
Early Timing Exploration of Embedded

Software for Heterogeneous Platforms

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

M.Sc. Alessandro Cornaglia

aus Venedig/Italien

Tübingen

2022

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der

Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 16.07.2024

Dekan: Prof. Dr. Thilo Stehle

1. Berichterstatter/-in: Prof. Dr. Oliver Bringmann

2. Berichterstatter/-in: Prof. Dr.-Ing. Jeronimo Castrillon

iii

„ Those who can imagine anything, can create the impossible.“

Alan Turing

v

Abstract

Under growing tasks complexity and time-to-market pressures, modern embedded systems
are commonly characterized by large software applications that are collaboratively executed
on complex multiprocessing and heterogeneous computation platforms. Furthermore, func-
tional and non-functional requirements drive the design and development of such performance-
critical embedded systems. On the one hand, these powerful platforms offer high-computation
capabilities, but on the other hand, the complexity of their architectures limits the perfor-
mance analyzability of the complete system. Non-functional properties, such as the execu-
tion time, have to be assessed since the early design stages of a system. For this reason,
during the design space exploration activities, the designers and the engineers are commonly
interested in evaluating different hardware and software configurations for determining the
most suitable one for ensuring that the final implementation can satisfy the strict performance
requirements. This evaluation is usually conducted via virtual prototypes that rely on a tim-
ing simulator. The effectiveness of the evaluation depends on the speed and accuracy of the
underlying simulator. Therefore, a simulation methodology is essential for supporting the
early evaluation of multiple hardware and software configurations of a system.

This thesis proposes a novel simulation methodology that allows to rapidly and accurately
evaluate the performance of multiple configurations of an embedded system. The definition
of the simulation methodology requires facing multiple hard challenges that are common to
performance simulators. The proposed methodology is based on the program’s intermediate
representation that is internal to the compiler and it ensures a beneficial level of abstraction
for both the analysis and simulation stages. The intermediate representation is architecture-
independent and it allows evaluating multiple configurations in only one simulation. This
choice requires an appropriate mapping technique for matching the structures of a program
at the intermediate and the binary representations. Their structures may substantially differ
due to the effects of aggressive compiler optimizations that make a direct matching impos-
sible. For this reason, this thesis proposes an innovative two-phases algorithm for tackling
this hard problem. Relying on these mappings and on an appropriate technique for model-
ing the timing behavior of programs, accurate performance estimations can be produced via
fast simulations. Furthermore, the conducted experimental evaluation results show that the
simulation methodology can be applied for early evaluating the design of complex heteroge-
neous systems. Finally, the elevated simulation speed capabilities enable the definition of a
new co-simulation technique for evaluating the performance of embedded systems that are
developed directly on a model-driven environment such as the one provided by Simulink.

vii

Zusammenfassung

Unter wachsender Aufgabenkomplexität und Time-to-Market-Druck sind moderne eingebet-
tete Systeme üblicherweise durch große Softwareanwendungen gekennzeichnet, die kollabo-
rativ auf komplexen Multiprozessor- und heterogenen Rechenplattformen ausgeführt werden.
Darüber hinaus treiben funktionale und nicht-funktionale Anforderungen das Design und
die Entwicklung solcher leistungskritischen eingebetteten Systeme voran. Einerseits bieten
diese leistungsfähigen Plattformen hohe Rechenleistungen, andererseits schränkt die Kom-
plexität ihrer Architekturen die Analysierbarkeit der Performance des Gesamtsystems ein.
Nicht-funktionale Eigenschaften, wie zum Beispiel die Ausführungszeit, müssen bereits in
den frühen Entwurfsphasen eines Systems bewertet werden. Aus diesem Grund sind die Desi-
gner und Ingenieure während der Entwurfsraumuntersuchung in der Regel daran interessiert,
verschiedene Hardware- und Softwarekonfigurationen zu evaluieren, um die am besten ge-
eignete Konfiguration zu ermitteln, die sicherstellt, dass die endgültige Implementierung die
strengen Leistungsanforderungen erfüllen kann. Diese Evaluierung wird normalerweise über
virtuelle Prototypen durchgeführt, die auf einem Timing-Simulator basieren. Die Effektivi-
tät der Evaluierung hängt von der Geschwindigkeit und Genauigkeit des zugrunde liegenden
Simulators ab. Daher ist eine Simulationsmethodik unerlässlich, um die frühzeitige Evaluie-
rung mehrerer Hardware- und Softwarekonfigurationen eines Systems zu unterstützen.

In dieser Dissertation wird eine neuartige Simulationsmethodik vorgeschlagen, die es ermög-
licht, die Leistung mehrerer Konfigurationen eines eingebetteten Systems schnell und genau
zu bewerten. Die Definition der Simulationsmethodik erfordert die Bewältigung mehrerer
schwieriger Herausforderungen, die für Leistungssimulatoren üblich sind. Die vorgeschlage-
ne Methodik basiert auf der Zwischenrepräsentation des Programms, die intern im Compiler
ist und ein vorteilhaftes Abstraktionsniveau sowohl für die Analyse- als auch für die Simu-
lationsphase gewährleistet. Die Zwischendarstellung ist architekturunabhängig und erlaubt
es, mehrere Konfigurationen in nur einer Simulation zu evaluieren. Diese Wahl erfordert ein
geeignetes Mapping- Verfahren, um die Strukturen eines Programms in der Zwischendar-
stellung und der Binärdarstellung abzugleichen. Deren Strukturen können sich aufgrund der
Auswirkungen von aggressiven Compiler-Optimierungen, die einen direkten Abgleich un-
möglich machen, erheblich unterscheiden. Aus diesem Grund wird in dieser Dissertation ein
innovativer Zwei-Phasen-Algorithmus vorgeschlagen, um dieses schwierige Problem zu be-
wältigen. Basierend auf diesen Mappings und einer geeigneten Technik zur Modellierung des
Timing-Verhaltens von Programmen können durch schnelle Simulationen genaue Leistungs-
abschätzungen erstellt werden. Darüber hinaus zeigen die durchgeführten experimentellen

viii

Evaluierungsergebnisse, dass die Simulationsmethodik zur frühzeitigen Evaluierung des De-
signs komplexer heterogener Systeme eingesetzt werden kann. Schließlich ermöglichen die
erhöhten Simulationsgeschwindigkeiten die Definition einer neuen Co-Simulationstechnik
für die Bewertung der Leistungsfähigkeit eingebetteter Systeme, die direkt auf einer modell-
getriebenen Umgebung wie der von Simulink entwickelt werden.

ix

Acknowledgements
I would like to thank my advisors, Prof. Dr. Oliver Bringmann and Prof. Dr.-Ing. Jeronimo
Castrillon for their kindness and support in realizing this dissertation.

Furthermore, I would also like to express my sincere thanks to all the former colleagues at the
Department of Microelectronic System Design (SiM) with whom I shared a great working
experience at FZI Forschungszentrum Informatik in Karlsruhe. I am profoundly grateful
to Dr. Alexander Viehl and Dr. Sebastian Reiter for the support I received for achieving
my scientific results and their kindness. Among all the former colleagues, I can’t forget to
thank the wise Frederik Haxel and my darling officemate Leon Hielscher for their patience
in always listening to my crazy ideas and for their suffering in reviewing all my publications.

Finally, I would like to thank my lovely wife Giulia for her commitment and all her sacrifices
that made possible the dream that we are currently living.

xi

Contents

Abstract v

Zusammenfassung vii

Acknowledgements ix

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 3
1.3 Thesis Organization . 4
1.4 Related Publications . 5

2 Performance Exploration of HW/SW Co-Design 7
2.1 Design Challenges in MPSoC . 7

2.1.1 Programming Models . 8
2.1.2 Performance Analysis . 9

2.2 Performance Estimation via Host-Based Simulation 11
2.2.1 Workflow Concept . 12
2.2.2 Possible MPSoC-Oriented Improvements 13

2.3 Summary . 14

3 Background and Related Work 15
3.1 Embedded Systems . 15

3.1.1 System Design . 16
3.1.2 MATLAB Simulink . 16
3.1.3 Compilation Process . 19

3.2 The LLVM Compiler Infrastructure . 20
3.2.1 Static Compilation . 20
3.2.2 LLVM IR . 21
3.2.3 Dynamic Compilation . 22
3.2.4 Other Program Intermediate Representations 23

3.3 Timing Analysis . 24
3.3.1 Programs as Graphs . 25

xii

3.3.2 Timing Analysis Approaches Classification 29
3.3.3 Performance Estimations . 31

3.4 Simulation Approaches for Performance Estimation 32
3.4.1 Different Simulation Categories . 32
3.4.2 Control-Flow-Driven Host-Based Simulation 35
3.4.3 System Performance Considerations in Simulink 41

3.5 Summary . 42

4 Mapping IR to Binary Control-Flow Graphs 43
4.1 Problem Definition . 43

4.1.1 Program Structure Representation 44
4.1.2 LLVM Optimizations and Passes . 44

4.2 Relevant and Inspirational Mapping Approaches 46
4.2.1 Dominator Homomorphism . 46
4.2.2 Subgraph Matching Algorithm . 48
4.2.3 Other Approaches . 50

4.3 Fully-Automatic Subgraph Matching Algorithm 51
4.3.1 Tracing-Based Solution . 51
4.3.2 Limitations . 54

4.4 Two-Phases Algorithm . 55
4.4.1 Label Matching Algorithm . 56
4.4.2 Isomorphism Matching Algorithm 60

4.5 Summary . 66

5 Efficient Performance Estimation via IR-Level Host-Based Simulation 67
5.1 Sources of Timing Variation . 67
5.2 Context-Sensitive Timing Information . 69

5.2.1 The Concept of Context . 69
5.2.2 Implicit Modeling of the Hardware Timing Behavior 71

5.3 Simulation Methodology . 74
5.3.1 Interpretation-Based Context-Sensitive Timing Simulation 75
5.3.2 JIT-Based Context-Sensitive Timing Simulation 77
5.3.3 Early Performance Estimation of Heterogeneous MPSoC 80

5.4 Timing-Aware Simulink Simulation . 84
5.4.1 Code Generation . 85
5.4.2 Model Annotation . 87
5.4.3 Co-Simulation Methodology . 88

5.5 Summary . 91

6 Experimental Evaluation and Results 93
6.1 Evaluation Setup . 93
6.2 Simulation Accuracy . 95

6.2.1 LLVM IR to Binary CFGs Mapping 95
6.2.2 Context-Sensitive Timing Simulation 97
6.2.3 Early Evaluation of MPSoC . 101

6.3 Simulation Speed . 103
6.3.1 Interpretation-Based . 103
6.3.2 Just-In-Time Speedup . 105
6.3.3 Simulation Speed Comparison . 107
6.3.4 Parallel Evaluation Speedup . 108

6.4 Timing-Aware Simulink Simulation Effectiveness 110

xiii

6.4.1 Simulation Specification . 110
6.4.2 Timing-Aware Simulation Effects 111

6.5 Summary . 113

7 Conclusions and Future Research 115
7.1 Thesis Summary and Conclusions . 115
7.2 Future Work . 117

7.2.1 Improving Simulation Speed . 117
7.2.2 Adaptive Timing Model . 118
7.2.3 Multi-Core Support . 118

List of Abbreviations 121

List of Figures 123

List of Tables 125

References 129

xv

Dedicated to my father.

1

CHAPTER 1

Introduction

Nowadays, modern embedded and cyber-physical systems are widely spread across multiple
domains covering a copious range of heterogeneous applications that pervade everyday life.
Different, and sometimes conflicting, requirements drive the development of the hardware
platforms designed for efficiently executing such systems. In this context, non-functional
requirements are as important as the functional ones. Non-functional requirements describe
the expected behavior of a system considering specific non-functional characteristics. For
example, automotive, avionic, railways and medical performance-critical applications are
commonly subjected to strict timing requirements. Contrarily, power and energy constraints
are common requirements for devices powered by batteries like smartphones and IoT nodes.
Both the requirement types can be mixed in complex applications composed of multiple
functional units subjected to different levels of criticality.

The hardware manufacturers tend to support the development of new complex systems by
offering powerful hardware platforms that include multiple heterogeneous processing units
and so-called Multi-Processor System on Chip (MPSoC). Every processing unit is designed
and optimized for fulfilling specific tasks and objectives [91]. A first example consists of the
Infineon Tricore board [2]. This MPSoC is designed for safety-critical domains, where the
functional units of a complex application can be statically mapped to energy efficient or to
performance oriented cores. A different example consists in the ARM big.LITTLE platform
[93], whose concept is shown in Figure 1.1. Slower battery-saving processors (LITTLE) are
interconnected with more powerful but battery-intensive processors (big) in order to optimize
the application’s usage at run-time.

Unfortunately, the continuously growing complexity of the hardware mechanisms included
in modern processors, generally designed for improving the systems performance, reduces
instead the timing analyzability of the target systems [169]. This limitation is problematic
for the design exploration activities focused on the partitioning and mapping of the software
functional units to the available processing units in respect of the non-functional require-
ments. In order to support the design exploration activities, the definition of a methodology
is required for allowing a fast and accurate evaluation of the necessary design decisions.

2 Chapter 1. Introduction

"Demanding Tasks" "Always-On Tasks"

MPSoC

Cortex-A15

big

Cortex-A7

Interconnect

LITTLE

"Power" "Efficiency"

Figure 1.1 – ARM big.LITTLE processing concept: “Use the right processor for the right core”. The
ARM big.LITTLE heterogeneous processing combines a “LITTLE” energy saving core with a “big”
high-performance core for executing programs that dynamically switch the execution core depending
on the performance needs (figure adapted from [93]).

1.1 Motivation

In the embedded systems domain, it is a common practice that a complex system is initially
developed on a powerful development host machine. The host and the target platforms gen-
erally implement different hardware architectures. The differences between the architectures
imply that, during the development of the software program, some architecture-dependent
considerations about the target platform have to be taken into account. Furthermore, in in-
dustrial settings, manual coding activities tend to be reduced as much as possible. The source
code of an application is commonly automatically generated by relying on model driven de-
velopment tools and taking advantage of their ensured benefits [5]. Nevertheless, the porting
activities, necessary for making the software executable on the designated target platform,
are consequent to some initial assessment conducted on the host. Unfortunately, the dis-
crepancies between the development and execution environments make impossible a direct
evaluation of both the functional and non-functional properties of the target system on a host
machine. An effective evaluation can be conducted only on the target environment but this
is commonly too expensive in terms of resources and time. Furthermore, considering that
both the hardware resources included in a platform and the program’s input data influence
the run-time behavior of a system, it is unfeasible to evaluate all their possible combinations
directly on the target.

The established approach for overcoming the critical challenges due to the development of a
complex embedded system is the Electronic System Level (ESL) design [56]. The enhanced
probability of a successful implementation is ensured by adopting an appropriate level of
abstraction when concurrently developing hardware and software components. This level of
abstraction can be obtained by describing a system relying on one or multiple system level
design languages (SLDL) [141]. An example of SLDL is SystemC [121], a language that
allows to describe virtual prototypes for efficiently and accurately early evaluating the per-
formance of a system. The different SLDLs often use inaccurate or slow techniques [138, 28]
for inferring the performance of the software components that cause an undesired slowdown
for the complete process.

Simulators represent a possible solution for tackling this limitation and consequently for
enabling faster virtual prototype evaluations [20]. Multiple host-based simulations can be
executed for evaluating both the functional and non-functional aspects of a target system di-
rectly on the development environment. The simulation objectives consist of two conflicting
metrics that are simulation speed and simulation accuracy. Traditional cycle-accurate and
gate-level simulators ensure precise simulation results by in-depth modeling the target sys-
tem. Unfortunately, the complexity of the modern hardware architectures requires simulating
a massive number of events implying a drastic reduction of the simulation speed capabilities.

1.2. Contributions 3

Complex systems can be efficiently simulated only at a higher-level of abstraction. Even the
commonly utilized instruction set simulators (ISS) does not reach a sufficient level of ab-
straction for avoiding the introduction of undesired simulation slowdown when integrated in
system-level simulators.

An alternative and more suitable solution for producing the necessary performance estima-
tions consists in host-based simulation techniques. This kind of simulation overcomes the
slow speed capabilities of the traditional approaches by relying on the higher performance
achievable by executing a host-compiled version of the program on a fast development ma-
chine. Therefore, these simulators execute a software binary version that differs from the
one compiled for the target. This property ensures a substantial simulation speedup. The
simulation can rely on one of the multiple software representations, such as the source code,
its compiler intermediate representation or the host binary simulation code. Every represen-
tation shows a different level of abstraction. However, accurate results can be achieved only
by relying on an accurate mapping technique that matches the chosen simulation code rep-
resentation to the target binary machine code. This is a hard task because their structures
may substantially differ due to the different architecture implementations and aggressive op-
timizations that cause the compiler to produce highly different executables.

Due to the complexity of the problem, all the existing host-based simulation techniques show
some drawbacks. The simulators commonly suffer from slow simulation speed, inaccuracy
or scarce retargetability. With the ever evolving architectures of MPSoC platforms and their
complexity, it is required a new simulation methodology that allows to fast evaluate the per-
formance of a system, since the early design stage. This methodology has to rely on a suf-
ficient level of abstraction for supporting the fast evaluation of different implementations
defined by the design space exploration activities. At the same time, the chosen level of
abstraction has to be appropriate for producing accurate and significant results. It is desir-
able for such methodology to show an adequate level of automation and to support industrial
development environments, such as model driven development.

1.2 Contributions

In this thesis, it is proposed a novel simulation methodology designed for the fast and accu-
rate evaluation of embedded systems. The methodology addresses multiple open problems
common to the host-based simulation approaches. In particular, the specific contributions
proposed in the manuscript are as follows:

• Fully automatic LLVM IR to binary code matching - A novel approach, based on a
two-phases algorithm, is presented for accurately matching the structure of the inter-
mediate representation of a program to its corresponding target-compiled binary exe-
cutable. The approach is fully automatic and it even copes with aggressive compiler
optimizations without requiring any modification to the LLVM compiler or the need
of expert supervision. This approach succeeds in generating accurate mappings even
when the compilation of the source code applies aggressive compiler optimizations
that can substantially change the structure of a program. Timing simulations based on
replaying the measured traces for a set of given highly-optimized programs show an
average estimation error that is below 2%.

• Context-sensitive LLVM IR timing simulation - A new simulation methodology is pro-
posed for fast and accurately evaluating the performance of an embedded system. The
methodology defines a new workflow for executing context-sensitive timing simula-
tions based on the intermediate representation of the given source code. The simulation

4 Chapter 1. Introduction

methodology ensures to accurately estimate (average estimation error below 2%) the
performance of a given target system while showing elevated simulation speed capabil-
ities (average simulation speed slightly below 74 MIPS). The high-level of abstraction
lent by the program intermediate representations allows the possibility of evaluating
in parallel multiple configurations of a system in only one simulation. This property
ensures a significant beneficial speedup for the simulation speed capabilities (the sim-
ulation speed largely exceeded the value of 1,000 MIPS by evaluating four different
configurations in parallel). The possibility of simulating multiple target configurations
in parallel enables the additional definition of a technique for producing early estima-
tions about the execution of a heterogeneous system on an MPSoC platform.

• Timing-aware Simulink model co-simulation - The elevated simulation speed ensured
by the presented simulation methodology enables the definition of an additional sim-
ulation technique useful for analyzing complex systems that are designed in a model
driven way via MATLAB Simulink. The proposed co-simulation methodology en-
ables overcoming the Simulink simulation limitations due to the unrealistic lack of
architecture-dependent timing considerations. The enhancement of a model with ded-
icated components permits the co-simulation between Simulink and the LLVM IR
context-sensitive timing simulator. As a result, the co-simulation of a model in the
Simulink environment enables the system designers to natively evaluate the perfor-
mance of a system considering the timing effects due to the execution of the software
on a given target processor.

1.3 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2 - The chapter introduces the scope of this thesis and it presents the concept
of an ideal simulation technique for fast and accurately estimating the performance of
an embedded system in support of the design space exploration activities.

• Chapter 3 - The chapter initially describes multiple background aspects to consider for
timing analyzing an embedded system and consequently it presents the related works
on performance estimations produced via simulation.

• Chapter 4 - After describing the problem definition and its related work, the chapter
introduces the proposed two-phases algorithm for mapping LLVM IR to binary control
flow structures.

• Chapter 5 - The chapter introduces the proposed LLVM IR context-sensitive simu-
lation methodology and its extension for enabling the timing-aware co-simulation of
Simulink models.

• Chapter 6 - The chapter presents the overall results observed during the conducted
evaluation for estimating the accuracy and performance of the complete simulation
methodology, including the Simulink co-simulation.

• Chapter 7 - This final chapter concludes the thesis and it discusses the possible future
research directions.

1.4. Related Publications 5

1.4 Related Publications

The content and the concepts presented in this thesis are based on the following publications
of the author:

• Alessandro Cornaglia, Alexander Viehl, Oliver Bringmann, and Wolfgang Rosenstiel.
“SIMULTime: Context-Sensitive Timing Simulation on Intermediate Code Represen-
tation for Rapid Platform Explorations". In: Proceedings of the 24th Asia and South
Pacific Design Automation Conference. 2019.

• Alessandro Cornaglia, Md. Shakib Hasan, Alexander Viehl, Oliver Bringmann, and
Wolfgang Rosenstiel. “MODELTime: Fully Automated Timing Exploration of Simulink
Models for Embedded Processors”. In: AmE 2019-Automotive meets Electronics; 10th
GMM-Symposium, VDE. 2019.

• Alessandro Cornaglia, Md. Shakib Hasan, Alexander Viehl, Oliver Bringmann, and
Wolfgang Rosenstiel. “JIT-Based Context-Sensitive Timing Simulation for Efficient
Platform Exploration”. In: Proceedings of the 25th Asia and South Pacific Design
Automation Conference. IEEE, 2020.

• Alessandro Cornaglia, Alexander Viehl, and Oliver Bringmann. “Accurate LLVM IR
to Binary CFGs Mapping for Simulation of Optimized Embedded Software”. In: Em-
bedded Computer Systems: Architectures, Modeling, and Simulation: 21st Interna-
tional Conference, SAMOS 2021.

7

CHAPTER 2

Performance Exploration of HW/SW Co-Design

This chapter is intended to introduce the challenges that commonly arise during the design
exploration of partitioning mapping decisions of heterogeneous systems. An initial overview
of the design exploration process and its objectives supports the importance of the definition
of a methodology for assessing the performance estimations of a design iteration. The chapter
ends presenting the base ideas of the host-based simulation methodology that is discussed
later in the thesis and that allows producing fast and accurate timing estimations of a target
system.

2.1 Design Challenges in MPSoC

The shift to the adoption of MPSoC platforms poses many challenges for the system de-
signers [106]. One of the main challenges for the system designers consists in effectively
mapping the software functional units to the processors available in an MPSoC platform.
The designers’ goal is to define a mapping that ensures a high-performance implementation
in consideration of the different kinds of hardware resources. The mapping definition is un-
fortunately not trivial or immediate. In fact, the allocation decision has to consider both the
software and hardware properties in regards of the performance requirements. A given pro-
cessor in an MPSoC platform can result to be more efficient in executing a specific software
functional unit compared to the others available on the same chip. This mismatch is also
known as implementation gap [52]. An investigation is necessary for defining a mapping
that enables to benefit from the heterogeneous capabilities of the different types of cores in
an MPSoC. Typically, several design iterations are spent before obtaining a sufficient imple-
mentation that meets the performance requirements.

In order to reduce the number of design iterations required for identifying a valid mapping,
a systematic approach is desirable for its definition. An appropriate approach should pro-
duce accurate performance estimations for the given mappings by considering the execution
of a software module in a specific hardware architecture. As a consequence, a systematic
approach for supporting the design activities should provide three essential capabilities:

8 Chapter 2. Performance Exploration of HW/SW Co-Design

1. Generation of an analyzable model of the software functional units,

2. Generation of a hardware model that captures the performance features of all the het-
erogeneous cores in an MPSoC platform and,

3. Easy exploration of the performance estimations.

The main focus of this thesis is on the challenges due to the realization of these three essential
capabilities. In the thesis is discussed a methodology for the automatic evaluation of the per-
formance of a software functional unit executed on a given processor included in an MPSoC
platform. The consequent definition of a way for identifying the ideal mapping between the
software and hardware resources instead is out of the scope of this thesis.

2.1.1 Programming Models

One of the main challenges in MPSoC design consists in mapping the application software,
composed of multiple functional units, into the effective hardware implementation. The dif-
ferent available MPSoC platforms can be classified in two major classes that are symmetric
multi-processing (SMP) and asymmetric multi-processing (AMP).

The SMP platforms include identical processors that share a common view of the complete
system. The SMP platforms, commonly called multi-core platforms, are generally designed
for reducing the power consumption of a system. At the same time, the SMP suffers from
concurrency problems that are out of the scope of this thesis.

Differently from the SMP, the AMP platforms include loosely coupled heterogeneous proces-
sors (which may implement different ISAs) equipped with dedicated local memory resources.
Every processor in an AMP platform is designed for efficiently solving a specific kind of task.
The different processors in an AMP platform communicate with one of the large available
variety of shared mechanisms (e.g. shared memory, hardware FIFOs, signaling, etc.).

The choice of adopting an AMP platform implies the hard decision of mapping the mix of
software applications to the different heterogeneous processing units. The correct mapping
choice can be hard to identify becoming an issue for the system designers during the design
space exploration activities [105].

Synchronous Reactive AMP Systems

One of the most common and powerful paradigms in the heterogeneous systems domain is the
synchronous paradigm [33]. This paradigm relies on a periodic clock that synchronizes all the
connected system components. The kind of synchronization is also known as single-driver
rule and the global system behaves like a finite-state machine. Channels connect the different
components and the transmitted information cannot be buffered. At every tick, each block
checks the available inputs and consequently starts computing the eventual outputs. The
value of eventual inputs and outputs in the channels do not vary while a block is computing.

One of the main benefits of synchronous reactive systems is that the software components
can be hierarchically designed. In fact, those components that have to be executed on the
same processor can be grouped in single software function units. This allows the separate
compilation of the different software subsystems. Another important aspect of these kinds of
systems is that the performance behavior of every functional unit can be analyzed separately.
The analysis has to consider only the internal state of the designated processor due to the
software execution history.

2.1. Design Challenges in MPSoC 9

The content of this thesis is primarily focused on heterogeneous systems based on MPSoC
platforms and designed in respect of the synchronous paradigm. From here on, only syn-
chronous heterogeneous system designs are considered.

2.1.2 Performance Analysis

The design space exploration (DSE) phases for the deployment of an MPSoC-based system
commonly rely on the well-known Y-chart approach [80, 7, 78, 51]. This approach allows
performing a quantitative analysis of architectural designs, in which architectural design de-
cisions can be exercised. As shown in Figure 2.1, its application begins with two distinct
activities. These activities are intended to provide the specification of the software applica-
tion and the individuation of a suitable MPSoC platform. The software specification and a
model of the selected MPSoC are the inputs for a subsequent activity focused on generat-
ing a mapping that binds the software functional units to the architectural resources. The
mapping goal consists in maximizing the application performance by effectively distributing
the software functional units between the different processing units. Given a mapping, an
analysis tool is necessary for assessing the performance of the system’s configuration. The
performance results are essential for eventual further mapping iterations. In every iteration,
depending on the performance results, the designer can decide to modify the software appli-
cation, the MPSoC configuration or the mapping until a satisfactory design is found.

SW Application MPSoC

Mapping

Performance
Analysis

Performance
Numbers

Scope of this
thesis

Figure 2.1 – The Y-chart approach adopted in design space exploration for deploying MPSoC appli-
cations: Multiple iterations are performed for exploring different hardware/software configurations
and determining the most suitable mapping for the execution of the software functional units of a pro-
gram to the available heterogeneous processors included in an MPSoC platform (approach initially
defined in [80]. Accurate performance estimations represent the feedback that drives the iterations
of this exploration.

Requirements and Objectives

The Y-chart model approach motivates the necessity and the importance of a tool that allows
assessing the performance of a system in a cycle-approximate way. A simulator is commonly
used for profiling the exploration activities [79]. Usually, the simulator operates on a high
level of abstraction, as shown in Figure 2.2. A simulator allows the designer to easily modify
the configuration of an MPSoC or to evaluate a different hardware architecture. Furthermore,
a higher abstraction level helps in making the evaluation faster. The simulation objectives can
be either at the MPSoC level or at a single processing unit. Efficiency is consequently one
of the key requirements for a simulator. In fact, the faster an iteration can be performed the

10 Chapter 2. Performance Exploration of HW/SW Co-Design

Application
(Algorithmic,

Partitioning, etc.)

Target MPSoC
(Topology,

Components)

Micro-Architecture
(Caches, Policies,

Partitions Mapping, etc.)

Le
ve

l o
f A

bs
tra

ct
io

n
Lo

w
H

ig
h

Final DesignDesign Space Design Space

Specification & Design Constraints

Cycle-Approximate
Estimation

(System Level,
Analytical, etc.)

Cycle-Accurate
Evaluation

(RTL, ISS, etc.)
Implementation

Figure 2.2 – Design space exploration phases, abstractions and simulation objectives (figure edited
from [70]): Given an application composed of software functional units and a target MPSoC plat-
form, a simulator working at an appropriate level of abstraction is desirable for evaluating the perfor-
mance behavior of every single functional unit by considering their execution in one of the configured
cores and producing sufficiently accurate timing estimations.

more explorations can be evaluated. However, the simulation results have to be sufficiently
accurate for appropriately driving the design decisions. Furthermore, the post-simulation
visualization of the results is essential for their consequent analysis.

Ideal Solution

Accuracy and efficiency are essential requirements for any tool designed for producing per-
formance estimations in support of the design activities. An ideal solution should provide
cycle-accurate results in a very fast way. For example, in the software-in-the-loop simulation
scenario [175], it is expected a simulator to simulate the system faster than the amount of time
necessary for executing the program on the real target platform. Unfortunately, these two ob-
jectives are commonly in contrast. As described in Figure 2.3, several existing approaches
show that a trade-off between accuracy and simulation speed is inevitable. For example, reg-
ister transfer level (RTL) simulations achieve cycle-accurate results by considering in depth
information about the target architecture that causes a substantial slowdown. The slowdown
due to complex architectures makes this kind of simulations unfeasible for predicting the per-
formance of real-word applications. Instruction set simulators (ISS) instead can speed up the
simulation performance by slightly sacrificing the estimation accuracy. Still, the ISSs are not
suitable tools for evaluating a real-word application and supporting the design exploration.

Analytical models represent a faster alternative to classical performance estimation approaches
by ensuring several order of magnitude speedup. The speedup is ensured by modeling the
dynamic behavior of complex hardware mechanisms by static formulas that describe their av-
erage behavior. Unfortunately, the problem simplification introduces a significant inaccuracy
on the performance estimations. More accurate results can be achieved by high-level sim-
ulation techniques like the host-based approaches. Even for these kinds of approaches, the
accuracy’s improvement requires the consideration of more detailed information about the
target architecture, which causes undesired slowdown. Nevertheless, compared to the classic

2.2. Performance Estimation via Host-Based Simulation 11

RTL

Ac
cu

ra
cy

Speed

High-Level
Simulation

Ideal
Solution

ISS

Analitical

Figure 2.3 – Concept of ideal solution for performance analysis: It is desirable to produce accu-
rate performance estimations by executing fast simulations. Unfortunately, simulation accuracy and
simulation speed are two contrasting quantitative metrics that require the adoption of an inevitable
trade-off.

simulation approaches, both host-based simulations and analytical models can support the
analysis of a full and complex system.

In conclusion, an ideal approach should be able to provide at the same time an elevated level
of accuracy and fast simulation speed. These two simulation objectives are the focus of
the methodology that is described in this thesis. In fact, in the following sections, a novel
host-based technique is described for producing fast and accurate performance estimations
of embedded systems in support of the design decisions.

2.2 Performance Estimation via Host-Based Simulation

The scope of this thesis is to present a host-based simulation methodology that supports
the design exploration activities by producing fast and accurate timing estimations for the
execution time of a program considering its execution on a given configuration of a target
platform. The estimations have to consider a specific configuration of a given processor
(e.g. cache memories enabled or disabled) as well as the given input data that determines
the program’s execution path. In order to successfully fulfill its objectives, and as shown in
Figure 2.4, the methodology is subdivided in two distinct phases that are:

1. Timing analysis phase - The goal of this initial phase is the generation of a timing
model that describes the performance behavior of a given pair of hardware and software
configurations. A hardware configuration is composed of the definition of a given
target platform and of a description about the configuration of the hardware resources
included in it. Differently, a software configuration is composed of the source code of
a program (programmed in a high-level programming language like C or C++) and a
set of compiler optimizations to apply at compile-time for producing an efficient target
executable. The timing model is the result of a set of performance extraction activities
focused on describing the dynamic performance behavior of the software program in
consideration of a given input dataset and the hardware/software configuration.

12 Chapter 2. Performance Exploration of HW/SW Co-Design

2. Evaluation phase - This second phase is responsible for generating the necessary per-
formance estimations requested by the design activities. A specific host-based sim-
ulator is responsible for producing these estimations of the target system. Multiple
estimations can be quickly generated by executing the simulator with different pro-
gram’s input data. During its execution, the simulator updates the simulation results
by considering the information contained in the previously generated timing model.

Performance
Extraction

Hardware

Software

Dataset
Timing
Model

Configuration

Simulation
Performance
Estimation

Input
Data

Multiple EvaluationsTiming Analysis Once

Figure 2.4 – Proposed concept for the generation of performance estimations: Given a hardware and
software configuration, a timing model is generated only once. The timing model is consequently
utilized while executing multiple simulations for producing one performance estimation for every
different given input data.

One of the key aspects of the presented methodology is that, for a specific hardware/software
configuration, multiple performance estimations can be assessed by varying the program’s
input data while executing multiple fast simulations that rely on only one timing model. The
generation of a valid timing model is essential for producing accurate estimations. During its
generation, it is important to ideally consider all its possible different timing behaviors. At
the same time, a timing model is fixed for a specific configuration. A new timing model has
to be generated every time that a different configuration has to be explored.

2.2.1 Workflow Concept

The proposed two-phases methodology satisfies the requirements of the previously described
and commonly adopted Y-chart approach. The more detailed workflow represented in Fig-
ure 2.5 shows how the methodology can provide essential support for the design decisions.

Every time a new configuration has to be evaluated, the design exploration process defines
the parameters that categorize both the hardware and the software components. The hardware
description consists of a target configuration that describes the available hardware resources
in the target platform and their configuration. The software component identifies a specific
version of the source program and the selected compiler optimizations to apply during the
generation of the target executable.

The timing analysis phase starts with the compilation of the source code. This phase has to be
performed only once per hardware/software configuration. During the compilation process,
the given input program is optimized by applying all the compiler optimizations specified by
the software configuration. The compilation process produces two binaries as output. One
binary is the result of the cross-compilation for the target architecture and the other one is the
binary to be simulated. Depending on the simulator implementation, the two binaries may
coincide. The timing analysis phase continues by generating the necessary timing model for
the requested configuration. The timing model can be generated by measuring and analyzing
the dynamic behavior of the cross-compiled executable executed on the target platform. An

2.2. Performance Estimation via Host-Based Simulation 13

Timing
Model

Measurements

Performance
Estimation

Design Exploration

Software

Source
Code

Compiler
Optimizations

Hardware

Target
Processor

Target
Configuration

Compilation

Simulator

Host
Machine

Input
Data

Feedback

Figure 2.5 – High-level host-based simulation concept workflow: The flow starts with the definition
of both the hardware and software configurations that have to be explored. After the compilation
of the program, measurements are extracted directly from the target platform for generating a tim-
ing model. The timing model is consequently utilized by a host-based simulator for producing the
system’s performance estimation in consideration of the specific given input data.

extensive analysis can be conducted by considering an appropriate input data set that induces
the measurements to observe the possible different program’s behaviors.

Finally, the performance of the configured target system can be generated by running a simu-
lator in a fast host machine (e.g. a development machine). The simulator requires in input an
executable, a timing model and specific input data. Multiple performance estimations can be
produced by simulating the target system and varying the input data. The performance esti-
mations produced by the simulator represent the requested feedback for the design iteration.

2.2.2 Possible MPSoC-Oriented Improvements

The workflow previously described in Section 2.2.1 can be extended for providing better sup-
port for the design exploration activities focused on the generation of the software partition
mapping for MPSoC-based systems. In fact, the simulation idea presented in the workflow
in Figure 2.5 can be adapted for defining the concept shown in Figure 2.6. The adaption
requires the simulator to expect in input multiple timing models. As a consequence, multiple
timing models can be considered while simulating.

The possibility of considering multiple timing models in parallel requires a simulation strat-
egy based on a shared representation of the software program between the configurations.

14 Chapter 2. Performance Exploration of HW/SW Co-Design

Host
Machine

Simulator

Input
Data

Hardware/Software
Configuration X

Hardware/Software
Configuration Y

Hardware/Software
Configuration Z

Performance
Estimation Y

Performance
Estimation Z

Parallel Evaluation

Performance
Estimation X

Figure 2.6 – Parallel evaluation of multiple hardware configurations in only one simulation: Mul-
tiple hardware configurations can be analyzed in parallel if the simulator executes a software repre-
sentation that is shared between multiple hardware architectures and by considering different timing
models.

The consideration of multiple timing models opens two different simulation scenarios:

1. Parallel evaluation of multiple configurations - Simulating the same program and tak-
ing into consideration different timing models at the same time can allow the parallel
evaluation of different hardware/software configurations, like suggested in Figure 2.6.
This scenario can offer a valid support for the exploration activities focused on identi-
fying the most suitable processor, in a limited set of processing units, for executing a
software functional unit (not necessarily in the context of MPSoC design exploration).

2. Early evaluation of synchronous heterogeneous systems - Differently from the previous
scenario, the possibility of considering multiple timing models but accessing them
one per time depending on a fixed scheme (like the functional software units in a
synchronous heterogeneous systems) during a simulation represents the opportunity
for producing early performance estimations of a complete heterogeneous system.

2.3 Summary

This chapter presented the base concept of an ideal simulation solution for supporting the
performance assessment activities of the design space exploration of complex embedded
systems. The goal of an ideal simulator is to provide extremely accurate results in a very
fast way. Unfortunately, the simulation speed and the simulation accuracy are two contrast-
ing metrics. This limitation requires a solution to determine an adequate trade-off. For this
reason, in the second part of the chapter it has been proposed a high-level workflow for the
implementation of an efficient timing simulator. The workflow requires executing a timing
analysis phase only once. Thereafter, multiple performance estimations can be produced by
fast simulating the system and considering different input data sets. The workflow supports
the parallel evaluation of multiple configurations for ensuring a significant speedup in the
overall performance analysis stage.

15

CHAPTER 3

Background and Related Work

The initial scope of this chapter is to provide a set of concepts that are at the base of this the-
sis and consequently to present the most relevant related work. The chapter starts by giving
a general brief introduction about the embedded systems design and their implementation.
The implementation part focuses on the model-driven realization of embedded software via
MATLAB Simulink. Thereafter, some essential tools, components and concepts from the
LLVM Compiler Infrastructure are introduced. Follows a short overview about timing analy-
sis topics and related basic fundamentals. Finally, the chapter ends with a detailed overview
of the state of the art in performance estimation of embedded systems with a special focus on
approaches that produce timing estimations via simulation.

3.1 Embedded Systems

According to the definition given in [59], an embedded system is “an engineering artifact in-
volving computation that is subject to physical constraints”. Like other computing systems,
an embedded system is composed of software and hardware components that have to interact
with a specific environment. Furthermore, every embedded system interacts with both the
physical word and the target platform implementation. These interactions are ruled by con-
straints that drive the behavior of a system and that are commonly hidden to the final user.
For example, some of the implementation requirements define specific bounds for parameters
like processor execution frequency, power and others. Therefore, when developing an em-
bedded system, the definition of its design requires the consideration of multiple challenging
tasks. The tasks involve both the software and the hardware components. In fact, it is com-
mon for modern embedded systems to include a large amount of software that implements
complex algorithms. At the same time, both the functional and non-functional properties of
a system are influenced by the hardware architecture implemented by the selected target plat-
form where the software is executed. Therefore, both the two components have to be taken
into account in the design process for satisfying the imposed requirements and constraints.

16 Chapter 3. Background and Related Work

3.1.1 System Design

In general, the systems design is a process whose main purpose is to define and generate a
model that satisfies a given set of requirements. The process can be performed with differ-
ent levels of automation and it can be applied to hardware and software components. The
process’s output model consists in an abstract representation of a target system. Common
objectives of systems design are the realization of software programs that can be compiled as
well as hardware descriptions that can be utilized for synthesizing a new circuit.

In order to meet a set of given requirements, the process requires the execution of a certain
number of refinement iterations. A simplified representation of this design flow is shown
in Figure 2.1. More specifically, the goal of the embedded systems design is to define an
efficient solution that meets a given set of hardware and software requirements that describe
the operation modes of a system that is subject to the environment’s physical constraints.
Differently from other domains, these kinds of constraints impose the designers to consider
together the different hardware and software components.

The multiple iterations required by the system design activities have the goal of increasingly
optimizing and refining the finial system performance. More and more precise models are
considered after every iteration in the process. These models are essential for early evaluating
the design in respect of the given requirements. Relying on the results of these evaluations,
the process determines the implementation of an evaluation version of the system. This
version is consequently utilized for a more accurate evaluation and analysis of the actual
implementation.

As previously declared, the design steps and the consequent decisions required for deter-
mining a system’s version to be analyzed are out of the scope of this thesis. However, the
work presented in this thesis is focused in defining a simulation methodology that enables
the early evaluation of the performance of an embedded system. For this reason, this chap-
ter introduces the base concepts and components useful for its definition. In particular, the
chapter focuses on introducing previously proposed approaches for generating performance
estimations for the execution time of embedded systems. This requires presenting a technique
that is commonly utilized in the industrial setting for producing the source code of a system.
Thereafter, an overview is given about the standard compilation process for generating an
executable binary from an input source code.

