
Scheduling and Optimization for Resource

Management in Novel Applications in

Communication and Energy Systems

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Thomas Stüber

aus Tübingen

Tübingen

2024

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der

Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 4. Oktober 2024

Dekan: Prof. Dr. Thilo Stehle

1. Berichterstatter: Prof. Dr. Michael Menth

2. Berichterstatter: Prof. Dr. Klaus-Jörn Lange

Contents

List of Abbreviations iii

Summary vii

List of Publications ix

1 Introduction & Overview 1

1.1 Research Objective . 1

1.2 Research Context . 2

1.3 Research Results . 2

1.3.1 Energy Systems . 3

1.3.2 Communication Networks . 4

2 Results & Discussion 7

2.1 Algorithms for Resource Management in Energy Systems 7

2.1.1 Day-Ahead Optimization of Production Schedules for Saving

Electrical Energy Costs . 8

2.1.2 Minimizing Grid Electricity Consumption and On-/Off-Cyles

for Heat Pumps in Single-Family Homes with PV Panels 12

2.1.3 Comparison of Forecasting Methods for Energy Demands in

Single Family Homes . 18

2.1.4 Load Profile Negotiation for Compliance with Power Limits in

Day-Ahead Planning . 18

2.2 Algorithms for Resource Management in Real-Time Networks and Mul-

ticast Protocols . 19

2.2.1 Introduction to Time-Sensitive Networking 19

2.2.2 A Survey of Scheduling Algorithms for the Time-Aware Shaper

in Time-Sensitive Networking (TSN) 23

2.2.3 Performance Comparison of Scheduling Algorithms for Time-

Sensitive Networking (TSN) 28

2.2.4 Efficient Robust Schedules (ERS) for Time-Sensitive Networking 34

2.2.5 Introduction to Bit Indexed Explicit Replication 40

2.2.6 Efficiency of BIER Multicast in Large Networks 41

2.2.7 Scalability of Segment-Encoded Explicit Trees (SEETs) for Ef-

ficient Stateless Multicast . 45

3 Additional Scientific Work 51

3.1 Sustanability and Lectures for Future 51

i

Contents

3.2 Research Proposals . 51

3.3 Thesis Supervision . 51

3.4 Miscellaneous . 52

Personal Contribution 59

Publications 67

1 Accepted Manuscripts (Core Content) 67

1.1 Day-Ahead Optimization of Production Schedules for Saving

Electrical Energy Costs . 67

1.2 A Survey of Scheduling Algorithms for the Time-Aware Shaper

in Time-Sensitive Networking (TSN) 80

1.3 Performance Comparison of Offline Scheduling Algorithms for

the Time-Aware Shaper (TAS) 123

1.4 Efficiency of BIER Multicast in Large Networks 136

2 Submitted Manuscripts (Core Content) 153

2.1 Minimizing Grid Electricity Consumption and On-/Off-Cyles

for Heat Pumps in Single-Family Homes with PV Panels 153

2.2 Efficient Robust Schedules (ERS) for Time-Sensitive Networking194

2.3 Scalability of Segment-Encoded Explicit Trees (SEETs) for Ef-

ficient Stateless Multicast . 212

3 Accepted Manuscripts (Additional Content) 226

3.1 Comparison of Forecasting Methods for Energy Demands in

Single Family Homes . 226

3.2 Load Profile Negotiation for Compliance with Power Limits in

Day-Ahead Planning . 232

ii

List of Abbreviations

AVB Audio Video Bridging

BE best-effort

BFIR Bit Forwarding Ingress Router

BFER Bit Forwarding Egress Router

BIER Bit Index Explicit Replication

CCDF complementary cumulative distribution function

DHW Domestic Hot Water

FIFO first-in-first-out

GCL Gate Control List

IETF Internet Engineering Task Force

IPMC IP multicast

MILP Mixed Integer Linear Program

PSFP Per-Stream Filtering and Policing

PV Photovoltaic

QoS Quality of Service

SD Subdomain

SDI Subdomain Identifier

SDN Software-Defined Networking

SEET Segment-Encoded Explicit Tree

SMT Satisfiability Modulo Theories

TAS Time-Aware Shaper

TSA Transmission Selection Algorithm

TSN Time-Sensitive Networking

VLAN Virtual Local Area Network

iii

Danksagung

Das Verfassen der vorliegenden wissenschaftlichen Arbeit wäre ohne die Hilfe und Un-

terstützung vieler Menschen nicht möglich gewesen. Besonders hervorheben möchte

ich an dieser Stelle meine Eltern, die mich seit meiner Kindheit stets unterstützt und

mein Interesse gefördert haben. Des Weiteren haben viele Freunde und mein Bruder

meine Art und meine Angewohnheiten nicht nur hingenommen, sondern mir auch bei

diversen großen und kleinen Problemen geholfen. Zu guter Letzt möchte ich mich bei

meiner Frau, Stefanie, bedanken, die mir erst die Motivation gab das Promotionsvor-

haben erfolgreich zu Ende zu bringen. Diese Arbeit ist ihr gewidmet, weil wir auch in

schweren Zeiten immer zusammenhalten.

v

Summary

Abstract

Resource management is a generic term for the process of determining the most bene-

ficial way to employ some limited set of resources. Typically, not all demands for a set

of resources can be fulfilled and determining their most efficient usage is challenging.

To make matters worse, many problems are not static. Instead, the state of a system

changes dynamically and depends on the usage of its resources in time. Planning the

usage of resources in time is denoted as scheduling in the literature. Computing sched-

ules is hard and requires the accurate modelling of the underlying system.

The objective of this work is the development and evaluation of scheduling algorithms

for novel applications in power systems, real-time communication, and multicast pro-

tocols. We contribute various research works about scheduling in power systems. We

propose a scheduling algorithm to save energy costs in production processes, evaluate

forecasting methods for domestic demands, and present an optimization algorithm to

maximize self-consumption of roof-top PV energy with a heat pump. In the domain of

real-time communication, we review the state of the art of scheduling algorithms for

the so-called Time-Aware Shaper (TAS). We report results of a quantitative study com-

paring various scheduling algorithms for TAS. Additionally, we propose a scheduling

algorithm that computes schedules robust against some sources of non-determinism.

In the field of multicast protocols, we first contribute a partitioning algorithm needed

to scale Bit Indexed Explicit Replication (BIER) to large networks. Then, we present

Segment-Encoded Explicit Trees (SEET), a novel multicast protocol that allows tree

engineering.

The research presented in this thesis has been funded by different research projects by

the Deutsche Forschungsgemeinschaft (DFG) under grant ME2727/1-2, the German

Federal Ministry of Education and Research (BMBF) under support code 16KIS1161

(Collaborative Project KITOS), and the German Federal Ministry for Economic Affairs

and Energy 16KN039521 (ZIM).

vii

Summary

Kurzfassung

Ressourcen-Management ist der Prozess zur Bestimmung der besten Verwendung von

begrenzten Ressourcen. Typischerweise kann nicht der gesamte Bedarf an Ressour-

cen gedeckt werden und das Bestimmen der effizientesten Verwendung ist herausfor-

dernd. Darüber hinaus sind viele Probleme in diesem Bereich dynamisch. Das bedeu-

tet, dass sich die Verwendung der Resourcen und der Zustand des Systems in der Zeit

ändern kann. Das zeitliche Planen der Verwendung von Ressourcen wird in der Litera-

tur als Scheduling bezeichnet. Das Berechnen von Schedules (engl. Ablaufpläne) ist oft

schwierig und erfordert eine korrekte Modellierung des zugrundeliegenden Systems.

Das Ziel dieser Arbeit ist die Entwicklung und Evaluation von Planungsalgorithmen für

neuartige Anwendungen in den Bereichen Echtzeitkommunikation, Multicast Protokol-

le, und Energiesysteme. Im Bereich der Energiesysteme stellen wir einen Planungsal-

gorithmus zur Einsparung von Energiekosten in Produktionsprozessen vor, werten Vor-

hersagealgorithmen für Energiebedarfe in Wohnhäusern aus, und präsentieren ein Opti-

mierungsverfahren mit dem der Eigenverbrauch von PV Energie durch Wärmepumpen

optimiert werden kann. Im Bereich Echtzeitkommunikation wurde der aktuelle For-

schungsstand zu Planungsalgorithmen für den sogenannten Time-Aware Shaper (TAS)

zusammengefasst. Außerdem stellen wir die Ergebnisse einer quantitativen Vergleichs-

studie zu mehreren Planungsalgorithmen für TAS vor. Darüber hinaus präsentieren wir

einen Planungsalgorithmus, der robuste Ablaufpläne für den Fall von nicht-determin-

istischem Verhalten berechnen kann. Im Bereich von Multicast Protokollen stellen wir

zuerst einen Algorithmus vor, der bnötigt wird, um Bit Indexed Explicit Replication

(BIER) für große Netzwerke zu skalieren. Außerdem führen wir Segment-Encoded

Explicit Trees (SEET) ein. Dabei handelt es sich um ein neuartiges Protokoll für zu-

standslose Multicast Kommunikation, das Tree Engineering unterstützt.

Die in dieser Arbeit vorgestellten Forschungsergebnisse wurden im Rahmen verschie-

dener Forschungsprojekte von der Deutschen Forschungsgemeinschaft (DFG) unter

den Förderkennzeichen ME2727/1-2, dem Bundesministerium für Bildung und For-

schung (BMBF) unter dem Förderkennzeichen 16KIS1161 (Verbundprojekt KITOS),

und dem Bundesministerium für Wirtschaft und Energie unter Förderkennzeichen

16KN039521 (ZIM) gefördert.

viii

List of Publications

The individual contributions to all publications (§ 6 Abs. 2 Satz 3 der Promotionsord-

nung) can be found in the appendix.

Accepted Manuscripts (Core Content)

1. Thomas Stüber, Florian Heimgärtner, and Michael Menth. Day-Ahead Opti-

mization of Production Schedules for Saving Electrical Energy Costs [SHM19].

Proceedings of the Tenth ACM International Conference on Future Energy Sys-

tems (e-Energy ’19), Phoenix, USA, pp. 192–203, 2019. The author version of

this publication can be found in the Appendix 1.1. The paper is also available

online at the following URL: https://doi.org/10.1145/3307772.3328302

2. Thomas Stüber, Lukas Osswald, Steffen Lindner, and Michael Menth. A Sur-

vey of Scheduling Algorithms for the Time-Aware Shaper in Time-Sensitive

Networking (TSN) [SOLM23]. IEEE Access, vol. 11, pp. 61192-61233, 2023.

The author version of this publication can be found in the Appendix 1.2. The pa-

per is also available online at the following URL: https://doi.org/10.1109/

ACCESS.2023.3286370

3. Thomas Stüber, Manuel Eppler, Lukas Osswald, and Michael Menth. Perfor-

mance Comparison of Offline Scheduling Algorithms for the Time-Aware

Shaper (TAS) [SEOM24]. IEEE Transaction on Industrial Informatics, early

access. The most recent version of this publication can be found in the Ap-

pendix 1.3.

4. Daniel Merling, Thomas Stüber, and Michael Menth. Efficiency of BIER Multi-

cast in Large Networks [MSM23]. IEEE Transactions on Network and Service

Management (TNSM), vol. N/A, pp. N/A, 2023. The author version of this pub-

lication can be found in the Appendix 1.4. The paper is also available online at

the following URL: https://doi.org/10.1109/TNSM.2023.3262294

ix

List of Publications

Submitted Manuscripts (Core Content)

5. Thomas Stüber, Bernd Thomas, and Michael Menth. Minimizing Grid Elec-

tricity Consumption and On-/Off-Cyles for Heat Pumps in Single-Family

Homes with PV Panels [STM23]. Submission to the Applied Energies journal

on 2023-09-27. Under Review. The most recent version of this publication can

be found in the Appendix 2.1.

6. Thomas Stüber, Lukas Osswald, and Michael Menth. Efficient Robust Sched-

ules (ERS) for Time-Sensitive Networking [SOM24]. Submission to the IEEE

Transactions on Network and Service Management journal on 2023-10-23. Un-

der Review. The most recent version of this publication can be found in the

Appendix 2.2.

7. Steffen Lindner, Thomas Stüber, Toerless Eckert, and Michael Menth. Scalabil-

ity of Segment-Encoded Explicit Trees (SEETs) for Efficient Stateless Multicast.

The most recent version of this publication can be found in the Appendix 2.3.

Accepted Manuscripts (Additional Content)

8. Thomas Stüber, Ricarda Hogl, Bernd Thomas, and Michael Menth. Compari-

son of Forecasting Methods for Energy Demands in Single Family Homes

[SHTM21]. ETG Congress 2021, Wuppertal, Germany, pp. 1–5, 2021. The

author version of this publication can be found in the Appendix 3.1.

9. Florian Heimgärtner, Sascha Heider, Thomas Stüber, Daniel Merling, and Michael

Menth. Load Profile Negotiation for Compliance with Power Limits in Day-

Ahead Planning [HHS+19]. International ETG-Congress 2019, Esslingen, Ger-

many, pp. 1–6, 2021. The author version of this publication can be found in the

Appendix 3.2.

x

1 Introduction & Overview

Resource management is a generic term for the process of determining how some lim-

ited set of resources can be employed efficiently and with the most benefit. Typical

resources in communication networks are transmission bandwidth and exclusive ac-

cess to a medium. Energy systems feature different resources such as roof-top PV

power and heat storage. However, despite the different nature of the featured resources,

similar methods can be applied to problems from both domains. This thesis focuses

mainly on scheduling problems, i.e., problems about planning the usage of resources in

time.

In the following, we give an overview of the research presented in this thesis. First, we

introduce the research objectives. Then, we describe the research context. Finally, we

discuss the major results and findings.

1.1 Research Objective

Distributed systems combine resources of logically separate units, e.g., network de-

vices or production machines. The usage of these resources must be coordinated to

gain some benefit or to operate the distributed system at all. This coordination can be

done decentrally, i.e., every unit decides for itself how it should operate, or centrally,

i.e., a central process plans the usage of resources. This thesis focuses on the latter

case, i.e., planning problems in distributed systems with central control. These prob-

lems are tackled with established formal methods from the scheduling and optimization

domains. We remark that this thesis does not propose new formal methods, but that ex-

isting methods are applied to problems from novel application. These methods are

employed to conduct quantitative evaluations for complex distributed systems. The re-

search objective of this thesis is to improve the state of the art in planning algorithms

for two kinds of distributed systems and to gain understanding about these systems by

rigorous evaluation.

1

1 Introduction & Overview

The first objective is the development and evaluation of scheduling algorithms for novel

applications in power systems. Volatile energy prices, renewable power production, and

techniques denoted as demand side management result in incentives to shift energy-

intensive tasks in time. The presented scheduling algorithms aim to reduce energy

costs or consumption by leveraging flexibility on when these tasks are executed.

The second objective is the development of scheduling and optimization algorithms

for novel applications in communication networks. This objective is divided into two

categories. First, we investigate scheduling algorithms for Time-Sensitive Networking

[80216]. Time-Sensitive Networking is an enhancement for bridged Ethernet networks.

It enables the scheduling of frame transmissions in time to give real-time guarantees for

individual streams and frames. Second, we evaluate novel protocols for stateless mul-

ticast transmissions. To that end, we develop optimization algorithms to use these pro-

tocols efficiently. We investigate Bit Indexed Explicit Replication (BIER), a stateless

multicast protocol proposed by the IETF [WRD+17], and Segment Encoded Explicit

Trees (SEET), a novel approach proposed in this thesis.

1.2 Research Context

The research presented in this thesis has been funded by different research projects

by the German Federal Ministry of Education and Research (BMBF) under support

codes 16KIS1161 (Collaborative Project KITOS), and the German Federal Ministry

for Economic Affairs under support code 16KN039521 (ZIM). Further, some work has

been funded by the Deutsche Forschungsgemeinschaft (DFG) under grant ME2727/1-

2. The published versions of the publications in the appendix indicate which work has

been funded by which research project.

All research was carried out in collaboration with colleagues. A description of the

contributions that my coworkers and I made to the individual works can be found in the

appendix.

1.3 Research Results

This thesis comprises 6 publications and three works that are currently under review.

All publications can be found in the appendix. Chapter 2 summarizes and presents the

2

1.3 Research Results

research results of these publications. For each publication, the problem description

and findings are presented. In the following, an overview of the research is given.

1.3.1 Energy Systems

The increasing deployment of renewable energy sources results in fluctuations in the

production of electrical energy. Combined with time-dependent demand profiles for

electrical energy, this leads to volatile energy prices over the course of a day due to

demand and supply. Large consumers can benefit from these price fluctuations by par-

ticipating in power exchanges, i.e., they order energy for times when it is cheap. We

remark that times with low energy prices correspond to overproduction of energy due

to renewable energy sources. The overproduction must be consumed to prevent harm

to the power grid. If energy-intensive tasks can be shifted to these times, energy costs,

i.e., money, can be reduced and the adverse effects of overproduction are mitigated.

However, most energy-intensive tasks do not run in isolation but depend on other tasks

in larger production processes.

The planning of all tasks in such processes is a complex scheduling problem. In Stüber

et al. [SHM19], we show that deciding whether a schedule for a production process

exists is an NP-complete problem. However, we are not only interested in finding some

schedule for production processes, but we also want to find a schedule that minimizes

energy costs. Thus, we apply Mixed Integer Linear Programming (MILP), an estab-

lished method from mathematical optimization. We reduce the problem of computing

an optimal production schedule to MILP solving, i.e., for a given production process we

construct a MILP that captures the solution space of the scheduling problem instance.

The work of Stüber et al. [SHM19] (cf. Appendix 1.1) presents this construction.

Additionally, we employ the constructed MILPs in a case study to evaluate the possi-

ble energy cost savings of a cement plant. This study reveals that about 8-12% of the

energy costs can be saved by shifting energy-intensive tasks in time. Thus, the study

demonstrates that formal methods can contribute to the energy transition. This work is

discussed in Section 2.1.1.

The scheduling model of Stüber et al. [SHM19] is rather general and can be applied to

other problems. We employ the construction with slight modifications to schedule the

operation of heat pumps in domestic buildings in [STM23] (cf. Appendix 2.1). German

politics promoted the deployment of heat pumps and PV panels in single family homes

during the last decade. By self-consumption of roof-top PV energy, heat pumps can

3

1 Introduction & Overview

be operated more efficiently. We employ the MILP model to compute schedules that

minimize additional energy purchase from the grid. However, lifetime and maintenance

costs of heat pumps depend on the number of on/off cycles per year. Thus, we consider

a multi-criterion optimization problem with short-term goal (minimize grid energy) and

long-term goal (minimize on/off cycles). The two optimization goals are contradictory.

We show that both goals can be balanced even though only short-term scheduling is

possible during operation. Additionally, we quantify the additional energy costs and

on/off cycles imposed by using forecasts instead of ground truth. We demonstrate that

even a naive forecasting strategy can give good results with rather small penalties. Thus,

formal tools can be applied successfully for the heat transition. This work is discussed

in Section 2.1.2.

1.3.2 Communication Networks

At first glance, scheduling problems in communication networks seem to have few

in common with energy systems. They utilize other resources and feature different

constraints. However, scheduling is the process of determining when the available

resource should be employed. The exact nature of resources does not matter from

an abstract point of view in many cases. Thus, similar methods can be applied for

scheduling problems in energy systems and communication networks.

1.3.2.1 Time-Sensitive Networking

Time-Sensitive Networking (TSN) is a set of standards that enhance bridged Ethernet

networks for reliable communication with real-time requirements. Examples for real-

time requirements are bounded latency and jitter for individual streams. TSN offers

features for traffic scheduling. That means that the transmission of individual frames

can be planned at sending and forwarding nodes such that real-time requirements are

met. An introduction about TSN can be found in Section 2.2.1. The standards only

describe the mechanisms needed for traffic scheduling but omits to define a scheduling

algorithm. However, there is a large body of research that proposes more than 100

algorithms for this purpose.

The first contribution of this thesis with respect to TSN is a rigorous literature study

about these algorithms. We discuss the main ideas and findings of each research work.

4

1.3 Research Results

To that end, we classify research works by the respective major topic and the consid-

ered problem variation. For instance, works that focus on scheduling in presence of

other traffic classes are discussed together. We give a tutorial about TSN and common

algorithmic methodologies used in the literature to make the survey self-contained. Ad-

ditionally, we compile important information about the results of all works in tabular

form, e.g., network topologies, numbers of streams, and objective functions. Finally,

we make recommendations for better scientific practices and highlight open problems.

This survey is discussed in Section 2.2.2.

Based on the literature study we identified the lack of a quantitative comparison study

as an important open problem. Many of the algorithms solve the same problem varia-

tion and only differ in the employed methodology. However, most researchers compare

their algorithms only to outdated algorithms of themselves. Additionally, problem in-

stances are neither described sufficiently nor published. To overcome these problems,

we implement 11 well-known algorithms from the literature and perform extensive per-

formance evaluations. To that end, we develop a set of problem instances for various

parameter studies. The evaluations show that no algorithm is clearly superior over all

other algorithms with respect to the metrics considered. However, we state recommen-

dations about which algorithm to implement with respect to efficiency and implemen-

tation cost under different conditions. This work is discussed in Section 2.2.3.

Finally, we propose a scheduling algorithm based on MILPs that solves the scheduling

problem under realistic conditions. In the context of the KITOS project, we found that

most scheduling algorithms do not produce valid schedules for real hardware bridges,

i.e., real-time requirements are violated. This is due to undesired non-deterministic ef-

fects that cannot be eliminated in practice. For instance, the clocks of different devices

cannot be perfectly synchronized, and processing delays are neither constant nor deter-

ministic. Additionally, the number of available GCL entries required to implement a

schedule is limited in bridges. We propose an algorithm that computes robust sched-

ules that can be implemented with a given number of GCL entries, i.e., all real-time

requirements are guaranteed to be met even in case of non-deterministic effects. We

demonstrate that a common countermeasure from literature, i.e., the introduction of

large gaps between frames, imposes significant waste of bandwidth compared to the

presented approach. This work is discussed in Section 2.2.4.

5

1 Introduction & Overview

1.3.2.2 Multicast Protocols

Multicast denotes the concept of sending a message from one sender to multiple re-

ceivers. IPMC is the dominating multicast protocol on the Internet. It reduces packet

transmissions compared to IP unicast by transmitting at most one packet copy per link.

However, it requires the signaling of forwarding trees per multicast group and forward-

ing nodes must hold state. Thus, IPMC imposes significant overhead. The IETF pro-

posed the stateless multicast protocol Bit Indexed Explicit Replication (BIER) for this

reasons. BIER is a novel protocol that encodes receivers of a packet in a bitstring in the

packet’s header. The routing underlay of IP is employed to forward packets based on

the bitstring. Thus, no signaling is required for forwarding trees of individual multicast

groups. An introduction about BIER can be found in Section 2.2.5. Due to technical

restrictions, the length of a packet header and thus the bitstring is limited in forwarding

hardware. Therefore, the set of receivers in a network (BIER domain) must be divided

into subsets (BIER subdomains) such that the header size is sufficient to represent all

nodes in a subdomain. If a packet should be sent to receivers in different subdomains,

one packet per domain must be sent. Thus, the partitioning of a network into subdo-

mains affects various performance metrics such as the number of generated packets

and the traffic transmitted in the network. We propose an algorithm based on greedy

hill climbing that optimizes the partitioning of a network into subdomains. Addition-

ally, we show that the heuristic computes near-optimal results in small networks. We

conclude that we can employ the heuristic to evaluate the BIER mechanism itself. We

show that while BIER imposes additional traffic compared to IPMC, it reduces traffic

compared to IP unicast significantly. This work is discussed in Section 2.2.6.

Second, we present Segment Encoded Explicit Trees (SEET), a novel multicast proto-

col that offers similar advantages over IPMC than BIER but which also features tree

engineering. SEET encodes the forwarding tree of a packet in the packet’s header in so-

called recursive units. We give an algorithm to construct the headers for SEET packets.

Additionally, we present a quantitative comparison of SEET and BIER. We show that

SEET outperforms BIER under most conditions even though BIER does not feature

tree engineering. This work is discussed in Section 2.2.7.

6

2 Results & Discussion

This chapter summarizes and discusses the results of this thesis. Research results about

algorithms for resource management in energy systems are elaborated in Section 2.1.

We present a scheduling algorithm for production processes, evaluate forecasting mod-

els, and optimize self-consumption of PV energy with heat pumps. Afterwards, Section

2.2 presents research on algorithms for the management of resources in real-time net-

works and stateless multicast protocols. Research works in the domain of TSN are dis-

cussed in Section 2.2.1. We present an extensive survey about scheduling algorithms

for the TAS, conduct a quantitative comparison study of several seminal works, and

propose a novel scheduling algorithm to compensate for non-deterministic behavior.

Section 2.2.5 highlights research results for multicast protocols. We propose a parti-

tioning algorithm to scale BIER for large networks and a novel encoding to encode

multicast trees in packet headers.

For each presented work, it is indicated whether they are part of the core content of this

thesis or part of the additional content.

2.1 Algorithms for Resource Management in Energy Systems

The liberation of the energy markets and the transition to renewable energy sources

result in the emergence of so-called smart grids. Smart grids feature various novel

developments such as new pricing models, small-scale power generation, and demand

side control. New pricing models allow to incentivize power consumption at times with

overproduction or low consumption. Small-scale power generation can be employed to

reduce energy costs on the consumer side. Demand side control is a consequence of

the former two techniques and denotes the idea of controlling energy consumption to

gain some benefit for all relevant parties, e.g., saving energy costs for consumers and

maintaining a stable grid for grid operators. The following sections summarize research

works that use one or more of these techniques.

7

2 Results & Discussion

2.1.1 Day-Ahead Optimization of Production Schedules for Saving

Electrical Energy Costs

The section summarizes the contributions of the research work from Stüber et al. [SHM19].

This publication is part of the core content of this thesis. First, the research objective is

introduced. Then, the scenario, the data set, and the algorithmic approach are presented.

Finally, the results of the case study are summarized.

This work has been published as a conference paper at the ACM e-Energy conference

[SHM19] (cf. Appendix 1.1) in 2019. It was presented in presence at the conference

in Phoenix, AZ. Preliminary research for this publication, i.e., the development of the

algorithm, was part of my Master’s thesis.

2.1.1.1 Problem Description

Large volumes of energy are traded at power exchanges. These exchanges offer various

pricing and delivery models for different time scales. The intra-day market offers the

possibility to buy and sell electrical energy one day before delivery. The price per

MWh depends on demand and supply. Working hours on the demand side and weather-

dependent renewable energy sources on the production side result in volatile prices over

the course of a day. If energy-intensive tasks can be shifted in time, this flexibility can

be utilized to save energy costs. However, most energy intensive tasks do not run in

isolation but depend on other tasks.

A production process consists of one or more devices that operate sequentially or in

parallel. These machines consume and/or produce goods and electrical energy. The

production and consumption rates are either fixed or linear to a modulation coefficient.

Storages for different goods may be part of a production process and are the source

or destination of production devices. They can be leveraged to decouple the operation

of different devices from each other. Devices and storages are subject to various con-

straints such as maximum runtimes for devices or maximum filling states for storages.

These constraints must hold at any time. A schedule of a production process is a de-

scription of the operation of all production devices during a time interval denoted as

planning horizon. Typically, production goals state an amount of each good that should

be produced during a planning horizon. A schedule is considered valid if all production

goals do hold after the execution of the schedule.

8

2.1 Algorithms for Resource Management in Energy Systems

The goal of this work is the development and evaluation of a scheduling algorithm for

production processes. Given energy price data for the upcoming day, the algorithm

computes a production schedule that minimizes energy costs such that all production

goals are met. We use the algorithm to conduct a case study with the real production

process of a cement plant.

2.1.1.2 Concept

We describe the algorithmic approach and the model and data set used in the case

study.

2.1.1.2.1 Scheduling Algorithm Given a production process, including descriptions of

all devices, storages, and their interconnections, and an energy price forecast, we con-

struct an ILP model to compute optimized production schedules for the given process.

The main idea of the model is to split the planning horizon into discrete units denoted

as time slots. For each time slot, a production device may either run during the entire

time slot, or it does not run within the time slot at all. Therefore, the production and

consumption rates of devices are constant during a time slot, so storages are filled and

depleted at linear rates. Thus, the transition between the system state before and after

a time slot can be expressed by linear equations. The details of the model such as the

variables and a formal description of the constraints can be found in Appendix 1.1.

We integrate the ILP model in a rolling horizon approach. This means that we compute

production schedules for a planning horizon of multiple consecutive days, but use only

a small fraction, e.g., a single day, of the schedules. After executing the schedule for

this so-called control horizon, the planning horizon is shifted to start at the end of the

control horizon, and a new schedule is computed. In this way, loads can be shifted

between days and there is no incentive for the optimization to deplete storages at the

end of the control horizon.

2.1.1.2.2 Model and Data Set We conduct a case study about the savings potential of

a real cement plant with the presented algorithm. The specification of the production

process, the properties of the involved devices, and the storage sizes were obtained from

a joint research project with AVAT from Tübingen. Figure 2.1 depicts the production

process. We use real energy price data from the year 2018 of Denmark obtained from

9

2.1 Algorithms for Resource Management in Energy Systems

Schedule Total cost Abs. sav. (e) Rel. sav. (%)

Default 2,524,375.50 - -

Opt. w/o look-ahead 2,323,047.60 201,327.89 7.98

Opt. w/ 1 day look-ahead 2,258,921.07 265,454.43 10.52

Opt. w/ 2 day look-ahead 2,242,216.13 282,159.38 11.18

Opt. w/ 6 day look-ahead 2,224,976.50 299,399.00 11.86

Table 2.1: Energy costs and savings with the proposed method compared to the default

schedule in the year 2018. Adapted from [SHM19].

potential for about 200,000e or 8% of the total energy costs per year in this specific

scenario. With a small look-ahead of only one day, the saving compared to the default

schedule can be increased to 10.5%. More look-ahead does not lead to significantly

more cost savings compared to 1-day look-ahead. Additionally, forecasts for one day

in advance are realistic for use cases of the proposed model. Thus, we recommend one

day look-ahead.

Based on the rolling horizon method, we analyzed the impact of the scheduling flexibil-

ity to the savings potential. First, we showed that smaller storages lead to less energy

savings. We introduced constraints that restrict the sizes of all storages to the max-

imum filling state of the respective storage in the default schedule. While one day

look-ahead with the real storage sizes resulted in 10.52% cost savings compared to the

default schedule, the same methodology lead to only 7.56% cost savings with reduced

storages. This is due to less possibilities to shift energy intensive processes to earlier

times with lower energy prices as not enough intermediate goods for later production

stages can be produced in advance. Second, we showed that a high variability in energy

prices results in a significantly higher savings potential compared to energy prices with

low variability. To that end, we computed optimized schedules for the weeks with the

highest and lowest standard deviation of energy prices in the year 2018. While low

price variability still yields about 4% cost savings compared to the default schedule,

high price variability leads to almost 20% cost savings.

2.1.1.4 Conclusion & Outlook

In this work, we proposed a scheduling algorithm to compute optimized operation

schedules for energy-intensive production processes. We conducted an extensive case

study for a cement plant. The case study revealed that significant cost savings in the

range of 8%–12% compared to classical schedules are possible. However, we also

11

2 Results & Discussion

showed that the savings potential depends heavily on the potential to shift energy in-

tensive processes to times with lower energy prices. We conclude that day-ahead opti-

mization is a useful approach if the energy market offers price spreads and production

processes have flexibility in time.

A drawback of the presented work is the use of ground truth price data as forecasts. It

is possible that large quantitative forecasting errors still result in schedules that save a

reasonable amount of energy costs when executed. Further studies may investigate the

impact of these errors on energy savings.

The presented algorithm is not limited to production processes. For instance, it can be

leveraged to compute heat pump schedules in domestic buildings with slight modifica-

tions. We present a research work about this topic based on the proposed scheduling

algorithm in Section 2.1.2. Additionally, we quantify the impact of forecasting errors

mentioned above in this work.

2.1.2 Minimizing Grid Electricity Consumption and On-/Off-Cyles for

Heat Pumps in Single-Family Homes with PV Panels

The section summarizes the contributions of the research work from Stüber et al. [STM23].

This publication is part of the core content of this thesis. First, the research objective is

introduced. Then, the scenario, the data set, and the algorithmic approach are presented.

Finally, the results of the case study are summarized.

2.1.2.1 Problem Description

The German government incentivizes the installation of heat pumps in domestic homes

due to climate change and global political conflicts. Additionally, the deployment of

roof-top PV cells saw a rise over the last years for the same reasons. Self-consumption

of the generated PV power can be employed to reduce the operation costs of a heat

pump. However, PV energy is not sufficient to fulfill all demands in domestic homes

such as consumer electronics, heat production, and domestic hot water (DHW) pro-

duction. Moreover, PV production depends on weather, daytime, and season, and may

vary considerably over the course of a day. Thus, computing operation schedules for

the heat pump that minimize the additionally purchased grid energy is a challenge. To

make matters worse, frequent on/off cycles reduce the lifespan of a heat pump. Mini-

mizing the purchased grid energy increases the number of on/off cycles. This is due to

12

2.1 Algorithms for Resource Management in Energy Systems

DHW tank

Floor heating

Immersion
Heater

Heat
pump

PV module

Household

Grid

Figure 2.3: Depiction of the model used in the case study. Figure from [STM23].

the heat pump being turned off for short time intervals when there are no demands to

fulfill. Instead, the number of on/off cycles can be reduced by operating the heat pump

for long time intervals. However, the heat pump may run during suboptimal times in

this case which increases the purchased grid energy. Thus, both objectives should be

balanced by a control strategy. Additionally, a control strategy for heat pumps can only

balance these objectives for a given planning horizon, i.e., a few days. Optimal con-

trol strategies for individual planning horizons may not balance the objectives when

they are concatenated to form schedules for long time intervals, i.e., multiple months

or years.

Figure 2.3 depicts a typical model of a single family home equipped with a heat pump

and roof-top PV cells. At each time instant, the heat pump is either turned off, or

operates in exactly one of two modes. The modes correspond to the production of heat

and DHW. Additionally, the heat pump can be modulated between 30% and 100% of

its maximum electrical and thermal power. Heat and DHW are stored in the building

mass and a DHW tank. All heat and DHW demands of the residents must be satisfied

from these storages. The heat pump can be operated with roof-top PV energy or with

purchased energy from the grid. However, PV generation and residential demands are

unknown in advance and must be forecast.

This work presents an algorithm to compute heat pump schedules, i.e., descriptions at

which times the heat pump should run and how it should be modulated at these times.

The algorithm computes schedules that minimize the additional purchased grid energy.

We employ the algorithm to evaluate the benefit of optimized schedules in an extensive

case study with a data set recorded from a real single family home. Additionally, we

investigate the impact of forecasts on cost reductions.

13

2 Results & Discussion

0

5

10

15

−15 0 15 30
Outside temperature (°C)

T
h

e
rm

a
l
a

n
d

 e
le

c
tr

ic
a

l
p

o
w

e
r

(k
W

)

Space heating
DHW

Electrical
Thermal

Figure 2.4: Electrical and thermal power of the heat pump with respect to outside tem-

perature. Figure from [STM23].

2.1.2.2 Concept

We modified the ILP model from [SHM19] for this specific use case. This model was

used to conduct an extensive case study for a real scenario which will be detailed in the

following.

2.1.2.2.1 Model and Data Set We consider a residential building equipped with a heat

pump and roof-top PV cells. Figure 2.3 depicts the components of the scenario used

for the case study. The electrical and thermal power of the heat pump depend on the

outside temperature. Figure 2.4 shows these relationships. The fraction of thermal and

electrical power is denoted as Coefficient of Performance (COP). Typically, the COP is

between 2 and 4 for common outside temperatures in Germany.

Heat and DHW are stored in the building mass and the DHW tank. We modelled

thermal losses as exponential decay dependent on the state of charge of the respective

storage. This means that the rate at which a storage is drained is the fill state multiplied

by a constant factor. The peak power of the PV installation is 5 kW. An immersion

heater with 5 kW thermal power can be used to produce DHW if the heat pump is

unable to fulfill all demands sufficiently.

We use a data set recorded for a real single family home in Düsseldorf during the

year 2018. The data set consists of time series for outside temperature, PV generation,

electrical demand, heat demand, and DHW demand with a resolution of 15 minutes per

data point. The data set was obtained in an informal cooperation with Prof. Bernd

Thomas from Reutlingen University.

14

2.1 Algorithms for Resource Management in Energy Systems

2.1.2.2.2 Scheduling Algorithm We employed the MILP model from [SHM19] and

modified it to compute heat pump schedules. To that end, we modelled heat and DHW

as production goods that can be consumed in continuous units when requested by the

residents. However, the heat pump uses electrical energy to generate heat and DHW,

but the original model in [SHM19] does not allow electrical energy as production good.

This is due to the nature of electrical energy which must be consumed at exactly the

times it is produced. Additionally, electrical power is combined from multiple sources,

i.e., the PV cells and the power grid, and the consumption from the grid should only be

used for the residual power that cannot be served by the PV cell. However, the required

modifications are minimal. A description of the model can be found in Appendix 2.1.

2.1.2.3 Results

We conducted an extensive case study with the model and data set from the single

family home in Düsseldorf. The case study evaluated the required grid energy and

on/off cycles per year under various conditions. We started with a very idealized model

and successively added more realistic features and limitations. In this way, we were

able to quantify the penalty of each of these features and limitations individually. All

evaluations were conducted for heat pumps with and without power modulation as not

all heat pumps have modulation capabilities. In the following, we will always give

results for heat pumps without modulation first, followed by the respective result for

heat pumps with modulation. All results obtained without forecasts are compiled in

Table 2.2.

Variant

W/o modulation W/ modulation

Grid energy

(kWh)

On/off

cycles

Grid energy

(kWh)

On/off

cycles

Entire year (min. grid energy) ≥ 4011 – 3897.47 600

Entire year (min. on/off cycles) – ≥ 3 – ≥ 75

Rolling horizon (min. grid energy) 4078.91 1332 3901.59 1458

Rolling horizon (min. on/off cycles) 7975.60 256 7635.27 194

Rolling horizon/weighted sum, C=5

kWh
4478.52 239 4239.23 150

Table 2.2: Required grid energy and on/off cycles for optimized heat pump schedules

with and without modulation. Adopted from [STM23].

We started by computing optimized schedules with the entire year as planning horizon

and ground truth as forecast for future demands and PV generation. We conducted one

optimization to estimate the minimum required grid energy, and another optimization

to estimate the minimum required number of on/off cycles. While we computed the

15

2 Results & Discussion

minimum required grid energy to be 4011 kWh and 3897 kWh, we were not able to es-

timate the number of required on/off cycles due to computational limitations. However,

optimizing an entire year at once is not reasonable in practice as demand and supply

of energy cannot be known so far in advance. Thus, we employed the rolling horizon

approach from [SHM19] with a planning horizon of 3 days.

Like the first optimization of an entire year, we used the rolling horizon approach once

to minimize grid energy consumption, and once to minimize on/off cycles. The eval-

uation revealed that considering only a single objective yields poor results for the re-

spective other objective. Partially, this can be explained by the fact that both objectives

are contradictory. Reducing the number of on/off cycles per planning horizon results in

the operation of the heat pump at times that are not beneficial. Similarly, minimizing

the grid energy consumption results in frequent on/off cycles to only operate the heat

pump at the most beneficial times. Therefore, both objectives must be balanced.

We employed weighted sum optimization to overcome this problem, i.e., we used a

linear combination of both objectives with the rolling horizon method. We evaluated

some weights and found a weight of 5 kWh per on/off cycle to be a good tradeoff be-

tween both objectives. Intuitively, this can be interpreted in the following way: an

additional on/off cycle of the heat pump is only justified if at least 5 kWh grid energy

consumption can be saved by allowing the additional on/off cycle. The weighted sum

method resulted in less on/off cycles (239 and 150) than the rolling horizon approach

with grid energy minimization (1332 and 1458), and less grid energy consumption

(4478 and 4239 kWh) than the rolling horizon approach with on/off cycle minimization

(7975 kWh and 7635 kWh). Thus, it is able to balance the short-term goal of minimiz-

ing grid energy consumption with the long-term goal of minimizing on/off cycles.

We used ground truth as forecasts for future PV generation and heat/DHW demand

in all evaluations discussed so far. While forecasting PV generation can be reliably

done with state of the art methods, forecasting heat and DHW demand for small-scale

consumption is an open problem. Therefore, the results obtained so far were still not

fully applicable in practice. We utilized a simplistic forecasting strategy to evaluate the

costs of forecasting. The time series of the last day is repeated three times and used as

forecast. This method is known as N -day-back in the forecasting literature. Despite its

simplistic nature, it is known that this method yields good results. However, the usage

of forecasts results in forecasting errors. For instance, the forecasting of less DHW

demand than actually required results in a depletion of the DHW storage and thus de-

mands that cannot be fulfilled. We overcame this problem during schedule execution

16

2.1 Algorithms for Resource Management in Energy Systems

by moving unsatisfied demands in the next time slot and starting the heat pump imme-

diately in case the state of charge of a storage falls under a certain threshold. The heat

pump is operated until heat and DHW storage are completely filled, and finally, a new

schedule is computed with a planning horizon that starts with full storages. Addition-

ally, a new schedule is computed whenever the state of charge of a storage falls under

a certain threshold. In this way, the schedule is updated for the actual system state.

We quantified the impact of the forecast methodology on grid consumption and on/off

cycles for various thresholds. Larger thresholds resulted in less unsatisfied demand, but

also in frequent reoptimizations and thus more required grid consumption and on/off

cycles. While the penalty for additional purchased grid energy compared to ground

truth was moderate (13.1% – 22.5%), significantly more on/off cycles are required

(32% – 97.3%). This is due to the methodology of reoptimizations in case of forecasting

errors. When a storage falls below the recharging threshold, an additional on/off cycle

is introduced to refill the storages. Additionally, this run may be at a time with low PV

power generation which explains the increase in grid consumption. We showed that

this problem can partially be mitigated by installing a larger DHW storage.

2.1.2.4 Conclusion & Outlook

In this work, we presented a scheduling algorithm for computing multi-objective heat

pump schedules. The contribution of this algorithm is the capability of minimizing a

long-term objective with short-term schedules despite a conflicting short-term objec-

tive. We employed this algorithm to conduct an extensive case study for a residential

building with roof-top PV cells. We quantified the costs imposed by forecasting energy

production and consumption. We showed that even a simplistic forecasting strategy

offers significant savings compared to a naive scheduling approach. Additionally, we

discussed seemingly counterintuitive results regarding the usage of an immersion heater

that resulted from the proposed methodology.

Future works may evaluation the potential for cost savings when a battery storage is

integrated as an additional model component. A battery storage could be used to buffer

overproduction of the PV cells for later consumption. However, overproduction of PV

energy is only a matter during the summer, but heat and DHW demand are low at this

time. Battery storages can only hold a few kWh, so the overproduction of the summer

cannot be used during winter. Considering the acquisition costs of a battery storage,

further evaluations are required to justify the integration of a battery storage.

17

2 Results & Discussion

The presented work is currently under review and can be found in Appendix 2.1.

2.1.3 Comparison of Forecasting Methods for Energy Demands in Single

Family Homes

This section summarizes the research results from Stüber et al. [SHTM21]. This work

is part of the additional content of this thesis. Therefore, it is only briefly summa-

rized.

Summary

The computation of optimized heat pump schedules from Stüber et al. [STM23] (cf.

Appendix 2.1) requires forecasts for heat and DHW demands. However, forecasting

demands for single family homes is hard as they depend on the behavior of the residents

which may change from day to day. We evaluate various simple time series forecasting

strategies for heat and DHW in Stüber et al. [SHTM21]. These evaluations are based

on the data that was used in Stüber et al. [STM23]. We compare the forecasting errors

obtained from N -day-back methods, i.e., using the time series of the day N days in

the past, with linear regression models. Additionally, we employ moving averages to

smooth out random fluctuations, a common methodology in the forecasting literature.

We show that despite its simplistic nature, the 1-day-back method yields acceptable

results even without smoothing. These results motivated the use of the 1-day-back

method in Stüber et al. [STM23].

2.1.4 Load Profile Negotiation for Compliance with Power Limits in

Day-Ahead Planning

This section summarizes the research results from Heimgärtner et al. [HHS+19]. This

work is part of the additional content of this thesis. Therefore, it is only briefly summa-

rized.

Summary

In Stüber et al. [SHM19], we computed optimized production schedules for a cement

plant. The electrical energy for the cement plant was obtained at the day-ahead market.

18

2.2 Algorithms for Resource Management in Real-Time Networks and Multicast Protocols

However, the day-ahead market is only for large scale trading, i.e., small and medium

sized consumers cannot participate. Instead, they order their energy from an aggregator

which buys large quantities of power. Unfortunately, most consumers do not want to

share detailed information about their respective production process. For this reason,

they deliver load profiles to the aggregator which describe the energy demand per hour.

Not all demands can be satisfied due to power limits in the power grid. Thus, the con-

sumer units provide multiple load profiles per day such that the aggregator can select

one for each consumer. In Heimgärtner et al. [HHS+19], we propose two methods

based on linear programming for load profile negotiation in such a case. The sequential

method approves load profiles one after another. The simultaneous method approves

load profiles for all consumers at once. The evaluation shows that the sequential ap-

proach results in slightly more consumers getting their favoured load profile approved

than the simultaneous approach. However, the sequential approach can be considered

unfair as the submission order of load profiles matters.

2.2 Algorithms for Resource Management in Real-Time

Networks and Multicast Protocols

This section summarizes the research results of this thesis on management algorithms

for communication networks. It covers five publications. All five publications are

part of the core content of this thesis. First, the works about scheduling algorithms

in TSN are discussed. Then, the publications about stateless multicast protocols are

summarized.

2.2.1 Introduction to Time-Sensitive Networking

Real-time guarantees in communication networks are QoS guarantees that depend on

the elapsed physical time between events in the network. For instance, the elapsed time

between end-to-end transmission and reception of a frame is denoted as latency and

bounded latency for frames may be a real-time guarantee. TSN is a set of standards that

enhance bridged Ethernet networks for reliable data transmissions with real-time guar-

antees. The standards can roughly be categorized in standards for time synchronization,

traffic shaping and scheduling, and network management. The following section gives

a brief overview of traffic scheduling with TSN. Then, the scheduling problem of the

19

2 Results & Discussion

TAS is introduced. A comprehensive tutorial on TSN and the scheduling problem can

be found in [SOLM23] and in Appendix 1.2.

2.2.1.1 Basics

TSN is an enhancement to bridged Ethernet networks [80291] with VLAN tagging

[80218]. Devices that are sources of data transmissions are denoted as Talkers, and

devices that are destinations of data streams are denoted as Listeners. The general term

for devices that are Talker and/or Listener is end station. Bridges are network devices

that are not the source or destination of data streams, but that relay frames between

different LANs. The egress ports of a bridge may implement up to eight priority queues

for waiting frames. These queues are first-in-first-out (FIFO), i.e., frames are served in

arrival order. A so-called VLAN tag is added to the header of Ethernet frames. Among

other information, the VLAN tag contains the Priority Code Point field. This 3 bit field

is used to map frames to priority classes and thus priority queues in egress ports of

bridges.

Many applications of real-time communication networks require network devices to

have a common understanding of time to coordinate their actions. Thus, every bridge

and end station is equipped with a clock. TSN features a protocol for clock synchro-

nization denoted as generalized Precise Time Protocol (gPTP). The gPTP offers sub

microsecond precision for networks with a diameter of at most 7 hops when imple-

mented properly.

Traffic shaping techniques distribute frame transmissions in time. They are used to

reduce buffering and congestion in a network due to traffic bursts. TSN offers various

traffic shaping mechanisms, e.g., the so-called Credit-Based Shaper (CBS) in IEEE

802.1Qav [80210]. The enhancement for scheduled traffic defined in IEEE 802.1Qbv

[80216] allows the implementation of the so-called Time-Aware Shaper (TAS) and is

the most important feature of TSN for this thesis. Figure 2.5 depicts the components

of the TAS. The enhancement adds a so-called transmission gate to each of the eight

priority queues of an egress port. A transmission gate is in one of two states at any

given time. These states are denoted as open and closed. Frames of a queue with a

closed gate cannot be dispatched, i.e., only frames from queues with an open gate are

eligible for transmission. The states of the eight transmission gates of an egress port are

time controlled by a so-called Gate Control List (GCL). A GCL entry contains a time

interval and a bitvector indicating the state of all eight gates of the respective egress port

20

2.2 Algorithms for Resource Management in Real-Time Networks and Multicast Protocols

Transmission Selection

G G G G G G G G

TSA TSA TSA TSA TSA TSA TSA TSA

T1: 10000000
T2: 01000000

...

Gate Control List

Frame Ingress (Filtering, Policing, ...)

Timer

Switching Fabric

Frame Egress

Figure 2.5: Processing pipeline of a bridge with the enhancement for scheduled traffic.

Adopted from [SOLM23].

in the stated time interval. Thus, individual streams or traffic classes can be protected

by not allowing other frame transmissions at the same time. GCL are periodic, i.e., the

first entry is executed again after the time interval of the last GCL entry has passed.

By synchronizing all clocks in a network, selecting transmission offsets at end stations

for frames, and computing appropriate GCLs for all bridges in a network, it is possible

to guarantee per stream real-time requirements. The process of computing transmission

offsets at end stations and GCLs for bridges is denoted as traffic scheduling. While

IEEE 802.1Qbv defines the mechanism needed to implement traffic scheduling, no al-

gorithm is specified to compute transmission schedules. The following section defines

the traffic scheduling problem of the TAS.

2.2.1.2 The Scheduling Problem

The task of the scheduling problem is to find a traffic schedule for a given network

topology and a set of data streams with real-time requirements.

21

2 Results & Discussion

2.2.1.2.1 Input The network topology is given as a graph G = (V,E). The vertices

in V correspond to the bridges and end stations of the network. The edges in E corre-

spond to the links in the network. Links are full-duplex, i.e., they can be used for data

transmissions in both directions at the same time. Bridges, end stations, and links may

be equipped with additional properties such as propagation delays, processing delays,

and transmission bandwidths. A data stream is the logical unit of one or more frames

that transmit a message from an end station to one or more end stations. Thus, a data

stream may be unicast or multicast. Data streams are periodic, i.e., they are repeated

after some predefined and fixed time. This time is denoted as period. The description

of a data stream features at least the period, the size of its frames, the number of frames

per period, the source of the stream, and the set of receivers. Additionally, a deadline

is typically given as real-time requirement. The deadline of a stream is the time all

frames must have arrived at all receivers of the stream. The stream paths may be part of

the input or subject of the scheduling problem. The literature considers various prob-

lem variations and modifications to the scheduling problem. The most important such

variations are discussed in Section 2.2.2.2.

2.2.1.2.2 Remark About Periods Not all streams of a problem instance must have the

same period. In this case, multiple repetitions of some or all streams must be considered

to obtain a periodic schedule. The literature defines the so-called hyperperiod H to be

the least common multiple of the periods of all streams in a problem instance. The

hyperperiod is the period of the resulting traffic schedule. Thus, a stream with period

p is represented by H
p

repetitions in the schedule. Deadlines are given relative to the

start of a hyperperiod. Likewise, the times in the resulting schedule are stated relative

to the start of a hyperperiod. An equivalent interpretation of this modelling approach is

that a stream with period p is replicated H
p

times with each copy having period H . We

will use this approach for simplicity and omit the handling of stream repetitions in this

thesis.

2.2.1.2.3 Output A traffic schedule constitutes of transmission times of all frames of

all data stream at their respective source node. Additionally, a schedule contains GCLs

for all egress ports in the network topology. A schedule is considered valid if all frames

arrive before their respective deadline when all end stations and bridges adhere to the

transmission times and GCLs stated by the schedule.

22

2.2 Algorithms for Resource Management in Real-Time Networks and Multicast Protocols

2.2.2 A Survey of Scheduling Algorithms for the Time-Aware Shaper in

Time-Sensitive Networking (TSN)

This section summarizes the contributions of the research work from Stüber et al.

[SOLM23]. This publication is part of the core content of this thesis. First, the re-

search objective is introduced. Then, the findings are summarized.

This work has been published as a journal paper in IEEE Access [SOLM23] (cf. Ap-

pendix 1.2) in 2023.

2.2.2.1 Research Objective

The enhancement for scheduled traffic IEEE 802.1Qbv [80216] introduced the capa-

bilities for traffic scheduling in TSN. The traffic shaping mechanism that can be im-

plemented with this enhancement is denoted as Time-Aware Shaper (TAS) (cf. Section

2.2.1). However, the standard only defines the details required to implement traffic

scheduling from a technical point of view. An algorithm to compute traffic schedules

is not specified in the standard. A large body of literature has developed since 2016

proposing algorithms for this purpose.

The goal of this work was to review the state of the art of scheduling algorithms for the

TAS. We give a tutorial about TSN and common scheduling methodologies employed

in the literature. Then, we develop a categorization of research works based on the con-

sidered problem variation. We compile important information, e.g., network topology,

number of streams, and objective function from the reviewed works in tabular form.

Finally, we present open problems not sufficiently covered in the literature so far.

We only present the categorization of research works and the open problems in this

section. A detailed discussion of the reviewed works can be found in Stüber et al.

[SOLM23] and Appendix 1.2.

2.2.2.2 Categorization

Many research works consider modified variants of the scheduling problem presented

in Section 2.2.1.2. These problem variations add additional constraints, e.g., bounded

number of available GCL entries, or degrees of freedom, e.g., the selection of stream

paths. Additionally, the presented evaluations may focus on specific aspects, e.g., queu-

ing delays. We classified research works based on these features. Figure 2.6 presents

23

2.2 Algorithms for Resource Management in Real-Time Networks and Multicast Protocols

approach.

2.2.2.2.2 Considerations for Other Traffic Classes There may be other traffic classes

besides TT traffic in a TSN network. For instance, Audio Video Bridging (AVB) and

Best Effort (BE) traffic can be combined with TT traffic. The quality of service (QoS)

of these traffic classes depends on the schedule for TT traffic. Some research works

integrate such considerations. For example, they introduce gaps between TT frames to

allow the frequent transmission of AVB frames.

2.2.2.2.3 Queuing Queuing is a controversial topic in the TSN scheduling community.

If multiple frames are scheduled to wait at the same time in the same queue, sponta-

neous frame loss or the failure of a Talker may lead to the transmission of another

frame at the wrong time. For this reason, some works do not allow queuing delays at

all. Other works do not allow frames of different streams to wait in the same queue at

the same time. We classify research works that introduce novel ideas about the interplay

of scheduling and queuing in this category.

2.2.2.2.4 Reliability Due to non-deterministic behavior of hardware devices, the exe-

cution of a schedule may fail, i.e., a frame may arrive after its deadline. For instance,

spontaneous frame loss may occur with a small but not vanishing probability. Other

examples for failures are bridges that drop valid frames, single link failures, and Talk-

ers that do not sent scheduled frames due to a software fault. However, many use cases

of TSN cannot tolerate any undesired behavior at all due to safety requirements. Some

research works compute schedules that consider such fault scenarios. Most of the pro-

posed approaches employ Frame Replication and Elimination for Reliability (FRER)

[80217b]. Redundant copies of the same frame are sent via disjoint paths (1+1 pro-

tection). For instance, the computed schedules do not result in undesired behavior in

case of a single link failure as at least one copy of the frame still arrives. However, if

multiple frames arrive at the respective Listener, the redundant copies are filtered.

2.2.2.2.5 Dynamic Reconfiguration Not all use cases of TSN are static. Streams may

be added or removed on the fly when the system is running. Some works propose

methods to modify schedules without the need to reschedule all streams. Other works

present novel ideas on how schedule updates can be deployed when the system is run-

ning without frame losses.

25

2 Results & Discussion

2.2.2.2.6 GCL Synthesis Most research works do not state explicitly how GCLs are

constructed. Instead, they describe an algorithm that plans frame transmissions in time.

GCLs are computed with a postprocessing in these works. However, the number of

GCL entries is limited in hardware bridges and GCLs may be used to implement other

features, e.g., the protection of different traffic classes from each other. We group re-

search works in this category whether they construct GCLs explicitly or propose novel

ideas about how GCL may be employed.

2.2.2.2.7 Task Scheduling Processes on Talkers and Listeners are denoted as tasks.

These tasks run on a real-time operating system and produce and consume messages

that are transmitted via TSN. Thus, the execution of tasks must be scheduled such that

their schedule is consistent with the TSN schedule. Research works that schedule tasks

and frames simultaneously are grouped in this category.

2.2.2.3 Shortcomings in the Literature

While reviewing the current state of the art in scheduling for the TAS, we found some

shortcomings that applied to many published works. Most research works focus on

the evaluation of runtimes of the proposed algorithms, i.e., experiments are conducted,

and the wall-clock time needed to compute a schedule is measured. We acknowledge

that scalability is an important property when an algorithm must be selected for a real-

world use case. However, schedule properties, e.g., average latencies or GCL usage, are

neglected in many of these works and they do not analyze details of high quality sched-

ules. We also spotted questionable evaluation methodologies. For instance, some works

report evaluation results individually per problem instance for a small number of prob-

lem instance (less than 10). Thus, reported results are more of anecdotal character and

create the impression of cherry picking to support a specific conclusion. Additionally,

some works do not describe problem instances sufficiently, e.g., important properties

such as the network topology are missing.

Another shortcoming in many works is the lack of comparison to similar works. Most

authors compare their new algorithms only to their own algorithms from previous years

and conclude that their new algorithm is even better than their old one. Problem in-

stances used for evaluation are not published such that results cannot be reproduced.

Therefore, it is hard to compare research works from different authors. We tried to over-

26

2.2 Algorithms for Resource Management in Real-Time Networks and Multicast Protocols

come this shortcoming by evaluating 11 well-known algorithms on a publicly available

set of problem instances in [SEOM24] and Appendix 1.3.

Another subtle shortcoming in the literature is the use of non-standard vocabulary. TSN

is an extension to bridged Ethernet networks and uses the same specific jargon in its

standards. Additionally, TSN is a layer 2 technology, not a layer 3 technology. Thus,

the correct terms are frame, stream, and path selection, not packet, flow, and rout-

ing. Devices that relay frames are denoted as bridges, sources and destinations of data

streams are end stations.

2.2.2.4 Open Problems

We concluded the survey with a discussion of open problems. More elaboration on

these problems can be found in [SOLM23, Section VII.B]. While some works consider

scheduling in the presence of non-scheduled traffic such as AVB and BE traffic, it

is still a major open problem to combine TAS scheduling with multiple other traffic

classes simultaneously. Additionally, different traffic classes require the use of guard

bands and their effect is mostly ignored in the literature so far. There are many works

that consider the joint routing problem, but a scalable exact solving approach was not

developed so far. Although few works allow multicast streams, no evaluation results

about the impact of multicast streams are reported in the literature.

Current works restrict the usage of queuing to prevent certain results of non-deterministic

behavior. However, these restrictions are not mandatory with respect to the TSN stan-

dards and the performance impact compared to unrestricted queuing is unknown. Other

causes of non-determinism are completely ignored, e.g., jitter in processing and prop-

agation delays. TSN offers a standard denoted as Per-Stream Filtering and Policing

(PSFP) in IEEE 801.1Qci [80217a] that allows to protect a schedule from unexpected

frames. However, there is currently no joint approach for TAS scheduling and PSFP

available. Additionally, PSFP may be used to implement security features such as pro-

tection against Denial-of-Service (DoS) attacks in the future.

TSN is a rather new technology for layer 2 communication in industrial applications.

Typically, these applications are designed for years or decades and almost all devices

deployed today are still not capable for TSN. Thus, it is an important open problem to

integrate legacy devices in TSN networks as such devices will be around for quite some

time.

27

2 Results & Discussion

Finally, the major open problem in scheduling for the TAS is to develop a single ap-

proach that covers all features offered by TSN. TSN consists of more than 10 standards

which can be used together in theory. Unfortunately, all algorithms in the literature

cover only a small subset of these standards, often none except for the enhancement

for scheduled traffic [80216]. For instance, there is no research work that allows to use

more than 2 different traffic shapers simultaneously, but TSN offers at least 5 different

shapers at the time of writing this thesis. The long-term goal for future approaches

should be to integrate more or even all standards into a converged approach to enable

users to exploit the full potential of TSN.

2.2.2.5 Conclusion

In this work, we presented a rigorous overview of the state of the art in computing

traffic schedules for the TAS. We presented a self-contained tutorial about various TSN

standards, and commonly used scheduling methods from the literature. We summarized

important findings and compiled common features of the surveyed works extensively.

Additionally, we proposed suggestions for improvements for future works and high-

lighted open problems not discussed in the literature so far.

A potential shortcoming of the presented work is the lack of comparing evaluations.

However, we have conducted a survey and not a systematic review which implies that

evaluations are not in scope. Unfortunately, the literature lacks an comparison study

that evaluates the advantages and shortcomings of state of the art scheduling meth-

ods. Most authors do not compare their algorithm to other works or only to algorithms

developed by themselves before. However, we conducted research to fill this gap in

[SEOM24] which is presented in the next section.

2.2.3 Performance Comparison of Scheduling Algorithms for

Time-Sensitive Networking (TSN)

This section summarizes the contributions of the research work from Stüber et al.

[SEOM24]. This publication is part of the core content of this thesis. First, the re-

search objective is introduced. Then, the data set is explained and an overview of the

compared algorithms is given. Finally, the results of the case study are summarized.

This work was accepted for publication in the journal IEEE Transactions on Industrial

Informatics (TII) and can be found in Appendix 1.3.

28

2.2 Algorithms for Resource Management in Real-Time Networks and Multicast Protocols

2.2.3.1 Problem Description

The survey of Stüber et al. [SOLM23] revealed that the literature proposes more than

100 scheduling algorithms for the TAS. These algorithms differ in the employed solving

methodology, e.g., ILP solving, genetic algorithms, or Tabu search, and the modelling

assumptions, e.g., whether queuing delays are allowed or not. However, most of the

algorithms were constructed to solve the same problem, i.e., finding a valid schedule

for a set of streams with real-time requirements with few or no additional constraints.

Most of the respective research works omit quantitative comparisons with algorithms

from other authors. For these reasons, it is hard for engineers and other practitioners to

select an algorithm for a specific use case. Thus, the first research objective of this work

is to conduct insightful parameter studies comparing well-known algorithms and to give

recommendations based on the results. We selected 11 seminal works and implemented

their algorithms according to the respective paper for these comparison studies.

Another issue in the community of TAS scheduling regards the problem instances used

for evaluations. Almost all research works do not publish their problem instances.

