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Abbreviations 

Abbreviation Meaning 

ESKAPE 
Enterococcus faecium, Staphylococcus aureus, 
Klebsiella pneumoniae, Acinetobacter braumanii, 
Pseudomonas aeruginosa and Enterobacter species 

UPEC Uropathogenic E. coli 

PBP Penicillin binding protein 

AG Aminoglycoside 

RNA Ribonucleic acid 

DNA Desoxyribonucleic acid 

PMF Proton motive force 

ARB Antibiotic resistant bacteria 

MIC Minimal inhibitory concentration 

MDK Minimal duration for killing 

MBC Minimal bactericidal concentration 

TK Time-kill 

CFU Colony forming unit 

OD Optical density 

LB Lysogeny broth 

RC Respiratory chain 

ETC Electron transport chain 

TCA Tricarboxylic acid 

HPLC High-pressure liquid chromatography 

TQ Triple-quadrupole 

FI Flow injection 

TOF Time-of-flight 

MS Mass spectrometer 

m/z Mass over charge 

ROS Reactive oxygen species 

CREATE CRISPR-enabled trackable genome engineering 

CRISPR 
Clustered regularly interspaced short palindromic 
repeats 

sgRNA Single-guide RNA 

bp Base pair 

PAM Protospacer adjacent motif 

DSB Double-strand break 

dsDNA Double-stranded DNA 

aTc Anhydrotetracycline 

NGS Next generation sequencing 

GC Guanine-cytosine 

CRISPRi CRISPR interference 

dCas9 Deactivated Cas9 
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PCR Polymerase chain reaction 

tRNA Transfer RNA 

DWP Deep-well plate 

RPM Rotation per minute 

AMR Antimicrobial resistance 

PTS Phosphotransferase system 

MALDI Matrix-assisted laser desorption/ionisation 

SOC Super optimal medium with catabolic repressor 

6-MP 6-mercaptopurine 

AEC Adenylate energy charge 

FC Fold-change 

qPCR Real-time polymerase chain reaction 

mRNA Messenger RNA 
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Metabolite abbreviations 

Note: in the text, capital letters abbreviations are used for metabolites when needed. 

Figures use BiGG abbreviations for convenience. If any metabolite is present in the 

text and figures, both abbreviations are indicated in bracket.  

Abbreviation Meaning BiGG 

NADH β-nicotinamide adenine dinucleotide, reduced nadh 

ATP Adenosine-triphosphate  atp 

NAD+ β-nicotinamide adenine dinucleotide, oxydised nad 

ADP Adenosine-biphosphate  adp 

IMP Inosine-monophosphate  imp 

XMP xanthosine-monophosphate  xmp 
 Adenylosuccinate dcamp 

GMP Guanosine-monophosphate gmp 

AMP Adenosine-monophosphate amp 

GDP Guanosine-biphosphate gdp 

PRPP 5-phosphoribosylpyrophosphate  prpp 

PRA 5-phospho-β-D-ribosylamine  pram 
 phosphoribosyl-ATP  prbatp 

AICAR 5-amino-1-(5-phospho-D-ribosyl) imidazole-4-carboxamide  aicar 

FAICAR 5-formamido-1-(5-phospho-D-ribosyl)-imidazole-4-carboxamide  fprica 

MEP Methylerythrol-phosphate  2me4p 

FAD Flavin adenine dinucleotide  fad 

FGAM 2-(formamido)-N1-(5-phospho-β-D-ribosyl)acetamidine fpram 
 Hisitidinol histd 

PEP Phosphoenolpyruvate  pep 
 Succinate succ 

G6P β-D-glucose-6-P g6p 

5-ALA 5-aminolevulinic acid 5aop 

AIR 5-amino-1-(5-phospho-β-D-ribosyl)imidazole air 
 Histidinol-phosphate hisp 
 Cystathionine cyst 
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Abstract 
 

Antibiotics are important tools to fight bacteria in complement to vaccines and public 

hygiene regulation. Antibiotics are molecules that interfere with key bacterial 

processes, ranging from translation and transcription to cell wall synthesis. This results 

in arrest of bacterial proliferation. Because of the selective pressure antibiotics impose 

on microbes, they are challenged by the formidable capacities of evolution. Indeed, 

bacteria have been shown to counteract antibiotics through multiple strategies, either 

at population or clonal levels. This is notably the case for ESKAPE pathogens 

(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, 

Acinetobacter braumannii, Pseudomonas aeruginosa and species of the genus 

Enterobacter). These bacterial species quickly evolve escape mechanisms to currently 

used antibiotics as well as new-to-market antibiotics.  

Two main routes of antibiotic escape are resistance and tolerance. Antibiotic tolerance 

permits to withstand antibiotic treatment for a longer period of time while antibiotic 

resistance allows to grow in the presence of the antibiotic at normally non-permissive 

concentrations. Resistant or tolerant pathogens often require the use of last-resort 

antibiotics or longer and heavier treatments to be eradicated. However, these 

alternatives are also met with evolutionary escape while the development of new 

antibiotics takes a substantial time. This leads to a sharp decrease of new antibiotic 

development and ever-increasing pressure on health authorities. Therefore, it is 

pressing to understand evolutionary strategies employed by bacterial pathogens to 

escape antibiotic treatment in order to anticipate and counter them.  

One key evolutionary weapon is the acquisition of genomic mutations that confer 

antibiotic resistance or tolerance. Some of these mutations have relatively trivial 

effects. Mutations in the direct target of an antibiotic alter binding interactions and 

nullify antibiotic effects. Efflux pumps regulators can also be mutated to affect antibiotic 

import or export towards their targets.  

More recently, mutations in core metabolic genes have been shown to affect antibiotic 

treatments. However, how these mutations affect metabolism and lead to antibiotic 

treatment failure remains poorly understood. It is generally assumed that antibiotic 

treatments could be globally affected by a general “metabolic state”, or metabolic-
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dependent phenomenon such as growth rate. However, these observations were 

made while studying antibiotic tolerance and not antibiotic resistance. Whether a 

general “metabolic state” could confer resistance to multiple antibiotics remains 

unknown.  

Here is presented a body of work that investigates the link between metabolism and 

antibiotic treatment in the ESKAPE pathogen Escherichia coli with a focus on antibiotic 

resistance. The following question is formulated for this thesis: Do mutations in 

metabolic genes of E. coli have a general impact on antibiotic resistance?  

This thesis will first present a general introduction of its scientific framework. Chapter 

1 discusses the elaboration of the main tool used in the thesis: a library of E. coli strains 

each with a genomic mutation in an essential gene. Chapter 2 covers the main body 

of work done in this thesis and present its most important findings. Chapter 3 further 

discusses findings made in Chapter 2 and provides additional experiments and 

hypothesis.  
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Zusammenfassung  
 

Antibiotika sind wichtige Instrumente zur Bekämpfung von bakteriellen Infektionen und 

ergänzen Impfstoffe sowie öffentliche Hygienevorschriften. Diese Moleküle zielen auf 

wichtige bakterielle Prozesse ab, von der Translation und Transkription bis zur 

Zellwandsynthese. Sie bewirken häufig eine Unterbrechung dieser essentiellen 

Prozesse, was zu einer Hemmung des bakteriellen Wachstums führt. Durch den 

selektiven Druck, den die Antibiotika auf die Mikroorganismen ausüben, werden diese 

durch die Kapazitäten der Evolution herausgefordert. Bakterien  können Antibiotika 

durch verschiedene Strategien entgegenwirken,  entweder auf Populations- oder auf 

klonaler Ebene. Dies ist insbesondere bei ESKAPE-Erregern (Enterococcus faecium, 

Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter braumanii, 

Pseudomonas aeruginosa und Arten der Gattung Enterobacter) der Fall. Diese 

Bakterienarten entwickeln schnell Mechanismen, um den derzeit verwendeten 

Antibiotika zu entkommen.  

 Es gibt dabei zwei Hauptwege: Resistenz und Toleranz. Die Toleranz ermöglicht es 

einer Antibiotikabehandlung über einen längeren Zeitraum standzuhalten. Die 

Antibiotikaresistenz hingegen ermöglicht den Mikroorganismen in Gegenwart von 

normalerweise tödlichen Antibiotikakonzentrationen zu wachsen. Resistente oder 

tolerante Erreger erfordern häufig den Einsatz von sogenannten ‚Last-Resort‘ 

Antibiotika,als letzte Mittel, sowie längere oder stärkere Behandlungen, um die Erreger 

in ihrem Wachstum zu hemmen. Aber auch diese alternativen Behandlungen können 

zu Resistenz- oder Toleranzentwicklungen der Bakterien führen. Zudem nimmt  die 

Erforschung neuer Antibiotika zusätzlich viel Zeit in Anspruch. Dies führt zu einem 

starken Rückgang der Entwicklung neuer antimikrobieller Wirkstoffe und zu einem 

immer größeren Druck auf die Gesundheitsbehörden. Daher ist es dringend 

erforderlich, die evolutionären Strategien der Mikroorganismen zu verstehen,  damit 

sie bekämpft werden können.  

Eine wichtige evolutionäre Waffe ist der Erwerb von Genommutationen, die eine 

Antibiotikaresistenz oder -toleranz vermitteln können. Einige dieser Mutationen können 

triviale Auswirkungen haben. Mutationen in der direkten Zielstruktur eines 

Antibiotikums verändern die Bindungsinteraktionen und heben die Wirkung des 
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Antibiotikums auf. Auch die Regulatoren von Effluxpumpen können mutiert werden und 

somit den Import oder Export von Antibiotika in Richtung ihrer Ziele beeinflussen.  

In der Vergangenheit  hat sich gezeigt, dass auch Mutationen in Genen des zentralen 

Stoffwechsels die Antibiotikabehandlung beeinflussen können. Wie sich diese 

Mutationen auf den Stoffwechsel auswirken und zu einer reduzierten Wirksamkeit der 

Antibiotika führen können, ist jedoch nach wie vor kaum erforscht. Im Allgemeinen wird 

davon ausgegangen, dass Antibiotikabehandlungen durch einen allgemeinen 

"Stoffwechselzustand" oder durch stoffwechselabhängige Eigenschaften wie die 

Wachstumsrate beeinflusst werden könnten. Diese Beobachtungen wurden jedoch bei 

der Untersuchung der Antibiotikatoleranz und nicht der Antibiotikaresistenz gemacht. 

Ob ein allgemeiner "Stoffwechselzustand" eine Resistenz gegen mehrere Antibiotika 

bewirken kann, ist nach wie vor unbekannt. 

In dieser Arbeit wird der Zusammenhang zwischen Stoffwechsel und 

Antibiotikabehandlung bei dem ESKAPE-Erreger Escherichia coli mit dem 

Schwerpunkt Antibiotikaresistenz untersucht. Für diese Arbeit wurde die folgende 

Frage formuliert: Haben Mutationen in Stoffwechselgenen von E. coli einen 

generellen Einfluss auf die Antibiotikabehandlung? 

Zunächst wird eine allgemeine Einführung in den wissenschaftlichen Rahmen 

gegeben. Kapitel 1 behandelt die Ausarbeitung des wichtigsten Instruments, das in 

dieser Arbeit verwendet wird: eine ‚Library‘ von E. coli-Stämmen, die jeweils 

genomische Mutationen in wichtigen Genen aufweisen. Das Kapitel 2 umfasst den 

Hauptteil der durchgeführten Experimente und stellt die wichtigsten Ergebnisse vor. In 

Kapitel 3 werden weitere Erkenntnisse aus Kapitel 2 erörtert und zusätzliche 

Experimente und Hypothesen vorgestellt. 

 

Acknowledgment: Many thanks to Amelie Stadelmann and Lisa Niemann for 

checking this German translation.  
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Thesis framework 
 

Escherichia coli 

The bacteria Escherichia coli is a facultative anaerobe estimated to be present in the 

intestinal microbiome of more than 90% of humans, either as pathogen or commensal1. 

It has been shown to represent less than 0.1 % of the total human gut microbiota 

bacterial population2. E. coli is one of the most studied and understood organism to 

date3. Because of its high robustness, versatility, and amenability for genetic 

manipulation, it has become a crucial model for microbiology and a key workhouse for 

industrial biotechnology4. Currently, hundreds of thousands of E. coli genomes are 

available on public databases such as EnteroBase5 and contribute to an extensive 

knowledge on population structures and dynamics. E. coli is a polyclonal species which 

contains multiple phylogroupsa adapted to various ecological niches1,6. Indeed, this 

species can colonise multiple environments other than the gut and contributes to 

multiple diseases7. Most of E. coli pathotypesb (enteropathogenic E. coli, 

enterotoxigenic E. coli …) are human gut pathogens that cause severe diarrhoea. E. 

coli can also colonise the urinary tract (uropathogenic E. coli, UPEC)8 or the blood and 

the meninges (sepsis — meningitis-associated E. coli)9, which makes it a key human 

pathogen.  

However, E. coli is also a powerful ally for human research. This is notably the case 

for laboratory strains such as E. coli BW25113. This strain is a derivative of E. coli K-

12 and was originally used for lambda-red mediated genome editing10 (see later 

section). It was the host chosen for the Keio collection, a library of more than 4000 E. 

coli mutants each with a gene knock-out11 and its genome has been sequenced12.  

E. coli K-12 is a member of the A phylogroup1,13, and E. coli strains can very highly 

within and between phylogroups14. As a consequence, E. coli K-12 is a model 

organism and extrapolation of findings made in this strain to other E. coli strains and 

other organisms remains challenging. Nevertheless, it was chosen for this thesis 

 
a “Groups of organisms that belong to a large phylogenetic entity within the species. There are at least eight 

phylogenetic groups within the Escherichia coli species, named A, B1, B2, C, D, E, F and G.”6  

b “Groups of organisms that have the same pathogenicity on a specified host.”6 
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because it is easy to handle and to genetically modify. This is especially important 

when using libraries (see later sections). Chapter 2 notably covers the extension of 

findings made in E. coli BW25113 to pathogenic E. coli.  

 

Antibiotics 

Antibiotics are molecules capable of interfering with various bacterial processes. This 

can result in the lysis of the target bacteria (bactericide antibiotics) or the arrest of its 

division (bacteriostatic antibiotics), although debates exist in the literature on the 

clinical relevance of this mechanistic opposition15,16. On Earth, antibiotics are produced 

by multiple organisms (from fungus to bacteria) and thought to be used as a weapon 

to compete for ecological niches17,18. Due to their effects on bacterial growth, antibiotics 

are used by the human species to fight diseases since 1910 and the commercialisation 

of salvarsan to treat syphilis19,20. As such, they are of prime importance for public 

hygiene although their accessibility and consumption has been shown to be uneven 

between countries21.  

In general, antibiotics bind a cellular target (generally an essential protein) and inhibit 

its functions, leading to severe consequences. Antibiotics belong to multiple classes 

which are chemically different in their structure as well as their modes of actions. Here 

will be described the two antibiotic families involved in this thesis: β-lactams and 

aminoglycosides.  

β-lactams share a common molecular backbone named β-lactam ring. They are used 

to combat an extensive number of bacterial pathogens, either gram-positive 

(Streptococcus spp., Staphylococcus aureus…) or gram-negative (Acinetobacter spp., 

E. coli, Pseudomonas aeruginosa…)22. The first β-lactam to be industrially produced 

was penicillin in 1940 and was discovered in the fungi Penicillium notatum by 

Alexander Fleming in early 1930’s23. The β-lactams family is divided into several 

subclasses (penam, penem, carbapenem, cefem and monobactam) which differ in 

their structure through various moieties attached to the β-lactam ring, with exception 

for monobactams24. β-lactams bind and inhibit penicillin binding proteins (PBPs), a 

family of proteins essential for the synthesis of peptidoglycan through their 

transpeptidase activity25. In gram-negative bacteria such as E. coli, peptidoglycan is 

assembled in the periplasm, which is the space between the outer and inner 
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membranes26. Therefore, to bind gram-negative PBPs, β-lactams need to pass the 

outer membrane with passive transport relying on porins like OmpF27.  

The peptidoglycan is crucial for preserving cell shape. Its perturbation leads to 

destabilisation of bacterial cell wall integrity, which has been proposed to be the main 

cause of β-lactam-mediated cell lysis, although this remains poorly understood28–31. 

Several studies have shown that β-lactams, depending on their structure, more 

favourably bind one PBP over others32–34. Since PBPs do not have the same role in 

peptidoglycan synthesis35, β-lactams may induce different morphological changes36,37. 

For example, cephalexin and ampicillin induce cell elongation through their affinity to 

PBP3 which leads to septation arrest38. Cefsulodin targets PBP1 and induces bulging 

without blocking cell septation, a property shared with imipenem which targets PBP239. 

It has also been proposed that β-lactams could lead to futile cycles in peptidoglycan 

assembly which could deplete cell resources and contribute to killing40.  

Another key family of antibiotics used in this thesis is the aminoglycosides (AGs) family. 

In early 1940’s, Albert Schatz was the first to isolate an AG, called Streptomycin from 

Streptomyces griseus41. AGs mostly bind the A-site of the 30S ribosome subunit, 

responsible for the docking of charged t-RNA which ensures translational fidelity42. 

AGs binding leads to protein synthesis destabilisation, which is thought to cause cell 

death through accumulation of faulty polypeptides damaging the cell43,44. Because they 

target the ribosome, AGs have a broad spectrum of activity against multiple pathogens 

from E. coli to S. aureus45. The AGs family is composed of multiple members which 

share a core amino sugars structure linked with glycosidic linkages and aminocyclitol 

moieties, the nature of which classifies them in four subclasses45. Because they target 

ribosomes, AGs require to be transported in the bacterial cytosol. In gram-negative 

bacteria, this transportation relies on ionic binding to the outer membrane, followed by 

a respiratory chain and proton motive force (PMF) mediated import to reach the cytosol 

owing to the polycationic nature of AGs 46–48.  

The antibiotics used in this dissertation are three β-lactams (carbenicillin, aztreonam, 

meropenem) and two AGs (gentamicin and tobramycin), with a strong focus on 

carbenicillin and gentamicin (Table 1).  
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Name Class Target 

Critically 
important 

medicines49/
essential 

medicines50 

Structurec 

Carbenicillin β-lactams 
Preferably binds PBP3 and 
PBP4 in P. aeruginosa51,52 

Yes/No 

 

Aztreonam β-lactams 
Binds PBP3 in P. 
aeruginosa51 and E. coli53 

Yes/No 

 

Meropenem β-lactams 

High affinity for PBP4 but 
also binds all other PBPs 
except PBP1b in  
P. aeruginosa51. Preferably 
binds PBP4 and PBP2 in E. 
coli 53 

Yes/Yes 

 

Gentamicin Aminoglycosides 
Binds the 30S subunit of 
bacterial ribosome on the A-
site54 

Yes/Yes 

d 

Tobramycin Aminoglycosides Same as gentamicin56 Yes/Yes 

 

Table 1: Antibiotics used in this thesis (Chapters 2 and 3) 

 

Antibiotic resistance 

Antibiotic resistance has been defined as “the inherited ability of microorganisms 

to grow at high concentrations of an antibiotic”57. Antibiotic resistance manifests 

from multiple evolutionary paths58,59. It can be acquired through the expression of 

genes coding for proteins hindering drug efficiency. For example, β-lactamases 

hydrolyse β-lactams60, methyltransferases protect the ribosomal target site of 

 
c All structures shown originate from the Wikipedia (https://en.wikipedia.org) page of the respective antibiotics and 

were checked using PubChem (https://pubchem.ncbi.nlm.nih.gov/).  

d Gentamicin « R » groups refer to the multiple forms C1, C1a, C2, C2a and C2b55 
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aminoglycosides61, or multidrug efflux pumps transport drugs from the cytosol to the 

periplasm or outside the cell62. Some bacterial species are also inherently resistant to 

several classes of antibiotic due to their physiology. For instance, the low proportion of 

anionic phospholipids in Gram-negative bacterial membrane drastically reduces the 

efficiency of the lipopeptide daptomycin63.  

Additionally, resistance can be caused by random genomic mutations (Fig. 1). This is 

assumed to be the result of an evolutionary strategy involving the generation of mutator 

phenotypes in response to drug stress. This encourages the faulty replication of DNA 

which may lead to mutations that permit to resist drug treatment64. Genomic mutations 

have varied effects. The most intuitive are mutations affecting direct drug targets. For 

instance, the mutation RpoBD516V prevents binding of rifampicin to the RNA polymerase 

and restores transcription upon treatment65,66. Mutations in the PBP3-encoding gene 

ftsI confer ampicillin resistance to Haemophilus influenza67. The modification of the 

ribosome structure by mutations also permits evasion of aminoglycoside treatments68. 

Mutations can also happen in regulators involved in the expression control of drug 

efflux pumps. This is the case for the regulator MepR of Staphylococcus aureus, in 

which the mutation A103V leads to overexpression of the tetraphenylphosphonium 

bromide efflux pump MepA69. A later section will discuss the role of mutations in 

metabolic genes in acquiring antibiotic resistance.  

Figure 1: Various paths taken by E. coli to acquire antibiotic resistance with genomic 

mutations. The relationship between antibiotics and metabolic mutations is explored 

in a later section. 
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In 2019, Antibiotic Resistant bacteria (ARBs) were estimated to be responsible for 

more than a million deaths worldwide, with Escherichia coli being listed as the deadliest 

pathogen70. The spearhead of antimicrobial resistance is embodied by the ESKAPE 

pathogens. It is a category of life-threatening bacteria species which have evolved 

resistance against multiple classes of antibiotics, including last resort antibiotics71. 

They are Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, 

Acinetobacter braumannii, Pseudomonas aeruginosa and species of the genus 

Enterobacter, in which E. coli is included. The high evolvability of these bacteria, 

coupled with decreasing research efforts in developing new antibiotics72, highlights the 

need for new research in understanding antibiotic resistance to anticipate and combat 

it. In Europe, most infections carried by ARBs happen in healthcare settings and can 

also lead to high amount of disability-adjusted life years73. Moreover, considerable 

economical loss is driven by infections carried by ARBs as they lead to increased 

treatment cost as well as prolonged length of stay in hospitals74. The 2022 report of 

the Global Antimicrobial Resistance and Use Surveillance System from the World 

Health Organisation notes either stable or increasing proportion of infections caused 

by ARBs from 2017 to 2020, demonstrating that the problem is yet to be solved75.  

In this thesis, a variation of the previously given definition for antibiotic resistance is 

used and designates the ability of a microbial strain to grow in the presence of a 

higher concentration of antibiotic than a control strain. Therefore, this definition 

includes a necessary comparison with other bacterial strains to claim resistance and 

does not exclude any antibiotic concentration.  