3.1.2 MATLAB Simulink

Model-based development is common practice in the design of modern and complex embed-
ded systems [39]. The design of intelligent systems requires implementing more and more
complex functionalities and logics. Traditional design methodologies consist in deriving a
written text specification that describes the algorithms that the developers have to manually
implement. However, the growing complexity of the software requires to limit as much as
possible the hand coding activities of the programmers for ensuring a significant speedup of
the time to market by simplifying the validation process. In fact, model-based development
tools allow reducing the implementation problems by supporting the systematic transforma-
tion of high-level problem descriptions to software implementations. In model-based devel-
opment, models at different levels of abstractions can describe the software of a complex
system. The models are consequently automatically translated to programs that can be com-
piled for the target platforms. The different model’s components allow the reutilization of
well-structured and trusted code.

3.1. Embedded Systems 17

Requirements EvaluationDevelopment Simulation C / C++

Refinement

Figure 3.1 – Standard workflow for model-based development of software in MATLAB Simulink:
A system can be realized from the given requirements on a development machine via a model-based
environment. On the same machine, multiple functional simulations can be conducted for evaluating
the system at any phase of the development. Depending on the simulation results, multiple iterations
can be performed before to automatically generate the final program source code.

In this context, MATLAB Simulink [166] is a widely utilized tool, especially in the auto-
motive domain [42]. Simulink is an extension of MATLAB that offers a graphical modeling
environment for easy development of complex control applications abstracting from the tar-
get platform. One of the most attractive Simulink peculiarities is that it supports the verifi-
cation and validation of a system since the early design stages and before that the hardware
is available [46]. In fact, in addition to the development capabilities, Simulink offers the
possibility of evaluating and simulating complex control applications during the complete
development process. Early feedback can be obtained since the early design activities via
native simulations.

The standard activities flow for software development in Simulink are shown in Figure 3.1.
The process starts with the implementation of a model from specifications or requirements.
A model is composed of multiple nested and interconnected components that define the logic
of an application. In addition to the standard components, Simulink offers a wide set of
specialized toolboxes designed for solving specific tasks. At any of the development stages,
the system under development can be evaluated by simulating it. Simulink provides a user-
friendly graphic interface for visualizing and evaluating the events produced while simulat-
ing. After the evaluation, the process can be reiterated multiple times for further developing.
A Simulink model cannot be directly executed on a target platform, it requires first to be
translated to a source program and then to be compiled. The code generation, resulting from
the translation of the model to a high-level programming language concludes the process.
Multiple and different coders can be utilized for solving this task. Between them, the Em-
bedded Coder toolbox [164] allows producing C and C++ code in a highly configurable way.
The code appearance can be specified by modifying its target language compiler (TLC), mod-
ifiable also via a simple graphic interface. In contrast to other coders, the Embedded Coder
produces source code that is ready to be compiled for being executed on a target platform
and excluding the superfluous simulation code.

Simulation Limitations

The possibility of simulating the functional behavior of the system under development is one
of the most attractive features of Simulink. A system is generally modeled in interconnected
components and the interconnections determine their execution order. The components acti-
vation is driven by the synchronous reactive paradigm (SRP) [33]. The output generated from
a component is given in input to all the connected components. The activation order is fully
deterministic. A component can be activated only if the expected input is ready. If the output
of a component is connected with more than one consequent component, the execution order
of these is statically determined with a priority-based scheduler.

18 Chapter 3. Background and Related Work

A model is commonly composed of interconnected software and hardware components as
shown in Figure3.2. The first ones define the behavior of a controller. The controller (e.g.
the software executed by the ECU of a car) has to take actions depending on the input values
generated from the plant (e.g. mix of sensors that sample the real word). The plant is formed
of only hardware components. These two component types require to be simulated with dif-
ferent time representations. The nature of the plant components forces them to be simulated
in continuous time. The controller is updated in discrete time instead.

Unfortunately, the Simulink models are purely functional. The simulation overlooks the
timing effects due to the execution of the controller application on a target platform. In fact,
the internal computation of every block in the plant component is performed in zero time and
the outputs are provided to the connected inputs instantly. The blocks in the controller update
their output with a fixed delay (logical time) expressed in simulation steps. This simulation
paradigm is not realistic because the execution time of the software depends on both the
target platform where it is executed and on the input data that determines the visited control
flow path. The Simulink simulations lack in timing considerations about the execution time
of the software on a specific target platform.

ControllerPlant

Continuous Time Discrete Time

Figure 3.2 – Simulink system components and simulation time representations concept: A Simulink
model is commonly structured in hierarchically interconnected components that belong to one of two
possible subsystems that interact with external sensors. The plant is the subsystem that implements
the physical world and it is sampled by sensors. The controller is the subsystem that implements the
software part of a system and it is designed to process the data that is generated by the input sensors.
The plant, for its nature, is simulated in continuous time. Differently, the controller is iteratively
activated and it is simulated in discrete time.

3.1. Embedded Systems 19

3.1.3 Compilation Process

Programs are commonly coded in a high-level programming language that ensures an ade-
quate level of abstraction from the target architecture. This software representation cannot
be directly executed on a target platform. A compiler can be used for translating a given
program into semantically equivalent executable machine code. The steps executed during
the compilation process are shown in Figure 3.3. A compiler is designated for translating the
source code to relocatable machine code. An assembler is consequently required for generat-
ing the target assembly code from the machine code. Finally, the designated linker produces
the expected target machine code by linking together the target assembly with eventual ex-
ternal libraries and other relocatable object files. The complete compilation process is called
cross-compilation if the program is compiled on a different host architecture.

Compiler Assembler Linker

Source
Code

Relocatable
Machine

Code

Target
Assembly

Target
Machine

Code

Libraries and
Relocatable Object Files

Figure 3.3 – Standard compilation stages and outputs (edited from [3]): The common process for
compiling the given source code of a program requires the execution of three consequent stages. A
compiler initially produces the relocatable machine code for the given source code. Consequently,
an assembler generates the target assembly code that is finally linked by the linker with eventual
libraries for obtaining the requested target machine code.

On request, a compiler can optimize the structure of a program. Two common optimization
objectives in the embedded systems domain are: code size reduction and improvement of
the instruction level parallelism (ILP). A compiler achieves the second objective optimizing
the code with considerations on the available hardware resources in the target architecture.
Improving the ILP requires the modification of a program’s structure for ensuring an effi-
cient utilization of the hardware resources. In general, the compilation activities change the
original structure of a program.

The preponderance of the different available compilers shares a common structure composed
of consequent phases [3]. As shown in Figure 3.4, the compilation phases can be grouped in
three main categories:

1. Analysis - Phases that are responsible for generating an intermediate representation
(IR) which is expected from the synthesis stages. The IR generation requires parsing
and verifying the correctness of the given input program.

2. Machine-independent optimization - Optional phases focused on optimizing the IR
structure for allowing the consequent phases to generate a better executable.

3. Synthesis - Code generation phases that translate the IR into target specific executable
code.

These three phases are commonly called: front end, middle end and back end. Differently
from the front end and middle end, that are always present in a compiler, the middle end is
optional.

20 Chapter 3. Background and Related Work

Front End

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer
Analysis:

IR Generator

Middle End
Architecture
Independent

Optimizer

Machine-Independent
Optimization:

Back End

Architecture
Dependent
Optimizer

Synthesis:

Character Stream

Code Generator Target
Machine

Code

Intermediate
Representation

(IR)

Optimized IR

Figure 3.4 – Detailed workflow of the standard compilation phases (edited from [3]): A standard
three-stage compiler produces the requested target binary executable by initially translating the given
source code to an intermediate representation and optimizing it. Commonly, the front end is respon-
sible for the translation, the middle end performs the architecture-independent optimizations and
the back-end concludes the compilation by applying the architecture-dependent optimizations and
producing the executable.

3.2 The LLVM Compiler Infrastructure

The LLVM Compiler Infrastructure [87] provides a wide set of tools for analysis and both
static and dynamic compilation of programs. The compiler is open source, it is supported by
a conspicuous number of contributors and it is widely utilized across academic, research and
industrial projects. It is organized in a modern object-oriented and extendable framework of
libraries that supports many different target architectures.

3.2.1 Static Compilation

The LLVM project implements a standard three-stage compiler. Consequent invocations to
the available tools allow an efficient compilation of a given program as shown in Figure 3.5.
The front-end, called clang, performs all the necessary steps for translating the given source
code (originally only supported C and C++ programs) into an intermediate representation
(IR). The LLVM IR is also called bitcode and it is internal to the compiler. The bitcode
consists in an architecture independent instruction set (similar to assembly) structured in
modules and its instructions respect the single static assignment (SSA) form [139]. The
compiler bases most of the optimizations on this software representation. The optimizations
are applied by executing the necessary middle-end passes. The middle-end, or optimizer, is
called opt and it can be chained for applying consecutive optimizations at different levels
[158]. Multiple bitcode modules can be linked together with the llvm-link tool. The
compilation, or cross-compilation, terminates with the architecture-dependent optimizations
performed by llc, the back-end. The last action performed by llc consists in lowering the
program representation internal to the compiler to machine binary code.

3.2. The LLVM Compiler Infrastructure 21

Back End

Middle End

Front End

C / C++
clang llvm-link

IR

opt

llc Binaries
(ARM, x86, etc.)

Architecture Independent

Optimized IR

Architecture Dependent

External
IR Modules

Optimizations
Passes

Figure 3.5 – Static LLVM compilation tools and workflow: The LLVM Compiler Infrastructure
implements a standard three-stage compiler. The compilation starts by compiling the source code
with clang and producing the corresponding bitcode. The bitcode is consequently optimized via
opt applying architecture-independent optimizations at the IR level. Finally, llc optimizes the IR
code by applying the necessary architecture-dependent optimizations and producing the requested
binary executable.

3.2.2 LLVM IR

The bitcode represents the cornerstone of the LLVM compiler. The different tools of the
framework rely on this intermediate representation for optimizing or analyzing a given input
program. The bitcode can be generated via clang, if a program is given in input, or it can be
directly hand coded by following a well-defined instruction set. An example of the bitcode
generated from the simple C program listed in Listing3.1 is shown in Listing3.2.

Listing 3.1 – A simple example of a C program.

1 int globalVar = 0;
2

3 int main() {
4 const int MAX_VAL = 100;
5 int incr = 1;
6

7 while (globalVar < MAX_VAL) {
8 globalVar += incr;
9 }

10 return 0;
11 }

Listing 3.2 – Structure of the bitcode of a simple program.

1 ; // Module
2 source_filename = "simple_program.c"
3

4 ; // Global Data
5 @globalVar = global i32 0, align 4
6

7 ; // Function
8 define i32 @main() {
9 ; // Basic blocks

10 entry:
11 br label %while.cond ; // Terminator

22 Chapter 3. Background and Related Work

12 while.cond:
13 ; // Instructions
14 %tmp = load i32, i32* @globalVar, align 4
15 %cmp = icmp slt i32 %tmp, 100
16 br i1 %cmp, label %while.body, label %while.end
17 while.body:
18 %tmp1 = load i32, i32* @globalVar, align 4
19 %add = add nsw i32 %tmp1, 1
20 store i32 %add, i32* @globalVar, align 4
21 br label %while.cond
22 while.end:
23 ret i32 0
24 }
25

26 ; // Architecture dependent information for llc
27 target datalayout = "..."
28 target triple = "..."

The LLVM IR code is structured in modules and every module is identified by a name that
typically corresponds to the name of the source file. The structure of a module follows a fixed
hierarchical scheme. If the program defines global variables, the global data information is
placed in the upper part of the module. Every module contains at least one function for
reflecting the original structure of the functions in the source code. Every function contains
at least one basic block identified by a label and consisting in one or more instructions. The
instructions are architecture independent but they resemble tradition assembly instructions.
The basic block instructions can follow eventual PHI instructions that can appear only at the
beginning. The last instruction always consists of a basic block terminator. Every module
ends with some metadata containing architecture dependent information useful during the
back-end activities.

Multiple passes can be executed via opt for optimizing or analyzing the bitcode. Addi-
tional custom passes can be easily generated in addition to the ones provided by the LLVM
framework. Every pass can work on different levels (module, basic blocks or instructions)
and eventually can modify the bitcode or the metadata information. This possibility makes
straightforward the retargeting of the bitcode to different architectures from the one specified
at the beginning of the compilation process.

3.2.3 Dynamic Compilation

In addition to the classic static compilation, the LLVM Compiler Infrastructure allows the
dynamic compilation of programs. This capability is enabled by the lli tool [160]. In fact,
this tool can execute directly the bitcode. Unfortunately, lli is not an emulator and it cannot
execute LLVM IR code produced for a different architecture. This limitation can be tackled
by retargeting the architecture dependent metadata information contained in an IR module.
This can be easily achieved by implementing an appropriate modification pass for the opt
tool.

Interpretation

The lli tool offers two different dynamic compilation modes. The first one is based on
the interpretation of the bitcode. The interpretation is the simplest but slower mechanism
of dynamic compilation. The bitcode given in input is compiled instruction per instruction,
introducing a significant slowdown in the compilation process. The steps for interpreting a
program are represented in the upper part of Figure 3.6. Initially, the module containing the
entry function is loaded and other modules can be loaded later on during the execution, only

3.2. The LLVM Compiler Infrastructure 23

Load Module Fetch
Instruction

Compile
Instruction Execute

IR

Load Module Compile
Module Execute

IR

New Module?

New Module?

Interpreter:

Just-In-Time:

Figure 3.6 – Interpretation and Just-In-Time execution of LLVM IR: The LLVM Compiler Infras-
tructure offers two different kinds of dynamic compilation. The first possibility consists of a simple
but slow interpreter. Differently, the second possibility of dynamic compilation relies on a fast JIT-
compilation technique.

if requested. The interpretation performs repeatedly the following operations until the end of
the program: fetch the next bitcode instruction, compile the instruction to binary code for its
execution on the hosting machine, and execute the generated binary code.

The simplicity of the interpretation mechanism makes easier assessing the compilation state
during the execution. Eventual extensions can be straightforward implemented. At the
same time, the simplicity represents the interpretation drawback. The bitcode instructions
are fetched and compiled individually. No instruction caching mechanisms are considered
determining redundant compiling operations if the same instructions are executed multiple
times.

Just-In-Time Compilation

The second compilation mode supported by lli relies on the Just-In-Time (JIT) compiler.
Compared with the interpretation, the JIT compiler ensures a substantial speedup during the
compilation process [18]. Higher performance can be achieved by disabling the possibility
of lazy compilation. As shown in the lower part of Figure 3.6, the speedup is ensured by
providing a caching mechanism for the compiled modules. Every module in a program, that
has to be executed, is compiled only once and on request. A module compilation implies
the compilation of all its instructions. Differently from the interpretation, every compiled
instruction will be re-utilized in case of successive executions.

The JIT compilation introduces a slowdown in the program execution cost if compared with
the native binary execution. However, the slowdown is minimal. The slowdown effects are
minimal when executing large programs. Conversely to the interpretation, the JIT execution
mode is particularly efficient when the execution of a program consists of multiple loops.

3.2.4 Other Program Intermediate Representations

The LLVM Compiler Infrastructure utilizes two further internal intermediate representations
during the compilation process. These representations are architecture dependent and they
support the back end activities of llc. The two representations are:

1. Machine IR (MIR) [159] - Architecture specific IR resulting from the translation of the
bitcode given in input to the back end. This IR is utilized by llc for applying the
necessary architecture-dependent optimizations.

24 Chapter 3. Background and Related Work

2. Machine Code (MC) [161] - Code representation for an object file that is similar to the
binary representation. It does not contain high-level information commonly stored in
the bitcode or in the MIR. The MC code is derived from the MIR and it represents the
last representation of the program before the generation of the binary code.

The structure of an MIR module resembles the structure of an IR module, as the one previ-
ously showed in Listing 3.2. In addition, it also contains a copy of the original bitcode from
which it has been generated. At the same time, compared to the bitcode, the MIR structure
is closer to the binary representation. In fact, the MIR includes most of the effects caused
by the architecture-dependent optimizations. The final MIR module includes all the effects
of the architecture-dependent optimizations applied via opt from llc, including the ones
that change the program structure [158]. Therefore, an MIR module includes the effects
of aggressive loop optimizations such as loop unrolling, loop-invariant code motion, loop
inversion, loop fusion and others.

During the final compilation phases, for every function in the MIR module, the MIR basic
blocks are sequentially translated in order into LLVM MC instructions. The structure of the
MC code is very close to the structure of the target assembly that is linked for producing the
target machine code (see Figure 3.3).

3.3 Timing Analysis

The execution time of a program is a quantitative non-functional property. A quantitative
property of an embedded system is a property that can be measured. Other examples of
quantitative properties are: power consumption, reaction time, system’s weight, and others.
The analysis of any quantitative property requires modeling both the software program and
the hardware resources included in the target platform. Therefore, the execution time ET of
a program P can be modeled by a function f that respects the following equation [89]:

ETP = f (P, i, w) (3.1)

Where i represents the program’s input and w the state of the stateful hardware resources
in the target platform (such as the contents of the cache memories) before the execution of
the program’s first instruction. Unfortunately, the definition or identification of the function
f is a hard problem [178]. This problem can be solved only by using a restricted form of
programming that ensures the program termination for any given input data (e.g. avoiding
recursion, fixing the loop bounds, and others).

The formula in Equation 3.1 allows defining some interesting timing properties of a program.
For a given program, different combinations of the values of the two parameters i and w
determine the frequency distribution of execution time values represented in Figure 3.7. For
some domain-specific applications, it is requested to determine the best-case or the worst-
case execution time (respectively BCET and WCET). In particular, the WCET is a mandatory
objective in the verification of safety critical-systems. For example, this is explicitly required
by both the DO-178B/C avionic verification guidelines [61] and the ISO 26262 standard for
the development of functional-safety vehicles [120]. Determining the WCET value for a
program P can be formalized as follows:

WCETP = f (P, imax, wmax) (3.2)

Unfortunately, the problem space is too large and it is not trivial to identify the program
input imax and the initial hardware state wmax that determine the WCET for the program P.
Measurements can lead in determining only the maximal observed execution time (MOET).

3.3. Timing Analysis 25

Measured Execution Time

Minimal Observed
Execution Time

Possible Execution Time

BCET

Maximal Observed
Execution Time

WCET

D
is

tri
bu

tio
n

of
 E

xe
cu

tio
n

Ti
m

es

Execution
Time

Upper Time
 Bounding

Figure 3.7 – Interesting timing properties of a program (edited from [178]): Considering different
input values and initial hardware resources states it is possible to observe different execution times
for the execution of a program. Depending on the analysis goals, different bounds for the execution
of a program can be assessed.

The MOET can differ from the actual WCET. It is not feasible to measure the execution time
of a program for all the possible combinations, the problem space is too large to be explored.
Therefore, in the domains where the WCET is required, a tight upper bound is used instead.
The scope of the WCET analysis tools consists in reducing as much as possible the difference
between the produced upper bound and the actual WCET.

3.3.1 Programs as Graphs

The timing analysis activities are often applied to a convenient abstract representation of the
source code. In a similar way as it is done internally by the compilers, the source code can be
represented as a graph. The graph represents the control flow between different segments of
code. All the different program representations that are involved in the compilation process,
from the source to the binary code, can be represented as a graph.

Basic Block

A basic block is a sequence of consecutive program instructions that are always executed
in order. The execution of a basic block starts from its first instruction and it ends after the
execution of the last instruction. There is no possibility of halting, jumping out or terminating
before that all the instructions are executed. In the same way, there is no possibility of
branching inside a basic block. The last instruction of a basic block always consists of a
terminator instruction that can determine a termination or a branch. When representing the
program as a graph, the basic blocks are considered as the graph’s nodes.

There exist some architectural specific exceptions for the given definition of basic block.
For example, the full ARMv7 ISAs supports the utilization of conditional execution instruc-
tions [58]. In this specific case, the scope of conditional execution instructions consists in
reducing the number of branch instructions in a binary program for improving the run-time
performance of a system by reducing the requirement of a large and accurate branch pre-
dictor. However, these exceptions are out of the scope of this thesis and they will not be
considered.

26 Chapter 3. Background and Related Work

Edges

The complete execution of a program requires visiting multiple basic blocks. The program’s
execution flow accesses a specific basic block depending on the terminator instruction of
the last executed basic block. Conditional and unconditional branch instructions determine
the transfer of control to one of the possible successors of a basic block. In a graph, this
information can be represented as directed edges between the nodes. Therefore, a direct edge
from a node nx to a node ny can be expressed as (nx, ny). In this case, node nx is the tail
of the edge and node ny is its head. The number of incoming heads to a vertex (or node)
determines the vertex in-degree. In the same way, the number of outgoing tails determines
the vertex out-degree.

The edges of a directed graph can be classified in four types performing a depth-first search
[123]. Annotating the nodes during the search with the time of discovery tx, it is possible to
define four types of edges as represented in Figure 3.8:

1. Tree edges: Edges that describe the relation between a node a and one of its direct
successors b. In this case, ta < tb.

2. Back edges: Edges that connect a node e to one of its ancestors a. Also a self-loop is
considered a back edge. In this case, te > ta.

3. Forward edges: Non-tree edges that connect a node c to a descendant e node. These
edges lead from high to low nodes. In this case: te > tc.

4. Cross edges: Edges that are not part of any of the previous types. In particular, these
kinds of edges connect one node c to a node e that belongs to a different depth-first
tree. In this case: te < tc.

From now on, as already graphically represented in Figure 3.8, dashed edges in graphs will
represent back edges of directed graphs.

A

B C

D

E

Tree Edge
Back Edge
Forward Edge
Cross Edge

Figure 3.8 – Classification of the edges in directed graphs: The edges of a directed graph can be of
four different types. For the purposes of this thesis, the most relevant two are the tree and back edges.
These edges are useful in the analysis of loops and control-flow paths.

Paths

A sequence of edges that connects consecutive nodes identifies a path of edges. Considering
a certain number of direct consecutive nodes n0 → n1 → ...→ nn, the path P identified by
their edges can be expressed as Pn0→nn = {(n0, n1), ..., (nn−1, nn)}. Consequently, consid-
ering the directed graph in Figure 3.8, the path from node B to node E can be expressed as:
PnB→nE = {(nB, nD), (nD, nE)}.

3.3. Timing Analysis 27

Control Flow Graph

A control flow graph (CFG) is a common way utilized for representing the control flow of a
function. Given a specific function F of a program, its CFG can be defined with the following
equation:

CFGF = (N, E) (3.3)

Where the set of nodes N is composed of the basic blocks in function F, and the set of edges
in E describes the flow of control between the basic blocks.

Every CFG has a unique entry node that represents the initial basic block that is executed
when the function owner is called. It is assumed that a CFG is a connected graph where
every node can be reached starting from the entry node. Non-connected nodes are commonly
removed during compilation when executing dead code elimination passes. Finally, it is
possible to assume that every CFG has a unique exit node. This property can be ensured by
simply adding a synthetic node that has to be reachable from all the nodes whose represented
basic block ends with a function termination instruction.

The CFG can be considered at all the different levels of abstraction of a program. In fact,
the definition in Equation 3.3 is applicable in the same way to the source code, to any of
its intermediate representations or to the binary machine code. An example is given in Fig-
ure 3.9, the LLVM IR CFG representation of the function listed in Figure 3.9(a) is shown in
Figure 3.9(b), where the nodes are identified by the basic block labels.

void someFunction(...) {
 while (...) {
 if (...) {
 ... // Do something
 }
 else {
 if(...) {
 ... // Do something
 } // else
 else {
 ... // Do something
 } // different
 }
 }
}

(a) Example function source code.

if.end

entry

if.else.1

if.else.2if.then.2

if.then.1

while.end

while.body

start

exit

(b) LLVM IR CFG for the given example program.

Figure 3.9 – Example program source code and relative LLVM IR CFG: The compilation of the
source code for the function listed in (a) with the LLVM compiler produces a bitcode whose IR
CFG structure is shown in (b). Every CFG is composed of nodes connected by directed edges that
represent respectively the basic blocks and their connections. The structure between the different
CFG representations may vary due to the effects of the compiler optimizations.

Dominator Relation

In a given CFG, a node nX dominates a node nY if all the paths PnE→nY , from the entry node
nE to nY contain node nX. In other words, node nX dominates node nY if:

nX ∈ P | ∀ P ∈ {PnE→nY} (3.4)

The dominator relation properties of a CFG are commonly preserved during the compilation
phases of a program and they can be utilized for further analysis activities [130]. For this

28 Chapter 3. Background and Related Work

B

C D

E

F

A
A

B

C E D

F

Figure 3.10 – Dominator tree of a control flow graph: The dominator tree on the right side can be
utilized for identifying the back edge (nE, nB) of the CFG represented on the left side. Furthermore,
all the ancestor nodes of a given node in the dominator tree dominate the node also in the CFG.
An interesting property of the dominator relation is that it is propagated through all the different
compilation phases.

specific purpose, the dominator relation can be expressed as a directed graph like the domi-
nator tree shown in Figure 3.10. For example, the relations in a dominator tree can be helpful
in identifying the back edges of a CFG. In fact, an edge (nX, nY) in a CFG is a back edge if
node nY dominates node nX in the dominator tree.

Call Graph

Another significant graph for the analysis of a program is represented by its call graph. A
call graph is a graph that connects calling basic blocks (basic blocks that contains a function
call instruction) to the entry basic block of the called function. The edges of a call graph are
shown if Figure 3.11. The definition of call graph is essential for introducing the consequent
concept of interprocedural CFG.

B

C D

E

F

AA

B

D

C

Function X
Function Y

call

return

CFG Edges

Call Graph
Edges

Figure 3.11 – Interprocedural control flow graph: Graph that describes the complete control-flow of
a program by connecting the different CFGs with edges that represent the program’s call graph.

3.3. Timing Analysis 29

Interprocedural Control Flow Graph

The interprocedural control flow graph (ICFG) is a directed graph that describes the complete
control flow of a program [75]. In contrast to the definition of CFG, an ICFG considers the
structure of multiple functions of a program. The graph of an ICFG can be considered as a
graph of interconnected CFGs. The kind of edges that connect two CFGs, due to a function
call or return instruction, describes the call graph of a program. An example of an ICFG is
shown in Figure 3.11.

3.3.2 Timing Analysis Approaches Classification

The large majority of the available approaches for timing analysis of programs belongs to one
of the following two classes: static or measurements-based methods [178]. The former class
of approaches requires an in-depth description of the target architecture for the generation
of an accurate model of the target processor. The approaches in the latter class instead tries
to tackle the complexity of the static modeling by relying on mere measurements extracted
directly from the target. All the approaches in both the classes can be further classified
depending on aspects like automation, generality, applicability and others.

In general, the implementation of a timing analysis tool follows a standard scheme based
on consequent steps. The common steps performed by a timing analysis tool and their con-
nections is shown in Figure 3.12. The goal of the first step executed by a timing analysis
tool usually consists in reconstructing the program ICFG for a given architecture-dependent
binary executable. In the next step, this information is consequently processed for extracting
all the different CFGs in the program and its flow information. This is possible by consid-
ering the target ISA semantic. At this point, the first timing considerations for parts of the
program can be made by relying on a given target processor model. The model describes the
timing behavior of all the physical resources included in the target processor and it can be
equally generated via static analysis or deduced from measurements. The local estimations
are finally utilized for computing a global estimation for the execution time of the complete
program depending on its ICFG. This estimation can eventually consider a given input data
for producing a timing estimation for a specific control-flow path in the ICFG. At the end of
the process, a timing analysis tool offers the possibility of visualizing the computed results.

The way of producing of deducing a timing model for the target processor determines to
which classification class belongs the approach. For both the classification classes, hereafter
are summarized some of the key aspects intrinsic to their available timing analysis tools.

CFG
Reconstructor

Control-Flow
Analysis

Target
Processor
Analysis

Timing
Computation

Results
Visualization

Binary
Program

CFG and
Flow Information

Target
Processor
Model

Local
Estimations

Input
Data

ISA
Semantic

Global
Estimations

Figure 3.12 – Common steps performed by a timing analysis tool (edited from [178]): Both the static
and measurements-based timing analysis tools performs a similar sequence of steps for computing
their estimations. A program is initially analyzed for extracting the information contained in its
ICFG. Relying on a timing model of the target processor and on the control-information, the tool
compute an estimation for the execution time of the complete program or part of it. A timing analysis
tool always shows the computed estimation at its termination.

30 Chapter 3. Background and Related Work

Static Analysis

Static method approaches do not execute the software on the target platform or in a simu-
lator. Instead, they require the realization of an accurate and in-depth model of the target
architecture that is used for producing results depending on the program control-flow path.
The workflow of a standard timing analysis approach, such as the one implemented by the
AbsInt’s WCET Analyzer aiT tool [35], is composed of three consecutive phases:

1. Flow analysis - Analysis required for the reconstruction of the complete program
control- and data-flow.

2. Architectural analysis - Analysis designed for generating an architectural timing model
by considering every minimal hardware component in the target.

3. Global bound analysis - Analysis conducted on top of the results of the previous two
for determines the appropriate bounds for the execution of the complete program of
parts of it.

Depending on the complexity of the hardware components implemented in the target pro-
cessor, this can be a hard task. For instance, it is not possible to accurately evaluate the
performance of a multi-core system via static analysis due to the complexity of the prob-
lem [32, 179, 24]. The analysis of multi-core architectures is not the only limitation of
the static approaches. In fact, modern single-core architectures including complex hardware
mechanisms (such as speculative, superscalar, out of order execution and others) can intro-
duce timing anomalies in the performance behavior of a system [98, 133]. These anomalies
are extremely hard to be statically modeled [132].

Measurements-Based

Modern processor architectures appear too complex to be modeled for timing analysis and,
in most cases, their documentation is not completely available due to intellectual property
restrictions [174]. The main alternative to the different static analysis approaches and their
limitations is represented by measurements-based solutions. These kinds of approaches base
their timing analysis on measurements about the execution time of a program [174, 12]. The
analysis is commonly conducted in two different ways:

1. Water-mark analysis - Analysis based on end-to-end measurements of the execution
time of a program for the execution of different control flow paths.

2. Compositional analysis - Analysis that composes the measured execution times of the
single basic blocks of a program, or their aggregations, to times or distributions of
times for the complete program.

Measurement-based timing analysis approaches are preferable to the static analysis ones.
One of these commercial analysis tool is RapiTime [131]. An analysis based on mere obser-
vations allows an implicit modeling of the target system behavior without requiring in-depth
modeling of complex hardware mechanisms (which is time-consuming and error prone).
However, also the measurement-based approaches show some drawbacks [29, 126]. Most
of the drawbacks are due to three different main problems. The first one is the consequence
of the possible unavailability of hardware tracing capabilities that are not implemented in the
target platform. The second one is due to the difficulty of forcing a complex program to exe-
cute a desired control-flow path by relying on a configuration of the input program data set.
Finally, especially in case of complex processors, execution times often cannot be measured
for all the possible initial states of the stateful hardware resources.

3.3. Timing Analysis 31

3.3.3 Performance Estimations

The large amount of available timing analysis tools covers different analysis goals. For ex-
ample, the verification and validation activities for the realization of safety-critical systems
require the identification of a safe upper bound for the execution of a program or part of it.
This goal is commonly solved by relying on solid WCET timing analysis tools. The quality
of these tools depends on the level of pessimism introduced in the WCET estimation. The
level of pessimism represents the padding added to the actual WCET value that is due to the
analysis approach. Lower is the level of pessimism, better is the the timing analysis tool.
Unfortunately, the input data set that causes the observation of the WCET for the execution
of a program is unknown. Therefore, these timing analysis tool perform a kind of analysis
that is input-independent. However, the goal of producing an accurate WCET value for a
given system is out of the scope of this thesis.

This thesis is focused on defining a methodology that allows the evaluation of the perfor-
mance of a system. A timing analysis tool for evaluating the performance of a system has
to produce an accurate timing estimation for the execution of a program for a specific input
and considering multiple factors. This kind of analysis tools is essential in the early devel-
opment stages of a system, such as the design space exploration. In fact, fast and accurate
estimations are used for optimizing the design of a system. Therefore, in addition to the input
data, the resulting timing estimation has to consider also a given system configuration. This
configuration involves both the hardware and software components of a system. Multiple
parameters influence the execution time of a program, such as the different compiler opti-
mizations, the chosen memory allocation, the settings of the physical resources include in
the target processor and others.

The estimations accuracy has to be supported by a sort of analysis that allows the genera-
tion of such results in a very fast way [173]. Differently from the WCET scenario, in every
iteration of the exploration of a design, the exploration requires the evaluation of multiple
configurations and different input data sets. It is unacceptable to wait for a long time for
evaluating every single configuration. In fact, as discussed in Section 2.1.2, an ideal tim-
ing analysis tool is supposed to produce high-accurate estimations while preserving elevated
analysis speed capabilities. The accuracy metric can be evaluated by comparing the pro-
duced estimation with the measurement of the effective execution of the program on the
target platform. Differently, an adequate value of simulation speed is quantified in million of
instructions simulated per second (MIPS).

32 Chapter 3. Background and Related Work

3.4 Simulation Approaches for Performance Estimation

The goal of the research in producing performance estimations of a target system via timing
simulation is commonly oriented on proposing new simulation methodologies focused on
enhancing the simulation speed capabilities compared with the state of the art. Multiple
different approaches, as the one proposed in this thesis, ensure elevated simulation speed
capabilities by relying on some common properties between them. In fact, faster simulations
can be executed by setting aside unnecessary too low-level and complex hardware details and
by executing the simulation on a powerful host machine. The level of abstraction at the base
of the simulation technique is the main responsible for its simulation speed capabilities. In
general, higher is the level of abstraction and higher are the simulation speed capabilities.
However, the level of abstraction can highly-influence the simulation accuracy too. In fact,
multiple approaches based on an elevated level of abstraction show that their estimations are
more inclined to be less accurate than others. Therefore, defining a host-based simulation
methodology for efficiently evaluating the performance of a system is a hard task.

The remaining of this section is structured in two parts. The first one gives an initial overview
about different simulation techniques that are part of the state of the art but that are not related
with the simulation technique proposed in this thesis. Consequently, the second part of the
section described different host-based simulation techniques that are inspirational for the
simulation methodology later described.

3.4.1 Different Simulation Categories

An initial list of available simulation categories is provided hereafter. All the approaches
belonging to one of these categories try to tackle the hard problem of accurately and effi-
ciently evaluating the performance of a system via simulation. Unfortunately, the different
levels of abstraction adopted by these approaches cannot ensure them to achieve a sufficient
trade-off between the results accuracy and the simulation speed required by an ideal solution
(see Section 2.1.2).

Traditional Cycle-Accurate Approaches

Traditional simulation techniques, such as RTL [63, 184] and ISS simulators [187, 34, 116],
are too slow to be applicable in the design space exploration activities. In fact, they are not
suitable tools for supporting the rapid evaluation of multiple configurations. Their slowdown
is mainly due to the very low-level of abstraction that forces the simulators to consider in-
depth and unnecessary details about the target architecture to simulate. Recent solutions have
been proposed for enhancing the performance of these simulators. For example, the simu-
lation methodology presented in [13] shows a speedup of multiple orders of magnitudes by
relying on a hardware accelerator implemented in the RISC-V ISA [4]. Many other method-
ologies try to speed up the execution of such simulations in a similar way [129, 27, 81].
However, none of these approaches scales in case of large target systems. In fact, they all
require a huge amount of in-depth information that is often unavailable. Furthermore, even
if they can produce cycle-accurate results, they still require a large amount of compilation
time and their simulation speed is not comparable with the one achievable by the simulation
approaches later described.

3.4. Simulation Approaches for Performance Estimation 33

Trace-Driven Simulators

A large number of different simulation methodologies have been proposed for overcoming
the limitations of the traditional simulators. Between them, , the so-called trace-driven sim-
ulators represent a more scalable and flexible simulation solution [176, 69, 142, 183]. The
common methodology at the base of these approaches allows achieving better simulation
performance by separating the simulation of functional and non-functional (e.g. timing)
aspects of a system. These kind of measurements-based approaches associate the timing be-
havior previously measured for an execution trace to the functional simulation of the target
code. This separation reduces the overhead due to the consideration of fewer components
and details in parallel. The timing information represented by the measured traces allows
the implicit modeling of the timing behavior of parts of a program considering its execution
on the target platform. This is recognized as a beneficial property and it is reflected in the
simulation methodology proposed in this thesis too. However, trace-driven simulators can
produce inaccurate results. An exact result is produced only if it exists a trace that exactly
replicates the simulated control-flow. Depending on the program complexity, this property
implies the consideration of very long pre-recorded traces. Furthermore, the traces are often
adjusted via slow micro-architecture models that slowdown the complete simulation speed.

Analytical Performance Modeling

Most of the faster simulation approaches in the state of the art are the ones that belong to
the analytical performance modeling category [72, 128, 71, 154, 74]. These approaches are
commonly utilized in the early design phases. They allow obtaining fast but rough estima-
tions that can be used by the system designers as an early feedback for multiple different
configurations. Analytical models are usually composed of complex mathematical models
that describe the timing behavior of the complete system component per component. The
higher is the complexity of a hardware component, the more complex it is to model it via
some formulas. In general, the simulators based on analytical models are structured in two
consecutive phases. Initially, during the target profiling phase, specific performance metrics
(such as instructions count, cache misses rate, mispredicted branches rate and others) are
extracted from the execution of a large suite of programs. This data is utilized for produc-
ing the performance models required by the simulation methodology. This data extraction
phase is executed only once per hardware configuration. Consequently, during the estimation
phase, the previously generated models collaboratively produce the necessary estimations
depending on the simulated instructions visited in the dynamically discovered control-flow
path. One of the critical points of these approaches consists in the accuracy of the models
considered during the simulation. In fact, the complexity of these models directly depends
on the complexity of the hardware resources included in the target processor. Therefore, es-
pecially for complex processors, and in a similar way to the static analysis approaches, the
so-generated fast performance estimations can be extremely inaccurate.

Phase-Based Simulators

The approaches belonging to the phase-based category represent a different fast simulation
alternative. These approaches are based on measurements and they can achieve fast simula-
tion speed capabilities. Instead of simulating the complete program from end to end, their
speedup is achieved by simulating only a significant part of the program. This is possible
according to the program cyclic behavior theory [143, 144, 68, 125, 146]. This theory argues
that the execution of a program does not show a steady behavior and that it can be decom-
posed in periodic phases. These phases are the direct result of the coding process (the coding
guidelines often induce the source code to follow some common patterns). In fact, programs

34 Chapter 3. Background and Related Work

are coded in a modular way that allows functions to contain loops in which other functions
can be consequently invoked starting further nested loops. A direct consequence is that af-
ter the first initialization phase, the remaining execution of the program shows a periodic
phase behavior. From one side, these approaches scale well for large programs like the ones
in the industrial settings. On the other side, the main criticality of these approaches is the
identification of the different phases. Multiple different techniques propose to identify the
program phases by considering the values of the hardware performance counters available on
the target platform. These values are proposed to be assessed at different kinds of granularity
(e.g. instruction, basic block, set of consecutive basic blocks, etc.). The extracted values can
be processed for identifying the program phases. For instance, in [144], the authors propose
the utilization of a Fourier analysis on the period representative signal. The identified phases
and corresponding values are finally utilized for producing a performance estimation via a
partial-simulation that requires the simulation of every phase only once. Unfortunately, the
individuation of the different phases can be tricky and misleading. In addition, the perfor-
mance counters may not be implemented in all the platforms or they can be available in a
limited set. Furthermore, the consideration of a single timing value for the simulation of a
phase can lead to inaccurate results due to the different execution context of a phase. These
three problems together can represent a significant source of inaccuracy for the fast perfor-
mance estimation provided by these approaches.

Cross-Platform Estimations via Machine Learning Models

A final category of rapid simulation approaches for the evaluation of embedded systems con-
sists of approaches that based their analysis on machine learning techniques [95, 82, 53, 100].
With the coming of innovative and powerful machine learning algorithms, these approaches
produce their performance estimations by relying on models generated via complex algo-
rithms that analyze and elaborate a substantial amount of data extracted from measurements
or observations. Measurements and observations are commonly based on timing traces and
performance counters values extracted directly from the target platform. The machine learn-
ing models are complex analytical models that can describe the performance behavior of a
complete target platform or parts of it. Every single model requires to be generated only once
per hardware configuration and they are program-independent. In fact, they are commonly
trained with a wide set of benchmarks which does not include the program that has to be an-
alyzed. Similarly to multiple other methodologies, the machine learning approaches require
the execution of two distinguished phases. Initially, they require a training phase for the
generation of the models. The training phase does not require any knowledge about the tar-
get system to analyze, the target behavior is learned from mere observations. Consequently,
in the prediction phase, multiple performance estimations can be produced via fast simula-
tions that rely on the previously generated models. The quality of the training set utilized in
the first phase directly influences the accuracy of the predicted estimations. Unfortunately,
the definition of a valid training set for ensuring accurate results is not trivial. Neither the
auto-generation of synthetic benchmarks to consider during the training phase fully solve the
problem [122, 76].

A different kind of approaches still based on machine learning techniques have been pro-
posed for overcoming the limitations of the previously described approaches. In fact, multiple
cross-platform machine learning approaches have been proposed with the intent of improving
the accuracy results [186, 85, 101, 102]. These kinds of approaches claim that there exists
a latent relationship between the performances of a program when executed in different tar-
get platforms. Therefore, they sustain that the performance behavior of a program executed
on a fast host machine can be correlated to the one observable on a slower embedded tar-
get platform. This correlation can be described via machine learning models. During the

3.4. Simulation Approaches for Performance Estimation 35

host-execution of the program, these models are used for generating the cross-performance
estimations. Unfortunately, the overall results show that accurate results can be achieved
only in some circumstances and by considering a fine-grained and low-level of abstraction
(models based at the binary instructions level). A low-level of abstraction implies the intro-
duction of conspicuous and undesired simulation speed slowdown. Differently, moving the
models level to higher code structures (such as basic blocks, functions, phases and others)
often determine the generation of inaccurate results.