Thus, evaluation results cannot be reproduced or validated. To make matters worse,

many works do not describe their problem instances sufficiently. The descriptions lack

important parameters, do not describe the network topology, or do not discuss how

streams were sampled. Therefore, the second research objective of this work is the

scientifically rigorous construction of a set of problem instances that can be used by

future works. This set should cover problem instances for various parameter studies

and the problem instances must represent real-world use cases of TSN, e.g., automotive

or factory automation use cases. The set is released to the public to allow the validation

of the evaluation results by independent researchers. Additionally, authors of future

algorithms can use the reported results on these instances as baseline in a comparison

with their new approaches.

2.2.3.2 Concept

We describe the sampling of the problem instances and give a brief overview of the

compared algorithms.

2.2.3.2.1 Problem Instances A problem instance for the scheduling problem consti-

tutes of a full description of all data streams and the network topology needed as input

29

2 Results & Discussion

to compute a schedule. A parameter is a property that guides the sampling of problem

instances. Parameters can be deterministic, e.g., the number of frames, or random, e.g.,

the distribution of stream periods. We constructed sets of problem instances for various

parameter studies. All problem instances in a parameter study were sampled with the

same set of parameters except for the studied parameter. In this way it is possible to

observe the effect of changing the studied parameter in isolation. We constructed 20

problem instances per parameter configuration per parameter study. Thus, it is possible

to calculate confidence intervals for evaluation results. Each parameter study was con-

structed two times, once for sparse topologies and once for highly meshed topologies.

This allows to capture the different behavior of scheduling algorithms in these cases.

Random parameters may result in noise. For instance, frame sizes and stream periods

are random parameters that control the overall traffic volume during a hyperperiod. It

is undesirable that this affects evaluation results in a parameter study for the number

of bridges in a network topology. We sampled 40 default realizations for all random

parameters to overcome this issue. These default realizations were used whenever ap-

plicable. In terms of the previous example, 40 default realizations for frame sizes and

stream periods were constructed and reused in the problem instances of all numbers

of bridges. Thus, the effect of random noise is eliminated when comparing results for

different numbers of bridges.

The possible values of the parameters were chosen to resemble actual use cases of TSN

and the current state of the art of scheduling algorithms. For instance, the set contains

problem instances with stream periods that represent automotive [KZH15], avionics

[BSN+14], and factory automation [Ind18] use cases.

We sampled an additional set of infeasible problem instances with 100 streams per

instance. Each of these problem instances contains a set of 10 streams such that the

respective problem instance is infeasible with these streams but becomes feasible when

any of the 10 streams is removed.

Table 2.3 compiles the parameters and their possible values used to construct parameter

studies. We remark that two topologies are denoted as default values for the topology

parameter. Random regular graphs (RRGs) are the default parameter for parameter

studies in highly meshed topologies. Ring topologies are the counterpart for sparse

topologies.

30

2.2 Algorithms for Resource Management in Real-Time Networks and Multicast Protocols

Parameter Possible values

#Bridges 10, 20*, 50, 100

#Frame instances 250, 500, 1000*, 2000, 4000, 8000

Topology Line, ring*, star, RRG*, scale-free

#Frames/period 1*, 2, 4

Frame size fs Random*, 84B, 813B, 1542B
Stream periods Ts {0.5ms}, {1ms}, {1 ms, 2 ms}*,

{20ms, 50ms, 100ms}, {2ms, 16ms, 128ms}
Latency 0.25, 0.5, 1* × the respective stream’s period

#Listeners/stream 1* (unicast), 2, 4, 8, 16

Table 2.3: Parameters and their possible values. Default values are bold and indicated

by “*”. Table adopted from [SEOM24].

2.2.3.2.2 Algorithm Selection We selected the algorithms such that every important

solving methodology was represented by at least one algorithm. Additionally, we pre-

ferred seminal works from the literature which influenced many recent works. Dürr

et al. [DN16] proposed an ILP (ILP-NoWait) and a Tabu heuristic (Tabu) for no-wait

scheduling. In contrast, Craciunas et al. [COCS16] presented an SMT-based approach

(SMT-INC) that allows frame queuing. This approach was enhanced for scalability by

Pozo et al. [PSRNH15] (SMT-DEC). Gavrilut et al. [GZRP18] and Jin et al. [JXG+20]

proposed problem specific heuristics (GRASP and M2F) that allow frame queuing. Up

to this point, all algorithms assumed stream paths as fixed prior to scheduling.

A genetic algorithm (GenAlg) and a list scheduler (HLS) for no-wait scheduling with

joint routing were presented by Pahlevan et al. in [PO18] and [PTO19]. Falk et al.

[FDR18] proposed an ILP approach (ILP-JR-1) to compute paths and no-wait schedules

simultaneously. Schweissguth et al. [STP+20] presented a very similar ILP model

(ILP-JR-2) with enhancements for scalability. Finally, Falk et al. [FDR20] developed a

problem specific heuristic (ConfGraph) based on the computation of independent sets

in conflict graphs.

The algorithms employ different solving methodologies, differ on the facts whether

frame queuing is supported, and whether the routing is considered as fixed prior to

scheduling. Thus, the reader might suspect that a comparison of these algorithms is

not fair. However, all algorithms were designed to solve the same problem. It is the

authors’ opinion that different design decisions compared to other algorithms are not a

fairness issue. If a methodology A can compute results with higher quality than another

methodology B in the same time or even faster, this is an advantage of A over B.

31

2 Results & Discussion

1.0

1.5

2.0

250 500 1000 2000 4000 8000
#Frame instances

R
e

la
ti
ve

 l
a

te
n

c
y

ConfGraph GenAlg
GRASP HLS
ILP−JR−1 ILP−JR−2
ILP−NoWait M2F
SMT−DEC SMT−INC
Tabu

(a) Varying number of frames sent from

Talkers.

1.00

1.25

1.50

10 20 50 100
#Bridges

R
e

la
ti
ve

 l
a

te
n

c
y

ConfGraph GenAlg GRASP HLS
ILP−JR−1 ILP−JR−2 ILP−NoWait M2F
SMT−DEC SMT−INC Tabu

(b) Varying number of bridges.

Figure 2.7: Relative stream latencies of the compared algorithms for different numbers

of frames and bridges per problem instance. Figures from [SEOM24].

2.2.3.3 Results

We conducted various parameter studies with the problem instances discussed in Sec-

tion 2.2.3.2.1 and the algorithms from Section 2.2.3.2.2. We reported comparison re-

sults about solving time, scalability, multi-threading speedup, GCL length, schedul-

ing under challenging conditions, and stream latencies. In the following, we discuss

the stream latency evaluation as an example and refer to Section VI of Stüber et al.

[SEOM24] and Appendix 1.3 for the other evaluations.

The average stream latency is an important quality measure for schedules as most use

cases of TSN require ultra-low latencies. However, latencies of problem instances with

different topologies are hard to compare. Thus, we introduced relative stream latencies

to overcome this problem. To that end, we calculated stream latencies relative to the

minimum required path delay of a stream, i.e., the sum of processing, propagation, and

transmission delays along the stream’s path. We conducted two evaluations. First, we

varied the number of frames sent from Talkers, i.e., we computed schedules for 250,

500, ..., 8000 frames sent per hyperperiod from all Talkers combined. We used net-

work topologies with 20 bridges in this evaluation. Second, we varied the number of

bridges in a network topology, i.e., the size of the considered network. The number of

sent frames per hyperperiod was 1000 in this evaluation. Figures 2.7a-2.7b depict the

relative stream latencies of the computed schedules. The evaluations revealed signifi-

cant differences between the scheduling algorithms compared. Algorithms that resolve

resource conflicts by introducing queuing delays (M2F and GRASP) resulted in up

to three times higher stream latencies than necessary. Joint routing heuristics (GenAlg,

HLS, ConfGraph) yield schedules with high latencies due to longer stream paths. Tabu,

32

2.2 Algorithms for Resource Management in Real-Time Networks and Multicast Protocols

SMT-DEC, SMT-INC, ILP-NoWait, and ILP-JR-{1,2} produced schedules with mini-

mum latencies.

Based on all evaluation results, we gave recommendations about which algorithm to im-

plement in different scenarios. All the evaluated algorithms impose some drawbacks.

ConfGraph, GenAlg, and ILP-JR-{1, 2} scale extremely badly in all evaluations and

should not be used in practice. GCL entries are a limited resource in most hardware im-

plementation of the enhancement for scheduled traffic [80216]. Algorithms that result

in small GCLs are beneficial if such bridges are used. Thus, we recommend M2F and

SMT-DEC in those cases. ILP-NoWait and Tabu resulted in minimum latencies and

are preferable compared to joint routing approaches (HLS, GenAlg, ConfGraph, ILP-

JR-{1,2}) when ultra-low latencies are required. In case of frequent recomputations

of schedules, Tabu, HLS, and GRASP should be used as they find first valid solutions

fast. Finally, implementation costs may be significant for some of the algorithms. ILP

solvers are expensive and may not be available for many practitioners and some of the

algorithms are not sufficiently described in the respective research work. Thus, we rec-

ommend Tabu, HLS, SMT-DEC, and SMT-INC when costs are a limiting factor as they

can be implemented with little effort.

2.2.3.4 Conclusion & Outlook

We proposed a set of problem instances that can be used as a reference for future re-

searchers. The authors of future works can use these instances for evaluation to en-

sure reproducibility of their results. Additionally, we evaluated 11 seminal algorithms

with various methodologies on these instances. The contribution of this comparison

is twofold. First, the literature gap for a quantitative comparison of state of the art al-

gorithms is filled. Second, future authors can compare their results without effort to

existing approaches to assess the quality of their research.

A potential drawback of the presented work is the small number of metrics used to

compare schedules. However, the used metrics are just the lowest common denomina-

tor of the algorithms proposed in the literature. It is not reasonable to compare problem

variation specific objectives of algorithms that do not consider the respective problem

variation. For instance, comparing the ability of Tabu and ILP-NoWait to compute

schedules robust against frame loss is pointless as their objective functions do not con-

sider this goal and results will be random.

33

2 Results & Discussion

Future works may propose problem instances for reliability and online reconfiguration

settings. An evaluation and benchmark framework which could be the base of future

algorithms would be the next step towards reproducibility and comparability in the field

of TAS scheduling.

2.2.4 Efficient Robust Schedules (ERS) for Time-Sensitive Networking

The section summarizes the contributions of the research work from Stüber et al. [SOM24].

This publication is part of the core content of this thesis. First, the research objective

is introduced. Then, the fault model and the scheduling algorithm are presented. Ad-

ditionally, the proposed solution is briefly compared to state of the art approaches from

literature. Finally, the findings are summarized.

This work is accepted for publication in a future issue of the IEEE Open Journal of the

Communications Society journal and can be found in Appendix 2.2.

2.2.4.1 Problem Description

The enhancement for scheduled traffic [80216] allows to implement traffic scheduling

in TSN (cf. Section 2.2.1.2). A common assumption in the literature is that all devices

in a TSN network behave completely deterministically. The times of all clocks are per-

fectly synchronized, processing delays in bridges have equal duration for every frame,

frames are never lost, and race conditions cannot happen for simultaneously arriving

frames. All these assumptions may fail in practice. Disregarding these potential causes

of non-deterministic behavior may result in lost frames and missed deadlines. However,

many use cases of TSN, such as industrial automation and in-vehicle communication,

are safety critical and cannot tolerate any non-determinism.

In addition to the mentioned non-deterministic behavior, most works in the literature

make more assumptions that do not hold in practice. The number of GCL entries per

egress port is limited in hardware bridges. Thus, schedules that open and close a gate

too often cannot be deployed on hardware bridges. Even more problems arise in the

presence of other traffic classes than TT traffic. For instance, assume that BE traffic

may be transmitted during times that are not reserved for TT traffic. If a BE frame is

available for transmission in an egress port and the remaining time before the gate for

BE traffic closes is not sufficient to transmit the frame, the frame cannot be dispatched

and blocks its queue. The time interval before a gate closing event in which such a

34

2.2 Algorithms for Resource Management in Real-Time Networks and Multicast Protocols

transmission conflict may happen is denoted as guard band. In the worst case, the

transmission bandwidth during a guard band cannot be used. Thus, frequent gate events

and small time slots for non-scheduled traffic classes may waste bandwidth.

The goal of this work was to develop an algorithm that computes traffic schedules that

are robust against the discussed causes of non-determinism. That means that all frames

arrive before their respective deadline even in case of non-deterministic behavior. The

number of GCL entries used per egress port should be limited. For most problem

instances, there are many valid schedules which respect all real-time requirements. The

algorithm should maximize the remaining bandwidth for other traffic classes, i.e., the

bandwidth blocked by guard bands or scheduled traffic should be minimized.

2.2.4.2 Concept

We identified four causes of non-deterministic behavior that must be considered for

robust schedules. Based on the countermeasures for these causes, we derived a MILP

model to compute optimized schedules. The schedules are optimized for maximizing

the available bandwidth for non-scheduled traffic. This section introduces the fault

model and the countermeasures against non-deterministic behavior.

2.2.4.2.1 Fault Model The duration of processing delays in bridges is subject to jitter

due to physical effects. This may result in frames arriving earlier or later than scheduled

in an egress queue. Let σ be the maximum possible deviation from the average process-

ing delay dproc. Thus, the range of possible processing delays is [dproc − σ, dproc + σ].

We consider processing delays to be sampled uniformly from this range.

So-called race conditions are another potential fault caused by hardware limitations. If

two frames are scheduled to arrive almost simultaneously on different ingress ports of a

bridge, and both frames are put in the same egress queue, the processing order may be

non-deterministic. This may result in missed deadlines and wrong transmission times

for other frames. We denote the minimum inter-arrival times of two frames that are for-

warded by the same egress port such that their order in the egress queue is deterministic

by λ.

Time synchronization errors are caused by not perfectly synchronized clocks in network

devices. Assume device A sends a frame to a neighboring device B. Let TA and Tb be

the clock times of A and B, respectively. If TA < TB and a frame is scheduled to be sent

35

2 Results & Discussion

at some specific time from A to B, the frame would arrive earlier than scheduled from

the perspective of B relative to B’s local time. Vice versa, if TB < TA, the frame would

arrive later than scheduled at B. In the presence of GCLs, this may result in frames

getting locked and failed transmissions due to closed gates. We denote the maximum

tolerated time synchronization error with δ.

Finally, spontaneous frame losses can cause non-deterministic schedule deviations. As-

sume two frames are scheduled to wait some time in the same egress queue with a

closed gate. If the first frame was lost at a previous hop of its path, the second frame

is transmitted immediately at the time the gate is opened. Thus, this frame arrives ear-

lier than scheduled at its next hop and may delay other frames, ultimately resulting in

deadline misses in the worst case.

2.2.4.2.2 Countermeasures To compensate for processing jitter, we consider earli-

est and latest transmission times for every frame at every hop. All constraints of the

scheduling problem, e.g., that frames must arrive before their respective deadline, must

hold for the earliest and latest possible transmission and arrival times. Additionally, the

countermeasures against time synchronization errors and race conditions must consider

earliest and latest transmission times as well. The earliest and latest transmission times

are calculated by assuming a minimum or maximum possible processing delay occurs

at every hop during schedule execution, respectively.

The other countermeasures tackle multiple causes of non-determinism simultaneously.

For instance, frames must arrive before their deadline even in the latest possible case.

Additionally, frames must arrive δ before their deadline to compensate for the maxi-

mum time synchronization error. Similarly, the transmissions of two frames over the

same link must not collide, even if one frame is sent at its earliest time, the other is sent

at its latest time, and in the presence of a maximum time synchronization error.

To counteract race conditions even in the case of time synchronization errors, frame

arrivals from different ingress ports must be separated by λ + δ. Finally, the effects

of spontaneous frame losses can be limited to not affecting other frames by enforcing

so-called isolation constraints [COCS16]. These constraints enforce that only a single

frame can wait in an egress queue at any given time. Additionally, these constraints

must also hold in case of processing jitter and time synchronization errors. Thus, the

latest possible transmission time of a frame must be separated by at least δ from the

earliest possible arrival time of the next frame in the respective egress queue.

36

2 Results & Discussion

0

25

50

75

100

100 200 300 400 500 600
Streams

F
ra

c
ti
o

n
 o

f
in

s
ta

n
c
e

s
 (

%
) ERS

NRS
TS

1542 B
385 B

Figure 2.9: Fraction of admitted streams for ERS, NRS, and TS. Figure from [SOM24].

The required modifications to the MILP to compute NRS and TS can be found in the

appendix of [SOM24].

2.2.4.3 Results

We conducted a case study to demonstrate the benefits of ERS over NRS. The compar-

ison with TS quantifies the costs of robustness. All evaluations were conducted with

ring topologies, which are common in factory automation use cases [HGF+20], and

randomly generated streams. We assume bounds for time synchronization errors of

δ = 1µs, race conditions λ = 0.4µs, and processing jitter 0.15µs. These values were

derived from expert knowledge and discussions with a bridge manufacturer.

First, we evaluated the fraction of transmission capacity actually used for scheduled

traffic with respect to the bandwidth reserved for scheduled traffic. This metric is not

known in the literature so far and we denoted it as schedule density. We observed

a significant benefit of ERS compared to NRS for varying numbers of GCL entries

per egress port. This is due to the waste of bandwidth between frame transmissions.

Gaps between transmissions are larger than necessary with NRS. TS results in even less

wasted bandwidth, but these schedules may fail in practice. The difference to TS can

be considered as the cost of robustness. We consistently observed the same result for

varying frame sizes, processing jitters, and time synchronization errors.

The stream periods used in the evaluation ranged from 500µs to 1500µs. Despite the

seemingly small scale of time synchronization errors (1µs), race conditions (0.4µs),

and processing jitter (0.15µs) compared to stream periods, we observed a significant

impact to the number of admissible streams. For this evaluation, we added streams

successively to a problem instance and checked schedulability with ERS, NRS, and

TS. The experiment was repeated 20000 times for maximum sized frames, i.e., 1542 B,

and for medium-sized frames, i.e., 385 B. Figure 2.9 depicts the CCDFs of admissible

38

2.2 Algorithms for Resource Management in Real-Time Networks and Multicast Protocols

streams for both frame sizes. We observed that significantly more streams can be ad-

mitted with ERS compared to NRS. While the difference between ERS, NRS, and TS

is moderate for medium-sized frames, it is significant for large frames.

streams ERS A1 [COCS16] A2 [dSSN19] A3 [OCS18] A4 [JXG+20]

10 0.0136 0.0523 5.16 3.32 3600

20 0.027 0.15 28.6 23.7 3600

50 0.152 0.963 414 598 3600

100 0.902 8.57 647 3600 3600

200 24 438 1204 3600 3600

bridges ERS A1 [COCS16] A2 [dSSN19] A3 [OCS18] A4 [JXG+20]

5 0.537 5.1 527 3600 3600

10 0.902 8.57 647 3600 3600

15 1.26 14.1 752 3600 3600

20 1.87 23 903 3600 3600

Topology ERS A1 [COCS16] A2 [dSSN19] A3 [OCS18] A4 [JXG+20]

Ring 0.902 8.57 647 3600 3600

Line 3.35 28.1 1461 3600 3600

Star 0.445 3.73 118 3186 3600

Full-mesh 0.109 1.56 6.04 316 3600

Scale-free 0.627 4.94 409 3022 3600

Table 2.4: Computation times in seconds for different TSN scheduling algorithms.

Timeout was set to 3600 s. Table adapted from [SOM24].

Finally, we compared the proposed approach to state of the art algorithms. The algo-

rithms A1 [COCS16], A3 [OCS18], and A4 [JXG+20] feature countermeasures against

time synchronization errors and are essentially equivalent to NRS. The algorithms A2

[dSSN19], A3, and A4 restrict the GCL length to a predefined maximum length. We

measured the time needed to find an optimized schedule for various network sizes,

topologies, and stream numbers. Table 2.4 shows clearly the advantage of ERS in all

these evaluations compared to state of the art algorithms. The proposed algorithm is at

least 10 times faster than approaches without GCL synthesis (A1), and 50 times faster

than approaches with GCL synthesis (A2, A3, A4).

2.2.4.4 Conclusion & Outlook

In this work, we identified causes of non-deterministic behavior in TSN. We showed

that the solution approach from the literature for these problems results in a waste of

resources. To that end, we proposed a scheduling algorithm that computes schedules

robust against the discussed causes of non-determinism. We compared the approach

from the related work with the new algorithm in various parameter studies. All these

studies demonstrated that the presented approach is superior. Additionally, we showed

that the problem is not neglectable and results in a significant waste of resources when

39

2 Results & Discussion

handled in a naive way. Thus, we conclude that the presented algorithm is currently the

best available scheduling algorithm for TSN in presence of non-determinism. Addition-

ally, it is the only algorithm in the literature that maximizes the available bandwidth for

non-scheduled traffic.

Future works may investigate the effects of schedule deviations that result from non-

deterministic behavior. For instance, a spontaneous frame loss may imply that other

frames are sent earlier than scheduled. These frames may block other egress ports due

to reordering. In the worst case, some other frame may miss its deadline and safety

critical applications do not receive the required data in time. Preliminary results indi-

cate that even small effects can actually result in deadline misses and heavy congestion.

Thus, the contribution of this work is important and motivates future research works.

2.2.5 Introduction to Bit Indexed Explicit Replication

Multicast is the concept of sending a data stream from one source to multiple receivers.

Today, IP multicast (IPMC) is the most common protocol for multicast traffic on the

Internet. It allows a node to send an IP packet to multiple receivers along a tree such

that at most one copy of the packet is forwarded per link on the tree. However, IPMC

requires to maintain state in core nodes and the configuration of multicast groups re-

sults in signaling overhead. The IETF introduced BIER [WRD+17][MMWE18] to

overcome these drawbacks of IPMC. Instead of storing information about multicast

groups in core nodes, the receivers of a packet are explicitly encoded in a bitstring in

the packet’s header. Every possible receiver in a BIER domain is represented by one

bit position in the bitstring. If and only if a bit is set to 1, the packet is forwarded

and delivered to the respective receiver. Thus, the state in core nodes does not need to

change if a receiver joins or leaves a multicast group.

Figure 2.10 illustrates the architecture of BIER. BIER is an overlay network over IP.

That means that the IP underlay is used to determine packet paths and to forward BIER

packets. The sender of a message sends an IPMC packet to a Bit Forwarding Ingress

Router (BFIR). The BFIR encapsulates the IPMC packet with a BIER header. The bit

positions in the BIER header’s bitstring correspond to so-called Bit Forwarding Egress

Routers (BFERs) of the BIER domain. The routers in the BIER domain forward the

BIER packet to all BFERs with a 1 set at the respective position in the bitstring. Finally,

the BFERs decapsulate the IPMC packet from the BIER packet and forward the packet

via IPMC to its receivers.

40

2.2 Algorithms for Resource Management in Real-Time Networks and Multicast Protocols

2

IP
M

C

la
ye

r
BI

ER

la
ye

r
R

ou
tin

g
un

de
rl

ay

Source Receiver Receiver

BFIR BFER 1 BFER 2

BFR

1,2 1 2

Paths

Figure 2.10: Layered architecture of BIER. Adopted from [MSM23].

2.2.6 Efficiency of BIER Multicast in Large Networks

The section summarizes the contributions of the research work from Merlin et al.

[MSM23]. This publication is part of the core content of this thesis. We remark that the

first two authors contributed equally to this publication. First, the research objective is

introduced. Then, the traffic model and the heuristic algorithm are presented. Finally,

the findings are summarized.

This work has been published as a journal paper in IEEE Transactions on Network and

Service Management [MSM23] (cf. Appendix 1.4) in 2023.

2.2.6.1 Problem Description

BIER is a novel protocol for stateless multicast traffic that encodes packet receivers in

a bitstring in the packet’s header (cf. Section 2.2.5). Due to technical restrictions in

forwarding nodes, the maximum size of a packet’s header that can be processed is lim-

ited. Thus, a large BIER domain must be divided into so-called subdomains (SDs) as

the bitstring would be too long otherwise. To that end, the BIER header features a Sub-

domain Identifier (SDI) field. The SDI determines the mapping of bitstring positions

to BFERs. Thus, only the combination of SDI and bitstring controls which receivers

are addressed by a BIER packet. A consequence of the implementation with SDIs is

that a single BIER packet can only address BFERs of the same SD. If the receivers of

a message are contained in multiple SDs, a BIER packet must be sent to every SD that

contains at least one receiver. Thus, multiple BIER packets may be needed although a

single IPMC packet would be sufficient. SDs are static, i.e., they are configured once

and are not changed in favor of individual messages or multicast groups.

41

2 Results & Discussion

Not every partitioning of BFERs in SDs is equivalent with respect to various perfor-

mance metrics. For instance, larger SDs result in less packets that are sent from a

source node, but the header size of these packets is larger due to the longer bitstring.

Thus, the sum of all data transmissions in the network needed to deliver the packet may

increase even though fewer packets are sent. This example illustrates that there are

non-trivial tradeoffs when assigning nodes to SDs.

The goal of this work is twofold. We develop an algorithm that partitions a BIER do-

main into SDs. To that end, we define a performance metric for this new problem that

captures the amount of traffic transmitted in the network. We compare this algorithm

to optimal solutions obtained by an ILP. Due to the near-optimal results of the algo-

rithm for small topologies we evaluate the scalability of the BIER mechanism with the

heuristic algorithm also in large networks. We compare hop counts, traffic amounts,

link loads, and the impact of single link failures of BIER in large networks with IP

unicast and IPMC.

2.2.6.2 Concept

We proposed a simple yet effective heuristic to partition a BIER domain into SDs.

These SDs should be constructed such that the number of individual packet hops is

minimized when all nodes send a BIER packet to all other nodes. Additionally, we

presented an ILP approach for the sake of comparing the heuristic to optimal solutions

in small networks. Even though the ILP does not scale for large problem instances,

results obtained by it indicate that the heuristic produces near-optimal results. Thus,

we leverage the heuristic to evaluate the scalability of the BIER mechanism itself.

2.2.6.2.1 Traffic Model and Performance Metric We assume that every node of a large

BIER domain sends a multicast message to all other nodes of the BIER domain. We use

the number of packet transmissions as performance metric, i.e., we sum up the number

of packets carried over all links of the BIER domain. Let V be the set of nodes of some

BIER domain and P be a partitioning of V , i.e., a set of subsets of V such that every

node is contained in exactly one subset. Furthermore, let p(v, w) denote the shortest

path between v and w as ordered set of links. The performance metric ρ is formally

42

2.2 Algorithms for Resource Management in Real-Time Networks and Multicast Protocols

defined by the following equation:

ρ :=
∑

v∈V

∑

S∈P

∣

∣

∣

∣

∣

⋃

w∈S

p(v, w)

∣

∣

∣

∣

∣

. (2.1)

2.2.6.2.2 The Heuristic Algorithm We designed a heuristic that partitions a BIER do-

main into SDs such that the performance metric stated in Equation (2.1) is minimized.

First, initial solutions are constructed by sampling a seed node for every SD followed

by a heuristic denoted as bubble growing [DPSW00]. Essentially, bubble growing is a

breadth first search that is started at every seed node and nodes are assigned to SDs in a

round robin like manner. Then, the best initial solution found is used as starting point of

a greedy hill climbing heuristic [RN10]. Nodes of different SDs swap their assignment

to SDs temporarily. If the swap resulted in a decrease of the performance metric, the

resulting solution is the new incumbent solution. Otherwise, the swap is reversed. After

a predefined number of consecutive reversed swap operations, the algorithm terminates

and returns the best solution found.

2.2.6.3 Results

The evaluation was twofold. First, we compared the heuristic to optimal and random

SDs. Then, we leveraged the heuristic to evaluate the scalability of BIER as a mech-

anism independently of the used algorithm. All evaluations were performed for line,

ring, tree, and random mesh-d topologies with constant node degree d, respectively.

Topology n s Heuristic (%) Random (%)

Mesh-2

64
2 100.3 132.6

4 100.7 162.2

128
2 100.5 133.7

4 101.5 179.8

Mesh-4 64 2 100.3 115.2

Mesh-6 64 2 100.4 110.6

Mesh-8 64 2 100.3 107.1

Table 2.5: Overall traffic load for heuristic and random BIER clustering depending on

network size n and number of subdomains s relative to optimal subdomains

obtained by the ILP. Table adopted from [MSM23].

We compared the SDs computed by the heuristic with random SDs and optimal SDs

obtained by the ILP model for small-scale network topologies. Table 2.5 compiles the

resulting overall traffic loads relative to the traffic load of optimal SDs. The results

indicate that the heuristic finds near-optimal solutions and that finding such solutions

43

2.2 Algorithms for Resource Management in Real-Time Networks and Multicast Protocols

2.2.6.4 Conclusion & Discussion

In this work, we proposed an efficient algorithm to compute BIER subdomains in large

networks. We compared the results of this algorithm to optimal solutions and concluded

that the algorithm yields high quality solutions. Therefore, we were able to evaluate the

scalability of the BIER mechanism in general. We demonstrated the costs imposed by

BIER compared to IPMC and IP unicast in various parameter studies. These evalua-

tions showed that BIER performs reasonably well in realistic topologies. IPMC is only

in sparse topologies significantly more efficient than BIER. However, BIER is a big im-

provement over IP unicast in those topologies. Given the advantages of BIER such as

reduced signaling overhead and less state in forwarding nodes, we conclude that BIER

is a viable alternative for IPMC in large-scale networks.

A drawback of the presented work is the lack of evaluations with real-world topologies

of large networks. Unfortunately, these topologies are not available due to restrictive

information policies of large-scale content network providers. However, the topologies

used in this work should be a good sample of sparse topologies (line and ring), hier-

archical topologies (binary tree), and highly meshed topologies (mesh-d). Thus, we

suspect that the results are applicable to real-world topologies as well.

2.2.7 Scalability of Segment-Encoded Explicit Trees (SEETs) for Efficient

Stateless Multicast

This section summarizes the contributions of the research work from Lindner et al.

[LSM24]. This publication is part of the core content of this thesis. We remark that the

first two authors contributed equally to this publication. First, we introduce the problem

description. Then, the encoding and the fragmentation algorithm are explained. Finally,

the findings are summarized.

2.2.7.1 Problem Description

Stateless multicast protocols such as BIER reduce signaling overhead and state in core

nodes compared to IPMC. However, BIER comes with several drawbacks inherited

from IP. For instance, BIER employs the routing underlay of IP to determine packet

paths. That means the path of a packet cannot be selected explicitly. Thus, load balanc-

ing to relieve bottleneck links is not possible. Some applications require reliable data

45

2 Results & Discussion

transmission even in case of failures. BIER has no mechanism to send a packet twice

via disjoint paths to enhance reliability (1+1 protection). Additionally, the encoding of

receivers with a bitstring is inefficient when the number of receivers is low. Most parts

of the bitstring are irrelevant from the point of view of any forwarding node.

This work proposes Segment-Encoded Explicit Trees (SEET), a novel protocol for

stateless multicast. SEET encodes the forwarding tree of a packet in the packet’s header.

Thus, packet paths are explicit and can be constructed to enable load balancing and 1+1

protection. Additionally, the header is decomposed in forwarding nodes and only the

relevant parts are put in the header of replicated packets.

SEET allows to encode forwarding trees, i.e., explicit trees, in a packet’s header. How-

ever, the size of a header is limited due to technical restrictions in forwarding nodes.

Thus, the maximum size of a forwarding tree that can be encoded is limited. To cope

with this problem, a set of receivers can be divided into subsets such that the forwarding

tree of each subset can be encoded in a single packet header. This work proposes an

algorithm for this purpose that minimizes the number of packet hops required to deliver

a message to all receivers. We employ this algorithm to compare BIER and SEET in a

quantitative study.

2.2.7.2 Concept

We introduce the encoding and the fragmentation algorithm.

2.2.7.2.1 Encoding We encode a forwarding tree by a list of nodes. Figures 2.12a–

2.12b depict an example which will be used to explain the encoding. Node 1 is the

source of the forwarding tree. Thus, it is the first node in the list. The nodes 2 and 3 are

children of node 1. That means they are placed after node 1 in the list. However, they

are not necessarily the direct successors of node 1. Instead, the encoding procedure is

applied recursively to the subtrees rooted at nodes 2 and 3, respectively. The resulting

node lists are appended after node 1. Thus, the encoding is a list of nodes in topological

order starting with the root of the forwarding tree. The dashed rectangles in Figure

2.12b represent subtrees of the forwarding tree. These continuous sublists are denoted

as recursive units. The size of the node list can be reduced by only including leaf

nodes and replicating nodes, i.e., nodes with a fan-out of at least 2, in more complex

examples.

46

2 Results & Discussion

The algorithm starts Dijkstra’s algorithm at the source node. Every time a receiver

node n is discovered, exactly one of the following conditions applies and the respective

action is taken:

1. The current header is empty. A SEET header to n is introduced.

2. The current header does not contain a SEET header to a node on the path from

the source to n. A SEET header to the penultimate hop of n is introduced.

3. The current header contains a SEET header to the penultimate hop p of n. The

bit corresponding to n in the local bitstring of p is set to 1.

4. The current header contains a SEET header to a node n2 with the same penulti-

mate hop p as n. This SEET header is removed, a SEET header to p is introduced,

and the bits corresponding to n and n2 in the local bitstring of p are set to 1.

5. The current header contains a SEET header to some node that has a common

subpath with n. A SEET header to the last possible replication node is inserted.

A SEET header to n is inserted.

If the resulting header size exceeds the maximum allowed header length, the discovered

node is not added to the current header. Instead, the current packet is finalized, and the

node is added to a new empty header.

2.2.7.3 Results

First, we motivated the fragmentation algorithm by evaluating the header size of SEET

packets. We showed that moderate numbers of receivers result in headers with more

than 256 B length. Current P4-based switches cannot process longer headers due to

technical restrictions. Thus, an algorithm to fragment a set of receivers into subsets

that can be handled must be used.

Then, we employed the fragmentation algorithm to compare SEET with BIER and

IPMC. We used the algorithm from Merlin et al. [MSM23] (cf. Appendix 1.4) to

compute BIER subdomains. Figure 2.13 depicts the number of packet transmissions

of SEET relative to BIER. We observed that SEET requires less packet transmissions

than BIER except for very large multicast groups. This result seems counterintuitive as

BIER can encode one receiver per bit in the bitstring. However, BIER subdomains are

statically configured. In contrast, a SEET packet is constructed specifically for a given

source node and set of receivers. IPMC requires less packet transmissions than SEET.

48

2.2 Algorithms for Resource Management in Real-Time Networks and Multicast Protocols

0.6

0.8

1.0

1.2

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

receivers

R
e

l.
 p

a
c
k
e

ts

32 B
64 B
128 B
256 B

Figure 2.13: Number of individual packet transmissions of SEET in the network rela-

tive to BIER. Results for 32 B, 64 B, 128 B, and 256 B headers coincide.

Adopted from [LSM24].

However, the reduction in packet transmissions is moderate (12%–70%), and IPMC is

neither stateless nor does it support tree engineering.

1.00

1.25

1.50

1.75

2.00

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

receivers

R
e
l.
 o

ve
ra

ll
tr

a
ff
ic

 32 B
256 B

BIER
SEET

Figure 2.14: Overall traffic of BIER and SEET relative to IPMC, i.e., relative amount of

data transmitted in the entire network. Results for 32 B and 256 B headers.

Adopted from [LSM24].

Finally, we compared SEET and IPMC with respect to overall traffic transmitted in the

network. Figure 2.14 depicts the overall traffic of BIER and SEET relative to IPMC.

We showed that SEET results in less traffic than BIER for the considered topologies.

This is because the size of the SEET header reduces along the path from the source

node to the receivers as only the relevant parts are replicated. Additionally, many bits

in the bitstring of a BIER packet are set to 0. Thus, the BIER header is not efficient for

small and medium sized multicast groups.

49

2 Results & Discussion

2.2.7.4 Conclusion & Outlook

In this work, we proposed Segment-Encoded Explicit Trees (SEET), a novel protocol

for stateless multicast. Additionally, we presented an algorithm to construct SEET

packet headers. We employed the algorithm to compare SEET with BIER and IPMC.

The evaluations showed that SEET is more efficient than BIER with respect to various

metrics. Additionally, SEET supports tree engineering in contrast to BIER and IPMC.

We conclude that SEET is a viable alternative for BIER.

Future works may investigate the usage of SEET in data centers and content provider

networks. BIER is already successfully applied in such networks. We suspect that

SEET will outperform BIER in these use cases, too.

There is a variant of BIER that supports tree-engineering denoted as BIER-TE. Like

the fragmentation problem of SEET, BIER-TE also requires that a message with many

receivers is fragmented into multiple packets. The fragmentation problem of BIER-TE

is complex and there is no algorithm in the literature to solve it. Future works may

propose such an algorithm and employ it to evaluate the scalability of BIER-TE as

we have done for BIER [MSM23] and SEET [LSM24]. However, BIER-TE employs

similar ideas as BIER. The authors suspect that the drawbacks of BIER compared to

SEET will also apply for BIER-TE.

50

3 Additional Scientific Work

This chapter summarizes additional scientific contributions, which have been made dur-

ing my doctoral studies besides the publications presented in Chapter 2.

3.1 Sustanability and Lectures for Future

The work presented in [SHM19] was preceded by my Master’s thesis about the same

topic. The Master’s thesis was awarded with the sustainability award of the University

of Tuebingen due to its contribution to the energy transition. Additionally, I participated

in the Lectures for Future week in 2019 in the context of the lecture ”Informatik der

Systeme”. The scope of the lecture was to increase the awareness for climate change

among computer science students. Additionally, it featured a tutorial about power grids

and power generation. The talk was repeated in the second instance of Lectures for

Future and at the sustainability symposium of the computer science department in the

same year. All following iterations of the lecture series ”Informatik der Systeme” fea-

tures this Lectures for Future contribution as regular chapter.

3.2 Research Proposals

I was involved in the creation of the DFG research proposal ”Algorithms and Concepts

for Time-Sensitive Networking (ACTSN)”. Further, I was responsible for selected parts

of multiple technical reports and deliverables for the Collaborative Project KITOS (sup-

port code 16KIS1161).

3.3 Thesis Supervision

I supervised two Master theses and four Bachelor theses during my doctoral studies.

Topics included the design and implementation of forecasting and optimization algo-

51

3 Additional Scientific Work

rithms in the context of power systems, BIER, and TSN.

B.Sc. ”Vergleich von Prognosemethoden für unterschiedliche Energiebedarfe in Einfa-

milienhäusern“

B.Sc. ”Entwicklung eines Tools zur Korrektur von Programmieraufgaben in MIPS-As-

sembler“

B.Sc. ”Entwicklung und Implementierung eines Frameworks zur Optimierung von Netz-

werk-Segmentierung für BIER und BIER-TE mit Hilfe von Evolutionären Algo-

rithmen“

B.Sc. ”Design und Vergleich von Clustering-Algorithmen zur Verbesserung der Ska-

lierbarkeit von BIER-basiertem Multicast in Kommunikationsnetzen“

M.Sc. ”Design eines ILP zur Lösung von Scheduling-Problemen in TSN und Untersu-

chung ihrer Lösbarkeit in Abhängigkeit von Modellparametern“

M.Sc. ”Der SSteP-KiZ Prototyp: Ein Werkzeug zur multimodalen Echtzeit-Interaktion

für die Tele-Psychotherapie von Kindern im häuslichen Umfeld“

Two of the supervised Master theses have laid the foundation for the start of indepen-

dent Ph.D. topics of new co-workers, Manuel Eppler and Jonas Primbs.

3.4 Miscellaneous

During my doctoral studies, I supervised the lectures ”Informatik der Systeme” (3

times) and ”Network Security” (3 times). I gave lectures on cryptography, Bitcoin,

Blockchain, and Tor in our course ”Network Security”.

From 2019-2024, I was a reviewer for the following international journals, magazines,

conferences, and workshops:

• IEEE Access (2023, 2024)

• IEEE Transactions on Network and Service Management (TNSM 2023)

• IEEE Transactions on Industrial Informatics (2024)

• International Conference on Networked Systems (NetSys 2019)

• International Conference on the Design of Reliable Communication Networks

(DRCN 2019, 2020, 2021)

• International Teletraffic Congress (ITC 2021, 2022)

52

Bibliography

[80291] Standard for Local and Metropolitan Area Networks: Media Access Con-

trol (MAC) Bridges. IEEE Std 802.1D-1990, pages 1–176, 1991.

[80210] IEEE Standard for Local and Metropolitan Area Networks - Virtual

Bridged Local Area Networks Amendment 12: Forwarding and Queu-

ing Enhancements for Time-Sensitive Streams. IEEE Std 802.1Qav-2009

(Amendment to IEEE Std 802.1Q-2005), pages C1–72, 2010.

[80216] IEEE Standard for Local and metropolitan area networks – Bridges and

Bridged Networks - Amendment 25: Enhancements for Scheduled Traf-

fic. IEEE Std 802.1Qbv-2015 (Amendment to IEEE Std 802.1Q-2014 as

amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, and

IEEE Std 802.1Q-2014/Cor 1-2015), pages 1–57, 2016.

[80217a] IEEE Standard for Local and metropolitan area networks–Bridges and

Bridged Networks–Amendment 28: Per-Stream Filtering and Polic-

ing. IEEE Std 802.1Qci-2017 (Amendment to IEEE Std 802.1Q-2014

as amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015,

IEEE Std 802.1Q-2014/Cor 1-2015, IEEE Std 802.1Qbv-2015, IEEE Std

802.1Qbu-2016, and IEEE Std 802.1Qbz-2016), pages 1–65, 2017.

[80217b] IEEE Standard for Local and metropolitan area networks–Frame Repli-

cation and Elimination for Reliability. IEEE Std 802.1CB-2017, pages

1–102, 2017.

[80218] IEEE Standard for Local and Metropolitan Area Network–Bridges and

Bridged Networks. IEEE Std 802.1Q-2018 (Revision of IEEE Std

802.1Q-2014), pages 1–1993, 2018.

[BSN+14] Marc Boyer, Luca Santinelli, Nicolas Navet, Jörn Migge, and Marc

Fumey. Integrating End-System Frame Scheduling for More Accurate

AFDX Timing Analysis. In Embedded Real Time Software and Systems

(ERTS), 2014.

53

Bibliography

[COCS16] Silviu S Craciunas, Ramon Serna Oliver, Martin Chmelı́k, and Wilfried

Steiner. Scheduling Real-Time Communication in IEEE 802.1Qbv Time

Sensitive Networks. In International Conference on Real-Time Networks

and Systems (RTNS), pages 183–192, 2016.

[DN16] Frank Dürr and Naresh Ganesh Nayak. No-wait Packet Scheduling for

IEEE Time-Sensitive Networks (TSN). In International Conference on

Real-Time Networks and Systems (RTNS), 2016.

[DPSW00] Ralf Diekmann, Robert Preis, Frank Schlimbach, and Chris Walshaw.

Shape-optimized mesh partitioning and load balancing for parallel adap-

tive FEM. Parallel Computing, 26(12):1555–1581, 2000.

[dSSN19] Aellison Cassimiro T dos Santos, Ben Schneider, and Vivek Nigam.

TSNSCHED: Automated Schedule Generation for Time Sensitive Net-

working. In Formal Methods in Computer Aided Design (FMCAD), pages

69–77, 2019.

[FDR18] Jonathan Falk, Frank Dürr, and Kurt Rothermel. Exploring Practical Lim-

itations of Joint Routing and Scheduling for TSN with ILP. In Interna-

tional Conference on Embedded and Real-Time Computing Systems and

Applications (RTCSA), pages 136–146, 2018.

[FDR20] Jonathan Falk, Frank Dürr, and Kurt Rothermel. Time-Triggered Traffic

Planning for Data Networks with Conflict Graphs. In IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS), pages

124–136, 2020.

[GZRP18] Voica Gavriluţ, Luxi Zhao, Michael L Raagaard, and Paul Pop. AVB-

Aware Routing and Scheduling of Time-Triggered Traffic for TSN. IEEE

Access, 6:75229–75243, 2018.

[HGF+20] David Hellmanns, Alexander Glavackij, Jonthan Falk, René Hummen,

Stephan Kehrer, and Frank Dürr. Scaling TSN Scheduling for Factory

Automation Networks. In IEEE International Conference on Factory

Communication Systems (WFCS), pages 1–8, 2020.

[HHS+19] Florian Heimgaertner, Sascha Heider, Thomas Stüber, Daniel Merling,

and Michael Menth. Load Profile Negotiation for Compliance with Power

Limits in Day-Ahead Planning. In International ETG-Congress 2019;

54

Bibliography

ETG Symposium, pages 1–6, 2019. ©2019 VDE Verlag GmbH. Reprinted

with permission.

[Ind18] Industrial Internet Consortium. Time Sensitive Networks for Flexible

Manufacturing Testbed - Description of Converged Traffic Types, 2018.

[Online; accessed 21-September-2023].

[JXG+20] Xi Jin, Changqing Xia, Nan Guan, Chi Xu, Dong Li, Yue Yin, and

Peng Zeng. Real-Time Scheduling of Massive Data in Time Sensitive

Networks With a Limited Number of Schedule Entries. IEEE Access,

8:6751–6767, 2020.

[KZH15] Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real World Au-

tomotive Benchmarks for Free. In International Workshop on Analy-

sis Tools and Methodologies for Embedded and Real-time Systems (WA-

TERS), 2015.

[LSM24] Steffen Lindner, Thomas Stüber, and Michael Menth. Scalability of

Segment-Encoded Explicit Trees (SEETs) for Efficient Stateless Multi-

cast, 2024. A preliminary version can be found in the Appendix.

[MMWE18] Daniel Merling, Michael Menth, Nils Warnke, and Toerless. Eckert. An

Overview of Bit Index Explicit Replication (BIER). In IETF Journal,

March 2018.

[MSM23] Daniel Merling, Thomas Stüber, and Michael Menth. Efficiency of BIER

Multicast in Large Networks. IEEE Transactions on Network and Service

Management (TNSM), 20(4):4013–4027, 2023. ©2022 IEEE. Reprinted

with permission. https://doi.org/10.1109/TNSM.2023.3262294.

[OCS18] Ramon Serna Oliver, Silviu S Craciunas, and Wilfried Steiner. IEEE

802.1Qbv Gate Control List Synthesis Using Array Theory Encoding. In

IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS), pages 13–24, 2018.

[PO18] Maryam Pahlevan and Roman Obermaisser. Genetic Algorithm for

Scheduling Time-Triggered Traffic in Time-Sensitive Networks. In IEEE

International Conference on Emerging Technologies and Factory Au-

tomation (ETFA), pages 337–344, 2018.

55

Bibliography

[PSRNH15] Francisco Pozo, Wilfried Steiner, Guillermo Rodriguez-Navas, and Hans

Hansson. A decomposition approach for SMT-based schedule synthesis

for time-triggered networks. In IEEE Conference on Emerging Technolo-

gies & Factory Automation (ETFA), 2015.

[PTO19] Maryam Pahlevan, Nadra Tabassam, and Roman Obermaisser. Heuristic

List Scheduler for Time Triggered Traffic in Time Sensitive Networks.

ACM SIGBED Review, 16(1):15–20, 2019.

[RN10] Stuart J Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-

proach. London, 2010.

[SEOM24] Thomas Stüber, Manuel Eppler, Lukas Osswald, and Michael Menth. Per-

formance Comparison of Offline Scheduling Algorithms for the Time-

Aware Shaper (TAS). IEEE Transactions on Industrial Informatics (TII),

pages 1–13, 2024. Early access; ©2024 IEEE. Reprinted with permis-

sion. https://doi.org/10.1109/TII.2024.3385503.

[SHM19] Thomas Stüber, Florian Heimgaertner, and Michael Menth. Day-Ahead

Optimization of Production Schedules for Saving Electrical Energy

Costs. In Proceedings of the Tenth ACM International Conference on

Future Energy Systems (e-Energy ’19), page 192–203, 2019.

[SHTM21] Thomas Stüber, Ricarda Hogl, Bernd Thomas, and Michael Menth. Com-

parison of Forecasting Methods for Energy Demands in Single Family

Homes. In ETG Congress 2021, pages 1–5, 2021. ©2021 VDE Verlag

GmbH. Reprinted with permission.

[SOLM23] Thomas Stüber, Lukas Osswald, Steffen Lindner, and Michael Menth.

A Survey of Scheduling Algorithms for the Time-Aware Shaper

in Time-Sensitive Networking (TSN). IEEE Access, 11:61192–

61233, 2023. Reprinted with permission. https://doi.org/10.1109/

ACCESS.2023.3286370.

[SOM24] Thomas Stüber, Lukas Osswald, and Michael Menth. Efficient Robust

Schedules (ERS) for Time-Sensitive Networking, 2024. Accepted for

publication in a future issue of the IEEE Open Journal of the Communi-

cations Society journal.

56

Bibliography

[STM23] Thomas Stüber, Bernd Thomas, and Michael Menth. Minimizing Grid

Electricity Consumption and On-/Off-Cyles for Heat Pumps in Single-

Family Homes with PV Panels, 2023. Submission to the Applied Thermal

Engineering journal on 2023-10-02.

[STP+20] Eike Schweissguth, Dirk Timmermann, Helge Parzyjegla, Peter Danielis,

and Gero Mühl. ILP-Based Routing and Scheduling of Multicast Real-

time Traffic in Time-Sensitive Networks. In IEEE International Confer-

ence on Embedded and Real-Time Computing Systems and Applications

(RTCSA), pages 1–11, 2020.

[WRD+17] IJsbrand Wijnands, Eric C. Rosen, Andrew Dolganow, Tony Przygienda,

and Sam Aldrin. RFC8279: Multicast Using Bit Index Explicit Repli-

cation (BIER). Request for comments, Internet Engineering Task Force,

November 2017. https://www.rfc-editor.org/info/rfc8279.

57

Personal Contribution

Accepted Manuscripts (Core Content)

1. Day-Ahead Optimization of Production Schedules for Saving Electrical Energy

Costs [SHM19]

Scope of the joint

work

This research work was done in the context of the research

project
”
Entwicklung einer verteilten Regelarchitektur zur Ein-

bindung indirekt steuerbarer Verbraucher/Erzeuger in virtuelle

Kraftwerke“ funded by the German Federal Ministry for Eco-

nomic Affairs and Energy under grant no. 16KN039521. The

scope of this work was developing and implementing an algo-

rithm to minimize energy costs for large scale production pro-

cesses when energy is purchased at the day-ahead market.

Names of collabora-

tors and their shares

Florian Heimgärtner: Editorial assistance for writing the publi-

cation.

Michael Menth: Scientific supervision and editorial assis-

tance on the publication.

Importance of own

contributions to the

joint work

Main developer of the algorithm. Responsible for the implemen-

tation and evaluation. Main author of the publication. Presented

the results at the conference.

2. A Survey of Scheduling Algorithms for the Time-Aware Shaper in Time-Sensitive

Networking (TSN) [SOLM23]

59

Personal Contribution

Scope of the joint

work

This research work was done in the context of the research project

”
Künstliche Intelligenz zur dynamischen Optimierung des Net-

zwerkmanagements (KITOS)“ of the German Federal Ministry

of Education and Research (BMBF) under grant no. 16KIS1161.

The scope of this work was to review all published works about

scheduling with the TAS and to compile the contributions of these

works.

Names of collabora-

tors and their shares

Lukas Osswald: Editorial assistance and co-author of the publi-

cation.

Steffen Lindner: Editorial assistance and co-author of the

publication.

Michael Menth: Scientific supervision and editorial assis-

tance on the publication.

Importance of own

contributions to the

joint work

Main author of the survey. Conducted all literature work includ-

ing reading, classifying, and summarizing the papers.

3. Performance Comparison of Offline Scheduling Algorithms for the Time-

Aware Shaper (TAS) [SEOM24]

Scope of the joint

work

This research work was done in the context of the research project

”
Künstliche Intelligenz zur dynamischen Optimierung des Net-

zwerkmanagements (KITOS)“ of the German Federal Ministry

of Education and Research (BMBF) under grant no. 16KIS1161.

The scope of this work was twofold. First, a set of problem in-

stances for the comparison of different scheduling algorithms and

future works should be constructed. Second, various scheduling

algorithms from the literature should be compared in a systematic

and reproducible way.

60

Names of collabora-

tors and their shares

Manuel Eppler: Discussion, feedback, and co-author of the

publication.

Manuel Eppler: Discussion, feedback, and co-author of the

publication.

Michael Menth: Scientific supervision and editorial assis-

tance on the publication.

Importance of own

contributions to the

joint work

Main author of the publication. Construction of the problem

instances. Implementation of the compared algorithms and the

evaluations.

4. Efficiency of BIER Multicast in Large Networks [MSM23]

Scope of the joint

work

This research work was done in the context of the research

project
”
Future Internet Routing (FIR)“ funded by the Deutsche

Forschungsgemeinschaft (DFG) under grant no. ME2727/1-2.

The scope of this work was developing and implementing an al-

gorithm to compute optimal BIER subdomains in large networks.

Names of collabora-

tors and their shares

Daniel Merling: Joint main author of the publication. Editorial

assistance for writing the publication and discussions about

evaluation design.

Michael Menth: Scientific supervision and editorial assis-

tance on the publication.

Importance of own

contributions to the

joint work

Main developer of the algorithm. Responsible for the implemen-

tation and evaluation. Joint main author of the publication with

Daniel Merling.

Submitted Manuscripts (Core Content)

5. Minimizing Grid Electricity Consumption and On-/Off-Cyles for Heat Pumps

in Single-Family Homes with PV Panels [STM23]

61

Personal Contribution

Scope of the joint

work

This research work was done in an informal cooperation with the

Reutlingen University. The scope of this work was to develop

a scheduling algorithm which minimizes multiple objectives si-

multaneously in a rolling horizon approach over the course of a

year.

Names of collabora-

tors and their shares

Bernd Thomas: Related work, feedback, data set acquisition, and

scientific supervision.

Michael Menth: Scientific supervision and editorial assis-

tance on the publication.

Importance of own

contributions to the

joint work

Main author of the paper. Main developer of the algorithm. Re-

sponsible for the implementation and evaluation.

6. Efficient Robust Schedules (ERS) for Time-Sensitive Networking [SOM24]

Scope of the joint

work

This research work was done in the context of the research

project
”
Künstliche Intelligenz zur dynamischen Optimierung

des Netzwerkmanagements (KITOS)“ of the German Federal

Ministry of Education and Research (BMBF) under grant no.

16KIS1161. The scope of this work was to develop a schedul-

ing algorithm which produces schedules that are robust against

common sources of non-determinism such as time synchroniza-

tion errors and processing jitter.

Names of collabora-

tors and their shares

Lukas Osswald: Editorial assistance and co-author of the publi-

cation.

Michael Menth: Scientific supervision and editorial assis-

tance on the publication.

Importance of own

contributions to the

joint work

Main author of the paper. Main developer of the algorithm. Re-

sponsible for the implementation and evaluation.

7. Scalability of Segment-Encoded Explicit Trees (SEETs) for Efficient Stateless

Multicast [LSM24]

62

Scope of the joint

work

The scope of this work was to develop a novel stateless multicast

protocol that allows tree engineering. Additionally, an algorithm

to construct packet headers for the protocol should be developed.

This algorithm was employed to conduct a quantitative compari-

son study of the new protocol and BIER.

Names of collabora-

tors and their shares

Steffen Lindner: Responsible for multiple sections of the paper

and the SDN implementation. Planning of evaluations and

discussion of results.

Toerless Eckert: Scientific supervision and discussions about the

protocol.

Michael Menth: Scientific supervision and editorial assis-

tance on the publication.

Importance of own

contributions to the

joint work

Second main author of the paper. Main developer of the algo-

rithm. Responsible for the implementation and evaluation.

Accepted Manuscripts (Additional Content)

8. Comparison of Forecasting Methods for Energy Demands in Single Family

Homes [SHTM21]

Scope of the joint

work

This research work was done in the context of the research

project
”
Entwicklung einer verteilten Regelarchitektur zur Ein-

bindung indirekt steuerbarer Verbraucher/Erzeuger in virtuelle

Kraftwerke“ funded by the German Federal Ministry for Eco-

nomic Affairs and Energy under grant no. 16KN039521. The

scope of this work was the evaluation of different forecasting

strategies as a preliminary work for [STM23].

63

Personal Contribution

Names of collabora-

tors and their shares

Ricarda Hogl: Preliminary works and discussions.

Bernd Thomas: Feedback, data set acquisition, and scien-

tific supervision.

Michael Menth: Scientific supervision and editorial assis-

tance on the publication.

Importance of own

contributions to the

joint work

Main author of the publication. Responsible for implementation

and evaluation. Presented the results at the workshop.

9. Load Profile Negotiation for Compliance with Power Limits in Day-Ahead Plan-

ning[HHS+19]

Scope of the joint

work

This research work was done in the context of the research

project
”
Entwicklung einer verteilten Regelarchitektur zur Ein-

bindung indirekt steuerbarer Verbraucher/Erzeuger in virtuelle

Kraftwerke“ funded by the German Federal Ministry for Eco-

nomic Affairs and Energy under grant no. 16KN039521. The

scope of this work was the development of a mechanism to nego-

tiate load profiles between multiple consumers and an aggregator

in compliance with power limits.

Names of collabora-

tors and their shares

Florian Heimgärtner: Main author of the publication, taking on

most of the write-up.

Sascha Heider: Preliminary work and study of the prob-

lem.

Daniel Merling: Discussion and feedback.

Michael Menth: Scientific supervision and editorial assis-

tance on the publication.

64

Importance of own

contributions to the

joint work

Editorial assistance on the publication. Development of the ILP

models and validation of the results obtained in a previous bach-

elor’s thesis on the topic.

65

Publications

1 Accepted Manuscripts (Core Content)

1.1 Day-Ahead Optimization of Production Schedules for Saving

Electrical Energy Costs

67

Day-Ahead Optimization of Production Schedules for Saving
Electrical Energy Costs

Thomas Stueber
Chair of Communication Networks,

University of Tuebingen

Tuebingen, Germany

thomas.stueber@uni-tuebingen.de

Florian Heimgaertner
Chair of Communication Networks,

University of Tuebingen

Tuebingen, Germany

florian.heimgaertner@uni-

tuebingen.de

Michael Menth
Chair of Communication Networks,

University of Tuebingen

Tuebingen, Germany

menth@uni-tuebingen.de

ABSTRACT

The integration of weather-dependent renewable energy sources

leads to an increased volatility of electrical energy supply. As a

result, considerable intra-day price spreads can be observed at the

spot markets for electrical energy. To benefit from variable energy

prices, enterprises can use price forecasts for cost-optimized load

scheduling. Thereby energy costs can be reduced by shifting energy-

intensive processes to times with lower energy prices.

In this work, we propose a method to model an industrial unit

including devices, storage units, dependencies, restrictions, and

production targets as a mixed integer linear program (MILP). Along

with a time series of energy prices, the MILP is used to compute

optimal run times for the deviceswhile complyingwith the specified

restrictions.

We use the model of a cement plant as an example. We show

potential savings compared to default schedules over individual day,

weeks, or over the year 2018. We propose optimization with look-

ahead, point out its benefits compared to optimization without

look-ahead, and show the influence of storages sizes and price

variance on the savings potential.

CCS CONCEPTS

• Theory of computation → Linear programming; • Hard-

ware→ Smart grid; •Applied computing→ Industry and man-

ufacturing.

ACM Reference Format:

Thomas Stueber, Florian Heimgaertner, and Michael Menth. 2019. Day-

Ahead Optimization of Production Schedules for Saving Electrical Energy

Costs. In Proceedings of the Tenth ACM International Conference on Future

Energy Systems (e-Energy ’19), June 25–28, 2019, Phoenix, AZ, USA. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3307772.3328302

1 INTRODUCTION

The large-scale integration of renewable energy sources leads to

new challenges for electrical power grids and the energy market.

Especially the roll-out of weather-dependent energy sources like

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6671-7/19/06.
https://doi.org/10.1145/3307772.3328302

wind turbines or photovoltaic systems leads to an increased volatil-

ity of electrical energy supply. As a result, considerable differences

in energy prices can be observed at the spot markets for electrical

energy within a day.

In industrial production processes, some devices can be oper-

ated at different production rates. Additionally, storage units can

decouple the run times of subsequent devices within a production

chain. Storage and variable production rates constitute a certain

flexibility, i.e., an enterprise can reach the same production targets

with the same set of devices while using different schedules. With

high-quality price forecasts for the day-ahead markets, industrial

enterprises can leverage flexibilities in their production processes

to benefit from the variability of energy prices using cost-optimized

load scheduling. Based on the forecasts, energy costs can be reduced

by shifting energy-intensive processes to times with lower energy

prices [4].

In this work, we propose amethod for the computation of produc-

tion schedules that minimize energy costs. The main contribution of

our work is a comprehensive framework for modeling an industrial

plant including devices, storage units, dependencies, restrictions,

and production targets as a mixed integer linear program (MILP).

With a time series of energy prices, the MILP computes optimized

run times for the devices with the given production rates, storage

parameters and restrictions.

Cement production is a prominent example for energy inten-

sive industry, accounting for approximately 12–15% of the total

industrial energy consumption [8]. As shown in Section 2.2 cement

production is also widely used as a reference use case for schedul-

ing of energy intensive processes. For our study we use the model

of a cement plant described by Bazan et. al. [1] as an example to

show potential savings compared to default schedules. We quantify

the savings for individual days, weeks, and for the year 2018. As

another contribution, we propose optimization with look-ahead for

this problem and demonstrate its benefits compared to optimization

without look-ahead. In addition, we show the influence of storage

sizes and price variance on the savings potential. Finally, we report

the computation time of our optimization approach.

This paper is structured as follows. Section 2 discusses related

work. In Section 3 we describe the proposed approach for modeling

of industrial production processes as MILP. Section 4 introduces the

evaluation scenario and discusses optimization results. Section 5

draws conclusions and gives an outlook on further work.

e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA Thomas Stueber, Florian Heimgaertner, and Michael Menth

2 RELATEDWORK

In this section we give an overview about related work. We first

discuss general approaches for scheduling in the area of continuous

production. Then, we discuss work in the area of energy-aware

scheduling, with a focus on scheduling approaches specifically

addressing the use case of cement production.

2.1 Continuous Scheduling

Different scheduling strategies for continous production processes

are considered in literature. They can be classified by algorithmic

techniques, time model and objective. Some of the approaches also

support semi-continous or batch processes.

One of the first such models for short-term scheduling of the

production of fast moving consumer goods was presented by Ier-

apetritou and Floudas [5]. The optimization is based on MILP. This

model was extended for storages and used to examine properties

of the optimization with different storage limitations by Mendez

and Cerda [9] and later by Shaik and Floudas [13]. Neumann and

Schwindt [11] propose a branch-and-bound algorithm for models

with continous and semi-continous processes.