The parameter generally used to quantify resistance in a bacterial strain is the minimal 

inhibitory concentration (MIC), which is the first concentration of antibiotic at which 

growth of the tested strain is not observed. MIC determination is usually done in vitro 

using cultivation medium which do not reflect in vivo conditions76. However, MIC is 

easy and fast to determine and provide important information on the tested bacteria. 

In this thesis, agar and broth dilution assays are used to determine MIC of tested 

strains and follow an established protocol77. Technical details are provided in the 

Material and methods section of Chapter 2. 
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Antibiotic tolerance 

Antibiotic tolerance is another strategy adopted by bacteria to counteract antibiotic 

treatments. It is known as “ the ability of a bacterial population to survive a 

transient exposure to antibiotics […], even at concentrations that far exceed the 

MIC”57. Because it is a population-level phenomenon which does not involve growth 

but survival, tolerance differs from resistance (Fig. 2). As a consequence, tolerance is 

not always genetically inherited, and can depend on environmental factors57,78. For 

example, β-lactam tolerance has been shown to be proportional to growth rate79 which 

is affected by nutrient availability80. Tolerance to ampicillin and norfloxacin have also 

been shown to be caused by extended lag phases which keep bacteria dormant and 

reduce killing81. Tolerance is challenging to quantify and publications have proposed 

multiple indicators mirroring the MIC, such as the MDK99 (Minimal Duration for Killing 

99% of the bacterial population)81 or the MBC (Minimal Bactericidal Concentration for 

killing 99% of the bacterial population).  

 

Figure 2: The difference between antibiotic resistance and antibiotic tolerance. A 
resistant bacterial strain is capable of growing at non-permissive antibiotic 
concentrations while tolerance involves transient antibiotic survival.  

In this work, tolerance is defined as the capacity of a bacterial population to survive 

antibiotic treatment over a time period longer than that of a control population. 

Tolerance will be evaluated by using time-kill (TK) curves. Technical details are 

provided in the Material and methods section of Chapter 2. 
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Metabolism 

Metabolism is the ensemble of chemical reactions happening inside a cell which drives 

the synthesis of essential building blocks for life. In E. coli, these building blocks are 

fatty-acids (for inner and outer membranes synthesis), nucleotides (for DNA and RNA 

synthesis), amino-acids (for protein synthesis) and polysaccharides (energy storage 

and peptidoglycan synthesis)82. Metabolism is modelized as a complex network of 

chemical reactions, many catalysed by proteins called enzymes. The EcoCyc 

database, which summarises available knowledge on E. coli metabolism, lists more 

than 1600 enzymes and thousands of chemical reactions83. Enzymes catalyse the 

conversion of a substrate into a product. Any molecule that is either a substrate or a 

product of an enzymatic reaction is called a metabolite. Enzymes often rely on co-

factors such as reduced β-nicotinamide adenine dinucleotide (NADH) or adenosine-

triphosphate (ATP, atp). Co-factors provide energy and electrons for catalysis. They 

are often converted to other molecules during catalysis (for example, NAD+ or 

adenosine-biphosphate (ADP, adp)) and require to be regenerated. This is another 

role fulfilled by metabolism.  

Metabolism is divided into multiple branches, or “metabolic pathways”, which are 

subsequent enzymatic reactions leading to the synthesis of key building blocks84. 

Examples are the de novo leucine pathway, which synthetises L-leucine, or the de 

novo pyrimidine pathway, which synthetises UTP and CTP. Often, a single substrate 

can be converted into different products. This is well exemplified by the metabolite 

inosine-monophosphate (IMP, imp) of the de novo purine pathway. IMP is converted 

either to xanthosine-monophosphate (XMP, xmp) or adenylo-succinate (dcamp) by the 

enzymes GuaB or PurA respectively85. Another example is carbamoyl-phosphate, 

which can be used for the de novo pyrimidine or arginine pathways by the enzyme 

complex PyrIB or the isoenzymes ArgI and ArgF85 respectively.   

Because it depends on key parameters such as enzymatic reaction speed, enzyme 

abundance and metabolite concentrations, metabolism is highly dynamic86,87. 

Equilibrium between metabolic pathways is required so that a cell would not lack 

important building blocks or waste energy for its growth82,88. This is generally achieved 

through transcriptional control and allosteric regulation89. They are complementary and 

ensure resource distribution and optimal building block synthesis with regards to 



21 
 

available resources. In E. coli this is well exemplified by regulation of de novo 

proteinogenic amino-acid pathways. Indeed, 16 out of 20 of these pathways are 

allosterically regulated and 19 out of 20 are genetically controlled by transcription 

factors90. This ensures that the pool of amino-acids available for protein synthesis is 

equilibrated. Any suppression of transcriptional control or allosteric regulation can have 

drastic consequences. For example, arginine can inhibit the enzyme ArgA by binding 

its H15 residue91. Transcription of all enzymes of the arginine pathway is under the 

control of the transcription factor ArgR92, itself allosterically activated by arginine93. 

Simultaneously mutating ArgA to supress allosteric control from arginine and deleting 

argR from E. coli genome led to severe pathway dysregulation, arginine 

overproduction, and fitness defect94.  

Because of metabolism dynamics, any dysfunction or insufficient abundance of an 

enzyme can cause severe accumulation of its substrate and low levels of its products, 

which can have consequences for the cell. This accumulation profile is termed 

“metabolic bottleneck” (Fig. 3). Although E. coli generally prevents fluctuation in 

enzyme levels by synthesising more enzymes that needed95, it is still sensitive to 

perturbations resulting from antibiotic treatments or genetic engineering96. For 

example, trimethoprim inhibits the enzyme FolA of the tetrahydrofolate biosynthesis 

pathway and affects cell growth97. Metabolic bottlenecks are central to this thesis and 

will be caused by implemented mutations using genetic engineering (see later 

sections). 

 

Figure 3: Representation of a metabolic bottleneck. Any dysfunction in an enzyme of 
a metabolic pathway can lead to accumulation of its substrate and lower levels of 
downstream products. Enzyme dysfunction may be caused by mutations or external 
perturbations.  

Depending on the cultivation medium of E. coli, many metabolic pathways can become 

obsolete98,99. Indeed, because they require the synthesis of multiple enzymes and 

participate in the competition for cell resources, metabolic pathways are energy costly 
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to use100,101. As a consequence, the transcription of metabolic pathway genes is 

repressed in rich medium where essential building blocks are directly provided102,103. 

For example, Lysogeny Broth (LB) contains nucleotides and amino acids. E. coli can 

salvage nucleobases like adenine from its environment and convert them to purine 

nucleotides104,105. As a consequence, the transcription factor PurR, allosterically 

activated by the salvage nucleobase hypoxanthine, inhibits the transcription of de novo 

purine pathway genes106.  

Therefore, studying metabolism requires the use of a cultivation medium providing E. 

coli with a single defined carbon source at the branching point of all metabolic 

pathways in the cell. This is why, in this thesis, we use minimal medium (M9 medium) 

supplemented with glucose. The exact composition of M9 medium can be found in 

material and methods sections of each chapter relating its use.  

The de novo purine and L-histidine pathways, as well as metabolic pathways involved 

in the respiratory chain (RC) will be extensively mentioned in this thesis. Their role in 

antibiotic resistance will be explored in Chapters 2 and 3. Following is a description of 

these pathways.  

 

De novo purine and histidine pathways 

The de novo purine nucleotide pathway is composed of 11 enzymatic reactions that 

convert 5-phosphoribosylpyrophosphate (PRPP, prpp) to IMP. IMP is then converted 

by PurA/PurB or GuaB/GuaA to AMP or GMP107 (Fig. 4). Various enzymatic reactions 

(oxidative phosphorylation, kinases…) add phosphate atoms to AMP and GMP which 

forms ADP/ATP or guanosine-biphosphate (GDP, gdp)/GTP85. Purine nucleotides are 

essential as building blocks for DNA and RNA. They are also important signalling 

molecules, like guanosine tetraphosphate108 or cyclic-AMP109. They are used as co-

factors for a considerable number of enzymatic reactions.  

L-histidine, like any other proteinogenic amino-acid, is used for the synthesis of 

proteins and peptides. Its synthesis requires 9 enzymatic reactions85. The de novo 

purine and L-histidine pathways share two metabolites. They start with the same 

metabolite, PRPP, which is either converted to 5-phospho-β-D-ribosylamine (PRA, 

pram) by PurF for the de novo purine pathway, or phosphoribosyl-ATP (prbatp) by 
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HisG for the de novo L-histidine pathway. Furthermore, the metabolite 5-amino-1-(5-

phospho-D-ribosyl) imidazole-4-carboxamide (AICAR, aicar) is the product of either 

the heterodimer HisFH or the enzyme PurB. To which extent each pathway contributes 

to the AICAR pool has been studied in Saccharomyces cerevisae110 but is currently 

uncharacterised in E. coli.  

Hence, the de novo L-histidine and purine pathways are tightly associated. The 

regulation of the two pathways is complex and will not be covered here. They are 

notably regulated by different transcription factors106,111. AICAR, ADP, and AMP have 

been shown to be allosteric regulators of HisG112 which suggests that the de novo 

purine pathway metabolites influence the synthesis of L-histidine. 

 

Figure 4: The de novo metabolic pathways of L-histidine and purine nucleotides. 
Metabolites names are given using the BiGG models as reference113.  

 

The respiratory chain 

In aerobic conditions, E. coli is able to use oxygen as electron acceptor to generate an 

electrochemical potential across its inner membrane. This is called the proton motive 

force (PMF) and is used by the enzymatic complex ATP synthase to phosphorylate 

ADP to ATP (oxidative phosphorylation). Oxidative phosphorylation is an efficient way 

to regenerate ATP pools in the cell depending on available resources114,115. The PMF 

components are the ΔpH (the difference of proton concentration between the 

periplasm and the cytosol), as well as the Δψ (the difference of electric potential across 

the inner membrane116). To generate a PMF, E. coli relies on proteins and metabolites 

associated in what is called a respiratory chain (RC), or electron transport chain (ETC). 

The RC transfers electrons from a donor (like NADH) to a final acceptor (oxygen)117.  

Importantly, the RC of E. coli relies on various electron donors or acceptors depending 

on environmental conditions118,119. In this thesis, the focus is made on electron donors 

and acceptors relevant in aerobic conditions. 
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Because it employs a wide variety of metabolites for electron transfer and redox 

reactions, the RC is dependent on metabolic pathways that synthesise and regenerate 

these metabolites. Important in Chapter 2, the methylerythrol-phosphate (MEP), flavin, 

tetrapyrrole and cardiolipin metabolic pathways as well as glycolysis and the 

tricarboxylic acid (TCA) cycle are described here (Table 2): 

Pathway 
Starting 

metabolite(s) 
End metabolite(s) Role in RC 

Number 

of genes 

MEP85,120 

Pyruvate/ 

glyceraldehyde 

3-phosphate 

Isopentenyl-

pyrophosphate/ prenyl 

diphosphate 

Furnishes precursors for the isoprenoid 

moiety of menaquinone, 

dimethylmenaquinone and ubiquinone, 

three electron shuttles121. Furnishes the 

isoprenoid moiety for heme o, which 

binds to terminal ubiquinol oxidases that 

carry electron transfers122. 

8 

Flavin85 

GTP/ 

D-ribulose 5-

phosphate 

Flavin adenine 

dinucleotide (FAD) 

Flavin mononucleotide and FAD are 

used as cofactors by multiple 

enzymes119. 

8 

Tetrapyrrole85,123 L-glutamate Protoheme 

Furnishes the tetrapyrrole moiety of 

various heme compounds which binds to 

cytochromes enzymes that carry 

electron transfers124. 

10 

Cardiolipin85 

Cytidine 

biphosphate -

diacylglycerol 

Cardiolipin 

Complexes with RC enzyme members 

and creates a proton trap which helps to 

maintain the proton gradient125. 

7 

Glycolysis and 

TCA cycle85 
D-glucose 

Pyruvate (glycoslysis) 

None (TCA cycle) 

Regenerates the electron donors 

succinate and NADH119 and furnishes 

essential precursors for other pathways 

aforementioned. 

44e 

Table 2: Summary of RC-related metabolic pathways of interest in this thesis 

 

Antibiotics and metabolism 

Because they target essential bacterial processes and often enzymes, antibiotics 

efficiency is tightly connected to metabolism. The link between metabolism and 

antibiotics has been the topic of multiple studies in recent years126. One main reason 

 
e  Including the phosphotransferase system and glyoxylate shunt. 
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is that antibiotics-mediated death is not fully understood, as discussed for β-lactams 

and amino-glycosides. Metabolism might be the missing link explaining how antibiotic 

treatments result in cell death.  

An interesting model involves reactive oxygen species (ROS) hypothesis. This 

hypothesis states that antibiotics of various classes induce generation of ROS as side-

effect of their mode of action mainly due to interactions with central carbon 

metabolism127,128. Since ROS are lethal to many bacterial species such as E. coli, this 

could explain the reason why antibiotics ultimately induce cell death. However, this 

hypothesis has faced numerous contradictions, as it failed to explain multiple 

observations, such as the fact that many antibiotics are efficient in anaerobic 

conditions129,130. However, studies involving ROS-mediated killing never claimed that 

they were the sole responsible for antibiotic lethality, but instead contributed to it131,132. 

An interesting part of this model is the correlation between antibiotic lethality and levels 

of energy co-factors influencing “metabolic activity” such as ATP or NADH133,134. The 

lower the metabolic activity, the lower the antibiotic lethality. The importance of ATP in 

antibiotic efficiency has put a focus on the de novo purine nucleotide pathway. It was 

suggested that antibiotic stress could induce “adenine limitation” which drives an 

increase in respiration as compensation, leading to ROS production and subsequent 

lethality135,136. Therefore, a lower metabolic activity may reduce ROS generation and 

shield from antibiotic treatments. Overall, this model highlights the tight relationship 

between antibiotics and metabolism and show that (i) metabolism can impact 

antibiotics and (ii) antibiotics can impact metabolism.  

One major caveat of all of these studies is that they describe antibiotic tolerance and 

not resistance. They consistently use the term “antibiotic killing” and rely on tolerance 

assays128,133–135. They attempt to generalise killing from many antibiotic classes with a 

single generic “metabolic state” which would depend solely on energy available to the 

treated cells.  While this may be true for antibiotic tolerance, few approaches have 

explored the relationship between antibiotic resistance and metabolism137. Hence, a 

complete landscape of bacterial metabolic strategies to counteract antibiotic 

treatments is missing. New approaches that include antibiotic resistance are needed.  

One such approach, adaptive laboratory evolution, was recently adopted137. In this 

study, E. coli BW25113 was evolved with antibiotics of three different classes (the β-

lactam carbenicillin, the amino-glycoside streptomycin and the quinone ciprofloxacin) 
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with a cultivation constraint to encourage metabolic adaptations137. This led to 

mutations in metabolic genes such as sucA/icd (TCA cycle), gltA (glutamate synthesis) 

or dxs/ubiF (isoprenoids) that conferred resistance. Interestingly, no mutations in the 

purine pathway were enriched during this evolution experiment, probably because of 

potential fitness defect resulting in mutations in purine genes (see Chapter 2). 

Furthermore, while some mutated genes overlapped between antibiotics, no unifying 

metabolic strategy that would confer resistance to the three antibiotics was observable. 

Nevertheless, this study suggested that mutations in metabolic gene could confer low-

level (2X-8X MIC increase) antibiotic resistance, although the metabolic consequences 

of these mutations was not further characterised. Specific antibiotic-metabolic pathway 

relationships have also been shown. For example, mutations in metabolic pathways 

involved in the respiratory chain can cause AGs resistance138,139.  

These studies indicate that metabolism could have a more intimate link with antibiotic 

resistance than with antibiotic tolerance. The extent and the nature of these specific 

associations remains to be investigated and fully characterised. One key result of such 

research is that a deep understanding of the relationship governing antibiotics and 

metabolism can help supplementing antibiotic treatments with adjuvants that contribute 

to killing and alleviate bacterial escape strategies140,141. This thesis aimed at 

complementing current knowledge and furnish a better picture of this relationship, 

mainly by using metabolomics and sets of genetic tools which allowed metabolic 

control. This is shown in Chapters 2 and 3.  

 

Metabolomics  

Metabolomics is the quantification and the study of metabolites142. The “omics” 

suffix (from Latin “ome” – many, mass)143 refers to simultaneous measurement and 

analysis of large amounts of metabolites. Metabolomics is of high interest for the 

understanding of biological systems89,90,96,144. Metabolites can be extracted and 

analysed by using a wide variety of methods145. A presentation of the methods used in 

this thesis follows (Fig. 5). 

To quantify metabolites, they must be first extracted and stored. Metabolite extraction 

and storage are crucial for analysis and influence the reliability of the conclusions 

drawn from data analysis142. Here, a quenching solution was used for extraction and 
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storage of metabolites146. It serves multiple purposes: (i) stopping all enzymatic 

reactions in the cell, (ii) lysing the cell membranes to release their content and (iii) 

providing a stable environment for metabolite storage. Technical details on the 

metabolite sampling and storage protocols can be found in material and methods 

sections of Chapter 2.  

Metabolite extracts were measured either with a triple-quadrupole mass spectrometer 

coupled with a high-pressure liquid chromatographer (HPLC-TQ)146 or a quadrupole 

time-of-flight mass spectrometer coupled with a flow-injector (FI-TOF)147. Mass 

spectrometers (MS) are machines that utilise the mass and charge properties of 

molecules for their identification and quantification148. Briefly, upon measurement, 

metabolites hit the ion detector of the MS and generate a signal of which the intensity 

is proportional to the metabolite abundance. Depending on the MS used and the mass 

and charge of the metabolites (m/z), they may hit the ion detector at different time, 

which permits their identification. Deeper technical specificities of the HPLC-TQ and 

FI-TOF will not be covered here.  

In this thesis, HPLC-TQ was used for targeted metabolomics, the measurement of 

a defined subset of already annotated and characterised metabolites149. On the 

other hand, FI-TOF was used for untargeted metabolomics, the simultaneous 

measurement of a large amount of metabolites, generally with lower confidence 

than with targeted metabolomics150. Untargeted metabolomics is used for discovery 

while targeted metabolomics is suited for hypothesis-driven research151. As a result, 

both approaches are complementary.  

 

Figure 5: Brief recapitulation of experimental workflow for metabolomics.  

This thesis takes advantage of both methods for its investigations, with focus on 

targeted metabolomics. Technical details on the methods used can be found in 

associated publications146,147 and in the material and methods sections of Chapter 2.   
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FI-TOF and HPLC-TQ also have biological limitations. In E. coli, metabolite levels 

cannot be inferred from single cells but entire populations. This can be problematic 

since it has been suggested that single cells display heterogeneity in a bacterial 

population152,153. Furthermore, metabolites were measured in bacterial populations 

growing in liquid culture, and resistance was here often tested using agar dilution. 

Differences between planktonic and biofilm growth are unclear154,155 and may blur 

extrapolation and conclusions.  

 

Bottom-up proteomics 

Proteomics is the study of the protein content of a cell. Understanding which proteins 

are expressed in a bacterium, and to which abundance, can provide useful information 

on metabolic regulations. Combined with metabolomics, proteomics furnish a refined 

picture of metabolism96,156,157.  

Proteomics relies on an ensemble of technologies including mass spectrometry158 

which will not be discussed in detail here. Proteomics in E. coli requires protein 

extraction from a bacterial population. This thesis provides data from bottom-up 

proteomics experiments (Chapter 3). In the case of bottom-up proteomics, the protein 

extract is digested by enzymes which generates multiple peptides of which the amino 

acid composition is measured in the mass spectrometer159. Here, a quadrupole-

orbitrap mass spectrometer was used160. Using algorithms, peptides can be identified 

by analysing the amino-acid sequences detected on the mass spectrometers, relying 

on a process known as “deconvolution”161. The number of times a peptide is detected 

corresponds to its abundance in the extract, although this is not always trivial162. In this 

thesis, proteomics faces the same limitations as metabolomics.  

 

Genome engineering using CREATE 

CRISPR-enabled trackable genome engineering (CREATE) is a method that enables 

the implementation of mutations on the genome of E. coli by using the CRISPR-Cas9 

machinery and lambda-phage mediated recombination. This technique is important for 

this dissertation and will be described in detail here.  
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The CREATE system used in this thesis163 is a modified version of the original 

method164 but employs the same editing principles.  

Clustered regularly interspaced short palindromic repeats (CRISPR) - Cas9 relies on 

the association between the nuclease Cas9 (from Streptococcus pneumoniae) and a 

single-guide RNA (sgRNA). The sgRNA carries a 20 base pairs (bp) DNA sequence 

(termed “protospacer”) complementary to a gene of interest165. Upon complexation 

with the sgRNA, Cas9 searches the genome until finding its genomic target166. The 

recognition of the target DNA sequence is conditioned by the presence of a 

protospacer adjacent motif (PAM), a sequence of three nucleotides (5’-NGG-3’ for 

Cas9)167. When the target is found, Cas9 generates a double-stranded break (DSB) 

three bases upstream of the PAM168.  This DSB is generally lethal for E. coli169. 

However, the DSB can be repaired by homologous recombination with a double 

stranded DNA (dsDNA) sharing homologies with the severed genomic region, thereby 

re-establishing genome continuity170. This homologous dsDNA is called “repair 

template” and can be plasmid-borne. The repair template does not need to share 

perfect homology with the DSB region and recombination can be successful even when 

nucleotides sequences vary to a certain extent164. Therefore, if the repair template 

carries mutations, they will be implemented on the repaired genome upon 

recombination. This is the main principle behind CREATE: a DSB is induced by Cas9, 

and a repair template carrying a mutation to implement on the genome is provided for 

the cell to repair its genome with homologous recombination. To prevent new 

protospacer recognition and subsequent DSB by Cas9, the repair template has to carry 

a silent PAM mutation. Cells which successfully repair their genomes are selected and 

survive (Fig. 6).  

Cells can also perform homologous recombination without a prior presence of a DSB. 

Either ways, Cas9 cannot further break the edited genome. In CREATE, DNA 

recombination relies on heterologous proteins (called exo, bet and gam) from the λ 

phage171 which are efficient and provide high recombination rates10.  
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Figure 6: Principles of CREATE as used in this thesis 

One essential aspect of CREATE is its trackability. Indeed, both the sgRNA and repair 

template nucleotide sequences are proximally located on the same plasmid. The repair 

template-sgRNA association is called a “DNA barcode”. Sequencing of the DNA 

barcode allows the identification of the mutation in the strain carrying it. The CREATE 

system used in this thesis relies on a pair of plasmids (Fig. 6). The plasmid pTS41 

carries the different genes necessary for lambda phage mediated recombination (exo, 

bet and gam) and the Cas9 coding sequence, both regulated by inducible promoters. 