3.4.2 Control-Flow-Driven Host-Based Simulation

The simulation methodology proposed in this thesis is a host-based simulation approach
belonging to the control-flow-driven category. In general, the different control flow-driven
timing simulators produce their performance estimations by commonly relying on the simu-
lated CFG and on a priori estimation of the different execution paths of a program. This base
concept is shown in Figure 3.13 and it is in accordance with simulation idea previously pre-
sented in Section 2.2. An initial phase is required for determining the execution time of the
different parts of a program. The analysis can be conducted at different granularity levels.
Consequently, multiple simulations can be executed for determining the control-flow path
due to a given input data set. Depending on the control-flow path, the performance estima-
tions of a system are produced by accumulating the execution time previously computed for
the requested parts of the program.

The different control-flow-driven timing simulation techniques differ according to two main
aspects. The first one consists in the technique utilized for ensuring a simulation to accu-
mulate the relative execution times. One possibility is represented by an appropriate instru-
mentation or annotation technique of the simulation code. The additional code causes the
simulation to update automatically the performance estimation during its execution. The
modification or enrichment of an existing functional simulator represents a different possi-
bility. In both the cases, the execution time considered for a specific part of a program can
be constant or dynamically determined. The constant case represents the simplest solution
but, at the same time, it is source of inaccuracy because unrealistic (see Section 5.2.1). Dif-
ferently, as proposed by the simulation methodology described in this thesis, the dynamic
consideration of a different execution time depending on the execution context of the pro-
gram allows the generation of accurate results.

The second aspect that characterizes a control-flow-driven simulator is the level of abstrac-
tion at the base of the simulation. This aspect determines at which code representation the
simulation considers the accumulation of the relative execution times extracted during the
analysis phase for updating the requested performance estimations. In general, higher is the

entry

if_else

if_test if_end
3 cycles

3 cycles
2 cycles

2 cycles 10 cycles

16 cycles

3 cycles

5 cycles

if_then

Path 18 cycles
Path 26 cycles

Estimations (Σ)

Figure 3.13 – Control-flow-driven performance simulation concept: The simulation approaches be-
longing to this category produce the required timing estimations in a similar way. A priori analysis
is conducted for determining the execution time of different parts of a program. Consequently, the
control-flow path visited during the simulation is used for updating the timing estimation by accu-
mulating a relative execution time previously determined during the analysis phase. The execution
of different paths determines the generation of different performance estimations.

36 Chapter 3. Background and Related Work

abstraction level and faster capabilities can be achieved by the simulator. Unfortunately, at
the same time, higher is the abstraction and harder is to model accurately all the aspects that
determines the execution time of a specific part of a program. Therefore, the accuracy of
the resulting performance estimations depends on both the accuracy of the modeling tech-
nique, utilized for describing the timing behavior of the different parts of a program, and
the annotation technique utilized for allowing the simulator to dynamically update the timing
estimations.

The literature shows that the different proposed simulation approaches base their simulations
on three possible program representations that are: the source code, the executable binary
code and the IR code (as the simulation methodology proposed in this thesis). Respectively,
the simulation techniques are called in the literature source-level, binary-level and IR-level
timing simulations. In the remaining of this section, it is provided an overview about the
three different simulation possibilities. For every level of abstraction, multiple exemplary
approaches are presented that allow the evaluation and discussion about eventual advantages
and disadvantages due to the underlying simulation’s code representation.

Source-Level Timing Simulations

The highest level of simulation abstraction is achieved by the source-level timing simulation
approaches [94, 171, 97, 149, 150, 109, 185, 44, 147]. These approaches commonly produce
the necessary performance estimations of a target system by natively executing on a powerful
development machine a host-compiled binary version of the program. The common imple-
mented workflow of these approaches is shown in Figure 3.14. During the host-execution
of the program, the performance estimations are incrementally updated by relying on the
additional simulation code that is pre-annotated directly on the program source code. The
exemplary annotation of a small portion of code is shown in Figure 3.15. Therefore, the code
annotation enriches the program with target-specific performance metrics that are computed
before the simulation. The high-level of abstraction commonly ensures elevated simulation
speed capabilities for these approaches. Furthermore, working at the source code level is
commonly simpler than managing lower-level representations of the program.

Non-Functional
Information

Input
Data

Target
Compilation

Binary

Analysis

Annotated
Source Code

Annotation

Simulation

Performance
Estimation

Host
Compilation

Source
Code

Source to Binary
Mapping

Figure 3.14 – Common workflow for source-level timing simulation: This kind of approaches can
achieve elevated simulation speed capabilities by executing an annotated version of the program na-
tively on a fast host machine. During the simulation, the annotation code enables the consideration of
non-functional aspects related to the target platform. Unfortunately, the annotation process requires
an accurate mapping between the structures of the source code and the target-compiled binary that is
hard to define.

3.4. Simulation Approaches for Performance Estimation 37

...
UPDATE_SIMULATION(idx)
while (condition) {
 UPDATE_SIMULATION(idy)
 variable += 1;
}
UPDATE_SIMULATION(idz)
...

...
while (condition) {
 variable += 1;
}
...

Source Code
Annotation

Figure 3.15 – Exemplary source code annotation for target performance simulation: The source-level
timing simulation approaches commonly require annotating the program software with appropriate
instructions or target-dependent information that enable the generation of the necessary performance
estimations by executing it on a fast host machine.

Commonly, the target-dependent information (commonly non-functional properties such as
timing) are extracted at the binary level directly from the target, from a cycle-accurate sim-
ulator or from the available hardware data sheets. In most of the cases, these approaches are
based on a granularity that is defined at the basic blocks level of the source code. It is assumed
that the instructions of a source-level basic block are always executed in order and consecu-
tively from the first one until the last one. Furthermore, it is also assumed that the basic block
is the smallest unit used by the compiler for structural optimization purposes. Unfortunately,
this assumption is not valid for all the wide set of available compiler optimizations. Nev-
ertheless, these assumptions imply that the annotation has to be inserted in specific places
of the source code. For this delicate purpose, an accurate placement technique requires an
appropriate mapping between the structures of the source code and its target-compiled repre-
sentation. Unfortunately, the definition of such mapping is not trivial (see Chapter 4). In fact,
due to the transformations resulting from the compilation process a direct mapping between
the two structures is impossible. The mapping problem is often the main drawback of these
approaches because its accuracy highly influences the precision of the produced performance
estimations.

Different approaches try to overcome the mapping problem in different ways. Unfortunately,
most of these techniques are not applicable in industrial settings. For instance, in [94] it is
proposed to limit the set of applicable compiler optimizations excluding the ones that can
substantially change the structure of a program. Another approach [22] proposes to mitigate
the structural changes due to the aggressive compiler optimizations for producing a simple
direct mapping. This can be done by inserting appropriate volatile labels that force the com-
piler to keep the initial structure of a program during all the compilation stages. In a different
way, the approach initially presented [41] and consequently improved in [40] proposes a
simulation methodology that does not require a mapping between the source code and binary
structures. The timing model considered by this approach is not based on the performance of
the binary representation but on a novel concept called elementary operations. The authors
claim that these operations allow modeling both the target platform behavior and the timing
effects due to the compiler optimizations on specific blocks of code. Unfortunately, the pre-
sented results show a high-level of accuracy in the produced performance estimations only
in case of non-highly optimized programs.

The most inspirational approach for the simulation methodology proposed in this thesis is the
one described in [150]. This approach can produce accurate performance estimations relying
on a valid mapping technique later described and on an accurate source code annotation tech-
nique [153]. The results accuracy are ensured by a timing modeling technique that considers
the execution contexts of the basic block of a program. This approach has been successfully
applied also in support of WCET estimations [152] and in analyzing the behavior of the cache

38 Chapter 3. Background and Related Work

memories of a target platform [151]. Highly accurate results can be produced relying on this
simulation technique but it still suffers the common drawbacks of the source-level simulation
techniques. In fact, the mapping problem is solved relying on the debug information pro-
duced by the compiler. This information can be ambiguous or incomplete causing undesired
inaccuracy in case of multiple aggressive compiler optimizations.

Binary-Level Timing Simulations

In contrast with the source-level timing simulation approaches, the simulators based on the
binary-level consider the lowest level of abstraction. Working at the binary-level can be
harder than working at the high-level of abstraction offered by a programming language as
C or C++. However, these approaches avoid the mapping problems common to the source-
level and IR-level simulation techniques [88, 48, 127, 119, 117, 9, 60]. In fact, the binary
code represents the result of the last compilation phase and it contains all the optimizations
applied by the compiler. Unfortunately, the binary code compiled for a target platform cannot
be directly executed on a host machine. Host and target machines commonly implement
different ISAs. Therefore, a mechanism has to be defined for allowing the simulation of the
target binary code on the host architecture.

A first possibility consists in a binary-to-binary translation mechanism [188, 170]. This
mechanism converts a binary compiled for a target architecture to a functionally equivalent
one that can be executed on a host machine. The process can be either dynamic or static
[88, 48, 182]. In the latter case, some approaches propose to simplify the process by initially
lifting the code to a higher representation (such as at the source code level or at the IR level
[18]) and consequently compiling this representation for the host machine. The simulation
relies on appropriate annotations for producing the requested performance estimations. The
main drawback of these approaches is their complexity. The problem can be simplified by
interpreting one instruction per time but this would cause undesired slowdown (similar to
the slowdown intrinsic to ISS simulators) and it could be hard to resolve eventual indirect
branches or jumps.

A different simulation possibility consists in basing the simulation on an enriched version
of a fast emulator for enabling the possibility of context-sensitive timing simulation. For
instance the binary-level simulation approach presented in [119] and consequently refined
in [117] is based on the well-known and open-source QEMU emulator [11]. This tool em-
ulates the functional behavior of a target architecture via a fast dynamic binary translation
based on a JIT mechanism. The emulator enrichment allows QEMU to dynamically query
an external database, the simulation’s timing model (see Section 2.2) that contains relative
execution times for the different part of a program depending on the execution context that is
discovered during the simulation. The methodology workflow is shown in Figure 3.16 and it
is composed of two phases. An initial analysis phase has to be performed for generating the
so-called timing database representing the timing model of a specific system configuration.
The timing database is generated by measuring the execution time of different parts of the
program by changing the input data set. The measurements can be extracted directly from the
target or from an accurate simulator. Thereafter multiple fast and accurate context-sensitive
timing simulations can be performed relying on the same timing model. The methodology
workflow of this simulation approach is a source of inspiration for the one presented in this
thesis. In fact, the workflow later presented resembles the one shown in Figure 3.16. How-
ever, this context-sensitive timing simulation methodology shows some of the drawbacks
commonly inherent to the binary-level timing simulators. For instance, a simulation is not
retargetable and a timing model is specific for only one system configuration. Any minimal
hardware or software modification in the system invalidates the timing model. Unfortunately,

3.4. Simulation Approaches for Performance Estimation 39

Non-Functional
Information

Analysis

Source
Code

Target
Compilation

Target
Binary

Input
Data

Simulation

Performance
Estimation

Figure 3.16 – Common workflow for context-sensitive binary-level timing simulation: The program
is directly compiled for the architecture of the target machine. Thereafter, the necessary analysis
activities are conducted for extracting the essential non-functional information according to its exe-
cution context history. Thereafter the target binary can be directly executed on the host machine via
an emulator that generates the performance estimations via simulation and relying on the previously
extracted data. A different variant consists in annotating the target binary with the non-functional
information before executing the emulator.

an architecture can be evaluated only if the simulator effectively supports the target ISA. Fur-
thermore, this approach does not consider the possibility of evaluating multiple architectures
or configurations in parallel.

An additional improvement has been presented for this simulation methodology [118]. Faster
simulation capabilities can be achieved by annotating the timing information previously con-
tained in the database directly on the code with the support of an automaton that distinguishes
the program execution contexts. However, this extension speedups the simulation speed ca-
pabilities but does not improve the approach flexibility or retargetability.

IR-Level Timing Simulations

On the one side, the very high-level of abstraction ensured by the source-level timing simu-
lations make the mapping task harder, but on the other side, the low-level of abstraction of
the binary-level timing simulations make these approaches less flexible and retargetable. As
a consequence, basing a simulation approach on the IR code representation is an attractive
alternative to the previously two simulation categories. The IR offers a sufficient level of
abstraction that makes the code easily retargetable (as for the source code written in C or
C++) but, at the same time, it contains a consistent amount of the effects of the compiler
optimizations. In fact, the IR code is the result of the execution of multiple architecture in-
dependent compilation passes which make the IR structure closer to the binary one. This
property implies a simplification of the mapping problem. Working at the IR level, in most
of the cases, does not require the consideration of the source code structure at all. Mainly for
these reasons, as for multiple other actual approaches in the literature [26, 77, 172, 16, 107,
145, 55, 43, 25], the proposed simulation methodology presented in this thesis is based on
the intermediate representation of a program.

The different IR-level simulation techniques commonly implement a similar simulation work-
flow. This workflow is shown in Figure 3.17. The process starts with an architecture-
independent compilation phase. Multiple chained compilation passes are executed for gen-
erating the IR code by requesting both the front end and back end to optimize the code. The
resulting IR is consequently given in input to two different phases. In an initial phase, the
compilation is completed by requesting the back end compiler to perform the architecture-
dependent optimizations. The resulting binary is analyzed for producing the source of non-
functional information (or timing model). In a second phase, the previously generated IR

40 Chapter 3. Background and Related Work

Non-Functional
Information

Architecture
Independent
Compilation

IR

Analysis

Annotation

Simulation

Performance
Estimation

Source
Code

Target
Dependent
Compilation

Target
Binary

Simulation
IR

Host
Dependent
Compilation

Host
Binary

Input
Data

IR to Binary
Mapping

Figure 3.17 – Common workflow for IR-level timing simulation: The IR code resulting from the
architecture independent compilation of the source code is utilized for producing the target binary
applying the target-dependent compiler optimizations. The binary is consequently analyzed for ex-
tracting the necessary non-functional information. This information is annotated in the IR code
according to the previously defined IR to binary mapping scheme. The result of the annotation is an
enriched version of the IR code that can be compiled for the host architecture. The execution of the
resulting binary allows the rapid generation of the required performance estimations.

code is given in input to the annotation phase. In addition to the IR code, the annotation
phase expects in input also the IR to binary mapping and the previously generated timing
model. Depending on the mapping scheme, the annotation inserts the information contained
in the timing model directly on the IR code. The result of the annotation phase is an IR
program that can be compiled for the host machine. The resulting host-compiled binary can
be finally executed considering different input data. Depending on the annotation and on
the visited control-flow, the execution of this version of the program produces the requested
performance estimations. This kind of simulation workflow can ensure fast and accurate
performance estimations in case of an exact mapping scheme. Minor inaccuracies can have
major influence on the simulation results. In general, these approaches differ for the mapping
generation algorithm and for the kind of analysis utilized for generating the necessary timing
model to consider while simulating.

A slightly different simulation workflow is shown by two simulation approaches [26, 172]. In
the first case, it is proposed to utilize a modified compiler that directly annotates the IR code
with timing information produced via a slow cycle-accurate simulator. Unfortunately, the an-
notation forces the modified compiler to produce a binary executable whose structure differs
from the one obtainable without instrumentation. Therefore, this approach suffers from accu-
racy problems in case the difference between the two structures is consistent. In the second
case, the difference with the simulation workflow shown in Figure 3.17 is more accentu-
ated. This approach requires an additional compilation phase. In fact, after the architecture-
independent compilation phase the resulting IR code is not directly annotated. Differently,
the IR code is translated to a sort of C-based intermediate source code. Some modifications
are consequently applied to this code version for simplifying the mapping problem. There-
after the code is compiled for both the host and target architecture. The target-compiled
executable is utilized for the generation of the timing model. During the host compilation,
the non-functional information is annotated in the new resulting IR. Finally, the executable

3.4. Simulation Approaches for Performance Estimation 41

compiled for the host architecture can be simulated for producing the performance estima-
tions. Even in this case, the main problem in the results accuracy consists in the fact that the
source code structure analyzed differs from the original one. On the one hand, this approach
simplifies the mapping problem, but on the other hand, it can produce inaccurate results due
to the consideration of code whose structure differs from the original one.

The workflow of the timing simulation methodology presented in this thesis is in compliance
with the one shown in Figure 3.17. It differs from the other approaches in the state of the
art on two main aspects. First, in this thesis is presented a novel mapping algorithm that
allows the accurate matching between the IR and binary structures of a program. Second,
the simulation is not based on a pre-compiled version of the annotated IR code. In fact, the
simulation is based on the dynamic compilation of the IR provided by the lli tool. This tool
can efficiently compile and execute IR code. Furthermore, the tool offers the possibility of
easy debugging and interaction. This property is essential for the definition of a co-simulation
methodology that enables the evaluation of Simulink models.

3.4.3 System Performance Considerations in Simulink

The evaluation of the performance of a system requires a timing analysis tool that provides the
possibility of visualizing the produced estimations. This represents one of the key require-
ments for a simulation tool (see Section 2.1.2). Unfortunately, a widely utilized develop-
ment tool as Simulink, which offers an attractive but limited functional simulator, ignores the
concrete system implementation considering only the simulation of architecture-independent
models. This lack can cause undesired disparity between the behavior shown by a simulation
and the one showed by the consequent final implementation of a physical system. For this
reason, different multiple approaches have been proposed in the last years to support the ex-
ploration and visualization of the performance of Simulink models that consider the timing
effects due to the execution of a model on a real target platform.

A first solution for enhancing the Simulink simulations with timing consideration is described
in [57]. This simulation technique allows simulating networked embedded control systems.
It is completely based on the native Simulink environment without necessitating the coopera-
tion with any external simulator. This is made possible by providing to the system designers a
set of custom and fixed Simulink libraries, to utilize when developing a system, that support
the modeling of the system behavior. The simulation can consider the timing behavior of
only these libraries. Consequently, it is not possible to directly evaluate an existing Simulink
model. This can be done only after that the model is substantially rewritten by utilizing
the provided timing-aware libraries. Considering the limited amount of provided libraries
compared with the vastness of the components natively available in Simulink, the model
translation activities for obtaining a functionally equivalent model can be challenging.

A direct but independent extension of the technique previously presented is described in
[31]. The main drawback of the previous approach is tackled by allowing the definition of a
Simulink model with the native components and by providing additional blocks for enabling
timing considerations while simulating the system. In particular, by properly annotating an
existing model, these blocks allow the external timing simulation of the different Simulink
components that they are connected to. This methodology allows the timing consideration
of elements of a system such as concurrent tasks, messages, signals and others. However,
also this approach shows some limitations. In fact, it requires the system designers to ap-
propriately annotate the model with the provided blocks. Unfortunately, the annotation is

42 Chapter 3. Background and Related Work

completely manual and it is not considered the possibility of adding automatic support. Fur-
thermore, the technique does not consider the possibility of evaluating the system perfor-
mance directly in Simulink. In fact, the visualization of the simulation results is expected to
be shown in the external timing simulator (e.g. SysML).

A different category of approaches is constituted by solutions that propose to enrich a given
model for enabling the possibility of timing-aware simulations directly on Simulink [113,
83]. These approaches require an annotation phase in which the model is enriched by adding
native Simulink components that force the simulator, at run-time, to mimic the behavior of
the system. The annotation is made in a partially automatic way. The base concept of the
annotation is that it is possible to model the timing behavior of a Simulink component by
connecting a delay block to its output. Therefore, this timing information has to be gener-
ated before the functional simulation with an external performance estimation tool. Unfortu-
nately, these approaches do not completely solve the unrealistic Simulink simulation problem
described in Section 3.1.2. In fact, the delay blocks consider only one fixed execution time
for every block. This assumption is realistic because it does not consider the different ob-
servable execution times of a piece of software depending on different execution contexts.
Furthermore, compared with the methodology described in this thesis, these approaches are
not prone to support the evaluation of different system configurations or of heterogeneous
systems.

Finally, an interesting solution is represented by the approaches that tries to execute timing-
aware Simulink models via a co-simulation technique [17, 6, 19, 15]. These approaches
allow the synchronization between the Simulink simulator and an external timing simulator
relying on the canonical synchronization algorithm [45]. The methodology later presented in
this thesis belongs to this category. The basic idea of these approaches is straightforward: the
different simulators, designed to simulate different properties of a system, are linked together
in order to collaboratively produce a final unique result. The simulators are mapped to inde-
pendent processes that interact with each other. The synchronization between the processes
can result extremely complicated. Furthermore, these approaches force the Simulink simu-
lator to consider the execution of the software part of a system only once per iteration. From
one side, the simulation is enriched with timing considerations but, on the other side, also
this strategy does not completely solve the unrealistic Simulink simulation problem. In fact,
internally to the controller subsystem, the execution of the components are still simulated
in fixed- or zero-time, even in case the co-simulation is used for validation purposes [136,
137].

3.5 Summary

This chapter presented the fundamental concepts that allow the later definition of the simula-
tion methodology described in this thesis. Initially, the chapter provides a definition for the
concept of embedded systems. In this context, the MATLAB Simulink environment tool is
briefly introduced by mainly considering the Simulink simulation and code generation capa-
bilities. Thereafter, the chapter describes the standard steps requested for the compilation of
an embedded program. This description introduces the consequent presented LLVM Com-
piler Infrastructure topics. In particular, it is given an overview about the LLVM compiler’s
internals and the different compilation possibilities. A rough introduction to some basic tim-
ing analysis concepts for the evaluation of embedded systems precede an overview of the
multiple different timing analysis approaches available in the state of the art. A special focus
is given to those approaches in the related work that enable the performance evaluation of a
system via simulation.

43

CHAPTER 4

Mapping IR to Binary Control-Flow Graphs

The scope of this chapter is to present the mapping approach algorithm defined for matching
LLVM IR to binary CFGs. This is done by initially contextualizing the problem and the
consequent criticality. Thereafter, some pertinent approaches that define the current state
of the art are briefly introduced with a special focus on the more inspirational ones. An
extension to one of these approaches is proposed before to finally describe the two-phases
algorithm utilized for generating the accurate mapping at the base of the proposed simulation
methodology.

4.1 Problem Definition

The goal of the multiple and different available host-based simulation approaches is to esti-
mate the performance of a target system directly executing the host-compiled software pro-
gram on a fast host machine. This means that a target system can be directly evaluated on a
standard development machine. The host and target machines commonly, and especially in
the embedded systems domain, implement different ISAs. Consequently, the compilation of
the same program for the two machines produces different binaries.

In case of IR host-based simulation, and in a similar way as source level simulation, the
simulator executes the IR code on a host machine or the IR code is annotated before being
compiled for the host machine. An accurate IR to target binary-code mapping is essential be-
cause the simulation accuracy strongly depends on the effectiveness of the mapping between
different code representations. Relying on the mapping, the simulator makes assumptions
on the performance behavior of the target system while executing a different binary version
on a host machine. Therefore, a highly accurate mapping is essential for a high estimation
accuracy of the target’s performance.

The main problem in defining a mapping approach that tries to provide an accurate matching
CFGs at different program representations is that, due to aggressive compiler optimization,
the CFGs structure can be substantially vary making a direct match between the basic blocks
impossible [111].

44 Chapter 4. Mapping IR to Binary Control-Flow Graphs

The mapping accuracy is not the only requirement for a valid approach. In fact, considering
the problem complexity and the large size of real industrial applications, it is expected the
algorithm to be fully automatic. It is unrealistic to rely on experts for generating or fixing such
mappings. Furthermore, it is desirable the mappings to be generated without requiring any
compiler modification. Most of the time, modifications are not possible and, when possible,
they can break the compiler’s internal behavior.

4.1.1 Program Structure Representation

The available host-based approaches work either at the source code level or at the IR level.
Working at the source level is beneficial in terms of readability, especially in the case of
an expert is required to manually adjust an incomplete or ambiguous mapping. However,
a CFG representing the source code structure is usually harder to map to its corresponding
binary CFG compared with lower- level software representations. This is due the fact that
a CFG at the source code level does not include any of the effects of the eventual compiler
optimizations.

Several approaches prefer instead working at the IR level. The main benefit of working at
the IR level is that the IR code includes, at least, all the compiler optimizations performed by
the compiler during the front-end phase. This property implies the IR CFGs to have a closer
structure to the binary CFGs compared to the source level ones. The CFGs mapping is a
hard problem but considering a lower software representation abstraction like the IR ensures
a simplification of the problem. The problem simplification usually comports the definition
of more accurate mapping between the CFGs.

Considering the benefits of both the two software representations, the proposed mapping
approach that is presented later in this chapter is intended to work at the IR level. However,
even the structure of IR and binary CFGs may substantially vary due to aggressive compiler
back-end optimizations. For this reason, an even lower software representation is taken into
account for considering CFG structures that include more optimizations effect due to the
middle-end and back-end compilation phases.

4.1.2 LLVM Optimizations and Passes

Compilers implement a wide range of optimizations designed for satisfying different compi-
lation objectives. A valid CFGs mapping algorithm can achieve an adequate level of accuracy
only by identifying and modeling all the optimizations that can change the structure of a CFG.
Between all the available compiler optimizations, the ones that can change the structure of a
CFG are the optimizations that operate at the basic blocks level [3]. The common possible
effects of these optimizations can be summarized as basic block insertions or removal on the
different CFG representations. Four different practical examples of these effects are shown
in Figure 4.1. Multiple conditions can influence the optimizations in adding or removing
nodes. For example, a node can be removed when its instructions are moved inside its suc-
cessors, as shown in Figure 4.1(a). Pushing down instructions inside successor nodes may
also determine the insertion of a new node, as represented in Figure 4.1(b). Nodes can be
removed if the compiler recognizes that they contain path independent instructions as shown
in the examples in Figure 4.1(c) and in Figure 4.1(d).

The proposed host-based simulation methodology is intended for executing timing simula-
tions based on the LLVM IR code representation. Therefore, the solutions described in this
thesis are specific for tools and conventions belonging to the LLVM Compiler Infrastructure.

4.1. Problem Definition 45

A

B C

A'

B'

(a) Node elimination.

A

B

A'

B' C'

(b) Node insertion.

A

B C

D

A'

(c) Node simplification.

A

C

B

D E

A' B'

D' E'
(d) Multiple nodes merging.

Figure 4.1 – Common CFG structural changes due to compiler optimizations: Four examples of
possible changes to the structure of a CFG due to the effects of different compiler optimizations that
can be classified as node additions or removals (figure edited from [25]).

The standard compiler optimizations, generally available in most of the compiler implemen-
tations [3], can be executed in LLVM in the form of compilation passes via tools of the LLVM
framework [86, 158]. New passes can be generated for implementing custom optimizations
in a straightforward way. In LLVM the different passes are classified in six different cate-
gories [162]:

1. Immutable - Passes that do not change the structure of a program and that are designed
for extracting compilation information from an IR module.

2. Module - Passes that operates on the entire program as a single unit. The passes in this
category can modify the structure of a program at different levels like at the function,
the basic block or the instruction granularity.

3. Call graph - Passes that need to traverse the program bottom-up on the call graph.
They are not allowed to modify the program structure.

4. Function - Passes similar to the module ones with the difference that they perform local
optimizations at the function level for a given function. The optimizations applied to
a function are independent from the ones applied to other functions in the program.
These passes can change the CFG structure of a function.

5. Loop and Region - Analysis oriented passes that allow evaluating loops and specific
regions of a program without having the possibility of modifying them.

6. Machine - Passes utilized during the code generation process and that operate on the
machine-dependent representation of a given function in the program. They can change
the CFG structure of a function but they are not allowed to modify its structure at the
IR level.

46 Chapter 4. Mapping IR to Binary Control-Flow Graphs

Only some of the LLVM passes can modify the CFG structure of a function. In particular,
the passes belonging to the Module and Function categories are allowed to modify the IR
representation of a CFG. The corresponding MIR CFG structure can be further optimized
by changing its structure via Machine passes. These passes consequently influence the final
structure of a binary CFG. Furthermore, inside the previously described categories of passes
that can modify the structure of a CFG, the LLVM project divides these passes in three
additional sub-categories [158]:

1. Analysis - Passes designed for computing and extracting information that can be used
by consecutive passes or for debugging purposes.

2. Transform - Passes that implement the compiler optimizations that can change the
structure of a program in some way.

3. Utility - Passes that offer some utility that do not fit in one of the previous two cate-
gories and that do not modify the structure of a program.

An approach for accurately mapping IR to binary CFGs has to consider all the effects of the
compiler optimizations. Considering the LLVM classification of the passes, mapping LLVM
IR to binary code requires to model the effects of the passes in the module, function and
machine categories that are classified as transform passes.

4.2 Relevant and Inspirational Mapping Approaches

According to the literature, the problem of matching a higher-level software representation
to its executable binary representation is a problem of intensive research. A wide number
of mapping approaches have been published in the years. In this section, some of the most
relevant and inspirational ones are mentioned and briefly illustrated.

4.2.1 Dominator Homomorphism

A compiler independent approach for mapping source code lines to machine instructions, for
the purpose of source level simulation, is presented by the authors in [149]. Instead of mod-
ifying the compiler, this approach relies on a heuristic that utilizes the DWARF debug line
information [30] produced during the compilation process. Thanks to this information, the
execution order of the statements of both the software representations allows the definition
of an accurate mapping.

The information contained in the dominator trees is essential for the mapping algorithm. As
described in Section 3.3.1, a node in a dominator tree is dominated by all its ancestors also
in the CFG. The authors claim that the changes in the CFG structure due to the compiler
optimizations are also visible in its dominator tree representation. Therefore, the dominator
relation contains important structural information about the possible execution order of the
basic blocks. As a consequence, the generation of the mapping between the CFGs is produced
by analyzing the dominance relation of the two CFG representations and by comparing their
dominator trees.

The source code to binary mapping consists in a mathematical function that is intended to
define a partial mapping between binary basic blocks and the corresponding basic blocks at
the source level in respect of the dominator relation of both the software representations. The
function ensures that the execution of a source level basic block bS, mapped to a binary basic
block bB, always implies the execution of bB. This property is ensured by mapping basic
blocks which most closely resemble their semantic between the two CFGs, like shown in the
example in Figure 4.2.

4.2. Relevant and Inspirational Mapping Approaches 47

22-24

24

29 25

2624 27

0x800

0x810

0x8280x820 0x82C

0x834

Basic Blocks Matching

Figure 4.2 – Example of dominator homomorphism matching algorithm (figure extracted from
[149]): The source code lines of a program are mapped to the binary instructions, function per
function, by defining a partial mapping between the basic blocks in the two dominator tree represen-
tations. The source-level basic blocks, on the left dominator tree, are mapped to the binary ones, on
the right dominator tree, according to a most closely resembling criterion that defines the dominator
homomorphism relation between the two CFG representations.

Limitation

This mapping approach requires complex structural analysis of the CFGs and dominator trees
in addition to precise debug information that has to be provided by the compiler. Unfortu-
nately, the debug information can be ambiguous or imprecise [10]. For example, multiple
binary instructions can be associated to the same line of source code or simple mismatches
can happen [97]. Generating precise and complete debug information is not a trivial task.
Compiler optimizations can break the full traceability between the source code lines and
the compiled binary instructions [171]. Furthermore, the debug information might also be
unavailable.

In general, producing a mapping between the source code of a program and its compiled
binary version is a hard task. To solve the task it is necessary to systematically handle the full
and wide range of available compiler optimizations [111]. Furthermore, eventual mappings
produced considering the dominator homomorphism relation might not be unique [10] and
consequently not accurate.

48 Chapter 4. Mapping IR to Binary Control-Flow Graphs

4.2.2 Subgraph Matching Algorithm

An automated approach for accurately mapping IR CFGs to the corresponding binary CFGs
has been presented by the authors in [25]. The algorithm implements a heuristic that deter-
mines a mapping between the basic blocks of the two CFG representations relying only on
the graph structures alone. The authors claim that a unique mapping exists between the basic
blocks of an IR CFG and its corresponding binary representation. Furthermore, the unique
mapping has to adhere to the overall control flow of the original CFG. This assumption is the
key point of the algorithm and it is fundamental also for the proposed two-phases algorithm
later presented in Section 4.4.

The algorithm requires an initial annotation of all the basic blocks in the two CFG versions.
The annotation consists of two numeric metrics that have to be computed and consequently
utilized by the algorithm for automatically generating the mapping. As shown in the example
in Figure 4.3, the two metrics that have to be annotated are:

1. Flow value - Metric that globally describes the branching structure of a CFG (eventual
back edges have to be ignored while computing these values). This metric is a real
number, whose value is considered between 0 and 1.0. The flow value of the root node
of a CFG is 1.0. The flow is consequently equally divided between its successors.
Starting from the successors of the root node, and for all the remaining nodes, the
flow value of a basic block is equal to the sum of the incoming flows. The outgoing
flow of every node is always equally divided between its successors. The example in
Figure 4.3(a) shows how these values are computed for a simple CFG starting from the
root basic block A.

2. Nesting level - Metric that counts the number of looping paths that include a given
basic block. The metric consists of an integer number whose minimum value is 0. An
example that shows the nesting levels of a simple CFG is shown in Figure 4.3(b).

A
Flow: 1.0

B
Flow: 0.5

C
Flow: 0.5

0.50.5

D
Flow: 0.5

0.5

E
Flow: 0.25

0.25

F
Flow: 1.0

0.25
0.25

0.5

(a) Flow value: CFG branching descriptor.

A
Nesting: 0

B
Nesting: 2

C
Nesting: 2

D
Nesting: 1

+1

+1

(b) Nesting level: Number of nested loops
including a basic block.

Figure 4.3 – Flow value and nesting level: The two metrics of a CFG that are at the base of the map-
ping algorithm based on a heuristic presented in [25]. The flow value metric describes the branching
structure of a CFG and the nesting level its loops.

4.2. Relevant and Inspirational Mapping Approaches 49

These two metrics are essential for producing a valid mapping. A valid mapping ensures
that, for every mapped basic block, the number of traversed execution paths and the number
of run-time passing through paths are identical between the two representations.

After computing and annotating the required metrics for all the nodes in both the CFG rep-
resentations, the algorithm continues with producing the necessary matching. The matching
candidates between the nodes are selected by considering nodes of both the CFGs with iden-
tical metric values. Starting from the root, and continuing until the end, all the mapping is
iteratively generated by matching identical nodes that have not been yet mapped. A simple
example of resulting mapping is shown in Figure 4.4.

XI
Flow: 1.0
Nesting: 0

yI
Flow: 0.5
Nesting: 0

zI
Flow: 0.5
Nesting: 1

wI
Flow: 1.0
Nesting: 1

XB
Flow: 1.0
Nesting: 0

zB
Flow: 0.5
Nesting: 1

yB
Flow: 0.5
Nesting: 0

wB
Flow: 1.0
Nesting: 1

Basic Blocks Matching

Figure 4.4 – Example of heuristic subgraph matching algorithm: In order, and starting from the
root nodes, the algorithm presented in [25] directly matches IR to binary basic blocks identified by
identical values of the two annotated metrics flow value and nesting level.

Limitation

Unfortunately, the algorithm proposed by the authors is not fully automatic. In fact, the algo-
rithm fails in producing a complete mapping in case of ambiguities. The problem is a direct
consequence of the choice of mapping two CFGs by considering their graph structure alone.
An ambiguity is caused by the possibility of multiple equal matches. For example, multiple
equal matches occur when one representation of a basic block can be mapped indistinguish-
able to more than one basic block of the other CFG because all of them share the same
amount of flow value and nesting level. An example of ambiguity is shown in Figure 4.5
where the algorithm fails in mapping the IR basic blocks nC and the IR sequence nB → nD
because they can be equally mapped to one of the binary basic blocks nC′ and nB′ .

In case of ambiguities in the mapping, these have to be manually fixed by an expert. The
expert can disambiguate the mapping of single basic blocks by matching the basic blocks
implementing the same code at the IR and binary level. Still, this can be a hard task depending
on the complexity of the program, the number of ambiguities and the similarity between the
instructions. In case of large applications, this solution does not scale and it can be tricky to
disambiguate very similar operations.

50 Chapter 4. Mapping IR to Binary Control-Flow Graphs

A
Flow: 1.0

B
Flow: 0.5
Nesting: x C

Flow: 0.5
Nesting: x

E
Flow: 1.0
Nesting: x

A'
Flow: 1.0
Nesting: x

C'
Flow: 0.5
Nesting: x

B'
Flow: 0.5
Nesting: x

E'
Flow: 1.0
Nesting: x

Mapping
Ambiguity

D
Flow: 0.5
Nesting: x

Nesting: x

Figure 4.5 – Example of CFG mapping ambiguity: The algorithm presented in [25] fails in automat-
ically mapping an IR CFG to its corresponding binary CFG in case of multiple equal matches. In
this example, the basic block nC and the IR sequence nB → nD of the IR CFG on the left side can
be equally match to the basic blocks nC′ and nB′ because they share the same amount of flow value
and nesting level.

4.2.3 Other Approaches

Many other approaches try to solve the mapping problem between different CFG represen-
tations. A first interesting approach in the literature is the control flow dependency mapping
presented by the authors in [112]. The base idea is to match source code to binary basic
blocks that are executed under the same condition. Similar branching in the two software
representations are identified and utilized for matching the involved basic blocks. The algo-
rithm relies on the compiler debug information and it suffers from the ambiguity problems
described in Section 4.2.1. Even if this approach seems to be more robust to aggressive com-
piler optimizations than the dominator homomorphism approach (other structural optimiza-
tions are considered in addition to loop unrolling), it can still fail in producing an accurate
mapping.

A different approach [171] tries to tackle the limitations of the dominator homomorphism
approach by simplifying the mapping problem. The simplification consists in considering a
higher optimized version of the program when a specific structure of the source code is highly
changed by the compiler optimizations. Imprecision and ambiguities in the mapping are
reduced by substituting the source code parts subjected to aggressive compiler optimizations
with functionally-equivalent optimized IR code. The substitution of the code does not always
solve the problem. In most cases, the optimized IR code shows a structure that is closer to the
binary representation, helping in producing a valid mapping. In some other cases, mapping
IR to binary code can be complex too and therefore the proposed problem simplification does
not fully solve the problem.

4.3. Fully-Automatic Subgraph Matching Algorithm 51

Considering the difficulties caused by the structural modification of the CFGs due to aggres-
sive compiler optimizations, other approaches [97, 172, 150] prefer to utilize a different tech-
nique based on optimizations handling. These approaches try to model the structural changes
of the CFGs (especially the loops in a CFG) by mimicking the transformation rules applied
by the compiler. This way of approaching the problem is compiler specific and it requires
modeling a huge number of optimizations. Furthermore, applying the same compiler opti-
mizations in a different order can cause different structural changes depending on eventual
dependent effects between the optimizations. Therefore, an appropriate modeling technique
can ensure accurate mappings between two CFGs but this way of tackling the problem does
not scale in complexity. In fact, it might be impossible to efficiently model all the possible
compiler optimization effects. Differently from other works, the approach presented in[97]
proposes a solution for reducing the problem space by recursively considering sub-regions
of a CFG. This solution reduces the size of a graph in a scalable way but it still suffers from
infeasibility of modeling all the possible effects of the different compiler optimizations.

A final alternative, inspired by the previously mentioned optimization handling approaches,
consists in the mapping strategies presented in [16, 107]. These kinds of approaches are
focused on mapping IR to binary code. Instead of relying on the initial IR code produced
by the front-end compilation phase, these approaches consider the last optimized version of
the IR code. In this way, analyzing the IR code that is given in input to the compiler’s back-
end, the mapping algorithm has to model only the final architecture-dependent optimizations.
Furthermore, this version of the IR code is closer to the compiled binary. In this way, it is
easier for the algorithm to identify, modeling and mapping the loops in the two different
program representations. Better mapping accuracy can be achieved compared to the previous
approaches but minor imperfections in the optimizations modeling can introduce significant
inaccuracy in the resulting mapping.

4.3 Fully-Automatic Subgraph Matching Algorithm

A first contribution to the state of the art presented in this thesis consists in the proposal of a
solution in support of the approach presented by the authors in [25] and previously described
in Section 4.2.2. The approach can produce accurate mappings but it is not fully automatic.
As discussed, the main limitation of the subgraph matching algorithm is that the heuristic
fails in producing a complete mapping in case of ambiguities in the CFGs. It requires the
supervision of an expert that manually fixes the gaps. A fully automatic solution is desirable
instead. Hereafter is presented a tracing-based solution that can make the approach fully
automatic.

4.3.1 Tracing-Based Solution

The idea at the base of this solution consists in replacing the supervision of an expert for
solving eventual ambiguities with an automatic mapping disambiguator component as shown
in Figure 4.6. This component is intended to complete a partial mapping produced with the
algorithm presented in Section 4.2.2 and solving the ambiguities by relying on execution
traces of the program. For this purpose, the disambiguator compares the program flow in the
binary traces with the one in the IR traces that are generated executing the program with the
same input data. The process can be iterated multiple times by varying the input data, for
visiting different paths in the CFGs, until a complete mapping is produced.

The workflow shown in Figure 4.6 is perfectly applicable for the ideal simulation workflow
of the host-based approach previously presented in Figure 2.5. In fact, the timing model is
intended to be generated by measuring and analyzing multiple timing traces that are extracted

52 Chapter 4. Mapping IR to Binary Control-Flow Graphs

Binary
TraceInput

Data

IR

Binary

lli

Mapping
Disambiguator

IR Trace

Target
Processor

Partial
IR to Binary

Mapping

Complete
IR to Binary

Mapping

Iteration

Figure 4.6 – Proposed fully-automatic subgraph matching solution: An automatic mapping disam-
biguator can replace the expert supervision for completing eventual only partial mappings. The dis-
ambiguator solves the ambiguities in the CFGs mapping by comparing IR traces with binary traces
generated with the same input data. The process can be iterated multiple times by varying the input
data until all the basic blocks are completely mapped.

directly from the target processor by varying the input data. The mapping disambiguator can
consequently reuse the extracted tracing information. The IR traces instead can be gener-
ated by executing the IR code via lli and forcing it to print out the label of the visited
basic blocks during the program execution. The basic block labels can be easily extracted
by implementing an LLVM annotation pass. The annotation consists in adding a specific
instruction at the beginning of every basic block that forces the lli execution to export the
basic block label.