However, these models were designed for optimizing makespans

and cost of production processes and do not consider energy cost

or usage.

2.2 Energy-Aware Scheduling

Castro et. al. [2] explore different scheduling approaches for contin-

uous production. They use both discrete-time and continuous-time

models. Energy consumption is considered in the optimization, but

variable energy prices are not used. Shrouf et. al. [14] present an

energy-aware scheduling mechanism using linear programming

(LP) and a discrete-time model. The optimization objective is re-

duced energy costs with day-ahead energy prices. However, the

scheduling only considers a single device.

Kondili et. al. [7] present an optimization of schedules for whole

continous production plants with varying energy prices usingMILP.

A cement plant is used as an example for real world applications

of such models. Based on [2], Mitra et. al. [10] present a model

for a cement plant which also addresses variable energy prices.

More recent developments in energy market models like day-ahead

markets give new objecives in scheduling such processes. Bazan

et. al. [1] present a hybrid simulation approach for scheduling of

energy demand in a cement plant with a wind turbine and a battery

storage. They optimize energy costs using LP and a discrete time

model.

Gahm et. al. [3] provide a wide overview of the field of energy-

aware scheduling in manufacturing companies.

In contrast to the works mentioned above, this work focuses on

the optimization potential which arises from variable energy prices

in day-ahead markets. We give a modelling approach for optimizing

production schedules of complex production processes instead of

single machines. The approach is used to gain first insights for the

potential of saving energy costs by taking advantage of flexibilities

in production combined with variability of energy prices.

3 MODELING FRAMEWORK

Industrial production processes are defined by devices, storage

units, energy and material flows, and technical or organizational

constraints. In this paper, we propose a comprehensive framework

to model production processes as a MILP that can be used for

process scheduling with minimized energy costs. In this section,

we first describe the main components of our abstract model for an

industrial plant. Then, we explain how they are represented in the

mathematical model.

3.1 Model Components

We consider production processes in industrial facilities with con-

tinuous production and develop a simple abstract model which is

powerful enough to describe many relevant degrees of freedom

and restrictions for scheduling. The model consists of a set of de-

vices D, a set of storages S, and a set of fixed consumers F that

are connected by material and energy flows like a directed graph.

Additional constraints for scheduling are specified by a set of global

restrictions G. In the following, we describe the model components

in detail.

3.1.1 Devices D. Devices consume and produce goods and power.

The input and output volumes of goods and power depend on the

operation mode of the device. The run times and the operation

modes constitute the degrees of freedom of our scheduling problem.

Various limitations can restrict the set of possible schedules of a

device, e.g., prohibited or mandatory run times, preparation and

waiting times before and after runs, maximum number of runs, or

minimum and maximum production within a run or during the

optimization interval.

3.1.2 Storages S. Storages store goods or energy before and after

devices in the production process. They cause time dependencies

in the model, increasing the complexity of the scheduling problem.

However, sufficiently large storages between devices decouple their

operation in time and generate scheduling flexibility. Like devices,

storages are subject to a set of restrictions, e.g., minimum and

maximum level, optional production targets at different points in

time, and starting levels.

3.1.3 Fixed Consumers F . Fixed consumers are unscheduled parts

of the production process. They can describe constant energy de-

mands and supply of goods needed for production. They can be

active only at a specific point in time or during longer time inter-

vals. Fixed energy demands increase the energy costs only by a

constant addend, but can be important for compliance with global

restrictions.

3.1.4 Global Restrictions G. Global restrictions are constraints that

cannot be specified as a property of a single device, e.g., restrictions

that apply to multiple devices at the same time. The model currently

supports mutual exclusion of arbitrary subsets of devices and global

energy and power limits.

3.2 The Mathematical Model

The general problem of computing a schedule for a given production

process and a time series of energy prices with minimum energy

cost is NP-hard. We provide a proof for that in Appendix A. This

Day-Ahead Optimization of Production Schedules for Saving Electrical Energy Costs e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA

Table 1: Global parameters.

Parameter Definition

T , l Index set of all time slots (numbers 1 to

|T |) and length of a time slot

D,S, F ,G Sets of devices, storages, fixed con-

sumers, global restrictions

ct Energy price in time slot t

Table 2: Variables.

Variable Type Definition

xdt ,m binary Does device d run in time slot t with

modem?

sdt binary Does a run of device d start at the be-

ginning of time slot t?

edt binary Does a run of device d end at the end of

time slot t?

kdt ,s real Cumulative production of the current

run of device d after time slot t for out-

put storage s .

f st real Fill level of storage s at the end of time

slot t .

rdt ,m real Production rate of device d in continu-

ous modem during time slot t .

property makes the problem very unlikely to be solved by algo-

rithms with polynomial runtime. Therefore, we use MILP to solve

the problem although MILP solving algorithms have exponential

runtime in general.

In the following, we present global parameters, variables, re-

strictions, and the objective function of our MILP and discuss its

design.

3.2.1 Global Parameters. The MILP computes an optimized sched-

ule for an optimization interval. Like in other MILP models for

similar problems [1, 2, 14], the optimization interval is divided into

a set of time slots T and all time slots t ∈ T have the same duration

l . However, the latter can be easily relaxed. Energy price forecasts

take a fixed value during time slots and are given by ct . Table 1

summarizes all global parameters of the MILP.

3.2.2 Variables. Every device d is modeled with three binary vari-

ables and one continuous variable per time slot t . The binary vari-

able xdt ,m indicates whether a device d runs during time slot t .

Moreover, the continuous variable rdt ,m indicates the rate of device

d when it works in operation modem in time slot t .

The binary variable sdt indicates whether a run of a device d be-

gins at the start of the time slot t . The binary variable edt indicates

whether a run of a device d ends at the end of time slot t . The vari-

able rdt ,m indicates the operation modem of a device d in time slot

t . The continuous variable kdt ,s captures the cumulative production

of device d for its connected storage s from the beginning of its run

until the end of the current time slot t . The continuous variable f st

captures the fill state of storage s at the end of time slot t . Table 2

gives a summary of the used variables.

3.2.3 Restrictions. Wefirst discuss implicit restrictions of ourmodel

and then explicit restrictions for devices, storages, fixed consumers,

and global restrictions, which were all mentioned in Section 3.1

that are enforced by additional inequalities.

Implicit Restrictions. An essential restriction of our model is that

devices run in the same operation mode during a time slot. This

limitation facilitates modeling of storages. Their fill states at the end

of a time slot can be computed from the level at the beginning of the

same time slot and the sum of all devices which charge or discharge

the storage during that slot. Furthermore, it facilitates a simple

restriction for minimum and maximum fill states. As devices run for

entire time slots with constant rates, storage levels are increased or

decreased linearly during a time slot. Therefore, ensuring minimum

and maximum fill levels at the ends of all time slots is sufficient to

comply with restrictions also within time slots.

Technical Restrictions. Some inequalities are needed to enforce

the semantics of the variables mentioned in Section 3.2.2. They are

presented in Appendix B as they are of technical nature and are

not used to model features.

Device Restrictions. Devices may be connected to several storages

from which they receive input or to which they deliver output. We

denote the set of all storages of a device d , to which it delivers

output, by Od . The restrictions for a device d require parameters

given in Table 3 and are expressed as follows:

∑
t ∈T

sdt ≤ ndstar t (1)

∀o ∈ Od
: wd

o,min

≤
∑
t ∈T

l ·
©­«

∑
m∈Ms

xdt ,m ·m(o) +
∑

m∈Mc

rdt ,m · effdo,m
ª®¬

≤ wd
o,max

(2)

∀s ∈ Od∀t ∈ T : kdt ,s ≤ v
d
s ,max (3)

∀s ∈ Od∀t ∈ T : |T | · l ·Maxd · (edt − 1) ≤ kdt ,s −v
d
s ,min (4)

∀t ∈ Tmust :

∑
m∈Ms∪Mc

xdt ,m = 1 (5)

∀t ∈ Tf orb :

∑
m∈Ms∪Mc

xdt ,m = 0 (6)

Inequation (1) guarantees that the number of starts, which is also

the number of runs, cannot exceed ndstar t . While Inequation (2)

holds, the global production for every output fullfills the demanded

minimum andmaximum production. Inequation (3) ensures that the

cumulative production of a run stays below the maximum allowed

production. Inequation (4) implies that the cumulative production

of the run is larger than the minimum production per run if a

run finishes in the respective time slot. Mandatory and prohibited

times can be encoded with (5) and (6) by forcing the respective run

variables to be 0 or 1.

e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA Thomas Stueber, Florian Heimgaertner, and Michael Menth

Table 3: Device parameters.

Parameter Definition

ndstar t , c
d
star t Maximum number of runs and startup

cost of device d

wd
s ,max ,w

d
s ,min Maximum/minimum global production

for output storage s of device d

v
d
s ,max , v

d
s ,min Maximum/minimum production per

run for output storage s of device d

Td
must , T

d
f orb

Set of time slots in which device d

must/must not run

td
lead

, tdover Number of time slots device d has to

wait before/after a run

Md
s Set of semi-continuous modes of device

d . A semi-continuous mode is a map-

ping of inputs/outputs of the device to

production rates.

Md
c Set of continuous modes of device

d . A continuous mode m is a 2-

tuple withmmin,mmax being the min-

imal/maximal production rate in this

mode.

effds ,m The factor of production rate of contin-

uous modem to procution input/output

of storage s

Od Set of output storages of device d

Maxd A number which is bigger than the pro-

duction to all outputs if the machines

runs the whole planning horizon

Pdm Power input of device d in semi-

continuous modem or energy efficiency

for continuous modem

Table 4: Storage parameters.

Parameter Definition

f smin , f
s
max Minimum/maximum fill level of storage

s

f s
0

Initial fill level of storage s

f s
prod

Target fill level of storage s at the end

of the planning horizon

Is , Os Set of charging/discharging devices of

storage s

Lead time before the run of a device can be modeled by the

inequality:

sdt ≤ 1 −
∑

m∈Ms∪Mc

xdt ′,m (7)

which must hold for all t ∈ T and all t ′ with t − td
lead

≤ t ′ ≤ t − 1.

Overrun after a run can be modeled analogously.

Restrictions for Storages. Storages are charged and discharged by

devices or fixed consumers. The set of all devices charging a storage

Table 5: Parameters for fixed consumers.

Parameter Definition

T F
con Set of time slots, in which fixed con-

sumer F is active

RF
S

Consumption rate of fixed consumer F

from storage S

PF Power input of fixed consumer F

Table 6: Parameters for global restrictions.

Parameter Definition

T R
lim

Set of time slots, in which global restric-

tion R must hold

ERmax , Pmax (R) Maximum amount of energy or peak

power for global restriction R

DR Set of devices, of which at most can run

at the same time by global restriction R

is its set of input devices Is and the set of all devices discharging

it is its set of output devices Os . Fixed consumers may be used to

model constant charging or discharging of a storage.

The new fill level of a storage s at the end of a time slot t is given

by

∀t ∈ T : f st = f st−1

+

∑
i ∈Is

©­«
∑

m∈Mi
s

l ·m(s) · x it ,m+
∑

m∈Mi
c

l · r it ,m · effis ,m
ª®¬

−
∑
o∈Os

©­«
∑

m∈Mo
s

l ·m(s) · xot ,m+
∑

m∈Mo
c

l · rot ,m · effos ,m
ª®¬

−
∑

F ∈F:t ∈TF
con

RFs .

(8)

The equation considers the charging of a storage by all its input

devices, the discharging by all its output devices, and the charging

or discharging by all fixed consumers that are active in time slot t .

If an active fixed consumer F does not charge or discharge a storage

s , this is expressed by RFs = 0.

Storage level and production targets can be expressed by the

following inequality:

f s
|T |

≥ f s
prod

(9)

∀t ∈ T : f smin ≤ ft ≤ f smax (10)

Global Restrictions. A global restriction R enforcing a maximum

of used energy (11), maximum peak power (12), or mutual exclu-

sion of at most k devices of a set of devices (13) is implemented,

e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA Thomas Stueber, Florian Heimgaertner, and Michael Menth

variables increased. This is illustrated in Table 14. Longer look-

ahead requires longer optimization intervals and more variables.

However, we recommend to utilize only 1 day look-ahead as this is

good tradeoff between savings improvements and precise energy

price forecasts.

We point out that the presented computation times are specific

to the considered case study. They may be significantly larger when

the model is more complex to optimize.

5 CONCLUSION

In this work, we proposed a comprehensive framework to model

an industrial plant including devices, storage units, dependencies,

restrictions, and production targets for the purpose of energy cost

reduction.We formulated the optimization program as aMILP. For a

time series of day-ahead energy prices, the MILP computes optimal

run times for the devices to minimize energy costs. To demonstrate

the applicability of the proposed framework, we modeled a cement

plant from the literature [1] and computed optimal schedules based

on real day-ahead energy prices.

The results showed that this method works, that storages need

to have appropriate fill states, and that 8% of the energy costs could

be saved in 2018. We proposed optimization with look-ahead to

cope with the problem that empty storages at the end of the next

day may be counterproductive for the planning of the day after. It

essentially extends the optimization interval but leverages only the

planning for the next day which then may have non-empty storages

at its end. We showed that this approach can utilize large storages

to a larger extent and over a longer duration than optimization

without look-ahead. It allowed improved energy cost reduction of

10.5%–11.9% in 2018, depending on the duration of the look-ahead.

In addition, we showed that the optimization potential depends

on storage sizes and energy price variability. The run time for the

MILP was rather short, mostly below 1 second although a large

number of variables were required.

From these results, we conclude that energy-intensive enter-

prises can save considerable energy costs using the proposed sched-

ule optimization when purchasing energy from day-ahead markets

with highly variable energy prices.

Futurework encompasses themodeling and optimization ofmore

complex plants. In particular, we will extend our model to account

for time- or mode-dependent operating costs for devices which

may reflect, e.g., shift work at night, and other additional costs.

Additional costs can influence optimal schedules as they should

lead to least overall costs. In our case study, additional costs were

not taken into account to lack of information in the model from

literature. Criteria to predict scheduling flexibility and optimization

complexity may be helpful for efficient modeling and optimization.

Furthermore, storage dimensioning and appropriate start states

to leverage flexibilities for energy cost reduction may be an issue.

Additionally, the robustness of the proposed solution regarding

forecast errors will be investigated.

ACKNOWLEDGMENTS

The research leading to these results received funding from the

German Federal Ministry for Economic Affairs and Energy under

the ZIM programme (Zentrales Innovationsprogramm Mittelstand),

grant no. 16KN039521. The authors alone are responsible for the

content of this paper.

The authors thank Bernd Thomas and Uwe Ziegler for valuable

feedback as well as Niels Schieber and Dominik Kriese for initial

models and heuristic algorithms.

REFERENCES
[1] Peter Bazan, David Steber, and Reinhard German. 2017. Hybrid Simulation and

EnergyMarket Based Optimization of Cement Plants. Computer Science - Research
and Development 32, 1 (2017), 65–77.

[2] Pedro M. Castro, Iiro Harjunkoski, and Ignacio E. Grossmann. 2011. Optimal
Scheduling of Continuous Plants with Energy Constraints. Computers & Chemical
Engineering 35, 2 (2011), 372–387.

[3] Christian Gahm, Florian Denz, Martin Dirr, and Axel Tuma. 2016. Energy-efficient
scheduling in manufacturing companies: A review and research framework.
European Journal of Operational Research 248, 3 (2016), 744–757.

[4] Florian Heimgaertner, Uwe Ziegler, Bernd Thomas, and Michael Menth. 2018.
A Distributed Control Architecture for a Loosely Coupled Virtual Power Plant.
In Proceedings of the ICE/IEEE International Technology Management Conference
(ICE/IEEE ITMC).

[5] Marianthi G. Ierapetritou and Christodoulos A. Floudas. 1998. Effective
Continuous-Time Formulation for Short-Term Scheduling. 2. Continuous and
semicontinuous Processes. Industrial & engineering chemistry research 37, 11
(1998), 4360–4374.

[6] Richard M. Karp. 1972. Reducibility Among Combinatorial Problems. In Pro-
ceedings of a symposium on the Complexity of Computer Computations. Yorktown
Heights, New York, USA, 85–103.

[7] Emilia Kondili, Nilay Shah, and Constantinos C. Pantelides. 1993. Production
Planning for the Rational Use of Energy in Multiproduct Continuous Plants.
Computers & Chemical Engineering 17 (1993), S123–S128.

[8] Naseer Abboodi Madlool, Rahman Saidur, M. Shouquat Hossain, and Nas-
rudin Abd Rahim. 2011. A Critical Review on Energy Use and Savings in the
Cement Industries. Renewable and Sustainable Energy Reviews 15, 4 (2011), 2042–
2060.

[9] Carlos Alberto Mendez and Jaime Cerda. 2002. An Efficient MILP Continuous-
Time Formulation for Short-Term Scheduling of Multiproduct Continuous Facili-
ties. Computers & Chemical Engineering 26, 4-5 (2002), 687–695.

[10] SumitMitra, Ignacio E. Grossmann, JoseM. Pinto, and Nikhil Arora. 2012. Optimal
Production Planning under Time-Sensitive Electricity Prices for Continuous
Power-Intensive Processes. Computers & Chemical Engineering 38 (2012), 171–
184.

[11] Klaus Neumann, Christoph Schwindt, and Norbert Trautmann. 2005. Scheduling
of Continuous and Discontinuous Material Flows with Intermediate Storage
Restrictions. European Journal of Operational Research 165, 2 (2005), 495–509.

[12] Nord Pool AS. 2018. Historical Market Data.
https://www.nordpoolgroup.com/historical-market-data/.

[13] Munawar A Shaik and Christodoulos A Floudas. 2007. Improved Unit-Specific
Event-Based Continuous-Time Model for Short-Term Scheduling of Continuous
Processes: Rigorous Treatment of Storage Requirements. Industrial & engineering
chemistry research 46, 6 (2007), 1764–1779.

[14] Fadi Shrouf, Joaquin Ordieres-Meré, Alvaro García-Sánchez, and Miguel Ortega-
Mier. 2014. Optimizing the Production Scheduling of a Single Machine to Mini-
mize Total Energy Consumption Costs. Journal of Cleaner Production 67 (2014),
197–207.

APPENDIX

A PROOF OF NP-HARDNESS

To proof the NP-hardness of the considered scheduling problem, it

must first be formulated as a decision problem.

Definition 1 (Energy-Scheduling).

Given:A system of devices, storages, fixed consumers, and restrictions,

defined as in Section 3, given by the respective parameters, energy

prices for the entire planning horizon, and maximal cost C ∈ Z.

Question: Is there a schedule which fullfils all restrictions imposed

by the given model while inducing costs of at most C?

The following problem is also needed for our proof.

Definition 2 (Knapsack).

Given: Objects (w1,v1), ..., (wn,vn), consisting of weight and value,

Day-Ahead Optimization of Production Schedules for Saving Electrical Energy Costs e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA

a maximum weightW ∈ N and a minimum value N ∈ N

Question: Is it possible to choose a subset of objects such that the sum

of the weights of its elements does not exceedW while the sum of the

values of its elements is at least N ?

Knapsack is a well known NP-complete problem, a fact which

was first proven by Karp [6].

Theorem A.1. Energy-Scheduling is NP-hard.

Proof. By giving a polynomial-time reduction from Knapsack

to Energy-Scheduling, NP-completeness of Energy-Scheduling

can be proven. Let (w1,v1), ..., (wn,vn) be an instance of Knap-

sack. Construct one device per object (wi ,vi). This device has only

one continuous mode. The maximum rate of this mode is normal-

ized such that the device will produce vi units of end products if

the device runs for the entire optimization interval. The energy

consumption of the mode is also normalized such thatwi units of

energy are consumed if the device runs for the entire optimization

interval. The minimal production per run is set to vi . All these de-

vices are connected to one common storage. The production target

of this storage is set to N . Energy prices are set to one unit during

the entire optimization interval. The maximum cost C is set toW .

If there is a subset of objects which fulfills the requirements of

Knapsack, there is a schedule for the constructed model with costs

of at mostW . Such a schedule can be constructed by letting work

the respective devices of the objects contained in the subset for

the entire optimization interval. All other devices do not work at

all. Through the normalization of production rates corresponding

to the values of the respective objects, the production target of

the common storage is fulfilled. By the same argument, the cost

induced by this schedule is at mostW .

For the contrary, suppose there is no subset of objects with the

needed requirement, but there is a schedule for the constructed

model which fulfills the production target and maximum cost re-

striction. It is implied by the minimal production per run that a

device can only work for the whole planning horizon or not at all.

By taking the corresponding objects of the running devices in this

schedule, one gets due to the normalization of rates and energy

demands a subset of objects with a sum of weights of at mostW

and a sum of values of at least N . This contradicts the assumption

that there is no such subset, so there cannot be such a schedule

for the constructed model. To see the polynomial run time of this

construction, observe that only one device is constructed per object

with one additional common storage and C is just a copy ofW .

So the construction is indeed a polynomial-time reduction from

Knapsack to Energy-Scheduling, which completes the proof of

NP-hardness. □

If there is an algorithm which computes the optimal schedule in

polynomial time, it could be used to decide Energy-Scheduling,

which would imply the commonly as unlikely seen statement of

P = NP .

B MILP-REPRESENTATION OF ADDITIONAL

CONSTRAINTS

Auxiliary parts of the MILP are presented in this section. They

enforce the intended semantics of the variables presented in Table 2.

In every valid assignment of variables, for a device d must hold that

start- and end-of-run variables, which are set to 1, must alternate.

Additionally, the first of these variables, which is set to 1, must be

a start-of-run variable while the last one has to be an end-of-run

variable. The following inequalities implement these restrictions.

∀t ∈ T : 0 ≤
∑

t ′∈T, t ′≤t

sdt ′ −
∑

t ′∈T, t ′<t

edt ′ ≤ 1 (15)

∀t ∈ T :

∑
t ′∈T, t ′≤t

edt ′ ≤
∑

t ′∈T, t ′≤t

sdt ′ (16)

∀t ∈ T : 1 +

∑
t ′∈T, t ′≤t

edt ′ ≥
∑

t ′∈T, t ′≤t

sdt ′ (17)

∑
t ′∈T

edt ′ =
∑
t ′∈T

sdt ′ (18)

That a device can only run in at most one mode in every slot is

modeled by

∀t ∈ T :

∑
m∈Ms∪Mc

xdt ,m ≤ 1. (19)

The semantics of the run variables for every slot demand that

they are only set to 1 if and only if there is a start-of-run variable set

to 1 in an earlier slot and no end-of-run variable in a slot between.

Because at most one of the run variables of a single device in a given

slot can be set to 1, the sum of these variables can be understood

as a single binary variable itself.

∀t ∈ T : sdt ≤
∑

m∈Ms∪Mc

xdt ,m

(20)

∀t ∈ T \ {1} : −et−1 +
∑

m∈Ms∪Mc

xdt−1,m ≤
∑

m∈Ms∪Mc

xdt ,m

(21)

∀t ∈ T \ {1} : −st −
∑

m∈Ms∪Mc

xdt−1,m ≤
∑

m∈Ms∪Mc

xdt ,m

(22)

∀t ∈ T \ {1} : et−1 − st ≤ 1 −
∑

m∈Ms∪Mc

xdt ,m

(23)∑
m∈Ms∪Mc

xd
1,m ≤ sd

1
(24)

At last, the semantics of the cumulative-production variables

need to grow over a run dependent on the production rate in every

time slot and should be set to 0 when a run ends. After the first

slot in the optimization interval, the cumulative variable of every

device should be initialized with the production of the respective

device in the first slot. Let s ∈ O(A) be an output of the device d .

e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA Thomas Stueber, Florian Heimgaertner, and Michael Menth

∀t ∈ T \ {1} : kdt ,s − l ·
©­«

∑
m∈Ms

m(s) · xdt ,m +
∑

m∈Ms

rdt ,m
ª®¬

≤ n · l ·Maxd · (1 − edt−1)

(25)

∀t ∈ T \ {1} : l ·
©­«

∑
m∈Ms

m(s) · xdt ,m +
∑

m∈Mc

rdt ,m
ª®¬
− kdt ,s

≤ n · l ·Maxd · (1 − edt−1)

(26)

∀t ∈ T \ {1} :
©­«
kdt−1,s + l ·

©­«
∑

m∈Ms

m(s) · xdt ,m +
∑

m∈Mc

rdt ,m
ª®¬
ª®¬
− kdt ,s

≤ n · l ·Maxd · edt−1
(27)

∀t ∈ T \ {1} : kdt ,s −
©­«
kdt−1,s + l ·

©­«
∑

m∈Ms

m(s) · xdt ,m +
∑

m∈Mc

rdt ,m
ª®¬
ª®¬

≤ n · l ·Maxd · edt−1
(28)∑

m∈Ms

l ·m(s) · xd
1,m +

∑
m∈Mc

l · rd
1,m = k

d
1,s

(29)

For continuous modes, it must be enforced that the continuous

rate variable is 0 if and only if the run variable is set to 0 for the

respective mode in all time slots. Additionally, the rate must be

within the respective bounds of the mode.

∀t ∈ T∀m ∈ Md
c : rdt ,m ≤ mmax (30)

∀t ∈ T∀m ∈ Md
c : −rdt ,m +mmin ≤ mmax − (mmax · xdt ,m) (31)

∀t ∈ T∀m ∈ Md
c : 0 ≤ rdt ,m ≤ mmax (32)

Publications

1.2 A Survey of Scheduling Algorithms for the Time-Aware Shaper in

Time-Sensitive Networking (TSN)

80

1 Accepted Manuscripts (Core Content)

1.3 Performance Comparison of Offline Scheduling Algorithms for the

Time-Aware Shaper (TAS)

123

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX 1

Performance Comparison of Offline Scheduling
Algorithms for the Time-Aware Shaper (TAS)

Abstract— Time-Sensitive Networking (TSN) is an emerg-
ing technology that enables deterministic and reliable
transmission in bridged Ethernet networks. The enhance-
ment for scheduled traffic defined in IEEE 802.1Qbv [1]
allows to implement time-aware shaping (TAS) which grants
periodic slices for transmission to various priority queues
of a bridge. TAS is an enabler for traffic scheduling, i.e.,
frame transmissions of periodic streams at senders and the
TAS on intermediate bridges are configured such that these
frames experience no loss and hardly any queuing delay.
Thereby, deterministic bounds on delay and jitter can be
guaranteed to such streams. However, the standard does
not provide an algorithm to compute transmission sched-
ules. Therefore, more than 100 research works [2] propose
various algorithms for computing such schedules. Never-
theless, there are still many challenges to solve in this
area. In this work, we implement 11 of these algorithms and
compare their performance under various conditions with
regard to schedule quality and runtime. It reveals that the
performance of the algorithms varies a lot and points out
their shortcomings. The set of problem instances for this
study covers a wide range of parameters and is released to
the public so that the performance of new algorithms can
be easily compared to those in this study.

I. INTRODUCTION

Time-Sensitive Networking (TSN) is a set of IEEE standards

that enhance Ethernet bridging for deterministic transmis-

sion. The enhancement for scheduled traffic defined in IEEE

802.1Qbv [1] allows the time-controlled shaping of up to

eight priority queues in bridges, which is commonly denoted

as time-aware shaping (TAS). For this purpose, a periodic

gate control list (GCL) defines which queues are eligible

for transmission in specific time intervals. TAS is intended

to protect time-triggered (TT) streams against queuing delay

induced by other traffic. TT streams are periodic and have real-

time requirements such as bounded latency or jitter. For traffic

scheduling, the periodic transmission times of TT streams and

the GCLs on intermediate bridges are configured such that

their frames experience no loss and hardly any queuing delay.

This configuration is based on a schedule whose computation

is not standardized by the IEEE. However, there is a wide

range of algorithms to calculate such schedules (scheduling

algorithms), but none of them is sufficient for application

in practice. Thus, there is still a lot of work to be done in

this area. Moreover, it is hard to compare these algorithms

as most research works evaluate only their own algorithm

based on an own set of problem instances. In addition, the

problem instances are not published so that results for new

algorithms cannot be compared without implementing existing

algorithms, which requires additional effort.

A. Contribution

We explain the threefold contribution of this work and its

motivation. First, we compare the performance of 11 well-

known offline scheduling algorithms with regard to schedule

quality and runtime. We implemented them and conducted

insightful parameter studies. Thus, this work informs engi-

neers and other practitioners about benefits and drawbacks

of existing scheduling algorithms. Second, we published the

investigated problem instances on GitHub1. If new algorithms

are developed, they may be tested on the same problem

instances so that their performance can be easily compared

to the state of the art. Thereby, researchers can compare the

performance of new methods to existing works at an early

stage without the need to reimplement a set of algorithms from

the literature. Third, this is the first reproducible evaluation

about scheduling algorithms for the TAS in the literature.

The published problem instances can be used to validate the

reported results by independent researchers. Thus, this work

marks an important step towards better scientific practices in

the domain of TAS scheduling.

The performance evaluation considers solving times of

problem instances for first and final solutions. Runtime scala-

bility is tested with computation and memory limits on prob-

lem instances with a different number of streams and bridges.

The performance gain through multi-threading is studied. The

ability of algorithms to find existing solutions is investigated,

which is relevant for heuristic approaches. Finally, schedule

quality is measured in terms of average end-to-end delay of

frames including queuing, relative to average end-to-end delay

on a fastest path without any queuing.

B. Comparison with Similar Works

Nasrallah et al. [3] conduct an extensive performance com-

parison of TAS and Asynchronous Traffic Shaping. They

configure the TAS by reserving a fixed proportion of the cycle

time for scheduled traffic. Therefore, they do not use or com-

pare offline scheduling algorithms for the TAS. Additionally,

their traffic model lacks deadlines and streams with different

periods, and the problem instances are not published.

Only recently, the authors of [4] and [5] compared their

three algorithms with the one in [6] and defined a well

described benchmarking methodology [7]. Our work goes

beyond this approach as we consider 11 algorithms based

on different optimization methods from different authors and

1

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2024.3385503

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

the developed benchmarking methodology is more compre-

hensive. For example, streams with different periods are in-

vestigated, larger problem instances are studied, queuing and

GCL lengths are considered, to name a few. Additionally,

the periods considered in [7] are significantly smaller than

1 ms. Thus, the presented problem instances do not represent

industrial [8], automotive [9], or aerospace [10] use cases in

contrast to the problem instances proposed in this work. We

also study scheduling under challenging conditions and focus

on a systematic construction of experiment series.

The remainder of this work is structured as follows. Section

II gives some background on TSN technology, it introduces

the scheduling problem of TAS in TSN, and reviews common

solving methods. Then, the 11 scheduling algorithms consid-

ered in this work are summarized and compared in Section

III. The methodology for the performance evaluation and the

set of problem instances are described in Section V. Section

VI presents the evaluation results. We summarize the findings

and discuss future research directions in Section VII. Section

VIII concludes the paper.

II. PRELIMINARIES

We first summarize TSN technology with focus on time-

aware shaping (TAS). Then, we define the scheduling problem

of TAS in TSN. Finally, we review common solving methods

for the scheduling problem.

A. Time-Sensitive Networking (TSN)

Time-Sensitive Networking (TSN) is a set of standards

for reliable and deterministic data transmission over Ethernet

networks. These standards cover time synchronization, traffic

shaping and scheduling, as well as network management. For

traffic scheduling in TSN, bridges and end stations require a

common understanding of time such that their actions can be

executed in a coordinated fashion. Therefore, every device is

equipped with a clock. These clocks are synchronized with

the generalized Precision Time Protocol (gPTP) defined in

IEEE 802.1AS [11]. It enables sub-microsecond precision for

networks with a diameter of at most seven hops. The en-

hancement for scheduled traffic introduced in IEEE 802.1Qbv

[1] proposes mechanisms for time-aware shaping (TAS). We

explain TAS using Figure 1. Every egress port is equipped with

up to eight egress queues that correspond to eight priorities.

Frames are assigned to these queues according to their priority

which is indicated by the Priority Code Point (PCP) field

in the VLAN tag of the Ethernet header. Frames within a

queue are served in a first-in-first-out (FIFO) manner so that

frames of a stream are not reordered. Every egress queue

is guarded by a so-called transmission gate. The gates open

and close periodically, which is controlled by a so-called gate

control list (GCL) per egress port. A GCL entry is a pair

of a time interval and a bit vector indicating whether the

gates are opened or closed during that time interval. The GCL

is executed periodically. Only queues with an open gate are

allowed to send frames. Transmission selection is assumed to

be strict priority, i.e., frames are dispatched from the highest

G G G G G G G

TSA TSA TSA TSA TSA TSA TSA

 T1: 10011000
 T2: 00000100

...

Gate Control List

Clock

Q
ue

ue
 7

G

TSA

Q
ue

ue
 6

Q
ue

ue
 5

Q
ue

ue
 4

Q
ue

ue
 3

Q
ue

ue
 2

Q
ue

ue
 1

Q
ue

ue
 0

Transmission Selection

Fig. 1. Model of an egress port in TSN implementing the enhancement
for scheduled traffic.

priority queue with an open gate and a frame waiting for

transmission. We point out that the number of available entries

per GCL is limited in hardware bridges.

B. The Scheduling Problem of TAS in TSN

In TSN, senders and receivers of a frame are denoted as

talkers and listeners. Traffic scheduling requires that periodic

transmission times of TT streams at talkers and GCL entries

on intermediate bridges are configured such that delay bounds

of these TT streams are met when their frames are received

by listeners. This configuration requires a schedule comprising

the periodic frame transmission times and GCLs. The periodic

nature of TT streams and GCLs implies that the schedule is

executed periodically.

In the following, we state a general version of the problem

formally. A network topology can be modelled by a directed

graph G = (V,E). V is the set of vertices, i.e., the bridges

and end stations. Each network device d ∈ V is a 2-tuple

(nGCL, dproc), where nGCL is the number of available GCL

entries per egress port, and dproc is the processing delay of d.

E is the set of edges, i.e., the directed links of the network.

Egress ports of network devices and directed links have a

one-to-one correspondence. Therefore we will identify egress

ports with the corresponding attached links. Every link l ∈ E

is itself a 4-tuple (src, dest, dprop, b), where src and dest

are source and destination network devices of l, dprop is the

propagation delay of l, and b is the transmission bandwidth

of the egress port l is attached to. A TT stream s is a 6-

tuple (vtalker, Vlisteners, nf , fs, Ts, d), where vtalker is the

talker of s, Vlisteners is the set of listeners of s, nf is the

maximum number of frames per period, fs is the maximum

frame size, Ts is the duration of a period, and d is the deadline

of s. We remark that multiple periods of the same stream

may be contained in a schedule and that d is relative to the

start of a streams period, which may differ from the start of

the schedule. A schedule is formally a mapping of frames to

transmission offsets at their respective talkers, together with

a mapping of egress ports to GCLs and a mapping of TT

streams to traffic classes. We remark that many works assume

the mapping to traffic classes as fixed before scheduling and

do not leverage this degree of freedom.

The scheduling problem for the TAS can be stated as

2

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2024.3385503

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

follows: given a network topology G, a set of TT streams

S, and possibly a routing map R : S → Path(G), compute

a schedule such that all frames arrive before their respective

deadlines at all of their respective listeners. In general, not all

TT streams have the same period. Let H be the least common

multiple of the periods of all TT streams. H is denoted as the

hyperperiod in the literature and is the period of a schedule.

Thus, all frames of a stream s are contained H
Ts

times in a

schedule such that their transmission offsets are exactly Ts

apart. Additionally, joint routing algorithms do not have a

routing as input, but return such a mapping from streams to

paths.

The challenge of computing such a schedule constitutes

the scheduling problem of TAS in TSN. For instance, most

research works assume that the traffic classes of the streams

are given while others jointly compute traffic classes and

schedules. Computing schedules in TSN is hard and the

scheduling problem is known to be NP-complete [4]. That

means that there is probably no algorithm with subexponential

runtime that decides whether a valid schedule exists for a

given problem instance. We remark that we only investigate

the offline scheduling problem, i.e., all streams are known in

advance and only a single schedule is computed. The online

scheduling problem, i.e., streams are added and removed

on the fly and schedules are updated accordingly, represents

another problem with different performance metrics and algo-

rithms and is beyond the scope of this work.

C. Solving Methods for the Scheduling Problem

Scheduling algorithms can be classified into exact and

heuristic approaches. Exact approaches are guaranteed to find

a schedule if one exists. If an optimization objective is

given, they are able to find a schedule which minimizes or

maximizes this objective among the set of all valid schedules.

Additionally, such approaches can decide whether a problem

instance is infeasible, i.e., whether no valid schedule exists. An

Integer Linear Program (ILP) models a problem instance with

linear inequalities of integer variables. Satisfiability modulo

theories (SMT) models describe a problem instance with

propositional logic and predicates from various theories, e.g.,

the theory of integer arithmetic. For both ILP and SMT models

holds that each fulfilling variable assignment corresponds to

a valid schedule for a problem instance, and vice versa.

Additionally, ILP solvers are able to infer upper bounds for

the gap between the objective value of the current solution and

the unknown optimal solution during solving. Solving ILPs

and SMTs is hard and may take a significant amount of time.

Therefore, specialized solvers are used for this purpose. A

general drawback of ILP approaches is that most ILP solvers

require an expensive licence for commercial use while most

SMT solvers and heuristics are free.

In contrast, heuristic approaches are designed for fast con-

struction of reasonably good solutions. However, heuristics are

not guaranteed to find a solution even though a valid schedule

exists. Optimization heuristics may return suboptimal solutions

and cannot decide whether a found solution is optimal. A

summary of all kinds of scheduling heuristics considered in

this work is out of scope. However, an important subroutine

of most heuristics for TSN scheduling is “as soon as possible

time tabling”. Frames are scheduled one after another in some

given order. Every frame is scheduled along the path from

its talker to its listener. A resource conflict occurs when two

frames are scheduled for the same resource at the same time,

e.g., when two frames are scheduled to be simultaneously

transmitted over the same link. At every hop on its path,

a frame is scheduled at the earliest possible time such that

resource conflicts with already scheduled frames are avoided.

Additional constraints may be imposed by algorithms that

allow queuing of frames in the egress queue.

III. RELATED WORK

We give an overview of the 11 scheduling algorithms

compared in this work. Table 1 compiles them including

abbreviations used for them in this work and their features

that are discussed in the following. We differentiate between

exact and heuristic algorithms as discussed in Section II-

C. Additionally, we classify algorithms with respect to their

handling of stream paths. Approaches that consider stream

paths as fixed prior to scheduling are denoted as scheduling

w/o routing. Others calculating stream paths are denoted

as joint routing and scheduling approaches. An incremental

algorithm schedules streams one after another. The schedules

of streams computed in earlier iterations are fixed and cannot

be changed afterwards.

Algorithm Method
Incre-

mental
Routing Queuing Impl.

M2F [12] Heur. ✓ - ✓ hard

Tabu [4] Heur. ✓ - - easy

ConfGraph [13] Heur. ✓ ✓ - hard

GenAlg [14] Heur. ✓ ✓ - medium

GRASP [15] Heur. ✓ - ✓ hard

HLS [16] Heur. ✓ ✓ - easy

SMT-INC [17] SMT ✓ - ✓ easy

SMT-DEC [17] SMT ✓ - ✓ easy

ILP-NoWait [4] ILP - - - easy

ILP-JR-1 [18] ILP - ✓ - easy

ILP-JR-2 [5] ILP - ✓ ✓ medium

TABLE 1

ALGORITHMS COMPARED IN THIS WORK AND THEIR FEATURES. THE

LAST COLUMN INDICATES OUR SUBJECTIVE IMPRESSION ON

IMPLEMENTATION COMPLEXITY.

A. Scheduling w/o Routing

Dürr et al. [4] consider the so-called no-wait scheduling

problem, i.e., all frames are forwarded with zero-queuing. That

means that the transmission times of frames at intermediate

nodes are fully determined by the transmission times at the

respective talkers. The flowspan is the time within all frames

have arrived at their respective listeners relative to the start

of a schedule repetition. They propose an ILP (ILP-NoWait)

and a tabu search heuristic (Tabu) to compute transmission

schedules that minimize the flowspan. Tabu resolves resource

conflicts during time tabling by delaying the transmission time

of a frame at its talker. It optimizes the frame order for the

time tabling algorithm to reduce resource conflicts.

3

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2024.3385503

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

Craciunas et al. [17] allow queuing delays and the usage of

multiple egress queues per egress port for scheduled traffic in

their incremental approach (SMT-INC). Thus, the assignment

of streams to traffic classes is not fixed in advance and part

of the considered scheduling problem. If a stream cannot be

scheduled, backtracking is used. That means that the schedule

of an already scheduled stream is unfixed. The unfixed stream

and the new stream are scheduled together. This particular

SMT approach immediately results in the final solution re-

turned while others first provide a feasible solution which is

further improved.

The authors of [17] report that the runtime of SMT-INC

grows linearly for up to 100 streams. Pozo et al. [19] re-

fined the incremental approach of SMT-INC to leverage this

observation (SMT-DEC). Instead of scheduling all streams

with a single run of SMT-INC, they group streams in small

subsets and schedule each subset individually with SMT-

INC. However, there is no backtracking between streams of

different subsets. Thus, SMT-DEC may be a tradeoff between

scalability and schedulability for some problem instances.

Gavrilut et al. [15] propose a Greedy Randomized Adaptive

Search Procedure (GRASP) heuristic which allows queuing

and that uses multiple egress queue per egress port. A greedy

randomized algorithm is used to construct initial solutions. It

combines multiple heuristics and postprocessing. The found

solution is improved by a local search procedure. These steps

are repeated until a stopping criterion is met. The details of

these heuristics are elaborated in [20]. Resource conflicts are

resolved with queuing delay in intermediate nodes instead

of later transmissions at talkers. Additionally, the algorithm

assigns streams to traffic classes similar to SMT-INC. Thus,

a resource conflict between two streams can be resolved by

assigning the streams to different traffic classes.

Another heuristic denoted as Move to Front (M2F) is

presented by Jin et al. [12]. Time is divided into discrete units.

The time tabling algorithm iterates for every hop of a frame

over all time units and schedules it at the earliest possible

time without a resource conflict. However, queuing delay is

allowed, i.e., the transmission time at an intermediate node

is not determined by the transmission time at the respective

talker. In contrast to [15], only a single egress queue per egress

port is dedicated to scheduled traffic.

B. Scheduling w/ Joint Routing

Pahlevan et al. [14] present a genetic algorithm for no-

wait scheduling and path selection (GenAlg). The heuristic

maintains a set of candidate solutions denoted as population.

Every candidate solution consists of a mapping from streams

to paths which represents the genes of the solution. Biology in-

spired mechanisms such as crossover, mutation, and selection,

are used to construct new solutions. Every candidate solution

corresponds to a schedule obtained by time tabling with a fixed

frame order, i.e., resource conflicts are reduced by rerouting

streams.

In later works, Pahlevan et al. [16] propose a heuristic list

scheduler (HLS) to compute schedules and paths. Streams

are scheduled incrementally with a time tabling algorithm.

HLS computes the resulting flowspan for all possible paths

of a stream and selects the path that minimizes the flowspan.

That means that resource conflict are reduced by selecting

appropriate paths.

Falk et al. [18] and Schweissguth et al. [5] give ILP for-

mulations for the joint routing and scheduling of TT streams.

While the ILP (ILP-JR-1) of [18] enforces no-wait scheduling,

the ILP (ILP-JR-2) of [5] allows queuing delays. Additionally,

ILP-JR-2 preprocesses the network topology to reduce the

number of variables and constraints which restricts the solution

space.

A novel heuristic approach (ConfGraph) for joint routing

and no-wait scheduling is presented by Falk et al. [13]. Conf-

Graph constructs a conflict graph for a given network topology

and set of streams. Each vertex in this graph corresponds

to the configuration of a single frame, i.e., the transmission

offset at the frame’s talker and its path. Two vertices are

connected by an edge if and only if the respective configuration

results in two frames conflicting on some link. Therefore, an

independent set of vertices in the conflict graph corresponds

to a valid schedule for all frames covered.

C. Reasoning of the Algorithm Selection

There are more than 100 published works presenting

scheduling algorithms for the TAS [2]. Thus, only a few

can be selected for an in-depth comparison. We selected the

algorithms based on three rationales. First, we wanted the

comparison to feature various algorithmic methodologies used

in the literature, e.g., ILP and SMT solving, Tabu heuristics,

GRASP, or custom heuristics. Typically, the selection of the al-

gorithmic approach has great impact on scalability and schedu-

lability and insights into the appropriateness of an approach

can be leveraged by future researchers. Second, an interesting

comparison should feature various design decisions that are

made by the algorithms’ authors. Therefore, we included

incremental (e.g., Tabu, GenAlg, SMT-INC, ...) and global

approaches (e.g., ILP-NoWait, ILP-JR-{1, 2}), fixed routing

(ILP-NoWait, SMT-DEC, M2F, ...) and joint routing (HLS,

ConfGraph, GenAlg, ...) approaches, and algorithms allowing

queuing delays (SMT-INC, GRASP, M2F, ...) and no-wait

algorithms (ILP-NoWait, Tabu, ConfGraph, ...). Moreover, we

believe that a comparison of state-of-the-art approaches should

consider multiple seminal works that influenced the field.

Tabu and ILP-NoWait from [4] and SMT-INC from [17] are

referenced by almost every other work about scheduling for

TAS. Additionally, these were the first works using ILP and

SMT solving for TAS scheduling [2]. ConfGraph and GRASP

are among the very few works about TAS scheduling published

in journals. Other algorithms, i.e., GenAlg and HLS, are not

seminal for themselves but are the most relevant works with

the respective algorithmic methodology.

We do not suggest that the compared works are the most

recent works or that the field is dominated by them. In fact,

scheduling algorithms for the TAS are a growing field [2, Fig.

19] and new algorithms were proposed in recent conferences

and journals, e.g., [21] and [22]. A comprehensive survey of

the field up to June 2023 can be found in [2].

4

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2024.3385503

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

1) Network Model: We use five different topologies for

the interconnection of bridges. Line and star topologies are

common in classical Ethernet networks. Ring topologies are

important in factory automation use cases of TSN [13][18].

Scale-free networks (SFNs) are random graphs with a power

law distribution of node degrees, i.e., they feature a few

hubs with high node degrees and many nodes with low node

degrees. They can be used to model hierarchical computer

networks. Random regular graphs (RRGs) are random graphs

in which all nodes have the same node degree. They resemble

switching networks in which all switches have the same

number of ports. We construct RRGs with node degree 4.

The nodes in the topologies represent bridges. Every bridge

is connected to four end stations. Bridges have a processing

delay of 1 µs. All links are full-duplex and modelled by two

unidirectional links. Each unidirectional link has an egress port

at its head end and an ingress port at its tail end, and all egress

ports are equipped with eight egress queues. Each link has a

propagation delay of 100 ns and the respective egress port has

a transmission capacity of 1Gb/s.

2) Traffic Model: The traffic model consists of a set of

streams with latency and deadline requirements. Talkers and

listeners of a stream are chosen randomly from the set of

end stations. Every stream may have one or multiple listeners.

Streams periodically send a fixed number of frames as a

burst. Frames sizes on the physical layer are in the range

[84B, 1542B]. The period Ts and the frame size fs of a

stream s is either the same for all streams or drawn from a

set given in Table 2. The period sets {1ms} and {1ms, 2ms}
correspond to industrial use cases of isochronous traffic [8].

The period set {20ms, 50ms, 100ms} represents typical pe-

riods of sending tasks in automotive scenarios [9]. Use cases

in the aerospace domain are constructed with the period set

{2ms, 16ms, 128ms} [10]. According to [9] and [10], the

first two period sets are also representative for automotive

and aerospace use cases. We the period set {500 µs} to

represent factory automation use cases that require extremly

low latencies and short cycle times. The number of frame

instances is the overall number of frame transmissions, i.e.,

the number of frames sent from all talkers multiplied by the

lengths of their individual paths. Talkers and listeners are

generated such that the number of frame instances equals a

value in Table 2. These numbers of frame instances correspond

to about 20 – 1300 streams per problem instance which covers

the range of stream numbers in realistic use cases [2, Table 6

and 7]. Moreover, random frame sizes are assigned to streams

such that the overall traffic load for all streams is the same as

for constant frames sizes with 1542+84

2
= 813 bytes.

Every stream has a deadline and a maximum latency re-

quirement. In the literature, the periods of a all streams are

synchronized in the sense that they start from a common time

t0. The earliest transmission time of a frame of stream s in

period k is at t0+k ·Ts and the frame has to be received by all

its listeners at t0 +(k+1) ·Ts which is denoted as deadline2.

Thus, we assume that all deadlines are before the end of a

2Other definitions of earliest transmission time and deadlines are possible
but not common in literature.

Parameter Possible values
#

instances

#Bridges 10, 20*, 50, 100 160

#Frame
instances

250, 500, 1000*, 2000, 4000, 8000 240

Topology Line, ring*, star, RRG*, scale-free 100

#Frames/period 1*, 2, 4 120

Frame size fs Random*, 84B, 813B, 1542B 120

Stream periods
Ts

{500 µs}, {1ms}, {1 ms, 2 ms}*,
{20ms, 50ms, 100ms},
{2ms, 16ms, 128ms}

160

Latency
0.25, 0.5, 1* × the respective

stream’s period
120

#Listeners/stream 1* (unicast), 2, 4, 8, 16 200

TABLE 2

POSSIBLE AND DEFAULT VALUES FOR THE PROPOSED PARAMETER

STUDIES. DEFAULT VALUES ARE BOLD AND INDICATED BY “*”.

period which is common in industrial use cases [8, Table 3]

and the literature for TAS scheduling [2, Section V.C]. We

define the latency of a frame as the difference between the

time the last bit of the frame arrives at all of its listeners

and the time the first bit of the frame is sent at its talker. The

latency of a stream is defined as the maximum of the latencies

of the stream’s frames during a hyperperiod. Thus, latencies

and deadlines differ in the reference time. While deadlines are

relative to the respective stream’s period, latencies are relative

to the transmission start at the respective stream’s talker. The

maximum allowed latency is given by a parameter in Table 2.

B. Repeatable Parameter Studies

The construction of an experiment may be characterized

by multiple parameters. Parameters are either deterministic

or random. Each deterministic parameter is configured to a

specific value. For instance, the number of bridges in a network

topology is a deterministic parameter and a topology with

exactly 10 bridges is constructed when the parameter is set

to 10. Random parameter are configured to be drawn from

some distribution. For instance, the period of a stream is a

random parameter and it may be configured to be drawn from

the uniform discrete distribution with the possible realisations

{1ms, 2ms} when a stream is constructed.

A parameter study for a parameter p consists of sets of

20 experiments per parameter configuration. All parameters

except for p are configured to their respective default value

in all of these sets. If p is a deterministic parameter, each of

these sets is constructed with p configured to another of its

possible values. If p is a random parameter, each of these sets

is constructed with p configured to another distribution of its

possible distributions. We reuse the same realisations of the

random parameters for different sets whenever it is possible to

do so. For example, the same random frame sizes are used in

the i-th, 0 ≤ i < 20, experiment in every set of the parameter

study of the maximum latency parameter. This methodology

increases the comparability of evaluation results for different

values of p as random noise is minimized and the overall traffic

amount is equal in the experiments of different sets.

To make the performance studies in this paper repeatable,

we provide series of m = 20 samples for every set of every

6

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2024.3385503

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

parameter study for download3.

C. Problem Instances for Evaluation of TSN Scheduling

Algorithms

The experiment model in Section V-A has the following

random parameters: topologies for RRGs and SFNs, talkers

and listeners of streams, stream periods, and a stream’s frame

size. To make experiment repeatable, we provide series of

them. Parameter values for parameter studies and the default

values of these parameters are compiled in Table 2.

We further include a set of infeasible problem instances

with RRG and ring topologies. Each of them contains 100

streams with a subset of ten streams for which no valid

schedule exists, but every subset of nine streams or less can

be scheduled. These unfeasible problem instances are useful

to test the ability of scheduling algorithms to find schedules

under challenging conditions and to decide whether a given

problem is unfeasible. Additionally, these instances can be

employed to evaluate the adaption of incremental heuristics to

online scenarios. In such scenarios, streams must be integrated

into an existing schedule if possible. If it is not possible, the

current schedule is discarded and all streams are rescheduled

again incrementally. The streams in infeasible instances can

be added one after another to simulate an online scenario.

The construction of the infeasible instances guarantees that

all streams are rescheduled after at most 100 added streams.

Thus, online scenarios can be tested for an indefinite number

of streams with these instances.

Some of the above and the following series of parameter

samples are provided in the online resources without being

utilized in this paper. To test Frame Replication and Elimi-

nation for Reliability (FRER), we include 2-connected RRG

and ring topologies which remain connected in case of any

single link failure. Likewise, series of streams with multiples

listeners are added to support multicast studies.

D. Execution Environment

We perform all evaluations on an Intel(R) Xeon(R) CPU

E5-2683 v4 @ 2.10GHz running Linux. Every algorithm is

executed with a single thread and 4 GB RAM if not stated

otherwise. We use CPU pinning to guarantee that every

computation runs exclusively on a specific CPU core. ILP

models are solved with Gurobi 10 [23]. SMT models are

solved with Z3 4.12.1 [24]. Each computation is configured

to timeout after 1 h per problem instance.

E. Evaluation Framework

We implemented an object-oriented evaluation framework.

The framework is structured into packages for instance gener-

ation, path computation, scheduling, evaluation runtime, and

result output. Besides of the implementation of scheduling and

path selection algorithms, it features an evaluation pipeline,

executes and measures experiments parallely in a thread pool,

and reports results in a human-readable HTML format for

3

debugging. The core of the framework is the construction of

parameter studies. Constructing and composing experiments

for a large number of very different studies is hard. To mitigate

this problem, we use the FactoryMethod [25] pattern

for generating scheduler objects, topologies, streams, links,

devices, traffic models, and period models. Multiple imple-

mentations of this pattern are provided for every category of

generated objects. This modular approach allows to construct

parameter studies by plugging together implementations of

the factory method pattern. The methodology for constructing

problem instances from Section V-B is implemented by a hard-

coded composition of these factory implementations. Thus,

problem instance generation is just a special case of our

more general framework and new parameter studies are simple

to implement. Additionally, new parameter distributions or

completely new parameters can be added to the framework

by implementing a single interface.

VI. EVALUATION

In this section we compare the performance of the 11

scheduling algorithms from Section III. After comparing the

computation time of the algorithms, we demonstrate that the

algorithms differ in the size of the problem instances they

can solve. Then, we compare the algorithms with respect to

the length of the resulting GCLs. We investigate to what

extent multi-threading can reduce solving times. We study

the algorithms’ ability to find solutions under challenging

conditions. Finally, we compare the schedule quality in terms

of end-to-end latency of transmitted frames. We computed

95% confidence intervals for all average values, but omitted

them in figures and tables as they were smaller than 5% of

the calculated average values.

A. Solving Time

We compare solving times of the scheduling algorithms in

various parameter studies from Table 2.

1) Varying the Number of Frames: We compute schedules

on problem instances with various number of frame instances

and report the times needed to find a first solution and a

final solution. The time to compute a first solution may be

important as some applications require frequent computation

of new schedules that do not need to be optimal. We stopped

the computation after a timeout of 1 h if the computation was

not finished, yet. Figures 3(a)–3(b) report the results for exact

solutions and for heuristic solutions averaged over ring and

RRG topologies. We observe that more frame instances lead

to longer computation times for all algorithms. More frame

instances increase the solution space and make it harder to

find valid solutions as more frame transmissions compete for

transmission resources and cause more resource conflicts.

As expected, exact approaches lead to longer solving times

compared to heuristic algorithms. For problem instances with

at most 1000 frame instances, the computation time for ILP-

JR-1 is an order of magnitude higher than the computation

of ILP-JR-2, i.e., its improvements are effective. Remarkably,

ILP-JR-2 is even faster than ILP-NoWait for 1000 frame

instances despite ILP-JR-2 is a more complex joint routing

7

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2024.3385503

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

1e−021e−02

1e−01

1e+00

1e+01

1e+02

1e+03

250 500 1000 2000 4000 8000
#Frame instances

S
o

lv
in

g
 t

im
e

 (
s
)

First sol.
Optimal

ILP−JR−1 ILP−JR−2
ILP−NoWait SMT−DEC
SMT−INC

(a) Exact approaches.

1e−021e−02

1e−01

1e+00

1e+01

1e+02

1e+03

250 500 1000 2000 4000 8000
#Frame instances

S
o

lv
in

g
 t

im
e

 (
s
)

First sol.
Optimal

ConfGraph GenAlg
GRASP HLS
M2F Tabu

(b) Heuristic approaches.

Fig. 3. Solving times for first and optimal solutions for varying numbers
of frame instances.

1e−021e−02

1e−01

1e+00

1e+01

1e+02

1e+03

10 20 50 100
#Bridges

S
o

lv
in

g
 t

im
e

 (
s
)

First sol.
Optimal

ILP−JR−1 ILP−JR−2
ILP−NoWait SMT−DEC
SMT−INC

Fig. 4. Solving times for varying numbers of bridges in ring topologies.

model. This is due to ILP-JR-2 using a simpler objective

function than ILP-NoWait which allows faster termination.

However, ILP-NoWait finds its first solution earlier than ILP-

JR-2. With ILPs, first solutions can be found faster, but the

needed time also quickly exceeds 1 h. In contrast, SMT-INC

and SMT-DEC yield only a final solution. SMT-DEC is by far

the fastest exact approach, i.e., its modification of SMT-INC

is effective. HLS, M2F, and GRASP are very fast even for

8000 frames while GenAlg, and Tabu are stopped after 1 h

on problem instances with 2000 or more frames. ConfGraph

and GenAlg are even slower than the exact approaches SMT-

INC. They are so slow because they compute both routing and

scheduling. In contrast, Tabu is able to quickly find an initial

solution even for 8000 frame instances, but takes long time to

improve results.

2) Varying the Topology Size: When varying the number of

bridges, the number of frame instances is set to 1000. Figure 4

depicts the results for exact solutions in ring topologies only

as ILP-JR-{1, 2} were not able to schedule a single RRG

topology with 1000 frame instances. For brevity, we omit the

very similar figure for heuristic approaches. Larger topologies

result in shorter solving times. This is due to the constant

number of frame instances competing for an increasing amount

of transmission bandwidth. Thus, both the number of frames

and the number of bridges contribute to the complexity of a

problem instance.

3) Varying the Solution Quality: ILP solvers are capable of

inferring optimality gaps. That means they can give upper

bounds for the absolute and relative difference between the

objective values of the incumbent solution and the optimal

solution despite the optimal solutions is unknown during solv-

ing. The ILP-based approaches have a systematic disadvantage

compared to heuristic approaches in the evaluation of solving

times. The latter will simply terminate when no better solution

is available while ILP approaches may work hours for the

last 0.1% to optimality. Therefore, we reevaluate the ILP

approaches ILP-NoWait, ILP-JR-{1, 2} with a configured ILP

solver that terminates when the relative optimality gap is

less than 5%. Table 4 presents solving times for the default

parameters, i.e., 20 bridges and 1000 frame instances. The

results reveal that ILP-NoWait spends 50% of the solving time

for the last 5% gap to optimality. However, this is not the case

for ILP-JR-{1, 2}. Thus, they spent most of the solving time

to find an acceptable solution. We remark that it may be the

case that the optimal solution is found early during solving,

but inferring the optimality gap takes most of the reported

solving time. However, this is not the case in the presented

evaluations.

Algorithm ILP-NoWait ILP-JR-1 ILP-JR-2

Default (s) 574 1990 63.4

5% gap (s) 268 1821 45.4

Rel. (%) 46.7 91.5 71.5

TABLE 4

SOLVING TIMES W/ AND W/O AN OPTIMALITY GAP OF 5%.

B. Scalability

TSN scheduling is known to be NP-complete [4]. Therefore,

algorithms may be unable to solve larger problem instances.

We investigate this issue for varying number of frames and

bridges in ring and RRG topologies within a limit of 1 h

computation time and 4 GB RAM. Table 3 compiles the

fraction of solved problem instances (out of 20) for various

parameter configurations.

Heuristic approaches except for ConfGraph can schedule

most considered problem instances within the given time

and memory constraints. An exception is ConfGraph which

builds a large conflict graph to find solutions, which scales

badly. We observe that ring topologies are more difficult to

solve than RRG topologies for most algorithms, especially for

heuristics. In rings, frames compete for a small number of

links, leading to more resource conflicts and a larger solution

space for ILP and SMT solvers. In contrast, some methods

with joint routing and scheduling can solve ring topologies

better than RRG topologies. This is because meshed networks

have more potential paths that need to be explored, which

adds complexity. As a result, ILP-JR-{1,2} are not able to

8

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2024.3385503

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

Algorithm Method Topo.
frame instances # bridges

250 500 1000 2000 4000 8000 10 20 50 100

M2F Heuristic
Ring 100 100 100 100 100 100 100 100 100 100

RRG 100 100 100 100 100 100 100 100 100 100

Tabu Heuristic
Ring 100 100 100 100 100 25; F 100 100 100 100

RRG 100 100 100 100 100 100 100 100 100 100

ConfGraph Heuristic
Ring 100 100 0; M 0; M 0; M 0; M 0; M 0; TM 100 95; T

RRG 100 100 65; TM 0; M 0; M 0; M 0; TM 65; TM 100 100

GenAlg Heuristic
Ring 100 100 100 100 100 100 100 100 100 100

RRG 100 100 100 100 100 100 100 100 100 100

GRASP Heuristic
Ring 100 100 100 100 100 100 100 100 100 100

RRG 100 100 100 100 100 100 100 100 100 100

HLS Heuristic
Ring 100 100 100 100 100 100 100 100 100 100

RRG 100 100 100 100 100 100 100 100 100 100

SMT-INC SMT
Ring 100 100 100 100 30; T 0; T 100 100 100 100

RRG 100 100 100 100 0; T 0; T 100 100 100 100

SMT-DEC SMT
Ring 100 100 100 100 100 100 100 100 100 100

RRG 100 100 100 100 100 100 100 100 100 100

ILP-JR-1 ILP
Ring 100 100 100 0; M 0; M 0; M 100 100 100 100

RRG 100 30; M 0; M 0; M 0; M 0; M 0; M 0; M 0; M 0; M

ILP-JR-2 ILP
Ring 100 100 100 100 0; M 0; M 100 100 100 100

RRG 100 90; M 0; M 0; M 0; M 0; M 0; M 0; M 0; M 0; M

ILP-NoWait ILP
Ring 100 100 100 95; T 0; T 0; TM 100 100 100 100

RRG 100 100 100 100 75; T 0; T 100 100 100 100

TABLE 3

FRACTION (%) OF SOLVED PROBLEM INSTANCES. PARAMETER CONFIGURATIONS FOR WHICH AN ALGORITHM TIMED OUT OR RAN OUT OF MEMORY

ARE INDICATED WITH “T” OR “M”, RESPECTIVELY. AN “F” INDICATES THAT A HEURISTIC FAILED TO FIND AN INITIAL SOLUTION.

solve RRG topologies with 1000 frame instances while they

can solve corresponding ring topologies. SMT-INC and SMT-

DEC outperformed the ILP-based approaches with respect to

solving times. However, this observation is only specific for

the studied algorithms and cannot be generalized. Additionally,

ILP approaches tend to run out of memory in contrast to SMT

algorithms. The only exact algorithm that is able to schedule

all problem instances with 8000 frame instances is SMT-DEC.