The second plasmid, pTS40, carries the DNA barcode which varies according to the 

mutation to be implemented. The repair template and the sgRNA are separated by only 

4 base pairs. The DNA barcode is only 200 base pairs long, which permits its 

sequencing and the identification of the mutation of the strain.  

Due to its nature, CREATE suffers from limitations. The number of mutation sites is 

limited by the presence of NGG PAMs, although E. coli BW25113 genome has a 

guanine-cytosine content of 51%12. Furthermore, E. coli can employ a variety of 

evolutionary strategies to escape Cas9-mediated DSB, notably by deleting or mutating 

the genes carried by the plasmids pTS41 and pTS40. Therefore, DNA barcode 

sequencing does not guarantee that genome editing was successful. Finally, CREATE 

depends on two uncurable plasmids, which can impose a burden on the host172.  Usage 

of kanamycin and chloramphenicol was also necessary to maintain the plasmids. Since 

the two resistance markers (KanR and CamR) on pTS41 and pTS40 do not confer 

resistance to the other antibiotic tested (see various chapters), this was evaluated as 

acceptable and further explored in Chapter 3.  
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The main reasons motivating the use of CREATE for this project were its ease of 

utilisation, its efficiency, and its trackability. This was of exceptional importance for the 

successful cloning and usage of the CRISPR pooled library (Chapter 2), as well as the 

multiple mutants used in this dissertation (all chapters).  

 

CRISPR interference 

CRISPR interference (CRISPRi-dCas9) differs from CRISPR-Cas9 by the use of a 

Cas9 enzyme (deactivated Cas9 – dCas9) of which the nuclease activity has been 

supressed by mutations D10A and H841A173. Since dCas9 cannot induce DSB, it binds 

to the DNA and remains on target, inducing a steric block of the RNA polymerase which 

alleviates transcription. This system is useful to study genes which cannot get knocked-

out of genomes due to their essentiality. Furthermore, it also allows the study of 

metabolism dynamics in response to perturbation96. Indeed, dCas9 can be expressed 

using an inducible promoter, which permits the transcriptional repression of its target 

on demand.  

 

Figure 7: Principles of CRISPRi as used in this study.  

CRISPRi is limited by “off targeting”: dCas9 may bind unwanted regions of the genome 

even if they share limited homologies with its protospacer174. This can lead to unwanted 

transcriptional arrest of non-targeted genes and blur study results. However, CRISPRi 

is a valuable system which is easy to use.  
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In this thesis, CRISPRi relies on an E. coli BW25993 strain (close to E. coli BW25113), 

named E. coli YYdCas9175 (Fig. 7) with a genome-integrated dCas9 gene under the 

control of an inducible promoter. The sgRNA is carried on the plasmid pgRNA and 

constitutively expressed173. This system has been shown to be tightly regulated96, 

which is crucial to avoid unwanted effect from dCas9 overproduction176. CRISPRi is 

used in Chapter 2 of this thesis for hypothesis confirmation.  

 

Pooled libraries  

A strain library is a collection of multiple bacterial strains. In general, the collection 

consists of variations of a chassis strain depending on the biological phenomenon to 

be investigated11,163,177. A library can either be arrayed or pooled178. In arrayed 

libraries, each strain is stored and studied individually. In pooled libraries, all strains 

are cultivated and studied together as a mixed population. Pooled libraries are 

particularly useful to explore hypothesis with a much higher throughput than by using 

individual strains. However, depending on the experiments performed, strains may 

behave differently in community than if cultivated individually, likely due to cross-

feeding179–181. Hence, pooled libraries are suited for large screens but not for individual 

strain characterisation. 

Chassis variation can be constrained to genetic constructs carried by a plasmid. To 

efficiently generate such a pool of strains, each with a different plasmid, plasmids are 

also cloned using a pooled approach (Fig. 8). During the cloning, the variable genetic 

constructs (oligonucleotides) are pooled together and ligated into a common 

backbone. The ligation step generates the plasmid pool, which is then transformed 

either directly to the chassis strain96, or an intermediate strain (as for the CREATE 

library described in Chapter 1). The pooled library is then generated by harvesting all 

transformants together. The transformation and recovery steps are of high importance. 

Transformation efficiency dictates the number of transformants which influences final 

library composition182.  



33 
 

 

Figure 8: The cloning of a pooled strain library. Depending on the methodology, sub-
cloning may be required.  

This thesis relies on a pooled library developed using CREATE. Its design strategy is 

described in Chapter 1 and its use shown in Chapter 2.   
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Chapter 1: Design and challenge of an Escherichia 

coli strain library with metabolic mutations 

 

This chapter relates to the following paper: 

Thorben Schramm, Paul Lubrano, Vanessa Pahl, Amelie Stadelmann, Andreas 

Verhülsdonk, Hannes Link. Mapping temperature-sensitive mutations at a 

genome-scale to engineer growth-switches in E. coli1 

Contribution: This project was entirely designed by Dr. Thorben Schramm and Prof. 

Dr. Hannes Link. The author of this thesis contributed in the revision work hereby 

presented and wrote the chapter text, made the figures, and performed experiments 

with the CysS mutants as well as the mock mutants. 

Chapter relevance: This chapter describes the design of the strain library used in 

Chapter 2.  
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Introduction 

Context of the study  

Industrial biotechnology relies on enzymes or micro-organisms to convert a feedstock 

(wood biomass, sugar) into a product of economic interest (vitamins, biofuel)2. 

Processes employing microbes such as Escherichia coli generally rely on batch or 

continuous cultivation in bioreactor3. Microbes are often engineered to maximise 

conversion of feedstock to the product of interest. This competes with other cellular 

processes and may lead to substantial growth burden and loss of production4. One 

way of abolishing such constraint is to rely on dual-stage processes. In these 

processes, cells are first grown until they reach a defined biomass5. Growth is then 

artificially stopped and cells kept metabolically active to maximise product yield.    

Dual-stage bioprocesses remain rare owing to the technical difficulty in stopping 

microbial growth as well as maintaining a long-term stable production phase. 

Nevertheless, various methods have been elaborated. Amongst these, a study from 

our group has demonstrated the use of a thermosensitive ArgG mutant in E. coli6. 

Temperature change from 30°C to 41°C led to inactivation of the enzyme which is 

essential for E. coli to produce arginine in minimal medium. This led to a metabolic 

bottleneck and growth arrest. The ArgG substrate, citrulline, accumulated to high levels 

and is a molecule of commercial interest.  

Temperature-sensitive enzymes have multiple advantages for dual-stage 

bioprocesses. The simplicity of implementing genomic mutations over complex genetic 

systems, often carried by plasmids, is a considerable advantage in industrial setup 

where genetic instability (also called “degeneration”) is highly prevalent7,8. Deactivated 

temperature-sensitive proteins may be reactivated, allowing potential process 

flexibility9. Temperature is also a physical parameter easily tuneable in bioreactors.  

Before the publication of the study from which this chapter originates, only 184 

temperature-sensitive mutations were known for E. coli, many of which being 

redundant10.  This low diversity of available temperature-sensitive mutations hindered 

the development of related dual-stage processes and there was a need to discover 

new ones. However, finding an adequate temperature-sensitive mutation for ArgG 

required extensive efforts, including error-prone polymerase chain reaction (PCR) and 

individual variant testing. Therefore, the development of a high-throughput assay was 
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needed to generate and characterise simultaneously multiple temperature-sensitive 

mutants for many industrial applications. This is what drove the development of the 

mutant library with temperature-sensitive mutations which played a crucial role for this 

thesis. Generating thousands of potential temperature-sensitive mutants and testing 

them all together presented tremendous advantages over individual variant testing. 

Hence, the initial purpose for the library used in Chapter 2 was not antibiotic research, 

but industrial processes.  

 

Design and cloning of a temperature-sensitive mutant library 

Generating a temperature-sensitive mutant library is not trivial. First, mutations should 

be implemented in genes which are essential, so that the deactivation of their encoded 

enzyme lead to growth arrest. Therefore, genes selected for the library design were all 

essential genes of E. coli in minimal medium supplemented with glucose11,12.  

An informatic approach was used to design a set of temperature-sensitive mutations 

for each essential gene. This was done using the algorithm TSpred13. TSpred identifies 

buried sites in protein structures by using hydrophobicity and hydrophobic moment as 

properties. It is assumed that destabilisation of buried sites with a mutation might 

increase protein thermal instability14. The use of TSpred was necessary to limit the 

number of mutations per genes, each offering a considerable design space. As an 

example, mutating each of the 447 amino-acids residues of ArgG to any of 20 other 

amino-acids would lead to the generation of 8940 variants, many of which will be 

unlikely to carry any temperature-sensitive mutation. To further downscale the number 

of mutations, only aspartate, alanine, tryptophan, proline and asparagine were 

selected for potential substitutions. A final list of 16 038 potential temperature-sensitive 

mutations was generated. Whether these mutations were temperature-sensitive or not 

remained unknown and could only be tested experimentally. Some mutations may 

have no effects on their recipient proteins (ineffective mutations), while others may be 

destabilising their recipient proteins without the requirement for high temperatures 

(constant mutations).  

The mutations were cloned in E. coli genome using CREATE in a pooled approach 

and a pooled library of 15 120 strains was generated (see Thesis framework and Fig. 

1). This pooled library was called “CRISPR library”.  
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Figure 1: Design of the mutant CRISPR library used in this study. 15 120 strains were 
successfully cloned out of the originally 16 038 designed mutations.  

 

Competition assay  

To discriminate temperature-sensitive mutants from mutants with ineffective or 

constant mutations, the library was submitted to a competitive assay (Fig. 2).  

Since the CREATE method was used for genome editing of the mutations, each strain 

of the library carried a DNA barcode (on pTS40, see Thesis Framework), of which the 

sequencing would inform on the identity of the mutation in that strain. In a pooled 

assay, strains are cultivated together. Extracting plasmids from a pooled library results 

in a mixed DNA barcode population, of which the distribution should theoretically match 

strain abundance15. Population distribution can be measured using next generation 

sequencing (NGS). The abundance of each DNA barcode (and its associated mutant) 

from the extracted population can be assessed by its read counts normalised by the 

total read counts of DNA barcodes obtained from the entire population.  

The CRISPR library was cultivated at 30°C in minimal medium supplemented with 

glucose for 15 h to allow the depletion of strains unable to grow in this condition (for 

example, strains which had a lethal mutation at 30°C). Then, the culture was split into 
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two sub-cultures, one incubated at 30°C and the other at 42°C. Samples were taken 

every 2 hours for 12 hours after the split. Plasmids were extracted and DNA barcodes 

were sequenced. Ideally, mutants with temperature-sensitive mutations would deplete 

from the library at 42°C because of growth-arrest, and remain abundant at 30°C.  

 

Figure 2: Description of the competition assay used to discriminate temperature-
sensitive mutants from the CRISPR library. The library was first cultivated in M9 
medium for 15 h at 30°C to allow depletion of slow or non-growing strains. The culture 
was then split into two sub-cultures at either 30° or 42°C. Samples were taken every 
two hours. Plasmid populations were extracted, and DNA barcodes were amplified 
using PCR and sequenced using NGS.   

 

In total, 1 269 barcodes corresponded to the temperature-sensitive criterion, which 

accounted for 8.4% of the library. A total of 6 236 barcodes were not detected in the 

library at (t=0), showing protein inactivation from 30°C (constant mutation). Many 

barcodes had low abundance at both temperatures, indicating they encoded constant 

mutations which were reducing fitness but not strongly enough to be lethal for their 

associated strain. These strains may suffer from a non-lethal metabolic bottleneck. 

Interestingly, it is this category of strains which is the most relevant for Chapter 2.  

These results were highly encouraging. However, there remained to confirm the 

temperature-sensitivity of the mutants, as cultivation and sequencing in pooled assays 

have numerous bias. Furthermore, there was uncertainty on whether some observed 

growth phenotypes might also be caused by the genome editing itself. Indeed, genome 

editing might result in pleiotropic effects independent from the mutation added to the 

genome, which might cause unforeseen consequences falsely interpreted as a 

relevant phenotype. This could also considerably blur the screen results.  
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The author of this thesis performed work to elucidate both questions and assess 

whether results from this pooled screen could be extrapolated to individual strains with 

confidence.  

 

Results and discussion 

Confirmation of temperature-sensitive mutations in CysS 

To evaluate the efficiency and reliability of the screening strategy, potential 

temperature-sensitive mutations were individually reimplemented into the wild-type 

strain E. coli BW25113. With 17 putative temperature-sensitive mutations, the gene 

cysS, encoding for the cysteine-tRNA ligase, was an adequate candidate. This protein 

catalyses the addition of the amino-acid cysteine to its cognate tRNAs which is crucial 

for protein synthesis16. Hence, the cysS gene is essential for growth of E. coli in LB 

medium12.  

Fourteen of the 17 strains were successfully cloned and subjected to growth 

experiments in plate readers. Temperatures of 30, 34, 38, 40, 42 and 44°C were 

chosen to provide a good resolution over the sensitivity of the mutated proteins. The 

strain E. coli BW25113 carrying pTS41 and a pTS40 without a DNA barcode was used 

as control (same “non-edited control” as in Chapter 2 and 3).  

At 30°C, the growth rates of most strains belonged in the same range (0.4-0.7 h-1), 

except for CysSM294P which grew poorly at all temperatures tested and did not grow 

from 38°C (Fig. 3, Table 1). This showed that most mutants and controls were able to 

grow robustly at this temperature. CysSM294P is likely a strain with a “constant mutation” 

which is active already at 30°C. That this strain was identified as temperature-sensitive 

might be the result of bias from pooled cultivation or NGS as previously mentioned.  
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Figure 3: Heatmap representing the growth rates of the cloned cysS mutants, the mock 
controls as well as the non-edited control strain. Data is given in h–1 and represent the 
mean growth rate of three replicates. 

 

Differences are particularly pronounced at 42°C, where most mutants growth rates 

drop drastically by half of their 30°C values. Exceptions are CysSL293W and CysSM96Q, 

which have growth rate increases from 30°C to 42°C (respectively by 12.5% and 

13.6%) although having lower growth rates than the non-edited control from 38°C. 

These two strains might not be temperature sensitive and carry mutations which 

modestly destabilise CysS at all tested temperatures and cause depletion at 42°C 

because of a slower growth rate.  

Six of the 14 cysS mutants do not grow at 42°C (Fig. 4). Amongst these, CysSV45Q, 

CysSM25Q and CysSL293D, have one replicate displaying exponential growth from 15h 

of cultivation at 42°C. This hints for genetic instability and potential escape mutations.  
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In conclusion, 11 of the 14 cysS mutants display a strong temperature-sensitive 

phenotype. Seven mutants display growth arrest at 42°C. The genetic instability 

observed in three of the growth-arrested strains tends to show limitations of these 

mutations for industrial applications. The screening method could identify growth 

impairment at 42°C, but not distinguish slower growth from growth arrest, neither 

pinpoint genetic instability, highlighting the need to test each identified mutant 

separately. Nevertheless, 78% of the tested strains were confirmed to have the correct 

phenotype, which was a good indication on the screen quality.  

 

Figure 4: Growth curves of cloned cysS mutants, the mock controls as well as the non-
edited control strain. Growth at 30°C (blue) or 42°C (red) is shown for each strain. Full 
lines represent the mean data across three replicates, also shown independently as 
dashed lines. Same data as used in Figure 3.  
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Mock mutations modestly impact growth rates 

In addition to mutations in cysS, two “mock” controls were designed to ensure that 

CREATE genome editing per se could not cause any phenotypical changes in the 

strains because of a pleiotropic effect. Here, the homoserine O-succinyl transferase 

gene metA and the homoserine kinase gene thrB were chosen. Mock controls have 

only the silent PAM mutation necessary to escape Cas9 counterselection, and no 

substitution mutation. Mutations were cloned as aforementioned. The two strains MetA 

Mock and ThrB Mock were cultivated in plate readers at the same temperature range 

as previously stated.  

The MetA Mock control showed lower growth rates than the non-edited control strain 

at 42°C (28% decrease). However, both ThrB Mock and MetA Mock had very similar 

growth rates to the non-edited control strain at all other tested temperatures. Could the 

slower growth rate of MetA mock at 42°C be due to experimental variation or indeed 

caused by the mock mutations?  Synonymous mutations may have undesirable 

effects, although they are silent17. Indeed, it has been shown on multiple instances that 

synonymous mutations may impact gene expression18,19, for example through mRNA 

folding destabilisation20. Hence, genome editing with CREATE may have more 

downsides than previously stated.  

In conclusion, the CRISPR screen allowed for the successful identification of 

temperature-sensitive mutants amongst the cloned strains. Conservatively, it could be 

claimed that 11 of the 14 cysS mutants cloned have temperature-sensitive phenotypes. 

There would remain CysSL293W and CysSM96Q with almost no growth defect at 42°C, 

and CysSM294P, which already has a severe fitness defect at 30°C. The screen suffers 

modestly from its lack of distinction between slow growth and growth arrest at 42°C, 

and is unable to identify strains with genetic instabilities. Furthermore, the inconclusive 

results regarding the mock controls also indicates that slow growth could be due to the 

edit itself. Overall, this dataset demonstrates the high potential for the CRISPR screen 

methodology in order to identify temperature-sensitive mutants while highlighting 

multiple limitations that remain to be addressed to improve this experimental strategy.  
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Material and methods 

Strains and medium 

E. coli BW25113 was used for all performed experiments. E. coli TOP10 (Thermo 

Fischer) was used for cloning of the pTS40 plasmids. Cultivation was performed in 

either LB (Sigma #L3522) or M9 medium. M9 medium was composed by (per litre): 

7.52 g Na2HPO4 2 H2O, 5 g KH2PO4, 1.5 g (NH4)2SO4, 0.5 g NaCl. The following 

components were sterilized separately and then added (per litre of final medium): 1 mL 

0.1 M CaCl2, 1 mL 1 M MgSO4, 0.6 mL 0.1 M FeCl3, 2 mL 1.4 mM thiamine-HCl and 

10 mL trace salts solution. The trace salts solution contained (per litre): 180 mg ZnSO4 

7 H2O, 120 mg CuCl2 2 H2O, 120 mg MnSO4 H2O, 180 mg CoCl2 6 H2O. Unless 

specified otherwise, chloramphenicol (30 µg/mL) and/or kanamycin (50 µg/mL) were 

added to the mediums when strains carried pTS41 and/or pTS40 respectively. M9 

medium was always supplemented with 5 g/L of glucose.  

Strain cloning 

Refer to Chapter 2. 

Strain cultivation 

All strains were first transferred to a 96-well plate (called “stock plate”), with 3 wells 

occupied by each strain in 150 µL of LB with 25% glycerol. The stock plate was stored 

at -80°C. For precultures, strains were transferred from the stock plate to a deep-well 

plate (DWP) with 500 µl of LB medium/well using a 96-well replicator. Cultivation was 

performed for 6 h at 30°C and 220 rotation per minutes (RPM). Then, cells were 

transferred (dilution factor 1:500) to another DWP with wells filled with 500 µL of M9 

medium and incubated overnight at 30°C and 220 RPM. Cells were then transferred 

to flat-bottomed 96-well plates containing 150 µL of M9 medium (dilution factor of 

1:100). The plates were sealed with a lid and parafilm and incubated with shaking at 
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chosen temperatures for 24 h in plate readers Epoch 2 (Biotek) and Infinite 200 Pro 

(Tecan). OD600 was recorded every 10 minutes.  

Data analysis 

Data were first converted from plate reader OD600 to normalised OD600 values using 

previously determined conversion factors. Growth rates were determined as explained 

in Chapter 2. Figures were made using Python 3 and Adobe Illustrator. Any reference 

to the CRISPR screen comes from the original publication1.  

 

Supplements 

 30°C 34°C 38°C 40°C 42°C 44°C 

MetA Mock 0.68 ± 0.0 0.56 ± 0.0 0.79 ± 0.04 0.71 ± 0.01 0.73 ± 0.11 0.0 ± 0.0 

CysSM94D 0.64 ± 0.04 0.56 ± 0.01 0.66 ± 0.02 0.41 ± 0.01 0.0 ± 0.0 0.0 ± 0.0 

CysSL387W 0.66 ± 0.08 0.56 ± 0.02 0.77 ± 0.03 0.71 ± 0.01 0.37 ± 0.01 0.0 ± 0.0 

CysSM96D 0.69 ± 0.01 0.56 ± 0.01 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

CysSL293Q 0.56 ± 0.08 0.61 ± 0.04 0.74 ± 0.15 0.66 ± 0.02 0.0 ± 0.0 0.0 ± 0.0 

CysSL391W 0.62 ± 0.06 0.64 ± 0.04 0.67 ± 0.14 0.64 ± 0.05 0.29 ± 0.03 0.0 ± 0.0 

CysSM25A 0.56 ± 0.07 0.56 ± 0.02 0.73 ± 0.07 0.63 ± 0.02 0.39 ± 0.06 0.0 ± 0.0 

Non-edited control 0.59 ± 0.08 0.56 ± 0.01 0.77 ± 0.1 0.7 ± 0.01 0.79 ± 0.03 0.12 ± 0.21 

ThrB Mock 0.58 ± 0.05 0.55 ± 0.01 0.75 ± 0.04 0.71 ± 0.02 0.72 ± 0.08 0.0 ± 0.0 

CysSM294P 0.36 ± 0.08 0.36 ± 0.04 0.0 ± 0.0 0.22 ± 0.39 0.0 ± 0.0 0.0 ± 0.0 

CysSL293W 0.46 ± 0.12 0.54 ± 0.03 0.65 ± 0.01 0.65 ± 0.02 0.57 ± 0.14 0.0 ± 0.0 

CysSL293D 0.59 ± 0.03 0.56 ± 0.02 0.58 ± 0.09 0.44 ± 0.0 0.19 ± 0.34 0.0 ± 0.0 

CysSL391P 0.57 ± 0.08 0.59 ± 0.04 0.65 ± 0.05 0.57 ± 0.01 0.29 ± 0.03 0.0 ± 0.0 

CysSM25Q 0.49 ± 0.03 0.52 ± 0.03 0.53 ± 0.01 0.4 ± 0.34 0.19 ± 0.33 0.0 ± 0.0 

CysSM96Q 0.38 ± 0.13 0.54 ± 0.03 0.63 ± 0.16 0.63 ± 0.02 0.52 ± 0.05 0.0 ± 0.0 

CysSV45Q 0.57 ± 0.05 0.54 ± 0.01 0.59 ± 0.02 0.41 ± 0.01 0.09 ± 0.16 0.0 ± 0.0 

Table 1: Growth rates values (h-1) as shown in Figure 3, with standard deviation (n = 

3).  
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Chapter 2: Metabolic mutations induce antibiotic 

resistance by pathway-specific bottlenecks 

 
Contribution: This chapter is an included Scientific Manuscript. Contribution of each 

author is discussed in a declaration of contributions as required.  