Algorithm

The disambiguator mapping algorithm is explained relying on the exemplary ambiguity map-
ping problem previously represented in Figure 4.5. The algorithm can be considered as an
extension of the one presented in Section 4.2.2. In fact, an initial mapping is required to be
generated between the CFGs using the subgraph matching algorithm. In case of the gener-
ation of an incomplete mapping, due to some ambiguities, the disambiguator algorithm can
be executed for filling the mapping gaps. The pseudo code in Algorithm 1 describes all the
necessary essential steps required by the proposed algorithm.

The initial generated partial mapping succeeds in matching the node nA to node nA′ and
node nE to node nE′ . The other nodes instead cannot be mapped because of an ambiguity
problem between them caused by the same metrics of flow value and nesting level in the
subgraph. In general, an ambiguity can be expressed as a pair of disjointed sequences of
nodes that share the same predecessor. They also share a successor, if any. For example,
in the figure, the nodes nA and nE are respectively the predecessor and the successor of the
ambiguity (nB → nD, nC). These two sequences of nodes can be indistinguishably mapped
to the nodes of the other CFG representation in the ambiguity (nB′ , nC′). According to the
partial mapping initially generated, a sequence of nodes in an ambiguity can be mapped to
only one sequence of nodes in a specific ambiguity of the other CFG representation. This
means that, for example, node nC can be mutually mapped only to node nB′ or node nC′ . The
initially generated partial mapping is one of the crucial inputs of the algorithm.

The first step of the algorithm requires the identification of all the ambiguities in two CFGs
by traversing them with a depth-first search. Thereafter, the ambiguities have to be sorted in
a way of data structure, similar to a dictionary, that associates an ambiguity in one CFG rep-
resentation to another ambiguity in the other CFG. For example, considering the previously

4.3. Fully-Automatic Subgraph Matching Algorithm 53

Algorithm 1 Mapping Disambiguator(CFG, CFG’, trace, trace’, partialMapping)
1: mapping := partialMapping
2: [ambiguities⇔ ambiguities’] := identfyAmbiguities(CFG, CFG’, partialMapping)
3: adjustTraces(trace, trace’)
4: while true do
5: if

∣∣[ambiguities⇔ ambiguities’]
∣∣ = ∅ then

6: break(“Solved all the ambiguities.”)
7: else if trace = ∅ or trace’ = ∅ then
8: break(“No more traces to analyze.”)
9: end if

10: // Map sequences and mutual sequences
11: sequence := popUntilNextAmbiguousSequence(trace)
12: sequence’ := popUntilNextAmbiguousSequence(trace’)
13: mapping := mapping

⋃
map(sequence, sequence’)

14: mutual := getSibling(sequence)
15: mutual’ := getSibling(sequence’)
16: // Update mapping and mark ambiguity as solved
17: mapping := mapping

⋃
map(mutual, mutual’)

18: solvedAmbiguity := (sequence, sequence’)⇔(mutual, mutual’)
19: [ambiguities⇔ ambiguities’] := [ambiguities⇔ ambiguities’] \ solvedAmbiguity
20: end while
21: return mapping

described mapping ambiguity, an entry of the data structure has to be (nB → nD, nC) ⇔
(nB′ , nC′). The operator⇔ is utilized for expressing the mutual mapping between the single
sequence of nodes in the ambiguity.

The algorithm can start solving possible ambiguities in the mapping considering the flow
information contained in both the IR and binary input traces. The information in the traces
has to be arranged in a way that a trace consists of a sequence of basic block labels, if
the trace is an IR trace, or a sequence of basic block start addresses, in case of a binary
trace. A mapping is specific per function, therefore only the information specific for a given
function has to be considered. The algorithm sequentially and repeatedly accesses both the
traces. This causes the algorithm to follow the program’s control flow until a stop condition
is satisfied. Three stop conditions cause the algorithm to stop when trying to complete the
mapping between two CFGs and these are: an ambiguity is encountered, no more traces are
available or all the ambiguities have been solved. The first stop condition allows the algorithm
solving an ambiguity problem without causing the algorithm’s end. In fact, two sequences
of nodes that cause the algorithm stopping represent two sequences that have to be mapped
to each other. As a consequence, due to the mutual association property, the two non-visited
sequences can be mapped to each other too. For example, as shown in Figure 4.7, a stop
caused by visiting nodes nC and nC′ in the respective graphs implies the mapping ambiguity
solution that initially maps them to each other and consequently mutual maps the nodes in
sequence (nB → nD) to node nB′ . The other two conditions instead, force the algorithm to
terminate.

The algorithm can be iterated multiple times by extracting new multiple traces by varying the
input data for trying to visit different control flow paths and consequently solving as many
ambiguities as possible. The iteration should be continued until a full mapping is obtained.

54 Chapter 4. Mapping IR to Binary Control-Flow Graphs

A
Flow: 1.0

B
Flow: 0.5
Nesting: x C

Flow: 0.5
Nesting: x

E
Flow: 1.0
Nesting: x

A'
Flow: 1.0
Nesting: x

C'
Flow: 0.5
Nesting: x

B'
Flow: 0.5
Nesting: x

E'
Flow: 1.0
Nesting: x

Solving
Ambiguity

D
Flow: 0.5
Nesting: x

Nesting: x

Solved

Mutually
Solved

Figure 4.7 – Fully-automatic subgraph matching disambiguation: A partial mapping can be com-
pleted relying on the information extracted by tracing the program execution flow at both the IR and
binary representations. Two nodes like nC and nC′ can be directly matched relying on the visited
program flow, marked in gray. As a consequence, also the sequence (nB → nD) can be matched to
node nB′ for mutual exclusion.

4.3.2 Limitations

The presented tracing-based algorithm, starting from an incomplete mapping generated as de-
scribed by the algorithm in [25], allows generating a complete and accurate mapping between
two CFG representations in a fully automatic way. The improvement consists in filling the
mapping gaps by comparing IR and binary execution paths extracted from the corresponding
traces generated giving in input the program the same input data. On the one hand, the solu-
tion can fix the ambiguities problem, but on the other hand, it can be hard to identify the exact
input data that leads the execution to visit the desired control flow path. Therefore, multiple
iterations can be required for solving the problem showing scalability problems in case of
large and complex industrial settings. A more flexible and scalable solution is consequently
desirable.

4.4. Two-Phases Algorithm 55

4.4 Two-Phases Algorithm

On the one hand, the tracing-based proposed enrichment for the heuristic initially presented in
[25] makes the mapping process fully automatic. On the other hand, as previously described,
it can be hard to identify all the necessary input data for solving the mapping ambiguities.
For this reason, a new and fully automatic methodology has been defined for mapping LLVM
IR CFGs to their corresponding binary CFGs.

The new methodology is compiler specific because it relies on tools and functionalities pro-
vided by the LLVM Compiler Infrastructure. The bitcode format, that can be produced com-
piling a program only with the LLVM compiler, is the only IR code representation considered
by the methodology.

The two prior mapping approaches presented in [149] and [25] are the main source of inspi-
ration for the new two-phases algorithm. Both of them assume that there exists a mapping
between every IR CFG and its corresponding binary representation and that it is unique.
They also assume that such mapping exists even when the program is compiled with aggres-
sive compiler optimizations. This assumption is supported from the fact that all the different
optimization steps have to preserve the overall control flow of a given input program. This
assumption is also at the base of other different approaches [97, 16, 107]. The approach
of the two inspirational algorithms in solving the problem is similar: initially, they identify
some key nodes that can be directly matched and consequently, they fill the mapping gaps
relying on the information extracted from the control flow graphs or dominator tree.

As shown in Figure 4.8, the proposed methodology for mapping LLVM IR to binary machine
code is composed of two distinct phases. To the best of the author’s knowledge, differently
from any other mapping approach in literature, the mapping between two different represen-
tations of the same CFG can be produced by executing a two-steps algorithm. The complex
mapping problem is tackled by initially mapping the IR to MIR CFGs and subsequently
mapping the MIR to binary CFGs. The two steps represent a fundamental simplification of
the mapping problem. In fact, the compiler optimizations that can change the structure of a

Source
Code

LLVM
Compiler

Optimizations

IR to Binary
MappingMapping Algorithm

Label
Matching

Isomorphism
Matching

i0

i1

i2

i3 i4

LLVM IR CFG

m0

m1

m2

m3

LLVM MIR CFG

b0

b1

b2

Binary CFG

Figure 4.8 – Two-phases methodology for LLVM IR to binary machine code matching: The structure
of a CFG at the bitcode level is initially mapped to its corresponding LLVM MIR representations.
Consequently, the structure of the second representation is mapped to the corresponding binary im-
plementation. In the first phase, the mechanism relies on a label matching algorithm. In the second,
the two CFG structures are mapped according to an isomorphism matching algorithm.

56 Chapter 4. Mapping IR to Binary Control-Flow Graphs

program can be performed at different stages of the compilation process. The accuracy of
a mapping algorithm strongly depends on the effectiveness in considering all of them. The
different intermediate representations can represent a valid support in the mapping definition.
For example, the structure of an MIR CFG already includes all the effects of the architecture-
independent optimizations because these are performed at the IR level. The IR and MIR
CFGs, between them, share some basic block labels. Furthermore, depending on the time
of generation of an MIR module, the structure of an MIR module may also include part of
the architecture-dependent optimizations. When the MIR is generated immediately before its
translation to MC code, its structure resembles the one of the final binary code.

The problem simplification ensured by subdividing the mapping problem in two distinct
phases enables the generation of mappings that can accurately match paths in the IR CFGs
to paths in the binary CFGs. The approach is fully automatic and it does not require the
supervision of an expert or any compiler modification. The next sections describe the two-
phases algorithm presenting first the label matching algorithm, utilized in the first step, and
the isomorphism matching used in the second and final step.

4.4.1 Label Matching Algorithm

The algorithm for mapping paths of an IR CFG to paths of the corresponding MIR CFG relies
on the information provided by the basic block labels of both the two software representa-
tions. In fact, this information supports the proposed methodology for automatic mapping
IR to MIR CFGs. The basic block labels are completely independent from the debug sym-
bol information, which can be unavailable or eventually imprecise. They are internal to the
compiler and they identify in an univocal way the nodes of a CFG.

The graphs in Figure 4.9 show an example of the two types of CFGs annotated with basic
block labels information resulting from the compilation with optimization level -O1 of the
fir function, extracted from the edn Mälardalen benchmark [54] and shown in Listing4.1.
In particular, the graph in Figure4.9(a) represents the IR CFG and its corresponding MIR
CFG is shown if Figure4.9(b). Generally, the structure of the two graphs is similar and they
share multiple basic block labels. Unfortunately, as the example shows, a direct mapping is
often not possible because of the effects of the compiler optimizations.

Listing 4.1 – Source code of the fir function extracted from the Mälaralden edn benchmark [54].

1 /***
2 * FIR Filter *
3 ***/
4 void fir(const short array1[], const short coeff[], long int output[]){
5 long int i, j, sum;
6

7 for (i = 0; i < N - ORDER; i++) {
8 sum = 0;
9 for (j = 0; j < ORDER; j++) {

10 sum += array1[i + j] * coeff[j];
11 }
12 output[i] = sum >> 15;
13 }
14 }

The compiler optimizations focused on the instructions level cannot modify the structure of
a CFG. The optimizations that can change the structure of a program operate at the basic
blocks level. These optimizations modify the CFG of the different functions in a program
by inserting or removing nodes as previously discussed in Section 4.1.2. The label matching
algorithm is intended to model all the node insertions and removals applied at the IR level

4.4. Two-Phases Algorithm 57

for.cond.2.preheader

entry

for.cond.1

for.end.2

for.cond.2

for.body for.end.1

start

exit

(a) IR control flow graph.

for.cond.2.preheader

entry

for.end.2for.body

for.end.1

start

exit

(b) MIR control flow graph.

Figure 4.9 – Example of IR and MIR CFGs annotated with basic block labels: The two graphs
represent the structure of the corresponding IR and MIR CFGs for the fir function resulting from
the compilation of the Mälardalen edn benchmark when compiled and optimized applying the opti-
mization level -O1.

as well as the ones applied to the MIR level. For example, the two graphs in Figure 4.9
shows the compilation effects due to the removal of two IR nodes (identified by the labels
for.cond.1 and for.cond.2) that are not present in the corresponding MIR CFG. Dif-
ferently from the node removals, the insertion of a MIR node implies the appearance of a
new node identified by a synthetic label that is not present in the IR CFG. In either the cases,
the insertion or removal of nodes always preserve the overall control flow of the original IR
CFG.

Due to the compiler optimizations that can change the structure of a CFG, for the same func-
tion, the set of nodes in the IR and in the MIR CFGs may differ. As a consequence, also
the set of edges may differ. The differences between the two sets make a direct mapping
between the two graphs impossible. The label matching algorithm is intended to map paths
between two different CFG representations. If possible, the algorithm directly maps edges
between them (sequences of length one). Otherwise, paths composed of sequences of con-
secutive edges are considered. The steps performed by the complete algorithm are listed in
Algorithm2 and they are accurately presented in the following paragraphs.

Initial Partial Mapping

The label matching algorithm starts with the reconstruction of the IR and MIR CFGs. The
nodes of both the graphs are consequently annotated with the labels of the corresponding
basic blocks. At the end of this initial phase, the CFGs to be mapped appear in a similar way
as the two graphs in Figure4.9. The label annotation inserted in the nodes allows defining an
initial partial mapping between some of the edges in the two CFGs.

A supporting function is necessary for the next steps. The supporting function Φ is utilized
for identifying a specific node nl in a CFG of a function f that is annotated with a given input
label l:

Φ(l, CFG f) =

{
∅ nl ̸∈ N f

nl otherwise
(4.1)

58 Chapter 4. Mapping IR to Binary Control-Flow Graphs

Relying on this function, and after the initial annotation, the algorithm continues by identify-
ing the IR edges that have been preserved from the compiler optimizations. These edges can
be directly mapped and they define the initial partial mapping between IR and MIR CFGs.

The steps required for generating the initial partial mapping are listed in the first part of
Algorithm 2. After the initial labels annotation, the algorithm iterates through all the edges of
one CFG representation and checks if any edge identified by the same node labels is present
also in the other CFG representation. The connection between IR and MIR is possible thanks
to the Φ function and the node labels. Coloring in gray the nodes that are present in only
one CFG representation and in white the common ones helps in recognizing the common
edges. If the edge is present in both the CFGs, the mapping is consequently updated with
a direct match. Otherwise, the edge is placed in the list on unmatched edges. At the end,
it is necessary to add to a second list of unmatched edges also all the edges in the other
CFG representation that have not been considered in the initial mapping. Both the lists of
unmatched edges and the partial mapping are the inputs of the next algorithm’s phase.

Considering a more suitable example, in Figure 4.10 is shown the partial mapping generated
by the algorithm between an IR and its corresponding MIR CFG extracted from the adpcm
benchmark of the Mälardalen suite compiled with the middle-end optimization -O2. For
the sake of simplicity, synthetic labels have replaced the original basic block labels. The
highlighted edges show the paths that remain to map for the algorithm.

Algorithm 2 Label Matching(CFGir(Nir, Eir), CFGmir(Nmir, Emir))

1: mapping := ∅
2: unmatchedir := Eir; unmatchedmir := Emir;
3: // Initial Partial Mapping
4: for all (nx, ny)ir ∈ Eir do
5: if

(
Φ(x, CFGmir), Φ(y, CFGmir)

)
∈ Eir then

6: // Direct match between edges
7: emir :=

(
Φ(x, CFGmir), Φ(y, CFGmir)

)
8: mapping := mapping ∪ map

(
(nx, ny)ir, emir)

9: unmatchedir := unmatchedir ∖ (nx, ny)ir

10: unmatchedmir := unmatchedmir ∖ emir

11: end if
12: end for
13: // Complete IR to MIR CFG Mapping
14: for all (nx, ny)ir ∈ unmatchedir do
15: if ∃ pmir

x→y | getMinSimilarPath(CFGmir, x, y) ̸= ∅ then
16: mapping := mapping ∪ map

(
(nx, ny)ir, pmir

x→y
)

17: unmatchedmir := unmatchedmir∖ getEdgesInPath(pmir
x→y)

18: end if
19: end for
20: for all (nx, ny)mir ∈ unmatchedmir do
21: if ∃ pir

x→y | getMinSimilarPath(CFGir, x, y) ̸= ∅ then
22: mapping := mapping ∪ map

(
pir

x→y, (nx, ny)mir)
23: end if
24: end for
25: return mapping

4.4. Two-Phases Algorithm 59

A

B C

D F

H
E G

A

F D

H

EG

startstart

end end

Figure 4.10 – Initial partial mapping between preserved edges: The first part of the algorithm re-
quires to directly map the preserved edges from the compiler optimizations between an IR CFG, (the
one on the left side) and its corresponding MIR CFG (the graph on the right side). In gray are colored
the nodes that, due to the compiler optimization effects, are part of only one representation of the
CFG. The direct matches define an initial partial mapping between IR and MIR CFGs that will be
completed in the next part of the algorithm.

Complete IR to MIR CFG Mapping

The previously unmatched paths have to be mapped following the steps in the second part of
Algorithm 2. The algorithm first tries to iteratively map the IR unmapped paths to some of
the MIR paths and consequently, in a similar way, completes the mapping by matching still
unmapped MIR paths to IR paths.

The initial and the final nodes of an unmatched path are always two nodes that have been pre-
viously colored in white. Furthermore, two paths in the two CFGs are matchable only if they
are similar. Two paths are similar if they share, at least, the same nesting level. This means,
for example, that if one path includes a back-edge, a back-edge has to be included also in
its matching path. Therefore, the algorithm starts iterating through the unmatched IR paths
and, for each of them, identifies the corresponding path in the MIR CFG. Another similarity
property consists in the node labels. An unmatched IR path pir

A→D, from a node with label A
to a node of label D, can be mapped only to the minimal MIR path identified by nodes anno-
tated with the same labels relying on the supporting function Φ. The third and final similarity
criteria considers the dominator relation between the nodes in the two path representations.
Two matchable paths have to share a similar dominator relation between the two CFG rep-
resentations. For instance, in the mapping example shown in Figure 4.11, the unmatched IR
path pir

D→H can be mapped only to the unmatched MIR path {(D, E), (E, H)}mir and not to
{(D, E), (E, E), (E, H)}mir because it is the one that respects all the three similarity criteria.
Every time a new match between IR and MIR paths is discovered, this is stored in the initial
partial mapping structure and both the IR and MIR matched edges are removed from the
corresponding list of unmatched edges.

Once completed the iterations through the unmatched IR paths, the algorithm terminates after
repeating the same process for all the remaining unmatched MIR paths. After completing,
the algorithm returns the mapping structure containing the complete mapping between IR
and MIR paths.

60 Chapter 4. Mapping IR to Binary Control-Flow Graphs

A

B C

D F

H
E G

A

F D

H

EG

startstart

end end

(D,H) => ((D,E),(E,H))

((E,D),(D,E)) => (E,E)

((A,C),(C,F)) => (A,F)

((A,B),(B,D)) => (A,D)

Figure 4.11 – Complete IR to MIR CFG mapping: The initial partial mapping based on direct
matching between preserved edges is completed by the second phase of the label matching algorithm.
Paths, highlighted in gray colors, are matched between the two CFGs considering the similarity
parameters between the traversed nodes.

4.4.2 Isomorphism Matching Algorithm

The second step required by the proposed IR to binary mapping approach consists of an
algorithm for mapping MIR to binary CFGs. In most cases, this is a not trivial task. As for
the IR to MIR mapping generation, due to the effects of the compiler optimizations, a direct
mapping between the nodes of a MIR CFG and its corresponding binary CFG is impossible.
This task can be tackled by generating a mapping between the CFGs of the two architecture
dependent representations executing the proposed isomorphism matching algorithm.

The algorithm specifies the necessary steps for the generation of an isomorphism between
the two CFG representations in support of the mapping decisions. In fact, the algorithm
describes how to obtain an isomorphism between the CFGs by modifying the structure of the
graphs of both the representations while preserving their original control flow paths. Instead
of trying to model all the possible effects of the compiler optimizations, that is a hard task, the
approach tries to further optimize the CFGs for simplifying their structure and making them
similar and easier to map. In fact, similarly to certain compiler optimizations, specific nodes
can be removed in order to obtain two graphs with an isomorphic structure. The isomorphism
ensures the definition of a unique mapping between the edges and paths of the original CFGs.
The unique mapping concept is supported by the two inspirational approaches that are at the
base of this algorithm. Consequently, the isomorphic structure of the processed CFGs allows
a direct mapping between the graph structures.

The isomorphism matching algorithm is composed of multiple phases that will be described
in details hereafter and are initially listed in Algorithm 3. An initial annotation phase for
numbering the nodes of the CFGs is followed by a coloring phase that prepares the funda-
mentals for the isomorphism generation. Depending on the coloring results, the isomorphism
is generated. Relying on the adjusted initial annotation, the isomorphism is finally utilized
for defining an accurate mapping between MIR and binary CFGs.

4.4. Two-Phases Algorithm 61

Algorithm 3 Isomorphism Mapping(CFGmir(Nmir, Emir), CFGbin(Nbin, Ebin))

1: mapping← ∅
2: // Node numbering annotation
3: sortByAppearance(Nmir); sortByAddress(Nbin)
4: assignIntegerIds(Nmir, Nbin)
5: // Graph coloring
6: colorNodes(Nmir, Nbin)
7: // Isomorphism generation
8: CFGmir

iso := remove&Annotate(CFGmir); CFGbin
iso := remove&Annotate(CFGbin)

9: Niso
mir := sort(Nmir

iso) Niso
bin := sort(Nbin

iso)
10: updateIntegerIds(Nmir

iso); updateIntegerIds(Nbin
iso)

11: // Mapping definition
12: for all (ni, nj)

mir
iso ∈ Emir

iso do
13: if getAnnotation

(
(ni, nj)

mir
iso

)
̸= ∅ then

14: pmir := extractPath
(
(ni, nj)

mir
iso , getAnnotation

(
(ni, nj)

mir
iso

)
15: else
16: pmir := {(ni, nj)

mir
iso }

17: end if
18: if getAnnotation

(
(ni, nj)

bin
iso

)
̸= ∅ then

19: pbin := extractPath
(
(ni, nj)

bin
iso , getAnnotation

(
(ni, nj)

bin
iso

)
20: else
21: pbin := {(ni, nj)

bin
iso }

22: end if
23: mapping := mapping

⋃
map(pmir, pbin)

24: end for
25: return mapping

Node Numbering Annotation

The objective of the first step of the isomorphism matching algorithm is to label the nodes of
a CFG with unique numerical IDs. The nodes of both the CFGs are consequently annotated.
The numerical IDs are essential for ensuring the definition of a direct mapping in the final
phase. As discussed in Section 3.2.4, the structure of an LLVM MIR module is sequentially
translated at the end of the back-end compilation activities in LLVM MC code. The MC code
is the address-independent code representation for an object file and its structure is similar
to the structure of the final binary executable. Therefore, the structure of the binary code
resulting from the translation of the MIR instructions contained in the ordered basic blocks
code always reflects their order of appearance in the MIR module. Considering the infor-
mation intrinsically contained in the instructions’ order of appearance of both the program
representations, the algorithm provides a unique integer ID to all the nodes of a CFG for later
purposes.

The numbering annotation process differs for the two CFG representations. The nodes of a
binary CFG are straightforward annotated with values in the range from 0 to | nodes | −1
by following the ascent order of their first instruction’s address reported in the binary file.
In a similar way, the MIR nodes are annotated with an integer ID relying on the sequential
order of appearance in the MIR function. The two annotated CFG representations are given
in input to the next phase.

62 Chapter 4. Mapping IR to Binary Control-Flow Graphs

Graph Coloring

In order to obtain an isomorphism between the structure of a MIR and binary CFGs, it is
necessary to remove some nodes from their structures while preserving their control flow.
The algorithm utilizes a coloring scheme for initially marking and consequently identifying
the necessary nodes that have to be removed for this purpose. In the first stage, all the possible
candidate nodes to be removed are identified. The set of candidates is consequently reduced
by identifying specific conditions for which, a node removal, would cause a change in the
control flow.

The coloring activities start by coloring in a neutral white color all the nodes of both the CFG
representations. In the consequent step, all the nodes are analyzed for identifying the ones
that are eligible to be removed. A node has to be marked as a possible node to be removed
if, ignoring potential back-edges and the unique successor of the synthetic start node, its in-
degree is equal to one and its out-degree is at maximum one. All these nodes are colored in
black, as shown in the examples in Figure 4.12. Some of the black nodes could be changed
in different colors during the next steps.

P

B

S

B

P

S

P

B

Figure 4.12 – Initial removal candidate nodes are colored in black: The candidate nodes to be re-
moved for the obtaining an isomorphism between MIR and binary CFGs have to be initially colored
in black. A node has to be colored in black if, ignoring eventual back-edges, it has only one prede-
cessor node and at maximum one successor node.

After that the removal candidate nodes are identified, a subsequent coloring step is necessary
for identifying which of the black node removals would not preserve the original structure
of the paths in the final isomorphic graph. For this purpose, some nodes in the graphs are
colored in dark gray. A node has to be colored in gray if it satisfies one of the following two
conditions:

1. The candidate node is the direct successor of at least two distinct black nodes - The
removal of both its predecessors may cause the change of the control flow by losing
the information belonging to two distinct flows.

2. The candidate node is the direct successor of the last node of an uninterrupted path of
black nodes ps→e and it shares a common direct predecessor np with the first node ns
of the path - The removal of the black nodes’ path would cause the loss of the flow of
a complete path.

The two conditions that determine a node to be colored in dark gray are graphically shown
in Figure 4.13 with the help of some examples.

The dark gray nodes identified in the last step allows the algorithm determining which of
the black colored nodes have to be different colored for exiting from the set of candidate

4.4. Two-Phases Algorithm 63

G

B B'
B

B'

G

W

G

B B'

W

Figure 4.13 – Conditions for coloring a node in dark gray: Exemplary cases where a node has to be
colored in dark gray. These nodes represent a set of supporting nodes used for identifying, in the next
step, the initial colored black nodes that must not be removed from the CFG. Therefore, every dark
colored node is useful for preserving the structure of a CFG during the generation of the required
isomorphism.

nodes that later will be removed. Any node in both the CFGs has to be colored in light gray
if, excluding eventual back edges, it has at least one successor colored in black gray. The
coloring transition for some exemplary black nodes is shown in Figure 4.14. More precisely,
both the initially black colored nodes in the MIR CFG in Figure 4.14(a) are consequently re-
colored in light gray; the node identified by ID number 1 on the binary CFG in Figure 4.14(b)
remains colored in black instead. The so colored CFGs are the inputs for the next step
designed for generating the isomorphism between them.

o

3

1 4

2

5

start

end

o

3

1 4

2

5

start

end

(a) Annotated and colored MIR CFG.

o

4

5 2

3

6

start

end

1

o

4

5 2

3

6

start

end

1

(b) Annotated and colored binary CFG.

Figure 4.14 – Full CFG coloring in support of the isomorphism algorithm: The MIR and binary
CFGs produced from the IR CFG previously presented in Figure 3.9(b) are utilized for showing the
coloring stages required by the isomorphism algorithm. The initial two black nodes in the MIR
version are consequently colored in light gray for preserving the flow structure. Differently, in the
binary CFG, the node labeled with the number 1 remains colored in black and it will be later removed
for making the graph isomorphic with the MIR CFG.

64 Chapter 4. Mapping IR to Binary Control-Flow Graphs

Isomorphism Generation

The nodes that are still colored in black at the beginning of this step are the nodes that have
to be removed from the CFGs. The node removal has to preserve the control flow of a CFG.
Iteratively, and for both the CFGs, the algorithm requires the removal of the remaining black
nodes by performing the following steps:

1. Preserving the control flow and nesting levels of a graph - This can be ensured by
updating, after a node removal, any affected original edge or back-edge. Multiple sce-
narios have to be considered when removing a node nB that, at the end of the coloring
activities, is still colored in black. According to the definition of the coloring scheme,
and excluding eventual back edges, a black node has at maximum one predecessor nP
and one successor nS. The removal of node nX requires to remove also its incoming
and outgoing edges. Therefore, the edges (nP, nB) and (nB, nS) have to be replaced by
a new edge (nP, nS) that directly connect the predecessor with the successor. Any in-
coming back-edge (nP, nB) has to be replaced by a new incoming back-edge (nP, nS)
to the successor. In a similar way, any outgoing back-edge (nB, nS) (including self-
loops as (nB, nB)) has to be replaced by a back-edge (nP, nS) starting from the node’s
successor. Some exemplary cases that show how to update the structure of a CFG after
the removal of a black node are shown in Figure 4.15.

2. Preserving the incremental numerical labeling scheme - The numeric IDs are essential
for the definition of the isomorphism between the CFGs. Therefore the order of the
nodes has to be preserved. This can be ensured by updating the initially assigned IDs.
The remaining nodes have to be sorted, according to their initially annotated ID, and
a new ID (starting again from the value of 0) has to be assigned to each of them by
following the ascending sorting order.

3. Annotating the affected edges - The flow information contained in the initial version
of a CFG can be kept by annotating the new generated edges with information about
the removals. Therefore, every time a new edge is created, it has to be annotated
by indicating which path it replaced. For example, the removal of a node nx, which
causes a new edge (np, ns) to replace the two consecutive edges (np, nx) and (nx, ns),
requires the annotation of the removed path

(
(np, nx), (nx, ns)

)
on the new generated

edge.

B

P

S

P

S
B

P

S

P

S
B

P

S

P

S
B

P

S

P

S

Figure 4.15 – Control flow and nesting level preservation: The removal of any black node requires
preserving the structure of a CFG and consequently to update the edges that are connected to the
black node. Four different scenarios show how to properly update the edges of a CFG after the
removal of a black node.

4.4. Two-Phases Algorithm 65

After that all the three steps are correctly performed, the structures of both the MIR and the
binary CFGs are isomorphic, like in the example shown in Figure 4.16. The isomorphism
allows the generation of an initial direct mapping between the two CFGs that has to be com-
pleted by considering the information annotated on some of the edges, as explained in the
next final step.

Mapping Definition

The isomorphic structures ensured by the previous step allows generating the final and com-
plete map between corresponding paths in the original MIR and binary CFGs. In fact, thanks
to the isomorphic property of the modified CFGs, the mapping can be produced in a straight-
forward way via direct matching of the graphs’ edges (this was not possible before the mod-
ifications applied to both the CFG representations). The direct matching assignment is based
on the information provided by the updated node IDs and by the eventual annotated edges
during the previous step.

When generating the mapping via direct matching between the edges of the isomorphic
CFGs, two different kinds of edges have to be considered:

1. Simple edge - An edge in an isomorphic CFG is part of the original graph only if it has
not been annotated. A simple edge is a non-annotated edge. In this case, the original
edge can be directly mapped with the corresponding edge or path in the other graph.

2. Annotated edge - This kind of edge is not part of the original CFG because it has been
generated during the isomorphism generation step, after the removal of one or more
black nodes. If the path composed of the sequence of edges {(n0, n1), ... , (nn−1, nn)}
is the annotation assigned to the edge (nx, ny), the matching process has to consider
the path {(nx, n0), (n0, n1), ... , (nn−1, nn), (nn, ny)} instead of the simple edge.

o

3

1 4

2

5

start

end

o

3

4 1

2

5

start

end

R
em

ov
ed

: {
(0

',1
'),

(1
',6

')}

Figure 4.16 – Direct mapping between two isomorphic CFG structures: The generation of the iso-
morphism between the MIR and the binary CFGs previously presented in Figure 4.14(b) allows
defining a direct mapping between their nodes (or edges). The direct mapping relies on the updated
IDs assigned to the nodes of both the graphs. This initial direct mapping and the annotation on the
edges of the graphs are the base for the final mapping generation.

66 Chapter 4. Mapping IR to Binary Control-Flow Graphs

The so generated MIR to binary CFGs mapping in addition to the ones for mapping IR to
binary CFGs, generated in the first step, allows to accurately mapping the LLVM IR paths to
their corresponding binary paths by first translating them into MIR paths.

4.5 Summary

This chapter presented a novel approach for mapping LLVM IR to binary CFGs. The prob-
lem definition and the discussion about the state of the art approaches for addressing this
complicate issue have been initially discussed. Consequently, a tracing-based mapping solu-
tion has been presented as a fully automatic improvement of a previously defined mapping
approach. The limitations of this extension are discussed before presenting the novel solution
that takes advantage of the stronger points of the first solution. The proposed LLVM IR to
binary CFGs mapping approach presented in this chapter is fully automatic and it is based on
some internals of the LLVM compiler. The presented mapping approach proposes to tackle
the hard problem by dividing the mapping generation in two distinct phases by implementing
two different algorithms and consequently simplifying the problem. The first one produces
an initial mapping between the IR and MIR labels of the basic blocks of two corresponding
CFGS. The second one maps MIR to binary CFGs after the definition of an isomorphism
between them. The two mappings together provide accurate IR to binary CFG mappings
in support of host-based timing simulations based on the IR representation of a given input
program.

67

CHAPTER 5

Efficient Performance Estimation via IR-Level
Host-Based Simulation

The scope of this chapter is to present the timing simulation methodology at the base of this
thesis. The explanation starts with a description and motivation about the kind of timing
model that has been chosen for producing performance estimations via simulation. There-
after, the proposed LLVM-IR context-sensitive timing simulation methodology is described
in details. The description starts by describing a flexible simulation technique based on the
interpretation of the program to analyze. Consequently, a faster simulation technique based
on the JIT-compilation of the program is described. Both the techniques allow to evaluate
multiple configurations in parallel in only one simulation. Consequently, it is presented an ex-
tension for the simulation methodology that enables the early evaluation of the performance
of a heterogeneous system. Finally, the chapter ends by presenting a co-simulation between
the proposed simulation methodology and the simulator natively provided by Simulink. This
co-simulation technique enables the consideration of the timing effects due to the execution
of the Simulink model on a real target platform.

5.1 Sources of Timing Variation

As already discussed in the previous sections, most of the available processors are not de-
signed with a focus on their timing behavior analyzability. They are rather designed for max-
imizing the throughput of the instructions to execute relying on complex hardware resources
and mechanisms. Therefore, the time requested for executing the same execution path on
a given processor may vary depending on the internal state of such hardware resources. A
key aspect for producing accurate timing estimations is to identify these mechanisms and
to be able modeling their different behaviors [134]. Hereafter are discussed the commonly
included hardware resources that are a source of timing variation [124].

68 Chapter 5. Efficient Performance Estimation via IR-Level Host-Based Simulation

Pipeline

The pipeline can be a complex hardware resource that is commonly included in all modern
processors. The scope of this resource is to increase the average performance of a processor
by increasing the utilization of all the other hardware resources and ensuring a higher instruc-
tions per cycle (IPC) value. Nevertheless, dynamic hazards can induce stalls on the pipeline
stages that may cause a variation in its behavior [99]. Out of order execution pipelines are
even harder to analyze. These kinds of pipelines try to reduce the number of stalls allowing
the execution of the program instructions in a different order from the one defined by the
compiler. A fetched instruction is directly executed as soon as the required input operands
and the hardware resources are available without considering the instructions order.

The timing behavior of a pipeline is influenced by its size. Wrong predictions and stalls may
cause different penalty cycles that depend on the number of stages. Furthermore, a larger
pipeline allows a higher number of hazards that can be performed at the same time.

Branch Predictor

A branch prediction unit is a hardware resource that tries to improve the performance of a
system by attempting the resolution of a branch instruction before its time. Every branch
predictor utilizes a specific strategy that can be static or dynamic. In both of the cases,
wrong branch prediction of not taken paths may have an impact on the timing behavior of the
pipeline and consequently cause timing variation on the overall system behavior.

Floating Point Unit

Some of the floating point units included on modern processors can introduce variation on
the execution time behavior of a program. In fact, in some cases, a hardware mechanism
is implemented that allows to pipeline consecutive floating point instructions. This mech-
anism can be a source of stalls in the processor pipeline, especially in case of out of order
pipelines. Furthermore, hardware manufacturers usually do not disclose timing information
for all the kinds of instructions and especially for the floating point instructions (because un-
predictable). For instance, ARM does not provide any timing information about the floating
point instructions of two out-of-order processors like the Cortex-A9 and Cortex-A15 [115].

Cache Memories

Cache memories are commonly implemented for speeding up the execution of a program
relying on the spatial locality and temporal locality properties of both program instructions
and data. The capacity of a cache memory is limited and multiple different replacement
policies are available. Furthermore, in some cases, processors include nested levels of cache
memories.

Unfortunately, on one side the adoption of cache memories improves the average perfor-
mance of a system but on the other side it reduces its timing analyzability. The realization
of a valid cache model can be hard, especially in case of lack of essential data due to intel-
lectual property restrictions. Cache memories are stateful resources and even small model’s
inaccuracies may invalidate the analysis results. Furthermore, cache memories are subjected
to timing anomalies [134].

5.2. Context-Sensitive Timing Information 69

MMU and TLB

The translation lookaside buffer (TLB) is a small cache memory utilized by the memory
management unit (MMU) for speeding up the translation of the virtual addresses. Powerful
processors usually include an MMU. The time requested for translating a virtual address may
vary depending on the number of operations requested for the translation. Bigger TLBs re-
quire less data replacement operations. Nevertheless, TLBs are affected by timing anomalies
like the cache memories.

5.2 Context-Sensitive Timing Information

The list of hardware resources presented in Section 5.1 shows only the common available
hardware resources that are source of timing variations. This list can be extended by con-
sidering vendor specific implementations. Nevertheless, all these hardware resources are
stateful. All of them are hard to in-depth model because of their complexity or lack of infor-
mation. As it will be discussed in the next paragraphs, an approach based on measurements
is preferable for modeling their timing behavior at a context-level that is able to consider the
program execution history. In this regard, the proposed simulation methodology utilizes a
specific implementation of a so-called timing database [118, 119, 117] as source of timing
information. Hereafter the base concepts for generating such timing database are introduced.

5.2.1 The Concept of Context

The execution time of a complete program depends on the execution time of all the instruc-
tions in the control flow path. Unfortunately, it is unrealistic to assign a fixed execution time
for every instruction in the program. A performance estimation based on this assumption may
result extremely inaccurate. In fact, the execution time of an instruction can vary depending
on the program’s execution history and its control flow [177]. Instructions in a loop are com-
monly subjected to this kind of timing behavior. For example, during the first loop iteration,
the instructions can take longer for being executed compared to the consecutive iterations
because the information needed is not cached [180, 156]. Therefore, a valid performance
estimation approach considers different execution times for the same instruction depending
on the visited control flow path. The way of control in a CFG is also known as context.

Contexts are generally defined at the basic blocks granularity because of the sequential execu-
tion of their instructions, from the first one until the last one without possibility of branching.
A context defined at the CFG-level can consider only local loops. Differently, a program-
level context can consider loops due to a sequence of function calls in the ICFG. When un-
rolled, program-level contexts are more suitable for describing the visited control flow path
for reaching a specific basic block.

The concept of context was initially defined in [104, 37] as a support for the analysis of
programs. Under the assumption that common programs spend most of their time in loops,
contexts provide a formal way of describing this behavior. In the timing analysis domain, the
concept of context has been successfully applied in WCET analysis tools [103, 36] as well
as for producing accurate timing estimations via context-sensitive timing simulations [152,
119, 118]. In fact, the accuracy of the context-sensitive timing simulations is enabled by a
timing granularity that does not require any direct modeling of complex hardware resources’
behavior [21].

In the remaining parts of this section, some necessary notations are given before to present
the context-based source of timing information selected for producing accurate performance
estimations via simulation.

70 Chapter 5. Efficient Performance Estimation via IR-Level Host-Based Simulation

Call String

A call-graph-based definition for the concept of context relies on a finite abstraction of all
the possible different executions of a basic block due to its previous call execution histories
[168]. Multiple call strings can be utilized for describing all the different execution histories
of a basic block. A formal definition for the concept of call string is formulated in [177].
Given a program P containing a set of functions F = (f0, f1, ..., fn) and a set of loops
L = (l0, l1, ..., ln), for a basic block b a call string is a word C:

C : P
⋃

L×N (5.1)

if b can be reached starting from the entry basic block of P, by calling all the functions in
F, iterating through all the loops in L and by following their order of appearance in C. A
more practical way of defining a call string is representing it as a string composed of all the
traversed edges from the program start until the basic block execution.

Since the call graph is known, all the possible call strings for every basic block can be ide-
ally statically computed. Unfortunately, this is not realistic. In fact, due to recursion or to
unbounded loops, the set of call strings may not be finite. An example of an infinite set of
call strings for a simple program is shown in Figure 5.1.

A

B C

D

E

Call

F

G

Call

Return

Return

main() f() loop

A,B,C,D,E,F,G
A,B,C,1 x loop,F,G
A,B,C,2 x loop,F,G
...
A,B,C,n x loop,F,G
...

Call Strings

Figure 5.1 – Possible infinite contexts of a program due to unbounded loop: The length of a call
string for the represented ICFG of a simple program can be hypothetically infinite. If unbounded,
the loop in the called function can be iterated an infinite number of times. As a consequence, the set
of contexts required for describing the timing behavior of all its basic blocks may result infinite too.