This is due to its approach of scheduling small subsets of

frames incrementally with SMT-INC instead of scheduling all

frames incrementally in one run of SMT-INC.

C. GCL Length

The maximum length of the GCLs is limited in hardware

bridges and many gate events may result in a waste of

bandwidth due to guard bands. Thus, the lengths of the GCLs

resulting from scheduling are important. Most end stations are

talker or listener of only a few TT stream in the constructed

problem instances which results in rather short GCLs on

average. However, the GCLs of highly loaded egress ports of

bridges are more interesting as their construction is non-trivial.

Thus, we consider only egress ports that connect bridges with

each other to remove the mentioned bias. We report average

GCL lengths for the topology parameter study in Table 5. We

observe the trend that highly meshed topologies require less

GCL entries per egress port on average. This is due to a higher

number of egress ports for an equal number of frame instances.

All algorithms except for M2F and SMT-DEC result in similar

GCL lengths. GRASP and SMT-INC do not use more GCL

entries than the other approaches despite their assignment

of frames to different traffic classes. The shortest GCLs are

constructed by M2F and SMT-DEC. M2F iterates over time

instants and schedules frame transmissions at the first suitable

time found, resulting in back-to-back frame transmissions and

thus less required GCL entries. SMT-DEC schedules small

subsets of frames together in short time intervals, which also

results in back-to-back frame transmissions.

Algorithm Line Ring Star RRG Scale-free

M2F 17.9 15.7 11.6 7.75 9.95

Tabu 24.5 21 13.4 9.18 11.9

ConfGraph 23.8 - 15.9 11.9 -

GenAlg 22.7 20.2 - 15.4 -

GRASP 22.7 20.6 15.2 10.1 12.9

HLS 22.9 20.2 13.1 10.2 13.2

SMT-INC 23.5 20.3 13.3 9.02 11.7

SMT-DEC 16.5 15 11.3 8.22 9.55

ILP-JR-1 21.7 17.9 12.9 - 13.3

ILP-JR-2 21.7 19.1 13.4 - 12.4

ILP-NoWait 22.4 19.4 13.7 9.11 12

TABLE 5

AVERAGE GCL LENGTHS FOR DIFFERENT TOPOLOGIES. A ”-“

INDICATES THAT THE RESPECTIVE ALGORITHM WAS NOT ABLE TO

SCHEDULE A SINGLE PROBLEM INSTANCE WITH THE RESPECTIVE

TOPOLOGY.

D. Multi-Threading in TSN Scheduling

Computations may be accelerated by multi-threading on

many cores. Prerequisite is that programs support such multi-

threading. The existing heuristics are not multi-threaded, but

they may be extended for that purpose, which requires addi-

tional effort with uncertain gain. In contrast, SMT and ILP

solvers support multi-threading. On the one hand, a problem

can be solved on many cores in parallel. On the other hand,

multi-threading imposes inter-thread synchronization and com-

munication overhead. Therefore, the benefit of parallelization

of TSN scheduling is unclear and it may depend on the specific

model.

We investigate this issue by solving the SMT and ILP

models with up to 8 pinned CPU cores and allowing 1 h

and 4 GB RAM per thread. We study problem instances with

default values and measure the solving time with many threads

relative to the one with a single thread. The results are

compiled in Table 6.

The SMT-based scheduling model hardly benefits from

multi-threading. In contrast, the solving time for ILP-based

scheduling models can be clearly reduced in most cases,

but the speed-up depends on the algorithm and the specific

problem, i.e., ring or RRG topology. We further observe that

9

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2024.3385503

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

Algo. Topo.
Single Threads

thread (s) 2 4 8

SMT-INC
Ring 42.3 89% 89.6% 88.9%
RRG 116 90.5% 89.9% 90.7%

SMT-DEC
Ring 10.9 99.3% 98.7% 99.1%
RRG 12.8 99.1% 99.7% 99.2%

ILP-JR-1
Ring 3541 102% 80.7% 71.2%
RRG - - - -

ILP-JR-2
Ring 72.3 67.2% 69.4% 68%
RRG - - - -

ILP-NoWait
Ring 1400 51.9% 36.3% 27.3%
RRG 723 85.8% 78.5% 62.3%

TABLE 6

SOLVING TIMES W/ MULTIPLE THREADS RELATIVE TO THE SOLVING

TIME W/ A SINGLE THREAD. A “-” INDICATES THAT NOT A SINGLE

PROBLEM INSTANCE WAS SOLVED DUE TO MEMORY LIMITATIONS.

solving time scales worse than 1

n
when n is the number of

threads, which is due to synchronization overhead and others.

Due to this overhead, it is even possible that solving time is

extended as in the case of ILP-JR-1.

E. Scheduling Under Challenging Conditions

To construct challenging conditions, we consider the infea-

sible problem instances where 99 streams can be scheduled but

not 100. We study how many of their streams can be scheduled

by the different algorithms. For that purpose, we take the first k

streams of the 100 lists of stream positions and test whether the

algorithms can solve the resulting problem instance. We denote

the largest k which is solvable as the number of schedulable

streams.

The exact algorithm ILP-NoWait can schedule 99 streams

for both ring and RRG topologies. The other exact algorithms

ILP-JR-{1,2} can schedule 99 streams for RRG topologies but

are not able to solve the problem instances with many streams

within 1 h so that the experiment could not be completed.

However, if completed, 99 streams would be scheduled.

This is different with heuristics. Table 7 compiles their

average number of schedulable streams which is between 56.5

and 93.7. Tabu, GRASP, and HLS can schedule many streams

in RRG topologies (85.0 – 93.7). Others, M2F and GenAlg,

accommodate only 66.6–79.1 streams. Thus, while heuristics

are faster and can solve larger problem instances, they cannot

find solutions for difficult problem instances although solutions

exist. Moreover, the considered heuristics significantly differ

in their ability to find solutions. Similar to the heuristics,

SMT-DEC is unable to schedule most streams and performs

worse than the heuristics on ring topologies. This is due to the

incremental design of SMT-DEC that favors scalability over

schedulability.

Topo. M2F Tabu GenAlg GRASP HLS
SMT-

DEC

ILP-

NoWait

Ring 66.66 90.14 66.86 79.34 56.50 25.00 99

RRG 79.10 91.93 83.42 85.03 93.73 80.15 99

TABLE 7

MAXIMUM NUMBER OF SCHEDULED STREAMS UNDER CHALLENGING

CONDITIONS IN PROBLEM INSTANCES WITH 99 STREAMS. CONFGRAPH

AND ILP-JR-{1,2} ARE NOT LISTED AS THEY CANNOT SOLVE

INSTANCES WITH 100 STREAMS WITHIN 1 H.

F. Latency

All evaluated algorithms were designed by their respective

authors to construct schedules with low end-to-end latencies

for frames as most real-time applications require ultra-low

latencies. Therefore, it is reasonable to compare the algorithms

with respect to this quality measure. However, we remark that

isochronous traffic only features deadline requirements [8] and

minimizing the stream latencies is just an objective to compare

schedules. The theoretical minimum delay of a frame is the

sum of processing, propagation, and transmission delays along

the shortest path from its talker to its listener. We calculate the

achieved frame latency relative to that theoretic minimum and

call it relative latency. We report relative latencies averaged

over all frames and runs in Figures 5(a)–5(b). In the following,

we explain them based on the properties of the algorithms (cf.

Table 1).

1.0

1.5

2.0

250 500 1000 2000 4000 8000
#Frame instances

R
e

la
ti
ve

 l
a

te
n

c
y

ConfGraph GenAlg
GRASP HLS
ILP−JR−1 ILP−JR−2
ILP−NoWait M2F
SMT−DEC SMT−INC
Tabu

(a) Varying the number of frame instances.

1.00

1.25

1.50

10 20 50 100
#Bridges

R
e

la
ti
ve

 l
a

te
n

c
y

ConfGraph GenAlg GRASP HLS
ILP−JR−1 ILP−JR−2 ILP−NoWait M2F
SMT−DEC SMT−INC Tabu

(b) Varying the number of bridges.

Fig. 5. The average latencies relative to the latency on the shortest
path w/o queuing delay.

GRASP and MF resolve resource conflicts by introducing

queuing delays, which explains their increased latencies for

many frames. However, in contrast to GRASP, MF suffers

from increased latencies only with very large problem in-

stances. HLS, GenAlg, and ConfGraph implement joint rout-

ing and scheduling, i.e., they resolve resource conflicts by

changing the paths of frames, which also result in longer

latencies than needed. Tabu and ILP-NoWait neither allow

queuing nor rerouting and, therefore, achieve minimum rel-

ative latencies. These observations also hold for the exact

approaches ILP-JR-{1,2}. Thus, they do not seek sufficiently

for solutions with low latency.

Remarkably, SMT-INC and SMT-DEC do not introduce

10

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2024.3385503

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

queuing delays despite the fact that their modelling does not

enforce a no-wait constraint and no objective function is used.

They implement an isolation constraint which forbids frames

from different streams to reside in the same queue at the same

time. Thus, it is beneficial to schedule frames without queuing

delays as more frames can be scheduled in a given planning

horizon.

When considering a varying number of bridges, we observe

very similar results. Contrary to other approaches, ConfGraph

results in higher latencies for larger topologies as it resolved

resource conflicts primarily through path selection.

VII. DISCUSSION

We highlight findings from the presented performance com-

parison and give guidelines for selecting an algorithm based

on the evaluation results.

A. Summary

Existing scheduling algorithms for TSN scheduled traffic

differ a lot. Most exact approaches based on SMT or ILP

tend to solve only smaller problem instances. Some fail on

medium-size problem instances due to limited computing

time (SMT-INC, ILP-NoWait), others due to limited memory

(ILP-JR-{1,2}). However, SMT-DEC scales well even for

large problem instances with 8000 frame instances. Also the

ConfGraph heuristic can solve only small problem instances.

The other heuristics GenAlg, GRASP, HLS, M2F, and Tabu

find a first valid schedule much faster than exact approaches

and most of them can tackle larger problem instances.

The considered heuristics are not designed such that they

can profit from multi-threading on many cores. In contrast,

SMT and ILP models can be accelerated at least in theory.

However, we achieved a substantial speedup only for ILP-

NoWait.

When exact approaches terminate successfully, they always

find a solution of a problem instance if one exists. We showed

that this does not hold for heuristic approaches. They are often

unable to find existing solutions under challenging conditions,

which is a significant drawback. In practice that means they

can schedule fewer streams although more are schedulable.

Among the evaluated algorithms, only Tabu was able to admit

more than 90% of the streams for lowly and highly meshed

topologies.

The schedule quality in terms of stream latency, the common

optimization goal of the investigated algorithms, differs a lot.

Algorithms that allow queuing (GRASP, M2F) or rerouting

(HLS, GenAlg, ConfGraph) to find a valid schedule lead to

longer stream latencies than algorithms that do not allow these

features (Tabu, ILP-NoWait, ...).

We remark that scheduling algorithms cannot be compared

by a single metric and no conclusion can be drawn from

a single experiment. For instance, some use cases require

really fast schedule computation while other use cases require

small latencies but computation times are irrelevant. Thus, a

careful evaluation of the use case is needed before selecting

an algorithm. However, ConfGraph and GenAlg performed

badly with respect to both solving times and latencies while

SMT-DEC was the fastest algorithm that resulted in minimum

latencies. The presented evaluations represent a starting point

to assess the current state-of-the-art and to identify promising

methodologies for future research.

B. Conclusions & Guideline

The evaluation results indicate various lessons relevant for

practitioners that must select an algorithm. We formulate

selection guidelines based on these observations.

The number of available GCL entries in hardware bridges

is still limited. These entries are not only used to implement

TAS schedules, but to protect different traffic classes from

each other, e.g., AVB and BE traffic. Thus, GCL entries are

an expensive resource in environments with legacy devices or

different traffic classes. We recommend M2F and SMT-DEC

in such cases as they result in few GCL entries required to

implement the TAS schedule. Applications that require ultra-

low latencies should not employ joint routing algorithms, e.g.,

ConfGraph, GenAlg, HLS, ILP-JR-{1,2}, as these algorithms

resolve resource conflicts by selecting suboptimal paths. In

contrast, ILP-NoWait and Tabu result in minimal latencies

without drawbacks with respect to schedulability across all

experiments. Some applications of TSN, such as in-vehicle

communication, require frequent recomputation of schedules.

The evaluations showed that most algorithms find valid solu-

tions fast but take significantly more time to optimize some

objective function. We recommend Tabu, HLS, and GRASP in

these cases as they construct feasible solutions several orders

of magnitude faster than other algorithms. Heuristic algorithms

fail to produce valid schedules under challenging conditions

such as tight deadlines combined with heavily loaded links.

They are not able to find valid schedules in these cases

although a schedule exists. Therefore, ILP-based approaches

such as ILP-NoWait are recommended to be used under such

conditions. Additionally, these algorithms can prove the non-

existence of a valid schedule. Finally, costs for software pack-

ages and developers can be substantial when implementing a

scheduling algorithm. Especially ILP solvers are expensive and

thus not available for many practitioners. The compared algo-

rithms differ significantly in required implementation effort.

Based on the authors experience, we recommend Tabu, HLS,

SMT-INC, and SMT-DEC for fast and efficient implementation

if implementation costs are a limiting factor.

VIII. CONCLUSION

In this paper, we proposed a set of problem instances that

was designed to make parameter studies comparable across

different schedulers. This set is released to the public to allow

future works a comparison with the current state-of-the-art.

To that end, we selected and implemented 11 highly influ-

ential algorithms with different methodologies and reported

evaluation results for the proposed problem instances. First,

we confirmed that heuristic algorithms are faster than exact

approaches and that scheduling scales badly with the number

of frame instances. The numerical results of this comparison

can be used as a reference in future works that propose

11

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2024.3385503

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

new scheduling approaches. Second, we reported the counter-

intuitive finding that scheduling in larger topologies may be

simpler than in smaller ones. We demonstrated that exact

joint routing approaches are not able to schedule medium-

sized problem instances, an observation that does not hold

for heuristic joint routing approaches. We showed that M2F

and SMT-DEC result in significantly smaller GCLs than

other algorithms. Then, we demonstrated that some exact ap-

proaches (ILP-NoWait, ILP-JR-2) benefit heavily from multi-

threading, but this observation depends on the modelling and

the topology. However, the speedup of using n parallel threads

is substantially less than 1

n
. Additionally, we evaluated the

capabilities of heuristic algorithms under challenging condi-

tions, i.e., when no feasible schedule exists. We observed that

Tabu was able to admit more than 90% of the streams while

other heuristics struggled with these instances. Finally, we

compared schedule quality with respect to stream latencies. We

observed significantly higher latencies than necessary due to

queuing delays for GRASP and M2F, and suboptimal routings

for GenAlg and ConfGraph.

In summary, the evaluations quantified the capabilities of

current state-of-the-art solvers. Future works may explore

novel metrics for measuring schedule quality or add new

algorithms to the comparison. The observed results show that

the solvers for exact methods and modeling methodologies of

heuristics have significant implications for runtime, schedule

quality and properties like number of GCL entries. For in-

stance, GenAlg and ConfGraph were slow and resulted in high

latencies. In contrast, HLS and Tabu were remarkably simple

to implement and represent a good tradeoff between solving

times and latencies. The enhanced incremental scheduler SMT-

DEC was almost as fast as some heuristics, i.e., its methodol-

ogy is superior to SMT-INC and current ILP approaches. We

do not recommend to implement the joint routing ILPs ILP-

JR-{1, 2} as they scaled badly and were not able to schedule

medium-sized instances.

We conclude that there is no all-in-one methodology for

schedule computation in TSN for arbitrary use cases. Future

research in scheduling may explore different solving and mod-

eling methods for TSN scheduling to achieve the best tradeoff

between performance and schedule quality for a specific use-

case.

REFERENCES

[1] “IEEE Standard for Local and metropolitan area networks
– Bridges and Bridged Networks - Amendment 25: En-
hancements for Scheduled Traffic,” IEEE Std 802.1Qbv-2015
(Amendment to IEEE Std 802.1Q-2014 as amended by IEEE
Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, and IEEE Std
802.1Q-2014/Cor 1-2015), 2016.

[2] T. Stüber, L. Osswald, S. Lindner, and M. Menth, “A Survey
of Scheduling Algorithms for the Time-Aware Shaper in
Time-Sensitive Networking (TSN),” IEEE Access, vol. 11,
pp. 61 192–61 233, 2023.

[3] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, et al., “Perfor-
mance Comparison of IEEE 802.1 TSN Time Aware Shaper
(TAS) and Asynchronous Traffic Shaper (ATS),” IEEE Access,
vol. 7, pp. 44 165–44 181, 2019.

[4] F. Dürr et al., “No-wait Packet Scheduling for IEEE Time-
Sensitive Networks (TSN),” in RTNS, 2016.

[5] E. Schweissguth et al., “ILP-Based Routing and Scheduling
of Multicast Realtime Traffic in Time-Sensitive Networks,” in
IEEE RTCSA, 2020.

[6] A. C. T. dos Santos, B. Schneider, and V. Nigam,
“TSNSCHED: Automated Schedule Generation for Time Sen-
sitive Networking,” in Formal Methods in Computer Aided
Design (FMCAD), 2019.

[7] E. Schweissguth, H. Parzyjegla, P. Danielis, et al., “TSN
Scheduler Benchmarking,” in IEEE International Conference
on Factory Communication Systems (WFCS), 2023, pp. 1–8.

[8] Industrial Internet Consortium, Time Sensitive Networks for
Flexible Manufacturing Testbed - Description of Converged
Traffic Types, [Online; accessed 21-September-2023], 2018.
[Online]. Available: https : / / www . iiconsortium .
org / pdf / IIC _ TSN _ Testbed _ Char _ Mapping _

of _ Converged _ Traffic _ Types _ Whitepaper _

20180328.pdf.
[9] S. Kramer, D. Ziegenbein, and A. Hamann, “Real World

Automotive Benchmarks for Free,” in International Workshop
on Analysis Tools and Methodologies for Embedded and Real-
time Systems (WATERS), 2015.

[10] M. Boyer, L. Santinelli, N. Navet, J. Migge, and M. Fumey,
“Integrating End-System Frame Scheduling for More Ac-
curate AFDX Timing Analysis,” in Embedded Real Time
Software and Systems (ERTS), 2014.

[11] “IEEE Standard for Local and Metropolitan Area Networks–
Timing and Synchronization for Time-Sensitive Applications,”
IEEE Std 802.1AS-2020 (Revision of IEEE Std 802.1AS-2011),
2020.

[12] X. Jin et al., “Real-Time Scheduling of Massive Data in
Time Sensitive Networks With a Limited Number of Schedule
Entries,” IEEE Access, vol. 8, 2020.

[13] J. Falk et al., “Time-Triggered Traffic Planning for Data
Networks with Conflict Graphs,” in IEEE RTAS, 2020.

[14] M. Pahlevan et al., “Genetic Algorithm for Scheduling Time-
Triggered Traffic in Time-Sensitive Networks,” in IEEE ETFA,
2018.

[15] V. Gavriluţ et al., “AVB-Aware Routing and Scheduling of
Time-Triggered Traffic for TSN,” IEEE Access, vol. 6, 2018.

[16] M. Pahlevan et al., “Heuristic List Scheduler for Time Trig-
gered Traffic in Time Sensitive Networks,” ACM SIGBED
Review, vol. 16, no. 1, 2019.

[17] S. S. Craciunas et al., “Scheduling Real-Time Communication
in IEEE 802.1Qbv Time Sensitive Networks,” in RTNS, 2016.

[18] J. Falk et al., “Exploring Practical Limitations of Joint Routing
and Scheduling for TSN with ILP,” in IEEE RTCSA, 2018.

[19] F. Pozo, W. Steiner, G. Rodriguez-Navas, and H. Hansson, “A
decomposition approach for SMT-based schedule synthesis for
time-triggered networks,” in IEEE Conference on Emerging
Technologies & Factory Automation (ETFA), 2015.

[20] M. L. Raagaard et al., “Optimization algorithms for the
scheduling of IEEE 802.1 Time-Sensitive Networking (TSN),”
Technical University of Denmark, Tech. Rep., 2017.

[21] X. Zhou, F. He, L. Zhao, and E. Li, “Hybrid Scheduling of
Tasks and Messages for TSN-Based Avionics Systems,” IEEE
Transactions on Industrial Informatics, vol. 20, pp. 1081–
1092, 2024.

[22] P.-J. Chaine, M. Boyer, C. Pagetti, and F. Wartel, “Egress-TT
Configurations for TSN Networks,” ser. RTNS ’22, 2022.

[23] Gurobi Optimization, LLC, Gurobi Optimizer Reference Man-
ual, 2021. [Online]. Available: https://www.gurobi.
com.

[24] L. De Moura et al., “Z3: An Efficient SMT Solver,” in Tools
and Algorithms for the Construction and Analysis of Systems,
2008.

[25] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Pearson Education, 1994.

12

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2024.3385503

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

Publications

1.4 Efficiency of BIER Multicast in Large Networks

136

Efficiency of BIER Multicast in Large Networks

Daniel Merling*, Thomas Stüber*, Michael Menth

Chair of Communication Networks, University of Tuebingen, Germany

{daniel.merling, thomas.stueber, menth}@uni-tuebingen.de

Abstract—Bit Index Explicit Replication (BIER) has been
introduced by the IETF to transport IP multicast (IPMC) traffic
within a BIER domain. Its advantage over IPMC is improved
scalability regarding the number of multicast groups. However,
scaling BIER to large networks is a challenge. To that end,
receivers of a BIER domain are assigned to smaller subdomains.
To deliver an IPMC packet over a BIER domain, a copy is sent
to any subdomain with a receiver for that packet. Consequently,
some links may carry multiple copies of the same IPMC packet,
which contradicts the multicast idea.

In this paper, we propose and compare various algorithms
to select subdomains for BIER in order to keep the overall
BIER traffic low despite multiple packet copies. We apply them
to investigate the traffic savings potential of IPMC and BIER
relative to unicast under various conditions. We show that the
traffic savings depend on network topology, network size, and the
size of the multicast groups. Also the extra traffic caused by BIER
depends on these factors. In spite of some redundant packets,
BIER can efficiently reduce the overall traffic in most network
topologies. Similarly to IPMC, BIER also avoids heavily loaded
links. Finally, we demonstrate that BIER subdomains optimized
for failure-free conditions do not cause extensive overload in case
of single link failures.

Index Terms—Bit Index Explicit Replication (BIER), multicast,
IP networks, performance evaluation, optimization

I. INTRODUCTION

IP multicast (IPMC) reduces the traffic load of one-to-

many traffic [1], e.g., Multicast VPN, streaming, content de-

livery networks, or data center virtualization/overlay because

it avoids redundant packet copies. To that end, it distributes

traffic of a multicast group along a tree so that any link in

an IP network forwards at most a single copy of a packet.

However, all core nodes that are part of a distribution tree of an

IPMC group need to maintain forwarding state for that IPMC

group. This approach causes a threefold scalability issue. First,

core nodes need to maintain possibly extensive forwarding

information bases (FIBs). Second, when subscriber change, the

core nodes of the affected IPMC group require updates which

cause serious signaling efforts. Third, if links or nodes fail, or

the topology changes, the traffic of many multicast groups may

be affected so that many routers experience a large signaling

load. The IETF has proposed Bit Index Explicit Replication

(BIER) [2] to counteract that problem. BIER tunnels multicast

traffic through a BIER domain and delivers a copy to each

desired egress node. BIER solves the scalability problem by

The authors acknowledge the funding by the Deutsche Forschungsgemein-
schaft (DFG) under grant ME2727/1-2. The authors alone are responsible for
the content of the paper.

*These authors contributed equally

keeping the core nodes of the BIER domain unaware of any

multicast group. Nevertheless, scaling BIER to large networks

is a challenge. Multiple copies of a multicast packet may

need to be forwarded over the same link, which contracts the

multicast idea and may prevent BIER from efficiently reducing

the traffic load for multicast traffic. We briefly explain the

reason and provide the ground for this research work.

When an ingress node of a BIER domain receives an IPMC

packet, it adds a BIER header including a bitstring. The

positions in the bitstring correspond to egress nodes of the

BIER domain and the activated bits indicate the receivers of

the BIER packet. The bitstring enables BIER routers to for-

ward BIER packets without knowing multicast groups. As the

bitstring has a limited size, BIER domains with more egress

nodes require a scaling feature. Subdomains are introduced

which are sets of egress nodes, and bitstrings are defined

for each subdomain. Thus, if an IPMC packet needs to be

forwarded to egress nodes in different subdomains, multiple

BIER packets with different bitstrings are sent and possibly

pass identical links. This obviously reduces the efficiency

of BIER to distribute multicast traffic compared to IPMC.

Thus, BIER enables stateless transport of multicast traffic and

thereby mitigates IPMC’s scalability problem. However, it is

less efficient than IPMC with regard to traffic load reduction.

The contributions of this paper are manifold. First, we show

that a simple application of BIER’s scaling feature [2], i.e.,

random subdomain clustering, cannot efficiently reduce traffic

load in the network . Second, we present means to compute

efficient subdomain clusterings. To that end, we describe

an integer-linear program (ILP) that computes subdomain

clustering in a way that minimizes the overall traffic load in

the network. We also design a heuristic to approximate the

solution of the ILP because it works only on small topologies.

Third, we quantify and compare the ability of IPMC and

BIER to efficiently reduce the load from multicast traffic in

comparison to unicast. In particular, we evaluate the efficiency

of BIER with the proposed subdomain clustering mechanisms

and compare it to a naive application of BIER’s scaling feature.

We define suitable metrics and show that the efficiency of

multicast depends on network topology and size as well as

the size of the multicast groups. Fourth, we investigate the

effect of link failures on the efficiency of BIER with optimized

subdomains. This is interesting as link failures change the

routing based on which the subdomains were optimized.

The remainder of the paper is structured as follows. In the

next section we review related work. Section III gives a primer

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3262294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

on BIER and shows that BIER generates a separate packet

copy for almost every subdomain even for small multicast

groups. In Section IV we propose algorithms to compute

subdomains for BIER networks. We compare the algorithms

with regard to runtime and quality in Section V. Section VI

evaluates and compares the traffic savings potential of IPMC

and BIER for multicast traffic. In Section VII we evaluate the

efficiency of BIER in case of single link failures. Finally, we

conclude the paper in Section VIII.

II. RELATED WORK

We review advances for IPMC and BIER-based multicast

and mention well-known clustering algorithms.

A. Advances for IPMC

Islam et al. [3] and Al-Saeed et al. [4] provide com-

prehensive surveys for multicast. Most of the cited papers

discuss shortcomings of IPMC as already mentioned in the

introduction, i.e., limited scalability in terms of signaling and

state overhead. Many approaches aim to make traditional

IPMC forwarding more efficient. Intelligent mechanisms for

multicast tree building are presented to reduce the size of

the forwarding information base (FIB), or efficient signal-

ing mechanisms are proposed. However, they counteract the

shortcomings of traditional IPMC only up to the point where

the inherent design flaw of traditional IPMC, i.e., maintaining

IPMC-group-dependent state in core devices, causes signifi-

cant overhead, and therefore scalability issues.

Elmo [5] improves the scalability of traditional IPMC in

data centers. Multicast group information is encoded in packet

headers to reduce the FIB of core nodes by leveraging char-

acteristic properties of data center topologies. The Avalanche

Routing Algorithm (AvRA) [6] also leverages properties of

data center networks to optimize link utilization of distribution

trees. Dual-Structure Multicast (DuSM) [7] builds specialized

forwarding structures for high-bandwidth and low-bandwidth

flows. It improves scalability and link utilization in data

centers.

Zhang et al. [8] optimize application layer multicast (ALM).

They continuously monitor the application-specific distribution

tree and update its structure according to the optimization

objective of the multicast group. The authors of [9] study

the distribution of delay-sensitive data with minimum latency.

They propose a set of algorithms that construct minimum-

delay trees for different kinds of application requirements like

min-average, min-maximum, real-time requirements, etc. Li et

al. [10] leverage the structure of data center networks to im-

prove the scalability of traditional multicast. They optimize the

forwarding tables by partitioning the multicast address space

and aggregating multicast addresses at bottleneck switches.

Kaafar et al. [11] present a new overlay multicast tree construc-

tion scheme. It leverages location-information of subscribers

to build efficient distribution trees.

Software-Defined Multicast (SDM) [12] is a well-managed

multicast platform. It is specialized on P2P-based video

streaming for over-the-top and overlay-based live streaming

services. In [13] traffic engineering features are added to SDM.

Lin et al. [14] propose to share distribution trees between

multicast groups to reduce the size of the FIB in core nodes

and implement it in OpenFlow. Similarly, the authors of

[15] leverage bloom filters to reduce the number of TCAM-

entries in software-defined networks. Adaptive SDN-based

SVC multicast (ASCast) [16] optimizes multicast forwarding

for video live streaming by minimizing latency and delay. To

that end, the authors propose an integer linear program for

optimal tree building, and TCAM-based forwarding tables for

fast packet processing. Humernbrum et al. [17] reduce the

size of the FIB in some core nodes by introducing address

translation from multicast addresses to unicast addresses at

the last multicast hop. Jia et al. [18] reduce the size of the

FIB in core nodes and facilitate efficient implementations.

They leverage prime numbers and the Chinese remainder

theorem to efficiently organize FIB structures. Steiner trees

[19] are well-researched structures to build efficient multicast

trees. Many papers modify and extend Steiner trees to build

specialized multicast trees that minimize specific aspects like

link costs [20], number of branch nodes [21], number of hops

[22], delay [23], optimal placement of IPMC sources [24], or

retransmission efficiency [25].

B. Advances for BIER

BIER uses a novel header and its forwarding behavior

distinguishes substantially from IP forwarding. That is, BIER

does not require per-IPMC-group-state in its core devices.

Therefore, it does not suffer the same scalability issues as

IPMC. Giorgetti et al. [26], [27] show a first implementation

of BIER in OpenFlow. Merling et al. [28] present a BIER

prototype for a P4-programmable software switch with a

throughput of around 900 Mb/s. In a follow-up work [29]

they implement BIER for the P4-programmable switching

ASIC Tofino that supports 100 Gb/s throughput per port. They

also propose how BIER traffic should be rerouted in case

of failures, which has been adopted as IETF working group

document [30].

The authors of [31] evaluate the retransmission efficiency

of BIER when subscribers signal missing packets by negative

acknowledgments, i.e., NACKs. Traditional IPMC leverages

either unicast packets or retransmission to the entire multicast

group when some subscribers signal NACKs. The BIER

header allows to retransmit packets to specific subscribers

only, i.e., NACK senders, while sending only one packet

copy over each link. The authors find that BIER causes less

overhead in terms of number of retransmitted packets and that

it achieves better link utilization. Desmouceaux et al. [32]

increase efficiency of retransmission with BIER by allowing

intermediate nodes to resend packets, if possible, instead of

resending the packet at the source. This significantly reduces

the overall retransmission traffic.

Eckert et al. [33] propose tree engineering for BIER, i.e.,

BIER-TE. It leverages the BIER header to also encode the

distribution tree of a packet in terms of traversed links. In

[34] 1+1 protection for BIER is presented using maximally

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3262294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

redundant trees (MRTs). Traffic is distributed simultaneously

over two disjoint trees so that packets are delivered even if

one tree is compromised by a failure.

C. Clustering Algorithms

In this work we cluster receivers of BIER domains into

subdomains. Karypis et. al. [35] present an algorithm to

compute a bisection of a graph by performing a breadth-first

search starting from two center nodes. The authors of [36]

propose a similar method to compute k-partitions for arbitrary

k, using k center nodes. Instead of two breadth-first searches,

this algorithm performs k breadth-first searches in parallel.

The resulting partitions tend to reduce the number of border

nodes instead of cross-edges, which is a good property for

load balancing. The approach is closely related to k-means

clustering with Lloyd’s algorithm [37]. The algorithm selects k
center nodes and adds all nodes to the cluster with the nearest

center node. The center nodes are readjusted to reflect the

center of the clusters and this step is repeated until no changes

occur. k-means clustering is not suitable for our problem, as

cluster sizes cannot be limited. In contrast to that, the bubble-

growing approach of [36] produces equal size partitions. The

heuristic algorithm for BIER clustering in this work follows a

similar approach.

III. BIT INDEX EXPLICIT REPLICATION (BIER)

In this section we introduce fundamentals of BIER and

explain its scaling mechanism for large networks. In addition,

we show that the mechanism tends to produce multiple BIER

packets for a single IPMC packet, even for small multicast

groups.

A. Overview

BIER is a domain-based mechanism to transport IPMC

traffic over a so-called routing underlay network, e.g., an IP

network [2]. Figure 1 shows the layered BIER architecture.

2

IP
M

C

la
ye

r
BI

ER

la
ye

r
R

ou
tin

g
un

de
rl

ay

Source Receiver Receiver

BFIR BFER 1 BFER 2

BFR

1,2 1 2

Paths

Fig. 1: Layered BIER architecture according to [28].

BIER-capable routers are called bit forwarding routers

(BFRs). Ingress and egress nodes of a BIER domain are called

bit forwarding ingress and egress routers (BFIRs, BFERs).

The BIER header contains a bitstring with bit positions for

all BFERs. BFIRs encapsulate IPMC traffic with a BIER

header and the activated bits in its bitstring indicate the set

of BFERs that are connected to subscribed IPMC clients, and

hence, should receive a copy of the packet. BFRs forward

BIER packets based on this bitstring along a tree towards the

indicated BFERs. Thereby, only a single copy is sent over

each involved link. The paths of the tree are inherited from

the routing underlay but BIER-encapsulated IPMC packets are

usually sent over Layer 2 technology. BFERs remove the BIER

header from the packets and pass them to the IPMC layer.

B. Scaling BIER to Large Networks

BIER hardware must implement a bitstring length of 256

bits, but larger bitstrings, e.g., 1024 bits, may also be supported

[2]. However, large bitstrings increase the header size, which

is tolerable only to some extent. Any BFER requires a position

in the bitstring to be addressable. To make BIER applicable

to networks with more BFERs than the size of the bitstring,

so-called BIER subdomains are introduced. BIER subdomains

are identified by their subdomain identifier (SDI) and they

define different mappings of BFERs to bit positions for

the subdomain-specific bitstring in the BIER packet header.

Therefore, only the combination of SDI and bitstring in the

BIER packet header determines the addressed BFERs of that

packet. If a BFIR receives an IPMC packet, it sends a packet

copy of that IPMC packet to each subdomain that contains at

least one receiver, i.e., BFER. Thereby, the BFIR encapsulates

the packet copies with a BIER header with the right SDI and

bitstring to address the subscribers in each subdomain.

C. BIER Packets Needed for Single IPMC Packet

When a BIER domain is large, it may require multiple

subdomains. Then, the BFERs of a BIER domain are assigned

to bit positions in the bitstrings of different subdomains.

As a consequence, when an IPMC packet is to be carried

through a BIER domain, multiple BIER packets with different

SDIs may be created to address all desired receivers. We call

them redundant packet copies as they carry the same IPMC

packet. They cause extra traffic and reduce BIER’s ability to

reduce load from multicast traffic compared to normal IPMC

forwarding.

We investigate how many different BIER packets are gen-

erated on average when a BFIR sends an IPMC packet

over a BIER domain. To that end, we consider a BIER

domain with n = 1024 BFERs and bitstring lengths of b ∈
{128, 256, 512, 1024} bits. Hence, s ∈ {1, 2, 4, 8} subdomains

are needed to provide all BFERs with bit positions. We use

a Markov chain model to compute the average number of

different BIER packets needed if an IPMC packet has r BFERs

as receivers; thereby we assume that receivers of a packet

belong with equal probability to any of the subdomains.

Figure 2 shows that the average number of BIER packets

significantly depends on the number of receivers r and the

number of subdomains s. The number of BIER packets

converges quickly to the number of subdomains s. If r = 3 · s
receivers are addressed, almost s different BIER packets need

to be sent for a single IPMC packet.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3262294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

B. Random BIER Clustering

We briefly explain random BIER clustering. A bitstring

length of b is given. A set of n BFERs is subdivided into equal-

size s = ⌈n
b
⌉ subdomains. BFERs are randomly assigned to

these subdomains whereby their size is limited to b BFERs.

In Section V-C we use this algorithm as a baseline for

comparison.

C. Optimal BIER Clustering for Selected Topologies

We describe optimal clusterings for selected, regular topolo-

gies: full mesh, line, ring, and perfect binary tree. We renounce

on a formal proof of optimality as this is rather obvious.

1) Full Mesh: Here, random assignment is optimal. In full

meshes, all traffic is exchanged over a direct link between

source and destination because all nodes are neighbors. How-

ever, in such topologies, there is no traffic reduction potential

for multicast and we do not consider full meshes any further.

2) Line Topologies: Start at one end of the line. Assign

the next b neighboring nodes to a subdomain. Repeat until all

nodes are assigned. The last subdomain may have less than b
nodes.

3) Ring Topologies: Select an arbitrary position in the ring

and choose a direction. Assign the next b neighboring nodes

to a subdomain. Repeat until all nodes are assigned. The last

subdomain may have less than b nodes.

4) Perfect Binary Trees: We consider a perfect binary tree.

The depth of a node is its distance to the root plus one so that

the leaves have maximum depth. We denote their depth as the

height h of the tree. We state that a perfect binary tree with

height h has 2h − 1 nodes.

We assume that the bitstring size is b = 2k. It can

accommodate a perfect binary tree with height k. We give

an algorithm to cluster a perfect binary tree with height h into

2h−k subdomains with up to 2k nodes. We take all subtrees

with roots of depth h−k+1 as initial subdomains. The other

unassigned nodes are assigned to a nearest possible subdomain

which still accepts additional nodes. Thereby, the assignment

order of these nodes is inverse to their depth. The order among

nodes with equal depth does not matter.

D. Optimal BIER Clustering for Arbitrary Topologies

We first explain fundamentals of integer linear programs

(ILPs). Then, we apply them for optimal clustering of BIER

domains.

1) Fundamentals of ILPs: An ILP describes the solution

space of an optimization problem with so-called decision vari-

ables and linear inequalities. Parameters of the optimization

problem serve as coefficients in the inequalities. A linear

objective function describes the quality of possible solutions

and is to be minimized.

ILP solvers find the best integer solution for decision vari-

ables that fulfill all inequalities. During the solution process,

an ILP solver indicates lower and upper bounds regarding the

objective value for the best solution. The upper bound is the

value for the best solution found so far. While progressing,

better solutions may be found and the lower bound for the

best solution may increase. If upper and lower bound meet,

the ILP solver found an optimal solution.

2) BIER Clustering Using ILPs: We build an ILP that

describes the solution space for BIER clustering and an

objective function for the overall traffic load given in Equation

(1). Its output is an optimal clustering C of the network that

minimizes the objective function.

∀v ∈ V :
∑

S∈C

xS
v = 1 (2)

S ∈ C :
∑

v∈V

xS
v ≤ b (3)

∀v, w ∈ V, e ∈ E ,S ∈ C : pe,v,w · xS
w ≤ ySv,e (4)

∀v ∈ V, e ∈ E ,S ∈ C : ySv,e ≤
∑

w∈V

pe,v,w · xS
w (5)

min: ρ =
∑

v∈V

∑

S∈C

∑

e∈E

ySv,e (6)

The ILP is given by Equation (2), Inequalities (3)–(5), and

the objective function (6). It contains two types of binary

decision variables. The decision variable xS
v indicates whether

node v belongs to subdomain S; it is 1 if v ∈ V is in

subdomain S , otherwise it is 0. Equation 2 enforces that any

node is part of exactly one subdomain. Inequalitiy 3 ensures

that a subdomain contains at most b nodes. The decision

variable ySv,e indicates whether edge e is part of the multicast

tree from node v to any node w ∈ S . It depends on xS
v and

the forwarding information. The latter is given by coefficients

pe,v,w which are 1 if edge e is on the path from v to w;

otherwise the coefficient is 0. This dependency is modelled

by Inequalities 4 and 5. Equation 4 ensures that ySv,e = 1 if e
is part of the path from BFIR v to any BFER w in subdomain

S . Equation 5 ensures that the decision variable ySv,e is 0 if e
is not part of any path from v (BFIR) to any w (BFER) in S;

thereby the membership w ∈ S is expressed only indirectly

by w ∈ V and the decision variable xS
w.

The objective function in Equation (6) quantifies the overall

traffic as defined in Equation (1) and is to be minimized.

E. Heuristic BIER Clustering

We propose a heuristic clustering algorithm that consists

of two phases. Phase 1 selects initial subdomains. Phase

2 improves these subdomains according to Equation (1) by

exchanging the assignment of node pairs to their subdomains.

Phase 1 works as follows. First, randomly select s nodes as

center nodes of the different subdomains. Second, add further

nodes to the subdomains until their maximum size b is reached.

To that end, nearest non-assigned nodes are assigned to the

center nodes in round-robin fashion. This yields a clustering

of the BIER domain into subdomains. We repeat Phase 1 to

generate 10 · s† clusterings and choose the best according to

†We performed evaluations with significantly higher repetitions but ob-
served no increase in quality. Thus, we selected 10 runs as a reasonable basis
to find a good solution.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3262294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

the objective function in Equation (1) to continue with it in

Phase 2.

Phase 2 improves the clustering. First, randomly select two

nodes that have neighbors in other subdomains and that are

assigned to different subdomains. Swap their assignment if

this reduces the overall load according to Equation (1). Repeat

this procedure until ρ from Equation (1) does not decrease for

n = |V| steps. When computing a clustering for a network,

we perform the presented algorithm 20 times and take the best

solution.

This algorithm is simple but works better than more com-

plex approaches we have evaluated before. We evaluate the

quality of this heuristic in the next section.

V. COMPARISON OF BIER CLUSTERING ALGORITHMS

In this section we compare the BIER clustering algorithms

from the previous section with regard to runtime and quality.

First we present the topologies that we use for evaluations

in this paper. Then, we demonstrate that the runtime of the

ILP-based optimization is feasible only for small networks.

Finally, we compare the quality of the subdomains obtained

for different algorithms, topologies, and network sizes.

A. Topologies

In this work we investigate delivery of multicast traffic in

various network topologies: full mesh, line, ring, perfect binary

tree, and mesh networks with node degree d ∈ {2, 4, 6, 8}.

We refer to the latter as mesh-d. We construct them using the

topology generator BRITE [38] which leverages a Waxman

model [39]. While the first mentioned topologies are regular

so that there is only a single choice for a network with n
nodes, mesh-d networks are randomly constructed. Therefore,

we generate 10 different representatives and compute average

values for the considered metrics. The 95% confidence inter-

vals are below 0.3% for all reported results so that we omit

them in all tables and figures.

Topology
n = 64 n = 128

s = 2 s = 4 s = 2 s = 4

Line 0.11 3.80 1.07 45.51

Ring 66.51 21139.70 3633.59 -

Perfect binary tree 0.11 1.10 0.33 6.71

Mesh-2 0.06 3.59 0.21 22.67

Mesh-4 76.09 - - -

Mesh-6 718.23 - - -

Mesh-8 3883.62 - - -

Tab. 1: Time to solve ILPs for BIER clustering in seconds.

Some instances could not be solved within 72 hours.

B. Runtime for ILP-Based Optimization

We measure the runtime to solve ILPs for BIER clustering

with the ILP solver Gurobi 9.1 on a Ryzen 3900X CPU with

12 cores running at 3.8 GHz with 64 GB RAM.

Table 1 compiles the runtimes of the solver for different

network topologies, network sizes, and number of subdomains.

Perfect binary trees have one node less than indicated in the

table. The runtime to solve the ILPs increases with network

size and in particular with the number of subdomains. The

network topology also has a significant impact. For some

topologies, networks with 128 nodes or with 4 subdomains

cannot be solved within three days.

In contrast, the heuristic algorithm has a runtime of a few

seconds for any topology with n = 1024 nodes, and s = 4
subdomains. For the largest networks with n = 8192 nodes

and s = 32 subdomains, it takes 8–16 h for mesh-4 and mesh-

6, and 16–24 h for lines, perfect binary trees, mesh-2, and

mesh-8. Only very large rings with n = 8192 nodes required

around 3 days.

Thus, solving the ILP for optimal BIER clustering is in-

feasible for realistic problem instances, but the runtime of

the heuristic algorithm is acceptable even for large networks.

Therefore, we utilize for the evaluations in Section VI the

topology-specific solutions of Section IV-C for lines, rings,

and perfect binary trees, and the heuristic algorithm for mesh-

d networks.

C. Quality Comparison

We now compare the quality of heuristic results with those

from optimal and random subdomain assignment. The metric

is the overall traffic load ρ with BIER when every node sends

a packet to any other node (see Equation (1)).

We first consider mesh-d, for which only the ILP-based

algorithm can deliver optimal results but only for small

networks. Table 2 shows the overall traffic for subdomains

generated with heuristic and with random assignment relative

to the overall traffic for optimal subdomains. All heuristic

results are close to optimum. We observe for mesh-2 that larger

networks and more subdomains slightly degrade the results of

the heuristic algorithm. Random assignment is clearly worse,

i.e., it generates 33%-80% more extra traffic than optimal

subdomains while heuristic assignment causes only 0.3%-

1.5% more extra traffic. The quality of the heuristic results

tends to improve with increasing node degree.

Topology n s Heuristic (%) Random (%)

Mesh-2
64

2 100.3 132.6
4 100.7 162.2

128
2 100.5 133.7
4 101.5 179.8

Mesh-4 64 2 100.3 115.2

Mesh-6 64 2 100.4 110.6

Mesh-8 64 2 100.3 107.1

Tab. 2: Overall traffic load for heuristic and random BIER

clustering depending on network size n and number of sub-

domains s; numbers are relative to the overall traffic load for

optimal subdomains computed based on ILP solutions.

Now we discuss larger, regular topologies for which the

algorithms of Section IV-C provide optimal results. We clus-

ter the networks into subdomains of size b = 256. The

results are compiled in Table 3. We consider networks with

n ∈ {256, 512, 1024, 2048, 4096, 8192} nodes, an exception

are perfect binary trees with only n− 1 nodes. Consequently,

multiple subdomains s ∈ {1, 2, 4, 8, 16, 32} are needed. The

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3262294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

overall traffic load is given relative to the one for optimal

subdomains.

n s
Line (%) Ring (%)

Perfect binary tree
(%)

Heur. Rnd. Heur. Rnd. Heur. Rnd.

256 1 100 100 100 100 100 100

512 2 100 159.5 100 133.1 101.2 142.8

1024 4 100 212.2 100 199.1 100.8 197.2

2048 8 100 249.3 100 265.1 100.6 262.5

4096 16 100 271.8 108.7 317.9 104.9 336.9

8192 32 100 284.3 134.1 353.0 118.0 416.9

Tab. 3: Overall traffic load for heuristic and random BIER clus-

tering depending on network size n and number of subdomains

s; numbers are relative to the overall traffic load for optimal

subdomains computed based on topology-specific solutions.

We observe that the quality of the heuristic is almost optimal

for up to 2048 nodes. Beyond that, the quality degrades by

up to 34% for rings compared to optimum. The quality for

lines and perfect binary trees is better with a degradation of

at most 18%. The results with random assignment are much

worse than those with optimum and heuristic assignment.

We draw two major conclusions. First, optimization of

subdomains is important as random subdomains are likely

to cause a lot more extra traffic than needed in large BIER

domains. Second, subdomains obtained through the presented

heuristic are almost optimal for networks up to 2048 nodes,

beyond that we see a degradation. However, even then heuristic

subdomains are still much better than random subdomains. The

heuristic is needed for the evaluation of mesh-d networks in

Section VI. We believe that the quality of the heuristic results

for mesh-d is acceptable even for large networks because the

heuristic algorithm performed well in large networks for lines,

rings, and perfect binary trees. Therefore, the method may be

suitable for application in practice.

VI. TRAFFIC SAVINGS WITH IPMC AND BIER

In this section we investigate the potential of multicast

variants, i.e., IPMC and BIER, to reduce the traffic load

from multicast traffic relative to unicast, and compare it with

each other. We first discuss the methodology. Afterwards we

study the reduction potential for overall traffic depending on

network size and multicast group size. Then, we show that

both IPMC and BIER can well avoid heavily loaded links.

Finally, we examine the impact of header size on the traffic

saving potential of BIER.

A. Methodology

We describe the general evaluation approach, investigated

network topologies, the way BIER subdomains are clustered

in the study, packet sizes, evaluation metrics, and identified

influencing factors.

1) General Approach: It is obvious that multicast groups

can be very different, both in size and geographical distri-

bution. Moreover, networks supporting multicast can have

different topology. As those factors likely impact the efficiency

of multicast variants, we study them depending on network

topology, network size, and multicast group size. We study

the topologies presented in Section V-A; if the topologies

are random, we report averages from 10 different topologies

and omit the small confidence intervals as mentioned. The

networks have n ∈ {256, 512, 1024, 2048, 4096, 8192} nodes,

with the exception of perfect binary trees that have only

network size n− 1.

In this section we evaluate the traffic saving potentials of

IPMC and BIER in comparison to unicast and to each other.

We simulate the transmission of a single packet from every

source to all subscribers of a multicast group. We describe

the models for multicast groups in the subsequent subsections

as they depend on the experiments. The traffic handling is

different for the three transport mechanisms unicast, traditional

IPMC, and BIER. BIER is considered with subdomains which

are explained in Section VI-A2. The impact of the three

transport mechanisms is quantified by the overall network load

and link loads. Both metrics are explained in Section VI-A3.

Since load heavily depends on packet sizes we discuss them

in Section VI-A4. Finally, we explain the investigated factors

in Section VI-A5 which have an influence on the performance

results.

2) BIER Clustering: We recap our findings from Sections

IV and V, and describe how we configured BIER for the

evaluations.

BIER without subdomains cannot support arbitrary topol-

ogy sizes without extensive headers. BIER with subdomains

supports large topologies but its efficiency heavily depends on

the subdomain clustering (see Section IV-A). Therefore, we

designed an integer-linear program (ILP) to find optimal sub-

domain clusterings (see Section IV-D) in arbitrary topologies

and presented optimal BIER clusterings for selected topologies

(see Section IV-C). However, the ILP can compute clusterings

only in small networks due to runtime restrictions (see Section

V-B). Therefore, we designed a heuristic for that purpose (see

Section IV-E) and showed that its results are reasonably close

to results from the ILP (see Section V-C).

For all following evaluations we consider only BIER for-

warding with subdomains. On random topologies we compute

the subdomain clustering with the proposed heuristic from

Section IV-E. For selected topologies, i.e., ring, line and binary

tree, we leverage the presented optimal clustering approaches

from Section IV-C.

If not stated otherwise, we assume in our studies for BIER

a bitstring size of b = 256 bits because that value must be

supported by all BIER-capable equipment. Thus, b is also the

maximum number of BFERs in subdomains. We assume that

all nodes are BFERs. That means, when networks have more

than b nodes, the nodes are partitioned into a minimum number

of s = ⌈n
b
⌉ subdomains.

3) Metrics: We utilized two performance metrics in the

simulations: overall traffic load and link load. We describe

them in the following.

a) Overall Traffic Load: In Section VI-B we evaluate the

overall traffic load. The overall load is the accumulated number

of bytes sent in an experiment over any link in the network

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3262294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

to distribute the packets from each source to all receivers.

This value obviously depends on the transport mechanism. To

quantify the traffic savings potential of IPMC and BIER we

relate their overall load for a specific traffic scenario to the

one of unicast and to each other. For all evaluations, packets

follow shortest path trees based on the hop count metric.

b) Link Load: Traffic load is not equally distributed over

all links. Central links tend to have higher load than others so

that they may profit more from traffic load reduction through

multicast. Therefore, we study link load reduction on links

in Section VI-C. To that end, we count packets carried over

specific links instead of bytes as this facilitates interpretation

of the results.

4) Packet Sizes: Table 4 shows the total packet sizes for

different transport mechanisms in byte (B). For unicast and

IPMC traffic we assume a packet size of 520 B which is the

average size of IP packets on the Internet [40]. For BIER

packets we assume a total size of 564 B, i.e., 520 B payload

including the IPMC header plus 44 B to respect the additional

BIER header fields and a bitstring length of 256 bits. If a

longer bitstring length is used, the additional bytes are added

to the 564 B.

Transport
mechanism

IPMC packet w/
payload (B)

BIER-X (B)
Total packet

size (B)

Unicast 520 - 520

IPMC 520 - 520

BIER-256 520 44 564

BIER-512 520 76 596

BIER-1024 520 140 660

BIER-2048 520 268 788

BIER-4096 520 524 1044

BIER-8192 520 1036 1556

Tab. 4: Total packet sizes for different transport mechanisms

in byte (B). BIER-X refers to a BIER header with a bitstring

of X bits. Thus, the total BIER header size is (X/8 bits) plus

12 B for all other BIER header fields.

5) Investigated Factors: We investigate the following four

factors. First, we consider different topology-types. That is,

we selected line, ring and binary tree topologies to evaluate

scenarios where distributing traffic with traditional IPMC or

BIER has significant advantages due to the many shared paths

of packets. Furthermore, we investigate random topologies

with different average node degrees. This factor is relevant

for all following evaluations.

Second, we evaluate all mechanisms on different network

sizes to determine the scalability in large networks (see Section

VI-B1). Third, we vary the size of multicast groups (see

Section VI-B2), and thereby the number of receivers. That is,

not every node in the network may necessarily be a subscriber

which influences the efficiency of the transport mechanisms.

Finally, we investigate the impact of the BIER header size.

On the one hand, small BIER headers add only little overhead,

on the other hand large BIER headers reduce the number of

extra copies needed to reach all subscribers in large networks.

We study this tradeoff in Section VI-D.

We evaluate those factors by keeping other factors stable

and varying the desired parameter. For example, we chose

full multicast groups and change only the network size to

determine its impact on the metric.

B. Reduction of Overall Traffic

We evaluate the potential for the reduction of overall traffic

through multicast variants relative to unicast and compare the

efficiency of BIER with the one of IPMC. To that end,

we measure the number of transmitted bytes in the network

to distribute a packet from all sources to all destinations

(see Section VI-A3a). We first study the impact of network

topology and size and then the impact of network topology

and multicast group size.

1) Impact of Network Size: We evaluate the savings po-

tential for overall traffic through multicast variants. To that

end, we consider different network topologies and sizes and

maximum multicast groups. That is, every node is a subscriber

and receiver. We study IPMC vs. unicast, BIER vs. unicast,

and BIER vs. IPMC.

a) IPMC vs. Unicast: Figure 3(a) shows the overall

traffic for IPMC relative to unicast for multiple network

topologies depending on the network size. The IPMC traffic

load decreases relative to the unicast traffic load with increas-

ing network size. There is a large reduction potential in line

and ring networks so that the IPMC traffic volume is less than

2% compared to the one of unicast. In perfect binary trees

the traffic can be reduced to 10% for n = 255 nodes and to

5% for n = 8191 nodes. Random mesh networks have a lower

reduction potential that decreases with increasing node degree.

We observe an obvious dependence of the traffic reduction

potential of IPMC on the network topology. We show that it

is 1

l
in the presence of maximum multicast groups. Multicast

requires n− 1 hops to distribute a packet from one source to

n− 1 receivers as this is the number of links in any shortest-

path tree. Thus, n · (n − 1) hops are required to distribute a

packet from each node to all other nodes. When the same is

done with unicast, any source node v ∈ V sends a packet to

any destination node w ∈ V . This requires |p(v, w)| hops per

v/w pair, which is in sum

∑

v∈V

∑

w∈V

|p(v, w)| =n·(n− 1)·

∑
v∈V

∑
w∈V

|p(v, w)|

n · (n− 1)

= n·(n− 1) · l. (7)

This follows that IPMC can reduce the overall traffic to 1

l

compared to unicast. Lines and rings have by far the longest

average path length and it strongly increases with increasing

network size. In other topologies, average path lengths are

clearly lower and increase slowly with the network size.

The average path length correlates with the node degree and

increases in the following topologies: mesh-8, mesh-6, mesh-

4, mesh-2 and perfect binary trees.

b) BIER vs. Unicast: Figure 3(b) presents the overall

traffic load for BIER relative to unicast. The number of re-

quired subdomains increases with the network size and thereby

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3262294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

0

100

200

300

400

256 512 1024 2048 4096 8192
Bitstring size (bits)

A
b
s
o
lu

te
 o

ve
ra

ll
tr

a
ff
ic

 (
G

B
)

Binary tree
Line
Mesh−2
Mesh−4
Ring

(a) Maximum-size multicast groups.

0

25

50

75

100

256 512 1024 2048 4096 8192
Bitstring size (bits)

A
b
s
o
lu

te
 o

ve
ra

ll
tr

a
ff
ic

 (
G

B
)

Binary tree
Line
Ring

(b) Multicast groups with 128 random receivers.

Fig. 6: Overall traffic load depending on the bitstring size in

the BIER header in networks with n = 8192 nodes.

The findings slightly change when we consider smaller

multicast groups, i.e., multicast groups consisting of 128

randomly selected nodes. The corresponding results are shown

in Figure 6(b). First, the overall traffic volume is clearly

decreased as the number of receivers is lower (1.56%). Further,

the optimum bitstring sizes are smaller, namely b = 512 for

the ring and b = 1024 for the line. Thus, the optimum bitstring

size depends on the size of the multicast groups. Therefore,

the bitstring size is hard to optimize for practical applications

when the size of the multicast groups is not known a priori.

However, if the multicast groups are small, a small bitstring

is recommendable. This makes the application of subdomains

and their optimization even more relevant.

VII. IMPACT OF SINGLE LINK FAILURES

We have optimized BIER subdomains for failure-free for-

warding. In case of link failures, rerouting occurs in IP

networks and then traffic is diverted around failed links. As

a consequence, individual link loads and overall traffic load

may increase. BIER with subdomains optimized for failure-

free routing may lead to an even larger traffic increase than

IPMC forwarding. Therefore, BIER may require more backup

capacity than IPMC. We investigate these issues in the fol-

lowing. We first explain our methodology. Then, we perform

simulations to study the overall traffic load and maximum link

loads in case of single link failures, as well as the overall

backup capacity required to accommodate rerouted traffic.

A. Methodology

Single link failures may partition a network topology. Then

multicast groups are also partitioned into subgroups that

cannot reach each other anymore. This can be avoided in

resilient networks with 2-link-connected topologies and rerout-

ing after failure detection. Thereby, end-to-end connectivity

is not impaired so that participants of a multicast group

can still reach each other. As a consequence, we consider

only 2-link-connected topologies in this context, i.e., networks

which are still connected after any single link failure. As a

consequence, we do not consider lines and binary trees as

they may be partitioned through single link failures. Rings

are 2-link-connected by definition. We reuse the mesh-{4,6,8}
topologies from Section V-A which were chosen for the entire

study such that they are 2-link-connected.

We consider networks with 1024 nodes and a bitstring with

b = 256 bits. We optimize the subdomains for the failure-free

case because it is the most common network state. That is,

we use the heuristic clustering algorithms from Section IV-E

for mesh-d topologies and the optimal clustering algorithm

from Section IV-C for the ring topology. We compute sub-

domains based on the intact topology and evaluate BIER’s

efficiency when links in the network fail. We assume again

a full multicast group and each participant sends a single

packet to all other participants. We compute the effect of all

single link failures for the mentioned topologies. That means,

we remove the failed link from the topology, calculate new

shortest paths, and compute the overall traffic load (see Section

VII-B) and the maximum load increase on links (see Section

VII-C); thereby, the subdomains remain unchanged. As mesh-

d topologies are random, we report averaged results for them

from 10 different topology samples.

In our experiments we count number of packets carried over

links. When we extend the single sent packets to flows, we

obtain observed rates which are proportional to the numbers

of counted packets. To be more intuitive, we sometimes talk

about rates and required capacities rather than counted packets,

in particular when it comes to backup resources.

B. Overall Traffic Load

Traffic rerouting due to link failures possibly leads to longer

paths, which may increase the overall link load in the network.

Thus, we quantify the impact of single link failures on the

overall traffic load (Equation 1) and compare it to the failure-

free case both for IPMC and for BIER.

As the multicast groups in our experiments contain every

node in the network, the overall traffic load for IPMC is n ·
(n − 1) packets, no matter if a link fails. This is due to the

fact that n packets are each forwarded along a single shortest

path tree, and each shortest path tree consists of n− 1 hops.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3262294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

Thus, the traffic load does not increase with IPMC in case of

single link failures.

0

25

50

75

100

0 5 10 15 20 25
Relative load change c (%)

%
 l
in

k
 f
a

ilu
re

s
 w

/
re

l.
 c

h
a

n
g

e
 >

 c

Ring

(a) Ring.

0

25

50

75

100

−0.2 −0.1 0.0 0.1 0.2
Relative load change c (%)

%
 l
in

k
 f
a

ilu
re

s
 w

/
re

l.
 c

h
a

n
g

e
 >

 c

Mesh−4
Mesh−6
Mesh−8

(b) Mesh-d.

Fig. 7: BIER with single link failures – CCDFs of rela-

tive overall traffic change compared to the failure-free case,

accumulated over all single link failures. Experiments are

conducted in networks with n = 1024 nodes, every node sends

a packet to every other node.

This is different with BIER. With BIER, ⌈ 1024

256
⌉ = 4

packet copies, one for each subdomain, are forwarded over

shortest path trees which consist of fewer hops than n − 1.

However, their overall number of hops may change when

traffic is rerouted. Therefore, we evaluate the change of overall

traffic load with BIER for all single link failures. Figures 7(a)

and 7(b) show CCDFs of relative overall traffic changes

accumulated over all single link failures. We first discuss

Figure 7(a) for a ring network. The overall traffic load rises

between 15% and 17.3% depending on the position of the

failed link. We explain this large increase as follows. Between

any two nodes, there are exactly two paths in a ring network

and the paths may have significantly different length. If the

shorter path fails, traffic is rerouted over the longer path. This

causes path stretch and leads to the observed increase in overall

traffic load.

We now study mesh-d topologies for which the CCDF of

the change in overall traffic load is presented in Figure 7(b).