Chapter relevance: This chapter shows the main body of work done during this thesis. 

It is the most important chapter of the thesis.   

Additional note: During the time of the thesis redaction (April-May 2024), the 

manuscript was in revision. Hence, the version shown here is not necessarily the final 

version that ought to be published.   
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Abstract 

Metabolic variation across pathogenic bacterial strains can impact their 

susceptibility to antibiotics and promote evolution of antimicrobial resistance 

(AMR). However, little is known about how metabolic mutations influence 

metabolism and which pathways contribute to AMR. Here, we measured 

antibiotic resistance of 15,120 Escherichia coli mutants, each with a single 

amino acid change in one of 346 essential proteins. Most of the mutant strains 

that showed resistance to either of the two tested antibiotics carried mutations 

in metabolic genes. The effect of metabolic mutations on resistance was 

antibiotic- and pathway-specific: resistance mutations against the β-lactam 

antibiotic carbenicillin converged on purine nucleotide biosynthesis, those 

against the aminoglycoside gentamicin converged on the respiratory chain. 

Additionally, metabolic mutations conferred tolerance to carbenicillin by 

reducing growth rates, which promoted the evolution of higher resistance levels. 

These results, along with evidence that metabolic bottlenecks are common 

among clinical E. coli isolates, highlight the relevance of metabolic mutations 

for AMR. 
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Introduction 

Antimicrobial resistance (AMR) is a major threat to global health, and the associated 

death toll is alarmingly increasing1. Among the major contributors to AMR are 

pathogenic strains of Escherichia coli, which have been associated with more than 

800,000 deaths in 20192. AMR is either a consequence of mobilized resistance genes 

(e.g. drug-modifying enzymes), or of mutations that change drug-transport or binding 

to the drug-target3,4. Apart from such canonical resistance mechanisms, mutations in 

genes that are not directly related to the drug or the drug-target can also confer 

antibiotic resistance or promote its evolution. However, these non-canonical resistance 

mutations are difficult to identify due to their indirect effects on antibiotic action, which 

is often mediated by changes in bacterial physiology and metabolism5–7. For example, 

mutations in arginine biosynthesis genes of Mycobacterium smegmatis upregulated an 

aminoglycoside-modifying enzyme8, and a hypomorphic variant of an enzyme in CO2 

metabolism promoted fluoroquinolone resistance in Neisseria gonorrhoeae9. 

Laboratory evolution studies have provided further evidence for the role of metabolism 

in antibiotic resistance, suggesting that mutations in metabolic genes have clinical 

relevance10, and that they influence the evolutionary pathway towards resistance11.  

Despite first approaches to map antibiotic resistance of single genes with single-

nucleotide resolution12,13, it remains difficult to delineate cellular functions and 

metabolic pathways that are most relevant for AMR. Metabolic pathways that are 

increasingly associated with antibiotic action are purine nucleotide metabolism14 and 

respiration15,16. For example, ATP levels have been associated with antibiotic tolerance 

in E. coli17,18, as well as with persister formation in Staphylococcus aureus19 and E. 

coli20,21. While these studies demonstrated the role of metabolism in antibiotic lethality, 

mutations in metabolic genes that confer antibiotic resistance are rarely identified. This 

is because most studies tend to focus on single isolates and individual mutations8,9, 

with few systematic analyses that explore the full spectrum of resistance mutations 

across metabolic genes10. 

Here, we used a high-throughput approach to analyze antibiotic resistance across 

15,120 E. coli mutants each with a single amino acid change in one of 346 essential 

proteins. Most mutations that conferred resistance to the β-lactam antibiotic 

carbenicillin occurred in genes that are involved in purine nucleotide and amino acid 

biosynthesis. Resistance mutations against gentamicin occurred in metabolic 
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pathways related to the respiratory chain. These results show that metabolic mutations 

confer antibiotic resistance with specificity to certain pathways rather than a general 

association with reduced growth rates or a general metabolic state. The same 

metabolic mutations that conferred resistance to carbenicillin conferred also tolerance. 

However, this effect was due to reduced growth rates of metabolic mutants, which is 

consistent with previous studies22. Finally, we analyzed growth and metabolism of 

clinical E. coli isolates and identified metabolic bottlenecks similar to those observed 

in our CRISPR mutants.  

 

Mapping mutations in essential genes that confer antibiotic 

resistance 

We hypothesized that hypomorphic (or partial loss-of-function) mutations in essential 

genes confer antibiotic resistance because they decrease cellular growth and 

metabolic activities. To test this hypothesis, we measured antibiotic resistance of an 

E. coli CRISPR library that consisted of 15,120 strains, each with a single amino acid 

change in one of 346 essential proteins23. These mutations were designed such that 

the amino acid substitution destabilizes the protein. Therefore, the mutations are likely 

to reduce the activity of the gene product. Each strain of the library carries a plasmid 

with a repair template and a sgRNA for gene editing. The repair template-sgRNA 

combination is a strain-specific “barcode” and its sequencing informs about the 

mutation that is present in a given strain.  As a control we used a non-edited E. coli 

laboratory strain (BW25113) carrying the barcode plasmid with no repair template and 

a sgRNA without protospacer. 

First, we grew the CRISPR library and the control strain on agar plates with minimal 

glucose medium and carbenicillin as a representative of peptidoglycan targeting β-

lactams. The carbenicillin concentrations ranged between 3.125 and 9.3 µg/mL, which 

is 2X and 6X of the minimal inhibitory concentration (MIC) of the control strain. The 

MIC of the control strain was 1.5 µg/mL, which is 0.4-fold of the ampicillin-sulbactam 

EUCAST breakpoint. At 2X MIC, we observed a marked difference in colony forming 

units (CFUs) between the control strain and the CRISPR library (Fig. S1), thus 

indicating that the CRISPR library contains carbenicillin resistant mutants. However, at 

higher carbenicillin concentrations there was no difference in CFUs between the 
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control strain and the CRISPR library, thus indicating that most mutations in our library 

confer low-level resistance. 

Next, we screened the CRISPR library against carbenicillin at 2X MIC of the control 

strain (Fig. 1a). Additionally, we screened the CRISPR library against gentamicin (2X 

MIC of the control strain), a representative of aminoglycosides, that targets the 30S 

subunit of the bacterial ribosome.  As a reference, we cultivated the library on agar 

plates without carbenicillin or gentamicin (reference-plate, Fig. 1a). Each experiment 

was performed twice on different days to test reproducibility. After 48 hours of 

incubation at 2X MIC, markedly more colonies formed on antibiotic-plates inoculated 

with the CRISPR library compared to antibiotic-plates inoculated with the control strain 

(Fig. S2). To identify resistant mutants in the CRISPR library, we harvested the 

colonies from agar plates and determined read counts of strain-specific barcodes by 

deep sequencing, which was reproducible between the two replicates (Fig. S3). Fold-

changes for each mutant were calculated as the ratio of barcode read fractions on 

antibiotic-plates relative to reference-plates (Fig. 1b). Mutants with fold-changes > 20 

in both replicates were considered putatively resistant, resulting in 149 resistance 

mutations for carbenicillin, and 83 resistance mutations for gentamicin (Table S1).  

For carbenicillin, 123 of the 149 identified resistance mutations were located in genes 

that had multiple resistance mutations. For example, 27 genes had more than one 

resistance mutation, and the most frequently mutated genes were purM and purD in 

the purine nucleotide biosynthesis pathway (Fig. 1c). The repeated occurrence of 

resistance mutations in the same gene was a first indication that these are bona fide 

resistance mutations. In the case of gentamicin, 72 of the 83 identified resistance 

mutations were located in genes that had multiple resistance mutations, and 18 genes 

had more than one resistance mutation (Fig. 1c). Most mutations occurred in ptsI, a 

component of the phosphoenolpyruvate:carbohydrate phosphotransferase system 

(PTS) that transports and phosphorylates glucose in E. coli. 

In summary, our CRISPR library included E. coli mutants with single amino acid 

changes that confer resistance to carbenicillin and gentamicin. Importantly, resistance 

mutations occurred mostly in metabolic genes (95% on carbenicillin and 84% on 

gentamicin), although 31% of all mutations detected in our screen were not metabolic 

(Fig. 1b). This indicates that cellular metabolism plays an important role in antibiotic 
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resistance, even if this effect was limited to low-level resistance in our mutants (Fig. 

S1). Next, we examined the pathway-specificity of resistance mutations. 

 

 

Figure 1: Mapping antibiotic resistance mutations with 15,120 E. coli mutants. a, 
Schematic of the CRISPR screen. The CRISPR library included 15,120 E. coli strains, 
each with a single amino acid change in one of 346 essential proteins. Each mutant 
has a sgRNA and a repair template on a plasmid. The CRISPR library was cultivated 
on agar plates with and without the antibiotic (n = 2 replicates at different days). 
Antibiotics were added at 2X of the minimal inhibitory concentration (MIC). Strain-
specific barcodes (sgRNA and repair template) were sequenced after 48 h of 
incubation to determine the composition of the library. b, Fold-change of single mutants 
in the CRISPR library on carbenicillin and gentamicin. Fold-changes were calculated 
as barcode read-fractions on antibiotic-plates relative to barcode read-fractions on the 
reference-plates. Strains with a fold-change >20 in both replicates are considered 
putatively resistant against the respective antibiotic (grey regions). Bar plots show the 
number of mutants that: were detected in the screen (Detected), occurred in metabolic 
genes (Metabolic) , and had a fitness defected based on our previous screen with the 
library23 (Fitness defect). Grey bars are mutants with fold-change >20. c, Genes with 
a putative resistance mutation against gentamicin (right) or carbenicillin (left). Bars 
show the number of different resistance mutations per gene. Dots show the mean fold-
change of each mutation. Genes are grouped by functional categories in the genome-
scale metabolic model of E. coli iML151524. Amino acid metabolism categories are 
shown as one functional category.  
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Resistance by metabolic mutations is caused by pathway-specific effects and 

not by fitness defects 

Our CRISPR screen identified resistance mutations that mostly affected metabolic 

genes and we mapped them to the functional categories of the E. coli metabolic model 

iML151524 (Fig. 1c and Table S1). For gentamicin, most mutations occurred in cofactor 

and prosthetic group biosynthesis pathways that produce components of the 

respiratory chain, such as genes in biosynthesis of heme (e.g. hemA) and ubiquinone 

(ubiA). Aminoglycosides bind ionically to the outer membrane and utilize the 

respiratory chain for cytosolic entry in E. coli25. Previous studies showed that mutations 

in the respiratory chain related genes ubiF and hemA lead to low-level aminoglycoside 

resistance due to decreased drug uptake26,27. Mutations in pgsA have been associated 

with tobramycin resistance28 and might also alter the respiratory chain since cardiolipin 

acts as a proton trap29. The CRISPR screen identified seven genes with gentamicin 

resistance mutations that were not metabolic (Table S1), including DNA 

topoisomerase topA (4 mutations). 

For carbenicillin, 44 resistance mutations affected metabolic enzymes in de novo 

biosynthesis of purine nucleotides. For example, 5 mutations occurred in purA 

(adenylosuccinate synthetase) and 4 of them had high fold-changes (>100). Another 

54 mutations affected genes in amino acid biosynthesis, with 14 mutations in the 

histidine biosynthesis enzyme imidazole glycerol phosphate synthase (encoded by 

hisF and hisH). Although the heterodimer HisFH is an enzyme of the histidine 

biosynthesis pathway, it also produces the purine intermediate 5-amino-1-(5-phospho-

D-ribosyl)imidazole-4-carboxamide (aicar). Thus, we assumed that mutations in hisF 

and hisH perturbed both the histidine and the purine pathway. Two resistance 

mutations occurred in the peptidoglycan DD-transpeptidase-encoding gene ftsI, which 

is a direct target of β-lactams30, and the mutations may reduce carbenicillin binding. 

The carbenicillin screen identified only three genes that were not annotated to the E. 

coli metabolic model: the arginine—tRNA ligase argS (1 mutation), the elongation 

factor tsf (5 mutations) and the carbon storage regulator csrA (2 mutations). Since 

deletion of the transcription factor csrA has been shown to decrease expression of the 

porin OmpF in E. coli31, the two csrA mutations observed in our screen might affect 

carbenicillin transport. However, to our knowledge, csrA has not yet been associated 

with -lactam resistance. 
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Thus, our CRISPR screen identified potential resistance mutations predominantly in 

metabolic genes. A large fraction of these genes was in purine and amino acid 

biosynthesis for carbenicillin, and in the respiratory chain for gentamicin, indicating that 

resistance to these antibiotics results from specific metabolic perturbations rather than 

a universal metabolic state or general growth defects, which have previously been 

linked to antibiotic lethality17,22. Further, comparing the resistance phenotype of each 

mutant with their fitness phenotypes indicated that a growth defect alone does not 

confer resistance, because most mutants with a fitness defect did not show resistance 

in the screen against either antibiotic (Fig. 1b and Table S1). This implies that the 

observed resistance is pathway-specific and not merely a consequence of reduced 

growth. 

 

Metabolic mutations induce bottlenecks in their associated 

pathways 

To validate putative resistance mutations from the CRIPSR screen, we re-constructed 

three carbenicillin resistant mutants: PurMF105A in the upper purine pathway, PurAL75D 

in the ATP branch, and HisFV126P at the branchpoint between the histidine and the 

purine pathway (Fig. 2a). All three mutants were resistant to carbenicillin, with at least 

2-fold higher MICs than the non-edited control strain (Fig. 2b). The purine mutants 

were also resistant against aztreonam but not to meropenem (Fig. S4), suggesting that 

the resistance mechanism is linked to the structure of the respective -lactam, 

because it influences drug transport32 or penicillin binding protein specificity33. 

Additionally, we confirmed that the mutants PtsII330P, HemAL276Q, RibDL364W, PgsAV44P 

and IspEV146W (Fig. 2c) are resistant against gentamicin (Fig. 2d), as well as 

tobramycin, another aminoglycoside (Fig. S4). 
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Figure 2: Metabolic mutations lead to biosynthetic bottlenecks that induce 
antibiotic resistance. a, Schematic of the biosynthesis pathways of purine 
nucleotides and histidine. Colored boxes indicate the enzymes with carbenicillin 
resistance mutations: HisFV126P, PurMF105A and PurAL75D. b, Agar dilution assay with 
the control strain and three re-constructed mutants (HisFV126P, PurMF105A and 
PurAL75D). Each strain was spotted on agar plates with minimal glucose medium 
containing increasing concentrations of carbenicillin (control strain MIC = 1.5 g/mL). 
Multiple inoculum densities were used to assess inoculum effects. Plates were 
incubated 48 h. Shown is one of n = 2 replicates. c, Schematic of multiple metabolic 
pathways that are associated to gentamicin resistance mutations: PtsII330P, HemAL276Q, 
IspEV146W, PgsAV44P, RibDL364W. All pathways converge towards the respiratory chain. 
Boxes represent mutated enzymes with resistance mutations. d, Agar dilution assay 
with the control strain and mutants that were identified in the gentamicin screen 
(PtsII330P, HemAL276Q, IspEV146W, PgsAV44P, RibDL364W). Each strain was plated on agar 
plates with minimal glucose medium containing increasing concentrations of 
gentamicin (control strain MIC = 0.45 µg/mL). Multiple inoculum densities were used 
to assess inoculum effects. Plates were incubated 48 h. Shown is one of n = 2 
replicates. e, Volcano plots show metabolite levels of resistant mutants as fold-
changes relative to the control strain (n = 3 distinct samples). Significant metabolite 
changes (p-value < 0.05, FC>1) that are discussed in the text are annotated. 
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To understand how metabolic mutations influence cellular metabolism, we quantified 

intracellular metabolites with targeted metabolomics. Therefore, we grew the mutants 

on minimal glucose medium without antibiotics and measured metabolites during 

exponential growth with liquid chromatography-tandem mass spectrometry (LC-

MS/MS)34. In the carbenicillin resistant mutants PurAL75D and PurMF105A, stronger 

metabolic changes occurred in nucleotide biosynthesis with decreases between 2- and 

5-fold in the purine nucleotide end-products ATP and GTP (Fig. 2e). GTP levels were 

less perturbed in the PurAL75D strain, probably because PurA catalyzes the first step in 

the ATP branch of the purine pathway. The strongest metabolome changes in the 

PurAL75D and PurMF105A strain were increases of the substrate metabolites of PurA and 

PurM, inosine monophosphate (imp) and 2-(formamido)-N1-(5-phospho-β-D-

ribosyl)acetamidine (fpram), respectively. These substrate increases indicate that 

PurAL75D and PurMF105A are hypomorphic mutations that decrease the catalytic 

capacity of the enzymes, which in turn limits de novo biosynthesis of purine 

nucleotides. The HisFV126P strain had also low levels of purine nucleotides, as well as 

low histidinol (histd) levels, thus indicating a deficiency of the HisFH complex that leads 

to bottlenecks in both the lower histidine pathway and the purine pathway.  

 

The metabolome of gentamicin mutants indicated that they also introduce bottlenecks 

in their associated pathways. For example, the strongest metabolite change in the 

PtsII330P strain was an increase of phosphoenolpyruvate (pep), a substrate metabolite 

of the PTS (Fig 2e). This indicated a metabolic bottleneck at the initial step of 

glycolysis, which is further supported by low levels of hexose phosphates (hexose-p) 

in the PtsII330P strain. Although an E. coli mutant lacking PtsI (ΔptsI) has been linked to 

antibiotic tolerance35, a role in antibiotic resistance has not been reported to our 

knowledge. In the HemAL276Q and RibDL364W mutants, we detected high levels of 

succinate (succ, Fig 2e and Fig S5). Succinate is the substrate metabolite of succinate 

dehydrogenase (Sdh), which requires heme b groups as well as FAD as co-factor. 

Therefore, it is likely that the HemAL276Q and RibDL364W mutants have metabolic 

bottlenecks that respectively limit the production of heme and FAD, which then leads 

to a secondary bottleneck at Sdh and blocks the respiratory chain. 

Thus, metabolic mutations can lead to bottlenecks in their associated pathways and 

may induce antibiotic resistance. To obtain additional evidence that resistance was 
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due to the bottlenecks and not pleiotropic effects caused by genome editing, we used 

CRISPR interference (CRISPRi) to decrease the concentration of PurA. The CRISPRi-

purA strain was indeed resistant to carbenicillin and its metabolome was similar to the 

PurAL75D strain metabolome, with strong increases of the PurA substrate IMP (Fig. S6). 

If a limited supply of specific metabolites induced antibiotic resistance in our mutants, 

we expected that external sources of these metabolites would reverse resistance. E. 

coli can convert external adenine into ATP and GTP by nucleotide salvage pathways 

that are independent from de novo biosynthesis36 (Fig 2a). As expected, feeding 

adenine to the PurAL75D, PurMF105A and HisFV126P strains reversed their carbenicillin 

resistance (Fig. S7). We also confirmed that adenine supplementation restored the 

purine nucleotide levels in the PurAL75D strain to the levels of the control strain (Fig. 

S8). Similarly, the PtsII330P mutant was not resistant against gentamicin during growth 

on glucose-6-phosphate, a non-PTS sugar (Fig. S9), and supplementing a heme 

biosynthesis intermediate (5-aminolevulinic acid) reversed gentamicin resistance of 

the HemAL276Q mutant (Fig. S9).  

In summary, metabolome analyses demonstrated that metabolic mutations induce 

specific bottlenecks in their associated pathways, which contribute to antibiotic 

resistance. This resistance can be reversed by supplementing external sources of the 

limiting metabolites, confirming that the resistance mechanisms are linked to 

bottlenecks within specific metabolic pathways. Next, we investigated if resistance was 

only due to pathway-specific effects or if global growth effects also play a role in 

resistance. 

 

Growth defects from metabolic mutations influence tolerance but not 

resistance 

To investigate the influence of cellular growth on resistance, we assessed the growth 

rates of the three carbenicillin resistant mutants (PurMF105A, PurAL75D and HisFV126P) 

and five gentamicin resistant mutants (PtsII330P, HemAL276Q, RibDL364W, PgsAV44P and 

IspEV146W) in minimal glucose medium (Fig. 3a). All mutants had significantly lower 

growth rates than the control strain (p-value < 0.05). Given the known associations 

between growth rates and antibiotic efficacy22, we explored whether slow growth 

contributes to resistance of the mutants. To account for such an effect, we used a 

LeuBI134P mutant, which had a low growth rate (Fig. 3a) and was not resistant to 
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carbenicillin (Fig. S10), thus indicating that slow growth alone does not confer 

resistance. This is further supported by cross-resistance of the gentamicin and 

carbenicillin resistant mutants: the slow-growing purine mutants (PurMF105A, PurAL75D 

and HisFV126P) were not resistant against gentamicin (Fig. S11), and vice versa, the 

slow-growing PtsII330P mutant was not resistant to carbenicillin (Fig. S11).  

 

 

Figure 3: Slow growth but not metabolic bottlenecks confer β-lactam tolerance. 
a, Growth rates of control strain and selected mutants in minimal medium with glucose. 
Blue: carbenicillin resistant mutants. Red: gentamicin resistant mutants. Orange: slow 
growth control strain LeuBI134P (n = 3 distinct samples). b, Survival of carbenicillin 
treatment of the control strain, the LeuBI134P mutant (slow growth control) and three 
purine mutants (PurAL75D, PurM F105A, HisFV126P). Cells were incubated for 6 h with 
carbenicillin at their respective 2X MIC (Control and LeuBI134P: 25 µg/mL; purine 
mutants: 50 µg/mL) and colony forming units (CFU) were determined on minimal agar 
medium after 48 h of incubation. CFU/mL are shown for two time points, before 
carbenicillin addition 0 h (black), and after 6 h (grey), (n = 3 distinct samples). c, Time-
kill assays with the control strain, and the HisFV126P, PurMF105A and PurAL75D strains. 
Strains were incubated in minimal glucose medium and carbenicillin (50 µg/mL) for the 
time period indicated on the x-axis (n = 3 distinct samples). Left: time-kill assays without 
adenine supplementation, right: time-kill assays with supplementation of 1 mM 
adenine. 50 µg/mL carbenicillin is 4X MIC of all strains in the presence of adenine. 