5.2. Context-Sensitive Timing Information 71

VIVU Mapping

The problem of having a number of infinite number of contexts due to the hypothetical in-
finite size of the call strings can be tackled by adapting an adequate technique that makes it
systematically finite. In this regard, the Virtual Inlining and Virtual Unrolling (VIVU) map-
ping [104] is a function that enables the generation of a finite set of contexts for a given set
of call strings. The VIVU mapping function makes it possible thanks to a well-defined set of
operands that allows imposing bounds to any possible call string.

The VIVU(n, k) is a function that, given in input a call string of any size, returns a certain
set of contexts arranged depending on two numerical parameters. These two parameters are:

1. Loop recursion count - This first parameter, indicated as n, determines the maximum
loop recursion count that has to be taken into account for a given call string.

2. Number of elements - This second parameter, indicated as k, limits the number of
elements that have to be considered in a context.

By varying the values of these two parameters, the VIVU function determines the finite set
of contexts that have to be considered for a given call string.

The values of the both the parameters n and k can vary between zero and infinite. The two
parameters are independent. Varying the values of the parameters will change the number and
the length of the contexts generated by the function. For example, the result of setting both of
them to zero, VIVU(0, 0), determines the generation of only one context per basic block (or
set of consecutive unconditional basic blocks) in the call string that does not depend on the
previous execution history. On the opposite, setting both of them to infinite, VIVU(∞, ∞),
imposes the generation of contexts that consider the complete previous execution history in
the call string.

5.2.2 Implicit Modeling of the Hardware Timing Behavior

Similar to other previous works [118, 119, 117], the proposed methodology relies on the
VIVU mapping for the generation of the essential timing model that is consulted while sim-
ulating for the production of the target system’s performance estimations. Given an input
software program to analyze, the key idea is to associate an execution tim to every context
generated with a specific setting of the VIVU mapping function. The execution time associ-
ated to any context is extracted via measurements. These values implicitly model the timing
behavior of parts of the program when executed on the target platform and considering the
initial state of the hardware resources included on the target.

The next paragraphs describe the main activities required for the generation on a timing
model based on the VIVU mapping.

Control Flow Reconstruction

One of the activities that is necessary for the generation of the timing model is the control
flow reconstruction of the program considering its ICFG at the binary representation level.
Unfortunately, differently from the LLVM code representations, which can be parsed and
analyzed via the offered compiler’s APIS, the precise reconstruction of an ICFG from the
binary version of a program can be a hard task, especially for modern ISAs. Typical problems
in CFG reconstructions include for example the memory indirections used to influence the
control flow (jump tables, jumps depending on local variables, etc.), the ambiguous usage
of machine instructions, the support of multiple ISAs and others [177]. For this reason, the
binary ICFG is reconstructed with the support of the well-known and publicly available tool

72 Chapter 5. Efficient Performance Estimation via IR-Level Host-Based Simulation

Radare2 [155]. This tool was initially developed for the purpose of reverse-engineering
binary executables but nowadays it supports in different ways the analysis of different ISAs.
Therefore, it can be trusted for accurate reconstructions of ICFG of even highly optimized
binaries.

In order to fully respect the VIVU mapping requirements, and considering the ICFG structure
of a program in a similar way to the one presented in Figure 5.1, the ICFG reconstructed by
Radare2 needs to be refined. The refinement requires the splitting of the basic blocks
containing function call instructions. Therefore, in the final version of the reconstructed
ICFG, every function call is treated as a basic block terminator instruction.

Traces Extractor

The timing information for the different contexts is extracted via non-intrusive tracing activ-
ities. The utilized tracer is the well-known professional tracing tool Lauterbach Trace32 [1].
This tracer supports multiple architectures implementing different ISAs, including ARM,
x86, PowerPC, and others. A simple and common interface is provided for accessing the
data in an architecture-independent way. The non-intrusive traces are extracted directly from
the target without requiring any instrumentation of the binary program.

Relying on the target processor support, the Lauterbach Trace32 can extract precise execu-
tion time information for every basic block in the program. In fact, if properly set, starting
from the first executed instruction in the program, the tracer can generate a timing packet
containing an absolute time stamp every time a branch or a call instruction is executed in
the program. A final time stamp is produced at the end of the program or when the tracer is
interrupted. The different timing packets generated during the tracing can be consequently
analyzed and processed for associating one execution time for every context in the program.

Eventually, and especially in case of the target processor is not yet available, the same tracing
activities can be conducted via an external simulator (e.g., using a cycle accurate model).
Even in this case, the simulation methodology is still beneficial because, with only partial
tracing, it can be used for predicting the performance of the target system for non-traced
input data ensuring a substantial speedup in the exploration process.

Timing Database Generation

The timing information previously extracted via tracing activities together with the structure
of the reconstructed binary ICFG are used for generating a timing database (TDB). A timing
database represents the concrete implementation of the timing model required by the simu-
lation and initially introduced in Section 2.2.1. The key idea at the base of this timing model
implementation is to store one execution time (expressed in cycles count) for every context
generated applying a specific configuration of the VIVU function to the paths in the ICFG of
the binary program representation.

Multiple measurements are taken by tracing the execution of the given software program and
by varying the input data. Therefore, depending on the values of the n and k parameters of
the VIVU mapping function, multiple execution times can be observed for a specific con-
text causing a conflict. For instance, it is likely to observe multiple execution times for the
same context setting both the parameters to zero. In case of a conflict, an execution time
that considers all the different observed timing behaviors is selected. Instead of taking the
minimum or maximum cycle count values, the methodology proposes to select the average
value between them.

5.2. Context-Sensitive Timing Information 73

Another possible problem that might arise when generating a TDB is the lack of a value for
a context because it has never been observed during the tracing activities. In this case, the
problem can be tackled relying on the consideration that the contexts generated with a VIVU
mapping enable the differentiation between loop iterations and the general stateful resources
behavior (e.g. it is expected that, except for an initial phase, the execution time of an iteration
of a loop is very similar to the execution time required by the previous one). Therefore, if
the timing information for a context with recursion count n is not available at the end of the
TDB generation, this value is computed with a sort of rollback computation. In this case,
the timing information assigned to the context consists of the value previously assigned to
the same context but generated with a recursion count value n′, where n′ ≤ n and n′ is the
closest recursion count value to n for which a timing value has been assigned to a context.
If the context with recursion count n′ does not exist, no timing information can be assigned
to the context. A context without timing information represents a non-visited ICFG path
during the tracing activities. Therefore, achieving a value of 100% code coverage [110] of
the binary program representation while tracing ensures having, at least, one timing value for
each context generated by the VIVU mapping function.

In addition to the tracing coverage level achieved while tracing, it is expected that the per-
formance estimation accuracy strongly depends on the TDB generation. In particular, it is
expected that the setting of the n and k parameters of the VIVU mapping function can influ-
ence the simulation results accuracy as well as its performance. For instance, by definition,
a VIVU(∞, ∞) configuration should hypothetically lead to extremely accurate results. Un-
fortunately, this setting would require the simulation to consider full-length call strings. This
implies two major consequences:

1. Possible simulation slowdown - Due to the continuous consideration of the substantial
length of eventual call strings to query in the TDB.

2. Unexpected inaccuracy - Due to the infeasibility request of exact tracing of all the
eventual call strings.

In a similar way, the configuration VIVU(0, 0) should lead to highly inaccurate results that
are produced in a very fast simulation time. In fact, the limited size of the call string to
manage during the simulation implies a minimal slowdown but the prediction cannot distin-
guish the different timing behavior of the basic blocks due to different contexts. A trade-off
between the two parameters is consequently necessary for obtaining accurate results in an
acceptable simulation time.

74 Chapter 5. Efficient Performance Estimation via IR-Level Host-Based Simulation

5.3 Simulation Methodology

The main purpose of the proposed simulation methodology is to reduce the actual limitations
of the current context-sensitive timing simulations that are too coupled with a specific con-
figuration (software, hardware and compiler optimizations). In particular, the methodology
is intended to enable the analysis and the simulation of multiple configurations in support
of the design exploration activities that are essential for the development of a system. The
proposed new methodology evolves the former context-sensitive simulation techniques based
on the software binary representation by moving the simulation to a higher level of abstrac-
tion that is represented by the IR code. The same IR code is shared between the different
configurations and it allows making multiple timing considerations for different target plat-
forms in only one simulation. This property ensures a substantial speedup in the simulation
throughput. The consequent elevate simulation speed and the accurate mapping between IR
and binary CFGs enable the production of accurate performance estimations that can also
be used as an early feedback in the design space exploration of heterogeneous systems that
consider complex MPSoC platforms.

In this section, two different simulation approaches are presented and both of them are based
on the dynamic compilation of LLVM IR code. In particular, the first one is based on the
simple but slow interpretation mode. The second one is based on its JIT-compilation instead.
Both the simulation approaches are based on three interconnected main components shown
in Figure 5.2 and that have been previously described:

1. The dynamic compilation of LLVM IR code - The interpretation or JIT-compilation of
IR code on a host machine via lli (Section 3.2.3).

2. The two-phase IR to binary CFGs mapping approach - The proposed mapping ap-
proach that ensures accurate mapping between the IR and binary structure of a program
(Section 4.4).

3. The timing databse - The selected timing model for implicitly modeling the timing
behavior of a program considering its execution on a target processor (Section 5.2.2).

As shown in the figure, the three components collaborate for producing the final timing es-
timation by continuously updating it with relative execution time values. These values are
provided by a TDB every time that a visited IR path, converted to a binary execution path

lli

CFGs
MappingTDB

IR Path

Binary Path

Relative
Execution Time

IR

Figure 5.2 – High-level simulation workflow: The simulation is based on three main interconnected
components that determine the requested timing estimation. The simulation updates the final esti-
mation by adding relative execution times that are provided by a TDB according to the simulated IR
path that is translated to the corresponding binary path via the presented CFG mapping approach.

5.3. Simulation Methodology 75

utilizing the CFGs mapping, determines a context present in the TDB. This high-level work-
flow representation is common to both the simulation approaches. Furthermore, the elevated
performance ensured by the second of the approaches allows to define a new methodology
for producing early performance estimations of heterogeneous systems.

5.3.1 Interpretation-Based Context-Sensitive Timing Simulation

The first simulation approach is based on the interpretation of LLVM IR code via the lli
tool. As described in Section 3.2.3, the interpretation is the slowest option between the avail-
able dynamic compilation strategies. Nevertheless, a simulator based on the interpretation
enables easier debugging and easier interaction capabilities compared to others.

According to the proposed simulation concept described in Section 2.2, an ideal implemen-
tation of the simulation methodology should be composed of two different phases. An initial
phase is dedicated to extract the information necessary to the simulation and it has to be
executed only once per configuration. The consecutive phase instead allows running multi-
ple fast simulations relying on the information previously extracted and considering different
input data. Relying on this architectural design, in Figure 5.3 is presented the proposed
workflow for executing interpretation-based context-sensitive timing simulations based on
the LLVM IR code representation. The two phases and their components are described in
details hereafter.

Source
Code

IRBinaries

Compilation

clang + opt llc + Linker

Analysis

TDBs Generator
Mappings Generator

Traces Analyzer
IR to Binary
Mappings

Timing
Databases

Simulator
Enriched

Interpreter

Input
Data

I

II

III

Timing
Estimations

Ev
al

ua
tio

n

Pe
rfo

rm
an

ce
 E

xt
ra

ct
io

n

Figure 5.3 – Interpretation-based simulation workflow: The workflow is composed of two phases.
During the initial performance extraction phase, both the IR and binary representations of the source
code are analyzed. The results of the analysis activities is one timing database and one IR to binary
mapping for every required configuration to be analyzed. Both of them are given in input to the
consequent evaluation phase in addition to the IR code and an initial input data. Based on these
inputs, the simulator relying on the enriched interpreter of lli produces the timing estimations for
all the requested configurations. Multiple simulations can be executed keeping the same inputs and
only varying the program’s input data.

76 Chapter 5. Efficient Performance Estimation via IR-Level Host-Based Simulation

Performance Extraction Phase

The performance extraction phase starts with the compilation I of the given source code that
has to be analyzed. Multiple tools provided by the LLVM Compiler Infrastructure are used to
generate both the IR and the binary representations of the input program. The considered IR
version is the last architecture-independent version optimized via opt. It is the same version
that is given in input to llc for applying the necessary architecture-dependent optimizations.
One binary executable per configuration is generated according to the architecture-dependent
compiler optimizations and target platform.

The workflow continues with the analysis phase II . The goal of this phase is the genera-
tion of all the necessary IR to binary CFG mappings and timing databases. The mappings
are automatically generated by applying the two-phases algorithm previously described in
Section 4.4. It is necessary to generate one mapping for every different configuration. Differ-
ently, the generation of the contexts-dependent TDBs requires initially conducting an appro-
priate activity of tracing. The execution traces are extracted directly from the target platform
in a non-intrusive way and relying on the support provided by the Lauterbach Trace32 tracer.
The tracing activities have to be repeated for all the configurations that are requested to be
analyzed. Configuration per configuration, the traces are consequently analyzed for gener-
ating and populating the different TDBs. A specific setting of the VIVU mapping function
drives the TDBs generation. As for the CFG mappings, it is requested to generate one timing
database per configuration.

Evaluation Phase

The evaluation phase allows executing multiple rapid simulations III for evaluating the per-
formance of multiple configurations in parallel. Different timing behaviors of the target sys-
tems can be evaluated by varying the simulation input data sets. The simulator is based on
the native implementation of the interpreter offered by the lli tool.

The proposed methodology requires to enrich the interpreter execution mode of lli. In this
way, its execution is used for producing the required timing estimations. While compiling
and executing the IR code, the extension forces the interpreter to consider the additional in-
put information contained in the IR to binary CFG mappings and in the TDBs. The proposed
modification forces the interpreter to query, at run-time, the given TDBs depending on the
binary execution history of the program. Both the ISA and the addresses of the binary ex-
ecuted on the host-machine differ from the ones in the target binaries. A TDB is ISA- and
addresses-dependent instead. Consequently, a mechanism for considering target-dependent
call strings is required for accessing the TDBs. The proposed solution dynamically generates
the binary call string by translating the visited IR paths depending on the previously gener-
ated CFG mappings. Therefore, every time a new IR basic block is accessed, at run-time the
interpreter tries to translate the actual IR call string to the eventual corresponding binary call
strings. If at least one binary call string is returned, the interpreter fetches from the appro-
priate TDBs the relative execution times useful for updating the simulation predictions. The
steps performed by the enriched interpreter are summarized in Algorithm 4.

5.3. Simulation Methodology 77

Algorithm 4 Enriched Interpreter Mode(bitcode, Mappings, TDBs).

1: terminate := false
2: timingEstimations[∥TDBs∥] := 0
3: contexts [∥TDBs∥] := ∅
4: while not terminate do
5: instructionIR := getNextIrInstruction(bitcode)
6: executeInstruction(instructionIR)
7: if instructionIR ∈ basicBlocksStartSetIR then
8: labelIR := getLabel(instructionIR)
9: for all TDB ∈ TDBs do

10: basicBlocksBin[] := getMapped(labelIR, Mappings)
11: for all basicBlockBin ∈ basicBlocksBin do
12: contexts [TDB] := updateContext(basicBlockBin)
13: relativeTime := queryTDB(TDB, contexts [TDB])
14: increment(timingEstimations[TDB], relativeTime)
15: end for
16: end for
17: end if
18: if isLastInstruction(instructionIR) then
19: terminate := true
20: end if
21: end while
22: return all timingEstimations

5.3.2 JIT-Based Context-Sensitive Timing Simulation

The proposed interpretation-based simulation approach suffers the slowdown due to the re-
duced speed of the IR code interpretation. The faster compilation option offered by lli is
represented by its JIT compiler. Other simulation approaches substantially improved their
simulation speed capabilities by taking advantage of the faster JIT-compilation possibility
[135, 90]. Therefore, an evaluation has been conducted for quantifying the benefit of the
JIT-compilation compared to the interpretation. The performance of the two lli’s execu-
tion modes have been compared by measuring the MIPS achieved by executing the complete
Mälardalen benchmarks suite (this benchmark suite is later described in more details in Sec-
tion 6.1). The evaluation results for the optimization level -O0 are shown in Table 5.1. The
results confirm that the JIT execution of the benchmarks ensures a substantial speedup com-
pared with the interpretation. The average speedup ensured by the JIT-execution is close to
20 and it achieve a value of up to 52 for the fac benchmark. The achieved speedup is even
larger when the benchmarks are compiled with higher level of optimizations. For example,
the average speedup observed for the optimization level -O3 is above 50. The results of this
evaluation encourage for the definition of a different simulation strategy based on the JIT
execution of the IR code.

The proposed JIT-based simulation approach follows the high-level simulation workflow de-
scribed in Figure 5.2. At the same time, its workflow is similar to the one presented for the
interpretation approach but it is focused in improving the simulation speed while keeping the
same level of accuracy. The previously presented workflow has been consequently updated
for taking advantage of the JIT-compiler capabilities. The updated workflow is shown in in
Figure 5.4. Even if not explicitly marked, both the performance extraction phase and the
evaluation phase are enriched but preserved. In fact, the former still requires the same com-
pilation I and analysis II processes, and the simulation’s concept IV in the latter remains
the same. However, the JIT-based simulation does not require any modification to lli. The
simulator can produce the requested timing estimations by simply relying on a well-defined

78 Chapter 5. Efficient Performance Estimation via IR-Level Host-Based Simulation

Table 5.1 – Speedup ensured by JIT-executing IR code compared with interpretation.

Benchmark MIPS SpeedupInterpreter JIT
adpcm 9.1 28.4 3
bs 8.4 137.9 16
bsort100 8.5 135.1 16
cnt 11.2 429.6 38
compress 8 138.5 17
cover 5.2 164.3 32
crc 7.5 158 21
duff 11.3 145.3 13
edn 6.4 36.5 6
expint 12.1 261 22
fac 10 523.8 52
fdct 2 82.1 41
fft1 6.9 112.1 16
fibcall 13.5 181.2 13
fir 9.9 338.8 34
insertsort 5.4 123.5 23

Benchmark MIPS SpeedupInterpreter JIT
janne_complex 13.5 355.1 26
jfdctint 3.2 91.4 29
lcdnum 12.4 172.3 14
matmult 8.3 86.7 10
minver 6.5 45 7
ndes 11 211.3 19
ns 9 143.2 16
nsichneu 4 13.4 3
prime 10.2 108 11
qsort_exam 8.3 63.7 8
qurt 8.9 82.1 9
recursion 10 460.2 46
select 6.6 88.5 13
sqrt 10.5 92.6 9
statemate 4.8 30.7 6
ud 13 102.1 8

annotation technique. An additional step is consequently required III for injecting in the
simulation IR code the necessary annotation for enabling the JIT-compiler to produce the
required performance estimations. The JIT annotation mechanism is presented hereafter.

Source
Code

IRBinaries

Compilation

clang + opt llc + Linker

Analysis

TDBs Generator
Mappings Generator

Traces Analyzer

IR Annotator

IR-Binary
Mappings

Timing
Databases

Simulator
lli JIT

Input
Data

I

II

III IV

IR Optimizer

JIT Annotation

Timing
Estimations

Figure 5.4 – JIT-Based context-sensitive timing simulation methodology workflow: The JIT-based
approach instead of proposing a modification for the interpreter, it simply requires the execution of
an additional annotation step. In this step, the simulation bitcode is annotated with specific func-
tion call instructions that forces lli, at run-time, to update the requested performance estimations.
Eventually, the annotated bitcode can be further optimized before being executed for improving the
simulation speed.

5.3. Simulation Methodology 79

JIT Annotation

The scope of the JIT annotation component III in the workflow presented in Figure 5.4
is to enrich the IR simulation code with instructions that, at run-time, force the simulator
to update the performance estimations depending on the executed IR code. As discussed
in Section 3.2.2, the LLVM IR code is organized in compilation modules that collect the
complete program information. Every function in a module contains at least one entry basic
block followed by potential ones. The structure of a basic block is fixed and it is organized
as shown in the left part of Figure 5.5. Each IR basic block is identified by a label and it
contains order:

• Phi-instructions - A basic block can start with zero or multiple phi-instructions placed
at the beginning for optimization reasons.

• Instructions - A sequence of zero or multiple instructions that define the overall basic
block behavior.

• Terminator - A terminator instruction always conclude a basic block causing a branch
or a termination (a function call instruction is not consider as a terminator).

In a similar way to the proposed algorithm presented for executing interpreter-based context-
sensitive timing simulations, the JIT-annotation is intended to force the simulator to possibly
update the timing estimations every time that the execution of an IR path determines a binary
path translation. The methodology requires the annotation of only the IR code that is simu-
lated. The version of the IR file that is annotated is a copy of the one produced during the
compilation process. The bitcode utilized for producing the executable binaries and the CFG
mappings remains unaltered.

IR BB

Label

Phi-Instructions

Terminator

Instructions

Instructions

Instrumentation: BB()

Instructions1

Function call

Instrumentation: FC()

Instructions2

Figure 5.5 – Proposed instrumentation strategy for enabling JIT-based simulations: Every IR basic
block in the module contained in the simulation bitcode has to be instrumented. A function call
instruction to an external custom IR library is inserted at the beginning of the beginning of the basic
block or consecutively after any function call instruction. The instrumentation informs the simulator
that a new IR basic block is accessed or that the execution of an IR basic block is resumed after
returning from a function call.

The annotation is performed by executing a custom pass via opt on the module contained in
the bitcode. The pass iterate through all the basic blocks of all the functions in the module.
A specific instrumentation function is inserted in the basic block depending on two specific
conditions. The instrumentation consists of an IR function call instruction that forces lli to
update the timing prediction values by querying the necessary timing databases. The function
call executes some external code that is implemented in an IR library that has to be linked
to the simulation code via the llvm-link tool. This code implements the mechanism
for letting the simulator consulting both the CFG mappings and the TDBs. As shown in
Figure 5.5,the two locations inside a basic block where the annotation has to be inserted are:

80 Chapter 5. Efficient Performance Estimation via IR-Level Host-Based Simulation

1. At the basic block’s beginning - Immediately after eventual Phi-instruction for inform-
ing the simulator that a new basic block has been reached.

2. After a function call instruction - For informing the simulator that the execution of an
IR basic block is resumed after that a function call returned.

The instrumentation function call instruction requires as single parameter the basic block’s
label. The algorithm for updating the timing estimations is completely implemented in the
custom IR library. Depending on the visited IR paths during the bitcode execution, the li-
brary supports the simulator in translating the IR paths to binary paths relying on the CFGs
mapping and consequently updating the performance estimations with the relative execution
times extracted from the provided timing databases. The algorithm implemented in the IR
custom library is very similar to the concept previously presented in Algorithm 4. The main
difference consists in triggering the checks for a possible simulation performance update only
when the instrumentation function is invoked. The simulation results are returned at the end
of the program’s execution.

5.3.3 Early Performance Estimation of Heterogeneous MPSoC

The proposed JIT-based context-sensitive simulation methodology is designed for producing
highly accurate results in a very fast way. Furthermore, it is expected that the simulation
speed will increase if multiple SoCs or configurations are evaluated in parallel. The JIT-
compilation of the IR simulation code should determine a consistent speedup compared with
the interpretation-based methodology. This property allows the definition of an extension for
the presented JIT-based simulation workflow focused on early estimating the performance
of heterogeneous systems. The resulting performance estimations can represent a valuable
resource in the early design space exploration decisions. In fact, they can represent the feed-
back required by the system designers when evaluating the execution time of heterogeneous
applications considering different MPSoC mappings for identifying the most suitable one.

Two different aspects have to be considered for enabling the simulation and the consequent
evaluation of heterogeneous systems. The first aspect to consider is an extension required by
the JIT annotation phase for forcing the simulator to behave differently. The second aspect
requires the definition of a methodology for the generation of the TDBs in support of timing
simulations of heterogeneous systems. These two aspects are separately analyzed in the
following two sections.

JIT Annotation Considering a System Partition Scheme

In the JIT annotation phase III of the workflow presented in Figure 5.4, it is assumed that a
program has to be instrumented in a way that its performances are produced via simulation
for the complete execution of a program. One or multiple configurations can be evaluated in
parallel. Therefore, the simulation of the same IR control flow path implies the simultane-
ously querying of multiple given TDBs. Similarly, the heterogeneous extension requires the
consideration of multiple TDBs during the simulation. However, instead of simultaneously
querying all of them, the simulator dynamically selects the one designated for timing describ-
ing the specific part of the program. Therefore multiple TDBs are still considered during a
complete simulation but every single part of a heterogeneous application can be simulated
only considering the timing information stored in a specific TDB.

The idea of dynamically switching the source of timing information during the simulation
according to a specific IR code annotation scheme is shown in Figure 5.6. An analyzable
heterogeneous system is considered to be composed of multiple software functional units

5.3. Simulation Methodology 81

(FU), which consist of collections of functions that can be mapped to the different proces-
sors included in an MPSoC. This mapping can be manually defined or, eventually, it can be
exported from a Simulink model as later described in Section 5.4. The modification of the
static annotation process is intended to drive the simulator’s dynamic choice of the TDB to be
queried while simulating. The choice has to be made depending on the given FUs mapping.
This can be done by implementing a straightforward extension for the previously presented
workflow. The annotation phase has to consider the additional information that describe a
possible system partition scheme between the FUs and the execution processors. In fact, re-
lying on a given system mapping partition scheme, the instrumentation statically determines
which TDB has to be queried at run-time by the simulator. This simulation methodology
enables the simulation of synchronous heterogeneous systems and it neglects the synchro-
nization time between the processors.

JIT Annotation Simulator

IR-Binary
Mapping

IR

Partition0 Partition1 Partitionn

Dynamic Partition Switch

Timing
Estimations

System Partition
Scheme Input Data

Figure 5.6 – Simulation methodology extension for evaluating heterogeneous systems: Instead of
accessing multiple TDBs in parallel, the performance of a heterogeneous system can be simulated by
considering multiple TDBs but querying them only once per time depending on a dynamic partition
switch mechanism. Considering the mapping scheme of the FUs of a heterogeneous application to
the available processors in an MPSoC platform, the JIT annotation mechanism forces the simulator
to dynamically switch between the TDBs.

Generation of Timing Databases for MPSoC Simulations

The generation of a TDB designed for the simulation of a single core system was previously
presented in Section 5.2.2. In this case, all the different FUs contained in the program are
always executed on the same processor. Therefore, the timing information necessary for
generating a TDB is extracted by tracing the complete program and considering different
input data. The tracing process ignores eventual FUs structures and the extracted measure-
ments are analyzed considering the complete program’s ICFG. In the single core scenario,
the execution of a specific FU influences the execution context of the following ones. In a
heterogeneous scenario instead, where the FUs can be assigned to be executed on different
processors included in an MPSoC, the execution of a FU cannot influence the execution con-
text of any other FU that is consequently executed on a different processor. However, the
single core scenario is still valid when considering only the execution of the FUs assigned to
the same processor.

Multiple compilation techniques are available in the literature that tackle the problem of
compiling heterogeneous applications for being efficiently executed on MPSoC platforms
[23, 92, 49, 8, 140]. However, the choice of an efficient compilation technique is out of the

82 Chapter 5. Efficient Performance Estimation via IR-Level Host-Based Simulation

scope of this thesis. It is assumed that an application composed of multiple FUs is always
entirely compiled for all the different ISAs implemented by the processors included in an
MPSoC platform. This implies that a platform implementing n different ISAs requires the
architecture-dependent compilation of the complete program for at least n times. Every
compilation can be differently optimized. Therefore, as shown in Figure 5.7, it is requested
to generate one TDB per partition in the system.

P1

FUs3

FUs2

MPSoC

P2
Partition2

P3
Partition3

P0
FUs0Partition0

FUs1

Partition1

Figure 5.7 – Multiple TDBs for describing the timing behavior of every MPSoC partition: The
proposed simulation methodology for producing early performance estimations of a heterogeneous
system requires the generation of one TDB per partition. Every single TDB describes the context-
based timing behavior of a specific set of FUs when executed in one of the processors available in an
MPSoC platform.

The simulation results highly depend on the timing information contained in the considered
TDBs. The heterogeneous simulation scenario offers the possibility of defining different
ways for tracing the timing information required for the generation of the TDBs. Three
different strategies has been identified. As shown in Figure 5.8, the three different identified
tracing possibilities are:

1. Functions in isolation - This option is the simpler possibility. It requires to systemati-
cally tracing every function in isolation by varying the input data sets. The execution
of a function has to be traced on a given processor only if the function belongs to a
FU that is mapped to the same processor. This option implies that the tracing activity
always starts with an empty execution context. The tracing can be implemented with
an appropriate Lauterbach script that forces the processor to start executing from the
program directly from the first instruction of a given function. By changing the in-
put values, it is possible to trace different execution paths. The execution program is
stopped when the function returns.

2. Complete program - Independently from the partition scheme, this option requires the
tracing of the complete program by varying the input data set. The tracing activity
has to be repeated for every processor included in the MPSoC platform. This option
represents a simple strategy that considers more realistic execution contexts. However,
ignoring the information about the system partitioning may cause the observation of
unrealistic timing behaviors for the contexts. This may be source of inaccuracies in the
simulation results. The tracing activities that have to be executed for every processor
included in the target platform are identical to the ones required for generation single
core TDBs.

3. Partitions in isolation - A different way of producing the TDBs consists in considering
the system partition’s information. This information is used for statically identifying

5.3. Simulation Methodology 83

the functions of the FUs in the binary. In a similar way to the first option, the consecu-
tive functions in the FUs assigned to the same processor are traced. The tracing of con-
secutive functions can be ensured by forcing the program execution at the beginning of
one of them and interrupting the execution at the end of the last return instruction. This
choice allows the observation of the contexts due to the history of function calls inside
the same FU. Compared to the other two options, the implementation of this tracing
technique is more complex but, considering more effective contexts, it is expected to
lead to more accurate results.

The possibility of tracing every function in isolation for every processor included in an MP-
SoC platform is less attractive than the other two options. The implemented tracing method-
ology is fully automatic and it supports all three the tracing strategies. However, tracing
every function is isolation in every processor leads to loose essential context-dependent in-
formation. Therefore, in the evaluation section, only the second two possibilities will be
considered.

call

return

FU1 FU2 FU3

return

call

Core0 Core1

Tr
ac
in
g

Tr
ac
in
g

Tr
ac
in
g

(a) Functions in isolation.

call

return

FU1 FU2 FU3

return

call

Core0 Core1

Tr
ac
in
g

(b) Complete program.

call

return

FU1 FU2 FU3

return

call

Core0 Core1

Tr
ac
in
g

Tr
ac
in
g

(c) Partitions in isolation.

Figure 5.8 – Different tracing approaches for generating TDBs for MPSoC simulations: Three dif-
ferent approaches are proposed for generating the TDBs necessary for MPSoC simulations. The
approaches differ in the tracing complexity and in the different ways of considering the function
execution contexts. The choice of an appropriate tracing strategy is essential for ensuring accurate
timing estimations via simulation.

84 Chapter 5. Efficient Performance Estimation via IR-Level Host-Based Simulation

5.4 Timing-Aware Simulink Simulation

In the embedded systems domain, Simulink is a widely utilized model-based development
tool because of the possibility of re-utilization of tested reliable components and especially
because of its simulation capabilities. Fast functional simulations can be executed since the
early stages of the development of a system. Regrettably, as discussed in Section 3.1.2, these
simulations ignore any non-functional property of a system. This limitation makes Simulink a
non-suitable tool for supporting the design-space exploration activities. In fact, at the current
time, it is impossible to evaluate different hardware/software configurations. Considering
this significant limitation of the Simulink simulations, the present section describes a novel
approach, based on the previously presented LLVM IR context-sensitive timing simulation
methodology, for considering specific non-functional information while natively simulating
a Simulink model. Furthermore, relying on the MPSoC extension presented in Section 5.3.3,
a Simulink model can be eventually simulated by considering its execution as a heteroge-
neous system. The proposed methodology is fully automatic and it mainly focused on the
performance behavior aspect of a system. However, it can be straightforwardly ported to any
different non-functional property.

The fully automatic high-level simulation workflow is shown in Figure 5.9. Given an input
Simulink model, a co-simulation [50] is executed between Simulink and the proposed LLVM
IR context-sensitive simulation methodology. This is enabled by generating a functionally
equivalent model via annotation. The resulting annotation implements the mechanism for
letting Simulink to consider the architecture-dependent performance effects for the model
that are generated via timing simulation. Finally, the performance and the behavior of the
given model can be visualized directly on Simulink.

Code
Generation

Model
Annotation

Simulink
Simulation

Host-Based
Simulation

Simulink
Model

Compilation &
Analysis

C / C++

Equivalent
Simulink
Model

Configuration

Co-Simulation

Simulink
Visualization

IR, TDBs,
CFG Mappings

Figure 5.9 – Timing-aware Simulink simulation methodology workflow: A given Simulink model
can be annotated with custom library blocks producing a functionally-equivalent model whose native
simulation enables the execution of a co-simulation together with the proposed LLVM IR context-
sensitive timing simulation approach. Therefore, before running a co-simulation, the model is ap-
propriately translated into source code and consequently compiled. The co-simulation between the
functionally equivalent Simulink model and the IR context-sensitive simulation, based on the infor-
mation produced during the analysis, allows visualizing the effects of the non-functional properties
on the system’s behavior directly on the Simulink environment.

5.4. Timing-Aware Simulink Simulation 85

5.4.1 Code Generation

One of the key aspects in the proposed co-simulation methodology consists in mapping the
components of a given Simulink model to the structure of the binaries that can be gener-
ated from its compilation. This mapping is essential for enabling the co-simulation be-
tween Simulink and the proposed context-sensitive timing methodology. The compilation
of a Simulink model requires first its translation into a high-level programming language,
such as C or C++. The proposed fully automatic methodology relies on this translation for
implicitly generating the necessary mapping.

A Simulink model is commonly structured in hierarchically interconnected components that
belong to one of two possible main subsystems that interact with external sensors. The plant
is one of the two available subsystems and it represents the physical world interacting with
the system. The controller is the other available subsystem and it represents the software part
of a model that is expected to be executed on a target platform. The controller is commonly
designed to process the data that is periodically produced by both the plant and sampled by
the external sensors. Therefore, the final binary executable compiled for the target system
includes only the code regarding the controller subsystem.

The proposed methodology enables the automatic generation of C code for the controller sub-
system of a Simulink model relying on the Embedded Coder toolbox [164]. After identifying
the controller subsystem, the code generation process produces automatically the source code
that has to be compiled for being executed on a target platform. This code does not contain
any additional or superfluous instruction concerning the Simulink simulation. This property
is ensured by properly configuring the Embedded Coder settings.

Simulink Components to Source Code Implicit Mapping

A mapping between two different code representations can be usually produced by annotat-
ing one of the two representations. However, this can be a hard task. A simpler and implicit
way of mapping is chosen for enabling the proposed co-simulation technique. In fact, the
Embedded Coder toolbox can offer more than the support for ensuring the generation of
source code suitable for being executed on a target platform. It represents a precious support
for defining an implicit mapping between the different components that are part of the con-
troller subsystem and the resulting source code structure. The implicit mapping consists of
generating one C function for every component in the controller subsystem. Every function
is called as the corresponding Simulink block. This property can be ensured by properly
setting, in an automatic way, the Embedded Coder and the model settings.

The Embedded Coder TLC has to be programmatically configured. The configuration’s goal
is to produce C code whose structure simplifies the task of mapping Simulink components to
the corresponding C code. All the possible code generation optimization options configurable
via the TLC are disabled. The implicit mapping technique requires the C code to reflect
the original structure of the components in the controller subsystem. Optimizations such
as blocks merging, blocks removal and other must be consequently disabled. Furthermore,
every block in the controller component has to be properly configured. The configuration
requires the reduction of eventual algebraic loops and the generation of one C function per
component by managing each of them as an atomic unit. Finally, the TLC has to be accurately
set for ensuring that every generated C function is named in the same way as its corresponding
Simulink component. In this way, every function in the source code is distinguishable by the
Simulink block name.

86 Chapter 5. Efficient Performance Estimation via IR-Level Host-Based Simulation

Source Code Structure

The source code is composed of a number of functions that is at least equal to the number of
components in the Simulink model, including the controller subsystem. Additional functions
can be arbitrarily included by the Embedded Coder and function calls to external libraries
may occur. The source code of the C function corresponding to the controller subsystem
component is the one responsible for iteratively scheduling the consequent function calls
according to the connection between the components defined in the Simulink model. If prop-
erly configured, the Embedded Coder produces function calls without parameters. Eventual
inputs and outputs between the Simulink components are managed via shared C variables
between the functions in the source code. This mechanism is helpful in case of the inputs of
a component are outputs of multiple different components.

The SRP allows the Simulink simulations to simulate, if possible, multiple components in
parallel. In fact, a component can be simulated as soon as all its inputs are given. This is
unrealistic. The different functions of a program are sequentially executed according to the
program’s call graph and starting the execution from the function generated for the controller
subsystem. Internally, Simulink defines a fixed execution order between the components
that can be simulated in parallel. This order is reflected in the function calls order of the
generated source code. Furthermore, the Embedded Coder generates the source code in a
way that a function can call is inserted in the code of a function only if the caller is in the
Simulink model a component that contains the sub-component corresponding to the callee.
Therefore, only a subsystem component can activate the execution of its directly contained
components. For example, in Figure 5.10 it is shown the sequence diagram for the given ex-
emplary model. The execution of such a model starts from the function called Controller
that represents the implementation of the controller subsystem. This function invokes, in or-
der, the functions A and B because the first one has a higher priority than the second one. The
function called Subsystem can only be executed after the completion of the previous two
functions because their outputs represent the function’s inputs. The function C can only be
invoked by the function implementing its closest subsystem. The execution of the function
Controller terminates only after the control returns from function Subsystem. The
implementation of the source code structure is essential for the next activities.

A

B

Subsystem

C

Controller

Controller A() B()

call
return

call
return

Subsystem

call

C()

call
return

return

Figure 5.10 – Exemplary sequence diagram of a simple Simulink model: The execution of the
generated source code starts always from the implementation of the controller subsystem. Thereafter,
the functions implementing the different components are invoked by following the program call
graph based on the original Simulink model components order and hierarchy. Function calls can be
performed only by components of subsystem type and they can invoke only components belonging
the same subsystem hierarchy.

5.4. Timing-Aware Simulink Simulation 87

5.4.2 Model Annotation

The model annotation step has two different objectives. The first one is the definition of the
system configuration for the design exploration choice that has to be simulated. The second
one is the generation of a functionally equivalent model to the one given in input. This
model enables the later presented co-simulation technique. This section presents hereafter
the methodologies proposed for satisfying these two objectives.

System Configuration Definition

A mechanism has been defined and implemented for annotating a given model. The annota-
tion is intended for specifying the selected design configuration that has to be evaluated via
simulation. Therefore, the annotation process requires the following information:

1. Name of the controller subsystem - The name of this component is essential. In fact, it
identifies the Simulink subsystem that has to be analyzed. The code generation process
considers only the components contained in this subsystem. This component has to be
explicitly indicated because it does not exist an automatic way for recognizing this
component. Furthermore, this information is forwarded to the later stages.

2. Target platform - A target platform including one or more processors has to be spec-
ified. This platform is consequently considered during the compilation of the source
code and during the complete process for enabling the required timing simulation.

3. System partition - In case of a heterogeneous system, a partitioning map has to be
provided. This mapping specifies, for every subsystem contained in the controller
component of the Simulink model, which is its designated execution processor between
the ones included in an MPSoC platform. Otherwise, in case of a single core system,
this information can be omitted.

4. Target configuration - For every processor included in the target platform, it has to
specify the configuration of its physical resources (e.g. caches enabled/disabled, branch
predictor enabled/disabled, etc.).

5. Compiler optimizations - The optimization level to apply at compile time to the source
code generated for the controller subsystem.

Given this information, the first model’s annotation phase can be executed. Initially, a new
Simulink model is created. The new model is an identical copy of the given input one. From
now on, all the steps utilizes the new version of the model and the structure of the original one
is preserved. Thereafter, the new model and its different components are annotated according
to the given specification. The annotated information is later processed by the consequent
activities required for the preparation of the proposed co-simulation methodology.

88 Chapter 5. Efficient Performance Estimation via IR-Level Host-Based Simulation

Functionally Equivalent Timing-Aware Model

The goal of the second step of the model annotation phase is to enrich the Simulink model
for enabling the co-simulation between Simulink and the proposed context-sensitive timing
methodology. Similarly to other approaches [114, 84], the base idea of the annotation pro-
cess consists of adding appropriate components to the model that mimic the timing behavior
of the target system during the native Simulink simulation. Therefore, the model is auto-
matically enriched with the insertion of stateful delay blocks connected at the outputs of the
different components in the model. These blocks permits the Simulink simulation to consider
the timing effects depending on the target hardware platform implementation and configura-
tion. Consequently, an enriched Simulink model represents the translation of an architecture
independent model into an architecture-specific one.

The delay block component that is added during the annotation is a custom block that can be
implemented as a Simulink library component. If connected to the outputs of a given com-
ponent, the delay block forces the input data to be available for the consequent components
only after a certain amount of simulation time. After this delay, the input signal is forwarded
at the output of the delay block and it is unchanged. The effects of a delay block are useful
in overcoming the unrealistic zero or fixed-computation time assumed by the SRP Simulink
simulation, that were previously presented in Section 3.1.2. The delay imposed by such new
components represents the execution time of the associated block in a target embedded plat-
form. The amount of time that a block has to be delayed cannot be constant. This value
depends on the context of the program’s execution history. It is dynamically determined dur-
ing the co-simulation by considering the timing estimation produced executing an LLVM IR
context-sensitive simulation. In this way, timing considerations are taken into account by
influencing the simulation but preserving its semantic.