The increase in overall traffic load is bounded by 0.2%. We

explain this as follows. In meshed networks with a node degree

between 4 and 8, multiple paths exist between any two nodes

and their lengths are likely to be similar. If the shortest path

fails, another path with similar length is mostly available,

which hardly increases the overall traffic load.

S

SD1 SD2

(a) Failure-free case.

S

SD1 SD2

(b) Single link failure.

Fig. 8: Example network with two BIER subdomains. In case

of the indicated link failure, the adapted shortest path tree for

the nodes in SD2 contains fewer hops than in the failure-free

case, which reduces the traffic load.

We further observe that in 75% of all single link failures,

the overall traffic load increases but in 25% the overall load

decreases. This observation does not seem intuitive as the

shortest path length for any pair of nodes remains unchanged

or increases in case of a link failure. Nevertheless, the load

may decrease as the shortest path tree towards the nodes in a

subdomain may be more compact after rerouting. We illustrate

this claim by the example in Figures 8(a) and 8(b). They show

a network partitioned into two subdomains, SD1 and SD2. The

shortest path tree starting in node S towards all nodes in SD2

contains two hops less in case of the considered link failure

(Figure 8(b)) than under failure-free conditions (Figure 8(a)).

This apparently more favorable path layout cannot be utilized

under failure-free conditions because BIER traffic is always

forwarded according to the paths in the underlay.

C. Maximum Load Increase on Links

When traffic is rerouted over another path, the traffic load

on the corresponding links increases. We record for each link

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3262294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

the maximum load increase observed for any single link failure

as this constitutes the required backup capacity for this link.

0

25

50

75

100

0 500 1000
Maximum load increase i (pkts)

%
 l
in

k
s
 w

/
m

a
x
.
in

c
re

a
s
e
 >

 i

BIER
IPMC

Mesh−4
Mesh−6
Mesh−8
Ring

Fig. 9: CCDFs of maximum link load increases for single link

failures. Experiments are conducted in networks with n =
1024 nodes, every node sends a packet to every other node.

Figure 9 shows the CCDFs of the maximum load increases

for all links. In ring networks, all links experience up to

512 more packets with IPMC in case of link failures. In

contrast with BIER, links carry between 768 and 1024 more

packets. This is because multiple redundant BIER packets

may be affected by the failure and are redirected. Therefore,

BIER requires substantially more backup capacity in rings

than IPMC and the exact amount depends on the location of

a link within its subdomain. In mesh-d networks, the CCDF

is almost a continuum. In networks with larger node degree,

links require less backup than in networks with smaller node

degree. This is due to shorter paths and less affected traffic,

shorter backup paths, and better traffic distribution in case

of link failures. Most notably, BIER causes about the same

maximum load increases as IPMC although BIER requires

more capacity than IPMC under failure-free conditions. We

explain this fact by an example. Figure 10(a) shows a link

carrying redundant BIER packets to two different subdomains.

When that link fails, the traffic is redirected over different

paths to the subdomains. IPMC would save a packet copy

in the failure-free case, but it results into the same traffic

distribution in this particular example.

D. Overall Backup Capacity

We sum up link capacities for a network needed to carry the

considered traffic for failure-free conditions on the one hand

(capacity w/o backup) and for all single link failures on the

other hand (capacity w/ backup). The difference is the absolute

backup capacity. Table 5 compiles them for BIER and IPMC

in mesh-d and ring topologies. The relative backup capacity is

the ratio between absolute backup capacity and capacity w/o

backup.

The results show that IPMC require 100% relative backup

capacities for rings, but only 77%, 49%, and 36% for mesh-4,

mesh-6, and mesh-8 networks. In contrast, BIER needs 176%

backup capacity for rings, and 62%, 38%, and 29% for mesh-

4, mesh-6, and mesh-8 networks. This is less than for IPMC,

S

SD1

SD2

(a) Failure-free case: two redundant packets are delivered over a link to two
different subdomains.

S

SD1

SD2

(b) Single link failure: the two packets are redirected over different backup
paths.

Fig. 10: Example network with two BIER subdomains. Re-

dundant BIER packets for different subdomains are redirected

over different paths.

Metric Ring Mesh-4 Mesh-6 Mesh-8

IPMC

Cap. w/o
backup

1047552 1047552 1047552 1047552

Cap. w/
backup

2095104 1857633 1559138 1422539

Abs.
backup cap.

1047552 810081 511586 374987

Rel. backup
cap.

1.00 0.77 0.49 0.36

BIER

Cap. w/o
backup

1051129 1395817 1418709 1406915

Cap. w/
backup

2881534 2263645 1962557 1813694

Abs.
backup cap.

1830405 867828 543848 406779

Rel. backup
cap.

1.74 0.62 0.38 0.29

BIER
Fraction

w/o backup
1.003 1.33 1.35 1.34

/ IPMC
Fraction w/

backup
1.375 1.22 1.26 1.27

Tab. 5: Overall capacity w/ and w/o backup as well as absolute

and relative backup capacity for IPMC and BIER. Capacities

are given in packets.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3262294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

which seems surprising, but there is a simple explanation.

BIER requires more capacity w/o backup than IPMC, but only

little more backup capacity than IPMC. As a consequence,

BIER’s relative backup capacity is lower than the one for

IPMC.

Below the line, BIER does not lead to excessive backup

capacity demands when BIER subdomains are optimized for

failure-free scenarios. The relative backup capacity is even

lower than with IPMC. The ring network is an exception, but

also IPMC requires lots of capacity in rings.

VIII. CONCLUSION

BIER is a novel forwarding paradigm to carry IP multicast

(IPMC) traffic within so-called BIER domains. It is more

scalable than IPMC because core nodes remain unaware of

individual multicast groups. A problem arises for large BIER

domains where subdomains need to be defined to make all

egress nodes addressable. When an IPMC packet is distributed

via a BIER domain, a separate BIER packet is needed for

each subdomain that has a receiver for the IPMC packet. This

leads to redundant packets and we showed that their number

almost equals the number of subdomains if multicast groups

are about 3 times larger than the number of subdomains. These

redundant packets can significantly degrade BIER’s ability to

efficiently carry multicast traffic.

We argued that an appropriate choice of the subdomains can

mitigate that effect when multiple BIER packets are sent to

different regions of a network. Therefore, we defined the BIER

clustering problem and proposed several algorithms to cluster

a BIER domain into appropriate subdomains. We compared

the runtime and quality of these algorithms, and showed that

optimization of subdomains can greatly reduce the resulting

overall traffic compared to random subdomains.

We evaluated and compared the ability of IPMC and BIER

to reduce traffic load for multicast traffic relative to unicast

transmission in different network topologies. It depends on

the average path length in the network. IPMC can save lots

of traffic in line and ring networks, in binary trees and in

mesh networks with a low node degree. In mesh networks

with larger node degree the traffic savings potential is smaller.

It also depends on the network size. As BIER possibly sends

redundant packets in large domains, its ability to reduce traffic

load diminishes compared to IPMC. This also depends on

network topology and size. In large networks with 8192 nodes

and subdomain sizes of 256 nodes, BIER causes only moderate

extra traffic compared to IPMC in binary trees and mesh

networks with small node degrees. In contrast, it produces

10-12 times more traffic than IPMC in lines and rings, but

the traffic savings potential of BIER is still very large in

these topologies (∼ 98%). In mesh networks with larger

node degrees BIER doubles the overall traffic compared to

IPMC and also the traffic savings potential is clearly reduced.

These findings hold for maximum multicast groups. In smaller

multicast groups the traffic savings potential of IPMC and

BIER relative to unicast transmission is lower. While unicast

causes enormous traffic loads on some links, both IPMC

and BIER decrease such loads by orders of magnitude. The

residual load on these links is higher with BIER than with

IPMC due to redundant packets, but it is still on a low level.

We showed that there is an optimum size for the BIER

header which depends on the network topology and on the

size of the multicast groups. When multicast groups are rather

small, small BIER headers are optimal, which makes the use

of subdomains and their optimum selection more relevant.

We investigated the impact of single link failures on BIER

domains with optimized subdomains. Rerouting causes only

little more traffic load and the backup capacity needed for

BIER networks is only little more tha the one of pure IPMC

networks.

Below the line, subdomains are a good means to scale BIER

to large networks, but they need to be carefully chosen to

minimize extra traffic due to redundant packets.

Further studies may improve BIER clustering algorithms

with regard to quality. They may also consider alternate

optimization goals such as the ability to take advantage of

overlapping subdomains for known multicast groups. Further-

more, scaling BIER-TE is a related problem but it requires

different approaches.

REFERENCES

[1] N. K. Nainar, R. Asati, M. Chen, X. Xu, A. Dolganow,
T. Przygienda, A. Gulko, D. Robinson, V. Arya, and C.
Bestler, BIER Use Cases, https://datatracker.ietf.org/doc/draft-
ietf-bier-use-cases/12/, Sep. 2020.

[2] I. Wijnands et al., RFC 8279: Multicast Using Bit Index
Explicit Replication (BIER), https://datatracker.ietf.org/doc/
rfc8279/, Nov. 2017.

[3] S. Islam et al., “A Survey on Multicasting in Software-
Defined Networking,” IEEE Communications Surveys Tuto-
rials (COMST), vol. 20, 2018.

[4] Z. Al-Saeed et al., “Multicasting in Software Defined Net-
works: A Comprehensive Survey,” Journal of Network and
Computer Applications (JNCA), vol. 104, 2018.

[5] M. Shahbaz et al., “Elmo: Source Routed Multicast for Public
Clouds,” in ACM SIGCOMM, 2019.

[6] A. Iyer et al., “Avalanche: Data Center Multicast using
Software Defined Networking,” in International Conference
on Communication Systems and Networks, 2014.

[7] W. Cui et al., “Scalable and Load-Balanced Data Center
Multicast,” in IEEE GLOBECOM, 2015.

[8] X. Zhang et al., “A Centralized Optimization Solution for
Application Layer Multicast Tree,” IEEE Transactions on
Network and Service Management (TNSM), vol. 14, 2017.

[9] K. Mokhtarian et al., “Minimum-delay multicast algorithms
for mesh overlays,” IEEE/ACM Transactions on Networking,
vol. 23, 2015.

[10] X. Li et al., “Scaling IP Multicast on Datacenter Topologies,”
in ACM CoNEXT, 2013.

[11] M. A. Kaafar et al., “A Locating-First Approach for Scalable
Overlay Multicast,” in IEEE INFOCOM, 2006.

[12] J. Rückert et al., “Software-Defined Multicast for Over-the-
Top and Overlay-based Live Streaming in ISP Networks,”
Journal of Network and Systems Management (JNSM),
vol. 23, 2015.

[13] J. Rueckert et al., “Flexible, Efficient, and Scalable Software-
Defined Over-the-Top Multicast for ISP Environments With
DynSdm,” IEEE Transactions on Network and Service Man-
agement (TNSM), vol. 13, 2016.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3262294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

[14] Y.-D. Lin et al., “Scalable Multicasting with Multiple Shared
Trees in Software Defined Networking,” Journal of Network
and Computer Applications (JNCA), vol. 78, 2017.

[15] M. J. Reed et al., “Stateless Multicast Switching in Software
Defined Networks,” in IEEE International Conference on
Communications (ICC), 2016.

[16] S.-H. Shen, “Efficient SVC Multicast Streaming for Video
Conferencing With SDN Control,” IEEE Transactions on
Network and Service Management (TNSM), vol. 16, 2019.

[17] T. Humernbrum et al., “Towards Efficient Multicast Com-
munication in Software-Defined Networks,” in IEEE Interna-
tional Conference on Distributed Computing Systems Work-
shops (ICDCSW), 2016.

[18] W. K. Jia et al., “A Unified Unicast and Multicast Routing and
Forwarding Algorithm for Software-Defined Datacenter Net-
works,” IEEE Journal on Selected Areas in Communications
(JSAC), vol. 31, 2013.

[19] C. A. S. Oliveira et al., “Steiner Trees and Multicast,” Math-
ematical Aspects of Network Routing Optimization, vol. 53,
2011.

[20] L. H. Huang et al., “Scalable and Bandwidth-Efficient Multi-
cast for Software-Defined Networks,” in IEEE GLOBECOM,
2014.

[21] S. Zhou et al., “Cost-Efficient and Scalable Multicast Tree in
Software Defined Networking,” in Algorithms and Architec-
tures for Parallel Processing, 2015.

[22] Z. Hu et al., “Multicast Routing with Uncertain Sources
in Software-Defined Network,” in IEEE/ACM International
Symposium on Quality of Service (IWQoS), 2016.

[23] J.-R. Jiang et al., “Constructing Multiple Steiner Trees for
Software-Defined Networking Multicast,” in Conference on
Future Internet Technologies, 2016.

[24] B. Ren et al., “The Packing Problem of Uncertain Multicasts,”
Concurrency and Computation: Practice and Experience,
vol. 29, 2017.

[25] S.-H. Shen et al., “Reliable Multicast Routing for Software-
Defined Networks,” in IEEE INFOCOM, 2015.

[26] A. Giorgetti et al., “First Demonstration of SDN-based Bit
Index Explicit Replication (BIER) Multicasting,” in IEEE
European Conference on Networks and Communications (Eu-
CNC), 2017.

[27] ——, “Bit Index Explicit Replication (BIER) Multicasting in
Transport Networks,” in International Conference on Optical
Network Design and Modeling (ONDM), 2017.

[28] D. Merling et al., “P4-Based Implementation of BIER and
BIER-FRR for Scalable and Resilient Multicast,” Journal of
Network and Computer Applications (JNCA), vol. 169, 2020.

[29] ——, “Hardware-Based Evaluation of Scalable and Resilient
Multicast With BIER in P4,” IEEE Access, vol. 9, 2021.

[30] H. Chen, M. McBride, S. Lindner, M. Menth, A. Wang, G.
Mishra, Y. Liu, Y. Fan, L. Liu, and X. Liu, BIER Fast ReRoute,
https://tools.ietf.org/html/draft-ietf-bier-frr, Jul. 2022.

[31] Y. Desmouceaux et al., “Reliable Multicast with B.I.E.R.,”
Journal of Communications and Networks, vol. 20, 2018.

[32] ——, “Reliable BIER with Peer Caching,” IEEE Transactions
on Network and Service Management (TNSM), vol. 16, 2019.

[33] T. Eckert et al., Tree Engineering for Bit Index Explicit
Replication (BIER-TE), https://datatracker.ietf.org/doc/html/
draft-ietf-bier-te-arch, Jul. 2021.

[34] W. Braun et al., “Performance Comparison of Resilience
Mechanisms for Stateless Multicast using BIER,” in
IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), 2017.

[35] G. Karypis et al., “A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs,” SIAM Journal on Scientific
Computing (SISC), vol. 20, 1998.

[36] R. Diekmann et al., “Shape-Optimized Mesh Partitioning
and Load Balancing for Parallel Adaptive FEM,” Parallel
Computing, vol. 26, 2000.

[37] S. P. Lloyd, “Least Squares Quantization in PCM,” IEEE
Transactions on Information Theory, vol. 28, 1982.

[38] A. Medina et al., “BRITE: An Approach to Universal Topol-
ogy Generation,” in International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS), 2001.

[39] B. M. Waxman, “Routing of Multipoint Connections,” IEEE
Journal on Selected Areas in Communications (JSAC), vol. 6,
1988.

[40] F. Liu et al., “The packet size distribution patterns of the
typical internet applications,” in IEEE International Confer-
ence on Network Infrastructure and Digital Content, 2012,
pp. 325–332.

Daniel Merling is a Ph. D. student at the chair of
communication networks of Prof. Dr. habil. Michael
Menth at the Eberhard Karls University Tuebingen,
Germany. There he obtained his master’s degree in
2017 and afterwards, became part of the communi-
cation networks research group. His area of expertise
include software-defined networking, scalability, P4,
routing and resilience issues, multicast and conges-
tion management.

Thomas Stüber is a Ph.D. student at the chair of
communication networks of Prof. Dr. habil. Michael
Menth at the Eberhard Karls University Tuebin-
gen, Germany. He obtained his master’s degree
in 2018 and afterwards, became part of the com-
munication networks research group. His research
interests include Time-Sensitive Networking (TSN),
scheduling, performance evaluation, and operations
research.

Michael Menth (Senior Member, IEEE) is profes-
sor at the Department of Computer Science at the
University of Tuebingen/Germany and chairholder
of Communication Networks since 2010. He stud-
ied, worked, and obtained diploma (1998), PhD
(2004), and habilitation (2010) degrees at the
universities of Austin/Texas, Ulm/Germany, and
Wuerzburg/Germany. His special interests are per-
formance analysis and optimization of communica-
tion networks, resilience and routing issues, as well
as resource and congestion management. His recent

research focus is on network softwarization, in particular P4-based data plane
programming, Time-Sensitive Networking (TSN), Internet of Things, and
Internet protocols. Dr. Menth contributes to standardization bodies, mainly
to the IETF.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3262294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

2 Submitted Manuscripts (Core Content)

2 Submitted Manuscripts (Core Content)

2.1 Minimizing Grid Electricity Consumption and On-/Off-Cyles for Heat

Pumps in Single-Family Homes with PV Panels

153

Minimizing Grid Electricity Consumption and

On-/Off-Cyles for Heat Pumps in Single-Family

Homes with PV Panels

Thomas Stübera,∗, Bernd Thomasb, Michael Mentha

aDepartment of Computer Science, University of Tübingen, Sand
13, Tübingen, 72076, Baden-Württemberg, Germany

bReutlingen Energy Center (REZ), Reutlingen University, Alteburgstraße
150, Reutlingen, 72762, Baden-Württemberg, Germany

Abstract

Heat pumps in single family homes provide for space heating and domestic
hot water. They may be operated with self-produced electric energy from
photovoltaic (PV) panels and with purchased electricity from the grid. On
the one hand, heat pumps should be operated such that the consumption
of purchased energy is minimized. On the other hand, a heat pump’s rate
of on/off cycles should be minimized to maximize its lifetime. This calls for
optimized operation schedules for heat pumps.

In this work, we model this optimization problem as mixed integer linear
program (MILP) including physical constraints of the heat pump. Energy
can be stored over time by hot water storage and the thermal capacity of the
building. When the hot water storage is getting discharged, an electric heater
helps to quickly refill it. As input data we utilize measured traces for energy
production and consumption. In a first step, the schedule of the heat pump
is optimized for an entire year. However, future production and demands
are not known in advance, which affects the realistic optimization potential.
Therefore, we introduce incremental optimization over time using a rolling
horizon approach and adapt it such that forecast can be used instead of
known data. The paper provides extensive numerical results for a case study.
A prominent result is that optimized schedules can significantly reduce both
purchased energy from the grid and the rate of on/off cycles, even with simple

∗Corresponding author
Email address: thomas.stueber@uni-tuebingen.de (Thomas Stüber)

Preprint submitted to Applied Energy September 23, 2023

forecasts. Moreover, heat pumps with power modulation can better achieve
these goals than heat pumps without power modulation.

Keywords: Heat pump, Scheduling, Space heating, DHW, Optimization,
Forecasting, Rolling horizon, Multi-objective optimization

1. Introduction

There is a trend to more photovoltaic (PV) panels on rooftops of single-
family homes. However, selling PV energy when available and purchasing
energy when needed is less attractive for private persons compared to utilizing
the PV energy directly onsite. This follows from the tariffs. In Germany a
net price of about 33.6 ct/kWh has to be paid for electricity drawn from the
grid. The feed-in tariff of PV electricity is currently at about 8.2 ct/kWh.

Heat pumps leverage electrical energy to take advantage of low tempera-
tures to produce heat for domestic hot water (DHW) and space heating. They
avoid fossil fuels and CO2 emissions if electricity stems from regenerative en-
ergy resources. Moreover, they may be partly operated with PV energy from
the own rooftop. In addition, they may be combined with a moderately sized
heat storage. The heat storage consists of an insulated reservoir for DHW
and the mass of the house allowing the indoor temperature to vary in a fixed
range. However, two challenges remain. First, PV energy does not always
suffice for heating, in particular during winter, so that additional grid energy
is needed. Second, heat pumps must not be switched on and off frequently as
this reduces their lifetime, makes maintenance contracts more expensive, and
renders their internal physical processes less efficient. Thus, purchased grid
energy should be minimized while keeping the number of on/off cycles low.
This poses an interesting optimization problem with two opposing goals, a
so-called Pareto-optimization problem. That is, many schedules exist such
that there is no better schedule for grid energy with the same number of
on/off cycles or vice-versa. In practice, a Pareto-optimal schedule needs to
be chosen that avoids both excessive grid energy and a large number of on/off
cycles.

We model the optimization problem respecting time-dependent heat stor-
age losses and temperature-dependent efficiency of the heat pump. Input
data are historic heat consumption, outside temperature, and PV energy
production curves for a specific single family home. In practice, forecasts
for energy consumption and production must be taken as a planning basis

2

instead of historic data. This creates several challenges. Since reasonable
forecasts are available only for a few days, schedules can be computed only
for a few days, too. As the objective is to optimize a longer period, we
leverage a so-called rolling horizon approach [1]. Another challenge is that
forecasts may be inaccurate. Production may be overestimated or consump-
tion may be underestimated. Both errors may cause premature heat storage
depletion so that heat demands cannot be fulfilled in time. We introduce
a concept to reduce the likelihood for such events. Finally, we investigate
the impact of PV panel sizes and heat storage sizes on potential savings of
purchased electricity and on on/off cycles of the heat pump. Heat pumps
with and without power modulation are considered.

This paper is structured as follows. Section 2 discusses related work.
In Section 3 we describe physical aspects of the considered heat pump, the
storage for domestic hot water and space heating, and we model the op-
timization problem by a mixed integer linear program (MILP). Section 5
utilizes the MILP to optimize schedules with various constraints. In partic-
ular, a rolling horizon strategy is developed, the impact of PV peak-power,
heat storage capacities, and the use of forecasts instead of historic data are
investigated. Heat pumps with and without power modulation are studied
and their behaviour over time is analyzed. Section 6 summarizes this work
and draws conclusions.

2. Related Work

In this section we give a short overview of research works concerning the
control of heat pumps.

In [2] and [3], simulation models in MATLAB and TRNSYS are used to
investigate the potential of an appropriate control for running heat pumps
in combination with thermal energy storages (TES) more efficiently and sus-
tainably. It is mentioned that either the TES can be a hot water storage
tank, or the building itself can serve as a thermal energy storage as, e.g.,
thermal capacity of floors and walls can be utilized in this respect.

A common control method for heat pumps is model-predictive control
(MPC) as presented in [4] and [5]. It is reported that MPC strategies are
confirmed with respect to a heat pump installed in a climatic chamber, in
order to simulate real outdoor conditions at the test stand. In addition,
MPC strategies for systems consisting of heat pump and solar thermal in
combination with a TES are presented and verified by simulations over a

3

period of 24 hours. In both cases it is shown that the investigated systems
work well. On the one hand the power consumption of the heat pump does
not exceed a defined limit value. On the other hand, the MPC contributes
to a reduction of operating costs by 1% to 7% and of CO2 emissions by 3%
to 17%.

In [6] and [7], the impact of heat pumps on the electricity grid is investi-
gated using various simulation models. Analyses of the integration of micro-
grids are carried out in detail by means of simulations for a system with PV,
thermal energy storage, and heat pumps. Basically, the heat pumps in com-
bination with TES are intended to shift the exchange of electricity between
the building and the grid. The analysis reveals parameters that facilitate
an improved economic operation of the microgrid system. In addition, indi-
cators are introduced for evaluating the performance of control mechanisms
for passive buildings on the electricity grid without simulating the grid itself.
The modelling of the simulation was carried out in Modelica.

Investigations regarding the coefficient of performance (COP) of heat
pumps can be found in [8] and [9]. One question answered is how exact
the calculation of a building’s heat demand needs to be for a proper design
of a heat pump. For this purpose, reference values are determined using a
steady state wall model without taking the thermal capacity of the wall into
account. Based on average daily and monthly temperatures these results are
compared to solutions of partial differential equations for heat losses and heat
consumption with respect to actual temperature profiles. It is shown that
the error of the calculation for heat pump COP is in the range of only 2.5%.
In [9] the simulation of the COP for an air source heat pump for generation
of domestic hot water is reported. The relevant input data are taken from
experiments where data from both the heat pump circuit and the domestic
hot water installation were recorded. Two scenarios are compared in the sim-
ulation. First, no domestic hot water is drawn during operation of the heat
pump; second, domestic hot water is drawn at any time, independently of
the operation of the heat pump. The simulation results show that the COP
in both cases is on average above the value of 2 without significant difference.

The effect of different flexibilities on the heat pump’s periods of operation
is investigated in several studies, e.g., [10], [11]. One approach is to increase
the charging temperature of a hot water tank to create flexibility for the
operating hours of the heat pump. Another option is imposing price signals
as an incentive to operate the heat pump at the lowest possible cost while
taking advantage of the flexibility. The simulations show that heat pumps

4

in combination with TES have the potential to shift loads over a period of
several hours. In addition, the thermal inertia of the building can be utilized
to control the periods of operation of heat pumps. This effect is studied in
detail by means of building simulations in [11], and the results are compared
to measurements from a small apartment building. It is shown that a high
thermal capacity is needed to shift the operating hours times of the heat
pump to daytime hours in order to enable operation on PV electricity, only.

3. Model

The following section gives an overview of the components of the consid-
ered case study. First, we describe the components of the evaluation scenario
and their setup. Then, we discuss the time series data sets used.

DHW tank

Floor heating

Immersion
Heater

Heat
pump

PV module

Household

Grid

Figure 1: 1-Zone building model: arrows indicate flows of electrical energy (blue) and
thermal energy (red).

3.1. Model Description and Analysis

In our case study we consider a residential building which is equipped with
a heat pump and a PV-module as depicted in Figure 1. The heat pump has

5

two supply feeds: one for serving the heating system for residential rooms and
one for preparing DHW. Only one supply feed can be used at any given time
so that the heat pump cannot serve the heating system and produce DHW
simultaneously. A brine-water heat pump is utilized with 10.8 kW maximal
thermal power at standard point B0/W35. In general, the electrical and
thermal power of the heat pump depend on the outside temperature. The
electrical power can be modulated continuously between 30% and 100% of
the respective maximal electrical power. We also consider an almost identical
heat pump in on/off-mode, i.e., it can be operated only with 0% or 100%
of the maximal thermal power. Additionally, an electrical immersion heater
is installed, which may be used for DHW generation when the reservoir is
depleted. The heat for residential rooms is stored in the building mass, the
produced DHW in a hot water tank. We consider the temperature of the
building and the temperature of the water in the DHW tank as measure for
the amount of stored energy. The amount of energy stored in the building
mass is restricted to the interval 40 kWh to 89 kWh, leading to a capacity
of the thermal energy storage of 49 kWh. DHW storage is restricted to the
interval 11 kWh to 15.65 kWh, which correspond to water temperatures of
10 °C and 50 °C, leading to a capacity of the thermal energy storage for
DHW of 4.65 kWh. Both thermal storages are subject to thermal loss over
time, which are specified in the paragraph below. In addition to the electrical
demand of the heat pump and the immersion heater there is also an electrical
demand for the domestic consumers in the household. The demands of all
electrical consumers can be partially fulfilled by a PV-module on the roof of
the building. The residual demands are satisfied by an energy supplier via
the grid. All parameters of heat pump, PV-module, immersion heater, and
thermal and DHW storage are compiled in Table 1.

3.2. Thermal and Electrical Model

Thermal energy can be stored in the floor heating system (heat) or the
hot water tank (DHW). Demand for thermal energy from the floor heating
system corresponds to heating up residential rooms. Demand for thermal
energy from the DHW storage corresponds to the delivery of hot water. The
stored thermal energy in both storages is subject to thermal decay, i.e., the
thermal energy is lost due to imperfect thermal insulation. We model this loss
as a linear decay which depends on the state of charge (SOC) of the respective
storage, since SOC is assumed directly proportional to storage temperature as
outlined before. The heat storage is subject to a loss of Lh

max := 0.0784 kWh/h

6

Table 1: Model parameters for heat pump and PV modules.

Parameter Value

Heat pump type Air source (air-water) heat pump
Heat pump nominal

thermal power
10.8 kWth

Heat pump COP 4.6 (at B0/W35)
Heat pump modulation 30%-100%
Minimal operation time 10min

Minimum rest time 5min
PV peak power 5 kW

when completely charged and Lh
min := 0.029 kWh/h when discharged. The

DHW storage is subject to Lw
max := 0.00743 kWh/h when completely charged

and Lw
min := 0.00186 kWh/h when discharged. Losses are linearly interpolated

between the respective extreme values for other SOCs.
The maximum thermal and electrical power of the heat pump depend on

the outside temperature and the supply temperature. Figure 2(a) depicts
these relationships. The electrical power ranges between 2.11 and 3.48 kW
for space heating and between 3.30 and 5.23 for DHW. The resulting thermal
power ranges between 6.12 and 14.50 kW for space heating and between 5.60
and 11.80 kW for DHW. The ratio of the thermal and electrical power is the
coefficient of performance (COP). The electrical and thermal power of the
immersion heater is 5 kW, i.e., it has a COP of 1.

3.3. Demand and Supply Visualization over Time

We illustrate how energy production and consumption vary over a year.
We use time series for outside temperature, PV-generation, heat demand,
DHW demand, and domestic electricity demand from a residential building
in Düsseldorf, Germany. The data set was collected for the year 2018. The
resolution of all time series is 1min.

Table 2 briefly summarizes important properties of the data set. Space
heating required 9908 kWh and domestic hot water 2063 kWh. To satisfy
these demands, a heat pump requires at least 2602 kWh electrical energy.
The electrical demand for the household itself is 3985 kWh so that in sum
6587 kWh electrical energy were required. We accumulated the household
demand for electrical energy that exceeds the PV energy per quarter-hour

7

0

5

10

15

−15 0 15 30
Outside temperature (°C)

T
h

e
rm

a
l
a

n
d

 e
le

c
tr

ic
a

l
p

o
w

e
r

(k
W

)

Space heating
DHW

Electrical
Thermal

(a) Thermal and electrical power.

0

2

4

6

−15 0 15 30
Outside temperature (°C)

C
O

P

Space heating
DHW

(b) Coefficient of Performance (COP) of the heat pump.

Figure 2: Electrical and thermal characteristics of the heat pump for the heat and DHW
supply feed.

and obtained 2340 kWh. That means, out of the 3985 kWh at least 2340
kWh cannot be supplied by PV. However, this is only a lower bound since
the demand for electrical power by the household may exceed the electrical

8

Table 2: Model parameters for energy demands and storage in the case study.

Parameter Value

Evaluation period 1 year
Demand for space heating 9908 kWh

Demand for DHW 2063 kWh
Demand for electrical energy

(w/o heat pump)
3985 kWh

Building type
Single family house in
Düsseldorf, Germany

Min./Max. outside temperature -13.3 °C/33.3 °C
Yearly average outside

temperature
11.4 °C

Capacity of TES for space
heating

49 kWh

Volume of TES for DHW 100 l
Capacity of TES for DHW 4.65 kWh
Electric heater for DHW 5kW

supply by the PV even though the supplied energy exceeds the demanded
energy within a quarter-hour.

The PV panels generated 6584 kWh electrical energy per year. Thus, the
yearly production and consumption (6587 kWh) of electrical energy were al-
most equal. However, electrical energy is not always produced when needed
to satisfy the electrical demands. Figure 3 shows the production and con-
sumption of electrical energy over a year. Demand for heat is converted to
electrical demand using a COP of 4.6. We remark that this COP is arbi-
trary and chosen only for visualization. The figure shows that during winter,
the demand for electrical energy clearly surpasses its provision while there
is significantly more electrical energy supply than demand during summer.
This is due to the large demand of thermal energy in winter and the large
production of PV energy in summer. In theory, a battery could be used to
store electrical energy generated in summer for consumption in winter. How-
ever, that battery must be large. As such a large battery is also costly, we
renounce on it in our evaluation.

9

0

10

20

30

40

50

0 60 120 180 240 300 360
Day

E
le

c
tr

ic
a

l
e

n
e

rg
y
 (

k
W

h
)

PV−generation
Total demand

Figure 3: Production and consumption of electrical energy over a year. Consecutive per-
day data points are connected for better visibility.

3.4. Demand Distribution

Thermal demand is required for space heating and domestic hot water.
We break the yearly demands down to quarter-hours and present their com-
plementary cumulative distribution function (CCDFs) in Figures 4(a) and
4(b). In 57% of all quarter-hours of a year, no energy is needed for space
heating while space heating almost never requires more than 1.5 kWh per
quarter-hour. In 80% of all quarter-hours, no hot water is requested. In 99%
of all quarter-hours less than 1.25 kWh thermal energy is needed for DHW.
However, in rare cases (100 out of 35040 quarter-hours per year) 1.97 kWh
and more are needed. In 4 exceptional quarter-hours, the demand for DHW
surpassed the capacity of the water tank. The maximum demand was 6.09
kWh. This could be achieved when the storage was quickly depleted and
heat pump as well as electric immersion heater are needed to heat up the
storage again.

An example for such a case is when multiple persons have a shower in
different bathrooms.

4. A MILP for Schedule Optimization

We describe a MILP model of the heat pump optimization problem to
find the optimal schedule for the heat pump (and the immersion heater) in

10

0

10

20

30

40

50

0.0 0.5 1.0 1.5
Heat demand d (kWh)

P
e

rc
e

n
ta

g
e

 o
f

d
e

m
a

n
d

s
 >

 d

(a) Space heating.

0.0

2.5

5.0

7.5

10.0

0.0 1.5 3.0 4.5 6.0
DHW demand d (kWh)

P
e

rc
e

n
ta

g
e

 o
f

d
e

m
a

n
d

s
 >

 d

(b) Domestic hot water.

Figure 4: CCDFs of thermal energy demand in 2018 on a quarter-hour basis.

the evaluation scenario. We use this model later to compute energy demands
and other properties in various evaluation settings. First, we introduce fun-
damentals about MILPs. Then, we define the notion of a heat pump schedule
and its components. Afterwards, we discuss modelling assumptions used to

11

transform the scheduling problem into a MILP. Finally, we state and elabo-
rate on the variables and constraints of the MILP model.

4.1. Fundamentals of MILPs

A MILP describes the set of valid solutions to a problem by linear in-
equalities on a set of variables. The variables can take values from discrete
or continuous sets. The linear inequalities restrict the set of all possible vari-
able assignments to those assignments which correspond to valid solutions of
the modeled problem. Each variable assignment which fulfills all inequalities
is a feasible solution to the MILP and vice versa. A linear objective function
is used to compare feasible solutions. Given some feasible solution, the solu-
tion is denoted as optimal if no feasible solution with lower objective value
exists.

An MILP solver can compute the optimal solution for arbitrary MILPs.
During the solving process, lower and upper bounds for the objective value of
the optimal solution are inferred. The optimal solution is found when upper
and lower bound meet.

4.2. Schedules

We denote the time interval for which the heat pump’s schedule is planned
as planning horizon. In the following, all times are assumed to be relative
to the start of the planning horizon. The schedule of a heat pump is a
list of time intervals in which the heat pump runs and a mapping of time
instants to heat pump behavior, e.g., which supply feed is used. Additionally,
a schedule contains a mapping of time instants in which the heat pump
runs with power modulation specified by the modulation coefficient. The
modulation coefficient at a time instant t is the fraction of the actual thermal
power of the heat pump and its maximum thermal power with respect to the
outside temperature at time t. The schedule for the immersion heater is also
a list of time intervals in which the heater is in operation. However, the
immersion heater has only one mode of operation and cannot be modulated.

Scheduling in the context of this work is the process of finding a valid
schedule for the heat pump and the immersion heater.

4.3. General Assumptions

Let h be the length in time of the planning horizon. We divide the
planning horizon in discrete time slots with length l. In the remainder of this
work, we assume l := 15min. Thus, the number of time slots is n := h

15min
.

12

Time slots are denoted by their index in the range [1, n]. The heat pump
can either run or pause an entire time slot. The power modulation and the
supply feed can only be changed at the beginning of a time slot.

4.4. Variables and Constraints

Variables are used to capture a complete description of a schedule for
the heat pump and the immersion heater. Constraints restrict the set of
variable assignments to assignments that correspond to valid schedules. This
section makes the variables and constraints of the MILP model explicit. The
variables and parameters of the model are compiled in Tables 3 and 4.

Table 3: Variables of the MILP model.

Variable Type Definition

P h
t , P

w
t binary

1 if the heat pump produces space
heating/DHW in time slot t, 0

otherwise

Mh
t ,M

w
t continuous

Modulation factor of the heat pump in
space heating or DHW mode in time

slot t

It binary
1 if the immersion heater is on in time

slot t, 0 otherwise

Gt, PVt continuous
Consumed power from grid and

PV-modules in time slot t

Ht,Wt continuous
State of charge (SOC) of heat and

DHW storage after time slot t

St binary
1 if the heat pump starts running in

time slot t, 0 otherwise

4.4.1. Supply Feed

Let t be a time slot of the planning horizon. The binary variables P h
t

and Pw
t capture whether the heat pump runs in the time slot t. Thermal

power is produced for the space heating supply feed if and only if P h
t is set

to 1. Analogously, thermal power is produced for the DHW supply feed if
and only if Pw

t is set to 1. The heat pump can only produce for at most one
supply feed per time slot. This is enforced by the following equation:

P h
t + Pw

t ≤ 1. (1)

13

Table 4: Parameters of MILP model.

Parameter Definition

dt, ht, et
Demand for DHW, space heating and

electrical energy in time slot t

thh
t , th

w
t

Thermal power of the heat pump in time
slot t (depends on the outside temperature)

elht , el
w
t

Electrical power of the heat pump in time
slot t (depends on the outside temperature)

eli, thi

Electrical and thermal power of the
immersion heater (both 5 kW in the

evaluation scenario)

H0,W0

State of charge (SOC) of space heating and
DHW storage at the beginning of the

planning horizon

Hmin, Hmax,Wmin,Wmax
Minimal and maximal state of charge

(SOC) of space heating and DHW storage

Lh
min, L

h
max, L

w
min, L

w
max

Minimal and maximal thermal loss of space
heating and DHW storage

pt Available PV power in time slot t

l Length of a time slot
n Number of time slots

a, b
Weights for grid energy demand and heat

pump starts in the objective function

4.4.2. Power Modulation

The heat pump can modulate its thermal power, i.e., it can work with less
thermal power than its maximum thermal power. The modulation coefficient
must be in the range [0.3, 1] when the heat pump is running and 0 otherwise.
For every time slot t, we use variables Mh

t and Mw
t to capture the modulation

coefficient for space heating and DHW generation, respectively. Equation 2
and 3 enforce that the variables for the modulation coefficient are at most 1
when the heat pump runs the respective mode and 0 otherwise.

Mh
t ≤ P h

t (2)

Mw
t ≤ Pw

t (3)

14

Additionally, Equations 4 and 5 model that the variables for the modulation
coefficient is at least 0.3 when the heat pump runs in the respective mode.

P h
t − 1 ≤ Mh

t − 0.3 (4)

Pw
t − 1 ≤ Mw

t − 0.3 (5)

4.4.3. PV Power

The used PV power PVt during time slot t must be less than the available
PV power during this time slot pt.

PVt ≤ pt (6)

4.4.4. Immersion Heater

For every time slot t, we introduce a binary variable It. The immersion
heater is in operation during t if and only if It is set to 1.

4.4.5. Generation and Demand

Let elht and elwt be the maximum electrical power of the heat pump during
time slot t for space heating and DHW mode, respectively. These parame-
ters depend on the outside temperature according to the characteristics in
Figure 2(a). Furthermore, let et be the domestic electrical demand during
t. We introduce a continuous variable Gt to capture the power taken from
the grid during t. The power consumed by heat pump, immersion heater,
and domestic electrical demand, must equal the combined power from the
PV-module and the grid. This is enforced by the following equation:

Mh
t · elht +Mw

t · elwt + eli · It + et = PVt +Gt. (7)

4.4.6. Thermal Storage

We introduce continuous variables Ht and Wt for the thermal energy
stored in the floor heating system and the DHW storage after time slot t.
Furthermore, we define H0 and W0 to be the initial thermal energy contained
in both storages at the start of the planning horizon. The SOC of a storage
after a time slot t can be computed with its SOC after the previous slot t−1,
and the thermal power of the heat pump in this time slot for the respective
supply feed, minus the thermal loss of the storage, and the respective demand
during the time slot. Additionally, the immersion heater with thermal power
thi must be considered for the SOC of the DHW storage. The thermal energy
generated by the heat pump and the heater in a time slot can be computed

15

by the employed thermal power in this time slot multiplied with the length
of a time slot l. Let ht and dt be the demands for space heating and DHW
in time slot t, respectively. The following equations enforce the intended
semantics:

Ht = Ht−1 − l ·

(

Lh
min + (Lh

max − Lh
min)

Ht−1

Hmax −Hmin

)

+ l · thh
t−1 ·M

h
t−1 − ht−1 (8)

Wt = Wt−1 − l ·

(

Lw
min + (Lw

max − Lw
min)

Wt−1

Wmax −Wmin

)

+ l · thw
t−1 ·M

w
t−1 + l · thi · It−1 − dt−1. (9)

We remark that the terms in the parenthesis correspond to linear interpola-
tion of the thermal losses.

The SOC of the heat storage for space heating must range between its
minimum value Hmin and its maximum value minimum value Hmax. Similarly,
the SOC of the DHW storage must range between Wmin and Hmax. Both of
these constraints are enforced by the following inequalities for all time slots
t:

Hmin ≤Ht ≤ Hmax (10)

Wmin ≤Wt ≤ Wmax. (11)

When working with historic input data, Hmin and Wmin are zero. When
working with forecast input data, Hmin and Wmin are set to the respective
recharge threshold (cf. Section 5.3.3).

4.4.7. On/Off Cycles

We define the start of the heat pump for time slot t if it was not running
in time slot t− 1 and it runs in time slot t. We introduce a binary variable
St which should be set to 1 if and only if a start of the heat pump occurs in
time slot t. The binary variables for the heat pump P h

t−1, P
w
t−1, P

h
t , P

w
t can

be used to express the intended semantic for all time slots t > 1. Equation
12 enforces that the definition of a start in time slot t implies that St is set
to 1. Equations 13 and 14 enforce the opposite direction of this implication.

(1− P h
t−1 − Pw

t−1) + (P h
t + Pw

t)− 1 ≤ St (12)

St ≤ 1− P h
t−1 − Pw

t−1 (13)

St ≤ P h
t−1 + Pw

t−1 (14)

16

For the first time slot t = 1, there is no previous time slot. Thus, the
definition of a start is slightly modified. The variable S1 is set to 1 if and
only if the heat pump runs in the first time slot. This can be enforced with
the following equation:

P h
0 + Pw

0 = S0. (15)

For certain cases in the evaluation, the heat pump may already be working
at the beginning of the planning horizon from a previous planning horizon.
In this case, Equation 15 is substituted with:

S0 = 0. (16)

4.4.8. Minimum Running Time

The variables for on/off cycles can be employed to enforce minimum run-
ning times of the heat pump, in order to ensure that the heat pump is at
least a certain time in operation after starting and to avoid by this means
any damages of the heat pump by very frequent on/off-cycles. Let k be the
minimum number of time slots the heat pump must be in operation after
an on/off cycle started. The following equation enforces the implication that
the heat pump must be in operation for k time slots after it has been started.

k · St ≤

min(n,t+k−1)
∑

i=t

P h
i + Pw

i (17)

4.4.9. Pauses

Pause times can be enforced in a similar way as minimum running times.
If the heat pump must pause for at least k time slots before running again
after it has been stopped, the following equality must hold.

k · St ≤

t−1
∑

i=max(1,t−k)

1− P h
i − Pw

i (18)

Minimum running times and pauses are shorter in case the heat pump was
running shortly before the planning horizon in a previous schedule. For
instance, assume the minimum running time of the heat pump is three time
slots and the heat pump is in operation during the last time slot of a planning
horizon. In this case, the heat pump must be in operation for at least two
time slots at the beginning of the next planning horizon. We remark that
trivial modifications to Equations 17 and 18 are necessary in such cases.

17

4.4.10. Objective

The objective function depends on the respective evaluation and is a linear
weighted sum of the consumed energy from the grid and the number of heat
pump on/off cycles. We assume the weight of the consumed grid energy to
be one. The weight of the number of on/off cycles is denoted as C. The
weighted sum should be minimized in all evaluation scenarios and is given in
the following:

min :
n

∑

t=1

l ·Gt + C ·

n
∑

t=1

St. (19)

5. Optimization Results

In this section, we incrementally develop a strategy for optimization of
heat pump schedules using simple forecast for energy production and con-
sumption.

We first optimize the schedule for the heat pump for an entire year
(1.1.2018 – 31.12.2018) in one shot based on exact energy production and
consumption data. As this is an unrealistic assumption, we propose contin-
uous optimization with 3-days-ahead knowledge of energy production and
consumption using a rolling horizon approach. Moreover, we propose how to
minimize both purchased grid energy and number of needed on/off cycles.
Afterwards, we substitute the known energy production and consumption
data by simple forecasts and introduce a mechanism to cope with estimation
errors. We then evaluate the impact of system parameters on required grid
energy and on/off cycles and compare the performance of optimized oper-
ation with the one of a simple operation method. Finally, we analyze the
operation of heat pumps running on optimized schedules.

Throughout this section, schedules are computed with the MILP of Sec-
tion 3 based on different optimization strategies with different planning hori-
zons, empirical or forecast input data, and using adapted objective functions.
The schedules are always executed on empirical data for performance evalua-
tion purposes. Thus, computing schedules based on forecast data may cause
premature storage exhaustion or longer lasting energy in the storage. This
effect is handled by the proposed mechanism to cope with estimation errors.

As the MILP solver takes too long for the computation of optimum values,
the computation is stopped when found solutions are at most 0.1% close to
the optimum. As finding such a solution or a valid solution at all takes

18

too much time, the computation is also stopped after 5 minutes or 24 hours
depending on the specific experiment.

5.1. Optimization of an Entire Year in a Single Run

We compute lower bounds on required grid energy and on/off cycles,
respectively. To that end, we take historic energy production and consump-
tion data as input. We formulate the optimization problem for an entire year
within a single MILP, i.e., the input data are all known in advance. The ILP
solver is stopped after 24 hours if sufficiently accurate results have not been
found before. The results of this subsection are compiled in Table 5.

5.1.1. Minimization of Grid Energy

In the first experiment series, we utilize the MILP to minimize the pur-
chased grid energy for a heat pump with and without modulation. That
means, C is set to zero in the objective function in Equation (19). Thus, the
number of on/off cycles is not part of the objective function.

For a heat pump without modulation, the ILP solver could not find a
solution, but provided a lower bound of 4011 kWh purchased grid energy.

The MILP models for all experiments in Section 5.1 consist of 385439
inequalities with 350400 variables, 140160 of them are restricted to integer
values. This is very large and makes most of these problems unfeasible within
acceptable time.

For a heat pump with modulation the ILP solver found 3897 kWh pur-
chased grid energy as near-optimum solution. It can be achieved with 600
on/off cycles.

5.1.2. Minimization of On/Off Cycles

In the third experiment series, we utilize the MILP to minimize the num-
ber of on/off cycles needed for a valid schedule for a heat pump with and
without modulation. That means, l is set to zero and C is set to 1 in the
objective function in Equation (19). Thus, the purchased grid energy is not
part of the objective function. Here, the ILP solver could not even find a
valid solution to provide an upper bound for the number of needed on-/off
cycles. Nevertheless, it could infer a lower bound, which is 3 for heat pumps
without modulation and 75 for heat pumps with modulation. However, this
information is not useful.

19

Table 5: Required grid energy and on/off cycles for optimized heat pump schedules. (sin-
gle: single optimization of a year, RH: RH optimization of a year

Variant
W/o modulation W/ modulation
Grid

energy
(kWh)

On/off
cycles

Grid
energy
(kWh)

On/off
cycles

single/e↓ ≥ 4011 – 3897.47 600
single/c↓ – ≥ 3 – ≥ 75
RH/e↓ 4078.91 1332 3901.59 1458
RH/c↓ 7975.60 256 7635.27 194

RH/weighted
sum, C=5 kWh 4478.52 239 4239.23 150

5.2. Rolling Horizon: Stepwise Optimization over Time

In practice, only forecast energy production and consumption data serve
as input to the optimization problem instead of historic data from 2018. Such
forecast data data are available only a few days in advance so that a schedule
cannot be optimized for an entire year in advance. In the following, we
adopt the well-known optimization strategy “Rolling Horizon” (RH) to cope
with that problem. RH is a well-known strategy for long-term optimization
problems based on only limited forecasts [1]. We apply it using the MILP
from 4 with a planning horizon of 3 days. That means, we use the current
system state and historic energy production and consumption data of the
last 3 days to compute optimized schedules for the next 3 days. On the basis
of the obtained schedule, we calculate the new system state after one day
and repeat a 3-days optimization for that time. We repeat this procedure
until the end of the year is reached.

As this optimization strategy requires only schedule optimization for 3
days, the corresponding MILPs consist of only 3166 inequalities with 2880
variables, 1152 of them being binary. This leads to significantly less com-
plexity than the MILPs for the optimization of an entire year in Section 5.1.
However, 363 consecutive schedules are needed to compose an overall sched-
ule for an entire year. Therefore, we limit the computation time for the ILP
solver to 5 minutes instead of 24 hours for the remainder of this work.

The results for the following experiment series are also compiled in Ta-
ble 5. We first minimize only the required grid energy. This yields schedules
requiring 4078.91 kWh grid energy and 1332 on/off cycles for heat pumps

20

without modulation and 3901.59 kWh grid energy and 1458 on/off cycles
for heat pumps with modulation. These values for grid energy are close to
the yearly upper bound of 3998 kWh and the optimum of 3897.47 kWh, re-
spectively. However, the numbers of on/off cycles are 1332 and 1458. They
are significantly higher than in the one-shot optimization for an entire year,
which is obviously caused by the simple application of the RH method.

We now minimize only the number of on/off cycles. In contrast to Sec-
tion 5.1, optimium solutions are found due to the short planning horizons of
3 days. We obtain schedules with 194 and 256 on/off cycles for heat pumps
without and with modulation, respectively. However, they require 7635 kWh
and 7976 kWh grid energy. These numbers are very large compared to the
minimum required grid energy.

Thus, the simple adoption of the RH method allows to effectively mini-
mize either the required grid energy or the number of on/off cycles, but not
both.

5.2.1. Pareto Optimization Using Weighted-Sum

So far, we computed schedules leading to a minimum purchased grid en-
ergy or to a minimum number of on-/off-cycles. Especially with the simple
application of the RH method, the respective other metric is significantly
degraded. However, schedules are desired that lead to only reasonably lit-
tle purchased grid energy while causing only a reasonably few on-/off cy-
cles. This is a multi-objective optimization problem and, more specifically,
a Pareto-optimization problem as optimizing one metric degrades the other.

Weighted-sum optimization [12] is a well-known strategy to cope with
Pareto optimization problems. Its objective function consists of a weighted
sum of both metrics (cf. Equation 19) with l = 1 and C a chosen positive
parameter. The parameter C is essentially a virtual start cost in kWh which
is added per start to the purchased grid energy for a schedule, leading to the
objective function to be minimized. That effects that additional starts are
allowed if they sufficiently reduce the purchased grid energy. Of course, the
virtual start costs do not contribute to the real costs of purchased energy.

We apply this weighted-sum optimization for heat pumps without and
with modulation with different virtual start costs C. The results are reported
in Figures 5(a) and 5(b). With increasing virtual start cost C, the energy
required from the grid increases and the number of starts decreases. This
holds for heat pumps with and without modulation.

21

4000

4250

4500

4750

0 5 10 15 20
Virtual start cost C (kWh)

G
ri

d
 e

n
e
rg

y
 (

k
W

h
)

W/o modulation
W/ modulation

(a) Required grid energy depending on virtual start cost C.

100

200

300

400

0 5 10 15 20
Virtual start cost C (kWh)

S
ta

rt
s

W/o modulation
W/ modulation

(b) Required on/off cycles depending on virtual start cost C.

4000

4250

4500

4750

80 160 240 320 400
Starts

G
ri

d
 e

n
e
rg

y
 (

k
W

h
)

W/o modulation
W/ modulation

(c) Scatter plot of required grid energy and on/off cycles for weighted-sum-optimized sched-
ules. The linked points approximate a Pareto front.

Figure 5: Schedules for heat pumps without and with modulation are computed with
rolling horizon and weighted-sum optimization. Historic production and consumption
data are used as optimization input.

22

The figures also show that optimized schedules for heat pumps with mod-
ulation require less grid energy and fewer starts than those for heat pumps
without modulation. This can be explained a follows. Heat pumps without
modulation are either on or off. During times with only little PV supply,
they require additional grid energy when running. In contrast, heat pumps
with modulation can be operated at a lower power level so that less grid en-
ergy is needed during times of only little PV supply. As a consequence, the
heat pumps’ on-cycles are longer, which automatically reduces the number
of on/off cycles.

While the required grid energy increases approximately linearly with vir-
tual start costs, the number of starts decreases first quickly and then slowly.
Increasing the start cost C beyond 5 kWh further increases the required grid
energy, but it does not effectively reduce the number of starts. Therefore,
we take a virtual start cost of C = 5 kWh as preferred value for studies in
the remainder of this work. This is indicated by a dashed vertical line in
Figures 5(a) and 5(b).

We now select schedules for which no other schedule with less grid en-
ergy and less starts exist. They approximate a Pareto-optimal set and are
compiled in Figure 5(c). The x-axis indicates the number of starts needed
by a schedule and the y-axis shows its required grid energy. The resulting
lines constitute approximate Pareto fronts for heat pumps without and with
modulation. For both heat pump types the required grid energy decreases
with an increasing number of starts.

RH and weighted sum are well-known techniques from optimization liter-
ature. We combined both to a optimization strategy which works quite well.
We are not aware of other works that have used this approach for dealing
with a limited planning horizon.

5.3. Schedule Optimization without Known Energy Production and Consump-
tion Data

In the previous optimizations, we utilized historic energy production and
consumption data as input. However, in practice, forecast data are needed
for the computation of future schedules. Such forecast data have errors com-
pared to the real future production and consumption data. We first review
a simple but yet effective forecast method for energy consumption in single
family homes. Then we discuss the effect of forecast errors on optimized
schedules and propose the use of a recharge threshold to cope with such er-
rors. We investigate the impact of this recharge threshold to recommend an

23

Threshold
Unsat.
demand

Grid energy On/off cycles

(kWh) (%)
Abs.

(kWh)
Rel.
(%)

Abs.
Rel.
(%)

11.233 98 5064 13.1 326 36.4
11.465 58 5078 13.4 334 39.7
11.93 36 5175 15.6 352 47.3
13.325 6 5486 22.5 452 89.1

(a) W/o power modulation.

Threshold
Unsat.
demand

Grid energy On/off cycles

(kWh) (%)
Abs.

(kWh)
Rel.
(%)

Abs.
Rel.
(%)

11.233 100 4832 13.7 198 32
11.465 62 4810 13.2 202 34.6
11.93 43 4843 13.9 228 52
13.325 5 5018 18.1 296 97.3

(b) W/ power modulation.

Table 6: Required grid energy, on/off cycles, and resulting overall unsatisfied DHW de-
mand for optimized heat pump schedules with forecasts and recharge threshold.

appropriate value. Finally, we quantify the penalty of using forecast data
instead of known data.

5.3.1. Forecast Method: 1-Day-Back

Demand for electrical energy, DHW, and space heating are difficult to
forecast for single family homes. Especially electrical energy and DHW show
almost unpredictable peaks. For simplicity reasons, we just take time series
of the previous day as forecast for the succeeding day, which is called 1-
day-back method. In [13] we have compared 1-day-back with other, more
complex approaches for the single family home in this study, and 1-day-back
performed remarkably well for the demand prediction of space heating and
DHW as well as PV energy production. Therefore, we use 1-day-back to
predict the time series for energy production, energy consumption (space
heating, DHW, and other electrical demand), and for outdoor temperature

24

for the next three days. That means, the respective time series of the previous
day are taken as forecast time series for the succeeding three days.

5.3.2. Impact of Forecast Errors

We discuss effects of forecast errors. The real PV energy production may
differ from forecast values so that more or less energy is needed from the grid
than expected by the schedule. The COP of the heat pump depends on the
temperature. Therefore, deviations of the real temperature from the forecast
temperature lead to generation of more or less thermal energy by a heat pump
than expected by the schedule. If less energy is produced than forecasted,
the heat or DHW storage may not be charged to the planned level when
operating the heat pump based on an optimized schedule. If more energy is
produced than forecasted, the space heating or DHW storage may be charged
earlier than planned. If less energy is consumed than forecasted, more energy
remains in the space heating or DHW storage than planned. If more energy
is consumed than forecasted, the space heating or DHW storage may deplete
earlier than planned.

5.3.3. Control Adaption to Cope with Forecast Errors

Forecast errors cause the discussed deviations from the schedule. We
adapt the system control to cope with them.

We suggest recharge thresholds for the space heating and DHW storage
so that the storages are recharged when their SOC falls below the respective
threshold. The recharge threshold can be considered in the optimization by
setting Hmin and Wmin in Equations (10) and (11) to the recharge thresholds
of the space heating and DHW storage instead to their minimum values.

On the one hand, the recharge threshold mechanism reduces the likelihood
that space heating or DHW demand meets a fully discharged space heating
or DHW storage. On the other hand, this mechanism reduces the flexibility
and optimization potential as the SOC of a storage normally ranges between
its recharge threshold and maximum state of charge. Thus, less energy can
be charged by a single charging process compared to a system without a
recharge threshold so that probably more on/off cycles are needed. Thus,
the recharge thresholds need to be set carefully.

For the evaluation, we keep a 15-minutes granularity for compatibility
with available historic data and the optimization approach. That means, the
control algorithm checks the SOC of the space heating and DHW storage at
the end of each quarter-hour and triggers appropriate actions. An adaptation

25

to instant reaction is straightforward. In the following we explain the actions
triggered by the control algorithm at the end of each quarter-hour.

If the SOC of a storage exceeds the storage capacity, the SOC is set to
the respective maximum and the consumed grid energy is corrected. Then,
a new RH optimization is triggered based on an unchanged heat pump state
(on/off) and current storage SOCs, and the resulting schedule is carried out
for the next quarter-hour.

When the SOC of the DHW storage falls below its minimum allowed
value, the difference is recorded as unsatisfied demand. Moreover, the DHW
storage is recharged by the heat pump at maximum power and the immersion
heater for the next quarter-hour. If the space heating storage undershoots
it minimum, the space heating storage is recharged by the heat pump at
maximum power. If both storages undershoot their minimum, the DHW
storage is recharged by the immersion heater and the space heating storage
is recharged by the heat pump at maximum power. However, the space
heating storage undershoots its minimum in none of the evaluations.

When the SOC of a storage falls below its recharge threshold but remains
above the allowed minimum, that storage is recharged by the heat pump
at maximum power which will possibly just be started for that purpose. If
the thresholds for both the DHW storage and the space heating storage are
undershot, the heat pump recharges the space heating storage at maximum
power and the immersion heater recharges the DHW storage.

If the SOC for both storages are between the respective recharge thresh-
old and maximum value, and if the system was operated according to an
optimized schedule which does not yet be reoptimized, then this schedule
is further carried out in the next quarter-hour. Otherwise, the schedule is
reoptimized based on an unchanged heat pump state (on/off) and current
storage SOC, and carried out in the next quarter-hour.

5.3.4. Recommendation for the Recharge Threshold

Recharge thresholds exist for space heating and DHW storage and are
defined relative to energy of an entirely discharged storage, i.e., 40 kWh and
11 kWh, respectively (cf. Section 3.1).

We choose a recharge threshold of 3.5 kWh for the space heating storage
as there is no time slot with more demand in the entire data set. With
that parametrization, heat demands can always be satisfied. Moreover, this
threshold is relatively small compared to storage size so that the storage
remains effective.

26

DHW behaves differently. The DHW demand of some time slots ex-
ceeds the capacity of the DHW storage. To find an appropriate recharge
threshold, we evaluate its impact on purchased grid energy, on/off cycles,
and unsatisfied demand. Tables 6(a) and 6(b) compile the results for differ-
ent recharge thresholds. The investigated thresholds correspond to 5%, 10%,
20%, and 50% of the DHW storage capacity. For recharge thresholds of 5%,
10% and 20%, the unsatisfied demand is unacceptably large compared to a
yearly DHW demand of 2063 kWh. Therefore, 50% should be chosen, which
corresponds to 2.325 kWh. However, larger thresholds reduce the effective
DHW storage capacity and lead to more DHW recharges, which can be well
observed in Tables 6(a) and 6(b) by the number of increased on/off cycles.
The reduced effective DHW storage capacity also decreases the scheduling
flexibility, i.e., recharging the DHW storage can wait less often until sufficient
PV energy is available.

5.3.5. The Penalty of Using Forecasts

Only in theory future energy production and generation can be known
so that no recharge thresholds are needed. This leads to low purchased
grid energy and on/off cycles as compiled in Table 5. With forecast data and
recharge threshold, between 13.1% and 22.5% more grid energy is needed and
between 32% and 97.3% more on/off cycles are required. This is a substantial
penalty which shows that this type of optimization problem cannot be treated
without considering forecast data.

5.4. Impact of DHW Storage Capacity and PV Power

To avoid substantial unsatisfied demand, a large recharge threshold is
needed, which diminishes scheduling flexibility and leads to more purchased
grid energy. There are two obvious countermeasures: larger DHW storage
capacity or more PV power. We investigate their impact on unsatisfied de-
mand, purchased grid energy, and on/off cycles while keeping the recharge
threshold at 2.325 kWh. Tables 7(a) and 7(b) compile the results for default
and double DHW storage capacity and PV power.

Double DHW storage decreases unsatisfied demand to almost zero while
double PV power has only little positive impact on unsatisfied demand. Dou-
ble DHW storage capacity saves 546 and 162 kWh grid energy for heat pumps
without and with modulation, respectively. The savings through double PV
power is 202 and 133 kWh. Thus, both measures reduce the purchased grid
energy by some moderate amount. However, double DHW storage capacity

27

PV

Default DHW Double DHW

power

storage capacity storage capacity
Unsat.
demand
(kWh)

Grid
energy
(kWh)

On/off
cycles

Unsat.
demand
(kWh)

Grid
energy
(kWh)

On/off
cycles

Default 6 5486 452 0 4940 270
Double 4.3 5282 451 0 4175 275

(a) W/o power modulation.