 

Apart from antibiotic resistance, antibiotic tolerance has been associated with slow 

growth, especially in the case of beta-lactams22. Therefore, we used the purine 

mutants to investigate whether their slow growth confers tolerance to carbenicillin or if 

the purine bottleneck has an additional survival benefit. After a 6-hour treatment with 

carbenicillin, the purine mutants showed significantly higher survival compared to the 

control strain (p-value < 0.05), even when we adjusted the carbenicillin concentration 

such that each strain was treated at their respective 2X MIC (Fig. 3b and Fig. S12). 

However, the higher tolerance to carbenicillin of the purine mutants is primarily due to 

their reduced growth rates, because the slow-growing mutant LeuBI134P showed a 
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similar tolerance level, with an average survival rate of 11%, comparable to those of 

the purine mutants (PurAL75D: 8%; PurMF105A: 32%; HisFV126P: 33%). Nevertheless, 

reversal of the tolerance phenotype in purine mutants by supplementing adenine 

demonstrates the metabolism dependency of the tolerance phenotype (Fig. 3c). 

In summary, metabolism has pathway-specific effects on carbenicillin and gentamicin 

resistance, which are unrelated to growth rates. Tolerance against carbenicillin, 

however, is primarily due to slow growth of the PurMF105A, PurAL75D and HisFV126P 

mutants, as shown by the slow-growing control LeuBI134P strain. This tolerance against 

carbenicillin is probably a driver for the evolution of higher resistance levels37, as 

evidenced by the >10X MIC increases found in the PurAL75D strain after prolonged 

exposure to carbenicillin (Fig. S13). Thus, metabolic mutations can influence antibiotic 

action by two effects: 2-4X MIC increases by pathway-specific mechanisms and 

tolerance due to slow-growth. Together, these effects can promote evolution of high-

level resistance (Fig. S13).  

 

Clinical E. coli have metabolic bottlenecks and a mutation in purK 

confers carbenicillin/sulbactam tolerance 

To understand the clinical relevance of metabolic mutations, we examined 235 E. coli 

strains from different clinical isolates of the Tübingen University Hospital (Table S2). 

To identify metabolic mutations in these isolates, we used metabolome analysis of 

strains with a growth defect in minimal glucose medium (Fig. 4a). Out of 235 strains, 

41 strains showed a growth defect (Fig. S14 and Table S2), and we measured their 

metabolome after a shift from rich medium to minimal glucose medium by flow-injection 

mass spectrometry (FI-MS)38. FI‐MS detected 636 ions with distinct masses that 

matched 811 metabolites. In 38 out of 41 isolates, at least one metabolite showed 

strong increases (fold-change > 8, Fig. 4b and Table S3). Across these 38 isolates, 

44 metabolites showed fold-changes >8 and they mapped to 14 functional categories 

of the E. coli metabolic model iML151524, which included amino acid biosynthesis and 

purine nucleotide biosynthesis (Table S3). Next, we focused on three isolates EC-61, 

EC-96, and EC-244, which had high levels of cystathionine, histidinol-phosphate, and 

5-amino-1-(5-phospho-β-D-ribosyl)imidazole (air), respectively. Cystathionine is 

involved in methionine biosynthesis and is metabolized by MetC, which had 4 

resistance mutations in the CRISPR screen against carbenicillin (Fig. 1c). Histidinol-
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phosphate and air are intermediates in biosynthetic pathways of histidine and purine 

nucleotides, which were also targets for carbenicillin resistance mutations. We 

assumed that increases of these biosynthetic intermediates indicate bottlenecks in 

their respective biosynthesis pathways. To test this, we grew the three isolates in 

minimal glucose medium which we supplemented either with methionine, histidine, or 

adenine. Indeed, supplementing these metabolites markedly improved growth of the 

respective isolate (Fig 4c), demonstrating that pathway-specific metabolic bottlenecks 

occur in clinical E. coli. 

 

 

Fig. 4: Metabolome profiling identifies metabolic bottlenecks in clinical E. coli 
isolates and a purine bottleneck caused by PurKE49G. a, 235 E. coli isolates were 
obtained from different clinical specimens and cultivated in minimal glucose medium. 
41 strains with growth defects were selected for metabolome profiling with flow-
injection time-of-flight mass spectrometry (n = 2 distinct samples). b, Metabolome 
profile of 41 clinical isolates (mean of n = 2 distinct samples). Violin plot shows the 
distribution of 636 m/z features that were annotated to metabolites. M/z features with 
fold change > 3 are shown in black. Three isolates (EC-61, EC-96 and EC-244) are 
annotated due to their accumulation of m/z features that were annotated to 
cystathionine (cyst), histidinol-phosphate (histp) and 5-amino-1-(5-phospho-β-D-
ribosyl)imidazole (air). c, Growth of EC-244 and EC-249 with (orange) and without 
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(grey) supplementation of adenine. Shown are also growth curves of two clinical 
isolates EC-96 and EC-61 in minimal glucose medium supplemented with L-histidine 
(green) or L-methionine (magenta). Growth data of the E. coli wild-type BW25113 is 
shown as reference.  Growth curves show means from n = 3 minimal glucose medium 
cultures grown in a plate reader. Grey areas show the standard deviation. d, Relative 
concentrations of air in EC-244 (with and without adenine) and EC-249 (without 
adenine). Data are normalized to EC-249 (without adenine) and are represented as 
mean of n = 3 distinct samples (black dots). e, Time-kill assays with EC-244 without 
adenine (grey) and with supplementation of adenine (orange). EC-244 was incubated 
with 100 µg/mL carbenicillin and 12.5 µg/mL sulbactam for the time period indicated 
on the x-axis (n = 3 distinct samples). f, Whole genome sequencing was performed 
with EC-244 and EC-249. Sequences of genes of the purine de novo pathway were 
aligned to the E. coli wild-type BW25113 reference genome. g, A mutation in purK 
(PurKE49G) was identified in EC-244 and not in EC-249 and was inserted into the E. coli 
wild-type BW25113. Shown is the growth of the control strain and the PurKE49G mutant 
in minimal glucose medium. Strains were grown either without adenine (grey), or with 
1 mM of adenine (orange) (n = 3 distinct samples). 

 

Next, we followed up on the purine bottleneck in EC-244, which was a urinary tract 

isolate. First, we used targeted metabolomics to measure the concentration of 

nucleotides and air in EC-244 and compared it to EC-249, which is another urinary 

tract isolate with normal growth. As expected, ATP, ADP and AMP levels were lower 

in EC-244 compared to EC-249 (Fig. S15), and the LC-MS/MS data confirmed the high 

air levels detected by FI-MS (Fig. 4d). Notably, adenine feeding restored ATP levels 

and air levels in EC-244 (Fig. 4d and S15). Thus, the high levels of air, together with 

low purine end-products, suggested that EC-244 has a metabolic bottleneck in the 

middle of the purine pathway (Fig. 4f). To locate the bottleneck, we sequenced the 

genomes of EC-244 and EC-249 and compared sequences of the suspected purine 

genes to those of the laboratory E. coli strain BW25113. In total, we found 122 

mutations in the 5 purine genes and 14 of them resulted in amino acid changes (Table 

S4). However, only one amino acid change was unique to EC-244: PurKE49G. PurK 

sequences of E. coli isolates in the NCBI pathogen database suggest that PurKE49G is 

a low frequency mutation, because none of the isolates in the database had this 

mutation. In contrast, the other 4 PurK mutations were high-frequency mutations, 

because they occurred in >364 isolates in the NCBI pathogen database (Fig. S16). 

Therefore, we assumed that PurKE49G is a hypomorphic allele that is responsible for 

the purine nucleotide synthesis bottleneck in EC-244. To test this hypothesis, we 

inserted the PurKE49G mutation into the laboratory E. coli strain BW25113, which indeed 
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led to a purine auxotrophy (Fig. 4g), confirming its causative role in the purine 

nucleotide synthesis bottleneck of EC-244. 

Based on the results with our CRISPR purine mutants, we expected that the purine 

limitation impaired the efficacy of β-lactam antibiotics in EC-244. However, EC-244 

was highly resistant against carbenicillin, probably due to the expression of a β-

lactamase (Table S2). Therefore, we examined the killing activity of carbenicillin in the 

presence of the β-lactamase inhibitor sulbactam in EC-244. Consistent with our 

expectation, carbenicillin/sulbactam exhibited no killing activity in EC244 during a 6-

hours treatment, and supplementation of adenine restored killing activity of 

carbenicillin/sulbactam, such that only 0.01% of the adenine-fed cells survived the 6-

hours treatment (Fig. 4e). Although E. coli can salvage nucleotides present in urine39, 

the de novo purine pathway has been shown to be essential for survival and 

colonization in niches such as the gut40, human blood41, or inside host cells42. This 

suggests that the bottleneck caused by the PurKE49G mutation might have an impact 

on antibiotic treatment of that strain.  

 

Discussion 

In our study, we tested the resistance of 15,120 E. coli mutants, each with an amino-

acid change in an essential gene, against two antibiotics of the β-lactam and 

aminoglycoside classes. Most mutations that led to antibiotic resistance were located 

in metabolic genes (95% on carbenicillin and 84% on gentamicin), although 31% of the 

mutations detected in our CRISPR screen were not metabolic. We found that 

resistance from these metabolic mutations does not result from a global fitness defect, 

but local defects in specific pathways. For instance, 39% of the mutations that 

conferred resistance against carbenicillin were linked to genes involved in the purine 

nucleotide biosynthesis pathway. Similarly, 54% of the mutations conferring resistance 

to gentamicin were associated with the respiratory chain. 

Our results show that bottlenecks in specific metabolic pathways induce low-level 

antibiotic resistance, (2-4X MIC). This finding is consistent with previous reports about 

metabolic mutations that occurred during evolution of a laboratory E. coli strain10 and 

future studies must clarify if metabolic mutations are generally restricted to low-level 

resistance. 
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For gentamicin, the resistance mechanism likely involves the known dependency on 

oxidative metabolism for uptake of aminoglycosides25. In the case of carbenicillin, 

several mechanisms have been proposed to explain why purine nucleotide 

biosynthesis influences antibiotic efficiency, for example an antibiotic-induced adenine 

limitation that increases purine biosynthesis18 or changes in ATP levels17,19. However, 

because the PtsII330P mutant had low ATP levels and was not resistant to carbenicillin, 

we assume that low ATP levels alone are not sufficient to confer resistance and that a 

bottleneck in de novo purine biosynthesis is required. Another hypothesis is that purine 

bottlenecks change carbenicillin transport, either because nucleotide metabolism 

interacts with membrane permeability (via the porin OmpF)43, or because of the higher 

efflux activities of auxotrophs44. Our observation that purine bottlenecks lead to MIC 

increases, supports the transport hypothesis. 

In conclusion, our results demonstrate that bacterial metabolism plays an important 

role for antibiotic resistance, which in turn implies that the nutritional environment at an 

infection site is equally important. We used minimal media to control the supply of 

metabolites and to systematically evaluate the response of E. coli to the availability of 

nutrients like adenine. This is not feasible with complex media like Mueller-Hinton 

broth, which contains variable components that may deplete unevenly during an 

experiment. Although our experimental conditions differ from in vivo environments, our 

findings contribute to a more detailed understanding of how metabolic mutations can 

simultaneously influence both antibiotic resistance and tolerance. Given that the effect 

of metabolic mutations is highly condition- and nutrient dependent, our results 

emphasize the need for new approaches to treat bacterial infections, either by 

considering metabolic strain level variation or by targeting the extracellular 

environment at an infection site to maximize efficacy of an antibiotic. 
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Material and methods 

Strains 

E. coli BW25113 was used to construct the CRISPR library and the strains PurAL75D, 

PurMF105A, HisFV126P and PurKE49G. E. coli YYdCas945 was used for CRISPRi. One 

Shot™ TOP10 E. coli (Thermo Fischer #C404010) was used for intermediate cloning. 

Clinical isolates were obtained from the Institute for medical microbiology and hygiene 

(Tübingen) and were identified using MALDI-TOF mass spectrometry.  

Media 

Cultivations were performed in LB medium (Sigma #L3522) or M9 minimal medium 

with glucose as sole carbon source (5 g/L). M9 medium was composed by (per liter): 

7.52 g Na2HPO4 2 H2O, 5 g KH2PO4, 1.5 g (NH4)2SO4, 0.5 g NaCl. The following 

components were sterilized separately and then added (per liter of final medium): 1 mL 

0.1 M CaCl2, 1 mL 1 M MgSO4, 0.6 mL 0.1 M FeCl3, 2 mL 1.4 mM thiamine-HCl and 

10 mL trace salts solution. The trace salts solution contained (per liter): 180 mg ZnSO4 

7 H2O, 120 mg CuCl2 2 H2O, 120 mg MnSO4 H2O, 180 mg CoCl2 6 H2O. When 

needed, M9 agar plates were done by mixing (1:1) a 2X M9 solution with 3 g/L molten 

agar (Roth #5210.2). In either liquid or agar medium, kanamycin (50 µg/mL; Roth 

#T832.3) was added when strains harboured a pgRNA plasmid with a kanamycin 

resistance cassette and was supplemented with chloramphenicol (30 µg/mL; Merck 

#C0378-25G) when strains harboured pTS040 and pTS041. When needed, 

gentamicin (Roth #O233.2), carbenicillin (Roth #6344.3), aztreonam (Biosynth 

#AA18120), tobramycin (Biosynth #AT161114) or meropenem (BLD pharm 

#BD23263) were added to the M9 medium at various concentrations specified for each 

experiment. Adenine (Sigma #A8751-1G) was added to agar and liquid medium at a 

final concentration of 1 mM, and to agar and liquid medium at final concentration 100 

µM for experiments with hospital bacterial isolates. 5-aminolevulinic acid (Merck # 

A7793) was added to agar and liquid medium at a final concentration of 10 mg/mL. L-

histidine (Merck # H8000) and L-methionine (Merck # 64319) were added to liquid 

medium at 200 µM. When required, glucose-6-phosphate (Merck #G7879) was added 

to agar and liquid minimal mediums in replacement of glucose at a final concentration 

of 1 g/L. To induce dCas9 expression, the CRISPRi experiments were performed with 
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0.2 µM of anhydrotetracycline (aTc; Cayman Chemicals #10009542) in liquid medium 

and 1 µM aTc in agar medium.  

Agar dilution assays to measure MICs 

M9 agar plates with various concentrations of antibiotics and additives were prepared 

as described above. Precultures in 4 mL LB were inoculated from glycerol stocks for 8 

h at 37°C and 220 rotations per minutes (RPM) shaking and transferred to M9 medium 

for overnight incubation at 37°C and 220 RPM. Before starting the assay, precultures 

were reinoculated and grown in fresh M9 medium to obtain exponentially growing cells. 

Then, cultures were diluted with fresh M9 medium to set OD600 = 0.1. A 96-well plate 

was prepared with three wells containing 135 µL of fresh M9 medium for each strain 

to be spotted. Each preculture was then 1:10 diluted by mixing 15 µL of the 0.1 OD600 

preculture with 135 µL of fresh medium. This process was repeated two times to 

generate the 1:100 and 1:1000 dilutions. 7 µL of each dilution was then added to the 

agar plate with a multi-channel pipette to generate the spots. Spots were then left to 

dry under a flame and plates were incubated for 48 h at 37°C. After incubation, plates 

were imaged with an Epson V370 scanner.  

Cultivation conditions for metabolome sampling 

Precultures in 4 mL LB were inoculated from glycerol stocks for 8 h at 37°C 220 RPM shaking 

and transferred to M9 medium for overnight incubation at 37°C and 220 RPM. M9 pre-cultures 

in exponential phase were used to inoculate shake flasks containing 10 mL of M9 medium with 

a starting OD600 of 0.1. Strains were cultivated in triplicates until OD600 reached 0.25-0.6. For 

metabolomics, flasks were then rapidly transferred to a thermostatically controlled hood at 

37°C and an equivalent of OD600 = 1 was sampled. For metabolome profiling of clinical isolates, 

96-well deep-well plates were prepared with 1 mL of LB medium. The selected 41 strains with 

growth defects were added each to two wells from glycerol stocks. The plate was sealed with 

Breathe-Easy foils (Diverse Biotech #BEM-1) and incubated for 6 h at 37°C 220 RPM. The 

plate was then centrifugated at maximum speed and 37°C. Supernatant was discarded and 

pellets were each resuspended with 1 mL of M9 medium with glucose. The washing step was 

repeated. The plate was then incubated for 1 h 30 min at 37°C and 220 RPM. Sampling was 

then performed by pelleting the cells in deep-well plates as described below. 

Metabolomics measurements 

Cultivations were performed as described above. For targeted metabolomics, culture aliquots 

were vacuum-filtered on a 0.45 μm pore size filter (Merck Millipore #HVLP02500). Filters were 
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immediately transferred into a 40:40:20 (v-%) acetonitrile (Honeywell # 14261-1l)/methanol 

(VWR # 83638.320)/water extraction solution at -20°C. Filters were incubated in the extraction 

solution for at least 30 minutes. Subsequently, metabolite extracts were centrifuged for 

15 minutes at 13,000 RPM at -9°C and the supernatants were stored at -80°C until analysis. 

Metabolite extracts were mixed with a 13C-labeled internal standard in a 1:1 ratio. LC-MS/MS 

analysis was performed with an Agilent 6495 triple quadrupole mass spectrometer (Agilent 

Technologies) as described previously34. An Agilent 1290 Infinity II UHPLC system (Agilent 

Technologies) was used for liquid chromatography. Temperature of the column oven was 

30°C, and the injection volume was 3 μL. LC solvents in channel A were either water with 

10 mM ammonium formate and 0.1% formic acid (v/v) (for acidic conditions), or water with 

10 mM ammonium carbonate and 0.2% ammonium hydroxide (for basic conditions). LC 

solvents in channel B were either acetonitrile with 0.1% formic acid (v/v) (for acidic conditions) 

or acetonitrile without additive (for basic conditions). LC columns were an Acquity BEH Amide 

(30 x 2.1 mm, 1.7 μm) for acidic conditions, and an iHILIC-Fusion(P) (50 x 2.1 mm, 5 μm) for 

basic conditions. The gradient for basic and acidic conditions was: 0 min 90% B; 1.3 min 40 % 

B; 1.5 min 40 % B; 1.7 min 90 % B; 2 min 90 % B. The ratio of 12C and 13C peak heights was 

used to quantify metabolites.  

For flow-injection metabolomics, metabolite extracts were obtained by pelleting the 

cells in deep-well plates at maximum speed for 2 minutes at 37°C. Supernatant was 

then discarded and pellets were resuspended with 200 µL of 40:40:20 (v-%) 

acetonitrile/methanol/water extraction solution at -20°C. The plates were sealed and 

incubated overnight at -20°C. Pellets were then resuspended and centrifugated at 

maximum speed for 5 min at -9°C. 150 µL of supernatant from each well was 

transferred to a 96-well plate and stored at -80°C for measurements. Extracts were 

directly injected into an Agilent 6546 Series quadrupole time-of-flight mass 

spectrometer (Agilent Technologies, USA) as described previously38. The electrospray 

source was operated in negative and positive ionization mode. The mobile phase was 

60:40 isopropanol:water buffered with 10 mM ammonium carbonate (NH4)2CO3 and 

0.04 % (v/v) ammonium hydroxide for both ionization modes, and the flow rate was 

0.15 mL/min. For online mass axis correction, 2-propanol (in the mobile phase) and 

HP-921 were used for negative mode and purine and HP-921 were used for positive 

mode. Mass spectra were recorded in profile mode from 50 to 1700 m/z with a 

frequency of 1.4 spectra/s for 0.5 min using 10 Ghz resolving power. Raw data files 

were converted into mzXML files and processed by custom MATLAB scripts. The 32 

spectra with the highest signal in the total ion count were summed and baseline 
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adjusted with msbackadj.m. Peaks with a minimum peak height of 5000 units and a 

peak prominence of 5000 units were selected with findpeaks.m, and annotated with a 

3 mDa tolerance by matching monoisotopic masses of all metabolites in the iML1515 

model24, considering a single proton loss ([M-H]-) in negative mode and single proton 

gain ([M+H]+) in positive mode. Positive and negative mode annotation were merged 

and if a metabolite was annotated in both modes positive mode was selected. For each 

metabolite, the height of the annotated ion peak was taken for further analysis and 

normalized to the mean across the 41 isolates to obtain fold-changes values. 

 

Generation of growth curves and determination of growth rates 

Precultures in 4 mL LB were inoculated from glycerol stocks for 8 h at 37°C 220 RPM 

shaking and transferred to M9 medium for overnight incubation at 37°C and 220 RPM. 

M9 pre-cultures in exponential phase were used to inoculate 96-well plates at starting 

OD600 <0.05.  Incubation was performed for 24 h at 37°C. Various plate readers were 

used (BioTek Epoch, BioTek Synergy, Tecan Infinite 200 Pro, Tecan Spark). 

Therefore, OD600 values were corrected based on former calibration experiments  

For generation of adenine feeding growth data (for the BW25113 PurKE49G and control strain), 

precultures in 4 mL LB were inoculated from glycerol stocks for 6 h at 37°C 220 RPM shaking. 

Then, 2 mL of each culture was centrifugated at maximum speed for 5 minutes. Supernatant 

was discarded and pellet was resuspended in 2 mL of M9 medium with glucose. Washing and 

resuspension was repeated. OD600 was then measured and normalised across the strains. A 

96-well plate with M9 medium supplemented with or without 1 mM adenine was then inoculated 

with the washed cultures. OD600 was measured in a BioTek Synergy plate reader for 24 h at 

37°C.  