This annotation step enriches the given Simulink model by inserting one delay block at every
output connection of every component that is part of the controller subsystem. In Figure 5.11
is shown an example for the annotation process. The annotation of the simple controller
subsystem in Figure 5.11(a) produces the functionally equivalent subsystem represented in
Figure 5.11(b). The timing delays imposed by such blocks are only simulated. They do not
require to effectively stop the simulation for the given amount of time. In fact, the simulation
itself is not slowed down and the delay proposed mechanism shows only a minor overhead
in the time required for executing a simulation. Furthermore, the functionality of the given
input model is fully preserved. In fact, the simulation of a model annotated with delay blocks
considering null delays leads to identical results of the simulation of the original model.

5.4.3 Co-Simulation Methodology

The proposed co-simulation methodology workflow for enabling the possibility of evaluating
a Simulink model considering the timing effects due to its effective execution on a target plat-
form was previously shown in Figure 5.9. The goal of the methodology is to make possible a
realistic and timing-aware evaluation of a model by directly simulating it in Simulink. There-
fore, the proposed workflow requires the arrangements of all the necessary aspects for exe-
cuting two simulators. One of the two simulators involved is the one provided by Simulink.
The semantics and the dynamic behavior of the delay blocks added during the annotation
allows considering the effects of the target specific timing in the Simulink simulation of an
enriched model. An enriched model contains all the information needed for preparing the
execution of an LLVM IR context-sensitive timing simulation. Initially, the source code of
the controller subsystem is automatically generated. The source code is consequently com-
piled according to the given configuration annotated in the model. Thereafter the analysis

5.4. Timing-Aware Simulink Simulation 89

A

B

SubsystemY

C

SubsystemX

D
E

(a) Original controller subsystem to be simulated.

A

B
C

D E

DelayA

DelayB

DelayE

DelayB

DelayC

DelayD

SubsystemY

SubsystemX

DelayY
DelayX

(b) Functionally equivalent annotated controller subsystem for timing-aware simulation.

Figure 5.11 – Exemplary delay block annotation of a Simulink subsystem: The proposed annotation
methodology is essential for enabling the possibility of considering the timing effects due to the
execution of a model on a target platform during a Simulink simulation. A custom delay library
block has to be inserted at the output connections of all the components contained in a controller
subsystem, like the one in (a). The native simulation of the resulting functionally equivalent model,
like the one in (b), allows the evaluation of the target system directly on Simulink.

of the bitcode and the timing traces, extracted from the target, allows the generation of the
necessary IR to binary CFG mapping and the TDBs. All the produced information represents
the input of the co-simulation.

Multiple fast simulations can be executed for evaluating different scenarios. In fact, different
configurations and settings of the plant subsystem and of the input sensors can be evaluated
by simply modifying the model and running a new co-simulation. The value of the simu-
lation time to consider by the different delay blocks is dynamically updated by executing a
new context-sensitive timing simulation. The proposed workflow is fully automatic and it
allows evaluating the simulation results directly on Simulink. The proposed methodology for
enabling the co-simulation of the two simulators is presented hereafter.

Performance Estimations for Timing-Aware Simulink Components

The co-simulation between Simulink and the LLVM IR context-sensitive timing estimation
methodology presented in this thesis is based on a communication mechanism between the
two simulators. The communication between them is event-driven and it can be triggered by
two kinds of events:

1. New controller iteration - Starting from its first execution, every time the simulation
requires iterating over the controller subsystem.

90 Chapter 5. Efficient Performance Estimation via IR-Level Host-Based Simulation

2. Execution of a delay block - Every time a component that is part of the controller
subsystem is executed and the generation of its outputs determines the execution of a
delay block.

In the former case, the Simulink simulation has to notify the timing simulation of the values
generated by the plant and sampled by the sensors. For every iteration, this value represents
the controller inputs and consequently the input data set for the timing simulation. In the
latter case, a component in the controller subsystem has been simulated and its outputs have
been computed. Therefore, a performance estimation is expected from the delay block for
postponing the availability of the outputs by additionally simulating the timing behavior of
the component.

The proposed technique for enabling the communication between the two simulators is based
on a socket mechanism. A high-level overview of this technique is shown in Figure 5.12. The
technique proposes to open a socket [163] between MATLAB and the well-known debugging
tool GDB [148]. Furthermore, the JIT-execution of bitcode can be debugged via GDB [157].
Consequently, the socket mechanism together with GDB represent the connection bridge
between the two simulators.

The co-simulation mechanism requires that only one simulator per time can be in the running
state. The co-simulation starts by executing the timing simulator first. A breakpoint is set
via GDB at the initial instruction of the function generated for the controller subsystem. The
value of the variables representing the first sampling of the sensors are programmatically ex-
tracted from Simulink. These values are consequently imported in the timing simulation by
initializing the appropriate variables via GDB. This initialization also relies on the implicit
mapping naming-based mechanism utilized for the model’s components. Thereafter, the tim-
ing simulator is started and it is stopped only after the program reaches the initial breakpoint.
The stop event of the timing simulator determines the beginning of the Simulink simulation.
Every time that the Simulink simulation triggers a new event, its simulation is stopped. If
the event is of the first type, MATLAB notifies GDB the state of the plant represented by the
value of the sampling sensors. These values are used by GDB to update the corresponding
variables in the program before returning the control to Simulink. Otherwise, if the event is
of the second type, Simulink notifies MATLAB the name of the block that caused the event’s

D DelayD
Value

Simulink

MATLAB

GDB
Socket

Breakpoint,
Value

Relative Delay

LLVM IR
Context-Sensitive
Timing Simulation

lli
Simulate

Performance
Estimation

Figure 5.12 – Co-simulation mechanism for evaluating timing-aware Simulink models: The sim-
ulation of an enriched Simulink model can postpone the availability of the outputs of the different
components by relying on the custom delay block library. The delay amount can be determined
relying on the performance estimations generated via simulation adopting the proposed LLVM IR
context-sensitive timing simulation methodology. The two simulators can communicate by managing
a socket between MATLAB and GDB. The simulation of a delay block implies GDB to continue ex-
ecuting the timing simulation until the return of the function identified by the delay block is reached.
The consequent performance estimation is used to set the relative value of the delay block that last
invoked GDB.

5.5. Summary 91

triggering. This name is forwarded to GDB and it is used for timing simulating the pro-
gram until the symbol identified by the function name returns. The performance estimation
is forwarded to MATLAB and a relative delay time is set for the delay block library that last
triggered the event. Thereafter, the Simulink simulation can continue. The process continues
until the end of the Simulink simulation.

At the end of the simulation, the performance of the model considering a given input config-
uration can be assessed directly on Simulink. In fact, the delay blocks utilized for enforcing
the model to consider the architecture-dependent timing effects preserve the model semantic
and functionality. Multiple consequent co-simulation can be executed by varying the config-
uration of the plant or of the sensors.

5.5 Summary

This chapter presented the overall simulation methodology that is at the base of this thesis.
Initially, the chosen context-sensitive technique for generating the timing models considered
during the simulation has been presented. Thereafter, the simulation methodology has been
described. The description started with the definition of a simpler interpretation-based sim-
ulation methodology. Thereafter, an improvement has been proposed for ensuring higher
simulation speed capabilities by relying on a JIT-based compilation mechanism. Further-
more, it is discussed the possibility of producing early approximate estimations for the exe-
cution time of synchronous heterogeneous systems. For this purpose, the bitcode annotation’s
mechanism previously proposed for enabling the possibility of JIT-based simulation can be
appropriately adapted. In this regard, the chapter proposes different ways of tracing for gen-
erating the necessary timing models. Finally, a co-simulation methodology is presented for
enabling the Simulink simulations to consider the timing effects due to the execution of the
software on a target platform.

93

CHAPTER 6

Experimental Evaluation and Results

The scope of this chapter is to present the experimental results obtained during the evaluation
of the proposed simulation methodology. After an initial description of the evaluation setup,
the effectiveness of the LLVM IR to binary CFGs mapping approach is assessed. Thereafter,
the simulation speed and the results accuracy are investigated by considering multiple target
platforms that include different ARM processors. The evaluation considers also the possi-
bility of evaluating multiple target processors in parallel and it investigates the eventuality
of generating early performance estimations for heterogeneous systems. Finally, an exem-
plary Simulink model is used for showing its different behavior when forced to consider the
target-dependent timing effects that are generated via the proposed simulation methodology.

6.1 Evaluation Setup

The present section is intended to describe the environment utilized for evaluating the pre-
sented simulation methodology. In particular, in the first part, it is given a short description
about the selected evaluation benchmarks. Thereafter, some technical details are given about
the simulation host machine and about the analyzed and simulated ARM-based target plat-
forms.

Benchmarks

It is hard to obtain real industrial applications or to get the permission for publishing their
analysis results. For this reason, the number of available benchmark suites is large and they
are focused in covering multiple benchmarking purposes [64, 73]. For the evaluation of the
proposed simulation methodology, it has been decided to utilize the widely-used Mälardalen
benchmark suite [54]. This suite is specifically designed for the timing analysis domain. In
fact, these benchmarks include a wide and representative set of program constructs that can
be found in industrial applications and their code is mainly focused on flow analysis.

From the list of the available benchmarks, those that introduce non-available library sources
have been excluded from the evaluation. In fact, the excluded benchmarks may introduce
inaccuracies that are not caused by the mapping algorithm’s accuracy or by the timing simu-
lation approach.

94 Chapter 6. Experimental Evaluation and Results

Both the compilation and the simulation are based on tools of the LLVM Compiler Infrastruc-
ture version 9.0. These tools have been all compiled and built enabling the release option
that is specifically designed for achieving better performance. During the experiments, the
benchmarks have been compiled with different optimization levels. If not explicitly spec-
ified, the benchmarks have to be intended to be compiled with -O3, the highest level of
optimization. This choice is intended for observing eventual properties that are common in
real industrial scenarios instead of analyzing unoptimized code.

Simulation Environment

The complete evaluation has been conducted on the same common host machine. For re-
producibility reasons and for making the results comparable between them and with other
approaches (especially when talking of simulation speed expressed in MIPS) some details
about the host environment are necessary. The utilized host machine is a Linux machine that
includes an Intel Core i7-2600K processor running at 3.4GHz supported by 32GB DDR3
RAM memory.

Evaluated and Simulated Platforms

The different stages of the evaluation have been conducted by considering four different
ARM-based target platforms. These platforms include different processor versions of the
Cortex family and they implement in total three different ISAs. In Table 6.1 are listed the
names of the considered target platforms and. For each platform, it is given the name of the
processor implementation followed by a list reporting some of its major architectural details.
The table shows that, except for the Cortex-M4 processor, the target processors selected
for the evaluation of the proposed methodology implement complex architectures that are
hard to model and to analyze. For example, the processors implements mechanisms such as
out of order speculative execution, different dynamic branch prediction mechanisms, second-
level set-associative caches, lock-step execution mode (only the SoC including the Cortex-R5
processor) and others.

The platforms’ setup is similar between them. For all of them, the execution mode has been
arranged to be bare-metal. Both the instructions and data of the programs have been placed on
the available external memories of each platform. In this way, the execution of the evaluation
programs utilizes all the provided caches as well as the branch predictor mechanisms that are
enabled before the start of the programs.

Table 6.1 – List of considered ARM-based platforms and their architectural properties.

Evaluated SoCs
Platform Xilinx Zynq-7000 [181] TI EVM-K2E [65] TI RM57LHDK [66] Hitex LPC4350 [62]
Processor ARM Cortex-A9 ARM Cortex-A15 ARM Cortex-R5 ARM Cortex-M4
ISA ARMv7-A ARMv7-A ARMv7-R ARMv7E-M
Frequency 400 MHz 100 MHz 20 MHz 120 MHz
L1 D-Cache 32 KB 32 KB 32 KB No
L1 D-Cache 32 KB 32 KB 32 KB No
L2 Cache 512 KB 4 MB No No
Pipeline Stages 8 15 8 3
Floating Point Yes Yes Yes No
Out-of-Order Yes Yes No No
Superscalar Yes Yes No No
Speculative Execution Yes Yes Yes No
Lock-step No No Yes No
NEON Extension Yes Yes Yes No

6.2. Simulation Accuracy 95

6.2 Simulation Accuracy

A first objective in the evaluation of the proposed methodology consists in determining its
accuracy. As previously discussed in Section 2.1.2, an ideal simulation approach should pro-
duce highly-accurate performance estimations in a very fast way. Considering the proposed
methodology simulation, its accuracy mainly depends on the:

1. CFGs mapping approach - The quality of the proposed LLVM IR to binary CFGs
mapping approach.

2. Timing consideration while simulating - The quality of the timing model queried while
simulating for generating the requested target performance estimations.

These two quality assessment objectives are independent from the kind of simulation (interpreter-
based or JIT-based) that is utilized for generating the results. In fact, the overall results show
identical performance estimations when analyzing the same target system configurations.
Therefore, the accuracy results presented in this section can be achieved indistinguishably
utilizing any of the two kinds of proposed simulation approaches. Differently, the results that
are shown in this section consider as target only the ARM processor Cortex-A15 included in
the TI EVM-K2E [65]. This processor represents the most complex option in the evaluation
setup. In fact, it implements the most complex architecture and hardware features between
the processors listed in Table 6.1.

6.2.1 LLVM IR to Binary CFGs Mapping

This section presents the results of the experiments conducted for evaluating the validity of
the proposed two-phases algorithm for mapping LLVM IR to binary CFGs and previously
presented in Section 4.4. Unfortunately, a direct validation of the mapping accuracy is not
feasible. Considering different input data, this would require to validate every visited control
flow path in the ICFG during the execution of the program on the target platform with the
ones visited via simulation. In other words, for every experiment, it would be necessary
to perform a string matching between the call graph observed while tracing the execution
of the program on the target platform with the one observed while simulating. Therefore, a
different validation methodology has been selected. The mapping accuracy has been assessed
relying on an indirect approach. The selected approach consists of measuring the number of
executed instructions and the program execution time. Consequently, the indirect approach
continues by comparing them to the respective results of a simulation based on the proposed
mapping approach. The two measured metrics strongly depend on the executed control flow.
Therefore, in an indirect way, a high level of accuracy in the simulated values indicates a
precise mapping of the CFGs.

Before starting the evaluation, the binary file is statically analyzed. The goal of this analysis
step is to determine a fixed number of instructions for every binary basic block in the program.
As previously discussed in Section 3.3.1, it is assumed that the execution of a basic block
implies the consecutive execution of all its instructions starting from its start address. As
mentioned in Section 5.2.2, any function call is treated as a basic block terminator instruction.
However, as explained in Section 5.2.1 the execution time of a basic block cannot be fixed. It
may vary depending on the program’s execution history due to the possible different timing
behavior of the stateful resources included in the processor. Therefore, multiple execution
times have been consequently measured via non-intrusive tracing measurements for every
binary basic block. The different measurements allow accounting for the variation caused by
the different execution contexts. These measurements are consequently used for producing a

96 Chapter 6. Experimental Evaluation and Results

TDB generated applying the VIVU(∞, ∞) configuration. In case of fully traced call strings,
this choice enables the generation of exact (or highly accurate) results.

The evaluation has been conducted by requiring the simulator to generate the selected two
metrics by updating their values, at run-time, and by relying on the IR execution paths and the
mapping information. All the possible combinations of standard middle-end and back-end
optimization levels have been considered. Between them, the highest level of optimization
-O3 allows producing more challenging CFGs to be mapped. In fact,compared with lower
optimization levels, the -O3 optimization level introduces substantial changes in the structure
of the different program representations and is therefore harder to map. For most of the
functions in the benchmarks, a manual direct matching of IR to binary CFGs is not possible.
For this reason, only the results for the highest level of optimization are shown. More accurate
results, achieved evaluating lower optimization levels, are here omitted because they are a
direct consequence of a lower mapping complexity.

The results for the conducted evaluation of benchmarks compiled with -O3 optimization
level are collected in Table 6.2. For every benchmark in the table are reported two addi-
tional metrics useful for describing the complexity of the contained CFGs. In particular, the
complexity of the CFGs is expressed by the benchmark’s total lines of code (LOC) and the
cyclomatic complexity number (CCN) [108] of its most complex CFG. The CNN indicates
the complexity of a CFG by considering the number of linearly independent paths contained
in it. Based on its definition, the CCN can describe the complexity of a CFG according to the
following classification:

• Easy structure - 1 ≤ CCN ≤ 5.

• Difficult structure - 6 ≤ CCN ≤ 10.

• Very difficult structure - 11 ≤ CCN ≤ 15.

• Structure impossible to be tested - CCN ≥ 16.

The results in Table 6.2 show a high-level of accuracy for both the metrics. In fact, the dif-
ference between the measured and simulated values is minimal. In most of the cases, the
accuracy is close to 100%. The CFGs of simple programs are exactly mapped and minimal
inaccuracies are observed only for programs that include CFGs with difficult or harder struc-
tures. The high level of accuracy of the simulation results implies the valid effectiveness of
the proposed two-phases mapping algorithm.

Consequently, after an appropriate investigation, it has been ascertained that one reason for
the deviation in the results is that the ARM instruction set includes conditional execution
instructions. As previously discussed in Section 3.3.1, this kind of instructions are not con-
sidered by the proposed methodology because they partially invalidate the assumption on
the complete execution of a basic block. Nevertheless, the effectiveness of the mapping is
proven by the accuracy of the simulation results. Therefore, the proposed mapping algorithm
can be utilized for generating accurate mapping between the CFGs in support of the presented
simulation methodology.

6.2. Simulation Accuracy 97

Table 6.2 – Evaluated mapping’s accuracy for benchmarks compiled with -O3 optimization level.

Benchmark Metrics Instructions Count Execution Time (us)
LOC CCN Measured Simulated Accuracy Measured Simulated Accuracy

bs 144 9 51 51 100% 7 7 100%
bsort100 128 8 45949 44286 96.38% 2380 2301 96.68%
cnt 267 3 1525 1525 100% 165 165 100%
crc 128 9 11661 11661 100% 635 635 100%
duff 86 10 537 537 100% 37 37 100%
edn 285 4 84992 84301 99.19% 5989 5945 99.27%
fdct 239 3 1834 1834 100% 159 159 100%
fir 276 5 133588 133588 100% 9270 9340 99.24%
insertsort 92 8 1108 1083 97.74% 92 90 97.83%
ludcmp 147 14 1512 1506 99.61% 235 231 98.30%
matmult 163 4 35229 35229 100% 3015 3040 99.17%
ndes 231 11 28625 28566 99.79% 1502 1489 99.13%
prime 47 4 4233 4223 99.76% 449 448 99.78%
qsort_exam 121 15 851 867 98.12% 79 76 96.23%
qurt 166 5 514 514 100% 135 135 100%
select 144 16 368 368 100% 34 34 100%
sqrt 77 5 447 447 100% 124 124 100%
st 177 4 70067 70067 100% 4548 4518 99.34%
ud 163 11 1205 1161 96.35% 109 106 97.24%

6.2.2 Context-Sensitive Timing Simulation

This section presents the evaluation results obtained investigating the achievable level of ac-
curacy in the performance estimations produced via the proposed LLVM IR context-sensitive
simulation methodology. In particular, the results initially show the importance of consider-
ing different timing behaviors for specific parts of a program depending on the execution
contexts. Thereafter, the accuracy of the simulation results is assessed. In the complete eval-
uation, the accuracy is always computed comparing the value of the performance estimated
via simulation with the ones measured directly from the target. Therefore, the accuracy of
the results (expressed in percentage) can be computed utilizing the following formula:

Accuracy % =
estimated
measured

× 100

Relying on this definition, the percentage of error in the simulation results can be straightfor-
wardly computed as:

Error % = 100− accuracy

The overall results of the evaluation are summarized in Table 6.3. These results are expressed
in error percentage. Considering that every program can be simulated by giving in input
different data sets, multiple experiments are conducted for every single program and here
it is shown only the maximum observed value of error percentage. A low value of error
percentage implies that the performance estimation value produced via simulation is very
similar to the one measured directly on the target. Therefore, a zero value in the table implies
an exact result.

98 Chapter 6. Experimental Evaluation and Results

Table 6.3 – Evaluation accuracy considering three different VIVU mapping configurations.

Error %
Benchmark VIVU(0,0) VIVU(20,20) VIVU(∞,∞)
bs 5.08 3.16 0
bsort100 26.7 3.32 0.86
cnt 52.31 0.5 0
crc 23.82 1.06 0
duff 6.07 0.03 0
edn 36.54 3.80 0.72
fdct 3.56 0.08 0
fir 29.42 1.92 0.76
insertsort 19.98 4.65 2.17
ludcmp 25.45 2.98 2.70
matmult 5.22 1.44 0.83
ndes 42.10 1.23 0.87
prime 44.47 1.12 0.32
qsort_exam 39.12 6.20 4.77
qurt 31.63 0.13 0
select 14.97 0.70 0
sqrt 31.54 0.18 0
st 32.69 1.92 0.66
ud 43.37 3.54 2.76
Average 27.01 1.99 0.92

The Importance of Context-Sensitive Timing Information

The first column of Table 6.3 is intended for showing the necessity of considering different
execution times for the same part of the program depending on its execution context. In fact,
the column shows the percentage of error for the performance estimations produced by sim-
ulating the programs and considering TDBs that have been generated with the VIVU(0, 0)
mapping configuration. This configuration does not consider the possible different timing
behaviors of the software programs depending on their execution contexts. During the TDBs
generation process, only one time per binary basic block (or sequence of consecutive ba-
sic blocks) is computed and stored in the appropriate TDB. This value is the average value
between the observed ones.

The same values reported in the table are graphically represented in the chart shown in Fig-
ure 6.1. Except for some small benchmarks, the error percentage in the performance estima-
tions that do not consider the execution contexts is substantial. The average error value is
close to 27%, an unacceptable level of inaccuracy. In the conducted evaluation, the highest
value of inaccuracy has been over 52% when simulating the crc benchmark. In this specific
case, the poor performance is due to multiple context-dependent loops in the benchmark’s
ICFG that are executed during the simulation. Simpler benchmarks including less and sim-
pler loop structures, like in the case of the bs and the matmult benchmarks, the inaccuracy
drops to 5%. Therefore, the consideration of an appropriate TDB when executing a context-
sensitive timing simulation is essential for the accurate analysis of complex programs like
the ones that compose industrial and real applications.

6.2. Simulation Accuracy 99

0

10

20

30

40

50

b
s

b
so

rt
1

0
0

cn
t

cr
c

d
u

ff

ed
n

fd
ct fi
r

in
se

rt
so

rt

lu
d

cm
p

m
at

m
u

lt

n
d

es

p
ri

m
e

q
so

rt
_e

xa
m

q
u

rt

se
le

ct

sq
rt st u
d

Er
ro

r
%

Figure 6.1 – Inaccuracy due to missing context timing information: The chart shows the percentage
of error in the performance estimations of multiple Mälardalen benchmarks produced via simulation
(the values are extracted from Table 6.3). In all the different simulations, the resulting timing estima-
tions have been produced by considering TDBs generated with the VIVU(0, 0) configuration. The
missing consideration of the possible different timing behaviors due to the execution contexts in the
programs is recognized to be the cause of such inaccuracy.

Simulation Accuracy Assessment

Ensuring an elevated level of accuracy for the performance estimations produced via sim-
ulation is one of the two key requirements of an ideal solution, as previously discussed in
Section 2.1.2. Therefore, further experiments have been conducted for assessing the accu-
racy capabilities of the proposed simulation methodology.

The accuracy capabilities have been initially assessed by executing context-sensitive timing
simulations of the benchmarks and relying on the timing information contained in TDBs
generated with the VIVU(∞, ∞) configuration. It is expected that this configuration of the
VIVU mapping can lead to observing the most accurate simulation results. This is possi-
ble only if the conducted tracing activities ensure the measurement of an execution time for
all the encountered contexts during a simulation. The results of this evaluation are reported
in the most right column of Table 6.3. The same results are plotted with light gray bars in
the chart shown in Figure 6.2. As expected, the VIVU(∞, ∞) configuration leads to more
precise results than the ones observed for the VIVU(0, 0) configuration. For eight of the
shown benchmarks the performance estimations resulted always exact. The average error
value is below 1%. Furthermore, the overall error percentage is lower than 3%, except for
the qsort_exam result that is slightly below 5%. The higher inaccuracy encountered for
the qsort_exam benchmark is due to an insufficient quality contexts coverage during the
program tracing. The benchmark includes multiple nested loops that make the process of
visiting different control flow input paths hard. In fact, this is done by only changing the
program’s input data. This problem is present also for the other evaluated VIVU configura-
tion. Therefore, it is evident that the tracing strategy is essential in determining the maximum
achievable simulation accuracy.

The presented results for the VIVU(∞, ∞) configuration show that an elevated level of ac-
curacy can be achieved in estimating the performance of a system via simulation. However,
this configuration requires the simulator to manage very long call strings, eventually un-
bounded. It is expected that this property influences the simulation performance introducing
an undesired slowdown. Therefore, more experiments have been conducted for identifying

100 Chapter 6. Experimental Evaluation and Results

0 0 0 0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

b
s

b
so

rt
1

0
0

cn
t

cr
c

d
u

ff

ed
n

fd
ct fi
r

in
se

rt
so

rt

lu
d

cm
p

m
at

m
u

lt

n
d

es

p
ri

m
e

q
so

rt
_e

xa
m

q
u

rt

se
le

ct

sq
rt st

0 0 0 0 0

u
d

Er
ro

r
%

VIVU(20,20)
VIVU(∞,∞)

Figure 6.2 – Elevated accuracy of LLVM IR context-sensitive timing simulations: Compared to
the results shown in Figure 6.1, the consideration of context-dependent different timing behaviors
implies a significant level of accuracy in the performance estimations produced via simulation. In
particular, the chart shows the limited percentage of error in the performance estimations based on the
VIVU(20, 20) and VIVU(∞, ∞) configurations (the values are extracted from Table 6.3). The re-
sults show that the performance estimations produced with TDBs generated with the VIVU(20, 20)
configuration can achieve accurate results. The accuracy of these results is comparable to the ones
based on the VIVU(∞, ∞) configuration if appropriate tracing activities are performed during the
TDB generation.

a VIVU mapping configuration that reduces the overhead by keeping an adequate level of
accuracy. An iterative process has been followed that, starting from the less accurate config-
uration VIVU(0, 0), increased both the VIVU mapping function’s n and k parameters until
the simulation accuracy stopped substantially improving for most of the benchmarks. The
conducted experiments identified the VIVU(20, 20) configuration as the first configuration
that can ensure good accuracy results. The error percentage in the performance estimations
produced via simulation and considering TDBs generated applying the VIVU(20, 20) con-
figuration are reported on the central column in Table 6.3. Comparing these values with the
ones produced with the configuration VIVU(∞, ∞), as shown in the chart in Figure 6.2, it
is possible to observe a similar behavior for the two configurations. As expected, the results
produced considering the VIVU(20, 20) configuration are less accurate than the ones pro-
duced considering potential unbounded call strings. In some cases, the difference between
the accuracy of the two estimations differ. The observed average error percentage is below
2%. For multiple benchmarks, the accuracy is comparable with the most accurate VIVU
configuration. In a similar way to what observed for the VIVU(∞, ∞) configuration, the
highest level of inaccuracy has been observed for the qsort_exam benchmark. In this
case, the error percentage is close to 6%. The difficulties encountered in the tracing of the
previous experiment remain valid also for this case.

In general, the conducted experiments show that the proposed context-sensitive timing sim-
ulation methodology can achieve a good level of accuracy. Depending on the simulation
requirements, an appropriate configuration of the VIVU mapping function parameters has to
be defined. The presented results show that the VIVU(20, 20) configuration can support the
simulation in achieving sufficiently accurate results and reducing the simulation overhead.

6.2. Simulation Accuracy 101

6.2.3 Early Evaluation of MPSoC

The previous sections showed the results of the evaluation conducted for estimating the level
of accuracy of the performance estimations produced via simulations of single core systems.
Differently, this section is intended to show the accuracy level that can be achieved when
early estimating the performance of a heterogeneous system utilizing the MPSoC simulation
methodology extension presented in Section 5.3.3.

The MPSoC extension evaluation has been conducted in a different way from the single
core accuracy assessment. In fact, the unavailability of an MPSoC platform and the choice
of neglecting any heterogeneous compilation technique, because it is out of the scope of
this thesis, suggested the evaluation to be conducted via a practical example. Therefore, in
the evaluation it is considered a hypothetical AMP asynchronous system composed of four
interconnected processors. The selected four processors are the ARM Cortex processors
described in Table 6.1.

The system’s software application has been created by combining multiple different bench-
marks extracted from the Mälaralen suite. These benchmarks have been grouped in four dif-
ferent software functional units: FU0, FU1, FU2, FU3. Following a system partition scheme,
every processor in the heterogeneous system is designated to execute only one of the avail-
able FUs. Inside every single functional unit, it has been implemented a minimal scheduling
mechanism that invokes, in order, one after the other all the benchmarks in the partition. The
design of the system defines FU0 as the first executed functional unit. Thereafter, after the
first execution of FU0 and relying on the support of the scheduling mechanisms, the func-
tional units are executed in the order FU1, FU2, FU3, FU0. The scheduling mechanism in
FU0 determines the system termination after one thousand iterations. The system design and
partition information is summarized in Table 6.4.

The so designed heterogeneous application has been consequently compiled. As requested
by the methodology, the application has been compiled for all four the processors in the hy-
pothetical MPSoC platform. Four different binary executables have been generated from the
same IR code. Thereafter, the simulation bitcode has been appropriately annotated for en-
abling the possibility of relying on the JIT-base simulation technique. During the annotation,
it has been followed the information provided by the partition scheme shown in Table 6.4. As
a consequence, during the JIT-simulation, the simulator dynamically determines which of the
TDBs has to be queried for updating the timing estimation regarding the code of a specific
FU.

Table 6.4 – Evaluated heterogeneous system design and its relevant details.

Functional
Units SoC Processor Benchmarks LOC CCN

FU1 TI EVM-K2E Cortex-A15
bsort100 128 8
cnt 267 3
crc 128 9

FU2 TI RM57LHDK Cortex-R5
fac 27 2
fdct 239 3
fft1 219 16

FU3 Hitex LPC4350 Cortex-M4
fibcall 72 2
insertsort 92 8
janne_complex 64 6

FU4 Xilinx Zynq-7000 Cortex-A9
matmult 163 4
minver 201 21
ns 535 9

102 Chapter 6. Experimental Evaluation and Results

The simulation requires in input four different TDBs, one for each processor in the hypo-
thetical MPSoC. Three different possibilities are presented in Section 5.3.3. One of them,
the possibility of generating a TDB considering the tracing of every function in the program
in isolation, is not evaluated. In fact, this solution does not scale for large systems and it
is consequently excluded from the evaluation. However, both the other two possibilities are
considered. Therefore, for every processor have been generated two different TDBs. The
first one is generated by following the procedure defined for the so-called Complete program
technique, and the second one is generated by tracing only the appropriate partitions per core
as described for the Partitions in isolation technique.

The evaluation is based on the comparison of the performance estimation results produced
via simulation with a reference target execution. This reference time has been measured via a
structured tracing activity. Relying on the Lauterbach Trace32 support, the tracing has been
conducted processor per processor in a way of respecting the local execution contexts of the
different FUs.

The evaluation goal is assessing the accuracy of the simulation results considering both the
possibilities of generating a TDB. For every possibility, two different VIVU mapping config-
urations have been utilized for generating the simulation TDBs. According to the previously
conducted evaluation, the TDBs have been generated by considering the VIVU(20, 20) and
the VIVU(∞, ∞) configurations. The results of the complete evaluation are presented in
Figure 6.3. In particular, the chart in Figure 6.3(a) shows the accuracy achieved by consid-
ering TDBs generated according to the Complete program technique. In this case, the error
percentage considering both the VIVU configurations is similar and it is slightly below 27%.
Differently from the previous case, and as shown in the chart in Figure 6.3(b), the accuracy
substantially increases by simulating the system and considering TDBs generating according
to the Partitions in isolation technique. For both the VIVU configurations, the error percent-
age drops below 10%. Furthermore, the simulation accuracy resulting from generating the
TDBs according to the VIVU(20, 20) configuration achieved above 90%. The simulation
speed observed during the simulations executed during this evaluation is aligned with the
results later shown in the appropriate evaluation section.

The accuracy demonstrated by the two techniques proposed for generating the TDBs in sup-
port of the simulation of a heterogeneous system substantially differs. The first possibility

26.71

26.91

0 5 10 15 20 25 30

VIVU(20,20) 70 MIPS

VIVU(∞,∞) 48 MIPS

Error %

(a) Complete program tracing technique.

8.89

9.31

0 2 4 6 8 10

VIVU(20,20)

VIVU(∞,∞)

69 MIPS

47 MIPS

Error %

(b) Single partitions in isolation tracing technique.

Figure 6.3 – Evaluation accuracy of MPSoC extension methodology results: The two proposed trac-
ing techniques for tracing and extracting the necessary timing information for generating the TDBs
necessary for simulating a heterogeneous system have been evaluated. The experimental results show
that the complete program tracing technique is not suitable for producing sufficiently accurate results,
reporting a percentage of error in the performance estimation close to 27%, because of missing or
misleading context-timing information. More precise results can be achieved adopting the single
partitions in isolation tracing technique. In this way, useful indications can be produced for the early
stages of the development of a system. The performance estimations produced relying on the timing
information extracted via the second technique showed an accuracy above 90%.

6.3. Simulation Speed 103

results easier to trace, it requires a simple end-to-end tracing, but it showed high inaccuracy
due to inappropriate timing values assigned to some contexts. The inaccuracy level is objec-
tively too high even for early performance estimations. The results of the second possibility
showed a significant accuracy improvement due to a more time consuming tracing procedure
that allows the observation of more realistic execution contexts. A percentage of error below
10% for an early estimation of a heterogeneous system can still be considered an appropriate
indication for the designers of a system during the early stages.

6.3 Simulation Speed

Producing highly accurate performance estimations is only one of the two requirements of an
ideal simulation solution. In fact, it is requested that the estimations have to be produced in
a very fast way ensuring a substantial simulation speed. The goal of this section is to present
the conducted evaluation for assessing the simulation speed capabilities of the proposed sim-
ulation methodology. Initially, it is evaluated the interpretation-based simulation technique.
Consequently, the performance of the equivalent accurate JIT-based simulation technique is
assessed and the performance of the two techniques are compared. Thereafter, the simula-
tion speed of the fastest technique is compared with the well-known and widely used gem5
simulator [14, 96]. Finally, the beneficial effects on the simulation speed capabilities due to
the possibility of evaluating multiple SoCs in parallel are assessed and presented.

6.3.1 Interpretation-Based

The interpretation-based simulation technique is the more flexible one between the proposed
two solutions. It offers easier debugging and interaction capabilities but it is expected to be
the slowest one because of the slowdown due to the code’s interpretation. The conducted
evaluation mainly focused on determining the simulation speed capabilities of this technique
and on estimating the overhead in the lli execution due to the consideration of timing in-
formation while interpreting the bitcode. The evaluation has been conducted considering all
the four processors and SoCs listed in Table 6.1 but here are shown only the results obtained
simulating the ARM Cortex-A15 processor. As expected, the simulation speed capabilities
observed by simulating the other processors showed irrelevant differences. In fact, the sim-
ulation speed, as well as the simulation accuracy, does not depend on the target architecture
but on the configuration of the VIVU mapping parameters. Smaller values ensure higher
simulation speed capabilities because shorter call strings, and consequently simpler context,
are managed during the simulation.

The results for the simulation speed achieved by the interpretation-based simulation method-
ology are shown in Figure 6.4. The chart in the figure reports the evaluation results of sim-
ulations executed considering TDBs generated with the VIVU(∞, ∞) and VIVU(20, 20)
configurations. It has been shown that the first configuration ensures the achievement of
more accurate results compared to any other configuration. The second one can achieve a
good level of accuracy instead. The evaluation results show that the performance estimations
produced considering the VIVU(∞, ∞) configuration achieve an average simulation speed
of 1.59 MIPS with a minimal standard deviation value of 0.15. The minimal deviation in
the simulation speed between the benchmarks suggests that the time spent by the simulator
in interpreting the programs is dominated by the time spent in dynamically managing the
call string and the corresponding contexts. The trade-off between simulation accuracy and
speed due to the adoption of the VIVU(20, 20) configuration ensures a sensible simulation
speedup. In fact, the average simulation speed increases up to 2.84 MIPS and the maximum
observed value is 4.57 MIPS by simulating the fac benchmark.

104 Chapter 6. Experimental Evaluation and Results

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Si
m

u
la

ti
o

n
 S

p
ee

d
 (

M
IP

S) VIVU(∞,∞)
VIVU(20,20)

Figure 6.4 – Interpretation-based context-sensitive methodology simulation speed: The chart shows
the simulation speed, expressed in MIPS, observed when simulating different Mälardalen bench-
marks and utilizing the interpretation-based methodology. Two different VIVU mapping config-
urations are evaluated. The simulations performed considering TDBs generated according to the
VIVU(∞, ∞) achieve a maximum simulation speed close to 2 MIPS. Faster capabilities are shown
by the VIVU(20, 20) configuration. The simulation of the fac benchmark achieves up to 5 MIPS
simulation speed while the average value is 2.8 MIPS.

The chart represented in Figure 6.5 shows the slowdown caused by simulating the bench-
marks and considering both the VIVU configurations compared with the native interpreta-
tion of lli. The difference in simulation speed when considering the two different VIVU
configurations is considerable only for some of the benchmarks. These benchmarks contain
nested loop structures. Therefore, for these benchmarks, the number and the complexity of
the contexts to consider during the simulation is higher.

0

2

4

6

8

10

12

14

16

0
1
2
3
4
5
6
7
8
9

Sl
o

w
d

o
w

n

Si
m

u
la

ti
o

n
 S

p
ee

d
 (

M
IP

S)
Native lliVIVU(∞,∞)

VIVU(20,20)

Figure 6.5 – Interpretation slowdown due to the consideration of timing information: The native
performance of the lli simulation has been compared with the enriched version implementing the
interpretation-based timing simulation methodology. In general, the VIVU(20, 20) configuration
ensures lower undesired slowdown than the one observed for the VIVU(∞, ∞) configuration while
keeping an adequate level of accuracy in the resulting performance estimations.

6.3. Simulation Speed 105

The observed simulation speed values for both the configuration are higher than the simula-
tion speed capabilities achievable by standard cycle accurate simulators. However, they are
substantially slower than other performance estimation techniques. For example, the context-
sensitive simulation technique presented in [117] achieves approximately a simulation speed
of 50 MIPS on a standard host machine. Despite the interpretation benefits, it is essential to
rely on the JIT speedup for achieving better and more attractive simulation speed capabilities.

6.3.2 Just-In-Time Speedup

The same VIVU mapping configurations have been tested for evaluating the simulation speed
achievable by executing JIT-based context sensitive simulations. The results of the evaluation
are reported in Table 6.5. In this case, the values ensured by the JIT-compilation of the
simulation code are significantly higher than the ones previously presented. The table allows
directly comparing the JIT-based simulation performance capabilities with the ones observed
for the interpretation-based solution.

Table 6.5 – Comparison between the observed simulation speed capabilities of the two proposed
simulation methodologies considering two different VIVU mapping configurations.

MIPS Interpretation MIPS JIT-Based
Benchmark VIVU(∞, ∞) VIVU(20,20) VIVU(∞, ∞) VIVU(20,20)

adpcm 1.48 2.4 9.05 41.82
bs 1.52 3.16 25.31 58.55
bsort100 1.36 2.35 70.92 121.56
cnt 1.55 3.58 10.63 27.74
compress 1.9 2.9 191.71 198.55
crc 1.62 2.62 18.33 54.84
duff 1.62 3.58 127.22 131.37
expint 1.74 3.65 132.04 143.18
fac 1.93 4.9 15.72 41.86
fdct 1.32 1.38 170.43 201.33
fft1 1.62 3.46 15.19 36.16
fibcall 1.6 4.62 22.71 65.55
fir 1.74 2.42 12.13 41.7
insertsort 1.46 2.36 18.64 55.24
janne_complex 1.56 3.59 9.58 28.52
jfdctint 1.64 2.03 52.57 151.43
lms 1.7 1.98 19.23 46.31
ludcmp 1.65 2.71 17.84 42.16
matmult 1.55 1.56 8.37 8.78
minver 1.62 2.77 15.46 37.55
ns 1.36 3.1 11.21 18
prime 1.28 3.32 19.06 67.84
qsort_exam 1.49 3.08 134 157
qurt 1.5 3.09 14.73 36.03
select 1.68 2.64 27.9 62
ud 1.63 3.47 16.79 37.64
Average 1.58 2.95 45.65 73.57
Std. Deviation 0.16 0.82 55.32 55.92

106 Chapter 6. Experimental Evaluation and Results

The average simulation speed observed for the slower but more accurate VIVU(∞, ∞) con-
figuration is 45.65 MIPS. The average value for the faster but less accurate VIVU(20, 20)
configuration is 73.57 MIPS. Both the configurations show the faster simulation speed val-
ues for the compress and fdct benchmarks. Differently from the interpretation case, the
repeatedly executed nested loops are efficiently compiled only once by the JIT-compiler and
this optimization ensures a substantial simulation speedup. In general, it has been observed
that the simulation speed is directly related to the number of simulated ARM instructions.
The experiment results show that the simulation of a substantial number of instructions re-
duces the minimal overhead due to the instrumentation in the bitcode and the time required
by its JIT compilation.

Considering the simulation speed values reported in Table 6.5, in Figure 6.6 it is shown a
chart representing the speedup due to the execution of JIT-based simulations compared with
the interpretation option. Except for the matmult benchmark, the simulation speedup en-
sured by the JIT-based simulation methodology is substantial. In average, the simulation
speedup for simulation based on the VIVU(∞, ∞) configuration is 45. The average speedup
increases up to 73 for the VIVU(20, 20) configuration. The JIT-based simulation methodol-
ogy executes the fdct benchmark at least 200 times faster than the simulation methodology
based on the interpretation of the bitcode. The minimum speedup has been observed for the
matmult benchmark. If highly compiled, this benchmark requires the simulation of only a
limited number of instructions. Therefore, in this case, the benefit of the JIT-compilation can-
not be recognized. However, the ensured substantial speedup confirms that it is possible to
obtain accurate timing estimations by executing fast LLVM IR context-sensitive simulations.