PV

Default DHW Double DHW

power

storage capacity storage capacity
Unsat.
demand
(kWh)

Grid
energy
(kWh)

On/off
cycles

Unsat.
demand
(kWh)

Grid
energy
(kWh)

On/off
cycles

Default 5 5018 296 0.5 4724 174

Double 5 4885 321 0 4213 186

(b) W/ power modulation.

Table 7: Unsatisfied overall DHW demand, required grid energy, and on/off cycles for heat
pumps running on optimized schedules; the recharge threshold is 2.325 kWh, default and
double PV storage capacity and PV power are investigated.

reduces the number of on/off cycles by 40% and 41% for heat pumps without
and with modulation. In contrast, double PV power hardly decreases on/off
cycles or even increases them. Hence, double PV power is less effective than
double DHW storage capacity and more expensive. As double DHW storage
capacity is an effective means to reduce unsatisfied demand, purchased grid
energy, and on/off cycles, we use a 200 l DHW storage with 9.3 kWh thermal
capacity together with a recharge threshold of 2.325 kWh in the remainder
of this work.

5.5. Comparison with a Simple Control Strategy

A simple control strategy also requires recharge thresholds for space heat-
ing and DHW. We use them as proposed. The recharge thresholds are the
only triggers to start the heat pump. The heat pump is always operated at
full rate so that advantages of heat pumps with power modulation cannot
be leveraged. Whenever the energy in the DHW storages falls short of the
corresponding recharge threshold, the DHW storage is recharged, otherwise

28

the space heating storage is recharged, i.e., recharging DHW has priority.
When both storages are full, the heat pump is switched off.

Tables 8(a) and 8(b) compile results for different DHW recharge thresh-
olds and for default and double DHW storage sizes. We observe that the
unsatisfied demand is larger than for optimized schedules (cf. Tables 7(a)
and 7(b)) for corresponding recharge thresholds. Although the simple control
strategy is unable to leverage advantages of heat pumps with power mod-
ulation, we still compare their performance to the one of heat pumps with
power modulation running on optimized schedules. Table 8(a) shows that
for the default DHW storage capacity, the simple control strategy requires
1323 kWh more grid energy and 296 more on/off cycles while the unsatis-
fied demand is 15 kWh higher. For the double DHW storage capacity in
Table 8(b), the simple control strategy requires 1107 kWh more grid energy
and 111 more on/off cycles. Tables 8(a) and 8(b) also states the relative
increase of purchased grid energy and on/off cycles for the simple control
strategy compared to the optimized control strategy.

Given the fact that at least 2340 kWh electrical demand for household
must be supplied by the grid due to unavailability of PV energy, optimized
schedules are able to reduce the remaining demand from 3491 kWh to 2384
kWh (-31.7%) for double DHW storage capacity, which is essentially the
benefit of the presented optimized control.

5.6. Analysis of System Behavior

In the following we analyze the system behavior. We study how heat
pumps without and with power modulation are utilized with optimized sched-
ules. We show how electrical energy is consumed from and supplied to the
grid over the year. We investigate when DHW is generated by the heat pump
and by the immersion heater, respectively. Finally, we study the use of an
immersion heater with less power as an alternative. The system under study
uses schedules optimized with RH and weighted-sum optimization, the opti-
mization takes forecast data as input. A recharge threshold of 2.325 kWh is
used to minimize unsatisfied DHW demand, and the double DHW storage
capacity (200 l, 9.3 kWh) is utilized for better efficiency.

5.6.1. Modulation Behaviour

The previous evaluations revealed that heat pumps with powe modulation
offer the potential for less purchased grid energy and fewer on/off cycles

29

Recharge
threshold

Unsat.
demand

Grid energy On/off cycles

(%) (kWh)
Res.

(kWh)
Inc.
(%)

Res.
Inc.
(%)

11.233 134 6149 21.4 391 20.0
11.465 109 6154 21.2 403 20.7
11.93 60 6181 19.4 425 20.7
13.325 21 6341 15.6 592 30.1

(a) Default DHW storage capacity.

Recharge
threshold

Unsat.
demand

Grid energy On/off cycles

(%) (kWh)
Res.

(kWh)
Inc.
(%)

Res.
Inc.
(%)

11.233 37 5820 23.7 240 49.1
11.465 32 5818 23.1 242 46.7
11.93 17 5920 25.5 251 53.0
13.325 0.5 5831 23.4 285 64.7

(b) Double DHW storage capacity.

Table 8: Unsatisfied overall DHW demand, required grid energy, and on/off cycles for
a simple control strategy with forecast data for different recharge thresholds and DHW
storage capacities. The simple control strategy operates the heat pump always at maxi-
mum power. The indicated increase is relative to a heat pump with modulation running
on optimized schedules (cf. bold numbers in Tables 7(a) and 7(b)).

than heat pumps without modulation when executing optimized schedules.
Therefore, we study their modulation behaviour.

30

0

5

10

15

20

25

0.0 0.2 0.4 0.6 0.8 1.0
Modulation coefficient m

P
e

rc
e

n
ta

g
e

 o
f

m
o

d
.

c
o

e
ff

s
.

>
 m

Figure 6: CCDF of the modulation coefficients on a quarter-hous basis for a heat pump w/
power modulation running on optimizes schedules over a year; simple forecasts are used
as optimization input, double DHW storage capacity, and a recharge threshold of 2.325
kWh; results for default DHW storage are almost identical.

Figure 6 shows the the complementary cumulative distribution function
(CCDF) of modulation coefficients over time. The heat pump is off in 83.8%
of all quarter-hours during the year and on in 16.2%. In 11.7% of the time,
the heat pump runs with the minimum modulation coefficient of 30% and
in 2.0% of the time, the heat pump runs at 100%. The remaining 2.5% of
the time, the heat pump works with a modulation coefficient in the range
between 30% and 100%.

We explain why low modulation coefficients, which are preferably used
by optimized schedules, are beneficial to reduce purchased grid energy and
the number of on/off cycles. PV power is limited to about 5 kW in summer
and it is mostly lower in other seasons. The maximum electrical power of
the heat pump depends on the outer temperature. It is mostly between 2.25
kW and 3.12 kW for generating heat for space heating and between 3.41
kW and 4.66 kW for generating DHW. Thus, the electrical power needed by
the heat pump in full operation generally exceeds the supplied PV power.
Therefore, operating the heat pump at a low modulation coefficient reduces
the purchased grid energy. Another aspect is that the heat pump has longer
runtimes at a low modulation coefficient until the limited thermal storages

31

are charged. Thus, when the thermal demand is high, the heat pump can
continuously run without interruptions due to fully charged thermal storages,
which saves on/off cycles. This hypothesis will be backed by the analysis of
the heat pump’s runtime behavior.

5.6.2. Runtime Behavior of the Heat Pump

Figures 7(b)–7(a) depict daily times of operation over a year for heat
pumps running on optimized schedules. The runtime of heat pumps clearly
follows a seasonal pattern as they are longer in winter than in summer as their
operation is triggered by the thermal demand. Since the demand for space
heating is almost zero in summer, most of the short summer runtimes can be
attributed to the recharge of the DHW storage. We observe clear differences
in the times of operation for heat pumps without and with power modulation.
First, the times of operation for heat pumps with power modulation are sig-
nificantly longer than those for heat pumps without modulation. In fact, the
heat pump with modulation runs for 24 h during many days in winter, which
obviously saves on/off cycles. Moreover, the accumulated yearly runtime for
the heat pumps is 2838 and 1191 hours, respectively. We point out that the
lifetime of a heat pump not only depends on the number of on/off cycles,
but also on its overall runtime. This, however, is certainly a technology- and
vendor-specific issue and goes beyond the scope of this paper.

5.6.3. Grid Energy Demand and Supply

PV is not always sufficiently available when needed and, conversely, can-
not always be fully consumed due to lack of demand. Thus, energy is needed
from the grid, or can be fed into the grid. Figure 8 shows the residual grid en-
ergy demand and supply when a heat pump with power modulation running
on optimizes schedules is used (double DHW storage capacity). In winter,
energy is mostly demanded from the grid, in summer, energy is mostly sup-
plied to the grid. However, almost everyday, also in summer, some energy is
demanded from the grid. An amount of 2340 kWh electrical demand from
the household cannot be covered by PV energy.

5.6.4. Use of the Immersion Heater

Figure 9(a) illustrates how DHW is generated by the heat pump or the
immersion heater, respectively. At first sight, the frequent usage of the im-
mersion heater may be surprising, especially during summer. There are ba-
sically two reasons for the use of the immersion heater. First, it is used if

32

0

5

10

15

20

0 60 120 180 240 300 360
Day

R
u

n
ti
m

e
 (

h
)

(a) W/ modulation; 2838 hours accumulated.

0

5

10

15

20

0 60 120 180 240 300 360
Day

R
u

n
ti
m

e
 (

h
)

(b) W/o modulation; 1191 hours accumulated.

Figure 7: Daily runtimes over a year for heat pumps running on optimized schedules;
simple forecasts are used as optimization input, double DHW storage capacity, and a
recharge threshold of 2.325 kWh.

the heat pump is not sufficient to charge space heating and DHW storage
up to the recharge threshold until the end of an quarter-hour within the op-

33

timization period. In particular, the heat pump can charge either the space
heating or the DHW storage within a quarter-hour. This causes the need for
the short usages of the immersion heater in winter. Second, in summer the
immersion heater is used instead of the heat pump to keep the number of
on/off cycles low.

−40

0

40

0 60 120 180 240 300 360
Day

E
n

e
rg

y
 (

k
W

h
)

Grid consumption
Grid supply

Figure 8: Daily grid energy supply and demand over a year; a heat pump with modulation
is used, simple forecasts as optimization input, double DHW storage capacity, and a
recharge threshold of 2.325 kWh.

We explain the latter by a closer look at the optimized schedules. The
heat pump is used only for generating DHW if this can be combined with
generating heat for space heating, which is due to the optimization approach
using virtual start costs. For a virtual start cost of C = 5 kWh, the heat
pump is started for only generating DHW if this can save at least C = 5
kWh electrical energy from the grid compared to generating DHW with the
immersion heater. Without any PV energy and a COP of 3, at least 7.5 kWh
DHW demand is needed to activate the heat pump. If some PV energy is
available, the heat pump may be modulated so that no grid energy is needed.
However, also the immersion heater requires less grid energy. For instance,
when 2.5 kW PV power is available, the immersion heater draws only half
of its energy from the grid. Therefore, at least 10 kWh DHW demand are
needed to trigger the heat pump to start when no additional heat for space

34

−20

−10

0

10

20

0 60 120 180 240 300 360
Day

k
W

h
 /

 d
a
y

Heat pump
Immersion heater

(a) Virtual start cost C = 5 kWh.

−20

−10

0

10

20

0 60 120 180 240 300 360
Day

k
W

h
 /

 d
a
y

Heat pump
Immersion heater

(b) Virtual start cost C = 1 kWh

Figure 9: Electrical energy used by an immersion heater and a heat pump with modulation
to recharge the DHW storage.

heating is needed. This is more than the capacity of the considered double
storage and explains that the immersion heater is even used when it consumes
almost 9 kWh for DHW in summer.

35

C Grid energy
On/off cycles

Unsat. demand Heater
(kWh) (kWh) (kWh) runtime (h)

1 4489 285 0.2 15.5

2 4615 216 0.6 47.5

2.5 4650 200 0.4 51.25

5 4727 173 0.5 74.5

Table 9: Impact of virtual start cost on usage of the immersion heater and other metrics.

We varied the virtual start cost to demonstrate its impact on the op-
eration of the immersion heater. Table 9 shows that lower values lead to
fewer operation hours of the immersion heater and also to less required grid
energy, but also to more on/off cycles. We illustrate the different cumulated
operating hours of the immersion heater when a small virtual start cost of
C = 1 kWh is used for schedule optimization. Figure 9(b) shows that DHW
is generated less frequently by the immersion heater compared to C = 5 kWh
in Figure 9(a). Instead, the heat pump is used more frequently. Moreover,
the immersion heater is utilized only for small recharges of the DHW storage.
We remark that the trade-off between reducing grid energy consumption and
reducing the number of on/off cycles depends on practical considerations for
specific devices and are beyond the scope of this work.

C

3 kW immersion heater 5 kW immersion heater

(kWh)

Unsat.
demand
(kWh)

Grid
energy
(kWh)

On/off
cycles

Heater
runtime

(h)

Unsat.
demand
(kWh)

Grid
energy
(kWh)

On/off
cycles

Heater
runtime

(h)

1 0.4 4612 374 152 0.4 4607 388 40
2 0.9 4674 322 174 0.7 4716 331 79
5 0.6 4764 286 201 0 4940 270 128

(a) W/o power modulation.

C

3 kW immersion heater 5 kW immersion heater

(kWh)

Unsat.
demand
(kWh)

Grid
energy
(kWh)

On/off
cycles

Heater
runtime

(h)

Unsat.
demand
(kWh)

Grid
energy
(kWh)

On/off
cycles

Heater
runtime

(h)

1 0.1 4581 255 148 0.2 4489 285 19
2 0.4 4647 207 152 0.6 4615 216 40
5 0.3 4740 169 183 0.5 4724 174 70

(b) W/ power modulation.

Table 10: Impact of start cost on usage of the immersion heater and other metrics using
forecast data as optimization input.

36

C

3 kW immersion heater 5 kW immersion heater

(kWh)
Unsat.
demand
(kWh)

Grid
energy
(kWh)

On/off
cycles

Heater
runtime

(h)

Unsat.
demand
(kWh)

Grid
energy
(kWh)

On/off
cycles

Heater
runtime

(h)

1 0 4012 278 160 0 4033 280 25
2 0 4031 264 173 0 4087 252 54
5 0 4087 248 183 0 4154 237 66

(a) W/o power modulation.

C

3 kW immersion heater 5 kW immersion heater

(kWh)
Unsat.
demand
(kWh)

Grid
energy
(kWh)

On/off
cycles

Heater
runtime

(h)

Unsat.
demand
(kWh)

Grid
energy
(kWh)

On/off
cycles

Heater
runtime

(h)

1 0 3891 214 157 0 3905 223 16
2 0 3939 176 166 0 3963 185 42
5 0 4047 138 160 0 4108 136 63

(b) W/ power modulation.

Table 11: Impact of start cost on usage of the immersion heater and other metrics using
historical data as optimization input.

5.6.5. Impact of an Immersion Heater with Less Power

A heat pump can be modulated such that its effective power is below
the predicted PV power and no grid energy is needed in the best case. In
contrast, the immersion heater cannot be modulated and draws 5 kW during
operation. This power can be partially provided by PV, but the residual
power is drawn from the grid. In the same situation, an immersion heater
with less power causes less residual energy.

We carried out experiments with a 3 kW immersion heater and compiled
their results in Tables 10(a) and 10(b). We observe that the immersion heater
with lower power reduces the required grid energy for heat pumps without
modulation and for heat pumps with modulation and the default storage
capacity. However, we do not see the same effect for a heat pump with
modulation and the double storage. This finding is consistent for different
virtual start cost.

We compare the results to those of corresponding experiments with his-
torical data as optimization input, i.e., full knowledge instead of forecast
data. Tables 11(a) and 11(b) reveal that the difference in grid energy be-
tween the 5 kW immersion heater and the 3 kW immersion heater is larger
for historical input data than for forecast input data. Thus, forecast input
data diminish the advantage of the immersion heater with low power. We
also observe that this difference is larger for heat pumps with power modu-

37

lation which leads to longer operation times for the immersion heater. We
suspect that wrong forecast input data diminish the reduction in grid energy,
which is more significant for immersion heaters with low power as they have
longer operation times. This advantage of reduced grid energy for immersion
heaters with low power even vanishes completely for double storage capacity.

This finding shows that schedules for heat pumps can generally be well
optimized with coarse forecast data, but some variants are more susceptible
to forecast errors than others.

6. Conclusion

We proposed an integer linear program (ILP) to compute schedules for
a heat pump that is operated partly by PV energy and partly by electricity
purchased from the grid. Objectives are minimization of both, purchased
grid energy and the number of the heat pump’s on/off cycles as the latter
extends the heat pump’s lifetime. The heat pump provides domestic hot
water (DHW) and for space heating which can be stored in a tank or in the
floor heating mass, respectively. Several challenges had to be tackled. Incre-
mental optimization over time is needed as forecasts for energy production
and consumption are feasible only for a few days, which has been solved by
a rolling horizon approach with an optimization horizon of three days. This
significantly reduces the size of the optimization problem so that it can be
solved within 2 minutes on a Raspberry Pi. The joint minimization of pur-
chased grid energy and on/off cycles represents a multi-objective problem
which has been solved by weighted sum optimization with appropriate vir-
tual start costs. When using real forecasts instead of known data, the actual
energy production and consumption may deviate from the predicted values
such that the energy in the DHW storage and floor heating may deviate from
its predicted evolution. This may lead to space heating/DHW storage deple-
tion and unsatisfied space heating/DHW demand. To reduce the likelihood
for such events, we proposed that the heat pump is started irrespectively
of the current schedule when the energy in the space heating/DHW stor-
age falls below a threshold, which also triggers a re-computation of the heat
pump’s schedule. A comparison with simple heat pump operation showed
that 1000 kWh (20%) purchased electrical energy can be saved in the con-
sidered real-world example and that 40% of the on/off cycles could be saved.
With optimized schedules, heat pumps with power modulation mostly run
with a low modulation coefficient so that they run over longer periods than

38

heat pumps without power modulation and lead to fewer on/off cycles. More-
over, a sufficiently large DHW storage is recommendable so that the number
of on/off cycles can be kept low and unsatisfied demand can be avoided. As
the utilized forecasts do not need external data and the computation needs
for the optimization are low, the proposed method can be well applied in
practice. In future research, its applicability should be tested in practice and
for houses with various properties.

Finally, we remark that this work presented evaluations based on a the-
oretical model. COPs were assumed to be independent of the modulation
factor. We did not quantify the benefit of fewer on/off cycles on maintenance
intervals and maintenance costs, which would be interesting. Further, heat
pumps operated with a lower modulation factor have longer running times,
which may adversely affect these metrics. Those are practical and econom-
ical considerations which are beyond the scope of this work and should be
investigated in future studies.

References

[1] K. D. Le, J. T. Day, Rolling Horizon Method: A New Optimization Tech-
nique for Generation Expansion Studies, IEEE Transactions on Power
Apparatus and Systems PAS-101 (9) (1982) 3112–3116.

[2] M. Akmal, B. Fox, Modelling and Simulation of Underfloor Heating Sys-
tem Supplied from Heat Pump, in: International Conference on Com-
puter Modelling and Simulation, 2016, pp. 246–251.

[3] A. Allouhi, et al., Simulation of a Thermoelectric Heating System for
Small-size Office Buildings in Cold Climates, in: International Renew-
able and Sustainable Energy Conference, 2015, pp. 1–6.

[4] T. Péan, et al., Experimental Testing of Variable Speed Heat Pump
Control Strategies for Enhancing Energy Flexibility in Buildings, IEEE
access 7 (2019) 37071–37087.

[5] M. Mastouri, N. Bouguila, A Methodology for Thermal Modelling and
Predictive Control for Building Heating Systems, in: International Con-
ference on Sciences and Techniques of Automatic Control and Computer
Engineering, 2017, pp. 568–573.

39

[6] L. Song, et al., Analysis of Micro-grid Integration with PV, Energy
Storage and Ground-source Heat Pump Based on DeST Simulation, in:
Conference on Energy Internet and Energy System Integration, 2017,
pp. 1–4.

[7] B. Verbruggen, J. Driesen, Grid Impact Indicators for Active Building
Simulations, Transactions on Sustainable Energy 6 (1) (2014) 43–50.

[8] J. Rimbala, et al., Assessment of Energy Consumption in the Residential
Building with a Heat Pump, in: International Scientific Conference on
Electric Power Engineering, 2019, pp. 1–5.

[9] S. L. Tangwe, et al., Prediction of Coefficient of Performance and Sim-
ulation Design of an Air-source Heat Pump Water Heater, Journal of
Engineering, Design and Technology (2017).

[10] M. Loesch, et al., Demand Side Management in Smart Buildings by
Intelligent Scheduling of Heat Pumps, in: International Conference on
Intelligent Energy and Power Systems, 2014, pp. 1–6.

[11] M. Hall, A. Geissler, Einfluss der Wärmespeicherfähigkeit auf die ener-
getische Flexibilität von Gebäuden, Bauphysik 37 (2) (2015) 115–123.

[12] L. Zadeh, Optimality and Non-scalar-valued Performance Criteria,
IEEE Transactions on Automatic Control 8 (1) (1963) 59–60.

[13] T. Stüber, R. Hogl, B. Thomas, M. Menth, Comparison of Forecast-
ing Methods for Energy Demands in Single Family Homes, in: ETG
Congress 2021, 2021, pp. 1–5.

40

Publications

2.2 Efficient Robust Schedules (ERS) for Time-Sensitive Networking

194

Efficient Robust Schedules (ERS) Time-Aware

Shaping for Time-Sensitive Networking

Thomas Stüber, Lukas Osswald, Michael Menth

Chair of Communication Networks, University of Tuebingen, Germany

{thomas.stueber, lukas.osswald, menth}@uni-tuebingen.de

Abstract—Time-Sensitive Networking (TSN) extends Ethernet
bridging with features for deterministic transmission. Periodic
streams may be scheduled such that their frames hardly in-
terfere in bridges. Additionally, the Time-Aware Shaper (TAS)
can keep egress ports free from other traffic when scheduled
traffic arrives. TAS scheduling determines transmission starts
of scheduled streams at end stations and configures the TAS
in bridges. Most TAS scheduling algorithms disregard jitter
and synchronization errors at end stations and bridges, race
conditions from simultaneously arriving frames with same egress
ports, and hardware-based configuration limits of the TAS. We
call the resulting schedules tight schedules (TS). However, all
these challenges apply to real hardware bridges. Therefore,
we present an algorithm using event times with uncertainty
to compute efficient robust schedules (ERS) that respect these
constraints. We also propose a repair for existing scheduling
approaches and call their output naı̈ve robust schedules (NRS).
We evaluate and compare their bandwidth usage and stream
admission with those of TS. ERS are more efficient than NRS,
and the performance gap between ERS and TS quantifies the
price for robust schedules. Moreover, the presented algorithm for
ERS computes significantly faster than four well-known methods
for TS, and it can solve larger problem instances.

Index Terms—Time-sensitive networking (TSN), Time-aware
shaper (TAS), Scheduling, Optimization, Real-Time communica-
tion

I. INTRODUCTION

Time-Sensitive Networking (TSN) is a set of IEEE stan-

dards that extend Ethernet bridging (IEEE 802.1Q [1]) to

provide deterministic data transmission using eight priority

queues. Time-triggered (TT) traffic consists of high-priority

periodic streams with very low end-to-end delay requirements,

also called streams. Amongst other Quality of Service (QoS)

features, TSN supports scheduling TT streams so that their

frames hardly interfere at any forwarding node and experience

only little queuing delay, if any. To ensure that links are not

occupied by other traffic when scheduled traffic should be sent,

IEEE 802.1Qbv [2] introduces an enhancement for scheduled

traffic, commonly denoted as Time-Aware Shaper (TAS). It

periodically allows and prevents queues to send frames to their

egress port. The periodic behavior is defined through a Gate

Control List (GCL) with a limited number of entries. Each

entry can open or close the gates of the queues. Thereby,

This work has been supported by the German Federal Ministry of Education
and Research (BMBF) under support code 16KIS1161 (Collaborative Project
KITOS). The authors alone are responsible for the content of the paper.

exclusive time slots can be provided for TT traffic so that

it cannot be delayed by lower-priority traffic.

Scheduling TT traffic comprises the assignment of periodic

sending times to TT streams at end stations and the configura-

tion of the GCL entries for the TAS in forwarding nodes. The

latter is also called GCL synthesis. There is a significant body

of literature on scheduling TT traffic in TSN [3]. However,

almost all works make idealized assumptions which do not

hold for hardware bridges. They assume exact sending times at

end stations, constant processing delays in forwarding nodes,

perfect time synchronization among bridges and end stations,

no race conditions for almost simultaneously arriving frames

with the same egress port, and an unlimited number of GCL

entries. We have experimented with TSN hardware and have

experienced that such schedules may fail in practice. When a

frame arrives only little earlier or later than scheduled, it may

be sent during an earlier or later time slice than scheduled.

As a consequence, frames may miss their deadlines and the

deviation of a single frame from the schedule may delay other

frames, resulting in even more problems. The miss of deadlines

is not tolerable for TT traffic as it may impose safety risks

for hard real-time use cases, e.g., the transmission of critical

sensor data in in-vehicle networks.

In this work, we argue that most algorithms for TAS

scheduling from the literature disregard the mentioned chal-

lenges. We call them tight schedules (TS) as they do not

leave sufficient space between frames within a schedule to

compensate for hardware jitter. Some algorithms prevent race

conditions for frames with joint egress ports and a few

works also propose an extension against synchronization errors

[4][5][6]. We show that this extension is insufficient and fix

it in a simple but inefficient way, leading to naı̈ve, robust

schedules (NRS). We further propose an ILP-based scheduling

algorithm taking all the mentioned challenges into account. It

considers arrival and transmission times of frames as event

times with uncertainty. Frames are scheduled such that they

cannot interfere with each other and that they meet their

deadlines as long as jitter for initial transmission and for

processing, as well as synchronization errors, remain within

assumed bounds. This method results in efficient, robust sched-

ules (ERS). The ILP maximizes the available resources for

non-scheduled traffic as an objective function, and is designed

in a way that TS and NRS can be computed with a subset of

its constraints.

queue. Bridges send frames only if this condition is met.

This results in a time interval not available for arbitrary sized

frame transmissions before a gate closing event. This time

interval is commonly denoted as guard band. We emphasize

that guard bands are implicit in TSN, i.e., the gate is not

explicitly closed during a guard band and frame transmissions

are not forbidden. However, frames may be held back due to

their size during a guard band and hence bandwidth may be

wasted due to blocking. Figure 2 depicts three scenarios for

frame transmissions during a guard band. Frames f1 and f2
are transmitted during a guard band, but transmission finishes

before the gate is closed. However, the transmission of f3
starts too close before the gate is closed. This will not happen

in practice, as a bridge detects this conflict and hold back

f3 until the gate is opened for a sufficient amount of time.

As queues are FIFO, f3 may also block the transmission of

smaller frames that could be transmitted before the gate closes.

Therefore, bandwidth may be wasted within guard bands.

The length of a guard band depends on the maximum frame

size and the transmission rate of the egress port. We assume

standard Ethernet frames with a maximum size of 1542B,

including preamble and inter-frame gap. Therefore, the length

of a guard band is 1542B
rtrans

where rtrans is the transmission rate

of the respective egress port.

III. PROBLEM STATEMENT

We first identify sources of non-determinism and then

formulate a problem statement, i.e., the computation of a TSN

schedule that is robust against the mentioned non-determinism.

A. Missing Frames

TT streams are periodic streams. If a frame of such a stream

is suppressed by a source or just dropped for some reason,

the frame is missing from the perspective of the calculated

schedule. If this frame normally delays other frames within

an egress queue according to the schedule, these other frames

will be sent earlier when the frame is missing. This may have

detrimental effects on their downstream links and may cause

other frames to miss their deadlines. This source of non-

determinism has been understood years ago, and Craciunas

proposed frame isolation [4] as a countermeasure. That is, at

most a single frame or only frames of a single stream may

wait at a time in an egress queue.

B. Processing Delay

In contrast to common assumptions in the TSN scheduling

literature, the processing delay of a hardware bridge is not

constant due to physical effects. Therefore, the arrival time

of a frame at an egress queue is subject to jitter. The jitter

may accumulate over multiple hops or may lead to a frame

being transmitted in the wrong time slice. This may result in

a stream missing its deadline.

C. Clock Synchronization Error

Another assumption is that the internal clocks of bridges

and end stations run in perfectly synchronized manner. This

is not the case in real networks. Even if a frame is sent at the

exact time based on the sending node’s clock, it may arrive

earlier or later than scheduled at the receiving node based

on the receiving node’s clock. This may result in similar, but

not exactly the same problems, as for the jitter of processing

delays.

We formalize the effect of synchronization errors. Assume

a frame f is sent from device A to device B at reference time

t. As A and B have own clocks that may not be perfectly

synchronized, we indicate their local time by tA(t) and tB(t).
All devices execute the schedule based on their own clock.

That means, if tA(t) < tB(t) holds, f arrives later than

scheduled from the perspective of B. The opposite is true if

tA(t) > tB(t). Then f arrives earlier than expected from B’s

perspective when it was sent in time from A’s perspective.

D. Race Conditions

Race conditions occur when two frames simultaneously

arrive at different ingress ports but are forwarded by the same

egress port. Then the order of frame transmissions may change

non-deterministically. As a result, a delayed frame may miss

its deadline.

E. Limited Number of Supported GCL Entries

Finally, real hardware bridges have only a limited number

of GCL entries per egress port as they constitute physical

resources. Typical numbers are not clear yet. If a schedule

utilizes more GCL entries than supported for an egress port,

the schedule cannot be deployed. This seems trivial, but the

majority of scheduling algorithms plans with an unlimited

number of schedule entries and cannot take a limit as input.

F. Computation of Robust Schedules for TSN

The problem statement can be described as follows. Given a

network topology and a set of time-triggered periodic streams

with deadlines. Compute transmission offsets of all frames at

their source nodes and GCLs for all egress ports of bridges

such that every frame arrives at all of its destinations before

its deadline expires. The schedule must be robust within given

bounds against missing frames, jitter in processing delays,

unsynchronized clocks, and race conditions of frame arrivals,

i.e., all streams meet their deadlines regardless of these non-

deterministic effects. Additionally, the schedule must only

use a limited number of GCL entries per egress port to be

deployable to hardware bridges. A valid schedule must be

periodic itself, i.e., it is repeated an indefinite number of times.

The period of a schedule is the least common multiple of

the periods of all streams. This duration is commonly denoted

as hyperperiod H . Various constraints restrict the set of valid

schedules. New constraints to achieve robustness are derived

in Section VI and Section VII-D2, others are well-known from

the literature. The resulting ILP model is discussed in Section

VII.

3

IV. RELATED WORK

We give an overview of related research works that address

some challenges mentioned in Section III. First, we review

scheduling algorithms that do not consider robustness against

non-determinism. Then, we discuss scheduling approaches

featuring robustness against time synchronization errors. Fi-

nally, we summarize the research gap to the related work.

A. Scheduling without Robustness Features

Early research work by Dürr et al. [8] pursues zero-queuing,

i.e., it schedules streams such that they do not wait at all at

gates. However, the gates are still needed to protect scheduled

traffic against non-scheduled traffic. The authors identified the

problem of guard bands which consume bandwidth. To cope

with this problem, they proposed a schedule compression al-

gorithm as postprocessing, which reduces the number of guard

bands. The algorithm cannot limit the number of used GCL

entries to an upper bound, it does not take non-deterministic

effects into account, and it does not consider guard bands or

maximize bandwidth for other traffic during optimization.

The algorithm from [8] is extended by Hellmanns et al.

[9] for the special case of networks with multi-layer ring

topologies. The authors state that the number of GCL entries

needed is significantly reduced by their 2-step scheduling

approach, but it cannot limit their number to a given value.

Dos Santos et al. [10] present an extensive SMT (Satisfia-

bility Modulo Theories) model for scheduling which includes

GCL synthesis. It is used for scheduling in the well-known

simulation framework OMNeT++ [11]. However, they do not

include considerations for non-determinism and only allow a

single gate closing per egress port within a hyperperiod.

B. Scheduling with Robustness Features

Craciunas et al. [4] introduced frame and flow isolation

constraints (cf. Section III-A) for robustness against missing

frames in periodic streams. They showed that that isolation

constraints reduce the number of admissible streams. Several

research works adopted these isolation constraints, e.g., [6],

[12], [13], [5], [14], [15] [16], [17], and [18], only to name a

few. Craciunas et al. [4] allow multiple queues for scheduled

traffic per egress port and assign every stream to an egress

queue per egress port. The authors also identified the problem

of clock differences and proposed a solution. However, their

approach is flawed which has not been discussed in the

literature so far. We revisit their method in Section V and

suggest how to cope with clock synchronization errors in a

different way. The mentioned work neither limits the number

of GCL entries used by a schedule, nor does it consider jitter

in processing delays.

In [6] Craciunas et al. extend their model from [4] to com-

pute schedules robust against clock drift, i.e., clocks running

with different speeds. The problem was solved by increasing

the parameter for the maximum clock synchronization error

from [4] and also suffers from the problems discussed in

Section V.

Oliver et al. [5] present an SMT model with transmission

windows for egress ports. Transmission windows correspond

to time slices and the GCL can be derived from them. Instead

of scheduling transmission offsets of streams, streams are

assigned to these transmission windows. As the number of

transmission windows is predefined and fixed, the number of

GCL entries needed to deploy a schedule is also fixed. This

work handles clock synchronization errors essentially in the

same way as [4] and therefore suffers from the same problem.

A major obstacle for the use of this method in practice is its

computation complexity. The model grows with the number

of available GCL entries. The authors report solving times

of more than 40 h for problem instances with 50 streams, 10

bridges, and 64 GCL entries.

Jin et al. [19] propose an SMT model to cope with a

limited number of GCL entries per egress port. They extend

transmission delays by maximum synchronization errors, but

do not consider processing jitter. Their model discretizes time

and grows with the number of time units per schedule, leading

to poor scalability (cf. Section VIII-D).

C. Research Gap

Robustness against missing frames is currently adopted in

some works on TAS scheduling, e.g., [4], [5], and [19]. Only

a few authors consider a limited number of GCL entries

per egress port [5][19]. A single paper identified that guard

bands reduce bandwidth for non-scheduled traffic and there-

fore proposes a heuristic to reduce guard bands [8]. Up to

date, there is no scheduling algorithm that correctly handles

clock synchronization errors. Moreover, processing jitter is not

considered in any work about TAS scheduling and there is

no algorithm in the literature that is able to maximize the

bandwidth available for non-scheduled traffic. All state-of-

the-art approaches providing exact results report long solving

times even for medium-size problem instances.

The TAS scheduling algorithm proposed in this work is the

first that copes with all mentioned challenges in a correct

way using a single ILP. It is an exact method, i.e., it finds

a schedule for a given problem instance if a solution exists.

In the presence of multiple solutions, it proposes the one that

maximizes the bandwidth left for non-scheduled traffic.

V. A SIMPLE FIX TO HANDLE CLOCK SYNCHRONIZATION

ERRORS

We explain how clock synchronization errors have been

handled in literature so far. We provide a small counterexample

to show that the existing approach is not sufficient. Finally,

we propose a simple fix against clock synchronization errors.

While this fix can be easily applied in existing scheduling algo-

rithms, we suggest a more efficient approach in Section VI-B.

A. Existing Method to Handle Clock Synchronization Errors

Some research works about scheduling for the TAS handle

time synchronization errors, e.g., [6], [4], [5], and [16]. They

enforce time gaps between frame transmissions for frames

arriving for the same egress port. The minimum length of

4

4) Frame Deadlines: Equation (5) is modified assuming

that frame f was sent by the penultimate hop δ time later

than expected:

∀m ∈ Mf : Am
f + δ ≤ Df . (10)

5) Gate Closings: We modify Equation (6) by considering

that the previous frame is δ time later than expected:

T
q
fprev

+ dtransfprev
+ δ ≤ t

q
close. (11)

Likewise, we modify Equation (7) by considering that the

next frame is δ time earlier than expected:

t
q
close ≤ anfnext

+ dnproc,min + dtransfnext
− δ. (12)

VII. SCHEDULING ALGORITHM

We describe an ILP model used for the computation of

robust schedules. First, we give a brief introduction to ILPs.

Then, we summarize the modelling approach of the ILP.

Afterwards, we introduce three scheduling algorithms based

on the ILP model which correspond to different assumptions

about schedule robustness. Finally, we formally state the ILP

model.

A. Fundamentals of ILPs

An ILP describes the solution space to a problem with

linear inequalities. Every assignment of variables which fulfills

all inequalities corresponds to a solution of the problem and

vice versa. Some variables may be restricted to take only

integer values. A linear objective function may be used to

choose the best solution. An ILP solver implements algorithms

to find a feasible variable assignment which minimizes or

maximizes the objective function. ILP solving is NP-complete,

i.e., finding a feasible solution to an ILP requires exponential

work as a function of the input size in the worst case. However,

state-of-the-art solvers are able to find and optimize solutions

for reasonably sized problem instances in many cases. We use

the solver Gurobi [20] in the remainder of this paper.

B. Modelling Approach

We summarize the ideas needed to assess the evaluation

results.

1) Handling Streams with Different Periods: The period of

a stream s is denoted as ps. Every stream s has an earliest and

latest time Es and Ls when the transmission of s must start

at the talker of s. Likewise, every stream s has a deadline Ds

until its payload must have arrived at all its destinations.

Streams may have different periods. The hyperperiod H

is the least common multiple of all stream periods. The

hyperperiod is the duration of the periodic schedule. The ILP

requires that all streams have period H . When streams have

different period, a stream with a period ps < H is modelled

as a composite of H
ps

stream instances si, 0 ≤ i < H
ps

.

Each stream instance si has period H . Its earliest and latest

transmission starts and its deadline are shifted copies of the

original stream: Dsi = Ds + i · ps, Esi = es + i · ps, and

Lsi = Ls + i · ps. Thus, the deadline of a frame f belonging

to stream instance si is Df = Dsi . Similarly, earliest and latest

transmission times of a frame from its talker are Ef := Esi

and Lf := Lsi .

2) Gate Closings: A central innovation of the ILP is the

modelling of gate closings. Let fprev and f be two frames

transmitted successively via egress queue q. We use a sin-

gle binary variable z
q
f indicating whether some interval in

[T q
fprev

+ dtransfprev
, t

q
f] is released for other traffic. If and only if

the variable is set to 1, the gate for scheduled traffic is closed

in this interval and opened again at t
q
f . With the help of these

variables the number of gate closing events and thereby GCL

entries within a hyperperiod can be limited. Furthermore, this

indication is used to compute the bandwidth released for non-

scheduled traffic.

Most works from literature do not consider GCL synthesis at

all. The few models considering GCL synthesis take a different

approach. The number of time interval between gate openings

and closings are fixed in advance in [5] and [19]. A binary

variable is used for every frame at every hop for every time

interval. Therefore, the model size increases not only with the

number of frames, but also with the number of available GCL

entries. This results in an exponential growth of the solution

space in the number of GCL entries. In contrast, the model

size of presented approach is independent of the number of

GCL entries.

3) Objective Function: The TAS is designed such that

bandwidth can exclusively be reserved for scheduled and

non-scheduled traffic, respectively. Maximizing bandwidth re-

maining for non-scheduled traffic while accommodating all

scheduled streams seems a reasonable objective function. GCL

entries can be used to release more time intervals for non-

scheduled traffic, but result in guard bands which occupy

bandwidth. Thus, there is a non-trivial trade-off when this

objective is maximized. The time remaining exclusively for

non-scheduled traffic is the time with a closed gate for

scheduled traffic minus the time intervals for guard bands.

This time is summed up in the ILP for all egress ports with

the help of the above mentioned variables z
q
f and used as

objective function to maximize. We remark that this is the first

work about scheduling in TSN which applies this objective

function and which handles guard bands during scheduling.

C. Scheduling Algorithms

With subsets of constraints given for the ILP in Section

VII-D, three different kinds of schedules can be computed.

1) Tight Schedules (TS): TS implement frame isolation

to cope with missing frames, but they do not consider race

conditions, processing jitter, and clock synchronization errors.

That means, Equations 16 – 17, 19, 32, and 34 – 36 are

not contained in the ILP. All occurrences of variables for

latest transmission starts T
q
f are replaced by the corresponding

earliest transmission start t
q
f . Time synchronization error δ and

race condition gaps λ are removed from Equations 22, 25, and

38.

2) Naı̈ve Robust Schedules (NRS): NRS are robust with re-

spect to all considered sources of non-determinism mentioned

in Section III. They are constructed by the ILP restricted to

7

the Equations 14 – 15, 18 – 31, 33, 38. All occurrences of

T
q
f are replaced by t

q
f . To achieve robustness, a minimum

gap between consecutive frame transmissions and between

frame transmissions and gate closings is ensured (Equations

39 – 44). This minimum gap is chosen large enough that

frame transmissions cannot interfere which each other or gate

closings regardless of processing jitter or time synchronization

errors, which mostly overestimates the necessary gap. Let

Nmax
f be the set of nodes along the longest path of a stream.

The minimum length of a gap must at least be

λ+
∑

n∈Nmax
f

dnproc,max − dnproc,min. (13)

NRS are similar to schedules from state-of-the-art scheduling

algorithms if they are fixed for robustness by our recommen-

dations in Section V-C where the gaps are enlarged to cover

processing jitter.

3) Efficient Robust Schedules (ERS): ERS are also robust

against all sources of non-determinism mentioned in Sec-

tion III. They are computed using all constraints for the ILP in

Section VII-D using the event times with uncertainties derived

in Section VI. In contrast to NRS, the gaps between consecu-

tive frame transmissions and between frame transmissions and

gate closings have variable size to be just large enough.

4) Comparison: TS, NRS, and ERS utilize the same ob-

jective function, i.e., they maximize the bandwidth usable for

non-scheduled traffic. If a problem instance can be scheduled

with NRS, it can also be scheduled with ERS and TS, and

if a problem instance can be scheduled with ERS, it can also

be scheduled with TS. However, the resulting schedules are

substantially different as TS have least space between frame

transmissions, followed by ERS, and NRS providing most

space between frame transmissions.

D. ILP Model

We elaborate on the details of the proposed ILP model

as a reference for implementation. However, we remark that

the highlighted modelling approaches in Section VII-B are

sufficient to asses the evaluation results. First, we introduce

the parameters and variables of the model. Then, we formally

state the linear constraints and the objective. Afterwards, we

highlight the slight differences of the models for NRS, ERS,

and TS. Finally, we discuss performance considerations with

respect to solving the model.

1) Nomenclature: We remark that we reuse the variables

and parameter symbols from Section VI with the same se-

mantics.

a) Parameters: Let N and L denote the set of nodes

and links, respectively. A node is either an end station or

a bridge. A bridge has minimum and maximum processing

delays. For every node n, we denote these delays as dnproc,min

and dnproc,max. The largest possible gap between the clocks of

any pair of nodes is denoted by δ. The time gap between frame

arrivals such that no race conditions for the same egress queue

can occur it denoted by λ. Links are modeled as unidirectional

connections from an egress port of one device to an ingress

port of another device. Every link l has a specific propagation

delay dlprop. The egress port of an egress queue q has a specific

transmission rate r
q
trans. Thus, the duration of a guard band

for the respective egress port is t
q
GB := 1542B

r
q
trans

. The number of

available GCL entries in this egress port is n
q
GCL. Every frame

f has a deadline Df , an earliest transmission offset Ef , and

a latest transmission offset Lf , as defined in Section VII-B1.

We consider every stream instance as a separate stream in the

ILP model for the sake of readability, i.e., we omit stream

instance indices. The size of a frame f in byte is bf .

b) Variables: Variables are used to represent a schedule.

Transmission offsets are times at which frames are sent from

an end station or bridge. Processing jitter leads to jitter of

transmission offsets of frames. Therefore, exact transmission

times when a schedule is executed are uncertain during

scheduling. We use variables to capture the earliest and the

latest possible transmission starts of frames. The earliest

possible transmission offset of frame f at the egress queue

q is denoted by t
q
f . The respective latest possible transmission

offset of the same frame is captured by the variable T
q
f . All

transmission offsets are meant to be relative to the start of

a hyperperiod, i.e., the start of the schedule. To ensure that

transmissions over the same egress queue q cannot overlap, we

introduce binary variables o
q
f,f ′ for every two frames f ̸= f ′.

This variable is set to 0 if f is sent before f ′ at q, and 1

otherwise. Similarly, the arrival order of frames arriving from

different ingress links l and l′ attached to the egress queues

q, q′ and forwarded from the same next egress port is captured

by o
q,q′

f,f ′ .

When a frame is dispatched and sent from an egress queue,

at least one of the following conditions must hold:

1) The frame is sent immediately after it was processed as

the gate is open.

2) The frame waits until the gate is opened and transmission

starts immediately after opening.

In case (2), the gate must have been closed after the trans-

mission of the previous frame and is opened again before

the frame is dispatched. This implies that 2 GCL entries

are needed every time case (2) is used in a schedule. The

binary variable z
p
f is set to 1 when case (2) is used prior

to the transmission of a frame f at egress queue q. We use

the variable c
q
f for the closing time of the gate between the

transmission of f and the transmission of the previous frame.

The binary variable z
q
last captures whether the gate is closed in

the last time interval after all frame transmissions of q. We use

the continuous variable c
q
last for the closing time of the gate

after all frame transmissions at q. By subtracting time intervals

with an open gate and guard bands from the hyperperiod, the

time available for other traffic classes can be computed from

these variables (cf. Equation 37).

2) Constraints: This section describes the constraints that

must hold for every valid schedule. We present their intuitive

meaning and how they are expressed by the ILP.

a) Transmission Offset: Let f be a frame and q be the

first egress queue on the path of f . The transmission from the

8

source of the stream must be in the range between earliest and

latest transmission offset:

Ef ≤ t
q
f ≤ Lf . (14)

Furthermore, if f and f ′ are the same frame of the i-th and

i+1-th stream instances of the same stream s, and q is the

egress queue of the source node of s, then their transmission

offsets must be equal relative to their respective periods. Thus,

it must hold:

t
q
f + ps = t

q
f ′ (15)

T
q
f + ps = T

q
f ′ . (16)

b) Per-Frame Jitter: The latest possible transmission

offset of a frame at egress queue q is always later than or at

the same time as the respective earliest possible transmission

offset (Equation 17).

t
q
f ≤ T

q
f (17)

c) Forwarding After Arrival: Before a bridge can for-

ward a frame, the frame must have arrived at the bridge.

Transmission, propagation, and processing delay must also be

considered. This must hold for the minimum and maximum

processing delay (Equations 18 and 19). Let f be a frame

and q1, q2 be two consecutive egress queues on the path of f .

Furthermore, let l1 be the links attached to q1 and n2 be the

device of q2. The following inequalities enforce that frames

are forwarded after arrival:

t
q1
f + dl1prop + dn2

proc,min +
bf

r
q1
trans

≤ t
q2
f (18)

T
q1
f + dl1prop + dn2

proc,max +
bf

r
q1
trans

≤ T
q2
f . (19)

.

d) Deadline: All frames of a stream must arrive at their

destinations before their deadlines. Let q be the egress queue of

a last hop of a frame f . Let l be the link attached to q. As only

transmission offsets are used as variables, the respective delays

caused by the last hop must be considered. The following

inequality ensures that the deadline is met even for the latest

possible transmission offset:

T
q
f + dlprop +

bf

r
q
trans

≤ Df − δ. (20)

As streams may be multicast, this constraint must hold for all

destinations of a stream.

e) Non-Overlapping Transmission: Two frames f1, f2
cannot be in transmission over the same egress queue q at

the same time. This must hold for the earliest and latest

possible transmissions and for time synchronization errors.

The following constraints enforces this with the binary order

variables o
q
f1,f2

:

T
q
f1

+
bf1

r
q
trans

−M · oqf1,f2 + δ ≤ t
q
f2

+
bf2

r
q
trans

. (21)

M is some arbitrary constant which is greater than the

largest possible gap between both transmission offsets. The

hyperperiod places an upper bound on M , but smaller values

should be used when available. If o
q
f1,f2

is set to 0, the

term −M · oqf1,f2 is 0 and the transmission of f1 must be

finished before the transmission of f2 starts. Otherwise, this

term effectively turns off the constraint as the left-hand side

takes a negative value. This approach is denoted as Big M

method in the optimization literature and is used in various

other constraints of the presented ILP.

f) Isolation: Two frames f1, f2 cannot be in the same

egress queue at the same time (Equation 22). However, both

frames must be isolated even longer in time to mitigate

unsynchronized clocks. The earliest possible arrival of the

arriving frame must be after the latest possible transmission of

the previous frame. Let q1 be the egress queue attached to the

ingress link l1 on the path of f1 to some bridge n2, q2 be the

next egress queue of f1, and f2 be another frame forwarded

over q2. Isolation is ensured by the following constraint:

T
q2
f1

+
bf2

r
q2
trans

−M · oq2f1,f2 + δ

≤ t
q1
f2

+ dl1prop + dn2

proc,min +
bf2

r
q1
trans

. (22)

g) Frame Order: When the message of a stream is too

large to be sent in one frame, multiple frames are used. These

frames must arrive in-order, so they must be sent in-order

(Equation 23). Let f1, f2 be two frames of the same stream

s such that f1 and f2 belong to the same stream and are

consecutive frames of the same message, and q be an egress

queue on the path of s. The following equation enforces frame

order indirectly through Equation 21:

o
q
f1,f2

= 0. (23)

h) FIFO: Frames arriving at an egress port must be

forwarded in the same order. If two frames f1, f2 share two

consecutive egress ports on their respective paths, this can be

enforced by requiring the same transmission order for both

egress ports (Equation 24). Let q1, and q2 be consecutive

egress queues on the paths of the frames f1, f2. The following

equation enforces this in combination with Equation 21:

o
q1
f1,f2

= o
q2
f1,f2

. (24)

When two frames arrive at different ingress ports and share

the same egress port for their next hop, the ordering of arrivals

must also be considered. These arrivals are isolated by λ+ δ

to prevent race conditions and time synchronization errors

(Equation 25). Let q1 and q2 be the egress queues attached

to two ingress links l1, l2 to some bridge and q3 an egress

queue of this bridge. Furthermore, let f1 be a frame which

is transmitted consecutively over q1 and q3, and q2 be a

frame which is transmitted consecutively over q2 and q3.

Transmission order of f1 and f2 is preserved by the following

constraint:

T
q1
f1

+
bf1

r
q1
trans

+ dl1prop −M · oq3f1,f2 + λ+ δ

≤ t
q2
f2

+
bf2

r
q2
trans

+ dl2prop. (25)

9

i) Gates and GCLs: Let q be an egress queue and f be

a frame forwarded over q. The gate for scheduled traffic can

only be closed between the transmissions of two consecutive

frames of scheduled traffic. Therefore, we model GCL entries

by variables z
q
f indicating whether the gate is closed before

the transmission of f an when it was closed c
q
f . If the gate

was closed, it is opened at the earliest possible transmission

offset of f , t
q
f . The minimum duration of a time interval is

the duration of a guard band due to technical requirements

(Equation 26). Vice versa, we set the duration of the corre-

sponding not used time interval to 0 when the gate was not

closed (Equation 27). The closing of a gate must be before

its matching opening (Equation 28). Additionally, the closing

must be after the latest possible transmission ends for every

frame f0 sent before the transmission of frame f (Equation

29). Otherwise, an earlier frame may move to another time

interval when it is delayed. The number of GCL entries of the

egress port of q is limited by n
q
GCL (Equation 30). Two entries

are consumed for every closing and opening of the gate.

t
q
GB · zqf ≤ t

q
f − c

q
f (26)

t
q
f − c

q
f ≤ M · zqf (27)

c
q
f ≤ t

q
f (28)

T
q
f0

+
bf0

r
q
trans

−M · oqf0,f + δ ≤ c
q
f (29)

∑

f forwarded over q

z
q
f ≤

n
q
GCL

2
(30)

Constraints similar to Equations 26–30 must hold for z
q
last

and c
q
last. Finally, the forwarding of a frame depends on the

state of the gate when the frame arrives at an egress queue.

If the gate is open, the frame is transmitted without queuing

delay. Let q0 be the egress queue attached to the ingress link

l0 before q on the path of f . Furthermore, let n be the node of

q. Equations 31 and 32 enforce immediate forwarding when

the gate is open:

t
q
f ≤ t

q0
f + dl0prop + dnproc,min +

bf

r
q0
trans

+M · zqf (31)

T
q
f ≤ T

q0
f + dl0prop + dnproc,max +

bf

r
q0
trans

+M · zqf . (32)

If GCL entries are used to close and open the gate before the

transmission of f over q, the gate must be closed when f ar-

rives over l0 (Equation 33). Otherwise, f would be forwarded

without queuing delay which contradicts the minimum size of

a time interval (Equation 26).

c
q
f −M ·

(

1− z
q
f

)

+ δ

≤t
q0
f + dl0prop + dnproc,min +

bf

r
q0
trans

(33)

j) Latest Possible Transmission: There are two cases how

a frame is forwarded when a frame arrives at the latest possible

time. If the gate is closed at the latest possible arrival time of

a frame, the frame is sent when the gate is opened again.

The latest possible transmission offset equals the gate open

time as well as the earliest possible transmission offset in this

case. Otherwise, the frame is dispatched immediately without

queuing delay. We use a binary variable y
q
f to enforce one of

these cases for frame f sent from egress queue q of node n.

The variable is set to 1 if and only if the latest transmission

starts immediately after processing. Let q0 be the egress queue

attached to the ingress link l0 on the path of f before q. Exactly

one of the cases is enforced by Equations 34 – 36:

T
q0
f + dl0prop + dnproc,max +

bf

r
q0
trans

≤ t
q
f +M · yqf

(34)

T
q
f −M · yqf ≤ t

q
f

(35)

T
q
f ≤ T

q0
f + dl0prop + dnproc,max +

bf

r
q0
trans

+M ·
(

1− y
q
f

)

.

(36)

3) Objective: We maximize the time available for other

traffic classes per egress port (Equation 37) as we want to

analyze the usage of resources in TSN. This time is identical

to the times when the gates of queues dedicated for sched-

uled traffic are closed, minus the corresponding guard bands.

Therefore, we add up these times for all egress queues. Let

Q denote the set of all egress queues. The following term

formally states the objective:

max
∑

q∈Q

H − c
q
last − t

q
GB · zqf

+
∑

f forwarded over q

t
q
f − c

q
f − t

q
GB · zqf . (37)

a) Redundant Constraints: The following constraints are

not necessary for the correctness of the model. However,

they enable the ILP solver to infer tighter bounds for the

objective function which speeds up solving. The time available

to other traffic classes is bounded by the remaining time after

subtracting transmission durations of scheduled traffic frames,

and times which are wasted to cope with time synchronization

errors and processing delay jitter (Equation 38). Let q be

an egress queue. The additional constraint is given in the

following:

H − c
q
last +

∑

f forwarded over q

t
q
f − c

q
f

≤ H −





∑

f forwarded over q

bf

r
q
trans

+ δ +
(

T
q
f − t

q
f

)



 . (38)

4) Modifications for NRS: NRS enforces gaps between

frame transmissions and gate closings to ensure robustness.

These gaps are long enough to compensate for processing

jitter, time synchronization errors, and race conditions. Let G

be the duration of the minimum gap to ensure deterministic

behavior. ILPs for NRS are constructed with Equations 14 –

15, 18 – 31, 33, 38. All occurrences of T
q
f are replaced by

t
q
f for all frames f and egress queues q. All occurrences of δ

10

and/or λ are replaced by G. For instance, Equation 21 ensuring

exclusive link usage is replaced by

t
q
f1

+
bf1

r
q
trans

−M · oq1f1,f2 +G ≤ t
q
f2

+
bf2

r
q
trans

. (39)

Similarly, frames must arrive G time before their deadline and

Equation 20 is modified as follows:

t
q
f + dlprop +

bf

r
q
trans

≤ Df −G. (40)

The constraint which enforces isolation (Equation 22) enforces

the gap G between arrivals and transmissions:

t
q1
f1

+
bf1

r
q1
trans

−M · oq1f1,f2 +G

≤ t
q2
f2

+ dq2prop + dn1

proc,min +
bf2

r
q2
trans

. (41)

Equation 33 for gaps between frame transmissions and gate

closings is modified in the following way:

c
q
f −M ·

(

1− z
q
f

)

+G

≤t
q0
f + dl0prop + dnproc,min +

bf

r
q0
trans

. (42)

Equation 25 preventing race conditions is replaced by

t
q1
f1

+
bf1

r
q1
trans

+ dl1prop −M · oq3f1,f2 +G

≤ t
q2
f2

+
bf2

r
q2
trans

+ dl2prop. (43)

Finally, the redundant constraint in Equation 38 is modified

for NRS:

H − c
q
last +

∑

f forwarded over q

t
q
f − c

q
f

≤ H −





∑

f forwarded over q

bf

r
q
trans

+G



 . (44)

5) Performance Considerations: The number of constraints

grows linearly with the length of paths of the streams, and

thus indirectly with the number of bridges. Moreover, the ILP

grows quadratically with the number of streams and frames in

the worst case. Current state-of-the-art ILP solvers offer inter-

faces to integrate custom heuristics for solution construction

and refinement. We implemented a custom heuristic to quickly

find initial feasible solutions. The heuristic sets all gates to be

never closed, i.e, fixing all variables z
q
f to 0, and solves the

restricted simpler ILP.

VIII. EVALUATION

We argued that TS are most efficient, followed by ERS and

NRS. However, TS may fail on real hardware bridges due to

processing jitter, race conditions, and clock synchronization

errors while NRS and ERS are designed to be robust against

these issues.

Thus, we pursue three key questions in this evaluation. What

is the price of robustness, i.e., what is the performance gap

between TS and NRS or ERS? What is the benefit of ERS vs.

NRS? And is the computation of ERS scalable compared to

other TSN scheduling algorithms?

We first introduce the methodology. Then, we analyze how

bandwidth is utilized by the three schedule types depending

on many factors. We study the impact of the schedule type on

the number of admissible streams which can be considered as

a key performance indicator. Finally, we compare the runtime

of the algorithm to compute ERS from this paper with four

well-known approaches from the literature.

A. Methodology

A problem instance consists of a network, a set of TT

streams to be scheduled, and a bridge model including non-

determinism. For every problem instance TS, NRS, and ERS

are computed and analyzed for a direct and fair comparison.

In the following, we present the network model, the bridge

model including non-determinism, and the traffic model, and

we explain how schedules are computed.

1) Network Model: The networks in our study are rings,

where each node is connected to four end stations. Unless

otherwise stated, the rings have 10 bridges. This is a re-

alistic model as rings are common in factory automation

use cases of TSN [9][21][22][23]. Although rings are simple

topologies, they constitute worst cases for TAS scheduling

as many streams compete for the bandwidth of a few links.

Traffic forwarding follows shortest paths that are computed by

Dijskstra’s algorithm. The transmission capacity of all links l

is 1Gb/s and their propagation delay is dlprop = 0.1µs; the

latter corresponds to a cable length of 20 m.

2) Bridge Model Including Non-Determinism: If not stated

otherwise, the number of available GCL entries per egress port

is nGCL = 512. We use this large number as default to avoid

that the impact of short GCLs dominates the impact of the

schedule type.

The mean processing delay of the bridges is 1.55µs
with a maximum symmetric jitter of 0.3µs by default. That

means that the minimum and maximum processing delays are

dproc,min = 1.4µs and dproc,max = 1.7µs. We obtained these

values for current TSN bridges from expert knowledge.

To prevent race conditions on an egress queue, a minimum

time gap of λ = 0.4µs is needed for the arrival of frames

from different ingress ports.

The maximum clock synchronization error between any two

devices is δ = 1µs.

3) Traffic Model: We generate random streams by selecting

their source and destination from the set of all end stations

where source and destination are different. The payload of

a stream is delivered by a single data frame with random

size in the range [84B, 1542B]. This range corresponds to

transmission durations in the range [0.672µs, 12.336µs]. We

randomly select the period ps of a stream s from the set

{500µs, 750µs, 1500µs}. These values are in the range of

isochronous traffic for industrial automation streams [24].

11

NRS ERS TS

GCL Used GBs Non-sched. Slack ρ Used GBs Non-sched. Slack ρ Used GBs Non-sched. Slack ρ
entries entries (%) traffic (%) (%) (%) entries (%) traffic (%) (%) (%) Entries (%) traffic (%) (%) (%)

1 1 0.411 0 88.49 11.07 1 0.411 0 88.49 11.07 1 0.411 0 88.49 11.07

2 2 0.822 27.6 60.5 15.47 2 0.822 28.5 59.6 15.66 2 0.822 29.6 58.5 15.92

4 4 1.64 51 36.3 23.4 4 1.64 53.9 33.4 24.91 4 1.64 56.9 30.4 26.7

8 7.989 3.29 66.5 19.1 36.69 7.994 3.29 70.8 14.8 42.81 7.989 3.29 74.6 11.1 50.01

16 15.26 6.28 73 9.63 53.47 15.34 6.31 76.3 6.31 63.71 15.08 6.2 79.2 3.52 75.85

32 20.35 8.37 73.7 6.86 61.73 20.46 8.41 76.8 3.69 75 19.19 7.89 79.4 1.6 87.35

64 20.44 8.41 73.7 6.78 62.03 20.59 8.47 76.8 3.64 75.28 19.53 8.03 79.4 1.46 88.35

Tab. 1: Use of GCL entries and bandwidth depending on the number of available GCL entries per egress port. 100 streams

are scheduled with NRS, ERS, and TS on the same problem instances. These 100 streams occupy 11.1% of the bandwidth.

Legend: GB = guard band, ρ = utilization of bandwidth reserved for scheduled traffic.

This model implies that the hyperperiod of all streams is at

most H = 1500µs, and a problem instance with k streams

yields on average 2 · k stream instances in a schedule.

The start of the periods of all streams is synchronized, and

the earliest transmission start is the beginning of the period.

The latest transmission start and the deadline are the end of

the period. This assumption is common in literature [3] and

constitutes a worst case for scheduling.

4) Schedule Synthesis: For every problem instance, we con-

struct ILPs to compute the different schedule types NRS, ERS,

and TS as outlined in Section VII-C. We use Gurobi 10 [20]

with a plugin for the custom heuristic from Section VII-D5 to

solve the constructed ILPs. All evaluations were performed on

a system equipped with a Ryzen 3900X with 12 × 3.80GHz

cores and 64GB RAM.

The computation of NRS requires a minimum gap between

frames according to Equation 13. In a ring with 10 bridges

the longest path contains 6 bridges. Thus, the minimum gap

is

δ +
∑

n on longest stream path

dnproc, max − dnproc, min

=1µs+ 6 · 0.3µs = 2.8µs

This compares to an average frame transmission duration of

6.5µs.

B. Bandwidth Usage

We analyze how bandwidth is used by different schedule

types. We argue that the utilization of bandwidth reserved for

scheduled traffic is useful for comparisons. We investigate how

this metric is influenced by network and traffic parameters, as

well as by different causes of non-determinism at scheduling

time.