Growth rates were determined with the following method: coefficients of determination (R2) 

were calculated over a 2 h time window. Only arrays with R2> 0.99 were selected. Growth rates 

were determined by linear regression and maximal growth rates were selected. For clinical 

isolates Area Under Curve (AUC) determination, six 96-well deep-well plates were prepared 

with 500 µL of LB medium without antibiotics per well. Strains EC-1 to EC-256 were added 

each to a single well from glycerol stocks in duplicates. Plates were sealed with Breathe-Easy 

foils and incubated for 6 h at 37°C 220 RPM. Then, 50 µL of each well was used to inoculate 

any of six deep-well plates with 450 µL M9 medium with glucose and no antibiotics (1:10 

dilution). This operation was repeated for a final 1:100 dilution of the LB inoculum in M9 

medium. Six 96-well plates were prepared with each 135 µL of M9 medium with glucose and 
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no antibiotics. 15 µL in wells of the previously prepared deep-well plates were used to inoculate 

these 96-well plates. The plates were sealed with a lid and parafilm and incubated for 24 h at 

37°C in BioTek Logphase 600 plate readers. The AUC was determined as the integral of ODs 

between 0 and 12 h via the trapezoidal method with unit spacing (trapz.m MATLAB function).  

 

Screening of antibiotic resistance of the CRISPR library 

Antibiotic resistance was screened in a pooled CRISPR library with 15,120 E. coli 

mutants that was constructed previously26. The CRISPR library and the control strain 

were each cultivated in 10 mL LB medium at 30°C until OD600 reached 0.5. An 

equivalent of OD600 = 5 was then centrifuged at 30°C and pellets were resuspended in 

10 mL of fresh M9 medium. Centrifugation was repeated to remove traces of LB 

medium. Cells were resuspended in 10 mL of M9 medium and further incubated at 

30°C for 1 h. OD600 was then set to 0.5 and 500 µL were used to inoculate 150x20 mm 

M9 agar plates. Plates were then incubated at 37°C for 48 h. After incubation, plates 

were imaged with an Epson V370 scanner. If necessary, colonies were counted. Then, 

colonies were harvested from each plate using 7.5 mL of LB medium. OD600 was 

measured and an equivalent of OD600 = 10 was pelleted in a microcentrifuge tube. 

Plasmids were then purified by miniprep (Thermo scientist, GeneJET Plasmid Miniprep 

Kit) for amplification of repair templates and sgRNA (barcodes). Hereafter, 3 ng of 

plasmid DNA was used for amplification (15 cycles) of the barcodes using two primers 

suited for further indexing PCRs: 

forward primer:  

5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTATCACGAGGCAGATCCTCTG-3’  

reverse primer: 

 5‘-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACTCGGTGCCACTTTTTCAAGTT-3’ 

Amplicons were purified by AMPure XP PCR beads (Beckman Coulter, #A63881). 

Using standard Illumina indexing primers, amplicons were indexed in a second PCR 

and again purified by bead-clean up. Amplicons were pooled and sequenced on an 

Illumina NextSeq 500 (paired-end, NextSeq™ 500 Mid Output Kit v2.5, #20024908, 

300 cycles). 
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Statistical testing 

All p-values obtained in this manuscript were obtained by performing paired two-tailed 

t-tests using custom python scripts (bioinfokit package) and Microsoft Excel. Volcano 

plots were made using custom python scripts (bioinfokit package). Pearson correlation 

coefficients (PCC) and coefficients of determination (R2) were calculated with custom 

python scripts (sci-kit learn and SciPy packages). 

Illumina sequencing data analysis  

Demultiplexed paired-end reads were aligned, merged (based on overlapping 

sequences), and trimmed to the region of interest using a custom Matlab script. The 

resulting processed reads were mapped against the designed sequences of the library. 

For each library member, the number of matching reads was counted. Only reads that 

shared a 100% identity with a designed sequence were considered for further analysis. 

Read counts of 0 were set to 1, to avoid division by 0. Read counts lower than 15 on 

both reference plates and antibiotic plates were not considered in the analysis. Read 

counts were normalized by dividing the read counts of each mutants by the total 

number of reads in a given sample. Fold-changes were calculated by dividing 

normalized read counts of each mutant on the antibiotic plates by normalized read 

counts on the reference plates obtained from the same experiment. 

Construction of single CRISPR strains 

The PurKE49G, PurAL75D, PurMF105A and HisFV126P strains were re-constructed with the 

same method as the CRISPR library. Plasmid pT0S41 was first transformed with 

electroporation into WT BW25113. Plasmids pTS040 were built by assembling the 

pTS040 backbone with oligonucleotides (Twist Bioscience) encoding sgRNA and 

homology arms associated with the desired mutations.  Then, plasmids pTS040 were 

transformed with electroporation after 30 min induction with 7.5 g/L arabinose (lambda 

red expression). Strains were cultivated for 1 h in SOC medium with kanamycin and 1 

µM aTc to induce Cas9 expression. Strains were then plated on LB agar with 

kanamycin, chloramphenicol and 1 µM aTc. Incubation was done at 37°C overnight. 

Subsequently, single colonies were picked for colony PCR to amplify the potentially 

mutated genes of interest. PCR amplicons were purified (Macherey-Nagel #740609) 

and used for sequencing (Eurofins genomics). Sequences were analysed with the 

Benchling software and the MAFFT algorithm.  Strains with the correct mutations were 
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cultivated overnight in 4 mL LB with kanamycin and chloramphenicol to prepare 

glycerol stocks. Mutants PtsII330P, RibDL364W, PgsAV44P, IspEV146W and HemAL276Q were 

isolated directly from the CRISPR library after gentamicin challenge and mutations 

were confirmed by sequencing the genomic region as described above. The cloning 

and isolation of the LeuBI134P mutant has been described previously23. 

Construction of CRISPRi strains 

Plasmids pgRNAK-purA#1 (protospacer: 5’-TTTACCTTCGTCACCCCATT-3’) and 

pgRNAK-mRFP (protospacer: 5’-AACTTTCAGTTTAGCGGTCT-3’) were constructed 

by exchanging the ampicillin resistance cassette of the plasmid pgRNA (Addgene 

#44251)46 with a kanamycin resistance cassette. Plasmids were then transformed into 

the E. coli strain YYdCas937 using electroporation.  

Time-kill assay 

Precultures in 4 mL LB were inoculated from glycerol stocks for 8 h at 37°C and 220 

RPM and transferred to M9 medium for overnight incubation at 37°C and 220 RPM. 

M9 pre-cultures were used to re-inoculate shake flasks containing 25 mL of M9 

medium with kanamycin and chloramphenicol. When OD600 0.25 was reached, 10 mL 

of medium were transferred to a new shake flask and carbenicillin was added at a final 

concentration 50 µg/mL or 25 µg/mL depending on the strain tested. Cells were 

incubated at 37°C and 220 RPM. At each time point, 1 mL of each culture was sampled 

into a microcentrifuge tube and cells were centrifuged at 3000 RPM for 10 min. 

Supernatant was discarded and cells were resuspended in 1 mL of fresh M9 medium 

without carbenicillin. This washing step was then repeated. Cells were then serial 

diluted in fresh M9 medium by a factor of 10 to obtain dilutions of 1:100, 1:1000, 

1:10000 and 1:100000. 100 µL from each dilution were then plated on M9 agar and 

incubated 48 h at 37°C. Colonies were then counted to quantify colony forming units 

(CFUs) per mL. 

For time-kill assays with hospital bacterial isolates, precultures of EC-244 were first 

performed in LB for 8 h at 37°C. Each preculture was then split into one M9 preculture 

with 100 µM adenine and one preculture without adenine, and grown overnight at 37°C. 

The next day, cultures in exponential phase were used to inoculate shake flasks with 

25 mL of M9 medium with or without 100 µM adenine, with starting OD600 0.25. 

Sulbactam (TCI #S0868) was added at a final concentration of 12.5 µg/mL and 
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carbenicillin was added at final concentration of 100 µg/mL. At indicated time points, 1 

mL of culture were sampled from each flask and cells were washed with M9 medium 

supplemented with 5 g/L glucose and 100 µM adenine and plated on M9 agar 

supplemented with 100 µM adenine.  

Whole genome sequencing of E. coli clinical isolates EC-244 and EC-249 

DNA was extracted from of EC-244 and EC-249 using the DNeasy UltraClean 

Microbial Kit (Qiagen), followed by library preparation (Illumina DNA Prep, (M) 

Tagmentation, Illumina) and barcoding (IDT for Illumina DNA/RNA UD Indexes). 

Sequencing was performed using a MidOutput Cartridge (NextSeq 500/550 Mid Output 

Kit v2.5 (300 Cycles)) on an Illumina NextSeq 500 machine. Following the sequencing, 

an alignment of the resulting fastq files was performed using bowtie2. The genome of 

E. coli BW25113 was used as reference. Subsequently, the alignment was 

investigated using the Integrative Genomics Viewer (Version 2.16.0). A comparison of 

mutations within the purK gene was performed with genomes of clinical isolates from 

the NCBI Pathogens database47. A total of 9 369 genomes were collected, and PurK 

protein sequences were obtained for 4 352 genomes. Amino acid changes in these 

PurK protein sequences were identified by alignment with MUSCLE48. 
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Supplements 

 

 

Figure S1: The CRISPR library and control strain were plated on minimal agar medium 
with increasing concentration of carbenicillin. Colonies were counted after 48 h of 
incubation at 37°C. 
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Figure S2: Images of M9 agar plates inoculated with the control strain (top) or the 
CRISPR library (bottom). Plates contained either gentamicin, carbenicillin, or no 
additional antibiotics (reference). Images were made with an Epson V370 scanner. 
Images were assembled using Adobe Illustrator. Brightness and contrast were 
adjusted with Microsoft PowerPoint.  
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Figure S3: Scatter plots show read-fractions of barcodes of mutants in the CRISPR 
library. (a) and (b) are barcode read-fractions from the gentamicin screen. (c) and (d) 
are barcode read-fractions from the carbenicillin screen. The Pearson correlation 
coefficient (PCC) is shown for the two replicates. 
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Figure S4: Agar dilution assays with the control strain and CRISPR mutants 
(RibDL364W, PgsAV44P, IspEV146W, PtsII330P, HemAL276Q, PurAL75D, PurMF105A and 
HisFV126P). Strains were plated on minimal agar medium supplemented with the 
respective antibiotic of the β-lactam class aztreonam (a) or meropenem (b), or the 
aminoglycoside tobramycin (c). Multiple inoculum densities were used to assess 
inoculum effects. Plates were incubated 48 h. Shown are one of n = 2 replicates. Spot 
assays were performed on the same plate per concentration, and scans of plates with 
different concentrations were assembled into a single figure using Adobe Illustrator. 

 

 

Figure S5: Volcano plot showing metabolite levels of the RibDL364W mutant relative to 
the control strain (n = 3 distinct samples). Significant metabolites of interest are 
annotated (p-value < 0.05). 
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Figure S6: a, Agar dilution assay with the CRISPRi-purA strain and the CRISPRi-
mRFP strain (control). Each strain was plated on agar plates with minimal glucose 
medium containing increasing concentrations of carbenicillin (MIC = 1.5 µg/mL). 1 µM 
anhydrotetracycline (aTc) was added to induce the expression of dCas9. Multiple 
inoculum densities were used to assess inoculum effects. Plates were incubated 48 h. 
Shown is one of n = 2 replicates. Spot assays were performed on the same plate per 
concentration, and scans of plates with different concentrations were assembled into 
a single figure using Adobe Illustrator. b, Volcano plot showing metabolite levels of the 
aTc-induced CRISPRi-purA strain relative to the non-induced CRISPRi-purA strain (n 
= 3 distinct samples). Significant metabolites of interest are annotated (p-value < 0.05). 
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Figure S7: Agar dilution assay with the control strain and three purine mutants 
(HisFV126P, PurMF105A and PurAL75D). Each strain was spotted on agar plates with 
minimal glucose medium supplemented with 100 µM adenine and increasing 
concentrations of carbenicillin (MIC = 1.5 g/mL). Plates were incubated 48 h. Shown 
is one of n = 2 replicates. Spot assays were performed on the same plate per 
concentration, and scans of plates with different concentrations were assembled into 
a single figure using Adobe Illustrator. 

 

 

 

Figure S8: Relative levels of intracellular ATP, ADP, AMP and IMP in the Control and 
PurAL75D strain in minimal glucose medium with or without supplementation of 1 mM 
adenine (ade). Data are normalized to the control strain without adenine. Bars are 
means of n = 3 distinct samples (black dots). Data for the control strain and the 
PurAL75D mutant without adenine feeding is the same as shown in Fig. 2e. 
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Figure S9: a, Agar dilution assay with the control strain, the HemAL276Q strain and the 
PtsII330P strain. Each strain was spotted on agar plates with minimal medium containing 
glucose-6-phosphate (G6P) instead of glucose as carbon source, and with increasing 
concentrations of gentamicin (MIC = 0.45 g/mL). b, same as (a) but with glucose as 
carbon source and supplementation of 5-aminolevulinic acid (5-ALA). Plates were 
incubated 48 h.  Spot assays were performed on the same plate per concentration, 
and scans of plates with different concentrations were assembled into a single figure 
using Adobe Illustrator. 

 

 

Figure S10: Agar dilution assay with the control strain, the PurAL75D strain and the 
slow-growth control LeuBI134P. Plates were incubated 48 h. Spot assays were 
performed on the same plate per concentration, and scans of plates with different 
concentrations were assembled into a single figure using Adobe Illustrator. Shown is 
one of n = 2 replicates.  
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Figure S11: Agar dilution assays with the control strain and the mutants PtsII330P, 
HemAL276Q, PurAL75D, PurMF105A and HisFV126P. Strains were plated on minimal agar 
medium supplemented either with carbenicillin (a) or with gentamicin (b). Spot assays 
were performed on the same plate per concentration, and scans of plates with different 
concentrations were assembled into a single figure using Adobe Illustrator. 
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Figure S12: Time-kill assays with the control strain and the LeuBI134P, HisFV126P, 
PurMF105A and PurAL75D strains. Strains were incubated in minimal glucose medium 
and carbenicillin (25 and 50 µg/mL) for the time period indicated on the x-axis (n = 3 
distinct samples). Data for the HisFV126P, PurMF105A and PurAL75D mutants is the same 
as in Fig. 3c and shown as a reference. 
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Figure S13: a, Schematic of the experimental workflow to evolve higher carbenicillin 
resistance. b, Number of spontaneous mutants that appeared after 3 days incubation 
of the control strains and the three mutants (HisFV126P, PurMF105A and PurAL75D) at their 
respective 2X MIC (3.1 µg/mL for the control strain and 6.2 µg/mL for the purine 
mutants). Bars are means of n = 2 distinct samples (dots). c, Pie charts show 
carbenicillin MIC values of the evolved control strains and the evolved PurAL75D strains. 
88 colonies were picked from a plate inoculated with the PurAL75D strain. All 6 colonies 
on the plate with the control strain were picked. Agar dilution assays on minimal 
glucose agar were performed to assess the MIC of these strains. 

 

 

Figure S14: Growth of 235 clinical E. coli isolates on minimal glucose medium. Curves 
are the mean of n = 2 distinct samples. Blue lines show 41 strains with the lowest area 
under the curve (AUC). These strains were used for metabolome analysis. 
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Figure S15: Relative levels of ATP, ADP and AMP in EC-244 (with and without 
adenine) and EC-249 (without adenine). Data are normalized to EC-249 (without 
adenine) and are represented as mean of n = 3 distinct samples (shown as black dots). 

 

Figure S16: Distribution of the frequency of 146 amino-acid mutations in PurK found 
in the NCBI pathogen database (4352 E. coli strains). Mutations were found by 
alignment with the purK gene of E. coli BW25113. Each dot represents an amino-acid 
mutation, and its frequency in various isolates is indicated on the y-axis. Mutations 
detected in EC-244 and EC-249 are annotated, except for E49G which was not present 
in the dataset. 
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Chapter 3: Investigation on the relationship between 

carbenicillin and the de novo purine pathway 

 

Contribution: All experiments presented in this chapter were designed by the author 

of this thesis as well as Prof. Hannes Link. Data analysis, writing, and figures were 

done by the author of this thesis. Nils Waffenschmidt cloned pTS40-p10X variants and 

performed experiments with them. He also performed dynamic metabolomics. 

Elisabeth Lorenz performed growth assays with 6-mercaptopurine. Fabian Smollich 

performed the qPCR experiment.  Amelie Stadelmann performed agar dilution assays 

with the ΔpunC strains. Proteomics data was obtained in collaboration with Dr. Timo 

Glatter. The author of this thesis performed the rest of the experiments.  

Chapter relevance: This chapter shows numerous experiments that explored 

hypothesis which were not discussed in detail in Chapter 2 and provides interesting 

results to discuss the resistance phenotypes of the PurAL75D, HisFV126P and PurMF105A 

mutants.  
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Introduction 

Chapter 2 presented the core of this thesis investigation on the relationship between 

metabolism and antibiotic resistance. However, one key limitation of this publication 

was the lack of explanations regarding the mechanism linking the metabolic mutations 

and their resulting resistance phenotype. In other words, a causality was solidly 

established, but its logic remained elusive. This was mainly the case for the de novo 

purine and histidine pathways mutants. Indeed, it was relatively clear that mutations in 

enzymes related to the respiratory chain likely led to a decreased import of gentamicin 

and tobramycin in the bacterial cytosol. However, the reason why a perturbation of the 

de novo purine pathway would induce a resistance to a peptidoglycan-targeting 

antibiotic remains unclear. Furthermore, the carbenicillin-sensitive mutant PtsII330P 

mutant also had an impaired de novo purine pathway likely due to a decrease of 

glycolytic activity. Hence, the purine and histidine mutants were likely resistant due to 

a response to a local perturbation of the purine pathway and unrelated to a general 

response like in the PtsII330P mutant. In the conclusion of Chapter 2, it was assumed 

that the observed resistance was likely related to transport of carbenicillin to the 

periplasm.  

How did we come up with such a conclusion? The current Chapter shows the 

experimental work achieved to explore multiple hypothesis explaining the resistance 

of the purine and histidine pathway mutants. This work played a significant role in 

orienting our final conclusion in Chapter 2. It includes proteomics, dynamic 

metabolomics, as well as generation of knock-out strains and testing of the reactive 

oxygen species (ROS) hypothesis.  

This chapter also covers a supplementary set of experiments exploring the robustness 

of the link established between the de novo purine pathway and carbenicillin. Here, the 

de novo purine pathway will be perturbed using 6-mercaptopurine (6-MP), a drug 

generally used for Crohn’s disease treatment which acts as an inhibitor of purine 

synthesis to stop cell proliferation.  
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Results and discussion 

A deeper understanding of the proteomes and metabolomes of the PurAL75D, 

HisFV126P and PurMF105A mutants 

It was reasoned that a better understanding of the carbenicillin resistance phenotype 

of the three mutants PurAL75D, PurMF105A and HisFV126P could be achieved by 

combining proteomics and metabolomics. The three mutants and the non-edited 

control strain were cultivated in M9 medium with glucose until they reached exponential 

phase. Proteomes were then sampled and measured using mass spectrometry.  

The simultaneous analysis of the proteomes (Fig. 1a) and metabolomes (Fig. 1b) of 

the mutants highlights several differences and similarities. All three mutants have 

elevated levels of de novo histidine pathway enzymes, and commonly show significant 

level increase of the de novo purine pathway enzymes GuaA, GuaB and PurT. The 

HisFV126P mutant displays elevated levels of other de novo purine pathway enzymes 

like PurA, PurC and PurE. The increased abundance of both de novo L-histidine and 

purine pathways enzymes in the mutants is likely a leverage to restore low purine end-

products levels. This phenotype has been previously observed in other de novo amino-

acid pathways in E. coli1. 

Enzymes involved in nucleotide salvage are also highly expressed in the three 

mutants. This is notably the case for adenosine deaminase (Add) and the transcription 

factor PunR, known to activate the expression of the nucleoside transporter PunC2. 

Interestingly, the PurAL75D mutant has high levels of hypoxanthine (hxan) and inosine 

(ins), two metabolites of the purine salvage pathway. This is logical considering that 

this strain has high IMP (imp) levels, which can be converted into hxan or ins through 

the nucleotide salvage pathway3. Overall, this dataset suggests that the three mutants 

are starving for purine nucleotides and try to compensate this starvation by 

upregulation of proteins responsible for synthesis and salvage of nucleotides from the 

medium.  
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Figure 1: Metabolome and proteome comparison of the purine mutants. a, 
Volcano plots displaying protein level changes in the PurMF105A, PurAL75D and HisFV126P 
mutants as compared to the non-edited control strain (n = 3). Only proteins of key 
pathways (purine and pyrimidine synthesis and salvage, folate synthesis, amino-acid 
synthesis) are shown. The transcription factor PunR is indicated in red. Dashed lines 
represent a threshold of log2(Fold-change) = 1 and -1 on the x-axis and a threshold of 
p-value of 0.05. b, Volcano plots displaying metabolite level changes in the PurMF105A, 
PurAL75D and HisFV126P mutants as compared to the non-edited control strain (n = 3). 
This dataset is similar to the one showed in Chapter 2 but more metabolites are 
annotated.  

 

All three mutants show decreases of the de novo pyrimidine pathway intermediates 

carbamoyl-L-aspartate (cbasp) and dihydroorotate (dhor-S). Orotate (orot) and CTP 

(ctp) levels are also low in the PurMF105A and HisFV126P mutants. The PurMF105A 

additionally shows low UTP (utp) levels. However, the PurAL75D mutant does not show 

significant level changes of de novo pyrimidine pathway end-products. Nevertheless, 

the de novo pyrimidine pathway is affected in all mutants. This could be caused by low 

ATP (atp) levels. Indeed, it has been previously shown that atp is an allosteric activator 
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of the PyrIB complex4. Hence, the three mutants starve for purine and pyrimidine 

nucleotides. This is further demonstrated by high levels of the pyrimidine salvage 

pathway enzymes Upp and RihC in the PurAL75D and PurMF105A mutants, although the 

HisFV126P mutant showed oppositely decreased levels of these two enzymes.  

The de novo pyrimidine pathway provides the nucleotide moiety for the peptidoglycan 

synthesis pathway intermediate UDP-N-acetyl-α-D-glucosamine (uacgam). Levels of 

uacgam are notably low in the PurMF105A and HisFV126P strains. Increased levels of the 

peptidoglycan synthesis pathway intermediate D-alanyl-D-alanine (alaala) are also 

observed in both strains. This indicates that the PurMF105A and HisFV126P mutants have 

an impaired peptidoglycan synthesis.  

Could these two mutants have a slower peptidoglycan synthesis which may help in 

carbenicillin resistance? This hypothesis goes against the CRISPR screen results 

discussed in Chapter 2, where it was found that mutations in de novo pyrimidine 

pathway enzymes were rarely selected against carbenicillin. Furthermore, the PurAL75D 

mutant does not show significant level changes in peptidoglycan synthesis pathway 

intermediates and has no significant decrease of de novo pyrimidine pathway end-

products. The PurAL75D mutant was the fastest growing of the three mutants, probably 

because its de novo pyrimidine and peptidoglycan synthesis pathways were less 

impaired. Since this mutant was also the most resistant of the three strains (see 

Chapter 2), it is difficult to link carbenicillin resistance with this metabolic phenotype. 