0 25 50 75 100 125 150 175 200

adpcm
bs

bsort100
cnt

compress
crc
duff

expint
fac

fdct
fft1

fibcall
fir

insertsort
janne_cmplx

jfdctint
lms

ludcmp
matmult
minver

ns
prime

qsort_exam
qurt

select
ud VIVU(∞,∞) VIVU(20,20)

JIT-Based Simulation Speedup

Figure 6.6 – JIT-based simulation speedup: This chart shows the observed simulation speedup im-
provement ensured by the proposed JIT-based simulation technique compared with interpretation-
based simulation’s performance. The results show a substantial beneficial speedup for both the eval-
uated VIVU configurations. The JIT-based simulation technique ensures higher simulation speed
capabilities that make it more attractive for producing early timing estimations during the early ac-
tivities of the design space exploration.

6.3. Simulation Speed 107

6.3.3 Simulation Speed Comparison

An additional evaluation of the simulation speed capabilities has been conducted. The sim-
ulation speed achievable by the JIT-based simulation methodology has been compared with
the well-known and public available gem5 simulator [14, 96]. The gem5 simulator is a mod-
ular platform for performing research about hardware target architectures. The simulator is,
at the time of writing, widely utilized in computer system design by academia and indus-
try. Therefore, the gem5 simulator is a valid candidate for comparing its simulation speed
capabilities with the ones achievable by the proposed JIT-based context-sensitive simulation
methodology.

For the evaluation, the gem5 simulator has been compiled and configured for executing ac-
cording to the fast implementation of the provided full system simulation mode [96]. There-
after, the amount of time required for simulating the benchmarks with the gem5 simulator
has been compared against the measured time required by the proposed JIT-based simula-
tion methodology. Both the simulators have considered the processor ARM Cortex-R5. This
choice is due to the availability of such a model for the gem5 simulator. The results of the
conducted evaluation are shown in Figure 6.7.

The presented histogram in Figure 6.7 is intended to show the speedup resulting from simu-
lating the benchmarks with the proposed JIT-based simulation methodology compared with
the gem5 simulator. The different simulation speeds achieved by the JIT-based simulations
are plotted with dark dots referring to the secondary axis. For a more fair comparison,
the TDBs considered during the different simulations have been generated according to the
VIVU(∞, ∞) configuration, the one that showed the slowest speed capabilities. Neverthe-
less, the plotting of the speedup in the chart requires a logarithmic scale. Two different
kinds of gem5 simulations are considered in the chart. The light gray columns represent
the comparison results when gem5 only simulates ARM instructions without performing any
consideration about the timing behavior of the program that can be influenced by the hard-
ware resources included in the target. Differently, the darker columns show the comparison

31 MIPS

69 MIPS

48 MIPS

30 MIPS

49 MIPS

47 MIPS

40 MIPS

1

10

100

1000

0

10

20

30

40

50

60

70

80

bsort100 crc edn fir matmult ndes st

Ti
m

e
s

fa
st

e
r

(S
p

e
e

d
u

p
)

Si
m

u
la
�

o
n

 S
p

e
e

d
 (

M
IP

S)

gem5
gem5 with Timing Host-Based Simulation MIPS

Figure 6.7 – Simulation speed comparison against the gem5 simulator: The simulation speed capa-
bilities of the proposed JIT-based context-sensitive timing simulation methodology have been com-
pared against the gem5 simulator. The JIT-based simulations have been executed considering TDBs
generated according to the VIVU(∞, ∞) configuration. The achieved simulation speed has been
compared against the gem5 simulator with and without timing considerations. In both the cases, the
simulation speedup ensured by the proposed simulation methodology is substantial.

108 Chapter 6. Experimental Evaluation and Results

with a full timing gem5 simulation. In the first case, the maximum observed speedup en-
sured by the JIT-based simulation methodology compared with the gem5 simulator has been
20 for the edn benchmark. The observed average value is slightly above 8 instead. The
speedup substantially increases when considering the time requested for executing full gem5
simulations. In fact, the maximum observed speedup reached a value up to 527 when sim-
ulating the crc benchmark and enabling gem5 to consider the timing behavior of caches,
pipeline and branch predictor. For this second case, the average observed speedup is 144.
These results show that the proposed JIT-based context-sensitive timing simulation approach
allows executing accurate simulations requiring an amount of simulation time that is orders
of magnitude shorter than simulating with the gem5 simulator.

6.3.4 Parallel Evaluation Speedup

A further experiment has been conducted in assessing the simulation speed capabilities of
the proposed simulation methodology. In this final assessment, it has been evaluated and
quantified the beneficial impact on the simulation speedup ensured by simulating in parallel
multiple hardware/software configurations. This assessment has been conducted for both the
interpretation-based and the JIT-based proposed techniques. In both the cases, it is expected
that the simulation speed can increase by incrementing the number of configurations to be
analyzed in parallel. In fact, it is requested by the simulator to compile and run the bitcode
only once per execution. During the execution, the simulator can visit different TDBs in
parallel, one for every configuration that has to be simulated. Thus, the overhead for the
simulation setup, due to the interpretation or the JIT-compilation and necessary annotation
code, can be significantly reduced.

The same TDBs are utilized for evaluating both the proposed simulation techniques. For
every benchmark, four different TDBs have been produced, one for every processor listed
in Table 6.1. All the TDBs have been generated according to the VIVU(20, 20) configu-
ration. Consequently, the simulation speed of analyzing in parallel multiple configurations
has been assessed. The evaluation results obtained for the interpretation-based and JIT-based
methodologies are shown respectively in Figure 6.8 and in Figure 6.9.

0

1

2

3

4

5

6

7

8

9

10

Si
m

u
la

ti
o

n
 S

p
ee

d
 (

M
IP

S)

A15
A15, R5
A15, R5, M4
A15, R5, M4, A9

Evaluated SoCs:

Figure 6.8 – Resulting parallel evaluation speedup of interpretation-based simulations: The simula-
tion speed increases by simulating in parallel multiple configurations, for every single increase. The
average simulation speedup observed by analyzing four configurations in parallel compared to the
analysis of a single configuration is up to 0.9.

6.3. Simulation Speed 109

S
im

u
la

ti
o
n
 S

p
e
e
d
 (

M
IP

S
)

Figure 6.9 – Resulting parallel evaluation speedup of JIT-based simulations: Even for this pro-
posed simulation methodology, simulating in parallel multiple configurations of a system ensures a
beneficial speedup compared with running a simulation that considers only one configuration. The
maximum simulation speed observed when simulating up to four configurations in parallel exceeded
the value of 1,000 MIPS. In general, the average simulation speedup is at least 1.5.

The evaluation results of the interpretation-based simulation methodology show that increas-
ing the number of configurations to simulate in parallel implies an improvement in the simu-
lation speed capabilities, for every increment. When analyzing four different configurations
in parallel, the maximum speedup value observed has been 1.4 for the fdct benchmark. The
average observed value during the same value has been 0.9. Relying on the growth shown by
the results in Figure 6.8, it is expected that even higher speedup values can be achieved by
simulating in parallel more configurations.

A similar behavior has been observed when simulating in parallel multiple configurations via
the JIT-based simulation methodology. In this case, the simulation speedup is considerably
more substantial than the one observed for the interpretation-based measurements. The mea-
surements show that the maximum observed speedup has been achieved by simulating the
fdct benchmark and when evaluating four configurations in parallel. For this benchmark,
the simulation speed exceeded the 1,000 MIPS showing a speedup value that is slightly be-
low 3. In the average, the simulation speedup achieved by simulating four configurations in
parallel is 1.5 and never below 1.0.

The showed beneficial speedup due to the simulation of multiple configurations in parallel
is an important property of the proposed simulation methodology. In fact, during the early
stages of the development of a system, the designers are interested in evaluating multiple con-
figurations for identifying the most suitable one. Especially the JIT-based context-sensitive
simulation based on the LLVM IR code representation can be a precious support in produc-
ing rapid performance estimations for driving the design space exploration activities in the
development of a complex system.

110 Chapter 6. Experimental Evaluation and Results

6.4 Timing-Aware Simulink Simulation Effectiveness

The content of this section presents the last activity conducted during the experimental evalu-
ation of the proposed simulation methodology. In particular, this section shows the effective-
ness of the co-simulation methodology described in Section 5.4. This methodology enables
the possibility of considering the architecture-dependent timing effects due to the execution
of the software on a target platform by simulating the model directly on Simulink. Therefore,
given a Simulink model, the evaluation is focused on showing the effects in the model’s be-
havior functionally due to the execution of a timing-aware Simulink simulation based on the
proposed co-simulation methodology.

6.4.1 Simulation Specification

The evaluation of the co-simulation methodology is conducted by analyzing a complex Simulink
model from the ones provided by the MATLAB environment. The chosen model is called
sldemo_fuelsys and its high-level design structure is shown in Figure 6.10. This model
implements a closed-loop system for the automotive domain by modeling a hypothetical
fault-tolerant fuel control system [165] that manages the air-fuel rate (AFR) of an engine.
The AFR is the ratio between the mass of air and the mass of fuel that are internally present
at a specific moment in a combustion engine. In this case, the performance of the system
considering its execution on a target platform can strongly influence the performance of the
vehicle’s engine (such as emissions, fuel economy, and others). Therefore, the model is com-
posed of a controller, a plant and some input sensors (such as throttle sensor, speed sensor,
and others). The controller subsystem, colored in gray, is responsible for dynamically ad-
justing the AFR depending on the given input values. These values are determined by the
sampling of the connected sensors and the plant feedback signals. The controller subsys-
tem in the model shows an appropriate level of complexity for evaluating the co-simulation
methodology. In fact, its implementation consists of more than one hundred components
and Simulink blocks. Its implementation also includes complex features provided by the
Stateflow toolbox [167].

To Controller

Engine Gas Dynamics

fuel_rate_control

sensors fuel_rate
(g/s)

(g/s)
Convert

To Plant

Convert

Throttle Sensor
Throttle
Command

Speed Sensor

300

Nominal
Speed

MAP Sensor

700

High
Speed

engine speed
(rad/s)

throttle angle
(deg)

fuel
(g/s)

o2_out
(V)

MAP
(bar)

air/fuel ratio
(1)

(V)

(1)

(g/s)

(rad/s)

(deg)

(bar)

Engine
Speed
Selector

EGO Sensor

0

0

12

0

air_fuel_ratio

ego

map

throttle

speed

fuel

fuel

Figure 6.10 – Simulated Simulink model for timing-aware co-simulation validation: The valida-
tion of the proposed co-simulation methodology has been conducted by analyzing the automotive
sldemo_fuelsys model provided by Simulink. The model shows an appropriate level of com-
plexity for managing the AFR of a vehicle’s engine. The performance of the controller’s subsystems
strongly influence the performance of the engine. Therefore, a timing-aware Simulink simulation is
useful for evaluating the system considering the effective execution of the controller’s software on a
real target platform.

6.4. Timing-Aware Simulink Simulation Effectiveness 111

Table 6.6 – Configurations considered during the co-simulation evaluation.

Hardware Configuration
Target

Processor Caches Branch Predictor Optimization
Level

ConfigA

Cortex-A15

Disabled Disabled

-O2
ConfigB Disabled Enabled
ConfigC Enabled Disabled
ConfigD Enabled Enabled
ConfigE

Cortex-R5

Disabled Disabled

-O2
ConfigF Disabled Enabled
ConfigG Enabled Disabled
ConfigH Enabled Enabled

The conducted evaluation considers the simulation of eight different configurations based on
two of the available ARM processors. The two considered processors are the Cortex-A15
and the Cortex-R5. For both of them are evaluated four different hardware configurations
that consist in all the possible combinations resulting from enabling and disabling the all the
cache memories and the branch prediction mechanisms. The source code generated for the
controller component has been always compiled applying the -O2 optimization level. The
eight configurations are summarized and listed in Table 6.6.

6.4.2 Timing-Aware Simulation Effects

The performance behavior of all the eight configurations have been simulated and evaluated
via the co-simulation methodology described in Section 5.4. The automatic procedure for an-
notating the Simulink model and executing the timing co-simulation have been repeated for
all the configurations. The simulation configuration requires the controller subsystem to be
periodically executed every ten milliseconds. The original system’s behavior of the Simulink
simulation without neglecting the possible effects due to the execution of the controller sub-
system on a real target platform is shown in Figure 6.11. The AFR value managed by the
system is represented by the darker solid curve.

As expected, the simulation results show different system behaviors. The discrepancies be-
tween the behaviors are due to the consideration of different configuration-dependent timing
estimations. In fact, it has been observed that the dynamic behavior of the selected target
platform configuration influences the resulting AFR values. The timing effects considered in
the proposed timing-aware Simulink simulations have a direct impact in the ratio managed
by the system. For example, in the native Simulink simulation, at every controller activa-
tion, the fuel output value is immediately available for the plant due to the SRP paradigm.
This behavior is unrealistic. In a timing-aware Simulink simulation instead, the delay library
components inserted in the controller subsystem introduce some jitter in the output’s compu-
tation. These delays influence the complete system behavior. All these behaviors differ from
the one observed by executing a native Simulink simulation.

For readability reasons, there is not a trivial way of showing the different system behaviors
observed via simulation for all the considered configurations. Therefore, instead of showing
all the different behaviors, in Figure 6.11 it is shown the deviation observed comparing the
results produced via the native Simulink simulation with the ones produced via timing-aware
simulations. In particular, the chart shows for both the two simulated processors the maxi-
mum deviation percentage observed for the respective configurations. The system behavior
deviation in the initial phase of the simulation is substantial. The deviation decreases once

112 Chapter 6. Experimental Evaluation and Results

0 1 2 3 4 5

t(s)

0

5

10

15

A
ir

-F
u

e
l

R
a
ti

o

Native Simulink

Air-Fuel Ratio

0

0.5

1

1.5

2

2.5

3

%
D

e
v
ia

ti
o
n

Cortex-A15

Cortex-R5

%Deviation

Figure 6.11 – Deviation between native and timing-aware Simulink simulation behaviors: The chart
shows the maximum percentage of deviation observed comparing the system performance behavior
resulting from a native Simulink simulation with the ones resulting from timing-aware simulations
of the functionally equivalent model. The resulting native Simulink simulation behavior is plotted
with the darker solid curve and it represents the computed AFR value during the simulation. Instead,
the other curves represent the maximum percentage of deviation observed executing timing-aware
cos-simulations and considering multiple configurations of two ARM processors.

that the AFR value is stable. However, in the simulations, it starts increasing again every
time that the AFR value shows a minimal change.

Considering only four of the configurations and a limited amount of simulation time, it is
possible to show four different behaviors for the same Simulink model. The different be-
haviors of the four configurations proposed for the processor ARM Cortex-A15 are shown
in Figure 6.12. The chart shows an arbitrary simulation interval extracted from the scope
component connected to the plant subsystem’s output. This interval includes two controller
execution cycles. In this convenient interval, it is possible to plot together the curve resulting
from the timing-aware simulations and the native Simulink simulation. The native Simulink
simulation behavior, still plotted with the darker solid curve, differs from the timing-aware
simulation results. According to the simulation results of the original model, its behavior
appears to be more optimistic than the ones of the timing-aware simulations. In fact, the lack
of the delay blocks allows the controller to be more reactive. Differently, considering the
appropriate timing effects in a timing-aware co-simulation, the system shows a less reactive
behavior. Between them, the configuration considering the enabling of both the caches and
the branch predictor mechanism results to be the most reactive one. This behavior is the
consequence of better performance estimations for the simulated system. On the opposite,
simulating the system for a configuration that considers the disabling of both the hardware
resources leads to observing the less reactive behavior. Therefore, different configurations
can be explored via the proposed timing-aware Simulink simulation methodology.

6.5. Summary 113

2.416 2.418 2.42 2.422 2.424 2.426 2.428 2.43 2.432 2.434

t(s)

14.5886

14.5888

14.589

14.5892

14.5894

14.5896

14.5898
ai

r-
fu

el
 r

at
io

Native Simulink

Config
A

Config
B

Config
C

Config
D

Figure 6.12 – Different system behaviors observed via timing-aware Simulink simulations: The chart
shows the distinct behaviors of the system observed by executing different Simulink simulations.
Considering the arbitrary simulation time slot, it is possible to plot together the system behavior
produced by simulating the original model with the ones generated via timing-aware simulations of
the configurations proposed for the Cortex-A15 processor. The proposed annotation mechanism, that
inserts delay blocks in the controller subsystem, allows the Simulink simulations to be more realistic
by considering the performance estimations produced during the co-simulation.

6.5 Summary

This chapter presented the overall experimental results collected during the conducted eval-
uation activities. Initially, the evaluation focused on assessing the level of accuracy for the
CFG mappings produced via the proposed two-phases algorithm. In this case, the measured
accuracy is always close to 100% even in case the analyzed programs are compiled with
the highest optimization level. Consequently, the evaluation focused on assessing the ac-
curacy and the simulation speed capabilities of the proposed simulation methodology. The
JIT-based simulations showed exactly the same level of accuracy of the interpretation-based
simulations. For the slowest but potentially more accurate simulation’s configuration, the
performance estimations showed a prediction error below 1%. The average error slightly
increased up to 2% when considering a faster configuration. An acceptable level of accu-
racy (prediction error below 9%) has been observed also in producing a rough estimation
for the execution time of a synthetic synchronous heterogeneous system. However, the JIT-
based simulations showed a substantial and beneficial simulation speedup compared to the
interpretation-based simulations. In fact, in the average case, a JIT-based simulation can be
executed 73 times faster reaching a simulation speed up to 74 MIPS. The simulation perfor-
mance has been compared with gem5, a well-known simulator in the state of the art. For
the analyzed programs, the proposed simulation approach produced accurate results, in av-
erage, 144 times faster (the maximum observed speedup value has been 527). Furthermore,
the evaluation quantified the benefit of evaluating multiple configurations in parallel. In fact,
the simulation exceeded the speed of 1.000 MIPS by evaluating in parallel four different
configurations. Finally, an exemplary Simulink model has been analyzed for evaluating the
previously presented co-simulation methodology. The evaluation showed that the system’s
behavior changes when the model considers the different timing estimations predicted for the
execution of the software components.

115

CHAPTER 7

Conclusions and Future Research

The first scope of this final chapter is to summarize the main contributions and the key results
presented in this thesis. Based on this initial description, the second scope of the chapter is to
propose and discuss possible future related research directions considering eventual current
limitations and open research opportunities.

7.1 Thesis Summary and Conclusions

This thesis presented a novel context-sensitive timing simulation methodology in support
of the early design space exploration of embedded systems. Fast and accurate performance
estimations of a system can be assessed via host-based simulation. Multiple system’s config-
urations can be evaluated in parallel. Every configuration can vary in software or hardware
related aspects. The evaluation of multiple configurations in parallel in only one simula-
tion, desirable possibility for the design space exploration, ensures higher simulation speed
capabilities. Furthermore, it is shown that the same simulation methodology can be used
for early evaluating also the performance of heterogeneous embedded systems that are de-
signed to be executed on MPSoC platforms. In particular, different system’s partitions can
be rapidly evaluated for investigating and determining the most suitable one. This can be en-
abled by following one of the tracing techniques proposed for generating the timing models
considered during the simulation. The simulation methodology supports the definition of the
system configurations via Simulink. In this case, when the system is described via a Simulink
model, the thesis proposes an additional new co-simulation methodology for evaluating the
performance of a system directly in a Simulink simulation. This is possible by enabling the
simulation of an enriched, but functionally equivalent, version of the given model. During
the native Simulink simulation, these kind of models are able to consider the performance
estimations produced via timing simulation.

The context-sensitive timing simulation methodology is based on the IR level of the software
programs. This program representation is internal to the compiler and, differently from the
source code, it already includes part of the effects of the compiler optimizations. On the one
hand, this choice ensures a beneficial level of abstraction to both the analysis and simulation
stages, but on the other hand, it implies the need of an appropriate mapping that is hard to

116 Chapter 7. Conclusions and Future Research

define. The mapping matches the structure of a program at the IR level to the correspond-
ing structure at the binary level. Aggressive compiler optimizations can substantially change
the structure of a program making a direct matching impossible. Considering the problem
complexity, it is desirable for the matching algorithm to be fully automatic without requiring
any modification of the compiler or the supervision of an expert. Therefore, this thesis pre-
sented two contributions to the state of the art. Initially, the thesis described a tracing-based
extension for an existing approach. Consequently, a second different methodology has been
presented that overcomes the drawbacks of the first solution. This second mapping approach
is based on an innovative and fully automatic two-phases algorithm. The conducted exper-
imental evaluation shows that the mapping accuracy is for most of the analyzed programs
close to 100%. The accuracy of the mapping algorithm is essential for producing precise
performance estimations via the LLVM IR context-sensitive timing simulation methodology
described in this thesis.

An ideal timing simulator is expected to produce accurate performance estimations in a very
fast way. Unfortunately, accuracy and simulation speed are two contrasting metrics that re-
quire the definition of a suitable trade-off. For this reason, the conducted experimental eval-
uation focused on assessing both the level of accuracy in the simulation results and the simu-
lation speed capabilities achievable by the proposed simulation methodology. The JIT-based
simulation approach resulted substantially faster than the interpretation one but, as expected,
both showed exactly the same level of accuracy. The performance estimations produced by
considering the most accurate configuration of the timing model showed a prediction error
below 1%. The prediction error slightly increased to 2% simulating the programs with a less
accurate but faster configuration. Approximate performance estimations, observed error per-
centage below 9%, can be produced for early evaluating different configurations of a hetero-
geneous system. The JIT-based simulation ensures a simulation speed that is on the average
73 times faster than the interpretation approach. The fastest observed simulation speed for
a JIT-based simulation of only one configuration has been 74 MIPS. Compared with gem5,

Ac
cu

ra
cy

Speed
(MIPS)

73 > 1,000

1
C

on
fig

ur
at

io
n

4
C

on
fig

ur
at

io
ns

Ideal
Solution

Increasing
Configurations

Figure 7.1 – Benefits of simulating in parallel multiple configurations: When evaluating only one
system’s configuration, the average observed simulation speed for JIT-based simulations is 73 MIPS.
Increasing the number of configurations simulate in parallel ensures a substantial simulation speedup
while keeping the same elevated level of accuracy. In fact, evaluating in parallel four different con-
figurations, the simulation speed exceeded the value of 1,000 MIPS. It is expected the simulation
speed to further increase in case more configurations are evaluated in parallel.

7.2. Future Work 117

a well-known timing simulator, the proposed simulation methodology can produce accurate
results in the average 144 times faster. Higher simulation speed can be achieved by simulat-
ing in parallel multiple system’s configurations. In one specific case, during the evaluation,
it has been observed a simulation speed that exceeded the value of 1,000 MIPS when four
different configurations were simulated in parallel. As shown in Figure 7.1, it is expected the
simulation to achieve faster speed capabilities by evaluating in parallel more configurations
and keeping the elevated level of accuracy. The elevated speed capabilities of the JIT-based
simulation enables the possibility of evaluating the design of an embedded system directly
in Simulink. This is possible by simulating an enriched version of the model that enables a
fast co-simulation technique between Simulink and the context-sensitive timing simulation
methodology described in this thesis.

7.2 Future Work

In this section are outlined possible eventual future research directions. In particular, some
considerations can be made for possible optimization opportunities. Improvements can be
applied at multiple levels for covering different simulation objectives.

7.2.1 Improving Simulation Speed

The simulation methodology proposed in this thesis shows elevated simulation speed ca-
pabilities. However, a first possible optimization’s goal consists in further improving the
simulation speed capabilities of the proposed simulation methodology. Some research can
be conducted in this direction. For instance, some considerations can be made on the annota-
tion mechanism proposed for the JIT-based simulation technique. The annotation determines
an unavoidable slowdown to the native lli performance. In fact, in a simulation, some ex-
ternal code has to be executed every time that the annotation code contained in the different
IR basic blocks is encountered. The external code initially checks if an LLVM IR path can be
translated into a binary one. If a translation is given, the binary path is consequently utilized
for querying the necessary timing databases and the requested performance estimations are
finally updated. This operation mode shows two main sources of slowdown:

1. Mapping translation - The simulation spends time in checking if, according to the
previously defined mapping, a binary path translation is available every time that the
annotation is encountered without knowing if a translation will be effectively provided.

2. Repeated translations - The simulator does not store any translation that is encountered
during the simulation. In case of loops, multiple identical IR paths are visited. There-
fore, the same translations are repeatedly requested and consequently wasting precious
time that slowdowns the simulation.

Considering these two sources of undesired slowdown, some expedients can be investigated.
For instance, the mapping translation slowdown can be contained by trying to reduce the
amount of annotation in the simulation code. The annotation code should appear only in
convenient parts of the code (e.g. only on conditional basic blocks, only on basic blocks
that represent the last block in a translatable path, etc.). In a different way, the repeated
translation slowdown can be mitigated by enriching the simulator with a sort of a smart
mechanism (similar to a cache memory) that recalls the translations that have been already
performed during the simulation.

118 Chapter 7. Conclusions and Future Research

7.2.2 Adaptive Timing Model

The timing model chosen for supporting the definition of the simulation methodology pro-
posed in this thesis ensures the possibility of producing highly accurate performance esti-
mations. However, its actual implementation presents some limitations. The limitations are
mainly due to the scarce flexibility of a timing database. Furthermore, other issues arise at
the time of generating such timing models. These issues are:

1. Fixed configuration - A timing database is fixed for a single system’s configuration and
it allows simulating only the performance of that specific configuration. In fact, it de-
scribes the timing behavior of a specific version of a software that is compiled applying
a certain level of optimization and that is executed on a well-defined configuration of
a target platform. Any minimal change in this setup invalidates the content of a timing
database.

2. Tracing methodology - At the time of writing, there does not exist a metric that allows
evaluating the effectiveness or quality of a timing database.Measuring the program’s
timing behavior for at least 100% of the binary coverage only ensures having a relative
execution time for the first iteration of every context in the program. However, the
simulation accuracy strongly depends on the coverage of all the contexts that are con-
sidered in a timing database. In addition to a beneficial metric, it is hard to define the
input data set for appropriately covering all the necessary contexts via measurements.

3. VIVU mapping configuration - When generating a timing database, a VIVU mapping
configuration has to be specified. Unfortunately, it is not trivial to determine the most
appropriate configuration for a given program. This configuration may different ac-
cording to the program structures. In fact, it affects both the simulation speed and
accuracy. It would be beneficial to have some kind of support for determining a suit-
able configuration.

Some research activities can be planned for limiting these limitations and making a timing
database more flexible and scalable. Considering that the proposed simulation methodology
is designed for the early development stages of a system, it would be beneficial to support
the possibility of evaluating small changes in the system. The simulation methodology pro-
posed in this thesis overcomes some of these problems by allowing the evaluation of multiple
configurations in parallel. The integration of additional models (such as analytical models or
others) or simulators can enable the possibility of further polishing this limitation. However,
changes in the software program are not considered. Furthermore, the issues related to the
tracing activities and the identification of the ideal VIVU mapping configuration could be
addressed by relying on appropriate machine learning algorithms. These algorithms should
achieve two specific goals. The first one is the generation of a valid input data set that al-
lows producing a sufficiently accurate timing database. The second one is the generation of
a timing database that applies the VIVU mapping according to the program’s structure.

7.2.3 Multi-Core Support

The proposed simulation methodology offers the possibility of early evaluating the perfor-
mance of synchronous embedded systems. However, due to the interference effects caused
by the shared resources included in multiprocessor platforms, this simulation methodology is
not directly applicable for simulating and evaluating multi-core systems. In this regard, the
main issue is represented by the difficulty of modeling the interference effects via the timing
database approach. At the same time, it is hard to accurately reproduce these effects during

7.2. Future Work 119

the simulation. However, some research has been conducted for ensuring a more determin-
istic behavior for programs that are executed concurrently on a multi-core platform [67, 38,
47]. These approaches propose to modify the code at compile time for improving their timing
analyzability in a multi-core scenario. The modifications make the programs less susceptible
to the timing effects caused by the unavoidable multi-core interference. In particular, the
simple approach presented in [38] achieves promising results by adding nop instructions in
convenient parts of a program. A program whose timing behavior is slightly influenced by
the parallel execution of other programs can be eventually timing analyzed in isolation. The
resulting timing model can be consequently considered in a multi-core simulation scenario.
Prospectively, further research in this direction can open the possibility of adopting different
context-sensitive timing simulation techniques for analyzing multi-core systems.

121

List of Abbreviations

AMP Asymmetric Multi-Processing
BCET Best-Case Execution Time
CCN Cyclomatic Complexity Number
CFG Control Flow Graph
DSE Design Space Exploration
ESL Electronic System Level
FU Functional Unit
ICFG Interprocedural Control Flow Graph
ILP Instruction Level Parallelism
IoT Internet of Things
IPC Instructions Per Cycle
IR Intermediate Representation
ISA Instruction Set Architecture
ISS Instruction Set Simulator
LOC Lines Of Code
MC Machine Code
MIPS Million Instructions Simulated Per Second
MIR Machine Intermediate Representation
MMU Memory Management Unit
MOET Maximal Observed Execution Time
MPSoC Multi-Processor System on Chip
RTL Register Transfer Level
SLDL System Level Design Language
SMP Symmetric Multi-Processing
SSA Single Static Assignment
SRP Synchronous Reactive Paradigm
TDB Timing DataBase
TLB Translation Lookaside Buffer
TLC Target Language Compiler
VIVU Virtual Inlining and Virtual Unrolling
WCET Worst-Case Execution Time

123

List of Figures

1.1 ARM big.LITTLE processing concept . 2

2.1 The Y-chart approach adopted in DSE for deploying MPSoC applications . . 9
2.2 Design space exploration phases, abstractions and simulation objectives . . . 10
2.3 Concept of ideal solution for performance analysis 11
2.4 Proposed concept for the generation of performance estimations 12
2.5 High-level host-based simulation concept workflow 13
2.6 Parallel evaluation of multiple hardware configurations in only one simulation 14

3.1 Standard workflow for model-based development of software in Simulink . . 17
3.2 Simulink system components and simulation time representations concept . . 18
3.3 Standard compilation stages and outputs . 19
3.4 Detailed workflow of the standard compilation phases 20
3.5 Static LLVM compilation tools and workflow 21
3.6 Interpretation and Just-In-Time execution of LLVM IR 23
3.7 Interesting timing properties of a program 25
3.8 Classification of the edges in directed graphs 26
3.9 Example program source code and relative LLVM IR CFG 27
3.10 Dominator tree of a control flow graph . 28
3.11 Interprocedural control flow graph . 28
3.12 Common steps performed by a timing analysis tool 29
3.13 Control-flow-driven performance simulation concept 35
3.14 Common workflow for source-level timing simulation 36
3.15 Exemplary source code annotation for target performance simulation 37
3.16 Common workflow for context-sensitive binary-level timing simulation . . . 39
3.17 Common workflow for IR-level timing simulation 40

4.1 Common CFG structural changes due to compiler optimizations 45
4.2 Example of dominator homomorphism matching algorithm 47
4.3 Flow value and nesting level . 48
4.4 Example of heuristic subgraph matching algorithm 49
4.5 Example of CFG mapping ambiguity . 50
4.6 Proposed fully-automatic subgraph matching solution 52
4.7 Fully-automatic subgraph matching disambiguation 54

124 List of Figures

4.8 Two-phases methodology for LLVM IR to binary machine code matching . . 55
4.9 Example of IR and MIR CFGs annotated with basic block labels 57
4.10 Initial partial mapping between preserved edges 59
4.11 Complete IR to MIR CFG mapping . 60
4.12 Initial removal candidate nodes are colored in black 62
4.13 Conditions for coloring a node in dark gray 63
4.14 Full CFG coloring in support of the isomorphism algorithm 63
4.15 Control flow and nesting level preservation 64
4.16 Direct mapping between two isomorphic CFG structures 65

5.1 Possible infinite contexts of a program due to unbounded loop 70
5.2 High-level simulation workflow . 74
5.3 Interpretation-based simulation workflow 75
5.4 JIT-Based context-sensitive timing simulation methodology workflow 78
5.5 Proposed instrumentation strategy for enabling JIT-based simulations 79
5.6 Simulation methodology extension for evaluating heterogeneous systems . . 81
5.7 Multiple TDBs for describing the timing behavior of every MPSoC partition . 82
5.8 Different tracing approaches for generating TDBs for MPSoC simulations . . 83
5.9 Timing-aware Simulink simulation methodology workflow 84
5.10 Exemplary sequence diagram of a simple Simulink model 86
5.11 Exemplary delay block annotation of a Simulink subsystem 89
5.12 Co-simulation mechanism for evaluating timing-aware Simulink models . . . 90

6.1 Inaccuracy due to missing context timing information 99
6.2 Elevated accuracy of LLVM IR context-sensitive timing simulations 100
6.3 Evaluation accuracy of MPSoC extension methodology results 102
6.4 Interpretation-based context-sensitive methodology simulation speed 104
6.5 Interpretation slowdown due to the consideration of timing information . . . 104
6.6 JIT-based simulation speedup . 106
6.7 Simulation speed comparison against the gem5 simulator 107
6.8 Resulting parallel evaluation speedup of interpretation-based simulations . . . 108
6.9 Resulting parallel evaluation speedup of JIT-based simulations 109
6.10 Simulated Simulink model for timing-aware co-simulation validation 110
6.11 Deviation between native and timing-aware Simulink simulation behaviors . . 112
6.12 Different system behaviors observed via timing-aware Simulink simulations . 113

7.1 Benefits of simulating in parallel multiple configurations 116

125

List of Tables

5.1 Speedup ensured by JIT-executing IR code compared with interpretation . . . 78

6.1 List of considered ARM-based platforms and their architectural properties . . 94
6.2 Evaluated mapping’s accuracy for benchmarks compiled with -O3 level. . . . 97
6.3 Evaluation accuracy considering different VIVU mapping configurations . . . 98
6.4 Evaluated heterogeneous system design and its relevant details. 101
6.5 Comparison between speed capability of the two simulation methodologies . 105
6.6 Configurations considered during the co-simulation evaluation 111

127

Listings

3.1 A simple example of a C program. 21
3.2 Structure of the bitcode of a simple program. 21
4.1 Source code of the fir function extracted from the edn benchmark. 56

129

References

[1] Lauterbach GmbH. Lauterbach Trace32 Tracer. URL: https://www.lauterb
ach.com/frames.html?home.html.

[2] Infineon Technologies AG. TriCore AURIX. URL: https://www.infineon.
com/cms/de/product/microcontroller/32-bit-tricore-micro
controller/32-bit-tricore-aurix-tc3xx.

[3] A Aho, M Lam, R Sethi, J Ullman, Keith Cooper, Linda Torczon, et al. Compilers:
Principles, Techniques and Tools. Addison-Wesley 2nd edition, 2007.

[4] Krste Asanovic and Andrew Waterman. “The RISC-V Instruction Set Manual”. In:
Privileged Architecture, Document Version 20190608-Priv-MSU- Ratified. Vol. 2.
RISC-V Foundation, 2019.

[5] Colin Atkinson and Thomas Kuhne. “Model-driven development: a metamodeling
foundation”. In: IEEE software 20.5 (2003), pp. 36–41.

[6] Mossaad Ben Ayed, Faouzi Bouchhima, and Mohamed Abid. “CODIS+: Co-simulation
environment for heterogeneous systems”. In: Journal of Control Engineering and Ap-
plied Informatics 20.1 (2018), pp. 98–107.

[7] Felice Balarin, Paolo Giusto, Attila Jurecska, Michael Chiodo, Claudio Passerone,
Ellen Sentovich, et al. Hardware-software co-design of embedded systems: the PO-
LIS approach. Springer Science & Business Media, 1997.

[8] Prithviraj Banerjee, Nagraj Shenoy, Alok Choudhary, Scott Hauck, Chris Bachmann,
Malay Haldar, et al. “A MATLAB compiler for distributed, heterogeneous, reconfig-
urable computing systems”. In: Proceedings 2000 IEEE Symposium on Field Pro-
grammable Custom Computing Machines (Cat. No. PR00871). IEEE. 2000, pp. 39–
48.

[9] Markus Becker, Daniel Baldin, Christoph Kuznik, Mabel Mary Joy, Tao Xie, and
Wolfgang Mueller. “XEMU: an efficient QEMU based binary mutation testing frame-
work for embedded software”. In: Proceedings of the tenth ACM international con-
ference on Embedded software. 2012, pp. 33–42.

[10] Martin Becker, Marius Pazaj, and Samarjit Chakraborty. “WCET Analysis meets Vir-
tual Prototyping: Improving Source-Level Timing Annotations”. In: Proceedings of
the 22nd International Workshop on Software and Compilers for Embedded Systems.
2019, pp. 13–22.

[11] Fabrice Bellard. “QEMU, a fast and portable dynamic translator.” In: USENIX annual
technical conference, FREENIX Track. Vol. 41. Califor-nia, USA. 2005, p. 46.

https://www.lauterbach.com/frames.html?home.html
https://www.lauterbach.com/frames.html?home.html
https://www.infineon.com/cms/de/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx
https://www.infineon.com/cms/de/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx
https://www.infineon.com/cms/de/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx

130 References

[12] Guillem Bernat, Antoine Colin, and Stefan M Petters. “WCET analysis of proba-
bilistic hard real-time systems”. In: 23rd IEEE Real-Time Systems Symposium, 2002.
RTSS 2002. IEEE. 2002, pp. 279–288.

[13] David Biancolin, Sagar Karandikar, Donggyu Kim, Jack Koenig, Andrew Water-
man, Jonathan Bachrach, et al. “FASED: FPGA-accelerated simulation and evalua-
tion of DRAM”. In: Proceedings of the 2019 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. 2019, pp. 330–339.

[14] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi,
Arkaprava Basu, et al. “The gem5 simulator”. In: ACM SIGARCH computer archi-
tecture news 39.2 (2011), pp. 1–7.

[15] Massimo Bombino and Patrizia Scandurra. “A model-driven co-simulation environ-
ment for heterogeneous systems”. In: International Journal on Software Tools for
Technology Transfer 15.4 (2013), pp. 363–374.

[16] Aimen Bouchhima, Patrice Gerin, and Frédéric Pétrot. “Automatic instrumentation
of embedded software for high level hardware/software co-simulation”. In: 2009 Asia
and South Pacific Design Automation Conference. IEEE. 2009, pp. 546–551.

[17] F Bouchhima, M Briere, G Nicolescu, M Abid, and EM Aboulhamid. “A System-
C/Simulink co-simulation framework for continuous/discrete- events simulation”.
In: 2006 IEEE International Behavioral Modeling and Simulation Workshop. IEEE.
2006, pp. 1–6.

[18] Florian Brandner, Andreas Fellnhofer, Andreas Krall, and David Riegler. “Fast and
accurate simulation using the LLVM compiler framework”. In: Proceedings of the
1st Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools,
RAPIDO. Vol. 9. 2009, pp. 1–6.

[19] Tomas Brezina, Zdenek Hadas, and Jan Vetiska. “Using of Co-simulation ADAMS-
SIMULINK for development of mechatronic systems”. In: 14th International Con-
ference Mechatronika. IEEE. 2011, pp. 59–64.

[20] Oliver Bringmann, Wolfgang Ecker, Andreas Gerstlauer, Ajay Goyal, Daniel Mueller-
Gritschneder, Prasanth Sasidharan, et al. “The next generation of virtual prototyping:
Ultra-fast yet accurate simulation of HW/SW systems”. In: 2015 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE. 2015, pp. 1698–1707.

[21] Oliver Bringmann, Christoph Gerum, and Sebastian Ottlik. “Timing Models for Fast
Embedded Software Performance Analysis”. In: Handbook of Hardware/Software
Codesign. Ed. by Soonhoi Ha and Jürgen Teich. Dordrecht: Springer Netherlands,
2017, pp. 655–682.

[22] Juan Castillo, Hector Posadas, Eugenio Villar, and Marcos Martinez. “Fast instruc-
tion cache modeling for approximate timed HW/SW co- simulation”. In: Proceedings
of the 20th symposium on Great lakes symposium on VLSI. 2010, pp. 191–196.

[23] Jeronimo Castrillon, Rainer Leupers, and Gerd Ascheid. “MAPS: Mapping concur-
rent dataflow applications to heterogeneous MPSoCs”. In: IEEE Transactions on In-
dustrial Informatics 9.1 (2011), pp. 527–545.

[24] Francisco J Cazorla, Eduardo Quiñones, Tullio Vardanega, Liliana Cucu, Benoit Tri-
quet, Guillem Bernat, et al. “Proartis: Probabilistically analyzable real-time systems”.
In: ACM Transactions on Embedded Computing Systems (TECS) 12.2s (2013), pp. 1–
26.

[25] Suhas Chakravarty, Zhuoran Zhao, and Andreas Gerstlauer. “Automated, retargetable
back-annotation for host compiled performance and power modeling”. In: 2013 Inter-
national Conference on Hardware/Software Codesign and System Synthesis (CODES+
ISSS). IEEE. 2013, pp. 1–10.

References 131

[26] Eric Cheung, Harry Hsieh, and Felice Balarin. “Fast and accurate performance sim-
ulation of embedded software for MPSoC”. In: 2009 Asia and South Pacific Design
Automation Conference. IEEE. 2009, pp. 552–557.

[27] Yuze Chi, Young-kyu Choi, Jason Cong, and Jie Wang. “Rapid cycle-accurate sim-
ulator for high-level synthesis”. In: Proceedings of the 2019 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays. 2019, pp. 178–183.

[28] Bob Cmelik and David Keppel. “Shade: A fast instruction-set simulator for execution
profiling”. In: Fast simulation of computer architectures. Springer, 1995, pp. 5–46.

