120–

125, 2003.

[62] Yinpeng Chen, Zicheng Liu, and Zhengyou Zhang. Tensor-based human body

modeling. In Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition, pages 105–112, 2013.

[63] Oren Freifeld and Michael J. Black. Lie bodies: A manifold representation of 3D

human shape. In A. Fitzgibbon et al. (Eds.), editor, European Conf. on Computer

Vision (ECCV), Part I, LNCS 7572, pages 1–14. Springer-Verlag, October 2012.

[64] David A. Hirshberg, Matthew Loper, Eric Rachlin, and Michael J. Black. Coreg-

istration: Simultaneous alignment and modeling of articulated 3D shape. In Eu-

ropean Conf. on Computer Vision (ECCV), pages 242–255, 2012.

165



Bibliography

[65] Leonid Pishchulin, Stefanie Wuhrer, Thomas Helten, Christian Theobalt, and

Bernt Schiele. Building statistical shape spaces for 3d human modeling. Pattern

Recognition, 67:276 – 286, 2017.

[66] Gerard Pons-Moll, Javier Romero, Naureen Mahmood, and Michael J. Black.

Dyna: A model of dynamic human shape in motion. ACM Trans. Graph.,

34(4):120:1–120:14, July 2015.

[67] Paul G Kry, Doug L James, and Dinesh K Pai. Eigenskin: real time large de-

formation character skinning in hardware. In Proceedings of the 2002 ACM

SIGGRAPH/Eurographics symposium on Computer animation, pages 153–159.

ACM, 2002.

[68] Thomas Neumann, Kiran Varanasi, Stephan Wenger, Markus Wacker, Marcus

Magnor, and Christian Theobalt. Sparse localized deformation components. ACM

Transactions on Graphics (TOG), 32(6):1–10, 2013.

[69] Chen Cao, Yanlin Weng, Shun Zhou, Yiying Tong, and Kun Zhou. Faceware-

house: A 3D facial expression database for visual computing. IEEE Transactions

on Visualization and Computer Graphics, 20(3):413–425, 2014.

[70] Volker Blanz, Thomas Vetter, et al. A morphable model for the synthesis of 3D

faces. In Siggraph, volume 99, pages 187–194, 1999.

[71] James Booth, Anastasios Roussos, Allan Ponniah, David Dunaway, and Stefanos

Zafeiriou. Large scale 3D morphable models. Int. J. Comput. Vis., 126(2-4):233–

254, 2018.

[72] Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami Romdhani, and Thomas

Vetter. A 3D face model for pose and illumination invariant face recognition. In

166



Bibliography

2009 Sixth IEEE International Conference on Advanced Video and Signal Based

Surveillance, pages 296–301. Ieee, 2009.

[73] Brian Amberg, Reinhard Knothe, and Thomas Vetter. Expression invariant 3D

face recognition with a morphable model. pages 1–6, 2008.

[74] Alan Brunton, Timo Bolkart, and Stefanie Wuhrer. Multilinear wavelets: A sta-

tistical shape space for human faces. In Eur. Conf. Comput. Vis., pages 297–312,

2014.

[75] Ruilong Li, Karl Bladin, Yajie Zhao, Chinmay Chinara, Owen Ingraham, Pengda

Xiang, Xinglei Ren, Pratusha Prasad, Bipin Kishore, Jun Xing, et al. Learning

formation of physically-based face attributes. In IEEE Conf. Comput. Vis. Pattern

Recog., pages 3410–3419, 2020.

[76] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and Michael J. Black. Generating

3D faces using convolutional mesh autoencoders. In Eur. Conf. Comput. Vis.,

pages 725–741, 2018.

[77] Haotian Yang, Hao Zhu, Yanru Wang, Mingkai Huang, Qiu Shen, Ruigang Yang,

and Xun Cao. FaceScape: a large-scale high quality 3D face dataset and detailed

riggable 3D face prediction. In IEEE Conf. Comput. Vis. Pattern Recog., pages

601–610, 2020.

[78] Daniel Vlasic, Matthew Brand, Hanspeter Pfister, and Jovan Popovic. Face trans-

fer with multilinear models. ACM TOG, 24(3):426–433, 2005.

[79] Bogdan Sarghie, Mariana Costea, and Dumitru Liute. Anthropometric study of

the foot using 3D scanning method and statistical analysis. In Proceedings of the

167



Bibliography

International Symposium in Knitting and Apparel, Isai, Romania, volume 2122,

2013.

[80] Scott Telfer and James Woodburn. The use of 3d surface scanning for the mea-

surement and assessment of the human foot. Journal of foot and ankle research,

3(1):1–9, 2010.
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