However, as the PurMF105A and HisFV126P mutants were more tolerant than the 

PurAL75D, the impairment of peptidoglycan synthesis could play a role in decreasing 

carbenicillin lethality, which matches previous observations5,6.  

An important distinction is observable between the proteomes of the PurAL75D and 

PurMF105A mutants on one hand, and the HisFV126P on the other hand. The HisFV126P 

mutant displays low levels of many enzymes involved in amino-acid biosynthesis, 

which is the opposite of what is observed in the PurAL75D and PurMF105A mutants. As 

displayed by its low histidinol (histd) levels, the HisFV126P mutant likely has a bottleneck 

in histidine synthesis, although histidine levels do not significantly decrease in this 

strain. The reason for the level decrease of other numerous amino-acid pathways 

enzymes is unclear and could be caused by multiple factors such as the alarmone 

ppGpp7,8. Nevertheless, the PurAL75D and PurMF105A mutants are both resistant to 

carbenicillin while not displaying the same proteome profile in amino-acid synthesis as 
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the HisFV126P mutant. Intriguingly, the three mutants show altered levels of several 

amino-acid pathway intermediates such as O-phospho-serine (pser-L), pantothenate 

(pnto-R) and arginosuccinate (argsuc). It is unclear how these level changes are 

triggered and whether they influence carbenicillin resistance. Hypothesis related to 

these intermediates were not explored in this thesis.  

PEP (pep) and Acetyl-P (actp) accumulate in the mutants. The increased levels of 

these two metabolites may be indicators that the mutants rely on fermentative 

pathways9. Indeed, atp levels have been shown to influence fermentation rates in E. 

coli10. The expression of several porins is regulated by acidic stress which could result 

from fermentation pathways usage11. This is the case for OmpF12 which is responsible 

for carbenicillin transport to the periplasm13. The absence of OmpF from the 

proteomics dataset does not permit to reach better conclusions and transcriptomics 

may have been used to inform on ompF expression levels in the mutants.  

The carbenicillin-sensitive PtsII330P mutant also had high pep levels (Chapter 2). 

However, this was likely due to a bottleneck in the Phosphotransferase system (PTS) 

and was unrelated to the pep level increase in the purine mutants. Levels of actp were 

low in that strain (log2FC = -1.753; p-value=0.005 – Chapter 2).  

In conclusion, this dataset demonstrates that the three mutants rely on an array of 

strategies to compensate their respective bottlenecks, each with overlaps and 

differences. While the PurMF105A displays numerous changes in metabolite levels, the 

HisFV126P mutant shows a strong proteome response. Only the PurAL75D strain has less 

perturbations in the levels of proteins and metabolites analysed, and was the fastest 

growing of the three mutants as well as the most resistant. Therefore, carbenicillin 

resistance is likely due to a trade-off between the benefits provided by a bottleneck in 

the de novo purine pathway and the resulting consequences on fitness.  

Carbenicillin resistance could also be linked with a protein which had high levels in the 

three mutants. The transcription factor PunR fit this criterion and was appealing to 

propose a simple hypothesis. This will be explored in the next section.  

 

 

 



100 
 

An inconclusive investigation on the nucleoside transporter PunC 

The transcription factor PunR is known to positively regulate the expression of the 

punC gene encoding for the nucleoside transporter PunC (Fig. 2a). Hence, PunC might 

be overexpressed by PunR and play a role in carbenicillin resistance. Interestingly, 

PunC is an inner membrane transporter, and carbenicillin locates in the periplasm 

where it binds penicillin binding proteins. Therefore, its role in carbenicillin resistance 

would not be trivial. Besides, PunC was not detected on the proteome dataset (Fig. 

1a), so there was no direct proof that it was indeed highly expressed in the carbenicillin 

resistant mutants. The hypothesis was tested nonetheless.  

If PunC had any effect on carbenicillin resistance, the suppression of its encoding gene 

should re-sensitise the purine and histidine mutants.  Therefore, the punC gene was 

deleted on the PurAL75D mutant genome (PurAL75D ΔpunC). Carbenicillin resistance of 

the strain was tested using agar dilution (Fig. 2b). Conforming with the initial 

hypothesis, the resistance of the PurAL75D ΔpunC vanished to match that of the non-

edited control strain. However, as it can be observed, a non-edited control ΔpunC 

strain was not tested in this experiment. This did not permit to conclude if the abolition 

of resistance was due to the absence of PunC or a pleiotropic effect from the knock-

out.  
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Figure 2: The nucleotide transporter PunC is a potential mechanistic explanation 
for carbenicillin resistance. a, PunR, the transcription factor upregulated in the 
PurMF105A, PurAL75D and HisFV126P mutants, regulates the expression of the nucleoside 
transporter PunC. b, Agar dilution assay with the PurAL75D strain and the double mutant 
PurAL75DΔpunC (shown is one of n = 2 replicates). Spots were done on the same plate 
per concentration, and scans of plates with different concentrations were assembled 
into a single figure using Adobe Illustrator.  

 

To give additional proofs advocating for a role of punC in carbenicillin resistance, it 

was decided to construct multiple other strains. If PunC was responsible for 

carbenicillin resistance, its overexpression from a plasmid should induce resistance in 

sensitive strains. Modified versions of pTS40 (the DNA barcode plasmid) were 

generated (here referred to as pTS40-p10X). These plasmids carry an open reading 

frame permitting the constitutive expression of punC. The expression levels of punC 

were tuned by using different promoter strength (Fig. 3a). The Control ΔpunC was 

cloned for this experiment and transformed with the pTS40-p10X variants. Four 

different strains were generated (PurAL75D ΔpunC p104, Control ΔpunC p100, Control 

ΔpunC p104 and Control ΔpunC p107).  

Unfortunately, none of the constructed strains displayed a resistance phenotype to 

carbenicillin (Fig. 3b). This could be due to a dysfunction of the open reading frame 

(punC is unproperly expressed), or deny a role for PunC in carbenicillin resistance. 

Most importantly, the Control ΔpunC showed a lower carbenicillin minimal inhibitory 

concentration (MIC) than the non-edited control strain (Fig. 3b), which supports the 

pleiotropic effect hypothesis. 

To investigate this further, the expression of punC was measured using real-time 

polymerase chain reaction (qPCR) to quantify punC messenger RNA (mRNA) levels 

(Fig. 3c). As hypothesised, the PurAL75D mutant indeed showed 2-fold increased levels 

of punC mRNA as compared to the non-edited control strain (p-value<0.05), and both 

ΔpunC strains displayed no expression of the mRNA, confirming the deletion of the 

punC gene from their genome. Hence, resistance could still be explained by higher 

punC expression in the mutants and the constructed pTS40-p10X plasmids might have 

not function properly. Besides, since the non-edited control expresses PunC, the 

increased sensitivity of the Control ΔpunC might be caused by the absence of PunC 

in that strain. A final strategy was employed to decide whether or not to rule out the 

PunC hypothesis.  
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Figure 3: Failures in confirming the PunC hypothesis. a, Representation of the 
plasmids used in this study to overexpress PunC (pTS40-p10X). They are variants of 
the plasmid pTS40 and contain an open reading frame permitting the expression of 
punC with a strong ribosome binding site (RBS), a strong transcriptional terminator 
TL3, and three different promoter strengths: J23100 (strong), J23104 (medium) and 
J23107 (weak). b, Agar dilution assay on carbenicillin with various strains having a 
ΔpunC and expressing PunC with the pTS40-p10X variants. The non-edited control 
strain and the PurAL75D mutant are shown as controls for the experiment (n = 1). Spots 
were done on the same plate per concentration, and scans of plates with different 
concentrations were assembled into a single figure using Adobe Illustrator. c, punC 
mRNA levels in the non-edited control strain and the PurAL75D mutant, with or without 
the deletion of punC in their respective genomes. Fold-changes are calculated as 
compared to the control average punC mRNA levels. (n = 3) d, Schematisation of the 
CREATE cloning method used to generate strains with a punC deletion. e, Agar dilution 
assay with the non-edited control strain and the PurAL75D mutant and their punC-STOP 
variants on M9 agar with carbenicillin (n = 1). 

 

Two new strains with punC deletions were generated using CREATE. This time, 

instead of relying on the complete deletion of the punC gene from E. coli genome, 

STOP codons were implemented in-frame of the punC gene at the second and 

eleventh residues. STOP codons lead to translational arrest upon being read by the 

ribosomal machinery. Two STOP codons were implemented to reduce chances of 

readthrough14.  The cloning was performed in the non-edited control strain as well as 

in the PurAL75D strain (Fig. 3d). The resulting strains were named Control - punC STOP 

and PurAL75D - punC STOP. Carbenicillin resistance of these strains was tested using 

agar dilution assay. The strains had the same carbenicillin sensitivity as their variants 

without STOP codons (Fig. 3e). This further indicated that punC was not causing 
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carbenicillin resistance, and that the increased carbenicillin sensitivity in the Control 

ΔpunC and PurAL75D ΔpunC strains was likely due to a pleiotropic effect.  

What could be the explanation for the pleiotropic effect? One possibility is that the 

absence of the punC gene on E. coli genome perturbates the expression of 

neighbouring genes (a “polar effect”). For example, the punC gene is upstream of the 

cfa gene in E. coli BW25113 genome. This gene encodes for the protein Cyclopropane 

fatty acyl phospholipid synthase (CFA), involved in phospholipid synthesis. In theory, 

this is unlikely to happen as the Keio library has been crafted specifically for avoiding 

polar effect caused by gene deletion15,16.   

The results presented in Figure 3 are also not conclusive enough to fully dismiss the 

PunC hypothesis. Expression levels of PunC in the pTS40-p10X strains were never 

assessed. Unlike in the original ΔpunC strains, expression levels of PunC were not 

measured in the punC STOP strains. This means the efficiency of this method to 

knock-out punC was not demonstrated.  

All these limitations and uncertainties do not furnish clear answers to the original 

question, which was to assess why purine bottlenecks led to carbenicillin resistance. 

The next section proposes another strategy to answer this question. 

 

Study of the impact of carbenicillin treatment on E. coli metabolome 

Lethality of antibiotics have been associated with their potential metabolic side-effects, 

such as generation of ROS17.  If carbenicillin indeed impacts E. coli metabolism, then 

resistance of the PurAL75D, HisFV126P and PurMF105A mutants could be caused by a 

reduction of this impact due to their metabolic bottlenecks.  

A workflow was designed to study this hypothesis (Fig. 4a). Both non-edited control 

strain and PurAL75D mutant were incubated for one hour with high concentrations of 

carbenicillin (50 µg/mL, see Chapter 2). After 5, 30, and 60 minutes of treatment, 

metabolites were sampled and quantified.  Treatment of 1 h at this concentration was 

enough to kill 46(± 32.8) % of the non-edited control strain population and 68(± 11.8) 

% of the PurAL75D mutant population (Chapter 2). It was hypothesised that differences 

in metabolome changes between the PurAL75D and non-edited control strain could 

explain the reduced carbenicillin lethality.  
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The data from this experiment are presented in Figures 4b, 4c and 4d. While Figures 

4b and 4c show significant changes in the metabolome of each strain from 5 minutes 

to 60 minutes, Figure 4c compares the metabolome of both strains at similar treatment 

duration. Any metabolite that displays a strong level change in individual strains (Fig. 

4b and 4c), and a stronger change in the non-edited control strain compared to the 

PurAL75D strain over time (Fig. 4d) would be of interest for the starting hypothesis.  

While carbenicillin treatment induced level decrease of most measured metabolites in 

both strains, many nucleosides and nucleotides had high level increases. For example, 

levels of adenosine (adn), inosine (ins), AMP (amp), cytidine (cytd), GMP (gmp) and 

guanosine (gsn) at least doubled in the control strain over the treatment duration (Fig. 

2b). At similar time-points, the non-edited control strain accumulated amp, cytd, gmp 

and gsn at least two times faster than the PurAL75D mutant (Fig. 2d). Interestingly, 

purine nucleotides atp, gtp, gtp and gtp had level decreases in both strains, and adp 

levels also decreased in the control strain (Fig. 2b and 2c). This seems to indicate that 

highly-phosphorylated nucleotides deplete while nucleosides monophosphates or 

nucleosides without phosphate accumulate during carbenicillin treatment.  

Oppositely, a previous study showed decreased levels gmp, gsn and guanine in 

ampicillin-treated E. coli18. This effect was attributed to the generation of ROS because 

of elevated respiration caused by ampicillin. Decreased levels of nucleotide would be 

due the oxygenation of the guanine pool, which generates oxidised nucleotides that 

lethally incorporate into DNA and RNA. As this was not observed here, whether ROS 

play a role in carbenicillin lethality in the tested strains is still unclear. Ampicillin and 

carbenicillin might also have different metabolic consequences.  

Since atp and adp levels drop and amp levels increase during carbenicillin treatment, 

the cells may have a destabilised adenylate energy charge (AEC). AEC is calculated 

with the formula [(atp) + ½ (adp)]/[(atp) + (adp) + (amp)] and represents the amount of 

metabolically available energy in a cell19. As such, it is intimately linked with growth 

rate20. As growth rates are tightly associated with beta-lactam lethality5, destabilisation 

of the AEC via the de novo purine pathway could also be a defence mechanism in 

response to a perturbed peptidoglycan. However, no clear signal from peptidoglycan 

synthesis metabolites was detected in the present data set apart from alaala which 

depleted in the control strain (Fig.4d). AEC calculation relies on the determination of 

amp/adp/amp intracellular concentrations which was not performed for this dataset.  
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Figure 4: Metabolic consequences of carbenicillin treatment on E. coli 
metabolome. a, Schematisation of the experimental workflow. b, Metabolite level 
changes in the non-edited control strain after 30 minutes and 60 minutes of carbenicillin 
treatment as compared to 5 minutes (n = 3, all metabolites shown have p-value<0.05 
for levels at t=60 min against t=5 min). c, Same as (b) but with the PurAL75D mutant. d, 
Volcano plots showing metabolite changes of the non-edited control strain at different 
durations. Fold-changes are obtained by comparison of metabolite levels in the 
PurAL75D strain at the same time-points (n = 3).  Dashed lines represent a threshold of 
log2(Fold-change) = 1 and -1 on the x-axis and a threshold of p-value of 0.05.  



106 
 

Only few other measured metabolites accumulated in both strains. The control strain 

shows a wider variety of significant metabolite level decreases over treatment duration 

(18) than the PurAL75D strain (9). This could be due to leakage because of membrane 

lysis, as the control population lyses faster than the mutant population. However, this 

would not explain why some nucleotides and nucleosides accumulate. Could they 

adhere to membrane easily than their highly phosphorylated alternatives? 

One key limitation of the experimental set-up is that tolerance and not resistance was 

investigated. Because a high concentration of carbenicillin was used, both strains 

populations depleted, which does not allow to understand any resistance mechanism 

at play. Cell lysis and filamentation also led to complexified sampling of metabolites 

and may have blurred normalisation of cell biomass. One way to correct for these 

issues and study carbenicillin resistance would be to sample an E. coli population 

growing on agar supplemented with carbenicillin. However, metabolite sampling from 

biofilms suffers from population gradients which might affect metabolite levels21. Lower 

carbenicillin concentrations could have also been used.  

In summary, carbenicillin treatment induces accumulation or depletion of multiple 

nucleotides and nucleosides which might destabilise the AEC. That this phenotype 

plays a role in carbenicillin tolerance and why carbenicillin affects the nucleotide and 

nucleoside pool remains unclear. The observed phenotype of the strains in response 

to carbenicillin contradicted previously published literature, which does not support the 

ROS hypothesis as explanation. The HisFV126P, PurMF105A and PurAL75D mutants did 

not display resistance to H2O2 (Fig. 5), known to generate ROS in E. coli18. This hints 

that these strains are not resistant to oxidative stress. Since ROS were not measured 

in this thesis, discussing this hypothesis remains very challenging. The purine and 

histidine mutants might be sensitive to ROS, but shielded from carbenicillin-generated 

ROS if there were any.   
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Figure 5: Histidine and purine mutants are not resistant to oxidative stress. Agar 
dilution assay with H2O2 with the non-edited control strain and the PurAL75D, PurMF105A 
and HisFV126P mutants. n = 1. Spots were done on the same plate per concentration, 
and scans of plates with different concentrations were assembled into a single figure 
using Adobe Illustrator. 

 

In Chapter 2, the carbenicillin tolerance of the PurAL75D strain was shown to be mainly 

caused by its slow-growth. However, the LeuBI134P strain was as tolerant as the 

PurAL75D strain while growing two times slower. This gives support to the AEC 

hypothesis. It is possible that the purine and histidine mutants, because they already 

have an altered de novo purine pathway, can manipulate their AEC easily and quickly 

in response to carbenicillin treatment, further decreasing their growth rates and 

improving their tolerance as opposed to a strain like LeuBI134P or the non-edited control 

which had a normally operating de novo purine pathway. This was never tested here 

but remains interesting.   

In conclusion, this experiment had promising and interesting results to understand 

carbenicillin tolerance but did not help exploring carbenicillin resistance.  

 

Strengthening of findings using 6-mercaptopurine 

Parallels between laboratory and clinical E. coli strains are not trivial due to the diversity 

within and between E. coli phylogroups. This section describes experiments done to 

rule out hypothesis that could link purine metabolism and carbenicillin resistance to 
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unique features of the CREATE chassis E. coli BW25113:  the carriage of two plasmids 

and the presence of a pyrimidine bottleneck in its genome. This was important to more 

reliably extrapolate findings made in Chapter 2 to other E. coli strains and was 

performed by using 6-mercaptopurine (6-MP).  

6-MP is a cancer drug used to inhibit purine metabolism of leukaemia tumour cells and 

impair their proliferation22 (Fig. 6a). It is also used to treat Crohn’s disease, an 

inflammatory bowel disease23. In human cells, 6-MP is thought to be converted by the 

enzyme hypoxanthine phosphoribosyltransferase (Hpt in E. coli) into 6-thioinosine-5’-

monophosphate and further metabolised into a myriad of nucleosides by other purine 

nucleotides salvage pathway enzymes22. These nucleosides act as competitive 

inhibitors for enzymes of the de novo purine pathway, although it is not clear which 

step of the pathway is inhibited. In E. coli, 6-MP has been shown to inhibit purine 

nucleotide synthesis24. It was assumed to be a direct inhibitor of PurF25, the first 

enzyme of the de novo purine pathway, although no information was found to support 

that claim. Nevertheless, 6-MP offered an attractive alternative to CRISPRi (see 

Chapter 2) to study the relationship between de novo purine synthesis and carbenicillin 

is other E. coli strains.  

Firstly, the effects of 6-MP on E. coli metabolism were investigated (Fig. 6b and 6c). 

Treatment of the non-edited control strain with 25 µM 6-MP indeed led to a metabolic 

phenotype highly similar to that of the purine mutants previously studied (Fig. 1b). De 

novo purine pathway end-products (adp, atp, gtp) had strong level decreases while the 

de novo pyrimidine pathway was also strongly affected, with low-levels of cbasp, orot 

and cmp/ctp. Interestingly, two de novo purine pathway intermediates (air and xmp) 

accumulated during 6-MP treatment. This seemed to indicate that the bottleneck 

induced by 6-MP was likely located in the gtp branch, through the inhibition of GuaA, 

of which xmp is the substrate (Fig. 6a). Interestingly, no metabolic bottleneck was 

detected at the PurF catalysed step since air levels were high. This contradicts 

previous statement in litterature25.  

Nevertheless, the data confirmed that 6-MP can indeed inhibit the de novo purine 

pathway of E. coli. The non-edited control strain was subjected to carbenicillin 

treatment during a broth dilution experiment (Fig. 6d). Adding 25 µM of 6-MP gave a 

fitness advantage against carbenicillin. The non-edited control strain was able to 

withstand carbenicillin treatment and grew at 2X MIC (end OD600 = 0.16), showing 
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resistance. As expected, 6-MP led to a growth rate decrease of 20%, likely due to de 

novo purine pathway inhibition (Fig. 6e).  

 

 

Figure 6: Treatment of E. coli with 6-mercaptopurine leads to low-level 
carbenicillin resistance. a, 6-mercaptopurine (6-MP) is a purine pathway inhibitor. 
Metabolites of the purine pathway as annotated in (c) are indicated. b, Representation 
of the experimental workflow with the non-edited control strain, the E. coli BW25113 
wild-type (WT) strain and E. coli NCM2722 WT strain. c, Volcano plot showing 
metabolite changes in the non-edited control strain when incubated with 25 µM 6-MP. 
Fold-changes are obtained by comparison of metabolite levels of the untreated non-
edited control strain. (n = 3 in both experiments). Dashed lines represent a threshold 
of log2(Fold-change) = 1 and -1 on the x-axis and a threshold of p-value of 0.05. d, 
Growth of the non-edited control, the E. coli BW25113 WT and E. coli NCM3722 WT 
strains with 25 µg/mL carbenicillin in M9 medium with or without supplementation of 
25 µM 6-MP (n = 3). e, Growth rates of the three selected strains in M9 medium with 
or without supplementation of 25 µM 6-MP (n = 3). Same data as in (d).  
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This interesting result gave the opportunity to investigate two hypotheses. The first one 

involved the influence of the plasmids pTS40 and pTS41 on the resistance phenotype 

of the mutants generated with CREATE genome editing. Indeed, carrying plasmids can 

impose a metabolic burden on E. coli and affect its fitness26. Furthermore, kanamycin 

and chloramphenicol were systematically used in cultivation mediums of strains 

carrying pTS40 and pTS41 to maintain population homogeneity. Could plasmid 

metabolic burden and the presence of other antibiotics influence carbenicillin 

resistance?  

Another hypothesis revolved around the de novo pyrimidine pathway defect present in 

the genome of E. coli K-12 strains like BW25113. Indeed, this strain suffers from a 

frameshift mutation in the gene rph (named rph-1 allele), which decreases the 

expression of the downstream gene pyrE as a polar effect27,28. This has been shown 

to result in the expression increases of de novo pyrimidine pathway enzymes and a 

growth defect in minimal medium due to pyrimidine starvation27. The link between the 

de novo purine pathway and the de novo pyrimidine pathway has been explored in this 

thesis chapter. Hence, concerns may be raised on the impact of the rph frame-shift in 

carbenicillin resistance of the purine and histidine mutants.  