[29] Antoine Colin and Stefan M Petters. “Experimental evaluation of code properties
for wcet analysis”. In: RTSS 2003. 24th IEEE Real-Time Systems Symposium, 2003.
IEEE. 2003, pp. 190–199.

[30] DWARF Standards Committee. DWARF Debugging Standard. URL: http://dwa
rfstd.org.

[31] Fabio Cremona, Matteo Morelli, and Marco Di Natale. “TRES: a modular repre-
sentation of schedulers, tasks, and messages to control simulations in simulink”.
In: Proceedings of the 30th Annual ACM Symposium on Applied Computing. 2015,
pp. 1940–1947.

[32] Christoph Cullmann, Christian Ferdinand, Gernot Gebhard, Daniel Grund, Claire
Maiza, Jan Reineke, et al. “Predictability considerations in the design of multi-core
embedded systems”. In: Proceedings of Embedded Real Time Software and Systems
36 (2010), p. 42.

[33] Stephen Anthony Edwards. The specification and execution of heterogeneous syn-
chronous reactive systems. Electronics Research Laboratory, College of Engineering,
University of California, 1997.

[34] Andreas Fauth, Johan Van Praet, and Markus Freericks. “Describing instruction set
processors using nML”. In: Proceedings the European Design and Test Conference.
ED&TC 1995. IEEE. 1995, pp. 503–507.

[35] Christian Ferdinand and Reinhold Heckmann. “ait: Worst-case execution time pre-
diction by static program analysis”. In: Building the Information Society. Springer,
2004, pp. 377–383.

[36] Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian Martin, Michael
Schmidt, Henrik Theiling, et al. “Reliable and precise WCET determination for a
real-life processor”. In: International Workshop on Embedded Software. Springer.
2001, pp. 469–485.

[37] Christian Ferdinand, Florian Martin, Reinhard Wilhelm, and Martin Alt. “Cache be-
havior prediction by abstract interpretation”. In: Science of Computer Programming
35.2-3 (1999), pp. 163–189.

[38] Gabriel Fernandez, Javier Jalle, Jaume Abella, Eduardo Quinones, Tullio Vardanega,
and Francisco J Cazorla. “Computing safe contention bounds for multicore resources
with round-robin and FIFO arbitration”. In: IEEE Transactions on Computers 66.4
(2016), pp. 586–600.

[39] Robert France and Bernhard Rumpe. “Model-driven development of complex soft-
ware: A research roadmap”. In: Future of Software Engineering (FOSE’07). IEEE.
2007, pp. 37–54.

[40] Nikolina Frid, Danko Ivošević, and Vlado Sruk. “Elementary operations: a novel
concept for source-level timing estimation”. In: Automatika: časopis za automatiku,
mjerenje, elektroniku, računarstvo i komunikacije 60.1 (2019), pp. 91–104.

[41] Nikolina Frid, Danko Ivošević, and Vlado Sruk. “Performance estimation in hetero-
geneous MPSoC based on elementary operation cost”. In: 2016 39th International
Convention on Information and Communication Technology, Electronics and Micro-
electronics (MIPRO). IEEE. 2016, pp. 1202–1205.

http://dwarfstd.org
http://dwarfstd.org

132 References

[42] Jon Friedman. “MATLAB/Simulink for automotive systems design”. In: Proceedings
of the Design Automation & Test in Europe Conference. Vol. 1. IEEE. 2006, pp. 1–2.

[43] Andreas Gerstlauer, Suhas Chakravarty, Manan Kathuria, and Parisa Razaghi. “Ab-
stract system-level models for early performance and power exploration”. In: 17th
Asia and South Pacific Design Automation Conference. IEEE. 2012, pp. 213–218.

[44] Christoph Gerum, Oliver Bringmann, and Wolfgang Rosenstiel. “Source level per-
formance simulation of gpu cores”. In: 2015 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE. 2015, pp. 217–222.

[45] Hamid Reza Ghasemi and Zainalabedin Navabi. “An effective VHDL-AMS simula-
tion algorithm with event”. In: 18th International Conference on VLSI Design held
jointly with 4th International Conference on Embedded Systems Design. IEEE. 2005,
pp. 762–767.

[46] Jason Ghidella and Jon Friedman. “Model-based design streamlines development of
body electronics systems”. In: Automotive Electronics 5.6 (2005).

[47] Jeremy Giesen, Pedro Benedicte, Enrico Mezzetti, Jaume Abella, and Francisco J
Cazorla. “Modeling contention interference in crossbar-based systems via sequence-
aware pairing (SeAP)”. In: 2020 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE. 2020, pp. 253–266.

[48] Marius Gligor, Nicolas Fournel, and Frédéric Pétrot. “Using binary translation in
event driven simulation for fast and flexible MPSoC simulation”. In: Proceedings
of the 7th IEEE/ACM international conference on Hardware/software codesign and
system synthesis. 2009, pp. 71–80.

[49] Andrés Goens, Robert Khasanov, Jeronimo Castrillon, Marcus Hähnel, Till Smejkal,
and Hermann Härtig. “Tetris: a multi-application run-time system for predictable ex-
ecution of static mappings”. In: Proceedings of the 20th International Workshop on
Software and Compilers for Embedded Systems. 2017, pp. 11–20.

[50] Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and Hans Vangheluwe.
“Co-simulation: State of the art”. In: arXiv preprint arXiv:1702.00686 (2017).

[51] Matthias Gries. “Methods for evaluating and covering the design space during early
design development”. In: Integration, the VLSI Journal 38.2 (2004), pp. 131–183.

[52] Matthias Gries and Kurt Keutzer. Building ASIPS: The mescal methodology. Springer
Science & Business Media, 2006.

[53] David Griffin, Benjamin Lesage, Iain Bate, Frank Soboczenski, and Robert I Davis.
“Forecast-based interference: Modelling multicore interference from observable fac-
tors”. In: Proceedings of the 25th International Conference on Real-Time Networks
and Systems. 2017, pp. 198–207.

[54] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. “The Mälardalen
WCET benchmarks: Past, present and future”. In: 10th International Workshop on
Worst-Case Execution Time Analysis (WCET 2010). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik. 2010.

[55] Claude Helmstetter, Vania Joloboff, Zhou Xinlei, and Gao Xiaopeng. “Fast instruc-
tion set simulation using LLVM-based dynamic translation”. In: International Mul-
tiConference of Engineers and Computer Scientists 2011. Vol. 2188. 2011, pp. 212–
216.

[56] Jörg Henkel. “Closing the SoC design gap”. In: Computer 36.9 (2003), pp. 119–121.
[57] Dan Henriksson, Anton Cervin, and Karl-Erik Årzén. “TrueTime: Real-time control

system simulation with MATLAB/Simulink”. In: Proceedings of the Nordic MAT-
LAB Conference. Copenhagen, Denmark. 2003.

[58] G Glenn Henry and Terry Parks. Microprocessor that fuses if-then instructions. US
Patent 10,394,562. 2019.

References 133

[59] Thomas A Henzinger and Joseph Sifakis. “The embedded systems design challenge”.
In: International Symposium on Formal Methods. Springer. 2006, pp. 1–15.

[60] Vladimir Herdt, Daniel Große, and Rolf Drechsler. “Verification of Embedded Soft-
ware Binaries using Virtual Prototypes”. In: Enhanced Virtual Prototyping. Springer,
2021, pp. 143–174.

[61] Vance Hilderman and Tony Baghi. Avionics certification: a complete guide to DO-
178 (software), DO-254 (hardware). Avionics Communications, 2007.

[62] Hitex. Hitex LPC4350 Evaluation board. URL: https://www.nxp.com/desi
gn/designs/hitex-lpc4350-evaluation-board:OM13031.

[63] Harold Hoehne and Robert Piloty. “Design verification at the register transfer lan-
guage level”. In: IEEE Transactions on Computers 100.9 (1975), pp. 861–867.

[64] Kenneth Hoste and Lieven Eeckhout. “Comparing benchmarks using key microar-
chitecture -independent characteristics”. In: 2006 IEEE International Symposium on
Workload Characterization. IEEE. 2006, pp. 83–92.

[65] Texas Instruments Incorporated. EVMK2EX - K2E Development Board. URL: http
s://www.ti.com/tool/EVMK2EX.

[66] Texas Instruments Incorporated. Hercules RM57Lx Development Kit. URL: https:
//www.ti.com/tool/tmdxrm57lhdk.

[67] Dan Iorga, Tyler Sorensen, John Wickerson, and Alastair F Donaldson. “Slow and
steady: Measuring and tuning multicore interference”. In: 2020 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE. 2020, pp. 200–
212.

[68] Canturk Isci and Margaret Martonosi. “Runtime power monitoring in high-end pro-
cessors: Methodology and empirical data”. In: Proceedings. 36th Annual IEEE/ACM
International Symposium on Microarchitecture, 2003. MICRO-36. IEEE. 2003, pp. 93–
104.

[69] Tsuyoshi Isshiki, Dongju Li, Hiroaki Kunieda, Toshio Isomura, and Kazuo Satou.
“Trace-driven workload simulation method for Multiprocessor System-On-Chips”.
In: Proceedings of the 46th Annual Design Automation Conference. 2009, pp. 232–
237.

[70] Zai Jian Jia, Antonio Núñez, Tomás Bautista, and Andy D Pimentel. “A two-phase
design space exploration strategy for system-level real-time application mapping
onto MPSoC”. In: Microprocessors and Microsystems 38.1 (2014), pp. 9–21.

[71] Rik Jongerius, Andreea Anghel, Gero Dittmann, Giovanni Mariani, Erik Vermij, and
Henk Corporaal. “Analytic multi-core processor model for fast design-space explo-
ration”. In: IEEE Transactions on Computers 67.6 (2017), pp. 755–770.

[72] Rik Jongerius, Giovanni Mariani, Andreea Anghel, Gero Dittmann, Erik Vermij, and
Henk Corporaal. “Analytic processor model for fast design-space exploration”. In:
2015 33rd IEEE International Conference on Computer Design (ICCD). IEEE. 2015,
pp. 411–414.

[73] Ajay Joshi, Aashish Phansalkar, Lieven Eeckhout, and Lizy Kurian John. “Measuring
benchmark similarity using inherent program characteristics”. In: IEEE Transactions
on Computers 55.6 (2006), pp. 769–782.

[74] Tejas S Karkhanis and James E Smith. “A first-order superscalar processor model”.
In: Proceedings. 31st Annual International Symposium on Computer Architecture,
2004. IEEE. 2004, pp. 338–349.

[75] Daniel Kästner and Stephan Wilhelm. “Generic control flow reconstruction from as-
sembly code”. In: Proceedings of the joint conference on Languages, compilers and
tools for embedded systems: software and compilers for embedded systems. 2002,
pp. 46–55.

https://www.nxp.com/design/designs/hitex-lpc4350-evaluation-board:OM13031
https://www.nxp.com/design/designs/hitex-lpc4350-evaluation-board:OM13031
https://www.ti.com/tool/EVMK2EX
https://www.ti.com/tool/EVMK2EX
https://www.ti.com/tool/tmdxrm57lhdk
https://www.ti.com/tool/tmdxrm57lhdk

134 References

[76] Yuki Kawarabatake, Mulya Agung, Kazuhiko Komatsu, Ryusuke Egawa, and Hi-
royuki Takizawa. “Use of code structural features for machine learning to predict
effective optimizations”. In: 2018 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW). IEEE. 2018, pp. 1049–1055.

[77] Torsten Kempf, Kingshuk Karuri, Stefan Wallentowitz, Gerd Ascheid, Rainer Leu-
pers, and Heinrich Meyr. “A SW performance estimation framework for early system-
level-design using fine-grained instrumentation”. In: Proceedings of the Design Au-
tomation & Test in Europe Conference. Vol. 1. IEEE. 2006, 6–pp.

[78] Kurt Keutzer, A Richard Newton, Jan M Rabaey, and Alberto Sangiovanni-Vincentelli.
“System-level design: orthogonalization of concerns and platform-based design”. In:
IEEE transactions on computer-aided design of integrated circuits and systems 19.12
(2000), pp. 1523–1543.

[79] Bart Kienhuis, Ed Deprettere, Kees Vissers, and Pieter Van Der Wolf. “An approach
for quantitative analysis of application-specific dataflow architectures”. In: Proceed-
ings IEEE International Conference on Application-Specific Systems, Architectures
and Processors. IEEE. 1997, pp. 338–349.

[80] Bart Kienhuis, Ed F Deprettere, Pieter Van der Wolf, and Kees Vissers. “A method-
ology to design programmable embedded systems”. In: International Workshop on
Embedded Computer Systems. Springer. 2001, pp. 18–37.

[81] Donggyu Kim, Adam Izraelevitz, Christopher Celio, Hokeun Kim, Brian Zimmer,
Yunsup Lee, et al. “Strober: Fast and accurate sample-based energy simulation for
arbitrary RTL”. In: 2016 ACM/IEEE 43rd Annual International Symposium on Com-
puter Architecture (ISCA). IEEE. 2016, pp. 128–139.

[82] Yeseong Kim, Pietro Mercati, Ankit More, Emily Shriver, and Tajana Rosing. “P 4:
Phase-based power/performance prediction of heterogeneous systems via neural net-
works”. In: 2017 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE. 2017, pp. 683–690.

[83] Raimund Kirner, Roland Lang, Gerald Freiberger, and Peter Puschner. “Fully auto-
matic worst-case execution time analysis for Matlab/ Simulink models”. In: Proceed-
ings 14th Euromicro Conference on Real-Time Systems. Euromicro RTS 2002. IEEE.
2002, pp. 31–40.

[84] Raimund Kirner, Roland Lang, Gerald Freiberger, and Peter Puschner. “Fully auto-
matic worst-case execution time analysis for Matlab/ Simulink models”. In: Proceed-
ings 14th Euromicro Conference on Real-Time Systems. Euromicro RTS 2002. IEEE.
2002, pp. 31–40.

[85] Rajat Kumar, Amit Mankodi, Amit Bhatt, Bhaskar Chaudhury, and Aditya Amru-
tiya. “Cross-Platform Performance Prediction with Transfer Learning using Machine
Learning”. In: 2020 11th International Conference on Computing, Communication
and Networking Technologies (ICCCNT). IEEE. 2020, pp. 1–7.

[86] Chris Lattner. “LLVM: An Infrastructure for Multi-Stage Optimization”. MA thesis.
Urbana, IL: Computer Science Dept., University of Illinois at Urbana-Champaign,
2002.

[87] Chris Lattner and Vikram Adve. “LLVM: A compilation framework for lifelong pro-
gram analysis & transformation”. In: International Symposium on Code Generation
and Optimization. IEEE. 2004.

[88] Mihai T Lazarescu, Jwahar R Bammi, Edwin Harcourt, Luciano Lavagno, and Mar-
cello Lajolo. “Compilation-based software performance estimation for system level
design”. In: Proceedings IEEE International High-Level Design Validation and Test
Workshop (Cat. No. PR00786). IEEE. 2000, pp. 167–172.

[89] Edward Ashford Lee and Sanjit A Seshia. Introduction to embedded systems: A
cyber-physical systems approach. Mit Press, 2016.

References 135

[90] Jong-Yeol Lee and In-Cheol Park. “Timed compiled-code functional simulation of
embedded software for performance analysis of SOC design”. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 22.1 (2003), pp. 1–14.

[91] Rainer Leupers, Miguel A. Aguilar, Jeronimo Castrillon, and Weihua Sheng. “Soft-
ware Compilation Techniques for Heterogeneous Embedded Multi-Core Systems”.
In: Handbook of Signal Processing Systems (3rd Edition). Ed. by Shuvra S. Bhat-
tacharyya, Ed F. Deprettere, Rainer Leupers, and Jarmo Takala. Springer New York,
Sept. 2018, pp. 1021–1062.

[92] Rainer Leupers, Miguel Angel Aguilar, Jeronimo Castrillon, and Weihua Sheng.
“Software compilation techniques for heterogeneous embedded multi-core systems”.
In: Handbook of Signal Processing Systems. Springer, 2019, pp. 1021–1062.

[93] ARM Limited. ARM big.LITTLE. URL: https://www.arm.com/why-arm/
technologies/big-little.

[94] Kai-Li Lin, Chen-Kang Lo, and Ren-Song Tsay. “Source-level timing annotation for
fast and accurate TLM computation model generation”. In: 2010 15th Asia and South
Pacific Design Automation Conference (ASP-DAC). IEEE. 2010, pp. 235–240.

[95] Shuangnan Liu, Francis Lau, and Benjamin Carrion Schafer. “Predictive Composi-
tional Method to Design and Reoptimize Complex Behavioral Dataflows”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 39.10
(2020), pp. 2615–2627.

[96] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, Matteo Andreozzi, et al. “The gem5 Simulator: Version 20.0+: A new era
for the open-source computer architecture simulator”. In: ArXivorg (2020).

[97] Kun Lu, Daniel Müller-Gritschneder, and Ulf Schlichtmann. “Hierarchical control
flow matching for source-level simulation of embedded software”. In: 2012 Interna-
tional Symposium on System on Chip (SoC). IEEE. 2012, pp. 1–5.

[98] Thomas Lundqvist and Per Stenstrom. “Timing anomalies in dynamically scheduled
microprocessors”. In: Proceedings 20th IEEE Real-Time Systems Symposium. IEEE.
1999, pp. 12–21.

[99] Thomas Lundqvist and Per Stenstrom. “Timing anomalies in dynamically scheduled
microprocessors”. In: Proceedings 20th IEEE Real-Time Systems Symposium (Cat.
No. 99CB37054). IEEE. 1999, pp. 12–21.

[100] Hosein Mohammadi Makrani, Farnoud Farahmand, Hossein Sayadi, Sara Bondi, Sai
Manoj Pudukotai Dinakarrao, Houman Homayoun, et al. “Pyramid: Machine learn-
ing framework to estimate the optimal timing and resource usage of a high-level
synthesis design”. In: 2019 29th International Conference on Field Programmable
Logic and Applications (FPL). IEEE. 2019, pp. 397–403.

[101] Hosein Mohammadi Makrani, Hossein Sayadi, Tinoosh Mohsenin, Setareh Rafati-
rad, Avesta Sasan, and Houman Homayoun. “XPPE: cross-platform performance es-
timation of hardware accelerators using machine learning”. In: Proceedings of the
24th Asia and South Pacific Design Automation Conference. 2019, pp. 727–732.

[102] Amit Mankodi, Amit Bhatt, and Bhaskar Chaudhury. “Performance Prediction of
Physical Computer Systems Using Simulation- Based Hardware Models”. In: 2020
International Conference on High Performance Big Data and Intelligent Systems
(HPBD&IS). IEEE. 2020, pp. 1–5.

[103] Florian Martin. “PAG–an efficient program analyzer generator”. In: International
Journal on Software Tools for Technology Transfer 2.1 (1998), pp. 46–67.

[104] Florian Martin, Martin Alt, Reinhard Wilhelm, and Christian Ferdinand. “Analysis
of loops”. In: International Conference on Compiler Construction. Springer. 1998,
pp. 80–94.

https://www.arm.com/why-arm/technologies/big-little
https://www.arm.com/why-arm/technologies/big-little

136 References

[105] Grant Martin. “ESL requirements for configurable processor-based embedded system
design”. In: IP-SoC 2005 (2005), pp. 15–20.

[106] Grant Martin. “Overview of the MPSoC design challenge”. In: 2006 43rd ACM/IEEE
Design Automation Conference. IEEE. 2006, pp. 274–279.

[107] Omayma Matoussi and Frédéric Pétrot. “A mapping approach between IR and binary
CFGs dealing with aggressive compiler optimizations for performance estimation”.
In: 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC).
IEEE. 2018, pp. 452–457.

[108] Thomas J McCabe. “A complexity measure”. In: IEEE Transactions on software
Engineering 4 (1976), pp. 308–320.

[109] Trevor Meyerowitz, Alberto Sangiovanni-Vincentelli, Mirko Sauermann, and Do-
minik Langen. “Source-level timing annotation and simulation for a heterogeneous
multiprocessor”. In: Proceedings of the conference on Design, Automation and Test
in Europe. 2008, pp. 276–279.

[110] Joan C Miller and Clifford J Maloney. “Systematic mistake analysis of digital com-
puter programs”. In: Communications of the ACM 6.2 (1963), pp. 58–63.

[111] Daniel Mueller-Gritschneder and Andreas Gerstlauer. “Host-Compiled Simulation”.
In: Handbook of Hardware/Software Codesign. Ed. by Soonhoi Ha and Jürgen Teich.
Dordrecht: Springer Netherlands, 2017, pp. 593–619.

[112] Daniel Mueller-Gritschneder, Kun Lu, and Ulf Schlichtmann. “Control-flow-driven
source level timing annotation for embedded software models on transaction level”.
In: 2011 14th Euromicro Conference on Digital System Design. IEEE. 2011, pp. 600–
607.

[113] Andreas Naderlinger. “Simulating preemptive scheduling with timing-aware blocks
in Simulink”. In: Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017. IEEE. 2017, pp. 758–763.

[114] Andreas Naderlinger. “Simulating preemptive scheduling with timing-aware blocks
in Simulink”. In: Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017. IEEE. 2017, pp. 758–763.

[115] V Nikolskiy and V Stegailov. “Floating-point performance of ARM cores and their
efficiency in classical molecular dynamics”. In: Journal of Physics: Conference Se-
ries. Vol. 681. 1. 2016, p. 012049.

[116] Achim Nohl, Gunnar Braun, Oliver Schliebusch, Rainer Leupers, Heinrich Meyr,
and Andreas Hoffmann. “A universal technique for fast and flexible instruction-set
architecture simulation”. In: Proceedings of the 39th annual Design Automation Con-
ference. 2002, pp. 22–27.

[117] Sebastian Ottlik, Jan Micha Borrmann, Sadik Asbach, Alexander Viehl, Wolfgang
Rosenstiel, and Oliver Bringmann. “Trace-based context-sensitive timing simulation
considering execution path variations”. In: 2016 21st Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE. 2016, pp. 159–165.

[118] Sebastian Ottlik, Christoph Gerum, Alexander Viehl, Wolfgang Rosenstiel, and Oliver
Bringmann. “Context-sensitive timing automata for fast source level simulation”. In:
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017. IEEE.
2017, pp. 512–517.

[119] Sebastian Ottlik, Stefan Stattelmann, Alexander Viehl, Wolfgang Rosenstiel, and
Oliver Bringmann. “Context-sensitive timing simulation of binary embedded soft-
ware”. In: Proceedings of the 2014 International Conference on Compilers, Archi-
tecture and Synthesis for Embedded Systems. 2014, pp. 1–10.

[120] R Palin, D Ward, I Habli, and R Rivett. “ISO 26262 safety cases: compliance and
assurance”. In: IET Conference Proceedings. The Institution of Engineering & Tech-
nology. 2011.

References 137

[121] Preeti Ranjan Panda. “SystemC: a modeling platform supporting multiple design ab-
stractions”. In: Proceedings of the 14th international symposium on Systems synthe-
sis. 2001, pp. 75–80.

[122] Reena Panda, Xinnian Zheng, Shuang Song, Jee Ho Ryoo, Michael LeBeane, An-
dreas Gerstlauer, et al. “Genesys: Automatically generating representative training
sets for predictive benchmarking”. In: 2016 International Conference on Embedded
Computer Systems: Architectures, Modeling and Simulation (SAMOS). IEEE. 2016,
pp. 116–123.

[123] Charalampos Papamanthou. Depth First Search & Directed Acyclic Graphs. Univer-
sity of Maryland, College Park, 2004.

[124] Vladimir-Alexandru Paun, Bruno Monsuez, and Philippe Baufreton. “On the Deter-
minism of Multi-core Processors”. In: 1st French Singaporean Workshop on Formal
Methods and Applications. 2013, p. 32.

[125] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood, and
Brad Calder. “Using simpoint for accurate and efficient simulation”. In: ACM SIG-
METRICS Performance Evaluation Review 31.1 (2003), pp. 318–319.

[126] Stefan M Petters, Patryk Zadarnowski, and Gernot Heiser. “Measurements or static
analysis or both?” In: 7th International Workshop on Worst-Case Execution Time
Analysis (WCET’07). Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2007.

[127] Roman Plyaskin, Thomas Wild, and Andreas Herkersdorf. “System-level software
performance simulation considering out-of-order processor execution”. In: 2012 In-
ternational Symposium on System on Chip (SoC). IEEE. 2012, pp. 1–7.

[128] Michael Pressler, Alexander Viehl, Oliver Bringmann, and Wolfgang Rosenstiel.
“Execution cost estimation for software deployment in component-based embed-
ded systems”. In: Proceedings of the 17th international ACM Sigsoft symposium on
Component-based software engineering. 2014, pp. 123–128.

[129] Masudul H Quraishi, Hessam S Sarjoughian, and Soroosh Gholami. “Co-simulation
of hardware RTL and software system using FMI”. In: 2018 Winter Simulation Con-
ference (WSC). IEEE. 2018, pp. 572–583.

[130] G Ramalingam and Thomas Reps. “An incremental algorithm for maintaining the
dominator tree of a reducible flowgraph”. In: Proceedings of the 21st ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. 1994, pp. 287–296.

[131] Rapita Systems Ltd. Measurement-based timing and WCET analysis with RapiTime.
URL: https://www.rapitasystems.com/files/MC-PB-101%20Rapi
Time%20Product%20Brief_1.pdf.

[132] Jan Reineke and Rathijit Sen. “Sound and efficient WCET analysis in the presence
of timing anomalies”. In: 9th International Workshop on Worst-Case Execution Time
Analysis (WCET’09). Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2009.

[133] Jan Reineke, Björn Wachter, Stefan Thesing, Reinhard Wilhelm, Ilia Polian, Jochen
Eisinger, et al. “A definition and classification of timing anomalies”. In: 6th In-
ternational Workshop on Worst-Case Execution Time Analysis (WCET’06). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik. 2006.

[134] Jan Reineke, Björn Wachter, Stefan Thesing, Reinhard Wilhelm, Ilia Polian, Jochen
Eisinger, et al. “A definition and classification of timing anomalies”. In: 6th In-
ternational Workshop on Worst-Case Execution Time Analysis (WCET’06). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik. 2006.

[135] Mehrdad Reshadi, Prabhat Mishra, and Nikil Dutt. “Instruction set compiled simula-
tion: A technique for fast and flexible instruction set simulation”. In: Proceedings
2003. Design Automation Conference (IEEE Cat. No. 03CH37451). IEEE. 2003,
pp. 758–763.

https://www.rapitasystems.com/files/MC-PB-101%20RapiTime%20Product%20Brief_1.pdf
https://www.rapitasystems.com/files/MC-PB-101%20RapiTime%20Product%20Brief_1.pdf

138 References

[136] Stefan Resmerita, Patricia Derler, Wolfgang Pree, and Kenneth Butts. The Validator
tool suite: filling the gap between conventional soft-ware-in-the-loop and hardware-
in-the-loop simulation environments. 2012.

[137] Stefan Resmerita, Anton Poelzleitner, and Stefan Lukesch. “Modeling and Simu-
lation of Software Execution Time in Embedded Systems”. In: 2020 10th Annual
Computing and Communication Workshop and Conference (CCWC). IEEE. 2020,
pp. 0888–0894.

[138] Adam Rose, Stuart Swan, John Pierce, Jean-Michel Fernandez, et al. “Transaction
level modeling in SystemC”. In: Open SystemC Initiative 1.1.297 (2005).

[139] Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. “Global value numbers
and redundant computations”. In: Proceedings of the 15th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. 1988, pp. 12–27.

[140] Christopher J Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin, and Dennis Fet-
terly. “Dandelion: a compiler and runtime for heterogeneous systems”. In: Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. 2013,
pp. 49–68.

[141] J Rowson and A Sangiovanni-Vincentelli. “System level design”. In: EE Times (1996).
[142] Farhan Shafiq, Tsuyoshi Isshiki, Dongju Li, and Hiroaki Kunieda. “A Fast Trace

Aware Statistical Based Prediction Model with Burst Traffic Modeling for Contention
Stall in A Priority Based MPSoC Bus”. In: IPSJ Transactions on System LSI Design
Methodology 9 (2016), pp. 37–48.

[143] Timothy Sherwood and Brad Calder. “Time varying behavior of programs”. In: In
UC San Diego (1999).

[144] Timothy Sherwood, Erez Perelman, and Brad Calder. “Basic block distribution anal-
ysis to find periodic behavior and simulation points in applications”. In: Proceed-
ings 2001 International Conference on Parallel Architectures and Compilation Tech-
niques. IEEE. 2001, pp. 3–14.

[145] Kohta Shigenobu, Kanemitsu Ootsu, Takeshi Ohkawa, and Takashi Yokota. “A trans-
lation method of ARM machine code to LLVM-IR for binary code parallelization and
optimization”. In: 2017 Fifth International Symposium on Computing and Network-
ing (CANDAR). IEEE. 2017, pp. 575–579.

[146] Shuang Song, Qinzhe Wu, Steven Flolid, Joseph Dean, Reena Panda, Junyong Deng,
et al. “Experiments with spec cpu 2017: Similarity, balance, phase b ehavior and
simpoints”. In: ().

[147] Rafael Stahl, Daniel Mueller-Gritschneder, and Ulf Schlichtmann. “Automated Redi-
rection of Hardware Accesses for Host-Compiled Software Simulation”. In: 2018
Forum on Specification & Design Languages (FDL). IEEE. 2018, pp. 5–16.

[148] Richard Stallman, Roland Pesch, Stan Shebs, et al. “Debugging with GDB”. In: Free
Software Foundation 675 (1988).

[149] Stefan Stattelmann, Oliver Bringmann, and Wolfgang Rosenstiel. “Dominator homo-
morphism based code matching for source-level simulation of embedded software”.
In: Proceedings of the seventh IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis. 2011, pp. 305–314.

[150] Stefan Stattelmann, Oliver Bringmann, and Wolfgang Rosenstiel. “Fast and accurate
source-level simulation of software timing considering complex code optimizations”.
In: 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE. 2011,
pp. 486–491.

[151] Stefan Stattelmann, Gernot Gebhard, Christoph Cullmann, Oliver Bringmann, and
Wolfgang Rosenstiel. “Hybrid source-level simulation of data caches using abstract
cache models”. In: 2012 Design, Automation & Test in Europe Conference & Exhi-
bition (DATE). IEEE. 2012, pp. 376–381.

References 139

[152] Stefan Stattelmann, Sebastian Ottlik, Alexander Viehl, Oliver Bringmann, and Wolf-
gang Rosenstiel. “Combining instruction set simulation and wcet analysis for em-
bedded software performance estimation”. In: 7th IEEE International Symposium on
Industrial Embedded Systems (SIES’12). IEEE. 2012, pp. 295–298.

[153] Stefan Stattelmann, Alexander Viehl, Oliver Bringmann, and Wolfgang Rosenstiel.
“Towards Accurate Source-Level Annotation of Low-Level Properties Obtained from
Optimized Binary Code”. In: System Specification and Design Languages. Springer,
2012, pp. 175–190.

[154] Sam Van den Steen, Sander De Pestel, Moncef Mechri, Stijn Eyerman, Trevor Carl-
son, David Black-Schaffer, et al. “Micro-architecture independent analytical proces-
sor performance and power modeling”. In: 2015 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE. 2015, pp. 32–41.

[155] Radare Team. “Radare2 book”. In: GitHub. 2017. URL: https://github.com/
radareorg/radare2.

[156] DRVLB Thambawita, Roshan G Ragel, and Dhammike Elkaduwe. “To use or not to
use: CPUs’ cache optimization techniques on GPGPUs”. In: 2016 IEEE International
Conference on Information and Automation for Sustainability (ICIAfS). IEEE. 2016,
pp. 1–6.

[157] The LLVM Compiler Infrastructure. Debugging JIT-ed Code. URL: https://llv
m.org/docs/DebuggingJITedCode.html.

[158] The LLVM Compiler Infrastructure. LLVM’s Analysis and Transform Passes. URL:
https://llvm.org/docs/Passes.html (visited on 09/15/2020).

[159] The LLVM Compiler Infrastructure. Machine IR (MIR) Format Reference Manual.
URL: https://llvm.org/docs/MIRLangRef.html.

[160] The LLVM Compiler Infrastructure. The LLVM bitcode execution engine: lli directly
executes programs from LLVM bitcode. URL: https://llvm.org/docs/
CommandGuide/lli.html.

[161] The LLVM Compiler Infrastructure. The LLVM Target-Independent Code Generator.
URL: https://llvm.org/docs/CodeGenerator.html.

[162] The LLVM Compiler Infrastructure. Writing an LLVM Pass. URL: https://llvm
.org/docs/WritingAnLLVMPass.html.

[163] The MathWorks Inc. MATLAB - Communicate Using TCP/IP Server Sockets. URL:
https://www.mathworks.com/help/instrument/communicate-
using-tcpip-server-sockets.html.

[164] The MathWorks Inc. MATLAB Simulink - Embedded Coder. URL: https://www.
mathworks.com/products/embedded-coder.html.

[165] The MathWorks Inc. MATLAB Simulink - Modeling a Fault-Tolerant Fuel Control
System. URL: https://www.mathworks.com/help/simulink/slref/
modeling-a-fault-tolerant-fuel-control-system.html.

[166] The MathWorks Inc. MATLAB Simulink - Simulation and Model-Based Design. URL:
https://www.mathworks.com/products/simulink.html.

[167] The MathWorks Inc. MATLAB Simulink - Stateflow: Model and simulate decision
logic using state machines and flow charts. URL: https://www.mathworks.
com/products/stateflow.html.

[168] Henrik Theiling. “Control flow graphs for real-time systems analysis”. In: Universität
des Saarlandes, Diss (2002).

[169] Theo Ungerer, Francisco Cazorla, Pascal Sainrat, Guillem Bernat, Zlatko Petrov,
Christine Rochange, et al. “Merasa: Multicore execution of hard real-time applica-
tions supporting analyzability”. In: IEEE Micro 30.5 (2010), pp. 66–75.

[170] Harry Wagstaff. “From High Level Architecture Descriptions to Fast Instruction Set
Simulators”. In: (2015).

https://github.com/radareorg/radare2
https://github.com/radareorg/radare2
https://llvm.org/docs/DebuggingJITedCode.html
https://llvm.org/docs/DebuggingJITedCode.html
https://llvm.org/docs/Passes.html
https://llvm.org/docs/MIRLangRef.html
https://llvm.org/docs/CommandGuide/lli.html
https://llvm.org/docs/CommandGuide/lli.html
https://llvm.org/docs/CodeGenerator.html
https://llvm.org/docs/WritingAnLLVMPass.html
https://llvm.org/docs/WritingAnLLVMPass.html
https://www.mathworks.com/help/instrument/communicate-using-tcpip-server-sockets.html
https://www.mathworks.com/help/instrument/communicate-using-tcpip-server-sockets.html
https://www.mathworks.com/products/embedded-coder.html
https://www.mathworks.com/products/embedded-coder.html
https://www.mathworks.com/help/simulink/slref/modeling-a-fault-tolerant-fuel-control-system.html
https://www.mathworks.com/help/simulink/slref/modeling-a-fault-tolerant-fuel-control-system.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/stateflow.html
https://www.mathworks.com/products/stateflow.html

140 References

[171] Zhonglei Wang and Jörg Henkel. “Accurate source-level simulation of embedded
software with respect to compiler optimizations”. In: 2012 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE. 2012, pp. 382–387.

[172] Zhonglei Wang and Andreas Herkersdorf. “An efficient approach for system-level
timing simulation of compiler-optimized embedded software”. In: 2009 46th ACM/IEEE
Design Automation Conference. IEEE. 2009, pp. 220–225.

[173] Vincent M Weaver and Sally A McKee. “Are cycle accurate simulations a waste of
time”. In: Proc. 7th Workshop on Duplicating, Deconstructing, and Debunking. 2008,
pp. 40–53.

[174] Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Peter Puschner. “Measurement-
based timing analysis”. In: International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation. Springer. 2008, pp. 430–444.

[175] Stephan Werner, Leonard Masing, Fabian Lesniak, and Jürgen Becker. “Software-in-
the-loop simulation of embedded control applications based on virtual platforms”. In:
2015 25th International Conference on Field Programmable Logic and Applications
(FPL). IEEE. 2015, pp. 1–8.

[176] Thomas Wild, Andreas Herkersdorf, and Gyoo-Yeong Lee. “TAPES—Trace-based
architecture performance evaluation with SystemC”. In: Design Automation for Em-
bedded Systems 10.2 (2005), pp. 157–179.

[177] Reinhard Wilhelm. “Determining bounds on execution times”. In: Handbook on Em-
bedded Systems (2009).

[178] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David Whalley, et al. “The worst-case execution-time problem—overview of meth-
ods and survey of tools”. In: ACM Transactions on Embedded Computing Systems
(TECS) 7.3 (2008), pp. 1–53.

[179] Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling, Markus Pister, and
Christian Ferdinand. “Memory hierarchies, pipelines, and buses for future architec-
tures in time-critical embedded systems”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 28.7 (2009), pp. 966–978.

[180] Michael E Wolf, Dror E Maydan, and Ding-Kai Chen. “Combining loop transfor-
mations considering caches and scheduling”. In: Proceedings of the 29th IEEE/ACM
International Symposium on Microarchitecture. MICRO 29. IEEE. 1996, pp. 274–
286.

[181] Xilinx. ZedBoard Zynq-7000 ARM/FPGA SoC Development Board. URL: https:
//www.xilinx.com/products/boards-and-kits/1-elhabt.html.

[182] Hideaki Yanagisawa, Minoru Uehara, and Hideki Mori. “Automatic generation of
a simulation compiler by a HW/SW codesign system”. In: Proceedings. 15th IEEE
International Workshop on Rapid System Prototyping, 2004. IEEE. 2004, pp. 53–59.

[183] Youngmin Yi, Dohyung Kim, and Soonhoi Ha. “Fast and accurate cosimulation
of MPSoC using trace-driven virtual synchronization”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 26.12 (2007), pp. 2186–
2200.

[184] Joon-Seo Yim, Yoon-Ho Hwang, Chang-Jae Park, Hoon Choi, Woo-Seung Yang,
Hun-Seung Oh, et al. “A C-based RTL design verification methodology for complex
microprocessor”. In: Proceedings of the 34th annual Design Automation Conference.
1997, pp. 83–88.

[185] Zhuoran Zhao, Andreas Gerstlauer, and Lizy K John. “Source-level performance,
energy, reliability, power and thermal (PERPT) simulation”. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 36.2 (2016), pp. 299–
312.

https://www.xilinx.com/products/boards-and-kits/1-elhabt.html
https://www.xilinx.com/products/boards-and-kits/1-elhabt.html

References 141

[186] Xinnian Zheng, Lizy K John, and Andreas Gerstlauer. “Lacross: Learning-based an-
alytical cross-platform performance and power prediction”. In: International Journal
of Parallel Programming 45.6 (2017), pp. 1488–1514.

[187] Jianwen Zhu and Daniel D Gajski. “A retargetable, ultra-fast instruction set simula-
tor”. In: Proceedings of the conference on Design, automation and test in Europe.
1999, 62–es.

[188] Vojin Zivojnovic and Heinrich Meyr. “Compiled HW/SW co-simulation”. In: 33rd
Design Automation Conference Proceedings, 1996. IEEE. 1996, pp. 690–695.

	Abstract
	Zusammenfassung
	Acknowledgements
	Introduction
	Motivation
	Contributions
	Thesis Organization
	Related Publications

	Performance Exploration of HW/SW Co-Design
	Design Challenges in MPSoC
	Programming Models
	Performance Analysis

	Performance Estimation via Host-Based Simulation
	Workflow Concept
	Possible MPSoC-Oriented Improvements

	Summary

	Background and Related Work
	Embedded Systems
	System Design
	MATLAB Simulink
	Compilation Process

	The LLVM Compiler Infrastructure
	Static Compilation
	LLVM IR
	Dynamic Compilation
	Other Program Intermediate Representations

	Timing Analysis
	Programs as Graphs
	Timing Analysis Approaches Classification
	Performance Estimations

	Simulation Approaches for Performance Estimation
	Different Simulation Categories
	Control-Flow-Driven Host-Based Simulation
	System Performance Considerations in Simulink

	Summary

	Mapping IR to Binary Control-Flow Graphs
	Problem Definition
	Program Structure Representation
	LLVM Optimizations and Passes

	Relevant and Inspirational Mapping Approaches
	Dominator Homomorphism
	Subgraph Matching Algorithm
	Other Approaches

	Fully-Automatic Subgraph Matching Algorithm
	Tracing-Based Solution
	Limitations

	Two-Phases Algorithm
	Label Matching Algorithm
	Isomorphism Matching Algorithm

	Summary

	Efficient Performance Estimation via IR-Level Host-Based Simulation
	Sources of Timing Variation
	Context-Sensitive Timing Information
	The Concept of Context
	Implicit Modeling of the Hardware Timing Behavior

	Simulation Methodology
	Interpretation-Based Context-Sensitive Timing Simulation
	JIT-Based Context-Sensitive Timing Simulation
	Early Performance Estimation of Heterogeneous MPSoC

	Timing-Aware Simulink Simulation
	Code Generation
	Model Annotation
	Co-Simulation Methodology

	Summary

	Experimental Evaluation and Results
	Evaluation Setup
	Simulation Accuracy
	LLVM IR to Binary CFGs Mapping
	Context-Sensitive Timing Simulation
	Early Evaluation of MPSoC

	Simulation Speed
	Interpretation-Based
	Just-In-Time Speedup
	Simulation Speed Comparison
	Parallel Evaluation Speedup

	Timing-Aware Simulink Simulation Effectiveness
	Simulation Specification
	Timing-Aware Simulation Effects

	Summary

	Conclusions and Future Research
	Thesis Summary and Conclusions
	Future Work
	Improving Simulation Speed
	Adaptive Timing Model
	Multi-Core Support

	List of Abbreviations
	List of Figures
	List of Tables
	References