1) Classification of Bandwidth Usage: A periodic schedule

divides the time into periodic intervals with open gates for

queues with scheduled and non-scheduled traffic. We denote

the percentage of bandwidth used for purpose X by bX . The

times with open gates for non-scheduled traffic subdivides into

times for guard bands (bGB) and times when non-scheduled

traffic can be sent (bNST). The times with open gates for

scheduled traffic can be subdivided into times when scheduled

traffic is sent (bST) and into slack time (bslack). While the

exact intervals for transmissions and slack cannot be known

a priori, the bandwidth on the physical layer of the scheduled

traffic is known, which allows computation of bST . The

utilization of bandwidth reserved for scheduled traffic is:

ρ =
bST

bST + bslack
. (45)

Slack time consists of gaps between frames or between

frames and gate closings in NRS and ERS. However, there

may also be unused time between transmissions of scheduled

frames that is just too short, i.e., shorter than a guard band, to

open the queue for non-scheduled traffic. This type of slack

can also be found in TS.

2) Experiment Setup: In the following, we perform experi-

ments that differentiate in some parameters from the presented

problem instances. Per experiment, we sample 20 problem

instances as outlined in Section VIII-A, each with 100 random

streams. We compute NRS, ERS, and TS for these instances.

We set a time limit of 1h per computation and report the best

solution found by then. We analyze how different schedules

utilize bandwidth according to Section VIII-B1. To that end,

we average the results of all links on the ring and of all

instances, and report these average values per schedule type.

3) Impact of GCL Entries: In the first experiment, we

study the impact of available GCL entries per egress port on

bandwidth usage. Table 1 compiles the results depending on

the number of available GCL entries. Performance metrics are

shown for all three schedule types.

The maximization objective is the remaining bandwidth for

non-scheduled traffic. It increases with the number of available

GCL entries. When more available GCL entries enable more

alternating intervals for scheduled and non-scheduled traffic,

schedules provide more bandwidth for non-scheduled traffic as

this allows usage of sufficiently large gaps between scheduled

frames for non-scheduled traffic. This also decreases slack.

Therefore, the utilization of bandwidth reserved for scheduled

traffic also increases with more available GCL entries. Thus,

sufficient GCL entries are crucial that bandwidth can be effi-

ciently utilized for both scheduled and non-scheduled traffic.

To avoid that the number of available GCL entries limits the

performance of the scheduling algorithms, we allow 512 GCL

entries per egress port in all subsequent evaluations. However,

from 32 GCL entries on, the bandwidth for non-scheduled

traffic and the number of used GCL entries hardly increase.

In fact, the largest number of used entries we have seen in all

problem instances was 38.

12

0

5

10

15

20

25

0

20

40

60

40 80 120 160 200
streams

B
a

n
d

w
id

th
 (

%
)

#
 u

s
e

d
 G

C
L

 e
n

trie
s

NRS
ERS
TS

Scheduled
Guard bands
Slack

(a) Bandwidth for scheduled traffic, guard bands and slack per egress port.
Bandwidth for guard bands and number of used GCL entries are show by
identical lines.

50

60

70

80

90

100

40 80 120 160 200
streams

ρ
 (

%
)

NRS
ERS
TS

(b) Utilization of bandwidth reserved for scheduled traffic ρ.

Fig. 5: Use of GCL entries and bandwidth depending on the

number of scheduled streams for NRS, ERS, and TS.

Scheduled traffic occupies on average 11.1% of the band-

width when 100 random streams are scheduled, which is the

same in all experiments of Table 1. Therefore, this percentage

is not indicated in the table itself. The number of guard bands

per hyperperiod is half the number of utilized GCL entries.

Therefore, the bandwidth used for guard bands scales linearly

with the number of used GCL entries. When 32 or more GCL

entries are available, the bandwidth for guard bands is almost

as large as the bandwidth for scheduled traffic.

With 20.44 guard bands per link on average and 20 links

in the bidirectional ring, 408.8 GCL entries are utilized in the

entire network, which results into 204.4 intervals reserved for

scheduled traffic. 100 streams with 2.5 hops on the link and

2 frames per hyperperiod on average amount for 500 frames

on the links. Thus, 500

204.4
= 2.45 frames are sent on average

within a reserved interval. Only the first frame may be queued

by a closed gate, the other frames are immediately forwarded.

Queuing a frame for very short time has the potential to reduce

its jitter.

While these findings qualitatively hold for all three schedule

types, their results slightly differ in absolute numbers. NRS

reveal most slack and have room for least non-scheduled traffic

while TS show least slack and most non-scheduled traffic.

However, these numbers do not deviate a lot because they

are limited by the moderate number of scheduled streams. In

contrast, the utilization of bandwidth reserved for scheduled

traffic significantly differs for NRS, ERS, and TS. This un-

derlines that ERS accommodates scheduled streams with less

slack than NRS, which is more efficient with regard to reserved

bandwidth. TS are even more efficient than ERS, but they are

not recommendable in practice as they are not robust.

4) Impact of Scheduled Streams: We vary the number of

scheduled streams and investigate their influence on GCLs and

bandwidth usage. Figure 5(a) shows that the average number of

guard bands scales about linearly with the number of streams.

The number of used GCL entries is a linear function of the

bandwidth needed for guard bands and is shown by the lines

for guard bands when the second y-axis is applied. That means,

intervals reserved for scheduled traffic hold about 2.5 frames

regardless of the number of scheduled streams.

The amount of bandwidth needed for guard bands is about

the same for all considered schedule types. 200 streams require

between 15% and 18% of the bandwidth for guard bands.

Figure 5(a) further illustrates that the bandwidth occupied

by scheduled traffic linearly increases with the number of

scheduled streams. It is 22.06% for 200 streams. The reser-

vations for scheduled traffic also contain slack whose amount

significantly depends on the schedule type. When the num-

ber of scheduled streams exceeds 120, slack increases more

rapidly. An increasing number of frames results in shorter time

intervals between frame transmissions. Time intervals shorter

than a guard band cannot be released for non-scheduled traffic

and become slack instead.

We finally consider the utilization of bandwidth reserved for

scheduled traffic in Figure 5(b). It slightly decreases with more

than 100 streams, as then slack increases more than linearly.

However, the difference among the schedule types remains

significant regardless of the number of streams.

5) Impact of Frame Size: We vary the average frame

size by adapting the maximum frame size of the streams.

This experiment is relevant as many control messages in

factory automation are small, i.e., average frame sizes are

likely to be small. Table 2 compiles bandwidth usage for 100

scheduled streams. We observe that the bandwidth needed for

guard bands slightly decreases for smaller frames and that

more bandwidth can be provided for non-scheduled traffic.

However, slack remains about constant, i.e., slack depends

mostly on the number of frames but not on their size. As

a result, the utilization of bandwidth reserved for scheduled

traffic decreases with smaller frame sizes, which holds for

all schedule types. However, this utilization suffers more for

NRS and ERS than for TS. For very small frames, only 24.2%

and 37.2% of the bandwidth reserved for scheduled traffic is

utilized with NRS and ERS, respectively, the rest is slack.

6) Impact of Ring Size: We study the impact of the ring size

on bandwidth usage by NRS, ERS, and TS. Table 2 compiles

bandwidth usage depending on the ring size. The bandwidth

13

NRS ERS TS

Max. frame GBs Non-sched. Slack ρ GBs Non-sched. Slack ρ GBs Non-sched. Slack ρ

size (B) (%) traffic (%) (%) (%) (%) traffic (%) (%) (%) (%) traffic (%) (%) (%)

1542 8.35 73.7 6.86 61.76 8.37 76.9 3.7 74.95 7.89 79.4 1.6 87.4

771 7.92 78.6 7.19 46.88 7.97 81.7 3.97 61.54 7.49 84.5 1.66 79.31

385 7.48 81.7 7.05 34.81 7.42 85 3.82 49.64 6.92 87.9 1.37 73.29

154 7.15 83.7 6.94 24.23 7.06 87 3.75 37.17 6.35 90.3 1.16 65.64

Ring size
GBs Non-sched. Slack ρ GBs Non-sched. Slack ρ GBs Non-sched. Slack ρ

(%) traffic (%) (%) (%) (%) traffic (%) (%) (%) (%) traffic (%) (%) (%)

5 7.32 76.7 4.82 69.8 7.15 78.5 3.23 77.54 6.74 80.9 1.22 90.12

10 8.35 73.7 6.86 61.76 8.37 76.9 3.7 74.95 7.89 79.4 1.6 87.4

15 8.83 72.5 7.88 57.69 8.92 76.5 3.83 73.73 8.39 79.2 1.67 86.57

20 10.2 68.9 9.91 52.46 10.8 73.9 4.4 71.29 10.2 77 1.92 85.1

Proc. jitter
GBs Non-sched. Slack ρ GBs Non-sched. Slack ρ GBs Non-sched. Slack ρ

(µs) (%) traffic (%) (%) (%) (%) traffic (%) (%) (%) (%) traffic (%) (%) (%)

0.15 8.4 75.7 5 68.64 8.32 77.5 3.24 77.15 7.89 79.4 1.6 87.4

0.3 8.35 73.7 6.86 61.76 8.37 76.9 3.7 74.95 7.89 79.4 1.6 87.4

0.45 8.58 71.8 8.7 55.71 8.67 76.2 4.22 72.16 7.89 79.4 1.6 87.4

0.6 8.59 69.9 10.6 50.86 8.96 75.5 4.59 70.44 7.89 79.4 1.6 87.4

Sync. error
GBs Non-sched. Slack ρ GBs Non-sched. Slack ρ GBs Non-sched. Slack ρ

(µs) (%) traffic (%) (%) (%) (%) traffic (%) (%) (%) (%) traffic (%) (%) (%)

0.5 8.6 74.6 5.95 64.67 8.71 77.6 2.81 79.49 7.89 79.4 1.6 87.4

1 8.35 73.7 6.86 61.76 8.37 76.9 3.7 74.95 7.89 79.4 1.6 87.4

1.5 8.7 72.8 7.59 58.93 8.73 75.9 4.48 70.86 7.89 79.4 1.6 87.4

2 8.77 72 8.37 56.56 8.76 75 5.33 67.16 7.89 79.4 1.6 87.4

Tab. 2: Average bandwidth usage and schedule density per egress port for different maximum frame sizes, ring sizes, processing

jitter, and clock synchronization error.

for guard bands increases with ring size for all schedule types

in a similar manner. This is due to more dispersed traffic

in larger rings, which is more difficult to group together for

transmissions. We observe that slack increases with ring size,

and so bandwidth for non-scheduled traffic decreases. Larger

rings lead to longer paths and more uncertainty about a frame’s

arrival. Therefore, gaps between frames need to be larger,

which increases slack. The performance of NRS suffers much

more from larger rings than the one of ERS. The inefficiency

of NRS results from the fact that its minimum gaps between

frames strongly increase with the network size (cf. Equation

13) and heavily overestimate the necessary gap sizes.

7) Impact of Processing Jitter: Increasing processing jitter

increases slack for both NRS and ERS. However, slack in-

creases much more for NRS than with ERS. This is again due

to the fact that NRS heavily overestimate needed gaps between

frames. As a result, the bandwidth for non-scheduled traffic is

more reduced for NRS than for ERS. TS does not respect any

processing jitter.

8) Impact of Clock Synchronization Error: According to

Table 2, slack increases with clock synchronization error about

linearly. It is approximately the same growth for NRS and

ERS. The reason is that synchronization errors are handled by

NRS and ERS in the same way. Thus, the main advantage of

ERS is its more efficient handling of processing jitter. TS does

not respect any synchronization errors.

C. Admissible Streams

In the previous experiments, the number of streams was

small, so all streams could successfully be scheduled. We

0

25

50

75

100

100 200 300 400 500 600
Streams

F
ra

c
ti
o

n
 o

f
in

s
ta

n
c
e

s
 (

%
) ERS

NRS
TS

1542 B
385 B

Fig. 6: Complementary cumulative distribution function

(CCDF) of admitted streams based on 2000 problem instances

for NRS, ERS, and TS. Values are reported for 1542 B and

385 B maximum frame size.

now study the maximum number of admissible streams for the

three scheduling approaches. That is, we increment a set of

random streams until the ILP cannot find a valid schedule due

to missing transmission resources in the network. The largest

number of admissible streams in that set is one data point.

Figure 6 shows the complementary cumulative distribution

functions (CCDF) of admissible streams for NRS, ERS, and

TS. Each curve consists of 2000 data points. The solid lines

correspond to large frames (1542 B max. frame size) and the

dashed lines correspond to small frames (385 B max. frame

14

size). We observe that the number of admissible streams for

a given schedule type varies a lot, which is mostly due to the

properties of the individual streams (large or short periods,

small or large frames) in the random set.

Max. frame
NRS ERS/NRS ERS ERS/TS TS

size (B)

1542 222.6 1.146 255.1 0.9150 278.8

385 273.4 1.222 334 0.7555 442.1

Tab. 3: Average of admitted streams for different schedule

types and maximum frame sizes as well as relative numbers.

The average number of admitted streams is compiled in

Table 3. With ERS 14.6% more streams can be admitted than

with NRS for large frames and 22.2% more for small frames.

This is a very concrete benefit of ERS vs. NRS. It is in line

with the observations that bandwidth reserved for scheduled

streams can be more efficiently utilized by ERS than by NRS.

In contrast, with ERS 8.5% less streams can be admitted than

with TS for large frames and 24.5% less streams for small

frames. This can be considered as the price of robustness.

D. Scalability

TAS scheduling is known to be NP-complete [8]. Neverthe-

less, most published scheduling algorithms in this area follow

exact approaches. Thus, computation time and sizes of feasible

problem instances matter. Therefore, most publications of

TAS scheduling algorithms do not consider resulting schedule

properties but focus on computation time, e.g., [4], [22], or [5].

Therefore, we investigate the scalability of computing ERS and

compare it with four other well-known algorithms mentioned

in Section IV.

The predominant approach for TAS scheduling in the lit-

erature uses SMT solving. In fact, there is no other ILP

approach featuring GCL synthesis or robustness against non-

determinism. Therefore, the scalability analysis gives also

insights whether the use of ILP solving instead of SMT solving

is a viable option for robust TAS scheduling.

The first algorithm (A1) is the SMT model by Craciunas

et al. [4] which partially tackles time synchronization errors

(see Section V) but cannot limit the number of used GCL

entries. The second approach (A2) is from Santos et al. [10]

which utilizes only a single gate closing and opening event

per egress port during an entire hyperperiod. We use the

models from Oliver et al. [5] (A3) and Jin et al. [19] (A4)

because they feature real GCL synthesis and handle partially

time synchronization errors. We omit the discussion about

which properties of a problem instance influence scalability

in general as such evaluations were carried out multiple times

in the literature, e.g., in [4],[5],[22],[19].

1) Methodology: We evaluate the impact of the number of

streams nstreams, the number of bridges in a network nbridges,

and the network topology τ . Ring, line, and star topologies

are common topologies in traditional Ethernet networks. The

line topology can be considered as a worst case scenario as

frame transmissions compete for transmission times on a small

set of links. The full-mesh topology is used as a theoretical

best case counterpart for the line topology as every link

carries a minimum number of frames, which results in least

interference between frame transmissions. Scale-free networks

are a class of random graphs similar to computer networks

[25][26]. They feature many nodes with small node degree

and a few highly connected hub nodes. The default parameters

are nstreams = 100, nbridges = 10, τ = Ring. We vary only

one parameter at a time per experiment series. We construct 20

problem instances for each configuration of nstreams, nbridges,

and τ . Every problem instance is solved with all five methods,

i.e., ERS proposed in this paper and the SMT-based algorithms

A1 – A4.

We implemented model generation for A1, A3, and A4

while the model generation for A2 was obtained from [27].

We employ the SMT solver Z3 [28] to solve the models. The

SMT solver is configured to use 4 parallel threads running

the CDCL algorithm [29]. For a fair comparison, we also

limit the number of parallel threads for the ILP solver to 4.

As the runtime of A3 and A4 grows exponentially with the

number of GCL entries per egress port, we limit this number

to 8. We use a timeout of 1 h per problem instance. We report

average solving times without model generation per parameter

configuration and per approach.

streams ERS A1 [4] A2 [10] A3 [5] A4 [19]

10 0.0136 0.0523 5.16 3.32 3600

20 0.027 0.15 28.6 23.7 3600

50 0.152 0.963 414 598 3600

100 0.902 8.57 647 3600 3600

200 24 438 1204 3600 3600

bridges ERS A1 [4] A2 [10] A3 [5] A4 [19]

5 0.537 5.1 527 3600 3600

10 0.902 8.57 647 3600 3600

15 1.26 14.1 752 3600 3600

20 1.87 23 903 3600 3600

Topology ERS A1 [4] A2 [10] A3 [5] A4 [19]

Ring 0.902 8.57 647 3600 3600

Line 3.35 28.1 1461 3600 3600

Star 0.445 3.73 118 3186 3600

Full-mesh 0.109 1.56 6.04 316 3600

Scale-free 0.627 4.94 409 3022 3600

Tab. 4: Computation times in seconds for different TSN

scheduling algorithms. Default values are nstreams = 100,

nbridges = 10, and topology τ =Ring. A timeout of 1 h

per problem instance is applied, i.e., 3600 indicates that the

computation did not complete.

2) Results: Table 4 compiles the average solving times

for all five algorithms in seconds. ERS, A1, and A2 were

able to schedule the problem instances of all experiments

with ERS being the fastest, followed by A1 and A2. While

A3 is faster than A2 for 10 and 20 streams, it cannot solve

problem instances with 100 and more streams in the ring. A2

[10] outperformed A3 [5] for more than 50 streams. A3 [5]

solved all problem instances with up to 50 streams in the ring

topology, but was not able to schedule a single instance with

15

100 streams. A4 was not able to schedule a single instance in

any of the experiments. We observe a fast growth of solving

times for all algorithms when the number of streams increases.

The reason for this is that model size grows quadratically

with the number of frames transmitted over an egress port

in all five approaches. This results in exponential worst case

runtimes in the number of frames as scheduling for the TAS

is NP-complete [8][30]. For the same reason, topologies with

a few links, e.g., ring and line, are harder to schedule than

highly meshed topologies, which can also be observed in the

table. In contrast, solving times grow approximately linearly

for increasing numbers of bridges in the ring topology.

For 100 streams or more, ERS outperforms all algorithms

with regard to solving times roughly by a factor of 10, and

those algorithms limiting used GCL entries by a factor of 50

or more. We explain this observation. A1 is an incremental

approach, i.e., streams are scheduled on after another. This

results in conflicting stream schedules and backtracking, which

leads to longer solving times than ERS. The models of A3 and

A4 use a binary decision variable for every frame and time

interval with an open gate, i.e., a binary variable indicating

whether a frame is transmitted in the respective time interval.

Therefore, the solution space grows exponentially with the

number of frames and with the number of GCL entries per

egress port. Additionally, A4 divides time into discrete units

and uses a binary variable for every time unit. This results

in large models for problem instances with realistic stream

periods.

In contrast, ERS uses only a single binary variable per frame

per egress port to indicate whether the gate was closed in

the time interval since the previously transmitted frame (see

Section VII-B2). The resulting smaller solution space explains

the vast difference in solving time to A3 and A4.

We conclude that the proposed modelling for ERS scales

better compared to other known approaches for realistic sizes

of problem instances. Models from literature (A3 [5] and A4

[19]) which feature non-trivial GCL synthesis failed even on

medium-size instances. Thus, this evaluation shows that ILP-

based approaches for robust TAS scheduling can be compet-

itive to SMT-based approaches if the problem is modelled

appropriately. Moreover, the modeling approach for ERS in

this work may serve as a computation-efficient base for future

works in this area that model additional constraints.

IX. CONCLUSION

In TSN periodic streams may be scheduled and the Time-

Aware Shaper (TAS) may be used to protect scheduled streams

from non-scheduled traffic. Schedules indicate transmission

times at talkers, and gate openings and closings in bridges.

Execution of such schedules may be affected by various

sources of non-determinism: processing delays in bridges,

clock synchronization errors in any device, and race condition

from simultaneously arriving frames with same egress ports.

Furthermore, schedules must respect the limited number of

entries in the gate control list (GCLs) of the TAS. Although

these issues are crucial for schedules working on real hard-

ware, they have hardly been considered by existing scheduling

algorithms.

This paper developed an ILP-based method for the com-

putation of efficient robust schedules (ERS) that cope with

the mentioned challenges. As an objective function, the re-

maining bandwidth for non-scheduled traffic is maximized,

which is also novel in literature. To achieve robustness, ERS

essentially leave sufficient but not constant time between

consecutive frame arrivals, and between frame transmissions

and consecutive gate closings. A subset of the ILP’s constraints

leads to tight schedules (TS) that do not provide extra time

between frames. They resemble most schedules from literature.

Another subset leads to naı̈ve robust schedules (NRS) where

constant time between frames and before gate closings is used

to achieve robustness. This corresponds to a repair of some

existing scheduling mechanisms coping with synchronization

errors, plus their augmentation to cope with processing jitter,

which has not been studied so far.

We evaluated and compared the different schedule types.

We analyzed bandwidth usage and showed that ERS utilize

bandwidth reserved for scheduled traffic more efficiently than

NRS. We studied this issue depending on many parameters.

The main advantage of ERS over NRS is that it better copes

with processing jitter, which is due to the new modelling

approach. TS lack robustness but can admit most scheduled

streams, followed by ERS and NRS. With ERS 8.5% less

streams could be admitted in our experiments than with TS,

which is the price for robust schedules. With ERS, 14.6% more

streams were admissible than with NRS, which demonstrates

the efficiency of ERS. These numbers increase with smaller

frames, larger networks, and more considered processing jitter

and synchronization errors. Computing ERS is well feasible

compared to well-known computation methods from the liter-

ature. The scheduling algorithm is significantly faster and can

solve larger problem instances.

The computation method for ERS explicitly supports mul-

ticast streams. Future works may investigate the impact of

multicast streams on admissible traffic. Further studies may

extend ERS by the integration of protection mechanisms for

use in safety-critical systems. Finally, the presented approach

may facilitate the integration of streams coming from other

networks or legacy devices. These frames may be subject to

large jitter and the presented approach is able to construct

schedules which take large jitter into account.

REFERENCES

[1] “IEEE Standard for Local and Metropolitan Area Network–
Bridges and Bridged Networks,” IEEE Std 802.1Q-2018 (Re-
vision of IEEE Std 802.1Q-2014), pp. 1–1993, 2018.

[2] “IEEE Standard for Local and metropolitan area networks
– Bridges and Bridged Networks - Amendment 25: En-
hancements for Scheduled Traffic,” IEEE Std 802.1Qbv-2015
(Amendment to IEEE Std 802.1Q-2014 as amended by IEEE
Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, and IEEE Std
802.1Q-2014/Cor 1-2015), pp. 1–57, 2016.

16

[3] T. Stüber, L. Osswald, S. Lindner, and M. Menth, “A
survey of scheduling algorithms for the time-aware shaper
in time-sensitive networking (TSN),” IEEE Access, vol. 11,
pp. 61 192–61 233, 2023.

[4] S. S. Craciunas, R. S. Oliver, M. Chmelı́k, and W. Steiner,
“Scheduling Real-Time Communication in IEEE 802.1Qbv
Time Sensitive Networks,” in International Conference on
Real-Time Networks and Systems (RTNS), 2016, pp. 183–192.

[5] R. S. Oliver, S. S. Craciunas, and W. Steiner, “IEEE 802.1Qbv
Gate Control List Synthesis Using Array Theory Encoding,” in
IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2018.

[6] S. S. Craciunas and R. S. Oliver, “Out-of-Sync Schedule Ro-
bustness for Time-sensitive Networks,” in IEEE International
Conference on Factory Communication Systems (WFCS),
2021, pp. 75–82.

[7] “IEEE Standard for Local and Metropolitan Area Networks–
Timing and Synchronization for Time-Sensitive Applications,”
IEEE Std 802.1AS-2020 (Revision of IEEE Std 802.1AS-2011),
pp. 1–421, 2020.

[8] F. Dürr and N. G. Nayak, “No-wait Packet Scheduling for
IEEE Time-Sensitive Networks (TSN),” in International Con-
ference on Real-Time Networks and Systems (RTNS), 2016.

[9] D. Hellmanns, A. Glavackij, J. Falk, R. Hummen, S. Kehrer,
and F. Dürr, “Scaling TSN Scheduling for Factory Automation
Networks,” in IEEE International Conference on Factory
Communication Systems (WFCS), 2020.

[10] A. C. T. dos Santos, B. Schneider, and V. Nigam,
“TSNSCHED: Automated Schedule Generation for Time Sen-
sitive Networking,” in Formal Methods in Computer Aided
Design (FMCAD), 2019, pp. 69–77.

[11] A. Varga, “OMNeT++,” in Modeling and Tools for Network
Simulation, K. Wehrle, M. Güneş, and J. Gross, Eds. Springer
Berlin Heidelberg, 2010, pp. 35–59.

[12] V. Gavriluţ and P. Pop, “Scheduling in Time Sensitive Net-
works (TSN) for Mixed-Criticality Industrial Applications,”
in IEEE International Workshop on Factory Communication
Systems (WFCS), 2018.

[13] Z. Feng, M. Cai, and Q. Deng, “An Efficient Pro-Active
Fault-Tolerance Scheduling of IEEE 802.1Qbv Time-Sensitive
Network,” IEEE Internet of Things Journal, vol. 9, no. 16,
pp. 14 501–14 510, 2021.

[14] M. Pahlevan and R. Obermaisser, “Genetic Algorithm for
Scheduling Time-Triggered Traffic in Time-Sensitive Net-
works,” in IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), 2018.

[15] M. Pahlevan, N. Tabassam, and R. Obermaisser, “Heuristic
List Scheduler for Time Triggered Traffic in Time Sensitive
Networks,” ACM SIGBED Review, vol. 16, no. 1, pp. 15–20,
2019.

[16] W. Steiner, S. S. Craciunas, and R. S. Oliver, “Traffic Planning
for Time-Sensitive Communication,” IEEE Communications
Standards Magazine, vol. 2, no. 2, pp. 42–47, 2018.

[17] M. Vlk, K. Brejchová, Z. Hanzálek, and S. Tang, “Large-scale
Periodic Scheduling in Time-Sensitive Networks,” Computers
& Operations Research, vol. 137, 2022.

[18] M. Vlk, Z. Hanzálek, and S. Tang, “Constraint Program-
ming Approaches to Joint Routing and Scheduling in Time-
Sensitive Networks,” Computers & Industrial Engineering,
vol. 157, 2021.

[19] X. Jin, C. Xia, N. Guan, et al., “Real-Time Scheduling of
Massive Data in Time Sensitive Networks With a Limited
Number of Schedule Entries,” IEEE Access, vol. 8, pp. 6751–
6767, 2020.

[20] Gurobi Optimization, LLC, Gurobi Optimizer Reference Man-
ual, 2021. [Online]. Available: https://www.gurobi.com.

[21] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla,
and G. Mühl, “ILP-based Joint Routing and Scheduling for
Time-Triggered Networks,” in International Conference on
Real-Time Networks and Systems (RTNS), 2017.

[22] J. Falk, F. Dürr, and K. Rothermel, “Exploring Practical
Limitations of Joint Routing and Scheduling for TSN with
ILP,” in International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA), 2018.

[23] J. Falk, F. Dürr, and K. Rothermel, “Time-Triggered Traffic
Planning for Data Networks with Conflict Graphs,” in IEEE
Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), 2020.

[24] Industrial Internet Consortium, Time Sensitive Networks for
Flexible Manufacturing Testbed - Description of Converged
Traffic Types, [Online; accessed 19-September-2022], 2018.
[Online]. Available: https://www.iiconsortium.org/pdf/IIC
TSN Testbed Traffic Whitepaper 20180418.pdf.

[25] A.-L. Barabási, “Emergence of scaling in complex networks,”
in Handbook of Graphs and Networks. 2002, ch. 3, pp. 69–84.

[26] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law
relationships of the internet topology,” in Proceedings of the
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, ser. SIGCOMM ’99,
1999.

[27] A. C. T. dos Santos, TSNsched, [Online; accessed 19-
September-2022], 2019. [Online]. Available: https : / /github.
com/ACassimiro/TSNsched.

[28] L. De Moura and N. Bjørner, “Z3: An Efficient SMT Solver,”
in Theory and Practice of Software, International Conference
on Tools and Algorithms for the Construction and Analysis of
Systems, 2008.

[29] M. Davis, G. Logemann, and D. Loveland, “A Machine
Program for Theorem-Proving,” Communications of the ACM,
vol. 5, no. 7, pp. 394–397, 1962.

[30] W. Steiner, “An Evaluation of SMT-based Schedule Synthesis
for Time-Triggered Multi-Hop Networks,” in IEEE Real-Time
Systems Symposium (RTSS), 2010.

17

Publications

2.3 Scalability of Segment-Encoded Explicit Trees (SEETs) for Efficient

Stateless Multicast

212

1

Segment-Encoded Explicit Trees (SEETs) for

Stateless Multicast: P4-Based Implementation and

Performance Study
Steffen Lindner∗, Thomas Stüber∗, Maximilian Bertsch∗, Toerless Eckert†, and Michael Menth∗

∗University of Tuebingen, Chair of Communication Networks, 72076 Tuebingen, Germany
†Futurewei Technologies, CA 95050, United States

Abstract—IP multicast (IPMC) is used to efficiently distribute
one-to-many traffic within networks. It requires per-group state
in core nodes and results in large signaling overhead when multi-
cast groups change. Bit Index Explicit Replication (BIER) and its
traffic engineering variant BIER-TE have been introduced as a
stateless transport mechanism for IPMC. However, they come
with substantial operation, administration, and maintenance
(OAM) costs and have scalability issues in large networks. In
this paper, we present a novel stateless tree encoding mechanism
called Segment-Encoded Explicit Tree (SEET). SEET encodes an
explicit multicast distribution tree within a packet and is designed
to be implementable on low-cost switching ASICs. Its design
reduces OAM costs significantly and provides better scaling
properties than BIER(-TE) in large networks. We implement
SEET as a prototype for the Intel Tofino™ and present a simple,
yet effective optimization heuristic that splits a SEET packet
if its header becomes too large for modern switching ASICs.
Evaluations highlight the advantages of SEET compared to BIER.

Index Terms—Segment-Encoded Explicit Trees (SEETs), Bit
Index Explicit Replication (BIER), multicast, IP networks, per-
formance evaluation, optimization

I. INTRODUCTION

IP multicast (IPMC) is the default multicast service in

IP networks and is used to reduce the traffic load of one-

to-many traffic. Examples for IPMC services are Multicast

VPN, streaming, content delivery networks, or financial stock

exchange [1]. Receivers, also called subscribers, of multicast

services are organized in multicast groups that are identified

by unique IP addresses. Traffic is forwarded along a multicast

distribution tree to all subscribers of the multicast group.

Thereby, only one packet is sent over each involved link.

However, IPMC has two scalability issues. First, all forwarding

nodes of the distribution tree need to maintain the forwarding

state of the corresponding multicast groups. Second, when

subscribers of a multicast group change, the forwarding nodes

need to update their forwarding state, which results in exces-

sive signaling overhead. Multicast mechanisms that rely on

this kind of dynamic state are referred to as stateful multicast

mechanisms. The Internet Engineering Task Force (IETF) is

currently standardizing Bit Index Explicit Replication (BIER)

[2] as a stateless multicast transport mechanism for IPMC traf-

fic. BIER forwards IPMC traffic through a BIER domain

without the need for dynamic forwarding state in core nodes.

They leverage a so-called BIER bitstring that is added to the

packets by ingress nodes of the domain. Each bit identifies an

egress node of the BIER domain, i.e., a possible subscriber of

the multicast group. If a bit is set, the corresponding egress

node requires a packet copy. Based on this bitstring, core nodes

of the BIER domain are able to forward the traffic to the

appropriate egress nodes. However, when BIER is scaled to

larger networks, multiple copies of a multicast packet might be

forwarded over the same link, which mitigates the advantage of

BIER over unicast forwarding. This is especially problematic

for sparse multicast trees, i.e., multicast trees with a small

number of receivers, in large networks. In that case, the ratio

between receivers and redundant packets worsens.

The contributions of this paper are manifold. First, we show

that BIER’s scaling mechanism results in many redundant

packet copies in large networks. Second, we present a novel

mechanism for stateless multicast called Segment-Encoded

Explicit Tree (SEET). It combines ideas of Segment Routing

(SR) [3] and BIER [4], supports traffic engineering and has

significant OAM advantages compared to BIER. Third, we

present a P4-based implementation of SEET for the Intel

Tofino™. SEET encodes the complete distribution tree within

a packet header. If the required SEET header is too large to

be processed by high-speed switching ASICs, multiple packets

with a smaller SEET header are needed. We present a simple,

yet effective heuristic that computes a near-optimal header

fragmentation to split a large SEET header into multiple small

headers. We compare the efficiency of SEET with BIER in

different topologies.

The remainder of the paper is structured as follows. In Sec-

tion II we describe related work. Then, we introduce BIER and

show that BIER’s scaling mechanism results in many redun-

dant packet copies in large networks in Section III. Section IV

introduces SEET and Section V gives a brief introduction to

P4. Afterward, we present a P4-based implementation of SEET

in Section VI. We present a simple, yet effective heuristic

that determines how size-constrained near-optimal headers

for SEET can be constructed in Section VII. We evaluate

the scalability of BIER and SEET in different topologies in

Section VIII and conclude the paper in Section IX.

II. RELATED WORK

We first review related work for stateful multicast solutions.

Then we discuss existing approaches for stateless multicast.

A. Stateful Multicast

IPMC is the default multicast service in IP networks. It

was introduced in 1986 [5] and defines the transmission of IP

datagrams to a set of hosts. Hosts dynamically join multicast

groups, and the membership information of multicast groups

is propagated through the network with the help of multicast

routing protocols, e.g., PIM [6]. Islam et al. [7] and Al-Saeed

et al. [8] provide a broad overview of stateful multicast ser-

vices. They discuss shortcomings of IPMC regarding scalabil-

ity and signaling overhead. Iyer et al. [9] present the Avalanche

Routing Algorithm (AvRA) that leverages properties of data

center topologies to compute optimized multicast distribution

trees. They present an OpenFlow-based controller module that

improves data rate by up to 12% and reduces packet loss by

51% compared to traditional IPMC. Dual-Structure Multicast

(DuSM) [10] leverages the SDN paradigm to remove multicast

management logic from switches. An SDN-based controller

manages multicast group state on forwarding devices and

balances traffic among multiple shared forwarding trees to

avoid congestion. Further, the controller applies a multicast-

to-unicast translation for multicast groups with low bandwidth

to reduce the required state on forwarding devices. Voyer

et al. [11] propose a new segment routing type for multi-

point service delivery. The so-called SR replication segment

instructs nodes to replicate packets to a set of downstream

nodes in a SR domain. The mapping between a replication

segment and a set of downstream nodes, called replication

state, is held by the corresponding replication nodes. The

replication state may change over time if the leaf nodes

of a multi-point service change. Therefore, it resembles the

dynamic forwarding state of traditional IPMC.

B. Stateless Multicast

Elmo [12] aims to improve the scalability of IPMC in data

center environments. Multicast group information is encoded

in the packet header, which eliminates the need for a dynamic

state in forwarding devices. They claim to support up to

one million different multicast groups in a three-tier data

center topology with 27.000 hosts with an average packet

header size of 114 bytes. Several works leverage Bloom

filters to efficiently encode multicast traffic [13] [14] [15].

However, due to the inherent false-positive nature of Bloom

filters, redundant or wrong forwarding decisions may be taken,

which makes it unsuitable for a reliable multicast service.

BIER [2] is currently standardized by IETF and proposes a

novel stateless transport mechanism for IPMC. It is based

on the notion of a bit string, in the following referred to as

bitstring, that indicates the recipients of a multicast group.

Forwarding devices within a BIER domain are able to forward

BIER packets according to the bitstring without the need for

dynamic state. Merling et al. [16] [17] and Lindner et al.

[18] present a P4-based implementation of BIER on high-

performance switching hardware. The presented prototypes are

able to forward BIER-based multicast with 100 Gb/s per egress

port. In subsequent work, Merling et al. [19] investigate the

efficiency of BIER multicast in large networks. They compare

the traffic savings of IPMC and BIER relative to unicast

forwarding in a wide range of network topologies. Further,

they present algorithms to build optimal BIER subdomains

for large networks. BIER with tree engineering (BIER-TE)

[20] augments BIER with traffic engineering capabilities. It

is based on the same header format as BIER, i.e., a bitstring

that indicates the recipients of a multicast group. Further, the

bitstring contains a bit for each adjacency in the network.

If the corresponding bit is set, the packet is forwarded over

this adjacency. Hawkeye [21] enhances BIER-TE with a deep

reinforcement learning agent that builds multicast distribution

trees. Hawkeye can proactively compute multicast trees based

on historical traces. MSR6 [22] implements BIER and BIER-

TE based on the SRv6 [23] forwarding plane. It introduces a

so-called RGB segment that contains the BIER bitstring and

leverages unicast IPv6 forwarding between replication nodes.

Eckert et al. [4] proposes Recursive BitString Structure (RBS)

for BIER and MSR6 to improve the scalability for sparse

multicast trees in large networks. They encode the forwarding

tree in a hop-by-hop fashion using local bitstrings. Diab et

al. [24] present YETI, a stateless and generalized multicast

forwarding scheme. It is based on label and bitstring-based

forwarding, similar to SEET, and can be used to encode an

arbitrary multicast distribution tree. They compare it with

existing rule-based multicast solutions as well as BIER-TE.

However, they do not consider header limitations of modern

forwarding ASICs and evaluate their solution only on small

ISP backbone topologies with at most 197 routers and 486

links. In contrast, we consider realistic header limitations for

SEET, propose an effective optimization heuristic that derives

how a SEET header is fragmented into multiple packets, and

evaluate SEET in large access network topologies with several

thousand receivers.

III. BIT INDEX EXPLICIT REPLICATION (BIER)

We first give an overview of BIER(-TE) and explain its

scaling mechanisms for large networks. Then we explain

performance issues of BIER(-TE) in large networks with

sparse multicast trees.

A. Overview

Bit Index Explicit Replication (BIER) [2] is a stateless

transport mechanism for IPMC that has been standardized by

the IETF. It is based on a domain concept and introduces

three different types of BIER devices: Bit-Forwarding Ingress

Routers (BFIRs), Bit-Forwarding Routers (BFRs), and Bit-

Forwarding Egress Routers (BFERs). Figure 1 illustrates the

concept of BIER.

Bit-Forwarding Ingress Routers (BFIRs) are the ingress

nodes of the BIER domain. They receive IPMC packets 1

and encapsulate them with a BIER header 2 . The BIER

header contains a bit string, which we call BIER bitstring,

that indicates the destinations of the packet within the domain.

Each BFER is assigned to a bit position in the BIER bitstring.

For simplicity, BFER n has been assigned to bit position1 n in

Figure 1. A bit is activated in the bitstring if the corresponding

1Bit position 1 corresponds to the lowest-significant bit.

2

1

2

3

 IPMC011

IPMC

IPMC

IPMC

 IPMC010

 IPMC001

Bit-Forwarding Ingress Router (BFIR) Bit-Forwarding Router (BFR) Bit-Forwarding Egress Router (BFER)

BIER domain
1

2

3

3

4

4

Fig. 1. A BIER domain is composed of Bit-Forwarding Ingress Routers
(BFIRs), Bit-Forwarding Routers (BFRs), and Bit-Forwarding Egress Routers
(BFERs).

BFER should receive a copy of the packet. Within the BIER

domain, Bit-Forwarding Routers (BFRs) forward the BIER

packet solely according to the BIER bitstring in the header.

To that end, a BFR sends a packet copy to each next-hop

over which at least one destination is reached. The bitstring

is altered in each packet copy, such that it only contains the

activated bits for BFERs that are reached via this next-hop 3 .

This prevents duplicates at the receiver. Packets are forwarded

according to the forwarding information from the routing

underlay. Finally, Bit-Forwarding Egress Routers (BFERs)

remove the BIER header and forward the IPMC packet as

usual 4 .

BIER-TE augments the concept of BIER with tree engi-

neering capabilities. It is based on the same header format as

BIER, i.e., a bitstring that indicates the recipients of a multicast

group. Further, the bitstring contains a bit for each adjacency

in the network. If the corresponding bit is set, the packet is

forwarded over this adjacency.

Both BIER and BIER(-TE) come with substantial OAM

costs.

B. Scaling BIER(-TE) to Large Networks

The number of BFERs is limited by the size of the BIER

bitstring. Common bitstring lengths are 256-, 512-, and 1024-

bit. We refer to a BIER domain with bitstring length x as

BIER-x. The bitstring length might be limited due to different

reasons, e.g., technical restrictions in forwarding ASICs or

header overhead tradeoffs. For example, a network with 10.000

receivers requires a 1250 bytes bitstring, which is not feasible

in practice. BIER introduces subdomains to scale to larger

networks. A BIER subdomain Si is identified by the so-called

Set Identifier (SI) in the BIER header. The SI remaps a bit

position of the BIER bitstring to a different BFER for each

subdomain, i.e., the first bit position identifies BFER 1 in S1

and BFER 5600 in S2. With this approach, a BIER domain

can support 10.000 BFERs with a 256-bit BIER bitstring and

40 subdomains. Optimal SI selection, i.e., assigning a BFER

to a SI in an optimal manner2, is an NP-hard problem [19].

2An objective function might be to minimize the overall traffic rate or
number of redundant packets.

Scaling BIER-TE to large networks is even more challeng-

ing as not only BFERs need to be part of a SI, but the whole

distribution tree, i.e., all involved links. With limited header

space, it is unclear how links should be assigned to SIs in a

way such that traffic engineering is still viable. Furthermore,

subdomains must be connected and need to contain backup

paths in case of link or node failures.

C. Performance Issues

Large BIER domains may require multiple subdomains to

reach all BFERs. If a BIER packet is destined to BFERs

in several subdomains, multiple BIER packets are sent by

the BFIR, one packet for each subdomain. Consequently, the

same IPMC packet may be sent over a link multiple times.

If the same IPMC packet is sent five times over the same

link, four of these packets are redundant. This may reduce

the advantage of BIER over native IPMC. We quantify the

advantage of BIER over native IPMC with the following

experiment. We consider a BIER domain with n = 1024
BFERs, an average node degree of eight, bitstring lengths

of b ∈ {64, 128, 256, 512, 1024} bits, and s ∈ {16, 8, 4, 2, 1}
subdomains, respectively. Then, we send BIER packets from

a random source to n random receivers and repeat the ex-

periment 50 times. We count the number of packets on all

links pli for both IPMC and BIER and report their difference,

i.e., #redundant packets =
∑

i p
BIER
li

−
∑

i p
IPMC
li

. BFERs

are randomly assigned to a single subdomain with equal

probability. Figure 2 shows the number of redundant BIER

packets that are sent to reach all receivers.

0

25

50

75

100

125

0 25 50 75 100 125
#Receivers

#
R

e
d
u
n
d
a
n
t
p
a
c
ke

ts

BIER−1024
BIER−512
BIER−256
BIER−128
BIER−64

Fig. 2. Number of redundant BIER packets to reach all receivers.

Native IPMC and BIER-1024, i.e., BIER with a bitstring

length of 1024 bit, send at most one packet over a link and do

not require redundant packets to reach all destinations. BIER

variants with smaller bitstring lengths require more redundant

packets. The number of redundant packets scales with the

number of receivers of an IPMC packet and is more severe in

larger networks.

IV. SEGMENT-ENCODED EXPLICIT TREES (SEETS)

In this section, we introduce a novel stateless tree encoding

mechanism, which we call Segment-Encoded Explicit Trees

(SEETs). It is based on ideas of Segment Routing (SR) and

RBS/BIER but uses its own encoding for better efficiency.

3

First, we explain the general concept of a generic multicast

tree encoding. Then we give an overview of SEET and explain

its encoding in detail. Finally, we provide pseudocode for the

forwarding logic of SEET-enabled devices.

A. Generic Multicast Tree Encoding

Stateless multicast solutions require the multicast distribu-

tion tree to be encoded within the packet. We propose the

following generic encoding scheme that translates a recursive

tree structure to a linear sequence of instructions that is agnos-

tic to a specific protocol implementation. Figure 3 illustrates

the generic encoding concept.

1

2

3 4

5 6 7

1 2 3 4 5 6 7

Multicast tree Sequential order

Fig. 3. Concept for stateless multicast source routing. A generic multicast
distribution tree is translated into a sequential list structure.

A generic multicast distribution tree is encoded in a sequen-

tial list structure. Thereby, the tree structure is serialized into

a list of elements. The forwarding principle of the stateless

multicast source routing is illustrated in Figure 4. When a

node receives an encoded multicast packet, it first partitions the

encoded tree into its subtrees. Then, a packet copy is created

for each next-hop. The packet copy contains only the relevant

subtree, i.e., the subtree that starts with the next-hop. Thereby,

the packet header shrinks along the forwarding path.

1

2

3 4

5 6 7

1

2

3 4

5 6 7

2

3 3

4

5 6 7
4

5 5

6 6

7 7

Fig. 4. Forwarding principle of the encoding concept for stateless multicast
source routing. Only the relevant subtree of the packet header is forwarded
to a downstream node in the multicast tree.

B. SEET Overview

SEET is a forwarding scheme to steer a multicast packet

along an explicit or implicit multicast tree. It supports both

shortest-path forwarding as well as traffic engineering. SEET’s

encoding scheme has been designed to be implementable on

low-cost switching ASICs, e.g., with P4 [25] on the Intel

Tofino™. A proof of concept implementation of SEET for the

Intel Tofino™ is described in Section VI. Figure 5 illustrates

the concept of SEET.

SEET is based on a domain concept similar to BIER and

introduces three different types of devices: ingress nodes,

forwarding nodes, and egress nodes. An ingress node receives

F1
F2

IPMC

IPMC

IPMC

Ingress Nodes Forwarding Nodes Egress Nodes

SEET domain
1

2

3

3

4

4

 IPMCS1 S2 ... S4

 IPMCS4

 IPMCS2

S3

 IPMCS4

Fig. 5. A SEET domain is composed of ingress nodes, forwarding nodes,
and egress nodes.

an IPMC packet and prepends a list of ordered segments to

the packet 1 . We refer to this list of segments as forwarding

stack (fs) 2 . Each segment encodes a SEET-specific iden-

tifier that is used by nodes to forward the packet along the

distribution tree. Figure 5 illustrates how a SEET packet with

four segments is received by the first forwarding node F1.

The initial segment S1 identifies F1 itself and instructs it to

process the forwarding stack while the rest of the forwarding

stack encodes the downstream multicast distribution tree. The

first part of the forwarding stack, i.e., {S2, ..., Si}, encodes

the downstream distribution tree for the first next-hop of F1,

and the second part of the forwarding stack, i.e., {Si+1, ...,

Sn}, encodes the downstream distribution tree for the second

next-hop. When F1 forwards the SEET packet to its neighbors,

only the corresponding downstream forwarding stack is kept

on the packet, the other part is removed. Finally, the egress

nodes remove the SEET header and forward the underlying

IPMC packet 4 .

C. SEET Encoding

The multicast distribution tree is recursively encoded in the

forwarding stack. Figure 6 illustrates the encoding.

Ethernet Next protocol Segment #1 Segment #2 ... Payload

Identifier D L
1 bit 8 bitn bit

Byte aligned

P
y bit

SEET Header

B
1 bit

Fig. 6. A SEET header consists of a next protocol field and several segments
that form the forwarding stack.

A SEET header consists of a 16 bit next protocol field

and a list of segments, i.e., a forwarding stack (fs). The next

protocol field is used to identify the protocol of the payload.

A segment consists of a n-bit identifier, a deliver bit (D), a

1-bit bitstring indicator (B), y-bit padding (P), and an 8-bit

length (L) field that indicates how many bytes are left in the

current distribution tree. A byte alignment for segments is

required to facilitate parsing in low-cost forwarding ASICs,

4

i.e., (n + y + 1 + 1) mod 8 = 0 has to hold. The identifier

is used by forwarding nodes to determine the next-hop. For

example, in a network with 100 nodes, seven bits suffice to

identify all nodes in the network. The D-bit indicates whether

the node that is identified through the identifier is a destination

of the multicast tree.

D. Efficient Replication at Leaf Nodes

SEET requires for each recipient of the multicast distri-

bution tree at least one segment3. Therefore, SEET can be

efficiently used to encode paths that span multiple hops but it

is less efficient if a node should replicate a packet to multiple

neighbors. Therefore, we propose to use a BIER-like bitstring

to address multiple neighbors efficiently at the penultimate hop

in a multicast distribution tree. The B-bit indicates if a segment

is followed by a BIER-like bitstring. In that case, the length

field (L) is split into two 4-bit fields: bitstring length (BL) and

bitstring set identifier (BSI). The first 4-bit indicate the length

of the bitstring in bytes. The second 4-bit build an identifier

with the same purpose as the SI in BIER. Bitstrings can only

be used at the penultimate hop of a branch in the distribution

tree. Figure 7 illustrates an example for the efficient replication

at a leaf node. The example uses 14-bit global node identifiers

and shows a distribution subtree where node #1052 is the

penultimate hop with two receivers R1 and R3.

1052 0 1 17 5
Identifier D BI L BS

14 bit 1 bit1 bit 8 bit

1052

R1 R3

Fig. 7. The penultimate hop is addressed with a SEET identifier and carries a
bitstring that is used to efficiently replicate the packet to multiple neighbors.

The identifier 1052 in the SEET segment addresses the

penultimate hop. The D-bit is set to 0 as the node is not a

receiver of the distribution tree. The B-bit is set to 1 as the

segment is followed by a bitstring. Therefore, the length field

with value 17 (0b00010001) is split into two 4 bit values,

i.e., BL = 1 and BSI = 1. It is followed by a 1-byte long

bitstring corresponding to the first SI. Finally, the bitstring 5

= 0b00000101 has the bits for receiver R1 and R3 set.

Additionally, if BL equals zero, the BSI can encode up to 16

(24) static multicast groups. For example, BL = 0 and BSI = 0

may be configured to trigger a local broadcast to a pre-defined

set of neighbors.

3Multiple segments if an explicit path is encoded.

E. SEET Forwarding Algorithm

We formalize the above sketched forwarding algorithm

using pseudocode. Algorithm 1 shows the forwarding logic

for SEET in pseudocode for a packet p that has been received

by a node with forwarding stack p.fs. It uses the following

methods without further formalization:

• p.fs.pop(): Removes the first segment in the forwarding

stack fs of a packet p.

• node.getNextHop(identifier): Returns the next-hop

for a node identified through the identifier.

• p.fs.pop(l): Removes the first segment and the next l

bytes in the forwarding stack fs of a packet p.

Algorithm 1: SEET forwarding algorithm.

Input: packet: p

current node: node

1 if p.fs[0].identifier == node.identifier then

/* Check if destination bit is set

*/

2 if p.fs[0].D then

3 copy packet to upper layer without SEET

header;

4

/* Check if BI bit is set */

5 if p.fs[0].BI then

6 forward packet without SEET header according

to bitstring;

7

8 return

9

10 p.fs.pop() ; /* Remove first segment */

11

12 while p.fs is not empty do

/* next-hop of the packet */

13 next_hop =
node.getNextHop(p.fs[0].identifier) ;

14

/* Keep relevant segments */

15 create packet copy pcp ;

16 pcp.fs = next pcp.l bytes ;

17

18 forward pcp to next_hop ;

19

/* Remove processed segments */

20 p.fs.pop(pcp.l) ;

21 end

22 end

23 else

/* next-hop of the packet */

24 next_hop =
node.getNextHop(p.fs[0].identifier) ;

25

26 forward p to next_hop;

27 end

The first segment in the forwarding stack (p.fs[0]) identifies

5

the next-hop in the SEET domain. If a node receives a SEET

packet, it first checks if the identifier of the first segment

identifies the node itself (line 1). If the first segment does

not identify the node, the packet is forwarded according to the

identifier to the next-hop (line 26).If the first segment identifies

the node itself, it is first checked if the destination bit (D-bit)

is set (line 2). An activated D-bit indicates that the node is

a destination in the multicast tree. In that case, the packet is

copied and passed to the upper layer without the SEET header

for native IPMC processing (line 3).

If the first segment has the B-bit set (line 5), then the

node is a penultimate hop that uses a bitstring for efficient

replication. In that case, the packet without SEET header is

forwarded to all neighbors identified through the bitstring and

the forwarding algorithm stops. If the B-bit is not set, the first

segment is removed as it has been processed (line 10).

The following steps are performed as long as the forwarding

stack is not empty. First, the next-hop of the packet is derived

through the identifier of the first segment (line 13). Afterward,

a packet copy is created that contains only the next pcp.l

bytes of the forwarding stack (lines 15-16). Then, the packet

copy is forwarded to the next_hop (line 18). Finally, the

processed segments are removed from the original packet (line

20). The forwarding algorithm stops when all segments have

been processed.

V. INTRODUCTION TO P4

We review fundamentals of P4 that are relevant for the

implementation of SEET. First, we give an overview of the

general P4 pipeline of the Intel Tofino™. Then, we discuss

the concept of recirculation and the capabilities of the packet

parser. Details of the P4 language, its ecosystem, and related

literature can be found in [26].

A. Overview

Programming protocol-independent packet processors (P4)

[25] is a programming language used to describe the pro-

cessing behavior of the data plane of compatible network

devices, so-called targets. A P4 target follows an architecture

that defines the processing pipeline and P4 primitives that are

supported. Further, architectures can define so-called externs

that extend the capabilities of the processing pipeline with tar-

get specific functions, e.g., support for cryptography. Figure 8

illustrates a simplified P4 pipeline of the Intel Tofino™ defined

through the Tofino Native Architecture (TNA).

The processing pipeline of the Intel Tofino™ is divided

into ingress processing, i.e., when a packet is received, and

egress processing, i.e., when a packet is transmitted. When

a packet is received, it is first parsed by the ingress parser, and

relevant packet headers are extracted. Afterward, the received

packet is processed according to the implemented processing

logic in the ingress control. This may involve changing header

fields, storing information in registers, and deciding which port

the packet should be forwarded to. This is typically done by

matching the previously extracted header fields against user-

defined match+action tables (MATs). After ingress processing,

In
pu

t
Po

rts Ingress
Parser

Ingress
Control

Ingress
Deparser

Traffic
Manager

Egress
Parser

Egress
Control

Egress
DeparserOu

tp
ut

Po
rts

Recirculation

Fig. 8. Visualization of a simplified Tofino Native Architecture (TNA) [27]
P4 pipeline. The pipeline consists of an ingress parser, ingress control, ingress
deparser, traffic manager, egress parser, egress control, and egress deparser.

the packet is serialized through the ingress deparser and passed

on to the traffic manager. The traffic manager is responsible for

passing the packet to the correct egress port and performing

packet replication, e.g., when a packet is cloned. Egress parser,

egress control, and egress deparser have similar functionality

as their ingress counterparts. After the egress deparser, the

packet is physically transmitted through the corresponding

egress port.

B. Packet Recirculation

P4 does not support the concept of loops. Therefore,

iterative packet processing cannot be done within a sin-

gle pipeline iteration. Iterative packet processing can be

achieved through two mechanisms, called resubmission

and recirculation. A resubmitted packet is immediately

placed at the beginning of the ingress pipeline, i.e., at the

ingress parser, after the initial ingress processing has fin-

ished. Therefore, resubmission allows to repeat the ingress

processing on a packet. Resubmission can only be invoked

during ingress processing. Further, the resubmitted packet

corresponds to the initially received packet, i.e., all changes

to the packet during the ingress processing are not applied. In

contrast, recirculation takes place after egress processing. The

packet is placed in the ingress parser as soon as the egress

processing has stopped and all changes during the ingress

and egress processing are applied. Recirculation on the Intel

Tofino™ is a passive mechanism, which means that there is

no P4 primitive that actively invokes recirculation. Ports can

be configured to operate in a recirculation mode, i.e., packets

transmitted through such a port are immediately placed in its

ingress path again. This behavior is comparable to a physical

loop. A packet that should be recirculated is forwarded through

a port that operates in recirculation mode. We refer to such

ports as recirculation ports.

C. Packet Parser

The packet parser extracts the relevant header fields used

during ingress and egress processing. Both ingress and egress

parsers are modeled as finite-state machine (FSM) and have

a limited number of bytes that can be extracted depending on

the capabilities of the ASIC. The parser divides the packet into

extracted headers and its payload. The payload is not available

during packet processing. Headers that are not extracted are

considered to be part of the packet payload.

6

The parser extracts pre-defined headers according to the

implemented FSM and the deparser emits previously extracted,

possibly modified, (and still valid) headers. Figure 9 shows the

definition of a custom header example_header and how it

is extracted and emitted during parsing.

// header definition

header example_header {

bit<8> type;

bit<16> identifier;

}

// ingress parser

state parse_example_header {

pkt.extract(hdr.example_header);

// transit to the next state

transition select(hdr.example_header.type) {

...

}

}

// ingress deparser

// "add" previously extracted header to the packet

pkt.emit(hdr.example_header)

Fig. 9. Example of a custom header that is extracted in the ingress parser
and emitted in the ingress deparser.

If a header is invalidated during ingress/egress pro-

cessing, the header is not emitted in the deparser and, conse-

quently, removed from the packet.

In addition to header extraction, P4 also supports to

advance a packet during parsing. Thereby, the advanced

bytes are removed from the packet. Figure 10 shows an

example of a parsing state that advances the packet by 10

bytes.

// ingress parser

state remove_10_bytes {

pkt.advance(8 * 10);

// transit to the next state

}

Fig. 10. Bytes can be removed by advancing the packet.

Finally, the Intel Tofino™ provides a ParserCounter

extern [27] that can be used to implement simple loops during

parsing.

We leverage the capabilities of the ParserCounter

extern, extracting (and keeping) header fields and

advancing (and removing) bytes in our SEET implemen-

tation (see Section VI) to dynamically keep a certain number

of segments and remove the remaining segments in a SEET

header.

VI. P4 IMPLEMENTATION OF SEET FOR TOFINO

In this section, we give a brief overview of the P4 imple-

mentation of SEET for the Intel Tofino™. First, we give a

high-level overview of the implementation. Then, we discuss

its parsing logic in detail. The source code of SEET is available

on GitHub4.

4https://github.com/uni-tue-kn/seet

A. Overview

Most of the packet processing logic in general P4 pipelines

is done within the so-called ingress and egress parts of the

pipeline. However, with SEET, we need to be able to split

the SEET header of a packet at an arbitrary byte position,

which is not possible during regular ingress/egress processing.

Therefore, most of the SEET processing logic is done within

the parser. We leverage the capabilities of the parser to

extract (and keep) header fields and to advance (and

remove) bytes from a packet to remove parts of the SEET

header dynamically during parsing. Figure 11 illustrates the

concept of the implementation where a SEET packet should

be split into two SEET packets.

When a SEET packet is received for the first time, it is

parsed up to the first two segments5. Then, the packet is

copied and both the original and the packet copy are equipped

with a bridge header6. The bridge header contains two values

Kbytes and Rbytes. The first value (Kbytes) specifies how

many bytes should be extracted and kept from the SEET

header. The second value (Rbytes) specifies how many bytes

should be advanced and removed from the SEET header. Then,

both packet versions are recirculated. After recirculation, both

packets are parsed before they enter the ingress section of the

pipeline. Thereby, the parser extracts the first Kbytes bytes

from the SEET header and removes the next Rbytes bytes.

In the example of Figure 11, a SEET header with length

L = X + Y should be split after X bytes. Therefore, the

first packet copy extracts the first X bytes and removes the

next Y bytes of the SEET header, and the second packet copy

extracts zero bytes and removes the next X bytes. Finally, the

first packet copy is forwarded to its intended neighbor, and

the second packet is treated as a new SEET packet for further

processing. This procedure is repeated until the whole SEET

header has been processed7.

If the first segment has the bitstring indicator (B) set,

the contained IPMC packet is replicated according to the

local bitstring to all relevant neighbors without SEET header.

Forwarding logic for bitstring-based replication is similar to

[17] [18]. If the first segment has the deliver bit (D) set, an

additional packet copy is passed to the upper layers of the

device.

B. Parsing Logic

Packets that are recirculated are received on special ports

and always carry a bridge header that contains the number

of bytes that should be extracted (Kbytes) and the number of

bytes that should be removed (Rbytes). Thereby, Kbytes is split

into two fields: tens and units.

Tens represents the number of 10 bytes that should be

extracted, and units represents the number of single bytes

5If a bitstring follows the first segment, the bitstring is parsed instead.
6A bridge header is a header that is temporarily prepended to the Ethernet

header for local processing. The header is removed when the packet is
forwarded to its final destination.

7The length field of the original first segment is used to determine whether
the whole SEET header has been processed.

7

SEET packet Parse
packet

Parser Ingress

Create packet
copy

SEET packet

SEET packet

Ingress

[X;Y]

[0;X]

Egress

Re
cir

cu
lat

ion

Extract X bytes
Advance Y bytes

Advance X bytes

Send packet
to neighbor

Ingress

SEET packet

SEET packet

[X;Y]

[0;X]

Bridge header

Fig. 11. High-level implementation overview of the SEET forwarding logic. Most of the processing logic is done within the parser.

that should be extracted. Therefore, if 85 bytes should be

extracted, tens equals eight and units equals five. We

defined seven different headers with sizes of {100, 50, 20,

10, 5, 2, 1} byte(s). The 20-byte and 2-byte headers are

implemented as header stacks of size 2, i.e., up to two 20-byte

and up to two 2-byte headers can be extracted within the same

header stack. Further, we defined 14 different parsing states

PK
i , i ∈ [1, 14] that combine the different headers to extract

i · 10 bytes depending on the value of tens. For example,

the parsing state PK
13 extracts one 100-byte header, one 20-

byte header, and one 10-byte header. Similarly, nine additional

parsing states extract up to 9 bytes depending on the number

of units. This approach can extract between 0 and 149 bytes

with at most two parse state transitions.

Afterward, the ParserCounter extern is used to advance

the packet Rbytes times by one byte. The combination of

extracted headers and the ParserCounter extern ensures

that the maximal parse depth is not exceeded.

VII. FRAGMENTATION ALGORITHM

We introduced an encoding for Segment-Encoded Explicit

Tree (SEET) in Section IV. It represents the forwarding

tree of a packet in the packet’s header. However, so far we

ignored that the maximum header size that can be processed

by forwarding nodes is limited due to technical restrictions.

Therefore, multiple packets may be required to deliver a

message to all of its receivers. We present a simple yet efficient

algorithm to fragment a message into multiple packets such

that traffic overhead is minimized. First, we give an overview

of the idea of the algorithm. Then, we present its details.

Afterwards, we discuss its runtime. Finally, we illustrate the

algorithm by a brief example.