To investigate both hypotheses, two strains were subjected to simultaneous 6-MP and 

carbenicillin treatment. These two strains were E. coli BW25113 WT (lacking pTS40 

and pTS1), and E. coli NCM3722 WT, which is a K-12 derivative without the rph frame-

shift mutation29. Both strains showed similar growth phenotypes as the non-edited 

control strain when subjected to the carbenicillin and 6-MP treatment (Fig. 6d). 

However, 6-MP induced a 13% and 10% growth rate decrease in BW25113 WT and 

NCM3722 WT respectively, which was lower than in the non-edited control strain (20%, 

Fig. 6e). Therefore, plasmid burden might impact the robustness of the non-edited 

control strain against nucleotide perturbation. Interestingly, NCM3722 WT had a higher 

growth rate (0.56 h-1 ± 0.014) than both BW25113 strains (0.49 ± 0.009 for WT and 

0.52 ± 0.0021 for the non-edited control), which matches published literature27.  

Nevertheless, 6-MP treatment led to low-level resistance against carbenicillin in all 

three tested strains, which indicated that the presence of plasmid burden and the rph 

frame-shift mutation does not impact the link between the de novo purine pathway and 

carbenicillin. Interestingly, if E. coli strains can be broadly affected by 6-MP, then a 

patient under 6-MP treatment might have higher chances of acquiring β-lactam 
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resistant E. coli strains in its microbiota. Furthermore, the gut microbiota has been 

shown to be associated with Chron’s disease, as bacteria can play a role in 

inflammation although they are usually not treated with β-lactams30.  

This conclusion remains highly speculative and this study has multiple caveats. First, 

only broth dilution assays were used to determine the MICs instead of agar dilution 

assays. Broth dilution assays have the considerable disadvantage of furnishing results 

that are not always conclusive, especially with β-lactams which induce filamentation of 

cells and affect OD600 reading31. For example, the OD600 increases observed during 

carbenicillin and 6-MP treatments might not entirely be the result of cell division but 

also filamentation (Fig. 6d). Whether the effect of 6-MP on growth rates was 

responsible for the observed resistance instead of its inhibition activity was also not 

tested. Since the “resistance by slow growth” hypothesis was ruled-out in Chapter 2, it 

is unlikely that this is correct. However, this could have been tested by using another 

molecule like N-(phenyl)thioacetamide-linked 1,2,3-triazoles which inhibits CysK and 

cysteine synthesis32 although effects on de novo purine synthesis should be assessed 

first.   

The number of E. coli strains used in this section was very limited so general 

conclusions are weak. Using agar dilution and a larger panel of E. coli strains or other 

bacterial species should give much more informative results. Metabolomics was not 

performed on the E. coli BW25113 WT and E. coli NCM3722 WT strains. Therefore, 

the effect of 6-MP on these strains can only be hypothesised from the metabolome of 

the non-edited control strain.  

Given these limitations, this dataset was encouraging regarding the relevance of the 

carbenicillin resistance phenotype of the purine and histidine mutants, which was its 

primary objective. Furthermore, the dataset furnishes a solid foundation for a more 

complete study which could examine the effects of drugs on the metabolome of E. coli 

and other microbiota members, and how this in turn affects antibiotic resistance during 

treatment to complete existing knowledge33. 
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Conclusion 

This chapter, although exposing uncomplete investigations with substantial limitations, 

offers an interesting complement to Chapter 2. Unfortunately, the elucidation of the 

mechanism linking carbenicillin and de novo purine synthesis could not be achieved. 

Instead, carbenicillin tolerance was better addressed with the chosen experimental 

designs. New hypothesis (peptidoglycan bottleneck and AEC) which could 

complement the current model (carbenicillin tolerance with slow-growth) were 

formulated. Furthermore, using 6-MP permitted to strengthen the relevance of the 

carbenicillin-purine link and justified previous characterisation efforts.  

Given the observations made in Chapter 2 and the present chapter, it is very likely that 

a local perturbation of the de novo purine pathway leads to a specialised response 

which induces low-level carbenicillin resistance. Carbenicillin resistance of the purine 

and histidine mutants is unlikely linked with a general mechanism such as the 

generation of ROS since it was constrained to carbenicillin and aztreonam and not to 

meropenem or gentamicin (Chapter 2). Hence, it is very possible that the observed 

resistance is linked to the decreased expression (two-fold would be enough) of a 

carbenicillin high affinity-porin of the outer membrane like OmpF, as suggested in this 

text and in Chapter 2. Therefore, transcriptomics should be performed to the PurAL75D, 

PurMF105A and HisFV126P mutants to investigate this hypothesis, since both 

metabolomics and proteomics failed to give a definitive answer to the originally asked 

question.  
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Material and methods:  

Strains 

The non-edited control strain and PurAL75D mutant were used to construct the Control 

punC STOP and PurAL75D punC STOP variants. Strain JW1652-1 ΔpunC from the Keio 

collection36 was used to construct the Control ΔpunC and PurAL75D ΔpunC strains. 

Strains E. coli BW25113 and E. coli NCM3722 were used for the 6-mercaptopurine 

experiments. One Shot™ TOP10 E. coli (Thermo Fisher #C404010) was used for 

intermediate cloning.  

Cultivation media 

Refer to Chapter 2. When needed, 6-Mercaptopurine monohydrate (Merck # 852678-

1G-A) was supplemented to the culture medium at final concentration 25 µM.  

Growth rate calculation 

Refer to Chapter 2.  
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Metabolomics (non and dynamic) 

Non-dynamic metabolomics presented in Figures 1a, 4d and 6c was performed as 

described in Chapter 2. The dataset presented in Figure 1a is the same as in Chapter 

2.  

For dynamic metabolomics, strains were cultivated in 4 mL LB for 8 h at 37°C and 220 

rotations per minutes (RPM) from glycerol stocks. LB precultures were used to 

inoculate shake flasks with 50 mL M9 medium and incubated overnight at 37°C and 

220 RPM. The next day, OD600 of the pre-culture shake flasks was quantified and 

normalised to 0.25 if cells were in exponential phase (0.2-0.8). If necessary, cells were 

reinoculated in M9 medium to obtain exponentially growing cultures. The pre-culture 

shake flasks were then split into three shake flasks with each 10 mL of culture and 

carbenicillin was added at final concentration 50 µg/mL. Cells were incubated at 37°C 

and 220 RPM for one hour. Metabolites sampling was done 5 minutes, 30 minutes, 

and 1 hour after carbenicillin addition with the same method as previously described.  

Proteomics measurement  

Precultures in 4 mL LB were inoculated from glycerol stocks for 8h at 37°C 220 rpm 

shaking and transferred to M9 medium for overnight incubation at 37°C and 220 RPM. 

M9 pre-cultures in exponential phase were used to inoculate shake flasks containing 

10 mL of M9 medium with a starting OD600 of 0.1. Strains were cultivated in triplicates 

until OD600 reached 0.25-0.6. An equivalent of OD600 = 0.8 was transferred to pre-

chilled 2 mL tubes. Cells were centrifugated at maximum speed for 10 minutes at 4°C. 

Supernatant was discarded and pellets were resuspended with ice-cold PBS. This 

washing step was repeated and pellets were stored at -80°C until further processing.  

For proteome measurement, E. coli cells pellets were resuspended in 300 μL lysis 

buffer (0.5% sodium lauroyl sarcosinate (SLS), 100 mM ammonium bicarbonate) and 

heated for 15 min at 90°C. Proteins were reduced with 5 mM Tris(2-carboxyethyl) 

phosphine (Thermo Fischer Scientific) at 90°C for 15 min and alkylated using 10 mM 

iodoacetamid (Sigma Aldrich) at 20°C for 30 min in the dark. The totally extracted 

protein material was digested with 1 µg of trypsin (Serva) at 30°C overnight. After 

digestion, SLS was precipitated by adding a final concentration of 1.5% trifluoroacetic 

acid (TFA, Thermo Fischer Scientific). Peptides were desalted by using C18 solid 

phase extraction cartridges (Macherey-Nagel). Cartridges were prepared by adding 
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acetonitrile (ACN), followed by equilibration with 0.1% TFA. Peptides were loaded on 

equilibrated cartridges, washed with 5% ACN and 0.1% TFA containing buffer and 

finally eluted with 50% ACN and 0.1% TFA, and finally dried. Dried peptides were 

reconstituted in 0.1% Trifluoroacetic acid and then analysed using liquid-

chromatography-mass spectrometry carried out on a Exploris 480 instrument 

connected to an Ultimate 3000 RSLC nano and a nanospray flex ion source (all 

Thermo Scientific). Peptide separation was performed on a reverse phase HPLC 

column (75 μm x 42 cm) packed in-house with C18 resin (2.4 μm; Dr. Maisch). The 

following separating gradient was used: 98% solvent A (0.15% formic acid) and 6% 

solvent B (99.85% acetonitrile, 0.15% formic acid) to 35% solvent B over 30 minutes 

at a flow rate of 300 nl/min. MS raw data was acquired on an Exploris 480 (Thermo 

Scientific) in data independent acquisition mode with a method adopted from 41. In 

short, Spray voltage were set to 2.0 kV and heated capillary temperature at 275 °C. 

For DIA experiments full MS resolutions were set to 120.000 at m/z 200 and full MS, 

AGC (Automatic Gain Control) target was 300% with an IT of 50 ms. Mass range was 

set to 350–1400. AGC target value for fragment spectra was set at 3000%. 45 windows 

of 14 Da were used with an overlap of 1 Da. Resolution was set to 15,000 and IT to 22 

ms. Stepped HCD collision energy of 25, 27.5, 30 % was used. MS1 data was acquired 

in profile, MS2 DIA data in centroid mode.   

Analysis of DIA data was performed using DIA-NN version 1.8 42 with a E. coli uniprot 

protein database. Full tryptic digest was allowed with two missed cleavage sites, and 

oxidized methionines and carbamidomethylated cysteins. Match between runs and 

remove likely interferences were enabled. The neural network classifier was set to the 

single-pass mode, and protein inference was based on genes. Quantification strategy 

was set to any LC (high accuracy). Cross-run normalization was set to RT-dependent. 

Library generation was set to smart profiling. DIA-NN outputs were further evaluated 

using the SafeQuant43,28 script modified to process DIA-NN outputs. 

Statistical analysis 

Refer to Chapter 2.  
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Quantification of mRNA with qPCR 

Sampling of RNA was performed with the same method as indicated for proteome 

sampling. However, 1 OD600 was sampled and PBS washing was not performed. Cell 

pellets were directly stored at -80°C until further processing.  

RNA isolation was performed using the Quick-RNA Fungal/Bacterial Miniprep Kit 

(Zymo Research # R2014). RNA concentration and purity were then quantified using 

a NanoDrop (Thermo Fisher). A total of 5 µg of RNA was then diluted in ddH2O for 

each sample and subjected to DNAse digestion using DNAse I (Roche # 

05952077103) and RNasin (Promega # N2511). RNA was then amplified with qPCR 

using the QuantiFast SYBR® Green RT-PCR Kit (Qiagen # 204156) and the following 

primers:  

qPCRrplRFw:  5’ - GGACACGACCATGATATTGG – 3’ 

qPCRrplRRev:  5’ – TCTGGTAGCTGCTTCTACTG – 3’ 

qPCRpunCFw:  5’ - GTTTCTGATTGGTGGTTATGG – 3’ 

qPCRpunCRev:  5’ - AGGGTAGATCGCGCCATTG – 3’ 

Levels of punC mRNA were normalised by the levels of rplR mRNA for each sample.  

Cloning of punC deletion strains (ΔpunC and punC-STOP) 

To generate the Control ΔpunC and PurAL75D ΔpunC strains, the kanamycin cassette 

of strain JW1651-1 ΔpunC was cured by transforming pCP20 using electroporation34. 

Colonies were picked and cultivated for 20 h in LB medium at 43°C. Strains were then 

streaked on LB agar with no antibiotics and incubated overnight at 43°C. Multiple 

colonies were then picked and streaked on LB agar with either kanamycin, carbenicillin 

or no antibiotics, and incubated at 37°C overnight. Colonies with no resistance against 

carbenicillin and kanamycin and visible on LB agar were picked for colony PCR of the 

punC gene. PCR amplicons were sent for sequencing and strains harbouring the FRT 

scars and absence of the kanamycin resistance cassette were cultivated and stored at 

-80°C for further editing using the CRISPR-based genome editing method as described 

above. 

Cloning of the Control - punC STOP and PurAL75D - punC STOP was performed using 

the same CREATE methodology as presented in Chapter 1 and 2. The non-edited 
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control strain and PurAL75D mutants were transformed with pTS55, which is identical to 

pTS40 but with a spectinomycin resistance cassette. The pTS55 plasmids were 

assembled using the same cloning method as for assembling pTS40 plasmids. 

Oligonucleotide sequences contained a punC protospacer (5’- 

AGAGAATATACATGCAACCT-3’) and a homology arm for the punC genomic region 

of E. coli BW25113 with STOP codons insertions at second residue and mutation to 

STOP codon at eleventh (after insertion, TGG→TGA) residue of the punC protein. 

Transformants were selected on LB agar plates with chloramphenicol, spectinomycin 

and aTc.  

Cloning or pTS40-p10X plasmids 

The plasmids pTS40-p10X variants were cloned by assembling multiple DNA 

sequences of various origins. The coding sequence of punC (spanning from native 

RBS to terminator; 1734156 bp to 1735523 bp of BW25113 genome) was amplified 

from the genome of E. coli BW25113 and subsequently inserted into pTS40 using IVA 

cloning35. Native RBS and terminators were respectively identified using RBS 

calculator36 and ARNold37. Terminator sequence TL3 was amplified from pTS41 and 

inserted downstream of the punC STOP codon in pTS40. Then, promoters were added 

upstream of the punC coding sequence using IVA cloning. RBS sequence BBa_0034 

was added in replacement of the punC native RBS.  

Agar dilution assays 

Refer to Chapter 2. Spot assays for ROS testing were done using M9 agar 

supplemented with liquid H2O2 (Sigma-Aldritch # H1009).  

Broth dilution assays 

Precultures in 4 mL LB were inoculated from glycerol stocks for 8 h at 37°C 220 RPM 

shaking and transferred to M9 medium for overnight incubation at 37°C and 220 RPM. 

M9 pre-cultures in exponential phase were used to inoculate 96-well plates at starting 

OD600 <0.05. Carbenicillin was added to the cultivation medium at concentration 25 

µg/mL when needed. 6-MP was also added at concentrations ranging from 6.25 µM to 

100 µM following a dilution gradient. Incubation was performed for 24 h at 37°C. 

Various plate readers were used (BioTek Epoch, and Tecan Infinite 200 Pro). 

Therefore, OD600 values were corrected based on former calibration experiments.   
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Supplements 

Strain 25 µM 6-MP Growth rate (h-1) 

Control - 0,52 ± 0,0021 

Control + 0,41 ± 0,027 

E. coli BW25113 WT - 0,49 ± 0,009 

E. coli BW25113 WT + 0,43 ± 0,012 

E. coli NCM3722 WT - 0,56 ± 0,014 

E. coli NCM3722 WT + 0,51 ± 0,03 

Table 1: Growth rates values as shown in Figure 6e 

BiGG Metabolite name BiGG Metabolite name 

23dhbzs 2,3-dihydroxybenzoylserine glc-D D-Glucose 

23dhmp 
(R)-2,3-Dihydroxy-3-

methylpentanoate 
gln-L L-Glutamine 

26dap-

LL 
LL-2,6-Diaminoheptanedioate glu-L L-Glutamate 

2ippm 2-Isopropylmaleate gly Glycine 

3c3hmp 
3-Carboxy-3-hydroxy-4-

methylpentanoate 
glyc3p Glycerol 3-phosphate 

3c4mop 3-Carboxy-4-methyl-2-oxopentanoate gmp GMP 

4abut 4-Aminobutanoate gsn Guanosine 

4hbz 4-Hydroxybenzoate gthox Oxidized glutathione 

5mta 5-Methylthioadenosine gthrd Reduced glutathione 

5mthf 5-Methyltetrahydrofolate gtp GTP 

accoa Acetyl-CoA gua Guanine 

acmum N-Acetylmuramate his-L L-Histidine 

acorn N2-Acetyl-L-ornithine histd L-Histidinol 

acptrc N-Acetylputrescine hom-L L-Homoserine 

acser O-Acetyl-L-serine hxan Hypoxanthine 

actp Acetyl phosphate idp IDP 
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ade Adenine imp IMP 

adn Adenosine ins Inosine 

adp ADP mal-L L-Malate 

ahcys S-Adenosyl-L-homocysteine met-L L-Methionine 

air 
5-amino-1-(5-phospho-D-

ribosyl)imidazole 
nad Nicotinamide adenine dinucleotide 

alaala D-Alanyl-D-alanine nadp 
Nicotinamide adenine dinucleotide 

phosphate 

ala-L L-Alanine nadph 
Nicotinamide adenine dinucleotide 

phosphate - reduced 

amet S-Adenosyl-L-methionine orot Orotate 

amp AMP pep Phosphoenolpyruvate 

arg-L L-Arginine phe-L L-Phenylalanine 

argsuc N(omega)-(L-Arginino)succinate pheme Protoheme 

asn-L L-Asparagine pnto-R (R)-Pantothenate 

asp-L L-Aspartate ppcoa Propanoyl-CoA 

atp ATP prbatp 1-(5-Phosphoribosyl)-ATP 

cbasp N-Carbamoyl-L-aspartate pro-L L-Proline 

cit Citrate pser-L O-Phospho-L-serine 

citr-L L-Citrulline pyam5p Pyridoxamine 5-phosphate 

cmp CMP pydam Pyridoxamine 

coa Coenzyme A ribflv Riboflavin 

csn Cytosine ru5p-D D-Ribulose 5-phosphate 

ctp CTP ser-L L-Serine 

cytd Cytidine sucarg N2-Succinyl-L-arginine 

dad-2 Deoxyadenosine succ Succinate 

dann 7,8-Diaminononanoate sucglu N2-Succinyl-L-glutamate 

dcamp Adenylosuccinate suchms O-Succinyl-L-homoserine 

dcmp dCMP trp-L L-Tryptophan 

dhap Dihydroxyacetone phosphate tyr-L L-Tyrosine 

dhor-S (S)-Dihydroorotate uacgam UDP-N-acetyl-D-glucosamine 

fad Flavin adenine dinucleotide oxidized udpg UDPglucose 

fdp D-Fructose 1,6-bisphosphate ump UMP 

fpram 
2-(Formamido)-N1-(5-phospho-D-

ribosyl)acetamidine 
urea Urea 

gbbtn gamma-butyrobetaine utp UTP 

gdp GDP val-L L-Valine 

  xtsn Xanthosine 

Table 2: Metabolite abbreviations used in this chapter.  
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Conclusion of the thesis 
 

The question asked at the beginning of this thesis was the following: Do mutations in 

metabolic genes of E. coli have a general impact on antibiotic resistance? 

Across this thesis, it seems clear that metabolic mutations do not have a general effect 

on antibiotic resistance. Instead, metabolism-mediated resistance tends to be specific 

to each antibiotic.  

The CRISPR library introduced in Chapter 1 has been very important for this thesis. 

Indeed, the thousands of metabolic mutants showed non-overlapping resistance 

phenotypes against either of carbenicillin or gentamicin in Chapter 2. The specificity of 

metabolic mutations was further demonstrated by showing that mutants resistant to 

gentamicin were not resistant to carbenicillin and vice-versa. Carbenicillin-resistant 

mutants were even sensitive to another β-lactam (meropenem). Most importantly, the 

metabolic mutations in the resistant mutants were shown to cause metabolic 

bottlenecks that are responsible for the observed resistance phenotype. 

As re-cloned resistant mutants were successfully proven to be resistant toward their 

respective antibiotics, the CRISPR screen results could be used with confidence to 

adopt more general conclusions. The screen notably informed that low and reduced 

fitness does not confer a general advantage against carbenicillin or gentamicin. This 

was further tested by using a slow-growth control mutant, and clearly exemplified by 

the high sensitivity of the carbenicillin resistant mutants against gentamicin despite 

their slow growth. Surely, slow growth did confer carbenicillin tolerance, hinting that 

both resistance and tolerance may involve different factors. Tolerance against 

gentamicin or other antibiotics was never tested which did not allow to explore this 

hypothesis further.  

Nevertheless, the specific metabolism-antibiotic link is of high interest since a multitude 

of E. coli clinical isolates were shown to have various metabolic bottlenecks. One of 

them, a UPEC strain (EC-249), has a de novo purine pathway metabolic bottleneck 

that conferred carbenicillin-sulbactam tolerance. However, EC-249 was unsuccessfully 

grown on agar medium, so its resistance could not be tested properly, indicating that 

the extrapolation of Chapter 2 results obtained from a laboratory E. coli strain 

(BW25113) to clinical E. coli strain was not trivial. Nevertheless, this study opens the 
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way to a myriad of possibilities for exploration of the role of metabolic bottlenecks in 

clinical bacterial isolates in antibiotic resistance.  

For example, libraries of clinical E. coli isolates with metabolic mutations and an 

implemented barcoding system could be generated. Pooling these clinical barcoded 

strains and subjecting them to antibiotic treatments might furnish an even better picture 

than what was shown in Chapter 2. Ideally, much more antibiotics should be used than 

just carbenicillin and gentamicin, and focus should be made toward antibiotics used in 

the clinic, like the last resort β-lactams meropenem and imipenem. It is accepted that 

in vitro and in vivo cultivation conditions are very different. Subjecting such library to a 

treatment in a gnotobiotic mice might also be very interesting, although new technical 

challenges may arise regarding the sampling of the strains and their identification.  

Future studies must also investigate the mechanistic link between specific metabolic 

bottleneck and the antibiotic they confer resistance to. Since metabolic bottlenecks 

provide low-level resistance, it may be technically challenging to show this link, as 

demonstrated in Chapter 3. It is very possible that most metabolic mutations confer an 

advantage because of undirect consequences in antibiotic transport towards their 

targets. This might explain the specificity of metabolic bottlenecks, since transport may 

differ between antibiotics of the same of different classes, as demonstrated clearly by 

the differences of resistance phenotypes between carbenicillin, meropenem, and 

gentamicin.  

As a conclusion, the author of this thesis thinks that the originally asked question was 

successfully answered and that this work provides exciting new opportunities to 

understand antibiotic resistance.  

 