A. Overview

The presented encoding features two major ideas for min-

imizing the representation of a multicast tree. First, a long

subpath of the path to a receiver can be bridged by a single

SEET segment. Therefore, it is reasonable to address receivers

that share long subpaths with the same packet. However, every

replication in the multicast tree requires an additional SEET

header. Thus, the number of replications in a multicast tree

should be small. Second, multiple receivers with a common

penultimate hop can efficiently be addressed by a local bit-

string. We conclude that receivers should be grouped such

that the multicast trees of the resulting packets contain few

replication nodes except for replications at the penultimate

hop.

B. The Algorithm

We propose a simple yet efficient algorithm which groups

receivers according to the above observation. Given are a

network topology, a source node, a set of receivers, and the

desired paths for all source-receiver pairs. A forwarding tree

is constructed by merging paths with common subpaths at the

last node present in both paths. Likewise, a tree and a path are

merged by adding a new branch to the tree at the last node

present on the path. The algorithm starts with an empty packet

header. A depth-first search in the forwarding tree is started

at the source node of the message. Every time a receiver r

of the message is discovered, it is added to the packet header

according to exactly one of the following cases:

1) If the header is empty, a SEET header to r is introduced.

2) If the header does not contain a SEET header with a

common subpath to r, a SEET header to r is introduced.

3) If the header contains a SEET header s to the penul-

timate hop of r, r is included in the local bitstring of

s.

4) If a SEET header s addresses a node r′ with the same

penultimate hop p as r, s is removed from the header, a

SEET header to p is introduced, and r and r′ are added

to the local bitstring of the new SEET header.

5) If the header contains some SEET header s with a

common subpath to r and none of the other cases

applies, a SEET header to the last possible replication

node of s and r is inserted before s and a SEET header

to r is introduced.

If the resulting packet header exceeds the maximum header

length, the discovered receiver is not added to the header.

Instead, the current packet is finished and the receiver is added

to a new packet header. The algorithm terminates when all

receivers are added to a packet.

C. Runtime

Let V and E be the sets of vertices and edges in the network

topology. Depth-first search has a runtime of O(|V | + |E|).

8

3

5

6
7

4

21
9

10

8

(a) After discovering node 7.

3

5

6
7

4

21
9

10

8

(b) After discovering node 8.

3

5

6
7

4

21
9

10

8

(c) After discovering node 10.

Fig. 12. Depiction of the algorithm for a message sent from node 1 to the nodes 7, 8, and 10. Red nodes are addressed by a SEET header while orange
nodes are addressed by a local bitstring.

In the worst case, every node of the topology is a receiver.

Deciding which of the above cases applies and finding the

replication point in case 5) can be done in O(|E|) if the

multicast tree of the current packet is stored as list of edges in

topological order. Thus, the runtime of the presented algorithm

is O(|V | · |E|) in the worst case. Typically, this is an heavy

overestimation as the multicast tree of the current packets

contains significantly less than |E| edges.

D. Illustrating Example

We explain the algorithm by a brief example. Figures 12(a)–

12(c) depict a network topology and three steps of the algo-

rithm. A message should be sent from node 1 to the nodes

7, 8, and 10. The nodes are discovered in ascending order.

The headers after the steps of the example are shown in

Figure 13. Initially, no receiver is covered by the packet’s

header. When node 7 is discovered in Figure 12(a), case 1)

from the algorithm’s description applies. Thus, a SEET header

with node 7 as destination is introduced. Then, node 8 is

discovered in Figure 12(b). The current header contains a

SEET header to a node with the same penultimate hop as node

8. Thus, case 4) of the algorithm’s description applies. The

SEET header to node 7 is removed and a SEET header to the

penultimate hop, node 4, is introduced instead. Nodes 7 and

8 are addressed by the local bitstring of node 4. Finally, node

10 is discovered in Figure 12(c). The path to node 10 shares a

common subpath with the path of the already existing SEET

header to node 4. Thus, case 5) of the algorithm’s description

applies. The latest possible replication node to reach node 4

and node 10 is node 3. Thus, a SEET header to node 3 is

introduced which contains SEET headers to node 4 and node

10 recursively.

Eventually the header will exceed the size limit in larger

topologies with more receivers than in the presented example.

The header is considered full in this case and a new empty

header is the new working header. The depth-first search

proceeds with the last discovered node and the algorithm

terminates when all receivers were discovered.

VIII. EVALUATION

We evaluate the encoding and the message fragmentation

algorithm. To that end, we compare the presented approach

7 Payload

4 Payload7+8

4 Payload7+83 10

Fig. 13. Headers aftet discovering nodes 7, 8, and 10 in the example. SEET
headers are depicted red while local bitstrings are depicted orange. Numbers
indicate the destinations of the respective header.

with traditional IPMC and BIER. First, we introduce the

methodology of the evaluations. Then, we motivate the frag-

mentation algorithm by evaluating the header sizes imposed by

SEET. Afterward, we evaluate the relative overhead of SEET

and BIER with respect to packet transmissions compared to

IPMC. Finally, we present results regarding the overall traffic

transmitted in the network.

A. Methodology

We give the details of the evaluation setup such as network

topology, traffic model, and evaluation metrics.

1) Network Topology: We sampled 20 graphs with 1024

nodes according to the Waxman model [28] such that the

average node degree is 4. The nodes of these graphs represent

the core nodes of a distribution network. For each core node,

we added 16 end systems and connected them to the respective

core node. Thus, the resulting network topologies contain

(16 + 1) · 1024 = 17408 nodes and (16 + 2) · 1024 = 18432
links.

2) Traffic Model: For every network topology n and num-

ber of receivers r ∈ {1, 2, 4, ..., 16384}, we sampled 20 sets

of r receivers from the set of end systems of n. For every

such set of receivers R, a message is send from every end

system to all end systems in R. The same sets are used to

evaluate SEET, BIER, and IPMC. We remark that randomized

sets of receivers constitute a worst case for SEET as the local

bitstrings cannot be leveraged for leafs of different core nodes.

9

3) Metrics: We calculate results with three metrics: maxi-

mum header size, relative packets, and relative traffic.

a) Maximum header size: The maximum header size is

the number of bytes required to encode a set of receivers,

excluding headers of lower layers and IP headers.

b) Source packets: The source packets metric captures

the load imposed to source nodes due to packet construction.

It is the number of packets sent per source node averaged

over all end systems. We remark that IPMC requires exactly

one source packet regardless the the set of receivers. Thus, all

results can be considered to be relative to IPMC.

c) Relative packets: The relative packets metric repre-

sents the overhead of individual packet hops compared to

IPMC. Let pIPMC be the number of packet hops required

to sent a message from some source node to some set

of receivers via IPMC. If an alternative multicast approach

A ∈ {BIER, SEET} requires pA packet transmissions for the

same source node and set of receivers, the relative packets

metric is formally defined as pA

pIPMC
. For every number of

receivers r, we report results averaged over all source nodes,

sets of receivers with size r, and network topologies for the

maximum header size and the relative packets metrics.

d) Relative traffic: The relative traffic metric captures the

overhead of data transmitted in the network for a given set of

receivers. Thus, it is the sum of the sizes of all packet hops

for all source end systems, including payload and IP headers,

relative to IPMC. We assume a payload of 500 B as empirical

studies suggest this is the average payload of IP packets in

the Internet [29]. For every number of receivers r, we report

results averaged over all network topologies and receiver sets

of size r.

B. Header Size

The header size of IPMC and BIER packets is predefined

and does not depend on the set of receivers. This is not the case

for SEET due to its tree engineering capabilities. Figure 14

depicts the average initial header size resulting from sending

a message to varying numbers of receivers.

Reasonable header size

0

2000

4000

6000

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

receivers

M
a
x
.
h
e
a
d
e
r

s
iz

e
 (

B
)

SEET

Fig. 14. Average initial header size for varying numbers of receivers. The
dashed line indicates the maximum header size that can be processed by the
presented implementation.

We observe a fast increase of the header size for moderate

numbers of receivers (r ≥ 26). With an increasing number

of receivers, the header size reaches a plateau eventually. The

reason for this behavior is the following. If two receivers are

not leave of the same core node by chance, separate SEET

headers are required to reach them. With an increasing number

of receivers, chances are high that every core node is already

included in the header. Thus, additional receivers can be added

by simply flipping the corresponding bits in the local bitstrings

of the SEET headers without increasing its sizes.

The dashed line indicates the maximum header size that can

be processed by reasonable forwarding hardware. With such a

header limit, only ∼ 32 receivers can be addressed by a single

packet in the case of uncorrelated receivers. We conclude

that the message fragmentation algorithm from Section VII

is necessary under realistic conditions. In contrast, BIER can

encode 2048 receivers with the same header limit. Therefore,

SEET is less efficient with respect to encoding denseness.

However, SEET headers decrease in length on their path. Thus,

no conclusions regarding the overall traffic volume can be

drawn.

C. Source Packets

We regard header sizes of more than 256 MB as infea-

sible for practical applications due to hardware restrictions

ins forwarding devices. Thus, packets with more than 26

receivers must be split into multiple packets. However, the

fragmentation of receivers into subsets matters with respect to

the metrics from Section VIII-A3. We used the fragmentation

algorithm of Section VII for this purpose. The fragmenta-

tion of receivers into subsets results in multiple packets per

message send from an end system which imposes additional

overhead.

Figures 16(a)–16(c) depict the average number of packets

sent per end system. We observe that the number of source

packets increases for larger sets of receivers (Figure 16(a)).

This is consistent with the results from Section VIII-B. In the

case of BIER (Figure 16(b)) the number of source packets

saturates for rather small receiver sets and does not increase

further. This is due to the design of BIER as only a single

source packet per SD is required. Thus, the maximum number

of source packets is sent when at least one receiver per SD is

addressed.

Comparing SEET directly to BIER (Figure 16(c)), we see

that SEET sends several times more packets than BIER in

the case of many receivers. A BIER packets uses only a

single bit in its header per receiver. While SEET also encodes

some receivers with individual bits, replication nodes must be

encoded with identifiers and subheaders. This in turn results

in less receivers per header or more packets sent. However, in

the case of small receiver subsets, SEET requires less source

packets than BIER. This is due to BIER sending one packet

per SD while SEET can address these receiver sets with a

small number of packets.

D. Packet Overhead

We showed that the SEET encoding is less efficient than

BIER with respect to the number of receivers addressable with

a single packet. However, the forwarding tree of a packet with

10

0

100

200

300

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

receivers

R
e

l.
 s

o
u

rc
e

 p
a

c
ke

ts 32 B
64 B
256 B

(a) SEET relative to IPMC.

20

40

60

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

receivers

R
e

l.
 s

o
u

rc
e

 p
a

c
ke

ts 32 B
64 B
256 B

(b) BIER relative to IPMC.

0

1

2

3

4

5

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

receivers

R
e

l.
 s

o
u

rc
e

 p
a

c
ke

ts 32 B
64 B
256 B

(c) SEET relative to BIER.

Fig. 15. Average number of source packets.

1.00

1.25

1.50

1.75

2.00

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

receivers

R
e

l.
 a

d
d

it
io

n
a

l
p

a
c
ke

ts

32 B
64 B
128 B
256 B

(a) SEET relative to IPMC.

1.00

1.25

1.50

1.75

2.00

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

receivers

R
e

l.
 a

d
d

it
io

n
a

l
p

a
c
ke

ts

32 B
64 B
128 B
256 B

(b) BIER relative to IPMC.

0.6

0.8

1.0

1.2

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

receivers

R
e

l.
 p

a
c
ke

ts

32 B
64 B
128 B
256 B

(c) SEET relative to BIER.

Fig. 16. Relative numbers of packet transmissions for varying numbers of receivers and different maximum header sizes.

a small number of receivers contains less hops. Additionally,

BIER and SEET require multiple packets for large sets of

receivers which results in redundant packet transmissions

compared to IPMC. Thus, it is not clear whether the remarks

regarding encoding efficiency translate to the number of packet

transmissions.

Figures 16(a)–16(b) depict the relative packet overheads of

BIER and SEET for different maximum header sizes compared

to IPMC. We observe that SEET (Figure 16(a)) and BIER

(Figure 16(b)) benefit from larger headers as more receivers

can be encoded within a single packet. Consequently, less

additional packets need to be sent.

Further, the relative packet overhead of BIER and SEET

compared to IPMC decreases for large sets of receivers. If

a core node is already receiving a BIER or a SEET packet,

forwarding it to an additional leaf of this core node requires

only a single hop. The same does hold for IPMC which implies

that the relative packet numbers decline.

Figure 16(c) compares SEET directly to BIER. We see that

SEET requires less or an equal number of packet transmissions

than BIER. At first this result seems counterintuitive as BIER

can address more receivers with a single packet. However,

BIER subdomains are statically configured and may be sub-

optimal from the perspective of some source nodes. In case

of rather small sets of receivers BIER requires an individual

packet per subdomain that contains at least one receiver. In

contrast, SEET packets are individually optimized for every

source node and set of receivers. Thus, a single packet is

sufficient in many cases.

E. Traffic Overhead

The number of packets is an important metric for the

processing load of forwarding hardware. Switching ASICs

are limited by the number of packets that can be processed

per second. However, network congestion and quality of

service depend on the overall amount of traffic that must be

transmitted. The total traffic amount depends on the number of

individual packet hops and the size of a packet. Thus, there is

a non-trivial tradeoff between reducing the number of packet

hops or the header size. We compare SEET and BIER with

respect to this tradeoff.

Figure 17 shows the traffic overhead of BIER and SEET

relative to IPMC with small and large headers.

1.00

1.25

1.50

1.75

2.00

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

receivers

R
e
l.
 o

ve
ra

ll
tr

a
ff
ic

 32 B
256 B

BIER
SEET

Fig. 17. Relative traffic of BIER and SEET for varying numbers of receivers
and different maximum header sizes.

First, we observe a similar trend as in Figures 16(a)–16(b).

With an increasing number of receivers, the relative overall

11

traffic increases until almost all core nodes are already part

of the distribution tree. Then, additional receivers can be

addressed by simply flipping a bit in a local bitstring. Further,

we observe that SEET results in less traffic overhead than

BIER. While BIER is more efficient in encoding receivers

into a packet’s header, the size of a BIER header does not

change along the packet’s path. In addition, many bits of the

header bits are set to 0, even for large sets of receivers. The

topology under consideration consists of 16384 end systems.

Thus, even with 8192 receivers, half of the header space is

not efficiently used and only filled with zeros.

In contrast, these drawbacks of BIER do not apply for

SEET. SEET can leverage the whole header limit at every

packet to encode the distribution tree. Further, the size of the

SEET header reduces at every replication node, and only the

relevant parts are relayed to the respective subtree. Nodes that

are not receivers of a packet are not represented in the header.

F. Performance

We measure the number of multicast groups that can be

fragmented into packet headers per second. The measurement

was performed on an AMD EPYC 7543 @ 2.8 GHz with

32 cores. The machine is equipped with 128 GB of RAM.

However, the computation requires only 110 MB of RAM for

all 32 threads combined. The algorithms and the evaluations

were programmed in Rust. Figure 18 depicts the number of

multicast groups that are processed per second. Even in the

case of 16384 receivers, the presented approach constructed

packets for more than 1000 multicast groups per second. Over-

all, runtimes increase linearly with the number of receivers in

the evaluation scenario. Thus, we conclude that SEET and the

fragmentation algorithm are suitable for applications with high

multicast turnover rates.

0

10000

20000

30000

40000

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

receivers

G
ro

u
p
s
/s

SEET

Fig. 18. Number of multicast groups that can be fragmented into packet
headers per second.

IX. CONCLUSION

In this work, we proposed a novel stateless multicast pro-

tocol denoted as Segmented-Encoded Explicit Trees (SEETs).

SEET encodes the forwarding tree of a packet in the packet’s

header. Thus, SEET is an enabler for tree engineering. How-

ever, constructing a SEET packet is complex. The encoding

of large forwarding trees results in large packet headers. We

developed an algorithm to fragment the set of receivers of

a packet such that the resulting subsets can addressed by a

single packet, respectively. We employed this algorithm to

compare BIER and SEET in a quantitative comparison study.

The results showed that SEET results in less source packets,

packet transmissions, and overall traffic compared to BIER.

Thus, we conclude that SEET is a viable alternative for BIER.

However, the comparison only featured tree-like hierarchical

topologies with high fan-outs before leaf nodes. There is a

variant of BIER which features tree-engineering denoted as

BIER-TE. Unfortunately, the scalabiltiy of BIER-TE has not

been evaluated so far and there is no partitioning algorithm for

BIER-TE in the literature. Future works may propose such an

algorithm and employ it to compare SEET with BIER-TE.

REFERENCES

[1] N. K. Nainar, R. Asati, M. Chen, X. Xu, A. Dolganow, T. Przygienda,
A. Gulko, D. Robinson, V. Arya, and C. Bestler, “BIER Use Cases,”
Internet Engineering Task Force, Internet-Draft, Sep. 2020, work in
Progress. https://datatracker.ietf.org/doc/draft-ietf-bier-use-cases/12/.

[2] I. Wijnands, E. C. Rosen, A. Dolganow, T. Przygienda, and S. Aldrin,
“RFC8279: Multicast Using Bit Index Explicit Replication (BIER),”
Internet Engineering Task Force, Request for Comments, Nov. 2017,
https://www.rfc-editor.org/info/rfc8279.

[3] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and
R. Shakir, “Segment Routing Architecture,” RFC 8402, Jul. 2018.
[Online]. Available: https://www.rfc-editor.org/info/rfc8402

[4] T. Eckert, M. Menth, X. Geng, X. Zheng, R. Meng, and
F. Li, “Recursive BitString Structure (RBS) Addresses for BIER
and MSR6,” Internet Engineering Task Force, Internet-Draft draft-
eckert-bier-rbs-00, Oct. 2022, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-eckert-bier-rbs/00/

[5] S. E. Deering, “Host extensions for IP multicasting,” RFC 988, Jul.
1986. [Online]. Available: https://www.rfc-editor.org/info/rfc988

[6] B. Fenner, M. J. Handley, H. Holbrook, I. Kouvelas, R. Parekh, Z. J.
Zhang, and L. Zheng, “Protocol Independent Multicast - Sparse Mode
(PIM-SM): Protocol Specification (Revised),” RFC 7761, Mar. 2016.
[Online]. Available: https://www.rfc-editor.org/info/rfc7761

[7] S. Islam, N. Muslim, and J. W. Atwood, “A Survey on Multicasting
in Software-Defined Networking,” IEEE Communications Surveys &

Tutorials, vol. 20, pp. 355–387, 2018.
[8] Z. AlSaeed, I. Ahmad, and I. Hussain, “Multicasting in Software Defined

Networks: A Comprehensive Survey,” Journal of Network and Computer

Applications, vol. 104, pp. 61–77, 2018.
[9] A. Iyer, P. Kumar, and V. Mann, “Avalanche: Data Center Multicast

using Software Defined Networking,” in International Conference on

COMmunication Systems and NETworks (COMSNETS), 2014.
[10] W. Cui and C. Qian, “Scalable and Load-Balanced Data Center Multi-

cast,” in IEEE Globecom, 2015.
[11] D. Voyer, C. Filsfils, R. Parekh, H. Bidgoli, and Z. J. Zhang,

“SR Replication segment for Multi-point Service Delivery,” Internet
Engineering Task Force, Internet-Draft draft-ietf-spring-sr-replication-
segment-15, Jun. 2023, work in Progress. [Online]. Available: https:
//datatracker.ietf.org/doc/draft-ietf-spring-sr-replication-segment/15/

[12] M. Shahbaz, L. Suresh, J. Rexford, N. Feamster, O. Rottenstreich, and
M. Hira, “Elmo: Source Routed Multicast for Public Clouds,” in ACM

SIGCOMM, 2019, p. 458–471.
[13] P. Jokela, A. Zahemszky, S. Arianfar, P. Nikander, and C. Esteve,

“LIPSIN: Line speed Publish/Subscribe Inter-Networking,” in ACM

SIGCOMM, Barcelona, Spain, Aug. 2009.
[14] M. J. Reed, M. Al-Naday, N. Thomos, D. Trossen, G. Petropoulos,

and S. Spirou, “Stateless Multicast Switching in Software Defined Net-
works,” in IEEE International Conference on Communications (ICC),
May 2016, pp. 1–7.

[15] Z. Chen, J. Huang, Q. Wang, J. Liu, Z. Li, S. Zhou, and Z. He, “MEB:
an Efficient and Accurate Multicast using Bloom Filter with Customized
Hash Function,” in Asia-Pacific Workshop on Networking, 2023, pp.
157—-163.

[16] D. Merling, S. Lindner, and M. Menth, “P4-Based Implementation of
BIER and BIER-FRR for Scalable and Resilient Multicast,” Journal of

Network and Computer Applications, vol. 169, Nov. 2020.
[17] ——, “Hardware-Based Evaluation of Scalable and Resilient Multicast

With BIER in P4,” IEEE Access, vol. 9, pp. 34 500–34 514, Feb. 2021.

12

[18] S. Lindner, D. Merling, and M. Menth, “Learning Multicast Patterns for
Efficient BIER Forwarding with P4,” IEEE Transactions on Network

and Service Management, vol. 20, no. 2, pp. 1238–1253, Jun. 2023.
[19] D. Merling, T. Stüber, and M. Menth, “Efficiency of BIER Multicast in

Large Networks,” IEEE Transactions on Network and Service Manage-

ment, 2023.
[20] T. Eckert, M. Menth, and G. Cauchie, “Tree Engineering for Bit Index

Explicit Replication (BIER-TE),” RFC 9262, Oct. 2022. [Online].
Available: https://www.rfc-editor.org/info/rfc9262

[21] L. Lu, Q. Li, D. Zhao, Y. Yang, Z. Luan, J. Zhou, Y. Jiang, and M. Xu,
“Hawkeye: A Dynamic and Stateless Multicast Mechanism with Deep
Reinforcement Learning,” in IEEE Infocom, May 2023.

[22] Y. Liu, J. Xie, X. Geng, and M. Chen, “RGB (Replication
through Global Bitstring) Segment for Multicast Source Routing over
IPv6,” Internet Engineering Task Force, Internet-Draft draft-lx-msr6-
rgb-segment-04, Mar. 2023, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-lx-msr6-rgb-segment/04/

[23] C. Filsfils, P. Camarillo, J. Leddy, D. Voyer, S. Matsushima, and Z. Li,
“Segment Routing over IPv6 (SRv6) Network Programming,” RFC
8986, Feb. 2021. [Online]. Available: https://www.rfc-editor.org/info/
rfc8986

[24] K. Diab and M. Hefeeda, “Yeti: Stateless and Generalized Multicast
Forwarding,” in USENIX Syposium on Networked Systems Design &

Implementation (NSDI), Apr. 2022, pp. 1093–1114.
[25] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-Independent Packet Processors,” ACM SIG-

COMM Computer Communication Review, vol. 44, no. 3, 2014.
[26] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger,

R. Frank, and M. Menth, “A survey on data plane programming with
P4: Fundamentals, advances, and applied research,” Journal of Network

and Computer Applications, vol. 212, 2023.
[27] Intel, “P416 intel tofino native architecture - public version,” https://

github.com/barefootnetworks/Open-Tofino, 2021.
[28] B. Waxman, “Routing of multipoint connections,” IEEE Journal on

Selected Areas in Communications, vol. 6, pp. 1617–1622, 1988.
[29] F. Liu et al., “The packet size distribution patterns of the typical

internet applications,” in IEEE International Conference on Network

Infrastructure and Digital Content, 2012, pp. 325–332.

13

Publications

3 Accepted Manuscripts (Additional Content)

3.1 Comparison of Forecasting Methods for Energy Demands in Single

Family Homes

226

Comparison of Forecasting Methods for Energy Demands in Single

Family Homes

Thomas Stüber, Ricarda Hogl, Bernd Thomas, Michael Menth
University of Tuebingen, Tuebingen, Germany, {thomas.stueber, ricarda.hogl, menth}@uni-tuebingen.de
Reutlingen University, Reutlingen, Germany, bernd.thomas@reutlingen-university.de

Abstract

The integration of renewable energy sources in single family homes is challenging. Advance knowledge of the demand of
electrical energy, heat, and domestic hot water (DHW) is useful to schedule projectable devices like heat pumps. In this
work, we consider demand time series for heat and DHW from 2018 for a single family home in Germany. We compare
different forecasting methods to predict such demands for the next day. While the 1-day-back forecast method led to the
prediction of heat demand, the N-day-average performed best for DHW demand when Unbiased Exponentially Moving
Average (UEMA) is used with a memory of 2.5 days. This is surprising as these forecasting methods are very simple and
do not leverage additional information sources such as weather forecasts.

1 Introduction

Energy optimization for single family homes requires pre-
dictions of future energy demands, typically for heat, do-
mestic hot water (DHW), and electrical power. An exam-
ple is the control of a heat pump which is fueled by the
power grid and photovoltaic energy from the roof top. The
latter should be well utilized, but switching cycles for the
heat pump must be kept low to ensure a long lifetime of the
heat pump. This optimization problem requires knowledge
of the energy demand at least one day in advance.
While it is easy to predict energy demands for large neigh-
borhoods consisting of hundreds of units, it is harder for
single family homes. In this work, we evaluate the appro-
priateness of different forecasting methods for this task.
We utilize them to create models from historical energy
data of a single family home and predict those demands
based on these models. We compare the suitability of the
forecasting approaches by the error between their predic-
tions and the historical data.
The paper is structured as follows. Section 2 gives an
overview of related work. In Section 3 we describe the
studied forecasting methods. Section 4 presents and inves-
tigates the data set. An evaluation of the forecasting meth-
ods is presented in Section 5. We conclude this work in
Section 6.

2 Related Work

Aydinalp et al. developed and evaluated a neural net-
work approach to model residential energy consumption
in their paper [5]. They adopted their model to heat and
DHW demand and evaluated the accuracy of the predic-
tions. They focused on the construction of a good neural
network model and on features, but did not compare differ-
ent approaches.
Lomet et al. [3] investigated the DHW consumption of sin-

gle family homes. They analysed real data from such hous-
ing units and developed an ARMA model to forecast DHW
demands. Their results indicate that this type of model
could be suitable to forecast such demands, but they have
not performed evaluations to compare different forecasting
approaches for DHW demands.
Idowu et al. [4] analysed DHW and heat demand for multi-
family apartments. Based on their analysis, forecasts were
computed using supervised machine learning approaches.
They concluded that using super-vector regression leads
to least errors, but their evaluation lacks comparison with
simpler approaches like 1-day-back.
Idowu et al. [6] also evaluated and compared more recently
multiple advanced machine learning approaches to forecast
heat and DHW demand in residential and industrial build-
ings. Their evaluations show that support vector machines
are well suited to forecast both DHW and heat. However,
also these evaluations lack inclusion of simpler approaches
like 1-day-back.

3 Forecasting Methods

In this section, we give a short primer on the studied fore-
casting methods. Forecasting predicts values for a primary
time series. Historical data for that time series may be used
to estimate most probable future values. Formally, fore-
casting the t-th value ŷt of a known discrete time series
y0,y1, ..,yt−1 is the computation of some forecasting func-
tion

ŷt = F(y0,y1, ..,yt−1).

Sometimes forecasting is not only based on historical data
of the primary time series but also on a secondary time se-
ries x0,x1, ...,xt which is correlated with the primary time
series. Thereby, x0,x1, ...,xt−1 is historical and xt is pre-
dicted. For example, the demand for heat (primary time
series) may strongly correlate with the outside temperature

Internationaler ETG−Kongress 2021, 18.−19.05.2021 in Wuppertal

© 2021 VDE VERLAG GMBH

(secondary time series). Then, the secondary time series
helps to forecast the desired value ŷt of the primary time
series:

ŷt = F(y0,y1, ..,yt−1,x0, ...,xt).

Different forecasting methods can be used to compute ŷt .
In the following, we describe several simple forecasting
methods that we evaluate later in this paper.

3.1 N-Day-Back

The N-day-back forecast method utilizes the time time se-
ries of the Nth preceding day (historical data) as forecast
of the next day. Let n be the number of data points per
day. Then the forecasting function can be described as
F(y0,y1, ...,yt−1) := yt−(N·n). A special case is the 1-day-
back forecast method which uses the historical time series
of the previous day as forecast of the next day.

3.2 N-Day-Average

For the N-day-average method, we take the average de-
mand of N preceding days as a demand forecast of the next
day. Thereby, we utilize two different averaging methods
presented in [1].

3.2.1 Window Moving Average (WMA)

WMA defines a window containing the last W data points
and computes their arithmetic mean. Thus, W is an integral
value. In this work, we apply WMA to daily demands and
compute the average demand of the last W = N days. A
memory M = W ·∆t can be defined where ∆t is the inter-
sample distance, i.e., a day in our context. The memory
expresses the time over which a sample is remembered in
the moving average.

3.2.2 Unbiased Exponential Moving Average

(UEMA)

UEMA can be calculated by At =
St
Nt

where the weighted
sum St and the weighted number Nt are recursively defined
as

St =

{

X0 t = 0

a ·St−i +Xt otherwise

Nt =

{

1 t = 0

a ·Nt−i +1 otherwise.

Past values of the original time series Xt contribute to all
future average values At . However, their impact decreases
exponentially over time. The parameter a determines the
memory of the moving average by M = ∆t

1−a
. Again, the

memory cannot be smaller than the inter-sample distance
∆t. However, any larger memory M is possible with a =
1− ∆t

M
. In the context of N-day-average we set the memory

to M = N. Therefore, N does not need to be an integral
value if UEMA is used for averaging.

3.3 Linear Regression (LR)

LR [7] describes the dependency of the primary time series
y0,y1, ...,yt−1 on the secondary time series x0,x1, ...,xt with

a linear function f (x) := β0 +β1 · x. This may be useful if
both time series are highly correlated. The forecast value ŷt

is then the mapping of xt under this linear function. Mostly
LR finds a best-fit line that minimizes the sum of squared
distances for a set of data points (xi,yi)0≤i<n. This line is
efficient to compute by a compact formula. However, our
comparative metric in Section 5 is the absolute average er-
ror 1

n ∑0≤i<n | f (xi)− yi| between the best-fit line f and a
set of data points. Therefore, we prefer a simple numeri-
cal method based on nested intervals to derive appropriate
parameters β0 and β1 that minimizes 1

n ∑0≤i<n | f (xi)− yi|.

3.4 Bounded LR (BLR)

As the LR-based best-fit line yields negative heat demands
for high outside temperatures in Section 4.1, we propose
BLR. It utilizes a best-fit line, but yields zero instead of
negative values. Also for BLR we compute the parame-
ters β0 and β1 for a best-fit line by minimizing the sum of
absolute errors.

3.5 Daytime-Specific BLR

We will first apply LR and BLR based on entire days, i.e.,
we compute a best-fit line that takes the average daily tem-
perature as input and yields the daily energy demand as
output. As an alternative, we will apply LR and BLR based
on the average temperature of the daily time intervals 0-6,
6-12, 12-18, and 18-24 o’clock and predict their energy de-
mands. Finally, we sum up the predicted energy demands
over a day to obtain the daily energy demand.

3.6 Smoothing

The dependency of the forecast time series on the predic-
tion time series may be time-delayed. For example, the
temperature in a building does not fall immediately when
it becomes cool outside, in particular in case of good insu-
lation. As a consequence, average temperatures smoothed
over time may yield better forecasts for energy demands.
Therefore, we propose to apply the LR and BLR methods
based on smoothed historical data. We use UEMA (see
Section 3.2.2) to smooth the data series, i.e., we use the
average value At instead of Xt .

Smoothing variant
Time series

Primary Secondary
no-smoothing original original
x-smoothing smoothed original
y-smoothing original smoothed
xy-smoothing smoothed smoothed

Table 1 The smoothing variant determines whether
model parameters are calculated based on original or
smoothed times series.

We now explain several smoothing variants for LR/BLR
forecasting. Secondary and/or primary historical time se-
ries may be smoothed for forecasting. The linear functions
for the LR/BLR model are computed based on either orig-
inal or smoothed time series. Table 1 shows 4 variants and

Internationaler ETG−Kongress 2021, 18.−19.05.2021 in Wuppertal

© 2021 VDE VERLAG GMBH

absolute and relative average errors.
The N-day-back and the N-day-average methods can be
applied to the data set just after aggregating the demands
for entire days.
Parameter fitting is not needed for N-day-back and for N-
day-average. This is different for LR and BLR. For these
methods we derived the best-fit lines based on the entire
data set as presented in Section 4. We use it to predict
the demand for a specific day based on its average outside
temperatures. That is, we predict the data based on which
we calibrated the LR and BLR model. We do that due to
lack of sufficient data. This is not feasible in practice and
rather overrates the quality of the forecast. Nevertheless,
we will see that these methods are outperformed by simpler
methods.
For N-day-back, N-day-average, or smoothing variants,
preceding days may be missing at the beginning of the year.
Then we take the days at the end of the year as a substitute
in a cyclic manner.

5.2 Heat

We consider forecast for heat demands. Table 2 compiles
the absolute and relative average forecast errors to quantify
the accuracy of various forecasting methods.

Forecast method Abs. avg.
error (kWh)

Rel. avg.
error (%)

1-day-back 4.303 15.9
3-day-back 7.723 28.5
7-day-back 9.692 35.7

Linear regression 6.226 22.9
Bounded LR 5.232 19.3

Daytime-sp. BLR 5.375 19.8

Table 2 Absolute and relative average errors for forecasts
of daily heat demands; the average demand is 27.15 kWh.

The 1-day-back method leads to the least forecast errors,
followed by BLR and the daytime-specific BLR method.
The other methods cause significantly larger forecast er-
rors. The 7-day-back method performs particularly badly.
We tested that method as we suspected that weekly pat-
terns in human behaviour could have a measurable impact
on heat demand.
BLR clearly outperforms linear regression because it does
not forecast negative values for high outside temperatures.
For daytime-specific BLR we obtained daytime-specific
best-fit lines with the parameters given in 3. However,
daytime-specific BLR is worse than normal BLR so that
its complexity does not pay off.

Interval β0 β1

0-6 14.2 -1.203
6-12 25.5 -1.269
12-18 27.8 -1.536
18-0 6.2 -0.408

Table 3 Parameters for best-fit lines for BLR-based
daytime-specific forecasts.

We consider N-day-average whose forecast errors are com-
piled in Table 4, both for WMA and for UEMA as averag-
ing methods. N-day-average with a memory of a single day
yields 1-day-back, therefore, we see the same errors. Val-
ues for WMA can be computed only for memories that are
multiples of entire days. Increasing the memory degrades
predictions of heat demands both for WMA and UEMA so
that N-day-average is not useful compared to 1-day-back.

Memory WMA UEMA
(d) Abs.

avg.
error

(kWh)

Rel.
avg.
error
(%)

Abs.
avg.
error

(kWh)

Rel.
avg.
error
(%)

1 4.303 15.9 4.303 15.9
1.5 - - 4.682 17.2
2 4.990 18.4 5.053 18.6

2.5 - - 5.362 19.8
3 5.579 20.6 5.618 20.7

Table 4 Absolute and relative average errors for forecasts
of daily heat demand using the N-day-average method
with WMA and UEMA.

We investigate the potential of the smoothing variants
mentioned in Table 1 to improve forecasts. For no-
smoothing and y-smoothing, we take the outside tempera-
tures of the same day in the data set as x-input for the BLR
model. In case of x-smoothing and xy-smoothing, we com-
pute a time series for smoothed temperatures in 2018 and
use the smoothed temperature of the corresponding day as
x-input for the BLR model.
Table 5 provides forecast results for different memories. A
memory of 1 day means no smoothing. We observe that no
smoothing variant improves the forecast of the simple BLR
method. In contrast, increasing memory degrades forecast-
ing results.

Memory
(d)

x-
smoothing

(%)

y-
smoothing

(%)

xy-
smoothing

(%)
1 19.3 19.3 19.3
2 19.4 19.4 19.4
3 19.8 19.8 19.5
4 20.1 20.0 19.5

Table 5 Relative error for the forecasts of daily heat de-
mand; different memories are considered for x, y, and
xy-smoothing in combination with BLR.

5.3 Domestic Hot Water (DHW)

We consider forecast of DHW demands. Table 6 compiles
the absolute and relative average errors for various fore-
casting methods. Again, the 1-day-back method is best,
followed by LR. The 3- and 7-day-back methods do not
perform well. As the best-fit line for LR does not yield
negative values, there is no need for BLR as LR and BLR
lead to the same best-fit line under such conditions.

Internationaler ETG−Kongress 2021, 18.−19.05.2021 in Wuppertal

© 2021 VDE VERLAG GMBH

Forecast method Abs. avg.
error (kWh)

Rel. avg.
error (%)

1-day-back 1.867 33.0
3-day-back 2.222 39.3
7-day-back 2.437 43.1

Linear regression 2.091 37.0

Table 6 Absolute and relative average error for forecasts
of daily DHW demand; the average demand is 5.653kWh.

We have also experimented with all the presented smooth-
ing variants but without any improvement up to large mem-
ories of 84 days.
Finally, we consider N-day-average as forecasting method.
Table 7 presents the absolute and relative average errors
for this method. The forecast errors depend on the spe-
cific averaging method, i.e., WMA or UEMA, and the cho-
sen memory. UEMA yields better forecasts than WMA
and the best memories are 2.5 days for UEMA and 3 days
for WMA. Both methods clearly outperform even 1-day-
back so that UEMA leads to the best forecasting results for
DHW.

Memory WMA UEMA
(d) Abs.

avg.
error

(kWh)

Rel.
avg.
error
(%)

Abs.
avg.
error

(kWh)

Rel.
avg.
error
(%)

1 1.867 33.0 1.867 33.0
1.5 - - 1.702 30.1
2 1.740 30.8 1.672 29.6

2.5 - - 1.666 29.5
3 1.724 30.5 1.678 29.7

3.5 - - 1.692 29.9
4 1.751 31.0 1.708 30.2

4.5 - - 1.721 30.4
5 1.757 31.1 1.733 30.6
6 1.777 31.4 1.756 31.1
7 1.793 31.7 1.774 31.4

14 1.936 34.3 1.871 33.1
21 1.936 34.3 1.935 34.2
28 1.967 34.8 2.002 35.4

Table 7 Absolute and relative average error for the fore-
casts of daily DHW demand using the N-day-average
method with WMA and UEMA.

6 Conclusion

We compared different methods to predict the demand for
heat and domestic hot water (DHW) for the next day in a
single family home.
To predict heat demand, we obtained the best results with
the very simple 1-day-back method. It clearly outper-
formed linear regression (LR), bounded LR (BLR), and
daytime-specific BLR. This is surprising as 1-day-back
does not take advantage of available weather forecast,
which is in contrast to some other methods. Averaging

methods led to worse results. Smoothing-based BLR could
not achieve any improvement with regard to BLR.
To forecast DHW demand, 1-day-back again outperformed
LR including smoothing methods. However, the N-day-
average led to even better results for small memories.
We obtained the best forecasts for the UEMA averaging
method with a memory of 2.5 days. This is again surprising
as N-day-average does not leverage additional information
like weather forecast, either.
Although we have identified best forecast methods for heat
and DHW including parameters, we point out that these re-
sults have been gained from a single single family home in
2018. It would be helpful to validate our findings on a
larger data set, over a longer duration, and for houses with
different energy demands. Moreover, it would be interest-
ing to consider aggregated demands from multiple houses
or blocks of flats. The use of machine learning approaches
is certainly also worthwhile to study provided sufficient
data is available.

7 Literatur

[1] M. Menth and F. Hauser, “On Moving Averages, His-
tograms and Time-Dependentrates for Online Mea-
surement”, in Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineer-
ing, 2017, pp. 103–114.

[2] J. Ferrero Bermejo, J. F. Gomez Fernandez, F. Oliven-
cia Polo, and A. Crespo Márquez, “A Review of the
Use of Artificial Neural Network Models for Energy
and Reliability Prediction. A Study of the Solar Pv,
Hydraulic and Wind Energy Sources”, Applied Sci-
ences, vol. 9, no. 9, pp. 1844-1862, 2019.

[3] A. Lomet, F. Suard, and D. Chèze, “Statistical Model-
ing for Real Domestic Hot Water Consumption Fore-
casting", Energy Procedia, vol. 70, pp. 379–387, 2015.

[4] S. Idowu, S. Saguna, C. Åhlund and O. Schelén, "Fore-
casting Heat Load for Smart District Heating Systems:
A Machine Learning Approach", 2014 IEEE Inter-
national Conference on Smart Grid Communications
(SmartGridComm), Venice, 2014, pp. 554-559.

[5] M. Aydinalp, V. Ismet Ugursal, and A. S. Fung, “Mod-
eling of the Space and Domestic Hot-Water Heating
Energy-Consumption in the Residential Sector Using
Neural Networks”, Applied Energy, vol. 79, no. 2, pp.
159–178, 2004.

[6] S. Idowu, S. Saguna, C. Åhlund, and O. Schelén, “Ap-
plied Aachine Learning: Forecasting Heat Load in
District Heating System”, Energy and Buildings, vol.
133, pp. 478–488, 2016.

[7] R. J. Hyndman and G. Athanasopoulos, “Forecasting:
Principles and Practice”, OTexts, 2nd ed., 2018.

Internationaler ETG−Kongress 2021, 18.−19.05.2021 in Wuppertal

© 2021 VDE VERLAG GMBH

Publications

3.2 Load Profile Negotiation for Compliance with Power Limits in

Day-Ahead Planning

232

Internationaler ETG-Kongress 2019, 08.–09.05.2019 in Esslingen am Neckar

Load Profile Negotiation for Compliance with

Power Limits in Day-Ahead Planning

Florian Heimgaertner, Sascha Heider, Thomas Stueber, Daniel Merling, and Michael Menth

Chair of Communication Networks, University of Tuebingen, Tuebingen, Germany

Email: {florian.heimgaertner,thomas.stueber,daniel.merling,menth}@uni-tuebingen.de, sascha.heider@student.uni-tuebingen.de

Abstract—The variability of electrical energy prices at the spot
market incentivizes cost-optimized load scheduling. Based on day-
ahead price forecasts, energy costs can be considerably reduced
by shifting energy-intensive processes to times with lower energy
prices. While the mechanism of the market match demand and
supply, they currently do not consider technical limitations of the
electrical power grid. A large number of consumers scheduling
electrical loads according to the same price forecast could result
in congestion in the transmission or distribution systems.

We propose a mechanism for day-ahead scheduling that
enables negotiation of load profiles between multiple consumers
and an aggregator in compliance with overall power limits. We
present two mechanisms for an aggregator without knowledge
about internal details of the participants to achieve this goal and
compare the performance to the results of a centralized scheduler
with global knowledge.

Index Terms—Smart grids, demand-side management,
scheduling, virtual power plant.

I. INTRODUCTION

The increasing share of weather-dependent renewable power

generation leads to a large intraday variability of wholesale

energy prices. Shifting loads to times with lower energy prices

can considerably reduce energy costs and helps to increase the

use of renewable energy by improving the match of demand

and supply. Schedules of multiple consumers optimized for

the same price forecast can lead to extreme load peaks. The

mechanisms of the energy markets match the demand peaks

and the production peaks, so the optimization of schedules

based on price forecasts could be beneficial for both the

generation and consumption domains. However, it can lead

to problems in the transmission and distribution domains as

there is no guarantee that the physical grid is capable of

transporting the purchased energy volumes from generators

to the consumers.

We proposed a distributed control architecture for virtual

power plants [1] where participating enterprises locally opti-

mize their load schedules according to price forecasts provided

by an aggregator. The aggregator trades energy at the spot

market on behalf of the participating enterprises. However, if

the combined load profiles of a set of enterprises violate any

constraints, the aggregator needs to negotiate re-scheduling

with the affected enterprises.

In this work we propose mechanisms for a set of business

units to negotiate load profiles that reduce energy costs while

avoiding the violation of restrictions imposed by bottlenecks

in the power grid.

This paper is structured as follows. Section II discusses

related work. In Section III we present the context for the

optimization and an abstract model for enterprises with load

shifting capabilities. Section IV proposes two mechanisms for

load profile negotiation. In Section V we shows the scenario

and parameters for the evaluation and in Section VI we

evaluate the performance of the negotiation mechanism and

compare its results to an centralized scheduling approach with

global knowledge. Section VII concludes the paper.

II. RELATED WORK

Ibars et. al. present a distributed load management using

dynamic pricing [2]. The approach is based on a network con-

gestion game. The authors show that the system converges to

a stable equilibrium. Biegel et. al. [3] describe a receding hori-

zon control approach for moving shifting loads to minimize

costs for balancing energy while avoiding grid congestion.

Huang et. al. [4] propose a congestion management method for

distribution grids with a high penetration of electrical vehicles

and heat pumps. They use a decomposition-based optimiza-

tion. In [5] they present a real-time approach for congestion

management using flexible demand swap. Boroojeni et. al. [6]

propose an oblivious routing economic dispatch approach for

distribution grids. Bagemihl et. al. [7] describe a market-based

approach to increase the capacity of a distribution grid without

physical grid expansion. Hazra et. al. [8] propose a demand-

response mechanism for grid congestion management using

ant colony optimization. Sundström and Binding [9] propose a

method for the optimization of charging schedules for electric

vehicles while avoiding grid congestion.

Most work in the area of grid congestion management

is based on actual grid topologies and focuses on global

optimizations to avoid grid congestion. This paper uses a sim-

plified approach, limiting congestion to a single bottleneck and

focuses on interactive negotiation without global knowledge.

III. MODEL

In this section, we present the use case. We explain the

concept of load profiles and define the parameters for the

consumer model.

c© 2019 VDE VERLAG GMBH

A. Use Case

The grid connection of a consumer is limited in electrical

power by technical or contractual means. We denote this limit

as lc where c is a consumer. Due to limitations in the distri-

bution grid, similar restrictions apply to groups of consumers,

e.g., urban districts. As the sum of all individual power limits

can be larger than the limit for the group, a group of consumers

could exceed the group power limit L while still complying

with their individual limits, i.e.,
∑

c∈C
lc > L where C is

a set of consumers. This problem becomes more severe in

presence of price-optimized day-ahead planning when loads

of all flexible consumers are scheduled for the times with the

lowest energy price forecasts. However, day-ahead planning

usually involves an aggregator providing the forecasts and

trading at the energy markets. As an aggregator requires

load forecasts of all aggregated consumers, we propose a

mechanism for day-ahead demand-side management (DSM)

within the group the aggregated consumers.

Fig. 1: Negotiation process between enterprise and aggregator during day-
ahead planning.

Figure 1 shows the negotiation process to ensure that

limitations for a group of consumers are complied with. The

aggregator distributes price forecasts for the day-ahead energy

market to the aggregated consumers (1). Each consumer

computes price-optimized schedules based on their model pa-

rameters using the price forecast received from the aggregator

(2). After the best schedule is selected, the consumers send the

load profiles to the aggregator (3). After receiving load profiles

from the consumers, the aggregator checks global constraints

(4). An example for a global constraint is a cumulative

power limit for a group of participants imposed by the grid

operator. If such a constraint is violated, the aggregator sends

a rescheduling request to the affected groups or individual

participants (5). The affected consumers perform planning and

optimization based on additional information provided by the

aggregator and submit new load profiles (6). Steps (4)–(6) are

repeated until the global constraints are no longer violated.

Finally, energy is traded at the day-ahead market (7).

B. Consumer Model and Load Profiles

A load profile is a time series of electrical load over a given

period. As we focus on day-ahead optimization, we chose a

period of 24 hours and a granularity of one hour. A time slot is

denoted as t and the set of the time slots of a day is defined as

T := {0, . . . , 23}. We denote the load profile of a consumer

c as etc, t ∈ T , with an energy demand for each hour of a

day. The total energy demand of all consumers in time slot t

is limited by the group power limit Lt.

For our study we use an abstract model of a business

consumer with flexibility for load shifting. We do not con-

sider internal organization and dependencies among processes

within a consumer, but limit the model to energy and cost

parameters. The consumer is defined by a daily demand of

electrical energy Ec, a power limit ltc, and operational costs

At
c. The objective is to find a set of load profiles etc, t ∈ T ,

that satisfy the following conditions.

∑

t∈T

etc = Ec ∀c ∈ C (1)

etc ≤ ltc ∀t ∈ T , c ∈ C (2)
∑

c∈C

etc ≤ Lt ∀t ∈ T (3)

Each load profile is associated with costs. F t is the energy

price forecast for time slot t. At
c gives the additional (non-

energy) operation costs of a consumer c in time slot t. The

total costs Cc for a consumer c are given by

Cc =
∑

t∈T

etc · F
t +At

c. (4)

IV. MECHANISMS

In this section, we present a linear program that computes

load profiles for each participant resulting in the lowest total

costs while complying with the group power limit. The linear

program needs global knowledge, i.e., it requires information

about internal details such as cost structures of all partici-

pants to compute the solution. However, aggregator operation

without such global knowledge of internal details about the

participating enterprises is an explicit goal of [1]. Therefore,

we propose two methods for load profile negotiation that work

without global knowledge. The sequential approval method

is based on a first-come-first-serve approach combined with

a compensation for swapping time slots. The simultaneous

approval method requests multiple load profiles per participant

to find an acceptable combination of load profiles.

A. Load Optimization Using Global Knowledge

The load profiles etc, t ∈ T , c ∈ C consist of continuous

variables that can be determined by the following linear

program.

minimize

23∑

t=0

∑

c∈C

F tetc +At
c

subject to
∑

c∈C

etc ≤ Lt, t ∈ T

23∑

t=0

etc = Ec, c ∈ C

etc ≤ ltc, t ∈ T , c ∈ C
etc ∈ R, t ∈ T , c ∈ C

B. Sequential Approval of Load Profiles

For the sequential approval method, each submitted load

profile is individually approved after submission unless its

load combined with the previously approved load profiles

would exceed the group power limit. To resolve the violation,

all participants with acknowledged energy demand in the

respective time intervals compute alternative load profiles

avoiding the overloaded time slots t ∈ T ′. They submit load

profiles annotated with the additional costs resulting from

higher energy prices or increased operation costs in alternative

time intervals. The aggregator selects the combination of load

profiles with the lowest total additional costs. The process is

repeated until a load profile for each participant is approved.

A linear program is used to find an appropriate combination

of load profiles. The load profiles are selected such that

the sum of the additional costs, i.e., the differences between

the respective cheapest load profiles, of all enterprises is

minimized. If every consumer c hands in nc load profiles,

let xi
c be a binary variable which is true iff the i-th schedule

of enterprise c ∈ C is selected. Furthermore, let et,ic be the

energy demand of load profile i of consumer c in slot t, Ci
c

the total cost of consumer c for load profile i and Lt the group

power limit of slot t.

minimize
∑

c∈C

nc∑

i=1

(Ci
c − C1

c) · x
i
c

subject to

nc∑

i=1

xi
c = 1, c ∈ C

∑

c∈C

nc∑

i=1

et,ic xi
c ≤ Lt, t ∈ T

xi
c ∈ {0, 1}, c ∈ C, i = 1, ..., nc

The inequations ensure that every consumer has exactly one

schedule approved and that the group power limit is not

exceeded in any time slot.

The participant triggering the violation compensates addi-

tional costs for participants with approved load profiles or

selects a different load profile if costs are lower compared

to the required compensation. While a participant can exag-

gerate the additional costs to generate additional revenue from

rescheduling, higher costs lead to a lower chance for a load

profile to be selected by the aggregator or accepted by the

participant that triggers the violation.

C. Simultaneous Approval of Load Profiles

For the sequential approach the order of load profile submis-

sions is important. Therefore late submissions of load profiles

are penalized and the cost increase is distributed unevenly

among the participants. This might lead to acceptance prob-

lems and prevent some enterprises from participating.

A straightforward implementation of an order-agnostic ne-

gotiation method consists of iterative energy price increases

for the overloaded time slots and requests for new load

profiles from all participants. However, this approach leads

to artificially high energy prices and experiments showed that

it fails to resolve violations for low group power limits while

the sequential approval method still succeeds. Therefore, we

propose a simultaneous approval method that works without

modified price forecasts.

The aggregator checks for limit violations after all par-

ticipants have submitted load profiles. In case of a limit

violation the aggregator requests an alternative schedule from

all participants, indicating the affected time slots t ∈ T ′. With

the original load profiles and the alternative load profiles, the

aggregator computes a combination not exceeding the limits.

If such a combination does not exist, the aggregator repeatedly

increases the number of requested load profiles per participant

until there is a combination of load profiles that complies with

the limits. The participants annotate the list of submitted load

profiles with a preference.

The optimal selection of load profiles is computed using a

linear program. If every consumer hands in n load profiles,

let xi
c be a binary variable which is true iff the i-th schedule

of enterprise c ∈ C is selected. Furthermore, let et,ic be the

energy demand of load profile i of consumer c in time slot t,

Ci
c the total cost of consumer c for load profile i and Lt the

group power limit of slot t.

minimize
∑

c∈C

n∑

i=1

i · xi
c

subject to

n∑

i=1

xi
c = 1, c ∈ C

∑

c∈C

n∑

i=1

et,ic xi
c ≤ Lt,t ∈ T

xi
c ∈ {0, 1}, c ∈ C, i = 1, ..., n

The weighting of load profiles by the number i gives the load

profiles a preference by the order of submission. The consumer

c ∈ C indicates that a load profile et,ic is preferred over a load

profile et,i+1
c .

V. EVALUATION MODEL

In this section we describe company-specific operational

costs and day-ahead forecasts used in our experiments. Finally,

we point out how load profiles are calculated for companies

that participate in the negotiation processes described in Sec-

tion IV-B and Section IV-C.

TABLE I: Relative total cost increase.

Group power limit
5950 kW (85%) 4550 kW (65%) 3850 kW (55%)

Global optimum 0.03% 0.15% 4.40%
Sequential approval 0.07% 0.23% 6.01%

Simultaneous approval 0.04% 1.02% 12.12%

consumer’s preferred load profile, which would be possible

with a group power limit of Lt = 7000 kW. Finally we

give an overview on the scheduling overhead caused by both

mechanisms.

(a) Results for 85% relative group power limit.

(b) Results for 65% relative group power limit.

(c) Results for 55% relative group power limit.

Fig. 4: Load profiles resulting from simultaneous approval, sequential ap-
proval, and global optimization at different group power limits.

A. Negotiation Results at 85% Relative Group Power Limit

The results for the load profile negotiation at a group power

limit of 5950 kW are shown in Figure 4(a). Both the sequential

and simultaneous approval methods yield load profiles similar

to the global optimum. The only major difference can be seen

at the 9:00 time slot which is only selected in the simultane-

ous approval method. However, Table I shows only minimal

differences regarding the increased costs. While the difference

is negligible, the simultaneous approval method actually leads

(a) Results for 85% relative group power limit.

(b) Results for 65% relative group power limit.

(c) Results for 55% relative group power limit.

Fig. 5: Percentage of consumers with higher relative cost increase at different
group power limits.

to lower increased costs compared to the sequential approval

method. Figure 5(a) shows that no cost increase occurs for

more than 50% of the consumers with the global optimum and

the parallel approval method. With the simultaneous approval

method, cost increase occurs for all consumers, while no

consumer suffers from cost increase of more than 0.1%.

B. Negotiation Results at 65% Relative Group Power Limit

Figure 4(b) shows the results for the load profile negotiation

at a group power limit of 4550 kW. While in most time slots

the load is similar to the global optimum, larger differences

can be seen at 6:00, 8:00, and 15:00. The sequential approval

yields increased costs close to the global optimum as shown in

Table I. While the increased costs caused by the simultaneous

approval method exceed the optimum by a factor of 7, with

approximately 1% they are still very low. However, according

to Figure 5(b) the simultaneous approval method does not only

lead to the highest cost increase but also to the most uneven

distribution of the cost increase among the consumers.

C. Negotiation Results at 55% Relative Group Power Limit

The results for the load profile negotiation at a group power

limit of 3850 kW are shown in Figure 4(c). The low group

power limit compared to the total energy demand forces the

consumers to shift more energy demand to the secondary

business hours. Due to the additional costs, this leads to

higher total costs. In Table I we can see that even the global

optimum leads to an increase of approximately 4% compared

to the preferred load profile of each consumer. The sequential

approval method leads to an increase of 6%, and the simul-

taneous approval leads to an increase of approximately 12%.

Figure 5(c) does not show a significant difference regarding

the evenness of the distribution of the cost increase.

D. Scheduling Overhead

Table II shows the average number of load profiles that a

consumer computes before the violation of the group power

limit is resolved. The sequential approval method requires the

computation of slightly less load profiles compared to the

simultaneous approval method.

TABLE II: Average number of load scheduling cycles per consumer.

Group power limit
5950 kW (85%) 4550 kW (65%) 3850 kW (55%)

Sequential approval 17 53 90
Simultaneous approval 18 63 122

VII. CONCLUSION

Optimized load scheduling based on day-ahead energy price

forecasts may lead to demand peaks that cannot be satisfied

due to grid limitations. In this paper, we proposed approaches

for load profile negotiation that do not require knowledge of

internal enterprise details at the aggregator. The results for

the given scenario are close to the optimum computed using

global knowledge. For lower group power limits compared to

the sum of all individual power limits, the sequential approval

method yields a lower increase of total costs compared to the

simultaneous approval method.

Due to the simplified model, the results cannot be gener-

alized. However, the results show that it is possible to use

The first-come-first-serve property of the sequential ap-

proval method leads to penalties for late submissions and

can be considered unfair. However, the expectation that the

simultaneous approval method leads to a more even distri-

bution of cost increase does not hold for low group power

load profile negotiation to comply with power limits in a day-

ahead price optimization scenario. The cost increase is higher

compared to a central optimization using global knowledge,

but except for very low group power limits (see Section VI-C)

the total cost increase is quite small.

limits. Additionally, for the simultaneous approval method an

incentive for submitting the requested number of different

load profiles and a distance metric to quantify the degree of

difference between submitted load profiles are required.

Opportunities for future research include investigations with

more complex mechanisms and more elaborated consumer

models.

ACKNOWLEDGMENT

The research leading to these results has received funding

from the German Federal Ministry for Economic Affairs and

Energy under the ZIM programme (Zentrales Innovation-

sprogramm Mittelstand), grant no. 16KN039521. The authors

alone are responsible for the content of this paper.

REFERENCES

[1] F. Heimgaertner, U. Ziegler, B. Thomas, and M. Menth, “A Distributed
Control Architecture for a Loosely Coupled Virtual Power Plant,” in
ICE/IEEE International Technology Management Conference (ICE/IEEE

ITMC), Jun. 2018.

[2] C. Ibars, M. Navarro, and L. Giupponi, “Distributed Demand Manage-
ment in Smart Grid with a Congestion Game,” in IEEE International

Conference on Smart Grid Communications (SmartGridComm), 2010, pp.
495–500.

[3] B. Biegel, P. Andersen, J. Stoustrup, and J. Bendtsen, “Congestion
Management in a Smart Grid via Shadow Prices,” in 8th Power Plant

and Power System Control Symposium (PPPSC), Sep. 2012.

[4] S. Huang, Q. Wu, H. Zhao, and C. Li, “Distributed Optimization based
Dynamic Tariff for Congestion Management in Distribution Networks,”
IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 184–192, 2019.

[5] S. Huang and Q. Wu, “Real-Time Congestion Management in Distribution
Networks by Flexible Demand Swap,” IEEE Transactions on Smart Grid,
vol. 9, no. 5, 2018.

[6] K. G. Boroojeni, M. H. Amini, S. S. Iyengar, M. Rahmani, and P. M.
Pardalos, “An Economic Dispatch Algorithm for Congestion Management
of Smart Power Networks,” Energy Systems, vol. 8, no. 3, pp. 643–667,
2017.

[7] J. Bagemihl, F. Boesner, J. Riesinger, M. Künzli, G. Wilke, G. Binder,
H. Wache, D. Laager, J. Breit, M. Wurzinger, J. Zapata, S. Ulli-Beer,
V. Layec, T. Stadler, and F. Stabauer, “A Market-Based Smart Grid
Approach to Increasing Power Grid Capacity Without Physical Grid
Expansion,” Computer Science - Research and Development, vol. 33,
no. 1, pp. 177–183, 2018.

[8] J. Hazra, K. Das, and D. P. Seetharam, “Smart Grid Congestion Man-
agement Through Demand Response,” in IEEE International Conference

on Smart Grid Communications (SmartGridComm). IEEE, 2012, pp.
109–114.

[9] O. Sundstrom and C. Binding, “Flexible Charging Optimization for
Electric Vehicles Considering Distribution Grid Constraints,” IEEE Trans-

actions on Smart Grid, vol. 3, no. 1, pp. 26–37, 2012.

	List of Abbreviations
	Summary
	List of Publications
	Introduction & Overview
	Research Objective
	Research Context
	Research Results
	Energy Systems
	Communication Networks

	Results & Discussion
	Algorithms for Resource Management in Energy Systems
	Day-Ahead Optimization of Production Schedules for Saving Electrical Energy Costs
	Minimizing Grid Electricity Consumption and On-/Off-Cyles for Heat Pumps in Single-Family Homes with PV Panels
	Comparison of Forecasting Methods for Energy Demands in Single Family Homes
	Load Profile Negotiation for Compliance with Power Limits in Day-Ahead Planning

	Algorithms for Resource Management in Real-Time Networks and Multicast Protocols
	Introduction to Time-Sensitive Networking
	A Survey of Scheduling Algorithms for the Time-Aware Shaper in Time-Sensitive Networking (TSN)
	Performance Comparison of Scheduling Algorithms for Time-Sensitive Networking (TSN)
	Efficient Robust Schedules (ERS) for Time-Sensitive Networking
	Introduction to Bit Indexed Explicit Replication
	Efficiency of BIER Multicast in Large Networks
	Scalability of Segment-Encoded Explicit Trees (SEETs) for Efficient Stateless Multicast

	Additional Scientific Work
	Sustanability and Lectures for Future
	Research Proposals
	Thesis Supervision
	Miscellaneous

	Personal Contribution
	Publications
	Accepted Manuscripts (Core Content)
	Day-Ahead Optimization of Production Schedules for Saving Electrical Energy Costs
	A Survey of Scheduling Algorithms for the Time-Aware Shaper in Time-Sensitive Networking (TSN)
	Performance Comparison of Offline Scheduling Algorithms for the Time-Aware Shaper (TAS)
	Efficiency of BIER Multicast in Large Networks

	Submitted Manuscripts (Core Content)
	Minimizing Grid Electricity Consumption and On-/Off-Cyles for Heat Pumps in Single-Family Homes with PV Panels
	Efficient Robust Schedules (ERS) for Time-Sensitive Networking
	Scalability of Segment-Encoded Explicit Trees (SEETs) for Efficient Stateless Multicast

	Accepted Manuscripts (Additional Content)
	Comparison of Forecasting Methods for Energy Demands in Single Family Homes
	Load Profile Negotiation for Compliance with Power Limits in Day-Ahead Planning

